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1. Introduction

1.1 Reasons for the study

There is a strong discontinuity between in- and out-of- school mathematical
competences, discontinuity that can be found in all school levels. Several researches
identified one of the causes of this fracture in the stereotyped nature of the problems
proposed by textbooks which, rather than serving as an interface between mathematics
and reality, promote in students an exclusion of realistic considerations and a
suspension of sense-making (Schoenfeld 1991); see Verschaffel, Greer and De Corte
(2000) for an overview of these studies. In this situation, teachers’ expectations
(Bonotto 2007; Gravemeijer 1997) and their beliefs about the aims of mathematics
education (Verschaffel, De Corte and Borghart 1997) often have a decisive role. Indeed,
teachers usually identify mathematical problems with exercises in the four basic
operations solved in a mechanical way, and not as catalyst instruments for a process of
mathematization of reality, as instead desired by national and international curricula
(DM 254/2012; NCTM 2000). Mathematical problems turned in stereotyped exercises
in the four basic operations solved through the application of mechanical procedures,
and students themselves seem to have established a set of rules of which include: 1) any
problem is solvable and makes sense; ii) there is a single, correct and precise
(numerical) answer which must be obtained by performing one or more arithmetical
operations with numbers given in the text; iii) violations of personal knowledge about
the everyday would may be ignored (Greer, Verschaffel and Mukhopadhyay 2007).
Those implicit teachers’ expectations and students’ rules are part of the construct of the
didactic contract (Brousseau 1980). Indeed, the didactic contract regulates classroom
activities, influencing both the teacher’s behavior and students’ learning processes.

More than twenty years after the mentioned studies, current research confirms their
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results and they extend their validity also to the case of teachers in training (Bonotto and
Passarella 2019b).

One of the main consequences of this situation is an increasing gap between
mathematics and real-world (Gravemeijer 1997). Instead, realistic and less stereotyped
problems that take into consideration the experiential world of students must be inserted
in the school practice, in order to create a bridge between mathematics classroom
activities and everyday-life experiences. In fact, encouraging students to relate
mathematical problems with real-world scenarios may help them more closely associate
mathematics with their everyday activities (De Corte, Verschaffel and Greer 2000).
According to the Realistic Mathematics Education (RME) perspective, a connection
between mathematics and reality in order to improve students’ critical thinking and
reasoning should be fostered with activities based on realistic and rich contexts
(Gravemeijer and Doorman 1999). The teaching of mathematics might be seen as a
human activity of guided reinvention (Freudenthal 1991), in which students are active
participants in the learning process, in a balance between students’ freedom of invention
and the power of teacher’s guidance.

In this direction, mathematical modelling and problem-posing could represent
powerful educational strategies to improve the teaching of mathematics in a guided
reinvention approach, offering students opportunities to attach meaning to the
mathematical constructs they develop while solving problems. A modelling perspective,
in fact, provides basic arguments for including authentic situations in the mathematics
classroom (Maass, Doorman, Jonker and Wijers 2019) and represents a critical tool to
understand the reality or society in general. Teaching students to interpret critically the
communities they live in and to understand its codes and messages should be an
important goal for education (Bonotto 2007), in order to give students not only
mathematical competencies but also to prepare them to situations they will have to face
in an increasingly complex world. Mathematical modelling naturally cooperates with
problem-posing, which can be seen as the process by which students generate their own
problems in addition to solving pre-formulated problems (English 1997; NCTM 2000;
Silver and Cai 1996). Allowing students to write their own mathematical problems may
help them to make connections between mathematics in the classroom and their real life

(Kopparla et al. 2018). In conclusion, modelling and problem-posing should represent
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valuable strategies to support students in give sense to their mathematical activity filling

the gap between in- and out-of-school mathematical competencies and experiences.

1.2 Context for the study

In the previous section we outlined the necessity of a paradigmatic change in the
didactics of mathematics that aims to build a bridge between reality, in which intuition
plays a fundamental role, and school life, in which exercise and memorization continue
to play an important role. Despite the specificities of both in- and out-of-school
contexts, it is believed that those conditions that make real-life learning more effective

should be recreated in mathematics classrooms (Bonotto 2005).

The idea is not only to motivate students with everyday-life contexts but also to look for
contexts that are experientially real for the students as starting points for progressive

mathematization. (Gravemeijer 1999, p. 162)

This process of mathematization of reality is desired also by national and
international curricula. In the Italian context, the National Indications for the First Cycle
of Education (DM 254/2012), emphasize how mathematical knowledge should offer
skills for perceiving, interpreting and linking artifacts and daily-life events.
Furthermore, students are required to analyze situations and to translate them into
mathematical terms, recognize recurrent patterns, establish analogies with known
models, choose the actions to be performed and chain them effectively to produce a
solution to the problem. These indications are reflected in the European context. On
May 22, 2018, the European Council reiterated the key competences for lifelong
learning (2018/C189/01), already presented in the 2006 document (2006/962/EC).
Among these competences, mathematical competence appears, seen as the ability to
develop and apply mathematical thinking and the ability to use different representations
(formulas, constructs, models, ...) to solve problems starting from everyday situations,

with particular attention to the process and activity, as well as knowledge.
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In TItalian schools, despite some experiences of innovation and reflection on the
curriculum, teaching strategies and learning environments, still persists a resistance to
abandoning traditional teaching models of transmission type (INNS 2017).

Instead, following both the European recommendations and the Italian National
Indications, a valid methodology to reduce school and extra-school mathematical
competences is that of modeling. Modeling seen not only as a process of solving real
problems, but as a possibility to achieve a process of mathematization and reflection on
mathematics that leads to the construction of new mathematical concepts and tools. As a
consequence, mathematics teachers should become able of recognizing the mathematics
incorporated in daily life. This requires knowing how to integrate pedagogical-didactic
and disciplinary knowledge together, paying attention also to the particular school
context and the cultural environment in which operating. This complex request is high
demanding for teachers who must be supported in a continuous training.

This study is part of a research project of the University of Padova, concerning
teachers’ professional development. In the specific area of mathematics, the overall
purpose is to provide mathematics teachers with methodological models and format of
school practices based on mathematical modelling. This purpose is outlined in the

following points:

* implementing some teaching experiments wherein connecting mathematics and

daily-life experiences;

e start developing prototypes of significant didactics practices based on
mathematical modelling ready to be transferred and implemented in different

concrete school contexts;

¢ developing specific models for professional development courses based on

mathematical modelling for mathematics teachers of every school level.
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1.3 The Italian education system

In this section we remark some facts concerning the Italian education system and initial

teachers’ training programs.

1.3.1 The Italian education system

The Italian education system (Eurydice 2020a) is mainly a public State system.
However, private subjects and public bodies can establish education institutions. The
State competences concern exclusively legislative competences on the general
organization of the education system, such as minimum standards of education, school
staff, quality assurance, State financial resources.

Schools have a high degree of autonomy: they define curricula, widen the
educational offer, organize teaching (school time and groups of pupils). Every three
years, schools draw up their own three-years educational offer plan (PTOF). At higher
education level, universities and institutions of Higher education for the fine arts, music
and dance (4FAM) have statutory, regulatory, teaching and organizational autonomy.

Education at all levels must be open to everyone: Italian citizens as well as foreigner
minors from both EU and non-EU countries. Compulsory education is free. The
principle of inclusion also applies to pupils with disabilities, to pupils with social and
economic disadvantages and to immigrant pupils. In such circumstances, measures
focus on personalization and didactic flexibility and, in the case of immigrants with low
levels of Italian, on linguistic support. The State also guarantees the right to education to
students who are unable to attend school because hospitalized, detained or at home for a
long illness.

The Italian education system includes the following five stages (Fig. 1):

* early childhood education and care (ECEC);
e primary education;

* secondary education;

* post-secondary education;

* higher education.
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Figure 1. The Italian education system. Source: Eurydice 2018/19

Education is compulsory for ten years, between 6 and 16 years of age, covering three
levels of the education system: five years of primary education, three years of lower
secondary education and the first two years of upper secondary education (law
296/2006). The final two years of compulsory education (from 14 to 16 years of age)
can be undertaken through two different paths: the State upper secondary education
(liceo, technical institute or vocational institute) or the regional vocational education
and training system (law 133/2008). In addition to compulsory education, everyone has
a right and a duty to receive education and training for at least 12 years within the
education system or until they have obtained a three-years vocational qualification by
the age of 18 (law 53/2003). Finally, 15-year-olds can also spend the last year of
compulsory education on an apprenticeship, upon a specific arrangement between the
Regions, the Ministry of Laboure, the Ministry of Education and trade unions (law
183/2010). Once they have completed compulsory education, those who do not continue
with their studies receive a certificate of completion of compulsory education that also

describes the skills they have acquired.

Early childhood education and care (ECEC)

ECEC is divided in two stages based on child age groups: 0-3 years and 3-6 years.
ECEC for children aged less than 3 years is offered by educational services while
ECEC for children aged from 3 to 6 years is available at preprimary schools. The two
offers make up a single ECEC system, called integrated system, which is part of the
education system and is not compulsory. Although being part of the same system, the
ECEC 0-3 is organized by the Regions according to the single regional legislations,
while the 3-6 offer is under the responsibility of the Ministry of Education.

Educational guidelines for this ECEC phase are published at central level and are

included in the guidelines that apply to the first cycle of education (DM 254/2012).

Primary education
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The compulsory first cycle of education is made up of primary and lower secondary
education and its total length is 8 years. Comprehensive institutes group primary
schools, lower secondary schools and pre-primary schools managed by a single school
manager. The purpose of comprehensive institutes is to assure didactic continuity within
the same cycle of education. However, although being part of the same cycle, primary
and lower secondary education are considered separate levels of education with their
own specificities.

Primary education is organized at primary schools. Primary education is compulsory,
has an overall length of 5 years and is attended by pupils aged 6 to 11. The aim of
primary education is to provide pupils with basic learning and the basic tools of active
citizenship. It helps pupils to understand the meaning of their own experiences.
Educational guidelines for primary education are published at central level and are

included in the guidelines that apply to the first cycle of education (DM 254/2012).

Lower secondary education

The lower secondary level of education is organized at first-level secondary schools.
Lower secondary education is compulsory, lasts for 3 years and is attended by pupils
aged 11 to 14 years. Lower secondary school aims at fostering the ability to study
autonomously and at strengthening the pupils’ attitudes towards social interaction, at
organizing and increasing knowledge and skills and at providing students with adequate
instruments to continue their education and training activities. Educational guidelines
for lower secondary education are published at central level and are included in the
guidelines that apply to the first cycle of education (DM 254/2012).

Within the first cycle, students pass from one level to the next one without exams. At
the end of the first cycle of education, students who pass the final state examination
progress directly to the second cycle of education, the first two years of which are

compulsory.

Upper secondary education

The second cycle of education is made up of two parallel paths:
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1. State upper secondary education called second-level upper secondary school;

ii.  vocational education and training system (IFP) organized at regional level.

Second level upper secondary schools offer general, technical and vocational
education. The total length of studies at upper secondary level is 5 years (from 14 to 19
years of age).

The general path is organized at /icei. It aims at preparing students to higher-level
studies and to the labour world. It provides students with adequate competences and
knowledge, as well as cultural and methodological instruments for developing their own
critical and planning attitude.

Technical education is organized at technical institutes (istituti tecnici). It provides
students with a strong scientific and technological background in the economic and
technological professional sectors.

Vocational education is organized at vocational institute (istituti professionali). It
provides students with a strong technical and vocational general background in the
sectors of services, industry and handicraft, to facilitate access to the labour world.

At the end of upper secondary education students receive a certification that gives
access to university, to the Higher education for the fine arts, music and dance (Alta
formazione artistica e musicale, AFAM) and to the Higher technical education and
training (ITS).

Educational guidelines for upper secondary education are published at central level

and are differentiated for each specific path.

Regional vocational education and training

Regional vocational education and training (IFP) is organized into three and four-year
courses. Courses can be organized by both accredited local training agencies and by
vocational upper secondary schools in partnership with training agencies. The main
characteristic of courses is a wider use of laboratories and of periods of work
experiences. The aim is to faster access to the job market. At the end of courses,
learners receive a vocational qualification that gives access to the second-level regional
courses or, in case of the four-year programs and at certain conditions, to tertiary

education.
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Post-secondary non-tertiary education

The post-secondary non-tertiary level offers courses within the Higher technical
education and training system (IFTS) and within the vocational training system
managed by the Regions.

The Higher technical education and training system (IFTS) aims at developing
professional specializations at post-secondary level that meet the requirements of the
labour market, both in the public and private sectors. The Regions organize short
vocational training courses (400-800 hours) addressed to those who hold a qualification
obtained either in the regional or in the State vocational training system. They are also

called second-level vocational training courses.

Higher education

The following types of institution offer higher education:
i.  Universities and equivalent institutions;
ii.  Institutes of Higher Education for the fine arts, music and dance (AFAM);
iii.  Higher Technical Institutes (ITSs).

Universities and AFAM institutes offer programs of the first, second and third cycle
according to the Bologna structure and issue the relevant qualifications. First and
second-cycle courses at universities lead to qualifications called /aurea (bachelor) and
laurea magistrale (master). AFAM institutes release qualifications called diploma
accademico di primo livello and diploma accademico di secondo livello. In addition,
Universities and AFAM institutes organize courses leading to qualifications outside the
Bologna structure. ITSs are highly specialized technical schools that offer short-cycle
programs in the technical and technological sectors. In general, courses last 4 semesters

and lead to the qualification of higher technician (diploma tecnico superiore).
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Universities issue the following qualifications, corresponding to the Bologna Process
structure (cycles):
i.  bachelor’s degree, corresponding to a first-cycle qualification (180 credits-
CFU);
1.  master’s degree, corresponding to a second-cycle qualification, issued at the end
of a two-years course of study (120 credits - CFU) or to a 5-6-years single
course (300-360 credits - CFU);

iii.  PhD, corresponding to a third-cycle qualification.

In addition, universities may organize courses leading to the following qualifications:
first-level University masters (addressed to holders of a Bachelor’s degree and lead to a
second-cycle qualification outside the Bachelor and Master structure); specialization
diploma and second-level university master (addressed to holders of a Master’s degree

and lead to a third-cycle qualification outside the Bachelor and Master structure).

1.3.2 Initial teacher training

Initial teacher training for teachers of the pre-primary and primary levels and for
teachers of the secondary level is organized differently (Eurydice 2020b). Both
programs also aim at the acquisition of competences on ICT, languages (English
language at least corresponding to the B2 level within the European common
framework of references for languages) and didactic competences to help the integration

at school of pupils with special educational needs.

Pre-primary and primary levels

Teachers of the pre-primary and primary levels obtain the second-cycle qualification
after completion of a specific five-years single-cycle program, including traineeship
activities. Admission to courses requires also the possession of an upper secondary
qualification or any other equivalent qualification obtained abroad. Courses provide
teachers with the necessary subject related competences and with the ability of adapting

their teaching to different age groups and cultures and planning their teaching activities.
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Programs are organized in general and specific training activities. The former aim at the
acquisition of knowledge in the fields of pedagogy, didactic, psychology, sociology and
anthropology. These studies correspond to 78 CFU credits. Specific activities aim at
both the acquisition of subject-related knowledge and competences and the integration
of pupils with special educational needs. These latter include studies in the fields of
infantile neuropsychiatry, psychology, law and health. Studies correspond to 31 CFU
credits. Future teachers acquire competences in the following subject areas:
mathematics, physics, chemistry, biology, Italian language and literature, English
language, history, geography, sports, arts, music, children’s literature. Studies
correspond to 135 CFU credits. The remaining 56 CFU credits come from traineeship
activities, laboratories, the language qualification and the final exam. Traineeship
activities are carried out starting from the second year of studies for a total duration of
600 hours (24 CFU credits). Courses end up with the discussion of a final work and of
the final traineeship report. The discussion of the two reports makes up the final exam
that also qualifies to teach at pre-primary and primary levels. Courses under this
procedure started in academic year 2011/2012. At the end of the single-cycle University
programs for teaching at pre-primary and primary level, successful students are awarded

the master’s degree (laurea magistrale) in primary education sciences.

Secondary level

Starting from 2018, education for teaching in secondary schools is organized into one
single system that includes both initial education and access to the teaching post. All
secondary teachers start their initial education by getting through an open competitive

examination. To access the examination, candidates must hold:

* a master’s degree from a University or AFAM qualification, or any other
equivalent qualification;

* 24 CFU/CFA credits (equivalent to 24 ECTS), acquired either within or in
addition to the main course of study in the field of anthropology, psychology,
pedagogy and teaching methodology. At least 6 of the 24 credits must be

12
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acquired for each of three among the following four sectors: pedagogy, special

pedagogy and inclusion; psychology; anthropology; teaching methods.

Those who successfully pass the examination, start a three-years traineeship that
includes both theoretical education, practical training and access to a post as teacher.
Those who have received positive results in their periodic and final assessments during
the three-years period of training become permanent-contract teachers.

All courses for training future teachers include:

* the acquisition of linguistic competences in English equivalent to the level B2 of
the Common European Framework of Reference for Languages adopted in 1996

by the Council of Europe;

e the acquisition of digital competences as foreseen by the Recommendation of
the European Parliament and Council of 18 December 2006. In particular, such
competences refer to the capacity of using multimedia languages for
representing and communicating knowledge, for using digital contents and,

more in general, for using simulated environments and virtual labs;

* the acquisition of teaching competences suitable to favor the school integration

of pupils with disabilities.

The final assessment of the traineeship takes into account the level of development of
professional competences in relation with the methodological, didactical, relational and
project-related aspects both in the class and in the school.

Under the previous legislation, teachers of the lower and upper secondary levels were
required to hold a master’s degree or AFAM qualification followed by a one-year
traineeship period called active formative traineeship (TFA). Completion of this
traineeship gave access to the open competitive examinations held to recruit and appoint

new teachers.
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1.4 Overview of the thesis

This thesis starts with discussing the theoretical background of the project. In chapter 2
the theory of Realistic Mathematics Education is recalled, that represents the instruction
theory underlying the entire research project. Then, the main literature concerning
mathematical modelling and problem-posing is reported. Attention is given also to real
contexts for mathematics lessons. This discussion permits to formulate and specify the
research questions, that are formulated at the end of the chapter.

In chapter 3 the research methodology to answer the research questions is described.
The focus is on design research. This methodology is characterized by research cycles
made by a design phase, a teaching experiment and a retrospective analysis. In our case,
we developed two research cycles concerning the first research question about
mathematical modelling, and two research cycles concerning the second research
question about problem-posing.

Chapter 4 describes an exploratory study made before the design and implementation
of the design research cycles. This exploratory study consisted in a questionnaire for
mathematics teachers of primary and secondary school, and its aim was to have a first
overview about the use and knowledge of modelling and problem-posing in the Italian
context.

Chapters 5 to 8 describe the design research cycles. Each chapter is made by three
main sections: design phase, teaching experiment and retrospective analysis.

In chapter 9 conclusions with respect the research questions are described. In
addition, some recommendations about modelling and problem-posing in mathematics

education are drawn.
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2. Background and
Research Questions

In this chapter we focus on the literature underlying the thesis. We start focusing on the
theory of Realistic Mathematics Education (RME). The main characteristic of this
theory is that mathematics is seen as an active process of mathematization. The core
principles of RME will be described, together with the design heuristics of guided
reinvention, didactical phenomenology and emergent models. In the second section we
focus on mathematical modelling. Starting from its historical development, we report
the main trends on the teaching and learning of mathematical modelling. Particular
attention is given to two approaches: emergent modelling and model eliciting. In section
three we focus on problem-posing, that represents an educational strategy directly
linked to modelling. In particular, we explain what we mean with problem-posing and
describe its relations with problem solving and creativity, and some schemes to assess
students’ and teachers’ problem-posing performances. For the implementation of both
modelling and problem-posing activities, the role of contexts for mathematical problems
is fundamental. For this reason, in section four we describe two perspectives that define
what is meant by a real context for a mathematical task: the perspective of RME, in
which realistic and rich contexts play a prominent role, and Palm’s framework (2006)
for real-life mathematical situations. The discussion about the literature permitted to
formulate the research questions of this research, that are formulated at the end of this

chapter.

2.1 Realistic Mathematics Education

Realistic Mathematics Education (RME) is a domain specific instruction theory for

mathematics that offers a pedagogical and didactical philosophy on mathematical
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learning and teaching as well as on designing instructional materials for mathematics
education. RME was firstly developed by the Freudenthal Institute for Mathematics and
Science Education of Utrecht as reaction to the limitations of a mechanistic and
structuralist approach to mathematics education. Rich and realistic situations are given a
prominent position in the learning process and represent a starting point for the
development of mathematical concepts and applications. Realistic refers to problem
situations that students can image and that are, at a certain stage, meaningful for them.
Therefore, problems can come from the real world, but also from a fantasy world or
from the formal world of mathematics, as long as the problems are experientially real in
students’ mind (Van den Heuvel-Panhuizen and Drijvers 2014). Students can
experience an abstract mathematical problem as real when the mathematics of that
problem is meaningful to them. Freudenthal’s (1991) ideal was that mathematical
learning should be an enhancement of common sense. Students should be allowed and
encouraged to invent their own strategies and ideas, and they should learn mathematics
on their own authority. At the same time, this process should lead to particular end
goals. This raises the question that underlies much of the RME-based research, namely
that of how to support this process of engaging students in meaningful mathematical

problem solving and using students’ contributions to reach certain end goals.

2.1.1 Core principles of RME

The core principles of RME were articulated originally by Treffers (1978) but were
reformulated over the years (for instance Freudenthal (1983, 1991); Treffers 1987; De
Lange 1987; Gravemeijer 1994; Van den Heuvel-Panhuizen 1996; Drijvers 2003).
These tenets can be synthetized in six educational principles (see also Van den Heuvel-

Panhuizen and Drijvers 2014):

activity principle students are active participants in the learning process,
developing mathematical tools and insights by themselves,
rather than being receivers of ready-made mathematics.
Mathematics has not to be learned as a closed system, but as a

human activity (Freudenthal 1991) of mathematizing reality and
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reality principle

level principle

intertwinement pr.

interactivity pr.

guidance principle
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if possible, even that of mathematizing mathematics (Treffers

1987);

students should become able to apply mathematics in solving
real-life problems. Mathematics education should start from
realistic and rich contexts, i.e. problem situations that are
meaningful to students and that offer them opportunities to
attach meaning to the mathematical constructs they develop
while solving problems. Teaching begins offering students the
opportunity to face with contexts that can be mathematized. As a
consequence, informal contexts represent a first step in the
learning process, wherein students can develop their first

strategies to solve a problem;

students pass various levels of understanding in their learning
process: from informal context-related solutions to acquiring
insights into how concepts and strategies are related.
Fundamental tools for bridging the gap between the informal,
context-related mathematics and the more formal mathematics

are models;

mathematical content domains must be heavily integrated and

not considered as isolated chapters;

learning mathematics is also a social activity. Whole class
discussion and group work should be favoured, since they offer
students the opportunity to share, reflect on and improve their

strategies, reaching a higher level of understanding;

teachers should have a pro-active role in students’ learning, and

educational programs should contain scenarios which have the
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potential to work as a lever to reach shifts in students’

understanding.

2.1.2 Heuristics design of RME

Based on the core principles presented in the previous section, RME also offers
heuristics design in mathematics education: guided reinvention, didactical

phenomenology, and emergent models (Gravemeijer 1994a).

Guided reinvention

As advocated in the activity principle, the teaching of mathematics should be a human
activity as opposed to a ready-made system (Freudenthal 1973; 1991). When students
progressively mathematize their own mathematical activity (Treffers 1987) they can
reinvent mathematics under the guidance of the teacher and the instructional design.
This is the meaning of the first heuristic, guided reinvention: students should experience
the learning of mathematics as a process similar to the process by which mathematics
was invented (Gravemeijer 1994a). Consequently, the role of the designer is
fundamental in RME, since she/he has to foster this process of guided reinvention. In so
doing, the designer can use different methods: (i) thought experiments, in which the
designer thinks of how she/he could have reinvented the mathematics at issue
themselves; (i1) study the history of the topic at issue; (iii) use students’ informal
solution strategies as a source: could teachers and designers support students’ solutions

in getting closer to the end goal? (Bakker 2004).

Didactical phenomenology

Freudenthal (1983) distinguished thought objects (nooumena) and phenomena
(phainomena). Mathematical concepts and tools serve to organize phenomena, both
from daily life and from mathematics itself (Bakker 2004). A phenomenology of a
mathematical concept is an analysis of that concept in relation to the phenomena it

organizes. One of the possible ways to do this is offered by didactical phenomenology.
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Didactical phenomenology is the study of concepts in relation to phenomena with a
didactical interest. In this perspective the challenge is to find phenomena that beg to be
organized by the concepts that are to be taught (Freudenthal 1983). In this research, the
design of instructional materials followed a didactical phenomenology approach, in
which the goal was to find problem situations that could provide the basis for the
development of the mathematical concepts or tools we wanted students to develop. Such
problem situations could lead to solutions that are first specific for that situation but can

be generalized to other problem situations.

Emergent models

In the level principle it is suggested that fundamental tools for bridging the gap between
the informal, context-related mathematics and the more formal mathematics are models.
Indeed, in RME a model of a certain situation can become a model for more formal
reasoning (Gravemeijer 1994a; 1999). The movement from situational to formal
reasoning is described by the four levels in Fig. 2 (Gravemeijer, Cobb, Bowers, and

Whitenack 2000):

4. formal

3. general

2. referential

1. situational

Figure 2. Movement from situational to formal reasoning
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1. Situational level: activity in the task setting, in which interpretations and solutions
depend on understanding of how to act in the setting (often in out-of-school

settings);

2. Referential level: referential activity, in which models of refer to activity in the

setting described in instructional activities (mostly posed in school);

3. General level: general activity, in which models for enable a focus on interpretations

and solutions independently of situation-specific imagery;

4. Formal level: reasoning with conventional symbolizations, which is no longer de-

pendent on the support of models for mathematical activity.

This shift is at the basis of the notion of emergent modelling, that will be treated in

the next section.

2.2 Mathematical modelling

The promotion of mathematical modelling is accepted as a central goal of mathematics
education worldwide, especially if mathematics education aims to promote responsible
citizenship (Kaiser 2017). Modelling is a creative process of making sense of the real
world to describe, control, optimize aspects of a situation, interpret results, and make

modifications to the model if it is not adequate for the situation.

Mathematical proficient students who can apply what they know are comfortable
making assumptions and approximations to simplify a complicated situation, realizing
that these may need revision later. They are able to identify important quantities in a
practical situation and map their relationships using such tools as diagrams, two-way
tables, graphs, flowcharts and formulas. They can analyze those relationships
mathematically to draw conclusions. They routinely interpret their mathematical results
in the context of the situation and reflect on whether the results make sense, possibly

improving the model if it has nor served its purpose. (NGA and CCSSO 2010, p. 7)
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However, there still exists a substantial gap between the ideals expressed in
educational debate and innovative curricula on the one hand, and everyday teaching
practice on the other. In particular, genuine modelling activities are till rather rare in
mathematics classrooms (Blum, Galbraith, Henn and Niss 2007).

In the last decades empirical research on mathematical modelling has improved
considerably, in terms of both quality and quantity. Several studies introduced different
teaching approaches that have been analyzed by quantitative and/or qualitative methods.
The most two important principles that seem to be important for designing learning
environments for modelling were student-centered teaching and prompting. However,
comparison between different approaches is not common. Schukajlow, Kaiser and
Stillman (2018) identified some future directions and open questions for empirical
research on mathematical modelling. In particular, they suggest the need of: (i) more
intervention studies to examine ways for teaching modelling and monitoring the
development of modelling competencies; (ii) monitoring the development of
pedagogical content knowledge of pre-service and in-service mathematics teachers on
modelling; (iii) increasing the number of studies that use mixed methods for the analysis
of research questions.

In the following sections, we will start presenting the historical development of
different approaches to mathematical modelling. Then we report more modern trends
concerning the teaching and learning of modelling, focusing particularly on the
perspectives of emergent modelling and model eliciting. In conclusion we describe what

is meant by modelling competencies and their teaching.

2.2.1 Historical development

How and why to include mathematical modelling in mathematics education has been the
focus of many research studies until the half of the twentieth century. Mathematics
education during the ninetieth was dominated by learning to execute algorithms without
relation to the real-world (Kaiser-Messner 1986). This situation has changed beginning

with the symposium How to teach mathematics so as to be useful (Freudenthal 1968;
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Pollak 1968) in August 1967. Since then, differences started emerging, in particular
concerning the ways to integrate mathematical modelling into classroom teaching. The
development of mathematical modelling, and its teaching, was influenced until the
middle of 1980s by two main perspectives (Kaiser-Messner 1986): a pragmatic
perspective and a scientific-humanistic perspective. Despite these two perspectives
shared the conviction of changing mathematics education including the real-world in the

teaching of mathematics, significant differences can be identified.

Pragmatic perspective

In the pragmatic perspective, students should learn to apply mathematics to solve
practical problems from the real world, focusing on utilitarian and pragmatic goals

(Pollak 1968; 1969; 1979).

Students should all develop the habit to see and enjoy the possibilities for interesting

problems around them. (Pollak 1968, p. 26)

Concerning the way that teaching content should be determined:

If we can agree that one of the main imperatives is to teach mathematics so as to be
useful, then a first step is to find out how mathematics is used by people good at doing
so and then to identify the mathematical contexts teachable in schools that will be

helpful to most people in making them better at using mathematics. (Bell 1979, p.314)

This pragmatic view of modelling is reflected also in the way in which mathematical
modelling, or the inclusion of real-world mathematics in mathematics education, is
understood (Kaiser 2017). Mathematical modelling should be seen as a cyclic process
(Pollak 1968), emphasizing the interplay between the real-world and different kinds of
applicable mathematics. A cyclic way moving from the real-world to mathematics and

back, as described by Pollak (1979, p.233) in his view of the modelling cycle (Fig. 3).
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Classical
Applied

the World

Applicable
Math

Figure 3. Pollak’s (1979) modelling cycle

Scientific-humanistic perspective

The scientific-humanistic perspective is characterized by a twofold orientation (Kaiser
2017): (i) a focus on mathematics as a science, in the sense that it is a discipline
characterized by formal and nonformal structures, and (ii) a focus on the humanistic
ideals of education that emphasize the ability of learners to create relations between

mathematics and the real-world.

There are two extreme attitudes: to teach mathematics with no other relation to its use
than the hope that students will be able to apply it whenever they need to. If anything,
this hope has proved idle. ... The opposite attitude would be to teach useful
mathematics. It has not been tried too often, and you understand that this is not what I
mean when speaking about mathematics being taught to be useful. The disadvantage of
useful mathematics is that it may prove useful as long as the context does not change,
and not a bit longer, and this is just the contrary of what true mathematics should be.
Indeed, it is the marvelous power of mathematics to eliminate the context, and to put the
remainder into a mathematical form in which it can be used time and again.

(Freudenthal 1968, p. 5).
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Mathematics is not a close system, but an activity, the activity of mathematizing
reality and if possible even that of mathematizing mathematics, in which rich contexts
have a central position in fostering this process (Freudenthal 1973). It is evident that this
perspective was taken up within the subsequent approach of RME.

Concerning the way in which mathematical modelling, or the inclusion of real-world
mathematics in mathematics education is understood, in the scientific-humanistic
perspective modelling is interpreted as a complex interplay between mathematics and
real world, based on various kinds of mathematization processes (Freudenthal 1968; De
Lange 1987). Treffers (1987) differentiated horizontal mathematization from vertical
mathematization. In horizontal mathematization, students use mathematical tools to
organize and solve problems situated in real life. It involves going from the world of life
into that of symbols and vice-versa. Vertical mathematization, instead, refers to the
process of recognizing within the mathematical system resulting in shortcuts by using
connections between concepts and strategies. It concerns moving within the abstract
world of symbols. Models exist only at the lowest level of mathematization, when a
mathematical model is constructed for an extra-mathematical situation (Freudenthal
1973). Such an extra-mathematical situation, in the perspective of RME, refers not

exclusively to real-world contexts, but also to realistic contexts, where

...the term realistic refers more to the intention that students should be offered
problem situations which they can image... than that it refers to the realness or
authenticity of problems. However, the latter does not mean that the connection to real
life is not important. It only implies that the contexts are not necessarily restricted to real-
world situations. The fantasy world of fairy tales and even the formal world of
mathematics can be very suitable contexts for problems, as long as they are real in

students’ minds. (Van den Heuvel-Panhuizen 2003, p. 9-10)

In the scientific-humanistic perspective, mathematical modelling should be seen in a
spiral way, as the relation between mathematics and the real-world (De Lange 1987,

p.39), see Fig. 4.
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Figure 4. De Lange’s (1987) modelling spiral

2.2.2 Recent trends in mathematical modelling

The historical perspectives on modelling developed in the 1970s have been refined to

more joint perspectives on mathematical modelling. However, the perspectives have
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also become more differentiated, and new perspectives have evolved. Kaiser and
Sriraman (2006) developed a framework for the description of the various approaches to
mathematical modelling, which classifies the approaches according to their aims, types
of mathematical modelling examples, epistemological background, and relation to the

initial perspectives. In the following this classification is being described.

Realistic or applied modelling

The realistic or applied perspective follows the pragmatic approach for mathematical
modelling, fostering the pragmatic and utilitarian goal that the application of
mathematics should contribute to the understanding of the real-world and the solution of
real-world problems (Haines and Couch 2007; Kaiser and Schwarz 2010). Two
important points in this approach are that: (i) modelling processes are carried out as a
whole and not as partial processes, similar to the work of applied mathematicians; (i)

the new development of mathematical concepts and algorithms is not the focus.

Epistemological or theoretical modelling

The epistemological or theoretical modelling pursues the tradition of the scientific-
humanistic perspective for mathematical modelling, enhancing a theory-oriented goal.
In this perspective applications of mathematics in the real-world should promote the
development of mathematical concepts and algorithms. This approach relies on an
epistemological framework based on the mathematical praxeologies of Chevallard
(Chevallard 1985; Barquero, Bosch and Gascon 2007). The epistemological or
theoretical perspective assigns low importance to the practical part (types of tasks,
solution techniques) of a mathematical praxeology, fostering instead the complementary

theoretical part (supporting theory, necessary technology).

If the approach of praxeology becomes the main orientation, this leads to the fact that
every mathematical activity is identified as modelling activity for which modelling is
not limited to mathematising of non-mathematics issues. (Kaiser and Sriramn 2006,

p.305)
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Besides these two first perspectives (realistic or applied and epistemological or theoretical),
that reflect the historical polarization between pragmatic and scientific-humanistic modelling,

new perspectives developed assimilating aspects from both the perspectives.

Educational modelling

Educational modelling has strong links with the last development of the scientific-
humanistic perspective (Freudenthal 1991; Treffers 1987; De Lange 1987), in which
real-world examples and their relations to mathematics as central elements of the
structure of teaching and learning processes are stressed. The perspective of
educational modelling can be split in two facets: didactical modelling and conceptual
modelling.

In didactical modelling the emphasis is on pedagogical goals. The concept of
competencies and their promotion are heavily discussed. Moreover, developing
communication and argumentation competencies and fostering social learning through
modelling are emphasized (Blum 2011).

In conceptual modelling real-world examples are used to introduce new
mathematical concepts and to enhance the understanding of mathematical concepts,
posing the attention to the development of a deeper mathematical understanding via
modelling examples or to the understanding of the modelling process itself (Maass

2006; Stillman 2011).

Contextual modelling or model eliciting perspective

Contextual modelling or model eliciting finds its roots in problem-solving and
cognitive-psychological research (Kaiser 2013). This approach was introduced by Lesh
and Doerr (2003). Model eliciting activities are problem-solving activities constricted
by specific instructional design principles, in which students make sense of meaningful
situations and invent, extend, and refine their own mathematical constructs. Here the
challenge is to develop activities that motivate students to develop the mathematics

needed to make sense of such situations.

28



Background and Research Questions

Sociocritical and sociocultural modelling

Sociocritical and sociocultural modelling emphasize critical thinking about the role of
mathematics in society, the role and nature of mathematical models, and the function of

mathematical modelling in society.

[the] promotion of critical understanding of modelling processes and models developed
as overall goal connected with recognition of cultural dependency of modelling
examples and modelling approaches developed. (Kaiser, Sriraman, Blomhoj and Garcia

2007, p. 2039)

In the teaching and learning process, the focus is on the promotion of students’ critical

thinking, based on reflective discussions amongst the students within the modelling process.

Cognitive modelling as metaperspective

The last approach in Kaiser and Sriramn (2006) classification of modelling approaches,
can be considered as a metaperspective, due to its descriptive nature. The focus is on the
analysis of students’ modelling processes and the promotion of mathematical thinking
processes. Modelling processes are analyzed on different types of modelling situations
that vary in their degree of authenticity or mathematical complexity. The main goals are
to reconstruct individual modelling routes (Borromeo Ferri 2011) or individual
cognitive barriers and difficulties of students during their modelling activities (Stillman

2011).

2.2.3 The modelling cycle

The perspectives described in the previous section result in different characterization of

the modelling process, emphasizing either the solution of the original problem or the
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development of mathematical concepts or ideas. Corresponding to the different
perspectives on mathematical modelling, various modelling cycles developed with
different emphases (see for an overview Borromeo Ferri 2006). In all the approaches,
the idealized process of mathematical modelling is described as a cycle process to solve
real problems using mathematics comprising different steps or phases (Kaiser 2017).

The modelling cycle is not only a theoretical model which characterizes the
modelling processes, but actually it is a multi-purpose learning instrument for students
and a diagnostic instrument for teachers (Borromeo Ferri 2018).

The development of most of the modelling cycles was influenced by Pollak’s work
(Fig. 3), who first separated reality and mathematics as two worlds. A first example of
modelling cycle is the one developed by Blum (1985, p.200) and Kaiser-Messner (1986,
p.3). Here, the starting point is a real situation, which is given through a real problem,
that has to be idealized to build a real model, making assumptions and identifying
influencing factors. Then, the real model is translated into a mathematical model
through a process of mathematization. Investigation of the model simply means inner-
mathematical working, and so getting mathematical results. The final step is the
interpretation and validation of the mathematical results (Fig. 5). This cycle was named
didactical or pedagogical cycle (Borromeo Ferri 2006). This cycle, indeed, was
developed to focus on if, and how, the modeling cycle can be a tool to promote
modeling competencies, and the understanding of modelling in general, of students in
middle school, high-school and university (see Blum 2015; Maass 2007). The
implementation of the cycle should offer students the opportunity to reflect what they
had done while solving real problems while learning the notions of real model or
mathematical model. Furthermore, this meta-level and the visualization of the modeling
process through the cycle is helpful to get an idea of how modeling problems are
different from routine problems, because of the transitions between reality and

mathematics (Borromeo Ferri 2018).
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Figure 5. Modelling cycle from Blum (1985) and Kaiser-Messner (1986)

Another kind of modelling cycle founds its origin in psychology: the so-called
psychological modelling cycle (Verschaffel, Greer and De Corte 2000). In this
approach, the step between the real situation and the mathematical model is given by the
situation model (Fig. 6). The term situation model is mainly used in connection with
word problems (see Kintsch and Greeno 1985; Nesher, Hershkowitz and Novotna 2003)
and has its origin in text linguistics. A situation model can be described as a mental

representation of the situation that is given in the problem.

The situation model includes inferences that are made using knowledge about the
domain of the text information. It is a representation of the content of a text,
independent of how the text was formulated and integrated with other relevant
experiences. Its structure is adapted to the demands of whatever tasks the reader expects

to perform. (Kintsch and Greeno 1985, p. 110)
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Communication Interpretation MoGe

Figure 6. Modelling cycle from Verschaffel et al. (2000)

In this cycle it is clear there is no distinction between mathematics and reality. The
aim of this cycle is not to be used in schools, but the relevance for including the
situation model in the modeling cycle offered new ways for research and for practice.

From the previous approach, in fact, brought out the diagnostic modelling cycle (Fig.
7). In this cycle the focus is on the cognitive processes of individuals during modelling
processes. The situation model represents the most important phase during the modeling
process (Blum and Lei3 2007), being run by all individuals during modelling. That is
because the transition between real situation and situation model is described as a phase
of understanding the task. In this direction a contribution is given by Borromeo Ferri
(2007), who used the phase of the situation model in an adaptation of the modelling
cycle. Moreover, in order to better describe kind of internal processes an individual goes
through to obtain a corresponding mental picture while/after reading the (complex)
modelling task, instead of situation model the name mental representation of the

situation was introduced.
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Figure 7. Modelling cycle from Borromeo Ferri (2007)

To conclude, the following synthesis given by Kaiser and Stender (2013, p.279) is
reported ( Fig.8).

mathematize
Real model Mathematical model

validate
MIOM [eafjelsyjew

(=]
Real results

Figure 8. Modelling cycle from Kaiser and Stender (2013)

[ Mathematical results
interpret

In the specific, the following characteristics are taken into account:

the real situation is simplified in order to build a real model of the situation,

making assumptions and identifying the central influencing factors;
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* the real model has to be translated into mathematics in order to create a
mathematical model. The process of developing a real model and a mathematical
model are interwoven since the developed real problem is related to the

mathematical knowledge of the modeler;

* mathematical results are worked out by using mathematics;

e after interpreting the mathematical results, the real results have to be validated.

Then, parts or the whole process go through again.

We remark that this is an idealized cycle. Indeed, what happens is that mini cycles
occur that are either worked out in linear sequential steps like the entire cycle or in a
less ordered way. Most modelling processes include frequent switching between the
different steps of the modelling cycles (Borromeo Ferri 2011). To conclude, in this
cycle the distinction of the real-world situation from the real model and the
mathematical model is present, and the emphasis is on the interpretation of the
mathematical results to obtain real-world results, that also need to be validated.

In addition to the classification above, further descriptions of modelling cycles,
which are used in school or higher education, can be found in Cirillo, Pelesko, Felton-
Koestler and Rubel (2016).

In the next two sections two modelling perspective that will be considered in the
following research cycles will be described in more details: emergent modelling and

model eliciting.

2.2.4 Emergent modelling

Emergent modelling refers to educational modelling in Kaiser and Sriraman (2006)
classification of modelling perspectives. Educational modelling is linked to the

scientific-humanistic perspective in the version formulated by Freudenthal in his later

34



Background and Research Questions

years and its extensions developed by Treffers (1987) and DelLange (1987), who
emphasized real-world examples and their relations to mathematics as central elements
of the structure of teaching and learning process.

Emergent modelling was initially developed by Gravemeijer (1999) with the
meaning of supporting the emergence of formal mathematical ways of knowing. The
underlying educational theory is the one of RME, in which models have always
employed to foster a process in which formal mathematics is re-invented by students
themselves. Indeed, in this perspective modelling activities are used as a vehicle for the
development, rather than applications, of mathematical concepts (Greer, Verschaffel
and Mukhopadhyay 2007). Students, starting from a real context, begin to model their
informal mathematical strategies and arrive to re-invent mathematical concepts and
applications they need. These concepts and applications can be subsequently formalized
in mathematical terms and generalized to other situations. As a consequence, the role of
the model shifts during the learning process, from being situation-related to becoming
more general. Emergent modelling can be seen as a long-term dynamic process from a
model of students’ situated informal mathematical strategies to a model for more formal
mathematical reasoning (Gravemeijer and Doorman 1999), that favours understanding,
reasoning and sense-making. This transition from model of to model for involves the
constitution of a new mathematical reality (Streefland 1985) that can be denoted as
formal in relation to the original starting points of the students. The movement from
situational to formal reasoning is well described by the four levels in Fig. 2
(Gravemeijer, Cobb, Bowers, and Whitenack 2000).

Emergent modelling reinforces the vertical component of the mathematization
process. Mathematization should be divided in two components: horizontal
mathematization and vertical mathematization (Treffers 1987; Freudenthal 1991). In
horizontal mathematization, students use mathematical tools to organize and solve
problems situated in real life. It involves going from the world of life into that of
symbols and vice-versa. Vertical mathematization, instead, refers to the process of
recognizing within the mathematical system resulting in shortcuts by using connections
between concepts and strategies. It concerns moving within the abstract world of

symbols. Vertical mathematization is stimulated by emergent modelling. In this
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situation, in fact, models help students in passing through several stages of
understanding and reflection on formal mathematical concepts.

To conclude, in emergent modelling what is aimed for is a process of gradual growth
in which formal mathematics comes to the fore as a natural extension of the student’s

experiential reality (Gravemeijer 1999).

2.2.5 Model eliciting

The model eliciting perspective was firstly formulated by Lesh and Doerr (2003) and its
theoretical basis are founded in psychological theories and pragmatism.

Model eliciting activities can be defined as simulations of real-life problem solving
situations in which students develop a model going through iterative phases of
invention, refinement and revision. Modelling, in fact, is a process of developing
representational descriptions for specific purposes in specific situations, involving
iterative testing and revision cycles (Lesh and Lehrer 2003). In the model eliciting
approach, a modelling cycle is intended as a four-step process: i) formulation of a
possible mathematical approach to solve a real-context problem; ii) test of the designed
solving strategy; iii) interpretation and discussion of the testing results; iv) revision of
the starting approach. As a consequence, a mathematical model is no longer the
translation of a real-world problem in a mathematical symbolic formulation but
becomes the result of many repeated modelling cycles in order to create the
mathematical model that best describes the given situation.

The goal of a model eliciting activity is the process of model construction. This
process is the key difference between a model eliciting activity and word problems
(Leavitt and Ahn 2010). In the traditional practice of word problems, a set of
mathematical constructs and procedures are introduced by the teacher to students, who
apply these procedures to solve a problem. In model eliciting activities, instead, students
struggle to create interpretations that fit their interpretations of the starting dilemma,
discuss, make sense of meaningful situations and invent, extend and refine their own

mathematical constructs (Kaiser 2017).
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In order to create simulations of real-life problems, Lesh, Cramer, Doerr, Post and
Zawojewski (2003) introduced six principles of instructional design. In Table 1, these

principles and their relative purposes are reported.

Table 1. Model eliciting principles by Lesh, Cramer, Doerr, Post and Zawojewski.
(2003).

Principle Purpose

Personal meaningfulness Ensure that the task could really happen in real life and
that responses can be based on extensions of students’

everyday knowledge and experiences.

Model construction Students’ involvement in repeated modelling cycles

when engaged with the task.

Self-evaluation Students’ ability to clearly assess their work in relation

to the purposes of the task.

Model externalization Students’ expression of their thinking about the
situation and description of the developed steps to

solve the task.

Simple prototype The situation must be as simple as possible, while still
creating the need for a significant model that could
represent a prototype for interpreting similar

situations.

Model generalization Extension of the constructed conceptual tool to a

broader range of situations.
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To get the most instructional value out of model eliciting activities, Lesh, Cramer,
Doerr, Post and Zawojewski (2003) developed a model development sequence whose
components can easily be re-sequenced to suit the needs of researchers or teachers (Fig.
9). Such model development sequences are made by the following activities: warm-up
activities; model eliciting activities; model exploration activities; model adaptation
activities; discussions about structural similarities; presentations and discussions,
reflection and debriefing activities; follow-up activities; the on-line how toolkit; other
high-quality resources and references. A complete description of such activities can be
found in Lesh, Cramer, Doerr, Post and Zawojewski (2003). Here the focus is only on
the activities that will be considered in the rest of the thesis. In the specific, warm-up
activities are usually given the day before students are expected to begin working on the
model eliciting activity. Warm-up activities aimed at helping students to be confident
with the context of the modelling activity and at introducing or testing eventually
minimum prerequisites. In model eliciting activities students are engaged in performing
modelling cycles to produce a model that describes the starting situation. Presentations
and discussions are whole-class activities in which students make formal presentations
about the results of their work. In reflection and debriefing activities students work
individually, thinking back about their experiences during the whole modelling process.

Further research in model eliciting focused on the role of the teacher. Leavitt and
Ahn (2010) proposed a teacher’s guide to model eliciting activities, in order to help
researchers and teachers in conducting investigations of students’ or teachers’ actions.
These guidelines, that can be adapted to each specific environment, move around four
categories: group composition; relevant model eliciting activity sections; teachers’ role
during group work;, group presentations and individual work. Moreover, some
additional recommendations are suggested. In particular, the starting problem context of
a model eliciting activity should be based on students’ familiar situations in which they
can understand the need for the desired mathematical construct. Moreover, the teacher
has to pay attention to anticipate the mathematics needed for the paths that the students
might explore; resist guiding students toward one specific method; remind students to

write down their reasoning.
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Despite the goal of a model eliciting activity is to develop a conceptual tool that is
also sharable and reusable, models are inherently provisional and are developed for

specific purposes in specific situations (Lesh and Lehrer 2003).
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Figure 9. Model development sequence
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2.2.6 Mathematical modelling competencies and their teaching

The concept of modelling competencies has been included in many curricula all over
the world. The relevance of modelling competencies was first emphasized at the start of
the international conference series on the teaching of mathematical modelling and
applications in 1983, later called the International Conference on the Teaching and

Learning of Mathematical Modelling and Applications:

The basic philosophy behind the approach... of the modelling workshop for higher
education is that to become proficient in modelling, you must fully experience it- it is
no good just watching somebody else do it, or repeat what somebody else has done- you
must experience it yourself. I would liken it to the activity of swimming. You can watch
others swim, you can practice exercises, but to swim, you must be in the water doing it

yourself. (Burghes 1984, p. 13).

Some important strands of discussion with different emphases and foci shaped the
debate on modelling competencies (Kaiser and Brand 2015). Here we report two of
them: the introduction of modelling competencies in an overall comprehensive concept
of competencies by the Danish KOM project; the development of a comprehensive
concept of modelling competencies based on sub-competencies and its evaluation by the
German discussion on modeling.

In 2002, the team members of the Danish KOM project developed a comprehensive
approach to the definition of mathematical competencies. The mathematical

competency was defined as

... a well-informed readiness to act appropriately in situations involving a certain type

of mathematical challenge. (Niss and Hojgaard 2011)
In the specific, eight mathematical competencies were distinguished (Fig. 10),

including the modelling competency. These competences were not seen as independent

sub-competences, but they describe the mathematical competency as a whole.
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Figure 10. The KOM flower of the eight mathematical competencies (Niss and Jensen

2002).

We report the definition of modelling competency:

This competency involves, on the one hand, being able to analyze the foundations and

properties of existing models and being able to assess their range and validity.

Belonging to this is the ability to de-mathematize existing mathematical models, i.e.

being able to decode and interpret model elements and results in terms of the real area

or situation which they are supposed to model. On the other hand, the competency

involves being able to perform active modelling in given contexts, i.e. mathematising

and applying it to situations beyond mathematics itself. (Niss and Hojgaard 2011, p. 58)

Active modelling includes different phases of the modelling process, such as

structuring real-world situations that has to be modeled; mathematising, translating the

situation into mathematical terms; working with the resulting model, finding solution to
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the mathematical problems; interpreting and validating these results in relation to the
real starting situation; monitoring the entire process of modelling.
Another contribution on modelling competencies was given by the work of the

German modelling group.

Modelling competencies include, in contrast to modelling abilities, not only the ability,
but also the willingness to work out problems, with mathematical aspects taken from

reality, through mathematical modelling. (Kaiser 2007, p.110)

Within this strand a distinction is made between global modelling competencies and
sub-competencies of mathematical modelling. Global competencies are abilities
necessary to perform and reflect on the whole modeling process. The sub-competencies
instead refer to the specific different competencies essential to performing single steps

of the modeling cycle (Kaiser 2007), distinguished as:

* competency to solve at least partly a real-world problem through mathematical

description developed by oneself;

e competency to reflect about the modeling process by activating meta-knowledge

about modeling processes;
* insight into the connections between mathematics and reality;
* insight into the perception of mathematics as process and not merely as product;
* insight into the subjectivity of mathematical modeling, that is, the dependence of
modeling processes on the aims and the available mathematical tools and

students’ competencies;

* social competencies such as the ability to work in a group and to communicate

about and via mathematics.
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Teaching mathematical modelling competencies

Besides the definition of mathematical modelling competence/ies, an important aspect is
how to teach modelling competence/ies. As a consequence, teachers need to be
supported in learning mathematical modelling, how to teach it and how to promote in
students the development of such modelling competencies.

Mathematical modeling is a crucial part of teacher education. Four teaching
competencies had been individuated being particularly important when teaching
mathematical modeling (Borromeo Ferri and Blum 2009; Borromeo Ferri 2018):
theoretical competence; task competence; instruction competence; diagnostic

competence (Table 2).

Table 2. Competencies for teaching mathematical modelling (Borromeo Ferri and Blum

2009; Borromeo Ferri 2018)

Modelling cycles

Theoretical competence Aims and perspectives on modelling

Types of modelling tasks

Multiple solution of modelling tasks

Task competence Cognitive analysis of modelling tasks

Development of modelling tasks

Planning lessons with modelling tasks

Instruction competence Carrying out lessons with modelling tasks

Interventions, support and feedback

Recognize phases in modelling processes

Diagnostic competence Recognizing difficulties and mistakes

Marking modelling tasks
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The theoretical competence refers to the necessary theoretical background to develop
and implement modelling activities in school. In the specific, teachers must know the
historical development of mathematical modelling, different perspectives and goals.

However, not only theory is sufficient to be able to develop modelling lessons in
classrooms. In general, tasks are at the core of mathematics lessons. As a consequence,
the selection and the quality of tasks for lessons are essential for mathematical
understanding, for promoting students’ mathematical practices and competencies, and
can be the basis for structuring lessons using several teaching methods. In this direction,
the task competency aims to help teachers in learning to solve, analyze and create
modelling tasks.

How to plan and execute modelling lessons? The instruction competence concerns
the ability to plan and execute modelling lessons and knowledge of appropriate
interventions during the pupils’ modelling processes. Borromeo Ferri (2018) identifies
some principles for preparing and planning, and for executing and reflecting (Table 3)

on modelling lessons.

Table3. Principles concerning modelling lessons

Preparing and Planning

Executing and Reflecting

Chose an adequate modeling problem
for students, which has an interesting
context, is problem-oriented,
authentic, realistic and can be solved
through the steps of the modeling

cycle.

Students need time to understand
what the problem is about, and they
should know how they will work on
this problem (with partners or in
groups). Before group work starts,
students need to know how the
solution should be presented

afterwards.

Solve the problem before to give it to
students, going through all steps of the
modeling cycle. Write down multiple

solutions and possible

During group work go around and
take notes about the students’
modeling process. Look at groups

that used different models for their
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models/formulations of the problem.
Think about potential cognitive
barriers students could have when they
work on this problem and have
adequate interventions for stronger

and weaker students prepared.

solution.

Make clear the central goal of the
lesson: understanding of certain
mathematical content; improving
students’ modeling sub-competencies;
social goals, for instance observing
students’ teamwork and give them
feedback and help so they can be more

effective in coming to a result.

Is the central goal of the lesson being

achieved?

Which tools are needed for the
modeling problem? Should students
use technology and if yes, how can
they combine it with the modeling

process?

Develop a lesson plan. At the end,
reflect about what was successful in
the lesson and what was not, and
which aspects can be optimized in

further lessons.

Think about the duration of the
different phases for the lesson plan.
Which method is suitable for the

class?

Is there enough time for students to
work on the problem and also for
discussing the results? Do students

need further materials?

The diagnostic competence concerns the ability to identify phases in pupils’

modelling processes and to diagnose pupils’ difficulties during such processes.

Learning how to assess and to grade modelling problems in school is one of the

hardest dimensions to take into account. In literature there are some examples of

schemas for assessing solutions to modelling problems (see for example Schukajlow et

al. 2009).
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2.3 Mathematical problem-posing

An educational strategy that is directly linked to mathematical modelling is problem-
posing. Indeed, problem-posing forms and integral part of modelling: the problem and its
formulation are an essential part of modelling, and a modelling process is a continual

adjustment and refinement of the main problem (Hansen and Hana 2015).

It is terribly important for students to have practice in seeing situations in which
mathematics might be helpful, and in trying their hand at formulating useful problems.

(Pollak 1969, p. 399)

The era of information and communication technology creates new social
environments and needs, wherein young generations have to face unpredictable changes
they should learn coping with (Singer, Ellerton and Cai 2015). As specified in the
previous paragraph, the Council of European Union recommended as one of the key
competencies for lifelong learning the mathematical competence, seen as the ability to
develop and apply mathematical thinking and insight in order to solve a range of
problems in everyday situations'. In order to help students to prepare to cope with such
situations they have to face out of school, the type of problem-solving experiences they
are engaged at school need to be rethought (Bonotto 2013). In particular, realistic and
less stereotyped problems that take into consideration the experiential world of students
must be inserted in the school practice, in order to create a bridge between mathematics
classroom activities and everyday-life experiences. In fact, encouraging students to
relate mathematical problems with real-world scenarios may help them more closely
associate mathematics with their everyday activities (De Corte, Verschaffel and Greer
2000). To this end, allowing students to write their own mathematical problems may
help them to make connections between mathematics in the classroom and their real life

(Kopparla et al. 2018). In this direction, problem-posing, which can be seen as the

! Recommendation of the European Parliament and of the Council of 22 May 2018 on key competencies
for lifelong learning (2018/C189/01).
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process by which students generate their own problems in addition to solving pre-
formulated problems (English 1997; NCTM 2000; Silver and Cai 1996), should
represent a valuable strategy to support students in give sense to their mathematical
activity filling the gap between in- and out-of-school mathematical competencies and
experiences. Indeed, if the goal of education is to prepare students for the kinds of
thinking they will need, problem-posing should be an important part of the curriculum
(Singer, Ellerton and Cai 2015), as requested in many curricular and pedagogical

innovation in mathematics education:

Teaching mathematics from a problem-solving perspective entails more than solving
nonroutine but often isolated problems or typical textbook type of problems. It involves
the notion that the very essence of studying mathematics is itself an exercise in
exploring, conjecturing, examining, and testing all aspects of problem solving. Tasks
should be created and presented that are accessible to students and extend their
knowledge of mathematics and problem solving. Students should be given opportunities
to formulate problems from given situations and create new problems by modifying the

conditions of a given problem. (NCTM 1991, p.95)

The term problem-posing was introduced in education by Paulo Freire in 1970 in his
book Pedagogy of the Oppressed as a metaphor for emphasizing critical thinking.
Problem-posing extended to various domains of knowledge. In mathematics education,
problem-posing has been identified as an important aspect (Christou, Mousoulides,
Pittalis, Pitta-Pantazi, and Sriraman 2005; Freudenthal 1973; Polya 1954), and more in
general as a critically important intellectual activity in scientific investigation. Einstein
(Einstein and Infeld 1938) argued that the formulation of an interesting problem is often

more important than its solution.

The formulation of a problem is often more essential than its solution, which may be
merely a matter of mathematical or experimental skill. To raise new questions, a new
possibility, to regard old problems from a new angle, requires creative imagination and

marks real advances in sciences. (Einstein and Infeld 1938, p. 92)
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Since in real life problems must often be created by the solver, the formulation of a
problem should be viewed not only as a goal of instruction but also as means of
instruction (Killpatrick 1987). The advancement of mathematics, in fact, requires
creative imagination, which is the result of raising new questions and viewing old
questions from a new perspective (Ellerton and Clarkson 1996). Problem-posing, being
the act of generating mathematical problems, is a process through which the importance
of creativity and critical thinking are emphasized (NCTM 2000). In this perspective,
students can actively construct meaning in both the natural and simulated worlds in
classrooms. Moreover, teachers and students might create knowledge together in a
variety of contexts and generate and address critical questions about the knowledge they
produce. In Freire’s version, all these could help to develop more democratic, diverse,
critically thinking members of society (Singer, Ellerton and Cai 2015).

Problem-posing has been defined by researchers from different perspectives (Silver
and Cai 1996), referring both to the generation of new problems and to the
reformulation of given problems (Silver 1994). In this project problem-posing is
considered as the process by which students construct personal interpretations of
concrete situations and formulate them as meaningful mathematical problems
(Stoyanova and Ellerton 1996). These concrete situations considered as starting point
for the practice of problem-posing could be divided in three categories (Stoyanova &

Ellerton 1996):

1. free situations, where students are asked to pose problems without restrictions;

2. semi-structured situations, where students are provided with an open situation and
are invited to explore its structure and to complete it using their personal previous

mathematical experience;

3. structured situations, where students pose problems reformulating or varying given

problems.
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In order to provide students with such meaningful contexts, a precious contribution is
given by cultural artefacts (Bonotto 2013). Thanks to its complexity and richness in
mathematical meaning, an artefact lives in both the world of symbols and the real one,
creating a sort of hybrid space that connects mathematics and everyday contexts. A re-
mathematization process is thereby favoured, wherein students are invited to unpack
from artefacts the mathematics that has been hidden in them, in contrast with the de-
mathematization process in which the need to understand mathematics that becomes
embodied in artefacts disappears (Gellert & Jablonka 2007). As a consequence,
movement from common use situations to mathematical structures and vice-versa is
allowed, in agreement with the process of modelling. Moreover, by removing some data
from an artefact, we can stimulate students to face out with new mathematical goals,
such as create new concepts or applications (Bonotto 2005). Artefacts represent in this
direction a valuable tool to offer students opportunities also in emergent-modelling,
connecting modelling and problem-posing.

The theoretical arguments supporting the importance of problem-posing in school
mathematics are supported by a growing body of empirical research. Various aspects of
problem-posing had been studied in literature, such as examining thinking processes
related to problem-posing (Brown and Walter 1990; Christou, Mousoulides, Pittalis,
Pitta-Pantazi and Sriraman 2005), or including problem-posing in mathematics
activities. In particular, several studies focused on the relations between problem-posing
and problem solving (section 2.3.1) and/or between problem-posing and creativity

(section 2.3.2).

2.3.1 Problem-posing and problem solving

One of the most important direction of research on problem-posing is studying its
relations with problem solving.

As described by Silver (1994), problem-posing can occur at three stages in relation to
problem solving. The first stage consists in problem-posing prior to solving a problem,
when a problem is generated from a given situation, and the goal is not the solution
itself but the creation of a new problem. The second stage concerns problem-posing

while solving a problem, wherein a solver recreates a given problem in some ways to
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make it more accessible for solution. The third stage refers to problem-posing after
having solved a problem, indeed one might explore the conditions of that problem to
generate related problems.

In addition to the described relations between problem-posing and problem solving,
it has been proved that students engaged in problem-posing activities improved their
problem solving abilities (Van Harpen and Presmeg 2013; Cai and Hwang 2002; Silver
1996; Ellerton 1986). Indeed, problem-posing affords students the unique opportunity to
improve their problem solving skills while developing their academic skills to encounter

and solve problems in mathematics and beyond (Kopparla et al. 2018).

2.3.2 Problem-posing and creativity

Another aspect of problem-posing that was investigated in literature is its relationship
with students’ creativity. Problem-posing, in fact, is a form of creative activity that can
operate within tasks involving rich situations (Freudenthal 1991), using real-life
artefacts and human interactions (English 2009). Creativity is directly linked to the
mathematical activity of problem-posing, being the act of creating mathematical
problems in specific contexts (Bonotto and Dal Santo 2015).

Creativity started receiving attention in 1950, when Guilford (1959) proposed a
distinction between two types of thought: divergent thinking and convergent thinking. In
particular, divergent thinking was characterized by fluency, flexibility and originality,
that represented the three aspects of creativity (Guilford 1959). Fluency in thinking
refers to the quantity of output; flexibility in thinking refers to a change of some kind
(meaning, interpretation, use of something, strategy); originality in thinking means the
production of unusual, remote or clever responses.

The creative process in school mathematics may be encouraged by the presence of
semi-structured situations (Stoyanova and Ellerton 1996). In particular the use of

cultural artefacts can help creating such situations.

Through the use of artefacts, children can be encouraged to recognize a great variety of

situations as mathematical situations, or more precisely mathematizable situations, by
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asking them: (a) to select other artefacts from their everyday life; (b) to identify the
mathematical facts associated with them; (c) to look for analogies and differences; (d) to

generate problems. (Bonotto and Dal Santo 2015, pp. 109-110).

Several studies used problem-posing and problem solving to promote and assess
creativity (Xie and Masingila 2017; Bonotto and Dal Santo 2015; Bonotto 2013; Yuan
and Sriraman 2010; Leung 1997; Silver 1997, Leung and Silver 1997; Sriraman 2009),
proving that an inquiry-oriented mathematics instruction, including problem-posing
activities, could assist students to develop more creative approaches to mathematics.

However, given the value of problem-posing activities as opportunities for measuring
students’ creativity, or other mathematical learning outcomes, it is mandatory to
develop and validate suitable problem-posing instruments, understanding which kind of
problem-posing tasks best reveal students’ creativity and their mathematical

understandings (Cai, Hwang, Jiang and Silber 2015).

2.3.3 Problem-posing analytic schemes

Several analytic schemes have been created to evaluate students’ or teachers’ problem-
posing performances.

A first analytic scheme to examine problem-posing of middle school students was
developed by Silver and Cai (1996). Students’ problem-posing responses were firstly
categorized as mathematical questions, non-mathematical questions or statements.
Then, mathematical questions were divided in sol/vable and not-solvable. In the specific,
problems were considered to be not solvable if they lacked sufficient information or if
they posed a goal that was incompatible with the given information. The last step
involved examining the complexity of the posed problems. Complexity was considered
under two perspectives: syntactic complexity and semantic complexity. Syntactic
complexity consisted in the presence of assignment, relational or conditional
propositions. In agreement with Mayer, Lewis and Hegarty (1992), the presence of
conditional or relational propositions could be taken as an indication of problem

complexity. Semantic complexity involved the number of semantic relations used. Such
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semantic relations had been taken from Marshall’s (1995) five categories: change,

group, compare, restate, vary. Silver and Cai (1996) scheme is shown in Fig. 11.

[ STUDENTS' RESPONSES ]

MATH QUESTIONS

NON-MATH QUESTIONS STATEMENTS

SOLVABLE NOT-SOLVABLE
SYNTACTIC COMPLEXITY, SEMANTIC COMPLEXITY

Figure 11. Silver and Cai (1996) scheme

Another significant analytic instrument for problem-posing was developed in Leung
and Silver (1997): the Test for Arithmetic Problem Posing (TAPP). TAPP evaluated
students’ responses in semi-structured situations in terms of quality and complexity.
Regarding the quality, a three-step process was implemented. First, each statement was
classified as mathematical or non-mathematical problem. Next, each mathematical
problem was classified as plausible or implausible. A problem was considered plausible
if the initial state of the posed problem appeared to be feasible and no discrepant
information could be found. Finally, plausible mathematical problems were analysed
respect to the sufficiency of the information provided for solution of the posed problem.
With respect to complexity, responses were classified according to the arithmetic
complexity of the solution of the posed problem. In the specific, posed problems were
judged on the basis of zero, single or multi-step for its solution. While in Silver and Cai
(1996) scheme complexity was analysed in terms of the number of semantic relations

and of the syntactic differences of problems, in this case complexity was studied only in
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terms of the number of steps required to solve a posed problem. In Fig. 12 Leung and

Silver (1997) scheme is reported.

[ STUDENTS’ RESPONSES ]

MATHEMATICAL PROBLEMS

NON- MATHEMATICAL PROBLEMS

PLAUSIBLE

SUFFICIENT INFO
COMPLEXITY

Figure 12. Leung and Silver (1997) scheme

IMPLAUSIBLE

Christou et al. (2005) proposed a model which enables young students’ problem-
posing thinking to be described by four processes: editing, selecting, comprehending,
translating. Editing quantitative information involved tasks that requires students to
pose a problem without any restriction from provided information, stories or prompts
(Mamona-Downs 1993). Selecting quantitative information refered to tasks that require
students to pose problems or questions that are appropriate to specific given answers.
Comprehending quantitative information associated to tasks in which students pose
problems from given mathematical equations or calculations, requiring understanding
the meaning of the operations and an algorithm approach (English 1998). Translating
quantitative information required students to pose problems or questions from graphs,
diagrams or tables. Such a model incorporated semi-structured and structured situations

(Stoyanova 1998).
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More recently, Kopparla et al. (2018) developed a rubric to grade problem-posing
questions. Problems posed by students, are analysed following three directions:
structure and context, mathematical expression; appropriateness of the design. To each
of these three categories can be associated an index of satisfaction from 1 to 4:

I=unsatisfactory, 2=minimal, 3=moderate, 4=satisfactory (Table 4).

Table 4. Kopparla et al. (2018) rubric to grade problem-posing questions

1

2

3

structure-context

no complete

problem posed

exact the same
word choice as

the given

moderate changes
in numbers or

scenario

all numbers and

scenario original

mathematical no setups to solve  setup does not problem problem
expression the problem align to the statement aligns statement aligns
question somewhat with completely with
student’s setup to  student’s setup to
solve solve
appropriateness scenario not scenario scenario scenario is
of design realistic or somewhat somewhat realistic or

solvable

realistic or
solvable with
incorrect use of

units

realistic or
solvable with
partially correct

use of units

solvable with
accurate use of

units

Researchers created and applied different schemes also to evaluate students’
creativity in problem-posing. One of the most important schemes to measure
participants’ creativity was the Torrence Test of Creative Thinking, based on the four
factors of fluency, flexibility, originality and elaboration (Leung and Silver 1997; Yuan
and Sriraman 2011). The test consisted of four items as modifications of the tasks used

by Getzels and Jackson (1962). The four items were obtained by crossing two problem
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contexts with two information content formats, respectively with or without specific
numerical information.

More recently, Xie and Masingila (2017) proposed a scoring rubric to assess
prospective teachers’ problem-posing performances. In particular, in relation to a given
problem, they analysed teachers’ posed problems in terms of quality, complexity and

creativity (Table 5).

Table 5. Xie and Masingila (2017) rubric to asses prospective teachers’ problem-posing

performance.
3 points Solvable mathematical problem
category of the posed problem 2 points Unsolvable mathematical problem
1 point Not a mathematical problem
3 points Complete understanding
understanding of problem-posing 2 points Partially understanding
and problem-posing strategy 1 point Poor understanding
3 points Completely different problem
creativity of the posed problem 2 points Somewhat different problem
1 point Comparable problem (with similar
structure)
3 points Need three or more operational steps
to solve
complexity of the posed problem 2 points Need two operational steps or one

operational step to solve

1 point No operational step needed

2.3.4 Emergent problem-posing
In this section we take another perspective concerning problem-posing, that is no long

seen as an end in itself, but as a means to extend students’ mathematical knowledge and

skills (Klaassen and Doorman 2015). In this direction the focus on a particular aspect of
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problem-posing, defined as emergent problem-posing. To define and justify this new
term we start making a connection with the notion of emergent modelling.

Recall that emergent modelling (Gravemijer 1999) is a long-time learning process in
which students begin to model their informal mathematical strategies and arrive to re-
invent mathematical concepts and applications they need (see section 2.2.4). These
concepts and applications can be subsequently formalized in mathematical terms and
generalized to other situations. As a consequence, emergent-modelling can be seen as a
process in which a model develops from an informal, situated model (model of) into a
generalizable mathematical structure (model for), that increases formal mathematical
reasoning (Gravemeijer 1999) and sense-making. It is evident that emergent modelling
was introduced with the meaning of supporting the emergence of formal mathematical
ways of knowing. Indeed, in this perspective modelling activities are used as a vehicle
for the development, rather than applications, of mathematical concepts (Greer,
Verschaffel and Mukhopadhyay 2007). Students, starting from a real context, begin to
model their informal mathematical strategies and arrive to re-invent (Freudenthal 1991)
mathematical concepts and applications they need.

When generating a problem, students do not always take into account possible
solving strategies related to that problem, instead often they are not able to solve the
problems they have posed. In this situation, problems posed by students that require
new mathematical knowledge for their solution can be used as a vehicle to introduce
new mathematical concepts. Moreover, these new concepts assume meaning for
students, because rooted in their personal experience and for the specific purpose of
solving the problems posed by themselves. As a consequence, new mathematical
knowledge should be not only introduced, but also re-invented (Freudenthal 1991) by
students. Similarly to emergent modelling, we call this aspect of problem posing as
emergent problem-posing, highlighting its aim to support the emergence of formal
mathematical ways of knowing.

Emergent problem-posing is also connected to the process of prospective learning
(Freudenthal 1991), in which informal contexts play a prominent role in offering
students opportunities to improve their knowledge, before to deal with more

systematicity and formalism. Emergent problem-posing should reinforce prospective
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learning, motivating and supporting students in creating new mathematical knowledge

from informal contexts.

2.3.5 Directions for the future
To conclude this section, the main results concerning research on problem-posing in
mathematics education could be sum up in four main themes (Ellerton, Singer and Cai

2015):

* problem-posing can transform attitudes towards mathematics so that the

object of mathematics is the problem not just the solution of a problem,;

* problem-posing can be an agent of change in the mathematics classroom;

¢ through purposeful planning, problem-posing can be integrated into school

mathematics curricula;

* problem-posing can be seen as a natural link between formal mathematics

instruction, problem solving and modelling;

However, when implementing problem-posing activities several difficulties can be

encountered (Hansen and Hana 2015):
* posing mathematically relevant problems: distinguish between problems that

are mathematical relevant and problems that are not is a competence that both

students and teachers should become proficient;
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posing mathematical suitable problems: which problems are not too difficult
neither nontrivial for the students? A fundamental skill is to be able to
reformulate problems and choose such contexts that attain a reasonable

degree of mathematical sophistication;

posing problems such that pupils feel ownership of the problems: problem-
posing is an ongoing process, where reformulations and adjustments are

required also by students;

making problem-posing a relevant part of the learning trajectory: if problem-
posing should be seen as an integral part of mathematics classes, it must be

connected to other mathematical activities in the classroom;

incorporating the teaching of mathematical content with problem-posing: two
main difficulties can be individuated. The first, not communicating the intent
to students and second, posing-problems to a little-known mathematical topic,

especially when the topic is a specific real-world situation.

Consequently, further research is needed for the future (Ellerton, Singer and Cai

2015), particularly on:
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the development of problem-posing skills for in-service and pre-service

teachers’ education;

the possible connections between problem-posing and mathematical

creativity;

the links between problem-posing and problem solving;

knowing more about the potential of problem-posing to support students’

learning.
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2.4 Real contexts

Contexts for mathematics lessons play a crucial role in bridging modelling and
problem-posing to promote students’ reasoning, critical thinking and give meaning to
their mathematical activity. Which kind of contexts are suitable to foster students’
reasoning? Which contexts could help in bridging the gap between in- and out-of-school
mathematics? In our perspective, such contexts should be connoted as real. As a
consequence, a real context needs to defined, as well as a real mathematical task. To
pursue this goal, in literature several approaches emerged. We present two of them. The
first one refers to realistic and rich contexts in the perspective of RME. The second one
is a framework developed by Palm (2006) concerning concordance between

mathematical school tasks and the corresponding out-of-school situations.

2.4.1 RME context problems

As we have seen in section 2.1 the core principle of RME is that mathematics education
should take its point of departure primarily in mathematics as an activity, and not in
mathematics as a ready-made-system (Freudenthal 1971; 1973; 1991). Students, in fact,
are active participants in the learning process. Mathematics is a human activity
(Freudenthal 1991): you do mathematics through mathematization (Treffers 1987).
Therefore, learning becomes a constructed understanding through a continuous
interaction between teacher and students, that can be synthetized, using Freudenthal’s
words, in teaching and learning as guided reinvention. Anchoring points for the
reinvention of mathematics are offered by context problems. Context problems are
problems of which the problem situation is experientially real to the student
(Gravemeijer and Doorman 1999). As a consequence, problems should come from the
real world, but also from a fantasy world or from the mathematics itself, until they are

experientially real for the student (Van den Heuvel-Panhuizen and Drijvers 2014).
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Therefore, in contexts problems the contexts on which the mathematical task is based
can be defined as realistic, i.e. experientially significant for students. However, this
realistic connotation is not sufficient to have a valuable mathematical problem. The
context, indeed, must also be rich (Freudenthal 1991). A rich context is a context that
promote a structuring process as a means of organizing phenomena, physical and
mathematical, and even mathematics as a whole, i.e. contexts that give more
opportunities in the mathematization process. In conclusion, in this perspective a real
context is a realistic and rich context, and a real mathematical task is a mathematical

task based on a realistic and rich context.

2.4.2 Palm’s framework

Another perspective for real mathematical tasks was introduced by Palm (2006), who
developed a framework to depict that aspects of real-life situations that should be

considered important in their simulations (Fig. 13).
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Figure 13. Palm’s (2006) framework for simulations of real-life situations
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In Table 6 for each aspect a key question that helps in reasoning about the

concordance between mathematical school tasks and corresponding situations in real-

life beyond the mathematics classroom are reported.

Table 6. Key questions associated to real-life aspects in Palm’s (2006) framework

Event Could the event described in the school task take
place in real-life?

Question Does the questions in the school task might be
posed in a corresponding real-life event?

Information/Data

Existence Do the information available in the school task exist
in a corresponding real-life event?

Realism Are the values given in the school task close to
values in a corresponding real-life event?

Specificity Can specifications of the school task context be
compared to a reasonably extent to the
corresponding out-of-school situation?

Presentation

Mode Is the problem communicated orally or in a written
form? Are the information presented in diagrams,
tables, graphs, ...?

Language Does the language used in the school task not

negatively affect the possibilities for students to use
the same mathematics as they would have used in a

corresponding real-life event?

Solution strategies

Availability

Experienced plausibility

Do the solution strategies available to the students
solving the school task match with those available
to the persons described in the tasks as solving the
corresponding tasks in real-life?

Do the solution strategies experienced as plausible

for solving the task in the school situation match
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with those experienced as plausible in a

corresponding real-life event?

Circumstances

Availability of external tools

Guidance

Consultation and collaboration

Discussion opportunities

Which concrete tools outside the mind can be used

to solve the task?

Which explicit or implicit hints are given?

Which kind of inputs from other people are took

into account?

Are there occasions for students to ask about and

discuss the meaning and understanding of the task?

Time

Do time restrictions not cause significant
differences in the possibilities of solving the school
task compared with the corresponding real-life

event?

Consequences of task solving

success

Are there any efforts to promote motivation to solve

the task?

Solution requirements

What is an appropriate solution in a corresponding

real situation?

Purpose

Figurative context

Social context

Is the purpose of the task in the figurative context as
clear to the students as it is for the solver in the
corresponding real event?

Is the purpose in the social context of the school
situation permit similarities in actions between the

in- and out-of-school situations?
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If we look at the aspects described in Table 6, we can divide them in two categories.
The first category deals with aspects that describe what to take into account to have a
real mathematical task, in the sense of making it close as much as possible to a
corresponding real-life situation. These aspects are: event, questions, information and
data, solution strategies, time, solution requirements, purpose. The second category
concerns some aspects that could increase the efficacy of an activity based on a real
mathematical task. These aspects are: specificity, presentation, circumstances, time,
consequences, purpose. The aspects consequences and purpose are shared between the
two categories. As a consequence, to define what a real task is in this framework we
focus on the first category. In order to define what could be a real context, the aspects of
these category can be synthetized in three main connotations: feasibility, availability
and appropriateness. With feasibility we refer to the fact that the context, and
eventually the problem formulated starting from it, should actually occur in real-life.
Availability means that students should have at their disposal information and strategies
to solve the problem sufficiently close to real-life data. Appropriateness concerns with
the fact that the purpose must be clear to students, and consequently the students are
able to discern which solutions could be considered as appropriate in relation with the
context of the problem. In conclusion, in this perspective a real context is a feasible,
available and appropriate context, and a real mathematical task is a mathematical task
based on such contexts. These real contexts are closed to the notion of artifacts (Bonotto
2013), that, thanks to their complexity and richness in mathematical meaning, live in
both the world of symbols and the real one, creating a new dialectic between school
mathematics and extra school experiences, by bringing students’ everyday-life

experiences and informal reasoning into play.

Comparing the two proposed frameworks, two main dichotomies can be observed.
The first is between realistic-rich and feasibility. In RME, a realistic and rich context is
a context which is meaningful both for the student and for mathematics. As a
consequence, a context can come not only from the real-world, until it is significant for
students and rich of mathematical stimulus. In Palm’s framework, instead, the accent is
given to the feasibility of the context, in the sense that both the event and the related

problems described in the context of the mathematical task have to occur in real-life.
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The second main difference is between re-invention and availability. Contexts described
in RME as to be real, take their features in the view of the teaching of mathematics as a
process of guided re-invention. As a consequence, real contexts should offer the
opportunity to students to re-invent mathematical concepts, strategies, algorithms,
reinforcing in this way prospective learning. In Palm’s perspective, instead, students
should have at their disposal solution strategies to solve the task, that have to match
with those available to the persons solving the corresponding tasks in real-life. In
conclusion, despite these differences, both the perspectives concord in the fact that
students’ motivation should be promoted when engaged in solving mathematical

problems, and so in mathematical problems based on real contexts.

2.5 Research questions

In the previous section we outlined the context and theoretical background of the
research. In the specific, we remarked how the teaching of mathematics still have a
stereotyped nature in which students are requested to apply mechanical rules to solve
standard problems. In the Italian contexts, some studies outlined how is common a
persistence of situations of disorientation and uncertainty and a certain resistance to
abandoning traditional teaching methods of mainly transmission type (INNS 2017). In
this situation, this Univeristy project, whose our research is part of, aimed to providing
mathematics teachers with methodological models and format of school practices based
on mathematical modelling, in order to reduce the gap between in- and out-of- school
mathematical competencies and to foster students’ reasoning and sense-making.

The goal of this research is to design a re-invention process (Freudenthal 1991) to
integrate mathematical modelling in the regular school practice in the Italian context. In
the specific, we want to investigate how this process can be implemented and used to
help students give sense to their mathematical activity. Thus, the main question of this

project is:
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How, and to what extent, can mathematical modelling be integrated in the

teaching and learning of mathematics in a guided re-invention paradigm?

In section 2.1 the RME underlying theory of this project was presented. A
fundamental characteristic of this theory is that learning occurs through experience, the
experience of mathematizing experientially real situations, extending day-to-day
reasoning to acquire new (mathematical) knowledge. In this project, we investigated
how the design heuristics of didactical phenomenology and emergent modelling should
support such a re-invention process. As a consequence, a central role will be covered by
the choice of contexts for mathematical problems that must be experientially significant
for students and able to evoke new mathematical concepts or strategies for their
solution. Therefore, a learning trajectory that brings students to invent their
mathematical principles in a modelling environment needs to be designed. To design
such a re-invention process, our choices are the design heuristics of didactical
phenomenology and emergent modelling, and the use of problem-posing in relation to
such heuristics. How can these choices be used? Why and to what extent they work?
Are students able in the designed learning process to re-create (their) new mathematics
rooted in an informal day-to-day reasoning? As a consequence, our main research
question was split in two more specific questions. The first research question deals with
the design of modelling activities with the focus in the promotion of students’ creation
of new mathematical concepts or strategies to solve a real problem. In the specific, we
investigated how activities designed following the MEA principles could foster the
emergent nature of modelling. The second research question consists in start
investigating the impact in the use of different contexts during problem-posing activities
in terms of students’ creativity and emergent problems. The resulting research questions

are the following:

ROI. How can Model Eliciting Activities promote the process of emergent
modelling?
RQ2. How do different contexts influence the process of problem-posing?
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Concerning the second research question, we focused on two aspects of the problem-
posing process, namely its relations with creativity and emergent problem-posing. As a
consequence, from the second research question, two more specific sub-questions

emerged:

RQ2.1. How do different contexts influence students’ creativity in problem-

posing?

RQ2.2.  How do different contexts influence emergent problem-posing?

In the following chapter the methodology of design research will be described.
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In this chapter the research methodology to answer to the research questions is
described. The starting point consists in justifying the choice of the research method of
design research.

As stated in the previous section, the aim of this research project consisted in
understanding how to integrate mathematical modelling in the Italian school context,
that is still characterized by traditional transmissive teaching methods. From the
motivations for this study and the theoretical background, two specific research
questions had been formulated in order to pursue our goal. The first research question
consisted in investigating how can MEAs enhance the emergent nature of modelling,
while the second research question consisted in investigating the use of different
contexts in problem-posing activities, and their consequences in terms of creativity and
emergent problem-posing.

To be able to answer to the research questions we had to create an instructional
environment with which it could be possible to study how and to what extent the
suggested processes could be fostered. An instructional sequence was therefore
necessary to answer to the research questions. Moreover, the research had an
explorative character, since the research questions aim at quite new aspects in
mathematics education specifically for the Italian context, and consequently a research
design that allowed for revising theories, hypothesis and instructional activities was
needed. Furthermore, new teaching materials that support new types of learning must be
developed, making the design process an integrated part of the research. A research
approach that consists in planning and creating innovative educational settings and
analyzing teaching and learning processes is represented by the methodology of design

research.



In section 3.1 we present the main characteristics of the design research
methodology. Section 3.2 describes the phases of design research applied to this

research project.

3.1 Design research

Design research in education is research in which the design of new educational
materials (learning activities, professional development programs, etc.) is a crucial part
of the research (Bakker 2018). Design research does not describe or evaluate education
as it currently is, but it is about education as it could be or even as it should be. Design

research can be defined

As the systematic study of designing, developing and evaluating educational
interventions, - such as programs, teaching-learning strategies and materials, products
and systems — as solutions to such problems, which also aims at advancing our
knowledge about the characteristics of these interventions and the processes to design

and develop them. (Plomp 2010, p.9)

Moreover, the design of instructional activities is more than a necessity for carrying
out teaching experiments. The design process forces the researcher to make explicit

choices, hypothesis and expectations that otherwise might have remained implicit.

(...) design research explicitly exploits the design process as an opportunity to advance
the researchers’ understanding of teaching, learning, and educational systems. Design
research may still incorporate the same types of outcome-based evaluation that
characterize traditional theory testing, however, it recognizes design as an important

approach to research in its own right. (Edelson 2002, p. 107)

In various countries different names to similar approaches had been given:
developmental research (Freudenthal 1988; Gravemeijer 1994b; Lijnse 1995; Romberg
1973; Van den Akker 1999); design experiments (Brown 1992; Cobb, Confrey, diSessa,
Lehrer and Schauble 2003; Collins 1990, 1992); design based research (Hoadley 2002);

educational design research (McKenney and Reeves 2012; Plomp and Nieveen 2013;
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Van den Akker, Gravemeijer, McKenney and Nieveen 2006); formative experiments
(Reinking and Bradley 2008).

A key characteristic of design research is that educational ideas for students’ or
teachers’ learning are formulated in the design but can be adjusted during the empirical
testing of these ideas. As a consequence, due to its component of adaptation of the
learning trajectory through the research, design research is particularly suitable in
situations where a full theoretical framework is not yet available and where hypothesis
is still to be developed (Drijvers 2003).

Design research includes a design or development function, but also an advisory
function, consisting in giving theoretical insights into how particular ways of teaching
and learning can be promoted.

Design research is very closed to action research. Action research focuses on solving
a practical problem and aims to produce practical guidelines (Brandbury 2015;
Denscombe 2014). Like action research, design research is interventionist and open,
involves a reflective and cycle process and aims to bridge theory and practice (Opie and
Sikes 2004). However, in design research, design is a crucial part of the research,
whereas in action research the focus is on action and change.

Cobb et al. (2003) identified five key characteristics of design research:

1. the purpose of design research is to develop theories about learning and the

means that are designed to support that learning;

2. design research has an interventionist nature. Changes and understanding are
intertwined, because if you want to change something you have to understand it,

and if you want to understand something, you have to change it (Bakker 2004);

3. design research has both prospective and reflective components. During the
implementation of some learning hypothesis (prospective part) the researcher
confronts conjectures with actual learning that is observed (reflective part). Such

reflective analysis can lead to changes to the original plan for the next lesson;
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4. design research has a cyclic nature, forming an iterative process of invention and
revision. Each cycle typically consists of three phases: preparation and design;

teaching experiment; retrospective analysis;

5. the theory under development has to do real work. Theory generated from
design research is usually developed for a specific domain, but it must also be
general enough to be applicable in different contexts such as classrooms in other

schools or other countries.

To sum up, design research aims at generating empirically grounded theories. Its
main result is not a design that works, but the reasons how, why and to what extent it
works. The first point consists in developing an instructional design for investigating
and generating theoretical conjectures. Then, in relations to the considered questions,
the analysis of the teaching experiments focuses on various aspects of the design, of
students’ reasoning, classroom discussion and development of classroom norms (Cobb
et al. 2003).

In this research, for each research question two cycles had been implemented (Fig.
14): cycles M-I and M-II concerning the first research question about mathematical
modelling and cycles PP-I and PP-II concerning the second research question about
problem-posing. Each cycle is considered in concatenation with the next one as a spiral.
Those cycles had been preceded by a preparation phase, common to both the modelling
and problem-posing cycles, that consisted in an analysis of the theoretical background
concerning the research topic and an empirical study. The first phase of each cycle
consisted in the design phase and included the development of a Hypothetical Learning
Trajectory (HLT). This phase followed by the teaching experiment whose aim consists
in providing empirically based arguments to justify or refute the hypothesis conjectured
in the previous phase. The last phase is represented by the retrospective analysis. The
reflection at the end of the first cycle led to adapting the conjectures and the teaching
sequence, which became the starting point for the second cycle. This cyclic process
aimed at empirically grounded answers to hypothesis concerning the research questions.

Ideally, such instructional sequence should converge into a sequence that works best
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within the constraints of the educational setting in order to develop a local instructional
theory. As a consequence, the sequence should be tried out and analyzed in various
situations, as well as be discussed with other parties who play a role in educational
innovation, such as teacher training institutes and educational publishers. However, we

were not able to go through all these phases, and we let them for future work.
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Figure 14. Design research cycles for this research project

3.2 Design Research Phases

As described in the previous section, each cycle of design research was made by three
main phases: a design phase, a teaching experiment and a retrospective analysis. In this
section the common features of each of those phases are described. In conclusion,
section 3.3 will focus on validity and reliability in design research, and particularly for

this thesis.

3.2.1 Design
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In this research the design phase was explicated by the development of a hypothetical
learning trajectory (HLT). This phase was preceded by an analysis of the theoretical
background concerning the didactical problems we are addressing, and by an
explorative study, that together constitute the preparation phase.

The first phase of each research cycle consisted in the development of an HLT. This
term was introduced by Simon (1995), as a key part in developing an extension of the
teaching experiment methodology, called Mathematics Teaching Cycle. It consists in a
teachers’ plan for classroom activities. HLT refers to teachers’ prediction as to the path
by which learning might proceed (Simon 1995). The HLT is made by three components
(Fig. 15): the learning goal, that defines the direction; the learning activities; the
hypothetical learning process, that is a prediction of how students’ thinking and

understanding will evolve in the context of the learning activities.

[ learning goal } [ hypothetical learning process } [Iearning activities}

Figure 15. Components of a hypothetical learning trajectory

The development of the hypothetical learning process and of classroom activities are
closely related: ideas for the learning activities depend on teachers’ hypothesis about the
development of students’ thinking and learning, and vice-versa, the generation of
hypotheses of students’ conceptual development depends on the nature of the
anticipated activities. The design of instructional activities in this study included the
development of teacher guides, tasks, student booklets, artefacts, possible solutions to
the assignments and tests. While designing these materials, choices and intentions were
captured and motivated, to inform the teacher and to keep track of the development of

the designer’s insights.
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While designing instructional activities, the key question is what meaningful
problems may foster the students’ cognitive development according to the goals of the
HLT. The important criterion for selecting an activity was its potential role in the HLT
towards the end goal of distribution. Would it possibly lead to types of reasoning that
students could build upon towards that end goal? Would it be challenging? Would it be
a meaningful context for students?

The design process was guided by the RME heuristic of didactical phenomenology.
Didactical phenomenology aims at confronting students with phenomena that beg to be
organized by means of mathematical structures. In this way, students are invited to
develop mathematical concepts from meaningful contexts (de Lange 1987; Treffers
1987). As a consequence, the point is to find meaningful problem contexts that may
foster the development of the targeted mathematical concepts. The heuristic of
didactical phenomenology directly cooperates with another heuristic: guided
reinvention. Guided reinvention involves reconstructing the natural way of developing a
mathematical concept from a given problem situation. One way to do this is to try to
think how you might have figured it out yourself (Gravemeijer 1994a, p. 179).

Together with the end goal and classroom activities, the development of an HLT
involves also the assessment of the starting level of students’ understanding. The
classroom activities are designed to foster productive mental activities by the students,
and are accompanied by the designer’s description of why the instructional activity is
supposed to work and what kind of mental development is expected to be elicited. This
sequence of activities, motivations and expectations makes explicit the hypothetical
learning process in terms of student activities and cognitive development (Drijvers
2003).

In designing a chain of activities, the designer makes use of his domain specific
knowledge, his repertoire of activities and representations, his teaching experience, and
his view of the teaching and learning of the topic. Such hypothetical trajectory is
empirically tested by means of a teaching experiment, then the HLT could be adapted
and changed. These changes, based on the experiences in the classroom, start a new

round through the next research cycle.
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HLT is not a rigid structure that must be followed by all, instead it represents a
learning route that is broader than one single track and has a particular bandwidth,
wherein students can go through it at different speeds.

The HLT can be seen as the link between an instruction theory and a concrete
teaching experiment. Moreover, an HLT has different functions depending on the phase

of the design research and continually develops through the different phases. Indeed:

* during the design phase, the HLT guides the design of instructional materials that
have to be developed or adapted. The confrontation of a general rationale with
concrete activities often leads to a more specific HLT, which means that the HLT

usually develops during the design phase (Drijvers 2003);

* during the teaching experiment, the HLT functions as a guideline for the teacher
and researcher what to focus on in teaching, interviewing, and observing. HLT
should be adjusted for the next lesson, because of incidents in the classroom such as
anticipations that have not come true, strategies that have not been foreseen,
activities that were too difficult, and so on. In design research, changes in the HLT
are made to create optimal conditions and are regarded as elements of the data
corpus. This means that these changes have to be reported well and the information

is stronger if changes are supported by theoretical considerations;

* during the retrospective analysis, the HLT functions as a guideline determining
what the researcher should focus on in the analysis. Because predictions are made
about students’ learning, the researcher can contrast those anticipations with the
observations made during the teaching experiment. Such an analysis of the interplay
between the evolving HLT and empirical observations forms the basis for
developing an instruction theory. After the retrospective analysis, the HLT can be
reformulated, in an often more drastic way than during the teaching experiment, and

the new HLT can guide a next design phase.
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In this research HLT was used in the following way. The first phase of each cycle
started with considering the specific classroom context, with choosing a mathematical
topic on which focus on, with formulating a problem, with analyzing the concepts and
with reflecting on possible solutions. The proposed solutions were made concrete in the
form of student activities that defined the hypothetical learning trajectory. The HLT
finally was condensed into a table that contains its components of learning goal,

hypothetical learning process and learning activities.

3.2.2 Teaching experiments

The second phase of the design research cycle is the phase of the teaching experiment,
in which the prior hypothesis embedded in the HLT and the instructional activities are
confronted with classroom reality. The term teaching experiment is borrowed from
Steffe (1983); see also Steffe & Thompson (2000). The word experiment does not refer
to a comparison between an experimental group and a control group, but to an
experimental classroom setting that is created as a result of the innovative teaching
materials provided. In the teaching experiments the instructional sequence is carried out
by the teacher and the students, and the overall goal is to understand and improve the
initial design on the basis of students’ reasoning with respect to the created educational
setting (Doorman 2005).

Before the start of the teaching experiments we spoke with the teachers about the
aims of the experiments, the teaching materials and the schedule of the teaching
sequence. Since the teachers who participated with their classrooms to the research did
not have any preparation on the strategies of mathematical modelling and problem-
posing, we decided with them that the teaching experiments would be carried out by the
researcher, with the help of the regular mathematics teacher in the classroom, joining in
classroom discussions and explanations. Also, they approached students with questions
concerning key concepts, or answered questions from students. The researcher made
notes during all the lessons, evaluated each lesson and participated in students’ group
work, letting the students clarify what they were doing. We were aware that this

participation influenced the students’ learning processes, but we wanted to hear students
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express their thinking, and to create a classroom culture in which clarifying questions

was part of the mathematical activities.

We focused on data that reflected that process and provided insight into the thinking

of the students. The main sources of data, therefore, were observations of students

behavior, the classroom discussions, written data from students, such as handed-in

tasks, notebooks and tests.

The teaching experiments took place in Italian schools. In Table 7 an overview of the

teaching experiments is reported, specifying: the classroom grade; the number of

students; the characterization of the experiment; the types of data collection.

Table 7. Teaching experiments overview

Teaching School =~ Number of = Mathematical Data collection
experiment grade students topic

M-I teaching 2 19 Multiplication  pre-test; notes;

experiment inN students’ materials;
field observations; post-
test

M-II teaching 12 25 3D Euclidean  pre-test; notes;

experiment geometry students’ materials;
field observations;
students’ feedback;
individual student
report; teacher’s report

PP-I teaching 6 22 Fractions pre-test; student

experiment performances in
problem-posing and
problem solving; field
observations

PP-II teaching 4 25 Decimal pre-test; student

experiment numbers performances in
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problem-posing and
problem solving; field

observations

M-I cycle teaching experiment

The first teaching experiment concerning mathematical modelling, M-I cycle, was
conducted in a second-grade class (age 7) composed by nineteen students during two
weeks of regular mathematics lessons. The mathematical topic that was chosen for the
modelling activity was multiplication in N. In relation to the research question RQ1, in
this teaching experiment we wanted to study how emergent modelling can be fostered to
help students understanding of some aspects of the multiplicative structure
(distributivity property of multiplication over addition). Our hypothesis was that a
modelling activity designed following a model eliciting sequence (Lesh et al. 2003)
with the use of suitable artifacts could actually foster the emergent nature of modelling.
The teaching experiment was divided in three sessions, designed by the author adapting
the model development sequence of Lesh et al. (2003). In session one, students had to
work before individually and after in couples to some comprehension questions
concerning the next modelling activity. In session two, students in groups had to solve a
modelling task, producing a final project. The third session consisted of group
presentations of their projects. After those sessions, a post-test was administrated to
students.

The research method for the data analysis was mixed quantitative and qualitative.
The aim of the data analysis was to reconstruct the classroom progress, which resulted
in an empirical grounded understanding of students’ reasoning during the classroom
activity. In order to be able to reconstruct the learning process and verify our
hypothesis, different kinds of data were collected: pre-test; transcriptions of classroom

dialogs; observations of group working; students’ final projects; post-test.
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The analysis of these data provided information on verifying our hypothesis, give
first answers to the first research question and adjust the designed instructional sequence
for the next research cycle.

This research cycle is described in chapter 5.

M-II cycle teaching experiment

The second teaching experiment concerning mathematical modelling, M-II cycle, was
conducted in a twelfth-grade class (age 17) composed by 25 students. The mathematical
topic for the modelling activity was 3D-Euclidean geometry. In relation to the first
research question RQI1, the aims of the study were: to study how model eliciting
activities could impact on the emergent nature of modelling; to provide teachers with
design principles and materials based on mathematical modelling to be usable in their
classrooms; to foster the understanding of some aspects of 3D-Euclidean geometry in a
meaningful way. The teaching experiment was divided in four sessions, designed by the
author adapting the model development sequence of Lesh et al. (2003). In session one,
students were divided in groups. Each group had to work on some comprehension
questions about the modelling task. In session two, the groups worked on the model
eliciting activity, producing a final project in a multimedia presentation. The third
session consisted of group presentations followed by a Question & Answer (Q&A)
session. The final session consisted in an individual assignment on the whole activity.
After those four sessions, a questionnaire was administrated to students, in order to
collect some information concerning their perceptions on the entire modelling activity.
Data collection consisted of pre-test; students’ projects; classroom observations; final
students’ individual reports; final questionnaire; teacher’s report. Data analysis was
mixed qualitative and quantitative, providing information on verifying our hypothesis,

give first answers to the first research question and suggestions for future work.
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This research cycle is described in chapter 6.

PP-I cycle teaching experiment

The first teaching experiment concerning problem-posing, PP-I cycle, was conducted in
a sixth-grade class (age 12) composed by twenty-two students. At the moment of the
intervention, students were working on fractions. The mathematical topic that was
chosen for the problem-posing activity was fractions. In relation to the research question
RQ2, the aim of the study was to investigate how different contexts should influence
students’ creativity in problem-posing. The teaching experiment was divided in two
parts: the first represented by two problem-posing sessions, and the second that
consisted in a problem solving activity based on some problems posed in the previous
part.

Data consisted in students’ pre-test; students’ performances in the problem-posing
sessions and results from the problem-solving activity. Problems posed by students
were analysed referring to the starting context and level of creativity. An analytic
scheme concerning students’ creativity was developed.

The analysis of these data provided information on how to optimize the activities
with respect to formulating student texts, contexts used, and information provided.
Second, conjectures that paralleled the instructional sequence could be verified as far as
the students were taught as intended, letting to adjustments to the sequence and our
conjectured instruction theory. Third, this analysis led to new hypotheses concerning the
choices made with respect to the research questions. The adjustments and the new
hypotheses were objects of study in the research cycle P-II.

This research cycle is described in chapter 7.

PP-II cycle teaching experiment

The second teaching experiment concerning problem-posing, PP-II cycle, was

conducted in a fourth-grade class (age 9) composed by twenty-five students. In this
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teaching experiment we started investigating how emergent problem-posing can
actually be enhanced in the school practice. In particular we studied the impact of
different contexts on emergent problem-posing. To pursue our goal, we conducted a
teaching experiment in a primary school in which different contexts had been used as
starting situations for problem-posing activities. The classroom involved in the study
had never been engaged in problem-posing activities before the study. The
mathematical topic was represented by decimal numbers, and in the specific addition
between decimal numbers. The teaching experiment was split in two lessons: the first
represented by two problem-posing sessions, and the second that consisted in a problem
solving activity based on some problems posed in the previous part.

Data consisted in students’ pre-test; students’ performances in the problem-posing
sessions and results from the problem solving activity. Problems posed by students were
analysed in relation to the starting context and emergent problems.

Data analysis was mixed qualitative and quantitative, providing information on
verifying our hypothesis, give first answers to the first research question and
suggestions for future work.

This research cycle is described in chapter 8.

3.2.3 Retrospective analysis

The final phase of a design research cycle comprises the retrospective analysis. In the
retrospective analysis the HLT is compared with students’ actual learning, and on the
basis of such analysis answers to the research questions can be formulated.

The first step consisted in selecting data from the teaching experiment. Criteria for
selection were the relevance of the fragment to the research questions and to the HLT of
this teaching experiment in particular. The relation between theory development and
teaching experiments emphasizes that hypotheses are created and modified while
interpreting the data available. The interpretation of data depends on the ability to
reconstruct the learning and teaching process, that consists in understanding students’
reasoning, on which ideas their reasoning builds and by which perspectives it is guided.

The point is to reconstruct the classroom progress based on the data available, which
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should result in an empirically grounded understanding of what happened during the
teaching experiments.

The data were organized into case studies, represented by the teaching experiments,
of class discussions and of students’ work during the mathematics lessons. These case
studies were interpreted in terms of what preceded the lessons, the student activities, the
teaching, and the tools provided. Interpretations were compared with other available
data, such as students’ written materials and data from another experiment in our
research.

The results of the retrospective analysis formed the basis for adjusting the HLT and

for answering the research questions.

3.3 Validity and reliability

This last section of this chapter addresses the concepts of reliability and validity of the
research method of design research. In the specific, the question is how these criteria are
met in this study based on design research, where observations and student materials are
the main sources of data and interpretation and coding are the main techniques of

analysis.

Internal validity

Internal validity refers to the quality of the data collections and the soundness of the
reasoning that has led to the conclusions. To improve internal validity of this study we

used several methods:

* in the retrospective analysis, we tested conjectures that were generated and
tested at specific episodes at other episodes and other data material, such as field

notes, tests, students’ work (source triangulation);
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* the succession of different cycles permitted to test the conjectures developed in

earlier teaching experiments in later teaching experiments;

e different theoretical instruments were used to analyze single episodes

(theoretical triangulation);

* theoretical claims are substantiated with transcripts to provide rich and

meaningful contexts;

* in preparing the experiments, we had discussed our ideas and the instructional
sequence with the teachers. Our ability to explain our intended goals for the
experiment, their willingness to participate, their contributions to performing the
teaching experiment, and their engagement during the actual experiments
validate, to a certain extent, the teaching experiments in our project. A similar

argument holds for the participating students.

External validity

External validity is mostly realized as the generalizability of the conclusions. The
question is how we can generalize the results from these specific contexts as to be
useful for other contexts. An important way to do so is by framing issues as instances of
something more general (Cobb et al. 2003; Gravemeijer and Cobb 2001). The challenge
is to present the results (instruction theory, HLT, instructional activities) in such a way
that others can adjust them to their local contingencies (Barab and Kirshner 2002).
Additionally, we found patterns that occurred in several classes of our own teaching
experiments. In addition to generalizability as a criterion for external validity we
mention fransferability (Maso and Smaling 1998). If lessons learned in one experiment

are successfully applied in other experiments, this is a sign of successful generalization.
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Also, the quality of the reasoning and the conclusions was controlled by means of
submitting papers and conference contributions that were reviewed during the research

period.

Internal reliability

Internal reliability concerns the reliability of the methods that were used within the
research project. Our measures for obtaining internal reliability included systematically
gathering data by means of prior identified key items in student activities, and
processing the data using consistent coding systems. Crucial observations were shared

with colleagues (peer examination).

External reliability

For the external reliability, the criterion is virtual replicability by means of trackability
(Gravemeijer 1993, 1994b; Gravemeijer and Cobb 2001; Smaling 1987, 1992). This
means that the research is reported in such a way that is can be reconstructed by others.
The teaching experiments and data analysis resulted either in verification of the
conjectures, or in adjustments or new conjectures for subsequent experiments. We
described this process systematically to offer other researchers the possibility of
virtually replicating it and retracing our conclusions through the cycles of data analyses
and teaching experiments. This requires transparency and explicitness about the
learning process of the researcher and justification of the choices that are made within
the research project. Raw data should be made available. The following quotation

addresses the need for trackability:

[Developmental research means] experiencing the cyclic process of development and
research so consciously and reporting on it so candidly that it justifies itself, and that
this experience can be transmitted to others to become like their own experience.

(Freudenthal 1991, p. 161)
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In this study we ensured the external reliability by reporting extensively on the re-
search methodology, the process of data reduction and the learning process of the

researcher, by means of justifying the decisions and by making available the raw data.
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4. Exploratory Study

As part of the preparation phase of the design research cycles, this chapter presents the
results of an exploratory study. This exploratory study, together with the theoretical
background that was discussed in chapter 2, constitutes the preparation phase of the
research, and represents a starting point for the development of an HLT for the firsts
design research cycles. Indeed, to identify possible starting points for the research
cycles, it was needed to know more about prior teachers’ knowledge and practice
concerning mathematical modelling and problem-posing. To pursue this goal, an
exploratory questionnaire for mathematics teachers of primary and secondary schools
was developed, in order to know if teachers include in their teaching some aspects of

mathematical modelling and problem-posing.

4.1 Design of the exploratory study

As described in section 1.2, this research project is part of a University project whose
overall aim consists in providing mathematics teachers with methodological models and
format of school practices based on mathematical modelling, in order to reduce the gap
between in- and out-of-school mathematical competencies and to foster students’
reasoning and sense-making. Indeed, teachers education is crucial in the implementation
of both modelling (Blum 2015) and problem-posing in mathematics classrooms (Osana
and Pelczer 2015). In this exploratory study we investigated teachers’ knowledge and
practice in mathematical modelling and problem-posing. In the Italian context some
studies outlined how in schools is common a resistance to abandoning traditional
teaching methods of mainly transmission type (INNS 2017). Accordingly, the questions

we wanted to address with this exploratory study were the following:



Q1. Do teachers include in their mathematics lessons some aspects of mathematical

modelling?

Q2. Do teachers include in their mathematics lessons some aspects of problem

posing?

Concerning the first question, only two aspects of the modelling cycle had been
considered: (i) the use of real contexts as starting situations for mathematical activities
and (ii) the presentation of (and the work with) mathematical applications.

To answer to those questions a questionnaire for in-service mathematics teachers of
primary and secondary school was developed (Appendix A). The questionnaire was
anonymous and made by closed and open questions and Likert-scales. In the first part of
the questionnaire teachers were asked to give some personal details, concerning their
higher degree of instruction, years of teaching and teaching level. The second part was
dedicated to the investigation of teachers’ educational practices. Regarding the first
question Q1 about mathematical modelling, only two aspects of the modelling process
had been considered, respectively the use of real contexts as starting situations for
mathematics lesson and the work with mathematics applications. Since we wanted to
explore these aspects, we decided to insert in the questionnaire two items in a five-
Likert scale: the first dealing with the use of starting real situations for mathematics
lessons and the second with mathematics applications. Regarding the second question
Q2 about problem-posing, we split it in two questions: a closed question in which
teachers were asked if they include or not problem-posing in their school practice and
an open question wherein teachers that actually implemented problem-posing activities
could report an example. In the questionnaire other questions were inserted, in order to
analyze some relations between the use of specific educational strategies and/or tools
and the implementation of problem-posing activities, and to explore what teachers
believed indispensable to improve their teaching. In the specific: one question in seven
items of a five-Likert scale about the performance frequency of some educational
strategies (e.g.: individual work, group work, laboratories,...); one question in ten items
of a five-Likert scale about the performance frequency of some educational tools (e.g.:

textbooks, notes, software, artefacts,...). The questionnaire ended with an open question
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in which teachers could express some suggestions they believed indispensable to
improve their teaching of mathematics.

The sample comprised one-hundred and seven primary school and seventy-two
secondary school teachers from the North of Italy. The method of sampling was
randomly stratified (Cohen, Manion and Morrison 2011): the teachers’ population was
divided into the two groups of primary and secondary teachers, and in each of them
teachers who participated to the questionnaire had been randomly chosen. The 66% of
the sample had a master’s degree and the 34% a high school diploma. In Fig. 16, the
distribution of the sample respect to years of teaching is reported. No one of the teachers
that participated to the questionnaire had ever took part to a professional course on

mathematical modelling or problem-posing before.

@ [0-10]
@ [11-20]
@ [21-30]

[>30]

Figure 16. Distribution of the sample respect to years of teaching

The questionnaire was administrated directly by the researcher. The approach for the
data analysis was mixed quantitative and qualitative. The coding of the answers to the
open questions consisted in closing and grouping them in categories and families.

Univariate and bivariate analysis had been performed.
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4.2 Some results

In this section we report and analyse data from the questionnaires. In the specific, we
focus on the results concerning the inclusion of some aspects of mathematical modelling
and problem-posing in teachers’ school practice. Recall that the question Q1 deals with
teachers’ inclusion in their school practice of some aspects of mathematical modelling
and the second Q2 with teachers’ knowledge of problem-posing and its implementation.
In addition, answers to the last question of the questionnaire, concerning teachers’
suggestions on how to improve their teaching will be presented and analysed in relation
of the purpose of the study.

The results show that modelling is actually inserted by teachers in their school
practice, in terms of real contexts as starting situations for mathematical activities and
mathematical applications. However, teachers ask for more materials based on realistic
situations in order to implement more meaningful modelling activities. Problem-posing,
instead, is quite absent from today’s Italian school context.

To answer to the first question Q1, a question about the implementation of modelling
activities was inserted in the questionnaire. Only two aspects of the modelling process
were considered: (i) using real contexts as starting situations for mathematical activities
and (i1) presenting and working with mathematical applications. This question was split
in two items of a five-Likert scale. The first item dealt with real contexts as starting
points for the introduction of a new mathematical topic, while the second item dealt
with mathematical applications. In the specific, we asked teachers the frequency by
which they implement such activities in their classrooms: 1 = never; 2 = rarely; 3 =
sometimes; 4 = often; 5 = always. Considering both the first and the second items, the
total average was 3,9 (Table 8). Successively, in order to examine the presence or not of
differences between primary and secondary school, data were divided between primary
and secondary school teachers. The findings indicate that primary school teachers used
real contexts as starting situations for modelling activities more (4,3) than secondary

school teachers (3,7).
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Table 8. Means of the answers to the first research question

Item Primary teachers Secondary teachers Total

First 43 3,7 4

(real contexts)

Second 3.8 3.8 3,8
(applications)
Total 4,1 3,8 3,9

The second question Q2 was studied through one closed and one open question. The
closed question asked teachers if they included or not problem-posing during their
classroom activities. In Table 9 the distributions in total percentages, divided between
primary and secondary teachers’ answers, are reported. To have a deeper understanding
of teachers’ implementation of problem-posing activities respect to their school level,
the row-percentages respect to Table 9 were calculated (Fig. 17). In Fig. 17 is clearly
proved that problem-posing is not common in school practice, in fact more than a half
of the sample, in both primary and secondary levels, did not implement problem-posing

activities.

Table 9. Distributions respect to the inclusion of problem posing

Inclusion of problem posing activities

Yes No Not answered Total

Primary 21,2 29,6 9,0 59,8
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Teachers’

Secondary 18,4 19,6 2,2 40,2

school level

Total 39,6 49,2 11,2 100

Secondary

Bl Yes
N No
[] Not answered

Figure 17. Percentages respect to the row of Table 9

To investigate teachers’ problem-posing practices, teachers who positively answered
to the closed question, i.e. who included problem-posing in their school practice, were
asked to answer to an open question, in which they had to present one (or more)
significant situation they used as starting point for problem-posing activities. From the
coding of the answers to this open question, nine categories were identified and grouped
in two families (Fig. 18). The percentages of the distributions are divided in primary (P)
and secondary (S) teachers. Each teacher could report more options, so the total is

higher than 100%.
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Reality Problematic
situation

Artifacts Real Practical Problem- Problrm- Generalizing Open New topic Group

P 13,1 Contexts Experiences solving | | formulating | [P [1,6 problems ([P [33 working

s (o0 P[328 P [21.3 P ]33 P[50 5 (33 P |00 5 {00 P 33
5|16 s [o0 s [50 5 66 5 33 5 00

Figure 18. Families and categories of problem-posing activities

For each category the distributions divided between primary and secondary school
teachers were calculated. This analysis indicates that problem-posing contexts expressed
by teachers could be divided in two families: reality and problematic-situations, with
distributions respectively of 83,6% and 34,7%. Note that the total is higher than 100%
because teachers could express more than one situation. Moreover, the most suggested
category, which is linked to the first family, was real contexts (49,2%). This fact
remarks the importance in the choice of meaningful contexts for the implementation of
problem-posing activities. Such contexts are the ones we called as realistic and rich, and
that are at the basis of the modelling process. As a consequence, contexts should play a
crucial role in bridging modelling and problem-posing to promote students’ reasoning,
critical thinking and give meaning to their mathematical activity. Data split between
primary and secondary school teachers allow to have an evidence in the fact that some
starting situations are used only at primary school (artefacts, practical experiences, new
topic, group working), while others only at the secondary school (open problems).
Instead, teachers of every level should have the possibility to face with several different
contexts or tools and learn to choose which is the most appropriate in relation of the
classroom and the learning process.

To have a deeper insight in the relations between the implementation of problem-
posing and the use of artefacts, that in previous studies were proved to be able to foster
a mindful approach towards a problem-posing attitude (Bonotto 2009), a bivariate
analysis between the implementation of problem-posing and the use of artefacts was

performed. Recall that ten items concerning the use of some educational tools in a five-
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Likert scale (1 = never; 2 = rarely; 3 = sometimes; 4 = often; 5 = always) were inserted
in the questionnaire. In the specific, teachers had to state the frequency they adopt the
following educational tools during their lessons: textbooks, notes, interactive board,
software, calculator, math games, audio and video supports, artefacts, library, others.
Findings indicate a significant correlation between the use of artefacts and the
implementation of problem-posing activities (0,001<p<0,01; )*=0,13), as shown in
Table 10 (the total is less than 100% because the distributions of teachers who did not

answer are not reported).

Table 10. Use of artefacts and implementation of problem-posing activities

Frequency in the use of artefacts

Less than Sometimes More than
sometimes sometimes
Implementation of Yes 22,5 36,6 39,4
problem- posing
activities
No 46,5 31,8 19,3

Moreover, to obtain some information on the relations between problem-posing and
problem solving, teachers were asked if they implement or not problem solving
activities during their teaching. The double distribution is given in Table 11 (p<0,001;
1°=0,44). Considering the row percentages of Table 11, almost every teacher who
implemented problem-posing activities implemented also problem solving ones
(95,8%). The vice-versa is not true, in fact if we consider teachers who implemented

problem solving, the 49,3% adopts also problem posing and the 46,5% did not.

Table 11. Implementation of problem solving and problem posing activities

Implementation of problem solving activities
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Yes No Not answered Total
Implementation Yes 63 3 0 7
of problem-
posing activities No < 7 0 23
Not answered 6 14 6 20
Total 138 41 6 179

In conclusion, we report the last question of the questionnaire, in which teachers
were asked to express some suggestions they believed indispensable to improve their
teaching of mathematics: in conclusion, I ask you one (or more) suggestion you believe

indispensable to improve your teaching of mathematics.

The 71,0% of the sample answered to this question. From the coding of teachers’
answers, four families (educational strategies, 103,4%, math topics, 33,3%, school
organization, 26,1%, teacher training, 26,0%) and thirty-one categories were identified.
Note that, since each teacher could express more options, the total percentage is higher

than 100%. In Table 12 data whose distribution was higher than 10% are reported.

Table 12. Categories for teaching improvement

Category Distribution (%)
Laboratory 32,1
Mathematics and reality 21,5
Teacher training 14,4
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Students’ motivation 19,1
Classroom equipment 12,0
Research in education 10,7
More hours of mathematics 12,0
Activities on problem solving 13,1

In Table 13 there are some examples of teachers’ answers relative to the categories

of Table 12 (only the categories with distributions higher than 10% are reported):

Table 13. Examples of teachers’ answers to improve their teaching

Category Teachers’ answers
Laboratory ¢ Show the importance and use of mathematics with laboratorial
activities.

* Materials based on laboratorial experiences.

Mathematic * Activities based on realistic situations and daily life
s and reality experiences.
¢ Starting from concrete contexts and apply mathematics to real
situations.
Teacher * Incrementation of training courses for both pre-service and in-
training service teachers.
* Provide more practical professional development courses for
teachers.
Students’ * Enhance students’ involvement, stimulate discovery and
motivation playfulness.
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¢ Students’ motivation must be improved.

School * Improve school facilities by equipping them with laboratories
equipment or teaching tools.
* Adequate classrooms (tools, software, etc.) available in all
school levels.

Research in * More cooperation between schools and universities.

education * Teachers’ need valid materials based on valuable teaching
strategies.

More hours * More hours in the week schedule for mathematics are needed

of to have a deeper insight in various topics.

Mathematic * Renovate programs or increase the time to have more time to

] deepen the topics.

Activities on * Pay more attention in the solution process of a problem and

problem less time in calculations.

solving e Work regularly on problem-solving activities.

From the analysis of teachers’ answers, it can be deduced that teachers need more
opportunities to be engaged in modelling activities. Indeed, they ask more effective
experiences and practical materials based on realistic and laboratorial activities.
Consequently, there is the necessity of an improvement in teachers’ trainings, offering
them occasions to be involved in modelling activities. We remark that teachers
themselves recognized the importance in the choice of concrete and stimulating contexts
for students, that we called rich and realistic. In addition to the examples reported in

Table 13, other teachers’ answers were directly linked to problem-posing:

e Learn to problematize from concrete situations.

* Attitude to pose problems and observe.

The request of paying more attention in problem-posing and problem solving
situations, by a regular implementation of these educational strategies, supports that

students’ reasoning must be increased. Activities based on modelling and problem-
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posing, starting from meaningful contexts given for example by suitable artefacts,

should represent a valuable occasion to achieve such results.

4.3 Conclusions from the questionnaire

Concerning modelling, the results from the questionnaire showed that teachers regularly
included some aspects of the modelling process in their classroom activities, in terms of
using real contexts as starting situations for mathematics lessons and showing real
applications of mathematics. Despite this disposition, teachers expressed a need in both
more materials and preparation to implement activities based on realistic contexts. This
need is in line with Blum (2015), in which it is underlined the high demanding features
of implementing modelling at school, and that teachers’ professional development in
modelling competencies (Borromeo Ferri 2018) is indispensable. Two directions seem
to be important: (i) improving teachers’ professional development courses, offering
teachers occasions to face with modelling activities based on rich and realistic contexts,
and (i) developing prototypes of practices and textbooks based on realistic problematic
contexts available for teachers of every school level. In this way teachers would have at
their disposal models of modelling activities that can be adapted and implemented in
their classrooms.

The analysis of the second question indicates that problem-posing is not known by
teachers, and consequently not regularly implemented at school. In fact, less than a half
of the participants (39,6%) adopted it during its school practice. To overcome this lack,
problem-posing should become an integral part of pre-service and in-service teacher
training courses, in order to give teachers opportunities to increase their knowledge,
before, and their practice, after, on problem-posing. Such improvement in teachers’
knowledge could help teachers to recognise intersection points between different
methodologies and strategies and to adopt coherent teaching methods. Also, in our
study both the relations between problem-posing and modelling and problem-posing
and problem solving had been confirmed. Indeed, looking at the categories of Fig. 18,

the most frequent is real contexts, which highlights the cooperation between modelling
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and problem-posing. This cooperation is natural in the choice of meaningful contexts
for the implementation of both these educational strategies in order to enhance students’
reasoning and critical thinking. A possible choice for that contexts is given by artefacts,
whose precious contribution in problem-posing activities emerged from the bivariate
analysis, in agreement with Bonotto (2013). Moreover, we remark the positive and
strong relation between problem-posing and problem solving, in line with previous
researches (Bonotto 2013; Kilpatrick 1987; Silver, Mamona-Downs, Leung and Kenney
1996; Silver 1994).

In conclusion, teachers’ opinions about how to improve their teaching of
mathematics were analyzed. The most suggested family dealt with educational
strategies. In the specific, linked with this family there were some categories in
connection with modelling and problem-posing: laboratory, math&reality, problem
solving, group work, practical experiences. The most suggested category was
laboratory. This means that teachers realized that a change in the way of doing
mathematics is necessary. However, standard mathematics and ‘“lab-mathematics”
might not be distinguished by teachers, but activities based on modelling should become
integrated in the daily mathematics activities.

The exploratory study presented has some limits. Indeed, only some aspects of
modelling were considered, the ones of using real contexts as starting situations for
mathematical activities and working with mathematical applications. As a consequence,
a deeper understanding of teachers’ effective practice of the entire modelling cycle and
about their knowledge of other aspects of modelling did not emerge. Moreover, findings
are based only on what teachers self-reported. As a consequence, we can only have a
first overview about this issue, that was actually the aim of this exploratory study. For
the future a deeper investigation in teachers’ practices linked to both modelling and
problem-posing would be performed through a series of interviews and classroom

observations.

To conclude we remark some key points concerning what can be learned from this
exploratory study for the implementation of the following design research cycles. The

results from the questionnaires indicate that:
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* more didactical materials are needed concerning mathematical classroom activities

based on real contexts;

* problem-posing should become integrated in the school practice during

mathematical lessons;

* cooperation between mathematical modelling and problem-posing is evident in the

choice of meaningful contexts for mathematics lesson;

* a change is necessary in the way of teaching mathematics, making students more

active in the learning process.

The results are in line with the choice of the design research methodology, because
that same teachers expressed the need of innovative educational settings for their
teaching. In these settings, meaningful real contexts are crucial, and as a consequence
the role of the design heuristic of didactical phenomenology would become fundamental
in designing instructional activities with the aim of choosing problem situations that
could provide the basis for the development of the mathematical concepts or tools we
want students to develop. This point represents also a possible link between modelling
and problem-posing. As a consequence, problem-posing should be integrated in the
school practice reinforcing the role of meaningful contexts for students and starting
from such contexts to make students become familiar in posing (and solving) their own
problems.

In chapter 5 and 6 the two design research cycles concerning modelling will be
presented. In the specific, these cycles have the additional goal to provide teachers with
design schemes and prototypes of practices in line with the aims of the University
project and teachers’ requests from the questionnaire. In chapter 7 and 8 the cycles
concerning problem-posing will be reported. The main point is to integrate problem-
posing in the school practice, and as stated in consequence of the exploratory study, a
key point to pursue this goal is to reinforce the use of real contexts to make students
pose their own problems. The main difficulty that could occur in this scenario is to
understand which contexts should be real for students, and how different contexts can

influence students’ performances in problem-posing.
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5. M-I Research Cycle

5.1 Introduction

The design research of this project consists in two cycles for mathematical modelling
(M-I and M-II) and two cycles for problem-posing (PP-I and PP-II). This chapter

addresses the first research cycle concerning mathematical modelling, M-I (Fig. 19).
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Figure 19. Research cycle M-I

The structure of the chapter is the following: in section 5.2 we introduce the context
of the classroom that participated to the study, explicating the mathematical topic
considered and the specific goals of this cycle in relation to the first research question.
In section 5.3 the design phase is described, consisting in the development of an HLT

with particular attention in designing instructional activities related to the learning goals



of the HLT. HLT includes starting points and expectations and the students’
hypothetical learning process. The design of key activities and materials are reported.
Then the experiences during the teaching experiment are described (section 5.4).
Section 5.5 is dedicated to the retrospective analysis, in which we reflect on the
expectations formulated in the HLT and formulate feed-forward for the next research

cycle.

5.2 Context and aim

The aim of the research cycles M-I and M-II consisted in finding possible answers to

the first research question of this research project:

RQI. How can Model Eliciting Activities promote the process of emergent modelling?

The first research cycle concerning mathematical modelling, M-I was conducted in a
second-grade class (age 7) composed by nineteen students during two weeks of regular
mathematics lessons. The class had never been engaged in a modelling activity before
the teaching experiment. At the time of the activity, students were working on
multiplication in the set of natural numbers. In particular, multiplication as iterated sum
(Maffia and Mariotti 2018; Fischbein, Deri, Nello and Marino 1985) was introduced by
the official mathematics teacher one week before the teaching experiment. Students
were able to perform basic multiplications between numbers with one digit. As a
consequence, the mathematical topic that was chosen for the modelling activity was
multiplication in N. In the specific, in relation to the research question RQI, we
investigated how emergent modelling can be fostered to help students understanding
some aspects of the multiplicative structure. Our hypothesis was that a modelling
activity designed following a model eliciting sequence (Lesh et al. 2003) with the use if
suitable artifacts could actually foster the emergent nature of modelling.

The student activities and the guidelines for the teacher, together with our intentions,

were discussed beforehand with the mathematics teacher in two meetings.
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The research method for the data analysis was qualitative. The aim of the data
analysis was to reconstruct the classroom progress, which resulted in an empirical
grounded understanding of students’ reasoning during the classroom activity. In order to
be able to reconstruct the learning process and verify our hypothesis, different kinds of
data were collected: pre-test; transcriptions of classroom dialogs; observations of group
working; students’ final projects.

In the next section we present the design phase, in which the development of an HLT

1s described.

5.3 Design phase

In this research project the design phase of a design research cycle is characterized by
the development of an HLT. In this section we first describe the starting points for the
HLT and the expectations that are investigated in the following teaching experiment.
Then we describe the activities and materials designed in order to foster students’

cognitive development according to the goals of the HLT.

5.3.1 Starting points

Starting points for the formulation of an HLT are split in two categories. The first
concerns the theoretical background specific for this research cycle and taken into
consideration to design an educational setting and hypothesis about students’ learning.
The second deals with the classroom context, and in the specific the initial level of the
students. This part could be inserted in the teaching experiment phase, but we decided to
report it here because we actually considered the results of the pre-test to formulate the

following learning trajectory.

Theoretical Background
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In chapter 2 the background to the research was extensively described. Here we want to
sum up some key points that were considered for this research cycle.

The first one deals with emergent modelling. Emergent modelling does not consist in
the application of mathematical concepts to solve real problems, but actually
mathematical activities are used as a vehicle for the development of mathematical
concepts (Greer et al. 2007). Students, starting from a real context, begin to model their
informal mathematical strategies and arrive to re-invent mathematical concepts and
applications they need. These concepts and applications can be subsequently formalized
in mathematical terms and generalized to other situations. To sum up, emergent
modelling can be seen as a dynamic process from a model of students’ situated informal
mathematical strategies to a model for more formal mathematical reasoning
(Gravemeijer & Doorman 1999).

Another modelling perspective considered in this research cycle is the one of model
eliciting. Model eliciting activities (MEAs) are simulations of real-life problem solving
situations in which students develop a model going through iterative phases of
invention, refinement and revision, in which the goal is not in the application of some
ready-made procedures, as in the traditional practice of word problems. In model
eliciting activities, instead, students struggle to create interpretations that fit their
interpretations of the starting dilemma, discuss, make sense of meaningful situations
and invent, extend and refine their own mathematical constructs (Kaiser 2017). Lesh et
al. (2003) developed a model development sequence whose components can easily be
re-sequenced to suit the needs of researchers or teachers (Fig. 9). In this research cycle
we considered three phases of such sequence: warm-up activities; model construction;
presentations and discussion. Warm-up activities are usually given the day before
students are expected to begin work on the model eliciting activity. Warm-up activities
aimed at helping students to be confident with the context of the modelling activity and
at introducing or testing eventually minimum prerequisites. The model construction is
the core of the model eliciting activity, here students are engaged in performing
modelling cycles to produce a model that describes the starting situation. Presentations
and discussions are whole-class activities in which students make formal presentations

about the results of their work.
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In conclusion, to design our modelling activity, the choice of a real context followed
the perspective of RME. This means that a real situation will be represented by a
realistic and rich context. Realistic refers to a problem of which the problem situation is
experientially real to the student (Gravemeijer & Doorman 1999), while rich
(Freudenthal 1991) refers to a context that promote a structuring process as a means of
organizing phenomena, physical and mathematical, and even mathematics as a whole,

1.e. contexts that give more opportunities in the mathematization process.

Pre-test

Before the development of a learning trajectory, a pre-test was administered in the class
were the research cycle took place. The aim was to have a picture about the starting
level of the classroom concerning the mathematical topic considered for the following
modelling activity: multiplication in N. Furthermore, some items were intended to be
matched with post-test items in the analysis phase. 18 students participated to the pre-
test. The test was composed by five problems, taken from the test /nvalsi’ of previous
years for grade 2. The full text is presented in Appendix B. In table 14 the number of
correct, incorrect and not given answers are reported. The maximum score for each item
was 2, so the total score for the pre-test was 12. The mean of the classroom was 4,6
(SD=2,96) which underlines that classroom knowledge of the subject was still poor.
From the analysis of the pre-test, it emerged that the notion of multiplication as iterated

sum was clear to students. Indeed, in problem number 2 students had to use the

2INVALSI (Istituto Nazionale per la Valutazione del Sistema Educativo di Istruzione e di Formazione) is

the acronym of the Italian National Institute for the Evaluation of the Education System, supervised by
the Ministry of Education. One of the activities of the institute is to prepare and carrying out periodic and
systematic tests to monitor the learning outcomes of Italian students. These tests are known as INVALSI
national tests. In the primary school, these tests are performed in grade two (Italian and Mathematics
tests) and grade five (Italian, Mathematics and English tests). Concerning mathematics, the aim is to
measure the ability to solve problems, in the discipline of real-life, concerning skills in logic,
interpretation of graphs, understanding of phenomena, construction of models, in relation to the

mathematical curriculum described in the National Guidelines (DM 254/2012).
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definition of multiplication as iterated sum, and 16 students over 18 gave a correct

answer.

Table 14. Pre-test results

Proble Max score Number of correct Number of incorrect Not answered
m answers answers
1 2 9 8 1
2 2 16 2 0
3 2 2 11 5
4 2 5 9 4
5 2 7 5 6

However, some students did not recall the notion of multiplication and only iterated
the addition (Fig. 20), while others were able to report also the definition of
multiplication (Fig. 21).
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Figure 20. Example of student’s answer

Figure 21. Example of student’s answer

Concerning the two students who gave an incorrect answer to problem 2, in which
students had to apply the notion of multiplication as iterated sum, the first one instead of
performing a multiplication performed an addition (Fig. 22), while the second one did
not actually understand the meaning of multiplying 4 by 6, because he draw four tables
4x6 (Fig. 23).

Figure 22. Example of student’s incorrect answer
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Figure 23. Example of student’s incorrect answer
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Regarding the other problems in the pre-test, students encountered difficulties
especially in problems 3 and 4. We did not take too much into account such results,
since the mathematics teachers introduced only the concept of multiplication of iterated
sum one week before the implementation of the modelling activity. Nevertheless, such
items would be compared with similar ones in a post-test, in order to see if the designed
and implemented activity had also some positive or negative influences in solving
problems related to multiplication as expected by the Italian National Evaluation

System.

5.3.2 Learning goal and hypothetical learning process

As stated in section 5.2, the aim of this first research cycle consists in investigating how
emergent modelling can be fostered to help students understand some aspects of the
multiplicative structure. In the pre-test we saw that students at the moment of the
intervention had a little knowledge on this topic, but actually they had a clear idea about
the notion of multiplication as iterated sum. What we want to achieve during the
teaching experiment is the re-invention of the distributivity property of multiplication
over addition. As a consequence, the learning goal of the teaching experiment is

represented by the distributivity property of multiplication over addition (Fig. 24).
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Starting Point Learning Goal

' Students know the notion of |

i
i multiplication in N as iterated | i Students re-create the

]

i
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sum and are able to perform | : o .
i multiplication over addition
]
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| multiplications '
I between numbers with 1 digit |

Figure 24. Learning goal of the M-I cycle

To design an HLT, together with the learning goal we need to formulate some
conjectures about the learning process. Starting from the classroom level and following
the heuristic of didactical phenomenology, we supposed that making students face with
a problem situation in which they need a new mathematical concept to solve it could
stimulate the same students in creating that concept. Moreover, we believe that not only
the context, that should be rich and realistic in the perspective of RME, is important in
such a re-invention process, but also the constraints given in the text of the problem
could encourage or not the emergence of new mathematical concepts. In order to do
that, our idea consisted in putting students face with the problem of performing
multiplications between numbers with 2 digits. In Fig. 25 this problem is indicated as
critical point: students encounter a problem situation and to solve it they need to

develop a new mathematical concept or tool.

Starting Point Critical Point Learning Goal

| Students know the notion of |
i multiplication in N as iterated !

i Students are faced with

i
| a problem situation in Students re-create the
1

distributivity property of

|
I | i
1 sum and are able to perform . i which they need to ! i iont o
| multiplications i . develop a new math : ! multiplication over addition
i between numbers with 1 digit | ! concept to solve it ! !

Figure 25. Hypothetical learning process of the M-I cycle

The learning process outlined in Fig. 25 is not linear. Indeed, attention should be
given not only to the solution process of the given problem, but to the process of
construction of a mathematical model that support such solution process. In agreement

with the model eliciting approach, students develop a model going through iterative
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phases of invention, refinement and revision. Modelling is a process of developing
representational descriptions for specific purposes in specific situations, involving
iterative testing and revision cycles (Lesh and Lehrer 2003). Moreover, we think that
this process could support the emergence of new mathematical knowledge, since the
developed model is firstly a model that is created in a specific situation to solve a
particular problem, but during the modelling activity becomes a model for a more
general mathematical structure. In our case, students should start developing a model to
solve a given problem, and then discover that such a model permitted them to create a
general mathematical concept: the distributivity property of multiplication over
addition. In the next section we present the learning activities that make those first

hypothesis more concrete.

5.3.3 Learning activities

Which design scheme can be used to develop some learning activities to achieve the
learning goal described in the previous section? Our hypothesis is to adapt the model
eliciting sequence (Lesh et al. 2003) in order to translate the hypothetical learning
process in concrete classroom activities. The designing scheme used for the learning
activities followed the design scheme for MEAs proposed by Lesh et al. (Fig. 26). We

present the activities together with the materials developed.

MEA

warm-u presentation
P & discussion

model construction

Figure 26. Design scheme for the learning activities of the M-I cycle
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The first phase was represented by the warm-up phase. Recall that in a model
eliciting sequence warm-up activities aimed at helping students to be confident with the
context of the modelling activity and at introducing or testing eventually minimum
prerequisites. In this latter connotation, also the pre-test and its results, discussed in
section 5.3.1, actually are part of the warm-up phase. Next to the pre-test, the day before
starting the model construction, students were engaged in a series of activities in order
to make them familiar with the problem situation they would have to face. Two hours
were dedicated to these activities. Each student was given the text of the modelling task
together with a booklet. Since at the time of the activity the school in which the teaching
experiment took place was under building renovation, we decided to choose as

modelling task the following Tiling Problem:

The Tiling Problem

The school director decided to renovate the school. Students can design a floor
tiling of their own classroom. The floor of your classroom was divided in six
equal strips. Each group of students should tile a strip, using all the available

types of floor tiles.

Together with the task, to each student was given a booklet which included:

* the figure of the classroom divided in six stripes (Fig. 27);

¢ the figure of each stripe to be tiled by a single group (Fig. 28);

* a brochure with the shapes of the available tiles (triangular, square, rectangular)
to be used with their relative costs (Fig. 29).

* the task repeated in a clearer form (Fig. 30).

The brochure represented a cultural artifact that, thanks to its richness in
(mathematical) meaning created a sort of hybrid space that connects mathematics and
everyday contexts. Starting from the materials, students have to answer some questions
dealing The Tiling Problem. Questions were about comprehension of the task and

reasoning on the relations between different tiles and their cost (Appendix C). The aim
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of the questions posed to students was to start reasoning about the context of the
problem. After a first individual reflection, the teacher conducts a group class discussion

in order to collect ideas from students, share opinions and points out some clarifications.

Classroom

Group 1

Group 6

Figure 27. Classroom divided in six stripes

SRTIP TO BE TILED

20 cm

Figure 28. Stripe to be tiled by every single group
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Available tiles

Tile Cost

Square 6 euros

Triangular 4 euros

Rectangular 10 euros

Figure 29. Brochure with the shapes of the available tiles with their costs

Make a poster in which you:
* Design and paint the tiled floor
* Explain the steps followed to solve the problem
* Express the total cost for the designed tiling

Figure 30. Task given to students

The second phase of the MEA consists in the model construction and it covers five
hours. In this phase each group has to create a poster in which design the floor tiling and
explain the strategies followed to calculate its total cost. This is the core phase of a
MEA. Students are expected to perform iterative cycles to build the desired model to

solve the task. Two important aspects of the task are the following. The first one is the
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constraint of using all the available types of tiles, and the second one to cover an entire
strip of the classroom. With these conditions, we suppose that students at a certain point
face with the problem of performing multiplications between 2-digits numbers. Indeed,
a possible solving strategy could be the following. Firstly, count how many tiles of each
type (triangular, rectangular and square) have been used to cover the strip. Then,
calculate the cost for each type of tiles and finally sum the obtained relative costs. In
calculating the total cost associated to each type of tiles, students will encounter the
problem of performing multiplications with 2-digits numbers. As a consequence, they
have to find a way to perform this calculation, and we conjectured that some students to
answer this problem could re-invent the distributivity property of multiplication over
addition.

In the final phase of the activity (two hours), presentation and discussion, each group
has to present to the classroom its project explaining the steps followed to solve the

task. Each member of the group has to take part to the presentation.

5.3.4 HLT for cycle M-I

In this section we sum up the components of the designed HLT for the research cycle
M-I discussed in the previous sections, namely the learning goal, the hypothetical
learning process and the learning activities. Together those components define the HLT

(Table 15). In the next section the M-I teaching experiment is presented.

Table 15. HLT for the M-I cycle

HLT

Learning Goal

Hypothetical

Learning Process

Learning Activities

Distributivity property of
multiplication over

addition

Making students face with
a problem situation that
need the development of
new mathematical
concepts to be solved

could support students in

Students are engaged in a
MEA in which they have
to develop a model to
solve the task The Tiling
Problem. In the first phase

(warm-up) all the
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achieving the learning
goal. The critical point is
represented by the
necessity to perform
multiplications with 2-
digits numbers. The
critical point is made
explicit through a
modelling task with some
specific constraints. These
assumptions are made
explicit through the
development of some

learning activities.

materials are presented to
the students who are
engaged in a
comprehension activity.
During the model
construction, students
could face with the
problem of performing
multiplications with 2-
digits numbers. Some
students are expected to
re-invent the concept of
distributivity of
multiplication over
addition to overcome this
critical point. In the end
each group presents its
findings to the rest of the

classroom.

5.4 M-l teaching experiment

In design research the aim of the teaching experiment is to see how the developed HLT
would play out in the classroom and test empirically the hypothesis that had been
conjectured. We now present the teaching experiment for the M-I cycle. In Fig. 26 the
designed scheme of the activities is shown. Based on such scheme, we present the
implementation and the main results from the teaching experiment in its three main
phases: warm-up; model construction; presentation and discussion. The activities had

been carried out by the researcher with the presence of the regular mathematics teacher.
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In the description of the teaching experiment, with teacher we refer to the researcher,

who conducted the activities.

5.4.1 Warm-up

In section 5.3.3 we described the materials and setting of the warm-up phase. This phase
covered 2 hours. Firstly, to each student were given the task of the modelling problem
and the relative booklet. The first part of the activity is very important, since the teacher
must take and keep students’ attention and interest. Students have to feel motivated in
doing the modelling activity. For this reason, a starting point is that all students clearly
understand the task and what is required. The teacher read with students the task, the
figure of the classroom and of a single strip, and reformulated together with students the
request. Then, each student, before individually and then in pairs, had to answer to some
questions (Appendix C). At the end, the teacher conducted a whole class discussion to
check students’ comprehension of the activity and clarify any doubts.

The first question asked students to explain what every group is asked to do. In Fig.
31 some students’ answers are reported. Students answered in different ways to the
question. Some students only focused on the fact that they have to make a project, while
others specify that they actually have to renovate the floor of their classroom tiling it.
Here different comprehensions occurred. Indeed, example 3 in Fig. 31 shows that a
student understood that every group has to tile every strip, while the request is that
every group has to tile only one strip. This request is evident in the last two examples
reported. In Example 4 it is significant that the student understood that they can decide
to tile the strip as they want, so they can develop a creative plan to tile their group strip.
However, it does not mention about the constraint to use all the available types of tiles
given in the brochure. Example 5 expresses the fact that they have to use the available
types of tiles, but nothing about that they must use al/ the available types. Just in this
first question different perspectives appear. As a consequence, the importance of a
classroom discussion is evident. The teacher listened to students answers and pointed

the attention in the fact that all the available types of tiles must be used.
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Example 1
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[ Example 2 )

Every group has to make a project to
renovate the floor of the classroom..

PN

Every group has to tile every strip.

A
Example 4

Every group has to tile as he want his own
strip.

-

Example 5

3 < m,;f,& Every group has to tile a strip using the
et available tiles.

\

Figure 31. Students’ answers

Concerning the second question, every student was able to report the correct measure

of each strip using the figure with the legend. An example is given in Fig. 32.

Figure 32. Student’s answer
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Answering the second question and using the figure of the single strip reported in
students’ booklet helped to answer to the third question, that consisted in calculating the
measures of the sides of a single strip. We report here a dialogue in which a student
explains to the teacher how she/he was able to calculate those measures (T=teacher,

Sl1=student 1, S2= student 2):

S1: the side of the strip measures 100 cm

T: how did you obtain this result?

S1: I counted how many lines [unit of measure] ... they are 5!
Then, every line is 20 cm
Twenty plus twenty plus.... =100 cm

T: So, how many times did you sum twenty [to itself]?

S1: five times

S2:20x 5

S1:yes!... or 5 x 20, it’s the same!

From the previous dialogue, it is evident that the student uses the definition of
multiplication as iterated sum to calculate the measure of a side of the strip. Such
iteration is recognized as being actually a multiplication. Moreover, the classroom
reasoning highlighted also another important aspect: the commutativity property of the

multiplication. This process is reconstructed in Fig. 33.

SRTIP TO BE TILED

20+20+20+20+20=100 20em |
‘ 20cm
204 .. +20=100 -+
41 20cm
5 times T
‘ 20em 1
20 x 5=100 | 20em —

s 20 cm

Figure 33. Process used by a student to calculate the measures of a side of the strip to be

tiled

The last question consisted in filling a table about tiles and their costs. In the class

discussion the teacher focused on the row highlighted in Fig. 34. In this row it is known
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that a person spent 12 euros buying only triangular tiles, and it is required to calculate

how many tiles had been bought. A student answered in this way:

T: we spent 12 euros to buy only triangular tiles. Who help me in knowing how
many
tiles had been bought?
S1: the result is 3!
T: why 3?
S1: because you had 12 euros... and... and the triangles cost 4 euros
T: the triangles?!?
S2: the tiles with triangular shape
T: ok, a triangular tile costs 4 euros
S1: so, two cost 8 euros
S2: ... and three cost 12 euros

S1:4x3=12

Shape Number of tiles Cost (euros)
__e—
(Triangular )

Figure 34. Last question of the comprehension activity
As in the second question, students reconstructed the already known notion of

multiplication as iterated sum.

In the next section we report the main results from the model construction phase.
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5.4.2 Model construction

The core part of a MEA is represented by the model construction. In this phase students
had to create a model to solve the task explored in the previous lesson. Students worked
in groups of three. Each group had at his disposal a poster (Fig. 35) with the strip to be
tiled.

Figure 35. Poster given to students with the strip to be tiled

During the model construction phase, each group of students created a poster in
which they designed the floor tiling and explained the strategies followed to calculate its
total cost. In Fig. 36 there are some examples of students’ group working. Students
approached to the problem of tiling in different ways: who first make a project of all the

tiles, who created some tiles prototypes and reported them in the poster.
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Figure 36. Students working in groups to solve the tiling problem

While solving the task, all the groups developed a similar strategy to obtain the total
cost. The strategy consisted in two steps. The first one consisted in counting the number
of all the tiles of the same type and multiply the number obtained with the relative cost.
For example, one group counted fifty square tiles, twenty-six triangular tiles and fifteen
rectangular tiles. Then, the number of each type of tile was multiplied by its relative
cost. In our example, students had to perform 50x6, 26 x4, 15x10. This step
highlights the notion of multiplication as iterated sum, already known by the students.

While performing multiplications similar to the latter one, the groups encountered
the difficulty of multiplying a number with one digit and a number with two digits.
Since in several groups students were not able to find a way to solve this problem, the
teacher decided to reason about it in a whole class discussion. Some students suggested
the strategy reported in the following dialogue (R=researcher; S1=first student;
S2=second student) to calculate 6 x 57:
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S1: I write 6x57=57%6.
Then I divide 57 as 50 and 7...

R: Divide?

S1: Write...?

R: Decompose.

S1: Yes, I decompose 57 as 50 plus 7!

Then I calculate 50 x6.

S2: That is 300!
S1: Then 6 x7
S2: 42

R: Excellent, and with these number? (pointing 300 and 42)
S1: I put them together!

R: How?
S1: I compose them...

R: What does it mean?

S1: I make the sum!

After the discussion that included also other examples solved by students, each group

applied the strategy suggested by their peers to perform their operations. In the group of

our first example, students were able to calculate 26 x 4, as shown in Fig. 37.

- L T e

bx% =%
% * k=104
20+6:2%
ZJH: J,:E[}
EI'H;,: 2{‘.
82 = 101,

Figure 37. Students’ using the distributivity property of multiplication over addition
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The second step developed by students to solve The Tiling Problem was to sum the
costs of each shape of tiles. In our example, students, having calculated 50 x6=300,
26 x4=104, 15x10=150, summed 300+104+150=504, that represented the total
cost in euros of their tiling design.

As hypothesized in the HLT, from their developed strategy students encountered the
problem of calculating multiplications with numbers with 2-digits. Such critical point
stimulated some students to re-invent the notion of distributivity of multiplication over

addition.

5.4.3 Presentation and discussion

The last part of the MEA consisted in the presentation and discussion phase. This part
covered two hours. Each group presented to the rest of the classroom its project. In each
poster students reported the strategy they developed to solve the problem. In Fig. 38

posters created by students are reported.

oalihon il £ i %
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Figure 38. Posters created by students

Students in their projects had been able to reproduce the strategy they developed to
solve the problem. Moreover, they explained in a clear way all the calculus performed
with particular attention to the distributivity property of multiplication over addition,

that permitted them to calculate multiplications with numbers with 2-digits (Fig. 39).
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Figure 39. Students’ strategy to solve the modelling task

5.4.4 Post-test

After the conclusion of the MEA, a post-test was administered. 18 students participated
to the post-test. The test was composed by four problems (the first divided in two
items), comparable to the ones of the pre-test. A correspondence between pre-test and

post-test problems is given in Fig. 40:

Pre-test items Post-test items

} |
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Figure 40. Correspondence between pre-test and post-test items

The full text is presented in Appendix D. Some items were matched with pre-test
items, in order to see if the modelling activity had also collateral consequences in the
direction of the requests from the National Evaluation System concerning multiplication
(recall that this is tested through the administration of an INVALSI test, from which the
problems were taken from).

In Table 16 results from the post-test are shown, concerning the numbers of correct,
incorrect and not given answers for each item. In Table 17, there is a comparison

between pre- and post-test results.

Table 16. Post-test results

Proble Max score Number of correct Number of incorrect Not answered
m answers answers
la 2 16 2 0
1b 2 6 12 0
2 2 13 5 0
3 2 16 2 0
4 2 4 12 2

Table 17. Comparison between pre-test and post-test results

Problem Max Number of Number of Not answered
score correct answers  incorrect answers
Pre-test 1 2 9 8 1
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Post-test 2 2 13 5 0
Pre-test 2 2 16 2 0
Post-test la 2 16 2 0
Pre-test 3 2 2 11 5
Post-test 3 2 16 2 0
Pre-test 4 2 5 9 4
Post-test 4 2 4 12 2
Pre-test 5 2 7 5 6
Post-test 1b 2 6 12 0

As for the pre-test, the maximum score for each item was 2, so the total score for the
post-test was 12. In the post-test the mean of the classroom was 6,25 (SD=2,25), while
in the pre-test was 4,56 (SD=2,96). A Wilcoxon signed-rank test was performed making
evidence of a statistically significant difference between pre- and post-test (W=10,5,
p<0.01). The modelling activity supported students’ knowledge about multiplication, as
suggested by the National Curriculum. Moreover, comparing pre- and post-test results
as shown in Table 17, some considerations can be done. First of all, only in the fourth
item some students did not answer in the post-test, while they answered to all the other
items. This can probably be attributed to a more confidence experienced by students on
the topic. Item la for the post-test confirms students’ knowledge of the notion of
multiplication as iterated sum, as already seen in item 2 of the pre-test. A considerable
improvement concerns item 3, with 16 correct answers respect to 2 in the pre-test (item

3).
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5.5 M-I retrospective analysis

In this final section of the chapter we look back at the initial design of the HLT and
compare it with the actual learning occurred and described in the teaching experiment
section. This retrospective analysis could form the basis for adjusting the HLT and
formulate first answers to the research questions. The section is divided in two parts: the
first concerning the reflection of the teaching experiment respect to the initial HLT and

the second formulating feed-forward of the M-I research cycle for the next M-II cycle.

5.5.1 Reflection on the M-l teaching experiment

The aim of this research cycle consisted in investigating how emergent modelling could
be fostered to help students understanding some aspects of the multiplicative structure.
In the specific, we formulated the hypothesis that a modelling activity designed
following a model eliciting sequence with the use of suitable artifacts could actually
foster the emergent nature of modelling. In the design phase of this research cycle we
designed an HLT through the definition of its three aspects: the learning goal; the
hypothetical learning process and learning activities. The learning goal was represented
by the distributivity property of multiplication over addition. The hypothetical learning
process consisted in putting students in a problematic situation, represented by necessity
to perform 2-digits numbers multiplications, to make them re-create the notion of
distributivity of multiplication over addition. Such problematic situation was defined by
a task together with some constraints and instructional materials. The learning activities
had been clearly presented in section 5.3.3. On the basis of the designed HLT and of the
actual learning process, described in the teaching experiment phase, we can draw some

reflections:

* In agreement with the process of emergent modelling, the assignment given to
students stimulated them to create and work with new mathematical concepts
they did not know before. In the specific, the strategy developed by students to

solve the task, that consisted in grouping the tiles with the same shape and then

129



Chapter 5

130

multiply by the associated costs, showed that they were able to re-invent the
mathematical concept of distributivity of multiplication respect to addiction.
This is evident from different data presented in the previous section, such as: the
extract of the dialogue proposed, in which students explained to the classroom
their strategy to calculate 6 x 57; Fig. 39 in which students were able to explain
and reproduce such mathematical concept. Guided by the interaction with the
teacher and peers, students were able to reason and explain this property, that
would be at the base of their future strategies of calculus. In this way, properties
of mathematical operations become meaningful for students, because no longer
mechanical rules but rooted in their experience, directly constructed by students

to solve a concrete problem in a meaningful context.

The re-invention process was possible not only thanks to the designed model
eliciting sequence, but also to the use of a suitable artifact, represented by the
brochure given to students (Fig. 29). Having given students the shapes of the
tiles to be used and the constraint to use all of that shapes, guided them to face
with the problem of performing multiplications between numbers with more
than one digit, and consequently to the reformulation of the distributivity
property of multiplication over addition. In this process the role of the RME
heuristic of didactical phenomenology is clearly evident: it guided in choosing
not only the context of the task, but also some task constraints and related
materials appropriate to provide basis for the development of the mathematical
concept of distributivity of multiplication respect to addition we wanted students
to develop. As a consequence, model eliciting activities together with suitable
artifacts could foster the emergent nature of modelling, that confirms our
hypothesis. Moreover, the understanding of some aspects of the multiplicative
structure in a meaningful way was enhanced. Therefore, integrating artifacts in a
model eliciting sequence can actually foster emergent modelling, and in our
specific situation in supporting students understanding of some aspects of the

multiplicative structure.
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To achieve such results, the role of the teacher was fundamental. The teacher,
indeed, encouraged students to use their own methods; stimulated students to
articulate and reflect on their personal beliefs, misconceptions and informal
problem-solving and modelling strategies (Bonotto 2005). Consequently,
learning become a constructed understanding through a continuous interaction
between teacher and students, that can be synthetized, using Freudenthal’s
words, in teaching and learning as guided reinvention, reinforcing in this way

mathematical reasoning and sense-making.

Before the implementation of the teaching experiment, students took part to a
pre-test, whose aim was to have an overview of the starting situation of the
classroom concerning the topic of multiplication. The pre-test was made by
items from INVALSI tests, and expressed the fact that students, despite having a
poor knowledge of the topic, had a clear idea of multiplication as iterated sum.
Comparing the results of the pre-test and post-test, we had also another
significant collateral consequence of the modelling activity. As highlighted in
section 5.4.4, there was a statistically significant increment of the classroom
mean from the pre-test (4,56) to the post-test (6,25). As a consequence, the
modelling activity also supported students in approaching and solving problems
related to the topic of multiplication as requested by the National Evaluation
System. Therefore, fostering students reasoning and critical thinking in a re-
invention paradigm could help students also in achieving better learning

outcomes.

5.5.2 Feed-forward of the M-I

As explained in the previous section, the teaching experiment gave some precious hints

to answer to the first research question, concerning how MEAs can promote the process

of emergent modelling.

The model eliciting activity implemented in the first teaching experiment developed

in three parts: warm-up, model construction, presentation and discussion. In particular,
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high attention was given to the warm-up phase, due to the low grade of students. During
the model construction students in groups developed a strategy to solve the modelling
task, that was explained in their final projects. After the activity a post-test was
performed, in order to match some data with the pre-test and analyze students’
knowledge development.

However, we realized that not a self-evaluation occurred. The model construction
was characterized by several moments of classroom discussion, in which students could
share their doubts. At the same time, the teacher in whole classroom discussions and
group work was able to observe students’ understanding. However, we noted two main
problems that suggest some modifications of the instructional sequence for the next

design research cycle:

¢ students worked always in groups. They could share their opinions, strategies,
misunderstandings, but at the same time there was not enough space for
individual reflection. Group work is important, but we think that also an
individual work in which students have time to reflect on the modelling activity,
reconstruct the entire process, clarify doubts and express their ideas is

fundamental in the learning process.

* The only feedback we had from the activity was represented by the analysis of
students’ work during their actual learning process and of post-tests. No final
considerations were taken from students and the regular mathematics teacher,
who assisted the researcher during the activities. We believe that a feedback
from the people who are engaged in a teaching and learning process is very
important, because in one direction it may help the researcher or designer to
point out weaknesses and strengths and to better plan future instructional
activities; on the another direction is an opportunity for people involved to

reflect deeply and freely in their learning process.
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6. M-Il Research Cycle

6.1 Introduction

This chapter addresses the second research cycle concerning mathematical modelling,

M-II (Fig. 41).
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Figure 41. Research cycle M-I1

The structure of the chapter is the same of the previous one: in section 6.2 we
introduce the context of the classroom that participated to the study, explicating the
mathematical topic considered and the specific goals of this cycle in relation to the first
research question. In section 6.3 the design phase is described, consisting in the
development of an HLT and with particular attention in designing instructional
activities related to the learning goals of the HLT. HLT includes starting points and
expectations and the students’ hypothetical learning process. The design of key

activities and materials are reported. Then the experiences during the teaching



experiment are described in section 6.4. Section 6.5 is dedicated to the retrospective

analysis.

6.2 Context and aim

The aim of the research cycles M-I and M-II consisted in finding possible answers to

the first research question of this research project:

RQI. How can Model Eliciting Activities promote the process of emergent modelling?

Starting from the retrospective analysis of the research cycle M-I, a second research
cycle was designed. The research cycle M-Il was conducted in a twelfth-grade class
(age 17) composed by twenty-five students during two weeks of regular mathematics
lessons. The class had never been engaged in a modelling activity before the teaching
experiment.

In accordance with the mathematics teacher, 3D-Euclidean geometry was chosen as
mathematical topic for the modelling activity. Indeed, in the Italian National Curriculum
for Liceo Scientifico, at the end of the fourth year, concerning the specific learning

objective of geometry, we read:

The study of geometry will continue with the extension to the space of some of
the themes of the geometry of the plane, also in order to develop geometric
intuition. In particular, the reciprocal positions of straight lines and planes in
space, parallelism and perpendicularity, as well as the properties of the main

geometric solids (in particular of polyhedra and rotation solids) will be studied.

Moreover, it is suggested that students should learn to use mathematical modelling to
solve problems, applying scientific results also to daily life situations.

In relation to the research question RQ1, we investigated how emergent modelling
can be fostered to help students understanding some aspects of 3D-Euclidean geometry.

In particular, our hypothesis was that facing students with a real problem solving
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situation designed following a model eliciting sequence (Lesh et al. 2003), with the use
of suitable artifacts, could actually foster the emergent nature of modelling, seen as a
process in which students develop mathematical concepts from informal realistic
contexts.

The research method for the data analysis was mainly qualitative. The aim of the data
analysis was to reconstruct the classroom progress, which resulted in an empirical
grounded understanding of students’ reasoning during the classroom activity. In order to
be able to reconstruct the learning process and verify our hypothesis, different kinds of
data were collected: pre-test; observations of group working; students’ final projects;
students’ final individual reports; students’ and teacher’s feedbacks.

In the next section we present the design phase, in which the development of an HLT

1s described.

6.3 Design phase

In this section we first describe the starting points for the HLT and the expectations that
are investigated in the following teaching experiment. Then we describe the activities
and materials designed in order to foster students’ cognitive development according to

the goals of the HLT.

6.3.1 Starting points

Starting points for the formulation of an HLT of this second research cycle are split in
two categories: (i) the classroom context, and in the specific the initial level of the
students and (ii) the feed-forward formulated in the retrospective analysis of the
previous research cycle M-I. Concerning the theoretical background specific for this
research cycle taken into consideration to design the educational setting and hypothesis
about students’ learning, it is the same of the previous research cycle M-I (for more

details see section 5.3.1).
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Pre-test

Before the development of a learning trajectory, a pre-test was administered in the class
were the research cycle took place. The aim was to have a picture about the starting
level of the classroom concerning the mathematical topic considered for the modelling
activity: 3D-Euclidean geometry. 25 students participated to the pre-test. The test was
composed by three questions. In the specific, students were asked to give a definition of
a 3D-figure, to make some examples of already known 3D-figures and to calculate the
volume of a parallelepiped and of a truncated pyramid. We report the results concerning
the last question of the test. The full text is presented in Appendix E. In Table 18 the
number of students who were able, or not, to calculate the volume of a parallelepiped

and of a truncated pyramid are presented.

Table 18. Number of students who were able or not to calculate the volume of a

parallelepiped and of a truncated pyramid.

Right calculus Wrong calculus Not answered
of the volume of the volume
Parallelepiped 16 (64%) 7 (28%) 2 (8%)
Truncated pyramid 4 (16%) 10 (40%) 11 (44%)

Findings indicate that the 84% of students were not able to calculate the volume of a
truncated pyramid. These means that before the teaching experiment the majority of
students did not know or was not able to apply the equidecomposability principle to
calculate the volume of an irregular solid’ such as the truncated pyramid. Recall that
equidecomposability is an equivalence relation between geometric figures, such as

surfaces or solids. Two figures are equidocomposable if they can be decomposed in

3 With irregular solid we refer to a solid that cannot be classified as a polyhedra or a rotation solid.
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congruent figures. In particular, if two solids are equidecomposable then they have the
same volume. The last sentence refers to what we mean by equidecomposability
principle in the rest of this study. In the pre-test, in order to calculate the volume of a
truncated pyramid, the equidecomposability principle could be used in the following
way: the truncated pyramid can be seen as a “big” pyramid minus another “small”
pyramid; calculate the volume of both the pyramids; subtract the volume of the “small”
pyramid from the volume of the “big” pyramid (Fig. 42). Such principle is useful to
calculate the volume, or better an approximation of the volume, of irregular solids that
can be encountered in real-life. As we will see in section 6.3.3, this consideration
represents the base idea to design a learning trajectory that could foster students in

rediscovery such a principle from a real task.

o )= &

Figure 42. Equidecomposability principle to calculate the volume of a truncated

pyramid

M-I feed-forward

The first research cycle dealing with mathematical modelling described in chapter 5,
gave some precious hints to increase the instructional design developed for that teaching
experiment. Such modifications influenced the design of the learning activities of the
teaching experiment of the second research cycle M-II. In the specific, differently from

the previous teaching experiment, we decided to introduce the following adjustments:
* The model eliciting sequence will remain the same in the phases of warming-up,

model construction, presentation and discussion. However, after these phases, that

are mainly centered in a group work setting, we decided to dedicate time also for
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individual activities. Firstly, students will be engaged in writing a report in which
they could reflect on their work, to express doubts or misunderstandings, to
reformulate in their own words the learning path. At the end of the modelling
activity, we decided not to administer a post-test, but to engage students in a final

personal feedback concerning the entire modelling activity.

* Since the research project has as one of its overall aim to provide teachers with
methodological models and format of school practices based on mathematical
modelling, in our view it was important also to have a feedback from the regular
mathematics teacher who joined the researcher during the modelling activity. This
feedback has a double aim: on the first hand in helping the researcher in having a
direct response on the implemented project, in order to reflect in a deeper way for
better future designs; on the other hand the teacher, who could express some
strengthens and weaknesses of the activity, should became aware of the
competencies needed from not only a disciplinary, but also a methodological

perspective.

6.3.2 Learning goal and hypothetical learning process

As stated in section 6.2, the aim of this first research cycle consists in investigating how
emergent modelling can be fostered to help students understand some aspects of 3D-
Euclidean geometry. In the pre-test we saw that students at the moment of the
intervention did not know the equidecomposability principle, or at least they were not
able to apply it to calculate the volume of an irregular solid (truncated pyramid).
However, this principle is the base point to calculate the volume, or better an
approximation of the volume, of an irregular solid, that is the type of solids that
commonly occurs in real life. As a consequence, what we want to achieve during the
teaching experiment is the re-invention of the equidecomposability principle. Therefore,
as shown in Fig. 43, the learning goal of the teaching experiment is represented by the

equidecomposability principle.
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Starting Point Learning Goal
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Figure 43. Learning goal of the M-II cycle

To design an HLT, together with the learning goal we need to formulate some
conjectures about the learning process. In analogy with the first research cycle, starting
from the classroom level and following the heuristic of didactical phenomenology, we
supposed that making students face with a problem situation in which they need a new
mathematical concept to solve it, could stimulate the same students in creating that
concept. In order to do that, our idea consisted in putting students face with a realistic
problem solving situation in which at a certain point they feel the necessity to calculate
the volume of an irregular realistic solid. We believe that when students deals with real
objects from their world are better stimulated to develop a strategy to calculate their
volume, and in the specific to re-create the idea of equidecomposability, namely
decomposing a solid in regular solids that approximate it, calculate the volume of such
solids, sum those volumes and obtain an approximation of the volume of the starting
irregular solid. From a first exemplificatory case students should be able to generalize
this principle detaching it from the starting context situation, formulating a formal

mathematical concept that could be applied in other situations (Fig. 44).

Starting Point Critical Point Learning Goal
________________________________________________________ —
1 Students did not know how to ! Students are faced with | | Stud h :
' calculate the volum of an ! g problem situation in i i Students re-create the |

equidecomposability

| irregular solid | i i i .
: eg ! which they need to : principle

! ! ; develop a new math
! i | concept to solve it

____________________________________________________________________________________

Figure 44. Hypothetical learning process of the M-II cycle
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The learning process outlined in Fig. 44 is not linear. Indeed, attention should be
given not only to the solution process of the given problem, but to the process of
construction of a mathematical model that support such solution process. In agreement
with the model eliciting approach, students develop a model going through iterative
phases of invention, refinement and revision. Modelling is a process of developing
representational descriptions for specific purposes in specific situations, involving
iterative testing and revision cycles (Lesh and Lehrer 2003). Moreover, we think that
this process could support the emergence of new mathematical knowledge, since the
developed model is firstly a model that is created in a specific situation to solve a
particular problem, but during the modelling activity becomes a model for a more
general mathematical structure. In our case, students should start developing a model to
solve a given problem, and then discover that such a model permitted them to create a
general mathematical concept: the equidecomposability principle. In the next section we

present the learning activities that make those first hypothesis more concrete.

6.3.3 Learning activities

The design scheme used to develop some learning activities to achieve the learning goal
described in the previous section is presented in Fig. 45. Our hypothesis is to adapt the
model eliciting sequence (Lesh et al. 2003) in order to translate the hypothetical
learning process in concrete classroom activities. The difference with the design scheme
used in the previous research cycle is that now there is an additional phase of reflection

and debriefing, in which students reflect individually on the whole activity.
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MEA
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& discussion
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Figure 45. Design scheme for the M-II cycle

Between the pre-test and the warm-up phase, two lessons were dedicated to the
introduction of some basic notions concerning 3D-Euclidean geometry. These lessons
had been carried out by the mathematics teacher. The teacher made students work in
groups using manipulative materials, such as bottles, straws, cans... The materials and
kind of activities used by the teacher permitted to introduce some preliminary concepts
useful for the following modelling activity. As a consequence, this preliminary phase
can represent an extension of the warm-up phase. The notions covered were taken from
the National Guidelines for Liceo Scientifico and dealt with: reciprocal positions of
lines and planes in space, parallelism and perpendicularity, as well as the properties of
the main geometric solids (in particular polyhedra and rotation solids). Activities and
materials were designed together by the teacher and the researcher.

One week later, the first phase of the MEA started, and was represented by the
warm-up phase. One lesson was dedicated to the presentation of the modelling task and
to its comprehension. Students were firstly divided in groups of four. To each group

was given the following modelling task (Fig. 46):
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Job Summary

Company
Bevandeitalia.srl

Location
Padova, via Durer 14

Job type

Packaging department
employee

Salary
19 000 euros per year

About the job

Bevandeitalia, world leader in the production and distribution of
beverages, is looking for a packaging department employee.
Permanent contract of 19 000 euros per year. To apply, it is necessary
to present a project with your curriculum vitae attached. The project
requires an estimate of the capital needed for making beverage
packaging, respecting the following constraints:

o Liters to be packed of

Water Juice Cola

1000 500 350

o Diversification of packaging types, according to form (at
least two for each drink) and materials used.

Figure 46. Modelling task given to students.

Together with the text of the problem, students are given also a brochure (Fig. 47). In
the brochure, the costs of some materials useful to design some requested packaging are
shown, while other information are hidden (for example, the capacity of the bottles).
The brochure, together with a geometry formulary containing information about

surfaces and volumes of regular solids, represented the “tool-kit” that students had at

disposition to solve the assignment.
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Figure 47. Brochure given to students to solve the task

During the warm-up activity, after having reviewed the materials with the researcher,
students have to answer some simple comprehension questions: what is requested for
the job application? How can the brochure be useful? Which mathematical concepts or
tools do you need to solve the task? Students’ answers should be discussed in a whole
class discussion in order to clarify any eventual doubts.

The second phase of the MEA is dedicated to the model construction. Each group has
to make a project to apply for the position as a packaging employee. The researcher
gives to students some guidelines to make the project. In the specific, students are asked
to report and explain clearly their reasoning, build at least two of the designed
packaging and describe them from a mathematical point of view. Our hypothesis is that
students would encounter the problem of calculating the volume of some irregular

solids. For example, since in the brochure (Fig. 47) the information of the capacity of
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the bottles is removed, they have to calculate it. In so doing they need to develop a
strategy, and in so doing we conjecture that they would rediscover the
equidecomposability principle. At the same time, since an irregular solid is decomposed
in the sum of some regular solids, students also make practice of some formulas
concerning the volume of regular solids.

In the third phase each group presents its work to the rest of the classroom. In order
to help students to know what will be expected from their presentations, a rubric will be
offered to them. In the specific, the steps followed to solve the task must be defined in a
clear way and each member of the group has to take part to the presentation. After the
presentation, each group will be engaged in a Q&A session, where teachers and peers
could ask questions about the presented model.

In the final phase of reflection and debriefing, an individual work is assigned to
students. In the specific, every student has to write a report to the administrator of the
factory in which reflect about her/his project, report strengths and weaknesses,
alternative approaches and some considerations about positive and negative aspects of
the whole activity. This activity should allow students to think through the activity cycle

and to make their own conclusions to model a solution to the model eliciting dilemma.

6.3.4 HLT for cycle M-I

In this section we sum up the components of the designed HLT for the research cycle
M-II discussed in the previous sections, namely the learning goal, the hypothetical
learning process and the learning activities. Together those components define the HLT.
A scheme is represented in Table 19. In the next section we present the M-II teaching

experiment.

146



M-Il Research Cycle

Table 19. HLT of the M-II cycle

HLT

Learning goal

Hypothetical Learning

Process

Learning Activities

Equidecomposability

principle

Making students face with
a problem situation that
need the development of
new mathematical
concepts to be solved
could support students in
achieving the learning
goal. The critical point is
represented by the
necessity to calculate the
volume of irregular solids,
represented by some
packaging students have to
design. The critical point
is made explicit through a
modelling task with some
specific constraints. These
assumptions are made
explicit through the
development of some

learning activities.

Students are engaged in a
MEA in which they have
to develop a model to
solve the task about a job
employee (Fig. 46). Before
the MEA the teacher
introduces some basic
notions about 3D-
Euclidean Geometry.
Materials prepare students
with the modelling task. In
the first phase of the MEA
(warm-up) all the
materials are presented to
the students who are
engaged in a
comprehension activity.
During the model
construction, students
could face with the
problem of calculating the
volume of irregular solids.
Some students are
expected to re-create the
concept of

equidecomposability. In
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the end each group

presents its findings to the
rest of the classroom. The
last activity is represented
by an individual reflection

on the entire activity.

6.4 M-Il teaching experiment

In this section we present results from the teaching experiment concerning the research
cycle M-II.

As described in the previous section, during the modelling activity each group had to
make a project to apply for the position as a packaging employee. In the specific,
students were asked to report and explain clearly their reasoning and build at least two
of the designed packaging and describe them from a mathematical point of view. We
report now some extracts from students’ projects in order to reconstruct their actual
learning process. Recall that the task consisted in estimating the total cost to pack 1000
liters of water, 500 liters of juice and 250 liters of cola, using different forms and
materials. All the groups were able to present in a clear way the steps followed to solve
the task. However, not all the groups followed the same pattern: in Table 20 patterns of

three different groups are compared.

Table 20. Steps implemented by three different groups to solve the packaging problem.

Group 1 Group 2 Group 3
Step 1 Analysis of the request ~ Analysis of the request Analysis of the
request
Step 2 Calculus of capacities  Casual choice of Choice of
packaging types convenient
packaging types
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Step 3 Calculus of costs Calculus of capacities  Calculus of
capacities
Step 4 Cheaper choice Calculus of costs Calculus of costs

The first group started performing calculations to obtain the capacity of different
kinds of packaging. Then a comparison between different packaging costs was made
and the choice followed the cheapest. For example, to pack the 1000 liters of water, the
three kinds of bottles present in the brochure were compared. For each bottle, the
capacity, the total number and the total price were calculated. Then, the results were
compared, and the cheapest type was chosen. We can observe that this group

approximated the total number of bottles and not the capacity of each bottle (Table 21).

Table 21. First group solution steps concerning the packaging of 1000 liters of water

Type of bottle Green Ampolla Giara

Capacity (1) 0,626 1,163 1,303

Total number (1000:0,626)=1598 (1000:1,163)=860 (1000:1,303)=767,5
of bottles

Total cost 1278,4 1204 1152

(euros)

The second group, instead, started choosing in a casual way some kinds of packaging
and then calculated their relative costs. Differently from the previous group, in this case,
students approximated the capacity of the packaging. For example, when calculating the
volume of a “brick” for juice packaging, they obtained 0,202 liters, and the result was

approximated to 0,200 liters (Fig. 48).
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Tipologia Volume .Volum Superficie Prezzo .II' pezzi Prezzo tokale
contenitore (L) liquide singolo pezzo singolo pezzo €
contenute (L)  (em2) (€
; - om0

Figure 48. Group 2 calculations and approximations of packaging capacities and

relative costs

The third group followed a sort of refinement of the second one. In this case, the
choice for the packaging was not casual, but followed a “convenience” criterion. For
example, when choosing the packaging for the juice, this group decided to produce two
different models: a big one for domestic use and a small one for single use outside
home.

When performing the calculation for the capacity of the bottles, all the teams tried to
decompose the bottles as sum of regular solids, calculate the volume of each solid and
then sum the volumes to obtain the capacity of the bottles. In so doing, some groups
explicitly approximated the results obtained. For example, in Fig. 49, the bottle “green”
was decomposed in a cone plus a pyramid. The total volume obtained was of 0,59 1, that
was finally approximated to 0,5 1. Students, in order to calculate the volume of irregular
3D-figures, were able to re-invent themselves the equidecomposability principle. This

means that the task stimulated students to build a mathematical concept they need.
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Bottiglia in plastica,
modello Green

Itezza: 241,5 mm
Diametro spalla: 68,5 mm
Diametro base: 68,5 mm

Per calcolare il volume della bottiglia la abbiamo
considerata come se fosse composta da un cilindro
e da un cono.

Velindro: T - 2 - h=m - 34.252 - 120.75 =444998.1073
mms3

Vtot: Vcilindro + Vcono = 593331 mm3 = 0.59 |

Poiché non esistono bottiglie da 0.59 |, abbiamo
deciso di aﬁ:prossimare la capienza a mezzo litro,
consapevoli degli inevitabili errori di

| Icolofapprossimazione e dei formati-bottiglia gia

mercio.

Figure 49. Bottle “green” decomposition in a cone plus a pyramid and calculus of its

total volume

Not only approximations, but also other realistic considerations were taken into
account by students. For example, one group, in order to choose the best typology for
the cola, made a research about different shapes and materials. In the specific, they

found that

...the cylindrical shape allows to economize space and to be easily held. Today there
are two main models of cans: a classic 11.5 cm high, and a new one introduced in

2005 that is slimmer, 14.5 cm tall. The capacity of both the models is 33cl.
Despite the same capacity of the two models, students found different costs of

production. In Fig. 50, the calculations of the total costs using the two cans models are

compared, finding that the classical one is cheaper than the other.
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TIPOLOGIA 1 TIPOLOGIA 2

Abbiamo calcolato il costo dell'imballaggio di 350 | di bibita gassata in lattine classiche.  Abbiamo calcolato il costo dell'imballaggio di 350 | di bibita gassata in lattiné alte 14,5 crs
DATI:
Forma Cilindrica

r=1 h) = ¥(0,00033 m*/rr+0,115 m) = 3,02 cm
Calcolo dell‘area totale occupata dal cilind
,0302 me(0,115m +0,0302m) = 0,02755 m?

dal cilindro:
17+0,0269 me(0,145m + 0,0269m) = 0,02905 m?
Calcolo numero di lattine da produrre:
n lattine = 350 I/V = 350 1/0,33 cl = 106 ttine che noi arrotondiamo a 1061 lattine
Calcolo m? di alluminio necessari rre le lattine:
m? = 31,30 m? che noi arrotondiamo a 32 m?

50 1/0,33 cl = 1060, 6 lattine che noi arrotondiamo a 1061 lattine
Calcolo m? di alluminio necessari per produrre le lattine:
m? di Al = n lattine » Awt = 1061 = 0,02755 m? = 29,23 m? che noi arrotondiamo a 30 m?
Costo totale imballaggio:

2 € /2 2 Costo totale
costo = costo al m* « m? di Al = 19,90 €/m® « 30 m* = 597 €

costo = costo al m? » m? di Al = 19,90 €/m? « 32 m* = 636,8 €

Figure 50. Comparison between the total costs of the two can models

Several groups took into account also other possible costs to be added to the
packaging ones, such as: labels, transport, advertising, store...

Finally, in Fig. 51 there are some examples of students’ built models.

Figure 51. Students’ built models. The ones on the left and in the middle were

constructed in cardboard, while the one on the right is a 3D-digital construction

In conclusion, we remark the fact that during the sessions dedicated to the
construction and presentation of their models, several students who did not typically
engage during mathematics classes participated in an active and pro-positive way,
highlighting in this way the social implications of modelling activities.

In the reflection and debriefing session, an individual work was assigned to students.
In the specific, every student had to write a report to the administrator of the factory in
which reflect about her/his project, report strengths and weaknesses, alternative
approaches and some considerations about positive and negative aspects of the whole
activity. This activity allowed students to think through the entire activity cycle and to

make their own conclusions to model a solution to the model eliciting dilemma. All the
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students were able to present their project, specifying the steps they followed to solve

the task and the results obtained. Some extracts from students’ reports follow. In the

first two extracts students proposed some changes to the projects of their groups. The

individual activity, indeed, gave the opportunity to reflect in a deeper way on the

previous group work.

E.1: However, some changes could be made to the project, as we only considered a
single type for each type of product. Instead, it would have been more appropriate to
divide each product into different types of packaging. In this way the final price

could have been lower, avoiding also material waste.

E.2: ... we have not considered what we can define “chemical” aspects of drinks.
First of all, the juice requires special treatments for storage. Moreover, the type of
cardboard packaging we considered involves a direct contact between the drink and

the glue in sealing the container, which is so harmful.

Several students focused on similarities and differences between their project and the

ones of the other groups. Not only the model construction, but also the presentation and

discussion time, influenced the final individual reflection, letting every student to reflect

about different possible routes to solve the modelling problem.

E.3: Compared to the other groups we paid more attention to the additional costs
(labor, advertising, etc...) but less for the calculation of the volume of the types of

packaging.

E.4: The other groups also approximated the measurements, in fact to calculate the
volume of the bottles it was necessary to divide the bottles into two solids already
known to us: a cylinder and a cone. However, some groups divided the bottle into a
truncated cone and a cone. All groups took into consideration the possible additional

costs, even if of different natures.
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Students in their reports focused also on the new mathematical concept developed
during the modelling activity and on applications of mathematical tools to solve the
task. In extract 7 one student explicitly said that the activity permitted her/him to

acquire new mathematical knowledge.

E.5: In the realization of this project I discovered and used the concept of

equidecomposability.

E.6: To calculate the volume of the bottles we have decomposed them into more
regular solids, we have used proportions and formulas to calculate missing data and

the volumes of these solids.

E.7: The work was interesting and stimulating and through the study and analysis of

the required packaging I was able to expand my mathematical knowledge.

In conclusion, students did not ignore relevant, plausible and familiar aspects of
reality, nor did they exclude real-world knowledge from their observation and

reasoning:

E.8: To choose the right packaging method, we have based ourselves on our personal
experience. for example, water is generally found in plastic or glass bottles but not

in cardboard.

E.9: The work of our group has focused on the fact that the products we packed
should be bought by as many people as possible. This means that in addition to the
usual family formats we must also think of comfortable formats in terms of use and
space occupied, for this reason we tried for each type of drink to present two

alternatives: a larger one and a smaller one, for all needs.
After the conclusion of the modelling activity, students answered to some feedback

questions. Firstly, students were asked to report some positive and negative aspects of

the modelling activity. Twenty-three students completed the questionnaire. Students’
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answers concerning positive aspects of the modelling activity were grouped in eleven
categories. In Table 22 these eleven categories and their distributions are reported.
Students’ answers concerning negative aspects of the modelling activity were grouped
in seven categories. In Table 23 these seven categories and their distributions are

reported.

Table 22. Categories individuated from students’ answers concerning positive aspects
of the modelling activity. The total is higher than 100% because each student could

express more than one option

Positive aspects of the modelling activity

Category (N) (%)
Group work 12 52 %
Real, concrete materials 12 52 %
Math applications to reality 4 17 %
Motivating, stimulating 3 13 %
New way to do math 3 13%
Reasoning 2 9%
Realistic project 2 9 %
Interaction 2 9%
New concepts 1 4 %
Designing 1 4 %
Clear lessons 1 4%

Table 23. Categories individuated from students’ answers concerning negative aspects
of the modelling activity. The total is higher than 100% because each student could

express more than one option

Negative aspects of the modelling activity

Category (N) (7o)
Limited time to organize the exposition 8 35%
Limited time to do exercises 8 35%
Too slow 2 9%
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Group disorganization 2 9%
Too simple warming activities 1 4%
Same request for all 1 4%
Always group work 1 4%

Students’ were also asked to express their opinion about the possibility to repeat a
similar activity in the future. Fig. 52 represents a cloud with students’ answers to the
latter question. In particular, two main families were individuated: students who would
like to repeat the activity (Yes) and students who would not like to repeat the activity
(No). The family yes involved 21 students (92%) and was connected to six categories
that consisted in the motivations given by students to implement a similar activity in the
future. These categories are: addictive and stimulating (43%); understanding of new
concepts (26%); enjoyable (13%); group work (13%); innovative lessons (13%); real
competencies (13%). Two students (8%) did not want to repeat a similar activity. In this
case, two categories were individuated: timing inefficiency (4%) and not in line with the

course of study (4%).

Understanding
of new concepts
(26%)

Timing
inefficiency
(4%)

Addictive and
stimulating
(43%)

Enjoiable
(13%)

Innovative
lessons
(13%)

Group work
(13%)

Real
competencies
(9%)

Not in line with the
course of study
(4%)

Figure 52. Students’ opinion cloud about the possibility to repeat a similar modelling

activity in the future

As described in section 6.3.1, at the end of the activity the mathematics teacher was
asked to make a feedback of the entire activity. This feedback has a double aim: on the

first hand in helping the researcher in having a direct response on the implemented
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project, in order to reflect in a deeper way for better future designs; on the other hand
the teacher, who could express some strengthens and weaknesses of the activity, should
became aware of the competencies needed from not only a disciplinary, but also a

methodological perspective. We report the teacher considerations:

Strengths

The activity elicited interest in students, especially towards those who are usually not
very attending classes, even just in asking questions.

I noticed that alternating theoretical explanations with group activities stimulates
students to have more interest, to get less bored, to ask more questions even in their
first learning phase of the notions just explained.

During the project I noticed a "team" job, and during the presentation every member
of the group exposed a part of the research, so the cooperation was certainly present

in each group, nobody was excluded.

Critical elements

The amount of time spent working in the classroom was reduced compared to the
time it would have deserved in practice. So, students had to complete at home their
work.

Some exercises assigned in the first week were too trivial, while others proved to be
more complex than expected in the development phase.

Little time was spent on building the most complicated Platonic solids and
identifying their properties.

I have not yet done a written test, so I have no concrete feedback to date and
therefore I am not yet expressing an opinion on the effectiveness of the process.

In any case, for me having seen almost all the students working and intervening
allows me to give an overall positive opinion on the activity, which I would gladly

propose again.
From the analysis of the teacher’s report, some points emerge. Concerning strengths

of the activity, the teacher noticed that students had been stimulated and participated

actively to lessons. Moreover, students who typically did not engage during
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mathematics classrooms showed interest and were motivated to work. Students were
able to work in group with a spirit of cooperation without excluding anybody. The
activity had strong social implications, fostering students’ motivation, participation and
a climate of inclusion. Regarding weaknesses, we point the attention in the teacher’s
consideration concerning the assessment. The teacher, indeed, said that she was not able
to have a concrete feedback because a written evaluation had not been performed yet.
This consideration highlights the fact that it is important to foster teachers’ preparation
not only concerning methodological issues on lesson design, but also give them some
instruments to assess the process of a modelling activity. Such instruments must be
accompanied by a paradigmatic change in the way of assessing students’ learning, from
a summative perspective to a formative one. We recognize the importance of this last

consideration, that would represent a starting point for future work.

6.5 Reflection on the M-Il teaching experiment

The aim of this second teaching experiment consisted in investigating how emergent
modelling could be fostered to help students understanding some aspects of 3D-
Euclidean geometry. In the specific, we formulated the hypothesis that a modelling
activity designed following a model eliciting sequence with the use of suitable artifacts
could actually foster the emergent nature of modelling. In the design phase of this
research cycle we designed an HLT through the definition of its three aspects: the
learning goal; the hypothetical learning process and learning activities. The learning
goal was represented by the equidecomposability principle to calculate the volume of an
irregular solid. The hypothetical learning process consisted in putting students in a
problematic situation, represented by the necessity to calculate the volume of some
irregular solids taken from a real-life task, in order to make them re-create the notion of
equidecomposability. Such problematic situation was defined by a task together with
some constraints and instructional materials.

On the basis of the designed HLT and of the actual learning process, described in the

teaching experiment phase, we can draw some reflections:
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the first aim of the study consisted in evaluating the impact of model eliciting
activities on the emergent nature of modelling. With emergent nature of modelling
we mean students’ attitude to create new mathematical concepts mathematizing their
personal informal solving strategies. From the initial test only the 16% of students
was able to calculate the volume of a truncated pyramid. This means that students
before to be engaged with the modelling activity had not a clear idea about the
equidecomposability principle, or at least they were not able to apply it. When
solving the task, students had to calculate the capacities of some bottles given in the
brochure. To do that, students had to plan a strategy to obtain the volume of these
bottles. Students in all groups decided to decompose each bottle in many regular
solids (cones, pyramids). Then, to obtain an approximation of the volume of the
bottle considered, they calculated the volume of the regular solids by which the
bottle was decomposed, and then summed these volumes. This procedure is evident
in Fig. 49. In other words, since students had to calculate the volume of an irregular
solid, they were able to discover, or better re-invent, the equidecomposability
principle. This fact is evident also in the extract number 5 of students’ individual
reports, in which a student said that during the project she/he discovered and used
the concept of equidecomposability. The assignment given to the students stimulated
them to create mathematical concepts they did not know before, as confirmed also
by extract 7: the work was interesting and stimulating and through the study and
analysis of the required packaging I was able to expand my mathematical
knowledge. As a consequence, we can affirm that model eliciting activities can

foster emergent modelling;

the teaching experiment M-Il was characterized by a sequence of activities that
followed the design scheme of Fig. 45. This scheme was an adaptation of the model
development sequence proposed by Lesh et al. (2003) in the perspective of model
eliciting. This development sequence represents a valid designing scheme that can
be followed by teachers of every school level to implement modelling activities. We
want to remark the importance of the individual reflection after the teamwork during
the modelling activity. Each student should have the opportunity to reflect on her/his

work, to express doubts or misunderstandings, to reformulate in her/his own words
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the learning path. However, the scheme itself is not sufficient to produce meaningful
modelling routes. Two additional fundamental points are: the task itself and the role

of the teacher;

* in our study, the task consisted in a packaging problem. Students during the
warming week worked with concrete objects (bottles, straws, cans, ...) that were
connected to the packaging task. In this way, when students started the modelling
activity were more familiar with the context of the problem. The mathematical
stimulus of the context had been reinforced by the use of an artifact represented by
the brochure given to students to solve the task. In particular, the brochure was
reconstructed by the researcher omitting some details, in order to foster students’
disposition in creating the mathematical tools and concepts they needed to solve the

assignment;

* concerning the role of the teacher, this is crucial not only in designing a modelling
sequence, but also during its implementation. Indeed, the teacher has to encourage
students to use their own methods; stimulate students to articulate and reflect on
their personal beliefs, misconceptions and informal problem solving and modelling
strategies. Consequently, learning becomes a constructed understanding through a
continuous interaction between teacher and students, that can be synthetized, in
teaching and learning as guided reinvention (Freudenthal, 1991), reinforcing in this
way mathematical reasoning and sense-making. In the direction of the aims of the
University project, this study provides teachers with a design scheme for model
eliciting activities; offers an example of implementation of a complex modelling
activity; outlines the importance in the choice of an appropriate rich context problem
when implementing modelling patterns; remarks the role of the teacher in a balance

between the principles of guidance and invention;

* the analysis of the results from the case study that was described, shows that
students understood some aspects of Euclidean geometry in a meaningful way.
Students while solving the task, were able to discover the equidecomposability
property to calculate the volume, or its approximation, of an irregular solid. As a

consequence, geometry property were no longer mechanical rules given by the
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teachers to be applied to solve some numerical problems but assume meaning
because rooted in students’ experiential activity. In addition, during the modelling
activity, students took into account several realistic considerations: approximations,
historical facts, optimality choices. Significant examples are given by the extracts 8
and 9, in which students reported that they based some choices on their personal
experience. This means that stimulating modelling activities can create a bridge
between in-school and out-of-school mathematics, that is one of the most significant

roles of mathematics teaching;

* in conclusion, we want to reflect on the results concerning students’ perception
about the modelling activity. Reality connotations of the task was one of the most
present in students’ considerations. Indeed, three categories are related to this
characteristic (real, concrete materials, math applications to reality;, realistic
project). Moreover, in the cloud of Fig. 52, realistic competencies appears as one
category for the future replication of a similar activity. We believe that students
need opportunities to be engaged in activities connected to the real world. In this
way, school and daily life should not be seen as separated realities but became
integrated one into the other. Another category that was individuated in several
students was group work (52%). The same category was present also in the final
cloud. Despite students found significant to work in team, they also expressed the
difficulty to organize the work into their team. Indeed, one of the negative aspects
was group disorganization. We believe that working in group is a practice that
needs time, and teachers should promote it starting from the first years of school.
Group working, however, should not be the only modality for learning. As we have
showed in our teaching experiment, also a moment for individual reflection is
fundamental, in order to get a deeper understanding and involvement in the learning
path. To conclude, some students (35%) expressed the fact that the time for
preparing the presentation was limited. Moreover, in the final cloud one of the
students said that she/he would not want to repeat a similar activity in the future
because time schedule was not efficient. The reason can be attributed to the fact that
this was the first modelling activity that students performed during their school

lessons. As a consequence, they were not used to work in teams, to organize their
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group work, to choose, test and revise a solution pattern, while their usual school

lessons were planned as front-lessons and applicative exercises. Instead, students

need more opportunities to learn in a different way, that could enhance

competencies connected to the notion of twenty-first century skills, which include

creativity, decision making, critical thinking, problem solving, collaborating,

communicating (Maass et al. 2019).

6.6 Conclusions from M-l and M-Il research cycles

The aim of the research cycles M-I and M-II consisted in answering to the first research

question, i.e. studying how MEAs can promote the process of emergent modelling.

From the design research cycles, we can outline some answers to such question:
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model eliciting activities could play a central role in fostering emergent
modelling. This positive result can be attributed to a combination of several
factors: the choice of a realistic and rich problem, that stimulated students to
elaborate formal mathematical concepts mathematizing their informal solving
strategies, rooting in this way the new understandings in experientially real
phenomena; the use of suitable artifacts, that presented mathematics as a means
of interpreting and understanding reality and increasing the opportunities for
observing mathematics outside of the school context (Bonotto 2005); the role of

the teacher, who guided students in re-inventing mathematics in an active way;

from the retrospective analysis of the M-I research cycle, we noted the necessity
to engage students in a final individual reflection on the whole modelling
process. This individual activity was introduced in the second research cycle in
the reflection and debriefing phase. In the specific, the Q&4 session permitted

students to elaborate their solutions in a less formal manner which demonstrate
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understanding differently from what they showed in their prepared
presentations. Then, in the reflection and debriefing activity students could
reflect individually on the whole modelling process. Moreover, they could
observe strengths and weaknesses of their projects; elaborate their own
conclusions to model a solution for the model eliciting activity; analyse
similarities or differences with other solution plans; change their beliefs and

attitude; reinforce argumentation abilities.

* this kind of activities had also strong social implications. In fact, several
students who did not typically engage during mathematics classes became active
participants while solving a modelling task. As a consequence, the introduction
of new socio-mathematical norms (Yackel and Cobb 1996) and the use of
interactive teaching methods, promoted cooperation and inclusion. Students
being active participants into the learning process were able to give meaning to

new mathematical knowledge and sense to their mathematical activity.

Beside to these positive results, the implementation of such classroom activities
requires very high demands on teachers, in agreement with Blum (2015). Indeed,
teachers should be able to: 1) see mathematics incorporated in the real world as a
starting point for mathematical activities; ii) anticipate the mathematics needed for the
paths that students might explore; iii) put students in familiar situations in which they
clearly understand the need for mathematical constructs, integrating also their everyday
knowledge; iv) provide meaningful design specs involving constraints that enable
students to weed out inadequate ways of thinking. In this direction, feedbacks from the
regular mathematics teacher permit to the same teacher to be aware of which
competencies are needed to design and implement a modelling project. For this reason,
we believe that in the future an improvement in teachers’ pre-service and in-service
courses are needed, in order to provide teachers with designing principles and practical
materials to develop modelling activities in their classrooms.

In the final chapter of the thesis, we will reflect again on the conclusions from these

first research cycles, highlighting possible future directions of research.
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7.1 Introduction

The second research question of this study deals with mathematical problem-posing.
Problem-posing is closely linked to mathematical modelling. A possible connection
between modelling and problem-posing is given by the use of real contexts as starting
situations for mathematics lessons. From the exploratory study (chapter 4) we saw that
in the Italian context problem-posing is still not included in daily mathematics lessons.
We believe that in order to integrate problem-posing in the teaching of mathematics the
use of real contexts should be reinforced. However, how can a real context be described
during problem-posing activities? Do different contexts influence differently problem-
posing activities? And how? In the next two research cycles, P-I and P-II, we start
investigating how different contexts for problem-posing activities can influence
students’ creativity and emergent problem-posing.

In the specific, this chapter addresses the first research cycle concerning problem-
posing (Fig. 53), dealing with students’ creativity during problem-posing activities.
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Figure 53. Research cycle P-1



The structure of the chapter is the following: in section 7.2 we introduce the
classroom context for the study, explicating the mathematical topic considered and the
specific goals of this cycle in relation to the second research question. In section 7.3 the
design phase is described. The design phase of this research cycle is different from the
ones of the previous chapters. Since in this case our aim is not to foster a particular
topic, but to start investigating the role of different contexts in students’ problem-posing
performances in terms of creativity, we decided not to develop an HLT, but to structure
the design phase explicating some conjectures together with the design of instructional
activities related to that conjectures. Then the teaching experiment is described in
section 7.4. Section 7.5 is dedicated to the retrospective analysis, in which we reflect on
the expectations formulated in the design phase and formulate feed-forward for the next

research cycle.

7.2 Context and aim

The aim of the first research cycle concerning problem-posing, P-I, consisted in
studying how different contexts influence students’ problem-posing performances in
terms of creativity. The study was conducted in a six-grade class (age 12) composed by
twenty-two students. The class had never been engaged in a problem-posing activity
before the teaching experiment. At the moment of the intervention, students were
working on fractions. In particular, the official mathematics teacher, who was used to
teach in a traditional way, worked with students on: comparison between fractions,
basic operations with fractions, fractions in the number line, word problems with
fractions. As a consequence, we decided to consider fractions as mathematical topic for
the problem-posing activity. In relation to the research question RQ2, we investigated
how different contexts influence students’ creativity in problem-posing activities. As a

consequence, we focused on the sub-question:

RQ2.1. How do different contexts influence students’ creativity in problem-posing?

The student activities and the guidelines for the teacher, together with our intentions,

were discussed beforehand with the mathematics teacher in two meetings. The research
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method for the data analysis was mixed quantitative and qualitative. In section 7.3.2 we
will describe in detail the method used for the data coding.

To have an overview of students’ level on this topic, before the implementation of
the problem-posing activity a test was performed. The test was composed by six
questions (Appendix F). The maximum score for each question was 2, so the total score
for the pre-test was 12. In Table 24 for each question is reported its mean. The total
mean of the class was 5,2 over 12,0, which shows that students’ knowledge of the

subject was still poor at the moment of the intervention.

Table 24. Pre-test means

Question Max score Mean

1 2 0,89
2 2 1,26
3 2 0,76
4

2 0,67
5 2 1,26
6 2 0,35

Results show that students had difficulties especially in answering the last question

of the test. This question consisted in solving the following problem (Fig. 54):
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A cyclist decides to go from Padua to Florence by bicycle. The two cities are
approximately 225 kms far away. On the first day the cyclist run 5/9 of the
trip. The following morning he travelled 3/4 of the remaining kms.

a) How many kms are left to travel to Florence?
b) Express the result as a fraction of the distance between the two cities.

Figure 54. Question number 6 of the pre-test

Only 4 students over 22 were able to solve the problem. All these 4 students

followed the same strategy:

1. calculate the kilometres ridden the first day performing g x(225|=125;
2. calculate the left kilometres performing 225-125=100;
3. calculate the kilometres ridden the second day: % x[100|=75;

4. 100—75=25 are the left kilometres to Florence, that expressed as a fraction

of the distance between the two cities is %

In Fig. 55 an example of a correct student’s answer is reported.

6. Risolvi il seguente problema spiegando il procedimento seguito.

Un ciclista decide di andare da Padova a Firenze in bicicletta. Le due citté distano circa 225
km. I primo giorno il ciclista percorre | % del viaggio. La mattina del giorno sucracciun imuara
3L . A wg\ﬁ}
=42 ‘—‘:“t(m, :KM EATTI 215-425:-{0n:K;4‘,1u i
Quanti chilometri restano do pers ETe per orrvare a o

% Di 12'50

STEP 1 STEP 2 STEP 3 STEP 4 STEP 5

%x(225) =125 225-125=100 %x(lOO) =75 100 —75 =25 25
225
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Figure 55. Example of correct answer to question 6

The most typical error, instead, consisted in the fact that students did not understand
that the second day the cyclist run 3/4 of the left kilometres. As a consequence, they did

not perform the second step of Fig. 55. Instead some students (8 over 22) calculate

%x 125] (Fig. 56, 57, 58).

The student calculated the fraction % of the
kilometres that had been ridden the first day,

instead of calculating % of the kilometres left after
the first day.

6. Risolvi il seguente problema spiegando il procedimento seguito,

Un ciclista decide di andare da Padova a Firenze in bicicletta. Le due cittd distano eirc 22
k. I iorno il cicli 2 et viaggie i

P r!m03 giorno il ciclista percorre | F del viaggio. La mattina del giorno Ssuccessivo, i
percorre i 3 dei rimanenti chilometri.

=,

o) Quantl chilometr! restan da percorrere per arrivare @ Firen: The student did not calculated the total kilometres )

| that were left to Florence, but the kilometres
calculated in the previous step, that represented
the kilometres ridden the second day.

b)  Esprimi il risultate come frazione deila distanza tra ie due cit
5 .
= -225[225 9) 5= 125
2 25(e5t4).3293 75

J/

Figure 56. Example of incorrect answer to question 6

The student calculated the fraction % of the
kilometres that had been ridden the first day,

instead of calculating % of the kilometres left after
the first day.

6. Risolvi il seguente problema Spiegando il procedimento seguito,

Un ciclista decide di andore da Padova a Firenze in bicicletta. Le due citté distano circa 22
k. Il primo giorno il eicfi 2 def viaggi i

m. Il p nmo3 giorno il cielista percorre | Ey del viaggio. La matting del glorna successivo, j
percorre i i dei rimanenti chilometri,

o

a] Quantl chilometri restono da percorrere per arrivare a Firen;

The student did not calculated the total kilometres
| that were left to Florence, but the kilometres
calculated in the previous step, that represented
the kilometres ridden the second day.

b) Esprimi il risultato come frozione della distanza tra ie due cii
= ;
2 26(0259) 5125
7 res(esia).3-93 75

J

Figure 57. Example of incorrect answer to question 6
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wasy The student calculated the fraction % of the
Bl ersa1s Y= kilometres that had been ridden the first day,
3 K i 3) 5 2425 ((ln persiorse il o Spovnd) instead of calculating % of the kilometres left

after the first day. The calculus is wrong, it is

}% 1-3;:‘ not clear if the student made an
ﬁ‘j{; B oda- approximation consciously.

Despite the previous step was incorrect, the
| student, to obtain the kilometres left to Florence,
gLlGER | correctly summed the kilometres ridden the first
5 ; and second day and subtracts them from the total
£l 2 distance between the two cities.

D} Vidaugpno  Fim per Anioore 3 Fieiae

TS S
251 545

Figure 58. Example of incorrect answer to question 6

Two students had not a clear idea on how to calculate the fraction of a number. In

Fig. 59 there are two examples in which students, to calculate %X [125), instead of

dividing by 4 and multiply by 3, they divide by 3 and multiply by 4, exchanging

numerator and denominator. The same for calculating fractions of other numbers.

Figure 59. Incorrect calculation of the fraction of a number

Other students performed some operations with the numbers in the text of the

problem, without reasoning about what they were doing (Fig. 60).
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I .
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Figure 60. Students’ incorrect answer

In the next section we present the design phase, in which the development of an

instructional design is described.

7.3 Design phase

In this research cycle the design phase is characterized by the development of an
instructional design through the formulation of some hypothesis together with
instructional activities and materials. In this section we first remark the theoretical
background concerning problem-posing and the expectations that are investigated in the

following teaching experiment. Then we describe the designed activities and materials.

7.3.1 Starting points

In the previous section we described the classroom context and the initial level of
students. In this section we remark some key points from the literature on problem-

posing, extensively reported in section 2.3.

* In this study problem-posing is seen as the process by which students construct
personal interpretations of concrete situations and formulate them as meaningful
mathematical problems (Stoyanova and Ellerton 1996). These concrete situations

considered as starting point for the practice of problem-posing could be divided in
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three categories (Stoyanova & Ellerton 1996): free situations, semi-structured
situations and structured situations. In this study we will focus only on semi-
structured situations, that we recall are situations in which students are provided
with an open situation and are invited to explore its structure and to complete it

using their personal previous mathematical experience.

e Cultural artefacts represent a precious tool to provide students with meaningful
contexts, and especially when engaged in problem-posing activities (Bonotto 2013).
Thanks to its complexity and richness in mathematical meaning, an artefact lives in
both the world of symbols and the real one, creating a sort of hybrid space that
connects mathematics and everyday contexts. A re-mathematization process is
thereby favoured, wherein students are invited to unpack from artefacts the

mathematics that has been hidden in them (Bonotto 2013).

* An aspect that is investigated in this research cycle is the relation between problem-
posing and creativity. Problem-posing, in fact, is a form of creative activity that can
operate within tasks involving rich situations (Freudenthal 1991), using real-life
artefacts and human interactions (English 2009). Creativity is directly linked to the
mathematical activity of problem-posing, being the act of creating mathematical
problems in specific contexts (Bonotto and Dal Santo 2015). To encourage the
creative process in school mathematics we will use semi-structured situations
(Stoyanova and Ellerton 1996) as starting contexts for problem-posing activities. In
particular the use of cultural artefacts can help creating such situations. Several
studies used problem posing and problem solving to promote and assess creativity
(Xie and Masingila 2018; Bonotto and Dal Santo 2015; Bonotto 2013; Yuan and
Sriraman 2010; Sriraman 2009; Leung 1997; Silver 1997, Leung and Silver 1997),
proving that an inquiry-oriented mathematics instruction, including problem-posing
activities, could assist students to develop more creative approaches to mathematics.
However, given the value of problem-posing activities as opportunities for
measuring students’ creativity, or other mathematical learning outcomes, it is
mandatory to develop and validate suitable problem-posing instruments,

understanding which kind of problem-posing tasks best reveal students’ creativity
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and their mathematical understandings (Cai, Hwang, Jiang and Silber 2015). In the
next section we will design some teaching activities, through tasks and artefacts, that

may foster students’ creativity.

*  We remark that through problem-posing students can actively construct meaning in
both the natural and simulated worlds in classrooms. Moreover, teachers and
students might create knowledge together in a variety of contexts and generate and
address critical questions about the knowledge they produce. In this direction, we
believe that problem-posing is a valuable educational strategy to enhance a guided

re-invention approach to mathematics education.

* As starting contexts for problem-posing activities we will consider different types of
real contexts. Such real contexts will be defined using the frameworks of RME and

Palm (2006), described in section 2.4.

The aim of this research cycle is to start investigating how different contexts might
influence students’ creativity in problem-posing activities. Our idea is that semi-
structured problem-posing activities in which real contexts are used as starting
situations could foster students’ creativity. However, it is not clear if different contexts
influence in the same way students’ creativity, and which characteristics such contexts
should have. As a consequence, we decided to consider different real contexts from
different theoretical perspectives (RME and Palm (2006)), and study how they could
influence students’ creativity when engaged in semi-structured problem-posing
activities.

In the next section we describe the instructional activities and related materials
developed for the implementation of the teaching experiment. Moreover, the data

analysis scheme used for the data analysis is described.

7.3.2 Instructional activities
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Since the aim of the study was to investigate the impact of different contexts in
students’ creativity in problem-posing, we decided to split the problem-posing activity
in two sessions. In each session of forty minutes students had to pose at least three
problems dealing with fractions from a given context. In the specific, we decided to
consider two contexts that stressed the contrast realistic-rich/feasibility between RME
and Palm’s frameworks for real contexts. In the specific, the context considered for the
first problem-posing session consisted in a number line with some rational numbers,
while the context for the second session consisted in an advertising leaflet containing
discounts for mobile phones (Fig. 61, 62). The first context (number line) is closer to
the perspective of RME. Indeed, it can be considered as a realistic and rich context,
since significant for students, who previously worked on it with their teacher, and rich
in mathematical stimulus. The second context, instead, is closer to Palm’s framework,

since it consists in a real leaflet, and so represents an event that can occur in real life.

- 9
L

N

|

e | B2

0,5 20 94

[

L A

Figure 61. First context for the problem-posing activity: numbers line
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Figure 62. Second context for the problem-posing activity: mobile phones leaflet

After the problem-posing sessions, students had been engaged in a problem-solving
activity. Some problems were chosen by the teacher from the ones posed by students.

The full text of the problem-solving activity is given in Appendix G.

Data coding

A summary of the data coding scheme used in this study is provided in Fig. 63. The first
phase of the data coding consisted in a variation of the model proposed by Leung and
Silver (1997). Students’ problem-posing responses were firstly categorized as problems
or statements. Then, problems were classified as mathematical or non-mathematical
problems. Each mathematical problem was analysed in two directions. First, a
mathematical problem was classified as context related, i.e. set in its starting context
(respectively the number line for the first session and the leaflet for the second session),
or as not context related. Second, mathematical problems were divided between
solvable and not solvable. Problems were considered to be not solvable if they lacked
sufficient information or if they posed a goal that was incompatible with the given
information. The last phase of the data coding involved examining the creativity of the

posed problems that had been previously classified as solvable.
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[ STUDENTS® RESPONSES ]

MATHEMATICAL PROBLEMS

PROBLEMS
NOT MATHEMATICAL
PROBLEMS

A
.

CONTEXT- NOT CONTEXT-
RELATED RELATED

SOLVABLE

NOT-SOLVABLE

Figure 63. Data coding scheme to analyse students’ problem-posing responses

Creativity was considered as follows. Starting from the rubric for the evaluation of
teachers’ creativity in problem-posing proposed by Xie and Masingila (2017) (Table 5),
we developed the following analytic scheme to calculate the creativity of students’

responses in a problem-posing activity in which students had to pose three problems
from a given context. We call P the i-th problem posed by the n-th student, so in our
case i=1,2,3;n>0. For every n, we consider the first posed problem, namely P}, and

we start comparing it with the second posed problem PJ:

0,if P, A P} are comparable
(P&o2",PY)= i+1,if Pi AP are somewhat different ¢ (1)
4+2,if P, AP’ are completely different
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Then we consider the third posed problem and compare it with both the second and

the first one:

0,if P3A Pyare comparable
(P&i3",Py)= L+1, if P2 AP are somewhat different ¢ (i1)
(+2,if P3A P, are completely different

—2,if P3A P} arecomparable
(P&e3", PY)=l—1 ,if P2 AP are somewhat different & (iii)
60, if P3A P} arecompletely different

In conclusion, we calculate the sum

c=|P},P] +(pg,p;’ +(P4i3",P))e(-2,-1,0,1,2,3,4 (- At the end, to each student

is associated a level of creativity in accordance to Table 25.

Table 25. Student’s level of creativity associated to the value of ¢

c level of creativity
<0 Low (L)
1v?2 Medium (M)
-2 High (H)

In the case that one student posed only one problem (d=1), we define c=0. If a
student posed only two problems, we calculate ¢ according to (i).

The scheme can easily be extended to activities in which students could pose a
number of problems greater than three. In this case, in fact, the level of creativity of

each student is associated to the quantity
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—.
—_

(P, Py)

with

DA p—
(Pii ", PY)E .[O,+1,+2J,/\]—k—1 .
61—=2,-1,0},Aj—k>1

according to (i) and (iii), where d is the maximal number of problems that can be

posed by a single student, and P} is the i-th problem posed by the n-th student,

i=1,...,d.We can observe that in general there are d—1 pairs (P';.,PZ) with j—k=1,

d-2
and (D m{ pairs (P;',PZ) with i—j>1. As a consequence, the quantity c¢ lives in

m=1
d-2
B=={zEZ\h<z<l},whereh:—Z'Z m, and [=2-(d—1].
m=1

7.4 P-l teaching experiment

In design research the aim of the teaching experiment is to see how the developed
instructional activities would play out in the classroom and test empirically the
hypothesis that had been conjectured. We now present the main results from the
teaching experiment for the P-I cycle. The results are presented in three subsections: the
first dealing with students’ problem-posing responses including mathematical/not
mathematical problems, context/not context related problems, solvable/not solvable
problems; the second dealing with students’ creativity; the third reports results from the
final problem-solving activity. In the specific, we focused on how the two contexts used
as starting situations for the problem-posing sessions might have influenced students’

responses in terms of creativity.
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7.4.1 Problem-posing responses

Students responses had been firstly analysed using the data coding scheme reported in
Fig. 63. The results split between the two contexts are reported in Table 26. All the
students’ responses had been classified as problems, so no statement occurred. Students
posed totally 122 problems, of which the 95% were mathematical problems. The
number of mathematical problems was comparable between the two contexts,
respectively the 97% of the posed problems for the number line and the 92% of the
posed problems for the leaflet. The main difference between the two contexts dealt with
context/not context related problems (p<0.001; V=0.81). In the case of the number line,
the 92% of the mathematical problems were problems that did not refer to the number
line. Instead, for the leaflet there was an opposite behaviour, since the 100% of the
mathematical problems were context related, which means that they referred to the
leaflet itself. In Table 27 some examples of context/not context related problems are
reported. In conclusion, not a significant difference occurred between the two contexts
in terms of solvable and not solvable posed problems (p<0.05; V=0.19). In fact, for the
number line the 98% of mathematical problems were solvable, and for the leaflet the
90% of the mathematical problems were solvable. Further examples of not context

related problems from the first problem-posing session are reported in Table 28.
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Table 27. Examples of context and not context related problems for both the contexts.
Context 1 context Marco is doing his math homework, he has to place the following
(numbers related numbers on the number line: 4, 0, 2/4. Help Marco by finding
line) their value and placing them on the numbers line

not context Luisa is reading a book of 350 pages. If she has already read the
related 4/5 of the book, how many pages will she have to read to finish it?
Context 2 context A phone is sold in a shop for the price of 299 euros. It is
(leaflet) related discounted by 40% and Tommaso paid 1/4 of the cost. How much
does he still have to pay by counting the discount and the advance
payment?
not context
related No problem was not context related

Table 28. Examples of not context related problems from the first context

P.1 Giada would like to buy a toy that costs 10 euros, but she has only the 4/5 of
10 euros. How much more money does she need to buy the toy?

P.2 Luca is playing football. One side of the football field measures 25m, and the
other its 4/5. Which is its measure?

P3 Marco and Anna collected 40 shells on the beach. Anna collected 2/4 of
those collected by Marco. How many shells did Marco collect?

P.4 Matilde has 30 euros and Gianna has 2/4 of 30 euros. How much money does
Gianna have? Who has more money?

P.5 Luigi has 27 marbles. Luca has 1/3 of those who Luigi has. How many
marbles does Luca have? Which is the total number of marbles?

P.6 Laura has 70 euros. Giovanni has the 2/4 of Anna’s money who has the 4/5
of Laura’s. How much money does Giovanni have? And Anna?

P.7 Sara has 125 euros. In a shop there is a bicycle that costs 135 euros, but it is
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discounted by 20%. Will Sara be able to buy that bicycle?

P.8 Marco has to cover 6 kilometers to go to school, and Giulia 1/3 of Marcos’s.

How many kilometers does Giulia have to cover to go to school?

P.9 Umberto buys a copybook that costs 20% more than the older one, that costs

1,99 euros. How much does the new copybook cost?

P.10  Anna is reading a book of 420 pages. She has already read the 4/5 of the
total. How many pages has she already read? How many pages are left to

finish the book?

7.4.2 Creativity

The second phase of the data analysis consisted in classifying students’ creativity. In
each of the two problem-posing sessions, for each student we considered her/his posed
problems that had been classified as solvable problems in the previous phase, and we
applied the scheme proposed in the section 7.3.2 to associate a level of creativity to each
student. An example of the process is given in Fig. 64. Students’ results, split between

the two problem-posing sessions, are reported in Table 29.
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P..

Marco wants to buy a mobile phone that costs
549 euros.
He decides to buy it in instalments, paying 2/6 first.

How much remains to be paid? )

. Anna buys two mobile phones at the cost of 199

~

euros and 299 euros.

If the initial price of the first phone was 249 euros
and of the second phone of 499 euros,

which one had the most discount?

Express the discount as a fraction. J

P:.

A mobile phone costs 549 euros. The shop offers a
25% discount. What will be the discounted price of
the mobile phone?

— (Py,P) =1

¢ = (Py,Py) + (P3,P;) + (P3,P;) =3 — level of creativity: H

Figure 64. Example to calculate student’s the level of creativity

Concerning the first context (number line), the 45% of students had a low level of

creativity, the 50% of students a medium level of creativity and the 5% of students a

high level of creativity. Concerning the second context (leaflet), the 45% of students

had a low level of creativity, the 45% of students a medium level of creativity and the

10% of students a high level of creativity. As clearly shown in Fig. 65, students’

problem-posing responses in terms of creativity are comparable between the two

contexts. This is supported also by a Wilcoxon test, that indicated that students had not

a significant difference in terms of creativity between the two contexts (z=-0.1; p=0.9).

Table 29. Students’ level of creativity distributions split between the contexts used in

the two problem-posing sessions

Context 1 Context 2
(number line) (leaflet)

Count % Mean SD Count % Mean SD
Low creativity level 10 45 -0,6 1,0 10 45 -0,8 1,0
Medium creativity 11 50 1,3 0,5 10 45 1,2 0,4
level
High creativity level 1 5 3 0,0 2 10 3,5 0,7
Total 22 100 0,5 1,5 22 100 0,5 1,3
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Context 1 Context 2

(numbers line) (leaflet)

HL

M
mH

Mean= 0,5
SD=15

Figure 65. Students’ level of creativity distributions split between the contexts used in
the two problem-posing sessions. Not a significant difference in terms of creativity

between the two contexts (z=-0.1; p=0.9) was observed

7.4.3 Problem-solving

The lesson after the problem-posing sessions students had been engaged in a problem-
solving session. 10 problems were chosen from the ones posed by students (Appendix
G). We focus here on two of that problems: number 2 and number 5.

The problem number 2 was the following:

Sara has 125 euros. A bicycle costs 135 euros, but it is discounted by 20%.
Will Sara be able to buy the bicycle?

Figure 66. Problem number 2 of the problem posing activity

This problem was chosen because students posed a problem with the concept of
percentage, that was never treated by the teacher. However, students used the

percentages present in the second context and posed a problem with it. 12 students over
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23 answered correctly to the question, while the rest of the classroom did not answer. In
Fig. 67 there are three examples of students who answered to the question. The first
student calculated the cost of the discounted bicycle and then subtracts it from the
money that Sara has, obtaining also how much money Sara has after having bought the
bicycle. It is interesting that this student to calculate the cost of the discounted bicycle,
divided the initial cost by 100 hundred, that corresponds to 1% of the cost of the
bicycle. In the second example the student was able to stress that 20% is actually the
fraction 20/100. In the last example, despite the student performed incorrectly the final

subtraction, she/he expressed both the percentage as a fraction and the final Sara’s rest.

Example 1

136 4005485 (45( Jell'cacte el I,:::} g ~20:2¥@°"*° sull i)

v

[Sum yiusara O (imprave s bic e avie «hvesTe di 2% ]—[ Sara will be able to buy the bike with a rest of 17 eures. I

Example 2

N il b |

= 4,35 20w 27
455~ 4,35

2F =
o8

'[\ BISRostat sy, bopepe LA o SconTRTh dosTe o8, ]—[ Yes, because the bike with the discount costs 108 euros. I

Example 3

JRecerma

‘l?t.'% * BB = "1'36 XZo="73 E,(_et) ‘:pcamrﬂ\,l
(oo el 'rici) :

E(\Q: a.tuL:;:,u.&.f € Conmploze Gh bica o umn esfo g &]—[ Sara will be able to buy the bike with a rest of 13 euros. I

Figure 67. Students’ answers to the second problem of the problem solving activity

Problem number 5 was the following:

Valentina was running in a pedestrian park to stretch her legs a
little. Knowing that the route is 10 km long and that she has
already walked 1/3 of it, how many km has she already covered?
At a certain point Valentina realized she has no longer her house
keys in her pocket. She went back 1/2 and found them. How many
km from the start of the route did she start running again? How
many km has she covered so far?

Figure 68. Problem number 5 of the problem posing activity
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This problem was very similar to the problem of the question number 6 of the pre-
test, that was the one with the lowest number of correct answers. However, in this case
several students were able to give a correct answer. In Fig. 69 there are two examples of
students’ answers. Both the students, to calculate the total kilometers run by Valentina,

adopted the following strategy:

1. calculate 1/3 of the total route, that represents the first part run by Valentina;
2. calculate 1/2 of the previous result, in order to calculate how many kilometers,
she run back to look for her keys;

3. sum the two previous results to obtain the total kilometers run.

In performing the first point, the first student made an approximation of the result.
Indeed, 1/3 of 10 is 3,333..., and the students approximated it as 3,5. The second

student, instead, took as value 3,33.
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Figure 69. Students’ answers to the fifth problem of the problem solving activity
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7.5 P-l retrospective analysis

In this final section we look back at our initial instructional design and compared it with
the results from the teaching experiment. This retrospective analysis could form the
basis to formulate first answers to our second research question, to adjust the
instructional design for the next research cycle and to formulate additional hypothesis.
The section is divided in two parts: the first concerning the reflection of the teaching
experiment and the second formulating feed-forward of the P-I research cycle for the

next P-II cycle.

7.5.1 Reflection on the P-l teaching experiment

The aim of this first teaching experiment consisted in investigating how different
contexts influence students’ problem-posing performances in terms of creativity. We
decided to consider fractions as mathematical topic for the problem-posing activity. In
relation to the research question RQ2.1, we investigated how different contexts
influence students’ creativity in problem-posing activities. In the specific, our idea was
that semi-structured problem-posing activities in which real contexts are used as starting
situations could foster students’ creativity. However, it was not clear how different
contexts influence students’ creativity, and which characteristics such contexts should
have. As a consequence, we decided to consider different real contexts from different
theoretical perspectives. In the specific, two contexts were chosen: a number line and a
mobile phones leaflet. The first context can be seen as a rich and realistic context in the
perspective of RME, that comes from the world of mathematics. The second context,
instead, can be seen as an artifact (Bonotto 2013), and represents a real context in
Palm’s framework, since it denotes a context that could really happen in real life. In
order to evaluate the influence of each of these contexts in students’ problem-posing
performances, two problem-posing sessions had been implemented. In each session
students had to pose at least three mathematical problems (dealing with fractions) from

the given contexts, respectively the number line and the mobile phones leaflet.
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The first part of the data analysis consisted in evaluating differences and/or
similarities in the two problem-posing sessions in terms of the quality of the posed
problems, including: problems/statements; mathematical/not mathematical problems;
context/not context related problems; solvable/not solvable problems. Results (Table
26) show that the only significant difference between the two problem-posing sessions
was in terms of context/not context related problems. In the specific, the 92% of
mathematical problems posed starting from the first context, the number line, had been
classified as not context related. This means that students did not consider the number
line as a context wherein setting in their problems. The majority of students, instead,
used the numbers given in such first context in posing problems that were not related to
the number line context. Such problems were connected to their real-world experience
and were posed similarly to world problems they found in their previous mathematical
experience, from textbooks or teacher (Table 28). From the second context, instead, the
90% of students’ mathematical problems were context related. Students recognised the
leaflet as a familiar context, because close to their experience, being a context that
possibly occur in their real life. In this way, students were able to pose problems that
were set in that context. As a consequence, despite the number line was used by the
teacher in previous mathematics lesson, it was not really a significant context for
students, lacking in a possible real-life occurrence, and so it was not realistic, not
experientially meaningful for them. Moreover, we noticed that students tended to use
numbers present in the number line to pose problems linked to their experience. The
meaningfulness of the context in terms of real occurrence did not affect problems
solvability. The majority of students’ mathematical problems, in fact, in both cases was
made by solvable problems (respectively the 98% for the numbers line and the 90% for
the leaflet).

The second part of the analysis consisted in studying students’ creativity in the two
problem-posing sessions. In both the sessions, students’ creativity was approximately
equally distributed between low and medium-high level of creativity. Moreover, not a
significant difference occurred between the use of the number line and the leaflet. When
posing their problems starting from the number line, students created a realistic setting
linked to the number line context, posing not context related problems, but problems

linked to their school and real-life experience. As a consequence, we cannot say that a
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most meaningful context for students, such as the mobile phone leaflet, promoted
students’ creativity more than a less meaningful one, such as the number line. In fact,
since students created personal realistic settings when posing problems from the number
line context, the significance of the context itself did not influence their creativity
process, and both the contexts stimulated in the same way students’ creativity (Table
27). However, the results indicate that a fundamental factor that influenced students’
problem-posing performances, and especially in terms of creativity, was the significance
given by students to the context. Indeed, when the context was not experientially
meaningful for a student, as in the case of the number line, she/he tried to associate a
new meaning to the context, using some elements from it and re-creating a new more
meaningful context in which setting her/his problems. In our study, this process of
context free re-construction was possible because no constraint was explicitly maid
during the problem-posing activity concerning the fact that students had to refer to the
number line when posing problems, but the only one constraint was to pose at least

three problems (dealing with fraction) from that context, and not in that context.

7.5.2 Feed-forward of the P-I

The analysis of the teaching experiment permitted to formulate feed-forward of the P-I
research cycle for the next P-II cycle.

In section 7.4.1, 7.4.2, 7.4.3 we presented some results from the two problem-posing
sessions and the problem solving one. During the problem-posing session, students,
starting from given contexts, formulated some mathematical problems that took into
account some concepts and notions that have not already been introduced by the teacher
during the previous lessons. For example, several students posed problems concerning
percentages. During the problem solving activity, some students were able to solve that
problems, and also to interpret percentages as fractions. Such students probably already
had this notion from their experience outside the school context and had been able to
apply it to solve a mathematical problem. This fact may suggest that problems posed by

students starting from real contexts should be used to introduce and work with new
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mathematical objects. However, the previous are very superficial considerations, that

lead to some questions that need further investigation, such as:

* how can problem-posing be used to introduce new mathematical concepts for

students?

* do different contexts in semi-structured problem-posing situations play a
different role in fostering the development and understanding of new

mathematical concepts?

* which characteristics should such contexts have to promote students’ re-

invention of mathematical concepts or tools?

We realized that despite several studies focused on students’ or teachers’ responses
in problem-posing activities, no research is present concerning the implementation of
problem-posing activities to enhance students’ mathematical knowledge. Consequently,
starting from the observations and suggestions of the P-I cycle just described, we
believe indispensable to start investigating how different contexts could promote or not
emergent problem-posing, and this will be exactly the focus of the next research cycle

P-II.
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8. P-ll Research Cycle

8.1 Introduction

Starting from the reflections of the previous research cycle, a second cycle concerning
mathematical problem-posing had been designed. This chapter addresses this second

research cycle concerning problem-posing, P-II (Fig. 70).
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Figure 70. Research cycle P-II

The structure of the chapter is the following: in section 8.2 we introduce the context
of the classroom that participated to the study, explicating the mathematical topic
considered and the specific goals of this cycle in relation to the second research
question. In section 8.3 the design phase is described, consisting in the development of
an HLT and with particular attention in designing instructional activities related to the

learning goals of the HLT. HLT includes starting points and expectations and students’



hypothetical learning process. The design of key activities and materials are reported.
Then the experiences during the teaching experiment are described (section 8.4).
Section 8.5 is dedicated to the retrospective analysis, in which we reflect on the
expectations formulated in the HLT and formulate some conclusions for the second

research question.

8.2 Context and aim

The aim of the research cycles P-I and P-II consisted in finding possible answers to the

second research question of this research project:

RQ2. How do different contexts influence the process of problem-posing?

Concerning the second research question, we focused on two aspects of the problem-
posing process, namely its relations with creativity and emergent problem-posing. The
research cycle P-I, described in the previous chapter, dealt with students’ creativity
focusing on the research sub-question RQ2.1, while this chapter will focus on emergent

problem-posing, answering to:

RQ2.2. How do different contexts influence emergent problem-posing?

Starting from the retrospective analysis of the research cycle P-I, a second research
cycle was designed. The research cycle P-II was conducted in a fourth-grade class (age
9) composed by twenty-five students. The classroom involved in the study had never
been engaged in problem-posing activities before the study. The activity was
implemented by the author with the presence of the official mathematics teacher. At the
moment of the intervention, students were working on decimal numbers. In particular,
the official mathematics teacher, who was used to teach through a traditional method,
worked with students on: decimal numbers and equivalent fractions; comparison
between decimal numbers; decimal numbers in the number line. No operations between

decimal numbers were introduced by the mathematics teacher. In this situation,
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addition between decimal numbers was chosen as mathematical topic for the problem-
posing activity.

In relation to the research question RQ2.2, we investigated how different contexts
could promote or not emergent problem-posing. We believe that semi-structured
situations could support the process of emergent problem-posing, i.e. the process in
which problem-posing is a way for the emergence of students’ formal ways of knowing.

In the next section we present the design phase, in which the development of an HLT

1s described.

8.3 Design phase

In this section we first describe the starting points for the HLT and the expectations that
are investigated in the following teaching experiment. Then we describe the activities
and materials designed in order to foster students’ cognitive development according to

the goals of the HLT.

8.3.1 Starting points

Starting points for the formulation of an HLT of this second research cycle on problem-
posing are split in three categories. The first concerns the theoretical background
specific for this research cycle and taken into consideration to design an educational
setting and hypothesis about students’ learning. The second deals with the classroom
context, and in the specific the initial level of the students. The third is represented by
the feed-forward formulated in the retrospective analysis of the previous research cycle

P-L.

Theoretical Background

In addition to the theoretical background of the previous research cycle P-I, we recall

here some considerations concerning emergent problem-posing. This notion was
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introduced starting from the considerations that when generating a problem, students do
not always take into account possible solving strategies related to that problem, instead
often they are not able to solve the problems they have posed. In this situation, problems
posed by students that require new mathematical knowledge for their solution can be
used as a vehicle to introduce new mathematical concepts. Moreover, these new
concepts assume meaning for students, because rooted in their personal experience and
for the specific purpose of solving the problems posed by themselves. As a
consequence, new mathematical knowledge should be not only introduced, but also re-
invented (Freudenthal 1991) by students. This aspect of problem-posing is called
emergent problem-posing, highlighting its aim to support the emergence of formal

mathematical ways of knowing.

Pre-test

Before the development of a learning trajectory, a pre-test was administered in the class
were the research cycle took place. The aim was to have a picture about the starting
level of the classroom concerning the mathematical topic considered for the teaching
experiment: decimal numbers. 25 students participated to the pre-test. The test was
composed by five questions. The full text is presented in Appendix H. The maximum
score for every question was 2, so the maximum score was 10. In Table 30 we report the

mean of students’ answers to each question. The total mean of the classroom was 7,2.

Table 30. Mean of students’ answers to the pre-test
Question Q1 Q2 Q3 Q4 Q5 Total

Mean 1,6 1,7 1,5 1,0 1,4 72

Findings indicate that students had a good knowledge of the subject at the moment of
the teaching experiment. We remark in particular one fact that emerged from the pre-

test, dealing with the last question (Fig. 71).
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5. Compare the numbers and put them in the numbers line, as shown in the example:

0> ; 06 ; 046 ; 0721 ; 0,72

& & >
0,5 0,6
Example: 0,5= 2
s T
06= E
10
5 6
10~ 10

Figure 71. Last question of the pre-test

In this case all the students had the same score and answered in the same way.
Students, indeed, were able to perform the comparisons between the last three numbers
in the text of the problem (0,46; 0,721; 0,72), however they did not compare them with
the numbers given in the example. Consequently, they put in a correct progression the
last numbers, but not in relation to the given ones. Students were able to compare
decimal numbers recurring to their notation as fractions but did not have a complete

confidence with the number line (Fig. 72).
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Figure 72. Example of a student’s answer to the last question of the pre-test

P-II feed-forward

The research cycle P-I described in chapter 7, gave some suggestions for the
instructional design of the next research cycle P-II. In the specific, from the results of
the previous research cycle, we saw that students, starting from given contexts,
formulated some mathematical problems that take into account concepts and notions

that have not already been introduced by the teacher during the previous lessons. As a
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consequence, the problem-posing activity gave the opportunity to work and reflect on
new concepts, objects, tools, starting from students posed problems. This fact may
suggest that problems posed by students starting from real contexts should be used to
introduce and work with new mathematical objects. Starting from these observations
and suggestions, in this second research cycle we want to start investigating how

different contexts could promote or not emergent problem-posing.

8.3.2 Learning goal and hypothetical learning process

As stated in section 8.2, the aim of this first research cycle consists in investigating how
emergent problem-posing can be fostered to help students understand some aspects of
decimal numbers. In the pre-test we saw that students at the moment of the intervention
had a good knowledge of the topic. The regular mathematics teacher had not already
introduced and worked with operations between decimal numbers. As a consequence,
what we want to achieve during the teaching experiment is the re-invention of the
algorithm (or more algorithms) to calculate additions between decimal numbers.
Therefore, as shown in Fig. 73, the learning goal of the teaching experiment is

represented by the addition between decimal numbers.

Starting Point Learning Goal

T g A T T P CTTTTTTTTTTTTTTTT Tt

Students do not know how o | | :
i calculate additions between | i Studgnts re-creqtg the |
! i | algorithm of addition

i decimal numbers. - !
i i between decimal numbers |

Figure 73. Learning goal of the P-II cycle

To design an HLT, together with the learning goal we need to formulate some
conjectures about the learning process. In analogy with the research cycle M-I and M-II,
starting from the classroom initial level and following the heuristic of the didactical
phenomenology, we supposed that making students face with a problem situation in

which they need a new mathematical concept to solve it could stimulate the same
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students in creating that concept. Differently from the modelling activities described in
chapters 5 and 6, in this case students are not given a task, but they have to pose
problems that could stimulate the described process. As a consequence, our idea
consists in putting students face with problem-posing situations that could stimulate
them to pose problems dealing with decimal numbers and that could bring to the need of
introducing addition between decimal numbers. Then, focusing on that problems posed
by students which need to develop a strategy to perform addition between decimal
numbers, the teacher can foster students’ creation of one or more algorithms in a guided
re-invention (Freudenthal 1991) way. At the same time, we also want to know which
characteristics should have a context for a problem-posing activity to foster this process
of emergent problem-posing, i.e. of concept re-creation. Therefore, students would not
be engaged in only one problem-posing activity, but in more problem-posing sessions
that start from different contexts. A priory we believe that both these contexts could

foster students’ emergent problems in the same way.

Starting Point Critical Point Learning Goal
| Students do not know how to | I | Students are faced with | ! |
| calculate additions between | | contexts that promote | | Students re-create the i

i algorithm of addition

1 decimal numbers. 1 E the creation of problems H N 1
! i between decimal numbers |

i

| 1

| : ! in which they need to |
. ! i develop a new math ! ! |
! | ! concept to solve them | | !

____________________________________________________________________________________

Figure 74. Hypothetical learning process of the P-II cycle

The learning process outlined in Fig. 74 is not linear. Indeed, attention should be
given not only to the creation of problems and their solution, but to the process of

construction of concepts that support such solution process.

8.3.3 Learning activities

Starting from the hypothetical learning process and the learning goal outlined in the
previous sections, some learning activities had been designed. The first one consists in a

problem-posing activity. Since the aim of the study is to investigate the impact of
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different contexts in students’ problem-posing abilities in terms of emergent problem-
posing, we decided to split the lesson dedicated to the problem-posing activity in two
sessions. In each session of forty minutes students had to pose at least three problems
dealing with decimal numbers from a given context. In the first session the context was
represented by a number line with decimal numbers (Fig. 75), while in the second
session the context was represented by a survey statistic about people practicing sports
(Fig. 76). Similarly to the cycle P-I, we decided to consider two different kinds of
contexts that highlight one of the main differences between RME and Palm’s
frameworks for real contexts: realistic-rich vs feasibility. We believe that such contexts
could stimulate students in posing problems that, to be solved, need the necessity to
develop a strategy to perform additions between decimal numbers. A priory we do not
know which of the two contexts should support better emergent problem-posing. Our
aim is not to compare RME and Palm’s frameworks, but to start understanding which
features a context should have to support students in creating mathematical concepts
starting from their own informal mathematical strategies, represented also by posing

problems from a realistic situation and solving problems created by themselves.

10 millesdmi 02

10 100
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Figure 75. Context of the first problem-posing session: number line
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Context 2
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Figure 76. Context of the second problem-posing session: survey sport statistic
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The lesson after the problem-posing sessions, students have to solve some problems
chosen by the teacher from the ones posed in the previous problem-posing activity. The
teacher should stimulate students’ re-creation of the algorithm of addition between

decimal numbers.

8.3.4 HLT for cycle P-ll

In this section we sum up the components of the designed HLT for the research cycle P-
II discussed in the previous sections, namely the learning goal, the hypothetical learning
process and the learning activities. Together those components define the HLT. A

scheme is represented in Table 31.

Table 31. HLT of the P-1I cycle

HLT

Learning goal Hypothetical Learning Learning Activities

Process

Addition between decimal ~ Making students face with ~ Students are engaged in

numbers contexts that stimulate the  two problem-posing

206



P-Il Research Cycle

creation of problems in sessions in which they
which, in order to solve have to pose at least three
them, they need to develop problems dealing with
new mathematical decimal numbers. The
concepts or strategy. The contexts chosen reflect the
critical point is represented RME and Palm’s
by the necessity to frameworks for real
calculate addition between problems, respectively a
decimal numbers. number line and a sport
survey statistic. After the
problem-posing activity,
students are asked to solve
some problems that had
been chosen by their
teacher from the ones
posed during the problem-
posing activity. Such
problems together with a
classroom discussion
coordinated by the teacher,
should support the
emergence of new
mathematical knowledge
in a guided re-invention

perspective.

8.4 P-ll teaching experiment

In this section we present results from the teaching experiment concerning the research

cycle P-II.
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As described in the previous section, during the problem-posing activity each student
had to pose at least three problems from two given contexts: a number line and a sport
survey.

For the analysis of the posed problems, we modified the scheme proposed by Leung
and Silver (1997), introducing the new category emergent problems. The difference
between solvable problems and emergent problems is that for the firsts, students know
the mathematics needed to solve them, while the seconds refer to problems that require
new mathematical concepts to be solved. The data analysis scheme is reported in Fig.

77.

[ STUDENTS' RESPONSES ]

PROBLEMS
NOT MATHEMATICAL
PROBLEMS

MATHEMATICAL PROBLEMS

EMERGENT

SOLVABLE NOT-SOLVABLE

Figure 77. Data analysis scheme of students’ responses in terms of emergent problems

Students posed totally 229 problems (95% of students’ responses) and 11 statements
(5% of students’ responses). Concerning the quality of the posed problems, including
mathematical problems/not mathematical problems and solvable/emergent/not solvable
problems, the results split between the two contexts used as starting points for the
problem-posing sessions, respectively the number line and the sport survey, are reported

in Table 32.
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Table 32. Students’ responses in terms of mathematical/not mathematical problems,
solvable/emergent/not solvable problems. Results are split between the two contexts

used for the problem-posing sessions.

Math. Not Math Solvable Emergent  Not Solvable
Problems  Problems
Cont. 1 count 91 36 count 65 i 19
(numbers line) ) .
%% within % within
problems 72 28 math 71 8 21
problems
Cont. 2 count 92 10 count 13 55 24
(sport survey) i e
% with % with ; .
prn‘;llun:z 90 10 w:m:; 14 60 26
problems
Total count 122 7 count 78 62 43
% with % withi
]:II.'I:I‘;[IBL'I:I].: 95 3 w:nn:: 43 34 23
problems
(p=<0.05; V=0.15) (p=<0.001; V=0.63)

The first (also statistically significant) difference between the two contexts appears in
terms of mathematical problems (p<0.05; V=0.15). Indeed, for the first context (number
line), the 72% of problems had been classified as mathematical problems and the 28%
of the problems as not mathematical problems, while for the second context (sport
survey), the 90% of problems had been classified as mathematical problems and the
10% of the problems as not mathematical problems.

The second difference occurs considering solvable and emergent problems (p<0,001;
V=0,63). Despite the total number of mathematical problems that can be solved
(solvable plus emergent) is comparable for the two contexts (79% for the number line
one and 74% for the sport survey), from the number line the 71% of mathematical
problems had been classified as solvable and the 8% as emergent, while for the sport
survey the 14% of mathematical problems had been classified as solvable and the 60%
as emergent.

In the lesson that followed the problem-posing activity, students solved some of the
problems they posed. In particular, the author chose some emergent problems dealing
with addition between decimal numbers (Appendix I). Students had to solve such

problems in pairs and explain their solving strategies. One of these problems consisted
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in calculating the total number in percentages of people who practice swimming, that
consisted in performing 17,6+26,1. Some students in order to perform the calculation,

transformed the decimal numbers in fractions and then summed the results:

17,6+26,1= 176 + 261 _ 437
10 10

=43,7

In another case, that consisted in performing 14,5+26,7, students summed separately
units and tenths and then summed together the obtained results. In this case, as shown in
Fig. 78, students had to reason about the meaning of obtaining 12 tenths in a decimal
system. The author decided to stimulate all the class to reason about this point, and
students were able to understand their previous error and correctly perform the
calculation paying attention to the positional notation. From this classroom discussion,

other students were able to reinvent the algorithm for the calculus in column (Fig. 79).

T
14t 54 | Loxie
6= T
48 e 41,2

o ————LE e

R A e

Figure 78. Students’ solving strategy to perform the addition 14,5+26,7
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Figure 79. Students’ solving strategy to perform the addition 17,6+26,1

8.5 Reflection on the P-ll teaching experiment

The aim of this teaching experiment consisted in investigating how different contexts
could promote or not emergent problem-posing. In the specific, we formulated the
hypothesis that semi-structured situations could support the process of emergent
problem-posing, i.e. the process in which problem-posing is a way for the emergence of
students’ formal ways of knowing. The mathematical topic that was chosen for the
activity was given by decimal numbers, and in particular we studied how emergent
problem-posing could be fostered to help students in understanding addition between
decimal numbers.

In the design phase of this research cycle we designed an HLT through the definition
of its three aspects: the learning goal; the hypothetical learning process and learning
activities. The learning goal was represented by addition between decimal numbers. The
hypothetical learning process consisted in making students experiencing a problem-
posing activity, in which a prominent role was given by the contexts from which
students had to pose their problems dealing with decimal numbers. Such contexts could

stimulate students in formulating problems that need new mathematical knowledge for
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their solution. On the basis of the designed HLT and of the actual learning process,
described in the teaching experiment phase, we can make some reflections.

As said before, the aim of the study consisted in evaluating how different contexts
could impact emergent problem-posing in semi-structured situations (Stoyanova and
Ellerton 1997). Two contexts were chosen: a number line and a sport survey. Similarly
to the previous research cycle (chapter 7), the first context can be seen as a rich and
realistic context in the perspective of RME, that comes from the world of mathematics.
The second context, instead, can be seen as an artifact (Bonotto 2013), and represents a
real context in Palm’s framework, since it represents a context that could really happen
in real life. From the data analysis two main aspects emerged.

The first aspect consists in the different impact of the two contexts in students’
responses, and in particular in the difference that occurred in terms of solvable and
emergent problems. Table 32, indeed, shows that students’ problem-posing responses in
terms of emergent mathematical problems were completely different. From the first
context the 8% of mathematical problems were emergent ones, while from the second
only the 60%. This means that the second context, the sport survey, offered more
opportunities in fostering the emergent nature of problem-posing. Moreover, a shift
between emergent and solvable mathematical problems from the first to the second
context occurred. One reason for such a significant difference can be attributed to the
fact that the first context was probably more abstract and less experientially significant
for students, and consequently they paid more attention to the solving aspect of the
problems they posed. At the same time, since the second context was richer in real data,
students were stimulated to pose problems in a freeway. Moreover, starting from the
first context the 28% of problems were not mathematical problems, while for the
second context the 10%. This means that a meaningful context for students fostered not
only emergent problem-posing, but also permitted students to focus on the mathematical
sense and meaning of the problems they posed.

The second aspect we want to focus on is that emergent problem-posing can promote
prospective learning (Freudenthal 1991). Indeed, in this study the fact that students had
to solve a problem created by themselves, stimulated them to develop a mathematical
strategy to solve a new mathematical task: performing addition between decimal

numbers. Emergent problem-posing, in analogy with emergent modelling, encouraged
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students in developing mathematical algorithms and procedures starting from their
informal mathematical strategies. As a consequence, problems posed by students
supported the same students in creating new mathematical knowledge, fostering in this
sense their prospective learning in a re-invention process. Moreover, students, while
solving the problems created by themselves, were able to develop more than only one
strategy, fact that contrasts the conviction that there is only one possible correct way to
solve a problem. We remark the fact that the kind of contexts used to implement
problem-posing activities was fundamental. Indeed in this study is clearly proved that
some contexts, that are experientially meaningful for students, such as the sport survey,
can foster in a deeper and significant way emergent problem-posing, while other
contexts, such as the number line in our example, did not give the same opportunity to
increase students’ knowledge. As a consequence, different contexts actually have a
different potential in enhancing emergent problem-posing, and such a potential seems to

be connected with the significance given by students to the context.

8.6 Conclusions from P-l and P-ll research cycles

The aim of the research cycles P-I and P-II consisted in answering to the second
research question, i.e. studying how different contexts can influence the process of
problem-posing. In the specific, we focused on two aspects of the problem-posing
process, namely its relations with creativity and emergent problem-posing. As a
consequence, from the second research questions, two more specific sub-questions

emerged:

RQ2.1. How do different contexts influence students’ creativity in problem-

posing?

RQ2.2.  How do different contexts influence emergent problem-posing?
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The research cycle P-1 focused on the research question RQ2.1, while the research
cycle P-II focused on the research question RQ2.2. From these design research cycles
some conclusions can be drawn.

The aim of the research cycles P-I and P-II consisted in studying how different
contexts influence students’ problem-posing abilities in terms of creativity and emergent
problem-posing. To answer to our research questions, the results of two teaching
experiments had been reported, in which students had been engaged in semi-structured
(Stoyanova and Ellerton 1997) problem-posing activities that started from different
contexts. In both the teaching experiments, the chosen contexts had a main difference:
one context was taken from the mathematical world (number line) and the other was
represented by an artifact (mobile phones leaflet and sport survey statistic) (Bonotto
2013).

Concerning students’ creativity, the first research cycle showed that there was not a
significant difference between the two contexts used, i.e. the mobile phone leaflet and
the number line. However, significant differences occurred in terms of context and not
context related problems. Indeed, students when had to pose problems from the number
line, constructed a new setting for their problems. This fact has two main implications.
The first one consists in the fact that actually the number line was not a realistic context
for students. In fact, even if they previously worked with it in mathematics classrooms,
they did not recognise it as a meaningful context, and the posed problems had been set
in other real contexts chosen by the same students. The second point, that is linked to
the first one, is that it is fundamental that the context should be experientially significant
for students. When the context is not significant, students attach to it a new meaning,
not working with the given context but building a new one. In conclusion, answering to
the research question RQ2.1, if the context is meaningful for students there is no
evidence in differences in terms of creativity.

Concerning emergent problem-posing, instead, the number line and the sport survey
produced completely different results. Indeed, the sport survey offered more
opportunities in fostering the emergent nature of problem-posing, and as a consequence
also students’ prospective learning. This means that the kind of context used to
implement problem-posing activities is fundamental. Indeed, in our case we proved that

a suitable artifact can foster in a deeper and more significant way emergent problem-
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posing, while other contexts, such as the number line in our example, did not give the
same opportunity to increase students’ knowledge.

We want to stress the fact that the aim of these cycles was to start investigating the
impact of different contexts on some aspects of problem-posing (creativity and
emergent problem-posing), and not to compare the frameworks of RME and Palm about
real contexts. What emerged from the reported studies, is that artifacts, that were closer
to Palm’s framework since their component of feasibility, were more familiar to
students who felt them as more realistic. This fact tells that this context is not more
valid in general, but, since it was more significant for students, it offered them more
opportunities in terms of emergent problems. Therefore, the key point is that the context
must be meaningful for students, and this characteristic is actually asked by both the
proposed frameworks. However, from this analysis another consideration appears: it is
very difficult to make students familiar with contexts that come from mathematics. We
believe that this could be a great challenge for the future, since such contexts offer
significant starting points also for vertical mathematization (Freudenthal 1991; Treffers

1987).
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9. Conclusions and Discussion

9.1 Introduction

This research aimed at designing a re-invention process (Freudenthal 1991) to integrate
mathematical modelling in the regular school practice in the Italian context. In the
specific, we investigated how this process should be implemented and used to help
students give sense to their mathematical activity. The main research question of this

project was:

How, and to what extent, can mathematical modelling be integrated in the

teaching and learning of mathematics in a guided re-invention paradigm?

In order to answer to our research question, we decided to adopt the
perspective of Realistic Mathematics Education, in order to design a learning
trajectory that brings students to invent their mathematical principles in a
modelling environment. To design such a re-invention process, our choices had
been the design heuristics of didactical phenomenology and emergent modelling,
and the use of problem-posing in relation to such heuristics.

The main research question was split in two more specific questions. The first
research question dealt with the design of such modelling activities with the
focus in the promotion of students’ creation of new mathematical concepts or
strategies they need to solve a real problem. In the specific, we investigated how
activities designed following the MEA principles could foster the emergent

nature of modelling.:
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RQOI. How can Model Eliciting Activities promote the process of emergent

modelling?

The second research question consisted in start investigating the impact in the
use of different contexts during problem-posing activities in terms of students’

creativity and emergent problems:

RQO2. How do different contexts influence the process of problem-posing?
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Concerning the second research question, we focused on two aspects of the
problem-posing process, namely its relations with creativity and emergent
problem-posing. As a consequence, from the second research questions, two

more specific sub-questions emerged:

RQ2.1.  How do different contexts influence students’ creativity in problem-

posing?

RQ2.2.  How do different contexts influence emergent problem-posing?

To be able to answer to the research questions we had to create an
instructional environment with which it could be possible to study how and to
what extent the suggested processes could be fostered. An instructional sequence
was therefore necessary to answer to the research questions, and consequently a
research design that allows for revising theories, hypothesis and instructional
activities was needed. Furthermore, new teaching materials that support new
types of learning must be developed, making the design process an integrated
part of the research. In order to answer to our research questions, the research
methodology adopted was the one of design research, in which planning and
creating innovative educational settings and analyzing teaching and learning

processes is given a central role.
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The answers to the first research question are described in section 9.2, while
the second research question is answered in section 9.3. Section 9.4 is dedicated
to the discussion of other important factors of the research project, and to some
conclusions in relation to the global purpose of the Univerisity project that this

research is part of. We conclude in section 9.5 with some recommendations for

teaching and future research.

9.2 Answers to the first research question

In order to answer to the first research question, we implemented two design research
cycles: M-I and M-II. Each cycle was made by three phases: a design phase, a teaching
experiment and a retrospective analysis. Concerning the design phase, this was
explicated through the development of a Hypothetical Learning Trajectory, that

consisted in defining a learning goal, some learning activities and a hypothetical

learning process.
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Figure 80. Research cycles M-I and M-I1

Before the implementation of the research cycles M-I and M-II, a

questionnaire for mathematics teachers was developed. This questionnaire,
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together with the theoretical background, constituted the preparation phase of
the design research. The aim of the questionnaire was to know more about
teachers’ knowledge and practice of mathematical modelling and problem-
posing in the Italian context, in order to identify possible starting points for the
research cycles. The questionnaire had an exploratory character. Concerning
modelling, its aim was to know if teachers include in their school practice some
aspects of the modelling process. The results from the questionnaire show that
teachers regularly include some aspects of modelling in their classroom
activities, such as in using real contexts as starting situations for mathematics
lessons and showing real applications of mathematics. Despite this disposition,
teachers expressed a need in both more materials and preparation to implement
activities based on realistic contexts, in line with Blum (2015). As a
consequence, from the questionnaire we understood that teachers must be given
more opportunities to face with modelling activities, and moreover prototypes of
practices based on realistic problematic contexts available for teachers of every
school level need to be developed. In this way teachers would have at their
disposal models of modelling activities that can be adapted and implemented in
their classrooms. The results are in line with the choice of the design research
methodology, because the same teachers expressed the need of innovative
educational settings for their teaching. In such settings, meaningful real contexts
are crucial, and as a consequence the role of the design heuristic of didactical
phenomenology would become fundamental in designing instructional activities
with the aim of choosing problem situations that could provide the basis for the
development of the mathematical concepts or tools we wanted students to
develop.

In chapter 5 and 6 the two design research cycles M-I and M-II have been
presented. Such cycles had the additional goal to provide teachers with design
schemes and prototypes of practices in line with the University project and
teachers’ requests from the questionnaire.

The first research cycle M-I was conducted in a second-grade class (age 7).
Its focus consisted in studying how emergent modelling should be fostered to

help students understanding some aspects of the multiplicative structure, and in
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particular the distributivity property of multiplication over addition. Our
hypothesis was that a modelling activity designed following a model eliciting
sequence (Lesh et al. 2003) with the use of suitable artifacts could actually foster
the emergent nature of modelling. The design phase, the teaching experiment
and the retrospective analysis of this research cycle are described in sections 5.3,
54,5.5.

The second research cycle M-II was conducted in a twelfth-grade class (age
17). In relation to the research question RQ1, we investigated how emergent
modelling can be fostered to help students understanding some aspects of 3D-
Euclidean geometry. In particular, our hypothesis was that facing students with a
real problem solving situation designed following a model eliciting sequence
(Lesh et al. 2003), with the use if suitable artifacts, could actually foster the
emergent nature of modelling, seen as a process in which students develop
mathematical concepts from informal realistic contexts. The design phase, the
teaching experiment and the retrospective analysis of this research cycle are
described in sections 6.3, 6.4, 6.5.

In both the research cycles the aim of the data analysis was to reconstruct the
classroom progress, which resulted in an empirical grounded understanding of
students’ reasoning during the classroom activity. In order to be able to
reconstruct the learning process and verify our hypothesis, different kinds of
data were collected: pre-test; transcriptions of classroom dialogs; observations of
group working; students’ final projects, students’ individual reflections and
feedbacks.

The results from the research cycles M-I and M-II, given by the analysis of
our preliminary hypothesis respect to the actual learning process occurred in the
teaching experiments, permitted to formulate answers to the first research
question RQI.

In agreement with the process of emergent modelling, the assignments given
to students stimulated them to create and work with new mathematical concepts
they did not know before. In the first teaching experiment, students were asked
to design a floor tiling of their classroom and to specify the cost for such design.

The strategy developed by students to solve the task, that consisted in grouping
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the tiles with the same shape and then multiply by the associated costs, permitted
them to re-invent the mathematical concept of distributivity of multiplication
respect to addiction. This is evident from different data such as classroom
dialogues and students’ final projects, in which students were able to explain and
reproduce such mathematical concept. In the second teaching experiment,
students had to make a project dealing with packaging (Fig. 46). In particular,
students had to calculate the capacities of some packaging seen as irregular
solids.  Students decomposed such packaging in many regular solids, and to
obtain an approximation of their volume, they calculated the volume of the
regular solids by which the packaging was decomposed, and then summed these
volumes. In other words, since students had to calculate the volume of an
irregular solid, they were able to re-invent the equidecomposability principle.
This fact is evident in students’ projects (Fig. 49) and in their final individual
reflections. Guided by the interaction with the teacher and peers, students in both
the teaching experiments were able to reason and explain new mathematical
concepts or properties. Such re-invented concepts become meaningful for
students, because no longer mechanical rules but rooted in their experience and
directly constructed by themselves to solve a concrete problem in a meaningful
context.

The re-invention process was possible not only thanks to the designed model
eliciting sequence, but also to the use of suitable artifacts, that permitted to
foster students’ disposition in creating mathematical tools and concepts needed
to solve the assignments. Moreover, the way in which the problem or these
artifacts are presented to students is fundamental, since some constraints,
omission of data or other information could stimulate deeply such re-invention
process. As a consequence, the role of the RME heuristic of didactical
phenomenology is clearly evident: it guides in choosing not only the contexts of
the task, but also some task constraints and related materials appropriate to
provide basis for the development of mathematical concepts (in our research
cycles distributivity of multiplication respect to addition, equidecomposability

principle) we wanted students to develop.
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Another important aspect from these research cycles is the importance of
moments for personal reflection, in particular during group work. Indeed, the
retrospective analysis of the M-I research cycle highlighted the necessity to
engage students in a final individual reflection on the whole modelling process.
This individual activity was introduced in the second research cycle in the
reflection and debriefing phase, wherein students had the possibility to reflect
individually on the whole modelling process, observing strengths and
weaknesses of their projects; elaborating their own conclusions to model a
solution for the model eliciting activity; analysing similarities or differences
with other solution plans; changing their beliefs and attitude; reinforcing
argumentation abilities.

The modelling activities had also strong social implications. Several students
who did not typically engage during mathematics classes became active
participants while solving the task. As a consequence, the introduction of new
socio-mathematical norms (Yackel and Cobb 1996) and the use of interactive
teaching methods, could promote cooperation and inclusion. Students being
active participants to the learning process are able to give meaning to new
mathematical knowledge and sense to their mathematical activity.

In conclusion, answering to the first research question of this project, we can
affirm that model eliciting activities together with suitable artifacts could foster
the emergent nature of modelling, that confirms our hypothesis. As explained
before, this result can be attributed to a combination of several factors: the
choice of realistic and rich problems that stimulate students to elaborate formal
mathematical concepts mathematizing their informal solving strategies, rooting
in this way the new understandings in experientially real phenomena; the use of
suitable artifacts, that present mathematics as a means of interpreting and
understanding reality and increasing the opportunities for observing
mathematics outside of the school context (Bonotto 2005); the role of the

teacher, who guides students in re-inventing mathematics in an active way.
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9.3 Answers to the second research question

In order to answer to the second research question, we implemented two design research
cycles: P-I and P-II. Each cycle was made by three phases: a design phase, a teaching
experiment and a retrospective analysis. Concerning the design phase, in the research
cycle P-I this was explicated through the development of an instructional design that
consisted in the formulation of some hypothesis together with instructional activities
and materials, while in the research cycle P-II through the development of a
Hypothetical Learning Trajectory, that consisted in defining a learning goal, some

learning activities and a hypothetical learning process.
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Figure 81. Research cycles P-I and P-II

Before the implementation of the research cycles P-I and P-II, a questionnaire
for mathematics teachers was developed. This questionnaire, together with the
theoretical background, constituted the preparation phase of the design research.
The aim of the questionnaire was to know more about teachers’ knowledge and
practice of mathematical modelling and problem-posing in the Italian context, in
order to identify possible starting points for the research cycles. The
questionnaire had an exploratory character.

Concerning problem-posing, it emerged that this educational strategy is not
known by teachers, and consequently not regularly implemented at school. In

fact, less than a half of the participants (39,6%) adopted it during its school
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practice. Problem-posing, instead, should become an integral part of pre-service
and in-service teacher training courses, in order to give teachers opportunities to
increase their knowledge, before, and their practice, after, on problem-posing.
Such improvement in teachers’ knowledge could help teachers to recognise
intersection points between different methodologies and strategies and to adopt
coherent teaching methods.

In chapter 7 and 8 the cycles concerning problem-posing had been reported.
The main point was to integrate problem-posing in the school practice, and as
stated in consequence of the exploratory study, a key point to pursue this goal is
to reinforce the use of real contexts to make students pose their own problems.
The main difficulty that could occur in this scenario is to know what a real
context could be for students, and how different contexts can affect students’
performances in problem-posing. In this direction, we investigated such
influence in terms of creativity and emergent problem-posing.

The first research cycle P-I was conducted in a sixth-grade class (age 12). It
aimed at studying how different contexts influence students’ problem-posing
performances in terms of creativity, focusing in this way on the sub-question
RQ2.1. Our idea was that semi-structured problem-posing activities in which
real contexts are used as starting situations could foster students’ creativity.
However, it was not clear how different contexts influence students’ creativity,
and which characteristics such contexts should have. As a consequence, we
decided to consider different real contexts from different theoretical
perspectives. The design phase, the teaching experiment and the retrospective
analysis of this research cycle are described in sections 7.3, 7.4, 7.5.

The second research cycle P-1I was conducted in a fourth-grade class (age 9).
In relation to the research question RQ2.2, we investigated how different
contexts could promote or not emergent problem-posing. Our hypothesis was
that semi-structured situations could support the process of emergent problem-
posing, i.e. the process in which problem-posing is a way for the emergence of
students’ formal ways of knowing. However, it was not clear a priori how

different contexts could influence the emergent nature of problem-posing. The
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design phase, the teaching experiment and the retrospective analysis of this
research cycle are described in sections 8.3, 8.4, 8.5.

The results from the research cycles P-I and P-II permitted to formulate
answers to the second research question RQ2. In particular, the influence of
different contexts was analysed in terms of creativity in the research cycle P-I,
that aimed at answering to the sub-question RQ2.1, and in terms of emergent
problem-posing in the research cycle P-II, that aimed at answering to the sub-
question RQ2.2.

Concerning creativity, we investigated how different contexts influence
students’ creativity in semi-structured problem-posing activities. Real contexts
from different theoretical perspectives were chosen: a number line, that can be
seen as a rich and realistic context in the perspective of RME, and a mobile
phones leaflet, that can be seen as an artifact (Bonotto 2013), representing a real
context in Palm’s framework. Not a significant difference occurred between the
use of the two contexts. Indeed, both the contexts stimulated in the same way
students’ creativity (Table 27). However, the results indicate that a fundamental
factor that influenced students’ problem-posing performances, and especially in
terms of creativity, is the significance given by students to the context. Indeed,
when the context is not experientially meaningful for a student, as in the case of
the number line, she/he associates a new meaning to the context, using some
elements from it and re-creating a new more meaningful context in which setting
her/his problems. In our study, this process of context free re-construction was
possible because no constraint was explicitly maid during the problem-posing
activity concerning the fact that students had to refer to the number line when
posing problems, but the only constraint was to pose at least three problems
from that context, and not in that context. However, significant differences
occurred in terms of context and not context related problems. Indeed, students
when had to pose problems from the number line, constructed a new setting for
their problems. This fact has two main implications. The first one consists in the
fact that actually the number line was not a realistic context for students. In fact,
even if they previously worked with it in mathematics classrooms, they did not

recognise it as a meaningful context, and their posed problems had been set in
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other real contexts chosen by students. The second point, that is linked to the
first one, is that it is fundamental that the context should be experientially
significant for students. When the context is not significant, students attach to it
a new meaning, not working with the given context but building a new one. In
conclusion, answering to the research question RQ2.1, if the context is
meaningful for students there is no evidence in differences in terms of creativity.

During the problem-posing sessions of the research cycle P-I, students,
starting from given contexts, formulated some mathematical problems that take
into account some concepts and notions that have not already been introduced by
the teacher during previous lessons. Starting from these suggestions, we
believed indispensable to start investigating how different contexts could
promote or not emergent problem-posing, that was investigated in the following
research cycle P-11.

The aim of the research cycle P-II consisted in evaluating how different
contexts could impact emergent problem-posing in semi-structured situations
(Stoyanova and Ellerton 1997). As in the previous cycle, two contexts were
chosen: a number line, that can be seen as a rich and realistic context in the
perspective of RME, and a sport survey, that can be seen as an artifact (Bonotto
2013), representing a real context in Palm’s framework. In terms of emergent
problem-posing, the two contexts had a different impact on students’ responses.
Indeed, students’ problem-posing responses in terms of emergent mathematical
problems were completely different (Table 32), indeed the sport survey offered
more opportunities in fostering the emergent nature of problem-posing.
Moreover, a shift between emergent and solvable mathematical problems from
the first to the second context occurred. One reason for such a significant
difference can be attributed to the fact that the first context was probably more
abstract and less experientially significant for students, and consequently they
paid more attention to the solving aspect of the problems they posed. At the
same time, since the second context was richer in real data, students were
stimulated to pose problems in a freeway. Moreover, emergent problem-posing
actually promoted prospective learning (Freudenthal 1991). The fact that

students had to solve a problem created by themselves, stimulated them to
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develop a mathematical strategy to solve a new mathematical task: performing
addition between decimal numbers. Emergent problem-posing, in analogy with
emergent modelling, encouraged students in developing mathematical
algorithms and procedures starting from their informal mathematical strategies.
As a consequence, problems posed by students supported the same students in
creating new mathematical knowledge, fostering in this sense their prospective
learning in a re-invention process. Moreover, students, while solving the
problems created by themselves, were able to develop more than only one
strategy, fact that contrasts the conviction that there is only one possible correct
way to solve a problem. We remark the fact that the kind of contexts used to
implement problem-posing activities was fundamental. Indeed in this study is
clearly proved that some contexts, that are experientially meaningful for
students, such as the sport survey, can foster in a deeper and more significant
way emergent problem-posing, while other contexts, such as the number line in
our example, did not give the same opportunities to increase students’
knowledge. As a consequence, different contexts actually have a different
potential in enhancing emergent problem-posing, and such a potential seems to

be connected with the significance given by students to the context.

9.4 Discussion

In the previous section we presented and discussed answers to the research questions of

the study. In this section, we will focus on other aspects related to this project. Firstly,

we will discuss the results in relation to the general purpose of the University project

that this research is part of. Then, we report some considerations concerning two

components that played a fundamental role in achieving the results: the RME heuristics

of didactical phenomenology and guided reinvention.

Overall aim of the project
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The present research project found its roots in the need of a paradigmatic change in the

didactics of mathematics that aims to build a bridge between reality, in which intuition

plays a fundamental role, and school life, in which exercise and memorization continue

to play an important role. In the specific we looked at the Italian context, where, despite

some experiences of innovation and reflection on the curriculum, teaching strategies and

learning environments, still persists a resistance to abandoning traditional teaching

models of transmission type.
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As stated in section 1.2, this study is part of a larger project of the University
of Padova, concerning teachers’ professional development. Concerning
mathematics education, its overall purpose is to provide mathematics teachers
with methodological models and format of school practices based on

mathematical modelling. This purpose was outlined in the following points:

implementing some teaching experiments wherein connecting mathematics and

daily-life experiences;

start developing prototypes of significant didactics practices based on
mathematical modelling ready to be transferred and implemented in different

concrete school contexts;

developing specific models for professional development courses based on

mathematical modelling for mathematics teachers of every school level.

The results and conclusions from the design research cycles outlined in the
previous section, have also important implications in relation to the purposes of
such University project. The methodology of design research, indeed, permitted
to work in direct contact with schools in collaborations with mathematics
teachers. The research cycles had been implemented in schools of different
levels, from primary to secondary. Each research cycle has provided a teaching
experiment, wherein one of the main points consisted in reducing the gap
between mathematics in- and out- the school context. In the teaching

experiments concerning mathematical modelling, the methodological approach
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of model eliciting was presented. In the specific, the activities had been designed
following specific methodological principles, that can be used and/or adapted by
mathematics teachers to design modelling activities in other contexts.
Concerning problem-posing, two analytic schemes were presented, in order to
evaluate students’ problem-posing performances in terms of creativity and
emergent problems. Moreover, in all the research project the design phase had a
prominent position, designing activities, materials and their implementations
were extensively described, in order to furnish teachers with operative examples
of didactics practices on modelling and problem-posing, ready to be transferred
and implemented in different concrete school contexts. Concerning the last point
of the University project, namely the development of models for professional
courses based on mathematical modelling, in November 2019 we started a
teacher professional development course on mathematical modelling. The course
was structured in five meetings each of 2 hours. The aim of the course consisted
in improving teachers’ mathematical modelling competencies (Borromeo Ferri
2014): theoretical competence; task competence; instruction competence;
diagnostic competence (Table 2). However, due to the pandemic circumstances
of COVID-19, it was not possible to complete the last part of the teachers’
professional development course, regarding the implementation of teachers’
designed modelling activities and their presentations and reflections, before the
end of this project. As a consequence, not enough data had been collected to
analyze the efficacy of such training. The conclusion of the course is postponed

to the next year.

Didactical phenomenology

The goal of this research was to design a re-invention process (Freudenthal 1991) to

integrate mathematical modelling in the regular school practice in the Italian context. In

the specific, we wanted to investigate how this process can be implemented and used to

help students give sense to their mathematical activity.
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In section 9.2, 9.3 we answered to the research questions of the study. To
achieve such results two fundamental tools have been represented by the RME
heuristics of didactical phenomenology and guided reinvention.

Indeed, when designing and implementing activities based on mathematical
modelling and problem-posing, a central role should be given to the contexts for
mathematical problems. These contexts must be experientially significant for
students and able to evoke new mathematical concepts or strategies for their
solution. In this direction the challenge is to find phenomena that beg to be
organized by the concepts that are to be taught (Freudenthal 1983). As a
consequence, the role of didactical phenomenology is crucial, since it guides
teachers to find problem situations that could provide the basis for the
development of the mathematical concepts or tools they want students to
develop. Such problem situations could lead to solutions that are first specific

for that situation but can be generalized to other problem situations.

Guided reinvention

The meaning of guided reinvention is that students should experience the learning of

mathematics as a process similar to the one by which mathematics was invented

(Gravemeijer 1994). Students, mathematizing their mathematical activity can reinvent

mathematics. This mathematization process is possible thanks to the guidance of the

teacher and the instructional design.
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In this research project, the role of the teacher, represented by the researcher
that designed and conducted the teaching activities, was fundamental. Indeed,
the teacher encouraged students to use their own methods; stimulated students to
articulate and reflect on their personal beliefs, misconceptions and informal
problem-solving and modelling strategies (Bonotto 2005). Consequently,
learning become a constructed understanding through a continuous interaction
between teacher and students, that can be synthetized, using Freudenthal’s
words, in teaching and learning as guided reinvention, reinforcing in this way

mathematical reasoning and sense-making.
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9.5 Recommendations

9.5.1 Recommendations for teaching

This

final section contains recommendations concerning instruction theories,

educational practices and future research on mathematical modelling.
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This research contributes to a local instruction theory on the teaching and
learning of modelling and problem-posing, through the descriptions of shifts in
students’ reasoning, specific activities, tasks development, the design of the
sequences of the activities, the role of didactical phenomenology and guided
reinvention, the role of the teacher, and analytic schemes.

The design research approach resulted in an empirically based contribution to
a local instruction theory. However, experimenting in a settled school program
limited the possibilities for our research and the teaching experiments were
confined to a series of mathematics lessons. Moreover, teachers were not able to
guide the students during the lessons, that instead had been carried on by the
researcher. We recommend future experiments where mathematics teachers,
after having received a professional training on such educational strategies,
implement these instructional sequences in their regular lessons. These
experiments are needed for the constitution of a robust local instruction theory
for the learning and teaching of modelling and problem-posing.

The local instruction theory, including the instructional activities, offered
teachers a framework of reference for planning their lessons and their practical
teaching (Gravemeijer 2004a). Further research is needed to investigate which
description of the instructional sequence, together with the underlying theory,
can indeed be used as a means of support for teachers and for other parties who
influence the course of affairs in education (De Lange et al. 2001).

In order to fill the gap between in- and out-of-school mathematical
competencies, we recommend the positive role of emergent modelling and

problem-posing activities. Designing model eliciting activities could actually
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increase students’ mathematical knowledge. Students indeed can re-create
mathematical concepts, tools, strategies, starting from their informal solving
strategies. In this process the importance of the context of the problems and the
role of the teacher must be taken into account. Contexts should be experientially
meaningful for students, in order to stimulate them to root their new
mathematical knowledge in their personal experience. Such contexts are central
also in problem-posing activities. In particular, they enhance both students’
creativity and also the emergence of new mathematical concepts starting from
students” posed problems. Students are able to develop concepts and
instrumental competencies through activities based on real situations. These
modelling activities should be valued and discussed seriously by the class.
Current assessment practices appeared to focus both teacher and students on
algorithmic skills. Instead, more emphasis should be put on assessment which
addresses modelling competencies through open-ended investigations (Goldin,
2003; De Haan & Wijers, 2000; van den Heuvel-Panhuizen, 1996; De Lange,
1987, 1999).

9.5.2 Recommendations for future research

This study has provided some insights into the constraints and possibilities for the

integration of modelling and problem-posing in mathematics lessons. Future research is

recommended especially in the following points:
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in accordance with Blum (2015), mathematical modelling is high demanding for
teachers. Indeed, mathematics teachers should become able of recognizing the
mathematics incorporated in daily life. This requires knowing how to integrate
pedagogical-didactic and disciplinary knowledge together, paying attention also
to the particular school context and the cultural environment in which operating.
Indeed, teachers should be able to: i) see mathematics incorporated in the real
world as a starting point for mathematical activities (Bonotto 2005); ii)

anticipate the mathematics needed for the paths that students might explore; iii)
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put students in familiar situations in which they clearly understand the need for
mathematical constructs, integrating also their everyday knowledge; iv) provide
meaningful design specs involving constraints that enable students to weed out
inadequate ways of thinking. In order to provide teachers with designing
principles and practical materials to develop modelling activities in their
classrooms (and to increase their knowledge of problem-posing), in the future
we believe that improvements in teachers’ pre-service and in-service courses are
needed, in particular: i) changing the type of activities with more realistic
problem situations; 1ii) improving teachers’ knowledge of some teaching
strategies, such as problem-posing, that could be adequately chosen by teachers
for the teaching of specific mathematical topics; iii) connecting mathematics and
classroom teaching creating prototypes of practices based on modelling and

problem-posing available for teachers;

in this project we started investigating the impact of different contexts on some
aspects of problem-posing, i.e. creativity and emergent problem-posing. What
emerged from the research cycles is that artifacts, closer to Palm’s framework
since their component of feasibility, were more familiar to students who felt
them as more realistic, respect to contexts from the world of mathematics. This
fact tells that artefacts are not more valid in general, but, since they were more
significant for students, they offered them more opportunities in terms of
emergent problems. Therefore, the key point is that the context must be
meaningful for students. However, from this analysis appears very difficult to
make students familiar with contexts that come from mathematics. We believe
that this could be a great challenge, since such (mathematical) contexts can offer
significant base points also for vertical mathematization (Freudenthal 1991;

Treffers 1987);

in the explorative study, only some aspects of the modelling process were taken
into account. A deeper understanding of teachers’ effective practice of the entire
modelling process and about their knowledge of other aspects of modelling is

needed. For the future a deeper investigation of teachers’ practices linked to both
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modelling and problem-posing would be performed through a series of

interviews and classroom observations;

modelling and problem-posing are closely related. However, further
investigation is needed in: i) analyzing specificities and common points of each
strategy; i1) developing designing principles to integrate problem-posing in the
modelling process; iii) providing empirical evidence from the classroom in order

to support the integration between mathematical modelling and problem-posing
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Appendix

QUESTIONNAIRE
Educational practices in the teaching of Mathematics
The following questionnaire is part of a project at the University of Padova, Italy. The
questionnaire is made by three sections and it deals with the educational practices of
Mathematics teachers. 20 minutes are needed to complete it.
We remind you that the questionnaire is anonymous, and the data collected will be used only

for this research in respect of the privacy.
Thank you for your collaboration

ANAGRAFIC SECTION

1. Year of birth:
2. Nationality:
3. Gender: M F I don’t want to say

4. Higher Graduation:

5. School level in which you are teaching:
Primary
Secondary
6. How many years are you been teaching in this level?

7. In which town are you teaching?



EDUCATIONAL PRACTICES

8.  During your teaching activity, you adopt the following strategies:

Never Rarely Sometimes Often Always
Lectures 1 2 3 4 5
Individual work 1 2 3 4 5
Group work 1 2 3 4 5
Guided lessons 1 2 3 4 5
Support activity 1 2 3 4 5
Laboratories 1 2 3 4 5
Other........... 1 2 3 4 5

9. During your teaching activity, you adopt the following tools:

Never Rarely Sometimes Often Always
Textbooks 1 2 3 4 5
Notes 1 2 3 4 5
Interactive board 1 2 3 4 5
Software 1 2 3 4 5
Calcolator 1 2 3 4 5

Math games 1 2 3 4 5
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Audio and video tools 1 2 3 4 5
Artefacts 1 2 3 4 5
Library 1 2 3 4 5
Other........... 1 2 3 4 5

10.  Based on your teaching experience, you perform the following activities:

Never Rarely Sometimes Often Always

I use starting real
contexts for 1 2 3 4 5
mathematical lessons

I show and work with
some applications of 1 2 3 4 5
mathematics

11. Do you include problem-solving activities during your teaching? = Yes No
If yes, describe a significant example.

12. Do you implement problem-posing activities during your teaching? Yes No
If yes, describe a significant example.

TEACHING DIFFICULTIES

13. Based on your experience, express the level of difficulty you have found teaching the
following topics:
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No one Just a few Enough Many A lot

Arithmetic 1 2 3 4 5
and Algebra

Euclidean 1 2 3 4 5
geometry

Analitic

geometry 1 2 3 4 5
Functions 1 2 3 4 5
Probability

and 1 2 3 4 5
Statistics

Logic 1 2 3 4 5

14. In conclusion I ask you one (or more) suggestions you believe indispensable to improve
your teaching of mathematics.
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Scuola Primaria — Peschiera del Garda

Risolvi i seguenti problemi. Ricordati di spiegare il procedimento che hai seguito.
[solve the following problems, explaining your solving strategy]

1. Un giornalino costa 3 euro e 50 centesimi. Questi sono i soldi che hanno tre
bambini:
[A newspaper costs 3 euros and 50 cents. Children have the following money:]

Giulio

Umberto .|| o
&

Claudio ,fff @

Uno dei bambini non ha abbastanza soldi per comprare il giornalino. Chi?
[One of the children does not have enough money to buy the newspaper. Who is?]

2. Maria va al supermercato per comprare 4 confezioni di bibite. Ogni confezione
contiene 6 lattine. Quante lattine di bibite compera Maria?
[Maria goes to the supermarket to buy 5 packs of drinks. Each pack is made by 6
cans. How many cans does Maria buy?]
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3. Un barista per preparare tre panini ha usato sei fette di pane, tre fette di
pomodoro, una mozzarella. Per fare sei panini ha bisogno di quanto pane,
pomodoro e mozzarella?

[A bartender used six slices of bread, three slices of tomato, one mozzarella to make
three sandwiches. To make six sandwiches, how much bread, tomato and
mozzarella does he need?]

4. Lanonna decide di preparare quattro crostate. Decide di usare:
[the Grandmother wants to bake four pies. She uses:]

Un vasetto di marmellata
ogni due crostate

[a jar of jam every two
pies]

Tre uova per ogni crostata
[three eggs for each pie]

Quanti vasetti di marmellata e quante uova dovranno essere usati in tutto?
[How many jars of jam and eggs does she totally need?]
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5. 1l papa e uscito di casa con una banconota da 20 euro. Quante riviste da 6 euro puo

comprare al massimo?
[Dad left the house with 20 euros. If a magazine costs 6 euros, how many

magazines can he buy at most?]
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1. Explain the task in your own words.

2. Write the measures of the tiles:

20 cm

L ]
L 3

.....

3. How many centimeters do the sides of the strip measure?
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4. How many centimeters do the sides of the classroom measure?

..... cm
5. Fill the table:
Shape Number of tiles Cost (euros)
Square 7
Rectangular 3
Triangular 6
Triangular 12
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Square 18

Scuola Primaria — Peschiera del Garda

Risolvi i seguenti problemi. Ricordati di spiegare il procedimento che hai
seguito.
[solve the following problems, explaining your solving strategy]

Un pacchetto di figurine costa 3 euro.
Quanto costano tre pacchetti di figurine?

[a pack of stickers costs 3 euros. How much are three packs of stickers?]

Simone é uscito con una banconota da 20 euro.
Quanti pacchetti di figurine pud comprare?

[Simone left with 20 euros. How many packs of stickers can he buy?]

Una tavoletta di cioccolata costa quattro euro. Questi sono i soldi che hanno tre
bambini:
[A bar of chocolate costs four euros. This is the money that children have:]
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=\

—
Lorenzo

-

Gigi

Andrea

Chi potra acquistare tre tavolette di cioccolata?

[Who can buy three bars of chocolate?]

3. Guarda la figura qui sotto.
[Look at the picture]

Quanti tappi € lunga la penna?

[How many caps is the pen long?]
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Ogni tappo misura 2 cm. Quanti centimetri € lunga la penna?

[Every cap measures 2cm. How many centimeters is long the pen?]

| venti alunni di una classe vogliono preparare una macedonia di fragole e
banane per tutta la classe. Decidono di usare:

[A class is made by 20 students, who want to prepare a fruit salad for all the
classroom. They use: a banana every 4 students; 3 strawberries for every

student]]

1 banana ogni 4 alunni

1.4.‘ %%th /
\, £ % 3 fragole per ogni alunno

Quante fragole e banane dovranno usare in tutto?
[How many strawberries and bananas do they totally need?]
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Liceo Scientifico Curiel - Padova

1. Quale definizione daresti di solido?
[What may you define as a solid?]

2. Conosci alcuni solidi?

[Do you know some solid?]

Se si, disegna i solidi che conosci e scrivine il nome.
[1f so, paint solids you know and write their names]

Si

No|
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3. Come calcoleresti il volume dei seguenti solidi?

[how do you calculate the volume of the following solids?]
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Scuola Secondaria — Peschiera del Garda

1. Rispondi alle seguenti domande:
[Answer to the following questions]

a) Calcolai 1£ del numero 88.

[perform 6/11 of 88]

b) Ho speso 5 di 96 euro. Quanti soldi ho ora?

[I spent 5/8 of 96 euros. How much money do | still have?]

2. Semplifica ai minimi termini le seguenti frazioni:
[reduce the following fractions]

g 3B=... a) 4=
1 99

d) 275= .. by 750= ..
325 10

3. Senza eseguire operazioni, inserisci le frazioni sulla linea dei numeri:
[without performing any operations, put the fractions on the numbers line]

y —2;0,5

(IR
N |+~
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4. Risolvi le seguenti operazioni:

266

[solve the following expressions]

a) l_i + £+Z _1
5 10) \3 5
4 1
b) 713 2)

Ogni lettera sulla linea dei numeri corrisponde ad un numero. Ad esempio, la
lettera A corrisponde al numero 0.

[each letter on the numbers line corresponds to a number. For example, A
corresponds to 0]

a) Quale lettera corrisponde al numero 0,5 ?
[which letter corresponds to 0,57?]

b) Quale lettera corrisponde al numero 6 ?

[which letter corresponds to 6/6?]

c) Quale lettera corrisponde al numero -1 ?
2

[which letter corresponds to -1/2]

d) Quale lettera corrisponde al numero E?

[which letter corresponds to 3/27?]
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6. Risolvi il seguente problema spiegando il procedimento seguito.

267

[solve the following problem, explaining your strategy (Fig. 54)]

Un ciclista decide di andare da Padova a Firenze in bicicletta. Le due citta

distano circa 225 km. Il primo giorno il ciclista percorre i g del viaggio. La

mattina del giorno successivo, invece, percorre i 3 dei rimanenti chilometri.
4

a) Quanti chilometri restano da percorrere per arrivare a Firenze?

b) Esprimi il risultato come frazione della distanza tra le due citta.



Scuola Secondaria “Felice Chiarle”

Risolvi i seguenti problemi. Ricorda di spiegare il procedimento seguito.

Marco deve fare i compiti, posizionando sulla linea dei numeri i seguenti numeri:

4,0,%. Aiutalo trovando il loro valore e posizionandoli sulla linea dei numeri.

Sara ha 125 euro. Una bici costa 135 euro, pero € scontata del 20%. Sara riuscira a
comprare la bici?
[for the translation see Fig. 66]

Divido una pizza in 5 fette per i miei amici. A fine giornata mi avanza una fetta.
Quante fette avranno mangiato i miei amici?

Luisa legge un libro di 350 pagine. Se ha letto i % del libro, quante pagine dovra

leggere per finirlo? Se le rimangono tre giorni per finire il libro, quante pagine
dovra leggere al giorno?

. Valentina é andata a correre in un parco pedonale per sgranchirsi un po’ le gambe.

Sapendo che il percorso € lungo 10km e che lei ne ha percorsi %, guanti km ha gia
percorso?
Ad un certo punto Valentina si accorge di non avere piu le chiavi di casa in tasca.

Torna indietro di % di quello che gia aveva percorso e le ritrova. A quanti km

dall’inizio del percorso ricomincia a correre? Quanti km ha percorso fino ad
adesso?
[for the translation see Fig. 68]

Mattia va a comprare un telefono della samsung da 249 euro e ha solamente i 3 di

guei soldi. Quanti soldi mancano a Mattia?
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7.

10.

Un cliente compra un cellulare a 549 euro con lo sconto del 50%. Il cliente paga il
1

cellulare a rate. Quante rate deve pagare se ha gia pagato 3 del telefono?
Michela ha un telefono che ha comprato a 399 euro. Ha visto che in un negozio il
suo telefono costava i % di quello che I’'ha pagato. Se I'avesse comprato in negozio,

avrebbe speso pitl o meno di quanto I’ha pagato? Quanto?

Gianluca prende uno smartphone che costa 499 euro. Adesso il telefono ha lo
sconto del 200%. Quanti soldi costa adesso il telefono?

Giorgia vuole comprare un telefono a rate. Anche Luca, che paga rate da 13 euro.

Ogni rata di Giorgia costa i % della rata di Luca. Quanto costa una rata di Giorgia?

Dopo quanto finisce di pagare il telefono se la rata é settimanale?
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Scuola Primaria — Peschiera del Garda

1. Scrivi la frazione decimale come numero decimale, e viceversa:
[write the fraction as a decimal number and viceversa]

2) %= 0,3

34

®) 100

¢) ==0,123

15
1000

e) —=5,67

2. Colora sulla figura la parte indicata dalla frazione decimale o dal numero
decimale:
[color on the figure the part represented by the fraction or by the decimal
number]
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6 1
10 2
3. Completa la tabella come nell’esempio:
[fill the table as in the example]
A parole Frazione decimale Numero decimale
40 centesimi 40 0,40
100
3 decimi
57
100
98
10
5 millesimi
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4. Completa la tabella come nell’esempio:
[fill the table as in the example]

Valore in euro

Frazione decimale

0,60 euro 60
100
2,40 euro
55
100

5. Confronta i numeri e inseriscili nella linea dei numeri in ordine crescente, come

0,72

nell’esempio:
[compare the numbers and put them in the numbers line, as shown in the
example]
05 ; 06 ; 046 ; 0,721
272 [ ]
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Esempio: 0,5=—
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Scuola Primaria “Dante Alighieri”

Risolvi i seguenti problemi. Ricorda di spiegare il procedimento.
[solve the following problems, explaining your solving strategy]

1. Sommando 24,4 e 9,8 che numero decimale ottengo? Si pud trasformare in
frazione? Se si, qual & la frazione?
[summing 24,4 and 9,8, which decimal number do | obtain? Can | write it as a
fraction? If so, which fraction?]

2. In Italia le donne che praticano nuoto sono il 26,1 % e gli uomini il 17,6 %. Qual ¢ la
differenza di percentuali tra donne e uomini che fanno nuoto?
[In Italy, women who swim are the 26,1 % and men the 17,6 %. Which is the
difference between women and men who swim?]

3. Gli uomini che fanno corsa sono il 16,6 %. Le donne che fanno corsa sono in

percentuale % in piu degli uomini. Quante sono in percentuale le donne che fanno

corsa?

274



Appendix

4.

[Men who run are the 16,6 %, while the percentage of women % more than the
percentage of men. How much are in percentage the women who run?]

Se guardi la figura, cosa puoi dire sul risultato di prima?
[If you look at the picture, what can you say about the previous result?]

GYM  NUOTO CORSA DANZA PALLAV.

Il papa ha comprato una scatola di cioccolatini. Il giorno dopo ne trovati i % .

Quanti ne sono stati mangiati?
[Dad bought a box of chocolates. The following day Dad finds 3/10 of them. How
many chocolates had been eaten?]

Ad una maratona ci sono 100 partecipanti. | 15010 dei partecipanti sono riusciti a

finire la maratona. Quanti non la hanno finita?
[There are 100 participants in a marathon. The 51/100 of the participants
completed the marathon. How many did not complete it?]
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6. Nella classe di mio fratello ci sono 27 alunni. | % degli alunni sono italiani. Tra gli

stranieri 2 sono francesi. Quanti stranieri non francesi ci sono?
[In my brothers’ classroom there 27 students. 10/10 of them are Italian. Among the
foreigners 2 are French. How many non-French foreigners are there?]

7. Inserisci sulla linea dei numeri i seguenti numeri: 52 ; S ; 0,5 ; -0,2.
100 100

[Put in the numbers line the following numbers]

o
[ERN
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Summary

This thesis finds its roots in the necessity of a paradigmatic change in the didactics of
mathematics that aims to build a bridge between reality and school life, as desired by
national and international curricula. A valid educational strategy to reduce school and
extra-school mathematical competences is that of mathematical modeling, seen not only
as a process of solving real problems, but as a possibility to achieve a process of
mathematization and reflection on mathematics that leads to the construction of new
mathematical concepts and tools. The goal of this research is to design a re-invention
process (Freudenthal 1991) to integrate mathematical modelling in the regular school
practice in the Italian context. The main question of this project is: How, and to what
extent, can mathematical modelling be integrated in the teaching and learning of
mathematics in a guided re-invention paradigm? The underlying theory is the one of
Realistic Mathematics Education, wherein learning occurs through experience, the
experience of mathematizing experientially real situations, extending day-to-day
reasoning to acquire new mathematical knowledge. As a consequence, a central role is
be covered by contexts for mathematical problems that must be experientially
significant for students and able to evoke new mathematical concepts or strategies for
their solution. Therefore, a learning trajectory that brings students to invent their
mathematical principles in a modelling environment need to be designed. To design
such a re-invention process, our choices are the design heuristics of didactical
phenomenology and emergent modelling, and the use of problem-posing in relation to
such heuristics. Our main research question is split in two more specific questions. The
first deals with the design of modelling activities with the focus in the promotion of
students’ reinvention of new mathematical concepts they need to solve a real problem.

In the specific, we investigated how activities designed following the principles of
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Model Eliciting Activities could foster the emergent nature of modelling. The second
research question consists in start investigating the impact in the use of different
contexts during problem-posing activities in terms of students’ creativity and emergent
problems. To be able to answer the research questions we had the necessity to create an
instructional environment with which it could be possible to study how and to what
extent the suggested processes could be fostered. An instructional sequence was
therefore needed to answer to the research questions. A research design that allows for
revising theories, hypothesis and instructional activities was needed. Furthermore, new
teaching materials that support new types of learning must be developed, making the
design process an integrated part of the research. As a consequence, a research approach
that consists in planning and creating innovative educational settings and analyzing
teaching and learning processes was followed, namely that of design research. The
structure of the thesis is the following. Starting from the theoretical background and an
exploratory study represented by a questionnaire for mathematics teachers, that aimed at
investigating teachers’ school practices in relations to mathematical modelling and
problem-posing, two cycles of design research are reported, respectively for
mathematical modelling (M-I and M-II) and problem-posing (P-I and P-II), in order to
answer the research questions. Each cycle is made by three main parts: a design phase, a
teaching experiment and a retrospective analysis. The final part of the thesis concerns
the discussion of the results from the design research cycles, in order to find answers to
the research questions and to suggest some recommendations for future research and

teaching.
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