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1. Introduction

1.1 Reasons for the study

There  is  a  strong  discontinuity  between  in-  and  out-of-  school  mathematical 

competences, discontinuity that can be found in all  school levels. Several researches 

identified one of the causes of this fracture in the stereotyped nature of the problems 

proposed by textbooks which, rather than serving as an interface between mathematics 

and  reality,  promote  in  students  an  exclusion  of  realistic  considerations  and  a 

suspension of sense-making  (Schoenfeld 1991); see Verschaffel,  Greer and De Corte 

(2000)  for  an  overview  of  these  studies.  In  this  situation,  teachers’  expectations 

(Bonotto  2007;  Gravemeijer  1997)  and their  beliefs  about  the  aims  of  mathematics 

education (Verschaffel, De Corte and Borghart 1997) often have a decisive role. Indeed, 

teachers  usually  identify  mathematical  problems  with  exercises  in  the  four  basic 

operations solved in a mechanical way, and not as catalyst instruments for a process of 

mathematization of reality,  as instead desired by national  and international  curricula 

(DM 254/2012; NCTM 2000).  Mathematical problems turned in stereotyped exercises 

in the four basic operations solved through the application of mechanical procedures, 

and students themselves seem to have established a set of rules of which include: i) any 

problem  is  solvable  and  makes  sense;  ii)  there  is  a  single,  correct  and  precise 

(numerical)  answer which must be obtained by performing one or more arithmetical 

operations with numbers given in the text; iii) violations of personal knowledge about 

the  everyday would  may be ignored  (Greer,  Verschaffel  and Mukhopadhyay 2007). 

Those implicit teachers’ expectations and students’ rules are part of the construct of the 

didactic contract (Brousseau 1980). Indeed, the didactic contract regulates classroom 

activities,  influencing  both  the  teacher’s  behavior  and  students’  learning  processes. 

More than twenty years  after  the mentioned studies,  current  research  confirms their 
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results and they extend their validity also to the case of teachers in training (Bonotto and 

Passarella 2019b). 

One  of  the  main  consequences  of  this  situation  is  an  increasing  gap  between 

mathematics and real-world (Gravemeijer 1997). Instead, realistic and less stereotyped 

problems that take into consideration the experiential world of students must be inserted 

in  the  school  practice,  in  order  to  create  a  bridge  between  mathematics  classroom 

activities  and  everyday-life  experiences.  In  fact,  encouraging  students  to  relate 

mathematical problems with real-world scenarios may help them more closely associate 

mathematics  with their  everyday activities  (De Corte,  Verschaffel  and Greer  2000). 

According to  the Realistic  Mathematics  Education  (RME) perspective,  a  connection 

between mathematics  and reality  in  order  to  improve students’  critical  thinking and 

reasoning  should  be  fostered  with  activities  based  on  realistic and  rich contexts 

(Gravemeijer  and Doorman 1999).  The teaching of mathematics might be seen as a 

human activity of guided reinvention (Freudenthal 1991), in which students are active 

participants in the learning process, in a balance between students’ freedom of invention 

and the power of teacher’s guidance.  

In  this  direction,  mathematical  modelling  and  problem-posing  could  represent 

powerful  educational  strategies  to improve the teaching of mathematics  in  a guided 

reinvention  approach,  offering  students  opportunities  to  attach  meaning  to  the 

mathematical constructs they develop while solving problems. A modelling perspective, 

in fact, provides basic arguments for including authentic situations in the mathematics 

classroom (Maass, Doorman, Jonker and Wijers 2019) and represents a critical tool to 

understand the reality or society in general. Teaching students to interpret critically the 

communities  they  live  in  and  to  understand  its  codes  and  messages  should  be  an 

important  goal  for  education  (Bonotto  2007),  in  order  to  give  students  not  only 

mathematical competencies but also to prepare them to situations they will have to face 

in an increasingly complex world. Mathematical modelling naturally cooperates with 

problem-posing, which can be seen as the process by which students generate their own 

problems in addition to solving pre-formulated problems (English 1997; NCTM 2000; 

Silver and Cai 1996). Allowing students to write their own mathematical problems may 

help them to make connections between mathematics in the classroom and their real life 

(Kopparla et al. 2018). In conclusion, modelling and problem-posing should represent 
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valuable strategies to support students in give sense to their mathematical activity filling 

the gap between in- and out-of-school mathematical competencies and experiences. 

1.2 Context for the study

In  the  previous  section  we  outlined  the  necessity  of  a  paradigmatic  change  in  the 

didactics of mathematics that aims to build a bridge between reality, in which intuition 

plays a fundamental role, and school life, in which exercise and memorization continue 

to  play  an  important  role.   Despite  the  specificities  of  both  in-  and  out-of-school 

contexts, it is believed that those conditions that make real-life learning more effective 

should be recreated in mathematics classrooms (Bonotto 2005). 

The idea is not only to motivate students with everyday-life contexts but also to look for 

contexts that are experientially real for the students as starting points for progressive 

mathematization. (Gravemeijer 1999, p. 162)

This  process  of  mathematization  of  reality  is  desired  also  by  national  and 

international curricula. In the Italian context, the National Indications for the First Cycle 

of Education  (DM 254/2012),  emphasize  how mathematical  knowledge should offer 

skills  for  perceiving,  interpreting  and  linking  artifacts  and  daily-life  events. 

Furthermore,  students  are  required  to  analyze  situations  and  to  translate  them  into 

mathematical  terms,  recognize  recurrent  patterns,  establish  analogies  with  known 

models, choose the actions to be performed and chain them effectively to produce a 

solution to the problem. These indications are reflected in the European context. On 

May  22,  2018,  the  European  Council  reiterated  the  key  competences  for  lifelong 

learning  (2018/C189/01),  already  presented  in  the  2006  document  (2006/962/EC). 

Among these competences,  mathematical  competence appears,  seen as the ability  to 

develop and apply mathematical thinking and the ability to use different representations 

(formulas, constructs, models, …) to solve problems starting from everyday situations, 

with particular attention to the process and activity, as well as knowledge. 
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In  Italian  schools,  despite  some  experiences  of  innovation  and  reflection  on  the 

curriculum, teaching strategies and learning environments, still persists a resistance to 

abandoning traditional teaching models of transmission type (INNS 2017).

Instead,  following  both  the  European  recommendations  and  the  Italian  National 

Indications,  a  valid  methodology  to  reduce  school  and  extra-school  mathematical 

competences is that of modeling. Modeling seen not only as a process of solving real 

problems, but as a possibility to achieve a process of mathematization and reflection on 

mathematics that leads to the construction of new mathematical concepts and tools. As a 

consequence, mathematics teachers should become able of recognizing the mathematics 

incorporated in daily life. This requires knowing how to integrate pedagogical-didactic 

and  disciplinary  knowledge  together,  paying  attention  also  to  the  particular  school 

context and the cultural environment in which operating. This complex request is high 

demanding for teachers who must be supported in a continuous training. 

This  study is  part  of  a  research  project  of  the  University  of  Padova,  concerning 

teachers’  professional  development.  In  the specific  area  of  mathematics,  the overall 

purpose is to provide mathematics teachers with methodological models and format of 

school  practices  based  on  mathematical  modelling.  This  purpose  is  outlined  in  the 

following points:

 implementing some teaching experiments wherein connecting mathematics and 

daily-life experiences;

 start  developing  prototypes  of  significant  didactics  practices  based  on 

mathematical  modelling  ready to be  transferred  and implemented  in  different 

concrete school contexts;

 developing  specific  models  for  professional  development  courses  based  on 

mathematical modelling for mathematics teachers of every school level.
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1.3 The Italian education system

In this section we remark some facts concerning the Italian education system and initial 

teachers’ training programs. 

1.3.1 The Italian education system

The  Italian  education  system  (Eurydice  2020a)  is  mainly  a  public  State  system. 

However, private subjects and public bodies can establish education institutions. The 

State  competences  concern  exclusively  legislative  competences  on  the  general 

organization of the education system, such as minimum standards of education, school 

staff, quality assurance, State financial resources. 

Schools  have  a  high  degree  of  autonomy:  they  define  curricula,  widen  the 

educational offer, organize teaching (school time and groups of pupils). Every three 

years, schools draw up their own three-years educational offer plan (PTOF). At higher 

education level, universities and institutions of Higher education for the fine arts, music 

and dance (AFAM) have statutory, regulatory, teaching and organizational autonomy.

Education at all levels must be open to everyone: Italian citizens as well as foreigner 

minors  from  both  EU  and  non-EU  countries.  Compulsory  education  is  free.  The 

principle of inclusion also applies to pupils with disabilities, to pupils with social and 

economic  disadvantages  and  to  immigrant  pupils.  In  such  circumstances,  measures 

focus on personalization and didactic flexibility and, in the case of immigrants with low 

levels of Italian, on linguistic support. The State also guarantees the right to education to 

students who are unable to attend school because hospitalized, detained or at home for a 

long illness.

The Italian education system includes the following five stages (Fig. 1):

 early childhood education and care (ECEC);

 primary education;

 secondary education;

 post-secondary education;

 higher education.
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Figure 1. The Italian education system. Source: Eurydice 2018/19

Education is compulsory for ten years, between 6 and 16 years of age, covering three 

levels of the education system: five years of primary education, three years of lower 

secondary  education  and  the  first  two  years  of  upper  secondary  education  (law 

296/2006). The final two years of compulsory education (from 14 to 16 years of age) 

can be undertaken through two different  paths:  the State  upper secondary education 

(liceo,  technical institute or  vocational institute) or the regional vocational education 

and training system (law 133/2008). In addition to compulsory education, everyone has 

a right and a duty to receive education and training for at least  12 years within the 

education system or until they have obtained a three-years vocational qualification by 

the  age  of  18  (law 53/2003).  Finally,  15-year-olds  can  also  spend  the  last  year  of 

compulsory education on an apprenticeship, upon a specific arrangement between the 

Regions,  the Ministry of Laboure,  the Ministry of Education  and trade unions  (law 

183/2010). Once they have completed compulsory education, those who do not continue 

with their studies receive a certificate of completion of compulsory education that also 

describes the skills they have acquired.

Early childhood education and care (ECEC)

ECEC is divided in two stages based on child age groups: 0-3 years and 3-6 years. 

ECEC for  children  aged  less  than  3  years  is  offered  by  educational  services while 

ECEC for children aged from 3 to 6 years is available at preprimary schools. The two 

offers make up a single ECEC system, called  integrated system, which is part of the 

education system and is not compulsory. Although being part of the same system, the 

ECEC 0-3 is organized by the Regions according to the single regional  legislations, 

while the 3-6 offer is under the responsibility of the Ministry of Education.

Educational guidelines for this ECEC phase are published at central level and are 

included in the guidelines that apply to the first cycle of education (DM 254/2012). 

Primary education
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The compulsory first cycle of education is made up of primary and lower secondary 

education  and  its  total  length  is  8  years.  Comprehensive  institutes  group  primary 

schools, lower secondary schools and pre-primary schools managed by a single school 

manager. The purpose of comprehensive institutes is to assure didactic continuity within 

the same cycle of education. However, although being part of the same cycle, primary 

and lower secondary education are considered separate levels of education with their 

own specificities. 

Primary education is organized at primary schools. Primary education is compulsory, 

has an overall length of 5 years and is attended by pupils aged 6 to 11. The aim of  

primary education is to provide pupils with basic learning and the basic tools of active 

citizenship.  It  helps  pupils  to  understand  the  meaning  of  their  own  experiences. 

Educational  guidelines  for  primary  education  are  published  at  central  level  and are 

included in the guidelines that apply to the first cycle of education (DM 254/2012). 

Lower secondary education

The lower secondary level of education is organized at  first-level secondary schools. 

Lower secondary education is compulsory, lasts for 3 years and is attended by pupils 

aged 11 to  14 years.  Lower secondary school  aims at  fostering the  ability  to study 

autonomously and at strengthening the pupils’ attitudes towards social interaction, at 

organizing and increasing knowledge and skills and at providing students with adequate 

instruments to continue their education and training activities. Educational guidelines 

for lower secondary education are published at  central  level  and are included in the 

guidelines that apply to the first cycle of education (DM 254/2012).

Within the first cycle, students pass from one level to the next one without exams. At 

the end of the first cycle of education,  students who pass the final state examination 

progress directly  to  the second cycle  of education,  the first  two years  of  which are 

compulsory. 

Upper secondary education

The second cycle of education is made up of two parallel paths: 
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i. State upper secondary education called second-level upper secondary school; 

ii. vocational education and training system (IFP) organized at regional level.

Second  level  upper  secondary  schools  offer  general,  technical  and  vocational 

education. The total length of studies at upper secondary level is 5 years (from 14 to 19 

years of age). 

The general path is organized at  licei. It aims at preparing students to higher-level 

studies and to the labour world. It provides students with adequate competences and 

knowledge, as well as cultural and methodological instruments for developing their own 

critical and planning attitude.

Technical education is organized at  technical institutes (istituti tecnici). It provides 

students  with a  strong scientific  and technological  background in the economic  and 

technological professional sectors.

Vocational  education is  organized at  vocational  institute (istituti  professionali).  It 

provides  students  with  a  strong technical  and vocational  general  background in  the 

sectors of services, industry and handicraft, to facilitate access to the labour world. 

At the end of upper secondary education students receive a certification that gives 

access to university, to the Higher education for the fine arts, music and dance (Alta 

formazione artistica  e  musicale,  AFAM) and to the  Higher  technical  education  and 

training (ITS).

Educational guidelines for upper secondary education are published at central level 

and are differentiated for each specific path. 

Regional vocational education and training

Regional vocational education and training (IFP) is organized into three and four-year 

courses. Courses can be organized by both accredited local training agencies and by 

vocational  upper  secondary  schools  in  partnership  with training  agencies.  The main 

characteristic  of  courses  is  a  wider  use  of  laboratories  and  of  periods  of  work 

experiences.  The  aim  is  to  faster  access  to  the  job  market.  At  the  end  of  courses, 

learners receive a vocational qualification that gives access to the second-level regional 

courses  or,  in  case  of  the  four-year  programs  and  at  certain  conditions,  to  tertiary 

education.
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Post-secondary non-tertiary education

The  post-secondary  non-tertiary  level  offers  courses  within  the  Higher  technical 

education  and  training  system  (IFTS)  and  within  the  vocational  training  system 

managed by the Regions.

The  Higher  technical  education  and  training  system  (IFTS)  aims  at  developing 

professional specializations at post-secondary level that meet the requirements of the 

labour  market,  both  in  the  public  and  private  sectors.  The  Regions  organize  short 

vocational training courses (400-800 hours) addressed to those who hold a qualification 

obtained either in the regional or in the State vocational training system. They are also 

called second-level vocational training courses.

Higher education

The following types of institution offer higher education:

i. Universities and equivalent institutions;

ii. Institutes of Higher Education for the fine arts, music and dance (AFAM);

iii. Higher Technical Institutes (ITSs).

Universities and AFAM institutes offer programs of the first, second and third cycle 

according  to  the  Bologna  structure  and  issue  the  relevant  qualifications.  First  and 

second-cycle courses at universities lead to qualifications called  laurea (bachelor) and 

laurea  magistrale  (master).  AFAM  institutes  release  qualifications  called  diploma 

accademico di primo livello and  diploma accademico di secondo livello.  In addition, 

Universities and AFAM institutes organize courses leading to qualifications outside the 

Bologna structure. ITSs are highly specialized technical schools that offer short-cycle 

programs in the technical and technological sectors. In general, courses last 4 semesters 

and lead to the qualification of higher technician (diploma tecnico superiore).
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Universities issue the following qualifications, corresponding to the Bologna Process 

structure (cycles):

i. bachelor’s  degree,  corresponding  to  a  first-cycle  qualification  (180  credits-

CFU);

ii. master’s degree, corresponding to a second-cycle qualification, issued at the end 

of  a  two-years course of study (120 credits  -  CFU) or  to a  5-6-years  single 

course (300-360 credits - CFU);

iii. PhD, corresponding to a third-cycle qualification.

In addition, universities may organize courses leading to the following qualifications: 

first-level University masters (addressed to holders of a Bachelor’s degree and lead to a 

second-cycle  qualification  outside the Bachelor  and Master  structure);  specialization 

diploma and second-level university master (addressed to holders of a Master’s degree 

and lead to a third-cycle qualification outside the Bachelor and Master structure).

1.3.2 Initial teacher training

Initial  teacher  training  for  teachers  of  the  pre-primary  and  primary  levels  and  for 

teachers  of  the  secondary  level  is  organized  differently  (Eurydice  2020b).  Both 

programs  also  aim  at  the  acquisition  of  competences  on  ICT,  languages  (English 

language  at  least  corresponding  to  the  B2  level  within  the  European  common 

framework of references for languages) and didactic competences to help the integration 

at school of pupils with special educational needs.

Pre-primary and primary levels

Teachers of the pre-primary and primary levels obtain the second-cycle qualification 

after  completion  of  a  specific  five-years  single-cycle  program,  including  traineeship 

activities.  Admission to  courses  requires  also the  possession  of  an upper  secondary 

qualification  or  any other  equivalent  qualification  obtained abroad.  Courses  provide 

teachers with the necessary subject related competences and with the ability of adapting 

their teaching to different age groups and cultures and planning their teaching activities. 
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Programs are organized in general and specific training activities. The former aim at the 

acquisition of knowledge in the fields of pedagogy, didactic, psychology, sociology and 

anthropology. These studies correspond to 78 CFU credits. Specific activities aim at 

both the acquisition of subject-related knowledge and competences and the integration 

of pupils with special  educational needs. These latter  include studies in the fields of 

infantile neuropsychiatry, psychology, law and health. Studies correspond to 31 CFU 

credits.  Future  teachers  acquire  competences  in  the  following  subject  areas: 

mathematics,  physics,  chemistry,  biology,  Italian  language  and  literature,  English 

language,  history,  geography,  sports,  arts,  music,  children’s  literature.  Studies 

correspond to 135 CFU credits. The remaining 56 CFU credits come from traineeship 

activities,  laboratories,  the  language  qualification  and  the  final  exam.  Traineeship 

activities are carried out starting from the second year of studies for a total duration of 

600 hours (24 CFU credits). Courses end up with the discussion of a final work and of 

the final traineeship report. The discussion of the two reports makes up the final exam 

that  also  qualifies  to  teach  at  pre-primary  and  primary  levels.  Courses  under  this 

procedure started in academic year 2011/2012. At the end of the single-cycle University 

programs for teaching at pre-primary and primary level, successful students are awarded 

the master’s degree (laurea magistrale) in primary education sciences.

Secondary level

Starting from 2018, education for teaching in secondary schools is organized into one 

single system that includes both initial education and access to the teaching post. All 

secondary teachers start their initial education by getting through an open competitive 

examination. To access the examination, candidates must hold:

 a  master’s  degree  from  a  University  or  AFAM  qualification,  or  any  other 

equivalent qualification;

 24  CFU/CFA  credits  (equivalent  to  24  ECTS),  acquired  either  within  or  in 

addition to the main course of study in the field of anthropology, psychology, 

pedagogy  and  teaching  methodology.  At  least  6  of  the  24  credits  must  be 
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acquired for each of three among the following four sectors: pedagogy, special 

pedagogy and inclusion; psychology; anthropology; teaching methods.

Those  who successfully  pass  the  examination,  start  a  three-years  traineeship  that 

includes both theoretical education, practical training and access to a post as teacher. 

Those who have received positive results in their periodic and final assessments during 

the three-years period of training become permanent-contract teachers.

All courses for training future teachers include:

 the acquisition of linguistic competences in English equivalent to the level B2 of 

the Common European Framework of Reference for Languages adopted in 1996 

by the Council of Europe;

 the acquisition of digital competences as foreseen by the Recommendation of 

the European Parliament and Council of 18 December 2006. In particular, such 

competences  refer  to  the  capacity  of  using  multimedia  languages  for 

representing  and  communicating  knowledge,  for  using  digital  contents  and, 

more in general, for using simulated environments and virtual labs;

 the acquisition of teaching competences suitable to favor the school integration 

of pupils with disabilities.

The final assessment of the traineeship takes into account the level of development of 

professional competences in relation with the methodological, didactical, relational and 

project-related aspects both in the class and in the school.

Under the previous legislation, teachers of the lower and upper secondary levels were 

required  to  hold  a  master’s  degree  or  AFAM qualification  followed  by  a  one-year 

traineeship  period  called  active  formative  traineeship (TFA).  Completion  of  this 

traineeship gave access to the open competitive examinations held to recruit and appoint 

new teachers. 
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1.4 Overview of the thesis

This thesis starts with discussing the theoretical background of the project. In chapter 2 

the theory of Realistic Mathematics Education is recalled, that represents the instruction 

theory  underlying  the  entire  research  project.   Then,  the  main  literature  concerning 

mathematical modelling and problem-posing is reported. Attention is given also to real 

contexts for mathematics lessons. This discussion permits to formulate and specify the 

research questions, that are formulated at the end of the chapter. 

In chapter 3 the research methodology to answer the research questions is described. 

The focus is on design research. This methodology is characterized by research cycles 

made by a design phase, a teaching experiment and a retrospective analysis. In our case, 

we  developed  two  research  cycles  concerning  the  first  research  question  about 

mathematical  modelling,  and  two  research  cycles  concerning  the  second  research 

question about problem-posing. 

Chapter 4 describes an exploratory study made before the design and implementation 

of the design research cycles. This exploratory study consisted in a questionnaire for 

mathematics teachers of primary and secondary school, and its aim was to have a first 

overview about the use and knowledge of modelling and problem-posing in the Italian 

context. 

Chapters 5 to 8 describe the design research cycles. Each chapter is made by three 

main sections:  design phase, teaching experiment and retrospective analysis. 

In  chapter  9  conclusions  with  respect  the  research  questions  are  described.  In 

addition, some recommendations about modelling and problem-posing in mathematics 

education are drawn.   
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                         2. Background and 
                             Research Questions

In this chapter we focus on the literature underlying the thesis. We start focusing on the 

theory  of  Realistic  Mathematics  Education  (RME).  The  main  characteristic  of  this 

theory is that mathematics is seen as an active process of mathematization. The core 

principles  of  RME will  be  described,  together  with  the  design  heuristics  of  guided 

reinvention, didactical phenomenology and emergent models. In the second section we 

focus on mathematical modelling. Starting from its historical development, we report 

the  main  trends  on the  teaching  and learning of  mathematical  modelling.  Particular 

attention is given to two approaches: emergent modelling and model eliciting. In section 

three  we  focus  on  problem-posing,  that  represents  an  educational  strategy  directly 

linked to modelling. In particular, we explain what we mean with problem-posing and 

describe its relations with problem solving and creativity, and some schemes to assess 

students’ and teachers’ problem-posing performances. For the implementation of both 

modelling and problem-posing activities, the role of contexts for mathematical problems 

is fundamental. For this reason, in section four we describe two perspectives that define 

what is meant by a real context for a mathematical task: the perspective of RME, in 

which realistic and rich contexts play a prominent role, and Palm’s framework (2006) 

for real-life  mathematical  situations.  The discussion about the literature permitted to 

formulate the research questions of this research, that are formulated at the end of this 

chapter. 

2.1 Realistic Mathematics Education

Realistic  Mathematics  Education  (RME) is  a  domain  specific  instruction  theory  for 

mathematics  that  offers  a  pedagogical  and  didactical  philosophy  on  mathematical 
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learning and teaching as well as on designing instructional materials for mathematics 

education. RME was firstly developed by the Freudenthal Institute for Mathematics and 

Science  Education  of  Utrecht  as  reaction  to  the  limitations  of  a  mechanistic  and 

structuralist approach to mathematics education. Rich and realistic situations are given a 

prominent  position  in  the  learning  process  and  represent  a  starting  point  for  the 

development  of  mathematical  concepts  and applications.  Realistic  refers  to  problem 

situations that students can image and that are, at a certain stage, meaningful for them. 

Therefore, problems can come from the real world, but also from a fantasy world or 

from the formal world of mathematics, as long as the problems are experientially real in 

students’  mind  (Van  den  Heuvel-Panhuizen  and  Drijvers  2014).  Students  can 

experience  an  abstract  mathematical  problem as  real  when  the  mathematics  of  that 

problem  is  meaningful  to  them.  Freudenthal’s  (1991)  ideal  was  that  mathematical 

learning should be an enhancement of common sense. Students should be allowed and 

encouraged to invent their own strategies and ideas, and they should learn mathematics 

on their  own authority.  At the same time, this  process should lead to particular end 

goals. This raises the question that underlies much of the RME-based research, namely 

that of how to support this process of engaging students in meaningful mathematical 

problem solving and using students’ contributions to reach certain end goals.

2.1.1 Core principles of RME

The core principles  of RME were articulated originally by Treffers (1978) but were 

reformulated over the years (for instance Freudenthal (1983, 1991); Treffers 1987; De 

Lange  1987;  Gravemeijer  1994;  Van  den  Heuvel-Panhuizen  1996;  Drijvers  2003). 

These tenets can be synthetized in six educational principles (see also Van den Heuvel-

Panhuizen and Drijvers 2014):

activity principle students  are  active  participants  in  the  learning  process, 

developing  mathematical  tools  and  insights  by  themselves, 

rather  than  being  receivers  of  ready-made  mathematics. 

Mathematics has not to be learned as a closed system, but as a 

human activity (Freudenthal 1991) of mathematizing reality and 
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if  possible,  even that  of mathematizing  mathematics  (Treffers 

1987);

reality principle students  should become able to  apply mathematics  in solving 

real-life  problems.  Mathematics  education  should  start  from 

realistic  and  rich  contexts,  i.e.  problem  situations  that  are 

meaningful  to  students  and  that  offer  them  opportunities  to 

attach  meaning  to  the  mathematical  constructs  they  develop 

while solving problems. Teaching begins offering students the 

opportunity to face with contexts that can be mathematized. As a 

consequence,  informal  contexts  represent  a  first  step  in  the 

learning  process,  wherein  students  can  develop  their  first 

strategies to solve a problem;

level principle students pass various levels of understanding in their learning 

process:  from  informal  context-related  solutions  to  acquiring 

insights  into  how  concepts  and  strategies  are  related. 

Fundamental  tools for bridging the gap between the informal, 

context-related mathematics and the more formal mathematics 

are models;

intertwinement pr. mathematical  content domains must be heavily integrated and 

not considered as isolated chapters;

interactivity pr. learning  mathematics  is  also  a  social  activity.  Whole  class 

discussion and group work should be favoured, since they offer 

students the opportunity to share, reflect on and improve their 

strategies, reaching a higher level of understanding;

guidance principle teachers should have a pro-active role in students’ learning, and 

educational programs should contain scenarios which have the 
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potential  to  work  as  a  lever  to  reach  shifts  in  students’ 

understanding.  

2.1.2 Heuristics design of RME

Based  on  the  core  principles  presented  in  the  previous  section,  RME  also  offers 

heuristics  design  in  mathematics  education:  guided  reinvention,  didactical 

phenomenology, and emergent models (Gravemeijer 1994a). 

Guided reinvention 

As advocated in the activity principle, the teaching of mathematics should be a human 

activity as opposed to a ready-made system (Freudenthal 1973; 1991). When students 

progressively mathematize  their  own mathematical  activity  (Treffers  1987) they can 

reinvent mathematics under the guidance of the teacher and the instructional design. 

This is the meaning of the first heuristic, guided reinvention: students should experience 

the learning of mathematics as a process similar to the process by which mathematics 

was  invented  (Gravemeijer  1994a).  Consequently,  the  role  of  the  designer  is 

fundamental in RME, since she/he has to foster this process of guided reinvention. In so 

doing, the designer can use different methods: (i)  thought experiments,  in which the 

designer  thinks  of  how  she/he  could  have  reinvented  the  mathematics  at  issue 

themselves;  (ii)  study  the  history  of  the  topic  at  issue;  (iii)  use  students’  informal 

solution strategies as a source: could teachers and designers support students’ solutions 

in getting closer to the end goal? (Bakker 2004).

Didactical phenomenology 

Freudenthal  (1983)  distinguished  thought  objects  (nooumena)  and  phenomena 

(phainomena).  Mathematical  concepts  and tools  serve  to  organize  phenomena,  both 

from daily  life  and from mathematics  itself  (Bakker  2004).  A phenomenology  of  a 

mathematical  concept  is  an analysis  of that  concept  in  relation to  the phenomena it 

organizes. One of the possible ways to do this is offered by didactical phenomenology. 
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Didactical phenomenology is the study of concepts in relation to phenomena with a 

didactical interest. In this perspective the challenge is to find phenomena that beg to be 

organized by the concepts that are to be taught (Freudenthal 1983). In this research, the 

design  of  instructional  materials  followed  a  didactical  phenomenology  approach,  in 

which  the  goal  was  to  find  problem situations  that  could  provide  the  basis  for  the 

development of the mathematical concepts or tools we wanted students to develop. Such 

problem situations could lead to solutions that are first specific for that situation but can 

be generalized to other problem situations.  

Emergent models 

In the level principle it is suggested that fundamental tools for bridging the gap between 

the informal, context-related mathematics and the more formal mathematics are models. 

Indeed, in RME a  model of a certain situation can become a  model for more formal 

reasoning  (Gravemeijer  1994a;  1999).  The  movement  from  situational  to  formal 

reasoning is described by the four levels in Fig. 2 (Gravemeijer, Cobb, Bowers, and 

Whitenack 2000): 

Figure 2. Movement from situational to formal reasoning
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1. Situational level: activity in the task setting, in which interpretations and solutions 

depend  on  understanding  of  how  to  act  in  the  setting  (often  in  out-of-school 

settings); 

2. Referential  level:  referential  activity,  in  which  models  of refer  to  activity  in  the 

setting described in instructional activities (mostly posed in school); 

3. General level: general activity, in which models for enable a focus on interpretations 

and solutions independently of situation-specific imagery; 

4. Formal level: reasoning with conventional symbolizations, which is no longer de- 

pendent on the support of models for mathematical activity. 

This shift is at the basis of the notion of emergent modelling, that will be treated in 

the next section.

2.2 Mathematical modelling

The promotion of mathematical modelling is accepted as a central goal of mathematics 

education worldwide, especially if mathematics education aims to promote responsible 

citizenship (Kaiser 2017). Modelling is a creative process of making sense of the real 

world to describe, control, optimize aspects of a situation, interpret results, and make 

modifications to the model if it is not adequate for the situation.

Mathematical  proficient  students  who  can  apply  what  they  know  are  comfortable 

making assumptions and approximations to simplify a complicated situation, realizing 

that these may need revision later. They are able to identify important quantities in a 

practical situation and map their relationships using such tools as diagrams, two-way 

tables,  graphs,  flowcharts  and  formulas.  They  can  analyze  those  relationships 

mathematically to draw conclusions. They routinely interpret their mathematical results 

in the context of the situation and reflect on whether the results make sense, possibly  

improving the model if it has nor served its purpose. (NGA and CCSSO 2010, p. 7)
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However,  there  still  exists  a  substantial  gap  between  the  ideals  expressed  in 

educational debate and innovative curricula  on the one hand, and everyday teaching 

practice on the other. In particular, genuine modelling activities are till rather rare in 

mathematics classrooms (Blum, Galbraith, Henn and Niss 2007).

In  the  last  decades  empirical  research  on  mathematical  modelling  has  improved 

considerably, in terms of both quality and quantity. Several studies introduced different 

teaching approaches that have been analyzed by quantitative and/or qualitative methods. 

The most two important  principles that seem to be important  for designing learning 

environments for modelling were student-centered teaching and prompting. However, 

comparison  between  different  approaches  is  not  common.  Schukajlow,  Kaiser  and 

Stillman  (2018)  identified  some  future  directions  and  open  questions  for  empirical 

research on mathematical modelling. In particular, they suggest the need of: (i) more 

intervention  studies  to  examine  ways  for  teaching  modelling  and  monitoring  the 

development  of  modelling  competencies;  (ii)  monitoring  the  development  of 

pedagogical content knowledge of pre-service and in-service mathematics teachers on 

modelling; (iii) increasing the number of studies that use mixed methods for the analysis 

of research questions. 

In  the  following  sections,  we will  start  presenting  the  historical  development  of 

different approaches to mathematical modelling. Then we report more modern trends 

concerning  the  teaching  and  learning  of  modelling,  focusing  particularly  on  the 

perspectives of emergent modelling and model eliciting. In conclusion we describe what 

is meant by modelling competencies and their teaching.  

2.2.1 Historical development

How and why to include mathematical modelling in mathematics education has been the 

focus  of  many research studies  until  the half  of the twentieth  century.  Mathematics 

education during the ninetieth was dominated by learning to execute algorithms without 

relation to the real-world (Kaiser-Messner 1986). This situation has changed beginning 

with the symposium How to teach mathematics so as to be useful (Freudenthal 1968; 
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Pollak 1968) in August 1967. Since then,  differences  started emerging,  in particular 

concerning the ways to integrate mathematical modelling into classroom teaching. The 

development  of  mathematical  modelling,  and  its  teaching,  was  influenced  until  the 

middle  of  1980s  by  two  main  perspectives  (Kaiser-Messner  1986):  a  pragmatic 

perspective and  a  scientific-humanistic  perspective.   Despite  these  two  perspectives 

shared the conviction of changing mathematics education including the real-world in the 

teaching of mathematics, significant differences can be identified. 

Pragmatic perspective

In  the  pragmatic  perspective,  students  should  learn  to  apply  mathematics  to  solve 

practical  problems  from the  real  world,  focusing  on utilitarian  and  pragmatic  goals 

(Pollak 1968; 1969; 1979). 

Students should all develop the habit to see and enjoy the possibilities for interesting 

problems around them. (Pollak 1968, p. 26)

Concerning the way that teaching content should be determined:

If we can agree that one of the main imperatives is to teach mathematics so as to be  

useful, then a first step is to find out how mathematics is used by people good at doing 

so  and then  to  identify  the  mathematical  contexts  teachable  in  schools  that  will  be 

helpful to most people in making them better at using mathematics. (Bell 1979, p.314)

This pragmatic view of modelling is reflected also in the way in which mathematical 

modelling,  or  the  inclusion  of  real-world  mathematics  in  mathematics  education,  is 

understood (Kaiser 2017). Mathematical modelling should be seen as a cyclic process 

(Pollak 1968), emphasizing the interplay between the real-world and different kinds of 

applicable mathematics.  A cyclic way moving from the real-world to mathematics and 

back, as described by Pollak (1979, p.233) in his view of the modelling cycle (Fig. 3). 
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Figure 3. Pollak’s (1979) modelling cycle 

Scientific-humanistic perspective

The scientific-humanistic perspective is characterized by a twofold orientation (Kaiser 

2017):  (i)  a  focus  on  mathematics  as  a  science,  in  the  sense  that  it  is  a  discipline 

characterized by formal and nonformal structures, and (ii) a focus on the humanistic 

ideals of education that emphasize the ability of learners to create relations between 

mathematics and the real-world. 

There are two extreme attitudes: to teach mathematics with no other relation to its use 

than the hope that students will be able to apply it whenever they need to. If anything, 

this  hope  has  proved  idle.  …  The  opposite  attitude  would  be  to  teach  useful 

mathematics. It has not been tried too often, and you understand that this is not what I 

mean when speaking about mathematics being taught to be useful. The disadvantage of 

useful mathematics is that it may prove useful as long as the context does not change,  

and not a bit longer, and this is just the contrary of what true mathematics should be. 

Indeed, it is the marvelous power of mathematics to eliminate the context, and to put the 

remainder  into  a  mathematical  form  in  which  it  can  be  used  time  and  again. 

(Freudenthal 1968, p. 5). 
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Mathematics is  not a close system, but an activity,  the activity  of mathematizing 

reality and if possible even that of mathematizing mathematics, in which rich contexts 

have a central position in fostering this process (Freudenthal 1973). It is evident that this 

perspective was taken up within the subsequent approach of RME. 

Concerning the way in which mathematical modelling, or the inclusion of real-world 

mathematics  in  mathematics  education  is  understood,  in  the  scientific-humanistic 

perspective modelling is interpreted as a complex interplay between mathematics and 

real world, based on various kinds of mathematization processes (Freudenthal 1968; De 

Lange 1987). Treffers (1987) differentiated  horizontal mathematization from  vertical 

mathematization.  In  horizontal  mathematization,  students  use  mathematical  tools  to 

organize and solve problems situated in real life. It involves going from the world of life 

into that  of symbols  and vice-versa.  Vertical  mathematization,  instead,  refers  to  the 

process of recognizing within the mathematical system resulting in shortcuts by using 

connections  between concepts and strategies.  It  concerns moving within the abstract 

world of symbols. Models exist only at the lowest level of mathematization, when a 

mathematical  model  is  constructed  for  an  extra-mathematical  situation  (Freudenthal 

1973).  Such an  extra-mathematical  situation,  in  the  perspective  of  RME,  refers  not 

exclusively to real-world contexts, but also to realistic contexts, where

…the  term  realistic refers  more  to  the  intention  that  students  should  be  offered 

problem  situations  which  they  can  image…  than  that  it  refers  to  the  realness  or 

authenticity of problems. However, the latter does not mean that the connection to real 

life is not important. It only implies that the contexts are not necessarily restricted to real-

world  situations.  The  fantasy  world  of  fairy  tales  and  even  the  formal  world  of 

mathematics  can  be  very  suitable  contexts  for  problems,  as  long as  they  are  real  in 

students’ minds. (Van den Heuvel-Panhuizen 2003, p. 9-10)

In the scientific-humanistic perspective, mathematical modelling should be seen in a 

spiral way, as the relation between mathematics and the real-world (De Lange 1987, 

p.39), see Fig. 4. 
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Figure 4. De Lange’s (1987) modelling spiral

2.2.2 Recent trends in mathematical modelling

The historical perspectives on modelling developed in the 1970s have been refined to 

more joint  perspectives  on mathematical  modelling.  However,  the perspectives  have 
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also  become  more  differentiated,  and  new  perspectives  have  evolved.  Kaiser  and 

Sriraman (2006) developed a framework for the description of the various approaches to 

mathematical modelling, which classifies the approaches according to their aims, types 

of mathematical modelling examples, epistemological background, and relation to the 

initial perspectives. In the following this classification is being described. 

Realistic or applied modelling

The realistic or applied perspective follows the pragmatic approach for mathematical 

modelling,  fostering  the  pragmatic  and  utilitarian  goal  that  the  application  of 

mathematics should contribute to the understanding of the real-world and the solution of 

real-world  problems  (Haines  and  Couch  2007;  Kaiser  and  Schwarz  2010).  Two 

important points in this approach are that: (i) modelling processes are carried out as a 

whole and not as partial processes, similar to the work of applied mathematicians; (ii) 

the new development of mathematical concepts and algorithms is not the focus.

Epistemological or theoretical modelling

The  epistemological  or  theoretical  modelling  pursues  the  tradition  of  the  scientific-

humanistic perspective for mathematical modelling, enhancing a theory-oriented goal. 

In this perspective applications of mathematics in the real-world should promote the 

development  of  mathematical  concepts  and  algorithms.  This  approach  relies  on  an 

epistemological  framework  based  on  the  mathematical  praxeologies  of  Chevallard 

(Chevallard  1985;  Barquero,  Bosch  and  Gascon  2007).  The  epistemological  or 

theoretical  perspective  assigns  low importance  to  the  practical  part  (types  of  tasks, 

solution techniques) of a mathematical praxeology, fostering instead the complementary 

theoretical part (supporting theory, necessary technology). 

If the approach of praxeology becomes the main orientation, this leads to the fact that  

every mathematical activity is identified as modelling activity for which modelling is 

not  limited to  mathematising of non-mathematics issues.  (Kaiser  and Sriramn 2006, 

p.305)
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Besides these two first perspectives (realistic or applied and epistemological or theoretical), 

that reflect the historical polarization between pragmatic and scientific-humanistic modelling, 

new perspectives developed assimilating aspects from both the perspectives.

Educational modelling

Educational  modelling  has  strong links  with  the  last  development  of  the  scientific-

humanistic perspective (Freudenthal 1991; Treffers 1987; De Lange 1987), in which 

real-world  examples  and  their  relations  to  mathematics  as  central  elements  of  the 

structure  of  teaching  and  learning  processes  are  stressed.   The  perspective  of 

educational modelling can be split in two facets:  didactical modelling and  conceptual 

modelling.

In  didactical  modelling  the  emphasis  is  on  pedagogical  goals.  The  concept  of 

competencies  and  their  promotion  are  heavily  discussed.  Moreover,  developing 

communication and argumentation competencies and fostering social learning through 

modelling are emphasized (Blum 2011).

In  conceptual  modelling  real-world  examples  are  used  to  introduce  new 

mathematical  concepts  and  to  enhance  the  understanding  of  mathematical  concepts, 

posing the attention to the development  of a deeper mathematical understanding via 

modelling  examples  or  to  the  understanding  of  the  modelling  process  itself  (Maass 

2006; Stillman 2011). 

Contextual modelling or model eliciting perspective

Contextual  modelling  or  model  eliciting  finds  its  roots  in  problem-solving  and 

cognitive-psychological research (Kaiser 2013). This approach was introduced by Lesh 

and Doerr (2003). Model eliciting activities are problem-solving activities constricted 

by specific instructional design principles, in which students make sense of meaningful 

situations and invent, extend, and refine their own mathematical constructs. Here the 

challenge  is  to  develop activities  that  motivate  students  to  develop the mathematics 

needed to make sense of such situations. 
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Sociocritical and sociocultural modelling

Sociocritical and sociocultural modelling emphasize critical thinking about the role of 

mathematics in society, the role and nature of mathematical models, and the function of 

mathematical modelling in society.

[the] promotion of critical understanding of modelling processes and models developed 

as  overall  goal  connected  with  recognition  of  cultural  dependency  of  modelling 

examples and modelling approaches developed. (Kaiser, Sriraman, Blomhoj and Garcia 

2007, p. 2039)

In the teaching and learning process,  the  focus is  on the promotion of students’  critical  

thinking, based on reflective discussions amongst the students within the modelling process.

Cognitive modelling as metaperspective

The last approach in Kaiser and Sriramn (2006) classification of modelling approaches, 

can be considered as a metaperspective, due to its descriptive nature. The focus is on the 

analysis of students’ modelling processes and the promotion of mathematical thinking 

processes. Modelling processes are analyzed on different types of modelling situations 

that vary in their degree of authenticity or mathematical complexity. The main goals are 

to  reconstruct  individual  modelling  routes  (Borromeo  Ferri  2011)  or  individual 

cognitive barriers and difficulties of students during their modelling activities (Stillman 

2011).

2.2.3 The modelling cycle

The perspectives described in the previous section result in different characterization of 

the modelling process, emphasizing either the solution of the original problem or the 
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development  of  mathematical  concepts  or  ideas.  Corresponding  to  the  different 

perspectives  on  mathematical  modelling,  various  modelling  cycles  developed  with 

different emphases (see for an overview Borromeo Ferri 2006). In all the approaches, 

the idealized process of mathematical modelling is described as a cycle process to solve 

real problems using mathematics comprising different steps or phases (Kaiser 2017). 

The  modelling  cycle  is  not  only  a  theoretical  model  which  characterizes  the 

modelling processes, but actually it is a multi-purpose learning instrument for students 

and a diagnostic instrument for teachers (Borromeo Ferri 2018). 

The development of most of the modelling cycles was influenced by Pollak’s work 

(Fig. 3), who first separated reality and mathematics as two worlds. A first example of 

modelling cycle is the one developed by Blum (1985, p.200) and Kaiser-Messner (1986, 

p.3). Here, the starting point is a real situation, which is given through a real problem, 

that  has  to  be  idealized  to  build  a  real  model,  making assumptions  and identifying 

influencing  factors.  Then,  the  real  model  is  translated  into  a  mathematical  model 

through a process of mathematization. Investigation of the model simply means inner-

mathematical  working,  and  so  getting  mathematical  results.  The  final  step  is  the 

interpretation and validation of the mathematical results (Fig. 5). This cycle was named 

didactical  or pedagogical cycle (Borromeo  Ferri  2006).   This  cycle,  indeed,  was 

developed  to  focus  on  if,  and  how,  the  modeling  cycle  can  be  a  tool  to  promote 

modeling competencies, and the understanding of modelling in general, of students in 

middle  school,  high-school  and  university  (see  Blum  2015;  Maass  2007).  The 

implementation of the cycle should offer students the opportunity to reflect what they 

had  done  while  solving  real  problems  while  learning  the  notions  of  real  model or 

mathematical model. Furthermore, this meta-level and the visualization of the modeling 

process  through the  cycle  is  helpful  to  get  an  idea  of  how modeling  problems  are 

different  from  routine  problems,  because  of  the  transitions  between  reality  and 

mathematics (Borromeo Ferri 2018). 
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Figure 5. Modelling cycle from Blum (1985) and Kaiser-Messner (1986)

Another  kind  of  modelling  cycle  founds  its  origin  in  psychology:  the  so-called 

psychological modelling  cycle (Verschaffel,  Greer  and  De  Corte  2000).  In  this 

approach, the step between the real situation and the mathematical model is given by the 

situation model (Fig. 6). The term situation model is mainly used in connection with 

word problems (see Kintsch and Greeno 1985; Nesher, Hershkowitz and Novotna 2003) 

and has its origin in text linguistics. A situation model can be described as a mental 

representation of the situation that is given in the problem. 

The  situation  model  includes  inferences  that  are  made  using  knowledge  about  the 

domain  of  the  text  information.  It  is  a  representation  of  the  content  of  a  text,  

independent  of  how  the  text  was  formulated  and  integrated  with  other  relevant 

experiences. Its structure is adapted to the demands of whatever tasks the reader expects  

to perform. (Kintsch and Greeno 1985, p. 110) 
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Figure 6. Modelling cycle from Verschaffel et al. (2000)

In this cycle it is clear there is no distinction between mathematics and reality. The 

aim of  this  cycle  is  not  to  be  used  in  schools,  but  the  relevance  for  including  the  

situation model in the modeling cycle offered new ways for research and for practice. 

From the previous approach, in fact, brought out the diagnostic modelling cycle (Fig. 

7). In this cycle the focus is on the cognitive processes of individuals during modelling 

processes. The situation model represents the most important phase during the modeling 

process (Blum and Leiß 2007), being run by all individuals during modelling. That is 

because the transition between real situation and situation model is described as a phase 

of understanding the task. In this direction a contribution is given by Borromeo Ferri 

(2007), who used the phase of the situation model in an adaptation of the modelling 

cycle. Moreover, in order to better describe kind of internal processes an individual goes 

through  to  obtain  a  corresponding  mental  picture  while/after  reading  the  (complex) 

modelling  task,  instead  of  situation  model  the  name  mental  representation  of  the 

situation was introduced.
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Figure 7. Modelling cycle from Borromeo Ferri (2007)

To conclude, the following synthesis given by Kaiser and Stender (2013, p.279) is 

reported ( Fig.8). 

Figure 8. Modelling cycle from Kaiser and Stender (2013)

In the specific, the following characteristics are taken into account: 

 the real situation is simplified in order to build a real model of the situation, 

making assumptions and identifying the central influencing factors;
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 the  real  model  has  to  be  translated  into  mathematics  in  order  to  create  a 

mathematical model. The process of developing a real model and a mathematical 

model  are  interwoven  since  the  developed  real  problem  is  related  to  the 

mathematical knowledge of the modeler;

 mathematical results are worked out by using mathematics;

 after interpreting the mathematical results, the real results have to be validated. 

Then, parts or the whole process go through again. 

We remark that this is an idealized cycle. Indeed, what happens is that mini cycles 

occur that are either worked out in linear sequential steps like the entire cycle or in a 

less ordered way. Most modelling processes include frequent  switching between the 

different  steps of the modelling  cycles  (Borromeo Ferri  2011).  To conclude,  in this 

cycle  the  distinction  of  the  real-world  situation  from  the  real  model  and  the 

mathematical  model  is  present,  and  the  emphasis  is  on  the  interpretation  of  the 

mathematical results to obtain real-world results, that also need to be validated. 

In  addition  to  the  classification  above,  further  descriptions  of  modelling  cycles, 

which are used in school or higher education, can be found in Cirillo, Pelesko, Felton-

Koestler and Rubel (2016). 

In the next two sections two modelling perspective that will be considered in the 

following research cycles will be described in more details: emergent modelling and 

model eliciting. 

2.2.4 Emergent modelling

Emergent  modelling  refers  to  educational  modelling in  Kaiser  and Sriraman (2006) 

classification  of  modelling  perspectives.  Educational  modelling  is  linked  to  the 

scientific-humanistic perspective in the version formulated by Freudenthal in his later 
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years  and  its  extensions  developed  by  Treffers  (1987)  and  DeLange  (1987),  who 

emphasized real-world examples and their relations to mathematics as central elements 

of the structure of teaching and learning process. 

Emergent  modelling  was  initially  developed  by  Gravemeijer  (1999)  with  the 

meaning of supporting the emergence of formal mathematical ways of knowing. The 

underlying  educational  theory  is  the  one  of  RME,  in  which  models  have  always 

employed to foster a process in which formal mathematics is re-invented by students 

themselves. Indeed, in this perspective modelling activities are used as a vehicle for the 

development,  rather  than applications,  of  mathematical  concepts  (Greer,  Verschaffel 

and Mukhopadhyay 2007). Students, starting from a real context, begin to model their 

informal  mathematical  strategies  and  arrive  to  re-invent  mathematical  concepts  and 

applications they need. These concepts and applications can be subsequently formalized 

in mathematical terms and generalized to other situations. As a consequence, the role of 

the model shifts during the learning process,  from being situation-related to becoming 

more general. Emergent modelling can be seen as a long-term dynamic process from a 

model of students’ situated informal mathematical strategies to a model for more formal 

mathematical reasoning (Gravemeijer and Doorman 1999), that favours understanding, 

reasoning and sense-making. This transition from model of  to  model for involves the 

constitution  of a new mathematical  reality  (Streefland 1985) that  can be denoted as 

formal in relation to the original starting points of the students.  The movement from 

situational  to  formal  reasoning  is  well  described  by  the  four  levels  in  Fig.  2 

(Gravemeijer, Cobb, Bowers, and Whitenack 2000).

Emergent  modelling  reinforces  the  vertical  component  of  the  mathematization 

process.  Mathematization  should  be  divided  in  two  components:  horizontal 

mathematization and  vertical  mathematization  (Treffers  1987;  Freudenthal  1991).  In 

horizontal  mathematization,  students  use  mathematical  tools  to  organize  and  solve 

problems situated  in  real  life.  It  involves  going from the  world  of  life  into  that  of 

symbols  and  vice-versa.  Vertical  mathematization,  instead,  refers  to  the  process  of 

recognizing within the mathematical system resulting in shortcuts by using connections 

between  concepts  and  strategies.  It  concerns  moving  within  the  abstract  world  of 

symbols.  Vertical  mathematization  is  stimulated  by  emergent  modelling.  In  this 
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situation,  in  fact,  models  help  students  in  passing  through  several  stages  of 

understanding and reflection on formal mathematical concepts. 

To conclude, in emergent modelling what is aimed for is a process of gradual growth 

in which formal mathematics comes to the fore as a natural extension of the student’s 

experiential reality (Gravemeijer 1999). 

2.2.5 Model eliciting 

The model eliciting perspective was firstly formulated by Lesh and Doerr (2003) and its 

theoretical basis are founded in psychological theories and pragmatism. 

Model eliciting activities can be defined as simulations of real-life problem solving 

situations  in  which  students  develop  a  model  going  through  iterative  phases  of 

invention,  refinement  and  revision.  Modelling,  in  fact,  is  a  process  of  developing 

representational  descriptions  for  specific  purposes  in  specific  situations,  involving 

iterative  testing  and revision  cycles  (Lesh  and Lehrer  2003).  In  the  model  eliciting 

approach,  a  modelling  cycle  is  intended  as  a  four-step  process:  i)  formulation  of  a 

possible mathematical approach to solve a real-context problem; ii) test of the designed 

solving strategy; iii) interpretation and discussion of the testing results; iv) revision of 

the  starting  approach.  As  a  consequence,  a  mathematical  model  is  no  longer  the 

translation  of  a  real-world  problem  in  a  mathematical  symbolic  formulation  but 

becomes  the  result  of  many  repeated  modelling  cycles  in  order  to  create  the 

mathematical model that best describes the given situation. 

The goal  of a model  eliciting activity  is  the process of model construction.  This 

process is  the key difference between a model  eliciting activity  and word problems 

(Leavitt  and  Ahn  2010).  In  the  traditional  practice  of  word  problems,  a  set  of 

mathematical constructs and procedures are introduced by the teacher to students, who 

apply these procedures to solve a problem. In model eliciting activities, instead, students 

struggle to create interpretations that fit their interpretations of the starting dilemma, 

discuss, make sense of meaningful situations and invent, extend and refine their own 

mathematical constructs (Kaiser 2017). 
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In order to create simulations of real-life problems, Lesh, Cramer, Doerr, Post and 

Zawojewski (2003) introduced six principles of instructional design. In Table 1, these 

principles and their relative purposes are reported.

Table  1.  Model  eliciting  principles  by  Lesh,  Cramer,  Doerr,  Post  and  Zawojewski. 

(2003).

Principle Purpose

Personal meaningfulness Ensure that the task could really happen in real life and 

that responses can be based on extensions of students’ 

everyday knowledge and experiences.

Model construction Students’  involvement  in  repeated  modelling  cycles 

when engaged with the task.

Self-evaluation Students’ ability to clearly assess their work in relation 

to the purposes of the task.

Model externalization Students’  expression  of  their  thinking  about  the 

situation  and  description  of  the  developed  steps  to 

solve the task.

Simple prototype The situation must be as simple as possible, while still 

creating  the  need  for  a  significant  model  that  could 

represent  a  prototype  for  interpreting  similar 

situations.

Model generalization Extension  of  the  constructed  conceptual  tool  to  a 

broader range of situations. 
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To get the most instructional value out of model eliciting activities, Lesh, Cramer, 

Doerr, Post and Zawojewski (2003) developed a model development sequence whose 

components can easily be re-sequenced to suit the needs of researchers or teachers (Fig. 

9). Such model development sequences are made by the following activities:  warm-up 

activities;  model  eliciting  activities;  model  exploration  activities;  model  adaptation 

activities;  discussions  about  structural  similarities;  presentations  and  discussions; 

reflection and debriefing activities;  follow-up activities;  the on-line how toolkit;  other 

high-quality resources and references. A complete description of such activities can be 

found in Lesh, Cramer, Doerr, Post and Zawojewski (2003). Here the focus is only on 

the activities that will be considered in the rest of the thesis. In the specific,  warm-up 

activities are usually given the day before students are expected to begin working on the 

model eliciting activity. Warm-up activities aimed at helping students to be confident 

with  the  context  of  the  modelling  activity and  at  introducing  or  testing  eventually 

minimum prerequisites. In model eliciting activities students are engaged in performing 

modelling cycles to produce a model that describes the starting situation. Presentations 

and discussions are whole-class activities in which students make formal presentations 

about the results  of their  work. In  reflection and debriefing activities students work 

individually, thinking back about their experiences during the whole modelling process. 

Further research in model eliciting focused on the role of the teacher. Leavitt and 

Ahn (2010) proposed a teacher’s guide to model eliciting activities,  in order to help 

researchers and teachers in conducting investigations of students’ or teachers’ actions. 

These guidelines, that can be adapted to each specific environment, move around four 

categories: group composition; relevant model eliciting activity sections; teachers’ role 

during  group  work;  group  presentations  and  individual  work.  Moreover,  some 

additional recommendations are suggested. In particular, the starting problem context of 

a model eliciting activity should be based on students’ familiar situations in which they 

can understand the need for the desired mathematical construct. Moreover, the teacher 

has to pay attention to anticipate the mathematics needed for the paths that the students 

might explore; resist guiding students toward one specific method; remind students to 

write down their reasoning.  
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Despite the goal of a model eliciting activity is to develop a conceptual tool that is 

also sharable  and reusable,  models  are  inherently  provisional  and are developed for 

specific purposes in specific situations (Lesh and Lehrer 2003). 
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Figure 9. Model development sequence 
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2.2.6 Mathematical modelling competencies and their teaching

The concept of modelling competencies has been included in many curricula all over 

the world. The relevance of modelling competencies was first emphasized at the start of 

the  international  conference  series  on  the  teaching  of  mathematical  modelling  and 

applications  in  1983,  later  called  the  International  Conference  on the  Teaching  and 

Learning of Mathematical Modelling and Applications:

The basic  philosophy behind the approach… of  the  modelling workshop for  higher 

education is that to become proficient in modelling, you must fully experience it- it is  

no good just watching somebody else do it, or repeat what somebody else has done- you 

must experience it yourself. I would liken it to the activity of swimming. You can watch 

others swim, you can practice exercises, but to swim, you must be in the water doing it  

yourself. (Burghes 1984, p. 13).

Some important strands of discussion with different emphases and foci shaped the 

debate on modelling competencies (Kaiser and Brand 2015). Here we report two of 

them: the introduction of modelling competencies in an overall comprehensive concept 

of  competencies  by the Danish KOM project;  the development  of  a  comprehensive 

concept of modelling competencies based on sub-competencies and its evaluation by the 

German discussion on modeling. 

In 2002, the team members of the Danish KOM project developed a comprehensive 

approach  to  the  definition  of  mathematical  competencies.  The  mathematical 

competency was defined as 

… a well-informed readiness to act appropriately in situations involving a certain type 

of mathematical challenge. (Niss and Hojgaard 2011)

In  the  specific,  eight  mathematical  competencies  were  distinguished  (Fig.  10), 

including the modelling competency. These competences were not seen as independent 

sub-competences, but they describe the mathematical competency as a whole. 
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Figure 10. The KOM flower of the eight mathematical competencies (Niss and Jensen 

2002).

We report the definition of modelling competency:

This competency involves, on the one hand, being able to analyze the foundations and 

properties  of  existing  models  and  being  able  to  assess  their  range  and  validity.  

Belonging to this is the ability to  de-mathematize existing mathematical models,  i.e. 

being able to decode and interpret model elements and results in terms of the real area 

or situation which they are supposed to model.  On the other  hand,  the competency 

involves being able to  perform active modelling in given contexts, i.e. mathematising 

and applying it to situations beyond mathematics itself. (Niss and Hojgaard 2011, p. 58)

Active  modelling  includes  different  phases  of  the  modelling  process,  such  as 

structuring real-world situations that has to be modeled; mathematising, translating the 

situation into mathematical terms; working with the resulting model, finding solution to 
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the mathematical problems; interpreting and validating these results in relation to the 

real starting situation; monitoring the entire process of modelling. 

Another  contribution  on  modelling  competencies  was  given  by  the  work  of  the 

German modelling group. 

Modelling competencies include, in contrast to modelling abilities, not only the ability, 

but also the willingness to work out problems, with mathematical aspects taken from 

reality, through mathematical modelling. (Kaiser 2007, p.110)

Within this strand a distinction is made between global modelling competencies and 

sub-competencies  of  mathematical  modelling.  Global  competencies  are  abilities 

necessary to perform and reflect on the whole modeling process. The sub-competencies 

instead refer to the specific different competencies essential to performing single steps 

of the modeling cycle (Kaiser 2007), distinguished as:

 competency to solve at least partly a real-world problem through mathematical 

description developed by oneself; 

 competency to reflect about the modeling process by activating meta-knowledge 

about modeling processes;

 insight into the connections between mathematics and reality; 

 insight into the perception of mathematics as process and not merely as product; 

 insight into the subjectivity of mathematical modeling, that is, the dependence of 

modeling  processes  on  the  aims  and  the  available  mathematical  tools  and 

students’ competencies; 

 social competencies such as the ability to work in a group and to communicate 

about and via mathematics. 
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Teaching mathematical modelling competencies

Besides the definition of mathematical modelling competence/ies, an important aspect is 

how  to  teach  modelling  competence/ies.  As  a  consequence,  teachers  need  to  be 

supported in learning mathematical modelling, how to teach it and how to promote in 

students the development of such modelling competencies.  

Mathematical  modeling  is  a  crucial  part  of  teacher  education.  Four  teaching 

competencies  had  been  individuated  being  particularly  important  when  teaching 

mathematical  modeling  (Borromeo  Ferri  and  Blum  2009;  Borromeo  Ferri  2018): 

theoretical  competence;  task  competence;  instruction  competence;  diagnostic 

competence (Table 2).

Table 2. Competencies for teaching mathematical modelling (Borromeo Ferri and Blum 

2009; Borromeo Ferri 2018)

Theoretical competence

Modelling cycles

Aims and perspectives on modelling

Types of modelling tasks

Task competence

Multiple solution of modelling tasks

Cognitive analysis of modelling tasks

Development of modelling tasks

Instruction competence

Planning lessons with modelling tasks

Carrying out lessons with modelling tasks

Interventions, support and feedback

Diagnostic competence

Recognize phases in modelling processes

Recognizing difficulties and mistakes

Marking modelling tasks
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The theoretical competence refers to the necessary theoretical background to develop 

and implement modelling activities in school. In the specific, teachers must know the 

historical development of mathematical modelling, different perspectives and goals.

However, not only theory is sufficient to be able to develop modelling lessons in 

classrooms. In general, tasks are at the core of mathematics lessons. As a consequence, 

the  selection  and  the  quality  of  tasks  for  lessons  are  essential  for  mathematical 

understanding, for promoting students’ mathematical practices and competencies, and 

can be the basis for structuring lessons using several teaching methods. In this direction, 

the  task  competency  aims  to  help  teachers  in  learning to  solve,  analyze  and create 

modelling tasks.

How to plan and execute modelling lessons? The instruction competence concerns 

the  ability  to  plan  and  execute  modelling  lessons  and  knowledge  of  appropriate 

interventions during the pupils’ modelling processes. Borromeo Ferri (2018) identifies 

some principles for preparing and planning, and for executing and reflecting (Table 3) 

on modelling lessons. 

Table3. Principles concerning modelling lessons

Preparing and Planning Executing and Reflecting

Chose an adequate modeling problem 

for students, which has an interesting 

context,  is  problem-oriented, 

authentic,  realistic  and can be solved 

through  the  steps of  the  modeling 

cycle. 

Students  need  time  to  understand 

what the problem is about, and they 

should know how they will work on 

this  problem  (with  partners  or  in 

groups).  Before  group  work  starts, 

students  need  to  know  how  the 

solution  should  be  presented 

afterwards. 

Solve the problem before to give it to 

students, going through all steps of the 

modeling cycle.  Write down multiple 

solutions  and  possible 

During  group  work  go  around  and 

take  notes  about  the  students’ 

modeling  process.  Look  at  groups 

that  used  different  models  for  their 
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models/formulations  of  the  problem. 

Think  about  potential  cognitive 

barriers students could have when they 

work  on  this  problem  and  have 

adequate  interventions  for  stronger 

and weaker students prepared. 

solution. 

Make  clear  the  central  goal  of  the 

lesson:  understanding  of  certain 

mathematical  content;  improving 

students’ modeling sub-competencies; 

social  goals,  for  instance  observing 

students’  teamwork  and  give  them 

feedback and help so they can be more 

effective in coming to a result. 

Is the central goal of the lesson being 

achieved? 

Which  tools  are  needed  for  the 

modeling  problem?  Should  students 

use  technology  and  if  yes,  how  can 

they  combine  it  with  the  modeling 

process? 

Develop  a  lesson plan.  At  the  end, 

reflect about what was successful in 

the  lesson  and  what  was  not,  and 

which  aspects  can  be  optimized  in 

further lessons. 

Think  about  the  duration  of  the 

different phases for the lesson plan.

Which  method  is  suitable  for  the 

class? 

Is there enough time for students to 

work  on  the  problem  and  also  for 

discussing  the  results?  Do  students 

need further materials?

The  diagnostic  competence  concerns  the  ability  to  identify  phases  in  pupils’ 

modelling processes and to diagnose pupils’ difficulties during such processes.

Learning how to assess and to grade modelling problems in school is one of the 

hardest  dimensions  to  take  into  account.  In  literature  there  are  some  examples  of 

schemas for assessing solutions to modelling problems (see for example Schukajlow et 

al. 2009). 
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2.3 Mathematical problem-posing

An educational strategy that is directly linked to mathematical modelling is problem-

posing. Indeed, problem-posing forms and integral part of modelling: the problem and its 

formulation are an essential part of modelling, and a modelling process is a continual 

adjustment and refinement of the main problem (Hansen and Hana 2015). 

It  is  terribly  important  for  students  to  have  practice  in  seeing  situations  in  which 

mathematics might be helpful, and in trying their hand at formulating useful problems. 

(Pollak 1969, p. 399)

The  era  of  information  and  communication  technology  creates  new  social 

environments and needs, wherein young generations have to face unpredictable changes 

they  should learn  coping with  (Singer,  Ellerton  and Cai  2015).  As specified  in  the 

previous paragraph,  the Council of European Union recommended as one of the key 

competencies for lifelong learning the mathematical competence, seen as the ability to 

develop  and  apply  mathematical  thinking  and  insight  in  order  to  solve  a  range  of 

problems in everyday situations1. In order to help students to prepare to cope with such 

situations they have to face out of school, the type of problem-solving experiences they 

are engaged at school need to be rethought (Bonotto 2013). In particular, realistic and 

less stereotyped problems that take into consideration the experiential world of students 

must be inserted in the school practice, in order to create a bridge between mathematics 

classroom activities  and  everyday-life  experiences.  In  fact,  encouraging  students  to 

relate mathematical problems with real-world scenarios may help them more closely 

associate mathematics with their everyday activities (De Corte, Verschaffel and Greer 

2000). To this end, allowing students to write their own mathematical problems may 

help them to make connections between mathematics in the classroom and their real life 

(Kopparla  et  al.  2018).  In this  direction,  problem-posing,  which can be seen as the 

1 Recommendation of the European Parliament and of the Council of 22 May 2018 on key competencies  
for lifelong learning (2018/C189/01). 
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process  by  which  students  generate  their  own problems  in  addition  to  solving  pre-

formulated  problems  (English  1997;  NCTM  2000;  Silver  and  Cai  1996),  should 

represent a valuable strategy to support students in give sense to their  mathematical 

activity  filling the gap between in- and out-of-school mathematical competencies and 

experiences.  Indeed, if  the goal  of education is  to prepare students for the kinds of 

thinking they will need, problem-posing should be an important part of the curriculum 

(Singer,  Ellerton  and  Cai  2015),  as  requested  in  many  curricular  and  pedagogical 

innovation in mathematics education:

Teaching mathematics from a problem-solving perspective entails more than solving 

nonroutine but often isolated problems or typical textbook type of problems. It involves 

the  notion  that  the  very  essence  of  studying  mathematics  is  itself  an  exercise  in 

exploring, conjecturing, examining, and testing all aspects of problem solving. Tasks 

should  be  created  and  presented  that  are  accessible  to  students  and  extend  their 

knowledge of mathematics and problem solving. Students should be given opportunities 

to formulate problems from given situations and create new problems by modifying the 

conditions of a given problem. (NCTM 1991, p.95)

The term problem-posing was introduced in education by Paulo Freire in 1970 in his 

book  Pedagogy  of  the  Oppressed as  a  metaphor  for  emphasizing  critical  thinking. 

Problem-posing extended to various domains of knowledge. In mathematics education, 

problem-posing  has  been  identified  as  an  important  aspect  (Christou,  Mousoulides, 

Pittalis, Pitta-Pantazi, and Sriraman 2005; Freudenthal 1973; Polya 1954), and more in 

general as a critically important intellectual activity in scientific investigation. Einstein 

(Einstein and Infeld 1938) argued that the formulation of an interesting problem is often 

more important than its solution.  

The formulation of a problem is often more essential than its solution, which may be  

merely a matter of mathematical or experimental skill. To raise new questions, a new 

possibility, to regard old problems from a new angle, requires creative imagination and 

marks real advances in sciences. (Einstein and Infeld 1938, p. 92) 
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Since in real life problems must often be created by the solver, the formulation of a 

problem should  be  viewed  not  only  as  a  goal  of  instruction  but  also  as  means  of 

instruction  (Killpatrick  1987).  The  advancement  of  mathematics,  in  fact,  requires 

creative  imagination,  which  is  the  result  of  raising  new questions  and  viewing  old 

questions from a new perspective (Ellerton and Clarkson 1996). Problem-posing, being 

the act of generating mathematical problems, is a process through which the importance 

of creativity and critical thinking are emphasized (NCTM 2000). In this perspective, 

students can actively construct meaning in both the natural  and simulated worlds in 

classrooms.  Moreover,  teachers  and  students  might  create  knowledge  together  in  a 

variety of contexts and generate and address critical questions about the knowledge they 

produce. In Freire’s version, all these could help to develop more democratic, diverse, 

critically thinking members of society (Singer, Ellerton and Cai 2015). 

Problem-posing has been defined by researchers from different perspectives (Silver 

and  Cai  1996),  referring  both  to  the  generation  of  new  problems  and  to  the 

reformulation  of  given  problems  (Silver  1994).  In  this  project  problem-posing  is 

considered  as  the  process  by  which  students  construct  personal  interpretations  of 

concrete  situations  and  formulate  them  as  meaningful  mathematical  problems 

(Stoyanova and Ellerton 1996).  These concrete situations considered as starting point 

for the practice of problem-posing could be divided in three categories  (Stoyanova & 

Ellerton 1996): 

1. free situations, where students are asked to pose problems without restrictions; 

2. semi-structured situations, where students are provided with an open situation and 

are invited to explore its structure and to complete it using their personal previous 

mathematical experience; 

3. structured situations, where students pose problems reformulating or varying given 

problems.
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In order to provide students with such meaningful contexts, a precious contribution is 

given by  cultural artefacts (Bonotto 2013).  Thanks to its complexity and richness in 

mathematical meaning, an artefact lives in both the world of symbols and the real one, 

creating a sort of hybrid space that connects mathematics and everyday contexts. A re-

mathematization process is thereby favoured, wherein students are invited to unpack 

from artefacts the mathematics that has been hidden in them, in contrast with the de-

mathematization process in which the need to understand mathematics  that becomes 

embodied  in  artefacts  disappears  (Gellert  &  Jablonka  2007).  As  a  consequence, 

movement  from common use situations  to mathematical  structures  and vice-versa is 

allowed, in agreement with the process of modelling. Moreover, by removing some data 

from an artefact, we can stimulate students to face out with new mathematical goals, 

such as create new concepts or applications (Bonotto 2005). Artefacts represent in this 

direction  a  valuable  tool  to  offer  students opportunities  also in  emergent-modelling, 

connecting modelling and problem-posing.

The theoretical arguments supporting the importance of problem-posing in school 

mathematics are supported by a growing body of empirical research.  Various aspects of 

problem-posing had been studied in literature,  such as examining thinking processes 

related  to  problem-posing (Brown and Walter  1990;  Christou,  Mousoulides,  Pittalis, 

Pitta-Pantazi  and  Sriraman  2005),  or  including  problem-posing  in  mathematics 

activities. In particular, several studies focused on the relations between problem-posing 

and  problem  solving  (section  2.3.1)  and/or  between  problem-posing  and  creativity 

(section 2.3.2). 

2.3.1 Problem-posing and problem solving

One of  the  most  important  direction  of  research  on  problem-posing  is  studying  its 

relations with problem solving. 

As described by Silver (1994), problem-posing can occur at three stages in relation to 

problem solving. The first stage consists in problem-posing prior to solving a problem, 

when a problem is generated from a given situation, and the goal is not the solution 

itself  but the creation of a new problem. The second stage concerns problem-posing 

while solving a problem, wherein a solver recreates a given problem in some ways to 
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make it  more accessible  for solution.  The third stage refers to  problem-posing after 

having solved a problem, indeed one might explore the conditions of that problem to 

generate related problems. 

In addition to the described relations between problem-posing and problem solving, 

it has been proved that students engaged in problem-posing activities improved their 

problem solving abilities (Van Harpen and Presmeg 2013; Cai and Hwang 2002; Silver 

1996; Ellerton 1986). Indeed, problem-posing affords students the unique opportunity to 

improve their problem solving skills while developing their academic skills to encounter 

and solve problems in mathematics and beyond (Kopparla et al. 2018). 

2.3.2 Problem-posing and creativity

Another aspect of problem-posing that was investigated in literature is its relationship 

with students’ creativity. Problem-posing, in fact, is a form of creative activity that can 

operate  within  tasks  involving  rich  situations  (Freudenthal  1991),  using  real-life 

artefacts  and human interactions (English 2009).  Creativity  is directly linked to the 

mathematical  activity  of  problem-posing,  being  the  act  of  creating  mathematical 

problems in specific contexts (Bonotto and Dal Santo 2015). 

Creativity  started  receiving  attention  in  1950,  when  Guilford  (1959)  proposed  a 

distinction between two types of thought: divergent thinking and convergent thinking. In 

particular, divergent thinking was characterized by  fluency, flexibility and  originality, 

that  represented the three  aspects  of creativity  (Guilford 1959).  Fluency in thinking 

refers to the quantity of output; flexibility in thinking refers to a change of some kind 

(meaning, interpretation, use of something, strategy); originality in thinking means the 

production of unusual, remote or clever responses. 

The creative process in school mathematics may be encouraged by the presence of 

semi-structured  situations  (Stoyanova  and  Ellerton  1996).  In  particular  the  use  of 

cultural artefacts can help creating such situations. 

Through the use of artefacts, children can be encouraged to recognize a great variety of 

situations as mathematical situations, or more precisely  mathematizable situations, by 

52



Background and Research Questions

asking them: (a) to select other artefacts from their everyday life; (b) to identify the 

mathematical facts associated with them; (c) to look for analogies and differences; (d) to 

generate problems. (Bonotto and Dal Santo 2015, pp. 109-110).

Several  studies  used  problem-posing and problem solving to  promote  and assess 

creativity (Xie and Masingila 2017; Bonotto and Dal Santo 2015; Bonotto 2013; Yuan 

and Sriraman 2010; Leung 1997; Silver 1997, Leung and Silver 1997; Sriraman 2009), 

proving  that  an  inquiry-oriented  mathematics  instruction,  including  problem-posing 

activities, could assist students to develop more creative approaches to mathematics. 

However, given the value of problem-posing activities as opportunities for measuring 

students’  creativity,  or  other  mathematical  learning  outcomes,  it  is  mandatory  to 

develop and validate suitable problem-posing instruments, understanding which kind of 

problem-posing  tasks  best  reveal  students’  creativity  and  their  mathematical 

understandings (Cai, Hwang, Jiang and Silber 2015). 

2.3.3 Problem-posing analytic schemes

Several analytic schemes have been created to evaluate students’ or teachers’ problem-

posing performances.

A first analytic scheme to examine problem-posing of middle school students was 

developed by Silver and Cai (1996). Students’ problem-posing responses were firstly 

categorized  as  mathematical questions,  non-mathematical  questions or  statements. 

Then, mathematical questions were divided in solvable and not-solvable. In the specific, 

problems were considered to be not solvable if they lacked sufficient information or if 

they  posed a  goal  that  was  incompatible  with  the  given  information.  The  last  step 

involved examining the complexity of the posed problems. Complexity was considered 

under  two  perspectives:  syntactic  complexity and  semantic  complexity.  Syntactic 

complexity  consisted  in  the  presence  of  assignment,  relational or  conditional 

propositions.  In  agreement  with Mayer,  Lewis  and Hegarty (1992),  the  presence  of 

conditional  or  relational  propositions  could  be  taken  as  an  indication  of  problem 

complexity. Semantic complexity involved the number of semantic relations used. Such 
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semantic  relations  had  been  taken  from  Marshall’s  (1995)  five  categories:  change, 

group, compare, restate, vary. Silver and Cai (1996) scheme is shown in Fig. 11.

Figure 11. Silver and Cai (1996) scheme

Another significant analytic instrument for problem-posing was developed in Leung 

and Silver (1997): the  Test for Arithmetic Problem Posing (TAPP). TAPP evaluated 

students’ responses in semi-structured situations in terms of quality and complexity. 

Regarding the quality, a three-step process was implemented. First, each statement was 

classified  as  mathematical or  non-mathematical  problem.  Next,  each  mathematical 

problem was classified as plausible or implausible. A problem was considered plausible 

if  the  initial  state  of  the  posed  problem appeared  to  be  feasible  and  no discrepant 

information could be found.  Finally, plausible mathematical problems were analysed 

respect to the sufficiency of the information provided for solution of the posed problem. 

With  respect  to  complexity,  responses  were  classified  according  to  the  arithmetic 

complexity of the solution of the posed problem. In the specific, posed problems were 

judged on the basis of zero, single or multi-step for its solution. While in Silver and Cai 

(1996) scheme complexity was analysed in terms of the number of semantic relations 

and of the syntactic differences of problems, in this case complexity was studied only in 
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terms of the number of steps required to solve a posed problem. In Fig. 12 Leung and 

Silver (1997) scheme is reported.

Figure 12. Leung and Silver (1997) scheme

 

 Christou et al. (2005) proposed a model which enables young students’ problem-

posing thinking to be described by four processes:  editing,  selecting,  comprehending, 

translating.  Editing  quantitative  information  involved  tasks  that  requires  students  to 

pose a problem without any restriction from provided information, stories or prompts 

(Mamona-Downs 1993). Selecting quantitative information refered to tasks that require 

students to pose problems or questions that are appropriate to specific given answers. 

Comprehending  quantitative  information  associated  to  tasks  in  which  students  pose 

problems from given mathematical equations or calculations, requiring understanding 

the meaning of the operations and an algorithm approach (English 1998). Translating 

quantitative information required students to pose problems or questions from graphs, 

diagrams or tables. Such a model incorporated semi-structured and structured situations 

(Stoyanova 1998). 
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More recently, Kopparla et al. (2018) developed a rubric to grade problem-posing 

questions.  Problems  posed  by  students,  are  analysed  following  three  directions: 

structure and context; mathematical expression; appropriateness of the design. To each 

of  these  three  categories  can  be  associated  an  index  of  satisfaction  from  1  to  4: 

1=unsatisfactory, 2=minimal, 3=moderate, 4=satisfactory (Table 4).

Table 4. Kopparla et al. (2018) rubric to grade problem-posing questions

1 2 3 4

structure-context no complete 

problem posed

exact the same 

word choice as 

the given

moderate changes 

in numbers or 

scenario

all numbers and 

scenario original

mathematical 

expression

no setups to solve 

the problem

setup does not 

align to the 

question

problem 

statement aligns 

somewhat with 

student’s setup to 

solve

problem 

statement aligns 

completely with 

student’s setup to 

solve

appropriateness 

of design

scenario not 

realistic or 

solvable

scenario 

somewhat 

realistic or 

solvable with 

incorrect use of 

units

scenario 

somewhat 

realistic or 

solvable with 

partially correct 

use of units

scenario is 

realistic or 

solvable with 

accurate use of 

units

Researchers  created  and  applied  different  schemes  also  to  evaluate  students’ 

creativity  in  problem-posing.  One  of  the  most  important  schemes  to  measure 

participants’ creativity was the  Torrence Test of Creative Thinking, based on the four 

factors of fluency, flexibility, originality and elaboration (Leung and Silver 1997; Yuan 

and Sriraman 2011). The test consisted of four items as modifications of the tasks used 

by Getzels and Jackson (1962). The four items were obtained by crossing two problem 
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contexts  with two information content  formats,  respectively with or without specific 

numerical information.  

More  recently,  Xie  and  Masingila  (2017)  proposed  a  scoring  rubric  to  assess 

prospective teachers’ problem-posing performances. In particular, in relation to a given 

problem, they analysed teachers’ posed problems in terms of quality, complexity and 

creativity (Table 5).

Table 5. Xie and Masingila (2017) rubric to asses prospective teachers’ problem-posing 

performance.

category of the posed problem

3 points Solvable mathematical problem

2 points Unsolvable mathematical problem

1 point Not a mathematical problem

understanding of problem-posing 

and problem-posing strategy

3 points Complete understanding

2 points Partially understanding

1 point Poor understanding

creativity of the posed problem

3 points Completely different problem

2 points Somewhat different problem

1 point Comparable problem (with similar 

structure)

complexity of the posed problem

3 points Need three or more operational steps 

to solve

2 points Need two operational steps or one 

operational step to solve

1 point No operational step needed

 

2.3.4 Emergent problem-posing

In this section we take another perspective concerning problem-posing, that is no long 

seen as an end in itself, but as a means to extend students’ mathematical knowledge and 

skills (Klaassen and Doorman 2015). In this direction the focus on a particular aspect of 
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problem-posing, defined as  emergent problem-posing.  To define and justify this new 

term we start making a connection with the notion of emergent modelling.

Recall that emergent modelling (Gravemijer 1999) is a long-time learning process in 

which students begin to model their informal mathematical strategies and arrive to re-

invent  mathematical  concepts  and  applications  they  need  (see  section  2.2.4).  These 

concepts and applications can be subsequently formalized in mathematical terms and 

generalized to other situations. As a consequence, emergent-modelling can be seen as a 

process in which a model develops from an informal, situated model (model of) into a 

generalizable  mathematical  structure (model  for),  that  increases formal  mathematical 

reasoning (Gravemeijer 1999) and sense-making. It is evident that emergent modelling 

was introduced with the meaning of supporting the emergence of formal mathematical 

ways of knowing. Indeed, in this perspective modelling activities are used as a vehicle 

for  the  development,  rather  than  applications,  of  mathematical  concepts  (Greer, 

Verschaffel and Mukhopadhyay 2007). Students, starting from a real context, begin to 

model their informal mathematical strategies and arrive to re-invent (Freudenthal 1991) 

mathematical concepts and applications they need. 

When generating  a  problem,  students  do  not  always  take  into  account  possible 

solving strategies related to that problem, instead often they are not able to solve the 

problems they have posed. In this situation, problems posed by students that require 

new mathematical knowledge for their solution can be used as a vehicle to introduce 

new  mathematical  concepts.  Moreover,  these  new  concepts  assume  meaning  for 

students, because rooted in their  personal experience and for the specific purpose of 

solving  the  problems  posed  by  themselves.  As  a  consequence,  new  mathematical 

knowledge should be not only introduced, but also re-invented (Freudenthal 1991) by 

students.  Similarly to emergent  modelling,  we call  this  aspect of problem posing as 

emergent  problem-posing,  highlighting  its  aim  to  support  the  emergence  of  formal 

mathematical ways of knowing. 

Emergent  problem-posing  is  also connected  to  the  process  of  prospective  learning 

(Freudenthal  1991),  in  which  informal  contexts  play  a  prominent  role  in  offering 

students  opportunities  to  improve  their  knowledge,  before  to  deal  with  more 

systematicity  and formalism.  Emergent  problem-posing should  reinforce  prospective 
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learning, motivating and supporting students in creating new mathematical knowledge 

from informal contexts. 

2.3.5 Directions for the future

To conclude this section, the main results concerning research on problem-posing in 

mathematics education could be sum up in four main themes (Ellerton, Singer and Cai 

2015):

 problem-posing  can  transform  attitudes  towards  mathematics  so  that  the 

object of mathematics is the problem not just the solution of a problem;

 problem-posing can be an agent of change in the mathematics classroom;

 through purposeful planning, problem-posing can be integrated into school 

mathematics curricula;

 problem-posing can be seen as a natural link between formal mathematics 

instruction, problem solving and modelling;

However, when implementing problem-posing activities several difficulties can be 

encountered (Hansen and Hana 2015):

 posing mathematically relevant problems: distinguish between problems that 

are mathematical relevant and problems that are not is a competence that both 

students and teachers should become proficient;
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 posing mathematical suitable problems: which problems are not too difficult 

neither  nontrivial  for  the  students?  A  fundamental  skill  is  to  be  able  to 

reformulate  problems  and  choose  such  contexts  that  attain  a  reasonable 

degree of mathematical sophistication;

 

 posing problems such that pupils feel ownership of the problems: problem-

posing  is  an  ongoing  process,  where  reformulations  and  adjustments  are 

required also by students;

 making problem-posing a relevant part of the learning trajectory: if problem-

posing should be seen as an integral part of mathematics classes, it must be 

connected to other mathematical activities in the classroom;

 incorporating the teaching of mathematical content with problem-posing: two 

main difficulties can be individuated. The first, not communicating the intent 

to students and second, posing-problems to a little-known mathematical topic, 

especially when the topic is a specific real-world situation.

Consequently,  further  research is  needed for the future (Ellerton,  Singer  and Cai 

2015), particularly on:

 the  development  of  problem-posing  skills  for  in-service  and  pre-service 

teachers’ education;

 the  possible  connections  between  problem-posing  and  mathematical 

creativity;

 the links between problem-posing and problem solving;

 knowing more  about  the  potential  of  problem-posing  to  support  students’ 

learning.
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2.4 Real contexts

Contexts  for  mathematics  lessons  play  a  crucial  role  in  bridging  modelling  and 

problem-posing to promote students’ reasoning, critical thinking and give meaning to 

their  mathematical  activity.  Which  kind  of  contexts  are  suitable  to  foster  students’ 

reasoning? Which contexts could help in bridging the gap between in- and out-of-school 

mathematics?  In  our  perspective,  such  contexts  should  be  connoted  as  real.  As  a 

consequence, a real context needs to defined, as well as a real mathematical task.  To 

pursue this goal, in literature several approaches emerged. We present two of them. The 

first one refers to realistic and rich contexts in the perspective of RME. The second one 

is  a  framework  developed  by  Palm  (2006)  concerning  concordance  between 

mathematical school tasks and the corresponding out-of-school situations. 

2.4.1 RME context problems

As we have seen in section 2.1 the core principle of RME is that mathematics education 

should take its point of departure primarily in mathematics as an activity, and not in 

mathematics as a ready-made-system (Freudenthal 1971; 1973; 1991). Students, in fact, 

are  active  participants  in  the  learning  process.  Mathematics  is  a  human  activity 

(Freudenthal  1991):  you  do  mathematics  through  mathematization  (Treffers  1987). 

Therefore,  learning  becomes  a  constructed  understanding  through  a  continuous 

interaction between teacher and students, that can be synthetized, using Freudenthal’s 

words,  in  teaching  and  learning  as  guided  reinvention.  Anchoring  points  for  the 

reinvention  of  mathematics  are  offered  by  context  problems.  Context  problems  are 

problems  of  which  the  problem  situation  is  experientially  real  to  the  student 

(Gravemeijer and Doorman 1999). As a consequence, problems should come from the 

real world, but also from a fantasy world or from the mathematics itself, until they are 

experientially  real  for  the  student  (Van  den  Heuvel-Panhuizen  and  Drijvers  2014). 
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Therefore, in contexts problems the contexts on which the mathematical task is based 

can be defined as  realistic,  i.e.  experientially  significant  for students. However,  this 

realistic  connotation is  not sufficient  to have a  valuable  mathematical  problem. The 

context, indeed, must also be rich (Freudenthal 1991). A rich context is a context that 

promote  a  structuring  process  as  a  means  of  organizing  phenomena,  physical  and 

mathematical,  and  even  mathematics  as  a  whole,  i.e.  contexts  that  give  more 

opportunities in the mathematization process. In conclusion, in this perspective a real 

context is a realistic and rich context, and a real mathematical task is a mathematical 

task based on a realistic and rich context. 

2.4.2 Palm’s framework

Another perspective for real mathematical tasks was introduced by Palm (2006), who 

developed  a  framework  to  depict  that  aspects  of  real-life  situations  that  should  be 

considered important in their simulations (Fig. 13). 

Figure 13. Palm’s (2006) framework for simulations of real-life situations
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In  Table  6  for  each  aspect  a  key  question  that  helps  in  reasoning  about  the 

concordance between mathematical school tasks and corresponding situations in real-

life beyond the mathematics classroom are reported.

Table 6. Key questions associated to real-life aspects in Palm’s (2006) framework

Event Could the event  described in the school task take 

place in real-life? 

Question Does  the  questions  in  the  school  task  might  be 

posed in a corresponding real-life event?

Information/Data

Existence Do the information available in the school task exist 

in a corresponding real-life event?

Realism Are  the  values  given  in  the  school  task  close  to 

values in a corresponding real-life event?

Specificity Can  specifications  of  the  school  task  context  be 

compared  to  a  reasonably  extent  to  the 

corresponding out-of-school situation?

Presentation

Mode Is the problem communicated orally or in a written 

form? Are the information presented in diagrams, 

tables, graphs, …?

Language Does  the  language  used  in  the  school  task  not 

negatively affect the possibilities for students to use 

the same mathematics as they would have used in a 

corresponding real-life event?

Solution strategies

Availability Do the solution strategies available to the students 

solving the school task match with those available 

to the persons described in the tasks as solving the 

corresponding tasks in real-life?

Experienced plausibility Do the solution strategies experienced as plausible 

for solving the task in  the school  situation match 
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with  those  experienced  as  plausible  in  a 

corresponding real-life event? 

Circumstances 

Availability of external tools Which concrete tools outside the mind can be used 

to solve the task?

Guidance Which explicit or implicit hints are given?

Consultation and collaboration Which kind of  inputs  from other  people are  took 

into account?

          

Discussion opportunities Are there occasions for students to ask about and 

discuss the meaning and understanding of the task?

Time Do  time  restrictions  not  cause  significant 

differences in the possibilities of solving the school 

task  compared  with  the  corresponding  real-life 

event?

Consequences of task solving 

success

Are there any efforts to promote motivation to solve 

the task?

Solution requirements What is an appropriate solution in a corresponding 

real situation?

Purpose 

Figurative context Is the purpose of the task in the figurative context as 

clear  to the students as it  is  for the solver in the 

corresponding real event?

Social context Is  the purpose in  the social  context  of the school 

situation permit similarities in actions between the 

in- and out-of-school situations?
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If we look at the aspects described in Table 6, we can divide them in two categories. 

The first category deals with aspects that describe what to take into account to have a 

real  mathematical  task,  in  the  sense  of  making  it  close  as  much  as  possible  to  a 

corresponding real-life situation. These aspects are:  event, questions, information and 

data,  solution  strategies,  time,  solution  requirements,  purpose.  The  second category 

concerns some aspects that could increase the efficacy of an activity based on a real 

mathematical  task.  These  aspects  are:  specificity,  presentation,  circumstances,  time, 

consequences, purpose. The aspects consequences and purpose are shared between the 

two categories. As a consequence, to define what a real task is in this framework we 

focus on the first category. In order to define what could be a real context, the aspects of 

these category can be synthetized in three main connotations:  feasibility,  availability 

and appropriateness.  With  feasibility  we  refer  to  the  fact  that  the  context,  and 

eventually the problem formulated starting from it, should actually occur in real-life. 

Availability means that students should have at their disposal information and strategies 

to solve the problem sufficiently close to real-life data. Appropriateness concerns with 

the fact that the purpose must be clear to students, and consequently the students are 

able to discern which solutions could be considered as appropriate in relation with the 

context of the problem.  In conclusion, in this perspective a real context is a feasible, 

available and appropriate context, and a real mathematical task is a mathematical task 

based on such contexts. These real contexts are closed to the notion of artifacts (Bonotto 

2013),  that, thanks to their complexity and richness in mathematical meaning, live in 

both the world of symbols and the real one, creating  a  new dialectic between school 

mathematics  and  extra  school  experiences,  by  bringing  students’  everyday-life 

experiences and informal reasoning into play.

Comparing the two proposed frameworks, two main dichotomies can be observed. 

The first is between realistic-rich and feasibility. In RME, a realistic and rich context is 

a  context  which  is  meaningful  both  for  the  student  and  for  mathematics.  As  a 

consequence, a context can come not only from the real-world, until it is significant for 

students and rich of mathematical stimulus. In Palm’s framework, instead, the accent is 

given to the feasibility of the context, in the sense that both the event and the related 

problems described in the context of the mathematical task have to occur in real-life. 
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The second main difference is between re-invention and availability. Contexts described 

in RME as to be real, take their features in the view of the teaching of mathematics as a 

process  of  guided  re-invention.  As  a  consequence,  real  contexts  should  offer  the 

opportunity  to  students  to  re-invent  mathematical  concepts,  strategies,  algorithms, 

reinforcing in this way prospective learning. In Palm’s perspective,  instead,  students 

should have at their disposal solution strategies to solve the task, that have to match 

with  those  available  to  the  persons  solving  the  corresponding  tasks  in  real-life.  In 

conclusion,  despite  these  differences,  both  the  perspectives  concord  in  the  fact  that 

students’  motivation  should  be  promoted  when  engaged  in  solving  mathematical 

problems, and so in mathematical problems based on real contexts.  

2.5 Research questions

In  the  previous  section  we  outlined  the  context  and  theoretical  background  of  the 

research.  In the specific,  we remarked how the teaching of mathematics  still  have a 

stereotyped nature in which students are requested to apply mechanical rules to solve 

standard problems.  In the Italian  contexts,  some studies  outlined  how is  common a 

persistence of situations  of disorientation and uncertainty and a certain resistance to 

abandoning traditional teaching methods of mainly transmission type (INNS 2017). In 

this situation, this Univeristy project, whose our research is part of, aimed to providing 

mathematics teachers with methodological models and format of school practices based 

on mathematical modelling, in order to  reduce the gap between in- and out-of- school 

mathematical competencies and to foster students’ reasoning and sense-making. 

The goal of this research is to design a re-invention process (Freudenthal 1991) to 

integrate mathematical modelling in the regular school practice in the Italian context. In 

the specific, we want to investigate how this process can be implemented and used to 

help students give sense to their mathematical activity. Thus, the main question of this 

project is:
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How,  and  to  what  extent,  can  mathematical  modelling  be  integrated  in  the 

teaching and learning of mathematics in a guided re-invention paradigm?

In  section  2.1  the  RME  underlying  theory  of  this  project  was  presented.  A 

fundamental characteristic of this theory is that learning occurs through experience, the 

experience  of  mathematizing  experientially  real  situations,  extending  day-to-day 

reasoning to acquire new (mathematical)  knowledge. In this project,  we investigated 

how the design heuristics of didactical phenomenology and emergent modelling should 

support such a re-invention process. As a consequence, a central role will be covered by 

the choice of contexts for mathematical problems that must be experientially significant 

for  students  and  able  to  evoke  new  mathematical  concepts  or  strategies  for  their 

solution.  Therefore,  a  learning  trajectory  that  brings  students  to  invent  their 

mathematical principles in a modelling environment needs to be designed. To design 

such  a  re-invention  process,  our  choices  are  the  design  heuristics  of  didactical 

phenomenology and emergent modelling, and the use of problem-posing in relation to 

such heuristics. How can these choices be used? Why and to what extent they work? 

Are students able in the designed learning process to re-create (their) new mathematics 

rooted  in  an  informal  day-to-day  reasoning?  As  a  consequence,  our  main  research 

question was split in two more specific questions. The first research question deals with 

the design of modelling activities with the focus in the promotion of students’ creation 

of new mathematical concepts or strategies to solve a real problem. In the specific, we 

investigated  how activities  designed  following  the  MEA principles  could  foster  the 

emergent  nature  of  modelling.  The  second  research  question  consists  in  start 

investigating the impact in the use of different contexts during problem-posing activities 

in terms of students’ creativity and emergent problems. The resulting research questions 

are the following: 

RQ1. How can Model Eliciting Activities promote the process of emergent 

           modelling?

RQ2. How do different contexts influence the process of problem-posing?
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Concerning the second research question, we focused on two aspects of the problem-

posing process, namely its relations with creativity and emergent problem-posing. As a 

consequence,  from  the  second  research  question,  two  more  specific  sub-questions 

emerged:

RQ2.1.      How do  different  contexts  influence  students’  creativity  in  problem-

posing?

RQ2.2.    How do different contexts influence emergent problem-posing?

In the following chapter the methodology of design research will be described.  
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In  this  chapter  the  research  methodology  to  answer  to  the  research  questions  is 

described. The starting point consists in justifying the choice of the research method of 

design research. 

As  stated  in  the  previous  section,  the  aim  of  this  research  project  consisted  in 

understanding how to integrate mathematical modelling in the Italian school context, 

that  is  still  characterized  by  traditional  transmissive  teaching  methods.  From  the 

motivations  for  this  study  and  the  theoretical  background,  two  specific  research 

questions had been formulated in order to pursue our goal. The first research question 

consisted in investigating how can MEAs enhance the emergent nature of modelling, 

while  the  second  research  question  consisted  in  investigating  the  use  of  different 

contexts in problem-posing activities, and their consequences in terms of creativity and 

emergent problem-posing. 

To be able  to answer to the research questions  we had to create  an instructional 

environment  with  which  it  could  be  possible  to  study  how and  to  what  extent  the 

suggested  processes  could  be  fostered.  An  instructional  sequence  was  therefore 

necessary  to  answer  to  the  research  questions.  Moreover,  the  research  had  an 

explorative  character,  since  the  research  questions  aim  at  quite  new  aspects  in 

mathematics education specifically for the Italian context, and consequently a research 

design that  allowed for revising theories,  hypothesis  and instructional  activities  was 

needed. Furthermore, new teaching materials that support new types of learning must be 

developed, making the design process an integrated part  of the research.  A research 

approach  that  consists  in  planning  and  creating  innovative  educational  settings  and 

analyzing teaching and learning processes is represented by the methodology of design 

research. 



In  section  3.1  we  present  the  main  characteristics  of  the  design  research 

methodology.  Section  3.2  describes  the  phases  of  design  research  applied  to  this 

research project. 

3.1 Design research

Design  research  in  education  is  research  in  which  the  design  of  new  educational 

materials (learning activities, professional development programs, etc.) is a crucial part 

of the research (Bakker 2018). Design research does not describe or evaluate education 

as it currently is, but it is about education as it could be or even as it should be. Design 

research can be defined 

As  the  systematic  study  of  designing,  developing  and  evaluating  educational 

interventions, - such as programs, teaching-learning strategies and materials, products 

and  systems  –  as  solutions  to  such  problems,  which  also  aims  at  advancing  our 

knowledge about the characteristics of these interventions and the processes to design 

and develop them. (Plomp 2010, p.9)

Moreover, the design of instructional activities is more than a necessity for carrying 

out teaching experiments.  The design process forces the researcher to make explicit 

choices, hypothesis and expectations that otherwise might have remained implicit. 

(…) design research explicitly exploits the design process as an opportunity to advance 

the researchers’ understanding of teaching, learning, and educational systems. Design 

research  may  still  incorporate  the  same  types  of  outcome-based  evaluation  that 

characterize traditional theory testing, however, it recognizes design as an important  

approach to research in its own right. (Edelson 2002, p. 107)

In  various  countries  different  names  to  similar  approaches  had  been  given: 

developmental research (Freudenthal 1988; Gravemeijer 1994b; Lijnse 1995; Romberg 

1973; Van den Akker 1999); design experiments (Brown 1992; Cobb, Confrey, diSessa, 

Lehrer and Schauble 2003; Collins 1990, 1992); design based research (Hoadley 2002); 

educational design research (McKenney and Reeves 2012; Plomp and Nieveen 2013; 
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Van den Akker,  Gravemeijer,  McKenney and Nieveen 2006);  formative experiments 

(Reinking and Bradley 2008). 

A key characteristic  of  design research  is  that  educational  ideas  for  students’  or 

teachers’ learning are formulated in the design but can be adjusted during the empirical 

testing of these ideas.  As a consequence,  due to its  component of adaptation of the 

learning  trajectory  through  the  research,  design  research  is  particularly  suitable  in 

situations where a full theoretical framework is not yet available and where hypothesis 

is still to be developed (Drijvers 2003).

Design research includes  a design or development  function,  but also an advisory 

function, consisting in giving theoretical insights into how particular ways of teaching 

and learning can be promoted. 

Design research is very closed to action research. Action research focuses on solving 

a  practical  problem  and  aims  to  produce  practical  guidelines  (Brandbury  2015; 

Denscombe 2014). Like action research,  design research is  interventionist  and open, 

involves a reflective and cycle process and aims to bridge theory and practice (Opie and 

Sikes  2004).  However,  in  design  research,  design  is  a  crucial  part  of  the  research, 

whereas in action research the focus is on action and change.

Cobb et al. (2003) identified five key characteristics of design research:

1. the purpose of design research is  to  develop theories  about  learning and the 

means that are designed to support that learning;

2. design research has an interventionist  nature.  Changes  and understanding are 

intertwined, because if you want to change something you have to understand it, 

and if you want to understand something, you have to change it (Bakker 2004); 

3. design  research  has  both  prospective  and  reflective  components.  During  the 

implementation of some learning hypothesis (prospective part) the researcher 

confronts conjectures with actual learning that is observed (reflective part). Such 

reflective analysis can lead to changes to the original plan for the next lesson;
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4. design research has a cyclic nature, forming an iterative process of invention and 

revision. Each cycle typically consists of three phases: preparation and design; 

teaching experiment; retrospective analysis; 

5. the  theory  under  development  has  to  do  real  work.  Theory  generated  from 

design research is usually developed for a specific domain, but it must also be 

general enough to be applicable in different contexts such as classrooms in other 

schools or other countries.

To sum up, design research aims at  generating empirically  grounded theories.  Its 

main result is not a design that works, but the reasons how, why and to what extent it 

works. The first point consists in developing an instructional design for investigating 

and generating theoretical conjectures. Then, in relations to the considered questions, 

the analysis of the teaching experiments focuses on various aspects of the design, of 

students’ reasoning, classroom discussion and development of classroom norms (Cobb 

et al. 2003).

In this research, for each research question two cycles had been implemented (Fig. 

14):  cycles  M-I and M-II concerning the first  research question about  mathematical 

modelling and cycles PP-I and PP-II concerning the second research question about 

problem-posing. Each cycle is considered in concatenation with the next one as a spiral. 

Those cycles had been preceded by a preparation phase, common to both the modelling 

and problem-posing cycles, that consisted in an analysis of the theoretical background 

concerning the research topic and an empirical  study. The first  phase of each cycle 

consisted in the design phase and included the development of a Hypothetical Learning 

Trajectory (HLT). This phase followed by the teaching experiment whose aim consists 

in providing empirically based arguments to justify or refute the hypothesis conjectured 

in the previous phase. The last phase is represented by the retrospective analysis. The 

reflection at the end of the first cycle led to adapting the conjectures and the teaching 

sequence,  which became the starting point for the second cycle.  This cyclic  process 

aimed at empirically grounded answers to hypothesis concerning the research questions. 

Ideally, such instructional sequence should converge into a sequence that works best 
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within the constraints of the educational setting in order to develop a local instructional 

theory. As a consequence, the sequence should be tried out and analyzed in various 

situations,  as well  as be discussed with other parties who play a role in educational 

innovation, such as teacher training institutes and educational publishers. However, we 

were not able to go through all these phases, and we let them for future work. 

Figure 14. Design research cycles for this research project

3.2 Design Research Phases

As described in the previous section, each cycle of design research was made by three 

main phases: a design phase, a teaching experiment and a retrospective analysis. In this 

section  the  common features  of  each  of  those  phases  are  described.  In  conclusion, 

section 3.3 will focus on validity and reliability in design research, and particularly for 

this thesis. 

3.2.1 Design
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In this research the design phase was explicated by the development of a hypothetical 

learning trajectory (HLT). This phase was preceded by an analysis of the theoretical 

background  concerning  the  didactical  problems  we  are  addressing,  and  by  an 

explorative study, that together constitute the preparation phase. 

The first phase of each research cycle consisted in the development of an HLT. This 

term was introduced by Simon (1995), as a key part in developing an extension of the 

teaching experiment methodology, called Mathematics Teaching Cycle. It consists in a 

teachers’ plan for classroom activities. HLT refers to teachers’ prediction as to the path 

by which learning might proceed (Simon 1995). The HLT is made by three components 

(Fig.  15):  the  learning  goal,  that  defines  the  direction;  the  learning  activities;  the 

hypothetical  learning  process, that  is  a  prediction  of  how  students’  thinking  and 

understanding will evolve in the context of the learning activities. 

Figure 15. Components of a hypothetical learning trajectory

The development of the hypothetical learning process and of classroom activities are 

closely related: ideas for the learning activities depend on teachers’ hypothesis about the 

development  of  students’  thinking  and  learning,  and  vice-versa,  the  generation  of 

hypotheses  of  students’  conceptual  development  depends  on  the  nature  of  the 

anticipated activities. The design of instructional activities in this study included the 

development of teacher guides, tasks, student booklets, artefacts, possible solutions to 

the assignments and tests. While designing these materials, choices and intentions were 

captured and motivated, to inform the teacher and to keep track of the development of 

the designer’s insights. 
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While  designing  instructional  activities,  the  key  question  is  what  meaningful 

problems may foster the students’ cognitive development according to the goals of the 

HLT.  The important criterion for selecting an activity was its potential role in the HLT 

towards the end goal of distribution. Would it possibly lead to types of reasoning that 

students could build upon towards that end goal? Would it be challenging? Would it be 

a meaningful context for students?

The design process was guided by the RME heuristic of didactical phenomenology. 

Didactical phenomenology aims at confronting students with phenomena that beg to be 

organized  by means of mathematical  structures.  In this  way, students  are  invited to 

develop  mathematical  concepts  from meaningful  contexts  (de  Lange  1987;  Treffers 

1987). As a consequence, the point is to find meaningful problem contexts that may 

foster  the  development  of  the  targeted  mathematical  concepts.  The  heuristic  of 

didactical  phenomenology  directly  cooperates  with  another  heuristic:  guided 

reinvention. Guided reinvention involves reconstructing the natural way of developing a 

mathematical concept from a given problem situation. One way to do this is to try to 

think how you might have figured it out yourself (Gravemeijer 1994a, p. 179). 

Together with the end goal and classroom activities,  the development of an HLT 

involves  also  the  assessment  of  the  starting  level  of  students’  understanding.  The 

classroom activities are designed to foster productive mental activities by the students, 

and are accompanied by the designer’s description of why the instructional activity is 

supposed to work and what kind of mental development is expected to be elicited. This 

sequence  of  activities,  motivations  and expectations  makes  explicit  the  hypothetical 

learning  process  in  terms  of  student  activities  and  cognitive  development  (Drijvers 

2003). 

In designing a chain of activities,  the designer makes use of his  domain specific 

knowledge, his repertoire of activities and representations, his teaching experience, and 

his  view  of  the  teaching  and  learning  of  the  topic.  Such  hypothetical  trajectory  is 

empirically tested by means of a teaching experiment, then the HLT could be adapted 

and changed. These changes, based on the experiences in the classroom, start a new 

round through the next research cycle. 
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HLT is not a rigid structure that must be followed by all,  instead it  represents a 

learning route that  is  broader  than one single track and has a  particular  bandwidth, 

wherein students can go through it at different speeds. 

The  HLT can  be  seen  as  the  link  between  an  instruction  theory  and  a  concrete 

teaching experiment. Moreover, an HLT has different functions depending on the phase 

of the design research and continually develops through the different phases. Indeed:

 during the design phase, the HLT guides the design of instructional materials that 

have  to  be  developed or  adapted.  The confrontation  of  a  general  rationale  with 

concrete activities often leads to a more specific HLT, which means that the HLT 

usually develops during the design phase (Drijvers 2003); 

  during the teaching experiment, the HLT functions as a guideline for the teacher 

and  researcher  what  to  focus  on  in  teaching,  interviewing,  and observing.  HLT 

should be adjusted for the next lesson, because of incidents in the classroom such as 

anticipations  that  have  not  come  true,  strategies  that  have  not  been  foreseen, 

activities that were too difficult, and so on. In design research, changes in the HLT 

are  made to  create  optimal  conditions  and are  regarded as  elements  of  the data 

corpus. This means that these changes have to be reported well and the information 

is stronger if changes are supported by theoretical considerations; 

  during  the retrospective  analysis,  the  HLT functions  as  a  guideline  determining 

what the researcher should focus on in the analysis. Because predictions are made 

about  students’  learning,  the researcher  can contrast  those anticipations  with the 

observations made during the teaching experiment. Such an analysis of the interplay 

between  the  evolving  HLT  and  empirical  observations  forms  the  basis  for 

developing an instruction theory. After the retrospective analysis, the HLT can be 

reformulated, in an often more drastic way than during the teaching experiment, and 

the new HLT can guide a next design phase. 
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In this research HLT was used in the following way. The first phase of each cycle 

started with considering the specific classroom context, with choosing a mathematical 

topic on which focus on, with formulating a problem, with analyzing the concepts and 

with reflecting on possible solutions. The proposed solutions were made concrete in the 

form of student activities that defined the hypothetical learning trajectory.  The HLT 

finally  was  condensed  into  a  table  that  contains  its  components  of  learning  goal, 

hypothetical learning process and learning activities. 

3.2.2 Teaching experiments

The second phase of the design research cycle is the phase of the teaching experiment,  

in which the prior hypothesis embedded in the HLT and the instructional activities are 

confronted  with  classroom reality.  The  term  teaching  experiment is  borrowed  from 

Steffe (1983); see also Steffe & Thompson (2000). The word experiment does not refer 

to  a  comparison  between  an  experimental  group  and  a  control  group,  but  to  an 

experimental  classroom setting that is  created  as a result  of the innovative  teaching 

materials provided. In the teaching experiments the instructional sequence is carried out 

by the teacher and the students, and the overall goal is to understand and improve the 

initial design on the basis of students’ reasoning with respect to the created educational 

setting (Doorman 2005). 

Before the start of the teaching experiments we spoke with the teachers about the 

aims  of  the  experiments,  the  teaching  materials  and  the  schedule  of  the  teaching 

sequence. Since the teachers who participated with their classrooms to the research did 

not  have any preparation  on the strategies  of  mathematical  modelling  and problem-

posing, we decided with them that the teaching experiments would be carried out by the 

researcher, with the help of the regular mathematics teacher in the classroom, joining in 

classroom discussions and explanations. Also, they approached students with questions 

concerning key concepts, or answered questions from students. The researcher made 

notes during all the lessons, evaluated each lesson and participated in students’ group 

work,  letting  the  students  clarify  what  they  were  doing.  We  were  aware  that  this 

participation influenced the students’ learning processes, but we wanted to hear students 
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express their thinking, and to create a classroom culture in which clarifying questions 

was part of the mathematical activities.

We focused on data that reflected that process and provided insight into the thinking 

of  the  students.  The main  sources  of  data,  therefore,  were  observations  of  students 

behavior,  the  classroom discussions,  written  data  from students,  such  as  handed-in 

tasks, notebooks and tests. 

The teaching experiments took place in Italian schools. In Table 7 an overview of the 

teaching  experiments  is  reported,  specifying:  the  classroom  grade;  the  number  of 

students; the characterization of the experiment; the types of data collection.

Table 7. Teaching experiments overview

Teaching 

experiment

School 

grade

Number of 

students

Mathematical 

topic

Data collection

M-I teaching 

experiment

2 19 Multiplication 

in N

pre-test; notes; 

students’ materials; 

field observations; post-

test

M-II teaching 

experiment

12 25 3D Euclidean 

geometry

pre-test; notes; 

students’ materials; 

field observations; 

students’ feedback; 

individual student 

report; teacher’s report

PP-I teaching 

experiment

6 22 Fractions pre-test; student 

performances in 

problem-posing and 

problem solving; field 

observations

PP-II teaching 

experiment

4 25 Decimal 

numbers

pre-test; student 

performances in 
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problem-posing and 

problem solving; field 

observations

M-I cycle teaching experiment

The  first  teaching  experiment  concerning  mathematical  modelling,  M-I  cycle,  was 

conducted in a second-grade class (age 7) composed by nineteen students during two 

weeks of regular mathematics lessons. The mathematical topic that was chosen for the 

modelling activity was multiplication in N. In relation to the research question RQ1, in 

this teaching experiment we wanted to study how emergent modelling can be fostered to 

help  students  understanding  of  some  aspects  of  the  multiplicative  structure 

(distributivity  property  of  multiplication  over  addition).  Our  hypothesis  was  that  a 

modelling activity  designed following a model eliciting sequence (Lesh et  al.  2003) 

with the use of suitable artifacts could actually foster the emergent nature of modelling. 

The teaching experiment was divided in three sessions, designed by the author adapting 

the model development sequence of Lesh et al. (2003). In session one, students had to 

work  before  individually  and  after  in  couples  to  some  comprehension  questions 

concerning the next modelling activity. In session two, students in groups had to solve a 

modelling  task,  producing  a  final  project.  The  third  session  consisted  of  group 

presentations  of their  projects.  After those sessions, a post-test  was administrated to 

students.

The research method for the data analysis was mixed quantitative and qualitative. 

The aim of the data analysis was to reconstruct the classroom progress, which resulted 

in an empirical  grounded understanding of students’ reasoning during the classroom 

activity.  In  order  to  be  able  to  reconstruct  the  learning  process  and  verify  our 

hypothesis, different kinds of data were collected: pre-test; transcriptions of classroom 

dialogs; observations of group working; students’ final projects; post-test. 
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The analysis of these data provided information on verifying our hypothesis, give 

first answers to the first research question and adjust the designed instructional sequence 

for the next research cycle. 

This research cycle is described in chapter 5.

M-II cycle teaching experiment

The second teaching experiment concerning mathematical modelling, M-II cycle,  was 

conducted in a twelfth-grade class (age 17) composed by 25 students. The mathematical 

topic  for the modelling  activity  was 3D-Euclidean geometry.  In  relation  to  the first 

research  question  RQ1,  the  aims  of  the  study  were:  to  study  how  model  eliciting 

activities could impact on the emergent nature of modelling; to provide teachers with 

design principles and materials based on mathematical modelling to be usable in their 

classrooms; to foster the understanding of some aspects of 3D-Euclidean geometry in a 

meaningful way. The teaching experiment was divided in four sessions, designed by the 

author adapting the model development sequence of Lesh et al. (2003). In session one, 

students  were  divided  in  groups.  Each group had  to  work  on some comprehension 

questions about the modelling task. In session two, the groups worked on the model 

eliciting  activity,  producing  a  final  project  in  a  multimedia  presentation.  The  third 

session consisted  of  group presentations  followed by a  Question  & Answer (Q&A) 

session. The final session consisted in an individual assignment on the whole activity. 

After  those four sessions,  a questionnaire  was administrated to  students,  in order  to 

collect some information concerning their perceptions on the entire modelling activity. 

Data collection consisted of pre-test; students’ projects; classroom observations; final 

students’  individual  reports;  final  questionnaire;  teacher’s  report.  Data  analysis  was 

mixed qualitative and quantitative,  providing information on verifying our hypothesis, 

give first answers to the first research question and suggestions for future work. 
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This research cycle is described in chapter 6.

PP-I cycle teaching experiment

The first teaching experiment concerning problem-posing, PP-I cycle, was conducted in 

a sixth-grade class (age 12) composed by twenty-two students. At the moment of the 

intervention,  students  were  working on fractions.   The mathematical  topic  that  was 

chosen for the problem-posing activity was fractions. In relation to the research question 

RQ2, the aim of the study was to investigate how different contexts should influence 

students’  creativity  in problem-posing. The teaching experiment  was divided in  two 

parts:  the  first  represented  by  two  problem-posing  sessions,  and  the  second  that 

consisted in a problem solving activity based on some problems posed in the previous 

part. 

Data consisted in students’ pre-test; students’ performances in the problem-posing 

sessions  and results  from the  problem-solving activity.  Problems posed by students 

were  analysed  referring  to  the  starting  context  and  level  of  creativity.  An  analytic 

scheme concerning students’ creativity was developed. 

The analysis of these data provided information on how to optimize the activities 

with  respect  to  formulating  student  texts,  contexts  used,  and  information  provided. 

Second, conjectures that paralleled the instructional sequence could be verified as far as 

the students were taught as intended, letting to adjustments to the sequence and our 

conjectured instruction theory. Third, this analysis led to new hypotheses concerning the 

choices  made  with  respect  to  the  research  questions.  The adjustments  and the  new 

hypotheses were objects of study in the research cycle P-II. 

This research cycle is described in chapter 7.

PP-II cycle teaching experiment

The  second  teaching  experiment  concerning  problem-posing,  PP-II  cycle,  was 

conducted in a fourth-grade class (age 9) composed by twenty-five students.  In this 
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teaching  experiment  we  started  investigating  how  emergent  problem-posing  can 

actually  be enhanced  in  the  school  practice.  In  particular  we studied  the  impact  of 

different contexts on emergent problem-posing.  To pursue our goal,  we conducted a 

teaching experiment in a primary school in which different contexts had been used as 

starting situations for problem-posing activities.  The classroom involved in the study 

had  never  been  engaged  in  problem-posing  activities  before  the  study.  The 

mathematical topic was represented by decimal numbers, and in the specific addition 

between decimal numbers.  The teaching experiment was split in two lessons:  the first 

represented by two problem-posing sessions, and the second that consisted in a problem 

solving activity based on some problems posed in the previous part. 

Data consisted in students’ pre-test; students’ performances in the problem-posing 

sessions and results from the problem solving activity. Problems posed by students were 

analysed in relation to the starting context and emergent problems. 

Data  analysis  was  mixed  qualitative  and  quantitative,  providing  information  on 

verifying  our  hypothesis,  give  first  answers  to  the  first  research  question  and 

suggestions for future work. 

This research cycle is described in chapter 8.

3.2.3 Retrospective analysis

The final phase of a design research cycle comprises the retrospective analysis. In the 

retrospective analysis the HLT is compared with students’ actual learning, and on the 

basis of such analysis answers to the research questions can be formulated. 

The first step consisted in selecting data from the teaching experiment. Criteria for 

selection were the relevance of the fragment to the research questions and to the HLT of 

this teaching experiment in particular.  The relation between theory development and 

teaching  experiments  emphasizes  that  hypotheses  are  created  and  modified  while 

interpreting  the  data  available.  The  interpretation  of  data  depends  on  the  ability  to 

reconstruct the learning and teaching process, that consists in understanding students’ 

reasoning, on which ideas their reasoning builds and by which perspectives it is guided. 

The point is to reconstruct the classroom progress based on the data available, which 
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should result in an empirically grounded understanding of what happened during the 

teaching experiments. 

The data were organized into case studies, represented by the teaching experiments, 

of class discussions and of students’ work during the mathematics lessons. These case 

studies were interpreted in terms of what preceded the lessons, the student activities, the 

teaching,  and the tools provided. Interpretations were compared with other available 

data,  such  as  students’  written  materials  and  data  from another  experiment  in  our 

research.

The results of the retrospective analysis formed the basis for adjusting the HLT and 

for answering the research questions. 

3.3 Validity and reliability

This last section of this chapter addresses the concepts of reliability and validity of the 

research method of design research. In the specific, the question is how these criteria are 

met in this study based on design research, where observations and student materials are 

the  main  sources  of  data  and interpretation  and coding  are  the  main  techniques  of 

analysis. 

Internal validity

Internal validity refers to the quality of the data collections and the soundness of the 

reasoning that has led to the conclusions. To improve internal validity of this study we 

used several methods:

 in  the  retrospective  analysis,  we  tested  conjectures  that  were  generated  and 

tested at specific episodes at other episodes and other data material, such as field 

notes, tests, students’ work (source triangulation);
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 the succession of different cycles permitted to test the conjectures developed in 

earlier teaching experiments in later teaching experiments;

 different  theoretical  instruments  were  used  to  analyze  single  episodes 

(theoretical triangulation);

 theoretical  claims  are  substantiated  with  transcripts  to  provide  rich  and 

meaningful contexts; 

 in preparing the experiments, we had discussed our ideas and the instructional 

sequence with the teachers.  Our ability  to explain our intended goals for the 

experiment, their willingness to participate, their contributions to performing the 

teaching  experiment,  and  their  engagement  during  the  actual  experiments 

validate, to a certain extent, the teaching experiments in our project. A similar 

argument holds for the participating students. 

External validity

External  validity  is  mostly  realized  as  the  generalizability  of  the  conclusions.  The 

question is  how we can generalize the results  from these specific  contexts  as to be 

useful for other contexts. An important way to do so is by framing issues as instances of 

something more general (Cobb et al. 2003; Gravemeijer and Cobb 2001). The challenge 

is to present the results (instruction theory, HLT, instructional activities) in such a way 

that others can adjust them to their local contingencies (Barab and Kirshner 2002). 

Additionally, we found patterns that occurred in several classes of our own teaching 

experiments.  In  addition  to  generalizability  as  a  criterion  for  external  validity  we 

mention transferability (Maso and Smaling 1998). If lessons learned in one experiment 

are successfully applied in other experiments, this is a sign of successful generalization. 
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Also, the quality of the reasoning and the conclusions was controlled by means of 

submitting papers and conference contributions that were reviewed during the research 

period. 

Internal reliability

Internal  reliability  concerns the reliability  of the methods that  were used within the 

research project. Our measures for obtaining internal reliability included systematically 

gathering  data  by  means  of  prior  identified  key  items  in  student  activities,  and 

processing the data using consistent coding systems. Crucial observations were shared 

with colleagues (peer examination). 

External reliability

For the external reliability, the criterion is virtual replicability by means of trackability 

(Gravemeijer  1993, 1994b; Gravemeijer  and Cobb 2001; Smaling 1987, 1992). This 

means that the research is reported in such a way that is can be reconstructed by others. 

The  teaching  experiments  and  data  analysis  resulted  either  in  verification  of  the 

conjectures,  or  in  adjustments  or  new  conjectures  for  subsequent  experiments.  We 

described  this  process  systematically  to  offer  other  researchers  the  possibility  of 

virtually replicating it and retracing our conclusions through the cycles of data analyses 

and  teaching  experiments.  This  requires  transparency  and  explicitness  about  the 

learning process of the researcher and justification of the choices that are made within 

the  research  project.  Raw  data  should  be  made  available.  The  following  quotation 

addresses the need for trackability: 

[Developmental research means] experiencing the cyclic process of development and 

research so consciously and reporting on it so candidly that it justifies itself, and that  

this  experience  can  be  transmitted  to  others  to  become  like  their  own  experience. 

(Freudenthal 1991, p. 161) 
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In this study we ensured the external reliability by reporting extensively on the re- 

search  methodology,  the  process  of  data  reduction  and  the  learning  process  of  the 

researcher, by means of justifying the decisions and by making available the raw data. 
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4. Exploratory Study

As part of the preparation phase of the design research cycles, this chapter presents the 

results  of an exploratory study. This exploratory study, together  with the theoretical 

background that was discussed in chapter 2, constitutes the preparation phase of the 

research, and represents a starting point for the development of an HLT for the firsts 

design  research  cycles.  Indeed,  to  identify  possible  starting  points  for  the  research 

cycles,  it  was  needed  to  know  more  about  prior  teachers’  knowledge  and  practice 

concerning  mathematical  modelling  and  problem-posing.  To  pursue  this  goal,  an 

exploratory questionnaire for mathematics teachers of primary and secondary schools 

was developed, in order to know if teachers include in their teaching some aspects of 

mathematical modelling and problem-posing.

4.1 Design of the exploratory study

As described in section 1.2, this research project is part of a University project whose 

overall aim consists in providing mathematics teachers with methodological models and 

format of school practices based on mathematical modelling, in order to  reduce the gap 

between  in-  and  out-of-school  mathematical  competencies  and  to  foster  students’ 

reasoning and sense-making. Indeed, teachers education is crucial in the implementation 

of both modelling (Blum 2015) and problem-posing in mathematics classrooms (Osana 

and Pelczer 2015). In this exploratory study we investigated teachers’ knowledge and 

practice  in mathematical  modelling and problem-posing. In the Italian context  some 

studies  outlined  how  in  schools  is  common  a  resistance  to  abandoning  traditional 

teaching methods of mainly transmission type (INNS 2017). Accordingly, the questions 

we wanted to address with this exploratory study were the following: 



Q1. Do teachers include in their mathematics lessons some aspects of mathematical 

modelling?

Q2. Do teachers  include  in  their  mathematics  lessons  some aspects  of  problem 

posing? 

Concerning the  first  question,  only two aspects  of  the  modelling  cycle  had been 

considered: (i) the use of real contexts as starting situations for mathematical activities 

and (ii) the presentation of (and the work with) mathematical applications. 

To answer to those questions a questionnaire for in-service mathematics teachers of 

primary  and secondary school  was developed (Appendix  A).  The questionnaire  was 

anonymous and made by closed and open questions and Likert-scales. In the first part of 

the questionnaire teachers were asked to give some personal details, concerning their 

higher degree of instruction, years of teaching and teaching level. The second part was 

dedicated  to  the  investigation  of  teachers’  educational  practices.  Regarding the  first 

question Q1 about mathematical modelling, only two aspects of the modelling process 

had  been considered,  respectively  the  use  of  real  contexts  as  starting  situations  for 

mathematics lesson and the work with mathematics applications. Since we wanted to 

explore these aspects, we decided to insert in the questionnaire two items in a five-

Likert  scale:  the first dealing with the use of starting real situations for mathematics 

lessons and the second with mathematics applications. Regarding the second question 

Q2 about  problem-posing,  we split  it  in  two questions:  a  closed  question  in  which 

teachers were asked if they include or not problem-posing in their school practice and 

an open question wherein teachers that actually implemented problem-posing activities 

could report an example. In the questionnaire other questions were inserted, in order to 

analyze some relations between the use of specific educational strategies and/or tools 

and  the  implementation  of  problem-posing  activities,  and  to  explore  what  teachers 

believed indispensable to improve their teaching. In the specific: one question in seven 

items  of  a  five-Likert  scale  about  the  performance  frequency  of  some  educational 

strategies (e.g.: individual work, group work, laboratories,…); one question in ten items 

of a five-Likert scale about the performance frequency of some educational tools (e.g.: 

textbooks, notes, software, artefacts,…). The questionnaire ended with an open question 
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in  which  teachers  could  express  some  suggestions  they  believed  indispensable  to 

improve their teaching of mathematics.

The  sample  comprised  one-hundred  and  seven  primary  school  and  seventy-two 

secondary  school  teachers  from  the  North  of  Italy.  The  method  of  sampling  was 

randomly stratified (Cohen, Manion and Morrison 2011): the teachers’ population was 

divided into the two groups of primary and secondary teachers, and in each of them 

teachers who participated to the questionnaire had been randomly chosen. The 66% of 

the sample had a master’s degree and the 34% a high school diploma. In Fig. 16, the 

distribution of the sample respect to years of teaching is reported. No one of the teachers 

that  participated to the questionnaire  had ever took part  to a professional  course on 

mathematical modelling or problem-posing before.

Figure 16.  Distribution of the sample respect to years of teaching

The questionnaire was administrated directly by the researcher. The approach for the 

data analysis was mixed quantitative and qualitative. The coding of the answers to the 

open  questions  consisted  in  closing  and  grouping  them  in  categories  and  families. 

Univariate and bivariate analysis had been performed.
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4.2 Some results

In this section we report and analyse data from the questionnaires. In the specific, we 

focus on the results concerning the inclusion of some aspects of mathematical modelling 

and problem-posing in teachers’ school practice. Recall that the question Q1 deals with 

teachers’ inclusion in their school practice of some aspects of mathematical modelling 

and the second Q2 with teachers’ knowledge of problem-posing and its implementation. 

In  addition,  answers  to  the  last  question  of  the  questionnaire,  concerning  teachers’ 

suggestions on how to improve their teaching will be presented and analysed in relation 

of the purpose of the study. 

The  results  show  that  modelling  is  actually  inserted  by  teachers  in  their  school 

practice, in terms of real contexts as starting situations for mathematical activities and 

mathematical applications. However, teachers ask for more materials based on realistic 

situations in order to implement more meaningful modelling activities. Problem-posing, 

instead, is quite absent from today’s Italian school context. 

To answer to the first question Q1, a question about the implementation of modelling 

activities was inserted in the questionnaire. Only two aspects of the modelling process 

were considered: (i) using real contexts as starting situations for mathematical activities 

and (ii) presenting and working with mathematical applications. This question was split 

in two items of a five-Likert scale. The first item dealt with real contexts as starting 

points for the introduction of a new mathematical topic, while the second item dealt 

with mathematical  applications.  In the specific,  we asked teachers  the frequency by 

which they implement such activities in their classrooms: 1 = never; 2 = rarely; 3 = 

sometimes; 4 = often; 5 = always. Considering both the first and the second items, the 

total average was 3,9 (Table 8). Successively, in order to examine the presence or not of 

differences between primary and secondary school, data were divided between primary 

and secondary school teachers. The findings indicate that primary school teachers used 

real contexts as starting situations for modelling activities more (4,3) than secondary 

school teachers (3,7).  
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Table 8. Means of the answers to the first research question

Item    Primary teachers Secondary teachers    Total

First

(real contexts)

4,3 3,7 4

Second

(applications)

3,8 3,8 3,8

Total 4,1 3,8 3,9

The second question Q2 was studied through one closed and one open question. The 

closed  question  asked  teachers  if  they  included  or  not  problem-posing  during  their 

classroom activities. In Table 9 the distributions in total percentages, divided between 

primary and secondary teachers’ answers, are reported. To have a deeper understanding 

of teachers’ implementation of problem-posing activities respect to their school level, 

the row-percentages respect to Table 9 were calculated (Fig. 17). In Fig. 17 is clearly 

proved that problem-posing is not common in school practice, in fact more than a half 

of the sample, in both primary and secondary levels, did not implement problem-posing 

activities.

Table 9.  Distributions respect to the inclusion of problem posing

                                              Inclusion of problem posing activities

Yes No Not answered      Total

Primary 21,2 29,6 9,0        59,8
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Teachers’

school level

Secondary 18,4 19,6 2,2        40,2

Total 39,6 49,2 11,2        100

Figure 17.  Percentages respect to the row of Table 9

To investigate teachers’ problem-posing practices, teachers who positively answered 

to the closed question, i.e. who included problem-posing in their school practice, were 

asked  to  answer  to  an  open question,  in  which  they  had  to  present  one  (or  more) 

significant situation they used as starting point for problem-posing activities. From the 

coding of the answers to this open question, nine categories were identified and grouped 

in two families (Fig. 18). The percentages of the distributions are divided in primary (P) 

and secondary  (S)  teachers.  Each teacher  could report  more  options,  so the total  is 

higher than 100%.
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Figure 18.  Families and categories of problem-posing activities

For each category the distributions divided between primary and secondary school 

teachers were calculated. This analysis indicates that problem-posing contexts expressed 

by teachers could be divided in two families:  reality and  problematic-situations, with 

distributions respectively of 83,6% and 34,7%. Note that the total is higher than 100% 

because teachers could express more than one situation. Moreover, the most suggested 

category,  which  is  linked  to  the  first  family,  was  real  contexts (49,2%).  This  fact 

remarks the importance in the choice of meaningful contexts for the implementation of 

problem-posing activities. Such contexts are the ones we called as realistic and rich, and 

that are at the basis of the modelling process. As a consequence, contexts should play a 

crucial role in bridging modelling and problem-posing to promote students’ reasoning, 

critical  thinking and give meaning to their mathematical activity.  Data split between 

primary and secondary school teachers allow to have an evidence in the fact that some 

starting situations are used only at primary school (artefacts, practical experiences, new 

topic,  group working),  while  others  only  at  the  secondary  school  (open  problems). 

Instead, teachers of every level should have the possibility to face with several different 

contexts or tools and learn to choose which is the most appropriate in relation of the 

classroom and the learning process. 

To have a deeper insight in the relations between the implementation of problem-

posing and the use of artefacts, that in previous studies were proved to be able to foster 

a  mindful  approach  towards  a  problem-posing  attitude  (Bonotto  2009),  a  bivariate 

analysis between the implementation of problem-posing and the use of artefacts was 

performed. Recall that ten items concerning the use of some educational tools in a five-
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Likert scale (1 = never; 2 = rarely; 3 = sometimes; 4 = often; 5 = always) were inserted 

in the questionnaire. In the specific, teachers had to state the frequency they adopt the 

following educational  tools  during  their  lessons:  textbooks,  notes,  interactive  board, 

software, calculator, math games, audio and video supports, artefacts, library, others. 

Findings  indicate  a  significant  correlation  between  the  use  of  artefacts  and  the 

implementation  of  problem-posing  activities  (0,001<p<0,01;  ❑2=0,13),  as  shown in 

Table 10 (the total is less than 100% because the distributions of teachers who did not 

answer are not reported).  

Table 10. Use of artefacts and implementation of problem-posing activities

                                                  Frequency in the use of artefacts

Implementation of 
problem- posing 
activities

Less than 
sometimes

Sometimes More than 
sometimes

Yes      22,5      36,6     39,4

No      46,5      31,8     19,3

Moreover, to obtain some information on the relations between problem-posing and 

problem  solving,  teachers  were  asked  if  they  implement  or  not  problem  solving 

activities during their teaching. The double distribution is given in Table 11 (p<0,001; 

❑
2=0,44).  Considering  the  row percentages  of  Table  11,  almost  every  teacher  who 

implemented  problem-posing  activities  implemented  also  problem  solving  ones 

(95,8%). The vice-versa is not true, in fact if we consider teachers who implemented 

problem solving, the 49,3% adopts also problem posing and the 46,5% did not.

Table 11. Implementation of problem solving and problem posing activities

                                              Implementation of problem solving activities
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Implementation 

of problem-

posing activities

Yes No Not answered Total

Yes 68 3 0 71

No 64 24 0 88

Not answered 6 14 6 20

Total 138 41 6 179

In conclusion,  we report  the last  question of the questionnaire,  in which teachers 

were asked to express some suggestions they believed indispensable to improve their 

teaching of mathematics: in conclusion, I ask you one (or more) suggestion you believe 

indispensable to improve your teaching of mathematics.

The 71,0% of the sample answered to this question. From the coding of teachers’ 

answers,  four  families  (educational  strategies,  103,4%;  math  topics,  33,3%;  school 

organization, 26,1%; teacher training, 26,0%) and thirty-one categories were identified. 

Note that, since each teacher could express more options, the total percentage is higher 

than 100%. In Table 12 data whose distribution was higher than 10% are reported. 

Table 12. Categories for teaching improvement

Category Distribution (%)

Laboratory 32,1

Mathematics and reality 21,5

Teacher training 14,4
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Students’ motivation 19,1

Classroom equipment 12,0

Research in education 10,7

More hours of mathematics 12,0

Activities on problem solving 13,1

In Table 13 there are some examples of teachers’ answers relative to the categories 

of Table 12 (only the categories with distributions higher than 10% are reported): 

Table 13.  Examples of teachers’ answers to improve their teaching

Category       Teachers’ answers

Laboratory  Show the importance and use of mathematics with laboratorial 
activities.

 Materials based on laboratorial experiences.

Mathematic
s and reality

 Activities  based  on  realistic  situations  and  daily  life 
experiences.

 Starting from concrete contexts and apply mathematics to real 
situations.

Teacher 
training

 Incrementation of training courses for both pre-service and in-
service teachers.

 Provide more practical  professional  development  courses for 
teachers.

Students’ 
motivation

 Enhance  students’  involvement,  stimulate  discovery  and 
playfulness.
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 Students’ motivation must be improved.

School 
equipment

 Improve school facilities by equipping them with laboratories 
or teaching tools.

 Adequate  classrooms  (tools,  software,  etc.)  available  in  all 
school levels.

Research in 
education

 More cooperation between schools and universities.
 Teachers’  need  valid  materials  based  on  valuable  teaching 

strategies.

More hours 
of 
Mathematic
s

 More hours in the week schedule for mathematics are needed 
to have a deeper insight in various topics.

 Renovate programs or increase the time to have more time to 
deepen the topics.

Activities on 
problem 
solving

 Pay more attention in the solution process of a problem and 
less time in calculations.

 Work regularly on problem-solving activities.  

From the analysis of teachers’ answers, it can be deduced that teachers need more 

opportunities  to be engaged in modelling activities.  Indeed,  they ask more effective 

experiences  and  practical  materials  based  on  realistic  and  laboratorial  activities. 

Consequently, there is the necessity of an improvement in teachers’ trainings, offering 

them  occasions  to  be  involved  in  modelling  activities.  We  remark  that  teachers 

themselves recognized the importance in the choice of concrete and stimulating contexts 

for students, that we called rich and realistic. In addition to the examples reported in 

Table 13, other teachers’ answers were directly linked to problem-posing:

 Learn to problematize from concrete situations.

 Attitude to pose problems and observe.

The  request  of  paying  more  attention  in  problem-posing  and  problem  solving 

situations,  by a regular  implementation of these educational  strategies,  supports  that 

students’  reasoning must  be  increased.  Activities  based  on modelling  and problem-
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posing,  starting  from  meaningful  contexts  given  for  example  by  suitable  artefacts, 

should represent a valuable occasion to achieve such results.

4.3 Conclusions from the questionnaire

Concerning modelling, the results from the questionnaire showed that teachers regularly 

included some aspects of the modelling process in their classroom activities, in terms of 

using  real  contexts  as  starting  situations  for  mathematics  lessons  and  showing  real 

applications of mathematics. Despite this disposition, teachers expressed a need in both 

more materials and preparation to implement activities based on realistic contexts. This 

need is in line with Blum (2015), in which it is underlined the high demanding features 

of implementing modelling at school, and that teachers’ professional development in 

modelling competencies (Borromeo Ferri 2018) is indispensable. Two directions seem 

to  be  important:  (i)  improving  teachers’  professional  development  courses,  offering 

teachers occasions to face with modelling activities based on rich and realistic contexts, 

and (ii) developing prototypes of practices and textbooks based on realistic problematic 

contexts available for teachers of every school level. In this way teachers would have at 

their disposal models of modelling activities that can be adapted and implemented in 

their classrooms. 

The analysis of the second question indicates that problem-posing is not known by 

teachers, and consequently not regularly implemented at school. In fact, less than a half 

of the participants (39,6%) adopted it during its school practice.  To overcome this lack, 

problem-posing should become an integral part of pre-service and in-service teacher 

training courses, in order to give teachers opportunities to increase their  knowledge, 

before,  and their  practice,  after,  on problem-posing.  Such improvement  in  teachers’ 

knowledge  could  help  teachers  to  recognise  intersection  points  between  different 

methodologies  and strategies  and to  adopt  coherent  teaching  methods.  Also,  in  our 

study both the relations between problem-posing and modelling and problem-posing 

and problem solving had been confirmed. Indeed, looking at the categories of Fig. 18, 

the most frequent is real contexts, which highlights the cooperation between modelling 
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and problem-posing. This cooperation is natural in the choice of meaningful contexts 

for the implementation of both these educational strategies in order to enhance students’ 

reasoning and critical thinking. A possible choice for that contexts is given by artefacts, 

whose precious contribution in problem-posing activities emerged from the bivariate 

analysis,  in  agreement  with  Bonotto  (2013). Moreover,  we remark  the  positive  and 

strong  relation  between  problem-posing  and  problem solving,  in  line  with  previous 

researches (Bonotto 2013; Kilpatrick 1987; Silver, Mamona-Downs, Leung and Kenney 

1996; Silver 1994). 

In  conclusion,  teachers’  opinions  about  how  to  improve their  teaching  of 

mathematics  were  analyzed.  The  most  suggested  family  dealt  with  educational 

strategies. In  the  specific,  linked  with  this  family  there  were  some  categories  in 

connection  with  modelling  and  problem-posing:  laboratory,  math&reality,  problem 

solving,  group  work,  practical  experiences.  The  most  suggested  category  was 

laboratory.  This  means  that  teachers  realized  that  a  change  in  the  way  of  doing 

mathematics  is  necessary.  However,  standard  mathematics  and  “lab-mathematics” 

might not be distinguished by teachers, but activities based on modelling should become 

integrated in the daily mathematics activities. 

The  exploratory  study  presented  has  some  limits.  Indeed,  only  some  aspects  of 

modelling were considered,  the ones of using real  contexts as starting situations for 

mathematical activities and working with mathematical applications. As a consequence, 

a deeper understanding of teachers’ effective practice of the entire modelling cycle and 

about their knowledge of other aspects of modelling did not emerge. Moreover, findings 

are based only on what teachers self-reported. As a consequence, we can only have a 

first overview about this issue, that was actually the aim of this exploratory study. For 

the future a deeper investigation in teachers’ practices linked to both modelling and 

problem-posing  would  be  performed  through  a  series  of  interviews  and  classroom 

observations.

To conclude we remark some key points concerning what can be learned from this 

exploratory study for the implementation of the following design research cycles. The 

results from the questionnaires indicate that:
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 more didactical materials are needed concerning mathematical classroom activities 

based on real contexts;

 problem-posing  should  become  integrated  in  the  school  practice  during 

mathematical lessons;

 cooperation between mathematical modelling and problem-posing is evident in the 

choice of meaningful contexts for mathematics lesson;

 a change is necessary in the way of teaching mathematics, making students more 

active in the learning process.

The results are in line with the choice of the design research methodology, because 

that  same  teachers  expressed  the  need  of  innovative  educational  settings  for  their 

teaching. In these settings, meaningful real contexts are crucial, and as a consequence 

the role of the design heuristic of didactical phenomenology would become fundamental 

in designing instructional activities with the aim of choosing problem situations that 

could provide the basis for the development of the mathematical concepts or tools we 

want students to develop. This point represents also a possible link between modelling 

and problem-posing.  As a  consequence,  problem-posing should be  integrated  in  the 

school  practice  reinforcing the role  of meaningful  contexts for students  and starting 

from such contexts to make students become familiar in posing (and solving) their own 

problems. 

In chapter  5  and 6 the two design research  cycles  concerning modelling  will  be 

presented. In the specific, these cycles have the additional goal to provide teachers with 

design  schemes and prototypes  of  practices  in  line  with  the  aims  of  the University 

project  and teachers’ requests  from the questionnaire.  In chapter  7 and 8 the cycles 

concerning problem-posing will be reported. The main point is to integrate problem-

posing in the school practice, and as stated in consequence of the exploratory study, a 

key point to pursue this goal is to reinforce the use of real contexts to make students 

pose their  own problems. The main difficulty that could occur in this scenario is to 

understand which contexts should be real for students, and how different contexts can 

influence students’ performances in problem-posing. 
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5.1 Introduction

The design research of this project consists in two cycles for mathematical modelling 

(M-I  and  M-II)  and  two  cycles  for  problem-posing  (PP-I  and  PP-II).  This  chapter 

addresses the first research cycle concerning mathematical modelling, M-I (Fig. 19).

Figure 19. Research cycle M-I

The structure of the chapter is the following: in section 5.2 we introduce the context 

of  the  classroom  that  participated  to  the  study,  explicating  the  mathematical  topic 

considered and the specific goals of this cycle in relation to the first research question. 

In section 5.3 the design phase is described, consisting in the development of an HLT 

with particular attention in designing instructional activities related to the learning goals 



of  the  HLT.   HLT  includes  starting  points  and  expectations  and  the  students’ 

hypothetical learning process. The design of key activities and materials are reported. 

Then  the  experiences  during  the  teaching  experiment  are  described  (section  5.4). 

Section  5.5  is  dedicated  to  the  retrospective  analysis,  in  which  we  reflect  on  the 

expectations formulated in the HLT and formulate feed-forward for the next research 

cycle.

5.2 Context and aim

The aim of the research cycles M-I and M-II consisted in finding possible answers to 

the first research question of this research project:

RQ1. How can Model Eliciting Activities promote the process of emergent modelling?

The first research cycle concerning mathematical modelling, M-I was conducted in a 

second-grade class (age 7) composed by nineteen students during two weeks of regular 

mathematics lessons. The class had never been engaged in a modelling activity before 

the  teaching  experiment.  At  the  time  of  the  activity,  students  were  working  on 

multiplication in the set of natural numbers. In particular, multiplication as iterated sum 

(Maffia and Mariotti 2018; Fischbein, Deri, Nello and Marino 1985) was introduced by 

the official  mathematics  teacher  one week before the  teaching experiment.  Students 

were  able  to  perform  basic  multiplications  between  numbers  with  one  digit.  As  a 

consequence,  the mathematical topic that was chosen for the modelling activity  was 

multiplication  in  N.  In  the  specific,  in  relation  to  the  research  question  RQ1,  we 

investigated how emergent modelling can be fostered to help students understanding 

some  aspects  of  the  multiplicative  structure.  Our  hypothesis  was  that  a  modelling 

activity designed following a model eliciting sequence (Lesh et al. 2003) with the use if 

suitable artifacts could actually foster the emergent nature of modelling. 

The student activities and the guidelines for the teacher, together with our intentions, 

were discussed beforehand with the mathematics teacher in two meetings. 
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The  research  method  for  the  data  analysis  was  qualitative.  The  aim  of  the  data 

analysis  was  to  reconstruct  the  classroom progress,  which  resulted  in  an  empirical 

grounded understanding of students’ reasoning during the classroom activity. In order to 

be able to reconstruct the learning process and verify our hypothesis, different kinds of 

data were collected: pre-test; transcriptions of classroom dialogs; observations of group 

working; students’ final projects.

In the next section we present the design phase, in which the development of an HLT 

is described. 

5.3 Design phase

In this research project the design phase of a design research cycle is characterized by 

the development of an HLT. In this section we first describe the starting points for the 

HLT and the expectations that are investigated in the following teaching experiment. 

Then  we  describe  the  activities  and  materials  designed  in  order  to  foster  students’ 

cognitive development according to the goals of the HLT. 

5.3.1 Starting points 

Starting  points  for  the formulation  of  an HLT are  split  in  two categories.  The first 

concerns  the  theoretical  background  specific  for  this  research  cycle  and  taken  into 

consideration to design an educational setting and hypothesis about students’ learning. 

The second deals with the classroom context, and in the specific the initial level of the 

students. This part could be inserted in the teaching experiment phase, but we decided to 

report it here because we actually considered the results of the pre-test to formulate the 

following learning trajectory. 

Theoretical Background
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In chapter 2 the background to the research was extensively described. Here we want to 

sum up some key points that were considered for this research cycle.

The first one deals with emergent modelling. Emergent modelling does not consist in 

the  application  of  mathematical  concepts  to  solve  real  problems,  but  actually 

mathematical  activities  are  used  as  a  vehicle  for  the  development  of  mathematical 

concepts (Greer et al. 2007). Students, starting from a real context, begin to model their 

informal  mathematical  strategies  and  arrive  to  re-invent  mathematical  concepts  and 

applications they need. These concepts and applications can be subsequently formalized 

in  mathematical  terms  and  generalized  to  other  situations.  To  sum  up,  emergent 

modelling can be seen as a dynamic process from a model of students’ situated informal 

mathematical  strategies  to  a  model  for more  formal  mathematical  reasoning 

(Gravemeijer & Doorman 1999).

Another modelling perspective considered in this research cycle is the one of model 

eliciting. Model eliciting activities (MEAs) are simulations of real-life problem solving 

situations  in  which  students  develop  a  model  going  through  iterative  phases  of 

invention, refinement and revision, in which the goal is not in the application of some 

ready-made  procedures,  as  in  the  traditional  practice  of  word  problems.  In  model 

eliciting  activities,  instead,  students  struggle  to  create  interpretations  that  fit  their 

interpretations of the starting dilemma,  discuss, make sense of meaningful situations 

and invent, extend and refine their own mathematical constructs (Kaiser 2017). Lesh et 

al. (2003) developed a model development sequence whose components can easily be 

re-sequenced to suit the needs of researchers or teachers (Fig. 9). In this research cycle 

we considered three phases of such sequence:  warm-up activities; model construction; 

presentations  and discussion.   Warm-up activities  are  usually  given the  day before 

students are expected to begin work on the model eliciting activity. Warm-up activities 

aimed at helping students to be confident with the context of the modelling activity and 

at  introducing or testing eventually minimum prerequisites. The model construction is 

the  core  of  the  model  eliciting  activity,  here  students  are  engaged  in  performing 

modelling cycles to produce a model that describes the starting situation. Presentations 

and discussions are whole-class activities in which students make formal presentations 

about the results of their work. 
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In conclusion, to design our modelling activity, the choice of a real context followed 

the  perspective  of  RME. This  means  that  a  real  situation  will  be  represented  by  a 

realistic and rich context. Realistic refers to a problem of which the problem situation is 

experientially  real  to  the  student  (Gravemeijer  &  Doorman  1999),  while rich 

(Freudenthal 1991) refers to  a context that promote a structuring process as a means of 

organizing phenomena, physical and mathematical, and even mathematics as a whole, 

i.e. contexts that give more opportunities in the mathematization process. 

Pre-test

Before the development of a learning trajectory, a pre-test was administered in the class 

were the research cycle took place. The aim was to have a picture about the starting 

level of the classroom concerning the mathematical topic considered for the following 

modelling activity: multiplication in N. Furthermore, some items were intended to be 

matched with post-test items in the analysis phase. 18 students participated to the pre-

test. The test was composed by five problems, taken from the test  Invalsi2 of previous 

years for grade 2. The full text is presented in Appendix B.  In table 14 the number of 

correct, incorrect and not given answers are reported. The maximum score for each item 

was 2, so the total score for the pre-test was 12. The mean of the classroom was 4,6 

(SD=2,96) which underlines that classroom knowledge of the subject was still  poor. 

From the analysis of the pre-test, it emerged that the notion of multiplication as iterated 

sum  was  clear  to  students.  Indeed,  in  problem  number  2  students  had  to  use  the 

2 INVALSI (Istituto Nazionale per la Valutazione del Sistema Educativo di Istruzione e di Formazione) is 

the acronym of the Italian National Institute for the Evaluation of the Education System, supervised by 

the Ministry of Education. One of the activities of the institute is to prepare and carrying out periodic and 

systematic tests to monitor the learning outcomes of Italian students. These tests are known as INVALSI 

national tests.  In the primary school, these tests are performed in grade two (Italian and Mathematics 

tests) and grade five (Italian,  Mathematics and English tests).  Concerning mathematics,  the aim is to 

measure  the  ability  to  solve  problems,  in  the  discipline  of  real-life,  concerning  skills  in  logic, 

interpretation  of  graphs,  understanding  of  phenomena,  construction  of  models,  in  relation  to  the 

mathematical curriculum described in the National Guidelines (DM 254/2012). 
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definition  of multiplication  as iterated  sum, and 16 students  over  18 gave a  correct 

answer.

Table 14. Pre-test results

Proble

m

Max score Number of correct 

answers

Number of incorrect 

answers

Not answered

1 2 9 8 1

2 2 16 2 0

3 2 2 11 5

4 2 5 9 4

5 2 7 5 6

 

However, some students did not recall the notion of multiplication and only iterated 

the  addition  (Fig.  20),  while  others  were  able  to  report  also  the  definition  of 

multiplication (Fig. 21). 
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Figure 20. Example of student’s answer

Figure 21. Example of student’s answer

Concerning the two students who gave an incorrect answer to problem 2, in which 

students had to apply the notion of multiplication as iterated sum, the first one instead of 

performing a multiplication performed an addition (Fig. 22), while the second one did 

not actually understand the meaning of multiplying 4 by 6, because he draw four tables 

4x6 (Fig. 23). 

Figure 22. Example of student’s incorrect answer
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Figure 23. Example of student’s incorrect answer

Regarding  the  other  problems  in  the  pre-test,  students  encountered  difficulties 

especially in problems 3 and 4. We did not take too much into account such results, 

since the mathematics teachers introduced only the concept of multiplication of iterated 

sum one week before the implementation of the modelling activity. Nevertheless, such 

items would be compared with similar ones in a post-test, in order to see if the designed 

and  implemented  activity  had  also  some  positive  or  negative  influences  in  solving 

problems  related  to  multiplication  as  expected  by  the  Italian  National  Evaluation 

System. 

5.3.2 Learning goal and hypothetical learning process

As stated in section 5.2, the aim of this first research cycle consists in investigating how 

emergent modelling can be fostered to help students understand some aspects of the 

multiplicative  structure.  In  the  pre-test  we  saw that  students  at  the  moment  of  the 

intervention had a little knowledge on this topic, but actually they had a clear idea about 

the  notion  of  multiplication  as  iterated  sum.  What  we  want  to  achieve  during  the 

teaching experiment is the re-invention of the distributivity property of multiplication 

over  addition.  As  a  consequence,  the  learning  goal  of  the  teaching  experiment  is 

represented by the distributivity property of multiplication over addition (Fig. 24). 
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Figure 24. Learning goal of the M-I cycle

To  design  an  HLT,  together  with  the  learning  goal  we  need  to  formulate  some 

conjectures about the learning process. Starting from the classroom level and following 

the heuristic of didactical phenomenology, we supposed that making students face with 

a problem situation in which they need a new mathematical concept to solve it could 

stimulate the same students in creating that concept. Moreover, we believe that not only 

the context, that should be rich and realistic in the perspective of RME, is important in 

such a re-invention process, but also the constraints given in the text of the problem 

could encourage or not the emergence of new mathematical concepts. In order to do 

that,  our  idea  consisted  in  putting  students  face  with  the  problem  of  performing 

multiplications between numbers with 2 digits. In Fig. 25 this problem is indicated as 

critical  point:  students  encounter  a  problem  situation  and  to  solve  it  they  need  to 

develop a new mathematical concept or tool. 

Figure 25. Hypothetical learning process of the M-I cycle

The learning process outlined in Fig. 25 is not linear. Indeed, attention should be 

given not  only  to  the  solution  process  of  the  given problem,  but  to  the  process  of 

construction of a mathematical model that support such solution process. In agreement 

with the model  eliciting approach,  students develop a model  going through iterative 
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phases  of  invention,  refinement  and revision.  Modelling  is  a  process  of  developing 

representational  descriptions  for  specific  purposes  in  specific  situations,  involving 

iterative testing and revision cycles (Lesh and Lehrer 2003). Moreover, we think that 

this process could support the emergence of new mathematical knowledge, since the 

developed model  is  firstly  a  model  that  is  created  in  a specific  situation  to  solve a 

particular  problem,  but  during  the  modelling  activity  becomes  a  model  for  a  more 

general mathematical structure. In our case, students should start developing a model to 

solve a given problem, and then discover that such a model permitted them to create a 

general  mathematical  concept:  the  distributivity  property  of  multiplication  over 

addition.  In the next  section we present  the learning activities  that  make those first 

hypothesis more concrete.

5.3.3 Learning activities

Which design scheme can be used to develop some learning activities to achieve the 

learning goal described in the previous section? Our hypothesis is to adapt the model 

eliciting  sequence  (Lesh  et  al.  2003)  in  order  to  translate  the  hypothetical  learning 

process in concrete classroom activities. The designing scheme used for the learning 

activities followed the design scheme for MEAs proposed by Lesh et al. (Fig. 26). We 

present the activities together with the materials developed.

Figure 26. Design scheme for the learning activities of the M-I cycle

112



M-I Research Cycle

The  first  phase  was  represented  by  the  warm-up  phase.  Recall  that  in  a  model 

eliciting sequence warm-up activities aimed at helping students to be confident with the 

context  of  the  modelling  activity  and at  introducing  or  testing  eventually  minimum 

prerequisites.  In this  latter  connotation,  also the pre-test  and its results, discussed in 

section 5.3.1, actually are part of the warm-up phase. Next to the pre-test, the day before 

starting the model construction, students were engaged in a series of activities in order 

to make them familiar with the problem situation they would have to face. Two hours 

were dedicated to these activities. Each student was given the text of the modelling task 

together with a booklet. Since at the time of the activity the school in which the teaching 

experiment  took  place  was  under  building  renovation,  we  decided  to  choose  as 

modelling task the following Tiling Problem: 

The Tiling Problem 

The school director decided to renovate the school. Students can design a floor 

tiling of their own classroom. The floor of your classroom was divided in six 

equal strips. Each group of students should tile a strip, using all the available 

types of floor tiles.

Together with the task, to each student was given a booklet which included: 

 the figure of the classroom divided in six stripes (Fig. 27);

 the figure of each stripe to be tiled by a single group (Fig. 28);

 a brochure with the shapes of the available tiles (triangular, square, rectangular) 

to be used with their relative costs (Fig. 29).

 the task repeated in a clearer form (Fig. 30).

The  brochure  represented  a  cultural  artifact  that,  thanks  to  its  richness  in 

(mathematical) meaning created a sort of hybrid space that connects mathematics and 

everyday contexts. Starting from the materials, students have to answer some questions 

dealing  The  Tiling  Problem.  Questions  were  about  comprehension  of  the  task  and 

reasoning on the relations between different tiles and their cost (Appendix C). The aim 
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of  the  questions  posed  to  students  was  to  start  reasoning  about  the  context  of  the 

problem. After a first individual reflection, the teacher conducts a group class discussion 

in order to collect ideas from students, share opinions and points out some clarifications. 

Figure 27. Classroom divided in six stripes

Figure 28. Stripe to be tiled by every single group
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Figure 29. Brochure with the shapes of the available tiles with their costs

Figure 30. Task given to students

The second phase of the MEA consists in the model construction and it covers five 

hours. In this phase each group has to create a poster in which design the floor tiling and 

explain the strategies followed to calculate its total cost. This is the core phase of a 

MEA. Students are expected to perform iterative cycles to build the desired model to 

solve the task. Two important aspects of the task are the following. The first one is the 
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constraint of using all the available types of tiles, and the second one to cover an entire 

strip of the classroom. With these conditions, we suppose that students at a certain point 

face with the problem of performing multiplications between 2-digits numbers. Indeed, 

a possible solving strategy could be the following. Firstly, count how many tiles of each 

type  (triangular,  rectangular  and  square)  have  been  used  to  cover  the  strip.  Then, 

calculate the cost for each type of tiles and finally sum the obtained relative costs. In 

calculating the total cost associated to each type of tiles, students will encounter the 

problem of performing multiplications with 2-digits numbers. As a consequence, they 

have to find a way to perform this calculation, and we conjectured that some students to 

answer this problem could re-invent the distributivity property of multiplication over 

addition.  

In the final phase of the activity (two hours), presentation and discussion, each group 

has to present to the classroom its project explaining the steps followed to solve the 

task. Each member of the group has to take part to the presentation.

5.3.4 HLT for cycle M-I

In this section we sum up the components of the designed HLT for the research cycle 

M-I  discussed  in  the  previous  sections,  namely  the  learning  goal,  the  hypothetical 

learning process and the learning activities. Together those components define the HLT 

(Table 15). In the next section the M-I teaching experiment is presented.

Table 15. HLT for the M-I cycle

HLT

Learning Goal Hypothetical 

Learning Process

Learning Activities

Distributivity property of 

multiplication over 

addition

Making students face with 

a problem situation that 

need the development of 

new mathematical 

concepts to be solved 

could support students in 

Students are engaged in a 

MEA in which they have 

to develop a model to 

solve the task The Tiling 

Problem. In the first phase 

(warm-up) all the 
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achieving the learning 

goal. The critical point is 

represented by the 

necessity to perform 

multiplications with 2-

digits numbers. The 

critical point is made 

explicit through a 

modelling task with some 

specific constraints. These 

assumptions are made 

explicit through the 

development of some 

learning activities. 

materials are presented to 

the students who are 

engaged in a 

comprehension activity. 

During the model 

construction, students 

could face with the 

problem of performing 

multiplications with 2-

digits numbers. Some 

students are expected to 

re-invent the concept of 

distributivity of 

multiplication over 

addition to overcome this 

critical point. In the end 

each group presents its 

findings to the rest of the 

classroom.

5.4 M-I teaching experiment

In design research the aim of the teaching experiment is to see how the developed HLT 

would  play  out  in  the  classroom and test  empirically  the  hypothesis  that  had  been 

conjectured. We now present the teaching experiment for the M-I cycle. In Fig. 26 the 

designed scheme of  the activities  is  shown.  Based on such scheme,  we present  the 

implementation and the main results  from the teaching experiment  in its  three main 

phases: warm-up; model construction; presentation and discussion. The activities had 

been carried out by the researcher with the presence of the regular mathematics teacher. 
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In the description of the teaching experiment, with teacher we refer to the researcher, 

who conducted the activities. 

5.4.1 Warm-up

In section 5.3.3 we described the materials and setting of the warm-up phase. This phase 

covered 2 hours. Firstly, to each student were given the task of the modelling problem 

and the relative booklet. The first part of the activity is very important, since the teacher 

must take and keep students’ attention and interest. Students have to feel motivated in 

doing the modelling activity. For this reason, a starting point is that all students clearly 

understand the task and what is required. The teacher read with students the task, the 

figure of the classroom and of a single strip, and reformulated together with students the 

request. Then, each student, before individually and then in pairs, had to answer to some 

questions (Appendix C). At the end, the teacher conducted a whole class discussion to 

check students’ comprehension of the activity and clarify any doubts.

The first question asked students to explain what every group is asked to do. In Fig. 

31 some students’ answers are reported.  Students answered in different  ways to the 

question. Some students only focused on the fact that they have to make a project, while 

others specify that they actually have to renovate the floor of their classroom tiling it. 

Here different  comprehensions occurred.  Indeed, example 3 in Fig.  31 shows that  a 

student understood that every group has to tile  every strip, while the request is that 

every group has to tile only one strip. This request is evident in the last two examples 

reported. In Example 4 it is significant that the student understood that they can decide 

to tile the strip as they want, so they can develop a creative plan to tile their group strip. 

However, it does not mention about the constraint to use all the available types of tiles 

given in the brochure. Example 5 expresses the fact that they have to use the available 

types of tiles, but nothing about that they must use all the available types. Just in this 

first  question  different  perspectives  appear.  As  a  consequence,  the  importance  of  a 

classroom discussion is evident. The teacher listened to students answers and pointed 

the attention in the fact that all the available types of tiles must be used. 

118



M-I Research Cycle

Figure 31. Students’ answers 

Concerning the second question, every student was able to report the correct measure 

of each strip using the figure with the legend. An example is given in Fig. 32.

Figure 32. Student’s answer
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Answering the second question and using the figure of the single strip reported in 

students’ booklet helped to answer to the third question, that consisted in calculating the 

measures of the sides of a single strip. We report here a dialogue in which a student 

explains to the teacher how she/he was able to calculate those measures (T=teacher, 

S1=student 1, S2= student 2):

S1: the side of the strip measures 100 cm

T: how did you obtain this result?

S1: I counted how many lines [unit of measure] … they are 5! 

      Then, every line is 20 cm

      Twenty plus twenty plus…. = 100 cm

T: So, how many times did you sum twenty [to itself]?

S1: five times

S2: 20 x 5

S1: yes!... or 5 x 20, it’s the same!

From the  previous  dialogue,  it  is  evident  that  the  student  uses  the  definition  of 

multiplication  as  iterated  sum to  calculate  the  measure  of  a  side  of  the  strip.  Such 

iteration  is  recognized  as  being  actually  a  multiplication.  Moreover,  the  classroom 

reasoning highlighted also another important aspect: the commutativity property of the 

multiplication. This process is reconstructed in Fig. 33.

Figure 33. Process used by a student to calculate the measures of a side of the strip to be 

tiled

The last question consisted in filling a table about tiles and their costs. In the class 

discussion the teacher focused on the row highlighted in Fig. 34. In this row it is known 
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that a person spent 12 euros buying only triangular tiles, and it is required to calculate 

how many tiles had been bought.  A student answered in this way:

T: we spent 12 euros to buy only triangular tiles.  Who help me in knowing how 

many 

     tiles had been bought?

S1: the result is 3!

T: why 3?

S1: because you had 12 euros… and… and the triangles cost 4 euros

T: the triangles?!?

S2: the tiles with triangular shape

T: ok, a triangular tile costs 4 euros

S1: so, two cost 8 euros

S2: … and three cost 12 euros

S1: 4 x 3 = 12

Figure 34. Last question of the comprehension activity

As  in  the  second  question,  students  reconstructed  the  already  known  notion  of 

multiplication as iterated sum. 

In the next section we report the main results from the model construction phase.  
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5.4.2 Model construction

The core part of a MEA is represented by the model construction. In this phase students 

had to create a model to solve the task explored in the previous lesson. Students worked 

in groups of three. Each group had at his disposal a poster (Fig. 35) with the strip to be 

tiled. 

Figure 35. Poster given to students with the strip to be tiled

During the  model  construction  phase,  each  group of  students  created  a  poster  in 

which they designed the floor tiling and explained the strategies followed to calculate its 

total  cost. In Fig. 36 there are some examples  of students’ group working. Students 

approached to the problem of tiling in different ways: who first make a project of all the 

tiles, who created some tiles prototypes and reported them in the poster.
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Figure 36. Students working in groups to solve the tiling problem

While solving the task, all the groups developed a similar strategy to obtain the total 

cost. The strategy consisted in two steps. The first one consisted in counting the number 

of all the tiles of the same type and multiply the number obtained with the relative cost. 

For example, one group counted fifty square tiles, twenty-six triangular tiles and fifteen 

rectangular tiles. Then, the number of each type of tile was multiplied by its relative 

cost.  In  our  example,  students  had  to  perform  50×6,  26×4,  15×10.  This  step 

highlights the notion of multiplication as iterated sum, already known by the students. 

While performing multiplications similar to the latter one, the groups encountered 

the difficulty of multiplying a number with one digit and a number with two digits. 

Since in several groups students were not able to find a way to solve this problem, the 

teacher decided to reason about it in a whole class discussion. Some students suggested 

the  strategy  reported  in  the  following  dialogue  (R=researcher;  S1=first  student; 

S2=second student) to calculate 6×57:
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S1: I write  6×57=57×6.                           

      Then I divide 57 as 50 and 7…

 R:  Divide?

S1:  Write…?

 R:  Decompose.

S1:  Yes, I decompose 57 as 50 plus 7!

        Then I calculate  50×6.

S2:  That is 300!

S1:  Then 6×7

S2:  42

  R: Excellent, and with these number? (pointing 300 and 42)

S1:  I put them together!

  R: How?

S1:  I compose them…

  R: What does it mean?

S1:  I make the sum!

After the discussion that included also other examples solved by students, each group 

applied the strategy suggested by their peers to perform their operations. In the group of 

our first example, students were able to calculate 26×4, as shown in Fig. 37.

Figure 37. Students’ using the distributivity property of multiplication over addition
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The second step developed by students to solve The Tiling Problem was to sum the 

costs of each shape of tiles. In our example, students, having calculated  50×6=300, 

26×4=104,  15×10=150,  summed  300+104+150=504 , that  represented  the  total 

cost in euros of their tiling design.

As hypothesized in the HLT, from their developed strategy students encountered the 

problem of calculating multiplications with numbers with 2-digits. Such critical point 

stimulated some students to re-invent the notion of distributivity of multiplication over 

addition. 

5.4.3 Presentation and discussion

The last part of the MEA consisted in the presentation and discussion phase. This part 

covered two hours. Each group presented to the rest of the classroom its project. In each 

poster students reported the strategy they developed to solve the problem. In Fig. 38 

posters created by students are reported.
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Figure 38. Posters created by students 

Students in their projects had been able to reproduce the strategy they developed to 

solve the problem. Moreover, they explained in a clear way all the calculus performed 

with particular attention to the distributivity property of multiplication over addition, 

that permitted them to calculate multiplications with numbers with 2-digits (Fig. 39).

Figure 39. Students’ strategy to solve the modelling task

5.4.4 Post-test

After the conclusion of the MEA, a post-test was administered. 18 students participated 

to  the  post-test.  The  test  was composed by four  problems (the  first  divided in  two 

items), comparable to the ones of the pre-test. A correspondence between pre-test and 

post-test problems is given in Fig. 40: 
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Figure 40. Correspondence between pre-test and post-test items

The full text is presented in Appendix D.  Some items were matched with pre-test 

items, in order to see if the modelling activity had also collateral consequences in the 

direction of the requests from the National Evaluation System concerning multiplication 

(recall that this is tested through the administration of an INVALSI test, from which the 

problems were taken from). 

In Table 16 results from the post-test are shown, concerning the numbers of correct, 

incorrect  and not given answers for each item. In Table 17,   there is  a  comparison 

between pre- and post-test results. 

Table 16. Post-test results

Proble

m

Max score Number of correct 

answers

Number of incorrect 

answers

Not answered

1a 2 16 2 0

1b 2 6 12 0

2 2 13 5 0

3 2 16 2 0

4 2 4 12 2

Table 17. Comparison between pre-test and post-test results

Problem Max 

score

Number of 

correct answers

Number of 

incorrect answers

Not answered

Pre-test 1 2 9 8 1
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Post-test 2 2 13 5 0

Pre-test

Post-test

2

1a

2

2

16

16

2

2

0

0

Pre-test

Post-test

3

3

2

2

2

16

11

2

5

0

Pre-test

Post-test

4

4

2

2

5

4

9

12

4

2

Pre-test

Post-test

5

1b

2

2

7

6

5

12

6

0

 

As for the pre-test, the maximum score for each item was 2, so the total score for the 

post-test was 12. In the post-test the mean of the classroom was 6,25 (SD=2,25), while 

in the pre-test was 4,56 (SD=2,96). A Wilcoxon signed-rank test was performed making 

evidence of a statistically significant  difference between pre- and post-test  (W=10,5, 

p<0.01). The modelling activity supported students’ knowledge about multiplication, as 

suggested by the National Curriculum. Moreover, comparing pre- and post-test results 

as shown in Table 17, some considerations can be done. First of all, only in the fourth 

item some students did not answer in the post-test, while they answered to all the other 

items. This can probably be attributed to a more confidence experienced by students on 

the  topic.  Item 1a  for  the  post-test  confirms  students’  knowledge  of  the  notion  of 

multiplication as iterated sum, as already seen in item 2 of the pre-test. A considerable 

improvement concerns item 3, with 16 correct answers respect to 2 in the pre-test (item 

3). 
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5.5 M-I retrospective analysis

In this final section of the chapter we look back at the initial design of the HLT and 

compare it with the actual learning occurred and described in the teaching experiment 

section.  This retrospective  analysis  could form the basis  for  adjusting the HLT and 

formulate first answers to the research questions. The section is divided in two parts: the 

first concerning the reflection of the teaching experiment respect to the initial HLT and 

the second formulating feed-forward of the M-I research cycle for the next M-II cycle.  

5.5.1 Reflection on the M-I teaching experiment

The aim of this research cycle consisted in investigating how emergent modelling could 

be fostered to help students understanding some aspects of the multiplicative structure. 

In  the  specific,  we  formulated  the  hypothesis  that  a  modelling  activity  designed 

following a model eliciting sequence with the use of suitable artifacts could actually 

foster the emergent nature of modelling. In the design phase of this research cycle we 

designed  an  HLT through  the  definition  of  its  three  aspects:  the  learning  goal;  the 

hypothetical learning process and learning activities. The learning goal was represented 

by the distributivity property of multiplication over addition. The hypothetical learning 

process consisted in putting students in a problematic situation, represented by necessity 

to  perform  2-digits  numbers  multiplications,  to  make  them  re-create  the  notion  of 

distributivity of multiplication over addition. Such problematic situation was defined by 

a task together with some constraints and instructional materials. The learning activities 

had been clearly presented in section 5.3.3. On the basis of the designed HLT and of the 

actual learning process, described in the teaching experiment phase, we can draw some 

reflections:

 In agreement with the process of emergent modelling, the assignment given to 

students stimulated them to create and work with new mathematical concepts 

they did not know before. In the specific, the strategy developed by students to 

solve the task, that consisted in grouping the tiles with the same shape and then 
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multiply by the associated costs, showed that they were able to re-invent the 

mathematical  concept  of  distributivity  of  multiplication  respect  to  addiction. 

This is evident from different data presented in the previous section, such as: the 

extract of the dialogue proposed, in which students explained to the classroom 

their strategy to calculate 6×57; Fig. 39 in which students were able to explain 

and reproduce such mathematical concept.  Guided by the interaction with the 

teacher and peers, students were able to reason and explain this property, that 

would be at the base of their future strategies of calculus. In this way, properties 

of mathematical operations become meaningful for students, because no longer 

mechanical rules but rooted in their experience, directly constructed by students 

to solve a concrete problem in a meaningful context. 

 The re-invention process was possible not only thanks to the designed model 

eliciting sequence, but also to the use of a suitable artifact, represented by the 

brochure given to students (Fig. 29). Having given students the shapes of the 

tiles to be used and the constraint to use all of that shapes, guided them to face 

with  the  problem of  performing  multiplications  between numbers  with  more 

than  one  digit,  and  consequently  to  the  reformulation  of  the  distributivity 

property of multiplication over addition.  In this process the role of the RME 

heuristic of didactical phenomenology is clearly evident: it guided in choosing 

not  only  the  context  of  the  task,  but  also  some task  constraints  and  related 

materials appropriate to provide basis for the development of the mathematical 

concept of distributivity of multiplication respect to addition we wanted students 

to develop. As a consequence,  model eliciting activities together with suitable 

artifacts  could  foster  the  emergent  nature  of  modelling,  that  confirms  our 

hypothesis. Moreover,  the understanding of some aspects of the multiplicative 

structure in a meaningful way was enhanced. Therefore, integrating artifacts in a 

model  eliciting  sequence  can  actually  foster  emergent  modelling,  and in  our 

specific situation in supporting students understanding of some aspects of the 

multiplicative structure.
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 To achieve such results, the role of the teacher was fundamental. The teacher, 

indeed, encouraged students to use their own methods; stimulated students to 

articulate  and  reflect  on  their  personal  beliefs,  misconceptions  and  informal 

problem-solving  and  modelling  strategies  (Bonotto  2005).  Consequently, 

learning become a constructed understanding through a continuous interaction 

between  teacher  and  students,  that  can  be  synthetized,  using  Freudenthal’s 

words, in teaching and learning as  guided reinvention, reinforcing in this way 

mathematical reasoning and sense-making. 

 Before the implementation of the teaching experiment, students took part to a 

pre-test,  whose aim was to  have an overview of the starting situation of the 

classroom concerning  the  topic  of  multiplication.  The  pre-test  was  made  by 

items from INVALSI tests, and expressed the fact that students, despite having a 

poor knowledge of the topic, had a clear idea of multiplication as iterated sum. 

Comparing  the  results  of  the  pre-test  and  post-test,  we  had  also  another 

significant collateral consequence of the modelling activity. As highlighted in 

section  5.4.4,  there was a statistically  significant  increment  of  the classroom 

mean  from the  pre-test  (4,56)  to  the  post-test  (6,25).  As a  consequence,  the 

modelling activity also supported students in approaching and solving problems 

related to the topic of multiplication as requested by the National Evaluation 

System. Therefore,  fostering  students  reasoning and critical  thinking in  a re-

invention  paradigm  could  help  students  also  in  achieving  better learning 

outcomes.

5.5.2 Feed-forward of the M-I

As explained in the previous section, the teaching experiment gave some precious hints 

to answer to the first research question, concerning how MEAs can promote the process 

of emergent modelling. 

The model eliciting activity implemented in the first teaching experiment developed 

in three parts: warm-up, model construction, presentation and discussion. In particular, 
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high attention was given to the warm-up phase, due to the low grade of students. During 

the model construction students in groups developed a strategy to solve the modelling 

task,  that  was  explained  in  their  final  projects.  After  the  activity  a  post-test  was 

performed,  in  order  to  match  some  data  with  the  pre-test  and  analyze  students’ 

knowledge development. 

However, we realized that not a self-evaluation occurred. The model construction 

was characterized by several moments of classroom discussion, in which students could 

share their doubts. At the same time, the teacher in whole classroom discussions and 

group work was able to observe students’ understanding. However, we noted two main 

problems that  suggest  some modifications  of the instructional  sequence for the next 

design research cycle:

 students worked always in groups. They could share their opinions, strategies, 

misunderstandings,  but  at  the  same  time  there  was  not  enough  space  for 

individual  reflection.  Group  work  is  important,  but  we  think  that  also  an 

individual work in which students have time to reflect on the modelling activity, 

reconstruct  the  entire  process,  clarify  doubts  and  express  their  ideas  is 

fundamental in the learning process. 

 The only feedback we had from the activity was represented by the analysis of 

students’ work during their actual learning process and of post-tests. No final 

considerations were taken from students and the regular mathematics teacher, 

who assisted the researcher  during the activities.  We believe that a feedback 

from the people who are engaged in a teaching and learning process is  very 

important,  because in one direction it may help the researcher or designer to 

point  out  weaknesses  and  strengths  and  to  better  plan  future  instructional 

activities;  on  the  another  direction  is  an  opportunity  for  people  involved  to 

reflect deeply and freely in their learning process.
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6. M-II Research Cycle

6.1 Introduction

This chapter addresses the second research cycle concerning mathematical modelling, 

M-II (Fig. 41).

Figure 41. Research cycle M-II

The  structure  of  the  chapter  is  the  same of  the  previous  one:  in  section  6.2  we 

introduce the context of the classroom that participated to the study, explicating the 

mathematical topic considered and the specific goals of this cycle in relation to the first 

research  question.  In  section  6.3  the  design  phase  is  described,  consisting  in  the 

development  of  an  HLT  and  with  particular  attention  in  designing  instructional 

activities related to the learning goals of the HLT.  HLT includes starting points and 

expectations  and  the  students’  hypothetical  learning  process.  The  design  of  key 

activities  and  materials  are  reported.  Then  the  experiences  during  the  teaching 



experiment are described in section 6.4. Section 6.5 is dedicated to the retrospective 

analysis.

6.2 Context and aim

The aim of the research cycles M-I and M-II consisted in finding possible answers to 

the first research question of this research project:

RQ1. How can Model Eliciting Activities promote the process of emergent modelling?

Starting from the retrospective analysis of the research cycle M-I, a second research 

cycle was designed. The research cycle M-II was conducted in a twelfth-grade class 

(age 17) composed by twenty-five students during two weeks of regular mathematics 

lessons. The class had never been engaged in a modelling activity before the teaching 

experiment. 

In accordance with the mathematics teacher, 3D-Euclidean geometry was chosen as 

mathematical topic for the modelling activity. Indeed, in the Italian National Curriculum 

for Liceo Scientifico,  at the end of the fourth year,  concerning the specific  learning 

objective of geometry, we read:

The study of geometry will continue with the extension to the space of some of 

the themes of  the geometry of  the plane,  also in  order to  develop geometric 

intuition. In particular, the reciprocal positions of straight lines and planes in 

space, parallelism and perpendicularity, as well as the properties of the main 

geometric solids (in particular of polyhedra and rotation solids) will be studied.

Moreover, it is suggested that students should learn to use mathematical modelling to 

solve problems, applying scientific results also to daily life situations. 

 In relation to the research question RQ1, we investigated how emergent modelling 

can be fostered to help students understanding some aspects of 3D-Euclidean geometry. 

In  particular,  our  hypothesis  was  that  facing  students  with  a  real  problem  solving 
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situation designed following a model eliciting sequence (Lesh et al. 2003), with the use 

of suitable artifacts, could actually foster the emergent nature of modelling, seen as a 

process  in  which  students  develop  mathematical  concepts  from  informal  realistic 

contexts.

The research method for the data analysis was mainly qualitative. The aim of the data 

analysis  was  to  reconstruct  the  classroom progress,  which  resulted  in  an  empirical 

grounded understanding of students’ reasoning during the classroom activity. In order to 

be able to reconstruct the learning process and verify our hypothesis, different kinds of 

data were collected: pre-test; observations of group working; students’ final projects; 

students’ final individual reports; students’ and teacher’s feedbacks.

In the next section we present the design phase, in which the development of an HLT 

is described. 

6.3 Design phase

In this section we first describe the starting points for the HLT and the expectations that  

are investigated in the following teaching experiment. Then we describe the activities 

and materials designed in order to foster students’ cognitive development according to 

the goals of the HLT. 

6.3.1 Starting points 

Starting points for the formulation of an HLT of this second research cycle are split in 

two categories:  (i)  the classroom context,  and in the specific  the initial  level  of the 

students  and  (ii)  the  feed-forward  formulated  in  the  retrospective  analysis  of  the 

previous research cycle M-I. Concerning the theoretical  background specific for this 

research cycle taken into consideration to design the educational setting and hypothesis 

about students’ learning, it is the same of the previous research cycle M-I (for more 

details see section 5.3.1).
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Pre-test

Before the development of a learning trajectory, a pre-test was administered in the class 

were the research cycle took place. The aim was to have a picture about the starting 

level of the classroom concerning the mathematical topic considered for the modelling 

activity: 3D-Euclidean geometry. 25 students participated to the pre-test. The test was 

composed by three questions. In the specific, students were asked to give a definition of 

a 3D-figure, to make some examples of already known 3D-figures and to calculate the 

volume of a parallelepiped and of a truncated pyramid. We report the results concerning 

the last question of the test. The full text is presented in Appendix E. In Table 18 the 

number of students who were able, or not, to calculate the volume of a parallelepiped 

and of a truncated pyramid are presented.

Table  18.  Number  of  students  who  were  able  or  not  to  calculate  the  volume  of  a 

parallelepiped and of a truncated pyramid. 

Right calculus

of the volume

Wrong calculus

of the volume

Not answered

Parallelepiped 16 (64%) 7 (28%) 2 (8%)

Truncated pyramid 4 (16%) 10 (40%) 11 (44%)

Findings indicate that the 84% of students were not able to calculate the volume of a 

truncated pyramid. These means that before the teaching experiment  the majority  of 

students did not know or was not able to apply the equidecomposability principle to 

calculate the volume of an irregular solid3 such as the truncated pyramid. Recall that 

equidecomposability  is  an  equivalence  relation  between  geometric  figures,  such  as 

surfaces or solids. Two figures are equidocomposable if they can be decomposed in 

3 With irregular solid we refer to a solid that cannot be classified as a polyhedra or a rotation solid. 
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congruent figures. In particular, if two solids are equidecomposable then they have the 

same  volume.  The  last  sentence  refers  to  what  we  mean  by  equidecomposability 

principle in the rest of this study. In the pre-test, in order to calculate the volume of a 

truncated pyramid, the equidecomposability principle could be used in the following 

way:  the truncated  pyramid can be seen as a  “big” pyramid minus another  “small” 

pyramid; calculate the volume of both the pyramids; subtract the volume of the “small” 

pyramid from the volume of the “big” pyramid (Fig. 42). Such principle is useful to 

calculate the volume, or better an approximation of the volume, of irregular solids that 

can  be  encountered  in  real-life.  As  we will  see  in  section  6.3.3,  this  consideration 

represents  the base idea to  design a learning trajectory that could foster students in 

rediscovery such a principle from a real task. 

Figure  42. Equidecomposability  principle  to  calculate  the  volume  of  a  truncated 

pyramid

M-I feed-forward 

The first research cycle dealing with mathematical modelling described in chapter 5, 

gave some precious hints to increase the instructional design developed for that teaching 

experiment. Such modifications influenced the design of the learning activities of the 

teaching experiment of the second research cycle M-II. In the specific, differently from 

the previous teaching experiment, we decided to introduce the following adjustments:

 The model eliciting sequence will remain the same in the phases of warming-up, 

model construction, presentation and discussion. However, after these phases, that 

are mainly centered in a group work setting, we decided to dedicate time also for 
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individual activities. Firstly, students will be engaged in writing a report in which 

they  could  reflect  on  their  work,  to  express  doubts  or  misunderstandings,  to 

reformulate  in  their  own words  the  learning  path.  At  the  end  of  the  modelling 

activity, we decided not to administer a post-test, but to engage students in a final 

personal feedback concerning the entire modelling activity.

 Since the research project has as one of its  overall  aim to provide teachers with 

methodological  models  and  format  of  school  practices  based  on  mathematical 

modelling, in our view it was important also to have a feedback from the regular 

mathematics teacher who joined the researcher during the modelling activity. This 

feedback has a double aim: on the first hand in helping the researcher in having a 

direct response on the implemented project, in order to reflect in a deeper way for 

better  future  designs;  on  the  other  hand  the  teacher,  who  could  express  some 

strengthens  and  weaknesses  of  the  activity,  should  became  aware  of  the 

competencies  needed  from  not  only  a  disciplinary,  but  also  a  methodological 

perspective.

6.3.2 Learning goal and hypothetical learning process

As stated in section 6.2, the aim of this first research cycle consists in investigating how 

emergent modelling can be fostered to help students understand some aspects of 3D-

Euclidean  geometry.  In  the  pre-test  we  saw  that  students  at  the  moment  of  the 

intervention did not know the equidecomposability principle, or at least they were not 

able  to  apply  it  to  calculate  the  volume  of  an  irregular  solid  (truncated  pyramid). 

However,  this  principle  is  the  base  point  to  calculate  the  volume,  or  better  an 

approximation  of  the  volume,  of  an  irregular  solid,  that  is  the  type  of  solids  that 

commonly occurs in real life. As a consequence, what we want to achieve during the 

teaching experiment is the re-invention of the equidecomposability principle. Therefore, 

as shown in Fig. 43, the learning goal of the teaching experiment is represented by the 

equidecomposability principle. 
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Figure 43. Learning goal of the M-II cycle

To  design  an  HLT,  together  with  the  learning  goal  we  need  to  formulate  some 

conjectures about the learning process. In analogy with the first research cycle, starting 

from the classroom level and following the heuristic of didactical phenomenology, we 

supposed that making students face with a problem situation in which they need a new 

mathematical  concept  to solve it,  could stimulate  the same students  in creating  that 

concept. In order to do that, our idea consisted in putting students face with a realistic 

problem solving situation in which at a certain point they feel the necessity to calculate 

the volume of an irregular realistic solid.  We believe that when students deals with real 

objects from their world are better stimulated to develop a strategy to calculate their 

volume,  and  in  the  specific  to  re-create  the  idea  of  equidecomposability,  namely 

decomposing a solid in regular solids that approximate it, calculate the volume of such 

solids, sum those volumes and obtain an approximation of the volume of the starting 

irregular solid. From a first exemplificatory case students should be able to generalize 

this  principle  detaching  it  from the  starting  context  situation,  formulating  a  formal 

mathematical concept that could be applied in other situations (Fig. 44). 

Figure 44. Hypothetical learning process of the M-II cycle
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The learning process outlined in Fig. 44 is not linear. Indeed, attention should be 

given not  only  to  the  solution  process  of  the  given problem,  but  to  the  process  of 

construction of a mathematical model that support such solution process. In agreement 

with the model  eliciting approach,  students develop a model  going through iterative 

phases  of  invention,  refinement  and revision.  Modelling  is  a  process  of  developing 

representational  descriptions  for  specific  purposes  in  specific  situations,  involving 

iterative testing and revision cycles (Lesh and Lehrer 2003). Moreover, we think that 

this process could support the emergence of new mathematical knowledge, since the 

developed model  is  firstly  a  model  that  is  created  in  a specific  situation  to  solve a 

particular  problem,  but  during  the  modelling  activity  becomes  a  model  for  a  more 

general mathematical structure. In our case, students should start developing a model to 

solve a given problem, and then discover that such a model permitted them to create a 

general mathematical concept: the equidecomposability principle. In the next section we 

present the learning activities that make those first hypothesis more concrete.

6.3.3 Learning activities

The design scheme used to develop some learning activities to achieve the learning goal 

described in the previous section is presented in Fig. 45.  Our hypothesis is to adapt the 

model  eliciting  sequence  (Lesh  et  al.  2003)  in  order  to  translate  the  hypothetical 

learning process in concrete classroom activities. The difference with the design scheme 

used in the previous research cycle is that now there is an additional phase of reflection 

and debriefing, in which students reflect individually on the whole activity. 
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Figure 45. Design scheme for the M-II cycle

Between  the  pre-test  and the  warm-up phase,  two lessons  were dedicated  to  the 

introduction of some basic notions concerning 3D-Euclidean geometry. These lessons 

had been carried out by the mathematics teacher. The teacher made students work in 

groups using manipulative materials, such as bottles, straws, cans… The materials and 

kind of activities used by the teacher permitted to introduce some preliminary concepts 

useful for the following modelling activity. As a consequence, this preliminary phase 

can represent an extension of the warm-up phase. The notions covered were taken from 

the National  Guidelines  for Liceo Scientifico  and dealt  with: reciprocal  positions  of 

lines and planes in space, parallelism and perpendicularity, as well as the properties of 

the main geometric solids (in particular polyhedra and rotation solids). Activities and 

materials were designed together by the teacher and the researcher. 

One week later,  the first  phase  of  the MEA started,  and was represented  by the 

warm-up phase. One lesson was dedicated to the presentation of the modelling task and 

to its comprehension.  Students were firstly divided in groups of four. To each group 

was given the following modelling task (Fig. 46):
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Figure 46. Modelling task given to students.

Together with the text of the problem, students are given also a brochure (Fig. 47). In 

the brochure, the costs of some materials useful to design some requested packaging are 

shown, while other information are hidden (for example, the capacity of the bottles). 

The  brochure,  together  with  a  geometry  formulary  containing  information  about 

surfaces and volumes of regular solids, represented the “tool-kit” that students had at 

disposition to solve the assignment. 
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Figure 47. Brochure given to students to solve the task

During the warm-up activity, after having reviewed the materials with the researcher, 

students have to answer some simple comprehension questions:  what is requested for 

the job application? How can the brochure be useful? Which mathematical concepts or 

tools do you need to solve the task? Students’ answers should be discussed in a whole 

class discussion in order to clarify any eventual doubts.

The second phase of the MEA is dedicated to the model construction. Each group has 

to make a project to apply for the position as a packaging employee. The researcher 

gives to students some guidelines to make the project. In the specific, students are asked 

to  report  and  explain  clearly  their  reasoning,  build  at  least  two  of  the  designed 

packaging and describe them from a mathematical point of view. Our hypothesis is that 

students  would  encounter  the  problem of  calculating  the  volume  of  some irregular 

solids. For example, since in the brochure (Fig. 47) the information of the capacity of 
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the bottles is removed, they have to calculate it. In so doing they need to develop a 

strategy,  and  in  so  doing  we  conjecture  that  they  would  rediscover  the 

equidecomposability principle. At the same time, since an irregular solid is decomposed 

in  the  sum  of  some  regular  solids,  students  also  make  practice  of  some  formulas 

concerning the volume of regular solids. 

In the third phase each group presents its work to the rest of the classroom. In order 

to help students to know what will be expected from their presentations, a rubric will be 

offered to them. In the specific, the steps followed to solve the task must be defined in a 

clear way and each member of the group has to take part to the presentation. After the 

presentation, each group will be engaged in a Q&A session, where teachers and peers 

could ask questions about the presented model. 

In the final  phase of reflection  and debriefing,  an individual  work is  assigned to 

students. In the specific, every student has to write a report to the administrator of the 

factory  in  which  reflect  about  her/his  project,  report  strengths  and  weaknesses, 

alternative approaches and some considerations about positive and negative aspects of 

the whole activity. This activity should allow students to think through the activity cycle 

and to make their own conclusions to model a solution to the model eliciting dilemma.

6.3.4 HLT for cycle M-II

In this section we sum up the components of the designed HLT for the research cycle 

M-II  discussed  in  the  previous  sections,  namely  the  learning  goal,  the  hypothetical 

learning process and the learning activities. Together those components define the HLT. 

A scheme is represented in Table 19. In the next section we present the M-II teaching 

experiment.
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Table 19. HLT of the M-II cycle

HLT

Learning goal Hypothetical Learning 

Process

Learning Activities

Equidecomposability 

principle

Making students face with 

a problem situation that 

need the development of 

new mathematical 

concepts to be solved 

could support students in 

achieving the learning 

goal. The critical point is 

represented by the 

necessity to calculate the 

volume of irregular solids, 

represented by some 

packaging students have to 

design. The critical point 

is made explicit through a 

modelling task with some 

specific constraints. These 

assumptions are made 

explicit through the 

development of some 

learning activities. 

Students are engaged in a 

MEA in which they have 

to develop a model to 

solve the task about a job 

employee (Fig. 46). Before 

the MEA the teacher 

introduces some basic 

notions about 3D-

Euclidean Geometry. 

Materials prepare students 

with the modelling task. In 

the first phase of the MEA 

(warm-up) all the 

materials are presented to 

the students who are 

engaged in a 

comprehension activity. 

During the model 

construction, students 

could face with the 

problem of calculating the 

volume of irregular solids. 

Some students are 

expected to re-create the 

concept of 

equidecomposability. In 
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the end each group 

presents its findings to the 

rest of the classroom. The 

last activity is represented 

by an individual reflection 

on the entire activity.

6.4 M-II teaching experiment

In this section we present results from the teaching experiment concerning the research 

cycle M-II. 

As described in the previous section, during the modelling activity each group had to 

make  a  project  to  apply  for  the  position  as  a  packaging employee.  In  the  specific, 

students were asked to report and explain clearly their reasoning and build at least two 

of the designed packaging and describe them from a mathematical point of view. We 

report  now some extracts  from students’ projects  in order to reconstruct their  actual 

learning process. Recall that the task consisted in estimating the total cost to pack 1000 

liters  of  water,  500 liters  of  juice  and 250 liters  of  cola,  using  different  forms and 

materials. All the groups were able to present in a clear way the steps followed to solve 

the task. However, not all the groups followed the same pattern: in Table 20 patterns of 

three different groups are compared. 

Table 20. Steps implemented by three different groups to solve the packaging problem.

Group 1 Group 2 Group 3

Step 1 Analysis of the request Analysis of the request Analysis of the 

request

Step 2 Calculus of capacities Casual choice of 

packaging types

Choice of 

convenient 

packaging types
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Step 3 Calculus of costs Calculus of capacities Calculus of 

capacities

Step 4 Cheaper choice Calculus of costs Calculus of costs

The first  group started performing calculations to obtain the capacity  of different 

kinds of packaging. Then a comparison between different packaging costs was made 

and the choice followed the cheapest. For example, to pack the 1000 liters of water, the 

three  kinds  of  bottles  present  in  the  brochure  were  compared.  For  each  bottle,  the 

capacity, the total number and the total price were calculated. Then, the results were 

compared,  and  the  cheapest  type  was  chosen.  We  can  observe  that  this  group 

approximated the total number of bottles and not the capacity of each bottle (Table 21). 

Table 21. First group solution steps concerning the packaging of 1000 liters of water

Type of bottle Green Ampolla Giara

Capacity (l) 0,626 1,163 1,303

Total number 

of bottles

(1000:0,626)1598 (1000:1,163)860 (1000:1,303)767,5

Total cost 

(euros)

1278,4 1204 1152

The second group, instead, started choosing in a casual way some kinds of packaging 

and then calculated their relative costs. Differently from the previous group, in this case, 

students approximated the capacity of the packaging. For example, when calculating the 

volume of a “brick” for juice packaging, they obtained 0,202 liters, and the result was 

approximated to 0,200 liters (Fig. 48).
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Figure  48. Group  2  calculations  and  approximations  of  packaging  capacities  and 

relative costs

The third group followed a sort of refinement of the second one. In this case, the 

choice for the packaging was not casual, but followed a “convenience” criterion. For 

example, when choosing the packaging for the juice, this group decided to produce two 

different models:  a big one for domestic use and a small  one for single use outside 

home. 

When performing the calculation for the capacity of the bottles, all the teams tried to 

decompose the bottles as sum of regular solids, calculate the volume of each solid and 

then sum the volumes to obtain the capacity of the bottles. In so doing, some groups 

explicitly approximated the results obtained. For example, in Fig. 49, the bottle “green” 

was decomposed in a cone plus a pyramid. The total volume obtained was of 0,59 l, that 

was finally approximated to 0,5 l. Students, in order to calculate the volume of irregular 

3D-figures, were able to re-invent themselves the equidecomposability principle. This 

means that the task stimulated students to build a mathematical concept they need. 
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Figure 49. Bottle “green” decomposition in a cone plus a pyramid and calculus of its 

total volume

Not  only  approximations,  but  also  other  realistic  considerations  were  taken  into 

account by students. For example, one group, in order to choose the best typology for 

the cola,  made a research about  different  shapes and materials.  In the specific,  they 

found that 

…the cylindrical shape allows to economize space and to be easily held. Today there 

are two main models of cans: a classic 11.5 cm high, and a new one introduced in 

2005 that is slimmer, 14.5 cm tall. The capacity of both the models is 33cl.

Despite  the  same  capacity  of  the  two  models,  students  found  different  costs  of 

production. In Fig. 50, the calculations of the total costs using the two cans models are 

compared, finding that the classical one is cheaper than the other.
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Figure 50. Comparison between the total costs of the two can models

Several  groups  took  into  account  also  other  possible  costs  to  be  added  to  the 

packaging ones, such as: labels, transport, advertising, store…

Finally, in Fig. 51 there are some examples of students’ built models.

Figure  51. Students’  built  models.  The  ones  on  the  left  and  in  the  middle  were 

constructed in cardboard, while the one on the right is a 3D-digital construction

In  conclusion,  we  remark  the  fact  that  during  the  sessions  dedicated  to  the 

construction and presentation of their models, several students who did not typically 

engage  during  mathematics  classes  participated  in  an  active  and  pro-positive  way, 

highlighting in this way the social implications of modelling activities.

In the reflection and debriefing session, an individual work was assigned to students. 

In the specific, every student had to write a report to the administrator of the factory in 

which  reflect  about  her/his  project,  report  strengths  and  weaknesses,  alternative 

approaches and some considerations about positive and negative aspects of the whole 

activity. This activity allowed students to think through the entire activity cycle and to 

make their own conclusions to model a solution to the model eliciting dilemma. All the 
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students were able to present their project, specifying the steps they followed to solve 

the task and the results obtained. Some extracts from students’ reports follow. In the 

first two extracts students proposed some changes to the projects of their groups. The 

individual  activity,  indeed,  gave  the  opportunity  to  reflect  in  a  deeper  way  on  the 

previous group work. 

E.1: However, some changes could be made to the project, as we only considered a 

single type for each type of product. Instead, it would have been more appropriate to 

divide each product into different  types of packaging. In this way the final  price 

could have been lower, avoiding also material waste.

E.2: ... we have not considered what we can define “chemical” aspects of drinks. 

First of all, the juice requires special treatments for storage. Moreover, the type of 

cardboard packaging we considered involves a direct contact between the drink and 

the glue in sealing the container, which is so harmful.

Several students focused on similarities and differences between their project and the 

ones of the other groups. Not only the model construction, but also the presentation and 

discussion time, influenced the final individual reflection, letting every student to reflect 

about different possible routes to solve the modelling problem.

E.3: Compared to the other groups we paid more attention to the additional costs 

(labor, advertising, etc…) but less for the calculation of the volume of the types of 

packaging.

E.4: The other groups also approximated the measurements, in fact to calculate the 

volume of the bottles it was necessary to divide the bottles into two solids already 

known to us: a cylinder and a cone. However, some groups divided the bottle into a 

truncated cone and a cone. All groups took into consideration the possible additional 

costs, even if of different natures.
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Students in their reports focused also on the new mathematical concept developed 

during the modelling activity  and on applications  of mathematical  tools to solve the 

task.  In  extract  7  one  student  explicitly  said  that  the  activity  permitted  her/him  to 

acquire new mathematical knowledge. 

E.5:  In  the  realization  of  this  project  I  discovered  and  used  the  concept  of 

equidecomposability.

E.6: To calculate  the volume of the bottles  we have decomposed them into more 

regular solids, we have used proportions and formulas to calculate missing data and 

the volumes of these solids.

E.7: The work was interesting and stimulating and through the study and analysis of 

the required packaging I was able to expand my mathematical knowledge.

In  conclusion,  students  did  not  ignore  relevant,  plausible  and familiar  aspects  of 

reality,  nor  did  they  exclude  real-world  knowledge  from  their  observation  and 

reasoning:

E.8: To choose the right packaging method, we have based ourselves on our personal 

experience: for example, water is generally found in plastic or glass bottles but not 

in cardboard.

E.9: The work of our group has focused on the fact that the products we packed 

should be bought by as many people as possible. This means that in addition to the 

usual family formats we must also think of comfortable formats in terms of use and 

space  occupied,  for  this  reason  we  tried  for  each  type  of  drink  to  present  two 

alternatives: a larger one and a smaller one, for all needs.

After the conclusion of the modelling activity, students answered to some feedback 

questions. Firstly, students were asked to report some positive and negative aspects of 

the modelling activity.  Twenty-three students completed the questionnaire.  Students’ 
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answers concerning positive aspects of the modelling activity were grouped in eleven 

categories.  In  Table  22  these  eleven  categories  and their  distributions  are  reported. 

Students’ answers concerning negative aspects of the modelling activity were grouped 

in  seven  categories.  In  Table  23  these  seven  categories  and  their  distributions  are 

reported.

 Table 22. Categories individuated from students’ answers concerning positive aspects 

of the modelling activity.  The total  is higher than 100% because each student could 

express more than one option

Positive aspects of the modelling activity

Category (N) (%)

Group work 12 52 %

Real, concrete materials 12 52 %

Math applications to reality 4 17 %

Motivating, stimulating 3 13 %

New way to do math 3 13 %

Reasoning 2 9 %

Realistic project 2 9 %

Interaction 2 9 %

New concepts 1 4 %

Designing 1 4 %

Clear lessons 1 4 %

Table 23. Categories individuated from students’ answers concerning negative aspects 

of the modelling activity.  The total  is higher than 100% because each student could 

express more than one option

Negative aspects of the modelling activity

Category (N) (%)

Limited time to organize the exposition 8 35 %

Limited time to do exercises 8 35 %

Too slow 2 9 %
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Group disorganization 2 9 %

Too simple warming activities 1 4 %

Same request for all 1 4 %

Always group work 1 4 %

Students’ were also asked to express their opinion about the possibility to repeat a 

similar activity in the future. Fig. 52 represents a cloud with students’ answers to the 

latter question. In particular, two main families were individuated: students who would 

like to repeat the activity (Yes) and students who would not like to repeat the activity 

(No). The family  yes involved 21 students (92%) and was connected to six categories 

that consisted in the motivations given by students to implement a similar activity in the 

future.  These categories are:  addictive and stimulating (43%);  understanding of new 

concepts (26%);  enjoyable (13%);  group work (13%);  innovative lessons (13%);  real 

competencies (13%). Two students (8%) did not want to repeat a similar activity. In this 

case, two categories were individuated: timing inefficiency (4%) and not in line with the 

course of study (4%).

Figure 52. Students’ opinion cloud about the possibility to repeat a similar modelling 

activity in the future 

As described in section 6.3.1, at the end of the activity the mathematics teacher was 

asked to make a feedback of the entire activity. This feedback has a double aim: on the 

first  hand in helping the researcher  in having a direct  response on the implemented 
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project, in order to reflect in a deeper way for better future designs; on the other hand 

the teacher, who could express some  strengthens and weaknesses of the activity, should 

became aware  of  the competencies  needed from not  only a  disciplinary,  but  also  a 

methodological perspective. We report the teacher considerations:

Strengths

The activity elicited interest in students, especially towards those who are usually not 

very attending classes, even just in asking questions.

I noticed that alternating theoretical explanations with group activities stimulates 

students to have more interest, to get less bored, to ask more questions even in their 

first learning phase of the notions just explained.

During the project I noticed a "team" job, and during the presentation every member 

of the group exposed a part of the research, so the cooperation was certainly present 

in each group, nobody was excluded.

Critical elements

The amount of time spent working in the classroom was reduced compared to the 

time it would have deserved in practice. So, students had to complete at home their 

work.

Some exercises assigned in the first week were too trivial, while others proved to be 

more complex than expected in the development phase.

Little  time  was  spent  on  building  the  most  complicated  Platonic  solids  and 

identifying their properties.

I  have  not  yet  done a  written  test,  so  I  have  no  concrete  feedback  to  date  and 

therefore I am not yet expressing an opinion on the effectiveness of the process.

In any case,  for me having seen almost all  the students working and intervening 

allows me to give an overall positive opinion on the activity, which I would gladly 

propose again.

From the analysis of the teacher’s report, some points emerge. Concerning strengths 

of the activity, the teacher noticed that students had been stimulated and participated 

actively  to  lessons.  Moreover,  students  who  typically  did  not  engage  during 
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mathematics classrooms showed interest  and were motivated to work. Students were 

able  to  work in  group with a  spirit  of cooperation  without  excluding anybody.  The 

activity had strong social implications, fostering students’ motivation, participation and 

a climate of inclusion. Regarding weaknesses, we point the attention in the teacher’s 

consideration concerning the assessment. The teacher, indeed, said that she was not able 

to have a concrete feedback because a written evaluation had not been performed yet. 

This consideration highlights the fact that it is important to foster teachers’ preparation 

not only concerning methodological issues on lesson design, but also give them some 

instruments  to assess the process of a modelling activity.  Such instruments must be 

accompanied by a paradigmatic change in the way of assessing students’ learning, from 

a summative perspective to a formative one. We recognize the importance of this last 

consideration, that would represent a starting point for future work.

6.5 Reflection on the M-II teaching experiment

The aim of this second teaching experiment consisted in investigating how emergent 

modelling  could  be  fostered  to  help  students  understanding  some  aspects  of  3D-

Euclidean geometry.  In  the  specific,  we formulated  the  hypothesis  that  a  modelling 

activity designed following a model eliciting sequence with the use of suitable artifacts 

could  actually  foster  the  emergent  nature  of  modelling.  In  the  design  phase  of  this 

research  cycle  we designed an  HLT through the  definition  of  its  three  aspects:  the 

learning goal;  the hypothetical  learning process and learning activities.  The learning 

goal was represented by the equidecomposability principle to calculate the volume of an 

irregular  solid.  The hypothetical  learning  process  consisted  in  putting  students  in  a 

problematic  situation,  represented  by the necessity  to  calculate  the volume of  some 

irregular solids taken from a real-life task, in order to make them re-create the notion of 

equidecomposability. Such problematic situation was defined by a task together with 

some constraints and instructional materials. 

On the basis of the designed HLT and of the actual learning process, described in the 

teaching experiment phase, we can draw some reflections:
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 the  first  aim of  the  study consisted  in  evaluating  the  impact  of  model  eliciting 

activities on the emergent nature of modelling. With emergent nature of modelling 

we mean students’ attitude to create new mathematical concepts mathematizing their 

personal informal solving strategies. From the initial test only the 16% of students 

was able to calculate the volume of a truncated pyramid. This means that students 

before to be engaged with the modelling activity  had not a clear idea about the 

equidecomposability  principle,  or  at  least  they  were  not  able  to  apply  it.  When 

solving the task, students had to calculate the capacities of some bottles given in the 

brochure. To do that, students had to plan a strategy to obtain the volume of these 

bottles. Students in all groups decided to decompose each bottle in many regular 

solids (cones, pyramids).  Then, to obtain an approximation of the volume of the 

bottle  considered,  they calculated the volume of the regular  solids by which the 

bottle was decomposed, and then summed these volumes. This procedure is evident 

in Fig. 49. In other words, since students had to calculate the volume of an irregular 

solid,  they  were  able  to  discover,  or  better  re-invent,  the  equidecomposability 

principle. This fact is evident also in the extract number 5 of students’ individual 

reports, in which a student said that during the project she/he discovered and used 

the concept of equidecomposability. The assignment given to the students stimulated 

them to create mathematical concepts they did not know before, as confirmed also 

by  extract 7:  the work was interesting and stimulating and through the study and 

analysis  of  the  required  packaging  I  was  able  to  expand  my  mathematical 

knowledge.  As  a  consequence,  we can  affirm that  model  eliciting  activities  can 

foster emergent modelling;

 the  teaching  experiment  M-II  was characterized  by a  sequence  of  activities  that 

followed the design scheme of Fig. 45. This scheme was an adaptation of the model 

development sequence proposed by Lesh et al. (2003) in the perspective of model 

eliciting. This development sequence represents a valid designing scheme that can 

be followed by teachers of every school level to implement modelling activities. We 

want to remark the importance of the individual reflection after the teamwork during 

the modelling activity. Each student should have the opportunity to reflect on her/his 

work, to express doubts or misunderstandings, to reformulate in her/his own words 
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the learning path. However, the scheme itself is not sufficient to produce meaningful 

modelling routes. Two additional fundamental points are: the task itself and the role 

of the teacher;

 in  our  study,  the  task  consisted  in  a  packaging  problem.  Students  during  the 

warming week worked with concrete objects (bottles, straws, cans, …) that were 

connected to the packaging task. In this way, when students started the modelling 

activity  were  more  familiar  with  the  context  of  the  problem.  The  mathematical 

stimulus of the context had been reinforced by the use of an artifact represented by 

the brochure given to students  to solve the task.  In particular,  the brochure was 

reconstructed by the researcher omitting some details, in order to foster students’ 

disposition in creating the mathematical tools and concepts they needed to solve the 

assignment;

 concerning the role of the teacher, this is crucial not only in designing a modelling 

sequence, but also during its implementation. Indeed, the teacher  has to encourage 

students to use their own methods; stimulate students to articulate and reflect on 

their personal beliefs, misconceptions and informal problem solving and modelling 

strategies. Consequently, learning becomes a constructed understanding through a 

continuous  interaction  between  teacher  and students,  that  can  be  synthetized,  in 

teaching and learning as guided reinvention (Freudenthal, 1991), reinforcing in this 

way mathematical reasoning and sense-making. In the direction of the aims of the 

University  project,  this  study provides  teachers  with a  design scheme for  model 

eliciting activities;  offers an example of implementation of a complex modelling 

activity; outlines the importance in the choice of an appropriate rich context problem 

when implementing modelling patterns; remarks the role of the teacher in a balance 

between the principles of guidance and invention;

 the  analysis  of  the  results  from  the  case  study  that  was  described,  shows  that 

students  understood  some  aspects  of  Euclidean  geometry  in  a  meaningful  way. 

Students  while  solving  the  task,  were  able  to  discover  the  equidecomposability 

property to calculate the volume, or its approximation, of an irregular solid. As a 

consequence,  geometry  property  were  no  longer  mechanical  rules  given  by  the 
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teachers  to  be  applied  to  solve  some  numerical  problems  but  assume  meaning 

because rooted in students’ experiential activity. In addition, during the modelling 

activity, students took into account several realistic considerations: approximations, 

historical facts, optimality choices. Significant examples are given by the extracts 8 

and 9, in which students reported that they based some choices on their personal 

experience.  This  means  that  stimulating  modelling  activities  can  create  a  bridge 

between in-school and out-of-school mathematics, that is one of the most significant 

roles of mathematics teaching;  

 in  conclusion,  we want  to  reflect  on the results  concerning students’  perception 

about the modelling activity. Reality connotations of the task was one of the most 

present  in  students’  considerations.  Indeed,  three  categories  are  related  to  this 

characteristic  (real,  concrete  materials;  math  applications  to  reality;  realistic 

project). Moreover, in the cloud of Fig. 52,  realistic competencies appears as one 

category for the future replication of a similar  activity.  We believe that students 

need opportunities to be engaged in activities connected to the real world. In this 

way,  school  and daily  life  should  not  be seen as  separated  realities  but  became 

integrated  one into  the  other.  Another  category  that  was individuated  in  several 

students was  group work  (52%). The same category was present also in the final 

cloud. Despite students found significant to work in team, they also expressed the 

difficulty to organize the work into their team. Indeed, one of the negative aspects 

was group disorganization.  We believe  that  working in  group is  a  practice  that 

needs time, and teachers should promote it starting from the first years of school. 

Group working, however, should not be the only modality for learning. As we have 

showed  in  our  teaching  experiment,  also  a  moment  for  individual  reflection  is 

fundamental, in order to get a deeper understanding and involvement in the learning 

path.  To  conclude,  some  students  (35%)  expressed  the  fact  that  the  time  for 

preparing  the  presentation  was  limited.  Moreover,  in  the  final  cloud one  of  the 

students said that she/he would not want to repeat a similar activity in the future 

because time schedule was not efficient. The reason can be attributed to the fact that 

this  was  the  first  modelling  activity  that  students  performed during their  school 

lessons. As a consequence, they were not used to work in teams, to organize their 
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group work, to choose, test and revise a solution pattern, while their usual school 

lessons were planned as front-lessons and applicative exercises.  Instead, students 

need  more  opportunities  to  learn  in  a  different  way,  that  could  enhance 

competencies connected to the notion of twenty-first century skills, which include 

creativity,  decision  making,  critical  thinking,  problem  solving,  collaborating, 

communicating (Maass et al. 2019). 

6.6 Conclusions from M-I and M-II research cycles

The aim of the research cycles M-I and M-II consisted in answering to the first research 

question,  i.e.  studying how MEAs can promote  the process  of  emergent  modelling. 

From the design research cycles, we can outline some answers to such question:

 model  eliciting  activities  could  play  a  central  role  in  fostering  emergent 

modelling.  This  positive  result  can be attributed  to  a combination  of several 

factors: the choice of a realistic and rich problem, that stimulated students to 

elaborate  formal  mathematical  concepts mathematizing  their  informal  solving 

strategies,  rooting  in  this  way  the  new  understandings  in  experientially  real 

phenomena; the use of suitable artifacts, that presented mathematics as a means 

of  interpreting  and understanding reality  and increasing  the  opportunities  for 

observing mathematics outside of the school context (Bonotto 2005); the role of 

the teacher, who guided students in re-inventing mathematics in an active way; 

 from the retrospective analysis of the M-I research cycle, we noted the necessity 

to  engage  students  in  a  final  individual  reflection  on  the  whole  modelling 

process. This individual activity was introduced in the second research cycle in 

the reflection and debriefing phase. In the specific, the Q&A session permitted 

students to elaborate their solutions in a less formal manner which demonstrate 
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understanding  differently  from  what  they  showed  in  their  prepared 

presentations.  Then,  in  the  reflection  and  debriefing activity  students  could 

reflect  individually  on  the  whole  modelling  process.  Moreover,  they  could 

observe  strengths  and  weaknesses  of  their  projects;  elaborate  their  own 

conclusions  to  model  a  solution  for  the  model  eliciting  activity;  analyse 

similarities  or  differences  with  other  solution  plans;  change their  beliefs  and 

attitude; reinforce argumentation abilities. 

 this  kind  of  activities  had  also  strong  social  implications.  In  fact,  several 

students who did not typically engage during mathematics classes became active 

participants while solving a modelling task. As a consequence, the introduction 

of  new  socio-mathematical  norms  (Yackel  and  Cobb  1996)  and  the  use  of 

interactive  teaching  methods,  promoted  cooperation  and  inclusion.  Students 

being active participants into the learning process were able to give meaning to 

new mathematical knowledge and sense to their mathematical activity. 

Beside  to  these  positive  results,  the  implementation  of  such  classroom activities 

requires  very  high  demands  on  teachers,  in  agreement  with  Blum  (2015).  Indeed, 

teachers  should  be  able  to:  i)  see  mathematics  incorporated  in  the  real  world  as  a 

starting point for mathematical activities; ii) anticipate the mathematics needed for the 

paths that students might explore; iii) put students in familiar situations in which they 

clearly understand the need for mathematical constructs, integrating also their everyday 

knowledge;  iv)  provide  meaningful  design  specs  involving  constraints  that  enable 

students to weed out inadequate ways of thinking. In this direction, feedbacks from the 

regular  mathematics  teacher  permit  to  the  same  teacher  to  be  aware  of  which 

competencies are needed to design and implement a modelling project. For this reason, 

we believe that in the future an improvement in teachers’ pre-service and in-service 

courses are needed, in order to provide teachers with designing principles and practical 

materials to develop modelling activities in their classrooms.

In the final chapter of the thesis, we will reflect again on the conclusions from these 

first research cycles, highlighting possible future directions of research.
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7. P-I Research Cycle

7.1 Introduction

The second research question of this study deals with mathematical problem-posing. 
Problem-posing is  closely  linked  to  mathematical  modelling.  A possible  connection 
between modelling and problem-posing is given by the use of real contexts as starting 
situations for mathematics lessons. From the exploratory study (chapter 4) we saw that 
in the Italian context problem-posing is still not included in daily mathematics lessons. 
We believe that in order to integrate problem-posing in the teaching of mathematics the 
use of real contexts should be reinforced. However, how can a real context be described 
during problem-posing activities? Do different contexts influence differently problem-
posing activities?  And how? In the next two research cycles,  P-I  and P-II,  we start 
investigating  how  different  contexts  for  problem-posing  activities  can  influence 
students’ creativity and emergent problem-posing. 

In the specific, this chapter addresses the first research cycle concerning problem-
posing (Fig. 53), dealing with students’ creativity during problem-posing activities. 

Figure 53. Research cycle P-I



The  structure  of  the  chapter  is  the  following:  in  section  7.2  we  introduce  the 

classroom context for the study, explicating the mathematical topic considered and the 

specific goals of this cycle in relation to the second research question. In section 7.3 the 

design phase is described. The design phase of this research cycle is different from the 

ones of the previous chapters. Since in this case our aim is not to foster a particular 

topic, but to start investigating the role of different contexts in students’ problem-posing 

performances in terms of creativity, we decided not to develop an HLT, but to structure 

the design phase explicating some conjectures together with the design of instructional 

activities  related  to  that  conjectures.   Then the  teaching experiment  is  described in 

section 7.4. Section 7.5 is dedicated to the retrospective analysis, in which we reflect on 

the expectations formulated in the design phase and formulate feed-forward for the next 

research cycle.

7.2 Context and aim

The aim of  the first  research  cycle  concerning problem-posing,  P-I,  consisted  in 

studying how different  contexts  influence  students’  problem-posing performances  in 

terms of creativity. The study was conducted in a six-grade class (age 12) composed by 

twenty-two students. The class had never been engaged in a problem-posing activity 

before  the  teaching  experiment.  At  the  moment  of  the  intervention,  students  were 

working on fractions. In particular, the official mathematics teacher, who was used to 

teach  in  a  traditional  way,  worked with students  on:  comparison between fractions, 

basic  operations  with  fractions,  fractions  in  the  number  line,  word  problems  with 

fractions. As a consequence, we decided to consider fractions as mathematical topic for 

the problem-posing activity.  In relation to the research question RQ2, we investigated 

how different contexts influence students’ creativity in problem-posing activities. As a 

consequence, we focused on the sub-question: 

RQ2.1.    How do different contexts influence students’ creativity in problem-posing?

The student activities and the guidelines for the teacher, together with our intentions, 

were discussed beforehand with the mathematics teacher in two meetings. The research 
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method for the data analysis was mixed quantitative and qualitative. In section 7.3.2 we 

will describe in detail the method used for the data coding. 

To have an overview of students’ level on this topic, before the implementation of 

the  problem-posing  activity  a  test  was  performed.  The  test  was  composed  by  six 

questions (Appendix F). The maximum score for each question was 2, so the total score 

for the pre-test was 12. In Table 24 for each question is reported its mean.  The total 

mean of  the class was 5,2 over  12,0,  which shows that  students’  knowledge of the 

subject was still poor at the moment of the intervention. 

Table 24. Pre-test means

Question Max score Mean

1 2 0,89

2 2 1,26

3 2 0,76

4

2 0,67

5 2 1,26

6 2 0,35

 

Results show that students had difficulties especially in answering the last question 

of the test. This question consisted in solving the following problem (Fig. 54):
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Figure 54. Question number 6 of the pre-test

Only  4  students  over  22  were  able  to  solve  the  problem.  All  these  4  students 

followed the same strategy: 

1. calculate the kilometres ridden the first day performing 
5
9

× (225 )=125;

2. calculate the left kilometres performing 225-125=100;

3. calculate the kilometres ridden the second day: 
3
4

× (100 )=75;

4. 100−75=25 are the left kilometres to Florence, that expressed as a fraction 

of the distance between the two cities is 
25
225

.

In Fig. 55 an example of a correct student’s answer is reported.
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 Figure 55. Example of correct answer to question 6

The most typical error, instead, consisted in the fact that students did not understand 

that the second day the cyclist run 3/4 of the left kilometres. As a consequence, they did 

not perform the second step of Fig. 55. Instead some students (8 over 22) calculate 

3
4

× (125 ) (Fig. 56, 57, 58). 

Figure 56. Example of incorrect answer to question 6

Figure 57. Example of incorrect answer to question 6
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Figure 58. Example of incorrect answer to question 6

Two students had not a clear idea on how to calculate the fraction of a number. In 

Fig. 59 there are two examples in which students, to calculate  
3
4

× (125 ), instead of 

dividing  by 4  and multiply  by  3,  they  divide  by  3  and multiply  by  4,  exchanging 

numerator and denominator. The same for calculating fractions of other numbers.

Figure 59. Incorrect calculation of the fraction of a number

Other  students  performed  some  operations  with  the  numbers  in  the  text  of  the 

problem, without reasoning about what they were doing (Fig. 60).
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Figure 60. Students’ incorrect answer

In the next section we present the design phase, in which the development of an  

instructional design is described. 

7.3 Design phase

In  this  research  cycle  the  design  phase  is  characterized  by  the  development  of  an 

instructional  design  through  the  formulation  of  some  hypothesis  together  with 

instructional  activities  and  materials.  In  this  section  we first  remark  the  theoretical 

background concerning problem-posing and the expectations that are investigated in the 

following teaching experiment. Then we describe the designed activities and materials.

7.3.1 Starting points 

In  the  previous  section  we described  the  classroom context  and the  initial  level  of 

students. In this section we remark some key points from the literature on problem-

posing, extensively reported in section 2.3. 

 In this  study problem-posing is  seen as the process by which students construct 

personal  interpretations  of concrete  situations  and formulate  them as meaningful 

mathematical  problems (Stoyanova and Ellerton 1996).  These concrete  situations 

considered as starting point for the practice of problem-posing could be divided in 
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three  categories  (Stoyanova  &  Ellerton  1996):  free  situations,  semi-structured 

situations  and  structured  situations.  In  this  study  we  will  focus  only  on  semi-

structured situations,  that we recall  are situations in which students are provided 

with an open situation and are invited to explore its structure and to complete it 

using their personal previous mathematical experience.

 Cultural  artefacts  represent  a  precious  tool  to  provide  students  with  meaningful 

contexts, and especially when engaged in problem-posing activities (Bonotto 2013). 

Thanks to its complexity and richness in mathematical meaning, an artefact lives in 

both the world of symbols and the real one, creating a sort  of hybrid space that 

connects  mathematics  and  everyday  contexts.  A  re-mathematization  process  is 

thereby  favoured,  wherein  students  are  invited  to  unpack  from  artefacts  the 

mathematics that has been hidden in them (Bonotto 2013). 

 An aspect that is investigated in this research cycle is the relation between problem-

posing and creativity. Problem-posing, in fact, is a form of creative activity that can 

operate  within  tasks  involving  rich  situations  (Freudenthal  1991),  using  real-life 

artefacts and human interactions (English 2009).  Creativity is directly linked to the 

mathematical  activity  of  problem-posing,  being  the  act  of  creating  mathematical 

problems  in  specific  contexts  (Bonotto  and  Dal  Santo  2015).  To encourage  the 

creative  process  in  school  mathematics  we  will  use  semi-structured  situations 

(Stoyanova and Ellerton 1996) as starting contexts for problem-posing activities. In 

particular  the use  of  cultural  artefacts  can  help  creating  such situations.  Several 

studies used problem posing and problem solving to promote and assess creativity 

(Xie and Masingila 2018; Bonotto and Dal Santo 2015; Bonotto 2013; Yuan and 

Sriraman 2010; Sriraman 2009; Leung 1997; Silver 1997, Leung and Silver 1997), 

proving that an inquiry-oriented mathematics instruction, including problem-posing 

activities, could assist students to develop more creative approaches to mathematics. 

However,  given  the  value  of  problem-posing  activities  as  opportunities  for 

measuring  students’  creativity,  or  other  mathematical  learning  outcomes,  it  is 

mandatory  to  develop  and  validate  suitable  problem-posing  instruments, 

understanding which kind of problem-posing tasks best reveal students’ creativity 
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and their mathematical understandings (Cai, Hwang, Jiang and Silber 2015). In the 

next section we will design some teaching activities, through tasks and artefacts, that 

may foster students’ creativity. 

 We remark that through problem-posing students can actively construct meaning in 

both  the  natural  and  simulated  worlds  in  classrooms.  Moreover,  teachers  and 

students might create knowledge together in a variety of contexts and generate and 

address critical questions about the knowledge they produce. In this direction, we 

believe that problem-posing is a valuable educational strategy to enhance a guided 

re-invention approach to mathematics education.  

 As starting contexts for problem-posing activities we will consider different types of 

real contexts. Such real contexts will be defined using the frameworks of RME and 

Palm (2006), described in section 2.4. 

The aim of this research cycle is to start investigating how different contexts might 

influence  students’  creativity  in  problem-posing  activities.  Our  idea  is  that  semi-

structured  problem-posing  activities  in  which  real  contexts  are  used  as  starting 

situations could foster students’ creativity. However, it is not clear if different contexts 

influence in the same way students’ creativity, and which characteristics such contexts 

should have. As a consequence,  we decided to consider different real contexts from 

different theoretical perspectives (RME and Palm (2006)), and study how they could 

influence  students’  creativity  when  engaged  in  semi-structured  problem-posing 

activities. 

In  the  next  section  we  describe  the  instructional  activities  and  related  materials 

developed  for  the  implementation  of  the  teaching  experiment.  Moreover,  the  data 

analysis scheme used for the data analysis is described. 

7.3.2 Instructional activities
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Since  the  aim  of  the  study  was  to  investigate  the  impact  of  different  contexts  in 

students’ creativity in problem-posing, we decided to split the problem-posing activity 

in two sessions. In each session of forty minutes students had to pose at  least  three 

problems dealing with fractions from a given context.  In the specific, we decided to 

consider two contexts that stressed the contrast  realistic-rich/feasibility between RME 

and Palm’s frameworks for real contexts. In the specific, the context considered for the 

first problem-posing session consisted in a number line with some rational numbers, 

while the context for the second session consisted in an advertising leaflet containing 

discounts for mobile phones (Fig. 61, 62). The first context (number line) is closer to 

the perspective of RME. Indeed, it can be considered as a realistic and rich context, 

since significant for students, who previously worked on it with their teacher, and rich 

in mathematical stimulus. The second context, instead, is closer to Palm’s framework, 

since it consists in a real leaflet, and so represents an event that can occur in real life. 

Figure 61. First context for the problem-posing activity: numbers line
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Figure 62. Second context for the problem-posing activity: mobile phones leaflet

After the problem-posing sessions, students had been engaged in a problem-solving 

activity. Some problems were chosen by the teacher from the ones posed by students. 

The full text of the problem-solving activity is given in Appendix G. 

 Data coding

A summary of the data coding scheme used in this study is provided in Fig. 63. The first 

phase of the data coding consisted in a variation of the model proposed by Leung and 

Silver (1997). Students’ problem-posing responses were firstly categorized as problems 

or  statements.  Then,  problems were classified  as  mathematical or  non-mathematical 

problems.  Each  mathematical  problem  was  analysed  in  two  directions.  First,  a 

mathematical problem was classified as  context related, i.e. set in its starting context 

(respectively the number line for the first session and the leaflet for the second session), 

or  as  not  context  related.  Second,  mathematical  problems  were  divided  between 

solvable and not solvable. Problems were considered to be not solvable if they lacked 

sufficient  information  or  if  they posed a  goal  that  was incompatible  with the given 

information. The last phase of the data coding involved examining the creativity of the 

posed problems that had been previously classified as solvable. 
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Figure 63. Data coding scheme to analyse students’ problem-posing responses

Creativity was considered as follows. Starting from the rubric for the evaluation of 

teachers’ creativity in problem-posing proposed by Xie and Masingila (2017) (Table 5), 

we developed the  following  analytic  scheme to  calculate  the  creativity  of  students’ 

responses in a problem-posing activity in which students had to pose three problems 

from a given context. We call Pi
n the i-th problem posed by the n-th student, so in our 

case  i=1 ,2 ,3 ;n>0. For every n, we consider the first posed problem, namely P1
n, and 

we start comparing it with the second posed problem P2
n:

(P¿¿2n , P1
n
)={

0 ,if P2
n
∧P1

n are comparable

¿+1 ,if P2
n
∧P1

n are somewhat different

¿+2 ,if P2
n
∧P1

n are completely different

¿                     (i)
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Then we consider the third posed problem and compare it with both the second and 

the first one:

(P¿¿3n , P2
n
)={

0 , if P3
n
∧P2

n are comparable

¿+1 , if P3
n
∧P2

n are somewhat different

¿+2 , if P3
n
∧P2

n are completely different

¿                      (ii)

(P¿¿3n , P1
n
)={

−2 , if P3
n
∧P1

n arecomparable

¿−1 , if P3
n
∧P1

n are somewhat different

¿0 , if P3
n
∧P1

n arecompletely different

¿                 (iii)

In  conclusion,  we  calculate  the  sum 

c ≔ ( P2
n , P1

n )+(P3
n ,P2

n )+(P¿¿3n , P1
n
)∈ {−2 ,−1 ,0 ,1 ,2 ,3 ,4 }¿. At the end, to each student 

is associated a level of creativity in accordance to Table 25.

Table 25. Student’s level of creativity associated to the value of c

c level of creativity

≤0 Low (L)

1∨2 Medium (M)

¿2 High (H)

In the case that one student posed only one problem (d=1),  we define  c=0. If a 

student posed only two problems, we calculate c according to (i). 

The  scheme can easily  be  extended to  activities  in  which  students  could  pose  a 

number of problems greater than three. In this case, in fact, the level of creativity of 

each student is associated to the quantity
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c :=∑
j=2

d

(∑
k=1

j−1

(P j
n , Pk

n
))

with

(P¿¿ jn , Pk
n
)∈ { {0 ,+1 ,+2 } ,∧ j−k=1

¿ {−2 ,−1 ,0},∧ j−k>1
¿

according to (i) and (iii), where  d  is the maximal number of problems that can be 

posed  by  a  single  student,  and  Pi
n is  the  i-th  problem  posed  by  the  n-th  student, 

i=1 , … ,d .We can observe that in general there are  d−1 pairs  (P j
n , Pk

n ) with  j−k=1, 

and  (∑
m=1

d−2

m¿ pairs  (P j
n ,Pk

n )  with  i− j>1.  As  a  consequence,  the  quantity  c lives  in 

B≔ {z∈ Z|h< z<l }, where h=−2 ⋅∑
m=1

d−2

m,  and  l=2 ⋅ (d−1 ) . 

7.4 P-I teaching experiment

In design research  the aim of the teaching experiment  is  to  see how the developed 

instructional  activities  would  play  out  in  the  classroom  and  test  empirically  the 

hypothesis  that  had  been  conjectured.  We  now  present  the  main  results  from  the 

teaching experiment for the P-I cycle. The results are presented in three subsections: the 

first  dealing  with  students’  problem-posing  responses  including  mathematical/not 

mathematical  problems,  context/not  context  related problems,  solvable/not  solvable 

problems; the second dealing with students’ creativity; the third reports results from the 

final problem-solving activity. In the specific, we focused on how the two contexts used 

as starting situations for the problem-posing sessions might have influenced students’ 

responses in terms of creativity.
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7.4.1 Problem-posing responses

Students responses had been firstly analysed using the data coding scheme reported in 

Fig. 63. The results split between the two contexts are reported in Table 26. All the 

students’ responses had been classified as problems, so no statement occurred. Students 

posed  totally  122  problems,  of  which  the  95%  were  mathematical  problems.  The 

number  of  mathematical  problems  was  comparable  between  the  two  contexts, 

respectively the 97% of the posed problems for the number line and the 92% of the 

posed problems for the leaflet. The main difference between the two contexts dealt with 

context/not context related problems (p<0.001; V=0.81). In the case of the number line, 

the 92% of the mathematical problems were problems that did not refer to the number 

line.  Instead,  for the leaflet  there was an opposite behaviour,  since the 100% of the 

mathematical  problems were  context  related,  which  means  that  they  referred  to  the 

leaflet itself. In Table 27 some examples of context/not context related problems are 

reported. In conclusion, not a significant difference occurred between the two contexts 

in terms of solvable and not solvable posed problems (p<0.05; V=0.19). In fact, for the 

number line the 98% of mathematical problems were solvable, and for the leaflet the 

90% of  the  mathematical  problems  were  solvable.  Further  examples  of  not  context 

related problems from the first problem-posing session are reported in Table 28.  
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Table 27. Examples of context and not context related problems for both the contexts. 

Context 1
(numbers 
line)

context 
related

not context 
related

Marco is doing his math homework, he has to place the following 
numbers  on the number line:  4,  0,  2/4.  Help Marco by finding 
their value and placing them on the numbers line

Luisa is reading a book of 350 pages. If she has already read the 
4/5 of the book, how many pages will she have to read to finish it?

Context 2
(leaflet)

context 
related

not context 
related

A  phone  is  sold  in  a  shop  for  the  price  of  299  euros.  It  is 
discounted by 40% and Tommaso paid 1/4 of the cost. How much 
does he still have to pay by counting the discount and the advance 
payment?

No problem was not context related

Table 28. Examples of not context related problems from the first context

P.1 Giada would like to buy a toy that costs 10 euros, but she has only the 4/5 of 

10 euros. How much more money does she need to buy the toy?

P.2 Luca is playing football. One side of the football field measures 25m, and the 

other its 4/5. Which is its measure?

 

P.3 Marco and Anna collected  40 shells  on the beach.  Anna collected  2/4 of 

those collected by Marco. How many shells did Marco collect?

 

P.4 Matilde has 30 euros and Gianna has 2/4 of 30 euros. How much money does 

Gianna have? Who has more money?

P.5 Luigi  has  27  marbles.  Luca  has  1/3  of  those  who Luigi  has.  How many 

marbles does Luca have? Which is the total number of marbles? 

P.6 Laura has 70 euros. Giovanni has the 2/4 of Anna’s money who has the 4/5 

of Laura’s. How much money does Giovanni have? And Anna?

P.7 Sara has 125 euros. In a shop there is a bicycle that costs 135 euros, but it is 
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discounted by 20%. Will Sara be able to buy that bicycle?

 

P.8 Marco has to cover 6 kilometers to go to school, and Giulia 1/3 of Marcos’s. 

How many kilometers does Giulia have to cover to go to school?

 

P.9 Umberto buys a copybook that costs 20% more than the older one, that costs 

1,99 euros. How much does the new copybook cost?

P.10 Anna is reading a book of 420 pages. She has already read the 4/5 of the 

total.  How many pages has she already read? How many pages are left to 

finish the book?

7.4.2 Creativity

The second phase of the data analysis consisted in classifying students’ creativity. In 

each of the two problem-posing sessions, for each student we considered her/his posed 

problems that had been classified as solvable problems in the previous phase, and we 

applied the scheme proposed in the section 7.3.2 to associate a level of creativity to each 

student. An example of the process is given in Fig. 64. Students’ results, split between 

the two problem-posing sessions, are reported in Table 29.
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Figure 64. Example to calculate student’s the level of creativity 

Concerning the first context (number line), the 45% of students had a low level of 

creativity, the 50% of students a medium level of creativity and the 5% of students a 

high level of creativity. Concerning the second context (leaflet), the 45% of students 

had a low level of creativity, the 45% of students a medium level of creativity and the 

10% of  students  a  high  level  of  creativity.  As  clearly  shown in  Fig.  65,  students’ 

problem-posing  responses  in  terms  of  creativity  are  comparable  between  the  two 

contexts. This is supported also by a Wilcoxon test, that indicated that students had not 

a significant difference in terms of creativity between the two contexts (z=-0.1; p=0.9). 

Table 29. Students’ level of creativity distributions split between the contexts used in 

the two problem-posing sessions 

Context 1
(number line)

Context 2
(leaflet)

Count % Mean SD Count % Mean SD

Low creativity level 10 45 - 0,6 1,0 10 45 -0,8 1,0

Medium creativity 
level

11 50 1,3 0,5 10 45 1,2 0,4

High creativity level 1 5 3 0,0 2 10 3,5 0,7

Total 22 100 0,5 1,5 22 100 0,5 1,3
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Figure 65. Students’ level of creativity distributions split between the contexts used in 

the  two problem-posing sessions.  Not  a  significant  difference  in  terms  of  creativity 

between the two contexts (z=-0.1; p=0.9) was observed

7.4.3 Problem-solving 

The lesson after the problem-posing sessions students had been engaged in a problem-

solving session. 10 problems were chosen from the ones posed by students (Appendix 

G). We focus here on two of that problems: number 2 and number 5.

The problem number 2 was the following:

Figure 66. Problem number 2 of the problem posing activity

This  problem was chosen because students  posed a  problem with the concept  of 

percentage,  that  was  never  treated  by  the  teacher.  However,  students  used  the 

percentages present in the second context and posed a problem with it. 12 students over 
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23 answered correctly to the question, while the rest of the classroom did not answer. In 

Fig. 67 there are three examples of students who answered to the question. The first 

student  calculated  the  cost  of  the  discounted bicycle  and then subtracts  it  from the 

money that Sara has, obtaining also how much money Sara has after having bought the 

bicycle. It is interesting that this student to calculate the cost of the discounted bicycle, 

divided  the  initial  cost  by  100 hundred,  that  corresponds  to  1% of  the  cost  of  the 

bicycle. In the second example the student was able to stress that 20% is actually the 

fraction 20/100. In the last example, despite the student performed incorrectly the final 

subtraction, she/he expressed both the percentage as a fraction and the final Sara’s rest. 

Figure 67. Students’ answers to the second problem of the problem solving activity

Problem number 5 was the following:

Figure 68. Problem number 5 of the problem posing activity
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This problem was very similar to the problem of the question number 6 of the pre-

test, that was the one with the lowest number of correct answers. However, in this case 

several students were able to give a correct answer. In Fig. 69 there are two examples of 

students’ answers. Both the students, to calculate the total kilometers run by Valentina, 

adopted the following strategy:

1. calculate 1/3 of the total route, that represents the first part run by Valentina;

2. calculate 1/2 of the previous result, in order to calculate how many kilometers, 

she run back to look for her keys;

3. sum the two previous results to obtain the total kilometers run. 

In performing the first point, the first student made an approximation of the result. 

Indeed,  1/3  of  10 is  3,333…, and the  students  approximated  it  as  3,5.  The second 

student, instead, took as value 3,33.

Figure 69. Students’ answers to the fifth problem of the problem solving activity
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7.5 P-I retrospective analysis

In this final section we look back at our initial instructional design and compared it with 

the results  from the teaching experiment.  This retrospective analysis  could form the 

basis  to  formulate  first  answers  to  our  second  research  question,  to  adjust  the 

instructional design for the next research cycle and to formulate additional hypothesis. 

The section is divided in two parts: the first concerning the reflection of the teaching 

experiment and the second formulating feed-forward of the P-I research cycle for the 

next P-II cycle.  

7.5.1 Reflection on the P-I teaching experiment

The  aim  of  this  first  teaching  experiment  consisted  in  investigating  how different 

contexts influence students’ problem-posing performances in terms of creativity.  We 

decided to consider fractions as mathematical topic for the problem-posing activity. In 

relation  to  the  research  question  RQ2.1,  we  investigated  how  different  contexts 

influence students’ creativity in problem-posing activities. In the specific, our idea was 

that semi-structured problem-posing activities in which real contexts are used as starting 

situations  could  foster  students’  creativity.  However,  it  was  not  clear  how different 

contexts influence students’ creativity, and which characteristics such contexts should 

have. As a consequence, we decided to consider different real contexts from different 

theoretical perspectives. In the specific, two contexts were chosen: a number line and a 

mobile phones leaflet. The first context can be seen as a rich and realistic context in the 

perspective of RME, that comes from the world of mathematics. The second context, 

instead,  can  be seen as  an artifact  (Bonotto  2013),  and represents  a  real  context  in 

Palm’s framework, since it denotes a context that could really happen in real life. In 

order to evaluate the influence of each of these contexts in students’ problem-posing 

performances,  two  problem-posing  sessions  had  been  implemented.  In  each  session 

students had to pose at least three mathematical problems (dealing with fractions) from 

the given contexts, respectively the number line and the mobile phones leaflet. 
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The  first  part  of  the  data  analysis  consisted  in  evaluating  differences  and/or 

similarities  in  the two problem-posing sessions in terms of the quality  of the posed 

problems,  including:  problems/statements;  mathematical/not  mathematical  problems; 

context/not  context  related problems;  solvable/not  solvable  problems.  Results  (Table 

26) show that the only significant difference between the two problem-posing sessions 

was  in  terms  of  context/not  context  related  problems.  In  the  specific,  the  92%  of 

mathematical problems posed starting from the first context, the number line, had been 

classified as not context related. This means that students did not consider the number 

line as a context wherein setting in their problems. The majority of students, instead, 

used the numbers given in such first context in posing problems that were not related to 

the number line context. Such problems were connected to their real-world experience 

and were posed similarly to world problems they found in their previous mathematical 

experience, from textbooks or teacher (Table 28). From the second context, instead, the 

90% of students’ mathematical problems were context related. Students recognised the 

leaflet  as a  familiar  context,  because close to  their  experience,  being a  context  that 

possibly occur in their real life. In this way, students were able to pose problems that 

were set in that context. As a consequence, despite the number line was used by the 

teacher  in  previous  mathematics  lesson,  it  was  not  really  a  significant  context  for 

students,  lacking  in  a  possible  real-life  occurrence,  and  so  it  was  not  realistic,  not 

experientially meaningful for them. Moreover, we noticed that students tended to use 

numbers present in the number line to pose problems linked to their experience. The 

meaningfulness  of  the  context  in  terms  of  real  occurrence  did  not  affect  problems 

solvability. The majority of students’ mathematical problems, in fact, in both cases was 

made by solvable problems (respectively the 98% for the numbers line and the 90% for 

the leaflet). 

The second part of the analysis consisted in studying students’ creativity in the two 

problem-posing sessions. In both the sessions, students’ creativity was approximately 

equally distributed between low and medium-high level of creativity. Moreover, not a 

significant difference occurred between the use of the number line and the leaflet. When 

posing their problems starting from the number line, students created a realistic setting 

linked to the number line context, posing not context related problems, but problems 

linked to their school and real-life experience. As a consequence, we cannot say that a 
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most  meaningful  context  for  students,  such  as  the  mobile  phone  leaflet,  promoted 

students’ creativity more than a less meaningful one, such as the number line. In fact, 

since students created personal realistic settings when posing problems from the number 

line  context,  the  significance  of  the  context  itself  did  not  influence  their  creativity 

process, and both the contexts stimulated in the same way students’ creativity (Table 

27). However, the results indicate that a fundamental factor that influenced students’ 

problem-posing performances, and especially in terms of creativity, was the significance 

given  by  students  to  the  context.  Indeed,  when  the  context  was  not  experientially 

meaningful for a student, as in the case of the number line, she/he tried to associate a 

new meaning to the context, using some elements from it and re-creating a new more 

meaningful  context  in  which  setting  her/his  problems.  In our  study,  this  process  of 

context  free  re-construction  was possible  because  no constraint  was explicitly  maid 

during the problem-posing activity concerning the fact that students had to refer to the 

number line when posing problems, but the only one constraint was to pose at least 

three problems (dealing with fraction) from that context, and not in that context. 

7.5.2 Feed-forward of the P-I

The analysis of the teaching experiment permitted to formulate feed-forward of the P-I 

research cycle for the next P-II cycle.  

In section 7.4.1, 7.4.2, 7.4.3 we presented some results from the two problem-posing 

sessions and the problem solving one.  During the problem-posing session,  students, 

starting from given contexts,  formulated some mathematical  problems that took into 

account some concepts and notions that have not already been introduced by the teacher 

during the previous lessons. For example, several students posed problems concerning 

percentages. During the problem solving activity, some students were able to solve that 

problems, and also to interpret percentages as fractions. Such students probably already 

had this notion from their experience outside the school context and had been able to 

apply it to solve a mathematical problem. This fact may suggest that problems posed by 

students starting from real contexts should be used to introduce and work with new 
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mathematical objects. However, the previous are very superficial  considerations, that 

lead to some questions that need further investigation, such as:

 how can problem-posing be used to introduce new mathematical concepts for 

students?

 do  different  contexts  in  semi-structured  problem-posing  situations  play  a 

different  role  in  fostering  the  development  and  understanding  of  new 

mathematical concepts?

 which  characteristics  should  such  contexts  have  to  promote  students’  re-

invention of mathematical concepts or tools?

We realized that despite several studies focused on students’ or teachers’ responses 

in problem-posing activities, no research is present concerning the implementation of 

problem-posing activities to enhance students’ mathematical knowledge. Consequently, 

starting  from  the  observations  and  suggestions  of  the  P-I  cycle  just  described,  we 

believe indispensable to start investigating how different contexts could promote or not 

emergent problem-posing, and this will be exactly the focus of the next research cycle 

P-II.

193



Chapter 7

194





8. P-II Research Cycle

8.1 Introduction

Starting from the reflections of the previous research cycle, a second cycle concerning 

mathematical  problem-posing had been designed. This chapter addresses this second 

research cycle concerning problem-posing, P-II (Fig. 70).

Figure 70. Research cycle P-II

The structure of the chapter is the following: in section 8.2 we introduce the context 

of  the  classroom  that  participated  to  the  study,  explicating  the  mathematical  topic 

considered  and  the  specific  goals  of  this  cycle  in  relation  to  the  second  research 

question. In section 8.3 the design phase is described, consisting in the development of 

an HLT and with particular attention in designing instructional activities related to the 

learning goals of the HLT.  HLT includes starting points and expectations and students’ 



hypothetical learning process. The design of key activities and materials are reported. 

Then  the  experiences  during  the  teaching  experiment  are  described  (section  8.4). 

Section  8.5  is  dedicated  to  the  retrospective  analysis,  in  which  we  reflect  on  the 

expectations  formulated in  the HLT and formulate  some conclusions for the second 

research question.

8.2 Context and aim

The aim of the research cycles P-I and P-II consisted in finding possible answers to the 

second research question of this research project:

RQ2.    How do different contexts influence the process of problem-posing?

Concerning the second research question, we focused on two aspects of the problem-

posing process, namely its relations with creativity and emergent problem-posing. The 

research  cycle  P-I,  described in  the previous  chapter,  dealt  with students’  creativity 

focusing on the research sub-question RQ2.1, while this chapter will focus on emergent 

problem-posing, answering to: 

RQ2.2.    How do  different contexts influence emergent problem-posing?

Starting from the retrospective analysis of the research cycle P-I, a second research 

cycle was designed. The research cycle P-II was conducted in a fourth-grade class (age 

9) composed by twenty-five students.  The classroom involved in the study had never 

been  engaged  in  problem-posing  activities  before  the  study.  The  activity  was 

implemented by the author with the presence of the official mathematics teacher. At the 

moment of the intervention, students were working on decimal numbers. In particular, 

the official mathematics teacher, who was used to teach through a traditional method, 

worked  with  students  on:  decimal  numbers  and  equivalent  fractions;  comparison 

between decimal numbers; decimal numbers in the number line. No operations between 

decimal  numbers  were  introduced  by  the  mathematics  teacher.   In  this  situation, 
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addition between decimal numbers was chosen as mathematical topic for the problem-

posing activity. 

 In relation to the research question RQ2.2, we investigated how different contexts 

could  promote  or  not  emergent  problem-posing.  We  believe  that  semi-structured 

situations  could support  the process of emergent  problem-posing,  i.e.  the process in 

which problem-posing is a way for the emergence of students’ formal ways of knowing.

In the next section we present the design phase, in which the development of an HLT 

is described. 

8.3 Design phase

In this section we first describe the starting points for the HLT and the expectations that  

are investigated in the following teaching experiment. Then we describe the activities 

and materials designed in order to foster students’ cognitive development according to 

the goals of the HLT. 

8.3.1 Starting points 

Starting points for the formulation of an HLT of this second research cycle on problem-

posing  are  split  in  three  categories.  The  first  concerns  the  theoretical  background 

specific for this research cycle and taken into consideration to design an educational 

setting and hypothesis about students’ learning. The second deals with the classroom 

context, and in the specific the initial level of the students. The third is represented by 

the feed-forward formulated in the retrospective analysis of the previous research cycle 

P-I. 

Theoretical Background

In addition to the theoretical background of the previous research cycle P-I, we recall 

here  some  considerations  concerning  emergent  problem-posing.  This  notion  was 
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introduced starting from the considerations that when generating a problem, students do 

not always take into account possible solving strategies related to that problem, instead 

often they are not able to solve the problems they have posed. In this situation, problems 

posed by students that require new mathematical knowledge for their solution can be 

used  as  a  vehicle  to  introduce  new  mathematical  concepts.  Moreover,  these  new 

concepts assume meaning for students, because rooted in their personal experience and 

for  the  specific  purpose  of  solving  the  problems  posed  by  themselves.  As  a 

consequence, new mathematical knowledge should be not only introduced, but also re-

invented  (Freudenthal  1991)  by  students.  This  aspect  of  problem-posing  is  called 

emergent  problem-posing,  highlighting  its  aim  to  support  the  emergence  of  formal 

mathematical ways of knowing. 

Pre-test

Before the development of a learning trajectory, a pre-test was administered in the class 

were the research cycle took place. The aim was to have a picture about the starting 

level of the classroom concerning the mathematical topic considered for the teaching 

experiment:  decimal  numbers.  25  students  participated  to  the  pre-test.  The  test  was 

composed by five questions. The full text is presented in Appendix H. The maximum 

score for every question was 2, so the maximum score was 10. In Table 30 we report the 

mean of students’ answers to each question. The total mean of the classroom was 7,2. 

Table 30. Mean of students’ answers to the pre-test

Question Q1 Q2 Q3 Q4 Q5 Total

Mean 1,6 1,7 1,5 1,0 1,4 7,2

Findings indicate that students had a good knowledge of the subject at the moment of 

the teaching experiment. We remark in particular one fact that emerged from the pre-

test, dealing with the last question (Fig. 71).
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Figure 71. Last question of the pre-test

In this  case all  the students  had the same score and answered in the  same way. 

Students, indeed, were able to perform the comparisons between the last three numbers 

in the text of the problem (0,46; 0,721; 0,72), however they did not compare them with 

the numbers given in the example. Consequently, they put in a correct progression the 

last  numbers,  but  not  in  relation  to  the  given ones.  Students  were able  to  compare 

decimal numbers recurring to their notation as fractions but did not have a complete 

confidence with the number line (Fig. 72).   
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Figure 72. Example of a student’s answer to the last question of the pre-test

P-II feed-forward 

The  research  cycle  P-I  described  in  chapter  7,  gave  some  suggestions  for  the 

instructional design of the next research cycle P-II. In the specific, from the results of 

the  previous  research  cycle,  we  saw  that  students,  starting  from  given  contexts, 

formulated some mathematical problems that take into account concepts and notions 

that have not already been introduced by the teacher during the previous lessons. As a 
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consequence, the problem-posing activity gave the opportunity to work and reflect on 

new concepts,  objects,  tools,  starting  from students  posed  problems.  This  fact  may 

suggest that problems posed by students starting from real contexts should be used to 

introduce and work with new mathematical objects. Starting from these observations 

and  suggestions,  in  this  second  research  cycle  we  want  to  start  investigating  how 

different contexts could promote or not emergent problem-posing.

8.3.2 Learning goal and hypothetical learning process

As stated in section 8.2, the aim of this first research cycle consists in investigating how 

emergent problem-posing can be fostered to help students understand some aspects of 

decimal numbers. In the pre-test we saw that students at the moment of the intervention 

had a good knowledge of the topic. The regular mathematics teacher had not already 

introduced and worked with operations between decimal numbers. As a consequence, 

what  we want  to  achieve  during  the  teaching  experiment  is  the  re-invention  of  the 

algorithm  (or  more  algorithms)  to  calculate  additions  between  decimal  numbers. 

Therefore,  as  shown  in  Fig.  73,  the  learning  goal  of  the  teaching  experiment  is 

represented by the addition between decimal numbers. 

Figure 73. Learning goal of the P-II cycle

To  design  an  HLT,  together  with  the  learning  goal  we  need  to  formulate  some 

conjectures about the learning process. In analogy with the research cycle M-I and M-II, 

starting from the classroom initial  level and following the heuristic of the didactical 

phenomenology, we supposed that making students face with a problem situation in 

which  they  need  a  new mathematical  concept  to  solve  it  could  stimulate  the  same 

203



Chapter 8

students in creating that concept. Differently from the modelling activities described in 

chapters  5  and 6,  in  this  case students  are  not  given a  task,  but  they have  to  pose 

problems  that  could  stimulate  the  described  process.  As  a  consequence,  our  idea 

consists  in putting students face with problem-posing situations  that  could stimulate 

them to pose problems dealing with decimal numbers and that could bring to the need of 

introducing addition between decimal numbers. Then, focusing on that problems posed 

by students  which  need to  develop a  strategy to  perform addition  between decimal 

numbers, the teacher can foster students’ creation of one or more algorithms in a guided 

re-invention (Freudenthal 1991) way.  At the same time, we also want to know which 

characteristics should have a context for a problem-posing activity to foster this process 

of emergent problem-posing, i.e. of concept re-creation. Therefore, students would not 

be engaged in only one problem-posing activity, but in more problem-posing sessions 

that start from different contexts. A priory we believe that both these contexts could 

foster students’ emergent problems in the same way. 

Figure 74. Hypothetical learning process of the P-II cycle 

The learning process outlined in Fig. 74 is not linear. Indeed, attention should be 

given not only to the creation  of problems and their  solution,  but  to the process of 

construction of concepts that support such solution process. 

8.3.3 Learning activities

Starting from the hypothetical learning process and the learning goal outlined in the 

previous sections, some learning activities had been designed. The first one consists in a 

problem-posing activity.  Since  the  aim of  the  study is  to  investigate  the  impact  of 
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different contexts in students’ problem-posing abilities in terms of emergent problem-

posing, we decided to split the lesson dedicated to the problem-posing activity in two 

sessions. In each session of forty minutes students had to pose at least three problems 

dealing with decimal numbers from a given context. In the first session the context was 

represented  by a  number  line  with decimal  numbers  (Fig.  75),  while  in  the  second 

session the context was represented by a survey statistic about people practicing sports 

(Fig.  76).  Similarly  to the cycle  P-I,  we decided to  consider  two different  kinds  of 

contexts  that  highlight  one  of  the  main  differences  between  RME  and  Palm’s 

frameworks for real contexts: realistic-rich vs feasibility. We believe that such contexts 

could stimulate students in posing problems that, to be solved, need the necessity to 

develop a strategy to perform additions between decimal numbers. A priory we do not 

know which of the two contexts should support better emergent problem-posing. Our 

aim is not to compare RME and Palm’s frameworks, but to start understanding which 

features a context should have to support students in creating mathematical concepts 

starting from their own informal mathematical  strategies,  represented also by posing 

problems from a realistic situation and solving problems created by themselves.  

Figure 75. Context of the first problem-posing session: number line
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Figure 76. Context of the second problem-posing session: survey sport statistic

The lesson after the problem-posing sessions, students have to solve some problems 

chosen by the teacher from the ones posed in the previous problem-posing activity. The 

teacher  should  stimulate  students’  re-creation  of  the  algorithm of  addition  between 

decimal numbers. 

8.3.4 HLT for cycle P-II

In this section we sum up the components of the designed HLT for the research cycle P-

II discussed in the previous sections, namely the learning goal, the hypothetical learning 

process  and  the  learning  activities.  Together  those  components  define  the  HLT.  A 

scheme is represented in Table 31. 

Table 31. HLT of the P-II cycle

HLT

Learning goal Hypothetical Learning 

Process

Learning Activities

Addition between decimal 

numbers

Making students face with 

contexts that stimulate the 

Students are engaged in 

two problem-posing 
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creation of problems in 

which, in order to solve 

them, they need to develop 

new mathematical 

concepts or strategy. The 

critical point is represented 

by the necessity to 

calculate addition between 

decimal numbers.  

sessions in which they 

have to pose at least three 

problems dealing with 

decimal numbers. The 

contexts chosen reflect the 

RME and Palm’s 

frameworks for real 

problems, respectively a 

number line and a sport 

survey statistic. After the 

problem-posing activity, 

students are asked to solve 

some problems that had 

been chosen by their 

teacher from the ones 

posed during the problem-

posing activity. Such 

problems together with a 

classroom discussion 

coordinated by the teacher, 

should support the 

emergence of new 

mathematical knowledge 

in a guided re-invention 

perspective.

8.4 P-II teaching experiment

In this section we present results from the teaching experiment concerning the research 

cycle P-II. 
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As described in the previous section, during the problem-posing activity each student 

had to pose at least three problems from two given contexts: a number line and a sport 

survey. 

For the analysis of the posed problems, we modified the scheme proposed by Leung 

and Silver  (1997),  introducing the  new category  emergent  problems.  The difference 

between solvable problems and emergent problems is that for the firsts, students know 

the mathematics needed to solve them, while the seconds refer to problems that require 

new mathematical concepts to be solved. The data analysis scheme is reported in Fig. 

77.

Figure 77. Data analysis scheme of students’ responses in terms of emergent problems

Students posed totally 229 problems (95% of students’ responses) and 11 statements 

(5% of students’ responses). Concerning the quality of the posed problems, including 

mathematical problems/not mathematical problems and solvable/emergent/not solvable 

problems,  the  results  split  between  the  two contexts  used  as  starting  points  for  the 

problem-posing sessions, respectively the number line and the sport survey, are reported 

in Table 32.  
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Table  32.  Students’  responses in terms of  mathematical/not  mathematical problems, 

solvable/emergent/not  solvable problems.  Results  are  split  between the two contexts 

used for the problem-posing sessions. 

The first (also statistically significant) difference between the two contexts appears in 

terms of mathematical problems (p<0.05; V=0.15). Indeed, for the first context (number 

line), the 72% of problems had been classified as mathematical problems and the 28% 

of  the problems as  not  mathematical  problems,  while  for  the second context  (sport 

survey), the 90% of problems had been classified as  mathematical problems and the 

10% of the problems as not mathematical problems. 

The second difference occurs considering solvable and emergent problems (p<0,001; 

V=0,63).  Despite  the  total  number  of  mathematical  problems  that  can  be  solved 

(solvable plus emergent) is comparable for the two contexts (79% for the number line 

one and 74% for the sport survey),  from the number line the 71% of  mathematical 

problems had been classified as  solvable and the 8% as  emergent, while for the sport 

survey the 14% of mathematical problems had been classified as solvable and the 60% 

as emergent.

In the lesson that followed the problem-posing activity, students solved some of the 

problems they posed. In particular, the author chose some emergent problems dealing 

with  addition  between  decimal  numbers  (Appendix  I).  Students  had  to  solve  such 

problems in pairs and explain their solving strategies. One of these problems consisted 
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in calculating the total number in percentages of people who practice swimming, that 

consisted in performing 17,6+26,1. Some students in order to perform the calculation, 

transformed the decimal numbers in fractions and then summed the results: 

17,6+26,1=
176
10

+
261
10

=
437
10

=43,7

In another case, that consisted in performing 14,5+26,7, students summed separately 

units and tenths and then summed together the obtained results. In this case, as shown in 

Fig. 78, students had to reason about the meaning of obtaining 12 tenths in a decimal 

system. The author decided to stimulate all the class to reason about this point, and 

students  were  able  to  understand  their  previous  error  and  correctly  perform  the 

calculation paying attention to the positional notation. From this classroom discussion, 

other students were able to reinvent the algorithm for the calculus in column (Fig. 79).

Figure 78. Students’ solving strategy to perform the addition 14,5+26,7
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Figure 79. Students’ solving strategy to perform the addition 17,6+26,1

8.5 Reflection on the P-II teaching experiment

The aim of this teaching experiment consisted in investigating  how different contexts 

could  promote  or  not  emergent  problem-posing.  In  the  specific,  we formulated  the 

hypothesis  that  semi-structured  situations  could  support  the  process  of  emergent 

problem-posing, i.e. the process in which problem-posing is a way for the emergence of 

students’  formal  ways of knowing.  The mathematical  topic  that  was chosen for the 

activity  was given by decimal  numbers,  and in particular  we studied how  emergent 

problem-posing could be fostered to help students in understanding addition between 

decimal numbers.

In the design phase of this research cycle we designed an HLT through the definition 

of its three aspects: the learning goal; the hypothetical learning process and learning 

activities. The learning goal was represented by addition between decimal numbers. The 

hypothetical  learning  process  consisted  in  making students  experiencing  a  problem-

posing  activity,  in  which  a  prominent  role  was  given  by  the  contexts  from which 

students had to pose their problems dealing with decimal numbers. Such contexts could 

stimulate students in formulating problems that need new mathematical knowledge for 
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their  solution. On the basis of the designed HLT and of the actual learning process, 

described in the teaching experiment phase, we can make some reflections.

As said before, the aim of the study consisted in evaluating how different contexts 

could  impact  emergent  problem-posing in  semi-structured situations  (Stoyanova and 

Ellerton 1997). Two contexts were chosen: a number line and a sport survey. Similarly 

to the previous research cycle (chapter 7), the first context can be seen as a rich and 

realistic context in the perspective of RME, that comes from the world of mathematics. 

The second context, instead, can be seen as an artifact (Bonotto 2013), and represents a 

real context in Palm’s framework, since it represents a context that could really happen 

in real life. From the data analysis two main aspects emerged. 

The first  aspect  consists  in  the  different  impact  of  the  two contexts  in  students’ 

responses, and in particular  in the difference that occurred in terms of  solvable and 

emergent problems. Table 32, indeed, shows that students’ problem-posing responses in 

terms of  emergent  mathematical  problems were completely  different.  From the first 

context the 8% of mathematical problems were emergent ones, while from the second 

only  the  60%.  This  means  that  the  second  context,  the  sport  survey,  offered  more 

opportunities  in  fostering the  emergent  nature  of  problem-posing.  Moreover,  a  shift 

between  emergent  and  solvable  mathematical  problems from the first  to the second 

context occurred. One reason for such a significant difference can be attributed to the 

fact that the first context was probably more abstract and less experientially significant 

for students,  and consequently they paid more attention to the solving aspect of the 

problems they posed. At the same time, since the second context was richer in real data, 

students were stimulated to pose problems in a freeway. Moreover, starting from the 

first  context  the  28% of  problems  were  not  mathematical  problems,  while  for  the 

second context the 10%. This means that a meaningful context for students fostered not 

only emergent problem-posing, but also permitted students to focus on the mathematical 

sense and meaning of the problems they posed. 

The second aspect we want to focus on is that emergent problem-posing can promote 

prospective learning (Freudenthal 1991). Indeed, in this study the fact that students had 

to solve a problem created by themselves, stimulated them to develop a mathematical 

strategy  to  solve  a  new  mathematical  task:  performing  addition  between  decimal 

numbers. Emergent problem-posing, in analogy with emergent modelling, encouraged 
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students  in  developing  mathematical  algorithms  and  procedures  starting  from  their 

informal  mathematical  strategies.  As  a  consequence,  problems  posed  by  students 

supported the same students in creating new mathematical knowledge, fostering in this 

sense their  prospective learning in a re-invention process.  Moreover,  students,  while 

solving the problems created by themselves, were able to develop more than only one 

strategy, fact that contrasts the conviction that there is only one possible correct way to 

solve  a  problem.  We remark  the  fact  that  the  kind  of  contexts  used  to  implement 

problem-posing activities was fundamental.  Indeed in this study is clearly proved that 

some contexts, that are experientially meaningful for students, such as the sport survey, 

can  foster  in  a  deeper  and  significant  way  emergent  problem-posing,  while  other 

contexts, such as the number line in our example, did not give the same opportunity to 

increase  students’  knowledge.  As  a  consequence,  different  contexts  actually  have  a 

different potential in enhancing emergent problem-posing, and such a potential seems to 

be connected with the significance given by students to the context.

8.6 Conclusions from P-I and P-II research cycles

The  aim  of  the  research  cycles  P-I  and  P-II  consisted  in  answering  to  the  second 

research  question,  i.e.  studying how different  contexts  can  influence  the  process  of 

problem-posing.  In  the  specific,  we  focused  on  two  aspects  of  the  problem-posing 

process,  namely  its  relations  with  creativity  and  emergent  problem-posing.  As  a 

consequence,  from  the  second  research  questions,  two  more  specific  sub-questions 

emerged:

RQ2.1.      How do  different  contexts  influence  students’  creativity  in  problem-

posing?

RQ2.2.    How do different contexts influence emergent problem-posing?
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The research cycle P-I focused on the research question RQ2.1, while the research 

cycle P-II focused on the research question RQ2.2. From these design research cycles 

some conclusions can be drawn.

The aim of  the  research  cycles  P-I  and P-II  consisted  in  studying how different 

contexts influence students’ problem-posing abilities in terms of creativity and emergent 

problem-posing.  To  answer  to  our  research  questions,  the  results  of  two  teaching 

experiments had been reported, in which students had been engaged in semi-structured 

(Stoyanova  and  Ellerton  1997)  problem-posing  activities  that  started  from different 

contexts. In both the teaching experiments, the chosen contexts had a main difference: 

one context was taken from the mathematical world (number line) and the other was 

represented by an artifact (mobile phones leaflet  and sport survey statistic)  (Bonotto 

2013). 

Concerning students’ creativity, the first research cycle showed that there was not a 

significant difference between the two contexts used, i.e. the mobile phone leaflet and 

the number line. However, significant differences occurred in terms of context and not 

context related problems. Indeed, students when had to pose problems from the number 

line, constructed a new setting for their problems. This fact has two main implications. 

The first one consists in the fact that actually the number line was not a realistic context 

for students. In fact, even if they previously worked with it in mathematics classrooms, 

they did not recognise it as a meaningful context, and the posed problems had been set 

in other real contexts chosen by the same students. The second point, that is linked to 

the first one, is that it is fundamental that the context should be experientially significant 

for students. When the context is not significant, students attach to it a new meaning, 

not working with the given context but building a new one. In conclusion, answering to 

the  research  question  RQ2.1,  if  the  context  is  meaningful  for  students  there  is  no 

evidence in differences in terms of creativity. 

Concerning emergent problem-posing, instead, the number line and the sport survey 

produced  completely  different  results.  Indeed,  the  sport  survey  offered  more 

opportunities in fostering the emergent nature of problem-posing, and as a consequence 

also  students’  prospective  learning.  This  means  that  the  kind  of  context  used  to 

implement problem-posing activities is fundamental. Indeed, in our case we proved that 

a suitable artifact can foster in a deeper and more significant way emergent problem-
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posing, while other contexts, such as the number line in our example, did not give the 

same opportunity to increase students’ knowledge. 

We want to stress the fact that the aim of these cycles was to start investigating the 

impact  of  different  contexts  on  some  aspects  of  problem-posing  (creativity  and 

emergent problem-posing), and not to compare the frameworks of RME and Palm about 

real contexts. What emerged from the reported studies, is that artifacts, that were closer 

to  Palm’s  framework  since  their  component  of  feasibility,  were  more  familiar  to 

students who felt them as more realistic. This fact tells that this context is not more 

valid in general, but, since it was more significant for students, it offered them more 

opportunities in terms of emergent problems. Therefore, the key point is that the context 

must be meaningful for students, and this characteristic is actually asked by both the 

proposed frameworks. However, from this analysis another consideration appears: it is 

very difficult to make students familiar with contexts that come from mathematics. We 

believe that this could be a great challenge for the future,  since such contexts offer 

significant starting points also for vertical mathematization (Freudenthal 1991; Treffers 

1987). 
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9. Conclusions and Discussion

9.1 Introduction

This research aimed at designing a re-invention process (Freudenthal 1991) to integrate 

mathematical  modelling  in  the  regular  school  practice  in  the  Italian  context.  In  the 

specific,  we investigated  how this  process should be implemented  and used to  help 

students give sense to their mathematical activity. The main research question of this 

project was:

How,  and  to  what  extent,  can  mathematical  modelling  be  integrated  in  the 

teaching and learning of mathematics in a guided re-invention paradigm?

In  order  to  answer  to  our  research  question,  we  decided  to  adopt  the 

perspective of Realistic Mathematics Education,  in order to design a learning 

trajectory  that  brings  students  to  invent  their  mathematical  principles  in  a 

modelling environment. To design such a re-invention process, our choices had 

been the design heuristics of didactical phenomenology and emergent modelling, 

and the use of problem-posing in relation to such heuristics. 

The main research question was split in two more specific questions. The first 

research question dealt  with the design of such modelling activities  with the 

focus in the promotion of students’ creation of new mathematical concepts or 

strategies they need to solve a real problem. In the specific, we investigated how 

activities  designed  following  the  MEA  principles  could  foster  the  emergent 

nature of modelling.:
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RQ1. How can Model Eliciting Activities promote the process of emergent 

           modelling?

The second research question consisted in start investigating the impact in the 

use of different contexts during problem-posing activities in terms of students’ 

creativity and emergent problems: 

RQ2. How do different contexts influence the process of problem-posing?

Concerning the second research question, we focused on two aspects of the 

problem-posing  process,  namely  its  relations  with  creativity  and  emergent 

problem-posing.  As a  consequence,  from the  second research  questions,  two 

more specific sub-questions emerged:

RQ2.1.     How do different contexts influence students’ creativity in problem-

posing?

RQ2.2.    How do different contexts influence emergent problem-posing?

To  be  able  to  answer  to  the  research  questions  we  had  to  create  an 

instructional environment with which it could be possible to study how and to 

what extent the suggested processes could be fostered. An instructional sequence 

was therefore necessary to answer to the research questions, and consequently a 

research design that  allows for revising theories,  hypothesis  and instructional 

activities  was needed.  Furthermore,  new teaching materials  that  support  new 

types of learning must be developed, making the design process an integrated 

part of the research. In order to answer to our research questions, the research 

methodology adopted was the one of  design research, in which planning and 

creating  innovative  educational  settings  and  analyzing  teaching  and  learning 

processes is given a central role. 
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The answers to the first research question are described in section 9.2, while 

the second research question is answered in section 9.3. Section 9.4 is dedicated 

to the discussion of other important factors of the research project, and to some 

conclusions in relation to the global purpose of the Univerisity project that this 

research is part of. We conclude in section 9.5 with some recommendations for 

teaching and future research. 

9.2 Answers to the first research question

In order to answer to the first research question, we implemented two design research 

cycles: M-I and M-II. Each cycle was made by three phases: a design phase, a teaching 

experiment  and  a  retrospective  analysis.  Concerning  the  design  phase,  this  was 

explicated  through  the  development  of  a  Hypothetical  Learning  Trajectory,  that 

consisted  in  defining  a  learning  goal,  some  learning  activities  and  a  hypothetical 

learning process.  

Figure 80. Research cycles M-I and M-II

Before  the  implementation  of  the  research  cycles  M-I  and  M-II,  a 

questionnaire  for  mathematics  teachers  was  developed.  This  questionnaire, 
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together with the theoretical background, constituted the preparation phase of 

the  design  research.  The  aim of  the  questionnaire  was  to  know more  about 

teachers’  knowledge  and  practice  of  mathematical  modelling  and  problem-

posing in the Italian context, in order to identify possible starting points for the 

research  cycles.  The  questionnaire  had an  exploratory  character.  Concerning 

modelling, its aim was to know if teachers include in their school practice some 

aspects of the modelling process. The results from the questionnaire show that 

teachers  regularly  include  some  aspects  of  modelling  in  their  classroom 

activities, such as in using real contexts as starting situations for mathematics 

lessons and showing real applications of mathematics. Despite this disposition, 

teachers expressed a need in both more materials and preparation to implement 

activities  based  on  realistic  contexts,  in  line  with  Blum  (2015).  As  a 

consequence, from the questionnaire we understood that teachers must be given 

more opportunities to face with modelling activities, and moreover prototypes of 

practices based on realistic problematic contexts available for teachers of every 

school  level  need to  be developed.  In this  way teachers  would have at  their 

disposal models of modelling activities that can be adapted and implemented in 

their classrooms. The results are in line with the choice of the design research 

methodology,  because  the  same  teachers  expressed  the  need  of  innovative 

educational settings for their teaching. In such settings, meaningful real contexts 

are crucial, and as a consequence the role of the design heuristic of didactical 

phenomenology would become fundamental in designing instructional activities 

with the aim of choosing problem situations that could provide the basis for the 

development  of  the  mathematical  concepts  or  tools  we  wanted  students  to 

develop. 

In chapter 5 and 6 the two design research cycles M-I and M-II have been 

presented. Such cycles had the additional goal to provide teachers with design 

schemes  and  prototypes  of  practices  in  line  with  the  University  project  and 

teachers’ requests from the questionnaire. 

The first research cycle M-I was conducted in a second-grade class (age 7). 

Its focus consisted in studying how emergent modelling should be fostered to 

help students understanding some aspects of the multiplicative structure, and in 
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particular  the  distributivity  property  of  multiplication  over  addition.  Our 

hypothesis was that a modelling activity designed following a model eliciting 

sequence (Lesh et al. 2003) with the use of suitable artifacts could actually foster 

the emergent nature of modelling.  The design phase, the teaching experiment 

and the retrospective analysis of this research cycle are described in sections 5.3, 

5.4, 5.5.

The second research cycle M-II was conducted in a twelfth-grade class (age 

17). In relation to the research question RQ1, we investigated how emergent 

modelling can be fostered to help students understanding some aspects of 3D-

Euclidean geometry. In particular, our hypothesis was that facing students with a 

real  problem solving situation designed following a model eliciting sequence 

(Lesh et  al.  2003), with the use if suitable artifacts,  could actually foster the 

emergent  nature  of  modelling,  seen  as  a  process  in  which  students  develop 

mathematical concepts from informal realistic contexts. The design phase, the 

teaching  experiment  and the  retrospective  analysis  of  this  research cycle  are 

described in sections 6.3, 6.4, 6.5.

In both the research cycles the aim of the data analysis was to reconstruct the 

classroom progress, which resulted in an empirical grounded understanding of 

students’  reasoning  during  the  classroom  activity.  In  order  to  be  able  to 

reconstruct  the learning process and verify our hypothesis,  different  kinds of 

data were collected: pre-test; transcriptions of classroom dialogs; observations of 

group  working;  students’  final  projects,  students’  individual  reflections  and 

feedbacks. 

The results from the research cycles M-I and M-II, given by the analysis of 

our preliminary hypothesis respect to the actual learning process occurred in the 

teaching  experiments,  permitted  to  formulate  answers  to  the  first  research 

question RQ1.

In agreement with the process of emergent modelling, the assignments given 

to students stimulated them to create and work with new mathematical concepts 

they did not know before. In the first teaching experiment, students were asked 

to design a floor tiling of their classroom and to specify the cost for such design. 

The strategy developed by students to solve the task, that consisted in grouping 
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the tiles with the same shape and then multiply by the associated costs, permitted 

them to re-invent the mathematical  concept  of distributivity  of multiplication 

respect  to  addiction.  This  is  evident  from  different  data  such  as  classroom 

dialogues and students’ final projects, in which students were able to explain and 

reproduce  such  mathematical  concept.   In  the  second  teaching  experiment, 

students had to make a project dealing with packaging (Fig. 46).  In particular, 

students  had  to  calculate  the  capacities  of  some packaging  seen as  irregular 

solids.   Students decomposed such packaging in many regular solids, and to 

obtain  an  approximation  of  their  volume,  they  calculated  the  volume of  the 

regular solids by which the packaging was decomposed, and then summed these 

volumes.  In  other  words,  since  students  had  to  calculate  the  volume  of  an 

irregular solid, they were able to re-invent the equidecomposability principle. 

This fact is evident in students’ projects (Fig. 49) and in their final individual 

reflections. Guided by the interaction with the teacher and peers, students in both 

the  teaching experiments  were able  to  reason and explain  new mathematical 

concepts  or  properties.  Such  re-invented  concepts  become  meaningful  for 

students, because no longer mechanical rules but rooted in their experience and 

directly constructed by themselves to solve a concrete problem in a meaningful 

context. 

The re-invention process was possible not only thanks to the designed model 

eliciting  sequence,  but  also  to  the  use  of  suitable  artifacts,  that  permitted  to 

foster students’ disposition in creating mathematical tools and concepts needed 

to  solve  the assignments.  Moreover,  the  way in which the  problem or  these 

artifacts  are  presented  to  students  is  fundamental,  since  some  constraints, 

omission of data or other information could stimulate deeply such re-invention 

process.  As  a  consequence,  the  role  of  the  RME  heuristic  of  didactical 

phenomenology is clearly evident: it guides in choosing not only the contexts of 

the  task,  but  also  some task  constraints  and  related  materials  appropriate  to 

provide basis  for the development  of mathematical  concepts  (in our research 

cycles distributivity of multiplication respect to addition,  equidecomposability 

principle) we wanted students to develop. 
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Another  important  aspect  from these  research  cycles  is  the  importance  of 

moments for personal reflection,  in particular during group work. Indeed, the 

retrospective  analysis  of  the  M-I  research  cycle  highlighted  the  necessity  to 

engage students in a final individual reflection on the whole modelling process. 

This  individual  activity  was  introduced  in  the  second  research  cycle  in  the 

reflection and debriefing phase, wherein students had the possibility to reflect 

individually  on  the  whole  modelling  process,  observing  strengths  and 

weaknesses  of  their  projects;  elaborating  their  own  conclusions  to  model  a 

solution  for  the  model  eliciting  activity;  analysing  similarities  or  differences 

with  other  solution  plans;  changing  their  beliefs  and  attitude;  reinforcing 

argumentation abilities. 

The modelling activities had also strong social implications. Several students 

who  did  not  typically  engage  during  mathematics  classes  became  active 

participants while solving the task. As a consequence, the introduction of new 

socio-mathematical norms (Yackel and Cobb 1996) and the use of interactive 

teaching  methods,  could  promote  cooperation  and  inclusion.  Students  being 

active  participants  to  the  learning  process  are  able  to  give  meaning  to  new 

mathematical knowledge and sense to their mathematical activity. 

In conclusion, answering to the first research question of this project, we can 

affirm that model eliciting activities together with suitable artifacts could foster 

the emergent nature of modelling, that confirms our hypothesis.  As explained 

before,  this  result  can  be  attributed  to  a  combination  of  several  factors:  the 

choice of  realistic and rich problems that stimulate students to elaborate formal 

mathematical concepts mathematizing their informal solving strategies, rooting 

in this way the new understandings in experientially real phenomena; the use of 

suitable  artifacts,  that  present  mathematics  as  a  means  of  interpreting  and 

understanding  reality  and  increasing  the  opportunities  for  observing 

mathematics  outside  of  the  school  context  (Bonotto  2005);  the  role  of  the 

teacher, who guides students in re-inventing mathematics in an active way. 
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9.3 Answers to the second research question

In order to answer to the second research question, we implemented two design research 

cycles: P-I and P-II. Each cycle was made by three phases: a design phase, a teaching 

experiment and a retrospective analysis. Concerning the design phase, in the research 

cycle P-I this was explicated through the development of an instructional design that 

consisted in the formulation of some hypothesis together with instructional activities 

and  materials,  while  in  the  research  cycle  P-II  through  the  development  of  a 

Hypothetical  Learning  Trajectory,  that  consisted  in  defining  a  learning  goal,  some 

learning activities and a hypothetical learning process.  

Figure 81. Research cycles P-I and P-II

Before the implementation of the research cycles P-I and P-II, a questionnaire 

for mathematics teachers was developed. This questionnaire, together with the 

theoretical background, constituted the preparation phase of the design research. 

The aim of the questionnaire was to know more about teachers’ knowledge and 

practice of mathematical modelling and problem-posing in the Italian context, in 

order  to  identify  possible  starting  points  for  the  research  cycles.  The 

questionnaire had an exploratory character. 

Concerning problem-posing, it emerged that this educational strategy is not 

known by teachers, and consequently not regularly implemented at school. In 

fact,  less than a half  of the participants  (39,6%) adopted it  during its school 
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practice.  Problem-posing, instead, should become an integral part of pre-service 

and in-service teacher training courses, in order to give teachers opportunities to 

increase their knowledge, before, and their practice, after, on problem-posing. 

Such  improvement  in  teachers’  knowledge  could  help  teachers  to  recognise 

intersection points between different methodologies and strategies and to adopt 

coherent teaching methods.

In chapter 7 and 8 the cycles concerning problem-posing had been reported. 

The main point was to integrate problem-posing in the school practice, and as 

stated in consequence of the exploratory study, a key point to pursue this goal is 

to reinforce the use of real contexts to make students pose their own problems. 

The main difficulty  that  could occur in  this  scenario is  to know what  a real 

context could be for students, and how different contexts can affect students’ 

performances  in  problem-posing.  In  this  direction,  we  investigated  such 

influence in terms of creativity and emergent problem-posing.

The first research cycle P-I was conducted in a sixth-grade class (age 12). It 

aimed  at  studying how different  contexts  influence  students’  problem-posing 

performances in terms of creativity, focusing in this way on the  sub-question 

RQ2.1.  Our idea was that semi-structured problem-posing activities  in which 

real  contexts  are  used  as  starting  situations  could  foster  students’  creativity. 

However, it was not clear how different contexts influence students’ creativity, 

and  which  characteristics  such contexts  should  have.  As  a  consequence,  we 

decided  to  consider  different  real  contexts  from  different  theoretical 

perspectives. The design phase, the teaching experiment and the retrospective 

analysis of this research cycle are described in sections 7.3, 7.4, 7.5.

The second research cycle P-II was conducted in a fourth-grade class (age 9). 

In  relation  to  the  research  question  RQ2.2,  we  investigated  how  different 

contexts could promote or not emergent problem-posing. Our hypothesis was 

that semi-structured situations could support the process of emergent problem-

posing, i.e. the process in which problem-posing is a way for the emergence of 

students’  formal  ways  of  knowing.  However,  it  was  not  clear  a  priori  how 

different contexts could influence the emergent nature of problem-posing. The 
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design  phase,  the  teaching  experiment  and  the  retrospective  analysis  of  this 

research cycle are described in sections 8.3, 8.4, 8.5.

The  results  from the  research  cycles  P-I  and  P-II  permitted  to  formulate 

answers to  the second research question  RQ2. In particular,  the influence  of 

different contexts was analysed in terms of creativity in the research cycle P-I, 

that aimed at answering to the sub-question RQ2.1, and in terms of emergent 

problem-posing in the research cycle P-II, that aimed at answering to the sub-

question RQ2.2.

Concerning  creativity,  we  investigated  how  different  contexts  influence 

students’ creativity in semi-structured problem-posing activities. Real contexts 

from different theoretical perspectives were chosen: a number line, that can be 

seen as a rich and realistic context in the perspective of RME, and a mobile 

phones leaflet, that can be seen as an artifact (Bonotto 2013), representing a real 

context in Palm’s framework. Not a significant difference occurred between the 

use of the two contexts. Indeed, both the contexts stimulated in the same way 

students’ creativity (Table 27). However, the results indicate that a fundamental 

factor that influenced students’ problem-posing performances, and especially in 

terms of creativity, is the significance given by students to the context. Indeed, 

when the context is not experientially meaningful for a student, as in the case of 

the number line, she/he associates a new meaning to the context, using some 

elements from it and re-creating a new more meaningful context in which setting 

her/his problems. In our study, this process of context free re-construction was 

possible because no constraint was explicitly maid during the problem-posing 

activity concerning the fact that students had to refer to the number line when 

posing problems, but the only constraint  was to pose at  least  three problems 

from that  context,  and  not  in that  context.  However,  significant  differences 

occurred in terms of context and not context related problems. Indeed, students 

when had to pose problems from the number line, constructed a new setting for 

their problems. This fact has two main implications. The first one consists in the 

fact that actually the number line was not a realistic context for students. In fact, 

even if they previously worked with it in mathematics classrooms, they did not 

recognise it as a meaningful context, and their posed problems had been set in 
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other real contexts chosen by students. The second point, that is linked to the 

first  one,  is  that  it  is  fundamental  that  the  context  should  be  experientially 

significant for students. When the context is not significant, students attach to it 

a new meaning, not working with the given context but building a new one. In 

conclusion,  answering  to  the  research  question  RQ2.1,  if  the  context  is 

meaningful for students there is no evidence in differences in terms of creativity. 

During  the  problem-posing  sessions  of  the  research  cycle  P-I,  students, 

starting from given contexts, formulated some mathematical problems that take 

into account some concepts and notions that have not already been introduced by 

the  teacher  during  previous  lessons.  Starting  from  these  suggestions,  we 

believed  indispensable  to  start  investigating  how  different  contexts  could 

promote or not emergent problem-posing, that was investigated in the following 

research cycle P-II.

The  aim  of  the  research  cycle  P-II  consisted  in  evaluating  how different 

contexts  could  impact  emergent  problem-posing  in  semi-structured  situations 

(Stoyanova and Ellerton  1997).  As in the previous  cycle,  two contexts  were 

chosen: a number line, that can be seen as  a rich and realistic context in the 

perspective of RME, and a sport survey, that can be seen as an artifact (Bonotto 

2013), representing a real context in Palm’s framework. In terms of emergent 

problem-posing, the two contexts had a different impact on students’ responses. 

Indeed, students’ problem-posing responses in terms of emergent mathematical 

problems were completely different (Table 32), indeed the sport survey offered 

more  opportunities  in  fostering  the  emergent  nature  of  problem-posing. 

Moreover, a shift between emergent and solvable mathematical problems from 

the  first  to  the  second  context  occurred.  One  reason  for  such  a  significant 

difference can be attributed to the fact that the first context was probably more 

abstract and less experientially significant for students, and consequently they 

paid more attention to the solving aspect of the problems they posed. At the 

same  time,  since  the  second  context  was  richer  in  real  data,  students  were 

stimulated to pose problems in a freeway. Moreover, emergent problem-posing 

actually  promoted  prospective  learning  (Freudenthal  1991).  The  fact  that 

students  had  to  solve  a  problem  created  by  themselves,  stimulated  them  to 
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develop a mathematical strategy to solve a new mathematical task: performing 

addition between decimal numbers. Emergent problem-posing, in analogy with 

emergent  modelling,  encouraged  students  in  developing  mathematical 

algorithms and procedures starting from their informal mathematical strategies. 

As a consequence, problems posed by students supported the same students in 

creating new mathematical knowledge, fostering in this sense their prospective 

learning  in  a  re-invention  process.  Moreover,  students,  while  solving  the 

problems  created  by  themselves,  were  able  to  develop  more  than  only  one 

strategy, fact that contrasts the conviction that there is only one possible correct 

way to solve a problem. We remark the fact that the kind of contexts used to 

implement problem-posing activities was fundamental.  Indeed in this study is 

clearly  proved  that  some  contexts,  that  are  experientially  meaningful  for 

students, such as the sport survey, can foster in a deeper and more significant 

way emergent problem-posing, while other contexts, such as the number line in 

our  example,  did  not  give  the  same  opportunities  to  increase  students’ 

knowledge.  As  a  consequence,  different  contexts  actually  have  a  different 

potential in enhancing emergent problem-posing, and such a potential seems to 

be connected with the significance given by students to the context.

9.4 Discussion

In the previous section we presented and discussed answers to the research questions of 

the study. In this section, we will focus on other aspects related to this project. Firstly, 

we will discuss the results in relation to the general purpose of the University project 

that  this  research  is  part  of.  Then,  we  report  some  considerations  concerning  two 

components that played a fundamental role in achieving the results: the RME heuristics 

of didactical phenomenology and guided reinvention.

Overall aim of the project
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The present research project found its roots in the need of a paradigmatic change in the 

didactics of mathematics that aims to build a bridge between reality, in which intuition 

plays a fundamental role, and school life, in which exercise and memorization continue 

to play an important role.  In the specific we looked at the Italian context, where, despite 

some experiences of innovation and reflection on the curriculum, teaching strategies and 

learning  environments,  still  persists  a  resistance  to  abandoning  traditional  teaching 

models of transmission type. 

As stated in section 1.2, this study is part of a larger project of the University 

of  Padova,  concerning  teachers’  professional  development.  Concerning 

mathematics education, its overall purpose is to provide mathematics teachers 

with  methodological  models  and  format  of  school  practices  based  on 

mathematical modelling. This purpose was outlined in the following points:

 implementing some teaching experiments wherein connecting mathematics and 

daily-life experiences;

 start  developing  prototypes  of  significant  didactics  practices  based  on 

mathematical  modelling  ready to be  transferred  and implemented  in  different 

concrete school contexts;

 developing  specific  models  for  professional  development  courses  based  on 

mathematical modelling for mathematics teachers of every school level.

The results and conclusions from the design research cycles outlined in the 

previous section, have also important implications in relation to the purposes of 

such University project. The methodology of design research, indeed, permitted 

to  work  in  direct  contact  with  schools  in  collaborations  with  mathematics 

teachers.  The  research  cycles  had  been  implemented  in  schools  of  different 

levels, from primary to secondary. Each research cycle has provided a teaching 

experiment,  wherein  one  of  the  main  points  consisted  in  reducing  the  gap 

between  mathematics  in-  and  out-  the  school  context.  In  the  teaching 

experiments concerning mathematical modelling, the methodological approach 
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of model eliciting was presented. In the specific, the activities had been designed 

following specific methodological principles, that can be used and/or adapted by 

mathematics  teachers  to  design  modelling  activities  in  other  contexts. 

Concerning problem-posing, two analytic schemes were presented, in order to 

evaluate  students’  problem-posing  performances  in  terms  of  creativity  and 

emergent problems. Moreover, in all the research project the design phase had a 

prominent  position,  designing  activities,  materials  and  their  implementations 

were extensively described, in order to furnish teachers with operative examples 

of didactics practices on modelling and problem-posing, ready to be transferred 

and implemented in different concrete school contexts. Concerning the last point 

of the University project,  namely the development of models for professional 

courses  based  on  mathematical  modelling,  in  November  2019  we  started  a 

teacher professional development course on mathematical modelling. The course 

was structured in five meetings each of 2 hours. The aim of the course consisted 

in improving teachers’ mathematical modelling competencies (Borromeo Ferri 

2014):  theoretical  competence;  task  competence;  instruction  competence; 

diagnostic competence (Table 2).  However, due to the pandemic circumstances 

of  COVID-19,  it  was  not  possible  to  complete  the  last  part  of  the  teachers’ 

professional  development  course,  regarding  the  implementation  of  teachers’ 

designed modelling activities and their presentations and reflections, before the 

end of this project. As a consequence, not enough data had been collected to 

analyze the efficacy of such training. The conclusion of the course is postponed 

to the next year. 

Didactical phenomenology

The goal of this research was to design a re-invention process (Freudenthal 1991) to 

integrate mathematical modelling in the regular school practice in the Italian context. In 

the specific, we wanted to investigate how this process can be implemented and used to 

help students give sense to their mathematical activity.

229



Chapter 9

In section 9.2, 9.3 we answered to the research questions of the study. To 

achieve such results two fundamental tools have been represented by the RME 

heuristics of didactical phenomenology and guided reinvention. 

Indeed, when designing and implementing activities based on mathematical 

modelling and problem-posing, a central role should be given to the contexts for 

mathematical  problems.  These contexts  must  be experientially  significant  for 

students and able to evoke new mathematical  concepts or strategies for their 

solution.  In this  direction  the challenge  is  to  find phenomena that  beg to  be 

organized  by  the  concepts  that  are  to  be  taught  (Freudenthal  1983).  As  a 

consequence,  the role of didactical  phenomenology is crucial,  since it  guides 

teachers  to  find  problem  situations  that  could  provide  the  basis  for  the 

development  of  the  mathematical  concepts  or  tools  they  want  students  to 

develop. Such problem situations could lead to solutions that are first specific 

for that situation but can be generalized to other problem situations. 

Guided reinvention

The meaning of guided reinvention is that students should experience the learning of 

mathematics  as  a  process  similar  to  the  one  by  which  mathematics  was  invented 

(Gravemeijer 1994). Students, mathematizing their mathematical activity can reinvent 

mathematics.  This mathematization process is possible thanks to the guidance of the 

teacher and the instructional design. 

In this research project, the role of the teacher, represented by the researcher 

that designed and conducted the teaching activities, was fundamental. Indeed, 

the teacher encouraged students to use their own methods; stimulated students to 

articulate  and  reflect  on  their  personal  beliefs,  misconceptions  and  informal 

problem-solving  and  modelling  strategies  (Bonotto  2005).  Consequently, 

learning become a constructed understanding through a continuous interaction 

between  teacher  and  students,  that  can  be  synthetized,  using  Freudenthal’s 

words, in teaching and learning as  guided reinvention, reinforcing in this way 

mathematical reasoning and sense-making. 
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9.5 Recommendations

9.5.1 Recommendations for teaching

This  final  section  contains  recommendations  concerning  instruction  theories, 

educational practices and future research on mathematical modelling. 

This research contributes to a local instruction theory on the teaching and 

learning of modelling and problem-posing, through the descriptions of shifts in 

students’  reasoning,  specific  activities,  tasks  development,  the  design  of  the 

sequences  of the activities,  the role of didactical  phenomenology and guided 

reinvention, the role of the teacher, and analytic schemes. 

The design research approach resulted in an empirically based contribution to 

a local instruction theory. However, experimenting in a settled school program 

limited  the  possibilities  for  our  research  and  the  teaching  experiments  were 

confined to a series of mathematics lessons. Moreover, teachers were not able to 

guide the students during the lessons, that instead had been carried on by the 

researcher.  We  recommend  future  experiments  where  mathematics  teachers, 

after  having  received  a  professional  training  on  such  educational  strategies, 

implement  these  instructional  sequences  in  their  regular  lessons.  These 

experiments are needed for the constitution of a robust local instruction theory 

for the learning and teaching of modelling and problem-posing. 

The  local  instruction  theory,  including  the  instructional  activities,  offered 

teachers a framework of reference for planning their lessons and their practical 

teaching (Gravemeijer 2004a). Further research is needed to investigate which 

description of the instructional sequence, together with the underlying theory, 

can indeed be used as a means of support for teachers and for other parties who 

influence the course of affairs in education (De Lange et al. 2001). 

In  order  to  fill  the  gap  between  in-  and  out-of-school  mathematical 

competencies,  we  recommend  the  positive  role  of  emergent  modelling  and 

problem-posing  activities.  Designing  model  eliciting  activities  could  actually 
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increase  students’  mathematical  knowledge.  Students  indeed  can  re-create 

mathematical  concepts,  tools,  strategies,  starting  from their  informal  solving 

strategies.  In this process the importance of the context of the problems and the 

role of the teacher must be taken into account. Contexts should be experientially 

meaningful  for  students,  in  order  to  stimulate  them  to  root  their  new 

mathematical knowledge in their personal experience. Such contexts are central 

also  in  problem-posing  activities.  In  particular,  they  enhance  both  students’ 

creativity and also the emergence of new mathematical concepts starting from 

students’  posed  problems.  Students  are  able  to  develop  concepts  and 

instrumental  competencies  through  activities  based  on  real  situations.  These 

modelling  activities  should  be  valued  and  discussed  seriously  by  the  class. 

Current  assessment  practices  appeared  to  focus both teacher  and students  on 

algorithmic skills. Instead, more emphasis should be put on assessment which 

addresses modelling competencies through open-ended investigations (Goldin, 

2003; De Haan & Wijers, 2000; van den Heuvel-Panhuizen, 1996; De Lange, 

1987, 1999). 

9.5.2 Recommendations for future research

This  study has  provided  some insights  into  the  constraints  and  possibilities  for  the 

integration of modelling and problem-posing in mathematics lessons. Future research is 

recommended especially in the following points: 

 in accordance with Blum (2015), mathematical modelling is high demanding for 

teachers. Indeed, mathematics teachers should become able  of recognizing the 

mathematics incorporated in daily life. This requires knowing how to integrate 

pedagogical-didactic and disciplinary knowledge together, paying attention also 

to the particular school context and the cultural environment in which operating. 

Indeed, teachers should be able to: i) see mathematics incorporated in the real 

world  as  a  starting  point  for  mathematical  activities  (Bonotto  2005);  ii) 

anticipate the mathematics needed for the paths that students might explore; iii) 
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put students in familiar situations in which they clearly understand the need for 

mathematical constructs, integrating also their everyday knowledge; iv) provide 

meaningful design specs involving constraints that enable students to weed out 

inadequate  ways  of  thinking.  In  order  to  provide  teachers  with  designing 

principles  and  practical  materials  to  develop  modelling  activities  in  their 

classrooms (and to increase their  knowledge of problem-posing), in the future 

we believe that improvements in teachers’ pre-service and in-service courses are 

needed,  in  particular:  i)  changing  the  type  of  activities  with  more  realistic 

problem  situations;  ii)  improving  teachers’  knowledge  of  some  teaching 

strategies, such as problem-posing, that could be adequately chosen by teachers 

for the teaching of specific mathematical topics; iii) connecting mathematics and 

classroom teaching  creating  prototypes  of  practices  based  on  modelling  and 

problem-posing available for teachers; 

 in this project we started investigating the impact of different contexts on some 

aspects of problem-posing, i.e. creativity and emergent problem-posing. What 

emerged from the research cycles is that artifacts, closer to Palm’s framework 

since their  component of feasibility,  were more familiar  to students who felt 

them as more realistic, respect to contexts from the world of mathematics. This 

fact tells that artefacts are not more valid in general, but, since they were more 

significant  for  students,  they  offered  them  more  opportunities  in  terms  of 

emergent  problems.  Therefore,  the  key  point  is  that  the  context  must  be 

meaningful for students. However, from this analysis appears very difficult to 

make students familiar with contexts that come from mathematics. We believe 

that this could be a great challenge, since such (mathematical) contexts can offer 

significant  base  points  also  for  vertical  mathematization  (Freudenthal  1991; 

Treffers 1987);

 in the explorative study, only some aspects of the modelling process were taken 

into account. A deeper understanding of teachers’ effective practice of the entire 

modelling process and about their knowledge of other aspects of modelling is 

needed. For the future a deeper investigation of teachers’ practices linked to both 
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modelling  and  problem-posing  would  be  performed  through  a  series  of 

interviews and classroom observations;

 modelling  and  problem-posing  are  closely  related.  However,  further 

investigation is needed in: i) analyzing specificities and common points of each 

strategy; ii) developing designing principles to integrate problem-posing in the 

modelling process; iii) providing empirical evidence from the classroom in order 

to support the integration between mathematical modelling and problem-posing
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Steffe,  L.P.,  &  Thompson,  P.W.  (2000).  Teaching  experiments  methodology:  Underlying 

principles and essential elements. In R. Lesh & A.E. Kelly (Eds.), Research design in 

mathematics and science education (pp. 267-307). Hillsdale, NJ: Erlbaum Associates. 

Stillman,  G.  (2011).  Applying  metacognitive  knowledge  and  strategies  in  applications  and 

modelling tasks at secondary school. In G. Kaiser, W. Blum, R. Borromeo Ferri & G.  

Stillman (Eds.), Trends in teaching and learning of mathematical modelling: ICTMA14 

(pp. 165-180). Dordrecht, The Netherlands: Springer.

Stoyanova,  E.  (1998).  Problem  posing  in  mathematics  classrooms.  In  A.  McIntosh  &  N. 

Ellerton (Eds.), Research in Mathematics Education: a contemporary perspective. Edith 

Cowan University: MASTEC, pp. 164-185.

Stoyanova E., & Ellerton N. F. (1996). A framework for research into students’ problem posing 

in school mathematics,  In P. C. Clarkson (Ed.),  Technology in mathematics education 

(pp. 518–525), Mathematics Education Research Group of Australasia: The University 

of Melbourne.

247



Streefland, L. (1985). Wiskunde als activiteit en de realiteit als bron (Mathematics as an activity 

and the reality as a source). Tijdschrift voor Nederlands Wiskundeonderwijs (Nieuwe 

Wiskrant), 5 (1), 60-67.

Treffers, A. (1978). Wiskobas doelgericht. IOWO, Utrecht.

Treffers, A. (1987). Three dimensions. A model of goal and theory description in mathematics 

instruction-the Wiskobas project. Dordrecht: Reidel Publishing.

Van den Akker,  J.  (1999).  Principles  and methods  of  development  research.  In  J.  van den 

Akker,  R.  M.  Branch,  K.  Gustafson,  N.  Nieveen,  &  T.  Plomp  (Eds.),  Design 

approaches and tools in education and training (pp. 1–14). Dordrecht, the Netherlands: 

Springer. 

Van den Akker, J., Gravemeijer, K. P. E., McKenney, S., & Nieveen, N. (2006).  Educational 

design research. London: Routledge. 

Van den Heuvel-Panhuizen, M., & Drijvers, P. (2014). Realistic Mathematics Education, In S. 

Lerman  (Ed),  Encyclopedia  of  Mathematics  Education  (pp.  521-525).  Dordrecht, 

Heidelberg, New York, London: Springer.

Van  Harpen,  X.Y.,  &  Presmeg,  N.C.  (2013).  An  Investigation  of  Relationships  between 

Students’  Mathematical  Problem-Posing  Abilities  and  Their  Mathematical  Content 

Knowledge. Educational Studies in Mathematics, 83(1), 117-132.

Van den Heuvel-Panhuizen, M. (1996). The didactical use of models in realistic mathematics  

education:  An  example  from  a  longitudinal  trajectory  of  percentage.  Educational 

Studies in Mathematics, 54, 9-35. 

Van  den  Heuvel-Panhuizen,  M.  (2003).  Assessment  and  realistic  mathematics  education. 

Utrecht, the Netherlands: CD Beta Press. 

Van den Heuvel-Panhuizen, M., & Drijvers, P. (2014). Realistic Mathematics Education, In S. 

Lerman  (Ed),  Encyclopedia  of  Mathematics  Education  (pp.  521-525).  Dordrecht, 

Heidelberg, New York, London: Springer.

Verschaffel,  L.,  De  Corte,  E.  & Borghart,  I.  (1997).  Pre-service  teachers’  conceptions  and 

beliefs  about  the  role  of  real-word knowledge in  mathematical  modelling of  school  

word problems, Learning and Instruction, 7(4), 339-359.

Verschaffel, L., Greer, B. & De Corte, E. (2000).  Making sense of word problems, Lisse, The 

Netherlands: Sweets & Zeitlinger.

Xie, J, & Masingila, J.O. (2017). Examining Interactions between Problem Posing and Problem 

Solving with Prospective Primary Teachers: A Case of Using Fractions.  Educational 

Studies in Mathematics, 96, 101-118.

248



References

Yackel, E., & Cobb, P. (1996). Classroom sociomathematical norms and intellectual autonomy. 

Journal for Research in Mathematics Education, 27(4), 458-477.

Yuan,  X.  &  Sriraman,  B.  (2010).  An  exploratory  study  of  relationships  between  students’ 

creativity  and mathematical  problem-posing  abilities.  In  B.  Sriraman and  K.H.  Lee 

(Eds.), The Elements of Creativity and Giftedness in Mathematics, 5-28.

249



 Appendix

A

QUESTIONNAIRE
Educational practices in the teaching of Mathematics

The  following questionnaire  is  part  of  a  project  at  the  University  of  Padova,  Italy.  The 
questionnaire  is  made  by  three  sections  and  it  deals  with  the  educational  practices  of 
Mathematics teachers. 20 minutes are needed to complete it. 
   We remind you that the questionnaire is anonymous, and the data collected will be used only  
for this research in respect of the privacy. 
Thank you for your collaboration  

1.     Year of birth: 

2.     Nationality:   

3.    Gender:          M          F        I don’t want to say  

4.     Higher Graduation:       

5.     School level in which you are teaching:

                                                Primary
                             

                                                Secondary 

6.     How many years are you been teaching in this level?  

7.     In which town are you teaching?

       ANAGRAFIC SECTION



8.    During your teaching activity, you adopt the following strategies:

Never Rarely Sometimes Often Always

Lectures 1 2 3 4 5

Individual work 1 2 3 4 5

Group work 1 2 3 4 5

Guided lessons 1 2 3 4 5

Support activity 1 2 3 4        5

Laboratories 1 2 3 4 5

Other……….. 1 2 3 4 5

9. During your teaching activity, you adopt the following tools:
     

Never Rarely Sometimes Often Always

Textbooks 1 2 3 4 5

Notes 1 2 3 4 5

Interactive board 1 2 3 4 5

Software 1 2 3 4 5

Calcolator 1 2 3 4 5

Math games 1 2 3 4 5

   EDUCATIONAL PRACTICES



Appendix

Audio and video tools 1 2 3 4 5

Artefacts 1 2 3 4 5

Library 1 2 3 4 5

Other……….. 1 2 3 4 5

10.     Based on your teaching experience, you perform the following activities: 

Never  Rarely Sometimes Often Always

I use starting real 
contexts for 
mathematical lessons 

 1 2 3 4 5

I show and work with 
some applications of 
mathematics

1 2 3 4 5

11.   Do you include problem-solving activities during your teaching?       Yes     No
If yes, describe a significant example.
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
_______________

12.   Do you implement problem-posing activities during your teaching?     Yes    No
  If yes, describe a significant example.
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
_______________ 

13. Based on your experience, express the level of difficulty you have found teaching the 
following  topics:
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  TEACHING DIFFICULTIES



No one Just a few Enough Many A lot

Arithmetic 
and Algebra

   1 2 3 4 5

Euclidean 
geometry

        1 2 3 4 5

Analitic 
geometry

   
        1 2 3 4 5

Functions
  
       1 2 3 4 5

Probability 
and 
Statistics

         
1 2 3 4 5

Logic           1 2 3 4 5

14.    In conclusion I ask you one (or more) suggestions you believe indispensable to improve 
   your teaching of mathematics.
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B

Scuola Primaria – Peschiera del Garda

Risolvi i seguenti problemi. Ricordati di spiegare il procedimento che hai seguito.

[solve the following problems, explaining your solving strategy] 

1. Un giornalino costa 3 euro e 50 centesimi. Questi sono i soldi che hanno tre 
bambini:

[A newspaper costs 3 euros and 50 cents. Children have the following money:]

   Uno dei bambini non ha abbastanza soldi per comprare il giornalino. Chi?

   [One of the children does not have enough money to buy the newspaper. Who is?]

2. Maria va al supermercato per comprare 4 confezioni di bibite. Ogni confezione 
contiene 6 lattine. Quante lattine di bibite compera Maria?
[Maria goes to the supermarket to buy 5 packs of drinks. Each pack is made by 6 
cans. How many cans does Maria buy?]
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3. Un barista per preparare tre panini ha usato sei fette di pane, tre fette di 
pomodoro, una mozzarella. Per fare sei panini ha bisogno di quanto pane, 
pomodoro e mozzarella?
[A bartender used six slices of bread, three slices of tomato, one mozzarella to make 
three sandwiches. To make six sandwiches, how much bread, tomato and 
mozzarella does he need?]

4. La nonna decide di preparare quattro crostate. Decide di usare:
[the Grandmother wants to bake four pies. She uses:]

Un vasetto di marmellata 
ogni due crostate
[a jar of jam every two 
pies]

Tre uova per ogni crostata
[three eggs for each pie]

        Quanti vasetti di marmellata e quante uova dovranno essere usati in tutto?

        [How many jars of jam and eggs does she totally need?]
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5. Il papà è uscito di casa con una banconota da 20 euro. Quante riviste da 6 euro può 
comprare al massimo?
[Dad left the house with 20 euros. If a magazine costs 6 euros, how many 

magazines can he buy at most?]
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C

1. Explain the task in your own words.
…………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………

2. Write the measures of the tiles:

3. How many centimeters do the sides of the strip measure?
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4. How many centimeters do the sides of the classroom measure?

5. Fill the table:

Shape Number of tiles Cost (euros)

Square 7 ….    

Rectangular 3 ….    

Triangular 6 ….  

Triangular ….            12 
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Square …. 18   

D

Scuola Primaria – Peschiera del Garda

Risolvi i seguenti problemi. Ricordati di spiegare il procedimento che hai 

seguito.

[solve the following problems, explaining your solving strategy] 

1. Un pacchetto di figurine costa 3 euro.

Quanto costano tre pacchetti di figurine? 

[a pack of stickers costs 3 euros. How much are three packs of stickers?] 

………………………….....................................................................................................

................................................................................................................................

Simone è uscito con una banconota da 20 euro. 

Quanti pacchetti di figurine può comprare?

[Simone left with 20 euros. How many packs of stickers can he buy?]

…………………………………………………………………………………………………………………………

……..…………….……………………………………………………………………………………………………

2. Una tavoletta di cioccolata costa quattro euro. Questi sono i soldi che hanno tre 
bambini:
[A bar of chocolate costs four euros. This is the money that children have:]
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Chi potrà acquistare tre tavolette di cioccolata? 

[Who can buy three bars of chocolate?]

…………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………

3. Guarda la figura qui sotto.
[Look at the picture]

Quanti tappi è lunga la penna? 

[How many caps is the pen long?]
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……………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………

 

Ogni tappo misura 2 cm. Quanti centimetri è lunga la penna? 

[Every cap measures 2cm. How many centimeters is long the pen?]

……………………………………………………………………………………………………………………………

…………….…………………………………………………………………………………………………………….

4. I venti alunni di una classe vogliono preparare una macedonia di fragole e 

banane per tutta la classe. Decidono di usare:

[A class is made by 20 students, who want to prepare a fruit salad for all the 

classroom. They use: a banana every 4 students; 3 strawberries for every 

student]]

Quante fragole e banane dovranno usare in tutto? 

[How many strawberries and bananas do they totally need?]

…………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………
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E

Liceo Scientifico Curiel - Padova

1.  Quale definizione daresti di solido?
     [What may you define as a solid?]
……………………………………………………………………………………………
……………………………………………………………………………………………
………………………………………………………………………………...
………………………………………
……………………………………………………………………………………………
……………………………………………………………………………………………
……………………………………………………………………………………………
……………………………

2.  Conosci alcuni solidi?     Sì     No
     [Do you know some solid?]

     Se sì, disegna i solidi che conosci e scrivine il nome.
    [If so, paint solids you know and write their names]

263



3.  Come calcoleresti il volume dei seguenti solidi?

     [how do you calculate the volume of the following solids?]
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F

Scuola Secondaria – Peschiera del Garda

1. Rispondi alle seguenti domande:
[Answer to the following questions]

a) Calcola i  
6
11

  del numero  88.

[perform 6/11 of 88]

b) Ho speso 5
8

  di 96 euro. Quanti soldi ho ora?  

[I spent 5/8 of 96 euros. How much money do I still have?]

2. Semplifica ai minimi termini le seguenti frazioni:
[reduce the following fractions]

3. Senza eseguire operazioni, inserisci le frazioni sulla linea dei numeri:
[without performing any operations, put the fractions on the numbers line]
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a)  54
99

 = …… 

b) 750
10

= ……

c)  33
11

 = …… 

d) 275
325

= ……

  -1
3

    ;     1    ;      1
2

    ;     4
5

    ;  −2 ;0,5  

0



4. Risolvi le seguenti operazioni:
[solve the following expressions]

a) ( 15−
3
10 )+( 43 +

7
5 )−1

b) ( 24 +
1
4 )(
4
3
−
1
2 )

5. Ogni lettera sulla linea dei numeri corrisponde ad un numero. Ad esempio, la 
lettera A corrisponde al numero 0. 
[each letter on the numbers line corresponds to a number. For example, A 
corresponds to 0]

a) Quale lettera corrisponde al numero 0,5 ?
[which letter corresponds to 0,5?]

b) Quale lettera corrisponde al numero 6
6

 ?

[which letter corresponds to 6/6?]

c) Quale lettera corrisponde al numero −1
2

 ?

[which letter corresponds to -1/2]

d) Quale lettera corrisponde al numero 3
2

? 

[which letter corresponds to 3/2?]
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6. Risolvi il seguente problema spiegando il procedimento seguito.
[solve the following problem, explaining your strategy (Fig. 54)]

Un  ciclista  decide  di  andare  da  Padova  a  Firenze  in  bicicletta.  Le  due  città 

distano circa 225 km. Il  primo giorno il ciclista percorre i  5
9

  del viaggio. La 

mattina del giorno successivo, invece, percorre i  3
4

  dei rimanenti chilometri. 

a) Quanti chilometri restano da percorrere per arrivare a Firenze?

b) Esprimi il risultato come frazione della distanza tra le due città.
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Scuola Secondaria “Felice Chiarle”  

Risolvi i seguenti problemi. Ricorda di spiegare il procedimento seguito. 

1. Marco deve fare i compiti, posizionando sulla linea dei numeri i seguenti numeri: 

4 ,0 ,
2
4

.  Aiutalo trovando il loro valore e posizionandoli sulla linea dei numeri.

2. Sara ha 125 euro. Una bici costa 135 euro, però è scontata del 20%. Sara riuscirà a 
comprare la bici? 
[for the translation see Fig. 66]

3. Divido una pizza in 5 fette per i miei amici. A fine giornata mi avanza una fetta. 
Quante fette avranno mangiato i miei amici?

4. Luisa legge un libro di 350 pagine. Se ha letto i  4
5

 del libro, quante pagine dovrà 

leggere per finirlo? Se le  rimangono tre giorni  per finire il  libro,  quante pagine 
dovrà leggere al giorno?

5. Valentina è andata a correre in un parco pedonale per sgranchirsi un po’ le gambe. 

Sapendo che il percorso è lungo 10km e che lei ne ha percorsi 1
3

, quanti km ha già 

percorso? 
Ad un certo punto Valentina si accorge di non avere più le chiavi di casa in tasca. 

Torna indietro di  1
2

 di  quello  che già  aveva percorso e le  ritrova.  A quanti km 

dall’inizio  del  percorso  ricomincia  a  correre?  Quanti  km  ha  percorso  fino  ad 

adesso?

[for the translation see Fig. 68]

6. Mattia va a comprare un telefono della samsung da 249 euro e ha solamente i 3
5

 di 

quei soldi. Quanti soldi mancano a Mattia?
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7. Un cliente compra un cellulare a 549 euro con lo sconto del 50%. Il cliente paga il 

cellulare a rate. Quante rate deve pagare se ha già pagato 1
3

 del telefono?

8. Michela ha un telefono che ha comprato a 399 euro. Ha visto che in un negozio il  

suo telefono costava i 4
3

 di quello che l’ha pagato. Se l’avesse comprato in negozio, 

avrebbe speso più o meno di quanto l’ha pagato? Quanto?

9. Gianluca  prende uno smartphone  che costa  499 euro.  Adesso il  telefono ha lo 
sconto del 200%. Quanti soldi costa adesso il telefono?

10. Giorgia vuole comprare un telefono a rate. Anche Luca, che paga rate da 13 euro.  

Ogni rata di Giorgia costa i 3
9

 della rata di Luca. Quanto costa una rata di Giorgia? 

Dopo quanto finisce di pagare il telefono se la rata è settimanale?
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Scuola Primaria  – Peschiera del Garda

1. Scrivi la frazione decimale come numero decimale, e viceversa:
[write the fraction as a decimal number and viceversa]

a)
3
10

= 0,3

b)
34
100

= …..

c)
… .
… .

= 0,123

d)
15
1000

= ….

e)
… .
… .

= 5,67

2. Colora sulla figura la parte indicata dalla frazione decimale o dal numero 
decimale:
[color on the figure the part represented by the fraction or by the decimal 
number]
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3. Completa la tabella come nell’esempio:
[fill the table as in the example]

A parole Frazione decimale Numero decimale

            40 centesimi 40
100

                    0,40

            3 decimi

57
100

98
10

           5 millesimi
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4. Completa la tabella come nell’esempio:
[fill the table as in the example]

Soldi Valore in euro Frazione decimale

             0,60 euro 60
100

             2,40 euro

55
100

5. Confronta i numeri e inseriscili nella linea dei numeri in ordine crescente, come 
nell’esempio:
[compare the numbers and put them in the numbers line, as shown in the 
example]

                        0,5     ;     0,6     ;       0,46    ;       0,721      ;      0,72
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              Esempio:            0,5 =  

                                          0,6 = 
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Scuola Primaria “Dante Alighieri”  

Risolvi i seguenti problemi. Ricorda di spiegare il procedimento. 

[solve the following problems, explaining your solving strategy]

1. Sommando  24,4  e  9,8  che  numero  decimale  ottengo?  Si  può  trasformare  in 

frazione? Se sì, qual è la frazione?

[summing 24,4 and 9,8,  which decimal  number do I  obtain? Can I  write it  as  a 

fraction? If so, which fraction?]

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

2. In Italia le donne che praticano nuoto sono il 26,1 % e gli uomini il 17,6 %. Qual è la  

differenza di percentuali tra donne e uomini che fanno nuoto?

[In  Italy,  women who swim are  the  26,1  % and men the 17,6  %.  Which is  the 

difference between women and men who swim?]

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

3. Gli  uomini  che  fanno  corsa  sono  il  16,6  %.  Le  donne  che  fanno  corsa  sono  in 

percentuale 1
4

  in più degli uomini. Quante sono in percentuale le donne che fanno 

corsa? 
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[Men who run are the 16,6 %, while the percentage of women ¼ more than the 

percentage of men. How much are in percentage the women who run?] 

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Se guardi la figura, cosa puoi dire sul risultato di prima?

[If you look at the picture, what can you say about the previous result?]

4. Il papà ha comprato una scatola di cioccolatini. Il giorno dopo ne trovati i  3
10

 . 

Quanti ne sono stati mangiati?

[Dad bought a box of chocolates. The following day Dad finds 3/10 of them. How 

many chocolates had been eaten?]

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

5. Ad una maratona ci sono 100 partecipanti. I  51
100

  dei partecipanti sono riusciti a 

finire la maratona. Quanti non la hanno finita? 

[There  are  100  participants  in  a  marathon.  The  51/100  of  the  participants 

completed the marathon. How many did not complete it?]

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………
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…………………………………………………………

…………………………………………………………

…………………………………………………………        GYM       NUOTO     CORSA     DANZA    PALLAV.



…………………………………………………………………………………………………………………………………

6. Nella classe di mio fratello ci sono 27 alunni. I  10
10

  degli alunni sono italiani. Tra gli 

stranieri 2 sono francesi. Quanti stranieri non francesi ci sono?

[In my brothers’ classroom there 27 students. 10/10 of them are Italian. Among the 

foreigners 2 are French. How many non-French foreigners are there?] 

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

7. Inserisci sulla linea dei numeri i seguenti numeri:   52
100

  ;  51
100

   ;   0,5    ;     - 0,2 .

[Put in the numbers line the following numbers]
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Summary

This thesis finds its roots in the necessity of a paradigmatic change in the didactics of 

mathematics  that aims to build a bridge between reality and school life, as desired by 

national and international curricula. A valid educational strategy to reduce school and 

extra-school mathematical competences is that of mathematical modeling, seen not only 

as  a  process  of  solving  real  problems,  but  as  a  possibility  to  achieve  a  process  of 

mathematization and reflection on mathematics that leads to the construction of new 

mathematical concepts and tools. The goal of this research is to design a re-invention 

process (Freudenthal 1991) to integrate mathematical modelling in the regular school 

practice in the Italian context. The main question of this project is: How, and to what 

extent,  can  mathematical  modelling  be  integrated  in  the  teaching  and  learning  of 

mathematics in a guided re-invention paradigm? The underlying theory is the one of 

Realistic  Mathematics  Education,  wherein  learning  occurs  through  experience,  the 

experience  of  mathematizing  experientially  real  situations,  extending  day-to-day 

reasoning to acquire new mathematical knowledge. As a consequence, a central role is 

be  covered  by  contexts  for  mathematical  problems  that  must  be  experientially 

significant for students and able to evoke new mathematical concepts or strategies for 

their  solution.  Therefore,  a  learning  trajectory  that  brings  students  to  invent  their 

mathematical  principles in a modelling environment  need to be designed. To design 

such  a  re-invention  process,  our  choices  are  the  design  heuristics  of  didactical 

phenomenology and  emergent modelling, and the use of problem-posing in relation to 

such heuristics. Our main research question is split in two more specific questions. The 

first deals with the design of modelling activities with the focus in the promotion of 

students’ reinvention of new mathematical concepts they need to solve a real problem. 

In  the  specific,  we investigated  how activities  designed  following  the  principles  of 
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Model Eliciting Activities could foster the emergent nature of modelling. The second 

research  question  consists  in  start  investigating  the  impact  in  the  use  of  different 

contexts during problem-posing activities in terms of students’ creativity and emergent 

problems. To be able to answer the research questions we had the necessity to create an 

instructional environment with which it could be possible to study how and to what 

extent  the  suggested  processes  could  be  fostered.  An  instructional  sequence  was 

therefore needed to answer to the research questions. A research design that allows for 

revising theories, hypothesis and instructional activities was needed. Furthermore, new 

teaching materials that support new types of learning must be developed, making the 

design process an integrated part of the research. As a consequence, a research approach 

that  consists  in  planning  and creating  innovative  educational  settings  and analyzing 

teaching  and learning processes  was followed,  namely  that  of  design research.  The 

structure of the thesis is the following. Starting from the theoretical background and an 

exploratory study represented by a questionnaire for mathematics teachers, that aimed at 

investigating  teachers’  school  practices  in  relations  to  mathematical  modelling  and 

problem-posing,  two  cycles  of  design  research  are  reported,  respectively  for 

mathematical modelling (M-I and M-II) and problem-posing (P-I and P-II), in order to 

answer the research questions. Each cycle is made by three main parts: a design phase, a 

teaching experiment and a retrospective analysis. The final part of the thesis concerns 

the discussion of the results from the design research cycles, in order to find answers to 

the research questions and to suggest some recommendations for future research and 

teaching. 
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