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Abstract

In this thesis we prove various results in the subject of invariable generation of
finite groups. We also prove some upper bounds to the number of conjugacy
classes of certain primitive permutation groups, which are then applied to a
problem of invariable generation.

In Chapter[I] we present a first description of the results and of the objectives
of the thesis, in order to orient and motivate the reader. In Chapter[2] we provide
a general introduction to the subject of invariable generation of groups. The
heart of the thesis consists of Chapters[3}{7] In these chapters we prove all the
main results, we provide context for each result, and we propose questions and
conjectures.
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Chapter 1

Main results of the thesis

In this chapter we present a first description of the main results of this thesis.
We are not presenting here the statements of all the main results; we prefer,
instead, to do this in the introduction of Chapters In this way, we believe
that the results can be contextualized in a more satisfactory way.

First of all, we define the main concept of this thesis.

Definition. Let G be a group and let X be a subset of G. We say that X
invariably generates G if (29, x € X) = G for every choice of g(x) € G. We
write in this case (X)r = G.

In words, we are free to replace every element of X by an arbitrary conjugate,
and we must always obtain a generating set for G. We note that, if G is abelian,
then (X); = G if and only if (X) = G.

This concept was introduced by Dixon [Dix92] with motivations from com-
putational Galois theory. In Chapter [2| we will review these motivations, and
we will present some known results in the area.

1.1 Minimal invariable generating sets

In Chapter 3| we will present the content of the paper [GL20], which was written
in collaboration with Andrea Lucchini.

Given a finite group G and a subset X of G, we say that X is a minimal
generating set of G if X generates GG, but no proper subset of X generates G.
We denote by d(G) (resp. m(G)) the smallest (resp. largest) possible size of a
minimal generating set of G.

We can extend these definitions to invariable generation in the obvious way.
Namely, X is a minimal invariable generating set of G if X invariably generates
G, but no proper subset of X invariably generates G. We denote by d;(G)
(resp. mr(G)) the smallest (resp. largest) possible size of a minimal invariable
generating set of G.



In Chapter [3] we will prove various results regarding minimal invariable gen-
erating sets of finite groups, especially in relation to mimimal generating sets.
For instance:

Theorem 1. Let G be a finite soluble group. Then, mi(G) = m(QG).

Theorem 2. Let G be a finite soluble group, and let t be an integer such that
di(G) <t <my(G). Then, G contains a minimal invariable generating set of
size t.

Theorems|I|and [2]appear respectively as Theorems[3.1.1]and [3.1.3]in Chapter
It is known that Theorem [2]is true in the case of usual generation, without
the solubility assumption. More precisely, for every finite group G and for
every d(G) < t < m(G), G contains a minimal generating set of size t. This is a
consequence of a result known as Tarski irredundant basis theorem [Tar75]. The
question whether Theorem [2]is true without the solubility assumption remains
open.

We will prove various other results of this flavour. We will also ask the
following question, which appears as Question in Chapter

Question 3. Let G be a finite group. Is it true that my(G) < m(G)?

In Section [3.10| we will make some remarks which put the results of the
chapter in comparison to the case of classical generation.

1.2 On the number of conjugacy classes of a prim-
itive permutation group with nonabelian so-
cle

The content of Chapter [4is joint work with Nick Gill.

In Chapter[d], we will leave for a while invariable generation, in order to prove
some bounds to the number of conjugacy classes of certain primitive permutation
groups. We believe that these results are interesting in their own, and will be
applied in Chapter [5] to a problem of invariable generation of .S, which we will
discuss in Section [[.3

For a finite group G, let k(G) denote the number of conjugacy classes of G.
Our main result is as follows:

Theorem 4. Let G be a finite primitive permutation group of degree m with
nonabelian socle. Then of the following holds:

(1) k(G) < n/2, and k(G) = O(n’) for some absolute § < 1.
(2) G belongs to explicit families of examples.

See Theorem for a precise statement. In particular, the cases contem-
plated in item (2) are “related” either to two infinite families of almost simple



primitive permutation groups, or to further finitely many almost simple primi-
tive permutation groups.

This theorem refines and complements some results in the area. Specifically,
Maroti [Mar05] proved that, if G is a primitive permutation group of degree
n, then k(G) < p(n), where p(n) denotes the number of partitions of n. This
bound is attained by S,, in its action on n points. Moreover, he proved that if
the socle of G is not a direct product of alternating groups, then k(G) < n®.

See Chapter [ for further background results and further comments and
questions. For instance: In item (1) of Theorem {4 we have k(G) = o(n). Can
we prove that k(G) = o(n) in further cases? See Question and Conjecture
4.4.2

1.3 Large minimal invariable generating sets of
Sn

The content of Chapter []is joint work with Nick Gill.

For a finite group G, recall the invariant m;(G) introduced in Section
In Chapter [5| we will estimate m;(G) in case G = S,,. Our main result is as
follows; this appears as Theorem in Chapter

Theorem 5. Let n > 5 be an integer. Then

. n logn
.y 5TA loglog n
5 ogn < my(Sy) < 2 + (n)—i_0<loglogn>7

where A(n) is the number of divisors of n.

It is well known that A(n) = n°M), therefore we deduce that m;(S,) is
asymptotic to n/2 as n — oo.

Theorem |1} stated in Section implies that, for n <4, m7(S,) = m(Sy).
We will prove the following as a consequence of Theorem

Corollary 6. Let n > 5 be an integer. Then, mr(S,) < m(Sy).

In particular, this gives a positive answer to Question [3]in case G = S,,.

Theorem [4, stated in the previous section, is an essential ingredient in the
proof of the upper bound in Theorem [f]

We will ask some questions, mainly of combinatorial flavour, towards possible

improvements of Theorem [5} see Questions and

1.4 Connected components in the invariably gen-
erating graph
In Chapter |§| we will present the content of the preprint [Gar20b].

Given a finite group G, the invariably generating graph A(G) of G is the
undirected graph whose vertices are the conjugacy classes of G different from



{1}, and two vertices ¢ and y“ are adjacent if (z,y); = G. This graph was
introduced in [Gar20a]. Moreover, we define AT (G) as the graph obtained by
removing the isolated vertices of A(G).

We will prove the following result, which appears as Theorem [6.1.1]in Chap-
ter [G

Theorem 7. For every positive integer n, there exists a finite group G such
that A*(G) has more than n connected components.

This result should be seen in comparison to the analogous graph for the case
of usual generation. Given a finite group G, the generating graph T'(G) of G
is the undirected graph whose vertices are the non-identity elements of G, and
two vertices x and y are adjacent if (z,y) = G. Moreover, we let I't(G) be
the graph obtained by removing the isolated vertices of I'(G). No example of G
is known for which T't(G) is disconnected, which represents a sharp difference
with respect to Theorem [7}

See Chapter [6] and in particular Section [6.3] for further comments, related
to clique number and chromatic number of the graph A(G).

1.5 On the probability of generating invariably a
finite simple group

In Chapter [7| we will present the content of the preprint [GM20], which was
written in collaboration with Eilidh McKemmie.

Given a finite group G and a subset A of G, denote by Py, (G, A) the
probability that, if y € G is chosen uniformly at random, there exists z € A
such that (z,y); = G. In case A = {z}, we will write Pi, (G, z) instead of
PiIIV(G7 {I})

We will prove various results regarding P;, (G, A) in case G is a nonabelian
finite simple group. For instance:

Theorem 8. Let G be a nonabelian finite simple group. There exist an absolute
constant € > 0 and an element x € G such that Py, (G, x) > €.

This appears as Theorem in Chapter [7] In case G is a finite simple
group of Lie type of bounded rank, we will prove a strengthening of Theorem [§]
(see Theorem [7.1.2)), which implies the following

Theorem 9. Let G be a finite simple group of Lie type of bounded rank.
Then, two randomly chosen elements of G invariably generate G with proba-
bility bounded away from zero.

See Theorem [7.1.3] for a more precise statement. Theorem [J] nearly finishes
a problem originally addressed by Dixon [Dix92]. See Section in Chapter
] and also Subsection [7.I.1] in Chapter [7] for more context and details in this
direction.

We also wish to find “small” subsets A of G such that Pj,, (G, A) is close to
1 as the order of G grows.
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Theorem 10. Let G be a nonabelian finite simple group. With explicit excep-
tions (e.g., G2(q) with ¢ a power of 3), there exists a subset A of G of size at
most 6 such that Py, (G, A) tends to 1 as |G| — oo.

The explicit exceptions are perhaps the most surprising part. For instance:

Theorem 11. Let G = Ga(q) with q a power of 3. Then Piny (G, G) = 1/2 +
0(1/q).

Theorems [I0] and [IT] are particular cases of the more general Theorem [7.1.4]
which presents a strong dichotomy. These results admit nice interpretations in
terms of the graph A.(G), whose vertices are the nontrivial elements of G, and
two vertices are adjacent if (x,y); = G. (This graph is obtained from the graph
A(G) — which we introduced in Section — by replacing conjugacy classes
by elements.)

See Subsection [7:1.2] for many comments in this direction, and many com-

parisons to the case of classical generation, specifically to celebrated results of
Guralnick—Kantor [GKO0Q].

11



Chapter 2

(zeneral introduction

In this chapter, we will review the motivations for the study of invariable gen-
eration, and we will present some known results in the area. Although our aim
is to provide a general introduction to the subject, sometimes we will prioritize
the results which, in a way or another, have some connections to the results
presented in Chapter

2.1 Motivation

The concept of invariable generation was introduced by Dixon [Dix92] with mo-
tivations from computational Galois theory. We now review these motivations.

Let f € Z[X] be a monic separable polynomial of degree n. Let K be a
splitting field of f over Q, and set Gal(f) := Gal(K/Q), the Galois group of f.
Then Gal(f) acts faithfully on the n roots of f, and this gives an embedding
Gal(f) < S,.

Question 2.1.1. How can we recognize whether Gal(f) =S5, ¢

Dixon’s idea was the following (in fact the general setup was known well be-
fore Dixon’s paper; see for instance the beautiful survey of Stevenhagen—Lenstra
[SLI6] for a historical overview). Let p be a prime, and assume p t disc(f). We
reduce the coefficients of f modulo p, and we decompose the obtained poly-
nomial into irreducible factors in F,[X]; say f = g1--- g, with g; € F,[X]
irreducible of degree n;. Since p t disc(f), the irreducible factors are pairwise
distinct. Note that ni+---+n; = n; in particular we can associate to the prime
p a partition cycle(p) := (nq,...,n:) of n.

Theorem 2.1.2. (Frobenius) Gal(f), viewed as a subgroup of Sy, contains an
element with cycle type cycle(p).

Now pick primes py,...,pny such that p; 1 disc(f) for every i. By Theo-
rem we know that Gal(f) contains elements o1,...,0n with cycle type
cycle(p1), ..., cycle(pn), respectively.

12



We deduce the following implication:
<O’1, - ,O'N>] =5, = Gal(f) =S,.

It is really necessary to consider invariable generation here, since we know only
the cycle type of the elements (i.e., we know the elements only up to conjugation
in S;,). This gives a method to answer Question m

However, what happens if N is large and {oy,...,0n5} does not invariably
generate S;,7 We cannot select primes forever. The answer is given by another
theorem of Frobenius (proved around 1880), which was subsequently generalized
by Chebotarev in his celebrated Density Theorem.

Theorem 2.1.3. (Frobenius density theorem) Fix a partition p of n. The nat-
ural density of primes p such that p { disc(f) and cycle(p) = p is equal to the
proportion of elements of Gal(f) whose cycle type is equal to p.

Assume now we know that “few” random elements of \S,, invariably generate
S, with good probability. Then pick “many” primes at random, and discard the
primes dividing disc(f). Assume the corresponding elements of Gal(f), given
by Theorem do not invariably generate S,,. By Theorem we can
conclude that, likely, Gal(f) # Sp.

Formally, we have constructed a Monte Carlo algorithm in order to answer
Question which depends on the properties of invariable generation of .S,,.

2.2 Invariable generation of 5,

The efficiency of the algorithm constructed in the previous section depends on
the following question: How small can we take ¢, so that ¢ elements of \S,,, chosen
uniformly at random, invariably generate S,, with good probability?

The first result in this direction was obtained by Dixon [Dix92], who showed
that O((logn)'/?) random elements of S,, invariably generate S,, with prob-
ability tending to 1 as n — oo. A fundamental contribution was given by
Luczak—Pyber [LP93], who showed the existence of an absolute constant ¢ such
that ¢ random elements of S,, invariably generate S,, with probability bounded
away from zero. The exact value of ¢ turned out to be four. This was proved
by Pemantle—Peres—Rivin [PPR16] and Eberhard—Ford-Green [EFGI1T].

Theorem 2.2.1. (1) [PPR16] The probability that four random elements of
S, invariably generate S, is bounded away from zero.

(2) |[EFGI17] The probability that three random elements of Sy, invariably gen-
erate S,, tends to zero as n — oo.

We remark that the probability that a bounded number of random elements
of S;, invariably generate S, is bounded away from 1 — so Theorem 1) is
best possible. The reason is as follows. A random permutation has a fixed point
with probability bounded away from zero (specifically, with probability tending

13



to 1 — e~ 1). Therefore, if we pick a bounded number of random elements, they
all will have a fixed point with probability bounded away from zero. We can
conjugate these elements so that they fix the same point, and in particular we
see that the elements do not invariably generate .S,,.

2.3 General considerations

In this section, we present the basic theory of invariable generation of groups
(that is, the theory that follows somewhat quickly from the definition). Near
the end of the section we will also recall some more advanced results in the area.

2.3.1 Connection with permutation groups

There is an intimate and very important connection between invariable gener-
ation and the theory of permutation groups. For a group G and a subgroup H

of G, set
H=|]JH.
geG

(When we use the notation H , the ambient group G will always be clear from
the context.) We have the following basic lemma, which follows easily from the
definitions. Recall that, if G is a group acting on a set {2, an element of G is
called a derangement if it fixes no point on €.

Lemma 2.3.1. Let G be a group and let X C G. The following are equivalent:
(1) (X)1=G.
(ii) For every proper subgroup H of G, X ¢ H.

(iii) For every transitive action of G on a set with at least two points, X con-
tains a derangement.

Proof. The equivalence (i) <= (ii) follows from the definitions. The equiva-
lence (ii) <= (iii) follows from the fact that, if H is the stabilizer of a point
in a transitive action of G, then H is the set of elements of G fixing at least one
point. O

Clearly, if G is a finite group, in item (ii) it is equivalent to consider only
the maximal subgroups H of G. _

The equivalence (i) <= (ii) says that the subsets H play the role that, in
case of classical generation, is played by the subgroups H. Indeed, (X) = G
if and only if X ¢ H for every proper subgroup H of G. This represents a
complication — the subsets H are harder to handle than the subgroups H.

Nonetheless, the equivalence (i) <= (iii) establishes a strong connection
between invariable generation and permutation groups. In particular, in or-
der to study invariable generation we can invoke the quite advanced theory of
permutation groups; see for instance Section [2.5]

14



It is clear from the definition that, if G is abelian, the concepts of generation
and invariable generation coincide. In case of finite groups, one can extend this
to nilpotent groups.

Lemma 2.3.2. Assume G is a finite nilpotent group, and assume X C G.
Then, (X)r = G if and only if (X) =G.

Proof. In a finite nilpotent group G, every maximal subgroup H is normal, so
H = H. The statement follows immediately from this and Lemma O

One cannot push this beyond nilpotent groups. Indeed, we shall see, mainly
in Chapter [3] that for finite soluble groups the concepts of generation and in-
variable generation present strong differences. See also Detomi—Lucchini [DL16]
for results in this direction.

2.3.2 Is it true that (G); = G?

Is every group invariably generated by any of its subsets? This is not immedi-
ately clear from the definition. A classical (and elementary) theorem of Jordan
from 1872 asserts that every finite transitive permutation group G on a set with
at least two points contains a derangement. By Lemma we deduce the
following.

Lemma 2.3.3. Assume G is finite. Then, (G); = G.

If G is infinite, however, this needs not be the case. One of the most natural
examples is probably the following. Let G = GL,,(C), with n > 2, and let H be
the subgroup of G consisting of the upper_triangular matrices. Jordan normal
form implies that H = G, so by Lemma we see that G is not invariably
generated by any of its subsets (equivalently, it is not invariably generated by
itself).

It is therefore natural to study under which conditions an infinite group
G is such that (G); = G. This problem was first addressed by Wiegold
[Wie76, Wie7T]. More recently, interesting results in this direction have been
proved by Kantor-Lubotzky—Shalev [KLS15|, Gelander |[Gell5] and Gelander—
Meiri [GM17].

Several interesting questions remain open in this area. For instance, is
SL,(Z) invariably generated by itself for n > 37 (JKLSI5l Section 5]).

2.4 Invariable generation of finite groups

Let G be a finite group. Lemma tells us that (G); = G. Can we say
something more? For a finite group G, let d;(G) denote the number of elements
needed to invariably generate G (we introduced this invariant in Section
using a slightly different terminology).

Kantor-Lubotzky—Shalev [KLSTI| proved several results in this direction.
First, they showed that Lemma [2.3.3| can be improved as follows.

15



Theorem 2.4.1. [KLS11] Let G be a finite group. Then, d;(G) < log, |G].

The proof of this theorem uses the Classification of Finite Simple Groups.
Note that the bound is attained by elementary abelian 2-groups. For special
classes of groups, one can obtain much better results. The following was proved
by Kantor-Lubotzky—Shalev [KLS11] and Guralnick-Malle [GMI12b] indepen-
dently.

Theorem 2.4.2. |[KLST1, [GMI12b] Let G be a nonabelian finite simple group.
Then, d;(G) = 2.

The proof of this theorem also uses CFSG. This is not surprising at all — we
know that every finite simple group is 2-generated (not necessarily invariably)
only as an application of CFSG.

We refer to Detomi-Lucchini [DL16] for interesting results regarding d;(G)
in case G is a finite soluble group; and to Tracey [Tral9) for interesting results
regarding d;(G) in case G is a finite linear group or a finite permutation group.

Another problem addressed in [KLS11] concerns the probability of generating
invariably a general finite group. For a finite group G, the Chebotarev invariant
C(G) of G is the expected value of the random variable n that is minimal subject
to the requirement that n randomly chosen elements of G invariably generate
G. Kowalski-Zywina [KZ12] conjectured that C(G) = O(|G|'/?) for every finite
group G. A slightly weaker result was proved in [KLS11], while the conjecture
was proved in full by Lucchini [Lucl§].

Theorem 2.4.3. [Luci8] There exists an absolute constant ¢ > 0 such that
C(G) < ¢|G|"? for every finite group G.

The constant ¢ was estimated by Lucchini-Tracey [LT17].

2.5 Boston—Shalev conjecture

In this section we discuss a topic which is not immediately related to invariable
generation, namely, the solution of the so-called Boston—Shalev conjecture by
Luczak-Pyber and Fulman—Guralnick.

We prefer to include a discussion here, for two reasons. First, this topic
is very important in the study of invariable generation — for instance, some
of the results stated in this chapter make use of these ideas, as well as all the
results which we will prove in Chapter [/} Second, the methods developed by
Fulman and Guralnick are important in their own, and have several applications
in various directions — incidentally, the paper [FG12] is an essential ingredient
in the proof of the results of Chapter [

Since in this thesis we are mainly interested in invariable generation, we will
motivate the interest in the Boston—Shalev conjecture (which we will shortly
state) as follows.

For a finite group G, denote by P;(G,t) the probability that ¢ elements of
G, chosen uniformly at random, invariably generate G. Let M(G) be a set of
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representatives for the conjugacy classes of maximal subgroups of G. It follows
immediately from Lemma that

|Unrenmiay(M)']
G* ’

1-P;(G,t) =

where

In particular, we see that, roughly speaking, P;(G,t) is “large” if and only if
the subsets (M)' of G are “small”. We are now ready to state the following
conjecture.

Boston—Shalev conjecture. There exists an absolute constant € > 0 such
that, if G is a finite simple group and if H is a proper subgroup of G, then

|H]|
— < 1—e
G|

In other words, if GG is simple, the proportion of derangements of G in every
transitive action of G on a set with at least two points is at least e.

Now we know that the conjecture is true. This was proved by Dixon [Dix92]
and Luczak—Pyber [LP93| for alternating groups, and by Fulman—Guralnick
[FGO03l, FG12, [FG17, [FG1§| for groups of Lie type. (By Jordan’s theorem, the
statement is true for groups of bounded order, therefore one can ignore the
sporadic groups.)

Theorem 2.5.1. Boston—Shalev conjecture is true.

This theorem is important in the proof of Theorem [2.4.3] and will be crucial
in all the results of Chapter [7] We remark that, in many cases, Luczak—Pyber
and Fulman—Guralnick proved much stronger results than the mere statement of
the conjecture; we refer to the relevant papers for details. Moreover, the results
of Luczak-Pyber have been subsequently improved by Eberhard-Ford-Green
[EFGI16] and Eberhard—Ford—Koukoulopoulos [EFK16].

As mentioned already, the work by Luczak—Pyber and Fulman—Guralnick
has several applications, which go beyond derangements and invariable genera-
tion. We refer to the introduction of [FG12| for some of these.
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Chapter 3

Minimal invariable generating
sets

The content of this chapter consists of the paper [GL20|, which was written
in collaboration with Andrea Lucchini. The introduction has been changed
slightly, and part of it has been moved to Section (the last section of this
chapter); but the mathematical content is unchanged.

3.1 Introduction

Let G be a finite group, and let X be a subset of G. We say that X is a minimal
generating set of G if X generates GG, but no proper subset of X generates G.
We denote by d(G) (resp. m(G)) the smallest (resp. largest) possible size of a
minimal generating set of G.

Moreover, X is a minimal invariable generating set of G if X invariably
generates (G, but no proper subset of X invariably generates G. We denote
by d;(G) (resp. mr(G)) the smallest (resp. largest) possible size of a minimal
invariable generating set of G.

Our aim is to study minimal invariable generating sets of finite groups, es-
pecially in relation to mimimal generating sets.

3.1.1 Estimating m(G)

There are three clear inequalities:

Instead, it is not immediately clear how to compare m(G) and m;(G). In case
of soluble groups, we give an answer, as follows.

Theorem 3.1.1. Let G be a finite soluble group. Then, m;(G) = m(G).
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The problem is wide open in case of general finite groups. We ask the
following

Question 3.1.2. Let G be a finite group. Is it true that my(G) < m(G)?

In case of positive answer, we would get the following somewhat surprising
chain of inequalities:

d(G) < di(G) <my(G) <m(G).

Although we are not able to answer Question In Section 3.4 we will prove
that the difference m(G) — m;(G) can be arbitrarily large. This statement
is somewhat opposite to the known fact (proved in Kantor-Lubotzky—Shalev
IKLS1I] and Detomi-Lucchini [DL16]) that d;(G) — d(G) can be arbitrarily
large. In Chapter [5 we will also prove that Question [3:1.2] has a positive answer
in case G = S, (see Corollary [5.1.2)).

We will also prove that there exist infinitely many nonabelian finite simple
groups G for which m;(G) = m(G) (see Proposition [3.5.1)).

3.1.2 The Tarski irredundant basis theorem

The Tarski irredundant basis theorem is a theorem in universal algebra, proved
by Tarski [Tar75], which has the following curious consequence.

Theorem. [Tar75] Let G be a finite group, and let t be an integer such that
d(G) <t <m(G). Then, G contains a minimal generating set of size t.

The proof of this result is essentially an elementary and nice counting ar-
gument. One may ask what happens for invariable generation. For soluble
groups, we can give an answer. The proof, however, is different and requires
some machinery — specifically, the theory of crowns, see Section

Theorem 3.1.3. Let G be a finite soluble group, and let t be an integer such
that di(G) <t < my(G). Then, G contains a minimal invariable generating set
of size t.

It is not clear to us what one should conjecture in general. The proof given
for soluble groups is really about soluble groups, and does not give much insight
on what should happen, say, for a finite simple group.

Question 3.1.4. Does Theorem[3.1.3 hold for every finite group G?

3.1.3 Bj-groups

Apisa—Klopsch [AK14] defined the class of B-groups as the class of finite groups
for which d(G) = m(G). We then define the Br-groups as the finite groups for
which d[(G) = m](G)

In Proposition [3.8.2] we will classify the soluble B;-groups. On the other
hand, the problem of investigating the finite unsoluble B;-groups remains en-
tirely open.
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Let us make some remarks. It was proved in [AK14] that a B-group is
soluble. What is more, the following implication holds (see Proposition [3.8.2)).

G (soluble) B-group = @ soluble B;-group. (3.1.1)

On the other hand, a B-group needs not be soluble (we shall see that A is a B;-
group), and moreover the implication does not admit a converse. Indeed,
we will construct many examples of soluble B;-groups that are not B-groups.
Interestingly, these have connections with “secretive” p-groups, introduced in
Kovacs—Neubiiser-Neumann [KNNT1| with different purposes. See Section
for details.

3.1.4 Invariable basis property

Again, we extend a definition from [AKI14], and we say that a finite group G
has the invariable basis property if every subgroup of G is a Bj-group.

In Proposition we will classify the Frattini-free soluble groups with the
invariable basis property. We will also prove that there are only four examples of
nonsoluble groups with the invariable basis property; namely, the finite simple
groups PSLa(5), PSLa(8), 2B2(8), 2B2(32) (see Corollary [3.9.6).

3.1.5 Context

The invariant m;(G) has been introduced in the paper [GL20], which is repro-
duced in this chapter. What else is known about the invariants d(G), d;(G) and
m(G)?

The invariant d(G) has been intensively studied in the literature. For in-
stance, a deep and important theorem states that d(G) = 2 for every nonabelian
finite simple group G. This was proved by Steinberg [Ste62] for groups of Lie
type, and by Aschbacher—Guralnick [AG84| for sporadic groups, the case of
alternating group being folklore.

The invariable counterpart d;(G) has been studied more recently, and in
Section 2.4 we recalled some results regarding this invariant. For instance,
Theorem m states that d;(G) = 2 for every nonabelian finite simple group
G, which represents a strengthening of the equality d(G) = 2.

The invariant m(G) has received some attention in connection to the study
of the Product Replacement Algorithm. For instance, the product replacement
graph T'y(G) is connected for every k > d(G) + m(G) (see Pak [Pak01l, Propo-
sition 2.2.2]), and a random walk on this graph reaches a uniform distribution
in |G|9m(E) k2 1ogk steps (see Diaconis and Saloff-Coste [DSCI8, p. 254]).
Results regarding m(G) have been obtained by Apisa—Klopsch [AK14] and Luc-
chini [Lucl3al, Lucl3b.

We refer to Section for further remarks, concerning mainly the relation
between generation and invariable generation.
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3.1.6 Organization of the chapter and notation

In Section [3.2] we introduce some background material, mainly about the theory
of crowns in finite soluble groups. In Section [3:3] we prove Theorem [3.1.1]
discuss Question [3.1.2) and prove related results. In Section [3.4] we construct
examples of groups G for which m(G) — m;(G) is arbitrarily large. In Section
we show that there are infinitely many nonabelian finite simple groups G
such that m;(G) = m(G). In Section we prove Theorem and make
further considerations. In Section [3.7] we introduce the analogue of the Frattini
subgroup of a group from the point of view of invariable generation. We use this
concept in Sections[3.8)and where we discuss Bj-groups and groups with the
invariable basis property, respectively. In Section we conclude with some
remarks.
As in Chapter [2] for a subgroup H of G, we set

H=|]H.
geG

3.2 Preliminaries

3.2.1 Some elementary considerations

We begin with an easy lemma, part of which is contained in Lemmas and
in Chapter 2| (however, for convenience we restate it here in full).

Lemma 3.2.1. Let G be a finite group, X be a subset of G and N be an abelian
normal subgroup of G. Let m: G — G /N denote the natural projection.

(i) (X)r =G if and only if X ¢ M for every mazximal subgroup M of G.
(i1) If G is nilpotent, then (X); = G if and only if (X) = G.

(i1i) If 7(X) invariably generates G/N, and Y C N generates N as a G-
module, then (X UY)r =G.

Proof. Ttems (i) and (ii) are contained in Lemmas and A proof of
item (iii) can be found for instance in [KLS15, Lemma 2.10]. O

We state another lemma, whose proof follows immediately from the defini-
tions.

Lemma 3.2.2. Let G be a finite group, and let X = {x1,..., 2} be a subset
of G. For every i, let C; be the conjugacy class of G containing x;. Then, X is
a minimal invariable generating set of G if and only if the following conditions
are both satisfied:

(a) There exists a set of mazimal subgroups J = {M, ..., My} of G such that,
for every i # j, C; N M; # 2.
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(b) No proper subgroup of G has non-empty intersection with C; for all i =
1,...,t

In order to bound m;(G) from above, it is convenient to introduce another
invariant, which we denote by +(G), as follows.

For every maximal subgroup M of G, denote by M* the set of G-conjugacy
classes having non-empty intersection with M. Let

C(G) = {M* | M maximal subgroups of G}.

We say that a subset {X1,..., X} of C(G) is independent if, for every 1 < i < ¢,
the intersection N;; X; properly contains N;X;. We denote by +(G) the largest
cardinality of an independent subset of C(G).

Lemma 3.2.3. m;(G) < «(G).

Proof. Let m = m;(G) and let {x1, ..., 2} be a minimal invariable generating
set of G. For 1 < ¢ < m let C; be the conjugacy class of G containing x;.
For every 1 < ¢ < m, there exists a maximal subgroup M; of G such that
{C1,...,Ci—1,Cix1,...,Cn} € M but C; ¢ M. It follows that {M7, ..., M} }
is an independent subset of C(G), and therefore m < ¢(G). O

3.2.2 Crowns

In the remainder of this section we shall review the notion and the properties
of crowns in finite soluble groups. (This notion can be given for arbitrary finite
groups, see [DL0O3|, but we are interested only in the soluble case.) For more
details, see for instance [BBEQG, Section 1.3].

Let G be a finite soluble group, and let Vg be a set of representatives for the
irreducible G-groups that are G-isomorphic to a complemented chief factor of G.
For A € Vg let Rg(A) be the smallest normal subgroup contained in Cg(A) with
the property that Cg(A)/Ra(A) is G-isomorphic to a direct product of copies
of A and it has a complement in G/R¢g(A). The factor group Cg(A)/Ra(A4) is
called the A-crown of G, and it is the socle of G/Rg(A). The positive integer
6c(A) defined by Cg(A)/Ra(A) =g A% () is called the A-rank of G and it
coincides with the number of complemented factors in any chief series of G that
are G-isomorphic to A. Moreover Cg(A4)/Ra(A) is complemented in G/Ra(A4),
so that G/Rg(A) = A%¢(A) x H with H = G/Cg(A).

Lemma 3.2.4. Let G be a finite soluble group with trivial Frattini subgroup.
There exist A € Vg and a nontrivial normal subgroup U of G such that Cg(A) =
Rg(A) x U. If G is nonabelian then A can be chosen with the extra property of
being a nontrivial G-module.

Proof. By [BBEQ6, Lemma 1.3.6], there exists A € Vg and a nontrivial normal
subgroup U of G such that Cg(A) = Rg(A) x U. Assume that A is a trivial
G-module. Then G = Cg(A4) = Rg(A) x U. Write Rg(A) = H, which is
nontrivial if G is nonabelian. In this case there exist a crown Cy(B)/Ry(B)
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and a nontrivial normal subgroup W of H such that Cyx(B) = Ry (B) x W. We
have Cg(B) = Cy(B) x U and Rg(B) = Ry (B) x U, so Cg(B) = Ra(B) x W.
This means that we may consider B in place of A. It is possible that also B is a
trivial G-module. In that case G = Cg(B) = Rg(B)xW = Ry (B)xUxW, and
we can repeat the previous argument with H replaced by Ry (B). Continuing in
this way, we obtain a nontrivial irreducible G-module satisfying our statement,
except in the case when G is abelian. O

The following lemma will be applied several times. It says that essentially
we need to care only of what happens modulo U and modulo Rg(A).

Lemma 3.2.5. [Lucl8, Lemma 4 and Lemma 12] Assume that G is a finite
group with trivial Frattini subgroup and let C = Cg(A),R = Rg(A),U be as
in the statement of Lemma [3.27 If K < G is such that KU = KR = G,
then K = G. In particular, for gi,...,9: € G if (¢1U,...,9:U)r = G/U and
(1 R,...,9:R); = G/R, then {g1,...,g:)1 = G.

The following represents the main result for dealing with invariable genera-
tion of finite soluble groups.

Proposition 3.2.6. [DL15, Proposition 8] Let K be a finite soluble group and
let A be a faithful nontrivial irreducible K-module. We may consider A as a
vector space over the field F = Endg (A). Suppose that (y1,...,yt)r = K. Let §
be a positive integer and let w1, ..., wy € A% with w; = (w15 -..,ws;). Consider
the matriz W whose i-th column is w;:
w11 o Wi
W =

Ws,1 0 Wsgt

Then yiwi, ..., y.w; invariably generate A% x K if and only if the rows of W

(seen as vectors of At) are linearly independent modulo B = {(uy,...,u;) € A? |
U; € [yi,A], 1= 1,...,t}.
In particular, there exist elements w1, ..., wy € A% such that yiwy, . .., yw;

invariably generate A% x K if and only if

t
§ < nt—dimB = dimp Ca(y;).
i=1

We restate this proposition in a slightly different form that will suit better
our exposition.
Corollary 3.2.7. In the notation of the previous proposition, for 1 < i <t let
A; = yi, A] and B; = A/A;. Again we consider A, A;, B; as vector spaces over
the field F = End (A). The entries of the i-th column of W may be seen modulo
A;, that is, may be seen as elements of B;. Let Z denote this new matriz:

w1,1+A1 wl,t+At b1,1 bl,t

Z: . . . .
wsy+ Ay o wsy + Ay bsg - bsy
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Then yiwi, . .., yuw; invariably generate A% x K if and only if the rows of Z
(seen as vectors of By X --- X By) are linearly independent.

3.3 Estimating m;(G)

3.3.1 Soluble groups

Proposition 3.3.1. Let G be a finite soluble group. There exists a minimal
invariable generating set of cardinality m = m(G).

Proof. We argue by induction on |G|. By [Lucl3al Theorem 2], m(G) coin-
cides with the number of non-Frattini factors in a chief series of G. Since
m(G) = m(G/Frat(G)), we may assume Frat(G) = 1. Let N be a minimal
normal subgroup of G and let H be a complement of N in G. By induction
there exist m(G) — 1 elements hq, ..., hm(cy—1 that form a minimal invariable
generating set for H. If n is a nontrivial element of N, then by Lemma [3.2.1
{h1,.+, hm(a)—1,n} is a minimal invariable generating set of G. O

This shows that, in the soluble case, m(G) < m;(G). We now prove the
other inequality, that is, we prove Theorem [3.1.1] Here we use all preliminaries
on crowns introduced in Section

Proof of Theorem[3.1.1 In view of Proposition [3:3.1] we only need to show
that if {x1,...,2;} is a minimal invariable generating set of G, then t < m. The
statement is trivially true if G is nilpotent since, as observed in Lemma [3.2.1]
in this case the notion of generation and invariable generation coincide. So we
may assume that G is soluble but not nilpotent. We prove our statement by
induction on |G|. We may assume Frat(G) = 1. Choose a nontrivial G-module
A € Vg such that R = Rg(A),U,C = Cg(A) satisfy the property described in
Lemma 3.2.4

There exists a positive integer § such that U =g A°. By [Lucl3a, Theorem
2], m = m(G) coincides with the number of non-Frattini factors in a chief series
of G, hence m = m(G/U) + §. Up to reordering the indices, we may assume
that there exists s < t such that x1,...,z, is a minimal invariable generating
set of G modulo U. By induction s < m(G/U) =m — 6.

We work now in G = G/R and, for every g € G, we set g = gR. We have
C/R=UR/R=U = A% and G/R= C/R x H/R where K := H/R acts in the
same say on each of the § factors of C/R = A% and this action is faithful and
irreducible. We may identify G with the semidirect product A% x K and we can
write ; = w;y; with w; € U = A% and y; € K. Since (21U, ... ,z,U); = G/U
and K 2 G/C is an epimorphic image of G/U, we deduce that (yi,...,ys)r = K.

We want to apply Proposition and Corollary and we employ the
notations used there. Moreover, for 1 < k <t we denote by Z,em(x) the matrix
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obtained by Z removing the k-th column:

bl,l ce bl,k—l bl,k+1 T bl,t P1,k
Zrem(k:) = : . . : =: :
bsqi - bsk—1 bsk+1 - bsy Ps,k

(here the p; ; are row vectors; same below with the o; 1), and with Zyee(r) the
matrix obtained by Z keeping only the first & columns:

bii - big o1,k
ety = | o
bsi - bsk 0.k

Since (w1y1,. .., ww)r = G = A’ x K, we have that the rows of Z are linearly in-
dependent. On the other hand, since {z1,...,2;} is a minimal invariable gener-
ating set of G, if s < k <t then (x1,...,2,Tst1,.- s The1, Tht1,---,2Tt)1 # G.
Therefore, by Lemma (T1y oy Ty Tsgds oo s Tjm1, Tjg1, - - Tg)1 # G, and
consequently the rows of Z,.qy (1) are linearly dependent.

We claim that, for every s < k < t, adding to Zyee(r) the (k4 1)-th column
increases dimension of the row space, that is,

din’lF<0'17k7 . 706,k> < dimF<01,;€+1, ey 06,k+1>~ (331)

Indeed, if the dimension stays the same then the (k + 1)-th column is useless,
ie., dimp(o14y...,05:) = dimp(p1 k+1---,P5k+1). But the left-hand side is
equal to J, while the right-hand side is strictly smaller than §: contradiction.
Hence the claim is proved.

Since dimp(o14,...,054) = d we deduce from that ¢t — s < 6, from
whicht <s+d< (m—6)+5=m. O

It is easy to find examples of (nonsoluble) groups for which Proposition m
fails, namely, examples of groups G for which m;(G) < m(G). For instance,
m(As) = 3 while m;(As) = 2 (this is because any invariable generating set of
As must contain an element of order 5 and an element of order 3).

3.3.2 A strengthening of Question [3.1.2

Recall Question which asks whether it is true that m;(G) < m(G) for
every finite group G.

One could ask whether the following strengthening of Question [3.1.2]is true:
if {x1,...,2:} is a minimal invariable generating set of G, then there exist
g1,---,9¢: € G such that {z{',... 29} is a minimal generating set of G. Al-
though we are not able to exhibit a soluble counterexample, the following shows
that the statement is not true in general.
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Lemma 3.3.2. Let G = Asg and consider the following three elements:

(2,3,4)(5,6,7)(8,9,...,18)(19,20, . .., 29),
(1,2)(3,4)(5,6,...,29),
(1,2)(3,4, ...,8)(9,10,...,29).

a
b

C

The set {a,b,c} is a minimal invariable generating set of G, but for every
x,y,z € G, {a®,b¥,c*} is not a minimal generating set.

Proof. Tt can be easily seen that no proper subgroup of Asg contains conjugates
of a, b and ¢, so (a,b,c); = Agg. On the other hand (a,b) stabilizes {1,2, 3,4},
(b, c) stabilizes {1,2} and (a(>®) c) stabilizes {3,4,5,6,7,8} so {a,b,c} is a
minimal invariable generating set of Asg. Now we want to show that, in any
way we conjugate a, b, c, two elements are sufficient in order to generate Asg.
Without loss of generality we may assume that one of this conjugates is a. Let
x,y € Agg. If (a,b”) # Agg, then (a, b”) stabilizes either {1,2,3,4} (in which case
{1,2,3,4} is mapped into itself by x) or {1,5,6,7} (in which case {1,2,3,4} is
mapped to {1,5,6,7} by z). Without loss of generality we may assume that a,b
and z stabilize {1, 2, 3,4}. If (a, ¢¥) # Ay, then it stabilizes {2, 3,4,5,6,7} (and
the 6-cycle in the decomposition of ¢¥ permutes the elements of this subset).
But then (b%, c¥) = Asg. Indeed two conjugates of b and ¢ either generate Asg or
stabilize the same subset of cardinality 2. But this second possibility does not
occur for b* and ¢¥, indeed the support of the 2-cycle in the decomposition of b*
is contained in {1, 2,3, 4} while the support of the 2-cycle in the decomposition
of ¢¥ must be disjoint from {2, 3,4,5,6,7}. O

If G is a finite group, then d;(G) > d(G) and the difference d;(G) —d(G) can
be arbitrarily large. [KLS11l, Proposition 2.5] states that, for every r > 1, there
is a finite group G such that d(G) = 2 but d;(G) = r. We do not know whether
the (somewhat opposite) inequality m(G) > m;(G) is true, but in any case we
may exhibit examples in which the difference m(G) —m;(G) is arbitrarily large.

A first example is given by the symmetric group S,,, in which case m(S,,) —
my(S,) — 0o as n — oo. We refer to Chapter [5| specifically Subsection
for the proof of this fact (which follows quickly from Liebeck—Shalev [LS96]),
and for other results regarding my(.Sy).

We note that [LS96] uses CFSG. In the next section we will give a more
elementary example showing that m(G) —m;(G) can be arbitrarily large. With
this purpose, we recall that in [Lucl3b]| it is noticed that m(A x B) = m(A) +
m(B) for every pair of finite groups A and B.

Question 3.3.3. Is it true that m;(A) + m;(B) = m;(A x B) for every pair
(A, B) of finite groups?

It is easy to see that the inequality m(A)+m;(B) < m;(Ax B) always holds.
Indeed, if {a, . .., a,} is a minimal invariable generating set of A and {by,...,bs}
is a minimal invariable generating set of B, then {(a1,1),..., (ar,1),(1,b1),...,
(1,bs)} is a minimal invariable generating set of A x B. Regarding the equality,
we are only able to prove a very partial result.
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Proposition 3.3.4. Assume that A and B are finite groups without common
composition factors. Then mi(A x B) = mj(A) +m(B).

Proof. Assume that g1 = (a1,b1),...,9m = (@m,bm) is an invariable generating
set of G = AXx B. There exists I C {1,...,m} such that {a; | ¢ € I'} is a minimal
invariable generating set for A and J C {1,...,m} such that {b; | j € J} is
a minimal invariable generating set for B. Then {(ax,bx) | K € I U J} is an
invariable generating set for A x B. So mi(A x B) < mi(A) + m(B). O

3.4 An example: m;(A?)

Since m(As) = 3 and m(A x B) = m(A)+m(B) for every pair of finite groups A
and B, we have m(AP) = 3n. We are going to show that m(A2) —m(Af) — o
as n — o0o. Indeed we shall prove:

Proposition 3.4.1. m;(A?) =n-m;(As) = 2n.

Notice first that, by what we said in the previous section, n - mr(4s) <
my(AR), so it suffices to show m;(AZ) < 2n. In fact we shall bound ¢(A}),
which is enough in view of Lemma Recall the notation C(G) introduced
before Lemma [3.2.3]

Proposition 3.4.2. 1(A?) < 2n.

Proof. We have 5 conjugacy classes Cy, Csy, C3, Cy, C5 in A5 with representatives
1,(1,2)(3,4),(1,2,3),(1,2,3,4,5),(1,5,4,3,2). Notice that C; = C;', Cy =
Cyt, Cy = Cyt, while C5 = € and Cy = C5'. Moreover a maximal subgroup
of As is isomorphic to Ay, S5 or Dip and C(As) contains only two elements:
Y1 = {01702,03} and YQ = {01,02704,05}. Let Q = {01702,03,04705},
Q* ={C1,C5,C4,C5}, A = Q™ and A* = (Q*)™. Notice that we are identifying
the elements of A with the conjugacy classes of Af.
Let G = AF. A maximal subgroup M of G can be of two different kinds:

(1) there exist 1 < ¢ < n and a maximal subgroup Y of Aj; such that
(x1,...,2p) € M if and only if z; € Y (product type).

(2) there exist 1 <i < j < n and ¢ € Aut(As) such that (z1,...,2,) € M if
and only if z; = a:f’ (diagonal type).

As a consequence, the elements of C(G) are of the following kinds:
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We now assume that {X7,...,X;} is an independent subset of C(G) and we set
A; = XiN---nX;, AF = A;NA*. Moreover let A; be the set of the j € {1,...,n}
such that w; ¢ {C4, C5} for every (wy,...,wy) € A;.

We may assume that there exist a,b such that

o If i < a then there exists I; = (r;, s;) such that X; € {C}, s,, Dy, s, }-
o Ifa<i<a+bdthen X; = A, for some 7.
o If a+ b < i then X; = B, for some r.

For i < a, let p; be the smallest equivalence relation on {1,...,n} containing
all the pairs (rj,s;) with j < i. We may assume, up to reordering the indices,
that there exists a; < a such that for every 2 < ¢ < a; the relation p;_; is
finer than p;, while p; = p,, if i > a;. We can describe how A,, looks like.
Assume that By,...,B; are the equivalence classes of the relation p,,. Then
A,, is a product of [ “diagonal subsets”, each of cardinality 5: if ¢1,7» € B; for
some 1 < j < [, then there exists ¢, ;, = £1 such that w;, = wzil’iz for every
(wi,...,wpn) € Ag,. In particular, since [ < n — a;, we have

|Ag,| =5 < 5" and |A] | < 4",

Now assume a; < ¢ < a. There exists an equivalence class B; of p,, containing
ri and s; and n = +1, that ws, = w; for every (wi,...,wp) € X;. As we
noticed above, there already exists € = €, 5, such that ws, = wy, for every
(wi,...,wpn) € Ay,. We must have n = —e (otherwise A,, N X; = A,,), and
consequently wy, = wy, = wy !, (i.e. wy, ¢ {C4,C5}) for every (wi,...,wy) € A,
In particular
AL
5

Notice also that |Ag, | = 0 and |A,| > a2, where we set ag = a — ay.

Now assume a < i < a+b: again when we consider the intersection A; _1NX;
we add the restriction that w; cannot belong to {Cy, Cs}, so i ¢ A, (otherwise
A, NX; =A,) and

ATl <

A*
‘Ajlg ‘ zfl|.
2

Moreover |Aq4s| = ag + b.
Finally let a 4+ b < . We may assume that there exists ¢; such that X; = B,
with r € Agyp ifand only if i <a+b+c¢1. fa+b<i<a+b+c, then
A7

A7 < .
‘ Z| 2

We must have ]
4n . 3¢z

<
| = gar . 9aztbter . fe2

1 < |A2+b+cl

and consequently 2a; +as+b+c; < 2n. Set o = c—c;. Notice that as+b+cy < n
(since co < |{1,...,n}\ Aats| <n—az —0b) and ¢; + ¢3 < n (since there are at
most n maximal subgroups of kind B,.), hence 2¢5 + as + b+ ¢ < 2n. But then
2t = (2a1 +az +b+c1) + (2c2 + as + b+ ¢1) < 4n, from which ¢ < 2n. O
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3.5 m;(G) = m(G) with G nonabelian simple

In this section we will exhibit infinitely many nonabelian finite simple groups G
for which m;(G) = m(G) holds.

Proposition 3.5.1. Assume p is a prime such that the following conditions
are both satisfied: p = 1 mod 40 and p = 2 mod 3. Then mr(PSLy(p)) =
m(PSLa(p)) = 3.

Notice that there exist infinitely many primes p satisfying the conditions
in the statement. Indeed, every prime p = 41 mod 120 satisfies them, and
there exist infinitely many such primes by Dirichlet’s theorem on arithmetic
progressions. We remark that, with analogous proof, the statement holds also
for p = —1 mod 40 and p = 1 mod 3. We proceed with the proof of the
proposition.

Proof. In [Jam13| it was shown that, for p > 31, m(PSLa(p)) = 3, hence it
remains to prove my(PSLa(p)) = 3. Let G, = PSLa(p). The subgroup structure
of this group is well known, and we refer the reader to [Suz82, Chapter 3,
Section 6] for detailed information. In particular, the condition p = 1 mod 40
implies that the isomorphism classes of maximal subgroups of G, are exactly
the following: dihedral groups D,_; and D, of order p— 1 and p+ 1, a Borel
subgroup B of order p(p — 1)/2, H = A5 and K = S,.

Consider X = {x,y,z} where |z| = 3, |y| = 4 and |z|] = 5. No proper
subgroup of G\, contains elements of order 3, 4 and 5, hence X is an invariable
generating set (the conditions on p imply that, while B and D,_; contain ele-
ments of order 4 and 5, they do not contain elements of order 3). Moreover, in
G, every element of order coprime to p can be conjugate inside a fixed dihedral
group, hence whenever |a| = |b| > 3 and ged(p, |a]) = 1, we have a%» N (b) # @.
Then, order considerations imply that any two elements of X can be conjugate
inside a suitable maximal subgroup of G. This shows that m;(G,) > 3.

For the other inequality, we will show ¢(G,) < 3, so that m;(G,) < 3 by
Lemma All subgroups isomorphic to B are conjugate, and all involutions
are conjugate, hence C(G),) consists of Dy 4, Dy .4, B*, H*, K*. We have that
B*N D, =D, 4yNDg., is the conjugacy class of involutions, which belongs
to every member of the list. Moreover, D;_; C B*. This easily implies (Gp) <
3. O

3.6 The Tarski irredundant basis theorem

A nice result in universal algebra, due to Tarski and known with the name of
Tarski irredundant basis theorem (see [Tar75|, or [SB8I, Theorem 4.4]), im-
plies that, for every positive integer k& with d(G) < k < m(G), G contains a
minimal generating set of cardinality k. A natural question is whether there
exists a similar result for the invariable generation. Tarski’s theorem relies on
an elementary but clever counting argument which is quite flexible and can be
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adapted to several different situations. However, as we shall see in this section,
using this argument we are able to obtain only a weak and partial result. In
order to see the problems in applying Tarski irredundant basis theorem to the
invariable generation, we find it is interesting to sketch the proof of this partial
result.

3.6.1 Trying to use Tarski’s argument

Tarski’s theorem is based on the notion of closure operator ([SB81, Definition
5.1]), which is a function C, from and to subsets of G, such that X C C(X),
CY)CCX)ifY C X, and C(C(X)) = C(X). In case of generation, one
defines C'(X) = (X). For the argument, it is important that C(X) = G if and
only if X generates G (this is obviously true in the case when we define C(X) =
(X)). We should have this property also in the case of invariable generation. If
X ={x1,..., 2}, the first definition that comes to mind is then

C(X)=XU m (.. )
(91,..-,9¢)EG?

Artificially, we have imposed X C C(X), and monotonicity is immediate.
What is not immediate from the definition, but straightforward to check, is that
C' is also idempotent. Moreover, it is not difficult to show that C(X) = G if
and only if (X); = G. Therefore we have a closure operator, and we may be on
the right track.

Now if we define, for n, k > 1,

Gux)= |J o) CiX)=0uX), CitHX)=CalCh(X)),

YCX |Y[<n

following [SB8I] we may call a finite group G invariable n-ary if C(X) =
Usen Ch(X) for every subset X of G. Using this notion, it is possible to bound
the “gap” that can occur between minimal invariable generating sets. More pre-
cisely, if we denote by IrrB;(G) the set of the positive integers n such that G
has a minimal invariable generating set of size n, we have the following

Theorem 3.6.1. Let G be an invariable n-ary finite group, withn > 2. Ifi < j
with i,j € IrBy(G) such that {i+1,...,j—1}NIrrB;(G) = &, then j—i < n—1.

Proof. Follows from the proof of [SB81, Theorem 4.4]. O

Corollary 3.6.2. If G is an invariable 2-ary finite group then, for every d;(G) <
kE < my(G), there exists a minimal invariable generating set of size k.

Notice that a finite group G is invariable 2-ary if the following holds: for
every X C G, if C5(X) = X then C(X) = X.

We see some problems in this approach. The first is that, although Theorem
does give a bound, we are not able to give a structural interpretation of
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the property of being invariable n-ary. Moreover, in case of nilpotent groups
the closure operators defined for generation and for invariable generation need
not coincide (remember that, instead, the notions of generation and invariable
generation do coincide). Finally, the following result shows that Theorem m
cannot give any absolute bound.

Lemma 3.6.3. For every integer n > 2, there exists a finite group G which is
not invariable n-ary.

Proof. Let n > 2. Assume we prove that there exists a finite group G with
the following property: d;(G) > n + 1 and there exists g € G that does not
lie in any proper normal subgroup of G. Then, if we set X = G\ {g}, we
have that (X); = G (since |G\ M| > |M| for every proper subgroup M of
G). Hence C(X) = G ¢ X. On the other hand, for every z1,...,z, € G,
N := ﬂgieG@:{l, ...,x9) is a proper normal subgroup of G, hence g ¢ N. This
shows that C,,(X) C X, from which it follows that G is not invariable n-ary.
We are left to exhibit a group with the property described above. For a
supersoluble example, consider G = P x @), where P = C and = C, for
primes p and ¢, with ¢ dividing p — 1, and @ acts on each copy of C, as
multiplication in the field F,,. It can be easily seen that d;(G) = n+1. Moreover
every proper normal subgroup of G is contained in P, so we can take in the role
of g any element of G \ P. O

Summarizing, in order to apply Tarski irredundant basis theorem to the
invariable generation we would need to define a closure operator C' on the set
of subsets of G with the following two properties:

(1) C(X) =G if and only if (X); =G,
(2) C(X) = U,en C4(X) for every subset X of G.

We are not able to find a closure operation satisfying (1) different from the one
introduced above. However this fails property (2). So the question of extending
Tarski’s theorem to the invariable generation remains open (see Question |3.1.4)).

3.6.2 Proof of Theorem 3.1.3

We now show that we can extend Tarski’s theorem in case of soluble groups. In
other words, we prove Theorem [3.1.3]

Proof of Theorem[3.1.3 We need to show that, if {zi,...,z;} is a minimal
invariable generating set of G, with ¢ < m := m(G), then there exists a minimal
invariable generating set of GG of cardinality ¢ + 1.

The beginning of the proof is very similar to that of Theorem given
in Section As we did there, we prove our statement by induction on |G]|.
We may assume that G is soluble but not nilpotent, the statement for nilpotent
groups being easy to check (without applying Tarski’s theorem). Again we may
assume Frat(G) = 1, and we choose a nontrivial G-module A € V¢ such that
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R =Rg(A),U,C = Cg(A) satisfy the property described in Lemma We
let § be such that U =g A%. By [Luci3a, Theorem 2|, m = m(G/U) + 4. Up to
reordering the indices, we may choose s < t such that zi,...,z4 is a minimal
invariable generating set of G modulo U.

In addition to what done in the proof of Theorem [3.1.1} we further choose,
as we may, a complement H of U in G with R < H. For 1 < i < t, we write
x; = w;h; with w; € U and h; € H.

We work in G = G/R and, for every g € G, we set g = gR. We may identify
G with the semidirect product A% x K with K = H/R. Since (z,U, ..., x,U); =
G/U and K = G/C is an epimorphic image of G/U, we deduce that (Zy,...,Ts)s
=K.

As in the proof of Theorem [3.1.1} we want to apply Proposition and
Corollary and we employ the notations used there. A technical, but
important, step here is that we pick complements for A; in A. Namely, for
1 < i <t we decompose A as A = A; & C;. Here the C; play the role of
the B; in Theorem and Corollary with the advantage (not apparent
yet) that they are subspaces of A. Then, if we denote by ¢;; the projection of
wj; € A onto C;, the matrix Z of Corollary is replaced by

Ci,1 - Cit

Cs1 0 Cog

Moreover, for 1 < k < t the matrices Ziem(r) and Zyeer) of Theorem
become here

€11 - Ck-1 Cik4+1 - Cit
Zrem(k) =
cs1  Csk—1 Csk4+1  cc Cot
Cci1 " Cik
Zxee(k) =
Cs1 0 G5k

)

As in Theorem [3.1.1} the rows of Z (seen as vectors of Cy x -+ x Cy < A') are
linearly independent, while, for every s < k < t, the rows of Z,en,(x) are linearly
dependent.

One observation. The definition of Cj, hence of the c;;, depend upon the
element h;. Then, once the c;; have been defined, the h; have somewhat done
their work (concerning generation modulo R), and we do not need to care about
them anymore. Indeed, we only need to care of linear dependence of the rows
of Z inside C; x --- x Cy or, equivalently, inside A’. Then also the C; are not
important anymore. This gives the possibility to suitably modify, to “clean”
in some sense, the elements z; without affecting their property of invariable
generation.
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As a first example, if we denote by w; € A% = U the i-th column of Z, we
may replace x; with
€Xr; =

~ ﬁzhl if ¢ < S,
W; otherwise.

It is easy to see that {¥y,...7:} is a minimal invariable generating set of G.
Indeed, by the choice of s the set invariably generates modulo U and it is not
possible to remove one among the first s elements. On the other hand, all the
considerations regarding the invariable generation modulo R are not affected,
because they concern linear dependence of the rows of Z, and this matrix does
not change in passing from z; to z;. This implies that {Z1,...Z;} invariably
generates G minimally.

Now choose a subset J = {iy,...,4,} of {1,...,s} minimal with respect to
the property that the § vectors

(Cjiirs -+ Clyius Cyst1s -5 Cjit)

for 1 < j < 6 are linearly independent. The arguments applied in the previous
paragraph imply that we still obtain a minimal invariable generating set if we
replace T; = w;h; with h; for every j € {1,...,s}\ J. So from now on we will
assume w; = 0 for every j € {1,...,s}\ J.
If J # @, then we obtain a minimal invariable generating set of size t + 1 by
replacing z;, = w;, h;, with the two elements w;, and h;,.
So we may assume J = &, from which it follows that the first s columns of
Z are zero. For convenience, we may remove from the matrix Z such columns.
The rank of the matrix clearly does not change. We call the matrix obtained in
this way again Z.
Cls+1 **° Cip
7 =
Css+1  *+°  Cot
For s < k <t, we remove the first s columns in Zyepx) and Zyee(r)- Again, the
rows of Z are linearly independent (i.e. rank Z = ¢), while for s < k < t the
1ows Of Zyem(k) are linearly dependent (i.e. rank Zyopm k) < 0).

Now the same argument as in the end of Theorem shows that for
s < k < t, rank Zkee(k) < rank Zkee(k+1). Let

ni = rank chc(s+1)7 ng = rank chc(s+2) — rank chc(s+1)7 RN

Ny = rank Zyee(s) — rank Zyee(z—1)-

Notice that n; +---+ns_s = 6, and 1 < n; < n for every i. Let now
F = Endy(A) and n = dimpA. Fixing a basis for A as an F-vector space, we
may identify each element of A as a vector of F™. Denote by e; the vector of
F™ all of whose entries are 0, expect the ¢-th which is 1, and consider the block
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matrix

el 0 0
T
0 e - 0
=10 en 0
0 0 e1
00 e

Using the definition of the e;, it is easy to check that we still obtain a min-
imal invariable generating set if we replace Z with Y. More precisely, if we
consider the i-th column of Y as an element g,,; of U = A% we get that
{Z1,...,%s,Ys+1,---, 4t} is a minimal invariable generating set of G.

Assume first that there exists i € {1,...,s—t} with n; > 1. Then 7,,; € A°
has at least two nonzero entries, and it suffices to split ysy; in two vectors: if
we define

31 = (0,...,O,el,...,eni_l,(),(),...()),

Z=1(0,...,0,0,..., 0,e,,0,...0),

then the set {Z1,...,Zs, Ust1,---, Ut U{Z1,22} \ {Us+i} is @ minimal invariable
generating set of size ¢t + 1.

Assume finally n; = 1 for every i € {1,...,t — s}. In this case t — s = 4.
Since t < m = m(H) + 9, we get s < m(H). Then, by induction, there exists

a minimal invariable generating set {El, e ,ES+1} of H of cardinality s + 1. It
follows that {ki,...,ks41,ZTs41,.-.,2Z¢} IS a minimal invariable generating set
of G of cardinality ¢t + 1. O

3.7 The invariable Frattini

The Frattini subgroup Frat(G) of a finite group G is defined as the intersection
of all maximal subgroups of G. An important feature of this subgroup is that
it coincides with the elements of G that are useless in generating G. More
precisely, Frat(G) coincides with the set of elements of G that can be dropped
from every generating set of G (without compromising generation). This feature
implies that the generation properties of G are essentially the same as those of
G/ Frat(G). Therefore, if we are interested in generation we can factor out
Frat(G) with no harm. This considerably simplifies the situation, since the
structure of Frattini-free groups is much more transparent than that of general
groups (at least for soluble groups: think of how many times we applied Lemma

and Lemma, .
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Here we shall define the analogue of the Frattini subgroup from the point
of view of the invariable generation. This will allow us to properly state the
results of Section _

Consider the set ¥ = X(G) of all maximal members of the set of all H, where

H varies among the proper subgroups of G. Set Frat;(G) = (37¢s, M.

Lemma 3.7.1. Frat;(G) coincides with the set of elements of G that can be
dropped from every invariable generating set.

Proof. Assume = € Frat;(G) and assume {x} U X invariably generates G for
some set X. If X does not invariably generate G' then X C M for some M € %,
hence {x}UX C M, against the assumption of invariable generation. Conversely,
assume z ¢ Frat;(G): choose M such that = ¢ M. Then, by the maximality of
M it follows that ({z} U M); = G, and clearly & cannot be omitted from this
invariable generating set. O

By the previous lemma, Frat;(G) plays, for the invariable generation, the
same role played by the Frattini subgroup for the usual generation. Unfortu-
nately Frat;(G) needs not be a subgroup. For instance, if G = As then Frat;(G)
is the set of all involutions of G'— hence it generates G.

Notice that if K € X(G), then K is a maximal subgroup of G and clearly
if M is a maximal subgroup of G, then there exists a maximal subgroup K of
G such that K € 3(G) and M € M C K, hence, by definition, Frat(G) C
Frat; G. This, if we want, is the reason why we can factor out Frat(G) also in
the invariable setting.

Notice that Frat;(G) is defined in a strange manner. Indeed, we do not
intersect the M’s for M running among all maximal subgroups of G; we take
instead only the maximal sets among the M’s. This is important for the proof
of Lemma[3.7.1] However, we do not know whether this is really necessary, and
we propose the following

Question 3.7.2. For a finite group G, does Frat;(G) coincide with the inter-
section of all M, where M runs among all maximal subgroups of G ¢

What we do know is that the two concepts are different a priori, meaning
that there may exist maximal subgroups M; and M> such that M; is properly
contained in M,. For example in G = Ag one can consider M; = S; and
My = 3% :42(S3052) N Ag. Then M is the set of the elements of G of order
different from 5, while Ml does not contain elements of order 5 and moreover
contains only one of the two conjugacy classes of elements of order 3. Hence
M; C M,. Nevertheless, once again this phenomenon cannot occur in the
soluble world.

Lemma 3.7.3. Assume that G is a finite soluble group and let My, My be two
mazximal subgroups of G. If My C Ms, then My = M.

Proof. We prove the statement by induction on the order of G. We may as-
sume Frat(G) = 1. Choose a nontrivial G-module A € Vg such that R =
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Rg(A),U,C = Cg(A) satisfy the property described in Lemma We fur-
ther choose a complement H of U in G with R < H. We denote by ./\/11 the set
of the maximal subgroups of G containing U and by M5 the set of the maximal
subgroups of G supplementing U. If M € M, then, by Lemma 3.25, R C M
and M = WH" with W a maximal H-submodule of U and v € U. Assume now
M1 - M2 We consider the different cases:

—_~— —_~—

(1) Ml,Mz € M. In this case Ml/U C M,/U, so by induction M; /U =
Moy / U, and consequently M1 M2

(2) My, My € My. We have My = Wi HY and My = WoH"2. If Wy # W,
then <Mf1,M 92y = @ for every g1,g2 € G, hence we cannot have neither
the inclusion Ml - M2 nor the inclusion Mg - M1 If Wi = Wy then M,
and M are conjugates and M1 Mg

(3) My € My and My € Ma. In this case <M191,M292) G for every gi, gz € G
and, as above, we cannot have neither M, 1 C Mg nor M2 C M, 1. O

In particular, it follows from the previous lemma that Question has an
affirmative answer in case of finite soluble groups.

We make another little regression before going on with the next, more sub-
stantial, section. It is well known that if a prime p divides the order of a finite
group G, then it divides also the order of G/ Frat(G). In particular, G\ Frat(G)
contains elements whose order is divisible by p. The analogue statement for in-
variable generation is false in general. For instance, if G = A5 then G\ Frat;(G)
does not contain elements whose order is divisible by 2.

Notice that in the case of classical generation we can say a little more,
namely, we can say that G \ Frat(G) contains elements of p-power order. This
follows from the fact that it is always possible to lift an element without affecting
the set of prime divisors of its order. For soluble groups, the corresponding
“invariable” statement is true as well, although for the proof we invoke Hall’s
theorems.

Lemma 3.7.4. Let G be a finite soluble group. If a prime p divides |G|, then
the set G\ Frat;(G) contains elements of p-power order.

Proof. Consider a chief series of GG, choose a nontrivial element from every com-
plemented chief factor, and lift it to an element of G of prime power order. It is
easy to check that these elements together form an invariable generating set; we
may therefore extract a minimal invariable generating set X. If X did not con-
tain any element of p-power order, then Hall’s theorems would imply X C K,
where K is a Hall p-complement, contradicting the fact that (X); = G. O

We apply this to prove a lemma that we will need in the following section.
Unless otherwise stated, here and in the following sections modules are written
multiplicatively, so that 1 denotes the identity element.
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Lemma 3.7.5. Let H be a finite soluble group, and let V' be an H-module of
finite p-power order. If Cy(h) =1 for every h € H \ Frat;(H), then p does not
divide |H|.

Proof. Assume by contradiction that p divides |H|. Then, by Lemma m
there exists h € H \ Frat;(H) of p-power order. Now we may construct G =
V x (h). This is a finite p-group, hence VN Z(G) # 1, from which Cy (h) # 1,
contradicting the hypothesis. O

3.8 Bj-groups

A finite group G is called a B-group if d(G) = m(G). The letter B refers to the
word “basis”, since the property d(G) = m(G) is a fundamental one for finite
dimensional vector spaces. A classification of the Frattini-free B-groups is given
in [AK14, Theorem 1.4]: G is a Frattini-free B-group if and only if one of the
following holds:

(1) G is an elementary abelian p-group for some prime p;

(2) P x @, where P is an elementary abelian p-group and @ is a nontrivial
cyclic g-group, for distinct primes p # ¢, such that @ acts faithfully on P
and the @-module P is a direct sum of m(G) — 1 isomorphic copies of one
simple module.

We may give a similar definition for the invariable generation: a finite group G
is called a Br-group if d;(G) = m;(G). It turns out that B-groups are Bj-groups
(we include this statement in Proposition below). Indeed, B-groups are
soluble. Moreover, m(G) = d(G) < d;(G) < m;(G) = m(G), where the last
equality follows from Theorem (one can also check directly that the groups
in (1) and (2) are Br-groups).

The converse implication is false. For example dj(A4s) = mr(A4s) = 2, so As
is a By-group but not a B-group. Another example is the following. Since A =
SL2(4) we may consider G = ASLy(4) =2 V % As, where V is a 2-dimensional
vector space over the field Fy with four elements. The elements of order 3 and
5 in As act fixed-point-freely on V', so if ¢ € G either |g| divides 4 or g is
conjugate to an element of order 3 or 5 in As. If X is an invariable generating
set of GG, then X contains necessarily an element of order 3, an element of order
5 and a 2-element with a nontrivial power in V'; but three elements of this kind
invariably generate G, so d;(G) = m;(G) = 3.

In this section we want to study the structure of soluble B;-groups. First
notice that there exist soluble B;-groups that are not B-groups. Indeed the
quaternion group Qs is isomorphic to an irreducible subgroup of GL2(3) and we
may consider G =V x Qg where V is a 2-generated vector space over the field
F3. The action of Qg on V is fixed-point-free, which implies that no element of
G has order 6, so an invariable generating set of G must contain two elements
of order 4 and one element of order 3, and consequently d;(G) = 3 = m(G).
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It turns out that the soluble Bj-groups which are not B-groups are, in a
sense, generalizations of the above example.

Lemma 3.8.1. Assume that H is a finite soluble group and that N is a faithful
irreducible H-module. Then G = N x H is a Br-group if and only if the following
conditions hold:

(1) H is a Br-group.
(2) Cn(h) =1 for every h € H \ Frat;(H).

Proof. Notice that if (hy,...,h); = H and 1 # n € N, then by Lemma
(h1,...,he,n); = G. Moreover, by Proposition there exist ny,...,n; € N
such that (hini,...,huny)r = G if and only if Cy(h;) # 1 for some 1 < @ < ¢.
So G is a By-group if and only if all the minimal invariable generating sets of
H have the same cardinality (i.e. H is a Br-group) and whenever an element
h of H appears in some minimal invariable generating set of H (i.e. whenever
h & Frat;(G)), then Cn(h) = 1. O

Proposition 3.8.2. Let G be a finite soluble group. Then G is a Br-group if
and only if one of the following occurs:

(1) G is a B-group;

(2) G/Frat(G) =2 N x H where H is a Br-group, N is a faithful irreducible
H-module and Cy(h) =1 for every h € H \ Frat;(H). In particular, by
Lemma[3.7.5, H and N have coprime orders.

Proof. We may assume Frat(G) = 1. Let m = m;(G) = m(G) and F' = FitG.
We have that F' has a complement H in G and that F' = N x---x N; where N; is
an irreducible H-module. First we claim that IV; =g N; for every ¢ # j. Indeed
assume for example N1 225 Ny. Choose 1 # 21 € Ny and 1 # x5 € Ny and let
x = x1xo. Take a set {y1,...,Ym—2} of invariable generators of G modulo Ny N,
and consider X = {y1....,Ym—2,2}. Assume that there exist g1,...,gm—2,9 €
G such that Y := (y{",...,y0" >, 29) # G. It follows that Y is a common
complement of N; and N5, but this implies N7 =g Ni, a contradiction. So
(X)r =G and d;(G) < m —1 < m =m;(G), against the assumption that G is
a Br-group. So our claim has been proved and we may assume F =g Nt for a
suitable irreducible G-module N. Let K = Endg N and n = dimg N. Recall that
F = Cg(F) and G/F is isomorphic to a subgroup of GL,(q), being ¢ = |K].
There are three cases:

(a) N is central. In this case G = F is an elementary abelian p-group.

(b) N is non central and n = 1: in this case G/F is cyclic: but then
my(G/F) = d;(G/F) = 1, hence G/F is a g-group for some prime ¢
not dividing |N|. We conclude that G = F' x ), where F' is an elementary
abelian p-group and @ is a nontrivial cyclic g-group, for distinct primes
p # ¢, such that @ acts faithfully on F' and the Q-module F' is a direct
sum of m(G) — 1 isomorphic copies of one simple module.
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(¢c) N is non central and n # 1. We claim that this implies ¢ = 1. Indeed
G = N' x H satisfies the hypothesis of Proposition Suppose t # 1,
let {y1,...,Ym—t} be an invariable generating set of H and take y,—++1 =
<o+ =1yYm—1 = 1. Since

Z dimKCN(yi) >

1<i<m—1

> dimgCn(y) =n(t—1)>2(t—1) > ¢,

m—t<i<m—1

there exist wy,...,w,—1 € Nt such that G = (yrw1, ..., Ym—1Wm—_1)1,
but then d;(G) < m —1 < m;(G), a contradiction.

In cases (a) and (b) G is a B-group, and it was already observed that B-groups
are Br-groups. In case (¢) we may apply Lemma to conclude that G is a
Br-group if and only if the condition in (2) is satisfied. O

To construct B-groups that are not B-groups, we have to look for non-cyclic
B-groups H admitting a faithful irreducible H-module N with the property that
Cn(h) =1 for every h € H \ Frat;(H), and construct then G = N x H.

For example, the dicyclic group H of order 12 is a Bj-group and has an
irreducible and fixed-point-free action on the 2-dimensional vector space V over
the field with 13 elements, so N x H is a Br-group of order 12132 which is not
a B-group.

We can also take H to be a non-cyclic p-group. In this case, however, the
only possibility to have an irreducible fixed-point-free action is when p = 2 and
H is a generalized quaternion group [Rob12l 10.5.5]. If we want examples with p
odd, we need finite p-groups H with an irreducible action on a module N which
is not fixed-point-free, but such that Cy(y) = 1 for every y ¢ Frat H = Frat; H.

Interestingly, the p-groups with this property have been studied with dif-
ferent purposes. They have been called “secretive” in [KNNT1]. Wall [Wal75|
proved that for each prime p and integer d > 2 there exists a finite secretive
p-group P with d(P) = d. Therefore we have several examples of soluble B;-
groups which are not B-groups.

Outside the soluble case we know almost nothing. The problem of investi-
gating the finite unsoluble B;-groups is entirely open.

3.9 Invariable basis property

A group G has the basis property if and only if d(H) = m(H) for every H < G.
The groups with this property are classified in [AK14, Corollary A.1]. In a
similar way we can say that G has the invariable basis property if d;(H) =
my(H) for every H < G. If G has the invariable basis property, then every
cyclic subgroup of G has prime-power order. The groups all of whose elements
have prime-power order are called CP-groups. They are studied in [Hei06].
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Lemma 3.9.1. Let G be a finite group and let N be a soluble normal subgroup
of G. Denote by t the number of non-Frattini factors lying below N in a chief
series passing through N. If @ N, ..., gaN is a minimal invariable generating set
of G/N, then G admits a minimal invariable generating set of cardinality d+t.

Proof. The proof is by induction on ¢, so it suffices to prove this statement in the
particular case when N is a non-Frattini minimal normal subgroup of G. In this
case there exists a complement H of N in G. For every i, we can write g; = h;n;
with h; € H and n; € N. For 1 #n € N, by Lemma{hl,...,hd,n} is a
minimal invariable generating set of G. O

Lemma 3.9.2. Let G be a finite group and let N be a soluble normal subgroup
of G. If G has the invariable basis property, then G/N also has the invariable
basis property.

Proof. Follows immediately from Lemma [3.9.1] O

Proposition 3.9.3. Suppose that G is a finite soluble group with Frat(G) = 1.
Then G satisfies the invariable basis property if and only if one of the following
occurs.

(1) G is an elementary abelian p-group.

(2) G = PxQ, where P is an elementary abelian p-group and @ is a nontrivial
cyclic g-group, for distinct primes p # ¢, such that @ acts faithfully on P
and the @-module P is a direct sum of isomorphic copies of one simple
module.

(3) G =N x H, where H is a generalized quaternion group, the action of H
on N is irreducible and |N| = p? where p is a prime with p = 3 mod 4.
In this case H coincides with the Sylow 2-subgroup of SLa(p).

Proof. G is in particular a Bj-group, so it satisfies one of the two possibilities
described in Proposition If G is a B-group, then G satisfies (1) or (2).
Otherwise G = N x H where N is H-irreducible, dimgyq,, (v)N # 1, Cn(h) =1
for every h € H\Frat;(H) and (|H|,|N|) = 1. Moreover G is a soluble CP-group
so, by [High7, Theorem 1], G has order divisible by at most 2 primes. Since
(|H|,|N|) = 1, we conclude that H has prime power order. Since every element
of G has prime power order, we also deduce that H acts fixed-point freely on
N. By [Robl2, 10.5.5], H is cyclic or generalized quaternion. However we may
exclude the first case, since it implies dimgyqg, (v)N = 1.

Let us first consider the case H = Qg, the quaternion group. Assume |N|
is a power of p, being p an odd prime. Let F, be the field with p elements.
We have, up to equivalence, a unique faithful irreducible F,Qg-representation,
say ¢p, and this representation has degree 2. Indeed choose a, b in F,, such that
a’? +b? = —1. Then ¢, : Qs — GLo(F,) is defined by setting

¢p(z’)=(z ba), ¢p(j)=<(1) _01>7 ¢p(k)=(ba _Z>
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Since Lo

Qs acts fixed-point-freely on N = Fg and G = N X Qg is a Br-group. Notice
that ¢, (i), ¢p(j) and ¢, (k) have minimal polynomial 2% + 1.

If p =1 mod 4, then there is ¢ € F,, such that c? = —1, hence we may
choose (a,b) = (¢,0) and ¢,(¢) has eigenvalues ¢ and —c. In this case consider
X = N x (i), where N = (wy,ws) with w! = cw; and w§ = —cw,. We have

X = (w1 + wa,i)y, so 2 = dj(X) < my(X) = 3 and G does not satisfy the
invariable basis property. It follows that p =3 mod 4.

Consider now the general case G = V X QQan, where V' is an elementary
abelian p-group and Qo is the generalized quaternion group

—2

n—1 n _ -~
QQ’L:<$7y|$2 :1,y2:l’2 Y lxy:x 1>'

Suppose that this group has the invariable basis property. In particular K =
(:z:2n73, y) = Qg is a subgroup of Q2= and V x K is a subgroup of G. Since G
has the invariable basis property, V x K is a Bj-group, hence by Proposition
V is a faithful irreducible K-module. It follows that |V| < p? and Qan
can be identified with a subgroup of GLy(p). Since V' x K has the invariable
basis property, we conclude again p = 3 mod 4. Moreover, y is an element of
order 4 of GLy(p), hence its characteristic polynomial is t> + 1 and consequently
dety = 1. Let v and § be the eigenvalues of = (in the algebraic closure of F,).
Since z and 2! are similar matrices we have {a, 3} = {a~!, 371}, from which
B =a ! and detz = 1. Hence Qan < SLa(p). We deduce from [Gor(7, Chap.
2, Theorem 8.3 (ii)] that Q2n coincides with a Sylow p-subgroup of SLa(p).
Conversely, it is not difficult to see that if G satisfies (1), (2) or (3), then G
has the invariable basis property. O

Corollary 3.9.4. Let G be a finite soluble group with the invariable basis prop-
erty. Then G = P xQ, where P and Q are Sylow subgroups of G and the action
of Q on P is fized-point-free. In particular Q is cyclic or generalized quaternion.

Proof. Let F' = Frat(G). By Proposition G/F = X XY where X is a
p-group, Y is a ¢g-group and p and ¢ are distinct primes. Since F' is nilpotent
and contains no element of order p - ¢, we deduce that F' is either a p-group or
a g-group. Assume by contradiction that F' is a nontrivial g-group and let P
be a Sylow p-subgroup of GG. Clearly F'P is a normal subgroup of G, so by the
Frattini argument, G = FPNg(P) = FNg(P) = Ng(P). But then both P and
F are normal in G, so [P,F] =1 and G contains an element of order p - ¢, a
contradiction. Therefore F' is a p-group and the statement follows. O

While we did not study unsoluble Bj-groups, the invariable basis property
is restrictive enough to allow, with the help of the results in [Hei06], a charac-
terization of all groups having this property. In particular, there are only four
unsoluble groups sharing it.

41



Lemma 3.9.5. Let G be a nonabelian finite simple group. Then G has the
invariable basis property if and only if it is isomorphic to one of the following:

(1) PSLs(5), PSLy(8).
(2) *B(8), *B2(32).

Proof. G must be a CP-groups, so by [Hei06, Proposition 3] G is isomorphic to
one of the following:

(1) PSLa(q) for ¢ =5,7,8,9,17.
(2) PSL3(4).
(3) 2B»(8), 2B2(32).

However, PSLy(7), PSL2(9), PSL2(17) and PSL3(4) have a subgroup isomorphic
to Sy: since 2 = dj(S4) < my(Sy) = 3, these groups do not have the invariable
basis property. We analyze the remaining cases:

o G = PSLy(5) = As;. We have already noticed that d;(G) = m;(G) = 2.
It can be easily seen that if H is a proper subgroup of G then either H is
a p-group or H is non cyclic with m;(H) = 2. Hence G has the invariable
basis property.

o G = PSL5(8). An element of G can have order 1, 2, 3, 7, 9 and there are
three conjugacy classes of maximal subgroups: Fsg, D1g, D14. The minimal
invariable generating sets of G are precisely the sets consisting of two
elements, one of order 7, the other of order 3 or 9, so d;(G) = m;(G) = 2.
It can be easily seen that if H is a proper subgroup of G then either H is
a p-group or H is non cyclic with m;(G) = 2.

o G =2B5(8). An element of G can have order 1, 2, 4, 5, 7, 13 and there
are four conjugacy classes of maximal subgroups: 23*2:7 (the Frattini
subgroup has order 8, and the factor group over the Frattini subgroup
has a unique minimal normal subgroup, of order 8), 13:4, 5:4, D14. The
minimal invariable generating sets of G are precisely the sets consisting
of two elements x,y such that {|z|, |y|} = {4, 7}, {5,7}, {5,13} or {7,13}.
Again it can be easily seen that if H is a proper subgroup of G then either
H is a p-group or H is non cyclic with m;(G) = 2.

o G =2B5(32). An element of G can have order 1, 2, 4, 5, 25, 31, 41 and there
are four conjugacy classes of maximal subgroups: 257°:31 (the Frattini
subgroup has order 32, and the factor group over the Frattini subgroup
has a unique minimal normal subgroup, of order 32), 41:4, 25:4 (the
Frattini subgroup has order 5), Dgy. The minimal invariable generating
sets of GG are precisely the sets consisting of two elements x,y such that
{lz], ly|} = {5,31},{25,31},{25,41} or {31,45}. Again it can be easily
seen that if H is a proper subgroup of G then either H is a p-group or H
is non cyclic with m;(G) = 2. O
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Corollary 3.9.6. Let G be a finite nonsoluble group. Then G has the invariable
basis property if and only if G € {PSLa(5), PSLa(8),2B2(8),2B2(32)}.

Proof. We have to prove only the direct implication. G is a CP-group so by
[Hei06l, Proposition 2], there are normal subgroups 1 < N < M < G of G such
that G/M is soluble, M/N = S is a finite nonabelian simple group and N is a 2-
group. By Lemmas[3.9.2]and [3.9.5] M/N € {PSLx(5), PSL2(8),2B2(8),%B2(32) };
we want to show M = G and N = 1.

It follows from Propositions 4 and 5 in [Hei06] that M = G. Notice that S
contains a subgroup isomorphic to the dihedral group of order 2 - p, with p =5
if S = PSLy(5), p=T7if S € {PSLy(8),2B2(8)}, p = 31 if S =2B5(32). So there
exists a subgroup H of G containing N and with the property that H/N = D,,.
Since H satisfies the invariable basis property, we deduce from Corollary [3.9.4]
that H has a normal Sylow p-subgroup, say P, and consequently N < Cg(P).
Since G cannot contain elements of order 2 - p, we conclude N = 1. O

3.10 Further remarks

In this chapter, one of our motivations was to see to what extent, and in which
way, results about minimal generating sets can be extended to minimal invari-
able generating sets.

There is a well developed theory of generation of finite groups. On the one
side of the story there are soluble groups. Gaschiitz [Gash9)] found a nice formula
which computes the minimal number of generators of a finite soluble group. On
the other side of the story there are nonabelian finite simple groups. As recalled
in Subsection it follows from the CFSG that every finite simple group is
generated by two elements.

In a sense, it is possible to combine the two stories (soluble groups and
simple groups) in order to obtain a theory of generation for all finite groups (see
Detomi-Lucchini [DLO03]).

When one deals with invariable generation, many complications occur. For
instance, we saw in Subsection 2.3.1] that, roughly speaking, it is necessary to
replace the subgroups H of G by the subsets H of G, which are harder to handle.

We may even take the following viewpoint. An obvious feature of generation
is represented by the following implication:

(x,y) =G = (z,zy) =G. (3.10.1)

Despite obvious and apparently innocent, this property lurks behind more
or less all results related to generation.

It is very easy to find examples (for instance in the symmetric group Ss)
showing that this property fails for the invariable generation. This constitutes a
serious obstacle for extending proofs from the classical to the invariable setting.
For instance, Tarski irredundant basis theorem, which we stated in Subsection
is a nice application of ([3.10.1). We managed to extend Tarski’s theorem
in case of finite soluble groups, but we had to change completely the argument.
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We take the chance to conclude with the following remark. Most results of
this chapter concern finite soluble groups. This depends on the fact that, for
soluble groups, in some cases the theory of crowns allow to reduce to questions of
vector spaces and linear algebra, which is the ideal environment for (invariable)
generation. However, the reader should be alerted that even for this class of
groups the situation is not easy, and many apparently approachable questions
still do not find an answer.
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Chapter 4

On the number of conjugacy
classes of a primitive
permutation group with
nonabelian socle

The content of this chapter is joint work with Nick Gill. This is the only chapter
of the thesis which is not concerned with invariable generation of groups.

4.1 Introduction

Throughout this chapter, k(G) denotes the number of conjugacy classes of a
finite group G. Mardéti [Mar05| proved that if G is a primitive permutation group
G of degree n, then k(G) < p(n), where p(n) denotes the number of partitions
of n. This bound is attained by S, in its action on n points. Moreover, he
proved that if the socle of G is not a direct product of alternating groups, then
k(G) < nS.

In this chapter, we want to improve this bound under the assumption that G
has nonabelian socle. In Subsection we will give more context and review
more results in this area.

There are two special types of primitive groups which we wish to single out.

(A) Let G be the symmetric group Sy or the alternating group A4 on d > 5
letters. For every 1 < k < d/2, G acts primitively on the set of k-subsets
of {1,...,d}. These are in number (Z)

(B) Let G be an almost simple group with socle PSLy(¢), and assume G <
PI'L4(q). Then G acts primitively on the set of 1-subspaces of Fg. These

are in number (¢¢ —1)/(q — 1).
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G n k(G)

My, 11,12 10
M, 12,12 15

Moy 22 12

May.2 22 21

M3 23 17

Moy, 24 26

Ay 15,15 9

Sg 2 SL4(2).2 35 22
PSLy(11) 11,11 8
SOg (2) 119 60
Sps(2) 120,136 81

SO{ (2) 120 67
Spe(2) 28, 36 30
PSp,(3) = SU4(2)  27,36,40,40 20
PSp,(3).2 27,36,40,40,45 25
PSU4(3).(2 x 2) 112 59
PI'U4(3) 112 61
SU3(3) 28 14
SU3(3).2 28 16

Table 4.1: Almost simple primitive permutation groups G of degree n (up to
equivalence) for which £(G) > %, and for which the action is not isomorphic to
an action in (A) or (B).

Our main result says that, if G is a primitive group with nonabelian socle,
then either G has very few conjugacy classes, or else the action of G is “related”
to (A) or (B) or to further finitely many almost simple primitive permutation
groups. The precise statement is as follows.

Theorem 4.1.1. Let G be a primitive permutation group of degree n with non-
abelian socle, so Soc(G) = S”, with S nonabelian simple and r > 1. Then one
of the following holds.

(1) k(G) < n/2, and k(G) = O(n’) for some absolute § < 1.

(2) G < ALS,, A is an almost simple primitive permutation group of degree
m with socle S, G acts in product action on n = m” points, and one of
the following holds:

(i) The action of A on m points is equivalent to an action in Table
and k(G) < n'3L.

(it) The action of A on m points is isomorphic to an action described in
(A) or (B). In the (B)-case, k(G) < n'?.
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See footnotd] for some terminology. We will first prove Theorem in
case (G is almost simple, and then deduce the general case. For convenience, we

state separately the almost simple case (where we also give an explicit estimate
for 9).

Theorem 4.1.2. Let G be an almost simple primitive permutation group of
degree n. Then one the following holds.

(1) k(G) < n/2, and k(G) = O(n®/*).

(2) FEither the action of G is equivalent to an action in Table or the action
of G is isomorphic to an action described in (A) or (B). In the (B)-case,
k(G) < 100n.

In item (1), the exponent 3/4 is sharp, although in most cases k(G) = o(n?/4)
as n — oo; see Remark for a precise statement.

In the proof of Theorem an essential ingredient is the work of Fulman—
Guralnick [FG12], which give upper bounds to the number of conjugacy classes
of almost simple groups of Lie type.

We immediately make some clarifications regarding the statement of Theo-

rem LTT1

Remark 4.1.3. (i) We are not asserting that every case appearing in Theorem
[11.)2) does not satisfy item (1). For instance, assume m = n, and consider
G = Sy acting on n = (Z) points as in (A), and assume cd < k < g for some
fixed constant c¢. Then it is well known that n = (Z) is exponential in d, while

the number of conjugacy classes of G = S is of the form O(l)‘/a. In particular
E(G) =n°M as d — oo.

(ii) In Theorem 2)(ii), we can be more precise about the adjective
isomorphic, as follows. If A is A4 or Sy, then either the action of A is equivalent
to the action on k-subsets; or else (d,m) = (6,6) or (6,15). Moreover, if A is
almost simple with socle PSL4(¢) and A < PI'L4(g), then the action of A is
equivalent to the action on the 1-subspaces or (d — 1)-subspaces of Fg. For this,
see Lemmas [£.2.8 and [£.2.12

(iii) Whenever G is almost simple with socle isomorphic to both 4,4 and
PSL{(q), we have excluded from Table 4.1 both the groups in (A) and (B). For
instance, G = Sg has 11 conjugacy classes, and contains a subgroup S5 S of
index 10 acting transitively on 6 points; but this does not appear in Table
in view of the isomorphism Sg 2 PXLy(9). The same reasoning applies to the
isomorphisms SLy(4) & PSLy(5) and PSLo(7) & SL3(2).

n order to avoid confusion, we recall the following standard definitions. Assume p; : G —
Sym(Q;) for ¢ = 1,2. The representations p1 and pz are called isomorphic if there exist a
bijection ¢ : Q1 — Qo and ¥ € Aut(G) such that (gp1) - é = ¢ - (g¥p2) for every g € G

(composition of mappings is left-to-right). If in this definition ¥ = 1, the representations p1
and po are called equivalent.
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4.1.1 When is k(G) = o(n)?

Theorem implies in particular that, if the socle of G is nonabelian, then
either k(G) = o(n), or G is “known”. Can we prove that k(G) = o(n) in further
cases?

We are particularly interested in the cases contemplated in Theorem MQ)
(i), for which we show k(G) < n'3l. We first note that there are examples in
which k(G) > n'-%8 for arbitrarily large n, in contrast to item (1); see Lemma
E4T

Still, it would be interesting to understand precisely when this happens (since
there are only finitely many almost simple groups to handle).

Question 4.1.4. Let A be an almost simple primitive group on m points ap-
pearing in Table[[.1 Determine whether every primitive subgroup G of A1 S,
onn =m" points is such that k(G) = o(m") as r — co.

We refer to Section [£.4] for comments in this direction. See in particular
Conjecture [£.4.2] which would provide an answer to Question

4.1.2 Context

There are many results in the literature which give upper bounds to the number
of conjugacy classes of a finite groups in terms of various parameters. We recall
some of these, focusing on permutation groups.

Kovacs—Robinson [KR93| proved that every permutation group of degree n
has at most 5"~ ! conjugacy classes. This estimate was subsequently improved
by Liebeck—Pyber, Maro6ti, and Garonzi-Maro6ti, as follows:

k(G) <2m ! (JILP97])
k(G) < 3n=D/2 ([Mar05))
k(G) < 5n=1/3 ([GM15)).

We should mention that, in [KR93| and [LP97], various other upper bounds to
k(G) are proved, where G is not necessarily a permutation group.

There are easy examples showing that these estimates are somewhat close
to best possible, even for transitive groups. Indeed, the subgroup Sf/ t g Sn
has 5™/4 conjugacy classes; and the transitive subgroup G = S4? Cr/a < Sy has
at least 5"/4~°(") conjugacy classes (see Lemma.

For primitive groups, the situation is very different. Improving results from
[ILP97], Maroti [MarQ5] proved that every normal subgroup of a primitive per-
mutation group G of degree n has at most p(n) conjugacy classes; and if the
socle of G is not a direct product of alternating groups, then k(G) < n®. (Recall
that p(n) = O(1)V", and in fact the asymptotic behaviour of p(n) is famously
known by work of Hardy-Ramanujan.) Theorem can be regarded as an
improvement of this statement, in case the socle of G is nonabelian.
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4.1.3 Abelian socle

In this thesis we do not address the case in which the socle of G is abelian. In
this case, we still have the bound k(G) < n® from [Mar05].

There is a deep problem, known as non-coprime k(GV')-problem, which was
addressed by Guralnick—Tiep [GT05] and which asks (in particular) for a char-
acterization of the affine primitive permutation groups of degree n for which
kE(G) > n. We refer to Guralnick-Tiep [GT05], Guralnick—Maroti [GM13] and
the references therein for results in this direction, partly motivated by the cele-
brated Brauer’s k(B)-conjecture.

4.1.4 Organization of the chapter

In Section [.2] we prove Theorem in Section (.3 we prove Theorem
and in Section [£.4] we discuss Question and make further comments.

4.2 Almost simple groups

In this section we prove Theorem Regarding item (1), we prove the in-
equality k(G) < n/2 in Subsections and then we prove the asymp-
totic inequality k(G) = O(n*/*) in Subsection

First, we gather some results that we will use throughout.

4.2.1 Some preliminary results and notation

For a finite group G, let P(G) be the minimal degree of a faithful permutation
representation of G. If G is almost simple with socle S, then P(G) coincides
with the minimal degree of a faithful transitive permutation representation of
G, and moreover P(S) < P(G). The values of P(G) for G a finite simple group
are known; they are listed for instance in [GMPS15, Table 4].

We recall an elementary lemma which appears in [Gal70]. We will often
apply this lemma with no mention.

Lemma 4.2.1. If G is a finite group and H is a subgroup of G, then
kE(H)/|G: H| < k(G)<|G: H| -k(H).
If moreover H is normal in G, then
kE(G) < k(H)-k(G/H).
In one occasion, we will need the following variant (see [KR93| p. 447]).

Lemma 4.2.2. Let G be a finite group and let N be a normal subgroup of G.
Then
k(G) < |G : N|-#{G-conjugacy classes of N}.

We are now ready to begin the proof of Theorem
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G n k(G)

My, 11,12 10
My, 12,12 15
Moo 22 12
M2 22 21
Mo 23 17
May 24 26

Table 4.2: Faithful primitive permutation representations of degree n for spo-
radic almost simple groups G such that k(G) > 3.

4.2.2 Sporadic groups

Lemma 4.2.3. Let G be almost simple with socle S, a sporadic simple group.
Let M be a core-free mazimal subgroup of G, and write n = |G : M|. If k(G) >
%, then G and n are listed in Table[{.3

Proof. We go through the ATLAS |[CCNT85]. O

4.2.3 Alternating groups

We recall some results that we will use. The first is an inequality of Pribitkin
[Pri09], as follows.

Lemma 4.2.4. Let p(d) be the number of partitions of the integer d. Then

eﬂ\/Qd/S

We will also need the following pair of inequalities which are an easy conse-
quence of work of Robbins on the Stirling approximations [Rob55].

Lemma 4.2.5. Let d > 2 be an integer. Then
V2rdttl/2e—d <dl < editl/2e—d,

Finally we will need the following result of Praeger and Saxl which makes
use of CFSG [PS80].

Lemma 4.2.6. Let G < Sy and suppose that G is primitive and does not contain
Agq. Then |G| < 4%

We now prove a lemma, which is known (see [FG12| Corollary 2.7]).
Lemma 4.2.7. For all d, k(Aq) < k(Sq).

The proof can be easily modified to obtain a strict inequality here.
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Proof. For d < 9 we can check this directly. Thus assume that d > 9. Note
that k(Ag) is equal to the number of even partitions of d plus the number of
partitions of d into distinct odd numbers; on the other hand k(Sy) is equal to
the number of even partitions of d plus the number of odd partitions of d. Thus
we need to show that the number of partitions of d into distinct odd numbers
is less than or equal to the number of odd partitions of d.

Given ¢ > 10, a positive even integer, observe that there are precisely Lﬂ
ways to partition ¢ into two distinct odd numbers. On the other hand, let Yy
be the set of partitions of ¢ into an odd number of even numbers. It is easy to
see that [Yy| > |£]: we simply use the partitions

0, (0—4,2%), (£ —8,2"),... and (£ — 8,4?).

Now let X be the set of all partitions of d into at least two distinct odd numbers;
let X, be the subset of all partitions of X for which the sum of the two largest
parts is equal to ¢. Since d > 10, observe that ¢ > 10. To each partition
p € Xy we can associate a partition which has the same parts as p, apart from
the largest two, which are replaced by a partition from Y. The counting above
implies that we can do this in such a way that the association yields an injective
function from X to a proper subset of the odd partitions of X.

If d is even, then this yields that k(Aq) < k(Sq). If d is odd, we must also
associate an odd partition with the partition of d consisting of a single part. But
since our injective function is not onto, this can be done. The result follows. [

Now we can prove the main result of this subsection.

Lemma 4.2.8. Let G be almost simple with socle S = Agy. Let M be a core-free
mazimal subgroup of G, and write n = |G : M|. If k(G) > 5, then one of the
following holds.

(1) G and n are listed in Table[.5

(2) M is intransitive in its action on d points, thus n = (Z) for some integer
k such that 1 < k < %d,

(3) (d,n) = (6,6) or (6,15), and the action of G on the cosets of M is iso-
morphic, but not equivalent, to the action on the coset of a maximal in-
transitive subgroup.

In item (3), if (d,m) = (6,6) we have G = Ag or Sg, and M = S5 N G,
where S5 is a subgroup of Sg acting primitively on 6 points. If (d,m) = (6, 15),
again G = Ag or Sg, and M = (S21.53) NG, where Sp ! S3 acts transitively
(and imprimitively) on 6 points. (Note that in the latter case, if G = Ag then
kE(G) <n/2.)

Proof. For d < 8, we use the ATLAS |[CCN™85| together with GAP [GAPT9)
to obtain the given list. For 9 < d < 20 we use GAP to check that no examples
occur. Assume, then, that d > 20.
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G n k(Q)

As 6 5

S5 6 7

Ag = PSLy(9) 10 7
Ag.2 = PGLy(9) 10 11
Ag.2 = Sg 10 11

Ag.2 = My 10 8
Ag.(2x2)=PILy(9) 10 13
A; 1515 9

Ag 15,15 14

Sg 35 22

Table 4.3: Faithful primitive permutation representations of degree n for almost
simple groups G with socle A4 such that k(G) > %, and the action is not
isomorphic to an action in (A).

Let us suppose, first, that M is primitive in its action on d points. Then
Lemmas imply that it is sufficient to prove the following

e™V2/3 | arqdt1/2
d3/4 < 4.ed.g4d "

If we assume that the other inequality holds, we get
/o . gd+5/4
e™V/2d/3 > 2m - d
4.ed. 44
:> 2 . 671’\/2(1/3 . (4€)d 2 dd+5/4
—y 9. 26Vd, (4e J4t+5/4

= 2. (5e)e"

~—
IS

S
VAYARY,

dd+5/4
20.

I

Since d > 20, the result follows.
Let us suppose, next, that M is imprimitive in its action on d points. Then

d!
n=——

(RO
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where d = kf and k,¢ > 2. Now Lemma implies that
/o - d4+1/2 . g—d /o - d4+1/2

nz (ekk+1/2€fk)£ ce - P2 Lot T ol R(k+1/2)E ., pt+1/2

V2T _ pd—t

e kD)2
gdff
kt/2

édfé

(/07

>

which implies that

(d — 1) log(£) — & log(d) + & log(?) < log(n)

= (d— g) log(¢) — glog(d) < log(n).
If we fix d and set f(¢) to be the function on the left hand side of the final
inequality, with £ € (0, d), then one computes that f’(¢) is a decreasing function.
In particular, f(¢) takes its minimum value in the range ¢ € (0,d) either when
{ is as large as possible or as small as possible.
If  is as small as possible, then ¢ = 2 and we obtain that

f(2) <log(n) <= d—log(d) —1 < log(n).

If ¢ is as large as possible, then ¢ = % and we obtain that

d d d
7(2) <10g(n) <= L1og(d) — 22 < log(n).
2 2 4
Now it is easy to check that, for d > 4,
d d
d—log(d) — 1< L1og(a) - 22,
2 4
and we conclude that
d —log(d) — 1 < log(n). (4.2.1)
On the other hand, if £(G) > %, then Lemmas and imply that
n efr\/Zd/B
2 B

Taking logs and using (4.2.1]), we get

1 /2d
d< Zlogd+7r Eloge—l—Q,

which, since d > 20, is false. This concludes the proof. O
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4.2.4 Groups of Lie type

For groups of Lie type, we will use results of Fulman and Guralnick giving
bounds on the number of conjugacy classes [FGI12].

Theorem 4.2.9. Let G be a connected simple algebraic group of rank r over a
field of positive characteristic. Let F' be a Steinberg—Lang endomorphism of G
with GF a finite Chevalley group over the field F,. Then

E(GF) < min{27.2¢", ¢" + 68¢"1}.

Theorem 4.2.10. Let G be an almost simple group with socle S, a Chevalley
group of rank r defined over F,. Then k(G) < 100¢".

First we deal with exceptional groups.

Lemma 4.2.11. Let G be almost simple with socle S, a simple exceptional
group of Lie type. Then k(G) < |G : M| for all core-free mazimal subgroups
M of G.

Proof. We use the values for P(S) given in [GMPSTH], as well as the fact that
k(G) < 100¢° (from Theorem

If S is not a Suzuki group, then the value of P(S) given in [GMPS15] rules
out all groups except G2(3), G2(4), Ga(5), 3D4(2), 2F4(2)" and °G5(3%). For
these groups, we can verify k(G) < P(S)/2 using the ATLAS [CCNT85].

If S is a Suzuki group, then [Suz62] tells us that k(S) = ¢+3, and Lemmam
implies that k(G) is at most (¢ + 3)f, where ¢ = 2. On the other hand,
P(S) = ¢®> + 1 by [GMPSI5]. Then (g +3)f > %(q2 + 1) if and only if ¢ = 8
(recall that f is odd and f > 3). But if ¢ = 8, [CCN'85] tells us that S.3 has
17 conjugacy classes and this case, too, is excluded. O

Next we deal with the case in which G has socle PSLg4(q).

Lemma 4.2.12. Let G be almost simple with socle S = PSL4(q). Let M be a
core-free maximal subgroup of G, and write n = |G : M|. If k(G) > %, then one
of the following holds.

(1) G and n are listed in Table[{.])

(2) G < PT'L4(q) and M stabilizes a 1-dimensional or a (d — 1)-dimensional
d -1
q’ =g

Note that, in Table n = 6 appears for G = SLy(4), but not for G
PSL2(5) (even if SLo(4) = PSLy(5)). Similarly, n = 5 appears for PSLa(5),
but not for SLy(4). The same reasoning applies to the isomorphism PSLo(7)
SL3(2).

subspace of F¢, thus n =

Rl

Proof. In this proof we use [Kan79]. The main theorem of this paper, together
with Theorem [4.2.10} implies that, if k(G) > n/2, then either d < 4, or

(d,q) € {(5,2),(5,4),(5,8),(6,2),(7,2)}, (4.2.2)
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G n

SLy(4) = As 6,10
SLy(4).2 = S5 6,10
PSL,(5) = As 5,10
PGLy(5) = S5 5,10

PSLy(7) 7.7
PSL(9) = Ag 6,6
PSLy(9).2 =S5 6,6,15,15
PSL,(11) 11,11
SLs(2) 8
SLs3(2).2 8
SL4(2) = Asg 8, 28

=
N = — —
B R © 0D NO N o oS
N7

SLy(2)2=5s 82835

Table 4.4: Faithful primitive permutation representations of degree n for almost
simple groups G with socle PSLg(q) such that k(G) > %, and the action is not
isomorphic to an action in (B) (see the remark after the statement of Lemma
4.2.12)).

or H := M NPI'L4(q) is reducible, or H normalizes PSp,(q).

Assume first d > 5. This rules out the case in which H normalizes PSp,(q).
Let us now consider the case where H is reducible, stabilizing a subspace of
dimension m.

Assume first 2 < m < d—2. Thenn = |G : M| > gmld=—m) > g2d—4 Tf
5 < 100¢° = 100¢%~!, then we get ¢?~2 < 200. We want to whittle down
the possibilities, as follows. [FG12l Proposition 3.6] states that k(PSL4(q)) <
2.5¢%~1. This, together with the knowledge of |Out(S)| and Lemma re-
duces easily to the cases (d,q) = (5,2),(5,3),(5,4), (6,2). The same argument
and [Kan79] rules out the cases (d, q) = (5,8), (7,2) in (£.2.2). We can deal with
the remaining cases with GAP [GAP19].

Assume now m € {1,d—1}. The case in which G < PI'L4(q) appears in item
(2) of the statement. If G £ PT'L4(q), then M is a novelty and |G : M| > ¢*¢=3,
and the GAP calculation from the previous paragraph rules out all possibilities.

Let us turn, then, to study what happens when d € {2,3,4}. We make use
of the counts given in [Mac81].

When d = 2, [Mac81] implies that

k(PSL2(q)) = (¢+4(q—1,2) — 3) and k(PGLa(q)) = ¢ + (2, — 1).

(qf 1a2)

We use this in combination with the explicit list of maximal subgroups in
PSLy(g) to conclude that either

(1) ¢ <11;0r
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(2) ¢ = 16 and M is the normalizer of a torus, or a subfield subgroup such
that M NS = PGLy(,/q); or

(3) g € {25,49,81,64,256} and M is a subfield subgroup such that M NS =
PGL2(,/q).

Using [GAP19] we get the possibilities in Table

Next assume that d = 3. If ¢ is odd, then using [Mac81] we see that
k(PSL3(q)) < ¢* + g, and this, along with [Kan79], allows us to conclude that
q < 9. These possibilities can all be excluded using [CCNT85|. If ¢ is even, then
[Mac81| implies that k(G) < 2f(q*> + ¢ + 10) where ¢ = 2/. Using the list of
subgroups in [BHRDI3] this is enough to conclude that ¢ < 16. Now [GAP19]
excludes the remainder.

Finally, assume that d = 4. If ¢ is odd, then [Mac81| implies that k(G) <
2f(q> +q¢*+5q+21) where ¢ = p/. We use [Kan79] to conclude that ¢ = 3. This
final case is ruled out with [CCNT85|. If ¢ is even, then [Mac81] implies that
k(SL4(q)) = ¢ + ¢* + q and, again, we use the list of subgroups in [BHRDI13|
to conclude that ¢ < 16. Now [GAP19, BHRDT3] ICCNT85| rule out all except
the listed exceptions for ¢ = 2. O

Finally we deal with almost simple classical groups with socle not isomorphic
to PSL4(¢q) — we will only include the case S = Sp,(2)’ = PSLy(9).

Lemma 4.2.13. Let G be almost simple with classical socle S, S % PSL4(q)
or S 2 Sp,(2)" = PSLy(9). Let M be a core-free mazximal subgroup of G, and
write n = |G : M|. If k(G) > %, then G and n are listed in Table .

Proof. In order to exclude some potential examples, our basic strategy will be
to use the bound k(G) < |G : S|k(S) from Lemma [4.2.1] and try to show that
this is smaller than P(S)/2. In order to bound k(S), we will use the results in
[FG12| for specific families, as follows.

Suppose that S =2 PSU,4(q). In this case [FGI12, Proposition 3.10] implies
that k(S) < 8.26¢%"!, and we use the values for P(S) given in [GMPSI5] to
obtain that either S is in

{PSU5(2), PSUs(2), PSU7(2), PSU5 (3), PSUs5(4)}

or else d < 4. Groups with the five possible socles with d > 4 can be ruled out
using [GAP19).
If S =PSUy4(q), then [Mac81] implies that

P+ +7¢+23), ¢=3 (mod 4);
k(S) = %(q3+q2+7q+9), g=1 (mod 4);
¢ +q*+3¢+2, ¢=0 (mod 2).

Thus, in any case, k(G) < 2f(¢® + ¢*> + 7q + 23) where ¢ = p/. Since P(S) =
(¢ +1)(¢* + 1), by [GMPST5|, we conclude that ¢ € {2,3,4,5,8,16}. If ¢ < 5,
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G n k(G)

SOg (2) 119 60

Spg(2) 120,136 81

SO{ (2) 120 67

Spe(2) 28, 36 30
PSp,(3) = PSU4(2) 27,36,40,40 20
PSp,(3).2 = PSU4(2).2  27,36,40,40,45 25
PSU4(3).(2 x 2) 112 59
PI'U4(3) 112 61
Sp,(2) = PSLy(9) 6,6,10 7
Sp,(2).2 = PGLy(9) 10 11
Sp(2) = Ss 6,6,10,15,15 11
Sp4(2)/2 = MlO 10 8
Sp,(2)'.(2 x 2) = PT'L2(9) 10 13
SU3(3) 28 14
SU3(3).2 28 16

Table 4.5: Faithful primitive permutation representations of degree n for almost
simple classical groups G with socle S 2 PSL4(q), or S = PSL5(9), such that
k(G) > 5.

then [GAPI9] yields the listed cases. If ¢ € {8,16}, then G = PI'U4(q). The
case ¢ = 8 is eliminated by [BCP97]|; we now counsider the case ¢ = 16. We want
to apply Lemma with G = PT'U4(16) and N = SU4(16). Consider the
split torus T of N of order 172, which intersects 284 nontrivial N-classes. By
looking at eigenvalues, we see that none of these classes is fixed by the standard
field automorphism o of order 8 normalizing 7. We deduce from Lemma [1:2.2]
that k(G) < 8(¢> + ¢ + 3¢ + 2 — 284/2) = 34080, which is enough to conclude
that k(G) < P(5)/2.
If G = PSU3(q), then [Mac81] implies that

H¢®+q+12), ¢=2 (mod 3).

Thus, in any case, k(G) < 2f(q? + g+ 12) where ¢ = p/. Since P(S) = ¢ + 1 if
q # 5, by [GMPS15], we conclude that ¢ < 9 or G = PI'U3(16). For ¢ < 9, we
obtain the listed examples using [GAPI9] and [CCNT85|. For G = PT'U3(16),
the same argument used for the case PT'U4(16) works.

Suppose that S = PSp,(q). If d > 6, then we use [FG12, Theorems 3.12
and 3.13] along with the values for P(S) given in [GMPSI5] to conclude that S
is one of the following:

{PSps(3), Sps(2), Sps(2), Sp19(2)}-
We use [GAPT9] and |[CCNT85| to check these cases and obtain the listed ex-
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amples.

If S = PSp,(q)’, then we use [Wal63| (for ¢ odd) and (for g even) to
establish that
q° +5q+ 10, ¢ odd;

S .
k(Spal9)) = {q +2g+3, qeven.

This, combined with [GMPS15], implies that ¢ < 9. Now [GAP19] and [CCNT85]

yield the listed examples.

Suppose that S = POy 1(q). Here we assume that £ > 3 and that ¢ is odd.
Now Theorem 3.19] along with the values for P(S) given in
imply that S = PQ,(3). ThlS final case can be excluded using

Suppose that S = PQ 2(q) with ¢ odd. We make use of [FG12] Theorems
3.16 and 3.18| along with the values for P(S) given in [GMPS15] to obtain that

S e {PO5(3), PQE(3), PQJ (5), PO (7))},

In PQJ (5) and PQ{ (7), the outer automorphism group is Sy, and a subgroup
of S, has at most 5 conjugacy classes, therefore by Lemma we get k(G) <
5k(.S), which is enough to rule out these possibilities.

XVe use [BCPI7] and [GAPIY] to rule out the cases where S = PO (3) or
PQZ(3) .

Suppose that S = O (¢) with ¢ even. We make use of [FGI12, Theorem
3.22| along with the values for P(S) given in to obtain that

S € {055(2), 05 (2), U (4)}-

We use [CCNT85| for the groups with ¢ = 2, and we get the listed examples.
We can rule out Qf (4) using [BCP97]. O

4.2.5 Proof of Theorem [4.1.2]

Let G be an almost simple primitive permutation group of degree n. Putting
together Lemmas|4.2.3] [4.2.8] [4.2.11] [4.2.12|and [4.2.13] we get that either k(G) <
n/2, or we are in case (2) of Theorem |4.1.2| (regarding Table recall Remark
L3 i),

Note that, if the action of G is isomorphic to an action in (B), then k(G) <
100n follows immediately from Theorem [4.2.10

It remains to prove the asymptotic statement, that is, either k(G) = O(n3/*),
or the action of G is isomorphic to an action in (A) or (B). We assume that this
latter condition does not hold, and we want to show k(G) = O(n®/4).

We may assume that G is sufficiently large along the proof. Let M be the
stabilizer of a point in the action of G on n points; in particular |G : M| = n.
Write S = Soc(G).

Assume first S = A, and assume M is transitive on d points we want
to show k(G) = n°M) as d tends to infinity. By Lemma 4| (or by Hardy—

Ramanujan asymptotic formula), we have k(G) = O(1)V<. On the other hand,

by Lemmas and if M is primitive on d points then n > (d/O(1))%;
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and by (4.2.1) in the proof of Lemma if M is imprimitive then n > ¢? for
some constant c. Therefore k(G) = n°W if S = A,.

Assume now S =2 PSL,4(q). We have k(G) = O(q%~!) by Theorem
If H := M NPI'Ly(q) is reducible in the action on Fg, one possibility is that
it stabilizes a k-space for some 2 < k < d — 2, and so n > ¢>**. If d — oo,
we see that k(G) = o(n®/*); and if d is bounded, we see that k(G) = O(n?®/*)
(we actually have k(G) = o(n®/*) as ¢ — oo except for the case (d, k) = (4,2)).
The remaining possibility is that G £ PT'Lq(¢) and M is the stabilizer of a flag
(pair of incident point-hyperplane) or antiflag (pair of complementary point-
hyperplane). But in this case n > ¢2?~3, and the previous computation is
sufficient for d > 4; and for d = 3, k(G) = O(n?/3).

If d = 2m > 4 and H normalizes PSp,,,(q), then n > mme’m(qB -
1)(g° —1)---(¢*™ ' — 1) and we can easily check that k(G) = o(n3/%).

If now H is irreducible and does not normalize PSp,(q), we can apply the
main theorem of [Kan79]. We see easily that k(G) = o(n®/*) as d — oo. If
d is bounded instead, then we can assume q is large and in particular [Kan79]
implies that n > ¢(¢=1@=2)/2 which proves k(G) = o(n?/*) in case d > 5.
In case d < 4, we can use the list of maximal subgroups of PSL4(g) given in
[BHRD13] in order to prove k(G) = o(n3/*) (if H is irreducible, n > ¢*/? for
d=2;n> q¢* for d=3; and n>> ¢° for d = 4).

Assume finally S is a group of Lie type and S % PSL,4(¢q). In this case we
want to show k(G) = O(P(S)3/4), which implies the statement, since P(S) < n.
This can be checked combining k(G) = O(q") (where r is the untwisted rank of
S) with the value of P(S) given in [GQMPSI5]. In fact, we get k(G) = o( P(S)%/%)
unless S = PSU4(q). (We remark that, in the latter case, P(S) is equal to the
number of totally singular 2-subspaces of F;‘z; we also use [BHRDI13]| in order
to see that n > ¢° for every other faithful primitive action of G.)

This concludes the proof of Theorem

Remark 4.2.14. In Theorem 1), we actually showed that k(G) = o(n®/4)
as n — oo unless S = PSL4(¢q) and G acts on the set of 2-subspaces of Fg, or
S = PSU4(q) and G acts on the set of totally singular 2-subspaces of F;‘z. In

these cases, we have n ~ ¢* and k(S) < ¢, therefore k(S) < n?/4.,

4.3 The general case

In this section we prove Theorem We first prove a lemma.

Lemma 4.3.1. Let G be a finite almost simple group with socle S. Then either
S = As, Ag, PSLy(7),PSLa(11), or 4 - k(G)? < |S|. Moreover, k(G)? = O(|S]).

We note that we actually have k(G)? = o(|S|) as |S| — oo, except for the
case S = PSLa(q).

Proof. We first prove 4 - k(G)? < | S|, with the listed exceptions.

99



Assume first S = A,;. Then Lemmas and a straightforward
computation imply that it is sufficient to show

3.0. ¢P2Vd+d di+2,

which is true for d > 10. For d < 9, direct check gives the exceptions in the
statement.

Assume now S = PSL,(q). Using the bound k(S) < 2.5¢%~! from [FG12],
Lemma and the fact that |G : S| < 2f(d,q — 1), with ¢ = p/, we see that
it is sufficient to show

100f%(d, g — 1)* < gM4=1D/272042 (g2 _ 1) (g? - 1).

If d > 4, we can easily verify that this is true. For d = 3, [Mac8]] tells us
that k(S) < ¢? + ¢. We compute that it is enough to show

16/2(3,a — 1)*(¢+ 1) < a(q — 1)(¢* — 1),

which can be verified unless ¢ = 2,4. The case ¢ = 2 is in the statement (since
SL3(2) = PSLo(7)), while the case ¢ = 4 can be excluded with [GAP19].

If d = 2, we use the exact value of k(S) (recalled in the proof of Lemma
, in order to reduce to the cases ¢ < 16 or ¢ = 25,27, 32,64, 81, 128, 256.
Then we use [GAP19] and we get the cases ¢ = 4,5,7,9,11 in the statement.

Assume S is classical and S % PSL4(q). Here one can prove that 4k(G)? <
|S| using the upper bounds for k(S) given in [FG12]. One can also argue as fol-
lows (but this is not necessary). If G appears in Table[4.1] we can make a direct
check. If G is not in Table[4.1] then Theorem[{.1.2]tells us that k(G) < P,,,(G)/2,
where P,,(G) denotes the smallest index of a core-free maximal subgroup of G.
Now it is known (see [KLI0b, p. 178]) that P(S) < |S|'/2. In particular,
whenever P,,(G) = P(S), we can immediately conclude 4k(G)? < |S|. Cer-
tainly we have P(S) < P,,(G). Using the value of P(S) given in [GMPSI15]
(see also [CooT8|, where an explicit M for which |S : M| = P(S) is given),
and consulting [KLI0b|, we deduce that P, (G) = P(S) unless S = PSU;3(5),
S = Sp,(q) with ¢ even, S = PQJ(q), or S = PQJ (3) with m > 4. (If
S = PSU3(5), |S : M| = P(S) where M is isomorphic to Az; if S = PQJ (3),
M is the stabilizer of a nondegenerate 1-space.) We can exclude the unitary
case with [CCNT85|; in the symplectic case we can use k(Sp,(q)) = ¢* +2¢+3
(see the proof of Lemma ; in the orthogonal cases we can use the bound
k(PQ3,.(q)) < 14¢™ given in [FG12].

Assume S is exceptional. In the proof of Lemma we actually proved
k(G) < P(S)/2, therefore we conclude by the argument of the previous para-
graph.

Assume finally S is sporadic. We use [CCNT85| to conclude 4k(G)? < |S|.

It remains to prove the asymptotic statement, that is, k(G)? = O(|S|) (and
indeed k(G)3 = o(|S]) if S % PSL2(q)). We may assume that S is sufficiently
large, and the statement is easy to check, using Lemma and Theorem
4.2.10) U
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We need other three technical lemmas.

Lemma 4.3.2. Assume S = Ay, or S is the socle of some group appearing in
Table[4-1} If S < B < A < Aut(S), then k(B) < k(A), unless A = Qg (2).S3.

Proof. If S = Ay, the statement follows from Lemma and by direct check
in case d = 6. If S is the socle of some group appearing in Table we use
[CCNT85|. O

Lemma 4.3.3. Assume G is almost simple with socle S = PSLy(q), with d > 3,
and let m denote the number of flags (that is, pairs of incident point-hyperplane)
in Fg, Then, k(G) < m/2 and k(G) = O(m?/3).

We note that we actually have k(G) = o(m?/?) as m — oo, except in case
d=3.

Proof. We begin with the inequality k(G) < m/2. If G & PI'L4(g), then G acts
primitively on the set of flags, and the statement follows from Theorem
Assume now G < PT'L4(q). Then G acts primitively on the set of 2-subspaces of
Fg. It is easy to see that the number of 2-subspaces is smaller than the number
of flags. Assume d > 4. Then, by Lemma either k(G) < m/2, or G
appears in Table Examining Table we see that k(G) < m/2 also in the
latter case.

We are left with the case d = 3. We have k(G) < 100¢*> by Theorem |4.2.10}
and moreover m > ¢3. In particular, if k(G) > m/2 then ¢ < 200. We whittle
down a bit the possibilities. Write a = (3,¢—1). By [Mac81] and Lemma [4.2.1]
we deduce k(G) < |G : S| (¢*> + ¢+ 5a—5)/a < 2|G : S| - ¢*. Therefore, if
q = pf, we have ¢ < 8af. Using ¢ < 200, we see that we are reduced to the cases
g < 27 and g = 32,64, which can be checked with [GAP19] (if ¢ # 2,4, 8,16, it
is enough to show that 4f(¢?+ ¢+ 5a—>5) is smaller than m, without computing
the actual value of k(G)).

The asymptotic statement k(G) = O(m?/3) can be checked easily using
k(G) = O(¢%Y). O

Lemma 4.3.4. Let A be an almost simple primitive group of degree m with socle
S, and assume A is not in the possibilities of Theorem(,?). Let S < B < A.
Then, k(B) < m/2. Moreover, for every fivzed o > 3/4, if S is sufficiently large
then k(B) < m®.

Proof. We begin with the inequality k(B) < m/2. Write m = |A : M| for some
core-free maximal subgroup M of A. If B = A, the claim is true by Theorem
Assume by contradiction there exists B such that k(B) > m/2 = |B :
BN M|/2. Let T be a core-free subgroup of B, maximal with respect to the
property that BN M < T and that T is core-free in B (that is, T' does not
contain S).

Note that the subgroups of B properly containing 7" must contain S. Then
choose C such that T' < C < B and T is maximal in C. In particular, C' acts
primitively on the cosets of 7', and moreover, by Lemma |B: Clk(C) =
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k(B) > |B : C||C : T|/2, whence k(C) > |C : T|/2. Therefore we can apply
Theorem The first possibility is that C appears in Table By Lemma
and k(B) > m/2, we deduce A = Qf (2).S5. Then by [CCNT85] m > 3600,
which contradicts k(B) > m/2. By Lemma we also see that it cannot be
S = Ay. By Theorem [£.1.2) and Lemma [£.2.12] the only remaining possibility
is that S = PSLg4(q), C < PI'L4(q) and T is the stabilizer of a 1-space or
(d — 1)-space. In particular, B N M stabilizes a 1-space or a (d — 1)-space.

Assume first A < PT'Ly(q). By assumption, M is not the stabilizer of a 1-
space or (d — 1)-space. Then, there is no other possibility for M (in such a way
that BN M fixes a 1-space or (d — 1)-space), which is a contradiction. Assume
finally A £ PT'Ly4(g). Then the only possibility is that M is the stabilizer of a
flag or antiflag. In particular, m is larger than the number of flags in Ffll, which
contradicts Lemma [4.3.3] This final contradiction proves that k(B) < m/2 for
every S < B < A.

Now we want to show that, for every fixed o > 3/4, if S is sufficiently large
then k(B) < m® for every S < B < A.

By Theorem we have k(A) = O(m?3/*). Assume k(B) > m®. We want
to show that S has bounded order (in other words, we want to show that, if S
is sufficiently large, we get a contradiction). By taking S large, we have k(B) >
k(A). Much of the argument of the first part of the proof carries unchanged,
except that we have the inequality |B : Clk(C) > k(B) > |B : C|* - |C : T|%,
from which k(C) > |C : T|*-|B : C|*~!. Note that |B : C| < |Out(S)| and |C :
T| > P(S). Using [GMPSI5], Table 4], we easily see that |Out(S)| = P(S)°™M)
as |S| — oo (the statement being obvious in case S & Ay), from which we get
that, for every fixed 8 < «a, k(C) = |C : T|*-|B : C|*~t > |C : T|? if S is
sufficiently large. In particular we may take 8 > 3/4, and by Theorem
we deduce that C' and |C : T'| must appear in item (2) of the theorem. Then,
the argument that we used in the first part of the proof, together with Lemma
gives a contradiction. O

4.3.1 Proof of Theorem [4.1.1]

We can now prove Theorem We will apply many times Lemma
usually with no mention. Moreover, we will often use the following theorem
from [LP97|, which we recalled in the introduction of this chapter.

Theorem 4.3.5. Letr > 1 and let P < S,.. Then, k(P) <21

Let now G be a primitive permutation group of degree n with nonabelian
socle Soc(G) 2 S™, with S simple.

In the following proof, a permutation group G of degree n in product action
refers to a group G < A S, where A is almost simple primitive on m points
with socle S and G acts on n = m” points (so we do not include the actions
that sometimes are called holomorph compound and compound diagonal).

Proof of Theorem[/.1.1 Assume first the action of G is not product action;
we want to show k(G) < n/2 and k(G) = O(n?) for some absolute § < 1. We
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begin with the first inequality.

We have r > 2 and either n = |S|", or r = £t with £ > 2, ¢t > 1 and
n = |S|¢~Vt, In particular n > |S|"/2. Furthermore, G < Aut(S)?S,. Then, by
Lemmafd.2.1]and Theorem[4.3.5 k(G) < k(GNAut(S)")-2"~. Now GNAut(S)"
admits a normal series of length r in which every factor is almost simple with
socle S; therefore, by Theorem k(G N Aut(S)") < f(S)", where f(S) =
max{k(A) : S < A < Aut(S)}. We deduce that it is enough to show that

2f(S) < |S)V/2.

By Lemma [4.3.1] this is true unless S = As, Ag, PSLo(7), PSLo(11). Assume
then we are in one of these cases. If n = |[S|” or n = |S|"V* with £ > 3, then
n > |S|?"/3, hence by the same argument as above we have k(G) < n/2 provided

2f(S) < |S)?/3.

We can check that this is true. Therefore we are reduced to the case in which
S e {A57AG,PSLQ(?),PSLQ(:[I)}, r=2tand n = |S|t

Assume first ¢ = 1, and let A(S) be the maximum number of conjugacy
classes of a primitive group on |S| points with socle S?. We can use [GAP19]
in order to compute that h(S) < |S]/2.

Next we deal with any ¢ > 1. We have G < D! S,, where D has socle S?
and is primitive on |S| points. Then k(G) < k(G N DY) - 271, Now G N D!
admits a normal series of length ¢ in which every factor has socle S? and is
primitive on |S| points; in particular k(GND') < h(S)* < (|S]/2)" and therefore
k(G) < |S|*/2 = n/2, as wanted.

We turn now to the asymptotic statement; namely, k(G) = O(n°) for an
absolute § < 1. We assume that n is sufficiently large and we show k(G) < n®
(which is equivalent up to enlarging §). We will show in various places that
k(GQ) < n% for various ¢'. In order to simplify notation, we will always use the
same symbol § — one should just take the maximum.

Assume first S is sufficiently large. By Lemma we have f(S) <
|S|°-35 /2. Using n > |S|™/2, we deduce k(G) < n°7.

Assume now S has bounded order. If S % As, Ag, PSL2(7),PSLy(11), by
Lemma we have 2f(S) < |S|'/2, and in particular

K@) < (2- f(9)" < [S]"/* <n
for some ¢ < 1 absolute (since |S| is bounded).
Assume then S = Aj, Ag, PSLy(7), PSLy(11). If n = [S|" or n = |S|(F—1?
with £ > 3, then n > |S|?"/3 and, as already observed, f(S) < |S|?/3/2; therefore

the same argument as above applies. The remaining case is [ = 2 and r = 2t.
We already observed that 2h(S) < |S|, from which we get

E(G) < (2-h(9)) <|S|*° =n°

for some 6 < 1 absolute.
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Assume now the action of G is product action, and assume we are not in
case (2) of the statement. We want to show k(G) < n/2 and k(G) = O(n?) for
some 0 < 1 absolute. We begin with the first inequality. We have G < A S,
n = m", and A is an almost simple group with socle S admitting a primitive
action on m points, which is not among the possibilities of Theorem M(Q)

Note that k(G) < k(GNA")-2"~1, and GNA" admits a normal series of length
r in which each factor is isomorphic to a subgroup S < B < A. By Lemma
k(B) < m/2 for every S < B < A, and therefore k(GNA") < (m/2)" and
k(G) < n/2, as wanted.

The asymptotic statement k(G) = O(n?) for some § < 1 is proved as we
did for the case in which n = |S|” or n = |S|“~V* dividing the cases |S|
sufficiently large and |S| bounded. If S is sufficiently large, by Lemma we
have k(B) < m%8/2 for every B < S < A, and therefore k(G) < n%%/2. If S
has bounded order, we only need to use k(B) < m/2 for every S < B < A,
which holds again in view of Lemma [£.34]

Assume now we are in case (2)(i) of the statement; we want to show
k(G) < n'3l. We have G < A1 S, and A is almost simple acting primitively on
m points.

Let us consider first the case in which A = M5 acting primitively on m = 12
points. If > 4, [GMI5] tells us that a subgroup of S, has at most 5" ~1/3 <
57/3 conjugacy classes. In particular, using that k(A) = 15, we deduce that
k(G) < 15" - 5"/3 which we verify to be at most n'3!. If 7 < 3, we use that a
subgroup of S, has at most r conjugacy classes, so k(G) < 15" - r, which is less
than n'-3! for r < 3.

Let us consider now all other cases. By Lemma we have k(B) < k(A)
for every S < B < A. Then k(G) < k(A)" -2~ < (2k(A))", so we only need
to show that 2k(A) < m!3!. This can be checked easily going through all cases
in Table (but leaving out the case of My acting on 12 points).

Assume finally we are in case (2)(ii) of the statement, and the action of A
is isomorphic to an action in (B); in particular m = (¢? — 1)/(q — 1). We want
to show k(G) < n'9.

If » > 4, by Theorem we have k(G) < (100¢4=1)" - 5=1/3 < (100 -
51/3)T -n, hence we are done provided 100 - 51/3 < m%?, that is, m > 303. If
r < 3, we use k(G) < (100¢?1)" - 7, and we see that m > 303 is enough also in
these cases.

Therefore we assume m < 303; this leaves us with the cases d = 6,7,8 and
g=2ord=5andg<3;ord=4and g< 5, ord=3and ¢ <16;or d=2
and ¢ < 302.

We whittle down slightly the possibilities for d = 2. In the proof of Lemma
we recalled the exact value of k(PSL2(q)) and k(PGLa(g)). Using this
and ¢ < 302, it is easy to deduce that k(A) < 8(¢ + 1) = 8m. By the same
computation as above, we are done provided 8 - 572 < m%9, that is, m > 19.
Therefore if d = 2 then we may assume ¢q < 17.

Now we deal with all the remaining cases (for d < 8). We only need to show
that k(A) - 53 < m!?, which can be checked with [GAPI19). O
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4.4 Further comments

4.4.1 Theorem [4.1.1)(2)(i)

In Theorem 2)(i), we proved k(G) < n'3!. Can we get better bounds?
Since we have finitely many possibilities for the almost simple primitive group
A of degree m, we fix A and m, and we want to estimate k(G) where G < A5,
is primitive, mainly when r is large.

First, we show that it is not always true that k(G) = o(n) as n — oo (and
in fact it is not even true that k(G) = O(n)).

Lemma 4.4.1. Consider A = M1y acting primitively on 12 points, and consider
G = AV C,. acting on n = 127 points, where C,. is cyclic of order r. If r is large
enough, then k(G) > n*-%8.

Proof. By Lemma [£.2.1] we have

Since k(A) = 15, this is easily seen to be larger than n'-%® for r large enough. [

The same argument shows that k(G) > n® for some absolute o > 1 whenever
A and m in Table are such that k(A) > m (but in the table, A and m are
replaced by G and n). This happens rarely; specifically, when

(A,m) € {(Mi2,12), (Ma4,24), (Spg(2),28)}.

Let us consider now the case in which k(A) < m (by looking at Table this
is equivalent to k(A) < m). By Lemma [4.3.2] we have k(B) < k(A) for every
subgroup S = Soc(A) < B < A. We assume r > 4, so that by [GMI5] a
subgroup of S, has at most 5("~1)/3 < 57/3 conjugacy classes. Then, we have
k(G) < (k(A)5'/3)", and whenever k(A)-5'/% < m we get k(G) < n® for some
absolute § < 1. The condition k(A) - 5'/3 < m holds in some cases, but not
quite in all.

Therefore one should try to change the argument. We make the following
conjecture.

Conjecture 4.4.2. Let A be an almost simple primitive group on m points
appearing in Table and assume k(A) < m. Then, for every primitive
subgroup G < A1 S, on n =m" points, k(G) = o(m") as r — oc.

In order to address Conjecture[d.4.2} it seems relevant to estimate the number
of conjugacy classes in wreath products (although G needs not be a full wreath
product, which is a complication).
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4.4.2 Theorem [4.1.1)(2)(ii)

Let us briefly comment the situation in Theorem [4.1.12)(ii). We have G <
A S, where A is almost simple primitive on m points. [Mar05] tells us that
kE(G) < p(n), which can be attained if the action of A is isomorphic to an action
in (A). Assume now the action of A is isomorphic to an action in (B); then we
showed k(G) < n'?. We did not make any particular effort in order to sharpen
this bound.

Question 4.4.3. Let A be an almost simple primitive group isomorphic to a
group in (B), and assume G < A1 S, is primitive on n = m" points. Improve
the bound k(G) < n'°.

In case G = A, Theorem tells us that k(G) < 100n (this follows
1.2.10)

immediately from Theorem . Probably a much better bound holds also
in the case G = A.

Recall that, if ¢ is odd, and if A = PGLa(q), then k(A4) = ¢ + 2. If we
take for instance g = 5, by the same argument as in Lemma we see that
k(A C,) > nt% for r sufficiently large (as a coincidence, we get the same bound
as in Lemma [4.4.1)). Therefore it is not true in general that k(G) = O(n).

On the other hand, by the usual bound k(G) < (100g?~1)"-2", we note that,
for every fixed € > 0, k(G) < n**€ if PSLy(q) is sufficiently large (and this holds
independently of 7).
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Chapter 5

Large minimal invariable
generating sets of .5,

The content of this chapter is joint work with Nick Gill.

5.1 Introduction
We want to estimate the invariant mj(G), introduced in Chapter [3| in case G
is the symmetric group S,. Our main theorem is as follows.
Theorem 5.1.1. Let n > 5 be an integer. Then
g —logn < my(S,) < % +A(n)+ 0 (&) ,
where A(n) is the number of divisors of n.

(Logarithms are in base 2.) Tt is well known that A(n) = n°1), therefore
Theorem implies that m;(S,) ~ n/2 as n — oc.

In the upper bound in Theorem we will in fact prove a more explicit
estimate, which will have the following consequence.

Corollary 5.1.2. Let n > 5 be an integer. Then, my(S,) < m(Sy).

Notice that, by Theorem we have mr(S,) = m(S,) for n < 4. In
particular, we get a positive answer to Question [3.1.2in case G = 5,,.

5.1.1 Method of proof: lower bound

In order to prove the lower bound in Theorem we will exploit Lemma
B3.2.2

Each conjugacy class C' of S,, corresponds to a particular partition, pc, of
the integer n. On the other hand, if M is an intransitive subgroup of .S,,, then
M is the stabilizer of some i-subset of {1,...,n}.
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We say that the integer i is a partial sum of the partition p = (ay,...,az) if
we can write i = aj, +aj, +---+aj, for some 1 < j1 < --- < jp < t. It is clear
that the intersection C'N M is non-empty if and only if 7 is a partial sum of pc.
We will prove the following:

Proposition 5.1.3. Let n > 5 be an integer. There is a set X of partitions of
n with the following properties:

(1) there is no integer 1 < i < %n which is a partial sum in x for every x € X;

(2) for every x € X, there exists an integer 1 < i < %n which s a partial sum
iny for every y € X \ {z};

(3) |X| > in—logn.

By Lemma [3:2.2] wee see that Proposition [5.1.3] is almost enough to yield
the lower bound in Theorem [5.1.1] straight away. To complete the proof of
that lower bound, we must take care of Lemma b) for proper transitive
subgroups of S,,.

Our feeling is that the construction we give in our proof of Proposition
is pretty close to give as large a set X as is possible.

Question 5.1.4. Is it true that the largest cardinality of a set X of partitions

of n satisfying properties (1) and (2) of Pmposition is at most § —logn +
o)?

Note that we certainly have |X| < in.

5.1.2 Method of proof: upper bound

For a finite group G, let k(G) denote the number of conjugacy classes of G.

In order to prove the upper bound in Theorem we will exploit Lemma,
In particular, we will give an upper bound to ¢(G).

For every i = 1,...,t, let M; be a maximal subgroup of G. With notation
as in Lemma assume that {M7,..., M;} is independent. The following
hold:

o For every j = 1,...,t, M; has non-empty intersection with at least ¢ — 1
non-trivial G-conjugacy classes, and therefore k(M;) > ¢.

o For every i # j, M; and M; are not G-conjugate.

We will prove the following proposition.

Proposition 5.1.5. Suppose that {My,..., M} is a set of mazimal subgroups
of the symmetric group S, such that (a) k(M;) > %n for every i; (b) if i # j,
then M; and M; are not S,-conjugate. Then

n logn
t<—+A o ). 1.1
2 + (n)+0(loglogn> (5:-1.1)

where A(n) is the number of divisors of n.

68



By the considerations preceding the proposition, we see that Proposition
5.1.5|gives an upper bound to ¢(S,). In particular, the upper bound in Theorem
5.1.1| follows immediately from Proposition

The main point in the proof of Proposition [5.1.5]is to deal with the family of
almost simple primitive subgroups of S, ; see Theorem[5.3.1] The key ingredient
is Theorem which we proved in Chapter [4

We remark that, although Proposition [5.1.5| only states an upper bound for
the number of maximal subgroups with at least %n conjugacy classes, results in
Section[5.3]outline specific families of maximal subgroups. In particular, the first
two terms of correspond to the intransitive and imprimitive subgroups
of S,,, respectively.

This is important because our original aim in this chapter was to prove that
|m;(G) — 5| = O(logn). We have managed this with the lower bound but not
with the upper, precisely because A(n) — 2, which is the number of imprimitive
subgroups of S, is not O(logn). To achieve our original aim, it would be
sufficient to establish that, in the following question, ¢ < n/2 + O(logn). We
state the question in terms of properties of .S, — it is easy enough to recast it
as a number-theoretic question concerning partitions, similar to Question
above. We use notation as in Lemma [3.2.3]

Question 5.1.6. For every i = 1,...,t, let M; be a subgroup of S, which is
either intransitive or imprimitive. Assume that {M,..., M} is independent.
How large t can be?

In truth, we believe that, at least for large enough n, a minimal invariable
generating set of S, of size m;(S,,) should concern only intransitive subgroups
(in the sense that the set J from Lemma should contain only intransitive
subgroups). This would imply m;(S,) < n/2, and the problem of determining
my(S,) would be reduced to the purely combinatorial problem addressed in

Proposition [5.1.3] and Question [5.1.4]

5.1.3 Context

We first remark that, for large enough n, Corollary follows quickly from
results by Liebeck—Shalev [LS96]. The reason is as follows. In [LS96], it is
proved that S, has at most § + o(n) conjugacy classes of maximal subgroups.
Therefore, m(S,) < «(G) < § + o(n). On the other hand, it is easy to see
that m(S,) = n — 1 — just consider the transpositions (1,2),...,(n —1,n). In
particular, we have m(S,) — m(S,) = 0o as n — occ.

Using CFSG, Whiston [Whi00] proved that in fact m(S,) = n — 1. But
more is true. Cameron—Cara [CC02] showed that a minimal generating set of
Sy, of size n — 1 is very restrictive: either it is made of n — 1 transpositions, or it
is made of a transposition, some 3-cycles, and some double transpositions (see
[CCO02, Theorem 2.1| for a precise statement).

One can hardly hope for a similar “elegant” result for my(S,), for the simple
reason that a minimal invariable generating set of 5, of size ¢ must contain ¢
elements whose cycle types have no common partial sum. Still, it is true that
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in the proof of the lower bound in Theorem [5.1.1] we feel somewhat restricted
about the choice of the relevant partitions — but we are not able to make any
precise statement in this direction.

5.1.4 Organization of the chapter and notation

In Section we prove the lower bound on m;(G) given in Theorem In
Section [5.3| we prove the upper bound on m;(G) given in Theorem along
with Corollary

We will use exponential notation for partitions, so the partition (af*, a5?,. ..,
ay*) has n; parts of length a;, ny parts of length as,. .., and n; parts of length
a;. For a positive real number z, log(z) denotes a logarithm in base 2, and in
one occasion we will write exp,{x} := 2%. For a positive integer z, A(x) denotes
the number of divisors of x.

5.2 The lower bound

In this section we prove the lower bound in Theorem [5.1.1] We first prove a
lemma, then we prove Proposition [5.1.3] and finally we give a proof for the
lower bound.

Lemma 5.2.1. Let n and i be positive integers, with i < n/3. Then there exist
a partition p; , of n with the following properties:

(1) If n # 4i 4+ 2 and (n,i) # (8,1), then p; ,, does not have i and n —1i as
partial sums, and everything else is a partial sum.

(2) If n =4i+2 or (n,i) = (8,1), then p;, does not have i,n —i and % as
partial sums, and everything else is a partial sum.

Proof. Define ‘ ‘
pin =" i+ 1,64+2)7, (i + 1% ¢)

where j € {0,1}, £ > 0, and i + 1 < ¢ < 2i + 1. To complete the definition we
must specify 7, k and ¢. To do this we consider a partial sum ¢, adding from left
to right: we first sum the 1’s and (i + 1) to obtain ¢ = 2i. Now there are three
cases:

(1) Ifn—gq < 2i+1, then we set c=n —q.
(2) fn—g=2i+2,then weset k=1,j=0and c=¢+ 1.
(3) Ifn—q >2i+3,then weset j =1, k=0 and set ¢ = 2i + (i +2) = 3i + 2.

In the first and second cases, we are done; notice that the partition has
the stated properties (in the first case we use the fact that ¢ < n/3 to obtain
i+1<c¢<2i+ 1 as required). If we are in the third case, then we proceed in
a loop as follows:
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(1) Ifn—¢q < 2i+1, then we set c =n —q.
(2) fn—q>2i+2, then weset k =k +1andset g=q+ (¢ +1).

It turns out that there is one situation — when n = 4i+4 and (n,7) # (8,1)
— where our definition needs to be adjusted. In this case, we make the following
definition:
pin= 1"+ 1,i+3,i+1).

Now our definition is complete. We now let m be an integer such that 1 < m <
n/2 and we study when m is a partial sum of p, , with a view to proving items
(1) and (2) of the lemma.

Both items are clear for m < 2i, thus we may assume that m > 2i + 1. In
particular this means that n > 4¢ + 2.

If n = 4i + 2, then we are in item (2) of the lemma, p;, = (1°71, (i + 1)3),
and the statement holds.

If n > 4i + 3, note first that j = 1. Suppose, first, that & = 0. There are
two possibilities: first, if ¢ # i + 2, then p;,, = (171,34 1,4 + 2,¢), and the
statement holds. If instead ¢ = i+ 2, then n = 4i + 4. If (n,i) = (8,1), then
p1,s = (2,3,3) and we are in item (2) of the lemma. Otherwise, we are in the
exceptional case in our definition where p; , = (171 i +1,i+ 3,5+ 1), and the
result holds.

We are left with the case in which k£ > 1, i.e. p;, contains at least two
(i + 1)’s (excluding ¢ which may also equal i + 1).

We work here by induction on m: assuming that some 2i < m < n/2 can be
written without using ¢, we want to show that the same holds for m + 1. Since
m > 2i > i+ 1, in writing m without ¢ we have certainly used at least one of
1+ 1 and ¢ + 2. We now divide into three cases.

(1) In writing m we have not used all 1’s. Then add a 1.
(2) In writing m we have not used ¢ + 2. Then remove an i+ 1 and add i + 2.

(3) In writing m we have used all 1’s and i + 2. Suppose, first, that at least
two (i + 1)’s have not been used; then remove all 1’s, remove ¢ + 2 and
add two (i + 1)’s and we are done. On the other hand, suppose (for a
contradiction) that in writing m as a partial sum all but one of the i+ 1’s
have been used. Then ¢+ (i + 1) > n/2 and, since ¢ < 2i + 1, we obtain
that n/2 < 3i + 2. However the partial sum m has used all 1’s, one ¢ + 1
and one i + 2, so m > 3i + 2. Since m < n/2, we get n/2 > 3i 4+ 2, which
is a contradiction. 0

5.2.1 Proof of Proposition [5.1.3

Now we prove Proposition [5.1.3] The proof we give below is constructive —
we define an explicit set X with the given properties. We have decided not to
define the set X outside of this proof, as the construction is built up in pieces
as the proof proceeds.
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In deducing the lower bound in Theorem [5.1.1} we will be interested in the
properties of the partitions of X listed in the statement of Proposition [5.1.3]
rather than their explicit construction. The paragraphs involving exceptions to
this are labelled (C1), (C2), (C3) and (C4) in the following proof.

Proof of Proposition[5.1.5 Throughout the proof, we will use the notation p; ,
to refer to the partitions in the statement of Lemma (so we allow any
partition having the properties of the statement).

If 5 < n < 10, we have n/2 — logn < 2, and the statement is easy to check.
Therefore assume n > 11.

(C1) For n = 11, we set x1 = (22,3,4), x5 ( 32,4), z3 = (12,9). For
n = 12, we set ¥ = (2%,3,5), 2 = (1, 3 42), x3 = (12 10). The statement
holds by setting X = {x1, zo, xg}

From now on we assume that n > 12. This has the advantage that in the
proof that follows, all partitions of the form p; , that we consider will have £ > 8
or i > 1, and so we need not worry about the case (¢,7) = (8,1) mentioned in
Lemma 5.2.71

For 1 <t < n/3, define

Tt = Pt,n-

(C2) We want to modify partition 1. Namely, define

(3,5,2F,47)  ifn=14,16
z1 = { (3,2F,47) if n =13,15,17
(36,7,2% 47) ifn > 18

where £ = 1 or 2 according to whether n is even or odd, and j € {0, 1} is defined
by the condition that x; has an odd number of cycles of even length (and &
is consequently uniquely defined). It is easy to see that, in every case, every
2 < i< n/2is partial sum in ;.

Now, in order to go further, we will use a slightly different method. The
partitions we are going to define will depend on a parameter j. We could define
all of them at once, but to give an idea of the overall strategy, let us go through
the first step explicitly.

We set oy = [n/6 — 1] and, for every integer [n/3] < t < t1 = 5n/12 we
define

Tt = (Pay,ar1+t>Ct)-

where ¢; = n — a; — t. Let us justify this definition:

(a) Observe first that 1 < ay < (aq + t)/3 hence the partition pu, o, +¢ 1S
well-defined.
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(b) Next note that

cc=n—a; —t

< [n 1" 5n

P I

6 12
LU

= a)

12 !

and so oy and t are not partial sums of ;.

(¢) We can easily check that either 4a1+2 > ag+t or else (a1, t,n) = (1,5,12).
The second possibility is excluded by our assumption n > 12. The first
possibility implies that Lemma 1) holds, and so all numbers up to
aq + t are partial sums, apart from «; and t.

(d) Finally observe that

ar+t> [% ~1]+ [g} (5.2.1)
>[5 1]

We conclude that all numbers up to n are partial sums in z; apart from
aq, t and (possibly) n/2. In fact, checking (5.2.1)) more carefully, it is clear
that a3 +¢ > [n/2] unless n =0 (mod 6) and ¢ = n/3.

Conclusion 1: For n/3 < t < 5n/12, the partition x; admits all partial
sums up to n except oy and t.

Conclusion 2: For t = n/3, the partition x; admits all partial sums up to
n except a1 and ¢ and (if n is even) n/2.

Now our aim is to extend this definition to other parameters ¢; that are
larger than t;. More precisely, for integer 1 < j < log(n/6) we define

B n ) o (27716 —1)n
j*bj—l.ﬁ*W’ i 2 .6 :

For j = 1 this is consistent with the previous definition. Now for integers
2 < j<log(n/6) and [tj_1|+1 <t < [t;] we define

Ty = (Paj,o4+t5 Ct)

where ¢; = n — a; —t. Now, similarly to before, we must check four properties.
Assume that j > 2.

(a) Observe that 1 < a; < (a; + [t;_1] +1)/3 and so the partition pq; o, +¢
is well-defined.

(b) Next note that ¢; =n —a; —t >t > «; and so «; and t are not partial
sums of x;.
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(c) Notice that the second case of Lemma does not occur. Indeed, 4a;+2
is strictly smaller than o 4 [t;_1| 4+ 1. Moreover, it is easy to check that
the case (¢,i) = (8,1) cannot occur.

(d) Finally observe that a; + [t;_1] +1 > [n/2], and we conclude that all
numbers up to n are partial sums in x; apart from o4 and t.

Conclusion 3: Set m = [log(n/6)]. For j =2,...,mand [t;_1]+1 <t < |¢;],
the partition x; admits all partial sums up to n, except o; and ¢.

We have now constructed |t,,| partitions of n; set Xo = {x1,..., 2, }-
Notice that, by the choice of m, 2™+ .6 > n. Then

2m1.6 1
Xo| = (1] > F_6=Dn 4 (5.2.2)
2m . G
_n__n _
2 2m.6
n
>3 -3

Now we will remove some elements from X,. First, observe that «; < n/6 for
every j; we start by taking the subset X obtained by removing ., for every
i>1

(C3) Lemma and the three conclusions listed above imply that, for
each t satisfying 1 < t < ¢,,, the partition z; is the unique partition in X which
does not admit ¢ as a partial sum. Now we divide into two cases.

(1) There exists an integer belonging to the interval (¢,,,n/2] which is a partial
sum for all z; € X. Then, the minimum such integer is [t,, | + 1; we add
one further partition to X:

z= (1P 0 — |t ).

(2) Nointeger in (¢,,,n/2] is partial sum in all 2;’s. Observing that ¢,, < n/2—
1, Lemma and the three conclusions above imply that ¢,, =n/2—1,
i.e., n =2™-6. In this case we could leave X unchanged, and the statement
would be proved. However, we prefer to immediately modify the set X.
Notice that a,, = 1 and t,,—1 = n/2 — 2; it follows that z; = p1,, ¢ X,
and X contains a unique partition, namely z;, , of the form (1144, ¢).
Then, we remove such partition and we reintegrate the partition x; in X.
Moreover, we add to X one further partition

z=(1"?72n/2+2).

(C4) Our construction is finished. Let us make one observation, before con-
cluding the proof. In case (2) above, by construction z; € X. We claim that
the same holds in case (1). Indeed, one can easily check that a,, = 1 if and
only if n = 2™ - 6, and otherwise o; > 1 for every j. Therefore, in case (1), in
our procedure we did not remove x; from Xy, hence clearly z; € X.
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We are now ready to conclude the proof of the statement. The considerations
above imply that items (1) and (2) of the statement hold. Regarding item (3),

| X] = |Xo| + 1 —log(n/6)
>ﬁ—2—logn+log6

2
>
— —logn.
D) 2
The proposition is now proved. O

We now deduce the lower bound of Theorem [5.1.1] from Proposition [5.1.3]

Proof of the lower bound of Theorem[5.1.1 For 5 < n < 10, we have n/2 —
logn < 2. Since certainly m;(S,) > 2, the statement holds and we may assume
n > 11.

Consider the set X of partitions constructed in the proof of Proposition
In this proof we will consider the elements of X as conjugacy classes of
Sp. We want to show that X is a minimal invariable generating set for S,,.

It is easy to check the statement for n = 11,12 (see the paragraph (C1) in the
proof of Proposition . Assume now n > 13. By Proposition 1), the
classes of X cannot have non-empty intersection with an intransitive subgroup
of S;,. On the other hand, by Proposition 2), if we drop one class from X,
then the remaining classes have non-empty intersection with some intransitive
subgroup.

Now we deal with transitive groups. Note that X is not contained in A,
since x; corresponds to an odd permutation (see the paragraphs (C2) and
(C4)). Moreover, a power of x; corresponds to a cycle of prime length fixing
at least 3 points, which belongs to no primitive group different from A,, and S,
by a classical theorem of Jordan. Assume now the classes of X have non-empty
intersection with a maximal imprimitive subgroup, preserving a partition of
{1,...,n} made of r > 1 blocks of size k > 1. Recall that X contains a partition
z= (1"t (), with { =n/2+2or £ =n — |t,,] (see the paragraph (C3)). By
(5.2.2)) in the proof of Proposition we have n/2 — 3 < |t,,] < n/2, and in
particular n/2 < £ < n/2+3. We have that k must divide ¢. Since k also divides
n, we get k < 6. If n # 15, then x; cannot preserve blocks of size at most 5. If
n = 15, we note that X contains x4 = py 15, and we may take py 15 = (13,5,7),
which does not preserve any nontrivial partition of {1,...,15}. The proof is
now concluded. O

5.3 The upper bound

In this section we prove the upper bound in Theorem and we prove Corol-
lary The main ingredient is the following result, which follows quickly
from Theorem Recall that k(G) denotes the number of conjugacy classes
of a finite group G.
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n G k(G)

22 M2 21
40 PSU42).2 25
45 PSU42).2 25

Table 5.1: Some maximal almost simple primitive subgroups, G of S,,, for which
k(G) = 5. In every case there is a single S,,-conjugacy class of primitive sub-
groups isomorphic to G.

Theorem 5.3.1. Let G be a mazimal almost simple primitive subgroup of Sy,
and assume k(G) = 5. Then one of the following occurs:

(1) G is listed in Table [5.1]

(2) G=A,, or G =S54 and the action of G on n points is isomorphic to the
action on the set of k-subsets of {1,...,d} for some 2 < k < d/2.

(8) G = PT'L4(q) and the action of G on n points is isomorphic to the action
on the set of 1-subspaces of Fg.

Note that the subgroups mentioned at item (2) satisfy n = (Z) for some
integer k with 1 < k < d/2; and the subgroups mentioned at item (3) satisfy

n=(¢"-1)/(g—1).

Proof. The statement follows from Theorem by checking with [GAP19]
which of the entries in Table [I.1] correspond to maximal subgroups of S,. O

As we observed in the introduction of this chapter, the upper bound in
Theorem [5.1.1] follows immediately from Proposition [5.1.5} which we prove now.

Proof of Proposition[5.1.5 We make use of the families of maximal subgroups
given in the Aschbacher—O’Nan—Scott theorem, in particular the description
given in [LPS8Y|.

(1) Intransitive subgroups: There are exactly || conjugacy classes of
these.

(2) Imprimitive subgroups: There are A(n) — 2 of these, where A is the
divisor function.

(3) Affine subgroups: There is at most 1 conjugacy class of these.

(4) Almost simple subgroups: If M is almost simple and k(M) > %, then
it is among the possibilities listed by Theorem as follows.

(a) There are three possibilities for degrees 22,40, 45 listed in Table
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(b) There is at most one conjugacy class of maximal subgroups isomor-

phic to PT'L4(q) whenever n = qqd%ll; we let a,, be the number of pairs

d
(¢, d) where ¢ is a prime power, d is a positive integer, and qq:11 =n.

(c¢) There is at most one conjugacy class of maximal subgroups with socle

Ay whenever n = (Z) for some k; we let b, be the number of pairs

(d, k) where d and k are positive integers with k¥ < d/2 and (Z) =n.

(5) Diagonal subgroups: Theorem states that k(M) < 5 in this case,
so we can ignore these subgroups.

(6) Product action subgroups: In this case we have maximal subgroups
isomorphic to Sq ! Sk, where n = d* and k > 1. For fixed values of d and
k, there is one conjugacy class, thus the number of conjugacy classes in S,
is equal to the number of pairs (d, k) where d and k are positive integers
with £ > 1 and n = d¥; we write this number as ¢,.

(7) Twisted wreath subgroups: These are never maximal, as they are
defined to be subgroups of groups with a product action [LPS88| and so
can be ignored (and in any case, k(M) < 4 by Theorem [4.1.1)).

Observe that the number of conjugacy classes of maximal subgroup in S,
that are either imprimitive, affine, or given in Table [5.1] of Theorem [5.3.1] is at
most A(n) — 1. Therefore, if {M;,..., M} is a set of maximal subgroups as in
the statement, we have
n
2

(We will use this in the proof of Corollary [5.1.2]) In order to prove Proposi-
tion [5.1.5] it is clearly enough to show that

1
ap +b,+c, =0 LU .
loglogn

LS| 2]+ AM) +an+by+en— 1, (5.3.1)

To bound a,,, observe that if

qfl—l_qg2—1

g1 —1 @-1

then ¢; and ¢ must be coprime. We obtain that a,, must be bounded above by
the number of distinct prime divisors of n — 1. In [Rob83]| it is proved that this

number is
log(n — 1)
Ol m— 7>
loglog(n — 1)

whence the same upper bound holds for a,,.
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To bound b,, we refer to a result of Kane [Kan07]|, which asserts thaﬂ

b, = O log nlogloglogn '
(loglogn)3

To bound c¢,,, we first recall (see [Apo76, Theorem 13.12]) that, for a positive

integer x,
(14 0(1))logx }

Alr) < expy { log log x

Now consider the prime factorization of n: n = p{'---p{*. If n = d* then
p1 -+ pe divides d and k divides a := ged{aq, ..., a:}. Therefore, the number of
choices for k is at most the number of divisors of a different from 1. Now note
that a < logn, and therefore

e < €Xpy (14 0(1))loglogn .
logloglogn

In particular we see that each of a,, by, ¢, is O(logn/loglogn). This proves

the proposition. O

We conclude with the proof of Corollary

Proof of Corollary[5.1.3 Since {(1,2),(2,3),(3,4),...,(n—1,n)} is a minimal
generating set of size n — 1, it is enough to show that m;(S,) < n — 1. We will
prove the stronger bound ¢(S,,) < n — 1 (recall Lemma [3.2.3)).

From ([5.3.1)) in the proof of Proposition we deduce that
n

{Sn) < {2

J +A(n) +ap + by, + ¢, — 1,
therefore it is sufficient to show that A(n) + a, + b, + ¢, < n/2. Very weak
estimates are enough here. First assume that n > 71.

As remarked in the proof of Proposition [5.1.5] a,, is bounded above by the
number of distinct prime divisors of n — 1, which is at most logn. Moreover,
¢n, is bounded above by max{A(z) : z < |logn]}, which is at most logn. Let
us consider b,. Let (di,k1),...,(dp,k») be pairs such that (iz) = n for all
¢ =1,...,b. Order so that ¢ < j implies that k; < k; and observe that then
ky > b and dp > 2b. This implies that n > (be) > 20 In particular b < log n.

Finally we need to bound A(n). For every real number a € (0,n], we have
A(n) < n/a+ a. By choosing a = v/n, we deduce A(n) < 24/n.

Therefore A(n) + ay, + by, + ¢ < 2¢/n+ 3logn, and it is sufficient to show
that 2v/n 4 3logn < n/2. Since n > 71, this is indeed the case.

ISingmaster’s conjecture [Sin71] asserts that by, is bounded above by an absolute constant;
de Weger proposes that in fact this constant can be taken to be 4 [dW97], and evidence for
the veracity of this conjecture is given in [BBDW17]; in particular this is known to be true if
n < 1090,
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For n < 70 we use [GAPI19| to find that, except when n € {5,6,8,12}, S,
has less than n—1 conjugacy classes of maximal subgroup and the result follows
immediately.

For the remaining cases, say that two cycle types are equivalent if one is
a power of the other one; e.g., (2,2) is equivalent to (4), (2,3,3) is equivalent
to (2,19), etc. We readily see that, if {My,..., M;} is independent, then, for
every ¢, M, intersects non-trivially at least ¢ — 1 pairwise non-equivalent cycle
types.

For n € {5,8,12}, there are exactly n — 1 conjugacy classes of maximal
subgroups of S,,. However, in each case, there is one which does not intersect
at least n — 2 pairwise non-equivalent cycle types, and the result follows. (For
n = 5 we may take AGL;(5), for n = 8 we may take PGLy(7), and for n = 12
we may take PGLy(11).)

For n = 6, there are 6 conjugacy classes of maximal subgroups. One of these,
with representative PGLo(5), does not intersect 5 pairwise non-equivalent cycle
types. In particular, we deduce that the only independent set of size 5 can
possibly be

0= {AZ, (SQ ?Sg)*, (Sg ?SQ)*, S;, (54 X SQ)*} (532)

We easily verify that the intersection of the first four M* in (5.3.2)) consists of
the conjugacy classes (1°) and (22, 12), both of which are contained in (Syx So)*.
This shows that € is not independent, and therefore ¢(Sg) < 5, as wanted. O
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Chapter 6

Connected components in the
invariably generating graph

The content of this chapter consists of the preprint [Gar20b].

6.1 Introduction

In this chapter, it is convenient to consider invariable generation by conjugacy
classes, rather than invariable generation by elements (this is really only a
matter of terminology). Specifically, given a finite group G and a set X =
{C4,...,C;} of conjugacy classes of G, we say that X invariably generates G
if (x1,...,2¢) = G for every 1 € C4,...,2; € C, and we write in this case
(X)r=G.

In [Gar20a], the following definition was given. For a finite group G, the
invariably generating graph A(G) of G is the undirected graph whose vertices
are the conjugacy classes of G different from {1}, and two vertices C' and D
are adjacent if (C,D); = G. If G is not invariably 2-generated, A(G) is the
empty graph. Even when G is invariably 2-generated, the graph A(G) can have
isolated vertices (e.g., when G is not cyclic, the classes contained in the Frattini
subgroup); define A™(G) as the graph obtained by removing the isolated vertices
of A(G). In this chapter we prove the following result.

Theorem 6.1.1. For every positive integer n, there exists a finite group G such
that A*(G) has more than n connected components.

Theorem should be seen in comparison to the analogous graph for the
case of usual generation; see Subsection [6.1.1

In the proof of Theorem G is a suitable direct power of a nonabelian
finite simple group S. We use S = PSLy(q), although there are other possible
choices. A crucial ingredient is that AT(S) is bipartite, which follows from the
fact that S admits a 2-covering (Lemma . See Section for definitions

80



and further comments in this direction, related to clique number and chromatic
number of AT(S9).

We will also give a suitable lower bound to the number of connected com-
ponents of AT(G) in our examples (see Theorem , which is not strictly
necessary for the mere proof of Theorem [6.1.1] We will get the bound as a
consequence of the following result.

Theorem 6.1.2. Let S = PSLa(q), and let C1,Cs be conjugacy classes of S
chosen uniformly at random. Then

P((C1,Ca)r = 8) =1/2+ O(1/q).

The proof of Theorem is straightforward, since subgroups and conju-
gacy classes of PSLy(q) are known very explicitly. It is interesting that the
asymptotic behaviour of P((Cy, Cs); = 5) is equal to the asymptotic behaviour
of P({x1,29)r = S), where x1,z5 € S are random elements. The latter state-
ment will follow from the results of Chapter [7} see in particular Subsection

rn

6.1.1 Comparison to usual generation

For a finite group G, the generating graph T'(G) of G is the undirected graph
whose vertices are the nonidentity elements of GG, and two vertices x and y are
adjacent if (x,y) = G. This graph has been intensively studied in the last two
decades; see Burness [Burl9| and Lucchini-Maréti [LMO09| for many results in
this context.

Again, the graph T'(G) can have isolated vertices, and we consider the graph
I'"(G) obtained by removing the isolated vertices of I'(G). It is known that
't (G) is connected in several cases (see Burness—Guralnick—Harper [BGH20)],
Crestani—Lucchini [CL13al [CT.13b]). By contrast, no example of G is known for
which T'H(G) is disconnected, which determines a sharp difference with respect
to Theorem

We recall that this difference does not occur for nilpotent groups. Indeed,
in a finite nilpotent group the concepts of generation and invariable generation
coincide (see Lemma [2.3.2)).

6.1.2 Organization of the chapter and notation
In Section we prove Theorems and and in Section we make

further comments and propose some problems.
The asymptotic notation f = O(g) means that |f| < Cg for some constant
C (so f might also be negative). For a real number z, we set exp,{x} := 27.
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6.2 Proof of Theorems [6.1.1] and [6.1.2]

6.2.1 Direct powers of finite simple groups

Throughout this subsection, S denotes a nonabelian finite simple group. We
review some properties of invariable generation of direct powers of S, which
reflect some interesting properties of the corresponding invariably generating
graphs. The key tool is an elementary criterion due to Kantor and Lubotzky
IKL.90a], which we recall.

Denote by W5(S) the set of all pairs (Cy, Cy), where C; is a conjugacy class
of S, and (C1,C3); = S. Theorem [2.4.2] implies that W5(S) # @.

Let now ¢ be a positive integer, and let C and D be conjugacy classes of S¢,
with C =C; x -+ x Cyand D = Dy X --- x D; (and C; and D; are conjugacy
classes of S). Consider the matrix

4 B c, Cy - C4
“PTA\Di Dy - D)

Lemma 6.2.1. We have that (C, D); = St if and only if the following conditions
are both satisfied:

(i) Each column of Ac.p belongs to U5(S), and

(i1) No two columns of Ac,p lie in the same orbit for the diagonal action of
Aut(S) on Ty(S).

Proof. See [KL90al Proposition 6], and also [DL15, Lemma 20]. O

Let 3 = B(S) be the largest integer for which S? is invariably 2-generated.
Lemma implies that 5(.5) is equal to the number of orbits for the diagonal
action of Aut(S) on Uy(S). We note the following fact.

Lemma 6.2.2. We have

[Wa(S)|
< B(S) < |P2(9)].
G < BS) < a(8)
Proof. The second equality is clear, and the first follows from the fact that
Inn(S) = S acts trivially in the relevant action, hence each orbit has size at
most |Out(S)|. O

We expect |Out(S)| to be much smaller than |¥5(S)| for every sufficiently
large nonabelian finite simple group S. Therefore, |¥5(S)| should be, in some
sense, a good approximation for 5(.5).

We make a one-paragraph digression in order to compare to the case of
classical generation. Let & = §(S) be the largest integer for which S? is 2-
generated. Unlike for 5(5), there is an exact formula for §(5), namely, §(S) =
$2(S)/|Aut(S)|, where ¢o(S) denotes the number of ordered pairs (z,y) € S?
such that (z,y) = S. (This goes back to Hall [Hal36] in 1930s and has been
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widely used.) The difference is that the diagonal action of Aut(S) on the set
of generating pairs of elements is semiregular (i.e., only the identity fixes a
generating pair), while this needs not be the case for the action of Aut(S) on
the set of invariable generating pairs of conjugacy classes.

Lemma describes quite precisely the graph A(S?). Indeed, any arc
in the graph is obtained as follows (and only in this way). Construct a 2 x 8
matrix, in which the columns form a set of representatives for the Aut(S)-orbits
on Uy(S). Then the first row is adjacent to the second row in A*(S?) (here
we are identifying a conjugacy class C7 x --- x Cg of S8 with a row vector
(Cy,...,Cp)). Since Aut(S?) = Aut(S) 1 Sym(B) acts by automorphisms on
AT (SP), we also see that A*(S?) is arc-transitive.

6.2.2 The case S = PSLy(q)

In this subsection we choose S = PSLs(gq), with ¢ > 4. For reader’s convenience,
we recall some well known facts. See [Suz82, Chapter 3.6] for the description of
the maximal subgroups of S.

Lemma 6.2.3. Let S = PSLs(q), where ¢ > 4 is a power of the prime p. Set
d=1(2,q-1).

(1) S contains a unique conjugacy class of involutions and, for p odd, two
conjugacy classes of elements of order p.

(2) Assume 3 < | (qx1)/d. There are ¢(£)/2 conjugacy classes of elements
of order { in S, where ¢ is Euler’s totient function.

(8) The number of conjugacy classes of S is (¢ +4d — 3)/d.

Note that item (3) was used also in the proof of Lemma [4.2.12] Here we will
also need items (1) and (2).

Proof. We sketch a proof. (1) Assume first ¢ is odd, and let us deal with
involutions. Let ¢ = 1 if ¢ = 1 mod 4, and ¢ = —1 otherwise. By explicit
matrix computation, we find that the number of involutions of S is ¢(g + £)/2.
This coincides with the number of conjugates of a dihedral subgroup of order
q — €, so we deduce that all involutions of S are conjugate. Next we deal with
elements of order p (also in the case ¢ even). The image in S of the subgroup
of SLy(¢) consisting of the upper unitriangular matrices is a Sylow p-subgroup
P of S. This is contained in a subgroup B, consisting of the image of the upper
triangular matrices of SLa(q). Let 1 # 2 € P. We verify that 25 N P = 2B,
and we compute that conjugating x by elements of B can only multiply the
upper-right entry by every nonzero square of F,. This proves (1).

(2) Assume 3 < £ | (¢ £1)/d. All cyclic subgroups of order ¢ are conjugate
in S. Assume x € S has order . We have that Ng((x)) is dihedral of order
2(q £ 1)/d, from which 2% N (z) = {x,2~*}. This proves (2).
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(3) An element of S has either order p, or order dividing (¢ +1)/d. Then
(3) follows from (1), (2), and the formula

p(f) q*1
2. 5 e

£(q£1)/d
The statement is proved. O
The following lemma represents the main observation regarding A™(S).
Lemma 6.2.4. The graph AT(S) is bipartite.

Proof. 1t is well known that S admits a 2-covering, that is, a pair of proper
subgroups (H, K) such that

s=\Jmu|J K =AUR.
geSs geSs

We take H a dihedral subgroup of order 2(q+1)/d, and K a Borel subgroup of
order ¢(q — 1)/d, with d = (2,¢ — 1). A conjugacy class contained in HNK is
isolated in A(S), and a class contained in H \ K can be adjacent in A*(S) only
to a class contained in K \ H. This gives a partition of A+ (S) in two parts. O

Let &) and 25 be the parts of A*(S) given in the proof of Lemma We
note that, for every conjugacy class C of S and for every o € Aut(S5), {C, c7}
does not invariably generate S. (A way to see this is that the sets H and K
from the proof of Lemma are preserved by every automorphism of S.) In
particular, for every (C1,Cs) € ¥o(S), (C1, Ca) and (Cs, C1) belong to different
Aut(S)-orbits. We also note that the parts &7, and &2, are invariant under the
action of Aut(S). We deduce the following

Lemma 6.2.5. g = §(S5) is even, and for each vertex C = Cy x --- x Cg of
At (S?), there exists a subset Q2 = Q(C) of {1,...,3} of size B/2 such that for
every i € Q, C; € 1, and for every i & Q, C; € P5.

We can finally prove the key result.

Theorem 6.2.6. The graph A*(S?) has at least L (ﬁ/2) connected components.

Proof. For a vertex C = Cy x---xCg of AT(9), let (C') be the set from Lemma
Then, C can be adjacent only to vertices D such that Q(D) = {1,...,5}\
Q(C). In particular, the number of connected components of A*(S?) is at least
half the number of 3/2-subsets of {1,..., 3}, which proves the statement. [

It is not difficult to establish that 5(.5) tends to infinity as |S| — oo (that is,
q — 0), thereby proving Theorem In the next subsection we will obtain
a better estimate for 3(.5).
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6.2.3 Bounds

We want to estimate 3(5), where S = PSLy(g). We will find the asymptotic
behaviour of |¥5(.S)|, and then apply Lemma

Theorem 6.2.7. Let S = PSLy(q) and d = (2,q — 1). We have

2
q
Uy (S)| = = + O(q).
[2(8)| = o5 +0(a)
(For q odd the first term of the expression is not an integer, but still the state-

ment makes sense.)

Proof. In this proof, when we say that a conjugacy class C' intersects a subgroup
H, we mean CNH # &. We refer to [Suz82, Chapter 3.6] for the description of
the maximal subgroups of S. We need to count the pairs of conjugacy classes
(C1,C3) which invariably generate S. We ignore the pairs where either C; or
C5 is made of elements of order p, or of order at most 2. By Lemma the
number of these pairs is O(q).

By this choice, up to swapping the indices, C; intersects a cyclic subgroup
of order (¢ —1)/d, and C5 intersects a cyclic subgroup of order (¢+1)/d. Given
C1 and Cs with this property, we have that C7 and Cy invariably generate S
unless one of the following occurs:

(i) C1 and C5 intersect a certain maximal subgroup of order at most 60, and
there are at most five possibilities for such subgroup.

(ii) C; and C, intersect a maximal subgroup conjugate to PSLa(q'/") where
r is an odd prime (and ¢ is an r-th power).

(In (i), we are not considering subgroups PGLy(¢'/?). Indeed, any class of
elements of PGLs(q'/?) of order prime to g intersects a cyclic subgroup of S order
(¢ — 1)/d; and this cannot occur for Cs.) Clearly there are O(1) possibilities
for (Cy,Cy) satisfying (i). The number of conjugacy classes of PSLy(q'/") is
O(q*/™); therefore, for fixed r, the number of possibilities for the pair (Cy, Cy)
satisfying (ii) is O(¢?/"). Summing through odd prime r, we get O(¢*/?) (note
that there are at most loglog ¢ possibilities for r).

Using Lemma we get the following formula for |¥4(S)| (the factor 2
at the beginning comes from the fact that we may also have C] intersecting
a cyclic subgroup of order (¢ + 1)/d, and C5 intersecting a cyclic subgroup of
order (¢ —1)/d).

£1)(q—1)/d 2
£2)(q+1)/d
2 2
_e -1 _ 7
(In the first equality we used the formula -, ¢({) = n, and the fact that
d)(él)d)(ég) = ¢(€1€2) for coprime fl and eg) O
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We can rephrase Theorem in probabilistic language, that is, we can
prove Theorem [6.1.2

Proof of Theorem[6.1.2 The statement follows from Lemma 3) and The-
orem [6.2.7] 0

At this point we can estimate 5(.5) and get a lower bound to the number of
connected components of AT(S#), thereby proving Theorem The symbol
o(1) is understood with respect to the limit ¢ — oo.

Theorem 6.2.8. Let S = PSLy(q). We have

2
¢ <BS) < G+ 0a).
Let N(S) denote the number of connected components of A*(S?). Then

N(S) > exp, {q2_°(1)}~

Proof. The order of Out(S) is at most 2logg. By Lemma and Theorem
[6.:2.7] we get
2
—o q
¢ <<+ 0), (6.2.1)
which proves the first part of the statement. By Theorem [6.2.6] Stirling’s ap-

proximation and (6.2.1)), we get

L (5)_ P
N(S) > 5- <6/2> = (1+0(1) s

> exp, {qg_"(”} :

which proves the last part of the statement. O

6.3 Further comments

Recall that I'T (@) is the graph obtained by removing the isolated vertices from
the generating graph I'(G) of G. Crestani-Lucchini [CL13b| showed that, if G
is a 2-generated direct power of a nonabelian finite simple group, then I' (G)
is connected.

In particular, Theorem says that the result of [CL13b| does not hold
for invariable generation. Nevertheless, a combinatorial proof along the lines
of [CL13bl Theorem 3.1] might be feasible in order to show the following: If a
finite simple group S is such that A*(S) is connected and not bipartite, then
AT (S?) is connected for every ¢ < 3(S). Unfortunately, the fact that AT (S) is
connected is known essentially only for alternating groups [Gar20al, therefore
the result at this stage would not be of wide use.

We also remark that we are currently unable to construct examples of soluble
groups G for which AT(G) is disconnected.
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Question 6.3.1. Let G be a finite soluble group which is invariably 2-generated.
Is the graph A+ (G) connected?

Crestani-Lucchini [CL13al showed that this is true for the graph I'* (G) (and
in particular Question has a positive answer for nilpotent groups).

6.3.1 AT(S) bipartite

For the proof of Theorem the only important fact about S = PSLy(q) is
that the graph AT (S) is bipartite, which follows from the fact that S admits a
2-covering (see the proof of Lemma . Recall that, given a finite group G,
a 2-covering of G is a pair (H, K) of proper subgroups such that

G=J oK

geG geG

The 2-coverings of the finite simple groups have been well studied; see Bub-
boloni [Bubl10], Bubboloni-Lucido [BL02], Bubboloni-Lucido-Weigel [BLW06,
BLWTI], Pellegrini [Pell3]. In particular, all finite simple groups admitting a
2-covering are known, except for some classical groups in small dimension.

We have the following clear implications:

S admits a 2-covering = AT (S) is bipartite (6.3.1)
= AT(S) has no triangles

(These implications are a particular case of the inequalities in below.)
The reverse of the first implication in does not necessarily hold. For
instance, Ag does not admit a 2-covering (it was proved in [Bubl(] that A,
admits a 2-covering if and only if 4 < n < 8). On the other hand, it is not
difficult to show that AT(Ag) is bipartite. This might be one of only finitely
many exceptions.

Problem 6.3.2. Determine the finite simple groups S for which A (S) is bi-
partite (resp., contains no triangles). Up to finitely many cases, do the reverse

implications in (6.3.1]) hold?

These considerations can be viewed more generally as follows. For a non-
cyclic finite group G, let k(G) be the clique number of AT(G), that is, the
largest order of a complete subgraph of A*T(G). Let 7(G) be the chromatic
number of A*(G), that is, the least number of colours needed to colour the
vertices of AT(G) in such a way that adjacent vertices get different colours. Let
~(G) be the normal covering number of G, that is, the least number of proper
subgroups of GG such that each element of G lies in some conjugate of one of
these subgroups. The following inequalities hold:

(@) < 7(G) <A(G). (6.3.2)

(These are “invariable” versions of inequalities studied for instance in [LM09].)
The implications in (6.3.1)) can be stated as follows for a general noncyclic finite
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group G: 7(G) € 2 = 7(G) £ 2 = k(@) < 2. (We note that, for
every finite group G, v(G) > 2 and, by Theorem if S is nonabelian simple
then x(S) > 2.) Problem asks whether, up to finitely many exceptions,
78 =2 = 7(5)=2 <= k(5)=2.

The invariants x(G) and v(G) have been studied; see for instance Britnell-
Maréti [BM13], Bubboloni-Praeger—Spiga [BPS13] and Garonzi-Lucchini [GL15].

As a final remark, the fact that A(G) can have no triangles is somewhat
strange, in comparison to classical generation. Indeed, for every 2-generated
finite group G of order at least 3, the generating graph I'(G) contains a triangle,
and indeed “many” triangles. This follows from the crucial fact that if (z,y) = G
then (x,zy) = (zy,y) = G. As we already observed in Section the fact
that this property fails for invariable generation represents an annoying obstacle
in order to extend results from the classical to the invariable setting.
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Chapter 7

On the probability of
generating invariably a finite
simple group

The content of this chapter consists of the preprint [GM20], which was written
in collaboration with Eilidh McKemmie.

7.1 Introduction

For a finite group G and a subset A of G, denote by P;,, (G, A) the probability
that, if y € G is chosen uniformly at random, there exists x € A such that
(x,y)r = G. In case A = {z}, we will write Pi, (G, ) instead of P, (G, {x}).

We consider the case in which G is a nonabelian finite simple group. Our
general aim is to find “small” subsets A of G such that P, (G, A) is “large”.

We state our first result, which in most cases will be asymptotically super-
seded by subsequent theorems. In Subsection we will provide more context
for these theorems, also in relation to “classical” generation.

Theorem 7.1.1. Let G be a nonabelian finite simple group. There exist an
absolute constant € > 0 and an element x € G such that Pi, (G, x) > €.

As recalled in Theorem [2.4.2]of Chapter[2] every finite simple group is invari-
ably generated by two elements. Therefore, we will only need to prove Theorem
for sufficiently large finite simple groups.

In light of Theorem one would like to find many elements y € G with
the property that Pi,, (G, y) is bounded away from zero uniformly. For groups
of Lie type of bounded rank different from G2(3%), one can take almost all
elements.
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Theorem 7.1.2. Let G be a finite simple group of Lie type of untwisted rank
r defined over the field with q elementsﬂ and assume G % Ga(q) when 3 | q.
Then, Pin(G,y) = ¢/r + O(r"/q) for an absolute constant ¢ > 0 and for a
proportion of elements y € G of the form 1 — O(r" /q'/?).

(In fact, if G % PSLy(q), in the last error term one can replace ¢'/2 by ¢.) In

Theorem we will give an explicit value for c¢. The group G = G2(3%) does
not satisfy the statement; we will see in Theorem that Pi,(G,y) = 0 for
roughly half of the elements y € G. However, we will show that Pin (G, y) >
1/6+0(1/q) for the remaining half of the elements (Theorem[7.4.1)). With a bit
of care for the error term in case G = PSLy(q), we get the following immediate
consequence.

Theorem 7.1.3. Let G be a finite simple group of Lie type of untwisted rank
r defined over the field with q elements. Let x1,x9 € G be chosen uniformly at
random. Then,

P({(z1,22)1 = G) =2 ¢/r+ O(r" /q).

Of course, in the previous two theorems we are thinking of r fixed, and
g — 00. In order to avoid confusion, we point out that with v = O(z) we mean
that |u| < Cz for some constant C' (so there is no assertion on the sign of w).

We will review the history of Theorem in Subsection [7.1.1] An inter-
esting purpose is to obtain sharp bounds in Theorem [7.1.3] Although in this
thesis we do not pursue this goal, in Theorem [7.6.2] we will obtain a formula
of the type P((x1,z2); = G) = f(r) +d(r)/q. The main term f(r) is very ex-
plicit, depends only on the Weyl group, and can be computed essentially in an
algorithmic way; it should be possible to compute it precisely for all exceptional
groups.

Eberhard-Ford-Green [EFGI17] and McKemmie [McK19] showed that, for
alternating groups and for groups of Lie type of large rank over large fields,
P((x1,22,23); = G) tends to zero. (Conjecturally, in groups of Lie type there
should be no restriction on the field size.) Therefore, it is not possible to extend
Theorem [7.1.2] to the other families of finite simple groups — not even for a
proportion of elements bounded away from zero. In this sense, we can say that
the element x of Theorem [7.1.1]is “special”, unless G is of Lie type of bounded
rank.

In Theorems and we have bounded Pin, (G, z) away from zero.
Next, we would like to get probabilities approaching 1. With this purpose, we
consider more elements simultaneously. In most cases, only few elements are
needed; in the remaining cases, the whole group is not enough.

Theorem 7.1.4. Let G be a nonabelian finite simple group.

o Assume G is of Lie type and G % G2(q) when 3 | q. There exists a subset
Ay of G such that |Ay| and Piny (G, Ay) are as in Table ,

IThis is not exactly precise for Suzuki and Ree groups, and in fact, not even for unitary
groups. We will recall the exact definition of “¢” in Section@ Concretely, q is the parameter

appearing in Table @
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o Assume G is alternating or classical. There exists a subset Ay of G such
that |A¢| and Piny (G, Ay) are as in Table E|

o Assume G = Ga(q) with 3 | q, or G = PSp,,,(q) with q even and m
sufficiently large, or G = PQoy,11(q) with ¢ odd and m sufficiently large.
Then Piny (G, G) is as in Table .

Theorem [7.1.4] presents a strong dichotomy; it is worth stating this sepa-
rately.

Corollary 7.1.5. Let G be a nonabelian finite simple group.

(1) Assume G is not as in Table . Then, there exists A C G of size at most
6 such that Piny (G, A) tends to 1 as |G| — oo.

2) Assume G is as in Table|7.2 Then Pi. (G, G) is bounded away from 1.

( ; y
(Equivalently, Pi,w(G,y) = 0 for a proportion of elements y € G bounded
away from zero.)

Corollary follows from Theorem by setting A = A, for alternating
groups, A = Ay for exceptional groups, and A = A, U Ay for classical groups. Of
course, every case in which the size of Ay is equal to 1 represents a strengthening
of Theorem [7.1.1] Combining this with Theorem [7.1.2] we see that in most
cases asymptotically we can do better than Theorem [7.1.1] The improvement
is complementary: while Theorem does not hold in large rank, here we
cannot have |Ap| = 1 in bounded rank (see Lemma [7.7.2)). We note finally that
the size of |Ay| is sharp in every case (Lemmas|7.8.6|and [7.8.10)), and that there
are cases in which we need |Ap| > 4 (see Lemma [7.7.1} note that |Ap| < 4 unless
G = F4(2%)). Here, with “sharp” we mean that if choose a set Y of smaller size,
then P, (G, Y) remains bounded away from 1 as the relevant parameters grow.

7.1.1 Context: Theorem [7.1.3

For convenience, we recall some results from Section [2.2 The first result of
the flavour of Theorem was obtained by Dixon [Dix92]. He showed that
O((logn)'/?) random elements of S,, invariably generate S,, with probability
tending to 1 as n — oo. Luczak and Pyber [LP93| showed that O(1) random
elements of S, invariably generate with probability bounded away from zero.
The exact value of O(1) turned out to be four: Pemantle—Peres—Rivin [PPRI6]
proved that four elements are enough, while Eberhard-Ford-Green [EFG17]
showed that three are not. The same results hold for alternating groups. McK-
emmie [McK19] extended these results to classical groups of large rank, leaving
open the case of classical groups over small fields.

Theorem addresses the case of groups of Lie type of bounded rank,
which therefore nearly finishes the problem of invariable generation of finite

2In Ay, “b” stands for “bounded”, and in Ay, “¢” stands for “large”. This is referred to the
rank of the groups; the reason of this choice should be clarified by looking at the bounds in

Table E
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G Conditions

Size of Ap or Ay

Bounds

31q

q odd
q even

q) m even, q odd
PSp,,,,(q) m odd, ¢ odd
q) q even

PQamy1(q) g odd

(¢) m odd
PQ3 (q) m even

%MI\J[\DQW[\DM[\D[\DM[\DM@[\D[\DM[\D[\DME
o

Pin (G, 4p) 2 1-0(r"/q)

q
PSp,,.(¢)  gqodd
q

PSp,,,(q) g even
PQQm+1(q) q Odd

MMH)—‘)—‘)—‘H)—‘I
~

Pin(G,A) 21—-6/q+ O(T—0A005)

G2(q) 3lq

PSp,,,, (q) q even, m large
PQom+1(q¢) ¢ odd, m large

Pi(G,G) =1/2+ 0(1/q)
P (G,G) <1 —1/4¢°
Pin(G,G) < 1—1/6¢q

Table 7.1: For groups of Lie type, r denotes the untwisted rank. It is understood
that every nonempty entry in the fourth column applies to all subsequent empty

lines.

G Conditions

G2(q) 3lq

PSp,,,, (q) g even fixed
PQom+1(q¢) g odd fixed

Table 7.2:
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simple groups by randomly chosen elements. (We note that, using a bounded
number of random elements, the probability cannot approach 1; this follows
from results by Fulman—Guralnick [FGO03], and it is summarized for instance in
IKLS11l Corollary 5.7].)

7.1.2 Context: Theorems [7.1.1], and

It is convenient to visualize things as follows. Recall the definition of the gener-
ating graph T'(G), and of the invariably generating graph A(G), which we gave
in Chapter @ Here we need to work with a variant of the graph A(G), which we
denote by A.(G), and which is obtained by A(G) by replacing conjugacy classes
by elements. More precisely, the vertices of A.(G) are the nontrivial elements
of G, and two vertices x and y are adjacent if (z,y); = G. (This graph was
defined in [Gar20a]. )|

In this language, Theorem says that A.(G) contains large stars when
G is simple.

For z € G, let P(G,z) denote the probability that, if y € G is random,
then (x,y) = G: this is the “classical” version of our Pi, (G, xz). Set then
P~ (G) = min{P(G,z) : 1 # x € G}. Guralnick and Kantor [GKO00] showed
that P~(G) > 0 for every finite simple group G, i.e., I'(G) has no isolated
vertices. Moreover, in [GLSS99|, following results from [GKS94] and [LS99], the
behaviour of P~(G), where G is simple and |G| — oo, was determined.

It is easy to see that the Guralnick—Kantor result fails for invariable gen-
eration: A.(G) can have isolated vertices (for instance, a 3-cycle in A,, with n
even). It seems to us that Theorems [7.1.1} [7.1.2] and |7.1.4] are essentially the
best one can hope for in the invariable setting. Moreover, our results are among
the first probabilistic statements concerning invariable generation of finite sim-
ple groups by two elements. We are aware only of [Shad8, Theorem 4.2], which

is Theorem in case G = PSL,(¢) and n large.

Corollary [7.1.5| can be clearly stated in terms of A.(G) as follows.

Corollary 7.1.6. Let G be a finite simple group.

(1) Assume G is not as in Table . Then, the proportion of isolated vertices
of Ae(G) tends to zero as |G| — oo. More precisely, if we remove a
negligible proportion of vertices from Ao(G), and if we remove some further
edges, we obtain a graph which is the union of at most 6 stars.

(2) Assume G is as in Table . Then the proportion of isolated vertices of
A (G) is bounded away from zero.

Item (2) determines a sharp contrast with respect to the case of classical
generation. Theorem and Corollary can be seen also as a sort of

3The graphs A(G) and A.(G) share many properties; for instance, the number of connected
components, and the value of the diameter in each connected component. In particular, the
results of Chapter [6] hold for both graphs. However, the properties concerning proportions
of vertices or edges can be very different. Since in this chapter we are working with random
elements, we need to work with the graph A.(G).
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“invariable” version of a concept introduced recently by Burness and Harper. In
[BH19], the total domination number of a finite simple group G is defined as
the total domination number of T'(G), i.e., the minimal size of a subset A of G
such that, if 1 # y € G, there exists x € A such that (z,y) = G. Corollary
can be thought of as an analogue for invariable generation — although again it
is necessary to ignore a small proportion of elements.

7.1.3 Methods

We restate the main theorems in terms of certain subsets of the group.

Let G be a finite group, and let * € G. We define .#(x) as the union of
all conjugates of maximal subgroups of G containing x. Equivalently, .#(x)
coincides with the union of all conjugacy classes of elements intersecting some
maximal overgroup of x.

Lemma 7.1.7. Let A be a subset of G. Then,

L= Pyn(G ) — et ﬂzef(f(x)'.

Proof. Given y € G, {z,y} invariably generates G if and only if y ¢ .#(x). The
statement follows. O

Therefore our business is to find elements x such that .#(z) is small. This
ultimately depends on two facts:

(i) existence of elements lying in few maximal subgroups, and
(ii) existence of maximal subgroups M of G such that M = Ugeg M is small.

We must note that, in fact, (i) and (ii) perform only part of the job. Indeed,
taking intersections of sets . (x) is rather more delicate, and will require much
more work. Moreover, of course the proof of the upper bound to P, (G, G) in
Theorem [7.1.4] goes in the opposite direction.

Item (i) is a well studied topic (cf. [GKO00, Wei92]). Often, for us applying
results from these papers is convenient, rather than essential. Indeed, we are
interested only in overgroups up to conjugation, which simplifies the situation.
Moreover, in our probabilistic approach we can ignore the overgroups which are
small (e.g. certain almost simple subgroups in groups of Lie type).

For what concerns item (ii), our main tool will be the positive solution of
the Boston—Shalev conjecture by Luczak—Pyber and Fulman—Guralnick, which
we discussed in Section [2.5)]

Another key tool is the intimate connection between the properties of in-
variable generation of a group of Lie type and the structure of its Weyl group.
We will make this precise in Section In bounded rank, this will allow us
to translate the main theorems in terms of maximal tori (see e.g. Theorem
7.3.10). We will exploit the connection also in large rank, where the asymptotic
properties of the Weyl groups will be relevant.
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We remark again that it is enough to prove Theorem for sufficiently
large finite simple groups, since Theorem [2.4.2] states that every finite simple
group is invariably generated by two elements. What is more, for groups of Lie
type we can divide the proof of Theorem [7.1.1] in two steps: first produce an
element x, for groups of sufficiently large rank, and then produce an element
2o for groups of bounded rank and sufficiently large fields.

Finally, we note that we are free to define the subsets A, and A; from
Theorem only for sufficiently large finite simple groups. In fact, in groups
of Lie type, for the set A, we may assume that r is sufficiently large, and for the
set A, we may assume ¢ > r". Clearly, also the proof of Theorem [7.1.4] splits
naturally into bounded rank and large rank.

7.1.4 Organization of the chapter and notation

In Section we prove the main theorems for alternating groups. In Sections
7.7| we prove the main theorems for groups of Lie type of bounded rank. In
Section [7.§ we deal with groups of Lie type of large rank.

The asymptotic notation f = O(g) means that |f| < Cg for some constant
C (so f might also be negative). As in Chapter [2| for a subgroup H of G, we

set _
H=|]JH.
geG

We will only use this notation in Section where G will always be X, = X(q)
(see Section for definitions).

7.2 Alternating groups

In this section we prove Theorem [7.1.4] for alternating groups. Since |A,| = 1,
this implies Theorem [7.1.1} Conceptually, the proof follows from [LP93]. We
will make use of [EFG16| and [EFK16| in order to obtain better bounds.

If n is odd, choose x € G = A,, to be an n-cycle. If n is even, choose = € G to
have cycle type (n/2,n/2). Then set Ay = {x}. In the first case, the overgroups
of x are transitive subgroups, while in the second case the overgroups of = are
either transitive, or fix a set of size n/2.

By |[EFK16l, Theorem 1.1], the proportion of elements of A,, lying in proper
transitive subgroups of 4,, is O(n=%8). By [EFEGI6, Theorem 1.1, the same
bound holds for the proportion of elements fixing a set of size n/2. Therefore

| ()]

=0(n"%).
Il ( )

Then Pin (G, 4¢) = 1 — O(n%%) by Lemma [7.1.7, (We mention that, in
[EEK16] and [EFG16], much more precise estimates are proved than those used
here.)
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7.3 Groups of Lie type of bounded rank: prelim-
inaries

In this section we introduce all the machinery that will lead us to the proof
of the main theorems for groups of Lie type of bounded rank. We will prove
Theorem [7.1.4) in Sections [7.4] and [7.5] and deduce Theorems [7.1.2] and [7.1.3] in
Section [Z.6

We single out a special case.

Theorem 7.3.1. Theorems|7.1.2,|7.1.5,|7.1.4 hold in case G = PSLy(q).

The subgroup structure of PSLy(q) is very well known and it is easy to prove
Theorem We will do this at the beginning of Section

The reason why we separate out this case is minor. Indeed, we will give
an argument which works in general, but which gives error terms in ¢ of type
O(1/¢"/?) if G = PSLa(q), and of type O(1/q) otherwise (see Remark
We then prefer to consider PSLy(q) separately, and deal with the other cases
uniformly.

Let X be a connected simple linear algebraic group over an algebraic closure
k of a finite field of characteristic p (for all this theory, our reference is [MT11]).
Let 0 be an endomorphism of X such that the set X, of fixed points of o is
a finite group, and such that the derived subgroup [X,, X,] = X/ is a perfect
group. Let T be a o-stable maximal torus of X. Then o acts naturally on
the character group Hom(7,GL;). It turns out that the eigenvalues of o on
Hom(T,GL;) ®z C have all the same absolute value, which we denote by ¢,
and which is a fractional power of p (cf. [MTII, Lemma 22.1 and Proposition
22.2]). We will write X, = X (q), except in case X, is a Suzuki or a Ree group, in
which case ¢ is not an integer but ¢ is an integer, and we will write X, = X (¢?).
However, when we present general arguments which apply to all groups, we will
write X (q), without highlighting the difference for Suzuki and Ree groups. This
notation conflicts slightly with Table |7.1] where for exceptional groups X(q)
denotes a finite simple group (while here X (¢) needs not be perfect). This will
cause no confusion.

In Sections we fix X, and we let o vary — concretely, for classical
groups we are fixing the rank and we are letting ¢ go to infinity, and moreover
we are dealing with the exceptional groups.

7.3.1 Subgroups of maximal rank

We begin by recalling a well known fact.

Theorem 7.3.2. Assume H < X 1is closed, connected and o-stable, and assume
s € Hy is semisimple. Then, s belongs to a o-stable mazximal torus of H.

Proof. We have that s is contained in a maximal torus S of H. Then s € S <
Cp(s)°. Since s is central in Cg(s)°, s is contained in every maximal torus
of Cy(s)° (this is also a maximal torus of H). Now Cg(s)° is o-stable and
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connected, hence by Lang—Steinberg it contains a o-stable maximal torus S’
(cf. [MT11l Theorem 21.11]). We have s € S’ and we are done. O

A proper closed subgroup K of X is called of maximal rank if it contains a
maximal torus of X. A subgroup of X, is called of maximal rank if it is of the
form K,, where K is a o-stable subgroup of maximal rank (by Lang—Steinberg,
K contains a o-stable maximal torus).

Now we list some notation that we will keep throughout Sections
We advise the reader to consult this list whenever he or she finds an unknown
symbol, rather than to read now all the items. We prefer to amass here this
notation, since we will use it several times in several different places.

o p denotes the characteristic of the field k.

o r denotes the rank of X (i.e, the dimension of a maximal torus). By
Theorem we may assume r > 2, but we will make the requirement
explicit.

o M = M(X,) denotes the set of maximal subgroups of X, of the form
K,, where K is a maximal o-stable subgroup of X of maximal rank.

© Meon = Mcon(X,) denotes the set of subgroups of X, of the form K2,
where K is a maximal o-stable subgroup of X of maximal rank and K°
denotes its connected component/[7]

o For x € X,, M(x) denotes the set of all conjugates of overgroups of z
belonging to M.

o For z € X, T(x) denotes the set of maximal tori of X,, contained in some
K2, where K, € M(z) (note that K2 needs not contain x).

o For a subset A C X,,, P% (X,, A) denotes the probability that, if y € X,
is chosen uniformly at random, there exists x € A such that for every
91,92 € X, {(9,y92) is not contained in any maximal subgroup of X,
not containing X/. (In particular P (X,, A) = Piyw(X,, A) if X, is

mv
perfect.)

o A = A(X,) denotes the set of elements y of X, which are regular semisim-
ple, and such that if y belongs to a maximal subgroup M of X, then either
X < M,or M=K, e Mandye K?.

¢ For a maximal torus S of X,, Ag denotes the set of elements of X, lying
in a conjugate of S and in A.

We recall a theorem which is essential for our purposes. Note that the proportion
in the statement is independent of X, hence the result can be applied to groups
of growing Lie rank (indeed we will use it in Section [7.8)).

4Tor a closed subgroup K of X, whenever we write K2 we mean (K°),.
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Theorem 7.3.3. [GLOI, Theorem 1.1] The proportion of regular semisimple
elements of X(q) is 1 —0O(1/q).

For Suzuki and Ree groups the proportion is in fact 1 — O(1/¢?), but we
will not use this. The proof of the following theorem is essentially contained in
[FGO3].

Theorem 7.3.4. Assume r > 2. We have
A o(r")

X@l g

Proof. Clearly we can assume r < ¢, otherwise the statement is empty. Let
A be the set of elements which are not regular semisimple. Let Ay be the set
of elements which belong to maximal subgroups of X(¢) which do not contain
any maximal torus and which do not contain X(q)’. Let Aj be the set of
elements which belong to K, \ K° for some maximal o-stable subgroup K of X
of maximal rank. We need to prove |A; U A U As|/| X (¢)] = O(r" /q). We have
|A1]/1X (g)| = O(1/q) by Theorem [73.3

We deal with As. Let Q be the set of maximal subgroups of X(¢) which
do not contain X (q)’, which do not contain any maximal torus of X(g), and
which are not subfield subgroups (cf. [EG03] Section 3]). If M € Q then M has
O(q"1) conjugacy classes (see [FG03] and the proof of [FG12, Theorem 7.3]).

Assume now x € X(q) is regular semisimple. Then the X (g)-class of  has
size O(|X(q)|)/(g — 1)". By Theorem [7.3.3] we see that if M € 2 then

M| O(g") , 0(1)  0(1)

X @-1D" g q
where in the last equality we used r < ¢. It it known (cf. [LMS05, Theorem 1.3|)
that the number of conjugacy classes of subgroups in €2 is bounded by a function
of r. (Note that X (¢) surjects, with central kernel, onto an almost simple group
generated by inner-diagonal automorphisms.) In case X is classical, by [GLT12]
Theorem 1.2] we can take this function to be O(r®).

Now we deal with subfield subgroups. The argument given in [FG03, Lemma
3.7] shows that the proportion of elements lying in subfield subgroups is O(r/q"/?)
+ O(1/q), which is O(r/q) since r > 2. Therefore |A3|/| X (¢q)| = O(r®/q).

Finally we deal with A3. Let K be a maximal o-stable closed subgroup of
X of maximal rank. We claim that

|Ug€X(q)(KU \ K°)9] _ O(|Ks, = K3)
|X ()] B q

This is essentially contained in the proof of [FG03| Proposition 4.2] (we use the
same arguments and the same computations, except that we bound the size of
a regular semisimple class by O(X (¢))/(¢ —1)", and moreover we use r < ¢, so
that ((¢q+1)/(¢ — 1))"~! is bounded).

At this point we can deduce that |As|/| X (q)] = O(r"/q). Indeed, it is known
that |K, : K2| < (r + 1)!, and moreover the number of X (g)-conjugacy classes
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of maximal subgroups of maximal rank is linear in r, from which |A4s|/| X (q)| =
O(r"/q). (These facts are known in a very precise way, cf. [LSS92] and [LS9§].
We will recall them in Sections and The term (r + 1)! can occur for
stabilizer of decompositions in classical groups.)

Putting together the bounds given for A;, Ay and A3, we get the result. O

Remark 7.3.5. By the same argument as in the previous proof, the proportion
of elements of SLy(g) belonging to subfield subgroups is O(1/¢*/?). If ¢ is a
square, the proportion of elements inside a conjugate of SLo (ql/ 2) is indeed of
this form. This is the only reason for which we have considered separately this
case.

We also note that, in bounded rank, an essential part of our method is to
focus on regular semisimple elements. By work of Guralnick—Liibeck [GLOI] and
Fulman—-Neumann—Praeger [FNP05], it is known that, except for Suzuki and Ree
groups, the proportion of elements of X (¢) which are not regular semisimple is
comparable to 1/q (up to constants). Therefore, with our method we cannot
get error terms in ¢ which are better than O(1/q).

7.3.2 Maximal tori and Weyl group

There is a well known connection between the maximal tori of X, and the Weyl
group of X, which now we recall (see [MT11] Section 25| for the general theory).
Together with Theorems|[7.3.3|and[7.3.4] this will enable us to translate the main
theorems in terms of maximal tori. For the following discussion, see also [FGO3].

Throughout this subsection, we fix a o-stable maximal torus T, and let
W = Nx(T)/T be the Weyl group of X with respect to T. Then o acts on W.
There is a bijection between X,-conjugacy classes of o-stable maximal tori of X
and W-conjugacy classes contained in the coset W of the group (o) x W (if o
acts trivially on W, these can be identified with the conjugacy classes of W). If
w € W, we denote by T,, any representative of the conjugacy class of maximal
tori corresponding to the W-class of cw. We have T, = T9, where g € X is
such that g°¢g~! maps to w € W. Moreover Nx_ (T\)/(Tw)o = Cw (cw).

Let ¥ C W be such that {ow,w € ¥} is a set of representatives for the
W-classes in the coset cW. Let Q be a subset of ¥. Denote by P(W, o, Q) the
probability that a random element of cW is W-conjugate to cw for some w € €.
In case 2 = {w}, we will write P(W, 0, w) instead of P(W, o, {w}). Using that
Nx, (Tw) < Nx,((Tw)s), by a trivial union bound we get

Uuen el _ 5~

] = P(W,0,Q). (7.3.1)

1
22 [Cw(ow)]

Despite being trivial, for ¢ large this bound is accurate.

Theorem 7.3.6.

—P(W,0,0)+ 20, (7.3.2)



Proof. By Theorems [7.3.2] and [7.3.3] we have

| Uneo (?;_);| ‘UwE\II\Q (Tw) | 1 %

1 X(q)] X ()| q
(Note that 8 < 1 by (7.3.1).) Moreover

B

%:1—62 P(W“Q)_W
(Tw)s
+ P(W,U»‘I’\m_w ’

where by ([7.3.1) both summands are nonnegative. In particular they are both
0O(1/q), and the proof is concluded. O

This theorem was used in [FG03]. One of the main observations in this
section is that X is fixed. Then W is fixed, and if €2 is nonempty the term at
the right-hand side of is always bounded away from zero: it is at least
1/[W[+0(1/q).

For a subset A of X(q), let T, ..., Ty be a set of representatives of the X (g)-
conjugacy classes of members of Ny 4T () (possibly £ = 0). Write T; = (T, )0,
where Ty, is a o-stable maximal torus of X and w; € W = Nx(T)/T. Set
Q=Awy,...,w}.

Theorem 7.3.7. Assume r > 2. We have
o(r")
P
Proof. Reasoning as in Lemma [7.1.7} and using Theorem [7.3.4] we have

[Nuea Unrerm M1 0@™)
1X(q) q

Now we look at the right-hand side of the above equation. Assume y € A. Then
y is regular semisimple; let S = Cx(y)° be its maximal torus in X. Assume
y € K, for some K, € M(z) and some z € A (and K is o-stable of maximal
rank.) By definition of A we have y € K°. By Theorem y lies in some
o-stable maximal torus of K°, which is also a maximal torus of X, hence must
coincide with S. In particular, if y lies in some member of M(z) for every z € A,
then S belongs to T (x) for every x € A. Using Theorem this shows that

P (X(9).A) = P(W,0,0) +

mv

(7.3.3)

- P (X(9), 4) =

mv

P*

mv

Uy (Tu)ol |, OG7)
(X(q),A) = =7~ — +
[ X (q)] q
Finally, the right-hand side of (| is equal to the right-hand side of ( -
by Theorem [7.3.6]

(7.3.4)
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We record a consequence of the previous proof.

Theorem 7.3.8. Assume NgeaT (x) = &. Then the set A contributes to
P (X (q),A). In other words, for every y € A, there exists x € A such that,

for every g1, g2 € X(q), (x9',y92) is not contained in any mazimal subgroup of
X (q) not containing X (q)’.

Proof. Follows from the previous proof. O

7.3.3 From X, to X/

All the discussion above is about X, which needs not be perfect. However in
the end we want to prove our main theorems, which are about finite simple
groups. We now establish the connection, showing also that the isogeny type
of X is not relevant. Let Xy, be the group of simply connected type, and let
7 : Xse — X be the natural isogeny. Then o lifts to a morphism Xy — X (cf.
IMTTI) Proposition 22.7]), which for convenience we still denote by o. Write as
usual X, = X(¢q) and (Xsc)o = Xee(q)-

Lemma 7.3.9. Let A be a subset of Xsc(q). Then

o(r")
.

Proof. Let Z be the kernel of . Then (Xs)o/Zo = (Xse)o)™ = X/ (IMT11L
Proposition 24.21]). Moreover Z, is contained in every maximal subgroup of
(Xsc)o, hence the first equality of the statement holds.

Now note that Pin, (Xsc(q), A) = P} (Xse(q), 4), since Xs(q) is perfect.
Since Z is contained in every maximal torus of X, 7 induces a bijection between
o-stable subgroups of maximal rank of X and of X, which maps overgroups
of y € A to overgroups of y™ € A™. Then the second equality follows from

Theorem [7.3.7] ]

Pinv(X(qy» Aﬂ—) = Pinv(Xsc(Q)v A) = 1)i*nv (X(q)’ Aﬂ) +

In order to prove Theorem for groups of Lie type of bounded rank, in
view of Theorem [7.3.7 and Lemma [7.3.9] it is sufficient to choose X of some
isogeny type, and prove the following statement.

Theorem 7.3.10. Assume r > 2 and " < ¢, and assume X(q) % Ga(q)
when 3 | q. Then, there exists Ay, C X(q)" of size as in Table such that
Neea, T (x) =@. If 3] q, then Pin(Ga(q),G2(q)) =1/2+ O(1/q).

We will prove Theorem in Sections [7.4] and By the Borel-Tits
theorem (see [BTTI, Corollaire 3.9]), a maximal o-stable subgroup of X of
maximal rank is either parabolic, or its connected component is reductive. We
make some general considerations regarding the second case.
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7.3.4 Reductive subgroups of maximal rank

We fix a pair (T, B), where T is a o-stable maximal torus of X, and B is a
o-stable Borel subgroup of X containing T'. We let ® be the root system with
respect to T', and we denote by U, o € @, the root subgroups with respect to 7.
We let W = Nx(T')/T be the Weyl group of X with respect to T'. Throughout
this subsection, we make the following

Assumption 7.3.11. o acts trivially on .

This is not essential, but the results are easier to state, and we will ap-
ply them only under this assumption. The following discussion is taken from
ILSS92]. Let K be a closed connected reductive subgroup of X containing
T. Then, K = (T,U,,a € U) for a p-closed subset ¥ of & (see [MT11, Sec-
tion 13| for this notion). Let W(¥) be the Weyl group of K, i.e., the sub-
group of W generated by the reflections in roots of ¥. We have Ny (K)/K =
Ny (W(®))/W(¥) =: Wy. Note that K is o-stable, since o acts trivially on ®.

Assume now H is a o-stable conjugate of K. In particular, there exists g € X
such that H = K9 and such that 79 is o-stable. Then g°¢g~! € Nx(T)NNx (K),
which maps to an element of Wy that we denote by p(K9).

Lemma 7.3.12. The map p defined above induces a well-defined bijection be-
tween {X,-orbits on the o-stable conjugates of K} and {conjugacy classes in

Proof. This is [Car78|, Propositions 1 and 2] in case ¢ acts trivially on ®. O

In [Car78, Propositions 1 and 2| the general case (i.e., o does not necessarily
act trivially on @) is considered. This is more technical to state.

Next, given a o-stable maximal torus S, we want to determine its closed
connected reductive overgroups in X. Fix g such that S = T9 and let w be the
image of g°¢~! in W.

Lemma 7.3.13. The closed connected o-stable reductive overgroups of S are in
bijection with p-closed subset of ® which are w-stable.

Proof. If H is a closed connected o-stable reductive overgroup of S, set K :=
H9 . Then K = (T,U,,a € ¥) for some (unique) p-closed subset ¥ of ®.
Moreover, g°¢~! normalizes K and T, hence w fixes U. Conversely, assume ¥
is w-stable and p-closed; then (T,U,,a € W)Y is a closed connected reductive
overgroup of S (see [MTT1Il Theorem 13.6]). For o« € ¥ we have (U4)? =
U39 = U9" = (Uaw)?. Since ¥ is w-stable, we deduce that (T, Uy, € ¥)9 is
o-stable. O

See [Wei92, Theorem 5] for a more general statement, considering the case
in which o does not necessarily act trivially on ®. This does not present serious
changes: one replaces w by cw in the statement above.

At this point we divide the discussion between between exceptional and
classical groups.
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G |1] |2 ]

°Ba(q°) Dg 5(—q)

Ga(q%) 12 P15(—q)

Ga(q), 31g @3 ®3(—q)

°Da(q) P12 (@+1D(g—1)/(2,q—1)
°Fu(q) Py Dhy(—q)

F4(q)7 q Odd (13'12 (I>8

Ea(q) (1)3(1)12/(3,q— 1) (1)1(1)2@8/6

Es(q) DsP12/(3,q+1) P1D2Ps/0

Ez(q) OoP15/(2,9 —1) P1P9/(2,9—1)

Es(q) P30 P30(—q)

Table 7.3: Ay = {z1,22} in Theorem for exceptional groups different from
Fy(2%).

7.4 Exceptional groups

In this section we will prove Theorem (hence Theorem for simple
exceptional groups. We choose X of adjoint type. The subgroups of maximal
rank of X, have been classified by Liebeck, Saxl and Seitz [LSS92].

We can assume that ¢ is sufficiently large in the proof. This implies that
every maximal torus S, of X(g) contains regular semisimple elements. (In
fact, more is true. By Theorem almost all elements of X (q) are regular
semisimple. By Theorem the proportion of elements in a conjugate of S,
is bounded away from zero; therefore, almost all elements in a conjugate of S,
are regular semisimple.) In particular, it follows that whenever S, < M2, with
M, € M, then S < M°.

We define A, as the set of elements appearing in Table[7.3] There is a slight
ambiguity in the notation. Namely, so far we have denoted X (q) = X,; recall
however that the elements in Table belong to the derived subgroup X (q)’.
This should cause no confusion.

In the table, the case Fy(q) with ¢ even is missing. In this case the set A has
size 6, hence for aesthetic reasons we have not included it. We will treat this case
in detail in Subsection Each element in Table [7.3]is regular semisimple.
The existence of these elements follows from the general theory of the structure
of maximal tori, cf. [MTLI Section 25|; in cases Eg(q), *Es(q) and E7(q) the
order is adjusted so that indeed the elements belong to the derived subgroup.
When necessary, we will provide more details regarding the elements along the
proof. We write ®,, = ®,,(¢q) for the n-th cyclotomic polynomial evaluated at
g. Moreover &y = @4(q) = ¢* + V2q + 1, @}y = P(q) = ¢* + V3¢ + 1,
Py, = 0h,(q) = ¢* +v/2¢% +¢*> +v/2q+1 (this notation is taken from [GMIi2al).
We will refer to [GM12a, Table 6] and [GM12b, Table 1] for the overgroups of
many elements in Table [7.3] although we remark that these tables rely mostly
on [Wei92].
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7.4.1 Some twisted groups, and Fs(q)

In many cases we can exploit a very convenient situation. Indeed, consider the
groups 2Bs(¢?),°G2(¢?),2D4(q),>F4(¢?) and Eg(q). Then by [GMI2a, Table 6]
we see that the element 2, lies only in one maximal subgroup, namely N x (4)(Ss),
where S, is the maximal torus of X (g) containing z;. Since q is large, S, con-
tains regular semisimple elements, and in particular Nxq)(Ss) = Nx(q)(S)ﬂ
The connected component of Nx(S) is S, since S has finite index in its nor-
malizer. By definition, we deduce that 7 (z) contains only the conjugates of
So.

Then, in order to prove Theorem we just need to show that the
element x5 does not belong to any conjugate of Nx (4)(Ss). This is easily done
by order considerations.

7.4.2  FEs(q) and Eg(q)

We write Eg(q) ="Eg(q) and 2Eg(q) ="Fg(q). Consider °FEg(q) with e € {+, —}.
By [GMI2b], Table 1], x; is contained only in (3D4(q) x (¢*> +eq +1)).3 (among
the maximal subgroups of X, ). The order of x5 is (¢* +1)/(¢*> — 1), divided by
a small number J. Set h = (4,q —el). For € = —, 2 is contained in a maximal
subgroup M = h.(PQ5,(q) x (¢ — €)/h).h; and for ¢ = +, x9 is contained in
a parabolic subgroup with Levi complement of type Ds (cf. [LSS92, Table
5.1]). By order considerations we see that if ¢ = + then M(z2) contains only
parabolics of type Dj, while if ¢ = — then M(xz2) contains the conjugates of
M, and parabolics with Levi complement of type 2D,. Using the knowledge
of maximal tori of “Eg(q) (see [DF91]), we deduce by order considerations that
T (x1) N T (z2) = @, which proves Theorem
In Subsections we employ the notation of Subsection [7.3:4]

7.4.3 Ga(q) with 31¢

We immediately recall some facts regarding maximal tori of Ga(q) that we will
use also in Subsection We have W = W(G2) = D12, hence by the general
theory (cf. [MT1I Section 25]) there are six G3(g)-classes of maximal tori, with
representatives T1, ..., Ts, and with orders ¢> — 1,¢> — 1, (¢ — 1), (¢ +1)%,¢* +
q+1,¢%> — g + 1, respectively. We assume T} = (T,,),, where w; is a reflection
in a short root, ws is a reflection in a long root, ws = 1, wy = —1, |ws| = 3,
|we| = 6. For i =1,...,6, we will write A; instead of Ar,.

By Theorem the proportion of elements lying in a conjugate of T}
or Ty is equal to O(1/q) plus the proportion of noncentral involutions of Dja,
which is 1/2. Consequently, the proportion of elements lying in a conjugate of
T; for some i = 3,...,6is 1/24+ O(1/q). By Theorem[7.3.4] the same estimates
hold for the proportion of the A;’s.

5We note that, in fact, Nx(4)(So) = Nx(4)(S) holds under the weaker hypothesis that S,
is nondegenerate; see [Car93l Section 3.6] for this notion.
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We begin the proof in case 3 1 ¢. By [LSS92, Table 5.1] and by order consid-
erations, M(z1) contains only the conjugates of SL3(q).2, and M(z2) contains
only the conjugates of SUs(g).2. We need to show these two subgroups do
not contain a common maximal torus (up to conjugacy). By order considera-
tions, if there exists a common torus of SL3(¢).2 and SUs(g).2, then it must be
Ty = (Tw,)o or To = (T, )s. Fori=1,2, fix g, € X = G2 such that T,, =T
(and g¢g; ' maps to w; € W). By Lemma the closed connected reduc-
tive subgroups of G5 containing Ty, are precisely the subgroups K (%)%, where
K(9) =(T,U,, € U) and ¥ is p-closed and w;-stable. Since 3 1 ¢, by [MT11],
Theorem 13.14] we deduce that every p-closed subset of ® is closed; in partic-
ular there is only one p-closed subset W of type As: the set of all long roots.
Note that Wy = Ny (W(¥))/W(¥) = Cy, hence by Lemma there are
two corresponding G3(q)-classes. Now wo € W(U), while w; ¢ W(¥); then by
Lemmal[7.3.12| K (V)92 is G2(g)-conjugate to K (¥), and K(¥), = SL3(g), while
K(¥)9 =~ SU;3(q). Theorem follows.

7.4.4 Gsy(q) with 3| ¢

We keep the notation from the beginning of Subsection Let G = G2(q).
We want to prove Py, (G,G) =1/24+0(1/q). We will prove the following more
precise statement, which we will use in Section

Theorem 7.4.1. (1) Py (G,y) = 1/64+0(1/q) for a proportion of elements
y € G of the form 1/2+ O(1/q).

(2) Pinv(G,y) = 0 for a proportion of elementsy € G of the form 1/2+0(1/q).

Note that y € G contributes to Pin (G, G) if and only if Py, (G, y) > 0.

Now we prove Theorem There is an automorphism v of Go(g) which
induces a graph automorphism of order two on the Dynkin diagram, exchanging
long and short roots. The set ¥’ of short roots is 3-closed (cf. [MT11 Propo-
sition 13.15]). There are two conjugacy classes of subgroups SL3(g).2, with
representatives H; and Ha, and two conjugacy classes of subgroups SUj3(q).2,
with representatives K; and Ko. We have H] = Hy and K] = K,. Moreover ~y
exchanges the classes of 77 and T5. Up to changing indices, T; is contained in
a conjugate of H; and K;. What is more, the only overgroups of T5 (resp. T§)
are conjugates of Hy; and Hy (resp. conjugates of K7 and K»).

Therefore, by definition of A, every element of As (resp. Ay, resp. Aj)
invariably generates with every element of Ag (resp. As, resp. Ag). We ob-
served that the proportion of elements belonging to A; for some i = 3,...,6
is 1/2 4+ O(1/q). Moreover, for i € {5,6}, we have |A;|/|G| = 1/6 + O(1/q).
Therefore (1) is proved.

We move to (2). We want to show that

() for every z € G, x belongs to a maximal subgroup containing a conjugate
of T1, and to a maximal subgroup containing a conjugate of T5.
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This implies that all elements y lying in a conjugate of T} or Ty are such that
Pinv(G,y) = 0. We observed that these elements have proportion 1/24O(1/q),
hence in order to prove (2) we only need to prove (x).

It is sufficient to focus on ¢ = 1, since the two tori are exchanged by an auto-
morphism of G. Representatives of the conjugacy classes of maximal subgroups
containing 71 are the following:

{P7 HlaKlac}'

Here P is a parabolic subgroup with respect to the short root of a base, and
C = (SL2(q) o SLa(q)).2 is the centralizer of an involution in Ga(q) (cf. [Kle88,
Theorem Al).

Let z € G. If z is unipotent, then x is contained in both conjugacy classes of
parabolic subgroups. Assume then x = su, with 1 # s semisimple, u unipotent,
and [s,u] = 1. Then z € Cg(s) < G. If Cg(s) is a maximal torus of even order,
it is contained in a conjugate of C. The remaining classes of maximal tori have
representatives T5 (contained in H;) and Ty (contained in K7). Examining
[KIe88, Table II, p. 41|, we see that all other possibilities for Cg(s) contain a
central involution, hence are contained in a conjugate of C. Then (%) is proved
and we are done.

7.4.5 E7(q)

By |[GMI12al Table 6] and [GMI12b, Table 1] we see that x; is contained only in
a maximal subgroup ?Eg(q)sc.Dg+1 of Xy, and 5 is contained in two (conju-
gate) parabolics P and P’ of type Fjg, and in the normalizer of a common Levi
complement L. Our aim is to show that 7 (z1) N T (z2) = @.

Claim 7.4.2. Assume g € X = FE7 and assume g°g~' € Nx(T) maps to
w € W. Assume ¥ and V' are two p-closed subsets of ® of type Eg. If w €
Ny (W(®)) N Ny (W (¥')), then either w € W(¥) N W (V') or w ¢ W(T) U
W (o).

We first observe that Claim implies 7 (z1) N T (z2) = @. Consider a
maximal torus S of X,; assume S = (Ty),, where T}, = TY9 and g°¢g~! maps
to w € W. By Lemma [7.3.13] the closed connected reductive subgroups of E;
containing T, are precisely the subgroups K (¥)9, where K (V) = (T, U,, o € )
and ¥ is p-closed and w-stable (i.e., w € Ny (W(¥))). By Lemma we
see that Claim implies that S = (T,,), cannot be contained in a maximal
subgroup of type *Eg(q)scDy+1, and at the same time in a Levi complement of
type Eg, so that S ¢ T (z1)NT (z2) and (since S was arbitrary) T (x1)NT (z2) =
<.

In order to prove Claim we recall that W = (z) x W, where |z| = 2
and W = Sp(2) is the “rotation subgroup”, consisting of the element of W
with determinant 1 in the action on R7. We will view the elements of W as
pairs, according to this decomposition. If ¥ is a subset of type Fg, then W () =
SOg (2). Clearly we cannot have W(¥) < W since W (W) contains reflections.
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Let K be the unique subgroup of W(¥) of index 2, isomorphic to g (2). Then
K < WT. Let H = SOy (2) be the normalizer of K in W; we have H = K x(r),
where r is a reflection in a nonsingular vector (for the orthogonal geometry on
F$). We have W (V) = ((x,r), K) and Ny (W(¥)) = (z) x H. Now if ¥’ is
another subset of type Eg, we have ¥/ = U9 with ¢ € W™, and consequently
W(¥') = ((z,r9), K9) and Ny (W (¥')) = (z) x H9. We see that Claim [7.4.2]is
equivalent to the following condition:

(x) Fix ¥ as above. Then, for every g € W+, W(¥) NNy (W (¥9)) < W (L9).
Tt is easy to see that (%) is equivalent to

(%) Fix K < W+ and H < W as above. Then, for every g € W, KNHY <
K.

(%%) holds in general, in the following sense. Assume ¢ is even, and recall
that Sp,,,(q) = SOa2,+1(q) (see Subsection for some words about this
isomorphism). Denote by V the (2m +1)-dimensional orthogonal module. Then
(**) is a particular case of the following lemma.

Lemma 7.4.3. Assume W and W' are nondegenerate hyperplanes of V (not
necessarily of the same sign). Then Q(W)NSO(W') < Q(W).

Proof. Recall that Q(W) can be characterized as the subset of SO(W') consisting
of the elements g such that dim Cy (g) is even (cf. [Wil09, p. 77]). We have
V =W L V=, and g acts trivially on V-, therefore dim Cyy (g) = dim Cy (g)—1,
which is independent of W. This proves the lemma. U

Claim [7-4.2]is proved and we are done.

We first fix some notation taken from [Law99]. Let R* be equipped with the
usual orthonormal basis e;,...,es. We may take ® C R* with set of positive
roots

(I)+:{€ii€j,1<i<j<4}u{ei,1§i<4}u{(61:|:62:|:€3:|:€4)/2}

and base
Y= {62 — €3,€3 — €4, €4, (61 — €2 — €3 — 64)/2}

As in [Law99], we will write 1 in place of e;, 1 —2 in place of e; —e3, + — —— in
place of (e; —es —e3 —ey)/2, etc. The corresponding reflections will be denoted
by wy,wy_g,wi—__, etc. In [Law99] the complete list of maximal tori of Fy(q)
is given. In particular, for each (§,d") € {+, —}?, there are two conjugacy classes
of maximal tori of order (¢*+01)(g+d'1); we let T} 5,, i = 1,2, be representatives
for the two classes (so for instance T' }ﬁ_ is a representative of a class of tori of
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order (¢* +1)(¢ — 1)). Assume Tj 5, = (Toy)o with w = wj 5. With notation as
in [Law99l pp. 93-96], we may choose

w}ﬁJr =w1¥) = W3Wo_3W1_2W4 “’i,+ = W(20) = W1WoWyW4 4 —
w.lh_ = w(ls) = W4W3-4W2-3 wi,_ = W(13) = W4W3-4W——4
wl | =w™ = wjws_qws_3 w? | = w5y = Wi_2WiWy 4
w1_7_ = ’LU(12) = W3_4W2_3 w2_,_ = w(7) = WaWy4———

Here composition is right-to-left; this however makes no difference, because in
a Weyl group every element is conjugate to its inverse, cf. [Car93, Corollary p.
45]. We are now ready to begin the proof. We divide the cases ¢ even and ¢
odd.

(a) Assume ¢ is odd. By [GMI2al Table 6] we have that x; is contained
only in a subgroup 3Dy4(q).3; and by [GMI2b, Table 1] x5 is contained only
in a subgroup 2.0Q9(q). We need to show that 7 (z1) N T (xz2) = @. By order
inspection, the only possibilities for T'(z1) N T (x2) are the eight tori Tj 5. By
our choice (see [Law99, pp. 94-95]) the maximal tori of type 1 (i.e., the tori
T517 5») are contained in 2.Qy(g). This subgroup is obtained as the fixed points
of a connected reductive subgroup of Fj of type Bs. What we need to show is
that none of the tori Té{é/ belongs to a conjugate of 3D4(q).3. Fix (4,4"), and
fix ¢ € X such that ng o= T9Y9. There is a unique p-closed subset ¥ of ®

of type D4, namely the set of all long roots (the set of all short roots is only
2-closed). Of course VU is fixed by every element of W. Correspondingly, by
Lemma Tw§ y has a unique connected reductive overgroup of type Dy,

namely (T, U, « € )9, The fixed points of such a subgroup is of type D4(q) or
D4 (q). Indeed, this is true for every maximal torus of By. It follows that T |
is contained in Dy (q) or 2D4(q), but not in 2D4(q). This concludes the proof in
case ¢ is odd.

(b) Assume ¢ is even. There is an automorphism v of Fy(q) which induces
a graph automorphism of order two on the Dynkin diagram, sending 2 — 3
to + — —— and 3 — 4 to 4. In this case, there are two conjugacy classes of
maximal subgroups isomorphic to Qg(q): we pick representatives By(1) and
B4 (2) for them. Similarly, there are two conjugacy classes of maximal subgroups
isomorphic to 3D4(q).3, PQg (¢).S3, P, P': we pick representatives 3Dy (i), D4(i),
P(i), P'(i), i = 1,2, in the respective cases. Here P(1) (resp. P(2)) denotes
a parabolic subgroup of type Bz (resp. C3); P’(1) (resp. P’(2)) denotes a
parabolic subgroup of type As x A; (resp. Ay x A1), where A; denotes a subset
consisting of short roots. (The reason why there are two classes of reductive
subgroups as above is that there are subsets of ® of type Cy and D4 which are 2-
closed; see [MT11l, Proposition 3.15].) We see that all the pairs of classes above
are fused by =, i.e., B4(1)Y = B4(2), and similarly for the others. There are also
maximal subgroups e.(PSL5(q) x PSL5(q)).e.2, with € € {+, —} (one class for
each sign; here PSL7 (¢) = PSL3(q), PSL3 (¢) = PSU3(q) and e = (3,q — ¢1)).
We let R. be representatives of these classes.
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We observe that for every (,0") € {+, —}?, v exchanges the classes of Ty 5,
and Tgé,. This can be seen as follows. In [Gut72, Table 1], the action of v on
® is computed (see also (2.15) of the same paper). In particular we have

0

(w-lur) = W344W4 - - —W2W3—4
(w}h,)y = w3 _qWwawy
(w1_7+)7 = W1 oWqW __ _

(w ) =wqwy

At this point one computes that in each case (w;,é,)"Y is W-conjugate to wié,.
This is immediate if (4,0’) = (—,—). In general, it is sufficient to prove that
(wj )7 is not conjugate to wg 5. This can be done for instance by showing
that (wj s )7 and wg 5 have different root lengths inside the (—d'1)-eigenspace
relative to the action on R*. Tt follows that (T3 /)7 is Fu(g)-conjugate to T52,5,.

Now note that for every (4, "), each subgroup By(7), D4 (i), D4(i), P(i) and
P’(i) contains members of at most one class of tori of type T4 . By the same
argument as in item (a), we may choose notation such that for every (4,4’), T§17 5
belongs to a conjugate of By (1), 3D4(1) and, possibly, D4(1) (but not Dy(2)).
We now want to show that the maximal tori T5 s can possibly belong only to
conjugates of P(1) and P’(1), but not to conjugates of P( ) and P’(2). If we
prove this, it will automatically follow that the tori T& s can belong only to
type 2 subgroups. Note that by the previous considerations, if Tél’ s belongs to a
conjugate of P(1) (resp. P’(1)), then it does not belong to a conjugate of P(2)
(resp. P'(2)).

By order considerations, P(1) and P(2) can contain the tori 7" _ and T% _
for i = 1,2. Moreover P’'(1) and P’(2) can contain the tori T" and T _ for
¢t = 1,2. No other embedding of the tori Tg" s in parabolic subgroups occurs.
We see that w17’7 = w? and w}hf = w1 belong to the Weyl subgroup of
type Bj3 corresponding to removing + — —— from the base ¥. Therefore we
deduce that T _ and T} _ belong to Levi complements of Fj(g)-conjugates of
P(1). Therefore the case P is done. We move to case P’, which is similar. We
have wl,Jr = w1, We see that both w('?) and w¥ belong to Weyl subgroups
corresponding to a subset of type Ay x A;. Indeed w('? lies in the natural one
corresponding to removing 4 from the base ¥; and w(® lies in the subset in
which a base of Ay is {2—3,3—4} and a base of A; is {1}. Therefore, we obtain
that 7! _ and T belong to Levi complements of Fy(g)-conjugates of P'(1).

With all the 1nformat10n we have gathered, it is not difficult to deduce the
proof of Theorem With this aim, we choose a generator z', _ of the cyclic
torus Tj'rﬁ, i = 1,2, and a generator x’;,Jr of the cyclic torus TE,JF, 1 =1,2.
Moreover we choose elements x; and x5 as in item (a); in particular x; belongs
only to 3D4(1) and 3D4(2), and x5 belongs only to B,4(1) and B4(2). Our set of
elements is therefore

1 2 1 2
Ap = {zy, ez, as ol as o xt L)
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We now want to show that there is not a maximal torus of Fy(q) belonging to
an overgroup of all these elements. By order considerations, if a torus belongs
to T (z1) and T (z2), then it must be one of the eight tori T} ;. Assume i = 1:
the argument is entirely symmetric and the case ¢ = 2 proveci in the same way.
By our choice of notation, mi_ and :E2_ 4 belong to type 2 subgroups. However
T517 5+ does not belong to any of these. The only other ovegroups of maximal
rank of #3 _ and 22 , are, respectively, R_ and R,. However, our torus T} s,
belongs to exactly one of these (depending on the value of 0). Therefore we
have shown that the overgroups of our six elements cannot contain a common
maximal torus, and the proof is concluded.

7.5 Classical groups of bounded rank

As promised at the beginning of Section we immediately deal with G =

Proof of Theorem[7.3.1} Let G = PSLs(gq). The subgroup structure of G is well
known, cf. [Suz82, Chapter 3.6]. Let d = (2,¢g — 1). Let Sy be the set of
elements of G with order strictly larger than 5 and dividing (¢ £ 1)/d, and let
S =S5,US_. We have |S1|/|G| =1/2+ O(1/q). Let F be the set of elements
of G lying in subfield subgroups; we have |F|/|G| = O(1/q"/?) (we observed this
in Remark .

Let Ay = {z1,x2}, where x; has order (¢ — 1)/d and x5 has order (¢+1)/d.
Every element of S, (resp. S_) invariably generates with 7 (resp. x2). This
proves Theorem Every element of Sy \ F' (resp. S_ \ F) invariably
generates with every element of S_ (resp. Sy ). This proves Theorem Now
consider B = (S; x S_)U (S_ x S;) C G?; we have |B|/|G]*> =1/2+ O(1/q).
Moreover B\ F? consists of invariable generating pairs, which proves Theorem
(If q is a square, the elements of PGLy(g'/?) belong all to S_. Therefore,
in the above proof we could worry only about elements belonging to PSLy(g'/")
with r odd, and in Theorem We could get an error term of type O(1/¢%*/3);
but we do not insist on this.) O

In the remainder of the section we prove Theorem for the other clas-
sical groups (hence Theorem for classical groups of bounded rank). We
first make our choice for the type of X. Let X be one of the algebraic groups
SL,(k),Sp,,(k), SO, (k). We require that if X = SO, (k) and p = 2 then n is
even.

Denote by V' = k™ the natural module of X. Here Sp,, (k) is the group
of isometries of a nondegenerate bilinear alternating form on V' (n is even),
while SO, (k) is the connected component of the isometry group GO, (k) of a
quadratic form on V, with associated nondegenerate bilinear form. We have
|GO,, (k) : SO, (k)] = 2. These groups are well defined up to conjugation in
GL,,(k), since all such forms are equivalent (for all this, see for instance [MT11]
Section 1.2 and Definition 1.15]).
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Let 0 : X — X be a Steinberg morphism as in [LS98| p. 434], such that X,
is one of the following finite groups:

X, = SLn(q),SUn(q), Sp,.(q), SO} (q) (q0dd), = (q) (geven).

Specifically, ¢ = &7, where & is a Frobenius morphism corresponding to the
field automorphism « +— «a? of k (¢ power of p), and 7 = 1, or X = SO,,(k) and
T is conjugation by a reflection in a nonsingular vector, or X = SL,, (k) and 7
is the inverse-transpose map (all this with respect to certain fixed bases). We
specify that we are also contemplating the case SO,,(¢) with n odd (in this case
by our choice ¢ is odd).

Except for SO,jf(q), which has a derived subgroup Q*(q) of index 2, and
except for other finitely many cases, the group X, is perfect. See [KL90D!
Chapter 2| for the definition of QF(q).

7.5.1 Subgroups of maximal rank

We need to understand the subgroups of maximal rank in X,. The proof of the
following theorem is essentially taken from [LS98], with additional claims from
[MTT1l, Section 13]. We prefer to sketch a proof since the result does not rely
on the most difficult parts of [LS9§].

Theorem 7.5.1. Let X and o be as above. Let M be a o-stable closed subgroup
of X of maximal rank. Then, M 1is contained in a o-stable subgroup of the
following types.

(1) Stabilizer in X of a nonzero proper subspace of V. If X = Sp,(k) or
SO, (k), the space is totally singular or nondegenerate. If it is nondegen-
erate, it can be chosen of even dimension.

(2) In case X = SL,(k), stabilizer in X of a pair of proper subspaces U and
W such that dimU +dim W = dimV, dimU # dim W and either U < W
orUNW =0.

(8) Stabilizer in X of a decomposition V.=V, & --- @V, with t > 2. If
X = Sp,,(k) or SO, (k), the spaces V; are isometric, and either pairwise
orthogonal and nondegenerate of even dimension, or t = 2 and the spaces
are totally singular.

(4) p=2, X =Sp, (k) and M < Nx(SOn(k)) = GOn(k).

Proof. We assume for the first part of the proof that we are not in case X =
SL, (k) with o involving the inverse-transpose map. In particular o can be
regarded as a semilinear map of V.

Assume first M fixes a proper nonzero o-stable subspace W, and choose it
to be of minimal dimension. If there is a form, then M fixes also W, which is
o-stable (cf. [LS98, Proposition 2.5]). Then M fixes W NW, which is o-stable,
hence by minimality W is either nondegenerate or totally isotropic. If the space
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is nondegenerate of odd dimension ¢, the only possibility is X = SO,,(k) and
M° < SO¢(k) x SO, —¢(k). If n is odd, then M stabilizes also a nondegenerate
space of even dimension n —£. If n is even, instead, the stabilizer of W has rank
n/2 — 1, hence it is not of maximal rank. Assume now W is totally isotropic.
Then M fixes also the set of singular vectors of W, which is o-stable, hence by
minimality either W is totally singular, or X = SO,,(k), p = 2, n is even and W
is a nonsingular 1-space. In the latter case, however, the stabilizer is isomorphic
to Sp,,_o(k), which is not of maximal rank. In particular, if M fixes a proper
nonzero o-stable subspace, we are in case (1) of the statement.

Then we assume that M does not fix any proper nonzero o-stable subspace
of V. Let H := M° be the connected component of M. The proof of [LS98|
Lemma 3.2] shows that either both M and H act homogeneously, or we are
in case (3) of the statement. The parity requirement in (3) comes from the
following reason: if X = SO, (k) and the decomposition V. =V; L --- 1L V; is
isometric, then the connected component of the stabilizer of the decomposition
is SO(V7) x - - - x SO(V;), which has maximal rank only if V; has even dimension.

Therefore assume M and H acts homogeneously. By assumption M, hence
H, contains a maximal torus S. Using the explicit description of maximal tori
in classical groups, we note that as a kS-module V is the sum of 1-dimensional
pairwise nonisomorphic modules. In particular, it follows that both M and H
act irreducibly.

Since H is connected and it acts faithfully and irreducibly on V, it follows
that H is reductive (cf. [MTIIl Proposition 15.1]). Then H = [H, H|Z(H)°.
It follows by Schur’s lemma that Z(H) < Z(X), which is a finite group, hence
Z(H)° < Z(X)° = 1. In particular, H = [H, H| is semisimple. In [MT11
Chapter 13|, H is called a subsystem subgroup of X. One checks easily that
the examples in [MTT1l Theorem 13.12] give (well recognizable) reducible sub-
groups. In [MT11l Theorem 13.15], item (1) corresponds to item (4) in this
theorem, and item (2) does not arise by assumption (if X = SO, (k) and p = 2
then n is even). By [MT11l Theorem 13.14], there are no other possibilities for
H. This concludes the proof, except X = SL, (k) and o involves the inverse-
transpose map (the previous proof works also if o is the identity).

Let us consider the remaining case. As in the proof of [LS98, Lemma 3.7],
we view SLj, (k) as a subgroup of SOz, (k): we may decompose the orthogonal
module as E @ F, in such a way that the embedding of SL, (k) is given by
g +— diag(g,g~T). It follows from the proof of [LS98, Lemma 3.7] that either we
are in cases (1), (2) or (3) of the statement, or M and M° act homogeneously
on F. Then we may proceed exactly as in the first part of the proof (once M°
was shown to be homogeneous, the morphism o was not used anymore). O

We can now descend to finite groups. Aschbacher [Asc84] classified the max-
imal subgroups of the finite classical groups, dividing them into nine classes,
denoted by Cy,...,Cs,S. We refer the reader to [KLIOD| for the detailed de-
scription of the first eight classes (although in the present chapter this does not
make any difference, we remark that classes in [Asc84] and classes in [KLI0D]
differ slightly; we take [KLI0b] as a reference).
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We just recall that maximal subgroups from class C; are subspace stabilizers;
maximal subgroups from class Cy stabilize suitable direct sum decompositions
of the natural module, so they are subgroups of GL¢(¢)1S,,/¢ < GL,(q) for some
{ < n; and maximal subgroups from class C3 preserve an extension field structure
on the natural module, so they are subgroups of GLn/b(qb) x Gal(Fp /F,) <
GL,,(g) for some prime b. In the following statement, we set

Cly(q) = GLy(q), GUy,(q), Sp, (), SO (g) (qodd), 2 (q) (qeven)

in the various cases (this is unusual notation; however it will not be used else-
where and it should not cause any confusion). When we write in brackets “class
C;”, we mean that the subgroup M, under consideration is contained in a max-
imal subgroup of X, of class C;.

Theorem 7.5.2. Let X, o and M be as in Theorem [7.5.1. Then, M, is
contained in a mazimal subgroup of X, from classes C1, Ca or Cs, except p = 2,
X, = Sp,(q) and M, < SOX(q) = Nx,(QE(q)). Assume now M is contained

in a subgroup as in Theorem|7.5.1)(3).

(1) If X, = SL,(q) or the decomposition is isometric, then either MZ
Cle(q)' N X, (class Cy), or M3 < Cl,;(q°) N Xy (class C3), or X,
SU,(q) with n even and MZ < GLy,/2(¢*) N X, (class Ca). In case X, is
orthogonal, ¢ and n/b must be even.

/A

(2) If the decomposition is totally singular, then X = Sp,, (k) or SO,(k), n
is even, and either M3 < GLy,/2(q) (class C2), or M3 < GU,,/5(q) (class
Cs).

Proof. Note that if M stabilizes V =V, ®---® V; as in Theorem 3), then
Me fixes each V; (indeed the subgroup stabilizing each V; is a closed subgroup
of finite index of M, hence contains the connected component). What is more,
if X = SO, (k) then M° < SO(Vq) x --- x SO(V;). Keeping in mind this
observation, the proof of the theorem follows from the arguments in [LS98]
Section 4], together with Theorem O

We are ready to define the set A from Theorem for classical groups.

7.5.2 Definition of the set A,

Assume our finite classical group has natural module V' of dimension n > 2,
defined over the field with ¢* elements, with u = 2 in case of unitary groups, and
u = 1 otherwise. In view of Theorem [7.3.1} we can also assume n > 3 (although
logically this is not relevant). In light of various isomorphisms between groups
of small rank, we make the requirement n > 3 for unitary groups, n > 4 for
symplectic groups and n > 7 for orthogonal groups (see [KLI0D, Section 2.9]).
Recall also that for orthogonal groups, if n is odd we have ¢ odd (this is justified
by the isomorphism GO, (q) = Sp,,_;(q) when g is even).

We define A as the set of elements appearing in Table [7.4] However the
notation in Table [7.4] is ambiguous, and we need to explain it. In order to
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do this, we recall that the conjugacy classes of maximal tori in finite classical
groups have an interpretation in terms of (signed) partitions; see for instance
[EG17, Section 5]. We quickly recall some facts.

In SL,,(¢q), a maximal torus T, corresponding to a partition w = (aq, ..., a)
of n fixes a decomposition V =V; @ --- @ V¢, acting irreducibly on the a;-th di-
mensional space V; for every i. In SU,,(¢), a maximal torus T, corresponding to
a partition w = (aq,...,a:) of n fixes a decomposition V.=V; L --- L V;, where
V; is nondegenerate and of dimension a;. If a; is odd then T,, acts irreducibly
on V;; if a; is even then T, fixes V; = A; & B;, where A; and B; are totally
singular (of dimension a;/2), and T,, acts irreducibly on both. In Sp,,,(q), a
maximal torus T, corresponding to a signed partition w = (af',...,a;*) of m,
with ; € {+, —}, fixes a decomposition V. =17 L --- L V;, where V; is nonde-
generate and of dimension 2a;. If ¢; = — then T, acts irreducibly on V;, while
if €; = + it acts irreducibly on two complementary totally singular subspaces.
In orthogonal groups of even dimension 2m, the same holds; just recall that in
orthogonal groups of plus (resp. minus) type, the product of the signs of the
cycles of w must be + (resp. —). In orthogonal groups of odd dimension 2m+1,
a maximal torus T,, corresponding to a signed partition w = (af',...,a;") of
m fixes V. = U L W, centralizing the nondegenerate 1-space U, and acting
on W as explained for orthogonal groups in even dimension (the type of U is
determined by the sign of W, i.e., by the product of the signs of w).

Now we can explain the notation in Table[7.4] Each element x is semisimple,
and the corresponding entry in the table denotes the (conjugacy class of a)
maximal torus containing z. In each partition, we have removed the external
brackets for aesthetic reasons. Of course, the torus alone does not determine
uniquely the element (not even its order).

We require that the element z has the following order on each irreducible
fixed space. For convenience we will identify the spaces with the corresponding
parts of the partition, as explained above.

We deal separately with linear and unitary groups, as we need to take care
of the determinant. In SL,(q), 1 has order (¢" — 1)/(¢ — 1), and x5 has
order ¢"1 — 1. In SU,(q), =1 has order (¢" +1)/(q + 1) for n odd, and order
(¢ —1)/(q+ 1) for n even; while 25 has order ¢"~! — 1 for n odd, and order
q" ' 41 for n even.

If € Sp,,,(q), then z has order ¢ + 1 on each (a~), and order ¢* — 1 on
each (a™). If z € QF  (q), then x has order (¢®+1)/(2,q— 1) on each (a~), and
order (¢* —1)/(2,¢ — 1) on each (at). If z € Qay41(q) the same holds; recall
that = centralizes also a 1-space.

We further make two requirements. The element z3 in Sp,(q) with ¢ even
acts as (17,17). Accordingly, we require z3 = (g, ¢?) with g of order ¢q + 1.
Similarly, the element x3 in QfF (¢) acts as (27,27), and we have z3 = (g, g%)
with g of order (¢? +1)/(2,q — 1).

With these choices, it is not difficult to check that, if ¢ is sufficiently large
(¢ = 10 say), then every x € Ay is separable, i.e., it has distinct eigenvalues on
the natural module. In fact we need to prove a little more.

In the following lemma, the constant 10 could be slightly decreased. This
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lemma will be used to prove Lemma in which the assumption ¢ > 10n*
could be much relaxed. However, in Theorem we require g > r", hence
there is no reason to insist for a sharp assumption here (indeed we could prove
Lemma [7.5.3] with 10 replaced by an unknown constant, and assume ¢ > r” in

Lemma .

Lemma 7.5.3. Let f be a positive integer. If ¢ > 10f and x € Ay, then xf is
separable.

Proof. The proof is straightforward. For x € Ay, we need to prove two things:

(i) if W < V is irreducible for T (the torus of z), then W is irreducible for
zf, and

(ii) if Wy and Wy are distinct irreducible modules for T, then x/ has distinct
eigenvalues on Wy and Ws.

Items (i) and (ii) imply that 27 has the same fixed spaces as the torus T
of x, and therefore 2/ is separable. The argument is essentially the same in all
cases.

For item (i), we show that if ¢ > 10f then the order of zf is large enough, so
that =/ acts irreducibly on W. For instance, assume the torus 7" acts irreducibly
on a nondegenerate module W of dimension 2a (and assume we are not in the
unitary case). Then by our choices the order of x on W is larger than (¢*+1)/2.
Then the order of x/ is larger than (¢* + 1)/2f, which is strictly larger than
¢® ' +1; in particular « does not fix any proper nondegenerate submodule of W.
What is more, if 2/ fixes a proper totally singular submodule U, then this has
dimension ¢ < a. If ¢ < a, the same argument as above gives a contradiction,
and if ¢ = a, then the order of 2/ would divide both ¢* — 1 and ¢® + 1, hence
it would divide 2, which is false. In unitary groups, the argument is the same;
and in case W is totally singular, the argument is similar (we note also that the
dimension of any (z/)-submodule of W divides the dimension of W).

For item (ii), we first observe that if W; and W5 have different dimension,
the claim is obvious. There are cases that can be checked separately, namely
x9 in SLa(q), z2 in SUs(q), z3 in Sp,(q) with ¢ even, and z3 in QF (¢). In all
other cases, if W7 and W5 have equal dimension, say a, then they are totally
singular and T acts irreducibly on both, with W7 & W5 nondegenerate. Let us
as assume we are not in the unitary case. If z has eigenvalues {\, A%, ..., /\qafl}
on Wi, then it has eigenvalues {A\=1, A7, .. .,)\_qafl} on W5. By our choices,
IA| = (g% —1)/2. Assume by contradiction that the eigenvalues of 27 on W, and
Wy coincide. In particular A/ = A=/ for some 1 < i < a— 1. Then |A| divides
flg"+1) < f(¢* 1 +1), which contradicts ¢ > 10f. The unitary case is similar
(in this case the eigenvalues of x on Wy are the ¢-th powers of the inverses of
the eigenvalues on Wh). O
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G 1 T2 T3 T4

SL,(q), n > 2 n n—1,1

SU.(q), n >3 n n—1,1

Qam+1(g), m > 3, q odd m~ m’

Q5 (q), m >4 m~ (m-1)",1F

Spy,,(q), m >2even, godd m~ (m-1)",1"

SPs,. (@), m >3 0dd, godd m~ (m-1)",17 mt

SPsm(q), m = 2, q even m- (m-1)",1" (m-1)",1" m*

03,.(q), m > 5 odd mt  (m—-1)",1"

03, (q), m > 4 even mt (m-1)",1" (m-27,27 (m-2)",17,1%"

Table 7.4: Ay = {x1,z2, 23,24} in Theorem for classical groups.

7.5.3 Overgroups of the elements of A4,

By Theorem [7.5.2] M consists of members from Aschbacher’s classes Cq,Co,Cs3,
plus the subgroups SO,jf(q) < Sp,,(q) for even q. Now we show that we can
focus on overgroups of x € A, from M op.

Lemma 7.5.4. Assume ¢ > 10n*. Assume x € Ay and let T be its maximal
torus in X,. Let M, € M(x). Then x € T < M. In particular, T (x) consists
of the maximal tori contained in some overgroup of x belonging to M op.

Proof. By Theorems[7.5.1 and [7.5.2] and by the fact that z is separable, we see
that the statement is easy, unless M, preserves a direct sum decomposition, or
is an extension field subgroup.

Note that x fixes at most 4 irreducible spaces on the natural module. In
particular, if z € M, < GLg(¢%)1.S¢, then x induces a permutation of S; having
at most 4 cycles, and therefore having order at most n*. We see that =/ € M o
for some f < n*. If 2 € M, and M, preserves an extension field subgroup, then
the index of M2 in M, is at most n. In particular, z¥ € M¢ for some f < n.

Since ¢ > 10n* > 10f, by Lemma x' is separable, and in particular
regular semisimple. Therefore, the maximal torus of 7, which is T, is contained
in M3. O

We have the useful consequence that, for each element of Ay, we just need to
determine the overgroups of its maximal torus from classes C; and Cs; in class
Cs we only have to consider the linear subgroup GL,,/,(¢"%) < GL,(q"). (As
usual there is also the subgroup SOZ, (¢) < Sps,,(q) for even ¢; here the fixed
points of the connected component is inm(q)) The overgroups from class C;
are easily determined by looking at the action on the space. We now prove a
lemma concerning extension field subgroups.

Lemma 7.5.5. Assume v € GLn/b(qb) < GL,(q) for some prime b dividing n.
Assume x is separable over F,. Then each (irreducible) nonzero space fized by
x has dimension divided by b over F,.
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Proof. Assume U is an irreducible space for x over F,» of dimension a. Then
U has dimension ab over F,. Moreover, = acts homogeneously on U over F,.
Since z is separable, it follows that = acts irreducibly on U over F,. The lemma

follows. O
Lemma 7.5.6. Let b be prime.

(1) The subgroup GLy,/5(¢") N SLn(q) < SLn(q) or GU, (¢") N SUL(q) <
SU,.(q) contains a representative of all maximal tori corresponding to par-
titions of n in which each part has length divisible by b (recall that for
unitary groups b must be odd, cf. [KLIOW, Section 4.3]).

(2) Assume 2m/b is even. The subgroup Sp2m/b(qb) < Spsy,,(q) or SOQim/b(qb)

< S0%,(q) (q odd) or QQim/b(qb) < QF (q) (q even) contains a represen-
tative of all mazximal tori corresponding to signed partitions of m in which

all parts have length divisible by b.

(3) The subgroup GU,,(q) < Spa,,(q) or GU,,(¢q) < SOZL, (q) (q odd) or
GU,n(q) < Q5,.(q) (q even) contains a representative of all mazimal tori
corresponding to signed partitions of m in which odd parts have minus
sign and even parts have plus sign (recall that for m odd GU,,(q) embeds
in minus type orthogonal groups, while for m even in plus type orthogonal

groups).

What is more, in each case we have listed all conjugacy classes of mazximal tori
contained in the corresponding subgroup.

Proof. Let H be an extension field subgroup as in the statement. Since H is
of maximal rank, each maximal torus of the ambient group contained in H is a
maximal torus of H, hence it has a description in terms of its Weyl group. It
is then not difficult to establish the lemma with the help of Lemma (see
IKL90DbL Section 4.3] for a detailed description of the various embeddings). O

Note that in the previous lemma we have not included extension field sub-
groups of type O,, /b(qb) with n/b odd. Indeed, we already observed in Theorem
[[.5.2] that these are not of maximal rank.

The last case to consider is M, = SO%, (q) < Sp,,,(q) with ¢ even (note
that M2 = QF (q)). Recall the isomorphism Spy,,(q) = SOgpi1(q). In the
following lemma, we allow also the case of ¢ odd, as the argument is the same.

Lemma 7.5.7. Let e € {+,—}. The subgroup SO3,,(q) < SO2m+1(q) contains
a representative of all conjugacy classes of maximal tori corresponding to signed
partitions in which the product of the signs is €1, and contains no other mazimal
torus.

Proof. See [KL90b, Proposition 2.5.11]. O
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7.5.4 Proof of Theorem [7.1.4]

Proving Theorem (hence Theorem for classical groups of bounded
rank) is now just a matter of checking. Indeed, thanks to Lemmas
and we know all the members of 7 (z) for every element x € A, (the case
of class C; is easily understood, since x is separable). Let us prove the statement
for unitary groups, for symplectic groups, and for Q;m(q) with m even.

For x € X,, we denote by Mo, (z) the members of Mo, containing x
(this notation is used only here). Moreover, we denote by N;* the (fixed points
of the connected component of) the stabilizer of a nondegenerate subspace of
sign + and of dimension ¢, and by P, the stabilizer of a totally singular /-space.
Finally, in the following discussion we identify each torus with the corresponding
(signed) partition; hence a partition can be contained in a subgroup.

(i) SU,(q). If n is odd, Mcon(x1) consists only of (unitary) extension field
subgroups of type GUn/b(qb) (b odd). On the other hand Moy, (z2) consists of
P,—1y/2 and N;. Therefore T (z2) contains only the partitions with a 1-cycle.
By Lemma [7.5.6] none of these belongs to 7 (x1), hence T (z1) N T (z2) = @.
Assume now n is even. Again T (x2) contains the partitions with a 1-cycle.
Moreover Meon(71) consists of unitary extension field subgroups, and P, ;.
Then T (x1) NT(z2) = @ (note that P, /; contains the partitions with all even
parts).

(i) Spag,,(g). If m is even and ¢ is odd, then Mon(21) consists of every
Sp2m/b(qb), but not of GU,,,(q) (by Lemma. On the other hand Mop(22)
consists only of P, and Ny. Hence T (x2) contains the signed partitions with
a 1l-cycle. By Lemma none of these partitions belongs to 7 (x1), hence
T(I‘l) N T(IL'Q) = .

If m is odd and g is odd, the difference is that Mo, (x1) contains GU,,(q),
and as before every szm/b(qb) (here bis odd). On the other hand Moy (z3) con-

tains Py, every Sps,, /b(qb), and does not contain GU,,(¢q). Moreover Mo (22)
contains only Ny. Then 7 (x2) contains signed partition with a 1-cycle. But

(17,...) is not contained in T (x3), and (17,...) is not contained in T (z1) (note
that a partition contained in P, has all positive cycles). Hence T (1) N7 (x2) N
T(!L‘g) =J.

Assume now q is even. Note that GU,,(g) is contained in 3, (¢) orin Q5,,(q)
according to whether m is even or odd (cf. [KLI0b, Section 4.3]). Moreover,
by Lemma [7.5.7] we deduce that a partition contained in P, is contained in
QF (q). As a consequence we can ignore GU,,(¢) and P,,. The result follows
with arguments as above. Indeed, T (x2)N7T (z3) consists of the signed partitions
w with a 1-cycle. If the product of the signs of w is 1 (resp. —1), then w does not
belong to T (z1) (resp. T (z4)). Therefore T (x1) NT (x2) N T (x3) NT (x4) = @.

(iii) QF . (q) with m even. We see that 7 (z4) contains (17,...), (17,...),
(27,...). Now Mon(r3) consists of N, and subgroups of type Q! (¢%). Of the
three subpartitions listed above, only (27, ...) can belong to . (¢%). Therefore,
T (xz3) N T (z4) contains (17,17,...) and (27,...). At this point we note that
Meon(z1) contains Py, GU,,(q) and every Q;m/b(qb). Then T (z1) N T (x3) N

T (z4) consists of the partitions contained in 2} (¢?) and of type (27,...). We
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observe that none of these belongs to 7 (z2), and the proof is concluded.
The other cases are dealt with similarly. In fact we have left out precisely
the cases which are easiest to check.

7.6 Proof of Theorems [7.1.2l and [7.1.3

This section is devoted to prove Theorems [7.1.2]and [7.1.3] which imply Theorem
for groups of Lie type of bounded rank. By Theorem|[7.3.1] we may assume
r > 2.

For the group G = G2(3%), Theoremfollows from Theorem which
we proved in Subsection (see also Subsection [7.6.1)). We will now prove
Theorem

Let X and o be chosen as in Sections [Z.4] and As we did for Theorem
it is convenient for us to prove a slightly different statement. In the
following proof, for a subset Y = {x1,...,2:} of X(q), we will say that ¥
invariably generates at least X (q) if for every g1,...,g: € X(q), («7*,...,2}")
is not contained in maximal subgroups not containing X (q)’.

Theorem 7.6.1. Assume r > 2 and X(q) % Ga(q) when 3 | q. Set a =
1/|W(Es)| if X is exceptional, and o = 1/4r if X is classical. Then

P! (X(q),y) = a+O("/q) for a proportion of elements y € X(q) of the form
1=0(r"/q).

Proof. Let Ay be the set of elements of X (g)’ of the statement of Theorem|[7.3.10}
By Theorems [7.3.8 and [7.3.10] we deduce that, for every y € A, y invariably
generates at least X (q)’ with some € A,. By our choice of the set A, in the
various cases, z is regular semisimple: let S = (T},), < X(g) be its maximal
torus, with w € W.

We claim that {y, z} invariably generates at least X (q)" for every z € Ag.
Assume not; then, by the definition of A we must have (y9*,292) < M for some
91,92 € X(q) and some M € M_o,. Now 292 is regular semisimple; in particular
its maximal torus in X(g) is contained in M. But this torus is X (q)-conjugate
to S, which contradicts the fact that {y,z} invariably generates at least X (q)’.

In order to conclude the proof, we only need to lower bound the proportion
of A and Ag in X(gq). We know that |A|/|X(q)] = 1 — O(r"/q) by Theorem
7.3.4 Moreover |Ag|/|X(q)] = P(W,0,w) + O(r"/q) by Theorems and
7.3.6l Clearly P(W,0,w) > 1/|W|, which is at least 1/|W (Esg)| for exceptional
groups. For classical groups, we can check easily that P(W, 0, w) > 1/4r. The
bound is attained for (27,27) in W(D,4). Another case which gets close to
the bound is ((m — 1)*,1%) in W(C,,) for m > 3; the corresponding class has
proportion 1/4(m — 1) in W(Cy,). The proof is concluded. (Note that we may
draw a random element of W (C,,) or W(D,,) in two steps: first draw a random
permutation 7 of S,,, and then assign a sign to each cycle of 7 at random, with
the obvious restriction in W(D,,).) O

We note that, by the same proof, with more care one can improve the value
of a in case X is exceptional.
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Now we show that Theorem follows. With notation as in the previous
proof, we have that for every y € A’ := AN X (q)’, y invariably generates X (q)’
with every element of Ay := AgNX(g)’. Therefore we only need to lower bound
the proportion of A’ and A’ in X (g)’. By our choice of the type of X, the index
of X(q)" in X(q) is bounded (it is at most 3), hence |A|/| X (q)'| =1—0("/q).
Moreover, with a similar reasoning as in Lemma|7.3.9] and using Theorem [7.3.6],
we see that | Ugex(q) (SN X(q)")9]/|X(q)'| = P(W,0,w) + O(1/q), from which
|A%I/1X (g)] > a + O( /).

7.6.1 An elaboration on Theorem [7.1.3

We obtain here a more precise estimate for the probability in Theorem[7.1.3] For
simplicity, we take X of simply connected type (so X, = X(q) is quasisimple).
Let {T1,...,T;} be a set of representatives for the X (g)-conjugacy classes of
maximal tori of X (q). Write T; = (T, )s with w; € W, as we did in Subsection
7.3.20 Define a relation ~ on {1,...,¢} as follows. If 1 < 4,j < ¢, then ¢ ~ j if
there are no conjugates of 7; and T} with a common overgroup in Mcop.

Theorem 7.6.2. Assume r > 2. Let x1,29 € X(q) be chosen uniformly at
random. Then,
d(r)
P((z1,22)1 = X(9)) = Y P(W.0,wi)P(W,0,wj) + — =
(i) !
i

for some function d(r).

Proof. Note that A = U{_,Ar,, a disjoint union. By the definition of A and
by Theorem whenever i ~ j every element of A7, invariably generates
X (q) with every element of Ar,. Clearly this is not true if ¢ ¢ j. By Theorems

and we have |ATi|/J|X(q)| =P(W,o0,w;) + O(r" /q). The statement
follows. O

Note that we have a nice and rather explicit expression for the main term of
P({(z1,22)r = X(q)), which one should be able to estimate with accuracy (for
all exceptional groups it should be possible to compute the exact value). For
instance, with notation as in Subsections and in case G = G5(3%)
we have 3 ~ 6,4 ~ 5 and 5 ~ 6. One deduces easily that P({z1,22); = G) =
1/9+0(1/q). A very easy case is SLa(q), where the probability is 1/2+ O(1/q)
(for the error term, see the the proof of Theorem at the beginning of
Section .

We remark also that this quite an unusual way to address a problem of
random generation. Indeed, in these problems one usually proves that there is
a small chance to be trapped in a maximal subgroup — and, as a consequence,
there is a large probability to generate. Here, on the other hand, we are directly
exhibiting many pairs of elements which (invariably) generate, which is a sort of
opposite approach. In the language of Subsection we are exhibiting large
complete bipartite subgraphs of the graph A.(X(q)).
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7.7 Lower bound to |4

We show that there are cases in which we need |Ap| > 4 in Theorem (note
that only in F4(2%) we used a set of size at least 5).

Lemma 7.7.1. Assume q is even and m > 2. Let G = PSp,,,(¢) = Sps,,(9),
and let Y be a subset of G of size 3. Then, Py (G, Y) <1-1/2"ml+0(1/q).

Proof. Note that 2mm! = |W(C,,)|. Let y1,y2,y3 be elements of G; we claim
that Q := N7 (y;) # @. Assume we prove the claim, and assume S € .
Then, the elements lying in a conjugate of S contribute to 1 — Pi,(G,Y). By
Theorem [7.3.6] the proportion of elements lying in a conjugate of S is at least
1/[W(Cp)| + O(1/q). Therefore it is sufficient to prove the claim.

If the y; act all reducibly, the maximal torus corresponding to w = (17,. ..,
17) belongs to  (since it is contained in every maximal subgroup from class
C1). Then we may assume that y; acts irreducibly (and y» and y3 do not). If
none of y3 and y3 act as (m™) (i.e., irreducibly on two complementary totally
singular subspaces), then the torus corresponding to w = (1*,...,1%,17) lies
in Q: it lies in 7 (y1) because it is contained to SO, (¢); and it lies in T (y2)
and T (ys3) since it is contained in every subspace stabilizer except the stabilizer
of a totally singular m-space. Hence we may assume gy, acts as (m™). Note that
both y; and y2 belong to Sme/b(qb) for every prime divisor b of m. Assume
now ys lies in SO3,,(¢), with ¢ € {+,—} (it is well known that every element
belongs to such a subgroup; cf. [Dye79]). Now observe that Sme/b(qb) and
SO3,,(¢) contain a common maximal torus: that corresponding to w = (m*),
for instance. This concludes the proof. O

Next, we show that for groups of bounded rank we cannot have |4,| =1 in

Theorem [7.1.41

Lemma 7.7.2. Let X be a connected simple linear algebraic group, o a Steinberg
morphism, and x € X,. Then, x is contained in a subgroup of X, = X(q) of
mazximal rank. In particular, P% (X(q),z) <1—1/|W|+ O(1/q).

mv

Proof. Write x = us for the Jordan decomposition into the unipotent part u
and the semisimple part s. Every parabolic subgroup of X, contains a Sylow
p-subgroup of X, ; hence u belongs to a conjugate of every parabolic subgroup.
Moreover Z(X,) is contained in every parabolic of X,. Therefore if s € Z(X,)
we have that z is contained in a parabolic of X,. Assume then s ¢ Z(X,).
Then z € Cx(s) < X, which is o-stable. By Theorem s is contained in a
o-stable maximal torus T" of X, hence T' < Cx(s) and Cx(s) is of maximal rank.
The first part of the statement is proved. The last part follows from Theorem
and the fact that, if S € T (x), then the elements lying in a conjugate of
S contribute to 1 — P (X (q), ). O

mv
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7.8 Groups of Lie type of large rank

In this section we prove Theorem and Theorem for groups of Lie
type of large rank. We work with quasisimple groups G, rather that with the
simple quotients G/Z(G) (this makes no difference since Z(G) is contained in
every maximal subgroup of ). Throughout, G will be one of the groups SL, (q),
SU.(q), Sp,,(¢), 4 (q). We will denote by V' the natural n-dimensional module
for G. We can assume that n is sufficiently large along the proof.

Recall that in the bounded rank case, for classical groups we could focus on
Aschbacher’s classes Cq, (o, C3, with the exception SOff(q) < Sp,,(q) (Theorem
. In the large rank case, the same happens. If G is a finite (quasi)simple
classical group, denote by M’ = M'(G) the set of all maximal subgroups of G
of classes Cy,Ca, Cs3, plus SO (q) < Sp,,(q) with ¢ even.

Theorem 7.8.1. [FG12, Theorem 7.7] Let G be a finite (quasi)simple classical
group of untwisted Lie rank r defined over the field with q elements. For r

sufficiently large, the proportion of elements of G which lie in subgroups not
belonging to M’ is O(q~"/3).

7.8.1 General case

For large rank groups, in most cases we do not need much work (thanks to
known results). Specifically, assume G is not symplectic in even characteristic,
and not orthogonal in odd dimension. In these cases, we are going to prove
Theorem with |A¢| = 1, which of course implies Theorem

Let © € G be the element defined in [GK00, Table II], and set A, = {z}.
By the proof of [GKO0, Proposition 4.1] it follows that x is contained in no
irreducible maximal subgroup of G. Let now {2 be the set of integers which
occur as the dimension of a proper nonzero subspace of V fixed by z. By
[GKO0, Table IT], we see that © has very small size (bounded absolutely from
above), and Q contains only integers ¢ such that both ¢ and n— /¢ are comparable
to n (up to constants). By [FGIS8| Theorems 2.2, 2.3, 2.4, 2.5],

|- ()|
G

— O(’I’L_O'OOE’).

We deduce by Lemma that P, (G, ) = 1 — O(n=99) which concludes
the proof.

Now we need to deal with the remaining cases. We devote one subsection
to each. The difference in these cases is that every element belongs to maximal
subgroups whose union of conjugates is large.

7.8.2 Orthogonal groups in odd dimension

Here we assume G = Qa,,41(g) with ¢ odd. Let Rt and R~ denote the union
of the stabilizers of hyperplanes of plus and minus sign, respectively, and let P;
denote the union of the stabilizers of singular 1-spaces. It is well known and easy
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that every element of G has eigenvalue 1 on the natural module; in particular,
G = RYUR™ UP;. We can prove Theorem

Proof of Theorem[7.1.1} Let z € G be as in [GK00, Table II|. By the proof of
[GKO00, Proposition 4.1] it follows that the only maximal overgroup of x is the
stabilizer of a nondegenerate hyperplane of minus type. It follows from [FGIT,
Theorem 9.26] that the proportion of elements of G lying in R~ is bounded
away from 1 absolutely (it is at most 0.93 for n sufficiently large). We conclude

by Lemma O

We will see in Lemma that Pj, (G, z) remains bounded away from 1
for every z € G. Now we want to prove Theorem Here we have a strong
dichotomy between the cases ¢ fixed and ¢ — co.

Recall that, in orthogonal groups, regular semisimple elements might have
eigenvalues of multiplicity greater than 1 (i.e., they need not be separable). We
prove a simple known lemma which specifies how this can happen.

Lemma 7.8.2. Assume g € G is reqular semisimple. Then g centralizes a
nondegenerate 1-space, and dim Cy (g) = 1. Moreover, either g fizes no other
nondegenerate 1-space, or it acts as —1 on a nondegenerate 2-space, and fixes
no other nondegenerate 1-space.

Proof. We observe first that any semisimple element ¢ € G centralizes a non-
degenerate 1-space. Indeed, V decomposes as a perpendicular direct sum of
nondegenerate irreducible (g)-submodules, which have either dimension 1, or
have even dimension (and g has determinant 1 on any space of even dimension).
Since V has odd dimension, it follows that g fixes a nondegenerate subspace U
of V of dimension 1. In case g has eigenvalue —1 on U, it follows that on the
orthogonal complement U+ ¢ has both the eigenvalues 1 and —1; so g centralizes
a nondegenerate 1-space.

Recall that regular semisimple elements can be characterized as those ele-
ments which do not commute in G with any unipotent element. We now prove
that if g is regular semisimple, then g does not centralize any nondegenerate
space W of dimension 2. Indeed, assume it does. Applying the same argu-
ment of the previous paragraph to the orthogonal complement of W, we get
that g centralizes on V' a nondegenerate space of dimension 3. It follows that
g commutes with a subgroup of G isomorphic to 3(¢q) (cf. [KLI0b, Lemma
4.1.1(ii)]). This is a contradiction since Q3(q) = PSLa(g) contains elements of
order char(F,).

It is now easy to conclude that g cannot centralize any 2-space. Moreover, g
cannot have a —1-eigenspace of dimension 3, otherwise again it would commute
with a subgroup Q3(gq). Putting together all the information, the statement is
proved. U

We prove that, if ¢ is large, with high probability an element is separable.

Theorem 7.8.3. Assume m > 3. The proportion of elements of G = Qapmi1(q)
which are separable is larger than 1 — 6/q. These elements fix only one nonde-
generate hyperplane.
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Proof. By Lemma a separable element fixes only one nondegenerate 1-
space, hence only one hyperplane. Therefore we only need to prove the first
part of the statement.

By [GLO1, Theorem 2.3], the proportion of regular semisimple elements in G
is at least 1—2/(¢—1)—2/(¢—1)%. Since 2/(q—1)+2/(¢g—1)>+1/(¢g—1) < 6/q,
by Lemma[7.8.2| we just need to prove that the proportion of elements which act
as —1 on a nondegenerate 2-space W is at most 1/(¢ — 1) (note that a regular
semisimple element cannot have equivalent modules of dimension at least 2).
Let E be the set of such elements.

For fixed W, there are at most |Qa,—1(q)| choices for the element (W
determines whether on the orthogonal complement the element must belong
to Q or to SO\ Q). Now we have to sum through all possible W’s. Since
2(q — 1) = |GOF (¢)] < |GO5 (¢)| = 2(q + 1), there are at most

2|GO2m+1(9)|
|GO;(Q>| ) |G02m71(Q)|

choices. In particular, we deduce that

B| < 2[Q2m-1(9)] - |GO2m1(9)] _ 2[Q2mi1(a)| _ |sz+1(Q)|.
|GO3 (q)] - |GO2m—1(q)] |GO3 (q)] q—1

The proof is finished. O
Now we can prove the lower bound to Piy, (G, A;) in Theorem

Proof of the lower bound to Piy (G, Ag). Let x = 21 be as in [GK00, Table II],
and let 2o act on the space as (m @ m) L 1 and having order (¢"™ — 1)/2. Set
Ag = {ml, 1‘2}.

We claim that x5 does not lie in maximal subgroups from classes C; and Cs.
If this is true, then by Theorem and [FG18, Theorem 2.5], the proportion
of elements of G lying in conjugates of overgroups of both x1 and x5 is |[RT N
R7|/|G| + O(n=%0%). By Theorem |[RT N R™|/|G| < 6/q, therefore
Pin (G, Ar) > 1 —6/q+ O(n=°9%) by Lemmal7.1.7

Therefore it suffices to prove the claim. Assume first x5 € GL,, /b(qb) X Cy
for some prime b dividing n. If m is large then (¢™ — 1)/2b > ¢™/? — 1. In
particular, 2} € GL,, /b(qb) fixes only m-spaces, and only one 1-space, which is
impossible.

Assume now zo € GLk(¢)1S; with n = kt and ¢ > 1. The element x5 induces
a permutation 7 of S; having at most 3 cycles; hence the order of 7, say /¢, is
at most n®. Then x5 € GLi(q)!. Again, for m large 2§ fixes m-spaces and a
1-space. Provided n > 3, this is impossible for an element of GLx(q)¢, and the
proof is finished. O

Now we want to bound Py, (G, G) from above. The key fact is that, for ¢
fixed, the proportion of regular semisimple elements acting as —1 on a nonde-
generate 2-space is bounded away from zero. We recall an important result.
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Theorem 7.8.4. The m — oo proportion of separable elements of Qopmi1(q)
1s at least 0.348, and it is equal to the corresponding limiting proportion in the
nontrivial coset of Qom+1(q) i SO2my1(q).

Proof. See [FG17), Theorems 7.19 and 7.24]. O

Theorem 7.8.5. If m is sufficiently large, the proportion of elements of G
which are reqular semisimple, and which act as —1 on a nondegenerate 2-space
of plus type, is at least 1/6q. These elements fix hyperplanes of both signs, and
fix a singular 1-space.

Proof. The last statement is clear, since a 2-space of plus type contains a sin-
gular 1-space, and contains nondegenerate 1-spaces of square and non-square
discriminant. Therefore we only need to prove the first part of the statement.
The proof is similar (although opposite in spirit) to Theorem Let E be the
set of regular semisimple elements which act as —1 on a nondegenerate 2-space
of plus type W. For fixed W, by Theorem there at least |Qa,,—-1(q)|/3
choices for the element on W+. Then we have to sum through all W’s. We have

|92m—1(Q)‘ |G02m+1(q)| _ |Q2m+1(q)| > |92m+1(Q)|
3 |GO3 ()] |GO2m—1(q)]  3|GO3 (9] 6g
which concludes the proof. (Conceptually, there is nothing special here in con-

sidering a 2-space: the same argument applies to elements acting as —1 on a
space of bounded dimension.) O

|E| >

At this point it is easy to deduce the upper bound to Pj,, (G, G) in Theorem
Indeed, we already observed that G = RT™ U R~ U P;. By Theorem
we have |[RT N R~ N Py|/|G| > 1/6q for sufficiently large m, hence P,y (G, G) <
1—1/6g by Lemma [7.1.7]

We finally observe that we cannot have |Ay| = 1 in Theorem (not even
for ¢ — o).

Lemma 7.8.6. R, R~ and P, have proportion in G bounded away from zero
absolutely. In particular, for every x € G, P (G, x) is bounded away from 1
absolutely.

Proof. If we prove the first part of the statement, the last part will follow from
Lemma and the fact that G = Rt U R~ U P;. Therefore we only need to
prove the the first part. For ¢ fixed, we proved a stronger statement in Theorem
[7.855 Now we deal with large g. By Theorem[7.8.3] the proportion of separable
elements in G is 1 — O(1/q). If a separable element ¢ fixes a nondegenerate
hyperplane W, then the maximal torus of g is contained in the stabilizer of W
(indeed in a subgroup SO(W) of the stabilizer). The same is certainly true for
the stabilizer of a singular 1-space, since this is obtained as the fixed points of
a connected subgroup of the algebraic group. Therefore, using Theorem [7.3.6]
we see that the proportion of elements belonging to R* (resp. Py) is equal to
O(1/q) plus the proportion of elements of the Weyl group W (B,,,) with product
of sign + (resp. with a positive 1-cycle), which is 1/2 (resp. at least (1—1/e)/2
for sufficiently large m). O
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7.8.3 Symplectic groups in even characteristic

The arguments are much the same as in the previous subsection.

We view Sps,,, (q) =2 SO2pm+1(q) = G, the group of isometries of a nonsingular
quadratic form @ on a (2m + 1)-dimensional space V. (Here, by nonsingular
we mean that there are no nonzero vectors v of V1 such that Q(v) = 0.)
Under these assumptions, it turns out that V=+ is a 1-dimensional subspace of
V. Through this identification, the subgroups SOétm (¢) correspond to stabilizers
of nondegenerate hyperplanes of V (i.e., complements of V*) of plus or minus
type. Note that G acts trivially on V*, since ¢ is even and @ does not vanish
on V+.

As in the previous subsection, we denote by RT and R~ the union of the
stabilizers of hyperplanes of plus and minus sign, respectively. It is well known
that G = Rt U R~ (cf. [Dye79]). We will see in Lemma that, also in
this case, Py, (G, ) is bounded away from 1 for every z € G. We can prove

Theorem [T.1.11

Proof of Theorem[7.1.1 Let z € G be as in [GKQ0, Table II]. The same argu-

ment given for the other classical groups in Subsection [7.8.1] applies, except that

x stabilizes a unique nondegenerate hyperplane of plus or minus type. Therefore
|4 (z)] _ |R¥]

_ 1 O(n—0-005).
ol = e TOm

Since |R*|/|G| is bounded away from 1 by [FGI7, Theorem 9.15] (it is at most
0.86 for n sufficiently large), Theorem [7.1.1] follows. O

We can also prove the lower bound to Piy, (G, A;) in Theorem

Proof of the lower bound to Piy (G, Ag). Let & = x1 be as in Table [GKO00, Ta-
ble II]. In case m is odd (recall G = Sp,,,(q)) for convenience we modify
as follows. If m = 1 mod 4, we choose ;1 acting on the symplectic module as
(m—1)/2 L (m+3)/2 L (m—1); and if m = 3 mod 4 we choose x; acting as
(m+1)/2 L (m—3)/2 L (m+1). We let x; have order ¢° + 1 on each block of
dimension 2b. Similarly to the proof of the lower bound to P, (G, A¢) in the
previous subsection, we can easily prove that x; does not belong to subgroups
of classes Co and Cs if m is large. (Subgroups of class C3 are ruled out since
the element has nondegenerate irreducible modules whose dimensions differ by
2; recall Lemma ) In this way, our element z; belongs to SO;,,(¢) in all
cases, both for m even and m odd.

Let moreover z2 € G act as follows: if m is odd, it acts as (m—1) L (m+1);
if m = 0 mod 4, it acts as (m —2) L (m +2); if m = 2 mod 4, it acts as
(m —4) L (m+4). Assume moreover zo has order ¢” + 1 on each block of
dimension 2b. Except for stabilizers of subspaces, the only maximal overgroup
of z is a conjugate of SO3,,(q) (see [BHI9, Lemma 6.2]; in fact, since we are
allowed to consider only classes Cy and Cs, a simpler argument suffices).
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Set now Ay = {x1,22}. By Theorem and [FG18, Theorem 2.4], the
proportion of elements lying in conjugates of overgroups of both z; and xs is
|[RT N R™|/|G] + O(n=0:09%),

By [GLO1, Theorem 2.3|, the proportion of regular semisimple elements in
G is at least 1 — 6/g. A regular semisimple element does not have eigenvalue
1 on the symplectic module (or, in other words, centralizes only V* on the
orthogonal module V). It follows that a regular semisimple element ¢ fixes only
one nondegenerate hyperplane, namely [g, V]. Then |[RTNR™|/|G| < 6/q, which
shows that Py, (G, Ay) =1 —6/q+ O(n=0-09%), O

Now we prove the upper bound to Pi.,(G,G). We first observe that, if
g € G is semisimple and centralizes a 2-space, then g fixes hyperplanes of both
signs (in case ¢ odd we could exploit the discriminant to see this; here we use a
different argument).

Lemma 7.8.7. Assume g € G is semisimple and dim Cy (g) = 2 on the orthog-
onal module. Then g fires nondegenerate hyperplanes of both signs.

Proof. Assume V1 = (v). Since every element of F, is a square, by rescaling we
may assume Q(v) = 1. Assume now g is semisimple and fixes a nondegenerate
hyperplane W; we want to show that g fixes also a hyperplane of opposite sign.
Since V.= W L V1, by assumption there exists 0 # e € W such that
eg = e. Write W = (e) & T, with T fixed by ¢g. Assume first Q(e) # 0.
Consider ¢’ := Q(e)~/2e+v. Clearly ¢’g = ¢/ and Q(¢’) = 0. Moreover, g fixes
W' := (¢ @ T, which is a complement of V', i.e., a nondegenerate hyperplane.
If W' has opposite sign with respect to W, the proof is finished. Hence, replacing
W by W’ and e by €/, we may assume from the beginning that Q(e) = 0.
Since ¢ is semisimple, g centralizes a nondegenerate 2-subspace (e, f) of
W, where Q(f) = 0 and (e, f) = 1. Write now W = (e, f) L U, with U
fixed by g. Pick ¢ € F, such that the polynomial X2 + X + £2 is irreducible
over F;. Thenset € :=e+v, f/ = f+&{+vand W= (e, f) LU. A
straightforward computation shows that (¢’, f’) is a nondegenerate anisotropic
space, i.e., Q(z) # 0 for every 0 # x € (¢/, f') (cf. [KLIOD, p. 26]). It follows
now from [KL90bl Propositions 2.5.3 and 2.5.11| that W’ has opposite sign with
respect to W. This concludes the proof. O

Theorem 7.8.8. [FGI17, Theorem 7.11] The m — oo proportion of regular
semisimple elements of Spa,, (q) is at least 0.283.

Theorem 7.8.9. If m is sufficiently large, the proportion of elements of G which
act (on the symplectic module) as the identity on a nondegenerate 2-space, and
which are reqular semisimple on the orthogonal complement, is at least 1/4q>.
These elements fix nondegenerate hyperplanes of both signs.

Proof. The last part of the statement follows from Lemma [7.877 The first
part is exactly the same as in Theorem (one essentially replaces 2 by Sp
throughout, and we use |Spy(q)| < ¢%). O
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At this point we can prove the upper bound to Pi, (G, G) in Theorem
We already recalled that G = RT U R™, and by Theorem we have that
|[RTNR™|/|G| = 1/4¢3 for sufficiently large m. Therefore Pi,, (G, G) < 1—1/4¢3

by Lemma [7.1.7]

We conclude by showing that we cannot have |4, = 1 in Theorem

Lemma 7.8.10. R and R~ have proportion in G bounded away from zero
absolutely. In particular, for every x € G, Piny (G, x) is bounded away from 1
absolutely.

Proof. The last part follows from the first, Lemma and G = RTUR™. We
now prove the first. For ¢ fixed, we proved a stronger statement in Theorem
[7-8:9] Now we deal with large q. By Theorem [7.3.3] the proportion of regular
semisimple elements in G is 1 — O(1/q). If a regular semisimple element g fixes
a nondegenerate hyperplane W, then the maximal torus of g is contained in the
stabilizer of W. By Theorem we deduce that the proportion of elements
belonging to R* is equal to O(1/q) plus the proportion of elements of W (B,,)
with product of sign +, which is 1/2. O
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