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Riassunto

Questa tesi ¢ dedicata allo studio di alcuni esempi di algebre d-representation finite e
infinite. Queste algebre sono la generalizzazione delle classiche algebre di tipo di rapp-
resentazione finito e infinito nel contesto della teoria di Auslander-Reiten in dimensione
superiore, introdotta da Iyama negli anni 2000. Nella prima parte della tesi introduciamo
nuovi esempi di algebre d-representation infinite sfruttando la loro relazione con le algebre
bimodulo (d + 1)-Calabi-Yau di parametro di Gorenstein 1. Per prima cosa richiameremo
alcuni risultati di Bocklandt, Schedler e Wemyss, e di Herschend, Iyama e Oppermann,
che mostrano alcuni esempi dati da skew group algebre di sottogruppi finiti di gruppi
lineari generali. Come generalizzazione delle classiche algebre ereditarie tame di tipo A,
Herschend, Iyama e Oppermann hanno introdotto le algebre d-representation infinite di
tipo A considerando sottogruppi abeliani di SL(d + 1,C). Nel nostro lavoro otteniamo
una costruzione simile per alcuni sottogruppi non abeliani. Piu precisamente, studiamo la
skew group algebra di alcuni sottogruppi metaciclici immersi in SL(s, C) e SL(s + 1,C),
quando s ¢ un numero primo. A tale scopo diamo una descrizione dei quiver di McKay
con superpotenziale di tali gruppi, e ne consideriamo dei grading ottenuti da tagli. Inoltre,
mostriamo che per s = 2 1 nostri esempi corrispondono alle classiche algebre ereditarie tame
di tipo D. La seconda parte della tesi tratta di skew group algebre di algebre Jacobiane.
Dimostriamo che, se un gruppo ciclico finito agisce sull’algebra Jacobiana P(Q, W) di un
quiver con potenziale (@, W) soddisfando alcune assunzioni, allora la skew group algebra
P(Q,W) x G ¢ Morita equivalente all’algebra Jacobiana di un altro quiver con potenziale
Qa, We), che & descritto esplicitamente. 11 quiver con potenziale originale puo essere quindi
recuperato tramite una costruzione di skew group algebra rispetto a un’azione naturale del
gruppo duale di G. Una delle motivazioni per questo lavoro risiede in un teorema di Her-
schend e Iyama, che mette in relazione i quiver con potenziale auto-iniettivi alle algebre
2-representation finite. Alla luce di cio, studiamo il comportamento dei tagli su tali quiver
sotto la nostra costruzione, allo scopo di ottenere nuovi esempi di algebre 2-representation
finite da quelli gia conosciuti. Presentiamo alcuni esempi dove la nostra costruzione puo
essere applicata, come i quiver con potenziale planari dove il gruppo agisce per rotazioni,
e in particolare quelli auto-iniettivi che sono ottenuti da diagrammi di Postnikov.
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Abstract

This thesis is devoted to the study of some examples of d-representation finite and infinite
algebras. These algebras are the gencralization of the classical representation finite and
infinite ones in the context of higher dimensional Auslander-Reiten theory, which was intro-
duced by Ivama in the 2000°s. In the first part of the thesis we introduce new examples of
d-representation infinite algehras exploiting their relation with hbimodule (d41}-Calalbi Yau
algebras of Gorenstein parametcor 1. Firsily we review some results by Bocklandi, Schedler
and Wemyss, and by Herschend, Tyvama and Oppermann, which show some examples given
hy skew group algehras of hnile subgroups of gencral lincar groups. As a gencralization
of the classical tame hereditary algebras of type A, Herschend, lyama and Oppermianm
introduced d-representation infinite algebras of tvpe A by considering abelian subgroups of
SL{d + 1.C}. Iu our work we achicve a similar construction for some non-abelian groups.
More precisely, we study the skew group algebra of some metacyelic groups cmbedded in
SL{s. C) and SL{s + 1,C), when s is a primne nuwmber. To this ain we give a deseription
of the AMeRay quivers with superpotential of such groups. and we consider gradings on
them obtained from cuts. Morcover. we show that for ¢ = 2 our examples correspond
to the classical rame hereditary algebras of type D. The second part of the thesis deals
with skew group algebras of Jacobian algebras. We prove that., il a [nite cyelic group G
acts on the Jacobian algebra P(Q. W) of a quiver with potential {Q, W) satisfving some
assumptions, then the skew group algebra P{Q. W) * ¢ is Morita equivalent o the Jaco-
hian algebra of another quiver with potential (G W), which is explicitly described. The
original quiver with potential can then be recovered by a skew group algebra construction
with a natural action of the dual group of &, One of the motivations for this work lies in
a theoremn of Ierschend and Ivama, which relates self-injective quivers with potential to
2-representation finite algebras. In view of this, we study the behaviour of cuts on such
quivers under our construction, in order to obtain new examples of 2-representation finite
algebras from old ones. We present some examples where our construction can be applicd,
such as planar quivers with potentials where the group acts by rotations, and in particular
the self-injective ones which are obtained by Posinikov diagrains.
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Introduction

Auslander-Reiten theory was developed in a series of papers during the seventies [3L EL 5L 6,
7] and it has since represented one of the most important tools in the representation theory
of associative algebras. At the begiuning of the 2000°s, this theory has been generalized to
“higher dimensions™ by Ivama and his coauthors |37, 36, 38 39 40, H1), 28] 29, 31 B0L 43,
providing new insights not only into representation theory but also into other areas such
as algebraic geometry and commuiative algebra.

Tlie clagsical Auslander-Reiten theory anns to describe the category of finitely generated
modules niod A over an Artin algebra 4. In its higher dinensional analogue the object
of study is not the whole category mod A anyvmore, but some special subcategories called
d-cluster tilting subcategories. Namely, a full subcategory € of mod A is called d-cluster
tilting if it is functorially finite (i.c.. every module in mod A has both a left and a right
C-approxination) and

C={X cmodA|Exty(C.X}=0foralli=1,.... d—1}

={X e modA| Ext4(X.C) =0foralli=1,....d—1}.
In particular, the only T-cluster tilting subcategory of mod A s mod 4 itsell.

Indecomposable modules play a central role in Auslander-Reiten theory, since each
module has an essentially unique direct sum decomposition into indecomnposables, Thus
it comes natural to classify algebras into two families: the representation finite ones are
the ones which have finitely many isomorphisni classes of indecomposables, while all the
others are called representation infinite. The latter can he further subdivided into two
familics: the tame and the wild algebras. Hereditary representation finite algebras over an
algebraically closed field were classified by Galbriel [21]: they are given by path algebras of
simply laced Dynkin quivers. By taking the extended analogues of these guivers one gets
all hereditary representation tame algebras [I9] 51)).

Both represcutation finite and infinite algebras have a generalization in higlier Auslander-
Reiten theory, The d-representation finite algebras were introduced by Ivama and Opper-
manu in [40]: they are the algebras of global dimension at most o which have a d-cluster
tilting module (i.c., a module M such that add A7 is a d-cluster tilting subcategory of
mod A4). The definition of a d-representation infinite algebra, introduced by Ierschend,
Ivama and Oppermann in [31], is a little more complicated and we will give it in ,
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X Introduction

The idea is to generalize the following property of representation infinite algebras: if we ap-
ply any power of the inverse Auslander-Reiten translation to an indecomposable projective
module, then we always get a non-zero module.

The definitions of hereditary representation finite and infinite algebras can be recovered
by putting d = 1 in the above ones. While we have a complete classification of these
algebras in this case, the same cannot be said for d > 2. A family of d-representation finite
algebras, which generalize the classical representation finite algebras of type A, was defined
in [40]. Apart from them, the only explicit examples of d-representation finite algebras
known so far were constructed for d = 2 by Herschend and Tyama [29] and Pasquali [54].

Regarding d-representation infinite algebras, there is a family of examples, introduced
in [31], which generalizes the classical representation infinite algebras of type A. Moreover,
additional examples can be obtained from tensor products [31. §2.1]. Apart from the
aforementioned ones, the only other examples arise in connection with non-commutative
algebraic geometry [49] 30 [14].

The aim of this thesis is to construct explicitly more examples of d-representation finite
and infinite algebras. A key role will be played by higher preprojective algebras. Given
an algebra A of global dimension at most d, its (d + 1)-preprojective algebra is defined as
the tensor algebra Iz, (A) := Ty Ext®(A*, A). There is a natural grading on it such that
its degree 0 part is A. When d = 1, II;;(A) is isomorphic to the classical preprojective
algebra which was first defined by Gel'fand and Ponomarev in [22]. It is shown in [41]
and [31] that the property of being d-representation finite, respectively infinite, can be
translated into properties of the corresponding higher preprojective algebra. The situation
is particularly nice in the case of 2-representation finite algebras. In fact, it was shown in
[29] that their higher preprojective algebras are exactly the self-injective Jacobian algebras
of quivers with potential. The latter have been widely studied in representation theoretical
contexts in recent years, mainly because of their importance in the theory of cluster algebras
17, 18, 13].

The main tool we will exploit for constructing new examples is given by skew group
algebras. These constructions allow us to obtain new algebras from old ones by means
of group actions. In Chapter [2] we will consider skew group algebras of polynomial rings
by actions of finite subgroups of general linear groups. When considering subgroups of
SL(2, C), such algebras are exactly the preprojective algebras of hereditary representation
tame algebras [58]. As a generalization of this result, in our work we will use results
of [1I] and [3I] in order to obtain d-representation infinite algebras from subgroups of
SL(d + 1,C). In Chapter 3| we will instead consider skew group algebras of Jacobian
algebras. In particular, we will take advantage of the description given by Reiten and
Riedtmann [57] of the skew group algebra of the path algebra of a quiver bound by relations,
where the group acting on it is finite and cyclic. We will prove that, under some conditions,
we obtain in this way another Jacobian algebra.

The thesis is divided into three chapters. In Chapter [I] we will set up some notation
and introduce some preliminary notions. In Chapter 2] we will construct examples of d-
representation infinite algebras coming from skew group algebras of a family of subgroups
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of SL(d + 1): this construction works only when either d or d + 1 is a prime number. This
part of the thesis is based on paper [24], which was written by the author during a visiting
period at Uppsala University. Chapter [3]is dedicated to the study of skew group algebras
of Jacobian algebras. We will prove that, under some assumptions, the property of being
the Jacobian algebra of a quiver with potential is preserved under a skew group algebra
construction. This in turn will allow us to find new examples of 2-representation finite
algebras, thanks to the results of [29] which relate them with quivers with potential. These
results were obtained by the author in the joint work [25] with Andrea Pasquali.
Next we give a more detailed description of each chapter of the thesis.

Chapter 1: Preliminaries

This chapter is devoted to introducing some basic facts and notations, and to reviewing
some preliminary known results from the literature which will be needed in the rest of the
thesis.

In Section [I.T] we fix some notations about quivers and path algebras, which are key
tools in our work. In Section we review some basic facts about bimodules and gradings
which will be used when studying properties of higher preprojective algebras. In Section
we introduce skew group algebras, which will play a key role in Chapters [2| and In
Section [L.4] we will give a brief review of some basic constructions in higher dimensional
Auslander-Reiten theory and in particular we will introduce d-representation finite and
infinite algebras.

Chapter 2: Higher representation infinite algebras from meta-
cyclic groups

In this chapter we will introduce examples of (s — 1)- and s-representation infinite algebras
for each prime number s. To this aim we will exploit the following result.

Theorem 1 ([11,[45],[49],[31]). There is a bijection between isomorphism classes of d-
representation infinite algebras and isomorphism classes of bimodule (d + 1)-Calabi- Yau
algebras of Gorenstein parameter 1 with finite dimensional degree O part. This bijection is
realized by sending a d-representation infinite algebra A to its higher preprojective algebra
[Ig41(A) and a bimodule (d + 1)-Calabi-Yau algebra B of Gorenstein parameter 1 to its
degree 0 part By.

Bimodule (d + 1)-Calabi-Yau algebras of Gorenstein parameter 1 are a special class
of positively graded algebras. Their definition will be given in Section here we just
mention that being bimodule (d+ 1)-Calabi-Yau is a property of the algebra itself and does
not involve the grading, while the Gorenstein parameter is an attribute of the grading.

A source of bimodule (d + 1)-Calabi-Yau algebras is provided by the following con-
struction. Let V' be a C-vector space of dimension d + 1 and let C[V] be the algebra of
polynomial functions in V. Any finite subgroup G of SL(V') has a natural action on C[V],
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and we can construct the skew group algebra C[V] x G. The latter is Morita equivalent to
the path algebra of a quiver Q¢ (called the McKay quiver of G') modulo some relations:
we will denote this algebra by Ilg. It is proved in [II] that the relations in Il are induced
by a superpotential wg and that both C[V| % G and Ilg are bimodule (d + 1)-Calabi-Yau
algebras.

According to Theorem [I], in order to obtain d-representation infinite algebras we need
to find suitable gradings on Ilg. If d = 1 this is always possible by the following theorem.

Theorem 2 ([58]). Let G be a non-trivial finite subgroup of SL(V,C), where dimc V' = 2.
Then the skew group algebra C[V| x G is Morita equivalent to the preprojective algebra of
a quiver whose underlying graph is an extended simply laced Dynkin diagram.

Note that assigning to the preprojective algebra of an extended Dynkin diagram a
grading which satisfies Theorem [1] is equivalent to giving an orientation of such diagram.
Hence, by Theorem [2 we can obtain all hereditary tame algebras, since the latter are
classified by extended Dynkin diagrams.

The correspondence between finite subgroups of SL(2,C) and simply laced Dynkin
diagrams is given in the following way:

{Finite subgroups of SL(2,C)} <— {Simply laced Dynkin diagrams}

Cyclic Type A,
Binary dihedral Type D,
Binary tetrahedral Type Eg
Binary octahedral Type E;
Binary icosahedral Type Eg

This bijection was already known as “McKay correspondence” [A8], and it has the
following geometrical interpretation. Consider the quotient space C?/G, where G is a
finite subgroup of SL(2,C) acting naturally on C?. This space has a singularity at the
origin 0 and we can take a minimal resolution ¥ — C?/G: then the preimage of 0 is
a union of irreducible components isomorphic to P, and the corresponding intersection
graph is exactly the Dynkin diagram associated to G.

In view of Theorem 2, we can ask the following question.

Question 1. If G is a finite subgroup of SL(d + 1,C), then is C[V]| * G Morita equivalent
to the (d + 1)-preprojective algebra of some d-representation infinite algebra?

In other words, can we always find a grading on Il which gives it Gorenstein parameter
1 and such that the degree 0 part is finite dimensional?

Unfortunately, the answer to this question can be negative if d > 2. For example,
Thibault proved in [60] that if G is conjugate to a subgroup of SL(d;,C) x SL(d,,C) for
some dy,dy > 1 such that dy + dy = d+ 1, then C[V] * G cannot be Morita equivalent to a
higher preprojective algebra.

On the other end, there are also situations where the answer to Question [I]is affirmative.
For example, this is the case for the d-representation infinite algebras of type A defined in
[31], which are obtained from abelian subgroups of SL(d + 1, C).
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Our aim is to find other examples of groups for which the answer to Question [I]is affir-
mative. Given a prime number s and positive integers m, r, ¢ satisfying certain conditions,
we will consider the finite subgroup G of GL(s, C) generated by the following matrices:

0 0 0 e
Em 0 e 0 1 U 0
0 e 0 .
o = . ,.\'3 - 1
0 0 e Lo ¢ o oE
o 0 -« 1 0

where &, is a primitive m-th root of unity. The conditions we impose imply that G satisfies
the following properties:

e the subgroup A generated by « is normal in G, and it is cyclic of order m;
e the quotient GG/A is cyclic of order s and so it is simple, since s is a prime number;

e the conjugation by § induces an action of G/A on A, where the generator of G/A
sends a to a”.

In particular we have that G is a metacyclic group, i.e., it is an extension of cyclic groups.
Moreover, we will assume that « is not a scalar multiple of the identity: this implies that
G is not abelian, and so our examples are different from the ones studied in [31].

For such a group G the following two cases can occur:

(SL) @ is contained in SL(s, C);
(GL) G is not contained in SL(s, C).

In case (GL), Ilg is the path algebra of the McKay quiver of G modulo some relations
which are induced by a twisted superpotential weg. In particular, Ilg is not bimodule s-
Calabi-Yau: however, there is a natural embedding of GL(s,C) in SL(s+ 1,C) and we can
consider the image of G under it, which we denote by G’. Then Il is (s + 1)-Calabi-Yau,
since G' < SL(s + 1,C), and Ilg and the superpotential we: can be easily obtained from
Il and wg.

In Section we will give a description of the McKay quiver Q¢ of a metacyclic group
G and of a (twisted) superpotential weg. For this purpose, we will rely on the already known
description of the McKay quiver Q4 of the abelian subgroup A < G, and we will exploit
a G/A-action on Q4. Moreover, we will prove in Theorem that every path in the
superpotential weg of G in a certain sense “comes from a path in the superpotential of A”:
in this way we obtain only a partial description of wg, but it will suffice for our purposes.
In fact, we will use this result to prove, in Proposition [2.5.23] that if we have a grading on
(24 such that w4 is homogeneous of degree a and which satisfies an invariance hypothesis,
then there exists a grading on Qg such that wg is homogeneous of degree a. An analogous
result is proven in Proposition for the embedded group G’ < SL(s + 1,C).
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In Section we will describe explicitly some gradings satisfying the above assump-
tions. Following [31], we will give a geometric picture of the McKay quiver of Q4 and we
will show that we can obtain gradings on this quiver by considering particular subsets of
arrows called cuts. Moreover, we will show that gradings satisfying Proposition [2.5.23| can
be obtained from cuts which are invariant under the G /A-action.

In Section we will give some examples where the previous results can be applied.
In particular, we will define two families of metacyclic groups M(s,b) < SL(s,C) and
J'L:j’(s, b) < GL(s,C), for all prime numbers s and for all integers b > 1. We will show that
both this families of groups give a positive answer to Question [I} more precisely, we have
the following result.

Theorem 3 (Corollary [2.7.5)). Let s be a prime number.

(a) For each integer b > 1, there exists an (s — 1)-representation infinite algebra which
is the degree 0 part of llg, where G = M(s,b).

(b) For each integer b > 2 such that (b,s) = 1, there exists an s-representation infinite
algebra which is the degree 0 part of llgr, where G = M(s,b) and G’ is its embedding
in SL(s + 1,C).

Finally, we will compute some examples for s = 2,3. In the (SL) case, for s = 2, we
will show that with our construction we obtain all tame hereditary algebras of type D. For
s = 3, the groups considered belong to the family of trihedral groups, which have already
been studied from a geometric point of view (see for example [34] 35 47]).

Other groups which also raised some interest in geometry are binary dihedral groups in

GL(2,C) (see [53, 47]): they can be obtained from our construction in the (GL) case with
8§ =12,

Chapter 3: Skew group algebras of Jacobian algebras and 2-
representation finite algebras

The aim of this chapter is to study the skew group algebra of a Jacobian algebra coming
from a quiver with potential (QP for short). As we mentioned before, one of our main
motivations is given by the following result (see Section for the definitions).

Theorem 4 (|29, Theorem 3.11]). If (Q, W) is a self-injective QP with a cut C, then the
corresponding truncated Jacobian algebra is 2-representation finite. Moreover, every basic
2-representation finite algebra is obtained in this way.

Let A be a finite-dimensional algebra of the form k@ /I, where @ is a quiver and [ is
an admissible ideal. If G is a finite group acting on A by automorphisms, then Reiten
and Riedtmann [57] describe the quiver Q¢ of (a basic version of) the skew group algebra
A % G. This description is complete if GG is cyclic, and Demonet extended it to a complete
description for arbitrary finite groups if A is hereditary [I6]. However, describing the
relations on this quiver is quite difficult in general.
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As we already mentioned, we are interested in the case where I is induced by a potential
Win Q. It turns out that the skew group algebra of A is Morita equivalent to a Jacobian
algebra. This result was proven in [46] in greater generality: the action of G on the QP
induces an action on the corresponding Ginzburg dg algebra defined in [23], and the skew
group dg algebra is Morita equivalent to the Ginzburg dg algebra associated to another
QP. The quiver obtained is ¢, and the potential is the image of W under a natural map.
The result about Jacobian algebras can then be recovered by taking the 0-th homology
of the corresponding Ginzburg dg algebras. However, the new potential is not explicitly
described; it is expressed as a linear combination of cycles of Q)¢ only in some examples
I46, §4.5].

In this thesis we eschew the dg setting and focus on Jacobian algebras of QPs. Our
aim is, under some assumptions on the group action, to construct explicitly a potential for
the skew group algebra we mentioned above. More precisely, we will prove the following
result.

Theorem 5 (Theorem 3.3.7)). Let (Q, W) be a QP, and let A = P(Q, W) be its Jacobian
algebra. Let G be a finite cyclic group acting on (Q, W) as per the assumptions
of §3.3.1. Let Qg be the quiver constructed in W¢ the potential on Qg defined in
§3.3.9, and n € A x G the idempotent defined in §3.3.1. Then

P(Qa, We) =n(P(Q,W) = G)n.

Note that in general Jacobian algebras are defined as quotients of the complete path
algebra of a quiver. In our results, however, we only consider the case where taking the
completion is superfluous and we can actually work with the usual path algebra.

As observed in [57, §5], there is a natural action of the dual group G' on A % G, which
restricts to an action on the basic algebra n(A * ). Reiten and Riedtmann prove that
(A = G) * G is Morita equivalent to A if G is abelian, so it is natural to ask whether one
gets back the original QP by applying this second skew group algebra construction. To do
80, one needs to find assumptions which guarantee that Wy is fixed by G as an element
of kQ¢ = n((kQ) * G)n, and which are preserved under taking skew group algebras. If
G = Z /27, it was shown in [2] that indeed we get (Q, W) back (and in fact the Ginzburg dg
algebra of (@, W)). We extend Amiot and Plamondon’s result to our setting (assumptions
[(AT)H(AT)|of §3.3.1)), via a direct check using our formula for We:

Theorem 6 (Proposition and Corollary [3.5.4)). There is an isomorphism of quivers
¢ (Qa)a = Q such that, if we extend it to an isomorphism between the corresponding
path algebras, we have ¢((We)ea) = W. This induces an algebra isomorphism

8((7}(A*G)7;)*@)6§A,

where A = P(Q,W) and 0 is the idempotent defined in Section [3.5,

A simple example of the above construction which is good to have in mind is illustrated
in Example 3.8.1] and specifically in the quivers of Figure 3.4 and Figure B.5] Here we
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take () to be the QP of the 3-preprojective algebra of type Ay, so the potential is given
by the sum of all 3-cycles with alternating signs. The group G = Z/37Z acts by rotations
in the plane, and the quiver Qg is given in Figure . Here the action of G permutes the
vertices 4° and multiplies the arrow § by a third root of unity, and one can check that by
performing the same construction on (¢ one gets  back.

In view of Theorem , we look with special interest at the case where A = P(Q, W) is
self-injective. In [57] it is proved that the skew group algebra construction preserves self-
injectivity. We show that it also preserves the property of being Frobenius, and compute
a Nakayama automorphism of A % G if the bilinear form on A is G-equivariant. As a
consequence, we prove that if A is the Jacobian algebra of a planar self-injective QP and we
take G generated by a Nakayama automorphism, then A x G is symmetric. We show that
G-invariant cuts on (@, W) induce cuts on (Qg, Wg), and the corresponding truncated
Jacobian algebras are obtained from each other by a skew group algebra construction.
Thus we have that, under some hypotheses, 2-representation finiteness is preserved under
taking skew group algebras. Moreover we give some sufficient conditions on (@, W) which
imply that all the truncated Jacobian algebras of (Qg, W) are derived equivalent. It
was recently shown in [46], by different methods, that in fact the property of being d-
representation (in)finite is always preserved under taking skew group algebras. An example
where the 2-representation finite algebra is constructed from tensor product of Dynkin
quivers is illustrated in Example [3.8.6] We also look at a case where A is not self-injective
in Example 3.8.7] Here we realise an Auslander algebra as a truncated Jacobian algebra,
thus checking directly a special case of [57, Theorem 1.3(c)(iv)].

There is a natural class of QPs with a group action satisfying our assumptions, namely
rotation-invariant planar QPs. Planar QPs were introduced in [29] as they behave particu-
larly nicely when they have self-injective Jacobian algebras. It turns out that in all known
examples of self-injective planar QPs a Nakayama automorphism acts by a rotation, hence
they fit nicely in our setting. Recently it has been shown that Postnikov diagrams have
connections with planar self-injective QPs: in [54] it is proved that the QP coming from an
(a,n)-Postnikov diagram on a disk (as in [9]) is self-injective if and only if the diagram is
rotation invariant. Thus, our construction produces many examples of symmetric Jacobian
algebras, one for every such Postnikov diagram. An example is given as Example [3.8.3]
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Chapter 1

Preliminaries

In this chapter we will set up notations state some preliminary results which will be used
in the following chapters.

Throughout the thesis we will use the following notations and conventions. We fix a
base field k. Algebras are assumed to be associative unital k-algebras. We denote by rad A
the Jacobson radical of an algebra A.

Unless stated otherwise, modules are considered right modules. If A is an algebra, we
denote by mod A the category of finitely generated A-modules. For an A-module M, we
denote by add M the full subcategory of mod A which consists of direct summands of finite
direct sums of copies of M.

For an algebra A, we say that gl.dim A < d if every A-module has a projective resolution
of length at most d.

For an A-module M, we denote by M* = Homy (M, k) its standard dual, which has a
natural structure of left A-module.

Let A be an algebra and ¢: A — A be an algebra endomorphism. For an A-module M,
we define M, to be the right A-module which is equal to M as a vector space but whose
action is given by m - a = myp(a), for all m € M and a € A.

If X is a subset of a ring A, we denote by (X) the two-sided ideal of A generated by
X

1.1 Quivers and path algebras

A quiver Q = (Qq, Q1, s,1) is the data of a set of vertices QQg, a set of arrows @) and two
maps s, t: ()1 — Qp which assign to an arrow respectively its source and its target. The
path algebra k@ of Q) is defined as the free k-vector space generated by all paths in @), with
product given by concatenation. We use the convention that the product a3 of two arrows
is intended as “first do 3, then o”. If p is a path in a quiver and « is an arrow, we use the
notation a € p to indicate that « appears as one of the arrows in p. A relation of a quiver
is a linear combination of paths with the same start and end.

Let @ be a quiver. An ideal I C k() is called admissible if there exists an N > 2 such
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that (Q,)Y C I C (Qy)* Tt is well known that any finite dimensional algebra is Morita
equivalent to k@/I for some quiver () and some admissible ideal I.

1.2 Bimodules and gradings

In this section we will set up some notation about bimodules and graded algebras and
modules. Gradings will play a central role throughout this thesis, since higher preprojective
algebras have a natural graded structure. Moreover, bimodules will be relevant in the
characterization of d-representation infinite algebras in Section [2.2]

Let A be an algebra. An A-bimodule M is a left A-module and a right A-module such
that (am)b = a(mb) and Am =mA for all a,b€ A, m € M, A € k. Let A° := A? ®; A be
the enveloping algebra of A. Then an A*module M can be considered as an A-bimodule
by putting amb =m(a ® b) for all m € M, a,b € A.

Given an A°-module M, we define the bimodule dual MY := Hom (M, A¢): we will
regard it as an A°-module with action given by (¢(a®b))(m) = (b®a)(m) for all v € M*,
mée M, a,b € A. We can also give an A°-module structure to the standard dual M* by
setting (¥(a ® b))(m) = ¥(m(bQ a)).

All the gradings we will consider are over Z, unless stated otherwise. For a homogenecous
element = in a graded algebra or module, we will often denote its degree by |z| when no
confusion arises from what grading we are considering. If A is a graded algebra and
M = @ ez My is a finite dimensional graded A-module, then we can give the standard
dual M* a structure of graded A-module by setting (M*); = M*,. If M = @ o5 Ma is
a finitely generated graded projective A-module, then we have a natural grading on the
dual Hom (M, A), where the degree d part Hom (M, A), is given by morphisms M — A
which are homogeneous of degree d.

If Ais a graded algebra, then A® inherits naturally a graded structure. The functor (—)
preserves the finitely generated graded projective A°-modules, where the graded structure
on MY is given as above.

An example of a graded algebra which will be important in our work is the tensor
algebra of an A-bimodule M, which is defined as TyM = @,., M¥4*, where M®4* =
M@, 0 tmes) @, M. B

vV

1.3 Skew group algebras

Skew group algebras will be widely used throughout this thesis. Here we recall their
definition.
Let GG be a finite group acting on an algebra A by algebra automorphisms.

Definition 1.3.1. The skew group algebra A * G is the algebra defined by:

e its underlying vector space is A ®y kG;



e multiplication is given by
A®g)(p®h) = Ag(p) ® gh
for A\, p € A and g.h € G, extended by linearity and distributivity.

There is a natural algebra monomorphism A — A * G given by A — A® 1. Notice that
the algebra A = G is not basic in general.

It is shown in [57] that many representation theoretical properties of A are inherited
by A *G. In particular, this holds for the property of being self-injective: this fact will be
of particular interest in Chapter

1.4 Higher Auslander-Reiten theory

In this section we introduce d-representation finite and infinite algebras, which will play a
central role in the rest of the thesis. They both have finite global dimension, so we will
start by reviewing some general notions about algebras satisfying this property. For the
results of this sections we mainly follow [31] and [40].

Let d > 1 be an integer and let A be a finite dimensional algebra of global dimension
at most d. There are functors

v :=Homu(—, A4)*: mod A = mod A, v~ ':=Homu((—)* 4A4): mod A — mod A

which induce quasi-inverse equivalences between the subcategories proj A and inj A of,
respectively, finitely generated projective and injective A-modules. So we get induced
quasi-inverse triangle equivalences between the respective bounded homotopy categories
K" (proj A) and K"(inj A). Since gl.dim A < d, both these categories are triangle equiva-
lent to the bounded derived category DP(mod A), hence we obtain quasi-inverse triangle
equivalences

R Hom4(—, A4)*: DP(mod A) — D"(mod A),

R Hom4((—)*, 44): D®(mod A) — D"(mod A)

which we will call again, respectively, v and v~

Serre functor [12Z] of D®(mod A).
To an algebra of finite global dimension we can associate an higher preprojective alge-
bra.

Moreover, by [27], we have that v is a

Definition 1.4.1. Let A be a finite dimensional algebra of global dimension at most d.
Its (d + 1)-preprojective algebra 11,,.1(A) is defined as the tensor algebra

41(A) = T4 Ext% (A", A)
of the A-bimodule Ext4(A*, A).

For an algebra A, having global dimension at most 1 is equivalent to being hereditary.
If A is basic and finite dimensional, this means that A = k@ for a finite acyclic quiver Q).
In this case II;(A) is isomorphic to the classical preprojective algebra [22] of @ (see [59)]
for a proof).



4 Preliminaries

1.4.1 d-representation finite algebras

We will now review the definition of d-representation finite algebras, which were defined in
[0] in order to generalize the hereditary representation finite algebras. In Chapter [3| we
will construct some examples of them for d = 2.

We recall that an A-module M is called d-cluster tilting if

add M = {X € mod A| Ext},(M,X)=0foralli=1,...,d—1}
= {X e mod A| Ext,(X,M)=0foralli=1,...,d—1}.

Definition 1.4.2. A finite dimensional algebra A is d-representation finite if gl.dim A < d
and there exists a d-cluster tilting module.

Note that a l-cluster tilting module is simply a representation generator of mod A.
Hence A is 1-representation finite if and only if gl.dim A < 1 (i.e., it is hereditary) and it is
representation finite. In fact, in this case a 1-cluster tilting module is the direct sum of all
(representatives of isoclasses of ) indecomposable A-modules. A classification of hereditary
representation finite algebras over an algebraically closed field is given by the following
theorem.

Theorem 1.4.3 ([21]). Suppose that k is algebraically closed. An hereditary algebra A is
representation finite if and only if A = k@), where () is a disjoint union of simply laced
Dynkin quivers.

Simply laced Dynkin quivers are the ones whose underlying graph is one of the following:

A, e @ @ .
L]
Dn: L) ° L]
\
L]
L]
E‘ﬁ:
L] L] L] L] L]
L]
E’(i
L] L] L] L] L ] L]
L]
Et;i
L] L] L] L] L] L] L]

We have the following characterization of d-representation finite algebras.

Theorem 1.4.4 ([A1]). Let A be an algebra of global dimension at most d. Then A is d-
representation finite if and only if its (d + 1)-preprojective algebra I, (A) is self-injective
and satisfies the “vosnex” property (see [{1, §3.1]).

If d = 2 then the vosnex property is always satisfied: this case will be treated in

Section B.11



1.4.2 d-representation infinite algebras

Chapter [2]is devoted to construct examples of d-representation infinite algebras. Following
[31], we now recall their definition and illustrate a characterization of them. In Section
we will see that d-representation infinite algebras can be characterized by a property of
their (d + 1)-preprojective algebra.

Let A be an algebra of global dimension at most d. Recall from Section [I.4] that we have
a Serre functor v of D”(mod A); we define v := vo[—d|: D*(mod A) — D"(mod A). Note
that we can embed mod A in D"(mod A) by considering modules as complexes concentrated
in degree (.

Definition 1.4.5. A finite dimensional algebra A is d-representation infinite if gl.dim A <
d and v;'(A) € mod A for all 7 > 0.

These algebras are a generalization of hereditary representation infinite algebras. In
fact, when gl.dim A < 1, the 0-th cohomology of the functor v, ! coincides with the in-
verse Auslander-Reiten translation 7. Hence we have that an hereditary algebra A is
l-representation infinite if and only if 77/(A) # 0 for all ¢ > 0, and it is known by classical
Auslander-Reiten theory [§] that the latter condition is equivalent to A being representation
infinite.

Representation infinite algebras can be subdivided into two families: the tame and the
wild algebras. In imprecise words, a representation infinite algebra A is tame if all inde-
composable modules of a fixed dimension appear in finitely many one-parameter families;
it is wild if, for any finite dimensional algebra B, the category mod B can be embedded
in mod A. A theorem by Drozd [20] says that every finite dimensional algebra is either
representation finite, tame or wild.

We have a classification of hereditary representation tame algebras similar to the one
of Theorem [L4.3]

Theorem 1.4.6 ([19,[51]). Suppose that k is algebraically closed. An hereditary algebra A
1s representation tame if and only if A = kQ, where Q is a disjoint union of simply laced
extended Dynkin quivers.

The extended versions of Dynkin diagrams are the following:
L ]

./ \\.
Esi .
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In [31] the following generalization of the definition of a tame algebra is given.

Definition 1.4.7. A d-representation infinite algebra A is d-tame if its (d+1)-preprojective
algebra is a Noetherian R-algebra, i.e., it is an R-algebra for some commutative Noetherian
ring R and it is finitely generated as an R-module.

We will see in Chapter [2| that all hereditary tame algebras are 1-tame. Moreover,
all d-representation infinite algebras we will construct in that chapter will be d-tame (cf.

Proposition [2.3.7]).



Chapter 2

Higher representation infinite
algebras from metacyclic groups

In this chapter we will construct examples of d-representation infinite algebras from McKay
quivers of metacyclic groups. In Section 2.1 we will define derivation quotient algebras in
the sense of [11], and we will see that, by putting suitable gradings on them, we can obtain
examples of d-representation infinite algebras. We will show in Section that some
examples of derivation quotient algebras are provided by skew group algebras of finite
subgroups of a special linear group. Then we will consider the case where these groups are
metacyclic: in Section [2.4) we summarize their representation theory and in Section we
describe their McKay quivers. In Section [2.6] we will study gradings on these quivers by
means of cuts. Finally, we will illustrate some examples in Section 2.7]

Throughout this chapter we will assume that the base field k is the field C of complex
numbers.

2.1 Derivation quotient algebras and gradings

In this section we describe superpotentials and derivation quotient algebras following [I1],
and we consider gradings on them.

2.1.1 Superpotentials

Let ) be a quiver. We will denote by CQ; the subspace of CQ) generated by paths of length
k and set S := CQyp, V := CQ4. Then S is a finite dimensional semisimple C-algebra. We
will give V' the unique S-bimodule structure where t(a)as(a) = a for all @ € @Q: in this
way CQ is identified with the tensor algebra TsV'.

Given a path p € CQ,,, we can define for any k& < m the left and right partial derivatives
with respect to p as the maps 0,,6,: CQy — CQ,,—i given by

0 _Jr ifg=pr _Jr ifg=rp,
Bpgs= { 0 otherwise, Gy 1= { 0 otherwise.
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Note that the set of arrows @) is a basis of V', and we have a dual basis {a*, a € Q;} of
V*. These yield bases for the vector spaces CQ; and CQj. For a path p =ay - --ar € CQy,
we will denote by p* the element aj - - - a] € CQj.

Definition 2.1.1 ([I1]). An element w € CQ, is called a superpotential of degree n if it
satisfies the following two conditions:

(1) w is a linear combination of cyclic paths (equivalently, ws = sw for any s € S);
(2) o(w) = (—=1)""'w, where o is the map defined on paths as g(ay - - - a,) = Ap@y -+~ Qp_1.

For later purposes, it will be convenient to consider the twisted analogue of this defini-
tion. We call twist a C-algebra automorphism 7 of CQ which satisfies 7(CQy) € CQy and
permutes the primitive idempotents. If M is an S°module, we define its (right) twist M,
as the vector space M with S%action given by m.(s @ t) := m(s @ 7(t)).

Definition 2.1.2. An element w € CQ,, is called a twisted superpotential of degree n if it
satisfies the following two conditions:

(1) w is a linear combination of paths p satisfying t(p) = 7(s(p)) (equivalently, ws =
7(s)w for any s € 5);

(2) 0"(w) = (—1)""'w, where ¢7 is the map defined on paths as

a’ (ﬂ*l o 'a"n) = T((i‘.”)(i'.l trrlp—1

Note that if the twist is trivial we recover the definition of superpotential.
Given a twisted superpotential w € C@Q, and an integer £ < n, we can define an
S€-module morphism

AY: CQL ®s Sy = CQu—i
by Af(p* ® s) := Jyws. We denote by W,,_; the image of A¥.

Definition 2.1.3. Let w € CQ, be a (twisted) superpotential. The derivation quotient
algebra of w of order k is defined as

D(w, k) := CQ/(Wy—i) = CQ/ (0w, p path of length k),
where (W,,_x) denotes the smallest two-sided ideal of CQ which contains W,,_j.
For later use we give the following definition.
Definition 2.1.4. Write a superpotential w € CQ,, as
W= Z &,
p|=n

for some scalars ¢, € C. Then we define the support of w to be the set

supp(w) := {p|p path of length n, ¢, # 0}.



2.1.2 Graded quivers

We recall that a morphism of quivers ¢: @) — @’ consists in two maps Qp — Q. Q1 — Q]
(which, abusing of notation, we will both denote again by ¢) which are compatible with
the source and target maps.

Definition 2.1.5. e A (Z—)graded quiver is a couple ((Q,g) consisting of a quiver @
and a map ¢: Q1 = Z. A morphism of graded quivers ¢: (Q,g) = (@', ¢') is given
by a morphism of quivers ¢: @ — Q' such that the following diagram commutes:

QO .
N, A

e Let ¢: Q — @ be a morphism of quivers and suppose that @ is graded by g. We
will say that ¢ is g-gradable if, for every arrow a € @}, ¢~'(a) is either empty or a
homogeneous subset of @; (i.e., all its elements have the same degree).

Let ¢: Q — @' be a morphism of quivers. There is a natural way to induce a grading
on Q) from a grading on )', and vice versa, which we now illustrate.

Definition 2.1.6. (1) Suppose that g is a grading on ’. Then we define a grading ¢*g
by putting (¢*g)(a) = g(¢(a)) for all @ € Q1. Note that this is the unique grading
on ) which makes ¢ a morphism of graded quivers.

(2) Suppose that g is a grading on @ and that ¢ is g-gradable. It is clear that there always
exists a grading ¢’ on ' which makes ¢ a morphism of graded quivers: indeed, it
is enough to put ¢'(a) equal to k if the elements of ¢~'(a) have all degree k, and to
any integer if ¢~!(a) = @. If, in addition, we assume that ¢: Q; — Q] is surjective,
then such a grading is unique and we will denote it by ¢.g.

Remark 2.1.7. A grading on @) induces in a natural way a grading on the path algebra
CQ. Note that in general this grading does not coincide with the natural one on CQ given
by path length (i.e., the one obtained by putting all arrows in degree 1).

From now on we will fix a grading on CQ which comes from a grading on ). Note that
in this case all elements of S have degree 0. We will now show that if w is a superpotential
which is homogeneous with respect to this grading, then we get a graded structure on

D(w, k).

Lemma 2.1.8. Suppose that w € CQ,, is a superpotential which is homogeneous of degree a.
Then W; is a graded S¢-submodule of CQ for alli =0,...,n. In particular the derivation
quotient algebra D(w, k) inherits in a natural way a structure of graded C-algebra.
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Proof. Firstly we show that the morphism Aj is homogeneous of degree a. Indeed, if
p* € CQj has degree d., then p has degree —d and by definition of partial derivative we
have |AY(p*)| = |Opw| = a — d.

Hence each W is a graded S¢submodule of C() because it is the image of an homo-
geneous morphism. This implies that the ideal generated by it is homogeneous and so we
have a well defined grading on the quotient D(w, k) = CQ/ (W, ). a

2.2 Graded Calabi-Yau algebras and the Gorenstein
parameter

We will now show how we can obtain n-representation infinite algebras from derivation
quotient algebras.

Definition 2.2.1. Let a be an integer and n > 2. A positively graded C-algebra A =
@izo A; is called bimodule n-Calabi-Yau of Gorenstein parameter a if the A°-module A
has a bounded resolution Py of finitely generated graded projective A°-modules such that we
have an isomorphism of complezes

®: P, = P)[n](—a).

Here [n] denotes the shift of complexes, while (—a) denotes the shift of the grading.

In other words, we want a commutative diagram

1
s () y P, —% ... y P y Py 5 () >
J' l‘t}u l‘pi lq-’{’l l
dy dy_y dY
> 0 S 20 > ~— PV, —— PY > 0 >

where the maps ®; are isomorphisms and homogeneous of degree —a.
The above definition is motivated by the following theorem.

Theorem 2.2.1 ([1],[45].[49],[31]). If A is a bimodule n-Calabi- Yau of Gorenstein param-
eter 1 such that dime Ag < oo, then Ag is (n — 1)-representation infinite. Vice versa, if
B is (n — 1)-representation infinite, then its higher preprojective algebra 11,(B), equipped
with the tensor algebra grading, is bimodule n-Calabi- Yau of Gorenstein parameter 1 and
A is the degree 0 part of 11, (B).

In view of this, we will be interested in finding examples of bimodule n-Calabi-Yau
algebras of Gorenstein parameter 1. In the next subsection, following [T1], we will describe
a way to obtain such examples from derivation quotient algebras.
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2.2.1 Graded Calabi-Yau algebras from derivation quotient alge-
bras

Let () be a quiver and retain the notation of Section We put A := D(w,n — 2) and
fix a positive grading on C@) such that w is homogeneous of degree a. This induces, by
Lemma [2.1.8] a grading on A which is again positive.

Set P, = A®RsW;®s Aif 0 <i <n and P, := 0 otherwise. Then we have a complex
of projective A°-modules

B =~ 0B B B op sy (2.2.2)
with differentials d;: P; — P;_; defined by
d; = ei(d} + (=1)'d}),

where

d(1®0jwel) =Y b®§How® 1,

beth
(1R Ow®1):= Z 1 ® Opwdy ® b,
be
(D)) i< (nt1)/2,
s il otherwise.

Clearly each P; is a graded A®module, because W; is a graded S®-submodule of CQ.
Moreover it is easy to see that the differentials d; have degree zero, so P, is a complex of
graded projective A°-modules. The following is a graded version of [L1, Theorem 6.2].

Theorem 2.2.2. Suppose that the complex P, defined above is a resolution of A (i.e., it is
exact in positive degrees and HY(P,) = A). Then A is n-bimodule Calabi-Yau of Gorenstein
parameter a.

Proof. 1t is proved in [II] that if P, is a projective resolution of A, then it is self dual, i.e.,
P, = P)[n]. The duality isomorphism given in loc. cit. is described as follows (see also
[44] for more details). For each i = 0,...,n we have a perfect pairing

(): Wi ® Wy — C
given by (dyw, Oyw) := ¢4p. The isomorphism of A®-modules
D;: P=A®sW; ®s A — Homye (A ®s W,_; s A, A°) = P,
is given by @;(a® d,w®@a’)(F®Iw® ') = ¢/ B ® (Opw, yw) ® f'a. These maps commute

with the differentials and thus yield an isomorphism of complexes ®,: P, — PY[n|. These
facts can be proved using the same calculations of the proof of [44] Theorem 3.21].
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Now we are only left to show that ®; is homogeneous of degree —a. It is enough if we
prove that if d,w € W; has degree d, then ®;(1®0d,w®1) has degree d—a. For this it suffices
to show that ®;(1 ® dyw ® 1)(1 ® Jd,w ® 1) has degree e + d — a whenever |J,w| = e. Note
that we have |p| = |w| — |Opw| =a—d, |¢)| =a—e and so [Opw| =a—|p| —|q| =d + e —a.
Suppose now that d 4+ e # a: then [J,w| # 0, but this implies that d,w = 0 because
Oppw € S, 50 (100w ®1)(1 ® d,w ® 1) = 0. If instead d + e = a, then it is clear that
®;(1® 0w ®1)(1®Jdyw ® 1) has degree e +d —a = 0. O

2.3 Skew group algebras and McKay quivers

In [I1] it is shown that a source of derivation quotient algebras is provided by a family
of skew group algebras. In this section we will summarize this construction and consider
the graded case in order to apply Theorem We start by recalling some basic notions
about representation theory of finite groups.

2.3.1 Representations of finite groups

Let G be a finite group. We will sometimes identify representations of G with modules
over the group algebra CG. Given two representation M and N of GG, their tensor product
M ®¢ N will be regarded as a representation of G via the action g(m ® n) = gm & gn.

If H is a subgroup of G and M is a representation of H, we call Ind$ (M) the rep-
resentation of GG' induced by M, which, as left modules, is defined by CG &y M. If we
fix a set {g1,...,9.} of left coset representatives of G/H, then Indﬁ(ﬁ-f ) is isomorphic to
P, 9: ® M with G-action given by ¢(g; ® m) = ¢g; ® hm for all g € G, where g; is the
coset representative which satisfy gg; = g;h for h € H. In order to simplify the notation
we will write g;m for g; @ m.

If N is a representation of G, we call Res$(N) the restriction of M to H. It is well
known (see for example [10]) that the restriction functor is a right adjoint to the induction
functor. More precisely we have an isomorphism of vector spaces

Hompg (N, Res$ (M)) — Homg(Ind$(N), M)
o — (g — go(x))

which is functorial in M and N.
We also have an isomorphism

Ind$ (Res$ (M) @¢ N) — M ®¢ Ind% (N)
glm ®@n) — gm ® gn

of representations of G.
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2.3.2 DMcKay quivers

Let V be a C-vector space of dimension n and let G be a finite subgroup of GL(V"). Call
C[V] the algebra of polynomial functions on V: then G acts on it in a natural way and we
can form the skew group algebra C[V]*G. We have the following description of the latter.

Theorem 2.3.1 ([I1]). The skew group algebra C[V]xG is Morita equivalent to a basic al-
gebra Il which is a derivation quotient algebra of order n—2 with a (twisted) superpotential
w of degree n. More explicitly, we have

g = CQ/(Opw, lpl =n — 2,
where Q is the McKay quiver of G (see Definition .

Definition 2.3.2. Let Irr(G) be a complete set of representatives for the irreducible rep-
resentations of G. The McKay quiver QQ of G relative to V' is described as follows. Its set
of vertices is Irr(G) and, for any S, T € Irr(G), the set of arrows going from S to T is given
by a basis of the vector space Homeg (S5, V @¢ T)).

We now give an explicit description, following [I1], of the superpotential w of the algebra
e
We denote by dety the 1-dimensional representation of G' where each g € G acts as the
multiplication by det(g). Clearly dety is isomorphic to the exterior product A" V. Now
consider the functor 7 := dety ®¢__ and note that it sends irreducible representations to
irreducible representations. Hence we get a bijection 7: Irr(G) — Irr(G): it is easy to
see that its inverse, which we denote by 77, is given by tensoring by dety.. Clearly we
have that 7(V ®@¢ S) =V &¢ 7(5), so T extends to an automorphism of the path algebra
7: CQ — CQ which preserves the path length: this will be our twist.

Consider now a path

; al az " L2
PrU — Uz —= ... = Uy — Upai

of length n in the McKay quiver (). If we call S; the representation corresponding to the
vertex v;, then we can view the arrows as morphisms a;: S; — V ® S;,1. This induces a
composition

. : s
idy ®az, idy,gn—1 ®an ‘-“V@‘dsn-q—L
[4 . .

S LV®S,

¥ VR R S dety ®5n4+1 = 7(Sn+1),
(2.3.1)
where, for each m < n, we denote by of7 the antisymmetrizer V™ — A"V, 2,®- - -Qx,, —
£y A+ A xy,. By Schur’s Lemma, the composition morphism is the multiplication
by a scalar, which will be denoted by ¢,. Note in particular that ¢, # 0 only when

7(t(p)) = s(p).
Theorem 2.3.3 ([I1]). The superpotential w of the algebra g is given by

w= Z (¢, dimt(p))p.

Ip|=n
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Remark 2.3.4. It is worth pointing out that the superpotential described above depends
on the choice of the basis for the arrows in Q.

Suppose that the basis we choose for Homg(S,V ®¢ T') is invariant under the twist.
Then the automorphism 7 of CQ is actually induced by an automorphism of the quiver @
and, by [11, Lemma 4.3], the coefficients of the superpotential have the property that

¢ — n—1
C'“-i cellm T (_1) C’r(an}al---an_,

for all paths a;---a, in (). In case our basis is invariant only up to multiplication by a
non-zero scalar, we can still define an automorphism of (). which we call 7/, by putting
7'(v) :=71(v) if v € Qp and 7'(a) := a’ if a € @1, where d’ is the only arrow such that 7(a)
is a multiple of a’. It is easy to see that in this case we have the following weaker version
of [I1l Lemma 4.3].

Lemma 2.3.5. If p=a; ---a, is a path of length n in Q, then the coefficient ¢, satisfies

Cﬂ,]_"'ﬂ'.ﬂ = ;ti'{?'r!(ﬂ--!a)ﬂ-l"'an—].

for a non-zero scalar p € C*. In particular, ay---as lies in supp(w) if and only if
(an)ay -+ an_y lies in supp(w).

The main reason we are interested in skew group algebras comes from the following

corollary to Theorem [2.2.2]

Corollary 2.3.6. Suppose that G is contained in SL(V'). Put a grading on the path algebra
CQ of the McKay quiver of GG in such a way that the superpotential w described in Theorem,
2.3.5 1s homogeneous of degree 1.

Then the algebra Il = CQ/(O,w, |p| = n — 2), equipped with the grading induced by
CQ., is n-bimodule Calabi-Yau of Gorenstein parameter 1. In particular, its degree zero
part, if finite dimensional, is an (n — 1)-representation infinite algebra.

Proof. In [I1] the authors prove that any skew group algebra C[V]x@G, for a finite subgroup
G of SL(V), has the property of being n-Calabi-Yau and Koszul. Moreover they show that,
for any derivation quotient algebra A satisfying these two properties, the complex ([2.2.2))
is a resolution of A. This applies in particular to C[V] * G, and also to Ilg since being
n-Calabi-Yau and Koszul is invariant under Morita equivalence. Hence we can conclude
by Theorem that Ils is n-bimodule Calabi-Yau of Gorenstein parameter 1.

The last assertion then follows directly from Theorem d

We end this section with the following remark (cf. [31l Example 6.11]).

Proposition 2.3.7. All (n — 1)-representation infinite algebras constructed as in Corol-
.-fa:r“y are (n — 1)-tame in the sense of Definition In particular, all hereditary

representation tame algebras are 1-tame.
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Proof. Recall that for such an (n — 1)-representation infinite algebra A, the higher prepro-
jective algebra I1,,(A) is Morita equivalent to C[V]*G for some finite subgroup G in SL(V').
By a theorem of Auslander (see for example [42] for a proof) we have an isomorphism of
C[V]%algebras C[V] * G = End¢pyje C[V], where C[V]¥ denotes the invariant subring. A
theorem of E. Noether [52] implies that C[V]¢ is a finitely generated C-algebra (and so it
is Noetherian) and C[V] is a finitely generated C[V]|“-module. Hence we have that also
C[V] * G is finitely generated over C[V]%, so A is (n — 1)-tame. The last assertion follows
from Theorem [2| of the Introduction, which says that all hereditary representation tame
algebras arise as in Corollary [2.3.6] O

2.3.3 Subgroups of GL(d,C) embedded in SL(d + 1,C)

We saw previously that we can obtain examples of (n — 1)-representation infinite algebras
from skew group algebras of finite subgroups of SL(n,C). If, instead, we start from a
subgroup of GL(n,C) not contained in SL(n,C), then we cannot apply Corollary [2.3.6
anymore. However, every subgroup of GL(n,C) can be regarded as a subgroup of SL(n +
1,C) by means of the natural embedding GL(n,C) < SL(n + 1,C) given by

X 0
X — ( 0 - )
det(X)

For a finite subgroup G of GL(V'), where V is a C-vector space of dimension n, we
denote by G’ its image under the above embedding, so that G’ is a subgroup of SL(W) for
a vector space W DO V of dimension n + 1. Let @ be the McKay quiver of G relative to
V' and w be the associated twisted superpotential: if (" denotes the McKay quiver of G
relative to W, then it is known (see for example [26]) that a superpotential w’ for [ can
be obtained from w by adding some arrows. More precisely we have the following.

Proposition 2.3.8. Fix a basis for the arrows of QQ which is invariant, up to multiplication
by a non-zero scalar, under the twist. Then @Q can be viewed as a subquiver of (), and the
latter can be obtained from the former by adding an arrow i — 7(i) for each verter i € Q.
Moreover, the support of the superpotential W' is obtained from the one of w by adding these
arrows. More precisely, we have that a path

T(in) = 8 = ... 2 iy
is in supp(w) if and only if the path

T(in) = i1 = ... = Iy = 7(in)

is in supp(w’), and all the paths in supp(w’), up to cyclic permutation, are obtained in this
way.
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2.4 Metacyclic groups

We now introduce a family of groups to which we will later apply the results of the previous
sections. All groups in this family will satisfy the following property.

Definition 2.4.1. A group G is metacyclic if it has a normal cyclic subgroup A such that
G/A is cyclic.

Some generalities about metacyclic groups can be found in [I5], §47]. In particular, it is
shown in loc. cit. that one can associate to a metacyclic group some integers which must
satisfy certain conditions. On the contrary, in the following we will start with integers
satisfying such conditions and associate to them a metacyclic group embedded in a general

linear group.

Definition 2.4.2. Let m,r, s,t be positive integers satisfying the following conditions:
(M1) (m,r) =1, where (m,r) indicates the greatest common divisor of m and r;

(M2) r®* =1 (mod m);

(M3) (r—1)t =0 (mod m).

Define G to be the finite subgroup of GL(s, C) generated by the following matrices:

0 0 - 0 &
&m 0 -+ 0 1 0 --- 0 0
0 &5 = 0 S
a=| . T . L | B=]ice o],
0 0 - e o e R
' 0 0 -+ 1 0

where g, is a fixed primitive m-th root of unity. We will refer to G as the metacyclic group
associated to m.r, s,t and we will denote by A the subgroup of G generated by a.

We now make some comments on the above definition. By [(MI)] we have that A is
cyclic of order m, and it is normal in G because, by [(M2)| 57 'a = a”. Condition
implies that 3° = o', hence it easy to see that G/A is a cyclic group of order s generated
by the class of 5. This shows that (G is metacyclic; in particular, the order of G is sm.

At a later stage we will need to consider additional conditions on the integers m,r, s, t,
in order to apply the results of the previous sections or to simplify some calculations. For
convenience we will list all of them now and refer to them in the following whenever they
will be needed:

(M4) s is a prime number;
(M5) r# 1 (mod m);

(M6) m = sn for an integer n;
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(M7) r — 1 = sb for an integer b.

Let us make a brief comment on these additional conditions. We will need becal_ise
it implies that GG/A has prime order, and so it is a simple group: this will simplify a lot the
description of the irreducibles representation of G, allowing us to use [I5, Corollary 47.14]
in the next subsection. Condition will be used from Section in particular it
implies that G is not abelian, thus ensuring that we are not in the case already studied
in [31]. Another consequence of is Proposition , thanks to which we will have
fewer cases to analyse in the study of the superpotential associated to G in Section
Conditions [(M6){ and |(M7)| will be introduced in Section in order to prove the existence
of gradings which satisfy the hypotheses of Corollary 2.3.6]

2.4.1 Irreducible representations

The representation theory of metacyclic groups is well known. Here we summarize, follow-
ing [I5], the description of their irreducible representations, in order to fix some notation
for the following sections.

Let G be the metacyclic group associated to integers m,r, s,t. From now on we will
suppose that G satisfies also condition Note that this implies that the quotient G/A
is simple, because it is cyclic of prime order.

Let Irr(A) = {S;}"," be a complete set of non-isomorphic irreducible representations
of A. Since A is abelian, the S;’s are all 1-dimensional: we put S; = Cv; and assume that
the action of A on §; is given by av; = sjn-t.r,;. We will often consider the indices ¢ as integers
modulo m and identify Irr(A) with Z/mZ via S; < i. Note in particular that this gives
S?‘. ® S j = S?‘.-i— g

Consider now the induced representations Indﬁ(S&-) =: T:. We choose as a basis of T;
the set {v;, Bv;, ..., 3% '}, so G acts on T; in the following way:

Ry ok
a(BFv;) = er, B v;, B =08 — 1

B(B*v;) = BEtlu;, k=0,...,5—2,
B(B7 ;) = Bv; = av; = el
Thus the matrices of @ and [ with respect to the action on T; are

0 0 -+ Q0 &%

€p O = 0 1 0 --- 0 0
0 E:‘:ﬂ, [] -
o ; ; B
0 0 Srm“_lf S e
' 0O 0 -~ 1 0

The following proposition tells us when the representation T; is irreducible.

Proposition 2.4.3 ([I5]). (a) T; is irreducible if and only if r*i # i (mod m) for all
k=1.....8s—1;
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(b) T; = T; if and only if there exist a k such that r*i = j.
Remark 2.4.4. Note that, since s is prime, we can replace the condition (a) above by:
(a’) T; is irreducible if and only if ri # i (mod m).

Suppose now that ri = ¢ (mod m), so that T; is not irreducible. The matrix

0 0 --- 0 &t
1 0 ws @ 0O
00 -~ 1 0

which represents the action of 3, has characteristic polynomial p(\) = (=1)*(\° — “”) and
so it is didgondlisa,b]c Its eigenvalues are {\;¢|¢ = 0,...,5 — 1}, where \;, := n;e! and

;= Em' is a fixed s-th root of fﬂ The elements

17
u" E /\*1’“?’“3' £ =0 uw@—1,
provide a basis of eigenvectors for 3. Indeed,

!3'09 Zl\q T B’LU )= Z/\q“hﬂh’l-’i + 6:’;1? = )\?PZ/\‘; Sheligfa g ALevi = Aig u' :

h=1 h=1
and
s—1 s—1 s—1
8 s—k—1_/mk. . y __ s—k—1_rki gk, _ s—k—1_1 gk (f')
ow; = AP a(BR) = ) A B =) A el By = el
k=0 k=0 k=0

where, in the second equality, we used the fact that 7% =i (mod m).
Hence the 1-dimensional subspace ’l'}(g) = (nge) is a subrepresentation of T;, and we

have a decomposition
s—1
. ()
ne @
=0

2.5 The skew group algebra of a metacyclic group

In this section, G will be the metacyclic group associated to some integers m,r,s,t sat-
isfying conditions |(M1)]... (M5)l Note that implies that G is not abelian: we are
assuming it because the case of skew group algebras of abelian groups has already been
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studied in [31]. Moreover, this assumption will simplify a lot some calculations at a later
stage (see Proposition [2.5.4).

The action of G/A on G by conjugation induces an automorphism ¢ of G given by
©(g) = 87 'gB. This in turn induces an action of G/A on Irr(A) given by (i) = ri. From
now on we will fix a set D of representatives in Z/mZ of this action and we will denote by
F the set of fixed points. Note that the orbits of the fixed points have cardinality 1, so we
have F C D regardless of what choice for D we made. By Proposition [2.4.3] we have the
following result.

Proposition 2.5.1. The set Irr(G) = {T; |i e D~ FYU{T\" ie F.0=0,...,s — 1} is
a complete set of nonisomorphic irreducible representations of G. Moreover we have that
dime T; = s and dimge Ti(()) =1,

Notation. For each i € Z/mZ we call i its representative in D, i.c., the only element of
the G /A-orbit of 7 which is contained in D (note that i = i if i € D). We fix an integer
ki € {0,...,s—1} such that i =1i. If i € D~ F it is clear, by Proposition a), that
we can choose k; in a unique way; otherwise, for a fixed point i € F, we set x; := 0.

Example 2.5.2. Let m =21, r =4, s = 3, t = 0, so the action of G/A on Z/217Z is given
by the multiplication by 4. A possible choice of representatives is

D ={0,4,7,8,9,12,13,14,17} C Z/21Z.

In this case we have, for example, 1 =4 =16 =4 and k1 = 2, k4 = 0, kK16 = 1. We will
analyse this example in detail in Example

Call V the s-dimensional natural representation of GG, which coincides with 77. We may
note that, by Remark [2.4.4] condition is equivalent to say that V is irreducible. It
is easy to see that, for all i, we have an isomorphism Resg(Ti) = i;h Sk, B0 = v
In the case where i is a fixed point, we have an isomorphism Rcsf(T_im) = 85 -u:gf) ;.
We will call again V' the restriction of V' to A, which clearly coincides with the natural
representation of A and is isomorphic to Ebe;fJ S,k

Our strategy for describing the skew group algebra of G will exploit the action of G'/A
on the McKay quiver of A. The structure of the latter, and also the relations which give an
isomorphism with the skew group algebra of A, are well known. The following description
is a particular case of [I1], Corollary 4.1].

Proposition 2.5.3 ([I1]). Let Q4 be the McKay quiver of A. Then the following holds.
e Q4 has vertices Z/mZ and an arrow xi: i — i —r* for each i € Z/mZ and k =

0,...,s—1 (sometimes, if this does not cause confusion, we will omit the superscript
and write xy in place of x}.).

o Let &, be the symmetric group on {0,...,s — 1}. For each permutation o € &, and
each vertexr i, define a path

i 7 ; 8—1 alk
P, 1= Boge=1) " Do)t T =28 — D L o7 (),
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Then the superpotential of Q4 is given by

Wy = Z Z(‘UUP;;

iE{QA)[) e ={GI
where (—1)7 is the sign of the permutation o.

In particular, the skew group algebra C[V] x A is isomorphic to the path algebra of Q4
modulo the relations

{ai™ el = 27" 2l i € Z/mZ, 0 < k,h < s — 1}

Proof. The proof is given in [I1], Corollary 4.1]. Here we only mention, since it will be
needed later, which basis of arrows we choose.
For each i € Z/mZ and k = 0,..., s — 1, we will take z} to be the morphism in

Hom4(S;, V®S;_,+) = Hom4 (S ®8;_pk, V®S;_,+) defined by vx @u;_pk — vk ®v;_pw. O

2.5.1 The vertices and arrows of ()¢

Now we will consider the McKay quiver of G, which we denote by Q¢. Proposition 2.5.]
gives us a description of its vertices: we will call ¢ the vertex corresponding to T; for
i € D~ F, and i the vertex corresponding to Tiw} forie F,{=0,...,s—1. By an
abuse of terminology, for i € F, we will call “fixed points” both the vertex i € (QQ4)o and
each of the vertices i) € (Qg)o, for £ =0,...,5— 1.

We will now describe the arrows of (). Recall that in order to do this we must choose
a basis of the vector space Homg(S,V @ T') for all S,T € Irr(G).

First note that for i, j € Z/mZ we have, by the isomorphisms discussed in

Homg(T}, V ® T;) = Homg(Ind5(S;), V ® T;) = Homu(S;, Res§(V ® T}))
=~ Homa(S;, V ® ResG(T;)) = Homa(S;, V ® (@i Srt;))-  (2.5.1)

By Proposition Hom (S, V & ( ;;L S,x;)) is generated by elements of the form ;L’;,
for some a,p € {0,...,s — 1} which satisfy r*j = i — r” (mod m). Now take such an
element ), € Homu4(S;,V® (@:;L Syx;)) and call T, , its image in Homg (73, V ®T;) u_‘nder
the inverses of the isomorphisms (2.5.1). Then, recalling that we identify 3%v; € Res§(7})
with vye; € @:;é S,x;, it is easy to see that this homomorphism is explicitly given by

i i
.’i‘.'-p?a i Tz — V @ ’I:,
v; — BPu ® B;.

Before going on we make the following observation.

Proposition 2.5.4. In the quivers Qg and QQa there are no arrows between two fired
points.
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Proof. Suppose that we have an arrow i) — j) in Q¢, where i, j € Fand 0 < £, < s—1.
Then the space Homg (T, V @Tj.(e )) & Homg (T, Ty4;) is different from zero. By |(M5)
V' is irreducible and thus so is V @ T j(“ =~ Ti4j. Hence, by Schur’s Lemma, we must

have Ti{ﬂ = T4, which is a contradiction because these representations have different
dimensions as vector spaces.

Now take two fixed points i, j € (Q4)o. The arrows i — j in Q4 are given by a basis of
Homa(S;, V ® S;) = Hom (S, @i_p Spry;), so if there exists such an arrow then we must
have i = r* + j (mod m) for some a. This implies that r* is a fixed point, because so is
1 — j. Hence we have r = 1, which is again a contradiction hy O

So for choosing a basis of the arrows we only have to consider the following three
possibilities.

(1) i,j € DNF. Then we choose {x} , |r*j = i—r” (mod m)} as a basis of Homg(T;, V®
T;). These elements form indeed a basis because they are the image under an iso-
morphism of a basis of Hom4(S;, V & ( ;:{l) Spxj))-

(2) te DNFandje F. Forany £ =0,...,s— 1, we call 7 ’TJ : T —% T © the projection
morphism and, given a,p which satisfy r*j =i — r? (mod m)_ we dofm{‘

I;(fz) = (idy @?T}_EH}) o j;';,a: T V& Tj(f)l

3 and so every choice of a satisfies
—r? (mod m)} to be our basis for

Note that, since j is a fixed point, ’r N
the condition above. We choose {.1‘?,0 ¥

Homg(7;,V & T;e}). This set is indeed a bd&lb, because it has cardinality at most 1

and Homg(7;,V ® T}-(E)) has dimension at most 1.

(3) ie Fand j€e DN F. Forany £ =0,...,5 — 1, we call .*..,EE}: Tf{g} — T; the inclusion
morphism and, given a, p which satisfy 7j = i — r? (mod m), we define
£)i i (). )
i,} =y, 08 Ly VT,

a+h

Note that, since i is a fixed point, we have that r**’j = i — P** for any b, so

we can assume that the exponent of r is zero in the condition above. We choose
{E(E)t | j =i—7rP (mod m)} to be our basis for Hom(;(ﬂm, V' ®Tj). This set is indeed
a basis, because it has cardinality at most 1 and HOIIl(;(T;(f), V © T}) has dimension
at most 1.

The following lemma consists in some calculations which will be used in the next sub-
sections.

Lemma 2.5.5. (a) We haue*rr ( i) = et we a-ﬂ,d{, ( (E}) =X IDX’ 1-kgk,

(b) 9 (v;) = =22, BP0, @ wlP).
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(c) ;zriff()f(wgg)) = X’ 1=k g4y, © Bhu;.
(d) If j is a fized point, the composition

Li(€) (.i‘[/ ®J( 3H]

sends v; to

" Z’\m By ® By ® By,

Proof. (a) The second claim is immediate from Lhe definition of w; ) For the first claim,

it is enough to show that v; = 1 P rs H;f‘/\t[m . Indeed, we have
s—1 -1 s—1 s—1
1§ L I
_Z h/\ﬁgu,(} o e “'\H"Z/\S 1— kﬁk{‘ ___Z mh Z/\
% =0 % =0 k=0 k=0 (=0

Recalling that X\;, = n;e%, where 17 = €% | we get

5—1 —1 7

: spi=set fk=0,
\s—k —k _U(s—k) _  s—k i m

DXt =i Z = z _{ a0 ifk#£0,

=0 s '

and the result follows.

(b), (¢), (d) follow immediately from (a). O

Remark 2.5.6. We may note that in the previous lemma we made an abuse of notation.
Indeed, the basis of 7} is made of the elements 3*v, for k € {0, sl 1}, so when we
write %v; for some k ¢ {0,...,s — 1} this should be intended as 3*v; (where k denotes
the smallest non-negative integer in the equivalence class of & modulo s) multiplied by a
constant, more precisely by a power of €. The exact value of this constant will not be
important for us in what follows, the only thing which should be pointed out is that it is
different from zero. So, keeping this in mind, we will tacitly carry on this abuse of notation
and continue to write #*v; even if k & {0,...,5s —1}.

Our next aim will be to describe the superpotential of (). Actually, this superpotential
will be twisted, where the twist is induced by the tensor product with the representation
dety . Hence we will start by describing explicitly this automorphism.

2.5.2 The twist in Q¢

Set ¢ = Zz;%} r* and note that it is a fixed point. We may observe that the elements a
and /3 act on dety respectively as the multiplication by ¢, and by (—1)*"'e! . Since t is a

fixed point, we have that r*t = ¢ (mod m) for all k. thus tc = ts (mod m). Hence, putting
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if 2 te )
d, = {i} li[1>— 5 > We get that Aeq, = eme® = et (—1)*! and so dety = TY%) 1t is

easily checked that the maps

T; ® dety — Ti4e

2.5.2
(e Y 'wgdSJ = Vite ( )
and, if 7 is a fixed point,
(0 ) +(f+ds)
T @dety = T, (2.5.3)
{f’} (a‘s) (f+ds) o
W™ =W, s

are isomorphisms (for the second map, note that A; pAca. = Aijersd,)-
From now on, we will need to make the following assumption.

Assumption 2.5.7. The set of representatives D is closed under the sum by ¢

Hence we have that the twist acts on vertices by 7(i) = i +cif ¢ € D~ F, and
T(i®) = i+ )b ifie F,0<f<s—1.
The following lemma can be easily proved using the isomorphisms ([2.5.2)) and ([2.5.3).

Lemma 2.5.8. The twist 7 sends each arrow in Qg to a non-zero scalar multiple of another
arrow. More precisely, we have:

(1) ifi,7 € DNGF, ThPﬂT( &) =24 f+c:
(2) ifi € DNJF and j € F, then 7(a )_ /\:di L(g”s)-’

(3) ifi € F and j € D\ F, then 7(x (F)e) Aila ;’g:{d")z.

In view of the above lemma, we have that 7 induces in a natural way an automorphism
7" of Q¢, as we observed in the discussion above Lemma

2.5.3 The superpotential of ()¢

Now we are ready to begin the study of the superpotential wg. Our aim will be to
prove Theorem , which says that every path in supp(wg) is induced from a path
in supp(wa) (we will make this statement more precise by introducing a new quiver Qg,
see Definition . We start by proving two lemmas which describe explicitly the map
T, — V® ® T; associated to a path of length u in Qg. This will be done only when
such a path satisfies some technical assumptions, since, as we will see in the proof of The-
orem the general case can be traced back to that of paths of this kind. Finally,
in Theorem we will see that a converse of Theorem holds for paths which

contain at most one fixed point.
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Lemma 2.5.9. For iy,ig,..., 041 € Z/mZ, let ay,...,ay,p1,-..,pu be integers which
satisfy r*ipq = i, — P (mod m) for each h =1,...,u. Then:

(1) the composition

T x;ll—ﬂ% VeTr, lv%g"a% sy 1®Ipu'u"f VeQT,,.,,
sends v;, to the element
I‘B;n v ® ﬁal-f—pg,ul ® ﬁa1+ag+p3vl ® - - dm—'_ +[L;;-1+}‘Ju.1, ® 'dm-f— -Hmth_lJ
(2) we have
_ra1+‘“+au,£u+] = f'l P _ Tm-i-p? _ . ra1+‘“+au—1+17u. (IIlOd T.Tc‘.). (254)

PT‘oof (1) We proceed by induction on u. The case u = 1 is clear by the definition of the
T, , 8. Now suppose u > 1. By the induction hypothesis we have

(]_.y,@,,__.] ®,I,’;:; uu)O--- ( ‘p1,a1 ('{?1) —_—

(11’8“ L ® JEZ‘L au)(-ﬁplvl ® ﬁalﬂrzvl R R 5a1+.,,+au—z+pu 1q; )dm-i— tay— 1UM)
= fPlyy @ BUtPy @ - - - @ BUTHEu-24Pu-1y, @ ga1ttau— 1~L';_§; aq,( Vi)

== !.3;01?_,1 ® 5ﬂ1+?2.vl R ® Jﬁ‘ﬁi+"'+ﬂ'-u.—2+]uu—l.v1 ® ﬁa;+--'+uu—1 (ﬁlu R lrau ¢+1)

— ,BPL’U] ® _5{”4—”21-‘1 ® IJ._f)zcu+a2+]li‘3,Ul ® - ® [ +-‘-+au.—1+Pu.U1 ® IBG'L-I-----FGHU?IH_Hl

(2) We proceed again by induction on u. The case u = 1 is clear since r™iy = i; — rP!.
Now suppose that @+ Fou-1g = j, —pPt —partP2 ... _parttau—2tpu—1 By adding on both

sides —p®1+Hau—14Pu we gee that is enough to prove that port-tou-1j — part-tou-1tpu
pertetaug o but this follows immediately from the fact that r®i,,., = 4, — rP«.

[l

Lemma 2.5.10. Let 4y,i2,...,7441 € D and let aq,...,ay,p1,...,p, be integers which
satisfy r%i; . = i; — r% (mod m) for each j = 1,...,u. Suppose that the only fized
points among the i;’s are iy, ..., i, for some integers fi,...,fn € {2,...,u}, and that
ap,—1 = ay, =0 for any j. We also assume that fj+1 — f; > 2 for each j =2,...,h — 1.
Fiz integers by, ...,6, € {0,...,s —1}. We introduce the following simplified notation:
for each j =1,...,u, we set zj = i:fj_l p? = pfi—1, 1; =iy, and pJ = Py,
Consider the following path of length u:

;’(f ) (; );”
T 510 H{f’ ) ” . Tyau,
B ———F e 1 — —> Ef g T b T St (2.5.5)

Then the corresponding composition T;, — ... = VO @ T;

LITES§

sends vy, to

-1 h

5
—tifs sk
J 241 , Lf FTIPA Ju41
E ” sfjffj- Bl ® - Q B v @ BT+,

k1 kn=0 \j=1

(2.5.6)

Ty411
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where fo:=0 and

q1 ‘= D1,

qf -1 =1 + -4 af o +Pf1_1,
df = kl +a;+ -+ A —1 + Pris

Q-1 :=k1+ay+-+ap_o+pp-1,
Gy, +— kl —i—kg"—ﬂ»] S AL +af2—1 +pfga

gp-1:=ki+---+hkp1ta+---+ap_2+pp-1,
gs, =ki+ otk taiF-oFap-i+ Dy,

qfu ::k1+"'+k}1+ﬂ,1+"'+flu_1+p“
Quir = ky ool b+ ta

Remark 2.5.11. Note that the assertion of the lemma makes sense also for i = 0. In this
case the element (2.5.6)) is equal to

Iﬁmful ® },5’31"‘]9‘2(“1 Q- ® ﬁﬁl|+---+au—1.+pu.”1 ® ;_f.‘gflj.+'--+uu,|./,i"+l:

and so the result follows from Lemma 2.5.91

Proof of Lemma[2.5.10, We proceed by induction on the number i of fixed points. The
case h = 0 is clear by the previous remark.

Now fix an h > 1 and suppose that the statement is valid for every path of any length
which contains strictly less than h fixed points. So let p be the path ) and consider
the subpath

p’: = ... — ?:fh_l'

Clearly p’ contains h — 1 fixed points, and neither its starting nor its ending points are
among them. So p’ satisfies the induction hypothesis and we have that the composition
T, = ...2> VB2 T, ; sends v;, to

1 s—1 h—1 "
—.‘Ef. S—k' > !
. q Qfy —24, A%, 1,
_Sh_l E ]:[Cs J)\’i“-fj-.gj 48 1“1@""@ -6 Ih zbl®f3fh IUi_,rh_l:'
kiyeskp—1=0 \j=1

where q}h_l =ki+ -+ kpy +ay+---+ayp 2. If we apply to this element the map

. (e )iy
(’d y®fp—1) )&rp;’ 0
L]

iy, (¢h)
i 5 ot R
(ldv@'(fh_m )®ip;1,[!

V®Un-2) ® Tfh—l s VO ® Tf;,_—i—l

N @(fl_]-) (’ﬁh)
y VO @ T
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we get
1 s—1 h—1 i
=) (Hes A)*®®9®f9(> (25.)
' kioekip—1=0 1=1

where 6 := (1dn,, ®:s{ ;f‘():”) g" (m . By Lemma [2.5.5 we have that

mfh s—1
= s—kp ap +p
9(”%_1 = E ,\zf " Bty ® B tPimy, @ ¥ h?}?f s
E4=D

so the (2.5.7)) becomes

1 s—1 h—1 g

ty k £ k
o E: H JX’ By @ - ® Bty @ By @ BIn—1T "Vigy 11
S 3

Et e k=0 \j=1

since g5, 1 =k +---+hkp 1t +---t+ap 2+pra = fi‘},,_1 + P vy G = K 2 F
kn+ai+---+asp_1+Dp5, = q};,_—l +as 1+ Ekntpy, = ‘?},,—1 + kp + py,. Hence, if we go
on calculating the exponents in the same way as in Lemma [2.5.9, we obtain the result we
wanted to prove. O

Let us illustrate in an example how one can compute the element ([2.5.6|) of Lemma|2.5.10}

Example 2.5.12. Let G be the metacyclic group associated to m = 21, r = 4, s = 3,
t =0 (see Example for further details about this example). Choose

D ={0,4,7,8,9,12,13,14,17} C Z/21Z

as a set of representatives for the GG/A-action. For an ¢ € {0, 1,2}, consider the path

12 8(£) 27

p: 12 24 g 100, 700 720, 49

in g, so, according to the notation of Lemma [2.5.10, we have ¢; = 12, iy = 8, i3 = 7,
w=12,a1=l,as=a3=0,pi=pa=0,p3=2,h=1, fi=3, i = 6%“ In this case
the element ([2.5.6) becomes

2
E Xigt BP0 ® BUtP2y, & I{3k+al+u2+1’3,t__,1 ® I5k+tt|+ﬁz+as.v1
k=

——( E_H)U QP @ v ® Pur + €5

1
3

._.

e )01 ® Bvr @ By @ BPuy + Egﬂvl ® By @ B ® '01) ;

Note that if we apply the antisymmetrizer to it we get

353 f“'vl A Buy A B2 ® vy.

This implies that the coefficient ¢, of p in w¢ is equal to
that p € supp(we).

BH , and in particular we have
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The following proposition, which will be used in the proof of Theorem gives a
necessary and sufficient condition for a path without fixed points to lie in supp(wg).

Proposition 2.5.13. Let

i1 o
Lo “C'T’I-“l\ -rpi,as )
P ; 7 leit1

be a path in Qg which contains no fived points. Then p lies in the support of we if and only
if {pr,a1 +po,...,a1 + -+ as_1 + ps} is a complete set of representatives of the integers
modulo s.

Proof. The path p can be identified with the composition

Ty = ... 2 V®QT,;

s+1"
Composing this map with the antisymmetrizer we obtain a morphism

T;, — dety ®T;

s+1?

which, by Lemma [2.5.9] sends v;, to P1oq ABU P2y A« A GO HEe—1HPeg), @ Gt taay,

a1t
Then it is clear that this element is different from zero if and only if the integers py,a; +

P2y... 1+ -+ as_1 + ps are pairwise different modulo s. ]

Example 2.5.14. Let us consider again the case where m =21, r =4, s =3, t =0. The
path

12

4
T3

b}

L'f . :
19 20, ey Tty g 0y gy

is in supp(wg) because {p1, a; + pa2, a1 + as + ps} = {2,0,1}.
On the other end, we have that

is not in supp(wg), since {p1,a; + p2, a1 + a2 + p3} = {2, 2, 2}.

Proposition tells us exactly when a path containing no fixed points is in the
support of wg. However, in view of Lemma [2.5.10] obtaining a similar statement for
paths containing fixed points seems more difficult and we will not prove such a result.
Nevertheless, we will be able to show that every path in the support of wg comes, in a
certain sense, from a path in the support of w4, and this will be sufficient for our purposes.
In order to make this more precise, we give the following definition.

Definition 2.5.15. Let Q¢ be the quiver defined in the following way. Its set of vertices
is D, while for the arrows ¢ — j we have the following three possibilities:

(1) i, € D~ F: in this case the arrows between ¢ and j in Qg are the same as in Qg;

(2) i€ DN F and j € F: we put an arrow :I:Ln in Q¢ whenever j =i — r? for some p;
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;,'(0}
20 > 200
y i &.
. / \x 1\l . T o 5 x;.o
i ~ : - k —_ i > ] > k
7(3 1) J{b'—lj x(s 1)
o0

Figure 2.1. The local behaviour of ¥ at fixed points.

(3) i € F and j € D~ F: we put an arrow .}";0 in @G whenever j = i — rP for some p.

We will see later that Q¢ can be seen as the quotient of Q4 by an action of G/A.
We now define two morphisms of quivers

®: Qi = Qc, U: Qo — Qq-

For i € (Q4)o we put ®(i) = i. Given an arrow L t —i—r%in Qa, we set O(z ) =
Ts 00—+ i—r1, where
(@ — Kiy Ki—ra — Kj) ifi,i—r?e DN F;
(p,a) = (g — ki, 0) ifeeDNF,i—rieF;
(@ — Ki—re,0) ifee F,i—r1e D~ F.

We define V(i) =i if i € D F and 'l!(-i(f)) =¢ifie F,0<{<s5—1. Moreover we
put U(zf ) =, @(x;)Ef,)) = o, V(2 if(j{) = !, whenever the notation makes sense. So
basically we can consider W simply as the map which “forgets” about the splitting of fixed

points (see Figure .

Consider the subquivers Qg ~ F and Qg ~ F of, respectively, Q¢ and Qg. which are
obtained by removing the fixed points and the arrows adjacent to them. Then it is clear
that ¥ |g,.r: Qa N F — Q¢ ~ F is an isomorphism. So the fact that we used the same
names to indicate vertices and arrows in these subquivers will cause no confusion: actually,
we will often treat them as if they were the same quiver.

Recall that G/A acts on the vertices of Q4 via the automorphism ¢ given by the
multiplication by r. We can extend this to an automorphism of () 4 by setting Vp(x;) = Zyly.

Consider now the orbit quiver Q4/(G/A). We will denote by [i] the orbit of i € (Qa)o
and by [z}] the orbit of z} € (Qa)1.

Proposition 2.5.16. The morphism © induces an isomorphism of quivers

®: Q4/(G/A) = Qg



29

Proof. For each i € (Q4)o we have ®(p(i)) = @(ri) = ri = i, so ®, as a map between

vertices, factors through the action of G/A. Hence we get a map (Qa/(G/A))o — (Qc)o

[i] = ®(i) = i, which is obviously a bijection because (Q¢)o = D is a set of representatives
of the GG/ A-orbits.

Now we consider the arrows. For each } € (Qa)1 we have ®(p(z})) = ®(x},) =
aft =2t . where

(g + 1 — Kty Bor(i=ra) — Kri) if ré,r(i —r?) € D\ F;
(p,a) = (g+ 1 — K4, 0) ifrie DNF, r(i—r?) € F;
(g +1— Kpgi—pa), 0) ifrie F, r(i—1?) € D\ F.

It is easy to check that ri =4, r(i —r9) = i — 1%, Ky = Ki + 1, Kp(i—pa) = Ki—pa + 1, 50 it
becomes clear from the definition of ® that ®(p(z})) = ®(z}). Hence ® factors through
the action of G/A and we get a map ®: (Q4/(G/A))1 — (Qg)1, [z}] — ®(z)

To show that this map is surjective, take an arrow pii—jin (Qg)1, so rbj = i—r1
holds. Note that x; = 0 and &;_,.« = b. By definition, <I>( ) = ¥, ,, where

(@ — Ki, Ki—ra — ki) = (g, b) ifi,j € DN F;
(p,a) = (g — ki, 0) = (¢, b) ifie DNF, jeF;
(q — Ki—ra,0) = (q,b) deeF, €D & F.

This means that @(J:;,) = ;Irf;,_b, so we showed that ® (and consequently <f>) is surjective on
AITOWS.

Now we prove that @ is injective. Lejr, :r;,, :}:f_;,lbe two arrows in (4 and suppose that
(z;,) = ®(27): we want to show that z;, and z} lie in the same G/A-orbit. Clearly we
have that i = j and i —r” = j — 9, so there exist a,b € {0,...,s — 1} such that j = r%
(mod m) and j — 77 = r?(i — r?) (mod m) (we take a = 0 and b = 0 respectively when i
and 7 — r? are fixed points). Note that r*j = r®ij =i = r7%, so kj = Ki — a. Similarly

we have k;_,« = Ki_» —b. By definition of ®, we write ®(z ) = r. ) o and (I)(:I:g) = iEJE'.b'v
where
(p — Kiy Ki—pr — Ki) ifi,i —r?P € D F;
(p',ad) = (p — ki, 0) ifite DNF,1—rP e F;
(p — Ki—yp,0) ificF, i—rPeDNF
and
(g — Kj, Kj—ra — K;) if J,d—1% € D~F;
(¢, b)) = (¢ — k;,0) ifjeDNF; f—-EF;
(g — Kj—re,0) it jeF, j—rreP\F.

By hypothesis (p',a’) = (¢/,¥'). Hence, in the first two cases we have p — k; = ¢ — k; =
q—ki+a, 50 ¢ = p+a. This means that ) = 277, = ¢*(z}) and so [z]] = [¢7]. In the last
case we have p—K;_p = ¢ — Kj_e = ¢ — Kj_pp+b,50 ¢ =p+0b. ] \10190\’61 both i and j are
fixed points, so we can write j = r% (mod m). Hence we have that T = 'rp+b = @"(#)
and so [z!] = [z]]. 0
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Example 2.5.17. We shall illustrate the behaviour of @ in the case of Example
The quivers @4, Q¢ and Q¢ are depicted, respectively, in Figures and Recall
that their set of vertices are

(Qa)o=1Z/21Z, (Qa)o= (Qc)o={0,4,7,8,9,12,13,14,17}.
The map P is given on vertices by:

(0) =0, &(1)=>4)=>o(16)=4, (2)=o(8) =d(11) =8,
®(7) =7, ®(9)=(15)=d(18) =9, B(3)=P(6) = B(12) = 12,
®(14) = 14, 9(10) = ®(13) = ®(19) = 13, ®(5) = ®(17) = (20) = 17.

We now describe how ® behaves only on some of the arrows of Qg:

®(zy": 17T — 16) = 5—1)=0(x3°: 20 5 4) = a7 : 17 — 4,
Olxd: 5 —4) = @(rf“ 2(]—)16) Oz : 17 = 1) = 235 17 — 4,
®(zg: 0 —20) = (2]: 0= 17) = ®(23: 0 = 5) = 27 0 — 17.

There is a natural way to define an automorphism of QG which is compatible with both
the twists of Q4 and ()¢ via the morphisms ® and ¥. More precisely, we have the following
proposition/definition.

Proposition 2.5.18. For cachi € (Q4)o and each zi € (Qa)1, set 7([i]) := [7(i)] = [i + ]
and 7([z}]) == [r(2})] = [x7¢]. Then this assignments induce a well defined automorphism
of Qa/(G/A), which in turn induces an automorphism of Qg under the isomorphism of
Proposition |2.5.16: by an abuse of notation, we will again denote both these maps by

Moreover these maps are compatible with the other twists, in the sense that the following
diagram commutes:

G — DallGA) —29 Os 2~ 0

AR

Qa — Q4/(G/A) —2= Q¢ +— Q¢

Proof. For each i € (Qa)o and each z} € (Qa)1, we have 7([ri]) = [ri +¢] = [ri 4 rc] =
[i+¢] = 7([i]) and similarly 7([z,]) = [r:,ff"c] = 7([x}]), so 7 is well defined on Q4 /(G /A).

For the commutativity of the diagram, note that the two squares on the left commute
by definition, so we only have to deal with the square on the right. For i € D~ F we have
7(U(i)) = 7(i) = i + ¢ = V(i + ¢) = U(7(i)), while for i € F we have 7(¥(i¥))) = 7(i) =
i+ c=W((i+c)*%)) = W(7/(i¥))). Hence the result follows. O

Theorem 2.5.19. Let p be a path in Qg which lies in supp(wg). Then there evists a path
p € supp(wa) such that ¥(p) = ®(p).

Proof. We will first consider a particular case and then the general one.
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Case 1. Suppose that p is in the form described in Lemma [2.5.10] so we retain all the
notation from there. The fact that p is in supp(wg) implies that there exist ki, ...,k such
that the integers ¢, . .., g, are pairwise different modulo s. Otherwise, there would be two
linearly dependent tensor factors for each element of the sum , so we would get zero
after applying the antisymmetrizer. To simplify the notation, for the rest of the proof we
will set Np :=r® + ... 4+ r% for each k = 1,....,s and Ny := 0. We also set fy := 0 and
frne1 = s+ 1. Note that what follows will make sense also for h = 0.
Define p to be the path

f):i-‘:l—>?‘.1—f\"'1—>...—>?:1—Ng

in 4. Since we assumed the g;’s to be pairwise different, by Proposition we deduce
that p € supp(wy). So it remains to show that U(p) = ®(p).
Firstly, we claim that

?:1 == i\r_g. = 'qu+]_pk+'2‘;‘-+1 (258)
for all £ = 0,...,s. We will prove this by induction on k, the case £k = 0 being clear.
Suppose that k& > 1, then there exists a j € {1,...,h + 1} such that f;_ <k < f; — L.
If £ # f; — 1, we have that gx+1 — prr1 = k1 + -+ + kj_1 +a; + - - - + a, so by induction
hypothesis we obtain

s L P ?,k1+--‘+kj—1+a1+-“+ak—1(,r-ﬂk?jk+1) = PO Pk (f, — pPk)
= ?l = JJ\'Tk_l — 7l = ’r':l — i?\'rk.
If k = f; — 1, using the fact that 4., is a fixed point, we have
?—-Qk+l_pk+l ?:k—l—l = T.QL-—Pkik+1 = .-_,-.Qx-—ii'k(?:k _ .-_,.Pa—)
= ?:1 == I‘\rk_]_ e 1':1 = i'\'rk.

Hence the claim follows.

Now if we apply ® to p we obtain the path ®(p): i; — ... — i1, because i; — N =
i1 by the equation ) By definition of ®, the arrows in this path are given by
.-rri‘;;c‘a,k: 11 — Nj_1 — i1 — Nj, where

(Qk - H"il—JV;‘-_[a 'k‘:'ﬂ—f\";u - H-.il_j\.fk_]) if 2"]. - ‘?\'rk—l'.‘ 'i’l _ *I\rk E D ~ ‘}:-;
(p;c*a;c) — (Qk — H‘il—Nk—ll[]) if i, — Ny € D~ ..7'_ i1 — N, € F,
(qic_ﬁ'il—!\&-_:o) ifiy —Ny_1€F, i1 — Ny €D~ F.

We may observe that in all cases we have (p},a)) = (pr,ax), because the (2.5.8) implies
that, for all k,

. ) @ey1 — prsr i 4 — N is not a fixed point,
u=Ne = 0 otherwise.

Hence ¥(p) = ©(p).
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Case 2. We now consider the general case. Let p € supp(wg) and write p = py -« pPs.
By Proposition [2.5.4] we can assume that no arrow p; both starts and ends with a fixed
point. Note that s(p) = 7(¢(p)), so s(p) is a fixed point if and only if ¢(p) is. If s(p) is not a
fixed point, then p is in the form discussed in Case 1. Otherwise, suppose that s(p) = s(ps)
is a fixed point and consider the path q := 7/(ps)p1 - Ps—1- By Lemma we have
that q lies in supp(wg); moreover neither s(q) = s(ps—1) = t(ps) nor t(q) = t(7'(ps)) =
7(t(ps)) are fixed points, because otherwise p, would connect two fixed points. So q is
as in case 1, and we can write ¥(q) = ®(q) for some path q = q;---qs € supp(wa).
Now note that, by Proposition 2.5.18 we have ¥(q) = U(7(p,))¥(p1) - ¥(ps1) =
T(¥(Ps))¥(P1) * - - ¥(Ps—1), s0 T(¥(Ps)) = (1), ¥(Pi) = V(Qis1) foralli=1,...,s—1
and in particular ¥(ps) = 7 (®(q,)) = (7 (q1)). Now set p := Q2---qs7 (qu): then
U(p) = ®(p) and, by Lemma [2.3.5] p € supp(w,), hence the result follows. O

The previous theorem tells us that W(supp(weg)) € @(supp(wa)), but we do not know
if the equality holds. The following proposition shows that this happens at least when we
restrict the support to paths containing at most one fixed point.

Theorem 2.5.20. Let

p:i—i—-r*—=.. .. 2i—r?—.. >

be a path in Q4 which passes through at most one fized point and suppose that p €
supp(wa). Then there exists a path p in Qg such that p € supp(wg) and ®(p) = ¥(p).

Proof. We consider separately the cases where p contains zero or one fixed point.

Case 1. Suppose that p has no fixed points and consider the path ®(p) in Q(;. It is
clear that we can lift it to a path

pii—=i—r"—.. .- —...—y®

in Q¢, since ¥ acts as the identity outside the fixed points. Thus ®(p) = ¥(p).

We are left to show that p € supp(wg). In the following we will use the notation
ip i =1—1r" —---—ri-1 By definition of ®, the arrows of p are given by a:?f—;;__.ah T T
for each h = 1,..., s, where p, := q, — K;, and a, := K;,,, — K;,. Hence we have that

{pr,a1+pa,... ;a0 + - as—1 s} ={ — Kin @2 — Kiy oo Qs — Ki}
Note that p € supp(wa) implies that ¢y, ..., g5 are pairwise different modulo s, so the same

is true for py,a; +ps.....a1+- - +as_1 +ps. Hence it follows from Proposition [2.5.13 that
the path p lies in the support of wq.
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Case 2. Now we consider the case where p has exactly one fixed point. We keep the
notation ¢, ;=i — r? — ... — r%-1 ag in the previous case.

By an argument similar to the one in Case 2 of the proof of Theorem [2.5.19] we can
assume that the only fixed point in p is is. It is clear that ®(p) can be lifted to a path

Prip—ig— ... =i =i =i

in Qg, for an integer 0 < ¢ < s — 1. Thus ®(p) = ¥(p) and the arrows in p are given by
is—1(€) (£)is

rpj ajt b = Lt for j=1,::.,8—2; Tpom 001t i1 = Em Cpui. : i_s(g) — 511, Where
(@5 — Bigy Riyyy — By} H 159 S8—2,
(pj,a;) = (q; — Ki;,0) ifj=s—1,
(95— ki 0) if j= 3.

The path p induces a morphism 73, — N’V ®T,,,, which, by Lemma [2.5.10 sends v;, to

_Z _“8)\ 31311, 63)1—1—&2,{}1/\'”/\Ba-1+---+as—2+ps—1i, 6k+a1+ Has—1+ps,, 8k+a1+ -I—aqLl
{ / Lo

Forall j =0,...,5—2 wehave a;+- - -4+a;4+pj+1 = gj+1—Ki,, While k+a+- - -+a,_1+ps =
k— Ky, +Ki_, +q — Ki,,, and k+ay +---+a; = k — K + K;,_,. So the previous sum
becomes

s—1
L X —tie \ st mon s o e VE— _— S
= E :53 _iAf ;{cﬁql Kig '3-’1/\18@ Kiq VA - ,Aﬁqs—l Kij 'Ul/\ﬁh Fig+Ri, Fs—Ri ?;‘1@'{51‘ T L Vi, -
5 =

k=0

Note that since p € supp(w,4) we must have i,1 = iy + ¢ (mod m), and moreover i, =
i1+c because D is closed under the twist, by Assumption[2.5.7 this implies that #;_,, = ;.
Hence in the above sum all terms are zero except the one where k = k;, — x;__,, and thus
we obtain

| . i THi : : :

Zep e )\f : 1M1 QU =Ry gy A BBy A - A BRI A BB TRy, ® Vi, -
‘5 91 f | .
This is clearly a non-zero element, because ¢, ..., g, are pairwise different modulo s, and so
the coefficient in wg corresponding to the path p is non-zero. Hence the result follows. [

Corollary 2.5.21. For s = 2,3 we have V(supp(wg)) = ®(supp(wa)).

Proof. Clearly in these cases every path of length s can contain at most one fixed point,
hence the result follows immediately from Theorem [2.5.20 O

Example 2.5.22. Let us retain the case of Example [2 By Corollary 2.5.21] we can
describe explicitly the paths in bllpp(wg) We know Lhat supp(um) consists in all the cyclic

i—1 _.r.—5 'x—l 7 17

permutations of paths of type 1 —> i-125i-5 2% iandi i ' e E 17 22— 4.
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Hence supp(we) is made of the paths which are induced by these ones via the procedure
described in the proof of Theorem [2.5.2

12 pll .L’T
For example, given an ¢ € {0, 1,2}, the path 12 S 1 My 7 5 19 in supp(wa)
induces a path
12 B(£ LLE)T

T T ) n Tap
p: 12 258 2%, 70 2%, 19
in supp(wg) (note that this was already shown by a direct computation in Example[2.5.12]).

12
The reader should be careful that this is not the same path which is induced by 12 Fy

.L'S .'r? .
8 —% 7 =2 12, since the arrows z3%: 12 — 11 and z{?: 12 — 8 in Q4 yield two different
arrows from 12 to 8 in Q.

2.5.4 Gradings of Q¢
We will now illustrate a way to obtain gradings on Q¢ which make wg homogeneous.

Proposition 2.5.23. Let dy be a grading on Q4 such that w4 is homogeneous of degree a
and the morphism of quivers ® us da-gradable. Then there exists a grading dg on Qg such
that we is homogeneous of degree a with respect to it.

Proof. By Proposition we have that @ is surjective on arrows: this, together with
the fact that ® is ds-gradable, implies that we can define the grading ®.d4 on QG (see
Definition . We now define a grading on Qg by dg := U*®.d 4. Note that with these
definitions both ® and ¥ become morphisms of graded quivers.

Now we must show that wg is homogeneous of degree a with respect to dg. Let
p € supp(wg), then it is enough to prove that dg(p) = a. By Theorem there exists
p € supp(wa) such that ®(p) = ¥(p), hence, since d4(wa) = a, we must have that

da(p) = (U*®,d)(p) = (B.d4)(¥(p)) = (P.d4)(D(P)) = da(p) = a.
O

We will see in Section how one can find in practice gradings which fit the setting of

Proposition [2.5.23]

2.5.5 Metacyclic groups embedded in SL(s+ 1,C)

Our final aim will be to obtain (s — 1)-representation infinite algebras from the McKay
quiver (Qg: however, by Corollary m this can be done when G is contained in SL(s, C).
Nevertheless, if this condition is not satisfied, we can still use the results in and get
examples of s-representation infinite algebras by embedding G in SL(s + 1,C).

Denote by G" and A’ the images in SL(s+1, C) of, respectively, G and A under this em-
bedding, and call Q¢ Q ar, wer, war the corresponding McKay quivers and superpotentials.
We now want to show that an analogue of Proposition holds in this setting.
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Recall that by Proposition Q¢ (resp. Q4) is a subquiver of Q¢ (resp. @), and
the latter is obtained from the former by adding all the arrows i — 7(i). Now consider the
automorphism 7 of Qg defined in Proposition We define Q¢ as the quiver obtained
from (?(_; by adding an arrow i — 7(i) for each vertex i € (@(;)0.

Since the morphisms ¢ and ¥ are compatible with 7, we can naturally extend them to
morphisms ®" and V', so that the following diagram commutes:

(D’ oy ‘l'? =
Qu — Qg —— Qo

;o]

Qs —2> Q¢ +2— Qq

) Note also that the G/A-action on Q4 can be extended to a GG/A-action on Qa/, and
Q¢ can be thought as the quotient of @ 4+ by this action.

Proposition 2.5.24. Let dy be a grading on Qa such that w4 is homogeneous of degree
a and the morphism ® is da-gradable. Then there exists a grading dg on Qg such that
wa 18 homogeneous of degree a.

Proof. Note that W' (supp(wer)) € ®'(supp(war)): indeed, every path in the support of wer
is, up to cyclic permutation, in the form ap - p for a path p € supp(we), where ap is the
arrow t(p) — 7(¢(p)). Hence it is enough to show that ap, is in the image of @', but this
is true because both ® and ¥ are compatible with the twists.

Now it is easy to check that the same proof of Proposition carries over if we just
replace Q4, Qg, wa, wg, Y, ¥ respectively by Qar, Q¢r, war, wgr, ¢, V. O

2.6 Cuts

In this section we will illustrate a method to define explicitly some gradings on the McKay
quivers we studied so far. For this purpose, we will first describe @4 and Q4 using a
construction of [3I]. In order to encompass both the cases of A and A’, we will first do
this in a more general setting.

Fix an integer N > 2. Let {eq,...,ey_1} be the canonical basis of R" and let

N-1

FE = {(IL’{J, e }:I"N—l) c R,NI Z T = 0}
=0

The set {e; —e; € F|0 < i # j < N — 1} is a root system of type Ay_; (see for
example [33]). We take as simple roots o; := ¢; — ¢;_ for i = 1,..., N — 1, and we set
Qp = QN =€) —EN_] = — Zf\; _l] «;. Define the root lattice L as the lattice in F generated
by the simple roots.

We define a quiver Q = QYY) as follows. Its vertices are Qy := L; for each vertex v € Q
and each k =0,..., N — 1, we have an arrow a}: v — v + a;. Sometimes, when this does
not cause any confusion, we will drop the superscript and write a; in place of aj.
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Let m,ry,...,rnx be positive integers such that (r;,m) = 1 for all i. Let H be the
subgroup of SL(N,C) generated by the matrix

.

er 0 - 0
&

o &2 - 0

0 0 -+« g

It is easy to see that H is cyclic of order m. Let n: L — Z/mZ be the homomorphism of
abelian groups defined by n(a;) = —r; for all j =1,..., N. It is clearly surjective because
each r; is invertible modulo m: hence it induces an isomorphism (which we call again 7)

n: L/B = Z/mZ,

where B := ker(n).

The subgroup B < L acts on L by translations and this extends naturally to an action
on the quiver @, so we can form the orbit quiver Q/B. We will denote by @}: 7 — ¥ + @
the arrow in @)/ B corresponding to the orbit of aj.

Now consider the McKay quiver Qy. It has vertices (Qpy)o := Z/mZ and an arrow
xt:i — i—ry for all i € (Qy)o, k = 1,...,N. This follows from [I1, Corollary 4.1];
alternatively, it can be proved in the same way of Proposition [2.5.3

Proposition 2.6.1. The map n extends to an isomorphism of quivers n: Q/B — Qp.

which is given on arrows by n(ay) = a:z(v). Moreover the McKay relations i Qg described

in Proposition [2.5.9 correspond to the relations
{a,™a; =a; *a, |ve L/B, 0K k;h < N -1}
in Q/B.

Proof. This follows immediately from Proposition [2.5.3 O

Definition 2.6.2. A subset C of the arrows of () is called a cut if every path of the form
Ag(0) * ** Og(N—1): U —> U,

for a permutation o € Sy, contains exactly one arrow of C.
Given a cut C, we define a grading de on @ by setting

dg(a)z{ 1 ifaeC,

0  otherwise.
We have the following result (cf. [31, Theorem 5.6]).

Proposition 2.6.3. Let C be a cut on ) which is invariant under the action of B. Then
de induces a grading on Qg such that the skew group algebra of H becomes N -bimodule
Calabi-Yau of Gorenstein parameter 1.
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16— 15— 14 > 13 > 12 > 11

/\/\/\/\/\/\/\/\/

g——> 18— 17— 16— 15

/\/\/\/\/\/\/\/\/

4—s 3—> 32— ] —— () —— 2

/\/\/\/\/\/\/\/\/
VAVAVAYAYAYAVAVAYA
/\/\/\/\/\/\/\/\/

§—— 17— 16— 16— 1

/\/\/\/\/\/\/\/\/

> 20)

VAVAYAYAYAYAYAYAYA

Figure 2.2. A part of the infinite quiver Q. Each vertex is labelled with
its image under 7, where we set m = 21, ry = 1, ro = 4, r3 = 16. The
McKay quiver Qg is obtained by taking the vertices in the shadowed
parallelogram and identifying the upper side with the lower one and the
left side with the right one (note that in this way @y can be naturally
embedded in a real 2-dimensional torus).

Proof. The projection morphism @ — @/B is clearly surjective on arrows, and it is dc-
gradable because C' is B-invariant. Hence it induces a grading on @)/ B, and in turn one on
Qp via 1: we denote the latter by dZ. It is clear, by Propositions [2.5.3[ and [2.6.1], that the
fact that C' is a cut implies that the superpotential wy of Qg is homogeneous of degree 1.
Hence the statement follows by Corollary [2.3.6] O

We will now apply this construction to the setting of Section in order to get an
analogue of Proposition [2.6.3] for metacyclic groups.

Let G be the metacyclic group associated to some integers m, 7, s,t. From now on we
will assume that all the conditions |(M1)}. .. J(M7)| hold.

In the following we will treat separately the cases where G C SL(s, C) and G € SL(s, C),
and we will refer to them respectively as (SL) and (GL). Depending on the case, the objects
we introduced at the beginning of this section will assume the following values:

(SL) H=A,N=s,r;=r"1foralli=1,...,s;

(GL) H = A’ (according to the notation of Section ;, N =s+1,r;,=7r"1 for all
=108 a1 =—0C

Before going on we first give an example of a cut in () which will be important in the
following in both the above cases.
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2.6.1 An example of cut

We keep the notation introduced previously, but from now on we will consider it only in
the cases (SL) and (GL).

Let [ be a positive integer. For k € {1,...,1}, define v = v,: L — Z/slZ as the group
homomorphism given by 7(a;) = k for all i = 1,..., N — 1. Note that in this way we have
(o) = —(N — 1)k.

If © € Z/slZ, we denote by T the unique representative of x in {0,...,sl — 1}.

Definition 2.6.4. Given k € {1,...,l}, we define the following subset of Q:

C’A{__” == (5 e {a.,;: v=av+o|yw) 2yv+ae), 0 <i<N— 1} .
Proposition 2.6.5. Letl > 1,1 <k <.
(a) In case (SL), Cy is a cut in Q for all k. In case (GL), Cy is a cut in Q for all k <.

(b) Every path in Q of length greater or equal than sl contains at least an arrow of Cy.

(c) Suppose that | divides both the integers n and b defined in conditions[(M6) and [[M7)

Then, for all k =1,...,1, Cy is invariant under the action of B.

Proof. (a) Suppose we have a path a;, ---a;,_,: v — v in Q with {ip,...,ixn_1} ={0,...,
N —1}: we have to show that there exist exactly one j such that a;, € Cr. Up to a cyclic
permutation, we can assume that ip = 0. If N = s, we have (N —'l)k =¥ T,
N = s+1 then by hypothesis k& < [, and so (N—1)k = sk < sl. In both cases (N—1)k < sl,
s0, since y(v+ag) = (v)— (N —1)k, we have that a;, € Cy, if and only if 7 (v) — (N —1)k > 0.
Now put v; == v + Ei:o a;, and note that, for j =1,..., N — 1, we have a;;: vj_; — v;
and y(v;) = y(vj-1) + k. Hence a;; ¢ Cj, if and only if v(v;) = vy(v;—1) + k, and a;, € C}, if

and only if y(v;_1) + k > sl.

Now suppose that a;, € Cy. By the above discussion we have that v(vy) = y(v) — (N —
1)k >0,s80,if 1 < j < N—1, then 0 < y(vo)+jk = y(v)—(N—-1—35)k < v(v) < sl and thus

Y(v;) = v(vo) + jk = y(vo) + jk = v(vo) + jk. This means that, for all j =1,... , N — 1,
Y(vj) = y(vj-1) + k and hence a;; & Cy.

Assume now that a;, € Cj, so that we have y(v) — (N — 1)k < 0. Suppose by absurd
that no a;; is in Cy. Then we must have v(vy_1) = y(vo) + (N — 1)k, but vy_; = v and so
(o) + (N =1k = v(vny_1) = ¥(v) < (N —1)k, which is a contradiction because (vg) > 0.
Hence there exist a j > 1 such that a;; is in C: by an argument similar to above, it can
be easily proved that such a j must be unique.

(b) Consider a path p = a;, - - - a;, in @. If no arrow in p is contained in C}, then we must

have a chain of inequalities y(v) < y(v+ ;) < -+ < y(v + E?:] @) it {0,004, 80 =1
and this is clearly impossible if & > sl.
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(c) Suppose that v = Zj\{_ll pj; is in B: this means that n(v) = — Z? STt =0
(mod m). Since I|n, we have sl|sn = m and so we get Z? 3 paj ru’ !'=0 (mod sl). More-

over we have that sl|sb=r—1,s0r =1 (mod sl) and thus Z T Z; T =0
(mod sl). Hence we get y(v) = EZJ . #j = 0, which c]cally implies that C) is B-

invariant. O

2.6.2 The case G C SL(s,C)

Recall from Section [2.5.2) that the determinants of the generators of G are det(a) = &5,
where ¢ = Y070 %, and det(8) = (—1)*"'el,. Hence, if G C SL(s,C), we have that

??1

n it =2,
¢c=0 (mod m), = { 0 ifs>2

Clearly we have that A is contained in SL(s, C), too. The vertices of the quiver Q = Q'*)
are the points of a root lattice of type A,_;, with basis given by ay,...,a,_;. We have an
isomorphism of quivers n: /B — 4, where B is the kernel of the group homomorphism
n: L — Z/mZ given n(a;) = —ri~! for all j = 1,...,s — 1. Note that, since ¢ = 0
(mod m), we have n(ag) = n(a,) = —r*1.

Recall that the action of G/A on A induces an automorphism ¢ of )4, which is given
on vertices by ¢(i) = ri. Identifying @/B with Q4 via 7, this induces an automorphism
of Q/B given by ¢(@;) = @41, 0 < j < s — 1. Moreover it is easy to check that this
automorphism lifts to an action on @) defined by p(o;) = aj41.

Theorem 2.6.6. Let C be a cut in QQ which is invariant under both the actions of B and
G/A, and let dc be the grading on Q) induced by C. Then there exists a grading on Qg
such that g is s-Calabi- Yau of Gorenstein parameter 1 with the grading induced by it.

In particular, if the degree 0 part (Ilg)o of llg is finite dimensional, then (Ilg)y is
(s — 1)-representation infinite.

Proof. Since C is B-invariant, by Proposition it induces a grading d2 on Q4 such
that the superpotential w4 becomes homogeneous of degree 1. Moreover, the fact that
C is G/A invariant implies that the morphism ®: Q4 — Q¢ is dA-gradable: hence, by
Proposition there exists a grading d% on Q¢ such that wg is homogeneous of degree
1. So, applying Corollary 2.3.6] the result follows. O

Corollary 2.6.7. Let | be a positive ?In.teier which divides both n and b and let k €

{1,...,1}. Then the cut CS) of Definition induces a grading on g such that (Ilg)o
is (s — 1)-representation infinite.

Proof. By Proposition C) we have that C',Eﬁ) is B-invariant. It is also G /A-invariant,
since the action of G/A permutes the set {ap,...,as_1}. So the result follows from Theo-
rem if we prove that (Ilg)p is finite dimensional. To achieve this, is enough to show
that there exists an integer M such that every path in (O of length greater or equal than M
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has degree 1. Clearly it is enough to prove this for Qg. Let p be a path in C?G of length h.
Then it is easy to see that p lifts to a path of length & in Q. Hence, by Proposition [2.6.5(b),
it is enough to take M = sl. O

2.6.3 The case G ¢ SL(s,C)

We retain all the notation of So we embed G and A in SL(s + 1,C) and we denote
their images by G’ and A’ respectively. In this case, the vertices of the quiver Q = QU+
are the points of a root lattice of type A, with basis ay, ..., a;.

We have an isomorphism 7: @Q/B — @ 4+, where B is the kernel of the group homomor-
phism 7: L — Z/mZ given by n(a;) = —ri~! for j = 1,...,s. Note that in this case the
element ag = a1 is sent to c.

The action of G/A on @Q 4, which is given on vertices by (i) = ri, extends naturally to
Q. Identifying the latter with @Q/B via n, this induces an automorphism of /B given
by p(@;) = @41 for j =1,...,s — 1, p(@,) = @;. Moreover, it is easy to check that this
automorphism lifts to an action on @) defined by p(a;) = a1, =1,...,5—1, p(as) = .
It is also worth to point out that ag is now fixed by this action.

Theorem 2.6.8. Let C' be a cut in Q@ which is invariant under both the actions of B and
G/A, and let de be the grading on @ induced by C. Then there exists a grading on Qg
such that the induced grading on g makes it (s + 1)-Calabi- Yau of Gorenstein parameter
1.

In particular, if the degree 0 part (Il )o of g is finite dimensional, then (Ilg )y is
s-representation infinite.

Proof. Since C' is B-invariant, by Proposition it induces a grading d& on Qa such
that the superpotential wy becomes homogeneous of degree 1. Moreover, the fact that
C' is G/A invariant implies that the morphism ®": Q4 — Qe is d2-gradable. Hence we
can apply Proposition m to get a grading dg on Q¢ such that we is homogeneous of
degree 1. So the result follows from Corollary O

Corollary 2.6.9. Let ! be a positive integer which divides bothn and b and let1 < k <l—1.
Then the cut CS) of Definition induces a grading on g such that (Ilg/ )y is s-
representation infinite.

Proof. Note that Cé” is G/ A-invariant, since the action of G/A permutes the set {ay, ..., a4}
The rest of the proof is analogue to the one of Corollary 2.6.7] O

We end this section with the following easy observation, which gives a method of
obtaining new gradings in both the cases (SL) and (GL).

Remark 2.6.10. If a cut in () contains an arrow which starts or ends with a fixed point
7, then all the corresponding splitting arrows in Qg (respectively Q¢r) will have degree
1 with respect to the grading defined in Theorem (respectively Theorem [2.6.8). In

this case all the paths in the superpotential w¢ (respectively we) passing through ;) will
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_;,'(0} j(ﬂ)

j(l) J»;(1)
AN NN
i ; Ay ] : :

\ j{b’—lj / \ ‘}:(s—l) /

Figure 2.3. On the left we have an example of a grading obtained as in
Theorem [2.6.6] in the local neighbourhood of a fixed point. Here the
thick arrows have degree 1, while the others have degree 0. Applying the
procedure described in Remark for £ = 1 we obtain the grading
illustrated on the right.

contain a subpath of the form i % ;) L k, where one arrow among a and b has degree
1 and the other has degree 0. Hence it is easy to see that if we define a new grading
in the quiver by swapping the degrees of a and b (see Figure , then the degree of
the superpotential remains unchanged and so the algebra Il¢ (respectively Ilg/) has again
Gorenstein parameter 1. Moreover, if the degree 0 part of Il with the old grading is finite
dimensional, then the same is true if we consider the new grading.

2.7 Examples

We have seen so far that we can obtain examples of higher representation infinite algebras
from skew group algebras of some finite groups which satisfy certain conditions, but we
still don’t know how rich the class of such groups is. The aim of this section is to show
that we have indeed many examples of them.

We start by defining two families of metacyclic groups.

Definition 2.7.1. Let s be a prime number.

(a) For each b > 1 we define M(s,b) to be the metacyclic group in GL(s, C) associated
to integers m,r, s,t, where we set

8=

1 m/s ifs=2
ri=sb+1, Tra,:=z-r--'f, t;:{ e ‘_ ?
2 0 if s > 2,

(b) For each b > 2 we define M(s, b) to be the metacyclic group in GL(s, C) associated
to integers m,r, s,t, where we set

ri=sb+1, .—bs_lrﬂ' po | M08 RA=R,
ri=sb+1, m:= z& P 0 He>2
Jj=
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Proposition 2.7.2. The groups we defined in Definition satisfy all the conditions
l(M1)....|(M7) Moreover, we have that M(s,b) C SL(s,C) and M(s,b) € SL(s,C).

Proof. (a) We consider first the case of M (s,b), where s is prime and b > 1. Condition
[(MT7)]is clear by definition of 7. It is easy to see that r* — 1 = (r — 1)m = sbm, so [[M2

holds. For |(M1) we note that m —1 = >~ 1!3 is a multiple of r, so clearly (m,r) = 1.

By [(M7)| we have m = >°C o = Zf;é 1 = 0 (mod s), so we have [(M6). Now we can
write m = sn, so t = " }f %= 4 . Hence |(M3)|is clear if s > 2; for s = 2 note that
0 ifs>2
wehave r =2b+1,m=14r=2(b+1),n=b+1,s0 (r— 1)t =2m=2b(b+1) =0
s—1

(mod m). Condition |(M5)|is clear because 1 < r < m. Finally, since ¢ = } "7, 7 = m, by
the discussion at the beginning of Subsection we have that M(b,s) C SL s, C).

(b) Now we consider M (s,b), so in this case s is prime and b > 2. Again, lb clear.
It is easy to see that r* — 1 = sm, so|(M2)| holds. Now note that m — b = bz 5 17 is a
multiple of r, so (m,r) = (b,r) = (b,sb+ 1) = 1 and [[M1)] holds. Condltlonm is clear,
n if s =2,
0 ifs>2
for s = 2: in this case m = 2b(b+ 1) and n = b(b+ 1), thus (r — 1)t = 2bn = 20*(b+1) =0
(mod m). Condition [[M5)] holds because 1 < r < m. Finally, since b > 2 it is clear that
1 < ¢ < m: this implies that det(a) = ¢, # 1 and thus M(s,b) Z SL(s,C). d

s0 we can write m = sn. Hence we have again t = , 80 |(M3)|is clear except

In case (GL), in order to apply the results of the previous section, we need G to satisfy
Assumption [2.5.7 This will not be always the case: in the following we will exhibit a
sufficient condition for this to happen, and we will show that the groups of the form
fl:f(s, b) satisfy it. We will also see in Example that this condition is not necessary.

Proposition 2.7.3. Let r,m, s,t be integers which satisfy conditions[(M1),...[(MT7), and
let G be the associated metacyrl?c group. Consider the automorphism T of Z/mZ given by
the sum by ¢, and call u its order. Suppose that (u,s) = 1, then there exists a complete set
D of representatives for the action of G/A on Z/mZ which is closed under T.

Remark 2.7.4. The integer u we just defined is the smallest po&»itive integer which is a

solution to the equation cx = 0 (mod m), and hence it is equal to P
G, m)

Proof of Proposition[2.7.3. Clearly any set D of representatives contains the set F of fixed
points. Moreover, F is closed under 7. so we only have to show a suitable way to choose
the elements in D \ F.

We have already seen in Proposition that 7 induces an action on the G'/A-orbits
of Z/mZ given by 7([i]) = [7(i)] = [i + ¢|, where [i] denotes the G/A-orbit of i. So take
an iy € Z/mZ and call k; the smallest positive integer such that 7% ([i;]) = [i1]. Let
Dy := {i1.7(i1),...,7™7(i1)}: the elements of this set clearly provide representatives of
different GG /A—orbit-s. Now we want to show that D, is invariant under 7, which is equivalent
to say that i; + kje =41 (mod m).

The fact that [iy + kyc] = 7% ([i;]) = [i1] implies that there exists an h € {0,...,s — 1}
such that i, + kyc = r"i; (mod m). Now an easy induction shows that r'*i; = i, + lk;c
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(mod m) for all I > 1. In particular we have that r**i; = i; + uk,c (mod m), and the
latter is equivalent to i; modulo m because cu = 0 (mod m). Since i; is not in F, we
must have that uh = 0 (mod s), but this implies that 2 = 0 (mod s) because we have
assumed that (u,s) = 1. Hence h = 0 and so iy + kyc = i; (mod m), which shows that D,
is invariant under 7

Now we can choose an element iy € Z/mZ which does not belong to any of the orbits
of the elements in Dy, and applying the same argument as above we can construct a
set Dy = {iq, 7(i2),-. ., 7*2=1(i3)} which is invariant under 7 and such that the orbits of
elements in D; are dlb]OlIlt- from the ones of the elements in Dj. Repta,ting this procedure
until we can, we obtain a sequence of sets Dy,...,Dy, and D := U i—1 D; U F provides a
complete set of representatives for the G /A—action which is invariant 1111d(‘1 T. O

We now show that we can always obtain a higher representation infinite algebra from
the examples we discussed above.

Corollary 2.7.5. Let s be a prime number.

(a) For each integer b > 1, there exists an (s — 1)-representation infinite algebra which
is the degree 0 part of llg, where G = M(s,b).

(b) For each integer b > 2 such that (b,s) = 1, there exists an s-representation infinite
algebra which is the degree 0 part of g, where G = M(s,b) and G’ is its embedding
in SL(s + 1,C).

Proof. (a) Take a positive integer [ which divides both n and b and an integer 1 < k <[ (for
example, we could choose [ = k = 1). Then the result follows by applying Corollary

(b) Recall that in this case we have m = be, so u = b. Hence we have (u,s) = 1, so by
Proposition there exists a set of representatives D which is invariant under 7'. Now
take an integer [ > 2 which divides both n and b and an integer 1 < k < [. Note that
m = bc and c is a multiple of s, so n = b<: hence we can choose, for example, [ = b > 2
and k& =1, and so it is always pogqlble to fmd [, k which satisfy the above properties. Then
the result follows by applying Corollary 2 O

In the following we will give some examples for s = 2, 3.

2.7.1 Examples for G C SL(s, C)

Example 2.7.6. Let s = 2. We now want to describe all metacyclic groups in SL(2,C)
which satisfy conditions [[M1)]. .. [[MT7)]

By we can take m = 2n for an integer n > 2. Since we want our group to be in
SL(2, C), it is clear that » = m — 1 is the unique (modulo m) possible choice of r. Also, as
we already observed previously, we must take ¢ = n. Hence the corresponding metacyclic
group G is generated by the matrices

o Eop 0 _ 0 -1
(T a) -(09)
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The quiver @ is the preprojective quiver of type Ax and can be drawn on a line:

(e 5] ay ay a1 [+5}

........... ]_ 0 2-n _1 T ]_ - " 0 RN TRILE
ag ag agp ag ag

Here we have labelled every vertex by its image in Z/mZ under the morphism r described
in Section Then @4, which we recall being isomorphic to the orbit quiver Q/A, is
obtained by taking the subquiver of the above quiver given by some m + 1 consecutive
vertices 0, 1,...,2n — 1,0 and identifying the two vertices labelled by 0. Note that in this
way we obtain the preprojective quiver of type Agp1:

1 L,. I 1
: #0 Tn
by | ¢ - "
& x‘
0 n
&y ‘%
) . o =
I —1 — i ——n+1
2 1

By Proposition [2.5.3] its path algebra modulo the preprojective relations is isomorphic to
the skew group algebra C[V] x A.

Now consider the action of G/A = Z/27, which sends i to —i. On @ it is given by
rotating the quiver of 180° around the vertex 0, while on ()4 it is given by reflecting with
respect to the horizontal line passing through 0 and n. It is easy to see that D = {0,... ,n}
is a complete set of representatives in (QQ4)g of this action, and that the only fixed points
are 0 and n. Hence the quiver ()¢ is given by

n0) ©® - 0@
w 'Iy
) wo, 2
' n—13 M— 2 e 2 1 )
x‘(}l(}' 1,0 1,0 T 0
€T 1,0
ntH 1l ot

which is the preprojective quiver of type f).,th.

Using Corollary and the description of the superpotential of )4, we can see
that the support of wg is given by all paths of the form z o210, 21,000, x{(féx(lf()) rf{)]xé%
¢ =0, 1. Moreover, any cut in ) which is invariant under the actions of B and &G /A induces
an orientation of the graph underlying Q. So if we consider the corresponding induced
grading on Il and take the degree 0 part, we obtain an hereditary representation infinite
algebra of type D,,s. Using Remark it is easy to see that all these algebras are
obtainable in this way.

We may note that the relations we get from the superpotential in our case are different
from the classical preprojective relations. However, we still have that Ilg is isomorphic
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to a preprojective algebra of type f).n_+2, because we know, by Theorem . that it is
isomorphic to the preprojective algebra of (Ilg)g, and we saw that (Ilg)g is the path algebra
of a quiver of type D, 2.

17— 1l 15 > > 12

/\/\/\/\/\/\/\/\/

G |8—> 17— 16— 15

/N\/ VAYAYAYAY
/\/\_}D\%\\/\/\/\/
VAYAYA 2\/\/\/

15— 14— 13 l

/\/\/\/\ AYAY4
/\/\/\/\/ /N\N/N/

—r 20— 19

/\/\/\/\/\/\/\/\/

Figure 2.4. The cut C{l) for m = 21, r = 4, s = 3 (the arrows in the cut are
represented by thick lines). A complete set of representatives D for the
(G/A-action is given by the vertices contained in the shadowed rhombus
(the two 0’s are identified), and the fixed points (i.e., 0. 7 and 14) are the
vertices of the latter. The quiver Qg is obtained by identifying the edges
of the rhombus whose adjacent vertices have the same name, according
to the orientation depicted. For a picture of Q¢ see Figure

Example 2.7.7. Now we exhibit an example where s = 3. Let G = M (3, 1), so we have
m =21, r=4,t=0. Then G is generated by the matrices

ggp 0 0 00 1
a=| 0 ¢ o], p=|100
0 0 el 010

We have already depicted the quivers () and Q4 in Figure In this case, the G/A-
action on @ is given by an anticlockwise rotation of 120° around the origin 0, and it is easy
to see that the induced action on Q4 can be realized as an anticlockwise rotation of 120°
around each fixed point.

In Figure we show a way to realize the quiver Qg, together with the cut C' 1(1). The
quiver (J; and the grading induced by this cut are illustrated in Figure Note that in
this case Corollary holds, so the paths in the support of the superpotential wg are
exactly the ones induced by paths in supp(wa).
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Figure 2.5. The quiver Qg for m = 21, r = 4, s = 3. The thick arrows have
degree 1 with respect to the grading associated to the cut of Figure 2.4
so the quiver of the corresponding 2-representation infinite algebra (Ilg)o
is obtained by deleting these arrows.
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2—> 11— 0

/\/\/\/\/\/\/

/\/T7\/\/\/\/

Figure 2.6. The quiver Q¥ with m = 7, r = 2. Fundamental domains for
the quivers Q4 and Q(, are given by, respectively, the light and the dark
shadowed regions. The vertices of the latter are the fixed points for the
G'/A action on the torus.

Now we will give an example where the conditions [M6)| and [[M7)] do not hold, and we
will show that in this case we have no invariant cuts.

Example 2.7.8. Set m=7,r=2,s=3,t=0,and let G be the corresponding metacyclic
group. The quivers ), Q4 and Q(, are described in Figurc For a picture of Qg, see [L1]
Example 5.5|. Note that the quiver Q4 can be embedded in a torus which carries a G'/A-
action with three fixed points. However, among these fixed points only one corresponds to
a vertex of the quiver: the others are located in the “barycentre of a triangle”, as we can see
in the figure. Now consider the cyclic path 2 - 1 — 4 — 2: the action of G//A sends each
arrow in it to the arrow which precedes it in the path. Since a cut must contain exactly
one arrow from this path, it is clear that we cannot have cuts which are G /A-invariant.

2.7.2 Examples for G Z SL(s,C)

Example 2.7.9. Let G = M(2,2), so we have s = 2, r = 5, m = 12 and { = 6. The group
(7 is generated by the matrices

(& O s o -t
a‘([Js%)’ 3_(1 0)

and is not contained in SL(2,C), because ¢ = 1 + r = 6. Thus its image G’ under the
embedding in SL(3, C) is generated by

a=| 0 & 0|, p=|10 o0
0 0 &5, 0 0 1
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7——»5——»." 4——-3’——»2—»1-—&0‘—»11

ININININSNINLNSNS

¢ —> ll—> 10—> fp==tulimmmef —> I

AVAVAYAYAYAYAY A

ft—s > 55— d—> I ——> 2——> 1 =—> J— 11

INININININININ/N Y

f— 11— 10— 9 =—>

/X /\/\/\/\/\/\/\/

v f — 4 1 —> ﬂ — 11

Figure 2.7. The quiver Q®), where the vertices are labelled with their image
under the isomorphism 7 according to the setting of Example 2.7.9] The
quiver ( 4+ is given by the vertices contained in the shaded parallelogram,
where the vertices on opposite sides with the same label are identified.
Hence @4 can be embedded on a torus. The action of G/A on Q4 is
given by reflecting along the dashed lines, and the vertices contained in

the latter are the fixed points. The thick arrows represent the cut CP

The quivers @ 4 and Q¢r, together with some cuts, are represented in Figures
and 2.9 Note that the arrows of type i — 7(i) are the ones which point in south-west
direction.

We end this example by remarking that in this case u = s = 2, and so the condition
(u, s) = 1 in Proposition is not satisfied. However, it is still possible to choose a set
of representatives D which is invariant under 7’ (see Figure [2.9 m so such condition is not
ncceb&drv Moreover, in Figure @ we exhibit a cut which is not induced by one of the
form 0 , but it is easily checked that it still yields a grading on Ilg such that (Ilg)g is
2- repleqonta.tion infinite.

*0’—»11

/\/\/\/\/\/\/\/\/

AV AVAYAYAYAVAYAYS

T > 5—> d—a I —> 2—> | — [J—> 11

INININININININ /NS

] —> =—> 1l— 10— 9 —> 8 ——> 7T—> 68— 5

/\/\/\/\/\/\/\/\/

> (f =—> 11

’ ,

Figure 2.8. A cut in the setting of Example which is not of the form
cV for any k, 1.
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Figure 2.9. The quiver Q¢ obtained from Figure by choosing as set of
representatives D the vertices contained in the left-side half of the par-
allelogram. Note that now only the upper and lower sides are identified.
The thick arrows are induced by an invariant cut in Q.
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Chapter 3

Skew group algebras of Jacobian
algebras and 2-representation finite
algebras

In this chapter we study skew group algebras of Jacobian algebras of quivers with potential.
Sections and consist in some preliminaries about quivers with potential and self-
injective algebras. In Section [3.3] we will set up our assumptions and state our main
result, whose proof will be given in Section In Section we will explain how we
can get our original algebra back by doing another skew group algebra construction using
the dual group. In Section we apply our results to planar rotation-invariant QPs. In
Section we consider how cuts behave with respect to taking skew group algebras, and
the consequences for truncated Jacobian algebras. Section [3.8] consists of some examples
which illustrate our construction.

3.1 Quivers with potential and 2-representation finite
algebras

Let @ be a quiver. Denote by ﬂg@ the completion of k(@) with respect to the (Q)-adic
topology. Define

comg = [kQ,B&Q} C k@,
where — denotes closure. Thus k@ /comg has a topological basis consisting of cycles in
(2. In particular there is a unique continuous linear map
o :kQ/comg —+ k@
induced by

T
Qp Oy > E Qo » + 0 Qg (Y] *»* Q]
m=1
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For each o € @ define d,, : (Q1) — IEC} to be the continuous linear map given by d, (ap) = p
and d,(q) = 0 if ¢ does not end with a. Define the cyclic derivative with respect to an
arrow a to be 9, = dy 00 : (Q1)/ comg — ]1;@ It will be convenient to take derivatives
with respect to multiples of arrows. For A € k*, define dyo(c) = A '0.(c). A potential
is an element W € (Q1)*/((Q1)* N comg), i.e., a (possibly infinite) linear combination
of cycles of length at least 3. A potential is called finite if it can be written as a finite
linear combination of cycles. By an abuse of notation, if ¢ is a cycle in @ we will denote
again by ¢ the corresponding element of (Q1)*/({Q1)* Ncomg) and consider it up to cyclic
permutation of its arrows. We call the pair (Q, W) a quiver with potential (QP) and define
its Jacobian algebra to be

P(Q,W) = KO / @V o €Qn.

In our setting, the completion will not play any role, due the following proposition.
Proposition 3.1.1 ([54, Proposition 2.3]). If W is a finite potential and the ideal
(0, W | a € @) CkQ

18 admissible, then

a € Q).

PQ,W) ~ kQ / (O W

In the following we will state a result by Herschend and Iyama which relates QPs with
2-representation finite algebras.
Let (Q, W) be a QP. For a subset C' C @; we can define a grading de on Q by setting

do(a) =

0, otherwise.

{1, if € C

Definition 3.1.2. A subset C C @), is called a cut if W is homogeneous of degree 1 with
respect to de.

Note that a cut induces a grading on the Jacobian algebra P(Q, ). We call its degree
0 part a truncated Jacobian algebra and denote it by P(Q, W )c.

Now let A be a basic algebra of global dimension at most 2 and recall that, by
Theorem [1.4.4] its 3-preprojective algebra II3(A) is self-injective. By [45] we have that
[I3(A) = P(Qa, Wa) for some QP (Qa,W4). Moreover, there exists a cut Cy such that
A= P(Qa,Wa)c,. The following theorem tells us that 2-representation finite algebras are
exactly the truncated Jacobian algebras of QPs which satisfy the above properties.

Theorem 3.1.3 ([29, Theorem 3.11]). If (Q, W) is a self-injective QP (i.e., a QP whose
Jacobian algebra is self-injective) and C' is a cut, then P(Q, W )¢ is 2-representation finite.
Moreover, every basic 2-representation finite algebra is obtained in this way.
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3.2 Self-injective algebras

Motivated by the situation of Theorem [3.1.3] in this section we will recall some general
facts about self-injective (and Frobenius) algebras. Some references are for instance [50] or
[32]. In we will show that the property of being Frobenius is preserved under taking
skew group algebras.

An algebra A is self-injective if it is injective as a right A-module. It is Frobenius if there
is a bilinear form (—, —) on A which is nondegenerate and multiplicative (i.e., (a,bc) = (ab, ¢)
for all @,b,c € A). It is symmetric if this form can be taken to be symmetric. Frobenius
algebras are self-injective, and the converse is true if and only if dim Homy (S, A) = dim S
for all simples S. In particular, self-injective basic algebras are exactly the Frobenius basic
algebras.

If A is Frobenius, then from the nondegenerate bilinear form we get an isomorphism
f A — DA of vector spaces, given by f(v) = (—,v). Moreover f is an isomorphism of
left A-modules since

F0) = (=, 20) = (=A,v) = A(f(0)-

Nondegeneracy of the form implies that there exists a unique k-linear map ¢ : A — A
satisfying

(a,b) = (b, p(a))

for all a,b € A. In fact such a ¢ is an algebra automorphism, and f becomes a right module
isomorphism f : A, = DA. If we choose a different bilinear form and hence a different
isomorphism ¢ : A — DA of vector spaces, then g(a) = f(au) for some unit u € A. Then
the corresponding automorphism v is given by ¥(a) = up(a)u™', so p is unique as an
outer automorphism of A. The automorphism ¢ is called a Nakayama automorphism of
A. In particular, A is symmetric if and only if ¢ = idoug(a)-

3.2.1 Skew group algebras of Frobenius algebras

We are interested in studying skew group algebras of Frobenius algebras, and in particular
the case where GG is generated by a Nakayama automorphism.

Remark 3.2.1. In [57, Theorem 1.3(c)(iii)] it is proved that skew group algebras of self-
injective algebras are always self-injective. In the discussion that follows we show that the
property of being Frobenius is also preserved under taking skew group algebras.

Let GG be a finite group acting on a Frobenius algebra A by automorphisms. The algebra
kG is always Frobenius and in fact symmetric. We denote by (—,—) the corresponding
symmetric nondegenerate bilinear form on kG as well. This form can be taken to be
(h,l) = 0p—1 for h,l € G, extended bilinearly. Then we can define a bilinear form (—, —)
on the skew group algebra A x G by setting

AR Lp@m) = (\1(w)(l,m)

for A\, p € A and [, m € G, extended bilinearly.
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Lemma 3.2.2. The form (—, —) is multiplicative and nondegenerate. In particular, A G
15 Frobenius.

Proof. We have

(A D)(p®m),ren) =N @Ilm,ven) =

= (M(p), (Im)(v))(Im,n) =
= (M U(p)l(m(v)))(l,mn) =
= (A d(pm(v)))(1, mn) =
= (A® L, pm(v) ® mn) =
=(ARL(p®m)(ven))

for all A, u, v € A and I, m,n € G. This proves multiplicativity.

Assume now that there exists ). & ® z; € A x G such that (3, & ® 2z, 2) = 0 for all
xr € A xG. Without loss of generality we can take every z; to be an element of G. Take
r=ARI[with A€ Aand ! € G. Then

0= (E@zr0l) = (&aM)(w)= Y G0 = X &0
i i zy=[—1 zy=1—1

Since [ acts by an automorphism and (—, —) is nondegenerate, it follows that Zz.,-_:l-l &=0.
By iterating this argument for all possible values of [, we get that

Yaoa=Y | > &|oit=0
i leG \ z;=I1-1

Assume instead that (z, ), & ®z;) = 0 for all z € A*G. Again we suppose that z; € G
and we take t = A ® [ with A € A and [ € G. Then

0= "(®LE®z) =Y (MIUE)(12z) = Z(Afst =[xt X &
i i zi=I—1

so that > _, 1 & = 0 and we can argue as above. This proves nondegeneracy. O

If the bilinear form on A is G-equivariant, we can find a Nakayama automorphism of
A xG. Let us choose a Nakayama automorphism ¢ of A.

Proposition 3.2.3. If (g(A\),g(p)) = (Ap) for all g € G, A, € A, then p ® 1 is a
Nakayama automorphism of A x G.



Proof. Let A\,pp € A and [, m € G. Then

AL pem) = dn1(N (1) =
- dim—] ('{(Ju')a ,9
=g, e

A) =
A) =

= O (1, mp(X)) =

= (p®m, () ®1). 0

Corollary 3.2.4. If ¢ generates the image im(G) C Aut(A), then A x G is symmetric.

P’r‘oof Since ¢ is an element in im(G), we know that there is an h € G which acts on A as
. Now let g € G. By assumption, there exists an integer j such that ¢ acts on A as /.
Thcn we have

(A1) = (1, 0(N) = (p(N), (1) = (7 (N), @7 (1)) = (9(N), 9()),
so we can apply Proposition [3.2.3 and get that
e®1:AQ1l—h(N) R

is a Nakayama automorphism of A x G. Notice now that h(A\) @1 = (1@h)(ARI) (1@ h),
so that ¢ ® 1 is the identity as an outer automorphism of A % GG, which means that A x G
is symmetric. O

We include the following lemma, which we will use in Section [3.6]

Lemma 3.2.5. Let A be a symmetric algebra, and e € A an idempotent. Then ele is
symmetric.

Proof. Let (—, —) be a symmetric multiplicative nondegenerate bilinear form on A. Then
the restricted form on eAe is a symmetric multiplicative bilinear form on eAe. Let now
u € ele such that (u, —)jcae = 0. Let v € A and observe that

(u,v) = (eue,v) = (eu, ev) = (ev,eu) = (eve,u) =0

so that u = 0 since the form is nondegenerate on A. O

3.3 Setup and result

Let (Q, W) be a quiver with potential and let A = P(Q, W) be its Jacobian algebra. Write
W = >"_a(c)c, and recall that we consider cycles up to cyclic permutation. We assume
that W is finite and that the cyclic derivatives of W generate an admissible ideal of k(). In
what follows we will freely use integers as indices for convenience, even when they should
be seen as elements of Z/nZ.
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3.3.1 Assumptions

Let (G be a cyclic group of order n with generator g, acting on k@). We make the following
assumptions.

(A1) The field k contains a primitive n-th root of unity ¢. In particular, n # 0 in k.

(A2) The action of G permutes the vertices of ) and maps every arrow to a multiple of
an arrow.

(A3) If a is an arrow between two fixed vertices, then g(a) = (*®a for an integer b(a).
(A4) Every vertex of (Q which is not fixed by & has an orbit of cardinality n.
(A5) We have GW =W.

Since GG preserves the potential, we get an induced action of G on A. We define a second
“forgetful” action * of G on Q) by g *v = g(v) for v € Qp and g * @ = 3 whenever 3 is an
arrow and g(a) is a scalar multiple of j.

Remark 3.3.1. Suppose that an arrow « is such that g(a) = ('3 for some arrow 3 # a.
Then, by assumption one of s(a) and t(«) has an orbit of size n, so |G * a|] = n.
We can replace 3 with (73 as the element in rad A/ rad® A representing the corresponding
arrow. By doing this for all n distinct arrows in the orbit of a, we get that on this orbit
the action of G coincides with the % action of GG. The potential W is not affected by this
procedure, if we see it as an element of k()/ comy, so it is still invariant under G. However,
note that the expression of W as a linear combination of cycles in ) is possibly changed.

In view of the above observation, we can without loss of generality make the additional
assumption:

(A6) Arrows with at least one end which is not fixed are sent to arrows by the action of

G.

So for an arrow « between two fixed vertices we have g * a = a = (" g(a), while for all
other arrows we have g x a = g(a) = /3 for some arrow 3 # «.

We need to make some further assumptions about the relationship between GG and W'.
It turns out that it is convenient to impose conditions on the number of fixed vertices
appearing in cycles of W. We make the following assumption.

(A7) Every cycle ¢ appearing in W is of one of the following types:
(i) the cycle ¢ goes through no vertices fixed by G;
(ii) the cycle ¢ goes through exactly one (counted with multiplicity) vertex fixed by G;

(iii) the cycle ¢ goes through exactly one (counted with multiplicity) vertex not fixed by

G;
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(iv) the cycle ¢ goes only through vertices which are fixed by G.

Remark 3.3.2. These assumptions are strong. We need them to construct a QP (Qq, We)
such that the skew group algebra of P(Q, W) is Morita equivalent to P(Q¢, W¢). However,
the assumptions are satisfied in many examples, and they are weak enough to still hold
for (Qg,Wg). This in turn allows us to come back to (Q, W) via a skew group algebra
construction with a natural action of the dual group G (see Section |; l

Remark 3.3.3. From our assumptions, it follows that cycles of a given type are mapped
by G to multiples of cycles of the same type. By assumption cycles of type (i) and
(ii) contain only arrows that are mapped to arrows, so those cycles are mapped to cycles.
If c = ap...0q is of type (iv), then g(c) = ¢Xi%*)e, so from GW = W we obtain that
Yo blay) = U (mod n) and Ge = ¢. In particular, g * ¢ = g(c) for all ¢ of type (i), (ii), (iv).

The reader wishing to have examples of QPs with group actions satisfying these as-
sumptions is advised to have in mind the QPs of Example In particular, the two QPs
of Figure and Figure both have an action of Z/3Z, one sending arrows to arrows
and the other multiplying § by a third root of unity. They are the quivers with potential
corresponding to each other’s skew group algebra under these actions. All cycles of the
first one are of type (i) or (ii), while all cycles of the second one are of type (iii) or (iv).

3.3.2 The quiver of A x G

We now describe the quiver Q¢ of the skew group algebra A x G following [57]. We first
define an idempotent 7 € A+ G such that n(A*G)n is basic and Morita equivalent to AxG.
We decompose 77 as a sum of primitive orthogonal idempotents, and use those to label the
vertices of Qg. Then we choose elements in (A x G)n to be the arrows.

A complete list of primitive orthogonal idempotents for the group algebra kG is given

by
1 n—1
=23 o,

i=0

108 ji=U.nee B —1

Fix a set £ of representatives of vertices of ) under the action of G. We write £ =
E'UE", where £ and £” consist of the vertices in £ whose orbits have cardinality n and 1
respectively. We define the following idempotents in A * G:

e for each vertex ¢ € £ we put 1 = ® 1;
e for cach vertex e € £" and p=0,...,n — 1 we put M, =R ey

Set,
n—1

n=> 7+ > 7.

ec&! ec&” u=0
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Note in particular that n = £ ® 1, where £ is the idempotent of A corresponding to £. By
[57), §2.3] the algebra n(A = G)n is Morita equivalent to A * G. A complete list of primitive
orthogonal idempotents for n(A = G)n is

{flec&tU{n|cc& " p=0,...,n-1}.

Remark 3.3.4. The idempotent 7 is not canonical, in that it depends on choosing some
vertices of (). However, it is convenient to define it in this way to get a natural action of
the dual group G on n(A*G)n. By contrast, the authors of [2] choose a canonically defined
basic algebra for their Morita equivalence, but in exchange they have to choose vertices of
(2 in order to be able to define such an action.

Now we will fix a basis for the arrows of the quiver Qg of (A * G)7. There are four
different cases to consider.

(1) Let 3 be an arrow between two non-fixed vertices of (). Then there is exactly one
arrow « in the G-orbit of 8 such that t(«) € £'. Thus « is of the form a: g'e — ¢/,
with e, € & and 0 <1 < n — 1. We call @ an arrow of type (1), and define an
element & € n(A * G)n by

a=a®g.

. . . =
This will be an arrow in Qg from n° to 7° .

(2) Let 8 be an arrow in @ from a non-fixed vertex to a fixed vertex. Then there is
exactly one arrow « in the G-orbit of 3 such that s(«) € €. Thus « is of the form
are— e, withee &, & € &”. We call @ an arrow of type (2), and define elements
a" € n(A = G)n by

a'=(1®e,)(a®1)

for p=20,...,n— 1. These will be arrows in Q¢ from 7° to n;f respectively.

(3) Let 8 be an arrow in @ from a fixed vertex to a non-fixed vertex. Then there is
exactly one arrow « in the G-orbit of 8 such that t(a) € £'. Thus « is of the form
a:e— &, withe € £ & € £. We call a an arrow of type (3), and define elements
a* € n(A = G)n by

ot =a®e,
for p=20,...,n— 1. These will be arrows in Q¢ from ny, to T,F’ respectively.

(4) Let a be an arrow between two fixed vertices, i.e., a: ¢ — & with ,&’ € £”. Recall
that by assumption g(a) = ¢ a. We call a an arrow of type (4), and define elements
a* € n(AxG)n by

i =a®e,

for 4 =0,...,n— 1. These will be arrows in Q¢ from 7, to n;’_b{a) respectively.
For an arrow « : ¢'(e) — & of type (1), we define ¢(«) = ¢. Note that this integer is

well defined modulo n, since the orbit of £ has cardinality n. If instead « is an arrow of
type (2), (3), or (4), we put #(a) = 0.
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Proposition 3.3.5. This choice gives a basis of radn(A * G)n/rad®* n(A * G)n, and the
start and target of arrows in Qg are as claimed above.

Proof. The vector space spanned by the arrows of () decomposes as a direct sum of kG-
modules into the spans of the G-orbits of the arrows. Therefore it is enough to look at one
G-orbit of an arrow at a time, and we can assume that there are no multiple arrows in Q.

Let us now look at the four cases. If a : g'¢ — ¢ is of type (1), then the n arrows
in Ga give rise to a unique arrow & : 1° — 1°. By [57, Theorem 1.3(d)(i)] we have that
rad’ A+ G = (rad’ A)A * G, so that a basis of the space of arrows from 77 to 7° is given by
{e'Bh(e) ® h} with 8 € Q1. So the only § contributing is the only arrow in Ga ending in
¢’, and this basis is {&@ = a ® gt }.

Let now a : & — &’ be of type (2). Then the n arrows in Ga give rise to n arrows of Q.
By the above argument, we get that a basis of (¢ ® 1)(rad A G/rad* A% G)(s ®1) is given
by {¢'(a)®g' | i=0,...,n—1}. Then the set {a* = (1®e,)(a®1) | u=0,...,n—1}
is also a basis, since

1 n—1 . . ‘
(l®e)la®l) =~ > (Hga)®g'
=0

Now :qf a' = a* if v = p, and 0 otherwise, so each a* is indeed an arrow of Q¢ from 7 to
?';f;.

If a:e— & is an arrow of type (3) or (4), by similar arguments we get that {a ® ¢'}
is a basis of (¢/® 1)(rad A * G/rad®* Ax G)(¢ ® 1). Then {&* = a ® e, } is also a basis, and

it consists of arrows. O

The choice of vertices and arrows we have made defines an isomorphism J : kQqg —

n((kQ) x G)n by [57, §2.3].

3.3.3 Cycles in (); and the potential W

We want to define a potential W on Q¢, so we need to construct cyeles in ()¢ depending
on those appearing in W. Recall that we write W = )" _a(c)c, and that we consider cycles
up to cyclic permutation. We will define, for every cycle ¢ appearing in W, a cycle ¢ in
G * ¢ depending on our choice of representatives of the vertices. Moreover, to every ¢ we
will associate a cycle ¢ in Qg.

(i) Let ¢ be a cycle of type (i) in W. Then choose ¢ in G * ¢ such that

L O o 7 A (a

] z
Ep = & g—li'} gtl+"'+tf—1(6;_]) P = (ng gtl (61) -l')' En

5

with g; € & for all i. Notice that this is indeed (in general) a choice, the only
requirement is that ¢ should go through at least one vertex in £'. Set moreover d=¢
for all the other d € G * ¢. Note that each o; is an arrow of type (1) and ¢; = t(a;).
Define a cycle ¢ in Qg by

C=0ap Q.
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(i1) Let ¢ be a cycle of type (ii) in W. There is a unique ¢ € G * ¢ that can be written as
above, with ¢; € & for i # 1, £; € £” and t; = 0. Note that for i > 3, «; is of type
(1) and t; = t(ey), while g7"2(ay) is of type (2) and oy is of type (3). Define cycles
A in Qg by

ﬂ.
¢ =alg () G5 qy

for p=0,...,n—1, and call p(c) = 1,.

(iii) Let ¢ be a cycle of type (iii) in W. There is a unique ¢ € G * ¢ that can be written as
above, with g; € £" for i #£ 1, 1 € £ and t; = 0 for all i. Notice that for i > 3, q; is
of type (4), while ay is of type (3) and «q is of type (2). Put b; = b(c;) + -+ - + b(ey)
for all i > 3 and define cycles ¢ in Q¢ by

¢ =alay ek @t el
for p = 0,...,n — 1. Call g(c) = bs, and notice that g(¢) = (%““g % ¢ (and in fact
g(c) = (g xc).

(iv) Let ¢ be a cycle of type (iv) in W. Thus Ge = ¢ in k@ and we can write ¢ = ¢ as
above, with ¢; € £ and t; = 0 for all 7. Notice that each «; is an arrow of type (4).
Put b; = b(a;) + -+ - + b(ey) for all i and define cycles & in Qg by

i mp-brsu—bs | xp-biau
Ht=ay Ay R

for u=20,....n—1.

Now define C(z) = {¢ | ¢ cycle of W of type z} for z = (i), (ii), (iii), (iv). Then C =
| |C(x) is a cross-section of cycles of W under the * action of G.
We can now define a (finite) potential Wg on Q¢ by setting

G n—1 n—1
We=3 0@ et Y a@T @ Y a@ Y
cel(i) ceC(ii) pu=0 ceC(iil)JC(iv) pu=0

Remark 3.3.6. Note that all cycles in W have length at least 3, since each of them
has the same length of a cycle in W. Moreover the sums in Wg are made over subsets of
cycles which appear in W, hence they are all finite. This means that W, is indeed a finite
potential in Q¢.

3.3.4 Main result

We are ready to state our main result. Recall that we assume that (Q, W) is a QP with
finite potential such that the cyclic derivatives of W generate an admissible ideal of k().

Call A = P(Q, W) the Jacobian algebra of (Q,W).
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Theorem 3.3.7. Let G be a finite cyclic group acting on (QQ, W) as per the assumptions

G} Then
P(Qa, We) = (A * G).

We give a proof of this result in 7 and outline here the strategy we will use. By [57,
§2.3], the algebra n(A * G')n is isomorphic to kQ¢ modulo a certain ideal. Our first step,
carried out in §3.4.1} is to give explicit generators for this ideal in our setting. However,
these generators will not be relations of Q¢ (i.e., linear combinations of paths in Q¢ with
common start and end). In we express them in terms of the derivatives of the
potential W, which will allow us to conclude.

Remark 3.3.8. The statement that there exists a potential W' such that P(Qg, W') =
n(A = G)n follows, by taking the 0-th cohomology of the corresponding dg algebras, from
a much more general result proved in [46, Corollary 1.3]. Moreover, [46, Lemma 4.4.1]
expresses a suitable W' as an element of n(A*G)n, and W’ is written as a linear combination
of paths in Q¢ in the examples of [46, §4.5]. Our Theorem E states that the potential
We. which we constructed under our assumptions AT)| has the same property.

3.4 Proof of main result

3.4.1 Ideals of skew group algebras

In order to prove Theorem we need some observations about ideals of skew group
algebras.

Proposition 3.4.1. Let A be a ring and let n be an idempotent of A. Let I = AXA for
some subset X C A, such that nxn = x for all x € X. Then
A nAn
nN—n=-—.
Proof. 1t is enough to prove that nin = (X). Let K = 1 —n. Then nA = nAn & nAx and
An =nAn & kAn. Observe that nzny = x implies kx = xx = 0. Then

nln = nAX An = nAnXnAn @ nAnXkAn @ nAkXnAn ® nAk Xk An = nAnXnAn = (X).
O
Now retain the notation of Section So A = kQ/R, where R = (R) and R =

{0.W |a € @1}, and the action of G on A leaves R stable. Then we know by [57, §2.2]
that

(kQ) G
(R®1) "

Recall that we have an idempotent n = € ® 1, for an idempotent ¢ in k@, such that
n((kQ) * G)n = kQq. We have the following lemmas.

AxG=
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Lemma 3.4.2. Suppose that (R) is an admissible ideal of kQ. Then the ideal n{R ® 1)n
of n((kQ) = G)n is admissible.

Proof. Let A = k(@. Since R = (R) is admissible, we have (rad A)Y C R C (rad A)? for
some N > 2. Consider R as a subset of A * G under the natural inclusion A — A * G,
so (R®1) = (A*x G)R(A x G). By [57, Theorem 1.3(d)(ii)] we have (A * G)(rad A)" =
(rad A)(AxG) = (rad Ax G)" for all i > 1, so

(A% G)(rad AN (A% G) C (A*x G)R(A* G) C (A *G)(rad A)%(A x G)

becomes

(rad A+ G)N C (R®1) C (rad A * G)%.
Then the claim follows from the fact that n(rad A « G)n = rad(n(A = G)n). d

Lemma 3.4.3. For each r € R, choose g,,h, € G such that t(r) € ¢,(€) and s(r) € h,(E).
Then

kQxG_ n(kQ) Gy
"Re1) T (g (N ®hg |rER)

Proof. We have
gt ®hgl = (10 ) r® 1)1 k)

so that R ® 1 generates the same ideal in (kQ) * G as the set {g-'(r) ® h,g7' | 7 € R}.
Now

(g, (r) ® hegy ) = €971 () (hegy ) (€) ® Mg = 671 (1) @ hegr

so the claim follows from Proposition [3.4.1 O

Lemma 3.4.4. In the assumptions we have

n((kQ) * G)ny

O W @ g7 [ a of type (1), ), (3), (D)

Proof. Since G acts on W, the ideal of k@ generated by {9,W} ® 1 is also generated by
{0, | a of type (1), (2), (3), )} 1,
since h(9,W) = Oy)W for any h € G. Notice that « is of type (1), (2), (3), (4) precisely

if 5(0,W) = t(a) € &€, and then t(0,W) = s(a) € ¢"*)(£). Then we can apply Lemma
with g, = ¢! and h, = 1, and we get the claim. O
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3.4.2 Derivatives of W as elements of (A x G)n

In this section we shall express elements of the form 0 -, W ® g1 for a of type (1),
(2), (3), (4) in terms of the derivatives of the potential We. Precisely, identifying n((kQ) *
G)n with kQg via the isomorphism J of each 0 -t W ® g H*) corresponds to
Z@, ie(@a)o Lid where z;; is a linear combination of paths in Q)¢ from vertex i to vertex
j (i.e., a relation of Q¢). In Lemma we describe the elements x;; in terms of the
derivatives of W, in a way that depends on the type of . This will be the last ingredient
we need in order to prove Theorem [3.3.71 We advise the reader to compare Lemma [3.4.7]
with the computations carried out in [46], §4.5].
In the proof of Lemma [3.4.7] we will use the following identities.

Lemma 3.4.5. If a € Q, and (3 is an arrow of type (4), then

aB®e,, ifv=p+b(B);
0, otheruise.

(Q' & f—'—';r.)(ﬁ ® 81,) = {

Proof. We compute

n—1

1 2 S
(a®e)B®e)=~> (“a®g)(Boea)=
" =0
1 n—1
== (¢ ag'(B) ®gle, =
L i=0
1 n—1
== Z CiH®) o8 @ gie, =
L i=0
1 n—1
=af® - Z ClB+b®) gl —
" =0

= (IIB & €utb(8)Ev
and this proves the claim. O
Lemma 3.4.6. If ¢ is a cycle of type (iii), then a(g * ¢) = (" 9a(c).

Proof. From assumption [(A5)] it follows that g(a(c)e) = a(g * ¢)g * ¢. Then we get the
claim since g(c) = (4“g * c. O

Now we use the identification kQg = n((kQ) * G)n to see cyclic derivatives of Wy as
elements of n((kQ) * G)n. To avoid clogging the notation, we will at times write ha and
he instead of h(a) and h(c) for h € G.

Lemma 3.4.7. 1. Let o be an arrow of Q of type (1). Let 3 = g "*)(a). Then

W ® g1 = 9, We.
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2. Let a be an arrow of Q of type (2). Then

n—1
(K)QVV ®1= Z C()de'TG.

=0
In particular,

77 (0 W @ D)nt® = 95 We
forevery i =0, .. 5 — 1.

3. Let a be an arrow of Q of type (3). Then

n—1

W @1 =Y 0auWo.

=0
In particular,
1 (0 W ® 1)) = 9;uWe
for every p=0,...,n—1.

4. Let a be an arrow of type (4). Then

n—1
QW ®1L=n) 0:uWa.

p=0
In particular,
i (W ® 1)) ) = ndauWe
for every p=0,...,n—1.

Proof. First notice that the second part of statements (2), (3), (4) follows directly by
multiplying > daxWeg, which is a linear combination of paths in Qg, with idempotents
corresponding to vertices of Q.

It will be convenient to use the following notation: for integers ty,...,#;, write

i,

ittt 8, i >
bittirt+- Hl+ti i+ 4ty if § <i

1. We have that

a,g I/V & g—t(rx) — Z a.((;)aﬁc & g—t(c}:) + Z (L(C)aﬁ(.' [b3e) g—t(a}

c of type (i) ¢ of type (ii)



and
n—1

0aWea = Cr| Z €)0;C + Z a(c) Zq—pfc)“c?aa“.

ceC(i) ceC(ii) u=0
The statement will be proved using the following two claims:
Claim (al). If ¢ € C(i), then

n—1

> " 8pg7c® g7 = 8¢

r=0

Claim (b1). If ¢ € C(ii), then

n—1 n—1

Z 959" c @ g—t(a) - Z C—p(cma&# ot

=0 p=0
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Assuming these claims hold, let us prove the statement. Recall that by assumption

(A6)], gc = g*cif ¢ is of type (i) or (ii). We have

|Ge|—1
S w0eos @ =Y " alg sula I @
¢ of type (i) ceC(i) =0

|Ge|-1

G
- 3 S e g =
r=0

ceC(i)

I
|i
M1 3
:
=
o
%]
S
<
t‘::l-?
T
®
]
=
=3
|

and

|Ge|—1

Z a(c)dze ® g7 = Z Z a(g” *c)0s(g" % ¢) ®

c of type (ii) ceC(ii) r=0

n—1
> D al0)dpge® g™ =

eeC(ii) r=0
n—1

= Y a(@)) (PP

ceC(ii) =0

ta)

t‘(a)
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which together imply that
W ® g7 = 9;We.

It remains to prove the claims (al) and (bl).

Proof of (al). Since ¢ € C(i) we can write

FLI-1 ()
3 . == Hi—1fe~
G Eg=& — g4 l(cg_l)

-
~
=]
-
——
Cr
-
—
m
(=

Let M ={me{l,...,l}|a=a,}. Then

dﬁﬁ - d&(il '65{ - d’m-}—l rijm—l =
meM
- tY". 'y t'ﬂl— —
= E (U’-m+1®§‘ +l)"'(a1n—1®g I) -
meM
i i e —tm
= E Qmt1d m+1 (am+'2) e g m+1,m 2(am.—1) ® g .
meM

Note that ¢, = t(a) for all m € M, so we are left to prove that

n—1
i’.vip_ - !\' (3 JIrE— —_— -
E 19 + ((X'rn—f-?) LR nel =2 (a'n'r.—l) = E dﬁgrc-
meM r=0

For each r =0,...,n—1 and m € M, the path g"c contains the arrow g"ttm-1q,, =
g"'tm 3. Hence, if we define M, = {m € M |r = —t1,,}, we have that

Iz i e e i tm Jm—2 ;
d{j’yr(- = § u'm+15ll Rk (Ofm-l-i) e '? Fhm q(am—l)-
meM,

So the equality we wanted to show becomes

Z afrt+lg£n1+l (a'm.-l-ﬂ) T '.qimé_lk,m_z(am—l) -
meM
n—1

— Z Z '51'1'1?.-!—1th-'—1 (C‘fm+2) e gtmﬂ'm_g(ﬂ'm—l)s

r=0 meM,

but this holds because M = | |~ M,.

Proof of (bl). Since ¢ € C(ii) we can write

g1 (ay) ¢ t
c: ey =8 — g1 (g1-1) > > g (e2) > €] > €0




Recall that by definition p(¢) = ts. Let M = {m € {1,...,l} |a = oy, }. Then

0
('355“ = c‘)dc"ifg‘p{“) ((.1’2) (543 ey =
—_—~ i
s ~ SH o —nle ) =g g —
r— § Qe y " a g p(c) (032) Qg Q1 —
meM

=) (@mn ®g™+) - (a1 ®e,)(g7(a2) ®1) -+ (a1 ® g™ 1)

meM

Now, recalling that Zﬁ;é e, = 1 and (T%e, = g%e,, we get

n—1 n—1
S0 = 3 Y (amar @9 (a0 8 (e, ) (g7 (a2) ®11) -
u=0 meM pu=0

. ((}f‘m,—] @ gtm.—l.) —
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= (amp ®g™ ) (1 ®g2)(g7%(02) ®1) -+ (a1 ® g™1) =

meM

=) (@mp1 ®g™) - (01 © g") (02 ® 67) -+ - (A1 ® g ) =

meM

q T+ tin —2 —tm
= 2 Qi1 y ! l(a'm,-l-ﬂ) ey o q(a'm—l) ® g L
meM

The rest of the proof of part (bl) is analogous to that of part (al).

. We have that

oW®l= Z a(c)0,c® 1+ Z a(c)0ac® 1

c of type (ii) ¢ of type (iii)
and
n—1
ZBQMHG—Z Z a C)ZC_TJMUB H"—I-Z Z alc )Zd .
=0 =0 eeC(ii) p=0 ceC(iii)

The statement will be proved using the following two claims:

Claim (a2). If ¢ € C(ii), then 9zué = 0 for u # v and

n—1 n—1
Sorest =3 crrge
=0

Claim (b2). If ¢ € C(iii), then 93:¢ = 0 for u # v and

n—1

BaC®1 =Y Oand".

p=0
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Assuming these claims hold, let us prove the statement. First notice that if ¢ € C(iii)
and a € h*c, then h = 1. We have

|Ge|—1
Y. aQdec®l= Y > alg"*xc)dulg xc)® 1=
c of type (ii) ceC(ii) r=0

= Z ia(c‘)@ag’"ctg) l =

ceC(ii) r=0
n—1
- Z ”'(C)Zg_p{c)#adﬂé”:
ceC(ii) pu=0

n—1 n—1

= Z Z a(c) Z (PO G

u=0 ecC(ii) v=0

and
|Ge|—1

Z a(c)Oc®1 = Z a(g" *c)0a(g" *xc) ®1 =

¢ of type (iii) ceC(iii) r=0

Z a(c)0pc ®@ 1 =

ceC(iii)

n—1

= > a(0)) Oaud =
ceC((jii) p=0

n—1

= Z Z a(c) Z Oanc”
v=0

u=0 eeC(iii)

which together imply that

n—1

0V @1=> 0auWe.

p=0
It remains to prove the claims (a2) and (b2).
Proof of (a2). Since ¢ € C(ii), we can write it as

-1 (n
g b=t ay) t z a5} aq
| —————— 9'1,1—1(5!_1) TR 5 gf2(52) > £1

-
"
=

C.&y=

0

If a & g"c for all r then the statement is trivially true. Otherwise, suppose a € g"c
for some r. Then, since « is of type (2), we necessarily have that r = —1y and
a = g7 "2(ay) is the only copy of a in g~*2¢. Hence

—_—

bk Ao f ; ey P! SRR el et P
& =ajg 2 (ag) @z = aja"ay - -+ ay
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and Oz = 0 for p # v. We have

aduff“ = aa.u("i’“fifg e &d(? =
= @3 s Ekg(‘i:"f =

= (3®9%) (0 ®g")(a1 ®ey)

so that (recall that t5; = 0 (mod n))

n—1 n—1
3t = 3 (s © )+ a0 © 4o @ g'%,) =
=0 pu=0

= 3 (g () - g () ® 7)o @ €,)(1 @ g*) =

n=0
= a3g®(ay) -+ g3 (ag)g™ (01) ® 1 =
=0, %c®1 =

n—1
- Z Oag c® 1,

r=0

which proves the claim.

Proof of (b2). We have, since ¢ € C(iii),

ﬂl\.

7 £,

i
C: 80285—F>85_1 e TR

~
on
=

with @&« = «;, and observe that this is the only instance of o in ¢. Setting b; =
b(ci)+---+b(ay) for i > 3, we have ¢ = ci:”(’i;_b3&§_b“ - @y, 80 Ogn® = 0 for p # v.
We can compute

. 5H — g, Az i—ba s p—by mp
OanC = Oznal'aly 20y '---0y =
= p—b3 ~ p—by el

= Gl Gl =
= (e ® eypy) (3 B €ypy) - (i ®€y) =
=y -y Xe, =

= d.c8 €y

so that

n—1
z Osut = O,c® 1

=0

as claimed.
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3. We have that

oWel= Z a(c)O,c @1+ Z a(c)0,c® 1

e of type (ii) ¢ of type (iii)
and
n—1 n—1 n—1
Souito =5 5w S erne s 5 a0 o
=0 n=0 ceC(ii) r=0 u=0 ceC(iii)

The statement will be proved using the following two claims:

Claim (a3). If ¢ € C(ii), then dzu¢” = 0 for p # v and
n—1

d,c®1 = Z C_p(c)“(%{pé“.

©=0

Claim (b3). If ¢ € C(iii), then dz.& = 0 for u # v — ¢(c) and

n—1

) c@l—ZO Lot

=0

Assuming these claims hold, let us prove the statement. First notice that if ¢ €
C(ii) UC(iil) and o € h * ¢, then h = 1. We have

|Gel—
Z a(c)0ac® 1 = Z Z a(gh *c)0a(g" xc) R 1=
¢ of type (ii) ceC(ii) =0
= Z a(c)0pc ® 1 =
ceC(ii)
n—1
- 3w S -
ceC(ii) u=0
n—1 n—1

:Z Z alc ZC p(c}ua &

p=0 eeC(ii) =0



and
|Ge|-1
Z a(c)O,c® 1 = Z a(g" xc)0a(g" xc) @1 =
¢ of type (iii) ceC(iii) r=0
= ale)dje® 1=
ceC(iii)
n—1
= a(c) Z Ogndt ) =
ceC(ii) p=0
n—1 n—1
Y S e
pn=0 ceC(iii) =0
which together imply that
n—1
W1 = Z s We.
p=0
It remains to prove the claims (a3) and (b3).
Proof of (a3). We have, for ¢ € C(ii),
gt (ay) t o t g ar
c:e9g=¢g — gi-1(g_4) y e > 2(e2) y €1 » &g,

where @ = ay, and this is the only copy of a; in ¢. Hence ¢ = @"g~2(ag) as---

and 9z = 0 for p # v. Then
—
Ozu = Oznat' g2 (a)ag - Gy =
—

= g_f'” (CIQ)&S ey =
=(1®el)(g7"(a2) ®1) (a3 ® g") -+ (u ® g")

and so
n—1 n—1
O =Y (18 €,)(1®g?) (g™ (02) ®1)(a5® g°) (1 ® g*) =
p=0 =0
— ((-_142 ® Qm)((-‘éa ® gt:s) . (C‘ix & gn) _
=8,e®1

as claimed.
Proof of (b3). We have

o
[t 8028;—£>€£_1

~
-
m
=
-
n
=

7id |



o Skew group algebras of Jacobian algebras and 2-representation finite algebras

with @@ = as, and again observe that this is the only instance of a in ¢. Write b; =
b(a;)+ -+ blay) for i > 3, and recall that b3 = ¢(¢). Then ¢ = aya”~ bs(i‘;_b" ceedy
50 Oauc” = 0 for u # v — q(c). Hence

= > b by—b. ~ p+-b:
aa_uc;ﬁq(() a “aiﬂ— 35 ,uagﬁ— i IO f+ 3

b ba—b ~ p+b b
QrilH- i ,uﬂ{;+ 304 in S(ch+ 3 _

= (a3 ® €utby—by) (U ® €ty ) (1 @ €ppiy) (1 ® 1) =
= (a3 01 @ €u1p5)(1 ® iy ) (1 ® 1) =
= (a3 ® epuip,) (1 ® 1)
80
n—1

Zﬁéué““L‘;’(c) =z ®1=0,,cx1
pn=0

which concludes the proof.
4. We have that

W ®1= Z a(c)0,c® 1+ Z a(c)dc® 1

¢ of type (iii) ¢ of type (iv)
and
n—1 n—1 n—1 n—1 n—1
n E OanWea =n E E (¢) E Oant +n g E a(c) E Oan”.
n=0 ceC(iii) =0 1=0 ceC(iv) v=>0

The statement will be proved using the following two claims:

Claim (a4). If ¢ € C(iii), then

n—1 n—1n~-1
Zﬁaq c®1= ZZ@M”".
p=0 =0

Claim (b4). If c € C(iv), then

n—1 n—1

c®1 = ZZ(‘J&,E’.

p=0 =0



Assuming these claims hold, let us prove the statement. We have that

and

>,

n—1

a(0)dac®1= Y Y a(g *xc)da(g" xc)®1=

c of type (iii)

2.

cec(iii) r=0
n—1

= > ) ("a(c)dalg 4 0) @1 =
ceCl(iii) r=0
n—1

= Y D a(c)dugc®l=

a(c)f,c® 1 =

c of type (iv)

which together imply that

O W ®

ceC(iii) r=0

p=0 c£C(iii)

n—1

) Z 6’“;4(

It remains to prove the claims (a4) and (b4).

Proof of (a4). Let us write, for ¢ € C(iii),

2
Eg =€ —

where 1 € £ and ¢; € £ for 1 # 1.

Let M ={me{l,...

have

£
UM

€11
—?'
'*J"'V Iy

Z Z a(g"*¢)0(g" xc) @1 =
ceC(iv) r=0
n—1
Z Z élo el =
ceCliv) r=0
n Z c)0,c® 1=
ceC(iv)
n—1 n—1
nz Z: af Z(}a,,
#=0 ceC(iv)
n—1
1=n) 0aWe.
=0
E1—-1 r R > £1 2 > £0,

_u—by _v—by
O:; 1 flz

A} a = a,} and put b; = b(a;) + - - + b(ay) for all ¢ > 3.

1
> s

We
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so we may note that, if m € M, the m-th arrow of ¢ is f'i;’?';b”‘“r‘_, and it coincides
with a* if and only if v = y + by,41. Hence

n—1 n—1 n—1 n—1

~ ~p—bg ~v—1 —b
E E Osut’ = E E Oan@iay Pag @) 'y =
p=0 =0 =0 =0

n—1

. E E ~|U+bm+l bm+2 . (‘i_.M+b7n+l (‘i:ﬂ-+b?n+la:l#+bm+l_b3 . -;t.-l—bm;—l_bm _

= Qg1 X Xy 9 R —
=0 meM
n—1

- Z Z (Qms1 ® €putbnyn—b mu) e (® Eici B
=0 meM

(1 ® eﬂ+bm+1)(a1 ® 1)(“‘2 & eﬂ+b:n+l_b3) e (a’m—l ® {%#&+bm+1—bm) =

= Z Z (am-l-l wie iRy & e_u+bm+1 )(Ofla2 =it i) (¢ e_:_.r,-{-b,,,_;_l—b.m) —

p=0 meM
n—1 n—1
=3 +bm ok ==
= E E E Cz('“ +l}(ar +1 0 & gt)(o‘la2 Qo1 ® ep-+hm+1—b-m.) —
p—O mEﬂI

T +fn1 i 5 '-J _—
= E ) = E Cz“‘ ) i1 - g gt (@1 Q1) ® Gty b =
= Omeﬂf " i=0

n—1

== E E - E C " Q1 -7 - Qg (ala? SR am-l) @ e,u.+-bm+| —bm —

p=0 mel ‘»1’ " i=0

n—1

b .
= E E — E Cz 30'-“m-l—l e (1591(‘110«’2) st -1 ® E,u-i—bm+| =ty

p=0 mEf\f " i=0

fl— ﬂ.—
= E : E . E dﬁg CQ Cptbpi1—bm =
p=0 me] U
f?'—
= E E anq c®1=
mEM

n—1

=—Zag(®1

which is what we wanted to prove.

Proof of (b4). Let

! %] o
i : Ef} — i€} £1-1 e

ry
—

€0,

where g; € £" for alli = 1,...,1. Let M = {m € {1,...,l}|a = a;,}, and put as
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usual b; = b(ay) + - -+ + b(ay) for all i. We have

~v—by _v—hg

- ~t—ho
al’ fat & i
it T EL L JEl-1 =1 e 2 £1 1 0
o m, ’ “u—b; ’ ’ nu—bg U
hence
n—1 n—1 n—1 n—1
- = 9~ ~u—by =p—by  sv—byzp _
p=0 v=0 p=0 =0
n—1

. “"Ilu-'l'bn?+| —bmy2 "’}-’-"'bn?-l-l —bm .
- E E Qi ey, g -

- Z Z (O‘:?n—'_]‘ ® e“+bvrt+l_bm+2) e ((_-Em_]_ ® e#+b:n+]_bm) -

=0 meM

— E E Qi1 Qp-1 ® Eutbmir—bm —

p=0 meM

= E Omia1 Qo1 ®1 =

meM
=0,c® 1,

and the claim is proved. O

3.4.3 Isomorphism of algebras
We are now ready to prove our main result.
Proof of Theorem [3.3.7. We will first prove that

kQc¢
(OWe | v € (Qa)r)

By Lemma [3.4.4] the right-hand side is isomorphic to

n((kQ) * G)n
(0,1 aW ® g7 | & of type (1),(2),(3),(4))

= n(AxG)n.

and by [57], §2.2,82.3] we have that kQg = n((kQ) * G)n via the isomorphism .J of §3.3.2)
For every arrow a of @ of type (1),(2),(3),(4), we can write (recall that for types (2),(3),(4)
we set t(a) =0)

J_l (ag_”‘”rxu/ ® g—t(o;}) = Z Lij

i,7€(Qc)o
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such that x;; are linear combinations of paths from i to j in kQg. By Lemma [3.4.7] every
nonzero x;; is associated in kQ)¢ to a unique element of the form 9, W for some v € (Q¢)1,
and moreover every nonzero d,W¢ appears in this way for some a. This means that

J ((O,We | 7 € (Qe)1) = (Ot W ® g1 | a of type (1), (2), (3), (4))

so the claim is proved. Now notice that by Lemma the ideal (0,Wg | v € (Qe)1) C
kQ¢ is admissible, so by Proposition we conclude that

kQc
(0,We | v € (Qa))

and we are done. O

P(Qe,Wg) =

3.5 Dual group action

It was proved in [57] that we can always recover the algebra A from A x G by applying
another skew group algebra construction. In this section we will show that in our case
this construction satisfies again the assumptions [(A1)H(A7)} and the potential we obtain
corresponds to the potential we started with.

Let A be a finite dimensional algebra and G be a finite abelian group acting on A
by automorphisms. We denote by G the dual group of G. Its elements are the group
homomorphism y: G — k*.

Theorem 3.5.1 (|57, Corollary 5.2]). Define an action of G on AxG by X(A®g) =

X(@A®R g, A€ A, g € G. Then the skew group algebra (A = G) * G is Morita equivalent to
A

We want to apply Theorem [3.5.1] to our setting, so we retain the notation of Section
(in particular we are assuming that A = P(Q,W)). Since G is finite and cyclic, there is
an isomorphism G = G. We can write G = {X0,---,Xn-1}, where we define x,, to be the
homomorphism which sends ¢ to ¢#. Put x = y1 and note that it is a generator of G.

Recall that, by Theorem we have an isomorphism P(Qq, We) = n(A*xG)n, where
n € A+G is an idempotent such that n(AxG)n is Morita equivalent to A+ G and (Qg, We)
is the QP described in §3.3.2]

We will now show that the process of getting back A from A % G is achieved via a
construction which satisfies the assumptions

Proposition 3.5.2. The dual group G acts on P(Qg, Wg) by automorphisms and the skew
group algebra P(Qq, We) * G is Morita equivalent to A. Moreover this action satisfies the

assumptions (A7)

Proof. Since n = £ ® 1 for an idempotent £ € A, we have that G acts trivially on 7 and
so the action of G on A * G restricts to an action on (A * G)n = P(Qg, We). Hence, by
[57, Lemma 2.2, we have that (n(A* G)n) * G is Morita equivalent to (A * G) %G, and the
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latter is Morita equivalent to A by Theorem So the first assertion is proved and we
are left to check that the action of G on (Qe, I/V(;) satisfies the assumptions
Assumption holds because G has the same order of G.
Ifee & then x(f) = x(e®1)=n°. Ife' € & and 0 < p < n — 1, then

1nl 111—1 _ )
X = X(e @) = - 3 (e @) = - 3 e g = 2 B epur = 11
i=0 i=0

Hence GG permutes the vertices of Q¢. In particular assumption [(A4)| holds.
Now we consider the action on the arrows of Q. Four cases have to be analysed.

(1) Let a be an arrow of type (1) in (. Then we have an arrow @ = a ® ¢ in Q¢ and
G acts on it as

(.1’) (Oc ®gi‘{a}) — X(gf.{a})a: ®g£‘{ct) — Ct{a)ﬂf ®gt(a) — gt(a}&‘
(2) Let a be an arrow of type (2) in Q and 0 < g < n — 1. Then G acts on & =
(I1®eu)(a®1) as
x@) =x((1e)(a®1)) =(1®eu)(a® 1) =at.

(3),(4) Let a be an arrow of type either (3) or (4) in Q and 0 < y < n — 1. Then G acts on
al' =a®e, as

x(@") =xa®e,) =a®eu = artt,

This proves assumptions |(A2)|and |(A3)]
From these calculations we can deduce how G acts on the cycles of Wi, Again we
distinguish four cases.

(i) Let ¢ be a cycle of type (i) and write & = @y - - - @;. Then, observing that t(aq)+---+
t(ay) =0 (mod n), we get x(¢) = ¢Hov++talg = ¢,
—_— 'u,
(ii) Let ¢ be a cycle of type (ii) and 0 < p < n — 1. Write & = afg 79 (ay) as---d.
Then we get y(&*) = (HoshtHiledgutl — c—tla) gt — PO+ gince t(ay) + -« +
t(ay) =0 (mod n) and t(ay) = 0.

(iii) Let ¢ be a cycle of type (iii) and 0 < p < n—1. Write & = afahal - - @)'. Then we
get x(¢#) = et

(iv) Let ¢ be a cycle of type (iv) and 0 < g < n — 1. Write & = a¥ a4 ™™ ... al' Mal,
Then we get x(¢*) = et
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So assumption is proved.
Finally we get that

XWe) =Y alox@+ > ale) Y ¢PMx(@)+

ceC(i) ceC(ii) =0
n—1 n—1
+ Y a0 x@+ Y a0 x@) -
cec(iii) p=0 ceC(iv) u=0
n—1
-3 a3 S ey
ceC(i) ceC(ii) p=0
n—1 n—1
D ITCIILLESD SRIC)
ceC(iii) =0 ceC(iv) p=0
=We,
so the potential Wy is fixed by G and thus assumption holds. O

To sum up, we have an action of G on the Jacobian algebra P(Qa, W) which satisfies
the assumptions Using the procedure described in Section we can construct
from it a new QP ((Qg)a, (We)a) whose Jacobian algebra is Morita equivalent to A. Now
we want to construct an explicit isomorphism P((Qa)ea, (Wea)ea) = A

Firstly, let us give an explicit description of ((Q(,)C (We)a)-

Let £ = EG U EG, where E¢ = {n5|c € £"} and ¢ = {n° |e € £'}. Then & is a set of
representatives for the orbits of the action of G on Q(_v The elements of £, and &/, have
orbits of cardinality n and 1 respectively.

The arrows of Q¢ can be divided into four families, according to whether their starting
and ending points are fixed or not by the action of G.

(1) Arrows between two non-fixed vertices. These are all the arrows of the form a*: 7, —
?}f:_b(a), where a : ¢ — £ is an arrow of type (4) in Q and 0 < g < n—1. Among them,
the arrows which are of type (1) with respect to the action of G on () are the ones
which end in &, i.e., the ones of the form &) . U 15 . Since Mo(a) = @ (n5),
we have that ¢(@"®) ) = b(a).

(2) Arrows from a non-fixed vertex to a fixed one. These are all the arrows of the form
ot ot — 7, where o : ¢ — ' is an arrow of type (3) in Q and 0 < p < n — L.
Among them, the arrows which are of type (2) with respect to the action of G on

g Yp p
Q¢ are the ones which start in £, i.e., the ones of the form a°: nj — .

(3) Arrows from a fixed vertex to a non-fixed one. These are all the arrows of the form
at:nf — -?}f;, where a : ¢ — &' is an arrow of type (2) in Q and 0 < p < n — 1.
Among them, the arrows which are of type (3) with respect to the action of G on
Q¢ are the ones which end in &/, i.e., the ones of the form a°: n° — n_ﬁf.
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(4) Arrows between two fixed vertices. These are all the arrows of the form a: 77 — 77,
where o : £ — &' is an arrow of type (1) in Q. All of them are of type (4) with respect
to the action of G' on Qg. Since x(@) = ¢'®a, we have that b(a) = t(a).

We deduce that the quiver (Qg)s is made as follows. Its vertices are nj ® 1 for e € £”
and n° ®e, fore € £, 0 < v < n — 1, while its arrows are the following:

(1) B: @1 =15 ®1, where 8 = @ and a : ¢ — ¢’ is an arrow of type (4) in Q,

(2) B o1l — 7 ®e,, where f =a%, 0 <v<n-1and a:e— ¢ is an arrow of
type (3) in @,

(3) B Qe, = ®1, where 3 =a% 0<v<n—1and a:e— ¢ is an arrow of
type (2) in Q

(4) B e, =N & Cy—t(a), Where f =a, 0 <v <n-—1and a:c— € is an arrow
of type (1) in @

Proposition 3.5.3. Let ¢: (Qg)a — Q be the morphism of quivers defined as follows.
e J(E®1)=¢ fore e &”.
o $(F ®e,) =gHe) foree &, 0< p<n—1.
° qb(é) = a, where f = a"® and a is an arrow of type (4) in Q

#(BY) = ¢“(a), where f =a°, 0 < v <n—1 and a is an arrow of type (3) in Q.

° cb(@”’) = g(a), where 8 =a°% 0 <v <n—1 and « is an arrow of type (2) in Q
o @(3”) = ¢" " (a), where B=a, 0 < v <n—1 and a is an arrow of type (1) in Q.

Then ¢ is an isomorphism and, if we extend it to an isomorphism between the corresponding
path algebras, we have ¢((Wg)g) =W

Proof. We first note that ¢ is a well defined morphism of quivers. Moreover, by what we
observed earlier in this section, ¢ is a bijection on both the sets of vertices and arrows,
thus it is an isomorphism.

Given the set &g defined above, we can chooso a set Cg = {d|d cycle in Wg} of repre-
sentatives for the * action of G on cycles as in We have that Cg = Cg(i) U Ce(ii) U
Ce(iii) U Cq(iv). We now describe each of these four sub%ets and show where their elements
are sent by ¢. We use the notation ¢, ; of the proof of Lemma [3.4.7,

(i) Cycles of type (i) in Q¢ are the ones of the form d = ¢, where ¢ € C(iv). If we write
~p—bo ~p—by ~ u—by ~pe—by ~

¢ = ay - - - oy for some arrows o; of type (4) in Q, then & = & 2a, ™~ a4 ---a)_"ay,
where b; = b(;) + - - - + b(y). Hence we can choose d = a;™d;%a;" - a; "a =
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¥, and Cc.'(l) is the subset of all the cycles of this kind. Moreover we have that
d= BB, where 8; = a"*". It follows that

(D(d) = (f)(gl ‘e 3{) =@y =C.

Let us now look at the coefficient a(d) of d as a summand of W¢. The cycle ¢ of W
gives rise to a number z = |Gé#| of distinct cycles in Wy (this does not depend on
the choice of p). Then a(d) = a(c)%.

Cycles of type (ii) in Q¢ are the ones of the form d = ¢, where ¢ € C(iii). If we write
¢ = apag - -aq for a; of type (2), ay of type (3), and as, ..., of type (4) in Q,

b ~u—b bi
then ¢ = afo:‘; *o.ff te-a) M al, where we write b; = b(aq.)%— -+ b(ay). Hence we

obtain that d = a9, ®az" - - - a; b{a? =", and C¢(ii) is the subset of all the cycles
of this kind. Moreover we have that @ = 5Y35fs - - - 5, where 81 = a9, 8, = @J and

B = uf{ ) for i > 3. It follows that (recall that by definition g(c) = bs)
¢(d) = ¢(.3{’5”f§3 cB) = g"(e1)g” (ea)ars - oy = (" () = (9g"(c).

Note that 8y = 5% . This implies that p(d) = —q(c) and so ¢(d) = P Dg”(c).

Cycles of tvpe (iii) in Q¢ are the ones of the form d = &, where ¢ € C(ii). If we write
¢ = arang?(asz) -+ g1 () for ay of type (3), ag of type (2), and as,...,qq of type
(1) in @, then ¢ = & g“*z(ag) (g - . Hence d = ng_tz((lg) ag---ay = ¢, and

— 0

Cq(iii) is the subset of all the cycles of this kind. Now define 3, = a¥, B2 = g2 (az)
and 3; = & for i > 3. Recall that, for i > 3, x(8;) = ¢! 3, so b(B;) = t(a;). If
we put b, = b(3;) + - - - + b(B) for i > 3, we have that d” = B35 335" . .. 3;’_‘1*’*5;’ /
Then

d(d”)

G(BYBY S BT BB =

= ¢"(a1)g" % (g7 (e2))g" "7 (ag) - - - g7 (o) =
= g"(c1g™? ()9 4 (au3) - - - g~ (ew)) =

= g" (19" (as) - g (ay)) =

= g"(c).

Cycles of type (iv) in Q¢ are the ones of the form d = ¢, where ¢ € C(i). If we write
c=a19" (ag)g"?(az) - - - g1 (ay) for a; of type (1) in @, then ¢ = G, ---&;. Hence
d = d, and Cg(iv) is the subset of all the cycles of this kind. If we put 3; = a; for all
i, then d” = ,Bj""zﬁg“’?é;""* ---5;__16*3!" . It follows that

o(d) = p(By By B B BY) =

. qu bl — i‘(m)( )gu bl — I{Og)(a ) Ju .t(ru)( I) -
= g"(ang" (ap)g"*(az) - - g () =
= g"(c).
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Now we can write (W) as follows:

n—1

|Gd] 5 b
We)s = ’ pld)e vy
Wele= D ald)——d+ Z“ a(d) Y ¢ dvy
deCe(i) deCe (i) v=0
n—1 N n—1 N
S w@SEr Y and -
deCg (iii) v=0 deCe(iv) v=0
ﬂ_'
=Y a0t Y a@ S oy
ceC(iv),d=e" (:EC(iii),d:(U =0
n—1 |GC| n—1
F Y S 3wl
cec(ii) d=2 v=0 cec(i).d=a
Applying ¢ we get
n—1
d(Wa)e)= D, al@sd+ D ale)d ¢"9¢(d")+
ceC(iv),d=c" ceC(iii),d=e" v=0
n— |G(| n—1
CS S 3 a0l -
ceC(ii),d=c" v= ceC(i).d=¢ =0
n—1
. Z a(f?)c oe Z G,((_‘) Z Cq(c)rzc—c;(c)fzg;z(c)+
ceC(iv),d= cec(iii),d= v=0
n—1 |GC| n—1
P Y wSrer ¥ a0l
ceC(ii),d=c" =0 cel(i),d=¢ n =0
L Ge
= Z t’l(C)(-‘—I-Zg” Z a(c)e+ Z a(c)e + Z a(c)
ceC(iv) v=0 ceC(iii) eeC(ii) ceC(i)
= W O
Corollary 3.5.4. Let 0 be the idempotent qut s®1 in (n(A=G)n) = G. Then the

isomorphism of quivers ¢ : (Qg)a — Q induces an isomorphism of algebras
0 ((w (A*G)n) * é) 0= A,

where A = P(Q, W).
Proof. Applying Theorem to n(A = G)n with the action of G, we get

0 ((1(A%G)m) x G) 0= P((Qa)e, (Wa)e),

and the latter is isomorphic to P(Q), W) by Proposition m O
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3.6 Planar rotation-invariant QPs

Our main result Theorem is about skew group algebras of Jacobian algebras of QPs,
but it only applies under some assumptions on the group action. There is however a class
of QPs which satisfy these assumptions, as well as a way of generating many examples in
this class. To define this class, we follow [29] and associate a CW-complex to a QP called
its canvas. First we need to fix some notation.

We denote by D the d-disk and by S9! = dD? the (d — 1)-sphere in R?. We suppose
that D' = [0,1] and S° = {0,1}. A CW-complex is a topological space realized as a
union (Jye;, X% where X is a discrete space and each X is obtained from X! in the
following way. For each d there are a set {D%},c;, of copies of the d-disk and continuous
maps @, : S(‘f_l = 0D? — X9, such that we have a pushout diagram

|-—I S;f-‘[ () Xd_]

acly

l

|_| D:f (£a) xd
acly

in the category of topological spaces with continuous maps (the left vertical map is given
by the inclusions of S¢! as boundaries of D?). For d > 1 the image of the interior of
D;f under £, is called a d-cell. The elements of X are called O-cells. We say that X has
dimension m if X = X™.

Definition 3.6.1 (|29, Definition 8.1]). Let (Q, W) be a QP and let )3 be a set of rep-
resentatives modulo comg of the cycles which appear in W. The canvas of (Q,W) is
the 2-dimensional CW-complex X(q ) defined in the following way. Its cells are indexed
by the sets Xg = (g, 1 = @1, 5 = ()3. For each a € (; we have an attaching map
Ga: SY — X defined by ¢,(0) = s(a) and ¢,(1) = t(a). If c= ap---q)_1 € Qa, we define
the attaching map ¢.: S} — X; by

O (cos (ZT?T(s “+ t)) ,sin (QTW(J, + f))) = Eq,(1)

fori=0,....,l—1and te[0,1).

Remark 3.6.2. In other (imprecise) words, the l-skeleton of X(g ) is the underlying
graph of ), and we attach 2-cells along the cycles appearing in W.

Definition 3.6.3 (|29, Definition 9.1]). A QP (Q, W) is planar if it is simply connected
and there exists an embedding of X (g ) into R2. We call it strongly planar if it is planar
and X (g w) 1s homeomorphic to a disk.
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If (Q,W) is a planar QP, then by [29] Proposition 9.3] the embedding of the quiver @
in R? determines the Jacobian algebra, so we can assume that the coefficients in W are
+1 for the clockwise faces, and -1 for the anticlockwise faces.

Definition 3.6.4. Let (QQ, W) be a planar QP and G be a cyclic group acting on ). We
say that G acts on (Q, W) by rotations if:

e there is an embedding of X ) in R* such that the action of a generator of G is
induced by a rotation of the plane;

e the action of G is faithful;

e assumption is satisfied.

Notice that in this case the image im(G) C Aut(Q) is necessarily finite. For simplicity,
we will identify G' with im(G).

We remark some facts which follow immediately from the definition, and directly imply
that this class of quivers falls within the scope of Theorem [3.3.7]

Lemma 3.6.5. Let G act on a planar QP (Q,W) by rotations. Then the action of G

satisfies the assumptions [(A2}{(AT)

Proof. A rotation permutes the vertices and maps arrows to arrows, so assumptions
and are satisfied. There is at most one fixed vertex, and there can be no loops at that
vertex because we are assuming ; 80 assumption holds. Since we are assuming
that G acts faithfully, we have that every vertex which is not fixed has order the order of a
rotation generating G, hence assumption is satisfied. Assumption [(A5)| holds because
G maps faces of X(gw to faces. Finally, assumption holds by definition. O

There is a way of producing strongly planar QPs with a group acting by rotations
by means of so-called Postnikov diagrams (see [56], [9], [54]). A Postnikov diagram is a
collection of oriented curves in a disk subject to some axioms depending on two integer
parameters a,n > 1, and it naturally gives rise to a planar QP. For this result we need to
assume that k = C.

Theorem 3.6.6 (|54, Corollary 7.3]). An (a,n)-Postnikov diagram is invariant under ro-
tation by 2:’—‘1“ if and only if the corresponding QP s self-injective. In this case, a Nokayama
automorphism is given by this rotation.

In particular, there is a finite cyclic group acting by rotations on a planar QP, so we
can apply our construction. We include an unpublished result to justify the claim that
Postnikov diagrams give rise to many examples. Namely, rotation-invariant Postnikov
diagrams exist and in fact abound.

Theorem 3.6.7. [53] There exists an (a,n)-Postnikov diagram which is invariant under
rotation by 2% if and only if a is congruent to -1, 0 or 1 modulon/ GCD(n,a). In particular
there are infinitely many self-injective planar QPs with Nakayama automorphism of order
d, for any choice of d.
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Remark 3.6.8. There exist self-injective planar QQPs with Nakayama automorphism acting
by rotation which do not come from Postnikov diagrams. For instance, the quiver of the
3-preprojective algebra of type A, (see Example [.8.1)) with n odd.

We conclude this section by observing that Theorem [3.3.7] can be naturally applied to
any self-injective QP where the Nakayama automorphism satisfies our assumptions. In this
case we get:

Proposition 3.6.9. Let (Q, W) be a self-injective QP with Nakayama automorphism ¢ of
finite order. Call G = (p) C Aut(P(Q,W)), and assume that the assumptions
are satisfied. Then P(Qa, W) is symmetric.

Proof. By Theorem P(Qa, W) is a self-injective algebra which is Morita equivalent
to A x G. The latter is symmetric by Corollary using Lemma (3.2.5] O

Combining this with our previous discussion, we remark that by Theorem there
is a symmetric Jacobian algebra associated to every rotation-invariant Postnikov diagram.

Corollary 3.6.10. If (Q, W) is a self-injective QP coming from a Postnikov diagram with
Nakayama automorphism ¢, then P(Q ., Wiyy) is symmetric.

These results are illustrated in Example

3.7 Cuts and 2-representation finite algebras

Let (Q,W) be a QP assume that a finite cyclic group G acts on P(Q, W) satisfying the
assumptions We want to understand when a cut in (Qg, W¢) can be induced
from one in (Q, W). We call a cut in (Q, W) invariant under the * action of G a G-invariant
cut.

Proposition 3.7.1. Let C be a G-invariant cut in (Q,W). Then the subset Cg = Cy U
CoUC3UCy of (Qa) defined by

C — {& | a€C of type (1)}, C, = {&* | aeC oftype (), 0 < p<n-—1}, z=2,3,4,
is a cut in (Qg, Wg).

Proof. In order to show that Cq is a cut in (Q¢, W), we shall prove that every cycle in
We has degree 1 with respect to dc,,. Thus we have four different cases to consider.

(i) Let ¢ € C(i), so ¢ = ai1¢" (ag) - -~ g T Th=1(q,) for some arrows «; € Q; of type (1).

Then W contains the cycle ¢ = @y -+ - @y and, since C' is G-invariant, we have

1 [
deg(@) = D dee(@) =Y dela) = Y do(g"+ (@) = de(c) = 1.
i=1 =1 i
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(i) Let ¢ € C(ii), S0 ¢ = ayasg?(ag)--- g2t thi-1(qy) for a; of type (3), ay of type
(2) and 0/;, ...,aq of type (1). For ea.ch i = 0,...,n —1 we have a cycle &* =

—_——

1942(042) ag---ap in We and

dog () = de (aY) + dog (972 (a2) ) + Z deg (@) = Z do(i) =
=3 i=1
i
= 3" de(g* 1 (ay)) = dele) = L.

i=1

(iii) Let ¢ € C(iii), so ¢ = ayag - - - oy for oy of type (2), ay of type (3) and asg,...,aq of
type (4). For each = 0,....n — 1 we have a cycle & = @'al™". Y7 lb*ag in Wg,

where b; = b(a;) + -+ - + b(ey). Hence

{ 4
de () = deg (@) + Y deg (a7") =Y do(ay) = de(c) =

=2

(iv) Let ¢ € C(iv), so ¢ = aqay - - - oy for a; of type (4). For each = 0,...,n—1 we have
a cycle & = @ 2al™™ ... @ 'a" in Wg., where b; = b(ay) + - - - + b(ev). Hence

i {
deg(#) = dog (@) = > de(es) = do(e) = 1. O
=1 =1

Observe that from [46, Corollary 1.6(1)], 2-representation finiteness is preserved by
taking skew group algebras. Thus it follows from Theorem [3.1.3| that the property of being
a truncated Jacobian algebra is also preserved. In our setting, the corresponding cut on
(Qa. Wg) is precisely Cg:

Proposition 3.7.2. Let C' be a G-invariant cut in (Q, W) and let Cg be the cut constructed
in Proposition|3.7.1. Then the action of G on P(Q, W) restricts to an action on P(Q, W )¢,
and the skew group algebra (P(Q,W)c) * G is Morita equivalent to P(Qg, We)cy -

Proof. Call A = P(Q, W) and let Ay be its degree 0 part with respect to the grading de,
so Ag = P(Q,W)c. The fact that C is G-invariant implies that G preserves the grading,
so the first assertion holds.

Now note that we can define a grading on A * GG by assigning degree de(x) to x @ h
for all h € G and all homogeneous elements x € A. Moreover this induces a grading on
n(A* G)n and we have that (n(A*G)n)o = n(Ao * G)n. Hence, in order to prove the claim,
it is enough to show that the grading on T;(A * G)n coincides with the grading d¢,, on
P(Qa, W) under the isomorphism (A x G)n = P(Qq, We). But this follows immediately
from the definition of Cg, since both algebras are generated in degree 0 and 1 and the
elements of degree 1 in n(A * G)n are exactly the ones given by Cg. O
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Let (Q,W) be a self-injective QP with a group G acting as per the assumptions
Then (Qg, We) is self-injective, so its truncated Jacobian algebras are 2-
representation finite. In the spirit of [29, §7], we will give sufficient conditions on (Q, W)
for the truncated Jacobian algebras of (Q¢g, Wg) to be derived equivalent to each other.

In the following discussion we do not need to assume self-injectivity.

Definition 3.7.3. We say that (Q, W) has enough cuts if every arrow of @) is contained
in a cut. We say that (Q, W) has enough G-invariant cuts if every arrow of @) is contained
in a G-invariant cut (cf. [29) Definition 7.4]).

Lemma 3.7.4. If (Q. W) has enough G-invariant cuts, then (Qq, Wa) has enough cuts.

Proof. Let 8 € (Qa)1, so B = @ or § = a* for some a € @;. Let C' be a G-invariant
cut in (Q, W) containing «, then the cut Cg; in (Qg. We) constructed in Proposition [B.7.1]
contains 3. O

To use the results of [29], we need to study the topology of the canvas of (Qg, Weg).
We will do this in the case of GG acting by rotations on a strongly planar QP.

Proposition 3.7.5. Let (Q, W) be a strongly planar QP with a group G acting by rotations,
and assume that there is a vertex of Q fired by G. Then X (g w,) is simply connected.

Proof. Let us decompose Xgw) = U UV, where V is the subcomplex consisting of all
the faces adjacent to the central vertex, and U is the subcomplex consisting of the other
faces. Since (Q,W) is strongly planar, X(gw) is homeomorphic to a disk. Note that if
G is trivial, then the statement is immediate. Otherwise, this implies that the central
vertex ) has a neighbourhood in X w) which is itself homeomorphic to a disk. So V is
homeomorphic to a disk as well. Thus V looks as in Figure where «;, 3; are arrows,
7i,0; are paths, and all cycles a;v;3;, a;110;5;, and a10;3; bound faces. The action of a
generator g of G is given by adding a to indices. By picking g suitably, we can assume that
an = [, where n = |G|. We choose as representatives of vertices a set £ which contains
{Q,Py,..., P, @Q1,y.-.,Qa} . Observe that G acts freely on U and it also acts freely on
Uunvy. Thcn X(QeWe) = — U UV, where V is as in Figure [3.2] and U = Z/{/G is the quotient
space of U by G, by our construction of Q. In the picture we denote by 0; the product of
d, where d is an arrow of §;, and similarly for 7;. We have that I is attached to V along
UNV)/G =UNV. Now observe that since X () is simply connected, it must retract, to
V. In particular there is a deformation retraction F' between U and U N V. We choose F
such that it commutes with the action of G on Y. Then there is an induced deformation
retraction F' between I and & N'V. In particular X(Q¢.we) Tetracts to V, so they have the
same homotopy type.

We need to describe the faces of V. Let us look at the set of cycles in W involving only
vertices in V. These are 18101, . . .,YBa0q, 015109, . . ., 048.04+1 and their orbits. These
cycles are all of type (ii), so we have
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Figure 3.1. The subcomplex V of X (g w).

for i = 1,...,a, with the notation &%, = &Y. Now fix p € {0,...,n—1}. Then Q" is
contained in every 7;4'd", in every &;3/'é", ,, and no other cycle in Wg. The subcomplex
consisting of the faces corresponding to these 2a cycles is a disk with center Q*. Thus V
consists of n disks glued along their boundary 5,,, Y 151'"‘}1_ ! and therefore has the homo-
topy type of a bouquet of spheres. In particular it is simply connected, which concludes
the proof. O

In Example we proceed as in the proof of Proposition to determine the
canvas of (Qg, Wg).

Remark 3.7.6. If G acts on a planar QP (Q,W) by rotations and (Q,W) has a G-
invariant cut, then ) must have a central vertex. Indeed, () has either a central vertex or
a central cycle, but on a central cycle one cannot choose exactly one arrow in a way which
is invariant under rotations.

In the self-injective case we have the following result.

Theorem 3.7.7. Let (Q, W) be a strongly planar self-injective QP, with a group G acting
by rotations and enough G-invariant cuts. Then all the truncated Jacobian algebras of
(Qa. Wg) are derived equivalent to each other.

Proof. By Lemma (Qa, W¢) has enough cuts. By Proposition m, X(0uwe) 18
simply connected. Then we conclude by [29, Theorem 8.7]. O

In particular, note that this result applies to QPs coming from Postnikov diagrams,
provided they have enough G-invariant cuts. It should be noted that we know of no
examples of a self-injective QP with a cut that does not have enough cuts, nor of a self-
injective QP with a G-invariant cut that does not have enough G-invariant cuts.
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P Y2 Q2

Figure 3.2. The subcomplex V of X Qe We)-

3.8 Examples

In this section we will illustrate our construction with some examples. For simplicity we
will assume that k = C, so the assumption will be always satisfied.

3.8.1 Examples from planar rotation-invariant QPs
As we have seen in Section [3.6] many examples where our construction may be applied are
given by quivers embedded in the plane with a group acting by rotations. Let us illustrate
some of them.
Example 3.8.1 (2-representation finite algebras of type A). A family of examples of self-
injective planar QQPs is given by 3-preprojective algebras of 2-representation finite algebras
of type A, which were introduced in [40] and are defined as follows.

Let s > 1 and Q = Q" be the quiver defined by

Qo = {(:17111725373) S Zg[} | Ty + Lo+ T3 =5— 1}:

Qr={airz—oz+fi|1<i<3, 2,2+ fi € Qo},

where f; = (—1,1,0), fo = (0,—1,1), f3 = (1,0,—1). The potential W is given by the sum
of all cycles of the form ajasas minus the ones of the form a;agzas.
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The Nakayama automorphism of A = P(Q, W) is induced by the unique automorphism
of @ given on vertices by (1,2, x3) — (23,21, 22). Then the group G generated by it acts
on () by an anticlockwise rotation by 27 /3. We may note that this action has a (unique)

fixed vertex if and only if s =1 (mod 3). In that case the vertex (%, 351, %) is fixed.

Proposition 3.8.2. If s =1 (mod 3), then Q') has enough G-invariant cuts.

Proof. Call zo = (35*, %54, 55%) the unique fixed vertex. Let L = {(xy, 22, 23) € Z* |21 +
r9+ x3 = 0} and note that it is a free abelian group of rank 2 with basis { f1, fo}. We may
embed Qy in L via the map x — & — x9. Note that the action of G on Qy can be naturally
extended to an action on L, which is again given by (x1, 9, x3) — (23, 21, T2).

Let w: L — Z/37Z be the group homomorphism defined by w(f;) =1 for i = 1,2, 3. For
each j € Z/37Z we define the following subset of @Q1:

CI,,,- = {ai: rT—=T+ f; |£v(12 — -T-o) = }}

Then C; is a cut (cf. [31, Example 5.8]). It is symmetric because w is invariant on G-orbits.
Moreover every arrow is contained in a cut of this type, so the statement follows. O

As an example, we illustrate the cut Cy of Q¥ in Figure [3.3]

060

/\

051 — 150

AYA

VAYAVAY
VAVAVAVAS
VAVAYAVAVAN
VAVAVAVAVAVAN

Figure 3.3. The quiver Q7). The cut Cjy is given by the thick arrows.

Now we will describe our skew group algebra construction for the quiver Q = Q™

(which is depicted in Figure .
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030

/ \

021 — 120

LA,
/NAN\

003 ——> 102 > 201 300

Figure 3.4. The quiver Q.

We can choose, for example, £ = {(0,0,3), (0,1,2),(1,0,2),(1,1,1)} as a set of repre-
sentatives of vertices. For simplicity we shall denote the elements of this set by {1, 2, 3,4}
respectively. Then Q¢ (depicted in Figure has vertices n*,n*, n*, ng, ni, n, which will
be denoted respectively by 1,2,3,4% 41, 42, We will also rename the arrows of type (1),
(2), (3) in Q. These are

a:1—=3, p:2—=1, 7:3—=2, 0:¢%3) =2 oftype (1),

0:2—4 of type (2),
A:4—3  of type (3).

We take C = {¢y1, 2, c3}, where ¢; = a3y is of type (i) and ca = A0y, c3 = Ag(0)g(d) are of
type (ii). Note that p(c2) = 0 and p(e3) = 1. Then we get

2 2
Wa=—aF7+ ) _ M5 =) (THI0"5.

=0 =0

2
L 34———-—‘""4

Figure 3.5. The quiver Qg)

By the results in Section , the dual group G = (x) acts on Q¢ as follows. The
vertices 1,2,3 are fixed, while y(4#) = 4**!, u = 0,1,2. The arrows &, (3,7 are fixed,
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x(0%) = 071 and (M) = AL 4= 0,1,2. Since t(d) = 2, we have y(8) = ¢26. Note
that, in the process of getting back the initial quiver using the isomorphism ¢ of Proposi-
t‘.ion the vertices 4°, 4", 42 give rise to the vertex (1,1,1) of @, the vertex 2 gives rise
to (0,1,2), (1,2,0);(2,0,1); 3 to (0,2;1);(2,1,0), (1,0,2) and 1 to (0,0, 3), (0,3,0), (3,0,0).

Example 3.8.3 (Self-injective QPs from Postnikov diagrams). In this example we il-
lustrate Corollary and (the proof of) Proposition . Let @ be the quiver of
Figure with the potential W given by the sum of the clockwise faces minus the sum
of the anticlockwise faces. Thus (@, W) is a strongly planar quiver with potential. It is
constructed from a rotation-invariant (4, 16)-Postnikov diagram, see [54, Figure 19]. By
Theorem [3.6.6, its Jacobian algebra A is therefore self-injective, with Nakayama automor-
phism ¢ induced by a rotation by 7. Let us consider the group G = (¢?). Then the skew
group algebra, A = GG is Morita equivalent to the Jacobian algebra P(Qq, Wg), where Qg
is depicted in Figure The canvas X, w,) is given by an octahedron in the middle
attached to an annulus made of all the remainining faces. Note that this describes the
potential W completely up to signs. This algebra is self-injective with Nakayama auto-
morphism given by ¢ @ 1, but it is not symmetric since its Nakayama permutation has
order 2.

If we instead take the skew group algebra construction with respect to (¢), we get the
quiver of Figure 3.8 Its canvas is an annulus consisting of the outer cycles, attached to
four disks sharing their boundary circle. These disks are subdivided into two triangles
each. Again note that describing the canvas determines the potential up to fourth roots of
unity. This algebra is symmetric by Corollary [3.6.10

N
AN
SNTIN
NN L
NVZNVZAN
L LN
SN/ 1/

/S
\

Figure 3.6. A self-injective QP with Nakayama automorphism ¢ of order 4.
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° E

Figure 3.7. The quiver of the skew group algebra A * (¢?).

Y

Figure 3.8. The quiver of the skew group algebra A * ().
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3.8.2 Examples from tensor products of quivers

The following family of self-injective QPs was introduced in [29, §5.2]. Let us recall their
definition.

Given two quivers @', @? without oriented cycles we can define a new quiver Q =
QR'®Q? with Qp = Qf x Q2 and Q; = (Q} x Q) U (@1 x @) U (Q} x Q). The starting

and ending points of the arrows of @ are given by
s(a,9) = (s(a), ), s(z,8) = (@:5(8)),  s(a,B) = (t(a), 4B)),
ta,y) = (Ha),y), tz,B)=(z,t(B)), ta,B)=(s(a),s(B)),

forx € Q), y € Q2, a € Ql, B € Q. We define a potential on @ by

W=Wag= . (atB)(s(),s)p) - (ta),s)(as(8))(f).

acQ] BeQ?

Now we consider group actions on k@Q. Let Gy = (g1) and Gy = (g2) be finite cyclic
groups and suppose that the following condition holds:

(*) either one of G or G is trivial, or G = Gs.

We denote by n the maximum of the orders of Gy and G5. Let G be the subgroup of
G, x G generated by (g1, g2), and note that it is cyclic of order n.

Lemma 3.8.4. Let Q', Q% G, G5 as above. Suppose we have actions of G; on kQ?, i =
1,2, which satisfy the assumptions (A1), [(A2) [(A4), [(A6), and:

(A3’) every arrow in Q' between two fived vertices is fived by G;.

Then the induced action of G on kQ satisfies the assumptions (A7)

Proof. Assumption holds by the assumptions on the orders of Gy and G5. The
assumptions [(A2)] [(A3)] and [(A4)| follow immediately by hypothesis. Now note that G
permutes the cycles of the potential W ®1‘ ., and every cycle is sent to a cycle with the
same coefficient. Hence GW = W. Finally, assumption is satisfied because all cycles
have length 3. O

If Q' and Q? are Dynkin quivers with the same Coxeter number and which are stable un-
der their canonical involutions (see [29, §5.2] for definitions), then (Q, W) = (Q'®Q?, W‘g’l:Qg)
is a self-injective QP by [29, Proposition 5.1]. Let g; and g be the unique automorphisms
of, respectively, Q' and Q? given by extending to arrows their canonical involutions.

Proposition 3.8.5. Let Q' and Q? be Dynkin quivers which are stable under their canon-
ical involutions and have the same Cozeter number. Let G be the cyclic group generated
by (91,92) and consider the induced action of G on Q = Q'®Q*. Then (Qa,Wg) is a
self-injective QP with enough cuts.
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Proof. Note that g; and g, have order either 1 or 2, so the condition for G, = (g1) and
Go = (go) is satisfied. The assumptions [(A1)] [(A2)] [(A3")] [(A4)] and [(A6)| for G, and G5
are immediately checked, so by Lemma [3.8.4] we can apply the construction of Section [3.3
to (@, W) and G. By [29, Proposition 5.1] (Q, W) is self-injective, hence so is (Q¢, W¢).
From the definition of I-'Vg] (o2 it follows that the subsets (Qg, Q7), (Q1, QF) and (Q1, QF)
of ; are all G-invariant cuts. Since every arrow of () is contained in one of them, we
have that (Q, W) has enough G-invariant cuts. Hence (Qg, W) has enough cuts by

Lemma B.7.4] O

Example 3.8.6. Consider the following Dynkin quivers:

OF: ° e ° ° ° Q*: e——o

Here Q! is of type A5 and Q? of type Dy, so they have the same Coxeter number. The
canonical involution of Q! is the reflection with respect to the central vertex, while the one
of @? is the identity. Hence the two quivers are stable and, by Proposition (Qa, We)
is a self-injective QP with enough cuts. The quivers @) and Q¢ are illustrated respectively

in Figures 3.9 and

Figure 3.9. The quiver Q'@Q?.

All examples we have illustrated so far are related to self-injective QPs. In the next
one we will consider a case where the QP we start with is not self-injective.
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Figure 3.10. The quiver (Q'@Q?%)¢g.

Example 3.8.7. Consider the Dynkin quivers

5 ,."_5” . Y s
g 2B g B, o2 i1y

and let Q = Q'®Q? (see Figure [3.11]).

Let g be the unique automorphism of Q' given on vertices by ¢(0) = 0, g(i) = i’ and
g(i") =i,i = 1,2. Then we can consider the action of the cyclic group G = ((g,id)) of order
2 on Q. If we applv the construction of Section [3.3| choosing as a set of representatives of
the vertices £ = {(i,4)|i,j = 0,1,2}, then we obtdm the quiver Qg of Figure - We
can take

C= {({Ea 5_1)([]! ’\J(,‘,-_)([];’ ’T-i)a (]-‘ ’Y?f)(as ?:)(051 Aff?'-)s (8" Qr_1)({1 ’}%)(ﬁ Hfi): (]-1 "J(‘,)(S, ’5)(#'3‘ Aj(i) I i = ]-'.' 2}
and obtain the potential

2
—— e T e e

We =Y (8,i—1)(0,%)(B%) — (1,7%)(B.1)(B, %)+

i=1

2
— N{,—-"“\-—._/ e e

1|
+3 S Bi=1)0,%) Bove) = (L) (B,a)(Bo)-

i=1 p=0
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(2! AF‘Z)

(2,1)

b

(2,2)

{."31 'T?)

(8.2)

(1,72) (1,2)

(('t? "f?}

(8,0) (8,1) (9,2)

@0 e B0 oy

Figure 3.11. The quiver Q'®Q>.

(2,0) (2,1) (2,2)
(1,0 (1,1) (1,2)
\\ | \\ | \

(0,2)!

0,0
(0,00°< (0,1)° (0,2)°

Figure 3.12. The quiver (Q'@Q?)q.

Remark 3.8.8. We may choose another basis for rad P(Q, W)/ rad®> P(Q, W) by replacing
(a,i) with —(a’, ) and (8,4) with —(8',4), i = 0, 1,2. In this way we get that P(Q, W) =
P(Q,W'), where W' is the potential defined as the sum of all the clockwise 3-cycles minus
the sum of all the anticlockwise ones. We have an action of G on P(Q,W’) such that
P(Q,W)*G=ZP(Q,W) =G, but note that in this case the assumption is no longer
satisfied.

Now let us consider the G-invariant cut ¢' = Q” x Q' in . We may note that the
truncated Jacobian algebra P(Q, W')¢ is isomorphic to the Auslander algebra of Q'. More-
over, by Proposition and what we observed above, we have that (P(Q,W)¢) * G =
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(P(Q,W')¢) * G is Morita equivalent to P(Qga, We)c,,. Notice that P(Qq, Wa)c,, is iso-
morphic to the Auslander algebra of a Dynkin quiver of type D4. This is no surprise, since
we know by [57, Theorem 1.3(c)(iv)] that skew group algebras of Auslander algebras are
again Auslander algebras.
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