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Riassunto

Questa Tesi é dedicata allo studio di alcuni operatori integrali della teoria del potenziale
parabolica rilevanti al fine di analizzare problemi al contorno per I’equazione del calore soggetti
a perturbazioni singolari del dominio con un approccio funzionale analitico gia noto per i
problemi ellittici, e all’applicazione di metodi di teoria del potenziale allo studio di problemi
di perturbazione di tipo ellittico. La Tesi ¢ divisa in due parti indipendenti. Nella prima parte
(Capitoli 1-3) dimostriamo nuovi risultati di teoria del potenziale parabolica e, in particolare,
studiamo le proprietd di alcuni operatori integrali associati ai potenziali di strato calorici,
mentre nella seconda parte (Capitolo 4) investighiamo il comportamento di un problema
al contorno ellittico rispetto a perturbazioni del dominio, utilizzando metodi di teoria del
potenziale.

La Tesi é organizzata come segue. Nel Capitolo 1 introduciamo uno spazio normato
di nuclei debolmente singolari che dipendono dalla variabile temporale, e proviamo alcuni
risultati di continuita per operatori integrali parabolici rispetto a variazioni sia del nucleo
nella classe di cui sopra, sia della funzione densita. Nel Capitolo 2 proviamo una formula
esplicita per le derivate tangenziali del potenziale di doppio strato calorico, e proviamo delle
proprieta di regolarizzazione per 1'operatore integrale associato al potenziale di doppio strato
calorico. Nel Capitolo 3 consideriamo i potenziali di strato calorici periodici nello spazio, e
risolviamo alcuni problemi al contorno periodici per ’equazione del calore. Infine, il Capitolo
4 ¢é dedicato allo studio del comportamento della permeabilita longitudinale di un materiale
periodicamente perforato rispetto a perturbazioni della struttura di periodicita e della forma
dei fori.

Alla fine della Tesi abbiamo incluso delle Appendici con alcuni risultati utilizzati.
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Abstract

This Dissertation is devoted to the study of some integral operators arising in parabolic
potential theory which are relevant in order to analyze boundary value problems for the heat
equation subject to a singular perturbation of the domain by exploiting a known functional
analytic approach for elliptic problems, and to the analysis of some elliptic perturbation
problems with a potential theoretic approach. The Dissertation is divided into two independent
parts. In the first part (Chapters 1-3) we produce new results in parabolic potential theory
and, in particular, we study the mapping properties of some integral operators associated
with layer heat potentials, while in the second part (Chapter 4) we investigate the behavior
of an elliptic boundary value problem under domain perturbation with a potential theoretic
approach.

The Dissertation is organized as follows. In Chapter 1 we introduce a normed class of time
dependent weakly singular kernels and we prove results of joint continuity of some parabolic
integral operators upon variation both of the kernel in the above class and of the density
function. Moreover we apply these results to some integral operators related to layer heat
potentials. In Chapter 2 we prove an explicit formula for the tangential derivatives of the
double layer heat potentials and we prove a regularizing property of the integral operator
associated with the double layer heat potential. In Chapter 3 we consider space-periodic layer
heat potentials and we solve some periodic boundary value problems for the heat equation.
Finally, Chapter 4 is devoted to the study of the behavior of the longitudinal permeability of
a periodic array of cylinders upon the perturbation of the periodicity structure and of the
cross sections of the cylinders.

At the end of the Dissertation we have enclosed some Appendices with some results that
we have exploited.
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Introduction

The Dissertation consists of two almost independent parts, which we now introduce.

First part

The first part of this Dissertation is mainly devoted to the study of integral operators arising
in parabolic potential theory which are relevant in order to analyze boundary value problems
for the heat equation subject to a singular perturbation of the domain by exploiting a known
functional analytic approach for elliptic problems, and it is contained in Chapters 1-3. We
introduce some notation in order to explain the content of this first part. Let

n e N\ {0,1}, a €]0, 1], m € N\ {0}, T €] — 00, +00].

Let © be a bounded open subset of R™ of class C™%. We denote

Qp =] —00,T[x 9, OrQ =] — oo, T[ x 09.

Let v = (11)i=1,... » denote the outward unit normal field to 0€2. Let ®,, denote the fundamental
solution of the heat equation in R'*™.

We are mainly interested in the mapping properties in parabolic Schauder spaces of the
boundary integral operator associated with the double layer heat potential, i.e., the operator
which takes a density function p from drQ to C and maps it to the function w[07, u]5,.0
defined by

¢
0
w[OrQY, pliapa(t, v) = / O, (t — 1,2 —y)p(r, y) doydr Y (t,x) € Opfd.
—o0 JON ay(y)

Layer heat potentials have been systematically exploited in the analysis of boundary value
problems for parabolic equations. Without being exhaustive we mention, e.g., Pogorzelski
[90] where the author, by means of layer heat potential, solves some basic boundary value
problems for the heat equation by solving the related integral equation with the Neumann
series method. Moreover, we mention the well-known monographs LadyZenskaja, Solonnikov
and Ural’ceva [58] and Friedman [38] where a large variety of parabolic problems are solved by
means of layer heat potentials. Miranda [80] has used the double layer heat potential to solve
the Dirichlet problem for the heat equation in a domain with a corner singularity. Baderko
[8] has solved the Dirichlet and the Neumann problems for a second order parabolic operator
in Schauder spaces defined on parabolic cylinders that can be unbounded in time. Fabes and
Riviére [34] has solved the Dirichlet and Neumann problems for the heat equation with data
in Lebesgue spaces in the case of C! cylinders, and later on Brown [11, 12] has extended their
results to the case of Lipschitz cylinders. Costabel [17] has obtained the solvability of some

vil



viii Introduction

boundary value problem for the heat equation on Lipschitz cylinders with data in anisotropic
Sobolev spaces. Hsiao and Saranen [49] solved an exterior Dirichlet boundary value problem
for the non-homogeneous heat equation in the case of n = 2. For time dependent Lipschitz
domains we mention the works of Lewis and Murray 73] and Hofmann and Lewis [46].

For this reason, many authors have investigated the properties of the integral operators
associated with layer heat potentials in several function space settings.

A first systematic treatment of the properties of layer heat potentials can be found in the
works of Gevrey [39, 40|, where the author has studied the properties of heat potentials in
case n = 1.

Then Van Tun [104, 105, 106] has developed the work of Gevrey in a series of papers and
has obtained some results on the Schauder regularity of heat potentials, still in dimension
n = 1. In particular, Van Tun has proved that the integral operator associated with the
double layer heat potential defined on the boundary of a parabolic cylinder improves by 1/2
the Holder exponent of the density.

In case m € N and 2 is of class C"™“, it has long been known that if the density u is of
class "2 imte (0r2), then the restriction of the double layer potential to the set Q7 can be
extended to a function of C me;era(cl Qr) (cf., e.g., Ladyzenskaja, Solonnikov and Ural’ceva
[58] and Appendix B).

In case m € N and Q is of class ™22 Kamynin [50, 51, 52, 53] has proved that the

integral operator associated with the double layer heat potential is bounded from the Schauder
m+1+a’

space CmTM;m‘*'a([O, T % 00) to ¢z mH1He’ ([0, T) x 9Q) for all o €]0, af, when T' < 400.

Properties of layer heat potentials have also been considered in the framework of Lebesgue
and Sobolev spaces. For example, Noon [87] and Arnold and Noon [7] have proved a coercivity
property for the single layer heat potential in anisotropic Sobolev spaces in case n = 3.
Costabel [17] has proved some mapping properties of layer heat potentials in anisotropic
Sobolev spaces on Lipschitz domains. Hofmann [45] has proved the boundedness in Lebesgue
spaces of parabolic singular integral operators of Calderon type, which in particular include,
as a special case, the double layer heat potential. Moreover, Hofmann, Lewis and Mitrea [47]
have proved some spectral properties of layer heat potential in Lebesgue spaces on Lipschitz
cylinders.

Finally we mention the work of Konénkov [56], where the author has studied the mapping
properties of the double layer heat potential in Zygmund spaces and has applied these results
to prove the solvability in Zygmund spaces of the Dirichlet problem for the heat equation.

It is worth noting that layer potential methods have been extensively used also for solving
heat diffusion problems numerically, and accordingly they turn out to be a very useful tool also
in the applications. One of the main advantages of such an approach is to reduce the boundary
value problem to an integral equation on the boundary and thus reducing the dimension of
the problem by one unit. For example, without being exhaustive, we mention that McIntyre
[78] has developed a Galerkin method to solve numerically the boundary integral equation
corresponding to a mixed boundary value problem for the heat equation. Costabel, Onishi
and Wendland [19] have shown the stability and the convergence of a boundary element
collocation method for the Neumann problem for the heat equation in a piecewise smooth
cylinder. Costabel [17] has used the theory he has developed for layer potential in order to
obtain error estimates for various Galerkin boundary element methods, and he has applied
such results to the numerical solution of an eddy current problem. Hamina [42] has developed
a numerical method to solve an hypersingular integral equation of the first kind related to a
Neumann problem for the heat equation.

Our main result regarding the integral operator associated with the double layer heat
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potential is the following. If Q is of class C"® and § €]0, «[, then
i) w07, ]jo, is linear and continuous from CZ(9rQ) to C’mTwm"'ﬁ(@TQ);

ii) w[orS), ] js,q is linear and continuous from CmTJrﬂ?m*ﬁ(aTQ) to CWTM;"L*‘)‘(@TQ).

These results are achieved exploiting two tools. The first tool consists in the results of Chapter
1 of this Dissertation, where we analyze a class of general weakly singular time dependent
integral operators. More precisely, in this chapter we introduce a normed space of time
dependent kernels K, ,, and we prove results of joint continuity for integral operators defined
on the boundary of parabolic cylinders of the form

t
u[orQ, K, p)(t,x) = / K(t,z,7,y)p(1,y) doydr V(t,x) € OrQ
—o0 J O

upon variation both of the kernel K in K, , and of the density function p in L>°(0€2) and in
parabolic Holder spaces. We want to stress the fact that, since the results of this chapter are
proved for integral operators with a general kernel in K 4, they can be applied to prove new
mapping properties not only for the double layer heat potential but also for other integral
operators arising in parabolic potential theory, for instance layer potentials corresponding
to a general parabolic equation. Moreover, we note that these results are of joint continuity
upon variation both of the kernel and of the density, and accordingly they can be used in
order to study problems which involve a perturbation of the kernel. The second tool consists
in new explicit formula for the tangential derivatives of the double layer heat potential, which
allows us to exploit an inductive argument in order to reduce the proof of our main result to
the cases already implied by the results of Chapter 1. If 0 < T < 400, thszI above mapping
properties i) and ii) also imply that the map w[07(2, -] 5, is compact in Cy “’”(aTQ), and in

m+p. mta,
Cy? ’m+6(8TQ), and in C|, * ’m+a(3TQ), where the subscript 0 in the spaces means that

they are spaces of functions which vanish before 0.

Regularizing and compactness properties for layer potentials have been also considered in
the elliptic framework. Without being exhaustive, me mention the works of Schauder [97, 98]
and Miranda [79]|, where the authors prove that the double layer potential associated with
the fundamental solution of the Laplace equation is compact in C1%(9€2) and is continuous
from C%(9€) to C%*(90Q), under the assumption that n = 3 and (2 is of class C1®.

Moreover, Fabes, Jodeit and Riviére [35] have proved that if € is of the class C*, then
the double layer potential associated with the Laplace operator is compact in LP(92) for all
p €]1,400[. Later, Hofmann, Mitrea and Taylor [48] have proved the same compactness result
under more general conditions on 9f).

Wiegner [111] has proved that if v € N has odd length and Q is of the class C"?, then
the integral operator with kernel (z — y)?|z — y|~"~Y=1 is continuous from C™1%(9Q) to
C™ 12(c1Q) (and a corresponding result holds for the exterior of §2).

von Wahl [109] has considered the case of Sobolev spaces and proved that if §2 is of the
class C'°°, then the double layer potential associated with the Laplace operator improves the
regularity by one unit on the boundary.

Maz’ya and Shaposhnikova |77] have proved that the double layer associated with the
Laplace operator is continuous in fractional Sobolev spaces under optimal regularity assump-
tions on the boundary of €.

Mitrea [81] has proved that the double layer potential associated with second order elliptic
equations and systems is compact in C%#(9Q) for 8 €]0, [ and bounded in C%*(9Q) under
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the assumption that Q is of the class C1'®. Then, by exploiting a formula for the tangential
derivatives such results have been extended in order to prove that corresponding compactness
and boundedness results holds also in C*#(99Q) and in C1*(9Q), respectively.

Finally, Dondi and Lanza de Cristoforis [32] have proved that if €2 is of class C™®, then
the double layer potential associated with a general second order elliptic operator is bounded
from C™(0N2) to the generalized Schauder space C"*“=(92) of functions with m-th order
derivatives satisfying a w,-Holder condition with

wa(r) ~ 1% log(r)| asr — 0,

and is bounded from C™#(9Q) to C™*(9N) for B €]0,al. In this work the authors exploit a
formula for the tangential derivatives in order to prove the result by induction. In a sense,
the regularizing properties of w[07(?, -]|5,.o that we prove in this Dissertation can be seen as
a generalization of the results of [32] to the case of the double layer potential associated with
the heat equation. For a more complete exposition of the previous contribution in the elliptic
framework we refer to [32].

For what concerns periodic potential theory, there exists a quite vast literature for the
elliptic case. Indeed, periodic analogs of layer potentials have been successfully exploited to
analyze a large variety of elliptic boundary value problems in periodic domains. Instead, for
the parabolic case, to the best of our knowledge, far less is known.

For example in the elliptic framework Shcherbina [100] has introduced periodic layer
potentials to solve periodic boundary value problems for the Laplace equation. Ammari,
Kang and Touibi [6] have used periodic layer potentials for deriving the effective properties
of isotropic composite materials, while the anisotropic case is considered in Ammari, Kang
and Kim [3]. Potential theoretic methods to study singular perturbation problems for the
Laplace equation in periodically perforated domains have been used for example in Musolino
[82] and Lanza de Cristoforis and Musolino [67|. These methods have been extended also to
treat different partial differential equations: see, e.g., Ammari, Kang and Lim [5] and Dalla
Riva and Musolino [24] for the Lamé equations and Lanza de Cristoforis and Musolino [68|
for a quasi-linear differential equation.

Moreover, Lanza de Cristoforis and collaborators have investigated in some works new
properties of periodic potentials (see Lanza de Cristoforis and Musolino [65] for periodic layer
potentials associated with a general second order elliptic differential operators and Dalla Riva,
Lanza de Cristoforis and Musolino [22] for periodic volume potentials).

Periodic layer potentials are constructed by replacing the fundamental solution by a
periodic analog of the fundamental solution in the definition of classical layer potential.
Therefore, a key step is the definition of such an analog. For the Laplace equation, such a
function has been introduced in a seminal paper by Hasimoto [43| (see also Ammari and Kang
[4], Lanza de Cristoforis and Musolino [65], and Shcherbina [100]), whereas for the Lamé
equations we refer, for example, to Ammari, Kang, and Lim [5]. For our work on periodic
layer potentials for the heat equation we use the g-periodization of the heat kernel &, i.e.,
the function ®,, defined by

_lz+az|?

Oy n(t,z) = 2 zenn a3 ¢ o if (¢,x) €]0, +-00[xR",
0 if (t,z) € (] — 00,0] x R?)\ ({0} x qZ"),

where ¢ is a n x n diagonal matrix with strictly positive entries in the diagonal.
Our aim is to introduce space-periodic layer heat potentials and to study their properties.
In particular, we are interested in proving the periodic analog of the mapping properties we
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have proved for the (non-periodic) double layer heat potential w[07(2, ]9, o. The boundary
integral operator corresponding to the g-periodic double layer heat potential is the map which
takes a function x from d7€2 to C and maps it to the function wy [0, u]jg,q defined by

t
0
wq 01, pjapa(t, T) = / - Wéqm(t — 1,2 —y)u(r,y)doydr Y (t,x) € Ol

We are able to prove that if {2 is of class C"%, then

) wqel0rQ, -]ja,0 is linear and continuous from CT™(9rQ) to CmTw?erﬁ(aTQ);

m-4ta

3i) wq[019, ] |5, is linear and continuous from C’mTW;m‘FB(aTQ) to C72 T (9rQ).

As before, the above mapping properties j) and jj) imply the compactness of w,[07(?, ]j5,.0 in
=m . mEB 8 . mEE oy ta .
Cy" (0rQ)), and in C * (0r?), and in C ? (0r2),if 0 < T < +o0.

Finally, we show how to employ periodic layer heat potentials in order to solve some
initial-boundary value problems for the heat equation in the periodic setting.

We would like to point out the motivations of the work of this first part of the Dissertation.
From one side we continue the study of integral operators arising in parabolic potential theory,
which has an interest on its own since potential theory is a well established and important
part of mathematical analysis. From the other side, we would like to develop a sufficient set
of tools in order to consider singularly perturbed problems for the heat equation with the
Functional Analytic Approach (FAA) introduced by Lanza de Cristoforis and then developed
further by Lanza de Cristoforis and collaborators. This method makes use of potential theory
and of functional analysis, and has shown to be powerful to investigate the dependence of the
solution of elliptic boundary value problems upon regular and singular domain perturbations.
Therefore, we plan to extend it for the first time to parabolic problems, starting from the
heat equation. The results of this first part of the Dissertation are a first necessary step in
this direction.

Regarding this potential theoretic method for perturbation problems we mention the
analysis of a regular perturbation problem for the Laplace equation carried out in Lanza de
Cristoforis [59], and the analysis of a singular perturbation problem for the Laplace equation
in a domain with a small hole worked out in Lanza de Cristoforis [61]. This approach has been
also extended to singular perturbation problems with nonlinear boundary conditions (see,
e.g., Lanza de Cristoforis |60, 62| for a nonlinear Robin problem and a nonlinear transmission
problem in a domain with a small hole and Dalla Riva and Lanza de Cristoforis [21] for a
singularly perturbed nonlinear traction problem for linearized elastostatics), and to the Stokes
flow (see, e.g., Dalla Riva [20] for a singularly perturbed boundary value problem for the
steady state Stokes flow), and to singular perturbation problems in periodically perforated
domains (see, e.g., Musolino [82] for a singularly perturbed Dirichlet problem in a periodically
perforated domain, Dalla Riva and Musolino [24] for a nonlinear traction problem for linearized
elastostatics in a periodically perforated domain, Lanza de Cristoforis and Musolino |67, 68]
for a nonlinear Robin problem and for a quasi-linear transmission problem in periodically
perforated domains, and Pukhtaievych [93] for a transmission problem in a periodically
perforated domain), and to other geometric settings (cf., e.g., Dalla Riva and Musolino |25, 26]
for multiple holes shrinking to a point, and Costabel, Dalla Riva, Dauge and Musolino 18] for
a hole shrinking to a corner point of the boundary, and Bonnaillie-Noél, Dalla Riva, Dambrine,
and Musolino [10] for a hole shrinking to a regular point of the boundary).

The first part of the Dissertation is organized as follows. In Chapter 1 we introduce a
normed space of time dependent kernels for integral operators defined on the boundary of
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infinite parabolic cylinders. We prove results of joint continuity of such integral operators upon
variation both of the kernel and of the density function. Moreover, we apply these results to
some integral operators related to layer heat potentials. Chapter 2 is devoted to the mapping
properties in parabolic Schauder spaces of the integral operator associated with the double
layer heat potential. More precisely, we prove an explicit formula for the tangential derivatives
of the double layer heat potential and we prove some regularizing properties exploiting such a
formula together with the results of the previous Chapter 1. Finally, Chapter 3 is devoted
to space-periodic layer heat potentials. We prove basic properties and some regularizing
properties and we apply these results to solve some periodic boundary value problems for the
heat equation. More precisely, we consider a periodic Dirichlet problem, a periodic Neumann
problem, and a periodic non-ideal transmission problem. Finally, we have collected in the
Appendices A and B some results on layer heat potentials that we have exploited in this part
of the Dissertation. In particular, in the Appendix B we prove some regularity results for the
layer heat potentials which may be considered as folklore and for which we could not provide
a proper reference.

Note: Some of the results presented in this first part of the Dissertation have appeared
or will appear in papers by the author (see [75]), and by Lanza de Cristoforis and the author
(see [63, 64]).

Second part

The second part of the Dissertation is inserted in the framework of the Functional Analytic
Approach (FAA) developed by Lanza de Cristoforis and collaborators that we have discussed
above, and it is contained in Chapter 4. More precisely, this part of the Dissertation is devoted
to the study of the behavior of the longitudinal permeability of a periodic array of cylinders
upon perturbation of the shape of the cross section of the cylinders and upon perturbation
of the periodicity structure, when a Newtonian fluid is flowing at low Reynolds numbers
around the cylinders. The shape of the cross section of the cylinders is determined by the
image of a base domain through a diffeomorphism ¢ and the periodicity cell is a rectangle of
sides of length [ and 1/I, where [ is a positive parameter. We also assume that the pressure
gradient is parallel to the cylinders. Under such assumptions, the velocity field has only one
non-zero component which, by the Stokes equations, satisfies a Poisson equation. Then, by
integrating the longitudinal component of the velocity field, for each pair (I, ¢), one defines
the longitudinal permeability Kr[l, ¢]. In this part of the Dissertation, we are interested in
studying the behavior of Kj;[l, ¢| upon the pair (I, ¢).

In the literature, the fluid flow through periodic structures has been studied by several
authors by exploiting different methods. For example, Hasimoto has investigated in [43] the
viscous flow past a cubic array of spheres and he has applied his results to the two-dimensional
flow past a square array of circular cylinders. His techniques are based on the construction
of a spatially periodic fundamental solution for the Stokes’ system and apply to specific
shapes (circular/spherical obstacles and square/cubic arrays). Schmid [99] has investigated
the longitudinal laminar flow in an infinite square array of circular cylinders. Sangani and Yao
[95, 96] have studied the permeability of random arrays of infinitely long cylinders. Mityushev
and Adler [85, 86] have considered the longitudinal permeability of periodic rectangular
arrays of circular cylinders. By means of complex variable techniques, they have transformed
the boundary value problem defining the permeability into a functional equation and then
they have derived a formula for the longitudinal permeability as a logarithmic term and
a power series in the radius of the cylinder. Finally, in Musolino and Mityushev [84] the
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asymptotic behavior of the longitudinal permeability of thin cylinders of arbitrary shape has
been considered.

Here, instead, we are interested into the dependence of the longitudinal permeability upon
the variation of the sides of the rectangular array and upon the variation of the shape of
the cross section of the cylinders. In particular, in contrast with other approaches in the
literature, we do not need to restrict ourselves to particular shapes, as circles or ellipses.

In our main result we prove that the map

(1,0) = Ki1[l, 9] (1)

is real analytic. Such a result implies, in particular, that if we have a one-parameter analytic
family of pairs (Is, ¢6)6e]—60,50[7 then we can deduce the possibility to expand the permeability
as a convergent power series, i.e.,

Kiills, ¢s] = Z c;8’ (2)

for ¢ close to zero. Moreover, by the analyticity of the map in (1), the coefficients (¢;);en in
(2) can be constructively determined by computing the differentials of Kpz[-, -] (see Dalla Riva,
Musolino, and Rogosin [27] for the solution of the Dirichlet problem for the Laplace equation
in a planar domain with a small hole and Dalla Riva, Musolino, and Pukhtaievych [28] for the
effective conductivity of a periodic composites with small inclusions). Furthermore, another
important consequence of our high regularity result is that it allows to apply differential
calculus in order to find critical rectangle-shape pairs (I, ¢) as a first step to find optimal
configurations.

In order to introduce in a more precise way the mathematical problem, we now set some
notation. For [ €]0, +oo[, we define

_ (1 0
a=paxo. a=(g ).
Moreover, we find convenient to set

Q=Q:1, d=a.

We fix o €]0, 1] and a bounded open connected subset  of R? of class Ch* such that R?\ cl

is connected. Then we consider a class of diffeomorphisms AaQ from 02 into Q If ¢ € Aag,
the Jordan-Leray separation theorem ensures that R?\ ¢(9€) has exactly two open connected
components, and we denote by I[#] the bounded open connected components of R? \ ¢(952).
Then we consider the following two periodic domains

Selallell = | (@z+alld) ,
2€72
Salallo]]” = R\ clSy[alle]].

The set cl Sy, [¢l[¢]] X R represents an infinite array of parallel cylinders. Instead, the
set Sq, [@il[¢]]” x R is the region where a Newtonian fluid is flowing at low Reynolds number.
Then we assume that the driving pressure gradient is constant and parallel to the cylinders.
As a consequence, by a standard argument based on the particular geometry of the problem
(cf., e.g., Adler [1, Chapter 4], Sangani and Yao [96], and Mityushev and Adler |85, 86]), one
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reduces the Stokes system to a Poisson equation for the non-zero component of the velocity
field. Since we are working with dimensionless quantities, we may assume that the viscosity of
the fluid and the pressure gradient are both set equal to one. Accordingly, if [ €]0, 400 and

¢ € AgQ N CH*(98, R?), we consider the following Dirichlet problem for the Poisson equation:

Au=1 in Sg,[al[¢]] ™,
u(z + qz) =u(z) Vo edSylale)]~,VzeZ?, (3)
u(x) =0 Va € 0Sq[qle]]” .

The solution of problem (3) in the space C’(}l’a(clSql [qil[¢]]7) of g-periodic functions in
ISy [@l[¢]]~ of class C1® is unique and we denote it by u[l, ¢]. From the physical point of
view, the function u[l, ¢] represents the non-zero component of the velocity field. By means of
the function u[l, ¢], we can introduce the effective longitudinal permeability K[, ¢] which
we define as the integral of the opposite of the flow velocity over the unit cell, i.e.,

Kull, ¢ = —/ l,d(@)de V1€, ool Yo € AL, N CL(90, B?),
Qi\qi1[¢]

and we pose the following question:
What can be said on the regularity of the map (I, ¢) — K[, ¢]? (4)

Shape analysis of functionals related to partial differential equations or quantities of
physical relevance has been carried out by several authors and it is impossible to provide a
complete list of contributions. Here we mention, for example, the monographs by Henrot and
Pierre [44], by Novotny and Sokolowski [88], and by Sokotowski and Zolésio [101].

Most of the works in the literature deal with differentiability properties. Here, instead, we
are interested into proving higher regularity and we answer the question in (4) by showing
that Krz[l, ¢] depends analytically on (I, ¢). Our analysis is based on the study of a boundary
value problem in a periodic domain by means of (periodic) potential theory. We now briefly
outline our strategy. First of all, by means of periodic potential theory, we convert our
boundary value problem into an integral equation defined on the (I, ¢)-dependent boundary
qp(09). Next, we transform such an equation into an equivalent integral equation, which is
now defined on the fixed domain 0f2. Finally, we analyze the dependence of the solution of
the integral equation upon (I, ¢) exploiting the Implicit Function Theorem for real analytic
maps in Banach spaces.

Finally, we want to mention also that boundary value problems in periodic domains have
been analyzed with the method of functional equations: see, e.g., Castro and Pesetskaya [13],
Castro, Pesetskaya, and Rogosin [14]|, Kapanadze, Mishuris, and Pesetskaya [54, 55|, Rogosin,
Dubatovskaya, and Pesetskaya [94].

Note: Some of the results presented in this second part of the thesis will appear in a
paper by Musolino, Pukhtaievych and the author [76].

Acknowledgement: The author wishes to express his sincere gratitude to his advisor
Prof. Massimo Lanza de Cristoforis for the precious help and for the constant support during
all the three years of the Ph.D. program and during the preparation of this Dissertation.

Besides the advisor, the author wishes to thank also Dr. Paolo Musolino for the great and
very appreciated help, which has not been confined only to Mathematics.

Finally, the author would like to thank the two referees for the helpful comments and for
the constructive criticism of the thesis.



Notation

The symbol N denotes the set of natural numbers including 0, the symbol Z denotes the set
of integer numbers, the symbol R denotes the set of real numbers, and the symbol C denotes
the set of complex numbers. We fix once for all here and throughout all the Dissertation

n € N\ {0,1}

that will be the dimension of the space R”. We denote by {e1,...,e,} the canonical basis of
R™. If A is a matrix, then we denote by A’ the transpose matrix of A, and by A~! the inverse
matrix of A, and by A;; the (4, j) entry of A. Let k € N\ {0}. We denote with (d;;); jeq1,....k}5
the Kronecker symbol, that is
1 ifi=j,
0 = { ’

0 otherwise .

We denote by I" the Euler I'-function (cf., e.g., Folland [37, p. 58].)
We denote the norm on a normed space X by || - ||x. Let X and ) be normed spaces. We
endow the space X x ) with the norm defined by

1@ llexy = lzllx +lylly  V(z,y) e X xY

for all (z,y) € X x Y, while we use the Euclidean norm for R”. We denote by £(X',)) the
Banach space of linear and continuous maps of X to ), equipped with the usual norm of the
uniform convergence on the unit sphere of X. We denote by I the identity operator from X
to X. For standard definitions of Calculus in normed spaces, we refer to Deimling [29].

Let s € N\ {0}. Let D C R®. Then clD denotes the closure of D, and 0D denotes the
boundary of D, and diam(DD) denotes the diameter of D. If f is a function from D to C, then

supp (f)

denotes the support of f in D. The inverse of an invertible function f is denoted by (-1, as

opposed to the reciprocal of a complex-valued function g, which is denoted g~*.

In the case of time intervals |t1,ta[, t1 € [—00, +00], ta €] — 00, +00], we will denote by

Jt1, to

its closure. If 2 € [0, +00[, when there is no ambiguity using this notation, we denote by [z]
the integer part of =, that is
[z] =max{l € Z : | < z},

and by {z} the fractional part of x, that is
{z} =2 — [z].

XV



xXvi Notation

The symbol | - | denotes the Euclidean modulus in R® or in C, while a dot ‘-’ denotes the
inner product in R®. For all R €]0, +oo[, € R®, ; denotes the j-th coordinate of = for all
j€{l,...,s}, and B,(x, R) denotes the ball {y € R®: |z — y| < R} and we set

Bs = Bs(0,1).

The symbols B(D, X) and C°(D, X) denote the space of bounded and continuous functions
from D to X, respectively. We endow B(ID, X') with the sup-norm and we set

(D, X) = C°(D, X) N B(D, X).
Let © be an open subset of R”. We denote the exterior of Q by
Q" =R"\ clQ.

Let m € N\ {0}. The space of m times continuously differentiable complex-valued functions on
2 is denoted by C" (2, C), or more simply by C"(€2). We denote C*°(12) the set of functions
f such that f € C*(Q) for all k € N. Let f € C™(Q). Then Df denotes the Jacobian matrix
of f. We set

n
=D Iml  Wpezn
=1

Ifn=n,...,nn) € N, then

i=1

n
2 = Hmi" Ve € R™.
=1

The symmetric Hessian matrix of the second order partial derivatives of f is denoted D?f.
Moreover the subspace of C"™(2) of those functions f whose derivatives D" f of order |n| < m
can be extended with continuity to cl€ is denoted C™(cl€2). The space C"(cl2) endowed
with the norm
Ifllem@ey= Y sup|D"f|  VfeC™(clQ),

neNn cl

Inl1<m
is a Banach space. For the definition of open subsets of R™ of class C" we refer, e.g, to
Gilbarg and Trudinger [41, pp. 94-95]. Moreover we denote by

149]

the outward unit normal to €2, where it is defined. Sometimes, when there is no ambiguity,
we will drop the subscript 2 in vog. We denote by do the standard surface measure on a
manifold of codimension 1 of R™. We will sometimes attach to do a subscript to indicate the
integration variable. If D is a measurable subset of R”, and k € N, the k-dimensional measure
of the set D is denoted by my(D).

We retain the standard notation of LP spaces. In particular, if €2 is a measurable nonempty
subset of R™ and 1 < p < 400 (resp. p = +00), we write LP(Q2) for the space of (equivalence



xvii

classes of) p-summable (resp. essentially bounded) measurable functions with complex values,
endowed with the usual norm. We denote by L¥ () the set of (equivalence classes of)
functions f of Q to C such that f € LP(K) for each compact K C .

We note that throughout the Dissertation ‘analytic’ means ‘real analytic’. For the
definition and properties of analytic operators, we refer to Prodi and Ambrosetti [92, p. 89|

and to Deimling [29].
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CHAPTER 1

Time dependent boundary norms for kernels and
time dependent integral operators

This chapter is mainly devoted to continuity and regularizing properties of some time dependent
integral operators defined on the boundary of infinite parabolic cylinders upon variation both
of the kernel and of the density (or moment) function. In addition, we apply these results in
order to recover some regularizing properties in Schauder spaces for certain integral operators
related to layer heat potentials.

First of all, in Section 1.1, we recall the definitions of the classical Schauder spaces and of
their parabolic counterpart, i.e., parabolic Schauder spaces. In Section 1.2 we collect some
certainly known preliminary inequalities that we will exploit in the present chapter. Then
in Sections 1.3 and 1.4 we prove some estimates for the fundamental solution of the heat
equation, its derivatives, and the kernel of the double layer heat potential. In Section 1.5
we introduce a class of function spaces and norms for time dependent kernels of integral
operators defined on the boundary of parabolic cylinders. Moreover, exploiting the results
of Sections 1.3 and 1.4, we verify that the kernel associated with the fundamental solution
of the heat equation, and its first order space and time derivatives, and the kernel of the
double layer heat potential belong to such classes. In Section 1.6, we estimate the norm of
an integral operator with kernel K applied to a density u in terms of the norm of K in the
above classes and of the L°-norm of u, and in Section 1.7 we apply the results of Section 1.6
to some integral operators related to layer heat potentials. In Section 1.8 we consider the
case of integral operators acting on Schauder spaces. More precisely we estimate the norm
of an integral operator with kernel K applied to a density p in terms of the norm of K in
the above classes and of the Holder norm of p. Finally, in Section 1.9 we apply the results of
Section 1.8 to some integral operators related to layer heat potentials.

The results of the present chapter will be also exploited in the next Chapter 2 in order to
recover certain regularizing properties of the double layer heat potential. We want to stress
the fact that, since the results of this chapter are proved for general time dependent integral
operators with kernels in the classes that we have defined, in further works we plan to apply
them to recover similar mapping properties for other integral operators arising in parabolic
potential theory, for instance layer potentials corresponding to a general parabolic equation.
Furthermore, we believe that the methods of Sections 1.6 and 1.8 may be applied to simplify
also the exposition of other classical proofs of properties of layer potentials. Finally, we note
that the type of results we prove in Sections 1.6 and 1.8 are of joint continuity upon variation
both of the kernel and of the density, and accordingly they can be used in order to study

3



4 Time dependent boundary norms for kernels and integral operators

problems which involve a perturbation of the kernel.
The results contained in the present chapter can be found in a paper by Lanza de Cristoforis
and the author [63].

1.1 Classical and parabolic Schauder spaces

In this section we recall the definitions of classical Schauder spaces and of parabolic Schauder
spaces. Let w be a function from |0, 400 to itself such that

i) w is increasing,

0l 0,
ii) lim, w(r)

w(ar)

iii) sup < 400, (1.1)

(a,r)€[1,400[x]0,400 AW(T)

iv) sup < 400.

r€]0,1] w(r)
Let s € N\ {0}. If f is a function from a subset D of R® to a normed space X', we set

1/ () = F()llx
w(lz —yl)

\f:]D)]w(,)Esup{ :w,ye]]]),a?#y}.

If [f: D]y < oo, we say that f is w(-)-Holder continuous. Sometimes, we simply write |f|,.)
instead of [f : D|,.). We set

COO(D, X) = {f € COD, X) : |f : D],y < +o0}
to be the subspace of C%(DD, X') whose functions are w(-)-Holder continuous. The space
PO, x) = cO“O(Dd, X) N B(D, X)
endowed with the norm

1705,y = S0P £l +11 : Dl

is well known to be a Banach space. If X = C, we simply write C°(D), CO«()(D), Cl?’w(')(D)
instead of C°(ID, C), CO~()(D, C), Cg’w(')(D,(C), respectively.

Particularly important is the case in which the modulus of continuity w(-) is the function
r® for some fixed o €]0, 1]. One can easily check that with such a choice the conditions i)-iv)
on w(-) in (1.1) hold. In this case, we simply write C%%(D), Cg’a(]D)), |- : D| instead of
cor* (D), Cg’ra (D), |- : D|ye, respectively.

Then we have the following remark of immediate verification, which shows that the
difficulty of estimating the Holder quotient % of a bounded function f lies entirely

in case when |z — y| is small, that is in the case 0 < |x — y| < a for a fixed a €]0, +o0[.

Remark 1.1. Let s € N\ {0}. Let w satisfy conditions i)-iv) in (1.1). Let D be a subset of
R*. Let X be a normed space. Let a €]0,4o0[ and f € CP(D, X). Then,

wp L@ = FWlx

z,yeD W(|x_y|)
lz—y[>a

2
< sup || f1lx -
o(a) [Bal
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Moreover, it is known that the pointwise product in Holder spaces is continuous. In
particular, the following result holds.

Lemma 1.2. Let s € N\ {0}. Let D be a subset of R®. Let 11, 1o, 13 satisfy the conditions
i)-w) in (1.1). Let

sup sup ;(r)y ' (r) < +o0.

J=1,2r€]0,1]
Then the pointwise product is bilinear and continuous from C ’wl()(]D)) X CI?’W(')(]D) to
o 0,93(: )(]D).

Proof. Let f € C’l?’%(')( D) and g € C, 042(: )( D). Let x,y € D, x # y. Then

| f(z)g(x)—f(y)9(v)|
= [f(z)g(z) — f(2)g(y) + f(x)g(y) — f(y)g(y)|
< |f@)llg(x) — g + g f(x) — f(y)]
< Fll oo gy l9ll govacs @y 2l = Y1) + 1LFll os 0 ) 19l 020 gy Y1 (2 = )

1 gt oy ol s o = 1) + (= 0
Accordingly, Remark 1.1 implies the validity of the statement. O

Let m € N\ {0}, a €]0,1]. Let Q be an open subset of R"”. The subspace of C™(cl Q)
whose functions have m-th order derivatives that are a-Holder continuous is denoted

o™ (el ).

Then C;"*(c1€2) denotes the space of m-times continuously differentiable functions f in €
such that
1 llcme ey = 1 fllep@e) + Z |IDTf 2 Qo < 4o00.

In|=m

The space (Cy"*(c1Q), || - Hcgnva(cm)) is well known to be a Banach space (see, e.g., Gilbarg
and Trudinger [41, pp. 52-53]). Obviously, if € is bounded then C}"*(c1Q) = C™(c1Q)
(and in this case we always drop the subscript b). The subspace of C™(cl2) of those functions
f such that ficong,0,r) € C™(cl(2NB,(0, R))) for all R €]0,+o0o] is denoted
C% (el Q).

For the definition of open subsets of R™ of class C™ for some « €]0, 1], we refer to Gilbarg
and Trudinger [41, pp. 94-95].

Let €2 be a bounded open subset of R™ of class C™®. By means of local parametrization
it is possible to define the normed space

(C™ O, || - lemean))-

It is well known that C™“(012) is a Banach space (see, e.g., Gilbarg and Trudinger |41, pp.
94-95]).

Then we have the following well known extension result. For a proof, we refer to Troian-
iello [103, Theorem 1.3, Lemma 1.5] (see also Gilbarg and Trudinger [41, Lemma 6.38, p.
137]).
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Lemma 1.3. Let m € N\ {0}, a €]0,1], j € {0,...,m}. Let Q be a bounded open subset of
R™ of class C"™. Let R €]0,4o00[ be such that c1Q C B, (0, R). Then there exists a linear and
continuous extension operator =7 of CH*(9) to CP*(clB,, (0, R)), which takes f € CH*(09)
to a map f € C3(cl B, (0, R)) such that flaQ = f and such that the support of f is compact
and contained in B, (0, R). The same statement holds by replacing C™% and C%* by C™ and
CI, respectively.

Let ©Q be a bounded open subset of R™ of class C'. We denote by v = (V)i=1,...n
the external unit normal field to 9. Let i,5 € {1,...,n}. Let f € C*(09). Then the
M;;-tangential derivative of f is defined as

of of

sz[f] = Viaixj —Vj al’z on 89, (12)
and the tangential gradient Dy f of f is defined as
DangDf—(l/'Df)I/ on 0f),

where f is an extension of f of class C'! in an open neighborhood of 9 as in Lemma 1.3. Tt is
easy to verify that M;;[f] and Daq f are independent on the specific choice of the extension f
of f. Moreover, a simple computation shows that the following formula for the r-th component

of Dgq f hold.

of
(31:r

(v- Df Vp = Zer on 00, Vre{l,...,n}. (1.3)

We will need the following well known consequence of the Divergence Theorem.

Lemma 1.4. Let Q be a bounded open subset of R™ of class C1. If f,g € C1(9S), then

/ M[flgdo = — / fMylg] do
o0 o0

Let ©Q be a bounded open subset of R" of class C™%. We note that, exploiting the
definition of norm in Schauder spaces, it is possible to prove that the norm || - [|cm.a(aq) is
equivalent to the norm on C™%(052) defined by

foralli,je{l,...,n}.

Ifllcoay + > 1Mij[flllem-ra@ay ¥ f€C™(09).

ij=1
Next we turn to recall the definitions of parabolic Holder spaces defined on cylindrical
domains. If T' €] — 0o, 4+00] and if D is a subset of R™, then we set

Dr=]—-00,T[xD, orD = (0D)r =] — 00, T[ x OD.

Clearly | — 00, T[ =] — 00, T] if T € R and | — 00, T[ =] — 00, +oo[ if T = +o00. We also note
that
(Cl D)T =cl DT .
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Remark 1.5. As is well known, the map = from the vector space CPT of functions from Dy
to C to the vector space (CP)}=>T1 of functions from | — oo, T[ to CP, which takes a function
f to the function Zf from | — oo, T[ to C” which takes ¢ to f(t,-) is an isomorphism. As a
rule, we omit to write the canonical identification map =.

We now introduce the definition of parabolic Holder spaces, which are spaces of functions
with an anisotropy in the Holder regularity with respect to the time direction and with respect
to the space direction.

Definition 1.6. Let o/,a” €]0,1], T €] — 0o, +00]. Let D be a subset of R"™. Then
CO,a’;O,a” (DT)
denotes the space of bounded continuous functions u from D to C such that

Ju(ts, ) = ulta, ) llcom)

HuHcoya’;o,a”(DT) =supful+  sup

Dp t1,to€]—o0,T| [t1 — to|®
t1#£t2
+ sup Ju(t,:): D|pr < +00.
te]—oo,T|

It is well known that (CO’O‘I;O’QH (D7), |l - Hco,a’;oya"(DT)) is a Banach space. By Remark 1.5,
u e CO0.0” (Dp) if and only if the canonically identified map Zu belongs to

' (T= 00, T, CY(D)) N B ([ = 00, T, Cp" (D) ) .

In the parabolic setting, one is usually interested in the parabolic Hélder spaces where the
regularity in time is half of the regularity in space. In this case, in the literature it is common
to find another definition of the parabolic Holder norm, which can be easily proved to be
equivalent to the previous one in the case of cylinders. More precisely, we have the following.

Proposition 1.7. Let a €]0,1[, T €] — 00, +00|. Let D be a subset of R™. Then a function
u s in C’O’%O’O‘(ID)T) if and only if

, [u(ts, 1) — u(ta, z2)|

ull 0.5:0.0 = sup |uf + sup < +o00.
Co2Dr) - py (t1,21),(t2,22) €Dy ([t — tQ‘% + |21 — x2|)®
(t1,21)#(t2,72)
/ ; 0,%;0,c :
Moreover the norms || - HCO,%;O,Q(DT) and || - HCO’%:’O’Q(DT) in C%29%(Dy) are equivalent.

We now define spaces of functions with higher order derivatives in parabolic Holder spaces,
i.e, parabolic Schauder spaces. For this purpose we set

CO00(Dr) = CY (Dr),
COO0Dy) = G (=00, T[.C°(D))
000" () = € (T= 00,71, C° () )

for all subset D of R™.
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Definition 1.8. Let o/, a” € [0,1], T €] — 0o, +o0]. Let £ be an open subset of R™. Then
C0H5iLa” (c1Q7) denotes the space of bounded continuous functions from cl Q7 to C such

that 0,,u is a bounded continuous function from €27 to C which admits a continuous extension
to clQqp for all i € {1,...,n}, and

= sup |U,’ + Z Hal'zuH 0 Q :0,a!!

HUHCO’HQ&';LQ//

(clQr) =1 (c1Qr)
u(t1, ) — u(ta,
T (L T
t1,ta€]—00,T, ‘tl — t2|
t1#£t2

In particular, u € C% %" e (c1Qr) if and only if d,u € CHT9" (c1Qy) for all i €
{1,...,n} and u € C'b’T <] — 00,17, CI?(CIQ)).
Let m € N\ {0,1}. We recall that by [h],{h} we denote the integer and the fractional

ma

parts of a real number h € R, respectively. Then ClZ1{Z} % (cl Qr) denotes the space of
bounded continuous functions from cl 7 to C such that d,,u and dyu are bounded continuous
from Q7 to C which admit a continuous extension to ¢l Qp and

’

A m—La” (1) Vie{L,...,n},
Owu € C[mT%]»{mTﬁ}‘*‘%/?m_z’o‘N (c1 Q7).

Moreover we set

”UH (m] {7;}+%/:’m’a”(CIQT) _Csllgllp ”LL‘ + ; HaaclUH m 1 {m 1}+ m—1,a!

Hl0ul] mez) (2

(clQr)

’ .
G sm—2,a/ (c1Q7)

. (2] {2} 42 om0 ' / .
It is well known that (Clzht2572 (c1Q7), || HC[%]’{%}*%?W""(leT)) is a Banach space.
We note that if m € N\ {0} and if Q is a bounded open subset of R™ of class C™, then

one can define the space Cl21ZHT ol (GTQ) by means of local parametrizations. The
corresponding norm can be proved to be equivalent to the following norm

_Sup |U’ + Z ||Mz] HCO,%/;O,CW

HUHCO, 1+20/ 1al!

(0rQ2) i1 (0rQ)
u(ty, ) —u(t o,
P V. (*ﬁbwm Vu e O (9,0,
t1,t2€]—00,T |t1 — tQ‘
t1#to
for m =1, and
||UH % {%}Jr%/,m,a”(aTQ) _Sup ‘u| + Zl HMZ] ”C[ 2_1]’{mT_1}+%,’m71’a”(8TQ)
7‘7

_ o
o= A 2}+7;m_2’a//(8TQ)
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Vu e OB S ma’ (9,0),

for m € N\ {0, 1}.
For the sake of brevity, in the case a € [0, 1], we use the following notation.

m

UMt (g = CLEMEHSma 10y (: C[’"?]v{m?“};m’a(cmT)) ,

m m

CHFmre(9r0) = CEHE S me(9,.0) (: cl=5214 ;“};ma(@TQD ‘

From the definition of the norms in parabolic Schauder spaces, one immediately has the
following.

Remark 1.9. Let o/,a” € [0,1], T €] — 00, 4+00], m € N\ {0}. Let ©Q be a bounded open
subset of R™. Let 4,5 € {1,...,n}. Then the operators

8y, : CIEMESma (1) o T T M S m=La” (1 ),

i

m—2

8y : ClEM BT ma” (1 Q) — T T m=20" (1 Og)  if m > 2,

are linear and continuous. Moreover, if €2 is of class C™ the operators

!

My - CEMESma” (9,0) & clF HEF S m—10" (9,0,

9, : CLEME S ma” (9.0) o O H T m=20"(9,0) if m > 2,
are linear and continuous.

Finally, we note that parabolic Schauder spaces of higher order are continuously embedded
in the spaces with lower order.

Remark 1.10. Let T €] — 00, +oc]. Let Q be a bounded open subset of R™ of class C'!. We
note that, for parabolic Schauder spaces, the same embeddings as in the classical case hold

true. More precisely, if m’,m” € N, a, 8 € [0,1], m' + « > m” + 3, then o e (] Q)

is continuously embedded into C mim (c1Qr). The same embeddings hold true for
parabolic Schauder spaces on 97 provided that € is of class C™.

1.2 Preliminary inequalities

In this section we collect some inequalities that we exploit during the present chapter. We
start with the following elementary lemma, which collects either known inequalities or variants
of known inequalities, which we need in the sequel.

Lemma 1.11. Let s € N\ {0}. The following statements hold.
(1) '
Sl =yl <" =yl <22’ —yl Yy eR\By(a, 22" —2"),

for all ' 2" € R®, o/ # 2.
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(ii) Let h €] — 00,0]. Then

A

ehlr’—yIQ B eh|ml/—y|2 < 2|h|p2,y(ﬂf/, x//)ehpiy(z T )|$/ — "

for all ', 2"y € R®, where
prylal ") = min{la’ — yl,la” — g}, pay(a’sa") = max{la’ — yl, 0" — yl}
(iii)
S ] < pryle', o) < oyl a?) <2yl Yy € R\ By(a, 2’ '),

for all ' 2" € R®, o/ # 2.

Proof. Statement (i) follows by the triangular inequality. Statement (ii) follows by applying
the Mean Value Theorem to the function ™ of s € [0, 4+00|. Statement (iii) is an immediate
consequence of statement (i). O

Then we have the following well known statement, that will be useful in order to estimate
the kernel of the double layer heat potential. For a proof we refer, e.g., to Colton and Kress
[16, Theorem 2.2, p. 35| for the case of Q of class C? and a = 1, or to Cialdea [15, Section 2,
p. 13| for the general case.

Lemma 1.12. Let o €]0,1]. Let Q be a bounded open connected subset of R™ of class C1.
Then there exists a constant cq o €]0,400[ such that

x —y|tte Va,ye .

v(y)' (= —y)l < caa

Next we introduce a list of classical inequalities which can be verified by exploiting the
local parametrizations of 0f€).

Lemma 1.13. Let Q be a bounded open Lipschitz subset of R™. Then the following statements
hold.

(i) Let vy €] —oo,n —1[. Then

4 / 1 do, < +
o~ = sup ———doy, 0.
T seonJoa lr =yl

(ii) Let vy €] —oo,n —1[. Then

—(n— 1
ch,= sup |z —a"| (n 1)+7/ T doy < +00.
z',x" €N By (2/,3]z’ —x'|)NON |$ - yh
Z/;AQE"

(iii) Let v €]n — 1, 4o00[. Then

b, = sup |z’ — x'/]_("_1)+7/ /; doy < +00.
z' .z e OO\By, (2,22’ —z''|) |'T - y|’y
:I:’#:L‘II
(iv)
(T ‘ 1 ’ I llel 1 d < 4+
Cco = sup og |T T m Oy 0.
z’,x" edN AO\By, (' 2|z —z"|) 1% Yy

0<|z’—z"|<1/e
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Finally, we have the following technical elementary lemma, which collects either known
inequalities or variants of known inequalities, which we need in the sequel.

Lemma 1.14.

(i) Let s €]1,+o00[. Let Fs be the function from ]0,4o00| to itself defined by
+o0 1
Fs(¢) = / e uu®du V¢ €]0, 400
3

If v €]0,s — 1], then

Dy, = sup &VF(§) < +00.
£€]0,+oo

(ii) Let s €]1,4+o0[. Let F, be the function from 10, +o0[ to itself defined by

. &
Fs(g)z/o e vy du V& €0, 400].

If v €]0, 00|, then

Dy, = sup ETVE(E) < +00.
£€]0,400]

(iii) Let s €]1,+o00[. Then My = 0+OO e uu~ du < +00.
(iv) Let by €]0,+o00[, ba €]b1, +oo[, m € N\ {0}. Then

n

_n m .
C(by,be,m)= sup eb2 ™ Zn] < 400.
n€]0,+o0[

j=0
Proof. We first consider statement (i). Since s > 1, the function e U is integrable in
10, +00[. The assumption v > 0 implies that

lim &7Fs(§) =0,

£—0t

and the assumption v < s — 1 and de I’Hopital rule imply that

lim €VF,(¢) € R.
gjrfwﬁ €3)

Hence, statement (i) holds true.
Next we consider statement (ii). The integrability of function e wu~* in 10, 4+00[ and the
assumption v > 0 imply that .
li TTF(&) =0
Jim € 5(6)
By de 'Hépital rule, we have
lim £YF,(€) =0,
Jim ¢TIR(E)
and thus statement (ii) follows.
Statement (iii) follows by the well known integrability of e~wu"* in 10, +00[ when s > 1.
In order to prove statement (iv) it suffices to note that the argument of the supremum is
a continuous function in n and has limiting values 1 and 0 at 0 and +oo, respectively. OJ
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1.3 Preliminary inequalities for the fundamental solution of
the heat operator

The function ®,, from R\ {(0,0)} to R defined by

o, (t,x)={ @mz¢ ?f (t,x) €]0, +oo[xR",
0 if (t,2) € (] —o0,0] x R")\ {(0,0)},

is well known to be the fundamental solution of the heat operator
o — A

in R, It is well known that ®,, is of class C°°(R!*™\ {(0,0)}) and solves the heat equation
in R1*7\ {(0,0)} (see, e.g., Evans [33, pp. 45-49]). Moreover, for all n € N and for all h € N
there exists a constant K, ; €]0,+o0o[ such that the inequality

DIOM®,, (t,x)| < Kpypt—2 2 Mem s, (1.4)

holds for all (¢,z) € R**1\ {(0,0)} (see Ladyzhenskaja, Solonnikov and Ural’ceva [58, p.
274)).

The fundamental solution of the heat equation ®,, (and its derivatives) will be used as
the kernel of some integral operators related to layer heat potentials, then in this section we
collect some estimates fro ®,, and its derivatives. We start with the following lemma.

Lemma 1.15. Let T €] — 00, 400|. Let G be a nonempty subset of R™. Then the following
statements hold.

()
n ‘1\2
Coc = sup | Dy (¢, z)|t2e 3 < 4o00.
(t,2)€]0,+00[xR™
|z|<diam (G)

(i)

it —7l2t u?
16(t—T) :

Cog = SUP{@TL(t —mal —y) = Pu(t - 72" —y)| |2/ — y| |2/ — 2|
22" e G #£2" ye G\By(d, 22 —2")),

t,TE]—oo,T[,T<t}<+oo.

(1it) Let a €]8,+00[. Then

[t — 7|2 lzwl®
|t/ _ t”|

r,y€G oy t't'e]—oo, Tt <t

CNJ'(/J%G = Sup{|<1>n(t/ —T,r—Y) — <I>n(t” -7,z —Yy)|

T<t/—2|t/—t//|} < 400.
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Proof. Statement (i) is an immediate consequence of the definition of ®,,.
We now consider statement (ii). Let t,7 € | —o00,T[, 7 < t, 2',2" € G, 2/ # 2,
y € G\ B,(2,2]2' —2"|). Then Lemma 1.11 implies that

B, (t — 7,2 —y) — ®p(t — 72" —y)|
1 _la'—y)? e’y
— m e 4(t—7) — e 4(t—7)
w2 (t —7)2
1 ody e / //|

PN 777 B
T 2(4m): (¢ T)§+1p2,y($,$) e |2 —a

1 _la’—y?
7 n 12’.%"—(7;‘6 16(tiJT)‘x/_‘TH‘
= Sam) i - )it

)

and accordingly, (ii) follows.
Next we consider statement (iii). Let ¢/,t" € | — oo, T[, t' < t", 7 <t/ =2|t' = t"|, z,y € G,
x # y. By the Mean Value Theorem there exists ¢ €]t’,¢[ such that

|®,(t' — 1,0 —y) — Pp(t — 7,2 — )|

1 1 _lz—y? 1 _ Ja—yl?
— - —e 4(t'—1) — —e 4t —1)
(4m)E (1 — )% (t"—7)%
/ " z—ny|2 o2 2
I et N el VE IS = SN SRS = S Ll
(4m)z | (& —7)2 (E—1)2 4(¢€ — 1)?

Then by Lemma 1.11 (i), and by the inequalities [t — 7| < | — 7| < [t — 7|, and by Lemma
1.14 (iv), we have

| R R P
— . 1@ -1 + ————¢ 4E-T) 3
(4m)2 [(€—7)2" €—7)2 A€ —7)
" |2 |2 2
_ =t [ /2 gl 1 -l y| }
(4m) (t — )2t t'—7)2 At —7)2
/ " z—y|2 z—y|2 _ 2
< ’t t ’ |: n/2n 16_8‘(,5/:".,.) + 1 - e_s‘(t/il.,.) ‘x, y‘ 2:|
(m)z L' —7)5* (t'—7)2 At —7)
(n/2)|t/ t”| 0(8 1) ‘U(Et/y‘Q)
= a e a(t'—7
T (m)E(t —r)e T
and thus statement (iii) holds true. O

Next we consider the space gradient of the fundamental solution. One can easily check
that

—fm—e 4 if (t,x) €]0, +oo[xR",
0 if (t,x) € (] — 00,0] x R™)\ {(0,0)}.

(1.5)

We have the following lemma regarding the estimate of D, ®,,.

Lemma 1.16. Let T €] — 00, 400|. Let G be a nonempty subset of R™. Then the following
statements hold.
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()

tztl a2
Coic = sup | D@, (t, z)|——e 4 < +00.
(£,2) €]0,4-00 [ X R™ 2|
|z|<diam (G)

(ii) Let a €]16,+00[. Then

C~10,1,a,G
/2
It )

= sup{\Dxfbn(t — 71,2 —y)— D@, (t — 72" —y) =

22" e G A2 ye G\ B2, 2|12 —2"|),

t,TE]—oo,T[,T<t}<+oo.

(iii) Let a €]8,4o00[. Then

1 _
C’0,1,a,G =

e ERS =
|z =yl [t" = ¢"|

r,y€G oy t'ht'e]—oo, Tt <t

Sup{|qu>n(tl -7, — y) - qu)n(t” —T,T = y)|

T<t/—2|t/—t//|} < +00.

Proof. Statement (i) is an immediate consequence of the formula (1.5) for D, ®,,.
We now consider statement (ii). Let ¢t,7 € | —o00,T[, 7 < t, 2',2" € G, 2/ # 2,
y € G\ B,(2,2]2' — 2"|). By the triangular inequality, we have

| D@ (t — 7,0 —y) — D@y (t — 72" —y) (1.6)
1 , _Ii:’—y\2 " _\Z"—y\Q
= i | Ve T @ mye T
1 _lal—y? / 7
et G
|z —y)? |z —y|?
+|2" —y||e” @D — e 1) } :

Now Lemma 1.11 implies that

_la'—yP? _la"—y)?
e 4t-17) — e Alt-T) (1.7)
200, (2', ") G 2" —y| |2’ — 2| _le'—ul?
S ﬁe 4(t—7) |x/ — 1:”| < 0 ] e 16(t-7) |
- s

Hence, Lemma 1.11 (i) and Lemma 1.14 (iv) imply that the right hand side of (1.6) is less or
equal than

!
o’ —y|?

e 1607 ‘:L,I_':U//‘ +2‘x/_y|2\x'—x”\
2(4m)2(t — )2 Tt t—r
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' —yl?
e a(t—7)

(47r)% (t — 7')%-"_1

|$/ g

< C(16,a,1)

and thus statement (ii) holds true.
Next we consider statement (iii). Let z,y € G, © # y, t/,t" € | —o0,T[, t' < t’,
T < t' —2|t' —¢"|. By the Mean Value Theorem, there exists { €]t’,¢”[ such that
|D.®,(t' — 1,2 —y) — Dy ®p(t" — 1,2 — y)|
z—y|? s—nyl2
T | I S R
2(4m)2 |( —7)2 1! (t" —7)2 Tt
g _ _ |z—y|? |z—y|2 2
=ty ’ T R e R e
2(47T 5—1—2 (§_T)§+1 4(5_7.)2

Then by Lemma 1.11 (i), and by the inequalities ' — 7 < & — 7 <t — 7, and by Lemma 1.14

(iv), we have

_ _ |z—y|? lz—y|2 2
‘ /2“1 s L e Tl 3 (1.8)
(E—7)=t? (E—7)=t! 4§ —T)
z—y|2 r—y|2 2
n/2 +n1 e_ 4‘(t”i|7—) + 1 - e_ 4‘(15”ng) ’x y’
>~ (t/ o T)§+2 (t/ _ T>§+1 4<t/ _ 7—)2
_le—yl?
_ et (n o Lz -yl
(" —7)z+2 \ 2 4 t—71
_Jz—y?
L et |z —yf?
—(t/_7)3+2(2+1) T
_ \J(c—y|2)
e a(t! —7 n
< C(8,a,1 . (f 1) :
O

and thus statement (iii) holds true.

Next, we consider the time derivative of the fundamental solution. One can easily check

that

01y (1, 7) = T<>+ ) it 1) el ol
if (t,2) € (] — 00,0] x R)\ {(0,0)}.

We have the following lemma regarding the estimate of 0y

Lemma 1.17. Let T €] — 0o, +o0]. Let G be a nonempty subset of R™.

(i) Let a €]4,+o00[. Then
£+1 @
sup |0 Dy, (t, x)|t2 " e ot < 400.
(t,2)€]0,+o00[xR™
|z|<diam (G)

Cioa =
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(1t) Let a €]16,4o00[. Then

Ci0a6 =
12 2
z' —y|
t— 7|2 t2e el

/ " |
sup{]@tfbn(t—ﬂx —y) — 8D (t — 7, 2" — )| oyl — 2]
2" e G 2 #£2" ye G\ B,(d, 22 — ")),
t,Tem,T<t} < +0.
(iii) Let a €8, +o00[. Then

! —
C’1,0,a,G’ =

sup{ 90,1 = 1.2 =) = B(t" = 7.0 ~1)
r,yeG oy t't"e]l—oo, Tt <t

T<ﬂ—my—ﬂ@<+%.

Proof. Statement (i) is an immediate consequence of the formula (1.9) for 9;®,, and of Lemma
1.14 (iv).

We now consider statement (ii). Let t,7 € |—o00,T[, 7 < t, 2/,2" € G, 2/ # 2",
y € G\ B,(2,2]2' — 2"|). By the triangular inequality, we have

10i®,(t — 72" —y) — OB (t — 7, 2" — y)|

1 _la’—y)? n 1]z’ —yl? e —y)? n 12" —yl?
— — — e Alt-7) _ - — — e At-7) _t -
(47r)5(t—7'>§+1 2 4 t—T7 2 4 t—T
_ o' —y)?
e Ait-7 1
2" —y|* = |2" — y[?|

—y|? e —y)?
A(t—7) — e At—T)

By the Mean Value Theorem and by Lemma 1.11 (iii), we have
Hx/ . y|2 o |l‘// . y|2‘ < 2P27y($/7$//)|$/ . I//| < 4|:L‘/ . y| |l‘/ . l’// ’

and by Lemma 1.11 (ii), (iii), we have

|z —y)? | —y|?
6_ 4(t—7) — e_ 4(t—T)

/ " p2 (zl,z”) / r_ 2
xT,T _hy w2 T — _lz =yl
P2y, )6 g ‘1'/ . :IZ”‘ < ‘ y|6 6 | — 2|
T

2t —1) ~ (t-
Hence, Lemma 1.11 (i) and Lemma 1.14 (iv) imply that

10i®,(t — 72" —y) — OB (t — 7, 2" — y)|
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.e_“f(lt_—yr‘)2 1 , / )
<( Am)s (t — 7)) T A(t — )4|$—y||1‘—fﬂ|
%(1—1—‘ 2) |2’ — vy _%]a:—x”’
(4%)%( E(t—7)
= (|47T) gﬁt'f I g{e e + (n/2)C( 16,a,1)e—'f</f—?i>2},

and thus statement (ii) holds true.

Next we consider statement (iii). Let x,y € G, v # y, t/,t" € | —o00,T]|, t

T < t' —2|t' —t"|. By the Mean Value Theorem, there exists { €]t’,¢”[ such that

10,®,(t' — 7,2 —y) — 0P, (t" — 1,2 — y)|
T—1 2 xT—1 2
1 e_éll‘(t’i‘f) ( 4 i|( y‘j) e_zll(t”i“r) (_% +
(471.)% (t' — )%—i—l (t" — T)%-i—l

N\:

\]

_|x,y‘2
L (/24 1)e & <_n 1\x—y\2> v
T (meE | (E-7)2t?

2 4(&-1)

_lz—=y|® 2 2
1 e 4E-7) l\x—y\ n 1|x—y\ \t’—t”\
(4m)s [(€—7)2t14(E—7)?

2 4(&-71)

Je—y[?

" 1 e 4E-7) <_1|xy|2> ]t’_t”‘
(4m)? (€ =)z Ht \ 4(E—7)? ‘

/ < t//,

Then by Lemma 1.11 (i), and by the inequalities ' — 7 < ¢ — 7 <t — 7, and by Lemma 1.14

(iv), we have

|0:®,(t' — 7,0 —y) — 0@, (" — 7,2 — y)|

L= { (124 1) (of2)e 75 (14 224)

(4m)% (v -7 e

w—y|2 lo— 1‘2
n/2)|lx — yl?e” 4(t”*7> x — yl? x —yl|2e 2=
L (n/2)|z—y <1+' y|)+| vl }

At — 1)z F3 t—T At — )5 t3
=130 0240 [ =yl (e =P et
(477)% (t" — 7-)%+2 t—1 t—r1

) |z—y|2
o [ =t"3(n/2) (”/2“)0(8 a,2)¢”
T o(4m: (¢ —7)2t? o ’

and thus statement (iii) holds true.
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1.4 Preliminary inequalities on the kernel of the double layer

heat potential

In this section we prove some inequalities for the kernel of the double layer heat potential.

We do so by means of the following.

Lemma 1.18. Let o €]0,1], T €] — 0o, +o0]. Let Q be a bounded open subset of R™ of class

C1@. Then the following statements hold.

(i)
0 ’t—7'|%+1 le—y|?
vaa = Sup{ lay(y) (I)n(t - 7—7 xr — y) ’:L' y’1+a€4(t77)
x,y € o, x #y, t,Te]wo,T[,mt} < 400.
Here 5
P, (t — —y)=-D,P,(t — _
ooy 2t~ 7@~ ) = —Dufalt - ma —y)v(y),

where Dy ®,, denotes the gradient of ®,, with respect to the (spatial) second variable.

(ii) Let a €]16,+oo[. Then

0

Z;Q@ Esup{ ‘ @n(t—T,x/—y)—(%(y)i)n(t—ﬂx”—y)‘

9
ov(y)
|o’ —y)?

|t — 7|3 le et

AN/, / "
]w’—y\alw’—x”]'m’x e 0N, x' # ",

yG@Q\Bn($/,2’$/—$,/’),t,TG]—OO,T[,T<t} < +00.

(1it) Let a €]8,+o00[. Then

~ 0 0
bg),a = SUP{ B (y) D, (t' — 1w —y) - mq’n(t” - TT— y)‘
|t, — T|%+2 |z —y|?
X ealt’=m)

’x _ y|1+a |7f/ _ t”’

v,y €0 v #y t',t"e]—oo, T, t <t

T<t’2|t’t”|} < 400,

Proof. Let x,y € 0Q, x #y, t,7 €] — 00, T[, 7 < t. By Lemma 1.12, we have

Jo—y|?
0 (x —y)lv(y)e

oul) " T YT - A

. _Jz—y?
caalr —y[ e 1T

n ’

2(4m)z (t — )2t
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and thus statement (i) holds true.
We now consider statement (ii). Let ¢,7 € | —o0,T[, 7 < t, 2',2" € 9Q, &’ # 2",
y € 00\ B,(2/,2|2' — 2”|). Then the triangular inequality implies that

) , )

- —qy) — ——— D
o) BT ) gl - T y)' L)
L ! t Lyl 1" ¢ o’ —y)?
- 2(47r)%(t — 7—)%4-1 (' —y)v(y)e W — (2" —y)'v(y)e =)
_la'—yP?

e A4(-7)

S i _aE @ - @) w)

(" — y)'v(y)|

n

2(4m)2 (t — 7)2+!

e —y|? " —y|2

4(t—7) — e 4(t—T1)

By the inequality |2’ — 2”| < |2/ — y|, and by the membership of v € C*%(dR), which is
implied by the fact that € is of class C1®, and by Lemma 1.12, we have that

(2" =2")'v(y)l < [(a" = 2") (v(y) = v(@))] + (2" = 2")"v(2)
< |{L‘/ _ :L‘”| |I/|a|l‘, _ y|a + CQ,a|ZEl _— 1+a

< |2 = 2" 2" = y[*([Vla + caa) -
Moreover, Lemma 1.12 and Lemma 1.11 (i) imply that
(" = 9)'v(y)| < coalr” =y < ca2' o~y

Accordingly, Lemmas 1.11 (i) and 1.14 (iv) and inequality (1.7) imply that the right hand
side of (1.10) is less or equal than

e —y|?
e Alt-7)

2(4m)z (t —1)2F!

2" = 2" 2 = y[*([V]a + ca.a)

| ,/7{ 2
co.n2 e’ — yitee T [of — y|faf — o]

2(4m)e (t — )2t (t—r)

o’ —y|?

{ (|V|a + Cﬂ,a) Cﬂ,a21+a } ’l‘/ — .CIZ”’ ]x' — y‘ae_m
< max =, - o
2(4m)>2 2(4m) 2 (t—7)2t

I 12
X{1+Iw yl}
t—1T1

gmax{(‘y‘ +c§}’ ),CQ’ - }C’(lﬁ,a, 1)|ﬂl7
2(4m)2 2(4m)2

|’ —y)

— | |af — gl
(t _ 7.)%+1

/

and thus statement (ii) holds true.
Next we consider statement (iii). Let xz,y € 9Q, z # y, t/,t" € | —o00,T[, t' < t",
7 <t' —2|t' —"|. By the Mean Value Theorem, there exists £ €]t',¢”[ such that

)
ov(y)

I o - L n o
cI)n (t T7 x y) ay(y) (I)n(t T? x y)
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_le—y? ey

l(x—y)v(y)|| e 2@ o AT

2(477)% (t' — 7‘)%"‘1 (t" — 7_)%—&—1

_ @ =y vl — ¢
2(4%)%

— _ a—y|? z—y|? _ ]2
x ’W?)l'() P S

(§—7)2™ (€—7)F AE—1)?

Then by Lemma 1.11 (i), and by Lemma 1.12; and by inequality (1.8), we have

0 0
®,(t' — —y) — ——®, (" — —
’ay(y) n( T,T y) 8V(y) n( T,z y)'
< coalr — y‘l+i ‘t/ _ t”‘
2(4m)2
- - o—y|2 ey | — o2
‘<"/2>n L = L S = ol i
(€—7)z*? (E—m)2" A —7)?
o1t g lz—y|2

cnalln/2) FU eyl ] Lt

2(4r)% (' —7)3+
and thus statement (iii) holds true. O

1.5 A special class of time dependent boundary kernels
For each subset A of R x R"™, we find convenient to set
Ay ={(t,z,,y) EAXA: t=1,2=y}.

For each T' €] — 0o, +o0] and G C R™, we now introduce a normed space of functions on
(Gr)%\ Ag, which may carry a singularity as the variable tends to a point of the diagonal,
just as in the case of the kernels of integral operators corresponding to layer heat potentials.
This space will serve as the space of kernels of the integral operators that we will consider in
the following sections.

Definition 1.19. Let a €]0, 400, T' €] — 00, +00]. Let G be a nonempty subset of R". Let
v = (1,927,978 ) € RE (1.11)
We denote by K., o(G7) the set of continuous functions K from (Gr)?\ Ag, to C such that
K(t,z,7,y) =0 if (t,2,7,9) € (Gr)*\ Agy, T>1,
and such that

1Kk o (G

_ sup{ Ktz 7,9)

[t — 7| lz—yl? S —
edt-7 s xy € Gyx £y, t, T €] —o00, T[T <t

|z —y|r
, 12—y
|t _ 7’|’716 a(t—)

/ 7
+Sup{ ‘K(th 7Tay) K(tax 5y Ty y)| |$/ - y,wé’x/ — 71/ .
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2" e Gl #2 ye G\By(d,2]2 —2"|),t,7 €] — 00, T, T<t}

t— T|%’ |z —y|?
+ su Kt ,z,7,y)— K{t", x, T, | — —ealt’=m) .
p{! ( y) — K( y)| P AT

r,yeGua#yt t'el—oo, Tt <t' 1 <t’—2\t’—t”\} < 400.

One can easily verify that || - [|x (G, 18 actually a norm and that (K, o(G7), |- Ik, o))
is a Banach space.
The estimates we have proved in Lemmas 1.15, 1.16, 1.17 and 1.18 show that the functions

O,(t—1,x—y), O Pu(t—7,x—y), OPp(t—T,2—1y), aya(y)@n(t—ﬂa:—y)

belong to the above class of kernels K, , for some v € R® and for some a €]0, +00[. More
precisely we have the following.

Remark 1.20. Let a €]16,4o00], T' €] — 00, +00].
(i) Let G be a nonempty subset of R”. Then Lemma 1.15 implies that the kernel

q)n(t - T, = y)

belongs to ICy o(G7), with v = (v1, 72,71, 72,7, 71> 2,7 ) and

n n
'71_57 72:07 7{25—’_17 75217 ’YI/:lv
’yi’:ngl, v =0, 4 =1.

(ii) Let G be a nonempty subset of R”. Then Lemma 1.17 implies that the kernel

at(bn(t —T,T — y)
belongs to Ky 4(GT), with v = (v1,72,71, 79,7 71> 72,7 ) and

n n
n=5+l, 72=0, 'Vi=§+2, =1, y=1,

5 +2, v =0, 7/ =1.

(iii) Let G be a nonempty subset of R™. Let » € {1,...,n}. Then Lemma 1.16 implies that
the kernel

axr(bn(t —T,T — y)
belongs to Ky 4(GT), with v = (v1,72,71, 79,7 71> 72, ) and

n n
n=g5+l re=1, ’Yi=§+1, Yo =0,

v =1.

v =1,

vi’=g+2, vy =1,
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(iv) Let a €]0,1]. Let Q be a bounded open subset of R” of class C*®. Then Lemma 1.18
implies that the kernel

0 O, (t—T1,2—y)

belongs to K:'y,a(aTQ)) with v = (/717 V2, ’717 Véa 71/a Vig ’Yéla FYIH) and

n n
7125-1-17 7"=1+a, 71254'1, Y=a, y=1,
H=5+2, W =1+a, =1

1.6 Integral operators on the space of essentially bounded func-
tions

For each 6 €]0, 1], we define the function wy(-) from 0, +oo] to itself by setting
2] .
r?|log r if r €]0,7g],
wg(T) = { ’ g ‘ ] 0]

r3| logrg| if r €]rg, +o0l,

where )

ro=e 0 Vo €]0,1].
Obviously, wy(+) satisfies the conditions i)-iv) of (1.1). We also note that if D is a subset of
R"™, then the following continuous embedding holds

oY) c ¥ (p)

for all " €]0,0[. In this section we consider the mapping properties of an integral operator
with a kernel in the class Ky 4(07Q) and acting on the space of essentially bounded functions
on Or(). We start with the following proposition, regarding the Hélder continuity with respect
to the space variables of such an integral operator.

Proposition 1.21. Let a €]0,+o0[, T €] — 00,+o0]. Let Q be a bounded open Lipschitz
subset of R™. Let v = (v1,72, 71 ¥, V) V175, 7)) € RS, Then the following statements hold.

(1) Let yi > 1 and 2y1 —vo —2 < n—1. If (K,u) € K,4(07rQ2) x L>®(0rQ2), and if
(t,z) € OrQY, then the function K(t,z,-,-)u(-,-) is integrable in OpS) and the function
u[0rQ, K, u] from 0r$) to C defined by

t
Wor Kty = [ [ Kitarpury)dodr o) eonn,  (112)
—o0 J 0N
is bounded. Moreover, the map from Ky q(0rQ) x L>®(0rQ2) to B(0rQ), which takes
(K, ) to u[0rQ, K, u] is bilinear and continuous.
(ii) Let v1 > 1 and 21 —v2 —2 € [n — 2,n — 1[. Moreover, let v{ > 1, ] €]0,1], and
N+ —1)= (27 -1 —2) > 0.

Let
poin{(n—1)—(2m—72-2),y+(n-1)—(2v1—1—-2)} if W — Ay —2>n—1,

w(r) = max{r("’l)’(?”*w’z),wﬂyl/ (r)} if 29 =95 —2=n-1,
poin{(n—1)=(2n-72-2).7} if 294 =44 —2<n-—1,
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for all v €]0,4o00[. Then the map from K. o(07€2) x L= (1) to
Bc_mjmwwwmw
which takes (K, p) to u[0rQY, K, u| is bilinear and continuous (cf. Remark 1.5.)

Proof. Let (t,x) € 0r§). Then we have

t
‘/ K(t,.Z‘,T, y)/.L(T, y) daydT
e}
|z —y[2 _lz—ul?
< [ [ Wl ool oo 25 oy

00 | — y[et2eltm
1Kl oo ilimioney [ [T e dud,

+o0 do
=||K —l4m M~ d %%
1K |, o (orollll Lo or0)a /0 u e u/asz Pl

and the integrals in the right hand side converges for 23 —vy9 —2 <n —1 and ; > 1. Then
Lemma 1.13 (i) implies the validity of statement (i).

Next we consider statement (ii). Let ¢t € | — 00, T, 2/, 2" € 0. By statement (i) and
Remark 1.1, there is no loss of generality in assuming that 0 < |2/ — z”| < 7. Then the
inclusion B, (', 2|2 — 2"|) C B, (2", 3|2’ — 2”|) and the triangular inequality imply that

W07, K, 1 (t,2') — ulor®, K, (¢, 2") (1.13)
t
< lul=ara] [ [ (K (t,2/, 7, )| doydr
—o0 J By (2,22 —z'|)NON
t
wf K (t,2",7,) doydr
—o0 J By (2" ,3|z' —x|)NoN
t
+/ / |K(t,2',7,v) —K(t,ﬂZ//,T,y)’dO'ydT}
OB, (22|’ —x''|)
< Il peoren I { / / LA =
Kl Lo (070) Ko (87Q) 76“” oyaTt
T et n(z 2]z’ —2"|) NI (t - T) v
72 e —y?
/ / ‘ il a(t—yf) doydr
(@ 3|2/~ )00 -

— |7 2 —y|?
"!%/ / I =yl - Ia(t—yﬂdaydT}.
O\Bn (o 2l —a]) (£ —T)M

Then by setting a(t — 7) = ul2’ — y|?, a(t — 7) = ul2” — y|?, a(t — 7) = u|2’ — y|? in the first,
and second and third integrals in the right hand side of (1.13), respectively, we deduce that
the right hand side of (1.13) equals

H ” ||KH {/+OO/ |x1_y|72+2 —1471 *ld p
Kl Lo (070 K~ .o (012 € uw aoyau
©0r) 7,e(0r9) 0 n(z! 2]z’ —2"|)NON u"/1|x/ - y‘2’71 Y
+o00 1" | v2+2,,—14m
+/ / u y|// a2 6_% doydu
(@ 3l —a o Utz =y

+oo +2 =14~}
2" |2’ y‘b a1
| so—¢ «doydu
ONBn (¢ 20a/—a|) U] — y|?N
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I'(y1 —1) doy
< HMHLoo(aTQ)!K||ic%a(aTQ){M/}B w2y, [ — g

_}_F(%_l)/ doy
alf’h n (2" 3|z'—z')NON |£TJ” _ y’27177272

'(v—-1,, ", doy
t— o et = T
a 1 8Q\Bn(r’,2|z’7:ﬂ"|) ‘(L‘ — y| 1 2

Py —1) 1) (29
< H/‘HLW(@TQ)’K||IC%Q(8TQ){2al,nC/glz,a J:/—II}//|(n 1)—=(2v1—72-2)

_i_r('}/i -1 | / " doy
?’y/ (L‘ - :E ’ / 2,Y/ 77/ 72 )
a N OO\B,, (2/,2|z" —z"'|) \iU - Z/| vz

where we have used Lemma 1.13 (ii). We now distinguish three cases. In case 27 —74—2 > n—1,
Lemma 1.13 (iii) implies that

’ dO' / 1y v
|3;', N l,//|7l / / 2y/_ — < A /72|$, o l,//|7l+(n 1)—(2v] =g 2).
OB, (! 2l —a|) |2/ — Y|P 772 2

In case 2] —v45 —2 =n —1, Lemma 1.13 (iv) implies that

d .
|z’ — x//|vl// Zy/ 5 <l|z' - :L’"|WICZ§§ ‘1og 2 — m”H '
8Q\Bn(x/’2|z/_$//‘) |JI/ - y| -

In case 294 — 75 —2 <n — 1, Lemma 1.13 (i) implies that

/ do /
|1:’x”|71/ Y — < o o] — 2|
OO\By, (27 2|2/ ")) ]a:’ _ y‘2’71_72_2 411 V2
Then the above inequalities imply the validity of statement (ii). O

Next, we consider the time Holder regularity of the same integral operator of Proposition
1.21. More precisely, the following proposition holds.

Proposition 1.22. Let a €]0,+oo[, T €] — 00,+00]. Let Q be a bounded open Lipschitz
subset of R™. Let ¥ = (71,72, Y1 Vs Vs V15 V5, 7) € RS, Let v1 > 1, 21 —y2 —2 <n—1. Let

h€:|0, (nl)(2;1722)|:m]071]

Let vf > 1, v/ €]0,1],

e {0 (29] =19 —2)—(n—1)
’ 2

} < mln{fy{/ - 177{,}7

2 I //_2 _ -1
hIE]maX{O,(PYl 72 2) (n )},min{’ﬁ,—l,'ﬁ/}.

Then the bilinear map from KCy o(0rQ) x L>®(0r2) to C’g’min{hﬁ’”_h/} (] — 00,7, C’O(@Q)>,

which takes (K, ) to u[0rQ, K, u] is continuous (cf. Remark 1.5).
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Proof. By Proposition 1.21 (i), it suffices to estimate the Holder quotient of u[0rQ, K, u] in
the time variable. Let x € 9Q, t/,t" € | — 0o, T[, t' < t”. By Remark 1.1 and Proposition 1.21
(i), there is no loss of generality in assuming that 0 < |t' — t”| < 1/e. Then the inclusion of

intervals
[t =201t ="t + 2|t —t"|[ C Jt" =3[t —t"],¢" + 3|’ — ¢"|]

and the triangular inequality imply that
[u[orQ, K, p)(t', ) — u[0rQ, K, p)(t", )| (1.14)

t’+2‘t/—t”|
< / Kt z,7,y) — K(t",z,7,9)| |u(r,y)| doydr
t—2[t'—""| JoQ

=2t/ —t"|
_|_/ / ‘K(t,,l',T, Y) —K(t//,%ﬂy)‘ \u(7,y)| doydr
o0

—00

< K ' 2 =Y 3575 4oy
o - < a(t'—7
<l @r) 1K |k, 2 0r0) /t’—2t’—t”| /aQ PR oy dr

¢’ — ylr2 le—y|?
+/ / 7|x yl e =7 do,dr
1!
3|t/ —t| J O it — ™

tl 2‘t/ t”| ’Y ‘ _ |2
o0N v

Then by setting a(t' — 7) = ulz — y|?, a(t” — 7) = u|lz — y|?, a(t’ — 7) = u|z — y|? in the first,
and second and third integrals in the right hand side of (1.14), respectively, we deduce that
the right hand side of (1.14) equals

= y\2 |z — y[r2+2gm—1 t
ol worey{ [ [T IR v,

/

\1 y\Q ‘.’IJ — \72+2a’“ 1 _1
/asz/ ut|z — y|?n * dudoy

1" "
xr — y|2 +2a'y1 —1
/ / t/ o ’ n/”y|‘ |2’Y” |t, - t”|’yl”€_% du dO'y} .
%9) 2 u't|\xr —y|©n

Next we note that our assumptions of A and A’ imply that 2y; — v — 2+ 2h < n — 1 and
that 29 — 4 — 2 —2h/ < n — 1. Then by Lemmas 1.13 (i) and 1.14 (i), (ii), the right hand
side of (1.14) is less or equal to

h
- o, 1= doy
2]l oo (or02) ”KHICW,G((?TQ){ /89 Dy, pat <2a T o) Tt

. =" \" d
+/ Dy pa ! 3“’ 2‘ i
oo |z —y| |z — y[*n 22

R IRNE
+ | Dy il a T — de‘i T
a0 U |z —y[? |z — y|?n 2 2

a%—l

h
< lllzoonen HKH/cw(aTQ){ @ 2a) e o

- v1—1 h ¥ —1 —h' 1
Dy, w07 (30)"C 90,y —avon + Dy a7 (20) 7" Co o _p o o
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% ’t/ . tl/’min{h,'yl”fh’} ’
and thus the statement holds true. O

We will also need to understand the behavior away from the boundary () of the integral
operators we are dealing with. For this reason, we prove the following lemma which concerns
an integral operator which is not necessarily defined on 97f2.

Lemma 1.23. Let a €]0,+o0[, T €] — 00, +o0]. Let Q be a bounded open Lipschitz subset

of R". Let G be a subset of R". Let v = (v1,%2: V1, Vo Vi W 75:7)) € RE. Let v > 1,
2y —y2 —2<n—1. Let K € CO((Gr x 9rQ) \ As,q) be such that

K(t,z,7,y) =0 if (t,z,7,y) € (Gr x 0rQY) \ A, T > 1,

and such that

t—1 |z —y|?
"”72 a(t—7) . (t,x,T,y) S (GTX@TQ)\A@TQ} < +00.

Kyt e = sup{ |K(t,z,T,9)|

If w e L>®(0rQ), and if (t,x) € Gr, then the function K(t,z,-,-)u(-,-) is Lebesgue integrable
in Or). Moreover, the function u*[Gr, 07, K, u] from G to C defined by

t
W Gr, 00, K, ] (t, ) E/ K(t,z,7,y)u(r,y) doydr V(¢ ,z) € Gr,
— 15)9)

is continuous. If sup,cq faQ ‘Iy‘i,ﬁ < 400, then the following inequality holds

|G, 079, K, ] (t, )] (1.15)

do
-1
< T(y = 1a™ " sup /8 I P T A [1 P

for all (t,x) € Gr.

Proof. Let (t,x) € Gp. Then we have

t
/ / |K(tal‘77—7y):u(7-7 y)‘ dO'yClT
—o0 JON

|$— |’Y2 |z —yl?
< By el el Lo (0r0) / /Q T e 7 do,dr

+oo ‘.7: y")’2+2a’71—1 1
e P B e e e R

1
= iy e [l Lo o) @™ /0 u e du/@ﬂ [z —ypn2’

doy

Our assumptions imply the convergence of the integrals in the right hand side and the validity
of inequality (1.15). The continuity of u*[Gp, drQ, K, i follows by the Vitali Convergence
Theorem. O
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1.7 Applications to some integral operators related to layer
heat potentials with essentially bounded densities

In this section we apply the results of the previous Section 1.6 in order to obtain some mapping
properties for some integral operators related to layer heat potentials. The results of this
section will be applied in the next Chapter 2 in order to study the mapping properties of the
double layer heat potential. We start with the analysis of a class of integral operators which
we need to study the properties of an integral operator related to the kernel D, ®,,(t — 7,z —1y),
and we introduce the following two statements. The first one is needed to understand the
behavior of such a class of integral operators in the whole domain €27, whereas the second
one investigates the corresponding boundary integral operators.

Lemma 1.24. Let a €]0, 400, T €] — 00, +00]. Let Q be a bounded open Lipschitz subset of
R™. Let 0 €]0,1]. Let Z € C°((c1Qr x 07Q) \ Agrq) be such that

Z(t,x,7,y) =0 if (t,z,7,y) € (clQr x 0rQ) \ Ag,0,7 > t,

and such that
— 5+1 |lz— \2
|t|7-’2|6a(ty7) .
=Y

(t,x,r,y) S (CIQT X 8TQ) \ AaTQ} < +o00.

¢= sup{|2<t,m, )|

Let f € C%9(clQ). Let HY[Z, f] be the function from (clQr x 0rQ) \ Ap,.q to C defined by

HYZ, fl(t,z,7,y) = (f(2) = fW) 2 (L2, 7,y) (L2, 7,y) € (Qp x 9r2) \ Agrq.
If u € L®(0rQ) and if (t,x) € clQrp, then the function HYZ, f](t,x, -, )u(-,-) is Lebesgue
integrable in OrQ and the function Q¥ Z, f, u] from clQp to C defined by

t
QU7 . ul(t,x) = / [ Bz At ) o (e € o

18 continuous and bounded.

Proof. We plan to apply Lemma 1.23. By definition of , and by the Hélder continuity of f,
we have

[flolw — y'0 | _le—ui?

Hﬁ[Zv f](t,x,T,@/) S ‘t—’]’|%+1 Ceia(t—‘r)

for all (t,z,7,y) € (clQr x 0rQ2) \ Ap,q. Next we note that
(n/2)+1>1, 2((n/2)+1)—(14+460)—2=n—-1-60<n-—-1,

and that the Vitali Convergence Theorem implies the continuity of the function |, 90 ‘w_yﬁ%

in the variable z € c1Q and accordingly that sup,cqq [5q I:r:—yld(% < +00. Then Lemma

1.23 implies the validity of the statement. O

Next we have the following.
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Lemma 1.25. Let a €]0,4o00[, T €] — 00, +00]. Let Q be a bounded open Lipschitz subset of
R™. Let 0 €]0,1]. Let

(n/2) + 1,1, (n/2) + 1,0, 1, (n/2) + 2,1, 1) , (1.16)
(n/2) + 1,1+ 6, (n/2) + 1,1,0, (n/2) + 2,1 +6,1) ,

Tn
Tn,0

(cf. Remark 1.20 (ii1)). Then the following statements hold.

(i) The map H from K, o(072) x C%9(9Q) to K, ,4a(0rSY), which takes (Z,g) to the
function H[Z,g] from (0rQ)*\ Ag,q to C defined by

H(Z,g|(t,z,7,y) = (9(x) — gW) Z(t,x,7,y) Y (t,z,7,y) € (0r)*\ Aora,
1s bilinear and continuous.

(ii) Let 61 €]0,0[. The map Q from K., o(drQ) x C%2(0Q) x L*>(0rQ) to
S L
B (J= o0, 7], c*0(00) ) n ¢} 2 (T=o0 T, C%09) .

which takes (Z, g, ) to the function Q[Z, g, p] from 0 to C defined by

QlZ, g, p](t, x) E/ - H[Z, g|(t,x,7,y)pu(r,y) doydr ¥V (t,x) € Or,  (1.17)

is trilinear and continuous (cf. Remark 1.5).

Proof. We first consider statement (i). Let z,y € 0Q, x # y, t,7 € | — 00, T[, 7 < t. The
membership of Z in K, ,(8rQ) and of g in C%?(9Q) implies that

|z —y| e
((g(x) — g() Z(t, z,7,9)| < |glo|lz — ylel\Zl\;c%,a(aTQ)me =) (1.18)

Let t,7 €] —o00,T[, 7 < t, &' 2" € 00, 2/ # 2", y € N\ B, (2/,2]|2' — 2"|). Lemma 1.11 (i)
and the membership of Z in IC% o(0rQ) and of g in C%?(99) imply that

[(9(a") = gy)) Z(t, 2, m,y) = (9(a") — () Z(t, 2", 7, y)]
<|g(a") —gW)||Z(t, 2", 7,y) — Z(t, 2", 7,9)| + lg(z") — g(z")[|Z(t, 2", 7, y)]

‘z/ 2

|:L"—y|9|x'—:n”| e’ =y
< bt e e T o
|:C/ //| |x”—y| ey
it — 7|7 e 1916l Z|x,, .(0r0)
|x/ - y|6 / " ,, 0 2|J} y| ,II'*}\Z
S |g|6||Z||’C“m,a(8TQ){|t_7_|g—&-l|x - |+| | ﬁ e Adalt=7)

Since |z' — 2”| < |2' — y|, we have |z’ — 2”|'7% < |2’ — y|'~¢. Hence,

’x/ _ y‘e‘x/ _ x//‘ + ’x/ - a;”]92]a:’ o y‘

< |x'—y[ ]w'—x”]e—i—]w’—x”]%\m’—y\ :3\x'—y] ‘x/_x//a’

and accordingly

(g9(2") = g() Z(t, 2", 7,y) = (9(«") — g(v) Z(t, 2", 7, y)| (1.19)
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|z’ —y)
e_ da(t—7) |

2" =y
]t _ T‘gﬂ

<lgloll Zllx, .or0)3 |2 — z"|
Now let z,y € 9Q, x # y, t/,t" € | — 00, T[, ' < t", 7 <t —2|t' — t”|. The membership of Z
in Ky, o(0rQ2) and of g in C%Y(9Q) implies that

}(g(l’) - g<y))Z(t,ax77—a y) - (g(.’L‘) - g(y»Z(t”ax?Tv y)‘ (1'20)
< ‘x - y‘oyg‘QIZ(t/,$,T,y) - Z(tllvvav y)|

|z =y 2yl

0 / M at —7)
< lglollZllxc,,, .oreylz — Yl m“ — e a=m).

Inequalities (1.18), (1.19) and (1.20) imply the validity of statement (i).
Next we consider statement (ii). By Proposition 1.21 (ii) with v = v, 9, the map u[07(2, -, -]
is bilinear and continuous from K, , 44(9r82) x L>(9rQ) to

B <] ) T[a CO,max{W,wg(J}(@Q)) ’
Indeed,

m=Mm/2)+1>1,

21— —2=2(n/2)+1)—(1+60)—2=(n—1)—0 € n—2,n—1],
Yi=(Mm/2)+1>1,

7;:06]071]7

21— —2=2((n/2)+1)—1-2=n—1,
(n=1)—-Cn-7-2)=0-1)—-[2(n/2)+1)-(1+0)-2] =0,
Ntn-—1) -2 -n-2)=0+(@n-1)-(n-1)=0>0,

and Co>ma‘x{r97w9(')}(ag) — Covw9() (aQ)

Next we wish to apply Proposition 1.22 with v = 7, 9. Clearly, v1 = (n/2) +1 > 1.
Moreover, we have seen above that 2y — 7y —2=(n—1) — 6 € [n — 2,n — 1[. Then we can
choose

h=6/2€)0,0/2= |0, "=V = [;” =D =91 0.9

Next we observe that v{ = (n/2) +2 > 1, 4/ = 1 and that

e === (n=1) _AD+D=(+0)=2=(=1) | 0,
2 2 )
W —-1=(n/2)+2)—1=(n/2)+1>1,

min{y{ — 1,7/} = min{(n/2) + 1,1} =1>1-(0/2).

Since 1 — (0/2) <1—(01/2) =1 — h < 1, we can choose
el - (0/2),1],

close enough to 1 — (0/2) so that h' < 1 — (61/2) = 1 — h, i.e., such that h < 1 —
h'.  Then min{h,v — A’} = min{h,1 — '} = h. Accordingly, Proposition 1.22 im-
plies that the map u[0r(2,-, ] is bilinear and continuous from K, , 44(97r§2) x L*(9rQ2)

L
to Cl?’ 2 (] — 00, T, C’O(@Q)). Hence, statement (i) implies the validity of statement (ii). [
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Remark 1.26. Under the assumptions of the previous proposition, one can readily prove
that B (W, CO""G(')((?Q)) N C’l?’%l (W, CO((?Q)> is continuously embedded into
CF 0 (9:0).

Then Remark 1.20 (iii), Lemma 1.25 and Remark 1.26 immediately imply the validity

of the following theorem regarding the mapping properties of an integral operator with
0z, @y (t — 7,2 — y) as kernel.

Theorem 1.27. Let T €] — oo, +0o0]. Let Q be a bounded open Lipschitz subset of R™. Let

0 €]0,1], 6, €]0,0[. Let r € {1,...,n}. Then the map Q[0 Pn(t — 7,2 — y),-,*] from
0

C%0(00Q) x L>®(0rQ) to 071’01(8TQ) which takes (g, ) to the function

Q[0z, Pt —Y),9,u)(t, x) (1.21)
/ /BQ Y))0z, Pn(t — 7,0 — y)u(r,y) doydr VY (t,x) € Orfd,

is bilinear and continuous (cf. Remark 1.5).

Next we turn to analyze a class of integral operators which we need to study the properties
of class of integral operators related to the kernel 9;®,,(t — 7,2 — y), and we introduce the
following two statements. Again, the first one is needed to understand the behavior of such a
class of integral operators in the whole domain 27, whereas the second one investigates the
mapping properties of the corresponding boundary integral operators.

Lemma 1.28. Let a EJO, +ool, T €] — 00, 400]. Let Q be a bounded open Lipschitz subset of
R™. Let 0 €]0,1]. Let Z € C°((c1Qr x 07Q) \ Agrq) be such that

Z(t,x,7,y) =0  if (t,2,7,y) € (clQr x OrQ) \ Agpq, T > t,

and such that

- - n o —y|?
(= sup{|Z(t,:1;,T, y)|lt — T|§+1ea(t*yf> : (tyz,T,y) € (clQp x 9pQ)) \ AaTQ} < +o00.

1 o~
Let f € C%%(clQ) and p € C’I?’Q (] — 00,77, 00(89)>. Let H*[Z, f, 1] be the function from
(clQr x 0rQ) \ Agq to C defined by

f{ﬁ[27 fa ,u](t,x,T, y) = (f(.%') - f(y))Z(tv £, Tvy)(:u(Tvy) - M(tay))
V(t,z,7,y) € (clQr x 0rQ2) \ Ap,q -

If (t,z) € clQr, then the function HYZ, f,u](t,z,-,-) is Lebesque integrable in O and the
function Q¥[Z, f, u] from clQr to C defined by

QY Z, ful(t,x) = /t . HYZ, f,ul(t, 7, y) doydr V(t,x) € clQp,

18 continuous and bounded.

Proof. We plan to apply Lemma 1.23. By definition of ¢ and of H (Z, f, 1], we have

BT
o E

12, fi(t,@,79)| < P

|z —yl?

Ce_ a(t—T) ,
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for all (t,z,7,y) € clQr x 0rQ\ Ag,q. Next we note that
(n+1)/2>1, 2n+1)/2)—-0-2=n—1-0<n—1,

and that Vitali Convergence Theorem implies the continuity of the function |, 90 \x—yﬁ%

in the variable z € c1Q and accordingly that sup,cq [, 90 Ir—yﬁ% < 400. Then Lemma

1.23 with g = 1 implies the validity of the statement. O
Next we have the following.

Proposition 1.29. Let a €]0,+oo[, T €] — 00,4+00]. Let Q be a bounded open Lipschitz
subset of R"™. Let 6 €]0,1]. Let b € [1/2,1], by €]0,b[. If n =2, then we further assume that
b<1. Let

+,

#
Yn,6,b

cf. Remark 1. 11)). en the following statements hold.
f. R k 1.20 Then the foll hold
1 emap~ TOm # () X ’ X O (Op to " 7€), which takes
i) Th H fi IC,Y IrQ) x C%0(90Q) x COH01 (910 IC,Y 5a89 hich tak
n n,0,b’

,a

(Z,g,1) to the function H[Z, g, u] from (drQ)?\ Ag,q to C defined by

((n/2) + 1,0, (n/2) +2,1,1, (n/2) + 2,0,1) , (1.22)
(n/2) +1—b,0,(n/2) +1—b,0,0,(n/2) +1— (b—b1),0,b1) ,

H[Z, g, pl(t,z,7,9) = (9(2) — 9(9) Z(t, 2,7, y) (1(T, y) — p(t,9))
for all (t,z,7,y) € (OrQ)? \ Asrq, is trilinear and continuous.

(ii) Let 2b 460 < 2. Let
N [ if b€]1/2,1],
@ o(r) = { wp(r) ifb=1/2.
The map Q from K (079 x C%9(9Q) x CO¥O1(9rQ) to B (] — 00, T, CO’@bve(')(89)>

,a

which takes (Z,g, ) to the function Q[Z, g, ] from drQ to C defined by

t ~
Qz.gplta)= [ [ (gl doyar,
for all (t,x) € Or<Q, is trilinear and continuous.

(iii) The interval }max {0, #(l’_bl)} ,min{(n/2) — (b — bl),bl}} is not empty and the
map from K._; (8r6) x CO0(06) x COPO1(9rQ) to Cpmn 010 (] ——— cO(aQ))

which takes (Z, g, 1) to Q[Z,g, ] is trilinear and continuous for all
2 _
h c :|0’ w |:’
2
1—60—2(b—b1)
2

by € ]max{(), } ,min{(n/2) — (b — bl),bl}} .

Proof. We first consider statement (i). Let z,y € 9Q, z # y, t,7 € | — 00, T[, 7 < t. Then we
have

[(9(x) —g(y)Z(t,z,7,9)| |u(7,y) — pu(t, y) (1.23)
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’JZ — y’e _ le—y|? b
oz 72Nk, @rllilcosor o)l

< 19le
9] PRE:

2 —yl? e

= ‘9‘9”2”16%#(%9)HMHC“?O’I(BTQ)WG o=

Lett,7 €] —o00,T[, 7 <t,a',2" € 00, 2/ # 2", y € 00\ B, (2/, 2]z’ —2"]). Then Lemma 1.11
(i), and the definition of || Z|| ks (0r9); and the Holder continuity of g, i, and the triangular

inequality imply that

[(g(z") = g) Z(t, 2", 7, y) (u(T, y) — p(t,y)) (1.24)
—(g(") = g() Z(t, 2", 7, 9) (T, y) — p(t, )|

< {rg<a:'> W)l |Z(t. 2 ) — Z(t, 2" 7))

(') — g(a")]|Z(t, 2", . y)!}lu(ﬂ y) — ult,y)

< lglol1Z] Il cnsos onan {2 ot — e
= glellzlic y (oro)liflicorororo) PR
/00 - 2
||;C_T|xg+|1@ 1) }It—rl’-

Since |2/ — 2| < |2’ —y|, we have |2’ —2”|' 7% < |2’ —y[* =Y. Moreover, Lemma 1.11 (i) implies
that |z” —y| > $|2’ — y|. Then Lemma 1.14 (iv) implies that the right hand side of (1.24) is
less or equal to

’x/ _ y‘2’x/ _ x//,@ 2’ —yl?
a(t—7)
e (1.25)

ohlZlc , oroililonson oo

10 o/ — ‘2
,'f ﬁhe‘iufﬂ}n—rrb
— 7|2

[z’ —a"|° (|2’ —y|? Ll
< |9|0”Z”1cwgwa(aTQ)||M||coyb;0v1(aTQ) P e R +1pe talt=7)
/ //’0 o’ —y|2

< |9|9HZHicvﬁ a(aTQ)|’M||co,b;0,1(aTQ)ﬁ_T|wC(4a7 5a,1)e 5at=m) .

Let 2,y € 00, x #y, t',t" €| — o0, T[, t' <", 7 <t' — 2|t/ —¢"|. Then Lemma 1.11 (i) and
the triangular inequality imply that

[(g(x) =g Z ({2, 7, 9) (u(T,y) — pt',y)) (1.26)
—(g(x) = g(w)Z(t", 2z, 7, 9) (w1, y) — (", )|
< |(g(x) =g Z (", z, 7, )| | (T, 9) — p(t',y) — (u(r,y) — (", y))|
Hu(ry) — " ) (@) —gW)Z{t 2, 7,y) — (9(x) — g(y) Z(t", 2, 7,9)]

A T
< 7 . — e a(t/—T1)
< Igloll H/c%uwa(am)HMHcmb,Ovl(aTQ){ @ )i
7= " =y’ =t Lot
+ (t/ _ 7.)%4—2 €
’x _ y|9|t’ o t”|b_b1

/ b
< lglollZllk ; @rallttllcoson ot — 17| 1{ (' — )5
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plz —ylfft — |10 el
e Ee }e e
B (e
" (t' — T|):L;2LIQy|:(1b1) }6 ;ﬂf)
< dlglollZlic ; oreyllulicosonoralt —11" e tc)g_ﬁe(bbl)ei?ﬁi

Then inequalities (1.23)—(1.26) imply the validity of statement (i).
We now prove statement (ii). We distinguish case b €]1/2, 1] and case b = 1/2 and we
first consider case b €]1/2, 1]. By Proposition 1.21 (ii) with v = 731 o> the map u[0r€, - 1] is

linear and continuous from ’Cvu 5,(078) to
n,0,b?

B <m7 CO,min{(nfl)f(anbe),G}(89))
= 5 (= o T, OO0 50)) = B (=0, TT.C¥0(00))
Indeed, by our assumptions we have 1 < 2b+ 6 < 2 and

Mm=Mm/2)+1-b>1, (1.27)

291 — 2 —2=2[(n/2)+1—-b] — 6 —2
=n—-2b—-0=n—-1)—(20+60—-1)en—-2,n—-1[,

Vi=m/2)+1-b>1,

v =0 ¢€0,1],

YAm—1) (27 - —-2)=0+n—-1)—(n—-20)=0—-1+2b>0.

Moreover, assumption b > 1/2 implies that
7 = —2=2((n/2) +1-b)—2=n—-2b<n—1,

and that
n=1)—2n—7—-2)=2b+0—-1>0=1].

Hence, statement (i) implies the validity of statement (ii) for b €]1/2,1]. Next we consider
the case b =1/2. Since

21— —2=n—1, (n—=1)—2n—"-2) =0,

statement (i) and Proposition 1.21 (ii) imply the validity of statement (ii).

We now turn to prove statement (iii). We first note that the assumptions b € [1/2,1] and

0 > 0 imply that H%(b*bl) < b and that accordingly the interval

}max {o, L-0- 22(b —b) } ‘min{(n/2) — (b— b1), b1}

is not empty. Indeed, [1 — 6 — 2(b — b1)]/2 < (n/2) — (b — b1). Next we plan to exploit
Proposition 1.22 with v = 'yi p.p- By assumption and by the equalities in (1.27), we have

he]0,(2b4+60—1)/2[=]0,[(n—1) — (271 — 72 — 2)]/2[ n]0,1] .



34 Time dependent boundary norms for kernels and integral operators

Next we observe that 7} = (n/2) +1— (b—b1) > 1, 7/ = by €]0,1] and that
2y =~ —2)—(n—1) B n+2-2b—5b)—0—-2—(n—-1)

5 = 2
_ (1_9)—22(6—61) <A —1=(n/2)+1—(b—by)—

=(n/2) = (b—b)>
2 -1 —-2)—-(n—-1) (1—9) —2(b—b1)
2 2

Indeed, (1 —6) —2(b—0b1) <n—2(b—b1) and (1 —6) —2(b—b1) < 2b;. By assumption,

<y =b>0.

by € ]max {0, 1=6 5(” —b) } ‘min{(n/2) — (b— bl),bl}] .

Then the map u[0rQ, -, 1] from K, (97Q) to Gy 01702} (i] — oo, T, 00<am) is linear
n,0,b’

and continuous. Hence, statement (i) implies the validity of statement (iii). O

Finally, we specialize the previous proposition to case in which the kernel Z of the integral
operator Q[Z, -, ] is exactly 0;®,(t — 7,2 — y).

Theorem 1.30. Let T €] — 0o, +00]. Let 2 be a bounded open Lipschitz subset of R™. Let
a €]0,1[, B €]0,al. Then the following statements hold.

(i) The map Q[0:®,,(t — 7,2 —7v),, -] from CO*(IN) x CO’#;O’l(aTQ) to C'23%(9rQ) which
takes (g, ) to the function

0%, g, pl(t ) (1.28)
/ / D)OBu(t — 7.7 — y)(u(r,y) — plt,y)) doydr
o0

for all (t,x) € O, is bilinear and continuous.
(ii) The map Q[Oy®,(t—7, x—y), -, ] is bilinear and continuous from C** () XCO’%;O’I(aTQ)
to C28(0rQ).
(iii) The map Q[8;®,(t—7,z—y), -] is bilinear and continuous from CO'(8Q) x CO101 ()
1+o¢
to C}’ (] " CO(aQ)).
Proof. Let a €]16,400[. Then Remark 1.20 (ii) implies that 0;®,(t — 7,z — y) belongs
to Icvfua(aTQ) with 75 as in (1.22). We now prove statement (i). If 8, €]0, 3], then
007#%04(%9) is continuously imbedded into CO’%?OJ(@TQ). Thus there is no loss of
generality in assuming that o 4+ 8 < 1. Then we can apply Proposition 1.29 with

1+ a a+p a 1+ 8

= - = —_— —_— C —_— — .

=232 o-a nel5 2505

Indeed, 2b+6 = 14 3+« €]1,2]. Proposition 1.29 (ii) implies that Q[0;®,,(t — T,z —y),-, ] is
bilinear and continuous from C%(982) x CO’#;OJ((‘)TQ) to B (] — 00,17, CO’O‘((‘?Q)). Then

we note that

o 2b+60-1 a+f
h=— - | =
el el
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and that
l—«

5
(n/2) = 271+ B) = b1] > (n/2) = 271 (1 + B) + (a/2) > (a/2) — (B/2),
and that accordingly

}nmx{xl‘e‘gw‘””},mm«nM)wbﬂwﬁ[

=10, min{(n/2) — 271 (1 + 8) — bi], b1 }[2]0,27 (o — B)][.

Since by > «/2, we can choose by €]0,27!(a — B)[ such that b1 — by > «/2, and thus
min{h,b; — b2} = /2, and Proposition 1.29 (iii) implies that Q[0;®,(t — 7,z — y),-,] is
bilinear and continuous from C%(9€) x CO’#;O’I(aTQ) to C’I?’% (] — 00,77, C%@Q)). Then
statement (i) holds true.

Next we consider statement (ii). We apply Proposition 1.29 (ii) with b = 1/2,0 = «. Then
the map Q[d;®,(t — T,z —1v), -, ] is bilinear and continuous from C%*(9Q) x CO’%;O’I(&[Q) to

B (] — 00, T[, CO%al() (89)) . By the continuity of the embedding of C%“=()(9Q) into C*#(99),
the same map is continuous from C%*(9Q) x CO’%;OJ(@TQ) to B (] — 00,77, 00’5(89)). Then
we plan to apply Proposition 1.29 (iii) with b =1/2, 0 = «, by €]8/2, a/2[. We take

hzge]o,%—kg_l[Z]O,g[,

1>b—-0b; >

and we choose

@e}mw{m1_9_5“_b”}mmqmpy—w—mxm4

= |max{0,b; — «/2} ,min{(n — 1)/2 4 by, b1 }]

=10, b1[,
where we have exploited the membership of by in |3/2, a/2[. We note that since by > 3/2 we
can choose by €]0,b;[ such that by — by > §/2. Hence, Q[0; P, (t — T,z — y), -, -] is bilinear and
continuous from C%*(99) x 007%;0»1(%9) to Cl?’g (m, C’O(@Q)) .Then we can conclude
that Q[0:®,(t — 7,2 — y),-,] is bilinear and continuous from C%*(9) x CO’%?O’l(aTQ) to
C’g’ﬁ(aTQ). Hence, statement (ii) holds true.

Next we turn to prove statement (iii). We plan to apply Proposition 1.29 (iii) with
bel27 1+ a),1[, 0 =1, by €]271(1 + ), b[. We note that
1+a 20 +60—1
h= 0,—— | =10,b
5% e o 25 =

and that b —b; <1—271(1+4+a) =271(1 — «), and that accordingly
1—60—-2(b-0
Jmae {0 2222020 i) - - b}
=10, min{(n/2) — [b— b1],b1}[2]0, min{1 — 27 (1 — a), by }]|
=10,271(1 + a)[.
Since by > 271(1 + ), we can choose by €]0,271(1 + a)[ such that by — by > 271(1 + a) and

thus min{h,b; — bo} = 271(1 + ). Hence, Proposition 1.29 (iii) implies that statement (iii)
holds true. O
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1.8 Integral operators on the space of Holder continuous func-
tions

Next we consider the action of the integral operator u[0r€2,-, ] on (K, u), in case K is in the
class of kernels K, , that we have introduced in Definition 1.19 and the functional variable
u is Holder continuous. We start with the following result which collects two statements.
The first one regards the Holder regularity in space and the second one regards the Holder
regularity in time of u[07Q, K, p].

Proposition 1.31. Let a €]0,+oo[, T €] — o0, +00]. Let Q be a bounded open Lipschitz subset
of R". Let v € R® be as in (1.11). Let~], ~) €]0,1]. Let vy > 1,271 —y2 —2 € [n—2,n—1[.
Then the following statements hold.

(i) Let ma €10, 1]. Let 74 — (2/2) > 1, (n— 1) — (294 — v — 2 — 12) 4} > 0. Let

poin{(n—1)—(2v1 —72—-2),7/} if 29 —Ah—2—m<n—1,
w(r) = { max{rM-1-Cn=12-2) wyr(7)} if 29 = —2—m=n-1,
pmin{(n—1)—(2y1-72-2),(n—1)=(27] =75 —2-m2)+7} if W —Ah—2—my>n—1,

for all r €]0,+oo[. Then there exists c¢1 €]0,+00[ such that the function u[0rQ), K, y]
defined by (1.12) satisfies the following inequality

ulor®, K. pl(t,3") — ulorQ, K, ¢, 2")| (1.29)
< eullK e, oor 1l 2. g (10" = @)

Il o e luldr€, K, 1)(2, 2') — u[dr€, K, 1)(t,2")]

for all 2’2" € 0Q, t €] — 00, T, and for all (K, p) € Ky,4(07Q) x cEm (0rQ2).
(i1) Let 1 €]0,2[, n2 €]0,m]. Let

71— (m12/2) > 1,

271 =72 =2+ (m —m2) <n-—1,

V= (12/2) > 1,

W< —1+2"(m —m),

m <2y,

29 =9 =2 =29+ (m — ) < (n—1).

Then there exists ca €]0,+00[ such that the function u[0rQ, K, u| defined by (1.12)
satisfies the following inequality

\u[0rQ, K, u)(t', ) — u[orQ), K, u](t”, z)| (1.30)
< CQHKHIC%a(@TQ)”:U’HC;),WTQ(m?C()(aQ))’t/ — |7
Hulr, Kl ) 2) — ulor, Kt ) )],
for all x € 99, ' t" € |—oo,T[, t' < 1", and for all (K,pn) € K,4(0rQ) x
) (1= .71, C°09)).
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Proof. We first consider inequality (1.29). Let 2/,2” € 9Q, t € | — 00, T[. By Remark 1.1
and by Proposition 1.21 (i), it suffices to consider case 0 < [’ — 2| < /. By the triangular
inequality and by the inclusion B, (z/, 2|2’ — 2”|) C B, (2", 3|2’ — 2”|), we have

[ul0rQ, K, p(t, 2") — u[0rQ, K, p)(t, z")] (1.31)
< ( (u[drQ, K, pl(t,2') — p(t, 2 )uldrQ, K, 1)(t,2'))

— (u[orQ, K, p)(t, ") — u(t, o' yulore, K, 1)(t, x”))‘
+|p(t, 2| |u[orQ, K, 1)(t, 2") — u[orQ, K, 1](t, 2")|

]f j/ K (1,27, 9)| lu(r ) — it 2')| doydr
n(x! 2]z’ —z'"|)NOR
+/ / Kt 2" 79| |n(rsy) — u(t,a)| doydr
—o0 J By (23| —x|)NoN

t

+/ / K (t,a,7,y) — K(t2",79)| |u(ryy) — u(t, 2')| doydr
—o0 JOQ\By (2! 2|z —2''])

il e (o [ulO 2, K, 1) (E 2') — ulop€, K, 1)(t, "))

We now estimate the sum of the first two terms in the right hand side of (1.31). By Lemma
1.13 (ii), we have

t
/ /(,2/ /,|)OQQ|K(15»33,,7',Z/)||,U(T,Z/)—M(t,xlﬂdoydT (1.32)

t
of | K (62" 7.9)] () — p(t, ") dorydr
(@ 3|2~z ) NI

| y’w e’ —y)?
< 2HKHIC7 a(aTQ)||/~L||L°° orQ) / / o 2’00 me a(t—=7) dedT
n x

|f[f ’72 B lliy‘2
— ¢ a“*f) doydr
n (2", 3|z’ —x|)NON |t - 7—|AY1

< QHKH/CW @r) Ikl Lo (or0)

/+<>O/ |z! — y[r2t2q1Hm SR
u
R T Y Py LT

+o0 ‘ y|72+2a—1+’yl 1
/ / - 5 e u daydu}
W@ Bl —a)ran M = y[Pn

[y —1)
<A Klli, o701l Lo 8TQ)7C/{2,2717W272|1"

I $//|(7’L71)7(2’717“{272) .

We now consider the third term in the right hand side of inequality (1.31).

/ / K(t,a my) — Kt 7)) lu(ryy) — n(t,o) doydr — (1.33)
OO\B, (z/,2]z'—=""|)

’x — y’% " la/—y|?
<WKmaaQ/ / o 2 phe
~,a(07Q2) HON\Bn (/2] —2""|) |t — 7-”‘/1
x [|u(r,y) — p(r,2")| + |u(r, 2") — p(t, 2")|] doydr

< ||KH]C%(L(8TQ) ||HHC"72;TJ2 (8rQ)
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+oo / Yo+24n2 ,— 147}
T — 2 a 1 ;1
AL oy T e doy
0 Jo\Bu(' 2ler—ar))  uN[z' —y[N

o~ e T
+ — - 2" — 2" |e” v doydu
0 OB, (o' 2|/ —zr|) w1~ (F) |z — g2

< 2||KHIC%‘1(8TQ)HMHC"T?;@(BTQ)|a;" AR

/ / 2
F(yp—-1) I'n—%-1) doy
X max 'Yl_l ) r_m2 ’ 27/ _,y/_2_n2 .
a1 al1” 2 OO\By, (z/,2|z" —x"|) |l’ _y| ror2

At this point we distinguish three cases. If 29 — 5 —2 — 12 < n — 1, then Lemma 1.13 (i)
implies that

/ doy </ doy <
Tl _o_ = T _o__ _CQQ’_’_2_27
OB (o' 2|2/ —a|) |2 — |22 oq |o' — y[Pmm ST

and thus inequalities (1.31)—(1.33) imply that there exists ¢; > 0 such that inequality (1.29)
holds with w(r) as in statement (i). If 274 —~5 —2—n2 = n—1, then Lemma 1.13 (iv) implies
that

/ doy
OB, (2! 2Ja—a]) |2 — y[P T2

and thus inequalities (1.31)—(1.33) imply that there exists ¢; > 0 such that inequality (1.29)
holds with w(r) as in statement (i). If 294 —~+5 —2—mn2 > n—1, then Lemma 1.13 (iii) implies
that

< ®|log |z’ — "||,

" /

/ doy < |
77 _o_ >~ CQ 27! —! —2—ms X
OO\B (27 2la’ —a)) |2/ — y[P1 772272 ST

and thus inequalities (1.31)—(1.33) imply that there exists ¢; > 0 such that inequality (1.29)
holds with w(r) as in statement (i).

Next we consider statement (ii). Let z € 9Q, ¢/,t" € | — 00, T[, t' < t”". By Remark 1.1
and by Proposition 1.21 (i), it suffices to consider case 0 < [t' — "] < 1. By Lemma 1.11 (i),
and by the inclusion of intervals

— | D= @r == 2-)
)

]t/ _ Q‘t/ —t”‘,t/ +2‘t/ —t//‘[g ]t// _ 3‘t/ —t//‘,t//+3|t/ —t//’[,
we have

lu[0rQ, K, u)(t', x) — u[orQ), K, p](t", z)| (1.34)

< (u[@TQ, K, u|(t',z) — ulorQ, K, u(t', -)](t’,x))

— (u[or, K, p)(t", x) — uldrQ, K, u(t', )|t z)) ‘
Fu[or, K, u(t, )t ) — u[drQ, K, u(t, )], 7))

t’+2|t’—t”|
< / / K (2,7 9)] [1(7, ) — (s )| doydr
t—2)t'—t"| JoQ

43| —t"|

" /

+/ / |K(t 7x77—7y)||//“(7-7y)_M(t7y)‘do-yd7-
tr=3lt—t| Jon

t’—2|t/—t”|
4 / /a (Y ,79) = K@, 7)) () = ') o

—00
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+ulor, K, p(t', )]t x) — ulorQ, K, u(t', )] (", z)] .

We now estimate the first two summands in the right hand side of (1.34). By Lemmas 1.13 (i)
and 1.14 (i), and by the elementary inequality [/ — 7|% < |t/ — ¢/|F + [t — 7|, we have

v 20t —t"|
/ / K2, 9)]| |u(rs ) — (s )| dorydr (1.35)
v—2)t'—t"| Jon

t//+3‘t/ t//‘

!/

+ / / K", 7, )| [l y) — n(t's )| dorydr
t—3lt'—t| Joq

< ||K||}C'ya 8TQ)||M|| 0 (]7 T[cO(@Q))

¢ —y2 -
T
X / / 7’ Yl e o=t/ —7'| 3 doydr
v —olpr—r Jo [t — T|™
t" — a2 lo—y|2
-t [ [ I doyr
=)~ Joq [t — T

7 e o—y]?
+/ / Lj, Yl ¢ AT [t — 7'|%2 dO'ydT}
w—ay—r| Joq [t — 7™

< ||K :
< IRl e Wl g2 oo

]:1: _ y’“/2+2 1+m 1

_ _n2
Iz 9\2 2 _1
e wdudoy,
0 ’:U |2y —n2

3a|t' —t"|

+2
i —t|F P e WP et udo
an ut |z —y[n !

3alt/

g — et =2
/ / = ‘:E ’ e_% duday}
a0 ’gj_ y|2—me

14— 14y
v 2,a 'Y}

<Kk, ., aTQ)||M|| c0F (e ooT[CO(m)) max{a

- 3 t/ t// 7 d
X 2/ D -2 m a] 2’ %y
272 |z — y| |z — y|2n—r2—2-m2

1—"M2

n
t”]2/ D o Balt' —t"|\ "2 doy
|z — y|? @ — gyl 2
< |IK|| 2] “l=F gy
— ’C»Y’a(aTQ) :LL CO 2 7a’

(]

~ c
x{2D71_n227"21(3(1) €Q,291 —v2—2+ (11 —12)

max{a
—00,T[,C0(09))

N\H

n—n2
2

n
+(3a) D’Yl,"12"262272’71’722+(771nz)}’t, o t”’ 2
We now estimate the third term in the right hand side of (1.34). By Lemmas 1.13 (i) and
1.14 (i), we have

t—2|t' —t"|
/ /8 UKW m) = K m )l 9) = et doydr (130

—00

< 1Kllk,.0re) Il 0% (] STLCo0)
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2|t/ —t""| Y Jo—yl2.
x/ / eyl y’ “ | — ' e doydr
—o0 oa |t — |2

|t/ _ t//|yl”
(J—o00,T7], CO(aQ))

|z — ’“/2 2o -F
el = 5 e w doydu
90 a\t t I M ’.17 — | 7 —n2

_ "_ 772
t t//|'yl a 1+~ —

< 1Kk, aore) 11 0%

ol

< ||K D_,
_H ”K%a(aTQ)||MHC§’%2(W7CO(8Q)) V- 772

/ 2alt — "]\ " doy
X 11 11
oo \ |z —yl? |l —yPr i

. ) 1y —r
<Kk, .or0 1l o,g(mco(am)Dﬂug,r’t |

r 71+7// n2 o,
><(2a) 2 Co 27//_,7//_2 na—2r

for all r €]0,~) — (772/2) — 1], provided that 27 v —2—mn2—2r < (n—1). We now wish
to select r so that v —r=mn/2, i.e., r =7 —m/2. To do so, we must verify that
0<y' =(m/2), o —(m/2) <A —(n2/2) -1, (1.37)

and that 29 —~4 —2 —ny — 2r < (n — 1). We can rewrite inequalities (1.37) as

m<2y, < —-1+27"(m—n).

and we observe that such inequalities hold by assumption. Moreover, if we set r = ~;" —11/2,
then our assumptions imply that

29 =g —2—m—2r =20 =4 —2—m =2y +m < (n—1),

Hence, we conclude that we can choose r as above, and that accordingly inequalities (1.34)—
(1.36) imply the validity of statement (ii). O

1.9 Applications to integral operators related to layer heat po-
tentials with Holder continuous densities

In this last section of the present chapter, we apply the results of the previous Section 1.8 in
order to obtain some mapping properties for some integral operators related to layer heat
potentials. We start with the analysis of a class of integral operators which we need to study
the properties of an integral operator related to the kernel D, ®,,(t—7,x —y), and we introduce
the following statement.

Lemma 1.32. Let a €]0,+o0[, T €] — oo, +0o0]. Let  be a bounded open Lipschitz subset of
R™. Let a €]0,1[, B €]0,[. Let v, be defined as in (1.16). Then the following statements
hold.

(i) There exists a constant q1 €]0, +oo[ such that

QIZ, g, ul(t, 2') — QIZ, g, p](t, ") (1.38)

< allZllk,, .oro)lgllcoa@allull s 2" — 2" |*

% BorQ)



1.9 Applications to integral operators related to layer heat potentials with Hélder continuous
densities 41

Hlullzeor0) |QIZ, 9,1](t,2') — Q1Z, g, 1](t,2")|

for all #',2" € 9Q, t € | —00,T[, and for all (Z,g,p) € Ko, a(0rQ) x C%*(982) x
C28(0rQ) (cf (1.17)).

(i1) There exists a constant gy €)0,+00[ such that

|Q[Z79,M](t,a$) _Q[ngnu'](t”vx” . (139)

< @l 2k, o oro)lgllcos@ollul o2 it —t"|>

C, 2 (J—00,T[,C0(02))
+|Q[Z7 g, /L(t,a ')](tlv :l?) - Q[Za 9, :u(t/¢ ')](t”v ZL‘)| )
forallz € 90, ¥/, t" € | — 00, T[, ' < 1", and for all (Z, g, 1) € Ko, a(OrQ) x CO(Q) x
08 f——
) (] oo, TT, cO(aQ)).

(iii) There exists a constant g3 €]0, 00| such that

Q[Z, g, u)(t',x) — QZ, g, p) (", z)| (1.40)
< gz - ¢ e
< @l Zlk., oar)llgllco wm””“cﬁ‘#(m,m(am)’ |
+|Q[Z> g, :u(t/¢ ')](t/7 iL’) - Q[Za g, ,U(tlv ')](t//7 :U)’ )
forallz € 90, ¥/, t" € | — 00, T[, ' < 1, and for all (Z, g, 1) € K+, a(0rQ) x CO(Q) x

) (=, T1.C%00).

(iv) There exists a constant q4 €)0,+00| such that

QIZ, g, u](t', 2) — Q[Z, g, 1] (t", )] (1.41)
| r //|%
(]—00,T[,C°(09))
+’Q[ng7 /j’(t/a )](tla ZC) - Q[Za g, u(t/7 ')](t”u CU)|,
forallz € 00, 1" €] — oo, T[,t' < 1", and for all (Z, g, p) € K, o(drQ2) x CO*(0Q) x
0,1
c,’? (] oo, 11, 00(09)).

< q4||Z||/C~,n,a(8TQ)||g||CO’O‘(3Q)”MHCO,%
b

Proof. We first consider statement (i). Let v,g, be defined as in (1.16) with § = a. By
Proposition 1.31 (i) with v = 7,9, 6 = «, 172 = 3, there exists ¢; > 0 such that inequality

(1.29) holds with w(r) = r* for all (K, pu) € K, ,.44(07€) x C%’B((‘)TQ). Indeed, v, = «,
n=1

n=(n/2)+1>1,

2vi =12 —2=2(n/2)+1)—-(14+a)—2=(n—-1)—a€n—2,n—1],

N = (m2/2) = (n/2) +1-(8/2) > 1,

(n=1)— (21 —7%—2—m)+7

=n—-1)—-2(n/2)+1)—1-2]+a+B8=a+5>0,
291 =Y —2—m=2(n/2)+1)—1-2-B=(n-1)-B<(n—1).

Then inequality (1.38) follows by Lemma 1.25 (i) with # = o and by the equality

U[@TQ,H[Z,Q],M] = Q[Zaga”]'
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Next we consider statement (ii). By Proposition 1.31 (ii) with v = v,9, 6 = a, ;1 = a,
n2 = [3, there exists co > 0 such that inequality (1.30) holds for all (K, u) € K, , 44(97€2) X
0.8

C,? (W, C%@Q)). Indeed, v/ = a, 7] =1,
M= (m2/2) = (n/2) +1-(8/2) > 1,
m=—m—2+m-m)=n-1)-—at+(@=-pF=mn-1)-F<(n-1),
N = (n2/2) = (n/2) +2 - (8/2) > 1,
W= 1 =27 =)
=1-((n/2)+2)+1-2""(a—-B)=—(n/2) =27 {a— ) <0,
m-—2v =a—-2<0
29 =5 =2 =29+ (m — m2)
=2(n/2)+2)—(14+a)—2-2+(a—p)=n-1)—F<(n—-1).
Then inequality (1.39) follows by Lemma 1.25 (i) with # = « and by the equality

u[@TQ,H[Z,g],,u] = Q[ngnu']'

Next we consider statement (iii). Let 7, o be as in (1.16) with § = . By Proposition 1.31
(ii) with v = Yn.a, m = (1 + @), 72 = (1 + B), there exists c3 > 0 such that

[ul0rQ, K, p](t', ) — u[0rQ), K, u)(t", z)| (1.42)
< 3| K e
< Dol gigs

+|u[aTQ7 K7 M(tlv ‘)](tlﬂ JI) - u[aTga K, M(t/7 ')](tuv LU)| )

for all x € 9Q, ¢/, t" € | — 00, T, t' < ¢, and for all

1+8

(K, 1) € Ky, o 4a(07Q0) x C) 2 (} oo, T1, CO(aQ)) .
Indeed,

n—(m2/2) = (n/2) +1 -2 1+ 8) > 1,

291 =2 — 2+ (m — n2)
=2(n/2)+1)—1—-a—-2+(1+a)—(1+p8)=n—-1—a+ (a—p)
<(n-1),

W= (/2) = (n/2) +2-2""(1+p) > 1,

W=+ 1 =27 (m — 1)
=1—((n/2) +2)+1-2"Ya-p)=—(n/2) -2 a - B) <0,

m-—2v=01+a)—2<0,

291 =7 —2=2y + (1 + &) — (1 + )
=2(n/2)+2)—1—a—-2-2+((14+a)—(1+7))
=n—-1)—a+(a—p0)<(n—-1).

Then inequality (1.40) follows by Lemma 1.25 (i) with € = « and by inequality (1.42) and by
the equality

u[aTng[ng]hu] = Q[Zagnu]'
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Finally we consider statement (iv). We plan to apply Proposition 1.31 (ii) with 7, =
1+ B8,m2 =1, 7 =Y. As above we can verify that all the assumption of Proposition 1.31
(ii) are satisfied and that accordingly there exists g4 > 0 such that

[u[orQ, K, p](t', z) — ul0rQ, K, ] (", x)| (1.43)

148
S LS T p——

+|u[8TQ7 K7 M( 7')](t ’x) - u[aTgv K)/J'( 7')](t// x)‘?

for all x € 90, t',t" € | — 00, T[,t' < t”, and for all
0.5 (T 77 (0
(K, 1) € Ky, o 4a(079) x C} (] ~ o, T, C (aQ)) .

Then the inequality (1.41) follows by Lemma 1.25 (i) and by inequality (1.43) and by the
equality
u[aTQ7H[Z7g]7/J'] = Q[qu’/ft]

O

Finally, we specialize the previous Lemma 1.32 in the case in which the kernel Z is exactly
O0r, Op(t — 7,2 — y) with r € {1,...,n}, and we prove the following.

Theorem 1.33. Let T €] — 0o, 4+00]. Let a €]0,1], 5 €]0,[. Let r € {1,...,n}. Let Q be a
bounded open subset of R™ of class CY*. Then the following statements hold.

(i) The map Q[0y, ®pn(t — 7,2 — ), -, ] from CO*(9€) x Cg?ﬁ(ﬁTQ) to C'2%(dp Q) which
takes (g, ) to Q[Oz, Pn(t — 7,2 —y), g, ] is bilinear and continuous (cf. (1.21).)

(ii) The map Q[0 ®pn(t — 7,2 — y),-,-] from CO*(9Q) x CO = (] — 00,77, C’O(E)Q)) to

1to
Cl?’ 2 (] — 00, T, 00(89)> which takes (g, p) to Q[Oy, Pn(t — 7,2 — y), g, p] is bilinear

and continuous.
L
(i) The map Q[0y, @, (t — 7,0 — ), -, -] from CO(9) x C'Z?’Q (} — 00,77, C’O((‘?Q)> to the

1+B

space C’ (] — 00,71, C%@Q)) which takes (g, 1) to Q[0z, Pn(t — 7,2 —y), g, 1] is
bilinear and continuous.

Proof. Let Z(t,x,7,y) = 03, Pn(t — 7,2 — y). Let a €]16,4+0c0[. We now prove state-

ment (i). By Theorem 1.27 the map Q[Z,,] is bilinear and continuous from C%*(99) x
[
cy? (] oo, T, CO(8Q)> to C(9rY). By Remark 1.20 (iii), we have Z € K, o(07Q) with

n as in (1.16). Then Lemma 1.32 (i) implies that there exists a constant ¢; > 0 such that

QIZ, g, p](t,2") = Q1Z, g, p](t,2")] (1.44)

< allZlk,, .(ro)llgllcoa 89)“#”075 5 Q))\ f— e

+ ||lu||L°° (0rQ) |Q[Z7ga ]( y L )_ Q[Zag> ](t’ ‘T”)’a

for all 2/, 2" € 9, t € | — 00, T, and for all (g, u) € CO*(9Q) x CQ;B(OTQ). By performing
the change of variables (t — 7) = u|z — y|?, we have

Q12,9 1](t, 2) / / O ot — 0 — ) doydor (1.45)
a0 8%
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2
Tr — Yy lz—yl

:/_OO /m(g(a:) - g(y))Q(M)%(t - T)%He*m dodr
1

400 _
— oy [ et [ (o) - o) o,
0 oN

ors |z —y|"
1 n Ty
- Tr(= — d
=T (5) /8 (o) = gl)) = oy
1 Ty — Yr
= — x) — do

= - / (9(z) — g(y))aaSn(w —y)doy  V(t,z) € 0,
o0 Ly
where s,, in the n — 1 dimensional measure of 9B,, and S,, is the fundamental solution of the
Laplace equation (see Appendix A and in particular the definition (A.1) and the Lemmas A.3
and A.4). Then known properties of harmonic layer potentials imply that there exists ¢; > 0
such that
Q[Z,9.1](t,2") — Q[Z, g, 1](t,2")| < di[2” — 2"|%, (1.46)
for all 2/, 2" € 9Q, t € ] — 00, T[ (cf. e.g. Schauder [97, Hilfsatz VII, p. 112], and Dondi and
Lanza de Cristoforis 32, §8]).
Next we turn to consider the time Hoélder quotient. We apply Lemma 1.32 (ii), which
implies that there exists a constant g2 > 0 such that

QZ, g, 1u](t',x) — Q[Z, g, p) (", )| (1.47)
t/ o t//|%

< ql||Z 0,0 8
|l Zlk,, .erollgllc (8Q)||u||05’7(}—oo,T[,Co(8Q))

+|Q[Zv g, :u‘(tla ')](t/7 $) - Q[2797 /J’(t/a ‘)](t//7 $)’,

for all x € 90, t/,t" € | — 00, T[,t' < t”, and for all
8 4,
(9, 1) € CO(09) x €y * (T= 00, TL,C°(99))

By exploiting the same change of variables of (1.45) we note that

QIZ.g.p(t, (b x) = / /a (gla) - g(y))ai@n(t iz~ y)ult,y) doydr

=~ [ (60) 90 g Sale — Dult) o, V(1) € 01,
o0N Z

(see Appendix A and in particular the definition (A.1) and the Lemmas A.3 and A.4).
Accordingly,

Q[Z, g, u(t',)](t',2) = QIZ, g, (¥, )](t", )| = 0, (1.48)

for all z € 9Q, t/,t" € | — 00, T[, t' < t”. Then by inequalities (1.44), (1.46), (1.47) and
equality (1.48), we conclude that statement (i) holds true.

Similarly, statement (ii) is a consequence of Lemma 1.32 (iii) and of equality (1.48), and
statement (iii) is a consequence of Lemma 1.32 (iv) and of equality (1.48). O



CHAPTER 2

Regularizing properties of the double layer heat
potential

This second chapter of the Dissertation is devoted to the mapping properties in parabolic
Schauder spaces of the boundary integral operator associated with the double layer heat
potential and of a boundary integral operator related to the normal derivative of the single
layer heat potential.
Let
a €]0, 1], m € N\ {0}, T €] — 00, +00].

Let 2 be a bounded open subset of R" of class C™®. Let v = ();=1,...» denote the external
unit normal to 2. Let p € L>(92). Then the double layer heat potential is the map from
(R™) to C defined by

w[OrQ, p](t, x) E/ - 8:2 )<I>n(t -1, —y)u(r,y)doydr  V(t,x) e (R")r. (2.1)

Moreover we set

wi [0, pl(t, z) = / - 81/8(33) D, (t — 7,2 — y)u(T,y) doydr V(t,z) € orQ. (2.2)

The boundary integral operator w,[07(2, ] is an operator related the the normal derivative of
the single layer heat potential. As the main result of the present chapter we prove that, if
Q is of class C™% and if 5 €]0, o[, then the following mapping properties for the operators
w[Or, ] jaq and w[07€2, -] hold (see Theorems 2.15 and 2.16 below).

i) w07, ]jo, is linear and continuous from CZ (9 Q) to CmTw;mHg(aTQ);
ii) w[OrS), ] |s,q is linear and continuous from CmTw;m"'ﬁ(@TQ) to C’mTJra;m‘”'a(aTQ);

iii) wy[0r€2, ] is linear and continuous from C%;m_leQ) to 02 m=1+8(910);

iv) w,[0rQ, | is linear and continuous from o=t m=1H6(9r0Q) to cre Mt (9pQ).

The mapping properties i)-iv) can be seen as the fact that the boundary integral operators
w[0rQ, -Jjaq and w.[0r ), -] have a regularizing effect. The proof of i) and ii) is mainly done

45
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exploiting two tools. The first consists in the results of the previous Chapter 1, which are used
in order to recover some regularizing properties for the double layer heat potential in lower
order parabolic Schauder spaces. The second tool is a new explicit formula for the tangential
derivatives of the double layer heat potentials, which allows us to deduce the general case by
an induction argument. The properties iii), iv) are instead deduced as a corollary of 1), ii).

This chapter is organized as follows. In Section 2.1 we introduce the single and the double
layer heat potentials and we collect some of their classical properties, like continuity, regularity
and jump formulas. In order not to make the presentation of this chapter heavy, we postpone
parts of the proofs of these properties to the Appendix B. In Section 2.2 we exploit the results
of Chapter 1 in order to deduce the regularizing properties of w[07(2, ‘]|8TQ for the case m = 0,
and for the case m = 1 in the time variable. In Section 2.3 we introduce some auxiliary
integral operators, and we study their mapping properties. In Section 2.4 we prove a new
explicit formula for the tangential derivatives of the double layer heat potential (see (1.2) for
the definition of the M;;-tangential derivative). More precisely, we prove an explicit formula
for

Ml‘j [w[aTQ, uh@TQ] - w[@TQ, Mz’j [,u]]‘aTQ on 8TQ,

in terms of the auxiliary integral operators of Section 2.3 (see Theorem 2.13 below). Section
2.5 contains the main results of this chapter. By means of the formula for the tangential
derivatives, we can prove the regularizing properties i) and ii) mentioned above exploiting an
induction argument and the results of the previous sections. We note that with our strategy
we can avoid to flatten the boundary of €2 with parametrization functions as done by other
authors when they consider certain mapping properties of boundary integral operators. In
Section 2.6 we deduce, as a corollary of the previous results, the mapping properties iii)-iv)
mentioned above. Finally, in Section 2.7 we deduce some compactness results for the operators
w[Or, -]|an and w07, -], which are a consequence of the regularizing properties i)-iv).

The results contained in the present chapter can be found in two papers by Lanza de
Cristoforis and the author [63, 64].

2.1 Classical properties of layer heat potentials

In this section we collect some known properties about the double and single layer heat
potentials. We start with the following statement about the classical properties of the double
layer heat potential.

Theorem 2.1 (Properties of the double layer heat potential). Let a €]0,1[. Let T €]—o0, +00].
Let © be a bounded open subset of R™ of class C®. Then the following statements hold.

(i) If p € CP(0rRQY), then the function w[OrSY, u] defined by (2.1) is of class C*°((R™ \
OQ)r) and solves the heat equation in (R™ \ Q). The restriction w[0r<, u) o, can be
extended uniquely to a continuous function wt[0rQ, u] from clQp to C. The restriction
w[@TQ,,u]‘Q; can be extended uniquely to a continuous function w™[0rY, p] from cl Q.

to C. Moreover, the following jump formula holds.
1
wE[0rY, p] (t, ) = :Fiu(t,:n) + w[orQ, pl(t, ), Y (t,z) € OrQ. (2.3)

(ii) Letm € N\{0}. Let Q be of class C"™“. Let R €]0,4o00[ such that c1Q2 C B, (0, R). Then
the map from C™2" m+e (0rQ) to CmTM?m*'O‘(cl Q) which takes p to wt[0rQ, p is linear

and continuous. Moreover, the map from Cme?era(aTQ) to C%’m“‘((cl B,(0,R) \
Q)r) which takes p to w™ [07Q, p|(c1B, (0,R)\Q)y 8 linear and continuous.
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Proof. By the definition of double layer heat potential we have that

wlorQ(t, z) = /t | 8:)@%@ 12— y)u(ry) doydr

t—1 6
+/Oo o mq’n(t—ﬂﬂﬁ—y)ﬂ(ﬂwd%dﬂ

for all (t,z) € R™. We note that the second term in the right hand side of the previous
equality is an integral operator with a smooth kernel which does not display a singularity.
Then statement (i) follows by the properties of the fundamental solution ®,,, by classical
differentiation theorems for integrals depending on a parameter, and by the jump formula for
the double layer heat potential which can be found, e.g., in LadyZenskaja, Solonnikov and
Ural’tseva [58, p. 407| or in Watson [110, Lemma 2.7, p. 41].

The proof of statement (ii), that is the proof of the Schauder regularity properties for
the double layer heat potential, is postponed to Appendix B, and in particular to Theorem
B.9 (ii) (see also Ladyzenskaja, Solonnikov and Ural’tseva [58, Chapter 4.2|, for the Schauder
regularity of the double layer heat potential in the case € is replaced by a half space). O

Then we have a corresponding statement for the single layer heat potential.

Theorem 2.2 (Properties of the single layer heat potential). Let o €]0,1[. Let T' €] — o0, +00].
Let Q2 be a bounded open subset of R™ of class C1. Let R €]0,+o0| such that c1Q C B, (0, R).
Then the following statements hold.

(i) Letn > 3. Let u € CY(OrQY). Then the function v[07S, ] from (R™)7 to C defined by

t
v[0rQY, pl(t, z) = / / O, (t — 1,2 —y)p(r,y) doydr V(t,z) e (R")r, (2.4)
—o0 JON
i.e., the (n-dimensional) single layer heat potential, is continuous in (R™)r, is of class
C*((R™\ 092) 1) and solves the heat equation in (R™\ 0Q)r.

Let n=2. Let u € CY(0rQ). Let zg € 2. Then the function v[0rSY, u] from (R™)r to
C defined by

+o0
v[0rQ, pl(t, ) = / /(99(®n(t -1, —y) — Pp(0— 7,20 — ) (7, y) doydr, (2.5)
for all (t,z) € (R, i.e., the (2-dimensional) single layer heat potential, is continuous
in (R?)r, is of class C°((R™\ 0Q)r) and solves the heat equation in (R?\ 9Q)r.

Both in case n > 3 and in case n = 2, we denote by v[0rQ, u| and v~ [0, u] the
restriction of v[0r§Y, p] to clQp and to cl€Q, respectively.

(ii) Let m € N\ {0} and r € {1,...,n}. Let Q be of class C™*. Then the map

from C" 2 mmlre(9,.0) to M2 M1 (1 Q) which takes p to B%TUJ“[@TQ,M]
18 linear and continuous. Moreover, the map from the space e m=lta(9,0) to

m—1+a

C™ 2 (B (0, R)\Q)7) which takes pu to 59-v~ (078, il (e B, (0.r)\)p 8 linear
and continuous.

(iii) Let m € N\ {0}. Let Q be of class C"™*. Then the map from CmTM?erO‘(aTQ) to
ot m=1¥e (] Qr) which takes p to %UJF (072, u] is linear and continuous. Moreover,
m—1+a

the map from CWTM;””“(@TQ) to C~ 2 (el B, (0, R) \ Q)7) which takes u to
the restriction %U_[OTQ’M]'(Can(()’R)\Q)T is linear and continuous.
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(iv) Letn >3, m € N\{0}. Let Q be of class C™. Then the map from e m=lre(9r0)
to CmTM?era(cl Qr) which takes p to vt[0rQ, u) is linear and continuous. Moreover,
m—1+a

the map from C~ 2 " Y(9p0Q) to CmTM;mJFO‘((Cl B, (0,R) \ Q)7) which takes p to
v [0, 1|1 B, (0,R)\Q)r 18 linear and continuous.

(v) Let p € C2%(0rQ). Let r € {1,...,n}. Then the following jumyp relations hold.

ayl?x) v 1orQ (1) = %ﬂ(u z) + w.[0rQ, (¢, x), (2.6)

0 4 1 K 0
G o) = sgutan@ + [ [

oz,

O, (t — 71,2 —y)u(r,y) doydr,

for all (t,x) € Or€2.

Proof. By the definition of single layer potential we have that
t
voreita) = [ | (e ra - y)u(ry)doydr (2.7)

t—1 J o0
0

- / 02,0 ®p (7,20 — y)u(7,y) doydr
—-1J0Q
t—1

[ @t = =) = a0 — )l doyir,

for all (¢,z) € (R™)r. Where we recall that by (6;;); je(1,..,n} We denote the Kronecher symbol.
We note that the second and the third term in the right hand side of equality (2.7) are integral
operators with smooth kernels which do not display singularities. Then statement (i) follows
by the properties of the fundamental solution ®,,, by classical differentiation theorems for
integral depending on a parameter and by the continuity in (R™)p of the first term in the
right hand side of the equality (2.7) (see, e.g., Friedman [38, Chapter 5, Section 2|).

The proof of statements (ii), (iii) and (iv) is postponed to Appendix B, in particular to
Theorem B.9 (i) (see also LadyZzenskaja, Solonnikov and Ural’tseva [58, Chapter 4.2|, for the
Schauder regularity of the single layer heat potential in the case 2 is replaced by a half space).

Statement (v) is a consequence of equality (2.7) and of the jump formula for the normal
derivative of the single layer heat potential, which can be found, e.g., in LadyZenskaja,
Solonnikov and Ural’tseva [58, p. 405| or in Friedman [38, Theorem 1, p. 137] O

Remark 2.3. The above definition of single layer heat potential v[072, u] in the case n = 2
clearly depends on the choice of xg € §2, even if we don’t make it explicit in the notation.
Indeed, a different choice would define a single layer which differs from that with zg by a
constant. We have defined the single layer potential in such a way because, in case n = 2, the
kernel

O, (t—x—-)

is not integrable in | — 0o, +00[x 012, instead the kernel
O, (t—x—)—D,(0— -, g — )

is integrable in | — oo, +-00[x0S2.
However, we note that if T' €]0, +00] and supp () C [0, T x 9§ (and this is the case when
one considers an initial-boundary value problem for the heat equation in [0, 7] x ¢l with
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zero initial condition at ¢ = 0), then the single layer potential v[07€2, 1] no longer depends on
o, and

v[0rQ, pl(t,x) = /0 /asz @, (t — 7,0 —y)u(r,y)doydr VY (t,x) € [0,T] x R?,

which is the classical definition of single layer heat potential (cf., e.g., Friedman |38, p. 136]).

2.2 Lower order regularizing properties of the double layer heat
potential

In this section we prove some regularizing properties for the integral operator w[9r{2, -]‘37,9

acting on the spaces of essentially bounded functions and Hoélder continuous functions on

Or€2. Such mapping properties are proved by applying the results of Chapter 1, when the

kernel K of the integral operator u[0r(2, K, -] is the kernel of the double layer heat potential,
0

i.e, K(t,z,T,y) = Wq)"(t — 7,2 —y). We start with the following theorem which regards

the double layer heat potential acting on the space of essentially bounded functions.

Theorem 2.4. Let o €]0,1], 8 €]0,af, T €] — 0o, +0o0]. Let Q be a bounded open subset of
R™ of class CH.
(i) The operator from L*°(0r2) to B (] — 00, T, C’O’max{”"a’“l(r)}(ﬁﬁ)) which takes v to

w[Or§Y, p a0 s linear and continuous.

B
(ii) The operator from L (0r) to CI?’Q (] — 00,77, CO(GQ)) which takes p to w02, p]jo,0
is linear and continuous.

(i1i) The operator from L (0rS2) to C’g;ﬁ(aTQ) which takes p to w[Or$Y, p a0 is linear and
continuous.

Proof. We first consider statement (i). Let a €]16,400[. We already know that the kernel

81/8(1;) ®,(t — 7,2 — y) belongs to K, 4(072) with v as in Remark 1.20 (iv). Clearly,

m=Mm/2)+1>1, 2y —12—2=Mn-1)—acn—-2,n—-1[,
and

! I o _ >(n—1) ifa<1,

YA m-1)—(@h -2 =1+m—-1)—(n—a)=a>0, ~f=L.

If @ < 1, then Proposition 1.21 (ii) implies that w([07S2, ]9, is linear and continuous from
LOO(OTQ) to

B (m Co,min{(n—n—[(n—l)—al,a}(39)>
= B ([ =00 T[.0°*(69) ) = B ([ o0, T, C*""10) (90 )

If a =1, then Proposition 1.21 (ii) implies that w[0r(2, |5, is linear and continuous from
LOO(GTQ) to

B (=50, T[, 0 (0)) = B (= o0, 7], COr" 10} 90 )
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Hence, statement (i) follows.
Next we consider statement (ii). We plan to apply Proposition 1.22. We note that v, > 1

and that
(n—1)— (271 — 72 —2)
2

Then we can choose h = /2. Next we note that 7 > 1, 7/ = 1 and that

0, M0, 1] =0, /2] .

27/ =7 —2)=n+1-a,
(27{ =7 —2)—(n—1) 2-a o
- —1-Z<1
2 9 9 S

min{vy]{ — 1,7/} = min{(n/2) + 1,1} = 1.

Next we choose ' =1 —h =1—(8/2). Clearly b’ €]1 — («/2),1[. Then Proposition 1.22
implies that w[07€?, -] is linear and continuous from L*(9r) to

Cfﬂmﬂhﬂff”}(Tiégichﬁ(aQ))::cf%g(T:7§f71<ﬂ¥09)),

and thus statement (ii) holds true.
Finally statements (i), (ii) and the continuity of the embedding of COmax{r®wi(n}(H()
into C%2(99Q), imply the validity of statement (iii). O

Then we have the following statement regarding the double layer heat potential acting on
the space of Holder continuous functions.

Theorem 2.5. Let a €]0, 1], 8 €]0,af, T €] — 0o, +00|. Let Q be a bounded open subset of
R” of class C. Then the following statements hold.

=Ry — o s
(i) The operator from 0272 (] — 00,71, CO(8Q)> to C’g’Q (] — 00,77, C’O(@Q)> which takes
p to w[OrSd, pjapq is linear and continuous.
(ii) The operator from C’ggﬁ(@TQ) to C2%(9r Q) which takes i to w[OrLY, Wiarq is linear
and continuous.

B — 4o o
(1) The operator from C’g’ 2 (] — 00,77, CO((?Q)> to C’I?’ 2 (] — 00,71, Co(aQ)) which

takes pu to w[OT€Y, plja,q is linear and continuous.

o, [ o
(iv) The operator from C’I?’Q (] — 00,77, C’O(E)Q)> to C’I?’ 2 (] — 00,77, 00(89)) which takes

o to wlorSY, pjopq is linear and continuous.

Proof. We first consider statement (i). By Theorem 2.4 (i), we already know that w[0r, ‘] |5,.0
is linear and continuous from L*°(0r2) to B (] — 00, T, C’O’O‘@Q)), and accordingly from

[
ok (] oo, 11, 00(69)) to B (] “ oo, 11, coya(asz)).

Next we plan to apply Proposition 1.31 (ii) with 71 = «, 72 = 3, a €]16, +0oo[. By Remark
1.20 (iv), we already know that the kernel %(yfbn(t — 1, —y) € Ky4(0rQ), with v as in
Remark 1.20 (iv). Then we observe that

M= (12/2) = (n/2) +1-(8/2) > 1,
21 =72 —2=2(n/2)+1)-(1+a)—2=Mn—-1)—a€n—-2,(n-1),
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Mm-—n-2+m-m)=n-1-a+t(a=p)=m-1)-F<(n-1),

N = (m2/2) = ((n/2) +2) — (8/2) > 1,

W= +1=2"m—m2) =1~ ((n/2) +2) +1-2""(a - §) <0,

m—-2v=a-2<0,

29 =99 =2 =29+ (m —m2)
=2(n/2)+2)—(1+a)—2-24+(a—-p)=(n—-1)—-F<(n—-1).

Then Proposition 1.31 (ii) implies the existence of a constant ¢y > 0 such that

|w[0rQ, pljapa(t’, 2)—w[drQ, ©lio.at”, )] (2.8)

<cs O, (t—1,2—y) |t/—t”]%

0
(0 el
v(y) Kyal0rQ) Gy

+ |w[aTQa :u(t/7 ')]\8TQ(t/> $) - w[aTgv M(t,a ')]|BTQ(t”7 .7})| s

: (J=00,T[,C0(09))

Il
for all x € 9Q, t/,t" € | — 00, T[, t' < t’, and for all u € C’g’z (] — 00, T, 00(89)). Lemma
A.4 of Appendix A, which says that the double layer heat potential with time independent
densities coincides up to a minus sign with the harmonic double layer potential, implies that

wlor .t oyaltr) = = | af(y)sm — ult ) do, (2.9)

= w[0Q, u(t', )] o0 (),

- Y

for all z € 09, ¢, € ] — 00, T[ and for all p € C,?’Q (] — 00,77, C’O(GQ)). We recall that S,
is the fundamental solution of the Laplace equation, and w[0f2, -] is the harmonic double layer
potential (see Appendix A for the definitions). Then the second summand in the right hand
side of (2.8) equals 0 and inequality (2.8) implies that statement (i) holds true.

Statement (ii) is an immediate consequence of statement (i) and of Theorem 2.4 (i).

o8

We now consider statement (iii). Since C’g’ 2 (] — 00, T, C° (89)) is continuously embed-
ded into L*°(9r ), Theorem 2.4 (i) implies that w[07(?, -]|5,q is linear and continuous from

e Ry — S
C’I?’ 2 (] — 00,77, CO(GQ)> to B (] — 00,77, C’O’a(ﬁﬁ)). Next we plan to apply Proposition
1.31 (i) with 1 = 14+, 72 = 1 4+ 3, a €]16,+00[, v as in Remark 1.20 (iv). As above, we
can verify that all the assumptions of Proposition 1.31 (ii) are satisfied and that accordingly
there exists ¢o > 0 such that

[w[0rQ, plja,a(t', 2) — w[OrQ, ulja,o (", )| (2.10)
8 14+«
<C |3 =Pt =77 —y) [T — ="
ov(y) " Koy .a(9002) C) 7 (oo, T1,C0(09))

+ [w[or, p(t', Njora(t's x) — w[drQ, u(t', oo’ )],

148
for all z € 9Q, t/,t" € ] — o0, T[, t' < t”, and for all pu € C’l?’ 2 (] — 00, T, C’O(@Q)). Then
again by equality (2.9), we conclude that the second summand in the right hand side of (2.10)
vanishes and that accordingly statement (iii) holds true.

i, 0000
Finally, We consider statement (iv). Since Cg 2 (] — 00, T[,C° (89)) is continuously em-
bedded into L*°(9r ), Theorem 2.4 (i) implies that w[0r(?, |5, is linear and continuous from
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[ _
C’I?’Z (] — 00,77, CO(OQ)> to B (] —00,,T7, Co’a(aﬂ)). Next we plan to apply Proposition

1.31 (ii) with m; = 1+ B,m2 = 1,a €]16, 400,y as in Remark 1.20 (iv). As above, we can
verify that all the assumptions of Proposition 1.31 (ii) are satisfied and that accordingly there
exists ¢o > 0 such that

[w[0rQ, w0t 2) — w[OrQ, ulja.a(t”, )| (2.11)

~

< (2

(72 ip— v — |
Kya@r@) Gy 2 (1m0 T[CO(09))

+ [w[0r, u(t', Njopat'; ©) — wlorQ, ut', )]s, )],

0
aTy)@n(t — T,z —Y)

- 1,0
for all z € Ot t" € = 00, Tt < t”, and for all € Cy2 (] oo, T], 00(39)). Then
again by equality (2.9), we conclude that the second summand in the right hand side of (2.11)
vanishes and that accordingly statement (iv) holds true. O

2.3 Auxiliary integral operators

In order to compute the tangential derivatives of the double layer heat potential, we now
introduce some auxiliary integral operators and we analyze their mapping properties. We start
with the following statement about an integral operator related to the kernel %@n(t—n x—y).

Lemma 2.6. Let T €] — oo, 400|. Letr € {1,...,n}. Then the following statements hold.

(i) Let Q be a bounded open Lipschitz subset of R™. Let 6 €]0,1]. If (f, 1) € C%9(cl1Q) x
L>(0rQ2), then the function defined by

Qi ultn) = [ e —f<y>>£¢n<t—r,x—y>u<r, y)doydr ¥ (t,x) € clQr

1s continuous and bounded.

(ii) Let o €]0,1[, 3,6 €]0,1[. Let m € N\ {0}. Let Q be a bounded open subset of R™
of class C™.  Then the map QEA[,] from C™19(c1Q) x Cm_;w;m*Hﬁ(f)TQ) to
07M71+m12n{9’aﬁ}?m*Hmi“{e’a’ﬁ}(cl Qr) which takes (f,p) to QL[f, p] is bilinear and con-

tinuous.

Proof. By Remark 1.20 (iii), the kernel a%r@(t — 7,2 — y) satisfies the assumptions of Lemma
1.24, which implies the validity of statement (i).

We now consider statement (ii). If (¢,z) € Qr, then classical differentiations theorems for
integrals depending on a parameter implies that

0 0
QLS. pl(t2) = f@) =" [0rQ pl(t,2) = 5—=v™ [0, fu](t, ),
where we recall that v [07€, -] is the interior single layer heat potential (see Theorem 2.2 (i)).
If (t,z) € 07, then the jump formula (2.6) for the derivatives of single layer heat potential
of Theorem Theorem 2.2 (v) implies that

0
Oz,

Qi ul(t,2) = f(x) 7 —vt[OrQ, pl(t, 2) f(x)%ﬂ(ﬂf)vr(ﬂﬁ)
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o0, Ful(t 1) + - (@) ()

ox, 2

= (@) 2ot [orQ )t ) —

+
o 50 tore, Syt o).

Accordingly,

QS pt, ) = f(a) oo

U+ [aTﬂa M](tv .%') -

Ly Ly

v [0rQ, ful(t,w) V(L 2) € clQr,

for all (f,p) € C™19(c1Q) = m=145(9p0Q). Then the statement follows by the
mapping properties of the single layer heat potential of Theorem 2.2 (ii) and by the continuity
of pointwise product in Schauder spaces. OJ

Then we have a corresponding lemma concerning an integral operator related to the kernel
%(I)n(t - T, T = y)

Lemma 2.7. Let T €] — oo, +00]|. Then the following statements hold.

(i) Let Q2 be a bounded open Lipschitz subset of R™. Let 6 €]0,1]. If (f,u) belongs to
i,
C90(cl1Q) x CI?’Q (] — 00, T, C’O(@Q)>, then the function defined by

Qitrultr) = [ [ (5) = ) 3t~ om =) utri0) - i) doyi

for all (t,x) € clQp, is continuous and bounded.

13 et a € S . Letm € et e a bounded open subset o
(ii) L 10,1[, 5,0 €]0,1]. L N\ {0,1}. Let Q b b ded op b f
R™ of class C™%. Then the map Qg[ || from C™" 19((:1(2) x O"3 mtB(9rQ) to

m—1+4+min{6,a,8}

C 2 m—14min{0.0.8} (¢] QOp) which takes (f, ) to Qt [f, 1] is bilinear and con-
tinuous.

Proof. By Remark 1.20 (ii), the kernel %@(t — 7,2 — y) satisfies the assumptions of Lemma
1.28, which implies the validity of statement (i).
Now we consider statement (ii). Let (¢,2) € Q7. Lemma A.5 of Appendix A implies that

Qe = [ [ (1) = 1) g @alt = —9)a(r0) — plt. ) doydr (212
—00 QQ

0
= () D D (1, 2) — Do O, Ful(t ),
for all (f,p) € C™10(clQ) x CmT%?m+ﬁ(8TQ) Theorem 2.2 (iii) implies that the right hand
side of equality (2.12) defines a continuous function of (¢,z) € clQp. By statement (i) the left
hand side of (2.12) is also continuous in (¢, z) € clQr. Hence, the above equality must hold
in cl Q7. More precisely,

v[OrQ, u)(t, z) — gv TorQ, ful(t, ) V(t,z) € clQr.

~4 B 0
Qi1f. (k) =f ()5, 5

t

Accordingly, the statement follows by the mapping properties of the single layer heat potential
of Theorem 2.2 (iii) and by the continuity of the pointwise product in Schauder spaces. [
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We now prove explicit formulas for time and tangential derivatives of the boundary integral
operators Q[dy, ®,,(t — 7,2 —y), -, -] and Q[0; P, (t — 7, —y), -, -] (for the definitions see (1.17)
and (1.21), respectively). In order to shorten the notation, from now on we use the following
abbreviations

QT['7 ] = Q[axrq) ( T, T — y)v'v ']a
for all 7 € {1,...,n}, and

Qi ] = QP (t — T,z — ), -, . (2.13)

It is immediate from the definitions that the operators Q,[-,-] and Q[-,-] are nothing more
than the restrictions on 072 of the operators Q?«[-, -] and Q%[-, -] of Theorems 2.6 and 2.7,
respectively. More precisely

QL iore = @rl ), (2.14)
and

Qi Jjora = Qul ] (2.15)
Then we have the following lemma about an explicit formula for the tangential derivatives of
@l ]

Lemma 2.8. Let a €]0,1[, T €] — oo, +o0]. Let r € {1,...,n}. Let Q be a bounded open
subset of R™ of class C*®. Let g € C(08) and p € C%;I(OTQ). Then Q.[g, p](t,-) € C1(0Q)
for allt €] — oo, T[. Moreover, the following formula holds.

My [Q, g, (8. 2) (2.16)
_ <m{umw%4w@—mmwfﬂwmwm4uw

j 8%‘2

+vi(2)Qr [g,Zth[VhH]] (t,z) —vj()Qr [g,ZMhz‘[VhM]] (t,z)

+vi(x {Z Qs | vj, M, srlglp] (¢, @) + ZQS 9, Mm‘[”j#“ (t,x)}
s=1
_Vg {Z Qs vi, M sr ] t7$) + ZQS [g, Msr[ViNH (t’ ZE)}

s=1
+Vi(x)Qt [g’ VTV]':U'] (t,ﬂ?) - Vj(x)Qt [ga VrViM] (tv x),

for all (t,x) € OrQ and for all i,5 € {1,...,n}.

Proof. Let R €]0,+o0[ be such that c12 C B, (0, R). Let ‘~’ be an extension operator as in
Lemma 1.3, defined on C1%(99).
First we fix 8 €]0, af and we prove formula (2.16) under the additional assumption that

e OB (9r0).

By Lemma 2.6 (ii) we already know that Qk [, 1] (, ) belongs to C*(clQ) for all t € | — 0o, T7.
We find convenient to introduce the notation

M (@) = 5la) 5 (0) = )5 (e, (217)
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for all f € C1(clQ) and for all z € clQ, i,j € {1,...,n}. If necessary, we write Mlﬁ]x 0
emphasize that we are taking x as variable of the differential operator ij Next we fix

(t,z) € Qr and we compute

M Q3. )1, ) = 7a(2) Q5,1 2) — 75(2)

J

0
E[g, p)(t, ).
o Qg (¢, @)
By classical differentiation theorems for integrals depending on a parameter, we have
6 (¢, / / D, (t y(r,y) doy,d
x) —T,x— T o, dT
s maml axr & —y)u(r,y) doy

82
g g —, (t — — .
[ 060~ 80055 balt — () doyr

Since Y 7_, 2 =1 on 9, we have

#19, 1 (t, @) o1
/ 90 8372 833r P (t — 7,2 — y)u(T,y) doydr

T) — vy, S, (t—T1,20— T,y) do,dT
/ /mg 9y h; 8y1<8x,,« ( y))u( y) do,

t— — doy,d
59 axz 81‘,« ( T,.',U y),LL(T,y) Uy T

//mgx—g 03 | (n01gy, 0, ) (3,20t =7e 0|

X (T, y)vn(y) doydr

@ - > [ (et -y
/oo/asz i Oyp, \ Oz,

h=1
X vi(y)p(T,y) doydr.

M:

By Lemma 1.4 on the consequence of the Divergence Theorem for the tangential derivatives,
the second integral in the right hand side of formula (2.18) takes the following form

| [ —fz(y)é (0 ) (5talt=rc =)

x p(T, y)vp(y) doydr

S Misy [(3(2) = 50 9)vm ()]~ ®ult = 7,0 — ) doydr
90 afE
h=1"—

T

- Z/ /m Mhiylg @ﬂ%ﬁn(t — 7,2 — y)u(T, y)valy) doydr
h=1"7— -

_ Z/ /8Q(§(33) - g(y))giq@”(t —7,& — y) Mpi (7, y)vn(y)] doydr.
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Accordingly, we have

Qg pl(1.7)
- 3% / a9 axr =T, —y)u(r,y) doydr
- / Mhi,y[g(y)]aaq)n(t — 1,2 —y) (7, y)vn(y) do,dr
h=1Y —00 v 9Q Ly
n t . i a
+ 2 /_OO /m(g(m) - g(y))a—xr@n(t — 7, @ — y) Mp; o [1(7, y)vi(y)] doydr
t i ] 5 5
- /—oo /dQ(g(x) B g(y))aixr (ay(y)q)n(t R y)) vi(y)p(r, y) doydr.
Thus
ME[QAG, ul](t, ) 019

_ Mﬁ / ” 89@ — 71,2 —y)p(7,y) doydr
+Z / ) Mgy [0)] + 75 () My ()]}

X i<I>n(t — 1,0 —y)pu(r,y)vp(y) doydr

0
g G(y))—®, (t — T, 2 —
/ /dﬂg — gy 8:::7« n(t—7,2—y)

X Awi(@) My [0, y)vn(y)] = 25(2) My [T, y)vn ()]} doydr

[ o =305 (gt =me )

X Avj(@)vily) = vi(x)v(y) (T, y) doydr .
We now consider the first two terms in the right hand side of formula (2.19). By the obivious
identity

il =i (22— (Dg- )5y ) — 5y (2L~ (Dg- v in c .
Ml =5 (32~ D307, ) 7 (32 - (07917, o, (220
and by the identity
Z{ Ui (@) Mhj,y [§(9)] 475 (2) Mpiy [§(9)]}vn () (2:21)
h=1
== ) (52 ) = (D3 - 7o)

+00) (200~ (D) Sn(w)) Yy e o

which follows by formula (1.3), we rewrite the sum of the first two terms in the right hand
side of (2.19) in the followmg form

/ - 8% — 71,2 —y)p(7,y) doydr (2.22)
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+Z / () My 9(0)] + 75(5) My [9(0)])

0
X aTQ)n(t — 7,2 —y)u(r, y)vr(y) doydr

t
0
:/_oo o aiw(pn(t—T,x—y)/L(T?y)do_ydT

<) (420 = (Do) - 21)7(a) )

t
0
- /_ 50 8$T(I>(t - T, — y)M(Tv y) dO'ydT

<i5(0) (52 ) - (D) ﬂ(m))ﬂxz))

e / /m(a:c Di(s) - )55 (0))

X (I>n(t 7,2 — y)u(T,y) doydr

t (e / [ (326 03w

<I>n(t 7,2 — y)u(r,y) doydr

—i(a / IRIC-CRCEREE®)

) (am (v) = (D3(y) - ,;<y))gj(y)> ] 9

e / /89 [<8x2 () "7(93))’7i($))
- (520 - it ﬁ(y))ﬁxy)) ]
() |52 -

J

We now consider the third term in the right hand side of formula (2.19). Namely,

S [ [ ) - gyl oy (2.23)
h=1Y~%°

r

o {74(@) Mg 17 9)(9)] = 75 (@) My (7, )i ()] oy

_Vz [ Zth Vhﬂ] tl’ _V] [ ZMthh:U']

Next we consider the last integral in the right hand side of formula (2.19). Since ®,, solves

the heat equation in R x R™\ {(0,0)}, if (¢,x) € Qr is fixed as above and (7,y) € Or€2, we
have that
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a(zr <8y6(y) O, (t -1, — > = s; ( 8y7« vr(y) 81) (;zsfbn(t —nx—y) (2.24)

0
Vr(y)a n(t — 7,2 —y).

Accordingly, equality (2.24), and the consequence of the Divergence Theorem for the tangential
derivatives of Lemma 1.4, and Lemma A.5 imply that

/ /m 9(@) =95 - <8Va()‘1>n(t — T,z y)) (2.25)

x Avj(@)viy) — vi(x)vi(y) (T, y) doydr

//mg iy 81(<>£—ur<y>f%>f%¢n<t—f,x—y>]

x {7(@) (v (y) = 7 () + 75 (@) () = vi(w)) iy y) doydr

// ) (y) 2ot — 7,0 — 1)
an g 815 ) Yy

X Awi(x)vi(y) — vj(x)v, ()}u(ﬂ y) doydr

/ / 5i(2) — vily <1>n<t 7,3 — Y) My ) () (7, y) doydr
o0

+ vz / / (9(z) — g(y)) —8 P (t — 7,2 — y) My [vjp](y) doydr
—c0 J o0 Ts
t 0
—vj(x / / (Ti(z) — vi(y —@n(t—T,x—y)MST[g](y),u(T,y) doydr
o0 Ts
/ / (g(x) — gy (9 O, (t — 7,2 — y) M, [vip)(y) doydr
o0 Ts

+ 5i(@) Q¥ (3, vevu] (1, @) — () Q¥ (G, vevind (¢, )

= 7y {ZQﬁ 75, M [glp] (t, = +ZQjj 9, Mo [vpl] (2, ﬂ:)}

s=1

Z (.73) {ZQE[DHMST Z gg Msr I/Z,u t .%')}
s=1 s=1
+ 7i(2)Q} [, vevsn] (t,2) — 7;(2) Q) [§, vevip] (¢, ).

Then by combining formulas (2.19), (2.22), (2.23) and (2.25), we obtain that the following
formula

ME[QAg, pl) (¢, @) (2.26)

= (@@ |~ (D Diyon] (1.0) = ) {af’ - (03 )inn (1.0

+i(2) Q% [Q, > My, [th]] (t,z) — 7j(z [ Z Mpi[vpp ]
h=1
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+i(2) Y Q4 75, Mr[glu] (£, 2) + > Q% (3, Mar[vpul] (¢, w)}

> Q1w Mor[glp] (1) + Z Q% (G, Mo [vip]] (¢, x)}

19, vev) (t,2) — () Q413 Vr’/z,“](t ),

holds for all (¢,x) € Q. Now, under our assumptions, the first argument of the terms QT, Qs,
Qt, which appear in the r1ght hand side of formula (2.26) belongs to C%%(cl1), and the second
argument of the terms QT, Qs, which appear in the right hand side of formula (2.26) belongs
to L>*°(0rQ), and the second argument of the terms Qg, which appear in the right hand side of
formula (2.26) belongs to C’%;HB((?TQ). Then Lemma 2.6 (i) and Lemma 2.7 (i) imply that
the right hand side of formula (2.26) defines a continuous function of the variable (¢,z) € cl Q7.
Since Q is of class C%® and § € C1%(cl ), and since we are assuming that p € C%;HB(@TQ),
Lemma 2.6 (ii) implies that ij [Q%G, 1] € C°c1Qr). Hence, the equality of formula
(2.26) must hold for all (¢t,x) € clQr and thus in particular for all (¢,z) € 0rQ. Clearly
Mo = My[]. Moreover Qi[', Jjop0 = Qo[ ] and Qf[, jap0 = Qul-,] (cf. equalities
(2. 14) and (2.15), respectively). Then we can conclude that formula (2.16) holds under the
assumption that u € C%;H’B(@TQ).

Now let 1 € C%?l(GTQ). We consider only the case T'= 4o00. Indeed the case T' < 400
can be treated similarly. We fix ¢ € | — 0o, T'[ and we consider

N1, M2, M3 € C3°(R)

such that
i) Z?:l ni = 1;
i) 0<m <1lforalli=1,2,3,;
iii) supp (1) C] — oo, t — 1, supp (n2) CJt — 2,t + 2[ and supp (n3) CJt + 1, +o0].

Then we set
,U,Z‘(T,.%') = N(7'7x)771(7') V(T,l') € 8TQ7 Vi= 17273-

Clearly
p(r,z) = pi (1, @) + po(r, ) + ps(r, ) V (1, z) € 0.

We denote by Pjj.[g, 1] the right hand side of (2.16). We now show that the weak M;;-
derivative of Q,[g, p2] coincides with P;j.[g, ua]. Since pp has compact support, by considering
an extension of po of class C' 31 with compact support in R?*! (see LadyZenskaja, Solonnikov
and Ural’ceva [58, Chapter 1.1, pp 9-10]) and by considering a sequence of mollifiers of such
an extension, and by taking the restriction to 072, we conclude that there exists a sequence
of functions {9, }ien in C12(9rQ) such that us; converges to g in C%;l((‘)TQ). Next we note
that Remarks 1.9, 1.10 and Theorems 1.27 and 1.30 (ii) and the continuity of the pointwise
product in Schauder spaces, imply that the operators Q,[g, -| and P;j.[g, -] are continuous from
C%;l(aTQ) to CP(0rS). Moreover we note that (2.16) holds for ug;. Then, if ¢ € C1(99), we
have that

Qrlg, p2](t, y) Miz[¥)(y) doy
o0
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~ lim / Qrlg, piag) (, y) M [¥] () dor
o0

=00

— — lim . Mi;(Qrlg, p2il)(t, y) 1 (y) doy

=0 Jo

— — lim QBjr[g,ml](t,y)w(y) doy

=00 Jo
:_/ Pijrlg, p2](t,y)¥(y) doy,.
o0

Hence Pjj.[g, p12](t, -) coincides with the weak M;j-derivative of Q,[g, u2](t,-) for all 7,5 €
{1,...,n}. Since both Pjj[g, n2] and Q.[g, 2] are continuous functions, it follows that
Qrlg, p2](t, ) € CH(99) and that M;;[Q.[g, p2]](t, ) = Pijrlg, p2](t, ) classically on 9.

Moreover M;;[Q[g, p1]](t,-) = Pijrlg, p1](t,-) on 0Q. Indeed, pi(7,-) = 0 for all 7 €
|t — 1, +00[ and then the integral operators involved show no singularities and then formulas
(2.18)—(2.26) hold with p replaced with p; by classical differentiation theorems for integral
depending on a parameter.

Finally, since us(7,-) = 0 for all 7 €] — oo, + 1] the definition of Q,[, ] and Qq[-, ]
implies that M;;[Qr[g, us]](t,-) = Pijrlg, u3](t,-) = 0 on 9. Accordingly, we can conclude
that M;;[Qrlg, p]] = Pijr[g, p] on OrfL. [

Then we have the following lemma about the time derivative of Q,,].

Lemma 2.9. Let a €]0,1[. Let T €] — oo, +00]. Let r € {1,...,n}. Let Q be a bounded open
subset of R™ of class C?. Let g € C%(9Q) and p € CY2(0rQ). Then Q,[g, ] is continuously
differentiable with respect to t and the following formula holds.

2 Qulo.l(t.2) = Qv lo, 0wl (br) 9 (1,2) € 92 (2.27)
Proof. We note that

Qulg.wlt.n) = | /8 (9(o) - g<y>>£gr<bn<t — & — ), y)doydr

—+o0 0
= [ [ (6@ = w5 ulr. — it - 7)o,
0 15)9) Ly

for all (¢,z) € Or§). Lemma 1.16 (i) implies that

tatl 2

CO,l,OQ = sup |D:E(I)n(t7x)| e 4 < +00,

(t,x)€]0,+o00[xR™ ‘£B|
|z|<diam ()

and thus
‘(9@) - g(y))£®n(77 T —y)Oppu(t —7,y)

_Jz—y|?
T

_n_
y’1+a > 16 i ,

SCOJ@QHQHCO&(@Q)HatﬂHcg(aTQ)’x - T

for all (t,z) € 0rf), and for all (1,y) €]0,+o0[xI2. Moreover, the change of variable
u|r — y|? = 47 implies that

oo 14a —2—1 _Jz—y?
|z —y|" T2 e” A doydr
0 o0N
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n teo _n_q _1 1
=42 u 2 e udu a0y,
0 oq |l —y[r 1

for all z € 9. Accordingly, Lemma 1.13 implies that there exists a constant Cg],n—l—a >0

such that
Hoo 4o _—2_1 —lz—yl
lz —y[ T2 e
0 o0

2 2
ar dedT § 42F (E) CQm—l—a y

for all x € 9. Then the statement follows by classical differentiation theorems for integrals
depending on a parameter. O

Now we prove a lemma which contains an explicit formula for the tangential derivatives of

Q:[-,-] (for the definition, see (1.28) and (2.13)).

Lemma 2.10. Let a €]0,1[. Let T €] — 0o, +00]. Let Q be a bounded open subset of R"
of class C>*. Let g € CY*(9Q) and p € CY2(rQ). Then Qqilg, p](t,-) € C(9Q) for all
t €] —o00,T[. Moreover, the following formula holds.

M;[Qtlg, (] (t, ) (2.28)
= @) |35 (D ] (0 - 100 | §L - g V] (0.0)

J i

+ri(2)Qs [%ZVthj[M]] (t,2) = vj(2) Qs [g,ZVthi[M]] (t,z)
= h=1
—vi(x [Z Mp;[val], ] (t,2) + vj(2)g(2)Q: [Z Mhi[”h]a.“] (t, )

h=1

+vi(2) Qs [Z th[VthM] (t,2) = vj(2)Qy [Z Mhi[thgM] (t, )

h=1

+vi(z ZthVh )Qulg, 1) (t, ) ZMthh )Qulg, 1) (t, )

_I/i(.TU)ZQs {g, I/sl/jg/Z] (t,z) + vj(x ZQS [g, Velj—— ] (t,z),
s=1

for all (t,x) € 0rQY and for all i,5 € {1,...,n}.

Proof. Let R €]0,+o0] be such that c1Q C B, (0, R). Let ‘~’ be an extension operator as in
Lemma 1.3, defined on C1*(99).

First we fix 8 €]0, o[ and we prove formula (2.28) under the additional assumption that
e OB (90).

By Lemma 2.7 (ii) we already know that Q% (3, 1] (, ) belongs to C*(c1Q) for all t € | — 0o, T|.
Next we fix (¢, 2) € Qp and we compute

MEGHG, 1) (¢, %) = w)aij@%[a,m (t,) — 75(2) Qg 1l (t,)

83:1-

(see (2.17) for the definition of Mf[]) First we note that Lemma A.5 of Appendix A implies
that

/ / (9(x) — g(y 6‘ P, (t — 7,2 —y)u(t,y) doydr = 0.
o0 8t
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Accordingly, by classical differentiation theorems for integrals depending on a parameter, we
have

L
90 axZ ‘I) (t - T, — y)u(T, y) dO'ydT
/ [ 06 = 80005 utt — 7~ ) doyd
o0 g axzat ®n T, —Y)p(T,Y) a0yar.
Since > _, v2 = 1 on 99, we have
Ot Qt[g pl(t, x)
t g, 0
= 7@ _
/—oo 29 6%( )at n(t =72 —y)u(r,y) doydr

—/_t /89(9(33)—@ Zuh 8%(8 (t—w—w)u(w)dfw

(t -7, — y):U’(Ta y) daydT

o0 axz

- / [ ) —gw»i (05 ~n0 ) (oalt=r-n)]

X w(T,y)vp(y )dO'ydT

/ /mgm—g Z:Vh(y)a(;(;@n(t—ﬂx—y)ﬂ

h=1

x vi(y)pu(7,y) doydr.

By the consequence of the Divergence Theorem of Lemma 1.4, the second integral in the right
hand side takes the following form

/- /m@(x)—g znj[(uh g~ 1)) (@t = iz =)

h=1

(7, y)vnly) doydr

/ /BQ g CL' 79 ZMhuy [8t - T,Z y):| /L(’T, y)l/h(y) dO’yd’T
:;/_O@ /ag Mhi,y[ﬁ(y)}aq’n(t — 71,2 —y)u(7,y)vr(y) doydr
n t 3 ) 8
- hZ /_ N /8 Q(g(cv) = 9) 5, Pult = 7,2 = y) My [1(7, y)vn ()] doydr.

Accordingly, we have that

0
52 Qo 2)
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g
- St~ 7w — y)ulr,
oz, (33)/ ) O (t =72 —y)u(r,y) doydr

Mhz ylg (I>n(t =72 = y) (T, y)vn(y) dO'ydT

>/
/— / gtq) (t = 7,2 — y) Mpiy (7, y)vn(y)] doydr
KC

c‘? ( ; Ot — 7,2~ y)> vi(y)u(r,y) doydr.
Thus,
M Q5. 1)) (¢, ) 00,

—]\4ﬁ / 89; n(t =71, 2 —y)p(r,y) doydr
+Z/ () M [9(0)]) + 7)Mo ()]}

X 0 @n(t 7,2 — y) (T, y)vp(y) doydt

1/ /6Q g(z) — gy 815 O, (t—T,2—y)
x {7i()

My l1(7, 9)vn(9)] = 75(2) My [, ) ()] } dorydr

/ | @@ (f(y)cp (t- T,x_y)>
< {7y (@)mily) - m() 5(9)} (r.y) dodr.

By the identities (2.20) and (2.21) we rewrite the sum of the first two terms in the right hand
side of (2.30) in the following form

t
g(x / é<I>n t—1,x—y)u(r,y) doydr (2.31)

+Z/ ) Mgy 0)] + 75 () My ()]}

« g
ot

t
:/ Qi)n(t — 1,2 —y)u(T,y) doydr

O, (t — 1, — y)u(r, y)vp(y) doydr

<i(a) (5 (o) = (Dia) - o))
_ / o %@n(t — 1,2 —y)u(r,y) doydr

x 73() ( 99 (1)~ (Dy(x)- ﬂ(x))zz-(a:))

ao | /m (520 - (D3 - 207,
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><8Q>(t 2 — yyulr,y) doydr

e //89(83:2 -l?(y))ﬂz(y)>

<I) (t — 7,2 —y)p(r,y) doydr

(e / [ (30 - i) 2t

(&) - i) <y>>v]<y>>]

« % (=72 — y)u(ry) doydr

e //(99[((.9 (Dia) - a))(2) )
~(oew-w )|

X gt@n(t — 71, —y)u(1,y) doydr

- (D3 )0y (.0) - () | 2

J

~ 0aq

T —(Dg - 5)%,#] (t, ).
j

o0x;

Now we consider the third term in the right hand side of formula (2.30).

n t ) i 8
hZ)l/OO /89(9(9:) = 9(¥)) 5, Pnlt =T, —y) (2.32)
X i) Moy [1(7, y)vn (y)] = 75 () My [1(7, y)vi ()]} doydr

h=1 h=1
Next we consider the first term in the right hand side of (2.32) and we note that
(x)Qg [gv Z Mh] [Vh,LL]] (ta :E)
h=1

—1;() Q] [g,Zth[Vh]u] (t,2) + 03(x) Q] [é,Zth[u]Vh] (¢, 2)

h=1 h=1

3
3

and that the definition of Qt[-, -] implies that
[ ZMhJ Vp) ] cx) — o) Y M) (2)Qf [, pl (¢, @)

= — 7;()§(z) Q} [Z M} (], u] (t, %)+ 7a(2) Q5 D M o], gu| (1, ),
h=1
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and that corresponding equalities can be written for the second term in the right hand side of
(2.32). Hence, we deduce that the right hand side of formula (2.32) equals

7i(2) @} [g, ; v M, [u]] (t,x) — 7(2) Q] [g, ; v My w] (t,) (2.33)

— 5i(2)§(x) Q} LZ M (), u] (t,2) + 75(2)§ ()@} LZ Mﬁi[ﬁh],u] (t2)
Qﬁ[iMhJ ol t,) — >@§[éM,ﬁi[athu} (12

+ () h}_j M [90]) () @51, 1) (t, ) — 7j() h}_j M} (o) () Qg 1l (8, ).

Next we consider the last integral in the right hand side of formula (2.30). By integration by
parts, we have

N _ (9 0
/ /BQ g(x) — gy (% ((%(y)q)n(t —T,x — y)) (2.34)
X{Vj( Wiy) — i)y (y)} u(, y)daydT
=v;(z ZQ G, VsviOp] (t, ) ZQ G, vsviOpp) (t, x).

Then by combining formulas (2.30), (2.31), (2.33) and (2.34), we obtain that the formula
ME[@Qi 13 1) (1, 2) (2.35)

= ()% | 3L~ (D D] (.~ 50 | 2L~ (D 2] 1.0

+ i(2) Q) [ganth] ] (t,2) — 7(2) Q] §,ZVthi[M]] (t,x)

h=1

— 7i(2)g(x)Q} [Z M} (i) u] (t,2) + 7j(2)g(2) Q} [Z M,Ei[ﬂh]ju] (t, )
h=1 h=1

ZQ gaysyjatﬂ t z +VJ Z gaysyzat:u (t $>

s=1 s=1

holds for all (t,x) € Qp. Now, under our assumptions, the first argument of the terms Qg, Qg,
which appear in the right hand side of formula (2.35) belongs to C%%(cl12), and the second
argument of the terms Qg, which appear in the right hand side of formula (2.35) belongs

to C’g?ﬁ(@TQ), and the second argument of the terms Qg, which appear in the right hand
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side of formula (2.26) belongs to C’#;HB(BTQ). Then Lemma 2.6 (i) and Lemma 2.7 (i)
imply that the right hand side of formula (2.35) defines a continuous function of the variable
(t,x) € clQp. Since Q is of class C** and § € C1(cl2), and since we are assuming that
RS C#?Hﬂ(@TQ), Lemma 2.7 (ii) implies that Miﬁj [kai [3, 1] € C°(c1Q7). Hence, formula
(2.35) must hold for all (¢,x) € clQr and thus in particular for all (¢,z) € 0rQ. Clearly
Mo = My[]. Moreover Qi[, Jjop0 = Qrl ] and Qf[, oy = Qul-,] (cf. equalities
(2.14) and (2.15), respectively). Then we can conclude that (2.28) holds under the assumption
that p € C’#;Q*'B(GTQ) .

Now let u € CY2(07Q). We consider only the case T = +oc. Indeed the case T < 400
can be treated similarly. We fix t € | — 0o, T'[ and we consider

M, 12,3 € Cp° (R)
such that
i) Z?:l mi =1
i) 0<m <1foralli=1,23;
iii) supp (m) €] — oo,t — 1, supp (12) CJt — 2, ¢ + 2[ and supp (n3) CJt + 1, +oo].

Then we set
:U’i(T’ $) = N<T7 x)nZ(T) V(T,.T) € 8TQ7 Vi= ]-7 273

Clearly
p(r,x) = pi(r, ) + po(r,x) + ps(r,z)  V(r,x) € OrQ.

We denote by Piji[g, p] the right hand side of (2.28). We now show that the weak M;;-
derivative of Qy[g, p2] coincides with Pijt[g, p2]. Since po has compact support, by considering
an extension of po of class C%2 with compact support in R"*! (see Ladyzenskaja, Solonnikov
and Ural’ceva |58, Chapter 1.1, pp 9-10]) and by considering a sequence of mollifiers of
such an extension, and by taking the restriction to 072, we conclude that there exists a
sequence of functions {pg;}ien in CHT&QJ“O‘(@TQ) such that ug; converges to us in C12(970Q).
Next we note that Remarks 1.9, 1.10 and Theorems 1.27 and 1.30 (ii) and the continuity of
the pointwise product in Schauder spaces, imply that the operators Q; lg,-] and Zsijt lg,] are
continuous from C12(97Q) to CP (7). Moreover we note that (2.28) holds for ug;. Then, if
Y € C1(09), we have that

L/mwmwmmwm
o0

l—00

:m/@mMmmmww%
o0

=—lim [ Mi[Qdg, p2]](t, y)¥(y) doy

=—lim [ Plg, p2))(t,y)¢(y) doy,

=00 Jo0

:_/ Pijilg, pa) (t, )¢ (y)doy.
o0

Hence Ejt[g,ug](t, ) coincides with the weak M;;-derivative of Qt[g,;@](t, ) for all 4,5 €
{1,...,n}. Since both Pjj[g, us] and Qi[g, uo] are continuous functions, it follows that
Qilg, p2](t,-) € CH(9Q) and that M;j[Qulg, p2]l(t, ) = Pijelg, p2](t, -) classically on 9Q.
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Moreover M;;[Q:lg, i]](t,) = Pyi[g, pa](t,) on 9Q. Indeed pi(r,-) = 0 for all 7 €
|t — 1,4+00[ and then the integral operators involved show no singularities and accordingly
formulas (2.29)—(2.35) hold with u replaced with p; by classical differentiation theorems for
integrals depending on a parameter.

Finally, since p3(7,-) = 0 for all 7 €] — co,t + 1[ the definition of Q,[-,-] and Qy[-,]
implies that M;; [Qt[g, u3)l(t,-) = Pijtlg, ps](t,-) = 0 on 9. Accordingly, we can conclude
that Mz‘j [Qt[g,,u]] = Pijt[g,,u] on 8TQ O

Then we have the following lemma about the time derivative of Qy[-, -].
Lemma 2.11. Let « €]0,1[. Let T €] — 0o, 400]. Let §2 be a bounded open subset of R™ of
class C3. Let g € C¥%(09Q) and p € C%;?’(@TQ). Then Qqlg, u] is continuously differentiable
with respect to t and the following formula holds.
o - .
5 @lo, 1t 2) = Qulg, O] (t,2) - V(1 2) € Orld. (2.36)
Proof. We note that

Q:lg,

t

w)(t, z)
/ | (6l) = 9000) 1 alt = 7.0 = ) utr.) — 1) oy
-

" [ (6@) = ) 5 = )t = 9) = ) doyir,

for all (¢,z) € 0r§). Lemma 1.17 (i) implies that
l=?
Cr000 = sup 18, ®,, (¢, 2)|t2 T e s < +o0,
(t,z)€]0,+00[xR"™,
|z| <diam (92)

and thus

’(g(w) - g(y))gt%(ﬂ r—y)(Op(t — 7,y) — dpu(t,y))

<Croonlgllcoawallowmll g ol =y
for all (¢,z) € 0pQ, and for all (1,y) €]0,+oo[x0Q2. Moreover, the change of variable

u|lz — y|?> = 47 implies that

o0 2
_nt+l _ Je—y|
/ |z —y|*7" 2 e & doydr
0
—+o0
n—1 _ntl 1 1
=82 u~ 2 e udu 71doy,
0 oq |t —y[r—1m

for all # € 9Q. Accordingly, Lemma 1.13 (i) implies that there exists a constant ¢, ;_, >0
such that

+oo 2
_ntl _|z—y| n—1 n—1
[ [evee e e (5
0 [2}9]

for all x € 9. Then the statement follows by classical differentiation theorems for integrals
depending on a parameter. O
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Exploiting the lower order mapping properties of the operators Q,[-, ] and Qy[-,-] of
Theorems 1.27, 1.30 and 1.33, and the formulas for their time and tangential derivatives (2.16),
(2.27), (2.28) and (2.36), we can prove the following result about the mapping properties
in parabolic Schauder spaces of the operators Q,[-,-] and Q[-,-]. The proof is based on an
induction argument.

Theorem 2.12. Letr € {1,...,n}. Let o €]0,1[, 5 €]0,a], m € N\ {0}, T' €] — oo, +00].
Let Q be a bounded open subset of R™ of class C™%. Then the following statements hold.

(i) The operator Q, from C™ 12(9Q) x C’mTil;mfl(aTQ) to "= m=1+8(9,:Q), which
takes (g, 1) to Qrlg, p], is bilinear and continuous.

m—144

(ii) The operator Q; from C™L(9Q) x CZ™(ArQ) to C~ = B (9pQ), which takes
(g, 1) to Q¢lg, 1], is bilinear and continuous.

m—1+43 m—14a

(iii) The operator Q, from C™ 1(9Q) x C~ =z M~HB(9rQ) to C7 2 ™ 1H%(9,Q),
which takes (g, p) to Qrlg, ul, is bilinear and continuous.

m—1+

(iv) The operator Qj from C™~1L2(9Q) x CmTﬂa;m'w(aTQ) to O 2 M9, which
takes (g, 1) to Qilg, p], is bilinear and continuous.

Proof. We first prove both statement (i) and statement (ii) at the same time. We proceed by
induction on m. The case m = 1 for the operator Q), follows from Theorem 1.27, and for the
operator Q; follows from Theorem 1.30 (ii).

We now consider case m = 2. The continuity of @, follows by the continuity of ), with
values into CP(d72) which follows by case m = 1, and by the continuity of the operator

148
@, with values in Cg’ 2 (] — 00, T[,C°(09Q)) which follows by Theorem 1.33 (iii), and by

the continuity of M;;[Q,] with values in C 36 (0r2), which follows by the formula (2.16) of
Lemma 2.8, and by case m = 1 for Q, and Q; and by the continuity of the pointwise product
in Schauder spaces and by Remarks 1.9 and 1.10. By the same arguments, the continuity
of the pointwise product in Schauder spaces, Remarks 1.9 and 1.10, Theorem 1.30 (iii), and
formula (2.28) of Lemma 2.10 and case m = 1 imply the validity of the statement for the
operator Qt.

We now prove that if statements (i) and (ii) hold for all m’ < m and m > 2, then they
hold for m + 1. It suffices to prove that the following three statements hold.

(j) @, is continuous from C™*(9Q) x C'2™(9rQ) to CY(IrQ) and Q is continuous from
Cme(990) x C™2 M H(9,Q) to CO(9rQ).

(i) M;;[Q,] is continuous from C™(9Q) x CZ™(drQ) to Cm_21+ﬁ;m_1+6(8TQ), and
m+1 m—1+

M;;[Q] is continuous from C™*(9Q) x C72 ™ (9rQ) to C~ 2 ﬁ%m—lﬁ’(aTQ) for all
i,7€{1,...,n}.

(iii) 2@, is continuous from C™*(9Q) x C'2™(drQ) to o=t m=28(9rQ), and FQy is
m—248,

continuous from C™*(9€) x CmTH?m‘H(GTQ) toCT 2 Mm2H8(9:Q).

Statement (j) holds by statements (i), (ii) with m =1 and by Remark 1.10. We now consider
statement (jj). The continuity of the pointwise product in Schauder spaces, Remarks 1.9 and
1.10, Lemma 2.8 and inductive assumption imply the validity of the statement (jj) for the
operator .. By the same argument, the continuity of the pointwise product in Schauder
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spaces, Remarks 1.9 and 1.10, Lemma 2.10 and the inductive assumption imply the validity
of the statement (jj) for the operator Q.

Next we consider statement (jjj). Remarks 1.9 and 1.10 and Lemma 2.9 imply the validity
of statement (jjj) for the operator @,. By the same argument, Remarks 1.9 and 1.10 and
Lemma 2.11 imply the validity of statement (jjj) for the operator Q;. Accordingly the proof
of statements (i) and (ii) is complete.

The proof of statements (iii) and (iv) follows the line of the proof of statements (i) and
(ii), by replacing the use of Theorems 1.27, 1.33 (iii), 1.30 (ii) by that of Theorems 1.33 (i),
1.33 (ii), 1.30 (i), respectively. O

2.4 Tangential derivatives of the double layer heat potential

In this section we prove a new explicit formula for the tangential derivatives of the double
layer heat potential, in terms of the operators @, [, -] and Q;[-,-]. Such a formula enables to
exploit an induction argument in order to show the regularizing properties for w[0r2, ‘]‘8TQ
that we prove in the next section.

Theorem 2.13. Let a €]0,1], T' €] — 00, +00]. Let Q be a bounded open subset of R™ of class
Clh. Letpu e C’%?l(@TQ). Then w(orQ, pwljg,a(t,-) € CH(AQ) for allt € | — oo, T[. Moreover
the following formula holds.

M;j[w[0rL, pljoral (t, ) Z {Qlvi, Mjr[p] (¢, %) — @r[vj, Mir [n]] (£, ) } (2.37)

r=1
+vi(@)Qulvy, ul (8, ) — v () Qulvi, p) (1, )
+w[07Q, Mijp]]japa(t; ),

for all (t,x) € OrQ and for alli,j € {1,...,n}.

Proof. Let R €]0,4o0[ be such that c1Q C B, (0, R). Let ‘*’ be an extension operator as in
Lemma 1.3, defined on C1*(99Q).

First we fix 8 €]0, o[ and we prove formula (2.37) under the additional assumption that
pe OB (9r0).

We first note that by Theorem 2.1 (ii) we have that w™[0rQ, u| € C#?H‘B(cl Qr). Next we
fix (¢,2) € Qr and we compute

ME (w009, 1)t ) = 54(w) 2w [0, 1)1, 2) — 7 (2) ™

- w06, (1, )
J 7

By formula (2.24), by the consequence of the Divergence Theorem of Lemma 1.4 and by
classical differentiation theorems for integrals depending on a parameter, we have that

d d
R w07, p)(t, x) Z o 00, My [1]] (¢, ) — 5" HOrQ, vip (¢, ).

Then by the obvious identity

—vi(x)vj(y) + vi(@)vily) = vi2) (5 (2) — v (y) — v(0)(i(z) — viy)),
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for all y € 912, and by Lemma A.5, we have that
M [0rQ, pl)(t, ) (2.38)
SOREE
r=1
+ (@) Qi (75, ul (¢, @) — 7 (2) Qf [, p] (8, @)

Now under our assumptions, Theorems 2.1 (ii), 2.2 (ii), (iii) and Lemma 2.7 (i) imply that
both sides of (2.38) define continuous functions in ¢l Q7 and then (2.38) must hold for all
(t,z) € clQp. In particular (2.38) holds for all (¢,z) € 9rQ. Now we fix (¢,z) € 9rQ. Then
the jump relation (2.3) for the double layer heat potential and equality (2.38) in 9pQ imply
that

M;j[w[0r ] j0,0)(t, )
=Mt @) + Mo (009, )¢, 2)

U [0, My )1, 7) — 53 () 5

Ly

000 M [, x>}

2
:% i Kl (t, )

+ Z {Vz(-’l‘) 0(; v [0rSY, My, [u])(t, z) — v;(2) 0 vt

— ox,
+vi(@)Qelvy, (8, @) — v (2)Qelvi, (L, ).
(2.

Then the jump relation

[aTQ,MW[um,m)}

6) for the derivatives of the single layer heat potential implies that

M;; [w[aTQ’M]\aTQ](t T) = (2.39)

n

= Mgl {ZMW It 2o (@)wi(w) = 3 Miclul(t @) () () |

r=1

+z{m / [ G alt = oz = )M () dr

@ [ [ Lt - oy
)Gl ) — vy ()Gl (1, 3).

We now consider the second term in the right hand side of formula (2.39).

ZMJT 1(t, 2)vp(z)vi( ZM”" |(t, z)vp(x)v(x) (2.40)
r=1
-3 [nto) g“ (1 () = 2(0) S 1, o)
r=1 r J

Next consider the third term in the right hand side of formula (2.39). We observe that

Vi($)Mjr[,u] (7-7 y)_yj ($)MZT [M] (7-3 y)
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= (vi(@) M [ (1, ) — vi(y) Mo [ (7, %))
+ (viy) My [p) (7, y) — vj(y) Mz (1) (7, )
+ (v (y) My [p) (7, y) — vj(2) M [u] (T, 1)),

for all (7,y) € OrQ2. Moreover

vi(y) My (] (7, y) = (y) M [12] (7, )
) o (

()i g (7, 9) — i) (0)

7, Y)
Yr Yj

B W) e () + 1 0) 5 ()
= — vr(y) M ] (7, y),
for all (7,y) € 0r§2. Then
Z{w(w) | [ gttt = ra = M il ) (2.41)

—vj(z) / - %@n(t — 1,2 —y) M [p] (T, y)daydr}

_Z{Qr Vi, Mjr[u]](t, ) — Qrlvy, Mir [u])(t, )}
+w[3TQvMij[ (¢, z).
Then equalities (2.39), (2.40) and (2.41) imply that
Mij[w[aTQnUhBTQ](t z) (2.42)
—Z{Qr Vs My )4, 2) = Qulij, Mar ], 2)}

+ Vi($)Qt[Vj7M]( ax) - Vj(x)Qt[VinuKtvx)
+ w[0rQ, Mij[pl o0l (t, ),

and then (2.37) holds true for u € C#;1+5(8TQ).
Now let p € C%?l(GTQ). We consider only the case T' = +o00. Indeed case the T' < 400
can be treated similarly. We fix ¢ € | — 0o, T'[ and we consider

m,n2,m3 € Cp°(R)
such that
) Ym=1
i) 0<m; <1lforalli=1,2,3,;
iii) supp (m) €] —oo,t — 1], supp (12) CJt — 2,¢ + 2[ and supp (n3) CJt + 1, +o0].

Then we set
wi(T,x) = p(r, z)n;(7) YV (r,z) € 0rQ,Vi=1,2,3.
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Clearly
w(t,x) = pi(r,x) + po(r, x) + ps(r, ) Y (1,z) € Orf.

We denote by R;;[u] the right hand side of (2.37). We note that by Theorem 1.27, Theorem
1.30 (ii) and Theorem 2.4 (iii), R;;[-] and w[07€2, -] are continuous from C%;l(E)TQ) to Cp(0rQ2).
We now show that the weak M;j-derivative of w[0r§2, MQ]'@TQ coincides with R;j[us]. Since o
has compact support, by considering an extension of us of class C 1 with compact support
in R"*! (see LadyZenskaja, Solonnikov and Ural’ceva [58, Chapter 1.1, pp 9-10]) and by
considering a sequence of mollifiers of such an extension, and by taking the restriction to 972,
we conclude that there exists a sequence {ug; }ien in C 1+TQ’HO‘@TQ) such that ug; converges

to pg in C%J(QTQ). Moreover we note that (2.37) holds for ug;. Then if ¢ € C1(9Q), we
have that

/ ’w[aTQ, ,LLQ]‘@TQ(ty y)sz [w] (y) de
o0

= lim w[Or8Y, p2g]jara(t, y) My [¥](y) doy

=00 Jon
= — llim Mij [w[aTQ, M2l]|8TQ](t7 y)¢(y) de
—o0 Jo0
= — llif& Rzg [,UQZ](t y)w(y) de

/Rw,ug t,y)Y(y) doy.

Hence Rij[p2](t, ") coincides with the weak M;j-derivative of w[07€2, ualia,(t, ) for all 4, j €
{1,...,n} on 99Q. Since both R;;[n] and w[0r€2, i) are continuous functions, it follows that
[8TQ iora(t, ) € CH(09) and that Mi;[w[0r€Y, pljo,al(t,-) = Rij[p(t, -) classically on 9.
Moreover M;;[w[0rQ, p]ja,ol(t,-) = Rijlpa](t,) in 0. Indeed pi(r,-) = 0 for all
T €]t — 1,400[ and thus the integral operators involved show no singularities and then
formulas (2.38)—(2.42) hold with p replaced with p; by classical differentiation theorems for
integrals depending on a parameter.
Finally, since p3(7,-) = 0 for all 7 €] — 0o, t + 1, the definitions of w[0r, -] ja,.0, Qr[]
and Q4[-, -] imply that M;;[w[0rQ, psliapal(t, ) = Rijlus](t,-) = 0 in 0. Accordingly, we can
conclude that M;;[w[0r$, u] sl = Rij[p] on Or€Q2. O

Finally, we have also the following lemma regarding the time derivative of w[07S2, -] 9,0

Theorem 2.14. Let a €]0,1[. Let T' €] — 0o, +00] and let Q be a bounded open subset of R"
of class C?. Let u € CY2(0rS)). Then

0
aw[ﬁTQ, iara(t, ©) = w[0rSd, Ol ja 0(t; ) Y (t,x) € OrQd.
Proof. We note that

w[Or$Y, pjap0(t, ) :/ /aQ aya(y)@n(t — 1,2 —y)u(r,y)doydr

400 o
= 7@71 s t— ) doyd )
/0 /8Q ay(y) (T x y),LL( T y) Uy T
for all (¢,z) € 0.
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Lemma 1.18 (i) implies that there exists a constant bq o > 0 such that

)
ov(y)

for all (t,z) € 072, and for all (7,y) €]0,+o0[xI2. Moreover, the change of variable
u|lz — y|*> = 47 implies that

n_1 _ |zfy\2

y’1+oz -5

T 2 e 4T s

O, (1,2 — y)Opu(t — T, y)‘ < [0l oo o0y b2,alr —

e 4o, —n_1 _lo=ul®
|z —y| T2 e” A doydr
0 o0

n +oo n 1 ].
:42/ U_Q_le_“dU/ ﬁdaﬁlﬂ
0 o0 |z =yl

for all x € 9. Accordingly, Lemma 1.13 (i) implies that there exists a constant C,Q,nflfa >0
such that

400 lta —n_1 Jz—y?
|z —y|" "t 2 7 e” 4 doydr
0 oN
n n
§42F (E) Cé),n—l—a?

for all x € 9€Q). Then the statement follows by classical differentiation theorems for integrals
depending on a parameter. O

2.5 Regularizing properties of the double layer heat potential
w0, 9,0

Now, we are ready to prove the regularizing properties of w[0r(2, ]|5,q in parabolic Schauder
spaces. The strategy is to start from Theorem 2.5, which we use as the base case, and then
exploit the formulas for the derivatives of Theorems 2.13, 2.14, together with the mapping
properties of Q,[-,-] and Q[-,] of Theorem 2.12 in order to invoke an induction argument.

Theorem 2.15. Let a €]0,1[, 5 €]0,af, m € N\ {0}, T €] — 00, +00]. Let Q2 be a bounded
open subset of R™ of class C™*. Then the following statements hold.

(i) The operator from C'2(drQ) to c™r m+B(9rQ) which takes p to w[OrQ, pja,q s

linear and continuous.

m-+4a

(ii) The operator from C’mTW;m‘FB(@TQ) to C™2 ™ (9rQ) which takes i to w[OrQ, o0
18 linear and continuous.

Proof. We first prove statement (i). We proceed by induction on m. The case m = 1 follows
by the continuity of the pointwise product in Schauder spaces, by Remarks 1.9 and 1.10 on the
continuity of the differential operators and of the embeddings in parabolic Schauder spaces,
by formula (2.37) of Theorem 2.13 and by Theorems 2.4 (iii), 2.5 (iv) and 2.12 (i),(ii).

We now prove that if statement (i) holds for all m’ < m and m > 1, then it holds for
m + 1. It suffices to prove that the following three statements hold.

() w[orL, ]9, is continuous from C’mTH”"H(E)TQ) to C(0r ).

() Mi;[w[or9,-]j5,0] is continuous from C’mTH;mH(@TQ) to C’mTw;m"'ﬁ(@TQ) .
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(3ii) %w[@TQ, Jjapq is continuous from (0rQ2) to (0r2).
Statement (j) holds by case m = 1 and by Remark 1.10 on the continuity of the embeddings in
parabolic Schauder spaces. We now consider statement (jj). The continuity of the pointwise
product in Schauder spaces, Remarks 1.9 and 1.10 on the continuity of the differential operators
and of the embeddings in parabolic Schauder spaces, Theorems 2.13, 2.12 (i),(ii) and the
inductive assumption imply the validity of the statement (jj). Next we consider statement (jjj).
Remarks 1.9 and 1.10 on the continuity of the differential operators and of the embeddings in
parabolic Schauder spaces, Theorem 2.14, and the inductive assumption imply the validity of
statement (jjj). Accordingly the proof of statement (i) is complete.

The proof of statement (ii) follows the line of the proof of statement (i), by replacing the
use of Theorems 2.4 (iii), 2.5 (iv) and 2.12 (i),(ii) by that of Theorems 2.5 (ii), 2.5 (iii), 2.12

(iii),(iv), respectively. O

2.6 Regularizing properties of the integral operator w,[0r(2, -]

We now consider the regularizing properties of the operator w, [0, -] (for the definition, see

(2.2)).

Theorem 2.16. Under the assumptions of Theorem 2.15, the following statements hold.

(i) The operator from CmTfl;mfl(aTQ) to
18 linear and continuous.

(O7Y) which takes p to wy [0S, p]

(i) The operator from (0rQ2) to
wy [0, p] is linear and continuous.

(0r) which takes p to

Proof. First we note that

¢
wi[0rQY, pl(t, ) = / 0 O, (t — 1,2 — y)u(T, y)doydr (2.43)
oo J O 81/( )
n_ ot
= vi(x —T,T — T,y)do,dT
zl/oo/fﬂﬂ 6% Dy (t y)u(, y)doy
=3[ [ o) = 1) @alt = 7~ il p)doydr
oo J O i

=1

n

t
0
= / / i) - @alt = 7. — y)u(r, y)doydr
izy J—o0 JoQ Yi

n

_ZQZ Vi, b [aTQ M]\@Tﬂ(t ‘T)

for all (¢,z) € 0.

We now consider statement (i). Case m = 1 follows by Theorems 2.12 (i), 2.4 (iii) and by
the previous formula (2.43). Case m > 1 follows by Theorems 2.12 (i), 2.15 (i) and by the
previous formula (2.43).

The proof of statement (ii) follows the lines of the proof of statement (i), by replacing the
use of Theorems 2.12 (i), 2.4 (iii), 2.15 (i) by that of Theorems 2.12 (iii), 2.5 (ii), 2.15 (ii) O
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2.7 Compactness results for w[0r(2, |90 and w,[0r€2, ]

As a consequence of the regularizing properties of Theorem 2.15 and 2.16, in this section
we prove some compactness results for w[0r(2, ]|a,q and for w.[07€2,]. We start with the
following definition of a subspace of C gy timta (092).

Let m € N, a €]0,1[, T €]0, +00]. Let Q be a bounded open subset of R™ of class C"™.
We set

m+tao

C, ? ;m+a(8TQ) = {u € C’mTM;m"'a(@TQ) cu(t,z) =0 for all t €] — 00,0], z € OQ} ,
(2.44)

which we regard as a Banach subspace of C' mTM?mJFO‘(aTQ). The following compactness results
is a well known consequence of the Ascoli-Arzela Theorem.

Lemma 2.17. Let m € N, a €]0,1[, 8 € [0, [, T €]0,+00[. Let Q be a bounded open subset
mT'm;m—i-a( mtB i

of R™ of class C™“. Then the embedding of C, orQ?) in C, * (0rf2) is compact.

Finally, we have the following immediate corollary of Theorems 2.15 and 2.16 and of
Lemma 2.17.

Corollary 2.18. Let « €]0,1[, 8 €]0,a, m € N\ {0}, T €]0, +oo|. Let Q be a bounded open
subset of R™ of class C™*. Then the following statements hold.

i) The linear operator w[OrS,|a,q is compact from C’O%;m(aTQ) to itself, and from

2B im+3 . mrYmta .
Cy (0rQ) to itself, and from C,, (0rQY) to itself.

m—=1..._
i) The linear operator w[0rS2, -] is compact from C* " 1(8TQ) to itself, and from

m-1+B., 148 molta.y J4a
Cy * (0rQY) to itself, and from Cy * (0rQ2) to itself.
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CHAPTER 3

Periodic layer heat potentials

This Chapter is devoted to the study of space-periodic layer heat potentials and to the
application to the solution of some initial-boundary value problems for the heat equation
in parabolic cylinders defined as the product of a bounded time interval and an unbounded
periodically perforated domain.

In order to explain in more details the content of the present chapter we introduce some
notation. We fix once for all an n-tuple of positive real numbers

(q117 s 7an) 6}07 +Oo[n

and we define the periodicity cell ) as
Q= []10, g5l
j=1

Let D" denotes the space of n x n diagonal matrices with entries in ]0, +o0c[. Moreover, we
denote by ¢ the element of D, defined by

gu 0 - 0
0 Qoo - 0
= . . . |

and by m,(Q) the measure of the fundamental cell Q). Clearly
qZ" ={qz: z € Z"}

is the set of vertices of a periodic subdivision of R™ corresponding to the fundamental cell Q)
(see Figure 3.1). Then we take

a €]0,1], m € N\ {0}, T €] — 00, +00],
and a bounded open subset € of R” of class C™% such that
cdQCQ.

7
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[ ] [ ] L] L ]
[ ] [ ] L] L ]
q22
[ ] [ ]
Q
qZ?
L) - - * -
q11
|
[ ] [ ) [ ] [ ]

Figure 3.1: The set qZ" and the periodicity cell Q, in case n = 2.

Before defining the space-periodic layer heat potentials, we need a periodic analog of the
fundamental solution of the heat equation. To this aim, we introduce the function ®, , from

(R xR™)\ ({0} x ¢Z™) to R defined by

x 22
> can G i)% e T (t,x) €]0, +o00[xR™,
T

0 if (t,2) € (] — 00,0] x R?)\ ({0} x qZ"),

Dyn(t,z) = (3.1)

and we refer to Theorem 3.5 (i) below for the convergence of the series. As it is known, @,
represents a g-periodic analog of the (classical) fundamental solution for the heat equation
D, (see, e.g., Pinsky [89, Chapter 4.2] for the case n = 1 and Bernstein, Ebert and Soren
Kraufhar [9] for n > 2).

Then we are in the position to introduce the g-periodic in space layer heat potentials. Let
xg € €2, then we set

+o0o
oglOrQ, pl(t, ) = / /m(%,n(t—ﬂx—y)—‘I’q,n(O—T,ﬂco—y))u(ﬂy)do'ydT (3.2)

V(t,z) € (R")r,

and

wq[0rQY, pl(t, z) = /_ - Léqm(t — 1,0 —y)u(T,y) doydr Y (t,x) € (R™)p, (3.3)

dva(y)
and
t 3}
Wq[0r8Y, p)(t,x) = / —— @yt — 1,2 —y)u(r,y)doydr  V(t,z) € orQ,
o0 Joa Ova(x)

(3.4)
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where the density (or moment) p is a function in L*°(992).

The functions v, [07Q, p] and wq[0r2, p] are the g-periodic in space single and double layer
heat potential with density p, respectively. The function wg [07€2, p] is instead a function
related to the normal derivative of the g-periodic in space single layer potential v, [07€2, p].

Remark 3.1. We note that the above definition of single layer heat potential v,[07€2, ]
clearly depends on the choice of ¢ € €2, even if we don’t make it explicit in the notation.
Indeed, a different choice would provide a single layer which differs from that with ¢ by a
constant. We have defined the single layer potential in such a way because the kernel

éqvn(t ) T — ')
is not integrable in | — 0o, t] x 0f2, instead the kernel
(I)%n(t T ) - (I)%n(o - 5T — )

is integrable in | — oo, t] x 0.

However, we note that if T €]0, +o00] and suppp C [0,7[ x Q (and this is the case
when one considers an initial-boundary value problem for the heat equation with zero initial
condition at ¢ = 0), then the g-periodic single layer heat potential v, [07€2, 1] no longer depends
on xg and

t
Ve[0T, p](t, x) = /0 /BQ Py n(t — 7,2 —y)u(r,y)doydr  V(t,z) € [0,T] x R",

that is the periodic analog of the classical definition of single layer heat potential.

This chapter is organized as follows. In Section 3.1 we provide the definition of parabolic
Schauder spaces of space-periodic functions and the definition of some subspaces that we
need in our analysis. In Section 3.2 we prove a characterization for parabolic Schauder
spaces made of space-periodic functions. Section 3.3 is devoted to the g-periodic fundamental
solution of the heat equation ®,, and we prove some properties of ®,,. In Section 4 we
consider the g-periodic layer heat potentials vg[0r€?, -] and wq[0r€2, -], and we prove some
properties which are the periodic analog of the corresponding properties for classical layer heat
potentials, like continuity, Schauder regularity and jump relations. More precisely we prove an
analog of Theorems 2.1 and 2.2 in the periodic setting. Moreover, as the main result of this
section, we prove a regularizing property of wy[072, |5, and of wy «[0rS2, -] on JrQ under
the assumption that € is of class C"™ . Such mapping properties are the periodic analog of
the regularizing properties we have proved in Chapter 2 for w[0r(2, ]j5,q and for w.[07€, ]
(see Theorems 2.15 and 2.16). As a corollary, in Section 3.5 we deduce some compactness
results for wy[0rQ, ]ja,q and for wy.[0r€2, -] under the assumption that 7' < +oc. Finally,
in Section 3.6 we apply the results of the previous sections in order to solve three types of
boundary value problems for the heat equation in an unbounded periodic domain. More
precisely we consider the periodic version of a Dirichlet problem, of a Neumann problem, and
of a non-ideal transmission problem.

Some of the results of this chapter can be found in a paper by the author [75].

3.1 Parabolic Schauder spaces of periodic functions

We now introduce two subspaces of parabolic Schauder spaces that are useful in order
to consider initial-boundary value problems with zero initial condition at time t = 0. If
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T €]0,400], m € N, a € [0, 1], and Q is a subset of R™, then we set

mia.gn o

Cy? 7 (cdQp) = {u € C’me;era(leT) cu(t,x) =0 for all t €] — 00,0],x € CIQ} ,

which we regard as a Banach subspace of C mTM;m"’O‘(cl Q7). Moreover, as we have already
introduced in (2.44), we recall that if Q is of class C"™%, then

mta.g, g
Co? " (0r9)

{u € Cme;era(@TQ) s u(t,z) =0 for all t €] — 00,0,z € 5‘9} ,

which we regard as a Banach subspace of C ’"T“*mﬂ(am).
Let D be a subset of R™ such that

x+qge; €D VeeD,Vie{l,...,n},

where {e1,...,e,} denotes the canonical basis of R™. In this case we say that the set D is
g-periodic. We say that a function u from D7 to C is g-periodic in space, or simply ¢-periodic,
if
u(t,x) = u(t,x + qe;) V(t,z) € Dy, Vie{l,...,n}.
Let € be a bounded open subset of R™ such that cl1Q2 C Q. We now introduce two ¢-periodic
sets (see Figures 3.2, 3.4). We set
Sl = | (g2 +9Q) = 2" + Q.

ZEL™

Then we have that
Sq[Q]” =R"™\ clS4[Q].

q22

sl |

q11

Figure 3.2: In gray the periodic set S4[2] in case n = 2.
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Figure 3.4: In gray the periodic set Sq[Q2]~ in case n = 2.

22

RN

Figure 3.3: In gray the periodic set 0S4[SY] in case n = 2.

Since we will consider space-periodic problems, we introduce the following subspaces of
parabolic Schauder spaces. Let T €] — 0o, 4+00], m € N, and « € [0, 1[. We set

m+ta
2

C’q_;m"-a(cl Sq[Qr) = {u € Cme;era(cl Sq[Q]7) : u is g-periodic in space} ) (3.5)
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which we regard as a Banach subspace of C me?era(cl Sq[Q7), and

;m—l—a(

mta mta
Cy? clSq[Q ) = {u € CT+;m+°‘(cl Sq[Q]7) : u is g-periodic in space} , (3.6)

which we regard as a Banach subspace of C me?era(cl Sq[Q 7). If T €]0, +00], then we can de-

mta., o mEe mta mra.
fine Cy / - (cISg[Qr) and Cy ;- * (c1S4[€]7) replacing the spaces C’TJF”"“‘(CIS(][Q}T)
mie.nta
SN CEAEY

and Cme;era(cl Sq¢[€]7) in the right hand side of (3.5) and (3.6), by C,

: I
and Cy 2 (S, (95

), respectively.

3.2 A characterization of parabolic Schauder spaces of periodic
functions

In this section we prove two auxiliary results concerning the g-periodic parabolic Schuader
spaces Cqm% ;m+a(cl Sq[Q]7) and Cqm% ;m+a(cl Sq[2]7). In the first lemma we prove that
when dealing with ¢-periodic Schauder functions in clS,[Q]r, it suffices to consider Schauder
functions in cl Q7. Next we prove a corresponding lemma for ¢-periodic Schauder functions
in cl1S4[€2] ;. More precisely we show that when dealing with g-periodic Schauder functions
in cl1Sy[2]7, it suffices to work in a cylinder with as base a suitable neighborhood of the

periodicity cell Q). We start with the following.

Lemma 3.2. Let o € [0,1], T €] — 00, +00], m € N. Let Q be a bounded open subset of R"™ of

class C™ such that c1Q) C Q. Then the restriction operator induces a linear homeomorphism
mto. m4ta .,
from Cy ? ’era(cl Sq[Q]1) onto C%vm”‘(cl Qr).

Proof. The case m = 0, a = 0 is an obvious consequence of the g-periodicity of the functions
in the space Cg Ol S¢[Q7) and of the Open Mapping Theorem.

Next we consider the case m = 0, a €]0,1[. Obviously if u € C2(cl1S,[r), then its
restriction o, belongs to C2%(clQr). Conversely, if v € C23%(clQr) then there exists a
unique g-periodic function u from clSy[Q]7 to C such that v = u|q o, and

u(ty, z) — u(tz, ) )!tl—t2|% Vi, tr €] — 00, T,V € cl(,

< loll g,

lu(t,x1) —u(t,z2)| < HUHC%;Q(CIQTﬂzl — x2|® Vte]—o00,T], V1,2 € cl.

Next we set

d=inf{|lz —y|: (z,y) €clQ x (R"\ Q)}.
Clearly d > 0. By the g-periodicity of u we have that

lu(ty, z) — u(te, z)| < ||v]| )|t1—t2|% Vi, ta €] —o00,T[, Va € clS,[Q).

%% (clQr

Moreover

lu(t, x1) — u(t,z2)| < max{2d™* sup |v|, ||v
CIQT

Vte]—oo,T[Vay,z2 € clSy[Q).
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Accordingly u € C2"(cl Sq[Q7). Hence the restriction operator from C2 % (cl Sq[Q7) to
C %;O‘(cl Qr) is a continuous bijection. Then the Open Mapping Theorem implies that it is a

homeomorphism.

1ta.
Next we consider the case m = 1, a € [0,1]. Obviously if u € C;? ’Ha(clSq[Q]T),

then its restriction g, belongs to CHTQ;HO‘(CI Qr). Conversely, if v € C’HTQ;HO‘(CI Qr)
then there exists a unique g-periodic function u from clSy[Q]7 to C such that v = v,
Moreover, following the same lines of the proof of the previous case one can prove that

Opu € C2 7 (c1S,[Q)r) for all i € {1,...,n}, and that

lu(ty, x) — u(te, z)| < HUHCHTQ )|7§1—152\1+T‘1 Vi, ta €] —00,T[, Vo € clSy[Q].

el Qp
. .. e nta oyt . .
Accordingly, the restriction operator from C (c1S4[Q7) to C72 " T¥(clQr) is a contin-
uous bijection. Then the Open Mapping Theorem implies that it is a homeomorphism.
The general case follows by the previous cases and by an inductive argument. O

Then we have a corresponding lemma for g-periodic functions on S4[Q]7.

Lemma 3.3. Let a € [0,1], T €] — 0o, +o0], m € N. Let Q be a bounded open subset of R"
of class C™% such that c1Q C Q. Let V be an open bounded connected subset of R™ such that

cd@QCV, cdVnNn(gz+clQ)=0 VzeZ"\{0}.

Let W = V \ clQ. Then the restriction operator induces a linear homeomorphism from

mta., o
Cy? 7 - (c1S4[Q2] ) onto the subspace
mEmta — A imta
C, (W) = {v e CUFEm (L W) -
Ju € C5r such that u is q-periodic, v = U WT}’
of O Mt (1 W),

Proof. The case m = 0, a = 0 is an obvious consequence of the g-periodicity of the functions
in the space Cg (el Sq[€]7) and of the Open Mapping Theorem.

Next we consider the case m = 0, a €]0,1[. Obviously if u € Cq%;a(cl Sq[]7), then its

restriction ey, belongs to Cf ““(clWr). Conversely, if v € C2(clWr) then there exists a
unique g-periodic function u from cI§,[Q2] to C such that v = uqw, and

lu(ty, z) — u(tz, ) )|t1—t2\% Vi, ta €] —00, T,V € cIW,

< lellggom,

lu(t, z1) — u(t, x2)| < |jv Vte]—o00,T[, Vi, z2 € clW.

oo @y 21 — 22
Next we set
d=inf{lz —y|: (z,y) €cl@Q x (R"\ V)}.

Clearly d > 0. By the g-periodicity of u we have that

lu(ty, z) — ulty, )| < [jv 1~ ta]2 Vi, tp €] —o0,T], Vo € clS, 0] ™.

”c%?a(cle

Moreover

[u(t, 21) — u(t, z2)| < max{2d™* sup [0l 1]l o gy HE1 = 22"
clQr
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Vte]—oo,T], Vo, xs € clSy[Q ™.

Accordingly u € C'q%;a(cl Sq[€Q]7). Hence the restriction operator from C'q%;a(cl Sq[Q]7) to

C? ;a(cl Wr) is a continuous bijection. Then the Open Mapping Theorem implies that it is a

homeomorphism.

1ta.
Next we consider the case m = 1, a € [0,1]. Obviously if u € C,? ’H—a(cl Sq[Q7),

o, . Itag
then its restriction uqyy, belongs to C%’H‘O‘(Cl Wr). Conversely, if v € Cy 2 +a(cl Wr)

then there exists a unique g-periodic function u from cIS,[2] to C such that v = u ;.
Moreover, following the same lines of the proof of the previous case one can prove that

Op,u € C'q%;a(clSq[Q};) for all i € {1,...,n}, and that

1ta —_— _
lu(ty, ) — u(te, z)| < ||v]| 1WT)|t1—tg\ 2 Vi, ta €] —o0, T[,Va € clS,[Q] .

14+,
c 7 e

lta o, .
Accordingly, the restriction operator from Cy? ’ e (c1S4[92)7) to C 1%’Ha(cl Wr) is a con-

tinuous bijection. Then the Open Mapping Theorem implies that it is a homeomorphism.
The general case follows by the previous cases and by an inductive argument. O

3.3 The periodic fundamental solution

As we have already said, in order to construct periodic layer potentials we need a periodic
analog of the fundamental solution of the heat equation. Therefore this section is devoted to
the g-periodic fundamental solution of the heat equation ®,,, (cf. (3.1)).

We will need the following trivial lemma.

Lemma 3.4. Let a,b €]0,+o00[. Then there exists a constant f(a,b > 0 such that
e < Kap,  VEE0,+00[.

In the following Theorem we collect some known properties and variants of known properties
of the g-periodic fundamental solution ®,,. Moreover we introduce the function R, defined
by

Ryn(t,2) = @gn(t,x) — Pn(t,z),  V(t,z) € (RXR")\ ({0} x ¢Z"), (3.7)

that is the difference between the periodic and the classical fundamental solution, and we
study such a function.

Theorem 3.5. Let ®,,, be the function defined in (3.1). Then the following statements hold.

(1) The generalized series in (3.1), which defines ®qp, converges uniformly on the compact
subsets of |0, +o0[xR™.

(i1) Let K be a compact subset of R"™ such that K NqZ"™ = &. Then

tl—i>r(])n+ gt 7) =0,

uniformly with respect to x € K.

(iii) ®qp is q-periodic and @4, € C ((R x R™) \ ({0} x gZ™)). Moreover ®,,, solves the
heat equation in (R x R™)\ ({0} x qZ™).
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(iv) Let f € CO(R™) such that f is q-periodic. Let u be the function from |0, +oo[xR" to C
defined by

u(t,x) = /Qfl>q7n(t,$ —y)f(y)dy Y (t,z) €]0, +o0[xR".

Then u belongs to C*°(]0,4+00[xR™), solves the heat equation in ]0,4o00[xR"™, is ¢-
periodic and
lim u(t,z) = f(z) Ve R"™

t—0t

(v)

(I)q,’n<t7x) _ Z mnl(Q) e—47r2\qflz\2t+27ri(q71z)'x Y (t,z) €]0, +0o[xR" (3.8)

(vi) Let a €]0,+o00[, n € N", h € N such that |n|y +h > 1. Then there exist two constants
Ch.has Cn,h €]0, +00[ such that

00 D"D, ()| < Cppge Cmht Y (t,z) €]a,+oo[xR"™.
(vii) The function Ry, can be extended by continuity in (R x R™)\ ({0} x ¢(Z" \ {0})) and
Rypn € CF((R X R")\ ({0} x ¢(Z"\{0}))).

Proof. We first consider statement (i). Let ¢1,t2 €]0,400[, t1 < t2, R €]0,+o0]. It suffices
to show the uniform convergence of the series in (3.1) in M = [t1,t2] X 1B, (0, R). We fix

(t,z) € M and z € Z" such that |gz| > R. Then

@+ qz|""* > (lgz] = [2)"* > (lgz] = R)" > 0.

Lemma 3.4 implies

U e L (4 N g\ e
(4t)2 © (art)z \|z+ gz At
4 - t 4 - to
< Kny——— < — Kn 44— > .
s 2T e b gan 2 T s T2 (|gz] — R)nF2
Hence
x z 2 x z x z
Z 1ﬂe_|+4<1| :Z 126‘23‘ —|—Z 128\23\
sezn (4t)> segn (4mt)> Jezn (4mt)2
lgz|<R lgz|>R
1 |z+qz| 4 - to
< we At + —Kni gy T T
ZZ (4nt)? ; ZZ (g - B2
lgz|<R lgz|>R

and the right hand side of the previous inequality is bounded by a constant independent of

(t,z) € M.
Next we consider statement (ii). Let R €]0, +o0o[ such that K C B, (0, R). Since

I=inf{lz +qz)° 2 € K, 2 € Z", |qz| < R} > 0,
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we have

1 lz+qz|? 1 |z+qz|? 1 |+qz|2
e 4 — —eT A+ _eT A
Z (4mt) Z (4mt)2 Z (4mt)2

ZEL™ ZEL™ ZEL™
laz|>R lgz|<R
4 - t 1 I
< —5Kn ——— e %
= Tz 411 n )
2 ) 2| — R n—+2
= DI PEE =R Sy
lgz|>R laz|[<R

and accordingly, (ii) follows.

The g-periodicity of ®,,, in (iii) follows by its definition. We now prove that ®,, €
C>® ((R x R™)\ ({0} x ¢Z™)). Exploiting the estimate for the derivatives of the classical
fundamental solution of the heat equation (1.4) and arguing as in (i) one can prove that the
generalized series

> D" (t,x + q2),

zZEL"

converges uniformly on the compact subsets of |0, +oo[xR" for all h € N;n € N". Indeed,
exploiting the estimate (1.4) and Lemma 3.4 we have that

o D", (t,x + q2)| (3.9)

TL

2yl 2l
_n_lnh t 2L 1 gz2 2 Pl e
=Kt 27 2 — s 444??447 e 8t

n
gL PRI V (t,x) €]0,4o0[xR",

for all h € N;n € N" and then we can conclude following the same line of the proof of

statement (i). Moreover, exploiting once more (1.4) and arguing as in (ii), one can prove that
if K is a compact subset of R™ such that K N ¢Z"™ = &, then

I Al D", (1 — 0,
Jim, gz; ; (t,x +g2)

uniformly with respect to € K. Indeed, inequality (3.9) and estimate (1.4) implies that

Z oD, (t, x + q2)

ZEL™
- t 1 _ lotgn)?
8t
<Ko Kg 4 gL Z ‘x+q2’n+‘nll+2h+2 K. Z e nl ’
ZEL™ 2EZL™ t2t
lgz|>R lgz|<R

for all (¢,x) €]0, +00[xR", and accordingly we can conclude following the same line of the
proof of statement (ii). Then ®,,, € C* ((R x R™) \ ({0} x ¢Z"™)). Finally, ®,, solves the heat
equation in (R x R™)\ {0,0} and then ®,,, solves the heat equation in (R x R")\ ({0} x ¢Z").
Accordingly, (iii) follows.

Next we consider statement (iv). Statement (iii) and classical differentiation theorems for
integrals depending on a parameter imply that u belongs to C*°(]0, +00[xR"™) and solves the
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heat equation in ]0, +00[xR"™. The g-periodicity of u follows by the g-periodicity of ®,,. By
the g-periodicity of f and by the Fubini-Tonelli Theorem, we have

ult,z) = / Dynlt,z — ) f(y) dy
/ Z _ lz—y+qz|® y+qz| f(y)dy

m\:

ZGZ”
_ lz—y+aqz|" y+Q4
-3 / pe T f )y
ZEL™ 2
1 lz—yl|?
:Z/ ce a f(y+qz2)dy
ZEZ” qz+Q (47Tt) 2
1 _la—y?
-3/ ce = py) ay
zEL™ —qz+Q (47Tt) 2
1 le—y|?
- n e 4t d
/R T f(y) dy

_ / @ultr = 9)f(v) dy,

for all (¢,z) €]0,4+00[xR"™. Then by classical properties of ®,, and by the membership of f in
CP(R™) N L>®(R™), (iv) follows (see Evans [33, Theorem 1, p. 47]).
We now consider statement (v). It i well known that

| 2

Fo [e'a;} (&) = (Amt)ze ™ P v (2, €) €]0, 4+, (3.10)

where F, denotes the classical Fourier transform with respect to the space variables, which
we recall is defined by

Flol(€) = / g(@)e e 4y Vge LNRY), VE € R

Let now g € C°(R") be such that there exist two constants C, e € [0, +-00[ such that
g(@)| <COA+|z)™"5,  FPl@I<CO+gh™" Vo, feR™

Then the Poisson summation formula says that

1 o1
glx+qz) = ——_F.lgl(qg tr)e?mila2)w VxeR"Y, 3.11
gz:n ( ) Zgzjn (@) l9(a™ 2) (3.11)

(see, e.g., Folland [37, p. 254]). Then combining (3.10) and (3.11) we obtain formula (3.8).
Next we consider statement (vi). By differentiating term by term formula (3.8), which
can be done by the computations below, we have that

langn(I)qn(t’ x)‘ _ Z (_4772’q—1z‘2)h(27m‘q—12)77 6—471'2|q’12|2t+27ri(q’12)~1’
- mn(Q)

zeZ"\{0}

(2m) 2t —1_2h+lml ,—4n2lg~ 122t

<7 g 'z nhg=dmle™ 2%

7nn(62) ZE: | ’

zeZ™\{0}
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for all (¢,z) €]0, +00[xR™. We note that there exist two constants dy, ds €]0, +00[ such that
di)z)y < 1q 2| < daz|y VzelZ".

Then

27dy )2t Inl
|Oh DD, (t, )| < % Z |Zﬁh+|nlle—4w2d2{\z|§t (3.12)
! 2€27\{0}

(2mdg)?hHInh Z |22l gt =t
mn(Q) z€Z7\{0}
for all (t,z) €]0,+o0o[xR". Now let € N\ {0}. The number of elements of the set

Ar={z€Z":|z|1 =7}

on (n—i—:—l).
<n+:—1> _ (T+1)(T4E73)_--1-)§T+n—1)’

is known to be the number of monomials of fixed degree r in n variables. Then there exists a
constant C!, €]0, 4+oc[ which does not depend on r such that

can be estimated by

Indeed

card(4,) < Chr L (3.13)
Let a €]0, 4+00[. Inequality (3.13) and Lemma 3.4 imply that
Z |z|%h+|"7|1e—47r2d%|z|1t <c Z p2htlnlitn—1,—4rdirt (3.14)
2€Z7\{0} reN\{0}
-’ Z T,2h+|r]\1+n716727r2d§rt6727r2d%rt
n
reN\{0}
< Z T,2h+|77\1+n—le—27r2d%7“te—27r2d%ra
= Yn
reN\{0}
- —2m2d3rt
< C;K2h+\n|1+n71,27r2d%a Z e Tmar )
reN\{0}

for all t €]a, +o0o[. Moreover there exists a constant C” €]0, +o0[ such that
5. 272
D R L il di < OVem2mdit (3.15)
1— 6—27r dit
reN\{0}
for all ¢ €]a, +o0o[. Then statement (vi) follows combining (3.12), (3.14) and (3.15).
Finally we consider statement (vii). Since

1 _lztgqz|?

e i,
(4rt)

Ryn(t, ) = Bgn(t,x) — Ont,x) = )
2€Z7\{0}

|3

for all (t,z) € (R x R™) \ ({0} x ¢Z™), then R,,, can be extended by continuity in (R x R™)\
({0} x ¢(Z™ \ {0})). Moreover, arguing as in the proof of statements (i), (ii) and (iii), one
proves that R, , € C®((R x R™)\ ({0} x ¢(Z" \ {0}))). O
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By Theorem 3.5 (vii) the map R,, and its derivatives are non-singular in the origin
(0,0) € R x R™. Hence, we can prove the following statement regarding the mapping
properties of an integral operator with the derivatives of R, as kernel.

Lemma 3.6. Let T €] — 0o, +00]. Let Q be a bounded open Lipschitz subset of R™ such that
clQC Q. Let h e N, n € N be such that |n|1 +h > 1. Let V be a bounded open connected
subset of R™ of class C*° such that

cd@QCV, cdVn(gz+clQ)=0 VzeZ"\{0}.

Let p € L>®(07R). Let u[0rQ, O D" Ry p, 1] be defined by
t
u[0r$Y, 0L D" Ry, ] (t, ) = / / ONMD'Ry . (t — T, —y)u(T,y) doydr V(t,z) € clVrp.
o J —oc0

Then u[d7Q, dF D" Ry, -] is linear and continuous from L>®(drQ) to C2™(cl Vi) for all
m € N\ {0}.

Proof. We first note that if z € clV and y € 012, then

r—y ¢ qZ"\ {0}.

Indeed if by contradiction x —y € ¢Z™ \ {0}, then x € 9Q + (¢Z™ \ {0}) and thus there exists
z € Z™ \ {0} such that cl1V N (¢z + 0Q) # @ which cannot be. Hence

V- 90 C (R™\ ¢Z") U {0}.

Then the statement follows by Theorem 3.5 (vi), (vii) and by classical differentiation theorems
for integrals depending on a parameter. O

3.4 Properties of periodic layer potentials

In this section we consider the g-periodic layer heat potentials associated with the fundamental
solution @, ,,. First we prove those properties which are also known to hold for classical layer
heat potentials. Namely Schauder regularity in cIS,[Q2]7 and in cIS, [, and jump formulas
(Theorems 3.7 and 3.8 below). Then we prove a regularizing property of the integral operators
wq[078, -] |90 and wg [0, -] on OrQ (Theorems 3.9 and 3.10 below). The key consideration
in order to prove such properties is to write the periodic layer potentials, by means of the map
R, . as a sum of the corresponding classical layer heat potential and of an integral operator
with the smooth kernel R, ,. We note that this idea stems from a similar idea which has been
exploited in the elliptic case (see, e.g, Ammari and Kang [4, p. 57] and Lanza de Cristoforis
and Musolino [65]).

We start with the following Theorem concerning the g-periodic single layer heat potential
vg[0r€2, -] (for the definition, see (3.2)).

Theorem 3.7. Let a €]0,1[, T €] — oo, +0o0]. Let Q be a bounded open subset of R™ of class
CY such that c1Q C Q. Then the following statements hold.

(1) Let p € L>®(07). Then vy[0r, p) is continuous, q-periodic in space and vy[OrS2, p1] is of
class C®((R™\0S,[Q))7). Moreover vg[0rS, p] solves the heat equation in (R™\0S4[Q])r.
We denote by v} [0, u] and vy [0Qr, p) the restriction of vg[0Qr, p] to clSy[Q]r and

clSq[Q 7, respectively.
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(ii)) Let m € N\ {0}, i € {1,...,n}. Let Q be of class C"™. Then the map from
m— @ _1+ m— «
Cm e m e 9rQ) to G, 2 1+ (c1S4[Q7) which takes p to % SO, ] is
linear and continuous. The same statement holds with - 6 +[(9TQ p) and clSq[Q)r

replaced by 6%1-”; (012, p] and c1S4[Q., respectively.

(i) Let m € N\ {0}. Let Q be of class C"™. Then the map from C’mTM?"H'O‘(@TQ) to

molta.n 14

same statement holds with 2

(c1Sq[7) whzch takes p to 8t vf [0rQ, p] is linear and continuous. The
50,100, ] and CIS Q)7 replaced by P 51V 012, p] and
clSq[Q7, respectively.

(iv) Let m € N\ {0}. Let Q be of class C™. Let T €]0,+oc[. Then the map from
m=lto.p_ 14a im+a

Cy, * 1+ (0rQ2) to C’O; m (cISq[Q7) which takes p to v [0rQ, p] is linear

and continuous. The same statement holds with U;_ [0rQ, 1] and clSq[Qr replaced by

vy [0rQ), ] and clSy[Q ., respectively.

(v) Let p € C2%(0rQ). Let r € {1,...,n}. Then the following jumyp relations hold.

3V§(x) vg [0rQ, p) (1, 2) = £ %u(t, ) 4 wq [0T, K (t, ), (3.16)
o0, ltn) =% ut 2w ()

/ 50 ax q, ( — T, T — y),LL(T, y) daydT»

for all (t,x) € OrfQ.
Proof. First we fix a bounded open connected subset V' of R” of class C°° such that
dQCV, cdVN(gz+clQ)=9, VzeZ"\{0}.

Now we consider statement (i). Since @, is g-periodic, then vy[0r€, p] is easily seen to
be g-periodic. Moreover, the definition of R, (cf. (3.7)) implies that

+oo
vg[0T Y, P (t, x) :/ /{m(@n(t —rx—y)—P,(0—71,20 —y))u(r,y)doydr  (3.17)

+o00
+ / /E)Q(qu(t — 7,0 —y) — Rgn(0— 71,20 — y)) (7, y) doydr,

for all (¢,x) € cl V. The continuity in cl Vi of the first term in the right hand side of equality
(3.17) follows by the continuity of the classical single layer heat potential of Theorem 2.2
(i) (see also Friedman [38, p. 136]), and the continuity in cl V7 of the second term in the
right hand side of equality (3.17) follows by Theorem 3.5 (vi), (vii) and by the Dominated
Convergence Theorem. Hence, the continuity of v,[07€, p] in (R™)7 follows by the g-periodicity
of vg[0rQ, p]. Next we note that

r—y¢ql"  V(z,y) € (R"\ 05,[Q]) x 0.
Indeed, if by contradiction (z,y) € (R™\ 0S4[Q]) x 0 and x —y € gZ"™, then z € 0N+ ¢Z"™ =

0S4[€?], contrary to our assumption on z. Then Theorem 3.5 (iii) and standard differentiation
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theorems for integrals depending on a parameter imply that v, [07Q, p] is in C*°((R™\0S4[])7)
and that solves the heat equation in (R" \ 0S4[€2])7.

Next we consider statement (ii). The definition of Ry, (cf. (3.7)) and classical differentia-
tion theorems for integrals depending on a parameter imply that

0

8”1};[&[(2,“] = ax.v+[aTQ’M] + w07, Oy, Ry n, 14] in clQp, (3.18)
and
0 _ 0 _ .
92V (07, 1] = 9" (07, p] + u[0rQ, O, Ry n, 1] in (clV\Q)r. (3.19)

Here v*[0rQ, u] and v~ [07Q, u] are respectively the restrictions to ¢l Qr and to (c1V \ Q)r
of the single layer heat potential associated with the fundamental solution of the heat
equation ®,, (see Theorem 2.2 (i)) and u[0rf2, &cqun, ] is the map defined in Lemma
3.6. By known propertles of classical layer potentlals 71_ (07, ] is linear and continuous

(0rQ) to C™ 2 im= 1+CY(cl Qr) and 5-v7[019Q, ]| v\q), is linear and
continuous from C™72 M- e (9rQ) to C™ 2 m 1+O‘((CIV \ 2)r) (see Theorem 2.2 (ii)).
Then equalities (3. 18) (3.19), and Lemma 3.6, and the continuity of the embedding of
CZ"(cl Vy) into C™ .
from O™ 2% im= e (9rQ) to C Mt (el Qr) and - vy [0, ]| v\Q), is linear and
continuous from C ™72 M- e (97Q) to O 2 me 1‘*“"((cl 14 \ Q)7). Then the g-periodicity
of 871-1}; [0rQ, -] and of &Ci vy [0r€), -] and Lemmas 3.2, 3.3 imply the validity of the statement
for 8%1-”; [0r, -] and a%iv; [0792, -], respectively.

Statement (iii) and (iv) can be proved following the same lines of the proof of statement
(ii) exploiting the properties of the classical single layer heat potential of Theorem 2.2.

Finally we consider statement (v). The jump formulas (3.16) follow from equalities (3.18),

(3.19), from Lemma 3.6 and from the classical jump formulas for the normal derivative and
for the x;-derivative of the single layer heat potentials v¥[07€2, ] (see Theorem 2.2 (v)). O

from

m=1+a (] V), imply that Fon v*[@TQ Jje @ is linear and continuous

m— 1+ta.

Next we prove similar properties for the g-periodic double layer heat potential wg,[072, -]
(cf. (3.3)). Namely, we have the following.

Theorem 3.8. Under the same assumptions of Theorem 3.7, the following statements hold.

(1) Let p € L>®(0rQ). Then wg[0rSY, pu] is g-periodic in space, wq[0rQ, p] € C((R™ \
0S4[Q))1), and wy[0rY, p] solves the heat equation in (R™ \ 0S4[Q2])7.

(ii) Let m € N\ {0}. Let Q be of class C™. Let u € CmTw;era(aTQ), Then the

restm'ction we[0rSY, pis, ) can be extended uniquely to an element w][0rS, p] €

c, e ,m+a( 1S,[Q]r) and the restriction wq[aTQaﬂhs ), can be extended uniquely to

an element w, [07Q, p] € Cy N +a(clS [Q]). Moreover the following jump formulas

hold.
w09 i)(t2) = Fopu(t ) + wDr 2, (1, ), (3.20)
0 o -
8yg(x)w;[8TQ’“](t’$) 0K (018, p](t, ) =0, (3.21)

for all (t,x) € Or<2.
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), Let Jn € N\ {0}. Let Q be of class C"™*. The operator from CMTM””JFO‘(@TQ) to
Cy N ’m+a(cl Sq[Q7) which takes p to the function w, (072, p] is linear and continu-

ous. The operator from (0rQ2) to C4 =N ’m+a(c1 Sq[ ;) which takes pu to the
function w, [07Q, p] is lmear and continuous.

Proof. First we fix a bounded open connected subset V' of R™ of class C'"*° such that
cdQCV, cdVn(gz+clQ) =g, VzeZ"\{0}.

We consider statement (i). The g-periodicity of w,[07€, u] follows by the g-periodicity of @ .
Next we note that

x—y¢ql” V(x,y) € (R"\ 0S4[2]) x 09Q.

Indeed if by contradiction (z,y) € (R™\ 0S4[Y]) x 0Q and x —y € ¢Z", then x € 0Q + ¢Z" =
0S¢[€Y], contrary to our assumption on z. Then Theorem 3.5 (iii) and standard differentiation
theorems for integrals depending on a parameter imply that wq [0, ] is in C*°((R™\0S4[Q])7)
and solves the heat equation in (R \ 0S,[Q])7.

Next we consider statement (ii). The definition of Ry, (cf. (3.7)) implies that

n
we|OrQY, p)(t, x) = w[orsY, p)(t, ) — Zu[@TQ, Oz, Rqm, va,itt] (t, z) Y (t,x) € cl V.
i=1
(3.22)
Here w[0r(2, -] is the double layer heat potential associated with the fundamental solution
®,, (see [64, Theorem 2.8 (i), p.9]). By classical results in potential theory we know that
m+a’m+"(cl Q) and

w[07SY, p1] (v \e1 ), can be uniquely extended to an element w™[0rQ, u] € C™ 2 = mEa((el V' \
Q)7) (Theorem 2.1 (i), (ii), see also Watson [110, Lemma 2.7, p. 41]). Then equality
(3.22) and Lemma 3.6 imply that w,[07€2, p]jn, can be uniquely extended to an element in

w[0rQ, p]jo, can be uniquely extended to an element w*[0rQ, u] € C

o

e 2 MT(clQr). Accordingly, the g-periodicity of w,[0rS2, u] and Lemma 3.2 imply that

we 01, p1]|s, (0], admits a unique extension w [0r€Q, u] in Cy R clSq[Qr). Similarly
equality (3.22) and Lemma 3.6 imply that w, [8TQ M]\(V\cm) can be uniquely extended to an

element in C' mTM””‘*‘“((C] VA\Q)7). Accordingly, the ¢g-periodicity of wy [8TQ ,u] and Lemma 3.3

L mta
(

imply that w,[07r(2, u]‘s o admits a unique extension w, [0rQ, u] in Cy e ’m+a(cl Sq[Q7)-
The jump formulas (3.20), (3.21) follow immediately by equahty (3.22), and by Lemma 3.6
and by the classical jump formulas for w[0r, u] (see, e.g., Theorem 2.1 (i)).

Finally, the continuity of the operators in (iii) follows by equality (3.22), and by the
continuity properties of the interior and exterior double layer heat potential w™[dr, -] and
w[Or8), |1 v\Q), (see Theorem 2.1 (ii)), and by Lemmas 3.2, 3.3 and by Lemma 3.6. [

Now, exploiting the regularizing effect of the integral operators associated with the
(non-periodic) layer heat potentials w[0r(2, -]ja,q and w.[0r(2, -] of Theorems 2.15 and 2.16,
respectively, we are ready to prove that the integral operators w,[0r<, ] ja,0 and ws 4[07S2, ]
(cf. (3.3), (3.4)) have the same smoothing effect on the parabolic boundary 97§2.

Theorem 3.9. Let o €]0,1[, 8 €]0,a[, T €] — oo, +o0],m € N\ {0}. Let Q be a bounded
open subset of R™ of class C™ such that clQ) C Q. Then the following statements hold.

(i) The operator from C2™ (31 to CmTW?erﬁ(@TQ) which takes p to we[0r$, plja,q s
linear and continuous.
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(ii) The operator from CmTM;m‘*'ﬂ(@TQ) to C%?””O‘(E)TQ) which takes p to wq[0T€Y, p1)jo,0
s linear and continuous.

Proof. We first consider statement (i). As we have already seen in the proof of Theorem 3.8,
we have

n

we[0rQ, p)(t, ) = w(OrQ, pl(t,x) = > uldrQ, O, Rym, vaipl(t,z) Y (t,z) € 01
=1

Let V' be a bounded open subset of R™ as in the statement of Lemma 3.6. TheI%1 Lemma 3.6
implies that the operator u[0rQ, 0y, Ry n, Va ] is linear and continuous from Cz"(97r2) to
C mTH?mH(cl Vr). Since the restriction operator is linear and continuous from C' ghimet] (clVr)
to CWTH”"“(@TQ), then the operator u[0r$Y, Oy, Ry n, Voo, is linear and continuous from
CT™(9rQ) to CmTH?mH(@TQ). Then the continuity of the embedding of CmTH;m‘H(@TQ)
in CmTH;?mJ“B(@TQ), and the continuity of the operator w[0r, ] |5, from CT™(9rQ) to

m

o3 m+8(9rQ) imply the validity of statement (i) (see Theorem 2.15 (i) .
Statement (ii) can be proved following the same lines of the proof of statement (i) by
replacing the use of Theorem 2.15 (i) by that of Theorem 2.15 (ii). O

Next we consider the mapping properties of the operator wy 4[07r€?,-]. The proof of the
following Theorem follows the same lines of that of Theorem 3.9 replacing the use of Theorem
2.15 by that of Theorem 2.16

Theorem 3.10. Under the assumptions of Theorem 3.9 the following statements hold.

(i) The operator from the space CmTfl;mfleQ) to Cw;me'B(aTQ) which takes p to
Wy q[OT Y, 1] is linear and continuous.

m—1+«a

(ii) The operator from the space c" m=14B(9rQ0) to CT 2T IHY(9rQ) which takes
[ to wy 4|07, 1] is linear and continuous.

3.5 Compactness results for w,[07€), ‘|5, and w, 4[0r(2, -]

As a consequence of the regularizing properties of Theorem 3.9 and 3.10, in this section we
deduce some compactness results for w,[07€2, -]j5,q and for w. [0, -]. More precisely, we
have the following immediate corollary of Theorems 3.9 and 3.10 and of Lemma 2.17 about
the compactness of the embedding of parabolic Schauder spaces.

Corollary 3.11. Let « €]0,1[, 8 €]0,a[, m € N\ {0}, T €]0, +oo[. Let Q be a bounded open
subset of R™ of class C™%. Then the following statements hold.

i) The linear operator wy[0r, ]ja,q is compact from C’O%;m(aTQ) to itself, and from

s | e |
0 (0rQ) to itself, and from C,, (0rQ2) to itself.

Lom—1
(

ii) The linear operator wy 4[07<Y, -] is compact from Cj; orQ)) to itself, and from
m=1+8. 148 m=lta.y 14a

C, * (0rQ) to itself, and from C * (0rQ) to itself.
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3.6 Applications to periodic boundary value problems

In this section we show how to apply the results of the previous sections in order to solve
some boundary value problems for the heat equation in a periodic setting. More precisely,
we consider an initial-Dirichlet problem and an initial-Neumann problem in the unbounded
space-periodic domain clS4[€2] (see Subsections 3.6.1 and 3.6.2 below). Moreover we consider
also a non-ideal transmission problem (see Subsection 3.6.3 below).

Throughout this section we fix

a €)0,1[, T €]0,+o00[, m € N\ {0}.

We observe that the main tool that we use in order to solve the Dirichlet, the Neumann

and the non-ideal transmission problem by means of space-periodic layer heat potentials is
m-+ta .,

the compactness of the operators wy[072, -] |5, and wq«[0rS2, -] in C * ’m+a(8TQ) and in

m—1+a, 1
Cy ? " +a(8TQ), respectively, which is a consequence of the regularizing properties of

Theorems 3.9 and 3.10, and is proved in Corollary 3.11.

3.6.1 A periodic Dirichlet problem
Let © be a bounded open subset of R™ of class C"™% such that clI2 C . Let f €

mia.y 4o
Cy? '’ * (0r2). We consider the following Dirichlet problem for the heat equation in
10, T x S4[2]~.

ou—Au=0 in 10,7 x S4[Q]~,

u(t,z +qe;) =u(t,x) V(t,x) €[0,T] xclS,[Q~,Vie {1,...,n}, (3.23)
u=f on [0, 7] x 09,

u(0,-) =0 in c1S4[Q) .

We start by the following consequence of the classical maximum principle for the heat
equation, which will imply the uniqueness of the solution of problem (3.23).

Proposition 3.12. Let T €]0, +oo[. Let Q be a bounded open subset of R™ such that c1Q C Q
and such that R"™ \ c1Q is connected. Let u € C°([0,T] x c1S4[Q]7) be one time continuously
differentiable with respect to the time variable and two times continuously differentiable with
respect to the space variables in ]0,T] x S4[Q~, and such that

u(t,z + qe;) = u(t, x),
for all (t,x) € [0,T] x cIS4[Q)™ and for all i € {1,...,n}, and such that
Opu(t, z) — Au(t,z) =0,
for all (t,x) €]0,T] x S4[Q~. Then the following statements hold.
(1) If there exists a point (to,x0) €]0,T] X S4[Q]~ such that

u(to, zg) = max  u,
[0,7] %l Sq[]~

then u is constant in [0,tg] x c1S,[Q]~.
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(1t) If there exists a point (to,xo) €]0,T] x S4[Q]~ such that

u(tg, xg) = min U,
(to, zo) [0,T]xclSq[Q]~

then u is constant in [0,tg] x clS,[Q]~.
(111) w attains its mazimum and its minimum in ({0} x c1S4[Q]7) U (]0,T] x 0S4[2]).

Proof. Statement (iii) clearly follows from statements (i) and (ii). Moreover, statement (ii)
follows from statement (i) applied to the function —u.

Therefore it suffices to consider statement (i). Let V' be a bounded open connected subset
of R™ such that

cd@QCV, cdVnNn(gz+clQ) =02, forallzeZ"\{0}.

If (to, o) €]0,T] x S4[2]” is a maximum point for u, then the periodicity of u implies that
there exist a point Zg € cl@ \ cl€Q such that (to,Zo) €]0,7] x (cl@ \ cl) is a point of
maximum for w. Then the classical maximum principle for the heat equation (see e.g. Evans
[33, Theorem 4 p.54]) applied to u|jo,7x (c1v\@) implies that u is constant in [0, o] x (c1V'\ ©2).
Indeed, c1@Q \ c1Q C V' \ clQ. Finally the periodicity of w implies the validity of statement
(1). O

Since we plan to find a solution of problem (3.23) in the form of a space-periodic double
layer heat potential, we need to solve the related boundary integral equation. We do so by
means of the following.

Lemma 3.13. Let a €]0,1[, T €]0, +oo[, m € N\ {0}. Let Q2 be a bounded open subset of
m+
2 )

R™ of class C"™ such that c12 C Q. Let f € C, 'm+a(8TQ). Then the integral equation

1
Pl +wg[0rQ, plja0 = f on O, (3.24)
. . . mEE gy ta
has a unique solution p in Cy 2 " (0r)).
mta.m g
Proof. By Corollary 3.11 (i), the operator wy[0r§2, -] 9,0 is compact from Cj * " (0r2)

to itself. Accordingly, the Fredholm Alternative Theorem (see, e.g., Kress [57, Theorem 4.17])
implies that, in order to conclude the proof, it suffices to show that the integral equation

1
a +wg 01, p)jo,0 =0 on 07, (3.25)

ot DIE m+a

has the unique trivial solution p = 0 in C, (0rQ). It p e C, (0r2) solves
(3.25), then Theorem 3.8 (i), the jump formula (3.20) for the g-periodic double layer heat
potential and the maximum principle of Proposition 3.12 imply that

m+ m+
2 ) 2 )

wy [0rQ, p] =0 in [0,77 x c1S4[] ™. (3.26)
Formula (3.21) implies that

3}
Ovg ()

w00, pl(t, x) = wy [0rQ, pl(t,z) =0 V(¢ z) € [0,T] x 0L

_9
Ovg ()
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Then the function w; [0rQ, u] solves the Neumann problem

Ou —Au=0 in ]0,7] x Q,

2u=0 on [0,T] x 99,
vQ
u(0,) =0 in clQ.

By the uniqueness of the classical Neumann problem, we have that also
w; [0rQ, 1] =0 in [0,7] x clQ. (3.27)

Finally, by summing the two jump formula in (3.20) for the interior and exterior g-periodic
double layer heat potential, and by equalities (3.26) and (3.27), we have that

= wy [07Q, ] — w072, u] =0  on [0,T] x 9.
Accordingly, the statement follows. O

Now we are ready to prove the following result concerning problem (3.23).

Theorem 3.14. Let a €]0,1[, T €]0,+oc[, m € N\ {0}. Let Q be a bounded open subset of
mta,
R™ of class C™ such that c12 C Q. Let f € C * e

m+a.
function u in Cy 2 ’m—m(cl Sq[Q)7) which is one time continuously differentiable with respect
to the time variable and two times continuously differentiable with respect to the space variables

in 10,T) x S4[Q]~ and which solves problem (3.23). Moreover

(0rQ2). Then there exists a unique

u=w, [0rQ, pu] in clSy[Q, (3.28)

mta
2 b

where 1 is the unique solution in C, era(BTQ) of the integral equation (3.24).

Proof. We first note that the maximum principle of Proposition 3.12 implies that problem
(3.23) has at most one solution. Then we only need to show that the function defined
by (3.28) is a solution of problem (3.23). By Lemma 3.13 there exists a unique solution

mEe gyt
pe Cy?’ - (0rf2) of the integral equation (3.24). Then by Theorem 3.8 and by the
mia.a, o
equation (3.24) the function defined by (3.28) is a g-periodic function in C,, * - (c1S4[Q]7)

which solves the heat equation and which satisfies the Dirichlet boundary condition in (3.23),
and thus is a solution of problem (3.23). O

3.6.2 A periodic Neumann problem
Let ©Q be a bounded open subset of R" of class C"® such that c1Q C Q. Let g €

m=lte.n J4a

Cy, (0r2). We now consider the following Neumann problem.
Ou—Au=0 in ]0,T] x 4[],
u(t,z +qe;) =u(t,x) V(t,x) €[0,T] x clS,[Q~,Vie {1,...,n}, (3.20)
%u:g on [0, 7] x 09, '
u(0,-) =0 in clS4[Q].

In order to apply an energy argument to prove the uniqueness of the solution of problem
(3.29), we need the following approximation result for the set Q. For a proof we refer to
Verchota [107, Teorem 1.12, p. 581], where the author considers the more general case of a
Lipschitz domain.
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Lemma 3.15. Let Q be a bounded open subset of R™ of class C*. Then the following
statements hold.

(1) There exist a sequence (£2;)jen of bounded open subsets of R"™ of class C* such that
clQ C Q; for all j € N, and a sequence of homeomorphisms (Aj);en from 082 to 0€2;
such that

lim sup |z — Aj(x)| = 0.
J—=+00 2200

(1t) For all j € N there exists a function wj € L*(99Q) such that
/ (hoAj(s))wj(s)dos = / h(y) doy = / h(y) doy, Vh e C(09;).
o9 A, (%) 09,

Moreover, w; converges to 1 in LP(0S2) as j tends to +oo, for all p € [1,400].
(iii) vq, o Aj converges to vg in (LP(0R2))" as j tends to +oo, for all p € [1,+4o00].

The same statement of Lemma 3.15 holds with a sequence (Q;) jen of approximating sets

from the inside of 2. We are now ready to prove the following uniqueness result for problem
(3.29).

Proposition 3.16. Let T €]0, +oo[. Let 2 be a bounded open subset of R™ of class C* such

1,
that c1Q2 C Q. Let u € Cf (c1S4[Q7) be one time continuously differentiable with respect to
the time variable and two times continuously differentiable with respect to the space variables

in 10,T] x S4[Q]~ and be such that

0w —Au=0 in ]0,T] x S4[Q],

u(t,z +qe;) =u(t,z) V(t,x) €[0,T] x clS[Q]~,Vie {1,...,n},
%u =0 on [0,T] x 092,

u(0,-) =0 in clSy[Q .

Then v =0 in [0,T] x clS4[Q] .

Proof. We apply Lemma 3.15 to the set 2. Let Q;, A;, w; for all j € N be as in Lemma 3.15.
We can clearly assume that cl€2; C @ for all j € N. Moreover, as a consequence of Lemma
3.15 (i), we have that

lim ]IQ\de (.%') = ]IQ\CIQ('%') Yo € Q \ cl Q2. (330)

Jj—+oo

Let e and e; be the functions from [0, 7] to [0, 4+oo[ defined by
o= [ Gty vie 1)
Q\dlQ
ej(t) = / (u(t,y))? dy Vte[0,T],VjeN.
Q\clQ;

By the Dominated Convergence Theorem, e,e; € C°([0,T]) for all j € N. In addition, the
Dominated Convergence Theorem and (3.30) imply that

lim e;(t) = e(t) Vte[0,T].

Jj—+oo
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We now note that classical differentiation theorems for integral depending on a parameter
imply that e; € C1(]0,T[) for all j € N and, exploiting the Divergence Theorem, we have that

d
et = 2/ u(t, y)oeu(t,y) dy (3.31)
Q\clQ;
= 2/ u(t, y)Au(t,y) dy
Q\clQ;
0
= -2 Du(t,y)|* d —|—2/ u(t,y) m——ul(t,y) do
s, PP 42 [ttt oy
0
—2 t,y)=———u(t,y) d
/(99j U( y)aVQ](y)U( y) Uy

0
:—2/ Du(t,y)* d —2/ u(t,y) ———u(t,y) doy,
Q\ij\ (t,y)|" dy - (t,y) I, () (t,y) doy,

J

for all ¢ €]0, T and for all j € N. Indeed, the g-periodicity of u implies that

0
/8Q u(t,y) achv)(y)u(t,y) doy =0, Vit €]o,T].

Now we turn to consider the second integral in the right hand side of (3.31). Lemma 3.15 (ii)
implies that

0
u(t,y u(t,y) do
Ly, 100 g )y

- / u(t,y)Du(t,y) - vo, (y) do,
0%

= [t A5 Dt A,(5) - v, (A 5))s () o
0N

for all t €]0,T[ and for all j € N. We note that Lemma 3.15 and the membership of u in
1

C’g’;ll(clSq[Q];) imply that u(¢, Aj(-)) converges to u(t,-) in C°(9Q) as j tends to +oo, and

Du(t, Aj(+)) converges to Du(t,-) in (C°(9Q))™ as j tends to 400, both uniformly in ¢ € [0, 7.

We now fix p €]0, +o00[ and we set p’ = z% €)1, +oo[. Lemma 3.15 (ii), (iii) implies that w;

converges to 1 in LP(0(2) as j tend to +oo, and v, (A;(+)) converges to vq in (LY (9Q))" as j

tends to +00. Then the Holder inequality implies that

u(t, Aj () Dult, A (1)) - va, (Aj(-))w;)

converges to

u(t, ) Du(t,-) - vo
in L'(0Q) as j tends to +oo, uniformly in ¢ € [0,7]. In particular we have that

lim u(t, Aj(s))Du(t, Aj(s)) - v, (Aj(s))w;(s) doy,

J=+00 Jon
0
= t, t,y)do, =0,
|ttty do,

uniformly in ¢ € [0, T]. Moreover, we note that

\ [ puteuray- [ |Du<t,y>\2dy\
Q\clf2 Q\clQ;
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< sup | Dul? Lowae) — Lowae,(W)ldy  Vte[0,T],VjeN.
(0,7]x(Q\clQ) O\clQ

Accordingly, the Dominated Convergence Theorem and (3.30) imply that

lim |Du(t,y)|* dy = / | Du(t, y)|? dy, uniformly in ¢t € [0, 7.
J400 JQ\cl 0 Q\clQ
Accordingly, e € C1(]0,T[) and
d
Get==2[ |DuttyPdy  vielo.1l (3.32)
dt Q\cl©

Equality (3.32) implies that 4 ¢ <01in ]0,T[. Since e(0) =0 and e > 0 in [0,7], then e =0
for all in [0, T'. Accordlngly, u=01n [0,7] x 1@ \ © and thus the g-periodicity of u implies
the validity of the statement. O

Since we plan to find a solution of problem (3.29) in the form of a space-periodic single
layer heat potential, we need to solve the related boundary integral equation. We do so by
means of the following.

Lemma 3.17. Let a €]0, 1], T' €]0, +o0[, m € N\ {0}. Let Q be a bounded open subset of R™

m—lto m— (6%
of class C™* such that c1QY C Q. Let g € C E H (07QY). Then the integral equation
1
gkt W [0 pu] =g in OrQY, (3.33)

m=ltan 1ia

has a unique solution p in Cy > (0r2).

m—1+ta.
Proof. By Corollary 3.11 (ii), the operator wy 4[07€2, -] is compact from C 2 " 1+a(8TQ)
to itself. Accordingly, the Fredholm Alternative Theorem (see, e.g., Kress [57, Theorem 4.17])
implies that, in order to conclude the proof, it suffices to show that the integral equation

1
—5H + wy[0rQ,pu] =0 on 0rQ, (3.34)
. .. . . m_lta .y 1ta m=lta
has the unique trivial solution y = 01in C;, * (0rQ). If p € C 2 (0r2)
solves (3.34), then Theorem 3.7 (i), (iv), the jump formula (3.16) for the normal derivative

of the g-periodic single layer heat potential and Proposition 3.16 on the uniqueness of the
Neumann problem in [0, 7] x c1S4[Q2]~ imply that

m—14a

vy [0rQ, u] =0 in [0,77 x c1S4[Q].

The continuity of the g-periodic single layer heat potential (cf. Theorem 3.7 (i)) implies that
also v [07S2, pu] = 0 in [0,T] x 9S4[Q]. Hence, v, [07§, p] solves the Dirichlet problem

Ou—Au=0 in ]0,7] x Q,
u=20 on [0,7] x 09,
u(0,-) =0 in Q.

By the uniqueness of the classical Dirichlet problem, we have that also

vl 10r, ]l =0 in [0,7] x cl€.
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Hence

’U+[6TQ, M] =

8% . vy [0, ] =0 on [0,T7] x Of. (3.35)
Q

0
ovg
Finally, by summing up the two jump formulas (3.16) for the normal derivative of the interior
and exterior g-periodic single layer heat potential, and by equality (3.35), we have that

9 g _
n= %Uq [0rQ, u] — %Uq [0rQ,u] =0 on [0,T] x 0.

Accordingly, the statement follows. O
Now we are ready to prove the following result concerning problem (3.29).

Theorem 3.18. Let o €]0,1[, T €]0,4+o00[, m € N \ {0}. Let Q2 be a bounded open subset
m=—lto ym— o
of R™ of class C"™* such that c1Q C Q. Let g € C’ 2 H (0rQ2). Then there exists a

unique function u in Coq2 ’m+a(cl Sq[ ;) which is one time continuously differentiable with
respect to the time variable and two times continuously differentiable with respect to the space
variables in |0,T] x S4[Q]~ and which solves problem (3.29). Moreover

u=v,[0rQ, pu] inclSy[Q, (3.36)

m—1+a .
. . . . = m—-14+a
where p is the unique solution in C, *

(0rQY) of the integral equation (3.33).

Proof. Proposition 3.16 implies that problem (3.29) has at most one solution. Then we
only need to show that the function defined by (3.36) is a solution of problem (3.29). By
m-lta.m 1+a

Lemma 3.17 there exists a unique solution p € C, e (0rQ2) of the integral equation

(3.33) and then by Theorem 3.7 and by equation (3.33) the function defined by (3.36) is a

g-periodic function in C,, g mea (c1S4[€2)7) which solves the heat equation and which satisfies
the Neumann boundary condition in (3.29), and thus it is a solution of problem (3.29). O

3.6.3 A periodic non-ideal transmission problem

Finally we consider a periodic transmission problem, which models a heat diffusion in a

two- composite material with thermal resistance at the interface. Let AT, A~ v €0, +-00[ and
m=lto m—1+a

let f,g € C’O 2 (0r2). We consider the following non-ideal transmission problem.
Out — Aut =0 in ]0, 77 x S4[€2],
Ou~ —Au™ =0 in |0, T]XS[Q] ,
ut(t,z + qe;) = ut(t, ) V(t,xz) € [0,T] x clS4[Q, Vi€ {1,...,n},
u” (t, x—l—qei):u_(t,a:) V(t,z) € [0,T] x clS4[Q]~,Vie {1,...,n},
AT 8‘30 ut +y(ut —u7)=f onl0,T] x 09, (3.37)
)\*%u — A+8V0u+ =g on|[0,7] x 09,
ut(0,:) =0 in c1S,[Q],
u(0,-) =0 in clS4[Q]~.

The fifth condition of system (3.37) is the non-ideal transmission (or imperfect contact)
condition, which models the thermal resistance at the interface. In particular this condition
says that the temperature field at the interface displays a jump proportional to the normal
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heat flux. This discontinuity of the temperature field is a well know phenomenon in physics
which has been studied since the work of Kapitza in 1941, in which the author has studied for
the first time the thermal interface behavior in liquid helium (see, e.g., Swartz and Pohl [102],
Lipton [74] and references therein). We mention also the works of Donato and Jose [30], [31]
for the study of the asymptotic behavior of the approximate control of a similar parabolic
transmission problem and the work of Dalla Riva and Musolino [23| in which the authors
consider a singularly perturbed stationary version of this transmission problem in order to
study the effective conductivity of a periodic composite.
We have the following uniqueness result for the problem (3.37).

Proposition 3.19. Let T €]0, +oo[. Let X, A7~ €]0, +o00[. Let Q be a bounded open subset

1 1
of R™ of class C* such that 1) C Q. Let u™ € C&;l(cl Sq[Ql7), u € C’&;l(cl Sq[Q]7) be one
time continuously differentiable with respect to the time variable and two times continuously
differentiable with respect to the space variables in |0, T x S4[Q] and |0, T] x Sy[Q] ™, respectively.
Moreover, we assume that

([ Out — Aut =0 in 10, T[xS4[€2],
Ou~ —Au~ =0 in ]0, T[xSq[,
ut(t,x + qe;) = ut(t, ) V(t,x) € [0,T] x clS,4[Q], Vi e {1,...,n},
’(t z+qge;) =u (t,x) V(t,x) € [0,T] x clS4[Q] 7, Vie {1,...,n},
)‘+Bm ut +y(ut —u”)=0 on|0,T] x 99, (3.38)
A~ aiﬂ — A+%u+ =0  on[0,T] x 09,
ut(0,)=0 in clSy[9],
[ ©(0,-)=0 in c1Sq4[Q) .

Then ut =0 in [0,T] x c1S4[Q] and u™ =0 in [0,T] x clS,[Q]~

Proof. Let (ut,u™) € C% (clS4[Q)7) % C’é;l(cl Sq[2]7) be a solution of problem (3.38). Let
Q, Aj, wj forall j € N be as in Lemma 3.15 associated with an approximation of €2 from the
outside, and let 2, A, w’ for all j € N be as in Lemma 3.15 associated with an approximation
of @ from the inside. We can clearly assume that cl€); C @ for all j € N. Moreover, as a
consequence of Lemma 3.15 (i), we have that

Jlgrﬂ Lovag; (@) =Lgiaa(@) Vo € @\ cl, (3.39)
lim ]IQ/( ) = 1a(z) Vo € Q.
Jj—+oo
Let et e, ] ;€; be the functions from [0,77] to [0, +-oo[ defined by

et (t) z/ﬂ(w(t,y))?dy, vt e [0,7],
e (t) = /Q e e )
ej(t)z/l.(qu(t,y))gdy Vte[0,T],VjeN,

e.(t):/ (u=(t,y))*dy  Vte[0,T],VjeN.
J Q\dQ
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By the Dominated Convergence Theorem, e™, e, ej, e; € CY([0,T)) for all j € N. In addition,
the Dominated Convergence Theorem and (3.39) imply that

lim ej(t) = et (t) Vit e 0,11,

J—+00

lim e;(t) = e (¢) Vit e [0,T].

J—+00
We now note that classical differentiation theorems for integral depending on a parameter

imply that e;r, e; € C1(]0,T]) for all j € N and, exploiting the Divergence Theorem, we have

that
d
pricliQ) =2/ ut(t,y) O (t,y) dy = 2/ ut(t,y) Au(t,y) dy (3.40)
:—2/ Du™(t,y 2dy—|—2/ ut(t,y ut(t,y) doy,,
1P ) oy Dy ) 8

for all ¢ €]0, 7| and for all j € N. Moreover, in a similar way, exploiting another time the
Divergence Theorem we have that

d
—e; (t) =2/ u” (t,y)0u (t,y)dy = 2/ u” (t,y)Au(t, y) dy (3.41)
dt Q\cl19; Q\cl 9,

0
:—2/ Du™ (t,y 2dy—|—2/ u (t,y)=——u (t,y)do
Q\ijl (t,y)] oo ( )6VQ(y) (t,y) doy

0
-2 “(t,y)———u"(t,y) d
/mj“ ) gy g ()

0
:—2/ Du™ (t,y 2dy—2/ u (t,y)=———ul(t,y) doy,,
Q\ijl (t,y)] ; ( )Gugj(y) (t,y) doy

Q;

for all ¢ €]0,T[ and for all 7 € N. Indeed, the g-periodicity of u implies that

_ g B
/6Qu (t,v) 8VQ(y)u (t,y)doy =0, vVt €lo,T].

Next, we turn to consider the second integral in the right hand side of (3.40). Lemma 3.15 (ii)
implies that

/ ut(t,y) 0 u*(t,y) doy,
o2, Ovey, (y)

— [t ) Dt ) vy (0) do,
oY

:/ u+(t,Aj(s))Du+(t,A3-(s)) Vg (Ag(s))w;(s) do,
oly) !

for all ¢t €]0,T[ and for all j € N. We note that Lemma 3.15 and the membership of u™ in
C’é;l(cl Sq[Q7) imply that w* (¢, A%(-)) converges to u™(t,-) in C°(8Q) as j tends to +oo,
and Du* (t, A%()) converges to Du(t,-) in (C%(9Q))" as j tends to 4oc, both uniformly
in t € [0,T]. We now fix p €]0, +oo[ and we set p' = ;25 €]1, +oo[. Lemma 3.15 (ii), (iii)
implies that w’ converges to 1 in LP(0€) as j tend to +oo, and VQ;(A;()) converges to vq in
(LY (09))™ as j tends to +00. Then the Holder inequality implies that

u™(t, A5 () Du (£, Aj()) - vy (A5())wj
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converges to
u+(ta ')Du+(ta ) v

in L1(0Q) as j tends to +oo, uniformly in ¢ € [0,7]. In particular we have that
. + / + / e (A /
jgrfoo aQu (t, A5(s))Du™(t, A5(s)) VQj(AJ (8))w;(s) doy
0
= ut(t, ut(t,y) doy,

uniformly in ¢ € [0, T]. Moreover, we note that

D) Pay [ 1D y>|2dy]
Q Q

< sw D' [ owols) ~ ooy Vi€ 0.7 G EN
[0,7]x$2

Accordingly, the Dominated Convergence Theorem and (3.39) implies that

lim |Du (t,y)|* dy —/ |Du™(t,9)|? dy, uniformly in ¢t € [0, 7.

Jj—+oo

Accordingly equality (3.40) implies that et € C1(]0, T[) and

d + / - 2 / + 9
—e(t) = -2 Du™(t,y)|“dy + 2 ut(t,y
et ==2 [ 1Duty) vt

Next, we consider the second integral in the right hand side of (3.41). Lemma 3.15 (ii) implies
that

ut(t,y) doy vVt e€lo,T[. (3.42)

0
u (t,y u~ (t,y)do
L D g ) doy

—/ u (t,y)Du™ (t,y) - vy (y) doy
o0

:/ u” (t, Aj(s))Du™ (t, Aj(s)) - v, (Aj(s))w;(s) dos
o0

for all ¢ €]0, T and for all j € N. We note that Lemma 3.15 and the membership of «~ in
0027;1 (c1Sq[Y7) imply that w™(¢,Aj(-)) converges to u™(t,-) in C(9€) as j tends to +oo,
and Du~(t,A;(-)) converges to Du™(t,-) in (CO((‘)Q)) as j tends to +oo0, both uniformly
in ¢t € [0,7]. Now we fix p €]0,+oo[ and we set p’ = L5 €]1, +o0]. Lemma 3.15 (ii), (iii)
implies that w; converges to 1 in LP(9Q) as j tend to +oo, and vg, (A;(:)) converges to v in
(LY (02))" as j tends to +-00. Then the Holder inequality implies that

u” (8, A (1)) Du™ (t, Az () - va, (Aj(-))wj

converges to
u (t,-)Du"(t,-) - vo
in L'(0Q) as j tends to +oo, uniformly in ¢ € [0,7]. In particular we have that

lim [ w (6, A (5)Du (8, A4 (5)) - v, (A (3))ws(s) dory

Jj—=+00 Joq
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_ g
= [ wt) g ) o,

uniformly in ¢ € [0, T]. Moreover, we note that

[ el [ el al
Q\Clﬂ Q\Cl Qj
< sup |Du”|? Lowae) — Lowae,(y)ldy  Vte[0,T],VjeN.
[0,7]x(Q\cl Q) Q\cl

Thus, the Dominated Convergence Theorem and (3.39) imply that

lim |Du™(t,y)|? dy = / |Du™ (t,y)|? dy uniformly in ¢t € [0, 7.
I+ JQ\cl Q; Q\clQ
Accordingly, equality (3.41) implies that e~ € C*(]0,T[) and

d _ / _ 9 _ 0 _
—e (t) = -2 Du (t,y dy—2/ u (t,y u” (t,y)do vt el|0,T].
G 0="2] Dy [t g () doy 10,71

(3.43)

Then, if we set e = ATe™ + A7e™, equalities (3.42), (3.43) and the transmission boundary
conditions in problem (3.38) imply that

Gty ==2(x [ putegPay+r [ Du )y
dt Q Q\clQ
+2)\+/ uJ“(t,y)i(9 u+(t,y)d0y—2)\_/ u_(lt,y)i(9 u (t,y)doy,
09 dva(y) o0 ova(y)

=2 <A+ /Q |Dut(t,y)]* dy + A~ |Du” (t,y)? dy)

Q\clQ

0 0
+2)\+/ ut(t, ut(t,y)do, — 2)\+/ u” (t, ut(t,y) do
00 ) Iva(y) (t:9) doy 0 ) Iva(y) (t:v)doy

=-2 (ﬁ/Q!Du*(t,y)!QderY /Q\ lQ!Du_(t,y)IZdy>

Laat /6 ()~ (1)

9 +
31/Q(y) U (t7 y) day

—_9 <)\+/Q|Du+(t,y)|2dy+)\_ /Q\m!Du‘(t,y)!Qdy>

B ’QV/aQ (A+ 8y§(y) “+(t7y)>2 doy,  Vtelo,Tl.

Hence 4e < 0 in ]0,7[. Since ¢(0) =0 and e > 0 in [0, 7], then e = 0 for all in [0,7]. Then
ut =0in [0,7] xclQ, u~ =01in [0,T] x c1 Q \ © and thus the g-periodicity of u™,u~ implies
the validity of the statement. O

Since we plan to solve the problem (3.37) with two space-periodic single layer heat
potentials, we need to solve the related boundary integral equation. We do so by means of
the following.
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Lemma 3.20. Let a €]0, 1], T €]0, +o00[, m € N\{0}. Let Q2 be a bounded open subset of R™ of

class C"™ such that c1Q C Q. Let J = (Ji, Ja2) be the operator from (C(%;m_l+a(8TQ))2
fo (Co 2™ 5,00)2 defined by
Bt = (G + wgel0r %) + 201012 Ty~ 17 01 i Taa). (340
LhUﬁ7MPEA(—;u-%u@*WTQML])-—A+<;M+-%wm48TQ,Mﬂ)a
for all (w*,u~) € (C’Om_ém ;m_Ha(@TQ))Q. Then J is a linear homeomorphism.
Proof. Let J = (Ji,Jo) be the linear operator from the space (Com_QHQ ;m_Ha(@TQ))Q

7m_21+a;m—1+a 9
(Cy (072))” defined by
. DS
AGNE Y
~ AT AT
o= N - Ay
Ll wTl=-Sp 5 H
tam—1+a

m—1 ~
for all (ut,p7) € (C, 2 (079))2. Clearly J is a linear homeomogghism.
n_>%m—1+a

Moreover, let J = (Ji, J2) be the linear operator from the space (C, 2

m—14+a m—
to (Cy 2 " T(079))? defined by

(0r9))?

S 17 EXN w0, pT] + (0] 1009, 10 — vy (00 17 ] j00),

Sl 1] EXTwe A [0rQ, 1] — At wg [0, 1],
m—1+a m— a
for all (ut,u~)e(Cy 2 H

m—1+4a .
== m—-14«
compact from C, *

(072))2. By Corollary 3.11 (ii), the operator w, 4[0rQ, ] is
(0rQ2) to itself. By Theorem 3.7 (iv), the map v [0r€, -] is linear
and continuous from C’%;m_Ha(@TQ) to C, . clS ¢[Q7) and the map v, [0S, ]

P (50) to Cp (18, [92)7). Then, by the
linearity and contmulty of the trace operators from C'(;n a ’m+a( clS,[Q]r) to C'(% ;m+a(8TQ)
and from C’O; ’m+a(clS Q]7) to C, = ’m+a(8TQ), and by the compactness of the em-

m-lta
bedding of C =N ’m+a(8TQ) into C’O 2 orQY), which is a consequence of Remark
1.10 and of Lemma 2.17, the operators v [07%, ]ja,0 and v, (079, ]j5,.q are compact in

m—1+o. _ m—1+o.
Cy * " 1+a((?;rQ). Then the operator J is compact in (C; 2 " 1+a(6TQ))2. Since

compact perturbation of linear homeomorphism are Fredholm operators of index 0, we have
that

< m+a
(c

is linear and continuous from Cj

m—1+a
(

J=J+J
is a Fredholm operator of index 0. Hence, in order to show that J is a linear homeomorphism,

m—14ao.
it suffices to show that J is injective. Let (ut,u~) € (Cy > 1*“(8 Q))? such that
J[pt, u~] = (0,0). By Theorem 3.7 the functions v, [07Q, u*] and v, [07Q, ] satisfy the
assumptions of Proposition 3.19 and then

o 00, =0 in [0, 7] x cl1S4[Q]
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and
v, [0rQ, ] =0 in [0, 7] x clS4[Q] .

By the continuity of the single layer heat potential we have also that U;— [0rQ, "] =0 in
[0,T] x 8S4[Q] (see Theorem 3.7 (i)). Hence, v, [07€, ™| solves the Dirichlet problem

Ou—Au=0 in ]0,7] x Q,
u=0 on [0,T] x 09,
u(0,-) =0 in clQ.

The uniqueness of the classical Dirichlet problem implies that also
v [0, 7] =0 in [0,7] x clQ.

Hence

0 0
- -1_ — -1 _
%Uq [OTQ,,u ] = %Uq [8TQ,/L ] =0 on [O,T] x 0f).
The two jump formulas for the normal derivative of the interior and exterior g-periodic single
layer potential of Theorem 3.7 (v) implies that

_ 0 B 9 o
M _%Uq [aTQ,,U ]_%Uq [aTQ”LL ]_0 on [O,T} % 9.

Using another time the continuity of the single layer heat potential we have that v, [OrQ,ut] =
v [0rQ, pt] = 01n [0, T] x 3Sy[Q] (see Theorem 3.7 (i)). Accordingly, v, [07€, '] solves the
periodic Dirichlet problem

O —Au=0 in 0,77 x S4[Q]~,

u(t,z +qe;) = ult,z) Y(t,z) € [0,T] x clS,[Q], Vi e {1,...,n},
u=20 on [0,7T] x 09,

u(0,-) =0 in clS,[Q]~.

Hence, the maximum principle of Proposition 3.12 implies that also
vy 00, =0 in [0, 7] x c1S,[] .

Hence

9 0 4 1
%vq [0rQ, u"] = auqu [0rQ,u"]=0 on [0,T] x 9.

Finally, the two jump formulas for the normal derivative of the interior and exterior ¢-periodic
single layer potential of Theorem 3.7 (v) implies that

9 o
= + + - )
o= %Uq [0rQ2, ] — %Uq [0rQ, ] =0 on [0,T] x 09,
and the statement follows. -

Finally we are ready to prove the following result concerning the non-ideal transmission
problem (3.37).
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Theorem 3.21. Let a €]0,1[, T €]0,+oc[, m € N\ {0}. Let Q be a bounded open subset of
m—1+a m— a

R™ of class C™ such that c1Q2 C Q. Let f,ge Cy > 1+ (0rQ2). Then problem (3.37)

e (c1S4[7). Moreover

. . m;mJ,»a mta
as a unique sowurion (u' ,uU € C T) X
h lution (u™,u”) € Co g (clSq[7) x Cp &

ut =l 00w in clS,[Qr, (3.45)
u” = v, [0rQ,u]  in clSy[Q7,

m—1+a

where (u*, 1~ is the unique solution in (Cy 2
equations

m—14a

(0r2))? of the system of integral

Jpt w1 = (f9)  on oS, (3.46)

Proof. Proposition 3.19 implies that problem (3.37) has at most one solution. Then we only
need to show that the pair (u™,u ™) defined by (3.45) is a solution of problem (3.37). Lemma

—14a

3.20 implies that there exists a unique solution (p*, ™) in (C, = ;m_Ha(@TQ))Q of the
system of integral equations (3.46). Then by Theorem 3.7 and by the definition (3.44) of the
operator J, the functions u™,u~ defined by (3.45) are g-periodic functions which solve the
heat equation and which satisfy all the transmission conditions in (3.37), and thus the pair

(ut,u™) is a solution of problem (3.37). O
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CHAPTER 4

Shape analysis of the effective longitudinal
permeability of a periodic array of cylinders

This chapter is devoted to the analysis of the behavior of the longitudinal permeability of a
periodic array of cylinders upon perturbation of the shape of the cross section of the cylinders,
and of the periodicity structure, when a Newtonian fluid is flowing at low Reynolds numbers
around the cylinders.

The shape of the cross section of the cylinders is determined by the image of a base domain
through a diffeomorphism ¢ and the periodicity cell is a rectangle of sides of length [ and
1/1, where [ is a positive parameter. We also assume that the pressure gradient is parallel to
the cylinders. Under such assumptions, the velocity field has only one non-zero component
which, by the Stokes equations, satisfies a Poisson equation (cf. problem (4.6)). Then, by
integrating the longitudinal component of the velocity field, for each pair (I, ¢), one defines
the longitudinal permeability Kj[l, ¢] (cf. equality (4.7)). Here, we are interested in studying
the behavior of Kj[l, ¢] upon the pair (I, ¢), which we think as a point in a suitable Banach
space.

This chapter is organized as follows. Section 4.1 is where we introduce some notation
and some preliminaries. In particular we recall the definition of periodic Schauder spaces
and we introduce the class of diffeomorphisms that we use in order to model the shape of
our domains. In Section 4.2 we introduce the Roumieu spaces, which are normed spaces of
analytic functions, and we introduce also their periodic version. Moreover, we state a result
due to Preciso [91] about the real analyticity of a superposition operator. In Section 4.3 we
introduce the periodic version of the layer potentials associated with the Laplace operator
and the periodic version of the volume potentials, and we present some properties of these
maps. Section 4.4 is where we explain the problem that we study in the present chapter and
where we define the longitudinal permeability. Next, in Section 4.5, we introduce an auxiliary
function in order to reduce our Poisson problem (4.6) to a nonhomogeneus Dirichlet problem
for the Laplace equation, and we study the regularity of such an auxiliary function in Section
4.6. Finally, in Section 4.7 we prove our main result about the behavior of the longitudinal
permeability with respect to the variation of the periodicity structure and of the shape of the
cross section of the cylinders. More precisely, we prove that the map

(l7¢) = KII[Z7¢]7

is real analytic when [ varies in ]0, +o00[ and ¢ varies in a suitable class of diffeomorphisms (cf.
Theorem 4.23).
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Some of the results of this chapter can be found in Musolino, Pukhtaievych and the author
[76].
4.1 Notation and preliminaries

Through all this chapter we retain some of the notation of the previous Chapter 3, in the
specific case of n = 2. In particular we recall that ID); is the space of 2 x 2 diagonal matrices
with entries in ]0, +o0o[. Moreover, if

(q11, g22) €]0, 400,
we set the periodicity cell to be the rectangle defined by
Q =T11I7_,]0, 541, (4.1)

and we denote by ¢ the 2 x 2 diagonal matrix

_ (g1 O
= 4.2
q (0 q) (1.2)

and by ma(Q) the 2-dimensional measure of the periodicity cell @, and by vg the outward
unit normal to 0Q), where it exists. Clearly,

q7* = {qz: 2 € 7%}

is the set of vertices of a periodic subdivision of R? corresponding to the periodicity cell Q
(see Figure 3.1).
We recall that we say that a subset I of R? is g-periodic provided that

z+gqge; €D VeeD,Vie{l,2},

where {e1, ea} denotes the canonical basis of R%. Let D be a g-periodic subset of R?. We say
that a function f from D to C is ¢g-periodic provided that

flx+qe) = f(x) VeeD,Vie{l,2}.
Let © be an open subset of R? such that c1Q C . We recall that we have set

5090 = | (g2 + Q) = a2’ + 0,
2€72

and then
S = R?\ cIS,[Q)].

Clearly, S,[Q] and S,[Q]~ are g-periodic subsets of R Let k € N, a €]0, 1]. We set
k,o — k,o . T
Cy(clSy[Q]) = {u € Cp 7 (clSy[Q)) = w is q—perlodlc} ,
which we regard as a Banach subspace of CF(clS,[2]), and

Cg’o‘(cl Sq1Q7) = {u € C{f’a(cl Sq[Q]7) s wis q—periodic} ,
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which we regard as a Banach subspace of C{f Bl Sql€2]7).

In order to consider shape perturbations, we have to introduce a class of admissible
diffeomorphisms of a fixed base domain. The perturbation of the shape will be made by
perturbing the diffeomorphism in such a class. Let a €]0,1[ and let © be a bounded open
subset of R? of class C®. We denote by

Ado

the set of functions of class C*(c1, R?) which are injective and whose differential is injective
at all points x € cl ). Moreover, we denote by

Aso

the set of functions of class C'*(9€2,R?) which are injective and whose differential is injective
at all points x € 9§2. One can verify that Agg and Aqq are open in C1(9Q,R?) and in
C1(c1Q,R?), respectively (cf., e.g., Lanza de Cristoforis and Rossi [72, Lemma 2.2, p. 197]
and Lanza de Cristoforis and Rossi |71, Lemma 2.5, p. 143]|). Then we find convenient to set
A, = {06 € Asq = 9(09) C Q},
A9 ={® € Aug : (c1Q) C Q).
Let now suppose, in addition, that the set  is connected and such that R?\ cl €2 is connected.

In this case, if ¢ € Agg, the Jordan-Leray separation theorem ensures that R?\ ¢(92) has
exactly two open connected components, one bounded and one unbounded. We denote by

I[¢] (4.3)

the bounded open connected component of R?\ ¢(9Q), and by

El¢] (4.4)
the unbounded open connected component of R? \ ¢(9Q). Since ¢(9Q) C Q, a simple
topological argument shows that @ \ clI[¢] is also connected.

4.2 The Roumieu spaces

First of all we recall the definition of regular sets in the sense of Whitney. We need such a
notion in order to state a regularity results of a superposition operator. For every bounded
open connected subsets  of R", we set

_ Az, y)
c[Q] :SUP{|x—y| .x,yEQ,x;&y},

where

1
A(z,y) = inf { [ g@as s 01,9, 60) =2 ¢0) - y} .

If ¢[Q] < +o0, then we say that Q is regular in the sense of Whitney. It is of immediate
verification that if € is a bounded open connected subset of R™ of class C!, then € is regular
in the sense of Whitney.
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Next, we turn to introduce the Roumieu spaces. For all bounded open subsets €2 of R"
and for all p €]0, +o00[, we set

vl
Cgp(CIQ’) = {u € C™(cl): sup LHD’YUHCO(C]Q/) < —l—OO},

’ yEN™ "7|1'
and

Jul 2ol Yue Cl, ()

ul| o n = sup —— ullco(erq u € cl ).

Cw’p(CIQ) enn ’7‘1‘ CO(cl ) w,p

As is well known, the Roumieu space (Cg7p(cl an, |l - ||ngp(cml)) is a Banach space. By

definition, a function u belongs to C’B,p(cl V) if and only if it can be expanded into a
convergent Taylor series around each point of ¢l €’ and the radius of convergence of the Taylor
series can estimated from below by means of p, uniformly at all points of cl €Y.

In this chapter, we resort to Roumieu spaces because they are a natural class of functions
which generates analytic superposition operators in Schauder spaces. Indeed, the following
slight variant of Preciso [91, Proposition 1.1, p. 101] on the real analyticity of a composition
operator holds (see also Lanza de Cristoforis and Musolino [66, Proposition 5.2| and the slight
variant of the argument of Preciso of the proof of Lanza de Cristoforis [59, Proposition 9, p.
214]).

Theorem 4.1. Let o €]0,1], p €]0,400]. Let Q1, Q' be two bounded open subsets of
R™. Let Q' be reqular in the sense of Whitney. Then the composition operator T from
C’87p(cl§21) x OL2(clQ, 1) to CH(cl€Y) defined by

Tu,v] = uow, Y (u,v) € C’gm(lel) x CH2(cl Y, ),
1s real analytic.
Let @ and ¢ be as in (4.1) and (4.2), respectively. We now introduce Roumieu spaces of
g-periodic function. Let Q be an open subset of R? such that c1Q C Q. We set
Y, (c1S,[Q)) = {u eC™(clS4[Q)) :

q7w7p

711
: L p
u is g-periodic and sup ——||D7ul|0 < —I-oo} ,
sup I’Yh!H oo (as,(a)
and
ph‘l 0
lullco, (s, = sup WHDWUHCQ(CISQ[Q}) Vu e Gy, ,(cl1S4[Q]).
yeN2 [YI1-

Similarly, we set

CO, (1S 7) = {u €C™(clS,[Q]7) :

(o7}t
u is g-periodic and su p—'||D7u||CO(Clgq[m—) < +oo} ,
~ENZ |'7‘1- ?

and
[l

) _
lullco, (cas,0-) = VSéII\I])Q W||D7U||cg(c1§q[ﬂ}—) Vue Cp, ,(c1S,[0Q]7).

Then we have the following lemma which shows that, when dealing with g-periodic functions
in Roumieu spaces on clS,[A]7, it is sufficient to work on a suitable neighborhood of the
periodicity cell.
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Lemma 4.2. Let p €]0,+oo[. Let Q and q be as in (4.1) and (4.2), respectively. Let A be an
open connected subset of R? such that R? \ cl A is connected and such that

clAC Q.
Let W be a bounded open connected subset of R? such that
cdlQCW and cdWnN(gz+clAd)=0 VzeZ*\ {0}

Then the restriction operator from Cg , ,(c1S4[A]™) onto the subspace

CO (W \ A) = {v € CO (W \ A):

q7w7p

Ju € CHSMA™ such that u is q-periodic, v = U|C1W\A},

of Cg’p(cl W\ A) induces a linear homeomorphism

Proof. If u € C’g’%p(cl Sq[A]7), then by definition of Roumieu spaces its restriction w1y 4

belongs to Cp ,, ,(c1W \ A). Indeed, by the g-periodicity of u we have that

P D) P
Sup —— UllcOo(clW\A) = SUP T—— Ullco(clQ\A)-
~enn |Y]1! (A WA4) veNn |Y]1! (1Q\A)

Conversely let v € C’g’va(ch \ A), then there exists a unique g-periodic function u from

clS4[A]™ to C such that v = ujgyn 4 and clearly u € C?, ,(c1S,[A]7). Then the restriction

q7w7p
operator is a bijection from C’g’wyp(cl Sq[A]7) to ng’p(ch \ A). Since it is clearly linear and
continuous, then the Open Mapping Theorem implies the validity of the statement. O

Finally, we prove the following elementary lemma which shows that, possibly taking a
smaller p in the target space, the differential operators are linear and continuous in periodic
Roumieu spaces on clS;[Q2]~. Corresponding results hold also for classical Roumieu spaces
and for periodic Roumieu spaces in cl1S4[€2]. However, we only state the result that we exploit
in this chapter.

Lemma 4.3. Let p €]0,+o0o[ and p1 €]0, p[. Let Q and q be as in (4.1) and (4.2), respectively.
Let 2 be an open subset of R? such that c1Q C Q. Let n € N? such that |n|y = 1. If
u € CY, (c1Sy[Q]7), then Du € C2,, | (c1S4[ ™). Moreover, the operator which takes u to

Dy i?swl%[';war and continuous from gzd’f?p(cl Sq[Q]7) to ng’pl (c1S4[9]7).
Proof. Let u € Cf, ,(c1S,4[Q]7). Then we have
sup 2 |57 Dl gy
AT Heislo)
- pllwll (|v]1 + 1) phhtt 'HDVMUHCQ(clSq[Q]—)

yenz [yl pl i (vl 4+ 1)

1 p1)|’Y|1+1 pI’y|1+1 N
=sup — [ — 1+1 D7 )| co -
sup 2 ()7 -+ DI s

1 (p1>|71+1 p|7|1+1 N
—sup ¢ [ — (|vl1 +1) p sup D" Ml co s, o)
P1 yeN? p yenz | 17l +1 a(1Se[27)

IN
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1 p1 [yl +1
< — sup — +1) 2 ||lullco -
s (2)™ (o + 1} ey, asyr

Since p; < p, we have that
1 Ivli+1
sup <> (7)1 +1) p < 400,
~yENZ2 P

and, accordingly, the statement follows. O

4.3 Periodic potentials for the Laplace operator

In this section we introduce the periodic layer potentials associated with the Laplace operator
and the periodic volume potential associated with the Laplace operator.

Let @ and ¢ be as in (4.1) and (4.2), respectively. As is well known, there exists a
g-periodic tempered distribution Sy 2 such that

ASyo=S 0p— ——,
q,2 5;; q WQ(Q)

where J,, denotes the Dirac measure with mass in gz. The distribution S 2 is determined up
to an additive constant, and we can take

1 -
Sp2@)=— i),

2| ,—1,|2
72\ {0} ma(Q)4r?|q 12|

in the sense of distributions in R? (cf., e.g., Ammari and Kang [4, p. 53|, Lanza de Cristoforis
and Musolino [65, Section 3]). Moreover, S, 2 is even, and real analytic in R?\ ¢Z?2, and locally
integrable in R? (cf., e.g., [65, Section 3]). The tempered distribution S, 2 is said to be a
{0}-analog of a g-periodic fundamental solution of the Laplace operator (cf., e.g., [65, p. 84]).

We are now ready to introduce the g-periodic layer potentials associated with the Laplace
operator. Let Q be a bounded open subset of R? of class C1¢ for some « €]0, 1] such that
clQ C Q. Let p e L>®(0). We set

vg[09, ] (2 / Sq2(z —y)p(y) doy VzeR?,
and
wq [0, p)(z) = 9 Sqa(x Y)u(y) do
= —/ va(y) - DSq2(x —y)p(y) doy Vi eR2,
o2
and
Wy [0, p](z) = LS (r —y)u(y) do
q,* )lu’ - 90 8UQ(CL') q,2 y lu’ y Yy

= /a vo(z) - DSy 2(z —y)p(y) doy Ve of
9]
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The functions v, [0, p1] and w4[0€2, p] are called the g-periodic single and double layer potential
with density p, respectively. The function wg [0, i] is instead a function related the normal
derivative of the g-periodic single layer potential v4[0€, u]. We now state two known theorems
regarding the basic properties of the functions v,[0€2, p] and wy[0, u]. We start with the
following assertion concerning the single layer potential. For a proof we refer, e.g., to Lanza
de Cristoforis and Musolino [65, Theorem 3.5, p. 87|, where the authors consider the more
general case of periodic layer potentials associated with a general second order elliptic operator
with constant coefficients.

Theorem 4.4. Let a €]0,1[, m € N\ {0}. Let Q and q be as in (4.1) and (4.2), respectively.
Let Q be a bounded connected open subset of R? of class C"™% such that R? \ cl€ is connected
and such that c12 C Q. Then the following statements hold.

i) If p € L>°(09Q), then the function v4[0Q, u] is continuous in R?, g-periodic, and of class
C> in S4[Q U S,[Q]~. Moreover,

1
ma(Q)

We set v;' (09, | = vq[ﬁﬁ,u]‘clgq[m and vy [0, ] = vq[aﬁuhdgqmr

AufoRpe) = s [ ulu)do, Yo e RP\08,[0)

i) If p € C™=12(9Q), then the function v [0Qq, p] belongs to Cy*(c1S,4[Q]) and the
function vy [0, u] belongs to Cg"*(c1Sy[€) ™). Moreover, the operator from C™1*(9Q)
to Cg"*(clS4[Q]) which takes p to v [0, p] is linear and continuous, and the operator
from C™=1(99Q) to CfM* (c1S¢[Q] ™) which takes p to vy [0S, ) is linear and continuous

i) Let p € C™~12(08). Then the following jump formula holds.

0
Jvg(x)

1
VEIOR, 1 () = Fo () + wg [0, (7)Y € 00.

Furthermore, we have the corresponding result for the g-periodic double layer potential.
For a proof we refer, e.g, to Lanza de Cristoforis and Musolino [65, Theorem 3.18, p. 92].

Theorem 4.5. Under the same assumptions of Theorem 4.4, the following statements hold.

i) If p € L*°(0Q), then the function wy[02, p] is q-periodic and of class C* in Sq[2] U
Sq[Q ™. Moreowver,

Awy[0Q, p)(z) =0  Va € R*\ 9S,[Q).

i) If p € C™*(952), then the restriction wq[0K, p)is (o) can be extended uniquely to an
element w; [0, p] of Cg**(c1S4[Q) and the restriction wy[0Q, p]js (o)~ can be extended
uniquely to an element wy [0, pu] of CJ**(c1S4[Q]7). Moreover, the following jump
formula holds.

wE (B0, ) () = %u(x) b wg0Q, p(tx)  Va € a0

iti) The operator from C"™*(9Q) to Cq"*(cISy[Q]) which takes p to wl[0Q, ] is linear
and continuous, and the operator from C™*(9Q) to C§"*(c1Sy[Q ™) which takes p to
wy [09Q, p] ds linear and continuous
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Next we introduce the exterior periodic volume potential. Let @ and ¢ be as in (4.1) and
(4.2), respectively. Let A be an open subset of R? such that cl A C Q. Let ¢ € L>®(Q \ cl A).
Then we define the exterior periodic volume potential P_"[A, o] by

P, A ¢l(z) = /Q\dA Se2(x —y)p(y)dy  VacRL

We have the following result on some properties of the exterior periodic volume potential

P, [A, ¢] that we need in the following sections.

Proposition 4.6. Let Q and q be as in (4.1) and (4.2), respectively. Let A be an open subset
of R? such that cl A C Q. Then the following statements hold.

i) If o € L=(Q \ cl A), then P [A, ¢] is q-periodic and of class C1(R?).
i) If o € C%(clQ \ A), then P, [A,¢] € C*(Q\ clA) and

AP; (4, ¢l (x) = pla) — /Q Py vre@aa (4.5)

Proof. Statement i) is a consequence of Dalla Riva, Lanza de Cristoforis and Musolino [22,
Proposition 3.6 (v), Proposition 3.16 (iv)]), where the authors consider a volume potential with
a general periodic kernel in some classes of weakly singular functions, and of [22, Section 4]),
where it is shown that the kernel S, 2 belongs to the right class of weakly singular functions.

Statement ii) can be proved following the argument of the proof of Lanza de Cristoforis
and Musolino |69, Proposition A.1|, and is a consequence of known properties of the classical
volume potential (cf., e.g., Gilbarg and Trudinger [41, Lemma 4.2, p. 55|). O

Finally, we have the following proposition regarding the mapping properties in Roumieu
spaces of the exterior periodic volume potential.

Proposition 4.7. Let a €]0,1[. Let Q and q be as in (4.1) and (4.2), respectively. Let A be
a bounded open Lipschitz subset of R? such that c1A C Q. Let Ay be an open subset of R?
such that

CIA Q A1 g ClAl g Q

Then there exists py €]0,+00| such that for all p €]0, po[ and for all ¢ € C3,, (c1S4[A]7), the

restriction of Py [A, pig\a a] to c1Sy[A1]™ belongs to the space CJ, ,(c1S4[A1]7). Moreover,

the map from qu’p(cl Sq[A]7) to ng’p(cl Sq[A1]7) which takes ¢ to Py [A, ‘P|Q\c1A]|elSq[A1]—

1s linear and continuous.

Proof. The statement follows by Dalla Riva, Lanza de Cristoforis and Musolino [22, Theorem
3.40 (ii)], which holds for exterior periodic volume potentials with a general periodic kernel in
some classes of weakly singular functions, and by |22, Section 4]|), where it is shown that the
kernel S, 2 belongs to the right class of weakly singular functions. O

4.4 The problem

In order to introduce the mathematical problem, we take | €]0,+oo[ and we choose

(q11,q22) = (1, 1/1).
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In this case, the periodicity cell is the rectangle
Ql E]Ov Z[X]O, 1/1[7

and the periodicity matrix is the 2 x 2 diagonal matrix

qlE((l) 131)‘

We emphasize that we restrict ourself to the case of a periodic structure induced by ¢; in
order to have that the area ma(Q;) of the periodicity cell Q; is equal to one for all [ €]0, +o0[.
This choice helps making the computations simpler and the exposition clearer and it is of
course physically meaningful. However, this restriction is not necessary and we could consider
a more general periodic structure and a more general perturbation of the periodic structure.

We will often consider the case in which the periodic structure is induced by I = 1. Thus,
for us it is convenient to set

Q=Q, §=qi.

Then, we fix o €]0, 1] and € to be a bounded open connected subset of R? of class C*¢
such that R? \ clQ is connected. Moreover we fix a diffeomorphism

6 € AZ, N C1 (90, R?),

(see Figure 4.1).

o0 /\ $(09)
O i

Figure 4.1: In red the diffeomorphism ¢ € Agg N CL (99, R?) of IQ onto $(0N)
and in gray the set 1[¢@].

We recall that I[¢] denotes the bounded open connected component of R\ ¢(99), and E[¢]
denotes the unbounded open connected component of R? \ ¢(99) (cf. (4.3), (4.4)). Clearly
clql[g] C Q; (see Figure 4.2). Under this assumptions, the set

clSq [ql[¢]] x R

represents an infinite array of parallel cylinders. Instead, the set

Sqlalle]]” xR
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Q 1/1

P Y @

$(09)

Figure 4.2: The transformation induced by q;.

represent the region where, in our model, a Newtonian fluid is flowing at low Reynolds number.
Then, we also assume that the driving pressure gradient is constant and parallel to the axis of
the cylinders. As a consequence, by a standard argument based on the particular geometry of
the problem (cf., e.g., Adler [1, Chapter 4], Sangani and Yao [96], and Mityushev and Adler
[85, 86]), one reduces the Stokes system for the fluid flowing in Sy, [¢;I[¢]]~ x R to a Poisson
equation in Sy, [¢l[¢]]” for the non-zero component of the velocity field (see Figure 4.3).

1/

Sq lad[8]]™ Qu

: 019(09)

Figure 4.3: In gray and red the (1, ¢)-dependent sets Sq,[ql[¢]]™ and qip(0R), respectively.

Since we are working with dimensionless quantities, we may assume that the viscosity of
the fluid and the pressure gradient are both set equal to one. For a more complete discussion
on spatially periodic structures, we refer to Adler [1, Chapter 4]. Accordingly, we consider the
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following Dirichlet problem for the Poisson equation:

Au=1 in Sq,[al[¢]] ™,
u(z +qz) =u(z) Vo edSylgld)]”,VzeZ?, (4.6)
u(z) =0 Va € Sy [ql]e]]” .

As it is well known, there exists a unique solution in Cy,*(cl Sq, [@1[¢]] ) of problem 4.6 (for a
proof we refer, e.g., to Musolino [83, Proposition 2.2, p. 276]). We denote such a solution by

ull, ]

From the physical point of view, the function u[l, ¢] represents the non-zero component of
the velocity field of the fluid flowing in Sg,[¢I[¢]]~ x R (cf. Mityushev and Adler [85, Section
2]). By means of the function u[l, ¢], we can introduce the effective permeability Kir[l, @]
which we define as the integral of the opposite of the flow velocity over the unit cell (cf. Adler
[1], Mityushev and Adler |85, Section 3|), i.e.,

Ki1[l, ¢ E—/Q\ H[¢]u[l,¢](x) dz, (4.7)

and we pose the following question:
@) What can be said about the regularity of the map (I, ¢) — Kyrl[l, ¢]? (4.8)

Most of the works in the literature deal with differentiability properties. Here, instead,
we are interested into proving higher regularity and we answer the above question (4.8) by
showing that Kjs[l, ¢] depends analytically on (I, ¢). Such a result is contained in our main
Theorem 4.23 and implies, in particular, that if we have a one-parameter analytic family of
pairs (ls, ¢5)56]_50750[, then we can deduce the possibility to expand the permeability as a
power series, i.e.,

“+o00
K]][l(;,qﬁg} = chéj (4.9)
j=0

for 0 close to zero. Moreover, by the analyticity of the map in (4.8), the coefficients (¢;);en in
(4.9) can be constructively determined by computing the differentials of Kj;[-,-]. Furthermore,
another important consequence of our high regularity result is that allows to apply differential
calculus in order to find critical rectangle-shape pairs (I, ¢) as a first step to find optimal
configurations.

4.5 An auxiliary boundary value problem

In this section we transform our Poisson problem (4.6) into a nonhomogeneus Dirichlet problem
for the Laplace equation by means of an auxiliary function.

Since analyticity is a local property, in order to prove the analyticity of the map in (4.8),
we can work locally. Therefore, we find convenient to introduce the following lemma, which is

an immediate consequence of the fact that the norm in AgQ N CH(9€, R?) is stronger then
the uniform norm.

Lemma 4.8. Let a €]0,1[. Let ¢y € Agﬂ N CL2 (00, R?). Let Ay be an open connected
Lipschitz subset of R? such that R?\ cl Ay is connected and such that cl Ay C I[¢o]. Then
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there exist an open connectefl subset Ay of R? such that R%\ cl Ay is connected, and an open
neighborhood Uy of ¢o in .AgQ N CH(0Q, R?) such that

clAg C A1 CclA; C ]I[(;ﬁ] Yo € Uy.

In order to transform the Dirichlet problem for the Poisson equation (4.6) in a Dirichlet
problem for the Laplace equation, we need a function B such that

AB =1.

We introduce such a function in the following lemma, which is an immediate consequence of
Musolino [82, Thm. 2.1].

Lemma 4.9. Let | €]0, 400, a €]0,1[. Let ¢, Ao and Uy be as in Lemma 4.8. Let pg € Ap.
Let By, be the function from R\ (qpo + @iZ?) to R defined by

Bpoa(2) = =Sg2(z —aqpo) Y € R*\ (qpo + aZ?).
Then

(1) Bpo s, 6]~ € Cy* (1S [aill[g]] ™) for all ¢ € Uy,

(1) ABpy 1 =1 in Sg,[qil[¢]]~ for all ¢ € U.

By means of Lemma 4.9, we can convert problem (4.6) for the Poisson equation into a
nonhomogeneous Dirichlet problem for the Laplace equation. Let [ €]0, +oo[. Let ¢g, Ag and
Up be as in Lemma 4.8. Let pg € Ay. Let ¢ € Uy. We note that Lemma 4.9 (i) implies that

Bpo,tjos,, fatiel- € C " (0Sqlallg] 7).

Accordingly, it is well know that there exists a unique solution in Cy*(clS,, [¢1[¢]]”) of the
following auxiliary boundary value problem.

Au =0 in S, [q:l[e]]
u(z + qz) =u(z) Ve cdSyglp)]~,Vz e Z2 (4.10)
uw(x) = —Bp, () Ve dSy[qlle]]”.

(cf., e.g., Musolino [83, Proposition 2.2, p. 276] and Proposition 4.16). We denote such a
solution of (4.10) by

ugll, d].

Accordingly, one can immediately verify that

U[l, d)] = Bpo,l + U [lv ¢] in cl qu [QZH[QbH_,

where u[l, ¢] is the unique solution in Cy*(cl Sq, [@l[¢]]~) of problem (4.6). Thus, we can
rewrite the longitudinal permeability in the following form.

Knll, 6] = —/ By i(x) da —/ wsll, 6)(z) da. (4.11)
Qi\q1[¢] Qu\ql[4]
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4.6 Analyticity of the integral of the auxiliary function B, ;

In this section, we will investigate the analyticity of the first summand in the right hand side
of formula (4.11), namely of the map

(lu (;5) = — Bpo,l(l‘) dx
Qi\q1[4]

In order to achieve this objective, we need the following two technical extension results.
For a proof we refer to Lanza de Cristoforis and Rossi [72, Section 2] .

Lemma 4.10. Let o €]0,1]. Let Q be a bounded connected subset of R? of class C%* such that
R2\ clQ is connected. Let 3 € CL*(9Q,R?) be such that |3(x)| = 1 and B(z) - vo(z) > 1/2
for all x € 0Y. Then the following statements hold.

(i) There exists dq €]0,+oo[ such that for all 6 €]0,dq[ the sets

Qps={z+tb(x): 2 €0, te] -0},
QE& ={z+t8(x) :x €I, te]—460[},
Qs ={z+1B(z) : z € 00, t €]0,0[}

are connected and of class C1®, and

s ={x+tB(x):x €0, te{-06,0}},
89;75 ={z+tb(x) :x €N, te{-0,0}},
05, ={z +tp(z) 1 v € 09, t € {0,d}},

and
;S Qs SR\

(i) Let § €]0,0ql. If € Aaqy,;, then ¢ = @jpq € Asq.
(i11) If 6 €]0,dq[, then the set
a0, = 1P € Aaq,, : B(Q5) C 1[Pjao]}
is open in Acqg ; and ®(€25 ;) C E[Paq] for all © € ‘Ai?m/a,a'

(iv) If 6 €]0,0q[ and ® € A;mﬁ& NCH2(clQp 5, R?), then both @(955) and ®(§25 5) are open
sets of class C™®, and

OD(Q5) = (9N 5), ID(Q;5) = P(IQ ;).

Lemma 4.11. Let o €]0,1[. Let Q be a bounded connected subset of R? of class CY® such

that R? \ cl§) is connected. Let ¢. € Agg N CL(0Q,R?). Let B, dq as in Lemma 4.10. Then
the following statements hold.

i) There exist 0y €]0,0q| and ®, € A’ NCH(clQgs.,R?) such that ¢, = Py 5.
clQg.5 B0+ |
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(ii) Let 6., @, be as in (i). Then there exist an open neighborhood Wy of ¢. in Agn N
C1(00,R?), and a real analytic extension operator

E.[]
of C12 (00, R?) to C12(clQg.,, R%) which maps W to A’Cmﬁ 5 NCH(c1Qgps,,R?) and
such that Ei[¢.] = . and E«[¢]joq = ¢, for all ¢ € Wi.

We also need the following technical lemma about the real analyticity upon the diffeo-
morphism ¢ of some maps related to the change of variables in the integrals and to the outer
normal field (for a proof we refer to Lanza de Cristoforis and Rossi |71, p. 166|, and to Lanza
de Cristoforis [59, Proposition 1]).

Lemma 4.12. Let a €]0,1[. Let  be a bounded connected subset of R? of class CY* such
that R? \ cl1Q is connected. Then the following statements hold.

(i) For each ¢ € Agq N CL(92,R?), there exists a unique map &[¢] € CO*(0Q) such that
al¢] > 0 and
[ ws)do.= [ woswsldlde, Ve e Lio0R)
$(09) a0

Moreover, the map &[] of Aag N CH2(9,R?) to CO*(0N) is real analytic.
(it) The map of Ago NCH(09Q,R?) to C%*(0Q,R?) which takes ¢ to vyg)0 ¢ is real analytic.

We are now ready to prove the following theorem, where we show the analyticity of the
map

(6,G) > ﬁ G d,
o\l

where ¢ is in a suitable class of diffeomorphisms and G is in a Roumieu space of ¢-periodic
functions.

Theorem 4.13. Let a €]0,1]. Let p €]0,+oo[. Let Q be a bounded connected subset of R? of
class CY* such that R?\ c1Q) is connected. Let ¢g, Ag and Uy be as in Lemma 4.8. Then the
map of Uy x C’g’w’p(cl S§[A0]7) to R which takes (¢, G) to f@\ﬂ[dﬂ G dx is real analytic.

Proof. We first note that, if (¢, G) € Uy x C’g’w’p(cl S§[A0]7), equality (4.5) for the Laplace

operator applied to the exterior volume potential implies that

/V G(z)dr = /~ APE[AO»G@\MO](;U) dx + /~ /~ G(y) dy dx. (4.12)
Q\I[¢] Q\I[¢] Q\I[¢] JQ\cl Ag

We now consider the two integrals in the right hand side of equality (4.12) separately. We
start with the second one. By the Divergence Theorem, we have

/~ /~ G(y) dy dx :/~ dac/~ G(y) dy
Q\I[¢] JQ\cl Ag Q\l[g] Q\cl Ag

= (1 - /EM dx) /@\cle G(y) dy

1
#(092) Q\cl 4¢
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We note that the map from ngw,p(cl Sg[Ao] ™) to LY(Q\ ¢l Ag) which takes G to G\ 5\a1 4

is linear and continuous, and that the map from L'(Q \ cl4g) to R which takes f to

/. el ay S (y) dy is linear and continuous. Accordingly, the map from ng ,(c1Sg[Ao]7) to R

which takes G to [; O\l Ao G(y) dy is linear and continuous, and thus real analytic. Moreover,
by Lemma 4.12 (i), we have that

Then, taking into account that the map from (C%%(99Q,R?))? to C%*(99) which takes
(f,g) to f - g is bilinear and continuous, that the embedding of C%%(9Q) in L'(99Q) is
linear and continuous, and that the map from L'(8Q) to R which takes h to [,,hdo is
linear and continuous, Lemma 4.12 implies that the map from Uy to R which takes ¢ to

f¢>(09) T - vp¢) () doy is real analytic. Accordingly, the map from Uy x C’gw’p(cl S§lAo]7) to R

which takes the pair (¢, G) to f@\ﬂ[qﬁ} f@\cl 4, G(y) dy dz is real analytic.

Next, we consider the first integral in the right hand side of equality (4.12). Proposition
4.6 implies that the periodic exterior volume potential P, [Ao, Ga\a 4,) is of class C'(R?).
Accordingly, the Divergence Theorem implies that

AP A0, G5y g 4 l(x) da
/Q\w ‘ (@l Ao

= 8@D(7’; [A0, G\ 3\ 01 4,) (7)) - v (%) dow — /d) (m)D(Pq?[AO,G@\CI 1) (@) - v (@) oy

= — DP?A,G~ X % fL‘dO’x
/qb oo PP 0G0 i)

Indeed the g-periodicity of Pz [Ay, G@\Cl 4,) (ct. Proposition 4.6 (i)) implies that

/aéj D(Pg 140, G\@\cle](x)) vg(z)dog =0

Next, we set
6056*7 WOEW*’ EOEE*7

where 0., Wk, E,, and § are as in Lemma 4.11, with ¢, = ¢g. Let
U=U NWyp.
Let A; be as in Lemma 4.8. Then, in particular, we have that
clAdg C A1 CclA CIg|CQ Voel.
Possibly shrinking dy we can assume that
cl Eo[do](Qp.5,) € Q \ cl A;.

Moreover, possibly shrinking ¢/ we can assume that

AEo[¢](Q5,) CQ\clA,  Voel.

By Corollary 4.7, there exists p/ €]0,p[ such that the map from C’gwp,(clSq[Ag]*) to
Cc?

7w, (15g[A1]7) which takes F' to ’P_[F‘Qv\cl A0]|C1§q[A1]_ is linear and continuous. By the
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linearity and continuity of the embedding of ngwj ,(c1Sg[Ao] ™) into Cg,w, »(c1Sg[Aq] ™), the
map from ng,p(cl Sg[Ao] ™) to Cg7w7p,(cl SglA1]™) which takes G to P [Ao, GIQ\clAO]IclSq[Aﬂ*
is linear and continuous. Thus thanks to Lemma 4.3, possibly taking a smaller p’, we can

verify that the map from C? | (c1S;[Ao]7) to CY  (c1S4[A1]7) which takes G to

q,w,p q,w,p’

0 . _
52, Pi 0. G a s

is linear and continuous and then real analytic, for all j € {1,2}. Moreover, we note that the
restriction operator from Cg,w, o (c1Sg[A1]7) to C’g} »(c1Q \ Ay) is linear and continuous and
then real analytic. Thus, by Lemma 4.11 on the real analyticity of the extension operator Eg
and by Theorem 4.1 on the real analyticity of a superposition operator in Schauder spaces,
the map of U x C2  (c1S4[Ao]™) to C1¥(clQp 5,) which takes the pair (¢, G) to

q7w7p
J
371:]-7)6 [Ao, G\Q\cle] o Eo[¢]

is real analytic, for all j € {1,2}. Then we note that

D P~_ A 7G ~ x 7, T do‘x
/¢(aQ) (P7 [40, G1g\a1 4,)(2)) - v11g) ()

= [ (PP 40,6 gy0,] o Balél@)) - 015 © 0(a)) e ) o

= i?q_ [A0, G311 4,) © Eol¢](2) (v1g) © ¢(2))6[0](x) do.

By Lemmas 4.11, 4.12, and by the linearity and continuity of the trace operator from
CO%(clQp 5,) to C%*(99), and by the linearity and continuity of the embedding of C%(99)
in L1(092), and by the linearity and continuity of the map from L!(952) to R which takes

f to [5 fdo, we have that the map from U x Cg7w7p(cl S§[Ao] ) to R which takes the pair

(¢,G) to f¢(89) D(P; [Ao, G\ 3\ 4, (%)) - i) (2) doy real analytic. Thus, the validity of the
statement follows. O

We recall B, ; is the function defined in Lemma 4.9. We are now ready to analyze the
regularity of the map

(l7¢) = Bpo,l(x) dﬂ?,
Qi\q:1[¢]

when [ is in ]0, +00[ and ¢ is a suitable class of diffeomorphisms.

Proposition 4.14. Let ¢g, Ag and Uy be as in Lemma 4.8. Let pg € Ag. Then the map from
10, +00[xUy to R, which takes the pair (1, ¢) to le\quM Byy.i(x) dx, is real analytic.

Proof. Since real analyticity is a local property, we can work locally. Accordingly, we fix
lo €]0, +o0l.

Let
Lo

be a bounded open subset of |0, +oo[ containing ly. We set

Qo= {q €Dy :1€ Lo}
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Clearly, Qg is a bounded open subset of ]D); (R), and
cl Qo C D (R).

Now, we note that

/ By () de = [ By (qz) de = — /V Sq2(q(r —po)) dx (4.13)
Qui\q1[¢] Q\I[¢] Q\I[¢]

for all (I, ¢) € ]0,+o0o[ x Up. Then we take a bounded open connected subset W of R? of class
C*° such that

AdQC W and WnN(z+cld) =2 VzeZ*\ {0}

By Lanza de Cristoforis and Musolino [70, Theorem 8|, there exists p €]0, +oo[ such that
the map from Qp to C'g’p(ch \ Ao — po), which takes ¢ to the function S5 2(q-)jc1w\ 49—po>
is real analytic. Since the translation operator from Cp Sl W\ Ag — po) to co, Sl W\ Ap)
which takes f to f(- — po) is linear and continuous, then the map from Qp to CJ, H(cl W\ Ag),
which takes ¢ to the function Sz 2(¢(- — po)), is real analytic. Then, taking into account the
real analyticity of the map from |0, +-00[ to DJ (R) which takes I to g;, we deduce that the
map from Qg to C'ij(ch \ Ap), which takes [ to Sy, 2(qi(- — po)), is real analytic.

Then, due to the Lemma 4.2, we can apply Theorem 4.13 to the last integral in equality
(4.13), and the validity of the statement follows. O

4.7 Analyticity of the effective longitudinal permeability

In this section we prove our main result about the real analyticity of the longitudinal
permeability. By the previous sections, this aim is reduced to the study of the behavior of the
second integral in (4.11), that is the map

(I,9) — — uy(l, ¢)(z) de, (4.14)
Qui\q1[¢]

when [ is in ]0, +00[ and ¢ is in a suitable class of diffeomorphisms.

In order to achieve this objective, we exploit some of the results of Musolino [82], where
the behavior of a (singularly) perturbed Dirichlet problem for the Laplace equation has been
studied by means of periodic potentials.

As we shall see, we want to reduce the analysis of the solution uy[l, ] of our Dirichlet
problem (4.10) to that of a related integral equation. To do so, we start with the following
result on a boundary integral operators. For a proof, we refer to Musolino [82, Proposition
A3

Lemma 4.15. Let | €]0, 400, o €]0,1[. Let © be a bounded connected subset of R? of class

CH® such that R? \ ¢l is connected. Let ¢ € Agﬂ N CH(0Q,R?). Let M[-] be the map from
Cl(q0l[¢]) to itself, defined by

M) =~ wg[adlidl ] Ve CH(qoTlg))

Then M]|] is a linear homeomorphism from CY%(q,01[¢]) to C**(q,01[¢]).
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Then, we have the following result where we establish a correspondence between the
solution of a Dirichlet problem and the solution of an integral equation.
Proposition 4.16. Let [ €]0, +o0[, a €]0,1[. Let Q be a bounded connected subset of R? of

class C1® such that R%\ cl1Q is connected. Let ¢ € Agﬂ NCH* (90, R?). Let T € C1o(q01[¢]).
Then the following boundary value problem

Au=0 in Sq [al¢]] ™,
u(z + qz) =u(z) Ve cdSylgld)], V2 e Z? (4.15)
u(z) =T'(x) Va e qollg).

has a unique solution u in Cg®(cl Sq [@l[¢]] 7). Moreover,

u(z) = wy, [@ol]], pu(z) V€ cdSy[qlld]]™, (4.16)
where u is the unique solution in C(q0l[@]) of the following integral equation

1

= 5H(2) +we adl¢], pl(z) =T(x) Ve qolld] (4.17)

Proof. By the Maximum Principle for periodic functions in clSy,[¢I[¢]]~, problem (4.15) has
at most one solution (cf. Musolino [82, Prop. A.1]). As a consequence, we only need to prove
that the function defined by (4.16) solves problem (4.15). By Lemma 4.15 there exists a
unique solution u € C1%(q;01[¢]) of the integral equation (4.17). Then by the properties of
the periodic double layer potential the function defined by (4.16) solves problem (4.15) (cf.
Theorem 4.5). O

By Propostion 4.16, we know that the solution ux[l, ¢] of our Dirichlet problem (4.10) can
be written in terms of a double layer potential. As a consequence, in the following two lemmas
we study the dependence upon [ and ¢ of some integral operators related to the double layer
potential. We start with the following result.

Lemma 4.17. Let « €]0,1[. Let Q be a bounded connected subset of R? of class CY® such
that R? \ c1Q is connected. Let 3 and dq be as in Lemma 4.10. Let

Q. _ g Q

AC] Qﬁy(; = AC] Q,&é N AC] Qﬂﬁ \V/(s 6]0, 69[

Let n €]0,1[. Then there exists 6, €]0,0q[ such that for all § €]0,0,[ the map which takes
(1,@,0) €]0, +o0[x (Afy, , N C1 (e 94,5, R?)) x C1(99)

to the function W[, ®,0|, which is defined as the continuous extension to cl QE(; of the
function

—/ DSy 2(q®(x) — 5) - Ve (s)(0 0 @V 0 g ) (s)doy V€ L5,
@ P(09)

is real analytic from O(n) x Uy, 5 x CH*(0Q) to CH(cl QE(S), where

O(n) = {1 €]0,+oo[: max{l"%,*} <n'},

Ups = {q) € AC?Q&(S NCH*(clQg5,R?) : 1S§121p |det(D®)| < 17_1} .
C 8,6
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Proof. First of all, let § €]0, dq[. Our plan is to follow the proof of Corollary 5.7 of Lanza de

Cristoforis and Musolino [65]. To do so, we first need to rewrite the operators W, 821 W+

and %W* in terms of single layer potentials. Let R €]0,4o00[ such that

R> sup |z
:EEQUQ&(;

Let F be a linear and continuous extension operator from C1*(9Q) to C1%(By(0, R)), such
that F[0]jan = 0 for all € C1*(8Q) (see, e.g., Troianiello [103, Theorem. 1.3 and Lemma
1.5]). Then, by using |65, equalities (5.8) and (5.9), p. 109|, with ® replaced by ¢; o ®, we
obtain that

[\

W, ®,0] = Z

lao916]) (Do @)™, (4.18)

and

0

. (W[, @,0]) (4.19)

2 2
N Uwo®)r 5~ 9 gy ‘ .
_; T O (V[ ®, Myll, 10 @,6]]) (D(cr 0 @) 7).,

2
2> a(qéw:p) /69 njlgr 0 @)(y)0()5lq o P)(s)do

2 2
« K (Do @)™, <m>z~> (Z M (Do w) ))
i=1 i=1 ¢
2 2
- (Z (D(@o®)™),; (VQ)i> (Z a(gg]) ((D(g o ®)) 1)”«)]»
i=1 i=1 ¢
and,
. (D(gio®))~" - vo
o2 = ([pmsmy Qr>
and,

VLD, ] () = / Sy 2(q®(-) — ) (u o d(Yo ql_1> (8)dos Ve ChH(0Q).
@ ®(0Q)
By the chain rule, we have
(D(qi o ®))ij = (@)i(DP)s; Vi, j € {1,2}, (4.20)
_ 1 _ .
(D(@o®)) ™)y = (D®)™ 1Y)y Vi,je{1,2},

(@)ii
(D(qro®) " =g ' (DD)™
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Next, we consider VT and we note that
VL@ = [ Spalat@) - ) (108 oq ) (s)do
u®(0Q)
= [ Suaa(@) - ) (o0 V) (s)do
B(69)
for all p € C%*(9Q) and for all z € Qg’é. Then we set

Siio(@) = Sgo(qw) Vo e R\ Z%. (4.21)

We note that the g-periodic function 5’@,[72 is a g-periodic {0}-analog of the fundamental
solution of the operator

10?2 07
—_ + .
12 023 ox3
Namely, it is a tempered distribution such that
1 82 2 82
z€72

in the sense of distributions (cf. Lanza de Cristoforis and Musolino [65, Section 1]|). Then we
can write

/ Su(@(@@) - s)) (o <I>(‘1)) (s)do (4.22)
B(00)
/ Sg12(®(x) — 5) <M o ‘1)(_1)) (s)dos
EV [l@/’L]<) VxEQﬁ5,

for all (1, ®, u1) €]0, +oo[xU, s x CO*(0N). Now, one can rewrite the operators W+, -2 e W+

and %WJF using the single layer potential ‘N/q~+. More precisely, equalities (4.18), (4.19)
together with the three equalities in (4.20) and with equality (4.22) imply that

2
WL, 00 =— > ai- (17; [l,@,ﬁj[l,CD]&]) (qj)~ (Do)~ ), (4.23)
myi,j=1 7 1
and
d . 2000 e[, . 1
o (WL2.6) Z@xk m;:laxt(vq 1., 0,501, 2,0]]) i (027,
(4.24)

for all k € {1,2}, where

Mm[l,<b,0] = |Qf1 : (DCI))_t : 1/Q|_1X
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and,

Now we note that

e the map from |0, +-00[ to D3 which takes  to
(17?0
an=("y »)

Moreover, by Lanza de Cristoforis and Musolino [70, Theorem 7] and by Lanza de Cristoforis
and Musolino [65, Section 3|

is real analytic.

e the map from |0, +o00[x (R?\ GZ?) to R which takes the pair (I, ) to Sa1a(z) = Sy2(q2)
is real analytic. Moreover, for all [ €]0, +oo[, the map Sj;2(+) is a G-periodic function in

LIOC(]RZ) such that (12 e + l2 o2 )Sqlg > .72 0gz — 1 in the sense of distributions.

Accordingly, one can readily verify that the assumptions of Lanza de Cristoforis and Musolino
[65, (1.8), pp. 78, 79| are satisfied and thus we can apply the results of [65]. Thus, [65,
Proposition 5.6, pp. 105, 106] implies that there exists d, €]0,0q[ such that for all 6 €]0, 6,[

the map ‘7;[‘7 -,+] is real analytic from
O(n) X Uy x C¥*(Q)  to  CH(c1Q} ).

Then, if § €]0, §,[, by the real analyticity of the pointwise product in Schauder spaces, and by
the real analyticity of the map which takes an invertible matrix with Schauder entries to its
inverse, and by the real analyticity of the linear and continuous extension operator F[-] and
of the trace operator, and by identities (4.23) and (4.24), we conclude that the operators

W, -, ;:UIWJF[.,.?.]’ aamwﬂ ]
are real analytic from
O(n) X Uy x CH*(09)  to  CO*(c1Qf ).
Accordingly, the operator W/[-, -, -] is real analytic from

O(n) x Uy s x CH*(00)  to  CH(c1Qf ),

and thus the statement follows. O
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Then we have the following lemma where we prove the analyticity of the trace of the
periodic double layer potential upon the periodicity parameter, the shape, and the density.

Lemma 4.18. Let o €]0,1[. Let 2 be a bounded connected subset of R? of class C%* such

that R? \ cl§) is connected. Then the map from |0, +oo[><(./4§Q N CH(00,R?)) x CH*(0Q) to
CH(982) which takes a triple (I, ¢,0) to the function

Wi, ¢,0](x) = _/¢(89) DSy 2(@d(x) — 3) vy (@s)(@ oo™V og ) (s)dos Vo€,
qi

1s real analytic.

Proof. Since analyticity is a local property, it is suffices to show that if
(L Py 04) €10, +00[x (AL, N CH(0Q, R?)) x C1(9Q),

then W[, -, -] is real analytic in a neighborhood of (I, ¢x, 6x).
Let 8, 6x, Eyx, Wi be as in Lemma 4.11. Possibly shrinking W,, we can assume that there
exists 7 €0, 1] such that

sup sup |det(DE,[¢](z))] <n~! and I, € Oy,

HEW: :EGCIQ;(S

where Oln] is as in Lemma 4.17. Possibly shrinking 0, and Wi, we can also assume that
E.[¢)(c1Qs5) CQ Vo e W,

Then we note that the jump formula for the double layer potential implies that
1
Wi, ¢,0] = —59 + W I, EL[¢)],0] on 99, (4.25)

for all (I,¢,0) € Oln] x W, x CH*(982), where W+ is as in Lemma 4.17 for some § €
10, min{dy, 0 }[. Then, by equality (4.25), and by Lemma 4.11 for the real analyticity of the
extension operator E,, and by Proposition 4.17 about the real analyticity of the operator
W*[,-,-], and by the linearity and continuity of the trace operator from C%(cl Qgﬁ) to
C1(09), we have that the operator W[, -, -] is real analytic from

Oln] x Wi x C1*(0Q)  to  CH*(89Q),
and, accordingly, the statement follows. O

By Proposition 4.16, the Dirichlet problem (4.10) can be converted into the following
integral equation.

— 5e) g [adllo], 1](@) = Sya(e —apo) V€ adllg).

Therefore, the first thing that we have to do in order to study the dependence of the solution
ux(l, @] of problem (4.10) upon (I,¢) is to study the dependence upon the same pair of
the solution of the integral equation above. On the other hand, since the above integral
equation is defined on the (I, ¢)-dependent domain ¢dl[¢], in the following lemma we provide
a reformulation on the fixed domain 0f2.
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Lemma 4.19. Let [ €]0,+oo|, a €]0,1[. Let  be a bounded connected subset of R? of class
CY such that R?\ cl€Q is connected. Let Agy, ¢o and Uy be as in Lemma 4.8. Let pg € Ag
and ¢ € Uy. Then the function § € C*(99Q) solves the equation

=500~ [ DSy ala(6(t) ~ 5)) vy (@s)(O o 6 )(5)don ~ Syala(o(t) ~ ) = .
#(09)

(4.26)
for all t € 9%, if and only if the function u € C*(qOl[¢p]), with p delivered by
@) = (009" og (@)  Vreqdlg), (4.27)
solves the equation
1
= Gh(@) +we [@dlld], pl(z) = Sq2(z —apo) Yz € @Illg]. (4.28)

Moreover, equation (4.26) has a unique solution in C1*(9Q).

Proof. The equivalence of equation (4.26) in the unknown € and of equation (4.28) in the
unknown g, with p delivered by (4.27), is a straightforward consequence of the Theorem of
change of variables in integrals. Then the existence and uniqueness of a solution of equation
(4.26) in C1(9), follows from Lemma 4.9 and from Lemma 4.15 applied to equation (4.28),
and from the equivalence of equations (4.26), (4.28). O

Now, our aim is to prove the analytic dependence of the function 6 which solves equation
(4.26) upon (I, ¢) by exploiting the Implicit Function Theorem for real analytic maps in
Banach spaces. To do so, inspired by the previous Lemma 4.19, we introduce the map

A 210, +oo[xUy x CH¥(99) — C1(09Q)

by setting

A6, 0)0) = =500 - /MQ) DSy 2(@(9(t) — ) vy (@s) (0 0 6 )(s) doy  (4.29)
= Sy2(a(o(t) —po))  VtedQ,

for all (1, ¢,0) €]0, +oo[xUy x CH*(9), where Uy and pg are as in Lemma 4.9. In order to
apply the Implicit Function Theorem for real analytic maps to the equation

All,¢,0] =0,

we need to understand the regularity of A. The analyticity upon (I, ¢, ) of the second term
in the right hand side of (4.29) is shown in Lemma 4.18. Accordingly, in order to show the
analyticity of the map A, it remains to show that the map which takes (I, ¢) to the function

Sq.2(qi(p(-) — po)) is real analytic.

Lemma 4.20. Let o €]0,1[. Let  be a bounded connected subset of R? of class CY* such
that R?\ clQ is connected. Let ¢o, Ag and Uy be as in Lemma 4.8. Let pg € Ag. Then the
map from |0, +oo[xUy to C1(9Q) which takes a pair (I, $) to the function Sg 2(q(é(-) — po))
1s real analytic.
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Proof. Since real analyticity is a local property, we can work locally. Accordingly, we fix
lo €]0, +o0l.

Let
Lo

be a bounded open subset of ]0, +oo[ containing ly. We set
Qo={q eD] :1€ Lo}
Clearly, Qg is a bounded open subset of ]D);(R), and
cl Qp C D (R).
We take a bounded open connected subset W of R? of class C* such that
AdQCW and  Wn(z+cdy) =2 VzeZ?\ {0}

By Lanza de Cristoforis and Musolino [70, Theorem 8], there exists p €]0, 400 such that the
map from Qp to C’B’p(cl W\ Ag — po), which takes ¢ to the function Sg2(g-), is real analytic.
Since the translation operator from G ,(cIW \ Ag — po) to CJ ,(c1W \ Ag) which takes f to
f(- —po) is linear and continuous, then the map from Qp to C&p(cIW \ Ap), which takes ¢
to the function Sz 2(G(- — po)), is real analytic. Now we set

00=0x, Wo=W,, Eg=E,,
where 0., Wk, E,, and § are as in Lemma 4.11, with ¢, = ¢g. Let
U=U NWp.
Let A; be as in Lemma 4.8. Then, in particular, we have that
Ay C A CcA CIg|CQ Voel.
Possibly shrinking dg we can assume that

cl Eo[¢o](Qs.5,) € Q \ cl Ay

Moreover, possibly shrinking ¢/ we can assume that
A Eo[d](Qps,) CQ\ 1A Vel

Thus, by the real analyticity of the map from Ly to Qp which takes [ to ¢;, and by Lemma
4.11 on the real analyticity of the extension operator Eg, and by Lemma 4.1 on the real
analyticity of a superposition operator in Schauder spaces, we have that the map from Ly x U
to C1(clQp.4,) which takes (I,0) to Sy 2(q(- — po)) o Eol¢] is real analytic. Accordingly,
the map from 0, +-0o[xUy to C1¥(clQg4,) which takes (I,¢) to Sy 2(q(- — po)) o Eol¢] is
real analytic. Finally, the linearity and continuity of the trace operator from C1(clQg5,) to
CH2(99Q) implies the validity the statement. O

We are now ready to show that the solution of the integral equation (4.26) depends
analytically on ([, ¢). The proof is based on the Implicit Function Theorem for real analytic
maps in Banach spaces.
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Proposition 4.21. Let a €]0,1[. Let 2 be a bounded connected subset of R? of class C1*
such that R?\ cl€Q is connected. Let ¢o, Ay and Uy be as in Lemma 4.8. Let pg € Ag. Then
the following statements hold.

(i) For each (1,¢) €]0, +oo[xUy, there exists a unique 6 in C*(09) such that
All,9,6] =0 on 0f2,
and we denote such a function by 6[l, ¢).
(i) The map 0[-,-] from |0, +oc[xUy to CL*(OY) which takes (1, ¢) to O[l, ¢] is real analytic.

Proof. Statement (i) is a straightforward consequence of Lemma 4.19.

Next we turn to consider statement (ii). We first observe that by Lemmas 4.18 and 4.20,
A[,-,] is a real analytic map from ]0, +oo[xUy x CL¥(9N) to C1*(9N). Since analyticity is
a local property, we fix (I3, ¢1) in 0, +oo[xUp and we show that 6], -] is real analytic in some
neighborhood of (I, ¢1) in |0, +00[xUy. By standard calculus in normed spaces, the partial
differential

AL, ¢1,0[l, 1]
of A at (I1, ¢1,0[l1, ¢1]) with respect to the variable 6 is delivered by
g A[l1,01,0[l, $1]](¥) (1)
1 _
=~ 5¥() - DS, 2(a, (6(t) = 5)) - g, 116 (@, 8) (@ 0 9 V) () dos ¥t € 09,

2 p02) '
for all ¢ € CH*(0Q). By Lemma 4.15 and by the proof of Lemma 4.19, we deduce that
OpA[l1, ¢1,0[l1, ¢1]] is a linear homeomorphism of CH*(9€2) onto C1¥(9N). Accordingly, we
can apply the Implicit Function Theorem for real analytic maps in Banach spaces (see, e.g.,
Prodi and Ambrosetti [92, Theorem 11.6] and Deimling [29, Theorem 15.3]), and we deduce

that 6], -] is real analytic in a neighborhood of (I, ¢1) in ]0, +oo[xUy to C1*(982). Thus, the
statement follows. O

Now we are ready to consider the second integral in the right hand side of (4.11), that is
the map in (4.14).

Theorem 4.22. Let a €]0,1[. Let Q be a bounded connected subset of R? of class C1* such
that R? \ clQ is connected. Let ¢o, Ao and Uy be as in Lemma 4.8. Let pg € Ag. Then the
map from |0, +oo[xUy to R which takes the pair (I, ¢) to le\qu[¢] uy(l, @] dx is real analytic.

Proof. We first note that by Proposition 4.16, by Lemma 4.19 and by Proposition 4.21 we
have that

ugll, d)(x) = wy [@olle], 01, 6] 0 ¢V 0 g MJ(x) V€ clSy[al[d]],

for all (1, ¢) €]0, +oo[xUy, where [, ¢] is defined in Proposition 4.21 (i). Accordingly,
/ ugll, o] dz = / wr D), 01l ¢ 0 6V o g e, (4.30)
Q:\al[¢] Q:\al[¢]

for all (I, ¢) €]0,+oo[xUy. We note that by classical differentiation theorems for integrals
depending on a parameter we have that

wy [@d1[g], 0, ¢] 0 6~ 0 ¢; ()
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0
= ——————Sy2(x —y)(0[l,¢] 0 9V 0 ¢ ) (y) dor
/qz¢(39) Oqie) ()™ e : Y

T / DSy 2(x = y) - vaue () (0], ¢ 0 6V 0 ¢ ) (y) doy
q(09)
2.9
A o
B ;axj /qla¢(ﬂ) Sa2(@ = ) o/ (1)) (011, @] 0 6V 0 g (y) doy

2
== 3 M) ()00 6 0 6D 0 (@), Ve € S latle]”
7=1

for all (I, ¢) €]0, +o00[xUy. Then

i 18} 61, 6] 0 6 0 7)) d (131
Q\qI[¢]
- 9 (-1 —1
=3 [ ey By 000 s 01 16 o] o)

for all (1, ¢) €]0,+o00[xUy. We now fix j € {1,2}. Lemma 4.12 (i), The Divergence Theorem,
and the continuity in R? of the single layer potential (see Theorem 4.4 (i)) imply that

/Q\ . 8(; 2 [0OLS], (Vg5 (01 ¢ 0 ¢ 0 g )] () da (4.32)

- /6 a1, () 011,61 0 6 0 6 ] (@) v (1)
_/ v [@OL6], (Vgi))i (0L @] 0 6V 0 g D](@) (Vg (7)) dow
Qé(09)
== [ T G 01161 9 0 g0 o), o
q(09)
= [ valad1l6] ()i 00,610 6 o g Dl able)) (i) o w0) )3l0)(z) do

= _/69 Utﬂ[‘]laﬂ[gb]’(VQZH[¢])J'(9[Z,¢] O¢(_1) oql_l)](qlqb( ) (v qu¢]) o q¢)(z)d[9|(z) doy,

for all (1, ¢) €]0, +oo[xUp. Indeed, the periodicity of the periodic single layer potential (cf.
Theorem 4.4 (i)) implies that

/E)Q v [@O@], (ge)i (L, ¢] 0 61 0 g7 M (2) (v, (2)); dog = 0.

Now we note that if S;; 9 is the g-periodic {0}-analog of the fundamental solution of the
operator

1 02 L9 0?

12 922 Ox3’
defined as in (4.21) (cf. Lanza de Cristoforis and Musolino [65, Section 1]), we have

Vg [@U[@), (Vg116))5 (0L, 8] 0 6T 0 g7 H(@ue())

Sq2(qd(x) —y)(Vere (v)); (O, ¢] o ¢V o g ) (y) doy
19(092)
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= [ Suala6(e) 1) ) 00,61 0 6 (y) oy
»(09)

= Sa12(6(2) — v) (v (@y)); (01, ¢] 0 6 V)(y) doy,

= 01,5 [01[], (Vgui))j © @)L, 8]) 0 6" N)(d(2)) Vo € 99,

for all (I, ¢) €]0, +oo[xUy. Here
01,4[01[¢], -]

is the g-periodic single layer potential associated with the analog 5’,;,;,2 (cf. Lanza de Cristoforis
and Musolino [65, Thorem 3.7, pp. 87-89]). Now we note that

e the map from |0, +oo[ to D which takes [ to
=2 0
a(l) = < 0P )

Moreover, by Lanza de Cristoforis and Musolino |70, Theorem 7] and by Lanza de Cristoforis
and Musolino [65, Section 3|

is real analytic.

e the map from 0, +-00[x (R?\ GZ?) to R which takes the pair (I, ) to Sara(z) = Sy2(q2)
is real analytic. Moreover, for all [ €]0, +oo[, the map Sj;2(+) is a G-periodic function in

LIOC(R2) such that (12 e + l2 o2 )Sq,lﬂ Y .72 0gz — 1 in the sense of distributions.

Accordingly, one can readily verify that the assumptions of Lanza de Cristoforis and Musolino
[65, (1.8), pp. 78, 79] are satisfied and thus we can apply the results of [65]. Moreover, we note
that map from |0, +oo[xUp to Agq N CH2(9Q, R?) which takes (I, ¢) to q¢ is real analytic
and then Lemma 4.12 (ii) implies that the map from ]0, +oo[xUy to C**(9€2) which takes
(I,¢) to (vg14))j © @@ is real analytic. Taking into account Proposition 4.21 (ii), Lanza de
Cristoforis and Musolino [65, Theorem 5.10 (i)] implies that the map from |0, +oco[xUy to
CH(99) which takes (I, ¢) to

Vall &, (vauie))s © @)0lL, 8] = 1,608, ((vgre))j © )0l ¢]) 0 V)] 0 ¢

is real analytic. Then Lemma 4.12 (i), the linearity and continuity of the map from L!(99)
to R which takes f to [, f do, and equality (4.32) imply that the map from 0, +oo[xUp to
R which takes (I, ¢) to

/Q\ 1[¢] ai] 2 0010), (Vg1s); (011, @] 0 6 0 g 1)](2) do,

is real analytic. Accordingly, equality (4.31) implies that the map from 0, +oo[xUy to R
which takes (I, ¢) to

/ w [0, 001, 8] o 4 o g7 (2) do,
Qi\q1[¢]

is real analytic and then, by equality (4.30), we can conclude that the map from |0, +oo[xUy
to R which takes the pair (I, ¢) to le\quM ux(l, ] dz is real analytic. O
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Combining Proposition 4.14 and Theorem 4.22 together with the representation formula
(4.11) for Kyg[l, ¢], we can finally deduce our main result regarding the real analyticity of the
longitudinal permeability Kr;[l, ¢] upon (I, ¢).

Theorem 4.23. Let o €]0,1[. Let Q be a bounded connected subset of R? of class O such
that R?\ c1§) is connected. Then the map from |0, +oc[x <A§Q N Che(09, RQ)) to R which
takes a pair (1, ¢) to Kir|l, ¢| is real analytic.

As already mentioned, one of the consequences of the previous Theorem 4.23 is that if
we have a one-parameter analytic family of pairs (Is, ¢5)6e]—50,6o[7 then we can deduce the
possibility to expand the longitudinal permeability as a power series, i.e.,

—+00

Kirlls, ¢s] =) _ ¢;6 (4.33)
§=0

for ¢ close to zero. Once an expansion of this type is shown, for practical applications it
is of interest to compute the coefficients {c;};en. Dalla Riva, Musolino, and Rogosin [27]
developed a completely constructive method to compute the coefficients for the solution of
the Dirichlet problem for the Laplace equation in a planar domain with a small hole. The
computation is based on the solutions of systems of integral equations. This type of approach
can be exploited also in our case for the longitudinal permeability, in order to obtain an
explicit expression for all the coefficients {c;};en in the series (4.33). This could be the object
of future investigations and the present chapter of the Dissertation provides the theoretical
background for this aim.
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APPENDIX A

Harmonic layer potentials and relation with layer
heat potentials

In this appendix we recall the definitions and we collect some know properties of the harmonic
layer potentials. Moreover we show some relations between harmonic layer potentials and
layer heat potentials.

A.1 Harmonic layer potentials

The fundamental solution of the Laplace equation is well known to be the function S,, from
R™\ {0} to R defined by

L log|z| Ve e R"\ {0}, ifn=2,
Sp(z) = {Sn ) 2y R s (A1)
m|$‘ T € \{0}, 1 n_3,
where
s = 2m2
I (3)

denotes the (n — 1) dimensional measure of 9B,,. Let © be a bounded open Lipschitz subset
of R™. If p € L>(09), we set

0[O0, pl(x) = - Sn(z —y)u(y) doy

1 .

= log |x — do if n =2,

_ o, 1g| WQ@L ’ . Va e R",

Joo mome e — Y1 M uly) oy ifn >3,
The map 0[0, ] is the harmonic single layer potential with density p. We collect in the
following statement some known properties of the harmonic single layer potential. For a
proof we refer, e.g., to Miranda [79], Wiegner [111], Dondi and Lanza de Cristoforis [32] and
references therein.

Theorem A.1. Let a €]0,1[, m € N\ {0}. Let Q be a bounded open subset of R™ of class
C™%. Then the following statements hold.

141



142 Harmonic layer potentials and relation with layer heat potentials

i) Let u € C°(00Q). Then the function 9]0, u] is continuous in R™, is of class C°°(R™\99),
and is harmonic in R"\0Q. Let 01 [0, pu] = 9[0Q, p]jcq denote the restriciton of 9]0, ]
to cl€2, and 5[0, ] = V[0S, pi] |1~ denote the restriction of B[O, u] to cl Q™.

i) If u € C™=1%(09), then the function [0, ] belongs to C™*(clQ), and the function
0709, ] belongs to C\2*(c1Q™). Moreover the map which takes pu to 0F[0Q, p] is contin-
uous from C™=1%(9Q) to C™(clY), and the map which takes u to v~ [05), eI B, (0,R\Q
is continuous from C™~1(9Q) to C™(c1B, (0, R) \ ) for all R €]0, +o00[ such that
1 C By (0, R).

ii) Letr € {1,...,n}. If u € CO*(0Q), then the following jump relations hold.

J 4 1 d
&Erv (092, p](z) = :F2,u(x)1/r(x) + s Sn(x —y)p(y) doy Ve o,

where the integral in the right hand side exists in the sense of the principal value.

Then we turn to the harmonic double layer potential. Let av €]0,1]. Let © be a bounded
open subset of R of class CL. If u € L>®(99), we set

. B 0
WO, p)(r) = - msn(x —y)u(y) doy,

Nt
__/ wu(y)day Vo eR".
20 SnlT — Y|

The map w[0€2, u] is the harmonic double layer potential with density pu. We collect in the
following statement some known properties of the harmonic double layer potential. For a
proof we refer, e.g., to Miranda [79], Wiegner [111], Dondi and Lanza de Cristoforis [32] and
references therein.

Theorem A.2. Let a €]0,1[, m € N\ {0}. Let © be a bounded open subset of R of class
C™%. Then the following statements hold.

i) Let p € C°(0R). The function W[OS, 1] is of class C°(R™ \ 98) and is harmonic in
R™\ 0. Moreover the restriction w[0S), pula can be extended uniquely to a continuous
function wt[0Q, u] from clQ to C, and the restriction w[0, ulo- can be extended
uniquely to a continuous function w~ [0, u| from clQ~ to C. Moreover the following
Jump formula hold.

GO0, ] (z) = %M(I) a0, p(x) Ve o0

i) If p € C"™*(99), then the function w [0, u] belongs to C"™*(clQ), and the function
w09, p] belongs to C* (c1QX™). Moreover the map which takes p to w* [0S, p] is con-
tinuous from C™*(0€2) to C™*(clY), and the map which takes i to W~ [0SY, p1]|c1B,, (0,R)\
is continuous from C™*(9Q) to C™*(clB,(0,R) \ Q) for all R €]0,+o0[ such that
19 C B, (0, R).

A.2 Relation between harmonic and heat layer potentials

In this section we show that if the density p is time independent, i.e. is a function from 0f2
to C, then harmonic layer potentials coincide up to a minus sign with the corresponding layer
heat potentials. We start with the following concerning the single layer potential.
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Lemma A.3. Let T €]oo,+o00]. Let Q be a bounded open Lipschitz subset of R™. Let
we L>*(0Q). Then

v[0rQ, p](t, 2) = —(0[0Q, p](x) — 02, 0[0Q, pl(z0))  V(t,x) € (R")r,
(for the definition of v[Or$), p] see (2.4) and (2.5)).
Proof. We first consider the case n = 2. We fix (¢,z) € (R")7. Then

v[0rQ, p](t, x)

—+o00
/ / oa— ) — ®u(—7, 20 — y)uly) doydr
o0
+o00

= lim / n(t—1,x—y)— Pp(—7,20 — y)|11(y) doydr
o0

h——4o00

= lim_ { / /89 P (t — 7,2 — y)u(y) doydr
/ /BQ —7, 20 — ) 1(y) daydT}-

By the changes of variable t — 7 = % and —7 = %i in the first and second integrals in
the right hand side of the previous equality, respectively, we have
v[0rQ, p(t, x)
=1 y) déd déd
i { L fose e vican = [ [ e utmacan,
|z —yl®
=1 dédo,.
pm /m /4”@5)3 e “Suly) dédo,

Let g be the function from R to R defined by

{EEgl if £ #0,

90 =1, it &= 0.

It is easy to see that ¢ is continuous in R and that

¢let=¢t—g(¢) VEeR\{0}

Accordingly, the Dominated Convergence Theorem implies that

v[0r$, ) (t, @)
= lim { —df,u Ydoy, — =22 (y)day}
e Uoa Lwi e ‘Zitfﬁ
: 1 |zo — y|* 4(t + 1)
=1 —1 d
hj)TOO{/a‘Q i 8 4h \3: y|? Hly) doy
90 J L=yl (y)day}

4(t+h)
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Y B —yl -

_/694771 ¢ < |z — yl? )N(y)d !

= [ 51080 — s e, = [ - lo(le = ul) ),
~ (3109, () ~ 909 p w0)),

which proves the statement in the case n = 2.
Next we turn to consider the case n > 3. We fix (¢,x) € (R™)p. By the change of variable
|z — y|?>u = 4(t — 7) we have that

v[0rQ, p)(t, ) :/ /89 O, (t — 7,2 — y)u(y) doydr

_le—y?
e T AE-T) do,dTr
/ /ag Am(t — 7)) ,u( ) Y
1

—  4ns /0 uTze du /69 WN(ZI/) doydr
- zmlé’r (g - 1) /BQ |$_Z|n_2u(y) doydr
B 27r5’(1n—2)r (g> /m |x_1y|n_2ﬂ(y) do,dr
1 1
= (n —2)s, /69 |z — y|n2 p(y) doydr
= 0[0Q, p)(),

which proves the statement in the case n > 3. OJ

Then we turn to consider the case of the double layer potential.

Lemma A.4. Let o €]0,1]. Let T €]oo, +00]. Let Q be a bounded open subset of R™ of class
Che. Let u € L*°(0N). Then

w[OrQY, pl(t, ) = —w[0Q, pl(x) V(t,x) e (R")r,
(for the definition of w[OrY, p] see (2.1)).
Proof. We fix (t,x) € (R")7. By the change of variable |z — y|?u = 4(t — 7) we have that

0
20 81/( )

y)'v(y) L;;tyﬁ
Y
— 3/0 w2 lem ialu/aQ 7(36 v) y(y),u(y) doy

w[OrS, p(t, z) = / Bolt — 7,2 — y)u(y) doydr

2 |z —y|™
1 (n (z —y)'v(y)
=517 (5) [, e
= — w[oQ, pl(x).

Accordingly, the statement follows. O
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Finally we have the following immediate corollary of lemma A.3 and of classical differenti-
ation theorems for integrals depending on a parameter.

Corollary A.5. Let T €]oo,+o0]. Let Q2 be a bounded open Lipschitz subset of R™. Let
€ L>°(0). Then

¢
/ gq)n(t — 1,2 —y)u(y)doydr =0 V(t,z) e (R"\ 0Q)r.
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APPENDIX B

Schauder regularity of heat potentials in cl )y

In this appendix we prove some regularity results for layer heat potentials that we have
exploited in the Dissertation which may be considered as folklore and for which we could not
provide a proper reference. For the definitions of single and double layer heat potentials see
(2.4), (2.5) and (2.1).

B.1 Derivatives of layer heat potentials

As a first step, we prove some formulas for time and space derivatives for the single and the
double layer heat potentials. We start with the following easy consequence of differentiation
under integral sign.

Lemma B.1. Let o €]0,1[, T €] — 00, +00|. Let Q be a bounded open subset of R™ of class
Che. Let p € L>®(07Q). Then

w[drQ, p(t, x) Z axj v[orQ, vipl(t,z) Y (t,z) € (R™\ dN)7. (B.1)
Proof. We note that

0 "9
mq)n(t -7, = y) = qu)n(t_Tw%' —y)uj(y)

= _ Z (981'] (‘I)n(t —T,T—Y)— 52,nq)n(_7> Lo — y))Vj(y)

Jj=1

for all t,7 € | — 00, T[, x € R™\ 0Q, y € 00. Then the statement follows by the definition of
layer heat potentials and by classical differentiation theorems for integrals depending on a
parameter. O]

Next, we prove the following formula which describes the space derivatives of the double
layer heat potential in terms of space and time derivatives of the single layer heat potential.
Lemma B.2. Let a €]0,1], T €] — 00, +00], i € {1,...,n}. Let Q be a bounded open subset
of R of class C. Let j1 € C%;l(ﬁTQ). Then

for, (4, 2) (B.2)
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2238 107, M) (t, z) — gtv[aTQ,ui,u](t, r) V()€ R\ Iy

Proof. First we note that

w([0rSY, pl(t, ) / /(9 QZ ayj —y)v;(y)u(r,y) doydr,

for all (¢,x) € (R™\ 9Q)7. Since ®,, solves the heat equation we have that

:Z )= | (gt =)

0y;

" 0
= Z Mj@y |:a (@n(t - T, — y) - (52,71@71(_7—7 xTo — y)>:|
=1 i

0
Vz(y)a ((I)n(t —T,T — y) - 52,n®n(_7—7 o — y));

for all t,7 € | —00,T[, z € R"\ 99, y € 0Q2. Then classical differentiation theorems for
integrals depending on a parameter and the consequence of the Divergence Theorem for the
tangential derivatives of Lemma 1.4 imply that

oz, w[Or€Y, pf(t, z)
/ /()QZMJH”[ < (t—T,a:—y) _62,nq)n(_7-7$0 _y)>:|:u(7_7y) dO’ydT
[ (@t =) = sanamie =) s(ohntr) dor
—o0 J O
n +oo 9
3 [ (= =)~ Bl — ) ) Mg o) oy
o1/ o Joo 0
+oo
/ / g < n(t = 7,2 —y) — 620 Pn(—7,20 — y))w(y)u(ﬂ y) doydr
[2/9]
Z 70 (O, Mi;[p)](t, ) — gv[@ﬂ) v (t, x)
amj J L ) ot ) y L)y
for all (¢, a:) € (R™\ 09)r. Accordingly, formula (B.2) is proved. O

In the following lemma we turn to consider the space derivatives of the single layer heat
potential.

Lemma B.3. Let a €]0,1], T €] — 00, +00], i € {1,...,n}. Let Q be a bounded open subset
of R™ of class CY®. Let u € C%;l(ﬁTQ), Then

o DRI (B.3)
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= — > 0[0rQ, Mj[uw;))(t, x) — w[drQ, puil(t, x)
j=1

0 n
#0an [ 3 Minlalit0 — sl o Vit) € R 0y

Proof. Since Y_7'_, v? = 1, then

J=1"3
G- alt =72~ 1)
- 0
_ 2
_Zl/j(y)ayzq)n(t Tvx_y)
7j=1
o, 0 - )
:ZVJ (y) D, (t T7x_y)_Zyl(y)yj(y)iq)n(t_ﬂiv_y)
3% ° 0 j
Jj=1 j=1
+> vi(y)v;(y) 5 - Pnlt = 7,2 = y)
=1 Yj

= Z Mij,y[q)n<t - 7,7 — y)]yj(y) + Z Vz(y)yj(y)azq)n(t —T,T = y)v
j=1 J

for all (¢,z) € (R"\ 0Q)r, 7 € R, y € 9N. Then the consequence of the Divergence Theorem
for the tangential derivatives of Lemma 1.4 and classical differentiation theorems for integrals
depending on a parameter imply that

0
oz, v[0r, u](t, x)
t 0
:/ — O, (t — 7,2 —y)pu(7,y) doydr
—o0 J O 81‘1
t 0
=— / ——Cn(t — 7,2 — y)p(r, y) doydr
—o0 Joo 0Yi

+o00 n
:/ /ag D Mijy[@n(t =7, =) = don®a(—7, 20 — y)|v; () (7, y) doydr
B
0 n

+ /_Oo /69 ZMij,y[52,nq)n(_T, zo — y)|vi(y)p(r,y) doydr

7=1
t n a
- /—oo /ag ; Tyjq)”(t =12 = y)vj()vi(y)u(r, y) doydr
- Z V[0, My ;)| (¢, ) — w]orQ, p (¢, x)
j=1

0 n
+ 62,71 / /aﬂ Z Mij,y[q)n(_Tv xTo — y)]Vj (y):u‘(Ta y) dO'ydﬂ
o =

for all (¢,x) € (R™\ 9Q)7, and then the statement follows. O

Finally, we consider the time derivatives of the single and the double layer heat potentials.
We can prove the following easy consequence of integration by parts.
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Lemma B.4. Let T €] — 00, +o0],  €]0, 1[. Let  be a bounded open subset of R™ of class
C?>%. Let p € CY2(0rQ). Then the following statements hold.

()
0
av[aTQnU’](tvl‘) (B4)
= v[0rQ, O ul(t, x)
- 52n/ - 37‘ —7,x0 — y) (7, y)doy dr V(t,z) e (R"\ 0Q)r.
(i)

Hel0rQ, pl(t,2) = wlorQ, ot z)  V(tz) € (R"\ 9. (B.5)

Proof. We first consider statement (i). By classical differentiation theorems for integrals
depending on a parameter and by integration by parts we have that

2 lor 0.t x)

+o0
/ / ot < =T & = Y) = 2P (=T, 20 — y))M(T, y)do, dr
o)

+oo
=— / / — <<I>(t — 7,2 —Yy) — 02, Pp(—T, 20 — y)),u,(T, y)doy dr
o0 87’

—5gn/ - 37’ —T1,x0 — y)p(7, y)doy, dr

0
0
= lOr, oul(1,) — b2y / | 5ral=r0 = it )doy dr,
-0 JoQ OT

for all (¢,2) € (R™\ 9Q)7, which proves statement (i).
Next we consider statement (ii). Another time by classical differentiation theorems for
integrals depending on a parameter and by integration by parts we have

3}
Q, u)(t
Hrulor M]( CU)
= - - doy, d
= - 87 8V — 71,2 —y)p(7,y)doy dr
= [0TQ, Ol (t, )
for all (¢,x) € (R™\ 0Q)7, which proves statement (ii). O

B.2 Regularity of layer heat potentials

Ladyzheskaia, Solonnikov and Ural’tseva in |58, Chapter 4.2] prove the Schauder regularity of
the layer heat potentials v[07€2, u| and w[0r€?, pu] with respect to the Schauder regularity of
the density function g when the domain 2 is the half-space

R? = R" N {z, > 0}.
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In this Section we will adapt the treatment of [58] to the case in which the domain 2 is a
bounded open subset of R™ of class C™%. We plan to prove first the result for Schauder spaces
of lower order, and then deduce the general case by induction, by exploiting the formulas for
the derivatives we have stated in the previous section.

The results contained in this section can be considered as mathematical folklore, that is,
they are known results, however, to the best of our knowledge, it is not possible to find a
complete exposition in the literature. In this direction we mention, in addition to the already
cited Ladyzheskaia, Solonnikov and Ural’tseva [58], also the work of Baderko [8, Theorem
3.4] where the author proves that the single layer heat potential is bounded from C %50‘(8TQ)
to C 5 it (c1Q7) under the assumption that (2 is of class C1®, and the series of works by
Kamynin [50], [51], [52], [53] where the author proves results in the same spirit but under
stronger regularity assumption on ).

Let o €]0, 1], m € N. Let Q be a bounded open subset of R™ of class C"®. The definition
of sets of class C™ implies that for all P € 02 there exists an open neighborhood Wp of
P in R™, and a diffeomorphism ¢p € C"™%(clB,,,R™) of B,, onto Wp such that ¢p(0) = P,
op({r € By : xy, =0}) = WpNOQ, and ¢pp({z € By, : x, < 0}) = Wp N Q. We set

Vp = WpNos,
which is an open set in 0€2. By the compactness of 0f) there exist » € N\ {0} and Py,..., P, €
0% such that .
00 =JVvp,

j=1
Let {n;}j=1,..» be a partition of unity of 92 of class C"™ subordinate to the open covering

Vo Yict. .. of 8Q. We note that if u € C" 3 #8(97Q), where 5 €]0,1[, h € N, and
347 FEEED)
h+ 38 <m+ «a, then

pt,x) = ni(@)pt,z) V() € or,
j=1

and
(i) mjp € C'h%ﬂ;“ﬂ(@TQ) forall j=1,...,r,
(ii) supp(nju) € (Vp,)r forall j =1,... 7.

Then, if we want to estimate the Schauder norm of a layer heat potential with density pu it
suffices to estimate the Schauder norm of the same layer heat potential with density n;u,
which has support in (Vp,)r, for all j =1,...,n. Accordingly, without loss of generality we
can suppose that all the density functions have support in the infinite cylinder with basis
equal to the domain Vp of a local parametrization around a point P € 9. More precisely, in
all the proofs we can suppose that all density functions p are such that

supp (1) € (Vp)r-

Up to rotation and translation of the domain we can further assume that P is the origin, i.e.,
P =0, and that there exists ¢p € C"™*(clB,_1) such that

¢p({L‘1, - ,:L'nfl,O) = (:L‘l, - ,l’n,1,1j}p($1, - ,:Enfl)) V(l’l, c ,l'n) €clB,_1.
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From now on if x = (Z,z,) € R", Z denotes the vector of the first n — 1 components of x.
Moreover, for m € N\ {0}, we set

J(y) =1+ |Dyp(y)? Vy € clB,_1.

We note that clearly

Cyj= sup J(y) < +oo.
yEclBy_1

We are ready to start considering the Schauder regularity of layer heat potentials. We start
with the following lemma on the time regularity of the single layer heat potential.

Lemma B.5. Let a €]0,1[, T €] — 00, +00]. Let Q be a bounded open subset of R™ of class
CY@. Then the following statements hold.

[ e ,
(i) Let n > 3. Then the map from C; (] — 00, T, C%@Q)) to C, * (] — 00, T, CO(CIQ)>
which takes p to v[0rQ, p] is linear and continuous. Moreover, the map from the space
e — e o —

Cy (] — 00,77, C’O(OQ)> to C, ? (] — 00, T[,C%Ccl Q‘)) which takes p to v~ [0rQ, p] is

linear and continuous.
(ii) Let n = 2. Then the map from C'b% (] — 00,77, CD(GQ)) to C 3" (] — 00, T, CO(CIQ))
which takes p to v[0rQ, p] is linear and continuous. Moreover, the map from the space
Cc2 (] — 00,77, C’O(GQ)> to C' 2" <] — 00,77, CO(CIQ_)> which takes p to v~ [0rQ, p] is

linear and continuous.

Proof. First we consider statements (i) and (ii) for the interior single layer heat potential

v [0rQ, -] together. Let p € C2 (] — 00,717, C%@Q)). As already pointed out at the beginning
of this section, we can assume that supp (u) C (Vp)r.
If n > 3, Lemma 1.15 (i) implies that the kernel ®,, satisfies the assumptions of Lemma

1.23, which implies that the map v*[07Q, ] is bounded from Cb% (] — 00, T, C’O(@Q)> to

Cl? (Cl QT)
Now let n > 2. We note that

U+[8TQ’ :U’] (tv CC) =" [aTQv = :U’(t*v ')](t’ li) + U+[8TQ, H(t*’ ')](t’ x) (B'6)

for all (t*,z), (t,z) € Qr. Now we fix (', z), (t",2) € Qp, with ¢’ < ¢”. The equality (B.6)
implies that

U+[8TQ7 :U’] (tﬂv $> =" [8TQv = :u(tlv ')](t”7 :L’) + v+[8TQ’ M(t,’ ')](tﬁv SU),

and
v [Or, pl(t, ) = v T [0rQ, p— p(t, )| @) + 0T [OrQ, u(t,)](H, 2).

We now note that Lemma A.3 implies that
v O, ut, (X", x) = v T [0rQ, u(t', )], x) = — (B[O, u(t', )] (x) — 62,,0[0Q, u(t', -))(20))-
Then

v [OrQ, u) (", x) — vt [OrQ, p](t, x) (B.7)
=t [aTQv = :u(tlv ')](t”’ l’) - U+[6TQa H—= M(t,7 ')](t,7 l’)
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t//
_ / / Bu(t” — 1,1 — ) (u(ryy) — p(t",y)) doydr
t o0

N—2‘t”—tl|

- / / D (t' — 7,2 — y)(u(r,y) — p(t',y)) doydr
t | Joo

//72‘t//7t/

t// 2|t// t/|
4 / / (@nlt” — 7.2 — ) — Bt — 7.2 — )l y) — p(t', ) doydr
o0

—00

2‘t// tll
+ /m(u(t”, y) — u(t',y)) /0 @, (1, — y) drdo,.

First we consider the first term in the right hand side of (B.7).

t//
\ [ @t =70 =)t 0) = ) doy

// 2|t// t/ 89
t//
</ |t = = lutry) - nlt" )| doydr
=2l —¢'| JoQ
t//
- / / @, (t" — 7,2 —y)|u(r,y) — pt", y)| doydr
t—2t"—t'| JVp
el g %
00, T[,CO (50 _le—yl® o
< ( Lo ))/ / " —7)" Te A@-7) (t" —7)2 doydr
(471-)2 =2t —v'| JVp
||/~L|| ! - 2 12
00, T'[,CO(82 a—n _ |z—7| _(@n—vp®))
_ el (meiengen) / (t" _7-)2/ e W A@-n  J(y) dydr
(4m)% =2t —¢| Bn—1
Crllull 5 ¢ 2
00,T[,C0 (82 a— 1 ot
< ( [C( ))/ (t”—T)Tl n—l/ e 4t -7) dy ¢ dr.
(47r)2 7 —2¢ —t/| (t"—71)2 JrRn-!
Then

t//
‘ / / (" — 1,2 — y)(u(r,y) — p(t",y)) doydr
t o0

//_Q‘t”—t"
C’ 1"
; J||/~L||C 2 (=00, T,C0(99)) /t " — 7-)‘1771 dr
< Var ¢ =2t —t/|
_ CJH/’LHC (} [00(80)) (t// . t/)HTa
(a4 1)\ﬁ

The second term in the right hand side of (B.7) can be estimated in the same way, by switching
the roles of t” and t'. Next we consider the third term in the right han side of (B.7). Let
T €] —oo,t" = 2|t/ —t"|[ and y € 9N. Then Lemma 1.15 (iii) implies that there exists a
constant 6’6’16,019 €]0, +o0[ such that

_Je—yl?
B (" — 7,2 — ) — Bt — 7oz — )| < O gt — )
— ,10,C (t’ o 7_)54-1

for all 7 <t — 2|t/ — "],y € 9Q. Then

t// Q‘t// t/
‘ / m(@n(t” T —y) — @t — 7,z —y)(u(r,y) — ult',y)) doydr
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t —2[t" —t| on_y ol
< n__ g e P Yo7
S T g p——— Y [ = e

t//—2|t“—t/‘ s
< (1607 ChagaaCilil g gy comy @ =) [ =0T ar
167) 2 C" C .
_ 2 7T) 0,16,c102 J”'u” (] 00, T[,C0(6%)) (t”—t,)HTa

(= a)
Finally we consider the fourth term in the right hand side of (B.7).

Z‘t//it/‘
‘ / (", ) — (') / By (ry 2 — y)drdo,
o0

N Z‘t// tl
< a
I o ooy — 7 | /V ) y) dodr
" - 2 1" /
- mT[Com))a OF e oL
T 2e¢ A doydr
(477) 0 Vp
CJHMH (" - t,)% 21t —t/| g
< ( T[CO(OQ)) / Té{7'n21/ ef‘zﬁl d@} dr
(471') 0 Rn—1
" NG "o
CJHMHC?(W,CO(BQ))Q t)2 201" —t'| 1
= T 2dr
Vir 0
2 g
\[CJHMH ( T, CO(dQ)) lta
= \/E (" —t)=z.
Thus we can conclude that statements (i) and (ii) hold for v*[07(Q, ].
The proof of statement (i) and (ii) for v~ [0, -] follows exactly the same lines. O

Next we consider the following lemma about the regularity of the map a%iv*[@TQ, .

Lemma B.6. Let a €]0,1[, T €] — o0, +00], i € {1,...,n}. Let Q be a bounded open subset
of R of class C1*. Let R €]0,400| such that c1Q C B,,(0, R). Then the map from C2*(9pR)
to C2%(clQr) which takes p to %UJF[(?TQ,/L] is linear and continuous. Moreover, the map
from C'2%(9r€Y) to C2*((c1B, (0, R) \ Q)1), which takes ju to z2-v~[0pS, ], is linear and
continuous.
Proof. We first prove the statement for %UJF (079, ). Let u € C2%(d7Q). As already pointed
out at the beginning of this section, we can assume that supp (u) C (Vp)p. Clearly

0 0
for all (¢,x) € Q7. Lemma A.3 implies that

O — (. N)(tax) - Lot Ot N (hx), (BB

o079 plt. ) = o

o Or 00, (0) = 5 09,0, ]2

for all (t,2) € Qp. Then, the classical regularity properties of the harmonic single layer
potential of Theorem A.1 imply that

‘ 0

= 5160, -
axlv[a 7]

6[8(2’ :u(tv )]

< lu(t, )l coean)
€00 (el Q)

i

H Ox; L(C0(89);C0a(c1 Q)
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for all ¢t € | — 0o, T'[. Taking the supremum over ¢ in | — oo, T'[, we have

0
0

T

5109, 1]

v (0%, ]

0 .
ox;

< o '
||:U’||02 (092) L(C0(9):C0(cl£))

B(]—00,T[;CO%(c1Q))
Thus, to estimate the L°°-norm and the space Holder quotient of 8 v [Or§, u], we only need
to consider the first term in right hand side of equality (B.8). The time Hélder continuity of
p and Lemma 1.16 (i) imply that there exists a constant Cp 1 rn €]0, 4+00[ such that

_ |z— |2
( |x>"i|1 e 1,
t—r)2tl=2

for all (¢t,z) € clQp, (1,y) € OrQ), T < t. Accordingly, Lemma 1.23 implies that the map
which takes u to the function

0
81‘1'

‘ d

ot = 72 = D)(r.5) = 0. )| < oo il oy

v [OrQ, p— p(t, (¢, ©) V(t,x) € clQyp, (B.9)

is bounded from C'2%(07Q) to CP(cl Q7).

Next we consider the space Holder quotient of the function in (B.9). We fix 2/, 2" € Q,
t €] — o0, T[. Classical differentiation theorems for integrals depending on a parameter imply
that

v (00, i — p(t, )](t, ") (B.10)

0[O, o — p(t,))(t,2") —

81)2‘
400 o §
/ /{m (% n(T, 2" —y) — %Cbn(ﬂx —y) |t —1,y) — p(t,y)] doydr

z 71//|2
-/ (!~ )t~ 7.) — )] doyir
Vp Ty
//|2

|z’ —
-/ (2 — gt~ 7,) — u(t, ) doydr
Vp xl

/ w2 /VP [3% —Y) - ai‘l’n(ﬂ v — y)] [u(t —7,y) — p(t,y)] doydr

First we consider the first integral in the right hand side of (B.10). By the estimate (1.4) for
the derivatives of the fundamental solution ®,, there exists a constant K., o €]0, +-00[ such
that

‘x _$//|2
\ / [ ra = )lult = 7o) (e, 9)] doyir
P 1

//|2

y>' ut — .y) — u(t. )| doydr

|2/ —x
S/’
0 Vp
_n— cx+1 \90 U|2
/ doydr
Vp

|z’ —x
S -
//|2

< KepoColl il e 0 (877 / a1y
0

o2, D, (1,2

//|2

_ 2Kei,OCJHMHC%,a(6TQ) (871-)%

/ //‘a
o .

" — x



156 Schauder regularity of heat potentials in clQr

The second integral in the right hand side of (B.10) can be estimated in the same way, by
switching 2/ with 2”. Next we consider the last term in the right hand side of (B.10). By
the Fundamental Theorem of Calculus and by inequality (1.4) for the derivatives of the
fundamental solution of the heat equation there exists a constant Keite; 0 €]0, +oo[ such that

P, (7
‘/r’—&?"P /VP O '
< a
HIU’HCQ 8TQ /ll :E"|2 /\V/P

< ull g E%Q)Ejrw -

S L,

< H,U,ch (07) ZKEH-EWO‘Q? _‘T

e’ +(1-N)z" —y|?

e &
/ / — doydrd\
|’ f:r”|2 Vp T 2

n-1 I +oo a3
SnzKei-f-ej,OCJHMHC%,Q((,)TQ)(87‘(’) T |2/ — 2" S5
Jj=1 |2/~ |2

0

¥y - ax¢vm"yﬂwt7w>uwww%w
2 o i B

6901 B y) B 8@

O, (1, 2" — ) ‘T% doydr

2
al‘ 7 81‘1

(1, A" + (1 — N)a” — y)‘ doydTd\

n—1
_ 2n 2?21 Kei-i-ej,OCJ”N”C%,a(aTQ) (87T) 2 |1;/ _ x,,|a
o 11—«

for all j € {1,...,n}. Thus, the map from C2:*(97Q) to B(] — oo, T, C%*(c1)) which takes
p to 6%1-”+ [0r2, u] is linear and continuous.
Now we turn to consider the time Holder quotient of 6%_2# [0rQ), u]. We fix z € Q,

t',t" €] —o00,T[. We can assume that [t” — /| < 1. Lemma B.5 and interpolation estimates
(cf., e.g., von Wahl [108, p. 255] and Agmon, Douglis and Niremberg [2, p. 657]) imply that
there exist two constants dy, ds €]0, +0o| such that

v 00, pl(t, ) =5 —v" [0rQ, p] (", )

ox; ox;

CO(cl)
1
14+«

<d 0(2 v OrQ, p)(t, ) — vH[OrQ, ] (t”,-) : clQ

i i o

X [0t [0rQ, pl(t', ) — vF[0rQ, p (", )H(l;tacm
+ da|lvT[0r, pl(t', ) — v [Or, pl(t", )l coa)

Then Lemma B.5 implies that there exists ¢; €]0, 00| such that

vt [0rQ, u) (", )

1

’U+[8TQ, :u] (tlﬂ ) -

ox; Ox; Co(clQ)

1 [e]3 [e3
U+ [8TQ, ,u] |t, — t”’5 + Cld2’t t”‘ 1+

B(]—00,T[,C%(c1Q))




B.2 Regularity of layer heat potentials 157

1
Tta o
,c1do ‘t/ — t”|§.
B(]—00,T[,C%(c1Q))

Accordingly, the map from the space C'2:*(87€2) to Cb% <} — 00,77, CO(CIQ)) which takes p

to %UJF[(?TQ, p] is linear and continuous. Thus the statement for %U+[8TQ, /] holds true.

0 U+[8TQ, M]

7

1
S max {217“101d1

The statement for %v*[ﬁTQ, -] can be proved following exactly the same lines. O

Next we consider the following lemma about the regularity of the map %v* (072, ).

Lemma B.7. Let a €]0,1[, T €] — 0o, +00] . Let Q be bounded open subset of R™ of class

CY. Let R > 0 such that c1Q C B, (0, R). Then the map from C'bl% (m, CO((?Q)>

to C2*(clQr) which takes p to %v+ (072, 1] is linear and continuous. Moreover, the map

from Cbl% (W, Co(aQ)) to C2%((c1B,(0, R) \ Q)7) which takes u to %v*[BTQ,,u] is

linear and continuous.

Proof. We first consider the statement for Zv*[07Q,]. Let p € Cl% (W, 00(8(2)>.
T

As already pointed out at the beginning of this section, we can assume that supp () C (Vp)7.
Lemma A.5 implies that

Ot or (1) = S0t (00— )1 8) + o P () (BA)

0
= S0t [0S, = (e, ) 2)
t 0
:/ @q)n(t_ﬂﬁ—y)(ﬂ(ﬂy) _H(t*’y)) dO'ydT,
—o0 JON

for all t,t* € | — 00, T, z € Q. In particular, by taking t* = ¢ in the equality (B.11), we have
that

2 060, ) = / O dult =70 — y)(ulr,y) — plt.y) doydr,  (B.12)

for all (¢,2) € Qp. The time Holder continuity of g and Lemma 1.17 (i) imply that there
exists a constant C o0 €0, 4+00[ such that

1 le—y|?

t—71,x — 7,y) — p(t, < Crodn lya ——— € ¢,
o R

0
=
ot

for all (¢t,z) € clQp, (1,y) € OrQ), 7 < t. Accordingly, Lemma 1.23 implies that the map
e o —
which takes 1 to 2v* [0, ] is bounded from C, 2 (] ~ oo, 11, 00(89)) to C9(cl Q).

Next we consider the space Holder quotient. We fix o/, 2" € Q, t € | — 0o, T'[. The equality
(B.12) implies that

n N ,
SO, (0, 2) — ot O, 8, ") (B.13)

t
0
[ B ) utr) — )
—o0 JON
t

0
[ ] G = putr) = ) doyir
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/x’—:r:
//|2

|z’ —x
/ 57 94 n(r 2" =yt = 7,y) — p(t,y)] doydr
1%

/| * ] [0 Lo
[t = 7y) = p(t,y)] doydr,

Now we consider the first term in the right hand side of equality (B.13). By inequality (1.4)
on the derivatives of the fundamental solution of the heat equation there exists a constant
Ko, €]0,+o0[ such that

//|2

/v = On(7,2" = y)[u(t = 7.y) — p(t,y)] doydr

l/|2

|z’ —x
’/ 57 q’ (12" = y)[u(t — 7,9) — p(t,y)] doydr
Vp

|x/7wu‘2 a
< —, (1,2
Lo e
/ 17 le _lz y‘ e 2 doydr
Vp

|2’ —x
< K
> 0,1H'LLHC$T(]7% ’Z[,CO(BQ))/O
//|2

P( C ” ” ( )n_l /|"17 «
=n010J(|H])] 4o 3T) 2 T2 dr
Cb (] OOJ [7C (652)) 0

)|t = 7.9) = (e, )| dorydr

//|2

-1
2K Cyllpll 14 8m) 2
Cy 2 (]-00,T[,CO(09))

a

The second integral in the right hand side of equality (B.13) can be estimated in the same
way by switching the role of 2’ and x”. Next we consider the third integral in the right hand
side of equality (B.13). By the Fundamental Theorem of Calculus and by inequality (1.4) on
the derivatives of the fundamental solution of the heat equation there exists K, 1 €]0, +00]
such that

9 )
' |z’ —a |2 \/V |:87-q)n(7—’ .’IJ/ - y) - E(I)n(/r: fl:'” - y):| [,U'(t - T, y) - M(t,y)] dO'ydT
= P
0
/| i /V 7.2 —y) = 5%l a — y)’ \u(t —7,y) — p(t,y)| doydr
o

< o s —al
< Il e (m)); =

AL

<C'J||M|| M o oo aQ)Z Ke, 1|2 —:1:”/ /m " a3

e +(a-Na" —y|? A e —y|?
e doydTd\
Vp

2

ijar

O, (1, A\ + (1 — A\)a” — y)’ do,drd)

n 1 a—3
=C a (8) K. 1|2 — a: T2 dt
JHMHC:% <m,co<am> jz:l e;n| 7 — | _—
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nfl
2Cypll aga (8m) =
C, 2 (=00, T[,C0 (09 B
< b (] 100_([% ( )) Z el CL' —LL' ||$ x//a 1
=1
2nCyllpll 14a (87)"= Z’LlKe,l
2 —00,T7, 0(9 J= 20
< 67 (= Tenen) W

Next we turn to consider the time Hélder quotient of Zv[drQ, u]. We fix (¢, z), (t',z) €
Qp, t' < t’. Equality (B.11) with ¢* = ¢’ implies

a t//
G ore s = [ | 5 alt” = 7o = )ulr.9) — nlt ) doyr,
VP
and u
0
ETa v [OrQ, u](t, x) / / — 1,2 —y)(u(r,y) — pt',y)) doydr.
VP

Accordingly, we have

&vﬂaﬂz, )t x) (B.14)

t” 8
:/ / a%(t” — 12 —y)(u(ry) — plt',y)) doydr
—o0 JVp

S ot OrOp(e" ) -

B / /vp %fbn(t’ — 7,z —y)(u(r,y) — u(t',y)) doydr

t//
/ / — 12— y)(u(ry) — u(t",y)) doydr
! — 2|t// t/ VP
/ / — 71,2 —y)(u(r,y) — u(t',y)) doydr
tl/ 2|tll t/ VP

t// 2|tl/ t/ 8 . a ,
x (u(r,y) = p(t'y)) doydr

2(t"—t") o
+/ (", y) — u(t’,y)]/ — &, (1,2 — y) drdo,.
Vp 0 (97'

First we consider the first term in the right hand side of (B.14). By inequality (1.4) on the
derivatives of the fundamental solution of the heat equation there exists Ky > 0 such that

t// a
/ Sr @t =72 = y)((r,y) = u(t',)) dodr
=2t —t'| JVp
v 7 n_1 78‘?_y‘2) 7 lto
_ —a— Yz _ —
< KOJHMHCZ%(W,CO@Q)) /t”—2|t”—t’|/vp(t )2 e (" —7)2 doydr
2(/.//
1
< Ky1C o &m) 2 " —r dT
S o1 JHMH 1ia 52 (e ooT[CO(aQ))( ) t//72|t“7t/|( )
n—1
2Ko,1cj|m||cl+ 8m)"7

_ ;r(}_oovT[vco(aQ)) (tll _ t/)%
(6%
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The second integral in the right hand side of (B.14) can be estimated in the same way by
swapping the role of ¢ and t”. Next we consider the third term in the right hand side of
(B.14). Lemma 1.17 (iii) implies that there exists a constant C | 14 . €]0, +00[ such that

lz—y|
0 0 |t/ — t"|e” 16171
— P, (t" — —y)— —o — < =
ot n( T, y) ot ( - T, X y)' > L1,0,16,c1Q i — T|§+2 )

for all y € 9, T €] — o0, t” — 2|t' — ¢"|[. Accordingly,
2|t —t/| 9 . P / /
[ (G === e = e =) () =l ) o

< 00116 cmHMH (] ooT[CO(aﬂ))(t//_t/)

t//_2‘t//_t/| " |z y‘
></ / (' — 1) 272 1607 (¢/ —T) dO'ydT
Vp

—00
o t"72|t"7tl| )
= (167) 2 C} C o " —t / ' —71)2"2dr
( ) 0,1,16,c19 JHNHC;%(W,CU(M))( ) - ( )
25 (167) "z C" C a
- 22 ( ) 0,1,16,c19 J”MHC:%(W,CO(SQ)) P
- (" — 3.
2 —«
Next we consider the last term in the right hand side of (B.14).
2t —t)
(") =t ) [ S talria — y)drds,
P 0 T
=| [ wten) = o2~ ). =) o,
Vp
1+«
<l 1z =) [ @, t)a - y)do
¢, 2 (ImooTLCO(09)) Ve Y

(771 e — >
< G ZeTLCOn) (g / (" — )T TR do,
(87)2 v,
CJHMH 4o
_ , 2 (]—o0,T] ooT[CO(BQ))(t —t’)%
V8 .

By the above computations, the statement for %v* [0r€, -] holds true.
The statement for %v‘[@TQ, -] can be proved following exactly the same lines. O

P

Next we consider the following lemma about the regularity of the double layer heat
potential w[0rS?, -].

Lemma B.8. Leta €]0,1[, T €]—oc, +00]. Let Q be a bounded open subset of R™ of class C12.
1ta
Let R €]0, +o0o[ be such that c1Q2 C B, (0, R). Then the map from C, > <} — 00,77, CO(OQ)>
1ta
to C, * <] — 00, T[,C%cl Q)) which takes p to w[07Q, ] is linear and continuous. Moreover,
doa 14a
the map from Cy * (] — 00,77, C’O(E)Q)> to C ? (] —00,T[,C%clB, (0, R) \ Q)) which takes

w to w= [0, p| is linear and continuous.
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1ta
Proof. Let € Cy* (] — 00,77, 00(89)). With the same change of variable of Lemma A.4
one can easily see that
doydt —/ 0
oN

/too /asz v (y)

Moreover, by Folland [36, Lemma 3.20| there exists a constant C' €]0, +oo] such that

Sn(z —y)|doy V(t,x) € Q.

() D, (t—T1,2—y)

0
Sp(x — do, < C Vz e Q.
Lo 3ty 5ete =] o < g
Accordingly,
t 0
8 Q? t7 S . o nt_ 3 - d d
o0 < Ul o [t ) doyr
0
— S, (r — do.
L [ s y>| )

<C o ,
< |\M||Cbl+2 (P TLco0m)

1ta
for all (t,) € Q7. Thus, w*[dr€, ] is bounded from C, * (] A CO(aQ)) to C9(cl Qy).
Next we turn to consider the time Holder quotient. We fix t/,¢” € | — 00, T'[, € Q. Then

w[OrQ, u)(t', z) 8TQ pl (", )

L Ll

(r,x—y ‘|Mt—7’l’) w(t" — 7, 2)| doydr

o // Lo
S HMHCLJQFE(W7CO(8Q) / /a\Q y y) dedT
< /
= CH:U'”CH?' (] T[CO(QQ))| |
This implies that the statement for w*[07€, ] holds true.
The statement for w™[0r€2, -] can be proved following exactly the same lines. O]

We are now ready to state the following result about the regularity of the single and
double layer potential in cl {27 and in cl€;, with respect the regularity of the density function.

Theorem B.9. Let a €]0,1[, T €] — 0o, +00], m € N\ {0}, i € {0,...,n}. Let Q be a
bounded open subset of R™ of class C"™®. Let R €]0,+o0[ be such that c1Q C B, (0, R). Then
the following statements hold.

(i) The map from the space C™ 2 ™~ 1H%(9:Q) to (clQr), which takes p
to azizﬁ[aTQ,,u], 18 linear and continuous. Moreover, the map from C’"T*"%mﬂ(am)
to C" 2" m=1¥e (] Qr), which takes p to %v‘*‘[@&),u], is linear and continuous.

(0rQ2) to (clQp), which takes
to vH[0rQ, p], is linear and continuous.
The same statements hold for v=[0rQ, ], 5-v~ [0, ], and %U‘[(?TQ, ], replacing

cl Qr with (c1B, (0, R) \ Q).
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(ii) The map from CmTw;ero‘(aTQ) to Cme;era(cl Qr), which takes p to wt[0rQY, ul, is
linear and continuous.

The same statement holds for w™[0r<Q, -], replacing cl Qr with (c1B,, (0, R) \ Q).
Proof. We first prove statements (i) and (ii) for v [97, ] and w*[0rQ, ]. We proceed by

induction on m. The case m = 1 for %UJF[QTQ, ] follows by Lemma B.6, and for Zv*[07Q, ]

follows by Lemma B.7. Next we consider the case m = 1 for v1[07€, ]. It suffices to prove
that

o o
(j) v*[0rQ, -] is continuous from C'z'*(drQ) to C, 2 (] — 00, T, CO(CIQ)>.

(33) %UJF (07, ] is continuous from C'2:*(87Q) to C2(clQy) for all I € {1,...,n}.
Statement (j) follows by Lemma B.5 (i) and statement (jj) follows by B.6. Next we consider
the case m = 1 for wt[0rQ, ). It suffices to prove that

J e

(j°) w*r[0rQ, -] is continuous from C’HTQ;H'O‘(@TQ) to Cy 2 (] — 00,77, C’O(CIQ)>.

(3j%) %uﬁ [0r€2, ] is continuous from CHTQ?HO‘((‘)TQ) to C2%clQy) for all I € {1,...,n}.

Statement (j%) follows by Lemma B.8. Statement (jj’) follows by formula (B.2) of Lemma B.2
and by Lemmas B.6, B.7. Indeed, the membership of v; € CP(9), implies that the map from

o. e e —
C2%(0rQ2) to Cp 2 (] — 00,17, 00(09)) which takes p to v is linear and continuous, for
allie{l,...,n}.
Next we consider the case m = 2. First we consider the statement for %v*[@TQ, . It
suffices to prove that

G %zﬁ [0r€2, ] is continuous from CHTQ?HO‘(E)TQ) to CP(cl Q).

(i) a%izﬁ [0r€2, ] is continuous from CHTQ;H‘“(@TQ) to ¢ 2" (W, C%(cl Q))
(3ii™) %;MU‘F[@TQ, -] is continuous from CHTQ;HO‘(@TQ) to C23%(clQp) for all I € {1,...,n}.
Statement (j*) follows by the case m = 1 and by the continuity of the embedding of

C’HTOC?HO‘(@TQ) into C'2%(87Q). Then we consider statement (jj**). By formula (B.3) of
Lemma B.3 we have that if u € CHTQ;HO‘@TQ) then

8?0U+[6TQ’ p)(t, x) (B.15)

=— Z v [0, Mi;[uvi]l(t, z) — wt [0rQ, pvi](t, x)
j=1

0 n
+a | /a D Mgy @0 = )l 0)(r.y) daydr,
Sy

for all (¢,x) € Q7. We point out that the second term in the right hand side of formula (B.15)
is a constant. Then statement (jj*) follows by equality (B.15), by Lemma B.5 and by the
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case m = 1 for wt [0, ]. Next we consider statement (jjj**). By equality (B.15) we have if
RS cs® “149(910) then
82
81’[81‘2'

vH[Or, p)(t, z) (B.16)

__ Z“;U 010 Myl ) (1.2) — 5w [0S 1. 2),

7j=1

for all I € {1,...,n} and for all (t,x) € Q. Then statement (jjj**) follows by equality (B.16)
and by case m = 1 for B%ZUJ“[GTQ, ] and w* (979, -]. Next we consider g v (979, ]. It suffices
to prove that

(i) %vﬂ@;ﬁZ, -] is continuous from CHT&52+“(8TQ) to CP(cl Q).
Jm 507 |0r(), -] 1s continuous {from =59 r{)) to = — 00,17, ¢ .
i) Zot[orQ, ] is conti from O3+ (97Q2) to C T, COclQ

(33 8901815 vT[0r, ] is continuous from CHTQ;Q*'O‘((?TQ) to C2%(clQy) for all 1 € {1,...,n}.

Statement (%) follows by the case m = 1 and by the continuity of the embedding of
C’HTQ?HO‘((‘)TQ) into C5° “i1+2(9rQ). Next we consider statement (jj**%). By formula (B.4) of
Lemma B.4 we have that if u € CHTQ;QJ”X(@TQ) then

0

T vt [0, p](t, ) =v ™ [0rQ, Byl (t, 33) (B.17)

— bap / a =7, 20 — Y)vk(y) (7, y)doy, dr,
o0 T

for all (¢,x) € Q7. We point out that the second term in the right hand side of formula (B.17)
is a constant. Then statement (jj***) follows by equality (B.17) and by Lemma B.5. Next we

consider statement (jjj*). By formula (B.4) we have that if y € c*s® 5i2+2(97Q) then
2
Oz 0t

UJr[aTQvu](ta Jj) = U+[8T978t,u’](t7x)v (BlS)

K

oxy

for all I € {1,...,n} and for all (t,x) € Qp. Then statement (jjj**) follows by equality (B.18)

and by the case m =1 for 5>~ xz v [0rQ, -]. Next we consider v1[d7€, -]. Tt suffices to prove that

(ji*) vF[0rQ, ] is continuous from C" 2 1H%(9,Q) to CY(cl Q).

Gi®v) 2 9V vT[0rQ, ] is continuous from CHTLI;HO‘(@TQ) to C’HTQ?H"‘(CI Qr) and %v*[@TQ, ‘]
is continuous from C’HTQ;HO‘(@TQ) to C2%(clQy), for all € {1,...,n}.

Statement (%) follows by the case m = 1 and by the continuity of the embedding of
cs® 1+9(9rQ) into C2(drQ). Statement (jj*°) follows by the case m = 2 for a%lzﬁ (07, -]
and by the case m = 1 for %U* (01, -], respectively. Next we consider w*[07€, -|. It suffices
to prove that

(j¥) wt[0r, ] is continuous from C’HTQQ'H"(@TQ) to C2(cl Q).

(%) 7 9 1+ (7€), ] is continuous from C 22+ (9,Q) to C 251+ (c1Qy) and 2wtorQ, ]
is continuous from C’%TQ?Q'H"((?TQ) to C2%(clQy), for all € {1,...,n}.
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Statement (V) follows the case m = 1 and by the continuity of the embedding of 52t (0rf2)
into C'"2* “i1+2(90Q) . Next we consider statement (jj?) for a—mluﬁ[@TQ, /. It suffices to prove
that

(k") 5 01yt (879, ] is continuous from CHTQ;H‘“(@TQ) to CP(clQr).
(kk") %w+ [0r€, ] is continuous from CHT&Q"'Q(@TQ) to ¢ 2 (] — 00, T[,C%cl Q))

(kkk®) 522w+ (0742, -] is continuous from O3 (9rQ) to CF7(9r9), for all k € {1,...,n}.

Statement (k") holds by the case m = 1 and by the continuity of the embedding of
CHTQ;H“(@TQ) into CHTQ?HCY((‘)TQ). Then we consider statement (kk”). By formula (B.2) of
Lemma B.2 and formula (B.4) of Lemma B.4 we have that if pu € C%Ta;%'a(@TQ) then

oS, Myll)(t2) — Lot [or0, mpl(t,2) (B.19)

Q
wt[0rQ, pl(t, z) = 5

0
Bxl

torQ, My pl)(t, x) — v [0, v O] (t, x)

QJ‘QJ QJ‘QJ

+ 85 n/ /6Q —7,20 — Y)v(y) (7, y)doy dr,

for all (t,x) € Qp. We point out that the second term in the right hand side of formula
(B.19) is a constant. Then statement (kk”) follows by equality (B.19), by the case m = 2 for
%v*[@TQ, /], and by Lemma B.5. Next we consider statement (kkk"). By formula (B.19) we

have that if u € CHTQ%'O‘(@TQ) then

0 = T[orQ, My B.2
Fon v 0r (k) ;amkamj” (972, My [ (t, z) (B.20)

0
2.l TOrQ, vidwp)(t, ),
)

for all k € {1,...,n} and for all (t,z) € Qp. Then statement (kkk”) follows by equality
(B.20), and by the cases m = 1 and m = 2 for B%Z_UJF[@TQ :]. Thus we have proved statement

(j;*) for %w*‘[@TQ, -]. Next we consider statement (jj¥) for Q +[3TQ ] By formula (B.5)
of Lemma B.4 and formula (B.1) of Lemma B.1 we have that 1f w e oy #3249(91Q) then

s wt [0pQ, p](t, ) = wT[0rQ, O] (t, x) Z P F[OrQ, viow(t, ), (B.21)
J

for all (¢,x) € Q7. Then the statement follows by equality (B.21) and by the case m =1 for
%w[aﬂz, J.

Now we prove that if statements (i) and (ii) hold for all m’ < m and m > 2, the they hold
for m + 1. First we consider the statement for a%izﬁ [0r€,-]. Tt suffices to prove that

650 %U+ [0rQ, -] is continuous from CmTM;m"’O‘(@TQ) to CY(cl Q).



B.2 Regularity of layer heat potentials 165

(3j”%) 8@8:{: vt [0rQ, ] is continuous from the space CmTﬂ;m+a(8TQ) to (c1Q7)
for all [ € {1, .,n}, and 8tam vT[0rf, -] is continuous from the space CmTM;m+O‘(8TQ)
(Cl QT)

to

Statement (j*%) follows by the case m = 1 and by the continuity embedding of i mta (0r9Q2)
into C'2°%(9rQ). Statement (jj**) for %{;MUJF[@TQ, /] follows by equality (B.16) and by the
inductive assumptions. Next we consider statement (jj**) for at%zzivﬂ(%ﬁ, -]. By formula
(B.4) of Lemma B.4 we have that if u € CmTM;m+°‘(8TQ) then

82

+
Otoz; v [0rQ, il (t, ), (B.22)

vH[OrQ, pl(t,z) =

8:131'

for all (t,x) € Q7. Then statement (jj*¢) for af;xi vT [0, ] follows by formula (B.22) and by
the inductive assumptions. Next we consider %v*[@TQ, -]. Tt suffices to prove that
vy 2v*[0r€, ] is continuous from CmRE A (910) to CY(clQr).

m+1+a m—1+a

(3j") e (900) to O

m+1+a(a Q) to C

m=lta (] Qp) and
m=2%e (] Qr), for all

v [0rQ, ] is continuous from C
+1+a

895 8t
atgv *T[0rQ, ] is continuous from C

led{l,...,n}.

Statement (j*%) follows by the case m = 1 and by the continuity of the embedding of
CHEHmE(90Q) into C73HH(9rQ). Statement (i) for 500" (909, ] follows by
formula (B.22) and by the inductive assumptions. Next we consider statement (jj**) for
8t2U T[0rQ,-]. By formula (B.4) of Lemma B.4 we have that if p € cm mHEe(910) then

+a

2

Eok v[OrQ, p](t, z) = gtv+[8TQ,6tu](t,x), (B.23)

for all (t,z) € Q. Then statement (jj***) for atQU T[0rQ, ] follows by (B.23) and by the
inductive assumptions. Next we consider v*[97€, -]. Tt suffices to prove that

(¥ v [0, -] is continuous from C’mTJm;m"'a(aTQ) to CY(cl Q).

e

(jjrity 2 Dy vT[0r€, ] is continuous from the space C~2" El St (910 to c mte (el Qp) for
all l € {1,...,n}, and EU *T[0rQ, -] is continuous from the space C’T’era(aTQ) to
Cm721+a ;m—l-i-a(cl QT)

Statement (jV***) follows by the case m = 1 and by the continuity embedding of Cimta (0rQ)
into C2%(rQ). Statement (jj****) follows by case m for 8tv+[(9TQ, -] and by case m + 1 for
R 0_y 970, -]. Finally we consider wt[97€,-]. It suffices to prove that

(j*) wT[0rQ, ] is continuous from (0rf2) to CP(clf2r).

(3j*) (%ler [07(, -] is continuous from the space o mHre(9r0Q) to CmTM?mJFO‘(cl Qr) for
alll € {1,...,n}, and Fwt[0rQ,] i (0rQ)
to ™2 S (el Q).
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Statement (j*) follows by the case m = 1 and by the continuity of the embedding of
R mEltea(9,0) into C’H—Ta?l"'a(@TQ). Next we consider statement (jj**) for %wﬂaﬁf@ .
It suffices to prove that

(ki) %uﬁ [0r€2, ] is continuous from o M (9rQ) to C(cl Q).

(kk™) %ﬁaﬂw-i_[aTQ) ] is continuous from O35 (9,0) to €21+l Q) for
all k € {1,...,n}, and %w*[@TQ,-] is continuous from Cm+21+a%m+1+a(aTQ) to

o m=2ta(c] Q).

Statement (k) holds by the case m = 1 and by the continuity of the embedding of
CmRE A (910) into O 2 F(97Q). Statement (kk'®) for %ﬁaxlwﬂ&fﬂf] follows

by equality (B.20), and by case m for a%kv"r [07), -] and by case m + 1 for %U+ (072, -].

Then we consider statement (kk**) for af;ml wt[0rQ,-]. By formula (B.5) of Lemma B.4 we
have that if © € C™ e mHFe(9.0) then
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otox;

wt[0rQ, p)(t, z) = %w"r (0782, O] (t, ), (B.24)
l

for all (t,x) € Qp. Then statement (kk'*) for %w‘*‘[@TQ, || follows by equality (B.24) and
by case m for 8%1“’+ (0782, -]. Thus we have proved statement (jj*@) for %uﬁ (0182, -]

The corresponding statements for v~ [07r€2, -], a%iv*[aTQ, ], v~ [0r9Q, ] and w[0r€Y, ]
can be proved in the same way. O
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