
Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Matematica “Tullio Levi-Civita”

CORSO DI DOTTORATO DI RICERCA IN SCIENZE
MATEMATICHE

CURRICULUM MATEMATICA COMPUTAZIONALE

CICLO XXXII

Solving a Multi-Attribute Vehicle Routing

Problem in the freight delivery industry

Tesi redatta con il contributo finanziario dell’Azienda Trans-Cel Auto-
trasporti S.n.c. con contratto di Apprendistato di Alta Formazione e
Ricerca

Coordinatore del Corso: Ch.mo Prof. Martino Bardi

Supervisore: Ch.mo Prof. Luigi De Giovanni

Supervisore aziendale: Filippo Sottovia

Dottorando: Nicola Gastaldon

ii

Abstract

L’industria del trasporto merci è caratterizzata da diversi problemi deci-
sionali che devono essere affrontati dagli operatori al traffico. Non solo si
deve realizzare la pianificazione delle rotte in anticipo, ma devono prenderesi
anche altri tipi di decisioni, in modo da far fronte ad eventi che possono di-
namicamente presentarsi durante le operazioni, come ad esempio congestioni
dovute al traffico o un guasto ad un veicolo. Ciascuna decisione può coin-
volgere diversi aspetti: ad esempio, la negoziazione del prezzo di un ordine
just-in-time dovrebbe tenere in considerazione lo stato corrente delle rotte
e la loro pianificazione. I software di supporto alle decisioni disponibili sul
mercato, seppur capaci di supportare il decisore in ciascuna area, tendono
a mantenere i processi separati.
Trans-Cel, una piccola azienda di trasporto merci a Padova (Italia), ha un
ramo di Ricerca e Sviluppo dedicato alla creazione di una piattaforma cloud,
chiamata Chainment, che contenga diversi sistemi di supporto alle decisioni
comunicanti fra loro attraverso un sistema di condivisione dati. Questi sis-
temi si affidano a un motore algoritmico che include un ottimizzatore per
il routing dei veicoli e sistemi di intelligenza artificiale. In particolare, il
problema di routing unisce le esigenze delle consegne espresse, studiate soli-
tamente in contesti urbani, a caratteristiche dei veicoli e delle rotte tipiche
di trasporti su distanze medio-lunghe, presentando caratteristiche peculiari
e di interesse nel contesto della Ricerca Operativa.
In questa tesi ci concentriamo sullo sviluppo di un algoritmo di ottimiz-
zazione capace di restituire una soluzione ad un nuovo Vehicle Routing Prob-
lem (VRP) ispirato dallo scenario di Trans-Cel, e che chiamiamo Express
Pickup and Delivery in freight Trucking problem (EPDT).
La formulazione classica del VRP prevede un insieme di clienti e una flotta
di mezzi e vuole definire un insieme di rotte tali che tutti i clienti siano visi-
tati esattamente una volta e allo stesso tempo la distanza complessiva delle
rotte sia minimizzata. Nella letteratura scientifica, la definizione base del
problema è stata generalizzata in modo da considerare ulteriori attributi che
spesso nascono dagli scenari reali, come ad esempio la capacità dei mezzi,
finestre temporali e ordini che prevedono operazioni di carico e scarico.
Spesso, nei casi reali, i decisori devono affrontare problemi con molti at-
tributi da considerare simultaneamente, dando origine a una classe di prob-
lemi di routing chiamata Multi-Attribute VRP (MAVRP), che include il
problema EPDT.
La tesi propone un algoritmo meta-euristico per la soluzione di EPDT, con
lo scopo di integrarlo nel motore algoritmico di Chainment. Ai fini di essere
compatibile con i requisiti della piattaforma, l’algoritmo è ideato in maniera
che la soluzione venga restituita in pochi secondi.
Il metodo proposto consiste di un’euristica a due livelli: nel primo livello,
un algoritmo Tabu Search ibridato con una Variable Neighborhood Descent

iii

esplora le assegnazioni degli ordini ai veicoli, mentre il secondo livello fa uso
di una Local Search per determinare la sequenza di clienti visitati e ottenere
una valutazione delle rotte.
L’efficienza dell’algoritmo è migliorata dall’uso di filtri nell’esplorazione dei
vicinati, da procedure per la valutazione rapida delle soluzioni, e dall’imple-
mentazione parallela di alcune componenti algoritmiche. Questi elementi
sono adattati agli specifici attributi di EPDT e sono tra i contributi della
tesi. Il miglioramento in termini di tempi di calcolo è stato validato dai
risultati sperimentali, che verificano i requisiti desiderati per l’integrazione
nella piattaforma.
La qualità delle soluzioni ottenute dall’algoritmo meta-euristico proposto è
stata valutato sia sul campo, attraverso il confronto con operatori presso
Trans-Cel, sia attraverso i bound ottenuti con metodi di programmazione
matematica. A tale scopo, la tesi propone una formulazione di program-
mazione lineare intera per EPDT e un metodo di soluzione del suo rilassa-
mento continuo basato su generazione di colonne. In particolare, la tesi pre-
senta delle nuove procedure di pricing adatte ai diversi attributi di EPDT. I
bound disponibili mostrano l’ottimalità o la quasi ottimalità delle soluzioni
fornite dall’algoritmo euristico per le istanze reali. Inoltre, l’algoritmo è
stato testato su benchmark di letteratura riguardanti il problema Pickup and
Delivery Problem with Time Windows (PDPTW), mostrando soluzioni com-
petitive con lo stato dell’arte. La tesi include anche uno studio preliminare
di nuovi approcci per problemi di vehicle routing in contesti dinamici. In
particolare, la tesi esplora la possibilità di trarre vantaggio dalla disponibilità
di dati storici sugli ordini attraverso la predisposizione di opportune strate-
gie anticipatorie (anticipatory algorithms). Una prima strategia si basa su
metodi di clustering degli ordini per definire dei punti spazio-temporali che
riassumono le informazioni sulla domanda futura. Una seconda strategia
si basa sul concetto di accessibilità, come definito nella teoria della scelta
discreta e della logistica territoriale, per rappresentare la capacità di una
rotta di intercettare ordini futuri.
L’algoritmo euristico proposto per EPDT è stato integrato nel motore al-
goritmico della piattaforma Chainment di Trans-Cel. La tesi descrive le
modalità di integrazione e gli adattamenti apportati agli algoritmi di ot-
timizzazione per una corretta interazione con i diversi moduli nel contesto
delle operazioni gestite dalla piattaforma, come, ad esempio, la pianificazione
iniziale delle rotte dei veicoli, la risposta a eventi dinamici o la contrattazione
dei prezzi degli ordini.

iv

Abstract

Freight transportation industry is characterized by several decisional prob-
lems that operations managers have to cope with. Not only the routes
planning must be realized before their execution, but also other types of
decisions must be taken, in order to answer events that may dynamically
occur during operations, as for instance road network congestion or vehi-
cle failures. Each decision can involve different aspects: for instance, the
price negotiation of a just-in-time order should take into consideration the
current routes status and planning. Off-the-shelf decision support software,
although able to independently support the decision makers in each area,
tend to keep tasks compartmentalized.
Trans-Cel, a small trucking company in Padova (Italy), has a Research and
Development branch developing a cloud-based platform, called Chainment,
able to host different decision support tools that can communicate through
a data sharing system. These tools rely on an algorithmic engine that in-
cludes a routing optimization algorithm and artificial intelligence systems.
In particular, the routing problem combines express couriers requirements,
generally studied in urban contexts, with routes and vehicle features typical
of medium- and long-haul trips, showing interesting characteristics that are
worth of study in the Operation Research field.
In this thesis, we focus on the design of an optimization algorithm able to
provide a solution to a Vehicle Routing Problem (VRP) inspired by the
Trans-Cel scenario, that we name Express Pickup and Delivery in freight
Trucking problem (EPDT).
The classical VRP definition includes a set of customers and a fleet of ve-
hicles and aims to define a set of routes such that all customers are visited
exactly once while minimizing the overall distance traveled. In the scientific
literature, the basic definition of the problem has been generalized in order
to consider additional attributes, often rising from real-world scenarios, as
for instance capacity of vehicles, time windows and orders with both pickup
and delivery operations. Often, in real-world cases, decision makers must
simultaneously deal with a large number of attributes, thus defining a class
of routing problems called Multi-Attribute VRP (MAVRP), which includes
EPDT.
The thesis proposes a meta-heuristic algorithm for the solution of EPDT,
with the aim of embedding it in the algorithmic engine of Chainment. In
order to comply with the platform requirements, the algorithm is designed
so that a solution is returned within few seconds.
The solution method we propose consists of a two-level heuristic: at the
first level, a Tabu Search algorithm hybridized with a Variable Neighbor-
hood Descent explores the order-to-vehicle assignments, while, at the second
level, it makes use of a Local Search to determine the sequence of customers
visited and obtain an evaluation of routes.

v

The algorithm efficiency is enhanced by the use of a granular exploration,
by procedures for fast evaluation of solutions in the neighborhoods, and
parallel implementation of specific algorithmic components. These elements
are adapted to the specific attributes of EPDT and represent some of the
thesis contributions. The improvement in computational times have been
validated by the experimental results, verifying the desired requirements for
the platform integration.
The quality of the solutions obtained with the proposed meta-heuristic al-
gorithm has been assessed both on the field, by comparison with Trans-Cel
operations managers, and through bounds obtained with mathematical pro-
gramming methods. To this purpose, the thesis proposes an Integer Linear
Programming formulation for EPDT and a solution method for its con-
tinuous relaxation based on Column Generation. In particular, the thesis
presents new pricing procedures suitable for the specific EPDT attributes.
The available bounds show optimality or near-optimality of solutions pro-
vided by the heuristic algorithm for real instances. Moreover, the algorithm
has been tested on literature benchmarks related to the Pickup and Deliv-
ery Problem with Time Windows (PDPTW), providing solutions that are
competitive with the state-of-the-art.
The thesis also proposes a preliminary study of new approaches for vehicle
routing problems in dynamic contexts. In particular, the thesis explores
the possibility of taking advantage from the availability of historical data
on orders by means of anticipatory strategies. The first strategy is based
on clustering methods that are applied to the orders to define space-time
points that aggregate the information on future demand. A second strat-
egy is based on the concept of accessibility, as defined in the discrete choice
theory and urban logistic, to represent the route capability of intercepting
future orders.
The heuristic algorithm proposed for EPDT has been integrated in the algo-
rithmic engine of the Chainment platform at Trans-Cel. The thesis describes
integration and the adaptation of the proposed optimization algorithms for
a proper interaction with the different modules in the operational context
handled by the platform, as, for instance, initial routes planning, reacting
to dynamic events or order price negotiation.

vi

Contents

1 Introduction 1

1.1 Problem Overview . 3

1.2 Structure of the thesis and contributions 4

2 Methodologies 7

2.1 Linear Programming . 8

2.1.1 The Simplex Algorithm 11

2.1.2 The Dantzig-Wolfe Reformulation 12

2.1.3 The Column Generation Algorithm 13

2.2 Algorithmic approaches to integrality con-
straint . 15

2.2.1 Cutting Plane . 16

2.2.2 Branch-and-Bound . 17

2.2.3 Branch-and-Price . 19

2.3 Dynamic Programming . 19

2.3.1 Bellman-Ford Algorithm 19

2.3.2 Elementary Shortest Path Problem with Resource Con-
straints . 20

2.4 Heuristic and Meta-heuristic approach 22

2.4.1 Greedy Algorithm . 23

2.4.2 Neighborhood Search 24

2.4.3 Other popular Meta-Heuristic 27

2.4.4 Core characteristics of heuristic strategies 29

2.5 Machine Learning tools . 30

2.5.1 Decision Tree Classifier 31

2.5.2 Support Vector Machine 32

2.5.3 K-Means . 34

2.6 Implementation Framework 34

2.6.1 SCIP . 34

2.6.2 SciKit-Learn . 35

vii

viii CONTENTS

3 Description of the problem 37

3.1 Introduction to Vehicle Routing Problems 37

3.2 A Multi-Attribute Express Freight Transportation Problem . 38

3.3 Entities and attributes . 42

3.3.1 Positions . 42

3.3.2 Vehicles . 42

3.3.3 Orders . 43

3.3.4 Routes . 43

3.4 Problem definition . 44

4 State-of-the-Art for MAVRPs 49

4.1 VRP definition and basic models 49

4.1.1 Mathematical formulations 50

4.2 VRP extensions in the literature 53

4.2.1 VRP attributes classification 53

4.2.2 Extension of the objective function definition 56

4.3 Comparison with EPDT . 57

4.4 Exact Methods for MAVRPs 58

4.5 Basic Exact Framework for VRP 59

4.5.1 The Pricing Problem 60

4.5.2 Branching strategies 61

4.6 Classical Heuristics for VRPs 62

4.7 Heuristic Approaches for MAVRPs 63

4.7.1 General approaches to MAVRPs 64

4.7.2 Specific approaches for pickup and delivery problems . 67

4.8 Approaches to Dynamic and Stochastic VRPs 68

4.8.1 Dynamic setting . 68

4.8.2 Stochastic setting . 69

4.8.3 Dynamic and Stochastic VRP 70

5 Design of a heuristic algorithm 73

5.1 A two-level heuristic . 74

5.2 The score function . 75

5.3 Solution evaluation and second-level heuristic 77

5.3.1 Initial task sequence 79

5.3.2 Second-level neighborhoods 79

5.3.3 Overall Outline of the second level heuristic 79

5.4 Construction of the first-level Initial Solution 81

5.5 First-level Tabu Search neighborhoods 82

5.6 Exploration strategy: Tabu Variable Neighborhood Search . . 83

5.6.1 Sequential neighborhood switch 83

5.6.2 Cyclic neighborhood switch 84

5.6.3 Deterministic and random exploration 84

5.6.4 Tabu list and termination criteria 84

CONTENTS ix

5.7 Overall outline of the first level heuristic 85

5.8 Granular Tabu Search . 86

5.9 Destroy and Repair phase . 86

5.10 Parallel Design . 88

5.10.1 Parallelization on CPU 89

5.10.2 Parallelization on GPU 89

6 Bounding through a Column Generation Algorithm 93

6.1 An Integer Linear Programming formulation 93

6.2 The Master Problem . 96

6.3 The Pricing Problem . 96

6.3.1 Labels . 97

6.3.2 Label extension . 98

6.3.3 Dominance . 99

7 Toward new Data-Driven approaches for DSVRPs 101

7.1 Dynamic and Stochastic VRP context 102

7.2 Data . 104

7.3 Data-driven instance augmentation 105

7.3.1 Overall Procedure . 105

7.3.2 Representative Orders 106

7.3.3 Choosing relocation positions and waiting times . . . 108

7.3.4 Analytical insight of waiting times 109

7.3.5 Towards an application to EPDT 115

7.4 Accessibility Approach . 116

7.4.1 Overall Procedure . 116

7.4.2 Data-driven accessibility measure 117

7.4.3 Towards an application to EPDT 119

8 Integration in a decision support system 121

8.1 Integrated support tool . 121

8.2 The Orders Portal . 122

8.3 The Driver App . 124

8.4 The Planning Module . 125

8.5 The Demand Forecast Tool 126

8.6 The Algorithmic Engine . 127

8.6.1 The routing optimizer 127

8.6.2 Predictive models . 128

8.7 Implementation technologies 129

9 Computational Results 135

9.1 General settings . 135

9.2 Real-world Benchmarks definitions 137

9.3 Results of basic algorithm on real-world benchmarks 138

x CONTENTS

9.3.1 Selecting the initial solution procedure 138
9.3.2 Improvements from basic algorithmic components . . 139

9.4 Advanced algorithm settings on real world instance 140
9.4.1 Effect of filtering and parallel explorations 141
9.4.2 Impact of alternative exploration strategies 144
9.4.3 Statistical significance in algorithm selection 144

9.5 Assessment through optimality bounds 145
9.6 Tests on dynamic settings . 147

9.6.1 Price estimation . 147
9.6.2 Marginal cost estimation 148
9.6.3 Marginal cost estimation with 3 orders 148

9.7 Comparison with Literature Benchmarks 149

10 Conclusions 151

Chapter 1

Introduction

Operations managers from the freight transportation industry have to deal
with difficult decision problems arising during the work day. The planning of
vehicles routes for satisfying customers requests is the most straightforward
one, but many more issues take place during the operations, as for instance
reacting to traffic jams, truck failures, delays on the load and unload at cus-
tomer facilities. Not only the choices on the routing context play a role, but
also other contour decisions contribute to the quality of the transportation
service, with an indirect impact on the routing, as for example the price to
assign to an incumbent customer request, as well as a marketing strategy
based on defining low- and high-request rate areas. Off-the-shelf software
tools are widely used by transportation companies in order to assist the
operations managers in these difficult tasks: tools for real-time fleet man-
agement (e.g. TomTom Telematics [102]), vehicle route planning support
(e.g. Driver [36]) as well as route optimizers (e.g. Workwave [115]) and
on-line reservation of delivery time windows (e.g. Transporeon [107]).
Although these products are able to support the decision maker in each
specific contexts, they keep tasks compartmentalized. As a consequence,
the user will not likely see the broadest view of his supply-chain, missing
potential benefits from coupling the systems. For instance, the price of an
incumbent just-in-time request may be better decided if compared to the
marginal cost in the current routes: pricing and routing are then interlaced
by this point of view. Areas with high density of requests may support the
routing design, e.g. asking for routes that traverse regions with higher re-
quests rate: marketing and routing are then connected.
Trans-Cel, a small freight transportation company located in Padova (Italy),
carries out the development of Chainment (see Figure 1.1), a cloud-based
platform that interconnects various management tools through a data-sharing
system. The input form contains different views (customer-side and oper-
ations manager-side) for handling requests: the customer issues the trans-
portation requests and is notified about the status of the order, which in turn

1

2 1. Introduction

Figure 1.1: The inter-connection of Chainment modules.

is tracked by the Driver App. The operations manager proposes a price for
the order that is negotiated on-line. The driver app is meant to truck drivers
for receiving information on the route to execute (or any change to the cur-
rent one), and transmitting to the central system feedbacks on operations
completion, delays and truck maintenance issues. Further modules provide
a geographical interface to the routes and locations of customers (Route
Map), as well as statistical analysis of customers distribution over the areas
of interest (Demand Stat).
The main support functionalities in the platform rely on an optimization

engine and on artificial intelligence models. In particular, the optimization
engine has to solve a vehicle routing problem that, in the incumbent context,
issues interesting questions in the Operation Research field. In this research
project we focus on the design of an optimization algorithm able to provide
a solution to a vehicle routing problem inspired by the Trans-Cel scenario,
that we named Express Pickup and Delivery in freight Trucking problem
(EPDT). Besides solving EPDT, the algorithm is meant to provide the
framework for the procedures to be implemented in the Chainment opti-
mization engine, so it must comply with specific requirements dictated by
the platform modules and the trucking operational context.

1.1 Problem Overview 3

Figure 1.2: The MAVRP under study

1.1 Problem Overview

EPDT is modeled as an optimization problem belonging to the class of Ve-
hicle Routing Problems (VRP, [104, 106] among others). The VRP classic
definition consists of a set of customers and a fleet of identical vehicles,
starting at a special location called depot, which have to visit each cus-
tomer location while minimizing the overall traveled distance.
Most of the times, in real-world cases, a VRP comes with extra attributes
that must be taken into account by operations managers while finding a
solution, as for instance the capacity of vehicles, or the definition of pickup
and delivery tasks, or the requirement of specific time windows.
EPDT comes with a large amount of attributes that play a role in the de-

cision phase. As a consequence, EPDT belongs to the class of the so called
Multi-Attribute VRPs (MAVRPs) [111, 113]. In Figure 1.2, we report the
main features of EPDT. As we will detail in Chapter 3, in EPDT we con-
sider a heterogeneous fleet, with different weight and volume capacities and
loading tools. Drivers are subject to the European Hours of Service Regu-
lation setting rules for maximum drive and work time as well as mandatory
breaks. Customers ask for a just-in-time service to be fulfilled in the same
working day or two consecutive days. Orders consist of multiple pickup and
multiple delivery tasks, and all pickups must be visited before any delivery.

4 1. Introduction

Moreover, time windows are specified for each task, as well as a revenue
for completing the order and a urgency definition. Routes may or may not
contain the depot and can contain pending orders from the day before and
for the day after. In addition, a preferred or mandatory location can be re-
quired as last visit in the route, as well as a preferred maximum route length.
Further attributes taken into account are a preferred minimum number of
vehicles available at the depot, subsets of orders possibly assigned to a same
vehicle and preferred order-to-vehicle assignment. The problem goal is the
maximization of the net profit, so that orders may be discarded at the end
of the solution procedure if not economically convenient.
In the context under study, order features are typical of intercity less-than-
truckload couriers, however, the presence of urgent just-in-time requests
reduces the impact of freight consolidation, typical of this setting, and in-
troduces features similar to express couriers operations in urban contexts.
As a consequence, the MAVRP under consideration shows some peculiar
features that motivate the design of solution methods tailored on EPDT.
For instance, the presence of multi-pickup and multi-delivery tasks as de-
scribed above is, to the best of our knowledge, an attribute which is not
treated in the literature and that needs to be suitably handled.
Researchers have investigated several exact and heuristic approaches to solve
different classes of VRPs. The former are mainly based on mathematical pro-
gramming, the latter on neighborhood search or genetic algorithms. Because
of the high complexity of EPDT, together with the platform requirements
for an acceptable computational time, we will consider a heuristic approach
and, in particular, a solution method that hybridizes a Tabu Search algo-
rithm with a Variable Neighborhood Descent, where multiple neighborhood
are explored at each iteration.
In our context, the presence of software and hardware tools for real-time
fleet management and data tracking fosters our research toward dynamic
and stochastic versions of the VRP: in the former case, the requests is not
completely known beforehand, but customer may ask for some operation
during the execution of the planning; the latter case consists of the presence
of parameters in the VRP problem affected by uncertainty and asking for
suitable algorithmic techniques to cope with it.

1.2 Structure of the thesis and contributions

The thesis is divided into the following chapters:

• Chapter 2 provides the interested reader with a general and prelimi-
nary outline of the theoretical and methodological context supporting
the research developed throughout this work. In particular, the first
part gives the definition of a mathematical programming model, fo-
cusing on the Linear Programming case. We give a review of the Sim-

1.2 Structure of the thesis and contributions 5

plex algorithm and of decomposition techniques, as the Dantzig-Wolfe
formulation and the related Column Generation algorithm. We also
provide a description of the main methods to deal with Mixed Inte-
ger Linear Programming problems, like the Branch-and-Bound or the
Branch-and-Price algorithms. A quick description of Dynamic Pro-
gramming algorithms for the Shortest Path Problem is given. More-
over, we explore the main heuristic approaches to Combinatorial Op-
timization problems, as well as the machine learning tools of interest
for this thesis;

• Chapter 3 is devoted to the description of EPDT, the core problem of
the thesis. A short introduction to Vehicle Routing Problems (VRPs)
is provided, with a focus on Multi-Attribute VRP (MAVRP). In par-
ticular, we give a formal definition of EPDT as well as a model that
formalizes all its specific attributes. The EPDT definition outlines a
general problem statement that targets several vehicle routing scenar-
ios among freight transportation companies and, to the best of our
knowledge, is new to Operations Research literature;

• in Chapter 4 we review a VRP classification of the main extensions
studied by researchers. Moreover, we describe some of the state-of-the-
art solution methods that are proposed by literature to tackle several
types of MAVRPs, both with exact and heuristic approaches, along
with a more detailed description of popular algorithms for VRPs;

• Chapter 5 focuses on devising a meta-heuristic algorithm for the solu-
tion of EPDT. We explain in details all the components of the meth-
ods, that is based on a Tabu Search algorithm embedded in a Variable
Neighborhood Descent framework. The algorithm presented in this
chapter and its components represent one of the main contribution of
the thesis. In fact, the algorithm includes specific features that are
designed to match all the attributes of EPDT, as well as efficiency
requirements: a fast evaluation phase for routes containing requests
over two consecutive days; a special insertion operator to handle the
multi-pickup and multi-delivery orders; a granular neighborhood ex-
ploration that filters less-promising neighbor solutions based on cliques
of a tailored graph for multi-pickup and multi-delivery orders; parallel
implementations of neighborhood exploration and evaluation to reduce
the computational time of the overall procedure;

• Chapter 6 describes the algorithm that provides optimality bounds to
the solution of EPDT. We implemented a Column Generation algo-
rithm able to deal with EPDT instances. We formulate the Master
Problem as a Set-Covering model, and the Pricing Problem is de-
fined as a tailored Elementary Shortest Path Problem with Resource

6 1. Introduction

Constraints (ESPPRC). The main contribution of the chapter is the
development of a specific label correcting algorithm for ESPPRC, able
to cope with all the attributes of EPDT. In particular, in order to deal
with multi-pickup and multi-delivery orders, the algorithm relies on
a brand-new label definition and on adapted label extension function
and dominance rules;

• in Chapter 7, we make a preliminary exploration of two original data-
driven approaches to tackle EPDT in dynamic and stochastic settings.
The chapter focuses on special EPDT cases and on anticipatory tech-
niques that, with the aim of keeping the computational effort low, do
not make use of simulation. The first method is based on clustering
the past orders to obtain space-time strategical points to summarize
information on future requests. The second method assigns an acces-
sibility measure to each point in space and time in order to represent
the potential of each point and lead routes toward areas with high
accessibility, possibly anticipating the future demand;

• Chapter 8 describes the integration of the algorithm defined at Chapter
5 within Chainment, the software platform that supports operations
at Trans-Cel, the small freight transportation company whose busi-
ness model inspired the definition of EPDT. We step into each mod-
ule of Chainment, depicting how the optimization algorithm has been
adapted to meet the platform requirements and how the interaction
with predictive models comes into play; we remark the capability of
the algorithm we devised to match the platform requirements in terms
of efficiency, reaction to dynamic events and marginal cost evaluation;

• Chapter 9 contains all the computational results we collected through
several testing on both literature benchmarks and real instances from
Trans-Cel. Results assess the quality of the solutions proposed by the
algorithm by means of a comparison with the optimality bounds re-
turned by the Column Generation algorithm. Moreover, the efficiency
gain achieved with neighborhood filtering and parallel implementa-
tions with respect to the plain solution method has been validated by
our experimental results. Concerning literature benchmarks, compu-
tational tests consider instances of the Pickup and Delivery Problems
with Time Windows (PDPTW) and the comparison with state-of-the-
art methods shows the competitiveness of the solution approach pro-
posed in this thesis in terms of quality of the solutions found;

• finally, in Chapter 10 we conclude this thesis with final observations
and future research perspective.

Chapter 2

Methodologies

Optimization Problems have been largely studied by researchers, and dif-
ferent methods have been devised in order to efficiently solve them. An
optimization problem is defined by a set of variables inside a domain and
subject to some constraints, and an objective function that we want to opti-
mize, that is minimize or maximize. In particular, a solution that optimizes
the problem is called optimal solution. We will refer to the minimization
case, an analogous theory holds for maximization.
There exist different solution methods to obtain one or more solutions to
optimization problems. The algorithms that can find the optimal solution
to the incumbent problem are called exact algorithms. Sometimes one must
deal with problems that are computationally “difficult” to solve, mainly be-
cause of the large size of the instance and the complexity of the problem
itself. In these cases, quite common in real applications, one can rely on
algorithms that aim to find a feasible solution that is close to the optimum
within a short (polynomial at most) amount of time. These type of solution
methods are called heuristic algorithms.
A wide class of optimization problems can be formulated as mathematical
programming problems and, in particular, Linear Programming (LP) prob-
lems. Below we describe important exact methods for Linear Programming
problems: the Simplex algorithm and Column Generation. Then we outline
two main strategies to deal with Mixed Integer Linear Programming (MILP)
problems, where the domain of some variables is limited fo integer numbers:
the Cutting Plane method Branch-and-Bound. A section is dedicated to a
popular exact approach for the solution of the Shortest Path Problem based
on dynamic programming, the Bellman-Ford algorithm.
The chapter gives also a description of some popular heuristic techniques, in
particular Greedy algorithms, Local Search, Variable Neighborhood Descent
and Tabu Search. Finally, the main Machine Learning tools we used are il-
lustrated, both for regression and classification purposes: the Support Vector
Regression, the Decision Tree Classifier and the K-Means clustering algo-

7

8 2. Methodologies

rithm. A complete description about LP and MILP and exact algorithms
can be found at [17, 22, 61, 34]. Refer to [101] for a detailed characterization
of heuristic and meta-heuristic methods.

2.1 Linear Programming

Mathematical Programming is a technique to handle an optimization prob-
lem by means of a mathematical formulation. In this context, the basic
definition of a Minimization Mathematical Programming Problem is given
by:

min
x

f(x) (2.1)

s.t:

gi(x) ≤ 0 i = 1, . . . , I (2.2)

hj(x) = 0 j = 1, . . . , J (2.3)

x ∈ X(⊆ Rn), (2.4)

where x ∈ Rn is a vector of n variables, f is the objective function, gi
and hj are, respectively, inequality and equality constraints and X is the
domain. The domain together with the constraints define a subspace of
Rn called feasible region, and a feasible solution (or, simply, solution) to
the minimization problem is any vector of variable x which belongs to the
feasible region.
Depending on the the domain and the constraints, a minimization problem
can be:

• infeasible: if the feasible region is empty;

• unbounded: if the objective function can be arbitrarily decreased in
the feasible region;

• feasible: in all the other cases.

An optimal solution xs to a minimization problem is characterized by the
fact that for any other solution xr of the same problem, we have that f(xs) ≤
f(xr).
Mathematical Programming Problems can be classified by the nature of
their objective function, domain and constraints. Below we report a list of
the main types:

1. Convex Optimization studies the case where both the objective func-
tion and the feasible region are convex;

2. Linear Programming is a special case of the convex optimization class
where the objective function and the constraint functions are all linear;

2.1 Linear Programming 9

3. Integer Programming deals with optimization problems with integer
variables;

4. Quadratic Programming admits quadratic terms in the objective func-
tion whereas the constraints are linear;

5. Non-Linear Programming allows both the objective function and the
constraint functions to contain non-linear terms.

Linear Programming (LP) Problems are characterized by the fact that both
the constraints and the objective functions are linear functions. In this
context every LP problem can be rewritten as

min
x

cTx (2.5)

s.t:

Ax = b (2.6)

x ≥ 0, (2.7)

where x, c ∈ Rn are, respectively, the vector of (decision) variables and the
vector of costs, b ∈ Rm is the vector of constant terms for each constraint
and A ∈ Rm×n is the matrix of constraints. We call the form (2.5 - 2.7) of
the problem the standard form.
The linearity of the constraints endows the domain with special geometri-
cal properties: the region identified by the constraints is called Polyhedron.
The points that belong to a polyhedron P can be represented by the linear
combination of the extreme points (vertices) and the extreme rays of P , as
stated by the following theorem:

Theorem 2.1 (Minkowski-Weyl Polyhedron representation). Given a poly-
hedron P ⊆ Rn with extreme points v1, . . . , vs ∈ Rn and extreme rays
ρ1, . . . , ρt ∈ Rn, for any x ∈ P we have that there exist λ1 . . . λs ∈ R and
θ1, . . . , θt ∈ R such that

x =
s∑
i=1

λivi+
t∑

j=1

θjρj ,
s∑
i=1

λi = 1, λi, θj ≥ 0 ∀i = 1, . . . , s and j = 1, . . . , t.

Thanks to the linearity of the objective function, combined with Theorem
2.1, we obtain the theorem below:

Theorem 2.2. Given an LP problem minx{cTx, x ∈ P} if P is non empty
and bounded, then the problem is feasible and there exists at least one optimal
solution corresponding to a vertex.

This theorem tells us that the optimal solution of an LP problem can be
searched in the set of the vertices of the polyhedron (see an example in

10 2. Methodologies

Figure 2.1: Example of optimal solution (in red) in a polyhedron of a LP
with objective function f . Green, orange and blue lines correspond to the
constraint linear functions.

Figure 2.1). Nevertheless, in large-size problems, the number of vertices
can be exponentially large, then we cannot rely on exhaustive methods.
Therefore, we need an algorithm that performs a clever exploration of such
vertices, in order to reduce the computational time.
Such algorithm, called the Simplex algorithm, makes use of a link between
the geometrical properties pointed out above and an algebraic point of view
of the same concepts, that we briefly describe hereinafter.
We recall that a basis of a matrix A is a square sub-matrix of A with full

rank. Given a system of equations of a LP problem in standard form Ax = b
and B basis of A, we can rewrite it as

[
B F

] [xB
xF

]
= b

A solution to the system can be obtained by setting xF = 0. Such solution is
called basic solution, and it is feasible if and only if B−1b ≥ 0. The theorem
stated below guarantees a correspondence between the basic solutions and
the vertices of a polyhedron.

Theorem 2.3. Given an LP problem minx{cTx, x ∈ P} with P non empty
bounded and defined by the system of equations Ax = b, x ≥ 0, we have that
x is a feasible basic solution of the system of equations if and only if it is a
vertex of the polyhedron P .

This theorem suggests that exploring the vertices while searching the op-
timal solution is equivalent, from an algebraic point of view, to visiting
the basic solutions, and this latter routine can be exploited by a solution
method, as the Simplex Algorithm described in the following.

2.1 Linear Programming 11

2.1.1 The Simplex Algorithm

The Simplex Algorithm is an exact method to find the optimal solution of
an LP problem by moving through the vertices of the polyhedron defined
by the constraint matrix. The main idea behind this algorithm is starting
from a vertex and moving to adjacent vertices so that the objective function
improves till either reaching optimality, if the problem is feasible, or detect
the unboundness of the problem.
A fundamental observation about the simplex method is that moving from
one vertex to another is equivalent to swap one column in the basis B with a
column out of the basis in F , while preserving the non-negativity condition
for a basic solution to be feasible and ensuring that the new basis is full-
rank.
We rewrite once again the system of equations Ax = b in a more convenient
form in order to let suitable columns enter and exit the basis:

Definition 2.1. Given an LP problem P = minx{Ax = b, x ≥ 0} and a basis
B ∈ Rm×m of a full-rank matrix A ∈ Rm×n, then P is in canonical form if
the objective function z := cTx and the variables in basis are expressed as
functions of the variables out of basis.

z = z̄B +
∑
j∈JF

c̄jxj (2.8)

xBi = b̄i −
∑
j∈JF

āijxj ∀ i = 1, . . . ,m (2.9)

where z̄B and b̄i are the values of, respectively, the objective function and
the variables of the basic solution with basis B, JF is the set of the indices
out of base B, c̄j and āij are, respectively, the cost coefficients (also called
reduced cost), and the constraint coefficient at row i, relative to the j-th
variable out of basis.
We can collect some useful information by the canonical form about

1. the value of the variable xj that sets to 0 the variable leaving the basis;

2. the impact on the objective function;

3. the new values of the variables in the basic solution.

In particular, we observe in (2.8) that the absence of negative reduced costs
implies that any variable that enters the basis will just deteriorate the ob-
jective value, so we can use it as an optimality test to stop the run of the
algorithm and return the current (optimal) solution.
Therefore, by (2.8) we can choose any variable xj such that c̄j < 0 to enter
the basis. We then increase the value of xj as much as possible so that (at

12 2. Methodologies

least) one variable in the basis reaches value 0, or equivalently, it has been
selected to leave the basis. Notice that one cannot set xj at any value that
makes xB negative, otherwise we obtain an infeasible solution. If we can
infinitely increase the chosen xj , then the problem is unbounded, and this
corresponds (by 2.9) to the unboundness condition

āij ≤ 0 ∀i = 1, . . . ,m.

When this condition is not met, one can see that the best value at which
the variable enters the basis is

xj = min
i

{
b̄i
āij

: i = 1, . . . ,m, āij > 0 ∀ i
}
.

We sum up the steps of the simplex algorithm in Algorithm 1.

Algorithm 1: Simplex Algorithm

1 Initialization: start from a feasible basic solution of the basis B;
2 set the LP in the canonical form with respect to B and compute the

reduced costs c̄j ∀j ∈ JF
3 if c̄j ≥ 0 ∀j ∈ JF then
4 STOP: optimal solution found;
5 end
6 Select any xh s.t: h ∈ JF and c̄h < 0
7 if āih ≤ 0 ∀i = 1, . . . ,m then
8 STOP: problem unbounded;
9 end

10 compute min
{
b̄i
āij

: i = 1, . . . ,m, āij > 0 ∀ i
}

;

11 update the next basic solution.
12 goto Step 2.

2.1.2 The Dantzig-Wolfe Reformulation

In the previous section we have found a relation between the solutions of a
system of inequalities Ax = b and a polyhedron P ⊆ Rn. In particular, an
LP problem minx{cTx,Ax = b, x ≥ 0}, can be rewritten as

min
x
{cTx, x ∈ P}.

By Theorem 2.1, we know that any point x of a non empty convex poly-
hedron P can be expressed by a convex combination of its extreme points
{v1, . . . , vs} and a weighted combination of its extreme rays {ρ1, . . . , ρt}.

2.1 Linear Programming 13

Hence, replacing each variable of the LP with its representation by extreme
points and extreme rays, we obtain the Dantzig-Wolfe reformulation:

min

s∑
i=1

(cT vi)λi +

t∑
j=1

(cTρj)θj (2.10)

s.t:

s∑
i=1

(Avi)λi +

t∑
j=1

(Aρj)θj = b (2.11)

s∑
i=1

λi = 1 (2.12)

λi, θj ≥ 0. (2.13)

We observe that this reformulation may be very useful, e.g. when there
are “difficult” constraints in the LP problem, since they are all implicitly
respected, as we will se for the case of VRP problems and its extensions.
Nevertheless, the number of variables is exponentially large, so we must
make use of some suitable algorithm that can deal with such type of LP
problems, as for instance the Column Generation algorithm.

2.1.3 The Column Generation Algorithm

The Column Generation (CG) algorithm decomposes the original problems
into two sub-problems:

• The Master Problem (MP): its solution corresponds to the optimal
solution of the original problem;

• The Slave Problem (SP): it generates variables to add into the Reduced
Master Problem (RMP), that is a version of the Master Problem de-
fined on a subset of variables.

Before the description of the algorithm in Algorithm 2, we need some con-
cepts of duality theory in linear programming.
Every LP problem P (called Primal Problem) is associated with another
LP problem D (called Dual Problem) with some special relation between
its characteristics, mainly the variables and the constraints, the inequality
signs and the domain, the objective function and the constant terms. The
relations are summarized in Table 2.1, where the xj and ui are the primal
and dual variables respectively.

The values of the objective function of the Primal and Dual problems in
Linear Programming are in a particular relationship stated by the following
theorems:

14 2. Methodologies

Primal Problem Dual Problem

min max
xj ≥ 0 ATj u ≤ cj
xj ∈ R ATj u = cj
xj ≤ 0 ATj u ≥ cj
Aix ≥ bi ui ≥ 0
Aix = bi ui ∈ R
Aix ≤ bi ui ≤ 0

Table 2.1: Primal-Dual relations

Theorem 2.4 (Weak Duality). Given a primal problem P = min{cTx :
Ax ≤ b, x ≥ 0} and its dual problem D = max{bTu : ATu ≥ c, u ≥ 0}, if the
feasible regions are not empty, for any feasible solutions x of P and u of D
it holds

bTu ≤ cTx.

Theorem 2.5 (Strong Duality). Given a primal problem P = min{cTx :
Ax ≤ b, x ≥ 0} and its dual problem D = max{bTu : ATu ≥ c, u ≥ 0}, if
the feasible regions are not empty and x∗ is optimal for P , then there exists
also an optimal solution u∗ for D and it holds:

bTu∗ = cTx∗.

Corollary 2.1. Given a feasible solution x∗ to a primal problem P =
min{cTx : Ax ≤ b, x ≥ 0} and a feasible solution u∗ to its dual problem
D = max{bTu : ATu ≥ c, u ≥ 0} and bTu∗ = cTx∗, then x∗ and u∗ are also
optimal.

The first step in the Column Generation is finding the primal and dual solu-
tions x∗ and u∗ of the RMP by using the simplex algorithm. In particular,
the dual solution u∗ returned by the simplex is such that bTu∗ = cTx∗. The
primal solution x∗ is feasible for the MP, and if also u∗ is feasible for its
dual, then by Corollary 2.1 we have optimally solved MP and the algorithm
stops. If u∗ is infeasible for the dual problem of MP, there exists at least
one violated constraint, that is there exists a j ∈ {1, . . . , n} such that

cj − uTAj < 0.

Notice that, since the solution u∗ provided by the simplex is by construc-
tion u∗ = cBB

−1 with B the optimal basis of RMP, finding such violated
constraint in the dual problem of MP corresponds to finding a variable in
the primal MP with negative reduced cost c̄j . Finding such a variable or
proving that no such variable exists, is a non-trivial task solved by SP. One
way to solve SP is modeling it as an optimization problem

min{cj − uTAj , j = 1, . . . , n}.

2.2 Algorithmic approaches to integrality con-
straint 15

If this problem provides a negative solution, the corresponding variable is
added to the RMP and the procedure is iterated.

Algorithm 2: Column Generation Algorithm

1 Initialization: start from RMP;
2 solve the RMP and obtain primal and dual solutions x∗ and u∗;
3 solve the SP to find if ∃ j ∈ {1, . . . , n} s.t: c̄j < 0};
4 if c̄j ≥ 0 ∀ j = 1, . . . , n then
5 STOP: optimal solution found;
6 end
7 else
8 add to RMP a variable xj s.t: c̄j < 0.
9 goto line 2.

10 end

2.2 Algorithmic approaches to integrality con-
straint

The Simplex algorithm and the Column Generation algorithm work on the
assumption that all variables are continuous. Thus, they are not suitable for
problems containing one or more integer variables (see Figure 2.2). Problems
of this type are called Mixed-Integer Linear Programming (MILP) problems
and they can be formulated as

min
(x,y)

cT1 x+ cT2 y (2.14)

s.t:

D1x+D2y ≤ d (2.15)

A1x ≤ b1 (2.16)

A2y ≤ b2 (2.17)

xi ∈ R+, i = 1, . . . , n1 (2.18)

yj ∈ Z+. j = 1, . . . , n2 (2.19)

where n1 and n2 are respectively the number of real and integer variables in
the problem.

Several problems in Operations Research can be formulated as MILP,
since integer and binary variables can represent a discrete choice or a logical
selection.
A MILP can be relaxed by dropping the integrality constraint, then the

16 2. Methodologies

Figure 2.2: Example of a MILP with objective function f . The image shows
the difference between the optimal solution found by the Simplex algorithm
on the continuous relaxation of the problem (red point) and the optimal
solution of the MILP (green point).

problem becomes

min
(x,y)

cT1 x+ cT2 y (2.20)

s.t:

D1x+D2y ≤ d (2.21)

A1x ≤ b1 (2.22)

A2y ≤ b2 (2.23)

xi, yj ∈ R+, i = 1, . . . , n1 and j = 1, . . . , n2 (2.24)

The solution of the relaxed problem, may be infeasible to the original prob-
lem, because of the potential presence of fractional values in correspondence
of the integer variables. However, the matrix of constraints may have some
properties such that the solution to the continuous relaxation of the prob-
lem contains only integer variables: this is the case, for example, of Totally
Unimodular constraint matrices.

Definition 2.2. A matrix A is called Totally Unimodular if the determinant
of every minor of A is 0, +1 or −1.

2.2.1 Cutting Plane

One way to deal with MILPs is based on the concept of convex hull. The
convex hull is the intersection of all convex polyhedra containing the feasible
region. Loosely speaking, it is the “tightest” convex polyhedron enclosing

2.2 Algorithmic approaches to integrality con-
straint 17

the feasible region. Given a MILP and the set F containing all its feasible
points, we can define the following relaxation of the problem

min
x

cT1 x+ cT2 y (2.25)

s.t:

x, y ∈ conv(F), (2.26)

(2.27)

where conv(F) is the convex hull of F . It can be proved that, given a MILP,
the optimal solution of the LP above is also optimal for the original problem.
Indeed, all the vertices of conv(F) are contained in F , and this includes also
the optimal solution of the LP.
This observation, though based on an easy concept, discloses the problem
of finding the equations representing the convex hull of a set of points. As
a matter of fact, this is often an impractical task.
Given a MILP with domain F and its LP relaxed version with feasible
region P , a cut is an inequality constraint that, if added to the current set
of constraint of the LP, does not exclude any point of F and it excludes at
least one extreme point of P . The cutting plane approach iteratively adds
cuts to the relaxed problem to tighten the feasible region until it reaches the
optimal vertex of conv(F). Hence, given a solution of the relaxed problem
that is infeasible for the MILP, the effort of the algorithm is to find a cut
that excludes the current solution from the domain. This is known as the
separation problem.

2.2.2 Branch-and-Bound

A different solution method for a MILP, called Branch-and-Bound (B&B),
is based on the fact that, in order to find the optimal solution of an opti-
mization problem, we can partition its domain X = {X1, . . . , Xn}, solve the
problem in each Xi, i = 1, . . . , n and return the best solution found among
all the sub-problems. For instance, in a minimization MILP minx{cTx,Ax =
b, x ∈ X}, given a partition {X1, . . . , Xn} we can find the optimal solution
x∗i in the restricted domain Xi for each i. Therefore, the optimal solution is

arg min
i=1,...,n

{cTx∗i }.

The branch-and-bound algorithm, shown in Figure 2.3, recursively partitions
the domain of the continuous relaxation of the MILP into subsets associated
with nodes of a tree structure, in order to find a solution that is at the same
time integer and optimal. Without any particular strategy, the algorithm
would just end up enumerating all feasible solutions, which would be totally
inefficient.
In order to overcome this issue, the Branch-and-Bound algorithm exploits

18 2. Methodologies

Figure 2.3: Example of a Branch-and-Bound tree. The green node is fath-
omed by integrality, the yellow is pruned by bound and the red by infeasi-
bility.

information on bounds to the optimal value of the global solution that is
collected at each exploration of a node, in order to a-priori dismiss the
exploration of some branches that certainly do not contain the global optimal
solution. This operation is called pruning of a branch. Let us consider a
minimization problem. A fundamental observation is that given a node n
and an upper and a lower bounds Un, Ln to the solution of the restricted
problem at n, any other node derived by branching on n cannot contain any
optimal solution outside the interval [Ln, Un]. The cases in which one can
prune a branch on a node n are:

1. whenever a problem on n is infeasible (pruning by infeasibility);

2. whenever Un is an integer solution (pruning by integrality);

3. whenever there exist another node n′ such that Ln ≥ Un′ (pruning by
bound).

The procedure stops when there are no non-pruned nodes to explore. Notice
that, for minimization MILP problems, a lower bound can be obtained by
solving the linear relaxation, leading to the B&B method for MILPs.
Different extensions can be embedded in a Branch-and-Bound framework.
For instance, the Branch-and-Cut (B&C) algorithm mixes features from the
B&B and the Cutting Plane methods: each time a sub-problem is solved at
a node of the Branch-and-Bound tree, valid inequalities can be generated
and added to the sub-problem constraints in order to improve the bound

2.3 Dynamic Programming 19

corresponding to that node, with the aim of enhancing the pruning phase
and speeding up the convergence.

2.2.3 Branch-and-Price

The Branch-and-Price (B&P) relies on a B&B strategy hybridized with a
Column Generation algorithm: the solution of the LP sub-problems at the
nodes of the B&B are obtained by means of a Master-Slave decomposition
and new variables are added in order to find the sub-problems’ optima.
In particular, the Slave Problem, also called Pricing Problem (PP), must
efficiently take into account the constraints generated by the branching rule
at each node for the B&P to properly work. In fact, a good B&P design
ensures the Pricing Problem to be subject to small-impact changes (or no
changes at all) at each node of the tree. This is enforced by setting up a
branching rule that involves the Pricing Problem variables.

2.3 Dynamic Programming

Dynamic programming is an algorithmic paradigm that divides a problem
into multiple (easier) sub-problems so that the solutions of each of them
concur to recover the solution of the initial problem.
In this context, the optimization procedure must be characterized by a multi-
stage structure. Stages are sub-problems solved sequentially one at a time in
such a way that the solution of sub-problems at some stage can exploit the
solutions at previous stages. This type of optimization requires a recursive
procedure that firstly solves one stage and then, on top of that, sequentially
builds the optimal solution of the following stages.

2.3.1 Bellman-Ford Algorithm

Efficient applications of the Dynamic Programming technique appear in
solving methods for the Shortest-Path Problem (SPP) with polynomial com-
plexity. Given a graph G = (N,A) with costs cij defined on each arc
(i, j) ∈ A and a source and destination nodes s and d respectively, the
solution of the SPP is a path of minimum cost starting from s and ending in
d. The Bellman-Ford algorithm is a dynamic programming algorithm that
finds a solution to the SPP in polynomial time. The method defines a set of
labels for each node i ∈ N , encoding the cost of the shortest paths from s to
each node reached in h steps (the h-th stage of the dynamic programming
procedure). The optimization strategy is based on the iterative correction
of the labels, until the minimum cost path is found, as long as the graph
does not contain negative-cost cycles. Algorithm 3 shows the main steps of
the Bellman-Ford algorithm, where p(n) represents the predecessor of node
n in a path P and πi are the labels for i ∈ N .

20 2. Methodologies

Algorithm 3: Bellman-Ford Algorithm

1 Initialization: πs = 0, p(s) = NULL;
2 foreach v ∈ N \ {s} do
3 πv = +∞;
4 p(v) = NULL;

5 end
6 for h = 1, . . . , N do
7 π′ = π;
8 updated = false;
9 foreach (i, j) ∈ A : πj > πi + cij do

10 πj = π′i + cij ;
11 p(j) = i;
12 updated = true;

13 end
14 if not updated then
15 STOP: optimal solution found.
16 end

17 end
18 STOP: ∃ negative cost cycle.

2.3.2 Elementary Shortest Path Problem with Resource Con-
straints

In several context, a path is required that does not contain cycles.

Definition 2.3. A path is elementary if it does not pass through the same
node more than once.

Moreover, a set of constraints can be defined over a set of resources. A
resource refers to a quantity that changes incrementally along a path ac-
cording to some functions, called resource extension functions [55].
This problem is known as the Elementary Shortest Path Problem with Re-
source Constraints (ESPPRC) [31]. In order to deal with ESPPRC, a dy-
namic programming technique exists, inspired by Bellman-Ford algorithm,
that guarantees a solution to be feasible with respect to constraints that
limit the use of the resources.
The basic solution method for the ESPPRC is a label correcting algorithm
where at any node there can be more than one label, each representing a
path starting from a source and ending at that node, and taking into account
both the cost of the partial path and the consumption of resources (refer to
[31] for a detailed discussion). In the procedure, labels are extended to every
reachable node in the graph and dominance rules are introduced in order to
fathom partial paths that surely cannot be extended to optimal solutions.
The algorithm converges in pseudo-polynomial time and the efficiency is

2.3 Dynamic Programming 21

strongly related to the design of the extension function and the domination
rules. Moreover, according to the dynamic programming paradigm, at any
iteration, label extension are performed incrementally, based on the values
of resources computed at the previous iteration.

Definition 2.4. Given a path pi from the origin node s to the node i, we
define the state as tuple Ri = (T i1, . . . , T

i
L, U

i
1, . . . , U

i
|N |). Each entry of the

tuple T ik, k = 1, . . . , L is called resource, whereas the vector U im, m =
1, . . . , |N | is the vector of unreachable nodes.

The value of each T ik represents the quantity of that resource consumed
along the path pi, while the variables U im are flags for unreachable nodes,
that are either nodes already contained in pi, or nodes at which an extension
of the current label would produce an infeasible path.

Definition 2.5 (label). Given a path pi from the origin node s to the node
i, we define as label the pair λi = (Ri, Ci) where Ri is the state of pi and
Ci is the cost of pi.

In the following definition we introduce the concept of dominance be-
tween two labels.

Definition 2.6 (dominance). Let p1
i and p2

i be two distinct paths from s to
i with associated labels λ1

i and λ2
i respectively. We say that p1

i dominates p2
i

if and only if C1
i ≤ C2

i , T 1m
i ≤ T 2m

i , m = 1, . . . , L and U1m
i ≤ U2m

i , m =
1, . . . , |N |.

In particular, it can be proved that any dominated label can be removed
from the set of labels during the algorithm run. The reason is that, given a
label λ1

i and a dominated label λ2
i , the set of extensions of the path related

to λ1
i contains the set of extensions of the path related to λ2

i , therefore λ2
i

can be discarded since all its extensions will be generated starting from λ1
i .

Algorithm 4 shows the label correcting method to exactly solve ESPPRC.
We make use of the following notation:

• Λi: list of labels at node i;

• E: the list of to-be-processed nodes;

• Extend(λi, j): the function that returns a singleton containing the
label that results by the extension of label λi to node j if feasible,
otherwise it returns the empty set;

• Fij : set of labels extended from node i to node j;

• filterDom(Λi): function that filters Λi removing all dominated labels;

22 2. Methodologies

The procedure initializes at 1-5 the set of labels in each node as an empty
set, except from the source node, where a label with all resources at value 0 is
added. Also, the set of unprocessed nodes is initialized with the source node
s. At 7-19, an unprocessed node i is selected and all the possible extensions
of the labels in i to δ+(i) are generated. In particular, dominated labels are
discarded at 15. Finally, at Step 20, the processed node is removed from E
and the procedure is repeated as long as E is not empty. At the end of the
algorithm we obtain the optimal paths from the source node to each other
node of the graph.

Algorithm 4: Label-Correcting algorithm for ESPPRC

1 Λs = {(0, . . . , 0)}
2 foreach i ∈ N \ {s} do
3 Λi = ∅;
4 end
5 E = {s};
6 while E 6= ∅ do
7 choose i ∈ E;
8 foreach j ∈ δ+(i) do
9 Fij = ∅;

10 foreach λi ∈ Λi do

11 if U ji = 0 then
12 Fij = Fij ∪ Extend(λi, j);
13 end

14 end
15 Λj = filterDom(Fij ∪ Λj);
16 if Λj has changed then
17 E = E ∪ {j};
18 end

19 end
20 E = E \ {j};
21 end

2.4 Heuristic and Meta-heuristic approach

Sometimes optimization problems can be very hard to be optimally solved
in practice. Exact algorithms may be not efficient enough at finding the
optimal solution. This can happen for instance with NP-Complete and NP-
Hard problems, especially with large-scale instances. Heuristic and Meta-
Heuristic algorithms have been devised, in order to obtain a feasible solution
of high quality within an acceptable amount of time.

2.4 Heuristic and Meta-heuristic approach 23

We can divide heuristic algorithms into two main categories: constructive
heuristics that build a feasible solution from scratch and improving heuris-
tics that start from a given solution and try to increase its quality.
While heuristic algorithms are often referred to tailored strategies to solve
specific problems, meta-heuristics represents general heuristic algorithmic
frameworks to be applied to different contexts [101]. The main approaches
are

• Search-based methods, that implement an exploration strategy through
the solution space in the attempt of improving the initial solution;

• Population-based methods, which are inspired by evolutionary mech-
anisms of nature generating a large set of solutions, combining them
and forwarding high quality patterns to next generations of solutions;

• hybrid algorithms that mix one or more techniques of different meth-
ods, even from different algorithm classes e.g. a search- and population-
based methods, or meta-heuristic and mathematical programming so-
lution methods (called matheuristics).

In meta-heuristic frameworks, additional phases can be inserted in order to
enhance the exploration of the solution space:

• Intensification is a procedure that puts a focus on the exploration of
attractive regions in the solution space. Such regions are identified by
the presence of elite solutions;

• Diversification is used to let the search routine visit solutions that are
substantially different, so that the search covers a broader area of the
solution space.

Below we outline the main heuristic algorithm used throughout the thesis,
we will refer to the minimization case (once again, the maximization case
can be easily derived). We assume that the objective function is computed
by the evaluation function eval(·). In addition, for each infeasible solution
S the evaluation function is such that eval(S) =∞.

2.4.1 Greedy Algorithm

Suppose that the solution of an optimization problem is made of a set of
elements. The Greedy algorithm starts from an empty (or partial) solution
and a list of elements called candidates, then it iteratively adds the candi-
dates one by one till it builds a feasible solution. The strategy behind such
method is adding at each iteration the candidate corresponding to the best
partial solution. Some other constructive methods can be derived by this
algorithm, as for instance the Randomized Greedy that, given a k ∈ Z+, at
each iteration randomly chooses the best candidate within the best k. This

24 2. Methodologies

strategy, especially in a multi-start approach, is useful to obtain a heteroge-
neous set of initial solutions.

2.4.2 Neighborhood Search

The search-based algorithms are iterative methods relying on the concept
of Neighborhood. Given a solution S called center of the neighborhood, we
can define a set of perturbations of S that create new solutions with the
aim of finding a better one in terms of objective value. The set of perturbed
solutions is a Neighborhood N (S) of the solution S. The complexity of
a neighborhood is related to the number of solutions it contains, as well
as to the computational effort for the neighbors evaluation. Clearly, the
complexity entails repercussions on the efficiency of the exploration of a
neighborhood.

Local Search

The basic search-based algorithm is called Local Search. This algorithm
starts from an incumbent solution S, explores the neighborhood N (S) and
updates the solution S with the best feasible solution found that improves
the objective value of S. Then it repeats this procedure as long as it is can
find a feasible improving solution. We show the outline of this algorithm in
Algorithm 5.
This schema that chooses the best improving solution in the neighborhood

Algorithm 5: Local Search Algorithm

1 Initialization: start from a given solution S and a neighborhood N ;
2 improved = true;
3 while improved do
4 improved = false;
5 S̄ = arg minS′∈N (S) eval(S

′)

6 if eval(S̄) < eval(S) then
7 S = S̄;
8 improved = true;

9 end

10 end
11 return S;

is called Best Improvement strategy or Steepest Descent. Sometimes the ex-
ploration of the neighborhood can be too time-consuming, so one can decide
to stop the exploration as soon as an improving feasible solution is found.
This is called First Improvement strategy.

2.4 Heuristic and Meta-heuristic approach 25

With a similar routine, one can let the search explore more than a single
neighborhood, with different strategies. For instance we can let the algo-
rithm search through all the neighborhoods for an improving solution rather
than one. For sake of efficiency, neighborhood filtering techniques, called
granular searches have been created in order to discard unpromising moves
[105]. Another scheme is to consider multiple neighborhoods and explore
them according to some strategy to pass from a neighborhood to another.
This is called a Variable Neighborhood Search [50, 70].

Variable Neighborhood Descent

The Variable Neighborhood Descent (VND) [50] is a variable neighborhood
search where the neighborhoods are switched for exploration according to
a fixed order. The algorithm keeps exploring the first neighborhood and,
on no improvement, it switches to the second one. If an improving solution
is found in the second neighborhood, then the best solution is updated
and the procedure restarts from the first neighborhood, otherwise the third
neighborhood is explored, and so on. We stop when no improving solution
is found among any neighborhoods. We describe the algorithm in Algorithm
6.

Algorithm 6: Variable Neighborhood Descent

1 Initialization: start from a given solution S and a neighborhoods
list (N1, . . . ,NL);

2 improved = true;
3 while improved do
4 improved = false;
5 k = 1;
6 while k ≤ L do
7 S̄ = arg minS′∈Nk(S) eval(S

′)

8 if eval(S̄) < eval(S) then
9 S = S̄

10 improved = true
11 Break

12 end
13 else
14 k = k + 1;
15 end

16 end

17 end
18 return S

26 2. Methodologies

Figure 2.4: Local Search getting stuck in a local minimum (green point)
instead of reaching the global minimum (purple point).

Tabu Search

The Local Search algorithm has the drawback of getting stuck at the first
local minimum encountered in the neighborhood considered, as shown in
Figure 2.4. Meta-heuristics often provide methods to prevent the search
from an early-stage stop. The Tabu Search algorithm [48], whose main steps
are described in Algorithm 7, pushes the exploration further, by admitting
some deteriorating moves when a local minimum is encountered, in order to
hopefully find better solutions later in the search. The algorithm, in order
not to loop, exploits the memory to trace the last solutions visited, which
are stored in a list, called Tabu List. The solutions in the tabu list are called
Tabu Solutions and the exploration phase filters out them when encountered.
The length of such list is called Tabu Tenure and is normally kept constant
during the run by removing the first element of the list at each insertion of
a new element. The tabu tenure must be calibrated so that cycling through
some solutions is diminished, as well as avoiding to excessively narrow the
neighborhoods. Aspiration Criteria are conditions used to prevent good
solutions to be filtered out when detected as tabu. Classic aspiration criteria
let the search accept tabu solutions when they are better than any other
solution with some predefined attributes in common (attributes depend on
the solution representation). The usual stopping criteria are quitting the
algorithm after a total amount of iterations Mi or after reaching a threshold
of non-improving iterations Mn. The function insert(T, S) in Algorithm 7
pushes a solution S to the back of the tabu list T and at the same time pops

2.4 Heuristic and Meta-heuristic approach 27

out the top element of T .

Algorithm 7: Tabu Search

1 Initialization: start from a given solution S, a neighborhood N and
a tabu list T = [];

2 i = 0, n = 0;
3 S∗ = S;
4 while i < Mi or n < Mn do
5 S̄ = arg minS′∈N (S)\T eval(S

′)

6 if eval(S̄) < eval(S) then
7 S∗ = S̄;
8 n = 0;

9 end
10 else
11 n = n + 1;
12 end
13 T = insert(T, S̄)
14 S = S̄;
15 i = i+ 1;

16 end
17 return S∗;

2.4.3 Other popular Meta-Heuristic

We give a brief description of other widely-used meta-heuristic algorithms.
Below a list of the most popular search-based methods:

• the Simulated Annealing (SA) algorithm [60] is based on a Local Search
structure and implements a technique for escaping local optima so that
deteriorating solutions are accepted with a certain probability. During
the execution, such probability is more and more decreased until it falls
down to 0 and only improving moves are accepted;

• the Large Neighborhood Search (LNS) technique [91] explores large-
scale neighborhood. LNS method exploits destroy and repair heuristics
in order to obtain an efficient exploration of the neighborhood. In
particular, there exists a version of the LNS called the Adaptive Large
Neighborhood Search that at every iteration selects destroy and repair
heuristics from a set of heuristic algorithms based on past effectiveness;

• the Iterated Local Search (ILS) [67] alternates Local Search phases with
perturbations phases any time the search is stuck in a local optimum,

28 2. Methodologies

Figure 2.5: Example of crossover operator in a genetic algorithm. The
crossover operator is responsible for mixing the solutions’ components into
a brand new individual of the next generation.

in order to make the solution jump to another region of the solution
space.

Among the population-based meta-heuristic algorithm we mention the fol-
lowing:

• the Genetic Algorithm (GA) [62], inspired by the evolutionary law
of nature, generates a population of solutions and evolves it through
mutation and crossover operations that mix solutions’ components,
and passing over to the next-generation populations the most valuable
patterns (see Figure 2.5);

• the Ant Colony Optimization (ACO) has been used for the solution
of VRP extensions. This method reflects the ant-society system in
its routine, where an ant represents a constructive heuristic guided by
past information (represented by pheromone);

• in the Scatter Search (SS) algorithm [46], only a small subset of the
population is selected for the solutions crossover. New individuals
then undergo an improvement phase and then the new population is
generated including high-quality and diversified solutions;

• the Path Relinking (PR) technique [47], originally applied to the SS,
explores a trajectory in the solution space that connects two solutions.
Hence, it introduces a notion of distance between solutions and, start-
ing from an origin solution, it iteratively executes a guiding heuristic
to visit new solution that minimize the distance between the target
solution and the incumbent one.

Hybrid Meta-Heuristics and Matheuristics

Also Hybrid methods have been largely used by researchers. Hybridization
has been realized between algorithms of the same class, for instance Tabu
Search with Simulated Annealing, or Iterated Local Search with Variable

2.4 Heuristic and Meta-heuristic approach 29

Neighborhood Search. Also, hybrid algorithms from different classes have
been designed, one of the most wide-spread is Genetic Algorithm with Local
Search or Tabu Search phase. Moreover, Matheuristic techniques have been
used, to combine exact Mathematical Programming frameworks with meta-
heuristic algorithms. In particular, a matheuristic algorithm comes from
the inter-operation of metaheuristics and Mathematical Programming tech-
niques, based on exploiting the features derived from a mathematical model
of the problem, often specifically devised for its integration in a heuristic
context [16]. Matheuristics mainly base the combination on two paradigms:
either using Mathematical Programming to improve metaheuristics or using
metaheuristics for enhancing Mathematical Programming techniques (e.g.,
designing a Branch-and-Price algorithm whose pricing algorithm makes use
of some heuristic method).

2.4.4 Core characteristics of heuristic strategies

Here we show a list of features presented in [111] that are shared among
many meta-heuristic algorithms and representing crucial characteristics for
the method, in particular when VRPs are considered.

• Solution Space: this is the set of all solutions of the problem. Solutions
may have an indirect representation, so efficient decoding algorithms
are needed (see for instance [78]). Also, many algorithms make use of
temporary acceptance of infeasible solutions in order to enhance the
exploration of the solution space (see [110] for an analysis of infeasible
solution admittance);

• Neighborhoods: the design of the neighborhoods explored in search-
based algorithms is essential for obtaining high performance. Also,
large neighborhoods, if efficiently explored, provide high-quality solu-
tions [77]. Some methods rely on the use of multiple neighborhoods, as
the Variable Neighborhood Search [70]. Moreover, granular searches is
a key-feature to reduce the computational effort of the algorithm pre-
venting the unfruitful visit of bad solutions [105], as well as neighbor-
hood limitation based on characteristics of the solution that recently
changed [74];

• Search Trajectories: randomization represents a core feature, for search-
and population-based methods. Randomization phases increase the
diversity of solutions, which lead the algorithm to a broader explo-
ration of the solution space (e.g. see [77]). Random components may
affect, for instance, the solution structure itself, or some parameters
of the algorithm (i.e. the tabu tenure). The change from one solu-
tion to the next is also a peculiar characteristic related to the search
trajectory. If the amount of change from one solution to the next is

30 2. Methodologies

relatively small, the change is called continuous, otherwise if the next
solution originated is considerably different from the first one, it is a
discontinuous change (as, e.g., in [5]). For instance, Iterated Local
Search has a continuous search with discontinuities in correspondence
with perturbation phases;

• Memory : collecting full or partial information on the solutions history
is a very effective system to guide the algorithm towards more promis-
ing areas of the solution space. Short- and long-term memory has
been widely used for such a purpose, as for example the Tabu List. In
evolutionary algorithms, population is itself a memory of old solutions
patterns. Moreover, memory can be centralized for parallel coopera-
tive algorithms which need to share information with the aim of biasing
each other toward better solutions [26], or adaptive, which depends on
the past visited solutions [100]. Diversification and intensification can
also be attained by memory usage, for instance introducing a metric
on the solution space;

• Parallelism: parallel routines within optimization algorithms can be
classified as low- or high-level parallelism. The former represents the
decomposition of the algorithm into parallel independent tasks with
no impact on the algorithm structure itself. This can be an asset for
a more efficient evaluation phase, which is often time-consuming. The
latter consists of cooperation schemes, where parallel algorithms share
partial or full information through a central memory and influence
each other search [26].

2.5 Machine Learning tools

Machine Learning is a field of Artificial Intelligence that aims at creating
algorithms able to infer information from a set of given data and build up
predictive models [15]. Every element of the data consists of a set of features,
defined in a space called feature space, and representing the starting point
to make the prediction. Moreover, the data may or may not contain, with
reference to every element, the values that we want our model to predict.
We call these two cases Supervised and Unsupervised Machine Learning re-
spectively. Another distinction is relative to the domain of the predicted
element: we talk about Classification when such elements belong to a dis-
crete set, Regression if they are real numbers.
Several models have been used by researchers to obtain a high-quality solu-
tion from the predictions, such as linear model, polynomial models, logistic
models, decision trees etc. In particular, Neural Networks are very complex
and versatile models widely used in the sub-field of machine learning called
Deep Learning. Each model has a set of parameters that are tuned by an

2.5 Machine Learning tools 31

algorithm, called learning algorithm, the larger this set, the higher the com-
plexity of the model. A subset of the parameters, called hyper-parameters,
do not undergo the learning procedure, but they must be tuned before such
phase.
In order to validate the prediction model, different performance indicators
have been used both for classification (e.g. accuracy, precision, recall, etc.)
and for regression (e.g. R-squared, mean squared error, etc.). The data-
set is usually divided into two subset, the training set, on which we run
the learning algorithm, and the test set, where we assess our predictions.
The goal is to obtain a model with balanced error rate in the training set
(in-sample error) and the test set (out-sample error). High values of the
in-sample error are symptoms of the so called under-fitting models, whereas
a small in-sample error together with a large out-sample error is defined
as an over-fitting models. Under-fit and over-fit models are subject to bad
performances in terms of prediction quality.
Among the many models available from the literature, we provide in the fol-
lowing a description of the ones that have been integrated in the procedures
devised in this thesis as described in Chapter 7 and 8, namely Decision Tree
Classifiers, Support Vector Machines and K-Means clustering.

2.5.1 Decision Tree Classifier

A well known classification algorithm is the Decision Tree Classifier (DTC)
[97]. This algorithm repeatedly splits one component of the feature space
into two components by a threshold value for a selected feature. Hence, the
procedure goes on until one of the two following conditions are met:

• each component contains only elements of the same class;

• there are no more features available for further splits.

We call impurity the presence of elements of different classes in the same
component. When choosing the feature used to split a component, the
algorithm takes advantage of a measure of such impurity with the objective
of decreasing it as much as possible. The main measures used to evaluate
the impurity of a set of data x are:

• the Entropy H(x) := −
∑K

i=1 p(xi) ln p(xi);

• the Gini index G(x) :=
∑K

i=1 p(xi)(1− p(xi)).

where K is the number of element in the selected component of the feature
space, xi is the i-th element in such component and p(xi) is the probability
of that element. Notice that the more homogeneous the data are in the
component, the lower the value of the entropy is. DTCs have the advan-
tage of being human readable prediction models, as they follow a binary

32 2. Methodologies

tree structure, and this is one of the reason why they are very popular in
fields such as medical diagnosis and management. One drawback of DTCs is
that the division of input space is based only on splits along the coordinate
axes. Moreover, they are very sensitive to variations in the training data,
so adding few new data to the training set may result in a highly different
prediction model after the learning phase. In order to overcome such insta-
bility, one may adopt the Random Forest approach, where multiple DTCs
are considered and, in the classical version, the mode or the mean prediction
among all DTCs is selected.

2.5.2 Support Vector Machine

Let us consider a binary classification problem, and let us use a linear model
to make a separation of the two classes. Assume that the two classes are
linearly separable in the feature space, then there are infinitely many hyper-
planes fulfilling the separation. A reasonable choice is to choose the hyper-
plane with maximal distance from the two classes (as shown in Figure 2.6),
since it is likely to be the more stable with respect to the out-sample error.
This is the basic concept behind the Support Vector Machine (SVM) [24].
We know that a hyper-plane in the feature space is given by the equation

wTx− b = 0.

Let us define the label λi ∈ {−1, 1} denoting that the i-th element belongs to
the first or second class. One can prove that, in a normalized data-set, the
margin between the two closest elements in two different classes is equal to
2/||w||, then finding the w that maximizes the margin is equivalent to finding
the w minimum in norm such that the classes are separated. Therefore, given
a data-set with I elements, we have the following optimization problem:

min ||w|| (2.28)

s.t:

λi(w
Txi − b) ≥ 1, i = 1, . . . , I (2.29)

More advanced techniques are used to manage non linearly separable data,
such as the kernel method, where non-linear functions (called kernel func-
tions) are used to map the points in the feature space in a higher dimensional
space aiming for a linear separator that is then mapped back to the original
space.
The Support Vector Machine can be applied also to the regression case,
with a similar theory as the one developed for the classification. We have a

2.5 Machine Learning tools 33

Figure 2.6: Example of SVM classification. The green line is the separating
hyper-plane with largest margin between the two subsets of labelled (red
and blue) data.

similar optimization problem to solve

min ||w||2 (2.30)

s.t:

yi − (wTxi − b) ≤ ε i = 1, . . . , I (2.31)

− yi + (wTxi − b) ≤ ε i = 1, . . . , I (2.32)

where yi ∈ {−1, 1} are the target values and ε is a tolerance parameter that
ensure the prediction to be at most ε far from the true value.
SVM presents high performance with linearly separable data and high-
quality predictions even in high dimensional spaces. One of the main field
of application is hand-written characters recognition. In the SVM training
phase, outliers have a small impact as the maximal distance computation
ignores them. Moreover, since the determination of the model parameters
corresponds to a convex optimization problem, any local solution is also a
global optimum. One drawback of the SVM is that for larger datasets, it
requires a large amount of time to accomplish the training phase. More-
over, unlike other types of approach (i.e. Bayesian classifiers), SVM does
not provide posterior probabilities, which are defined as the probabilities of
the trained parameters in the prediction model.

34 2. Methodologies

2.5.3 K-Means

Clustering is an example of unsupervised machine learning. There are no
labels in the data-set, but we can still find patterns in the feature space to
make a classification based on the similarity in the data.
Among the clustering techniques, the K-Means [66] algorithm takes k as
parameter that represents the desired number of clusters and partitions the
feature space into k subspaces in such a way to minimize the overall squared
distance between each point and the centroid of the corresponding cluster.
Hence, the problem is to find a partition C := (C1, . . . , Ck) that minimizes
the function

I(C) =

k∑
i=1

∑
x∈Ci

||x− x̄i||2,

where x̄i the centroid of the the cluster Ci.
K-Means starts from a random partition and then runs a heuristic algorithm
to solve this problem that repeats the following two steps:

1. compute the centroid of the each cluster Ci as the barycenter of the
points in Ci, for each i;

2. assign each element x to the cluster with least squared distance from
its centroid (this creates a new partition).

The problem is solved by the algorithm above within O(tcnd) operations,
where t is the fixed number of iterations set, c is the number of clusters, d is
the dimension of the space, n is the number of points. Moreover, a technique
called k-means++ has been developed to create smart initial partitions that
are proved to provide faster convergence rather than starting from a totally
random set of clusters.
The K-Means clustering shows very good performance for isotropic data,
which means that the extent of the variance of data is almost the same in
any direction. Beside anisotropic data, another drawback of K-Means is the
sensitivity to outliers. In this case, approaches such as DB-Scan [38] are
more suitable. Moreover, K-Means may have convergence issues with any
non-euclidean distance, whereas other clustering algorithms, such as Affinity
Propagation [37], can consider any type of distance among pairs of data.

2.6 Implementation Framework

2.6.1 SCIP

SCIP (Solving Constraint Integer Programs) is a non-commercial suite of
algorithms to solve constraint programs, mixed integer linear and non linear
programs. The software has been developed by the Zube Institute of Berlin

2.6 Implementation Framework 35

(ZIB) and is available under academic license (for more information refer to
[1]). The suite consists of the following modules:

• SCIP: mixed integer (linear and nonlinear) programming solver and
constraint programming framework;

• SOPLEX: linear programming solver;

• ZIMPL: mathematical programming language;

• UG: parallel framework for mixed integer (linear and nonlinear) pro-
grams;

• CGC: generic branch-and-cut-and-price solver.

A user can write a model in the ZIMPL modeling language and pass it
directly to one of the solvers available. As an alternative, one can interface
the solvers to many programming languages through the available APIs, for
instance the C++, Python and Java SCIP APIs. Moreover, SCIP supports
the connection to external LP solvers, like CPLEX or Gurobi.
The framework offers a very versatile system of callbacks that let the user
plug in its own code at different stages of the routines. For instance, one
can dynamically create and add constraints and variables to a LP program,
as well as setting branching rules for branch-and-bound approaches. In
particular, one can add the variables generated by pricing algorithms in a
column generation approach, as well as adopt different pricing strategies
that are already implemented in the suite.

2.6.2 SciKit-Learn

SciKit-Learn is a free Python package that contains several Machine Learn-
ing algorithms [94]. The implementation of the algorithms are made on the
top of NumPy [75] and SciPy [56], which are Python libraries optimized for
miscellaneous linear algebra operations. SciKit-Learn offers machine learn-
ing tools in different machine learning settings:

• Classification: Decision Tree Classifier, Random Forests, Support Vec-
tor Classifier, Naive Bayes, K-NN etc;

• Regression: Linear Regressor, Polynomial Regressor, Support Vector
Regressor, etc;

• Clustering : K-Means, DBScan, Affinity Propagation, etc.

Moreover, it offers utilities for common machine learning tasks, such as K-
Fold Cross Validation according to some validation functions (e.g. accuracy,
R-squared, etc.). A grid-search routine is available for hyper-parameters

36 2. Methodologies

tuning. Also, there are data pre-processing functions, for instance standard-
izers and normalizers of data, as well as encoders for categorical features.
Moreover, also a Principal Component Analisys module is available, useful
to compress data and obtain a dimensionality reduction of the model.

Chapter 3

Description of the problem

Freight and public transportation companies are characterized by very hard
decision-making issues rising during the daily operations. The problem of
planning the routes for the available fleet of vehicles is usually combined
with a variety of requirements that must be simultaneously taken into ac-
count by the routing managers. On the one hand, decision makers ask for
support systems able to include more and more attributes while requiring a
fast solution to the incumbent routing problem. On the other hand, modern
technologies providing for instance GPS, fleet tracking, real-time data shar-
ing, create new opportunity for algorithms to enhance their performances.
In this context, we consider a routing problem inspired by a small trucking
company located in Padova (Venice Area, Italy), and targeting a broad class
of similar cases in the transportation industry. Hereinafter, we give a verbal
description of the problem, followed by a notation setting and a more formal
statement.

3.1 Introduction to Vehicle Routing Problems

The problem we consider in this thesis belongs to the class of the Vehicle
Routing Problem (VRP). VRPs arise in public and freight transportation
industries when operations managers have to organize the routes traveled
by the fleet of vehicles that are available to fulfill some particular tasks (e.g.
load or drop freight or people at specific locations).
In the freight context, we have a set of locations, representing customers’
sites, where load or unload operations must take place according to the cus-
tomers’ demand. Given a set of customers and a fleet of vehicles, the basic
VRP consists of finding the planning of routes starting and finishing at a
specific location (called depot) so that each customer is visited by one and
only one vehicle and the overall cost is minimized. Real world scenarios led
the researchers to consider extra attributes of the VRP and to devise solu-
tion methods that are more and more suitable for the needs of the planning

37

38 3. Description of the problem

phase. The Capacitated VRP (CVRP), for instance, assigns to each vehi-
cle a specific capacity while every customer demand comes with a required
amount. Another well known extension of the VRP is the VRP with Time
Windows (VRPTW), where each customer must be visited within a partic-
ular time interval. Time windows are defined as hard if a late arrival is not
accepted, whereas they are called soft when delay is feasible at the cost of
a penalty related to the delay. The Pickup and Delivery Problem (PDP) is
a VRP where customers demand consists of one loading (pickup) and one
unloading (delivery) operation. This represents a constraint at route level
that forces the pickup location to be visited before the corresponding de-
livery location. Also, pickup and delivery operations of a same order must
be assigned to the same vehicle. Further extensions studied in literature
concern the types of routes, for instance in the Multi-Trip VRP a vehicle
can travel more than a single route, whereas the Multi-Depot VRP provides
multiple locations as depots where a route can start and finish. The Open
VRP allows the routes to begin and end not only at the depot but at any
location.
Freight transportation companies ask for more and more attributes of the
VRP to be simultaneously considered during the planning, giving rise to
new problems of scientific interest. A VRP that takes into consideration
at the same time multiple extensions is defined as a Multi-Attribute VRP
(MAVRP), or Rich VRP.
In this thesis we focus on a MAVRP statement that takes several attributes
simultaneously into account, in order to comply with the real-life daily oper-
ations in small trucking companies offering express transportation services.
This problem is the Express Pickup and Delivery in freight Trucking problem
(EPDT) introduced at Chapter 1.

3.2 A Multi-Attribute Express Freight Transporta-
tion Problem

The problem under study rises in the routing context of small-medium truck-
ing companies, where operations manager have to deal with daily planning
of routes servicing customer requests arising during all the working day.
The fleet consists of vehicles that can be different to one another. The main
characteristics of vehicles are weight capacity, volume capacity, load/unload
equipment (e.g. tail lift, side doors) and fuel consumption rate. A customer
request comes with several characteristics that play a role in the routes
planning. Each order requires pickup and delivery operations at different
locations. In particular, each order may require one or more pickup opera-
tions and/or one or more delivery operations. Each operation is associated
with one time interval and date, previously agreed between the two parties,
within which such operation should be performed. Each order includes op-

3.2 A Multi-Attribute Express Freight Transportation Problem 39

Figure 3.1: Examples of orders spanning multiple days.

erations that span a single day or two consecutive days. In Figure 3.1, we
provide three examples where today is the occurring working day, which is
the object of the planning. Tails of arrows represent pickup tasks, heads
stand for deliveries, colors distinguish the working day duration for each
day. From the top to the bottom of the figure, we show (i) an order with
one operation to be executed yesterday and one to be executed today, (ii)
an order with one operation to be executed today and one to be executed
tomorrow, and (iii) an order with three operations for today.
A service time is associated with the loading operations and special loading

requirements may be required (e.g. tail lift, crane, etc.). The requests come
with a revenue that let the decision makers decide whether the order can
be conveniently satisfied or is better discarded for cost-savings purposes. In
some case, it may be possible to interact with the client in order to define
a more convenient cost, if necessary. A urgency level is associated with or-
ders: normal orders may be rejected at no cost and may be handled so that
operations are not required to fall within the predefined time interval, but a
delay is accepted at a specific cost for the customer inconvenience. Urgent
orders are defined similarly to normal orders but rejecting them implies a
cost. Finally, mandatory orders cannot be rejected and delays with respect
to the time intervals are not allowed.
Due to the just-in-time nature of the orders, when an order is issued, cus-
tomers are not always aware of where each item to delivery will be actually
available for the pickup operation. For example, in the manufacturing in-
dustry, the production of multiple items will be performed in more than

40 3. Description of the problem

one factory. The client may decide on how to distribute the production
depending on factors that are not available at the time the order is issued,
but will become clear later during the working day (e.g., production in one
establishment has been faster, so machines for specific items are available
there earlier than in the other facilities). Typically, a client knows the items
to be delivered, divided by destination (delivery points) and, in order to get
a reservation in time, it issues an order before the information on how the
production will be exactly divided among the factories. This allows reserv-
ing the necessary capacity in time, whereas the specific items to pickup at
each factory will be defined later. As a consequence, orders cannot be split
into multiple orders containing a single pickup and a single delivery oper-
ation, nor they can be served by different vehicles. This nature of orders
implies also that, by the transportation company point of view, no complete
knowledge is available during the planning phase about the destination of
each item at the pickup points, so that the routes must be planned in such
a way that, for each order, all pickup operations are executed before any de-
livery operation, with benefits from the operations and from the accounting
sides. In Figure 3.2, for example, the routes contain an order (in orange)
with two pickups (P) and three delivery (D) tasks. In (a), the route is feasi-
ble, whereas in (b) the precedence policy defined above is violated since one
delivery task (marked with the red cross) is performed before completing all
pickups. Numbers represent the amount of items to be transported, suppos-
ing 100 items in total for that order. In the pickup nodes the vehicle must
load 40 and 60 items, whereas in the delivery points the items to unload are
20, 30 and 50. Observe that, without complete information on the destina-
tion of each item, one ore more item among the 20 to be delivered in the
first delivery of (b) may be part of the 60 items available at the following
pickup node, or even spread between the 40 and 60 items in the two pickup
nodes.
Drivers are normally not required to start nor to end their trip at the depot.
Sometimes, for instance for maintenance purposes, the routes must finish at
the depot, or also, in order to offer a better starting position for the day
after, routes may preferably finish in some predefined location. The route
design must be carried out taking into account the European Hours of Ser-
vice Regulation, so that drivers must respect mandatory breaks along their
assigned trips: the crew is subject to the European Hours of Service Regula-
tions (No. 561/2006, Directive 2002/15/EC). These laws imply constraints
on the rest duration and cumulative drive and work time of a driver. The
regulation consists of rules (and consecutively constraints) based on the ac-
tivity of drivers spanning different intervals of working days, from 4 months
to 1 day before the incumbent day. Among all the rules, we define below
the most significant for daily optimization purposes:

• after at most 4:30 hours of uninterrupted driving, a compulsory break

3.2 A Multi-Attribute Express Freight Transportation Problem 41

Figure 3.2: Example of valid and invalid route for an order (orange nodes).

must be taken;

• the compulsory break duration is 45 minutes. It can be split into a
first break of 15 minutes and a second break of 30 minutes;

• the maximum amount of drive time in a day is 9 hours (twice a week
it can be extended to 10);

• the maximum amount of work (driving and operational) time in a day
is 13 hours (twice a week it can be extended to 14);

• the minimum amount of night rest is 11 hours (under some conditions
it may be reduced to 9 hours);

• the minimum weekly rest period is 45 hours (if compensated by pre-
vious rests longer than the minimum required, it may be reduced to
24 hours).

From the transportation company point of view, the objective is the maxi-
mization of the net profit, defined as the sum of the revenues from satisfied
orders minus the overall costs, together with preference matching. In addi-
tion, further preferences play a role with the aim of improving the quality
of service. A maximum duration of route may be preferred, e.g., to accom-
modate specific drivers’ requests, or balance drivers’ workload in the long
term. Moreover, a benefit for including predefined subsets of orders in the
same route is considered, in order to preserve some effective order assign-
ment combinations. For instance, groups of orders may be easier to pack,

42 3. Description of the problem

load or unload if in the same vehicle, facilitating the operations executions.
The assignment of orders to specific vehicles can also be expressed as a pre-
ferred outcome, aiming at helping pickup or delivery tasks by truck facilities,
although not necessary. Finally, a preferred minimum number of vehicles
available at the depot at the end of the planning horizon may be declared,
as an advantage when dealing with just-in-time requests.
In the following, we provide a more detailed analysis of the problem de-
scribed in this section, thus providing a more formal definition of EPDT.

3.3 Entities and attributes

The main attributes of EPDT are related to positions, vehicles, orders and
route.

3.3.1 Positions

Positions or locations represent the pickup and delivery points and include
the depot, corresponding to the main facility of the transportation company.
For each ordered pair (i, j) of positions, a distance dij and a travel time tij are
given. They depend on the road network status and up-to-date information
can be retrieved from, e.g., web services or specialized applications like [49,
102].

3.3.2 Vehicles

The scenario described in Section 3.2 involves vehicles with different features,
that is a heterogeneous fleet. For instance, vehicles may be characterized
by multiple loading capacities (weight, volume) and operational costs. In
particular, denoting by V the set of vehicles, each v ∈ V defines a constraint
on the maximum volume U1

v and a maximum weight U2
v that can be loaded

on it. Since freights are normally trucked on pallets, U1
v and U2

v provide
a reliable estimation of the actual vehicle loading capacity. We remark
that, in our problem, capacity relates to on board freight, meaning that
deliveries make capacity available again for following pickups. Moreover,
vehicle-specific variable and fixed operational costs are provided. The former
is a cost per distance unit CUv , taking into account several factors among
which fuel consumption, vehicle mortgage, maintenance costs etc. The latter
represents the fixed cost CFv incurred if vehicle v is deployed. Some vehicles
are equipped with special loading facilities, such as crane, tail lift, side doors
etc.

3.3 Entities and attributes 43

3.3.3 Orders

Customer requests (or orders) correspond to the demands of pickup and
delivery services. Orders specify a set of pickup and delivery tasks. In par-
ticular, an order may include more than one pickup and more than one de-
livery task (multi-pickup / multi-delivery orders). In this case, more pickup
tasks and/or more delivery tasks are defined, and all the pickup tasks must
be executed before all the delivery tasks by the same vehicle. Each task is
defined in terms of position, size of the freight (volume and weight), time
window and service time. Time windows are specified by a time interval
within which the operation should be performed. Time windows can be
hard or soft. The former imply that the task must be executed within the
time window, otherwise the solution is not feasible; the latter can be vio-
lated at the cost of a penalty Lwi proportional to the time window violation
at the task i, taking into account that early service is not allowed (in case
a vehicle arrives early at the task position, it waits until the beginning of
the time window). A revenue Po is associated with each order o ∈ O, O
denoting the set of orders, together with a priority. We have three possi-
ble priority levels: mandatory orders (subset OM) must be fulfilled in any
feasible solution; urgent orders (OU) define a penalty in case they are note
executed (the penalty for o ∈ OU is denoted by Lo); normal orders (ON)
can be rejected at no penalty. Finally, each order may specify the required
loading facilities, if any, affecting the set of vehicles it can be assigned to.
We remark that, due to the nature of customer requests demanding for an
express delivery service, the tasks’ time windows of one order fall in at most
two consecutive days. As a consequence, the set of issued orders that are
relevant for planning in a given day, hence included in O, are the ones issued
either the same day or the day before. The time windows of the tasks in O
fall in the day before (we call them yesterday tasks), in the same day (today
tasks) or in the next day (tomorrow tasks).

3.3.4 Routes

A route is defined by a sequence of pickup and/or delivery tasks assigned to
a specific vehicle. All the tasks of the same order must be assigned to the
same vehicle. In order for a route to be feasible, for each assigned order,
all pickups tasks must precede all deliveries in the sequence. The planning
horizon is one working day and routes are open: each vehicle starts from
the position of the last task executed the day before, in case with pending
yesterday tasks, it services today tasks, and it finishes at the position of
the last today task or, in case, of the last pending tomorrow task if any.
Moreover, some routes are preferred or required to reach a prescribed end-
of-day position, e.g. for maintenance issues. Further attributes are related to
a preferred maximum duration of route, the inclusion of predefined subsets

44 3. Description of the problem

of orders in the same route, the assignment of orders to specific vehicles and
a preferred minimum number of vehicles available at the depot. Moreover,
a prospective route cost is taken into account in assessing routes quality as a
proxy of the variable next-day cost. In fact, although the planning horizon
has a daily span, the succession of working days asks for good initial state
as a consequence of the end-of-day vehicle status of the day before.

3.4 Problem definition

A schematic definition of the Express Pickup and Delivery in freight Truck-
ing problem is stated as follows:

• Input:

– the orders with at least one task in a one-day planning horizon;

– the initial vehicle status in terms of position and on-board pend-
ing yesterday tasks;

– the travel and time distance between positions;

• Output: a solution defined as a set of daily routes to service the today
tasks of a subset of selected orders;

• Hard Constraints: a feasible solution must respect

H1 vehicle capacity;

H2 precedence between pickup and delivery tasks;

H3 hard time windows;

H4 execution of mandatory orders;

H5 loading facilities requirements;

H6 hours-of-service regulations;

H7 prescribed route ending position (if provided).

• Soft Constraints: a feasible solution should preferably respect

S1 maximum route duration;

S2 preferred subset of orders in a same route;

S3 preferred minimum number of vehicles at the depot;

S4 preferred order-to-vehicle assignment;

S5 preferred end-of-day position;

• Objective function: the goal is to optimize profits and revenues of
different types by combining the following objectives:

O1 total revenue of satisfied orders maximization;

3.4 Problem definition 45

O2 routes cost minimization;

O3 prospective routes cost minimization;

O4 missed urgent orders cost minimization;

O5 soft time windows violation cost minimization.

In Table 3.1 we summarize the notation related to EPDT.
By the definition of the problem, we remark that the cost C(r) of a route r

includes the fixed deployment cost CFv and the variable cost depending on
CUv and on the length l(r) of r up to the last today task

C(r) = CFv + CUv · l(r). (3.1)

We define A(r) and W (r) as, respectively, the prospective route cost func-
tion and the cost for time windows violation. Given the set of pickup tasks
Np and delivery tasks Nd, we introduce the complete graph G = (N,A)
where N = Np ∪Nd and A is the set of all arcs between each pair of nodes
in N .
Denoting by s a solution of EPDT, we introduce the variables yr ∈ {0, 1} ∀ r ∈
Ωv, v ∈ V that are equal to 1 if route r belongs to the solution s, 0 otherwise.
We can view EPDT as a maximization problem where we want to optimize
multiple criteria O1 - O5. Because of the different nature of the criteria,
the problem may be tackled, e.g., by searching for the Pareto frontier, thus
providing the decision maker with a set of alternative solutions. Weights
can be adjusted on different orders of magnitudes to represent a hierarchy
among different criteria. In our model, we include a combination of such
criteria into a single-objective function. In particular, following the sugges-
tion of the transportation company, the combination represents a net profit
given by the revenues from satisfied orders (objective O1) minus the costs
of today routes, prospective tomorrow routes, missed urgent orders and soft
time windows violations (objectives O2, O3, O4 and O5). Moreover, by
denoting with s a solution of EPDT, we introduce a penalty term Ik(s) for
each soft constraint Sk, with k ∈ K and K = 1, . . . , 5, together with a
weight coefficients wk that give more or less importance to each term.
Summarizing, the value of the objective function for s is represented by the
net profit, penalized by the missed preferences:∑
o∈O(s)

Po −
∑
v∈V

∑
r∈Ωv

(C(r) +A(r) +W (r))yr −
∑

o∈OU\O(s)

Lo −
∑
k∈K

wkIk(s),

We search for a solution s and related variables yr such that the number of
routes does not exceed the fleet size:∑

v∈V

∑
r∈Ωv

yr ≤ |V |,

46 3. Description of the problem

Table 3.1: Notation for EPDT.

Positions

N set of positions
dij space distance between positions i ∈ N and j ∈ N
tij time distance between positions i ∈ N and j ∈ N

Vehicles

V set of vehicles
U1
v volume capacity of vehicle v ∈ V

U2
v weight capacity of vehicle v ∈ V

CUv cost per distance unit associated with vehicle v
CFv fixed cost associated with the deployment of vehicle v

Orders

o(i) order in O that contains the task i
O the set of orders in the problem instance
ON subset of normal orders (⊆ O)
OM subset of mandatory orders (⊆ O)
OU subset of urgent orders (⊆ O)
O(s) set of orders in O satisfied by solution s
Po revenue of of an order o ∈ O
Lo penalty for missed urgent orders o ∈ OU
Lwi penalty for soft time window violation at task i
T (o) set of tasks related to order o

yesterday task pickup or delivery operation with time window in the day before
today task pickup or delivery operation with time window in the current day

tomorrow task pickup or delivery operation with time window in the day after

Routes

Ωv set of routes for vehicle v, feasible w.r.t. H1-H7;
C(r) cost of route r ∈ Ωv

A(r) prospective cost of route r ∈ Ωv

W (r) cost for soft time windows violation of route r ∈ Ωv

D maximum route duration
Ik(s) penalty term for solution s associated with the k-th soft constraint
wk weight parameter associated with penalty term Ik

3.4 Problem definition 47

all mandatory orders are executed:

OM ⊆ O(s),

and all the tasks in the orders O(s) that are part of the solution are visited
by exactly one route:∑

v∈V

∑
r∈Ωv

airyr = 1 ∀ i ∈ N : o(i) ∈ O(s),

where parameters air ∀i ∈ N, r ∈ Ωv is equal to 1 if route r visits node i, 0
otherwise.
Based on the observation above, we introduce a preliminary model to formal-
ize the definition of EPDT. To this aim, we define for each non-mandatory
order o ∈ O \ OM the binary variables xo equal to 1 if and only if o is as-
signed to no route in the solution. Furthermore, we define qo as the objective
coefficients of variables xo, such that qo = Po, if o ∈ ON , and qo = Po + Lo,
if o ∈ OU , being Po and Lo the profit of order o ∈ O and the cost for missed
urgent order o ∈ OU , respectively.In conclusion, we can model EPDT as a
maximization problem:

max
∑
o∈O

Po −
∑
v∈V

∑
r∈Ωv

(C(r) +A(r) +W (r))yr −
∑

o∈O\OM

qoxo −
∑
k∈K

wkIk(s)

(3.2)

s.t.
∑
v∈V

∑
r∈Ωv

airyr = 1 ∀ i ∈ N : o(i) ∈ OM (3.3)∑
v∈V

∑
r∈Ωv

airyr + xo(i) = 1 ∀ i ∈ N : o(i) ∈ O \OM (3.4)∑
v∈V

∑
r∈Ωv

yr ≤ |V | (3.5)

yr ∈ {0, 1} ∀ r ∈ Ωv, v ∈ V (3.6)

xo ∈ {0, 1}, ∀ o ∈ O \OM . (3.7)

The solution s is of EPDT is determined by the values of variables yr and
xo. The objective function (3.2) combines the net profit and soft constraints
violations, constraints (3.3) require each task of a mandatory order to be
served by exactly one vehicle, whereas constraint (3.4) allows tasks from
non-mandatory orders to be either visited by exactly one vehicle, or consid-
ered as a rejected order. Finally, constraint (3.5) ensures that the solution
does not involve a number of vehicle that exceeds the fleet size.
Notice that the proposed formalization makes use of feasible routes that are
implicitly defined by the sets Ωv. Moreover, the penalty terms related to
soft constraints are not expressed in closed form, since they depend on s,

48 3. Description of the problem

and a specific model to represent prospective cost is needed: in Chapters 5
and 6 we will discuss how they can be represented.
The definition of EPDT reported in this chapter encompasses several at-
tributes coming from real-word contexts. As we will discuss in the following
Chapter 4, EPDT presents, to the best of our knowledge, interesting in-
novative features. For example, multi-pickup and multi-delivery orders are
defined as a combinations of decoupled pickup and delivery tasks, so that
they cannot be split into single pickup-delivery orders and special prece-
dence constraints have to be considered. Another interesting feature, is the
span of orders that may include tasks occurring in different planning days,
thus generating pending orders to be considered at the beginning and at the
end of the planning horizon.
In the next chapter we make a literature review of exact and heuristic algo-
rithms for several VRP extensions, with the aim of stating the relevance of
EPDT and analyzing state-of-the-art approaches to cope with VRPs similar
to it.

Chapter 4

State-of-the-Art for
Multi-Attribute Vehicle
Routing Problems

This chapter is devoted to the characterization of the VRP and its exten-
sions, with an insight both in mathematical formulations and in the most
popular solution methods offered by the scientific literature. In Section 4.1,
we recall different models for the basic VRP and, in Section 4.2, the main
VRP extensions, remarking different classes of attributes and their impact
on the problem. When such additional features come in a significant number,
the problem is a MAVRP (see definition at Section 3.1). In Section 4.4, we
outline the state-of-the-art exact approaches to different types of MAVRPs.
In Section 4.5, we give a description of an exact method for VRPs that has
been the base for algorithms solving MAVRPs in several literature works, as
well as for the Column Generation algorithm we devise to solve the problem
stated in Chapter 3, as we will detail in Chapter 6. Section 4.7 contains
a review of the main heuristic and meta-heuristic methods for the solution
of MAVRPs, followed by a description of classic VRP heuristic algorithms
in Section 4.6. Finally, in Section 4.8.3, we review approaches proposed by
literature to handle Dynamic and Stochastic versions of VRPs.

4.1 VRP definition and basic models

In this section we give a description of the Vehicle Routing Problem in its
basic form. According to the statement in [106], the problem can be defined
as follows:

given a set of transportation requests and a fleet of vehicles, the
problem is to determine a set of vehicle routes to perform all (or
some) transportation requests with given vehicle fleet at mini-

49

50 4. State-of-the-Art for MAVRPs

mum cost ; in particular, decide which vehicle handles which re-
quests in which sequence so that all vehicle routes can be feasibly
executed.

The problem arises from several real-world scenarios from the freight trans-
portation industry. The high complexity of the problem motivated a very
intense and active research, and nowadays many challenges are still a fertile
ground to new progresses.
A more formal statement of the problem considers a set of nI points I =
{1, . . . , nI} called customers, each of which needs to be visited by a single
vehicle, a particular point 0 called depot where a fleet of nK identical ve-
hicles K = {1, . . . , nK} is available. The route traveled by a vehicle must
start at the depot, visit the set of associated nodes in an order and finish
at the depot, hence a route can be defined as a tour containing the depot.
Finally, there is a fixed cost cij to move from point i to point j.
This description of the problem leads naturally to the same definition on
a graph structure. In the following we report different mathematical mod-
els for the VRP [106]. We define N = I ∪ {0} as the set of nodes and
A = {(i, j) : i, j ∈ N} as the set of arcs, with a cost coefficient cij related
to each arc. Therefore, a VRP instance is defined by a complete graph
G = (N,A, cij) and the available fleet K. In this context, a route is defined
as a sequence of nodes r = (i0, i1, . . . , is, is+1) where i0 = is+1 = 0 and a
set of s customers associated with the route r is visited. Such route is said
feasible if im 6= il for any 1 ≤ l < m ≤ s. A feasible solution is defined by a
set of feasible routes S = {r1, . . . , r|K|} such that the corresponding sets of
customers’ nodes visited by each single route give a partition of the set I.

4.1.1 Mathematical formulations

VRP can be formulated as a MILP problem. There are different types
of models, based either on arc-flow on a network or on a set-partitioning
formulation.

2-index Arc-Flow Formulation

The formulation relies on the concept of flow on a network, and consists
of two sets of indices on the node set N . This is called 2-index Arc-Flow

4.1 VRP definition and basic models 51

Formulation

min
∑

(i,j)∈A

cijxij (4.1)

s.t. ∑
i∈δ−({j})

xij = 1 ∀j ∈ N \ {0} (4.2)

∑
j∈δ+({i})

xij = 1 ∀i ∈ N \ {0} (4.3)

∑
j∈δ+({0})

x0j ≤ |K| (4.4)

∑
j∈δ+(S)

xij ≥ 1 ∀S ⊆ N \ {0}, S 6= ∅ (4.5)

xij ∈ {0, 1} ∀(i, j) ∈ A, (4.6)

where the binary variable xij takes value 1 if the arc (i, j) belongs to the
solution, 0 otherwise. We remind that given a node i, δ+(S) and δ−(S) are
the forward and backward cuts of the subset of nodes S, that are the set of
out-going and in-going arcs respectively with exactly one end in S.
The objective function (4.1) represents the minimization of the overall cost
of the solution. Constraints (4.2) and (4.3) ensure that each node is visited
by exactly one vehicle, and they are called flow conservation constraints.
The number of vehicle used in the solution does not exceed the fleet size
by constraint (4.4). Finally, constraints (4.5) are the sub-tour elimination
constraints, necessary for each route to contain the depot node. The idea
behind such constraints is that for each subset of nodes other than the de-
pot, there must be at least one route that enters (and exits, by (4.2) and
(4.3)) the subset S ⊆ N \{0}. In other words, no route can loop on a subset
of nodes if it does not visit the depot.

3-index Arc-Flow Formulation

The previous model does not need arcs in the solution to be explicitly related
to some particular vehicle. As we will see, sometimes there may be other
attributes to plug into the model that are vehicle-specific, for instance in
the case of a heterogeneous fleet. When this is the case, a better problem

52 4. State-of-the-Art for MAVRPs

modeling is provided by the 3-index Arc-Flow Formulation:

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (4.7)

s.t.
∑
k∈K

∑
i∈δ−({j})

xkij = 1 ∀j ∈ N \ {0} (4.8)

∑
k∈K

∑
j∈δ+({i})

xkij = 1 ∀i ∈ N \ {0} (4.9)

∑
k∈K

∑
j∈δ+({0})

xk0j ≤ |K| (4.10)

∑
j∈δ+(S)

xkij ≥ 1 ∀S ⊆ N \ {0}, S 6= ∅, k ∈ K (4.11)

xkij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K, (4.12)

where binary variables xkij are equal to 1 if arc (i, j) is traversed by vehicle
k in the solution, 0 otherwise. This type of formulation allows to enrich the
model with attributes at vehicle level, e.g. a capacitated VRP where each
vehicle has its own capacity. However, the size of the model has increased
both in number of variables and in number of constraints, involving a loss
of efficiency when solving the MILP.
Let us observe that both in 2- and in 3-index formulation the number of
sub-tour elimination constraints is exponentially large, therefore a suitable
solution technique is needed in order to efficiently solve this problem. A
classically used method to handle these constraints is based on a Branch-
and-Cut approach, where the problem is relaxed by removing all the sub-
tour elimination constraints. Successively, we solve the LP relaxation in a
Branch-and-Bound scheme. If one of the sub-tour elimination constraint
is violated, the corresponding separating cut is added to the model. The
procedure is repeated until a feasible solution is found.

Set Partitioning Formulation

A third model of the problem is based on a Set Partitioning Formulation.
We define Ω as the set of all feasible routes. We associate a cost cr to each
route r ∈ Ω. Then, we define the parameters air that assume value 1 if node
i is visited by route r, 0 otherwise. Finally, the binary variables xr is 1 if

4.2 VRP extensions in the literature 53

route r is part of the solution, 0 otherwise.

min
∑
r∈Ω

crxr (4.13)

s.t.
∑
r∈Ω

airxr = 1 ∀i ∈ N \ {0} (4.14)∑
r∈Ω

xr ≤ |K| (4.15)

xr ∈ {0, 1} ∀r ∈ Ω (4.16)

The objective function 4.13 represent the total cost of the solution, con-
straints (4.14) ensure that each node is covered by exactly one route and
constraint (4.15) forces the number of routes to be less than or equal to the
number of available vehicles.
This model is proved to be related to the arc-flow formulations by the
Dantzig-Wolfe decomposition (see e.g. [32]). In fact, every vertex of the
polyhedron defined by the continuous relaxation of the problem corresponds
to a feasible route in the graph. Despite the simplicity of this formulation,
one can observe two main issues:

• it is not trivial to know which are the feasible routes;

• the number of feasible routes (which in turn is the number of variables)
is exponentially large.

Column Generation and Branch-and-Price approaches are suitable methods
to deal with models with this structure. The Pricing Problem is related to
the Shortest Path Problem and can be solved by Dynamic Programming in
pseudo-polynomial time, as we will describe in Section 4.5.

4.2 VRP extensions in the literature

VRP attributes are intended as features that are embedded in the basic
definition. In the following, we will se a classification for the main extensions
of both the VRP and its objective, with reference to [106].

4.2.1 VRP attributes classification

Real-life problems show several attributes that have to be taken into consid-
eration in the planning phase. Therefore, the basic VRP definition is very
often extended according to one or more characteristics in play.
The VRP attributes can be grouped into different classes, according to the
way they impact the definition of the problem. Researchers have provided
different classifications, as for example in [7, 58, 106]. Based on the clas-
sification presented in [106], we gather the main MAVRP attributes in the
following classes:

54 4. State-of-the-Art for MAVRPs

• Network structure;

• Fleet composition;

• Type of requests;

• Intra-route features;

• Inter-route features.

Hereinafter, we give a short description of the classes above, exploring ex-
amples of features rising from real-case scenarios that have been studied by
researchers.

Network Structure

The nature of the network can influence the graph underlying the model.
One main characteristic is whether the distances cij are symmetric with re-
spect to the endpoints i and j. In the symmetric case we can model our
problem on an undirected graph, since cij = cji, otherwise we need a di-
rected graph.
Another feature concerns what has to be visited by the vehicles. We can
represent our tasks as operations to be served at some specific locations,
that is known as Node Routing Problem (this corresponds to the classical
VRP). Sometimes it is more convenient to model our tasks as arcs to be
visited, for example street cleaning, winter services with salt gritting, etc.
In this case the problem is called Arc Routing Problem.
There exists also examples of mixed Node and Arc Routing Problems called
General Routing Problems [106].

Fleet Composition

In Chapter 3 we have seen fleet features like heterogeneity, multiple capac-
ities and cost per space distance (see Section 3.2). Further characteristics
can be related, e.g., to the shape and size of each vehicle. Another peculiar
feature is the presence of multiple depots. In this case vehicle can start and
finish at different locations, as long as they correspond to a depot.
Moreover, in some applications the vehicles can be compartmentalized, so
that different classes of items are allowed only within specific compartments.
This indeed induces compatibility constraints between items transported by
the same vehicle. As an example, think about waste collection, or food re-
quiring different temperatures or dangerous goods.
Compatibility can rise also between vehicle and customer, for instance the
vehicle size may be not suitable to enter or make maneuvers in some specific
customer location.

4.2 VRP extensions in the literature 55

Some more complex fleet variant is given by the presence of trailers, where
vehicles need to be joint to a self-moving vehicle. The truck-and-trailer
routing problem is composed by a class of customers that cannot be reached
by trucks with trailers (called truck customers), therefore single trucks can
perform sub-tours to reach trailers, transfer items and accomplish the oper-
ations at the truck customers. In the trailers and transshipments scenario a
trailer may be assigned to different trucks on parts of the route.

Type of Requests

As we have seen in Section 3.2, operations related to a particular customer
request can be pickup or delivery tasks, where items are, respectively, loaded
to or unloaded from the vehicle. A particular case is the one of Pickup and
Delivery routing problems, where customer requests consist of both a pickup
operation and a delivery operation. This induces a precedence constraint,
so that a pickup must be performed in a route before the corresponding
delivery. Similar models are used in public transportation, and are known
as dial-a-ride problems.
A different way of requests handling is the VRP with backhauls. In this
case a subset of customers (linehauls customers) must be visited for delivery
operations. Afterwards, pickup operations are performed at the remaining
customers (backhauls customers).
Finally, in some contexts a request can be fulfilled by more than one ve-
hicle: the items of a request can be transferred at a transit-point, where
consolidation operations can be executed. Notice how the multi-pickup and
multi-delivery type requests defined in 3.3 cannot be associated with any
of the precedence constraints found in literature and therefore represent a
brand-new attribute.

Intra-Route Features

Among the main intra-route characteristics, we mention the presence of (soft
or hard) time windows, on-board capacity, the service time and the European
Hours of Service Regulations, as described in Section 3.2.
In some scenarios, one can consider as decision variables the waiting times,
defined as the amount of times the vehicle is kept idle at the locations along
the route. Hence, waiting times can be used to schedule the arrival to the
next assigned location at a more convenient time (as we will see in Section
4.8.2, this may be relevant with stochastic customers).
Another extension of the request type is related to the possibility to split
or not split the goods that have to be delivered to some customer. Indeed,
if visiting a customer with more than one vehicle or tour to accomplish the
same request is allowed, a larger set of feasible plannings is available which
may involve more cost-savings rather than denying splits. Not all scenarios

56 4. State-of-the-Art for MAVRPs

are suitable for splitting, for instance because of the lack of information on
customer requests, as we have seen in Section 3.2.
Items can be also characterized by 2 or 3 dimensional size, that induces the
capacity constraint to take into account a packing problem at each load and
unload operation.
Also, goods can be subject to a loading policy, for instance a LIFO (Last
In First Out) can be required when a truck is not equipped with side doors
and therefore can be unloaded only from the rear. Also, as described in
Section 3.2, loading policies may involve subset of orders which are required
or preferred to be together in a vehicle for, e.g., packing compatibility.
In the classic VRP, routes are tour containing a depot location. The Open
VRP allows vehicles to start and end at any location, so routes may be
non-closed paths.
Constraints related to the maximum duration of a route in terms of space
and time can be added. As an example, VRPs with deteriorating food
delivery need these type of constraints.
In the Multi-Trip VRP, a vehicle can travel multiple routes, for example to
refuel or reload operations at the depot.

Inter-Route Features

More complicating scenarios are based on synchronization issues. For in-
stance, we can have a shared finite resource (i.e. trailers available, or maxi-
mum number of long routes), or a balancing requirements for fairness issue,
so that the difference between the longest and shortest route cannot exceed
some threshold. Synchronization also takes place in scheduling and routing
problems, where crew must be assigned to a vehicle and, at the same time,
a route planning must be decided.

4.2.2 Extension of the objective function definition

The most classical objective function is related to the overall distance min-
imization, but other criteria can be considered, like customer satisfaction,
overall time duration, number of vehicles, environmental impact or maxi-
mum route duration. When dealing with soft time windows, also penalties
for late arrivals are considered. Other type of preferences about specific
attributes can be added to the evaluation phase of the solutions in the in-
cumbent VRP [106].
The planning evaluation can be performed as a single objective function
or modeled as a multi-objective problem. Also, a hierarchical evaluation
can be performed on the objective function components. As an example, a
well-known hierarchical approach is at a first level the minimization of the
number of deployed vehicles and, at a second level, the cost of routes.
In the VRP with profits a revenue is associated with the fulfillment of each

4.3 Comparison with EPDT 57

request. It is worth to notice that in this extension of the VRP, a feasible
solution does not require to accomplish all the requests, since the objective
in such optimization problem is to maximize the overall profit, regardless of
dismissing some requests.

4.3 Comparison with EPDT

The surveys cited in Section 4.2 show that several attributes of EPDT, the
problem we described in Chapter 3, are the object of many studies in liter-
ature. For instance, a large number of works consider heterogeneous fleets,
vehicles characterized by capacities and space distance costs. Concerning
route attributes, several papers consider scheduling breaks to comply with
the drivers’ hours of service regulation, as well as open routes. Moreover,
soft and hard time windows are popular type of attributes widely studied,
as well as service times at customer facilities.
Although many of its attributes can be found in the VRP literature, EPDT
presents some innovative aspects.
A first new attribute comes from the definition of the orders. EPDT defines,
to the best of our knowledge, a new type of multi-pickup/multi-delivery or-
ders, made of a combination of several pickup and several delivery operations
where no direct correspondence between possible pairs of single pickup and
delivery tasks can be established at the planning time. This is due to the
particular context defined by express freight transportation with regional
haul, where, as described in Section 3.2, the exact destination of the items
may be defined at the time of the picking up and unknown at the planning
time, which may take place several hours before.
This aspects reflects on a new route attribute in terms of precedence con-
straints. In Section 3.2, we have seen that feasible routes must be planned
such that they visit all pickup nodes before visiting any delivery nodes: a
route that does not comply with this precedence constraint may have al-
ready visited the destination node of an item, which is revealed the pickup
time.
Another relevant innovative feature of EPDT is, to the best of our knowl-
edge, the presence of pending tasks among the route attributes, as described
in Section 3.2 and stated in Section 3.3.4. In fact, orders span two consec-
utive days, whereas the planning horizon considers the tasks of one day, or
less, as we will see for re-optimization in dynamic settings. This generates
pending yesterday and tomorrow tasks that have an impact on the planning
horizon.
Further interesting aspects are related to the presence of new specific pref-
erence attributes (e.g. collecting order subsets on a same route, having a
preferred number of vehicles at the depot at the end of the planning hori-
zon), as well as the combination of several attributes issued by real world

58 4. State-of-the-Art for MAVRPs

contexts.

4.4 Exact Methods for MAVRPs

A large variety of solution methods for MAVRPs have been devised by re-
searchers. In the following, we provide some of the works in the Operations
Research literature devoted to exact algorithms for VRPs with different at-
tributes.
A real-world MAVRP is solved in [20]. The problem involves, among others,
heterogeneous fleet, time windows, multiple capacities, hours-of-service reg-
ulations, maximum route length, open routes, split-delivery, client-vehicle
compatibility constraints. The authors adopt a Column Generation ap-
proach. The Master Problem relies on a set-covering formulation, whereas
the Pricing Problem is a particular type of ESPPRC solved through a
bounded bidirectional dynamic programming algorithm. The pricing proce-
dure is split into three phases for the generation of different types of vari-
ables. At the end of the phases, a heuristic algorithm produces an integer
solution starting from the solution of the continuous relaxation of the prob-
lem, then a MILP solver is run to reach optimality.
In [86], a VRP with Pickup and Delivery and Time Windows is consid-
ered. A branch-and-cut-and-price algorithm has been implemented. The
solution method relies on a set partitioning model. Two pricing problems,
an elementary and non-elementary Shortest Path Problems with Resource
Constraints, are considered. For speeding up the pricing phase, construction
heuristics, large neighborhood search and truncated label setting algorithms
are also used. Valid inequalities are inserted in order to have a tighter relax-
ation of the original problem. Also, the authors prove how some previously
used cuts for this type of VRP are implicit in the Set Partitioning formula-
tion of the problem.
In [9] (then extended in [8]) the authors illustrate a unified method to tackle
multiple MAVRP types. An exact framework is proposed based on a set par-
titioning formulation and three heuristic methods that find bounds to the
dual solution of the LP relaxation. The bounds are used by a column-and-
cut generation algorithm that finds the optimal integer solution adding valid
inequalities to the model. The authors illustrate how the three bounding
routines can be tailored to handle different constraints from other specific
VRP variants.
In [14], a Pickup and Delivery VRP is characterized by the presence of multi-
ple depots and a heterogeneous fleet. Moreover, customers place preferences
on time of visit, so that their violation implies a cost. A branch-and-price
algorithm has been devised to exactly solve this problem. A set covering
formulation of the problem is used for the Master Problem. The Pricing
Problem exploits exact bi-directional dynamic programming techniques and

4.5 Basic Exact Framework for VRP 59

heuristic routines. The implemented branching rules involve the number of
vehicles and the arcs in the paths.

4.5 Basic Exact Framework for VRP

The branch-and-price framework described in the following is a very popular
baseline for the optimal solution of many variants of the VRP ([14, 20, 86]
among others). We will rely on the main scheme of this algorithm when de-
vising a Column-Generation algorithm for EPDT, as explained in Chapter
6.
One of the main exact approaches for the solution of Vehicle Routing Prob-
lems and their extensions relies on the Set Partitioning formulation (4.13
- 4.16) reported in Section 4.1. The formulation considers an exponential
number of variables, which naturally leads to the use of a CG algorithm. As
explained in Chapter 2, we recall that the CG is based on decomposing the
problem into a Master Problem (MP) and one or more Slave (or Pricing)
Problems (SPs). MP is solved on a restricted set of variables, called Re-
duced Master Problem (RMP), while SPs generate new variables to add to
the Reduced MP. In the VRP context, every variable of the MP corresponds
to a feasible route of the VRP instance. Hence, starting from a set of feasi-
ble routes as the Reduced MP, one can generate new variables of negative
reduced cost in order to try to improve the solution (see [33] among others).

Definition 4.1. Given a complete graph G = (N,A) with cost coefficients
cij on each arc (i, j) ∈ A, we call distance matrix the matrix D = (cij)i,j∈N .

Definition 4.2. A distance matrix of a graph G = (N,A) is Euclidean if
for every i, j, k ∈ N it holds:

cij ≤ cik + ckj .

Let us define the Set-Covering formulation corresponding to the Set-Partitioning
model in (4.13) - (4.16):

min
∑
r∈Ω

crxr (4.17)

s.t.
∑
r∈Ω

airxr ≥ 1 ∀i ∈ N \ {0} (4.18)∑
r∈Ω

xr ≤ |K| (4.19)

xr ∈ {0, 1} ∀r ∈ Ω, (4.20)

where the only difference is constraint (4.18) that requires each node to
be contained in at least one route. We recall that the aim is to cover the
customer nodes, so the depot node 0 is excluded from constraints (4.18).

60 4. State-of-the-Art for MAVRPs

Remark 4.1. Under the assumption of a Euclidean distance matrix, the
optimal solution of the Set-Covering problem is also optimal for the Set-
Partitioning model, since we can remove any multiple node visit from the
routes till obtaining a partition which is still optimal.

Based on Remark 4.1 and assuming a Euclidean distance matrix, it is
equivalent to consider the Set-Partitioning or Set-Covering model, although
the latter formulation owns a higher numerical stability (more details in
[33]).
Now we consider the linear relaxation of the Set-Covering formulation:

min
∑
r∈Ω

crxr (4.21)

s.t.
∑
r∈Ω

airxr ≥ 1 ∀i ∈ N \ {0} (4.22)∑
r∈Ω

xr ≤ |K| (4.23)

xr ≥ 0 ∀r ∈ Ω. (4.24)

Notice that we do not need to consider the constraints xr ≤ 1 ∀ r ∈ Ω,
since values higher than 1 would only deteriorate the objective by Remark
4.1. The Reduced Master Problem must be initialized by a feasible subset
of routes. One way to do it is introducing a set of dummy routes dm,m =
1, . . . , |N | with cdm =∞ and aidm = 1 for i = m, 0 otherwise. The solution
of the Reduced MP with an LP solver provides us with the primal solution of
the problem and the dual solution (π0, π1, . . . , π|N |), where πi (i ∈ N \ {0})
are the dual variables related to the covering constraints (4.22) and π0 the
dual variables corresponding to the maximum number of vehicles allowed by
(4.23).

4.5.1 The Pricing Problem

With reference to [33], we describe how the Pricing Problem can be for-
mulated as an Elementary Shortest Path Problem (ESPP), defined as the
ESPPRC (see Section 2.3.2) without any resource constraints.
At each node of the tree structure in the Branch-and-Price procedure, the
continuous relaxation of the Reduced MP is considered. As explained in
Section 2.1.3, we know that the reduced cost c̄r of a route r can be obtained
by the following formula:

c̄r = cr − (u∗)TAr,

where cr is the cost of route r in the objective function, Ar is the column
related to the route r in the matrix of constraints and u∗ is the dual solution

4.5 Basic Exact Framework for VRP 61

corresponding to the incumbent primal solution of the RMP.
Hence, given a route r and the dual solution π it holds:

c̄r = cr −
∑

i∈N\{0}

πiair − π0.

Notice that, given a route r = (n0, n1, . . . , nl, nl+1) with n0 = 0, and the
distance matrix D = (cij)i,j∈N , the cost of the route is computed by cr =∑l

m=0 cnm,nm+1 . Moreover the corresponding column Ar has 1 on each entry
related to a node contained by r, 0 otherwise. Therefore, we have that

c̄r =
l∑

m=0

cnm,nm+1 −
l∑

m=1

πnm − π0,

hence we obtain

c̄r =
l∑

m=0

(cnm,nm+1 − πnm).

In light of what observed above, for each arc (i, j) we can define the reduced
cost coefficient c̄ij := cij−πj , so that the reduced cost of a route is computed
as

c̄r =
∑

(i,j)∈r

c̄ij .

Let us observe that finding variables with negative reduced cost is equivalent
to search for a negative cost path with respect to the reduced cost coefficients
c̄ij . Therefore, a way to find such paths or ensure that no such paths exist is
to solve a Shortest Path Problem. In particular, since the model we stated
does not allow cycles in the routes (coefficients air do not assume values
greater than 1), the paths must be elementary (ESPP).
Notice that in the presence of constraints defined on some route attributes,
this problem become the ESPPRC defined in Section 2.3.2 and can be solved
through the label correcting algorithm described in the same section.

4.5.2 Branching strategies

A straightforward branching rule is to take any variable xr with fractional
value f in the current solution, and decompose the problem into two prob-
lems containing respectively the additional constraints xr ≤ bfc and xr ≥
dfe. In the current formulation, this branching technique corresponds to fix
some variable to be 0 and 1 respectively. In other words we force r to be or
not to be part of the solution. This branching strategy has the drawback of
decomposing the problem into two unbalanced sub-problems. Moreover, it
has not a direct representation n SP.
As suggested in Section 2.2.3, an effective branching scheme is obtained by

62 4. State-of-the-Art for MAVRPs

decomposing the problem through the arc variables of the Arc-Flow formu-
lation of the problem, since they are included in the Pricing Problem. The
arc variable xij can be fixed to value 0 or 1. In the former case, the corre-
sponding arc (i, j) is removed from the graph Ḡ and then the ESPPRC is
solved. In the latter case we solve two ESPPRC, one from s to i and another
from j to d.

4.6 Classical Heuristics for VRPs

In this section we explore the basic heuristic and meta-heuristic procedures
presented in the scientific literature.

Solution representation

One of the fundamental characteristic in heuristic algorithms is the solution
representation. The most direct way is to encode a solution as a set of routes
where a route is encoded as a list of nodes. Another popular encoding is the
giant tour representation, where a string containing all customers nodes is
considered and, then, decoding procedures are responsible for splitting the
tour into different routes [78]. In [3], a solution is encoded by the assignments
to time periods and a decoding procedure builds a route by means of a quick
constructive heuristic.

Constructive Heuristics

We give a brief description the most popular constructive heuristics designed
for the VRP (further details in [104]):

• the Clarke and Wright algorithm. It starts from an initial solution
that contains a set of routes each one serving a single customer, then
pair of routes are iteratively merged in such a way that two routes
nodes i and j where the merging takes place maximize ci0 + c0j − cij ,
called saving ;

• the Sweep algorithm. Starting from a empty solution, it spans cir-
cularly the customers space and adds to the same route every node
encountered as long as the route is feasible. If not, a new route is
initialized and the insertion is performed on it;

• the Route-first and Cluster-second algorithm creates a giant tour that
visits every node of the graph, then the tour is split into different
feasible routes;

• the Cluster-first and Route-second algorithm firstly partition the cus-
tomers into clusters, and then it solves a Traveling Salesman Problem
in each one of them.

4.7 Heuristic Approaches for MAVRPs 63

Improving Heuristics

The main improvement heuristics for the VRP are based on Local Search
where different types of neighborhoods are explored. Neighborhoods may
have an impact on each route independently, or on more than one route
simultaneously [111]:

• k-opt : it splits the route into sub-routes by removing k arcs and it
inserts k arcs to reconnect the sub-routes in different ways. Most used
neighborhoods are 2-opt and 3-opt;

• Or-exchange: given a route, it relocates sub-sequences of consecutive
nodes of some predefined size at a different position within the same
route;

• relocation: it moves one node from a route to a different one;

• swap: it exchanges two nodes between two routes;

• 2-Opt* or crossover : it removes and inserts arcs similarly to the 2-Opt
algorithm, but the reconnection affects sub-routes from two different
routes;

• CROSS-exchange: it swaps sub-sequences of consecutive nodes be-
tween two different routes.

Neighborhoods containing a very large number of solutions are also part of
successful algorithms:

• ejection chain: find a cycle that alternates existing and non-existing
arcs and replace the existing with the non-existing ones;

• multiple relocation: applies the relocation heuristic to b customers
within m routes.

4.7 Heuristic Approaches for MAVRPs

Because of the computational complexity of the MAVRP, together with the
scalability required by more and more attributes of the real-world appli-
cations, heuristics and meta-heuristics algorithms have been proposed that
can attain near-optimal solutions for large instances of VRPs with difficult
constraints (see for instance [58, 63, 111]). Meta-heuristics can reach a high
quality solution in an acceptable amount of time, while being less sensitive
to the introduction of new attributes in the model with respect to an exact
approach, both for mathematical formulation issues and for the required
computational effort. Below, we explore the main heuristic approaches for
the solution of MAVRPs in literature.

64 4. State-of-the-Art for MAVRPs

Search-based, population-based and hybrid algorithms have shown satisfying
performance (a bibliography can be found in [18]), as well as matheuristic
techniques [6]. Detailed surveys on the most successful heuristic algorithm
in literature to solve the VRP with different attributes can be found in
[18, 63, 111].
In the following, we describe some successful heuristic algorithms proposed
in the literature, providing more details as they represent a substantial ref-
erence for the techniques developed in this thesis. First, we will consider
some works that propose general methods devised to be suitable for differ-
ent MAVRPs in a unifying approach. We will review some more specific
approach to MAVRPs with pickup and delivery, focusing on the ones that
make use of Tabu Search and Variable Neighborhood Search, which repre-
sent the basis of the methods we propose for EPDT in Chapter 5.

4.7.1 General approaches to MAVRPs

In [23] a Parallel Iterated Tabu Search is implemented to solve VRP instances
with different sets of attributes. The algorithm embeds features of the Tabu
Search algorithm into a Iterated Local Search (ILS) framework and it is
configured depending on the type of MAVRP. For instance, in the presence
of time windows, insertion of a node n in a route r is performed through the
least-cost insertion of n between two consecutive nodes, whereas the removal
of n from r is performed by re-linking the predecessor and successor nodes
of n. With no time windows, a low level heuristic is responsible for the
rearrangement of a small segment of r containing n, during both insertion
and removal phase. The construction of the initial solution is performed by
a sweep heuristic.
The search-based method used in the improvement phase is a Tabu Search
heuristic. In particular, it allows to visit infeasible solutions by relaxing
some constraints (capacity, route duration, and time windows), penalizing
them in the objective function through adaptive non-negative coefficients.
In the Tabu Search scheme, a solution s is partially characterized by a set of
triplets (i, k, l) stating that customer i is visited by the vehicle k in the day l
(the value of l is determinant in case of Periodic VRPs). The neighborhoods
considered are

1. replace a customer into a different route (change (i, k, l) with (i, k′, l));

2. change the visit combination related to multiple days.

The tabu tenure is selected at the beginning of each improvement phase
randomly on an interval depending on the instance size. Whenever a move
is applied, any other move containing the set of triplets just involved is
declared tabu. Moreover, an aspiration criterion is adopted so that tabu so-
lutions is accepted whenever it is better than all other solutions for at least

4.7 Heuristic Approaches for MAVRPs 65

one triplet. The Tabu Search undergoes a diversification phase in order to
visit poorly explored regions of the solution space. In particular, when the
search is in a local minimum, the objective function is penalized by a factor
depending on a measure of the incumbent move frequency in past solutions.
An intra-route refinement phase is executed at regular iterations intervals,
by removing and reinserting each customer as described above. The per-
turbation of the ILS is characterized by selecting a random customer and
detecting a cluster of close nodes that are removed and reinserted in a ran-
dom order with the aim of reducing the insertion cost. Two stopping criteria
act at two different levels of the algorithm:

• the Tabu Search is stopped when the number of non-improving itera-
tions reaches the value M , where M is more and more lowered as the
iterations of the ILS progress, in order to spend less time when it is
repeatedly called on similar solutions;

• the ILS is terminated when a maximum number of total iterations is
reached.

Finally, parallelization is used to reach higher efficiency. The algorithm
is executed in a multi-start fashion, and each parallel thread selects the
algorithm parameters according to a probability distribution, to diversify
the searches. Moreover, synchronization is performed to share knowledge
on the solutions among the different threads, then a cross-over phase is
triggered to mix solutions features from different parallel searches.

A unified heuristic algorithm based on Large Neighborhood Search that
can handle different versions of the VRP is described in [77]. The VRP con-
sidered attributes are capacity, time windows, pickup and delivery, multi-
depot, vehicle compatibility and open routes. In the first stage of the so-
lution method, the VRP instance is transformed into a Rich Pickup and
Delivery Problem with Time Windows (RPDPTW) that can be solved by
an Adaptive Large Neighborhood Search (ALNS). The destroy and repair
phases of the ALNS scheme can be embedded into any search-based algo-
rithm (e.g. Simulated Annealing, Tabu Search, etc.). At the beginning of
a new iteration, a roulette wheel selection is triggered to choose one de-
stroy and one repair neighborhood. We recall that a roulette wheel selection
consists in choosing one solution from a pool where a discrete probability
distribution is defined and the probability of each single solution is propor-
tional to its objective value.
The probability corresponding to a neighborhood Nj is given by

p(Nj) =
πj∑ω
i=1 πi

,

where ω is the number of neighborhoods and πi is the score of neighborhood
Ni, that is a measure of past performance of Ni. In order for each single

66 4. State-of-the-Art for MAVRPs

destroy and repair heuristic to avoid stalling, noise is added to the objective
function in the evaluation phase. The authors specify that destroy and repair
neighborhoods are defined as request removal and re-insertion. Below, we
describe some of the destroy neighborhoods used to remove q requests:

• random removal : remove q requests randomly;

• worst removal : remove for q times the requests with highest cost;

• related removal : remove a set of requests related by some measure (for
instance the distance between the operations).

The used repair neighborhoods are:

• basic greedy heuristic: repeatedly make the cheapest assignment of a
request to a route;

• regret heuristic: repeatedly make the assignment of a request to a route
so that the difference between the best and second best assignment of
such request is maximized (it is a sort of look-ahead policy to prevent
difficult requests to be stuck at late stages of the constructive routine).

In the end, a two-stages approach is adopted with the aim of minimizing
the number of vehicles used. Given a solution s with m vehicles, routes are
removed from s and requests are added to a requests bank at a high cost.
Then, the ALNS is run starting from s and, if a new feasible solution (i.e.
with empty requests bank) is not found, the procedure steps back to the last
found feasible solution as starting point for the execution of an ALNS.

In [112, 113] a unified method for the solution of MAVRPs is described.
The Unified Hybrid Genetic Search presented in these works hybridizes ge-
netic algorithms and local search, and proposes a unified framework for
solving a wide range of large-scale vehicle routing problems with several
types of attributes.
The authors remark how their method consists of a component-based frame-
work, rather than the classic approach that rely on modeling a very large
set of attributes, obtaining a more flexible and efficient design. The main
mechanisms are abstracted and, depending on the type of MAVRP, they are
specialized with no impact on the main routines. For this purpose, attributes
are grouped by their impact on different aspects of the solution method:

1. the ASSIGN attributes affecting the assignments to general resources
(e.g. depots, days, vehicle types, etc.);

2. the SEQ attributes change the nature of the graph and of the related
node sequences;

3. the EVAL attributes are related to the solution evaluation.

4.7 Heuristic Approaches for MAVRPs 67

This separation is exploited by the implementation of independent compo-
nents, one for each group of attributes, without affecting the overall pro-
cedure. For instance, different EVAL components can be embedded in the
method with no impact on the ASSIGN and SEQ modules.
In particular, as the local-search moves are represented by the recombina-
tion of sequence segments, the EVAL module requires functions to extend
resources (e.g. load on board, cumulative distance and duration, etc.) and
evaluate the concatenation of two or more segments.
The algorithm starts with an initial population of solutions with the giant-
tour representation, then a selection phase couples pairs of feasible and in-
feasible individuals to obtain an offspring by a crossover operator. Then, a
split procedure is used to convert the giant tour into a set of routes through
the depot and an education step is executed by a local-search. Infeasible so-
lutions are repaired with given probability. Finally, solutions are converted
back to the giant-tour representation and re-inserted into the population.
The procedure terminates after a maximum number of iterations or when a
time limit is reached.
The evaluation of the solutions contain penalties for infeasibility and diversi-
fication components. Moreover, for sake of intensification, a decomposition
is triggered after a predefined number of iterations so that a set of elite
solutions is selected and the ASSIGN components is kept fixed. The AS-
SIGN, SEQ and EVAL modules are called at different stages of the overall
procedure. For instance, the crossover operator needs the ASSIGN module
to decide which genetic material is transmitted, or the EVAL component is
called by the education phase.

4.7.2 Specific approaches for pickup and delivery problems

The scientific literature offers a remarkable variety of that solve Pickup and
Delivery problems, also in dynamic settings, which is relevant for EPDT.
Among others, in [92] a MAVRP from real-world application is tackled by
an optimization algorithm that mixes features from the Tabu Search algo-
rithm and the Variable Neighborhood Descent method. The MAVRP under
study is characterized by time windows, capacity of vehicles, heterogeneous
fleet, compatibility between orders and vehicles, maximum number of or-
ders in a vehicle (for work load balance) and pickup and delivery orders. In
particular, orders may appear as pickup-only orders, delivery-only orders or
pickup-and-delivery orders, always with a single pickup and/or delivery task.
The objective of the problem is the minimization of total distance and inac-
tivity times, coming from early arrivals with respect to time windows. The
solution method includes a route construction method that builds routes
according to one among multiple dispatching rules and rely on randomized
functionalities for sake of diversification. An improvement phase follows,
based on neighborhood search. It alternates two phases: a Variable Neigh-

68 4. State-of-the-Art for MAVRPs

borhood Descent and, once a local optimum is reached, a Tabu Search, as a
shaking phase that generates a new solution. Both phases involves classical
intra-route and inter-route neighborhoods as the ones described in Section
4.6.
In [42], a Tabu Search algorithm is devised in order to solve a pickup and de-
livery problem with soft time windows in static and dynamic settings. The
problem rises from courier service for same-day pickup-and-delivery real time
requests. The objective function is a weighted combination of three criteria:
total travel time, sum of lateness over all locations and sum of overtime
over all vehicles. The main neighborhood structure involves ejection chains
and it is part of a Tabu Search algorithm. In particular the Tabu Search
makes use of adaptive memory and decomposition techniques to reduce the
computational time, as well as a master-slave design that includes paral-
lel explorations. Since the dynamic setting requires a solution to be found
quickly when answering to new orders, a specific procedure for dynamic in-
sertions is devised, based on a local descent applied to the best solution in
memory. The descent then is stopped at the first local minimum using the
ejection chain neighborhood.

4.8 Approaches to Dynamic and Stochastic VRPs

The input data of VRPs can have a different nature: they can be fully
known before the execution of the solution method (static settings) or, as
we will see in the following, the can come into play during the execution od
operations (dynamic settings) or can be affected by uncertainty (stochastic
settings).

4.8.1 Dynamic setting

A vehicle routing problem is said to be static whenever all the problem
input data are known beforehand. In many applications, for instance ex-
press courier deliveries, the static setting is almost never the case. Data
about order request often happen to be available during the execution of
the planning, therefore re-optimization techniques can improve the incum-
bent solution subject to the new input data. This last setting, in contrast
with the static case, is called dynamic. Dynamic routing problems can be
subject to more or less frequent input updates with respect to the planning
horizon duration, as well as more or less restrictive deadlines to complete
new requests’ operations.
A measure called degree of dynamism (dod) has been defined by [65] to
represent this concept

dod =
1

|R|
∑
i∈R

T − (li − ti)
T

, (4.25)

4.8 Approaches to Dynamic and Stochastic VRPs 69

where R is the set of all the requests in the VRP instance, the planning
horizon is represented by the interval [0, T], li and ti are respectively the
latest time a request i ∈ R can be accomplished and the time the request i
is known.

Solution strategies for dynamic VRPs

A basic technique to re-optimize a dynamic VRP instance when new input
information becomes available is to simply solve the static problem including
the new input data. This strategy implies to modify some parameters in or-
der to make the solution consistent with past decisions. Re-optimizing with
the full procedure may be not efficient enough, so another option is to devise
two routines: an algorithm specifically creates the solution of the routing
problem in static setting to run at the beginning of the planning horizon,
then another algorithmic technique based on faster insertion heuristic is trig-
gered any time new requests are revealed [13], giving rise to the so called
reaction policy.
A different approach to tackle dynamic VRPs alters the objective function
to meet more suitable criteria for the dynamic setting. For example, focus-
ing the optimization only on the distance traveled ignoring the long-term
components (since the routes are likely to be modified) [13], or also empha-
sizing the short-term minimization of distance and maximizing the long-term
slack-time, so that future demand can be more easily satisfied [69].

4.8.2 Stochastic setting

Also uncertainty can affect input data. In this case, some parameters are
characterized by (known or unknown) probability distributions that can be
exploited for better decision making. This is called the stochastic VRP.
Following the discussion in [84], stochasticity is mainly related to:

• service time: the time that an operation of pickup or delivery takes to
be accomplished can vary. For instance, a truck may wait at a delivery
point in line with other trucks;

• travel time: the time between two points can increase or decrease
depending on the time of the day it is traveled, car accidents, etc.;

• demand : the exact amount or size of items that must be loaded during
an operation is subject to variation;

• customers: this is a stochastic demand scenario where also the loca-
tions where operations must be fulfilled are not deterministic.

70 4. State-of-the-Art for MAVRPs

Solution strategies for stochastic VRPs

One class of algorithmic techniques used to solve stochastic versions of VRPs
is based on the sample scenario approach, where multiple future outcomes
are generated and inserted into the optimization procedure (e.g. [43]). This
way, the evaluation of the solutions includes the impact of (potential) future
events on the objective values. Therefore, the sample scenario approach re-
lies on two main modules: (a) an optimization algorithm to solve the routing
problem in static settings and (b) a sample generators of the future requests.
The latter component requires a probability distribution to be known, but
this is not always the case. Thus, if historical data are available, inferential
statistics can provide estimated distributions for the sampling phase thanks
to data-driven techniques (for example, see [12]).
Sampling and evaluating against several scenarios are time-consuming oper-
ations to perform at run-time, so non-sample scenario techniques have been
investigated by researchers. For instance, approximation of the future uti-
lization of the fleet together with future requests information in space and
time is part of a solution method described in [59]. Also, in [40] a spatial and
temporal clustering approach of the future demand is used to guide vehicles
in regions with higher probability of requests.

4.8.3 Dynamic and Stochastic VRP

The Dynamic and Stochastic VRP (DSVRP) combines the dynamic setting
of the input with the stochastic characteristics of the problem [13, 79].
Main literature approaches can be classified into reactive policies, that take
into account only known information on past pending requests and the new
one as in the pure dynamic case, and anticipatory algorithms, exploiting
stochastic information on past requests to better accommodate the future
ones [43]. Many solving methods devised for DSVRP are based on a rolling
horizon setting: whenever an optimization is run, only a predefined near-
future sub-interval of the planning horizon is taken into account, reducing
complexity and uncertainty effects [116].
Moreover, the DSVRP introduces new degrees of freedom in the model: a
waiting time schedule can be decided for each route, so that a vehicle that
has completed an operation can either leave as soon as it has finished, or
wait some amount of time (that is a variable of the model), with the aim of
spending more time in more strategic points (see e.g. [13] or Section 7.3).
In a similar way, a buffering system can be used so that a known request is
kept free to be re-assigned to another vehicle for a certain amount of time
[80].
The relocation concept consists of the possibility for idle vehicles to be re-
allocated at more suitable positions to satisfy future requests. For instance,
they may be median locations calculated from the historical data on orders

4.8 Approaches to Dynamic and Stochastic VRPs 71

[43].
The usual assumption in the mentioned strategies is that whenever a vehicle
is on its trip to some customer, it cannot be deviated toward some other
place during that trip. Nevertheless, using the diversion, that is allowing
the deviation of a vehicle from the current destination, can provide very
effective solutions for DSVRPs [13].

72 4. State-of-the-Art for MAVRPs

Chapter 5

Design of a heuristic
algorithm

In this chapter we consider the EPDT problem described in Chapter 3, and
we devise an algorithm able to efficiently provide a high quality solution in an
acceptable amount of time. The design of an algorithm to solve EPDT has
to fit both the problem statement and the operational context.
The problem statement includes several attributes and asks for a flexible
approach able to handle them simultaneously. State-of-the-art methods,
despite their capability to adapt to different multi-attribute scenarios, can
hardly fit the features of EPDT and take advantage of its specific defini-
tion towards efficient and effective solution methods. For instance, to the
best of our knowledge, sequenced multi-pickup and multi-delivery orders, or
the partition of the operations into tasks related to different days, have not
been studied in literature, and led us to devising specific neighborhoods that
exploit the order structure. Furthermore, EPDT defines long- and medium-
haul trips which, together with a relatively short planning horizon, entail
feasible solution with a large dispatch of vehicles and routes, and a reduced
number of operations. This context suggests a tailored design of intensifica-
tion mechanisms in the route sequencing phases.
Concerning the operational context, we recall that EPDT should be solved
in both static and dynamic settings. For the dynamic setting, we observe
that the frequency of events is relatively small compared to travel times or
task duration. This configures relatively-low dynamism scenarios, suitable
for reactive policies based on re-optimization (see Section 4.8.3), which re-
quire an efficient method to solve EPDT under up-to-date information.
In this Chapter, we give the details of the algorithmic approach we pro-
pose for EPDT, that hybridizes a Tabu Search algorithm with a Variable
Neighborhood Descent (as defined in Section 2.4.2). We will start by pro-
viding a general description of the proposed solution method, illustrating
the components of the score function, the solution evaluation procedure and

73

74 5. Design of a heuristic algorithm

the neighborhoods structure.
The approach presented in this chapter represents one of the main contri-
bution of the thesis, since it leads to an algorithm that is able to fit all the
EPDT requirements in terms of both statement and operational context.
More specific contributions are:

1. a solution evaluation procedure that suitably handles tasks in a route
complying with the multi-pickup and multi-delivery precedence con-
straint (H2) (defined in Section 3.4);

2. a granular search that filters out unpromising moves based on a graph
constructed on multi-pickup and multi-delivery orders;

3. a fast route evaluation procedure designed to reduce the computational
effort on tomorrow tasks;

4. different parallel implementations of neighborhoods exploration and
evaluation.

Notice that 1-3 take advantage of the specific EPDT features. Moreover,
2-4 represent speed-up techniques applied to the basic algorithm, assessed
by results in Chapter 9. Part of the content of this chapter is the object of
the works published in [28, 29, 30].

5.1 A two-level heuristic

Due to the inner complexity of the problem and the operational scenarios
it supports, a meta-heuristic approach is suitable: we devise a Tabu Search
algorithm hybridized with a Variable Neighborhood Search.
The design of the algorithm complies with several core characteristics de-
scribed in Section 2.4.4 and [111]. In particular, we suitably combine mul-
tiple neighborhoods, granular exploration, parallel sub-routines, diversifica-
tion phases.
Solving EPDT involves, at least conceptually, three decision degrees:

(i) the assignment of orders to vehicles;

(ii) for each vehicle, sequencing the tasks of the assigned orders;

(iii) determining the best vehicle route through task locations.

The proposed approach relies on the decomposition of the problem into two
hierarchical levels: the first deals with (i) and determines order-to-vehicle
assignments, which provide the input for the second level, dealing with (ii)
and (iii), that is, the optimization of vehicle routes. The first level imple-
ments a Tabu Variable Neighborhood Descent heuristic (general details on
Tabu Search and Variable Neighborhood Descent can be found in Section

5.2 The score function 75

2.4). The proposed approach, that we will detail in the following, can be
summarized as follows. It starts from an initial solution (current solution)
provided by a heuristic algorithm which iteratively determine the order-
to-route assignment with the least marginal cost. After the constructive
phase, the exploration of different neighborhoods is performed according to
the VND policy. The solutions are evaluated by a score function and the
best neighbor is chosen as the new current solution. The incumbent solu-
tion is updated each time a better current solution is generated. In order
to avoid cycling, a tabu list stores information on the last visited solutions,
so that they are excluded from the eligible neighbors. The process iterates
until at least one out of two termination conditions occurs, namely reaching
(a) a maximum number of iterations or (b) a maximum number of iterations
without an improvement.
In the decomposition schema, each neighbor solution represents a first-level
decision and determines, for each vehicle, the set of orders assigned to it. In
order to evaluate this solution, the second-level decisions are made, since the
score function depends on the route run by each vehicle to service assigned
orders. Towards vehicle routes optimization, a second-level heuristic based
on local search is devised. In other words, the first-level tabu search explores
the space of all the possible assignments of orders to vehicles, whereas, at
the second level, the search space covers task sequences and related vehicle
routes.
The schema sketched above is very general and we need to specify its com-
ponents, in particular: the score function used for first-level solutions, the
second-level local search that evaluates the score function, procedures to
compute an initial order assignment, first-level neighborhoods and tabu list.
In the following, we will first describe each component, then, we will outline
the overall approach proposed to solve EPDT.

5.2 The score function

The objective of EPDT is maximizing the profit from daily orders. Given a
solution s, let O(s) be the set of orders assigned to vehicles, and R(s) the
set of vehicle routes. Each route r ∈ R(s), run by a vehicle v(r), defines the
sequence of tasks and, as a consequence, their starting time, computed from
travel times between positions and from task duration. With reference to
the notation defined in Table 3.1, the net profit G(s) is defined as

G(s) =
∑

o∈O(s)

Po −
∑

r∈R(s)

(C(r) +A(r) +W (r))−
∑

o∈OU\O(s)

Lo (5.1)

where we recall that

• Po is the profit of order o ∈ O;

76 5. Design of a heuristic algorithm

• C(r) = CFv + CUv · l(r) is the cost of route r;

• A(r) is the prospective cost of route r;

• W (r) is the cost for soft time windows violation of route r;

• Lo is the cost of missed urgent orders o ∈ OU ⊆ O.

Given a route, the model that we adopted for the prospective cost A(r) is
based on the assumption that, similarly to the regular route cost C(r), it
behaves proportionally to the length lnext(r) of the shortest (according to
distances dij) route starting from the last-served today task and visiting
all next-day tasks assigned to v(r). Since incomplete orders information,
especially during the early stages of the planning phase, may affect the eval-
uation of the prospective cost, we modulate its value through a coefficient
κA. In this way, an estimate of such cost is taken into account, but incom-
plete information has an impact that can be reduced through κA. Therefore,
we model the prospective cost A(r) as

A(r) = κAC
U
v l

next(r).

Given a route r = (t0, t1, . . . , tL), we represent the cost function W (r) for
soft time windows violations as

W (r) =
L∑
i=1

Lwi max(0, t̃(i)− tei),

where t̃(i) is the arrival time at node i, tei is the end of the soft time window
of node i and Lwi is the soft time window violation cost at task i (0 if no
soft time window is associated with i).
We recall that, in order for s to be feasible for EPDT, each route inR(s) must
satisfy several constraints. In particular, with reference to the encoding in
Section 3.4, we need OM ⊆ O(s), that is, all mandatory orders are assigned.
For the sake of an effective exploration of the order assignment space (as
stated in Section 2.4.4), we allow visiting solutions with missing mandatory
orders, which is penalized in the score function through a component

B(s) =
∑

o∈OM\O(s)

Po.

In addition, EPDT defines several preferences, that we model as soft con-
straints by including them in the score function [28]. In particular, we define
the following performance indicators associated with the whole solution s or
to each route r ∈ R(s):

• ID(s): this indicator is related to soft constraint (S2). Let Q be the
set of subsets of orders to be preferably assigned to a same vehicle,

5.3 Solution evaluation and second-level heuristic 77

and, for each Q ∈ Q, let NQ(s) be the number of extra vehicles used
by solution s to serve the order in Q. NQ is obtained by counting
the number of vehicles that are assigned with at least one order of Q,
minus one. Then ID(s) =

∑
Q∈QNQ(s);

• IE(s): this indicator is related to soft constraint (S3). It counts num-
ber of missing vehicles at the depot with respect to the minimum
required;

• IF (r): this indicator is related to soft constraint (S4). It represents
the number of orders assigned to the preferred vehicle;

• IH(r): this indicator is related to soft constraint (S5). It is a boolean
indicator taking value 1 if r has, in solution s, its preferred end-of-day
position, 0 otherwise;

• IJ(r): this indicator is related to soft constraint (S1). It measures the
extra-time with respect to the preferred maximum duration of r;

Notice that the indicators above make explicit the penalty terms introduced
conceptually in Section 3.4.
Summarizing, a first-level solution s is evaluated by the following score func-
tion:

Z1(s) = G(s)− wDID(s)− wEIE(s)−M B(s) +

+
∑
r∈R(s)

(
wF IF (r) + wHIH(r)− wJIJ(r)

)
(5.2)

where wX , for each indicator IX are parameters that represent the weight
of each soft constraint in the evaluation of a solution. The value of such pa-
rameter depends on the context where EPDT is applied, so they need to be
calibrated. The constant M takes a big value to suitably penalize unfeasi-
ble solutions, and wX takes smaller non negative values to foster preference
matching.
The parameter adjustment is a hard and critical task that should be care-
fully executed in order for the objective components to match the decision
maker’s criteria. One way to accomplish it is a parameter tuning on the
field, where operations managers provide feedback on the algorithm behav-
ior obtained by changing parameter values, till reaching a set of parameters
that correspond to satisfactory solutions according to the assessment of the
operations managers themselves.

5.3 Solution evaluation and second-level heuristic

Given the order-to-vehicle assignments, most of the indicators taking part
in the score function (5.2) depend on vehicle route, which is in turn defined

78 5. Design of a heuristic algorithm

by the sequence of tasks. This asks for solving, for each vehicle, the Intra-
route optimization problem, defined as follows: given the orders assigned to
a vehicle, determine a feasible route r that minimizes the following function:

Z2(r) = C(r) +A(r) +W (r)+

−wF IF (r)− wHIH(r) + wJIJ(r) + wE
N̄0

|V |
ĪE(r) (5.3)

where, looking at the last addend, ĪE(r) is a Boolean indicator taking value 1
if r does not end at the depot, 0 otherwise; N̄0 = max{0, N0−Ñ0}, N0 being
the preferred number of vehicles at the depot, and Ñ0 being the number of
vehicles with depot as end-of-day position. Notice that all the components
of (5.3) directly come from the score function (5.2) but the last one, which
is related to IE(s): it is intended to penalize solutions with a small number
of vehicles ending at the depot, taking into account the weight of IE(s) in

Z1(s) (see attribute S3). Moreover, the factor N̄0
|V | increases the relevance

of this component of Z2(r) when the number of vehicles is relatively small
with respect to N̄0 (the additional number of vehicles required at the depot
besides the one guaranteed by routes’ feasibility).
Given a route r, Z2(r) is evaluated by computing the starting time for each
task according to travel times tij , task duration, earliest starting time from
the time windows, and inserting short and long compulsory breaks when
necessary.

Intra-route optimization is a hard problem and, moreover, it has to be
performed for each assignment generated by the first-level decisions. We
thus propose a second-level heuristic based on local search: it starts from an
initial route and generates neighbor solutions, evaluated by (5.3); the best
neighbor is chosen as the new current solution, and the process is iterated
until no improving neighbor exists. We now describe its components, after
stating the following assumptions.

Assumption 5.1. The second-level local search is triggered by:

• the assignment of one new order o to a vehicle route r;

• the removal of one or more orders from r, with, in case, the simulta-
neous assignment of a new order;

• the assignment to r of a set of orders coming from another route.

Assumption 5.2. The route affected by the changes that trigger the second
level local search (as fro Assumption 5.1) is feasible, that is, it satisfies all
EPDT hard constraints (H1-H7), but, in case, H4 on mandatory orders
(which in fact depends on the overall assignment).

In the following, a route r is defined a sequence t0, t1, . . . , tn, tn+1, where
ti is the i-th task, and t0 and tn+1 are defined as initial and final dummy
tasks.

5.3 Solution evaluation and second-level heuristic 79

5.3.1 Initial task sequence

The route used to initialize the local search, depends on the triggering mod-
ification. In case a set of orders is removed from r, the initial route is
the same r without the tasks corresponding to removed orders: this always
yields a feasible route, since r is feasible by Assumption 5.2.
If a new order o is assigned to r, we obtain an initial route including o as
follows. We recall that o may include one or more pickup and delivery tasks.
For each i and j such that 0 ≤ i ≤ n, 0 ≤ j ≤ n and i ≤ j, insert all pickup
tasks of o after ti and all delivery tasks after tj and evaluate (5.3), keeping
the sequence providing the best value as the initial route. In order to speed
up the convergence of the following local search, tasks are inserted after
i or j according to a nearest neighbor criterion. Notice that all insertions
yielding an infeasible route are discarded so that the procedure ends up with
either a feasible route including the new order o, or no feasible route. The
latter case prevents applying further local search.
If more than one new order is assigned to r, coming from a different route
r̄, a procedure similar tho the previous one provides the initial solution. In
this case, the pickup (resp. delivery) tasks of all orders are inserted after ti
(resp. tj), following the sequence they had in r̄.

5.3.2 Second-level neighborhoods

We define neighborhoods by the following moves:

• task insertion: for each i, j such that i 6= j, insert ti after tj ;

• task swap: for each i and j such that i < j, swap ti and tj .

The moves applied to generate neighbor solutions are different depending
on o being fixed or not: we say that o is a fixed order if the vehicle it is
assigned to cannot be changed. This is the case of orders including yesterday
tasks: their assignment comes from yesterday planning leaving some pending
today tasks already on board. Other fixed tasks may derive from special
operations manager requirements. If o is fixed, we obtain neighbor solutions
from both task insertions and task swaps, otherwise, only task swaps are
applied. In order to preserve route feasibility, moves are discarded if the
resulting route is not feasible.

5.3.3 Overall Outline of the second level heuristic

In Algorithm 8, we provide a high-level outline to summarize the second-
level procedure, that we call L2. For sake of simplicity, we illustrate the
case of a single order insertion o in a route r (the pseudo-code is similar for
multiple orders insertion or for single order removal). An optimized route
containing all the tasks in o is returned. With P (resp. D) we denote the set

80 5. Design of a heuristic algorithm

of all pickup (resp. delivery) tasks in o. The procedure that determines the
initial task sequence is encoded by Steps 3 to 14: it sequentially inserts tasks
in P or D after a selected task ti or tj already in r according to a nearest
neighbor heuristic, and it uses a set R to collect all feasible routes generated,
if any, among which the one with better score Z2 is chosen. Starting from
this route, a local search procedure improves the sequence of all the tasks
in r, using the second level neighborhoods described above and Z2 as score
function. If R is empty (see Step 11), the procedure stops and returns no
feasible route.

Algorithm 8: Second-level heuristic

1 def L2(r, o):

2 P = getPickups(o), D = getDeliveries(o), R = ∅;
3 foreach (ti, tj) ∈ r × r : ti ≤ tj do

4 nearest neighbor(ti, P);

5 nearest neighbor(tj , D);

6 r̄ =

concatenate([t0, . . . , ti], P, [ti+1, . . . , tj], D, [tj+1, . . . , t|r|]);

7 if r̄ is feasible then

8 R = R ∪ r̄;
9 end

10 end

11 if R is empty then

12 return Infeasibility;

13 end

14 best = arg max{Z2(r) : r ∈ R};
15 if o is fixed then

16 best = local search(best, [task insertion, task swap], Z2);

17 end

18 else

19 best = local search(best, task swap, Z2);

20 end

21 return best;

22 end

5.4 Construction of the first-level Initial Solution 81

5.4 Construction of the first-level Initial Solution

At the first level, the Tabu VND procedure starts from one initial solution
of EPDT that can be provided by two alternative heuristic algorithms.

The first algorithm, called Best Insertion (BI), is based on the greedy
heuristic described in Section 4.7 and [77]. First, fixed orders are assigned
to their vehicle, together with initial and final dummy tasks. Moreover, in
order to deal with the end-of-day position, a further dummy task is added
with suitable time window at the end of the planning day: its position is the
one prescribed or preferred for the vehicle, if any, or the depot otherwise;
in case of prescribed route ending position, the dummy task is part of a
mandatory order, normal otherwise. Let Ō be the set of not yet assigned
orders, initially equal to O. For each o ∈ Ō and each vehicle v ∈ V , we
tentatively assign o to v and compute the score function (5.2) of the partial
solution obtained. We denote with s(o, v) the partial solution obtained from
a solution s assigning order o to vehicle v.
Notice that each tentative assignment triggers the execution of the second
level heuristic to evaluate (5.3) for the route r associated with v. If intra-
route optimization does not provide any feasible route, then the assignment
is discarded, thus guaranteeing that following tentative assignments always
start from a feasible route, according to Assumption 5.2. A dummy vehicle
is added to the solution in order to collect all the orders left unassigned
at the end of the initial heuristic. Notice that, since the objective is to
maximize the net profit of a solution, an order may be left unassigned not
only for lack of feasible insertions but also because no assignment of such
order leads to a score improvement.
BI, at each iteration, selects the (ō, v̄) pair corresponding to the best partial
solution, that is

(ō, v̄) = arg max
o∈O,v∈V

Z1(s(o, v)).

Then, BI updates the current partial solution with s̄ := s(ō, v̄). This proce-
dure is repeated starting from s̄ until all the orders are assigned to a route
(including the dummy vehicle route).

The second algorithm is called Round-Robin insertion with Priority (RP)
heuristic and defines three classes of vehicles:

i) vehicles with orders on board (they must be deployed since they have
to complete the order);

ii) empty vehicles with starting position different from the depot;

iii) empty vehicles at the depot.

Notice that, by definition of the three classes, no vehicle can belong to
more than one class. Vehicles within the same class are sorted by ascending

82 5. Design of a heuristic algorithm

operational costs. Orders are assigned to vehicles in the first class, one order
at a time for each vehicle, in a round-robin fashion. To this end, orders are
sorted by a proximity criterion: given a route r = (i1, . . . , iL), the score
associated with an order o positioned in j is

pr(j) = U(o) + d0j − min
i=1,...,L

{dij} ,

where 0 is the depot and U(o) is a parameter depending on the order priority.
The rationale is to prefer the early (and hence hopefully better) insertion
of priority orders, and orders far away from the depot. Once the capacities
of the vehicles in the first class are saturated, remaining orders are assigned
to the second class according to the same procedure. The assignment of re-
maining orders occurs sequentially (a vehicle is saturated before considering
the following one) for the third class. In such a way, we try to accommo-
date as much priority orders as possible in different routes, while saving the
deployment of some vehicles.

5.5 First-level Tabu Search neighborhoods

A Tabu Search procedure explores the space of possible order-to-vehicle
assignments. With the aim of perturbing order-to-vehicle assignments, the
first-level tabu search defines moves involving non-fixed orders currently
in charge of different routes, including the ones in the dummy vehicle. We
recall that the assignment of fixed orders and dummy tasks to the prescribed
vehicle cannot be modified. We consider four neighborhoods.

Single Order Relocation

A first type of moves is the single order relocation (1R), where an order is
moved from its current route to a new route. Denoting by k the number of
non-fixed orders and by v the number of vehicles, the size is O(k · v), since
the neighborhood contains a solution for each of the k non-fixed orders and
each of the v − 1 alternative vehicles;

Two-Orders Swap

The second neighborhoods originates from two-orders swap (2S), consist-
ing in swapping the assignment of two orders in two different routes. The
neighborhood contains a solution for each pair of distinct orders assigned to
distinct vehicles, therefore its size is O(k2);

Multiple Relocation

A third neighborhood is generated by multiple relocation moves (mR): they
generalize 1R moves as they simultaneously displace up to m orders in a

5.6 Exploration strategy: Tabu Variable Neighborhood Search 83

same route r1 to a different route r2. We have a neighbor solution for each
subset of at most m orders currently on board of the same vehicle and for
each of the v alternative vehicle, hence the size of the mR neighborhood is
O(km · v).

Two-Orders Chain Shift

The fourth neighborhood is the two-orders chain shift (2C), where an order
o1 assigned to route r1 is moved to a route r2, and an order o2 assigned to
r2 is moved to a third route r3. The size is O(n2 · v).

Notice that all the moves (and hence v) include the dummy vehicle as an
alternative vehicle for order relocation.
We observe that mR is inspired by the related removal neighborhood il-
lustrated in Section 4.7. Moreover, the 2C Neighborhood generalizes the
ejection chain concept presented in Section 4.6, and again, it is adapted to
multi-pickup and multi-delivery orders.
All the neighborhoods are explored according to a steepest descent strat-
egy (2.4.2). The evaluation of the solutions generated by the above moves
always involves two routes that are modified in compliance to Assumption
5.1. Hence, the evaluation of a neighbor solution can be performed by call-
ing twice the second-level heuristic, which provides new feasible routes that
satisfy Assumption 5.2.

5.6 Exploration strategy: Tabu Variable Neigh-
borhood Search

In this section we show two different strategies we devised for the exploration
of the neighborhoods considered in the Variable Neighborhood structure of
the main algorithm. In particular, we describe a sequential change of neigh-
borhood (corresponding to the Variable Neighborhood Descent technique)
and a new cyclic change of neighborhood. Moreover, we also outline two
different ways to update the current solution on no improving iteration, as
well as the tabu list behavior and the overall stopping conditions.

5.6.1 Sequential neighborhood switch

In the sequential switch strategy, neighborhoods are sorted by increasing size
(1R, 2S, mR and 2C) and explored according to a Variable Neighborhood
Descent technique: at each iteration a neighborhood is explored if and only
if the previous one does not provide an improving solution. After each full
neighborhood exploration, if the best solution found improves the current
solution, it is chosen as the next solution in the Tabu Search trajectory. The
exploration strategy SF is included as a component of Algorithm 6.

84 5. Design of a heuristic algorithm

5.6.2 Cyclic neighborhood switch

In the sequential neighborhood switch described above, the Tabu VND tries
to escape from 1R local optima before allowing non-improving moves. This
implies iterating the search of computationally expensive neighborhoods as
2S, mR and 2C whenever a local optimum is reached, until an improving
solution is found. We consider a different exploration schema, such that
we always allow a maximum number In of non improving 1R moves be-
fore switching to one of the neighborhoods 2S, mR or 2C. The exploration
switches back to neighborhood 1R as soon as an improving solution is found
or, in any case, after a maximum number Ib of iterations. We implemented
two alternative switching methods: in the first (denoted by SF), at each
switch, we choose, in the order, either neighborhood 2S, mR or 2C; in the
second (SR), we choose the switching neighborhood at random, with prob-
ability proportional to a measure of its strength. For the sake of a fast
overall procedure, the strength of each neighborhood is evaluated offline by
running a simple Tabu Search using only that neighborhood, and measuring
the average improvement with respect to the initial solution.

5.6.3 Deterministic and random exploration

If an improvement is not generated by any of the neighborhoods, the choice
of the next solution is either deterministic or random. Deterministic ex-
ploration selects the best non-improving solutions. Random exploration
chooses the new current solution at random among the best five generated
by any explored neighborhood, with probability proportional to the score
function (roulette wheel selection). In this case, the overall exploration can
be repeated to obtain hopefully better solutions. In Figure 5.1, an example
of the benefit coming from the random exploration is shown. Notice how, in
this sample execution, the deterministic is stuck cycling, whereas the ran-
dom searches, after a deteriorating phase, manage to attain better solutions.

5.6.4 Tabu list and termination criteria

The tabu moves are encoded as one or more triplets (ri, ok, rj), representing
the fact that order ok has been removed from route ri and inserted in route
rj . Any move relocating the order ok into ri is considered tabu as long as
there exists at least one triple (ri, ok, rj) in the tabu list, where rj is any
route other than ri.
To prevent search space exploration from cycling through the same order-to-
vehicle assignments, the tabu list stores the last T moves yielding selected
current solutions: a neighbor is declared tabu and temporarily forbidden if it
moves at least one order to a vehicle it was assigned in the last T iterations.

5.7 Overall outline of the first level heuristic 85

Figure 5.1: Objective values over time of the deterministic exploration (obj)
and three random explorations (obj r1, obj r2, obj r3) during a sample ex-
ecution.

The first-level tabu search stops as soon as a maximum number M1 of iter-
ations without improvement or a maximum total number M2 of iterations
is reached.

5.7 Overall outline of the first level heuristic

In Algorithm 9 we provide a pseudo-code of the first-level Tabu Variable
Neighborhood Descent, denoted as L1. For sake of simplicity, we consider
only the initial solution provided by BI and we assume exploring the search
space according to the sequential neighborhood strategy, corresponding to
VND. Given an empty (or even partial) solution s, L1 calls procedure BI
to obtain a complete initial solution (Step 2). Notice that BI relies on the
second level heuristic L2 to evaluate the cost and the feasibility of the ten-
tative routes it considers. Then, Steps 3 and 4 initialize the center and the
best solution, together with the total iteration counter k, the non-improving
iteration counter l and the tabu list T . Steps 5 to 35 are the main tabu
search loop that explores the EPDT solution space. At each iteration, all
the neighbors of the current center solution are visited by the inner loop
(Steps 9 to 24), and a pool of the best 5 solutions, according to Z1 score
function, is maintained (Steps 7 and 22). The inner loop iterates on the
neighborhood type N (set to 1R, 2S or mR in the order) and implements
the variable neighborhood exploration strategy: each inner iteration gener-
ates all the neighbor solutions of type N , taking the tabu list T into account
and calling the second level heuristic L2 to evaluate the cost and check the
feasibility of the order-to-vehicle assignments associated with each solution
(Step 10).
After exploring a neighborhood (in a steepest descent fashion), if a neigh-
bor solution is generated with better Z1 score than the current center one,

86 5. Design of a heuristic algorithm

the inner variable neighborhood loop is broken and the improving solution
becomes the center for a new tabu search iteration (Steps 11 to 20), after
updating the tabu list (Step 34) and, in case, the best solution found so far
(Step 16). On the contrary, if the inner loop generates no improving solution
(flag improved remains false), the center of the next tabu search iteration is
chosen from the pool: the best one in case of deterministic exploration, or
the one determined by roulette wheel selection in case od stochastic explo-
ration (Steps 27 to 32). The main loop stops after matching the termination
criteria based on the tabu search iteration counters l and k (Step 5).

5.8 Granular Tabu Search

The overall neighborhood evaluation may be computationally expensive, in
particular for mR, due to its large size. Therefore, we propose a granular
exploration of mR, by limiting moves to the ones involving most promising
order subsets, selected on a distance criterion: the more orders are “close”
to each other, the more they are likely to be conveniently accommodated in
the new route.

Definition 5.1. Let o1 and o2 be two orders, with sets of tasks T (o1) and
T (o2) respectively. Given ρ ∈ [0, 1] and δ > 0, orders o1 and o2 are close to
each other if and only if

|{i ∈ T (o1)|∃j ∈ T (o2) : dij ≤ δ}| ≥ ρ · |T (o1)|

and
|{i ∈ T (o2)|∃j ∈ T (o1) : dij ≤ δ}| ≥ ρ · |T (o2)|.

The previous definition states that two orders are close if at least a
threshold fraction ρ of the tasks of o1 are within a threshold distance δ from
at least one of the tasks of o2, and vice versa. Notice that the definition is
symmetric with respect to any pair of orders.

Definition 5.2. Given a set of orders Γ = {o1, . . . , on}, we define the prox-
imity graph of Γ G(Γ) = (Γ, AΓ) as an undirected graph where AΓ is the set
of arcs and (oi, oj) ∈ AΓ if and only if oi and oj are close to each other.

We associate to a route r a proximity graph defined on the set of non-
fixed orders assigned to r. Based on this graph, we filter the mR neighbor-
hood by applying moves only to subsets of orders corresponding to cliques
of cardinality at most m in the proximity graph.

5.9 Destroy and Repair phase

As already observed, the second-level local search heuristic is an as criti-
cal as computationally expensive task. With the aim of reducing running

5.9 Destroy and Repair phase 87

Algorithm 9: First-level heuristic

1 def L1(s, explorationStrategy):
2 s = BI(s, L2);
3 center = best = s;
4 k = l = 0, T = [center];
5 while l < M1 and k < M2 do
6 k = k + 1;
7 pool = [];
8 improved = false;
9 for N in [1R, 2S,mR] do

10 neighbors = generate neighbors(center, N , T, L2);
11 n̄ = arg max{Z1(n) : n ∈ neighbors};
12 if Z1(n̄) > Z1(center) then
13 center = n̄;
14 l = 0;
15 improved = true;
16 if Z1(n̄) > Z1(best) then
17 best = n̄;

18 end
19 break

20 end
21 else
22 pool = take best 5 (pool ∪ neighbors, Z1);
23 end

24 end
25 if not improved then
26 l = l + 1;
27 if explorationStrategy is deterministic then
28 center = arg max{Z1(n) : n ∈ pool};
29 end
30 else
31 center = roulette wheel(pool);
32 end

33 end
34 update tabu list(center, T);

35 end
36 return best;

37 end

88 5. Design of a heuristic algorithm

times, we speed up the evaluation of the score function by separately se-
quencing today and tomorrow tasks. The sequence of tomorrow tasks is
relevant in the score function for the evaluation of the prospective tomorrow
cost, which, moreover, takes only distance into account. Observing that
today tasks precede tomorrow tasks in any feasible sequence, we propose
the following fast route sequencing : we decompose a route r in two sub-
sequences including, respectively, today and tomorrow tasks. The second
level heuristic limits the local search procedure to today tasks, and, then,
a nearest neighbor heuristic sequences tomorrow tasks: starting from the
last today task, the next task is the one compliant with pickup and delivery
precedence, and minimizing the distance from the current task. This allows
reducing the computational effort but has the drawback of yielding possible
infeasibilities in the route, e.g. the violation of hard time windows or capac-
ity constraints, although limited to tomorrow tasks. With the aim of taking
the computational benefits, we devise the following phases:

1. Optimize: we run the first-level tabu search calling the second-level
heuristic with fast route sequencing, obtaining a solution s.

2. Check : for each r ∈ R(s), compute tomorrow tasks’ starting times
and capacity needs and check feasibility. If all routes are feasible, stop
and return s. Otherwise, let tri be the first task of r violating some
constraints.

3. Destroy : for each unfeasible route r, remove all the orders containing
task tri or any of the following tasks, and assign them to the dummy
vehicle.

4. Repair : run the first-level tabu search calling the second level heuristic
with the usual route sequencing (local search and feasibility check
extended to tomorrow tasks).

Notice that the Destroy phase brings feasibility back, which is preserved by
the Repair phase. Therefore the overall procedure ends up with a solution
satisfying all the constraints (but, in case, the one on mandatory orders,
penalized by the score function Z1). The proposed approach takes advantage
from the relatively small number of tomorrow tasks with respect to the today
ones in express delivery contexts, so that we expect that infeasibilities rarely
occur.

5.10 Parallel Design

In this section we explore different techniques for low-level and high-level
(see Section 2.4.4) parallel implementation on some specific components of
the main algorithm. We take into account both CPU multi-threaded im-
plementations and GPU (Graphics Processing Unit) meta-heuristic design.

5.10 Parallel Design 89

In the former case, we develop two strategies, based on (high-level) inter-
and (low-level) intra-neighborhood exploration respectively. In particular,
the inter-neighborhood routine makes use of the main parallel strategy in
[25]. For the latter, we analyze the main features of the GPU hardware that
have an impact on the design of algorithms in order to attain a substantial
efficiency. Meta-heuristic algorithms may contain several tasks that can be
executed on a large set of parallel threads (an introduction can be found in
[19]), and this is the case for local search algorithms [89] or large neighbor-
hood search [88].
We want the parallel design to implement a steepest descent neighborhood
exploration, as for the standard implementation.

5.10.1 Parallelization on CPU

To further reduce running times while preserving the quality of solution, we
devise two parallel implementations of the first level tabu-search: parallel
neighborhood, exploring neighborhoods 1R, 2S and mR in parallel, and the
parallel evaluation, where the solutions of each neighborhood are evaluated
in parallel.

The parallel neighborhood (PN) procedure considers one independent
thread for each tabu search neighborhood. Each thread explores one neigh-
borhood and stops as soon as (i) it evaluates all the neighbors or (ii) an-
other thread evaluates all neighbors and finds an improving solution. In the
deterministic exploration version, synchronization issues relate to solution
improvement notification. In addition, in the stochastic version, we need to
synchronize the pool of the best solutions when the last thread terminates.

The parallel evaluation (PE) procedure partitions the set of solutions
of each neighborhood, and devotes an independent thread to each part.
Stopping conditions and synchronization issues are similar to the ones for
PN.

Notice that, in deterministic search, PE runs the same steps as the cor-
responding sequential implementation and, hence, provides the same (unless
ties occur) final solution. On the contrary, even in deterministic search, PN
may in principle select the best neighbor from a different neighborhood and
end up with a different solution.

5.10.2 Parallelization on GPU

The GPU device was originally conceived to provide high performance com-
puting for computer graphics purposes. The GPU hardware consists of
several multi-processors that are optimized for massive parallelism, a re-
quirement that may fit other scenarios than graphics. The straightforward
approach is to generate and evaluate each neighbor on a single thread. Nev-
ertheless, the GPU works in a completely different manner than the CPU,

90 5. Design of a heuristic algorithm

so one must take care of peculiar aspects when designing optimization algo-
rithms in order to have an actual advantage in terms of efficiency, namely:

• the memory transfer from the CPU to the GPU and vice versa is
considerably slow. The transfer duration is called latency. For this
reason, one must try to keep the data transfer as low as possible;

• the CPU and GPU can work asynchronously. This means that one
can try to design its algorithm in such a way that computations are
performed by at least one device while the data transfer is ongoing
(latency hiding);

• the number of threads for parallel computations must be very large,
in order to exploit the full potential of the hardware and justify the
overhead of threads’ scheduling. On the other hand, the threads should
not be overloaded with memory usage, in order to prevent them from
using slower memories when their own register memories are full. The
occupancy is a measure of the ratio between the working threads over
the total number of threads available;

• in the current architecture, the GPU executes the same instructions
on 32 contiguous threads (thread warp) reading from 32 contiguous
data allocated in the memory (this is called SIMD: Same Instruction
Multiple Data). This means that, any time different instructions are
required for a warp, the GPU must run sequentially different instruc-
tions on the 32 data. Therefore, different instructions on contiguous
threads may deteriorate the efficiency up to a factor 32 (divergence);

• any time GPU memory is accessed, data are transferred by 128Byte
buffers (cache lines), regardless of the amount of data requested.

We now briefly describe a new exploration design for the neighborhoods
suitable for the GPU implementation. Let us consider the 1R neighborhood
(the same concepts can be applied to any other neighborhood). We recall
that the neighbors generation is performed in the following two steps:

1. for each pair of routes ri and rj in the center solution, 1R moves each
order o from route ri to route rj ;

2. at each assignment of o to rj , the procedure L2 is triggered.

For simplicity, we assume that procedure L2 consists of only the task insertion
phase. Also, we restrict the problem to the single-pickup and single-delivery
case. Under these hypothesis, at Step 2, procedure L2 generates the inser-
tion of the pickup and delivery of o at position respectively l and m of rj .
In order to exploit the availability of a large number of threads, we combine

5.10 Parallel Design 91

points 1 and 2 so that a single neighborhood 1R × L2 generates the assign-
ments of order o to route rj with pickup at position l and delivery at position
m. On the one hand, the complexity of this neighborhood is suitable to cope
with the occupancy issue on the GPU. On the other hand, the divergence of
instruction is limited, since each thread runs only the evaluation of the move.
Once all the neighbors are generated, we determine the best neighbor using
a parallel reduction algorithm. The parallel reduction algorithm partitions
the array of neighbors into pairs and applies the binary operator that com-
pares the value of the objective function. The operator returns the neighbor
with minimum objective function. The reduction executes this procedure
until it finds the best neighbor over all the neighborhood in O(log2 n) steps.

92 5. Design of a heuristic algorithm

Chapter 6

Bounding through a Column
Generation Algorithm

In order to assess the performance of the proposed algorithm for EPDT, we
introduce an Integer Programming model based on set covering formulation.
In this chapter we describe the Column Generation algorithm we used to
solve the continuous relaxation of the model. With reference to the notation
in Table 3.1, we will describe in details the Master and Pricing Problems
and how they are tailored on specific features of EPDT: the Master Problem
consists of a set covering model able to take into account open routes, while
the Pricing Problem is an ESPPRC solved through a new label correcting
algorithm based on the one described in Section 2.3.2 with relevant adap-
tations for label definition, resource extension and dominance rules to cope
with the multi-pickup and multi-delivery attribute.
This method provides a bound to optimal solutions of EPDT that we can
use to assess the effectiveness of the Tabu Variable Neighborhood Descent
described in Chapter 5. The content of this chapter is summarized in [30].

6.1 An Integer Linear Programming formulation

As stated in the problem description in Section 3.4, we can model EPDT on
a complete graph G = (N,A) where nodes N represent tasks and each arc
in A represents the link between an ordered pair of tasks. We now further
detail that formulation in order to obtain an ILP model for EPDT. For each
vehicle v ∈ V , N includes the following dummy nodes:

• αv initial dummy tasks;

• ωv final dummy tasks;

• ωeodv , the preferred or prescribed end-of-day position, in case v has one.

93

94 6. Bounding through a Column Generation Algorithm

In particular, αv and ωv and, in case, ωeodv are associated with dummy
mandatory orders, added to the set OM .
Given a vehicle v ∈ V , any feasible route for v can be seen as a path in G
that starts in αv and ends in ωv. Moreover, only v can visit αv, ωv and ωeodv .
Let Ωv be the set of paths in G corresponding to routes that are feasible for
v. We remark that each path r ∈ Ωv is elementary, i.e., r visits each node
at most once.
For the sake of the Column Generation approach, we focus on the case where
the two terms of the objective function that simultaneously take more than
one route into account are negligible, namely the preferences on collecting
orders in the same route ID(s) and the minimum number of vehicles with
depot as end-of-day position IE(s). Hence, we do not take attributes S2 and
S3 (see Section 3.4) into account.
For each path r ∈ Ωv, we denote its objective coefficient by cr: it includes
both the actual cost of a route and penalties for soft constraints violation
related each route singularly: following the assumption above, we set wD =
wE = 0 and, according to equation (5.3), we have that

cr = Z2(r), (6.1)

where we recall that, for wD = wE = 0, Z2(r) is defined as

Z2(r) = C(r) +A(r) +W (r) + wF IF (r)− wHIH(r) + wJIJ(r).

As in Section 3.4, yr are binary variables equal to 1 if path r is in the solution,
0 otherwise, and xo are binary variables equal to 1 if and only if order o is
assigned to no route in the solution. We recall that qo is the coefficient of
variable xo in the objective function and it is defined as follows: qo = Po,
if o ∈ ON , and qo = Po + Lo, if o ∈ OU , with Po and Lo being the profit
of order o ∈ O and the cost for missed urgent order o ∈ OU , respectively.
EPDT can be thus formulated as:

min
∑
v∈V

∑
r∈Ωv

cryr +
∑

o∈O\OM

qoxo (6.2)

s.t.
∑
v∈V

∑
r∈Ωv

airyr ≥ 1 ∀ i ∈ N : o(i) ∈ OM (6.3)∑
v∈V

∑
r∈Ωv

airyr + xo(i) ≥ 1 ∀ i ∈ N : o(i) ∈ O \OM (6.4)∑
v∈V

∑
r∈Ωv

yr ≤ |V | (6.5)

yr ∈ {0, 1} ∀ r ∈ Ωv, v ∈ V (6.6)

xo ∈ {0, 1}, ∀ o ∈ O \OM (6.7)

where, as in Section 3.4, air is a constant equal to 1 if path r includes task
node i, 0 otherwise, and o(i) is the order i belongs to.

6.1 An Integer Linear Programming formulation 95

Objective function (6.2) is equivalent to maximizing the score (5.2),
noticing that: (i) by definition cr = Z2(r); (ii) by (6.3) no mandatory order
is missing; (iii) the score can be written as∑

o∈O
Po −

∑
o∈O\OM

qoxo −
∑
v∈V

∑
r∈Ωv

cryr; (6.8)

and (iv) the first term in the previous equation is constant.
A solution satisfying (6.3) visits all tasks belonging to mandatory orders at
least once, whereas, by (6.4), tasks in non-mandatory orders are not visited
if and only if the corresponding order is not assigned. Finally, constraint
(6.5) bounds the number of routes by the number of available vehicles. This
constraint, together with (6.3), also guarantees that each vehicle v runs
exactly one route, as shown by the following Lemma.

Lemma 6.1. Given a feasible solution (ȳ, x̄) to (6.3-6.7), ∀ v ∈ V,∃! r ∈
Ωv : ȳr = 1.

Proof. For each vehicle v, there is at least one dummy task (e.g. αv) be-
longing to a mandatory order that can only be included in Ωv, hence, by
(6.3), at least one variable yr, r ∈ Ωv has value 1. Moreover, if more than
one variable take value one, constraint (6.5) would be violated.

Model (6.4) is a set covering formulation, which is convenient from a
computational point of view [10], but allows feasible solutions visiting tasks
more than once. To this end, we notice that, in order to include prefer-
ences on order assignment and end-of-day position, route costs may include
negative terms. Therefore, Remark 4.1 is not applicable to the formula-
tion (6.2-6.7). We may adopt a set partitioning formulation with (6.3-6.4)
turned into equalities, however the following theorem shows that solving the
set covering formulation is equivalent to solving the set partitioning one.

Theorem 6.2. Given an optimal solution to (6.2-6.7), it is always possible
to derive an equivalent optimal solution with constraints (6.3-6.4) tight.

Proof. Let (y∗, x∗) be an optimal solution and let i ∈ N be a node satisfying
either (6.3) or (6.4) strictly. If the solution is such that y∗r = 1 only for paths
r with non-negative cost components, we obtain another feasible solution
that does not increase the cost (hence optimal) as follows: we remove i from
all routes (but one if o(i) ∈ OM or x∗o(i) = 0), and, if defined, we set x∗o(i) = 0

(notice that qo(i) ≥ 0). Hence, recalling that feasible paths ar elementary,
we can restrict to the case when visiting o(i) strictly reduces the cost of two
paths r or s such that y∗r = y∗s = 1 (if more than two variables are equal
to one in y∗, we iterate the argument). This can happen if (Case 1) i has
a preferred vehicle or (Case 2) i is the final dummy task of a vehicle with
preferred end-of-day position. Let v(r) (resp. v(s)) be the vehicle associated

96 6. Bounding through a Column Generation Algorithm

with r (resp. s): by Lemma 6.1, v(r) 6= v(s). In Case 1, by definition of
EPDT, i has at most one preferred vehicle, say, without loss of generality,
v(r), so that removing i from s does not increase cs and yields a solution
with less paths covering i and non-increased cost. In Case 2, i appears only
in either Ωv(r) or Ωv(s) which excludes that both r and s visit i.

6.2 The Master Problem

An upper bound for EPDT can be obtained by solving the linear relaxation
of (6.2-6.7), where the domain of y and x variables is extended to real non
negative values. By non-negativity of qo, upper bound constraints xo ≤
1 can be neglected. This can also be done for y variables, by the same
argument of Lemma 6.1. The size of sets Ωv is very large and we adopt a
Column Generation approach (see Section 2.1.3), where the linear relaxation
of the model defined in (6.2-6.7) represents the Master Problem. We start
from restricted sets Ω̄v and we dynamically add routes up to reaching an
optimal solution. The y variables associated with initial sets Ω̄v, together
with variables x, should define an initial feasible solution. To this end: (i) we
initialize each Ωv with the route through tasks of fixed orders assigned to v
(as an alternative, routes from the tabu search heuristic can be used), and (ii)
we add a further dummy variable y0, related to a dummy route collecting all
remaining tasks but the ones of mandatory orders, with c0 = M , M being
a very large constant. The resulting model defines the Reduced Master
Problem (RMP). After solving RMP, we exploit dual information to recover
a column to be conveniently added, if any. To this end, we consider the
dual variables πi ≥ 0 associated with constraints (6.3-6.4) for each node i,
and µ ≤ 0 associated with (6.5), and we solve, for each vehicle v ∈ V , the
following Pricing Problem that we can derive similarly to Section 4.5:

PP(v): c̄v = min
r∈Ωv

{
cr −

∑
i∈N

airπi − µ

}
. (6.9)

For each vehicle v such that c̄v < 0, the corresponding yr can be conveniently
added to the RMP, otherwise we have found the optimal solution to the
linear relaxation of (6.2-6.7).

6.3 The Pricing Problem

PP(v) is an Elementary Shortest Path Problem with Resource Constraints
(ESPPRC) see Section 2.3.2) on the subgraph G(v) = (N(v), A(v)) induced
onG by the tasks that can be visited by v (corresponding toN(v)). ESPPRC
can be solved by label correcting algorithms, as we have seen in Section
2.3.2: they build partial paths from αv to i ∈ N and make use of labels

6.3 The Pricing Problem 97

to store information on partial cost, use of resources (e.g. time, capacity),
order status etc. Partial paths and related labels are recursively extended
to reach further nodes up to ωv and, in principle, all paths are considered
and the best one is chosen. In order to reduce the number of labels to
be computed and stored, dominance rules are defined, allowing for deleting
dominated paths, i.e., paths to a node i whose feasible extensions up to ωv
are also feasible for another cheaper path to i.
In the following we will describe how we adapted the general schema of
Section 2.3.2 to the attributes of EPDT. In particular, classic dominance
rules cannot be applied for the multi-pickup and multi-delivery precedence
constraint, therefore we defined a new resource with a tailored dominance
rule to fathom sub-optimal extensions with respect to this attribute.
We associate to each arc (i, j) ∈ A(v) the time distance tij and a cost
coefficient d̄ij defined as

d̄ij = w̃A(j)CUv dij − w̃H(j, v)− w̃F (j, v)− π̃α(i)− πj (6.10)

where:

• w̃A(j) = κA if j is a tomorrow task, 1 otherwise;

• w̃H(j, v) = wH if j is the preferred end position for v, 0 otherwise;

• w̃F (j, v) =
wF

|T (o(j))|
if o(j) has v as preferred vehicle assignment, 0

otherwise (we recall that, from Table 3.1, T (o(j))| is the set of tasks
of the order o(j));

• π̃α(i) = πi if i = αv, 0 otherwise.

Notice that for the preferred vehicle assignment we divide the weight wF by
the number of tasks of the order o(j), since any feasible route will eventually
complete that order, thus including in the cost the whole value of wF .

6.3.1 Labels

A label represents a path from αv by means of a tuple L = (R,C) with
R = (tW , tR, l1, l2,O,U), where:

1. i is the last node of the path;

2. tW is the cumulative working time;

3. tR is the cumulative driving time;

4. l1 is the volume on board after visiting i;

5. l2 is the weight on board after visiting i;

98 6. Bounding through a Column Generation Algorithm

6. O is the set of open orders, i.e., orders with at least one visited pickup
node and at least one delivery node not yet executed (orders started
but not completed);

7. U is the set of unreachable nodes (delivery tasks with not-yet-executed
pickups or already visited nodes)

Notice that the definition of L has been adapted to EPDT and, in particu-
lar, O and U account for open multi-pickup and multi-delivery orders. We
recall (from Section 2.3.2) that, in pickup and delivery contexts, U usually
reports the set of unreachable orders or equivalent information (see, e.g.,
[14, 54]). In fact, if orders include one pickup and one delivery task, the
information on unreachable orders, combined with the status reported by
O, allows univocally identifying the task (pickup or delivery) that can be
visited preserving elementary paths and precedence constraints as we have
seen in 2.3.2. This is not the case in EPDT: e.g., once an open order is
identified, information on unreachable order is not enough to identify which
further pickup or delivery tasks must still be visited. As a consequence,
we define U such that information on unreachable specific tasks is available
and can be exploited to, e.g., avoid visiting the same node or, as we will
see, define sufficient dominance conditions. We remark that resource O is
redundant (the state of an order can be retrieved from U), and used to speed
up dominance checking as we will see in the following.

6.3.2 Label extension

A label to node i is extended to a label to node j by adding an arc (i, j)
and updating the resources accordingly (see, e.g., [14]):

• tR is obtained from travel times tij ;

• tW is obtained from travel times tij , duration and time window of j
and, when needed, short and night breaks;

• we add or subtract the weight and volume of j to l1 and l2 respectively,
depending on j is a pickup or delivery task.

Concerning specialized resources for EPDT:

• O is initialized to the empty set and: we add o(j) if j is its first pickup
task to be visited; we remove o(j) if j is its last visited delivery task;

• U is initialized with all delivery nodes and we extend it as follows: we
add node j (elementary path); if j is the first pickup of o(j) we add ωv
(the path cannot terminate with a new undelivered order on board)
and (when defined) ωeodv , if o(j) has further today tasks (we have today
tasks to visit before the end of the day); if j is the last pickup of o(j)

6.3 The Pricing Problem 99

we remove all deliveries of o(j) from U (deliveries become reachable as
soon as all pickups are visited); if j is the last delivery node on board,
we remove ωv (all orders have been completely delivered and we can
reach the dummy final node); if j is the last today task on board, we
remove ωeodv , if defined (the vehicle can visit the end-of-day dummy
task).

Notice that only feasible extensions are considered, so that the ones violating
hard time windows or capacity constraints are discarded.
Finally, given a label Li = (Ri, Ci) on a node i, and considering its extension
to the node j with time window identified by [tbj , t

e
j], the computation of the

new cost Cj is obtained by

Cj = Ci + d̄ij + w̃D(tWj , j)

where

w̃D(tWj , j) =

{
wJ ·max(0, tWj −D) if j = ωv

Lwj ·max(0, tWj − tej) otherwise,

with D is the preferred maximum route duration (see Table 3.1).

6.3.3 Dominance

Given a label L, we denote by i(L) the last node of the path represented by
L; tW (L) the working time in L; tR(L) the driving time; C(L) the partial
path cost; l1(L) the vehicle load volume; l2(L) the vehicle load weight; O(L)
the set of open orders in L; U(L, o) the set of unreachable nodes in L related
to task of an order o ∈ O; U(L,−) the set of unreachable nodes in L with
no associated order (e.g. initial and final dummy tasks). Given two labels
L1 and L2, L1 dominates L2 if all the following conditions hold:

C(L1) ≤ C(L2) (6.11)

i(L1) = i(L2) (6.12)

tW (L1) ≤ tW (L2) (6.13)

tR(L1) ≤ tR(L2) (6.14)

l1(L1) ≤ l1(L2) (6.15)

l2(L1) ≤ l2(L2) (6.16)

U(L1,−) ⊆ U(L2,−) (6.17)

U(L1, o) ⊆ U(L2, o) o /∈ O(L1) ∪ O(L2) (6.18)

U(L1, o) = U(L2, o) o ∈ O(L1) ∪ O(L2). (6.19)

In fact, dominance states that L1 has a smaller cost, has consumed less
resources and, moreover, L1 has less unreachable nodes and, hence, L1 has

100 6. Bounding through a Column Generation Algorithm

at least the same feasible extensions as L2. Concerning condition (6.19), we
notice that it states equality for orders that are open in at least one label.
In fact inclusion, sufficient for the classic pickup and delivery constraint, is
not enough in a multi-pickup and multi-delivery scenario, as shown by the
following example. Assume order o includes three pickup and one delivery
tasks and let L1 represent a path visiting one pickup task, and L2 include
one more pickup; clearly U(L1, o) ⊂ U(L2, o), but the feasible extensions of
L2 do not include the task in U(L2, o)\U(L1, o), whereas feasible extensions
of L1 have to. Therefore, extensions of L2 are not feasible for L1, meaning
that L1 does not dominate L2. If an order is not open in both L1 and L2,
then it is either completed (all pickups and deliveries are unreachable) or
not in charge (all deliveries and no pickups are unreachable), so that in this
case inclusion is sufficient, as requested by (6.18).

Chapter 7

Toward new Data-Driven
approaches for Dynamic and
Stochastic VRPs

The EPDT problem stated at Chapter 3 is inspired by a real-world context,
where dynamic requests are issued during the planning horizon. Moreover,
stochastic components affect several aspects of the problem. Methods that
can take into account the dynamism of the demand and the stochasticity
in play are needed in order to guarantee stability during the execution of
the routes. An interesting situation that is often encountered in real-world
problems similar to EPDT, is the case of dynamic and stochastic customers
where, as described in Section 4.8, customer demand and locations are re-
vealed during the execution of the planning and, in addition, stochastic
information is available offline.
In this chapter, we make preliminary studies and, to this end, we consider
simplified versions of EPDT, based on the scenario adopted in [43]. In that
work, authors solve a Dynamic and Stochastic Pickup and Delivery VRP
with Time Windows (DS-PDPTW) define on a grid network, by means of a
simulation-based anticipatory method that assumes known probability dis-
tribution of the customers demand. In particular, the authors show how in
their experiments the anticipatory policy outperforms the reactive counter-
part in terms of solution quality.
Our aim is to analyze the possibility of exploiting a priori statistical infor-
mation on future demand by embedding it into methods that are devised
for deterministic versions of the same routing problem, thus obtaining an
anticipatory procedure (see Section 4.8.3) for the dynamic and stochastic
case with small or no impact on the method itself. Moreover, we suppose
that no probability distributions are known about the requests issued by
the customers, whereas we assume the availability of historical data, which
is nowadays often the case in transportation companies databases. In par-

101

102 7. Toward new Data-Driven approaches for DSVRPs

ticular, we make use of Machine Learning methods to extract statistical
information that, in turn, is preprocessed and can be exploited by the opti-
mization procedure.
The first method is based on the introduction of representative orders that
are added to the problem instance and aggregate anticipated space and time
information on the demand, thus driving the optimization algorithm toward
more stable solutions with respect to future requests. The approach we
propose is similar to the one proposed in [40], where the definition of rep-
resentative orders is based on a cluster analysis of data on delivery orders.
Our contribution is mainly twofold. From the one side, we extend the clus-
ter analysis to take pickup-and-delivery orders into account, so that a more
complex feature space has to be considered. From the other side, we devise
a more general approach, since it makes no assumption on distribution of
customer requests over time, and it is more suitable for real cases where
just historical data on orders is available, as for the application context that
inspired this thesis. To this end, since the effects of introducing artificial
orders depends on the characteristics of the available data, we also propose
an a-posteriori measure of the quality of the obtained clusters intended for
driving their actual utilization in anticipatory algorithms, also according to
the analytical determination on a further simplified problem. The second
method relies on the discretization of the space and time in order to com-
pute an accessibility measure (like e.g. the one defined in [51]) of the discrete
points, with the aim of introducing a special component in the evaluation of
a solution that takes into consideration the opportunity for a route of inter-
acting with future requests. The method, to the best of our knowledge, is
new to the literature, and aims at hybridizing methods for the Dynamic and
Stochastic VRP with concepts, like the accessibility, borrowed from spatial
interaction analysis.
In this chapter we will focus on the dynamic settings typical from EPDT
context, which is characterized by a low degree of dynamism and no diver-
sion of vehicle from their current destination. We remark that, however,
as shown by the cited literature, anticipatory policies provide in general a
valid approach and, in fact, they may take advantage, when the degree of
dynamism increases. Hence, the same observations offer a valid theoretical
approach even in this case.

7.1 Dynamic and Stochastic VRP context

In this section we define the operational context of our study, inspired by
the DS-PDPTW problem studied in [43].
Let G = (N,A) be a graph, where N is the set of nodes (where each node
represents a pickup or delivery operation) and A is the set of arcs between
pair of nodes. We consider a fleet V of vehicles and a set of nO pickup and

7.1 Dynamic and Stochastic VRP context 103

delivery orders O such that

O = {(pk, dk, Tk) : k = 0, 1, . . . , nO},

where pk, dk and Tk are, respectively, the pickup node, the delivery node
and the time of request of the order.
In order to represent the dynamic scenario, we need the definition of the
subset O(τ) ⊆ O of known requests at time τ :

O(τ) = {(pk, dk, Tk) ∈ O : Tk ≤ τ},

that represents the requests received within time τ . In addition, given a
time τ , we define the following sets of orders:

• the set OP (τ) of pending orders as the set of open orders in O(τ) at a
time less than or equal to τ ;

• the set OF (τ) of free orders as the set O(τ) \OP (τ).

The dynamic version includes new decision variables, that represent the
waiting times for vehicles at each node of their routes. A route r is then
defined as

r = {(i0, . . . , iL), (w0, . . . , wL)},

where il ∈ N for each l = 0, . . . , L are the nodes visited and each wl is the
waiting time corresponding to node il.
In this model, routes must start and finish at the depot. If a vehicle is
already in the trip toward some location, it cannot be redirected to a different
destination, i.e., diversion is not allowed (see Section 4.8.3). Furthermore,
idle vehicles can also be relocated to a location l ∈ N̄ , where N̄ ⊂ N is the
set of home locations.
We remark that, because diversion is not allowed, idle vehicles, as well as
the ones with assigned orders, may start a trip toward any destination and
choosing appropriate waiting times may be beneficial.
Let t̃(i) be the time of arrival at the node i. We define a penalty function
that expresses the delay with respect to the request time and a soft deadline
D for a delivery dk:

W (t̃(dk), Tk) = max(0, t̃(dk)− Tk −D).

The objective of the problem is to minimize the total penalty associated
with the customer service

z =
∑

(pk,dk,Tk)∈O

W (t̃(dk), Tk).

Notice that, as stated in [43], soft deadlines are introduced to model, e.g.,
same-day courier companies in urban areas: their clients often require an

104 7. Toward new Data-Driven approaches for DSVRPs

express service for deliveries of letters and small items. The inconvenience of
late service can be represented by a soft deadline after which the customer
satisfaction decreases as the amount of delay grows.
We underline that this scenario includes two new type of decisions: the
waiting time at each node of a route and the relocation of idle vehicles.
Moreover, the operational context assumes triggering an optimization phase
each time a new request is received. This means that at each optimization
phase, all the free orders, i.e. the last arrived, as well as the ones assigned
but not yet executed, are dynamically (re-)assigned.
In [43], the DS-PDPTW problem is solved by an anticipatory technique
based on simulation. In the following we will explore different anticipatory
approaches that aggregate the statistical information through data-driven
methods in a preprocessing phase and provide algorithms with components
that guide them toward solutions that are in principle able to better accom-
modate the future demand.

7.2 Data

A main characteristic of the scenario under study is the presence of his-
torical data of the customers’ requests. As we have seen in Chapter 1,
nowadays transportation companies make use of different tools that store a
large amount of data, like e.g. vehicle tracking tools, real-time fleet man-
agement platforms, order booking portals, etc. The availability of such data
fosters the research toward data-driven approaches that can be an asset for
decisions in different aspects of the transportation companies management,
as for example planning or marketing.
Given M as a non negative integer number, a record of a historical data set
is defined as a M -tuple (δ1, . . . , δM) of features. In this general description,
δi can belong to any type of domain for each i = 1, . . . ,M . Since data are
supposed to be collected during different working days, we say that each
single order belongs to an instance of the problem, where an instance corre-
sponds to the set of input data of the problem in a single day. Given a set of
E instances, we associate a unique index ηk ∈ {1, . . . , E} with each record
of data in the historical data set. Hereinafter, we assume that a historical
data set H contains records of past customers’ requests

H = {(δk1, . . . , δkM , ηk) : k = 1, 2, . . . , nH},

where nH is the amount of records in the historical data set and δki is the
i-th feature of the k-th record.
Moreover, given an instance η̃, we define as the historical data set restricted
to instance η̃ the set

H(η̃) = {(δk1, . . . , δkM , ηk) ∈ H : ηk = η̃}

7.3 Data-driven instance augmentation 105

7.3 Data-driven instance augmentation

The approach described in this section is based on the introduction of ar-
tificial orders, called representative orders, that are added to the instance
before the optimization phase. The representative orders consist of strategic
space-time positions that aim to favor solutions that are more stable with
respect to future demand. In our approach, the representative orders are de-
termined by means of machine learning methods run on the historical data.
In the following we outline the method with reference to the DS-PDPTW
defined in Section 7.1. In order to obtain a set of representative orders, we
propose a technique based on clustering, inspired by the strategy used in
[40].
Moreover, taking advantage from the aggregated information in the repre-
sentative orders, we will suggest relocation and waiting time strategies.

7.3.1 Overall Procedure

The representative orders technique is based on using an optimization al-
gorithm for DS-PDPTW designed for the deterministic (static or dynamic)
scenario on an augmented instance, which include a set of nR representative
orders OR defined as

OR = {(pm, dm, Tm) ∈ m = 1, . . . , nR}.

In our case, such an algorithm may be the Tabu VND outlined in Chapter 5
where, in order to overcome the loss of efficiency due to the extra orders in
input, only the 1R neighborhood is considered. We define OR(τ) for a time
τ as the set of representative orders with time of request less than or equal
to τ :

OR(τ) = {(pm, dm, Tm) ∈ OR : Tm ≤ τ}.

The steps that outline the algorithm able to cope with the DS-PDPTW are
summarized in the following list:

• at each optimization phase at time τ , (triggered as explained at 7.1),
the optimization algorithm inserts in the solution the set of orders
OP (τ) ∪ (OR \O(τ));

• representative orders can be either removed from the solution once it
has been computed, or kept to perform the relocation of idle vehicles:
a vehicle at a representative order’s task is in principle in a more
convenient position to reach future requests issued in the space-time
region spanned by the corresponding cluster;

• given a route r = {(i0, . . . , iL), (w0, . . . , wL)}, we set to 0 every waiting
time wl such that o(il+1) /∈ OR. For all the other waiting time vari-
ables, given a pair of consecutive nodes il and il+1 of a route, where

106 7. Toward new Data-Driven approaches for DSVRPs

o(il+1) is the m-th order (pm, dm, Tm) ∈ OR, the waiting time wl is
set in such a way that the arrival time t̃(il+1) of the vehicle at il+1 is
as close as possible to, but not smaller than the time of request Tm of
o(il+1):

wl = max
(
0, Tm − t̃(il)− til,il+1

)
,

where til,il+1
, according to the notation in Chapter 3, is the time dis-

tance between nodes il and il+1. We underline that a vehicle must
respect the associated waiting times along its route as long as the next
task corresponds to a representative order. As soon as a task of a dy-
namic order becomes the next operation to perform, the waiting time
schedule is overridden and the vehicle starts its next trip immediately.

7.3.2 Representative Orders

In order to create a set of representative orders, we rely on a machine learning
technique that builds clusters from the historical data set and provides a set
of representative orders OR. These orders correspond to the centroids of
the clusters and, by the centroid definition itself, each of them represents a
point in space-time that aim to minimize the (squared) space-time distance
to reach the orders in the same cluster. We suppose that the nodes lie on
R2, and we consider the following historical data set H1 with nH data:

H1 = {(pxk, p
y
k, d

x
k, d

y
k, Tk, ηk) : k = 1, 2, . . . , nH},

where features consist of, in the order, pickup x and y coordinates, delivery
x and y coordinates, time of request and instance.
In order to balance the features processed by the clustering algorithm, we
standardize the data set H1 by rescaling them so that the distribution of
each single feature has zero mean and unit variance. We consider the matrix
Hstd that is built by appending all the elements in H1 on multiple rows and
dropping the feature ηk for all k = 1, . . . , nH .
Given a matrix A, we denote by Aj its j-th column. We devised three
different clustering techniques for Hstd, all based on the K-Means algorithm
combined with a hierarchical setting:

PDT this clustering considers all the features (Pickup coordinates, Delivery
coordinates, Time of request) of Hstd with no hierarchical setting;

PDt this clustering first clusters the features in (H1
std, · · · , H4

std) (Pickup
coordinates, Delivery coordinates), that we call first level clustering.
After that, it executes a new clustering, that we call second level clus-
tering, restricted to H5

std (time of request) on data in each partition of
Hstd that has been previously generated;

7.3 Data-driven instance augmentation 107

Tpd this clustering first clusters the feature in H5
std (Time of request), that

we call first level clustering. After that, it executes a new cluster-
ing, that we call second level clustering, restricted to (H1

std, · · · , H4
std)

(pickup coordinates, delivery coordinates) on data in each previously
generated partition of Hstd.

In order to have a control on the number of clusters to generate, we adopt
a K-Means algorithm. A reasonable choice is to approximately fix this pa-
rameter to the average number of orders during the planning horizon, in
order for the representative orders to be “close” to the unknown orders not
only in space and time, but also in cardinality. Given a clustering proce-
dure P among PDT, PDt and Tpd, a hierarchical level (if defined) i and a
number of clusters nC , we denote the K-Means algorithm at the i-th level
in procedure P with nC clusters by

Ki
P(nC).

We now suppose that the historical data set H1 contains data relative to J
instances. For each clustering approach, we compute the value nC as follows:

1. for the KPDT(nC), we set nC at the mean number of orders per in-
stance

nC =

 1

J

J∑
j=1

|H1(j)|

 ,
2. for the K1

PDt(n
1
C) and K2

PDt(n
2
C) method, we choose the values of n1

C

and n2
C so that their product is close to the value nC as computed at

the previous point. For this reason, we introduce an extra parameter
d corresponding to the desired ratio between n1

C and n2
C and solve the

following system : n
1
C = dn2

C

n2
C =

⌊√
nC
d

⌋
3. for the K1

Tpd(n1
C) and K2

Tpd(n2
C), we determine n1

C and n2
C as for the

previous point.

In Figure 7.1, we see an example of a representative order together with
the projection of the corresponding cluster on the pickup and delivery sub-
space in a grid graph. The red dots corresponds to the projections of the
centroid in the pickup and delivery sub-space, whereas the blue dots are
the projections on the same spaces of pickups and deliveries from historical
data, the thickness of the dots is proportional to the frequency they appear
in such cluster.
Therefore, given a clustering procedure P , the set of representative orders

108 7. Toward new Data-Driven approaches for DSVRPs

Figure 7.1: Projection of a representative order on the pickup axis (left) and
delivery axis (right).

is

OR = {µCm : m = 1, . . . , ñ(P)},

with µCm the centroid of the m-th cluster obtained with P , and ñ(P) is nC
if P = PDT, n1

C · n2
C otherwise.

7.3.3 Choosing relocation positions and waiting times

The clusters provided by the first phase of our approach have different fea-
tures depending on the distribution of orders in the historical data set H1.

Definition 7.1. Given a cluster C, we define the sparsity of C S(C) as

S(C) =
1

|C|
∑
l∈C

d(l, µC),

where d(·, ·) is the distance induced by the 2-norm in the feature space R5,
and µC is the centroid of the cluster C.

Definition 7.2. Given a cluster C in the historical data set H1 with J
instances, we define the frequency of C F (C) as

F (C) =
1

J

J∑
j=1

Bool

 ∑
rk∈H1(j)

χC(rk)

 ,

where Bool(x) takes value 0 if x = 0 and 1 otherwise, and χC(y) is the
characteristic function of the cluster C.

We make the following observations:

7.3 Data-driven instance augmentation 109

1. the larger the sparsity S(C) of a cluster C, the worse the quality of
its centroid as strategic space-time point to satisfy dynamic requests.
Indeed, a sparse cluster in H1 aggregates a set of locations and times
that are not concentrated, so that moving from the µC will probably
result in a high cost;

2. the larger the frequency F (C) of a cluster C, the higher the chance
that a dynamic request will fall in the region covered by C. This means
that µC will likely be representative for at least one future request.

We thus introduce the concept of reliability associated with a representative
order.

Definition 7.3. Given a cluster C ∈ C in the historical data set H1 and
two parameters α, β ∈ R≥0 we call reliability factor the value defined as

R(C) = α · F (C)− β · S(C).

The reliability factor of a cluster consists of a linear combination of sparsity
and frequency and represents the quality of a cluster. The higher the value
of the reliability, the most fruitful is expected to be the usage of such cluster
in the optimization phase. Parameters α and β must be tuned in order
to assign suitable weights to each of the two components of the reliability
factor.
The reliability factor can be exploited mainly in the two following ways:

• after the optimization run, the representative orders can be removed
or kept in the solution, representing a relocation of idle vehicles. The
decision whether relocating or not a vehicle can be performed by com-
paring the reliability factor of the incumbent representative order with
a given threshold value: ideally, relocation should be made only with
high reliability representative orders;

• in the optimization method, the departure time of a vehicle toward the
pickup or delivery location of a representative order is modulated by
the reliability factor: the lower the quality, the more the vehicle waits
before leaving. This is justified by the fact that, without diversion, a
moving vehicle cannot be re-routed, and therefore a trip toward areas
with poor statistical benefit should be avoided.

7.3.4 Analytical insight of waiting times

As we noticed above, the impossibility to divert the current trip of a vehicle
when a re-optimization is triggered affects the benefit of the representative
orders: on the one hand, a vehicle in a strategic location is likely to reach
the new requests at a small cost; on the other hand, if a new request is close
to a traveling vehicle, we have to wait until it makes the next stop and, then,

110 7. Toward new Data-Driven approaches for DSVRPs

Figure 7.2: An example of how different waiting times (w or 0 in this exam-
ple) outperform each-other in two different scenarios.

we will be able to send it to fulfill the new order’s operations. In fact, it is
not trivial to determine the waiting times for idle vehicles, since it depends
on multiple factors, even related to the distribution of the requests over the
space-time domain.
Figure 7.2 illustrates a 1-dimensional case (space axis x) where the same
waiting time can guarantee an earlier or a later arrival with respect to no
waiting time, depending on the outcome of the space-time (x,t) position of
a sampled order to reach in two different realizations, that are shown at
the left and at the right of the same figure. In both cases, we consider two
vehicles with same speed, one (in green) waits the waiting time w before
departing, the other (in red) leaves as soon as possible toward the centroid
(purple). The yellow point and the corresponding line represent the presence
at time t̄ of the task of the sampled order at position x̄, assuming the support
of the probability distribution is within the blue square. We can see that
different waiting times (w or 0 in this example) outperform each-other in
two different scenarios. In fact, in the first case (graph on the left of Figure
7.2) the green vehicle that has to wait (at most) w can go straight to the
incumbent order location, as the order is issued while the vehicle is idle,
whereas the red vehicle is already directed toward the center and cannot
be diverted to the new order location, so that it arrives later than the first
vehicle. In the second case (graph on the right of Figure 7.2), the request
arrives late: the red vehicle, that leaves immediately, arrives earlier than
the green one, that waits w, as the second leg of its trip starts from a more
convenient position.

In Section 7.3.3 we have introduced the reliability factor R(C) that may
be used to heuristically solve the problem of assignment of the decision
variables w1j , . . . , wnj , trusting a representative order oR, corresponding to

7.3 Data-driven instance augmentation 111

a cluster CoR , according to R(CoR): the higher the reliability, the shorter
the waiting time. In order to preliminary assess this policy, we make an
analytical inspection of a simplified version of this problem, thus providing
an insight of the difficulty in the determination of the relocation policy and
of the waiting time variables, even in a restricted context.
In particular, we make the following assumptions:

Assumption 7.1. Orders consist of a single task (pickup or delivery, in-
differently).

Assumption 7.2. We consider 1 vehicle, 1 random order and 1 represen-
tative order.

Assumption 7.3. We assume to have a known probability distribution of
the random order on a subset of the space-time domain of requests.

Our goal is to answer the question: “which is the waiting time for the
vehicle before leaving toward the operation of the representative order that
minimizes the average arrival time?”.
We show in the following an analytical approach for the solution of this
problem.

Notation

• x̂ and t̂ are the starting points in respectively space and time of the
vehicle;

• v is the speed of the vehicle;

• d(x, y) is the distance between x and y;

• c is the operation of the representative order;

• w is the waiting time variable;

• tmax is the maximum request time;

• Θ is the set of outcomes for the random order;

• X and T are random variables representing the task location and re-
quest time of the random order. Thus, a random order is defined by
the pair (X,T) ∈ Θ;

• p(x, t) is the probability density function of the random order (X,T);

• pX(x) and pT (t) are the marginal probability density functions of the
random variables X and T respectively;

• T̃ (X,T) is the arrival time at X for the random order defined by X
and T ;

112 7. Toward new Data-Driven approaches for DSVRPs

Determining the optimal Waiting Time

As stated in the notation, the random variable T̃ is a random variable de-
pending on the random order (X,T). We can write T̃ as

T̃ = min(t̂+ w, T)+ (7.1)

+v−1d(x̂, X)H(t̂+ w − T)+ (7.2)

+(max(v−1d(x̂, c), T − t̂− w) + v−1d(c,X))H(T − t̂− w), (7.3)

where H(t) is the unit step function defined as follows

H(t) =

{
1 if t ≥ 0
0 otherwise.

The term 7.1 in the sum models the fact that if the random order is requested
at a time T , the vehicle leaves at the same time only if it was in the waiting
status, that means T ≤ t̂ + w. On the contrary, if T falls later than t̂ + w
the departure of the vehicle is triggered at the t̂+ w.
The second term 7.2 is not null only when T ≤ t̂ + w and computes the
travel time from x̂ to X.
The third term 7.3 assumes a positive value only when T > t̂ + w. In this
case, since the departure takes place earlier than the time of request T , the
time is computed in two pieces, called legs: the first leg refers to the trip
from x̂ to the centroid c, the second leg is from c to X. Notice that the
computation of the first leg travel time includes a maximum function that
handles the case when the random order is requested during the first leg
trip or later. In the latter case, the vehicle will be idle at c until the time of
request T .
We now make explicit the dependence of the expected value of T̃ on the
variable w. We want to examine the sign of the first derivative of E[T̃](w)
in order to find the minimum as a function of w, that is the value w∗ such
that

w∗ = arg min
w

{
E[T̃](w)

}
.

Notice that the value of w∗ represents the best waiting time in order to
minimize the expected value of the arrival time T̃ .
In order to find the value of w∗ that minimizes the average arrival time, we
introduce the following theorem:

Theorem 7.1. Let (X,T) be a random order with X and T independent
random variables such that T ∼ U([t̂, tmax]). Given Θ = [t̂, tmax] × R with
R ⊂ Rn, let c be a point in R and d(·, ·) a distance function defined on R.
Then, the average waiting time is a monotonic function of w. In particular:

d

dw
E[T̃](w) ≥ 0⇔ EX [d(x̂, X)] ≥ EX [d(c,X)].

7.3 Data-driven instance augmentation 113

Proof. We want to compute the derivative with respect to w of the function

E[T̃](w) =

�
Θ
T̃ (x, t, w)p(x, t)dxdt.

In order to better handle the step function H, we introduce a partition of
the outcomes space dependent on the variable w:

Θ1(w) ={(x, t) ∈ Θ : t ≤ t̂+ w} (7.4)

Θ2(w) ={(x, t) ∈ Θ : t̂+ w < t ≤ t̂+ w + v−1d(x̂, c)} (7.5)

Θ3(w) ={(x, t) ∈ Θ : t > t̂+ w + v−1d(x̂, c)}. (7.6)

This allows us to define for each i ∈ {1, 2, 3} the functions Ei(w) as

Ei(w) =

�
Θi(w)

T̃ (x, t, w)p(x, t)dxdt,

which in turn let us ignore the functions H in any partition, obtaining the
following formula for the computation of the expected value of T̃

E[T̃] =

3∑
i=1

Ei(w) =

=

�
Θ1(w)

(t+ v−1d(x̂, x))p(x, t)dxdt+

+

�
Θ2(w)

(t̂+ w + v−1d(x̂, c) + v−1d(c, x))p(x, t)dxdt+

+

�
Θ3(w)

(t+ v−1d(c, x))p(x, t)dxdt.

Since X and T are independent, it holds

p(x, t) = pX(x) · pT (t) ∀ (x, t) ∈ Θ,

then, we can rewrite each function Ei(w) as

E1(w) =

� t̂+w

t̂
t pT (t)dt+ v−1EX [d(x̂, X)] · PT [t̂ < T ≤ t̂+ w] (7.7)

E2(w) =(t̂+ w + τ + v−1EX [d(c,X)]) · PT [t̂+ w < T ≤ t̂+ w + τ] (7.8)

E3(w) =

� tmax

t̂+w+τ
t pT (t)dt+

+v−1EX [d(c,X)] · PT [t̂+ w + τ < T ≤ tmax], (7.9)

where τ = v−1d(x̂, c) is the time distance from x̂ to c.
Thanks to the Leibniz integral rule, we now calculate from (7.7) - (7.9) the

114 7. Toward new Data-Driven approaches for DSVRPs

first derivative of each of the functions Ei(w), i = 1, 2, 3.

d

dw
E1(w) =pT (t̂+ w) · (t̂+ w + v−1EX [d(x̂, X)]) (7.10)

d

dw
E2(w) =P(Θ2) + (t̂+ w + τ + v−1EX [d(c,X)])·

·(pT (t̂+ w + τ)− pT (t̂+ w)) (7.11)

d

dw
E3(w) =− pT (t̂+ w + τ) · (t̂+ w + τ + v−1EX [d(c,X)]). (7.12)

Expressions (7.10) - (7.12) lead us to the derivative of the expected value of
T̃ :

d

dw
E[T̃](w) =

3∑
i=1

d

dw
Ei(w) = PT ([t̂+ w, t̂+ w + τ])+

+pT (t̂+ w) · (v−1EX [d(x̂, X)− d(x̂, c)− d(c,X)]). (7.13)

By the type of distribution of the random variable T , together with (7.13),
we have that

d

dw
E[T̃](w) =

τ

tmax − t̂
+
v−1EX [d(x̂, X)]− τ − v−1EX [d(c,X)]

tmax − t̂
=

=
v−1

tmax − t̂
· (EX [d(x̂, X)]− EX [d(c,X)]), (7.14)

hence we obtain

d

dw
E[T̃](w) ≥ 0⇔ EX [d(x̂, X)] ≥ EX [d(c,X)]. (7.15)

Let us notice that, in the last member of (7.15), the choice of the value c
can be determinant in the minimization of w. In fact, we have the following
corollaries of Theorem 7.1:

Corollary 7.1. Let (X,T) be a random order with X and T independent
random variables such that T ∼ U([t̂, tmax]). Given Θ = [t̂, tmax] × R with
R ⊂ Rn, let c be such that

c = arg min
y

�
R
d(x, y)pX(x)dx.

Then E[T̃](w) is a monotonic increasing function, and

w∗ = 0.

Proof. Trivial by the definition of c applied to the left-hand side of (7.15).

7.3 Data-driven instance augmentation 115

Corollary 7.2. Let (X,T) be a random order with X and T independent
random variables such that X ∼ U(R) with R ⊂ Rn and T ∼ U([t̂, tmax]).
Given Θ = [t̂, tmax]×R, let c be such that

c = arg min
y

�
R
d(y, x)dx.

Then E[T̃](w) is a monotonic increasing function, and

w∗ = 0.

Proof. From (7.15) we obtain that

d

dw
EXT [T̃](w) ≥ 0⇔

R
d(x̂, x)dx ≥

R
d(c, x)dx.

⇔
�
R
d(x̂, x)dx ≥

�
R
d(c, x)dx.

Then the proof is trivial by the definition of c.

By Corollary 7.1, we have that the best choice for the vehicle, in the problem
under study, is to leave immediately toward the representative order’s task.
We observe that the value assumed by c in Corollary 7.1 is known in litera-
ture as the solution of the continuous 1-Median (or Fermat-Weber) Problem.
We remark that the value of c in Corollary 7.2 represents the geometric me-
dian of the set R (see, e.g., [39]).
Notice also that, with no knowledge on T distribution, Equation 7.13 shows
that E[T̃](w) may have a change of sign with respect to w, since the term
EX [d(x̂, X)−d(x̂, c)−d(c,X)] is non-positive by triangular inequality. This
suggests that, in the general case, the probability on T plays a crucial role
in the determination of w∗.
Although applied on a simplified problem, Corollary 7.1 seems to suggest
that, given a cluster of orders, it is reasonable to start from the solution of
a 1-Median problem in order to obtain the representative order, where the
probability is approximated by the frequencies of orders within the cluster.

7.3.5 Towards an application to EPDT

The observations above are based on a problem representing a simplified
version of EPDT. In particular, EPDT orders have a more complex struc-
ture, as they may consist of more than a single pickup and a single delivery
operation. Therefore, in order to extend this method to EPDT, we need
to adapt the procedure that creates the representative orders. One of the
possibilities we suggest, is to approximate each historical multi-pickup and
multi-delivery order with a single-pickup and single-delivery order where
tasks are represented by the barycenter of, respectively, the pickups and the

116 7. Toward new Data-Driven approaches for DSVRPs

deliveries of that order. Another technique may rely on the decomposition
of multi-pickups and multi-deliveries into a set of approximating pairs of
single-pickup and single-delivery orders, taking the peculiarities described
in Section 4.3 into account. A hybrid method between the two just de-
scribed may also be considered, where we substitute groups of pickups or
deliveries with their barycenter only if they are concentrated in a small area,
and then we apply the decomposition of the latter approach. Let us observe
that, regardless of the method chosen to build the representative orders, the
main procedure described in this section is not affected by an application to
EPDT, as representative orders are added to the input data of any instance
of the problem.

7.4 Accessibility Approach

In this section we describe another anticipatory technique that aims to cope
with dynamic and stochastic routing problems that can be integrated in
solution methods implemented for the deterministic case. This approach is
based on the classic concept of accessibility [51]. The accessibility measure
is mainly applied in the urban logistic theory and represents, in a network of
services (e.g. schools, ATMs, hospitals, etc.), the potential of interaction at
each location, i.e., how easy it is for each location to reach and use services
through the network. Our aim is to apply the accessibility concept to the
dynamic orders’ distribution, so that we obtain an accessibility function in
space and time standing for how easy it is for a vehicle in a space-time
point to reach a future order from that specific location. In this way, the
evaluation of a route can take into account, besides the delay on soft time
windows, also the values of the accessibility in each visited nodes, in an
attempt of anticipating near-future demand.

7.4.1 Overall Procedure

According to the main goal of this chapter, the accessibility approach, as the
one presented in Section 7.3, relies on an optimization algorithm designed for
the deterministic scenario. In particular, we may make use of the Tabu VND
from Chapter 5 modified in such a way that we add to the objective function
a new component ϕ(r) for each route r that takes into account information
on the future demand: this component is added to the second-level score
function Z2(r) that evaluates a route r. Therefore the new second-level score
function is

Z̃2(r) = Z2(r) + ϕ(r). (7.16)

We propose a way to determine ϕ(r) with the concept of accessibility. We
consider a set of decision makers I and a set of services J . In order to define

7.4 Accessibility Approach 117

the accessibility, we introduce the utility uij for a decision maker i of inter-
acting with a service j: the choice of a decision maker i ∈ I among different
services j ∈ J depends on the utility value uij . The mathematical frame-
work that is classically used to model the decision process among multiple
alternatives is the logit model (see [98], among others).
We define pij as the probability that the decision maker i chooses the service
j: the logit model for a decision process in function of the utilities is defined
by

pij =
euij∑
j∈J e

uij
, ∀ i ∈ I. (7.17)

The accessibility for a decision maker i ∈ I is defined as

Φi =
∑
j∈J

euij ,

and corresponds to the denominator of (7.17).
The connection between the accessibility theory and the routing scenario
under study corresponds to:

• identify I with the set of nodes N of the graph;

• identify J with the set of requests (j, t) from each node j ∈ N issued
at time t ∈ T , where T is the planning horizon;

• consider an accessibility measure Φi(t) in the space-timeN×T domain;

Therefore, given a route r = (i1, . . . , iL), we model the term ϕ(r) with the
cumulative accessibility collected at each node of the route:

ϕ(r) =
L−1∑
l=1

Φil(t̃(il)), (7.18)

where we recall that t̃(i) is the arrival time at node i.
Our goal is to foster routes that collect more accessibility at each visited
node, representing a more robust setting when the re-optimization is trig-
gered as dynamic orders rise.

7.4.2 Data-driven accessibility measure

In this preliminary, study we drop the Pickup and Delivery attribute of the
problem defined in Section 7.1, considering only the Soft Time Windows
attribute associated with the deadline D. Therefore, each order defines a
single pickup operation, hence a suitable historical data set H2 with nH data
is considered:

H2 = {(pxk, p
y
k, Tk, ηk) : k = 1, 2, . . . , nH},

118 7. Toward new Data-Driven approaches for DSVRPs

where features consist of, in the order, pickup x and y coordinates, time of re-
quest and instance. We discretize the planning horizon as T d = {t1, t2, . . . , td},
where d is the cardinality of the discretized set. Therefore, we obtain an
accessibility value Φi(t) for each i ∈ N and t ∈ T d. Notice that, given a
route r = (i1, . . . , iL), the arrival time at the l-th index t̃(il) may not coin-
cide with any tm ∈ T d, then we approximate it with the closest element in
T d.
Classically, the utility uij is supposed to depend on the travel cost through
the network from i to j and on the attractiveness of service Wj , measured,
e.g., by the “quantity” of available service. In order to avoid an uncondi-
tional growth, the logarithm of Wj is taken [98]. Under these hypothesis,
given a node i ∈ N , a time t ∈ T d and the order j of H2, we compute the
utility uij(t) by

uij(t) = α ln(Wj)− βc(i, t, j),

where α, β and Wj are parameters to be tuned, while the cost c(i, t, j) is the
delay of the order j with respect to the time window [tj , tj + D], tj being
the time associated with j, starting the trip from i at time t.
We want to calculate an estimate of the accessibility values making use of
the historical data in H2. We assume that H2 consists of data corresponding
to Q instances, and we denote by jd the node related to the data d in the
historical data set. We define the accessibility value Φi,η(t) of the η-th
instance as

Φi,η(t) =
∑

d∈H2(η)

euijd (t),

In order to obtain the estimate of the overall accessibility Φi(t), we calculate
the sample mean of the single-instance accessibility values:

Φi(t) =
1

Q

Q∑
η=1

Φi,η(t).

In Figure 7.3, we report an example of the accessibility function. The prob-
lem is modeled on a grid graph with a distance of 20 units between adjacent
nodes and a planning horizon defined by the interval [0, 480]. The orders
have been randomly sampled according to a Normal distribution in time
(with mean 240 and standard deviation 100) on the two nodes with coor-
dinates (40, 40) and (20, 120). For each node i, we show a graph of the
accessibility value Φi(t) in function of t, computed on a set of 4000 sam-
pled orders. Notice that, as expected, the accessibility values are very high
in correspondence of the nodes where orders are requested, and gradually
decay as we increase the distance from them in space. Moreover, Φi(t) in
each i shows that the computed accessibility over time is consistent with the
Gaussian distribution of the demand in time.

7.4 Accessibility Approach 119

Figure 7.3: Example of an accessibility function on a 7x7 grid graph

7.4.3 Towards an application to EPDT

The accessibility approach we devised in this section is developed on a prob-
lem with a reduced set of attributes with respect to the ones in EPDT.
In particular, the considered problem is characterized by orders with only a
single (pickup or delivery, indifferently) task, preventing a direct application
of this approach to EPDT because of the way the utility is defined. Hence,
in order to overcome this issue, we can extend the utility concept in such a
way that the j index in uij(t) is related to a multi-pickup and multi-delivery
order and Wj corresponds to the order revenue. The cost c(i, t, j) can be
intended as the cost for reaching each task location of order j starting from
i, then we can estimate it by means of a fast TSP heuristic, as a Nearest
Neighbor algorithm, with fixed initial position i. Independently from the
adaptation of the accessibility computation, the Tabu VND in Chapter 5
can include the objective component corresponding to the cumulative ac-
cessibility with no further effort, obtaining then a solution method able to
solve the dynamic and stochastic version of EPDT.

120 7. Toward new Data-Driven approaches for DSVRPs

Chapter 8

Integration in a decision
support system

Trucking companies have made a considerable effort to provide their opera-
tional managers with decision support systems to suggest optimized vehicle
routing and scheduling strategies, as well as actions to dynamically react
to many operational issues like vehicles or transportation network failures,
real-time issued demands etc. Off-the-shelf available software include sys-
tems to track and manage the fleet in real time (e.g. [102]), to optimize
truck routes (e.g. [115]), to interconnect stakeholders and to synchronize
their time windows (e.g. [107]). Nonetheless, to the best of our knowledge,
useful supporting functionalities are spread in different existing tools, or not
present at all. In this chapter we introduce a new tool to support routing
operations in small trucking companies that integrates such functionalities
in a single system, together with operations research and artificial intelli-
gence algorithms to aid the operations manager making difficult decisions.
The development of such system has been carried out at the Research and
Development division of Trans-Cel, a small freight trucking company lo-
cated in Padova (Italy) which inspired the definition of EPDT as detailed in
Chapter 3. A prototype implementation of this platform, called Chainment,
is installed at Trans-Cel and supports the decision makers in the operations
office. In particular, Chainment includes an algorithmic engine which imple-
ments the method described at Chapter 5 with specific adaptation for the
platform requirements and interface toward the specific problem at Trans-
Cel. A summary of this chapter content is published in [29].

8.1 Integrated support tool

The operations management office of a small trucking company has to face
several decisional tasks during the working day, as shown by the following
illustrative scenario.

121

122 8. Integration in a decision support system

Example 8.1.1. Clients issue their transportation requests (in terms of e.g.
freight features, pickup/delivery positions, time window preferences and dock
slot availability) that are stored in an order repository. Based on this infor-
mation, at the beginning of the working day, the office assigns requests to
trucks and determines their routes. During the operations, further requests
may be issued having pickup and/or delivery time windows falling in the
current day. According to the real-time status of the fleet, the company has
to decide if the order can be profitably taken in charge and, in case, modify
vehicle routes accordingly. After deliveries, by exploiting the knowledge on
customers’ behavior, the trucking company may solicit some orders in con-
venient position, as to avoid driving empty trucks. By monitoring trucks’
tank status, fuel requests are appropriately consolidated and negotiated with
trusted fuel companies. Similarly, standard and extraordinary trucks mainte-
nance operations are planned and interleaved with usual pickup and delivery
operations.

Chainment, the support tool developed at Trans-Cel, is meant to aid
the decision makers in such kind of situations by means of several com-
municating modules, integrated through a web platform. We focus on the
modules that support or interact with the vehicle routing operations, based
on the current vehicles’ status and planned activities, as well as on infor-
mation about pending and forecast transportation requests. The platform
is designed as a single-page web application according to the Software-as-
a-Service (SaaS) model, that is a software available through a subscription
and hosted in a cloud system. Moreover, a social network structure is ap-
plied to interconnect users (trucking companies, customers, logistics oper-
ators, fuel companies etc.), by means of user profiles, chats and real-time
interaction for, e.g., orders’ negotiations or direct communications between
operations managers and drivers. As a part of Chainment, the modules
interact by means of real-time data sharing, and take advantage from the
available real-time and historical information (e.g., pending orders, vehicles,
orders and road network real-time status database of past orders). In Fig-
ure 8.1, we summarize the module communication scheme. We remark that
several modules use an optimization engine, that relies on the optimization
algorithm solving EPDT (see Chapter 5) and on predictive models based
on Machine Learning. In the following, we describe the modules included
in the operations management support tool and the interface toward the
optimization engine.

8.2 The Orders Portal

The Orders Portal module (Figure 8.2) supports inserting and managing
orders. It collects data on orders and provides different views to both the
carriers and their customers. Customers can make their own transportation

8.2 The Orders Portal 123

Figure 8.1: Chainment modules interaction.

requests by filling up an online form connected to the Data-Sharing mod-
ule. Any change to the order data is tracked and notified to both parties in
real-time. In particular, an interactive negotiation system that establishes
the price of the incumbent order is a main component of such module. The
carrier’s operations manager has access to a profit estimator tool based on
the evaluation of possible prices and marginal costs for the incumbent order,
as suggested by historical and real-time data. As we will detail in Section
8.6.2, a machine learning algorithm analyses historical data to fix a suit-
able price interval for the order to take in charge, based on past decisions
concerning similar orders, as defined by some selected order features. More-
over, as we will detail in Section 8.6.1, the Order Portal interacts with the
algorithmic engine (adapted from the approach described in Chapter 5) to
estimate the minimum and the maximum marginal cost of the order. This
is done by dynamically inserting the incumbent order into the current route
planning, taking into account the real-time status of the fleet and of the
remaining currently assigned orders. The price and the cost intervals give
an estimation of the possible profit related to a new order, guiding the op-
erations manager in the negotiation process. After confirmation from both
parties, orders are not changeable and appear in the data repository as or-
ders in charge for the carrier, ready to be inserted into the daily planning
(manually or by running the routing algorithm), and available for providing
statistical information to, e.g., data-driven approaches.

124 8. Integration in a decision support system

Figure 8.2: The Orders Portal of Chainment.

8.3 The Driver App

The Driver App (Figure 8.3) handles the tracking of vehicles’ operations and
movements: a mobile application has been developed in order to connect the
drivers to the data-sharing module. By means of this module, drivers obtain
their daily routes, available either as a sequence on a timeline or in naviga-
tion mode. As they progress with the trip, the drivers send feedbacks to the
data-sharing module. This allows updating the order and vehicle status, as
well as collecting useful historical information, such as departure and arrival
time at each position, starting and ending time of each pickup or delivery
operation or other activities (e.g. breaks). Moreover, the status of the main
vehicle components can be updated, as for instance the pressure value of
tires, the fuel status and overall kilometers cumulated by the vehicle, for
the sake of maintenance. The update can be performed either manually by
drivers who can regularly insert data through the Driver App, or automati-
cally by means of sensors, more relevant in the Industry 4.0 and Internet of
Things paradigm [53]. Drivers can also make use of a photo sharing system,
in order to report miscellaneous events, such as damages to the vehicle or
to the packaging, or documents received by customers after completing an
operation. Moreover, the Tom Tom Telematics API [102] provides further
data that are automatically sent to the data-sharing module, thanks to the
Tom Tom device integrated in each vehicle (e.g. driving or idle status of the
vehicle, the actually traveled routes, etc.).

8.4 The Planning Module 125

Figure 8.3: The Driver App of Chainment.

8.4 The Planning Module

The Planning module (Figure 8.4) determines the assignment of daily op-
erations to vehicles and the related routes, after collecting the information
on orders, fleet and road network status from the other modules, includ-
ing the ones that interconnect with Google Maps and Tom Tom Telematics
to obtain real-time traffic information. To this end, the module includes a
routing algorithm to solve EPDT and provide a set of feasible routes. The
module offers both a map view of the suggested routes and a drag-and-drop
interface, which allows the operations manager to interact with the routing
algorithm. The former view, thanks to the interaction with Google Maps
and Tom Tom Telematics, shows both the actual route rode by each vehicle,
and the routes as arranged in the current planning. The latter view allows
the user creating an initial (even partial) solution and launching the routing
algorithm to complete and optimize it, exploiting the fact that the method
proposed in Chapter 5 for EPDT can start from any provided initial solution
(see Section 5.4). The same interface gives the opportunity of overruling the
routes suggested by the algorithm, by, e.g., fixing the final position of a
vehicle, or the assignment of some orders to specific trucks, or a sub-route.
All planning information is made available to the operations manager, such
as the overall profit, the total costs of the planning, the total spatial and
time distance. Moreover, any change in the planning registered through the
interface can be evaluated by activating the routing algorithm to determine
the impact of the modification.
At the beginning of the working day, the Planning module suggests an initial
plan for daily operations after solving the static version of EPDT. In a dy-
namic context, during the day, the fleet, order or road network status often
diverge from the initially planned ones (e.g. road network failures or con-

126 8. Integration in a decision support system

gestion, pickup or delivery operations taking longer than planned etc.), so
that routes can be conveniently re-optimized starting from the actual status
gathered from the real-time data sharing module. The Planning module is
thus able to suggest possible strategies to modify the current vehicle routes
in response to several dynamic events, for example:

• in case of real-time issued orders, the module runs a dynamic version
of the routing algorithm in order to include the new operations into
the most convenient route. To this end, the interaction with the Fleet
module through real-time data sharing allows collecting the informa-
tion necessary to deploy a solution that is consistent with the actual
current status;

• in case of vehicle failures, the broken vehicle is excluded from the fleet,
and related orders status is changed in order to let them be carried
out by other vehicles. If load or unload operations are possible in
the location where the vehicle broke down, a new pickup operation
is associated with all orders on board, and the routing algorithm can
assign the updated order to the remaining vehicles.

Figure 8.4: The Planning module of Chainment.

8.5 The Demand Forecast Tool

The Demand Forecast module (Figure 8.5) is designed to analyze data on
past demand and predict possible future orders (e.g., at least in principle,
with an algorithmic engine that solves dynamic and stochastic version of
EPDT based on the framework that is outlined in Chapter 7). At the mo-
ment, the module exploits the historical information on orders to detect
orders that are likely to be issued in the near future, so that they can be
taken into account by the planning module. Moreover, profitable forecast
orders may be detected by interaction with the Order module and proac-
tively solicited by telemarketing, in order to increase the probability to show

8.6 The Algorithmic Engine 127

up. A use case example is when a vehicle is or will be in a region with type of
orders compatible with its available capacity. A marketing strategy can thus
be dispatched. In order to identify fruitful regions, the module plots a heat
map that shows the most visited areas: this, together with the Fleet and
the Order modules, suggests convenient positions and order features that
may be compatible with some running trucks. Notice that heat maps may
depend on the time of the day or the day of the week, according to histor-
ical information on order features (position, date, operations time windows
etc.).

Figure 8.5: The Demand Forecast module of Chainment.

8.6 The Algorithmic Engine

The modules of Chainment base different functionalities on a common algo-
rithmic engine, that implements a routing optimizer and predictive models.

8.6.1 The routing optimizer

In order to achieve their goals, most of the modules integrated in the sup-
port platform need to solve the EPDT problem either in static or settings.
The algorithm described in Chapter 5 satisfies the requirements of the plat-
form up to some adaptations, due to the interaction between the module
and the operations manager:

1. the decision maker can suggest an initial partial or complete plan: the
routing optimizer starts from that initial plan;

2. the decision maker can suggest an infeasible plan: the routing opti-
mizer must repair the solution and then optimize it;

3. the decision maker can modify or overrule the solution: the routing
optimizer cannot alter such changes;

4. the driver app provides real-time data on, e.g., actual arrival and de-
parture time: the routing algorithm has to take the new estimates of
such values available through the data sharing system.

128 8. Integration in a decision support system

Among others, we observe that the requirement 2 can be attained by the
algorithm of Chapter 5 thanks to penalties for violation of soft constraints
(S1) - (S5). In addition, we relax the problem hard constraints (H1) - (H7),
penalizing their violations via extra (high) penalties to add in the objective
function with the aim of guiding the search toward a feasible solution that
is provided as initial solution.
Other modules solve a dynamic version of EPDT, for instance:

1. the Planning module (Section 8.4) must react to dynamic events during
operations, like vehicle breakdowns, just-in-time orders, etc.;

2. the Order Portal (Section 8.2) must provide a real-time estimate of the
best- and worst-case marginal costs of an order to assist in the price
negotiation, as we will detail in Section 9.6.2.

Because of the low demand dynamism in the EPDT operational context, we
apply a reactive strategy based on re-optimization, as stated in Chapter 5.
In particular, we run the same algorithm to re-optimize the routes, using
the input from different modules to collect the current vehicle, order and
network status, and determine a synchronized initial solution. Moreover,
for the sake of new order pricing, the order management module runs the
EPDT algorithm in dynamic settings to estimate the marginal cost.

8.6.2 Predictive models

The algorithmic engine includes predictive models that are called by different
modules. We devised models for the estimate of the time needed for pickup
or delivery operations (service time), and a price range for an incumbent
order.

Service time prediction

We implement a prediction system that provides the operational time oc-
curring for load and unload tasks. The model is based on a Support Vector
Regression that takes as input the weight and volume of the incumbent load.
The tool returns the sum of the estimated operational time and the expected
delay corresponding to the facility where the task is executed (e.g. waiting
time in queue, slow operations setup, etc.). Notice that the latter compo-
nent is easily estimated by the historical data collected by the Driver’s App
module. The prediction of such model is used both in the Order Portal, for
providing the operations manager with a service time forecast, and by the
routing optimizer, to use estimates of the service time when it is not input
by the user.

8.7 Implementation technologies 129

Price range prediction

In the Order’s Portal module, a machine-learning algorithm is run to exploit
historical data in order to analyze past decisions and predict a suitable price
interval. The interval is compared to the marginal cost interval estimation
obtained by the dynamic insertion of the same order evaluated by the rout-
ing optimizer. The algorithm uses a decision tree to implement an ordinal
classifier [41], based on orders features, namely:

1. average distance between the depot and the pickups;

2. average distance between the pickups and the deliveries;

3. total weight;

4. total volume;

5. urgency level;

6. requested truck facilities.

Given the features, the classifier applies a parametrized function that selects
the interval to associate to a given order among a set of predefined intervals,
sorted by average price. As usual, the parameters are obtained by training
the classifier on a suitable dataset of orders. For this task, we have used a k-
fold cross validation scheme, with a 4:1 ratio between training and validation
sets [76].

8.7 Implementation technologies

This section provides information about the technologies used for the im-
plementation of the algorithmic engine and its integration in the support
platform developed by the Chainment team at Trans-Cel.

Project Management

The development of Chainment follows an agile methodology [2]. This
project management system is based on the following principles:

1. Individuals and Interactions over processes and tools;

2. Working Software over comprehensive documentation;

3. Customer Collaboration over contract negotiation;

4. Responding to Change over following a plan.

130 8. Integration in a decision support system

These values focus on creating a development environment more suitable to
comply with the evolution of software requirements and relying on a collab-
orative system with customers. This is in contrast with waterfall methodol-
ogy, which starts from a detailed and inflexible project definition, taking to
the finished product with poor interaction with the customer. We adopted
the Kanban agile solution for the Chainment project. Kanban is based on
the continuous improvement of the software and keeps track of the different
tasks of the team by a board where columns are provided that represent the
task status (i.e. to do, in progress, ready to test, done). This allows the
project manager to have a insight on the team effort and bottle-necks in the
project development. Among the many available, we used Trello [108] and
Taiga [99] as Kanban online platforms.
UML (Unified Modeling Language [87]) has been used to describe subsys-
tems of the overall project, whereas the documentation has been written by
inline comments compliant with the Doxygen format. Doxygen [35] is a free
software that generates automatic HTML and LateX documentation parsing
comments which correspond to some specific format, and also automatically
creates class diagrams. Some of the main tools for project development are
shown in Figure 8.6.

Figure 8.6: Project Management Tecnologies

Version Control System

The version control system for repositories is Git [44]. Git (see Figure 8.7)
is a free and open source software, and it is very efficient for projects of
any dimension. it offers a command line interface but also a large variety
of client applications (e.g. Git Bash UI, SourceTree [96], GitKraken [45],
etc.) are available. Git offers the possibility of creating different work-flows
at different levels of the development phase, detaching from a particular
work-flow. This action is called branching. Multiple developers can work in
a local branch, and they can synchronize such branch with a remote source
git work-flows (typically labeled with the prefix origin), which is the central
reference for all the team.

8.7 Implementation technologies 131

Figure 8.7: Git

Database

A SQL (Structured Query Language) database is used in the Chainment
environment, with MySQL (see Figure 8.8) as database management system.
MySQL [72] handles relational databases and come with a command line
client where the user can interact with a server instance of the SQL server
for different purposes, even though many open source client UIs are available
(e.g. MySQLWorkbench [73], DBeaver [27], etc.). The two main types of
database interaction are the following:

• DDL (Data Definition Language) is used to define tables and relation
between them;

• DML (Data Manipulation Language) is used to perform the CRUD
operations, that are the basic functionality for persistent storage of
data: Create, Read, Update, Delete.

• DQL (Data Query Language) is used to perform relational algebra
operation of tables, that are, e.g., joins, unions, differences, grouping
of tables.

Figure 8.8: MySQL

132 8. Integration in a decision support system

Programming Languages

The web application is based on a server-client paradigm and the main func-
tionalities have been implemented in PhP for the back-end (Laravel frame-
work) and JavaScript for the front-end (Angular and Node JS frameworks).
Concerning the optimization engine, which is the topic of the thesis, the rout-
ing algorithm, which asks for high levels of efficiency, has been implemented
in C++ 14 (see Figure 8.9). In particular, we made use of the template
method design pattern (see [4] for details on C++ design patterns). This
pattern relies on writing the procedure of an algorithm as a skeleton whose
internal routines that require specific implementation are inherited by the
client. High level functionalities, such as input parsing and pre-processing
from different sources, output writing, have been implemented in Python
2.7.15 (see Figure 8.9). Python [81] is a general purpose high level inter-
preted language with a very large availability of packages. Moreover, an
interactive Python module, called IPython, has been used for debugging
and analysis purposes, especially through the interface JuPyter [57]. We
used the Boost C++ libraries for specific purposes, such as threading pools
for multi-thread implementations and exposition of C++ classes to Python.
Decoupling high and low level components through a binding between C++
and Python led to high development speed and maintainability of the code.
Prediction tools have been implemented in Python, because of the large sup-
port and functionalities availability. The same language has been adopted
for a fine integration of the prediction tools with the rest of the optimiza-
tion engine, which already adopts Python in many routines. In particular,
we used the following libraries: Sci-Kit Learn [94] is a package containing
all the most popular of machine learning algorithms, Pandas [68] includes
many classes suitable for data modeling, Statsmodel [90] provides several
statistical analysis tools compatible with the Pandas package.

Figure 8.9: Programming Languages

8.7 Implementation technologies 133

Development Environments

For the development of the C++ software we made use of Visual Studio Code
[114] (see Figure 8.10). This is a code editor developed by Microsoft, it has
been chosen for being light-weight and being supported with a large number
of packages. For more fine-grained tasks, has profiling the memory during
debugging (especially for what GPU is concerned), we used Microsoft Visual
Studio 15 [71], the popular Microsoft Integrated Development Environment.
For Python debugging and data analysis, we made use of JuPyter (Figure
8.10), an interface for IPython which allows the execution of blocks of code
and inline outputs and plots.

Figure 8.10: Development Environments

Build and deploy system

The Chainment web application is cross-platform. The deployment system
is handled by Vagrant [109], a software that creates a virtual machine hosting
a Chainment server instance by parsing a configuration file containing all
the technological requirements and repository links. The build system for
C++ code is handled by CMake [21]. CMake (Figure 8.11) is a software
to configure and launch the build system (e.g. Visual Studio projects in
Windows, makefiles in Unix) and let the user set all the desired build options
for compiling and linking on any platform.

Figure 8.11: CMake

134 8. Integration in a decision support system

Third-party APIs

TomTom Telematics developers API [103] (see Figure 8.12) have been used
for data like real-time coordinates related to vehicles in fleet and the reach-
able range of a vehicle given different residual resources (e.g. fuel in the tank
or work hours available). Also, we used Google Maps developers API [49] (in
Figure 8.12) for several tasks: coordinates of customer locations in the De-
mand Stats and route visualizations in the Planning module, as well as the
distance matrix as input for the optimization algorithm. In order to reduce
the number of requests to APIs, we stored in the Chainment database all
the API data. Connection to APIs has been performed through the Python
interface provided both by TomTom and Google Maps.

Figure 8.12: Third-party APIs

Chapter 9

Computational Results

In this chapter, we report the computational results collected during several
tests over different sets of instances, both from literature and real world
benchmarks. With the aim of focusing on the assessment of the algorithmic
approach to EPDT as proposed in Chapter 5, we consider our experiments
on real-world instances. Moreover, we show that the proposed approach can
be competitive with state-of-art algorithms on problems of broader interest,
by comparison on PDPTW literature benchmarks.
Tests have been run with focus on different aspects of the algorithm imple-
mentation: parameters calibration, effectiveness and efficiency assessment,
as well as validation on the field in static and dynamic settings. We im-
plemented different variants of the solution method proposed in Chapter
5, by suitably combining alternative implementations of its components:
deterministic and stochastic exploration (Section 5.6.3), complete and gran-
ular exploration of the multiple relocation neighborhood mR (Section 5.8),
single- and multi-thread implementations (Section 5.10), sequential and
cyclic neighborhood switch (Section 5.6).

9.1 General settings

In this section we provide the general settings that we adopted during the
computational campaign. We have implemented several versions of the Tabu
VND heuristic for EPDT described in Chapter 5, obtained by combining the
different algorithmic components that are summarized in Table 9.2. For ex-
ample, we have basic components for constructive (BI, RP) and improving
(DET, RND) routines or further components for neighborhood switching
strategies (SF, SR), and we can add filtering (+F), neighborhoods or dif-
ferent parallel implementations. In general, we will describe the different
versions according to the following notation: given two algorithms A and
B we denote by A→B the pipeline execution of A and B: first algorithm
A is executed, then B is run starting from the output of A. Moreover, by

135

136 9. Computational Results

Table 9.1: Parameters
Parameter Description

Tabu VND

M1 the maximum number of iterations with no improvement
M2 the maximum number of iterations
T T is the tabu list length

mR filter

ρ fraction of tasks in the definition of close orders
δ distance threshold in the definition of close orders

Cyclic neighborhood switch

In maximum number of non improving 1R moves
Ib maximum number of iterations before restarting 1R exploration

best(A1, . . . , An) we mean that algorithms A1, . . . An are executed starting
from the same initial solution (empty for constructive heuristics) and then
the solution with best objective value is returned.
The overall procedure considered in the following are BestI, BestI1 and
BestI2. In particular, BestI makes use of both BI and RP for the construc-
tive phase, whereas BestI1 uses only BI. Moreover, BestI2 corresponds to
the procedure BestI1 from which we remove the exploration of neighborhood
2C. All the algorithm versions are considered with fast second level heuris-
tic and infeasible route fixing since, during our test, the destroy-and-repair
phase has been necessary just in three cases.
All the heuristic algorithm versions, as well as the label correcting algo-
rithm in Chapter 6 have been implemented in C++, compiled with the
MSVC compiler from Visual Studio 2015. We used SCIP as a framework
for the Column Generation, and SOPLEX as linear programming solver.
As reported in Chapter 5 and summarized in Table 9.1, the heuristic algo-
rithm defines some parameters that have to be calibrated. The parameter
calibrations has been performed by manual tuning, even supervised by oper-
ation managers, sometimes with tests on the field (the procedures proposed
by this thesis run in the operations room in parallel with the non-supported
procedure at Trans-Cel during route planning and execution). For the sake
of calibration, we split the available instances into a calibration set (where
manual adjusting is performed) and a test set to validate the parameters
choice. Calibration and test sets are selected so that the former corresponds
to about the 70% of the entire data set. The results and the benchmark
features provided in the following are related to the test sets.
In the following notation, a gap between a solution method A with respect
to a method B is defined as the percentage difference (f(sA)−f(sB))/f(sB)
of the objective values (given f the objective function) for solutions sA and
sB obtained by A and B respectively. Moreover, several columns in the
next tables will show values as average and, in parenthesis, minimum and
maximum value, namely avg (min; max).

9.2 Real-world Benchmarks definitions 137

Table 9.2: Algorithmic components and related notation

name algorithm

BI Best Insertion
RP Round robin insertion with Priority
DET Tabu VND with deterministic exploration
RND Tabu VND with 3 stochastic explorations
SF cyclic neighborhood switch with fixed order
SR cyclic neighborhood switch with random order
+F granular exploration on mR neighborhood
+nPN parallel exploration inter neighborhood
+nPE parallel exploration intra neighborhood
± [N] add/remove the neighborhood N
BestC best(BI, RP)
BestI best(BI→DET, BI→RND, RP→DET, RP→RND)
BestI1 best(BI→DET, BI→RND)
BestI2 BestI1 - [2C]

9.2 Real-world Benchmarks definitions

We gathered two distinct real-world benchmarks, TC1 and TC2, by col-
lecting instances from Trans-Cel database. The feature of TC1 and TC2
are summarized by Table 9.3 and 9.4. TC1 contains 30 instances, where
each instance correspond to a single working day between March and April
2016. TC2 consists of 43 real instances corresponding to working days from
March to December 2017 at Trans-Cel. We consider also a partition of TC2
into five groups TC2.i, with i = 1, 2, 3, 4, 5, depending on the tasks number
range. The first and second column shows, respectively, the name of the
groups and subgroups of TC2, together with the corresponding tasks num-
ber range. The third column gives the set size. Following columns show
average and, in parenthesis, minimum and maximum number of tasks, or-
ders and vehicles, respectively.
During the multiple tests phases, we devoted a substantial amount of time
to working in parallel with Trans-Cel operations managers and analyze their
planning methodology. The operations managers make use of Excel spread-
sheets to create the daily routes planning: they assign orders to vehicle
routes and obtain, through Excel functionalities, some basic analysis (e.g.
total revenue of orders, total weight transported per route, etc.) that sup-
ports next assignments or route modifications. We exploited the availability
of solutions on spreadsheets, in order to obtain objective gaps between the
human and algorithmic solutions.

138 9. Computational Results

Table 9.3: TC1 and TC2 instances (tasks)

Group Subgroup Count Pickups Deliveries

TC1 30 21.2 (6.0 ; 39.0) 38.8 (11.0 ; 63.0)
TC2 43 27.9 (4.0 ; 44.0) 44.2 (8.0 ; 73.0)

TC2.1 (0-40) 9 8.1 (4.0 ; 16.0) 14.9 (8.0 ; 25.0)
TC2.2 (41-80) 9 28.6 (24 ; 36.0) 33.2 (27.0 ; 44.0)
TC2.3 (81-90) 10 32.6 (32.0 ; 35.0) 51.8 (49.0 ; 55.0)
TC2.4 (91-100) 9 36.1 (35.0 ; 37.0) 57.7 (56.0 ; 62.0)
TC2.5 (101-116) 6 41.9 (38.0 ; 44.0) 66.3 (65.0 ; 73.0)

Table 9.4: TC1 and TC2 instances (orders and fleet)

Group Subgroup Orders Fleet

TC1 25.6 (8.0 ; 46.0) 8.3 (3.0 ; 14.0)
TC2 27.8 (3.0 ; 55.0) 11.2 (3.0 ; 14.0)

TC2.1 (0-40) 7.7 (3.0 ; 12.0) 7.1 (3.0 ; 14.0)
TC2.2 (41-80) 20.7 (14.0 ; 29.0) 12.3 (10.0 ; 14.0)
TC2.3 (81-90) 33.3 (30.0 ; 40.0) 12.0 (10.0 ; 13.0)
TC2.4 (91-100) 38.3 (34.0 ; 44.0) 12.3 (11.0 ; 14.0)
TC2.5 (101-116) 43.7 (36.0 ; 55.0) 12.7 (12.0 ; 13.0)

9.3 Results of basic algorithm on real-world bench-
marks

In this section, we report an analysis of the basic versions of the Tabu VND
heuristic for EPDT, that is, versions that do not include speed-up, filtering
nor cyclic neighborhood exploration components.

9.3.1 Selecting the initial solution procedure

The first test aims at comparing the potential of the two procedures RP and
BI defined at Section 5.4 to provide the initial solution to the Tabu Search
heuristic. The considered algorithm versions are RP and BI combined with
both deterministic and stochastic explorations, and BestI. With reference
to Table 9.1, by preliminary calibration, executed as described in Section
9.1, we set M1 = 50 and M2 = 500, and values of T depending on the
number of non-fixed orders Nnf in the incumbent instance. In particular,
T = 4 if Nnf < 10, T = 8 if Nnf > 20 and T = b(2/5)Nnfc in all the
other cases. Notice that the considered algorithm versions do not require
further parameters. In Table 9.5, we report tests on TC1 instances run on
a i5-5200 2.20 GHz machine with 8 GB RAM. The results are devoted to
the analysis of the performance for the different initial solution heuristics.
Columns report: the configuration name; the percent improvement over the
operations manager’s solution; the running time in seconds; the frequency
the configuration finds a solution within 1% of the best solution (provided
by BestI), the frequency the configuration dominates all the others. BestI

9.3 Results of basic algorithm on real-world benchmarks 139

Table 9.5: Results on real-world instances
Algorithm Gap(%) Time (sec.) Win(%) Dom.(%)

RP -10.5 (-42.3, 5.9) 1.2 (0.0; 10.9) – –
BI 7.3 (-10.2; 15.3) 0.1 (0.0; 0.3) – –

BestC 7.3 (-10.2;15.3) 1.3 (0.0; 11.1) – –

RP→DET 8.5 (-3.9; 15.3) 9.6 (0.0; 53.5) 53.3 16.7
RP→RND 8.4 (-2.7; 15.3) 19.8 (0.0; 146.8) 50.0 10.0
BI→DET 9.3 (2.2; 15.3) 33.2 (0.0; 295.0) 76.7 23.3
BI→RND 9.1 (-1.3; 15.3) 72.6 (0.0; 528.7) 63.3 6.7

BestI 9.6 (2.2; 15.3) 172.3 (0.1; 551.0) 100.0 100.0

is able to provide an average 9.6% improvement over the operations man-
ager’s solution within about 3 minutes (10 in the worst case). On average,
all the tested Tabu Search configurations improve over the baseline by 8.4%
to 9.3%, even if, for some configurations, the column devoted to Gap shows
that the operations manager still finds better solutions for some instances.
The Tabu Search starting from BI heuristic and deterministically exploring
the variable neighborhood seems to better trade-off efficiency, effectiveness
and reliability, always providing solutions better than the baseline, with an
improvement between 2.2% and 15.3% (9.3% on average) obtained within
33.2 seconds on average (5 minutes in the worst case). The last column shows
that all configurations reach a strictly better solution in some instances. No-
tice that all the algorithms but RP give the same maximum improvement on
a same medium-size instance (15.3%) where BI is able to find a good solu-
tion that cannot be further improved by tabu search. We also observe that
the initial heuristic, in particular RP, may perform very poorly in the worst
case, showing they are very sensitive to the input instance. If we consider
the initial heuristics combined with the basic versions of the Tabu VND, we
observe that starting from BI we obtain a winning solution quite frequently
(more than 63% of times), while RP, although providing a good dominance
rate, finds a solution within 1% from BestI only half of the times. Given
the results, in the following tests we remove the RP algorithm from BestI in
the constructive phase, with no sensible loss in effectiveness. For analogous
reasons, we also drop the neighborhood 2C from the VND algorithm, since
it rarely provides significant improvements to the solution, resulting in the
version BestI2 of the algorithm.

9.3.2 Improvements from basic algorithmic components

The following tests are devoted to examine the quality improvements due to
the different components of BestI2. Tests are executed on benchmark TC2,
using a i5-7400 3.00 GHz machine with 8GB RAM. By the calibration of
algorithm BestI2 parameters, we set M1 = 30 and M2 = 100, while T is
defined as in Section 9.3.1.

140 9. Computational Results

Table 9.6: Basic algorithms vs BestI2, objective gaps

Group BI vs BestI2 (%) BI→DET vs BestI2 (%)

TC2.1 2.8 (0.0 ; 13.3) 0.1 (0.0 ; 0.8)
TC2.2 5.6 (0.0 ; 14.6) 0.0 (0.0 ; 0.4)
TC2.3 6.2 (0.2 ; 10.8) 0.7 (0.0 ; 3.3)
TC2.4 8.8 (3.0 ; 14.1) 0.3 (0.0 ; 1.7)
TC2.5 8.2 (3.5 ; 14.8) 0.2 (0.0 ; 1.0)
TC2 6.2 (0.0 ; 14.8) 0.3 (0.0 ; 3.3)

Table 9.7: Basic algorithms vs BestI2, running time (sec.)

Group BI (s) DET (s) BestI2 (s)

TC2.1 0.0 (0.0 ; 0.0) 0.3 (0.0 ; 2.4) 1.4 (0.0 ; 9.7)
TC2.2 0.1 (0.0 ; 0.3) 3.2 (0.0 ; 8.5) 12.9 (0.0 ; 32.3)
TC2.3 0.2 (0.1 ; 0.3) 5.4 (2.4 ; 12.0) 23.7 (14.1 ; 40.1)
TC2.4 0.4 (0.2 ; 0.8) 9.0 (3.8 ; 20.1) 40.3 (18.5 ; 79.9)
TC2.5 1.1 (0.3 ; 4.3) 19.1 (4.4 ; 56.7) 77.7 (22.9 ; 196.8)
TC2 0.3 (0.0 ; 4.3) 6.5 (0.0 ; 56.7) 27.8 (0.0 ; 196.8)

In Table 9.6 and 9.7, we show, respectively, objective gaps and running times
for each group of instances, defined in the first column of both tables. The
second and third columns of Table 9.6 report the objective gap between BI
and BestI2, and between DET and BestI2, respectively. Starting from the
second column, Table 9.7 contains running times of BI, DET and BestI2.
Concerning the quality improvement in Table 9.6 due to different compo-
nents of the algorithm, we notice that the tabu search, either with or without
randomized exploration, significantly improves over the initial solution pro-
vided by BI, which is about 6% on average far from BestI2 (about 9% and
up to 15% for larger instances). Adding randomization provides appreciable
benefits in terms of reliability: DET solutions are only 0.3% worse than
BestI2 on average, but the gap is 3.3% in the worst case. As we may ex-
pect in Table 9.7 we observe that DET and, in particular, BestI2 pays the
better performance with larger running times. On average, DET is 20 times
slower than BI, and BestI2 is more than four times slower than DET (from
few seconds to half a minute). In the worst case, DET remains under one
minute computation, whereas BestI2 may take up to about 200 seconds for
larger instances.

9.4 Results of advanced algorithm settings on real
world instance

In this section we analyze the effects of granular and parallel exploration,
as well as of different algorithmic strategies (e.g. SF and SR). Along with
the computational times, we also report the impact of these modifications
on the solution quality. All the experiments have been run on the set of

9.4 Advanced algorithm settings on real world instance 141

Table 9.8: Effect of +F, +4PE, +4PN: objective gaps vs BestI2

Group DET+F+4PE BestI2+F BestI2+F+4PE BestI2+F+3PN

TC2.1 0.6 (0.0 ; 2.4) 0.0 (0.0 ; 0.0) 0.0 (0.0 ; 0.0) 0.0 (0.0 ; 0.0)
TC2.2 0.1 (0.0 ; 0.6) 0.1 (0.0 ; 0.6) 0.1 (-0.2 ; 0.6) 0.0 (-0.3 ; 0.6)
TC2.3 0.7 (0.0 ; 3.3) 0.1 (-0.4 ; 0.8) -0.2 (-1.2 ; 0.5) -0.1 (-1.0 ; 0.8)
TC2.4 0.4 (0.0 ; 1.7) 0.1 (0.0 ; 0.3) 0.1 (-0.6 ; 0.7) 0.2 (-0.8 ; 1.3)
TC2.5 0.3 (-0.4 ; 1.0) 0.2 (-0.4 ; 1.0) 0.2 (-0.4 ; 1.0) 0.1 (-0.1 ; 0.5)
TC2 0.4 (-0.4 ; 3.3) 0.1 (-0.4 ; 1.0) 0.0 (-1.2 ; 1.0) 0.0 (-1.0 ; 1.3)

instances TC2.

9.4.1 Effect of filtering and parallel explorations

The results in Table 9.8, 9.9 and 9.10 refer to tests executed on a i5-7400 3.00
GHz machine with 8GB RAM with the parameters M1 = 30 and M2 = 100,
T defined as in Section 9.3.1. Moreover, concerning filtering calibration, we
set parameters ρ = 0.5 and δ = 20.
Table 9.8 compares different applications of filtering and parallel explo-
ration to DET and BestI2 algorithms. For each group of instances (first
column), the table shows objective gaps toward BestI2; in the second col-
umn results concern the DET configuration with 2R filtering (+F) and
intra-neighborhood parallelism on four threads (+4PE); in the remaining
columns algorithm BestI2 is considered with 2R filtering (+F), and re-
sults on this configuration are reported in the third column; the fourth and
fifth column show results, respectively, on the application of intra- (+4PE)
and inter-neighborhood (+3PN) parallelization, with, respectively, four and
three threads to BestI2+F.
For each filtered or parallelized version, the solution quality is almost the
same as the corresponding basic version. Filtering the deterministic version
gives a slightly worse average quality: the gap just increases to 0.4% from
0.3% (reported in Table 9.6).
Figure 9.1 supports such observation by means of a box-and-whisker dia-

gram. Notice that for BestI2+F+4PE the gaps are more concentrated to-
ward 0 than DET+F+4PE, meaning that the degrade of the solution quality
due to the filter is higher and more frequent for the DET algorithm, whereas
BestI2 has a much smaller sensitivity to filtering.

The randomized exploration in BestI2 seems not to suffer from filtered
2R moves: the last row shows that the overall average solution quality
remains the same and, in five instances, the different implied exploration
of the solution space leads to better solutions than BestI2. In particular,
BestI2+F+4PE or BestI2+F+3PN have the same average performance, and
BestI2+F+4PE seems slightly better in terms of reliability (quality loss up
to 1.0% instead of 1.3%).
The additional components +F, +4PE and +4PN, intended for algorithm

142 9. Computational Results

Figure 9.1: Boxplot of the objective gaps of BestI2+F+4PE and
DET+F+4PE against BestI2.

Table 9.9: Effect of +F and +4PE: DET running times (sec.)

Group DET+F DET+F+4PE

TC2.1 0.3 (0.0 ; 1.9) 0.1 (0.0 ; 0.7)
TC2.2 1.9 (0.0 ; 5.3) 0.7 (0.0 ; 1.8)
TC2.3 4.0 (1.3 ; 8.2) 1.4 (0.5 ; 2.6)
TC2.4 4.8 (2.3 ; 9.4) 1.7 (0.8 ; 3.2)
TC2.5 12.7 (3.3 ; 36.0) 4.0 (1.2 ; 10.4)
TC2 4.2 (0.0 ; 36.0) 1.4 (0.0 ; 10.4)

speed-up, allow improving efficiency, as shown in Table 9.9 and 9.10: they re-
port the running times, in seconds, for the different algorithm versions. The
second and third columns in Table 9.9 report results on the filtered deter-
ministic version DET+F with and without the parallel intra-neighborhood
exploration (+4PE), respectively. Similarly, Table 9.10 shows the same ap-
plication of filtering (+F) and intra-neighborhood parallelism (+4PE) to
BestI2 algorithm in the second and third column, whereas the fourth col-
umn is devoted to the impact of inter-neighborhood exploration (+4PN).
Neighborhood filtering is quite effective, since it reduces running times by

about 37% on average for both DET and BestI2. With this improvement,
DET+F running times are always below 10 seconds, but for larger instances

Table 9.10: Effect of +F, +4PE, +4PN: BestI2 running times (sec.)

Group BestI2+F BestI2+F+4PE BestI2+F+3PN

TC2.1 1.2 (0.0 ; 9.2) 0.5 (0.0 ; 2.8) 0.8 (0.0 ; 5.2)
TC2.2 9.2 (0.0 ; 32.2) 3.0 (0.0 ; 8.5) 4.5 (0.0 ; 15.6)
TC2.3 17.7 (6.1 ; 33.0) 5.7 (2.1 ; 9.6) 8.1 (3.8 ; 16.0)
TC2.4 20.4 (10.3 ; 34.4) 7.6 (3.6 ; 13.2) 10.8 (5.6 ; 16.3)
TC2.5 48.9 (15.3 ; 113.6) 17.8 (5.8 ; 44.5) 31.8 (6.1 ; 110.3)
TC2 17.4 (0.0 ; 113.6) 6.1 (0.0 ; 44.5) 9.7 (0.0 ; 110.3)

9.4 Advanced algorithm settings on real world instance 143

Figure 9.2: Running times (sec.) of BestI2 (blue), BestI2+F (orange) and
BestI2+F+4PE (green) on TC2.

that may take up to 36 seconds to be solved, as we can see in the second
column of Table 9.9. We get the most significant speedup from parallel
evaluation +4PE: comparing the average running times in the last row of
Table 9.10, we obtain a further average 65% time reduction by exploiting
the four threads currently available on most computers. DET+F+4PE runs
always in less than about 10 seconds (just 1.4 on average), as shown in the
last column of Table 9.9 at the last row. Similarly, Table 9.10 shows that
BestI2+F+4PE takes 6 seconds on average, 17.8 on average for large in-
stances and always less than 45 seconds. The reduction is consistent, but
less relevant, for BestI2+F+3PN, allowing a speedup of 44.5% on average
upon BestI2+F. Moreover, the running time is, in the worst case, close to
two minutes. In fact, PN exploits three threads and, moreover, more neigh-
bor solutions are likely to be visited, since parallel neighborhood exploration
loses some of the advantages of variable neighborhoods. In Figure 9.2, we
show the run times in seconds for different combination of the algorithms
executed on each instance of TC2, sorted by group size. The figure shows
the trend of the running times for different configurations of BestI2 as the
size of the instance increases. In particular, we see how BestI2+F+4PE has
a limited growth with respect to BestI2+F and BestI2.
Summarizing, BestI2 provides the best average results in terms of solution

quality, and the speeding up components (filtering and parallel implemen-
tation) preserve the quality of results: in fact, from detailed results in Table
9.10, none of these three versions dominates the others. From an efficiency
perspective, BestI2+F+4PE performs better and, more interestingly, is able
to limit running time to a few seconds on average and, in any case, to less
then 45 seconds. This performance makes BestI2+F+4PE suitable for both
daily route planning in static settings and reaction policies based on re-

144 9. Computational Results

optimization, due to the relatively low demand dynamism of EPDT. In fact
the algorithm, integrated in the operations management office support tool,
is triggered by different modules (see Chapter 8) to, e.g., accommodate on-
line orders, react to unavailable infrastructures of vehicle failures, estimate
costs to assist order negotiation etc. and the response times are compatible
with the business model and operational settings of small trucking compa-
nies like Trans-Cel.

9.4.2 Impact of alternative exploration strategies

The impact of the new exploration schemes SF and SR is shown in Table
9.14, reporting the results of tests executed on a i5-5200 2.20 GHz machine
with 8GB RAM. We used the algorithm BestI1. Since we use SF and SR
strategies, we increased the number of non-improving iterations M1 = 60
and we set the parameters In = 15 and Ib = 5 (see Table 9.1). Tests
takes randomization, neighborhood filtering (F) and parallel implementation
(4PE) into account. For each of the proposed switching methods SF and SR,
the table reports the per-cent gap with respect to BestI1 and the running
time in seconds, showing, for each instance group, the average, minimum
and maximum values. Concerning SR, the probability of choosing switching
neighborhood 2S, 2R or 2C is set to, respectively 55.8%, 31.1% and 13.1%.
These probability values have been computed by running off-line on TC2 a
Tabu Search algorithm with just one of the neighborhoods 2S, 2R, 2C and
computing, for each neighborhood, the percentage of the times the related
Tabu Search finds the best solution.

9.4.3 Statistical significance in algorithm selection

The comparison among different versions of the Tabu VND algorithm has
been carried out along with the execution of statistical significance tests. In
particular, since we cannot make any assumption on the normality of data
distributions, we make use of the Wilcoxon test [83]. Given two groups of
the sampled data, the Wilcoxon test provides p-values in order to measure
the statistical significance of the obtained results. For sake of completeness,
below we report the p-values computed for each pair of algorithm versions.
Tables 9.11 and 9.12 show the p-values of different algorithm versions in
terms of the obtained objective values, whereas Table 9.13 shows the same
results for different exploration strategies (SF and SR) and BestI1 with
parallelization and filtering. We set our significance level at 5%, remarking
that we did not apply any correction for multiple comparisons, so results
may be characterized by a high false positive rate. Notice that from Tables
9.11 the results on the objective gaps are significant when comparing any
DET version with any BestI2 version, except for BestI2+F+3PN with DET,
whose p-value is equal to 17%. Comparison between BestI2 versions and

9.5 Assessment through optimality bounds 145

Table 9.11: P-values for different algorithm versions vs BestI2

BestI2 BestI2+F BestI2+F+3PN BestI2+F+4PE

BestI2 – 0.02 0.36 0.43
BestI2+F 0.02 – 0.73 0.35
BestI2+F+3PN 0.36 0.73 – 0.99
BestI2+F+4PE 0.43 0.35 0.99 –
DET 0.00 0.02 0.17 0.04
DET+F 0.00 0.00 0.02 0.00
DET+F+4PE 0.00 0.00 0.02 0.00

Table 9.12: P-values for different algorithm versions vs DET

DET DET+F DET+F+4PE

BestI2 0.00 0.00 0.00
BestI2+F 0.02 0.00 0.00
BestI2+F+3PN 0.17 0.02 0.02
BestI2+F+4PE 0.04 0.00 0.00
DET – 0.09 0.09
DET+F 0.09 – –
DET+F+4PE 0.09 – –

between DET versions are not supported by significant p-values, with the
exception of BestI2 and BestI2+F that has p-value equal to 2%. From Table
9.13, we can observe that the objective gaps are significant when comparing
BestI1+F+4PE to any of the other two algorithm versions with sequential
and random neighborhood switch strategy, whereas results do not provide
evidence for statistical significance in the comparison between the sequential
and random switch strategies.

9.5 Assessment through optimality bounds

In this chapter we run tests to assess the quality of the solution provided by
the proposed heuristic according to optimality gaps provided by the Column
Generation algorithm described in Chapter 6.
In the following tests, we took into consideration the set of instances TC2
with algorithm BestI2 run on a i5-7400 3.00 GHz machine with 8GB RAM.

Table 9.13: P-values for different exploration strategies

BestI1+F+4PE SF+F+4PE SR+F+4PE

BestI1+F+4PE – 0.00 0.00
SF+F+4PE 0.00 – 0.81
SR+F+4PE 0.00 0.81 –

146 9. Computational Results

Table 9.14: Results of SF and SR vs BestI1
Group SF+F+4PE (%) SF+F+4PE (s) SR+F+4PE (%) SR+F+4PE (s)

TC2.1 0.0 (-0.4 ; 0.0) 0.7 (0.3 ; 3.8) 0.0 (-0.4 ; 0.0) 0.7 (0.2 ; 3.1)
TC2.2 0.2 (-0.2 ; 1.0) 4.9 (0.3 ; 13.1) 0.4 (-0.2 ; 1.3) 4.3 (0.2 ; 11.1)
TC2.3 -0.3 (-4.9 ; 0.8) 8.8 (5.8 ; 15.0) 0.1 (-5.1 ; 2.5) 8.3 (4.7 ; 12.7)
TC2.4 -0.6 (-3.9 ; 0.9) 11.8 (7.4 ; 16.6) -0.1 (-3.5 ; 1.8) 11.2 (6.7 ; 15.6)
TC2.5 0.3 (-0.3 ; 1.8) 22.3 (8.6 ; 43.6) 0.6 (-0.1 ; 3.2) 18.5 (6.8 ; 32.4)
TC2 -0.1 (-4.9 ; 1.8) 8.5 (0.3 ; 43.6) 0.2 (-5.1 ; 3.2) 7.6 (0.2 ; 32.4)

Table 9.15: Results of CG vs BestI2
Group CG bound (%) CG opt (%) BestI2 opt (%) CG vs BestI2 (%)

TC2.1 100.0 77.8 66.7 0.8 (0.4 ; 1.1)
TC2.2 77.8 66.7 22.2 1.4 (0.4 ; 3.1)
TC2.3 90.0 60.0 0.0 0.8 (0.1 ; 1.4)
TC2.4 100.0 77.8 11.1 0.8 (0.2 ; 2.4)
TC2.5 66.7 33.3 0.0 0.6 (0.0 ; 0.9)
TC2 88.4 65.1 20.9 0.9 (0.0 ; 3.1)

The parameters are the same as the one calibrated for tests in Section
9.3.2, namely M1 = 30, M2 = 100 and T as in Section 9.3.1. We set
M = 10 ·

∑
o∈O Po, where M is the penalty for missed mandatory orders in

the set covering model defined in Chapter 6. We recall that, according to
the assumptions in Section 6.1, the results in this table do not take prefer-
ences on collecting orders in the same route (ID(s)) and minimum number
of vehicles at the depot at the end of day (IE(s)) into account, then we
deactivated those features in the instances.
Table 9.15 compares the quality of the solutions provided by BestI2 to
the bound obtained by the column generation procedure (CG) described
in Chapter 6. Results are aggregated per group (first column) and we re-
port per-cent values on: number of instances where the CG converges within
one hour and, hence, a bound is available; number of instances where the
linear programming relaxation from CG has no fractional variables; number
of instances BestI2 solves to proven optimality (when the bound is avail-
able); optimality gap between the upper bound from CG and the BestI2
solution in the remaining cases (when the bound is available). Notice that
the gap measures the profit loss with respect to a baseline (CG in this case).
Figure 9.3 shows the gaps of the CG bounds found against BestI2 on TC2
instances. Each point correspond to an instance of TC2 with an optimality
bound obtained through CG. On the ordinates we have the gap between
the BestI2 solution of that instance and the related bound, while the green
dashed line represents the average gap. We observe that the proposed CG
converges in most of the real instances (88.4% on average). Moreover, the
solution of the LP relaxation is often integer, thus providing the optimal
solution to EPDT (under the assumption above) in the 65.1% of cases (al-
most 78% of smaller and 33% of larger instances are solved). Based on CG

9.6 Tests on dynamic settings 147

Figure 9.3: Gaps of the CG bounds found against BestI2 on TC2 instances.

bound, we prove the optimality of nine solutions over 43 (21%), in partic-
ular for small instances. In the remaining cases the gap, when available, is
fairly small: less than 1% on average and at most 3.1% in the worst case.
This attests to the ability of the proposed two-level tabu search of finding
optimal or nearly optimal solutions for EPDT in real scenarios.

9.6 Tests on dynamic settings

In the dynamic scenario considered in this section, new orders show up
during the workday operations. For each new order, a price is negotiated
between the customer and the carrier. As we have seen in Section 8.6, the
algorithmic engine is used by the Order Portal to supports the carrier in
this task with two intervals: the first is a suggested order price range, based
on an ordinal classifier trained on past decisions. The second is the interval
characterized by the best and worst-case marginal cost as from the insertion
of the order itself in the current solution by means of the routing optimizer.
With this information, the decision maker can decide either to accept or
discard the incumbent order, assisted by the two intervals obtained in real-
time. Experiments of this section have been executed on a i5-5200 2.20 GHz
machine with 8GB RAM.

9.6.1 Price estimation

We have estimated the ordinal classifier parameters on a dataset of 1604
orders. A score is associated with each prediction for the validation in
the learning phase. The score of a prediction is computed as follows: we
consider an evaluation dataset and, for each entry, we measure the classifier

148 9. Computational Results

Table 9.16: Results on dynamic scenario: Marginal costs, BestI1 vs SF (s)

Group Marginal costs (s) BestI1+F+4PE re-opt.(s) SF+F+4PE re-opt.(s)

TC2.1 0.3 (0.0 ; 0.5) 0.5 (0.2 ; 0.8) 0.3 (0.1 ; 0.5)
TC2.2 5.4 (0.7 ; 8.4) 8.0 (4.4 ; 13.6) 5.0 (2.7 ; 7.7)
TC2.3 7.3 (3.2 ; 12.0) 16.7 (13.9 ; 21.1) 9.1 (7.8 ; 12.8)
TC2.4 11.4 (6.9 ; 15.8) 23.8 (20.8 ; 26.6) 13.9 (13.5 ; 17.1)
TC2.5 11.6 (8.8 ; 19.4) 24.4 (22.5 ; 27.7) 15.2 (14.1 ; 18.1)
TC2 9.1 (0.0 ; 19.4) 20.4 (0.2 ; 27.7) 12.4 (0.1 ; 18.1)

error as the distance (in number of intervals) between the selected interval
and the correct one; we compute the maximum error, i.e., the distance of the
correct interval from the farthest one; the score is obtained by comparing
the norms of the vectors associated with the classifier and to the maximum
errors, such that 100% corresponds to no errors and 0% to all maximum
errors. The classifier takes negligible time to suggest a price interval and we
estimate a score of 75.3%.

9.6.2 Marginal cost estimation

Table 9.16 contains results on dynamic re-optimization for marginal cost
computation and insertion of dynamic orders.
Concerning the marginal cost interval, the lower bound is obtained solv-
ing EPDT in dynamic setting to insert the new order: this is done by
applying the routing algorithm (we considered version BestI1+F+4PE) to
re-optimize the routes starting from the current fleet and order status. We
have conducted some experiments on TC2 with parameters calibrated as
for test in Section 9.4.1, that is, M1 = 30 and M2 = 100, T defined as in
Section 9.3.1, ρ = 0.5 and δ = 20. For each instance in the benchmark,
we consider five cases, each including a new order randomly selected from
all the orders in different instances. For the same cases, we estimated the
worst case marginal insertion cost by inserting the new order into each of
the current vehicle routes, running an intra-route optimization and taking
the worst assignment, defined by the route that provides the largest cost
increase. The time needed to obtain the lower and upper bounds (average,
minimum and maximum) is shown in the second column of Table 9.16. The
algorithm takes a few seconds to estimates the best and the worst marginal
costs (about 20 seconds in the worst case), which is fairly compatible with
negotiation activities required from the Orders Portal module described in
Section 8.2.

9.6.3 Marginal cost estimation with 3 orders

A further experiment, whose results appear in the last two columns of Table
9.16, measures the time needed to solve the dynamic EPDT to suggest the

9.7 Comparison with Literature Benchmarks 149

assignment of more than one new simultaneous orders. The columns show, in
the order, the running times of algorithm BestI1+F+4PE and SF+F+4PE,
run with the same parameters as calibrated above: the former algorithm
has been executed with parameters M1 = 30 and M2 = 100, T defined as
in Section 9.3.1, ρ = 0.5 and δ = 20; the latter algorithm uses M1 = 60,
In = 15 and Ib = 5. For each instance in the benchmark, we have chosen
at random three new orders to be inserted and repeated the experiment five
times: even in this case, and in particular for the SF exploration strategy,
running time seems to be largely compatible with operational settings.

9.7 Comparison with Literature Benchmarks

In order to verify how the proposed algorithm solves problems of broad in-
terest, in this section we execute some tests on literature benchmarks.
We consider the Li-and-Lim’s benchmark for PDPTW [64], that consists
of single pickup and single delivery orders, hard time windows and vehicle
capacity, and the objective function considers the number of vehicles and
the total distance in lexicographic order.
The attributes of the PDPTW benchmarks above represent a subset of at-
tributes in EPDT. In order to represent the objective function of Li-and-
Lim’s benchmarks in the EPDTmodel, we set vehicle deployment fixed costs
to a big-M constant. Moreover, we set revenues to 0, so that, in fact, we
minimize the total travel distance. PDPTW routes are closed and we model
them with constraints on the route ending position. Moreover, since we
have only today tasks, we simplified route evaluation. We have run the
BestI2+F+4PE version on a i5-7400 3.00 GHz machine with 8GB RAM
with the usual parameters M1 = 30, M2 = 100, T defined as in Section
9.3.1, ρ = 0.5 and δ = 20.
The Li-and-Lim’s benchmark includes 56 instances adapted from the Solomon’s
benchmark [95]. They define 100 orders each, and are classified in six classes,
as listed in the first columun of Table 9.17, depending on: spatial distribution
(orders are clustered in LC, uniformly distributed in LR, mixed in LRC);
scheduling horizon (shorter in ‘1’ and longer in ‘2’ instances, with suitable
smaller and larger capacities). Table 9.17 compares the results obtained
by our heuristic to the best solution, available from [93] and provided by
different works [11, 52, 64, 82, 85]. For each class, we report average and
maximum number of additional vehicles needed by our procedure, the re-
lated per-cent value, the per-cent additional distance, and the running time
in seconds (average, minimum and maximum). The number of additional
vehicles is between zero and two (0.5 on average) and the routes are longer
by 4.1% on average. Notice that if we restrict to ‘1’-instances, the average
increase in the route length is only 1.9%. In fact, instances of type ‘1’ are
more compliant with usual EPDTsettings, where the time horizon is short

150 9. Computational Results

Table 9.17: Results on PDPTW instances (BestI2).

Group ∆vehicle ∆vehicle% ∆distance% time (s)

LC1 0.2 (1.0) 2.2 (10.0) -0.3 (-17.3 ; 19.2) 1000 (652; 1786)
LC2 0.1 (1.0) 3.1 (25.0) 4.8 (0.0 ; 27.3) 4332 (4262; 4441)
LR1 0.7 (2.0) 5.7 (18.2) 3.0 (-0.3 ; 7.5) 1255 (274; 1983)
LR2 0.6 (1.0) 18.2 (33.3) 7.6 (0.7 ; 17.6) 4269 (4237; 4341)

LCR1 0.6 (2.0) 4.7 (13.3) 2.9 (0.9 ; 4.9) 4425 (4248; 4919)
LCR2 0.6 (1.0) 15.6 (25.0) 6.7 (3.0 ; 11.7) 558 (326; 801)

All 0.5 (2.0) 8.5 (33.3) 4.1 (-17.3 ; 27.3) 2607 (274; 4919)

with respect to the distance between tasks. Running times show how the ef-
ficiency of our heuristic is strongly related to the number of orders expected
in a route, due to the computational complexity of the second-level heuris-
tic for solution evaluation, which suffers from routes of consistently large
sizes, as is the case for ‘2’-instances. Therefore, the time of execution of our
algorithm differs on average of 1 order of magnitude with respect to other
ad-hoc approaches in literature for PDPTW (see, e.g., [64]). Nonetheless,
we obtain one new best solution for instance LR106, which slightly improves
the one of [64]: we use the same number of vehicles and shorten the total
distance by 0.3%.

Chapter 10

Conclusions

The Vehicle Routing Problem is one of the most studied problems in Op-
erations Research. Several extensions of the classical VRP definition have
been treated in literature, mostly rising from real-world applications. In
fact, decision makers from transportation company have to deal with VRPs
where a large number of attributes are considered simultaneously. These
types of problems are known as Multi-Attribute Vehicle Routing Problems
(MAVRP).
We focused our study on a particular MAVRP inspired by a small freight
transportation company named Trans-Cel S.n.C. (Padova, Italy). This prob-
lem is new to the Operations Research literature and we call it Express
Pickup and Delivery in freight Trucking problem (EPDT). It includes some
peculiar characteristics, as multi-pickup and multi-delivery requests, daily
planning horizon where orders may contain tasks taking place either in the
same day or in two consecutive days, and other specific constraints and qual-
ity criteria, which make the problem worth of research.
The operational context where the problem must be solved asks for a fast
optimization tool in order to obtain a high quality initial route plan in a
static context, as well as rapidly answer to dynamic events, as for instance
a just-in-time transportation request, vehicle breakdowns, or road network
congestions.
Due to the high complexity of the problem and operational scenario re-
quirements, we propose a heuristic algorithm to assist the decision maker in
the planning phase. The devised heuristic is able to support the planning
process both in static scenario and, through re-optimization, in dynamic
scenario. The algorithm combines a Tabu Search algorithm with a Vari-
able Neighborhood Descent (Tabu VND) and is structured on two levels:
at the first level, the Tabu VND explores the order-to-vehicle assignment
space. At the second level, triggered at any order assignment or removal,
a local search algorithm is run on the task sequence of the route. Among
our main contributions, we introduced specific characteristics in this scheme

151

152 10. Conclusions

to enhance its efficiency: we designed a granular exploration based on the
definition of a proximity graph that includes a concept of distance between
pairs of orders; we set up different types of parallel implementations for the
neighborhood exploration; we devised a fast evaluation of the solutions with
destroy-and-repair fixing phase; we implemented two exploration strategies
based on sequential and cyclic neighborhood switch.
Given the availability of historical data on customer orders, that are more
and more present in transportation companies databases, we have examined
two new approaches to the dynamic and stochastic VRP, both based on
data-driven techniques. Our main goal is the definition of components com-
puted a-priori that aggregate preprocessed statistical information from the
historical data. The components are then embedded in a solution method
for the deterministic version of the problem, providing the method itself with
the ability of solving the dynamic and stochastic variant, at small or no im-
pact on the algorithm design. The first procedure is based on determining
clusters of orders whose centroids provide strategical space-time positions
that guide the algorithm toward order assignments and route sequencing
more suitable to accommodate near-future requests. The second approach
introduces a concept of accessibility on each node of the network, represent-
ing a measure of the opportunity to satisfy future orders across the graph.
We then add a term in the objective function representing the accessibility,
in space and time, that is collected by each route of the solution, in order
to obtain more stable routes with respect to future demand.
Trans-Cel has carried out the development of a software platform, named
Chainment, to support the operational manager in small freight transporta-
tion context. Chainment consists of multiple modules that communicate
through a data-sharing system. The main provided functionalities support
the operation manager of Trans-Cel by means of optimization and artifi-
cial intelligence tools. In particular, Chainment relies on an algorithmic
engine that includes prediction models and a routing optimizer based on
the heuristic algorithm we devised for EPDT. The former are triggered dur-
ing the revenue estimation of just-in-time requested orders and service time
estimation, whereas the latter comes into play for static routing, dynamic
re-optimization and marginal cost evaluation of incoming orders.
Computational results show that the routing algorithm reaches effectiveness
and efficiency that are compatible with the operations managers’ require-
ments. In fact, the solution of real instances is obtained in 6.1 seconds on
average, about 45 seconds in the worst case. In particular, tests on real
instances assess that the solution quality is preserved by filtering and par-
allel explorations, as the average objective value loss is 0.0%, 1.0% in the
worst case. The dynamic setting is characterized by demand coming at a
relatively low dynamism. Experiments on dynamic scenarios show that re-
optimization is suitable to handle just-in-time requests: in particular we
tested the dynamic insertion of three orders, that was performed by the al-

153

gorithm within an average time of 20.4 seconds, 27.7 in the worst case. The
quality of the solution method has been assessed through the comparison
with an optimality bound provided by a Column Generation algorithm that
we implemented. The results show an average gap between the bound and
the algorithm of 0.9%, 3.1% in the worst case. In particular, we obtained a
bound for 88.4% of the instances, and in 20.9% of the tests the heuristic al-
gorithm was able to find the optimal solution. The Pricing problem is solved
through a label correcting algorithm for an Elementary Shortest Path Prob-
lem with Resource Constraints (ESPPRC), where label definition, extension
function and dominance rule have been suitably adapted to the EPDT con-
text, which represent a further contribution of the thesis. In particular, we
introduced specific resources to handle multi-pickup and multi-delivery or-
ders. We have also run tests on a PDPTW set of benchmark instances as
particular cases of EPDT, proving the algorithm to be competitive in terms
of effectiveness with respect to the state-of-the-art, providing also a new
best solution.
Future works may be devoted to the realization of a Branch-and-Price algo-
rithm, possibly starting from the proposed Column Generation algorithm.
Moreover, new GPU designs may be studied for the parallel generation of
neighbor solutions during the exploration phase. Furthermore, the proposed
approach to dynamic and stochastic version of EPDT by data-driven tech-
niques is at a preliminary stage, so more efforts may be carried out in order
to better analyze and possibly enhance the proposed methods performances.

154 10. Conclusions

Acknowledgments

I will start with a huge thanks to my supervisor, prof. Luigi De Giovanni,
whose advise through all these years have been precious, making me con-
stantly grow my passion for Operations Research. He has been an example
in both technical matters and attitude toward science and research. Also,
I want to thank all the PhD students and researchers that I met during
these three years, in the Mathematics department of Padova, at SINTEF,
where I spent a part of my PhD, and at OR conferences and workshops,
in particular to the OR group AIRO and AIROYoung. Moreover, I warmly
thank all the people from Trans-Cel, the drivers, the office operators and the
development team. I learned a lot from all of them, especially how to build
the connection between science and industry, from both sides. In particular
I thank my tutor Filippo Sottovia, for his determination, energy and for
believing in an outstanding project, that I am proud to be part of. Finally,
I want to thank my family and friends, for the good times spent together
and the support when things go wrong, especially my mother and my father,
who has been looking after me from above in years.

Thanks to every single one of you, enjoy science, enjoy Maths, enjoy
Operations Research!

155

156 10. Conclusions

References

[1] T. Achterberg. SCIP: solving constraint integer programs. Mathemat-
ical Programming Computation, 1(1):1–41, 2009.

[2] Agile. https://agilemanifesto.org/.

[3] J. Alegre, M. Laguna, and J. Pacheco. Optimizing the periodic pick-up
of raw materials for a manufacturer of auto parts. European Journal
of Operational Research, 179(3):736 – 746, 2007.

[4] A. Alexandrescu. Modern C++ Design: Generic Programming and
Design Patterns Applied. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2001.

[5] C. Archetti, A. Hertz, and M.G. Speranza. Metaheuristics for the
team orienteering problem. J. Heuristics, 13:49–76, 02 2007.

[6] C. Archetti and M.G. Speranza. A survey on matheuristics for routing
problems. EURO Journal on Computational Optimization, 2(4), 2016.

[7] P. Arias, J. Caceres-Cruz, D. Guimarans, and A. A. Juan. Rich vehicle
routing problem: Survey. ACM Computing Survey, (2):229–268, 2014.

[8] R. Baldacci, E. Bartolini, A. Mingozzi, and R. Roberti. An exact so-
lution framework for a broad class of vehicle routing problems. Com-
putational Management Science, 7(3):229–268, 2010.

[9] R. Baldacci and A. Mingozzi. A unified exact method for solving dif-
ferent classes of vehicle routing problems. Mathematical Programming,
120(2):347–380, 2008.

[10] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh,
and P. H. Vance. Branch-and-Price: Column Generation for Solving
Huge Integer Programs. Operations Research, 46(3):316–329, 1998.

[11] R. Bent and P. Van Hentenryck. A two-stage hybrid algorithm for
pickup and delivery vehicle routing problems with time windows. Com-
puters & Operations Research, 33:875–893, 2006.

157

https://agilemanifesto.org/

158 REFERENCES

[12] R. Bent and P. Van Hentenryck. Online Stochastic Optimization With-
out Distributions. pages 171–180, 01 2005.

[13] G. Berbeglia, J.F. Cordeau, and G. Laporte. Dynamic pickup and
delivery problems. European Journal of Operational Research, 202(1):8
– 15, 2010.

[14] A. Bettinelli, A. Ceselli, and G. Righini. A branch-and-price algorithm
for the multi-depot heterogeneous-fleet pickup and delivery problem
with soft time windows. Mathematical Programming Computation,
6:172–197, 2014.

[15] C. M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[16] M. A. Boschetti, V. Maniezzo, M. Roffilli, and A. Bolufé Röhler.
Matheuristics: Optimization, simulation and control. In M. J. Blesa,
C. Blum, L. Di Gaspero, A. Roli, M. Sampels, and A. Schaerf, edi-
tors, Hybrid Metaheuristics, pages 171–177, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[17] S. Bradley, A. Hax, and T. Magnanti. Applied mathematical program-
ming. 1977.

[18] O. Bräysy, M. Gendreau, G. Hasle, A. Lokketangen, and J.Y. Potvin.
Metaheuristics for the vehicle routing problem and its extensions: a
categorized bibliography. In B. Golden, S. Ranghavan, and E. Wasil,
editors, The vehicle routing problem: latest and new challanges, pages
143–169. Springer, New York, USA, 2008.

[19] A. Brodtkorb, T. Hagen, C. Schulz, and G. Hasle. GPU computing
in discrete optimization. Part I: Introduction to the GPU. EURO
Journal on Transportation and Logistics, 2, 2013.

[20] A. Ceselli, G. Righini, and M. Salani. A Column Generation Algorithm
for a Rich Vehicle-Routing Problem. Transportation Science, 43(1):56–
69, 2009.

[21] CMake. https://cmake.org/.

[22] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming.
2014.

[23] J.F. Cordeau and M. Maischberger. A parallel iterated tabu search
heuristic for vehicle routing problems. Computers & Operations Re-
search, 39(9):2033 – 2050, 2012.

[24] C. Cortes and V. Vapnik. Support-Vector Networks. In Machine
Learning, pages 273–297, 1995.

https://cmake.org/

REFERENCES 159

[25] T. G. Crainic, M. Gendreau, P. Hansen, and N. Mladenović. Coopera-
tive Parallel Variable Neighborhood Search for the p-Median. Journal
of Heuristics, 10(3):293–314, May 2004.

[26] T.G. Crainic and M. Gendreau. Cooperative Parallel Tabu Search for
Capacitated Network Design. J. Heuristics, 8:601–627, 11 2002.

[27] DBeaver. https://dbeaver.io/.

[28] L. De Giovanni, N. Gastaldon, I. Lauriola, and F. Sottovia. A Heuris-
tic for Multi-attribute Vehicle Routing Problems in Express Freight
Transportation. In A. Sforza and C. Sterle, editors, Optimization and
Decision Science: Methodologies and Applications ODS 2017. Springer
Proceedings in Mathematics & Statistics, volume 217, pages 161–169,
Cham, 2017. Springer International Publishing.

[29] L. De Giovanni, N. Gastaldon, M. Losego, and F. Sottovia. Algo-
rithms for a Vehicle Routing Tool Supporting Express Freight Deliv-
ery in Small Trucking Companies. Transportation Research Procedia,
(30):197–206, 2018.

[30] L. De Giovanni, N. Gastaldon, and F. Sottovia. A two-level local search
heuristic for pickup and delivery problems in express freight trucking.
Networks, 2019. 1–18. https://doi.org/10.1002/net.21917.

[31] P. Dejax, D. Feillet, M. Gendrau, and C. Gueguen. An exact algorithm
for the Elementary Shortest Path Problem with Resource Constraints:
application to some vehicle routing problems. Networks, (44):216–229,
2004.

[32] G. Desaulniers, J. Desrosiers, I. loachim, M. M. Solomon, F. Soumis,
and D. Villeneuve. A Unified Framework for Deterministic Time Con-
strained Vehicle Routing and Crew Scheduling Problems, pages 57–93.
Springer US, Boston, MA, 1998.

[33] M. Desrochers, J. Desrosiers, and M. Solomon. A New Optimization
Algorithm for the Vehicle Routing Problem with Time Windows. Op-
erations Research, 40(2):342–354, 1992.

[34] J. Desrosiers and M.E. Lübbecke. Selected Topics in Column Gener-
ation. Operations Research, pages 1007–1023, 2005.

[35] DoxyGen. http://www.doxygen.nl/.

[36] Driver. http://www.cstv.it/prodotti/driver/.

[37] D. Dueck. Affinity propagation: clustering data by passing messages,
2009.

https://dbeaver.io/
https://doi.org/10.1002/net.21917
http://www.doxygen.nl/
http://www.cstv.it/prodotti/driver/

160 REFERENCES

[38] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algo-
rithm for discovering clusters a density-based algorithm for discover-
ing clusters in large spatial databases with noise. In Proceedings of the
Second International Conference on Knowledge Discovery and Data
Mining, KDD’96, pages 226–231. AAAI Press, 1996.

[39] S. Fekete, J. Mitchell, and K. Beurer. On the Continuous Fermat-
Weber Problem. Operations Research, 53, 11 2003.

[40] F. Ferrucci, B. Stefan, and M. Gendreau. A pro-active real-time con-
trol approach for dynamic vehicle routing problems dealing with the
delivery of urgent goods. European Journal of Operational Research,
225:130–141, 2013.

[41] E. Frank and M. Hall. A Simple Approach to Ordinal Classification.
volume 2167, pages 145–156, 08 2001.

[42] M. Gendreau, F. Guertin, J.Y. Potvin, and R. Séguin. Neighbor-
hood search heuristics for a dynamic vehicle dispatching problem with
pick-ups and deliveries. Transportation Research Part C: Emerging
Technologies, 14(3):157 – 174, 2006.

[43] G. Ghiani, E. Manni, A. Quaranta, and C. Triki. Anticipatory al-
gorithms for same-day courier dispatching. Transportation Research
Part E: Logistics and Transportation Review, 45(1):96 – 106, 2009.

[44] Git. https://git-scm.com/.

[45] GitKraken. https://www.gitkraken.com/.

[46] F. Glover. Heuristics for integer programming using surrogate con-
straints. Decision Sciences, 8:156 – 166, 01 1977.

[47] F. Glover. Tabu search and adaptive memory programing – Advances,
applications and challenges. In Interfaces in Computer Science and
Operations Research, pages 1–75. Kluwer, 1996.

[48] F. Glover, M. Laguna, and R. Marti. Tabu Search, volume 16. 07
2008.

[49] Google Maps API. https://developers.google.com/maps/.

[50] P. Hansen, N. Mladenović, and J. A. Moreno Pérez. Variable neigh-
bourhood search: methods and applications. 4OR, 6(4):319–360, Dec
2008.

[51] W.G. Hansen. How Accessibility Shapes Land Use. Journal of the
American Institute of Planners, 25(2):73–76, 1959.

https://git-scm.com/
https://www.gitkraken.com/
https://developers.google.com/maps/

REFERENCES 161

[52] G. Hasle and O. Kloster. Industrial Vehicle Routing. In G. Hasle,
K. A. Lie, and E. Quak, editors, Geometric Modelling, Numerical Sim-
ulation, and Optimization: Applied Mathematics at SINTEF, pages
397–435. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[53] What is Industry 4.0—the Industrial Internet of Things (IIoT).
https://www.epicor.com/en-us/resource-center/articles/

what-is-industry-4-0/.

[54] S. Irnich and G. Desaulniers. Shortest Path Problems with Resource
Constraints. In G. Desaulniers, J. Desrosiers, and M. M. Solomon,
editors, Column Generation, pages 33–65. Springer US, Boston, MA,
2005.

[55] S. Irnich and G. Desaulniers. Shortest Path Problems with Resource
Constraints, pages 33–65. 03 2006.

[56] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific
tools for Python, 2001. [Online; accessed].

[57] JuPyter. https://jupyter.org/.

[58] M. Khemakhem, R. Lahyani, and F. Semet. Rich vehicle routing
problems: from a taxonomy to a definition. European Journal of Op-
erational Research, 241(1):1–14, 2015.

[59] Y. Kim, H. Mahmassani, and P. Jaillet. Dynamic Truckload Routing,
Scheduling, and Load Acceptance for Large Fleet Operation with Pri-
ority Demands. Transportation Research Record Journal of the Trans-
portation Research Board, 1882, 01 2004.

[60] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by Simulated
Annealing. Science (New York, N.Y.), 220:671–80, 06 1983.

[61] B. Korte and J. Vygen. Combinatorial optimization. Springer, 2012.

[62] J. R. Koza and R. Poli. Genetic Programming, pages 127–164. Springer
US, Boston, MA, 2005.

[63] G. Laporte, S. Ropke, and T. Vidal. Heuristics for the vehicle routing
problem. In P. Toth and D. Vigo, editors, Vehicle Routing: Problems,
Methods, and Applications. MOS-SIAM Series on Optimization, pages
87–116. 2014.

[64] H. Li and A. Lim. A metaheuristic for the pickup and delivery problem
with time windows. In Proceedings 13th IEEE International Confer-
ence on Tools with Artificial Intelligence. ICTAI 2001, pages 160–167,
2001.

https://www.epicor.com/en-us/resource-center/articles/what-is-industry-4-0/
https://www.epicor.com/en-us/resource-center/articles/what-is-industry-4-0/
https://jupyter.org/

162 REFERENCES

[65] K. Lund, O.B.G. Madsen, and J.M. Rygaard. Vehicle Routing Prob-
lems with Varying Degrees of Dynamism. 01 1996.

[66] J. MacQueen. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Volume 1: Statistics, pages
281–297, Berkeley, Calif., 1967. University of California Press.

[67] O.C. Martin, S. W. Otto, and E. W. Felten. Large-Step Markov Chains
for the Traveling Salesman Problem. Complex Systems, 5, 1991.

[68] W McKinney. Data structures for statistical computing in python. In
Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the
9th Python in Science Conference, pages 51 – 56, 2010.

[69] S. Mitrović-Minić, R. Krishnamurti, and G. Laporte. Double-horizon
based heuristics for the dynamic pickup and delivery problem with
time windows. Transportation Research Part B: Methodological,
38:669–685, 09 2004.

[70] N. Mladenović and P. Hansen. Variable neighborhood search. Com-
puters & Operations Research, 24(11):1097 – 1100, 1997.

[71] Microsoft Visual Studio. https://visualstudio.microsoft.com/.

[72] MySQL. https://www.mysql.com/.

[73] MySQL Workbench. https://www.mysql.com/it/products/

workbench/.

[74] Y. Nagata and O. Bräysy. Efficient Local Search Limitation Strategies
for Vehicle Routing Problems. pages 48–60, 03 2008.

[75] T. Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA,
2006.

[76] R.R. Picard and R.D. Cook. Cross-Validation of Regression Mod-
els. Journal of the American Statistical Association, 79(387):575–583,
1984.

[77] D. Pisinger and S. Ropke. A general heuristic for vehicle routing
problems. Computers & Operations Research, 34(8):2403 – 2435, 2007.

[78] C. Prins. A simple and effective evolutionary algorithm for the vehicle
routing problem. Computer & Operations Research 31(12), 1985-2002.
Computers & Operations Research, 31:1985–2002, 10 2004.

[79] H.N. Psaraftis, M. Wen, and C.A. Kontovas. Dynamic vehicle routing
problems: Three decades and counting. Networks, 67(1):3–31, 2016.

https://visualstudio.microsoft.com/
https://www.mysql.com/
https://www.mysql.com/it/products/workbench/
https://www.mysql.com/it/products/workbench/

REFERENCES 163

[80] V. Pureza and G. Laporte. Waiting and Buffering Strategies for the
Dynamic Pickup and Delivery Problem with Time Windows. INFOR:
Information Systems and Operational Research, 46(3):165–175, 2008.

[81] Python. https://www.python.org/.

[82] Delmia Quintiq. https://www.quintiq.es/optimization/

vrptw-world-records.html.

[83] D. Rey and M. Neuhäuser. Wilcoxon-Signed-Rank Test, pages 1658–
1659. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[84] U. Ritzinger, J. Puchinger, and R.F. Hartl. A survey on dynamic and
stochastic vehicle routing problems. International Journal of Produc-
tion Research, 54(1):215–231, 2016.

[85] S. Ropke. Heuristic and exact algorithms for vehicle routing problems.
PhD thesis, Technical University of Denmark, 2006.

[86] S. Ropke and J. F. Cordeau. Branch and Cut and Price for the Pickup
and Delivery Problem with Time Windows. Transportation Science,
43(3):267–286, 2009.

[87] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language
Reference Manual, The (2Nd Edition). Pearson Higher Education,
2004.

[88] C. Schulz. Efficient local search on the GPU—Investigations on the ve-
hicle routing problem. Journal of Parallel and Distributed Computing,
73:14–31, 2013.

[89] C. Schulz, G. Hasle, A. Brodtkorb, and T. Hagen. GPU computing
in discrete optimization. Part II: Survey focused on routing problems.
EURO Journal on Transportation and Logistics, 2, 2013.

[90] S. Seabold and J. Perktold. Statsmodels: Econometric and statistical
modeling with python. In 9th Python in Science Conference, 2010.

[91] P. Shaw. Using Constraint Programming and Local Search Methods
to Solve Vehicle Routing Problems. In M. Maher and J.F. Puget,
editors, Principles and Practice of Constraint Programming — CP98,
pages 417–431, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[92] J.A. Sicilia, C. Quemada, B. Royo, and D. Escúın. An optimization
algorithm for solving the rich vehicle routing problem based on vari-
able neighborhood search and tabu search metaheuristics. Journal of
Computational and Applied Mathematics, 291:468 – 477, 2016. Math-
ematical Modeling and Computational Methods.

https://www.python.org/
https://www.quintiq.es/optimization/vrptw-world-records.html
https://www.quintiq.es/optimization/vrptw-world-records.html

164 REFERENCES

[93] Sintef (Transportation Optimization Portal). https://www.sintef.

no/projectweb/top/pdptw.

[94] SciKit-Learn. https://scikit-learn.org.

[95] M.M. Solomon. Algorithms for the vehicle routing and scheduling
problems with time window constrains. Operations Research, 35:254–
264, 1987.

[96] SourceTree. https://www.sourcetreeapp.com/.

[97] P. H. Swain and H. Hauska. The decision tree classifier: Design and
potential. IEEE Transactions on Geoscience Electronics, 15(3):142–
147, July 1977.

[98] R. Tadei and F. Della Croce. Ricerca Operativa e Ottimizzazione,
Seconda Edizione. Società Editrice Esculapio, 2002.

[99] Taiga. https://taiga.io/.

[100] É. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J.Y. Potvin.
A Tabu Search Heuristic for the Vehicle Routing Problem with Soft
Time Windows. Transportation Science, 31:170–186, 05 1997.

[101] E.G. Talbi. Metaheuristics, from design to implementation. 2009.

[102] Tom Tom Telematics. https://www.telematics.tomtom.com/.

[103] TomTom Developers. https://developer.tomtom.com/.

[104] P. Toth and D. Vigo. An overview of vehicle routing problems. In
P. Toth and D. Vigo, editors, The Vehicle Routing Problem. SIAM -
Society for Industrial and Applied Mathematics, Philadelphia, USA,
2002.

[105] P. Toth and D. Vigo. The Granular Tabu Search and Its Application
to the Vehicle-Routing Problem. INFORMS Journal on Computing,
15(4):333–346, 2003.

[106] P. Toth and Daniele Vigo. Vehicle Routing: Problems, Methods, and
Applications, Second Edition. SIAM - Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, USA, 2014.

[107] Transporeon. https://www.transporeon.com.

[108] Trello. https://trello.com/.

[109] Vagrant. https://www.vagrantup.com/.

https://www.sintef.no/projectweb/top/pdptw
https://www.sintef.no/projectweb/top/pdptw
https://scikit-learn.org
https://www.sourcetreeapp.com/
https://taiga.io/
https://www.telematics.tomtom.com/
https://developer.tomtom.com/
https://www.transporeon.com
https://trello.com/
https://www.vagrantup.com/

REFERENCES 165

[110] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei. A Hy-
brid Genetic Algorithm for Multidepot and Periodic Vehicle Routing
Problems. Operations Research, 60:611–624, 06 2012.

[111] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. Heuristics for
multi-attribute vehicle routing problems: A survey and synthesis. Eu-
ropean Journal of Operational Research, 231(1):1–21, 2013.

[112] T. Vidal, T.G. Crainic, M. Gendreau, and C. Prins. A hybrid genetic
algorithm with adaptive diversity management for a large class of ve-
hicle routing problems with time-windows. Computers & Operations
Research, 40(1):475–489, 2013.

[113] T. Vidal, T.G. Crainic, M. Gendreau, and C. Prins. A unified solu-
tion framework for multi-attribute vehicle routing problems. European
Journal of Operational Research, 234(3):658–673, 2014.

[114] Visual Studio Code. https://code.visualstudio.com/.

[115] Workwave. https://www.workwave.com/route-manager/.

[116] G. Zhang, K. Smilowitz, and A. Erera. Dynamic planning for urban
drayage operations. Transportation Research Part E: Logistics and
Transportation Review, 47(5):764–777, September 2011.

https://code.visualstudio.com/
https://www.workwave.com/route-manager/

	Introduction
	Problem Overview
	Structure of the thesis and contributions

	Methodologies
	Linear Programming
	The Simplex Algorithm
	The Dantzig-Wolfe Reformulation
	The Column Generation Algorithm

	Algorithmic approaches to integrality con-straint
	Cutting Plane
	Branch-and-Bound
	Branch-and-Price

	Dynamic Programming
	Bellman-Ford Algorithm
	Elementary Shortest Path Problem with Resource Constraints

	Heuristic and Meta-heuristic approach
	Greedy Algorithm
	Neighborhood Search
	Other popular Meta-Heuristic
	Core characteristics of heuristic strategies

	Machine Learning tools
	Decision Tree Classifier
	Support Vector Machine
	K-Means

	Implementation Framework
	SCIP
	SciKit-Learn

	Description of the problem
	Introduction to Vehicle Routing Problems
	A Multi-Attribute Express Freight Transportation Problem
	Entities and attributes
	Positions
	Vehicles
	Orders
	Routes

	Problem definition

	State-of-the-Art for MAVRPs
	VRP definition and basic models
	Mathematical formulations

	VRP extensions in the literature
	VRP attributes classification
	Extension of the objective function definition

	Comparison with EPDT
	Exact Methods for MAVRPs
	Basic Exact Framework for VRP
	The Pricing Problem
	Branching strategies

	Classical Heuristics for VRPs
	Heuristic Approaches for MAVRPs
	General approaches to MAVRPs
	Specific approaches for pickup and delivery problems

	Approaches to Dynamic and Stochastic VRPs
	Dynamic setting
	Stochastic setting
	Dynamic and Stochastic VRP

	Design of a heuristic algorithm
	A two-level heuristic
	The score function
	Solution evaluation and second-level heuristic
	Initial task sequence
	Second-level neighborhoods
	Overall Outline of the second level heuristic

	Construction of the first-level Initial Solution
	First-level Tabu Search neighborhoods
	Exploration strategy: Tabu Variable Neighborhood Search
	Sequential neighborhood switch
	Cyclic neighborhood switch
	Deterministic and random exploration
	Tabu list and termination criteria

	Overall outline of the first level heuristic
	Granular Tabu Search
	Destroy and Repair phase
	Parallel Design
	Parallelization on CPU
	Parallelization on GPU

	Bounding through a Column Generation Algorithm
	An Integer Linear Programming formulation
	The Master Problem
	The Pricing Problem
	Labels
	Label extension
	Dominance

	Toward new Data-Driven approaches for DSVRPs
	Dynamic and Stochastic VRP context
	Data
	Data-driven instance augmentation
	Overall Procedure
	Representative Orders
	Choosing relocation positions and waiting times
	Analytical insight of waiting times
	Towards an application to EPDT

	Accessibility Approach
	Overall Procedure
	Data-driven accessibility measure
	Towards an application to EPDT

	Integration in a decision support system
	Integrated support tool
	The Orders Portal
	The Driver App
	The Planning Module
	The Demand Forecast Tool
	The Algorithmic Engine
	The routing optimizer
	Predictive models

	Implementation technologies

	Computational Results
	General settings
	Real-world Benchmarks definitions
	Results of basic algorithm on real-world benchmarks
	Selecting the initial solution procedure
	Improvements from basic algorithmic components

	Advanced algorithm settings on real world instance
	Effect of filtering and parallel explorations
	Impact of alternative exploration strategies
	Statistical significance in algorithm selection

	Assessment through optimality bounds
	Tests on dynamic settings
	Price estimation
	Marginal cost estimation
	Marginal cost estimation with 3 orders

	Comparison with Literature Benchmarks

	Conclusions

