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ABSTRACT

This thesis is divided in two parts. The first one concerns geometric and representation-theoretic

aspects of several subvarieties defined in complex connected reductive algebraic groups. Sheets

for the adjoint action on a reductive Lie algebra g were parameterized by Borho and Kraft in

1979; in 2012 Carnovale and Esposito studied sheets for the conjugacy action of a reductive group

G on itself. A notion of birational sheets of g first appeared in a preprint by Losev in 2016: we

define analogous objects for a group and we study their features. Under the assumption that the

derived subgroup of G is simply-connected, we develop a local approach to reduce the study of

geometry of (closures of) Jordan classes and (birational) sheets to the study of analogous objects

in subalgebras of g. We also obtain results about the representation theory of rings of regular

functions on spherical orbits in g (respectively of conjugacy classes of G), proving a special case

of a conjecture of Losev.

The second part is devoted to the study of commutative and non-commutative deformation

theory for conical symplectic singularities. It is well known that every conic symplectic singularity

admits a universal Poisson deformation and a universal filtered quantization, thanks to the work

of Namikawa (2010, 2011) and Losev (2016). We reorganize their work in categorical terms and we

obtain that every such variety admits a universal equivariant Poisson deformation and universal

equivariant filtered quantization with respect to any group acting on it by C×-equivariant Poisson

automorphisms. Our investigation moves from very classical problems in Lie Theory, for example

the deformations of nilpotent Slodowy slices in simple Lie algebras, whose study was first treated

on Slodowy’s notes of 1980 and then pursued and generalized by Lehn, Namikawa and Sorger in

2012. We classify nilpotent Slodowy slices whose universal filtered quantization coincides with

the associated finite W -algebra. Finally, we focus our attention on subregular slices in some

non-simply-laced Lie algebras: for Bn with n ≥ 2, C2m with m ≥ 1 and F4 we prove that the

finite W -algebra is the universal equivariant filtered quantization with respect to the Dynkin

graph automorphisms coming from the unfolding of the Dynkin diagram.
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RIASSUNTO

Questa tesi è suddivisa in due parti. La prima riguarda determinate sottovarietà di un gruppo

algebrico complesso riduttivo connesso, trattandone aspetti geometrici e di teoria delle rappre-

sentazioni. Le falde (sheets) di un’algebra di Lie riduttiva g per l’azione aggiunta sono state

parametrizzate da Borho e Kraft nel 1979; nel 2012, Carnovale ed Esposito hanno studiato le

falde di un gruppo G per l’azione di coniugio. La nozione di falda birazionale (birational sheet)

di g è stata introdotta per la prima volta in una prepubblicazione di Losev del 2016: in questa

tesi definiamo oggetti analoghi per il gruppo G e ne studiamo alcune proprietà. Nell’ipotesi in

cui il sottogruppo derivato di G sia semplicemente connesso, sviluppiamo un metodo locale per

ricondurre lo studio della geometria di (chiusure di) classi di Jordan e di falde (birazionali) allo

studio di corrispettivi oggetti in determinate sottoalgebre di g. Inoltre, otteniamo alcuni risul-

tati legati alla teoria delle rappresentazioni degli anelli delle funzioni regolari sulle orbite sferiche

di g e sulle classi di coniugio sferiche di G, dimostrando un caso particolare di una congettura

proposta da Losev.

La seconda parte tratta alcune deformazioni (commutative e non) di varietà dette singo-

larità simplettiche coniche: tali varietà ammettono una deformazione di Poisson universale ed

una quantizzazione filtrata universale, grazie ai lavori di Namikawa (2010, 2011) e Losev (2016).

Riformulando i loro risultati in termini categorici, dimostriamo che ogni singolarità simplettica

conica X ammette una deformazione di Poisson universale ed una quantizzazione filtrata univer-

sale, equivarianti rispetto ad ogni gruppo che agisce su X per automorfismi di Poisson compatibili

con la contrazione indotta dalla struttura conica. La nostra indagine trae spunto da un prob-

lema classico in teoria di Lie: lo studio della sottovarietà nilpotente in una sezione trasversa di

Slodowy (Slodowy slice) nelle algebre di Lie semplici, analizzato per la prima volta nelle note di

Slodowy (1980) ed in seguito sfociato nella generalizzazione data da Lehn, Namikawa e Sorger

(2012). Nella tesi, classifichiamo le sottovarietà nilpotenti delle sezioni trasverse la cui quantiz-

zazione filtrata universale coincide con la W -algebra finita associata. Infine, ci focalizziamo sulle

sezioni subregolari per g di tipo Bn con n ≥ 2, C2m con m ≥ 1 e F4: in tali casi la W -algebra

finita è la quantizzazione filtrata universale equivariante rispetto al gruppo degli automorfismi del

diagramma di Dynkin ottenuto da quello di g con un’operazione di dispiegamento (unfolding).
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INTRODUCTION

The action of a complex connected reductive algebraic group G on an algebraic variety X can

be studied by gathering orbits in finitely many families to deduce properties shared by orbits

in the same collection. One way of grouping orbits together is to form sheets, i.e., maximal

irreducibile subsets of X consisting of equidimensional orbits. In [13], Borho and Kraft studied

sheets for the adjoint action of a semisimple connected group G on its Lie algebra g: the authors

considered non-nilpotent orbits as deformations of equidimensional nilpotent ones to compare

the G-module structure of their ring of regular functions. In the same paper, sheets and their

closures were described set-theoretically as unions of decomposition classes (also called Jordan

classes). Decomposition classes form a partition of g into finitely-many, irreducible, smooth, G-

stable, locally closed subvarieties grouping elements having similar Jordan decomposition. Their

geometry was studied in [12,21,43,88].

Every sheet S of g contains a dense Jordan class J, hence S can be realized as the regular

locus of the closure of J and described in terms of Lusztig-Spaltenstein induction, as in [12].

Every sheet contains a unique nilpotent orbit O, in this sense the non-nilpotent orbits in the

sheet “deform” O. The picture is very clear for g = sln(C): in this case any two distinct sheets

have empty intersection, hence sheets are parameterized by nilpotent orbits of g, equivalently

by partitions of n. This does not hold in general: for example, all simple non-simply-laced Lie

algebras present two sheets of subregular elements which meet non-trivially at the subregular

nilpotent orbit. For g simple and classical, all sheets are smooth (see [55]), but this does not

extend to exceptional Lie algebras (the list of smooth sheets is to appear in [26]).

Sheets are objects with an intrinsic geometric interest, but representation theorists look for a

deeper understanding of sheets also for other reasons. A natural question is to consider the ring

of regular functions C[O] as the orbit O varies in a sheet and ask whether the G-modules C[O]

are isomorphic. For G simple and adjoint acting via the adjoint action on its Lie algebra g, some

answers were already obtained in [13]: let e be a nilpotent element of g, if the centralizer of e in G

is connected and the closure of the orbit O of e is normal, then C[O] is isomorphic as a G-module

to C[O′] for all O′ “deforming” O. In particular, for g = sln(C), the G-module structure of C[O]

is preserved along sheets, but this fails in general. We recall the counterexample contained in [13]:
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for g simple of type G2 and B2 there are two subregular sheets and the G-module structure of

C[O] is preserved along one of them, but not along the other one. Finally, sheets in g play a role

in the representation theory of finite W -algebras, as shown by Premet and Topley in [87] and in

the description of primitive ideals in enveloping algebras, as illustrated in [99] by Vogan.

The ideas for the topics developed in this thesis are strongly influenced by the recent work of

Losev [67]: for this reason, we briefly sum up its content. Losev defines finitely-many irreducible

subvarieties of g, called birational sheets. Following ideas already contained in [14], and further

developed by Namikawa and Fu (see [45,76]), Losev defines birational sheets in terms of Lusztig-

Spaltenstein induction. Induction is defined starting from a pair (l,OL) consisting of a Levi

subalgebra l ⊂ g and a nilpotent orbit OL in l. For each element ζ in the centre z(l) of l, one

can build a certain map, known as the generalized Springer map; its image is the closure of a

G-adjoint orbit in g. When the generalized Springer map is birational, the dense orbit in the

image is said to be birationally induced. Birational sheets are unions of birationally induced

orbits from pairs (l,OL) which are in some sense “minimal” (namely, OL is birationally rigid,

i.e., it cannot be birationally induced from a proper Levi subalgebra of l).

Although the definition of a birational sheet of g is less intuitive than that of a sheet, the

objects defined by Losev are better behaved from the geometric and representation-theoretic

point of view. In particular:

Theorem (Losev [67, Theorem 4.4]). Let g be a reductive Lie algebra. The following hold.

(i) Birational sheets form a partition of g.

(ii) Birational sheets are unibranch and their normalization is smooth.

(iii) A geometric quotient for the action of G on a birational sheet exists. This quotient can be

explicitly calculated, and it is a unibranch variety with smooth normalization.

Moreover, birational sheets coincide with sheets in sln(C) and, for g simple and classical,

all birational sheets are smooth, see [67, Remark 4.10]. We observe that, in contrast to sheets,

not all birational sheets contain a nilpotent orbit. On the other hand, while sheets fail fulfilling

this property, the G-module structure of C[O] is preserved along the same birational sheets,

see [67, Remark 4.11]. In the same Remark, Losev gives hope for an intrinsic characterization of

birational sheets in proposing the following

Conjecture (4.9). Let g be a reductive Lie algebra. If O1 and O2 are orbits of g such that C[O1]

and C[O2] have isomorphic G-module structure, then they lie in the same birational sheet.

The work in Losev’s paper [67] is formulated in the more general context of conical symplectic

singularities: these are an interesting subclass of normal Poisson varieties. Examples of conical

symplectic singularities arising from Lie Theory are: (finite coverings of) the normalization of

the closure of a nilpotent orbit O in g (i.e., SpecC[O]), the Slodowy slice to a nilpotent element

in g and its intersection with the nilpotent cone, called nilpotent Slodowy variety.

If X is a conical symplectic singularity and A = C[X], then A can be seen as the central

fibre of a flat family of graded commutative Poisson algebras, called Poisson deformations of
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A. In [77, 78], Namikawa proved the existence of a universal Poisson deformation of a conical

symplectic singularity X; he introduced a space PX and a finite group WX acting on PX as

a crystallographic group. The quotient PX/WX parameterizes the Poisson deformations of X

up to isomorphism, in the sense that every Poisson deformation of X can be obtained from the

universal one as the fibre product with a point of PX/WX .

There exist also non-commutative deformations of A, called filtered quantizations. These are

flat families of filtered algebras with central fibre A whose associated graded grA is isomorphic to

A. In [67], Losev describes filtered quantizations of a conical symplectic singularity: similarly to

Poisson deformations, they are parameterized, up to isomorphism, by the points in the quotient

PX/WX defined by Namikawa.

As the title of the manuscript suggests, our exposition deals with two subjects. The first one

is the group analogue of birational sheets: we propose a possible definition of such objects and

analyse some of their algebraic, geometric and representation theoretic features (Chapters 1, 2,

3). This part ends with an application to the spherical subvariety of G (Chapter 4).

The second part is devoted to the theory of Poisson deformations and filtered quantizations

of nilpotent Slodowy slices (Chapter 5). We translate results of Namikawa and Losev in a very

general, categorical language. We get a complete classification of the cases in which the finite

W -algebra associated to a nilpotent orbit O is the universal filtered quantization of the nilpotent

Slodowy slice at O. One of the few exceptions is given by the subregular nilpotent slice in g

simple non-simply-laced: we conclude with some results on this case.

Despite being treated separately in the exposition, these two topics have points of connection:

it is clear that both parts are deeply inspired by [67]. We conclude our overview of Losev’s article

by describing his construction suggesting an Orbit method for g semisimple, where many of the

objects we study in this thesis come into play.

To each adjoint orbit O, Losev assigns an algebra AO in the following manner. Consider the

pair (l,OL) attached to the unique birational sheet containing O and let s ∈ z(l) be a semisimple

part in O. If O′ is the nilpotent orbit induced from (l,OL), then AO is a filtered quantization of

a suitable finite covering of X ′ = SpecC[O′]. Namely, AO is obtained specifying the universal

filtered quantization of C[X ′] to the parameter corresponding to s. The quantization AO is

endowed with a G-action and a quantum comoment map g→ AO: this yields a map U(g)→ AO,

where U(g) is the universal enveloping algebra of g. In short, Losev’s Orbit method associaties

to any G-adjoint orbit O a filtered U(g)-algebra AO; denote by I(O) the kernel of the map

U(g) → AO. Losev’s version of the Orbit method [67, Theorem 5.3] states that if two filtered

quantizations AO1 ,AO2 are G-equivariantly isomorphic, then O1 = O2. Moreover, the map

O 7→ I(O) is injective for g classical and Losev conjectures this is also the case for g exceptional.

In the case that O itself is nilpotent, then I(O) corresponds to a one-dimensional module of

the finite W -algebra associated to O. This leads to new conjectures in the description of the

primitive ideals of U(g).
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We now proceed to illustrate in greater detail the content of the manuscript, emphasizing its

original results. The first problem addressed in our exposition is defining a group analogue of

Losev’s birational sheets: this is mainly contained in [1]. After fixing the notation and recollecting

some general results in preliminary Chapter 0, we begin Chapter 1 with an exposition of results on

induction of adjoint orbits and conjugacy classes and its interplay with birationality. Induction of

unipotent classes was defined by Lusztig and Spaltenstein in [71] and it was then generalized to a

non-unipotent conjugacy class in [29] readapting arguments of [12] to the group case. Following

this approach and inspired by [67], for a conjugacy class O of G, we are led to consider two

different definitions:

(a) O is birationally induced if it is dense in the image of a birational Springer generalized

map;

(b) O is weakly birationally induced if the class of its unipotent part is birationally induced in

the connected centralizer of its semisimple part.

As suggested by the choice of the names, (a) implies (b), but (a) is in general strictly stronger.

Definition (a) is the natural extension of birational induction in the Lie algebra. On the other

hand, in the group there is more control on definition (b). The most favourable situation occurs

when the derived subgroup [G,G] is simply-connected or when O is unipotent in G up to a

central element: in such cases the centralizer of the semisimple part of O is connected and under

this condition (a) is equivalent to (b). This implies also that, since the centralizer of a semisimple

element of g is always connected, there is no difference between birational induction and weakly

birational induction for adjoint orbits in g.

We prove that most properties enjoyed by induction extend naturally to the case of weakly

birational induction. In particular, Lemma 1.26 states a criterion which gives a sufficient condi-

tion for a unipotent conjugacy class to be birationally induced. The main result closing Chapter

1 is Theorem 1.35, which states that any conjugacy class of G is weakly birationally induced in a

unique way, up to G-conjugacy, under some minimality conditions on the data needed to define

induction. When [G,G] is simply-connected, the adverb “weakly” can be removed.

In Chapter 2, we recall the principal facts on Jordan classes in g and in G. The group

analogue of Jordan classes first appeared in Lusztig’s paper [69]: such objects and their closures

are an essential tool in the study of the sheets for the conjugacy action of a reductive group G

on itself and were thoroughly studied by Carnovale and Esposito in [29]. Jordan classes of G

enjoy similar properties to decomposition classes of g: they are locally closed, smooth, irreducible

subvarieties of G and they admit a description in terms of Lusztig-Spaltenstein induction.

With the instruments of Chapter 1, we can define the birational closure and the weakly

birational closure of a Jordan class in g and in G: we describe and compare these objects by

means of results and examples. One of the main differences is that while the weakly birational

closure of a Jordan class is a union of Jordan classes, the birational closure need not be. In the

Lie algebra g and for G with [G,G] simply-connected there is no difference between the weakly

birational closure and the birational closure of a Jordan class.
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Just like sheets in G are parameterized as regular closures of certain Jordan classes, we

define weakly birational sheets in G as the weakly birational closures of certain Jordan classes,

thus reaching the first milestone of our project and proving an analogue of point (i) of Losev’s

result [67, Theorem 4.4]:

Theorem (2.25). Weakly birational sheets form a partition of G.

Once again, when [G,G] is simply-connected, it makes sense to talk about the birational

sheets of G. Every weakly birational sheet is irreducible and contained in a level set, so it is

contained in a sheet of G. We conclude Chapter 2 by comparing weakly birational sheets with

sheets of G from a structural point of view and studying how working in different isogeny classes

of G affects weakly birational sheets.

In Chapter 3 we pave the way to prove a group analogue of (ii) in Losev’s result [67, Theorem

4.4]. This aim is reached as an application of a much more general result obtained in [2].

Therein, the focus is put on the local study of (regular loci of) closures of Jordan classes in the

neighbourhood of a point. The closure of a Jordan class is a union of objects of the same kind

and G admits a stratification whose closed strata are given by the closures of Jordan classes: this

stratification yields constructible character sheaves, see [69]. It is clear that the stratifications

on g and G present similarities and it is natural to expect that the geometry of Jordan classes

in a group and of decomposition classes in a Lie algebra are related.

After an introductory section, recalling some notation and some preliminary results from

Algebraic Geometry, we begin by proving that the exponential map identifies the Jordan strat-

ification induced on a neighbourhood of the nilpotent cone in g with the Jordan stratification

induced on a neighbourhood of the unipotent variety in G, preserving closure orderings. There-

fore, any closure of a Jordan class in G containing a unipotent element u is smoothly equivalent

in the neighbourhood of u to the closure of a Jordan class in g in the neighbourhood of the log-

arithm of u. Once the question has been settled for unipotent elements, under the assumption

that [G,G] is simply-connected, we explain how to reduce from the study of the closure J of a

Jordan class J in G to the study of closures of Jordan classes in a reductive subgroup, namely:

Theorem (3.8). Let J be a Jordan class in G with [G,G] simply-connected and let g ∈ J with

Jordan decomposition g = rv. Then the pointed variety (J, rv) is smoothly equivalent to (
⋃
J i, v),

where the Ji’s are the Jordan classes in the centralizer of r such that rv ∈ Ji and Ji ⊂ J .

At the end of Chapter 3 we collect several applications of this local analysis; we list them,

reminding the reader that [G,G] is assumed to be simply-connected throughout the list.

We prove that the closure of a regular Jordan class J in G is normal and Cohen-Macaulay

if and only if the categorical quotient J//G is normal if and only if J//G is smooth (Theorem

3.14) by a reduction to Lie algebra case where the analogous problem was solved by [88]. Since

the list of classes J for which J//G is normal is known, see [30], this gives the list of normal and

Cohen-Macaulay closures of regular Jordan classes in G, see Remark 3.16.
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We provide necessary and sufficient conditions for a sheet S in G to be smooth. We also show

in Theorem 3.19 that if G is simple simply-connected and classical and the categorical quotient

S//G is normal in codimension 1, then S is always smooth. We deduce a (non-exhaustive) list of

smooth sheets for G simple, simply-connected and classical, see Remark 3.20. We also provide

the list of smooth sheets when S//G is normal in codimension 1 for G exceptional and simple in

Corollary 3.21.

When G = SLn(C) we can conclude that all sheets and all Lusztig strata are smooth (Proposi-

tion 3.22). The general case is more involved and there are examples of singular and non-normal

strata, for instance those containing the subregular unipotent conjugacy class when the root

system is not simply-laced.

Finally, we analyse the geometry of the birational closure of a Jordan class. In this case we

can use the result of Losev and obtain the analogue for the group case: birational sheets are

unibranch varieties with smooth normalization and birational sheets are smooth for classical G

(Theorems 3.27 and 3.28).

Chapter 4 contains research produced in [4] and deals with the aforementioned classical

problem in Representation Theory: describing collections of adjoint orbits (resp. conjugacy

classes) whose ring of regular functions are isomorphic as G-modules. Our research is motivated

by Losev’s Conjecture 4.9. We tackle this problem restricting to the context of the spherical

subvarieties of g and G, under the assumption that [G,G] is simply-connected.

We begin Chapter 4 with an introductory part, where we briefly state the main notions and

results on the G-module decomposition of rings of regular functions on orbits, and we recall

the definition of spherical variety. If B is a Borel subgroup of G, the complexity of X is the

codimension of a generic B-orbit in X; the variety X is spherical if it has complexity zero.

By [6, Proposition 1], the complexity of orbits as homogeneous spaces of G is constant along

the sheets: it follows that the property of being spherical is preserved along sheets. A sheet S

is said to be spherical if the orbits in S are spherical; research on these objects can be found

in [28, 31]. Since a birational sheet is contained in a sheet, the property of being spherical is

preserved along birational sheets, as well. We call spherical birational sheet any birational sheet

consisting of spherical orbits. For G simple simply-connected, we classify the spherical birational

sheets and observe that the union Gsph of all spherical conjugacy classes in G is the disjoint

union of spherical birational sheets.

If O is a spherical conjugacy class, then C[O] is multiplicity-free, i.e., a simple G-module oc-

curs in C[O] with multiplicity at most 1. Therefore, the G-module C[O] is completely determined

by its weight monoid, i.e., by the set of dominant weights λ for which the simple G-module with

highest weight λ occurs in the decomposition of C[O]. In [36] the weight monoids are explicitly

described for every spherical conjugacy class of G simple simply-connected. Using these results

and the classification of spherical birational sheets, we prove:

Theorem (4.11). Suppose that [G,G] simply-connected and let O1 and O2 be spherical conjugacy
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classes in G. Let Sbir1 (resp. Sbir2 ) be the birational sheet containing O1 (resp. O2). Then C[O1]

is isomorphic to C[O2] as a G-module if and only if Sbir2 = zSbir1 for some z ∈ Z(G).

From this we also deduce the validity of Losev’s conjecture in the case of spherical adjoint

orbits in g (Theorem 4.42).

For sln(C), we show that Losev’s conjecture holds in all generality (Proposition 4.3) and from

this we deduce that the analogous conjecture in the group case is true for SLn(C) (Theorem 4.7).

This concludes our survey on birational sheets in reductive groups as well as the first part of

the thesis.

The second part of the manuscript is Chapter 5 and contains the research produced in [3].

As noted earlier, the objects of study are Poisson deformations and filtered quantizations of

nilpotent Slodowy slices.

The finite subgroups of SL2(C) are classified by the simply-laced Dynkin diagrams. If ∆ is

such a diagram corresponding to a group Γ then the quotient singularity C2/Γ is said to have

type ∆. It was proven by Artin that these varieties give an exhaustive list of rational isolated

surface singularities up to analytic isomorphism [5]. The classical theorem of Brieskorn [19],

conjectured by Grothendieck, states that if g is simple with simply-laced Dynkin diagram ∆,

then the transverse slice to the subregular orbit is the C×-semi-universal deformation of type ∆.

This remarkable theorem was extended to the non-simply-laced types by Slodowy [91]. Let ∆0

be a non-simply-laced diagram, let ∆ be simply-laced and Γ0 ≤ Aut(∆) be uniquely determined

by the requirement that ∆0 is obtained by folding ∆ under Γ0 (see [32, §13], for example). Then

the subregular slice in a Lie algebra of type ∆0 is the C×-semi-universal Γ0-deformation of a

singularity of type ∆.

In [65], Lehn, Namikawa and Sorger found a generalization to arbitrary nilpotent orbits. In

general the nilpotent part of a Slodowy slice is not an isolated surface singularity and so there

is no versal theory for deformations. The correct approach is to realize the Slodowy slice as a

Poisson variety via Hamiltonian reduction, following [47]. Since the nilpotent part of the slice is a

conic symplectic singularity, the afore-mentioned results of Namikawa [77,78] show that there is

a Poisson deformation which is universal. The main result of [65] gives a necessary and sufficient

condition for the Slodowy slice to be the universal Poisson deformation of its nilpotent part: the

exceptions are listed in Table 1.

Type of g Any B C F G C G

Type of O Regular Subregular Two Jordan blocks dimension 8

Table 1

After fixing the notation and recalling some basic results on graded and filtered algebras, we

begin Chapter 5 in a very general setting: in order to relate the universal Poisson deformation

with the universal quantization, we reinterpret results of [67, 77, 78] in a categorical framework.
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For a commutative positively graded connected Poisson algebra A, we consider the categories

D = DA of Poisson deformations, and Q = QA of quantizations of Poisson deformations of

A. When these categories admit initial objects, they are equivalent to some rather elementary

categories of commutative algebras. One of the key definitions is the category of deformations

(or quantizations) with fixed symmetries. Suppose that Γ is a group of graded Poisson auto-

morphisms of A. We define a Poisson Γ-deformation to be a Γ-equivariant Poisson deformation

fibred over a base with trivial Γ-action, and define Γ-quantizations similarly. A universal Poisson

Γ-deformation (resp. Γ-quantization) is an initial object in the category of such deformations

(resp. quantizations). Our main result in this setting is the following.

Theorem (5.35). Let X be a conical symplectic singularity and Γ be a group of C×-equivariant

Poisson automorphisms of A = C[X].

(i) There exists a universal Poisson Γ-deformation uΓ
D and a universal Γ-quantization uΓ

Q.

(ii) uΓ
Q is the unique quantization of uΓ

D up to isomorphism.

As an application, we return to the Lie theoretic setting. We identify a semisimple Lie

algebra g with g∗ via the Killing isomorphism. This way, we can define the nilpotent cone N ∗

of g∗ as the image of the nilpotent cone N of g under the Killing isomorphism. For e ∈ N
and its image χ ∈ N ∗, we consider the Slodowy slice Sχ. It is known that this is a transversal

slice to coadjoint G-orbits, admitting a contracting C×-action. Furthermore it carries a Poisson

structure via Hamiltonian reduction, see [47]. Slodowy showed in [91] that the adjoint quotient

map g∗ → g∗//G restricts to a flat C×-equivariant morphism Sχ → g∗//G and it follows that

the slice provides a Poisson deformation of the central fibre Sχ ∩N ∗ which we call the nilpotent

Slodowy slice. On the other hand, Premet introduced a filtered quantization of the Slodowy slice

known as the finite W -algebra [84]. This is a non-commutative filtered algebra U(g, e) which

depends only on g and the orbit of e. Finite W -algebras have found numerous applications to

the ordinary and modular representation theory of Lie algebras; see [86] for a detailed overview.

After describing the main features of the Slodowy slice, its Poisson structure and the finite

W -algebras, we prove:

Theorem (5.40). The following are equivalent:

(i) The finite W -algebra U(g, e) is the universal filtered quantization of C[Sχ ∩N ∗];
(ii) the orbit of e is not listed in Table 1.

When these equivalent conditions hold every filtered quantization of C[Sχ ∩N ∗] is isomorphic to

U(g, e)/ kerλ, where λ is some central character of U(g, e).

One immediate consequence of this theorem is Corollary 5.41, which states that the group

of filtered automorphisms of the finite W -algebra is naturally isomorphic to the group of graded

Poisson automorphisms of the nilpotent Slodowy slice.

Finally we focus on the subregular case considered by Brieskorn, Grothendieck and Slodowy

[19, 91]. The non-commutative analogue of Brieskorn’s theorem says that the subregular finite

W -algebra attached to a simply laced Lie algebra of type ∆ is the universal filtered quantization
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of the rational singularity of type ∆. This is a special case of Theorem 5.40. The most interesting

applications arise from our non-commutative analogue of Slodowy’s theorem. Let g0 be a simple

Lie algebra with non-simply-laced Dynkin diagram ∆0, and let (∆,Γ0) be determined by ∆0 by

folding, as we described earlier. Let e ∈ N be subregular and let χ be the image of e in N ∗.
With some restrictions on ∆0 we prove the following analogue of Slodowy’s theorem [91, §8.8] in

the setting of universal Poisson deformations and their quantizations.

Theorem (5.47). Let g0 be of type Bn, Cn or F4, where n ≥ 2 and n is even in type C. Let

e0 ∈ Ng0 be a subregular nilpotent element and χ0 be the image of e0 via the Killing isomorphism.

Then:

(i) the adjoint quotient Sχ0 → g∗0//G0 is the universal Poisson Γ0-deformation of C[Sχ ∩N ∗];
(ii) the subregular finite W -algebra U(g0, e0) is the universal Γ0-quantization of C[Sχ ∩N ∗].

We expect that the restrictions on ∆0 are unnecessary and we conjecture that the Theo-

rem 5.47 holds for all non-simply-laced simple Lie algebras. Theorems 5.40 and 5.47 lead to

interesting surjective homomorphisms between W -algebras, which are new in the literature.

Corollary (5.48). There exists a surjective homomorphism of subregular W -algebras U(g, e) �

U(g0, e0). When g0 satisfies the hypotheses of Theorem 5.47, the kernel is generated by elements

z − γ · z where γ ∈ Γ0 and z is in the centre of U(g, e).

This result allows us to obtain new Yangian-type presentations of W -algebras. Since W -

algebras are defined via quantum Hamiltonian reduction, there is no known presentation is

general. This makes them difficult to work with, despite their many applications. The situation

is significantly improved in type A: in this case there is an explicit isomorphism between a

truncated shifted Yangian and the W -algebra [24]. This leads to an explicit presentation of

the subregular finite W -algebra in type B as a quotient of a truncated shifted Yangian. This

concludes Chapter 5 and the thesis.
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CHAPTER

ZERO

PRELIMINARY NOTATION AND DEFINITIONS

0.1 Generalities on varieties and group actions

Let G be a complex connected reductive linear algebraic group. With the notation K ≤ G, we

mean that K is a closed subgroup of G. We denote by K◦ its identity component, by Z(K) its

centre and by [K,K] its derived subgroup.

If X is a K-set, we denote by X/K the set of K-orbits of elements in X. For x ∈ X, we

denote the K-orbit of x by K · x or OKx . For x1, x2 ∈ X (resp. X1, X2 ⊂ X) we write x1 ∼K x2

(resp. X1 ∼K X2) to denote that the two elements (resp. the two subsets) are conjugate by K.

If X ⊂ Y are topological spaces, we will denote by X
Y

the closure of X in Y . If the ambient

space is clear, we will omit the superscript Y . We denote by dimX the dimension of X and by

codimY X = dimX − dimY the codimension of X in Y , omitting the subscript when clear from

the context.

When we want to emphasize the fact that a union of sets is disjoint, we use the symbol t
instead of ∪.

Throughout the manuscript, any variety will be intended to be a variety defined over the field

of complex numbers C in the sense of [54, §2.5]. If X is a variety, we denote by C[X] the algebra

of regular functions on X and by C(X) the function field of X.

If f : X → Y is a dominant rational map of varieties, the degree of f is defined as the degree

of the function fields extension deg f := [C(X) : C(Y )]. Moreover, if f is a finite map and y ∈ Y
is a generic point, then

∣∣f−1(y)
∣∣ = deg f , see [51, Proposition 7.16].

When K ≤ G acts on a variety X, the action will be intended to be regular, i.e., the map

K ×X → X defined by (k, x) 7→ k · x is a morphism of varieties. If x ∈ X, any K-orbit OKx is a

locally closed subvariety of X and the boundary OKx \O
K
x consists of K-orbits whose dimension

is lower than dimOKx , see [93, Lemma 2.3.3]. Moreover, if K is connected, all K-orbits are

irreducible. Recall that in this situation, K defines an action on C[X] via (k · f)(x) := f(k−1 ·x)

for all k ∈ K, f ∈ C[X], x ∈ X. This action is locally finite, i.e, for each f ∈ C[X] the subspace
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spanC{k · f | k ∈ K} is finite-dimensional; furthermore the representation of K on each finite-

dimensional K-stable subspace is a representation as an algebraic group.

For H ≤ K, we define the subalgebra of H-invariant regular functions as C[X]H := {f ∈
C[X] | h · f = f for all h ∈ H}. When X is affine and K is reductive, we write X//K :=

Spec(C[X]K): this is called the categorical quotient of X under the action of K, it admits

the structure of an affine variety and it comes with a canonical projection πX : X → X//K

corresponding to the inclusion of algebras C[X]K → C[X].

For any n ∈ N, we define the (n-th level) subset X(n) := {x ∈ X | dimK · x = n} ⊂ X. For

Y ⊂ X, the regular locus of Y is Y reg := Y ∩ X(n̄), where n̄ = max{n ∈ N | Y ∩ X(n) 6= ∅}.
The subset Y reg is open in Y . In particular, the subsets X(n) are locally closed subvarieties of

X, being open in X(n) ⊂
⋃
m≤nX(n), which is a closed subset in X, see [96, Theorem 15.5.7].

Definition 0.1. Let X be a K-variety. A sheet of X for the action of K is an irreducible

component of X(n) for some n ∈ N such that X(n) 6= ∅.

For Y ⊂ X, the normalizer of Y in K is NK(Y ) := {k ∈ K | k · y ∈ Y for all y ∈ Y }. For

x ∈ X, its stabilizer is denoted Kx := {k ∈ K | k · x = x}.

0.2 Notations for adjoint and conjugacy actions

We will use fraktur characters to denote Lie algebras, so g := Lie(G) is the Lie algebra of G and

for a Lie subalgebra k ⊂ g, we denote by z(k) its centre.

We will focus on the conjugacy (resp. the adjoint) action of G on itself (resp. on g). For

g ∈ G and η ∈ g, we define the centralizers:

CG(g) := Gg = {h ∈ G | hgh−1 = g};

CG(η) := Gη = {h ∈ G | Ad(h)(η) = η};

cg(g) := {η ∈ g | Ad(g)(η) = η} = Lie(CG(g));

cg(η) := gη = {η ∈ g | [ξ, η] = 0} = Lie(CG(η)).

For a subset Y ⊂ G, the centralizer of Y in G is CG(Y ) :=
⋂
y∈Y CG(y) and the centralizer of a

Lie subalgebra k ⊂ g as cg(k) := {ξ ∈ g | [η, ξ] = 0 for all η ∈ k}.
The conjugacy class of k in a subgroup K ≤ G will be denoted by K · k = OKk . For the

K-adjoint orbit of ξ ∈ k, we use the notations Ad(K)(ξ) = OK
ξ . If clear from the context,

subscripts or superscripts will be omitted: in particular when K = G.

In accordance with the notation for sets of K-orbits, the set of all K-conjugacy classes of K

is denoted K/K.

We fix a maximal torus T ≤ G and a Borel subgroup B ≥ T . A standard parabolic subgroup

is a subgroup containing the fixed Borel B. We denote by Φ the root system of G, by ∆ the

base of Φ corresponding to B and by Φ+ the subset of positive roots with respect to ∆. If Φ

is irreducible, the simple roots will be denoted α1, . . . , αn: we shall use the numbering and the
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description of the simple roots in terms of the canonical basis (ε1, . . . , εk) of an appropriate Rk

as in [16, Planches I–IX]. We denote by α0 the opposite of the highest root in Φ and we define

∆̃ = ∆ ∪ {α0}. We denote by ci, for i = 1, . . . , n, the positive integer coefficients such that

−α0 =
∑n
i=1 ciαi and set c0 := 1. Also, α∨1 , . . . , α

∨
n are the simple co-roots and Q∨ denotes the

co-root lattice.

The one-parameter subgroup of G corresponding to α ∈ Φ will be denoted by Uα. With this

convention, the standard parabolic subgroups of G are indexed by subsets of ∆, for Θ ⊂ ∆, we

put PΘ = 〈B,U−α | α ∈ Θ〉. We set Lie(T ) = h, Lie(B) = b, Lie(Uα) = gα for all α ∈ Φ,

Lie(PΘ) = pΘ for Θ ⊂ ∆.

If s ∈ T (resp. σ ∈ h) we denote by Φs (resp. Φσ) the root subsystem consisting of α ∈ Φ

such that s ∈ kerα (resp. σ ∈ kerα). The Weyl group of G is denoted by W . The reflection

with respect to the simple root αi ∈ ∆ is denoted by si ∈ W and is called a simple reflection,

the longest element of W is denoted w0.

When we write g1 = su, g2 = rv ∈ G or ξ = σ + ν ∈ g we implicitly assume that su (resp.

rv, resp. σ + ν) is the Jordan decomposition of g1 (resp. g2, resp. ξ), with s, r semisimple and

u, v unipotent (σ semisimple and ν nilpotent, resp.). We agree that the elements of z(g) are

semisimple so that, for ζ ∈ z(g) and ξ = σ + ν ∈ g, the semisimple part of ζ + ξ is ζ + σ.

If K ≤ G is connected reductive and k := Lie(K), we write UK for the unipotent variety of

K and Nk for the nilpotent cone of k; we also set U := UG and N := Ng. If K ≤ G is a reductive

subgroup, the restriction of a Springer isomorphism φG = φ : N → U induces a a K-equivariant

isomorphism φK : Nk → UK . In particular, we have CK(ν) = CK(φK(ν)) for any ν ∈ Nk and

the homogeneous spaces OK
ν and OKφK(ν) are isomorphic varieties.

A partition of n ∈ N, n ≥ 0 is a sequence of non-increasing positive integers d = [d1, . . . , dr] `
n, where

∑n
i=1 di = n. If d ` n, the transpose (or dual) partition is dt = f , where fi = |{j | dj ≥

i}| for all i. We will also use the compact notation d = [em1
1 , . . . , emss ] where e1 > · · · > es > 0 by

grouping equal di’s. Partitions will be used to denote nilpotent orbits in classical Lie algebras,

whereas for exceptional Lie algebras we will use the Bala-Carter labeling, as in [35, §8.4].

The group G acts via the coadjoint action on the dual space g∗ of g. Since g is reductive,

there exists an associative symmetric G-invariant non-degenerate bilinear form on g as in [15, §4,

Proposition 5], thus getting a linear isomorphism of vector spaces (when g is semisimple, this is

known as the Killing isomorphism)

κ : g
∼−→ g∗. (1)

We extend the notions of semisimplicity and nilpotency to elements of g∗ by saying that an

element of g∗ is semisimple (resp. nilpotent) if and only if it is the image of a semisimple (resp.

nilpotent) element of g, see [35, §1.3]. We denote by N ∗ the set of nilpotent elements of g∗.

As in [69, Definition 2.6], an element g = su ∈ G is said to be isolated if CG(Z(CG(s)◦)◦) = G.

An isolated conjugacy class is a conjugacy class consisting of isolated elements. Clearly, all

unipotent conjugacy classes are isolated. For G simple, the isolated semisimple conjugacy classes

are finitely many, and a complete list of representatives can be deduced from [37, Lemma 7.1].
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An isogeny π : K → K is a surjective group homomorphism with finite kernel; for K con-

nected, this automatically implies kerπ ≤ Z(K).

When working with simple classical matrix groups, we adopt the following conventions. For

k ∈ N, k ≥ 1, we denote by Mk(C) the set of k × k square matrices with coefficients in C whose

canonical basis is given by {ei,j | 1 ≤ i, j ≤ k}, where ei,j is the matrix whose entries are 0 except

for the entry (i, j) which is 1. Let Jk be the matrix in Mk(C) whose entries on the antidiagonal

are 1 and 0 elsewhere and let J′2k be the matrix in M2k(C) defined by:

J′2k =

(
0 Jk
−Jk 0

)
.

Then:

- G = GLk(C) is the subgroup of matrices A ∈Mk(C) such that detA 6= 0;

- G = SLk(C) is the subgroup of matrices A ∈Mk(C) such that detA = 1;

- G = Sp2k(C) is the subgroup of matrices A ∈ SL2k(C) such that AT J′2kA = J′2k;

- G = SOk(C) is the subgroup of matrices A ∈ SLk(C) such that AT JkA = Jk;

Unless differently indicated, we agree that the fixed Borel B is the subgroup consisting of upper

triangular matrices in G and the fixed maximal torus T is the subgroup consisting of diagonal

elements in G. If π is the projection map from G to the adjoint group in the same isogeny class

of G, we extend the above conventions to π(G). We fix π(B) as Borel subgroup, resp. π(T ) as

maximal torus and we denote elements of π(G) by a representative in G in square brackets.

0.3 Centralizers, Levi and pseudo-Levi subgroups

By a Levi subgroup of G (resp. Levi subalgebra of g) we mean a Levi factor of a parabolic

subgroup of G (resp. parabolic subalgebra of g). Levi subgroups (resp. Levi subalgebras) are

characterized as CG(Z) for some torus Z ≤ G (resp. cg(z) for some toral subalgebra z ⊂ g); in

particular Levi subgroups are connected [93, Theorem 6.4.7].

Any Levi subgroup isG-conjugate to a privileged Levi factor of a standard parabolic subgroup,

called standard Levi subgroup, defined by LΘ := 〈T,Uα, U−α | α ∈ Θ〉 for some Θ ⊂ ∆. Similarly

any Levi subalgebra of g is G-conjugate to a standard Levi subalgebra lΘ := Lie(LΘ), for some

Θ ⊂ ∆.

Fix σ ∈ h. Then CG(σ)◦ = 〈T,Uα | α ∈ Φσ〉, see [95, Lemma 3.7] and this is a Levi subgroup

of G. Moreover, under our hypothesis on the base field, CG(σ) = CG(σ)◦, see [95, Corollary

3.11]. Similarly, we have a decomposition for the centralizer cg(σ) = h ⊕
⊕

α∈Φσ
gα which is a

Levi subalgebra of g.

For s ∈ G semisimple, CG(s)◦ is called a pseudo-Levi subgroup, following [92]. If s ∈ T , then

CG(s)◦ = 〈T,Uα | α ∈ Φs〉 and CG(s)/CG(s)◦ ' StabW (s)/Ws where Ws is the subgroup of

W generated by reflections with respect to roots in Φs, [53, §2.2]. If [G,G] is simply-connected,

CG(s) is connected for any semisimple element s ∈ G, see [33, Theorem 3.5.6].
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If Φ is irreducible, any pseudo-Levi subgroup ofG is conjugate to a standard pseudo-Levi group

MΘ := 〈T,Uα, U−α | α ∈ Θ〉 for some Θ ( ∆̃, [92, Proposition 3], and we put mΘ := Lie(MΘ).

It is clear that Levi subgroups are a particular type of pseudo-Levi subgroups; for Φ irreducible,

a standard pseudo-Levi subgroup MΘ is a Levi subgroup if Θ (or one of its W -conjugates) lies

in ∆, see [92, §2.1].

Let M ≤ G be a pseudo-Levi and let Z = Z(M). For z ∈ Z, we say that the connected

component Z◦z ⊂ Z satisfies the regularity property (RP) for M if

CG(Z◦z)◦ = M. (RP)

We will make use of the following result:

Lemma 0.2. Let M ≤ G be a pseudo-Levi subgroup, z ∈ Z := Z(M). Then Z◦z satisfies

(RP) for M if and only if M is a Levi subgroup of CG(z)◦. In particular, if M = CG(s)◦ for a

semisimple element s ∈ G, then Z(M)◦s satisfies (RP) for M .

Proof. We prove first that CG(Z◦z)◦ = CG(z)◦ ∩ CG(Z◦) = CCG(z)◦(Z
◦). The inclusions

CG(Z◦z)◦ ≤ CG(z)◦ ∩ CG(Z◦) ≤ CG(Z◦z) are trivial and CG(z)◦ ∩ CG(Z◦) = CCG(z)◦(Z
◦)

is connected by [11, Corollary 11.12], hence CG(z)◦ ∩ CG(Z◦) ≤ CG(Z◦z)◦.

Assume Z◦z satisfies (RP) for M , then M = CG(Z◦z)◦ = CCG(z)◦(Z
◦), which is a Levi

subgroup of CG(z)◦ by [11, Corollary 20.4]. Conversely, if M is a Levi in CG(z)◦, then by [11,

Proposition 14.18], M = CCG(z)◦(Z(M)◦) = CCG(z)◦(Z
◦) = CG(Z◦z)◦. The last statement

follows directly.

Remark 0.3. Let G be simple. For s ∈ T , suppose that M := CG(s)◦ is a standard pseudo-

Levi subgroup and set Z := Z(M). Observe that Z◦s satisfies (RP) for M . We want to

compute, up to G-conjugacy, the number of coclasses satisfying (RP) in Z/Z◦. Let z ∈ Z

such that Z◦z satisfies (RP) for M , then, by [92, Proposition 7] (see also [28, Theorem 4.1]),

there is w ∈ W such that w(Θ) = Θ and w(Z◦z)w−1 = Z◦ẑs for a certain ẑ ∈ Z(G). Let

W1 = {w ∈ W | wsw−1s−1 ∈ Z◦Z(G)}, W2 = {w ∈ W | wsw−1s−1 ∈ Z◦}. We have an exact

sequence of groups:

{1} →W2 →W1 →
Z◦Z(G)

Z◦
' Z(G)

Z(G) ∩ Z◦
,

where the last map is given by w 7→ wsw−1s−1Z◦. Then the number of different G-classes of

pairs (M,Z◦z) for a fixed M with Z◦z satisfying (RP) for M is

dM :=

[
Z(G)

Z(G) ∩ Z◦
: W1/W2

]
. (2)

Remark 0.4. Let M ≤ G be a pseudo-Levi subgroup, z ∈ Z := Z(M). Then Z◦z satisfies (RP) if

and only if Zreg∩Z◦z 6= ∅ if and only if Z = 〈Z◦, Z(G), z〉, see [29, Remark 3.6] and [92, Theorem

7]. Moreover, Z◦ satisfies (RP) for M if and only if Z◦z satisfies (RP) for M for all z ∈ Z if and

only if Z = Z(G)Z◦ if and only if M is a Levi subgroup: this follows from [74, Lemma 34].
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Remark 0.5. For G connected and simple of type A all pseudo-Levi subgroups are Levi subgroups:

this follows from [92, Corollary 14]. The conjugacy classes of Levi subgroups are indexed by

partitions of n, as follows: for each d = [d1, . . . , dk] ` n, we define

Id := {d1, d1 + d2, . . . , d1 + d2 + · · ·+ dk−1}, Θd := ∆ \ {αi | i ∈ Id}, Ld := LΘd
, (3)

where, by convention, we assume Id = ∅ for d = [n] and Id = {1, . . . , n − 1} for d = [1n]. We

say that Ld is the standard Levi subgroup corresponding to the partition d.

We will need the following results: the first one gives further information on connected

components of centres of Levi subgroups, the second one computes the number of such elements

for SLn(C).

Lemma 0.6. Let L ≤ G be a Levi subgroup. Then two connected components of Z := Z(L) are

conjugate in G if and only if they are equal.

Proof. Since L is a Levi subgroup, Z = Z(G)Z◦, by Remark 0.4. Let z1, z2 ∈ Z(G) and suppose

gZ◦z1g
−1 = Z◦z2 for some g ∈ G. Then gZ◦g−1 = Z◦z2z

−1
1 is a torus contained in Z, hence

Z◦ = Z◦z2z
−1
1 and Z◦z1 = Z◦z2. The converse implication is trivial.

Lemma 0.7. Let L := Ld be the standard Levi subgroup of G := SLn(C) corresponding to

d = [d1, . . . , dk] ` n, as in (3). Then Z(L) has exactly gcd{di | di ∈ d} connected components,

and no two distinct connected components are conjugate in G.

Proof. We have:

Z(L) ' S := {(z1, . . . , zk) ∈ (C×)k | zd1
1 · · · z

dk
k = 1}.

Notice that Hom(S,C×) ' X/S⊥, where X = Hom((C×)k,C×) and S⊥ = {χ ∈ X | χ(S) =

1} = 〈d1χ1 + · · ·+ dkχk〉 with χi ∈ X the coordinate functions for i = 1, . . . , k. By the structure

theorem for finitely generated modules over a principal ideal domain [56, §3.8], if d = gcd{di |
i = 1, . . . , k}, we have Hom(S,C×) ' Z/dZ ⊕ Zk−1, hence Z(L)/Z(L)◦ ' S/S◦ ' Z/dZ. The

last assertion follows from Lemma 0.6.
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CHAPTER

ONE

INDUCTION AND BIRATIONALITY

The Chapter opens with Section 1.1, collecting definitions and results on varieties built with an

action of G induced from a subgroup K ≤ G. In Sections 1.2 and 1.3 we specialize to the most

relevant case of induced adjoint orbits in a Lie algebra and induced conjugacy classes in a group,

introducing the generalized Springer map, the main tool to realize induction. As recalled in the

Introduction, we analyse in particular when the generalized Springer map is birational and how

this interacts with induction. Finally, Section 1.4 is devoted to the proof of the main result of

this Chapter: after fixing a minimal set of data from which one defines induction of conjugacy

classes, we prove that every conjugacy class in a reductive group is birationally induced in a

unique way up to G-conjugacy of the data, establishing an analogue of a theorem of Losev [67].

1.1 Action induced from a subgroup

Let K ≤ G and let Y be a K-set. The group K acts freely on G × Y , defining the following

equivalence relation: (g1, y1) ∼K (g2, y2) if there exists k ∈ K such that g2 = g1k and y2 =

k−1 · y1, for g1, g2 ∈ G and y1, y2 ∈ Y . Following terminology from [13, §7], we define the

induced G-set G×K Y := (G× Y )/K and we denote by g ∗ y ∈ G×K Y the equivalence class of

(g, y) ∈ G× Y under ∼K . The group G acts on G×K Y via h · (g ∗ y) = (hg ∗ y) for all g, h ∈ G
and y ∈ Y .

When Y is a subset of a G-set X and the K-action on Y is the restriction of the G-action

on X, we have a well-defined map γ : G ×K Y → X defined by γ : g ∗ x 7→ g · x. This map is a

surjection onto G · Y : we can consider the following commutative diagram:

G× Y

G×K Y G · Y

G/K ×G · Y

ι

γ

pr2

(g, y)

g ∗ y g · y

(gK, g · y)

(1.1)
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The next result sums up [13, Lemma 7.8].

Lemma 1.1. In the above setting, the following hold.

(i) For y ∈ Y, g ∈ G, we have Gg∗y = gKyg
−1.

(ii) There is an explicit bijection Y/K ↔ (G ×K Y )/G defined by OKy 7→ O
G
1∗y = G ×K OKy .

Moreover, this map induces a bijection γ−1(OGy )/G↔ (OGy ∩Y )/K, for all y ∈ Y .

(iii) In (1.1), the map ι : (g, y) 7→ (gK, g · y) is injective and G-equivariant, where the G-action

on the target set is given by h · (gK, y) = (hgK, h · y), for g, h ∈ G and y ∈ Y .

Let X be a G-variety, let K ≤ G and let Y be a locally closed K-stable subvariety of X. Then

G/K ×X is endowed with the structure of a variety where G acts diagonally. The embedding

ι : G ×K Y ↪→ G/K ×X identifies G ×K Y with a locally closed G-subvariety of G/K ×X. If

Y is closed, then so is ι(G ×K Y ). We remark that G ×K Y is, in general, not affine. We have

C[G ×K Y ] = C[G × Y ]K , and, more generally, for each locally closed subset Z ⊂ G/K × X
and its preimage Z̃ ⊂ G × X we have C[Z] = C[Z̃]K . It follows from [68, Lemma I.3] that, if

Y ′ ⊂ G×K Y is G-stable and Zariski open, resp. closed, resp. locally closed, then there exists a

K-stable open, resp. closed, resp. locally closed subset Y ′′ ⊂ Y such that Y ′ = G×K Y ′′.

If K = P is a parabolic subgroup, then G/P is a complete variety and the projection on the

second factor pr2 : G/P ×X → X is a proper morphism (in particular, it is closed). If Y is closed

in X, then ι(G ×P Y ) is closed in G/P × X, so that pr2(ι(G ×P Y )) = γ(G ×P Y ) = G · Y is

closed in X. One can prove that γ is proper. The following result is adapted from [13, Lemma

7.10].

Lemma 1.2. In the above situation, let x ∈ Y . The following are equivalent:

(i) γ−1(x) is finite;

(ii) G◦x ≤ P and OGx ∩Y is a union of finitely many P -orbits.

Proof. Clearly 1 ∗ x ∈ γ−1(x). Observe that by G-equivariance of γ, we have∣∣γ−1(x)
∣∣ =

∣∣γ−1(OGx )/G
∣∣ ∣∣γ−1(x) ∩ OG1∗x

∣∣ . (1.2)

Now, by Lemma 1.1 (d), we have
∣∣γ−1(OGx )/G

∣∣ =
∣∣(OGx ∩Y )/P

∣∣ and γ−1(x) ∩ OG1∗x = {g ∗ x |
g ∈ Gx} ↔ Gx/G1∗x = Gx/Px by Lemma 1.1 (a).

We will need the following results, adapted from [57, Lemmas 8.7, 8.8].

Lemma 1.3. In the above situation, we have:

(i) G×P Y � G/P is a fibre bundle of rank dimY .

(ii) For all x ∈ Y we have dimOGx ≤ dimG/P + dimOPx with equality if and only if G◦x ≤ P .

Proof. (i) The map p : G ×P Y � G/P defined by g ∗ x 7→ gP is G-equivariant. A direct

computation shows that the preimage of the coset of P (hence any fibre) is isomorphic to Y . The

canonical map pP : G→ G/P has local sections. This means that there exists an open covering

of G/P by open sets U which admit a section s : U → G with pP ◦ s = idU . For each such U , the
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isomorphism U×P ∼−→ p−1
P (U) defined by (gP, p) 7→ s(gP )p has inverse g → (gP, s(gP )−1g). We

claim that the same open covering trivializes p, indeed for each such U we get an isomorphism:

p−1(U)
∼−→ U × Y

g ∗ x 7→ (gP, (s(gP )−1g) · x)

with inverse (gP, x) 7→ s(gP ) ∗ ((g−1s(gP )) · x).

(ii) For all x ∈ Y , we have dimG/Px = dimG/P + dimP/Px = dimG/P + dimOPx . Since

Px ≤ Gx, we also have dimG/Px ≥ dimG/Gx = dimOGx . This yields dimOGx ≤ dimG/P +

dimOPx for all x ∈ Y . Equality holds if and only if dimGx = dimPx if and only if G◦x = P ◦x ,

equivalently G◦x ≤ P .

Lemma 1.4. Let X be a G-variety, let P ≤ G be parabolic and let Y ⊂ X be a closed subvariety

where P acts as the restriction of the G-action. Let

γ : G×P Y → G · Y g ∗ x 7→ g · x. (1.3)

Assume there exists x ∈ Y with the following properties:

Y = OPx ; (P1)

G◦x ≤ P. (P2)

Then the following hold:

(i) Let O := OGx , then O = G · Y and O∩Y = OPx ;

(ii) Õ := γ−1(O) is a single G-orbit, open and dense in G×P Y ;

(iii) There is a natural isomorphism G/Px
∼−→ Õ and γ restricts to an unramified covering

Õ → O of degree [Gx : Px].

Proof. (i) The inclusion O ⊂ G·Y is clear. Since G·Y is closed by properness of γ, also O ⊂ G·Y .

On the other hand, Y = OPx ⊂ O, which is G-stable, so that G ·Y ⊂ O. Clearly OPx ⊂ O∩Y . We

prove that x′ ∈ Y, x′ /∈ OPx implies x′ /∈ O. Observe that (P1) implies x′ ∈ Y \ OPx = OPx \ O
P
x ,

hence dimOPx′ < dimOPx = dimY . By Lemma 1.3 and (P2), we have dimOGx′ < dimO so that

x′ /∈ O.

(ii) Since γ is G-equivariant, we have Õ = G·γ−1(x). If we show that γ−1(x) = Gy ·(1∗x), the

first claim follows, by (1.2). Clearly, γ(g ∗x) = x for all g ∈ Gx, so that γ−1(x) ⊃ Gx · (1∗x). For

the other inclusion, pick an element of γ−1(x), say g∗g−1 ·x with g−1 ·x ∈ Y . Then g−1 ·x ∈ O∩Y
and (a) implies there exists p ∈ P such that g−1 · x = p · x. Hence g ∗ g−1 · x = gp ∗ x and

x = γ(g ∗ g−1 ·x) = γ(gp ∗x) = gp ·x, i.e., gp ∈ Gx. Denote by ϕx : G→ O ⊂ Y and ϕ̃x : G→ Õ
the orbit maps. By Lemma 1.1 (a), Õ ' G/Px and O ' G/Gx. Since dimGx = dimPx we

get dimO = dim Õ. The closure of the orbit Õ is an irreducible subset of G ×P Y , which is

irreducible as well. Since dim Õ = dimG×P Y , we conclude that Õ = G×P Y .

(iii) We have ϕx = γ ◦ ϕ̃x, hence d1ϕx = d1∗xγ ◦ d1ϕ̃x. Working over C ensures that

G/Py
∼−→ Õ is an isomorphism of varieties. Moreover, ker(d1ϕx) = Lie(Gx) so that d1ϕx is
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surjective and dim(TxO) = dimO = dim Õ = dim(T1∗xÕ) imply d1∗xγ is an isomorphism.

Since γ is G-equivariant, dγ is bijective at all points of Õ. This means that γ : Õ → O is an

unramified covering of degree
∣∣γ−1(x)

∣∣ = [Gx : Px].

We give a criterion which characterizes when the map (1.3) is birational.

Corollary 1.5. Assume we are in the setting of Lemma 1.4, let γ be as in (1.3), assume (P1)

and (P2) hold, and let O and Õ := γ−1(O) be as in Lemma 1.4. The following are equivalent:

(i) γ is birational;

(ii) γ maps Õ isomorphically to O;

(iii) for all x ∈ OG ∩Y , we have Gx = Px;

(iv) there exists x ∈ OG ∩Y such that Gx = Px.

Proof. Let (i) hold. By Lemma 1.4, γ induces a finite covering Õ → O and these sets are open

and dense. Since γ is birational and G-equivariant, it restricts to an injective map on Õ, i.e.,

γ(Õ) ' O. The converse implication is trivial. (ii) holds if and only if the degree of γ over O is

1. By (1.2) this is equivalent to [Gx : Px] = 1 for x ∈ O∩Y , that is (iii). Finally (iii) obviously

implies (iv) and since O∩Y is a single P -orbit, (iv) implies (iii) by P -equivariance.

1.2 Induction of adjoint orbits

Let G act on Y = g via the adjoint action Ad: G 7→ GL(g) and fix a Levi subgroup L ≤ G.

Choose a parabolic P ≤ G with Levi decomposition LUP . Set l := Lie(L) and nP := Lie(UP ).

For OL ∈ l/L, we take X = OL + nP ⊂ g, this is a closed subvariety which is P -stable under the

adjoint action. We have a well-defined map:

γ : G×P (OL + nP )→ Ad(G)(OL + nP ) (1.4)

g ∗ ξ 7→ Ad(g)(ξ)

The image of γ is a G-stable closed subset of g which projects to a point in the categorical

quotient g//G, hence it is a closed irreducible subset consisting of finitely many adjoint orbits.

Irreducibility yields that (Ad(G)(OL +nP ))reg is a unique adjoint orbit O ∈ g/G, called induced

from (l,OL) and denoted Indg
l O

L, see [12]. The definition of induced conjugacy class only

depends on the Levi subalgebra l ⊂ g and on OL and not on the parabolic P ≤ G, for a proof

see [12, Satz 2.6]. For any Levi subalgebra l ⊂ g, we introduce the notation:

Indg
l : l/L→ g/G

OL 7→ Indg
l O

L .

Induction is transitive, i.e., if m is a Levi subalgebra of g containing l, and OL ∈ l/L, then

Indg
l O

L = Indg
m

(
Indm

l OL
)

, see [12, §2.3]. Moreover, we have codimg(Indg
l O

L) = codiml O
L,

see [12, Satz 3.3]
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A nilpotent orbit O ∈ N/G is said to be rigid in g if it cannot be induced from a proper Levi

subalgebra l ( g and an orbit OL ∈ Nl/L.

Notice that OL ∈ Nl/L if and only if Indg
l O

L ∈ N/G, in particular the restriction of Indg
l

induces a function Nl/L → N/G. This is the Lie algebra counterpart of a procedure called

Lusztig–Spaltenstein induction of unipotent classes, appeared first in [71].

1.2.1 Reduction to the nilpotent case and birationality

Lemma 1.6. The generalized Springer map (1.4) fulfils the hypotheses of Lemma 1.4 with X =

OL + nP and Y = g.

In particular, there is a unique open G-adjoint orbit in G ×P (OL + nP ) and this is a finite

G-equivariant covering of the induced orbit Indg
l O

L.

Proof. Write O := Indg
l O

L. Since dimO = dimG − dimL + dimOL, we have dim Ad(G)X =

dimO = dimG − dimP + dimOL + dimUP = dimG ×P X. We claim this implies that there

exists ξ ∈ X satisfying properties (P1) and (P2). By [93, Theorem 5.1.6], γ has finite fibres on a

dense open subset of Ad(G)X. By G-equivariance, γ has finite fibres on O. Let ξ ∈ O∩X. Then,

by Lemma 1.2, CG(ξ)◦ ≤ P and X∩O is a union of finitely many P -orbits. Let O∩X =
⊔t
i=1 O

P
ξi

for some t ∈ N and some ξi ∈ X. Since O is open in G ·X, the set O∩X is open and dense in

X. In particular, X = O∩X =
⋃t
i=1 O

P
ξi . Irreducibility of X implies there exists j ∈ {1, . . . , t}

such that X = OP
ξj . Again, O∩X meets OP

ξj non-trivially, being both open and dense in X.

This implies ξj satisfies (P1) and (P2).

In the setting of (1.4), let σ + ν ∈ OL. Then CP (σ) = P ∩ CG(σ) is a parabolic subgroup

of CG(σ) (it is in particular connected, since CG(σ) is so, see [93, Corollary 6.4.10]); moreover,

cl(σ) is a Levi factor of the parabolic subalgebra cp(σ) := Lie(CP (σ)) and we denote its nilradical

by nCP (σ). We compare the two morphisms:

γ : G×P (OL
σ+ν + nP )→ Indg

l O
L
σ+ν (1.5)

γσ : CG(σ)×CP (σ) (OCL(σ)
ν + nCP (σ))→ Ind

cg(σ)

cl(σ) O
CL(σ)
ν (1.6)

Lemma 1.7. Let γ and γσ be as in (1.5) and (1.6), respectively. Then γ is birational if and

only if γσ is birational.

Proof. The group CG(σ) is connected and reductive (see §0.3) so that Lemma 1.6 also applies

to (1.6). For simplicity, write OG := Indg
l O

L
σ+ν and OCG(σ) := Ind

cg(σ)

cl(σ) O
CL(σ)
ν . Suppose γ is

birational and let ν′ ∈ (OCL(σ)
ν + nCP (σ)) ∩ OCG(σ). Since OG = Ad(G)(σ + O

CG(σ)
ν′ ), we have

σ+ν′ ∈ (OL
σ+ν+nP )∩OG. The nilpotent part of σ+ν′ is ν′ because ν′ ∈ CG(σ). By Corollary 1.5

(iv), birationality of γ is equivalent to CG(σ+ν′) ≤ P . This means CCG(σ)(ν
′) ≤ P , equivalently

CCG(σ)(ν
′) ≤ P ∩ CG(σ) = CP (σ), i.e., γσ is birational thanks to (iv) of Corollary 1.5.

Arguing as in [12, Satz 2.1, 3. Fall], all generalized Springer maps can be reduced to the

study of generalized Springer maps of a special type. Following [67], define the set of induction
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data of g as the set of triples (l,OL, ζ) where l ⊂ g is a Levi subalgebra, OL ∈ Nl/L and ζ ∈ z(l).

Any such induction datum is associated with a generalized Springer map:

γ : G×P (ζ + OL + nP )→ Ad(G)(ζ + OL + nP ) (1.7)

g ∗ ξ 7→ Ad(g)(ξ)

When γ in (1.7) is birational, Indg
l (ζ+OL) is said to be birationally induced from (l, ζ+OL) (or

from the induction datum (l,OL, ζ) with the terminology of [67]). The nilpotent orbit OL ⊂ l

is said to be birationally rigid if it cannot be birationally induced from a proper Levi subalgebra

m ( l. Losev calls the induction datum (l,OL, ζ) birationally minimal if OL is birationally rigid

and Indg
l (ζ + OL) is birationally induced from (l,OL, ζ).

Remark 1.8. We alert the reader that Losev works in terms of coadjoint orbits of g∗ but it is

straightforward to translate everything in terms of adjoint orbits. This can be done by fixing

κ as in (1). Any Levi subalgebra l admits an orthogonal complement (with respect to the

fixed bilinear form inducing κ) which is stabilized by endomorphisms ad(ξ) with ξ ∈ l. Hence,

κ allows to identify l with l∗, z(l) with (l/[l, l])
∗
, p = l n n with n⊥ and n with p⊥, where

a⊥ := {f ∈ g∗ | f(ξ) = 0 for all ξ ∈ a} for any vector subspace a ⊂ g. This identification

restricts to a G-equivariant (resp. L-equivariant) bijection between adjoint nilpotent orbits in g

(resp. l) and coadjoint nilpotent orbits in g∗ (resp. l∗), where nilpotency for elements of g∗ is

intended as in §0.2.

Lemma 1.9. Let l ⊂ g be a Levi subalgebra, let ζ ∈ z(l) and OL ∈ Nl/L. Then the adjoint orbit

Indg
l (ζ + OL) ∈ g/G is birationally induced from (l, ζ + OL) if and only if the nilpotent orbit

Ind
cg(ζ)
l OL ∈ Ncg(ζ)/CG(ζ) is birationally induced from (l,OL).

Proof. This follows straightforward from Lemma 1.7.

Remark 1.10. Lemma 1.9 implies that, for the adjoint action of G on g, any result on the

birational induction of adjoint nilpotent orbits extends to the non-nilpotent case. The following

results will be therefore stated and proven in the setting of the induction of a nilpotent orbit but

actually hold in the general case.

One first important fact is that birationality of a generalized Springer map as in (1.7) is

independent of the chosen parabolic.

Lemma 1.11. Let L ≤ G be a Levi subgroup and let l := LieL. Let ζ ∈ z(l) and OL ∈ Nl/L.

Let P,Q ≤ G be parabolic subgroups with Levi factor L and let Lie(P ) := p = l n nP resp.

Lie(Q) := q = ln nQ be the Levi decompositions for their Lie algebras. Consider the generalized

Springer maps:

γP : G×P (ζ + OL + nP )→ Indg
l O

L; γQ : G×Q (ζ + OL + nQ)→ Indg
l O

L.

Then γP is birational if and only if γQ is birational.
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Proof. Let lnnCP (ζ) (resp. lnnCQ(ζ)) be the Levi decomposition of cp(ζ) (resp. of cq(ζ) ) which

is a parabolic subalgebra of cg(ζ). Then we can build the generalized Springer maps:

γP,ζ : CG(ζ)×CP (ζ) (OL + nCP (ζ))→ Ind
cg(ζ)
l OL;

γQ,ζ : CG(ζ)×CQ(ζ) (OL + nCQ(ζ))→ Ind
cg(ζ)
l OL.

The morphisms γP,ζ and γQ,ζ are generalized Springer maps for the nilpotent orbit Ind
cg(ζ)
l OL ∈

Ncg(ζ)/CG(ζ). Notice that deg γP,ζ = deg γQ,ζ by [14, proof of Corollary 3.9, Remark 3.8], where

a formula for the degree of the generalized Springer map for the induction of a nilpotent orbit is

given only in terms of the pair (l,OL). By Lemma 1.9 γP (resp. γQ) is birational if and only if

γP,ζ (resp. γQ,ζ) is so if and only if deg γP,ζ = 1 (resp. deg γQ,ζ = 1) and we conclude.

Remarks on the proof. Losev obtained, with different techniques, a stronger result: for any

generalized Springer map as (1.7), the open orbit in the domain is independent of the chosen

parabolic, see [67, Proposition 4.1].

The concept of birational induction first appeared in [22, 23], while in [45, 76] the focus was

cast on birational induction of nilpotent adjoint orbits as conical symplectic singularities. We

give the proof of a result on transitivity of birational induction.

Lemma 1.12. Consider a Levi subgroup M ≤ G, and let L be a Levi subgroup of M ; set

m := Lie(M) and l := Lie(L); let OL ∈ Nl/L. Then Indg
l O

L is birationally induced from (l,OL)

if and only if Indm
l OL is birationally induced from (l,OL) and Indg

m(Indm
l OL) is birationally

induced from (m, Indm
l OL).

Proof. Consider parabolic subgroups P resp. Q with Levi decompositions P = LUP resp. Q =

MUQ. As usual, write Lie(P ) := p = lnnP and Lie(Q) := q = mnnQ for the corresponding Levi

decompositions of the corresponding Lie algebras. Then P ∩M is a parabolic subgroup of M

and Lie(P ∩M) = p∩m = ln (nP ∩m). Write OM := Indm
l OL and OG := Indg

l O
L = Indg

m OM

with the corresponding generalized Springer maps:

γGL : G×P (OL + nP )→ OG,

γML : M ×P∩M (OL + (nP ∩m))→ OM ,

γGM : G×Q (OM + nQ)→ OG.

There exist σ + ν1 ∈ OM with σ ∈ OL and ν1 ∈ nP ∩ m. Similarly, OG has representatives

of the form σ + ν1 + ν2, where ν2 ∈ nQ and σ + ν1 ∈ OM ∩(OL +(nP ∩m)).

Suppose that γGL is birational, then for σ+ν1 +ν2 ∈ OG as above, we have CG(σ+ν1 +ν2) ≤
P ≤ Q, so γGM is birational by Corollary 1.5. We show CM (σ + ν1) ≤ P . Let m ∈ CM (σ + ν1),

then Ad(m)(σ + ν1 + ν2) = σ + ν1 + Ad(m)(ν2) ∈ (OL + nP ) ∩OG = OP
σ+ν1+ν2

, by Lemma 1.4.

Hence there exists p ∈ P such that pm ∈ CG(σ + ν1 + ν2) ≤ P . This implies m ∈ P , i.e., γML is

birational by Corollary 1.5 (iv).
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For the other implication, assume γML and γGM are birational. Let σ + ν1 + ν2 ∈ OG be

as above and let g ∈ CG(σ + ν1 + ν2). We show that g ∈ P . Since γGM is birational, then

g ∈ CG(σ + ν1 + ν2) ≤ Q by Corollary 1.5 (iv). So g = mv with m ∈ M and v ∈ UQ. Then

σ + ν1 + ν2 = Ad(mv)(σ + ν1 + ν2) = Ad(m)(σ + ν1) + Ad(m)(ν̃2), where ν̃2 := Ad(v)(σ + ν1 +

ν2)− (σ+ν1) ∈ nQ. Now Ad(m)(σ+ν1) ∈ m and Ad(m)(ν̃2) ∈ nQ, since M stabilizes m and nQ.

The semidirect sum decomposition mnnQ implies Ad(m)(σ+ν1) = σ+ν1, i.e., m ∈ CM (σ+ν1).

Since γML is also birational, we have CM (σ+ ν1) ≤ P , by Corollary 1.5. Therefore, g = mv ∈ P ,

i.e., CG(σ + ν1 + ν2) ≤ P and γGL is birational, by Corollary 1.5 (iv).

Remarks on the proof. Namikawa proved the second implication with different techniques

in [76, Proof of 2.1.1].

Next result can be used to test if an orbit is birationally induced.

Lemma 1.13. Let φ : N → U be a Springer isomorphism and let π : G → G be the isogeny to

the adjoint group. Let ν ∈ N and suppose CG(ν) = CG(ν)◦. If OG
ν is induced from (l,OL) for a

Levi subalgebra l ⊂ g and some OL ∈ Nl/L, then OG
ν is birationally induced from (l,OL).

Proof. Let P ≤ G be parabolic with Levi decomposition P = LU . Let f be the composition

defined via the following diagram:

CG(ν) CG(ν)/Z(G) = CG(ν)

CG(ν)/CG(ν)
◦

f

We claim that: ker f = Z(G)CG(ν)◦. If g ∈ ker f , then π(g) ∈ CG(ν)◦ = π(CG(ν)◦), hence

g ∈ Z(G)CG(ν)◦. The other inclusion is trivial. Since by hypothesis CG(ν)/CG(ν)
◦

= {1}, we

have CG(ν) = ker f = (kerπ)CG(ν)◦ = Z(G)CG(ν)◦. By Lemma 1.6, CG(ν)◦ ≤ CP (ν) ≤ CG(ν),

hence CP (ν) = CG(ν), because kerπ = Z(G) ≤ CP (ν). We conclude by Corollary 1.5 (iv).

Remarks on the proof : the same result is contained in [45, Corollary 2.2] for G adjoint. For

G simple and adjoint and ν ∈ N , the groups CG(ν)/CG(ν)◦ are known, see [35, §6.1, §8.4].

1.3 Induction of conjugacy classes

Induction can be defined also for conjugacy classes. Let G act on Y = G via conjugacy, fix a Levi

subgroup L ≤ G and choose a parabolic P ≤ G with Levi decomposition LUP . For any class

OL ∈ L/L, we take X = OLUP ⊂ G, a closed subvariety which is P -stable under the conjugacy

action. Then we have a well-defined map:

γ : G×P OLUP → G · (OLUP ) (1.8)

g ∗ x 7→ gxg−1

called generalized Springer map.
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Since the image of γ is aG-stable closed subset ofG which projects to a point in the categorical

quotient G//G, it is a closed irreducible subset consisting of finitely many conjugacy classes.

Irreducibility yields that (G ·X)reg is a single conjugacy class in G, called induced from (L,OL),

and denoted IndGL O
L see [29,71]. The definition of induced conjugacy class only depends on the

Levi L ≤ G and on OL and not on the parabolic P containing L. For any Levi subgroup L ≤ G,

we introduce the notation:

IndGL : L/L→ G/G

OL 7→ IndGL O
L .

We have codimG(IndGL O
L) = codimLOL (see [29, Proposition 4.6] and [71]).

Notice that OL ∈ UL/L if and only if IndGL O
L ∈ U/G, in particular, the restriction of IndGL

induces a function UL/L → U/G, the aforementioned Lusztig–Spaltenstein induction defined

in [71].

A unipotent conjugacy class O is rigid in G if it cannot be induced from a proper Levi

subgroup L � G and a unipotent class OL ∈ UL/L.

1.3.1 Reduction to the unipotent case

We now explain how the induction of a conjugacy class in G is related to the induction of a

unipotent conjugacy class in a pseudo-Levi subgroup of G. Let L ≤ G be a Levi subgroup and

let P ≤ G be a parabolic with Levi decomposition P = LU and let su ∈ L. It was proven

in [29, Proposition 4.6] that:

IndGL O
L
su = G · (sInd

CG(s)◦

CL(s)◦ O
CL(s)◦

u ). (1.9)

Notice that CL(s)◦ is a Levi subgroup in CG(s)◦ because if Z := Z(L)◦, then CL(s)◦ = CG(s)◦(Z).

Induction is transitive, i.e., if M ≤ G is a Levi subgroup, L is a Levi subgroup of M and

OLsu ∈ L/L, then:

IndGM (IndML O
L
su) = IndGM (M · (s Ind

CM (s)◦

CL(s)◦ O
CL(s)◦

u )) =

= G · (s Ind
CG(s)◦

CM (s)◦(Ind
CM (s)◦

CL(s)◦ O
CL(s)◦

u )) =

= G · (s Ind
CG(s)◦

CL(s)◦ O
CL(s)◦

u ) = IndGM O
L
su,

where we used transitivity for induction of unipotent classes, see [71, §1.7].

Lemma 1.14. The generalized Springer map (1.8) fulfils the hypotheses of Lemma 1.4 with

X = OLUP and Y = G.

In particular, there is a unique open orbit in G ×P OLUP and this is a finite G-equivariant

covering of IndGL O
L.

Proof. The argument mimics the proof of Lemma 1.6.
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In the Lie algebra setting, Lemma 1.7 allows one to reduce questions related to birationality of

induction to the case of nilpotent orbits. It seems therefore natural to investigate the possibility

to find a group analogue of the cited result. If P ≥ B, for a semisimple element s ∈ B, we

have that CB(s)◦ = CB(s) is a Borel subgroup of CG(s)◦ and CP (s)◦ is a parabolic subgroup

of CG(s)◦. The equality CP (s)◦ = P ∩ CG(s)◦ holds and CL(s)◦ is a Levi factor of CP (s)◦; we

write UCP (s)◦ for the unipotent radical of CP (s)◦. We compare the two morphisms:

γ : G×P OLsuU → IndGL O
L
su (1.10)

γs : CG(s)◦ ×CP (s)◦ OCL(s)◦

u UCP (s)◦ → Ind
CG(s)◦

CL(s)◦ O
CL(s)◦

u (1.11)

Lemma 1.15. Let γ and γs be as in (1.10) and (1.11), respectively. Set OG := IndGL O
L
su and

OCG(s)◦ := Ind
CG(s)◦

CL(s)◦ O
CL(s)◦

u . Then:

(i) Birationality of γ implies birationality of γs.

(ii) Suppose in addition that CG(s) = CG(s)◦. If γs is birational, then γ is birational. In

particular, if [G,G] is simply-connected, this is always the case.

Proof. Notice that Lemma 1.14 applies also to (1.11), so that we can make use of Corollary 1.5

(iv) as in the proof of Lemma 1.7.

(i) Suppose γ is birational. Let v ∈ OCL(s)◦

u UCP (s)◦∩OCG(s)◦ . Then sv ∈ OG = G·(sOCG(s)◦)

by (1.9) and sv ∈ sOCL(s)◦

u UCP (s)◦ ⊂ OLsu U , so that sv ∈ OLsuU ∩ O
G. Since v ∈ CG(s)◦, the

unipotent part of sv is v. Birationality of γ yields CG(sv) ≤ P , so CCG(s)◦(v) ≤ CCG(s)(v) ≤ P .

Now CCG(s)◦(v) ≤ CG(s)◦, hence CCG(s)◦(v) ≤ P ∩ CG(s)◦ = CP (s)◦ and γs is birational.

(ii) We assume CG(s) connected and γs birational and show that γ is birational. Choose

an element sv ∈ sOCG(s)◦ ∩sOCL(s)◦UCP (s)◦ ⊂ OG ∩OLsuUP . Then CG(sv) = CCG(s)◦(v) ≤
CP (s)◦ ≤ P .

The following example shows that in general, the birationality of γs does not imply the

birationality of γ.

Example 1.16. Let G = PSp4(C). Let s =

[−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]
∈ G. Let Θ = {α2} and consider the

standard parabolic P := PΘ with Levi decomposition P = LU , where L := LΘ. Notice that

CG(s)◦ � CG(s) and that CL(s)◦ = L. Let u be in the regular unipotent class of L. Then

Ind
CG(s)◦

L OLu = OCG(s)◦

v with v =

[
1 0 0 −1
0 1 1 0
0 0 1 0
0 0 0 1

]
while IndGL O

L
su = Osv. The map γs as in (1.11)

is birational, since CCG(s)◦(v) ≤ CP (s)◦. On the other hand, γ as in (1.10) is not birational,

because CG(sv) 6≤ P , for example

[
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

]
∈ CG(sv) \ P .

1.3.2 Birationality for induction of conjugacy classes

In this section we discuss the definition of birational induction of a class Osv ∈ G/G.

Definition 1.17. Let su ∈ L and let O = IndGL O
L
su. We say that O is:
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(a) birationally induced from (L,OLsu) if the generalized Springer map

γ : G×P OLsuU → IndGL O
L
su

defined in (1.10) is birational;

(b) weakly birationally induced from (L,OLsu) if the generalized Springer map

γs : CG(s)◦ ×CP (s)◦ OCL(s)◦

u UCP (s)◦ → Ind
CG(s)◦

CL(s)◦ O
CL(s)◦

u

defined in (1.11) is birational.

Remark 1.18. It is a consequence of Lemma 1.15 that if Osv ∈ G/G is birationally induced from

(L,OLsu) then it is also weakly birationally induced from (L,OLsu). Moreover, by Lemma 1.15, the

two notions coincide in the case that [G,G] is simply-connected or when O = G · (zu) = zOu for

z ∈ Z(G) and u ∈ U (this is the case if and only if the inducing orbit is zOL with OL ∈ UL/L).

Definition 1.17 (a) seems to be the natural way to extend Definition 1.33 to the group case. On

the other hand, Definition 1.17 (b) can be dealt with more easily, allowing a straight-forward

reduction to the Lie algebra setting, as we will see later.

We may drop one, or both of the elements of the pair of inducing data (L,OLsu) in the notation

when they are clear from the context or they are not relevant. In particular, we will say that

the class OG ∈ G/G is (non-trivially) birationally induced (resp. weakly birationally induced)

if there exist a proper Levi subgroup L � G and a conjugacy class OL ∈ L/L such that OG is

birationally induced (resp. weakly birationally induced) from (L,OL).

Definition 1.19. A unipotent conjugacy class in G is said to be birationally rigid if it cannot

be birationally induced from a unipotent class OL inside a proper Levi L � G.

1.3.3 Springer isomorphisms and isogenies

We extend all results on birationality of induction of nilpotent orbits to the case of unipotent

classes. The main instrument to perform this work is a Springer isomorphism φ : N → U . We

prove that the Springer isomorphism is compatible with induction of unipotent classes (resp. of

nilpotent orbits) and preserves birationality.

Lemma 1.20. Fix a Levi subgroup L ≤ G, set l := Lie(L) and let OL ∈ Nl/L.

(i) An orbit O ∈ N/G is induced from (l,OL) if and only if φ(O) is induced from (L, φL(OL)).

In particular, rigid orbits in g correspond to rigid unipotent classes in G.

(ii) An orbit O ∈ N/G is birationally induced from (l,OL) if and only if φ(O) is birationally

induced from (L, φL(OL)). In particular, birationally rigid orbits in g correspond to bira-

tionally rigid classes in G.

Proof. (i) follows from definitions of induction, (ii) is a consequence of Corollary 1.5 (iii) and the

fact that Springer isomorphisms preserves centralizers.
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Isogenies are compatible with induction of unipotent classes and birationality is preserved.

Lemma 1.21. Let π : G→ G be an isogeny. Fix a Levi subgroup L ≤ G and let l := Lie(L); let

OL ∈ UL/L.

(i) A class O ∈ U/G is induced from (L,OL) if and only if the class π(O) is induced from

(π(L), π(OL)).

(ii) A class O ∈ U/G is birationally induced from (L,OL) if and only if π(O) is birationally

induced from (π(L), π(OL)).

Proof. Since kerπ ⊂ Z(G) consists of semisimple elements, the isogeny π yields an identification

between the unipotent varieties UG and UG. We have Lie(G) = Lie(G) = g and Lie(L) =

Lie(π(L)) = l. Let O ∈ N/G be such that φG(O) = O and OL ∈ Nl/L be such that φL(OL) =

OL. Then φG(O) = π(O) and φπ(L)(O
L) = π(OL). By Lemma 1.20, O ∈ U/G is (birationally)

induced from (L,OL) if and only if O is (birationally) induced from (l,OL) if and only if π(O)

is (birationally) induced from (π(L), π(OL)).

Similarly to the case of nilpotent orbits, birationality of induction of unipotent classes only

depends on the G-conjugacy class of the inducing pair (L,OL).

Lemma 1.22. Consider two parabolic subgroups P,Q ≤ G with Levi decompositions P =

LUP , Q = LUQ respectively. Let OL ∈ UL/L and set O = IndGL (OL). Then the generalized

Springer map γP : G ×P (OLUP ) → O is birational if and only if the generalized Springer map

γQ : G×Q (OLUQ)→ O is birational.

Proof. Set p := Lie(P ), q := Lie(Q) with Levi decompositions p = l n np and q = l n nq,

respectively. Let OL ∈ Nl/L (resp. O ∈ N/G) such that φL(OL) = OL (resp. φ(O) = O).

Consider the generalized Springer maps γp : G×P (OL +np)→ O and γq : G×Q (OL +nq)→ O.

By Lemma 1.20 (ii), γP (resp. γQ) is birational if and only if γp (resp. γq) is birational. We

conclude by Lemma 1.11.

Remark 1.23. Let ϑ ∈ Aut(G), let L ≤ G be a Levi subgroup and OL ∈ L/L. Then ϑ preserves

parabolic subgroups, their Levi decompositions, and unipotent varieties of Levi subgroups. Thus,

ϑ(IndGL O
L) = IndGϑ(L) ϑ(OL). By Corollary 1.5 (iii), birationality of unipotent induction is pre-

served under action by Aut(G) on the inducing data because ϑ maps centralizers to centralizers.

In particular, for g ∈ G and OLu ∈ UL/L, the class OG := IndGL (OLu ) is birationally induced from

(L,OLu ) if and only if OG is birationally induced from (gLg−1,OgLg
−1

gug−1).

Remark 1.24. By Lemma 1.21 (ii), the notion of birational rigidity for a unipotent conjugacy

class does not depend on the isogeny class of the group. For a Levi subgroup L ≤ G and

ϑ ∈ Aut(G), a class OLu ∈ UL/L is birationally rigid in L if and only if Oϑ(L)
ϑ(u) is birationally rigid

in ϑ(L).

Transitivity of birational induction also holds for unipotent classes.
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Proposition 1.25. Consider a parabolic subgroup P ≤ G with Levi decomposition P = LU and

let Q ≥ P have Levi decomposition Q = MV with L ≤ M and U ≥ V . Consider P ∩M , a

parabolic subgroup of M with Levi decomposition of P ∩M = L(U ∩M). Let OL ∈ UL/L; set

OM := IndML O
L and OG := IndGL O

L = IndGM O
M . We have the generalized Springer maps:

γGL : G×P OLU � OG,

γML : M ×P∩M OL(U ∩M) � OM ,

γGM : G×Q OMV � OG.

The map γGL is birational if and only if the maps γML and γGM are birational.

Proof. Thanks to the Springer isomorphism, one can reduce to the situation of Lemma 1.12 and

conclude by Lemma 1.20.

The sufficient condition of Lemma 1.13 can be restated as follows.

Lemma 1.26. Let u ∈ U and let π : G → G be the quotient to the adjoint group. Suppose

CG(π(u)) = CG(π(u))◦. If OGu is induced from (L,OL) for a Levi subgroup L ≤ G and some

OL ∈ UL/L, then OGu is birationally induced from (L,OL).

Proof. This follows from Lemmas 1.20, 1.21 and 1.13.

1.3.4 Birationally rigid unipotent classes in simple groups; examples

We conclude this section with some examples.

Example 1.27. If G is simple of type A and O ∈ N/G, then O is rigid if and only if it is

birationally rigid if and only if O is the zero orbit. By [35, Theorem 7.2.3] and adopting notation

therein, if O ∈ U/G corresponds to a partition p of n, then O = IndGL{0}, where L = Lpt

corresponds to the dual partition pt, as in (3). The induction is birational, by Lemma 1.13.

Indeed, for G adjoint, we have CG(ν) connected for all ν ∈ N , see [35, Corollary 6.1.6]. By

Lemma 1.20, if G is simple of type A and O ∈ U/G, then O is rigid if and only if it is birationally

rigid if and only if O = {1}.

Namikawa (in [76]) and Fu (in [45]) carried out the complete list of birationally rigid nilpotent

orbits for g simple. For the reader’s convenience and for completeness of this work, we list them:

by Lemmas 1.20 and 1.21 giving this list is equivalent to giving the list of birationally rigid

unipotent classes in G simple.

Namikawa dealt with birational rigidity for nilpotent orbits in simple classical Lie algebras.

If g is a simple Lie algebra of type A, then the only birationally rigid orbit is the only rigid

orbit, i.e., the null orbit, as already seen in Example 1.27.

Now let g be a simple Lie algebra of type B,C,D. Let d = [d1, . . . , dr] denote the partition

corresponding to a nilpotent orbit O. Then O is birationally rigid in g if and only if d has full
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members, i.e., 1 = dr and di − di+1 ≤ 1 for all i = 1, . . . , r − 1, with the exception of the case

d = [22n, 12] in Dn for n ≥ 3 odd, which is birationally induced as a Richardson orbit.

Fu worked out the exceptional cases:

- in types G2,F4,E6 birationally rigid orbits coincide with rigid ones;

- in type E7, the set of birationally rigid orbits consists of rigid orbits together with the two

orbits with Bala-Carter label A2 +A1 and A4 +A1;

- in type E8, the set of birationally rigid orbits consists of rigid orbits together with the two

orbits with Bala-Carter label A4 +A1 and A4 + 2A1.

For a complete list of rigid nilpotent orbits in the exceptional cases, we refer to [73, Appendix

5.7].

Remark 1.28. Recall that an adjoint orbit in g (resp. a conjugacy class in G) is said to be

characteristic if it is stable under all Lie algebra automorphisms of g (resp. under all group

automorphisms of G). From [12, Lemma 3.9], we deduce that all nilpotent orbits O in g simple

are characteristic, except for the following list:

- for g of type D4, the group of automorphisms of g acts transitively on {O[42],O
′
[42],O[5,13]}

and on {O[24],O
′
[24],O[3,15]}.

- for g of type D2m,m ≥ 3, an automorphism permutes Od and O′d for every very even

partition d ` 4m.

It follows that all nilpotent birationally rigid orbits in a simple Lie algebra are characteristic,

analogously for all unipotent birationally rigid classes in simple groups.

Example 1.29. Let G be simple of type C and let Ou be the subregular unipotent class of

G. Let Θ1 = {α1} and Θn = {αn}. Set Li := LΘi , then Ou is induced both by (L1, {1}) and

(Ln, {1}). Observe that L1 and Ln are not conjugate in G, since α1 and αn have different root

length, see the criterion in [92, §2.2]. Let P1 (resp. Pn) be the standard parabolic subgroup of G

with standard Levi factor L1 (resp. Ln). A direct computation shows that CG(u) ≤ P1 so that

Ou is birationally induced from (L1, {1}), whereas the induction IndGLn{1} is not birational, as

CG(u) 6≤ Pn. In this case Lemma 1.26 fails, as if π : G → G denotes the isogeny to the adjoint

group, CG(π(u))/CG(π(u))◦ ' Z/2Z.

Example 1.30. Every rigid conjugacy class is birationally rigid. The converse is not true: if

G is simple of type C3, let OG be the unipotent class indexed by the partition [22, 12]. This is

birationally rigid, as it satisfies the full-members criterion. Nonetheless, codimGO = dimLΘ =

codimLΘ{1}, where Θ = {α2, α3}. Since O ∈ U/G is uniquely determined by its dimension, we

have O = IndGLΘ
{1}.

We have seen in Example 1.29 that there exist Levi subgroups Li ≤ G and (birationally)

rigid unipotent classes OLi ∈ ULi/Li such that (L1,OL1) and (L2,OL2) are not G-conjugate,

but IndGL1
OL1 = IndGL2

OL2 . We will see in the next Section that this phenomenon does not

occur if we require birationality of the induction.
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1.4 Uniqueness of birational induction

In this Section we establish an explicit bijection between conjugacy classes in G and a set of

data which are “minimal” with respect to weakly birational induction. The result is a group

counterpart to the first assertion contained in [67, Theorem 4.4], where Losev identifies g/G with

the set of G-conjugacy classes of birationally minimal induction data.

Our strategy will be to start with a focus on the unipotent variety, adapting [67, Corollary

4.5] to the case of the conjugacy action of a group on itself, and then derive the more general

theorem.

Definition 1.31. A unipotent birational induction datum is (L,OL) where L ≤ G is a Levi

subgroup, OL ∈ UL/L is birationally rigid and IndGL O
L is birationally induced from (L,OL).

We denote by B(G)u the set of all unipotent birational data of G.

Notice that G acts on B(G)u by simultaneous conjugacy on the pairs and that B(G)u/G is

finite.

Lemma 1.32. Let G be reductive and let OG ∈ U/G. Then there exists, up to G-conjugacy, a

unique pair (L,OL) ∈ B(G)u such that OG = IndGL O
L.

In other words, the map

B(G)u/G −→ U/G

[(L,OL)]∼ 7−→ IndGL O
L

is bijective.

Proof. For G reductive, U = U[G,G], hence we may assume G semisimple. Let G = G1 · · ·Gd
be the decomposition into simple factors, d ∈ N. The decomposition of G carries over to Levi

subgroups, parabolic subgroups and unipotent conjugacy classes. For L ≤ G a Levi subgroup

and OL ∈ UL/L, we write L =
∏d
i=1 Li with Li Levi subgroup of Gi and OL =

∏d
i=1O

Li

with OLi ∈ ULi/Li. Observe that Lusztig–Spaltenstein induction in G is compatible with this

decomposition. If u ∈ U , then u = u1 · · ·ud with ui uniquely determined and unipotent in Gi

for all i = 1, . . . , d and CG(u) =
∏d
i=1 CGi(ui). The induction IndGL O

L is birational if and only

if all inductions IndGiLi O
Li are so. Also, OL is birationally rigid in L if and only if each OLi is

birationally rigid in Li. Thus, we are reduced to proving the statement for each simple factor Gi.

This follows from [67, Corollary 4.5 (i)] and the Springer isomorphism (Lemma 1.20, Remark

1.24).

We give a group analogue of Losev’s definition of birationally minimal induction data.

Definition 1.33. A weakly birational induction datum is a triple (M, s,OM ) where: M ≤ G

is a pseudo-Levi subgroup, s ∈ Z(M) is such that Z(M)◦s satisfies (RP), OM ∈ UM/M is

birationally rigid and Ind
CG(s)◦

M OM is birationally induced from (M,OM ). We denote by B(G)

the set of weakly birational induction data of G.

21



G acts on B(G) by simultaneous conjugacy on the triples.

Remark 1.34. Let (M, s,OM ) ∈ B(G). Let L(M) := CG(Z(M)◦) be the Levi envelope of M ,

i.e., the smallest Levi subgroup of G containing M , [29, Definition 3.7]. Notice that CL(M)(s)
◦ =

CG(s)◦ ∩ L(M) = M , see the Proof of Lemma 0.2. Then IndGL(M)(L(M) · (sOM )) = G ·
(s Ind

CG(s)◦

M OM ) := OG and OG is weakly birationally induced from (L(M), L(M) · (sOM )) in

the sense of Definition 1.17 (b). For this reason, we will say that G · (s Ind
CG(s)◦

M OM ) is weakly

birationally induced from (M, s,OM ).

When [G,G] is simply-connected, we will omit the adverb “weakly”, i.e., we will say that

B(G) is the set of birational induction data of G and that G · (s Ind
CG(s)
M OM ) is birationally

induced from (M, s,OM ) ∈ B(G): this choice agrees with Remark 1.18.

Now we prove that every conjugacy class is weakly birationally induced in a unique way from

a triple of birational induction data, up to conjugacy.

Theorem 1.35. The following map is bijective:

B(G)/G→ G/G

[(M, s,OM )]∼ 7→ G · (s Ind
CG(s)◦

M OM ).

In particular, if [G,G] is simply-connected, every conjugacy class in G is birationally induced

in a unique way from an equivalence class of birational induction data.

Proof. We prove surjectivity. Let O = OGsu with s ∈ T , u ∈ K := CG(s)◦. By Lemma 1.32,

there exists, up to conjugacy in K, a unique (L,OL) ∈ B(K)u such that OKu = IndKL (OL). We

can assume T ≤ L so that L is a Levi subgroup of K with Z(K) ≤ Z(L). Hence, s ∈ Z(L) and

Z(L)◦s satisfies (RP) for L, by Lemma 0.2. In particular, L = CG(Z(L)◦s)◦ is a pseudo-Levi of

G and (L, s,OL) ∈ B(G) satisfies G · (s Ind
CG(s)◦

L OL) = O.

Now we prove injectivity. Let (M1, s1,OM1
u1

), (M2, s2,OM2
u2

) ∈ B(G) and suppose that

G · (s1 Ind
CG(s1)◦

M1
OM1
u1

) = G · (s2 Ind
CG(s2)◦

M2
OM2
u2

) (1.12)

where the unipotent classes Ind
CG(si)

◦

Mi
OMi
ui are birationally induced from (Mi,OMi

ui ) for i = 1, 2.

We can assume that s1 = s2 =: s ∈ T and set K := CG(s)◦. We have that (1.12) is equivalent to

CG(s) · (IndKM1
OM1
u1

) = CG(s) · (IndKM2
OM2
u2

).

If v ∈ IndKM1
OM1
u1

, then there exists g ∈ CG(s) such that gvg−1 ∈ IndKM2
OM2
u2

. Write g = w−1h

for suitable h ∈ M and w ∈ NG (T ) ∩ CG(s), and up to choosing hvh−1 instead of v as a

representative, we can assume that g = w−1 ∈ NG (T ) ∩ CG(s). Therefore, we have:

v ∈ w(IndKM2
OM2
u2

)w−1 = IndwKw
−1

wM2w−1 OwM2w
−1

wu2w−1 .

Since w acts as an automorphism of K, the induction is birational (Remark 1.23) and OwM2w
−1

wu2w−1

is birationally rigid (Remark 1.24), it follows that

v ∈ (IndKM1
OM1
u1

) ∩ (IndKwM2w−1 OwM2w
−1

wu2w−1 ).
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By Lemma 1.32, the pairs (M1,OM1
u1

) and (wM2w
−1,OwM2w

−1

wu2w−1 ) are conjugate in K, so the data

(M1, s1,OM1
u1

) and (M2, s2,OM2
u2

) are conjugate in G via g′w−1 for some g′ ∈ K.

The last statement is a consequence of Remark 1.18.
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CHAPTER

TWO

JORDAN CLASSES AND BIRATIONALITY

This Chapter begins with a collections of definitions and classic results on Jordan classes in a

reductive Lie algebra and in a reductive group) in Sections 2.1 and 2.2. Afterwards, we introduce

the new concepts of birational closure of a Jordan class and of weakly birational closure of Jordan

class: we describe these sets and we compare them in Sections 2.3 and 2.4. Finally, after recalling

how sheets can be defined in terms of regular closures of Jordan classes in Section 2.5, we conclude

with the original work of this Chapter. This is contained in Section 2.6, where we use results

from Sections 2.4 and 1.4 to define weakly birational sheets in G and prove that they form a

partition of G.

2.1 Decomposition classes of a Lie algebra

In [12, 13], decomposition classes of g (Zerlegungsklassen) were introduced to solve the problem

of the classification of sheets of g for the adjoint action of G. To any element σ + ν ∈ g we

can associate its decomposition datum (cg(σ),OCG(σ)
ν ). Then each decomposition data is a pair

consisting of a Levi subalgebra l ⊂ g (see §0.3) and an adjoint orbit OL ∈ Nl/L. Denote by

D(g) the set of decomposition data of elements of g. Then G acts by simultaneous conjugation

on D(g). We say that two elements of g are Jordan equivalent if their decomposition data are

conjugate in G. The decomposition class (or Jordan class) of ξ ∈ g is the set of all elements

of g which are Jordan equivalent to ξ and is denoted Jg(ξ). The decomposition classes of g

are parameterized by D(g)/G and the decomposition class associated to (the class of) the pair

(l,OL) ∈ D(g) is

Jg(l,OL) = Ad(G)(z(l)
reg

+ OL). (2.1)

In particular, for ξ = σ+ν, we define the decomposition class of ξ as Jg(ξ) := Jg(cg(σ),OCG(σ)
ν ).

From now on, we will omit the subscript g if clear from the context and simply write J. Denote

by J (g) the set of decomposition classes of g.
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Let (l,OL) ∈ D(g), then the closure and the regular closure of J(l,OL) are unions of decom-

position classes and admit a description in terms of induced adjoint orbits as follows:

J(l,OL) =
⋃
ζ∈z(l)

Ad(G)(ζ + Ind
cg(ζ)
l OL); (2.2)

J(l,OL)
reg

=
⋃
ζ∈z(l)

Ad(G)(ζ + Ind
cg(ζ)
l OL). (2.3)

In particular, for any (l,OL) ∈ D(g), we have J(l,OL)
reg

∩N = Indg
l O

L.

If (l,OL) and (m,OM ) ∈ D(g), then J(m,OM ) ⊂ J(l,OL)
reg

if and only if (l,OL) ∼G
(l0,O

L0) with l0 ⊂ m and Indm
l0 O

L0 = OM .

For (l,OL) ∈ D(g), we have J(l,OL) = J(l,OL) if and only if z(l) = z(l)
reg

= z(g) (equiva-

lently l = g) and OL is closed (equivalently it is the null orbit), i.e., if and only if J(l,OL) = z(g).

A decomposition class J′ of g contained in J(l,OL)
reg

is closed therein if and only if J′
reg

= J′

and this is the case if and only if J′ = z(g) + Indg
l O

L.

2.2 Jordan classes of a group

We recall the notions of Jordan classes in a reductive group, introduced in [69] and object of

investigation in [29].

Definition 2.1. A decomposition datum of G is a triple τ = (M,Z(M)◦z,OM ) where M ≤ G

is a pseudo-Levi subgroup, Z(M)◦z is a connected component of Z(M) satisfying (RP) for M

and OM ∈ UM/M . We denote by D(G) the set of decomposition data of G.

The group G acts on D(G) by simultaneous conjugacy on the triples with finitely many

orbits. Indeed, pseudo-Levi subgroups up to conjugacy admit a description in terms of roots,

thus being finitely many. Moreover, the number of connected components of an algebraic group

and the number of unipotent classes of a reductive algebraic group is finite. The map assigning to

any su ∈ G its decomposition datum (CG(s)◦, Z(CG(s)◦)◦s,OCG(s)◦

u ) is G-equivariant. Jordan

classes of G are defined as the preimages of G-equivalence classes in D(G).

Definition 2.2. Two elements su, rv ∈ G are Jordan equivalent if their decomposition data are

conjugate in G. We denote by JG(su) the Jordan class of su, i.e., the equivalence class of all

elements of G which are Jordan equivalent to su.

We have JG(su) = G · ((Z(CG(s)◦)◦s)reg OCG(s)◦

u ). We denote by J (G) the set of Jordan

classes in G. The group G is partitioned into finitely many Jordan classes, which are in one-to-

one correspondence with D(G)/G. As Jordan classes only depend on the decomposition data,

for τ = (M,Z(M)◦z,OM ) ∈ D(G), we write JG(τ) := G · ((Z(M)◦z)reg OM ). Jordan classes are

smooth irreducible locally closed subvarieties of G, they are unions of equidimensional conjugacy

classes. The closure of a Jordan class is a union of Jordan classes. From now on we will omit the
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subscript G whenever clear from the context, and simply write J . If τ = (M,Z(M)◦z,OM ) ∈
D(G), we have:

J(τ) =
⋃

t∈Z(M)◦z

G · (t Ind
CG(t)◦

M OM ); (2.4)

J(τ)
reg

=
⋃

t∈Z(M)◦z

G · (t Ind
CG(t)◦

M OM ). (2.5)

Since J(τ)
reg

is open in J(τ), it is irreducible and locally closed in G.

Let τ = (M,Z(M)◦s,OM ) ∈ D(G), then J(τ) is closed in G if and only if Z(M)◦s =

(Z(M)◦s)reg = Z(G)◦s and OM is closed, i.e., it is the unipotent class of the identity. One can

verify that this happens if and only if u = 1 and M/Z(G)◦ is semisimple, i.e., if and only if J

consists of semisimple isolated elements.

Let τ1, τ2 ∈ D(G) such that J(τ2) ⊂ J(τ1)
reg

. Then J(τ2) is closed in J(τ1)
reg

if and only

if J(τ2)
reg

= J(τ2) if and only if τ2 = (M,Z(M)◦s,OM ) with M/Z(G)◦ semisimple, i.e., J(τ2)

consists of isolated elements (not necessarily semisimple).

We remark that, in contrast with the Lie algebra situation, not all (regular) closures of

Jordan classes contain a unipotent conjugacy class, even up to a central element. In fact,

J(M,Z(M)◦s,O)
reg
∩ Z(G)U 6= ∅ if and only if J(M,Z(M)◦s,O) ∩ Z(G) 6= ∅ and the lat-

ter holds if and only if M is a Levi subgroup. Moreover, J(M,Z(M)◦s,O)
reg
∩ U 6= ∅ if and

only if 1 ∈ J(M,Z(M)◦s,O) if and only if M is a Levi subgroup and Z(M)◦s = Z(M)◦, by (2.5)

and [29, proof of Proposition 5.6].

Thanks to the choice of the maximal torus T , we can define a finite subset T (G) ⊂ D(G)

admitting an action of the Weyl group W of G which amounts to considering the G-action on

D(G), thus leading to a simpler parameterization of J (G).

Proposition 2.3. Let T (G) = {(M,Z(M)◦s,OM ) ∈ D(G) | T ≤ M}. Then the orbit set

T (G)/W parameterizes J (G).

Proof. Observe that T ≤ M implies Z(M)◦s ⊂ T . Moreover, NG(T ) acts by simultaneous

conjugacy on the elements of T (G) and T is in the kernel of this action, thus it descends to

a W -action. We show that D(G)/G is in bijection with T (G)/W . Any element of D(G) is

conjugate to an element of T (G) because all semisimple classes admit a representative in T and

connected centralizers of such elements are pseudo-Levi subgroups containing T . We conclude by

showing that two representatives in T (G) are conjugate in G if and only if they are conjugate in

NG(T ). Let (M1, Z(M1)◦s1,OM1) and (M2, Z(M2)◦s2,OM2) be elements of T (G) and assume

(M2, Z(M2)◦s2,OM2) = g · (M1, Z(M1)◦s1,OM1) for some g ∈ G. Since all maximal tori in a

pseduo-Levi subgroup are conjugate, there exists m ∈ M2 such that ẇ := mg ∈ NG(T ), and

(M2, Z(M2)◦s2,OM2) = ẇ · (M1, Z(M1)◦s1,OM1).
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2.3 Birational closure of decomposition classes

As in [67, §4], to (l,OL) ∈ D(g) we can associate the set

Bir(z(l),OL) := {ζ ∈ z(l) | Indg
l (ζ + OL) is birationally induced from (l, ζ + OL)} = (2.6)

= {ζ ∈ z(l) | Ind
cg(ζ)
l OL is birationally induced from (l,OL)}, (2.7)

where the second equivalent description can be deduced from Lemma 1.9. In particular, the set

Bir(z(l),OL) only depends on the pair (l,OL) and not on the parabolic subgroup of G with Levi

factor L chosen for the generalized Springer map: this is stated and proven in [67, Proposition

4.2], but it can be deduced also from Lemma 1.11.

Always in [67, Proposition 4.2], it is stated and proven that Bir(z(l),OL) is an open subset

of z(l) obtainable from z(l) by discarding a finite number of vector spaces. We would like to give

a different proof of the same result which uses more elementary arguments. To this extent, we

define the set Ll := {m ⊃ l | m is a Levi subalgebra of g} and the set Zl := {z(m) | m ∈ Ll}.
Inclusion of subalgebras endows the sets Ll and on Zl with partial orders. Both sets admit

maximum (g ∈ Ll and z(l) ∈ Zl) and minimum (l ∈ Ll and z(g) ∈ Zl) elements.

Lemma 2.4. The posets Ll and Zl are finite and anti-isomorphic.

Proof. We can assume l is standard, then there is σ ∈ h such that cg(σ) = l. We claim that

elements of Ll can be written as centralizers in g of elements in z(l). By [96, Theorem 29.5.7],

if m is a Levi subalgebra of g, then m = cg(µ) for any µ ∈ z(m)
reg

. We observe that if l ⊂ m,

then z(m) ⊂ cg(l) = z(l), always by [96, Theorem 29.5.7]. This proves the claim and grants the

finiteness of Ll: if m ∈ Ll, then m = cg(µ) for some µ ∈ z(l) and Φµ ⊃ Φσ, but since Φµ ⊂ Φ, we

have only finitely many choices for Φµ. The last statement follows once more from [96, Theorem

29.5.7]: the map Ll → Zl defined by l 7→ z(l) and its inverse z 7→ cg(z) reverse inclusions.

Lemma 2.5. Let (l,OL) ∈ D(g) and let σ ∈ z(l).

(i) If σ ∈ Bir(z(l),OL), then µ ∈ Bir(z(l),OL) for all µ ∈ z(l) such that cg(µ) ⊂ cg(σ).

(ii) If σ /∈ Bir(z(l),OL), then µ /∈ Bir(z(l),OL) for all µ ∈ z(l) such that cg(µ) ⊃ cg(σ).

Proof. We prove (i). Thanks to (the proof of) Lemma 2.4, we have the inclusions of Levi

subalgebras l ⊂ cg(µ) ⊂ cg(σ). The induction Ind
cg(σ)
l OL factorizes as Ind

cg(σ)

cg(µ)(Ind
cg(µ)
l OL) and

by Lemma 1.12, our assumption implies that Ind
cg(µ)
l OL is birationally induced from (l,OL),

i.e., µ ∈ Bir(z(l),OL). The proof of (ii) is similar.

Lemma 2.6. Let (l,OL) ∈ D(g). Then:

(i) The inclusion z(l)
reg ⊂ Bir(z(l),OL) always holds. In particular, Bir(z(l),OL) is a non-

empty subset of z(l).

(ii) The set Bir(z(l),OL) is the complement to a finite (possibly empty) union of elements in

Zl. In particular, Bir(z(l),OL) is open in z(l).

(iii) We have Bir(z(l),OL) = z(l) if and only if it contains z(g) if and only if it contains 0.
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Proof. (i) For ζ ∈ z(l)
reg

, we have cg(ζ) = l. Hence Ind
cg(ζ)
l OL = Indl

l O
L = OL which is

trivially birationally induced from (l,OL).

(ii) By Lemmas 2.5 and 2.4, if m ∈ Ll is such that Indm
l OL is not birationally induced from

(l,OL) then z(m) ⊂ (z(l) \ Bir(z(l),OL)). By Lemma 2.4, we can consider the subset

Z ′(l,OL) := {z ∈ Zl | z ⊂ (z(l) \ Bir(z(l),OL))}. (2.8)

The union of vector spaces which are maximal elements in Z ′(l,OL) is the sought union. It is a

closed subset of z(l), hence its complement is open.

(iii) follows directly from (ii).

This work lays foundations for the following definition, which generalizes the concept of

birational sheet defined in [67, §4.2].

Definition 2.7. For all (l,OL) ∈ D(g), we define the birational closure of the decomposition

class J(l,OL) as the set

J(l,OL)
bir

:=
⋃

ζ∈Bir(z(l),OL)

Indg
l (ζ + OL).

Remark 2.8. For J ∈ J (g), we have J ⊂ J
bir ⊂ J

reg
by construction and Lemma 2.6 (i) and

J
bir

is G-stable, always by construction.

Proposition 2.9. Let J ∈J (g). Then J
bir

is obtained from J
reg

by neglecting a finite number

of regular closures of other decomposition classes of J (g), and it is open in J
reg

. In partic-

ular, birational closures of decomposition classes are unions of decomposition classes and are

irreducible locally closed subsets of g.

Proof. Let J := J(l,OL) with (l,OL) ∈ D(g). We need to show that

J
reg \ Jbir =

⋃
ζ∈z(l)\Bir(z(l),OL)

Indg
l (ζ +OL) (2.9)

is a union of regular closures of decomposition classes in g. Consider the set Z ′(l,OL) defined

in (2.8). By Lemma 2.6 (ii), the set z(l) \ Bir(z(l),OL) is the finite union of maximal elements

in Z ′(l,OL). We show that each z′ maximal in Z ′(l,OL) gives rise to the regular closure of

a decomposition class in (2.9). Set l′ := cg(z′) and OL′ := Indl′

l OL. Then, by transitivity of

induction,⋃
ζ∈z′

Indg
l (ζ +OL) =

⋃
ζ∈z′

Indg
l′(Indl′

l (ζ +OL)) =
⋃
ζ∈z′

Indg
l′(ζ +OL

′
) = J(l′,OL′)

reg

.

Finally, we show that J
reg \ Jbir is closed. If J ⊂ g(n), then J

reg
, J
bir ⊂ g(n), hence also

J
reg \ Jbir ⊂ g(n). Each component J′

reg ⊂ J
reg \ Jbir satisfies J′

reg
= J′ ∩ g(n), i.e., it is closed

in g(n). This implies that J
reg \Jbir is closed in g(n), hence it is closed in J

reg
. The last assertion

follows since J
reg

is an irreducible locally closed subset of g.
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2.4 Birational closures of Jordan classes

We would like to proceed in an analogous way to define the birational closure of a Jordan class in

a group, but Definition 1.17 suggests that a bisection is needed. For (M,Z(M)◦s,OM ) ∈ D(G),

we define the sets

Bir(Z(M)◦s,OM ) := {z ∈ Z(M)◦s | IndGL(M)(L(M) · (zOM )) is birationally induced}; (2.10)

WBir(Z(M)◦s,OM ) := {z ∈ Z(M)◦s | Ind
CG(z)◦

M OM is birationally induced} = (2.11)

= {z ∈ Z(M)◦s | IndGL(M)(L(M) · (zOM )) is weakly birationally induced}.

Remark 2.10. The definition in (2.11) does not depend on the choice of a parabolic subgroup,

thanks to Lemma 1.22. Moreover, if z ∈ (Z(M)◦s)reg, then CG(z)◦ = M , hence ∅ 6= (Z◦s)reg ⊂
WBir(Z(M)◦s,OM ). By Remarks 1.18 and 1.34, we have the inclusion Bir(Z(M)◦s,OM ) ⊂
WBir(Z(M)◦s,OM ). As a consequence of Lemma 1.15, when [G,G] is simply-connected, we

have Bir(Z(M)◦s,OM ) = WBir(Z(M)◦s,OM ); on the other hand, for a general G, the inclusion

can be proper as the following example shows.

Example 2.11. Consider G = SL2(C), let G = PSL2(C) and let π : G → G, π(g) = ḡ be the

isogeny. Let us consider the torus T ≤ G given by diagonal elements, let B ≤ G be the Borel

subgroup consisting of upper triangular matrices in G, let U be the unipotent radical of B and

let B = π(B) and U = π(U). Let τ = (T , T , {ē}) ∈ D(G) and let s := diag[i,−i]. Then one can

verify that s̄ ∈WBir(T , {ē}) \ Bir(T , {ē}). The generalized Springer map (1.10) reads:

γ : G×B (s̄U)→ G · (s̄U) = OGs̄ .

This map is not birational, because CG(s̄) = NG(T ) � B, namely γ is a 2 : 1 covering; on the

other hand, γs̄ as in (1.11) is trivially birational.

We now describe the structure of the set WBir(Z(M)◦s,OM ) for a pseudo-Levi M ≤ G and

OM ∈ UM/M . Thanks to Remark 2.10, when [G,G] is simply-connected, the results will give a

description of the set Bir(Z(M)◦s,OM ). We mimic the procedure adopted in Lemmas 2.4, 2.5

and 2.6: to avoid repetitions we only focus on the discrepancies between the situation in the

group and the Lie algebra.

Definition 2.12. For a pseudo-Levi subgroup M ≤ G and an element s ∈ Z(M) such that

Z(M)◦s satisfies (RP) for M , we define:

ZZ(M)◦s := {Z(CG(z)◦)◦z | z ∈ Z(M)◦s}. (2.12)

Remark 2.13. We prove that the set defined in (2.12) is finite. We can assume T ≤ M , so that

z ∈ Z(M) ≤ T hence there are finitely many possibilities for the root system Φz of CG(z)◦,

which must satisfy Φs ⊂ Φz ⊂ Φ, moreover the connected components of Z(CG(z)◦) are finitely

many.
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We write Z(Z(M)◦s) = {Z(Mi)
◦si | i ∈ I} for a finite index set I and suitable si ∈ Z◦s with

CG(si)
◦ = Mi. Thanks to Lemma 0.2, we can define a map:

ZZ(M)◦s → {Mi ≤ G |M is a Levi subgroup of Mi}

Z(Mi)
◦si 7→ CG(Z(Mi)

◦si)
◦ = Mi.

The set ZZ(M)◦s is partially ordered by inclusion: if T ≤ M1 ≤ M2, with M1,M2 pseudo-Levi

subgroups of G, then Z(M2) ≤ Z(M1) and Z(M2)◦z ⊂ Z(M1)◦z for all z ∈ Z(M2). The max-

imum of ZZ(M)◦s is Z(M)◦s and its minimal elements are all connected components Z(Mi)
◦si

consisting of isolated elements. The above map reverses inclusions: Z(Mi)
◦si ⊂ Z(Mj)

◦sj im-

plies Mj ≤Mi.

Lemma 2.14. Let (M,Z(M)◦s,OM ) ∈ D(G), set Z := Z(M). Let z ∈ Z◦s.
(i) If Ind

CG(z)◦

M OM is birationally induced from (M,OM ), then Ind
CG(z′)◦

M OM is birationally

induced from (M,OM ) for all z′ ∈ Z◦s such that CG(z′)◦ ≤ CG(z)◦.

(ii) If Ind
CG(z)◦

M OM is not birationally induced from (M,OM ), then Ind
CG(z′)◦

M OM is not bi-

rationally induced from (M,OM ) for all z′ ∈ Z◦s such that CG(z′)◦ ≥ CG(z)◦.

Proof. The proof goes as in Lemma 2.5.

Remark 2.15. For (M,Z(M)◦s,OM ) ∈ D(G), set Z := Z(M) and define

Z ′(Z◦s,OM ) := {Z(Mi)
◦si ∈ Z(Z◦s) | IndMi

M O
M is not birational}. (2.13)

By Remark 2.13, this set is finite and by Lemma 2.14, it is a subposet of ZZ◦s. Let Ẑ(Z◦s,OM ) be

the subset of maximal elements in Z ′(Z◦s,OM ). Observe that for all components Z(CG(z)◦)◦z ∈
Z ′(Z(M)◦s,OM ), we have that M is a Levi subgroup in CG(z)◦.

Now we prove that the set WBir(Z◦s,OM ) is the complement in Z◦s of the finite union

(possibly empty) of shifted tori which are elements of Z ′(Z◦s,OM ).

Lemma 2.16. Let (M,Z(M)◦s,OM ) ∈ D(G), set Z := Z(M).

(i) The inclusion (Z◦s)reg ⊂WBir(Z◦s,OM ) always holds. In particular, WBir(Z◦s,OM ) is

a non-empty subset of Z◦s.

(ii) The set WBir(Z◦s,OM ) is the complement to a finite (possibly empty) union of shifted tori

of G contained in Z◦s. Namely, with the notation of Remark 2.15, we have:

Z◦s \WBir(Z◦s,OM ) =
⋃

Ẑ(Z◦s,OM )

Z(Mi)
◦si. (2.14)

In particular, WBir(Z◦s,OM ) is open in Z◦s.

(iii) We have WBir(Z◦s,OM ) = Z◦s if and only if z ∈WBir(Z◦s,OM ) for all isolated z ∈ Z◦s.

Proof. The proof is similar to the one of Lemma 2.6. The main difference is in (iii), which follows

from the fact that isolated elements are minimal elements of ZZ◦s, see Remark 2.13.
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Definition 2.17. Let su ∈ G.

(a) The weakly birational closure of J(su) is:

J(su)
wbir

:=
⋃

z∈WBir(Z(CG(s)◦)◦s,OCG(s)◦
u )

G ·
(
z Ind

CG(z)◦

CG(s)◦ O
CG(s)◦

u

)
, (2.15)

where WBir(Z(CG(s)◦)◦s,OCG(s)◦

u ) is as in (2.11).

(b) We also define the set:

J(su)
bir

:=
⋃

z∈Bir(Z(CG(s)◦)◦s,OCG(s)◦
u )

G ·
(
z Ind

CG(z)◦

CG(s)◦ O
CG(s)◦

u

)
, (2.16)

where Bir(Z(CG(s)◦)◦s,OCG(s)◦

u ) is as in (2.10).

Remark 2.18. For su ∈ G, the sets J(su)
bir

and J(su)
wbir

are G-stable by construction. We

have the following inclusions, by construction: J(su) ⊂ J(su)
wbir

⊂ J(su)
reg

and J(su)
bir
⊂

J(su)
wbir

. Notice that, if [G,G] is not simply-connected, we may have J(su) 6⊂ J(su)
bir

, as in

Example 2.11.

Lemma 2.19. Definition 2.17 is independent of the representative of the Jordan class. In

particular, for τ ∈ D(G), the sets J(τ)
bir

and J(τ)
wbir

are well-defined and if τ and τ ′ represent

the same class in D(G)/G, then J(τ)
bir

= J(τ ′)
bir

and J(τ)
wbir

= J(τ ′)
wbir

.

Proof. We show that J(su) = J(rv) implies J(su)
wbir

= J(rv)
wbir

. Let s1u1 ∈ J(su)
wbir

,

namely we can assume that s1 ∈ Z(CG(s)◦)◦s and that OCG(s1)◦

u1
= Ind

CG(s1)◦

CG(s)◦ (OCG(s)◦

u ) is

birationally induced from (CG(s)◦,OCG(s)◦

u ). By hypothesis, (CG(s)◦, Z(CG(s)◦)◦s,OCG(s)◦

u )

and (CG(r)◦, Z(CG(r)◦)◦r,OCG(r)◦

v ) are conjugate by an element g ∈ G. Hence, gs1g
−1 ∈

Z(CG(r)◦)◦r and

gu1g
−1 ∈ g(Ind

CG(s1)◦

CG(s)◦ O
CG(s)◦

u )g−1 = Ind
gCG(s1)◦g−1

gCG(s)◦g−1 (gOCG(s)◦

u g−1) =

= Ind
CG(gs1g

−1)◦

CG(r)◦ OCG(r)◦

v ,

which is birationally induced from (CG(r)◦,OCG(r)◦

v ) by Remark 1.23. This yields gs1u1g
−1 =

(gs1g
−1)(gu1g

−1) ∈ J(rv)
wbir

, the proof follows from G-stability of J(rv)
wbir

. The proof for

J(su)
bir

is similar, once noticed that the Levi envelopes of conjugate pseudo-Levi subgroups are

conjugate.

We now focus on weakly birational closures of Jordan classes and state the main structural

results on them.

Corollary 2.20. Let J1, J2 ∈J (G). If J1 ⊂ J2
wbir

, then J1
wbir ⊂ J2

wbir
.

Proof. This follows from Definition 2.17 and Proposition 1.25.
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Proposition 2.21. Let J ∈ J (G). Then J
wbir

is obtained from J
reg

by neglecting a finite

number of regular closures of other Jordan classes of G, and it is open in J
reg

. In particular,

J
wbir

is a union of Jordan classes in G and it is an irreducible locally closed subset of G.

Proof. Let J := J(τ) with τ = (M,Z(M)◦s,OM ) ∈ D(G) and let Z := Z(M). Consider the

set Ẑ(Z◦s,OM ) defined in Remark 2.15, and write Ẑ(Z◦s,OM ) = {Z(Mi)
◦si | i ∈ Î}, for a

suitable index set Î. By Lemma 2.16 (ii), we have Bir(Z◦s,OM ) = Z◦s \
⋃
i∈Î Z(Mi)

◦si. Since

Z◦s = Z◦si for all i ∈ Î, Lemma 0.2 implies that Z◦si satisfies (RP) for M and CG(s)◦ is a Levi

subgroup of CG(si)
◦. Then:

J
reg \ Jwbir =

⋃
i∈Î

 ⋃
t∈Z(CG(si)◦)◦si

G · (t Ind
CG(t)◦

M OM )

 .

Set OCG(si)
◦

:= Ind
CG(si)

◦

M OM and τi := (CG(si)
◦, Z(CG(si)

◦)◦si,OCG(si)
◦
) ∈ D(G) for all i ∈ Î.

Then, by transitivity of induction:⋃
t∈Z(CG(si)◦)◦si

G · (t Ind
CG(t)◦

M OM ) =
⋃

t∈Z(CG(si)◦)◦si

G · (t Ind
CG(t)◦

CG(si)◦
OCG(si)

◦
) = J(τi)

reg
.

For the proof of the final statement one can proceed similarly to Proposition 2.9.

Remark 2.22. Suppose that [G,G] is simply-connected. By Remark 1.18, J(τ)
bir

= J(τ)
wbir

for

any τ ∈ D(G). For this reason, when [G,G] is simply-connected we call J(τ)
bir

= J(τ)
wbir

the

birational closure of J(τ). Corollary 2.20 and Proposition 2.21 applied to the case G with [G,G]

simply-connected give a description of birational closures of Jordan classes.

2.5 Sheets

Since (regular) closures of Jordan classes are unions of objects of the same kind, one can put a

partial order on the set of Jordan classes of g by setting J1 ≤ J2 if and only if J1 ⊂ J2
reg

for any

J1, J2 ∈J (g).

Now let n ∈ N and enumerate all Jordan classes of g with Ji ⊂ g(n) for i = 1, . . . , k. Since

the Jordan classes partition g, we have g(n) =
⊔k
i=1 Ji. This implies

g(n) ⊂
t⋃
i=1

Ji ∩ g(n) =

t⋃
i=1

Ji
reg
,

where the last union consists of irreducible sets closed in g(n). Refine the last union to one with

a minimal number of elements, in other words, select the indices {k1, . . . , kj} ⊂ {1, . . . , k} such

Jki is a maximal element in the partial order of J (g). Then

g(n) ⊂
j⋃
i=1

Jki
reg
,
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where no term is redundant and the union need not be disjoint.

Suppose now S is a sheet of g contained in g(n), then by irreducibility of S, there exist

i ∈ {k1, . . . , kj} such that S ⊂ Ji
reg

and maximality of S yields equality. This proves that

the map J 7→ J
reg

is a bijective correspondence between maximal Jordan classes in J (g) with

respect to ≤ and sheets of g.

The description of Jordan classes in terms of Lusztig–Spaltenstein induction and the transi-

tivity of induction yield the following characterization, which traces back to [12,13]:

Theorem (Borho–Kraft). The sheets of a reductive Lie algebra g are the regular closures of

Jordan classes J(l,OL)
reg

with OL a rigid nilpotent orbit in a Levi subalgebra l ⊂ g.

If J(l,OL)
reg

is a sheet, then it contains a unique nilpotent orbit, namely Indg
l O

L and if two

sheets intersect, then they contain the same nilpotent orbit. As recalled in the Introduction,

there exist sheets in simple Lie algebras which intersect non-trivially, for example the subregular

sheets in simple non-simply-laced algebras, see [13, §6.6] and [12, §7.4].

Sheets are disjoint in type A, see [40]. For g simple of classical type all sheets are smooth,

see [55]; if g is simple exceptional, there exist singular sheets, see [26] for the list of smooth ones.

The set J (G) is endowed with the same partial order ≤ on J (g) and the same topological

argument illustrated at the beginning of the Section shows that a sheet of G is the regular

closure of a maximal Jordan class J ∈J (G). Similarly, the sheets for the action of G on itself

under conjugation are classified as J = J(τ)
reg

where τ = (M,Z(M)◦z,OM ) ∈ D(G) where

OM ∈ UM/M is rigid, see [29, Theorem 5.6 (a)].

In the case of a simple group G, there exist distinct sheets with non-empty intersection: if

G has a non-simply-laced Dynkin diagram, then the subregular unipotent class Osreg belongs

to two sheets. This is due to the fact that Osreg is induced in two essentially different ways,

generalizing Example 1.29. Let α (resp. β) be a short (resp. long) simple root of G. Then,

up to conjugation, there are two minimal standard Levi subgroups in G, i.e., L{α} and L{β}.

Since Osreg is completely determined in U by its dimension and dimL{α} = dimL{β}, the

formula of dimensions for the induced class yields IndGL{α}{1} = IndGL{β}{1} = Osreg. On the

other hand (L{α}, Z(L{α})
◦, {1}) is not G-conjugate to (L{β}, Z(L{β})

◦, {1}) in BB(G). One

can check that, for G simple adjoint non-simply-laced and u ∈ Osreg, the centralizer CG(u) is

disconnected, in particular, one of the two inductions cannot be birational, by Lemma 1.26.

If two sheets intersect, then they meet at an isolated class, see [28, Proposition 3.4].

2.6 Weakly birational sheets and birational sheets

In [67, §4], Losev defines birational sheets of a reductive Lie algebra g. Let l ⊂ g be a Levi

subalgebra and OL ∈ Nl/L be birationally rigid. In our terminology, the birational sheet of g

associated to the data (l,OL) is J(l,OL)
bir

.
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As anticipated in the Introduction, not all birational sheets contain a nilpotent orbit: the

birational sheet J(l,OL)
bir

contains a nilpotent orbit if and only if Indg
l O

L is birationally induced

from (l,OL) if and only if 0 ∈ Bir(z(l),OL).

Losev defines the finite group W (l,OL) := StabNG(L)(O
L)/L: it acts on z(l) and it stabilizes

Bir(z(l),OL), since the latter does not depend on the parabolic subgroup containing L as a Levi

factor.

We recall the main theorem by Losev on birational sheets:

Theorem (Losev [67, Theorem 4.4]). Let g be reductive.

(i) Birational sheets form a partition of g.

(ii) Birational sheets are locally closed unibranch subvarieties of g with smooth normalization.

(iii) Let J(l,OL)
bir

be a birational sheet in g. Then it admits a geometric quotient for the

adjoint G-action. The geometric quotient J(l,OL)
bir

/G is unibranch and its normalization

is isomorphic to Bir(z(l),OL)/W (l,OL), which is a smooth variety.

We define weakly birational sheets for the conjugation action of G on itself and prove that

they partition G. We start by defining the set:

BB(G) := {τ = (M,Z(M)◦s,OM ) ∈ D(G) | OM birationally rigid}.

The groupG acts on BB(G) by simultaneous conjugacy and BB(G)/G is finite because D(G)/G

is so.

Definition 2.23. For τ ∈ BB(G), the weakly birational sheet associated to τ is: S(τ)wbir =

J(τ)
wbir

.

If [G,G] is simply-connected, we write S(τ)bir := J(τ)
bir

= J(τ)
wbir

and talk about the

birational sheets of G.

Lemma 2.24. Let τ ∈ BB(G). Then S(τ)wbir is a G-stable irreducible locally closed subvariety

of G and decomposes as a union of Jordan classes. Weakly birational sheets of G are in one-to-

one correspondence with the finite set BB(G)/G.

Proof. This follows from Definition 2.23 and Proposition 2.21.

Theorem 2.25. Weakly birational sheets of G form a partition of G.

In particular, if [G,G] is simply-connected, G is partitioned into its birational sheets.

Proof. We prove that Osu ∈ G/G belongs to a unique weakly birational sheet. By Theorem 1.35,

Osu is weakly birationally induced in a unique way from (M, s,OM ) ∈ B(G) up to conjugation

in G. This triple uniquely determines the class of τ = (M,Z(M)◦s,OM ) in BB(G)/G. Hence,

Osu ⊂ S(τ)wbir and S(τ)wbir is unique.

Remark 2.26. Every weakly birational sheet, being irreducible and contained in G(n) for some

n ∈ N, is contained in a sheet.
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Remark 2.27. When G is semisimple, a weakly birational sheet coincides with a single conjugacy

class if and only if it is OGsu with s isolated semisimple and OCG(s)
u a birationally rigid unipotent

class of CG(s).

Example 2.28. In general, a sheet is not an union of (weakly) birational sheets. LetG = Sp4(C),

let Θi = {αi} for i = 1, 2 and let Li = LΘi . Let Osreg be the subregular unipotent class in G,

then Osreg = IndGLi{1} for i = 1, 2, but it is birationally induced only from (L1, {1}) (see

Example 1.29). Let τi = (Li, Z(Li)
◦, {1}) for i = 1, 2, then J(τ1)

bir
= J(τ1)

reg
but J(τ2)

reg
=

J(τ2)
bir
t Z(G)Osreg, where J(τ2)

bir
is a birational sheet, but Z(G)Osreg is not one.

All sheets of g contain nilpotent orbits [12, §3.2], but not all birational sheets of g do [67, §4].

Similarly, all sheets of G contain isolated classes, see [28, Proposition 3.1], but we give an example

of a birational sheet without this property.

Example 2.29. Let G = Sp6(C), let sa = diag[1, a,−1,−1, a−1, 1] ∈ T . Fix ā ∈ C \ {−1, 0, 1}
and set s̄ := sā and M := CG(s̄). If τ = (M,Z(M)◦s̄, {1}), then:

J(τ)
reg

=
⋃

z∈Z(M)◦s̄

G · (z Ind
CG(z)
M {1}) =

 ⋃
a∈C\{−1,0,1}

Osa

 t Os1u tOs−1v

where the first member is J(τ) while Os1u and Os−1v are the two isolated classes of the sheet

J(τ)
reg

, indeed CG(s1) and CG(s−1) are semisimple of type C1C2. Decompose CG(s1) = K ′K ′′,

where K ′ ' Sp4(C) and K ′′ ' Sp2(C) and decompose M = M ′K ′′, with M ′ ' C× × Sp2(C) ≤
K ′. Then OCG(s1)

u = Ind
CG(s1)
M {1} ' OK

′

subreg ×{1}, where {1} is the trivial class in K ′′ and

OK
′

subreg = IndK
′

M ′{1} is the subregular class in UK′ . By Example 2.28, the latter induction is not

birational. Hence, OCG(s1)
u is not birationally induced from (M, {1}) and Os1u 6⊂ J(τ)

bir
. This

argument can be repeated, up to reordering the decomposition into simple groups, for CG(s−1) '
Sp2(C)× Sp4(C) and v ∈ Ind

CG(s−1)
M {1}. In particular, the birational sheet J(τ)

bir
= J(τ) does

not contain any isolated class.

We give a result on weakly birational sheets which are dense in sheets and characterize when

the two objects coincide.

Lemma 2.30. Let τ = (M,Z(M)◦s,OM ) ∈ D(G) with OM ∈ UM/M rigid. Then J(τ)
wbir

is

dense in the sheet J(τ)
reg

and J(τ)
reg

is the unique sheet of G containing J(τ)
wbir

.

Moreover, J(τ)
wbir

= J(τ)
reg

if and only if all isolated classes G · (r Ind
CG(r)◦

M OM ) with

r ∈ Z(M)◦s are birationally induced.

Proof. We have τ ∈ BB(G), since OM is in particular birationally rigid and J(τ)
wbir

is open

and dense in the irreducible set J(τ)
reg

by Proposition 2.21. Suppose S is a sheet of G with

J(τ)
wbir
⊂ S. Then the closure of J(τ)

wbir
equals J(τ) ⊂ S, so J(τ)

reg
= S.

The last assertion follows from Lemmas 2.14 and 2.16 (iii).

36



Corollary 2.31. Let G be of type A. Then all sheets are weakly birational sheets. In particular,

sheets of G form a partition.

Proof. This follows from Example 1.27 and Lemma 2.30 and Theorem 2.25.

Remark 2.32. We claim that Lusztig’s strata defined in [70] are disjoint unions of weakly bira-

tional sheets. This follows from [28, Proof of Theorem 2.1]: it is proven therein that if J ∈J (G)

lies in a stratum, then J
reg

lies in that stratum. Since J
wbir ⊂ Jreg, we get that strata are unions

of weakly birational closures of Jordan classes. By taking maximal sets with respect to inclusion

in this decomposition, we conclude our claim.

2.6.1 Interactions with isogenies and translation by central elements

Remark 2.33. Let τ := (M,Z(M)◦s,OM ) ∈ D(G) and z ∈ Z(G). Set τz := (M,Z(M)◦zs,OM ).

Then τz ∈ D(G) and J(τz) = zJ(τ), resp. J(τz) = zJ(τ), resp. J(τz)
reg

= zJ(τ)
reg

. We remind

the reader that, in the above situation, it may happen that J(τ) = zJ(τ), i.e., when the triples

τ and τz are conjugate by an element of G.

Remark 2.34. Let π : G → G be an isogeny and let τ ∈ BB(G). Then π induces a surjective

map between the set of weakly birational sheets of G and the set of weakly birational sheets of

G, associating to JG(τ)
wbir

the weakly birational sheet π(JG(τ)
wbir

) = JG(τ̄)
wbir

, where τ̄ is

the triple obtained by applying π to each entry of τ . Moreover, if JG(τ1)
wbir

and JG(τ2)
wbir

are

two birational sheets of G such that π(JG(τ1)
bir

) = π(JG(τ2)
bir

), then JG(τ1)
bir

= zJG(τ1)
bir

for some z ∈ Z(G).

Let τ := (M,Z(M)◦s,OM ) ∈ D(G). We will be interested in considering the union

Z(G)J(τ)
wbir

:=
⋃

z∈Z(G)

zJ(τ)
wbir

,

and each member of the union is zJ(τ)
wbir

= J(τz)
wbir

, with τz := (M,Z(M)◦zs,OM ). This is

clear from Definition 2.17 and from the fact that Z◦s satisfies (RP) for M if and only if Z◦zs

does so, hence τ ∈ D(G) if and only if τz ∈ D(G). Therefore, to describe the set Z(G)J(τ)
wbir

it is enough to describe J(τ)
wbir

and to count the number of birational sheets appearing in the

decomposition of Z(G)J(τ)
wbir

.

Remark 2.35. Let G be simple, let τ := (M,Z(M)◦z,OM ) ∈ D(G) and set Z := Z(M). We have

seen that the number of different G-classes of pairs (M,Z◦z) for a fixed M , with Z◦z satisfying

(RP) for M equals the index dM =
[

Z(G)
Z(G)∩Z◦ : W1/W2

]
, defined in Remark 2.10. If OM is

characteristic in M , the number of different G-classes of triples (M,Z(M)◦z,OM ) for fixed M

and OM , with Z◦z satisfying (RP) for M is again the index dM .
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CHAPTER

THREE

LOCAL GEOMETRY OF JORDAN CLASSES

In this Chapter we explain how the geometry of the neighbourhood of a point in the (regular,

resp. weakly birational) closure of a Jordan class in G can be reduced to the study of analogous

objects in suitable Lie subalgebras of g. After introducing some notation in Section 3.1, we first

build a neighbourhood UN of the nilpotent cone of g with some particular features and we study

the exponential map exp on UN . With such tools we can compare in Section 3.2 the stratification

on this neighbourhood induced by Jordan classes in g with the one induced by Jordan classes in

G on expUN . In Section 3.3, we assume [G,G] simply-connected and we prove the main result

of the Chapter, reducing the study of the geometry of a Jordan class in G around a point to the

study of several Jordan classes in a reductive subgroup around a unipotent point, where results

from Section 3.2 apply. We conclude with Section 3.4, devoted to several applications.

3.1 Notation and basic results

We recall that when X and Y are algebraic varieties, the analytic closure coincides with the

Zariski closure, [90, Proposition 7] and that if X is an algebraic variety and x ∈ X, then X is

unibranch, normal, smooth or Cohen-Macaulay at x if and only if the corresponding analytic

variety is so, [50, Exposé XII, Proposition 2.1(vi), Proposition 3.1 (vii)].

Following terminology of [52, §1.7], two pointed varieties (X,x) and (Y, y) are said to be

smoothly equivalent if there exist a pointed variety (Z, z) and two smooth maps φ : Z → X and

ψ : Z → Y such that φ(z) = x and ψ(z) = y. In this case we write (X,x) ∼se (Y, y). Smooth

equivalence is an equivalence relation on pointed varieties and it preserves the properties of being

unibranch, normal, Cohen-Macaulay or smooth. By [62, Remark 2.1], if dimY = dimX+d, then

(X,x) ∼se (Y, y) if and only if (X×Ad, (x, 0)) and (Y, y) are locally analytically isomorphic. For

varieties of the same dimension, smooth equivalence for (X,x) and (Y, y) and the existence of a

local analytic isomorphism in a neighbourhood of x mapping x to y are equivalent properties.

For any algebraic variety X, denote by Xan the associated analytic space.
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Let X,Y be varieties and let p : X → Y be a surjective morphism. Then U ⊂ X is said

to be p-saturated if U = p−1(p(U)). In the case of a reductive subgroup K ≤ G acting on an

affine variety X with categorical quotient πX : X → X//K, the subset U ⊂ X is πX -saturated

if and only if it is K-stable and all OKx such that OKx ∩ O
K
y 6= ∅ for some y ∈ U satisfies

OKx ⊂ U [68, §I]. In what follows, we will often make use of the categorical quotients for the

adjoint action πg : g→ g//G and for the conjugacy action πG : G→ G//G.

3.2 Unipotent and nilpotent elements

We start by showing how to compare the local geometry of Jordan classes containing a unipotent

element in their closure with the local geometry of decomposition classes in g, by means of the

exponential map. It is well-known that the exponential map is a G-equivariant analytic map

inducing a G-equivariant analytic isomorphism N → U , this follows from Schur’s formula for the

derivative of the exponential, see [89, §1.2 Theorem 5]. Since the base field is assumed to be C,

the restriction of the exponential to N → U is also algebraic, so it is a Springer isomorphism,

see [53, §6.20].

We will work with a slight variation of the exponential map. Let [G,G]sc be the simply-

connected cover of [G,G]. Denote by expsc : g → Z(G)◦ × [G,G]sc the dilation by a factor

2πi followed by the exponential map. Then if π : Z(G)◦ × [G,G]sc → G is the isogeny, we put

exp := π ◦ expsc : g → G. In particular, when π is the identity, we have exp = expsc: for this

reason, with an abuse of terminology, we will refer to exp simply as to the exponential map of G.

Consider G simple simply-connected, then exp restricts to a Lie group homomorphism h→ T

with kernel Q∨, the co-root lattice of g. Let hR := spanRQ
∨; we have h = hR⊗RC, the fundamental

alcove is A := {h ∈ hR | 0 ≤ α(h) ≤ 1 for all α ∈ ∆̃} and we define the affine hyperplanes

Hα,l := {h ∈ h | α(h) = l} for l ∈ Z and α ∈ Φ. Let A be the interior of W ·A + ihR in h and let

Usc := π−1
g (πg(A)). (3.1)

It is πg-saturated by construction and open by Chevalley’s restriction theorem.

Lemma 3.1. Let G be a complex connected reductive group. There exist a πg-saturated analytic

open neighbourhood UN of N in g and a πG-saturated analytic open neighbourhood UU of U
in G such that the restriction to UN of the exponential map gives an analytic isomorphism

expUN : UN → UU .

Moreover, for G simple simply-connected, one can take UN = Usc as in (3.1) and UU =

expUsc.

Proof. Step 1. Suppose G is a torus, then g is abelian, and exp is a local analytic isomorphism

at each point of g.

Step 2. Suppose now G simple simply-connected. We show that exp: g → G is an analytic

isomorphism on Usc. The main result in [79, 80] (see also [49, Chapter I, Theorem 3.5]), states
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that the exponential map is a local analytic isomorphism at ξ = σ+ν if and only if the eigenvalues

of ad(ξ) do not meet Z \ {0}. These eigenvalues coincide with those of ad(σ), so the condition is

verified if and only if, up to G-action, σ lies in h\
⋃
{Hα,l | l ∈ Z\{0}, α ∈ Φ+}. As A is contained

in this set, exp is a local analytic isomorphism on Usc. Let UN := Usc and UU := expUN . We

prove now that the restriction expUN : UN → UU is an analytic isomorphism, i.e., that expUN is

injective on UN . If expUN (σ + ν) = expUN (σ′ + ν′), then ν = ν′ because exp is an isomorphism

on N and by G-equivariance we may assume that expUN (σ) = expUN (σ′) ∈ T , so σ, σ′ ∈ A.

Two elements in A cannot differ by an element in Q∨ because A is a fundamental domain for the

Q∨ oW -action on hR, [53, Theorem 4.8] and Q∨ does not change the imaginary components of

elements in h. Thus, σ = σ′ and the properties of UU follow from those of exp and of UN .

Step 3. Now let G be as in the statement. Denote by [G,G]sc the simply-connected cover of

[G,G]. Consider the isogeny π : G̃ := Z(G)◦× [G,G]sc → G, let π̄ : G̃//G̃→ G//G be the induced

map and assume there exist a πg-saturated analytic open neighbourhood Ũ of N in g such that

exp: g→ G̃ restricts to an analytic isomorphism on Ũ . Let A′ be an open neighbourhood of the

class [1] in G̃//G̃ such that if kA′ ∩ A′ 6= ∅ for some k ∈ ker π̄, then k = 1. Let Ã = π−1

G̃
(A′).

Then Ṽ := Ã∩exp(Ũ) is a πG̃-saturated open neighbourhood of U in G̃ and UN := Ũ ∩exp−1(Ṽ )

and UU := π ◦ expUN = π(Ṽ ) are the sought neighbourhoods for g and G. This allows to

reduce the proof to the case in which G is a direct product of a torus and finitely many simple

simply-connected groups: then it is enough to prove the statement for each factor, and this was

done in steps 1 and 2.

We describe now compatibility of the Jordan stratifications induced on neighbourhoods con-

structed in Lemma 3.1.

Theorem 3.2. Let UN be a πg-saturated analytic open neighbourhood of N in g and UU be a

πG-saturated analytic open neighbourhood of U in G such that the restriction of exp to UN is a

G-equivariant analytic isomorphism expUN : UN → UU . Then, expUN identifies the stratification

on UN induced by the Jordan one in g with the stratification on UU induced by the Jordan

one in G, preserving dimensions, closure orderings, orbit dimensions. More precisely, for τ =

(M,Z(M)◦s,OM ) ∈ T (G) we have J(τ)∩UU 6= ∅ if and only if M is a Levi subgroup of G and

Z(M)◦s = Z(M)◦ and if this is the case, then

J(τ) ∩ UU = exp(J(m,OM ) ∩ UN )

where m = Lie(M) and exp(OM ) = OM .

Proof. We keep notation from the proof of Lemma 3.1. Let J := J(l,OL) ∈ J (g). Then

J ∩N 6= ∅ so J ∩ UN 6= ∅. By πg-saturation of UN we have

UN ∩ (z(l)
reg

+ OL) = (UN ∩ z(l)
reg

) + OL .

If σ+ν ∈ (z(l)
reg∩UN )+OL, then by [80] we have l = cg(σ) = cg(expσ) so L := CG(expσ)◦ is a

Levi subgroup of G and setting OL = exp(OL) we have exp((z(l)
reg∩UN )+OL) ⊂ UU∩Z(L)OL.
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Observe that z(l)
reg

is obtained removing finitely many vector spaces of real codimension at

least 2 from a (complex) vector space, so it is connected in the analytic topology. Therefore

UN ∩ z(l)reg, (UN ∩ z(l)reg) +OL and J∩UN = Ad(G)((UN ∩ z(l)reg) +OL) are also connected.

By continuity, exp((UN ∩ z(l)
reg

) + OL) and exp(UN ∩ J) are also connected in the analytic

topology. Thus, exp((UN ∩ z(l)
reg

) + OL) ⊂ UU ∩ (Z(L)◦s)reg OL for some s ∈ Z(L) and

exp(UN∩J) ⊂ J(L,Z(L)◦s,OL)∩UU . Observe also that 0 ∈ J∩UN so 1 ∈ J(L,Z(L)◦s,OL)∩UU .

This implies that Z(L)◦s = Z(L)◦.

Conversely, let J ∈J (G) be such that UU ∩ J 6= ∅ and let su ∈ UU ∩ J . Set M := CG(s)◦,

by πG-saturation of UU we have (Z(M)◦s)reg OMu ∩UU = ((Z(M)◦s)reg ∩ UU )OMu . For any r ∈
(Z(M)◦s)reg∩UU we have r = exp ρ for some ρ ∈ UN and Lie(CG(r)◦) = cg(ρ) = m. Therefore for

any rv ∈ ((Z(M)◦s)reg OMu )∩UU we have rv ∈ exp(UN ∩ J(m,OM
exp−1(u))) ⊆ J(M,Z(M)◦,OMu )

so Z(M)◦s = Z(M)◦ and exp(UN ∩ J(m,OM
exp−1(u))) = UU ∩ J(M,Z(M)◦,OM ).

Finally, expU is a G-equivariant analytic isomorphism, hence it preserves orbit dimensions,

closure orderings, and dimensions.

Corollary 3.3. Let L ≤ G be a Levi subgroup and let τ = (L,Z(L)◦,OL) ∈ D(G) and set

J := J(τ). Let l := Lie(L) and OL ∈ Nl/L such that exp(OL) = OL. Let J := J(l,OL), let

ν ∈ N and v := exp(ν) ∈ J ∩ U . Then:

(i) (J, v) ∼se (J, ν).

(ii) v ∈ Jreg if and only if ν ∈ J
reg

and, in this case, (J
reg
, v) ∼se (J

reg
, ν).

(iii) v ∈ Jwbir if and only if ν ∈ J
bir

and, in this case, (J
wbir

, v) ∼se (J
bir
, ν).

Proof. Let UN and UU be neighbourhoods of N and U , respectively, as in Lemma 3.1, Theorem

3.2. Then v ∈ J ∩ UU and expUN is an analytic isomorphism mapping J ∩ UN to J ∩ UU . This

proves (i). Since exp preserves orbit dimensions, v ∈ J
reg

if and only if ν ∈ J
reg

and taking

regular loci at both sides of (i) yields (ii). We have v ∈ J
wbir

if and only if Ov = IndGL O
L

is birationally induced from (L,OL), if and only if Oν = Indg
l O

L is birationally induced from

(l,OL), by Lemma 1.20 (ii), i.e., ν ∈ J
bir

. Since J
wbir

(resp. J
bir

) is open in J (resp. J), (i)

implies (iii).

Remark on the Proof. For the unipotent element v ∈ U , we have v ∈ J
wbir

if and only if

v ∈ Jbir, by Remark 1.18, but we cannot conclude the smooth equivalence with (J
bir
, v) because

J
bir

need not be open in J
reg

, unless [G,G] is simply-connected.

Remark 3.4. (i) The set of points ξ ∈ g such that exp is a local analytic isomorphism at ξ is

not a union of Jordan classes in general. For instance σ = diag[i,−i] and σ′ = diag[1,−1]

lie in the same Jordan class in sl2(C), and the condition on the eigenvalues in [80] holds

for σ but not for σ′.

(ii) The image of exp is a union of Jordan classes in G. Indeed, g = ru ∈ exp g if and only

if r ∈ CG(u)◦, by [42]. This condition is clearly G-stable, so it is enough to show that

r ∈ CG(u)◦ implies Z(CG(r)◦)◦r ⊂ CG(u)◦. Now, u ∈ CG(r)◦, so Z(CG(r)◦) ⊂ CG(u).

Since Z(CG(r))◦r is connected and contains r, we have the desired inclusion.
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3.3 Reduction to unipotent elements

Throughout this Section we assume that [G,G] is simply-connected : in particular, centralizers of

semisimple elments in G are connected. To develop a local study of Jordan classes, we will use a

variant of Luna’s étale slice theorem. The idea is to reduce the study of the closure of a Jordan

class in G in the neighbourhood of an element rv to the study of the closures of several Jordan

classes in CG(r) in the neighbourhood of the unipotent part v.

We recall that a morphism of algebraic varieties f : X → Y is said to be étale at a point

x ∈ X if the differential dxf : TxX → Tf(x)Y is an isomorphism.

We are indebted to Andrea Maffei for suggesting the proof of the following result.

Proposition 3.5. Let r ∈ G be a semisimple element and let M = CG(r). There is a Zariski

open neighbourhood U of r in M such that:

(i) U is πM -saturated.

(ii) For any Jordan class JM of M we have JM ∩ U 6= ∅ if and only if r ∈ JM .

(iii) The restriction γU to G×M U of the map γ : G×M M → G given by γ(g ∗ x) = gxg−1 is

étale.

(iv) The image G · U of γU is a πG-saturated open neighbourhood of r in G.

Proof. Observe that G · (1 ∗ r) = G ∗ r is closed and since r is semisimple, Or is closed, too.

By construction, the restriction of γ to G ∗ r is injective. We claim that γ is étale at 1 ∗ r. We

consider the map γ̃ : G ×M → G given by the conjugation action and the natural projection

p : G×M → G×M M , so γ̃ = γ ◦ p. For m ∈M the differential at (1,m) is given by:

d(1,m)γ̃ : g⊕m→ g

(x, y) 7→ y − x+ Ad(m−1)x.

For g ∈ G, let Lg be left translation in G by g. The induced map identifies g with TgG and

m = cg(r) with TgM . This way, d(g,m)γ̃ : (x, y) 7→ Ad(g)(y− x+ Ad(m−1)x), for (x, y) ∈ g⊕m.

Since r is semisimple, g = Im(Ad(r−1) − id) ⊕ ker(Ad(r−1) − id) and ker(Ad(r−1) − id) =

ker(id−Ad(r)) = m so d(1,r)γ̃ is onto, yielding surjectivity of d1∗rγ. For any pair (g,m) ∈ G×M
the composition

G×M G×M G×M M
Lg×Lm p

yields an exact sequence by differentiating:

0 Nm g⊕m Tg∗m(G×M M) 0

where Nm = {(x, x − Ad(m−1)(x) | x ∈ m}, so dimTg∗m(G ×M M) = dim g and injectivity of

d1∗rγ follows. Therefore the hypotheses of [68, Lemme fondamental, §II.2] are satisfied for the

map γ : G ×M M → G and the point 1 ∗ r and there exists an étale slice. In particular, there

exists a πM -saturated Zariski open neighbourhood U ′ of r in M such that the restriction of γ to

G×M U ′ → G is étale with image a πG-saturated open subset V ′ = G · U ′ of G.
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Consider the stratification on M//M with finitely many Jordan closed strata of the form

JM//M , for JM a (semisimple) Jordan class in M , and let JM//M denote the open stratum in

JM//M . Let V be the union of all JM//M containing the class of r in their closure. It is open,

because its complement in M//M is the closed set⋃
[r]/∈JM//M

JM//M =
⋃

[r]/∈JM//M

JM//M.

Then U ′′ := π−1
M (V ) is a πM -saturated open subset of M containing r and such that a Jordan

class JM in M meets U ′′ if and only if r ∈ JM . We take the πM -saturated neighbourhood

U = U ′ ∩U ′′. It satisfies condition (ii) and the restriction of the étale map γ to the open subset

G×M U is again étale and its image G · U is a πG-saturated open neighbourhood of r in G.

Remark 3.6. With notation as above, since γU is étale, for any x ∈ U we have dimOGx =

dimOGγ(1∗x) = dimOG1∗x, so dimCG(x) = dimG1∗x = dimCM (x). Hence, CM (x)◦ = CG(x)◦.

Since U is πM -saturated, if x = su ∈ U , then s ∈ U and so CM (s)◦ = CG(s), see also [68,

Remarque III.1.4].

Let su ∈ G, with s ∈ T and let J := JG(su) ∈J (G); we have CG(s) = CG(s)◦. Let rv ∈ J
with r ∈ Z◦s ⊂ T and let M := CG(r) = CG(r)◦. Since r ∈ Z(CG(s))◦s, we have that CG(s) is

a Levi subgroup of M by Lemma 0.2. In this setting, define:

JJ,rv := {JM,i ∈J (M) | JM,i ⊂ J and rv ∈ JM,i}; (3.2)

and let IJ,rv be an index set for JM,i ∈ JJ,rv.

Proposition 3.7. Let J = JG(τ) for some τ ∈ T (G), let rv ∈ J and set M := CG(r). Then

(J, rv) ∼se

 ⋃
IJ,rv

r−1JM,i, v

 (3.3)

where IJ,rv is defined in (3.2).

If, in addition, rv ∈ Jreg, then rv ∈ JM,i
reg

for all i ∈ IJ,rv and

(J
reg
, rv) ∼se

 ⋃
i∈IJ,rv

r−1JM,i
reg
, v

. (3.4)

Proof. Let τ = (M ′, Z(M ′)◦s,O). Since conjugation by g ∈ G induces the smooth equivalence

(J, rv) ∼se (J, g · (rv)), we may assume that r ∈ Z(M ′)◦s, so M ′ ⊂ M . We adopt notation

from Proposition 3.5 and its proof, but with γU viewed as a map G ×M U → G · U . Let

γ̃U : G× U → G · U be the restriction of γ̃.

We will first show that (J, x) ∼se (J ∩ U, x) for any x ∈ J ∩ U . Then, we will prove that

J ∩ U = J ∩ UU and show that the irreducible components of J ∩ UU are the intersections of

U with the closures of Jordan classes listed in JJ,rv as in (3.2). We will conclude the proof of
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(3.3) by observing that, in order to study (J, x) we can neglect those irreducible components of

J ∩ UU that do not contain x. A dimension argument will give (3.4).

We consider the following commutative diagram

G× U G×M U G · U

G× (J ∩ U) G×M (J ∩ U) J ∩G · U

p γU

Observe that γ̃−1
U (J ∩G · U) is a G-stable closed subset of G× U , so it is of the form G× V

for some V closed in U . In turn, V is the pre-image of G × V through the natural inclusion of

U into G× U . Therefore γ̃−1
U (J ∩G · U) = G× (J ∩ U). This is exactly saying that the bottom

composition of arrows is obtained by pulling-back γ̃U along the closed embedding ι. Hence, the

bottom composition is also smooth and for any x ∈ J ∩ U

(J, x) ∼se (J ∩G · U, x) ∼se (G× (J ∩ U), (1, x)) ∼se (J ∩ U, x). (3.5)

To show J∩U = J ∩ UU , we prove the equivalent statement G×M (J∩U) = G×M (J ∩ U)
G×MU

,

i.e., γ−1
U (J ∩ G · U) = γ−1

U (J ∩G · U)
G×MU

. By elementary topology we see that J ∩ (G ·
U) = J ∩G · UG·U . Since γU is continuous, surjective and open, we have γ−1

U (J ∩G · UG·U ) =

γ−1
U (J ∩G · U)

G×MU
, hence the desired equality. Thus (3.5) gives (J, x) ∼se (J ∩ UU , x) for any

x ∈ J ∩ U .

We describe now the irreducible components of J ∩ UU . By base-change the restriction of γ

to G×M (J ∩U) is a G-equivariant étale map to J ∩G ·U ⊂ G(d) for some d. Hence all G-orbits

in G×M (J ∩ U) have the same dimension. By Remark 3.6 we have J ∩ U ⊂M(d′) for some d′.

The equivalence (3.5) implies that (J ∩ U, x) ∼se (J, x) for any x ∈ U ∩ J and J is smooth, so

the intersection U ∩ J is also smooth. Hence it is the union of its connected components and

it is contained in the finite union of those Jordan classes in M(d′) containing r in their closure.

Let JM be a Jordan class in M such that J ∩ U ∩ JM 6= ∅. By construction of U , we have

r ∈ JM . It follows from Remark 3.6 that if x = tu ∈ JM ∩ U ∩ J , then CM (t)◦ = CG(t), hence

dimZ(CM (t)◦)◦ = dimZ(CG(t)◦)◦ = dimZ(M ′)◦. The proof of [29, Theorem 5.6 (e)] applied to

the case of (regular closures of) arbitrary Jordan classes shows that dim JM = d′ + dimZ(M ′)◦,

so all Jordan classes of M meeting J ∩ U have the same dimension. The same argument also

shows that (Z(CM (t)◦)◦r)regu = (Z(CG(t))◦r)regu and so JM = M · ((Z(CM (t)◦)◦r)regu) ⊂
G · ((Z(CG(t))◦r)regu) = J . Therefore, JM ⊂ J . Conversely, if a Jordan class JM ⊂M contains

r in its closure and is contained in J , then ∅ 6= JM ∩ U ⊂ J ∩ U .

Let IJ,r be the index set defined in (3.2). Then J ∩ U =
⋃
i∈IJ,r JM,i ∩ U , and the locally

closed subsets JM,i ∩ U are finitely many, disjoint, irreducible and have all the same dimension.

Hence, their closures are the irreducible components of U ∩ JU = J ∩ U . Therefore, for any
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x ∈ U ∩ JU :

(U ∩ JU , x) ∼se (
⋃

i∈IJ,r

JM,i ∩ U
U

, x) ∼se (
⋃

i∈IJ,r

JM,i ∩ U
U
, x)

∼se (
⋃

i∈IJ,r

JM,i
M ∩ U, x) ∼se (

⋃
i∈IJ,r

JM,i
M
, x).

Let IJ,x be the set of indices in IJ,r such that x ∈ JM,i and let Ux be a Zariski open neighbourhood

of x in M such that Ux ∩ JM,i = ∅ for any i ∈ IJ,r \ IJ,x. Then,

(J, x) ∼se (
⋃

i∈IJ,r

JM,i
M ∩ Ux, x) ∼se (

⋃
i∈IJ,x

JM,i
M ∩ Ux, x) ∼se (

⋃
i∈IJ,x

JM,i
M
, x).

Taking x = rv and translating by r−1 gives (3.3). Observe that if rv ∈ Jreg, then OGrv ⊂ G(d)

and meets U . Since γU is étale, OMrv ⊂ M(d′) so it lies in J
reg

M,i for every i ∈ IJ,x. Since J
reg

is open in J and
⋃
i∈IJ,rv J

reg

M,i is open in the union of equidimensional closures
⋃
i∈IJ,rv JM,i,

equation (3.4) follows from (3.3).

In order to provide an explicit parameterization of IJ,rv in (3.2) in terms of data depending on

J and rv, we introduce some notation. Let τ = (M ′, Z(M ′)◦s,O) ∈ T (G), let rv ∈ J∩Z(M ′)◦sv

and let M = CG(r). We set:

Wτ := StabW (τ)

W (τ, r) := {w ∈W | r ∈ w · (Z(M ′)◦s)}.

If w ∈ W (τ, r) then w · M ′ = CG(w · (Z(M ′)◦s))◦ ⊂ M and w · M ′ is a Levi subgroup in

M , [29, Lemma 4.10]. We consider then

W (τ, rv) :=
{
w ∈W (τ, r) | OMv ⊂ IndMw·M ′(w · O)

}
.

The reader should be alert that W (τ, r) and W (τ, rv) are not subgroups of W in general.

Since Wτ ≤ StabW (Z(M ′)◦s), it acts on W (τ, r) from the right. It preserves M ′ and O,

hence it acts also on W (τ, rv) from the right. The group Wr := NM (T )/T ≤W acts on W (τ, r)

and W (τ, rv) from the left.

Theorem 3.8. Let J = JG(τ) for some τ = (M ′, Z(M ′)◦s,O) ∈ T (G), let r ∈ Z(M ′)◦s and

M = CG(r). Then

(J, r) ∼se

 ⋃
w∈Wr\W (τ,r)/Wτ

JM (w · τ), r

 . (3.6)

If rv ∈ J then

(J, rv) ∼se

 ⋃
w∈Wr\W (τ,rv)/Wτ

r−1JM (w · τ), v

 . (3.7)
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If rv ∈ Jreg then

(J
reg
, rv) ∼se

 ⋃
w∈Wr\W (τ,rv)/Wτ

r−1JM (w · τ)
reg
, v

 . (3.8)

Proof. We first consider the neighbourhood of r. By Proposition 3.7 it is enough to show that

the right hand side of (3.6) involves precisely those Jordan classes in M that:

(1) are contained in J ;

(2) contain r in their closure.

By condition (1), the latter are parameterized by Wr-orbits of triples of the form w · τ for some

w ∈ W/Wτ . Condition (2) is equivalent to r ∈ w · (Z(M ′)◦s). Hence the elements w must be

taken in W (τ, r)/Wτ . This gives (3.6).

Let us now consider the neighbourhood of rv. In this case we need to prove that the classes

occurring in the right hand side of (3.7) are precisely those Jordan classes JM (M ′′, Z(M ′′)◦s′,O′)
in M that

(1) are contained in J ;

(2) contain rv in their closure, that is, contain r in their closure and satisfy OMv ⊂ IndMM ′′ O
′.

They are parameterized by Wr-orbits of triples of the form w · τ , where w must be taken in

W (τ, rv)/Wτ , as one sees from condition (2). This gives (3.7). Equation (3.8) follows from (3.7)

and (3.4).

Corollary 3.9. Let J := JG(τ) for some τ ∈ T (G) and let rv, r′v′ ∈ J ′ ⊂ J . Then, (J, rv) ∼se
(J, r′v′). In other words, the geometry of J is constant along Jordan classes.

Moreover, if J ′ ⊂ Jbir, then (J
bir
, rv) ∼se (J

bir
, r′v′).

Proof. Let τ = (M ′, Z(M ′)◦s,O). Since (J, x) ∼se (J, g · x) for any g ∈ G, we may assume

that r ∈ Z(M ′)◦s, CG(r) = CG(r′), r′ ∈ (Z(CG(r))◦r)reg and v′ = v so Wr′ = Wr. We set

M := CG(r). If r ∈ w ·(Z(M ′)◦s) for some w ∈W , then M ⊃ CG(w ·(Z(M ′)◦s)) = w ·M ′ whence

Z(M)◦ ⊂ w · Z(M ′)◦, and therefore r′ ∈ Z(M)◦r ⊂ w · (Z(M ′)◦s). Hence, W (τ, r) = W (τ, r′)

and so W (τ, rv) = W (τ, r′v). The first statement follows from (3.7) and left translation by

r′r−1 ∈ Z(M)◦. The last statement follows from Proposition 2.21 and from the fact that J
bir

is

open in J .

Corollary 3.10. Let J = JG(τ), for τ = (M ′, Z(M ′)◦s,O) ∈ T (G), let rv ∈ J ∩Z(M ′)◦sv and

let M = CG(r). Then J is unibranch, respectively smooth, respectively normal, at rv if and only

if |Wr\W (τ, rv)/Wτ | = 1 and r−1JM (τ) is so at v.

Proof. Let U be as in the proof of Proposition 3.7. Then the irreducible components of U ∩
J containing rv are precisely the subsets JM (w · τ) ∩ U for w ∈ Wr\W (τ, rv)/Wτ . Hence,

|Wr\W (τ, rv)/Wτ | = 1 is a necessary condition for J being unibranch at rv, and a fortiori,

normal, or smooth. In addition, if |Wr\W (τ, rv)/Wτ | = 1, then (J, rv) ∼se (r−1JM (τ), v) and

we use the properties of smooth equivalence.
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Corollary 3.11. Let J = JG(τ), for τ = (M ′, Z(M ′)◦s,O) ∈ T (G), let rv ∈ J ∩Z(M)◦sv and

let M = CG(r). Assume |Wr\W (τ, rv)/Wτ | = 1. Then J is Cohen-Macaulay at rv if and only

if r−1JM (τ) is so at v.

Proof. The argument is the same of Corollary 3.10.

The local study of the closure of a Jordan class J = JG(τ) around rv simplifies drastically

when |Wr\W (τ, r)/Wτ | = 1 and therefore it is important to characterize when this is the case.

Next result deals with this question under the assumption that Wτ = StabW (Z(M ′)◦s), which

is always satisfied when O is characteristic in M , e.g., when O = 1 (semisimple Jordan classes)

or when O is regular (regular Jordan classes), see Remark 1.28.

Lemma 3.12. Let J = JG(τ) for τ = (M ′, Z(M ′)◦s,O) ∈ T (G) and let r ∈ (Z(M ′)◦s) ∩
J . Assume that Wτ = StabW (Z(M ′)◦s). Then |Wr\W (τ, r)/Wτ | = 1 if and only if J//G is

unibranch at the class [r] of r.

Proof. The isomorphism G//G ' T/W identifies J//G with W · (Z(M ′)◦s)/W , so we need to

understand the neighbourhood of W · (Z(M ′)◦s)/W around [r]. By [8, Anhang zu K. 7, Satz

21], there is a Wr-stable analytic open neighbourhood U of r in W · (Z(M ′)◦s) such that U/Wr

identifies with a neighbourhood of [r] in W · (Z(M ′)◦s)/W . We can choose U so that it meets

only the W -translates of Z(M ′)◦s containing r. Therefore

(W · (Z(M ′)◦s)/W, [r]) ∼se (W · (Z(M ′)◦s) ∩ U/Wr, [r])

∼se

 ⋃
w∈W (τ,r)/Wτ

w · (Z(M ′)◦s)/Wr, [r]

 .

Here, the group Wr acts as usual from the left. This implies that J//G is unibranch at [r] if and

only if |Wr\W (τ, r)/Wτ | = 1.

Example 3.13. By construction |Wr\W (τ, rv)/Wτ | ≤ |Wr\W (τ, r)/Wτ | but the inequality

may be strict: here is an example. Let G = SL4(C), M = 〈T,U±α1〉, τ = (M,Z(M)◦, 1).

In this case Z(M) = Z(M)◦ and Wτ = StabW (Z(M)) = 〈s1, s3〉. Let rv ∈ JG(τ) with

CG(r) = 〈T,U±α1 , U±α3〉 and v ∈ Ind
CG(r)
M (1). Then Wr = Wτ and v is trivial in the compo-

nent corresponding to α1 and regular in the component corresponding to α3. If w ∈W satisfies

r ∈ w ·Z(M) 6= Z(M), then w ∈ w0Wτ . Since w0 6∈Wτ we have |Wr\W (τ, r)/Wτ | = 2. However,

if w is as above, then rv 6∈ JCG(r)(w · τ). Indeed, if rv′ ∈ JCG(r)(w · τ), then v′ ∈ Ind
CG(r)
w·M (1)

which does not contain Ind
CG(r)
M (1). Hence |Wr\W (τ, rv)/Wτ | = 1.

3.4 Applications

In this Section we assume [G,G] is simply-connected and we apply the results from §3.2 and

3.3 to deduce geometric properties of closures of regular Jordan classes, sheets, Lusztig strata,

birational closures of Jordan classes and birational sheets.
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3.4.1 Closures of regular Jordan classes in G

We recall that a Jordan class J = JG(M,Z(M)◦s,OM ) in G is called regular if J ⊂ Greg, i.e., if

OM = OMreg, the regular unipotent class in M .

Theorem 3.14. Let J be a regular Jordan class in G. Then the following statements are

equivalent:

(i) J is normal and Cohen-Macaulay.

(ii) J is normal.

(iii) J//G is normal.

(iv) J//G is smooth.

Proof. Clearly (i) implies (ii) and (ii) implies (iii), see [75, §0.2]. Also, (iii) is equivalent to (iv), by

[30, Corollary 8.1]. We show that (iii) implies (i). Let J = JG(τ) for τ = (M ′, Z(M ′)◦s,OM
′

reg) ∈
T (G). Recall that J//G = JG(M ′, Z(M ′)◦s, {1})//G. Let us assume J//G is normal. Then

it is everywhere unibranch and since the regular unipotent class is characteristic, Lemma 3.12

gives |Wr\W (τ, rv)/Wτ | = 1 for all points rv ∈ J . Since the locus where J is not normal

(resp. not Cohen-Macaulay) is closed, [94, Tag 00RD] and the geometry of J is constant along

Jordan classes by Corollary 3.9, it is enough to check the desired properties of J at points in

closed Jordan classes in J . These are the Jordan classes JG(M,Z(M)◦r, {1}) ⊂ J with M

semisimple, i.e., isolated semisimple conjugacy classes in G, see §2.2. Let OGr be such a class,

with M = CG(r). By Corollaries 3.10 and 3.11 and 3.3, J is normal and Cohen-Macaulay at r

if and only if Jm(m′,OM ′
reg) is so. By [88, Theorem B], this happens if and only if StabWr (z(m

′))

acts on z(m′) as a reflection group and Jm(m′, 0)//M is normal. The first condition is ensured

by [30, Proposition 2.5, Lemma 8.3 (i)] applied to Jm(m′, {0})//M . The second condition is

ensured by [30, Theorem 4.9].

Remark 3.15. The fact that normality of Jm(m′, {0})//M implies that StabWr
(z(m′)) acts on

z(m′) as a reflection group can also be deduced from the proof of [21, Theorem 3.1] or from the

main result in [43].

Corollary 3.16. Let G be simple and let J = JG(M,Z(M)◦s,OMreg) be a regular Jordan class.

Then J is smooth if and only if M can be chosen to be either T , semisimple, or of the form MΘ

for ∅ ( Θ ( ∆̃ as follows:

An: of type dAh with n+ 1 = d(h+ 1), h ≥ 1, d ≥ 2;

Bn: of type dAhDm0Bn0 with n = m0 +n0 + d(h+ 1) and either m0 ≥ 2, n0 ≥ 0, h ≥ 0, or else

m0 = 0, n0 ≥ 0, h = 0 or odd;

Cn: of type dAhCm0Cn0 with m0, n0, h ≥ 0, n = m0 + n0 + d(h+ 1);

Dn: of type dAhDm0Dn0 with n = m0 + n0 + d(h+ 1) and either m0, n0 ≥ 2 and h ≥ 0, or else

m0n0 = 0 and h = 0 or odd;

E6: of type A5 (there are three such subsets), 4A1, 2A2 (there are three such subsets);
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E7: of type E6, D6 (there are two such subsets), D5A1 (there are two such subsets), 2A1D4,

2A3, 3A2, 3A1A3 (there are two such subsets), 5A1, the two subsets of type A5 containing

α2, the subset of type 4A1 which is stable under the automorphism of ∆̃, {α0, α2, α3} and

{α2, α5, α7};
E8: ∆̃ \ {α1, α3}, ∆̃ \ {α1, α3, α6}, ∆̃ \ {α4, α6, α8}, {α2, α5, α7, α0} or of type D7, E7, D6A1,

2A3A1, 3A2A1, 2A1D5, D4A3, 3A2;

F4: of type A3, A1B2, 2A1Ã1, B3, C3, 2A1, Ã2;

G2: of type Ã1.

Proof. This follows from Theorem 3.14 and the list of classes J for which J//G is normal in [30,

Theorem 8.7].

3.4.2 Sheets

In this Subsection we apply the local description to the case of sheets. We will apply repeatedly

the following argument.

Remark 3.17. Let S = J
reg

, with J = JG(M,Z(M)◦s,OM ) be a sheet in G.

(i) The locus where S is not smooth, respectively normal, is closed. Thus, by Corollary 3.9

it is enough to check smoothness or normality of S at a point in each closed Jordan class

in S. These are Jordan classes of triples (M ′, Z(M ′)◦s′,OM
′
) with M ′ semisimple and are

precisely the conjugacy classes of isolated elements contained in S, see §2.2.

(ii) The conjugacy class w · OM is rigid in w ·M for any w ∈ W and therefore (3.8) implies

that S in the neighbourhood of an isolated point rv is smoothly equivalent to a union of

sheets in the semisimple group CG(r) in the neighbourhood of v.

(iii) As exp is compatible with induction, it maps rigid nilpotent orbits in g to rigid unipotent

conjugacy classes in G. Hence, it identifies a neighbourhood of v in a sheet in CG(r) with

a neighbourhood of a nilpotent element in a sheet of cg(r).

Theorem 3.18. Let Φ be classical and let S = J(τ)
reg

be a sheet in G. Then S is smooth if

and only if it is normal if and only if it is unibranch.

Proof. One direction is immediate. Assume S is unibranch: we prove that it is smooth. Let

τ = (M,Z(M)◦s,OM ) and OM = expOM . By Corollary 3.10 we have |Wr\W (τ, rv)/Wτ | = 1

for any point rv ∈ S. Hence (3.8) and Corollary 3.3 imply that S is smooth at rv if and only

if Jcg(r)(m,OM )
reg

is smooth. By Remark 3.17 part 1, it suffices to prove smoothness of S at

isolated classes. In this case cg(r) is semisimple and classical because its Dynkin diagram is a

sub-diagram of the extended Dynkin diagram of g. In addition, Jcg(r)(m,OM )
reg

is a sheet in

cg(r) by Remark 3.17, part 2. Since all sheets in classical Lie algebras are smooth [10,55,83], we

have the statement.

Theorem 3.19. Let Φ be classical and irreducible and let S = J(τ)
reg

be a sheet in G. If J//G

is normal in codimension 1, then S is smooth.
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Proof. By Theorem 3.18 it is enough to show that S is unibranch at every isolated rv ∈ S. Let

τ = (M,Z(M)◦s,OM ). If J(τ)//G is normal in codimension 1, then it is unibranch by [30,

Lemma 8.2, Lemma 8.3]. By [31, Lemma 3.3] if G is simple and simply-connected and J(τ)
reg

is a sheet we always have Wτ = StabW (Z(M)◦s), so Lemma 3.12 applies.

Corollary 3.20. Let G be simple with Φ classical and assume M is either: T , semisimple, or

MΘ for ∅ ( Θ ( ∆̃ as follows:

An: of type dAh with n+ 1 = d(h+ 1), h ≥ 1, d ≥ 2;

Bn: of type dAhDm0
Bn0

with n = m0 +n0 + d(h+ 1) and either m0 ≥ 2, n0 ≥ 0, h ≥ 0, or else

m0 = 0, n0 ≥ 0, h = 0 or odd;

Cn: of type dAhCm0
Cn0

with m0, n0, h ≥ 0, n = m0 + n0 + d(h+ 1);

Dn: of type dAhDm0
Dn0

with n = m0 + n0 + d(h+ 1) and either m0, n0 ≥ 2 and h ≥ 0, or else

m0n0 = 0 and h = 0 or odd.

Then, for any Z(M)◦s satisfying (RP) for M and any rigid unipotent class OM in M , the sheet

S = JG(M,Z(M)◦s,OM )
reg

is smooth.

Proof. The result follows from Theorem 3.19 and the list of varieties J//G that are normal in

codimension 1 for G simple, [30, Proposition 8.6].

For G simple exceptional, the subset of sheets S in G such that quotient S//G is normal in

codimension 1 can be deduced from [30, Proposition 8.6]. For each S in this subset, our previous

results we can compute whether S is smooth or not: we record this in the following

Corollary 3.21. Let G be simple with Φ exceptional. Let M be either semisimple, T , or MΘ

for ∅ ( Θ ( ∆̃ of the following type:

E6: A5, D4, 4A1, 2A2;

E7: E6, D6, 2A1D4, 3A2, 2A3, 3A1A3, D4A1, 5A1, {α0, α1, α2, α3, α4}, {α2, α4, α5, α6, α7}, D4,

{α0, α2, α3}, {α2, α5, α7}, {α0, α3, α5, α7};
E8: ∆̃ \ {α1, α3}, ∆̃ \ {α1, α3, α6}, ∆̃ \ {α4, α6, α8}, {α2, α5, α7, α0}, D7, E7, D6A1, 2A3A1,

3A2A1, 2A1D5, D4A3, D6, E6, 2A1D4, 3A2, D4;

F4: A3, A1B2, 2A1Ã1, B3, C3, 2A1, Ã2, B2;

G2: Ã1;

Consider (M,Z(M)◦s,OM ) ∈ D(G) with OM rigid. Then the sheet S = JG(M,Z(M)◦s,OM )
reg

is smooth, with the following exceptions:
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type of G M Z(M)◦s OM

E7 D6 any [24, 14]

E8

D6 any [24, 14]

E7 any 2A1 and (A1 +A3)a

D6A1 any [24, 14]× [14]

F4 B2 any [15]

Table 3.1

Proof. If M = T or M is semisimple, then S = Greg or S coincides with a single conjugacy class

and there is nothing to prove. Let M = MΘ with Θ from the above list. We apply Remark 3.17

and we look at S in the neighbourhood of isolated elements rv. For all Θ the quotient S//G is

normal in codimension 1, [30, Proposition 8.6], hence it is unibranch. In addition, [31, Lemma

3.3] ensures that Wτ = StabW (Z(M)◦s) for any choice of Z(M)◦s. By Lemma 3.12, Corollary

3.10 and [55] the problem is reduced to showing that Jm′(m,OM )
reg

is smooth for OM = expOM

and any m′ = cg(r) semisimple exceptional containing m. Such Lie subalgebras are conjugate to

mΘ′ := Lie(MΘ′) for some Θ′ ⊂ ∆̃ with |Θ′| = |∆|. Let WΘ′ be the Weyl group of MΘ′ , then m

is WΘ′ -conjugate to a standard Levi subalgebra therein, [29, Lemma 4.9]. However, normality in

codimension 1 of J//G is equivalent to the condition {wΘ ∈ P(Φ) | w ∈ W, wΘ ⊂ ∆̃} = {Θ},
where P(Φ) denotes the power set of Φ. Therefore we are left to verify smoothness of the

sheets JmΘ′ (mΘ,O)
reg

for all exceptional Θ′ ⊃ Θ with |Θ′| = |∆|. This is done by using the

list in [26, §4] of smooth and singular sheets in simple exceptional Lie algebras on each simple

component of mΘ′ .

3.4.3 Sheets and Lusztig strata in SLn(C)

The case in which G = SLn(C) is particularly simple and we retrieve information on all its sheets

and, as a consequence, on all Lusztig strata as defined in [70, §2], see also [70, §3.2,3.3].

Proposition 3.22. Let G = SLn(C). Then every sheet and Lusztig stratum in G is smooth.

Proof. Let S be a sheet in G = SLn(C). By Remark 3.17 (i), it suffices to prove smoothness

at its isolated classes. These are all of the form zv with z ∈ Z(G) and v unipotent, hence

(S, zv) ∼se (z−1S, v) ∼se (S, exp−1(v)) where S is a sheet in sln by Corollary 3.3 and Remark

3.17 (iii). All sheets in sln are smooth by [10,83]. Hence S is smooth.

We turn now to Lusztig strata. It follows from [28, §2] that their irreducible components are

sheets in G. Strata of G = SLn(C) are of the form XS =
⋃
k∈Z(G) kS for S = JG(L,Z(L)◦, 1)

reg
a

given (birational) sheet. By Corollary 2.31, the stratum XS can be expressed as a non-redundant,

disjoint union of (birational) sheets. Hence the connected components of strata are (birational)

sheets in G, which are smooth by (i), so strata are smooth as well.

52



3.4.4 Birational closures of Jordan classes and birational sheets

Suppose now that rv ∈ J
bir

where J := JG(su) ∈ J (G) and set M := CG(r), C := CG(s)

and Z := Z(C). We will prove that the two pointed spaces (J
bir
, rv) and (

⋃
IJ,rv

J
wbir

M,i , rv) are

smoothly equivalent, where IJ,rv is defined as in (3.2).

Lemma 3.23. Let su ∈ G with s ∈ T and JG(su) =: J ∈J (G) and let rv ∈ J . Then rv ∈ Jbir

if and only if rv ∈ JwbirM,i for all i ∈ IJ,rv. In this case,

(J
bir
, rv) ∼se

 ⋃
IJ,rv

r−1J
wbir

M,i , v

 . (3.9)

Proof. We can assume r ∈ Z◦s. Denote by

DJ,rv := {(Ci, Z(Ci)
◦zi,OCi) ∈ D(M) | r ∈ Z(Ci)

◦zi and OMv ⊂ IndMCi O
Ci}.

If JM,i ∈ JJ,rv as in (3.2), there exists τi ∈ DJ,rv such that J(τi) = JM,i, by Theorem 3.8. Note

that τ := (C,Z◦s,OCu ) ∈ DJ,rv. By Lemma 0.2, since r ∈ Z(Ci)
◦zi, we have that Ci is a Levi

subgroup of M . Hence, by [29, Lemma 3.10] Ci is a pseudo-Levi of G, so that τi ∈ D(G). By

definition of JJ,rv, we have that JG(τi) = J for every τi ∈ DJ,rv. Suppose that rv ∈ Jbir. Then,

rv ∈ JG(τi)
bir

for all τi ∈ DJ,rv, i.e.,

G · (rOMv ) ⊂
⋃

z∈Bir(Z(Ci)◦zi,OCi )

G · (z Ind
CG(z)
Ci

OCi).

Since [G,G] is simply-connected and r ∈ Z◦s, this is equivalent to rOMv = OMrv being birationally

induced (equiv. weakly birationally induced, by Remark 1.18) from (Ci, r,OCi) ∈ B(M) for all

τi ∈ DJ,rv, i.e., rv ∈ JM (τi)
wbir

, for all τi ∈ DJ,rv. For the other implication, observe that

J(τ) ∈ JJ,rv, and if OMrv ⊂ J(τ)
wbir

, then OGrv = G · (OMrv) ⊂ J
bir

. This proves the first

assertion.

For the last part of the statement, let rv ∈ J
bir ⊂ J

reg
. Observe that r ∈ Z(M) im-

plies r−1J
wbir

M,i = r−1J
wbir

M,i . By Proposition 3.7, (J
reg
, rv) ∼se (

⋃
IJ,rv

r−1J
reg

M,i, v). The set

J
bir

is open in J
reg

, so (J
reg
, rv) ∼se (J

bir
, rv); similarly each J

wbir

M,i is open in J
reg

M,i, hence

(
⋃
IJ,rv

J
reg

M,i, rv) ∼se (
⋃
IJ,rv

J
wbir

M,i , rv). Transitivity allows to conclude.

We prove that the local study of a birational sheet in G can be reduced to the study of a

neighbourhood of a unipotent element in some connected reductive subgroup of G.

Theorem 3.24. Let τ = (C,Z◦s,OC) ∈ BB(G). For rv ∈ JG(τ)
bir

with r ∈ Z◦s, we have(
JG(τ)

bir
, rv
)
∼se

(
r−1JCG(r)(τ)

wbir
, v
)
.

Proof. The statement follows from Lemma 3.23, provided that |IJ,rv| = 1 if J
bir

is a birational

sheet, where IJ,rv is as in (3.2). Since OC is birationally rigid in C, also OCi is birationally rigid
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in Ci for all i ∈ IJ,rv, as (C,OC) and (Ci,OCi) are conjugate in G (see Remark 1.24). We set

M := CG(r). Thus each JM,i
wbir

in (3.9) is a weakly birational sheet of M containing rv. By

Theorem 2.25, M is partitioned into its weakly birational sheets, hence the set JJ,rv as in (3.2)

only contains JM (τ).

The following result compares the local structures of a birational sheet of G and of a birational

sheet in a reductive Lie subalgebra of g.

Theorem 3.25. Let τ = (C,Z◦s,OC) ∈ BB(G) and let rv ∈ JG(τ)
bir

with r ∈ Z◦s. Then

(JG(τ)
bir
, rv) ∼se (Jcg(r)(c,O

C)
bir

, ν)

where c := Lie(C), the orbit OC ∈ Nc/C satisfies expOC = OC , the set Jcg(r)(c,O
C)

bir

is a

birational sheet in cg(r) and ν ∈ Ncg(r) is such that exp ν = v.

Proof. This follows from Theorem 3.24, Corollary 3.3 and the fact thatOC ∈ UC/C is birationally

rigid if and only if OC ∈ Nc/C is so (Lemma 1.20).

We conclude this Chapter with some applications of Theorem 3.25 and Losev’s results on the

geometry of birational sheets in g in [67, §4]. We will first need the following fact from Algebraic

Geometry.

Lemma 3.26. Let X and Y be complex algebraic varieties with dimX = dimY + d. Let X and

Y be unibranch at x ∈ X and at y ∈ Y , respectively. Suppose (X,x) ∼se (Y, y). Let ψX : X̃ → X

and ψY : Ỹ → Y be the normalizations of X and Y , respectively. Let x̃ ∈ X̃ and ỹ ∈ Ỹ with

ψX(x̃) = x and ψY (ỹ) = y, respectively. Then (X̃, x̃) ∼se (Ỹ , ỹ).

Proof. By assumption, (Xan, x) and (Y an×Ad, (y, 0)) are locally isomorphic as analytic pointed

spaces. Let X̃an (resp. Ỹ an) be the normalization of Xan (resp. of Y an). By [63, §5, Satz 4],

we have X̃an = X̃an and Ỹ an = Ỹ an. Thus, (X̃an, x̃) is the analytic normalization of (X,x)

and (Ỹ an × Ad, (ỹ, 0)) is the analytic normalization of (Y × Ad, (y, 0)). Hence, (X̃an, x̃) and

(Ỹ an × Ad, (ỹ, 0)) are locally analytically isomorphic and this concludes the proof.

Theorem 3.27. Let τ = (C,Z◦s,OC) ∈ BB(G). Then:

(i) JG(τ)
bir

is unibranch;

(ii) the normalization of JG(τ)
bir

is smooth.

Proof. Retain notation from Theorem 3.25, and set J := JG(τ) and J := Jcg(r)(c,O
C).

(i) Let rv ∈ Jbir. By Theorem 3.25, we have (J
bir
, rv) ∼se (J

bir
, ν). By Remark 1.24, the

orbit OC is birationally rigid and the statement follows from [67, Theorem 4.4 (2)] applied to

the birational sheet J
bir

in the reductive Lie algebra cg(r).

(ii) By (i), we have that (J
bir
, rv) ∼se (J

bir
, ν) are both unibranch. Let ψJ : J̃ → J

bir
and

ψJ : J̃→ J
bir

denote the normalization maps of J
bir

and J
bir

, respectively. Then (J̃ , ψ−1
J (rv)) ∼se

(J̃, ψ−1
J (ν)) by Lemma 3.26 and we conclude by [67, Theorem 4.4 (2)].
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Theorem 3.28. Suppose that the simple factors of G have classical root system. Then the

birational sheets of G are smooth.

Proof. We prove that for τ = (C,Z◦s,OC) ∈ BB(G) and rv ∈ J(τ)
bir

with r ∈ Z◦s, J(τ)
bir

is smooth at rv. By Theorem 3.25, from which we retain notation, we have (J(τ)
bir
, rv) ∼se

(Jcg(r)(c,O
C)

bir

, ν). The algebra cg(r) is reductive, hence Jcg(r)(c,O
C)

bir

decomposes as a prod-

uct of a vector space and some birational sheets in simple classical Lie subalgebras of [cg(r), cg(r)],

and all such objects are smooth by [67, Remark 4.10].
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CHAPTER

FOUR

RINGS OF REGULAR FUNCTIONS OF ORBITS
ALONG BIRATIONAL SHEETS

An important numerical invariant attached to each adjoint orbit O ⊂ g is given by the multi-

plicities with which each irreducible finite-dimensional G-module M occurs in C[O]; the aim is

to characterize subsets of g consisting of orbits parameterized by the same invariant. In Section

4.1 we introduce the necessary notation and results. We then give a brief historical overview

about the problem of multiplicities in Section 4.2: we recall the first formulation by Dixmier [41]

for the case of sln(C) and we illustrate results obtained by Borho and Kraft in [13]: for sln(C),

the sheets of g coincide with the sets of orbits whose rings of regular functions are isomorphic as

G-modules. We introduce the similar problem in the framework of conjugacy classes of a simply-

connected group: for SLn(C) we can prove that the situation is analogous to its Lie algebra. The

generalization of Dixmier’s problem to g simple of type different from A has been addressed more

recently by Losev, [67]. As already mentioned in the Introduction, Losev has proven that mul-

tiplicities of orbits are preserved along birational sheets (which coincide with sheets for sln(C))

and he has conjectured that this invariant characterizes birational sheets, [67]. After an exposi-

tion of Losev’s contributions, we conclude with the original content of this Chapter, contained

in Section 4.3. For G simple simply-connected, restricting to the subset of spherical conjugacy

classes, we can prove group analogues to Losev’s result and conjecture. Finally, some remarks

on Losev’s conjecture for the subset of spherical adjoint orbits are collected in Section 4.4.

4.1 Notations and basic results

In this Chapter, unadorned tensor products should be read as tensor products over C. If M1 and

M2 are G-modules, we write M1 'G M2 to denote that they are isomorphic as G-modules. The

set of isomorphism classes of finite-dimensional irreducible G-modules is denoted by IrrG and

its elements are parameterized by X(T )+, the set of dominant weights of T with respect to Φ+.

We write V (λ) for the irreducible G-module of highest weight λ. We denote by P the lattice of
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integral weights of g, by P+ the monoid of dominant weights. We denote the fundamental weights

with ω1, . . . , ωn and the fundamental co-weights with ω̌1, . . . , ω̌n: these are the elements ω̌j ∈ h

defined by αi(ω̌j) = δij for 1 ≤ i, j ≤ n. For G semisimple simply-connected, it is well-known

that X(T ) identifies with P and X(T )+ identifies with P+.

By Peter-Weyl Theorem, any G-module M admits a canonical decomposition

M 'G
⊕

V ∈IrrG

HomG(V,M)⊗ V 'G
⊕

V ∈IrrG

(M ⊗ V ∗)G ⊗ V,

where HomG(V,M) denotes the set of G-equivariant linear maps V → M . For V ∈ IrrG and a

G-module M , we define the multiplicity of M in V as the integer [M : V ] := dim HomG(V,M).

This yields the following decomposition for C[G/H] = C[G]H if H ≤ G:

C[G/H] 'G
⊕

V ∈IrrG

(C[G]H ⊗ V ∗)G ⊗ V 'G
⊕

V ∈IrrG

(V ∗)H ⊗ V 'G
⊕

V ∈IrrG

nV,HV, (4.1)

where nV,H = [C[G/H] : V ]. Let X be a G-variety and let x ∈ X; since the ground field is C,

the orbit map G → X defined by g 7→ g · x induces an isomorphism of varieties G/Gx
∼−→ Ox

and we have C[Ox] 'G C[G/Gx] = C[G]Gx . Then (4.1) applies with H = Gx.

A transitive G-space X is called spherical if a Borel subgroup of G has a dense orbit in it.

Now suppose X is a conjugacy class of G or a G-adjoint orbit of g: in this case X is spherical

if and only if C[X] is multiplicity-free, i.e., nV,Gx ∈ {0, 1} for all V ∈ Irr(G), for x ∈ X, [20, 98].

We denote by Λ(X) the monoid of dominant weights occurring in C[X], in particular we have

C[X] =
⊕

λ∈Λ(X) V (λ). We will describe the weight monoid Λ(X) by means of a generic element

contained in it, i.e.,
∑n
i=1 niωi, where ni ∈ N and ωi is the i-th fundamental dominant weight.

A subgroup H ≤ G is said to be spherical if the homogeneous space G/H is a spherical variety.

We denote by Gsph (resp. gsph) the union of all spherical conjugacy classes in G (resp.

spherical adjoint orbits in g). By [6, Corollary 2], the subset Gsph (resp. gsph) is closed in G

(resp. gsph), in particular it is a subvariety.

4.2 The ring of regular functions as an invariant

One of the main motivations which led to the study of sheets of g in [13] was Dixmier’s multiplicity

conjecture, left open from [41] which we now state in our notation. Let G = PSLn(C), and let

d ` n. Consider the nilpotent orbit in g attached to it, Od, and the standard Levi subgroup Ldt

defined in (3). For V ∈ IrrG, is it true that [C[Od] : V ] = dim(V ∗)Ldt ?

The answer to this question is positive: it was obtained by Borho and Kraft in [13], as

a corollary of a more general result, which we sum up in the following statement, in a form

adapted to our notation.

Theorem 4.1 (Borho–Kraft [13, Theorems 3.8 and 6.3]). Let G be simple and adjoint. Let S

be a sheet of g and let O be the unique nilpotent orbit in S, let ν ∈ O. If O is normal and CG(ν)

is connected, then C[O] 'G C[O] 'G C[O′] 'G C[O′] for all orbits O′ in S.
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Let us now return to the setting of G = PSLn(C). Recall that sheets of sln(C) are disjoint and

are parameterized by the unique nilpotent orbit which they contain: this was first recorded in [40].

Moreover, the assumptions of Theorem 4.1 hold, since CG(ν) is connected for all ν ∈ N and O

is normal for each O ∈ N/G: normality of closures of nilpotent orbits of sln(C) was established

by Kraft and Procesi in [61]. Therefore, Borho and Kraft could conclude in [13, Nachtrag bei der

Korrektur] that the G-module structure of the algebras of regular functions on adjoint orbits is

preserved along sheets of sln(C). In particular, Dixmier’s multiplicity conjecture is true, since

for every d ` n, the nilpotent orbit Od lies in the same sheet of the orbits of semisimple elements

centralized by Ldt .

The natural following question is: do multiplicities “separate” distinct nilpotent orbits, hence

distinct sheets, in sln(C)? The answer is again positive, as recorded in the following statement.

We thank Eric Sommers for suggesting the use of small modules in the proof; recall that a

G-module V (λ) ∈ IrrG is said to be small if twice a root never occurs as a weight.

Proposition 4.2. Let G be simple with g = sln(C). If O1 and O2 are two distinct nilpotent

orbits in g, then C[O1] 6'G C[O2].

Proof. Let C denote the trivial representation of a group, let λ ∈ P+ and let V (λ)0 = V (λ)T be

the zero weight subspace in V (λ): then V (λ)0 is a W -module (in general, reducible). Let L ≤ G
be a Levi subgroup with Weyl group WL. By [21, Proof of Corollary 1], if V (λ) is small, we have

V (λ)L = (V (λ)T )WL = (V (λ)0)WL and, by Frobenius reciprocity, dim(V (λ)0)WL = [IndWWL
C :

V (λ)0]. For g = sln(C), for every irreducible W -module M there exists λ ∈ P+ ∩ ZΦ such that

V (λ) is small and V (λ)0 'W M , see [21, example p. 389]. Let d = [d1, . . . , dk] ` n, then the Weyl

group Wd of Ld is isomorphic to the direct product of the symmetric groups Sym(di), for i =

1, . . . k. The Richardson orbit IndGLd
{0} = Odt lies in the same sheet containing the semisimple

elements centralized by Ld. By Theorem 4.1 and [59, §2.1], [C[Odt ] : V (λ)] = dimV (λ)Ld for

every simple G-module V (λ). If we denote by Vd the Specht module corresponding to d, then:

IndWWd
C = Vd ⊕

⊕
f>d

Kf dVf

where the coefficients Kf d are the Kostka numbers and < is the lexicographic total order on

partitions of n, see [46, Corollary 4.39]. Let d1 and d2 be different partitions of n, we may

assume d1 > d2. Then there exists a small simple g-module V (λ) such that Vd2
'W V (λ)0.

Then [C[Od2
] : V (λ)] = 1 6= 0 = [C[Od1

] : V (λ)], and we conclude.

The above arguments can be gathered in the following result, which illustrates the situation

for sln(C), where sheets coincide with birational sheets.

Proposition 4.3. Let G be simple with g = sln(C). Then O1 and O2 ∈ g/G are in the same

(birational) sheet of g if and only if C[O1] 'G C[O2].

We now consider the group case: for a connected reductive group G, what can be said on the

behaviour of the G-module structure of C[O] as the conjugacy class O varies along the sheets of
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G? We begin with some easy observations. In [23, §3.7], it is proven that all adjoint orbits in

the same Jordan class of g are isomorphic as G-homogeneous spaces: in particular their rings of

regular functions are isomorphic as G-modules. In the group case, one needs to take into account

central elements, as the following remark shows.

Remark 4.4. Let su ∈ G and z ∈ Z(G). Then Osu and Ozsu = zOsu are isomorphic G-

homogeneous spaces: in fact, CG(su) = CG(zsu) so that C[Osu] 'G C[Ozsu].

Proposition 4.5. Let [G,G] be simply-connected and let J ∈ J (G). Then for all O1,O2 ⊂
Z(G)J , the G-homogeneous spaces O1 and O2 are isomorphic. In particular, C[O1] 'G C[O2].

Proof. Suppose J = J(τ) for τ = (M,Z(M)◦s,OMu ) ∈ D(G). Then J = G · ((Z(M)◦s)regu) and

all conjugacy classes in J meet (Z(M)◦s)regu. We show that s1u, s2u ∈ (Z(M)◦s)regu imply

G/CG(s1u) ' G/CG(s2u): indeed, CG(s1u) = CG(s1) ∩ CG(u) = M ∩ CG(u) = CG(s2u). The

statement follows from Remark 4.4.

Observe that in Proposition 4.5 the hypothesis on [G,G] cannot be relaxed, as illustrated by

the following example.

Example 4.6. Recall the situation of Example 2.11 and retain notation from therein: π : G =

SL2(C) → G = PSL2(C). Let tk = diag[k, k−1] ∈ T reg for k ∈ C× and denote t̄k := π(tk). We

have CG(tk):

CG(t̄k) =

{
H := NG(T ) if k = ±i;
T = H

◦
otherwise.

Neither the G-module structure nor the G-homogeneous space structure of conjugacy classes is

preserved along the Jordan class consisting of regular semisimple elements. In particular, we

have:

k C[OGt̄k ] Λ(OGt̄k )

k = ±i C[G/H] 4n1ω1

k ∈ C \ {0,±1,±i} C[G/T ] 2n1ω1

Table 4.1: Regular semisimple spherical classes in PSL2(C).

Let us consider the most familiar case G = SLn(C). Since pseudo-Levi subgroups of G are

Levi subgroups (Remark 0.5), we get the following analogue of Proposition 4.3.

Theorem 4.7. Let G = SLn(C), let O1 and O2 be conjugacy classes of G and let S1 (resp.

S2) be the (birational) sheet containing O1 (resp. O2). Then C[O1] 'G C[O2] if and only if

S2 = zS1 for some z ∈ Z(G).

Proof. Recall that (birational) sheets in G are disjoint (see Corollary 2.31) and parameterized

by G-classes of pairs (L,Z(L)◦z), with L a Levi sugbroup of G and suitable z in Z(G). For every
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g ∈ G there exists ξ ∈ g such that CG(ξ) = CG(g): if the sheet of G containing Og corresponds

to the G-class of (L,Z(L)◦z), then the sheet of g containing ξ corresponds to the G-class of

Lie(L). Let gi ∈ Oi and ξi ∈ g such that CG(ξi) = CG(gi), and let (Li, Z(Li)
◦zi) correspond to

Si for i = 1, 2. Then C[Oi] = C[Oξi ] for i = 1, 2. Therefore C[O1] 'G C[O2] if and only if and

only if L1 and L2 are G-conjugate by Proposition 4.3, hence if and only if S2 = zS1 for some

z ∈ Z(G).

As we anticipated, it is not true, in general, that the G-module structure of algebras of regular

functions on adjoint orbits are preserved along sheets of any simple Lie algebra. Already Borho

and Kraft came up with examples of this phenomenon in [13, §6.6]: for g of type B2 or G2,

the algebra g presents two distinct subregular sheets S1,S2 such that S1 ∩ S2 = Osreg, the

nilpotent subregular orbit. Then the G-module structure of C[O] is constant as O varies in S1,

while C[O] 6'G C[Osreg] for O semisimple in S2.

It was not until the recent work of Losev [67] that the problem of multiplicities of orbits of

g has found new and interesting developments. Considering birational sheets instead of sheets,

Losev obtained the desired result:

Proposition 4.8 (Losev [67, Remark 4.10]). Let g be reductive. If O1 and O2 are two orbits of

g lying in the same birational sheet, then C[O1] 'G C[O1].

As announced in the Introduction, the result was obtained via the theory of Poisson defor-

mations. In addition, Losev conjectured that the converse is also true:

Conjecture 4.9 (Losev [67, Remark 4.10]). Let g be reductive. If O1 and O2 are two orbits of g

satisfying C[O1] 'G C[O1], then they lie in the same birational sheet.

With the notion of birational sheets of a group G introduced in Chapter 2, we are motivated

to investigate group analogues of Proposition 4.8 and Conjecture 4.9, restricted to the spherical

subvariety Gsph ⊂ G: this is done in the next Section.

4.3 Spherical birational sheets

In this Section, unless otherwise stated, we assume that [G,G] is simply-connected. In particular,

centralizers of semisimple elements of G are connected. Recall that, for a spherical conjugacy

class O the G-module structure of C[O] is completely determined by the weight lattice Λ(O).

To tackle the problem, we want to make use of the complete description of the weight monoids

Λ(O) for O spherical in G simple simply-connected given in [27,36].

The property of being spherical is preserved along sheets, as proven in [6, Proposition 1]. As

in [28], we call a sheet spherical if it is contains a spherical orbit, equivalently if it consists of

spherical orbits. Since every birational sheet is contained in a sheet, the following definition is

well-posed.

Definition 4.10. Let τ ∈ BB(G). The birational sheet J(τ)
bir

is said to be spherical if one of

the following equivalent properties is satisfied:
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(a) all conjugacy classes O ⊂ J(τ)
bir

are spherical;

(b) there exists a spherical conjugacy class O ⊂ J(τ)
bir

;

(c) J(τ)
bir

is contained in a spherical sheet.

We will prove the following result.

Theorem 4.11. Let G be a complex connected reductive algebraic group with [G,G] simply-

connected. Then the spherical birational sheets form a partition of Gsph. Let O1 and O2 be

spherical conjugacy classes in G. Let JG(τ1)
bir

(resp. JG(τ2)
bir

) be the birational sheet containing

O1 (resp. O2). Then C[O1] 'G C[O2] if and only if JG(τ2)
bir

= zJG(τ1)
bir

for some z ∈ Z(G).

Clearly, it is enough to prove Theorem 4.11 for G simple: let G be simple, we illustrate the

procedure for the proof of Theorem 4.11.

The list of spherical conjugacy classes in G simple was first completely carried out in [27]; we

rather adopt notation from [36], where G is assumed to be simply-connected. The fact that Gsph

is partitioned as the union of spherical birational sheets of G is a direct consequence of Theorem

2.25 and of Definition 4.10. With this in mind, we compute the list of spherical birational sheets

in G, proceeding as follows.

- For z ∈ Z(G), we have Oz = {z}, wz = 1 and C[Oz] = C: then {z} is the unique sheet

and the unique birational sheet containing z. Therefore, we can restrict to considering

non-central spherical conjugacy classes.

- We begin the list by computing all spherical birational sheets containing semisimiple el-

ements. Notice that such birational sheets are exactly those obtained as J(τ)
bir

with

τ = (M,Z(M)◦s, {1}) ∈ BB(G) and M a spherical pseudo-Levi subgroup of G: this

follows from Definitions 2.23, 4.10 and Remark 2.18. We deduce the list of spherical

pseudo-Levi subgroups M up to G-conjugacy from [27, 36]: by inspection, we have two

possibilities.

(i) If M is a spherical Levi subgroup, the birational sheet J(τ)
bir

is dense in the spherical

sheet J(τ)
reg

. Moreover, it turns out that J(τ)
reg
\J(τ) is a union of isolated classes.

Since J(τ) ⊂ J(τ)
bir

, we can compute J(τ)
bir

by checking whether the isolated classes

in J(τ)
reg

are birationally induced or not, using Corollary 1.5 or Lemma 1.26 and the

list of birationally rigid unipotent classes in Section 1.3.4.

(ii) If M is a spherical pseudo-Levi subgroup which is not Levi, then M is semisimple and

J(τ)
bir

= J(τ)
reg

= J(τ) = J(τ) is an isolated semisimple class.

- At this point we are left with considering all spherical conjugacy classes which are not

semisimple, nor birationally induced as in (i). By inspecting the lists in [27,36], we see that

all such classes are spherical classes Osu with s semisimple isolated and OCG(s)
u birationally

rigid, confronting the list in Section 1.3.4. We conclude by Remark 2.27 that these classes

are spherical birational sheets.

We collect the list of spherical birational sheets in a table. In the first column we write a triple

τ = (M,Z(M)◦s,OMu ) ∈ BB(G) corresponding to a spherical birational sheet J(τ)
bir

, whose
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decomposition into conjugay classes is described in the second column. From the tables in [36]

we verify that the weight monoid is constant on the classes in J(τ)
bir

and we describe Λ(O) in

the third column. In the cases when Z(G) is non-trivial, we list also a fourth column indicating

the number of (disjoint) birational sheets in Z(G)J(τ)
bir

. This is produced by applying Remark

2.35 when OM is characteristic in M and by direct computation otherwise (this case occurs only

for M semisimple of type CmCm in G of type C2m,m ≥ 2, see Remark 4.22). The fact that Λ(O)

is independent of the orbit O in J(τ)
bir

(and hence in Z(G)J(τ)
bir

) proves the group analogue

of Proposition 4.8 (for spherical conjugacy classes in G simple simply-connected). To prove the

validity of the group analogue of Conjecture 4.9 one has to check that the entries in the third

column are pairwise distinct.

We set the following notation. For i = 1, . . . , n, recall that ci is the coefficient of αi in the

expansion of the highest root. We put: ri := exp ω̌i
ci

for i = 1, . . . , n. These elements are a family

of representatives of the semisimple isolated classes, [38]; moreover, Z(G) = {1} ∪ {ri | ci = 1}.
For i = 1, . . . , n, we set:

Θi := ∆ \ {αi} Li := LΘi ; (4.2)

Θ̃i := ∆̃ \ {αi} Mk := MΘ̃i
= CG(ri). (4.3)

We shall freely use the notation from in [36] to describe unipotent elements as products of

elements of the root subgroups, namely, for α ∈ Φ the root subgroup Uα will be expressed

through a one-parameter additive subgroup as follows Uα = {xα(ζ) | ζ ∈ C}.

4.3.1 Type An

Let G = SLn+1(C), for n ≥ 1. Clearly, Theorem 4.11 holds for G: this is a consequence of

Theorem 4.7 applied to the spherical subvariety Gsph. For the sake of completeness, we list

the spherical birational sheets of G and the weight monoids of orbits contained in them. Set

m :=
⌊
n+1

2

⌋
.

If n = 1, every conjugacy class of G is spherical and there are three (birational) sheets:

{−1}, {1} and Greg.

Let n ≥ 2. Consider the Levi subgroups Li, for all i = 1, . . . ,m. Then [Li, Li] is of type

An−iAi−1, the centre Z(Li) is one-dimensional and consists of di = gcd(n+1−i, i) = gcd(i, n+1)

distinct connected components which are not conjugate in G. Let di := [n + 1 − i, i] and let

τi := (Li, Z(Li)
◦, {1}), then Z(Li)

◦ = exp(Cω̌i), and Z(G) ∩ Z(Li)
◦ has order n+1

di
. We have:

J(τi)
bir

= J(τi)
reg

=
⋃

z∈Z(Li)◦

G · (z Ind
CG(z)
Li

{1}) =
⋃

ζ∈C\2πiZ

Oexp(ζω̌i) t
⋃

z∈Z(G)∩Z(Li)◦

zOdti
,

by [35, Theorem 7.2.3]. It follows that Z(G)J(τi)
bir

is the disjoint union of di birational sheets.
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τ J(τ)
bir

Λ(O) d

(L`, Z(L`)
◦, {1})

` = 1 . . . ,m− 1

⋃
ζ∈C\Z

Oexp(ζω̌`) t

t(Z(G) ∩ Z(Li)
◦)Odt

`

∑̀
k=1

nk(ωk + ωn−k+1) gcd(`, n+ 1)

(Lm, Z(Lm), {1})
n = 2m

⋃
ζ∈C\Z

Oexp(ζω̌m) tZ(G)Odtm

m∑
k=1

nk(ωk + ωn−k+1) 1

(Lm, Z(Lm)◦, {1})
n+ 1 = 2m

⋃
ζ∈C\Z

Oexp(ζω̌m) t ±Odtm

m−1∑
k=1

nk(ωk + ωn−k+1)+

+2nmωm

m

Table 4.2: Type An, n ≥ 1,m =
⌊
n+1

2

⌋
.

4.3.2 Type Bn, n ≥ 3

Set ẑ := α∨n(−1), so that Z(G) = 〈ẑ〉 ' Z2.

The following result holds indepedently of the parity of n.

Lemma 4.12. Consider τ1 := (L1, Z(L1), {1}) ∈ BB(G). Then the spherical sheet S1 :=

JG(τ1)
reg

= JG(τ1)
bir

is birational and it contains the unipotent class Od, with d = [3, 12n−2].

Proof. The group L1 is maximal in G of type T1Bn−1 and its centre is connected:

Z(L1) = {α∨1 (x2) . . . α∨n−1(x2)α∨n(x) | x ∈ C×}.

We have

S1 =
⋃

z∈Z(L1)

G · (z Ind
CG(z)
L1

{1}) = G · (Z(L1)reg) t Z(G)Od,

where Od = IndGL1
{1} with d := [3, 12n−2] ` 2n+ 1 is the only isolated class in S1 up to central

elements. By Lemma 2.30, S1 = JG(τ1)
bir

if and only if Od is birationally induced from (L1, {1}).
This is true by Corollary 1.5: we have u = xε1(1) ∈ Od, where ε1 is the highest short root of G;

a direct computation shows CG(u) ≤ PΘ1 . Therefore

S1 =
⋃

ζ∈C\Z

Oexp(ζω̌1) tOd tẑOd

and Z(G)J(τ1)
bir

= J(τ1)
bir

.

Type Bn, n = 2m+ 1,m ≥ 1

Let βk = ε2k−1 + ε2k and uk :=
∏k
i=1 xβi(1) for k = 1, . . . ,m.

Lemma 4.13. Consider τn := (Ln, Z(Ln), {1}) ∈ BB(G). Then the spherical sheet Sn :=

JG(τn)
reg

= JG(τn)
bir

is birational and it contains the unipotent class Of , where f = [3, 2n−1].

Proof. Let n ∈ N, n ≥ 3, we have Ln < Mn < G and r2
n = ẑ. Observe that:

Z(Ln) =

{
n−1∏
i=1

α∨i (xi1)α∨n(xn) | x1, xn ∈ C×, x2
n = xn1

}
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is connected. Then:

Sn =
⋃

z∈Z(Ln)

G · (z Ind
CG(z)
Ln

{1}) =

= G · (Z(Ln)reg) tG · (Z(G)rn IndMn

Ln
{1}) t Z(G) IndGLn{1},

where the last two members in the union contain the isolated classes in Sn. Observe that Mn

is simple of type Dn. By Lemma 2.30 to prove that Sn = JG(τn)
bir

, it is enough to prove

that IndMn

Ln
{1} and O := IndGLn{1} are birationally induced from (Ln, {1}). We show that

G · (rn IndMn

Ln
{1}) is birationally induced from (Ln, {1}). Observe that OMn

um = IndMn

Ln
{1}, the

unipotent class in Mn corresponding to the partition [22n−1, 12]. This class satisfies the criterion

in Lemma 1.26. The unipotent class O in G corresponds to the partition f , hence by Lemma

1.26, it is birationally induced from (Ln, {1}). Thus Sn is a birational sheet in G. Finally,

we observe that rn ∼W ẑrn = r−1
n and OMn

um is characteristic in the simple group Mn, so that

G · (Z(G)rn IndMn

Ln
{1}) is a single class, hence

Sn =
⋃

ζ∈C\ 1
2Z

Oexp(ζω̌n) tOrnum tOf tẑOf ,

and Z(G)Sn = Sn.

We consider the remaining spherical pseudo-Levi subgroups. For ` = 2, . . . , n, the pseudo-

Levi subgroup M` is maximal of type D`Bn−`, we have:

(i) r2
` = 1 and Z(M`) = 〈r`〉 × Z(G), for ` even;

(ii) r2
` = ẑ and Z(M`) = 〈r`〉, for ` odd.

In any case, Z(M`)
reg = {r`, ẑr`} and r` ∼W ẑr` via the reflection corresponding to the root ε1.

Then Or` is a (birational) sheet consisting of an isolated class, and Z(G)Or` = Or` .

We proceed with the non-semisimple spherical conjugacy classes: for ` = n, the group Mn

is simple of type Dn contains the birationally rigid unipotent class OMn
uk

corresponding to the

partition [22k, 12(n−2k)], for k = 1, . . . ,m−1. Hence Ornuk is a (birational) sheet consisting of an

isolated class. Since rn ∼W r−1
n (by sn) and OMn

uk
is characteristic in Mn we have Z(G)Ornuk =

Ornuk by Remark 2.35. The remaining spherical conjugacy classes in G are unipotent birationally

rigid, up to central elements.
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τ J(τ)
bir

Λ(O) d

(L1, Z(L1), {1})

⋃
ζ∈C\Z

Oexp(ζω̌1) t

tZ(G)O[3,12n−2]

2n1ω1 + n2ω2 1

(Ln, Z(Ln), {1})

⋃
ζ∈C\ 1

2
Z
Oexp(ζω̌n) t

tOσnum tZ(G)O[3,2n−1]

n−1∑
i=1

niωi + 2nnωn 1

(M`, {r`}, {1})
` = 2, . . . ,m

Or`
2`−1∑
i=1

2niωi + n2`ω2` 1

(M`, {r`}, {1})
` = m+ 2, . . . , n

Or`
2(n−`)∑
i=1

2niωi + n2(n−`)+1ω2(n−`)+1 1

(Mm+1, {rm+1}, {1}) Orm+1

n∑
i=1

2niωi 1

(Mn, {rn},OMnu` )
` = 1, . . . ,m− 1

Ornu`
2`+1∑
i=1

niωi 1

(G, {1},O[22`,12n+1−4`])

` = 1, . . . ,m
O[22`,12n+1−4`]

∑̀
i=1

n2iω2i 2

(G, {1},O[3,22(`−1),12n+2−4`])

` = 2, . . . ,m
O[3,22(`−1),12n+2−4`]

2∑̀
i=1

niωi |
∑̀
i=1

n2i−1 ∈ 2N 2

Table 4.3: Type Bn, n = 2m+ 1, m ≥ 1.

Proposition 4.14. Theorem 4.11 holds for G of type B2m+1, for m ≥ 1.

Proof. From [36, Table 13, 14, 15] the weight monoid is preserved along classes in Z(G)J(τ)
bir

for every spherical birational sheet J(τ)
bir

. The entries in the third column of Table 4.3 are

pairwise distinct.

Type Bn, n = 2m,m ≥ 2

Let βk = ε2k−1 + ε2k and uk :=
∏k
i=1 xβi(1) for k = 1, . . . ,m.

Lemma 4.15. Let τn = (Ln, Z(Ln)◦, {1}), set f := [3, 22(m−1), 12] and let Sn := JG(τn)
reg

.

Then Sn = JG(τn)
bir
t Of , where Of is a birationally rigid unipotent class in G. Similarly, the

sheet ẑSn decomposes as the union of two birational sheets ẑJG(τn)
bir
t ẑOf .

Proof. We have Ln < Mn < G and Z(Ln) = {α∨1 (x)α∨2 (x2) · · ·α∨n−1(xn−1)α∨n(±xm) | x ∈ C×} =

Z(Ln)◦ ∪ Z(Ln)◦ẑ; observe that r2
n = 1. By Lemma 0.6, Z◦ and Z◦ẑ are not conjugate in G.

Then

Sn =
⋃

z∈Z(Ln)◦

G · (z Ind
CG(z)
Ln

{1}) = G · (Z(Ln))reg tG · (rn IndMn

Ln
{1}) t IndGLn{1},

where the last two members in the union are the isolated classes in Sn. We show that G ·
(rn IndMn

Ln
{1}) is birationally induced from (Ln, {1}). We have Mn is simple of type Dn and

IndMn

Ln
{1} = OMn

um is the one of the two unipotent class in Mn corresponding to [2n], which

fulfils the criterion in Lemma 1.26. We have IndGLn{1} = Of with f = [3, 22(m−1), 12] ` 2n + 1
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a full-member partition (see §1.3.4), hence Od is not birationally induced from (Ln, {1}) and it

forms a single birational sheet in G. Thus

JG(τn)
bir

= G · ((Z(Ln)◦)reg) tG · (rn IndMn

Ln
{1}) =

⋃
ζ∈C\ 1

2Z

Oexp(ζω̌n) tOrnum .

and Z(G)JG(τn)
bir

= JG(τn)
bir
t ẑJG(τn)

bir
. The description of ẑSn follows easily.

We consider the remaining spherical pseudo-Levi subgroups. For ` = 2, . . . , n, the pseudo-

Levi subgroup M` is maximal of type D`Bn−` and we have:

(i) r2
` = 1 and Z(M`) = 〈r`〉 × Z(G) for even `;

(ii) r2
` = ẑ and Z(M`) = 〈r`〉 for odd `.

In any case, Z(M`)
reg = {r`, ẑr`} and r` ∼W ẑr` via the reflection with respect to the root ε1.

Then Or` is a (birational) sheet consisting of an isolated class, and Z(G)Or` = Or` .
We are now left with the non-semisimple spherical conjugacy classes. For ` = n, the subgroup

Mn is simple of type Dn and contains the birationally rigid unipotent classes OMn
uk

, corresponding

to the partition [22k, 12(n−2k)] in SO2n(C), for k = 1, . . . ,m − 1. Hence, Or`uk is a (birational)

sheet consisting of an isolated class. Moreover, rn ∼W ẑrn and OMn
uk

is characteristic in the

simple group Mn, hence by Remark 2.35 we have Z(G)Or`uk = Or`uk , for k = 1, . . . ,m− 1. Up

to central elements, the remaining spherical conjugacy classes in G are unipotent birationally

rigid.

τ J(τ)
bir

Λ(O) d

(L1, Z(L1), {1})

⋃
ζ∈C\Z

Oexp(ζω̌1) t

tZ(G)O[3,12n−2]

2n1ω1 + n2ω2 1

(Ln, Z(Ln)◦, {1})
⋃

ζ∈C\ 1
2
Z
Oexp(ζω̌n) tOσnum

n−1∑
i=1

niωi + 2nnωn 2

(M`, {r`}, {1})
` = 2, . . . ,m− 1

Or`
2`−1∑
i=1

2niωi + n2`ω2` 1

(M`, {r`}, {1})
` = m+ 1, . . . , n

Or`
2(n−`)∑
i=1

2niωi + n2(n−`)+1ω2(n−`)+1 1

(Mm, {rm}, {1}) Orm
n∑
i=1

2niωi 1

(Mn), {rn},OMnu` )
` = 1, . . . ,m− 1

Ornu`
2`+1∑
i=1

niωi 1

(G, {1},O[22`,12n+1−4`])

` = 1, . . . ,m− 1
O[22`,12n+1−4`]

∑̀
i=1

n2iω2i 2

(G, {1},O[22m,1]) O[22m,1]

m−1∑
i=1

n2iω2i + 2nnωn 2

(G, {1},O[3,22(`−1),12n+2−4`])

` = 2, . . . ,m− 1
O[3,22(`−1),12n+2−4`]

2∑̀
i=1

niωi |
∑̀
i=1

n2i−1 ∈ 2N 2

(G, {1},O[3,22(m−1),12]) O[3,22(m−1),12]

n∑
i=1

niωi |
m∑
i=1

n2i−1, nn ∈ 2N 2

Table 4.4: Type Bn, n = 2m, m ≥ 2.
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Proposition 4.16. Theorem 4.11 holds for G of type B2m, for m ≥ 2.

Proof. From [36, Table 10, 11, 12] the weight monoid is preserved along classes in Z(G)J(τ)
bir

for every spherical birational sheet J(τ)
bir

. The entries in the third column of Table 4.4 are

pairwise distinct.

4.3.3 Type Cn, n ≥ 2

We have Z(G) = 〈ẑ〉 with ẑ =
∏
j odd

α∨j (−1). We set m :=
⌊
n
2

⌋
and βk = 2εk for k = 1, . . . ,m.

Type C2

Lemma 4.17. Let G = Sp4(C). For i = 1, 2, consider τi := (Li, Z(Li)
◦, {1}) ∈ BB(G) and set

Si := J(τi)
reg

. Then:

(i) The spherical sheet S2 = J(τ2)
bir

is birational.

(ii) The spherical sheet S1 (resp. ẑS1) decomposes as the union of two birational sheets

J(τ1)
bir
t O[22] (resp. ẑJ(τ1)

bir
t ẑO[22]).

Proof. For (i), observe that Z(L2) = {α∨1 (x)α∨2 (x2) | x ∈ C×} is connected. Then S2 =⋃
z∈Z(L2)G · (z Ind

CG(z)
L2

{1}) contains two isolated classes: IndGL2
{1} and ẑ IndGL2

{1}. We have

IndGL2
{1} = O[22] ∈ U/G, and u := xβ1

(1)xβ2
(1) ∈ O[22] satisfies CG(u) ≤ PΘ2

, so that O[22] is

birationally induced from (L2, {1}) and S2 is a birational sheet, by Corollary 1.5.

For (ii), notice that Z(L1) = Z(L1)◦ t Z(L1)◦ẑ. We have

S1 =
⋃

z∈Z(L1)◦

G · (z Ind
CG(z)
L1

{1}) = G · ((Z(L1)◦)reg) tG · (r1 IndM1

L2
{1}) t IndGL1

{1}.

Observe that M1 ' SL2(C) × SL2(C), so the mixed class G · (r1 IndM1

L1
{1}) = Or1xβ1

(1) is

birationally induced by Lemma 1.26. The unipotent class O[22] = IndGL1
{1} is not birationally

induced from (L1, {1}), so that

J(τ1)
bir

=
⋃

ζ∈C\ 1
2Z

Oexp(ζω̌1) tOr1xβ1
(1)

and Z(G)J(τ1)
bir

= J(τ1)
bir
t ẑJ(τ1)

bir
.

There is one more spherical pseudo-Levi subgroup M1 giving rise to the (birational) sheet

Or1 . Note that r1 ∼W ẑr1, hence Z(G)Or1 = Or1 .

Up to central elements, there is one more spherical conjugacy class, it is unipotent and

corresponds to the partition [2, 12]: this is birationally rigid.
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τ J(τ)
bir

Λ(O) d

(L2, Z(L2), {1})
⋃

ζ∈C\Z
Oexp(ζω̌2) tZ(G)O[22] 2n1ω1 + 2n2ω2 1

(L1, Z(L1)◦, {1})
⋃

ζ∈C\ 1
2
Z
Oexp(ζω̌1) tOr1xβ1

(1) 2n1ω1 + n2ω2 2

(C1, {r1}, {1}) Or1 n2ω2 1

(G, {1},O[2,12]) O[2,12] 2n1ω1 2

Table 4.5: Type C2.

Proposition 4.18. Theorem 4.11 holds for G of type C2.

Proof. From [36, Table 3, 4, 5] the weight monoid is preserved along classes in Z(G)J(τ)
bir

for

every spherical birational sheet J(τ)
bir

. The entries in the third column of Table 4.5 are pairwise

distinct.

Remark 4.19. The subregular unipotent class O[22] lies in both the sheets S1 and S2. This agrees

with what is stated in [13, §6(c)]: O[22] can be deformed in semisimple classes of both types

Oexp(ζω̌1) and Oexp(ζω̌2), but in general the multiplicities of the weights can decrease. Indeed,

for ζ ∈ C \ 1
2Z, we have Λ(Oexp(ζω̌1)) = 〈2ω1, ω2〉 > 〈2ω1, 2ω2〉 = Λ(O[22]) = Λ(Oexp(ζω̌2)).

Type Cn, n ≥ 3

Lemma 4.20. Let τ1 := (L1, Z(L1)◦, {1}) ∈ BB(G); then the spherical sheet S1 := JG(τ1)
reg

decomposes as S1 = JG(τ1)
bir
t Od, where Od is the unipotent birationally rigid class with

d = [22, 12(n−1)]. Similarly, the spherical sheet ẑS1 decomposes as ẑJG(τ1)
bir
t ẑOd.

Proof. We have L1 < M1 < G and

Z(L1) =


bn−1

2 c∏
j=0

α∨2j+1(x1)

m∏
j=1

α∨2j(x2) | x1, x2 ∈ C×, x2
1 = x2

2

 ,

so that Z(L1) = Z(L1)◦ t Z(L1)◦ẑ and the two connected components are not conjugate in G

by Lemma 0.6. We have:

S1 =
⋃

z∈Z(L1)◦

G · (z Ind
CG(z)
L1

{1}) = G · ((Z(L1)◦)reg) tG · (r1 IndM1

L1
{1}) t IndGL1

{1}.

We check whether the two isolated classes in S1 are birationally induced. The mixed class

G · (ẑs1 Ind
CG(s1)
L1

{1}) is birationally induced, as [L1, L1] ' Sp2n−2(C) and M1 ' Sp2n−2(C) ×
SL2(C). The unipotent class Od = IndGL1

{1} is not birationally induced from (L1, {1}), indeed

it is birationally rigid, see §1.3.4, and it coincides with a whole birational sheet. Hence

J(τ1)
bir

=
⋃

ζ∈C\ 1
2Z

Oexp(ζω̌1) tOr1xβ1
(1)

and Z(G)J(τ1)
bir

= J(τ1)
bir
t ẑJ(τ1)

bir
.
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Lemma 4.21. Let τn = (Ln, Z(Ln), {1}) ∈ BB(G); then the spherical sheet Sn := JG(τn)
reg

is

birational and it contains the unipotent class Of , with f = [2n].

Proof. Observe that Z(Ln) =

{
n∏
i=1

α∨i (xi) | x ∈ C×
}

is connected. We have:

Sn =
⋃

z∈Z(Ln)

G · (z Ind
CG(z)
Ln

{1}) = G · (Z(Ln)reg) t ẑ IndGLn{1} t IndGLn{1}.

The isolated classes in Sn are IndGLn{1} and ẑ IndGLn{1}, where IndGLn{1} = OGf , with f = [2n].

A representative for Of is u =
n∏
i=1

xβi(1), and CG(u) ≤ PΘn implies Of is birationally induced

from (Ln, {1}), by Corollary 1.5. Hence

J(τ)
bir

= J(τ)
reg

=
⋃

ζ∈C\Z

Oexp(ζω̌n) tOf tẑOf ,

and Z(G)J(τ)
bir

= J(τ)
bir

.

We consider the remaining spherical pseudo-Levi subgroups. For ` = 1, . . . ,m, the pseudo-

Levi M` is maximal of type C`Cn−` and Z(CG(r`)) = 〈r`〉 × Z(G). Then, for (M`, {r`}, {1})
we get Or` , a (birational) sheet consisting of an isolated class. We have Z(G)Or` = Or` tẑOr`
except when n = 2m, ` = m, in which case rm ∼G ẑrm and Z(G)Orm = Orm .

We are left with non-semisimple spherical conjugacy classes.

(i) For ` = 2, . . . , p, the pseudo-Levi M` of type C`Cn−` contains the birationally rigid unipo-

tent class OM`

xβ1
(1) of the form [2, 12`−2] × {1}. Then Or`xβ1

(1) is a (birational) sheet con-

sisting of an isolated class.

(ii) For ` = 1, . . . ,m, the pseudo-Levi CG(r`) of type C`Cn−` has the birationally rigid unipo-

tent class OM`

xαn (1) of the form {1} × [2, 12(n−`)−2]. Then Or`xαn (1) is a (birational) sheet

consisting of an isolated class.

In both cases, we have that Z(G)Or`xβ1
(1) = Or`xβ1

(1) tẑOr`xβ1
(1) and Z(G)Or`xαn (1) =

Or`xαn (1) tẑOr`xαn (1). The only case which needs inspection is n = 2m, ` = m: we have

rm ∼W ẑrm, but rmxβ1
6∼G ẑrmxβ1

.

Remark 4.22. This is an example of (M,Z◦s1,OM ), (M,Z◦s2,OM ) in BB(G) with (M,Z◦s1),

(M,Z◦s2) G-conjugate, but (M,Z◦s1,OM ), (M,Z◦s2,OM ) not G-conjugate: in this case the

(birationally) rigid class OM is not characteristic in the semisimple pseudo-Levi subgroup M .

Up to central elements, the remaining spherical conjugacy classes in G are unipotent bira-

tionally rigid.
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τ J(τ)
bir

Λ(O) d

(Ln, Z(Ln), {1})
⋃

ζ∈C\Z
Oexp(ζω̌n) tZ(G)O[2n]

n∑
i=1

2niωi 1

(L1, Z(L1)◦, {1})
⋃

ζ∈C\ 1
2
Z
Oexp(ζω̌1) tOr1xβ1

(1) 2n1ω1 + n2ω2 2

(M`, {r`}, {1})
` = 1, . . . ,m− 1

Or`
∑̀
i=1

n2iω2i 2

(Mm, {rm}, {1})
if n = 2m+ 1 Orm

m∑
i=1

n2iω2i

2

(Mm, {rm}, {1})
if n = 2m

1

(Mm, {rm},OMm{1}×[2,12(n−m)−2]
) Ormαn(1)

n∑
i=1

niωi |
bn+1

2 c∑
i=1

n2i−1 ∈ 2N 2

(M`, {r`},OM`{1}×[2,12(n−`)−2]
)

` = 1, . . . ,m− 1
Or`αn(1)

2`+1∑
i=1

niωi |
`+1∑
i=1

n2i−1 ∈ 2N 2

(M`, {r`},OM`[2,12`−2]×{1})

` = 2, . . . ,m
Or`xβ1

(1)

2∑̀
i=1

niωi |
∑̀
i=1

n2i−1 ∈ 2N 2

(G, {1},O[2`,12n−2`])

` = 1, . . . , n− 1
O[2`,12n−2`]

∑̀
i=1

2niωi 2

Table 4.6: Type Cn, n ≥ 3,m =
⌊
n
2

⌋
.

Proposition 4.23. Theorem 4.11 holds for G of type Cn, n ≥ 3.

Proof. From [36, Table 3, 4, 5] the weight monoid is preserved along classes in Z(G)J(τ)
bir

for

every spherical birational sheet J(τ)
bir

. Assume Λ(O1) = Λ(O2) for O1 ⊂ Z(G)J(τ1)
bir
,O2 ⊂

Z(G)J(τ2)
bir

. This is possible if and only if n = 2m for m ∈ N,m ≥ 1, and

τ1 = (Mm, {rm},OMm

{1}×[2,1n−2]) = (Mm, {rm},OMm
xαn(1)

)

τ2 = (Mm, {rm},OMm

[2,1n−2]×{1}) = (Mm, {rm},OMm
xβ1(1)

)

However in this case rm ∼G ẑrm, and also rmxαn(1) ∼G ẑrmxβ1(1). Therefore, the triples τ1

and (Mm, {ẑrm},OMm
xβ1(1)

) are G-conjugate and J(τ1)
bir

= ẑJ(τ2)
bir

.

4.3.4 Type Dn, n ≥ 4

Let ϑ denote the graph automorphism of G which swaps αn−1 and αn. We observe that r1 =

α∨n−1(−1)α∨n(−1) ∈ Z(G).

Type Dn, n = 2m,m ≥ 2

For G of type D2m,m ≥ 2 we have that rn−1 and rn are involutions and rnrn−1 = r1; in

particular,
m−1∏
j=0

α∨2j+1(−1) =

{
rn m even

rn−1 m odd

hence Z(G) = 〈r1, rn〉 = 〈r1, rn−1〉 ' Z2 × Z2.
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Lemma 4.24. Let τ1 := (L1, Z(L1)◦, {1}) ∈ BB(G). Then the spherical sheet S1 := J(τ1)
reg

is

birational and it contains the unipotent class Od where d = [3, 12n−3]. Similarly, the spherical

sheet rnS1 is birational.

Proof. Remark that:

Z(L1) =


m−2∏
j=0

α∨2j+1(±x2)

m−1∏
j=1

α∨2j(x
2)α∨2m−1(±x)α∨2m(x) | x ∈ C×

 ,

so that Z(L1) = Z(L1)◦ t Z(L1)◦rn. We have:

S1 =
⋃

z∈Z(L1)◦

G · (z Ind
CG(z)
L1

{1}) = G · ((Z(L1)◦)reg) t IndGL1
{1} t r1 IndGL1

{1},

where the last two members of the union are the only isolated classes in S1. We have IndGL1
{1} =

Od, where d = [3, 12n−3]. By Lemma 1.26, the class Od is birationally induced from (L1, {1}),
hence JG(τ1)

bir
= S1 by Lemma 2.30. Therefore,

J(τ1)
bir

= J(τ1)
reg

=
⋃

ζ∈C\Z

Oexp(ζω̌1) tOd tr1Od

and Z(G)S1 = S1 t rnS1

For the following result set some additional notation: we consider the very even partition

[2n], it is well-known that there exist two unipotent conjugacy classes in G corresponding to this

partition, and they are swapped by the automorphism ϑ. We set:

O[2n] = IndGLn{1}
0 0 0 0

0

2

O′[2n] = IndGLn−1
{1}

0 0 0 0

2

0

Lemma 4.25. Let τn := (Ln, Z(Ln)◦, {1}) and τn−1 := (Ln−1, Z(Ln−1)◦, {1}) ∈ BB(G). The

following spherical sheets of G are birational:

(i) Sn := JG(τn)
reg

and r1Sn.

(ii) Sn−1 := ϑ(Sn) = JG(τn−1)
reg

and r1Sn−1.

Proof. For (i), we have Z(Ln) = {α∨1 (x)α∨2 (x2) · · ·α∨n−2(xn−2)α∨n−1(±xm)α∨n(±xm−1) | x ∈
C×} = Z(Ln)◦ tZ(Ln)◦r1. By Lemma 0.6, Z(Ln)◦ and Z(Ln)◦r1 are not conjugate in G, hence

we have two distinct sheets Sn and r1Sn, where Sn = JG(τn)
reg

. We prove that Sn = JG(τn)
bir

.

We have

Sn =
⋃

z∈Z(Ln)◦

G · (z Ind
CG(z)
Ln

{1}) = G · ((Z(Ln)◦)reg) t IndGLn{1} t rn IndGLn{1}.

The two isolated classes in Sn are IndGLn{1} = O[2n] and rnO[2n]. We conclude by Lemma 1.26.

Therefore

Sn =
⋃

ζ∈C\Z

Oexp(ζω̌n) tO[2n] trnO[2n]
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is a spherical birational sheet and Z(G)Sn = Sn t r1Sn. By applying the automorphism ϑ we

get

Sn−1 =
⋃

ζ∈C\Z

Oexp(ζω̌n−1) tO′[2n] trn−1O′[2n]

and Z(G)Sn−1 = Sn−1 t r1Sn−1, proving (ii).

We consider the remaining spherical pseudo-Levi subgroups. For ` = 2, . . . ,m, the pseudo-

Levi subgroup M` is maximal of type D`Dn−`.

(i) For ` odd we have r2
` = r1 and Z(M`) = 〈r`〉 × 〈rn〉;

(ii) For ` even we have r2
` = 1 and Z(M`) = 〈r`〉 × Z(G).

In both cases, Z(M`)
reg = {r`, r1r`, rn−1r`, rnr`}. Observe that for ` = 2, . . . ,m − 2, we have

r` ∼W r1r` 6∼W rn−1r` ∼W rnr`, whereas for ` = m, all elements of Z(M`)
reg are W -conjugate.

To sum up, for all ` = 2, . . . ,m we have that Or` is a (birational) sheet consisting of an isolated

class. Moreover, for ` = 2, . . . ,m−1 we have Z(G)Or` = Or` trnOr` , whereas Z(G)Orm = Orm .

Up to central elements, the remaining spherical conjugacy classes in G are unipotent bira-

tionally rigid.

τ J(τ)
bir

Λ(O) d

(L1, Z(L1)◦, {1})

⋃
ζ∈C\Z

Oexp(ζω̌1) t

tO[3,12n−3] tr1O[3,12n−3]

2n1ω1 + n2ω2 2

(Ln, Z(Ln)◦, {1})

⋃
ζ∈C\Z

Oexp(ζω̌n) t

tO[2n] trnO[2n]

m−1∑
i=1

n2iω2i + 2nnωn 2

(Ln−1, Z(Ln−1)◦, {1})

⋃
ζ∈C\Z

Oexp(ζω̌n−1) t

tO′[2n] trn−1O′[2n]

m−1∑
i=1

n2iω2i + 2nn−1ωn−1 2

(M`, {r`}, {1})
` = 2, . . . ,m− 1

Or`
2`−1∑
i=1

2niωi + n2`ω2` 2

(Mm, {rm}, {1}) Orm
n∑
i=1

2niωi 1

(G, {1},O[22`,12n−4`])

` = 1, . . . ,m− 1
O[22`,12n−4`]

∑̀
i=1

n2iω2i 4

(G, {1},O[3,22(`−1),12n−4`+1])

` = 2, . . . ,m− 1
O[3,22(`−1),12n−4`+1]

2∑̀
i=1

niωi |
∑̀
i=1

n2i−1 ∈ 2N 4

(G, {1},O[3,22(m−1),1]) O[3,22(m−1),1]

n∑
i=1

niωi |
m∑
i=1

n2i−1, nn−1 + nn ∈ 2N
4

Table 4.7: Type Dn, n = 2m,m ≥ 2.

Proposition 4.26. Theorem 4.11 holds for G of type D2m, with m ≥ 2.

Proof. From [36, Table 6, 7] the weight monoid is preserved along classes in Z(G)J(τ)
bir

for

every spherical birational sheet J(τ)
bir

. The entries in the third column of Table 4.7 are pairwise

distinct.
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Type Dn, n = 2m+ 1,m ≥ 2

For G simple simply-connected of type D2m+1,m ≥ 2, we have

rn = r−1
n−1 =


m−1∏
j=0

α∨2j+1(−1)α∨n−1(−i)α∨n(i) m even

m−1∏
j=0

α∨2j+1(−1)α∨n−1(i)α∨n(−i) m odd

has order 4 and r2
n = r1, hence Z(G) = 〈rn〉 = 〈rn−1〉 ' Z4.

Lemma 4.27. Let τ1 := (L1, Z(L1)◦, {1}) ∈ BB(G). Then the spherical sheet S1 := J(τ1)
reg

is birational and it contains the unipotent class Od with d = [3, 12n−3]. Similarly, the spherical

sheet rnS1 is birational.

Proof. Remark that:

Z(L1) =


m−1∏
j=0

α∨2j+1(x2)

m−1∏
j=1

α∨2j(±x2)α∨2m(±x)α∨2m+1(x) | x ∈ C×
 ,

so that Z(L1) = Z(L1)◦ ∪ Z(L1)◦rn. We have:

S1 =
⋃

z∈Z(L1)◦

G · (z Ind
CG(z)
L1

{1}) = G · ((Z(L1)◦)reg) t IndGL1
{1} t r1 IndGL1

{1},

where the last two members of the union are the only isolated classes in S1. We have IndGL1
{1} =

Od, where d = [3, 12n−3]. By Lemma 1.26, the class Od is birationally induced from (L1, {1}),
hence JG(τ1)

bir
= S1 by Lemma 2.30. Therefore

J(τ1)
bir

= J(τ1)
reg

=
⋃

ζ∈C\Z

Oexp(ζω̌1) tOd tr1Od

and Z(G)S1 = S1 t rnS1

We remark that w0 acts as −ϑ, so that in this case Ln ∼G ϑ(Ln) = Ln−1.

Lemma 4.28. Let τn := (Ln, Z(Ln), {1}) ∈ BB(G). The spherical sheet Sn := JG(τn)
reg

is

birational and it contains the unipotent class Of with f = [2n−1, 12].

Proof. Remark that Z(Ln) = {α∨1 (x)α∨2 (x2) · · ·α∨n−2(xn−2)α∨n−1(xn−1)α∨n(xn) | x ∈ C×, x2
n−1 =

xn−2, xn−1xn = xn−1} is connected. We have

Sn =
⋃

z∈Z(Ln)

G · (z Ind
CG(z)
Ln

{1}) = G · (Z(Ln)reg) ∪ Z(G) IndGLn{1}.

Let f = [2n−1, 12], then Of = IndGLn{1}, and by Lemma 2.30, JG(τn)
reg

= JG(τn)
bir

if and only

if Of is birationally induced from (Ln, {1}). This is true by Lemma 1.26, hence

Sn = J(τn)
bir

=
⋃

ζ∈C\Z

Oexp(ζω̌n) tOf tr1Of trn−1Of trnOf ,

and Z(G)Sn = Sn.
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Proposition 4.29. Theorem 4.11 holds for G simple simply-connected of type D2m+1, with

m ≥ 2.

We consider the remaining spherical pseudo-Levi subgroups. For ` = 2, . . . ,m, the pseudo-

Levi subgroup M` is maximal of type D`Dn−`.

(i) For ` even we have r2
` = 1 and Z(M`) = 〈r`〉 × Z(G).

(ii) For ` odd we have r2
` = r1 and Z(M`) = 〈r`, zn〉.

In both cases Z(M`)
reg = {r`, r1r`, rn−1r`, rnr`} and r` ∼W r1r` 6∼W rn−1r` ∼W rnr`. Then

Or` is a (birational) sheet consisting of an isolated class, and Z(G)Or` = Or` trnOr` for all

` = 2, . . . ,m.

Up to central elements, the remaining spherical conjugacy classes in G are unipotent bira-

tionally rigid.

τ J(τ)
bir

Λ(O) d

(L1, Z(L1)◦, {1})

⋃
ζ∈C\Z

Oexp(ζω̌1) t

tO[3,12n−3] tr1O[3,12n−3]

2n1ω1 + n2ω2 2

(Ln, Z(Ln), {1})

⋃
ζ∈C\Z

Oexp(ζω̌n) t

tZ(G)O[2n−1,12]

m−1∑
i=1

n2iω2i + nn−1(ωn−1 + ωn) 1

(M`, {r`}, {1})
` = 2, . . . ,m− 1

Or`
2`−1∑
i=1

2niωi + n2`ω2` 2

(Mm, {rm}, {1} Orm
n−2∑
i=1

2niωi + nn−1(ωn−1 + ωn) 2

(G, {1},O[22`,12n−4`])

` = 1, . . . ,m− 1
O[22`,12n−4`]

∑̀
i=1

n2iω2i 4

(G, {1},O[3,22(`−1),12n−4`+1])

` = 2, . . . ,m− 1
O[3,22(`−1),12n−4`+1]

2∑̀
i=1

niωi |
∑̀
i=1

n2i−1 ∈ 2N 4

(G, {1},O[3,22(m−1),13]) O[3,22(m−1),13]

n−2∑
i=1

niωi + nn−1(ωn−1 + ωn) |
m∑
i=1

n2i−1 ∈ 2N
4

Table 4.8: Type Dn, n = 2m+ 1,m ≥ 2.

Proposition 4.30. Theorem 4.11 holds for G of type D2m+1, with m ≥ 2.

Proof. From [36, Table 8, 9] the weight monoid is preserved along classes in Z(G)J(τ)
bir

for

every spherical birational sheet J(τ)
bir

. The entries in the third column of Table 4.8 are pairwise

distinct.

4.3.5 Type E6

Let G be of type E6. We have Z(G) = 〈ẑ〉, with ẑ = α∨1 (x)α∨3 (x−1)α∨5 (x)α∨6 (x−1) where x is a

primitive third root of 1.

Lemma 4.31. Let τ1 = (L1, Z(L1), {1}) ∈ BB(G). Then the spherical sheet S1 := J(τ1)
reg

is

a birational sheet containing the unipotent class 2A1.
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Proof. L1 is maximal of type D5T1 and Z(L1) is connected, since

Z(L1) = {α∨1 (y2)α∨2 (x2)α∨3 (x3)α∨4 (y3)α∨5 (y2)α∨6 (y) | x1, x2 ∈ C×, y = x−1
2 x3, y

3 = x2
2}.

We have

S1 =
⋃

z∈Z(L1)

G · (z IndGL1
{1}) =

⋃
ζ∈C\Z

Oexp(ζω̌1) tZ(G)O2A1
.

By Lemma 2.30, S1 = J(τ1)
bir

if and only if the isolated class O2A1 is birationally induced from

(L1, {1}); we conclude by Lemma 1.26. Moreover, it is clear that Z(G)J(τ1)
bir

= J(τ1)
bir

.

There is one more spherical pseudo-Levi subgroup, i.e., M2 of type A1A5 with Z(M2) =

〈r2〉 × Z(G). Observe that r2 is an involution, we have Z(M2)reg = {r2, ẑr2, ẑ
2r2} and no pair

of elements in this set is W -conjugate. Hence, the isolated class Or2 is a (birational) sheet

and Z(G)Or2 = Or2 tẑOr2 tẑ2Or2 . Up to central elements, the remaining spherical conjugacy

classes in G are birationally rigid unipotent conjugacy classes in G.

τ J(τ)
bir

Λ(O) d

(L1, Z(L1), {1})
⋃

ζ∈C\Z
Oexp(ζω̌1) tZ(G) 2A1 n1(ω1 + ω6) + n2ω2 1

(M2, {r2}, {1}) Or2 n1(ω1 + ω6) + n3(ω3 + ω5) + 2n2ω2 + 2n4ω4 3

(G, {1}, A1) A1 n2ω2 3

(G, {1}, 3A1) 3A1 n1(ω1 + ω6) + n3(ω3 + ω5) + n2ω2 + n4ω4 3

Table 4.9: Type E6.

Proposition 4.32. Theorem 4.11 holds for G of type E6.

Proof. From [36, Table 16, 17] the weight monoid is preserved along classes in Z(G)J(τ)
bir

for

every spherical birational sheet J(τ)
bir

. The entries in the third column of Table 4.9 are pairwise

distinct.

4.3.6 Type E7

Let G be of type E7. We have Z(G) = 〈ẑ〉, where ẑ = α∨2 (−1)α∨5 (−1)α∨7 (−1).

Lemma 4.33. Let τ7 = (L7, Z(L7), {1}) ∈ BB(G). Then the spherical sheet S7 := J(τ7)
reg

is

a birational sheet containing the unipotent class (3A1)′′.

Proof. L7 is maximal of type E6T1 and Z(L7) is connected, since

Z(L7) = {α∨1 (x1)α∨2 (x2)α∨3 (x2
1)α∨4 (x3

1)α∨5 (x1x2)α∨6 (x2
1)α∨7 (x2) | x1, x2 ∈ C×, x3

1 = x2
2}.

We have

S =
⋃

z∈Z(L7)

G · (z IndGL7
{1}) =

⋃
ζ∈C\Z

Oexp(ζω̌7) tZ(G)O3A′′1
.
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By Lemma 2.30, to check that J(τ)
reg

= J(τ)
bir

, it is enough to check that the isolated class

O3A′′1
is birationally induced from (L7, {1}): this is true by Lemma 1.26. Moreover, we have

Z(G)J(τ7)
bir

= J(τ7)
bir

.

We consider the remaining spherical pseudo-Levi subgroups:

(i) The pseudo-Levi subgroup M2 is maximal of type A7. We have r2
2 = ẑ and Z(M2) = 〈r2〉;

moreover, r2 and ẑr2 = r−1
2 are conjugate via the longest element w0 ∈W . Then Or2 is a

(birational) sheet consisting of an isolated class, and Z(G)Or2 = Or2 .

(ii) The pseudo-Levi subgroup M1 is maximal of type D6A1. We have r2
1 = 1 and Z(M1) =

〈ẑ, r1〉; moreover, r1 and ẑr1 are not G-conjugate (in fact G has 2 classes of non-central

involutions: Or1 and Oẑr1). Then Or1 is a (birational) sheet consisting of an isolated class,

and Z(G) = Or1 tẑOr1 .

Up to central elements, the remaining spherical conjugacy classes are unipotent birationally rigid.

τ J(τ)
bir

Λ(O) d

(L7, Z(L7), {1})
⋃

ζ∈C\Z
Oexp(ζω̌7) tZ(G) (3A1)′′ n1ω1 + n6ω6 + 2n7ω7 1

(M1, {r1}, {1}) Or1 2n1ω1 + 2n3ω3 + n4ω4 + n6ω6 2

(M2, {r2}, {1}) Or2
7∑
i=1

2niωi 1

(G, {1}, A1) A1 n1ω1 2

(G, {1}, 2A1) 2A1 n1ω1 + n6ω6 2

(G, {1}, (3A1)′) (3A1)′ n1ω1 + n3ω3 + n4ω4 + n6ω6 2

(G, {1}, 4A1) 4A1

7∑
i=1

niωi | n2 + n5 + n7 ∈ 2N 2

Table 4.10: Type E7.

Proposition 4.34. Theorem 4.11 holds for G of type E7.

Proof. From [36, Table 18, 19] the weight monoid is preserved along classes in Z(G)J(τ)
bir

for

every spherical birational sheet J(τ)
bir

. The entries in the third column of Table 4.10 are pairwise

distinct.

4.3.7 Type E8

Let G be of type E8. There are no spherical proper Levi subgroups.

We list the spherical pseudo-Levi subgroups.

(i) The pseudo-Levi subgroup M8 is maximal of type A1E7. We have r2
8 = 1 and Z(M8) = 〈r8〉.

Then Or8 is a (birational) sheet consisting of an isolated class.

(ii) The pseudo-Levi subgroup M1 is maximal of type D8. We have r2
1 = 1 and Z(M1) = 〈r1〉

Then Or1 is a (birational) sheet consisting of an isolated class.
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The remaining spherical conjugacy classes in G are birationally rigid unipotent.

τ J(τ)
bir

Λ(O)

(M8, {r8}, {1}) Or8 n1ω1 + n6ω6 + 2n7ω7 + 2n8ω8

(M1, {r1}, {1}) Or1
8∑
i=1

2niωi

(G, {1}, A1) A1 n8ω8

(G, {1}, 2A1) 2A1 n1ω1 + n8ω8

(G, {1}, 3A1) 3A1 n1ω1 + n6ω6 + n7ω7 + n8ω8

(G, {1}, 4A1) 4A1

8∑
i=1

niωi

Table 4.11: Type E8.

Proposition 4.35. Theorem 4.11 holds for G of type E8.

Proof. From [36, Table 20, 21] the weight monoid is preserved along classes in Z(G)J(τ)
bir

for

every spherical birational sheet J(τ)
bir

. The entries in the third column of Table 4.11 are pairwise

distinct.

4.3.8 Type F4

Let G be of type F4. There are no spherical proper Levi subgroups. We list the spherical

pseudo-Levi subgroups.

(i) The pseudo-Levi subgroup M1 is maximal of type A1C3. We have r2
1 = 1 and Z(M1) = 〈r1〉.

Then Or1 is a (birational) sheet consisting of an isolated class.

(ii) The pseudo-Levi subgroup M4 is maximal of type B4. We have r2
4 = 1 and Z(M4) = 〈r4〉.

Then Or4 is a (birational) sheet consisting of an isolated class.

We proceed with non-semisimple spherical conjugacy classes: the pseudo-Levi subgroup M4

contains the birationally rigid unipotent class OM4

xβ1
(1), where β1 = 2α1 + 3α2 + 4α3 + 2α4. In

particular OM4

xβ1
(1) corresponds to the partition [22, 15] in SO9(C) and is a (birational) sheet

consisting of an isolated class. The remaining spherical conjugacy classes in G are unipotent

birationally rigid.
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τ J(τ)
bir

Λ(O)

(M4, {r4}, {1}) Or4 n4ω4

(M1, {r1}, {1}) Or1
4∑
i=1

2niωi

(M4, {r4},OM4

[22,15]
) Or4xβ1

(1)

4∑
i=1

niωi

(G, {1}, A1) A1 n1ω1

(G, {1}, Ã1) Ã1 n1ω1 + 2n4ω4

(G, {1}, A1 + Ã1) A1 + Ã1 n1ω1 + n2ω2 + 2n3ω3 + 2n4ω4

Table 4.12: Type F4.

Proposition 4.36. Theorem 4.11 holds for G of type F4.

Proof. From [36, Table 22, 23, 24] the weight monoid is preserved along classes in Z(G)J(τ)
bir

for every spherical birational sheet J(τ)
bir

. The entries in the third column of Table 4.12 are

pairwise distinct.

4.3.9 Type G2

Let G be of type G2. There are no spherical proper Levi subgroups. We list the spherical

pseudo-Levi subgroups.

(i) The pseudo-Levi subgroup M2 is maximal of type A1Ã1. We have r2
2 = 1 and Z(M2) = 〈r2〉.

Then Or2 is a (birational) sheet consisting of an isolated class.

(ii) The pseudo-Levi subgroup M1 is maximal of type A2. We have r3
1 = 1 and Z(M1) = 〈r1〉;

moreover, r1 and r−1
1 are G-conjugate. Then Or1 is a (birational) sheet consisting of an

isolated class.

The remaining spherical conjugacy classes in G are unipotent birationally rigid.

τ J(τ)
bir

Λ(O)

(M2, {r2}, {1}) Or2 2n1ω1 + 2n2ω2

(M1, {r1}, {1}) Or1 n1ω1

(G, {1}, A1) A1 n2ω2

(G, {1}, Ã1) Ã1 n1ω1 + 2n2ω2

Table 4.13: Type G2.

Proposition 4.37. Theorem 4.11 holds for G of type G2.

Proof. From [36, Table 25, 26] the weight monoid is preserved along classes in Z(G)J(τ)
bir

for

every spherical birational sheet J(τ)
bir

. The entries in the third column of Table 4.13 are pairwise

distinct.
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The proof of Theorem 4.11 is complete.

Remark 4.38. The classification implies that the birationally rigid unipotent conjugacy class

OM appearing in the decomposition datum τ = (M,Z(M)◦z,OM ) is in fact rigid, with two

exceptions:

(i) for G of type Cn, n ≥ 3, let τ = (G, {1}, [22, 12n−4]). Then J(τ)
bir

is contained only in the

(spherical) sheet J(L1, Z(L1)◦, {1})
reg

;

(ii) for G of type B2m, m ≥ 2, let τ = (G, {1}, [3, 22(m−1), 12]). Then J(τ)
bir

is contained only

in the (spherical) sheet J(Ln, Z(Ln)◦, {1})
reg

.

In the other cases J(τ)
bir

is contained only in the sheet J(τ)
reg

: in particular every spherical

birational sheet is contained in a unique sheet.

4.3.10 Characterization via horospherical contractions

We conclude this Section with another characterization of spherical birational sheets up to central

elements: in order to do this, we recollect some facts on spherical conjugacy classes from [27,28,

36].

From the Bruhat decomposition G =
⋃
w∈W BwB, it follows that for every conjugacy class

O of G there exists a unique wO ∈ W such that O∩BwOB is dense in O. Similarly, for S a

sheet in G, there is a unique wS ∈W such that S∩BwSB is dense in S. By [28, Proposition 5.3]

if S is a spherical sheet, then for every conjugacy class O lying in S we have wO = wS . For a

birational sheet J(τ)
bir

we may define wτ as the unique element of W such that J(τ)
bir
∩BwτB

is dense in J(τ)
bir

. We have wO = wτ for all classes O ⊂ J(τ)
bir

and wτ = wS for all sheets S

containing J(τ)
bir

.

If H is a spherical subgroup of G, by [20, Theorem 1], there exists a flat deformation of G/H

to a homogeneous spherical space G/H0, where H0 contains a maximal unipotent subgroup of G:

such an homogeneous space is called horospherical, and H0 a horospherical contraction of H, see

also [97]. If G/H is isomorphic to a conjugacy class, then C[G/H] 'G C[G/H0], see [36, Theorem

3.15].

Proposition 4.39. Let G be a complex connected reductive algebraic group with [G,G] simply-

connected. Let x1, x2 ∈ Gsph. Then Ox1 and Ox2 are contained in the same birational sheet up

to a central element if and only if CG(x1) and CG(x2) have the same horospherical contraction.

Proof. Let x ∈ Gsph and H = CG(x). We recall the description of the horospherical contraction

H0 of H containing U from [36, Corollary 3.8]. Let w be the unique element in W such that

Ox ∩BwB is dense in Ox. Up to G-conjugacy we can assume that x ∈ wB, so the dense B-orbit

in Ox is B · x = OBx . Then P := {g ∈ G | g · OBx = OBx } is a parabolic subgroup containing B,

i.e., it is standard. Let Θ ⊂ ∆ be such that P = PΘ and let wΘ denote the longest element of the

Weyl group of the standard Levi subgroup LΘ. One has H0 = 〈U−, UwΘ , Tx〉, where, w := w0wΘ,

UwΘ
:= U ∩ LΘ, Tx := T ∩ CG(x).
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We may assume that xi lies in the dense B-orbit OBxi ⊂ BwiB for i = 1, 2. We have

seen that Ox1 and Ox2 lie in the same birational sheet up to a central element if and only if

Λ(Ox1) = Λ(Ox2). The last equality is equivalent to w1 = w2 and Tx1 = Tx2 by [36, Lemma 3.9

and Theorem 3.23].

4.4 Remarks for Lie algebras

Let G be simple with [G,G] simply-connected, having described the spherical birational sheets

in G, from the tables in Section 4.3 we can build a method to classify all spherical birational

sheets in g. Consider the subset of spherical birational sheets of G defined by:

L (Gsph) := {J(τ)
bir
⊂ Gsph | τ = (L,Z(L)◦,OL) ∈ BB(G)}. (4.4)

Observe that L is in particular a Levi subgroup of G.

Proposition 4.40. Let G be simple with [G,G] simply-connected and consider L (Gsph) as in

(4.4). To J(τ)
bir
∈ L (Gsph) we attach the birational sheet J(l,OL)

bir

in g, where l := Lie(L)

and expOL = OL. Then:

(i) Either τ = (L,Z(L)◦, {1}) ∈ BB(G) with L a spherical proper Levi subgroup of G or

τ = (G, {1},OG) ∈ BB(G) with OG spherical unipotent birationally rigid.

(ii) The birational sheet J(l,OL)
bir

is spherical in g.

(iii) All elements in gsph are contained in a unique birational sheet in g of this form.

In particular, spherical birational sheets of g are in bijective correspondence with L (Gsph).

Proof. Part (i) follows by inspection of the tables in Section 4.3 and the definition of L (Gsph).

To prove (ii), recall that the spherical property is preserved along birational sheets: indeed, by

[6, Proposition 1], the subvariety gsph consisting of spherical ajoint orbits is a union of sheets and

every birational sheet is contained in a sheet. Hence, it is enough to prove that each J(l,OL)
bir

obtained as in the statement contains a spherical element. Let ξ ∈ J(l,OL) ⊂ J(l,OL)
bir

. Then,

by (i), we have two possibilities. In one case, (l,OL) = (l, {0}) with l = Lie(L) a proper Levi

subalgebra, then we may assume ξ ∈ z(l)
reg

and cg(ξ) = l implies CG(ξ) = L, which is a spherical

Levi subgroup. In the other case, (l,OL) = (g,OG) with OG nilpotent birationally rigid. Then

ξ ∈ OG and CG(ξ) = CG(exp ξ). This is a spherical subgroup, as exp ξ ∈ OG.

We prove (iii): birational sheets are disjoint by [67, Theorem 4.4], hence gsph is the disjoint

union of the spherical birational sheets of g. To complete the proof, for ξ ∈ gsph, we build

J(τ)bir ∈ L (Gsph) such that ξ ∈ J(l,OL)
bir

with the notation in the statement. Let J be the

decomposition class of g containing ξ, in particular J ⊂ gsph, by [23, §3.7]. Then, J ∩ UN 6= ∅
for a neighbourhood UN of N defined as in Theorem 3.2. Let ξ = σ+ ν ∈ J∩UN , set g := exp ξ.

The properties of UN imply CG(g) = CG(ξ), hence Og ⊂ Gsph. Moreover, g ∈ J(τ) such

that J(τ) ∩ UU 6= ∅ by Theorem 3.2. By Theorem 4.11, the class Og is contained in a unique

Z(G)J(τ ′)
bir

where J(τ ′)
bir

is a spherical birational sheet in G. Moreover, J(τ ′) ∩ UU 6= ∅ by
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construction, hence τ ′ = (L,Z(L)◦,OL) with L a Levi subgroup of G, by Theorem 3.2. We prove

that Oξ ⊂ J(l,OL)
bir

where l := Lie(L) and expOL = OL. Let g = su with s := expσ ∈ Z(L)◦

and u := exp ν. Since UU is πG-saturated, s ∈ Z(L)◦ ∩ UU . Observe that CG(s) ⊃ L so that

Lie(CG(s)) = cg(s) = cg(σ) ⊃ l. Moreover, OCG(s)
u is birationally induced from (L,OL): this

implies that OCG(s)
ν is birationally induced from (l,OL) where exp ν = u and expOL = OL by

Lemma 1.20 (ii).

The spherical birational sheets in g are:

(i) J(l, {0})
bir

with l = Lie(L) where L is a proper Levi spherical subgroup of G.

(ii) J(g,O)
bir

= O a nilpotent spherical birationally rigid orbit in g.

Since l as in (i) is in particular a maximal Levi subalgebra of g, we have z(l) = z(l)
reg t {0} and

this yields two possibilities:

(i) if Indg
l {0} is birationally induced from (l, {0}), the spherical birational sheet J(l, {0})

bir

coincides with the sheet J(l, {0})
reg

= Ad(G)(z(l)
reg

) t Indg
l {0};

(ii) if Indg
l {0} is not birationally induced from (z(l), {0}), then J(l, {0})

bir
= Ad(G)(z(l)

reg
)

and the nilpotent orbit Indg
l {0} is either birationally rigid or it is contained in another

spherical birational sheet.

We prove Losev’s Conjecture 4.9 restricted to the spherical subvariety gsph.

Proposition 4.41. Let O1 and O2 be spherical adjoint orbits of g and suppose Λ(O1) = Λ(O2).

Then O1 and O2 are contained in the same birational sheet of g.

Proof. We can assume G simple simply-connected. Let O1 and O2 be adjoint orbits in gsph

such that Λ(O1) = Λ(O2). For i = 1, 2, let Ji be the decomposition class in g containing Oi,

in particular Ji ⊂ gsph. Then pick a neighbourhood UN of N defined as in Theorem 3.2 such

that Ji ∩ UN 6= ∅ for i = 1, 2. Let ξi = σi + νi ∈ Ji ∩ UN , set xi := exp ξi for i = 1, 2. The

properties of UN imply CG(xi) = CG(ξi), hence Oxi ⊂ Gsph and Λ(Oxi) = Λ(Oξi) for i = 1, 2;

transitivity yields Λ(Ox1
) = Λ(Ox2

). Theorem 4.11 and Proposition 4.41 imply that Ox1
and

Ox2
⊂ Z(G)J(τ)

bir
for a unique J(τ)

bir
∈ L (Gsph). We conclude that O1 and O2 lie in the

same birational sheet of g, by Proposition 4.40.

Putting together Losev’s Proposition 4.8 restricted to gsph and Proposition 4.41, we get:

Theorem 4.42. Let g be reductive and let O1 and O2 be spherical adjoint orbits of g. Then

Λ(O1) = Λ(O2) if and only if O1 and O2 are contained in the same birational sheet of g.
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CHAPTER

FIVE

UNIVERSAL FILTERED QUANTIZATIONS
OF NILPOTENT SLODOWY VARIETIES

As announced in the Introduction, this Chapter is self-contained: it deals with commutative and

non-commutative deformation theory of some varieties called conical symplectic singularities,

which are very common in Lie Theory. As usual, we begin with some notation and basic results,

contained in Section 5.1. We proceed with Section 5.2, where we introduce universal Poisson

deformations and filtered quantizations of Poisson algebras in a categorical language. After

recalling the definition of a conical symplectic singularity, in Section 5.3 we focus on a particular

example of such varieties, the nilpotent Slodowy slice. To any nilpotent orbit O one can attach,

on one hand, the algebra of regular function on its nilpotent Slodowy slice, on the other hand, a

finite W -algebra: we explain when the latter is the universal filtered quantization of the former.

We conclude with a deeper analysis of the case of nilpotent subregular orbits in Section 5.4.

5.1 Notations and preliminaries

We have tried to adopt the same notation used in the rest of the work (for Lie algebras, adjoint

and coadjoint actions, etc.) whenever possible, but some repetitions were unavoidable. This

phenomenon will mostly affect lower case Greek letters, which will lose their connotation with the

setting of Lie Theory adopted up to now. Unless explicitly specified, the letters α, β, γ, λ, ξ, π, φ, ϕ

will exclusively denote maps and no more imply the meaning in the former chapter. The symbol

ω will denote a 2-form. Moreover, elements of Lie algebras will be denoted by lower case Latin

letters: e, f, h, . . . . In any case, we will define all symbols when we introduce them for the first

time.

For g a semisimple Lie algebra, the letter ρ will denote the half-sum of positive roots (equiv-

alently the sum of all fundamental weights). Recall that the Weyl group acts on h∗ via the

dot action (also called the affine action) in the following manner: w • x = w(x + ρ) − ρ for all

w ∈W,x ∈ h∗. When we write W• instead of W we mean that the dot action is being considered
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rather than the usual one.

The universal enveloping algebra of g is denoted by U(g) and we write Z(g) for the centre of

U(g).

As in the previous Chapter, unadorned tensor products should be read as tensors over C.

Every algebra is assumed to be finitely generated over C. If A,B,C are algebras and φ : A→ C,

ψ : B → C are homomorphisms then we define φ⊗ψ : A⊗B → C to be the composition of φ⊗ψ
with multiplication C ⊗ C → C. We use the same notation when the tensor product is taken

over an arbitrary ring, provided the resulting map is well-defined.

A vector space V is filtered if it comes with a filtration of finite-dimensional vector subspaces

V0 ⊂ V1 ⊂ · · · ⊂ Vi ⊂ Vi+1 ⊂ · · · satisfying V =
⋃
i≥0 Vi. A vector space V is graded if there exist

finite-dimensional vector subspaces V0, V1, . . . , Vi, Vi+1, . . . satisfying V =
⊕

i≥0 Vi; the subspace

Vi is the component of degree i. If V =
⋃
i≥0 Vi is a filtered vector space, the associated graded

space is grV =
⊕

i≥0 Vi/Vi−1, where we take V−1 = 0 by convention.

For the purposes of our work, we will assume implicitly that all filtrations and gradings satisfy

the condition dimV0 = 1.

As usual, if V is a vector space, we denote by S(V ) the symmetric algebra on V : it comes with

the natural grading S(V ) =
⊕

i≥0 S
i(V ), where Si(V ) is the vector subspace of i-th symmetric

powers of V . We put S>1(V ) := ⊕i>1S
i(V ). When V is finite-dimensional, it is well-known that

the symmetric algebra S(V ) identifies with the C[V ∗], the algebra of regular functions on the

dual space V ∗. In our exposition we will need the following result.

Lemma 5.1. Let V =
⊕n

i=1 Vi and U =
⊕n

i=1 Ui be finite-dimensional graded vector spaces,

with Vi and Ui in degree i.1 Suppose that τ : S(V ) → S(U) is a graded algebra homomorphism.

Then τ is surjective if and only if its linear term d0τ : V → U is surjective.

Proof. The gradings on V and U induce gradings on the symmetric algebras S(V ) =
⊕

k≥0 S(V )k

and S(U) =
⊕

k≥0 S(U)k. For each i = 1, . . . , n, we have S(U)i = Ui ⊕ S>1(U)i, where

S>1(U)i = S(U)i ∩ S>1(U); an analogous description holds for S(V ). For each i = 1, . . . , n,

we write τi = τ |Vi and observe that τi = d0τi + τ̄i : Vi → S(U)i where d0τi : Vi → Ui and

τ̄i : Vi → S>1(U)i are linear maps. The linear term of τ is d0τ =
⊕n

i=1 d0τi.

Suppose τ surjects, so for u ∈ Ui there exists p ∈ S(V )i such that τ(p) = u. Since

τ(S>1(V )) ⊂ S>1(U), we see that, if p = p1 + p>1 ∈ Vi ⊕ S>1(V )i, then τ(p) = τ(p1) = u.

It follows that d0τ(p) = u, hence d0τ surjects. Now suppose that d0τ surjects and that u ∈ Ui
with d0τ(v) = u for some v ∈ V . Then τi(v) = u+ τ̄i(v) and an inductive argument shows that

τ̄i(v) lies in the image of τ . Hence U lies in the image, which proves that τ is surjective.

A graded module M =
⊕

i≥0Mi over a graded algebra A is free graded if it has a basis

{mj}j∈J consisting of homogeneous elements (i.e., {mj}j∈J ⊂
⋃
i≥0Mi).

We say that a filtered map V → W of filtered vector spaces φ : V → W is strictly filtered

if φ(Vi) = Wi ∩ φ(V ). The importance of this definition is that gr is an exact functor from

1Note that we do not insist that Vi 6= 0 or Ui 6= 0 for 1 ≤ i ≤ n.
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the category of filtered vector spaces with strict morphisms to the category of graded vector

spaces [72, Proposition 7.6.13] so that, for instance, a strictly filtered embedding induces an

embedding of associated graded vector spaces. All filtered morphisms of vector spaces in this

work are assumed to be strictly filtered.

When V is a graded vector space we may regard it as filtered in the usual manner, and

identify V with grV via the obvious splitting. Note that every graded map of graded vector

spaces is a strictly filtered map. We shall often need to consider a map φ : V →W from a graded

space to a filtered space, and we call such a map strictly filtered if it is so when regarded as a

map of filtered spaces. Finally, for v ∈ Vi \ Vi−1 we write v̄ = v+ Vi−1 ∈ grV for the top graded

component of v.

Lemma 5.2. Let A =
⊕

i≥0Ai be a finitely generated graded algebra with A0 = C and let

M =
⊕

j≥0Mj be a graded A-module. Then M is flat if and only if M is a free graded module.

Proof. This follows directly from [34, Lemma 2.2].

Lemma 5.3. Suppose that B is a commutative filtered algebra and that C and A are commutative

filtered B-algebras such that the natural maps B → A and B → C are strictly filtered. Assume

in addition that grA is grB-flat. There is a natural isomorphism

grA⊗grB grC
∼−→ gr(A⊗B C)

Proof. Since grA is flat it is free graded by Lemma 5.2. Hence, A is a free object in the category

of filtered B-modules [81, Lemma 5.1, 3◦]. By [81, Lemma 8.2] the natural homomorphism

ϕ : grA ⊗grB grC � gr(A ⊗B C) defined on homogeneous elements by ϕ(ā ⊗ c̄) = a⊗ c is an

isomorphism. A direct verification shows that it is also an algebra homomorphism.

Fix n ∈ N. A Poisson algebra is a commutative algebra A equipped with a Lie bracket

{·, ·} : A × A → A with {ab, c} = a{b, c} + {a, c}b for all a, b, c ∈ A. The Poisson centre of

A is PZ(A) := {z ∈ A | {a, z} = 0 for all a ∈ A}: for a Poisson C-algebra A, we always

have C ⊂ PZ(A). We say that a graded (resp. filtered) Poisson algebra A =
⊕

i≥0Ai (resp.

A =
⋃
i≥0Ai) has Poisson bracket in degree −n if {a, b} ∈ Ai+j−n for a ∈ Ai, b ∈ Aj . If A is a

filtered Poisson algebra with Poisson bracket in degree −n then grA is a graded Poisson algebra

with Poisson bracket in degree −n. Similarly we say that a filtered (non-commutative) associative

algebra A =
⋃
i≥0Ai has bracket in degree −n if the commutator [a, b] = ab − ba ∈ Ai+j−n

whenever a ∈ Ai and b ∈ Aj . Such filtered algebras have the property that grA is a graded

Poisson algebra with Poisson bracket in degree −n via the formula

{a+Ai−1, b+Aj−1} := [a, b] +Ai+j−n−1 (5.1)

whenever a ∈ Ai, b ∈ Aj . Similarly, filtered homomorphisms between filtered algebras with

bracket in degree −n induce graded homomorphisms between Poisson algebras with Poisson

bracket in degree −n. These observations can be upgraded to a well-known categorical statement.
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Lemma 5.4. The associated graded construction defines a functor from the category of filtered

algebras with bracket in degree −n to the category of graded Poisson algebras with Poisson bracket

in degree −n.

5.2 Universal Poisson deformations and filtered quantiza-
tions

5.2.1 The category of Poisson deformations

For the rest of the Section we keep fixed n ∈ N and a positively graded, finitely generated,

commutative, integral Poisson algebra A =
⊕

i≥0Ai with Poisson bracket in degree −n. Denote

by PAut(A) the group of graded Poisson automorphisms of A. Recall that all graded algebras are

assumed to be connected graded, i.e., their component of degree zero is one-dimensional, hence

isomorphic to the ground field C. When B is a commutative graded algebra we write B+ for the

unique graded maximal ideal, and C+ for the corresponding quotient B/B+ ' C. Furthermore,

when we say that A is a graded Poisson B-algebra we insist that the map B → A is a graded

homomorphism whose image is Poisson central.

Definition 5.5. A Poisson deformation of A is a triple (A, B, ι) where:

(i) B is a positively graded commutative algebra;

(ii) A is a graded Poisson B-algebra in degree −n, flat as a B-module;

(iii) ι : A⊗B C+ → A is a graded isomorphism of Poisson algebras.

We refer to B as the base of the deformation.

Example 5.6. LetA be a filtered Poisson algebra with bracket in degree−n, and let ι : grA → A

be an isomorphism of Poisson algebras. Define the graded algebra A′ :=
⊕

i≥0Aiti. It inherits

a Poisson algebra structure with bracket in degree −n via the rule {aiti, ajtj} := {ai, aj}ti+j−n,

for each ai ∈ Ai, aj ∈ Aj . Let B := C[t] and let ι′ be the isomorphism A′ ⊗B C+
∼−→ A′/A′t ∼−→

grA ∼−→ A. Then (A′, B, ι′) is a Poisson deformation of A and the pair (A, ι) is called a filtered

Poisson deformation of A.

Definition 5.7. A morphism (A1, B1, ι1)→ (A2, B2, ι2) of Poisson deformations of A is a pair

φ = (φ1, φ2) such that:

(i) φ2 : B1 → B2 is a graded algebra homomorphism;

(ii) φ1 : A1 → A2 is a graded Poisson algebra homomorphism such that the following diagrams

commute

B1 B2

A1 A2

φ2

φ1

(5.2)
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A

A1 ⊗B1
C+ A2 ⊗B2

C+
φ1⊗id

ι1 ι2 (5.3)

We say that φ is an isomorphism if both φ1, φ2 are isomorphisms. Write D = DA for the category

of Poisson deformations of A.

Example 5.8. Let G be semisimple simply-connected. The Lie bracket on g endows the coordi-

nate ring C[g∗] with the structure of a graded Poisson algebra. Its Poisson centre coincides with

C[g∗]G which is isomorphic to C[h∗]W = C[h∗/W ] by Chevalley’s restriction theorem. One may

choose the isomorphism to ensure that it is an isomorphism of graded algebras. The coordinate

ring C[N ∗] of the nullcone is graded via the contracting C×-action on g∗ and a famous theo-

rem of Kostant [57, Proposition 7.13] says that the vanishing ideal of N ∗ in C[g∗] is generated

by C[g∗]G+. Hence C[N ∗] is a positively graded Poisson algebra and there is an isomorphism

ι : C[g∗] ⊗C[h/W ] C+ → C[N ∗]. Another result of Kostant, [59, Theorem 0.2] implies that C[g∗]

is a free C[g∗]G-module and so (C[g∗],C[h/W ], ι) is a Poisson deformation of C[N ∗].

5.2.2 The category of quantizations of Poisson deformations

We continue to fix n ∈ N and A, and we remind the reader that all filtered maps in this Chapter

are assumed to be strictly filtered. Our goal is to define a category similar to D whose objects

are the quantizations of A.

Definition 5.9. Recall that for a filtered algebra of degree −n, the associated graded algebra

carries a Poisson structure via (5.1). A filtered quantization of A is a pair (A, ι) consisting of a

filtered algebra of degree −n, and an isomorphism ι : grA → A of Poisson algebras.

If B is a positively graded commutative algebra and A is a filtered B-algebra, then we always

assume that the natural map B → A is strictly filtered. By the introductory remarks, we may

identify B with grB and regard grA as a grB-algebra. In this way, grA is also a B-algebra.

Definition 5.10. A quantization (of a Poisson deformation) of A is a triple (A, B, ι) where:

(i) B is a positively graded commutative algebra;

(ii) A is a filtered B-algebra of degree −n, flat as a B-module;

(iii) (grA, B, ι) is a Poisson deformation of A.

Once again, we call B the base of the quantization.

Definition 5.11. A morphism (A1, B1, ι1) → (A2, B2, ι2) of quantizations of A is a pair φ =

(φ1, φ2) such that:

(i) φ2 : B1 → B2 is a filtered algebra homomorphism;

(ii) φ1 : A1 → A2 is a filtered homomorphism such that (5.2) commutes;

(iii) grφ = (grφ1, grφ2) is a morphism (grA1, B1, ι1)→ (grA2, B2, ι2) of Poisson deformations

where we view grφ1 as a map grA1 ⊗B1
B2 → grA2 via Lemma 5.3.
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We say that φ is an isomorphism if both φ1, φ2 are so, and we write Q = QA for the category of

Poisson deformations of A.

Example 5.12. Retain notation from Example 5.8. Consider the enveloping algebra U(g)

which is filtered of degree −1 with grU(g) ' C[g∗]. We choose a grading on the centre Z(g) such

that the inclusion Z(g) → U(g) is strictly filtered. Furthermore grZ(g) ' Z(g) identifies with

C[g∗]G ⊆ C[g∗] as a subalgebra of grU(g). Thanks to the Harish–Chandra restriction theorem

we know that there is a graded algebra isomorphism Z(g) ' C[h∗]W• = C[h∗/W•] ' C[h∗]W , see

§5.3.2 for a more detailed account. In virtue of Example 5.8 we may regard (U(g),C[h∗/W•], ι)

as a filtered quantization of C[N ∗]. The construction depends on a choice of grading on Z(g),

which is the same as fixing a choice of strictly filtered isomorphism C[h∗]W → Z(g) and it is

easily seen that these various choices of isomorphism lead to isomorphic quantizations of N ∗.

5.2.3 Properties of morphisms

Throughout the Section we suppose for i = 1, 2 that di = (Ai, Bi, ιi) are Poisson deformations

with algebra maps πi : Bi → Ai. The next lemma suggests an alternative, equivalent definition

of a morphism.

Lemma 5.13. Let φ2 : B1 → B2 be a homomorphism, so that π2◦φ2 endows A2 with the structure

of a B1-algebra. Let ϕB2
: A1 ⊗B1

B2 ⊗B2
C+

∼−→ A1 ⊗B1
C+ be the natural isomorphism and let

ηA1
: A1 → A1 ⊗B1

B2 be the natural map a 7→ a⊗ 1. Then:

(i) d = (A1 ⊗B1
B2, B2, ι1 ◦ ϕB2

) is a Poisson deformation of A.

(ii) The assignment φ1 7→ φ1⊗π2 establishes a (natural) vector space isomorphism

α : HomB1(A1,A2)
∼−→ HomB2(A1 ⊗B1 B2,A2) (5.4)

whose inverse β is given by ψ 7→ ψ ◦ ηA1
.

(iii) The pair φ = (φ1, φ2) : d1 → d2 is a morphism of Poisson deformations if and only if

(α(φ1), id) : d→ d2 is so.

Proof. (i) follows directly from the definitions and [17, I.2.7, Corollary 2], whilst (ii) is [18,

Chapter II, §4, Proposition 1 (a)].

We prove (iii). The isomorphisms α and β preserve gradings and Poisson structures. By

(ii) the pair φ satisfies (5.2) if and only if α(φ1) is B2-linear, i.e., if (α(φ1), id) satisfies (5.2).

Equivalence of (5.3) for φ and (α(φ1), id) is a consequence of the equality φ1⊗π2 = (φ1 ⊗ id) ◦
ϕB2

.

Remark 5.14. A statement analogous to Lemma 5.13 holds if we replace d1, d2 with quantizations

and ϕB2
by grϕB2

in part (i). The proof is similar.

Lemma 5.15. Any morphism of deformations of the form ψ = (ψ1, id) : (A1, B, ι1)→ (A2, B, ι2)

is an isomorphism of deformations. In particular, the morphisms ψ as in Lemma 5.13 (iii) are
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always isomorphisms. The same is true for morphisms of quantizations φ = (φ1, φ2) satisfying

grφ2 = id.

Proof. We start by considering Poisson deformations. Since A1 is B-flat, it is free over B by

Lemma 5.2. Let V1 ⊆ A1 be a graded subspace such that the multiplication map B⊗V1 → A1 is

an isomorphism. Let V2 be the image of V1 in A2. We have the following commutative diagram

V1 A1 A1 ⊗B C+

V2 A2 A2 ⊗B C+

(ι2)−1◦ι1 (5.5)

Since A1 = V1⊕B+A1 the horizontal composition along the top row of (5.5) is an isomorphism.

At the same time, (ι2)−1 ◦ ι1 is an isomorphism by (5.3). It follows that the map V1 → V2 is

injective, whilst it is surjective by definition. We deduce that the horizontal composition along

the bottom row of (5.5) is an isomorphism, which implies that A2 = V2⊕B+A2 as graded vector

spaces. Since A2 is B-flat it is B-free (Lemma 5.2) and B ⊗ V2 → A2 is an isomorphism. A

C-basis for V is a basis of the free B-module A1 and ψ1 sends it to a basis of the free B-module

A2 bijectively, which completes the proof of the first claim.

The statement for morphisms of quantizations follows immediately because φ1 is an isomor-

phism and all filtered pieces are finite-dimensional.

Observe that Lemmas 5.13 (iii) and Lemma 5.15 imply that (5.2) is a pushout diagram, in

analogy to the requirements on morphisms of deformations of varieties in [91, §2.1].

Corollary 5.16. Let φ = (φ1, φ2) : (A1, B1, ι1)→ (A2, B2, ι2) be a morphism in D or Q. Then

φ is surjective if and only if φ2 is surjective.

Proof. By Lemma 5.13(ii) we see that φ1 factors as φ1⊗π2 ◦ηA1 : A1 → A1⊗B1 B2 → A2. When

φ2 is surjective ηA1 is surjective, whilst Lemma 5.15 implies that φ1⊗π2 is an isomorphism, which

proves the claim.

We record another important fact which follows from the definitions, using Lemma 5.4.

Lemma 5.17. The associated graded construction defines a functor gr : QA → DA: it is defined

on objects by (A, B, ι) 7→ (grA, B, ι) and on morphisms by (φ1, φ2) 7→ (grφ1, grφ2) .

5.2.4 Universal deformations and quantizations

Keep fixed n ∈ N.

Definition 5.18. Let A be a graded Poisson algebra of degree −n and write D = DA, Q = QA.

(a) A universal Poisson deformation of A is an initial object in D, denoted uD := (UD, BD, ιD).

If d ∈ D then we write φd = (φd1, φ
d
2) for the unique morphism uD → d;

(b) A universal quantization of A is an initial object in Q, denoted uQ := (UQ, BQ, ιQ). If

q ∈ Q then we write φq = (φq1, φ
q
2) for the unique morphism uQ → q.
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As usual the universal objects enjoy the following uniqueness property.

Lemma 5.19. If an initial object exists in D or Q then it is determined upto a unique isomor-

phism.

5.2.5 Interactions between universal deformations and quantizations

Let C be the category of finitely-generated, commutative graded algebras, a subcategory of all

commutative algebras. For a given B ∈ C we consider the category Cgr
B of commutative graded

B-algebras, whose objects are (C,ψ) where C ∈ C and ψ : B → C is a graded homomorphism.

The morphisms (C1, ψ1) → (C2, ψ2) in Cgr
B are the commutative triangles consisting of graded

homomorphisms

B

C1 C2.

ψ1 ψ2

ψ0

(5.6)

We also consider the category Cfilt
B whose objects are pairs (C,ψ) where C ∈ C is a graded

algebra, ψ : B → C is a strictly filtered homomorphism, and morphisms are given by commutative

triangles (5.6) consisting of strictly filtered homomorphisms. The first claim of the following

lemma is an easy exercise, whilst the second follows from the fact that a strictly filtered map is

an isomorphism if and only if the associated graded map is an isomorphism.

Lemma 5.20. Let B ∈ C be a finitely generated, commutative graded algebra.

(i) Both Cgr
B and Cfilt

B admit initial objects, given by pairs (B,ψ) with ψ bijective.

(ii) Let (B,ψ) ∈ Cfilt
B . Then (B,ψ) is initial in Cfilt

B if and only if (B, grψ) is initial in Cgr
B .

We retain the notation introduced throughout this Section as well as the notation from

Lemma 5.13. Suppose that initial objects in D = DA and Q = QA exist and fix representatives

uD = (UD, BD, ιD) and uQ = (UQ, BQ, ιQ) in their isomorphism classes.

Proposition 5.21. When the universal deformation uD exists, there is an equivalence of cate-

gories FD : D → Cgr
BD

defined on objects by d := (A, B, ι) 7→ (B,φd2).

Proof. Throughout this proof we use the notation di = (Ai, Bi, ιi) with i = 1, 2 to denote a

pair of deformations, and we set udi = (UD ⊗BD Bi, Bi, ιD ◦ ϕBi). By Lemma 5.13, udi ∈ D.

Also write ηA for the natural map from a B-algebra A to A ⊗B C for a B-module C, and

ϕB : A1⊗B1
B2⊗B2

C+
∼−→ A1⊗B1

C+ for a natural isomorphism as in Lemma 5.13. Finally, we

write πi : Bi → Ai for the algebra maps.

Let φ = (φ1, φ2) be a morphism d1 → d2. Uniqueness of the morphisms φdi for i = 1, 2

ensures commutativity of the triangle

uD

d1 d2

φd1 φd2

φ

(5.7)
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so we define FD on morphisms by mapping φ to the triangle

BD

B1 B2.

φ
d1
2 φ

d2
2

φ2

(5.8)

It is straightforward to verify that FD so defined is a functor. We show that it is an equivalence.

Step 1: FD is full. Let FD(d1) → FD(d2) be a morphism, i.e., a triangle as in (5.6). We

need to construct a morphism φ : d1 → d2 such that FD(φ) is (5.8). Recall from Lemma 5.15

that (φdi1 ⊗ id, id) : udi → di is an isomorphism. Therefore the composition

(φd2
1 ⊗ id, id) ◦ (id⊗φ2, φ2) ◦ ((φd1

1 ⊗ id)−1, id) : d1
∼−→ ud1 → ud2

∼−→ d2

is the sought morphism, where φ2 is an in (5.8).

Step 2: FD is faithful. Let φ : d1 → d2 be a morphism. We show that we can recover φ from

FD(φ), i.e., that we can recover φ1 from φ2 and data depending only on d1 and d2. By Lemma

5.13(ii) it is enough to recover α(φ1) = φ1⊗π2. Iterated application of the same lemma gives a

morphism

ψ : (UD ⊗BD B1 ⊗B1
B2, B2, ιD ◦ ϕB1⊗B1

B2
)
∼−→ (A1 ⊗B1

B2, B2, ι1 ◦ ϕB2
)
∼−→ d2

where ψ = (ψ1, ψ2) = ((φ1⊗π2) ◦ (φd1
1 ⊗π1 ⊗ id), id). Its factors are isomorphisms by Lemma

5.15. By B2-linearity of the first component ψ1, it is enough to recover ψ1 on elements x⊗ 1⊗ 1,

with x ∈ UD. i.e., to recover ψ1 ◦ ηUD .

It is not hard to verify that (ηUD , φ
d1
2 ) : uD → (UD ⊗BD B1 ⊗B1

B2, B2, ιD ◦ ϕB1⊗B1
B2

) is a

morphism in D. Uniqueness of the morphism uD → d2 gives ψ ◦ (ηUD , φ
d1
2 ) = φd2 , and so we get

ψ1 ◦ ηUD = φd2
1 .

Step 3: FD is essentially surjective. If (B,φ) is any object in Cgr
BD

then we can consider

the Poisson deformation d := (UD ⊗BD B,B, ιD ◦ ϕB) and the morphism φd = (ηUD , φ). Then

FD(d) = (B,φ).

It can be verified that the functor GD : Cgr
BD
→ D sending the object (C,ψ) to (UD ⊗BD

C,C, ιD ◦ ϕC) and a triangle (5.6) to the morphism (id⊗ψ0, ψ0) is a quasi-inverse for FD.

The same recipe gives a functor FQ : Q → Cfilt
BQ

and the proof of the following statement is

almost identical to Proposition 5.21, so we omit it.

Proposition 5.22. When uQ exists FQ is an equivalence of categories.

Theorem 5.23. Suppose that D and Q admit initial objects uD = (UD, BD, ιD) and uQ =

(UQ, BQ, ιQ), respectively. Suppose furthermore that:

(1) there is an isomorphism ξ : BQ ' BD of graded algebras;

(2) grφq2 = φgr q
2 ◦ ξ for every q ∈ Q.
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Then gr q ' uD if and only if q ' uQ for any q ∈ Q.

Proof. Assumption (1) implies that there is a natural associated graded functor gr : Cfilt
BQ
→ Cgr

BD
,

whilst (2) states that we have a natural isomorphism gr ◦FQ ' FD ◦ gr : Q → Cgr
BD

. Write

q = (A, B, ι). It follows from Proposition 5.21 that gr q ' uD if and only if FD(gr q) = (B,φgr q
2 )

is initial in Cgr
BD

. Similarly, by Proposition 5.22, q ' uQ if and only if FQ(q) = (B,φq2) is initial

in Cfilt
BQ

. By Lemma 5.20 and the identification ξ these two conditions are equivalent under our

assumptions.

5.2.6 Poisson Γ-deformations

Keep fixed n ∈ N and A as before, and now fix a group Γ. If B is a graded commutative algebra

with an action of Γ by graded automorphisms, we define the homogeneous ideal I(Γ) as the ideal

in B generated by {b − γ · b | b ∈ B, γ ∈ Γ} and we write BΓ := B/I(Γ). If C is a (graded)

algebra equipped with trivial Γ-action then every (graded) Γ-equivariant map B → C factors

through BΓ. If C is graded and B → C preserves the gradings then the induced map BΓ → C

also preserves the grading.

Recall that PAut(A) is the group of graded Poisson automorphisms, and suppose Γ ≤
PAut(A).

Definition 5.24. A Γ-equivariant Poisson deformation of A is a Poisson deformation (A, B, ι)
such that:

(i) Γ acts on B by graded automorphisms;

(ii) Γ acts on A by graded Poisson automorphisms;

(iii) B → A is Γ-equivariant;

(vi) ι : A⊗B C+ → A is Γ-equivariant.

A morphism of Γ-equivariant Poisson deformations of A is a morphism φ = (φ1, φ2) such that

both φ1 and φ2 are Γ-equivariant.

Definition 5.25. When the Γ-action on B is trivial we call (A, B, ι) a Poisson Γ-deformation of

A. Write DΓ for the category of Poisson Γ-deformations of A together with their Γ-equivariant

morphisms. A universal Poisson Γ-deformation of A is an initial object in DΓ.

If (A, B, ι) is a Poisson Γ-deformation of A then Γ also acts by automorphisms on the fibres of

the map SpecA → SpecB. More generally, when (A, B, ι) is a Γ-equivariant Poisson deformation

Γ acts on the fibres over the set of the Γ-fixed points (SpecB)Γ.

If u = (UD, BD, ιD) ∈ D is a universal deformation and γ ∈ PAut(A) then we can define

another universal deformation by

γu = (UD, BD, γ−1 ◦ ιD) (5.9)

By the universal property of u there is a unique morphism

φγ = (φγ1 , φ
γ
2) : u→ γu (5.10)
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Proposition 5.26. Suppose that A admits a universal Poisson deformation u = (UD, BD, ιD) ∈
D and Γ is a subgroup of PAut(A). Then:

(i) The map γ 7→ φγ1 defines an isomorphism PAut(A)
∼−→ PAut(UD);

(ii) u admits a unique Γ-equivariant structure;

(iii) A admits a universal Poisson Γ-deformation uΓ determined upto a unique isomorphism:

uΓ := (UD ⊗BD (BD)Γ, (BD)Γ, ιD ◦ ϕ(BD)Γ
).

Proof. For the sake of simplicity we write u = (U , B, ι). If γ ∈ PAut(A) then clearly γu is an

object in D. For γ, δ ∈ PAut(A), we consider γu and γδu. It is not hard to verify that the

pair (φγ1 , φ
γ
2) also defines a morphism δu → γδu, where (5.3) follows from the same diagram for

u 7→ γu as follows:

A

A

U ⊗B C+ U ⊗B C+

δ−1

φγ1⊗1

ι γ−1◦ι
(5.11)

Uniqueness of the morphism u→ γδu gives (φγ1 , φ
γ
2)◦(φδ1, φδ2) = (φγδ1 , φγδ2 ) so PAut(A)→ PAut(U)

is a homomorphism. The map PAut(A)→ PAut(U) is surjective because for φ1 ∈ PAut(U) the

map γ := ι ◦ (φ1 ⊗ id) ◦ ι−1 : A → A lies in PAut(A) and satisfies φγ1 = φ1. Furthermore, if

φγ1 = id then the commutative diagram (5.3) for φγ would give ι = γ−1 ◦ ι, implying γ = id.

Hence PAut(A)→ PAut(U) is an isomorphism as claimed and (i) is proven.

Now suppose Γ ≤ PAut(A). We claim that the Γ-action on u via γ 7→ φγ equips u with a

Γ-equivariant structure. The Γ-equivariance of B → U may be deduced from (5.2) for φγ and

the Γ-equivariance of ι follows directly from diagram (5.3) for φγ . Now we claim that this is

the unique Γ-equivariant structure for Γ. Suppose that u is equipped with another Γ-equivariant

structure, and the induced Γ-action on A coincides with the one we have chosen. Now γ ∈ Γ

defines a pair of maps γφ = (γφ1,
γφ2) ∈ PAut(U) × Aut(B). In fact the Γ-equivariance of ι

implies that γφ : u → γu is a morphism in D, and so γφ = φγ by uniqueness. This shows that

there is a unique Γ-equivariant structure extending the action of Γ on A, settling (ii).

We now prove (iii). It is easy to see that uΓ is an object in DΓ. Let d ∈ DΓ be an object with

base B0. Then there is a unique morphism φd = (φd1, φ
d
2) : u → d in D. Since B0 has trivial Γ-

action the map φd2 : B → B0 factors through the quotient B → BΓ. Thanks to Proposition 5.21

we see that φd factors through u → uΓ. We deduce that there exists a morphism of Poisson

deformations ψ = (ψ1, ψ2) : uΓ → d. The uniqueness of ψ follows quickly from the universal

property of u, using the fact that φu
Γ

1 and φu
Γ

2 are both surjective, hence epimorphic. Since

ψ1, ψ2 are each obtained by factorising a Γ-equivariant map over another such map, it follows

that ψ is a Γ-equivariant morphism, which completes the proof.
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In the case of a conical symplectic singularity X the relation between the automorphism group

of the graded Poisson algebra C[X] and isomorphisms of its filtered quantizations is discussed

in [67, §3.7].

5.2.7 Γquantizations

Let A be a graded Poisson algebra with Poisson brackets in degree −n, and let Γ ≤ PAut(A).

Our purpose here is to record a version of Proposition 5.26 for the category Q = QA.

Definition 5.27. A Γ-equivariant quantization of A is a quantization (A, B, ι) such that:

(i) Γ acts on B by filtered automorphisms;

(ii) Γ acts on A by filtered automorphisms;

(iii) B → A is Γ-equivariant;

(vi) (grA, B, ι) is a Γ-equivariant Poisson deformation (in view of (i), (ii), (iii) this is equivalent

to asking that ι : grA ⊗B C+ → A is Γ-equivariant where Γ acts on (grA, B) via the

associated graded action).

A Γ-equivariant morphism of quantizations is a morphism φ = (φ1, φ2) between two Γ-equivariant

quantizations such that φ1 and φ2 are both Γ-equivariant.

Definition 5.28. A Γ-quantization is a Γ-equivariant quantization (A, B, ι) such that Γ acts triv-

ially on the base B. The category of Γ-quantizations together with the Γ-equivariant morphisms

is denoted QΓ. A universal Γ-quantization is an initial object in QΓ.

If u = (UQ, BQ, ιQ) ∈ Q is a universal quantization and γ ∈ PAut(A) then we can define γu

and φγ : u→ γu mimicking the constructions in (5.9) and (5.10).

Proposition 5.29. Suppose that A admits a universal quantization u = (UQ, BQ, ιQ) ∈ Q.

Then:

(i) the map γ 7→ φγ1 defines an isomorphism from PAut(A) to filtered automorphisms of UQ;

(ii) u admits a unique Γ-equivariant structure;

(iii) A admits a universal Γ-quantization determined upto unique isomorphism by

uΓ := (UQ ⊗BQ (BQ)Γ, (BQ)Γ, ιQ ◦ ϕ(BQ)Γ
).

Proof. The proof is almost identical to the proof of Proposition 5.26 and so we only highlight the

differences in the current argument. Write u = (U , B, ι) for simplicity. Once again we consider γu

and φγ : u → γu. The maps φγ1 and φγ2 are filtered automorphisms by definition. Therefore one

can show that γ → φγ gives homomorphisms from PAut(A) to the groups FAut(U) and FAut(B)

of filtered automorphisms of U and B, respectively. If φ1 ∈ FAut(U) then φ1 = φ
ι◦(grφ1⊗id)◦ι−1

1

and so PAut(A)→ FAut(U) is surjective, and it is injective thanks to (5.3) for grφγ1 .

Now φγ equips u with a Γ-equivariant structure, where (5.3) for grφγ ensures equivariance

of ι. Uniqueness of the structure follows from universal property of u. The remaining claims are

checked in the same manner as the proof of Proposition 5.26, making use of Proposition 5.22

instead of Proposition 5.21
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In particular, in the presence of universal objects, the categories DΓ and QΓ have a rather

elementary structure, as recorded by the following result.

Proposition 5.30. Suppose that A admits a universal deformation uD and a universal quanti-

zation uQ.

(i) The functor FD restricts to an equivalence DΓ → Cgr
(BD)Γ

.

(ii) The functor FQ restricts to an equivalence QΓ → Cfilt
(BQ)Γ

.

Proof. This follows from Propositions 5.21 and 5.22 along with Propositions 5.26 and 5.29.

Theorem 5.31. Suppose that the hypotheses of Theorem 5.23 are satisfied. Let uΓ
D and uΓ

Q be

a universal Poisson Γ-deformation and Γ-quantization, respectively. Then for q ∈ Q we have

gr q ' uΓ
D if and only if q ' uΓ

Q.

Proof. Write q = (A, B, ι) and let ψD : BD → (BD)Γ and ψQ : BQ → (BQ)Γ be the natural

projections. It follows from Proposition 5.21 that gr q ' uΓ
D if and only if FD(gr q) = (B,φgr q

2 )

is isomorphic to ((BD)Γ, ψD) in Cgr
BD

. By Proposition 5.22 we have q ' uΓ
Q if and only if

FQ(q) = (B,φq2) is isomorphic to ((BQ)Γ, ψQ) in Cfilt
BQ

. The uniqueness condition in Proposi-

tion 5.26 ensures that the associated graded Γ-action on BQ is precisely the Γ-action on BD.

This completes the proof.

5.2.8 Conical symplectic singularities and their deformations

In this Section we apply all of the above results to an important class of Poisson varieties, known

as conical symplectic singularities. Let X be a normal algebraic variety such that its smooth

locus Xsm carries a symplectic form, ω. Since X is normal, the form ω gives rise to the Poisson

bracket on C[X] so X becomes a Poisson algebraic variety. Following [7] we say that X is a

symplectic singularity if there is a projective resolution of singularities % : X̃ → X such that

the pull-back %∗ω on %−1(Xsm) extends to a regular (possibly degenerate) 2-form on X̃. This

property does not depend on the chosen resolution, see [58, §2.1]. An affine Poisson variety X

is said to be conical if A = C[X] is a positively graded Poisson algebra in degree −n for some

n ∈ N. Geometrically, this means that X is endowed with a contracting C×-action.

A resolution of singularities % : X̃ → X is called a symplectic resolution if %∗ω is a symplectic

form on X̃.

Example 5.32. Since their introduction, symplectic singularities have become of central interest

in Lie Theory: we give here two of the most significant examples, extracted from [9, §1].

(i) Let (V, ω) be a complex symplectic vector space and let Γ ≤ Sp(V ) be a finite group. Then

the quotient variety V/Γ = SpecC[V ]Γ is a conical symplectic singularity by [7, Proposition

2.4]. In particular, for V = C2, we have Sp(V ) ' SL2(C). As recalled in the Introduction,

in this case the possible groups Γ are parameterized, up to conjugation, by the simply-laced

Dynkin diagrams, see [91, §6.1] and the varieties C2/Γ classify the rational isolated surface

singularities, up to analytic isomorphism.
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(ii) For g simple, let e ∈ N with adjoint orbit O and consider the bilinear map on g: ω(x, y) :=

κ(e)([x, y]) for all x, y ∈ g. Then ω induces a symplectic form (the Kirillov-Kostant-Souriau

form) on the quotient g/cg(e), which identifies with the tangent space TeO. The Killing

isomorphism induces a symplectic structure on the coadjoint orbit O∗ := κ(O) ⊂ N ∗. Let

X = SpecC[O∗]: the boundary of O∗ has codimension at least 2 in its closure, hence X

equals the normalization of the closure of O∗, see [57, §8.3]. By the work of Panyushev [82],

any such X is a conical symplectic singularity.

The following theorem combines results of Losev and Namikawa; see [67,77,78].

Theorem 5.33 (Losev, Namikawa). Let X be a conical symplectic singularity and set A := C[X].

Then the categories Q = QA and D = DA of filtered quantizations and Poisson deformations of

X admit initial objects satisfying the hypotheses of Theorem 5.23.

Proof. Thanks to [67, Proposition 2.12] there is a Poisson deformation uD = (UD, BD, ι) such

that for any d := (A, B, ι) ∈ D there is a unique pair of homomorphisms (ψ, φ) with φ : BD → B

and ψ : UD ⊗BD B → A a BD-linear isomorphism. Thanks to Lemma 5.13 this is equivalent to

the existence of a unique morphism uD → d of Poisson deformations. By the same reasoning,

[67, Proposition 3.5] implies that Q admits an initial object with base isomorphic (actually,

equal) to BD as a graded algebra. Furthermore condition (1) of the universal property in [67,

Proposition 3.5] states that grφq = φgr q for all q ∈ Q.

Corollary 5.34. Let X be a conical symplectic singularity with Γ a group of C×-equivariant

Poisson automorphisms. Then C[X] admits a universal Poisson Γ-deformation uΓ
D and a uni-

versal Γ-quantization uΓ
Q. Moreover, for q = (A, B, ι) ∈ Q we have q ' uΓ

Q if and only if

gr q ' uΓ
D.

Proof. By Propositions 5.26 and 5.29 there exist a universal Poisson Γ-deformation uΓ
D and a

universal Γ-quantization uΓ
Q. Applying Theorem 5.31 we conclude.

We now have all the tools to prove one of our main results.

Theorem 5.35. Let X be a conic symplectic singularity and Γ a group of C×-equivariant Poisson

automorphisms of A = C[X].

(i) There exists a universal Poisson Γ-deformation uΓ
D and a universal Γ-quantization uΓ

Q.

(ii) uΓ
Q is the unique quantization of uΓ

D up to isomorphism.

Proof. This follows from Corollary 5.34 and Propositions 5.26 and 5.29.

5.3 Nilpotent Slodowy slices and their quantizations

Throughout this Section we assume G simple and simply-connected. We fix e ∈ N and embed it

in an sl2-triple (e, h, f); we also set χ := κ(e). We choose h containing h, and we set λ : C× → G

a cocharacter with d1λ(t) = th. Finally, we denote by Sχ = χ+ κ(gf ) ⊆ g∗ the Slodowy slice.
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5.3.1 Poisson structures on Slodowy slices

We begin by explaining how Sχ is naturally equipped with a conical Poisson structure. This

structure can be understood in two different ways: either as the transverse Poisson structure to

g∗ at χ as in [39, §2.3], or alternatively via Poisson reduction similar to [47], as we now explain.

Along the way, we describe the Kazhdan grading on C[g∗] and C[Sχ].

The torus Ad∗ λ(C×) ≤ GL(g∗) induces a Z-grading on g∗: for i ∈ Z, we set g∗(i) = {η ∈ g∗ |
Ad∗ λ(t)η = tiη}. Using the representation theory of sl2, we have κ(gf ) ⊆

⊕
i≤0 g

∗(i). Consider

the cocharacter:

λK : C× → GL(g∗)

t 7→ t−2 Ad∗ λ(t).

This is a linear action on g∗: it is clear that λK shifts the Z-grading on g∗ relative to λ by −2.

In particular, χ is fixed and κ(gf ) is stabilized by λK , hence λK stabilizes the slice Sχ, it acts

with negative weights on it, contracting it to χ.

The map λK induces an action of C× on the algebra C[g∗] in the usual manner: set

λ#(t)v(ξ) = v(λ−1
K (t)(ξ)) = v(t2 Ad∗ λ(t−1)(ξ)),

for t ∈ C×, v ∈ C[g∗] and ξ ∈ g∗. This action endows the Poisson algebra C[g∗] with the so-called

Kazhdan grading: C[g∗] =
⊕

i∈Z C[g∗](i), where

C[g∗](i) = {v ∈ C[g∗] | λ#(t)(v) = tiv,∀t ∈ C×}, i ∈ Z.

Via the identification with the symmetric algebra C[g∗] ' S(g) =
⊕

j≥0 S
j(g), we get another

description for the Kazhdan grading. For each component define Sj(g)(k) = {x ∈ Sj(g) | [h, x] =

kx}, then we have that S(g)(i) is spanned by all Sj(g)(k) such that k + 2j = i: it follows that

C[g∗] with the Kazhdan grading is a Poisson algebra with Poisson brackets in degree −2.

Since Sχ ⊂ g∗ is stabilized by λ#, through the restriction map C[g∗] � C[Sχ] we get a

grading on C[Sχ], which is also referred to as Kazhdan grading: it is non-negative.

We now proceed to describe algebraic Poisson reduction, see [64] for more detail. Thanks

to the representation theory of sl2 we have an isomorphism ad(e) : g(−1)
∼−→ g(1). This implies

that the skew-symmetric bilinear form

ω : g(−1)× g(−1)→ C

(x, y) 7→ χ[x, y]

is non-degenerate. We pick an isotropic subspace ` ⊆ g(−1). We let `⊥ω = {x ∈ g(−1) |
ω(x, y) = 0 ∀ y ∈ `} and set

m` = `⊕
⊕
i≤−2

g(i), n` = `⊥ω ⊕
⊕
i≤−2

g(i).
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Then m` ⊂ n` are nilpotent Lie subalgebras of g and χ vanishes on [m`, n`]. Let N` ≤ G

be the connected unipotent algebraic subgroup with n` = Lie(N`), then N` acts by Poisson

automorphisms on g∗ and m∗` , and the restriction map µ` : g∗ → m∗` is N`-equivariant. Thanks

to [47, Lemma 2.1] the coadjoint action gives an isomorphism of affine varieties

N` × Sχ
∼−→ µ−1

` (χ|m`) = χ+ Anng∗(m`) ⊂ g∗, (5.12)

where Anng∗(m`) := {ξ ∈ g∗ | ξ(m) = 0 for all m ∈ m`}. Therefore N` acts freely on the fibre

µ−1
` (χ|m`) and the slice Sχ parameterises N`-orbits in µ−1

` (χ|m`). It follows that there is a natural

isomorphism of Kazhdan graded algebras

C[µ−1
` (χ|m`)]ad(n`) = C[µ−1

` (χ|m`)]N`
∼−→ C[Sχ]. (5.13)

We define the shift of m` as

m`,χ := {x− χ(x) | x ∈ m`}. (5.14)

Then it can be checked that Iχ := C[g∗]m`,χ is the defining ideal of the subvariety µ−1
` (χ|m`) ⊂ g∗,

in other words C[µ−1
` (χ|m`)] = C[g∗]/Iχ.

If f+Iχ lies in the subalgebra C[µ−1
` (χ|m`)]ad(n`), a short calculation shows that {f, Iχ} ⊆ Iχ.

Therefore there is a natural Kazhdan graded Poisson structure of degree −2 on C[µ−1
` (χ|m`)]ad(n`)

given by {f + Iχ, g + Iχ} := {f, g} + Iχ for f + Iχ, g + Iχ ∈ C[µ−1
` (χ|m`)]ad(n`). Finally, this

Poisson structure is transferred from C[µ−1
` (χ|m`)]ad(n`) to C[Sχ] via the isomorphism (5.13).

In the special case where ` is a Lagrangian subspace of g(−1) we have m` = n` and µ` is

actually a moment map for the action of N` on g∗ [47, §3.2], thus the action is Hamiltonian.

Since m` ⊃ m0, we have µ−1
` (χ|m`) ↪→ µ−1

0 (χ|m0
) and so C[µ−1

0 (χ|m0
)] � C[µ−1

` (χ|m`)].
Using the fact that Sχ ⊆ µ−1

` (χ|m`), along with (5.12) we see that C[µ−1
0 (χ|m0

)]ad(n0) ↪→
C[µ−1

` (χ|m`)]ad(n`) which is an isomorphism of Poisson algebras because both algebras are iso-

morphic to C[Sχ] as Kazhdan graded algebras, by (5.13). Hence the Poisson structure which we

have placed on Sχ does not depend on `.

5.3.2 Finite W -algebras

We are ready to introduce finiteW -algebras associated to g: these objects arise as a generalization

of the universal enveloping algebra U(g). We start by explaining their construction and some of

their main properties. In the following part, we will prove that these algebras arise as filtered

quantizations of algebras of certain conical symplectic singularities which are subvarieties of g∗.

For m`,χ as in (5.14), we consider the left U(g)-ideal Jχ := U(g)m`,χ. Since N` preserves m`

and χ vanishes on [n`,m`], then N` preserves Jχ and the N`-invariants in the left U(g)-module

Q := U(g)/Jχ inherit an algebra structure from U(g). The algebra U(g, e) := Qad(n`) is known as

the finite W -algebra. Gan and Ginzburg proved in [47] that the definition is independent of the

chosen isotropic subspace ` ⊂ g(−1). Moreover, if e′ is G-conjugate to e, then U(g, e) ' U(g, e′);
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in particular, if we fix g simple, there are only finitely many isomorphism classes of finite W -

algebras, indexed by the nilpotent orbits of g.

We remark that for e = 0, the construction for U(g, 0) becomes trivial and we get U(g, 0) =

U(g): this suggests the possibility to think of (isomorphism classes of) finite W -algebras as a

finite family of associative algebras related to g and generalizing the universal enveloping algebra.

At the other end, one can consider e regular nilpotent: the W -algebras relative to such

elements were first defined by Kostant in [60]. Choosing e as the sum of the root vectors relative

to simple roots, the construction yields U(g, e) = U(b)ad(n−), where n− is the negative nilpotent

subalgebra with g = b⊕ n−.

The algebra U(g) is naturally endowed with the standard PBW filtration: the subspace

F st
i U(g) = span{x1 · · ·xj | j ≤ i, x1, . . . , xj ∈ g}. For j ∈ Z, let U(j) := {u ∈ U(g) | [h, u] = ju}.

The Kazhdan filtration on U(g) is defined as follows: FiU(g) :=
∑

2j+k≤i F
st
j U(g) ∩ U(k). We

warn the reader that FiU(g) 6= 0 for all i ∈ Z, contrary to the conventions of the rest of this

Chapter. In particular g(i) ⊂ Fi+2U(g); one can check that the commutator decreases the degree

by−2 and that grU(g) is commutative with the induced grading. This descends to a non-negative

filtration on both Q and U(g, e), known as the Kazhdan filtration, as well. The associated graded

algebra is grU(g) ' C[g∗] with the Kazhdan grading and under this isomorphism we have an

identification gr Jχ = Iχ. Moreover, grU(g, e) is commutative, so we deduce that grU(g, e) is

equipped with a Poisson structure as in (5.1).

By [47, Proposition 5.2] the natural inclusion grU(g, e) ⊆ (C[g∗]/Iχ)ad(n`) ' C[Sχ] is an

equality, and it is not hard to check that the Poisson structure on grU(g, e) arising from the

noncommutative multiplication coincides with the structure coming from Poisson reduction of

C[g∗]. Thus U(g, e) can be viewed as a quantum analogue of the Kazhdan graded Poisson algebra

C[Sχ].

This procedure generalizes the well-known isomorphism grU(g) ' C[g∗] from Example 5.12,

which is recovered in the case e = 0, where U(g, 0) = U(g) and the Slodowy slice coincides with

the whole space g∗. At the other extremum, for e ∈ N regular, we recover the isomorphism

C[h]W ' C[g∗]G, since in this case C[Sχ] ' C[h/W ] and U(g, e) ' Z(g), as described by Kostant

in [60].

Actually, for a fixed simple g, the centre is an invariant of the family of finite W -algebras

U(g, e) as e varies in N . We have chosen our maximal toral subalgebra h ⊆ g so that h ∈ h.

Therefore C[h∗] ↪→ C[g∗] is a Kazhdan graded subalgebra with h ⊆ C[h∗] concentrated in degree

2, and the Weyl group W acts on C[h∗] by graded automorphisms. Recall that ρ denotes the

half sum of positive roots of g, and the ρ-shifted invariants are denoted C[h∗]W• . The Poisson

centre of C[g∗] is PZC[g∗] = C[g∗]G and the centre of U(g) is Z(g) = U(g)G. These algebras

are well-understood by the Chevalley restriction theorem and the Harish-Chandra restriction

theorem. Consider the natural projection maps

PZC[g∗] = C[g∗]G → PZC[Sχ]
Z(g) = U(g)G → Z(g, e) := ZU(g, e)

(5.15)
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Lemma 5.36 (Premet [85, Footnote 1]). The maps (5.15) are isomorphisms.

We have the following commutative diagram

C[g∗] C[g∗]G C[h∗]W C[h∗]W• U(g)G U(g)

C[Sχ] PZC[Sχ] Z(g, e) Q.

res '

' ' '

' pr

'

(5.16)

The restriction map C[g∗]G → C[h∗]W is an isomorphism by Chevalley’s restriction theorem,

U(g)G → C[h∗]W• is the Harish-Chandra isomorphism and the isomorphism C[h∗]W → C[h∗]W•

is the shift map x 7→ x − ρ(x) which maps invariants to ρ-shifted invariants. The isomorphism

PZC[Sχ] → Z(g, e) is the unique map making the diagram commute. Every algebra on the

left half of (5.16) is Kazhdan graded. Furthermore, if we consider the grading on C[h∗] with

{x − ρ(x) | x ∈ h} in degree 2, then C[h∗]W• is a graded subalgebra and C[h∗]W → C[h∗]W•

is a graded homomorphism. Furthermore the isomorphism C[h∗]W• → Z(g, e) is strict for the

Kazhdan filtration.

5.3.3 The universal deformation of a nilpotent Slodowy slice

Now consider the Poisson subvariety Sχ,N := Sχ ∩N ∗, known as the nilpotent Slodowy variety.

Lemma 5.37. Sχ,N is a conical symplectic singularity.

Proof. Thanks to [84, §5, Theorem] the fibres of the restriction of the adjoint quotient map

πg : Sχ → h/W are irreducible normal complete intersections; moreover, for x ∈ h/W , we have

π−1
g (x)sm = π−1

g (x) ∩ greg. In particular, the nullfibre Sχ,N is irreducible and normal and

Ssmχ,N = Sχ ∩ κ(Oreg). The slice Sχ inherits a Poisson structure via Hamiltonian reduction as in

Section 5.3.1, and on Ssmχ,N this Poisson structure agrees with the Kostant–Kirillov–Souriau one

descending from κ(Oreg), [47, §3.2]. It follows from [48, Proposition 2.1.2] that Sχ,N admits a

symplectic resolution. The Kazhdan grading on C[Sχ] endows C[Sχ,N ] with a positive grading

with Poisson brackets in degree −2, thus proving the result.

From now on we identify PZC[Sχ] = C[h∗/W ] and Z(g, e) = C[h∗/W•] as Kazhdan graded

algebras, via (5.16). Since the scheme-theoretic fibres of the adjoint quotient map Sχ → h∗/W

are reduced [84, Theorem 5.4(ii)], it follows from Kostant’s theorem [57, Proposition 7.13] that

C[Sχ]⊗C[h∗/W ] C+ ' C[Sχ,N ] as graded Poisson algebras. For the rest of the Section we pick a

graded Poisson isomorphism

ι : C[Sχ]⊗C[h∗/W ] C+ → C[Sχ,N ].

Recall that, by Lemma 5.17, there is a grading functor gr from quantizations to Poisson defor-

mations. By [91, Corollary 7.4.1], the adjoint quotient map Sχ → h∗/W is flat, which completes

the proof of the next result.
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Lemma 5.38. The following hold:

(i) (C[Sχ],C[h∗/W ], ι) is a Poisson deformation of C[Sχ,N ];

(ii) (U(g, e),C[h∗/W•], ι) is a quantization of C[Sχ,N ];

(iii) (C[Sχ],C[h∗/W ], ι) is the associated graded deformation of (U(g, e),C[h∗/W•], ι).

Combining Theorem 5.33 and Lemma 5.37 we see that C[Sχ,N ] always admits a universal

Poisson deformation and a universal filtered quantization, and these are fibred over the same base

space. It is natural to wonder under what circumstances the objects in (i) and (ii) Lemma 5.38

are universal in their respective categories. As far as Poisson deformations are concerned, the

question was answered comprehensively by Lehn–Namikawa–Sorger, by means of the following

result.

Theorem 5.39 (Lehn–Namikawa–Sorger [65, Theorems 1.2 and 1.3]). Let g be a simple Lie

algebra and e ∈ N with O := OG
e . Then (C[Sχ],C[h∗/W ], ι) is the universal Poisson deformation

of C[Sχ,N ] if and only if (g,O) does not occur in Table 5.1.

Type of g Any B C F G C G

Type of O Regular Subregular Two Jordan blocks dimension 8

Table 5.1

In [65] the authors actually classified the nilpotent orbits for which the adjoint quotient

Sχ → h∗/W is the formally universal Poisson deformation. It is explained by Namikawa in [78, §5]

that when the underlying affine Poisson variety is conical a formally universal deformation can

be globalised, leading to a universal Poisson deformation in the sense of Definition 5.18 (see

also [67, §2.4]). The regular Slodowy slice is not discussed explicitly in [65], however it is a

classical theorem of Kostant [60] that Sχ → h∗/W is an isomorphism for χ regular, and so the

Poisson structure is trivial in these cases by Lemma 5.36.

The following is one of our main results.

Theorem 5.40. The following are equivalent:

(i) (U(g, e),C[h∗/W•], ι) is the universal filtered quantization of C[Sχ,N ];

(ii) the orbit of e is not listed in Table 5.1.

Proof. This follows from Corollary 5.34 for Γ = {1}, Lemmas 5.37 and 5.38 and Theorem 5.39.

Write FAut for filtered automorphisms and PAut for graded Poisson automorphisms. Sup-

pose we choose an element FAutU(g, e). Taking the associated graded automorphism and then

restricting the scalars to C[Sχ,N ] defines a group homomorphism

FAutU(g, e) −→ PAut(C[Sχ,N ]), φ 7→ ι ◦ (grφ⊗ id) ◦ ι−1 (5.17)
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Corollary 5.41. If the orbit of e does not appear in the above table then (5.17) is an isomor-

phism.

Proof. Combine Proposition 5.29, Theorem 5.33 and Lemma 5.37.

Remark 5.42. This universal property leads to exceptional isomorphisms with other interesting

algebras arising in Representation Theory. In particular, [67, Proposition 3.13] shows that the

universal quantization of a simple surface singularity is given by (the Namikawa–Weyl group in-

variants in) the rational Cherednik algebra for the Weyl group of the same Dynkin type. By the

work of Brieskorn and Slodowy we know that these surface singularities are isomorphic to sub-

regular nilpotent Slodowy slices for simply-laced Lie algebras. Hence the subregular simply-laced

finite W -algebras are isomorphic to the corresponding spherical symplectic reflection algebras.

This observation also follows from Losev’s Theorems 5.3.1 and 6.2.2 of [66].

5.4 Deformations in the subregular case

On top of this we assume henceforth that e ∈ g is a subregular nilpotent element; we retain the

notation established at the beginning of Section 5.3.

5.4.1 The subregular slice and the automorphism group

Consider the subgroup C = StabAut(g)({e, h, f}) ≤ Aut(g) consisting of automorphisms fixing

the sl2-triple (e, h, f). Its structure is described in [91, §7.5]. The action of C on g descends to

an action on Sχ.

Lemma 5.43. C acts on C[Sχ] by graded Poisson automorphisms.

Proof. Recall the notation `,N`, µ, Iχ from Section 5.3.1 and set ` = 0 and µ := µ0. Since

the Poisson structure on C[Sχ] is defined via the graded isomorphism (5.13) it will suffice to

show that C acts by Poisson automorphisms on C[µ−1(χ|m0)]N0 . Since C preserves the graded

pieces of g, it stabilises both m0 and n0, and furthermore acts on C[g∗] by automorphisms which

preserve the Kazhdan grading. The defining ideal Iχ of µ−1(χ|m0) in C[g∗] is generated by the

Kazhdan graded vector space {x − χ(x) | x ∈ m0} and so C acts by graded automorphisms

on C[µ−1(χ|m0)]ad(n0). Since N0 is connected and unipotent the latter algebra coincides with

C[µ−1(χ|m0)]N0 . To see that the C-action on C[µ−1(χ|m0)]N0 is Poisson it suffices to recall that

{f + Iχ, g + Iχ} := {f, g}+ Iχ for f + Iχ, g + Iχ ∈ C[µ−1(χ|m0
)]N0 .
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5.4.2 The equivariant universal deformation of a subregular nilpotent
Slodowy slice

Assume now g0 is not simply-laced and choose a simple Lie algebra g by determining the Dynkin

type as follows:

A2n−1 if g0 is of type Bn

Dn+1 if g0 is of type Cn

E6 if g0 is of type F4

D4 if g0 is of type G2.

(5.18)

In this Section we consider the subregular Slodowy slice in g∗0 and so we use notation e0, χ0,Sχ0

to mirror the notation for g. The nilpotent subregular Slodowy slice for g0 is denoted Sχ0,N0
.

The following result appeared in [44, Lemma 2.23], we include here another proof for the reader’s

convenience.

Lemma 5.44. The Poisson varieties Sχ,N and Sχ0,N0 are C×-isomorphic.

Proof. It follows from the proofs of [91, Theorem 8.4 & 8.7] that Sχ,N and Sχ0,N0 are both

C×-isomorphic to a simple surface singularity, say C[Sχ,N ] ' C[x, y]Γ ' C[Sχ0,N0 ] where Γ is a

finite subgroup of SL2. Let {·, ·} and {·, ·}0 denote the Poisson structures on C2/Γ transported

from Sχ,N and Sχ0,N0 respectively. Applying the argument in the final paragraph of the proof

of [64, Proposition 9.24] we see that {·, ·} = c{·, ·}0 for some c ∈ C×. Now apply [64, Remark 6.19]

to complete the proof.

Let Γ0 be the finite subgroup of C defined in [91, p. 143]. It is isomorphic to the group Aut(∆)

of Dynkin diagram automorphism of g for all pairs (g, g0) except for (D4,C3) in which case Γ0 is

isomorphic to a subgroup of order 2. In all cases the composition Γ0 ↪→ C ↪→ Aut(g)→ Aut(∆)

is injective and its image is the subgroup of Aut(∆) realizing the Dynkin diagram ∆0 of g0 as a

folding of ∆.

By [91, §8.7, Remark 3] there is a morphism of deformations of the algebraic variety Sχ0,N0 '
Sχ,N where the right hand side is Γ0-equivariant and the vertical arrows are the adjoint quotient

maps:

Sχ0 Sχ

h∗0/W0 h∗/W.

i

δ0 δ

j

(5.19)

By [91, §8.8, Remark 4] the maps (i, j) induce isomorphisms of varieties

h∗0/W0 ' (h∗/W )Γ0 , Sχ0
' Sχ ×h∗/W h∗0/W0 (5.20)

where (h∗/W )Γ0 ⊆ h∗/W is the subscheme of Γ0-fixed points.
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Example 5.45. Assume g0 is of type Bn, and g is of type A2n−1. Then Γ0 is a cyclic group of

order 2 and C[h∗] = C[x1, . . . , x2n]/(x1 + · · ·+ x2n). The only non-trivial element γ in Γ0 maps

xi to −x2n+1−i. Furthermore

C[h∗/W ] = (C[x1, . . . , x2n]/(x1 + · · ·+ x2n))
Sym(2n)

= C[e2, e3, . . . , e2n]

where ej is the j-th elementary symmetric polynomial. Thus γej = ej for j even and γej = −ej
for j odd and the kernel of the natural projection C[h∗/W ] → C[(h∗/W )Γ0 ] is generated by all

e2r+1 for r = 1, . . . , n− 1.

For each piece of notation at the beginning of Section 5.3 we introduce the same notation

for g0. For example, h0 ⊆ g0 is a maximal toral subalgebra and W0 is the corresponding Weyl

group. Applying the remarks of Section 5.3.3 we see that we may fix graded isomorphisms

ι0 : C[Sχ0
]⊗C[h∗0/W0] C+ → C[Sχ0,N0

]; ι : C[Sχ]⊗C[h∗/W ] C+ → C[Sχ,N ].

such that ι is Γ0-equivariant. Since Γ0 acts on C[Sχ,N ] by graded Poisson automorphisms we

can consider the universal Γ0-deformation of Sχ,N . We are ready to prove the main results of

this Section.

Proposition 5.46. Let (g, g0) be as in (5.18). Set:

u := (C[Sχ],C[h∗/W ], ι), u0 := (C[Sχ0
],C[h∗0/W0], ι0);

q := (U(g, e), Z(g, e), ι), q0 := (U(g0, e0), Z(g0, e0), ι0).

Then the unique morphism u→ u0 (resp. q → q0) is a surjective morphism of Poisson deforma-

tions (resp. of filtered quantizations) of C[Sχ,N ] ' C[Sχ0,N0
].

Proof. First, we prove the statement relative to Poisson deformations. By Theorem 5.39, the

triple u is the universal Poisson deformation of C[Sχ,N ]. By Lemmas 5.38 and 5.44 the triple u0

is a Poisson deformation of C[Sχ,N ]. Hence there is a unique morphism of Poisson deformations

φ = (φ1, φ2) : u → u0. By C×-semi-universality of C[Sχ], see [91, §2.5 and Theorem 8.7], the

differentials at zero are equal for j as in (5.19) and the morphism h∗0/W0 → h∗/W corresponding

to φ2. Algebraically this means that d0j
∗ = d0φ2, in the notation of Lemma 5.1. Since j is a

closed inclusion of affine varieties, j∗ and d0j
∗ are surjective, and so we deduce from Lemma 5.1

that φ2 is surjective. We conclude by Corollary 5.16.

As far as filtered quantizations are concerned, by Theorem 5.40 we have that q is the universal

quantization and gr q the universal Poisson deformation, so there is a unique morphism φq0 : q →
q0 in Q and a unique morphism φgr q0 : gr q → gr q0 is D. Part (i) implies that φgr q0

2 is surjective.

Theorem 5.33 implies that grφq02 = φgr q0
2 and we conclude that φq02 is also surjective. Now we

apply Corollary 5.16 to see that φq01 is surjective.

With some restrictions on the Dynkin type, we can prove the following result.
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Theorem 5.47. Let g0 be of type Bn, Cn or F4, where n ≥ 2 and n is even in type C. Then:

(i) (C[Sχ0 ],C[h∗0/W0], ι0) is isomorphic to the universal Poisson Γ0-deformation of C[Sχ,N ];

(ii) (U(g0, e0), Z(g0, e0), ι0) is isomorphic to the universal Γ0-quantization of C[Sχ,N ].

Proof. Retain notation from Proposition 5.46. By Proposition 5.26, the universal Poisson defor-

mation u = (C[Sχ],C[h∗/W ], ι) of C[Sχ,N ] admits a unique Γ0-equivariant structure. Propo-

sition 5.26 implies that the universal Γ0-deformation of C[Sχ,N ] is uΓ0 = (C[Sχ] ⊗C[h∗/W ]

C[h∗/W ]Γ0
,C[h∗/W ]Γ0

, ι). There exists a unique morphism of Poisson deformations ψ : u→ uΓ0 ,

we write ψ = (ψ1, ψ2) and we claim that ker(φ2) = ker(ψ2) when g0 has one of the Dynkin types

listed in the statement. The map ψ2 is the natural projection C[h∗/W ] → C[h∗/W ]Γ0
, so its

kernel is generated by f−γ ·f where f ∈ C[h∗/W ] and γ ∈ Γ0, however we will obtain a different

description of the kernel.

If r and s denote the ranks of g and g0 respectively then we write di, i = 1, . . . , r and

d0
i , i = 1, . . . , s for the Kazhdan graded degrees of the elementary homogeneous generators of

C[h∗/W ] and C[h∗0/W0] respectively. These degrees are listed in [91, p. 112], and they coincide

with the total degrees doubled, viewed as polynomials on h∗ or h∗0. Let I0, I2 ⊆ {1, ..., r} be

the two complementary sets consisting of indexes i such that di ≡ 0 (mod 4) or di ≡ 2 (mod 4),

respectively. Thanks to our restrictions on the Dynkin label of g0 the set {di | i ∈ I0} coincides

with the collection of all degrees of homogeneous generators of C[h∗0]W0 , whilst dim h0 = |I0|.
Therefore the Kazhdan grading on C[h∗0/W0] has degree concentrated in 4Z. Since φ2 is graded,

the generators of degree di with i ∈ I2 are mapped to zero. Since φ2 is surjective by Proposition

5.46, the generators with degrees di where i ∈ I0 are sent to algebraically independent elements.

It follows that ker(φ2) = (ei | i ∈ I2).

It is explained in [32, §13] (see also [91, Remark 8.8.4]) that C[h∗/W ]Γ0 ' C[h∗0/W0] as

algebras graded by total degree and, equivalently, by Kazhdan degree. Since ψ2 is a surjection we

can apply the argument of the previous paragraph verbatim to deduce that ker(ψ2) = (ei | i ∈ I2).

Since ker(φ2) = ker(ψ2) we can define a graded isomorphism σ : C[h∗0/W0]
∼−→ C[h∗/W ]Γ0

by

setting σ(φ2(f)) := ψ2(f) where f ∈ C[h∗/W ]. We have a commutative triangle of homomor-

phisms in Cgr
C[h∗/W ]

C[h∗/W ]

C[h∗0/W0] C[h∗/W ]Γ0
.

φ2 ψ2

σ

(5.21)

Thanks to Proposition 5.21 we see that σ corresponds to an isomorphism of Poisson deformations

(C[Sχ0
],C[h∗0/W0], ι0)

∼−→ uΓ0 , as required. Part (ii) follows from Corollary 5.34.

We have the following consequence.

Corollary 5.48. Under the assumptions of Theorem 5.47 the kernel of the map U(g, e) �

U(g0, e0) is generated by {z − γ · z | γ ∈ Γ0, z ∈ Z(g, e)}.
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Proof. This follows directly from Propositions 5.29, 5.46 and Theorem 5.47.

We conjecture that Theorem 5.47 and Corollary 5.48 hold in general, without the restrictions

on Dynkin type.

5.4.3 A presentation for the subregular W -algebra of type B

In this Section we let G0 = SO2n+1 and g0 = Lie(G0). Let e0 ∈ g0 be a subregular nilpotent

element of g0 and χ0 ∈ g∗0 the corresponding element with respect to the Killing identification.

Our purpose here is to give a presentation of the finite W -algebra U(g0, e0) as a quotient of a

shifted Yangian.

By Corollary 5.48 we can express U(so2n+1, e) as a quotient of U(sl2n, e), whilst [24] allows

us to express U(gl2n, e) as a truncated shifted Yangian. In order to tie these threads together

we record the following observation which follows straight from the definitions.

Lemma 5.49. The centre of gln maps to a central element of U(gln, e) and the quotient by that

element is isomorphic to U(sln, e).

In [24] the shifted Yangian associated to gln is introduced in full generality, however in this

work we only require a special case: we define the shifted Yangian Y2(σ) to be the algebra with

generators

{D(r)
1 , D

(r)
2 | r > 0} ∪ {E(r) | r > 2n− 2} ∪ {F (r) | r > 0} (5.22)

and relations (2.4)-(2.9) from [24] with n = 2. Our generators E(r) and F (r) are denoted E
(r)
1

and F
(r)
1 in [24] and our definition above corresponds to the shift matrix σ = (si,j)1≤i,j≤2 with

s1,2 = 2n − 2 and si,j = 0 otherwise. We gather the diagonal generators D
(r)
i into power series

by setting Di(u) :=
∑
r≥0D

(r)
i u−r ∈ Y2(σ)[[u−1]] where D

(0)
i := 1 and consider the series

Z(u) = u2n +
∑
r>0

Z(r)u2n−r

:= u(u− 1)2n−1D1(u)D2(u− 1) ∈ u2nY2(σ)[[u−1]].

(5.23)

Lemma 5.50. The elements {Z(r) | r > 0} are algebraically independent generators of the centre

of Y2(σ). Furthermore for r = 1, ..., 2n we have

Z(r) =

r∑
s=0

(
2n− 1

2n− 1− s

)
(−1)2n−s

s∑
t=0

D
(t)
1

◦
D2

(s−t) (5.24)

where
◦
D2

(r) :=
∑r
s=0

(
r−1
r−s
)
D

(s)
2 and

◦
D2

(−1) := 0.

Proof. The first claim follows from [25, Theorem 2.6] in view of the fact that u−2n+1(u− 1)2n−1

is invertible in C[[u−1]]. We proceed to prove formula (5.24). Using the binomial theorem we

have (u− 1)−s =
∑
r≥s

(
r−1
r−s
)
u−r. It follows that

D2(u− 1) =
∑
r≥0

(u− 1)−rD
(r)
2 =

∑
r≥0

u−r
r∑
s=0

D
(s)
2

(
r − 1

r − s

)
=
∑
r≥0

u−r
◦
D2

(r). (5.25)
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If we define C(u) =
∑
r≥0 C

(r)u−r := D1(u)D2(u− 1) then we have

C(u) =
∑
r,s≥0

D
(r)
1

◦
D2

(s)u−r−s =
∑
r≥0

r∑
s=0

u−rD
(s)
1

◦
D2

(r−s). (5.26)

At the same time we have

u(u− 1)2n−1 =

2n∑
i=1

(
2n− 1

i− 1

)
(−u)i. (5.27)

Finally if we have a polynomial f(u) =
∑m
i=0 fiu

i and a power series A(u) =
∑
r≥0Aru

−r then

for r = 0, ...,m the um−r coefficient of f(u)A(u) is
∑r
s=0 fm−sAs. Since

(
2n−1
−1

)
= 0 we can

combine this last statement together with (5.26) and (5.27) we arrive at the proof of (5.24).

Theorem 5.51. There is a surjective algebra homomorphism

Y2(σ) � U(g0, e0)

with kernel generated by

{D(r)
1 | r > 1} ∪ {Z(2r−1) | r = 1, ..., n}.

Proof. Let e be a subregular nilpotent element of sl2n ⊆ gl2n. The main result of [24] implies

that there is a surjective homomorphism Y2(σ) � U(gl2n, e) with kernel generated by {D(r)
1 |

r > 1}. It follows from [25, Lemma 3.7] that the image of the element Z(1) in (5.23) under

the map Y2(σ) → U(gl2n, e) lies in the image of z(gl2n) → Z(gl2n) → U(gl2n, e). Together with

Lemma 5.49 this implies that U(sl2n, e) is naturally isomorphic to the quotient of U(gl2n, e) by

Z(1). Finally by Example 5.45 and Corollary 5.48 there is a surjective algebra homomorphism

U(sl2n, e) � U(g0, e0) and the kernel is generated by the image of the elementary symmetric

polynomials {e2r+1 | r = 1, ..., n− 1} under the isomorphism C[h∗/W ]→ Z(sl2n, e) discussed in

(5.16). Here we use (h,W ) to denote a torus and Weyl group for sl2n. To complete the proof

of the current Theorem it suffices to show, for r = 1, ..., n − 1, that the image of e2r+1 under

C[h∗/W ] → Z(sl2n, e) is equal to the image of Z(2r+1) under Y2(σ) → U(gl2n, e) → U(sl2n, e).

Once again this follows from [25, Lemma 3.7].
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[69] G. Lusztig. Intersection cohomology complexes on a reductive group. Invent. Math.,
75(2):205–272, 1984.

[70] G. Lusztig. On conjugacy classes in a reductive group. In Representations of reductive
groups, volume 312 of Progr. Math., pages 333–363. Birkhäuser/Springer, Cham, 2015.
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