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ABSTRACT

This thesis is divided in two parts. The first one concerns geometric and representation-theoretic
aspects of several subvarieties defined in complex connected reductive algebraic groups. Sheets
for the adjoint action on a reductive Lie algebra g were parameterized by Borho and Kraft in
1979; in 2012 Carnovale and Esposito studied sheets for the conjugacy action of a reductive group
G on itself. A notion of birational sheets of g first appeared in a preprint by Losev in 2016: we
define analogous objects for a group and we study their features. Under the assumption that the
derived subgroup of G is simply-connected, we develop a local approach to reduce the study of
geometry of (closures of) Jordan classes and (birational) sheets to the study of analogous objects
in subalgebras of g. We also obtain results about the representation theory of rings of regular
functions on spherical orbits in g (respectively of conjugacy classes of G), proving a special case

of a conjecture of Losev.

The second part is devoted to the study of commutative and non-commutative deformation
theory for conical symplectic singularities. It is well known that every conic symplectic singularity
admits a universal Poisson deformation and a universal filtered quantization, thanks to the work
of Namikawa (2010, 2011) and Losev (2016). We reorganize their work in categorical terms and we
obtain that every such variety admits a universal equivariant Poisson deformation and universal
equivariant filtered quantization with respect to any group acting on it by C*-equivariant Poisson
automorphisms. Our investigation moves from very classical problems in Lie Theory, for example
the deformations of nilpotent Slodowy slices in simple Lie algebras, whose study was first treated
on Slodowy’s notes of 1980 and then pursued and generalized by Lehn, Namikawa and Sorger in
2012. We classify nilpotent Slodowy slices whose universal filtered quantization coincides with
the associated finite W-algebra. Finally, we focus our attention on subregular slices in some
non-simply-laced Lie algebras: for B,, with n > 2, Cy,, with m > 1 and F4; we prove that the
finite W-algebra is the universal equivariant filtered quantization with respect to the Dynkin

graph automorphisms coming from the unfolding of the Dynkin diagram.
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RIASSUNTO

Questa tesi e suddivisa in due parti. La prima riguarda determinate sottovarieta di un gruppo
algebrico complesso riduttivo connesso, trattandone aspetti geometrici e di teoria delle rappre-
sentazioni. Le falde (sheets) di un’algebra di Lie riduttiva g per l'azione aggiunta sono state
parametrizzate da Borho e Kraft nel 1979; nel 2012, Carnovale ed Esposito hanno studiato le
falde di un gruppo G per l'azione di coniugio. La nozione di falda birazionale (birational sheet)
di g e stata introdotta per la prima volta in una prepubblicazione di Losev del 2016: in questa
tesi definiamo oggetti analoghi per il gruppo G e ne studiamo alcune proprieta. Nell’ipotesi in
cui il sottogruppo derivato di G sia semplicemente connesso, sviluppiamo un metodo locale per
ricondurre lo studio della geometria di (chiusure di) classi di Jordan e di falde (birazionali) allo
studio di corrispettivi oggetti in determinate sottoalgebre di g. Inoltre, otteniamo alcuni risul-
tati legati alla teoria delle rappresentazioni degli anelli delle funzioni regolari sulle orbite sferiche
di g e sulle classi di coniugio sferiche di GG, dimostrando un caso particolare di una congettura

proposta da Losev.

La seconda parte tratta alcune deformazioni (commutative e non) di varieta dette singo-
larita simplettiche coniche: tali varietd ammettono una deformazione di Poisson universale ed
una quantizzazione filtrata universale, grazie ai lavori di Namikawa (2010, 2011) e Losev (2016).
Riformulando i loro risultati in termini categorici, dimostriamo che ogni singolarita simplettica
conica X ammette una deformazione di Poisson universale ed una quantizzazione filtrata univer-
sale, equivarianti rispetto ad ogni gruppo che agisce su X per automorfismi di Poisson compatibili
con la contrazione indotta dalla struttura conica. La nostra indagine trae spunto da un prob-
lema classico in teoria di Lie: lo studio della sottovarieta nilpotente in una sezione trasversa di
Slodowy (Slodowy slice) nelle algebre di Lie semplici, analizzato per la prima volta nelle note di
Slodowy (1980) ed in seguito sfociato nella generalizzazione data da Lehn, Namikawa e Sorger
(2012). Nella tesi, classifichiamo le sottovarieta nilpotenti delle sezioni trasverse la cui quantiz-
zazione filtrata universale coincide con la W-algebra finita associata. Infine, ci focalizziamo sulle
sezioni subregolari per g di tipo B,, con n > 2, Cy,,, con m > 1 e F4: in tali casi la W-algebra
finita & la quantizzazione filtrata universale equivariante rispetto al gruppo degli automorfismi del

diagramma di Dynkin ottenuto da quello di g con un’operazione di dispiegamento (unfolding).
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INTRODUCTION

The action of a complex connected reductive algebraic group G on an algebraic variety X can
be studied by gathering orbits in finitely many families to deduce properties shared by orbits
in the same collection. One way of grouping orbits together is to form sheets, i.e., maximal
irreducibile subsets of X consisting of equidimensional orbits. In [13], Borho and Kraft studied
sheets for the adjoint action of a semisimple connected group G on its Lie algebra g: the authors
considered non-nilpotent orbits as deformations of equidimensional nilpotent ones to compare
the G-module structure of their ring of regular functions. In the same paper, sheets and their
closures were described set-theoretically as unions of decomposition classes (also called Jordan
classes). Decomposition classes form a partition of g into finitely-many, irreducible, smooth, G-
stable, locally closed subvarieties grouping elements having similar Jordan decomposition. Their
geometry was studied in [12,21,43, 88].

Every sheet G of g contains a dense Jordan class J, hence & can be realized as the regular
locus of the closure of J and described in terms of Lusztig-Spaltenstein induction, as in [12].
Every sheet contains a unique nilpotent orbit £, in this sense the non-nilpotent orbits in the
sheet “deform” ©. The picture is very clear for g = sl,,(C): in this case any two distinct sheets
have empty intersection, hence sheets are parameterized by nilpotent orbits of g, equivalently
by partitions of n. This does not hold in general: for example, all simple non-simply-laced Lie
algebras present two sheets of subregular elements which meet non-trivially at the subregular
nilpotent orbit. For g simple and classical, all sheets are smooth (see [55]), but this does not

extend to exceptional Lie algebras (the list of smooth sheets is to appear in [26]).

Sheets are objects with an intrinsic geometric interest, but representation theorists look for a
deeper understanding of sheets also for other reasons. A natural question is to consider the ring
of regular functions C[O] as the orbit O varies in a sheet and ask whether the G-modules C[O]
are isomorphic. For GG simple and adjoint acting via the adjoint action on its Lie algebra g, some
answers were already obtained in [13]: let e be a nilpotent element of g, if the centralizer of e in G
is connected and the closure of the orbit O of e is normal, then C[9] is isomorphic as a G-module
to C[O’] for all O’ “deforming” ©. In particular, for g = sl,,(C), the G-module structure of C[9)]

is preserved along sheets, but this fails in general. We recall the counterexample contained in [13]:



for g simple of type Gy and B, there are two subregular sheets and the G-module structure of
C[9] is preserved along one of them, but not along the other one. Finally, sheets in g play a role
in the representation theory of finite W-algebras, as shown by Premet and Topley in [87] and in

the description of primitive ideals in enveloping algebras, as illustrated in [99] by Vogan.

The ideas for the topics developed in this thesis are strongly influenced by the recent work of
Losev [67]: for this reason, we briefly sum up its content. Losev defines finitely-many irreducible
subvarieties of g, called birational sheets. Following ideas already contained in [14], and further
developed by Namikawa and Fu (see [45,76]), Losev defines birational sheets in terms of Lusztig-
Spaltenstein induction. Induction is defined starting from a pair ([,DL) consisting of a Levi
subalgebra [ C g and a nilpotent orbit OF in [ For each element ¢ in the centre 3(0) of [, one
can build a certain map, known as the generalized Springer map; its image is the closure of a
G-adjoint orbit in g. When the generalized Springer map is birational, the dense orbit in the
image is said to be birationally induced. Birational sheets are unions of birationally induced
orbits from pairs (I, O%) which are in some sense “minimal” (namely, O is birationally rigid,
i.e., it cannot be birationally induced from a proper Levi subalgebra of I).

Although the definition of a birational sheet of g is less intuitive than that of a sheet, the
objects defined by Losev are better behaved from the geometric and representation-theoretic

point of view. In particular:

Theorem (Losev [67, Theorem 4.4]). Let g be a reductive Lie algebra. The following hold.
(i) Birational sheets form a partition of g.
(i) Birational sheets are unibranch and their normalization is smooth.
(i1i) A geometric quotient for the action of G on a birational sheet exists. This quotient can be

explicitly calculated, and it is a unibranch variety with smooth normalization.

Moreover, birational sheets coincide with sheets in sl,,(C) and, for g simple and classical,
all birational sheets are smooth, see [67, Remark 4.10]. We observe that, in contrast to sheets,
not all birational sheets contain a nilpotent orbit. On the other hand, while sheets fail fulfilling
this property, the G-module structure of C[O)] is preserved along the same birational sheets,
see [67, Remark 4.11]. In the same Remark, Losev gives hope for an intrinsic characterization of

birational sheets in proposing the following

Congecture (4.9). Let g be a reductive Lie algebra. If 97 and 95 are orbits of g such that C[O4]

and C[O3] have isomorphic G-module structure, then they lie in the same birational sheet.

The work in Losev’s paper [67] is formulated in the more general context of conical symplectic
singularities: these are an interesting subclass of normal Poisson varieties. Examples of conical
symplectic singularities arising from Lie Theory are: (finite coverings of) the normalization of
the closure of a nilpotent orbit O in g (i.e., Spec C[9O]), the Slodowy slice to a nilpotent element
in g and its intersection with the nilpotent cone, called nilpotent Slodowy variety.

If X is a conical symplectic singularity and A = C[X], then A can be seen as the central

fibre of a flat family of graded commutative Poisson algebras, called Poisson deformations of
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A. In [77,78], Namikawa proved the existence of a universal Poisson deformation of a conical
symplectic singularity X; he introduced a space Px and a finite group Wx acting on Py as
a crystallographic group. The quotient Px /W parameterizes the Poisson deformations of X
up to isomorphism, in the sense that every Poisson deformation of X can be obtained from the
universal one as the fibre product with a point of Px/Wix.

There exist also non-commutative deformations of A, called filtered quantizations. These are
flat families of filtered algebras with central fibre A whose associated graded gr A4 is isomorphic to
A. In [67], Losev describes filtered quantizations of a conical symplectic singularity: similarly to
Poisson deformations, they are parameterized, up to isomorphism, by the points in the quotient
PBx/Wx defined by Namikawa.

As the title of the manuscript suggests, our exposition deals with two subjects. The first one
is the group analogue of birational sheets: we propose a possible definition of such objects and
analyse some of their algebraic, geometric and representation theoretic features (Chapters 1, 2,
3). This part ends with an application to the spherical subvariety of G (Chapter 4).

The second part is devoted to the theory of Poisson deformations and filtered quantizations
of nilpotent Slodowy slices (Chapter 5). We translate results of Namikawa and Losev in a very
general, categorical language. We get a complete classification of the cases in which the finite
W-algebra associated to a nilpotent orbit £ is the universal filtered quantization of the nilpotent
Slodowy slice at 9. One of the few exceptions is given by the subregular nilpotent slice in g
simple non-simply-laced: we conclude with some results on this case.

Despite being treated separately in the exposition, these two topics have points of connection:
it is clear that both parts are deeply inspired by [67]. We conclude our overview of Losev’s article
by describing his construction suggesting an Orbit method for g semisimple, where many of the
objects we study in this thesis come into play.

To each adjoint orbit £, Losev assigns an algebra Ag in the following manner. Consider the
pair (I, O¥) attached to the unique birational sheet containing O and let s € 3(I) be a semisimple
part in O. If O’ is the nilpotent orbit induced from (I, DL)7 then Ay is a filtered quantization of
a suitable finite covering of X’ = Spec C[0’]. Namely, Ag is obtained specifying the universal
filtered quantization of C[X'] to the parameter corresponding to s. The quantization Ay is
endowed with a G-action and a quantum comoment map g — Ag: this yields a map U(g) — Agp,
where U(g) is the universal enveloping algebra of g. In short, Losev’s Orbit method associaties
to any G-adjoint orbit O a filtered U(g)-algebra Ago; denote by I(9O) the kernel of the map
U(g) — Ap. Losev’s version of the Orbit method [67, Theorem 5.3] states that if two filtered
quantizations Ag,, Ao, are G-equivariantly isomorphic, then 97 = D5. Moreover, the map
9 +— I(D) is injective for g classical and Losev conjectures this is also the case for g exceptional.
In the case that O itself is nilpotent, then I() corresponds to a one-dimensional module of
the finite W-algebra associated to . This leads to new conjectures in the description of the

primitive ideals of U(g).

vii



We now proceed to illustrate in greater detail the content of the manuscript, emphasizing its
original results. The first problem addressed in our exposition is defining a group analogue of
Losev’s birational sheets: this is mainly contained in [1]. After fixing the notation and recollecting
some general results in preliminary Chapter 0, we begin Chapter 1 with an exposition of results on
induction of adjoint orbits and conjugacy classes and its interplay with birationality. Induction of
unipotent classes was defined by Lusztig and Spaltenstein in [71] and it was then generalized to a
non-unipotent conjugacy class in [29] readapting arguments of [12] to the group case. Following
this approach and inspired by [67], for a conjugacy class O of G, we are led to consider two
different definitions:

(a) O is birationally induced if it is dense in the image of a birational Springer generalized
map;
(b) O is weakly birationally induced if the class of its unipotent part is birationally induced in
the connected centralizer of its semisimple part.
As suggested by the choice of the names, (a) implies (b), but (a) is in general strictly stronger.
Definition (a) is the natural extension of birational induction in the Lie algebra. On the other
hand, in the group there is more control on definition (b). The most favourable situation occurs
when the derived subgroup [G, G| is simply-connected or when O is unipotent in G up to a
central element: in such cases the centralizer of the semisimple part of O is connected and under
this condition (a) is equivalent to (b). This implies also that, since the centralizer of a semisimple
element of g is always connected, there is no difference between birational induction and weakly
birational induction for adjoint orbits in g.

We prove that most properties enjoyed by induction extend naturally to the case of weakly
birational induction. In particular, Lemma 1.26 states a criterion which gives a sufficient condi-
tion for a unipotent conjugacy class to be birationally induced. The main result closing Chapter
1 is Theorem 1.35, which states that any conjugacy class of G is weakly birationally induced in a
unique way, up to G-conjugacy, under some minimality conditions on the data needed to define

induction. When [G, G| is simply-connected, the adverb “weakly” can be removed.

In Chapter 2, we recall the principal facts on Jordan classes in g and in G. The group
analogue of Jordan classes first appeared in Lusztig’s paper [69]: such objects and their closures
are an essential tool in the study of the sheets for the conjugacy action of a reductive group G
on itself and were thoroughly studied by Carnovale and Esposito in [29]. Jordan classes of G
enjoy similar properties to decomposition classes of g: they are locally closed, smooth, irreducible
subvarieties of G and they admit a description in terms of Lusztig-Spaltenstein induction.

With the instruments of Chapter 1, we can define the birational closure and the weakly
birational closure of a Jordan class in g and in G: we describe and compare these objects by
means of results and examples. One of the main differences is that while the weakly birational
closure of a Jordan class is a union of Jordan classes, the birational closure need not be. In the
Lie algebra g and for G with [G, G| simply-connected there is no difference between the weakly

birational closure and the birational closure of a Jordan class.
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Just like sheets in G are parameterized as regular closures of certain Jordan classes, we
define weakly birational sheets in G as the weakly birational closures of certain Jordan classes,
thus reaching the first milestone of our project and proving an analogue of point (i) of Losev’s
result [67, Theorem 4.4]:

Theorem (2.25). Weakly birational sheets form a partition of G.

Once again, when [G, ] is simply-connected, it makes sense to talk about the birational
sheets of G. Every weakly birational sheet is irreducible and contained in a level set, so it is
contained in a sheet of G. We conclude Chapter 2 by comparing weakly birational sheets with
sheets of G from a structural point of view and studying how working in different isogeny classes

of G affects weakly birational sheets.

In Chapter 3 we pave the way to prove a group analogue of (ii) in Losev’s result [67, Theorem
4.4]. This aim is reached as an application of a much more general result obtained in [2].
Therein, the focus is put on the local study of (regular loci of) closures of Jordan classes in the
neighbourhood of a point. The closure of a Jordan class is a union of objects of the same kind
and G admits a stratification whose closed strata are given by the closures of Jordan classes: this
stratification yields constructible character sheaves, see [69]. It is clear that the stratifications
on g and G present similarities and it is natural to expect that the geometry of Jordan classes
in a group and of decomposition classes in a Lie algebra are related.

After an introductory section, recalling some notation and some preliminary results from
Algebraic Geometry, we begin by proving that the exponential map identifies the Jordan strat-
ification induced on a neighbourhood of the nilpotent cone in g with the Jordan stratification
induced on a neighbourhood of the unipotent variety in G, preserving closure orderings. There-
fore, any closure of a Jordan class in G containing a unipotent element u is smoothly equivalent
in the neighbourhood of u to the closure of a Jordan class in g in the neighbourhood of the log-
arithm of u. Once the question has been settled for unipotent elements, under the assumption
that [G, G] is simply-connected, we explain how to reduce from the study of the closure J of a

Jordan class J in G to the study of closures of Jordan classes in a reductive subgroup, namely:

Theorem (3.8). Let J be a Jordan class in G with |G, G] simply-connected and let g € J with
Jordan decomposition g = rv. Then the pointed variety (J,rv) is smoothly equivalent to ((J J;,v),

where the J;’s are the Jordan classes in the centralizer of r such that rv € J; and J; C J.

At the end of Chapter 3 we collect several applications of this local analysis; we list them,
reminding the reader that [G, G] is assumed to be simply-connected throughout the list.

We prove that the closure of a regular Jordan class J in G is normal and Cohen-Macaulay
if and only if the categorical quotient J//G is normal if and only if J//G is smooth (Theorem
3.14) by a reduction to Lie algebra case where the analogous problem was solved by [88]. Since
the list of classes J for which J//G is normal is known, see [30], this gives the list of normal and

Cohen-Macaulay closures of regular Jordan classes in GG, see Remark 3.16.
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We provide necessary and sufficient conditions for a sheet S in G to be smooth. We also show
in Theorem 3.19 that if G is simple simply-connected and classical and the categorical quotient
S//G is normal in codimension 1, then S is always smooth. We deduce a (non-exhaustive) list of
smooth sheets for G simple, simply-connected and classical, see Remark 3.20. We also provide
the list of smooth sheets when S//G is normal in codimension 1 for G exceptional and simple in
Corollary 3.21.

When G = SL, (C) we can conclude that all sheets and all Lusztig strata are smooth (Proposi-
tion 3.22). The general case is more involved and there are examples of singular and non-normal
strata, for instance those containing the subregular unipotent conjugacy class when the root
system is not simply-laced.

Finally, we analyse the geometry of the birational closure of a Jordan class. In this case we
can use the result of Losev and obtain the analogue for the group case: birational sheets are
unibranch varieties with smooth normalization and birational sheets are smooth for classical G
(Theorems 3.27 and 3.28).

Chapter 4 contains research produced in [4] and deals with the aforementioned classical
problem in Representation Theory: describing collections of adjoint orbits (resp. conjugacy
classes) whose ring of regular functions are isomorphic as G-modules. Our research is motivated
by Losev’s Conjecture 4.9. We tackle this problem restricting to the context of the spherical
subvarieties of g and G, under the assumption that [G, G] is simply-connected.

We begin Chapter 4 with an introductory part, where we briefly state the main notions and
results on the G-module decomposition of rings of regular functions on orbits, and we recall
the definition of spherical variety. If B is a Borel subgroup of G, the complexity of X is the
codimension of a generic B-orbit in X; the variety X is spherical if it has complexity zero.

By [6, Proposition 1], the complexity of orbits as homogeneous spaces of G is constant along
the sheets: it follows that the property of being spherical is preserved along sheets. A sheet S
is said to be spherical if the orbits in S are spherical; research on these objects can be found
in [28,31]. Since a birational sheet is contained in a sheet, the property of being spherical is
preserved along birational sheets, as well. We call spherical birational sheet any birational sheet
consisting of spherical orbits. For GG simple simply-connected, we classify the spherical birational
sheets and observe that the union G, of all spherical conjugacy classes in G is the disjoint
union of spherical birational sheets.

If O is a spherical conjugacy class, then C[O] is multiplicity-free, i.e., a simple G-module oc-
curs in C[O] with multiplicity at most 1. Therefore, the G-module C[O] is completely determined
by its weight monoid, i.e., by the set of dominant weights A for which the simple G-module with
highest weight A occurs in the decomposition of C[O]. In [36] the weight monoids are explicitly
described for every spherical conjugacy class of G simple simply-connected. Using these results

and the classification of spherical birational sheets, we prove:

Theorem (4.11). Suppose that [G, G| simply-connected and let Oy and Oy be spherical conjugacy



classes in G. Let SY" (resp. S5") be the birational sheet containing Oy (resp. Ogz). Then C[O4]
is isomorphic to C[Oz] as a G-module if and only if S5 = 2S%" for some z € Z(G).

From this we also deduce the validity of Losev’s conjecture in the case of spherical adjoint
orbits in g (Theorem 4.42).

For sl,,(C), we show that Losev’s conjecture holds in all generality (Proposition 4.3) and from
this we deduce that the analogous conjecture in the group case is true for SL,,(C) (Theorem 4.7).

This concludes our survey on birational sheets in reductive groups as well as the first part of
the thesis.

The second part of the manuscript is Chapter 5 and contains the research produced in [3].
As noted earlier, the objects of study are Poisson deformations and filtered quantizations of
nilpotent Slodowy slices.

The finite subgroups of SLy(C) are classified by the simply-laced Dynkin diagrams. If A is
such a diagram corresponding to a group I' then the quotient singularity C?/T" is said to have
type A. It was proven by Artin that these varieties give an exhaustive list of rational isolated
surface singularities up to analytic isomorphism [5]. The classical theorem of Brieskorn [19],
conjectured by Grothendieck, states that if g is simple with simply-laced Dynkin diagram A,
then the transverse slice to the subregular orbit is the C*-semi-universal deformation of type A.
This remarkable theorem was extended to the non-simply-laced types by Slodowy [91]. Let Ay
be a non-simply-laced diagram, let A be simply-laced and I'g < Aut(A) be uniquely determined
by the requirement that Ag is obtained by folding A under I'g (see [32, §13], for example). Then
the subregular slice in a Lie algebra of type Ag is the C*-semi-universal I'g-deformation of a
singularity of type A.

In [65], Lehn, Namikawa and Sorger found a generalization to arbitrary nilpotent orbits. In
general the nilpotent part of a Slodowy slice is not an isolated surface singularity and so there
is no versal theory for deformations. The correct approach is to realize the Slodowy slice as a
Poisson variety via Hamiltonian reduction, following [47]. Since the nilpotent part of the slice is a
conic symplectic singularity, the afore-mentioned results of Namikawa [77,78] show that there is
a Poisson deformation which is universal. The main result of [65] gives a necessary and sufficient
condition for the Slodowy slice to be the universal Poisson deformation of its nilpotent part: the

exceptions are listed in Table 1.

Type of g Any B CF G C G

Type of O | Regular | Subregular | Two Jordan blocks | dimension 8

Table 1

After fixing the notation and recalling some basic results on graded and filtered algebras, we
begin Chapter 5 in a very general setting: in order to relate the universal Poisson deformation

with the universal quantization, we reinterpret results of [67,77,78] in a categorical framework.
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For a commutative positively graded connected Poisson algebra A, we consider the categories
D = D4 of Poisson deformations, and @ = Q4 of quantizations of Poisson deformations of
A. When these categories admit initial objects, they are equivalent to some rather elementary
categories of commutative algebras. One of the key definitions is the category of deformations
(or quantizations) with fixed symmetries. Suppose that T' is a group of graded Poisson auto-
morphisms of A. We define a Poisson I'-deformation to be a I'-equivariant Poisson deformation
fibred over a base with trivial I'-action, and define I'-quantizations similarly. A universal Poisson
I-deformation (resp. I'-quantization) is an initial object in the category of such deformations

(resp. quantizations). Our main result in this setting is the following.

Theorem (5.35). Let X be a conical symplectic singularity and T be a group of C*-equivariant
Poisson automorphisms of A = C[X].
(i) There exists a universal Poisson T'-deformation uk, and a universal T -quantization ug.

(i) ulé is the unique quantization of u% up to isomorphism.

As an application, we return to the Lie theoretic setting. We identify a semisimple Lie
algebra g with g* via the Killing isomorphism. This way, we can define the nilpotent cone A*
of g* as the image of the nilpotent cone N of g under the Killing isomorphism. For e € N/
and its image x € N*, we consider the Slodowy slice S,. It is known that this is a transversal
slice to coadjoint G-orbits, admitting a contracting C*-action. Furthermore it carries a Poisson
structure via Hamiltonian reduction, see [47]. Slodowy showed in [91] that the adjoint quotient
map g* — g*//G restricts to a flat C*-equivariant morphism S, — g¢*//G and it follows that
the slice provides a Poisson deformation of the central fibre S, NAN* which we call the nilpotent
Slodowy slice. On the other hand, Premet introduced a filtered quantization of the Slodowy slice
known as the finite W-algebra [84]. This is a non-commutative filtered algebra U(g, e) which
depends only on g and the orbit of e. Finite W-algebras have found numerous applications to
the ordinary and modular representation theory of Lie algebras; see [86] for a detailed overview.
After describing the main features of the Slodowy slice, its Poisson structure and the finite

W-algebras, we prove:

Theorem (5.40). The following are equivalent:

(i) The finite W-algebra U(g, e) is the universal filtered quantization of C[S, NN*];

(ii) the orbit of e is not listed in Table 1.
When these equivalent conditions hold every filtered quantization of C[Sy, NN*] is isomorphic to
U(g,e)/ ker A\, where \ is some central character of U(g,e).

One immediate consequence of this theorem is Corollary 5.41, which states that the group
of filtered automorphisms of the finite W-algebra is naturally isomorphic to the group of graded
Poisson automorphisms of the nilpotent Slodowy slice.

Finally we focus on the subregular case considered by Brieskorn, Grothendieck and Slodowy
[19,91]. The non-commutative analogue of Brieskorn’s theorem says that the subregular finite

W -algebra attached to a simply laced Lie algebra of type A is the universal filtered quantization
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of the rational singularity of type A. This is a special case of Theorem 5.40. The most interesting
applications arise from our non-commutative analogue of Slodowy’s theorem. Let gy be a simple
Lie algebra with non-simply-laced Dynkin diagram A, and let (A, T'g) be determined by Ag by
folding, as we described earlier. Let e € A/ be subregular and let x be the image of e in N*.
With some restrictions on Ay we prove the following analogue of Slodowy’s theorem [91, §8.8] in

the setting of universal Poisson deformations and their quantizations.

Theorem (5.47). Let gy be of type B, C,, or Fy, where n > 2 and n is even in type C. Let
eo € Ny, be a subregular nilpotent element and xo be the image of ey via the Killing isomorphism.
Then:
(1) the adjoint quotient Sy, — 85//Go is the universal Poisson I'g-deformation of C[S, NN*];
(ii) the subregular finite W -algebra U(go, eo) is the universal I'g-quantization of C[S, N N*].

We expect that the restrictions on Aj are unnecessary and we conjecture that the Theo-
rem 5.47 holds for all non-simply-laced simple Lie algebras. Theorems 5.40 and 5.47 lead to

interesting surjective homomorphisms between W-algebras, which are new in the literature.

Corollary (5.48). There exists a surjective homomorphism of subreqular W -algebras U(g, e) —
Ul(go,e0).- When go satisfies the hypotheses of Theorem 5.47, the kernel is generated by elements
z— -z where y € Ty and z is in the centre of U(g,e).

This result allows us to obtain new Yangian-type presentations of W-algebras. Since W-
algebras are defined via quantum Hamiltonian reduction, there is no known presentation is
general. This makes them difficult to work with, despite their many applications. The situation
is significantly improved in type A: in this case there is an explicit isomorphism between a
truncated shifted Yangian and the W-algebra [24]. This leads to an explicit presentation of
the subregular finite W-algebra in type B as a quotient of a truncated shifted Yangian. This
concludes Chapter 5 and the thesis.
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CHAPTER
ZERO

PRELIMINARY NOTATION AND DEFINITIONS

0.1 Generalities on varieties and group actions

Let G be a complex connected reductive linear algebraic group. With the notation K < G, we
mean that K is a closed subgroup of G. We denote by K° its identity component, by Z(K) its
centre and by [K, K] its derived subgroup.

If X is a K-set, we denote by X/K the set of K-orbits of elements in X. For z € X, we
denote the K-orbit of z by K - x or Of. For 1,29 € X (resp. X1, X2 C X) we write x1 ~p X2
(resp. X1 ~xk X3) to denote that the two elements (resp. the two subsets) are conjugate by K.

If X C Y are topological spaces, we will denote by X" the closure of X in Y. If the ambient
space is clear, we will omit the superscript Y. We denote by dim X the dimension of X and by
codimy X = dim X — dimY the codimension of X in Y, omitting the subscript when clear from
the context.

When we want to emphasize the fact that a union of sets is disjoint, we use the symbol U
instead of U.

Throughout the manuscript, any variety will be intended to be a variety defined over the field
of complex numbers C in the sense of [54, §2.5]. If X is a variety, we denote by C[X] the algebra
of regular functions on X and by C(X) the function field of X.

If f: X = Y is a dominant rational map of varieties, the degree of f is defined as the degree
of the function fields extension deg f := [C(X): C(Y)]. Moreover, if f is a finite map and y € Y
is a generic point, then |f‘1(y)| = deg f, see [51, Proposition 7.16].

When K < G acts on a variety X, the action will be intended to be regular, i.e., the map
K x X — X defined by (k,z) — k- 2 is a morphism of varieties. If # € X, any K-orbit OF is a
locally closed subvariety of X and the boundary @\ OX consists of K-orbits whose dimension
is lower than dim O see [93, Lemma 2.3.3]. Moreover, if K is connected, all K-orbits are
irreducible. Recall that in this situation, K defines an action on C[X] via (k- f)(x) == f(k™! - x)
for all k € K, f € C[X],x € X. This action is locally finite, i.e, for each f € C[X] the subspace
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spanc{k - f | k € K} is finite-dimensional; furthermore the representation of K on each finite-
dimensional K-stable subspace is a representation as an algebraic group.

For H < K, we define the subalgebra of H-invariant regular functions as C[X] = {f €
CIX]|h-f= fforal h € H}. When X is affine and K is reductive, we write X//K :=
Spec(C[X]%): this is called the categorical quotient of X under the action of K, it admits
the structure of an affine variety and it comes with a canonical projection 7x: X — X//K
corresponding to the inclusion of algebras C[X]%¥ — C[X].

For any n € N, we define the (n-th level) subset X,y :={z € X | dimK -z =n} C X. For
Y C X, the regular locus of Y is Y™ := Y N X(5), where 7 = max{n € N | Y N X,y # @}.
The subset Y is open in Y. In particular, the subsets X, are locally closed subvarieties of

X, being open in X,y ¢ J X(n), which is a closed subset in X, see [96, Theorem 15.5.7].

m<n
Definition 0.1. Let X be a K-variety. A sheet of X for the action of K is an irreducible
component of X, for some n € N such that X, # @.

For Y C X, the normalizer of Y in K is Nx(Y) ={ke K | k-y €Y forally € Y}. For
x € X, its stabilizer is denoted K, :={k € K | k-x = z}.

0.2 Notations for adjoint and conjugacy actions

We will use fraktur characters to denote Lie algebras, so g := Lie(G) is the Lie algebra of G and
for a Lie subalgebra ¢ C g, we denote by 3() its centre.
We will focus on the conjugacy (resp. the adjoint) action of G on itself (resp. on g). For

g € G and 7 € g, we define the centralizers:

Ce(g) =G, ={h€ G | hgh™' = g};

Gy ={h e G | Ad(h)(n) =n};

{neg | Ad(g)(n) =n} = Lie(Cc(g));
gy ={nea| [§n =0} =Lie(Cq(n)).

Cglg

(9):
Ca(n) :
(9):
(n) :

gl

For a subset Y C G, the centralizer of Y in G is C(Y) =, ¢y Cc(y) and the centralizer of a
Lie subalgebra £ C g as ¢4(¢) :={{ € g| [,£] = 0 for all € £}.

The conjugacy class of k in a subgroup K < G will be denoted by K - k = (’)kK. For the
K-adjoint orbit of £ € ¢, we use the notations Ad(K)(§) = D?. If clear from the context,
subscripts or superscripts will be omitted: in particular when K = G.

In accordance with the notation for sets of K-orbits, the set of all K-conjugacy classes of K
is denoted K/K.

We fix a maximal torus T' < G and a Borel subgroup B > T'. A standard parabolic subgroup
is a subgroup containing the fixed Borel B. We denote by & the root system of G, by A the
base of ® corresponding to B and by ®* the subset of positive roots with respect to A. If ®

is irreducible, the simple roots will be denoted g, ..., a,: we shall use the numbering and the
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description of the simple roots in terms of the canonical basis (1,...,ex) of an appropriate R¥
as in [16, Planches I-IX]. We denote by «aq the opposite of the highest root in ® and we define
A=AU {ap}. We denote by ¢;, for i = 1,...,n, the positive integer coefficients such that
—ap = Y i ¢y and set ¢p = 1. Also, o, ..., a, are the simple co-roots and Q¥ denotes the
co-root lattice.

The one-parameter subgroup of G corresponding to a € ® will be denoted by U,. With this
convention, the standard parabolic subgroups of G are indexed by subsets of A, for © C A, we
put Po = (B,U_, | @ € ©). We set Lie(T) = b, Lie(B) = b, Lie(U,) = g, for all « € D,
Lie(Ps) = pe for © C A.

If s € T (resp. o € bh) we denote by @ (resp. P, ) the root subsystem consisting of o € ®
such that s € kera (resp. o € kera). The Weyl group of G is denoted by W. The reflection
with respect to the simple root a; € A is denoted by s; € W and is called a simple reflection,
the longest element of W is denoted wy.

When we write g1 = su, go = rv € G or £ = 0 + v € g we implicitly assume that su (resp.
rv, resp. o + v) is the Jordan decomposition of g; (resp. go, resp. £), with s, 7 semisimple and
u,v unipotent (o semisimple and v nilpotent, resp.). We agree that the elements of 3(g) are
semisimple so that, for ¢ € 3(g) and £ = 0 + v € g, the semisimple part of ( + & is {( + 0.

If K < G is connected reductive and ¢ := Lie(K), we write Ui for the unipotent variety of
K and N for the nilpotent cone of ¢ we also set U := Ug and N == Ny. If K < G is a reductive
subgroup, the restriction of a Springer isomorphism ¢g = ¢: N — U induces a a K-equivariant
isomorphism ¢ : Ny — Uk. In particular, we have Ck (v) = Ck(¢dx(v)) for any v € N, and
the homogeneous spaces Df and ng(u) are isomorphic varieties.

A partition of n € N, n > 0 is a sequence of non-increasing positive integers d = [dy,...,d,] F
n, where >_""_, d; = n. If d - n, the transpose (or dual) partition is d* = f, where f; = |{j | d; >
i}| for all i. We will also use the compact notation d = [e]", ..., "] wheree; > -+ > es > 0 by

grouping equal d;’s. Partitions will be used to denote nilpotent orbits in classical Lie algebras,
whereas for exceptional Lie algebras we will use the Bala-Carter labeling, as in [35, §8.4].

The group G acts via the coadjoint action on the dual space g* of g. Since g is reductive,
there exists an associative symmetric G-invariant non-degenerate bilinear form on g as in [15, §4,
Proposition 5], thus getting a linear isomorphism of vector spaces (when g is semisimple, this is
known as the Killing isomorphism)

K:g— g~ (1)

We extend the notions of semisimplicity and nilpotency to elements of g* by saying that an
element of g* is semisimple (resp. nilpotent) if and only if it is the image of a semisimple (resp.
nilpotent) element of g, see [35, §1.3]. We denote by A/* the set of nilpotent elements of g*.

As in [69, Definition 2.6], an element g = su € G is said to be isolated if Cq(Z(Cq(s)°)°) = G.
An isolated conjugacy class is a conjugacy class consisting of isolated elements. Clearly, all
unipotent conjugacy classes are isolated. For G simple, the isolated semisimple conjugacy classes

are finitely many, and a complete list of representatives can be deduced from [37, Lemma 7.1].
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An isogeny m: K — K is a surjective group homomorphism with finite kernel; for K con-
nected, this automatically implies ker 7 < Z(K).

When working with simple classical matrix groups, we adopt the following conventions. For
ke N,k > 1, we denote by My(C) the set of k x k square matrices with coefficients in C whose
canonical basis is given by {e; ; | 1 < 4,7 < k}, where e; ; is the matrix whose entries are 0 except
for the entry (4,j) which is 1. Let Ji be the matrix in Mj(C) whose entries on the antidiagonal
are 1 and 0 elsewhere and let Ji, be the matrix in Moy (C) defined by:

/7 0 v]]k
2T\ Jp 0)°
Then:

- G = GLg(C) is the subgroup of matrices A € M}, (C) such that det A # 0;

- G = SLg(C) is the subgroup of matrices A € M (C) such that det A = 1;

- G = Sp,;,(C) is the subgroup of matrices A € SLax(C) such that ATJ), A = Jb,;

- G = SOk(C) is the subgroup of matrices A € SLi(C) such that ATJ,A = Ji;
Unless differently indicated, we agree that the fixed Borel B is the subgroup consisting of upper
triangular matrices in G and the fixed maximal torus 7" is the subgroup consisting of diagonal
elements in G. If 7 is the projection map from G to the adjoint group in the same isogeny class
of G, we extend the above conventions to 7(G). We fix w(B) as Borel subgroup, resp. n(T') as

maximal torus and we denote elements of 7(G) by a representative in G in square brackets.

0.3 Centralizers, Levi and pseudo-Levi subgroups

By a Levi subgroup of G (resp. Levi subalgebra of g) we mean a Levi factor of a parabolic
subgroup of G (resp. parabolic subalgebra of g). Levi subgroups (resp. Levi subalgebras) are
characterized as Cq(Z) for some torus Z < G (resp. cg4(3) for some toral subalgebra 3 C g); in
particular Levi subgroups are connected [93, Theorem 6.4.7].

Any Levi subgroup is G-conjugate to a privileged Levi factor of a standard parabolic subgroup,
called standard Levi subgroup, defined by Lg = (T, U,,U_, | @ € ©) for some © C A. Similarly
any Levi subalgebra of g is G-conjugate to a standard Levi subalgebra lgo = Lie(Lg), for some
O C A.

Fix 0 € h. Then Cg(0)° = (T,U,, | a € D,), see [95, Lemma 3.7] and this is a Levi subgroup
of G. Moreover, under our hypothesis on the base field, Cg(0) = Cq(0)°, see [95, Corollary
3.11]. Similarly, we have a decomposition for the centralizer ¢g(0) = h & D, cq, 8o Which is a
Levi subalgebra of g.

For s € G semisimple, C(s)° is called a pseudo-Levi subgroup, following [92]. If s € T, then
Ca(s)° = (T U, | a € @) and Cg(s)/Cq(s)® =~ Staby (s)/Ws where Wy is the subgroup of
W generated by reflections with respect to roots in ®;, [53, §2.2]. If [G, G] is simply-connected,

Cg(s) is connected for any semisimple element s € G, see [33, Theorem 3.5.6].
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If ® is irreducible, any pseudo-Levi subgroup of G is conjugate to a standard pseudo-Levi group
Me = (T,Uy,U_y | o € ©) for some © C A, [92, Proposition 3], and we put me = Lie(Me).
It is clear that Levi subgroups are a particular type of pseudo-Levi subgroups; for ® irreducible,
a standard pseudo-Levi subgroup Mg is a Levi subgroup if © (or one of its W-conjugates) lies
in A, see [92, §2.1].

Let M < G be a pseudo-Levi and let Z = Z(M). For z € Z, we say that the connected
component Z°z C Z satisfies the reqularity property (RP) for M if

Ca(Z°2)° = M. (RP)
We will make use of the following result:

Lemma 0.2. Let M < G be a pseudo-Levi subgroup, z € Z = Z(M). Then Z°z satisfies
(RP) for M if and only if M is a Levi subgroup of Cc(2)°. In particular, if M = Cg(s)° for a
semisimple element s € G, then Z(M)°s satisfies (RP) for M.

Proof. We prove first that Cq(Z°2)° = Cg(2)° N Cg(Z°) = Cey(z)o(Z°). The inclusions
Ca(Z°2)° < Ca(2)° N Cq(Z°) < Ca(Z°z) are trivial and Cg(2)° N Ca(Z°) = Cog()0(Z°)
is connected by [11, Corollary 11.12], hence C(2)° N Cq(Z°) < Ca(Z°z)°.

Assume Z°z satisfies (RP) for M, then M = Cg(Z°2)° = Cgy(2)o(Z°), which is a Levi
subgroup of C¢(z)° by [11, Corollary 20.4]. Conversely, if M is a Levi in Cg(2)°, then by [11,
Proposition 14.18], M = Cc () (Z(M)°) = Ccy(z)°(Z2°) = Ca(Z°2)°. The last statement
follows directly. O

Remark 0.3. Let G be simple. For s € T, suppose that M = Cg;(s)° is a standard pseudo-
Levi subgroup and set Z = Z(M). Observe that Z°s satisfies (RP) for M. We want to
compute, up to G-conjugacy, the number of coclasses satisfying (RP) in Z/Z°. Let z € Z
such that Z°z satisfies (RP) for M, then, by [92, Proposition 7] (see also [28, Theorem 4.1]),
there is w € W such that w(©) = © and w(Z°z)w™! = Z°%s for a certain 2 € Z(G). Let
Wi ={weW |wswlsteZ°Z(G)}, Wo = {w e W | wswts™! € Z°}. We have an exact
sequence of groups:
Z°Z(@G) Z(Q)

Z° - Z(G)nze
where the last map is given by w — wsw~'s~'Z°. Then the number of different G-classes of
pairs (M, Z°z) for a fixed M with Z°z satisfying (RP) for M is

{1} > Wy > W —

Z(G)
dy = | === W /W . 2
M= ZGnge M @)
Remark 0.4. Let M < G be a pseudo-Levi subgroup, z € Z := Z(M). Then Z°z satisfies (RP) if
and only if Z"9NZ°z # @ if and only if Z = (Z°, Z(G), z), see [29, Remark 3.6] and [92, Theorem
7]. Moreover, Z° satisfies (RP) for M if and only if Z°z satisfies (RP) for M for all z € Z if and
only if Z = Z(G)Z° if and only if M is a Levi subgroup: this follows from [74, Lemma 34].
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Remark 0.5. For G connected and simple of type A all pseudo-Levi subgroups are Levi subgroups:
this follows from [92, Corollary 14]. The conjugacy classes of Levi subgroups are indexed by

partitions of n, as follows: for each d = [dy,...,dx] F n, we define
Iq ={di,dy +dz,....,d1 +do+ - +dy1}, Oa = A\{a; |i € la}, La=Les; (3)

where, by convention, we assume Iq = @ ford = [n] and Ig = {1,...,n — 1} for d = [1"]. We
say that Lq is the standard Levi subgroup corresponding to the partition d.
We will need the following results: the first one gives further information on connected

components of centres of Levi subgroups, the second one computes the number of such elements
for SL,,(C).

Lemma 0.6. Let L < G be a Levi subgroup. Then two connected components of Z == Z(L) are
conjugate in G if and only if they are equal.

Proof. Since L is a Levi subgroup, Z = Z(G)Z°, by Remark 0.4. Let z1, 20 € Z(G) and suppose
9Z°z197' = Z°z, for some g € G. Then gZ°g~! = 20222;1 is a torus contained in Z, hence

Z° = Zonzl_l and Z°zy = Z°z5. The converse implication is trivial. O

Lemma 0.7. Let L = Lq be the standard Levi subgroup of G := SL,(C) corresponding to
d=1[di,...,dx] F n, asin (3). Then Z(L) has exactly gcd{d; | d; € d} connected components,

and no two distinct connected components are conjugate in G.

Proof. We have:
Z(L) = S = {(21,...,2,) € (C)F | 2 ... od =1}

Notice that Hom(S,C*) ~ X/S+, where X = Hom((C*)*¥,C*) and S+ = {x € X | x(9) =
1} = {dix1+ -+ dipxg) with x; € X the coordinate functions for ¢ = 1,..., k. By the structure
theorem for finitely generated modules over a principal ideal domain [56, §3.8], if d = ged{d; |
i=1,...,k}, we have Hom(S,C*) ~ Z/dZ @ Z*~1, hence Z(L)/Z(L)° ~ S/S° ~ Z/dZ. The
last assertion follows from Lemma 0.6. O



CHAPTER
ONE

INDUCTION AND BIRATIONALITY

The Chapter opens with Section 1.1, collecting definitions and results on varieties built with an
action of G induced from a subgroup K < G. In Sections 1.2 and 1.3 we specialize to the most
relevant case of induced adjoint orbits in a Lie algebra and induced conjugacy classes in a group,
introducing the generalized Springer map, the main tool to realize induction. As recalled in the
Introduction, we analyse in particular when the generalized Springer map is birational and how
this interacts with induction. Finally, Section 1.4 is devoted to the proof of the main result of
this Chapter: after fixing a minimal set of data from which one defines induction of conjugacy
classes, we prove that every conjugacy class in a reductive group is birationally induced in a

unique way up to G-conjugacy of the data, establishing an analogue of a theorem of Losev [67].

1.1 Action induced from a subgroup

Let K < G and let Y be a K-set. The group K acts freely on G x Y, defining the following
equivalence relation: (g1,y1) ~k (g2,y2) if there exists k € K such that go = g1k and yp =
k=t .y, for g1,9o € G and y;,y2 € Y. Following terminology from [13, §7], we define the
induced G-set G x®Y = (G x Y)/K and we denote by g*y € G xX Y the equivalence class of
(g9,y) € G x Y under ~g. The group G acts on G xX Y via h-(g*y) = (hg*y) for all g,h € G
andy €Y.

When Y is a subset of a G-set X and the K-action on Y is the restriction of the G-action
on X, we have a well-defined map v: G x¥ Y — X defined by v: g x 2 + ¢ - 2. This map is a

surjection onto G - Y: we can consider the following commutative diagram:

GxY (9:v)
GxEy — 1 5 @G.v gFYy ——— gy (1.1)
G/K xG-Y (9K,9-y)



The next result sums up [13, Lemma 7.8].

Lemma 1.1. In the above setting, the following hold.
(i) Forye€Y,g € G, we have G gy = gK,g7".
(ii) There is an explicit bijection Y/K « (G x* Y)/G defined by O, — O, = G x™ O .
Moreover, this map induces a bijection 7_1(05)/6’ “ ((’)5 NY)/K, forallyeY.
(iii) In (1.1), the map ¢: (g,y) — (9K, g-y) is injective and G-equivariant, where the G-action

on the target set is given by h- (9K, y) = (hgK,h-y), for g,h € G andy €Y. O

Let X be a G-variety, let K < G and let Y be a locally closed K-stable subvariety of X. Then
G/K x X is endowed with the structure of a variety where G acts diagonally. The embedding
1: G x®Y — G/K x X identifies G x¥ Y with a locally closed G-subvariety of G/K x X. If
Y is closed, then so is (G x® V). We remark that G x® Y is, in general, not affine. We have
C[G xE Y] = C[G x Y]¥, and, more generally, for each locally closed subset Z C G/K x X
and its preimage Z C G x X we have C[Z] = C[Z]¥. It follows from [68, Lemma 1.3] that, if
Y’ C G xXY is G-stable and Zariski open, resp. closed, resp. locally closed, then there exists a
K-stable open, resp. closed, resp. locally closed subset Y” C Y such that Y/ = G x¥ Y.

If K = P is a parabolic subgroup, then G/P is a complete variety and the projection on the
second factor pry: G/P x X — X is a proper morphism (in particular, it is closed). If Y is closed
in X, then «(G xFY) is closed in G/P x X, so that pry(«(G xF Y)) = (G xPY) =G Y is
closed in X. One can prove that v is proper. The following result is adapted from [13, Lemma
7.10].

Lemma 1.2. In the above situation, let x € Y. The following are equivalent:

(i) v~ Y(x) is finite;
(ii) G < P and O NY is a union of finitely many P-orbits.

Proof. Clearly 1 x € y~!(z). Observe that by G-equivariance of v, we have

V@) = [0 /Gl v (@) N 0T |- (1.2)

Now, by Lemma 1.1 (d), we have |7_1((’)f)/G| = ‘(Of ﬂY)/P’ and v~ Hz)NOF, = {g*z |

g € Gy} & G, /Gruzx = G, /Py by Lemma 1.1 (a). O
We will need the following results, adapted from [57, Lemmas 8.7, 8.8].

Lemma 1.3. In the above situation, we have:
(i) GxTY — G/P is a fibre bundle of rank dimY .
(i) For all z € Y we have diim O < dim G/P + dim OF with equality if and only if GS < P.

Proof. (i) The map p: G x' Y — G/P defined by g *  — gP is G-equivariant. A direct
computation shows that the preimage of the coset of P (hence any fibre) is isomorphic to Y. The
canonical map pp: G — G/P has local sections. This means that there exists an open covering
of G/P by open sets U which admit a section s: U — G with pp os = idy. For each such U, the
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isomorphism U x P =5 pp!(U) defined by (gP,p) + s(gP)p has inverse g — (gP, s(gP)"'g). We

claim that the same open covering trivializes p, indeed for each such U we get an isomorphism:
p HU) > UxY
gxa (9P, (s(gP)"'g) )

with inverse (gP, ) — s(gP) * (97 's(gP)) - x).

(ii) For all z € Y, we have dim G/P, = dim G/P + dim P/P, = dim G/P + dim OF. Since
P, < G, we also have dim G/P, > dim G/G, = dimOS. This yields dim O < dim G/P +
dim (’)iD for all z € Y. Equality holds if and only if dim G, = dim P, if and only if G5 = Py,
equivalently G, < P. O

Lemma 1.4. Let X be a G-variety, let P < G be parabolic and letY C X be a closed subvariety

where P acts as the restriction of the G-action. Let
v:GxPY G-y g*x > g-x. (1.3)
Assume there exists x € Y with the following properties:

Y =07F; (P1)
G° < P. (P2)

Then the following hold:
(i) Let © :== O%, then O =G -Y and ONY = OF;
(i) O :=~"1(0) is a single G-orbit, open and dense in G xFY;
(iii) There is a natural isomorphism G/P, = O and v restricts to an unramified covering

O — O of degree G, : Pyl

Proof. (i) The inclusion O C G-Y is clear. Since G-Y is closed by properness of 7, also O C G-Y.
On the other hand, Y = (975 C O, which is G-stable, so that G-Y C O. Clearly 05 conY. We
prove that 2/ € Y, 2’ ¢ OF implies 2/ ¢ O. Observe that (P1) implies 2/ € Y \ OF = (’)75 \OF,
hence dim OF, < dim OF = dimY. By Lemma 1.3 and (P2), we have dim O% < dim O so that
z' ¢ 0.

(ii) Since 7 is G-equivariant, we have O = G-y~ (). If we show that 4~ (z) = G- (1xx), the
first claim follows, by (1.2). Clearly, y(g*x) = z for all g € G, so that y~1(z) D G- (1*z). For
the other inclusion, pick an element of y~!(z), say g*g~!-x with g2 € Y. Theng~!-2 € ONY
and (a) implies there exists p € P such that g~! 1
r=~(gxg ' -x)=7(gp*x) =gp-x,ie., gp €G,. Denoteby p,: G— O CY and @,: G — O
the orbit maps. By Lemma 1.1 (a), O ~ G/P, and O ~ G/G,. Since dimG, = dim P, we
get dim O = dim O. The closure of the orbit @ is an irreducible subset of G x* Y, which is
irreducible as well. Since dim O = dim G x* Y, we conclude that O0=GxPY.

(iii) We have ¢, = 7 o @, hence dip, = di.y o dip,. Working over C ensures that

-x =p-x. Hence gx g~ -x = gp*x and

G/P, = O is an isomorphism of varieties. Moreover, ker(dyp,) = Lie(G,) so that dyep, is
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surjective and dim(T, O) = dim O = dimO = dim(Tl*w(NQ) imply dj,,7 is an isomorphism.
Since « is G-equivariant, d+ is bijective at all points of O. This means that v: O — O is an
unramified covering of degree |y~ (z)| = [Gy: Py). O

We give a criterion which characterizes when the map (1.3) is birational.

Corollary 1.5. Assume we are in the setting of Lemma 1.4, let v be as in (1.3), assume (P1)
and (P2) hold, and let O and 0= v~ HO) be as in Lemma 1.4. The following are equivalent:
(i) ~v is birational;
(i) v maps o isomorphically to O;
(iii) for all x € O%NY, we have Gy = Py;
() there exists x € OF NY such that Gy = P,.

Proof. Let (i) hold. By Lemma 1.4, v induces a finite covering O — O and these sets are open
and dense. Since « is birational and G-equivariant, it restricts to an injective map on (~9, ie.,
v(O) ~ O. The converse implication is trivial. (ii) holds if and only if the degree of 5 over O is
1. By (1.2) this is equivalent to [Gy: P,] =1 for z € ONY, that is (iii). Finally (iii) obviously

implies (iv) and since ONY is a single P-orbit, (iv) implies (iii) by P-equivariance. O

1.2 Induction of adjoint orbits

Let G act on Y = g via the adjoint action Ad: G — GL(g) and fix a Levi subgroup L < G.
Choose a parabolic P < G with Levi decomposition LUp. Set [ := Lie(L) and np := Lie(Up).
For O € /L, we take X = O 4 np C g, this is a closed subvariety which is P-stable under the

adjoint action. We have a well-defined map:

v: G xP (OF +np) — Ad(G)(OF +np) (1.4)
g*&— Ad(g)(§)

The image of v is a G-stable closed subset of g which projects to a point in the categorical
quotient g//G, hence it is a closed irreducible subset consisting of finitely many adjoint orbits.
Irreducibility yields that (Ad(G) (FJrnp))’"eg is a unique adjoint orbit O € g/G, called induced
from (I, O") and denoted Ind? O, see [12]. The definition of induced conjugacy class only
depends on the Levi subalgebra [ C g and on OF and not on the parabolic P < G, for a proof

see [12, Satz 2.6]. For any Levi subalgebra [ C g, we introduce the notation:
Ind}?: I/L — g/G
OF — Indf OF.

Induction is transitive, i.e., if m is a Levi subalgebra of g containing [, and ol ¢ [/L, then
Ind? O = Indg, (Ind'[“ DL), see [12, §2.3]. Moreover, we have codimg(Indf O%) = codim; OF,
see [12, Satz 3.3]
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A nilpotent orbit O € A/G is said to be rigid in g if it cannot be induced from a proper Levi
subalgebra [ C g and an orbit ol e N{/L.

Notice that O € Ni/L if and only if Ind! 9% € N'/G, in particular the restriction of Ind?
induces a function Ni/L — AN/G. This is the Lie algebra counterpart of a procedure called

Lusztig—Spaltenstein induction of unipotent classes, appeared first in [71].

1.2.1 Reduction to the nilpotent case and birationality

Lemma 1.6. The generalized Springer map (1.4) fulfils the hypotheses of Lemma 1.4 with X =
Ol 4 np and Y = g.
In particular, there is a unique open G-adjoint orbit in G x© (DL +np) and this is a finite

G-equivariant covering of the induced orbit Ind} ol

Proof. Write © := Ind} OF. Since dim 9O = dim G — dim L + dim O, we have dim Ad(G)X =
dim O = dim G — dim P + dim OF + dim Up = dim G xP X. We claim this implies that there
exists £ € X satistying properties (P1) and (P2). By [93, Theorem 5.1.6], v has finite fibres on a
dense open subset of Ad(G)X. By G-equivariance, 7 has finite fibres on 9. Let £ € O NX. Then,
by Lemma 1.2, C¢(£)° < P and XN is a union of finitely many P-orbits. Let ONX = |_|f:1 Dg_
for some t € N and some §; € X. Since 9 is open in G - X, the set O NX is open and dense in
X. In particular, X = ONX = U§:1 072 Irreducibility of X implies there exists j € {1,...,¢}
such that X = Dg. Again, O NX meets DZ_ non-trivially, being both open and dense in X.
This implies ¢; satisfies (P1) and (P2). O

In the setting of (1.4), let o + v € O, Then Cp(c) = P N Cg(o) is a parabolic subgroup
of Cg(o) (it is in particular connected, since Cg (o) is so, see [93, Corollary 6.4.10]); moreover,
ci(0) is a Levi factor of the parabolic subalgebra ¢, (o) := Lie(Cp(0)) and we denote its nilradical

by nc¢p (o). We compare the two morphisms:
v: G xP (DL, +np) - Id! OF,, (1.5)

Yo Ca(o) xO7 7 (DT 4, () — Indif((;)) oy (1.6)

Lemma 1.7. Let v and vy, be as in (1.5) and (1.6), respectively. Then ~y is birational if and

only if v, is birational.

Proof. The group Cg (o) is connected and reductive (see §0.3) so that Lemma 1.6 also applies

to (1.6). For simplicity, write 0% = Ind} D§+D and 9@ = Indzf’((g)) DEL(”). Suppose 7 is

birational and let v/ € (D7) 4 Nep (o)) N 09 Since O = Ad(G) (0 + DSG(”)), we have
o+ € (DL 4+np)NOC. The nilpotent part of o+ is v’ because v’ € Cg (o). By Corollary 1.5

(iv), birationality of «y is equivalent to Cg (o +v') < P. This means Ce(»)(v') < P, equivalently
Ceg(o) (V') < PN Cg(o) = Cp(0), i.e., 7, is birational thanks to (iv) of Corollary 1.5. O

Arguing as in [12, Satz 2.1, 3. Fall], all generalized Springer maps can be reduced to the
study of generalized Springer maps of a special type. Following [67], define the set of induction
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data of g as the set of triples (I, O, ¢) where [ C g is a Levi subalgebra, O € N{/L and ¢ € 3(1).

Any such induction datum is associated with a generalized Springer map:

v: G xP (C+OF +1p) = Ad(G)(C + OF +np) (1.7)
g*& v Ad(g)(§)

When 7 in (1.7) is birational, Ind? (¢ + %) is said to be birationally induced from (I, ¢ +9%) (or
from the induction datum (I, O, ¢) with the terminology of [67]). The nilpotent orbit O c I
is said to be birationally rigid if it cannot be birationally induced from a proper Levi subalgebra

m C . Losev calls the induction datum ([,DL, ¢) birationally minimal if ol is birationally rigid
and Ind?(¢ + D) is birationally induced from (I, O, ¢).

Remark 1.8. We alert the reader that Losev works in terms of coadjoint orbits of g* but it is
straightforward to translate everything in terms of adjoint orbits. This can be done by fixing
k as in (1). Any Levi subalgebra [ admits an orthogonal complement (with respect to the
fixed bilinear form inducing ) which is stabilized by endomorphisms ad(§) with £ € [. Hence,
# allows to identify [ with [*, 3(I) with (I/[,]))*, p = [ x n with nt and n with p*, where
at == {f € g | f(&) = 0forall ¢ € a} for any vector subspace a C g. This identification
restricts to a G-equivariant (resp. L-equivariant) bijection between adjoint nilpotent orbits in g
(resp. [) and coadjoint nilpotent orbits in g* (resp. [*), where nilpotency for elements of g* is
intended as in §0.2.

Lemma 1.9. Let | C g be a Levi subalgebra, let ¢ € 3(I) and of e N{/L. Then the adjoint orbit
Ind? (¢ + O € g/G is birationally induced from (1, + OF) if and only if the nilpotent orbit
Indfg(o oF e Neo(0)/Ca(C) is birationally induced from (1, 95).

Proof. This follows straightforward from Lemma 1.7. O

Remark 1.10. Lemma 1.9 implies that, for the adjoint action of G on g, any result on the
birational induction of adjoint nilpotent orbits extends to the non-nilpotent case. The following
results will be therefore stated and proven in the setting of the induction of a nilpotent orbit but

actually hold in the general case.

One first important fact is that birationality of a generalized Springer map as in (1.7) is

independent of the chosen parabolic.

Lemma 1.11. Let L < G be a Levi subgroup and let | := Lie L. Let ¢ € 3(I) and O € N{/L.
Let P,Q < G be parabolic subgroups with Levi factor L and let Lie(P) == p = [ X np resp.
Lie(Q) = q = [ X ng be the Levi decompositions for their Lie algebras. Consider the generalized

Springer maps:
vp: G xFP ((—i—ﬁ—i—np) — Ind? OF; vg: G x9 (C—i—y—i-nQ) — Ind?DL.
Then vp is birational if and only if yg is birational.
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Proof. Let [xng,(¢) (resp. [xng,(¢)) be the Levi decomposition of ¢, (¢) (resp. of ¢q(¢) ) which

is a parabolic subalgebra of ¢g(¢). Then we can build the generalized Springer maps:

vpc: Ca(¢) xCP© (§+HCP(C)) 5 Ind:g(C)DL;

79,¢: Ca(C) «Ca(¢) (FJFHCQ(()) N Ind:"(oDL_

The morphisms yp,¢ and g, are generalized Springer maps for the nilpotent orbit Indf”(o ol e
Ne,(¢)/Ca(C). Notice that degyp,c = degvg,¢ by [14, proof of Corollary 3.9, Remark 3.8], where
a formula for the degree of the generalized Springer map for the induction of a nilpotent orbit is
given only in terms of the pair (I, DL). By Lemma 1.9 vp (resp. 7q) is birational if and only if
vp,c (resp. Yg,¢) is so if and only if degyp ¢ =1 (resp. degvyg,c = 1) and we conclude. O

Remarks on the proof. Losev obtained, with different techniques, a stronger result: for any
generalized Springer map as (1.7), the open orbit in the domain is independent of the chosen
parabolic, see [67, Proposition 4.1].

The concept of birational induction first appeared in [22,23], while in [45,76] the focus was
cast on birational induction of nilpotent adjoint orbits as conical symplectic singularities. We

give the proof of a result on transitivity of birational induction.

Lemma 1.12. Consider a Levi subgroup M < G, and let L be a Levi subgroup of M; set
m = Lie(M) and | := Lie(L); let O € Ni/L. Then Ind? O is birationally induced from (I, OF)
if and only if Ind® O is birationally induced from (I, 9%) and Ind% (Ind{* OF) is birationally
induced from (m, Ind! OF).

Proof. Consider parabolic subgroups P resp. @ with Levi decompositions P = LUp resp. @ =
MUgq. As usual, write Lie(P) := p = Ix np and Lie(Q) := q = m x ng for the corresponding Levi
decompositions of the corresponding Lie algebras. Then P N M is a parabolic subgroup of M
and Lie(PN M) =pnm =[x (npNm). Write O := Ind{* OF and 9 := ndf OF = nd? O

with the corresponding generalized Springer maps:

3

¢ G xP (F—an) -9
Y M PO (D 4 (np nm)) — OV
_>

vﬁ:GxQ(DW+nQ) O~

@

There exist o + v; € OM with ¢ € OF and v; € np Nm. Similarly, 9% has representatives
of the form o + v1 + vo, where v, € ng and 0 + 14 € oM ﬂ(DL +(np Nm)).

Suppose that vf is birational, then for o + v, + 15 € OF as above, we have Cq(0+v1 +12) <
P <Q,so WJCV’} is birational by Corollary 1.5. We show Cy(0 + 1) < P. Let m € Cp(o + v1),
then Ad(m)(c 4+ v1 +1v2) = 0 +v1 + Ad(m)(v2) € (FJr np)NOY = Df_,_yﬁ_w, by Lemma 1.4.
Hence there exists p € P such that pm € Cg(o + v1 + v2) < P. This implies m € P, i.e., WJLV[ is
birational by Corollary 1.5 (iv).
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For the other implication, assume 'yiw and 7](\;4 are birational. Let o 4+ 11 + 1o € O be
as above and let g € Cg(o + v1 + v2). We show that g € P. Since 'yfé is birational, then
g € Cg(o+v1+12) <@ by Corollary 1.5 (iv). So g = mv with m € M and v € Ug. Then
o+ v +ve = Ad(mv)(o + v1 + v2) = Ad(m) (o 4+ v1) + Ad(m)(P=2), where Dy = Ad(v)(o + 11 +
Vo) — (0 +11) € ng. Now Ad(m)(c+1v1) € m and Ad(m)(D2) € ng, since M stabilizes m and ng.
The semidirect sum decomposition m x ng implies Ad(m)(o +v1) = o +v4, ie., m € Car(o+11).
Since vM is also birational, we have Cy (o +v1) < P, by Corollary 1.5. Therefore, g = mv € P,
i.e., Cg(o+v1 + 1) < P and 7¢ is birational, by Corollary 1.5 (iv). O

Remarks on the proof. Namikawa proved the second implication with different techniques
in [76, Proof of 2.1.1].

Next result can be used to test if an orbit is birationally induced.

Lemma 1.13. Let ¢: N — U be a Springer isomorphism and let m: G — G be the isogeny to
the adjoint group. Let v € N and suppose Cz(v) = Cx(v)°. If Df is induced from ([,DL) for a
Levi subalgebra | C g and some OF € N{/L, then OF is birationally induced from (1, O).

Proof. Let P < G be parabolic with Levi decomposition P = LU. Let f be the composition

defined via the following diagram:

Ca(v) — Ca(v)/Z(G) = Cg(v)
|
Ca(v)/Cq(v)°

We claim that: ker f = Z(G)Cq(v)°. If g € ker f, then 7(g9) € Cx(v)° = 7(Cq(v)°), hence
g € Z(G)Cq(v)°. The other inclusion is trivial. Since by hypothesis Cz(v)/Cx(v)° = {1}, we
have Cq(v) = ker f = (kerm)Cq(v)° = Z(G)Cq(v)°. By Lemma 1.6, Cq(v)° < Cp(v) < Ca(v),
hence Cp(v) = Ce(v), because kerm = Z(G) < Cp(v). We conclude by Corollary 1.5 (iv). O

Remarks on the proof: the same result is contained in [45, Corollary 2.2] for G adjoint. For

G simple and adjoint and v € N, the groups Cg(v)/Cg(v)° are known, see [35, §6.1, §8.4].

1.3 Induction of conjugacy classes

Induction can be defined also for conjugacy classes. Let G act on Y = G via conjugacy, fix a Levi
subgroup L < G and choose a parabolic P < G with Levi decomposition LUp. For any class
ok e L/L, we take X = O'Up c G, a closed subvariety which is P-stable under the conjugacy

action. Then we have a well-defined map:

v: G xP O'Up = G- (OFUp) (1.8)

g*xx »—>gxg_1

called generalized Springer map.
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Since the image of =y is a G-stable closed subset of G which projects to a point in the categorical
quotient G//G, it is a closed irreducible subset consisting of finitely many conjugacy classes.
Irreducibility yields that (G- X)" is a single conjugacy class in G, called induced from (L, O%),
and denoted Ind¥ O see [29,71]. The definition of induced conjugacy class only depends on the
Levi L < G and on OF and not on the parabolic P containing L. For any Levi subgroup L < G,

we introduce the notation:

md¥: L/L - G/G
O" = Indf O".
We have codimg (Ind§ OF) = codimy, OF (see [29, Proposition 4.6] and [71]).

Notice that OF € Ur /L if and only if Indg ol e U /G, in particular, the restriction of Indf
induces a function U /L — U/G, the aforementioned Lusztig—Spaltenstein induction defined
in [71].

A unipotent conjugacy class O is rigid in G if it cannot be induced from a proper Levi
subgroup L < G and a unipotent class OF e U /L.

1.3.1 Reduction to the unipotent case

We now explain how the induction of a conjugacy class in G is related to the induction of a
unipotent conjugacy class in a pseudo-Levi subgroup of G. Let L < G be a Levi subgroup and
let P < G be a parabolic with Levi decomposition P = LU and let su € L. It was proven
in [29, Proposition 4.6] that:

Indf Of, = G+ (sndge(); 05", (1.9)

(s)°

Notice that C(s)° is a Levi subgroup in C(s)° because if Z = Z(L)°, then C1(5)° = Cg(s)- (Z).
Induction is transitive, i.e., if M < G is a Levi subgroup, L is a Levi subgroup of M and
O% ¢ L/L, then:
Ind§; (Ind}’ OF,) = Ind§ (M - (s Ind (5, 05+)%)) =
= G (sIndSe () (ndSM ) 05" =

(s)°
= G (sIndge )] 0F) = md§; OF,,

where we used transitivity for induction of unipotent classes, see [71, §1.7].

Lemma 1.14. The generalized Springer map (1.8) fulfils the hypotheses of Lemma 1.4 with
X =0"p and Y =G.

In particular, there is a unique open orbit in G x* EUP and this is a finite G-equivariant
covering of Indg or.

Proof. The argument mimics the proof of Lemma 1.6. O
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In the Lie algebra setting, Lemma 1.7 allows one to reduce questions related to birationality of
induction to the case of nilpotent orbits. It seems therefore natural to investigate the possibility
to find a group analogue of the cited result. If P > B, for a semisimple element s € B, we
have that Cp(s)® = Cp(s) is a Borel subgroup of Cg(s)° and Cp(s)° is a parabolic subgroup
of Ci(8)°. The equality Cp(s)° = P N Cq(s)° holds and C(s)° is a Levi factor of Cp(s)°; we

write Ug,,(s)o for the unipotent radical of C'p(s)°. We compare the two morphisms:

v: G xP OL U — mdS OF, (1.10)

Vst CG(S)O XCP(S)O OSL(S)OUCP(S)O - Indgc(( ))O OCL ()° (111)

Lemma 1.15. Let v and 7 be as in (1.10) and (1.11), respectively. Set O = Ind¥ OL, and
09" = mdfe () O+ Then:

(i) Birationality of v implies birationality of ~s.

(ii) Suppose in addition that Cg(s) = Cg(s)°. If s is birational, then v is birational. In

particular, if |G, G] is simply-connected, this is always the case.

Proof. Notice that Lemma 1.14 applies also to (1.11), so that we can make use of Corollary 1.5
(iv) as in the proof of Lemma 1.7.

(i) Suppose 7 is birational. Let v € OSL(S)OUCP(S)oOOCG(S)O. Then sv € 0% = G-(s 09"
by (1.9) and sv € SOSL(S)OUCP(S)O c OF U, so that sv € OL U N OY. Since v € Cu(s)°, the
unipotent part of sv is v. Birationality of v yields Cq(sv) < P, 50 Ces)0 (v) < Cegsy(v) < P.
Now Ccy,(s)e (v) < Ca(s)°, hence Cey,(s)0 (v) < PN Cg(s)° = Cp(s)° and v, is birational.

(ii) We assume Cg(s) connected and ~s birational and show that « is birational. Choose
an element sv € s %)’ ﬁsOCL(S)OUCP(S)o c 0% Q@Up. Then Cg(sv) = Cegs)e(v) <
Cp(s)° < P. O

The following example shows that in general, the birationality of v, does not imply the
birationality of ~.
00 0
Example 1.16. Let G = PSp,(C). Let s = é? 9| € G. Let © = {az} and consider the
standard parabolic P := Pg with Levi decomp 510‘500;1 P = LU, where L = Lg. Notice that
Ce(s)° < Cg(s) and that Cp(s)° = L. Let u be in the regular unipotent class of L. Then

o 100 —
Indgc(s) oL = 0%)° with v = {8 51 8 while Tnd¥ O, = O,,. The map 7, as in (1.11)
000 1
is birational, since Cc,(s)o(v) < Cp(s)°. On the other hand, v as in (1.10) is not birational,
0100
because Cg(sv) £ P, for example | § 89 (1’} € Cq(sv) \ P.
0010

1.3.2 Birationality for induction of conjugacy classes

In this section we discuss the definition of birational induction of a class Oy, € G/G.

Definition 1.17. Let su € L and let O = Ind¥ OF, . We say that O is:
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(a) birationally induced from (L, QL)) if the generalized Springer map

v: G xP OF U - mdf OF,

defined in (1.10) is birational;
(b) weakly birationally induced from (L, O% ) if the generalized Springer map

Ys: Ca(s)° x0T Ug, ()0 = Indg (1) OFH”

defined in (1.11) is birational.

Remark 1.18. Tt is a consequence of Lemma 1.15 that if O, € G/G is birationally induced from
(L, 0% ) then it is also weakly birationally induced from (L, O% ). Moreover, by Lemma 1.15, the
two notions coincide in the case that [G, G] is simply-connected or when O = G- (zu) = 2z O,, for
z € Z(G) and u € U (this is the case if and only if the inducing orbit is z O with O € Uy, /L).
Definition 1.17 (a) seems to be the natural way to extend Definition 1.33 to the group case. On
the other hand, Definition 1.17 (b) can be dealt with more easily, allowing a straight-forward
reduction to the Lie algebra setting, as we will see later.

We may drop one, or both of the elements of the pair of inducing data (L, (’)SLU) in the notation
when they are clear from the context or they are not relevant. In particular, we will say that
the class OY € G/G is (non-trivially) birationally induced (resp. weakly birationally induced)
if there exist a proper Levi subgroup L < G and a conjugacy class ol e L/L such that 0% is
birationally induced (resp. weakly birationally induced) from (L, O%).

Definition 1.19. A unipotent conjugacy class in G is said to be birationally rigid if it cannot

be birationally induced from a unipotent class O inside a proper Levi L <G.

1.3.3 Springer isomorphisms and isogenies

We extend all results on birationality of induction of nilpotent orbits to the case of unipotent
classes. The main instrument to perform this work is a Springer isomorphism ¢: N — U. We
prove that the Springer isomorphism is compatible with induction of unipotent classes (resp. of

nilpotent orbits) and preserves birationality.

Lemma 1.20. Fiz a Levi subgroup L < G, set | := Lie(L) and let O € Ni/L.
(i) An orbit © € N'/G is induced from (I, OF) if and only if $(9) is induced from (L, pr,(OF)).
In particular, rigid orbits in g correspond to rigid unipotent classes in G.
(11) An orbit O € N'/G is birationally induced from ([,DL) if and only if ¢(9O) is birationally
induced from (L, (OF)). In particular, birationally rigid orbits in g correspond to bira-

tionally rigid classes in G.

Proof. (i) follows from definitions of induction, (ii) is a consequence of Corollary 1.5 (iii) and the

fact that Springer isomorphisms preserves centralizers. O
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Isogenies are compatible with induction of unipotent classes and birationality is preserved.

Lemma 1.21. Let m: G — G be an isogeny. Fiz a Levi subgroup L < G and let | := Lie(L); let
oF e U /L.
(i) A class O € U)G is induced from (L,OF) if and only if the class w(O) is induced from
(v(L), 7(O%).
(ii) A class O € U/G is birationally induced from (L, OF) if and only if 7(O) is birationally
induced from (m(L),w(OF)).

Proof. Since kerm C Z(G) consists of semisimple elements, the isogeny 7 yields an identification
between the unipotent varieties Ug and Ug. We have Lie(G) = Lie(G) = g and Lie(L) =
Lie(m(L)) = [. Let © € N/G be such that ¢5(9) = O and OF € Ni/L be such that ¢ (OF) =
O". Then ¢5(9) = 7(0) and (ZSW(L)(DL) = 7(O%). By Lemma 1.20, O € U/G is (birationally)
induced from (L, OF) if and only if © is (birationally) induced from (I, O%) if and only if 7(O)

O

is (birationally) induced from (w(L),w(OL)).

Similarly to the case of nilpotent orbits, birationality of induction of unipotent classes only

depends on the G-conjugacy class of the inducing pair (L, ot ).

Lemma 1.22. Consider two parabolic subgroups P,Q < G with Levi decompositions P =
LUp,Q = LUg respectively. Let ol ¢ UL/L and set O = Ind(L;(OL). Then the generalized
Springer map yp: G x¥ (EUP) — O is birational if and only if the generalized Springer map
7o: G x@ (EUQ) — O s birational.

Proof. Set p = Lie(P), q = Lie(Q) with Levi decompositions p = [ x n, and q = [ x ng,
respectively. Let OF € M/L (resp. © € N/G) such that ¢r(O%) = OF (resp. ¢(9) = 0O).
Consider the generalized Springer maps yp: G x (F—i— n,) — O and 74: G x9 (F—&— ng) — O.
By Lemma 1.20 (ii), vp (resp. 7q) is birational if and only if v, (resp. 74) is birational. We

conclude by Lemma 1.11. O

Remark 1.23. Let 9 € Aut(G), let L < G be a Levi subgroup and O € L/L. Then o preserves
parabolic subgroups, their Levi decompositions, and unipotent varieties of Levi subgroups. Thus,
J(Ind§ OF) = Indg( L) ?(OF). By Corollary 1.5 (iii), birationality of unipotent induction is pre-
served under action by Aut(G) on the inducing data because ¥ maps centralizers to centralizers.
In particular, for g € G and OF € Uy /L, the class O = Ind¥ (OF) is birationally induced from
(L, O%) if and only if O is birationally induced from (gLg~", (’)gﬁgg:).

Remark 1.24. By Lemma 1.21 (ii), the notion of birational rigidity for a unipotent conjugacy
class does not depend on the isogeny class of the group. For a Levi subgroup L < G and
¥ € Aut(G), a class O € Uy, /L is birationally rigid in L if and only if (’)zgi)) is birationally rigid
in ¥(L).

Transitivity of birational induction also holds for unipotent classes.
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Proposition 1.25. Consider a parabolic subgroup P < G with Levi decomposition P = LU and
let Q@ > P have Levi decomposition Q = MV with L < M and U > V. Consider PN M, a
parabolic subgroup of M with Levi decomposition of PN M = L(UNM). Let or e Ur/L; set
OM .= md¥ O and 0 .= Indf O = nd§, O™ . We have the generalized Springer maps:

¥§ .G xP Ot - 0%,
vﬁ/[:MmeMﬁ(UﬂM)—»OiM,
’y%:GXQoiMVH»F.

The map ’yf is birational if and only if the maps vM and ’yﬁ} are birational.

Proof. Thanks to the Springer isomorphism, one can reduce to the situation of Lemma 1.12 and

conclude by Lemma 1.20. O
The sufficient condition of Lemma 1.13 can be restated as follows.

Lemma 1.26. Let w € U and let m: G — G be the quotient to the adjoint group. Suppose
Ce(n(uw)) = Cg(n(u))°. If OF is induced from (L,O) for a Levi subgroup L < G and some
OF e Uy, /L, then OF is birationally induced from (L, OF).

Proof. This follows from Lemmas 1.20, 1.21 and 1.13. O

1.3.4 Birationally rigid unipotent classes in simple groups; examples

We conclude this section with some examples.

Example 1.27. If G is simple of type A and O € N/G, then O is rigid if and only if it is
birationally rigid if and only if © is the zero orbit. By [35, Theorem 7.2.3] and adopting notation
therein, if O € U/G corresponds to a partition p of n, then © = Ind¥ {0}, where L = L
corresponds to the dual partition p®, as in (3). The induction is birational, by Lemma 1.13.
Indeed, for G adjoint, we have Cg(v) connected for all v € N, see [35, Corollary 6.1.6]. By
Lemma 1.20, if G is simple of type A and O € U/G, then O is rigid if and only if it is birationally
rigid if and only if O = {1}.

Namikawa (in [76]) and Fu (in [45]) carried out the complete list of birationally rigid nilpotent
orbits for g simple. For the reader’s convenience and for completeness of this work, we list them:
by Lemmas 1.20 and 1.21 giving this list is equivalent to giving the list of birationally rigid
unipotent classes in G simple.

Namikawa dealt with birational rigidity for nilpotent orbits in simple classical Lie algebras.

If g is a simple Lie algebra of type A, then the only birationally rigid orbit is the only rigid
orbit, i.e., the null orbit, as already seen in Example 1.27.

Now let g be a simple Lie algebra of type B,C,D. Let d = [dy,...,d;] denote the partition
corresponding to a nilpotent orbit . Then O is birationally rigid in g if and only if d has full
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members, i.e., 1 =d, and d; —d;11 < 1foralli=1,...,7 — 1, with the exception of the case
d = [22",1%] in D,, for n > 3 odd, which is birationally induced as a Richardson orbit.
Fu worked out the exceptional cases:
- in types Go, F4, Eg birationally rigid orbits coincide with rigid ones;
- in type E7, the set of birationally rigid orbits consists of rigid orbits together with the two
orbits with Bala-Carter label As + A; and A4 + Aq;
- in type Eg, the set of birationally rigid orbits consists of rigid orbits together with the two
orbits with Bala-Carter label A4 + A7 and A4 + 2A4;.
For a complete list of rigid nilpotent orbits in the exceptional cases, we refer to [73, Appendix
5.7].

Remark 1.28. Recall that an adjoint orbit in g (resp. a conjugacy class in G) is said to be
characteristic if it is stable under all Lie algebra automorphisms of g (resp. under all group
automorphisms of G). From [12, Lemma 3.9], we deduce that all nilpotent orbits O in g simple
are characteristic, except for the following list:
- for g of type Dy, the group of automorphisms of g acts transitively on {Ops2, 9{42],9[57131}
and on {O a4}, Olpa), Op3,151}-
- for g of type Da,,,m > 3, an automorphism permutes D4 and D) for every very even
partition d + 4m.
It follows that all nilpotent birationally rigid orbits in a simple Lie algebra are characteristic,

analogously for all unipotent birationally rigid classes in simple groups.

Example 1.29. Let G be simple of type C and let O, be the subregular unipotent class of
G. Let ©1 = {1} and ©,, = {a,}. Set L; .= Lg,, then O, is induced both by (L, {1}) and
(Ln,{1}). Observe that Ly and L,, are not conjugate in G, since «; and «,, have different root
length, see the criterion in [92, §2.2]. Let P (resp. P,) be the standard parabolic subgroup of G
with standard Levi factor Ly (resp. L,). A direct computation shows that Cq(u) < Py so that
O, is birationally induced from (L1, {1}), whereas the induction Indfﬂ{l} is not birational, as
Cqo(u) £ P,. In this case Lemma 1.26 fails, as if 7: G — G denotes the isogeny to the adjoint
group, Cx(7(u))/Ca(n(u))® ~ Z/27.

Example 1.30. Every rigid conjugacy class is birationally rigid. The converse is not true: if
G is simple of type Cs, let O be the unipotent class indexed by the partition [22,1%]. This is
birationally rigid, as it satisfies the full-members criterion. Nonetheless, codimg O = dim Lg =
codimp, {1}, where © = {2, a3}. Since O € U/G is uniquely determined by its dimension, we
have O = Ind{_{1}.

We have seen in Example 1.29 that there exist Levi subgroups L; < G and (birationally)
rigid unipotent classes O € Uy, /L; such that (L, O**) and (Lg, ©*2) are not G-conjugate,
but Indg1 ok = Indf2 O, We will see in the next Section that this phenomenon does not

occur if we require birationality of the induction.
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1.4 Uniqueness of birational induction

In this Section we establish an explicit bijection between conjugacy classes in G and a set of
data which are “minimal” with respect to weakly birational induction. The result is a group
counterpart to the first assertion contained in [67, Theorem 4.4], where Losev identifies g/G with
the set of G-conjugacy classes of birationally minimal induction data.

Our strategy will be to start with a focus on the unipotent variety, adapting [67, Corollary
4.5] to the case of the conjugacy action of a group on itself, and then derive the more general

theorem.

Definition 1.31. A unipotent birational induction datum is (L, O*) where L < G is a Levi
subgroup, OF € U, /L is birationally rigid and Ind¥ OF is birationally induced from (L, O%).
We denote by B(G),, the set of all unipotent birational data of G.

Notice that G acts on #B(G), by simultaneous conjugacy on the pairs and that #(G), /G is
finite.

Lemma 1.32. Let G be reductive and let O U/G. Then there exists, up to G-conjugacy, a
unique pair (L, O%) € B(Q)., such that O¢ = Ind§ OF.

In other words, the map

B(G)y/G — UG

(L, 01)].. — Ind§ OF
is bijective.
Proof. For G reductive, U = U|g g], hence we may assume G semisimple. Let G = G1---Gq
be the decomposition into simple factors, d € N. The decomposition of G carries over to Levi
subgroups, parabolic subgroups and unipotent conjugacy classes. For L < G a Levi subgroup
and OF € Ug/L, we write L = [[_, L; with L; Levi subgroup of G; and O = ], O
with O € Uy, /L;. Observe that Lusztig-Spaltenstein induction in G is compatible with this
decomposition. If u € U, then u = wuy - - - ug with u; uniquely determined and unipotent in G;
foralli =1,...,d and Cg(u) = Hle Cg, (u;). The induction Ind§ OF is birational if and only
if all inductions Indi? OLi are so. Also, OF is birationally rigid in L if and only if each ol is
birationally rigid in L;. Thus, we are reduced to proving the statement for each simple factor G;.
This follows from [67, Corollary 4.5 (i)] and the Springer isomorphism (Lemma 1.20, Remark
1.24). O

We give a group analogue of Losev’s definition of birationally minimal induction data.

Definition 1.33. A weakly birational induction datum is a triple (M,&OM) where: M < G
is a pseudo-Levi subgroup, s € Z(M) is such that Z(M)°s satisfies (RP), OM e Uy /M is
birationally rigid and Indff(s)o OM is birationally induced from (M, OM). We denote by Z(G)

the set of weakly birational induction data of G.
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G acts on #(G) by simultaneous conjugacy on the triples.

Remark 1.34. Let (M, s,0O™) € B(G). Let L(M) = Cq(Z(M)°) be the Levi envelope of M,
i.e., the smallest Levi subgroup of G’ containing M, [29, Definition 3.7]. Notice that Cr)(s)° =
Ca(s)° N L(M) = M, see the Proof of Lemma 0.2. Then Indf(M)(L(M) S(sOM) = G-
(s Indff(s)o OM) .= 0% and 09 is weakly birationally induced from (L(M), L(M) - (s O)) in
the sense of Definition 1.17 (b). For this reason, we will say that G - (s Indg\”}c(s)o OM) is weakly
birationally induced from (M, s, OM).

When [G, G| is simply-connected, we will omit the adverb “weakly”, i.e., we will say that
HB(G) is the set of birational induction data of G and that G - (s Indff(s) OM) is birationally
induced from (M, s, OM) € 2(Q): this choice agrees with Remark 1.18.

Now we prove that every conjugacy class is weakly birationally induced in a unique way from

a triple of birational induction data, up to conjugacy.

Theorem 1.35. The following map is bijective:

B(G))G— G/G
[(M,s,0M)].— G- (sIndif(s)o oM).

In particular, if [G, G| is simply-connected, every conjugacy class in G is birationally induced

n a unique way from an equivalence class of birational induction data.

Proof. We prove surjectivity. Let O = (’)g’; with s € T, u € K = Cg(s)°. By Lemma 1.32,
there exists, up to conjugacy in K, a unique (L, O%) € B(K), such that OK = md(OF). We
can assume T < L so that L is a Levi subgroup of K with Z(K) < Z(L). Hence, s € Z(L) and
Z(L)°s satisfies (RP) for L, by Lemma 0.2. In particular, L = Cg(Z(L)°s)° is a pseudo-Levi of
G and (L,s,O%) € B(G) satisfies G - (s Indgc(s)o oh =o0.

Now we prove injectivity. Let (M7, s, O]u\{l), (M, s2, Ofgz) € #(G) and suppose that

G- (51 Ind§e0)  OM) = G - (5o Ind (22" OMz) (1.12)

where the unipotent classes Indf/ﬁ(si)o OM: are birationally induced from (M;, (92{) fori=1,2.

We can assume that s; = s3 = s € T and set K := Cg(s)°. We have that (1.12) is equivalent to
Cea(s) - (Ind]\lz1 OUMII) =Cq(s) - (Indﬁ2 OUM;).

Ifve Indﬁ1 Oﬁ{l, then there exists g € Cg(s) such that gug~! € IndJ\K42 0%2. Write g = w™th
for suitable h € M and w € Ng (T) N Cg(s), and up to choosing hvh™! instead of v as a
representative, we can assume that g = w=! € Ng (T') N Cg(s). Therefore, we have:

1

K Mo -1 __ wKw™?! wMaw™
v € w(lndy, Oy )w™" = Indy -1 Oy 270

w ™!
w—l

Since w acts as an automorphism of K, the induction is birational (Remark 1.23) and Ozﬁi

is birationally rigid (Remark 1.24), it follows that
v € (Indf, OM) A (IndX,, - OVM2w),

wugw—1
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By Lemma 1.32, the pairs (M7, Oi\/{l) and (wMow™!, O:u]\/iuw;l) are conjugate in K, so the data
(M, s1, OMl) and (Ma, 52, OM2) are conjugate in G via g'w™! for some ¢’ € K.
w1 u g

The last statement is a consequence of Remark 1.18. O
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CHAPTER
TWO

JORDAN CLASSES AND BIRATIONALITY

This Chapter begins with a collections of definitions and classic results on Jordan classes in a
reductive Lie algebra and in a reductive group) in Sections 2.1 and 2.2. Afterwards, we introduce
the new concepts of birational closure of a Jordan class and of weakly birational closure of Jordan
class: we describe these sets and we compare them in Sections 2.3 and 2.4. Finally, after recalling
how sheets can be defined in terms of regular closures of Jordan classes in Section 2.5, we conclude
with the original work of this Chapter. This is contained in Section 2.6, where we use results
from Sections 2.4 and 1.4 to define weakly birational sheets in G and prove that they form a

partition of G.

2.1 Decomposition classes of a Lie algebra

In [12,13], decomposition classes of g (Zerlegungsklassen) were introduced to solve the problem
of the classification of sheets of g for the adjoint action of G. To any element o + v € g we
can associate its decomposition datum (cq4(0), ©9(?)). Then each decomposition data is a pair
consisting of a Levi subalgebra [ C g (see §0.3) and an adjoint orbit O € N;/L. Denote by
2(g) the set of decomposition data of elements of g. Then G acts by simultaneous conjugation
on Z(g). We say that two elements of g are Jordan equivalent if their decomposition data are
conjugate in G. The decomposition class (or Jordan class) of £ € g is the set of all elements
of g which are Jordan equivalent to & and is denoted J4(¢). The decomposition classes of g
are parameterized by 2(g)/G and the decomposition class associated to (the class of) the pair
(I,O%) € 2(g) is

Ja(LOF) = Ad(G)(5()™ + OF). (2.1)

In particular, for £ = o +v, we define the decomposition class of £ as Jg4(§) = Jg(cq(0), 0,
From now on, we will omit the subscript g if clear from the context and simply write J. Denote

by _#(g) the set of decomposition classes of g.
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Let (I, %) € 2(g), then the closure and the regular closure of J(I, O%) are unions of decom-

position classes and admit a description in terms of induced adjoint orbits as follows:

ILOF) = | AdG)(¢ +Indj* @ OF); (2.2)
¢es(n

3097 = | AdG)(C +Ind 9 o). (2.3)
¢es(h)

In particular, for any (I, O%) € 2(g), we have G(I,DL)TEQ NN = Ind} ok,
If (1,0%) and (m, ™) € 2(g), then J(m, OM) ¢ JLOL) " if and only if (I, D7) ~¢
(lp, ©"°) with [p C m and Ind} O = OM.
For (I, 0%) € 2(g), we have J(I, %) = J(, %) if and only if 3(I) = 3(1)"* = 3(g) (equiva-
lently [ = g) and Ol is closed (equivalently it is the null orbit), i.e., if and only if J(I, DL) = 3(g)-
~1

——FTeg —7re,
A decomposition class J' of g contained in J(I, or ) is closed therein if and only if J/ - 3
and this is the case if and only if J' = 3(g) + Ind? OL.

2.2 Jordan classes of a group

We recall the notions of Jordan classes in a reductive group, introduced in [69] and object of

investigation in [29].

Definition 2.1. A decomposition datum of G is a triple 7 = (M, Z(M)°z, O™) where M < G
is a pseudo-Levi subgroup, Z(M)°z is a connected component of Z(M) satisfying (RP) for M
and OM € Uy, /M. We denote by 2(G) the set of decomposition data of G.

The group G acts on Z(G) by simultaneous conjugacy on the triples with finitely many
orbits. Indeed, pseudo-Levi subgroups up to conjugacy admit a description in terms of roots,
thus being finitely many. Moreover, the number of connected components of an algebraic group
and the number of unipotent classes of a reductive algebraic group is finite. The map assigning to
any su € G its decomposition datum (Cg(s)°®, Z(Cq(s)°)°s, O§G<S>°) is G-equivariant. Jordan

classes of G are defined as the preimages of G-equivalence classes in Z(G).

Definition 2.2. Two elements su,rv € G are Jordan equivalent if their decomposition data are
conjugate in G. We denote by Jg(su) the Jordan class of su, i.e., the equivalence class of all

elements of G which are Jordan equivalent to su.

We have Jg(su) = G- ((Z(Cg(s)°)°s)"e9 OSG(S)O). We denote by _#(G) the set of Jordan
classes in G. The group G is partitioned into finitely many Jordan classes, which are in one-to-
one correspondence with Z2(G)/G. As Jordan classes only depend on the decomposition data,
for 7 = (M, Z(M)°z,0M) € 9(G), we write Jo(7) == G- ((Z(M)°2)"*9 OM). Jordan classes are
smooth irreducible locally closed subvarieties of GG, they are unions of equidimensional conjugacy

classes. The closure of a Jordan class is a union of Jordan classes. From now on we will omit the
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subscript G whenever clear from the context, and simply write J. If 7 = (M, Z(M)°z, OM) e
2(G), we have:

Jn= |J G (tmdjF"" oMy (2.4)
teZ(M)°z

Im“ = |J & @¢magFE? oM. (2.5)
teZ(M)°z

Since mreg is open in J(7), it is irreducible and locally closed in G.

Let 7 = (M, Z(M)°s,0M) € 2(G), then J(1) is closed in G if and only if Z(M)°s =
(Z(M)°s)¢9 = Z(G)°s and OM is closed, i.e., it is the unipotent class of the identity. One can
verify that this happens if and only if u = 1 and M/Z(G)° is semisimple, i.e., if and only if .J

consists of semisimple isolated elements.

Let 71,72 € 2(G) such that J(mz) C mmg. Then J(72) is closed in mmg if and only
if mreg = J(m) if and only if 7, = (M, Z(M)°s, OM) with M/Z(G)° semisimple, i.e., J(7)
consists of isolated elements (not necessarily semisimple).

We remark that, in contrast with the Lie algebra situation, not all (regular) closures of
Jordan classes contain a unipotent conjugacy class, even up to a central element. In fact,
J(M, Z(M)°s,0) N Z(G)U # @ if and only if J(M, Z(M)°s,0) N Z(G) # @ and the lat-
ter holds if and only if M is a Levi subgroup. Moreover, J(M, Z(M)°s, O)"eg NU # & if and
only if 1 € J(M, Z(M)°s,O) if and only if M is a Levi subgroup and Z(M)°s = Z(M)°, by (2.5)
and [29, proof of Proposition 5.6].

Thanks to the choice of the maximal torus T, we can define a finite subset 7 (G) C 2(G)
admitting an action of the Weyl group W of G which amounts to considering the G-action on

2(G), thus leading to a simpler parameterization of ¢ (G).

Proposition 2.3. Let 7 (G) = {(M,Z(M)°s,0M) € 2(G) | T < M}. Then the orbit set
T (G)/W parameterizes 7 (G).

Proof. Observe that T < M implies Z(M)°s C T. Moreover, Ng(T) acts by simultaneous
conjugacy on the elements of .7 (G) and T is in the kernel of this action, thus it descends to
a W-action. We show that Z(G)/G is in bijection with 7 (G)/W. Any element of Z(G) is
conjugate to an element of J (G) because all semisimple classes admit a representative in 7" and
connected centralizers of such elements are pseudo-Levi subgroups containing 7. We conclude by
showing that two representatives in .7 (G) are conjugate in G if and only if they are conjugate in
Ne(T). Let (M, Z(My)°s1, OM) and (My, Z(Ma)°sy, 0™2) be elements of .7 (G) and assume
(Ma, Z(My)°sy, OM2) = g . (My, Z(M;)°s1, OM*) for some g € G. Since all maximal tori in a
pseduo-Levi subgroup are conjugate, there exists m € My such that w := mg € Ng(T), and
(My, Z(Ms)°sy, OM2) =4y - (My, Z(M;)°sy, OM1). O
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2.3 Birational closure of decomposition classes
As in [67, §4], to (I, %) € Z(g) we can associate the set

Bir(3(1), 0%) == {¢ € 3() | Ind? (¢ + OF) is birationally induced from (I,¢ +9X)} = (2.6)
={Ce;3)]| Indfg(o O is birationally induced from (I, 9%}, (2.7)

where the second equivalent description can be deduced from Lemma 1.9. In particular, the set
Bir(3(0), DL) only depends on the pair (I, DL) and not on the parabolic subgroup of G with Levi
factor L chosen for the generalized Springer map: this is stated and proven in [67, Proposition
4.2], but it can be deduced also from Lemma 1.11.

Always in [67, Proposition 4.2], it is stated and proven that Bir(3(l), O%) is an open subset
of 3(I) obtainable from 3(I) by discarding a finite number of vector spaces. We would like to give
a different proof of the same result which uses more elementary arguments. To this extent, we
define the set £; := {m D [ | m is a Levi subalgebra of g} and the set Z( := {3(m) | m € L}.
Inclusion of subalgebras endows the sets £; and on Z; with partial orders. Both sets admit

maximum (g € £; and 3(l) € Z() and minimum ([ € £; and 3(g) € Z|) elements.
Lemma 2.4. The posets Ly and Z( are finite and anti-isomorphic.

Proof. We can assume [ is standard, then there is ¢ € h such that ¢g(c) = [. We claim that
elements of £; can be written as centralizers in g of elements in 3([). By [96, Theorem 29.5.7],
if m is a Levi subalgebra of g, then m = ¢4(p) for any p € 3(m)"“. We observe that if [ C m,
then 3(m) C ¢g(I) = 3(I), always by [96, Theorem 29.5.7]. This proves the claim and grants the
finiteness of Ly: if m € £y, then m = ¢4(p) for some p € 3(I) and &, D ®,, but since &, C ¢, we
have only finitely many choices for ®,. The last statement follows once more from [96, Theorem

29.5.7]: the map £; — Z defined by [+ 3(I) and its inverse 3 — ¢4(3) reverse inclusions. O

Lemma 2.5. Let (I,9%) € 2(g) and let o € 3(1).
(i) If o € Bir(3(1),9%), then pu € Bir(3(1), 9%) for all p € 3(1) such that cg(11) C cq(0).
(i) If o ¢ Bir(3(1),O%), then u ¢ Bir(3(1), OF) for all p € 3(1) such that cg(p) D cq(0).

Proof. We prove (i). Thanks to (the proof of) Lemma 2.4, we have the inclusions of Levi

subalgebras [ C ¢g(p) C ¢g(0). The induction Indf”(g) OF factorizes as Indzzgzg (Indfg(”) OF) and

by Lemma 1.12, our assumption implies that Indf"(“) O is birationally induced from (I, O%),
i.e., u € Bir(3(1), O%). The proof of (ii) is similar. O

Lemma 2.6. Let (I,9%) € 9(g). Then:
(i) The inclusion 3(1)"*Y C Bir(3(1), O%) always holds. In particular, Bir(3(1), O%) is a non-
empty subset of 3(1).
(ii) The set Bir(3(1), D) is the complement to a finite (possibly empty) union of elements in
Z(. In particular, Bir(3(1), O%) is open in 3(1).
(iii) We have Bir(3(1), O%) = 3(1) if and only if it contains 3(g) if and only if it contains 0.
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Proof. (i) For ¢ € 3(I)"*, we have ¢4(¢) = I. Hence Indf"(o OF = Ind{OF = O which is
trivially birationally induced from (I, 9%).

(ii) By Lemmas 2.5 and 2.4, if m € £ is such that Ind{* O% is not birationally induced from
(1, OF) then 3(m) c (3(1) \ Bir(3(1), O%)). By Lemma 2.4, we can consider the subset

Z/(LO%) = {3 € Z |5 C (5(1) \ Bir(5(1), 09))}. (2.8)

The union of vector spaces which are maximal elements in Z’ ([,DL) is the sought union. It is a
closed subset of 3(I), hence its complement is open.

(iii) follows directly from (ii). O

This work lays foundations for the following definition, which generalizes the concept of
birational sheet defined in [67, §4.2].

Definition 2.7. For all (I, 9%) € 2(g), we define the birational closure of the decomposition
class J(I, DL) as the set
———bir
IO = U Wdf¢+9%).
¢eBir(3(1),0%)

Remark 2.8. For J € #(g), we have J C §biT c 3 by construction and Lemma 2.6 (i) and
¥

<bir

J  is G-stable, always by construction.

—bi —
Proposition 2.9. Let J € #(g). Then J " is obtained from 3 by neglecting a finite number
of regular closures of other decomposition classes of _#(g), and it is open in 3. In partic-
ular, birational closures of decomposition classes are unions of decomposition classes and are

irreducible locally closed subsets of g.

Proof. Let J := J(I,O%) with (I, O%) € 2(g). We need to show that

—=re —<bir
3N = U Ind? (¢ + OF) (2.9)
CE3(N\Bir(3(1),0%)

is a union of regular closures of decomposition classes in g. Consider the set Z’([,O) defined
n (2.8). By Lemma 2.6 (ii), the set 3(I) \ Bir(3(l), O%) is the finite union of maximal elements
in 2'(1,9%). We show that each 3 maximal in Z’(I, O”) gives rise to the regular closure of
a decomposition class in (2.9). Set I' := ¢4(3') and oL = Ind{/DL . Then, by transitivity of

induction,

U md?(¢+0%) = J Ind (Ind} (¢ + O%)) = | Ind¥ (¢ + O") = (v, 3,0
cey’ cey’ ces’

Finally, we show that J 3 \ﬁbir is closed. If J C g(y), then ﬁreg,ﬁbir C 9(n), hence also

3 \?jbir C g(n)- Bach component ¥y \?jbir satisfies 3/ 7 =3 N 9(n), 1.€., it is closed
in g(,). This implies that 3 \3’ is closed in g(,), hence it is closed in 37Y. The last assertion

follows since J * is an irreducible locally closed subset of g. O
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2.4 Birational closures of Jordan classes

We would like to proceed in an analogous way to define the birational closure of a Jordan class in
a group, but Definition 1.17 suggests that a bisection is needed. For (M, Z(M)°s, OM) € 2(Q),

we define the sets

Bir(Z(M)°s,0M) = {z € Z(M)°s | Indf ;) (L(M) - (zO™)) is birationally induced}; (2.10)

WBIr(Z(M)°s, 0OM) = {z € Z(M)°s | Ind{¢®)" OM is birationally induced} = (2.11)
={ze€Z(M)°s | Indg(M)(L(M) - (2 OM)) is weakly birationally induced}.

Remark 2.10. The definition in (2.11) does not depend on the choice of a parabolic subgroup,
thanks to Lemma 1.22. Moreover, if z € (Z(M)°s)"%9, then Cg(2)° = M, hence @ # (Z°s)™9 C
WBir(Z(M)°s, OM). By Remarks 1.18 and 1.34, we have the inclusion Bir(Z(M)°s, OM) c
WBir(Z(M)°s, OM). As a consequence of Lemma 1.15, when [G,G] is simply-connected, we
have Bir(Z(M)°s, OM) = WBir(Z(M)°s, O©M): on the other hand, for a general G, the inclusion

can be proper as the following example shows.

Example 2.11. Consider G = SLy(C), let G = PSLy(C) and let 7: G — G, m(g) = g be the
isogeny. Let us consider the torus T' < G given by diagonal elements, let B < G be the Borel
subgroup consisting of upper triangular matrices in G, let U be the unipotent radical of B and
let B=n(B)and U = 7n(U). Let 7 = (T, T, {e}) € 2(G) and let s := diag[i, —i]. Then one can
verify that § € WBir(T, {e}) \ Bir(T, {e}). The generalized Springer map (1.10) reads:

v: G %P (5U) = G- (5U) = 0% .

S

This map is not birational, because C(5) = Nz(T) < B, namely v is a 2 : 1 covering; on the
other hand, 75 as in (1.11) is trivially birational.

We now describe the structure of the set WBir(Z(M)°s, OM) for a pseudo-Levi M < G and
OM € Uy /M. Thanks to Remark 2.10, when [G, G is simply-connected, the results will give a
description of the set Bir(Z(M)°s, OM). We mimic the procedure adopted in Lemmas 2.4, 2.5
and 2.6: to avoid repetitions we only focus on the discrepancies between the situation in the

group and the Lie algebra.

Definition 2.12. For a pseudo-Levi subgroup M < G and an element s € Z(M) such that
Z(M)°s satisfies (RP) for M, we define:

Zz0mps = {Z(Ca(2)°)°2 | z € Z(M)°s}. (2.12)

Remark 2.13. We prove that the set defined in (2.12) is finite. We can assume 7' < M, so that
z € Z(M) < T hence there are finitely many possibilities for the root system @, of Cx(2)°,
which must satisfy &5 C ®, C ®, moreover the connected components of Z(Cg(z)°) are finitely

many.
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We write Z(Z(M)°s) = {Z(M;)°s; | i € I} for a finite index set I and suitable s; € Z°s with
Ca(s;)° = M;. Thanks to Lemma 0.2, we can define a map:

Zzmyes = {M; < G | M is a Levi subgroup of M;}
Z(M;)°s; — Ca(Z(M;)°s;)° = M.

The set Zz(p)05 is partially ordered by inclusion: if T < My < My, with My, M pseudo-Levi
subgroups of G, then Z(Ms) < Z(M,) and Z(Ms)°z C Z(M;)°z for all z € Z(Ms). The max-
imum of Zz ()05 is Z(M)°s and its minimal elements are all connected components Z(M;)°s;
consisting of isolated elements. The above map reverses inclusions: Z(M;)°s; C Z(M;)°s; im-
plies M; < M;.

Lemma 2.14. Let (M, Z(M)°s,0™) € 9(Q), set Z .= Z(M). Let z € Z°s.
(i) If Indj\cf(z)o OM is birationally induced from (M, OM ), then Indff(z " OM s birationally
induced from (M,OM ) for all 2’ € Z°s such that Cg(2')° < Ca(2)°.
(i) If Indg[c(z)O OM is not birationally induced from (M,OM), then Indg[c(z " OM s not bi-
rationally induced from (M, OM) for all 2’ € Z°s such that Ca(2')° > Cg(2)°.

Proof. The proof goes as in Lemma 2.5. O

Remark 2.15. For (M, Z(M)°s,OM) € 2(Q), set Z = Z(M) and define
Z2'(2°5,0M) == {Z(M;)°s; € Z(Z°s) | Ind}k OM is not birational}. (2.13)

By Remark 2.13, this set is finite and by Lemma 2.14, it is a subposet of Zz.5. Let ZA(Zos, OM) be
the subset of maximal elements in 2’(Z°s, O™). Observe that for all components Z(Cg(2)°)°z €
Z'(Z(M)°s,0™), we have that M is a Levi subgroup in Cg(z)°.

Now we prove that the set WBir(Zos,OM ) is the complement in Z°s of the finite union
(possibly empty) of shifted tori which are elements of Z’(Z°s, O™).

Lemma 2.16. Let (M, Z(M)°s,0™) € 9(Q), set Z = Z(M).
(i) The inclusion (Z°s)"®9 C WBir(Z°s, OM) always holds. In particular, WBir(Z°s, OM) is
a non-empty subset of Z°s.
(ii) The set WBir(Z°s, OM) is the complement to a finite (possibly empty) union of shifted tori
of G contained in Z°s. Namely, with the notation of Remark 2.15, we have:

Z°s\ WBir(2°5,0M) = | ) Z(M))°s;. (2.14)
Z(Z°s,0M)

In particular, WBir(Z°s, OM) is open in Z°s.
(iii) We have WBir(Z°s, OM) = Z°s if and only if z € WBir(Z°s, O™) for all isolated z € Z°s.

Proof. The proof is similar to the one of Lemma 2.6. The main difference is in (iii), which follows

from the fact that isolated elements are minimal elements of Zz0,, see Remark 2.13. O
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Definition 2.17. Let su € G.

(a) The weakly birational closure of J(su) is:

J(Su)wbir = G- (z IndCG(Z 0ge® ) ; (2.15)

(s)°

2EWBIr(Z(Cg(5)°)° 5,053 (%)

where WBir(Z(Cg(s)°)°s, 059)°) is as in (2.11).
(b) We also define the set:

bir
J(SU) = U G- (Z Indgcgz)o OC(;(S ) ’ (216)
zeBir(Z(Cc(s)o)os,ofcw)")

where Bir(Z(Cg(s)°)°s, 0$¢()) is as in (2.10).

——bir ———wbir
Remark 2.18. For su € G, the sets J(su) " and J(su)w are G-stable by construction. We
——wbir —Te ——bir
have the followmg inclusions, by construction: J(su) C J(su) C J(su) 7 and J(su)  C
——bir

J(su) . Notice that, if [G, G] is not simply-connected, we may have J(su) ¢ J(su) , asin
Example 2.11.

Lemma 2.19. Definition 2.17 is mdependent of the representative of the Jordan class. In

particular, for T € P(Q), the sets J(T )_W and J( ) T are well- defined and if T and 7' represent
the same class in 9(G)/G, then J(T )b =J() " and J(7) v _ J(t )u}bw

wbir

Proof. We show that J(su) = J(rv) implies mwbir = Wwb". Let syu; € J(su)
namely we can assume that s; € Z(Cg(s)°)°s and that (951@(51) In dgcézl) (057 g

birationally induced from (Og(s)°,c9§0<s)°). By hypothesis, (Cq(s)°, Z(Cq(s)°)°s, 05! %)
and (Cg(r)°, Z(Ca(r)°)°r,05¢(M%) are conjugate by an element g € G. Hence, gs;g~' €

Z(Cg(r)°)°r and

C S S C S 1 S © —_
gquig™t € (IndCGE ;2 0%y g~ —Indzcgg ;3 9 (g0Ge) g=1y =
Cal(gsig™)° nCa(r)°
IndCG( e (O

which is birationally induced from (Cg(r)°, 0%¢(M”) by Remark 1.23. This yields gsjuig~" =
(9519 ) (guag™) € J(rv)wbw, the proof follows from G-stability of J(rv)wbw. The proof for
J(su) s similar, once noticed that the Levi envelopes of conjugate pseudo-Levi subgroups are

conjugate. O

We now focus on weakly birational closures of Jordan classes and state the main structural

results on them.
Corollary 2.20. Let Ji,Jo € #(G). If Jy C R, then 71*"" < 7"
Proof. This follows from Definition 2.17 and Proposition 1.25. O
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Proposition 2.21. Let J € #Z(G). Then T s obtained from g by neglecting a finite
number of reqular closures of other Jordan classes of G, and it is open in T In particular,

—wbir

J is a union of Jordan classes in G and it is an irreducible locally closed subset of G.

Proof. Let J = J(7) with 7 = (M, Z(M)°s,0™) € 2(G) and let Z == Z(M). Consider the
set Z(Z°s,OM) defined in Remark 2.15, and write Z(Z°s, OM) = {Z(M;)°s; | i € I}, for a
suitable index set /. By Lemma 2.16 (i), we have Bir(Z°s,OM) = Z°s\ U,ci Z(M;)°s;. Since
Z°s = Z°s; for all i € I, Lemma 0.2 implies that Z°s; satisfies (RP) for M and C¢(s)° is a Levi
subgroup of Cg(s;)°. Then:

TONT = U @ emde® o)
icl \t€Z(Cq(s:)°)°s;

Set OC () .= Indjc\'f(si)o OM and 7; == (Ce(s:)°, Z(Ca(s:)°)°s:, 0°60°) € 9(@) for all i € 1.

Then, by transitivity of induction:

C ° C ° s reg
U G-(t IndMG(t) oM) = U G- (tlndcgg?i)o 0% 6"y = J(1)
t€Z(Ca(si)°)°si teZ(C(5:)°)°s;
For the proof of the final statement one can proceed similarly to Proposition 2.9. O
Remark 2.22. Suppose that [G, G] is simply-connected. By Remark 1.18, J(Ti)éir _ —J(T)wéir for

——0r

any 7 € 2(G). For this reason, when [G, G] is simply-connected we call J(7) J(7) " the
birational closure of J(7). Corollary 2.20 and Proposition 2.21 applied to the case G with [G, G|

simply-connected give a description of birational closures of Jordan classes.

2.5 Sheets

Since (regular) closures of Jordan classes are unions of objects of the same kind, one can put a
partial order on the set of Jordan classes of g by setting J; < Js if and only if J; C @reg for any
Ji,J2 € Z(9).

Now let n € N and enumerate all Jordan classes of g with J; C g(,) for i = 1,... k. Since

the Jordan classes partition g, we have g(,) = |_|f:1 J;. This implies

~ reg
Ji ’
i=1

C~

t

i=1 %

where the last union consists of irreducible sets closed in g(,). Refine the last union to one with
a minimal number of elements, in other words, select the indices {k1,...,k;} C {1,...,k} such

Jk, is a maximal element in the partial order of _#(g). Then
J —reg
9(n) C U Ik >
i=1
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where no term is redundant and the union need not be disjoint.

Suppose now & is a sheet of g contained in g(,), then by irreducibility of &, there exist
i € {ki,...,k;} such that & C 3, and maximality of & yields equality. This proves that
the map J — T“isa bijective correspondence between maximal Jordan classes in _# (g) with
respect to < and sheets of g.

The description of Jordan classes in terms of Lusztig—Spaltenstein induction and the transi-
tivity of induction yield the following characterization, which traces back to [12,13]:
Theorem (BorhofKran‘ec). The sheets of a reductive Lie algebra g are the reqular closures of

Jordan classes j(I,DL) ! with OF a rigid nilpotent orbit in a Levi subalgebra | C g.

—Te€

If (1, DL) ! is a sheet, then it contains a unique nilpotent orbit, namely Ind} O and if two
sheets intersect, then they contain the same nilpotent orbit. As recalled in the Introduction,
there exist sheets in simple Lie algebras which intersect non-trivially, for example the subregular
sheets in simple non-simply-laced algebras, see [13, §6.6] and [12, §7.4].

Sheets are disjoint in type A, see [40]. For g simple of classical type all sheets are smooth,

see [55]; if g is simple exceptional, there exist singular sheets, see [26] for the list of smooth ones.

The set #(G) is endowed with the same partial order < on _#(g) and the same topological
argument illustrated at the beginning of the Section shows that a sheet of G is the regular
closure of a maximal Jordan class J € #(G). Similarly, the sheets for the action of G on itself
under conjugation are classified as J = J(7)  where 7 = (M, Z(M)°z,0M) € 2(G) where
OM € Uy /M is rigid, see [29, Theorem 5.6 (a)].

In the case of a simple group G, there exist distinct sheets with non-empty intersection: if
G has a non-simply-laced Dynkin diagram, then the subregular unipotent class Oy belongs
to two sheets. This is due to the fact that Oy is induced in two essentially different ways,
generalizing Example 1.29. Let « (resp. ) be a short (resp. long) simple root of G. Then,
up to conjugation, there are two minimal standard Levi subgroups in G, i.e., L) and Lygy.
Since Ogrey is completely determined in U by its dimension and dim L,y = dim Lygy, the
formula of dimensions for the induced class yields Indg{a}{l} = Indf{ﬁ}{l} = Ogreg. On the
other hand (L{qy, Z(Lfay)°; {1}) is not G-conjugate to (Lygy, Z(Lygy)°, {1}) in BA(G). One
can check that, for G simple adjoint non-simply-laced and u € Ogyeq, the centralizer Cq(u) is
disconnected, in particular, one of the two inductions cannot be birational, by Lemma 1.26.

If two sheets intersect, then they meet at an isolated class, see [28, Proposition 3.4].

2.6 Weakly birational sheets and birational sheets

In [67, §4], Losev defines birational sheets of a reductive Lie algebra g. Let [ C g be a Levi
subalgebra and ol e M /L be birationally rigid. In our terminology, the birational sheet of g

———bir
associated to the data ([, 9%) is J(I, O%)
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As anticipated in the Introduction, not all birational sheets contain a nilpotent orbit: the
birational sheet J({, of )bw contains a nilpotent orbit if and only if Ind} OF is birationally induced
from (I, O%) if and only if 0 € Bir(3(), O%).

Losev defines the finite group W (I, O%) = StabNG(L)(DL)/L: it acts on 3(I) and it stabilizes
Bir(3(1), O%), since the latter does not depend on the parabolic subgroup containing L as a Levi
factor.

We recall the main theorem by Losev on birational sheets:

Theorem (Losev [67, Theorem 4.4]). Let g be reductive.
(i) Birational sheets form a partition of g.
(i4) Birational sheets are locally closed unibranch subvarieties of g with smooth normalization.

——bir
(iii) Let J(I,OY)  be a birational sheet in g. Then it admits a geometric quotient for the

bir
adjoint G-action. The geometric quotient J(, OF) /G is unibranch and its normalization
is isomorphic to Bir(3(1), OL) /W (1, OF), which is a smooth variety.

We define weakly birational sheets for the conjugation action of G on itself and prove that
they partition G. We start by defining the set:

BAB(G) = {1 = (M, Z(M)°s,0M) € 2(G) | OM birationally rigid}.

The group G acts on Z%(G) by simultaneous conjugacy and B%#(G)/G is finite because 2(G)/G

is so.

Definition 2.23. For 7 € B%(G), the weakly birational sheet associated to T is: S(r)ywhir =
mwbzr | |
If [G,G] is simply-connected, we write S(7)%" = J(T)bw = J(T)wbw and talk about the

birational sheets of G.

Lemma 2.24. Let 7 € BB (G). Then S(1)"b" is a G-stable irreducible locally closed subvariety
of G and decomposes as a union of Jordan classes. Weakly birational sheets of G are in one-to-
one correspondence with the finite set ZRB(G)/G.

Proof. This follows from Definition 2.23 and Proposition 2.21. O

Theorem 2.25. Weakly birational sheets of G form a partition of G.

In particular, if [G, G| is simply-connected, G is partitioned into its birational sheets.

Proof. We prove that O, € G/G belongs to a unique weakly birational sheet. By Theorem 1.35,
Oy is weakly birationally induced in a unique way from (M, s, O™) € %(G) up to conjugation
in G. This triple uniquely determines the class of 7 = (M, Z(M)°s, OM) in B%(G)/G. Hence,
Oy C S(T)®%" and S(7)**" is unique. O

Remark 2.26. Every weakly birational sheet, being irreducible and contained in G, for some

n € N, is contained in a sheet.

35



Remark 2.27. When G is semisimple, a weakly birational sheet coincides with a single conjugacy
class if and only if it is OSGU with s isolated semisimple and OSG(S) a birationally rigid unipotent
class of C(s).

Example 2.28. In general, a sheet is not an union of (weakly) birational sheets. Let G = Sp,(C),
let ©, = {a;} for i = 1,2 and let L; = Le,. Let Oy be the subregular unipotent class in G,

then Ogpeqg = Indi{l} for i = 1,2, but it is birationally induced only from (Li,{1}) (see
bir re re

Example 1.29). Let 7; = (L;, Z(L;)°,{1}) for i = 1,2, then J(r1) = = J(r1) = but J(r) = =

bir i

J(12)  UZ(G)Ogreqg, where J(Tg)bw is a birational sheet, but Z(G) Ospeq is not one.

All sheets of g contain nilpotent orbits [12, §3.2], but not all birational sheets of g do [67, §4].
Similarly, all sheets of G contain isolated classes, see [28, Proposition 3.1], but we give an example

of a birational sheet without this property.

Example 2.29. Let G = Spg(C), let s, = diag[l,a,—1,—1,a71,1] € T. Fixa € C\ {-1,0,1}
and set §:= s; and M = Cq(8). If 7 = (M, Z(M)°5,{1}), then:

In“ = J G-(emd5e®{1}) = U 0. |uog.uo,,,

z€Z(M)°s aeC\{-1,0,1}

where the first member is J(7) while Oy,,, and O,_,, are the two isolated classes of the sheet
mreg, indeed Cg(s1) and Ci(s—1) are semisimple of type C1Cy. Decompose Cg(s1) = K'K”,
where K’ ~ Sp,(C) and K" ~ Sp,(C) and decompose M = M'K" | with M’ ~ C* x Sp,(C) <
K'. Then 0S¢V = Ind{¢t {1} ~ (’)ﬁi’breg x{1}, where {1} is the trivial class in K" and
Ogbreg = IndK',{l} is the subregular class in Ug+. By Example 2.28, the latter induction is not
birational. Hence, ©S¢(*1) is not birationally induced from (M,{1}) and O,,, ¢ mb”. This
argument can be repeated, up to reordering the decomposition into simple groups, for Ca(s—q) ~
Sps(C) x Spy(C) and v € Indﬁf(s’l){l}. In particular, the birational sheet TT)IM = J(7) does

not contain any isolated class.

We give a result on weakly birational sheets which are dense in sheets and characterize when

the two objects coincide.

Lemma 2.30. Let 7 = (M, Z(M)°s,0M) € 2(G) with OM € Upr/M rigid. Then mwbir is
dense in the sheet J()  and J(1)  is the unique sheet of G containing mwr
Moreover, J(T)wbw = J(T)Teg if and only if all isolated classes G - (rlndff(r)o (’)M) with

r € Z(M)°s are birationally induced.

——wbir
Proof. We have 7 € BAB(G), since OM is in particular birationally rigid and J (1) s open
and dense in the irreducible set J (T)Teg by Proposition 2.21. Suppose S is a sheet of G with

——wb —re

mwb” C S. Then the closure of J(r)  equals J(7) C S, s0 J(r) = =S.

The last assertion follows from Lemmas 2.14 and 2.16 (iii). O
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Corollary 2.31. Let G be of type A. Then all sheets are weakly birational sheets. In particular,

sheets of G form a partition.
Proof. This follows from Example 1.27 and Lemma 2.30 and Theorem 2.25. O

Remark 2.32. We claim that Lusztig’s strata defined in [70] are disjoint unions of weakly bira-
tional sheets. This follows from [28, Proof of Theorem 2.1]: it is proven therein that if J € _#(G)
lies in a stratum, then J * lies in that stratum. Since WA cJ Y we get that strata are unions
of weakly birational closures of Jordan classes. By taking maximal sets with respect to inclusion

in this decomposition, we conclude our claim.

2.6.1 Interactions with isogenies and translation by central elements

Remark 2.33. Let 7 := (M, Z(M)°s,OM) € 2(G) and z € Z(G). Set 7, == (M, Z(M)°zs, OM).
Then 7, € 2(G) and J(7.) = 2J(7), resp. J(1.) = 2J(7), resp. J(7.) “ = 2J (1) “ We remind
the reader that, in the above situation, it may happen that J(7) = zJ(7), i.e., when the triples

7 and 7, are conjugate by an element of G.

Remark 2.34. Let m: G — G be an isogeny and let 7 € %(G). Then 7 induces a surjective

map between the set of weakly birational sheets of G and the set of weakly birational sheets of

— —  wbi .  wbi

G, associating to Jg(T)w " the weakly birational sheet 7T(J(;(T)w W) = Jg(?)w " where 7 is
. . . o ———wbir ———wbir

the triple obtained by applying 7 to each entry of 7. Moreover, if Jg(71) and Jg(72) are

—F—bir bir bir

two birational sheets of G such that 7(Jg(m1) ' ) = W(JG(’TQ)Z)W), then Jg(m) = zdg(n)
for some z € Z(Q).

Let 7= (M, Z(M)°s, OM) € 2(G). We will be interested in considering the union

Z(G)mwbir — U mebzﬁ"’

z€Z(Q)

wbir wbir

and each member of the union is zJ(7) =J(r.) , with 7, == (M, Z(M)°zs, OM). This is

clear from Definition 2.17 and from the fact that Z°s satisfies (RP) for M if and only if Z°zs

does so, hence 7 € 2(QG) if and only if 7, € Z(G). Therefore, to describe the set Z(G)J(T)wbw
——wbi

it is enough to describe J(7) " and to count the number of birational sheets appearing in the
decomposition of Z(G)J(T)w "

Remark 2.35. Let G be simple, let 7 := (M, Z(M)°z,0™) € 2(G) and set Z := Z(M). We have
seen that the number of different G-classes of pairs (M, Z°z) for a fixed M, with Z°z satisfying
(RP) for M equals the index dp; = [% : Wl/Wg], defined in Remark 2.10. If OM is
characteristic in M, the number of different G-classes of triples (M, Z(M)°z, OM) for fixed M

and OM | with Z°z satisfying (RP) for M is again the index djy.
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CHAPTER
THREE

LOCAL GEOMETRY OF JORDAN CLASSES

In this Chapter we explain how the geometry of the neighbourhood of a point in the (regular,
resp. weakly birational) closure of a Jordan class in G can be reduced to the study of analogous
objects in suitable Lie subalgebras of g. After introducing some notation in Section 3.1, we first
build a neighbourhood Ujs of the nilpotent cone of g with some particular features and we study
the exponential map exp on Uy. With such tools we can compare in Section 3.2 the stratification
on this neighbourhood induced by Jordan classes in g with the one induced by Jordan classes in
G on exp Uys. In Section 3.3, we assume [G, G] simply-connected and we prove the main result
of the Chapter, reducing the study of the geometry of a Jordan class in G around a point to the
study of several Jordan classes in a reductive subgroup around a unipotent point, where results

from Section 3.2 apply. We conclude with Section 3.4, devoted to several applications.

3.1 Notation and basic results

We recall that when X and Y are algebraic varieties, the analytic closure coincides with the
Zariski closure, [90, Proposition 7] and that if X is an algebraic variety and = € X, then X is
unibranch, normal, smooth or Cohen-Macaulay at x if and only if the corresponding analytic
variety is so, [50, Exposé XII, Proposition 2.1(vi), Proposition 3.1 (vii)].

Following terminology of [52, §1.7], two pointed varieties (X, z) and (Y,y) are said to be
smoothly equivalent if there exist a pointed variety (Z,z) and two smooth maps ¢: Z — X and
¥: Z — Y such that ¢(z) = x and ¢(z) = y. In this case we write (X, z) ~s (Y,y). Smooth
equivalence is an equivalence relation on pointed varieties and it preserves the properties of being
unibranch, normal, Cohen-Macaulay or smooth. By [62, Remark 2.1], if dim Y = dim X +d, then
(X,2) ~ge (Y,y) if and only if (X x A%, (x,0)) and (Y, y) are locally analytically isomorphic. For
varieties of the same dimension, smooth equivalence for (X, z) and (Y,y) and the existence of a
local analytic isomorphism in a neighbourhood of z mapping x to y are equivalent properties.

For any algebraic variety X, denote by X" the associated analytic space.
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Let X,Y be varieties and let p: X — Y be a surjective morphism. Then U C X is said
to be p-saturated if U = p~!(p(U)). In the case of a reductive subgroup K < G acting on an
affine variety X with categorical quotient wx: X — X//K, the subset U C X is wx-saturated
if and only if it is K-stable and all (’)f such that (975 N Oiff # & for some y € U satisfies
OF < U [68, §1]. In what follows, we will often make use of the categorical quotients for the

adjoint action my: g — g//G and for the conjugacy action 7¢: G — G//G.

3.2 Unipotent and nilpotent elements

We start by showing how to compare the local geometry of Jordan classes containing a unipotent
element in their closure with the local geometry of decomposition classes in g, by means of the
exponential map. It is well-known that the exponential map is a G-equivariant analytic map
inducing a G-equivariant analytic isomorphism N — U, this follows from Schur’s formula for the
derivative of the exponential, see [89, §1.2 Theorem 5]. Since the base field is assumed to be C,
the restriction of the exponential to N — U is also algebraic, so it is a Springer isomorphism,
see [53, §6.20].

We will work with a slight variation of the exponential map. Let [G,G]s. be the simply-
connected cover of [G,G]. Denote by exp,.: g — Z(G)° x [G,G]s. the dilation by a factor
27i followed by the exponential map. Then if 7: Z(G)° x [G,G]sc — G is the isogeny, we put
exp = 7o exp,.: § — G. In particular, when 7 is the identity, we have exp = exp,,: for this

reason, with an abuse of terminology, we will refer to exp simply as to the exponential map of G.

Consider G simple simply-connected, then exp restricts to a Lie group homomorphism h — T'
with kernel QV, the co-root lattice of g. Let g := spangQ"; we have h = hr®r C, the fundamental
alcove is & = {h € hr | 0 < a(h) < 1for all « € A} and we define the affine hyperplanes
Hy;:={hebh|alh)=I1}forl € Zand o € ®. Let A be the interior of W - &/ +ibg in b and let

Use := 7'&';1(71'9(14)). (3.1)

It is mg-saturated by construction and open by Chevalley’s restriction theorem.

Lemma 3.1. Let G be a complex connected reductive group. There exist a my-saturated analytic
open neighbourhood Upnr of N in g and a wg-saturated analytic open neighbourhood Uy of U
in G such that the restriction to Uy of the exponential map gives an analytic isomorphism
expy, : Un = Uy

Moreover, for G simple simply-connected, one can take Uy = Use as in (3.1) and Uy =

exp Use.

Proof. Step 1. Suppose G is a torus, then g is abelian, and exp is a local analytic isomorphism
at each point of g.

Step 2. Suppose now G simple simply-connected. We show that exp: g — G is an analytic
isomorphism on Us.. The main result in [79,80] (see also [49, Chapter I, Theorem 3.5]), states
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that the exponential map is a local analytic isomorphism at £ = o+v if and only if the eigenvalues
of ad(§) do not meet Z \ {0}. These eigenvalues coincide with those of ad(o), so the condition is
verified if and only if, up to G-action, o lies in h\U{Ha | | € Z\{0},a0 € ®T}. As A is contained
in this set, exp is a local analytic isomorphism on Usg.. Let Uy = U, and Uy = exp Upn. We
prove now that the restriction expy;,.: Uy — Uy is an analytic isomorphism, i.e., that expy, . is
injective on Uy If expy (0 + v) = expy, (0 + '), then v = v/ because exp is an isomorphism
on N and by G-equivariance we may assume that expy;, (o) = expy, (o) € T, so 0,0" € A.
Two elements in A cannot differ by an element in Q¥ because A is a fundamental domain for the
QY x W-action on hg, [53, Theorem 4.8] and Q¥ does not change the imaginary components of
elements in h. Thus, o = ¢’ and the properties of Uy, follow from those of exp and of Uys.

Step 3. Now let G be as in the statement. Denote by [G, G]s. the simply-connected cover of
[G, G]. Consider the isogeny 7: G = Z(G)° x [G, Glse — G, let 7: G//G — G//G be the induced
map and assume there exist a mg-saturated analytic open neighbourhood U of N in g such that
exp: g — G restricts to an analytic isomorphism on U. Let A’ be an open neighbourhood of the
class [1] in G//G such that if kA’ N A’ # () for some k € ker 7, then k = 1. Let A = Wél(A/).
Then V := Anexp(U) is a 75-saturated open neighbourhood of U in G and Uy := UNexp~ ! (V)
and Uy = moexpUy = 7r(‘~/) are the sought neighbourhoods for g and G. This allows to
reduce the proof to the case in which G is a direct product of a torus and finitely many simple
simply-connected groups: then it is enough to prove the statement for each factor, and this was

done in steps 1 and 2. O

We describe now compatibility of the Jordan stratifications induced on neighbourhoods con-

structed in Lemma 3.1.

Theorem 3.2. Let Uy be a my-saturated analytic open neighbourhood of N in g and Uy be a
mg-saturated analytic open neighbourhood of U in G such that the restriction of exp to Uy is a
G-equivariant analytic isomorphism expy,.: Un — Uy. Then, expy,, identifies the stratification
on Un induced by the Jordan one in g with the stratification on Uy induced by the Jordan
one in G, preserving dimensions, closure orderings, orbit dimensions. More precisely, for T =
(M, Z(M)°s,0M) € 7(G) we have J(T) Uy # @ if and only if M is a Levi subgroup of G and
Z(M)°s = Z(M)° and if this is the case, then

J(1) N Uy = exp(I(m, OM) N Uy)
where m = Lie(M) and exp(O™M) = OM.

Proof. We keep notation from the proof of Lemma 3.1. Let J = J(I,9%) € #(g). Then
IJNN #DsoJNUy #@. By mg-saturation of Un we have

Un NGO+ OF) = (Un 3079 + OF.

Ifo+ve (3(1)NUN)+OF, then by [80] we have [ = ¢5(0) = cg(exp o) so L = Cglexpo)® is a
Levi subgroup of G and setting O = exp(D¥) we have exp((3(1)"*/NUx ) +9O%) c UynZ(L) OF.
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Observe that 3(I)"“Y is obtained removing finitely many vector spaces of real codimension at
least 2 from a (complex) vector space, so it is connected in the analytic topology. Therefore
Un N30 (Un N 3(10)79) + OF and 3N Ux = Ad(G)(Un N3(D)77) + OF) are also connected.
By continuity, exp((Un N 3(1)") + OF) and exp(Un N J) are also connected in the analytic
topology. Thus, exp((Ux N 3(0)77) 4+ OF) c Uy N (Z(L)°s)"9 OF for some s € Z(L) and
exp(UnNJ) € J(L, Z(L)°s, O*)NUy. Observe also that 0 € 3NUprso 1 € J(L, Z(L)°s, OX)nUy,.
This implies that Z(L)°s = Z(L)°.

Conversely, let J € #(G) be such that Uy N J # @ and let su € Uy NJ. Set M := Cg(s)°,
by mg-saturation of Uy we have (Z(M)°s)"9 OM Uy, = ((Z(M)°s)¢9 N Uy) OM. For any r €
(Z(M)°s)"*9NUy we have r = exp p for some p € Uy and Lie(Cg(1)°) = ¢g(p) = m. Therefore for
any rv € ((Z(M)°s)"*9 OM)YN Uy, we have rv € exp(Un NJ(m, O ~1wy)) € J(M, Z(M)°, oM)

exp

so Z(M)°s = Z(M)° and exp(Up N J(m, OM ) = Uy NJ(M,Z(M)°,0M).

exp~!(u)
Finally, exp;, is a G-equivariant analytic isomorphism, hence it preserves orbit dimensions,

closure orderings, and dimensions. O

Corollary 3.3. Let L < G be a Levi subgroup and let T = (L, Z(L)°,0%) € 2(G) and set
J = J(1). Let | := Lie(L) and OF € Ni/L such that exp(O¥) = OF. Let J == J(1,OF), let
veN andv:=exp(v) € JNU. Then:

(i) (T,0) ~se (3.0).

(ii) ve T ifand only if v €J ° and, in this case, (T °,0) ~ge (3, v).

(iii) v € T if and only if v € jbir and, in this case, (7wb”,v) ~se (jbir, V).

Proof. Let Uy and Uy be neighbourhoods of N and U, respectively, as in Lemma 3.1, Theorem
3.2. Then v € J N Uy and expy,, is an analytic isomorphism mapping JNUx to JNUy. This
proves (i). Since exp preserves orbit dimensions, v € J % if and only if v € J 7 and taking
regular loci at both sides of (i) yields (ii). We have v € T if and only if 0, = Ind¥ O
is birationally induced from (L, O), if and only if O, = Ind® O% is birationally induced from
(I,9%), by Lemma 1.20 (i), i.e., v € ?jbir. Since 7" (resp. ﬁbir) is open in J (resp. J), (i)
implies (iii). O

Remark on the Proof. For the unipotent element v € U, we have v € 7wbir if and only if

v E 7bir, by Remark 1.18, but we cannot conclude the smooth equivalence with (7biT, v) because

jbir need not be open in 7reg7 unless [G, G] is simply-connected.

Remark 3.4. (i) The set of points £ € g such that exp is a local analytic isomorphism at ¢ is
not a union of Jordan classes in general. For instance o = diag[i, —i] and ¢’ = diag[l, —1]
lie in the same Jordan class in sl3(C), and the condition on the eigenvalues in [80] holds
for o but not for o’.

(ii) The image of exp is a union of Jordan classes in G. Indeed, g = ru € expg if and only
if r € Cg(u)®, by [42]. This condition is clearly G-stable, so it is enough to show that
r € Cg(u)® implies Z(Cq(r)°)°r C Cq(u)°. Now, u € Cg(r)°, so Z(Cg(r)°) C Cg(u).

Since Z(Cq(r))°r is connected and contains r, we have the desired inclusion.
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3.3 Reduction to unipotent elements

Throughout this Section we assume that [G, G| is simply-connected: in particular, centralizers of
semisimple elments in G are connected. To develop a local study of Jordan classes, we will use a
variant of Luna’s étale slice theorem. The idea is to reduce the study of the closure of a Jordan
class in G in the neighbourhood of an element rv to the study of the closures of several Jordan
classes in C(r) in the neighbourhood of the unipotent part v.

We recall that a morphism of algebraic varieties f: X — Y is said to be étale at a point
x € X if the differential d, f: T, X — Tj(,)Y is an isomorphism.

We are indebted to Andrea Maffei for suggesting the proof of the following result.

Proposition 3.5. Let r € G be a semisimple element and let M = Cg(r). There is a Zariski
open neighbourhood U of r in M such that:
(i) U is mpr-saturated.
(ii) For any Jordan class Jy of M we have Jyy NU # @ if and only if r € Jar.
(iii) The restriction vy to G xM U of the map v: G x™ M — G given by v(g * x) = grg™*' is
étale.

(iv) The image G - U of vy is a wg-saturated open neighbourhood of r in G.

Proof. Observe that G- (1 xr) = G = r is closed and since r is semisimple, O, is closed, too.
By construction, the restriction of v to G * r is injective. We claim that -~y is étale at 1 xr. We
consider the map 7: G x M — G given by the conjugation action and the natural projection

p: Gx M — GxM M, so7 =vop. For m € M the differential at (1,m) is given by:

d(l,m);?: gbébm—g
(z,y) =y —x+ Ad(m ™)z

For g € G, let L, be left translation in G by g. The induced map identifies g with TG and
m = ¢g(r) with TgM. This way, dig,m)7: (x,y) — Ad(g)(y — 2 + Ad(m~1)z), for (z,y) € g®m.
Since r is semisimple, g = Im(Ad(r~!) — id) @ ker(Ad(r~1) — id) and ker(Ad(r~!) —id) =
ker(id — Ad(r)) = m so d(q,,y7 is onto, yielding surjectivity of d1.,y. For any pair (g,m) € Gx M
the composition

Gx M G M —P s G xM M

yields an exact sequence by differentiating:
0 —— Ny ——gdm — Ty (GxM M) —— 0

where N, = {(z,2 — Ad(m~")(z) | € m}, so dim Tyurn (G xM M) = dim g and injectivity of
dy4y follows. Therefore the hypotheses of [68, Lemme fondamental, §I1.2] are satisfied for the
map v: G x™ M — G and the point 1 % r and there exists an étale slice. In particular, there
exists a mys-saturated Zariski open neighbourhood U’ of r in M such that the restriction of 7 to

G xM U’" — @ is étale with image a mg-saturated open subset V' = G - U’ of G.
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Consider the stratification on M//M with finitely many Jordan closed strata of the form
Jn//M, for Jy a (semisimple) Jordan class in M, and let Jys//M denote the open stratum in
Jar//M. Let V be the union of all Jy;//M containing the class of 7 in their closure. It is open,

because its complement in M //M is the closed set

U = U T

[rl¢Jn //M (r¢Tar /)M

Then U” := 7, (V) is a mp-saturated open subset of M containing r and such that a Jordan
class Jy; in M meets U” if and only if » € Jy;. We take the my-saturated neighbourhood
U =U'NnU". Tt satisfies condition (ii) and the restriction of the étale map -y to the open subset

G xM U is again étale and its image G - U is a mg-saturated open neighbourhood of 7 in G. [

Remark 3.6. With notation as above, since vy is étale, for any z € U we have dim (’)f =
dim Of(l*m) = dim 0., so dim Cg(x) = dim Gy, = dim Cyr(x). Hence, Cys(z)° = Cg(z)°.
Since U is mp-saturated, if © = su € U, then s € U and so Cp(s)° = Ca(s), see also [68,
Remarque IT1.1.4].

Let su € G, with s € T and let J := Jg(su) € 7 (G); we have Cg(s) = Cg(s)°. Let rv € J
with r € Z°s C T and let M = Cg(r) = Cg(r)°. Since r € Z(Cq(s))°s, we have that Cg(s) is
a Levi subgroup of M by Lemma 0.2. In this setting, define:

Tiro ={Imi € F(M) | Iy CJ and mv € Iy} (3.2)
and let 1., be an index set for Jas; € Ty rv-
Proposition 3.7. Let J = Jg(7) for some 7 € T(G), let rv € J and set M = Cg(r). Then

(J, 10) ~ge U rilevi,v (3.3)

Ijro

where I, is defined in (3.2).
If, in addition, rv € jm'q, then rv € JMvireg forallie€ Iy, and

T ro) e | v T 0. (3.4)

iEIJ,Tv

Proof. Let 7 = (M',Z(M')°s,O). Since conjugation by g € G induces the smooth equivalence
(J,1v) ~ge (J,g - (rv)), we may assume that r» € Z(M')°s, so M’ C M. We adopt notation
from Proposition 3.5 and its proof, but with vy viewed as a map G xM U — G -U. Let
Ju: G x U — G - U be the restriction of 7.

We will first show that (J,2) ~g (JNU,x) for any x € JNU. Then, we will prove that
JNU = WU and show that the irreducible components of WU are the intersections of

U with the closures of Jordan classes listed in Jj,, as in (3.2). We will conclude the proof of
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(3.3) by observing that, in order to study (J, ) we can neglect those irreducible components of

JAU" that do not contain z. A dimension argument will give (3.4).

We consider the following commutative diagram

GxU —2 soxMy —22 ,Gq.U

| [ I

Gx(JNU) — GxM(JNU) — JNG-U

Observe that 4, (J NG - U) is a G-stable closed subset of G x U, so it is of the form G x V
for some V closed in U. In turn, V is the pre-image of G x V through the natural inclusion of
U into G x U. Therefore ;' (JNG-U) = G x (JNU). This is exactly saying that the bottom
composition of arrows is obtained by pulling-back 4y along the closed embedding ¢. Hence, the

bottom composition is also smooth and for any z € JNU

(7,2) ~se (TN G- U, ) ~ge (G x (TOU), (1,2)) ~se (TOU, ). (3.5)

_ . o . _agxMy
To show JNU = J N UU7 we prove the equivalent statement G x™ (JNU) = G xM (JNU) ) ,

M

_ —— ¢ _
ie., 'y[}l(J NG-U) = 'yljl(Jﬂ G-U) . By elementary topology we see that J N (G -

————GU . . . o 1= GU
U)=JNG-U . Since vy is continuous, surjective and open, we have 7, (JNG-U ) =
M

Y (JING-U) , hence the desired equality. Thus (3.5) gives (J, ) ~ (WU, x) for any
reJnU.

We describe now the irreducible components of WU. By base-change the restriction of ~
to G xM (JNU) is a G-equivariant étale map to JNG-U C G (q) for some d. Hence all G-orbits
in G x™ (JNU) have the same dimension. By Remark 3.6 we have J N U C Mg/ for some d'.
The equivalence (3.5) implies that (J NU,z) ~g (J,x) for any x € U N J and J is smooth, so
the intersection U N J is also smooth. Hence it is the union of its connected components and
it is contained in the finite union of those Jordan classes in M4 containing r in their closure.
Let Jys be a Jordan class in M such that JNU N Jy # @. By construction of U, we have
r € Jy. It follows from Remark 3.6 that if x = tu € Jyy NU N J, then Cps(t)° = Cq(t), hence
dim Z(Cp(t)°)° = dim Z(C(t)°)° = dim Z(M")°. The proof of [29, Theorem 5.6 (e)] applied to
the case of (regular closures of) arbitrary Jordan classes shows that dim Jy; = d' + dim Z(M”)°,
so all Jordan classes of M meeting J N U have the same dimension. The same argument also
shows that (Z(Ca(t)°)°r) %y = (Z(Cq(t))°r) % and so Jyr = M - ((Z(Crp(t)°)°r)™%%u) C
G- ((Z(Cq(t))°r)re9u) = J. Therefore, Jyy C J. Conversely, if a Jordan class Jyy C M contains
r in its closure and is contained in J, then @ # Jyy NU C JNU.

Let 17, be the index set defined in (3.2). Then JNU = U;c;, Jum,i NU, and the locally
closed subsets Jys,; N U are finitely many, disjoint, irreducible and have all the same dimension.

. . . —U =
Hence, their closures are the irreducible components of UNJ = J NU. Therefore, for any
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celUnJ
T 2) ~e (U JMmU ) ~se (| Tatan U, 2)
ZEIJT ZEIJT
U JMz ﬂUl‘ U J]V[z ,LL‘.
'LEIJT 1€IJT

Let 15, be the set of indices in 15, such that € Jys,; and let U, be a Zariski open neighbourhood
of x in M such that Uy N Jy; = @ for any ¢ € I, \ I;,. Then,

(U JMz mUwax U JMz ﬁUgg,l‘ U JMz ,.Z‘.

i€l ZGI]I ’LGI]I

Taking z = rv and translating by r~! gives (3.3). Observe that if rv € T then OS'; C G
and meets U. Since ~yy is étale, O% C Mgy so it lies in jg;i- for every ¢ € Ij,. Since J
is open in J and {J,. Iy 7;;?1 is open in the union of equidimensional closures J;c;, I i
equation (3.4) follows from (3.3). O

In order to provide an explicit parameterization of I, in (3.2) in terms of data depending on
J and rv, we introduce some notation. Let T = (M’, Z(M')°s,0) € 7 (G), let rv € JNZ(M')°sv
and let M = Cg(r). We set:
W.. == Staby (1)
Wrr)={weW|rew-(Z(M)°s)}.

If we W(r,r) then w- M = Cg(w - (Z(M’')°s))° C M and w- M’ is a Levi subgroup in
M, [29, Lemma 4.10]. We consider then

W(r,rv) = {w e W(r,r) | OM c md¥,, (w- (’))} .

The reader should be alert that W (7, r) and W (r,rv) are not subgroups of W in general.

Since W, < Staby (Z(M')°s), it acts on W(r,r) from the right. It preserves M’ and O,
hence it acts also on W (7, rv) from the right. The group W,. := Ny (T)/T < W acts on W(r,r)
and W(r,rv) from the left.

Theorem 3.8. Let J = Jg(7) for some 7 = (M', Z(M')°s,0) € T(G), let r € Z(M')°s and
M = Cg(r). Then

(ja T) ~se U JM(w : 7—), r]. (36)
weEW\W (7,r) /W,

If rv € J then

(J,70) ~ge U r Iu(w-T),v | (3.7)
weW, \W (1,rv) /W,
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Ifrv e T then

(T rv) ~ge U T (w - T)Teg,v . (3.8)
weW, \W (r,rv) /W,

Proof. We first consider the neighbourhood of r. By Proposition 3.7 it is enough to show that
the right hand side of (3.6) involves precisely those Jordan classes in M that:

(1) are contained in J;

(2) contain r in their closure.

By condition (1), the latter are parameterized by W,.-orbits of triples of the form w - 7 for some
w € W/W,. Condition (2) is equivalent to r € w - (Z(M')°s). Hence the elements w must be
taken in W(r,r)/W,. This gives (3.6).

Let us now consider the neighbourhood of rv. In this case we need to prove that the classes
occurring in the right hand side of (3.7) are precisely those Jordan classes Jy (M, Z(M")°s', O0")
in M that

(1) are contained in J;

(2) contain rv in their closure, that is, contain 7 in their closure and satisfy O ¢ Ind}}, O'.
They are parameterized by W,.-orbits of triples of the form w - 7, where w must be taken in
W (r,mv)/W., as one sees from condition (2). This gives (3.7). Equation (3.8) follows from (3.7)
and (3.4). O

Corollary 3.9. Let J := Jg(7) for some T € 7 (G) and let rv, v'v' € J' C J. Then, (J,1v) ~g
(J,r"v"). In other words, the geometry of J is constant along Jordan classes.
Moreover, if J' C jbir, then (71)”, TV) ~ge (jbir, r'v’).

Proof. Let 7 = (M',Z(M')°s,0). Since (J,z) ~gs. (J,g-z) for any g € G, we may assume
that r € Z(M')°s, Cq(r) = Ca(r'), ' € (Z(Cg(r))°r)"® and v = v so W,» = W,. We set
M = Cq(r). Ifr € w-(Z(M')°s) for some w € W, then M D Cq(w-(Z(M')°s)) = w- M’ whence
Z(M)° Cw-Z(M')°, and therefore ' € Z(M)°r C w- (Z(M')°s). Hence, W(r,r) = W(r,7’)
and so W(r,rv) = W(r,r'v). The first statement follows from (3.7) and left translation by
r'r=t € Z(M)°. The last statement follows from Proposition 2.21 and from the fact that T s
open in J. O

Corollary 3.10. Let J = Jg(7), for 7= (M', Z(M')°s,0) € T(G), let rv € JNZ(M')°sv and
let M = Cq(r). Then J is unibranch, respectively smooth, respectively normal, at rv if and only
if (W AW (7,70) /Wr| =1 and v~ Jp(7) is so at v.

Proof. Let U be as in the proof of Proposition 3.7. Then the irreducible components of U N
J containing rv are precisely the subsets Jy(w-7) NU for w € W, \W(r,rv)/W,. Hence,

W \W (7,7v)/W,| = 1 is a necessary condition for J being unibranch at rv, and a fortiori,
normal, or smooth. In addition, if [W,\W (r,rv)/W,| = 1, then (J,rv) ~ (r~*Jas(7),v) and
we use the properties of smooth equivalence. O
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Corollary 3.11. Let J = Jg(7), forT= (M',Z(M')°s,0) € T(G), let rv € JNZ(M)°sv and
let M = Cg(r). Assume |W,\W (7,rv)/W,| = 1. Then J is Cohen-Macaulay at rv if and only

if 1= I (7) s so at v.
Proof. The argument is the same of Corollary 3.10. O

The local study of the closure of a Jordan class J = Jg(7) around rv simplifies drastically
when |[W,\W(r,7)/W.| = 1 and therefore it is important to characterize when this is the case.
Next result deals with this question under the assumption that W, = Staby (Z(M')°s), which
is always satisfied when O is characteristic in M, e.g., when O = 1 (semisimple Jordan classes)

or when O is regular (regular Jordan classes), see Remark 1.28.

Lemma 3.12. Let J = Jg(1) for 7 = (M',Z(M')°s,0) € J(G) and let r € (Z(M')°s) N
J. Assume that W, = Staby (Z(M')°s). Then |W,\W (1,7)/W.| = 1 if and only if J//G is

unibranch at the class [r] of r.

Proof. The isomorphism G //G ~ T /W identifies J//G with W - (Z(M')°s)/W, so we need to
understand the neighbourhood of W - (Z(M')°s)/W around [r]. By [8, Anhang zu K. 7, Satz
21], there is a W,-stable analytic open neighbourhood U of r in W - (Z(M’)°s) such that U/W,
identifies with a neighbourhood of [r] in W - (Z(M')°s)/W. We can choose U so that it meets
only the W-translates of Z(M')°s containing r. Therefore

(W (Z(M')°8) /W, [r]) ~se (W - (Z(M')°s) NU/ Wy, [r])

~se U w - (Z(M/)Os)/Wm [T]
weW (r,r) /W,
Here, the group W, acts as usual from the left. This implies that J//G is unibranch at [r] if and
only if |W\W (r,r)/W,| = 1. O

Example 3.13. By construction |[W\W(7,rv)/W.| < |W,\W (r,r)/W,| but the inequality
may be strict: here is an example. Let G = SLy(C), M = (T, Uiq,), 7 = (M, Z(M)°,1).
In this case Z(M) = Z(M)° and W, = Staby (Z(M)) = (s1,s3). Let rv € Jg() with
Ca(r) = (T,Usqy,Usqy) and v € Indff(r)(l). Then W, = W, and v is trivial in the compo-
nent corresponding to ay and regular in the component corresponding to ag. If w € W satisfies
rew-Z(M)# Z(M), then w € woW,. Since wg ¢ W, we have |W,\W (r,r)/W.| = 2. However,
if w is as above, then rv & Jog((w - 7). Indeed, if 70" € Jog(m(w - T), then v’ € Indgﬁv(;)(l)

which does not contain Indgf(r)(l). Hence |W AW (7,1v)/W,| = 1.

3.4 Applications

In this Section we assume [G,G] is simply-connected and we apply the results from §3.2 and
3.3 to deduce geometric properties of closures of regular Jordan classes, sheets, Lusztig strata,

birational closures of Jordan classes and birational sheets.
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3.4.1 Closures of regular Jordan classes in GG

We recall that a Jordan class J = Jg (M, Z(M)°s, OM) in G is called regular if J C G™9, i.e., if
oM _ oM

reg: the regular unipotent class in M.

Theorem 3.14. Let J be a regular Jordan class in G. Then the following statements are
equivalent:

(i) J is normal and Cohen-Macaulay.

(ii) J is normal.

(iii) J//G is normal.

(iv) J//G is smooth.

Proof. Clearly (i) implies (ii) and (ii) implies (iii), see [75, §0.2]. Also, (iii) is equivalent to (iv), by
[30, Corollary 8.1]. We show that (iii) implies (i). Let J = Jg(7) for 7 = (M', Z(M')°s, O%;) €

7(G). Recall that J//G = Jag(M',Z(M')°s,{1})//G. Let us assume .J//G is normal. Then

it is everywhere unibranch and since the regular unipotent class is characteristic, Lemma 3.12

gives |W,\W (7,7v)/W,| = 1 for all points rv € J. Since the locus where J is not normal
(resp. not Cohen-Macaulay) is closed, [94, Tag 00RD] and the geometry of .J is constant along
Jordan classes by Corollary 3.9, it is enough to check the desired properties of J at points in
closed Jordan classes in J. These are the Jordan classes Jg(M,Z(M)°r,{1}) C J with M
semisimple, i.e., isolated semisimple conjugacy classes in G, see §2.2. Let (’)f be such a class,
with M = Cg(r). By Corollaries 3.10 and 3.11 and 3.3, J is normal and Cohen-Macaulay at r
if and only if m is so. By [88, Theorem B], this happens if and only if Stabyy, (3(m’))
acts on 3(m’) as a reflection group and Jn(m/,0)//M is normal. The first condition is ensured
by [30, Proposition 2.5, Lemma 8.3 (i)] applied to Jm(m’/,{0})//M. The second condition is

ensured by [30, Theorem 4.9]. O

Remark 3.15. The fact that normality of Jn(m/,{0})//M implies that Staby, (3(m’)) acts on
3(m’) as a reflection group can also be deduced from the proof of [21, Theorem 3.1] or from the

main result in [43].

Corollary 3.16. Let G be simple and let J = Jg(M,Z(M)OS,O%g) be a regular Jordan class.
Then J is smooth if and only if M can be chosen to be either T, semisimple, or of the form Mg
for @ €O C A as follows:
A, of type dAp withn+1=dh+1),h>1,d>2;
B: of type dALD o By with n = mo+mno+d(h+1) and either mg > 2, ng >0, h > 0, or else
mo=20,n9 >0, h=0 or odd;
C,: of type dARCp, Cpy with mg,ng, h >0, n=mg +no +d(h +1);
D..: of type dApDy Dy with n = mg + ng + d(h + 1) and either mg,ng > 2 and h > 0, or else
mong =0 and h = 0 or odd;
E¢: of type As (there are three such subsets), 4A1, 2Ay (there are three such subsets);
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E7: of type Eg, D¢ (there are two such subsets), DsAy (there are two such subsets), 2A1Dy,
2As, 3A2, 3A1A;3 (there are two such subsets), 5A1, the two subsets of type As containing
g, the subset of type 4A1 which is stable under the automorphism of A, {ap, ag, az} and
{az, as, ar};

Es: A \ {alﬂa3}7 A \ {a17a37 aG}? A \ {04470467 aS}: {a27a570477a0} or of type D7, E7, DgAq,
2A3A1, 3A2A1, 2A1D5, D4As, 3As;

Fu: of type As, A1Bs, 2A1A1, Bs, Cs, 2A1, Ao;

Go: of type A;.

Proof. This follows from Theorem 3.14 and the list of classes J for which J//G is normal in [30,
Theorem 8.7]. O

3.4.2 Sheets

In this Subsection we apply the local description to the case of sheets. We will apply repeatedly

the following argument.

Remark 3.17. Let S = J 7 with J = Jg(M, Z(M)°s, OM) be a sheet in G.

(i) The locus where S is not smooth, respectively normal, is closed. Thus, by Corollary 3.9
it is enough to check smoothness or normality of S at a point in each closed Jordan class
in S. These are Jordan classes of triples (M’, Z(M')°s’, (’)M/) with M’ semisimple and are
precisely the conjugacy classes of isolated elements contained in S, see §2.2.

(ii) The conjugacy class w - OM is rigid in w - M for any w € W and therefore (3.8) implies
that S in the neighbourhood of an isolated point rv is smoothly equivalent to a union of
sheets in the semisimple group Cg(r) in the neighbourhood of v.

(iii) As exp is compatible with induction, it maps rigid nilpotent orbits in g to rigid unipotent
conjugacy classes in G. Hence, it identifies a neighbourhood of v in a sheet in Cg(r) with
a neighbourhood of a nilpotent element in a sheet of ¢4(r).

—_—T

Theorem 3.18. Let ® be classical and let S = J(1) “ be a sheet in G. Then S is smooth if

and only if it is normal if and only if it is unibranch.

Proof. One direction is immediate. Assume S is unibranch: we prove that it is smooth. Let
7= (M, Z(M)°s,0M) and OM = exp OM. By Corollary 3.10 we have |W,\W (r,7v)/W,| = 1
for any point rv € S. Hence (3.8) and Corollary 3.3 imply that S is smooth at rv if and only
if Wreg is smooth. By Remark 3.17 part 1, it suffices to prove smoothness of S at
isolated classes. In this case ¢4(r) is semisimple and classical because its Dynkin diagram is a

sub-diagram of the extended Dynkin diagram of g. In addition, ch(,.)(m,DM ) “ is a sheet in
¢g(r) by Remark 3.17, part 2. Since all sheets in classical Lie algebras are smooth [10,55,83], we

have the statement. O

Theorem 3.19. Let & be classical and irreducible and let S = J(r)  be a sheet in G. IfJJ/G

18 normal in codimension 1, then S is smooth.
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Proof. By Theorem 3.18 it is enough to show that S is unibranch at every isolated rv € S. Let

T = (M, Z(M)°s,0™). If J(7)//G is normal in codimension 1, then it is unibranch by [30,
———reg

Lemma 8.2, Lemma 8.3]. By [31, Lemma 3.3] if G is simple and simply-connected and J(7)
is a sheet we always have W, = Staby (Z(M)°s), so Lemma 3.12 applies. O

Corollary 3.20. Let G be simple with ® classical and assume M is either: T, semisimple, or
Mg for @ C O C A as follows:

A, of type dAp withn+1=dh+1),h>1,d>2;

B.: of type dApRDyy By with n = mo+mno+d(h+1) and either mg > 2, ng >0, h > 0, or else
mo =0, ng >0, h=0 or odd;

C,: of type dARCpnyCpy with mg,ng, h >0, n.=mg + ng + d(h + 1);

D..: of type dApDy Dy with n = mo + ng + d(h + 1) and either mg,ng > 2 and h > 0, or else
mong =0 and h =0 or odd.

Then, for any Z(M)°s satisfying (RP) for M and any rigid unipotent class OM in M, the sheet

S = Jg(M,Z(M)°s, OM) ? is smooth.

Proof. The result follows from Theorem 3.19 and the list of varieties J//G that are normal in
codimension 1 for G simple, [30, Proposition 8.6]. O

For G simple exceptional, the subset of sheets S in G such that quotient S//G is normal in
codimension 1 can be deduced from [30, Proposition 8.6]. For each S in this subset, our previous

results we can compute whether S is smooth or not: we record this in the following

Corollary 3.21. Let G be simple with ® exceptional. Let M be either semisimple, T, or Mg
foroa C O C A of the following type:

Eg: As, Dy, 4A1, 2A9;
E7: Eg, Dg, 2A1Dy, 3A2, 2A3, 3A1A3, D4A1, 5A1, {ao, a1, a0, a3, a4}, {ao, aq, a5, ag, ar}, Dy,
{0, a2, as}, {a2, a5, a7}, {ao, as, a5, ar};
Es: A\ {a1,as}, A\ {o1,as,a6}, A\ {as, a6, a8}, {as,as,a7,a0}, D7, E7, DeAr, 2A3A;,
3A2A1, 2A1D5, D4As, Dg, Eg, 2A1Dy, 3As, Dy;
Fa: As, A1Bs, 2A1A,, B3, C3, 2A;, Ay, By;
Go: Ay;
Consider (M, Z(M)°s, OM) € 2(G) with OM rigid. Then the sheet S = Jo(M, Z(M)°s, OM

is smooth, with the following exceptions:

reg
)
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typeof G | M | Z(M)°s oM
E- Dsg any [24, 14]
Ds any [24,1%]
Es E-, any 2A; and (A1 + As)a
DoA1 any [24,1%] x [1]
Fa B> any [15}
Table 3.1

Proof. It M =T or M is semisimple, then S = G"9 or S coincides with a single conjugacy class
and there is nothing to prove. Let M = Mg with © from the above list. We apply Remark 3.17
and we look at S in the neighbourhood of isolated elements rv. For all © the quotient S//G is
normal in codimension 1, [30, Proposition 8.6], hence it is unibranch. In addition, [31, Lemma
3.3] ensures that W, = Staby (Z(M)®°s) for any choice of Z(M)°s. By Lemma 3.12, Corollary
3.10 and [55] the problem is reduced to showing that mreg is smooth for OM = exp OM
and any m’ = ¢4(r) semisimple exceptional containing m. Such Lie subalgebras are conjugate to
me: == Lie(Me/) for some ©' C A with [©| = |A]. Let Wer be the Weyl group of Me, then m
is We/-conjugate to a standard Levi subalgebra therein, [29, Lemma 4.9]. However, normality in
codimension 1 of J//G is equivalent to the condition {w® € Z(®) | w € W, wO® c A} = {0},
where Z(®) denotes the power set of ®. Therefore we are left to verify smoothness of the
sheets mrag for all exceptional ©" D © with |®’| = |A|. This is done by using the
list in [26, §4] of smooth and singular sheets in simple exceptional Lie algebras on each simple

component of mg. O

3.4.3 Sheets and Lusztig strata in SL,,(C)

The case in which G = SL,,(C) is particularly simple and we retrieve information on all its sheets

and, as a consequence, on all Lusztig strata as defined in [70, §2], see also [70, §3.2,3.3].
Proposition 3.22. Let G = SL,(C). Then every sheet and Lusztig stratum in G is smooth.

Proof. Let S be a sheet in G = SL,(C). By Remark 3.17 (i), it suffices to prove smoothness
at its isolated classes. These are all of the form zv with z € Z(G) and v unipotent, hence
(S, 20) ~ge (2715,0) ~ge (6,exp™t(v)) where & is a sheet in sl, by Corollary 3.3 and Remark
3.17 (iii). All sheets in sl,, are smooth by [10,83]. Hence S is smooth.

We turn now to Lusztig strata. It follows from [28, §2] that their irreducible components are
sheets in G. Strata of G = SL,,(C) are of the form Xg = ¢ 7(g) kS for S = mrsg
given (birational) sheet. By Corollary 2.31, the stratum X g can be expressed as a non-redundant,
disjoint union of (birational) sheets. Hence the connected components of strata are (birational)

sheets in G, which are smooth by (i), so strata are smooth as well. O
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3.4.4 Birational closures of Jordan classes and birational sheets

Suppose now that rv € T where J = Ja(su) € Z(G) and set M = Cg(r), C = Cq(s)
i —wbir

and Z = Z(C). We will prove that the two pointed spaces (jb”', rv) and (U;, JM7i7,rv) are
smoothly equivalent, where I;,, is defined as in (3.2).

Lemma 3.23. Let su € G withs € T and Jg(su) = J € _#(G) and let rv € J. Thenrv € 7
if and only if rv € jﬁ? foralli € Ij,,. In this case,

(T )~ | U r Tt 0] (3.9)

Proof. We can assume r € Z°s. Denote by
Dyro = {(Ci, Z(C;)°2,0%) € (M) | r € Z(C;)°2z and OM Indlc‘v/[i 0%},

If Jari € Jyro as in (3.2), there exists 7, € P, such that J(7;) = Jars, by Theorem 3.8. Note
that 7 := (C, Z°s, (’)5) € Djrv. By Lemma 0.2, since r € Z(C;)°%;, we have that C; is a Levi
subgroup of M. Hence, by [29, Lemma 3.10] C; is a pseudo-Levi of G, so that ; € 2(G). By
definition of Jj,,, we have that Ja(m) = J for every 7, € Dj,p. Suppose that rv € jbir. Then,

b
rv € Ja (i) " for all Ti € Dyro, L€,

ceofic U GGmaon
2€Bir(Z(C;)°2;,0%3)

Since [G, G] is simply-connected and r € Z°s, this is equivalent to r (’)5}4 = O% being birationally
induced (equiv. weakly birationally induced, by Remark 1.18) from (Cj,, 0%) € B(M) for all

P— b'
Ti € Do, 1€, TV € JM(Ti)w w7 for all ; € Zj,,. For the other implication, observe that

——wb

J(1) € Ty, and if OM < J(1) " then 0% =aG- (M) c 7. This proves the first
assertion.
For the last part of the statement, let rv € 7bw c J. Observe that r € Z(M) im-

. —wbi ——wbi s —re —=re
plies r_quj\)/IjiT = r*lJ;C[;r. By Proposition 3.7, (J 7, rv) ~ge (UIJ,M T_lJE’gi,v). The set
—bir . g — —bi i
T is open in J 7, so (T 7, rv) ~vee (T
— —wbi e
s, . Jﬁi, rv) ~se (Ug, . JUA}J’ZZ-T, rv). Transitivity allows to conclude. O

r .. —wbir . . —=reg
,7v); similarly each Jy,; is open in .J,;, hence

We prove that the local study of a birational sheet in G can be reduced to the study of a

neighbourhood of a unipotent element in some connected reductive subgroup of G.

Theorem 3.24. Let 7 = (C, Z°s,0°) € BB(G). Forrv € Jg(T)biT with r € Z°s, we have
——bir —wbir
(J(;(T) ,rv) ~se (r‘lch(r) (1) ,v) .

Proof. The statement follows from Lemma 3.23, provided that |I;,,| =1 if 71)" is a birational

sheet, where I, is as in (3.2). Since OC is birationally rigid in C, also O is birationally rigid
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in C; for all i € Iy, as (C, OC) and (C;, O are conjugate in G (see Remark 1.24). We set
M := Cg(r). Thus each JMl bir
Theorem 2.25, M is partitioned into its weakly birational sheets, hence the set J;,, as in (3.2)

in (3.9) is a weakly birational sheet of M containing rv. By

only contains Jps (7). O

The following result compares the local structures of a birational sheet of G and of a birational

sheet in a reductive Lie subalgebra of g.

Theorem 3.25. Let 7 = (C, Z°s,0°) € BB(G) and let rv € Jg(T)biT with r € Z°s. Then

bir <o

(Ja(r) 1) ~se Feg(n(€,9) )

bir

where ¢ = Lie(C'), the orbit 0¢ ¢ N./C satisfies exp O = 0%, the set ch(r)(c,}:)c) s a

birational sheet in c¢g(r) and v € N () is such that expv = v.

Proof. This follows from Theorem 3.24, Corollary 3.3 and the fact that 0% e Ue /C'is birationally
rigid if and only if O¢ € N./C is so (Lemma 1.20). O

We conclude this Chapter with some applications of Theorem 3.25 and Losev’s results on the
geometry of birational sheets in g in [67, §4]. We will first need the following fact from Algebraic

Geometry.

Lemma 3.26. Let X and Y be complex algebraic varieties with dim X = dimY +d. Let X and
Y be unibranch at x € X and aty €'Y, respectively. Suppose (X, x) ~s. (Y,y). Let ¢x: XX
and Py : Y — Y be the normalizations of X and Y, respectively. Let & € X and Yy € Y with
Yx (Z) =z and ¥y (§) = y, respectively. Then ()?,i) ~ge (}7, g)-

Proof. By assumption, (X", z) and (Y x A%, (y,0)) are locally isomorphic as analytic pointed
spaces. Let Xan (resp. ﬁ‘) be the normalization of X" (resp. of Y*"). By [63, §5, Satz 4],
we have X% = X and Y = Y Thus, (X, %) is the analytic normalization of (X,z)
and (Y x A% (§,0)) is the analytic normalization of (Y x A% (y,0)). Hence, (X", %) and
(Y‘m x A? (§,0)) are locally analytically isomorphic and this concludes the proof. O

Theorem 3.27. Let 7 = (C, Z°s,0%) € BB(G). Then:
(i) Jo(T) T s untbranch;

I
(i) the normalization of Ja(T) " is smooth.

Proof. Retain notatlon from Theorem 3.25, and set J = Jg(7) and J = J._ () (¢, ¢, 09).

(i) Let rv € 7. By Theorem 3.25, we have (71)z V) ~ge (Jb“,y). By Remark 1.24, the
orbit O is blratlonally rigid and the statement follows from [67, Theorem 4.4 (2)] applied to
the birational sheet J " in the reductive Lie algebra cg(r).

(11) By ( ), we have that (J b JTV) ~ge (jbw, 1/) are both unibranch. Let ¢: J — 7 and
Py J — ‘J " denote the normalization maps of 7 andfj " respectively. Then (J, 7 7Hrv)) ~se

(3, w7 (v)) by Lemma 3.26 and we conclude by [67, Theorem 4.4 (2)]. O
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Theorem 3.28. Suppose that the simple factors of G have classical root system. Then the
birational sheets of G are smooth.

Proof. We prove that for 7 = (C, Z°s,0%) € BA(G) and rv € J(T)bir with r € Z°s, J(T)bir

——b
is smooth at rv. By Theorem 3.25, from which we retain notation, we have (J(7) ”,rv) ~se
——bir ——bir
(eg(m (e 9 ,v). The algebra c4(r) is reductive, hence Jeg(m (e, 9% decomposes as a prod-
uct of a vector space and some birational sheets in simple classical Lie subalgebras of [c4(7), ¢q(7)],

and all such objects are smooth by [67, Remark 4.10]. O
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CHAPTER
FOUR

RINGS OF REGULAR FUNCTIONS OF ORBITS
ALONG BIRATIONAL SHEETS

An important numerical invariant attached to each adjoint orbit O C g is given by the multi-
plicities with which each irreducible finite-dimensional G-module M occurs in C[D]; the aim is
to characterize subsets of g consisting of orbits parameterized by the same invariant. In Section
4.1 we introduce the necessary notation and results. We then give a brief historical overview
about the problem of multiplicities in Section 4.2: we recall the first formulation by Dixmier [41]
for the case of sl,,(C) and we illustrate results obtained by Borho and Kraft in [13]: for s[,(C),
the sheets of g coincide with the sets of orbits whose rings of regular functions are isomorphic as
G-modules. We introduce the similar problem in the framework of conjugacy classes of a simply-
connected group: for SL,, (C) we can prove that the situation is analogous to its Lie algebra. The
generalization of Dixmier’s problem to g simple of type different from A has been addressed more
recently by Losev, [67]. As already mentioned in the Introduction, Losev has proven that mul-
tiplicities of orbits are preserved along birational sheets (which coincide with sheets for sl,(C))
and he has conjectured that this invariant characterizes birational sheets, [67]. After an exposi-
tion of Losev’s contributions, we conclude with the original content of this Chapter, contained
in Section 4.3. For GG simple simply-connected, restricting to the subset of spherical conjugacy
classes, we can prove group analogues to Losev’s result and conjecture. Finally, some remarks

on Losev’s conjecture for the subset of spherical adjoint orbits are collected in Section 4.4.

4.1 Notations and basic results

In this Chapter, unadorned tensor products should be read as tensor products over C. If M; and
M are G-modules, we write M7 ~¢ M to denote that they are isomorphic as G-modules. The
set of isomorphism classes of finite-dimensional irreducible G-modules is denoted by Irr G and
its elements are parameterized by X (T)T, the set of dominant weights of T with respect to ®+.
We write V() for the irreducible G-module of highest weight A\. We denote by P the lattice of
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integral weights of g, by PT the monoid of dominant weights. We denote the fundamental weights
with wy,...,w, and the fundamental co-weights with wy,...,w,: these are the elements @; € b
defined by a;(w;) = d;; for 1 < 4,j < n. For G semisimple simply-connected, it is well-known
that X (T) identifies with P and X (T)" identifies with P™.

By Peter-Weyl Theorem, any G-module M admits a canonical decomposition

M=~g P Homg(V,M)eV~; @ (MaV)9aV,
VelrrG VelrG
where Homg(V, M) denotes the set of G-equivariant linear maps V' — M. For V € Irr G and a
G-module M, we define the multiplicity of M in V as the integer [M : V] := dim Homg(V, M).
This yields the following decomposition for C[G/H] = C[G]* if H < G-

ClG/Hl~c P ()" aV)eV e~ @ VeV~ @ nvaV (4.1)
Velr G Velr G Velr G
where ny g = [C[G/H] : V]. Let X be a G-variety and let z € X; since the ground field is C,
the orbit map G — X defined by g + ¢ -  induces an isomorphism of varieties G/G, = O,
and we have C[0,] ~¢ C[G/G,] = C[G]%. Then (4.1) applies with H = G,.

A transitive G-space X is called spherical if a Borel subgroup of G has a dense orbit in it.
Now suppose X is a conjugacy class of G or a G-adjoint orbit of g: in this case X is spherical
if and only if C[X] is multiplicity-free, i.e., ny,q, € {0,1} for all V € Irr(G), for z € X, [20,98].
We denote by A(X) the monoid of dominant weights occurring in C[X], in particular we have
C[X] = @ rea(x) V(A). We will describe the weight monoid A(X) by means of a generic element
contained in it, i.e., Z?zl n;w;, where n; € N and w; is the i-th fundamental dominant weight.
A subgroup H < G is said to be spherical if the homogeneous space G/H is a spherical variety.

We denote by Ggpp, (resp. gsprn) the union of all spherical conjugacy classes in G (resp.
spherical adjoint orbits in g). By [6, Corollary 2], the subset Gspn (resp. gspn) is closed in G

(resp. gspn), in particular it is a subvariety.

4.2 The ring of regular functions as an invariant

One of the main motivations which led to the study of sheets of g in [13] was Dixmier’s multiplicity
conjecture, left open from [41] which we now state in our notation. Let G = PSL,(C), and let
d F n. Consider the nilpotent orbit in g attached to it, Oq, and the standard Levi subgroup Lg¢
defined in (3). For V € Irr G, is it true that [C[Dg4] : V] = dim(V*)Lat?

The answer to this question is positive: it was obtained by Borho and Kraft in [13], as
a corollary of a more general result, which we sum up in the following statement, in a form

adapted to our notation.

Theorem 4.1 (Borho-Kraft [13, Theorems 3.8 and 6.3]). Let G be simple and adjoint. Let &
be a sheet of g and let O be the unique nilpotent orbit in &, let v € O. If O is normal and Cg(v)

is connected, then C[D] ~¢ C[O] ~¢ C[D'] ~g C[O’] for all orbits O in &.
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Let us now return to the setting of G = PSL,, (C). Recall that sheets of sl,,(C) are disjoint and
are parameterized by the unique nilpotent orbit which they contain: this was first recorded in [40].
Moreover, the assumptions of Theorem 4.1 hold, since Cg(v) is connected for all v € A" and O
is normal for each O € N/G: normality of closures of nilpotent orbits of sl,, (C) was established
by Kraft and Procesi in [61]. Therefore, Borho and Kraft could conclude in [13, Nachtrag bei der
Korrektur] that the G-module structure of the algebras of regular functions on adjoint orbits is
preserved along sheets of sl,(C). In particular, Dixmier’s multiplicity conjecture is true, since
for every d F n, the nilpotent orbit Oq lies in the same sheet of the orbits of semisimple elements
centralized by Lgq:.

The natural following question is: do multiplicities “separate” distinct nilpotent orbits, hence
distinct sheets, in sl,(C)? The answer is again positive, as recorded in the following statement.
We thank Eric Sommers for suggesting the use of small modules in the proof; recall that a

G-module V() € Irr G is said to be small if twice a root never occurs as a weight.

Proposition 4.2. Let G be simple with g = sl,,(C). If O1 and Oy are two distinct nilpotent
orbits in g, then C[O1] #a C[O3].

Proof. Let C denote the trivial representation of a group, let A € P and let V(\)g = V(AT be
the zero weight subspace in V/(A): then V(X)g is a W-module (in general, reducible). Let L < G
be a Levi subgroup with Weyl group Wy,. By [21, Proof of Corollary 1], if V'()) is small, we have
VINE = (VIOT)We = (V(N\)o)E and, by Frobenius reciprocity, dim(V (\)o)"Vr = [Ind%L C:
V(X)o]. For g = sl,(C), for every irreducible W-module M there exists A € PT N Z® such that
V(A) is small and V(A\)g ~w M, see [21, example p. 389]. Let d = [dy,...,dg] F n, then the Weyl
group Wy of Lq is isomorphic to the direct product of the symmetric groups Sym(d;), for ¢ =
1,...k. The Richardson orbit Ind%"d {0} = Ogqr lies in the same sheet containing the semisimple
elements centralized by Lgq. By Theorem 4.1 and [59, §2.1], [C[Dq4:] : V()] = dim V/(\)Le for
every simple G-module V(). If we denote by Vg the Specht module corresponding to d, then:

Indjy, C=Vyq & @devf
£>d

where the coefficients Kfq are the Kostka numbers and < is the lexicographic total order on
partitions of n, see [46, Corollary 4.39]. Let d; and ds be different partitions of n, we may
assume d; > dg. Then there exists a small simple g-module V' (A) such that Vg, ~w V(X\)o.
Then [C[Dgq,] : V(A)] =1# 0= [C[Dq,] : V(A)], and we conclude. O

The above arguments can be gathered in the following result, which illustrates the situation

for sl,(C), where sheets coincide with birational sheets.

Proposition 4.3. Let G be simple with g = sl,,(C). Then 91 and O € g/G are in the same
(birational) sheet of g if and only if C[D1] ~¢ C[D3]. O

We now consider the group case: for a connected reductive group G, what can be said on the

behaviour of the G-module structure of C[O] as the conjugacy class O varies along the sheets of
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G? We begin with some easy observations. In [23, §3.7], it is proven that all adjoint orbits in
the same Jordan class of g are isomorphic as G-homogeneous spaces: in particular their rings of
regular functions are isomorphic as G-modules. In the group case, one needs to take into account

central elements, as the following remark shows.

Remark 4.4. Let su € G and z € Z(G). Then O, and O,s, = z0s, are isomorphic G-
homogeneous spaces: in fact, Cq(su) = Cg(zsu) so that C[Ogy] ~a C[O 454

Proposition 4.5. Let [G,G] be simply-connected and let J € ¢ (G). Then for all 01,05 C
Z(G)J, the G-homogeneous spaces O1 and Oq are isomorphic. In particular, C[O1] ~¢ C[O2].

Proof. Suppose J = J(1) for 7 = (M, Z(M)°s, OM) € 2(G). Then J = G - ((Z(M)°s)"*9u) and
all conjugacy classes in J meet (Z(M)°s)"®9u. We show that sju, squ € (Z(M)°s)"*9u imply
G/Cq(s1u) ~ G/Cq(s2u): indeed, Cg(s1u) = Cq(s1) N Cq(u) = M N Cq(u) = Ci(sau). The

statement follows from Remark 4.4. O

Observe that in Proposition 4.5 the hypothesis on [G, G] cannot be relaxed, as illustrated by

the following example.

Example 4.6. Recall the situation of Example 2.11 and retain notation from therein: 7: G =
SL2(C) — G = PSLy(C). Let t, = diag[k, k=] € T for k € C* and denote t; = 7(t;). We
have C(ty):
_ H = N5(T if k= 44
Ca(te) = { = —oG( ) .
T=H otherwise.
Neither the G-module structure nor the G-homogeneous space structure of conjugacy classes is

preserved along the Jordan class consisting of regular semisimple elements. In particular, we

have:

k ClOg] | AOF)

k =+ C[G/ ] 47’L1(4)1

ke C\{0,4+1,+i} | C[G/T] | 2niwn

Table 4.1: Regular semisimple spherical classes in PSLo(C).
Let us consider the most familiar case G = SL,,(C). Since pseudo-Levi subgroups of G are
Levi subgroups (Remark 0.5), we get the following analogue of Proposition 4.3.

Theorem 4.7. Let G = SL,(C), let O; and O3 be conjugacy classes of G and let S1 (resp.
Sa) be the (birational) sheet containing O1 (resp. Oz). Then C[O1] ~¢ C[O2] if and only if
Sy = 251 for some z € Z(G).

Proof. Recall that (birational) sheets in G are disjoint (see Corollary 2.31) and parameterized
by G-classes of pairs (L, Z(L)°z), with L a Levi sugbroup of G and suitable z in Z(G). For every
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g € G there exists £ € g such that Cg(§) = Ce(g): if the sheet of G containing O, corresponds
to the G-class of (L, Z(L)°z), then the sheet of g containing £ corresponds to the G-class of
Lie(L). Let g; € O, and &; € g such that Ca (&) = Ca(g:), and let (L;, Z(L;)°z;) correspond to
S; for i = 1,2. Then C[O;] = C[Og,] for ¢ = 1,2. Therefore C[O1] ~¢ C[O5] if and only if and
only if Ly and Lo are G-conjugate by Proposition 4.3, hence if and only if Sy = 257 for some
z € Z(Q). O

As we anticipated, it is not true, in general, that the G-module structure of algebras of regular
functions on adjoint orbits are preserved along sheets of any simple Lie algebra. Already Borho
and Kraft came up with examples of this phenomenon in [13, §6.6]: for g of type B2 or Gg,
the algebra g presents two distinct subregular sheets &1, &, such that &1 N Gy = Oy, the
nilpotent subregular orbit. Then the G-module structure of C[O] is constant as O varies in &y,
while C[O] ¢ C[Osyeq] for O semisimple in Ss.

It was not until the recent work of Losev [67] that the problem of multiplicities of orbits of
g has found new and interesting developments. Considering birational sheets instead of sheets,

Losev obtained the desired result:

Proposition 4.8 (Losev [67, Remark 4.10]). Let g be reductive. If O1 and Oy are two orbits of
g lying in the same birational sheet, then C[O;] ~g C[O4].

As announced in the Introduction, the result was obtained via the theory of Poisson defor-

mations. In addition, Losev conjectured that the converse is also true:

Conjecture 4.9 (Losev [67, Remark 4.10]). Let g be reductive. If O; and O, are two orbits of g
satisfying C[O;] ~¢ C[D4], then they lie in the same birational sheet.

With the notion of birational sheets of a group G introduced in Chapter 2, we are motivated
to investigate group analogues of Proposition 4.8 and Conjecture 4.9, restricted to the spherical

subvariety G, C G: this is done in the next Section.

4.3 Spherical birational sheets

In this Section, unless otherwise stated, we assume that [G, G] is simply-connected. In particular,
centralizers of semisimple elements of G are connected. Recall that, for a spherical conjugacy
class O the G-module structure of C[O] is completely determined by the weight lattice A(O).
To tackle the problem, we want to make use of the complete description of the weight monoids
A(O) for O spherical in G simple simply-connected given in [27, 36].

The property of being spherical is preserved along sheets, as proven in [6, Proposition 1]. As
in [28], we call a sheet spherical if it is contains a spherical orbit, equivalently if it consists of
spherical orbits. Since every birational sheet is contained in a sheet, the following definition is
well-posed.

——bir
Definition 4.10. Let 7 € Z%(G). The birational sheet J(7)  is said to be spherical if one of

the following equivalent properties is satisfied:
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——bir
(a) all conjugacy classes O C J(7)  are spherical;
——bir

(b) there exists a spherical conjugacy class O C J(7) ;

——bir
(¢) J(r)  is contained in a spherical sheet.
We will prove the following result.

Theorem 4.11. Let G be a complex connected reductive algebraic group with [G,G] simply-
connected. Then the spherical birational sheets form a partition of Gspn. Let O1 and Oz be

spherical conjugacy classes in G. Let Jg(ﬁ)bir (resp. Jg(Tz)b%T) be the birational sheet containing
O (resp. Os). Then C[01] ~¢ C[Os] if and only if Ja(ma) " = zJda(m) . for some z € Z(G).

Clearly, it is enough to prove Theorem 4.11 for G simple: let G be simple, we illustrate the
procedure for the proof of Theorem 4.11.

The list of spherical conjugacy classes in G simple was first completely carried out in [27]; we
rather adopt notation from [36], where G is assumed to be simply-connected. The fact that Gy,
is partitioned as the union of spherical birational sheets of GG is a direct consequence of Theorem
2.25 and of Definition 4.10. With this in mind, we compute the list of spherical birational sheets
in G, proceeding as follows.

- For z € Z(G), we have O, = {z}, w, = 1 and C[O,] = C: then {z} is the unique sheet
and the unique birational sheet containing z. Therefore, we can restrict to considering
non-central spherical conjugacy classes.

- We begin the list by computing all spherical birational sheets containing semisimiple el-
ements. Notice that such birational sheets are exactly those obtained as .J(7) " with
T = (M,Z(M)°s,{1}) € BA(G) and M a spherical pseudo-Levi subgroup of G: this
follows from Definitions 2.23, 4.10 and Remark 2.18. We deduce the list of spherical
pseudo-Levi subgroups M up to G-conjugacy from [27,36]: by inspection, we have two
possibilities. .

(i) If M is a spherical Levi subgroup, the birational sheet mb” is dense in the spherical
sheet mreg. Moreover, it turns out that mreg \ J(7) is a union of isolated classes.
Since J(7) C TT)MT, we can compute mbw by checking whether the isolated classes
in mmg are birationally induced or not, using Corollary 1.5 or Lemma 1.26 and the
list of birationally rigid unipotent classes in Section 1.3.4.

(ii) If M is a spherical pseudo-Levi subgroup which is not Levi, then M is semisimple and

J(T)bw =J(7) 9= J(7) = J(7) is an isolated semisimple class.

- At this point we are left with considering all spherical conjugacy classes which are not
semisimple, nor birationally induced as in (i). By inspecting the lists in [27,36], we see that
all such classes are spherical classes Oy, with s semisimple isolated and OSG(S) birationally
rigid, confronting the list in Section 1.3.4. We conclude by Remark 2.27 that these classes
are spherical birational sheets.

We collect the list of spherical birational sheets in a table. In the first column we write a triple
T = (M, Z(M)°s,0M) ¢ BA(G) corresponding to a spherical birational sheet mbw, whose
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decomposition into conjugay classes is described in the second column. From the tables in [36]
we verify that the weight monoid is constant on the classes in J(7) " and we describe A(O) in
the third column. In the cases when Z(G) is non-trivial, we list also a fourth column indicating
the number of (disjoint) birational sheets in Z (G)mbw. This is produced by applying Remark
2.35 when OM is characteristic in M and by direct computation otherwise (this case occurs only
for M semisimple of type C,,Cy, in G of type Capm, m > 2, see Remark 4.22). The fact that A(O)
is independent of the orbit O in mbw (and hence in Z (G)mbw) proves the group analogue
of Proposition 4.8 (for spherical conjugacy classes in G simple simply-connected). To prove the
validity of the group analogue of Conjecture 4.9 one has to check that the entries in the third

column are pairwise distinct.

We set the following notation. For ¢ = 1,...,n, recall that ¢; is the coefficient of «; in the
expansion of the highest root. We put: r; = exp “(j—? for i =1,...,n. These elements are a family
of representatives of the semisimple isolated classes, [38]; moreover, Z(G) = {1} U{r; | ¢; = 1}.
For:=1,...,n, we set:

0; = A\ {a;} L;:=Leg,; (4.2)
0, := A\ {w} My := Mg = Ca(r;). (4.3)

We shall freely use the notation from in [36] to describe unipotent elements as products of
elements of the root subgroups, namely, for @« € ® the root subgroup U, will be expressed
through a one-parameter additive subgroup as follows U, = {z(¢) | ¢ € C}.

4.3.1 Type A,

Let G = SL,4+1(C), for n > 1. Clearly, Theorem 4.11 holds for G: this is a consequence of
Theorem 4.7 applied to the spherical subvariety G,,. For the sake of completeness, we list
the spherical birational sheets of G and the weight monoids of orbits contained in them. Set
mi= 51

If n = 1, every conjugacy class of G is spherical and there are three (birational) sheets:
{-1},{1} and G"*9.

Let n > 2. Consider the Levi subgroups L;, for all ¢ = 1,...,m. Then [L;, L;] is of type
A, _iA;_1, the centre Z(L;) is one-dimensional and consists of d; = ged(n+1—14,¢) = ged(é,n+1)
distinct connected components which are not conjugate in G. Let d; :== [n + 1 — 7,7] and let
7i = (Li, Z(L;)°,{1}), then Z(L;)° = exp(C&;), and Z(G) N Z(L;)° has order L. We have:

—bir ——Treg Cal(z
I =dm) = Y G emdifP ) = | Oepeantd U 20,
2€Z(L;)° CEC\27iZ 2€Z(G)NZ(L;)°

by [35, Theorem 7.2.3]. Tt follows that Z(G)J(7;) " is the disjoint union of d; birational sheets.
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bir

T J() A(O) d

L,. Z(L,)°. {1 U Oexp(Q;}[) L P
(g f 1( e)°,{ }i) CEC\Z > g (Wi + Wn—k41) ged(t,n + 1)
=1...,m— U(Z(G)QZ(Lz)O)Odz =
L, Z(Lm), {1 _
( £ 5 ) { }) U chp(Cwm) UZ(G) Odt Z nk(OJk 4 Wn—k+1) 1
n=Am ¢eC\Z m =
m—1
LmyZ Lo 07 1 ne(Wk + Wn—k +
( - +(1 :)an }) U Oexp(ga;m) U+ Odin = ( +1) m
e +2nmWm

Table 4.2: Type A,,n>1,m = L"T‘HJ

4.3.2 Type B,,n >3
Set 2 := o/ (—1), so that Z(G) = (2) ~ Zs.
The following result holds indepedently of the parity of n.

Lemma 4.12. Consider 71 = (L1,Z(L1),{1}) € BB(G). Then the spherical sheet Sp =
, bi
Ja(m1) = Ja(m1) " is birational and it contains the unipotent class Oq, with d = [3,12772].

Proof. The group L, is maximal in G of type T1B,,_1 and its centre is connected:

Z(Ly) = {aY (2?)...a)_,(#*))(2) | x € C*}.

n

We have
S = U G- (zlndglc(z){l}) =G (Z(L1)") U Z(G) Og,
z€Z(L1)

where Og = Indf1 {1} with d := [3,1?"72?] I 2n + 1 is the only isolated class in S; up to central
elements. By Lemma 2.30, 51 = mbw if and only if Oy is birationally induced from (L1, {1}).
This is true by Corollary 1.5: we have u = z., (1) € Oq, where & is the highest short root of G;
a direct computation shows Cg(u) < Pg,. Therefore

S = U Oexp((ajl) LUOqUzOq
CEC\Z

——bir ——bir
and Z(G)J(nn) =J(nn) . O
Type B,,n=2m+1,m>1
Let B = eap_1 + eop and wy, = [V, 25,(1) for k=1,...,m.

Lemma 4.13. Consider 1, = (Ln,Z(Ly),{1}) € BA(G). Then the spherical sheet S, =

: b
Ja (1) 4= Ja () " is birational and it contains the unipotent class Og, where £ = (3,271,

Proof. Let n € N,n > 3, we have L,, < M,, < G and 2 = 2. Observe that:
n—1 )
Z(Ly) = {H o ()0 (2n) | 1,20 € C 22 = }
i=1
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is connected. Then:

So= |J G-(zmdfe®1}) =

z€Z(Ly)
=G (Z(L,)") UG - (Z(G)r, Ind}™{1}) U Z(G) IndF {1},

where the last two members in the union contain the isolated classes _in S,. Observe that M,
is simple of type D,. By Lemma 2.30 to prove that S, = Jg(7,) W, it is enough to prove
that Indﬁ"{l} and O = Ind%ﬂ{l} are birationally induced from (L,,{1}). We show that
G- (rn Ind]L\{l”'{l}) is birationally induced from (L,,{1}). Observe that 05" = Ind%j{l}, the
unipotent class in M,, corresponding to the partition [227~! 12]. This class satisfies the criterion
in Lemma 1.26. The unipotent class O in G corresponds to the partition f, hence by Lemma
1.26, it is birationally induced from (L,,{1}). Thus S, is a birational sheet in G. Finally,
we observe that r,, ~w 2r, = r. ! and Oi\{: is characteristic in the simple group M, so that

G- (Z(G)ry, Ind%:‘{l}) is a single class, hence

Sn = U Oexp((d)n) ] O"'n“m [N Of |_|2 Of’
CeC\3Z

We consider the remaining spherical pseudo-Levi subgroups. For £ = 2,... n, the pseudo-

Levi subgroup M, is maximal of type DB, _,, we have:

In any case, Z(M;)"®9 = {ry, Zr¢} and ry ~yw 2rp via the reflection corresponding to the root ;.

Then O,, is a (birational) sheet consisting of an isolated class, and Z(G) O,, = O,,.

We proceed with the non-semisimple spherical conjugacy classes: for ¢ = n, the group M,

My,

is simple of type D,, contains the birationally rigid unipotent class O,

corresponding to the
partition [22, 12("=2k)] for k = 1,...,m— 1. Hence O, ., is a (birational) sheet consisting of an
isolated class. Since r,, ~y ;! (by s,) and Oﬁi" is characteristic in M,, we have Z(G) O, 4, =
Oy, u, by Remark 2.35. The remaining spherical conjugacy classes in G are unipotent birationally

rigid, up to central elements.

65



T

bir

J(r)

AO)

(lez(L1)7 {1})

U Oexp(can U
¢eC\z

UZ(G) 0[3’1271—2]

2ni1wi + nowo

(Lns Z(Ln), {1})

U Oexpcan) U
cec\iz

U, u,, UZ(G) 0[327#1]

n—1
> niwi + 2npwn
i=1

(M, {re}, {1})

20—1

O, 2nw; + naewae
(=2...,m ‘ l;
(Mg, {re}, {1}) 2
O, 2NiWi + No(n—0)+1Wa(n—¢
L=m+2,...,n ¢ 7.; iWi 2(n—)+1W2(n—£)+1
(M1, {Tm+1}7 {1}) T4l Z 2nw;
i=1
M, {rn ’OMn 20+1
(Z _ 1{ } mqﬁ 1) Ornuz El NniWws
yeeny i=
G,{1},0 ntl— ¢
( ’{ E}; 1[226’127;;1 42]) 0[22@,12774»174[] Z Nn2;w2;
=1,..., i=1
G, 1 70 _ 2 dp 20 £
( { } ) [_37;2@ 1) 12n+2 41']) 0[3 22(6-1) 12n 12—ty Z Niwi ‘ N2i_1 € 2N
=2,...,m i ’ i=1 i=1

Table 4.3: Type B,,, n=2m+1, m > 1.

Proposition 4.14. Theorem 4.11 holds for G of type Boy,y1, for m > 1.

bir

Proof. From [36, Table 13, 14, 15] the weight monoid is preserved along classes in Z(G)J(7)
. The entries in the third column of Table 4.3 are

pairwise distinct. O

for every spherical birational sheet J(7)

Type B,,n=2m,m > 2

Let By = eop_1 + eor and ug = Hle xzg,(1) for k=1,...,m.

——Treg

Lemma 4.15. Let 7, = (Ln, Z(Ln)°,{1}), set f := [3,220m=1 12] and let S, = Jg(Tn)
Then S, = Jg(Tn)bW U O¢, where Of is a birationally rigid unipotent class in G. Similarly, the

-}
sheet 25, decomposes as the union of two birational sheets 2Jg(T) U 20Os.

Proof. We have L,, < M,, < G and Z(L,) = {o (z)ay (2?) - - - o)/ (2" D) (£a™) | x € C*} =
Z(Ly)° U Z(Ly)°%; observe that r2 = 1. By Lemma 0.6, Z° and Z°Z are not conjugate in G.
Then

So= |J G-(md°P{1}) =G (Z(L,))" 9 UG - (r, Indy'*{1}) UInd§ {1},

z2€Z(Lyp)°

where the last two members in the union are the isolated classes in S,,. We show that G -
(rn IndJLW:{l}) is birationally induced from (L., {1}). We have M,, is simple of type D,, and
Ind%’"{l} = (’)ftvf: is the one of the two unipotent class in M,, corresponding to [2"], which
fulfils the criterion in Lemma 1.26. We have Indfﬂ{l} = O with f = [3,2207=1 12] |- 2n + 1
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a full-member partition (see §1.3.4), hence Oq is not birationally induced from (L, {1}) and it

forms a single birational sheet in G. Thus

bir

Ja(m) =G ((Z(Ln)°)*) UG- (rand}" {1}) = | Oexp(con)UOrmun -
CeC\3Z
and Z(G)Jg(Tn)bir = Jg(Tn)biT U éJg(Tn)bir. The description of 2.5, follows easily. O
We consider the remaining spherical pseudo-Levi subgroups. For ¢ = 2,...,n, the pseudo-

Levi subgroup M, is maximal of type DB, _, and we have:

(i) r? =1 and Z(M;) = (r¢) x Z(G) for even ¢;

(ii) r? = 2 and Z(M;) = (r,) for odd ¢.
In any case, Z(My)"™? = {ry, 2r¢} and ry ~w Zr; via the reflection with respect to the root ;.
Then O,, is a (birational) sheet consisting of an isolated class, and Z(G) O,, = O,,.

We are now left with the non-semisimple spherical conjugacy classes. For ¢ = n, the subgroup
M, is simple of type D,, and contains the birationally rigid unipotent classes OuMk", corresponding
to the partition [22F,12("=2K)] in SOy, (C), for k = 1,...,m — 1. Hence, O,,,, is a (birational)
sheet consisting of an isolated class. Moreover, r, ~y 2Zr, and (’)3/,{” is characteristic in the
simple group M,,, hence by Remark 2.35 we have Z(G) Oy, = Oy, for k=1,...,m—1. Up

to central elements, the remaining spherical conjugacy classes in G are unipotent birationally

rigid.
T " A(0) d
U OeXD(Ctbl) U
(Ll, Z(Ll), {1}) ¢eC\Z 2ni1w1 + nows 1
UZ(G) (9[3,127172]
n—1
(LTH Z(Ln)oy {1}) U Oexp((w”) u Oo’-,,,um Z ;Wi + 2Npwn 2
cec\iz i=1
M, , , 1 20—1
E(: e2 {N}WE E)l Or, 21 2nw; + Nacwae 1
yeoey i=
(Mg, {re}, {1}) =,
t=m+1,...n O & Pt me-onvie-on | 1
n
(va{rm}a{l}) O'rm Z anLUJZ 1
i=1
My, 2041
(éw_n){ {Tn},n(?wl) Orpuy D niw; 1
— Ly - i=1
G, {1},0 ne1— £
( j :}717 ‘[?2.27’;; ill M]) 0[225712n+1742] Z:l n2iw2; 2
m—1
(G, {].}7 0[22771.71]) 0[227",1] Z nojwa; + 27’ann 2
i=1
G}7 1 ’0 B L dp 20 £
(G A ;: [237,22(57117;71_2 1+2 41’]) 0[3’22@_1)712,&2742] zjlnlwl | Z:lngi,1 € 2N 2
e 1= 1=
(G, {1}, 0[3’22(77171)’12]) O[3y22(m71)712] 2:1 niw; | Z:l N2i—1,Mn € 2N 2
i= i=

Table 4.4: Type B,,, n =2m, m > 2.
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Proposition 4.16. Theorem 4.11 holds for G of type Bo,,, for m > 2.

——bir
Proof. From [36, Table 10, 11, 12] the weight monoid is preserved along classes in Z(G)J(7) '

for every spherical birational sheet J(7) " The entries in the third column of Table 4.4 are

pairwise distinct. O

4.3.3 Type C,,n > 2

We have Z(G) = (2) with 2 = [[ o) (—1). We set m = | 2] and By = 2¢; for k=1,...,m.
j odd

Type C;

Lemma 4.17. Let G = Sp,(C). Fori = 1,2, consider 7; .= (L;, Z(L;)°,{1}) € BAB(G) and set
S, = mreg. Then:

(i) The spherical sheet Sy = Wbir is birational.

(i) The spherical sheet Sy (resp. 2Si) decomposes as the union of two birational sheets

J(Tl)bw U 0[22] (resp. ﬁJ(Tl)b” Lz 0[22]).

Proof. For (i), observe that Z(Ls) = {af(x)ay(z?) | # € C*} is connected. Then Sy =
U.ez,) G- (2 Indff(z){l}) contains two isolated classes: Indgz{l} and 2Ind€2{1}. We have
Ind%{l} = Olp2) € U/G, and u = g, (1)xp,(1) € O[p2 satisfies Cg(u) < Peo,, so that Oz is
birationally induced from (Lz,{1}) and S is a birational sheet, by Corollary 1.5.

For (ii), notice that Z(L1) = Z(L1)° U Z(L1)°2. We have

Si= J G (zmd(*P{1}) =G (Z(L1)°)" ) UG - (ry Ind}" {1}) U IndF {1}.
2€Z(L1)°

Observe that M; ~ SLy(C) x SLy(C), so the mixed class G - (1 Ind%l{l}) = Oriup, (1) I8
birationally induced by Lemma 1.26. The unipotent class Ojg2) = Indgl{l} is not birationally
induced from (L1, {1}), so that

b

J(m) = U Oexp(¢an) U 07’190;31(1)
CeC\3Z

and Z(Q)T(r) " = J(m) - UET(m) O

There is one more spherical pseudo-Levi subgroup M; giving rise to the (birational) sheet
O,,. Note that r1 ~w 2r1, hence Z(G) O,, = O,.,.
Up to central elements, there is one more spherical conjugacy class, it is unipotent and

corresponds to the partition [2,12]: this is birationally rigid.
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T T A(O) d
(L2a Z(L2)» {1}) U 09Xp(<(1)2> UZ(G) 0[22] 2n1w1 + 2nows 1
cet\z
(L1, Z(L1)%,{1}) U Oecxpcan) UO0rmas, 1) | 2mawt +nowz | 2
cec\iz
(017 {T1}7 {1}) Orl Nnow2 1
(G, {1}, O12,12)) Ol2,12) 2nqwy 2

Table 4.5: Type Cs.

Proposition 4.18. Theorem 4.11 holds for G of type Cs.

Proof. From [36, Table 3, 4, 5] the weight monoid is preserved along classes in Z(G)J(r)  for
———bir

every spherical birational sheet J(7) . The entries in the third column of Table 4.5 are pairwise

distinct. O

Remark 4.19. The subregular unipotent class 0[22] lies in both the sheets S; and S;. This agrees
with what is stated in [13, §6(c)]: Opp2) can be deformed in semisimple classes of both types
Oexp(car) and Ocxp(¢a,), but in general the multiplicities of the weights can decrease. Indeed,
for ¢ € C\ 1Z, we have A(Oexp(car)) = (2w1,wa) > (2w1, 2wa) = A(Opp2)) = A(Oexp(can))-

Type C,y, n >3

———reg

Lemma 4.20. Let 7y = (L1, Z(L1)°,{1}) € BA(G); then the spherical sheet Sy = Jg(T1)
decomposes as S1 = Jg(1) "l O4a, where Oq is the unipotent birationally rigid class with
bir

d = [22,12=D]. Similarly, the spherical sheet 25, decomposes as 2Jg(m) LI 204.
Proof. We have L1 < M; < G and

|25 m
Z(L) =S [ edja(@) [] odj(@a) | 21,22 € C 2t = a3 3,
=0 j=1

so that Z(L1) = Z(L1)° U Z(L1)°% and the two connected components are not conjugate in G
by Lemma 0.6. We have:
Si= J G (zmdf°P{1}) =G (Z(L1)°)" ) UG- (r1 Ind) {1}) U IndF, {1}.
2€2(Ln)°
We check whether the two isolated classes in S; are birationally induced. The mixed class
G - (251 Ind79“{1}) is birationally induced, as [L1, L1] = Spy, _5(C) and M; = Sp,,,_5(C) X
SL2(C). The unipotent class O4 = Indgl{l} is not birationally induced from (L4, {1}), indeed

it is birationally rigid, see §1.3.4, and it coincides with a whole birational sheet. Hence

—bir
Jm)" = U OcxpiconUOmas 1)
CeC\3Z

bir bi bir

and Z(G)J(r) . =J(m)  Uzi(r) . O
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reg

Lemma 4.21. Let 7, = (Lpn, Z(Ly),{1}) € BAB(G); then the spherical sheet Sy, = Ja(m,) — is

birational and it contains the unipotent class Og, with £ = [27].

n .
Proof. Observe that Z(L,) = { Moy (") |ze CX} is connected. We have:

=1

So= |J G- (:mdf°®{1}) =G (Z(L,)*9) U zmd? {1} UIndf {1},
ZEZ(Ln)

The isolated classes in S, are Indfﬂ{l} and zA'Indgn{l}7 where Indfn{l} = Of, with f = [2"].
A representative for Of is u = [] z,(1), and Cg(u) < Peo,, implies O is birationally induced

i=1

from (L, {1}), by Corollary 1.5. Hence

——bir Te R
I =Jm) = U Oexp(¢an) UOs Uz O,
CeC\z
——=bir ——=bir
and Z(G)J(r) =J(r) . O
We consider the remaining spherical pseudo-Levi subgroups. For £ = 1,...,m, the pseudo-

Levi M, is maximal of type C,C,,_¢ and Z(Cq(re)) = (re) x Z(G). Then, for (Mg, {re},{1})
we get O,,, a (birational) sheet consisting of an isolated class. We have Z(G) O,,, = O,, U2 O,,
except when n = 2m, £ = m, in which case r,, ~¢g 2r,, and Z(G) O, = O, .

We are left with non-semisimple spherical conjugacy classes.

(i) For £ =2,...,p, the pseudo-Levi M, of type C;C,,_y contains the birationally rigid unipo-
tent class Oi/rffl(l) of the form [2,1%72] x {1}. Then O.ryzp, (1) 18 a (birational) sheet con-
sisting of an isolated class.

(ii) For £ =1,...,m, the pseudo-Levi Cg(r¢) of type C;C,,_, has the birationally rigid unipo-
tent class Oi\/fn(l) of the form {1} x [2,12("=9=2]. Then Oryz,, (1) 18 @ (birational) sheet
consisting of an isolated class.

In both cases, we have that Z(G) Orpag, (1) = Orpag (1) UEOrpay (1) and Z(Q) Orpen, (1) =
Oriae, (1) U2 Oryz, (1)- The only case which needs inspection is n = 2m, £ = m: we have

Tm ~W 2Tm, but rpxs, #a Zrmeg, .

Remark 4.22. This is an example of (M, Z°s;, OM), (M, Z°sy, OM) in BB(G) with (M, Z°s,),
(M, Z°sy) G-conjugate, but (M, Z°s;, OM), (M, Z°sy, O™) not G-conjugate: in this case the
(birationally) rigid class OM is not characteristic in the semisimple pseudo-Levi subgroup M.

Up to central elements, the remaining spherical conjugacy classes in G are unipotent bira-

tionally rigid.
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- 7J(T)bi'r A(O) d
(Ln, Z(Ln),{1}) U Oexp(caon) UZ(G) Opany > 2nw; 1
ceC\Z i=1
(L1, Z(L1)°,{1}) U Ocxpican U Orag, 1) Zniwr + nawe 2
cec\iz
M, 1 s
T D
(VT T} A1) . )
ifn=2m+41 O, > naiwai
(Mma {Tm}a {1}) =t 1
if n=2m
ntl
(Mo {run}, OV 0 o | o | 2
moArm b O (T pg2tn—m)—2)) Fameen (1) 2; niw | l; n2i—1 €
i oM 2041 1
( e,{;ei ) {1}><£72r;12(”1*“*2]) Orran(1) Zl niwi | 2712#1 €2N | 2
=1,....m— i= i=
Mo (e}, O™ 20 ¢
(M, {Zi ) [2,122m2]x{1}) Orpoy (1) ;mwz | ;nzifl € 2N 2
G, {1}, O 12020 S
(G {1}, Opat tan-20) Opat o2 3 2niw 2
—_— PICECIEY 1=

Table 4.6: Type C,,n > 3,m = L%J

Proposition 4.23. Theorem 4.11 holds for G of type C,,, n > 3.

Proof. From [36, Table 3, 4, 5] the weight monoid is preserved along classes in Z(G)J (T)bir for
every spherical birational sheet J(T)b”. Assume A(O01) = A(O3) for Oy C Z(G)J(Tl)b“702 C
Z(G)J(Tg)b”. This is possible if and only if n = 2m for m € N;m > 1, and

1 = (Mm, {Tm}70{{?><[2,1n—2]) = (Mma {Tm}a OMm )

Lap (1)

T2 = (Mnu {Tm}a Of\g/{Tvz—2]><{1}) = (Mma {Tm}y o )

Tp1(1)
However in this case , ~¢g 2rp, and also rp2a, (1) ~¢ Zrmzg, (1). Therefore, the triples 7

bir bir
and (M, {2rm }, (’)%’I’*m) are G-conjugate and J(m) = 32J(m2) . O

4.3.4 TypeD,,n>4

Let ¥ denote the graph automorphism of G which swaps «,_; and a,,. We observe that r; =
a) _(—Da) (1) € Z(G).

n—1
Type D,,,n =2m,m > 2

For G of type Do, m > 2 we have that r,_; and r, are involutions and r,7r,_1 = ry; in

particular,

m—1
Tn m even
H agjﬂ(il) - { m odd

7=0 Tn-1

hence Z(G) = (r1, 1) = (r1,mn—1) = Za X Zs.
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———Te(
J T1

Lemma 4.24. Let 7y == (L1, Z(L,)°, {1}) € BB(G). Then the spherical sheet Sy = J(r1) — is

) 12n73]

birational and it contains the unipotent class Ogq where d = [3 . Similarly, the spherical

sheet r,S1 is birational.

Proof. Remark that:

m—2 m—1
Z(L1) = 4TI agjsa(z2®) [T 03;(@*) o1 (Fa)ag,, (2) |2 € C
7=0 j=1

so that Z(L1) = Z(L1)° U Z(L1)°ry,. We have:

Si= J G (zmd{*P{1}) =G ((Z(L1)°)") UInd{ {1} Ury Indf {1},
z€Z(Ly)°
where the last two members of the union are the only isolated classes in S;. We have Indg1 {1} =
Oq, where d = [3,1?"7?]. By Lemma 1.26, the class Oq is birationally induced from (Ly,{1}),
hence Jg(Tl)b” =57 by Lemma 2.30. Therefore,

bir re
J(Tl) = J(Tl) - U (’)exp(gwl)l_l(’)d Ur; Oq
CeC\Z

and Z(G)Sl =S Ur,S; O

For the following result set some additional notation: we consider the very even partition
[2"], it is well-known that there exist two unipotent conjugacy classes in G corresponding to this

partition, and they are swapped by the automorphism . We set:

0 2
Opny =Ind? {1} . . «< Olpny =Indf, {1} o «<
0 0 00 ) 0 0 00 0

Lemma 4.25. Let 7, = (Ly, Z(L,)°,{1}) and 7,1 = (Lp—1,Z(Lp—1)°,{1}) € BAB(G). The

following spherical sheets of G are birational:
T

(i) Sy = Jg(mh) “ and riS,.
(it) Sp—1:=9(Sp) = Jg(Tn,l)Teg and r1.S,_1.

Proof. For (i), we have Z(L,) = {aY(x)ay(z?) - a)_o(x" ?)ay_i(a™)a) (2™ ) | €
C*}=2Z(L,)°UZ(Ly)°r1. By Lemma 0.6, Z(L,,)° and Z(L,)°r; are not conjugate in G, hence

——bir

we have two distinct sheets S,, and r1S,,, where S,, = JG(Tn)Teg. We prove that S,, = Jg(7,)
We have

So= |J G-(zmd°®{1}) =G ((Z(L,)°) ) UInd¢ {1} Ur, nd? {1}.
z€Z(Ly)°

The two isolated classes in S,, are Ind(L;n{l} = O[2n) and 7y, O[2n1. We conclude by Lemma 1.26.

Therefore

S, = U Oexp(cwn) U O[Qn] Urn, O[Qn]
CeC\Z
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is a spherical birational sheet and Z(G)S,, = S, Ur1S,. By applying the automorphism ¢ we

get
Snfl = U OEXP(C@'n—l) L Ol[Qn] |_|Tn,1 szn]
CeC\Z
and Z(G)S,—1 = S,—1 Ur1S,_1, proving (ii). O
We consider the remaining spherical pseudo-Levi subgroups. For £ = 2,...,m, the pseudo-

Levi subgroup M, is maximal of type DyD,,_;.
(i) For £ odd we have r7 =7y and Z(M;) = (r¢) x (rp);
(ii) For ¢ even we have 72 = 1 and Z (M) = (ry) x Z(G).

In both cases, Z(M;)™9 = {r¢,r1re,"n—17¢,mn7¢}. Observe that for £ = 2,...,m — 2, we have
To ~W T1Te W Tn—1Te¢ ~w TnTe, Whereas for £ = m, all elements of Z(M,)"¢9 are W-conjugate.
To sum up, for all £ =2,...,m we have that O,, is a (birational) sheet consisting of an isolated
class. Moreover, for ¢ = 2,...,m—1 we have Z(G) O,,, = O, Ur,, O,,, whereas Z(G) O,,, = O, .

Up to central elements, the remaining spherical conjugacy classes in G are unipotent bira-

tionally rigid.

r 7J(T)bir A(O) d
U Oexpcan) U
(leZ(Ll)Ov{l}) ¢eC\Z 2ni1wi + nows 2
[ O[3Y12n73] Liry O[3Y12n73]
U Oexp(con) U m—1
(Ln, Z(Ln)°, {1}) CeC\zZ > N2iw2i + 2nnwy 2
[ O[gn] Urn O[Qn] i=1
U Oexp({mn, ) u m—1
(L1, Z(Ln-1)°, {1}) cet\z ' > noiwsi 4+ 2nn1wno1 | 2
U Olgny Urp—1 Ofgn i=1
(Me, {7’[}7 {1}) 20—1
O, 2niw; + Nogwap 2
(=2 m—1 ¢ Py 202
(Mm7 {Tm}, {1}) O'rm Zl Qniwi 1
i=
G, {1}, O92¢ 12n—ac 7
( é{_}]j [22/;);2_ f/]) 0[222712"7“] E Noiwa; 4
=1,..., =
(G7 {1}7 0[3 22(£—1) 12n—4(+1]) 24 4
’ ’ @ —1) 12n—4¢ niw; ng;—1 € 2N 4
(=2, ,m—1 [3,22(6-1) 12n—4t+1) Py 12
2 niw |
(G, {1}7 0[3,220"*1),1]) 0[3,22(71171),1] m =t 4
N2i—1,Nn—1 + Npn € 2N
i=1

Table 4.7: Type Dy, n =2m,m > 2.

Proposition 4.26. Theorem 4.11 holds for G of type Da,,, with m > 2.

Proof. From [36, Table 6, 7] the weight monoid is preserved along classes in Z(G)J (T)bir for
———bir

every spherical birational sheet J(7) . The entries in the third column of Table 4.7 are pairwise

distinct. ]
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Type D,,,n=2m+1,m > 2

For G simple simply-connected of type Dayyq1,m > 2, we have
[T a1 (~Dal_y(—)a¥(i) m even
a;/j-i—l(_l)a'r\{fl(i)av(_i) m odd

has order 4 and 72 = rq, hence Z(G) = (rp) = (rp_1) ~ Zy.

——Teg

Lemma 4.27. Let 7y == (L1,Z(L1)°,{1}) € BA(G). Then the spherical sheet Sy = J(11)
is birational and it contains the unipotent class Oq with d = [3,12"73]. Similarly, the spherical

sheet r,S1 1s birational.

Proof. Remark that:

m—1 m—1
Z(L) = § [T esj1@®) T as;(x0%)as, (£2)ag, (@) [z € C 3,
j=0 j=1

so that Z(Ly) = Z(L1)° U Z(L1)°ry,. We have:
Si= |J G (zmd(*P{1}) =G ((Z(L1)°)") UInd {1} Ur Ind§ {1},
z€Z(Lq)°

where the last two members of the union are the only isolated classes in S;. We have Indg1 {1} =

Og, where d = [3,12"73]. By Lemma 1.26, the class Ogq is birationally induced from (L1, {1}),
bir

hence Jg(m) = S1 by Lemma 2.30. Therefore

bir re
J(Tl) = J<Tl) ! = U Oexp(@bl) U Od Ury Od
¢eC\z

and Z(G)Sl = Sl L T'nSl O

We remark that wg acts as —1, so that in this case L,, ~g ¥(Ly,) = Ly—1.

€eg

Lemma 4.28. Let 7, = (Ln, Z(Ly),{1}) € BAB(G). The spherical sheet S, = Jg(s) = is

birational and it contains the unipotent class Of with f = [2"71,12].

Proof. Remark that Z(L,) = {aY (z)ay (z?) - ) 52" )y _{(zn_1)a) (z,) |2 € C* 22 | =
n—2

2" 2, x, 12, = 2" '} is connected. We have

So= |J G-(zmdfeP{1}) =G (Z(L,)"*9) U Z(G) Ind {1}.
z€Z(Ly)

Let f = [2"71,1%], then O¢ = Ind¥ {1}, and by Lemma 2.30, Ja(m) ¥ = Jg(Tn)bir if and only
if Of is birationally induced from (L, {1}). This is true by Lemma 1.26, hence

bir
Sy = ‘](Tn) = U Oexp(Cd)n) U O¢ Ury Of Ur, 1 O¢ Ury, Ofa

CeC\Z
and Z(G)S,, = S,. O
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Proposition 4.29. Theorem 4.11 holds for G simple simply-connected of type Dopi1, with
m > 2.

We consider the remaining spherical pseudo-Levi subgroups. For ¢ = 2,... m, the pseudo-
Levi subgroup M, is maximal of type DyD,,_;.
(i) For ¢ even we have r? =1 and Z(M;) = (r¢) x Z(G).
(ii) For ¢ odd we have r? = ry and Z(M;) = (r¢, zn).
In both cases Z(My)"? = {ro,r17e,"n_17e,Tnre} and rp ~w 170 Aw Tn_17¢ ~w rpre. Then
O,, is a (birational) sheet consisting of an isolated class, and Z(G) O,, = O,,Ur, O,, for all
£=2,....,m.
Up to central elements, the remaining spherical conjugacy classes in G are unipotent bira-

tionally rigid.

bir

T J(r) AO) d
(L1, Z(L1)°,{1}) ety et 211 + naws 2

U O3 12n—31 Ur1 Oz 12n-3)
(Ln, Z(Ln),{1}) CuELéCJEé()DZ:jw:)l: 7;;1 N2iw2i + Nn—1(Wn-1 +wn) | 1
L T |
(M, {rm}, {1} Or,, nz_f 21W; + N1 (Wne1 +wn) | 2
T f

(G, {1}, 0[3’22(271)71%—4“1])

20 0
O 2(0—1) 12n—4£ n;Ww; noi—1 € 2N 4
(=2...,m—-1 [3,22(6=1), 120 —4¢+41] 2, miwi | 3, nai

i=1 4

n—2

> Niwi + N1 (Wn—1 + wn) |
(G, {1}7 0[3,22<m—1),13]) 0[3,22<m—1),13] =t m 4
E n2i—1 € 2N

i=1

Table 4.8: Type D,,n =2m+1,m > 2.

Proposition 4.30. Theorem 4.11 holds for G of type Dopyq1, with m > 2.

——bir
Proof. From [36, Table 8, 9] the weight monoid is preserved along classes in Z(G)J(r)  for
every spherical birational sheet J (T)bw. The entries in the third column of Table 4.8 are pairwise

distinct. 0

4.3.5 Type E¢

Let G be of type Eg. We have Z(G) = (2), with 2 = oY (z)ay (27 )y (z)ag (1) where z is a
primitive third root of 1.

—reg

Lemma 4.31. Let 1y = (L1, Z(L1),{1}) € BAB(G). Then the spherical sheet Sy = J(11) = is

a birational sheet containing the unipotent class 2A;.
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Proof. Ly is maximal of type DsTy and Z(L;) is connected, since
Z(Ly) = {ay (y*)ay (z2)of (ws) ey () (") (y) | w1, 20 € CF,y = 3 s, y° = 23}

We have

S| = U G- (zIndgl{l}) = U Oexp({tbl) |_|Z<G) 02A1 .
2€Z(L1) CeC\zZ

By Lemma 2.30, S; = J (Tl)bir if and only if the isolated class Oz, is birationally induced from

———bir ———bir
(L1, {1}); we conclude by Lemma 1.26. Moreover, it is clear that Z(G)J(r) =J(r) . O

There is one more spherical pseudo-Levi subgroup, i.e., My of type AjAs with Z(Ms) =
(ra) x Z(G). Observe that ry is an involution, we have Z(M3)"%9 = {rq, 2ra, 2%r9} and no pair
of elements in this set is W-conjugate. Hence, the isolated class O,, is a (birational) sheet
and Z(GQ) O,, = O,, U20,,U2%20,,. Up to central elements, the remaining spherical conjugacy

classes in G are birationally rigid unipotent conjugacy classes in G.

T Jm A0) d

(L1, Z(L1),{1}) U Oecxpcan) UZ(G) 241 n1 (w1 + we) + naws 1
ceC\Z

(M2, {r2},{1}) Or, n1(w1 + we) + na(ws + ws) + 2n2ws + 2naws | 3

(G, {1}, A1) Ay naws 3

(G,{1},341) 34, n1(w1 4+ we) + n3(ws + ws) + nowa + naws | 3

Table 4.9: Type Eg.

Proposition 4.32. Theorem 4.11 holds for G of type Eg.

———=bir
Proof. From [36, Table 16, 17] the weight monoid is preserved along classes in Z(G)J(r)  for

b n
every spherical birational sheet J(7) *". The entries in the third column of Table 4.9 are pairwise
distinct. O

4.3.6 Type E;
Let G be of type E7. We have Z(G) = (2), where 2 = ay (—1)ay/ (1) (—1).
Lemma 4.33. Let 77 = (L7, Z(L7),{1}) € BAB(G). Then the spherical sheet Sy = J(17) “ s

a birational sheet containing the unipotent class (3A1)".

Proof. L7 is maximal of type EgTy and Z(L7) is connected, since
Z(Lq) = {a) (x1)ey (w2)ay (2) ey (a7 (z129) g (a7 )] (w2) | 21,9 € CF, 2} = 23}

We have

S= U ¢ emg{1h)= | Ocxpcan UZ(G) Osay
ZGZ(L7) CGC\Z
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re ——bir
By Lemma 2.30, to check that J(7) ! = J(7) , it is enough to check that the isolated class

O34y is birationally induced from (L7, {1}): this is true by Lemma 1.26. Moreover, we have
Z(G)J (77)

bir _ szr. O
We consider the remaining spherical pseudo-Levi subgroups:

(i) The pseudo-Levi subgroup Ms is maximal of type A7. We have r3 = 2 and Z(Ms) = (r);
moreover, 7o and 2ro = ry 1 are conjugate via the longest element wy € W. Then O,, is a
(birational) sheet consisting of an isolated class, and Z(G) O,, = O,,.

(i) The pseudo-Levi subgroup M; is maximal of type DgA;. We have 72 = 1 and Z(M;) =
(2,71); moreover, r1 and Zr; are not G-conjugate (in fact G has 2 classes of non-central
involutions: O,, and Ojz,,). Then O,, is a (birational) sheet consisting of an isolated class,
and Z(G) = O,, U2 0O,,.

Up to central elements, the remaining spherical conjugacy classes are unipotent birationally rigid.

bir

T J(7) A0) d

(L7, Z(L7),{1}) (ELCJ\Z Oexp(carn UZ(G) (3A1)" niwi + newes + 2nrwy 1
(M1, {r:},{1}) O, 2n1wi + 2n3ws + nawa + newe | 2
(Ma, {72}, {1}) 0., 3 20w 1
(G, {1}, A1) Aq niwi 2
(G,{1},241) 24 niwi + news 2
(G, {1}, (3141),) (3141), niwi + n3ws + Nawyg + NeWe 2
(G,{1},4A:1) 44, .7lniw¢ |na+ns+n7; €2N | 2

Table 4.10: Type E-.

Proposition 4.34. Theorem 4.11 holds for G of type E7.

——bir
Proof. From [36, Table 18, 19] the weight monoid is preserved along classes in Z(G)J(r)  for

b,
every spherical birational sheet J(7) " The entries in the third column of Table 4.10 are pairwise
distinct. O

4.3.7 Type Eg

Let G be of type Eg. There are no spherical proper Levi subgroups.
We list the spherical pseudo-Levi subgroups.
(i) The pseudo-Levi subgroup Mg is maximal of type A;E7;. We have 73 = 1 and Z(Ms) = (rg).
Then O, is a (birational) sheet consisting of an isolated class.
(i) The pseudo-Levi subgroup M; is maximal of type Dg. We have r? = 1 and Z(M;) = (r1)

Then O,, is a (birational) sheet consisting of an isolated class.
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The remaining spherical conjugacy classes in G are birationally rigid unipotent.

bir

4 J(r) A(O)
(Ms,{rs},{1}) Org niwi + news + 2nrwr + 2ngws
Ot {rh. (1) | O, > 20w

(G, {1}, A1) Ay nsws

(G, {1},24,) 24, niwi + nsws
(G,{1},341) 3A, niwi + News + Nrwr + Ngws
(G {1}.44)) | 44, i”"w"

Table 4.11: Type Eg.

Proposition 4.35. Theorem 4.11 holds for G of type Eg.

———bir
Proof. From [36, Table 20, 21] the weight monoid is preserved along classes in Z(G)J(r)  for
——bir
every spherical birational sheet J(7) . The entries in the third column of Table 4.11 are pairwise
distinct. O

4.3.8 Type F4

Let G be of type F4. There are no spherical proper Levi subgroups. We list the spherical

pseudo-Levi subgroups.

(i) The pseudo-Levi subgroup M; is maximal of type A;C3. We have r? = 1 and Z(My) = (r1).
Then O,, is a (birational) sheet consisting of an isolated class.
(i) The pseudo-Levi subgroup My is maximal of type By. We have r? = 1 and Z (M) = (ry).

Then O,, is a (birational) sheet consisting of an isolated class.

We proceed with non-semisimple spherical conjugacy classes: the pseudo-Levi subgroup My

contains the birationally rigid unipotent class Oivff (1)’ where 81 = 201 + 3ag + 4as + 2a4. In
1

particular (9%4( , corresponds to the partition [22,1°] in SOg(C) and is a (birational) sheet
1

1
consisting of an isolated class. The remaining spherical conjugacy classes in G are unipotent

birationally rigid.
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T " A0)
(M, {ra}, {1}) O, naws
(M, {ri}, {1}) O ; i
(Ma, {ra}, 0% ) | Orpoa 1) ; niws
(G, {1}, A1) Aq niws
(G, {1}, Av) A niw1 + 2n4ws
(G, {1}, A1 + Ay) A1+ A1 | niwr + naws + 2n3ws + 2naws

Table 4.12: Type Fy.

Proposition 4.36. Theorem 4.11 holds for G of type Fy.

Proof. From [36, Table 22, 23, 24] the weight monoid is preserved along classes in Z(G)J (T)bir

for every spherical birational sheet J(7) " The entries in the third column of Table 4.12 are

pairwise distinct. O

4.3.9 Type G,

Let G be of type Go. There are no spherical proper Levi subgroups. We list the spherical
pseudo-Levi subgroups.
(i) The pseudo-Levi subgroup M is maximal of type AjA;. We have 72 = 1 and Z(My) = (r5).
Then O,, is a (birational) sheet consisting of an isolated class.
(i) The pseudo-Levi subgroup M; is maximal of type Ay. We have r$ = 1 and Z(M;) = (r1);
moreover, 11 and r ! are G-conjugate. Then O,, is a (birational) sheet consisting of an
isolated class.

The remaining spherical conjugacy classes in G are unipotent birationally rigid.

T I AO)
(Ma2, {r2},{1}) | Oy | 2n1w1 + 2n2w2
(My,{r},{1}) | On, niwi
(G, {1}, A1) Ay n2ws
(G, {1}, A1) A niwi + 2nows

Table 4.13: Type Gs.

Proposition 4.37. Theorem 4.11 holds for G of type Gs.

Proof. From [36, Table 25, 26] the weight monoid is preserved along classes in Z(G)J (T)bir for
——bir
every spherical birational sheet J(7) . The entries in the third column of Table 4.13 are pairwise

distinct. ]
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The proof of Theorem 4.11 is complete. O

Remark 4.38. The classification implies that the birationally rigid unipotent conjugacy class
OM appearing in the decomposition datum 7 = (M, Z(M)°z,OM) is in fact rigid, with two
exceptions:
(i) for G of type C,,, n > 3, let 7 = (G, {1},[22,12"~4]). Then mb” is contained only in the
(spherical) sheet J(L1,Z(L1)°, {1})169;
(ii) for G of type Bom, m > 2, let 7 = (G, {1}, 3,22~ 12]). Then mbir is contained only
in the (spherical) sheet J(Ly, Z(Ln)°, {1}) .

_ PR

In the other cases J(1) " is contained only in the sheet .J (1) “: in particular every spherical

birational sheet is contained in a unique sheet.

4.3.10 Characterization via horospherical contractions

We conclude this Section with another characterization of spherical birational sheets up to central
elements: in order to do this, we recollect some facts on spherical conjugacy classes from [27,28,
36].

From the Bruhat decomposition G' = (J,,cyy BwB, it follows that for every conjugacy class
O of G there exists a unique wp € W such that ONBwe B is dense in O. Similarly, for S a
sheet in G, there is a unique wg € W such that SN BwgB is dense in S. By [28, Proposition 5.3]
if S is a spherical sheet, then for every conjugacy class O lying in S we have wo = wg. For a
birational sheet mbw we may define w, as the unique element of W such that mb" NBw,B
is dense in mbvw. We have wop = w, for all classes O C mbw and w, = wg for all sheets S
containing mbw

If H is a spherical subgroup of G, by [20, Theorem 1], there exists a flat deformation of G/H
to a homogeneous spherical space G/Hj, where Hy contains a maximal unipotent subgroup of G:
such an homogeneous space is called horospherical, and Hy a horospherical contraction of H, see
also [97]. If G/H is isomorphic to a conjugacy class, then C[G/H| ~¢ C[G/Hy], see [36, Theorem
3.15).

Proposition 4.39. Let G be a complex connected reductive algebraic group with [G,G] simply-
connected. Let 1,72 € Gspp. Then Oy, and O, are contained in the same birational sheet up

to a central element if and only if Co(x1) and Cg(x2) have the same horospherical contraction.

Proof. Let € Ggpp, and H = Cg(x). We recall the description of the horospherical contraction
Hy of H containing U from [36, Corollary 3.8]. Let w be the unique element in W such that
O, NBwB is dense in O,. Up to G-conjugacy we can assume that z € wB, so the dense B-orbit
in 0, is B-2 =05 Then P:={g € G |g-0F = 08} is a parabolic subgroup containing B,
i.e., it is standard. Let ® C A be such that P = Pg and let wg denote the longest element of the
Weyl group of the standard Levi subgroup Lg. One has Hy = (U™, Uy, T%), where, w := wowe,
Uwo =UNLe, T, =T NCg(x).
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We may assume that xz; lies in the dense B-orbit Ofi C Bw;B for i = 1,2. We have
seen that Oy, and O,, lie in the same birational sheet up to a central element if and only if
A(Oy,) = A(O,,). The last equality is equivalent to wy = wg and Ty, = Ty, by [36, Lemma 3.9
and Theorem 3.23]. O

4.4 Remarks for Lie algebras

Let G be simple with [G, G] simply-connected, having described the spherical birational sheets
in G, from the tables in Section 4.3 we can build a method to classify all spherical birational

sheets in g. Consider the subset of spherical birational sheets of G defined by:

L(GCopr) = {T(0) " C Gopn | 7 = (L, Z(L)°, OF) € BB(G)). (4.4)

Observe that L is in particular a Levi subgroup of G.

Proposition 4.40. Let G be simple with |G, G| simply-connected and consider L (Gspp) as in
— bir —bi
(4.4). To J(T)b € Z(Gypn) we attach the birational sheet J(I,OF) " in g, where [ := Lie(L)

and exp OF = OF. Then:
(i) Either T = (L, Z(L)°,{1}) € BAB(G) with L a spherical proper Levi subgroup of G or
= (G, {1},0%) € BB(G) with OY spherical unipotent birationally rigid.
(ii) The birational sheet J([,DL)MT is spherical in g.
(i11) All elements in gspn, are contained in a unique birational sheet in g of this form.

In particular, spherical birational sheets of g are in bijective correspondence with Z(Ggph).

Proof. Part (i) follows by inspection of the tables in Section 4.3 and the definition of Z(Gpp).
To prove (ii), recall that the spherical property is preserved along birational sheets: indeed, by

[6, Proposition 1], the subvariety gs,;, consisting of spherical ajoint orbits is a union of sheets and

——bir
every birational sheet is contained in a sheet. Hence, it is enough to prove that each J(I, of )

bir

obtained as in the statement contains a spherical element. Let & € J(I, O%) € J(I,O) . Then,
by (i), we have two possibilities. In one case, (I, 9%) = (I,{0}) with [ = Lie(L) a proper Levi
subalgebra, then we may assume £ € 3()"*? and ¢4 (&) = I implies C(£) = L, which is a spherical
Levi subgroup. In the other case, ([,DL) = (g,DG) with O nilpotent birationally rigid. Then
¢ € 0% and Ce (&) = Cg(exp&). This is a spherical subgroup, as exp € € 0°.

We prove (iii): birational sheets are disjoint by [67, Theorem 4.4], hence g,y is the disjoint

union of the spherical birational sheets of g. To complete the proof, for £ € gspn, we build
— i

J(1)bir € L(Gpp) such that € € J(I,OF) " with the notation in the statement. Let J be the
decomposition class of g containing £, in particular J C gsph, by [23, §3.7]. Then, JN Uy # @
for a neighbourhood Upxs of A defined as in Theorem 3.2. Let £ = o +v € JNUys, set g := expé.
The properties of Uy imply Ca(g) = Cg(€), hence Oy C Ggpp. Moreover, g € J(7) such
that J(7) NUy # @ by Theorem 3.2. By Theorem 4.11, the class Oy is contained in a unique
Z (G)TT’)IM where J(7/ )bw is a spherical birational sheet in G. Moreover, J(7') N Uy # @ by
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construction, hence 7/ = (L, Z(L)°, OF) with L a Levi subgroup of G, by Theorem 3.2. We prove
———bi

that D¢ € J(1,9%) " where | := Lie(L) and exp OF = OF. Let g = su with s .= expo € Z(L)°
and u = expv. Since Uy is mg-saturated, s € Z(L)° N Uy. Observe that Cg(s) D L so that
Lie(Cg(s)) = ¢g(s) = ¢g(o) D . Moreover, 0%(®) s birationally induced from (L, OF): this
implies that DfG(S) is birationally induced from ([,DL ) where expv = u and exp of = oF by
Lemma 1.20 (ii). O

The spherical birational sheets in g are:
————bir

(i) J(1,{0})  with [ = Lie(L) where L is a proper Levi spherical subgroup of G.

— bir

(ii)) J(g,9) = O a nilpotent spherical birationally rigid orbit in g.
Since [ as in (i) is in particular a maximal Levi subalgebra of g, we have 3(I) = 3(I)"*Y U {0} and
this yields two possibilities: 4
(i) if Ind?{0} is birationally induced from (I, {0}), the spherical birational sheet J(l, {0})bw
coincides with the sheet J(I, {0}) ~ = Ad(G)(3(1)") U Ind?{0}; _
(ii) if Ind?{0} is not birationally induced from (3(1),{0}), then 3(,{0}) = Ad(G)(3(1)")
and the nilpotent orbit Ind{{0} is either birationally rigid or it is contained in another
spherical birational sheet.

We prove Losev’s Conjecture 4.9 restricted to the spherical subvariety ggp.

Proposition 4.41. Let O1 and D2 be spherical adjoint orbits of g and suppose A(D1) = A(D5).

Then 91 and Do are contained in the same birational sheet of g.

Proof. We can assume G simple simply-connected. Let ©; and O, be adjoint orbits in ggpn
such that A(9D7) = A(D3). For i = 1,2, let J; be the decomposition class in g containing 9;,
in particular J; C gspn. Then pick a neighbourhood Uy of N defined as in Theorem 3.2 such
that J; NUpn # @ for i = 1,2. Let & = 0y +v; € J; N Uy, set z; = expé; for i = 1,2. The
properties of Up imply Cq(x;) = Cq(&;), hence Oy, C Ggpp, and A(Oy,) = A(Dg,) for i = 1,2;
transitivity yields A(Oz,) = A(Og,). Theorem 4.11 and Proposition 4.41 imply that O, and

0,, C Z(G)J(T)b”‘ for a unique J(T)b“ € Z(Gspn). We conclude that ©; and O; lie in the
same birational sheet of g, by Proposition 4.40. O

Putting together Losev’s Proposition 4.8 restricted to gspn and Proposition 4.41, we get:

Theorem 4.42. Let g be reductive and let D1 and Do be spherical adjoint orbits of g. Then
A(D1) = A(D2) if and only if O1 and Do are contained in the same birational sheet of g. O
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CHAPTER
FIVE

UNIVERSAL FILTERED QUANTIZATIONS
OF NILPOTENT SLODOWY VARIETIES

As announced in the Introduction, this Chapter is self-contained: it deals with commutative and
non-commutative deformation theory of some varieties called conical symplectic singularities,
which are very common in Lie Theory. As usual, we begin with some notation and basic results,
contained in Section 5.1. We proceed with Section 5.2, where we introduce universal Poisson
deformations and filtered quantizations of Poisson algebras in a categorical language. After
recalling the definition of a conical symplectic singularity, in Section 5.3 we focus on a particular
example of such varieties, the nilpotent Slodowy slice. To any nilpotent orbit £ one can attach,
on one hand, the algebra of regular function on its nilpotent Slodowy slice, on the other hand, a
finite W-algebra: we explain when the latter is the universal filtered quantization of the former.

We conclude with a deeper analysis of the case of nilpotent subregular orbits in Section 5.4.

5.1 Notations and preliminaries

We have tried to adopt the same notation used in the rest of the work (for Lie algebras, adjoint
and coadjoint actions, etc.) whenever possible, but some repetitions were unavoidable. This
phenomenon will mostly affect lower case Greek letters, which will lose their connotation with the
setting of Lie Theory adopted up to now. Unless explicitly specified, the letters o, 8,7, A, &, 7, ¢, ¢
will exclusively denote maps and no more imply the meaning in the former chapter. The symbol
w will denote a 2-form. Moreover, elements of Lie algebras will be denoted by lower case Latin
letters: e, f,h,.... In any case, we will define all symbols when we introduce them for the first
time.

For g a semisimple Lie algebra, the letter p will denote the half-sum of positive roots (equiv-
alently the sum of all fundamental weights). Recall that the Weyl group acts on h* via the
dot action (also called the affine action) in the following manner: w e x = w(x + p) — p for all

w € W,z € h*. When we write W, instead of W we mean that the dot action is being considered
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rather than the usual one.

The universal enveloping algebra of g is denoted by U(g) and we write Z(g) for the centre of
Ulg).

As in the previous Chapter, unadorned tensor products should be read as tensors over C.
Every algebra is assumed to be finitely generated over C. If A, B, C are algebras and ¢: A — C,
1: B — C are homomorphisms then we define ¢®v: A® B — C to be the composition of ¢ @ ¢
with multiplication C ® C' — C. We use the same notation when the tensor product is taken
over an arbitrary ring, provided the resulting map is well-defined.

A vector space V is filtered if it comes with a filtration of finite-dimensional vector subspaces
VoCcViC---CV;C Vi C--- satisfying V = J;5 Vi- A vector space V' is graded if there exist
finite-dimensional vector subspaces Vp, Vi,..., Vi, VEH, ... satisfying V = €, Vi; the subspace
V; is the component of degree i. If V' = J,~, Vi is a filtered vector space, theiassociated graded
space is gr'V = @, Vi/Vi—1, where we take V_1 = 0 by convention.

For the purposesT of our work, we will assume implicitly that all filtrations and gradings satisfy
the condition dim Vy = 1.

As usual, if V' is a vector space, we denote by S(V') the symmetric algebra on V: it comes with
the natural grading S(V) = @,;5, 5" (V), where S?(V) is the vector subspace of i-th symmetric
powers of V. We put S~1(V) ::_®i>1Si(V). When V is finite-dimensional, it is well-known that
the symmetric algebra S(V) identifies with the C[V*], the algebra of regular functions on the

dual space V*. In our exposition we will need the following result.

Lemma 5.1. Let V. = @, V; and U = @;_, U; be finite-dimensional graded vector spaces,
with V; and U; in degree i.t Suppose that 7: S(V) — S(U) is a graded algebra homomorphism.

Then T is surjective if and only if its linear term do7: V — U is surjective.

Proof. The gradings on V and U induce gradings on the symmetric algebras S(V) = @+, S(V)x
and S(U) = @~ S(U)k. For each i = 1,...,n, we have S(U); = U; ® S>1(U)_i7 where
S>YU),; = S’(U);ﬂ S>1(U); an analogous description holds for S(V). For each i = 1,...,n,
we write 7; = 7|y, and observe that 7, = do7; + 7;: V; — S(U); where do7;: V; — U; and
7;: Vi = S71(U); are linear maps. The linear term of 7 is do7 = @], doT;.

Suppose 7 surjects, so for u € U; there exists p € S(V); such that 7(p) = u. Since
(S>Y(V)) € S>Y(U), we see that, if p = pt + p>t € V; ® S”Y(V);, then 7(p) = 7(p') = u.
It follows that do7(p) = u, hence do7 surjects. Now suppose that do7 surjects and that u € U;
with dg7(v) = u for some v € V. Then 7;(v) = u + 7;(v) and an inductive argument shows that

7;(v) lies in the image of 7. Hence U lies in the image, which proves that 7 is surjective. O

A graded module M = @,.,M; over a graded algebra A is free graded if it has a basis
{m;}jes consisting of homogene_ous elements (i.e., {m;}jcs C U;>o Mi)-

We say that a filtered map V' — W of filtered vector spaces_¢: V — W is strictly filtered
if (Vi) = W; N @(V). The importance of this definition is that gr is an exact functor from

INote that we do not insist that V; # 0 or U; # 0 for 1 < i < n.
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the category of filtered vector spaces with strict morphisms to the category of graded vector
spaces [72, Proposition 7.6.13] so that, for instance, a strictly filtered embedding induces an
embedding of associated graded vector spaces. All filtered morphisms of vector spaces in this
work are assumed to be strictly filtered.

When V is a graded vector space we may regard it as filtered in the usual manner, and
identify V' with gr V' via the obvious splitting. Note that every graded map of graded vector
spaces is a strictly filtered map. We shall often need to consider a map ¢: V- — W from a graded
space to a filtered space, and we call such a map strictly filtered if it is so when regarded as a
map of filtered spaces. Finally, for v € V; \ V;_1 we write v = v+ V;_1 € grV for the top graded

component of v.

Lemma 5.2. Let A = @izo A; be a finitely generated graded algebra with Ag = C and let
M = @jzo Mj; be a graded A-module. Then M is flat if and only if M is a free graded module.

Proof. This follows directly from [34, Lemma 2.2]. O

Lemma 5.3. Suppose that B is a commutative filtered algebra and that C' and A are commutative
filtered B-algebras such that the natural maps B — A and B — C are strictly filtered. Assume

in addition that gr A is gr B-flat. There is a natural isomorphism
grA®gpgrC Zer(A®p O)

Proof. Since gr A is flat it is free graded by Lemma 5.2. Hence, A is a free object in the category
of filtered B-modules [81, Lemma 5.1, 3°]. By [81, Lemma 8.2] the natural homomorphism
p: grA g pgrC — gr(A®p C) defined on homogeneous elements by ¢(a ® ¢) = a® ¢ is an

isomorphism. A direct verification shows that it is also an algebra homomorphism. O

Fix n € N. A Poisson algebra is a commutative algebra A equipped with a Lie bracket
{,}: Ax A = A with {ab,c} = a{b,c} + {a,c}b for all a,b,c € A. The Poisson centre of
Ais PZ(A) = {z € A| {a,z} = 0foralla € A}: for a Poisson C-algebra A, we always
have C C PZ(A). We say that a graded (resp. filtered) Poisson algebra A = @, A (resp.
A = ;50 Ai) has Poisson bracket in degree —n if {a,b} € A;y;_p, for a € A;, b e ./(j If Aisa
filtered Poisson algebra with Poisson bracket in degree —n then gr A is a graded Poisson algebra
with Poisson bracket in degree —n. Similarly we say that a filtered (non-commutative) associative
algebra A = |J,5,Ai has bracket in degree —n if the commutator [a,b] = ab —ba € A;y;_,
whenever a € ,A; and b € A;. Such filtered algebras have the property that gr.A is a graded
Poisson algebra with Poisson bracket in degree —n via the formula

{a+¢4i—17b+./4j71} = [a, b] +Aitjn—1 (5.1)

whenever ¢ € A;, b € A;. Similarly, filtered homomorphisms between filtered algebras with
bracket in degree —n induce graded homomorphisms between Poisson algebras with Poisson

bracket in degree —n. These observations can be upgraded to a well-known categorical statement.
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Lemma 5.4. The associated graded construction defines a functor from the category of filtered
algebras with bracket in degree —n to the category of graded Poisson algebras with Poisson bracket

in degree —mn. O

5.2 Universal Poisson deformations and filtered quantiza-
tions

5.2.1 The category of Poisson deformations

For the rest of the Section we keep fixed n € N and a positively graded, finitely generated,
commutative, integral Poisson algebra A = €, A; with Poisson bracket in degree —n. Denote
by PAut(A) the group of graded Poisson autom(_)rphisms of A. Recall that all graded algebras are
assumed to be connected graded, i.e., their component of degree zero is one-dimensional, hence
isomorphic to the ground field C. When B is a commutative graded algebra we write B, for the
unique graded maximal ideal, and C; for the corresponding quotient B/B, ~ C. Furthermore,
when we say that A is a graded Poisson B-algebra we insist that the map B — A is a graded

homomorphism whose image is Poisson central.

Definition 5.5. A Poisson deformation of A is a triple (A, B, ) where:
(i) B is a positively graded commutative algebra;
(ii) A is a graded Poisson B-algebra in degree —n, flat as a B-module;
(iii) ¢: A®p Cy — A is a graded isomorphism of Poisson algebras.

We refer to B as the base of the deformation.

Example 5.6. Let A be a filtered Poisson algebra with bracket in degree —n, and let ¢: gr A — A
be an isomorphism of Poisson algebras. Define the graded algebra A" = @, A;t'. Tt inherits
a Poisson algebra structure with bracket in degree —n via the rule {a;t’, ajtj}T:: {a;,a;}t+i—n,
for each a; € A;,a; € A;. Let B = C[t] and let ¢/ be the isomorphism A’ @5 C = A’/ A't =
grA = A. Then (A’, B,!') is a Poisson deformation of A and the pair (A,:) is called a filtered

Poisson deformation of A.

Definition 5.7. A morphism (A1, B1,t1) — (Ag, B2, t2) of Poisson deformations of A is a pair
¢ = (¢1, ¢2) such that:

(i) ¢o2: By — By is a graded algebra homomorphism;

(ii) ¢1: A1 — Aj is a graded Poisson algebra homomorphism such that the following diagrams

commute

31&B2

l l (5.2)

A1 LAQ
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A

/ \ (5.3)

P1®id
Ay ®p, C4 ———— Ay ®p, Cy
We say that ¢ is an isomorphism if both ¢1, ¢2 are isomorphisms. Write D = D4 for the category

of Poisson deformations of A.

Example 5.8. Let G be semisimple simply-connected. The Lie bracket on g endows the coordi-
nate ring C[g*] with the structure of a graded Poisson algebra. Its Poisson centre coincides with
Clg*]¢ which is isomorphic to C[h*]" = C[h* /W] by Chevalley’s restriction theorem. One may
choose the isomorphism to ensure that it is an isomorphism of graded algebras. The coordinate
ring CIN*] of the nullcone is graded via the contracting C*-action on g* and a famous theo-
rem of Kostant [57, Proposition 7.13] says that the vanishing ideal of N* in C[g*] is generated
by (C[g*]f. Hence C|[N*] is a positively graded Poisson algebra and there is an isomorphism
v: Clg*] ®cpp/w) C4 — C[N™]. Another result of Kostant, [59, Theorem 0.2] implies that C[g*]
is a free C[g*]“-module and so (C[g*], C[h/W],¢) is a Poisson deformation of C[N*].

5.2.2 The category of quantizations of Poisson deformations

We continue to fix n € N and A, and we remind the reader that all filtered maps in this Chapter
are assumed to be strictly filtered. Our goal is to define a category similar to D whose objects

are the quantizations of A.

Definition 5.9. Recall that for a filtered algebra of degree —n, the associated graded algebra
carries a Poisson structure via (5.1). A filtered quantization of A is a pair (A, ) consisting of a

filtered algebra of degree —n, and an isomorphism ¢: gr A — A of Poisson algebras.

If B is a positively graded commutative algebra and A is a filtered B-algebra, then we always
assume that the natural map B — A is strictly filtered. By the introductory remarks, we may

identify B with gr B and regard gr 4 as a gr B-algebra. In this way, gr A is also a B-algebra.

Definition 5.10. A quantization (of a Poisson deformation) of A is a triple (A, B,t) where:
(i) B is a positively graded commutative algebra;
(ii) A is a filtered B-algebra of degree —n, flat as a B-module;
(iii) (gr.A, B,t) is a Poisson deformation of A.

Once again, we call B the base of the quantization.

Definition 5.11. A morphism (A1, B1,t1) — (As, Ba,12) of quantizations of A is a pair ¢ =
(¢1, ¢2) such that:
(i) ¢2: By — By is a filtered algebra homomorphism;
(ii) ¢1: A1 — Aj is a filtered homomorphism such that (5.2) commutes;
(i) gré = (gr ¢1,gr ¢2) is a morphism (gr. Ay, By, t1) — (gr.As, B, t2) of Poisson deformations
where we view gr¢; as a map gr.4; ®p, Bs — gr As via Lemma 5.3.
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We say that ¢ is an isomorphism if both ¢1, ¢ are so, and we write @ = Q4 for the category of

Poisson deformations of A.

Example 5.12. Retain notation from Example 5.8. Counsider the enveloping algebra U(g)
which is filtered of degree —1 with gr U(g) ~ C[g*]. We choose a grading on the centre Z(g) such
that the inclusion Z(g) — U(g) is strictly filtered. Furthermore gr Z(g) ~ Z(g) identifies with
Clg*]¢ C C[g*] as a subalgebra of gr U(g). Thanks to the Harish-Chandra restriction theorem
we know that there is a graded algebra isomorphism Z(g) ~ C[h*]"e = C[h*/W,] ~ C[h*]", see
§5.3.2 for a more detailed account. In virtue of Example 5.8 we may regard (U(g), C[p* /W], ¢)
as a filtered quantization of C[N*]. The construction depends on a choice of grading on Z(g),
which is the same as fixing a choice of strictly filtered isomorphism C[h*]" — Z(g) and it is

easily seen that these various choices of isomorphism lead to isomorphic quantizations of N°*.

5.2.3 Properties of morphisms

Throughout the Section we suppose for i = 1,2 that d; = (A;, B;, ;) are Poisson deformations
with algebra maps m;: B; — A;. The next lemma suggests an alternative, equivalent definition

of a morphism.

Lemma 5.13. Let ¢o: By — Bs be a homomorphism, so that moops endows As with the structure
of a By-algebra. Let ¢p,: A1 ®p, Ba®p, C = A; ®p, C1 be the natural isomorphism and let
na,: A1 — A1 ®p, Ba be the natural map a — a® 1. Then:

(i) d = (A1 ®p, B2, Ba, 11 09p,) is a Poisson deformation of A.

(ii) The assignment ¢1 — P1®@m establishes a (natural) vector space isomorphism
a: Homp, (A1, A2) = Homp, (A; ®p, B2, As) (5.4)

whose inverse 8 is given by 1 — 1 ona,.
(iii) The pair ¢ = (¢1,¢02): di — do is a morphism of Poisson deformations if and only if
(a(¢pr),id): d — dy is so.

Proof. (i) follows directly from the definitions and [17, 1.2.7, Corollary 2], whilst (ii) is [18,
Chapter II, §4, Proposition 1 (a)].

We prove (iii). The isomorphisms a and S preserve gradings and Poisson structures. By
(ii) the pair ¢ satisfies (5.2) if and only if a(¢;) is Ba-linear, i.e., if (a(¢1),id) satisfies (5.2).
Equivalence of (5.3) for ¢ and («(¢1),id) is a consequence of the equality ¢1®@me = (¢ ® id) o
©Bs- O

Remark 5.14. A statement analogous to Lemma 5.13 holds if we replace d1, ds with quantizations

and ¢p, by grep, in part (i). The proof is similar.

Lemma 5.15. Any morphism of deformations of the form ¢ = (¢1,id): (A1, B,v1) — (As, B, 12)

is an isomorphism of deformations. In particular, the morphisms ¢ as in Lemma 5.13 (i) are
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always isomorphisms. The same is true for morphisms of quantizations ¢ = (¢1, P2) satisfying
gr ¢o = id.

Proof. We start by considering Poisson deformations. Since A; is B-flat, it is free over B by
Lemma 5.2. Let V; C A; be a graded subspace such that the multiplication map B®V; — A is

an isomorphism. Let V5 be the image of V; in A3. We have the following commutative diagram

Vi — A — A, ®5Cy

[ o9

V2°—>¢42HA2®BC+

Since A; = V4 & B1 . A; the horizontal composition along the top row of (5.5) is an isomorphism.

164, is an isomorphism by (5.3). Tt follows that the map V3 — Vs is

At the same time, (i2)
injective, whilst it is surjective by definition. We deduce that the horizontal composition along
the bottom row of (5.5) is an isomorphism, which implies that Ay = Vo ® B4 A5 as graded vector
spaces. Since Aj is B-flat it is B-free (Lemma 5.2) and B ® Vo — Ay is an isomorphism. A
C-basis for V is a basis of the free B-module A; and 11 sends it to a basis of the free B-module
As bijectively, which completes the proof of the first claim.

The statement for morphisms of quantizations follows immediately because ¢; is an isomor-

phism and all filtered pieces are finite-dimensional. O

Observe that Lemmas 5.13 (iii) and Lemma 5.15 imply that (5.2) is a pushout diagram, in

analogy to the requirements on morphisms of deformations of varieties in [91, §2.1].

Corollary 5.16. Let ¢ = (¢1,¢2): (A1, B1,t1) = (Az, Ba,t2) be a morphism in D or Q. Then

¢ is surjective if and only if ¢o is surjective.

Proof. By Lemma 5.13(ii) we see that ¢, factors as ¢1®@ma0m4,: A1 — A1 ®@p, Bs — Az. When
¢9 is surjective 14, is surjective, whilst Lemma 5.15 implies that ¢1 &2 is an isomorphism, which

proves the claim. O
We record another important fact which follows from the definitions, using Lemma 5.4.

Lemma 5.17. The associated graded construction defines a functor gr: Qa4 — Da: it is defined

on objects by (A, B,1) — (gr A, B,¢) and on morphisms by (¢1, ¢2) — (gr é1, gr ¢2) . O

5.2.4 Universal deformations and quantizations

Keep fixed n € N.

Definition 5.18. Let A be a graded Poisson algebra of degree —n and write D =Dy, Q = Q4.
(a) A universal Poisson deformation of A is an initial object in D, denoted up = (Up, Bp, tp).
If d € D then we write ¢¢ = (¢¢, ¢4) for the unique morphism up — d;
(b) A wuniversal quantization of A is an initial object in Q, denoted ug = (Ug, Bg,tg). If
q € Q then we write ¢7 = (¢, ¢3) for the unique morphism ug — ¢.
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As usual the universal objects enjoy the following uniqueness property.

Lemma 5.19. If an initial object exists in D or Q then it is determined upto a unique isomor-

phism. O

5.2.5 Interactions between universal deformations and quantizations

Let C be the category of finitely-generated, commutative graded algebras, a subcategory of all
commutative algebras. For a given B € C we consider the category C% of commutative graded
B-algebras, whose objects are (C,1) where C' € C and ¢: B — C is a graded homomorphism.
The morphisms (C1,11) — (Ca,12) in C% are the commutative triangles consisting of graded

homomorphisms

B
Y1 P2 '
/ . \ (5.6)

¢y —— Ca.

We also consider the category CHl*

whose objects are pairs (C,) where C € C is a graded
algebra, ¢: B — C'is a strictly filtered homomorphism, and morphisms are given by commutative
triangles (5.6) consisting of strictly filtered homomorphisms. The first claim of the following
lemma is an easy exercise, whilst the second follows from the fact that a strictly filtered map is

an isomorphism if and only if the associated graded map is an isomorphism.

Lemma 5.20. Let B € C be a finitely generated, commutative graded algebra.
(i) Both C% and C'* admit initial objects, given by pairs (B, 1) with 1 bijective.
(ii) Let (B,v) € Cil*. Then (B, ) is initial in C* if and only if (B, gri) is initial in C .

We retain the notation introduced throughout this Section as well as the notation from
Lemma 5.13. Suppose that initial objects in D = D4 and Q = Q4 exist and fix representatives
up = (Up, Bp, tp) and ug = (Ug, Bg, L) in their isomorphism classes.

Proposition 5.21. When the universal deformation up exists, there is an equivalence of cate-
gories Fp: D — C§_ defined on objects by d = (A, B,1) — (B, ¢3).

Proof. Throughout this proof we use the notation d; = (A;, B;, ;) with ¢ = 1,2 to denote a
pair of deformations, and we set u% = (Up ®p, Bi, Bi,ip o ¢p,). By Lemma 5.13, u® € D.
Also write 14 for the natural map from a B-algebra A to A ®p C for a B-module C, and
¢p: A1 ®p, Bo®p, Cy = A; ®p, C, for a natural isomorphism as in Lemma 5.13. Finally, we
write m;: B; — A; for the algebra maps.

Let ¢ = (¢1,¢2) be a morphism d; — dy. Uniqueness of the morphisms ¢% for i = 1,2

ensures commutativity of the triangle
up
¢‘”/ \‘*‘ (5.7)
dy —2 5 d
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so we define Fp on morphisms by mapping ¢ to the triangle

Bp )
d
N (58)
P2

By ——— Bo.

It is straightforward to verify that Fp so defined is a functor. We show that it is an equivalence.
Step 1: Fp is full. Let Fp(di) — Fp(dz) be a morphism, i.e., a triangle as in (5.6). We
need to construct a morphism ¢: d; — dz such that Fp(¢) is (5.8). Recall from Lemma 5.15

that (¢%®id,id): u% — d; is an isomorphism. Therefore the composition
(¢2®1id,id) o (id @¢a, ¢o) o ((¢M®@id) 7L, id): dy = udt — ud? = dy
is the sought morphism, where ¢ is an in (5.8).

Step 2: Fp is faithful. Let ¢: di — do be a morphism. We show that we can recover ¢ from
Fp(9), i.e., that we can recover ¢ from ¢ and data depending only on d; and dy. By Lemma
5.13(ii) it is enough to recover a(¢1) = ¢1®ma. Iterated application of the same lemma gives a

morphism
Y: (Up ®@pp B1 ®p, B2, B2,tp © 9B,&p, B,) = (A1 ®p, Ba, Ba, 110 ¢p,) — do

where 1) = (11,92) = ((¢1Dm2) o (¢ @n1 ® id),id). Its factors are isomorphisms by Lemma
5.15. By Bs-linearity of the first component 1, it is enough to recover 11 on elements t®1® 1,
with = € Up. i.e., to recover 11 o nyy,.

It is not hard to verify that (nuD,¢gl): up — (Up ®p, B1 ®p, B2, Ba,ip o @Bl®Ble) is a
morphism in D. Uniqueness of the morphism up — da gives 1 o (1, gf)gl) = ¢%, and so we get

d
P10 Nup = 07°.

Step 8: Fp is essentially surjective. If (B,¢) is any object in C%rv then we can consider
the Poisson deformation d := (Up ®p,, B, B,tp o ¢p) and the morphism ¢? = (my,,$). Then
Fp(d) = (B, ).

It can be verified that the functor Gp: C§  — D sending the object (C,¢) to (Up @,
C,C,tp o pc) and a triangle (5.6) to the morphism (id ®)g,¥g) is a quasi-inverse for Fp. O

The same recipe gives a functor Fg: Q — Cg; and the proof of the following statement is

almost identical to Proposition 5.21, so we omit it.
Proposition 5.22. When ug exists Fg is an equivalence of categories.

Theorem 5.23. Suppose that D and Q admit initial objects up = (Up, Bp,ip) and ug =
(Ug, Bg, L), respectively. Suppose furthermore that:

(1) there is an isomorphism &: Bg ~ Bp of graded algebras;

(2) grod =¢85 %0 & for every q € Q.
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Then grq ~ up if and only if ¢ ~ ug for any q € Q.

Proof. Assumption (1) implies that there is a natural associated graded functor gr: Cg; — C]g;D,
whilst (2) states that we have a natural isomorphism groFg =~ Fpogr: Q — Cj . Write
q = (A, B,1). Tt follows from Proposition 5.21 that gr ¢ ~ up if and only if Fp(grq) = (B, ¢5" %)
is initial in C%_. Similarly, by Proposition 5.22, ¢ ~ ug if and only if Fgo(q) = (B, ¢3) is initial
in Cg;. By Lemma 5.20 and the identification ¢ these two conditions are equivalent under our

assumptions. O

5.2.6 Poisson I'-deformations

Keep fixed n € N and A as before, and now fix a group I'. If B is a graded commutative algebra
with an action of I' by graded automorphisms, we define the homogeneous ideal I(I") as the ideal
in B generated by {b—~-b| b € B,y € '} and we write Br := B/I(T"). If C is a (graded)
algebra equipped with trivial T-action then every (graded) I'-equivariant map B — C factors
through Br. If C' is graded and B — C' preserves the gradings then the induced map Br — C
also preserves the grading.

Recall that PAut(A) is the group of graded Poisson automorphisms, and suppose I' <
PAut(A).

Definition 5.24. A T-equivariant Poisson deformation of A is a Poisson deformation (A, B, )
such that:
(i) T acts on B by graded automorphisms;
(ii) T acts on A by graded Poisson automorphisms;
(iii) B — A is I'-equivariant;
(vi) t: A®p C4 — A is I'-equivariant.
A morphism of T'-equivariant Poisson deformations of A is a morphism ¢ = (¢1, ¢2) such that

both ¢, and ¢, are I'-equivariant.

Definition 5.25. When the I'-action on B is trivial we call (A, B, ) a Poisson I'-deformation of
A. Write D for the category of Poisson I'-deformations of A together with their I'-equivariant

morphisms. A universal Poisson I'-deformation of A is an initial object in DT

If (A, B, 1) is a Poisson I'-deformation of A then I' also acts by automorphisms on the fibres of
the map Spec. A — Spec B. More generally, when (A, B, ¢) is a I'-equivariant Poisson deformation
[ acts on the fibres over the set of the I-fixed points (Spec B).

If w = (Up, Bp,tp) € D is a universal deformation and v € PAut(A) then we can define

another universal deformation by

Tu = (Up, Bp,y ' oip) (5.9)
By the universal property of u there is a unique morphism

¢ =(¢],03) :u—"Tu (5.10)
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Proposition 5.26. Suppose that A admits a universal Poisson deformation uw = (Up, Bp,tp) €
D and T is a subgroup of PAut(A). Then:

(i) The map v+ ¢] defines an isomorphism PAut(A) = PAut(Up);

(i1) u admits a unique T -equivariant structure;

(i) A admits a universal Poisson T-deformation ul determined upto a unique isomorphism:
u' = (Up @B, (Bp)r, (Bp)r, tp © 9(8)y)-

Proof. For the sake of simplicity we write u = (U, B,¢). If v € PAut(A) then clearly "u is an
object in D. For 7,0 € PAut(A), we consider Yu and "u. It is not hard to verify that the
pair (¢], ¢3) also defines a morphism %u — 9w, where (5.3) follows from the same diagram for

u — Yu as follows:

(5.11)

—>

Y91
Uep Cy o1 Uxp Cy

Uniqueness of the morphism u — Y u gives (¢7, ¢3)o(¢S, ¢3) = (67°, $3°) so PAut(A) — PAut(l)
is a homomorphism. The map PAut(A) — PAut(lf) is surjective because for ¢; € PAut(U) the
map v == 10 (¢1 ®id) o171 A — A lies in PAut(A) and satisfies ¢] = ¢;. Furthermore, if

#] = id then the commutative diagram (5.3) for ¢7 would give + = y~!

o ¢, implying v = id.
Hence PAut(A) — PAut(lf) is an isomorphism as claimed and (i) is proven.

Now suppose I' < PAut(A). We claim that the T-action on u via v — ¢7 equips u with a
I-equivariant structure. The I'-equivariance of B — U may be deduced from (5.2) for ¢7 and
the I'-equivariance of ¢ follows directly from diagram (5.3) for ¢”. Now we claim that this is
the unique I'-equivariant structure for I'. Suppose that u is equipped with another I'-equivariant
structure, and the induced I'-action on A coincides with the one we have chosen. Now v € T’
defines a pair of maps "¢ = (Y¢1,7¢p2) € PAut(Y) x Aut(B). In fact the I'-equivariance of ¢
implies that Y¢: u — Yu is a morphism in D, and so "¢ = ¢ by uniqueness. This shows that
there is a unique I'-equivariant structure extending the action of " on A, settling (ii).

We now prove (iii). It is easy to see that u! is an object in D''. Let d € D' be an object with
base By. Then there is a unique morphism ¢ = (¢¢,¢3): u — d in D. Since By has trivial I'-
action the map ¢%: B — By factors through the quotient B — Br. Thanks to Proposition 5.21

I'. We deduce that there exists a morphism of Poisson

we see that ¢? factors through u — u
deformations ¢ = (¢1,%2): ul' — d. The uniqueness of ¢ follows quickly from the universal
property of wu, using the fact that q57fr and gb’jr are both surjective, hence epimorphic. Since
11,19 are each obtained by factorising a I'-equivariant map over another such map, it follows

that v is a [-equivariant morphism, which completes the proof. O
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In the case of a conical symplectic singularity X the relation between the automorphism group
of the graded Poisson algebra C[X] and isomorphisms of its filtered quantizations is discussed
in [67, §3.7].

5.2.7 TI'quantizations

Let A be a graded Poisson algebra with Poisson brackets in degree —n, and let T' < PAut(A).

Our purpose here is to record a version of Proposition 5.26 for the category Q = Q4.

Definition 5.27. A T'-equivariant quantization of A is a quantization (A, B,¢) such that:
(i) T acts on B by filtered automorphisms;

(ii) T acts on A by filtered automorphisms;

(iii) B — A is I'-equivariant;

(vi) (gr.A, B, ) is a I'-equivariant Poisson deformation (in view of (i), (ii), (iii) this is equivalent
to asking that ¢ : gr A ®p C; — A is I'-equivariant where T' acts on (gr.A, B) via the
associated graded action).

A T-equivariant morphism of quantizations is a morphism ¢ = (¢1, ¢2) between two I'-equivariant

quantizations such that ¢; and ¢ are both I'-equivariant.

Definition 5.28. A T'-quantization is a I-equivariant quantization (A, B, ¢) such that " acts triv-
ially on the base B. The category of I'-quantizations together with the I'-equivariant morphisms

is denoted QF. A wniversal I'-quantization is an initial object in QT.

If u = (Ug,Bg,to) € Q is a universal quantization and v € PAut(A) then we can define "u

and ¢7: v — 7w mimicking the constructions in (5.9) and (5.10).

Proposition 5.29. Suppose that A admits a universal quantization v = (Ug, Bo,tg) € Q.
Then:
(1) the map v+ ¢] defines an isomorphism from PAut(A) to filtered automorphisms of Ug;
(i) u admits a unique T-equivariant structure;

(iii) A admits a universal I'-quantization determined upto unique isomorphism by

u" = (Ug ®p, (Ba)r, (Ba)r, Lo © ¢(Bo)r)-

Proof. The proof is almost identical to the proof of Proposition 5.26 and so we only highlight the
differences in the current argument. Write u = (U, B, ) for simplicity. Once again we consider Tu
and ¢7: u — Yu. The maps ¢] and ¢] are filtered automorphisms by definition. Therefore one
can show that 7 — ¢7 gives homomorphisms from PAut(A) to the groups FAut(/) and FAut(B)
of filtered automorphisms of ¢ and B, respectively. If ¢; € FAut(i) then ¢ = ¢§°(gr¢1®id)°fl
and so PAut(A) — FAut(l) is surjective, and it is injective thanks to (5.3) for gr ¢].

Now ¢7 equips u with a I'-equivariant structure, where (5.3) for gr ¢” ensures equivariance
of ¢. Uniqueness of the structure follows from universal property of u. The remaining claims are
checked in the same manner as the proof of Proposition 5.26, making use of Proposition 5.22

instead of Proposition 5.21 O
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In particular, in the presence of universal objects, the categories D' and Q' have a rather

elementary structure, as recorded by the following result.

Proposition 5.30. Suppose that A admits a universal deformation up and a universal quanti-

zation ug.

gr
(Bp)r-

(ii) The functor Fg restricts to an equivalence QF — C?};Q)F.

(i) The functor Fp restricts to an equivalence D' — C

Proof. This follows from Propositions 5.21 and 5.22 along with Propositions 5.26 and 5.29. [

Theorem 5.31. Suppose that the hypotheses of Theorem 5.23 are satisfied. Let ul, and ug be
a universal Poisson I'-deformation and T'-quantization, respectively. Then for ¢ € Q we have

grq ~ up if and only if ¢ ~ ug.

Proof. Write ¢ = (A, B,t) and let ¥p: Bp — (Bp)r and tg: Bg — (Bg)r be the natural
projections. It follows from Proposition 5.21 that grq ~ u}, if and only if Fp(grq) = (B, ¢5 )
is isomorphic to ((Bp)r,¢p) in C§ . By Proposition 5.22 we have ¢ ~ ug if and only if
Folq) = (B,¢) is isomorphic to ((Bg)r,vg) in Cg;. The uniqueness condition in Proposi-
tion 5.26 ensures that the associated graded I'-action on Bg is precisely the I'-action on Bp.

This completes the proof. O

5.2.8 Conical symplectic singularities and their deformations

In this Section we apply all of the above results to an important class of Poisson varieties, known
as conical symplectic singularities. Let X be a normal algebraic variety such that its smooth
locus X*™ carries a symplectic form, w. Since X is normal, the form w gives rise to the Poisson
bracket on C[X] so X becomes a Poisson algebraic variety. Following [7] we say that X is a
symplectic singularity if there is a projective resolution of singularities p: X — X such that
the pull-back ¢*w on o~ 1(X*™) extends to a regular (possibly degenerate) 2-form on X. This
property does not depend on the chosen resolution, see [58, §2.1]. An affine Poisson variety X
is said to be conical if A = C[X] is a positively graded Poisson algebra in degree —n for some
n € N. Geometrically, this means that X is endowed with a contracting C*-action.

A resolution of singularities o: X — X is called a symplectic resolution if o*w is a symplectic

form on X.

Example 5.32. Since their introduction, symplectic singularities have become of central interest
in Lie Theory: we give here two of the most significant examples, extracted from [9, §1].

(i) Let (V,w) be a complex symplectic vector space and let I' < Sp(V') be a finite group. Then

the quotient variety V/T' = Spec C[V]! is a conical symplectic singularity by [7, Proposition

2.4]. In particular, for V = C2, we have Sp(V) =~ SLy(C). As recalled in the Introduction,

in this case the possible groups I' are parameterized, up to conjugation, by the simply-laced

Dynkin diagrams, see [91, §6.1] and the varieties C?/T classify the rational isolated surface

singularities, up to analytic isomorphism.
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(ii) For g simple, let e € A/ with adjoint orbit £ and consider the bilinear map on g: w(z,y) ==
k(e)([z,y]) for all z,y € g. Then w induces a symplectic form (the Kirillov-Kostant-Souriau
form) on the quotient g/cy(e), which identifies with the tangent space T, ©O. The Killing
isomorphism induces a symplectic structure on the coadjoint orbit O* := k() C N'*. Let
X = SpecC[D*]: the boundary of O has codimension at least 2 in its closure, hence X
equals the normalization of the closure of O, see [57, §8.3]. By the work of Panyushev [82],

any such X is a conical symplectic singularity.
The following theorem combines results of Losev and Namikawa; see [67,77,78].

Theorem 5.33 (Losev, Namikawa). Let X be a conical symplectic singularity and set A .= C[X].
Then the categories @ = Q4 and D = Dy of filtered quantizations and Poisson deformations of
X admit initial objects satisfying the hypotheses of Theorem 5.23.

Proof. Thanks to [67, Proposition 2.12] there is a Poisson deformation up = (Up, Bp,t) such
that for any d := (A, B, 1) € D there is a unique pair of homomorphisms (¢, ¢) with ¢: Bp — B
and ¢¥: Up ®p, B — A a Bp-linear isomorphism. Thanks to Lemma 5.13 this is equivalent to
the existence of a unique morphism up — d of Poisson deformations. By the same reasoning,
[67, Proposition 3.5] implies that Q admits an initial object with base isomorphic (actually,
equal) to Bp as a graded algebra. Furthermore condition (1) of the universal property in [67,
Proposition 3.5] states that gr¢? = ¢&'? for all ¢ € Q. O

Corollary 5.34. Let X be a conical symplectic singularity with T' a group of C*-equivariant
Poisson automorphisms. Then C[X] admits a universal Poisson I'-deformation vk, and a uni-
versal I'-quantization ug Moreover, for ¢ = (A,B,1) € Q we have q ~ ug if and only if

grq~ub.

Proof. By Propositions 5.26 and 5.29 there exist a universal Poisson I'-deformation ul, and a

universal ['-quantization ug Applying Theorem 5.31 we conclude. O
We now have all the tools to prove one of our main results.

Theorem 5.35. Let X be a conic symplectic singularity and T a group of C* -equivariant Poisson
automorphisms of A = C[X].
(i) There ezists a universal Poisson T'-deformation uky, and a universal T -quantization ug.

(i) ug is the unique quantization of uly up to isomorphism.

Proof. This follows from Corollary 5.34 and Propositions 5.26 and 5.29. O

5.3 Nilpotent Slodowy slices and their quantizations

Throughout this Section we assume G simple and simply-connected. We fix e € A" and embed it
in an sly-triple (e, h, f); we also set x = k(e). We choose §j containing h, and we set A: C* — G
a cocharacter with djA(t) = th. Finally, we denote by S, = x + r(g/) C g* the Slodowy slice.
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5.3.1 Poisson structures on Slodowy slices

We begin by explaining how S, is naturally equipped with a conical Poisson structure. This
structure can be understood in two different ways: either as the transverse Poisson structure to
g* at x as in [39, §2.3], or alternatively via Poisson reduction similar to [47], as we now explain.
Along the way, we describe the Kazhdan grading on C[g*] and C[S,].

The torus Ad* A\(C*) < GL(g*) induces a Z-grading on g*: for i € Z, we set g*(i) = {n € g* |
Ad* A(t)n = t'n}. Using the representation theory of sly, we have r(g’) C @, 9" (7). Consider

the cocharacter:

Aic: €% — GL(g%)
ts 2 Ad* A(2).

This is a linear action on g*: it is clear that Ag shifts the Z-grading on g* relative to A by —2.
In particular, x is fixed and (g¥) is stabilized by A, hence Ax stabilizes the slice Sy, it acts
with negative weights on it, contracting it to x.

The map Ag induces an action of C* on the algebra Clg*] in the usual manner: set

M (t)0(€) = v(AR (£)(€)) = v(t* Ad* A(t™1)(€)),

for t € C*,v € C[g*] and & € g*. This action endows the Poisson algebra C[g*] with the so-called
Kazhdan grading: Clg*] = @, Clg*](i), where

Clg*](i) = {v € Clg*] | N (t)(v) = tiv,Vt € C*}, i € Z.

Via the identification with the symmetric algebra Clg*] ~ S(g) = D>, Si(g), we get another
description for the Kazhdan grading. For each component define S7(g)(k) = {x € S7(g) | [h, 2] =
kx}, then we have that S(g)(i) is spanned by all S7(g)(k) such that k + 2j = i: it follows that
C[g*] with the Kazhdan grading is a Poisson algebra with Poisson brackets in degree —2.

Since S, C g* is stabilized by A%, through the restriction map C[g*] — C[S,] we get a
grading on C[S, ], which is also referred to as Kazhdan grading: it is non-negative.

We now proceed to describe algebraic Poisson reduction, see [64] for more detail. Thanks
to the representation theory of sly we have an isomorphism ad(e): g(—1) = g(1). This implies

that the skew-symmetric bilinear form
w:g(—-1) xg(-1) = C
(2,y) = x[z,y]

is non-degenerate. We pick an isotropic subspace ¢ C g(—1). We let (t« = {z € g(-1) |
w(z,y) =0V y € £} and set

me=(e @), w=r~ao P ol

i<—2 i<—2
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Then my; C n, are nilpotent Lie subalgebras of g and y vanishes on [my,ng. Let Ny < G
be the connected unipotent algebraic subgroup with n, = Lie(N,), then N, acts by Poisson
automorphisms on g* and mj, and the restriction map f,: g* — mj is Ng-equivariant. Thanks

to [47, Lemma 2.1] the coadjoint action gives an isomorphism of affine varieties
Nex Sy = iy (Xmy) = X + Anng- (my) C g7, (5.12)

where Anng«(my) := {£ € g* | £(m) = 0 for all m € m,}. Therefore N, acts freely on the fibre
11, ' (X|m, ) and the slice S, parameterises Ny-orbits in 11, ' (X|m, ). It follows that there is a natural

isomorphism of Kazhdan graded algebras
Clug ()1 = Clug  (xlm, )] = CS,- (5.13)
We define the shift of m, as
my, = {z— x(z) | z € m}. (5.14)

Then it can be checked that I,, := C[g*|my,, is the defining ideal of the subvariety ;' (x|m,) C 8%,
in other words C[u; ' (x|m,)] = Clg*]/ L.

If f 41, lies in the subalgebra C[u; ' (X|m,)]*(™), a short calculation shows that {f, I, } C I,.
Therefore there is a natural Kazhdan graded Poisson structure of degree —2 on C[s, ' (x|m, )]
given by {f + I,,g + I} = {f,g} + I, for f +I,,g+ I, € Clu; " (x|m,)]*¥™). Finally, this
Poisson structure is transferred from Clu, ' (x|m,)]24™) to C[S,] via the isomorphism (5.13).

In the special case where ¢ is a Lagrangian subspace of g(—1) we have my = ny and puy is
actually a moment map for the action of Ny on g* [47, §3.2], thus the action is Hamiltonian.

Since m; O mg, we have ;! (xlm,) = 15 ' (XImo) and s0 Clug " (xlmo)] = Clitg ' (X[m,)]-
Using the fact that Sy C gy '(X|m,), along with (5.12) we see that Clug " (X|m,)]?4™)
C[u;l(x\w)]ad(”) which is an isomorphism of Poisson algebras because both algebras are iso-
morphic to C[S,] as Kazhdan graded algebras, by (5.13). Hence the Poisson structure which we

have placed on &, does not depend on /.

5.3.2 Finite W-algebras

We are ready to introduce finite W-algebras associated to g: these objects arise as a generalization
of the universal enveloping algebra U(g). We start by explaining their construction and some of
their main properties. In the following part, we will prove that these algebras arise as filtered
quantizations of algebras of certain conical symplectic singularities which are subvarieties of g*.

For my, as in (5.14), we consider the left U(g)-ideal J, := U(g)my . Since Ny preserves my
and x vanishes on [ng, m], then Ny preserves J, and the Nj-invariants in the left U(g)-module
Q = U(g)/Jy inherit an algebra structure from U(g). The algebra U(g, e) :== Q*(") is known as
the finite W-algebra. Gan and Ginzburg proved in [47] that the definition is independent of the
chosen isotropic subspace ¢ C g(—1). Moreover, if €’ is G-conjugate to e, then U(g,e) ~ U(g,e');
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in particular, if we fix g simple, there are only finitely many isomorphism classes of finite W-
algebras, indexed by the nilpotent orbits of g.

We remark that for e = 0, the construction for U(g,0) becomes trivial and we get U(g,0) =
U(g): this suggests the possibility to think of (isomorphism classes of) finite W-algebras as a
finite family of associative algebras related to g and generalizing the universal enveloping algebra.

At the other end, one can consider e regular nilpotent: the W-algebras relative to such
elements were first defined by Kostant in [60]. Choosing e as the sum of the root vectors relative
to simple roots, the construction yields U(g, e) = U(b)*4("-) where n_ is the negative nilpotent
subalgebra with g=b6&n_.

The algebra U(g) is naturally endowed with the standard PBW filtration: the subspace
FU(g) = span{xy -z, | j <i, x1,...,2; € g}. For j € Z,let U(j) = {u € U(g) | [h,u] = ju}.
The Kazhdan filtration on U(g) is defined as follows: FiU(g) = > 5, <, F;'U(g) N U(k). We
warn the reader that F;U(g) # 0 for all i € Z, contrary to the conventions of the rest of this
Chapter. In particular g(i) C F;;+2U(g); one can check that the commutator decreases the degree
by —2 and that gr U(g) is commutative with the induced grading. This descends to a non-negative
filtration on both @ and U (g, €), known as the Kazhdan filtration, as well. The associated graded
algebra is grU(g) ~ C[g*] with the Kazhdan grading and under this isomorphism we have an
identification grJ, = I,. Moreover, grU(g,e) is commutative, so we deduce that grU(g, e) is
equipped with a Poisson structure as in (5.1).

By [47, Proposition 5.2] the natural inclusion grU(g,e) C (C[g*]/I,)24(™) ~ C[S,] is an
equality, and it is not hard to check that the Poisson structure on grU(g,e) arising from the
noncommutative multiplication coincides with the structure coming from Poisson reduction of
Clg*]. Thus U(g, e) can be viewed as a quantum analogue of the Kazhdan graded Poisson algebra
C[Sy].

This procedure generalizes the well-known isomorphism gr U(g) ~ C[g*] from Example 5.12,
which is recovered in the case e = 0, where U(g,0) = U(g) and the Slodowy slice coincides with
the whole space g*. At the other extremum, for e € N regular, we recover the isomorphism
C[h)" ~ C[g*]%, since in this case C[S,] ~ C[h/W] and U(g, e) ~ Z(g), as described by Kostant
in [60].

Actually, for a fixed simple g, the centre is an invariant of the family of finite W-algebras
U(g,e) as e varies in /. We have chosen our maximal toral subalgebra b C g so that h € b.
Therefore C[h*] — C|[g*] is a Kazhdan graded subalgebra with h C C[h*] concentrated in degree
2, and the Weyl group W acts on C[h*] by graded automorphisms. Recall that p denotes the
half sum of positive roots of g, and the p-shifted invariants are denoted C[h*]"+. The Poisson
centre of Clg*] is PZC[g*] = C[g*]® and the centre of U(g) is Z(g) = U(g)“. These algebras
are well-understood by the Chevalley restriction theorem and the Harish-Chandra restriction
theorem. Consider the natural projection maps

PZClg"] = Clg"|® — PZC[S,]

Zg) = U@ — Z(ge) = ZU(ge) (5.15)
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Lemma 5.36 (Premet [85, Footnote 1]). The maps (5.15) are isomorphisms. O

We have the following commutative diagram

Clg*] «—— Clg"]* —— C[p*]"V —= C[p*]"* +=— U(g)® —— U(g)

lﬁ lg Jp, (5.16)

C[Sy] +— PZCI[S,] Z(g,e) — Q.

1

The restriction map C[g*]¢ — C[h*]" is an isomorphism by Chevalley’s restriction theorem,
U(g)¢ — C[h*]"™+ is the Harish-Chandra isomorphism and the isomorphism C[h*]" — C[h*]"e
is the shift map x — x — p(x) which maps invariants to p-shifted invariants. The isomorphism
PZC[S,] = Z(g,e) is the unique map making the diagram commute. Every algebra on the
left half of (5.16) is Kazhdan graded. Furthermore, if we consider the grading on C[h*] with
{x — p(x) | * € b} in degree 2, then C[h*]"* is a graded subalgebra and C[h*]V — C[h*]Ve
is a graded homomorphism. Furthermore the isomorphism C[h*]"* — Z(g, e) is strict for the
Kazhdan filtration.

5.3.3 The universal deformation of a nilpotent Slodowy slice

Now consider the Poisson subvariety Sy n := Sy NN*, known as the nilpotent Slodowy variety.
Lemma 5.37. S, x is a conical symplectic singularity.

Proof. Thanks to [84, §5, Theorem] the fibres of the restriction of the adjoint quotient map
Tg: Sy — bh/W are irreducible normal complete intersections; moreover, for € /W, we have
7wyt (x)*™ = m ' (x) N g™, In particular, the nullfibre S, nr is irreducible and normal and
ST = Sy NE(Dyeg). The slice Sy inherits a Poisson structure via Hamiltonian reduction as in
Section 5.3.1, and on &7}, this Poisson structure agrees with the Kostant-Kirillov—Souriau one
descending from k(O;eq), [47, §3.2]. It follows from [48, Proposition 2.1.2] that S, »r admits a
symplectic resolution. The Kazhdan grading on C[S,] endows C[S,, n] with a positive grading

with Poisson brackets in degree —2, thus proving the result. O

From now on we identify PZC|[S,| = C[b* /W] and Z(g,e) = C[h*/W,] as Kazhdan graded
algebras, via (5.16). Since the scheme-theoretic fibres of the adjoint quotient map S, — h*/W
are reduced [84, Theorem 5.4(ii)], it follows from Kostant’s theorem [57, Proposition 7.13] that
CISy] ®cp+/w] C4 ~ C[Sy x| as graded Poisson algebras. For the rest of the Section we pick a

graded Poisson isomorphism
L (C[SX] ®C[b*/W] (C+ — C[Sx,./\/]

Recall that, by Lemma 5.17, there is a grading functor gr from quantizations to Poisson defor-
mations. By [91, Corollary 7.4.1], the adjoint quotient map S, — h*/W is flat, which completes

the proof of the next result.
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Lemma 5.38. The following hold:
(i) (C[Sy],C[h*/W],1) is a Poisson deformation of C[Sy n];
(i) (U(g,e),Clh*/W,], 1) is a quantization of C[Sy n];
(iii) (C[Sy],Clb* /W], 1) is the associated graded deformation of (U(g,e), Clb* /W], ¢). O

Combining Theorem 5.33 and Lemma 5.37 we see that C[S, n] always admits a universal
Poisson deformation and a universal filtered quantization, and these are fibred over the same base
space. It is natural to wonder under what circumstances the objects in (i) and (ii) Lemma 5.38
are universal in their respective categories. As far as Poisson deformations are concerned, the
question was answered comprehensively by Lehn—Namikawa—Sorger, by means of the following

result.

Theorem 5.39 (Lehn-Namikawa—Sorger [65, Theorems 1.2 and 1.3]). Let g be a simple Lie
algebra and e € N with O = OF. Then (C[S,], C[h*/W],¢) is the universal Poisson deformation
of C[Sy.n] if and only if (g,9) does not occur in Table 5.1.

Type of g Any B CF G C G

Type of © | Regular | Subregular | Two Jordan blocks | dimension 8

Table 5.1

In [65] the authors actually classified the nilpotent orbits for which the adjoint quotient
Sy — b* /W is the formally universal Poisson deformation. It is explained by Namikawa in [78, §5]
that when the underlying affine Poisson variety is conical a formally universal deformation can
be globalised, leading to a universal Poisson deformation in the sense of Definition 5.18 (see
also [67, §2.4]). The regular Slodowy slice is not discussed explicitly in [65], however it is a
classical theorem of Kostant [60] that S, — h*/W is an isomorphism for x regular, and so the
Poisson structure is trivial in these cases by Lemma 5.36.

The following is one of our main results.

Theorem 5.40. The following are equivalent:
(i) (U(g,e),C[h*/W,],¢) is the universal filtered quantization of C[Sy n];
(i) the orbit of e is not listed in Table 5.1.

Proof. This follows from Corollary 5.34 for I' = {1}, Lemmas 5.37 and 5.38 and Theorem 5.39.
O

Write FAut for filtered automorphisms and PAut for graded Poisson automorphisms. Sup-
pose we choose an element FAut U(g, e). Taking the associated graded automorphism and then

restricting the scalars to C[S, n] defines a group homomorphism
FAutU(g,e) — PAut(C[S, n]), prsro(gro®@id)or™? (5.17)
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Corollary 5.41. If the orbit of e does not appear in the above table then (5.17) is an isomor-
phism.

Proof. Combine Proposition 5.29, Theorem 5.33 and Lemma 5.37. O

Remark 5.42. This universal property leads to exceptional isomorphisms with other interesting
algebras arising in Representation Theory. In particular, [67, Proposition 3.13] shows that the
universal quantization of a simple surface singularity is given by (the Namikawa—Weyl group in-
variants in) the rational Cherednik algebra for the Weyl group of the same Dynkin type. By the
work of Brieskorn and Slodowy we know that these surface singularities are isomorphic to sub-
regular nilpotent Slodowy slices for simply-laced Lie algebras. Hence the subregular simply-laced
finite W-algebras are isomorphic to the corresponding spherical symplectic reflection algebras.

This observation also follows from Losev’s Theorems 5.3.1 and 6.2.2 of [66].

5.4 Deformations in the subregular case

On top of this we assume henceforth that e € g is a subregular nilpotent element; we retain the

notation established at the beginning of Section 5.3.

5.4.1 The subregular slice and the automorphism group

Consider the subgroup C' = Staby ) ({e, h, f}) < Aut(g) consisting of automorphisms fixing
the sly-triple (e, b, f). Its structure is described in [91, §7.5]. The action of C' on g descends to

an action on S,.
Lemma 5.43. C acts on C[S,] by graded Poisson automorphisms.

Proof. Recall the notation ¢, Ny, u, I, from Section 5.3.1 and set £ = 0 and p := po. Since
the Poisson structure on C[S,] is defined via the graded isomorphism (5.13) it will suffice to
show that C acts by Poisson automorphisms on C[u=1(x|m,)]’¥°. Since C preserves the graded
pieces of g, it stabilises both mg and ng, and furthermore acts on C[g*] by automorphisms which
preserve the Kazhdan grading. The defining ideal I, of 1! (X|m,) in C[g*] is generated by the
Kazhdan graded vector space {z — x(z) | € mp} and so C acts by graded automorphisms
on Clp™ (x|m, )]0
Clp= (x| m,)]No. To see that the C-action on C[u~!(x|m, )] is Poisson it suffices to recall that
{f+L,g+L}={fg}+ 1 for f+1I,9+1, €Clp " (x|m ). O

. Since Ny is connected and unipotent the latter algebra coincides with
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5.4.2 The equivariant universal deformation of a subregular nilpotent
Slodowy slice

Assume now gg is not simply-laced and choose a simple Lie algebra g by determining the Dynkin

type as follows:

A2n71 if do is of type Bn
Dny1  if go is of type C,
Ee  if gg is of type F4
D,  if go is of type Go.

(5.18)

In this Section we consider the subregular Slodowy slice in g and so we use notation eg, X0, Sy,
to mirror the notation for g. The nilpotent subregular Slodowy slice for g is denoted Sy, a7 -
The following result appeared in [44, Lemma 2.23], we include here another proof for the reader’s

convenience.
Lemma 5.44. The Poisson varieties Sy nr and Sy, n, are C*-isomorphic.

Proof. It follows from the proofs of [91, Theorem 8.4 & 8.7] that S, nr and S, a, are both
C*-isomorphic to a simple surface singularity, say C[Sy x| ~ Clz,y]" ~ C[Sy, ;] where ' is a
finite subgroup of SLy. Let {-,-} and {-,-}¢ denote the Poisson structures on C?/I" transported
from Sy nr and S, n; respectively. Applying the argument in the final paragraph of the proof
of [64, Proposition 9.24] we see that {-, -} = ¢{-, -}o for some ¢ € C*. Now apply [64, Remark 6.19]
to complete the proof. O

Let I'g be the finite subgroup of C defined in [91, p. 143]. It is isomorphic to the group Aut(A)
of Dynkin diagram automorphism of g for all pairs (g, go) except for (D4, C3) in which case Ty is
isomorphic to a subgroup of order 2. In all cases the composition I'g < C — Aut(g) — Aut(A)
is injective and its image is the subgroup of Aut(A) realizing the Dynkin diagram Ag of gg as a
folding of A.

By [91, §8.7, Remark 3] there is a morphism of deformations of the algebraic variety Sy, a;, =~
Sy~ where the right hand side is I'p-equivariant and the vertical arrows are the adjoint quotient

maps:

Sy ——— Sy

% L; (5.19)

b/ Wo —— b*/W.
By [91, §8.8, Remark 4] the maps (7, j) induce isomorphisms of varieties
ho/Wo = (5"/W)T0, Syy 2 Sy X yw b/ Wo (5.20)
where (h*/W)I'o C h* /W is the subscheme of I'g-fixed points.
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Example 5.45. Assume g is of type B,,, and g is of type Aa,_1. Then Ty is a cyclic group of
order 2 and Clbh*] = Clxy, ..., z2pn]/(x1+ - -+ x2,). The only non-trivial element 7 in I’y maps

Z; t0 —Tan41—;. Furthermore
Clo* /W] = (Clz1, ..., xon]/(z1 + -+ + xZn))sym(zn) = Clea, €3, ..., €2n)

where e; is the j-th elementary symmetric polynomial. Thus ye; = e; for j even and ye; = —e;
for j odd and the kernel of the natural projection C[h* /W] — C[(h*/W)'?] is generated by all

egry1 forr=1,...,n—1.

For each piece of notation at the beginning of Section 5.3 we introduce the same notation
for go. For example, hy C go is a maximal toral subalgebra and Wy is the corresponding Weyl

group. Applying the remarks of Section 5.3.3 we see that we may fix graded isomorphisms
o1 ClSxol ®cpns /wo) C+ = ClSxo 00 t: C[Sy] ®cpy+/w) C — C[Sy ]

such that ¢ is I'g-equivariant. Since I'g acts on C[Sy | by graded Poisson automorphisms we
can consider the universal I'p-deformation of S, nr. We are ready to prove the main results of

this Section.

Proposition 5.46. Let (g,g90) be as in (5.18). Set:

U= ((C[Sx]a C[b*/W]v L), Up = (C[SXo]a C[bS/Wo], LO);
q = (U(ga 6), Z(g7 6)7 L)v qo = (U(go, 60)7 Z(QO» 60)7 LO)'

Then the unique morphism u — ug (resp. ¢ — qo) is a surjective morphism of Poisson deforma-

tions (resp. of filtered quantizations) of C[Sy ar] =~ C[Syy.Ap]-

Proof. First, we prove the statement relative to Poisson deformations. By Theorem 5.39, the
triple u is the universal Poisson deformation of C[S, ]. By Lemmas 5.38 and 5.44 the triple uo
is a Poisson deformation of C[S, n]. Hence there is a unique morphism of Poisson deformations
¢ = (¢1,02): u — ug. By C*-semi-universality of C[S,], see [91, §2.5 and Theorem 8.7], the
differentials at zero are equal for j as in (5.19) and the morphism h/Wy — bh* /W corresponding
to ¢o. Algebraically this means that dgj* = dg¢s, in the notation of Lemma 5.1. Since j is a
closed inclusion of affine varieties, j* and dgj* are surjective, and so we deduce from Lemma 5.1
that ¢ is surjective. We conclude by Corollary 5.16.

As far as filtered quantizations are concerned, by Theorem 5.40 we have that ¢ is the universal
quantization and gr ¢ the universal Poisson deformation, so there is a unique morphism ¢%: ¢ —

go in @ and a unique morphism ¢8 % : grq — grqo is D. Part (i) implies that ¢§ % is surjective.

Theorem 5.33 implies that gr ¢2° = ¢§"° and we conclude that ¢2° is also surjective. Now we
apply Corollary 5.16 to see that ¢1° is surjective. O

With some restrictions on the Dynkin type, we can prove the following result.
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Theorem 5.47. Let gg be of type B,,, C,, or F4, where n > 2 and n is even in type C. Then:
(i) (C[Sy,], Clbs/Wol, wo) is isomorphic to the universal Poisson T'g-deformation of C[Sy n];
(i1) (U(go,€0), Z(go,€0),to) is isomorphic to the universal T'g-quantization of C[Sy n].

Proof. Retain notation from Proposition 5.46. By Proposition 5.26, the universal Poisson defor-
mation u = (C[Sy],C[h*/W],:) of C[S, n] admits a unique I'g-equivariant structure. Propo-
sition 5.26 implies that the universal I'g-deformation of C[Sy ] is u'® = (C[S\] ®cfp+/w]
Clb*/W]r,, C[b* /W]r,,¢). There exists a unique morphism of Poisson deformations ¢: u — ul®,
we write ¢ = (11,1%2) and we claim that ker(¢y) = ker(¢)2) when go has one of the Dynkin types
listed in the statement. The map 12 is the natural projection C[h*/W] — C[h*/W]p,, so its
kernel is generated by f—~- f where f € C[h*/W] and v € Ty, however we will obtain a different
description of the kernel.

If » and s denote the ranks of g and gy respectively then we write d;,;7 = 1,...,r and
di =1,...,s for the Kazhdan graded degrees of the elementary homogeneous generators of
C[p*/W1] and Clh/Wy] respectively. These degrees are listed in [91, p. 112], and they coincide
with the total degrees doubled, viewed as polynomials on h* or h§. Let Iy, I C {1,...,7} be
the two complementary sets consisting of indexes i such that d; = 0 (mod4) or d; = 2 (mod 4),
respectively. Thanks to our restrictions on the Dynkin label of go the set {d; | i € Iy} coincides
with the collection of all degrees of homogeneous generators of C[h5]"°, whilst dim by = |Io|.
Therefore the Kazhdan grading on C[h/Wy] has degree concentrated in 4Z. Since ¢ is graded,
the generators of degree d; with ¢ € I are mapped to zero. Since ¢4 is surjective by Proposition
5.46, the generators with degrees d; where ¢ € Iy are sent to algebraically independent elements.
It follows that ker(¢o) = (e; | i € ).

It is explained in [32, §13] (see also [91, Remark 8.8.4]) that C[h*/W]r, ~ C[h5/Wo] as
algebras graded by total degree and, equivalently, by Kazhdan degree. Since 5 is a surjection we
can apply the argument of the previous paragraph verbatim to deduce that ker(i2) = (e; | i € I3).

Since ker(¢2) = ker(1h3) we can define a graded isomorphism o : C[h5/Wo] — C[b*/W]r, by
setting o (p2(f)) = ¥2(f) where f € C[h*/W]. We have a commutative triangle of homomor-
phisms in Cab* W]

Clo~/w]

o ~ (5.21)

Clbs/Wo] - Clh*/Wlr,.

Thanks to Proposition 5.21 we see that o corresponds to an isomorphism of Poisson deformations
(C[Syo], Clb§/Wo), Lo) — ul®, as required. Part (ii) follows from Corollary 5.34. O

We have the following consequence.

Corollary 5.48. Under the assumptions of Theorem 5.47 the kernel of the map U(g,e) —»
U(go, €0) is generated by {z —~-z|~v €To,z € Z(g,¢)}.
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Proof. This follows directly from Propositions 5.29, 5.46 and Theorem 5.47. O

We conjecture that Theorem 5.47 and Corollary 5.48 hold in general, without the restrictions
on Dynkin type.

5.4.3 A presentation for the subregular I//-algebra of type B

In this Section we let Gy = SOa,41 and gg = Lie(Gp). Let eg € go be a subregular nilpotent
element of go and x¢ € g§ the corresponding element with respect to the Killing identification.
Our purpose here is to give a presentation of the finite W-algebra U(go,eq) as a quotient of a
shifted Yangian.

By Corollary 5.48 we can express U(s02,4+1,€) as a quotient of U(sla,, ), whilst [24] allows
us to express U(gly,,e) as a truncated shifted Yangian. In order to tie these threads together

we record the following observation which follows straight from the definitions.

Lemma 5.49. The centre of gl,, maps to a central element of U(gl,,,e) and the quotient by that

element is isomorphic to U(sl,,e). O

In [24] the shifted Yangian associated to gl,, is introduced in full generality, however in this
work we only require a special case: we define the shifted Yangian Y5(o) to be the algebra with

generators
(D" DS |1 > 0y U{E® | 7> 20— 2} U{F® | r >0} (5.22)

and relations (2.4)-(2.9) from [24] with n = 2. Our generators E(") and F(") are denoted EY)
and Fl(r) in [24] and our definition above corresponds to the shift matrix o = (s; ;)1<i j<2 with
51,2 = 2n — 2 and s; ; = 0 otherwise. We gather the diagonal generators Dlm into power series
by setting D;(u) = 3,5, Dy~ € Yy(o)[[u"]] where DI” := 1 and consider the series

Zw) = w1y 2O
>0 (5.23)
= u(u—1)?""1Dy(u)Da(u — 1) € u®"Ya(o)[[u~1]].
Lemma 5.50. The elements {Z(’") | » > 0} are algebraically independent generators of the centre
of Ya(c). Furthermore for r =1,...,2n we have

[ 2n—1 - o
Z‘”=Z< ’ )<—1>2"—SZD§“D2<S—” (5.24)

= 2n—1-s pt

where Do) = Z::o (::i)Dgs) and D,V = 0.
Proof. The first claim follows from [25, Theorem 2.6] in view of the fact that =271 (u —1)2"~1
is invertible in C[[u~1]]. We proceed to prove formula (5.24). Using the binomial theorem we

have (u—1)7"=3%" o, (7'_1)1(". It follows that

T—S8

Dao(u—1)= (u—1)""Dy =3 u" Zr: DS (: - 2) = Zzﬂf)ﬂ). (5.25)

r>0 r>0 s=0 r>0
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If we define C(u) =3, -, C™y=" = Dy(u)Dy(u — 1) then we have

Clu)= 3 DDy = 373w D) Dy, (5.26)

r,s>0 r>0 s=0

At the same time we have

2n
2n —1 ;
— 1)l = —u)". 2
O D Gy [ (5.27)
Finally if we have a polynomial f(u) = 1" fiu* and a power series A(u) = > 5, A,u~" then
for r = 0,...,m the ™ " coefficient of f(u)A(u) is Y ._, fm—sAs. Since (27:1) = 0 we can
combine this last statement together with (5.26) and (5.27) we arrive at the proof of (5.24). O

Theorem 5.51. There is a surjective algebra homomorphism
Y3(o) = U(go, €o)
with kernel generated by
(D | r>130{Z2® D | r=1,.,n}.

Proof. Let e be a subregular nilpotent element of slz, C gly,,. The main result of [24] implies
that there is a surjective homomorphism Y3(o) — U(gly,, e) with kernel generated by {DY) |
r > 1}. It follows from [25, Lemma 3.7] that the image of the element Z() in (5.23) under
the map Ya2(0) — U(gly,, €) lies in the image of 3(gly,) = Z(gly,) — U(gly,,€). Together with
Lemma 5.49 this implies that U(sla,, e) is naturally isomorphic to the quotient of U(gl,,,,e) by
ZM | Finally by Example 5.45 and Corollary 5.48 there is a surjective algebra homomorphism
Ul(slan,e) — U(go,eo) and the kernel is generated by the image of the elementary symmetric
polynomials {ez,41 | 7 = 1,...,n — 1} under the isomorphism C[h*/W] — Z(sla,, €) discussed in
(5.16). Here we use (h, W) to denote a torus and Weyl group for slz,. To complete the proof
of the current Theorem it suffices to show, for r = 1,...,n — 1, that the image of es,; under
Clh* /W] — Z(slan, €) is equal to the image of Z*™+) under Ya(o) — U(gly,,,e) — Ul(slan,e).
Once again this follows from [25, Lemma 3.7]. O
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