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and Prüfer rings in distinguished

constructions

Coordinatore: Ch.mo Prof. Martino Bardi

Supervisore: Ch.mo Prof. Alberto Facchini

Dottorando: Federico Campanini





Abstract

This thesis is divided in two chapters. The first one concerns direct-sum

decompositions in additive categories. It is well known that if a module

admits a direct-sum decomposition into indecomposable modules with local

endomorphism rings, then this decomposition is essentially unique, up to

isomorphism and a permutation of the direct summands. However, there are

situations in which direct-sum decompositions into indecomposable modules

are not essentially unique. Among these cases, particularly interesting are

those in which it is possible to find some kind of regularity: direct-sum

decompositions can be described via two invariants up to two permutations.

Such behaviour was firstly discovered for uniserial modules by A. Facchini in

1996, and it was subsequently investigated for several other classes of modules,

such as cyclically presented modules over a local ring, couniformly presented

modules and kernels of morphisms between indecomposable injective modules.

In this thesis, we provide examples of additive categories in which direct-sum

decompositions can be classified via finitely many invariants. It is worth noting

that, in our constructions, we treat cases in which the number of invariants

needed to describe finite direct-sum decompositions can be arbitrarily large.

The second chapter is devoted to the study of Prüfer (commutative) rings

with zero-divisors. We investigate the so-called “Prüfer-like conditions” in

several constructions, most of them related to pullbacks. It is well known

that fiber products provide a rich source of examples and counterexamples

in Commutative Algebra, because of their ability of producing rings with

certain predetermined properties. Our investigation moves from very natural

settings, for example those of regular conductor squares, up to more technical

constructions, such as bi-amalgamated algebras, introduced by Kabbaj,

Louartiti and Tamekkante in 2017 as a generalization of that of amalgamated

algebras. Our main results in the pullback framework cover several different

situations studied up to now by Bakkaki and Mahdou, Boynton, Houston

and Taylor. We also investigate Prüfer ring from other points of view. We

introduce the notion of regular morphism and we prove that if a ring R is

the homomorphic image of a Prüfer ring via a regular morphism, then R is

Prüfer. Finally, we turn our attention to the ideal-theory of pre-Prüfer rings,

proving a number of generalizations of some results of Boisen and Larsen.
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Riassunto

Questa tesi è divisa in due capitoli. Il primo riguarda le decomposizioni in

somme dirette in categorie additive. E’ ben noto che se un modulo ammette

una decomposizione come somma diretta di moduli con anello endomorfismi

locale, allora questa decomposizione è essenzialmente unica, a meno di isomor-

fismo e di una permutazione degli addendi diretti. Tuttavia, ci sono situazioni

in cui tale decomposizione come somma diretta di moduli indecomponibili

non è unica. Tra tutte, particolarmente interessanti sono quelle classi di

moduli per cui è possibile trovare una sorta di regolarità: le decomposizioni

in somma diretta possono essere descritte attraverso due invarianti a meno

di due permutazioni. Tale comportamento è stato individuato per la prima

volta da A. Facchini nel 1996 per i moduli uniseriali, ed è successivamente

stato studiato per altre classi di moduli, come i moduli ciclicamente presen-

tati su un anello locale, i moduli couniformemente presentati e i nuclei di

morfismi tra moduli iniettivi indecomponibili. In questa tesi forniamo esempi

di categorie additive in cui le decomposizioni in somme dirette possono essere

classificate attraverso un numero finito di invarianti. Vale la pena notare che,

nelle nostre costruzioni, trattiamo casi in cui il numero di invarianti necessari

per descrivere tali decomposizioni può essere arbitrariamente grande.

Il secondo capitolo è dedicato allo studio degli anelli di Prüfer (commutativi)

con zero divisori. Studiamo le cosiddette ”condizioni di tipo Prüfer” in

diverse costruzioni, molte delle quali collegate a pullback di anelli. È noto

che i prodotti fibrati forniscono una ricca fonte di esempi e controesempi

in Algebra Commutativa, grazie alla loro capacità di produrre anelli con

determinate proprietà. Il nostro studio va da situazioni molto naturali, come

i “regular conductor squares”, fino a costruzioni più tecniche, quali le algebre

bi-amalgamate, introdotte da Kabbaj, Louartiti e Tamekkante nel 2017 come

generalizzazione di quella delle algebre amalgamate. I nostri principali risultati

nell’ambito dei pullback includono e generalizzano diverse situazioni studiate

fino ad ora da Bakkaki e Mahdou, Boynton, Houston e Taylor. Studiamo

gli anelli di Prüfer anche da altri punti di vista. Introduciamo la nozione di

morfismo regolare e mostriamo che se un anello R è l’immagine omomorfa di

un anello di Prüfer tramite un morfismo regolare, allora R è Prüfer. Infine,
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rivolgiamo la nostra attenzione agli anelli pre-Prüfer, generalizzando alcuni

risultati di Boisen e Larsen nel caso integro.
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2.6.2 Pre-Prüfer rings . . . . . . . . . . . . . . . . . . . . . 105

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vii



Introduction

This thesis is divided in two chapters and its content is based on the research

done during my PhD under the supervision of Professor Alberto Facchini, as

part of different collaborations with him, Dott. Susan El-Deken and Dott.

Carmelo Antonio Finocchiaro. This thesis contains results both in module

and category theory and in commutative ring theory.

Chapter 1

The first chapter is devoted to the so-called “weak forms of the Krull-Schmidt

Theorem”in additive categories and it is based on joint works with A. Facchini

and S.F. El-Deken [19, 20, 21].

In algebra, structures - for instance objects of a category - some times

decompose into indecomposable ones. The study of this kind of phenomena

has its roots in the well known result of G. Frobenius and L. Stickelberger

(1879 [51]), which states that every finite abelian group is isomorphic to a

direct sum of primary cyclic groups whose orders are uniquely-determined

powers of primes. In 1909, J.H. Wedderburn [82] tried to extend this result

to non-abelian groups, showing that any two direct product decompositions

of a finite group G = H1 × · · · ×Hr
∼= K1 × · · · ×Kt into indecomposable

factors are isomorphic, that is, r = t and there exist an automorphism

ϕ : G→ G and a permutation σ of {1, 2, . . . , r} such that ϕ(Hi) = Kσ(i) for

every i = 1, 2, . . . , r. Nevertheless, his proof had some gaps. Two years later,

in 1911, R. Remak [89] proved Weddenburn’s result, also showing that the

automorphism can be chosen to be central. Then, W. Krull (1925 [77]) and

O. Schmidt (1929 [92]) transferred these results to the case of modules that

are both Artinian and Noetherian. The classical Krull-Schmidt Theorem for

modules states that any module of finite composition length decomposes as

a direct sum of indecomposable modules in an essentially unique way up to

isomorphism and a permutation of the indecomposable direct summands.

This result was later extended to the case of arbitrary direct sums of modules

with a local endomorphism ring by G. Azumaya (1950 [5]). Nowadays the

name “Krull-Schmidt” is given to any theorem concerning uniqueness of

direct-sum decompositions into indecomposable direct summands. This is

a very classical topic that has a crucial relevance in the study of algebraic
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structures. Of course, there are cases in which direct-sum decompositions are

not essentially unique. It is worth mentioning that Krull already knew that

the Krull-Schmidt Theorem does not hold for arbitrary Noetherian modules,

which means that the ascending chain condition does not suffices to have

uniqueness of direct-sum decompositions. In light of this fact, a question

that naturally arises is if the Krull-Schmidt Theorem holds for the class of

Artinian modules. This problem was originally posed by Krull himself in

1932 but the answer was found only sixty years later, in 1995, when Facchini,

Herbera, Levy and Vámos showed that the Krull-Schmidt Theorem fails for

Artinian modules [40].

In the last three decades, new interesting examples in which direct-sum

decompositions are not unique made their appearance. The starting point of

these examples can be dated back to 1975, when Warfield proved that every

finitely presented module over a serial ring is a finite direct sum of uniserial

modules and posed a problem similar to that of Krull, essentially asking

whether the Krull-Schimdt Theorem holds for finite direct sums of uniserial

modules (in particular, for finitely presented modules over serial rings). The

negative answer to Warfield’s question was given by A. Facchini in 1996 [34].

Even though the lack of uniqueness, this situation displays some kind of

regularity: direct-sum decompositions can be classified via two invariants

and a weak version of the Krull-Schmidt Theorem can be proved. Such

behaviour has subsequently been discovered and studied for several classes

of modules, including biuniform modules (Facchini, 1996 [34]), cyclically

presented modules over local rings (Amini, Amini and Facchini, 2008, [3]),

couniformly presented modules (Facchini and Girardi, 2010 [37]), kernels of

morphisms between indecomposable injective modules (Facchini, Ecevit and

Koşan, 2010 [36]). But what do we mean by“weak version of the Krull-Schmidt

Theorem”? In order to answer this question and try to better explain what we

mean, let C be any full subcategory of Mod-R (for a fixed ring R) whose class

of objects consists of one of those just mentioned above (for instance, the

class of biuniform modules). Then, it is possible to find two invariants under

isomorphisms on C, say ∼a and ∼b, such that the behaviour of direct-sums

of objects of C can be described as follows: let M1, . . . ,Mr, N1, . . . , Nt be

r + t non-zero objects in C; then M1 ⊕ · · · ⊕Mr
∼= N1 ⊕ · · · ⊕Nt if and only

if r = t and there exist two permutations α and β of {1, 2, . . . , r} such that
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Mi ∼a Nα(i) and Mi ∼b Nβ(i) for every i = 1, 2, . . . , r. So, we can say that

the uniqueness of the decomposition is given not up to one permutation, but

up to two permutations. It is worth noting that the invariants needed to

describe direct-sum decompositions are closely related to the maximal ideals

of the endomorphism rings of the modules.

General theories that include all these cases has been recently developed

by Facchini, Perone and Př́ıhoda (cf. [45], [42]). They investigate the Krull-

Schmidt Theorem in suitable categorical frameworks, making use of the

so-called ideals in a category and factor categories. These notions were first

introduced by Mitchell [85]. Roughly speaking, these ideals allow to treat

all the endomorphism rings of the objects at the same time and to consider

“more simple” categories (i.e. factor categories) in which the endomorphism

rings of the indecomposable objects become local rings.

In this chapter, we study some additive categories in which it is possible to

find objects whose behaviour with respect to direct-sum decompositions is

very similar to those we have just mentioned. The main difference is that

we treat cases in which the number of invariants needed to describe finite

direct-sum decompositions is bigger than two, and, in some constructions,

this number can be arbitrarily large.

This chapter is organized as follows.

We list in Section 1.1 all the notations and the terminology that will be

used in this chapter.

Section 1.2 collects all preliminary results. We start by recalling the notions

of Goldie dimension and dual Goldie dimension of a module, as well as some

basics on semilocal rings and modules with a semilocal endomorphism ring.

In the second part of this section, we focus our attention on modules whose

endomorphism rings have two maximal right ideals. If a ring has exactly two

maximal right ideals, they are necessarily two-sided. These rings are called

rings of type 2 and a module M whose endomorphism ring is of type 2 (that

is, EndR(M) has exactly two maximal right ideals) is said to be a module of

type 2. More generally, if a ring R has exactly n maximal right ideals (for a

positive integer n) and they are all two-sided, then we say that R is of type

n. A module is said to be of type n if EndR(M) is a ring of type n. This
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notion was introduced by Facchini and Př́ıhoda in [45]. We consider several

classes of modules whose endomorphism rings are either local or of type 2,

namely the classes of uniserial modules, cyclically presented modules over a

local ring, couniformly presented modules, and kernels of morphisms between

indecomposable injective modules. As we have said before, in all these cases

direct-sum decompositions are described by two invariants, closely related to

the maximal ideals of the endomorphism rings of the modules. Finally, we

recall two results of Facchini, Perone and Př́ıhoda (Theorems 1.35 and 1.36),

that provide generalizations of these cases from a categorical point of view.

Section 1.3 is based on a joint work with A. Facchini and S. F. El-Deken

[20]. In this section, we focus our attention on the category Morph(Mod-R),

whose objects are morphisms µM : M0 → M1 between right R-modules.

It is well known [50, 65] that this category is equivalent to the category

of right modules over the triangular matrix ring T :=
(
R R
0 R

)
. We provide

several results about the endomorphism rings of objects of Morph(Mod-R).

For instance, in Proposition 1.42 we show that if µM : M0 →M1 is an object

of Morph(Mod-R) and M0 and M1 are right R-modules of type m and n

respectively, then the endomorphism ring EndMorph(Mod-R)(µM ) of µM in

Morph(Mod-R) is a ring of type ≤ n+m. Moreover, it is possible to give a

precise description of the maximal ideals of EndMorph(Mod-R)(µM ) in terms

of the maximal ideals of EndR(M0) and EndR(M1). Then, we continue by

investigating morphisms between modules of type 1 (i.e., between modules

with a local endomorphism ring) and we show that a weak version of the

Krull-Schmidt Theorem also holds in this setting (Theorem 1.49). The last

part of this section is devoted to the study of morphisms between uniserial

modules. We describe the endomorphism rings of such objects and we state a

weak version of the Krull-Schmidt Theorem (that is proved in Section 1.5), in

which the behaviour of direct-sum decompositions is described by 4 invariants

(Theorem 1.53). These invariants generalize those of monogeny class and

epigeny class defined in [34] for uniserial modules.

Section 1.4 deals with other particular additive categories in which it is

possible to detect objects of finite type and study the behaviour of their

direct-sums. These categories are defined as follows. Let R be a ring and let

n be a fixed positive integer. We consider the category En whose objects are
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right R-modules M with a fixed chain of submodules

0 = M (0) ≤M (1) ≤M (2) ≤ · · · ≤M (n) = M.

With abuse of notation, we simply denote by M such an object. A morphism

in En between two chains M and N is a right R-module morphism f :

M → N such that f(M (i)) ⊆ N (i) for every i = 1, . . . , n. This category was

introduced in [19] with the purpose to generalize some results given in [21]

for short exact sequences of right R-modules. Particular attention is given to

chains M whose consecutive factor modules M (i)/M (i−1) (i = 1, . . . , n) are

non-zero uniserial modules. Following the same pattern of Section 1.3, we

describe the endomorphism rings of chains with non-zero uniserial factors

and state a weak version of the Krull-Schmidt Theorem (that will be proved

in Section 1.5) in which direct-sum decompositions are described via 2n

invariants (Theorem 1.60). Then, we provide some examples and conclude

by studying what occurs for chains with some zero factors.

Section 1.5 is entirely devoted to the proof of Theorems 1.53 and 1.60. We

merge together different techniques, notions and ideas taken from several

works and papers (cf. [19, 21, 31, 41, 44, 45]). We start this section by

underlining the common patterns presented in Sections 1.3 and 1.4. Then

we describe the interplay between the maximal ideals of the endomorphism

rings of the objects and the invariants needed to describe their direct-sums.

In our results, we largely make use of a particular class of ideals in a category.

These ideals were introduced in [43] for any preadditive category and are

defined as follows. Let A be an object of a preadditive category A and I be

a two-sided ideal of the ring EndA(A). Let I be the ideal of the category

A defined as follows. A morphism f : X → Y in A belongs to I(X,Y ) if

βfα ∈ I for every pair of morphisms α : A→ X and β : Y → A in A. The

ideal I is called the ideal of C associated to I.

To conclude, in Section 1.6 we discuss other cases. In Sections 1.3 and

1.4 we almost always deal with objects related to uniserial modules (for

instance, Theorem 1.53 is stated for morphisms between non-zero uniserial

modules) and all our results are, in some sense, a generalization of those

proved in [34] for uniserial modules. So, it is natural to try to go back over the

results presented in this chapter and replace the class of uniserial modules
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with one of the other classes mentioned in Section 1.2, for instance, the

class of couniformly presented modules or the class of modules with a local

endomorphism ring. For this reason, in the last few pages of this chapter we

sketch how to adapt the proof given in Section 1.5 to all these other cases.

Chapter 2

The second chapter is based on joint papers with C.A. Finocchiaro [22, 23]

and it is devoted to the study of Prüfer rings in several different constructions.

In 1932, H. Prüfer introduced a new class of integral domains, namely the

domains in which every finitely generated ideal is invertible [88]. These rings

were named in his honour by W. Krull in 1936 [78], two years after Prüfer’s

death. As noted by R. Gilmer in the introduction of his book, Multiplicative

Ideal Theory [58], the notion of Prüfer domain has a predominant role in

the classical ideal theory. In the literature, it is possible to find plenty of

equivalent characterizations of Prüfer domains, confirming the fact that this

notion has played (and is still playing) a central role in non-Noetherian

commutative ring theory. For instance, we can think of a Prüfer domain as

the non-Noetherian version of a Dedekind domain, or as the global version

of a valuation domain. Among natural examples of non-Noetherian (and

non-local) Prüfer domains, we mention the ring

Int(Z) := {f(X) ∈ Q[X] | f(Z) ⊆ Z}

of integer-valued polynomials over Z and the ring of entire functions on the

complex plane C. Though Prüfer domains are not necessarily Noetherian,

they must be coherent, because finitely generated invertible ideals are finitely

related.

Another evidence of the ubiquity of this notion relies in the fact that its

many characterizations fall into very different areas of commutative algebra.

Indeed, Prüfer domains can be characterized in terms of arithmetical ideal

properties, localizations, flatness and other homological properties, integral

closures, etc.

Because of the great number of equivalent definitions of Prüfer domains, a

lot of extensions of this notion can be found in the literature both in the case
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of domains and rings with zero divisors. In our exposition, we discuss some

“Prüfer-like conditions”, considering the following extensions of the notion of

Prüfer domain:

1. R is a semihereditary ring;

2. w. gl.dim(R) ≤ 1;

3. R is an arithmetical ring;

4. R is a Gaussian ring;

5. R is a Prüfer ring.

The study of these notions goes from the first papers of Jersen [71, 72], Butts

and Smith [17] and Griffin [68] up to the recent works of Bazzoni and Glaz

[8, 9, 64], passing through the efforts of several other authors, too many to

cite them all. We will mention some of them in this thesis, and we refer to

the excellent survey of Bazzoni and Glaz [9] for a more comprehensive list.

There is another way to generalize the concept of Prüfer rings, recently

developed by M. Knebush and D. Zhang [76]. Notions of regularity and

invertibility of ideals are relativized to arbitrary ring extensions R ⊆ T .

Such extensions are called Prüfer extensions if the inclusion R ↪→ T is a flat

epimorphism (in the category of rings) and every finitely generated T -regular

ideal of R is T -invertible. This notion recover the classical one of Prüfer ring

if T = Tot(R), that is, R ⊆ Tot(R) is a Prüfer extension if and only if R is a

Prüfer ring.

It is clear that Prüfer extensions have an intrinsic ring-theoretic meaning.

Nevertheless, it is worth mentioning that they find many applications in real

and p-adic geometry, as largely explained in the introduction of Knebush

and Zhang’s book [76]. Among all, particularly interesting is the following

example [76, Chapter 1, Example 14]: let X be a topological space and let

C(X,R) [resp. Cb(X,R)] denote the ring of continuous [resp. bounded and

continuous] R-valued functions on X. Then Cb(X,R) ⊆ C(X,R) is a Prüfer

extension.

In this chapter, we investigate Prüfer-like conditions from several different

points of view. A substantial part of this Chapter is devoted to the study
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of these properties in constructions related to fiber products. It is worth

mentioning that Greenberg and Vasconcelos (1974 [66], 1976 [67]) were prob-

ably the first authors who studied pullbacks of rings with zero-divisors. They

considered very particular conductor squares with the aim of classifying rings

of weak global dimension 2. An important input towards the investigation of

the ideal theory in pullbacks was given by Fontana (1980 [48]) and by Gabelli,

Houston and Taylor(1997 [56], 2000 [57], 2007 [69]). Prüfer conditions in fiber

products of rings with zero-divisors were recently considered by Bakkari and

Mahdou in some D + m constructions (2009 [6]) and by Boynton in regular

conductor squares (2007 [14], 2008 [15], 2011 [16]).

It is worth recalling that the great interest in pullbacks is due to the fact that

this kind of constructions are important tools in the arsenal of commutative

algebraists, because of their ability of producing rings (with zero-divisors)

with certain predetermined properties. For this reason, they provide a rich

source of examples and counterexamples in Commutative Algebra. Lucas’

paper [80] is probably the best reference for those who want to have a deep

insight in this circle of ideas.

This chapter is organized as follows.

In Section 2.1 we collect basic notations and terminology we will use in the

sequel.

Section 2.2 contains almost all preliminary results we need in this chapter,

except for some basics on bi-amalgamated algebras that we decided to

place in Section 2.5, because of their technical features. In the first part of

this section, we outline the main properties of the “Prüfer-like conditions”

mentioned before, displaying the relations between them. The second part

contains some background on Prüfer extensions. In the last part of Section 2.2,

we recall some basic properties of fiber products and we briefly list several

classical constructions in Commutative Algebra, like the Nagata idealization,

the D + m, A+XB[X] and A+XB[[X]] constructions, the CPI-extensions

and the amalgamated algebras, with a mention to bi-amalgamated algebras,

that will be largely studied in Section 2.5.

In Section 2.3 we prove that if A ⊆ B is a Prüfer extension and A is a local

ring, then the set of all elements of A that are not invertible in B is a prime
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ideal of A. Moreover, if B = AS for some multiplicatively closed subset of A,

then any subring R of B containing A must be the form R = Ap for some

prime ideal p of A. These two results generalized those of Boynton [15] for

local Prüfer rings.

In Section 2.4 we study the transfer of Prüfer-like conditions in pullbacks

of the form

A //� _

��

R� _

��
B

π // T

where π : B → T is a surjective homomorphism whose kernel is a regular

ideal, and T is an overring of R. We prove that A has a certain Prüfer-like

condition (i.e. A is Prüfer, Gaussian, arithmetical, of weak global dimension

≤ 1, semihereditary) whenever B and T have the same condition, and the

converse holds for Prüfer, Gaussian and arithmetical rings (Theorem 2.27).

We observe that the assumption that T is an overring of R is actually a

necessary condition in many cases, for instance if B is a localization of A or

if Tot(R) is an absolutely flat ring (so, in particular, when R is a domain).

We provide new examples of Prüfer rings, with an application to Prüfer

Manis rings. It is worth noting that Theorem 2.27 covers several different

results studied up to now by Bakkari and Mahdou [6, Theorem 2.1], Boynton

[15, Theorem 4.1], Houston and Taylor [69, Theorem 1.3] and Fontana [48,

Theorem 2.4 (3)]). Using Theorem 2.27, it is also possible to give a shorter

proof of the following result of Boisen and Sheldon [11, Theorem 2]: a Prüfer

ring is the homomorphic image of a Prüfer domain if and only if its total

quotient ring is the homomorphic image of a Prüfer domain.

We conclude this section by proving that, in a generic pullback diagram

R //

��

A

α
��

B
β // C

if both ker(α) and ker(β) are regular ideals, then R turns out to be a Prüfer

ring only in the trivial case, namely (if and) only if A and B are both Prüfer

rings and R = A × B (Theorem 2.39). The same holds also for the other

Prüfer-like conditions.
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Section 2.5 is devoted to the study of bi-amalgamated algebras, a construc-

tion introduced by Kabbaj, Louartiti and Tamekkante [73] as a generalization

of that of amalgamated algebras [27]. These kind of rings, built starting

by two ring homomorphisms f : A → B, g : A → C, and ideals b and c

of B and C respectively, will be denoted by A ./f,g (b, c). We first outline

some basic properties of bi-amalgamated algebras, using its fiber product

presentation in order to give further remarks on the topological nature of its

prime spectrum. Then we investigate the problem of when A ./f,g (b, c) is a

Prüfer ring. A precise answer can be given if both the ideals b, c are regular.

The general case is much more difficult. Necessary and sufficient conditions

for A ./f,g (b, c) to be Prüfer are provided under a good behaviour of the

regular elements of the factor ring A/f−1(b). Finally, we give conditions for

a bi-amalgamation to be a Gaussian ring and we exhibit new examples.

In Section 2.6 we consider the interplay between the condition of a ring to

be a Prüfer ring and homomorphic images. According to [46, Proposition 4.4],

if A is a Prüfer ring and a is an ideal of A, then A/a is a Prüfer ring whenever

a is regular. The first goal of this section is to present a notion that allow to

consider homomorphic images of Prüfer rings that are still Prüfer, without

taking regular ideals. We consider surjective ring homomorphism f : A→ B

with the following property: pre-images of regular elements of B are regular

elements of A. We provide several examples of this kind of morphisms and we

show that if such a homomorphism from A onto B exists, and A is a Prüfer

ring, then so is B (Theorem 2.66). As a consequence, if A is a local Prüfer ring,

then so is A/Z(A). The second part of this section is devoted to the study

of the ideal theory of pre-Prüfer rings, that is, those rings whose nontrivial

homomorphic images are Prüfer ring [11]. We show that any two given prime

ideals of a localization of a pre-Prüfer ring are comparable, provided at

least one of them is regular (Theorem 2.70). This is a generalization of [11,

Theorem 1.2]. Furthermore, we show that any Noetherian pre-Prüfer ring

has Krull dimension ≤ 1 and we observe that the converse does not hold,

unlike to the integral case.
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CHAPTER 1

Weak forms of the Krull-Schmidt Theorem

1.1 Notations and terminology

Throughout this chapter all rings are assumed to be associative, with an

identity element and not necessarily commutative. A two-sided ideal I of

a ring R is said to be completely prime if, for every x, y ∈ R , xy ∈ I

implies x ∈ I or y ∈ I. We denote by J(R) the Jacobson radical of R, that

is, the intersection of all maximal right (or left) ideals of R. A ring R is

semisimple artinian if it is right (or left) artinian and J(R) = 0. This is

equivalent to say that R is a direct sum of finitely many simple right (or left)

R-modules. A ring R is semilocal if R/J(R) is a semisimple artinian ring. We

denote by Mod-R the category of right R-modules over a ring R. If MR is a

right R-module, we often omit the subscript R, especially if other subscripts

are needed. E(MR) denotes the injective envelope of MR. A module MR

is said to be local if it is non-zero and has a greatest proper submodule.

A submodule NR of right R-module MR is essential in MR (and we write

NR ≤e MR) if we have NR∩KR 6= 0 for every non-zero submodule KR of MR.

A right R-module MR is said to be uniform if it is non-zero and every proper

submodule of M is essential, that is, if the intersection of any two non-zero

submodules is non-zero. Dually, a submodule NR of MR is superfluous in

MR (and we write NR ≤s MR) if whenever KR is any submodule of MR such

that NR +KR = MR, then KR = MR. A right R-module MR is said to be

couniform (or hollow) if it is non-zero and every proper submodule of M is

superfluous. It is clear that uniform and couniform modules are necessarily

indecomposable and that the two notions are not preserved under direct

sums or quotients.
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1.2 Preliminaries

Goldie dimension and dual Goldie dimension

It is well known that it is possible to use the notion of uniform module to

“measure” the dimension of a module, in a way that generalizes, in some

sense, the notion of dimension of a vector space. In this subsection, we

briefly recall this definition and some basic properties, and we refer to [35,

Sections 2.6÷2.8] for more details.

Let MR be a right R-module. A set {Nλ | λ ∈ Λ} of non-zero submodules of

MR is said to be independent if∑
λ∈Λ

Nλ =
⊕
λ∈Λ

Nλ.

It can be proved that M does not have an infinite independent set of non-

zero submodules if and only if there exists an integer n such that MR

has an independent set {U1, . . . , Un} of uniform submodules of MR with⊕n
i=1 Ui ≤e MR. In this case, the integer n is uniquely determined and it

is said to be the Goldie dimension of MR. It will be denoted by dim(MR).

If dim(MR) = n, then n is the maximum of the integers m such that MR

has an independent set of m non-zero proper submodules. If MR admits an

infinite independent set of non-zero submodules, then MR is said to have

infinite Goldie dimension.

If NR is an essential submodule of MR, then dim(MR) = dim(NR), so that,

in particular, the injective envelope of MR has the same Goldie dimension of

MR. The following proposition collects some basic properties of the Goldie

dimension.

Proposition 1.1. Let MR be a right R-module.

1. dim(M) = 0 if and only if M = 0.

2. dim(M) = 1 if and only if M is a uniform module.

3. If N ≤ M and dim(M) is finite, then dim(N) ≤ dim(M) and the

equality holds if and only if N is essential in M .
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4. If M1 and M2 are right R-modules of finite Goldie dimension, then

dim(M1 ⊕M2) = dim(M1) + dim(M2).

As one might expect, the notion of Goldie dimension can be dualized. We say

that a finite set {N1, . . . , Nk} of proper submodules of MR is coindependent

if the canonical injective map

M/

k⋂
i=1

Ni ↪→
k⊕
i=1

M/Ni

is an isomorphism. An arbitrary set of proper submodules of MR is said to

be coindependent if all its finite subsets are coindependent. It can be proved

that M does not have an infinite coindependent set of proper submodules

if and only if there exists an integer n such that MR has a coindependent

set {N1, . . . , Nn} of proper submodules of MR with all M/Ni couniform

modules for every i = 1, . . . , n and
⋂n
i=1Ni ≤s MR. In this case, n is the

maximum of the set of all the cardinalities of coindependent sets of proper

submodules of MR and n is said to be the dual Goldie dimension of MR (it

will be denoted by codim(MR)). If MR admits an infinite coindependent set

of proper submodules, then MR is said to have infinite dual Goldie dimension.

Proposition 1.2. Let MR be a right R-module.

1. codim(M) = 0 if and only if M = 0.

2. codim(M) = 1 if and only if M is a couniform module.

3. If N ≤M and codim(M) is finite, then codim(M/N) ≤ codim(M) and

the equality holds if and only if N is superfluous in M .

4. If M1 and M2 are right R-modules of finite dual Goldie dimension,

then codim(M1 ⊕M2) = codim(M1) + codim(M2).

It is worth noting that the notions of Goldie dimension and dual Goldie

dimension are based on lattice-theoretical properties of the set of submodules

of MR and therefore they can also be treated in terms of modular lattices

(see [35, Section 2.6]). We conclude this subsection with a result on uniform

and couniform modules that will be largely used in the sequel.

3



Lemma 1.3. [35, Lemma 6.26] Let A,B and C be non-zero right R-modules

and let f : A→ B and g : B → C be right R-module homomorphisms. Then:

1. If B is uniform, then g ◦ f is injective if and only if both f and g are

injective.

2. If B is couniform, then g ◦ f is surjective if and only if both f and g

are surjective.

Local morphisms, semilocal rings and rings of finite type

Definition 1.4. [24] Let ϕ : R→ S be a ring morphism. Then ϕ is a local

morphism if for every r ∈ R, ϕ(r) invertible in S implies r invertible in R.

It is clear that if ϕ : R→ S and ψ : S → T are two ring morphisms and both

ϕ and ψ are local morphisms, then so is ψ ◦ ϕ. Conversely, if the composite

morphism ψ ◦ ϕ is local, then ϕ is a local morphism. Moreover, if ϕ is a

surjective morphism, then ϕ is local if and only if ker(ϕ) ⊆ J(R) (cf. [39,

Lemma 3.1]). Local morphisms preserve the dual Goldie dimensions of the

rings, in the following sense.

Proposition 1.5. [24, Corollary 2] If ϕ : R→ S is a local morphism, then

codim(R) ≤ codim(S).

The next proposition shows that semilocal rings can be characterized in

terms of local morphisms and that they are precisely those of finite dual

Goldie dimension.

Proposition 1.6. The following conditions are equivalent for a ring R.

1. R is semilocal;

2. the ring R/J(R) is right [resp. left] artinian;

3. the ideal J(R) is the intersection of finitely many maximal right [resp.

left] ideals of R;

4. [24, Theorem 1] there exists a local morphism from R into a semisimple

artinian ring or, equivalently, into a semilocal ring;
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5. [91, Corollary 1.14] R has finite dual Goldie dimension codim(RR).

Example 1.7. (for more details, see [35, pages 6 and 7])

1. A commutative ring is semilocal if and only if it has finitely many

maximal ideals.

2. Every right (or left) artinian ring is semilocal.

3. If R is semilocal, then the ring Mn(R) of all n× n matrices over R is

semilocal. In particular, Mn(Q) is a semilocal ring with infinitely many

maximal right ideals.

4. The direct product R1 × · · · × Rn of finitely many semilocal rings

R1, . . . , Rn is semilocal.

5. Every homomorphic image of a semilocal ring is semilocal.

6. The endomorphism ring of an artinian right R-module is a semilocal

ring.

For a semilocal ring R, the dual Goldie dimension codim(RR) coincides with

the composition length of the semisimple artinian ring R/J(R). Moreover,

codim(RR) is the smallest possible number of maximal right [resp. left]

ideals such that J(R) can be represented as their intersections. As far as the

maximal two-sided ideals of R are concerned, we have the following

Proposition 1.8. A semilocal ring R has at most codim(RR) maximal

two-sided ideals, and the intersection of the maximal two-sided ideals is

J(R).

Remark 1.9. If R is a ring with at most two maximal right [resp. left]

ideals, then the maximal right [resp. left] ideals are two-sided, but this is

not true in general. As a matter of fact, consider the ring R := M2(F2).

Then R is a semilocal ring with exactly three maximal right ideals, namely

I1 := ( 1 1
0 0 )R, I2 := ( 0 0

1 1 )R and I3 := ( 1 0
1 0 )R, that are not two-sided.

Moreover, 0 = J(R) = I1 ∩ I2 = I2 ∩ I3 = I1 ∩ I3 and codim(RR) = 2.

By the Artin-Wedderburn’s Theorem, if R is a semilocal ring, then R/J(R) ∼=
Mn1(D1) × · · · × Mnt(Dt) for suitable non-negative integers t, n1, . . . , nt
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and division rings D1, . . . ,Dt. The rings Mni(Di) are simple rings but,

of course, not necessarily division rings. This behaviour seems to be not

properly fulfilling compared to that of commutative rings, in which R/J(R)

is isomorphic to the direct product of finitely many fields. This fact motivates

the following definition.

Definition 1.10. [44] Let n ≥ 1 be an integer. A ring R is of type n if

R/J(R) is isomorphic to the direct product of n division rings. We say that

R is of finite type if it is of type n for some n ≥ 1.

It is clear that if R is a ring of finite type, then it is semilocal, and that for

commutative rings, R is semilocal if and only if R is of finite type. Moreover,

if R is a ring of type n, then n = codim(RR).

Proposition 1.11. [44, Proposition 2.1] Let R be a ring and let n ≥ 1 be

an integer. The following conditions are equivalent.

1. R is a ring of type n.

2. n is the smallest of the positive integers m for which there is a local

morphism from R into a direct product of m division rings.

3. The ring R has exactly n distinct maximal right [resp. left] ideals, and

they are all two-sided ideals of R.

In view of this proposition, for a ring of finite type we can simply talk about

“maximal ideals”, because we have

{ max. right ideals } = { max. left ideals } = { max. two-sided ideals }.

Modules with a semilocal endomorphism ring

Let MR be a right R-module. In order to consider the dual Goldie dimension

of the endomorphism ring of MR, we define

δ(MR) :=

codim(End(MR)) if MR 6= 0

0 if MR = 0
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It is immediate that for a non-zero module MR, the endomorphism ring of

MR is semilocal if and only if δ(MR) is finite. In particular, a module has a

local endomorphism ring if and only if δ(MR) = 1. The following proposition

shows that the class of modules with semilocal endomorphism rings is closed

under direct summands and finite direct sums.

Proposition 1.12. (see [38, Introduction, p. 575]) Let MR and NR be right

R-modules. Then δ(MR ⊕NR) = δ(MR) + δ(NR). In particular, MR ⊕NR

has a semilocal endomorphism ring if and only if both MR and NR have a

semilocal endomorphism ring.

Modules with a semilocal endomorphism ring cancel from direct sums. The

following proposition can be found in [35, page 105] as a corollary of two

results of Bass [7] and Evans [33].

Proposition 1.13. (Cancellation property) Let AR, BR and CR be right

R-modules and assume that δ(AR) is finite. Then AR ⊕ BR ∼= AR ⊕ CR
implies BR ∼= CR.

Remark 1.14. It is worth noting that this result is stated only for modules,

but its proof shows that it holds in any additive category (cf. [35, pages 104

and 105]). Hence, if C is an additive category, A,B,C are three objects of C
and EndC(A) is semilocal, then A⊕B ∼= A⊕ C implies B ∼= C.

Among all modules with a semilocal endomorphism ring, those whose endo-

morphism ring is of finite type will be of particular interest.

Definition 1.15. [45] Let n ≥ 1 be an integer. A non-zero right R-module

MR is a module of type n [resp. of finite type] if its endomorphism ring

End(MR) is a ring of type n [resp. finite type]. The zero module is defined to

be of type 0. More generally, if A is an additive category and M ∈ Ob(A) is

a non-zero object, then we say that M is an object of type n [resp. of finite

type] if EndA(M) is a ring of type n [resp. finite type]. Zero objects in A are

defined to be of type 0.

Several classes of modules of finite type will be presented in the following

subsections, while in Sections 1.3 and 1.4 we will consider additive categories

in which is it possible to detect some objects of finite type.
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Krull-Schmidt Theorems for modules

In 1909, J.H. Maclagan-Weddenburn [82] stated a first version of the so

called “Classical Krull-Schmidt Theorem for finite groups“. In his work, he

published the following result.

Theorem 1.16. If a finite group G has two direct-product decompositions

G = G1 × · · · ×Gr = H1 × · · · ×Ht into indecomposable groups, then r = t

and there exist an automorphism ϕ of G and a permutation σ of {1, 2, . . . , r}
such that ϕ(Gi) = Hσ(i) for every i = 1, 2 . . . , r.

Nevertheless, his proof had some gaps. Two years later, in 1911, R. Remak

proved Weddenburn’s result in his Ph.D. dissertation [89], also showing that

the automorphism ϕ in the statement of Theorem 1.16 can be chosen to be

central (recall that an automorphism of a group G is said to be central if it

induces the identity G/Z(G)→ G/Z(G), where Z(G) denotes the center of

G). Krull and Schmidt transferred this result to modules of finite composition

length [77, 92].

Theorem 1.17. (Classical Krull-Schmidt Theorem for modules) Let R be a

ring and M be a module of finite length. Then there exists a decomposition

M = M1 ⊕ · · · ⊕Mr

into indecomposable submodules. Moreover, if M = N1 ⊕ · · · ⊕Nt is another

decomposition of M into indecomposable submodules, then r = t and there

exists a permutation σ of {1, 2, . . . , r} such that Mi
∼= Nσ(i) for every

i = 1, 2, . . . , r.

Notice that any module with a local endomorphism ring is necessarily inde-

composable and by Fitting’s Lemma, the converse holds as well for modules of

finite composition length. Theorem 1.17 was extended by G. Azumaya [5] to

the case of possibly infinite direct sums of modules with a local endomorphism

ring.

Theorem 1.18. (Krull-Schmidt-Remak-Azumaya Theorem) Let R be a

ring and let M be a module that is a direct sum of modules with local

endomorphism rings. Then M is a direct sum of indecomposable modules in
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an essentially unique way in the following sense. If

M =
⊕
i∈I

Mi
∼=
⊕
j∈J

Nj

where all the submodules Mi, i ∈ I and Nj , j ∈ J are indecomposable, then

there exists a bijection σ : I → J such that Mi
∼= Nσ(i) for all i ∈ I.

In the following subsections, we will consider finite direct-sums of modules

and we will see what happens if we drop the assumption that the direct

summands have a local endomorphism ring. We consider several classes of

modules whose endomorphism rings have two maximal right ideals. As we

have seen, if a ring has exactly two maximal right ideals, they are necessarily

two-sided, and therefore the ring is of type 2.

Uniserial modules

Recall that a right R-module is uniserial if the lattice of its submodules is

linearly ordered under inclusion, that is, for every V,W ≤ U , either V ⊆W
or W ⊆ V . The next result shows that the endomorphism ring of a uniserial

module has at most two maximal right (left) ideals, hence uniserial modules

are modules of type at most 2.

Theorem 1.19. [34, Theorem 1.2] The endomorphism ring End(UR) of a

non-zero uniserial module UR has at most two maximal right ideals: the

two-sided completely prime ideals IU := { f ∈ End(UR) | f is not injective }
and KU := { f ∈ End(UR) | f is not surjective }, or only one of them. In

particular, uniserial modules have type at most 2.

In order to discuss direct-sum decompositions of uniserial modules, we need to

introduce the notions of monogeny class and epigeny class. These notions will

turn out to be the “invariants” needed to classify direct-sum decompositions

of uniserial modules (see Theorem 1.21 below).

Definition 1.20. [34] Two right R-modules MR and NR are said to have the

same monogeny class, denoted by [MR]m = [NR]m, if there exist two right R-

module monomorphisms f : MR → NR and g : NR →MR. Similarly, MR and
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NR are said to have the same epigeny class, denoted by [MR]e = [NR]e, if there

exist two right R-module epimorphisms f : MR → NR and g : NR →MR.

For uniserial modules, the monogeny class and the epigeny class can be

expressed in terms of the maximal right ideals of the endomorphism rings

of the modules. To be more precise, two uniserial right R-modules U and

V have the same monogeny class [resp. epigeny class] if and only if there

exist two morphisms f : UR → VR and g : VR → UR such that gf /∈ IU [resp.

gf /∈ KU ].

For uniserial modules, we have the following weak form of the Krull-Schmidt

Theorem.

Theorem 1.21. [34, Theorem 1.9] Let U1, . . . , Ur, V1, . . . , Vt be uniserial

modules over an arbitrary ring R. Then

U1 ⊕ · · · ⊕ Ur ∼= V1 ⊕ · · · ⊕ Vt

if and only if r = t and there are two permutations σ, τ of {1, 2, . . . , r} such

that [Ui]m = [Vσ(i)]m and [Ui]e = [Vτ(i)]e for every i = 1, 2, . . . , r.

Let n ≥ 2 be an integer. In [34, Example 2.1], Alberto Facchini constructed

an example of n2 pairwise non-isomorphic finitely presented uniserial modules

Uj,k (j, k = 1, 2, . . . , n) over a suitable serial ring R in order to show that

a module that is a direct sum of n uniserial modules can have n! pairwise

non-isomorphic direct-sum decompositions into indecomposables. Here we

briefly recall the construction of the ring R and the uniserial right R-modules

Ui,j , and we refer to [34, Example 2.1] and [35, Example 9.20] for more

details.

Example 1.22. Fix an integer n ≥ 2. Let Mn(Q) be the ring of all n× n-

matrices over the field Q of rational numbers. Let Z be the ring of integers

and let Zp,Zq be the localizations of Z at two distinct maximal ideals (p)

and (q) of Z (here p, q ∈ Z are distinct prime numbers). Let Λp denote the

subring of Mn(Q) whose elements are the n× n-matrices with entries in Zp
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on and above the diagonal and entries in pZp under the diagonal, that is,

Λp :=


Zp Zp . . . Zp
pZp Zp . . . Zp

...
. . .

pZp pZp . . . Zp

 ⊆Mn(Q).

Similarly, set

Λq :=


Zq Zq . . . Zq
qZq Zq . . . Zq

...
. . .

qZq qZq . . . Zq

 ⊆Mn(Q).

If

R :=

(
Λp 0

Mn(Q) Λq

)
,

then R is a subring of the ring M2n(Q) of 2n× 2n-matrices with rational

entries.

For every i = 1, 2, . . . , n, set

Vi := (Q, . . . ,Q︸ ︷︷ ︸
n

, qZq, . . . , qZq︸ ︷︷ ︸
i−1

,Zq, . . . ,Zq︸ ︷︷ ︸
n−i+1

)

and

Xi := (pZp, . . . , pZp︸ ︷︷ ︸
i−1

,Zp, . . . ,Zp︸ ︷︷ ︸
n−i+1

, 0, . . . , 0︸ ︷︷ ︸
n

).

Then Vi and the Xj are right R-modules with right R-module structure given

by matrix multiplication. Moreover, the unique infinite composition series of

V1 is

V1 ⊃ V2 ⊃ · · · ⊃ Vn ⊃ qV1 ⊃ · · · ⊃ qVn
⊃ q2V1 ⊃ · · · ⊃ q2Vn ⊃ · · · ⊃ p−2X1 ⊃ · · · ⊃ p−2Xn

⊃ p−1X1 ⊃ · · · ⊃ p−1Xn ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xn

⊃ pX1 ⊃ . . . pXn ⊃ p2X1 ⊃ . . . p2Xn ⊃ · · · ⊃ 0
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The right R-modules Xi/Xi+1 and Vi/Vi+1 are simple. Define the n2 uniserial

R-modules Uj,k := Vk/Xj . The modules Uj,k satisfy the following properties:

(a) for every j, k, h, l = 1, 2, . . . , r, [Uj,k]m = [Uh,l]m if and only if j = h;

(b) for every j, k, h, l = 1, 2, . . . , r, [Uj,k]e = [Uh,l]e if and only if k = l.

Hence, for every pair of permutations σ, τ of {1, 2, . . . , n} we have

U1,1 ⊕ U2,2 ⊕ · · · ⊕ Un,n ∼= Uσ(1),τ(1) ⊕ Uσ(2),τ(2) ⊕ . . . ,⊕Uσ(n),τ(n)

In particular, the two permutations σ, τ in Theorem 1.21 can be completely

arbitrary.

It is worth mentioning that in [87], Pavel Př́ıhoda proved that every indecom-

posable direct summand of a direct sum of finitely many uniserial modules

is necessarily a uniserial module. Therefore, Theorem 1.21 describes the

behaviour of all direct-sum decompositions of a direct sum of finitely many

uniserial modules.

Cyclically presented modules

The behaviour of uniserial modules we have just described is enjoyed by

other classes of modules. Let us start by presenting the case of cyclically

presented modules, which was first studied in [3]. In this subsection R will be

a local ring with maximal ideal J(R). A right R-module is called cyclically

presented if it is isomorphic to the cyclic module RR/aR for some a ∈ R.

The endomorphism ring of a non-zero cyclically presented module R/aR is

isomorphic to the ring E/aR, where E := {r ∈ R | ra ∈ aR} is the idealizer

of aR (notice that aR is a two-sided ideal of the ring E).

Theorem 1.23. [3, Theorem 2.1] Let 0 6= a be a non-invertible element of a

local ring R and let E denote the idealizer of aR. Set Ia := {r ∈ E | ra ∈
aJ(R)} and Ka := E ∩ J(R). The endomorphism ring End(R/aR) ∼= E/aR

of the cyclically presented module R/aR has at most two maximal right

ideals: the completely prime two-sided ideals Ia/aR and Ka/aR, or only one

of them.
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Definition 1.24. [3, Section 4] If R/aR and R/bR are two cyclically pre-

sented modules, we say that R/aR and R/bR have the same lower part, and

we write [R/aR]` = [R/bR]`, if there exist elements r, s, u, v ∈ R with u, v

invertible, such that ra = bu and sb = av.

For cyclically presented modules over a local ring, this notion dualizes the

notion of having the same epigeny class. Indeed, it is straightforward to show

that [R/aR]e = [R/bR]e if and only if there exist elements r, s, u, v ∈ R with

u, v invertible such that ua = br and vb = as. Moreover, R/aR and R/bR

have the same lower part [resp. the same epigeny class] if and only if there

exist two morphisms f : R/aR → R/bR and g : R/bR → R/aR such that

gf /∈ Ia/aR [resp. gf /∈ Ka/aR], or, equivalently, such that fg /∈ Ib/bR [resp.

fg /∈ Kb/bR].

We have the following weak form of the Krull-Schmidt Theorem.

Theorem 1.25. [3, Theorem 5.3] Let a1, . . . , ar, b1, . . . , bt be non-invertible

elements of a local ring R. Then

R/a1R⊕ · · · ⊕R/arR ∼= R/b1R⊕ · · · ⊕R/btR

if and only if r = t and there exist two permutations σ and τ of {1, 2, . . . , r}
such that [R/aiR]` = [R/bσ(i)R]` and [R/aiR]e = [R/bτ(i)R]e for every

i = 1, 2, . . . , r.

Couniformly presented modules

The next example we want to consider is that of couniformly presented

modules, studied in [37]. We say that a right R-module MR is couniformly

presented [37] if it is non-zero and there exists a short exact sequence (called

a couniform presentation of MR)

0→ CR → PR →MR → 0

where PR is projective and both CR and PR are couniform right R-modules.

Every couniformly presented module is local (that is, cyclic, non-zero and

with a unique maximal proper submodule), hence indecomposable. Moreover,

since every proper submodule of PR is superfluous, PR →MR is necessarily
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a projective cover of MR. It is clear that this notion generalizes that of

cyclically presented modules introduced above. To be more precise, a cyclically

presented module over a local ring R is either zero, or isomorphic to R or

couniformly presented. If R is a right chained ring (that is, its lattice of right

ideals is totally ordered under inclusion), then every couniformly presented

module is uniserial.

The following lemma describes the projective modules that are couniform.

Lemma 1.26. [3, Lemma 8.7] Let PR be a projective right R-module. Then,

the following conditions are equivalent.

1. PR is couniform.

2. PR is a projective cover of a simple module.

3. δ(PR) = 1, that is, the endomorphism ring End(PR) of PR is local.

4. There exists an idempotent element e of R such that PR ∼= eR and eRe

is a local ring.

5. PR is a finitely generated module with a unique maximal submodule.

Let 0→ CR → PR →MR → 0 be a couniform presentation of a couniformly

presented module MR. Then any endomorphism f ∈ End(MR) lifts to an

endomorphism fP : PR → PR. If we denote by fC : CR → CR the restriction

of fP to CR, we get the following commutative diagram

0 // CR //

fC
��

PR //

fP
��

MR
//

f
��

0

0 // CR // PR //MR
// 0.

The morphisms fP and fC are not uniquely determined by f . Neverthe-

less, if f ′P : PR → PR and f ′C : CR → CR are two other morphisms

that make the above diagram commute, then fP is surjective if and only

if f ′P is surjective and fC is surjective if and only if f ′C is surjective. It

follows that the sets KM := {f ∈ End(MR) | f is not surjective } and

IM := {f ∈ End(MR) | fC is not surjective } are well-defined. Moreover, if

0→ C ′R → P ′R →MR → 0 is another couniform presentation of MR, then it
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can be proved that the set {f ∈ End(MR) | fC is not surjective } is equal to

{f ∈ End(MR) | fC′ is not surjective }, so that, IM does not depend on the

couniform presentation of MR.

Theorem 1.27. [37, Theorem 2.5] The endomorphism ring End(MR) of

a couniformly presented module MR (with a given couniform presentation

0→ CR → PR →MR → 0) has at most two maximal right ideals: the com-

pletely prime two-sided ideals

KM := {f ∈ End(MR) | f is not surjective }

and

IM := {f ∈ End(MR) | fC is not surjective },

or only one of them. In particular, MR is a module of type at most 2.

The notion of “having the same lower part” can be extended to arbitrary

couniformly presented modules, as follows.

Definition 1.28. [37, Section 3] Let MR and M ′R be two couniformly pre-

sented modules with two couniform presentations 0→ CR → PR →MR → 0

and 0→ C ′R → P ′R →M ′R → 0 respectively. Then MR and M ′R are said to

have the same lower part, and we write [MR]` = [M ′R]`, if there exist two

right R-module morphisms ϕ : PM → P ′M and ψ : P ′M → PM such that

ϕ(CR) = C ′R and ψ(C ′R) = CR.

It is easy to see that [MR]` = [M ′R]` if and only if there exist two right

R-module morphisms f : MR →M ′R and g : M ′R →MR such that g ◦ f /∈ IM
(or equivalently, such that f ◦ g /∈ IM ′). Since the ideal IM does not depend

on the couniform presentation, the notion of having the same lower part is

well-defined. Notice also that this definition generalize that given for cyclically

presented modules over a local ring.

In a similar way, two couniformly presented modules MR and M ′R have the

same epigeny class if and only if there exist two right R-module morphisms

f : MR → M ′R and g : M ′R → MR such that g ◦ f /∈ KM (or equivalently,

such that f ◦ g /∈ KM ′).

We have the following weak form of the Krull-Schmidt Theorem for couni-

formly presented modules.
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Theorem 1.29. [37, Theorem 4.3] Let M1, . . . ,Mr, N1, . . . , Nt be r + t

couniformly presented right R-modules. Then

M1 ⊕ · · · ⊕Mr
∼= N1 ⊕ · · · ⊕Nt

if and only if r = t and there are two permutations σ, τ of {1, 2, . . . , r} such

that [Mi]` = [Nσ(i)]` and [Mi]e = [Nτ(i)]e for every i = 1, 2, . . . , r.

Kernels of morphisms between indecomposable injective

modules

In this subsection we present another class of modules that dualizes, in some

sense, that of couniformly presented modules. The precise meaning of this

“dualization” is explained in [37], while all results we are going to present can

be found in [36]. We will see that, also in this case, we can find the pattern

that characterizes all our examples: at most two maximal ideals and a weak

form of the Krull-Schmidt Theorem. Let ϕ : E1 → E2 be a non-zero and

non-injective right R-module morphism between indecomposable injective

modules. Then ker(ϕ) is a uniform (hence indecomposable) module with

injective envelope E(ker(ϕ)) ∼= E1. If f ∈ End(ker(ϕ)), then f extends to a

morphism f1 : E1 → E1. The induced morphism f̃1 : E1/ ker(ϕ)→ E1/ ker(ϕ)

extends to a morphism f2 : E2 → E2. Hence, we have a commutative diagram

0 // ker(ϕ) //

f

��

E1
ϕ //

f1

��

E2

f2

��
0 // ker(ϕ) // E1

ϕ // E2.

The morphisms f1 and f2 are not uniquely determined. Nevertheless, it can

be proved that if f ′1 and f ′2 are two other morphisms that make the above

diagram commute, then both f1 − f ′1 and f2 − f ′2 have non-zero kernel. Since

the endomorphism ring End(ER) of an indecomposable injective module

ER is a local ring with maximal ideal {f ∈ End(ER) | f is not injective}, it

follows that f1 is injective if and only if f ′1 is injective and similarly, f2 is
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injective if and only if f ′2 is injective. Therefore, are well-defined the sets

Iϕ : = {f ∈ End(ker(ϕ)) | f is not injective}

= {f ∈ End(ker(ϕ)) | f1 : E1 → E1 is not injective}

and

Kϕ : = {f ∈ End(ker(ϕ)) | f−1
1 (ker(ϕ)) ) ker(ϕ)}

= {f ∈ End(ker(ϕ)) | f2 : E2 → E2 is not injective}.

Theorem 1.30. [36, Theorem 2.1] Let ϕ : E1 → E2 be a non-injective

right R-module morphism between indecomposable injective modules. Then

End(ker(ϕ)) has at most two maximal right ideals: the completely prime

two-sided ideals Kϕ and Iϕ, or only one of them. In particular, ker(ϕ) is a

module of type at most 2.

Definition 1.31. [36, Section 2] Two right R-modules MR and NR are said

to have the same upper part (and we write [MR]u = [NR]u) if there exist two

right R-modules morphisms ϕ : E(MR)→ E(NR) and ψ : E(NR)→ E(MR)

such that ϕ−1(N) = M and ψ−1(M) = N .

If ϕ : E1 → E2 and ϕ′ : E′1 → E′2 are two non-injective morphisms between

indecomposable injective modules, then [ker(ϕ)]u = [ker(ϕ′)]u if and only

if there exist two right R-module morphisms α : ker(ϕ) → ker(ϕ′) and

β : ker(ϕ′) → ker(ϕ) such that β ◦ α /∈ Kϕ (or equivalently, such that

α ◦ β /∈ Kϕ′). In a similar way, [ker(ϕ)]m = [ker(ϕ′)]m if and only if there

exists a morphism λ : End(ker(ϕ)) \ Iϕ that factors through ker(ϕ′) (or

symmetrically, if and only if there exists a morphism λ′ : End(ker(ϕ′)) \ Iϕ′
that factors through ker(ϕ)).

Theorem 1.32. [36, Theorem 2.7] Let ϕi : Ei,1 → Ei,2 (i = 1, 2, . . . , r) and

ϕ′j : E′j,1 → E′j,2 (j = 1, 2, . . . , t) be r + t non-injective morphisms between

indecomposable injective modules over an arbitrary ring. Then

ker(ϕ1)⊕ · · · ⊕ ker(ϕr) ∼= ker(ϕ′1)⊕ · · · ⊕ ker(ϕ′t)

if and only if r = t and there are two permutations σ, τ of {1, 2, . . . , r}
such that [ker(ϕi)]u = [ker(ϕσ(i))]u and [ker(ϕi)]m = [ker(ϕτ(i))]m for every
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i = 1, 2, . . . , r.

Ideals in a category and Krull-Schmidt Theorems

We now present two categorical frameworks in which it is possible to treat

all the examples we have seen at the same time. First of all, we recall the

definition of ideal in a category.

Definition 1.33. [85, p. 18] Let C be any preadditive category. An ideal of

C assigns to every pair A,B of objects of C a subgroup I(A,B) of the abelian

group HomC(A,B) with the property that, for all morphisms ϕ : C → A,

ψ : A→ B and ω : B → D with ψ ∈ I(A,B), one has that ωψϕ ∈ I(C,D).

For any ideal I of C, we can consider the factor category C/I, which is the

category having the same objects as C and, for A,B ∈ Ob(C) = Ob(C/I),

the group of morphisms A→ B in C/I is defined to be the factor group

HomC/I(A,B) := HomC(A,B)/I(A,B).

The composition is that induced by the composition of C. For any ideal I of

C, we have a canonical additive functor FI : C → C/I.

The following definition is due to Facchini and Př́ıhoda [45].

Definition 1.34. [45, p. 565] A completely prime ideal P of C consists of a

subgroup P(A,B) of HomC(A,B) for every pair of objects of C, such that:

(1) for every objects A,B,C of C, for every f : A → B and for every

g : B → C, one has that gf ∈ P(A,C) if and only if either f ∈ P(A,B) or

g ∈ P(B,C), and

(2) P(A,A) is a proper subgroup of EndC(A,A) for every object A of C.

By definition, if P is a completely prime ideal of C, then P(A,A) is a

completely prime two-sided ideal of EndC(A,A) for every A ∈ Ob(C).

If A,B are objects of C, we say that A and B have the same P-class, and we

write [A]P = [B]P , if there exist two morphisms f : A→ B and g : B → A

such that gf /∈ P(A,A) and fg /∈ P(B,B). It is clear that “having the same

P-class” turns out to be an equivalence relation on Ob(C).
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Completely prime ideals can be used to describe a general framework that

includes all the examples of the weak forms of the Krull-Schmidt Theorem

we have seen in this section (Subsections 1.2.5, 1.2.6, 1.2.7 and 1.2.8).

Theorem 1.35. [45, Theorem 6.2] Let C be a full subcategory of Mod-R in

which all objects are indecomposable right R-modules and let P ,Q be a pair of

completely prime ideals of C such that, for every A ∈ C, P(A,A)∪Q(A,A) =

{f ∈ End(A) | f is not an automorphism}. Let A1, . . . , Ar, B1, . . . , Bt be

r + t objects of C. Then

A1 ⊕ · · · ⊕Ar ∼= B1 ⊕ · · · ⊕Bt

if and only if r = t and there are two permutations σ, τ of {1, 2, . . . , r} such

that [Ai]P = [Bσ(i)]P and [Mi]Q = [Bτ(i)]Q for every i = 1, 2, . . . , r.

Notice that in Theorem 1.35, the assumption that End(A) \ (P(A,A) ∪
Q(A,A)) is the set of all the automorphisms of End(A) implies that all

modules in C have type at most two, and that the maximal right (left) ideals

of EndC(A) are both P(A,A) and Q(A,A) or only one of them.

Let us see how to apply Theorem 1.35 to the case of uniserial modules. Let

C be the full subcategory of Mod-R whose objects are all nonzero uniserial

right R-modules. Then, for any U, V ∈ Ob(C),

P(U, V ) := {f ∈ Hom(U, V ) | f is not injective}

and

Q(U, V ) := {f ∈ Hom(U, V ) | f is not surjective}

turn out to be two completely prime ideals of C that satisfy the condition

of the theorem. Moreover, [U ]m = [V ]m if and only if [U ]P = [V ]P and,

similarly, [U ]e = [V ]e if and only if [U ]Q = [V ]Q.

There is another result, due to Facchini and Perone [41], strictly related to

the weak versions of the Krull-Schmidt Theorem we have seen before. In

order to discuss about it, we first recall the definitions of local functor and

Jacobson radical of an additive category.

The Jacobson radical of C is the ideal J of C defined as follows. For any pair

of objects A,B ∈ Ob(C), J (A,B) is the set of all morphisms f ∈ HomC(A,B)
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that satisfy the following equivalent conditions [85, p. 21]:

(a) 1A − gf has a left inverse for every morphism g : B → A;

(b) 1B − fg has a left inverse for every morphism g : B → A;

(c) 1A − gf has a two-sided inverse for every morphism g : B → A.

Notice that J (A,A) = J(EndC(A)) for every A ∈ Ob(C). The quotient

category C/J has zero Jacobson radical.

Let C and C′ be two additive categories. A functor F : C → C′ is said to be

a local functor if, for every A,B ∈ Ob(C) and for every f ∈ HomC(A,B), if

F (f) is an isomorphism in C′, then f is an isomorphism in C.

If I is an ideal of C, the canonical functor FI : C → C/I is local if and only

if I is contained in the Jacobson radical J of C. More generally, a functor

F : C → C′ between additive categories is local if and only if the kernel of F

is contained in the Jacobson radical J of C (cf. [42]).

Starting from a pair of ideals, we can consider the following weak version of

the Krull-Schmidt Theorem in additive categories.

Theorem 1.36. [42, Theorem 3.4] Let C be an additive category and let

(I1, I2) be a pair of ideals such that the canonical functor F : C → C/I1×C/I2

is a local functor. Let A1, . . . , Ar, B1, . . . , Bt be r + t objects of C such that

EndC/Ik(Ai) and EndC/Ik(Bj) are local rings for i = 1, . . . , r, j = 1, . . . , t

and k = 1, 2. Then

A1 ⊕ · · · ⊕Ar ∼= B1 ⊕ · · · ⊕Bt

if and only if r = t and there are two permutations σ, τ of {1, 2, . . . , r} such

that Ai ∼= Bσ(i) in C/I1 and Ai ∼= Bτ(i) in C/I2 for every = 1, . . . , r.

We can apply this theorem to all the situations we have seen before. Let us

see what happens in the case of uniserial modules. For any pair of right R-

modules AR and BR define:

∆(A,B) := {f ∈ Hom(M,N) | ker(f) ≤e A}

and

Σ(A,B) := {f ∈ Hom(M,N) | Im(f) ≤s B}.
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Then, ∆ and Σ are two ideals of Mod-R and it can be seen that the functor

F : Mod-R→ Mod-R/∆×Mod-R/Σ

is a local functor (cf. [42, Section 4]). If UR and VR are two uniserial right

R-modules, then U ∼= V in Mod-R/∆ if and only if [U ]m = [V ]m. Sim-

ilarly, U ∼= V in Mod-R/Σ if and only if [U ]e = [V ]e. Moreover, in the

notation of Theorem 1.19, ∆(U,U) = IU and Σ(U,U) = KU . Therefore,

both EndMod-R/∆(U) and EndMod-R/Σ(U) are local rings and we can apply

Theorem 1.36 to deduce the weak form of the Krull-Schmidt Theorem for

uniserial modules (Theorem 1.21). We refer to [42] for a description of the

ideals needed to discuss the cases of couniformly presented modules and

kernels between indecomposable injective modules.

In the next two sections we will consider some additive categories in which it

is possible to state a weak version of the Krull-Schmidt Theorem for suitable

objects of finite type (see Theorems 1.53 and 1.60). It is worth noting that,

in the situations we are going to study, the invariants needed to describe

direct-sum decompositions are more than two and come from ideals of the

endomorphism rings that are two-sided, completely prime, but not necessarily

all maximal. It means that we must be careful when we move to quotient

categories, because the endomorphism rings of the objects could be not local,

so generalizations of Theorem 1.35 and Theorem 1.36 cannot be directly

applied. Nevertheless, we will use some techniques that involve ideals and

factor categories and that are largely based on the ideas used in the cases of

objects of type at most 2.

1.3 The category of morphisms between modules

The content of this section is based on a joint work with Susan F. El-Deken

and Alberto Facchini [20].

Let R be an associative ring with identity and Mod-R the category of right

R-modules. Let Morph(Mod-R) denote the morphism category. The objects

of this category are the R-module morphisms between right R-modules. We

will denote by M and N generic objects µM : M0 →M1 and µN : N0 → N1 of
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Morph(Mod-R) (this abuse of notation is justified by Theorem 1.37 below). A

morphism u : M → N in the category Morph(Mod-R) is a pair of R-module

morphisms (u0, u1) that makes the following diagram

M0
µM //

u0

��

M1

u1

��
N0

µN // N1

commute, that is, such that u1µM = µNu0. The composition law is the

obvious one: for every u = (u0, u1) : M → N and v = (v0, v1) : N → L we

have v ◦ u := (v0 ◦ u0, v1 ◦ u1). Moreover, for every pair M,N of objects

of Morph(Mod-R), the group HomMorph(Mod-R)(M,N) is a subgroup of the

cartesian product HomMod-R(M0, N0)×HomMod-R(M1, N1). Thus, for every

u = (u0, u1), u′ = (u′0, u
′
1) ∈ HomMorph(Mod-R)(M,N), we have u + u′ =

(u0 + u′0, u1 + u′1).

We will denote by EM the endomorphism ring of the object µM : M0 →M1

in the category Morph(Mod-R).

The next result is well known (cf. [50, 65]).

Theorem 1.37. The category Morph(Mod-R) is equivalent to the category

of right modules over the triangular matrix ring T :=
(
R R
0 R

)
.

Remark 1.38. Let {Mλ | λ ∈ Λ } be a family of objects of Morph(Mod-R),

where λ ranges in an index set Λ. Thus Mλ is an object µMλ
: M0,λ →M1,λ

for every λ ∈ Λ. The coproduct of the family {Mλ | λ ∈ Λ } is the object⊕
λ∈ΛMλ, where

µ⊕
λ∈Λ Mλ

:
⊕
λ∈Λ

M0,λ →
⊕
λ∈Λ

M1,λ

is defined component-wise, with the canonical embeddings eλ0 : Mλ0 →⊕
λ∈ΛMλ for every λ0 ∈ Λ.

There is a canonical faithful local functor

Q : Morph(Mod-R)→ Mod-R×Mod-R,

which assigns to every object M of Morph(Mod-R) the object (M0,M1) of
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Mod-R×Mod-R and to every morphism u = (u0, u1) in Morph(Mod-R) the

morphism (u0, u1) in Mod-R×Mod-R.

Lemma 1.39. For every object M of Morph(Mod-R), the canonical ring mor-

phism ε : EM → EndR(M0)× EndR(M1), defined by ε : (u0, u1) 7→ (u0, u1),

is a local morphism.

Proof. A morphism (u0, u1) in Morph(Mod-R) is an isomorphism if and only

if both u0 and u1 are right R-module isomorphisms.

Proposition 1.40. Let M be an object of Morph(Mod-R) with EndR(M0)

and EndR(M1) semilocal rings. Then the endomorphism ring EM of M is

semilocal.

Proof. By Lemma 1.39, the ring morphism

ε : EM → EndR(M0)× EndR(M1), ε : (u0, u1) 7→ (u0, u1),

is a local morphism. Since EndR(M0) and EndR(M1) are semilocal rings,

their direct product EndR(M0)× EndR(M1) is semilocal [35, (4) on page 7],

so that EM is semilocal by [24, Corollary 2].

Proposition 1.41. If u = (u0, u1) : M → N is a morphism in the category

Morph(Mod-R), u0 ∈ JMod-R(M0, N0) and u1 ∈ JMod-R(M1, N1), then

u = (u0, u1) ∈ JMorph(Mod-R)(M,N).

(Here, JMod-R and JMorph(Mod-R) denote the Jacobson radicals of the two

categories Mod-R and Morph(Mod-R) respectively.)

Proof. Both the functors

Q : Morph(Mod-R)→ Mod-R×Mod-R

and

P : Mod-R×Mod-R→ Mod-R/JMod-R ×Mod-R/JMod-R

are local functors, so that the composite functor

PQ : Morph(Mod-R)→ Mod-R/JMod-R ×Mod-R/JMod-R
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is a local functor. Kernels of local functors are contained in the Jacobson

radical, and the kernel of the composite functor PQ consists exactly of the

morphisms u = (u0, u1) : M → N in the category Morph(Mod-R) with

u0 ∈ JMod-R(M0, N0) and u1 ∈ JMod-R(M1, N1).

Morphisms between modules of finite type

Proposition 1.42. Let M be an object of Morph(Mod-R). If EndR(M0) and

EndR(M1) are rings of type m and n respectively, then EM has type ≤ m+n.

Moreover, if I1, . . . , In are the n maximal ideals of EndR(M0) and K1, . . . , Km

are the m maximal ideals of EndR(M1), then the at most n+m maximal

ideals of EM are among the completely prime ideals (It × EndR(M1)) ∩ EM
(t = 1, . . . , n) and (EndR(M0)×Kq) ∩ EM (q = 1, . . . ,m).

Proof. Both the canonical projections

EndR(M0)→ EndR(M0)/J(EndR(M0)) ∼=
n∏
t=1

EndR(M0)/It

and

EndR(M1)→ EndR(M1)/J(EndR(M1)) ∼=
m∏
q=1

EndR(M0)/Kq.

are local morphisms. Therefore there is a canonical local morphism

EM →
n∏
t=1

EndR(M0)/It ×
m∏
q=1

EndR(M0)/Kq

into the direct product of n+m division rings. By Proposition 1.11, EM is a

ring of type ≤ n+m.

Let us prove that the maximal ideals of EM are among the kernels of the

n + m canonical projections. First of all, notice that, for t = 1, . . . , n and

q = 1, . . . ,m, the ideals (It × EndR(M1)) ∩ EM and (EndR(M0) × Kq) ∩
EM are the kernels of the canonical projections EM → EndR(M0)/It and

EM → EndR(M1)/Kq respectively. Therefore, it is immediate that they are

n+m completely prime two-sided ideals of EM . Moreover, the non-invertible
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elements of EndR(M0) are exactly the elements of I1∪· · ·∪It and similarly, the

non-invertible elements of EndR(M1) are exactly the elements of K1∪· · ·∪Kq.

Since we have a local morphism EM → EndR(M0)× EndR(M1), it follows

that the non-invertible elements of EM are precisely those in the union of the

n+m ideals (It×EndR(M1))∩EM (t = 1, . . . , n) and (EndR(M0)×Kq)∩EM
(q = 1, . . . ,m). To conclude, it suffices to notice that these n + m ideals

are completely prime two-sided ideals of EM , hence every proper right (left)

ideal of EM must be contained in one of them, by the Prime Avoidance

Lemma.

Example 1.43. We have just seen that the inclusion

ε : EM → EndR(M0)× EndR(M1)

is a local morphism. If we identify EM with its image in EndR(M0) ×
EndR(M1), then we have that

(J(EndR(M0))× J(EndR(M1))) ∩ EM ⊆ J(EM ).

Moreover, if both EndR(M0) and EndR(M1) are rings of finite type, then so

is EM . The following example shows that (1) the previous inclusion involving

the Jacobson radicals can be proper and (2) it can occur that EM is a ring

of finite type but neither EndR(M0) nor EndR(M1) are. Let k be any field.

Consider the object µM : k2 → k2 of Morph(Mod-k) given by (x, y) 7→ (x, 0).

Then µM is represented by the 2× 2 matrix

M =

(
1 0

0 0

)
.

The endomorphism ring EM of M is given by the set of all pairs of matrices

(A0, A1) ∈ M2(k) ×M2(k) such that MA0 = A1M . An easy computation

shows that EM consists exactly of all the pairs (A0, A1) ∈M2(k)×M2(k) of

the form

(A0, A1) =

((
u 0

v w

)
,

(
u x

0 y

))
for some u, v, w, x, y ∈ k.

In particular, EM is a subring of
(
k 0
k k

)
×
(
k k
0 k

)
. The nilpotent ideal

(
0 0
k 0

)
×(

0 k
0 0

)
of EM is contained in the Jacobson radical of EM . It follows that
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0 = EM ∩ (J(M2(k))× J(M2(k))) ⊂ J(EM ). Moreover, it is easy to see that

the ring EM is a ring of type 3. Its maximal right ideals are the completely

prime two-sided ideals

I1 := {

((
0 0

v w

)
,

(
0 x

0 y

))
∈ EM | v, w, x, y ∈ k},

I2 := {

((
u 0

v 0

)
,

(
u x

0 y

))
∈ EM | u, v, x, y ∈ k},

I3 := {

((
u 0

v w

)
,

(
u x

0 0

))
∈ EM | u, v, w, x ∈ k}.

We conclude this subsection characterizing morphisms with local endomor-

phism rings.

Theorem 1.44. Let M be any object of Morph(Mod-R), EM its endomor-

phism ring in Morph(Mod-R), ε : EM → EndR(M0) × EndR(M1) denote

the inclusion, πi : EndR(M0) × EndR(M1) → EndR(Mi), i = 0, 1, be the

canonical projections and Ei := πiε(EM ). Then the endomorphism ring EM

of the object M is local if and only if one of the following three conditions

holds:

1. M0 = 0 and EndR(M1) is a local ring.

2. M1 = 0 and EndR(M0) is a local ring.

3. M0 6= 0, M1 6= 0 and, for every endomorphism u = (u0, u1) ∈ EM :

(a) either u0 or 1− u0 is invertible in E0, and

(b) u0 is invertible in E0 if and only if u1 is invertible in E1.

Proof. Suppose the endomorphism ring EM in Morph(Mod-R) local. If M0 =

0, then µM = 0, and so EndR(M1) ∼= EM is local. Similarly if M1 = 0.

Suppose M0 6= 0 and M1 6= 0. Notice that M0 6= 0 and M1 6= 0 implies

that 1 6= 0 in both the rings EndR(M0) and EndR(M1), hence in both their

subrings E0 and E1. Hence E0 and E1 are non-trival homomorphic images of

the local ring EM . If u = (u0, u1) ∈ EM , and u0 is not invertible in E0, then

1− u0 is invertible in E0, because E0 is local. This proves that condition (a)
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in (3) holds. Moreover, the rings Ei are homomorphic images of the local ring

EM , so that the kernel of the surjective morphism EM → Ei is contained

in the Jacobson radical (i.e. the maximal ideal) of EM . Hence the image of

the maximal ideal of EM (i.e. the set of non-invertible elements of EM ) is

mapped exactly onto the maximal ideal of Ei. It follows that u = (u0, u1) is

an automorphism of M if and only if ui is invertible Ei. Thus u0 is invertible

in E0 if and only if u is an automorphism of M , if and only if u1 is invertible

in E1.

For the converse, it is clear that (1) and (2) imply EM local. If (3) holds, for

every endomorphism u = (u0, u1) ∈ EM that is not an automorphism, we have

that either u0 is not an automorphism of M0 or u1 is not an automorphism

of M1. Hence u0 is not invertible in E0 or u1 is not invertible in E1. By (b),

both u0 is not invertible in E0 and u1 is not invertible in E1. Now E0 is a

local ring by (a). Similarly, E1 is a local ring by (a) and (b). It follows that

both 1− u0 is invertible in E0 and 1− u1 is invertible in E1. Thus 1− u is

invertible in EM , i.e., the ring EM is local.

The ring EM is a subdirect product of the two rings Ei := πiε(EM ) (for

i = 0, 1) and the embedding EM ↪→ E0 × E1 is a local morphism. If M0 6= 0

and M1 6= 0, then the ring EM is local if and only if both the rings E0 and E1

are local and (π0ε)
−1(J(E0)) = (π1ε)

−1(J(E1)). Moreover, EM is semilocal if

and only if the two rings E0 and E1 are semilocal (Proof: (⇒) Because both

the rings Ei are homomorphic images of EM . (⇐) Because the morphism

EM → E0×E1 is local.). Notice that EM always has the two two-sided ideals

ker(π0ε) and ker(π1ε), whose intersection is the zero ideal.

Proposition 1.45. Let M be an object of Morph(Mod-R) and assume

that EndR(M0) and EndR(M1) are rings of finite type. Then M has a local

endomorphism ring if and only if there exists i = 0, 1 such that for every

endomorphism u = (u0, u1) ∈ EM both the following conditions hold:

(a) either ui or 1− ui is an automorphism of Mi, and

(b) if ui is an automorphism of Mi, then u is an automorphism of M .

Proof. Assume that EM is local. For every u = (u0, u1) ∈ EM , either u or

1− u is invertible, so either ui or 1− ui is an automorphism of Mi for every
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i = 0, 1.

Now, let n and m be the types of EndR(M0) and EndR(M1) respectively. As a

trivial case, we have that if n = 0 (that is, if M0 = 0), then EM ∼= EndR(M1)

is a local ring and (b) follows. Similarly for m = 0. Thus we can assume

n,m ≥ 1. In the notation of Proposition 1.42, the maximal ideal of EM is

either

J(EM ) = (It × EndR(M1)) ∩ EM for some t = 1, . . . , n (0)

or

J(EM ) = (EndR(M0)×Kq) ∩ EM for some q = 1, . . . ,m. (1)

Assume that (0) holds and let u = (u0, u1) be an element of EM such

that u0 is an automorphism of M0. Then u /∈ J(EM ), because u0 /∈ It

for every t = 1, . . . , n (notice that
⋃n
t=1 It is the set of all non-invertible

elements of EndR(M0)). In particular, u1 is not in
⋃m
q=1Kq, that is, u1 is an

automorphism of M1. This implies that u is invertible in EM . In a similar

way, we can prove that if (1) holds, then, for every u = (u0, u1) ∈ EM ,

u1 ∈ Aut(M1) implies u invertible in EM .

Conversely, we want to prove that for every u = (u0, u1), either u or 1− u is

invertible in EM . Assume that there exists i = 0, 1 such that both conditions

(a) and (b) hold. By (a), either ui or 1− ui is invertible, so by (b) either u

or 1− u is invertible in EM .

Morphisms between two modules of type 1

Let R be an arbitrary ring. We now consider the full subcategory L of

Mod-R whose objects are all right R-modules with a local endomorphism

ring. Let Morph(L) be the full subcategory of Morph(Mod-R) whose ob-

jects are all morphisms between two objects of L. The canonical functor

Q : Morph(Mod-R)→ Mod-R×Mod-R restricts to a functor

QL : Morph(L)→ L×L.

Hence, for every object M of Morph(L), the endomorphism ring of M in the

category Morph(L) is of type ≤ 2, and has at most two maximal ideals: the
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completely prime two-sided ideals

IM,d := {(u0, u1) ∈ EM | u0 is not an automorphism of M0},

and

IM,c := {(u0, u1) ∈ EM | u1 is not an automorphism of M1}

(see Theorem 1.42). As a consequence, an object M of Morph(L) has a

local endomorphism ring if and only if either IM,d ⊆ IM,c or IM,d ⊇ IM,c.

Therefore, we get that:

Lemma 1.46. An object M of Morph(L) has a local endomorphism ring if

and only if one of the following two conditions holds:

1. For every morphism (u0, u1) ∈ EM , if u0 is an automorphism of M0,

then u1 is an automorphism of M1, or

2. For every morphism (u0, u1) ∈ EM , if u1 is an automorphism of M1,

then u0 is an automorphism of M0.

The following two examples show that conditions (1) and (2) in the previous

lemma are independent, or, equivalently, that both proper inclusions IM,d ⊂
IM,c and IM,c ⊂ IM,d can occur.

Example 1.47. Let Zp be the localization of Z at its maximal ideal (p),

so that Zp is a DVR, whose field of fractions is Q. Consider the inclusion

µM : Zp ↪→ Q, viewed as a Zp-module morphism. Of course, EndZp(Zp) = Zp
and EndZp(Q) = Q, which are both local rings. It is immediate to see that

the endomorphism ring of M in Morph(Mod-Zp) is EM ∼= Zp, and that

0 = IM,c ⊂ IM,d = pZp.

Example 1.48. Let Z(p∞) be the Prüfer group and µM : Q → Z(p∞) be

any group epimorphism, so that µM is an object M in Morph(Mod-Z). It is

easily seen that the endomorphism ring EM of M is canonically isomorphic

to the localization Zp of Z at its maximal ideal (p). In this case, we have

that 0 = IM,d ⊂ IM,c = pZp.

We will say that two objects M and N of Morph(Mod-R) belong to
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(1) the same domain class, and write [M ]d = [N ]d, if there exist morphisms

u : M → N and u′ : N →M with u0 : M0 → N0 and u′0 : N0 →M0 isomor-

phisms;

(2) the same codomain class, and write [M ]c = [N ]c, if there exist mor-

phisms u : M → N and u′ : N →M with u1 : M1 → N1 and u′1 : N1 →M1

isomorphisms.

In Morph(Mod-L), we have two completely prime ideals, defined, for every

pair of objects µM : M0 →M1 and µN : N0 → N1, by

P0(M,N) := {u = (u0, u1) : M → N | u0 is not an isomorphism}

and

P1(M,N) := {u = (u0, u1) : M → N | u1 is not an isomorphism}.

It is immediate to see that M and N have the same domain [resp. codomain]

class if and only if they have the same P0 [resp. P1] class (see page 18).

Moreover, for every object µM : M0 →M1 of Morph(Mod-L), u ∈ EM is an

automorphism if and only if u /∈ P0(M,M) ∪P1(M,M). Then Theorem 1.35

implies:

Theorem 1.49. Let µMk
: M0,k → M1,k, k = 1, . . . , r, and µN` : N0,` →

N1,`, ` = 1, . . . , s, be r + s objects in the category Morph(Mod-L). Then⊕r
k=1Mk

∼=
⊕s

`=1N` in the category Morph(Mod-R) if and only if r = s

and there exist two permutations ϕd, ϕc of {1, 2, . . . , r} such that [Mk]d =

[Nϕd(k)]d and [Mk]c = [Nϕc(k)]c for every k = 1, . . . , r.

Let n ≥ 2 be an integer. We now give an example of a semilocal ring R

(of type 2n) with 2n pairwise non-isomorphic right R-modules Ai, Bi (i =

1, 2, . . . , n), all 2n of them uniserial modules with local endomorphism rings,

and n2 right R-module morphisms µi,j : Ai → Bj (i, j = 1, 2, . . . , n), that is,

objects Mi,j of Morph(Mod-R) (i, j = 1, 2, . . . , n), such that ⊕ni=1Mi,i has n!

pairwise non-isomorphic decompositions as a direct sum of n indecomposable

objects of Morph(Mod-R). More precisely, we will see that the objects Mi,j

(i, j = 1, 2, . . . , n) are such that:

(1) for every i, j, k, ` = 1, 2, . . . , n, [Mi,j ]d = [Mk,`]d if and only if i = k;
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(2) for every i, j, k, ` = 1, 2, . . . , n, [Mi,j ]c = [Mk,`]c if and only if j = `.

Therefore

M1,1 ⊕M2,2 ⊕ · · · ⊕Mn,n
∼= Mσ(1),τ(1) ⊕Mσ(2),τ(2) ⊕ · · · ⊕Mσ(n),τ(n)

for every pair of permutations σ, τ of {1, 2, . . . , n}. This example is similar

to [34, Example 2.1].

Example 1.50. Let p, q ∈ Z be two distinct primes, Zp,Zq be the localiza-

tions of Z at its maximal ideals (p) and (q), so that Zp and Zq are DVRs

contained in Q, and let Zpq := Zp ∩ Zq be the subring of Q consisting of

all rational numbers a/b, with a, b ∈ Z such that p - b and q - b. Thus Zpq
is a subring of Q that contains Z, is a PID, is the localization of Z at the

multiplicatively closed subset Z \ (pZ∪ qZ), is a semilocal ring of type 2, and

all its non-zero ideals are of the form piqjZpq, with i, j ≥ 0.

Let R denote the subring of Mn(Q) whose elements are n× n-matrices with

entries in Zpq on and above the diagonal and entries in pqZpq under the

diagonal, that is,

R =


Zpq Zpq . . . Zpq

pqZpq Zpq . . . Zpq
...

. . .

pqZpq pqZpq . . . Zpq

 ⊆Mn(Q).

The set W := M1×n(Q) of all 1 × n matrices with entries in Q is a right

R-module under matrix multiplication. Set

Vi := (qZq, . . . , qZq︸ ︷︷ ︸
i−1

,Zq, . . . ,Zq︸ ︷︷ ︸
n−i+1

), i = 1, 2, . . . , n,

and

Xj = (pZp, . . . , pZp︸ ︷︷ ︸
j−1

,Zp, . . . ,Zp︸ ︷︷ ︸
n−j+1

), j = 1, 2, . . . ,m,

so that Vi and Xj are R-submodules of W with V1 ⊃ V2 ⊃ · · · ⊃ Vn ⊃ qV1 and

X1 ⊃ X2 ⊃ · · · ⊃ Xn ⊃ pX1. For every i, j = 1, 2, . . . , n, let µi,j : Vi → W/Xj

be the composite mapping of the inclusion Vi → W and the canonical
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projection W → W/Xj , so that µi,j can be viewed as an object Mi,j of

Morph(Mod-R).

The endomorphism ring of the right R-module Vi is isomorphic to the local

ring Zq, because Vi ∼= eiiR(q) as an R-module, where R(q) denotes the

localization of the Zpq-algebra R at the maximal ideal (q) of Zpq, so that

EndR(Vi) = EndR(q)
(Vi) = EndR(q)

(eiiR(q)) ∼= eiiR(q)eii,

which is isomorphic to the localization Zq of Z at its maximal ideal qZ.

Let us prove that the endomorphism ring of the right R-module W/Xj is

also local. The module W/Xj is isomorphic to Z(p∞)n (direct sum of n

copies of the Prüfer group Z(p∞)) as an abelian group, hence is artinian

as an abelian group, hence is artinian as a right R-module. For an artinian

right R-module LR, the restriction to the socle soc(LR) is a local homo-

morphism EndR(LR) → EndR(soc(LR)), because every endomorphism of

an artinian module LR which restricted to the socle is an automorphism

of the socle, is necessarily an automorphism of LR. As pq is in the Ja-

cobson radical of R, pq annihilates all simple right R-modules, so that

soc(W/Xj) is contained in (Z/pZ)n. Now (Z/pZ)n is a uniserial right R-

module of finite composition length n, whose socle is (0, . . . , 0,Z/pZ). Thus

soc(W/Xj) = (0, . . . , 0,Z/pZ), and the endomorphism ring of the socle of

W/Xj is isomorphic to the field Z/pZ with p elements. Thus there is a

surjective local morphism EndR(W/Xj)→ Z/pZ, hence EndR(W/Xj)) is a

local ring.

Let us show that, for every i, j, k, ` = 1, 2, . . . , n, [Mi,j ]d = [Mk,`]d if and only

if i = k. The ring R has type 2n, so that it has 2n pairwise non-isomorphic

simple right R-modules, up to isomorphism, S1, S2, . . . , Sn (with p elements

each) and T1, T2, . . . , Tn (with q elements each).

The modules Vi/qVi are uniserial right R-modules of finite composition

length n and qn elements, their composition factors are the n simple right R-

modules T1, T2, . . . , Tn (each with multiplicity one), and with top Vi/ rad(Vi)

isomorphic to Ti. Similarly, the modules Xj/pXj are uniserial right R-modules

of finite composition length n and pn elements, their composition factors are

the n simple right R-module S1, S2, . . . , Sn (each with multiplicity one), and
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with top Xj/ rad(Xj) isomorphic to Sj .

It follows that the 2n right R-modules V1, . . . , Vn,W/X1, . . . ,W/Xn are

pairwise non-isomorphic, that multiplication by q is an isomorphism of Vi

onto qVi, and that multiplication by p is an isomorphism of W/Xj onto

W/pXj .

From the fact that the 2n right R-modules V1, . . . , Vn,W/X1, . . . ,W/Xn

are pairwise non-isomorphic, it follows that, for every i, j, k, ` = 1, 2, . . . , n,

[Mi,j ]d = [Mk,`]d implies i = k, and [Mi,j ]c = [Mk,`]c implies j = `.

Since multiplication by q is an isomorphism of Vi onto qVi, we get, for every

j ≤ `, commutative squares

Vi
µij //

p ∼=

��

W/Xj

p ∼=
��

W/pXj

can

��
Vi µi`

//W/X`

and Vi
µi` //W/X`

can

��
Vi µij

//W/Xj

.

This shows that [Mi,j ]d = [Mi,`]d for every i, j, `.

The fact that multiplication by p is an isomorphism of W/Xj onto W/pXj

implies that, for every i ≤ k, there are commutative diagrams

Vi
µij //

q

��

W/Xj

q ∼=
��

Vk µkj
//W/Xj

and Vk
µkj //

� _

��

W/Xj

Vi µij
//W/Xj

.

These diagrams show that [Mi,j ]c = [Mk,j ]c for every i, j, k.

Morphisms between uniserial modules

In this section, we want to focus our attention on morphisms between uniserial

modules. Let U denote the full subcategory of Mod-R whose objects are all

uniserial right R-modules and consider the full subcategory Morph(U) of
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Morph(Mod-R) whose objects are all morphisms between two objects of U .

The canonical functor Q : Morph(Mod-R)→ Mod-R ×Mod-R restricts to a

functor

QU : Morph(U)→ U × U .

Hence, for every object M of Morph(U), the endomorphism ring of M in the

category Morph(U) is of type ≤ 4, and has at most four maximal ideals.

Proposition 1.51. Let µM : M0 →M1 be an object of Morph(Mod-R) with

M0 and M1 non-zero uniserial right R-modules. Then EM has at most four

maximal right (left) ideals, which are among the completely prime two-sided

ideals

IM,0,m := {(u0, u1) ∈ EM | u0 is not a right R-module monomorphism},

IM,1,m := {(u0, u1) ∈ EM | u1 is not a right R-module monomorphism},

IM,0,e := {(u0, u1) ∈ EM | u0 is not a right R-module epimorphism},

and

IM,1,e := {(u0, u1) ∈ EM | u1 is not a right R-module epimorphism}.

Proof. It immediately follows from Theorem 1.19 and Proposition 1.42.

We can define four equivalence relations on Ob(Morph(Mod-R)) related to

those of monogeny class and epigeny class we have seen for uniserial modules.

For every pair of morphisms µM : M0 → M1 and µN : N0 → N1, we will

write:

(1) [M ]0,m = [N ]0,m if there exist two morphisms (u0, u1) ∈ Hom(M,N) and

(v0, v1) ∈ Hom(N,M) such that both u0 and v0 are injective right R-modules

morphisms;

(2) [M ]1,m = [N ]1,m if there exist two morphisms (u0, u1) ∈ Hom(M,N) and

(v0, v1) ∈ Hom(N,M) such that both u1 and v1 are injective right R-modules

morphisms;

(3) [M ]0,e = [N ]0,e if there exist two morphisms (u0, u1) ∈ Hom(M,N) and

(v0, v1) ∈ Hom(N,M) such that both u0 and v0 are surjective right R-modules

morphisms;

(4) [M ]1,e = [N ]1,e if there exist two morphisms (u0, u1) ∈ Hom(M,N) and
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(v0, v1) ∈ Hom(N,M) such that both u1 and v1 are surjective right R-modules

morphisms.

Remark 1.52. By Lemma 1.3, it is immediate that if µM : M0 →M1 and

µN : N0 → N1 are two morphisms between non-zero uniserial modules, then

for i = 0, 1 and a = m, e, [M ]i,a = [N ]i,a if and only if there exist two

morphisms u ∈ Hom(M,N) and v ∈ Hom(N,M) such that v ◦ u /∈ IM,i,a or,

equivalently, such that u ◦ v /∈ IN,i,a.

For morphisms between uniserial modules, we have the following weak form of

the Krull-Schmidt Theorem. We will give a proof of this result in Section 1.5.

Theorem 1.53. Let µMj : M0,j →M1,j , j = 1, . . . , r, and µNk : N0,k → N1,k,

k = 1, . . . , t, be r + t morphisms between non-zero uniserial right R-modules.

Then
⊕r

j=1Mj
∼=
⊕t

k=1Nk in Morph(Mod-R) if and only if r = t and

there exist four permutations ϕ0,m, ϕ1,m, ϕ0,e, ϕ1,e of {1, 2, . . . , r} such that

[Mj ]i,a = [Nϕi,a(j)]i,a for every j = 1, . . . , r, i = 0, 1 and a = m, e.

1.4 A category of chain of modules

All results contained in this section are based on [19] and on a joint paper

with Alberto Facchini [21].

Let R be a ring and let n be a fixed positive integer. We consider the category

En, defined as follows. The objects of En are right R-modules M with a fixed

chain of submodules

0 = M (0) ≤M (1) ≤M (2) ≤ · · · ≤M (n) = M.

With abuse of notation, we simply denote by M such an object. A morphism

in En between two chains M and N is a right R-module morphism f : M → N

such that f(M (i)) ⊆ N (i) for every i = 1, . . . , n. We will denote by EM the

endomorphism ring EndEn(M) of an object M in the category En.

Notice that En is an additive category, whose zero object is given by the

zero module with its trivial chain 0(i) = 0 for every i = 1, . . . , n. It will be

denoted by 0.

35



A morphism f : M → N in En induces right R-module morphisms on the

factors

fi :
M (i)

M (i−1)
−→ N (i)

N (i−1)
for every i = 1, . . . , n.

We call M (i)/M (i−1) the ith-factor module of M and fi the ith-induced

morphism.

We have a canonical local functor

Q : En −→ Mod-R× · · · ×Mod-R︸ ︷︷ ︸
n-times

that sends any object M ∈ Ob(En) into the n-uple of factor modules

(M (1),M (2)/M (1), . . . ,M (n)/M (n−1)) and any morphism f : M → N be-

tween two objects M,N ∈ Ob(En) into the n-tuple of the induced morphisms

(f1, . . . , fn). Notice that the functor Q is not faithful. Let us see an elementary

example of this fact for n = 3. Consider three right R-modules AR, BR and

CR, and define two chains

M : 0 < A < A⊕B < A⊕B⊕C and N : 0 < A < A⊕C < A⊕B⊕C.

Then, the assignments (a, b, c) 7→ (a, 0, c) and (a, b, c) 7→ (a, 0, 0) define two

morphisms f, g ∈ HomE3(M,N) such that fi = gi for every i = 1, 2, 3, but

clearly f 6= g.

Proposition 1.54. Let M be an object of En, with factor modules U (i) =

M (i)/M (i−1), i = 1, . . . , n. Then:

1. codim(EM ) ≤
∑n

i=1 codim(EndR(U (i))).

2. If EndR(U (i)) is semilocal for every i = 1 . . . , n, then the endomorphism

ring EM is also a semilocal ring.

3. Assume that for every i = 1, . . . , n, U (i) is of type mi. Then, the

endomorphism ring EM of M is of type ≤ m1 + · · ·+mn.

Proof. There is a canonical ring morphism

ϕ : EM → EndR(U (1))× · · · × EndR(U (n))
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defined by f 7→ (f1, . . . , fn), which is a local morphism. Now (1) follows from

Proposition 1.5 (2), and (2) follows from the fact that a ring is semilocal if

and only if its dual Goldie dimension is finite (Proposition 1.6).

For (3), suppose that for every i = 1, . . . , n, U (i) is of type mi. By Propo-

sition 1.11, there are local morphisms EndR(U (i)) → D
(i)
1 × · · · ×D

(i)
mi for

suitable division rings D
(i)
ji

, i = 1, . . . , n, ji = 1, . . . ,mi. Composing with ϕ,

we get a local morphism from EM into the product of m1 + · · ·+mn division

rings. Thus EM has type ≤ m1 + · · ·+mn again by Proposition 1.11.

Remark 1.55. Let M be an object of En, with factor modules U (i) =

M (i)/M (i−1) of type mi for i = 1, . . . , n and let I
(i)
1 , . . . , I

(i)
mi be the maximal

ideals of EndR(U (i)). We can repeat step by step the proof of Proposition 1.42

to deduce that the maximal ideals of EM are among the m1 + · · · + mn

completely prime two-sided ideals:

IM,i,k := {f ∈ EM | fi belongs to I
(i)
k } for i = 1, . . . , n and k = 1, . . . ,mi.

Chains with uniserial factors

We now consider the full subcategory Un of the category En consisting of

the objects whose factor modules are all non-zero uniserial right R-modules.

Among the examples of modules having a chain of submodules with all factor

modules uniserial we mention modules of finite composition length, serial

modules and, more generally, polyserial modules studied in [53], [54] and

[55].

Since uniserial modules have type ≤ 2, the endomorphism ring EM of an ob-

ject in Un has type at most 2n. To be more precise, applying Proposition 1.54

and Remark 1.55 we get the following result.

Theorem 1.56. Let M be an object of Un, with factor modules U (i). For

every i = 1, . . . , n, set

IM,i,m := { f ∈ EM | fi is not an injective right R-module morphism}
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and

IM,i,e := { f ∈ EM | fi is not a surjective right R-module morphism}.

Then IM,1,m, . . . , IM,n,m, IM,1,e, . . . , IM,n,e are 2n two-sided completely prime

ideals of EM , and every proper right ideal of EM and every proper left ideal

of EM is contained in one of these 2n ideals of EM . Moreover, EM/J(EM ) is

isomorphic to the direct product of k division rings D1, . . . , Dk for some k with

1 ≤ k ≤ 2n, where {D1, . . . , Dk} ⊆ {EM/IM,1,m, . . . , EM/IM,n,m, EM/IM,1,e,

. . . , EM/IM,n,e}.

Remark 1.57. Notice that in Theorem 1.56, without the assumption U (i) 6=
0, the sets IM,i,m and IM,i,e defined in the statement could be empty. To be

more precise, for a fixed i = 1, . . . , n, the sets IM,i,m and IM,i,e are empty

exactly when U (i) = 0. However, under the hypothesis of Theorem 1.56, the

zero morphism belongs to IM,1,m, . . . , IM,n,m, IM,1,e, . . . , IM,n,e and these 2n

sets are always proper ideals of EM .

Similarly to the category of morphisms, we can extend the notions of

monogeny and epigeny class to this context. Let M and N be two ob-

jects of En with factor modules U (1), . . . , U (n) and V (1), . . . , V (n) respectively.

For i = 1, . . . , n, we will say that M and N belong to

(1) the same ith-monogeny class, and we will write [M ]i,m = [N ]i,m, if there

exist two morphisms f : M → N and g : N →M in the category En such that

fi : U (i) → V (i) and gi : V (i) → U (i) are injective right R-module morphisms;

(2) the same ith-epigeny class, and write [M ]i,e = [N ]i,e if there exist two

morphisms f : M → N and g : N → M in the category En such that

fi : U (i) → V (i) and gi : V (i) → U (i) are surjective right R-module morphisms.

Notice that, in this notation, [M ]i,m = [0]i,m if and only if [M ]i,e = [0]i,e, if

and only if U (i) is the zero module.

Example 1.58. Let M and N be two objects of En with factor modules

U (1), . . . , U (n) and V (1), . . . , V (n) respectively. If [M ]i,m = [N ]i,m for some

i = 1, . . . , n, then [U (i)]m = [V (i)]m, that is, U (i) and V (i) belong to the

same monogeny class in the sense of [34]. Similarly, if [M ]i,e = [N ]i,e for

some i = 1, . . . , n, then [U (i)]e = [V (i)]e. Now we will see an elementary

example in which the converse holds as well, that is, if [U (i)]m = [V (i)]m for
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some i = 1, . . . , n, then [M ]i,m = [N ]i,m, and if [U (i)]e = [V (i)]e for some

i = 1, . . . , n, then [M ]i,e = [N ]i,e. Let M1, . . . ,Mn and N1, . . . , Nn be right

R-modules. Consider the following two objects of En:

0 < M1 < M1 ⊕M2 < · · · < M1 ⊕ · · · ⊕Mn = M

and

0 < N1 < N1 ⊕N2 < · · · < · · · < N1 ⊕ · · · ⊕Nn = N.

The ith-factor module U (i) of M is isomorphic to Mi and the ith-factor module

V (i) of N is isomorphic to Ni. So, if [U (i)]m = [V (i)]m for some i = 1, . . . , n,

then there exist two injective right R-module morphisms ϕ : Mi → Ni and

ψ : Ni →Mi that can be extended trivially on all the other direct summands

of M and N , in order to get two morphisms f : M → N and g : N → M

in En such that both the induced morphisms fi and gi are right R-module

monomorphisms. Hence [M ]i,m = [N ]i,m. Similarly, if [U (i)]e = [V (i)]e, then

[M ]i,e = [N ]i,e.

Remark 1.59. Let M and N be two objects of Un with factor modules

U (1), . . . , U (n) and V (1), . . . , V (n) respectively. For a = m, e, by Lemma 1.3,

[M ]i,a = [N ]i,a if and only if there exist two morphisms f : M → N and

g : N →M in the category Un such that gf /∈ IM,i,a (or, equivalently, such

that fg /∈ IN,i,a).

We have the following weak form of the Krull-Schmidt Theorem for objects

in Un.

Theorem 1.60. Let M1,M2 . . . ,Mr, N1, N2, . . . , Ns be r + s objects of Un.

Then
⊕r

k=1Mk
∼=
⊕s

`=1N` in the category En if and only if r = s and there

exist 2n permutations ϕi,a of {1, 2, . . . , r}, where i = 1, . . . , n and a = m, e,

such that [Mk]i,a = [Nϕi,a(k)]i,a for every k = 1, . . . , r.

We will give a proof of Theorem 1.60 in Section 1.5.

Example 1.61. Let r ≥ 2 be an integer. We have seen in Example 1.22 that

there exist r2 pairwise non-isomorphic finitely presented uniserial modules

Uj,k (j, k = 1, 2, . . . , r) over a suitable serial ring R satisfying the following

properties:
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1. for every j, k, h, ` = 1, 2, . . . , r, [Uj,k]m = [Uh,`]m if and only if j = h;

2. for every j, k, h, ` = 1, 2, . . . , r, [Uj,k]e = [Uh,`]e if and only if k = `.

Using the modules Uj,k, we want to show that the permutations ϕi,a in the

statement of Theorem 1.60 can be completely arbitrary. For any choice of 2r

elements k1, . . . , k2r of {1, . . . , r}, define the following object Mk1,...,k2r of Un:

0 < Uk1,k2 < Uk1,k2 ⊕ Uk3,k4 < · · · < Uk1,k2 ⊕ · · · ⊕ Uk2r−1,k2r = Mk1,...,k2r .

For any two objects Mk1,...,k2r and Mh1,...,h2r of this form, using Example

1.58 and the properties (a) and (b), we get [Mk1,...,k2r ]i,m = [Mh1,...,h2r ]i,m

if and only if [Uk2i−1,k2i
]m = [Uh2i−1,h2i

]m, if and only if k2i−1 = h2i−1

and [Mk1,...,k2r ]i,e = [Mh1,...,h2r ]i,e if and only if [Uk2i−1,k2i
]m = [Uh2i−1,h2i

]m,

if and only if k2i = h2i. In particular, from Theorem 1.60, the r! objects

Mk1,...,k2r of Un are pairwise non-isomorphic. Moreover, given 2n permutations

σ1, . . . , σn, τ1 . . . , τn of {1, 2, . . . , r} we have the following isomorphism

Mσ1(1),τ1(1),...,σr(1),τr(1)⊕Mσ1(2),τ1(2),...σr(2),τr(2)⊕· · ·⊕Mσ1(r),τ1(r),...,σr(r),τr(r)

∼= M1,1,...,1 ⊕M2,2,...2 ⊕ · · · ⊕Mr,r,...,r

and the bijections ϕi,m and ϕj,e in the statement of Theorem 1.60 are the

permutations σi and τj respectively.

The category of short exact sequences

If n = 2, the category E2 is equivalent to the category S of short exact

sequences defined as follows. The objects of S are short exact sequences of

right R-modules 0→ AR → BR → CR → 0. A morphism in S between two

such exact sequences

0 //AR
α //BR

β //CR //0

and

0 //A′R
α′ //B′R

β′ //C ′R
//0
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is a right R-module morphism f : BR → B′R that induces a commutative

diagram

0 // AR
α //

f |A
A′
��

BR
β //

f
��

CR //

f
��

0

0 // A′R α′
// B′R β′

// C ′R
// 0.

Equivalently, a morphism in S can be viewed as a right R-module morphism

f : BR → B′R such that f(α(AR)) ⊆ α′(A′R).

The behaviour of short exact sequences as far as direct-sum decompositions

is concerned was studied in [21]. Since almost all results are generalized for

the categories En, we only mention some examples.

For ease of notation, we identify S with E2, so that the full subcategory U2

consists of all short exact sequences 0→ A→ B → C → 0 with A and C

uniserial modules.

Example 1.62. Let R be a ring having two non-isomorphic simple right

R-modules S and S′. Consider the following two objects of U2:

M : 0 //S
ε1 //S ⊕ S′ π1 //S′ //0

and

N : 0 //S′
ε2 //S ⊕ S′ π2 //S //0,

where εi and πj are the embeddings and the canonical projections, respectively.

These two objects have the same endomorphism ring in E2:

EM =

(
EndR(S) 0

0 EndR(S′)

)
= EN .

Moreover, the maximal right ideals of E are:

IM,2,m = IM,2,e =

(
EndR(S) 0

0 0

)
= IN,1,m = IN,1,e

and

IM,1,m = IM,1,e =

(
0 0

0 EndR(S′)

)
= IN,2,m = IN,2,e.

So, for any fixed (i, a) ∈ {1, 2}×{m, e}, IM,i,a is a maximal right ideal of EM
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and IN,i,a is a maximal ideal of EN , but [M ]i,a 6= [N ]i,a, because otherwise

S and S′ would be isomorphic, contrary to the hypothesis. In particular, the

two objects are not isomorphic in E2 (Theorem 1.60).

Example 1.63. Let R be a ring and let U, V be two non-zero uniserial right

R-modules. Consider the following object of U2:

M : 0 //U
ε //U ⊕ V π //V //0,

where ε and π are the natural embedding and the canonical projection

respectively. The endomorphism ring of M is

EM =

(
EndR(U) 0

HomR(V,U) EndR(V )

)
.

For any endomorphism f =
(
f1,1 0
f2,1 f2,2

)
∈ EB, we have f |UU = f1,1 and f = f2,2.

So, in the notation of Theorems 1.19 and 1.56, f ∈ IM,1,m [resp. f ∈ IM,1,e] if

and only if f1,1 ∈ IU [resp. f1,1 ∈ KU ]. Similarly, f ∈ IM,2,m [resp. f ∈ IM,2,e]

if and only if f2,2 ∈ IV [resp. f2,2 ∈ KV ]. In particular, the type of EM is

exactly the sum of the types of EndR(U) and EndR(V ). Therefore, choosing

suitable uniserial R-modules, it is possible to obtain objects of U2 whose

endomorphism ring has exactly 2, 3 or 4 maximal ideals.

Example 1.64. We have seen in Example 1.22 the construction of uniserial

right R-modules Ui,j used to show that a module that is a direct sum

of n uniserial modules can have n! pair-wise non-isomorphic direct-sum

decompositions into indecomposables. All those modules Ui,j have exactly

two maximal ideals and we will now show that they are extensions of two

uniserial modules with local endomorphism ring. We preserve the notations

of Example 1.22. Notice that

X := (Q, . . . ,Q︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n

) =
⋂
m≥0

qmVj =
∑
m≥0

p−mXi

for every i, j = 1, 2, . . . , n. Thus we have a short exact sequence

M : 0→ X/Xi → Ui,j → Vj/X → 0 (1.4.1)

The right R-module X/Xi is an artinian uniserial module whose lattice of

42



submodules is order isomorphic to the ordinal number ω+1, where ω denotes

the first infinite ordinal. Since X/Xi is an artinian uniserial R-module, its

endomorphism ring EndR(X/Xi) is a local ring whose maximal ideal consist

of all the endomorphisms of X/Xi that are zero on the socle of X/Xi.

The right R-module Vj/X is a noetherian uniserial module, whose lattice of

submodules is order anti-isomorphic to the ordinal number ω + 1. The cyclic

uniserial module Vj/X is annihilated by the two-sided ideal I :=
(

Λp 0
Mn(Q) 0

)
of R, so that it is a module over R/I ∼= Λq. In particular, EndR(Vj/X) =

EndΛq(Vj/X). As a module over Λq, Vj/X turns out to be a cyclic projective

uniserial module, hence Vj/X ∼= eΛq for some idempotent e ∈ Λq. Thus

EndR(Vj/X) = EndΛq(Vj/X) ∼= EndΛq(eΛq)
∼= eΛqe ∼= Zq is a local ring.

Finally, every endomorphism of the R-module Ui,j := Vj/Xi maps X/Xi into

X/Xi, i.e., X/Xi is a fully invariant submodule of Vj/Xi, because X/Xi is the

Loewy submodule of Vj/Xi. Thus the endomorphism ring of the short exact

sequence M in the category E2 is canonically isomorphic to the endomorphism

ring of the right R-module Ui,j , which is a ring of type 2.

Example 1.65. Let R = Z be the ring of integers and let p ∈ Z be a prime.

Consider the following object of U2:

M : 0 //Z/pZ ι //Z(p∞)
β //Z(p∞) //0,

where Z(p∞) denotes the Prüfer group and β is any surjective endomorphism

of Z(p∞) having its kernel equal to soc(Z(p∞)) ∼= Z/pZ. It is easy to check

that IM,2,e ⊆ IM,2,m ⊆ IM,1,m = IM,1,e, and therefore EM has exactly one

maximal right ideal.

Objects with some zero factors

In this subsection we fix a simple right R-module S and we denote by Sn

the following object of En:

0 < S < S ⊕ S < S ⊕ S ⊕ S < · · · < S ⊕ · · · ⊕ S︸ ︷︷ ︸
n-times

= Sn.
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For any object M ∈ En such that all factor modules U (i) are uniserial

(possibly zero), consider the subset A ⊆ {1, . . . , n} such that U (i) = 0 if and

only if i ∈ A. We want to define the following object S(M) of En: for every

i = 1, . . . , n, S(M)(i) is the direct sum of finitely many copies of S in such

a way that S(M)(i)/S(M)(i−1) = 0 if i /∈ A and S(M)(i)/S(M)(i−1) ∼= S

when i ∈ A. So, M ⊕ S(M) is an object of Un. Notice that Sn = S(0) and

S(M) = 0 if M is an object of Un. Using the canonical embeddings and the

canonical projections, it is immediate to check that for every a = m, e we

have:

• [M ]i,a = [0]i,a for all i ∈ A;

• the i-th factor of M ⊕ S(M) is isomorphic to U (i) if i /∈ A and it is

isomorphic to S if i ∈ A;

• [M ⊕ S(M)]i,a = [M ]i,a for all i /∈ A;

• [M ⊕ S(M)]i,a = [S(M)]i,a = [Sn]i,a for all i ∈ A.

Remark 1.66. If M is an object of En with all the factor modules U (i)

uniserial, then M can be viewed as an object of Un−d for a suitable integer d

(namely, the number of indexes such that U (i) = 0). It follows that M is of

finite type, because EM = EndEn(M) ∼= EndEn−d(M) as rings. Moreover, the

direct sum of finitely many object of En with all factor modules uniserial has

a semilocal endomorphism ring (Remark 1.79).

Theorem 1.67. Let M1, . . . ,Mr, N1, . . . , Ns be non-zero objects of En with

uniserial factor modules U
(i)
k = M

(i)
k /M

(i−1)
k for k = 1, . . . , r and V

(i)
l =

N
(i)
l /N

(i−1)
l for l = 1, . . . , s. Define

Xi := {k | k = 1, . . . r, U
(i)
k 6= 0} and Yi := {l | l = 1, . . . s, V

(i)
l 6= 0}.

Then
⊕r

k=1Mk
∼=
⊕s

l=1Nl in En if and only if there exist 2n bijections

ϕi,a : Xi → Yi such that [Mk]i,a = [Nϕi,a(k)]i,a for every i = 1, . . . , n,

a = m, e.

Proof. Assume that
⊕r

k=1Mk
∼=
⊕s

l=1Nl in En. For any i = 1, . . . , n, we
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have the following isomorphisms in Mod-R:

⊕
k∈Xi

U
(i)
k
∼=

r⊕
k=1

U
(i)
k
∼=

(
⊕r

k=1Mk)
(i)

(
⊕r

k=1Mk)(i−1)
∼=

∼=
(
⊕s

l=1Nl)
(i)

(
⊕s

l=1Nl)(i−1)
∼=

s⊕
l=1

V
(i)
l
∼=
⊕
l∈Yi

V
(i)
l .

So, looking at the Goldie dimension, we get that |Xi| = |Yi| for every

i = 1, . . . , n. Assume that r ≥ s. Then, we have the following isomorphism

in En

r⊕
k=1

S(Mk) ∼=

(
s⊕
l=1

S(Nl)

)
⊕

Sn ⊕ Sn ⊕ · · · ⊕ Sn︸ ︷︷ ︸
(r−s)-times

 (1.4.2)

(notice that the ith submodule of both sides is isomorphic to the direct sum

of ir − (|X1| + · · · + |Xi|) copies of S) and so, by hypothesis, we have an

isomorphism in En

r⊕
k=1

(Mk ⊕ S(Mk)) ∼=

(
s⊕
l=1

(Nl ⊕ S(Nl))

)
⊕

Sn ⊕ Sn ⊕ · · · ⊕ Sn︸ ︷︷ ︸
(r−s)-times


where all the direct summands are in Un. Write M ′k = Mk ⊕ S(Mk) for

k = 1, . . . , r, N ′l = Nl⊕S(Nl) for l = 1, . . . , s and N ′l = Sn for l = s+1, . . . , r.

From Theorem 1.60, there exist 2n permutations ϕi,a of {1, 2, . . . , r}, where

i = 1, . . . , n and a = m, e, such that [M ′k]i,a = [N ′ϕi,a(k)]i,a. Let k ∈ Xi and

assume that ϕi,a(k) /∈ Yi. Since |Xi| = |Yi|, there exists j /∈ Xi such that

ϕi,a(j) ∈ Yi. By construction, we have

[Mk]i,a = [M ′k]i,a = [N ′ϕi,a(k)]i,a = [S(Nϕi,a(k))]i,a = [S(Mj)]i,a = [M ′j ]i,a =

[N ′ϕi,a(j)]i,a = [Nϕi,a(j)]i,a

and therefore, we can rearrange the permutation ϕi,a in order to map k into

ϕi,a(j) and j into ϕi,a(k), without changing its property of preserving the

classes. In particular, we can always assume that ϕi,a maps Xi into Yi, so

that ϕi,a |Xi : Xi → Yi are the sought bijections. Similarly, for r < s.

45



Conversely, assume that there exist 2n bijections ϕi,a : Xi → Yi such that

[Mk]i,a = [Nϕi,a)k=]i,a for i = 1, . . . , n, a = m, e. Assume that r ≥ s. Notice

that the isomorphism in (1.4.2) depends only on the fact that |Xi| = |Yi| for

every i = 1, . . . , n, so it holds also in this case. Consider the two direct sums

r⊕
k=1

(Mk ⊕ S(Mk))

and (
s⊕
l=1

(Nl ⊕ S(Nl))

)
⊕

Sn ⊕ Sn ⊕ · · · ⊕ Sn︸ ︷︷ ︸
(r−s)-times


and define, as before, M ′k = Mk⊕S(Mk) for k = 1, . . . , r, N ′l = Nl⊕S(Nl) for

l = 1, . . . , s and N ′l = Sn for l = s+ 1, . . . , r. Fix i = 1, . . . , n and a = m, e.

Then, for any k /∈ Xi and any l /∈ Yi, we have [M ′k]i,a = [S(Mk)]i,a =

[S(Nl)]i,a = [N ′l ]i,a, and therefore we can extend the bijection ϕi,a to a

bijection {1, 2, . . . , r} → {1, 2, . . . , s, s+ 1, . . . , r}. Using Theorem 1.60, we

get

r⊕
k=1

(Mk ⊕ S(Mk)) ∼=

(
s⊕
l=1

(Nl ⊕ S(Nl))

)
⊕

Sn ⊕ Sn ⊕ · · · ⊕ Sn︸ ︷︷ ︸
(r−s)-times


in En. Now, applying [35, Theorem 4.5], we can cancel the terms

⊕r
k=1 S(Mk)

and (
⊕s

l=1 S(Nl)) ⊕ (Sn ⊕ Sn ⊕ · · · ⊕ Sn) from direct sums, because they

are isomorphic objects with semilocal endomorphism ring (see Remarks 1.66

and 1.14).

Remark 1.68. Notice that, in Theorem 1.67, dropping the assumption that

all the objects are in Un, it could occur that r 6= s. A very simple example is

the following. Let M be any object of En not in Un with all factor modules

uniserial modules (some of whom are necessarily zero). Set M1 = M ⊕S(M),

N1 = M and N2 = S(M). Then, M1, N1 and N2 are non-zero objects of En
and M1

∼= N1 ⊕N2, but r = 1 and s = 2. In particular, this example shows

that the objects of Un are indecomposable objects in the category Un, but

they are not necessarily indecomposable in the category En.
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1.5 Factor categories and finite direct sums

In this section, we want to prove Theorems 1.53 and 1.60. First of all, notice

that it is possible to outline a common pattern for both the situations, whose

main properties are listed in the next remark.

Remark 1.69. We have:

1. A fixed positive integer n and an additive category C (for example, if

C = Morph(Mod-R) we have n = 2, while for C = En, the integer n

coincides with the “length” of the chains).

2. A full subcategory U of C such that for every M ∈ Ob(U), the en-

domorphism ring EM := EndC(M) has type at most 2n, and the

maximal ideals are among 2n completely prime two-sided ideals IM,i,a

for i = 1, . . . , n, a = m, e.

3. 2n equivalence relations ∼i,a (i = 1, . . . , n, a = m, e) on Ob(C) such

that for every M,N ∈ Ob(U), [M ]i,a = [N ]i,a if and only if there exist

two morphisms f : M → N and g : N →M in C such that g◦f /∈ IM,i,a,

or equivalently, such that f ◦ g /∈ IN,i,a.

4. n additive functors Qi : C → Mod-R, for i = 1, . . . , n. For every object

M ∈ Ob(U) and i = 1, . . . , n, Qi(M) is a non-zero uniserial right

R-module.

5. For every M,N ∈ Ob(U) and for every i = 1, . . . , n, we have that

[M ]i,a = [N ]i,a if and only if there exist two morphisms f : M → N and

g : N →M in C such that both Qi(f) and Qi(g) are right R-module

monomorphisms if a = m, or right R-module epimorphisms if a = e.

6. A weak form of the Krull-Schmidt Theorem, that can be stated as

follows: let M1,M2 . . . ,Mr, N1, N2, . . . , Ns be r + s objects of U . Then⊕r
k=1Mk

∼=
⊕s

`=1N` in the category C if and only if r = s and there

exist 2n permutations ϕi,a of {1, 2, . . . , r}, where i = 1, . . . , n and

a = m, e, such that [Mk]i,a = [Nϕi,a(k)]i,a for every k = 1, . . . , r.

Notice that for n = 1 and C = Mod-R, we recover the situation described for

uniserial modules. The functor Q1 : Mod-R→ Mod-R is simply the identity

functor.
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Let us start to outline the connection between the equivalence relations ∼i,a
and the completely prime ideals IM,i,a of the endomorphism rings of the

objects of U .

Lemma 1.70. Let M and N be two objects of U . Fix i = 1, . . . , n and

a = m, e and assume that [M ]i,a = [N ]i,a. Then the following properties hold:

1. For every j = 1, . . . , n and b = m, e, one has that IM,j,b ⊆ IM,i,a if and

only if IN,j,b ⊆ IN,i,a.

2. For every j = 1, . . . , n and b = m, e, IM,j,b ⊆ IM,i,a implies [M ]j,b =

[N ]j,b.

Proof. (1) It suffices to show that if j = 1, . . . , n, b = m, e and IM,j,b ⊆
IM,i,a, then IN,j,b ⊆ IN,i,a. Fix j = 1, . . . , n and b = m, e and suppose that

IN,j,b * IN,i,a. Let ϕ : N → N be a morphism in IN,j,b not in IN,i,a. Since

[M ]i,a = [N ]i,a, there exist two morphisms f : M → N and g : N →M in the

category U such that gf /∈ IM,i,a. In particular, by Lemma 1.3, gϕf ∈ IM,j,b

and gϕf /∈ IM,i,a, which implies that IM,j,b * IM,i,a.

(2) Suppose that IM,j,b ⊆ IM,i,a for some j = 1, . . . , n and b = m, e. Since

[M ]i,a = [N ]i,a, there exist two morphisms f : M → N and g : N → M in

the category U such that gf /∈ IM,i,a. In particular gf /∈ IM,j,b, and therefore

[M ]j,b = [N ]j,b by Remark 1.69 (3).

Corollary 1.71. Let M and N be two objects of U and suppose that

[M ]i,a = [N ]i,a for every i = 1, . . . , n and every a = m, e. Consider the

sets SM := {IM,i,a | i = 1, . . . , n and a = m, e} and SN := {IN,i,a | i =

1, . . . , n and a = m, e} partially ordered by set inclusion. Then the canonical

mapping

Φ: SM −→ SN , defined by IM,i,a 7→ IN,i,a

is a partially ordered set isomorphism.

Proof. It immediately follows from Lemma 1.70 (1).
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It is worth noting that at this point we are able to prove that the equivalence

relations ∼i,a classify the isomorphism classes of objects of U .

Proposition 1.72. Let M and N be two objects of U . Then M ∼= N in U
if and only if [M ]i,a = [N ]i,a for every i = 1, . . . , n and a = m, e.

Proof. Assume that [M ]i,a = [N ]i,a for every i = 1, . . . , n and a = m, e. By

Remark 1.69 (2), the maximal right ideals of EM are the ideals IM,i,a, where

(i, a) ranges in a non-empty subset S of {(1,m), . . . , (n,m), (1, e), . . . , (n, e)}.
Consequently, the maximal right ideals of EN are the ideals IN,i,a for the

same pairs (i, a) in S (Corollary 1.71). By hypothesis, there are morphisms

f(i,a) : M → N and f ′(i,a) : N → M such that f ′(i,a)f(i,a) /∈ IM,i,a for every

(i, a) ∈ S. Moreover, since EM/J(EM ) and
∏

(i,a)∈S EM/IM,i,a are canonically

isomorphic, for every (i, a) ∈ S there exists ε(i,a) ∈ EM such that ε(i,a) ≡
δ(i,a),(j,b) (mod IM,j,b) for every (j, b) ∈ S. Similarly, for every (i, a) ∈ S

there exists ε′(i,a) ∈ EN such that ε′(i,a) ≡ δ(i,a),(j,b) (mod IN,j,b) for every

(j, b) ∈ S. The two morphisms ϕ : =
∑

(i,a)∈S ε
′
(i,a)f(i,a)ε(i,a) and ψ : =∑

(i,a)∈S ε(i,a)f
′
(i,a)ε

′
(i,a) are such that ψϕ ∈ EM is invertible modulo J(EM )

and ϕψ ∈ EN is invertible modulo J(EN ). Hence ψϕ and ϕψ are invertible

in EM and EN respectively, and therefore ϕ : M → N is an isomorphism.

The other implication is clear.

We now introduce another class of ideals, defined starting from two-sided

ideals of the endomorphism ring of an object.

Definition 1.73. [43, 44] Let A be an object of a preadditive category A
and I be a two-sided ideal of the ring EndA(A). Let I be the ideal of the

category A defined as follows. A morphism f : X → Y in A belongs to

I(X,Y ) if βfα ∈ I for every pair of morphisms α : A→ X and β : Y → A in

A. The ideal I is called the ideal of C associated to I.

It is easy to see that I turns out to be the greatest of the ideals I ′ of A with

I ′(A,A) ⊆ I. Moreover I(A,A) = I and therefore, if A is an object of A,

the ideals associated to two distinct ideals of EndA(A) are distinct ideals of

the category A.
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We now go back to our category. For any object M of C, if IM,i,a is a maximal

right ideal of EM , we denote by IM,i,a the ideal of C associated to IM,i,a. Set

V (M) := { IM,i,a | IM,i,a is a maximal ideal of EM }.

By Remark 1.69 (2), V (M) has at most 2n elements.

Lemma 1.74. Fix i = 1, . . . , n and a = m, e. Let M be an object of U , IM,i,a

be a maximal ideal of EM , IM,i,a its associated ideal in C and F : C → C/IM,i,a

be the canonical functor.

1. For any non-zero object N of C such that EN is a semilocal ring, either

IM,i,a(N,N) = EN or IM,i,a(N,N) is a maximal ideal of EN . In this

second case, the ideal of C associated to IM,i,a(N,N) is equal to IM,i,a.

2. For any object N of C such that EN is of finite type, either F (N) = 0

or F (N) ∼= F (M). Moreover, if [M ]i,a = [N ]i,a, then F (N) ∼= F (M).

3. If F (M)t ∼= F (M)s in the factor category C/IM,i,a for integers t, s ≥ 0,

then t = s.

Proof. (1) Immediately follows from [41, Lemma 2.1(ii)].

(2) We know that either F (N) = 0 or the endomorphism ring of F (N) is a

division ring. Let us consider the latter case. As 1N /∈ IM,i,a(N,N), there are

α : M → N and β : N →M such that βα /∈ IM,i,a. Since IM,i,a is a completely

prime ideal of EM , also β(αβ)α /∈ IM,i,a, hence αβ /∈ IM,i,a(N,N). By the

previous part, both EndC(M)/IM,i,a(M,M) and EndC(N)/IM,i,a(N,N) are

division rings and therefore αβ and βα become automorphisms in C/IM,i,a. It

means that F (M) ∼= F (N) in C/IM,i,a. For the last assertion, note that, also

in the case [M ]i,a = [N ]i,a, there are morphisms α : M → N and β : N →M

such that βα /∈ IM,i,a. So, as before, we can conclude that F (M) ∼= F (N).

(3) First notice that F (M) 6= 0 in C/IM,i,a because IM,i,a(M,M) = IM,i,a.

By the previous parts, D := EndC/IM,i,a(M) = EndC(M)/IM,i,a is a division

ring. To conclude, it suffices to apply the functor

HomC/IM,i,a(F (M),−) : C/IM,i,a → Mod-D.
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Corollary 1.75. Fix i = 1, . . . , n and a = m, e. Let M be an object of

U , IM,i,a be a maximal ideal of EM , IM,i,a its associated ideal in C and

F : C → C/IM,i,a be the canonical functor.

1. For any object N of U , the following conditions are equivalent:

(a) F (N) = 0 in C/IM,i,a.

(b) IM,i,a(N,N) = EN .

(c) IN,i,a ( IM,i,a(N,N).

(d) [M ]i,a 6= [N ]i,a.

2. For any object N of U , the following conditions are equivalent:

(a) F (M) ∼= F (N) in C/IM,i,a.

(b) IM,i,a(N,N) is a proper ideal of EN .

(c) IN,i,a = IM,i,a(N,N).

(d) [M ]i,a = [N ]i,a.

Moreover, in this second case, IN,i,a is a maximal right ideal of EN and

IM,i,a = IN,i,a.

Proof. (1). (a) ⇔ (b) F (N) = 0 if and only if the endomorphism ring

EN/IM,i,a(N,N) of F (N) in the factor category C/IM,i,a is the zero ring.

(b)⇒ (c) It suffices to notice that IN,i,a is always a proper ideal of EN .

(c) ⇒ (d) Let ϕ be an element in IM,i,a(N,N) not in IN,i,a. For any two

morphisms f : M → N and g : N → M in the category C, one has gϕf ∈
IM,i,a, by definition of associated ideal. Since ϕ /∈ IN,i,a, it follows from

Lemma 1.3 that gf ∈ IM,i,a. This means that [M ]i,a 6= [N ]i,a.

(d) ⇒ (b) By Remark 1.69 (3), if [M ]i,a 6= [N ]i,a, then, for any pair of

morphisms f : M → N and g : N →M in the category U , we have g1Nf =

gf ∈ IM,i,a. Therefore 1N ∈ IM,i,a(N,N), so that IM,i,a(N,N) = EN .
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(2). First notice that, by Lemma 1.74 (2), either F (M) = 0 or F (M) ∼= F (N)

in C/IM,i,a. Moreover, IN,i,a is always contained in IM,i,a(N,N). As a matter

of fact, suppose ϕ ∈ IN,i,a. By Lemma 1.3, for any f : M → N and any

g : N → M , we have that gϕf ∈ IM,i,a, so ϕ ∈ IM,i,a(N,N). Now all the

implications follow from part (1).

For the last assertion, apply Lemma 1.74 (1).

Corollary 1.76. Let M and N be two objects in the category U . Fix

i = 1, . . . , n and a = m, e. Suppose that [M ]i,a = [N ]i,a. Then the following

properties hold:

1. IM,i,a is a maximal right ideal of EM if and only if IN,i,a is a maximal

right ideal of EN .

2. Suppose that IM,i,a is a maximal right ideal of EM . Then, for every

j = 1, . . . , n and b = m, e, IM,j,b = IM,i,a if and only if IN,j,b = IN,i,a.

Proof. (1) It suffices to show that IM,i,a maximal implies IN,i,a maximal.

From Corollary 1.75 (2), IN,i,a = IM,i,a(N,N) is a proper ideal of EN , and

it is a maximal right ideal of EN by Lemma 1.74 (1).

(2) By (1), the hypotheses on M and N are symmetrical. Therefore it

suffices to show that IM,j,b = IM,i,a implies IN,j,b = IN,i,a. The inclusion

IN,j,b ⊆ IN,i,a follows from Lemma 1.70 (1). Moreover, by Lemma 1.70 (2), we

can interchange the role of (i, a) and (j, b) and deduce the opposite inclusion

applying Lemma 1.70 (1) again.

Corollary 1.77. Let M and N be two objects of U . Then V (M)∩V (N) 6= ∅
if and only if there exists a pair (j, a) ∈ {1, 2 . . . , n} × {m, e} such that

IM,j,a is a maximal right ideal of EM , IN,j,a is a maximal ideal of EN and

IM,j,a = IN,j,a. Moreover, for such a pair, [M ]j,a = [N ]j,a.

Proof. Let P ∈ V (M) ∩ V (N). Then there exist two pairs (j, a) and (k, b) in

{1, 2, . . . , n}×{m, e} such that IM,j,a is a maximal right ideal of EM , IN,k,b is a

maximal ideal of EN and P = IM,j,a = IN,k,b is the ideal of C associated both

to IM,j,a and IN,k,b. We have IN,j,a ⊆ IM,j,a(N,N) = IN,k,b(N,N) = IN,k,b. If

the inclusion is proper, then IN,k,b = EN by Corollary 1.75 (1), a contradiction.
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It follows that IN,j,a = IN,k,b, so we can replace the pair (k, b) with (j, a).

Clearly, the converse holds as well. Finally, the last assertion follows from

Corollary 1.75 (2).

Remark 1.78. According to [41], we say that an ideal M of a preadditive

category A is maximal if the improper ideal of A is the unique ideal of the

category A properly containing M. Moreover, we say that a preadditive

category A is simple [41] if it has exactly two ideals, necessarily the trivial

ones. Hence, a simple category has non-zero objects. By [41, Lemma 2.4],⋃
M∈Ob(U) V (M) turns out to be a class of maximal ideals of U . Moreover,

applying [41, Theorem 3.2], we can immediately deduce that if M is an object

of U and I ∈ V (M), then the factor category U/I is a simple category and

the endomorphism ring of all its non-zero objects are division rings.

Remark 1.79. Let M and N be two objects of U . For every i = 1, . . . , n,

Qi(M ⊕N) ∼= Qi(M)⊕Qi(N) and hence, applying Proposition 1.12, we have

codim(End(Qi(M)⊕Qi(N))) = codim(End(Qi(M))) + codim(End(Qi(N))).

In particular, codim(EM⊕N ) is finite, and therefore EM⊕N is semilocal by

Proposition 1.6.

Lemma 1.80. Let M1, . . . ,Mr be objects of U . Then every maximal two-

sided ideal of E⊕r
k=1Mk

is of the form IMh,i,a(
⊕r

k=1Mk,
⊕r

k=1Mk) for some

h = 1, . . . , r, i = 1, . . . , n and a = m, e such that IMh,i,a is a maximal

right ideal of EMh
. Conversely, if (h, i, a) is a triple such that h = 1, . . . , r,

i = 1, . . . , n, a = m, e and IMh,i,a is a maximal right ideal of EMh
, then

IMh,i,a(
⊕r

k=1Mk,
⊕r

k=1Mk) is a maximal two-sided ideal of E⊕r
k=1 Mk

.

Proof. First, let I be a maximal two-sided ideal of E⊕rk=1Mk
and let I

be its associated ideal on C. Using Lemma 1.74 (1), we get that for any

M = M1, . . . ,Mr, either I(M,M) = EM or I(M,M) is a maximal two-

sided ideal of EM . If I(Mh,Mh) = EMh
for all h = 1, . . . , r, by defini-

tion of associated ideal, it follows that εhπh ∈ I for every h = 1, . . . , r,

where εh : Mh → ⊕rk=1Mk and πh : ⊕rk=1Mk → Mh are the canon-

ical embedding and the canonical projection respectively. In particular

1⊕rk=1Mk
=
∑r

h=1 εhπh ∈ I, which is absurd. It follows that there ex-

ists a triple (h, i, a) such that I(Mh,Mh) = IMh,i,a is a maximal right

ideal of EMh
. By Lemma 1.74 (1), IMh,i,a = I, so that, in particular,

I = I(
⊕r

k=1Mk,
⊕r

k=1Mk) = IMh,i,a(
⊕r

k=1Mk,
⊕r

k=1Mk).
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Conversely, let (h, i, a) be a triple such that h = 1, . . . , r, i = 1, . . . , n,

a = m, e and IMh,i,a is a maximal right ideal of EMh
. Denote byQ the quotient

category C/IMh,i,a and consider the canonical functor F : C → Q. Then

F (
⊕r

k=1Mk) ∼= F (Mh)m, where m := mh,i,a = |{k | k = 1, . . . , r, [Mk]i,a =

[Mh]i,a}| (Corollary 1.75). It follows that EndQ(
⊕r

k=1Mk) ∼= Mm(D), where

D = EndQ(Mh) is a division ring. In particular, EndQ(
⊕r

k=1Mk) is a simple

artinian ring and so the kernel of E⊕r
k=1Mk

→ EndQ(
⊕r

k=1Mk), which is

IMh,i,a(
⊕r

k=1Mk,
⊕r

k=1Mk), is a maximal two-sided ideal of E⊕r
k=1Mk

.

Corollary 1.81. Let M1, . . . ,Mr be objects of U . Then there is a one-to-one

correspondence between
⋃r
k=1 V (Mk) and the maximal two-sided ideals of⊕r

k=1Mk given by

Ψ : IMh,i,a 7→ IMh,i,a(⊕
r
k=1Mk,⊕rk=1Mk).

Proof. By Lemma 1.80, Ψ is well defined. We can construct the inverse map

of Ψ as follows. Let I be a maximal two-sided ideal of E⊕rk=1Mk
and let I

be its associated ideal on C. As in the proof of Lemma 1.80, there exists a

triple (h, i, a) such that I(Mh,Mh) = IMh,i,a is a maximal right ideal of EMh

and IMh,i,a = I. So, I ∈
⋃r
k=1 V (Mk) and I 7→ I is the inverse of Ψ (apply

Lemma 1.74 (1)).

We now make use of some techniques, notations and ideas taken from [31]. If

X and Y are finite disjoint sets, we will denote by D(X,Y ;E) the bipartite

digraph (= directed graph) having X and Y as disjoint sets of non-adjacent

vertices and E as set of edges. Equivalently, V = X ∪ Y is the vertex set of

D(X,Y ;E), E ⊆ X × Y ∪ Y ×X is the set of its edges, and X ∩ Y = ∅. For

every subset T ⊆ V , let N+(T ) = {w ∈ V | (v, w) ∈ E for some v ∈ T } be

the out-neighbourhood of T ([30, introduction, p.184]). Define an equivalence

relation ∼s on V by v ∼s w if there are both an oriented path from v to w

and an oriented path from w to v (v, w ∈ V ).

Proposition 1.82. ([30, Lemma 2.1], Krull-Schmidt Theorem for bipartite

digraphs). Let X and Y be disjoint sets of cardinality n and m, respectively.

Set V := X ∪ Y . Let D = D(X,Y ;E) be a bipartite digraph having X and

Y as disjoint sets of non-adjacent vertices. If |T | ≤ |N+(T )| for every subset
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T of V , then n = m and, after a suitable relabelling of the indices of the

elements x1, . . . , xn of X and y1, . . . , yn of Y , xi ∼s yi for every i = 1, . . . , n.

Remark 1.83. If T is any semilocal ring and I is a maximal two-sided ideal

of T , then there exists an element δI ∈ T such that δI ≡ 1T (mod I) and

δI ≡ 0 (mod J) for every other maximal two-sided ideal J of T different

from I. This follows from the fact that T/J(T ) is a direct product of finitely

many simple rings.

Theorem 1.84. Let M1,M2 . . . ,Mr, N1, N2, . . . , Ns be r + s objects of U .

Then
⊕r

k=1Mk
∼=
⊕s

`=1N` in the category C if and only if r = s and there

exist 2n permutations ϕi,a of {1, 2, . . . , r}, where i = 1, . . . , n and a = m, e,

such that [Mk]i,a = [Nϕi,a(k)]i,a for every k = 1, . . . , r.

Proof. First assume that
⊕r

k=1Mk
∼=
⊕s

`=1N` in the category C. For ease

of notation, for every morphism f in C, we will write f (i) instead of Qi(f).

Since
⊕r

k=1Q1(Mk) ∼=
⊕s

`=1Q1(N`) in the category Mod-R, looking at

the Goldie dimension, we get that r = s. Let α :
⊕r

k=1Mk →
⊕s

`=1N`

be an isomorphism in C with inverse β :
⊕s

`=1N` →
⊕r

k=1Mk. Denote

by εh : Mh →
⊕r

k=1Mk, πh :
⊕r

k=1Mk → Mh, ε′j : Nj →
⊕s

`=1N` and

π′j :
⊕s

`=1N` → Nj the embeddings and the canonical projections and

consider the composite morphisms χh,j := π′jαεh : Mh → Nj and χ′j,h :=

πhβε
′
j : Nj →Mh. Fix i = 1, . . . , n. We want to prove the existence of the

permutation ϕi,e (dualizing the proof we get the existence of the permutation

ϕi,m). Define a bipartite digraph D = D(X,Y ;E) (according on the choice of

the pair (i, e)) having X = {M1, . . . ,Mr} and Y = {N1, . . . , Nr} as disjoint

sets of non-adjacent vertices, and the set E of edges defined as follows: one

edge from Mh to Nj for each h and j such that χ
(i)
h,j : Qi(Mh)→ Qi(Nj) is a

surjective right R-module morphism, and one edge from Nj to Mh for each

h and j such that (χ′j,h)(i) : Qi(Nj)→ Qi(Mh) is a surjective right R-module

morphism.

We want to show that for every subset T ⊆ X ∪ Y of vertices, |T | ≤ |N+(T )|.
Since the digraph is bipartite, we can suppose that T ⊆ X. If p = |T | and

q = |N+(T )|, relabelling the indices we may assume that T = {M1, . . . ,Mp}
and N+(T ) = {N1, . . . , Nq}. It means that χ

(i)
h,j are not surjective for every

h = 1, . . . , p and every j = q + 1, . . . , r. Since the modules Qi(Nj) are

all uniserial, we have that Lj :=
⋃p
h=1 χ

(i)
h,j(Qi(Mh)) ( Qi(Nj) for every
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j = q + 1, . . . , n, and therefore all the quotient modules Qi(Nj)/Lj are non-

zero for every j = q+1, . . . , n. Let π :
⊕r

`=1Qi(N`)→
⊕r

j=q+1Qi(Nj)/Lj be

the canonical projection. For every h = 1, . . . , p and for every j = q+1, . . . , r,

the composite morphism

Qi(Mh)
ε
(i)
h−→

r⊕
k=1

Qi(Mk)
α(i)

−→
r⊕
`=1

Qi(N`)
(π′j)

(i)

−→ Qi(Nj)→ Qi(Nj)/Lj

is zero because (π′jαεh)(i)(Qi(Mh)) = χ
(i)
h,j(Qi(Mh)) ⊆ Lj . It follows that for

every h = 1, . . . , p, α
(i)
h (Qi(Mh)) is contained in the kernel of

r⊕
`=1

Qi(N`)
(π′j)

(i)

−→ Qi(Nj)→ Qi(Nj)/Lj

for every j = q + 1, . . . , r. Since
∑p

h=1 ε
(i)
h (Qi(Mh)) =

⊕p
h=1Qi(Mh), it

follows that there exists a morphism

r⊕
k=1

Qi(Mk)/

p⊕
h=1

Qi(Mh) ∼=
r⊕

m=p+1

Qi(Mm) −→ Qi(Nj)/Lj

making the following diagram

⊕r
k=1Qi(Mk) //

α(i)

��

⊕r
m=p+1Qi(Mm)

��⊕r
`=1Qi(N`) // Qi(Nj)/Lj

commute. Hence, there exist a morphism

γ :
r⊕

m=p+1

Qi(Mm)→
r⊕

j=q+1

Qi(Nj)/Lj

and a commutative diagram

⊕r
k=1Qi(Mk) //

α(i)

��

⊕r
m=p+1Qi(Mk)

γ

��⊕r
`=1Qi(N`) //

⊕r
j=q+1Qi(Nj)/Lj

Since the horizontal arrows are the canonical projections, the morphism γ
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must be surjective. Taking the dual Goldie dimension of the domain and

the codomain of γ, we get r − |T | ≥ r − |N+(T )|, that is |T | ≤ |N+(T )|. To

conclude, it suffices to apply Proposition 1.82 to the digraph D.

Conversely, assume that there exist 2n permutations ϕi,a of {1, 2, . . . , r},
where i = 1, . . . , n and a = m, e, such that [Mk]i,a = [Nϕi,a(k)]i,a. Fix

M ∈ {M1, . . . ,Mr, N1, . . . , Nr}, i = 1, . . . , n and a = m, e such that IM,i,a is

a maximal right ideal of EM . Consider the canonical functor F : C → C/IM,i,a.

Then F (
⊕r

k=1Mk) ∼= F (M)m ∼= F (
⊕r

`=1N`), where m := mM,i,a = |{k |
k = 1, . . . , r, [Mk]i,a = [M ]i,a}| = |{` | ` = 1, . . . , r, [N`]i,a = [M ]i,a}|
(Corollary 1.75). It means that there exists fM,i,a :

⊕r
k=1Mk →

⊕r
`=1N` in

C which becomes an isomorphism in the factor category C/IM,i,a. Notice that

the triple (M, i, a) identifies a pair of objects (Mk, Nϕi,a(k)) with the following

properties: [Mk]i,a = [Nϕi,a(k)]i,a, IMk,i,a is a maximal right ideal of EMk
,

INϕi,a(k),i,a is a maximal right ideal of ENϕi,a(k)
and IMk,i,a = INϕi,a(k),i,a

(Corollary 1.75 and Corollary 1.76). So, according to Lemma 1.80, the

triple (M, i, a) defines a maximal two-sided ideal JM,i,a of E⊕r
k=1Mk

, namely

JM,i,a = IM,i,a(
⊕r

k=1Mk,
⊕r

k=1Mk). Since E⊕r
k=1 Mk

is a semilocal ring,

there exists δM,i,a such that δM,i,a ≡ 1 modulo JM,i,a and δM,i,a ≡ 0

modulo all the other maximal two-sided ideals of E⊕r
k=1Mk

. Similarly, we

can define an endomorphism δ′M,i,a of
⊕r

`=1N`. Consider any subset Ω of

{M1, . . . ,Mr, N1, . . . , Nr} × {1, . . . , n} × {m, e} consisting of all the triples

(M, i, a) such that IM,i,a is a maximal right ideal of EM with the additional

property that if (M, i, a) 6= (M ′, j, b), then IM,i,a 6= IM ′,j,b. So, in partic-

ular {IM,i,a | (M, i, a) ∈ Ω} = (
⋃r
k=1 V (Mk)) ∪ (

⋃s
`=1 V (N`)). Define the

morphism f :=
∑

(M,i,a)∈Ω δ
′
M,i,afM,i,aδM,i,a. By construction, f becomes

an isomorphism in the factor category C/IM,i,a for every (M, i, a) ∈ Ω. By

[1, Proposition 5.2], f is an isomorphism in the category C/I, where I is

the intersection of the finitely many ideals IM,i,a, with (M, i, a) ∈ Ω. Since⊕r
k=1Mk and

⊕r
`=1N` are isomorphic in the category C/I, there exist two

morphisms α :
⊕r

k=1Mk →
⊕r

`=1N` and β :
⊕r

`=1N` →
⊕r

k=1Mk such

that βα ≡ 1⊕r
k=1 Mk

modulo I(
⊕r

k=1Mk,
⊕r

k=1Mk) and αβ ≡ 1⊕r
`=1N`

modulo I(
⊕r

`=1N`,
⊕r

`=1N`). But E⊕r
k=1 Mk

is semilocal (Remark 1.79),

so its Jacobson radical J(E⊕r
k=1Mk

) is equal to the intersection of all its

maximal two-sided ideals, which are the ideals IM,i,a(
⊕r

k=1Mk,
⊕r

k=1Mk),

57



where (M, i, a) ∈ Ω. It means that

I(
r⊕

k=1

Mk,
r⊕

k=1

Mk) =
⋂

(M,i,a)∈Ω

IM,i,a(
r⊕

k=1

Mk,
r⊕

k=1

Mk) = J(E⊕r
k=1 Mk

).

Similarly,

I(
r⊕
`=1

N`,
r⊕
`=1

N`) =
⋂

(M,i,a)∈Ω

IM,i,a(
r⊕
`=1

N`,
r⊕
`=1

N`) = J(E⊕r
`=1N`

).

Thus αβ and βα are invertible in the rings E⊕r
k=1 Mk

and E⊕r
`=1N`

, respec-

tively. In particular, α is both right invertible and left invertible in the

category C. It follows that α is an isomorphism in C.

Corollary 1.85. Let M1,M2 . . . ,Mr, N1, N2, . . . , Ns be r + s objects of U .

For every i = 1, . . . , n and every a = m, e, define

Xi,a := {k | k = 1, . . . , r, IMk,i,a is a maximal ideal of EMk
}

and

Yi,a := {` | ` = 1, . . . , s, IN`,i,a is a maximal ideal of EN`}.

Then
⊕r

k=1Mk
∼=
⊕s

`=1N` in the category C if and only if r = s and there

exist 2n bijections ψi,a : Xi,a → Yi,a, where i = 1, . . . , n and a = m, e, such

that [Mk]i,a = [Nψi,a(k)]i,a for every k ∈ Xi,a.

Proof. If
⊕r

k=1Mk
∼=
⊕s

`=1N` in the category C, then we can restrict the

permutations ϕi,a of Theorem 1.60 to Xi,a, noting that ϕi,a(Xi,a) = Yi,a

(Corollary 1.76).

For the other implication, observe that the proof of the “if part” of Theo-

rem 1.60 works also in this case.
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1.6 Other constructions

We have introduced the categories Morph(Mod-R) and En (together with

their full subcategories Morph(U) and Un) in order to obtain a framework in

which it was possible to deal with object of finite type with the purpose to

study the behaviour of their direct-sums. Up to now, we have almost always

dealt with object related to uniserial modules. Nevertheless, it is possible to

consider other different situations. Here we discuss the most natural ones.

As far as the category Morph(Mod-R) is concerned, we have seen in Subsec-

tion 1.3.2 the full subcategory Morph(L) of Morph(Mod-R) whose objects

are all morphisms between modules of type 1 (i.e. modules with a local endo-

morphism ring). In a similar way, if C and K denote the full subcategories

of Mod-R consisting of non-zero couniformly presented right R-modules

and kernels of non-injective morphisms between indecomposable injective

modules respectively, we can consider the following two full subcategories of

Morph(Mod-R):

1. Morph(C), consisting of all morphisms between non-zero couniformly

presented right R-modules;

2. Morph(K), whose objects are all morphisms between modules in K.

Similarly, with respect to the category En, we can define:

3. the full subcategory Ln whose objects have all factor modules with a

local endomorphism ring;

4. the full subcategory Cn consisting of the objects whose factor modules

are all non-zero couniformly presented right R-modules;

5. the full category Kn of En whose objects have all factor modules that are

kernels of non-injective morphisms between indecomposable injective

modules.

So, it is natural to try to adapt all we have seen also for these other con-

structions.
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Mutatis mutandis, a version of Theorems 1.51 and 1.56 holds also for objects

in these new subcategories. For instance, if M is an object of Cn, we have 2n

two-sided completely prime ideals of EM , which are the ideals IM,i,` := {f ∈
EM | fi ∈ IU(i)} and IM,i,e := {f ∈ EM | fi ∈ KU(i)} for i = 1, . . . , n, where

IU(i) and KU(i) are defined as in Theorem 1.27.

By continuing with this example, we have seen in Section 1.4 that the notions

of ith-monogeny class and ith-epigeny class generalize those of monogeny and

epigeny class introduced in [34]. The interplay between these notions and

the objects of Un looks like the “n-analogue” of that of uniserial modules.

For objects in Cn, we can generalize the notion of “having the same lower

part” introduced in [37] as follows. Let M and N be two objects of Cn with

factor modules U (1), . . . , U (n) and V (1), . . . , V (n) respectively. Fix a couniform

presentation 0→ C
(i)
M → P

(i)
M → U (i) → 0 and 0→ C

(i)
N → P

(i)
N → V (i) → 0

for all the factor modules U (1), . . . , U (n) and V (1), . . . , V (n). For i = 1, . . . , n,

we say that M and N have the same ith-lower part, and we write [M ]i,` =

[N ]i,`, if there exist two morphisms f : M → N and g : N → M in the

category En such that both fi : U (i) → V (i) and gi : V (i) → U (i) lift to

right R-module morphisms f̂i : P
(i)
M → P

(i)
N and ĝi : P

(i)
N → P

(i)
M with

f̂i(C
(i)
M ) = C

(i)
N and ĝi(C

(i)
N ) = C

(i)
M . As for the case of couniformly presented

modules, this definition is independent from the choice of the couniform

presentations. If M and N are two objects in Cn, then [M ]i,` = [N ]i,` if and

only if there exist two morphisms f : M → N and g : N →M in the category

En such that gf /∈ IM,i,` = {f ∈ EM | fi ∈ IU(i)} (or, equivalently, such that

fg /∈ IN,i,` = {f ∈ EN | fi ∈ IV (i)}). Similarly, [M ]i,e = [N ]i,e if and only if

there exist two morphisms f : M → N and g : N → M in the category En
such that gf /∈ IM,i,e = {f ∈ EM | fi ∈ KU(i)} (or, equivalently, such that

fg /∈ IN,i,e = {f ∈ EN | fi ∈ KV (i)}). The corresponding arguments can be

given for all the constructions listed at the beginning of this section.

Now, let us see if (and eventually how) it is possible to adapt what we

have seen in Section 1.5, in order to prove the analogue of Theorems 1.53

and 1.60. The content of Remark 1.69 can be rephrased according to our

previous considerations. Notice that we largely used Lemma 1.3, so we first

need to replace that result with the suitable analogue for modules in L,

C and K. The easiest case is that of modules with a local endomorphism

ring: if f : A→ B and g : B → C are right R-module morphisms between
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modules in L, then g ◦ f is an isomorphism if and only if both f and g are

isomorphisms. Also the other cases are not difficult to treat. For instance,

let M1,M2 and M3 be couniformly presented modules, with couniform

presentations 0→ Ci → Pi →Mi → 0, for i = 1, 2, 3. Consider two right R-

module morphisms f : M1 →M2 and g : M2 →M3, lift them to morphisms

f̂ : P1 → P2 and ĝ : P2 → P3 and let f ′ : C1 → C2 and g′ : C2 → C3 denote

the restrictions of f̂ and ĝ respectively. Since couniformly presented modules

are couniform, Lemma 1.3 ensures that g ◦ f is surjective if and only if both

f and g are surjective. For the same reason, we get that g′ ◦ f ′ is surjective if

and only if both f ′ and g′ are surjective. The case of kernels of non-injective

morphisms between indecomposable injective modules can be treated in a

similar way. At this point we are able to repeat step by step all the arguments

given in Section 1.5 up to Corollary 1.81.

Now, looking at the proof of Theorem 1.84, we can notice that the “if-part”

works in all these new cases, while the other implication require further

comments.

Let us continue to describe the cases related to couniformly presented mod-

ules, that is, the categories Morph(C) and Cn. Here we have 2n equivalence

relations ∼i,a for i = 1, . . . , n and a = e, `. In order to prove the exis-

tence of the permutations ϕi,e, i = 1, . . . , n, we can repeat exactly the

proof given for Theorem 1.84. So, we only need to adapt the proof for

the “lower-part case”, that is, for the existence of the permutations ϕi,`,

i = 1, . . . , n. In order to do that, we preserve all notations used in the proof.

Fix an index i = 1, . . . , n and, for every k = 1, . . . , r, couniform presenta-

tions 0→ Ck → Pk → Qi(Mk)→ 0 for every module Qi(Mk) and couniform

presentations 0→ C ′k → P ′k → Qi(Nk)→ 0 for every module Qi(Nk). Every

morphism χ
(i)
h,j : Qi(Mh) → Qi(Nj) induces a right R-module morphism

γh,j : Ch → C ′j and similarly, every morphism (χ′j,h)(i) : Qi(Nj)→ Qi(Mh)

induces a right R-module morphism γ′j,h : C ′j → Ch. Define a bipartite

digraph D = D(X,Y ;E) having X = {M1, . . . ,Mr} and Y = {N1, . . . , Nr}
as disjoint sets of non-adjacent vertices, and the set E of edges defined as

follows: one edge from Mh to Nj for each h and j such that γh,j is a surjective

right R-module morphism, and one edge from Nj to Mh for each h and j

such that γ′j,h is a surjective right R-module morphism. Now, we can continue

by arguing as for the permutations ϕi,e. Everything can be easily dualized
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for the categories Morph(K) and Kn.

As far as the categories Morph(L) and Ln is concerned, we have a slight

different situation. First off all, recall that we provided a weak form of

the Krull-Schmidt Theorem for objects in Morph(L) in Theorem 1.49, as

a consequence of Theorem 1.35. Therefore, we actually only need to prove

a version of Theorem 1.84 for objects in Ln (but the same arguments give

an alternative proof of Theorem 1.49). For objects M and N in En, we can

say that M and N have the same ith-isomorphism class, and we will write

[M ]i = [N ]i, if there exist two morphisms f : M → N and g : N →M in the

category En such that both the ith-induced morphisms fi : M (i)/M (i−1) →
N (i)/N (i−1) and gi : N (i)/N (i−1) →M (i)/M (i−1) are isomorphisms. As before,

we preserve the notations of Section 1.5. In order to prove the existence

of the permutation ϕi for a fixed index i = 1, . . . , n, define a bipartite

digraph D = D(X,Y ;E) having X = {M1, . . . ,Mr} and Y = {N1, . . . , Nr}
as disjoint sets of non-adjacent vertices (notice that Theorem 1.17 ensures

that r = t), and the set E of edges defined as follows: one edge from Mh to

Nj for each h and j such that χ
(i)
h,j : Qi(Mh)→ Qi(Nj) is a bijective right

R-module morphism, and one edge from Nj to Mh for each h and j such that

(χ′j,h)(i) : Qi(Nj)→ Qi(Mh) is a bijective right R-module morphism. In this

case the modules Qi(Mh) and Qi(Nj) (j, h = 1, . . . , r) are not necessarily

uniform or couniform, and therefore we can not argue as for the other cases.

Nevertheless, we can apply [62, Theorem 2.2] to immediately deduce that for

a fixed subset T ⊆ X, |T | ≤ |N+(T )|.
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CHAPTER 2

Prüfer rings in distinguished constructions

“It is possible to enumerate a few concepts which are central in our development

of Multiplicative Ideal Theory. Quotient rings and rings of quotients fall into

this category, they are basic to all subsequent considerations; invertible ideals

also constitute a basic tool in the presentation of the theory. A third concept

which plays a central role in the development of the classical ideal theory is

that of Prüfer domain.” [58, R. Gilmer, Multiplicative Ideal Theory]

2.1 Notations and terminology

In this chapter, all rings are commutative unitary rings. For a ring R, we

denote by Z(R) the set of all zero-divisors of R (so, in particular, 0 ∈ Z(R))

and by Reg(R) the set of regular elements of R. An ideal i of R is said to

be regular if it contains a regular element of R. Tot(R) denotes the total

quotient ring of R. In the case of integral domains, we write Q(R) for the

quotient field of R. An overring of R is a subring R′ of Tot(R) containing R.

More generally, if R ⊆ T is a ring extension, a T -overring of R is a ring R′

such that R ⊆ R′ ⊆ T . Any ring homomorphism f : R→ T maps the identity

of R into the identity of T . The conductor of f is the ideal AnnR(T/ Im(f)).

According to this definition, if R ⊆ T is a ring extension, the conductor of

T into R is the ideal of R (R : T ) := {r ∈ R | rT ⊆ R}. It is the greatest

common ideal of R and T . Spec(R) denotes the prime spectrum of R. An

ideal i of a ring R is locally principal if iRp is principal for every prime ideal

p of R.
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2.2 Preliminaries

We start this section recalling some characterizations of Prüfer domains

that lead to (different) generalizations of this concept to rings with zero-

divisors. Regarding to these arguments, we provide several references in the

sequel, but we want to emphatize some of them in advance, expecially to

the benefit of those readers not familiar with these themes. Gilmer’s book

[60] contains several characterizations of Prüfer domains. It is certainly the

most important reference for these topics, together with Fontana, Huckaba

and Papick’s book [49]. As far as this theory in the framework of rings of

zero-divisors is concerned, we mention the books of Larsen and McCarthy [79]

and Huckaba [70]. In particular, the last chapter of Huckaba’s book contains

some important constructions we will use later on. Finally, a good reference

for the “homological notions” (e.g. weak global dimension, semihereditary

rings, etc.) is Glaz’s book [63].

Prüfer-like conditions

Recall that a (fractional) ideal a of a ring R is invertible if there exists an

R-submodule b of Tot(R) such that ab = R. If such a submodule b exists,

then it necessarily coincides with a−1 := {x ∈ Tot(R) | xa ⊆ R}, which is

called the inverse of a (cf. [60, §7]).

Definition 2.1. A domain D is called a Prüfer domain if every non-zero

finitely generated ideal of D is invertible.

This is the original definition given by Prüfer in his article [88]. The first

generalization we present can be found in a paper by Butts and Smith [17]

under the name “α-rings”. Such rings were later named Prüfer rings by Griffin

in [68].

Definition 2.2. A ring R is a Prüfer ring if every finitely generated regular

ideal is invertible.

Invertibility of ideals is strictly related to the notion of projectivity and the

property of being locally principal. Indeed, for any ideal a of R we have the
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following implications:

a invertible ⇒ a projective ⇒ a locally principal.

For a finitely generated regular ideal, these three conditions coincide, that is,

a finitely generated regular ideal is invertible if and only if it is projective if

and only if it is locally principal (cf. [9, Theorem 2.5]).

This fact leads us to the second generalization of Prüfer domains to rings

with zero-divisors. As suggested in [9], this notion seems to have made its

first appearance in Cartan-Eilenberg’s book in 1956 [25].

Definition 2.3. A ring R is called semihereditary if every finitely generated

ideal of R is projective.

Among all properties of semihereditary rings, we mention a characterization

due to Endo [32].

Theorem 2.4. [32, Theorem 5] A ring R is semihereditary if and only

if Tot(R) is absolutely flat (i.e. every Tot(R)-module is flat) and Rp is a

valuation domain for every prime (maximal) ideal p of R.

This result is in line with the first characterization of Prüfer domains given

by Krull in 1936. It is expressed in terms of localizations at prime ideals.

Theorem 2.5. [78] A domain D is a Prüfer domain if and only if Dp is a

valuation domain for every prime (resp. maximal) ideal of D.

It is well known that a domain D is a valuation domain if and only if the set

of all ideals of D is totally ordered under inclusion. There are two natural

ways to transfer this condition to rings with zero divisors.

Definition 2.6. A ring R is said to have weak global dimension ≤ 1 (and

we write w. gl. dim(R) ≤ 1) if TorR2 (M,N) = 0 for every pair of R-modules

M and N .

This definition is equivalent to require that every finitely generated ideal of

R is flat (see [63, Chapter 1]), so that, in particular, semihereditary rings

have w. gl.dim(R) ≤ 1. This is a homological notion that can be expressed
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in terms of the Krull’s characterization of Prüfer domains. Indeed, rings with

w. gl. dim(R) ≤ 1 are precisely those rings for which Rp is a valuation domain

for every prime [resp. maximal] ideal p of R [63, Corollary 4.2.6].

As a further generalization, it is possible to consider rings with the property

that all localizations at prime ideals are chained rings, not necessarily domains

(recall that a ring is chained if the set of its ideals is linearly ordered under

inclusion).

Definition 2.7. A ring R is called arithmetical if Rp is a chained ring for

every prime [resp. maximal] ideal p of R.

This definition was originally given by Fuchs [52] in a way that clearly

explains the term “arithmetical”: a ring R is arithmetical if the lattice of

its ideals is distributive, that is, i ∩ (j + k) = (i ∩ j) + (i ∩ k), for any three

ideals i, j and k of R. The equivalent characterization we have presented in

terms of localizations is due to Jersen [72]. He also proved that a ring R is

arithmetical if and only if R is reduced and w. gl.dim(R) ≤ 1.

Although Prüfer rings are not necessarily arithmetical rings (see [9]), Griffin

[68] showed that they are not so far from being locally chained, in the

following sense. If p is a prime ideal of a ring R, the pair (R, p) is said to

have the regular total order property if, whenever a, b are ideals of R, one at

least of which is regular, then the ideals aAp, bAp are comparable.

Theorem 2.8. [68, Theorem 13] A ring R is a Prüfer ring if and only if

for any maximal ideal m of R, the pair (R,m) has the regular total order

property.

The next extension of the Prüfer domain notion to rings with zero divisors is

due to Tsang [93]. Let R be a ring and X be an indeterminate over R. The

content of a polynomial f(X) ∈ R[X] is the ideal cR(f) of R generated by the

coefficients of f(X). We say that the polynomial f is a Gaussian polynomial

over R if cR(fg) = cR(f)cR(g), for any polynomial g ∈ R[X]. The ring R is

a Gaussian (or Gauss) ring if any polynomial f(X) ∈ R[X] is a Gaussian

polynomial [93]. In the following theorem, we summarize well-known results

about the interplay between invertibility of ideals and Gaussian polynomials.

Theorem 2.9. Let R be a ring and let f(X) be a polynomial in R[X].
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1. If cR(f) is locally principal, then f(X) is a Gauss polynomial [93].

2. If f(X) is a Gauss polynomial and cR(f) is a regular ideal of R, then

cR(f) is an invertible ideal of R [9, Theorem 4.2(2)].

Any arithmetical ring is a Gaussian ring. Indeed, it is clear that every

finitely generated ideal of an arithmetical ring R is locally principal (actually,

this property characterizes arithmetical rings [72]) and by condition (1)

of Theorem 2.9, R is a Gaussian ring. Moreover, from condition (2), it is

immediate that any Gaussian ring is a Prüfer ring. In particular, we get

another characterization of Prüfer domains, which was originally proved

independently by Tsang [93] and Gilmer [58].

Theorem 2.10. [93, 58] An integral domain is a Prüfer domain if and only

if it is a Gaussian domain.

To summarize, we have presented five conditions that extend the notion of

Prüfer domain in the case of rings with zero-divisors. We refer to them as

“Prüfer condition (n)”, for n = 1, . . . , 5, according to the following list:

1. R is a semihereditary ring;

2. w. gl.dim(R) ≤ 1;

3. R is an arithmetical ring;

4. R is a Gaussian ring;

5. R is a Prüfer ring.

Of course, these conditions are equivalent for Prüfer domains and we have

seen that the implications (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5) hold for rings with

zero-divisors. Anyway, none of the implications can be reversed in general.

Counterexamples are provided in [64]. Nevertheless, it is possible to reverse

all the implications by adding extra conditions on the total ring of quotients

of R. The result has the following very elegant formulation.

Theorem 2.11. [9, Theorem 5.7] Let R be a ring. Then, for i = 1, . . . , 4:
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1. R has the Prüfer condition (n) if and only if R has the Prüfer condition

(n+ 1) and Tot(R) has the Prüfer condition (n).

2. R has the Prüfer condition (n) if and only if R is a Prüfer ring and

Tot(R) has the Prüfer condition (n).

3. If Tot(R) is absolutely flat, then all five Prüfer conditions on R are

equivalent.

Every overring of a Prüfer ring is still Prüfer (see [79, Chapter X]). So, in

view of the Theorem 2.11, we have the following corollary.

Corollary 2.12. Let R be a ring having Prüfer condition (n), for some

n = 1, . . . , 5. Then, every overring of R has the same Prüfer condition (n).

Remark 2.13. For the purpose of our dissertation, it is worth noting that

Prüfer conditions (1)÷ (4) are preserved under localizations, while condition

(5) is not. Moreover, quotients of Gaussian rings [resp. arithmetical rings]

are still Gaussian [resp. arithmetical]. The same holds for Prüfer rings if

quotients are taken with respect to regular ideals [46, Proposition 4.4].

Nevertheless, Prüfer conditions (1) and (2) are, in general, not preserved

under homomorphic images (e.g. quotients of valuation domains are not

necessarily domains).

Prüfer extensions

There is another way to generalize the concept of Prüfer rings, recently

developed by M. Knebush and D. Zhang [76]. In order to introduce this

notion, we first underline that the invertibility of ideals is given in terms of

the ring extension R ⊆ Tot(R), that is, in terms of R-submodules of Tot(R).

This concept can be generalized with respect to any ring extension A ⊆ B
as follows. According to [76], an R-submodule a of T is T -regular if aT = T .

The ideal a is called T -invertible if there exists an R-submodule b of T such

that ab = R. If a is T -invertible, then it is T -regular. Indeed, if ab = R, by

multiplying with the R-module T we get aT = T . Moreover, the R-module b

is uniquely determined, that is, b = [R :T a] := {x ∈ T | xa ⊆ R}. It is called

the T -inverse of a. With this notion in mind, it is possible to generalize the

concept of Prüfer ring.
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Definition 2.14. [76] Let R ⊆ T be a ring extension. We say that R is

Prüfer in T if the inclusion R ↪→ T is a flat epimorphism (in the category of

rings) and every finitely generated T -regular ideal of R is T -invertible. We

can also say that R ⊆ T is a Prüfer extension or that R is T -Prüfer.

It is clear that this notion recover that of Prüfer ring if T = Tot(R), that is,

R ⊆ Tot(R) is a Prüfer extension if and only if R is a Prüfer ring. Relations

between T -regularity, T -invertibility, projectivity and the property of being

locally principal are summarized in the following proposition. These relations

generalize those for integral domains in the classical setting.

Proposition 2.15. Let R ⊆ T be a ring extension and let a be an ideal of

R.

1. [76, §2 Remark 1.10] If a is T -invertible, then it is T -regular and finitely

generated.

2. [47, Proposition 2.1] a is T -invertible if and only if a is finitely generated,

T -regular and a flat R-module.

3. [76, §2 Proposition 2.3] If a is T -regular, then the following conditions

are equivalent:

(a) a is T -invertible.

(b) a is finitely generated and locally principal.

(c) a is a projective R-module.

Here we present a bunch of criteria to characterize Prüfer extensions. We list

only those that will be used in the sequel. Several other characterizations

can be found in Knebush and Zhang’s book [76].

Theorem 2.16. [76, Chapter I, Theorem 5.2 and Chapter II, Theorem 2.1]

Let R be a subring of T . Then, the following conditions are equivalent.

1. R is Prüfer in T ;

2. The inclusion R ↪→ B is a flat epimorphism for every T -overring B of

R;
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3. If B is any T -overring of R, then (R : x)B = B for every x ∈ T .

4. Every T -overring of R is integrally closed in T ;

5. R is integrally closed in T and R[x] = R[xn] for every x ∈ T and for

every n ∈ N;

6. (R : x) + x(R : x) = R for every x ∈ T ;

7. R is integrally closed in T and for every overring B of T , the restriction

map Spec(B)→ Spec(R) is injective.

In Section 2.4, permanence properties of Prüfer extensions will be largely

used. In the next proposition, we collect some results that can be found in

[76, pp. 50–52].

Theorem 2.17. The following properties hold.

1. If R ⊆ T is a Prüfer extension, then for every T -overring S of R, R is

Prüfer in S and S is Prüfer in T .

2. If R ⊆ S and S ⊆ T are Prüfer extensions, then R ⊆ T is a Prüfer

extension.

3. Let R ⊆ T be a ring extension and i an ideal of T contained in R. Then

R is Prüfer in T if and only if R/i is Prüfer in T/i.

We conclude this subsection by shortly presenting the notion of Prüfer Manis

rings. We refer to [81], [10] and [70, Chapter 2] for an exhaustive description

of this topic. A Manis pair (A, p) is a pair where A is a ring, p is a prime ideal

of A and for every x ∈ Tot(A) \A, there exists y ∈ p such that xy ∈ A \ p.

Given a ring A and a prime ideal m of A, A is called a Prüfer Manis ring if

the following equivalent conditions hold (see [10, Theorem 2.3]):

1. (A,m) is a Manis pair and A is a Prüfer ring.

2. A is a Prüfer ring and m is the unique regular maximal ideal of A.

3. (A,m) is a Manis pair and m is the unique regular maximal ideal of A.
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Basics on pullbacks

Recall that if α : A → C and β : B → C are ring homomorphisms, the

pullback (or fiber product) of α and β is the subring

D := α×C β := {(a, b) ∈ A×B | α(a) = β(b)}

of A× B. There are two canonical morphisms u : D → A and v : D → B

which are the restrictions to D of the canonical projections of A×B onto A

and B respectively. The triple (D,u, v) is characterized by the property of

being the solution of the universal problem of making the following diagram

D
u //

v
��

A

α
��

B
β // C

commute. It is well known that if α is injective [resp. surjective, an iso-

morphism], then so if v. A typical application of pullbacks in commutative

algebra is that of “attaching spectral spaces”, a classical operation that allow

to construct rings whose spectra have some predetermined properties. A

good reference for these kind of topics is Fontana’s work [48]. Here, we only

present some results that will be used in this thesis. For a ring R, consider

its prime spectrum Spec(R) endowed with the Zariski topology, that is, with

the topology whose closed sets are the sets V (a) := {p ∈ Spec(R) | p ⊇ a},
where a is an ideal of R. If f : R → T is a ring morphism, we denote by

f∗ : Spec(T ) → Spec(R) the continuous map defined by p 7→ f−1(p). In

reference to the pullback diagram displayed above, assume that β is surjective.

We get the following commutative diagram

Spec(D) Spec(A)? _

u∗
oo

Spec(B)

v∗

OO

Spec(C)? _

β∗
oo

α∗

OO

of topological spaces. In the following proposition, we collect some results

that can be found in [48] and [27].

Proposition 2.18. Set b := ker(β), d := ker(u) and preserve the notations
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introduced above.

1. v induces an isomorphism of modules (subordinate to v) between d and

b. In particular, d is contained in the conductor of v.

2. u∗ : Spec(A) ↪→ Spec(D) is a closed topological embedding. Thus,

Spec(A) is homeomorphic to its image V (d) under u∗.

3. For every p ∈ Spec(D), p + d, there exists a unique q ∈ Spec(B) such

that v−1(q) = p. Moreover, Dp
∼= Bq under the canonical homomor-

phism induced by v.

4. The restriction of v∗ to Spec(B) \ V (b) induces an homeomorphism

Spec(B) \ V (b) ∼= Spec(D) \ V (d) (and, in particular, an isomorphism

of partially ordered sets).

5. The homeomorphisms Spec(A) ∼= V (d) and Spec(B)\V (b) ∼= Spec(D)\
V (d) are, in particular, isomorphisms of partially ordered sets. There-

fore, they preserve maximality.

6. D is a local ring if and only if A is a local ring and b ⊆ Jac(B). In

particular, if A and B are local rings, then so is D. Moreover, if D is a

local ring, its maximal ideal is the image of the maximal ideal of A via

u∗.

Intuitively, Spec(D) is obtained by “attaching” Spec(A) and Spec(B) along

Spec(C). To be more precise, Spec(D) is homeomorphic to the topological

space defined by the disjoint union of Spec(A) and Spec(B) modulo the

equivalence relation generated by p ∼ α∗(p), for each p ∈ Spec(C) [48,

Theorem 1.4].

Constructions related to pullbacks

Let R ⊆ T be a ring extension with non-zero conductor c = (R : T ). Then

A := R/c is a subring of B := T/c and the pullback diagram

R //� _

��

A� _

��
T

π // B

(2.2.1)
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(where π is the canonical projection) is called a conductor square. If c is a

regular ideal of T , we say that the above diagram is a regular conductor

square.

In [15], Boynton gives a precise description of when R has Prüfer condition

(n) for 1 ≤ n ≤ 5 in regular conductor squares. This characterization is

expressed in terms of the local features of the pullback diagram, as follows:

Theorem 2.19. [15, Theorem 4.2] We preserve the notations of the regular

conductor square presented above.

1. If R is a Prüfer ring, then A and T are Prüfer rings, and Bp is an

overring of Ap for each prime (maximal) ideal p of R. Conversely, for

each prime (maximal) ideal p of R, if Ap and Tp are Prüfer rings, and

Bp is an overring of Ap , then R is a Prüfer ring.

2. For n = 1, 2, 3, 4, R is a commutative ring with Prüfer condition (n) if

and only if T has Prüfer condition (n), Ap is a Prüfer ring, and Bp is

an overring of Ap for each prime (maximal) ideal p of R.

Conductor squares are particular pullbacks in which the morphisms α and

β are injective and surjective respectively. Some authors refer to this latter

type of fiber products as Cartesian squares, whereas some others use this

terminology as a synonymous of (a generic) pullback. Because of this ambigu-

ity, we prefer not to name these particular pullbacks. It is worth noting that

such fiber products arise essentially in the following way. Let π : T → B be a

surjective ring homomorphism, take a subring A of B and set R := π−1(A).

Then:

1. ker(π) is contained in the conductor c = (R : T ). In particular, it is a

common ideal of R and T .

2. R is canonically isomorphic to the fiber product ι×T π, where ι is the

inclusion R ↪→ T , so that, we have the following pullback diagram

R ∼= ι×T π //
� _

��

A� _

ι
��

T
π // B

73



Moreover,

3. If c is a regular ideal of T , then T is an overring of R. Indeed, if

r ∈ c is a regular element of T , then t 7→ tr
r defines an injective ring

homomorphism T ↪→ Tot(R).

4. If T = S−1R for some multiplicatively closed subset S ⊆ Reg(R), then

B = (S̄)−1A. Moreover, B is an overring of A. Indeed, if there exists

some non-zero element a ∈ A such that s̄a = 0 for some s ∈ S, then
a
1 = 0 in B, in contrast with the fact that A is a subring of B.

In Section 2.4, we study the transfer of Prüfer-like properties in such pullback

diagrams, characterizing when the ring R has Prüfer condition (n) (1 ≤ n ≤ 5)

in terms of direct conditions on the given data A,B and T , under the

reasonable (and quite natural) assumption that A is an overring of B.

Among all results in this direction, it is worth mention that of Houston and

Taylor [69], that we will see can be deduced from Theorem 2.27. We preserve

the notations of the original paper.

Proposition 2.20. [69, Theorem 1.3] Let T be a domain and let i be an

ideal of T . Let D be a domain contained in E := T/i and let π : T → E

denote the canonical projection. Then R := π−1(D) is a Prüfer ring if and

only if both D and T are Prüfer rings, i is a prime ideal of T and D,E have

the same field of fractions.

We now briefly recall some classical constructions in commutative algebra,

almost all related to fiber products. We will use them in some examples in

Sections 2.4, 2.5 and 2.6 and we will discuss about Prüfer and Gaussian

properties of bi-amalgamated algebras in Section 2.5.

1) Nagata idealization: Let A be a ring and let M be an A-module. The

Nagata idealization of M in A is the ring A(+)M defined as follows [86]: the

product A×M is endowed with the ring structure where addition is induced

componentwise from additions of A and M and multiplication is defined by

setting (a, x)(b, y) := (ab, ay + bx) for all (a, x), (b, y) ∈ A×M . The identity

of A(+)M is (1, 0). Moreover, A can be identified with a subring of A(+)M

via the map a 7→ (a, 0) and M is isomorphic, as an A-module, to the ideal
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0(+)M of A(+)M . This latter fact gives rise to the name “idealization”. It is

immediate that if M 6= 0, then the ideal 0(+)M of A(+)M is nilpotent of

index 2.

2) Amalgamated duplication along an ideal: In [30], D’Anna and Finoc-

chiaro introduced a ring construction that arises, in some way, as a sort of

generalization of the Nagata idealization A(+)M . Let A be a ring and let a

be an ideal of A. The amalgamated duplication of A along a is the subring

A ./ a := {(a, a+ x) | a ∈ A, x ∈ a}

of the direct product A×A. This construction is related to that of Nagata

in the following sense: if a is a nilpotent ideal of index 2, then A ./ a is

canonically isomorphic to A(+)a. The amalgamated duplication arises as the

following pullback:

A ./ a //

��

A

π
��

A
π // A/a,

where π : A→ A/a is the canonical projection.

3) Amalgamated algebras along an ideal: As it is immediately seen,

whenever a is a nonzero ideal of A, the ring A ./ a is not an integral domain.

A new ring construction, which is more general than the amalgamated

duplication and can be an integral domain, was introduced in [27] as follows:

starting from a ring homomorphism f : A −→ B and from an ideal b of B,

D’Anna, Finocchiaro and Fontana defined the amalgamation of A and B

along b, with respect to f to be the following subring

A ./f b := {(a, f(a) + b) | a ∈ A, b ∈ b}

of the direct product A × B. Obviously, if f = IdA : A −→ A and a is

an ideal of A, then A ./f a is the classical amalgamated duplication. This

construction can be studied in the frame of pullbacks as well. Indeed, let

π : B → B/b be the canonical projection. We have the following pullback
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diagram:

A ./f b //

��

A

π◦f
��

B
π // B/b

The transfer of Prüfer-like conditions on amalgamated algebras were studied

by Finocchiaro [46] and Azimi, Sahandi and Shirmohammadi [4].

4) Constructions of the type A+XB[X] and A+XB[[X]]: Let A ⊆ B be

a ring extension and let X := {X1, . . . , Xn} be a finite set of indeterminates

over B. The subring A+XB[X] of B[X] arises from the following pullback

diagram

A+XB[X] //
� _

��

A� _

ι

��
B[X]

π // B

where π and ι are the canonical projection and the inclusion respectively. It

is possible to recover this construction as a particular case of amalgamated

algebra. Indeed, taking the ideal b := XB[X] of B[X] and the natural

embedding ε : A ↪→ B[X], we have A+XB[X] ∼= A ./ε b. In a similar way, it

is possible to construct the subring A+XB[[X]] of the ring of power series

B[[X]]. Notice that, given any ring extension A ⊆ B and an indeterminate

X over B, we have an isomorphism A(+)B ∼= A+XB[X]/(X2).

5) D + m construction: Another construction covered by amalgamated

algebras is the so called D + m construction [58]. Let m be a maximal ideal

of a ring T and let D be a subring of T such that D ∩ m = (0). The ring

D + m defined by the pullback diagram

D + m //
� _

��

D� _

ι
��

T
π // T/m

is canonically isomorphic to D ./ι m, where ι : D ↪→ T is the inclusion.

Bakkari and Mahdou [6] studied the transfer of Prüfer-like conditions in a

particular case of this construction.

Proposition 2.21. [6, Theorem 2.1] Let (T,m) be a local ring of the form
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T = k + m, for some field k. Take a subring D of k such that Q(D) = k and

set R := D + m. Then R has Prüfer condition (n) if and only if T and D

have Prüfer condition (n).

6) CPI-extensions: The following construction was introduced by Boisen

and Sheldon [12]. Let p be a prime ideal of a ring A. Set k = Ap/pAp,

and let π : Ap → k and λ : A → Ap be the canonical projection and the

localization map respectively. It is well known that Q(A/p) is canonically

isomorphic to k, so that A/p can be identified as a subring of k. The subring

λ(A) + pAp = π−1(A/p) is called the CPI-extension of A with respect to

p (“CPI” stands for “complete pre-image”). Its natural presentation as a

pullback is the following:

λ(A) + pAp
//

� _

��

A/p� _

��
Ap

π // k

It can be seen that λ(A) + pAp is isomorphic to (A ./λ pAp)/(p× {0}) [27,

Example 2.7].

Even if presented in a very short way, it should be clear that amalgamated

algebras have a significant role in commutative algebra, at least (but not

only) for their ability of covering several different pullback constructions. We

conclude this section by mentioning a further generalization of amalgamated

algebras due to Kabbaj, Louartiti and Tamekkante [73]. This notion will be

largely discussed in Section 2.5, so here we only give the definition for the

sake of completeness.

7) Bi-amalgamated algebras: Let f : A −→ B, g : A −→ C be ring

homomorphisms and let b [resp. c] be an ideal of B [resp. C] satisfying

f−1(b) = g−1(c). The bi-amalgamation of A with (B,C) along (b, c), with

respect to (f, g) [73] is the subring of B × C defined by

A ./f,g (b, c) := {(f(a) + b, g(a) + c) | a ∈ A, b ∈ b, c ∈ c}.

If A = C and g : A −→ A is the identity on A, we get the usual amalgamated

algebra [73, Example 2.1]: A ./f b = A ./f,IdA (b, i0).
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2.3 Some new results on Prüfer extensions

We start this section by giving the generalization to arbitrary ring extensions

of a standard fact regarding the invertibility of ideals in local domains. This

is probably a well-known fact, but, since we are not able to provide an

appropriate reference, we include the proof for the convenience of the reader.

Proposition 2.22. Let A ⊆ B be a ring extension where A is a local ring,

and let f := (f1, . . . , fn)A be a B-invertible A-submodule of B. Then f = fiA,

for some 1 ≤ i ≤ n.

Proof. By assumption, there are elements z1, . . . , zn ∈ [A :B f] such that∑n
i=1 fizi = 1. Note that fizi ∈ A for each 1 ≤ i ≤ n and thus, since A

is local, there is some index i such that fizi is a unit in A. It immediately

follows that F = fiA

We now exhibit two results regarding Prüfer extensions, that generalize those

for local Prüfer rings proved in [15].

Proposition 2.23. Let A be a local ring and let A ⊆ B be a Prüfer extension.

Then the set of all elements of A that are not invertible in B is a prime ideal

of A.

Proof. Set p := {a ∈ A | a /∈ U(B)}. Then A\p is a saturated multiplicatively

closed subset of A. By Zorn’s Lemma, it is possible to find a prime ideal

q ∈ Spec(A) maximal with respect to the property of being contained in

p. If q ( p, take p ∈ p \ q and consider the ideal a := pA + q of A. Then

there exist a ∈ A and q ∈ q such that pa+ q ∈ U(B), which implies that the

two-generated ideal (p, q)A of A is B-regular and hence B-invertible. Since A

is a local ring, we have either (p, q)A = pA or (p, q)A = qA, by Proposition

2.22. In the first case we have that B = (p, q)B = pB, which is not possible

since p ∈ p. In the second case we have qA ⊂ q, which implies that p ∈ q, a

contradiction. It follows that p = q, hence p is a prime ideal of A.

Corollary 2.24. [15, Lemma 3.5] If A is a local Prüfer ring, then the set

Z(A) of zero-divisors is a prime ideal.
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Proposition 2.25. Let A ⊆ B be a Prüfer extension. Assume that A is

a local ring and that B = S−1A for some multiplicatively closed subset

S ⊆ Reg(A). If R is a subring of B containing A, then R is a local B-Prüfer

ring and R = Ap for some prime ideal p of A.

Proof. We can assume, without loss of generality, that the multiplicatively

closed subset S is saturated. Set p := {a ∈ A | a /∈ U(R)}. Since A ⊆ R is a

Prüfer extension, Proposition 2.23 ensures that p is a prime ideal of A.

It is clear that Ap ⊆ R. Let r ∈ R and write r = a/s for some a ∈ A and s ∈ S.

Since A is a local B-Prüfer ring, we have (a, s)A = aA or (a, s)A = sA. If

(a, s)A = aA, then a = sx for some x ∈ A and r = x/1 ∈ Ap. If (a, s)A = sA,

then we can write s = ay for some y ∈ A and since S is saturated, both a

and y turn out to be in S. We have r = a/s = a/ay = 1/y, which implies

y /∈ p. Therefore, r ∈ Ap.

Corollary 2.26. [15, Lemma 3.6] If A is a local ring with Prüfer condition

(n) and if R is an overring of A, then R is a local ring with Prüfer condition

(n). Moreover, R = Ap for some prime ideal p of A.

2.4 Prüfer conditions in distinguished pullbacks

Theorem 2.27. Let π : B → T be a surjective ring homomorphism, where

T is an overring of some ring R. Assume that ker(π) is a regular ideal of B.

Set A := π−1(R).

1. A is a Prüfer ring if and only if both B and R are Prüfer rings;

2. A is a Gaussian [resp. arithmetical] ring if and only if both B and R

are Gaussian [resp. arithmetical] rings;

3. If both B and R are rings of weak global dimension ≤ 1 [resp. semi-

hereditary rings], then so is A.

Proof. The ring A is defined by the following pullback diagram:
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A //� _

��

R� _

��
B

π // T

First assume that A is a Prüfer ring. By the fact that ker(π) is a regular

ideal, contained in the conductor of the ring extension A ⊆ B, we have

that B is an overring of A (see pag. 74) and hence B is a Prüfer ring by

Corollary 2.12. Moreover, the regularity of ker(π) ensures that R is also a

Prüfer ring (Remark 2.13). In the same way, we can prove the “only-if part”

in (2).

Now assume that both R and B are Prüfer rings. Using the permanence

properties of Prüfer extensions listed in Theorem 2.17 and keeping in mind

that for a ring S, S ⊆ Tot(S) is a Prüfer extension if and only if S is a Prüfer

ring, we get:

• since T is an overring of R, R ⊆ T is a Prüfer extension;

• A ⊆ B is a Prüfer extension;

• B ⊆ Tot(A) = Tot(B) is a Prüfer extensions, so A ⊆ Tot(A) is a Prüfer

extension. Hence, A is a Prüfer ring.

Finally, assume that both B and R are rings with Prüfer condition (n), for

n = 1, 2, 3, 4. Then B and R are Prüfer rings and therefore so is A. Moreover,

Tot(B) = Tot(A) has Prüfer condition (n). By Theorem 2.11, A has Prüfer

condition (n).

Corollary 2.28. Let R be a ring with total quotient ring T = Tot(R). Then

R+XT [X] is a semihereditary [resp. arithmetical] ring if and only if R is a

semihereditary [resp. arithmetical] ring and T is absolutely flat.

Proof. Recall that a ring S is absolutely flat if and only if S[X] is semihered-

itary if and only if S[X] is arithmetical (see [84] and [18]). As we have seen
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on page 76, R+XT [X] can be obtained by the following pullback:

R+XT [X] //
� _

��

R� _

ι

��
T [X]

π // T

Assume that R is semihereditary and that T is absolutely flat. Then T [X] is

a semihereditary ring. Applying Theorem 2.27, we have that R +XT [X] is

semihereditary.

On the other hand, if R + XT [X] is semihereditary, then so is T [X]. In

particular, T is absolutely flat. Moreover R is a Prüfer ring (see Remark 2.13).

Applying Theorem 2.11, we get that R is a semihereditary ring.

Ditto for the arithmetical case.

The next application of Theorem 2.27 concerns the Prüfer Manis rings (for

the definition, see the end of Subsection 2.2.2).

Corollary 2.29. Let B be a Prüfer Manis ring and let V be a valuation

domain with quotient field B/m, where m denotes the unique regular maximal

ideal of B. Consider the canonical projection π : B → B/m. Then π−1(V ) is

a Prüfer Manis ring.

Proof. Set A := π−1(V ) and k := B/m. We have the following pullback

diagram:

A //� _

��

V � _

��
B

π // B/m

By Theorem 2.27, A is a Prüfer ring. Let p := π−1(mV ) be the contraction of

the maximal ideal mV of V . We prove that (A, p) is a Manis pair. It suffices

to show that for every x ∈ Tot(A) \A there exists y ∈ p such that xy ∈ A \ p.

Let x ∈ Tot(A) \A. We distinguish two cases:

Case (1): x ∈ B. Then π(x) ∈ k \V and so 1/π(x) ∈ mV . It means that there

exists y ∈ p such that π(y)π(x) = 1. In particular, xy ∈ A \ p.
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Case (2): x /∈ B. Since (B,m) is a Manis pair, there exists y ∈ m such that

xy ∈ B \ m. Therefore π(xy) ∈ k∗ and so there exists z ∈ B such that

π(xyz) = 1. In particular, yz ∈ m = ker(π) ⊆ p and xyz ∈ A \ p.

Corollary 2.30. Let A ⊆ B be a ring extension and assume that there is a

regular ideal i of B contained in the conductor (A :A B). Set R := A/i and

T := B/i. Then A is a local ring with Prüfer condition (n) if and only if B is

a local ring with Prüfer condition (n), R is a local Prüfer ring and T is an

overring of R (see [15, Theorem 4.1] for the case i = (A :A B)).

Proof. Assume that A is a local ring with Prüfer condition (n) (for 1 ≤ n ≤ 5).

We can argue in the same way of [15, Theorem 4.1]. By Lemma 2.26, B is

a local ring with Prüfer condition (n). Since i is a regular ideal and A is a

Prüfer ring, R is a Prüfer ring (Remark 2.13). Since B is a localization of A

(Lemma 2.26), T is an overring of R (see pag. 74).

For the other implication, if both B and R are local rings, then so is A

(Proposition 2.18 (6)). Since B and R are Prüfer ring, Theorem 2.27 implies

that A is a Prüfer ring. Moreover, since B has Prüfer condition (n), Tot(A)

has Prüfer condition (n). By Theorem 2.11, A has Prüfer condition (n).

At this point, the role of the assumption that T is an overring of R in Theorem

2.27 should be underlined. The following two examples (provided both for

the case of integral domains and the case of rings with zero divisors) show

that this assumption can not be dropped in the “if-parts” of Theorem 2.27.

Example 2.31. Let X,Y be two indeterminates over a field k. Consider the

following pullback diagram:

k + Y k(X)[Y ](Y )
//

� _

��

k� _

��
k(X)[Y ](Y )

π // k(X)

Both k and k(X)[Y ](Y ) are (local) Prüfer rings, ker(π) is clearly a regular

ideal of k(X)[Y ](Y ), but A := k + Y k(X)[Y ](Y ) is not a Prüfer ring. Indeed,

A is a local domain by Proposition 2.18 (6), but it is not a valuation domain,

since X,X−1 are in the quotient field of A but none of them belongs to A.
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Example 2.32. Let X be an indeterminate over Q. Consider the following

pullback diagram:

Z +X2Q[X] //
� _

��

Z� _

��

Z +XQ[X] // Z+XQ[X]
(X2)

Both Z+XQ[X] and Z are Prüfer rings, the kernel of the bottom morphism

is regular, but Z + X2Q[X] is not a Prüfer ring by Proposition 2.20 (see

also below). Notice that condition (1) of Proposition 2.33 gives an easy

way to see that Z ⊆ Z+XQ[X]
(X2)

is not a Prüfer extension. Indeed, for every

element f̄ ∈ Z(Z+XQ[X]
(X2)

) = XQ[X]
(X2)

, we have AnnZ(f̄) = 0. Notice that
Z+XQ[X]

(X2)
∼= Z(+)Q (more generally, given any ring extension A ⊆ B and an

indeterminate X over B, we have an isomorphism A+XB[X]
(X2)

∼= A(+)B).

On the other hand, in the notation of Theorem 2.27, assume that A is a

Prüfer ring and that ker(f) is a regular ideal of B. As we have seen in the

proof of Theorem 2.27, using the permanence properties of Prüfer extensions,

we get that both A ⊆ B and R ⊆ T are Prüfer extensions (cf. Theorem 2.17).

As far as the total quotient rings of R and T is concerned, we have the

following proposition.

Proposition 2.33. Let A ⊆ B be a Prüfer extension. Then:

1. AnnA(x) 6= 0 for every x ∈ Z(B);

2. Tot(A) ⊆ Tot(B);

3. if B is a Prüfer ring, then Tot(A) is Prüfer in Tot(B);

4. If Tot(A) is absolutely flat and B is a Prüfer ring, then Tot(A) =

Tot(B).

5. If A is a domain and B is a Prüfer ring, then Tot(A) = Tot(B). In

particular, B must be a domain.

Proof. (1) Let x be an element in Z(B). Pick an element z ∈ Z(B) such

that zx = 0. By Theorem 2.16 (6), we can write 1 = a1 + a2z for suitable
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a1, a2 ∈ (R : z). It follows that x(1 − a1) = 0. If 1 − a1 = 0, then z ∈ R,

otherwise 1− a1 ∈ AnnA(x).

(2) It suffices to prove that Reg(A) ⊆ Reg(B). Let r ∈ Reg(A) and assume

that there exists x ∈ Z(B) such that rx = 0. As before, by Theorem 2.16,

there exist a1, a2 ∈ (A : x) such that 1 = a1 + xa2, so that r = ra1. Since r is

a regular element of A, it follows that a1 = 1, that is x ∈ A, a contradiction.

(3) By assumption, both A ⊆ B and B ⊆ Tot(B) are Prüfer extensions,

so A is Prüfer in Tot(B). From (2) we haveA ⊆ Tot(A) ⊆ Tot(B), hence

Tot(A) ⊆ Tot(B) is a Prüfer extension.

(4) By (3), Tot(A) ⊆ Tot(B) is a Prüfer extension, so that, in particular,

Tot(A) ↪→ Tot(B) is a (flat) epimorphism. But a non-trivial epimorphism

from an absolutely flat ring into an arbitrary ring is necessarily an isomor-

phism.

(5) Immediately follows from (4).

In view of these results, a question arises naturally: in the notation of

Theorem 2.27, assume that ker(π) is a regular ideal of B and that A is a

Prüfer ring. In which cases is it possible to deduce that T is an overring of

R?

For instance, if A is a local Prüfer ring, then B is a localization of A (cf.

Corollary 2.26) and therefore T is an overring of R (see page 74). Moreover,

as we have seen in Proposition 2.33, we can deduce that T is an overring of

R also if Tot(R) is an absolutely flat ring (so, in particular, if R is a domain).

In this latter case, we have the following result.

Proposition 2.34. Let π : B → T be a surjective ring homomorphism, and

let R be a subring of T . Assume that Tot(R) is an absolutely flat ring and

that ker(π) is a regular ideal of B. Set A := π−1(R). Then, for n = 1, . . . , 5,

A has Prüfer condition (n) if and only if both B and R have the same Prüfer

condition (n) and T is an overring of R.

Proof. If A has Prüfer condition (n) for some n = 1, . . . , 5 (and hence A is a

Prüfer ring), Proposition 2.33 ensures that T is an overring of R. Moreover,

all five Prüfer conditions are equivalent on R, because Tot(R) is absolutely
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flat (cf. Theorem 2.11). So, we can conclude that both B and R have the

same Prüfer condition of A.

For the other implication, apply Theorem 2.27.

It is worth noting that Proposition 2.20 (restated below) is a particular case

of our previous result. Therefore, we can extend the list of corollaries of

Theorem 2.27.

Corollary 2.35. [69, Theorem 1.3] Let T be a domain and let i be an ideal

of T . Let D be a domain contained in E := T/i and let π : T → E denote

the canonical projection. Then R := π−1(D) is a Prüfer ring if and only if

both D and T are Prüfer rings, i is a prime ideal of T and D,E have the

same field of fractions.

Proof. It suffices to notice that, since D is a domain, E is an overring of D

if and only if i is a prime ideal of T and D and E have the same field of

fractions.

As a further specialization, we have:

Corollary 2.36. (see [48, Theorem 2.4 (3)] for the local case) Let D be a

domain and let p be a prime ideal of D. Let E be a domain having D/p as

field of quotients. Set D1 := π−1(E), where π : D → D/p is the canonical

projection. Then D1 is a Prüfer domain if and only if both D and E are

Prüfer domains.

Using Theorem 2.27, it is also possible to deduce the following result of

Boisen and Larsen.

Corollary 2.37. [11, Theorem 2] A Prüfer ring is the homomorphic image

of a Prüfer domain if and only if its total quotient ring is the homomorphic

image of a Prüfer domain.

In their article, Boisen e Larsen provide a very elegant proof of this fact.

Here, we deduce the “if-part” from Theorem 2.27 and we include the proof

given in [11] of the other implication for the sake of completeness.
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Proof. Let R be a Prüfer ring with total quotient ring T . Assume that T is

the homomorphic image of a Prüfer domain B under the ring morphism f .

Then ker(f) is a regular ideal of B and Theorem 2.27 implies that f−1(R) is

a Prüfer domain.

For the other implication, suppose that R is the homomorphic image of the

Prüfer domain D under the homomorphism θ. Consider the multiplicative

subset S := θ−1(Reg(R)) of D and let φ be the extension of θ to S−1D

obtained by φ(d/s) := θ(d)/θ(s). Then φ becomes a homomorphism from

the Prüfer domain S−1D onto T .

We conclude this section with another result concerning Prüfer conditions

for a distinguished class of fiber products. We will make use of an elementary

result stated in the following proposition. Since we are not able to provide

an appropriate reference, we include the proof for convenience.

Proposition 2.38. Let A,B be rings and n = 1, . . . , 5. Then, A × B has

Prüfer condition (n) if and only if both A and B have the same Prüfer

condition (n).

Proof. By [61, Proposition 3], A×B is a Prüfer ring if and only if both A

and B are Prüfer rings.

If A × B is a Gaussian ring , then both A and B are Gaussian rings,

because quotients of Gaussian rings are still Gaussian. The other implication

immediately follows from the fact that if h =
∑n

i=0(ai, bi)X
i is a polynomial

in (A×B)[X] and we set f :=
∑n

i=1 aiX
i ∈ A[X] and g :=

∑n
i=1 biX

i ∈ B[X],

then cA×B(h) = cA(f)× cB(g).

Assume that A × B is an arithmetical ring. Then, for every p ∈ Spec(A),

(A×B)p×B ∼= Ap is a chained ring. It follows that A is an arithmetical ring.

The same holds for B. On the other hand, if both A and B are arithmetical

rings, take m ∈ Spec(A × B). Since m = p × A for some p ∈ Spec(A) or

m = A × q for some q ∈ Spec(B), (A × B)m ∼= Ap or Bq. In both cases,

(A×B)m is a chained ring, hence A×B is arithmetical.

In the same way it can be proved that w. gl.dim(A×B) ≤ 1 if and only if

w. gl. dim(A) ≤ 1 and w. gl.dim(B) ≤ 1.
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To conclude, recall that a ring R is semihereditary if and only if R is coherent

and w. gl.dim(R) ≤ 1 [63, Corollary 4.2.19], and that A× B is a coherent

ring if and only if both A and B are coherent rings [63, Theorems 2.4.1 and

2.4.3].

Proposition 2.39. Let f : A→ C and g : B → C be ring morphisms, and

assume that ker(f), ker(g) are regular ideals of A, B, respectively. Then the

following conditions are equivalent:

1. f ×C g is a Prüfer ring

2. A and B are Prüfer rings and f ×C g = A×B.

Proof. (2)⇒ (1) The product of Prüfer rings is a Prüfer ring (cf. Proposi-

tion 2.38).

(1)⇒ (2). First, it is easy to verify that the conductor of the ring extension

D := f ×C g ⊆ A×B is c := ker(f)× ker(g). Assume, by contradiction, that

D ( A×B, that is, c is a proper ideal of D, and let m be a maximal ideal of

D containing c. If SA (resp., SB) is the image of D \ m under the natural

morphism D → A (resp., D → B), SC := f(SA) = g(SB) and f̃ : ASA → CSC ,

g̃ : BSB → CSC are the morphisms induced by f, g, respectively, on the

localizations, then Dm is canonically isomorphic to R := f̃ ×CSC g̃, by [48,

Proposition 1.9]. By assumptions there are regular elements a ∈ ker(f), b ∈
ker(g) and, in particular, their images a/1 ∈ ASA and b/1 ∈ BSB are

regular. It follows that the element (a/1, b/1) ∈ R is regular. According, to

Theorem 2.8, the ideals (a/1, b/1)R, (a/1, 0)R of R are comparable. If there

is (ρ, σ) ∈ R such that (a/1, b/1) = (a/1, 0)(ρ, σ), we have b/1 = 0 in BSB ,

in particular, against the fact that b is regular in B. On the other hand, if

there is an element (η, ζ) ∈ R such that (a/1, 0) = (a/1, b/1)(η, ζ). Keeping

in mind that a/1, b/1 are regular in ASA , BSB , respectively, it follows that

η = 1, ζ = 0 and, since (η, ζ) ∈ R,

1 = f̃(η) = g̃(ζ) = 0.

This is a contradiction because since c ⊆ m we easily infer that 0 /∈ SC . This

proves that f ×C g = A×B and, by (1), it is Prüfer. The conclusion follows

from Proposition 2.38.
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Remark 2.40. Let R ⊆ T be a ring extension with conductor Γ. Then R is

isomorphic to the fiber product π×T/Γ ι, where π : T → T/Γ is the canonical

projection and ι : R/Γ ↪→ T/Γ is the canonical embedding. So, R can be

viewed as a subring of (R/Γ)× T and the conductor of the ring extension

R ∼= π ×T/Γ ι ⊆ (R/Γ)× T is 0× Γ, which is never regular in (R/Γ)× T .

Keeping in mind that Prüfer conditions (n) (for 1 ≤ n ≤ 5) are preserved

under finite products (cf. Proposition 2.38) the following consequence of

Proposition 2.39 is clear.

Corollary 2.41. Preserve the notation and the assumptions of Proposition

2.39. Then the following conditions are equivalent.

1. f ×C g has Prüfer condition (n).

2. A,B have Prüfer condition (n) and f ×C g = A×B.

2.5 Bi-amalgamated algebras

Let f : A −→ B and g : A −→ C be ring homomorphisms and let b and c be

ideal of B and C respectively, satisfying f−1(b) = g−1(c). As we have seen

in Section 2.2.3, Kabbaj, Louartiti and Tamekkante [73] defined and studied

the following subring

A ./f,g (b, c) := {(f(a) + b, g(a) + c) | a ∈ A, b ∈ b, c ∈ c}

of B × C, called the bi-amalgamation of A with (B,C) along (b, c), with

respect to (f, g).

We start by recalling some basics on bi-amalgamated algebras. Other facts

concerning Noetherian bi-amalgamated algebras can be found in [73] and in

a joint work with Finocchiaro [22].

Proposition 2.42. [73] We preserve the notation at the beginning of this

section. Set i0 := f−1(b) = g−1(c).

1. Consider the ring homomorphisms α : f(A)+b→ A/i0, f(a)+b 7→ a+i0

and β : g(A) + c→ A/i0, g(a) + c 7→ a+ i0. Then the bi-amalgamation

88



is determined by the following pullback diagram;

A ./f,g (b, c) //

��

f(A) + b

α

��
g(A) + c

β // A/i0,

2. Consider the following ring homomorphisms

ι1 : A/i0 →
f(A) + b

b
× f(A) + c

c
, a+ i0 7→ (f(a) + b, g(a) + c),

and

µ2 : A ./f,g (b, c)→ A/i0, (f(a) + b, g(a) + c) 7→ a+ i0.

Then, the diagram

A ./f,g (b, c)
µ2 //

ι2

��

A/i0

ι1
��

(f(A) + b)× (g(A) + c)
µ1 // f(A)+b

b × f(A)+c
c ,

is a conductor square with conductor b × c. Here, ι2 and µ1 are the

natural embedding and the canonical surjection respectively.

3. 0× c, b× 0 and b× c are ideals of A ./f,g (b, c). If a is an ideal of A,

the set

a ./f,g (b, c) := {(f(a) + b, g(a) + c | a ∈ a, b ∈ b and c ∈ c}

is an ideal of A ./f,g (b, c). Moreover, we have the following canonical

ring isomorphisms:

(a)
A ./f,g (b, c)

a ./f,g (b, c)
∼=

A

a + i0

(b)

A ./f,g (b, c)

0× c
∼= f(A) + b and

A ./f,g (b, c)

b× 0
∼= g(A) + c
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(c)
A

i0
∼=
A ./f,g (b, c)

b× c
∼=
f(A) + b

b
∼=
g(A) + c

c

4. Let p be a prime ideal of A containing i0. Consider the multiplicative

subsets Sp := f(A \ p) + b of B and Tp := g(A \ p) + c of C. Let

fp : Ap −→ BSp and gp : Ap −→ CTp be the ring homomorphisms

induced by f and g. Then f−1
p (bBSp) = g−1

p (cCTp) = i0Ap and

A ./f,g (b, c)(p./f,g(b,c))
∼= Ap ./

fp,gp (bBSp , cCTp).

From now on, all results contained in this section (and in the next two

subsections) are based on a joint work with Finocchiaro [22]. First of all,

notice that there is another way to present the bi-amalgamated construction

in terms of fiber products. Indeed, we have the following pullback diagram:

A ./f,g (b, c) //

��

A/i0

if,g
��

B × C π // B
b ×

C
c ,

where π : B × C −→ B/b × C/c is the projection and the vertical arrow

i := if,g : A/i0 −→ B/b× C/c is the canonical ring embedding defined by

setting if,g(a+ i0) := (f(a) + b, g(a) + c), for any a+ i0 ∈ A/i0.

In the following remark we summarize some basic properties of any bi-

amalgamation, while Proposition 2.44 below provides a complete description

of the prime spectrum of A ./f,g (b, c).

Remark 2.43. We preserve the notations at the beginning of this section.

1. If j and j′ are ideals of B and C respectively, then the sets

j]B := {(f(a) + b, g(a) + c) | a ∈ A, (b, c) ∈ b× c, f(a) + b ∈ j}

and

j′]C := {(f(a) + b, g(a) + c) | a ∈ A, (b, c) ∈ b× c, g(a) + c ∈ j′}

are ideals of A ./f,g (b, c), since they are the contractions of the ideals
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j× C and B × j′, respectively, of B × C in A ./f,g (b, c).

2. Set k := kf,g := ker(f)∩ker(g). f and g induce a natural ring embedding

ι := ιf,g : A/k −→ A ./f,g (b, c). It is defined by setting ι(a + k) :=

(f(a), g(a)), for any a+ k ∈ A/k.

3. If b and c are finitely generated A-modules (where the A-module

structures are defined via f, g, respectively) then the ring embedding

ι : A/k −→ A ./f,g (b, c) is finite. As a matter of fact, if {b1, . . . , bn}
(resp., {c1, . . . , cm}) is a set of generators of b (resp., c) as an A-module,

{(1, 1), (bi, 0), (0, cj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is a set of generators of A ./f,g (b, c) as a A/k-module.

4. If f and g are finite ring homomorphisms, then the ring extension A ./f,g

(b, c) ⊆ B × C is finite. Indeed, if {x1, . . . , xn} (resp., {y1, . . . , ym}) is

a set of generators of B (resp., C) as an A-module, then

{(xi, 0), (0, yj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is a set of generators of B × C as a A ./f,g (b, c)-module.

5. If a1 and a2 are two ideals of A containing i0 such that a1 ./
f,g (b, c) ⊆

a2 ./
f,g (b, c), then a1 ⊆ a2. Indeed, let x be an element of a1. Since

(f(x), g(x)) ∈ a1 ./
f,g (b, c) ⊆ a2 ./

f,g (b, c), there exist elements y ∈ a2,

b ∈ b and c ∈ c such that (f(x), g(x)) = (f(y)+b, g(y)+c). In particular,

x− y ∈ i0 ⊆ a2, which implies that x ∈ a2.

Proposition 2.44. The following statements hold.

1. The canonical surjective ring homomorphism

p : A ./f,g (b, c) −→ A/i0, (f(a) + b, g(a) + c) 7→ a+ i0

induces the closed topological embedding

p? : V (i0) −→ Spec(A ./f,g (b, c)), p 7→ p ./f,g (b, c)

establishing a homeomorphim between V (i0) and the image p?(V (i0)) =

V (b× c) ⊆ Spec(A ./f,g (b, c)).
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2. The inclusion i : A ./f,g (b, c) −→ B × C induces a continuous map

i? : Spec(B × C) −→ Spec(A ./f,g (b, c)), defined by contraction. The

mapping i? induces by restriction a homeomorphism

Spec(B × C) \ V (b× c) −→ Spec(A ./f,g (b, c)) \ V (b× c)

defined by

q× C 7→ q]B , B × q′ 7→ q′]C

for any q ∈ Spec(B) \ V (b) and q′ ∈ Spec(C) \ V (c) (here, q]B and q′]C

are defined as in Remark 2.43 (1)).

3. The homeomorphisms defined in (1) and (2) preserve maximality.

4. A ./f,g (b, c) is a local ring if and only if A/i0 is a local ring, b ⊆ Jac(B)

and c ⊆ Jac(C).

Proof. It is an immediate consequence of Proposition 2.18.

Arithmetical properties of bi-amalgamations were studied by Kabbaj, Mahdou

and Moutui [74]. In what follows we investigate the problem of when a bi-

amalgamation is a Prüfer or a Gaussian ring.

Prüfer bi-amalgamations

We start this subsection considering the case in which both b and c are

regular ideals. In [22] a direct proof of the following fact is given for Prüfer

rings. Here, we deduce this result from Proposition 2.39, including all five

Prüfer-like conditions.

Proposition 2.45. Assume that b and c are regular ideals. Then, for n =

1, . . . , 5 the following conditions are equivalent:

1. A ./f,g (b, c) has Prüfer condition (n);

2. B,C are rings having Prüfer condition (n) and b = B.

Proof. Fix n = 1, . . . , n. First notice that b = B if and only if c = C. In

particular, if b = B and B,C have Prüfer condition (n), then A ./f,g (b, c) ∼=
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B × C has the same Prüfer condition (n) and the implication (2) ⇒ (1)

follows from Proposition 2.38.

Now assume that A ./f,g (b, c) is a ring having Prüfer condition (n). Observe

that the conductor of the ring extension A ./f,g (b, c) ⊆ (f(A)+b)×(g(A)+c)

is b× c. Applying Proposition 2.39 to the pullback diagram

A ./f,g (b, c) //

��

f(A) + b

��
g(A) + c // A/i0,

we get that A ./f,g (b, c) = (f(A) + b)× (g(A) + c). In particular, we deduce

that b = B = f(A) + b and c = C = g(A) + c. Apply Proposition 2.38 to

conclude.

Corollary 2.46. [46, Theorem 3.1] Let f : A −→ B be a ring homomorphism

and let b be a regular ideal of B such that f−1(b) is a regular ideal of A.

Then A ./f b is a Prüfer ring if and only if A,B are Prüfer rings and b = B.

Proof. Apply Proposition 2.45, keeping in mind the representation of A ./f b

as a bi-amalgamation (see [73, Example 2.1]).

We have already seen that a precise answer of when A ./f,g (b, c) is a Prüfer

ring can be given if both b and c are regular ideals. The general case is much

more difficult, in a way not so different from that of the arithmetical case (see

[74]). Our first goal is to provide necessary conditions under some “regular

properties” for f and g.

Let π : A −→ A/i0 be the canonical projection. Consider the following

properties:

f(π−1(Reg(A/i0))) ⊆ Reg(B) and g(π−1(Reg(A/i0))) ⊆ Reg(C) (*)

and

f(Reg(A)) ⊆ Reg(B) and g(Reg(A)) ⊆ Reg(C). (**)

Proposition 2.47. Assume that condition (*) holds. If A ./f,g (b, c) is a

Prüfer ring, then so is A/i0.
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Proof. During the proof, we denote A ./f,g (b, c) and A/i0 simply by R and

R0 respectively. Let h = (x0 + i0, x1 + i0, . . . , xn + i0) be a regular finitely

generated ideal of R0. Set ηi := (f(xi), g(xi)) ∈ R for every i = 0, . . . , n. Then

condition (*) implies that h′ := (η0, η1, . . . , ηn) is a regular finitely generated

ideal of R. In particular the polynomial P (T ) :=
∑n

i=0 ηiT
i ∈ R[T ] is a Gauss

polynomial. Our aim is to show that the polynomial F (T ) :=
∑n

i=0(xi +

i0)T i ∈ R0[T ] is also a Gauss polynomial. Let G(T ) =
∑m

j=0(yi+ i0)T j be any

other polynomial in R0[T ]. It suffices to prove that cR0(F )cR0(G) ⊆ cR0(FG).

If a + i0 ∈ cR0(F )cR0(G) and Q(T ) :=
∑m

j=0(f(yj), g(yj))T
j ∈ R[T ], then

(f(a) + b, g(a) + c) ∈ cR(P )cR(Q) = cR(PQ) for suitable elements b ∈ b

and c ∈ c. Looking only at the first coordinate of R, we get that there exist

a0, . . . , an+m ∈ A and b0, . . . , bn+m ∈ b such that

f(a) + b =

n+m∑
k=0

(f(ak) + bk)
∑
i+j=k

f(xiyj)

 ,

so, in particular,

f(a)−
n+m∑
k=0

f(ak)
∑
i+j=k

f(xiyj)

 ∈ b.

It means that a−
∑n+m

k=0

(∑
i+j=k xiyj

)
ak ∈ i0, which implies that a+ i0 ∈

cR0(FG).

Proposition 2.48. Assume that A ./f,g (b, c) is a Prüfer ring, let a be

an ideal of A and let p : A −→ A/a be the canonical projection. If

f(p−1(Reg(A/a))) ⊆ Reg(B) and g(p−1(Reg(A/a))) ⊆ Reg(C), then A/a is

a Prüfer ring whenever one of the following conditions holds:

1. i0 ⊆ a;

2. g is surjective and ker(g) ⊆ a;

3. c ⊆ g(A) and ker(g) ⊆ a.

Proof. It suffices to notice that the proof of Theorem 2.47 can be easily

adapted in all three cases of the statement.
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Corollary 2.49. [46, Proposition 4.2] Let f : A −→ B be a ring homomor-

phism such that f(Reg(A)) ⊆ Reg(B) and let b be an ideal of B such that

A ./f b is a Prüfer ring. Then A is a Prüfer ring.

Proof. Apply case (2) of Proposition 2.48 to g := IdA : A −→ A, a := 0 and

c := i0. Then such a bi-amalgamation is A ./f b.

Example 2.50. Let k be a field and set A = k[X,Y ], i0 = (Y ), B = C =

A/i0, b = c = 0 and f = g = π : A −→ A/i0. It is easy to see that condition

(*) holds, A ./f,g (b, c) ∼= A/i0 is a Prüfer ring, but A is not a Prüfer ring.

Proposition 2.51. Assume that condition (**) holds and preserve the

notation of Remark 2.42 (4). If A ./f,g (b, c) is a Prüfer ring, then bBSm =

fm( r1)bBSm and cCTm = gm( r1)cCTm for every m ∈ Max(A) ∩ V (i0) and every

regular element r ∈ A.

Proof. Fix a maximal ideal m of A containing i0 and a regular element

r of A. Set σ = r/1 ∈ Am. Condition (**) implies that (fm(σ), gm(σ)) is

a regular element of the local ring R̂ := A ./f,g (b, c)(m./f,g(b,c)). Fix an

element τ ∈ bBSm . By hypothesis, (A ./f,g (b, c),m ./f,g (b, c)) has the

regular total order property, so that, in particular, the principal ideals

of R̂ generated respectively by (fm(σ), gm(σ)) and (τ, 0) are comparable.

Using the fact that gm(σ) 6= 0, it is immediate to check that the inclusion

(τ, 0)R̂ ⊆ (fm(σ), gm(σ))R̂ holds. Thus there exist elements α ∈ Am, β ∈ bBSm

and γ ∈ cCTm such that

(τ, 0) = (fm(σ), gm(σ))(fm(α) + β, gm(α) + γ).

From gm(σ)(gm(α) + γ) = 0 we get gm(α) + γ = 0, and so α ∈ i0Am. In

particular, τ = fm(σ)(fm(α) + β) ∈ fm(σ)bBSm . It follows that bBSm =

fm( r1)bBSm . The equality cCTm = gm( r1)cCTm can be proved similarly.

Remark 2.52. There is an analogous of the previous proposition in the

situation in which condition (*) holds. In this case, if A ./f,g (b, c) is a

Prüfer ring, then bBSm = fm( r1)bBSm and cCTm = gm( r1)cCTm for every

m ∈ Max(A) ∩ V (i0) and every element r ∈ A such that r + i0 is a regular

element in A/i0. The proof works also in this case, since also condition (*)

implies that the element (fm(σ), gm(σ)) is regular in A ./f,g (b, c)(m./f,g(b,c)).
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Proposition 2.53. Let A/k be a total ring of fractions, where as usual

k := ker(f) ∩ ker(g) ⊆ i0, and assume that b ⊆ Jac(B) and c ⊆ Jac(C).

If both b and c are torsion A/k-modules (with the A/k-module structure

inherited by f and g respectively), then A ./f,g (b, c) is a total ring of

fractions.

Proof. Let (f(a) + b, g(a) + c) ∈ A ./f,g (b, c) be a non-invertible element.

We have to show that (f(a) + b, g(a) + c) is a zero-divisor. Since b ⊆ Jac(B)

and c ⊆ Jac(C), the maximal ideals of A ./f,g (b, c) are exactly those of the

form p ./f,g (b, c), where p ∈ Max(A) ∩ V (i0). Hence, there exists a maximal

ideal m of A containing i0 such that (f(a) + b, g(a) + c) ∈ m ./f,g (b, c). In

particular, a ∈ m is a zero-divisor modulo k, so there exists a′ /∈ k such that

aa′ ∈ k. Since both b and c are torsion A/k-modules, there exist two regular

elements x0 + k and y0 + k in A/k such that f(x0)b = 0 and g(y0)c = 0. Of

course, a′x0y0 /∈ k, and so (f(a′x0y0), g(a′x0y0)) is a non-zero element such

that (f(a) + b, g(a) + c)(f(a′x0y0), g(a′x0y0)) = (0, 0).

Lemma 2.54. Assume that (f(a)+b, g(a)+c) is a zero-divisor of A ./f,g (b, c).

Then, at least one of the following conditions hold:

1. a+ i0 is a zero-divisor of A/i0;

2. there exists (b′, c′) ∈ b×c, with (b′, c′) 6= (0, 0), such that b′(f(a)+b) = 0

and c′(g(a) + c) = 0.

Proof. Assume that (f(a) + b, g(a) + c)(f(a′) +x, g(a′) +y) = 0 for some non-

zero element (f(a′)+x, g(a′)+y) of A ./f,g (b, c). Then (f(a)+b)(f(a′)+x) = 0

implies that aa′ ∈ i0. If a′ /∈ i0, then a+ i0 is a zero-divisor of A/i0. Otherwise,

f(a′) + x ∈ b, g(a′) + y ∈ c and at least one of them is not zero.

Notice that condition (2) of the previous lemma always implies that (f(a) +

b, g(a) + c) is a zero-divisor of A ./f,g (b, c). If also condition (1) implies

that (f(a) + b, g(a) + c) is a zero-divisor of A ./f,g (b, c), we say that

A ./f,g (b, c) has the condition (?). So, A ./f,g (b, c) has condition (?) if,

whenever (f(a) + b, g(a) + c) is an element of A ./f,g (b, c) and a+ i0 is a

zero-divisor of A/i0, then (f(a) + b, g(a) + c) is a zero-divisor of A ./f,g (b, c).
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Example 2.55. Assume that B and C are local total quotient rings with

maximal ideals b and c, respectively. Let f : A −→ B and g : A −→ C be

ring homomorphisms such that i0 = f−1(b) = g−1(c). Then condition (?)

holds.

Theorem 2.56. (1) Assume that condition (*) holds. If A ./f,g (b, c) is

a Prüfer ring, then A/i0 is a Prüfer ring and bBSm = fm( r1)bBSm and

cCTm = gm( r1)cCTm for every m ∈ Max(A) ∩ V (i0) and every element r ∈ A
such that r + i0 is a regular element in A/i0.

(2) Assume that A ./f,g (b, c) is a local ring having condition (?). Let m be

the unique maximal ideal of A containing i0. If A/i0 is a Prüfer ring and

b = f(r)b and c = g(r)c for every r ∈ π−1(Reg(A/i0)), then A ./f,g (b, c) is

a Prüfer ring.

Proof. Part (1) follows from Proposition 2.47 and Remark 2.52.

(2) Let (f(a1) + b1, g(a1) + c1), (f(a2) + b2, g(a2) + c2) ∈ A ./f,g (b, c) and

assume that (f(a1)+b1, g(a1)+c1) is a regular element. Condition (?) implies

that a1 + i0 is a regular element of the Prüfer local ring A/i0, and so the

principal ideals of A/i0 generated by a1 + i0 and a2 + i0 are comparable.

There are two cases.

Case 1. There exist x ∈ A and u ∈ i0 such that a2 = a1x+ u. We can write

b1 = f(a1)b′1 for some b′1 ∈ b. Notice that under our hypothesis b ⊆ Jac(B),

so in particular, 1 + b′1 is an invertible element of B. It follows that we can

also find β ∈ b such that

f(a1)β =
b2 + f(u)− b1f(x)

1 + b′1
.

Elements c′1 and γ in c can be defined in an analogous way, getting

g(a1)γ =
c2 + g(u)− c1g(x)

1 + c′1
.

It is now straightforward to show that (f(a2) + b2, g(a2) + c2) = (f(a1) +

b1, g(a1) + c1)(f(x) + β, g(x) + γ), that is, the principal ideals of A ./f,g (b, c)

generated by (f(a1)+b1, g(a1)+c1) and (f(a2)+b2, g(a2)+c2) are comparable.

Case 2. There exist x ∈ A and u ∈ i0 such that a1 = a2x+ u. Notice that
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b = f(a2x)b and c = g(a2x)c, because also a2x+i0 is a regular element of A/i0.

As before, we can find elements b′2 ∈ b and c′2 ∈ c such that b2 = f(a2x)b′2,

c2 = g(a2x)c′2. Moreover, there exist β ∈ b and γ ∈ c such that

f(a2x)β =
b1 + f(u)− b2f(x)

1 + f(x)b′2

and

g(a2x)γ =
c1 + g(u)− c2g(x)

1 + g(x)c′2
.

Now, we can conclude noting that the following equality holds:

(f(a1)+b1, g(a1)+c1) = (f(a2)+b2, g(a2)+c2)(f(x)+βf(x), g(x)+γg(x)).

Gaussian bi-amalgamations

We are going to study the transfer of Gaussian condition to bi-amalgamations

in the local case. We will largely use the following characterization of local

Gaussian rings.

Theorem 2.57. [93, Theorem 2.2] A local ring S is Gaussian if and only if

for every two elements x, y ∈ S the following two conditions hold:

(i) (x, y)2 = (x2) or (y2);

(ii) if (x, y)2 = (x2) and xy = 0, then y2 = 0.

It will be useful to observe that an ideal a of a Gaussian local ring is nilpotent

of index 2 if and only if so are all its elements. To be more precise, we have

the following

Lemma 2.58. Let a be an ideal of a Gaussian local ring S. Then a2 = 0 if

and only if a2 = 0 for every a ∈ a.

Proof. For every x, y ∈ a, the ideal (x, y)2 is equal to (x2) or (y2) (cf.

Theorem 2.57). If a2 = 0 for every a ∈ a, we have (xy) = (x, y)2 = 0, which

implies that xy = 0 and so a2 = 0.
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Theorem 2.59. Assume that A ./f,g (b, c) is a Gaussian local ring. Then:

1. A/i0, f(A) + b and g(A) + c are Gaussian local rings;

2. if b2 6= 0, then c2 = 0;

3. if b2 = 0, then f(a)b ⊆ f(a2)B for every a ∈ A.

Proof. (1) immediately follows from the fact that quotients of a Gaussian

ring are Gaussian rings.

(2) Assume that b2 6= 0. Since b is an ideal of f(A) + b, by Lemma 2.58 there

exists an element b ∈ b such that b2 6= 0. For any element c ∈ c we have that

the ideal ((b, 0), (0, c))2 = ((b2, 0), (0, c2)) of A ./f,g (b, c) must be equal to

((b2, 0)) or ((0, c2)). Since b2 6= 0, ((b2, 0), (0, c2)) = ((b2, 0)) must be the case,

which implies that c2 = 0. We can conclude applying Lemma 2.58.

(3) Assume that b2 = 0. For every a ∈ A and b ∈ b we have that the

ideal ((f(a), g(a)), (b, 0))2 is equal to 0 or (f(a2), g(a2)). In the first case

f(a)b = 0, while in the second one, there exist α ∈ A, β ∈ b and γ ∈ c

such that f(a)b = f(a2)(f(α) + β) and 0 = g(a2)(g(α) + γ). In both cases

f(a)b ∈ f(a2)B.

The following example shows that the converse of Theorem 2.59 does not

hold.

Example 2.60. Let p be a prime number, set A := Z(p) andB := Z(p)/p
4Z(p),

let f : A −→ B be the canonical projection and let b be the princi-

pal ideal of B generated by the class of p2. By [73, Example 2.1], the

bi-amalgamation A ./f,IdA (b, i0) is the standard amalgamation A ./f b and,

since f(p)b 6= f(p2)b, it is not Gaussian, by [4, Theorem 4.1], but all the

conditions of Theorem 2.59 are trivially satisfied.

Theorem 2.61. Assume that f and g are surjective. Then A ./f,g (b, c) is a

Gaussian local ring whenever the following conditions hold:

1. A is a Gaussian local ring;

2. b2 = c2 = 0;
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3. f(a)b = f(a2)b and g(a)c = g(a2)c for every a ∈ A.

Proof. First notice that conditions (1) and (2) imply that A ./f,g (b, c)

is a local ring (Proposition 2.44(4)). Moreover, since A is Gaussian and

f and g are surjective, then B and C are Gaussian. Consider elements

(f(a1) + b1, g(a1) + c1) and (f(a2) + b2, g(a2) + c2) of A ./f,g (b, c). Since A

is Gaussian, we can assume that the ideal (a1, a2)2 of A is equal to (a1)2,

and so there exist elements x, y ∈ A such that a2
2 = a2

1x and a1a2 = a2
1y. We

want to show that the ideal ((f(a1) + b1, g(a1) + c1), (f(a2) + b2, g(a2) + c2))2

of A ./f,g (b, c) is equal to ((f(a1) + b1, g(a1) + c1)2). In order to do that, we

want to prove that there exist elements β, β′ ∈ b and γ, γ′ ∈ c such that

(f(a2) + b2, g(a2) + c2)2 = (f(a1) + b1, g(a1) + c1)2(f(x) + β, g(x) + γ)

and

(f(a1) + b1, g(a1) + c1)(f(a2) + b2, g(a2) + c2) =

= (f(a1) + b1, g(a1) + c1)2(f(y) + β′, g(y) + γ′).

Using the fact that b2 = c2 = 0 and the relation a2
2 = a2

1x, the first equality

can be rewritten as

(2f(a2)b2, 2g(a2)c2) = (f(a2
1)β + 2f(a1x)b1, g(a2

1)γ + 2g(a1x)c1).

By (3), we have 2f(a2)b2 = f(a2
2)b′2 = f(a2

1x)b′2 and 2g(a2)c2 = g(a2
2)c′2 =

g(a2
1x)c′2 for suitable elements b′2 ∈ b and c′2 ∈ c. So, it suffices that β and γ

satisfy the equality

(f(a2
1)β, g(a2

1)γ) = (f(a1)(f(a1x)b′2 − 2f(x)b1), g(a1)(g(a1x)c′2 − 2g(x)c1)).

The existence of the elements β and γ is now obvious, again by (3). For the

second equality, we can argue in a similar way. Now, we want to prove that if

((f(a1)+b1, g(a1)+c1), (f(a2)+b2, g(a2)+c2))2 = ((f(a1)+b1, g(a1)+c1)2) and

(f(a1) + b1, g(a1) + c1)(f(a2) + b2, g(a2) + c2) = 0, then (f(a2) + b2, g(a2) +

c2)2 = 0. Looking only at the first component, we have that the ideal

(f(a1) + b1, f(a2) + b2)2 of B is equal to (f(a1) + b1)2 and that the product

(f(a1)+b1)(f(a2)+b2) = 0. Since B is Gaussian, it implies that (f(a2)+b2)2 =

0. Similarly, (g(a2) + c2)2 = 0. To conclude, apply Theorem 2.57.

100



Remark 2.62. Notice that Example 2.50 shows that condition (1) in The-

orem 2.61 is not necessary. To prove that also conditions (2) and (3) are

not necessary for A ./f,g (b, c) to be a Gauss ring, let p be a prime number,

A := Z(p), B := Z(p)/p
2Z(p), let f : A −→ B be the canonical projection and

let b (resp., m) be the maximal ideal of B (resp., of A). By [73, Example 2.1],

the bi-amalgamation A ./f,IdA (b,m) is the amalgamated algebra A ./f b

and it is Gaussian, in view of [4, Theorem 4.1]. But m2 6= 0 and, for instance,

pm 6= p2m.

Example 2.63. Let (V,m) be a valuation domain such that m2 6= m3.

Set A := V/m3, B = C := V/m2 and consider the canonical morphisms

f : A −→ B and g : A −→ C. If b and c are the maximal ideals of B and C

respectively and i0 = f−1(b) = g−1(c) is the maximal ideal of A, then it is

immediate to check that the conditions of Theorem 2.61 are satisfied, and so

A ./f,g (b, c) is a Gaussian local ring.

2.6 Prüfer rings and homomorphic images

Regular morphisms

According to [46, Proposition 4.4], if A is a Prüfer ring and a is an ideal of

A, then A/a is a Prüfer ring whenever a is regular. As we have seen, this fact

is crucial in the proof of Theorem 2.27 and in several other results. The first

goal of this section is to present a notion that allow to consider homomorphic

images of Prüfer rings that are still Prüfer, without taking regular ideals.

Our definition mimic that of local morphisms. Recall that a ring morphism

f : A→ B is said to be local if f−1(U(B)) ⊆ U(A), that is, if for every a ∈ A,

f(a) is invertible in B if and only if a is invertible in A [24]. A surjective

ring homomorphism is local if and only if ker(f) ⊆ J(R).

Definition 2.64. Let f : A → B be a ring morphism. We say that f is

a regular morphism if f−1(Reg(B)) ⊆ Reg(A). We say that a ring B is a

regular homomorphic image of A if there exists a surjective regular morphism

f : A→ B.

Let us start with the following elementary lemma.
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Lemma 2.65. Let f : A → B be a ring morphism. Then the following

properties hold.

1. B is a regular homomorphic image of A via f if and only if f is surjective

and Z(A) ⊆ f−1(Z(B)).

2. If f is a local morphism and B is a total ring of quotients, then f is a

regular morphism.

3. If f is a regular morphism and A is a total ring of quotients, then f is

a local morphism.

4. If f is surjective, then f is a regular morphism if and only if, for every

a ∈ A, (ker(f) : a) ⊆ ker(f) implies a ∈ Reg(A).

5. If Z(A) is contained in a proper ideal i of A, then A→ A/i is a regular

morphism.

6. If A is a ring in which every zero-divisor is nilpotent, then A→ A/p is

a regular morphism for every p ∈ Spec(A).

Proof. 1. is clear.

2. If B is a total ring of quotients, then Reg(B) = U(B). Since f is a local

morphism, we have f−1(Reg(B)) = f−1(U(B)) ⊆ U(A) ⊆ Reg(A).

3. In this case, we have f−1(U(B)) ⊆ f−1(Reg(B)) ⊆ Reg(A) = U(A).

4. Immediately follows from the fact that for every a ∈ A, f(a) is regular

in B if and only if (ker(f) : a) ⊆ ker(f).

5. By (4), it suffices to prove that for every a ∈ A, (i : a) ⊆ i implies

a ∈ Reg(A). If (i : a) ⊆ i, then a /∈ i, and so a /∈ Z(A), that is a is a

regular element of A.

6. If every zero-divisor is nilpotent, then Z(A) is contained in all minimal

primes of A. Apply (5) to conclude.
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We have seen in Section 2.5 that necessary and sufficient conditions for

the bi-amalgamated algebras to inherit the property of being Prüfer can

be given by assuming some “regular properties” of the morphisms f and g

involved in such constructions. Despite these assumptions, the volatility of

the homomorphisms forces some necessary and sufficient conditions to be

quite technical. These kind of difficulties disappear for regular morphisms.

Theorem 2.66. Every regular homomorphic image of a Prüfer ring is a

Prüfer ring.

Proof. Let f : A→ B be a regular surjective morphism and assume that A

is a Prüfer ring. Let b := (b0, . . . , bn) be a finitely generated regular ideal of

B. For every i = 0, . . . , n, we can write bi = f(ai) for some ai ∈ A. Since f

is a regular morphism, the finitely generated ideal a := (a0, . . . , an) of A is

a regular ideal and, since A is a Prüfer ring, a is invertible. In particular,

by Proposition 2.9 (1), the polynomial P (X) :=
∑n

i=0 aiX
i ∈ A[X] is

a Gaussian polynomial. In view of Proposition 2.9 (2), it is enough to

show that F (X) :=
∑n

i=0 biX
i ∈ B[X] is still a Gaussian polynomial. Let

G(X) :=
∑m

j=0 βjX
j be any other polynomial in B[X]. It suffices to verify

that cB(F )cB(G) ⊆ cB(FG). Take any element b = f(a) ∈ cB(F )cB(G) and

consider the polynomial Q(X) :=
∑m

j=0 αjX
j ∈ A[X], where f(αj) = βj

for j = 0, . . . ,m. Then, we can pick some element r ∈ ker(f) such that

a+ r ∈ cA(P )cA(Q) = cA(PQ). In other words, we can write

a+ r =
n+m∑
k=0

ηk

 ∑
i+j=k

aiαj

 ,

for suitable elements η0, . . . , ηn+m ∈ A. Hence

b = f(a+ r) =

n+m∑
k=0

f(ηk)

 ∑
i+j=k

biβj

 ∈ cB(FG).

The conclusion follows.

Corollary 2.67. Let A be a local Prüfer ring. Then A/Z(A) is a Prüfer

domain.

Proof. By [15, Lemma 3.5], Z(A) is a prime ideal of A. The morphism
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A → A/Z(A) is regular by Lemma 2.65 (5), and so A/Z(A) is Prüfer by

Theorem 2.66.

Example 2.68. Let A be a ring and let M be an A-module such that

for every element x ∈M \ {0}, AnnA(x) ⊆ Z(A). Consider the idealization

A(+)M of M in A. Then it is easily seen that the canonical map A(+)M → A

is a regular morphism. In particular, if A(+)M is a Prüfer ring, then so is A.

Combining Theorems 2.27 and 2.66 it is possible to give a shortest proof

of the result of Bakkari and Mahdou we have mentioned in the preliminary

section (and restated below).

Corollary 2.69. [6, Theorem 2.1] Let (T,m) be a local ring of the form

T = k + m, for some field k. Take a subring D of k such that Q(D) = k and

set R := D + m. Then R has Prüfer condition (n) if and only if T and D

have the same Prüfer condition (n).

Proof. We have the following pullback diagram:

R
π0 //� _

��

D� _

��
T

π // k

where π and π0 are the canonical projections. If m is a regular ideal of T ,

then it suffices to apply Theorem 2.27.

So, assume that m consists only of zero divisors of T . It is immediate that T

is a total ring of quotients, m = Z(T ) and Tot(R) = T . Moreover, π0 is a

regular morphism, because π−1
0 (D \ {0}) = R \ m ⊆ Reg(R). So, if R is a

Prüfer ring, then so are T and D.

For the other implication, assume that both D and T are Prüfer rings. Then,

D ⊆ k is a Prüfer extension, and by Theorem 2.17, so is R ⊆ T . Since

Tot(R) = T , R is a Prüfer ring.

To conclude, it suffices to notice that all five Prüfer conditions coincide on D

and that if R is a Prüfer ring, then R has the Prüfer condition (n) if and

only if T = Tot(R) has the same Prüfer condition (n) by Theorem 2.11.
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Pre-Prüfer rings

In [13], the authors define a ring R to be a pre-Prüfer ring if every proper

homomorphic image of R is a Prüfer ring (here ”proper” means different from

0 and from R). They show that the prime spectrum of a pre-Prüfer domain

forms a tree [13, Theorem 1.2] and that in the Noetherian case, pre-Prüfer

domains are precisely those of dimension 1 [13, Corollary 1.3]. Here, we point

out a generalization of these two results in the case of rings with zero divisors.

Let I be a family of ideals of a ring R. Inspired by the notion of the regular

total order property for pairs given by Griffin [68], we say that I has the

regular total order property if for every pair of ideals I, J ∈ I, where at least

one of them is regular, I and J are comparable. It is clear that if R is a

domain, then I has the regular total order property if and only if I is a

chain. The prime spectrum of a ring R forms a tree if and only if Spec(Rm)

is linearly ordered for each maximal ideal m of R. For pre-Prüfer rings, we

have the following result.

Theorem 2.70. Let A be a pre-Prüfer ring. Then Spec(Am) has the regular

total order property for every maximal ideal m of A.

Proof. In view of [13, Theorem 1.1], we can assume that A is a local pre-Prüfer

ring. Let p and q be prime ideals of A with p regular. We want to prove that

p and q are comparable. If this is not the case, we can certainly assume that q

is nonzero. Since p is regular, we must have 0 6= pq ⊆ i := p∩ q and therefore

A/i is a local Prüfer ring, as A is local pre-Prüfer. It is straightforward to

show that p/i ∪ q/i = Z(A/i). By [15, Lemma 3.5] the set Z(A/i) of zero-

divisors of A/i is a prime ideal of A/i. Then p/i and q/i must be comparable,

a contradiction.

As we have already said, in the domain case the previous result has a simpler

form.

Corollary 2.71. [13, Theorem 1.2] The prime spectrum of a pre-Prüfer

domain is a tree.

Corollary 2.72. Let R be a pre-Prüfer ring. Then the following statements

hold.
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1. Two distinct minimal primes over a regular ideal of R are comaximal.

2. If R is local, then every regular ideal of R has a unique minimal prime.

Proof. We only need to prove (1), statement (2) being an immediate conse-

quence. Let i be a regular ideal of R and assume that p, q ⊇ i are distinct

(regular) minimal prime ideals over i which are not comaximal. Let m be a

maximal ideal of R containing p + q. Then pRm, qRm are both regular prime

ideals of Rm and they are not comparable, against Theorem 2.70

The next result is a slight generalization of one implication of [13, Corollary

1.3].

Proposition 2.73. Let R be a Noetherian pre-Prüfer ring. Then dim(R) ≤ 1.

Proof. Assume dim(R) > 1 and let q ( p ( m be a chain of prime ideals. By

[13, Theorem 1.1], there is no restriction in assuming that R is local with

maximal ideal m. By [75, Theorem 144], the set S of all prime ideals h of R

such that q ( h ( m is infinite. If q = 0, then Theorem 2.70 implies that S
is an infinite chain and thus R is infinite-dimensional, against the fact that

R is local and Noetherian. If q 6= 0, then R/q is a local Dedekind domain

(since R is pre-Prüfer) of dimension ≥ 2, another contradiction.

We conclude this subsection by noting that in the integral case, Noetherian

pre-Prüfer domains are precisely those of dimension at most 1, that is, a

Noetherian domain D is a pre-Prüfer domain if and only if dim(D) ≤ 1

[13, Corollary 1.3]. Nevertheless, in rings with zero-divisors, there exist

one-dimensional Noetherian rings that are not pre-Prüfer, as the following

example shows.

Example 2.74. Let A be a Noetherian, one-dimensional local domain which

is not Dedekind. Let k be the residue field of A, endowed with its natural

structure of A-module. Consider the idealization R := A(+)k (see page 74).

Then dim(A) = dim(R) = 1 (cf. [70, Chapter VI]) and R is a Noetherian ring

by [2, Proposition 2.2]. But R is not a pre-Prüfer ring, since A ∼= R/(0(+)k)

is not a Prüfer ring.
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[44] A. Facchini and P. Př́ıhoda, Endomorphism rings with finitely many

maximal right ideals Comm. Algebra 39 (2011), pp. 3317–3338.
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[46] C. A. Finocchiaro, Prüfer-like conditions on an amalgamated algebra

along an ideal, Houston J. Math. 40 (2014), pp. 63–79.

[47] C. A. Finocchiaro, F. Tartarone. Invertibility of ideals in Prüfer exten-
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