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Abstract

Let A be a modular abelian variety of GL2-type over a totally real number filed F ,
let p be an odd rational prime and let P be an unramified prime above p in its ring of
endomorphisms. In this thesis we start by proving a structure theorem for the Shafarevich-
Tate of A. We then proceed to prove that the Kolyvagin’s conjecture holds for A and we
provide some results on the structure of the Selmer group and the parity of its rank. Last
we restrict ourselves to the case where A is a modular elliptic curve and prove the P-part
of the Birch and Swinnerton-Dyer conjecture for A.

Sommario

Sia A una varietà abeliana modulare di tipo GL2 definita sopra un campo di numeri
totalmente reale, p un primo reale dispari e sia P un primo non ramificato sopra p nell’anello
degli endomorfismi di A. In questa tesi iniziamo mostrando un teorema di struttura per il
gruppo di Shafarevich-Tate di A. Successivamente dimostriamo la congettura di Kolyvagin
per A e alcuni risultati sulla struttura del gruppo di Selmer e la parità del suo rango. Infine
ci restringiamo al caso in cui A è una curva ellittica modulare e dimostriamo la P-parte
della congettura di Birch e Swinnerton-Dyer per A.
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Introduction

The Birch and Swinnerton-Dyer conjecture, a Millennium Problem of the Clay Institute, is one
of the most fascinating subjects in modern number theory. Arising as an analogue of the Class
Number Formula, it has become one of the most interesting open problems, in which algebraic
geometry, complex analysis and p-adic methods converge to obtain evidences and partial results.
This conjecture has its roots long away, in fact mathematicians have always been interested in
finding all rational solutions to a polynomial equation with rational coefficients; this type of
problems dates back to the time of Diophantus and the Birch and Swinnerton-Dyer conjecture is
strictly related to this problem: the rational points of an elliptic curve defined over Q are indeed
the rational solutions of a polynomial equation of degree 3 with nonzero discriminant.

To explain the conjecture, let E/Q be an elliptic curve. By the Mordell-Weil Theorem

E(Q) ∼= Zr ⊕ E(Q)tors

where E(Q)tors is a finite (torsion) group and r is a positive integer that we call the arithmetic
rank of E. We can attach to E an L-function L(E, s) where s is a complex variable and this
function converges if ℜ(x) > 3/2. The modularity theorem of Wiles states that this complex
L-function can be holomorphically extended to all C. One may then look at the value of this
function at s = 1. The first part of the Birch and Swinnerton-Dyer conjecture states that

rankZE(Q) = ords=1L(E, s)

namely, that the order of vanishing of the L-function L(E, s) at s = 1 is equal to the algebraic
rank r of E. The more precise version (the second part) of the Birch and Swinnerton-Dyer
conjecture offers a precise formula for the leading term of the Taylor expansion of L(E, s) in
terms of important algebraic invariants of E, and can therefore be seen as a complete analogue
of the Class Number Formula mentioned above. More precisely, the quantitative part of the
Birch and Swinnerton-Dyer conjecture states that

L(r)(E, 1)

ΩERegEr!
=

∏︁
p cp ·#X(E/Q)

(#E(Q)tors)2

where

• ΩE =
∫︁
E(R)

ωE is the period of the holomorphic differential ωE of the Riemann surface
E(R);

• RegE is the regulator of E, defined as the determinant of a matrix whose entries are the
values of the Néron-Tate height pairing on a Z-basis of E(Q)/E(Q)tors;

• X(E/Q) is the Shafarevich-Tate group of E. A deep conjecture of Tate states that this
group is finite, but the result in its generality is still unknown;
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• cp is the Tamagawa number of E at p.

This conjecture was proven in the cases when the rank is zero, i.e. when there is only a finite
number of rational points, or one. The main result is the following, which is due to contributions
of several mathematicians during the last fifty years ([BBV16], [KL89], [Gro91], [SU14], [Zha14]
and others).

Theorem. Suppose that L(E, s) has a simple zero at s = 1. Then r = 1 and the Birch and
Swinnerton-Dyer formula is true for all primes p except possibly a finite number.

This result use heavily the fact proven by Wiles that all elliptic curves over Q are modular,
which means that there exists a morphism

ι : X0(N)→ E

from the modular curve X0(N) of level Γ0(N) where the integer N is the conductor of E. In
particular, we can produce a modular form such that the representation attached to the Tate
module TpE of E coincides with the one attached to the modular form.

We extend this result to the more general settings of elliptic curves (and when possible also
of abelian varieties) over totally real fields.

Let F be a totally real number field of degree g and let K/Q be a CM extension of Q. Denote
the ring of integers of F with OF and fix a prime p of OF over the rational prime p. Let N be
an integral ideal of F which is prime to the relative discriminant of K/F . This ideal factorizes
as N = N−N+ where all factors in N− (resp. N+) are inert (resp. split) in K. We assume that
N− is square-free and that the number of its prime factors ν(N−) has opposite parity than g.
This is usually called Heegner hypothesis.

We consider a principally polarized modular abelian variety of GL2 type A, thus A is associ-
ated with a Hilbert modular form f whose L-function is the same as the one attached to A. The
modularity assumption combined with the Jacquet-Langlands correspondence means that there
exists a modular parametrization defined over F

ι : X → A

where X is the Shimura curve attached to an indefinite quaternion algebra B of discriminant N−

defined over F . To better describe it, recall that this map generalizes the modular parametriza-
tion X0(N)→ E when F = Q and E is an elliptic curve over Q. The direct analogue of modular
curves over totally real fields are the Hilbert modular varieties, which are quotients of a product of
complex upper half-planes by some Hilbert modular group of GL2(OF ); however it is sometimes
easier to use Shimura curves. In our setting, we can use the Jacquet-Langlands correspondence
to realize an adelic Hilbert modular form as a function from a quaternion algebra. In this more
general framework we assume modularity, since, to the best of our knowledge, a full result is not
available, but see [TW95], [Buz12], [FLS15] and [Le 14] for recent results.

The case of totally real fields F ̸= Q presents the following crucial difference: as a Riemann
surface, the Shimura curve X(C) can be described as

X(C) =

hF∐︂
i=1

Γi\H

i.e. as a finite disjoint union of quotients Γi\H of the upper complex half-plane

H = {z ∈ C | ℜ(z) > 0}
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by arithmetic subgroups Γi. Here hF denotes the class number of F . In particular each of these
quotients is compact, which is false when F = Q. Thus we do not have cusps for a Shimura
curve.

Another important tool used to study this type of problems is the theory of Galois represen-
tations. Let OA denotes the ring of endomorphism of A, E the fraction field of OA and P ⊂ OA

a prime over p and M a positive integer. We can define the P-adic Tate module TPA of A and
the associated representation ρ : Gal(F/F )→ Aut(TPA⊗Q). Since A is modular this represen-
tation coincides with the P-adic representation attached to f . In particular the field generated
by the Hecke eigenvalues of f is the same as the fraction field of OA. We denote with ρP the
residual representation at P. We assume that

Assumption 1. 1. p is coprime with 6DN ,

2. p ∤ [OE : OA] where OE is the ring of integers of E,

3. p is unramified in E,

4. For all P extending p in OA, the map ρP surjects onto the subgroup

{g ∈ GL2(OA,P) | det(g) ∈ Z∗
p}.

Using the theory of complex multiplication we define Heegner points Pn on the abelian variety
A for products of admissible prime ideals n ⊂ OF , which we call Kolyvagin’s primes (see Defini-
tion 2.2.7). We follow the construction introduced by Nekovar in [Nek07]. These points arise from
the complex multiplication points of the Shimura curve X. In the case F = Q the CM points
on modular curves have a simple interpretation as point representing couples of elliptic curves
with CM by an order in a quadratic field, but this simple idea does not carry over to Shimura
curves. In this case it is still possible to introduce Heegner points via the moduli description of
the Shimura curve, however we prefer an algebraic approach based on the structure of Eichler
orders of level N+ in the quaternion algebra B (see Definition 2.2.3): indeed the description of
the objects that the Shimura curves parametrize is more involved than in the modular curves
case. The Kolyvagin formalism applied to the image via the Kummer map of the Heegner points
Pn gives classes cn ∈ H1(K,A[PM ]) and dn ∈ H1(K,A)[PM ]. We can use an explicit description
to compute some interesting properties.

We can define the order at P of a Heegner point Pn in the following way: write PM | Pn

whenever Pn ∈ PMA(K[n]) where K[n] is the ring class field of conductor n over K. Define

ordP(Pn) = max
{︁
M ∈ Z+

⃓⃓
PM | Pn

}︁
.

Finally let
Mr = min{ordP(Pn) | n ∈ Sr(ordP(Pn) + 1)}

where Sr(M) denotes the set of products of r Kolyvagin’s primes for M .
If we assume that P1 has infinite order we can find a structure theorem for the Shafarevich-

Tate group of A. In the case of elliptic curves over Q this was done by Kolyvagin (see [McC91]),
where under similar hypothesis he proved

Theorem (Kolyvagin). If A is an elliptic curve over Q, then

X(A/K) =
⨁︂
i

(︁
Z/pNiZ

)︁
where Ni =Mi−1 −Mi.
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Our first result is a generalization of this theorem to our setting which is the following

Theorem (Th. 3.2.1). Under Assumptions 1,

X(A/K) =
⨁︂
i

(︁
OA/P

Ni
)︁

where Ni =Mi−1 −Mi.

This theorem is the first important step to prove the Birch and Swinnerton-Dyer conjecture
in our framework.

At this point we need to make several technical assumptions on the prime p we consider,
hence, in addition to the previous ones, we assume that A has good ordinary reduction at p
and that ordp(

∏︁
q cq) = 0, where cq is the Tamagawa number of A at the prime q ⊂ OF .

Furthermore, we assume that p ∤ #A(F )tors and p does not divide the conductor of OA in E.
These conditions exclude only a finite number of primes p. Finally, we make some assumption
on the representation ρ:

Assumption 2. 1. ρP is irreducible; in this case we say that ρ is residually irreducible.

2. The residual representation ρP ramifies at all prime in N+ and all q | N− such that
N(q) ≡ 1 mod p. Furthermore, there are no prime q | N− such that N(q) ≡ −1 mod p.

3. If N is not square-free, then the residual representation ramifies at least at one place
dividing exactly N− or at least at two places dividing exactly N+.

4. For all prime ℓ such that ℓ2 | N+ we have H1(Fℓ, ρP) = ρDℓ

P = 0 where Dℓ is the decom-
position group at ℓ in Gal(F/F ).

In this setting, we may define Ωf to be the period of the Hilbert modular form f attached
to A, which is up to a constant the Petersson inner product ⟨f, f⟩Pet (see Definition 1.2.10).
We can also attach a period ΩA to an abelian variety, which is computed integrating a Neron
differential, which is only guaranteed to exist when F = Q, or a generator of H0(A,ΩA/F ) if the
Neron differential does not exist.

Here lies the main obstruction to an unconditional result: we need to compare these two
periods. The problem is that the period Ωf arise from the generalization of the Gross-Zagier
formula (see [YZZ13]) and is related to the Hilbert modular form f and not to a quaternionic
form. This result is known for elliptic curves over Q thanks to [PW11], [GP12] and [Pra09] or
when A has complex multiplication by [Bla86], but the general case is still a conjecture due to
Shimura in [Shi83] and Yoshida in [Yos94] (up to algebraicity). It is also strictly related to the
Shimura’s conjecture on the P-invariants, which is partially proven by Yoshida in loc. cit. For a
deeper discussion on this topic see [Dis15, Chaper 9].

Finally, consider the Néron-Tate height ĥ(P1) of the Heegner point P1; note that the point P1

under our assumptions is non-torsion and so if it actually belongs to A(F ) and A(F )⊗ZQ ∼= Q,
then ĥ(P1) is by definition the regulator RegA/F . The main result of the thesis is the following

Theorem (Th. 6.2.3). Assume Assumptions 1 and 2 and that the periods ΩA and Ωf , where f
is the Hilbert modular form associated to A, are equal in C× up to a p-adic unit in Q×, then if
L(A, s) has a simple zero at s = 1, then

ordP

(︄
L′(A, s)

ΩARegA/F

)︄
= lenghtOA,P

X(A/K).
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In other words, this result proves the P-part of the Birch and Swinnerton-Dyer conjecture
for abelian varieties over totally real fields for infinitely many primes p. Furthermore, if this
theorem holds for every P ⊂ OA above p, then we can descend it to obtain the p-part of the
Birch and Swinnerton-Dyer conjecture in the rank one case for infinitely many p.

We now give an idea of the structure of the proof. The most important tool used is the level
raising/rank lowering method. One application is due to Zhang in [Zha14] for elliptic curves over
Q. We say that a prime ideal ℓ of OF is admissible if

• ℓ ∤ NDK/F p;

• ℓ is inert in K;

• p ∤ N(ℓ)2 − 1;

• the P-adic valuation is vP((N(ℓ) + 1)2 − a2ℓ) ≥ 1.

Here DK/F is the discriminant of K/F . Given our Hilbert modular form f of level N we can
choose a product m of some admissible primes and using the first two item in Assumptions 2
in Theorem 4.1.4 we construct another Hilbert modular form fm with level Nm such that the
residual representations are isomorphic. Associated to fm there is another abelian variety Am and
in particular we get that the rank of the Selmer group of Am is lower than the one of SelP(A/K):
this is proved in Theorem 5.2.1 which requires the last item of Assumptions 2. We use this idea
to prove a parity result about the rank of the Selmer groups: if L(A, s) has a simple zero at
s = 1 then the rank of the Selmer group must be odd.

Next we produce a suitable Kolyvagin system and in particular we prove that it is non-trivial.
This is the main problem to resolve in order to use Heegner points and it is usually called the
Kolyvagin conjecture. In order to achieve this goal we construct another structure theorem
in the same spirit of first one concerning the Selmer group: in Theorem 5.4.6 we provide a
triangular basis for an eigenspace of the Selmer group composed only by Kolyvagin classes; this
last element is the key result to prove the non-vanishing of the Kolyvagin system. For this we
study the relation between the localizations of the classes c(n) at various primes and prove some
explicit reciprocity laws, among which the most important is stated in Theorem 4.2.5; here we
need also the third item of Assumptions 2. This problem has been studied by many authors: see
among others [BD05], [Lon06], [Tam21] and [Nek07]. We follow the way traced by Bertolini and
Darmon in [BD05] and generalized to totally real field by Longo in [Lon12]. A technical tools
used is the Ihara’s lemma for Shimura curves, recently proved over totally real field by Manning
and Shotton. These explicit reciprocity laws, the theorem on the structure of the Selmer group
and the level raising/rank lowering method allow us to prove the Kolyvagin’s conjecture, which
finally leads us to the proof our main result.
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Chapter 1

Modular Abelian Varieties

Let F be a totally real number field of degree g, and let K be a CM-extension of F .
In this chapter we introduce the notations and the basic constructions that we need in order

to define the Heegner points and Kolyvagin’s classes on modular abelian varieties over a totally
real field.

1.1 Shimura curves

Let ϵ be the quadratic character associated to K/F . Let N be an integral ideal of F which is
prime to the relative discriminant of K/F . This ideal factorizes as N = N−N+ where all factors
in N− (resp. N+) are inert (resp. split) in K. We assume that N− is square-free and that
the number of its prime factors ν(N−) has opposite parity rather than g. This is usually called
Heegner hypothesis.

Let us fix ξ : F → R a real embedding of F . We want to construct a Shimura curves associated
to K and N which will be the principal ingredient in order to define the modular abelian varieties.

By our assumption on the parity of the number of factors of N−, there exists a unique
quaternion algebra B over F which is ramified only at the prime divisors of N− and all the
archimedean prime but ξ. Using this information about the ramification at the archimedean
places we can fix an isomorphism

B ⊗Q R ∼=M2×2(Fξ)⊕Hg−1

where Fξ is the completion of F at ξ and H denotes the real quaternions.
Let AF denotes the adele ring of F , Af

F the subring of finite adeles and A∞
F the infinite part.

We consider the group of units B× which can be endowed with some more structure: there
exists an algebraic group G such that B× is the set of F -rational points of G, i.e. G(F ) = B×.
Hence, taking the projection over the first factor in the previous isomorphism, we get a map

G(A∞
F ) ∼= (B ⊗Q R)× → GL2(Fξ)

which defines an action of A∞
F , and so also of B× on the union of the upper and lower half-plane

H±. We denote by U∞ the stabilizer of i for this action, and so we identify

H± ∼= G(A∞
F )/U∞.
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1.1. SHIMURA CURVES

If we consider the quotient map G(A∞
F )→ H± we can easily see that it admits a section s defined

as
s(x+ iy) ↦→

(︃(︃
y x
0 1

)︃
, 1, . . . , 1

)︃
.

Following [How04, Section 1.2], at every place v ∈ N− where B ramifies, K ⊗F Fv is a field, and
so we can find an embedding q : K → B. Considering the action of B× onto H± we find that
there is only one point w(q) ∈ H± which is fixed by all q(α) varying α ∈ K×.

Let OB be a maximal (Eichler) order of B containing q(OK) and define an order

R = q(OK) + q(N+)OB

of reduced discriminant N . Let H ⊂ G(Af
F ) be the image of order R̂

×
under the isomorphism

B̂
× ∼= G(Af

F ) and let Z denote the center of G, so Z(Af
F ) = F̂

×
. To this datum we can associate

a Shimura curves X which has the associated Riemann surface (which we will also denote by X)
given by

X(C) = G(F )\H± ×G(Af
F )/Z(A

f
F )H

= B×\H± × B̂
×
/F̂

×
R.

In the case that F = Q to have a Shimura curve we need to add some extra points, the so-called
cusps; in this case we recover the classical modular curves X0(N). If F ̸= Q then X is proper
over Spec(F ).

We denote by [z, b] the point of X(C), which are represented by a pair (z, b) ∈ H± × B̂
×

.
This curve is irreducible but not necessarily geometrically irreducible. We have an action of

the normalizer of U on the curve X(C) given by α[z, b] = [z, bα−1]; we denote this automorphism
by J(α). Let ν denote the reduced norm ν : G(AF )→ A×

F , then the reciprocity map

recF : F̂
×
→ Gal(F ab/F )

induces an isomorphism Gal(FX/F ) ∼= F×\A×
F /ν(Z(AF )UU∞) where FX is an abelian extension

of F by class field theory.
In many applications we are interested in integral model of these Shimura curves and they

were studied by many authors. When F = Q and B = M2(Q) the curve X is the classical
modular curve X0(N) which is a coarse moduli space of elliptic curves with Γ0(N)-structure.
Katz and Mazur in [KM85] studied this specific case in full detail and were able to construct an
integral model and later to compactify into a regular integral model proper over Spec(Zp) for
some prime p where B does not ramify. If B ̸= M2(Q) we can still use some similar techniques
and we can view X as a coarse moduli space of abelian surfaces with quaternionic multiplication
and some suitable level structure. Thanks to the works of Buzzard we can obtain a proper regular
integral model. Things are more difficult when F ̸= Q because they are no more moduli space
of abelian varieties with some structure, in fact we loose altogether the moduli interpretation.
However, we can again find integral models but it is not straightforward. The Shimura curve X
can be related to another unitary Shimura curve that parametrizes some class of abelian varieties
of dimension 4 [F : Q]. This was first studied by Carayol in [Car86] and using his results following
the methods of [CV05] we can find an integral model.

So we can find canonical models, whose existence was proved by Shimura.

Theorem 1.1.1. There is a smooth projective variety X defined and connected over F whose
complex point are isomorphic to X(C) as a Riemann surface. The action of Gal(F/F ) on the

2



CHAPTER 1. MODULAR ABELIAN VARIETIES

geometric components of factor through Gal(FX/F ) and agrees with the action determined by
J(α). If x ∈ X(C) is a CM-point then x is defined over Kab and the action of Gal(Kab/K)
agrees with the one defined above by the reciprocity map.

Proof. See [How04, Proposition 1.2.2].

We now define some correspondences on the Shimura curve. Let m be an integral ideal of F
coprime to N . For every prime ℓ | m the quaternion algebra B is split. Define ∆(m) (resp. ∆(1))
to be the set of elements of ÔB with component 1 away from m and such that their determinant
generates m (resp. is a unit) at every prime divisor of m. We define the Hecke correspondence
or operator Tm on X(C) as

Tm [z, b] =
∑︂

γ∈∆(m)/∆(1)

[z, bγ] .

The collection of these operators forms and algebra which is called the Hecke algebra of the
Shimura curve. For more details on this we refer to [Nek07, section 1.12].

There is an interesting class of points on a Shimura curve which will be important in order to
construct the Heegner points later. Our ramification assumptions on the algebra B imply that
there is an F -embedding τ : K ↪→ B. We fix such embedding and extend it to the completion at
a prime v as τv : K ⊗F Fv ↪→ Bv and to the ring of finite adeles τ̂ : K̂ ↪→ B̂. We recall that we
fixed an embedding ξ : F ↪→ R, we extend it to ξ1 : K ↪→ C.

Lemma 1.1.2. There is a unique point z ∈ C with Im(z) > 0 which is fixed by the action of
τ(K×) ⊂ B× ⊂ B×

ξ1

∼→ GL2(R) and furthermore we have that {λ ∈ B× | λ(z) = z} = τ(K×).

Proof. See [Nek07, Lemma 2.2].

Definition 1.1.3. The Complex Multiplication points, or CM-points, by the CM field K on the
Shimura curve X are the point in the following set

CM(X,K) =
{︂
x = [z, b] ∈ X(C) | b ∈ B̂

×}︂
where z is the same as in Lemma 1.1.2.

Remark 1.1.4. The point z depends on the choice of the embedding τ , but since two different
F -embedding of K into B are conjugated by an element of B× by the Skolem-Noether theorem
the set of CM-points does not depend on this choice.

Using the reciprocity law of class field theory we can find the field of definition of the CM-
points: we have CM(X,K) ⊂ X(Kab), so we can define an action of the Galois group of the
abelian closure of K on these points in the following way:

recK(s)[z, b] = [z, τ̂(s)b] ∀ s ∈ K̂
×

where recK : K̂
×
→ Gal(Kab/K) is the reciprocity map. In particular, we have the following

result

Proposition 1.1.5. Let x = [z, b] ∈ CM(X,K) and K(x) the field of definition of x over K.
Then there is an isomorphism recK : K×\K̂

×
/τ̂−1(bHF̂

×
b−1)

∼−→ Gal(K(x)/K).

Proof. See [Nek07, Proposition 2.5].
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This isomorphism can be written in a simpler way:

recK : K̂
×
/K×F̂

×
Z

∼−→ Gal(K(x)/K)

where Z = τ̂−1(bHÔ
×
F b

−1) ⊂ O×
K is an open compact subgroup of Ô

×
K containing Ô

×
F . This Z is

the preimage of R̂ under the map b−1τb and is called the endomorphism ring of the CM-point x.
Furthermore, this ring arises from an OF -order in K of the form Oc = OF + cOK for a non-zero
ideal c ⊂ OF as Z = Ô

×
c . The ideal c is called the conductor of x. The corresponding abelian

extension K[c]/K is the ring class field of K of conductor c. The reciprocity map recK is also
compatible with the action of Gal(K/F ).

It is important to analyze the behavior of primes of K in the ring class field. Each prime
not dividing OK is unramified in K[c]/K. If a prime of F which does not divides c and which is
inert in K/F then it splits completely in K[c]/K.

In this setting it is more difficult to construct explicitly CM-points of a given conductor rather
than in the classical case of modular curves, so we give an example. We will follow [How04].
Fix a prime ℓ which does not divide the discriminant DK/F nor N and an isomorphism of the
localization of the quaternion algebra Bℓ

∼= M2(Fℓ) in such a way that we can identify Rℓ with
M2(OF,ℓ). So we get the following explicit embedding if ℓ is split in K

τ(OK,ℓ) =

{︃(︃
x 0
0 y

)︃
| x, y ∈ OF,ℓ

}︃
and the following one if ℓ is inert in K

τ(OK,ℓ) =

{︃(︃
x yu
y x

)︃
| x, y ∈ OF,ℓ

}︃
for some u ∈ O×

F,ℓ not a square. Let π be an uniformizer of Fℓ and let h[ℓk] be the element of
Bℓ such that under the previous isomorphism behaves as following:

h[ℓk] ↦→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︄
πk 1

1

)︄
if ℓ splits in K(︄

πk

1

)︄
if ℓ is inert in K

We can view h[ℓk] as an element of G(AF ) with trivial component away from ℓ and extend
h multiplicatively to a map on all integral ideals prime to DK/FN . These points have nice
properties and in particular we have that

Proposition 1.1.6. There is a collection of CM-points h[m] ∈ X(C) where m runs over all
prime ideal coprime with DK/FN such that h[m] has conductor m and as divisors on X(C)

[︁
O×

m : O×
mℓ

]︁
normK[mℓ]/K[m](h[mℓ]) =

⎧⎪⎨⎪⎩
Tℓ(h[m]) if ℓ ∤ m and is inert in K

Tℓ(h[m])− h[m]σℓ − h[m]σ
∗
ℓ if ℓ ∤ m and is split in K

Tℓ(h[m])− h[m/ℓ] if ℓ | m

where σℓ and σ∗
ℓ are the Frobenius automorphisms of the primes of K above ℓ and Om is the

order defined above.

Proof. See [How04, Proposition 1.2.1].
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CHAPTER 1. MODULAR ABELIAN VARIETIES

1.2 Hilbert modular forms
We fix a totally real number field F , an integral ideal N ⊂ OF and a positive number n. Let
H denote the complex upper half-plane. An element M = (M1, . . . ,Mn) in the group SL2(R)

n

acts on the product of n complex upper half-planes as

M(z1, . . . , zn) = (M1z1, . . . ,Mnzn)

where the action of SL2(R) on H is the classical one.

Proposition 1.2.1. A subgroup Γ ⊂ SL2(R)
n is discrete if and only if it acts discontinuously

on Hn.

Proof. See [Fre90, Chapter I, Proposition 2.1].

Since the field F is totally real of dimension g we can consider the set of real embeddings
JF = {ξ1, . . . , ξg} and construct an injective map

F → Rg

a ↦→ (ξ1(a), . . . , ξg(a)) .

We call an element a ∈ F totally positive if for all ξ ∈ JF the number ξ(a) is positive. For ease
of notation we are going to identify a and the vector (a1, . . . , ag) = (ξ1(a), . . . , ξg(a)). Thus, we
obtain an embedding of the groups GL2(F ) ↪→ GL2(R)

g and SL2(F ) ↪→ SL2(R)
g.

Definition 1.2.2. The Hilbert modular group of F is

ΓF = SL2(OF ).

The group OF under the embedding F → Rg is a lattice in Rg, hence it is discrete; this
implies that also SL2(OF ) is discrete in SL2(R)

g, in particular by the above theorem it acts
discontinuously on Hg. Let Γ ⊂ SL2(R)

g a subgroup, we say that it is commensurable with the
Hilbert modular subgroup if the intersection Γ ∩ ΓF has finite index in both Γ and ΓF .

Definition 1.2.3. The Hilbert modular variety is

XΓF
= ΓF \Hg ∪ F ∪ {∞} .

Let Γ be a subgroup commensurable with ΓF , then the Hilbert modular variety of level Γ is

XΓ = Γ\Hg ∪ F ∪ {∞} .

Proposition 1.2.4. XΓ is compact for all Γ commensurable with the Hilbert modular group.

Proof. This follows from [Fre90, Chapter I, Theorem 3.6].

Following [Fre90] we can give the definition of cusps for a discrete subgroup Γ, which is similar
to the classical one. In particular, the cusps of the Hilbert modular variety are the elements of
F ∪ {∞}.

Proposition 1.2.5. The Hilbert modular variety has only finitely many cusps classes and their
number is the class number of F .

Proof. This follows from [Fre90, Chapter I, Proposition 3.4] and [Fre90, Chapter I, Corollary
3.5.1].
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Let r = (r1, . . . , rg) be a vector of positive integers, for M ∈ SL2(R)
g and z ∈ Hg we define

jr(M, z) =

g∏︂
i=1

(cizi + di)
ri

where M = (M1, . . . ,Mg) and each Mi =
(︁
ai bi
ci di

)︁
.

Definition 1.2.6. Let Γ ⊂ SL2(R)
g be a discrete subgroup that is commensurable with the

Hilbert modular group. A Hilbert modular form of weight r of level Γ is a holomorphic function

f : Hg → C

such that

• f(Mz) = jr(M, z)f(z) for all M ∈ Γ;

• f is regular at the cusps, i.e. all the negative index coefficients of the Fourier expansion at
the cusps are zero.

If f vanishes at all the cusps, we call f a cusp form.

We now define a norm on the space of Hilbert modular forms. We start by recalling some
basic properties of complex measures.

Proposition 1.2.7. Let z ∈ Hg, z = (x1 + iy1, . . . , xg + iyg). The measure

dωz =
dvz

(y1 . . . yg)2

where dvz denotes the usual Euclidean measure, is invariant under the transformation z ↦→ Mz
for all M ∈ SL2(R)

g. Furthermore, the space Γ\Hg has finite volume with respect to this measure.

Proof. This is [Fre90, Chapter II, Remark 1.1 and 1.4].

Using this proposition we can prove that if f , g are two Hilbert modular forms, where at
least one of them is cuspidal, the integral∫︂

Γ\Hg

f(z)g(z)

(︄
g∏︂

i=1

(yrii )

)︄
dωz

exists.

Theorem 1.2.8. The Petersson pairing

⟨f, g⟩ =
∫︂
Γ\Hg

f(z)g(z)

(︄
g∏︂

i=1

(yrii )

)︄
dωz

is a Hermitian inner product on the space of Hilbert modular cusp forms of weight r.

Proof. The proof is the same as in [Fre90, Chapter II, Remark 1.5].
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We can generalize this construction and switch to an adelic setting in order to define the
adelic Hilbert modular forms. We follow [Ros16] for this construction. A weight r = (r1, . . . , rg)
is called parallel if r1 = . . . = rg. Let GL2 be the algebraic group defined over F of 2 by
2 invertible matrices and GL2(A∞

F )+ be the connected component of GL2(A∞
F ) containing the

identity; the group GL2(A∞
F )+ can be embedded as before in SL2(R)

g, therefore it acts on Hg

by fractional linear transformations. Let K∞ be the stabilizer of z0 = (i, . . . , i) ∈ Hg under this
action.

For n an ideal of F we define the group

K0(n) =
{︂(︁

a b
c d

)︁
∈ GL2(ÔF ) | c ∈ n̂

}︂
.

Definition 1.2.9. Let r, w be two g-tuple of positive integers, we define the space of adelic
Hilbert modular forms of level K0(n) and weight r as the space of complex-valued functions f
on GL2(AF ), holomorphic on GL2(A∞

F ), such that

f(axu) = f(x)jr,w(u∞, z0) for all a ∈ GL2(F ), u ∈ K0(n)K∞

where u∞ denote the infinite part of u and

jr,w(M, z) =

g∏︂
i=1

(detMi)
−wi · jr(M, z).

We say that f is cuspidal if ∫︂
F\AF

f(ga)da = 0 for all g ∈ GL2(AF )

with respect to the Haar measure.

Let G = RedF/QGL2(F ), then the adelic Hilbert modular functions can be seen as function
on the Shimura variety

XK0(n) = G(Q)\G(AF )/K∞K(n).

In order to have non-zero adelic Hilbert modular forms the elements r and w must be in a precise
relation, in fact r − 2w must be parallel; let us call m ∈ Z the value of the entry of this vector.

Definition 1.2.10. Let f, g be adelic Hilbert modular forms, the Petersson inner product is
defined as

⟨f, g⟩ =
∫︂
XK0(n)

f(x)g(x)|det(x)|m dµK0(n)(x)

where µK0(n) is a measure on XK0(n) which is induced from the standard measure on the Borel
of GL2(AF ). For a precise construction of this measure see [GG12, Section 5.7].

By the strong approximation theorem, the Shimura variety XK0(n) can be decomposed as

XK0(n) =

h+⋃︂
i=1

Γai
\Hg

where h+ is the narrow class number of F and Γai are suitable subgroup indexed by a set of
representatives of the narrow ideal class group. As a consequence, the function f decomposes
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as (f1, . . . , fh+), where each fi is a Hilbert modular forms. Then the two definition of Petersson
product are linked by

⟨f, g⟩ =
h+∑︂
i=1

N(ai)
m⟨fi, gi⟩.

From now on we work with adelic Hilbert modular forms, so to avoid verbosity we drop the
adjective adelic.

Using the Whittaker operator defined in [Zha01b, Section 3] we can find a Fourier expansion
for f and we call am(f) the m-th coefficient of f for m an ideal of OF .

Let m be a non-zero ideal of OF . Let H(m) denote the following subset of GL2(F̂ ):

H(m) =

{︃(︃
a b
c d

)︃
∈ GL2(ÔF ) | (d,N) = 1, c ∈ NÔF , (ad− bc)ÔF = mÔF

}︃
.

Definition 1.2.11. The m-th Hecke operator T (m) on the space of cusp form of parallel weight
k is defined by the formula

(T (m)f)(z) = N(m)k/2−1

∫︂
H(m)

f(hz) dh

where dh is the Haar measure on GL2(F̂ ) such that K0(N) has volume 1.

Proposition 1.2.12. The Fourier coefficients of T (m)f are given by the formula

an(T (m)f) =
∑︂

a|(m,n)

N(a)k−1amn/a2(f).

Proof. This is [Zha01b, Proposition 3.1.4].

Let N ′ be a factor of N , let d ∈ GL2(F̂ ) such that

d−1K0(N)d ⊂ K0(N
′)

and let f ′ be a Hilbert modular form for K0(N
′) of the same weight of f . Then by [Zha01b,

Section 3.1.6] the function f ′d(z) = f ′(dz) is a Hilbert modular form for K0(N).

Definition 1.2.13. The subspace of the space of cuspidal Hilbert modular forms of level K0(N)
generated by these f ′d varying N ′ ̸= N is called the space of old forms. The space perpendicular
to the space of old forms is called the space of new forms.

The space of new forms is generated by the newforms, i.e. Hilbert modular forms which are
new, they are eigenforms for all Hecke operators and their first coefficient is 1. Then we have a
strong multiplicity one theorem.

Theorem 1.2.14. Let f1, f2 be two newforms of parallel weight k of levels K0(N1) and K0(N2)
respectively, such that ap(f1) = ap(f2) for all but finitely many primes p of OF . Then N1 = N2

and f1 = f2.

Proof. See [Zha01b, Theorem 3.1.7].

Let T denote the subalgebra of the C-endomorphisms of the space of cuspidal Hilbert modular
forms generated by the T (m) with (m, N) = 1.

Corollary 1.2.15. For any linear map α : T → C, there is a unique Hilbert modular form f
such that

am(f) = α(T (m))

whenever (m, N) = 1.

Proof. See [Zha01b, Corollary 3.1.8].
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1.3 Automorphic forms on definite quaternion algebras
Let N an ideal of OF like before but here we want the number of factors of N− to have the same
parity as the degree of F . Let B′ a quaternion algebra over F which ramifies at all archimedean
places and at the places dividing N− and R be an Eichler order of level N+.

Definition 1.3.1. The Gross curve of level R is the curve defined as a double coset

X = B′×\B′ˆ ×
/F̂

×
R.

Remark 1.3.2. The set X is a finite set, so why is called a curve? Since all primes dividing the
discriminant of B′ are inert in K there is an embedding τ : K ↪→ B′. By [BD96, Section 1.2], we
have that the set of homomorphisms Hom(K,B′) con be identified with H±, so we can consider
the curve ˜︁X = B′×\B′ˆ ×

×Hom(K,B)/F̂
×
R.

For g ∈ X let Γg = g−1(F̂
×
R)g ∩B×, then H±/Γg are curves of genus zero over F and

˜︁X =
⋃︂
g∈X

H±/Γg.

For more details on this construction see [BD96, Section 1.3].

We can now define some special function from the Gross curve to C:

Definition 1.3.3. The space of weight two C-valued automorphic forms for B′× of level R and
trivial central character is

SB′×
(R) = {f : X→ C} .

Let f adelic Hilbert cuspidal modular forms of parallel weight 2, trivial central character and
level K0(N). We can transfer it via the Jacquet-Langlands correspondence to a unique (up to
scaling) automorphic form

ϕ : X→ C

having the same eigenvalues as f under the action of the Hecke algebra. If the Hecke eigenvalues
of f are contained in a ring O, then ϕ can be normalized to take values in O. See [JL70] for
the general theory and [Lon12, Section 4] for an application to our case of definite quaternion
algebras.

1.4 Modular abelian varieties
As in the previous section we fix a real number field F , an integral ideal N ⊂ OF such that
either [F : Q] is odd or ordv(N) is odd for some finite place v of F , a CM-filed K/F of relative
discriminant DK/F which we assume satisfies the weak Heegner hypothesis, ϵ the quadratic
character associated to the extension K/F . Let T denote the Hecke algebra for the Hilbert
modular forms of level N . Let f be a Hilbert modular newform of level N and parallel weight 2
on AF we can consider the map

λf : TN → Q

T ↦→ a1(Tf)

We denote its kernel by If . This homomorphism surjects onto the coefficient ring of f which is
a finitely generated Z-module and its field of fractions is hence a real number field. In particular
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since the action of the absolute Galois group of F commutes with the Hecke operators action fσ
is again a Hilbert newform for all σ ∈ Gal(F/F ), in particular all its coefficients are real. So the
field of coefficients E of f is a totally real number field.

Let X be the canonical model over F of the complex Shimura curve X(C) defined beforehand.
This curve splits into its irreducible geometric components over a field FX , so X×F FX =

∐︁
Xi.

By [How04, Section 1.3] we have that every field L/F with X(L) ̸= ∅ must contain FX . Let us
fix one of the irreducible components and we call it X0. We define JX to be the abelian variety
over F obtained by the restriction of scalars of Jac(X0) from FX to F . JX has good reduction
away from N and for every algebraic extension L/F with X(L) ̸= ∅

JX(L) =
∏︂
i

Jac(Xi)(L) =
∏︂
i

Pic0(Xi ×FX
L).

We denote by TX the Q-algebra generated by the Hecke operators acting on JX .
Using the Jacquet-Langlands correspondence for every algebra homomorphism α : TX → C

we can find a level N parallel weight 2 Hilbert newform f such that α(T ) = λf (T ), so we can
associate to every maximal ideal of TX a Galois conjugacy class of Hilbert newforms and also
we can provide a surjective map T→ TX which endows the Lie algebra of JX with an action of
T. This follows from [Zha01b, Theorem 3.2.1] and the construction in [How04, Section 1.3].

Theorem 1.4.1. There is an isogeny JX →
⨁︁

ϕAϕ where the sum is over all conjugacy classes
of Hilbert newform of parallel weight 2 and level dividing N and the Aϕ are abelian varieties, such
that the induced map on Lie algebras is T-equivariant. If ϕ is of level exactly N then Lie(Aϕ) is
free of rank 1 over Fϕ ⊗Q C. Furthermore, for each ϕ there is an equality of L-functions

LN (s,Aϕ) =
∏︂

σ : Fϕ ↪−→ C

LN (s, ϕσ)

where the subscript N means that the Euler factor at primes dividing N is removed.

Proof. See [How04, Theorem 1.3.1].

The Aϕ of this theorem are the abelian varieties associated to the Hilbert newform ϕ.

Definition 1.4.2. An abelian varietyA is called a modular abelian variety if it admits a surjective
morphism from JX .

We now define and embedding of X into JX which will be very useful in the next sections. In
the classical case we would use the cusps, but there are none in our setting, so we need something
more subtle. We use the Hodge class ξ ∈ Pic(X): the unique up to a constant multiple class
whose degree is constant on each geometric component and which satisfies Tmξ = deg(Tm)ξ
for every Hecke operator with m prime to DK/FN . In our case the Hodge class is simply the
canonical divisor on each geometric component. Let X(C) =

⋃︁
iXi(C) the decomposition of X

into connected components and let ξi the restriction of ξ to Xi. Let di the degree of ξi. There
is a unique morphism X → JX defined over F such that on complex point it takes pi ∈ Xi(C)
to the divisor dipi − ξi ∈ JX(C). Hence we have a map also from X to the abelian variety:
X → JX → Aϕ.

1.5 Pairings
Let A be a modular abelian variety over any number field F . For a place v of F we call Fv the
completion of F at v. Let p be a rational prime, p an unramified prime of F above p and P a
prime of OA above p.
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For any abelian variety and for every m not dividing the characteristic of F we have the Weil
pairing

em : A[m](F )×A∨[m](F )→ µm(F )

where µm(F ) is the set of m-th root of the unity in F and A∨ is the dual abelian variety. This
pairing is non-degenerate and commutes with the action of the absolute Galois group of F . In
order to define this pairing we use the dual variety which is no more isomorphic in general to A,
so given a polarization λ we can define a pairing on A

eλm : A[m](F )×A[m](F )→ µm(F )

where eλm(a, b) = em(a, λ(b)). This depends on the choice of the polarization. It becomes more
simple if A is principally polarized.

For an explicit definition of the Weil pairing and more properties we refer to [Mil08, p. I.13].
For abelian varieties whose endomorphism ring is an order in a number field the em-pairing

naturally generalizes to an ePM -pairing as follows:

Lemma 1.5.1. For any abelian variety A/F whose endomorphism ring is an order OA in an
finite extension E/Q, and for any unramified, invertible prime P of OA with residue charac-
teristic p, the restriction of the epM -pairing to the PM -torsion of A defines a non-degenerate
pairing

ePM : A[PM ]×A∨[PM ]→ µpM .

Moreover, if A admits a principal polarization, this pairing is alternating.

Proof. Let A be an abelian variety as above, let P be an invertible prime of OA, and let M > 0
be an integer. Denote by p the characteristic of its residue field and let Q be any another
prime extending p. The QM -torsion points of A∨ carry the structure of an OA-module and of an
OA/Q

M -module. By the Chinese remainder theorem, there exists an x ∈ PM such that x reduces
to 1 modulo QM . In particular, x acts as trivially on A∨

QM . Let a ∈ APM and b ∈ A∨[QM ].
Since the epM -pairing is OA-bilinear, it follows that

epM (a, b) = epM (a, xb) = epM (xa, b) = 1.

This shows that the PM -torsion points of A are orthogonal to the PM -torsion points of A∨ for
all primes Q ̸= P. Hence, the epM pairing restricts to a pairing as described in the Lemma. As
the epM pairing is non-degenerate and alternating when A admits a principal polarization, this
shows that its restriction to A[PM ] is non-degenerate as well.

Let v be a place of F , then the Weil pairing induces also a cup product in cohomology

H1(Fv, A[m])⌣ H1(Fv, A
∨[m])→ H2(Fv,Gm)

invv−−−→ Q/Z

which is again non-degenerate and if F is Galois then it is Gal(F/Q)-equivariant. If we assume
A to be principally polarized we can forget the dual symbol on the second factor.

The group H2(Fv,Gm) is the Brauer group of the multiplicative group Gm and it fits in a
short exact sequence

0→ Br(F )→
⨁︂
v

Br(Fv)→ Q/Z→ 0.

In this direct sum, v ranges over all places of F and the second map is given by taking the sum
of the Hasse invariants as before. From the exact sequence we deduce that for c ∈ H1(F,A[m])
and c′ ∈ H1(F,A∨[m]) we have
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Lemma 1.5.2. ∑︂
v

invv(cv ⌣ c′v) = 0.

Proof. The sum of invariants of a global class is zero. See [McC91, Proposition 2.2].

Assume that A has multiplication by an orderOA in a finite extension E/Q. Assume moreover
thatA admits a principal polarization. The cup product then becomes a pairing onH1(F,A[PM ])
which acts on A(F )/PMA(F ).

Proposition 1.5.3. Assume that the abelian variety A admits a principal polarization, and let
v be a non-archimdean place of F , coprime to pOF , such that A has good reduction at v. Then
the image of A(Fv)/P

MA(Fv) under δ is a maximal isotropic subgroup of H1(Fv, A[P
M ]). In

particular, it gives rise to a non-degenerate pairing

⟨·, ·⟩v : H1(Fv, A)[P
M ]×A(Fv)/P

MA(Fv)→ Q/Z.

Proof. Let v be such a place of F . By [Sil09, Lemma VIII.2.1], the image of δ is unramified. In
particular, the Kummer sequence reduces to

0→ A(Fv)/P
MA(Fv)

δ−→ H1(F ur
v /Fv, A[P

M ])→ H1(F ur
v /Fv, A)[P

M ]→ 0,

where H1(F ur
v /Fv, A[P

M ]) is embedded into H1(Fv, A[P
M ]) via the inflation map. As A has

good reduction at v, the group H1(F ur
v /Fv, A) vanishes [see Mil06, Chapter 1, Lemma 3.8], and

hence δ is an isomorphism. We claim that this inflated group is isotropic. As the cup product
commutes with inflation, the restriction of the cup pairing to H1(F ur

v /Fv, A[P
M ]) is given by a

pairing
H1(F ur

v /Fv, A[P
M ])×H1(F ur

v /Fv, A[P
M ])→ H2(F ur

v /Fv, µpM ).

But as v is coprime to p, it can be deduced from the Hochschild-Serre spectral sequence that
latter group vanishes (see [Mil06, Lemma 2.9]). It follows that the inflated group us isotropic
and hence so δ(A(Fv)/P

MA(Fv)).
In order to prove maximality, it suffices to show that the group H1(Fv, A)[P

M ] is iso-
morphic to A(Fv)/P

MA(Fv). As H1(F ur
v /Fv, A) vanishes, it follows from inflation-restriction

that restriction induces an isomorphism H1(Fv, A)[P
M ]

∼−→ H1(F ur
v , A)[PM ]G , where G denotes

the Galois group of F ur
v /Fv. Moreover, as A(F ur

v ) is p-divisible, the Kummer sequence in-
duces an isomorphism H1(F ur

v , A[PM ]) ∼= H1(F ur
v , A)[PM ], and so an isomorphism of their

G-invariant subgroups. Since the PM -torsion points of A are unramified over Fv, the action
of the inertia group I of Fv on A[PM ] is trivial. This gives rise to the natural identification
H1(F ur

v , A[PM ]) = Hom(I, A[PM ]). Let l denote the characteristic of the residue field of Fv. It
follows from ramification theory that the wild ramification group Iwild of Fv is a maximal pro-l
subgroup of I, and since l ̸= p any homomorphism f : I → A[PM ] must therefore vanish on
Iwild. Serre showed that the quotient I/Iwild is canonically isomorphic to the product

∏︁
q ̸=lZq(1),

where Zq(1) := lim←−µqn . For a proof of this see [Wei, Section 3.3] and [RS01, Section 2.1.2]. As
any homomorphism f as above factors through this group, we conclude that H1(Fv, A)[P

M ] is
isomorphic to the group Hom(µpM , A[PM ])G . The group of pM -roots of unity is cyclic, hence this
group of homomorphisms is naturally isomorphic to A[PM ](Fv), and since multiplication by p is
an isomorphism on Ov, it follows from [Mil06, Lemma 3.3] that A(Fv)/P

MA(Fv) is isomorphic
to A[PM ](Fv) as well. It follows that δ(A(Fv)/P

MA(Fv)) is maximal isotropic.
Since it is maximal isotropic, it fits in a short exact sequence

0→ δ(A(Fv)/P
MA(Fv))→ H1(Fv, A[P

M ])
ev−→ δ

(︁
A(Fv)/P

MA(Fv)
)︁∗ → 0.

12
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Hence consider the diagram

0 A(Fv)/P
MA(Fv) H1(Fv, A[P

M ]) H1(Fv, A)[P
M ] 0

0 A(Fv)/P
MA(Fv) H1(Fv, A[P

M ]) δ
(︁
A(Fv)/P

MA(Fv)
)︁∗

0.

δ ι∗

δ ev

φ

Here φ is the map making this diagram commutative. It is given by the composition ι∗ ◦ ev−1,
which is well-defined by exactness. Because all groups are finite, φ is an isomorphism. For any
y ∈ A(Fv)/P

MA(Fv) and d ∈ H1(Fv, A)[P
M ], the pairing is now defined as

⟨d, y⟩v = φ−1(d)(δ(y)).

The non-degneracy of the pairing follows immediately from the fact that φ is an isomorphism.
The pairing is alternating as it is induced by the cup product.

This pairing is also known as the Tate-pairing. In proving the previous proposition, we have
also shown the following useful relation between the cup-product and the Tate pairing:

⟨ιv∗(c), x⟩v = c ⌣ δ(x) (1.1)

1.6 Selmer and Shafarevich-Tate groups
Let α be an endomorphism of A, then

0→ A[α]
ι−→ A

α−→ A→ 0

Passing to cohomology we get a short exact sequence

0→ A(F )/αA(F )
δ−→ H1(F,A[α])→ H1(F,A)[α]→ 0

where δ is the Kummer map. If we consider the localization at the places of F we get the
following commutative diagram

0 A(F )/αA(F ) H1(F,A[α]) H1(F,A)[α] 0

0
∏︁

v A(Fv)/αA(Fv)
∏︁

vH
1(Fv, A[α])

∏︁
vH

1(Fv, A)[α] 0

δ ι∗

δv ιv∗

Using this diagram we can define two fundamental groups associated to A:

Definition 1.6.1. Let A be an abelian variety over F and let α be an endomorphism of A.
The α-Selmer group of A over F is given by

Sα(A/F ) = ker

(︄
H1(F,A[α])→

∏︂
v

H1(Fv, A)[α]

)︄
.

The Shafarevich-Tate group of A over F is given by

X(A/F ) = ker

(︄
H1(F,A)→

∏︂
v

H1(Fv, A).

)︄

13



1.6. SELMER AND SHAFAREVICH-TATE GROUPS

Let m ∈ Z, then we can consider the multiplication-by-m map αm and we write Sm(A/F )
for Sαm

(A/F ). By the snake lemma, the Selmer group and the Shafarevich-Tate group fit in the
α-descent sequence

0→ A(F )/αA(F )→ Sα(A/F )→X(A/F )[α]→ 0

Let p be a prime number that is unramified in E and invertible in OA, and let P be any
prime extending p. Define for any M > 0, the group of PM -torsion points of A as

A[PM ] = {P ∈ A | α · P = 0, for all α ∈ PM}

This group carries a natural structure of a torsion-freeOA/P
M -module. Let fP denote the inertia

degree of P over p. As OA/P
M is a finite Z/pMZ-algebra with additive group isomorphic to

(Z/pMZ)fP , these modules carry a natural structure of Z/pMZ-module as well. This gives rise
to a decomposition of Z/pMZ-modules

A[pM ] =
∏︂
P|p

A[PM ].

Multiplication by pM is an isogeny of degree p2gM on A, where g is the genus of A, hence the
pM -torsion group of A is free of rank 2g over Z/pMZ. Notice that A[pM ] moreover carries the
structure of an OA/p

MOA-module. As OA/p
MOA has rank g as a Z/pMZ-module, that A[pM ]

is free of degree 2 as an OA/p
MOA-module. In particular, by the structure of the decomposition

of this module, it follows that A[PM ] is free of rank 2 over OA/P
M .

For any m < M , restriction of scalars equips A[Pm] with an OA/P
M -module structure.

Under this structure, multiplication by p gives rise to a short exact sequence of OA/P
M -modules

0→ A[P]→ A[PM ]
p−→ A[PM−1]→ 0.

Remark 1.6.2. If P is a principal ideal with generator π, there exists another natural short exact
sequence

0→ A[P]→ A[PM ]
π−→ A[PM−1]→ 0.

While the maps π and p are not the same in general, they induce the same map up to composition
with an automorphism of A[PM ].

Analogously to the rational case, the P-adic Tate module is defined as TPA = lim←−M
A[PM ],

and by the same argument, this is a free OP-module of rank 2. Here OP denotes the completion
of OA at P. Since p is invertible and unramified in OA, this is the ring of integers of a finite,
unramified extension of Qp. As the Tate module is free of degree 2, its automorphism group is
naturally isomorphic to GL2(OP). The absolute Galois group Gal(Q/Q) acts on TP, and hence
the P-adic Tate module gives rise to a representation

ρP : Gal(Q/Q)→ GL2(OP).

It follows from [Rib92, Lemma 3.1] that the determinant of this representation is in fact the p-th
cyclotomic character

χp : Gal(Q/Q)→ Z×
p .

The Shaferevich-Tate group of A carries a natural structure of an OA-module. When it is finite,
it is a torsion module and hence the structure of this group can be analyzed by looking at its
P-primary parts, where P ranges over the primes of OA. When OA is a principal ideal domain,

14
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this is immediate, but this is not the case in general. Similar to the previous decomposition,
there is a natural decomposition of Z/pMZ-modules

A(F )/pMA(F ) ∼=
∏︂
P|p

A(F )/PMA(F ).

As taking cohomology commutes with direct sums, we can define the Kummer map for a prime
P by taking the composition

A(F )/PMA(F ) ↪→ A(F )/pMA(F )
δ−→ H1(F,A[pM ])

proj−−→ H1(F,A[PM ])

Explicitly, let P ∈ A(F ) and consider its reduction modulo PMA(F ). By the decomposition
above, there exists a Q ∈ A(F ) such that Q ≡ P modulo PMA(F ) and Q ∈ QMA(F ) for all
other primes Q dividing p. The image of P under the Kummer map is then the class generated
by σ → σ(Q/pM ) − Q/pM . For any σ ∈ Gal(F/F ) this is indeed a PM -torsion point, and the
class is independent of a choice of Q. This map therefore gives rise to the short exact sequence

0→ A(F )/PMA(F )
δ−→ H1(F,A[PM ])→ H1(F,A)[PM ]→ 0. (1.2)

We define the PM -Selmer group as

SPM (A/F ) = ker

(︄
H1(F,A[PM ])→

⨁︂
v

H1(F,A)

)︄

and retain the short exact sequence

0→ A(F )/PMA(F )→ SPM (A/F )→X(A/F )[PM ]→ 0.

Let

H1(F,A[P∞]) = lim−→H1(F,A[PM ]), and SP∞(A/F ) = lim−→SPM (A/F ),

where the direct limit is taken over all M . They carry a natural structure of OP-modules and
we obtain a P∞-descent sequence of OP-modules

0→ A(F )⊗OA
FP/OP → SP∞(A/F )→X(A/F )P∞ → 0, (1.3)

where FP is the field of fractions of OP.

1.7 A pairing on the Tate-Shafarevich group

One of the main tool to study the Tate-Shafarevich group is the Cassels-Tate pairing, which is
derived from the Tate pairing.

⟨·, ·⟩ : X(A/F )×X(A∨/F )→ Q/Z

We will define the pairing only on the P-primary part of the Shafarevich-Tate group. The
construction for arbitrary integers m and n is identical.

Let M and M ′ ∈ Z, and let d ∈X(A/F )[PM ] and d′ ∈X(A∨/F )[PM ′
] be two cohomology

classes. Let c′ ∈ SPM′ (A∨/F ) be a lift of d′ to the Selmer group of A∨. By definition of the

15
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Shafarevich-Tate group, the reduction of d′ modulo v vanishes at every place of F . Hence, via
the Kummer sequence, we can choose a set {y′v ∈ A(Fv)} such that

δ(y′v) = c′v.

Next assume that there exists a d1 ∈ H1(F,A)[PM+M ′
] such that pM

′
d1 = d. Multiplication by

pM
′

sends PM+M ′
-torsion elements to PM -torsion elements. Since the reduction of d vanishes

at every place of F , the reduction d1,v must necessarily be a PM ′
-torsion point of H1(Fv, A).

The Cassels-Tate pairing is now defined as

⟨d, d′⟩ =
∑︂
v

⟨d1,v, y′v⟩v.

To see that this pairing is well-defined, let v be a valuation of F and assume that yv ∈ A(Fv) is
another point such that δ(yv) = c′v. Then y′v − yv vanishes under δ and is therefore contained in
PM ′

A(Fv). Write y′v − yv = αP , as the pairing commutes with the action of OA, it follows that

⟨d1,v, y′v − yv⟩v = ⟨d1,v, αP ⟩v = ⟨α · d1,v, P ⟩v = 0,

since d1,v is PM ′
-torsion. Hence this definition is independent of the choice of y′v. To see that it

is independent of the choice of d1 consider another point d2 ∈ H1(F,A)[PM+M ′
] in the pre-image

of d. The difference d1 − d2 is contained in H1(F,A)[PM ′
], and hence originates from a global

cocycle c ∈ H1(F,A[PM ′
]). Using the relation with the cup product, this implies that

⟨d1,v − d2,v, y′v⟩v = cv ∪ c′v.

But this implies that the Cassels-Tate pairing vanishes here as the sum of Hasse invariants of a
global class is zero.

Remark 1.7.1. It is not generally known if such a d1 exists. By the clever use of cochains, the use
of such a d1 can be avoided, without altering the pairing. This as well as other interpretations
are illustrated in [Mil06, Proposition 6.9] and the corresponding remarks. Other constructions
can also be found in [PS99]. For the classes d considered in this thesis, such a d1 always exists.

Note that any polarization ϕ on A gives rise to a pairing

⟨·, ·⟩ϕ : X(A/F )×X(A/F )→ Q/Z,

⟨d, d′⟩ϕ = ⟨d, ϕd′⟩

Tate showed that this pairing is alternating if ϕ was a polarization arising from F -rational divisor.
Such a polarization need not exist in general, and one can find examples where the order of the
Shafarevich-Tate group is not a perfect square (see [PS99] or [Kei14]). Flach later showed that
such a pairing is antisymmetric if ϕ is a principal polarization.
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Chapter 2

Heegner points and classes

In this section we introduce the Heegner point and construct the associated derivative classes in
a way that enables us to prove a structure theorem for the Tate-Shafarevich group. We follow
the construction made by Nekovar in [Nek07]. We use the same notation of the previous section.

2.1 Čebotarev density theorem
From now on assume that K/F is a CM extension of F of discriminant D = dK/F ̸= 3, 4 and that
N splits completely in K. Let A be a modular abelian variety such that its ring of Q-rational
endomorphism OA is an order in a field E. Let N as in the first section and let p be a prime
number such that

Assumption 2.1.1. 1. p is coprime with 6DN ,

2. p ∤ [OE : OA] where OE is the ring of integers of E,

3. p is unramified in E,

4. For all P extending p in OA, the map ρP : Gal(F/F ) → GL2(OA,P) surjects onto the
subgroup

{g ∈ GL2(OA,P) | det(g) ∈ Z∗
p}.

Note that these conditions hold for all but finitely many primes p, [see LV17, Lemma 3.7].
Let P be any prime of OA extending p, and let M > 0 be an integer. Denote L = K(A[PM ]),
and OM = OA/P

M .

Lemma 2.1.2. There is a natural injection of Gal(L/F )-modules

H1(K,A[PM ]) ↪→ H1(L,A[PM ]) = Hom(Gal(F/L), A[PM ]).

Proof. As N splits completely in K, it is necessarily coprime to D. As by assumption p is coprime
to D as well, the fields K and F (A[p]) are disjoint over F , hence so are the fields K and F (A[P]).
Hence Gal(K(A[P])/K) ∼= Gal(F (A[P])/F ). This group naturally injects in G = Gal(L/K),
and contains the cyclic subgroup F∗

p of order p − 1. As p − 1 is coprime to p it follows that
Hn(F∗

p , A[P
M ]) = 0 for all n ≥ 1. For n = 0, we have that H0(F∗

p , A[P
M ]) = (A[PM ])F

∗
p = 0

by [Gro91, Section 9]. Inflation-restriction now gives an exact sequence

0→ Hn(G/F∗
p , (A[P

M ])F
∗
p)→ Hn(G, A[PM ])→ Hn(F∗

p , A[P
M ]).
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By the above, the last term vanishes and as (A[PM ])F
∗
p = 0 the first term vanishes as well, hence

Hn(G, A[PM ]) = 0 for all n ≥ 1. Using inflation-restriction again, we obtain an exact sequence

0→ H1(G, A[PM ])→ H1(K,A[PM ])→ H1(L,A[PM ])G → H2(G, A[PM ]).

The vanishing of the outer terms now induces an isomorphism

H1(K,A[PM ]) ∼= H1(L,A[PM ])G ,

which concludes the proof.

Proposition 2.1.3. Let C ⊂ Hom(Gal(F/L), A[PM ]) be a finite G-submodule, free of rank r
over OM . Then there exists a finite Galois extension LC/L such that there is a natural isomor-
phism

Gal(LC/L)
∼−→ HomG(C,A[P

M ]),

σ ↦→ ϕσ : α ↦→ α(σ).

Proof. Let C be given as in the proposition, let α1, ..., αr generate C as an OM -module, and
let H =

⋂︁
ker(αi). As each of the kernels in the intersection is an open normal subgroup of

Gal(F/L) of finite index, so is its intersection. Hence LH is Galois over L, and we have a natural
injection Gal(LH/L) ↪→ HomG(C,A[P

M ]). Thus it remains to show that the map

Gal(F/L)→ HomG(C,A[P
M ])

is surjective. We proceed by induction on r. Observe that there is a natural isomorphism of free
OM -modules of rank 2r

HomG(C,A[P
M ])

∼−→ HomG(C/⟨α1⟩, A[PM ])×HomG(⟨α1⟩, A[PM ])

ϕ ↦→ (ϕ1, ϕ2)

Where ϕ1 and ϕ2 are the natural projection and restriction. Consider the fields LC/⟨α1⟩ and
L⟨α1⟩. By the induction hypothesis, their Galois groups over L can be viewed as subgroups of
Gal(LC/L) and they carry the structure of free OM -modules. Hence so does the Galois group G
of the intersection LC/⟨α1⟩ ∩ L⟨α1⟩. We claim that G is trivial. The fact that the intersection is
a subfield of L⟨α1⟩, shows that the group G is a submodule of Gal(L⟨α1⟩/L). Consequently the
image of G under the evaluation map is contained in the ⟨α1⟩ component of HomG(C,A[P

M ]).
Since G is also a submodule of Gal(LC/⟨α1⟩/L), it follows from the same argument that the image
of G is contained in the C/⟨α1⟩ component of this group. The intersection of these components
is trivial, hence by injectivity of the evaluation map, so is G. In particular, the fields have trivial
intersection and are therefore linearly disjoint over L.

Let ϕ ∈ HomG(C,A[P
M ]). By the induction hypothesis, there exist σ, τ ∈ Gal(F/L) such

that ϕ1 = ϕσ and ϕ2 = ϕτ . Since the fields are linearly disjoint, we can impose that σ ∈ ker(α)
and τ ∈

⋂︁
i>1 ker(αi). It follows that ϕ = ϕστ , and thus the map is surjective.

To prove the statement for r = 1, we observe that evaluation at α induces an isomorphism

HomG(⟨α⟩, A[PM ]) ∼= A[PM ].

Hence, let R ∈ A[PM ], and consider the exact sequence

0→ A[PM−1]→ A[PM ]
pM−1

−−−−→ A[P]→ 0.
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As α has order pM , there must exist a σ ∈ Gal(F/L) whose image has order pM . Let Q denote
the image of this σ. Without loss of generality we may assume that R has order pM . As A[P] is
a simple G-module, there exists an η ∈ G such that

η ∗ pM−1Q = pM−1R.

As the action of G commutes with addition, it follows that R−α(η ∗σ) ∈ A[PM−1]. Surjectivity
now follows inductively by repeating this procedure for A[PM−1].

Let C be a free OM -submodule of H1(K,A[PM ]) of rank r. We can identify C as a subgroup
of Hom(Gal(F/L), A[PM ]) by Lemma 2.1.2, and hence find a Galois extension LC/L with Galois
group isomorphic to HomG(C,A[P

M ]). It is important to remark that these homomorphisms
are in fact OM -linear homomorphisms. Write ϕ = ϕσ for ϕ ∈ HomG(C,A[P

M ]) and let λ be any
prime of K. Fix an extension λL of λ to L and denote its decomposition group in Gal(LC/L)
by G(λL, LC). Then for any c ∈ C,

cλ = 0⇔ ϕσ(c) = 0 for all σ ∈ G(λL, LC). (2.1)

Fix τ ∈ Frob(∞), as its action on A[PM ] satisfies the equation τ2 = 1, its eigenvalues are ±1,
and as the order of A[PM ] is odd, A[PM ] decomposes as a sum of its τ -eigenspaces,

A[PM ] ∼= (A[PM ])+ ⊕ (A[PM ])−.

As p is odd, the epM pairing is non-degenerate, alternating, and preserved by τ . It is easy
to verify that (A[PM ])+ and (A[PM ])− are isotropic subgroups with respect to epM . Observe
that A[PM ] ∼= (OM )2 as a module. Since the order of an isotropic subgroup is bounded by
the square root of the order of the group, it follows from the above decomposition that the
eigenspaces must both be isomorphic to OM . Consider the group of τ -invariant OM -linear maps
h : H1(K,A[PM ])→ A[PM ]. As the image of any such function must be τ -invariant, it is valued
in the +1 eigenspace of τ . Hence we obtain

HomOM
(H1(K,A[PM ]), A[PM ])⟨τ⟩ ∼= HomOM

(H1(K,A[PM ]),OM ).

On the other hand, we can identify

H1(K,A[PM ])∗ = HomZ(H
1(K,A[PM ]),Q/Z)

as a OM -module. A simple counting argument shows that both modules are isomorphic to
H1(K,A[PM ]) as modules. As both are modules of τ -invariant functions, this allows for a
natural identification

HomOM
(H1(K,A[PM ]), A[PM ])⟨τ⟩ ∼= H1(K,A[PM ])∗.

This identification allows us to associate a σ ∈ Gal(LC/L) to any ϕ ∈ C∗, and hence a collection
of primes of F . This is illustrated in the following proposition.

Proposition 2.1.4. Let M > 1 be an integer. Let C be a finite submodule of H1(K,A[PM ]),
identify C∗ with Hom(C,A[PM ])⟨τ⟩, and let ϕ ∈ C∗. There exist infinitely many prime l, un-
ramified in L such that

1. Frob(l) = Frob(∞) in Gal(L/F ),

2. ϕ = ϕFrob(λ′) for some prime λ′ of L extending l.
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Proof. Let σ ∈ Gal(LC/L) be the automorphism such that ϕ = ϕσ. Since the order of Gal(LC/L)
is odd, and since σ is contained in the +1 eigenspace of τ , there exists a unique ρ ∈ Gal(LC/L)
such that σ = ρτρ. Notice that τ acts by conjugation and is its own inverse, hence the expression
simplifies to σ = (τρ)2. By the Čebotarev Density Theorem there exist infinitely many unramified
primes l such that τρ ∈ Frob(l). As τρ|L = τ , condition 1 is satisfied. In particular, l has degree
two in L/F . Thus, for any prime λ′ of L above l, there exists a η ∈ Frob(l) such that η2 = Frob(λ̃).
Thus, for appropriate choice of λ′, we conclude that Frob(λ′) = σ.

Let c1, ...., cn ∈ H1(K,A[PM ]), we say that they are independent elements if any relation∑︁
i aici = 0 with the ai ∈ Z implies that ordci divides ai for all 1 ≤ i ≤ r.

Corollary 2.1.5. Let c1, ...., cn ∈ H1(K,A[PM ]) be independent elements of order pMi respec-
tively. Then for all 0 ≤ Ni ≤Mi there exist infinitely many primes l such that

1. Frob(l) = Frob(∞) in Gal(L/F ),

2. For λ the unique prime of K extending l we have

ord ci,λ = pNi for all 1 ≤ i ≤ n.

Proof. Let C = ⟨c1, ..., cr⟩, as the ci are independent, there exists a ϕ = ϕσ ∈ C∗ such that
ordϕ(ci) = pNi . Thus using Proposition 2.1.4 we have that there exist infinitely many l such
that Frob(l) = Frob(∞) in Gal(L/F ) and σ = Frob(λ′) for some λ′ extending l. By condition 1,
the prime l is inert in K, hence λ′ extends λ as well. Choose l outside the finitely many prime
numbers that ramify in LC . The decomposition group G(λ′, LC) is then cyclic and generated by
σ. Thus we conclude from (2.1) that ord ci,λ = ord ϕσ(ci) = pNi which concludes the proof.

2.2 Heegner points on modular abelian varieties

We consider a modular abelian variety A and let X be the associated Shimura curve and let
ι : X → A be the modular map. Let x = [z, b] be a CM-point of X of conductor c(x). We recall
that K[c(x)] is the smallest ring class field of K containing K(x), the field of definition of the
point x. We also fix a rational prime p, a prime p of F and a prime P of OA over p. There
is a finite set S of non-archimedean primes of F containing all the ones dividing N− and such
that we can decompose H (the image of R under the isomorphism B̂

× ∼= G(Af
F )) as H = HSH

S

where
HS ⊂

∏︂
v∈S

B×
v

HS =
∏︂
v ̸∈S

Hv = a maximal compact subgroup of G(Af
F )

S .

Let I0 ⊂ OK be the non-zero ideal given by

I0 = lcm{(u− 1) | u ∈ (O×
K)tors, u ̸= 1}.

Proposition 2.2.1. If I is an ideal of OF such that IOK ∤ I0 and Z is a subgroup of Ô
×
I , the

completion of the order associated to I, then K× ∩ F̂
×
Z = F× and O×

K ∩ Z = O×
F .

Proof. This follows from [Nek07, Proposition 2.10].
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In order to work with Heegner points and classes we need to restrict the prime of F which
are admissible.

Definition 2.2.2. Let S =
⋃︁

r≥0 Sr be the following set of square-free ideals of OF :

S0 = {(1)}

S1 = {ℓ maximal ideal of OF | ℓ is inert in K/F, ℓ ̸∈ S, ℓ ∤ (p)c(x), ℓOK ∤ I0}

Sr = {ℓ1 . . . ℓr | ℓi ∈ S1 distinct ∀ i = 1, . . . , r} r > 1

We now define a special class of CM points on X which are the main ingredient in the later
definition of the Heegner point on A.

Definition 2.2.3. For each n ∈ S we define an element h(n) of B̂
×

as follows: h((1)) = 1,
if n = ℓ ∈ S1 then the ℓ part of H is Hℓ = R(ℓ)× for some maximal OFℓ

-order R(ℓ) ⊂ Bℓ

and we take h(ℓ) ∈ R(l) ∩ B×
ℓ ⊂ B×

ℓ ⊂ B̂
×

such that it satisfies ordℓ(nr(h(ℓ))) = 1, finally if
n = ℓ1 . . . ℓr ∈ Sr with r > 1 and the ℓi ∈ S1 distinct for all i then h(n) = h(ℓ1) . . . h(ℓr) ∈ B̂

×
.

Using the h(n) we define the CM-point

x(n) = [z, bh(n)] ∈ CM(X,K) n ∈ S .

From the definition of conductor easily follows that the field of definition of x(n) is contained
in the ring class field K[c(x)n]. We define the subfield K(x(n))′ ⊆ K(x(n)) as

K(x(n))′ =

{︄
K(x) if n = (1)

K(x(ℓ1)) . . .K(x(ℓr)) if n = ℓ1 . . . ℓr with r > 1 and ℓi ∈ S1 ∀ i

Let u(r) = 1 for r > 0 and u(0) = (K× ∩ F̂
×
Z : F×), where Z is the endomorphism ring of

the point x. If we chose the CM-point x such that c(x)OK ∤ I0 then by Proposition 2.2.1 we
have that u(0) = 1. We assume this simplification from now on in view of Remark 2.2.8.

Definition 2.2.4 (Heegner points). For each n ∈ S we define the Heegner point

y(n) = u(0)u(r)−1 TrK(x(n))/K(x(n))′ ι(x(n)) ∈ A(K(x(n))′).

We can now analyze the behavior of the Galois group of the extension K(x(n))′/K(x) and
prove some interesting relations.

Proposition 2.2.5. Let G(n) = Gal(K(x(n))′/K(x)), then

1. For each ℓ ∈ S1 the group G(ℓ) is cyclic of order (N(ℓ) + 1)/u(0);

2. For each n = ℓ1 . . . ℓr ∈ Sr with r > 1 the map G(n) → G(ℓ1) × · · · × G(ℓr) is an
isomorphism;

3. For each n ∈ Sr with r ≥ 0 the degree becomes [K(x(n)) : K(x(n))′] = u(r)u(0)r−1.

Proof. See [Nek07, Proposition 4.10].

This proposition and the relation between the CM-points imply that the Heegner points x(n)
form an Euler system.

Theorem 2.2.6 (Euler system relations). Let r ≥ 0 and nℓ ∈ Sr+1 such that n ∈ Sr and
ℓ ∈ S1. We have that
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1. TrK(x(nℓ))′/K(x(n))′ y(nℓ) = aℓy(n) where aℓ is the eigenvalue of the Hecke operator T (ℓ)
acting on f ;

2. For each prime λ | ℓ of (x(nℓ))′ we have

y(nℓ) ≡ u(0) Frob(ℓ)arith y(n) ≡ u(0) Frob(ℓ)geom y(n) (mod λ).

Let OA be the ring of Q-rational endomorphism of A. We define the set of Kolyvagin primes
in a similar way of the set of admissible primes we used before.

Definition 2.2.7 (Kolyvagin primes). Let M ≥ 1 be an integer, let S1(M) be the set of the
maximal ideals of OF such that

ℓ ̸∈ S, ℓ ∤ (p)c(x)DK/F , ℓOK ∤ I0

and the conjugacy class of Frob(ℓ)arith in the Galois group Gal(K(x)(A[PM ])/F ) coincides with
the conjugacy class of the complex conjugation. Let us defines also

S0(M) = {(1)},
Sr(M) = {ℓ1 . . . ℓr | ℓi ∈ S1(M) distinct ∀ i = 1, . . . , r} r > 1.

Finally define S (M) =
⋃︁

r≥1 Sr(M).

The set S1(M) is not empty and furthermore has positive density by the Čebotarev theorem.
Let ℓ ∈ S1(M), then since ℓ ∤ (p)c(x)dK/F and ℓ ̸∈ S we have that the extensionK(x)(A[PM ])/F
is unramified at ℓ by [Nek07, 5.2.2], so it makes sense to consider the conjugacy class of the
Frobenius morphism. Furthermore ℓ is inert in K/F and so we have an inclusion S1(M) ⊂ S1.
Finally by [Nek07, 5.2.5] we have the following important congruences in OA:

aℓ ≡ 0 (mod PM ), N(ℓ) + 1 ≡ 0 (mod PM ). (2.2)

Remark 2.2.8. Here we use our hypothesis that c(x)OK ∤ I0 because otherwise the first congru-
ence would be modulo PM+M0 where M0 = ordP(u(0)) and the second one modulo u(0)PM . In
the proof of our result this would give us trouble so we chose the CM-point x in such a way to
avoid this problem.

We recall that for each ℓ ∈ S1(M) the group G(ℓ) = Gal(K(x(ℓ))/K(x) is cyclic so we can
fix a generator σℓ.

Definition 2.2.9 (Kolyvagin derivatives). Let ℓ ∈ S1(M), then we define

Trℓ =

|G(ℓ)|−1∑︂
i=0

σi
ℓ

Dℓ =

|G(ℓ)|−1∑︂
i=0

iσi
ℓ ∈ Z[G(ℓ)]

If n = ℓ1 . . . ℓr ∈ Sr(M) with the ℓi ∈ S1(M), we define

Dn = Dℓ1 . . .Dℓr ∈ Z[G(ℓ1)]⊗ · · · ⊗Z[G(ℓr)] = Z[G(n)]

and these elements satisfies the relation

(σℓ − 1)Dℓ = |G(ℓ)| − Trℓ = N(l) + 1− Trℓ . (2.3)
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Definition 2.2.10. Let S be a set of representatives of G(n) in Gal(K(x(n))′/K) then

Pn =
∑︂
σ∈S

σ(Dn yn).

In particular P1 = P(1) = TrK(x)/K y(1).

Proposition 2.2.11. Let n ∈ Sr(M) for some r ≥ 1, then the image of the point Dn y(n) in
A(K(x(n))′)⊗OA,P/P

M is contained in (A(K(x(n))′)⊗OA,P/P
M )G(n), so by abuse of notation

we can write
Dn y(n) ∈

(︁
A(K(x(n))′)/PMA(K(x(n))′)

)︁G(n)
.

Proof. If n = ℓ1 . . . ℓr with all ℓi ∈ S1(M), let m = ℓ2 . . . ℓr. Decomposing Dn = Dℓ1 Dm we have
that

(σℓ1 − 1)Dn = (σℓ1 − 1)Dℓ1 Dm = (N(ℓ1) + 1− Trℓ1)Dm

where the last equality follows from the relation 2.3. Using the Euler system relations and the
congruences (2.2) we get that

(σℓ1 − 1)Dn y(n) ≡ 0 (mod PM )

so σℓ1 Dn y(n) ≡ Dn y(n) (mod PM ). Since this can be done for all ℓi dividing n we get that
Dn y(n) is fixed by all the σℓi which are the generators of G(n).

In particular also Pn ∈
(︁
A(K(x(n))′)/PMA(K(x(n))′)

)︁G(n).

2.3 Kolyvagin classes
We impose another condition on the CM-point x in order to simplify the exposition. We assume
that the conductor of x is 1. Under this assumption the previous hypothesis that c(x) ∤ I0 is
satisfied.

When defining the Heegner points we worked over the smaller field possible K(x(n))′ and
we can define the Kolyvagin classes over it as well, but it is not convenient for our goal. The
usual definition of Heegner point and classes is over the ring class field and in order to get our
results and interface with other work it is better to pursue this way. So we consider that for
n ∈ S (M) by the definition of conductor of a CM-point we have K(x(n))′ ⊆ K(x(n)) ⊆ K[n]
and K(x) ⊆ K[1], which is the Hilbert class field. By our assumption that the conductor of x is
1 we get that y(n) ∈ A(K[n]) and the same is true for Pn. We recall that there is an exception
which is P1 ∈ A(K) due to the definition.
Remark 2.3.1. For n ∈ S (M) we have that A[PM ](K[n]) = 0 by [LV17, Proposition 3.9] as the
Galois group Gal(K[n]/F ) is solvable and under our Assumption 2.1.1 the same argument holds.

The exact sequence Gal(F/F )-modules

0→ A[PM ]→ A(Q)
PM

−−→ A(Q)→ 0

yields an exact sequence in cohomology for all the extensions E/F

0→ A(E)⊗OA,P/P
M δ−→ H1(E,A[PM ]→ H1(E,A)[PM ])→ 0

and we can apply this construction for n a product of admissible primes with E = K and
E = K(x(n)) taking the invariants under the action of G(n). So we get the following diagram:
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A(K)⊗OA,P/P
M H1(K,A[PM ]) H1(K,A)[PM ]

(A(K(x(n))′)⊗OA,P/P
M )G(n) H1(K(x(n))′, A[PM ])G(n)δn

res

where the vertical res map is the restriction map in cohomology. We want to find a natural
lift of δn(Pn (mod PM )) under the restriction map res.

Let n ∈ S (M) be a fixed Kolyvagin prime.

Definition 2.3.2. Let cM (n) ∈ H1(K,A[PM ]) be the unique natural lift of δn(Pn (mod PM ))
and let dM (n) the image of cM (n) in H1(K,A).

Lemma 2.3.3. Let Qn ∈ A(K[n]) be any point congruent to Pn modulo PM and congruent to 0
modulo QM for all other primes Q lying above p. Then the cocycle

σ ↦→ − (σ − 1)Qn

pM
+ σ

Qn

pM
− Qn

pM

is a representative for cM (n), where (σ−1)Qn

pM is the unique pM -division point of (σ − 1)Qn in
A(K[n]).

Proof. This proof is based on [Nek07, Propositions 5.9 and 5.10]. Let Qn be any such point, and
observe that δn(Pn) ∈ H1(K[n], A[PM ]) is represented by the cocycle

σ ↦→ σ
Qn

pM
− Qn

pM
.

The existence of the pM -division point of (σ − 1)Qn follows from the statement of Proposition
2.2.11 and the fact that Qn ∈ QMA(K[n]) for all other primes Q | p. Since two distinct pM -
division points differ by a pM -torsion point we have the uniqueness of the point. The term
σ ↦→ − (σ−1)Qn

pM is a cocycle. The expression given in the lemma is therefore a cocycle as well
and it is easy to see that this cocycle takes values in A[PM ]. As the first term vanishes for all
σ ∈ Gal(K(x(n))′/K), its restriction to K[n] is precisely the representative of δn(Pn) describe
above.

Corollary 2.3.4. The class dM (n) is represented by the cocycle

σ ↦→ − (σ − 1)Qn

pM
.

Corollary 2.3.5. For all integer M > 2 and n ∈ S (M) we have

pcM (n) = cM−1(n).

Proof. Let Qn be a point as described in Lemma 2.3.3, and write cM (n) for the associated cocycle.
As (σ − 1)Qn has a unique pM -division point in A(K(x(n))), it also has a unique pM−1-division
point. As multiplication commutes with the action of σ ∈ Gal(Q/K), we obtain

(pcM (n))(σ) = − (σ − 1)Qn

pM−1
+ pσ

Qn

pM
− pQn

pM

= − (σ − 1)Qn

pM−1
+ σ

Qn

pM−1
− Qn

pM−1
= cM−1(n)(σ).
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Write PM | Pn if Pn ∈ PMA(K[n]), and define

ordP(Pn) = max
{︁
M ∈ Z+

⃓⃓
PM | Pn

}︁
.

Observe that cM (n) = 0 if PM | Pn. In fact for M > ordP(Pn) we have

ordcM (n) = pM−ordP(Pn) (2.4)

whenever cM (n) exists. Let

Mr = min{ordP(Pn) | n ∈ Sr(ordP(Pn) + 1)}.

Equivalently Mr is the smallest integer M such that there exists an n ∈ Sr(M + 1) for which
the associated class cM+1(n) is non-trivial. These numbers will later shown to be bounded and
decreasing, allowing us to give an explicit description of the Shafarevich-Tate group.

Let n ∈ S (M) and let ℓ ∈ S1(M) and m ∈ S (M) such that n = ℓm. Let λ be the
unique prime of K above ℓ. By class field theory we have that λ splits completely in K[m]
and furthermore each prime above ℓ of K(x(m)) is totally (tamely) ramified in K(x(n)) (see
[Nek07, Proposition 4.6]). Hence we have an embedding K[m] ↪→ Kλ and so we can embed Pm in
A(Kλ)/P

MA(Kλ) and the image is independent on the choice of the embedding by Proposition
2.2.11.

Let v be a prime of K dividing N (hence a prime where A has bad reduction), and denote
by A0 the component of the identity of the special fiber of A at v. This subgroup is of finite
index in A(Kur

v ), and by abuse of notation, we denote A/A0 for the quotient of these groups.
We impose that A and P satisfy the following conditions If v is a finite place of K where A has
bad reduction then v satisfies one of the following conditions:

1. v is a principal of K,

2. p ∤ [A : A0].

Notice that the second condition fails to hold for only finitely many primes p since there are only
finitely many places of K where A has bad reduction and the component group is finite for any
such place.

Lemma 2.3.6. Let n ∈ S (M), and let v be a valuation of K prime to n, then we have that
cM (n)v ∈ δv(A(Kv)) where δv is the Kummer map. Moreover, if v = vλ for some prime ℓ below
λ inert in K, we have cM (n)λ = δλ(Pn).

Proof. Notice that the first statement is equivalent to the vanishing of dM (n)v and this follows
from [Nek07, Proposition 5.12].

Let λ be an inert prime of K. By class field theory λ is totally split in K[n]. Hence K[n]
injects into Kλ, and therefore Pn ∈ A(Kλ)/P

MA(Kλ). Its image δλ(Pn) is represented by the
cocycle σ ↦→ σ Qn

pM − Qn

pM , and cM (n) is represented by

σ ↦→ − (σ − 1)Qn

pM
+ σ

Qn

pM
− Qn

pM
.

As Qn is defined over K[n], the first term of this expression is determined solely by its restriction
to Gal(K[n]/K). As a cocycle over Kλ it is therefore determined uniquely by its action on the
decomposition group of λ in K[n]. But as λ splits completely, its decomposition group is trivial
and hence the term vanishes. The statement is therefore proved.
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This lemma allows us to prove the following strong relation between the constructed coho-
mology classes

Theorem 2.3.7. Let ℓ ∈ S1(M), with extension λ in K. There exists a homomorphism

χℓ : A(Kλ)→ H1(Kλ, A[P
M ])

such that

1. for all m ∈ S (M) coprime to ℓ we have

cM (mℓ)λ = χℓ(Pm),

2. kerχℓ = PMA(Kλ) and

χℓ(A(Kλ)/P
MA(Kλ)

±) ⊂ H1(Kλ, A[P
M ])∓,

3. χℓ induces an isomorphism

A(Kλ)/P
MA(Kλ)

∼−→ H1(Kλ, A)[P
M ].

Moreover, we have
ord dM (mℓ)λ = ord cM (mℓ)λ = ord cM (m)λ.

Proof. Let ℓ ∈ S1(M), with extension λ in K and fix an extension λ ∈ K. We denote by kv the
residue field at v. Recall that kλ has degree 2 over kℓ. In particular, Frob(ℓ)2 = 1 in End(A(kλ)).
Consequently it follows that

aℓ − (ℓ+ 1)Frob(ℓ) = −Frob(ℓ)(Frob(ℓ)2 − aℓFrob(ℓ) + ℓ). (2.5)

As this is divisible by the characteristic polynomial of Frob(ℓ), this endomorphism must vanish on
A(kλ). Notice that λ splits completely inK(A[PM ]). In particular the extensionKλ(A[P

M ])/Kλ

has degree 1 and therefore A[PM ] can be injected into A(Kλ). As A has good reduction modulo
λ and ℓ is coprime to p, reduction modulo λ acts injectively on A[pM ]. Let P ∈ A(Kλ) be any
point, since A[pM ] injects into A(kλ̄) and since the expression in (2.5) vanishes, there exists a
unique T̃P ∈ ApM such that

aℓ − (ℓ+ 1)Frob(ℓ)

pM
P ≡ T̃P mod λ.

Denote its PM -torsion component by TP and observe that it is Kλ-rational. Let λℓ denote the
restriction of λ to K[ℓ]. As λ is principal in K by class field theory it splits completely in K(x),
and hence Kλ1

= Kλ. In particular, the extension Kλℓ
/Kλ is totally ramified with cyclic Galois

group generated by σℓ. Given P as above, define χℓ(P ) to be the inflation of the unique cocycle
on Gal(Kλℓ

/Kλ) defined by sending σℓ to TP . It is clear from its construction that χℓ is a
homomorphism.

To verify the first property, let n = mℓ ∈ S (M), let λn be the restriction of λ to K[n], and let
λm be its restriction to K[m]. As λ splits completely in K[m], it follows that Kλm

= Kλ and that
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Kλn
= Kλℓ

. We claim that Pn ∈ pMA(Kλn
). As the extension Kλn

/Kλ is totally ramified and
generated by σℓ, this automorphism acts trivially on kλn

, hence Dℓ acts on A(kλn
) as ℓ(ℓ+1)/2.

As PM divides N(ℓ)+1, so does pM and it follows that Pn ∈ pMA(kλn
). In particular there exists

a Q ∈ A(Kλn
) such that pMQ ≡ Pn mod λn, and therefore pMQ − Pn ∈ A1(Kλn

), where A1

denotes the kernel of the reduction map to the residue field. This group is naturally isomorphic
to Â(λn), the formal group associated to A over the maximal ideal of Kλn

. As p is coprime to l,
multiplication by p is an isomorphism on this group, and hence on A1(Kλn

) as well. It follows
that pMQ− Pn ∈ pMA(Kλn

), and thus that Pn ∈ pMA(Kλn
) proving the claim.

Consider the pM -torsion point

− (σℓ − 1)Pn

pM
+ σℓ

Pn

pM
− Pn

pM
∈ A(Kλn

). (2.6)

The extension Kλn
/Kλ is totally ramified, hence σℓ acts trivially on A(kλn

). The reduction of
this point modulo λ is therefore congruent to − (σℓ−1)Pn

pM . Recall from (2.3) and the Euler relation
2.2.6 that

aℓDmym − (ℓ+ 1)Dmyn = −(σℓ − 1)Dnyn.

Applying the second part of the same relations shows that

aℓ − (ℓ+ 1)Frob(ℓ)

pM
Pm ≡ −

(σℓ − 1)Pn

pM
mod λ,

This shows that χℓ(Pm) is defined to be the inflation of the cocycle determined by

σℓ ↦→
(︃
− (σℓ − 1)Pn

pM
+ σ

Pn

pM
− Pn

pM

)︃
[PM ].

Recall that cM (n) is represented by

σ ↦→ − (σ − 1)Qn

pM
+ σ

Qn

pM
− Qn

pM
,

hence this cocycle vanishes when restricted to H1(Kλn
, A[PM ]). The class cM (n) is therefore

inflated from a class in H1(Kλn
/Kλ, A[P

M ]). In particular, using the same cocycle as represen-
tative, we see that the class cM (n)λ is defined uniquely by

σℓ ↦→ −
(σℓ − 1)Qn

PM
+ σℓ

Qn

PM
− Qn

PM
.

But as this PM -torsion point is precisely the PM -component (2.6), we are able to conclude that
χℓ(Pm) = cM (mℓ)λ.

The first part of property (2) follows directly from the uniqueness of the point TP . In order
to prove the second part of property (2) it suffices to show that

χℓ(τP )
τ
σℓ

= −χℓ(P )σℓ
.

As σℓ is in the −1 eigenspace of τ and σℓ acts trivially on A[PM ], the former is equal to
−τχℓ(τP )σℓ

. Since the natural action of τ coincides with the action of Frob(ℓ), on kλ, it follows
that τTP = TτP . But as χℓ(P )σℓ

= TP , this proves the property. Recall that A(Kλ)/P
MA(Kλ)

andH1(Kλ, A)[P
M ] are isomorphic asOM -modules. To see that χℓ induces such an isomorphism,
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it suffices to show that im χℓ ∩ im δλ = 0. But this follows directly as δλ maps onto unramified
cocycles and χℓ maps onto ramified cocycles.

Finally, using (1) and (3), we see that Pm maps to dM (mℓ)λ via cM (mℓ)λ hence they must all
have the same order (here Pm is viewed as an element of A(Kλ)/P

MA(Kλ)). By Lemma 2.3.6
this order is equal to ord cM (m)λ.

This theorem allow us to relate the classes cM (n) with the classes of the divisors of n. In
particular, for any m, ℓ ∈ S (M) such that (m, ℓ) = 1 define

ordP(Pm)λ = max{M | Pm ∈ PMA(Kλ)}.

Notice that this is well-defined since it is indeed possible to inject K[m] into Kλ whenever ℓ ∤ m.
This enables us to formulate several useful consequences of the theorem.

Corollary 2.3.8. Let n ∈ S (M). The following statements hold.

1. For all primes ℓ | n we have

ordP(Pn) ≤ ordP(Pn/ℓ)λ,

with equality if and only if ord cM (n) = ord cM (n)λ. Consequently

if Pn/ℓ /∈ PMA(Kλ), then Pn /∈ PMA(K[n]).

2. For any M > 0

dM (n) ∈X(A/K), if and only if, M ≤ min
ℓ|n

ordP(Pn/ℓ)λ.

3. If n ∈ Sr(Mr−1), then
dMr−1

(n) ∈X(A/K).

Proof. The second part of the first statement is a direct consequence of the first. Whenever
M ≥ ordP(Pn/ℓ)λ, the order of Pn/ℓ in A(Kλ)/P

MA(Kλ) is naturally given by pM−ordP(Pn/ℓ)λ .
By Theorem 2.3.7 this order is equal to ord cM (n)λ. Hence

pM−ordP(Pn/ℓ)λ = ord cM (n)λ ≤ ord cM (n) = pM−ordP(Pn),

which proves the first statement. By Lemma 2.3.6, dM (n) vanishes at all valuations prime to n.
For the valuations dividing n, we have

ord dM (n)λ = max{1, pM−ordP(Pn/ℓ)λ},

which vanishes if and only if M ≤ ordP(Pm)λ. Applying this condition to all primes dividing n
gives the desired conclusion. Finally, let n ∈ Sr(Mr−1) be given. It follows from the definition
of Mr−1 that Mr−1 ≤ ordP(Pn/ℓ) ≤ ordP(Pn/ℓ)λ for all ℓ | n. The conclusion now follows from
the second statement.

In light of this corollary we can prove a notable property of the Mr defined earlier.

Corollary 2.3.9. Assume that yK = TrK(x)/K y((1)) has infinite order in A(K).
Then M0 = lenghtOA,P

(A(K)/OAyK) and Mr ≥ Mr+1 for all r ≥ 0. In particular Mr is finite
for all r
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Proof. Assume that yK has infinite order, then by [How04, Theorem A], OAyK is of finite index
in A(K). Since S0 = {1} and P1 = yK , we have

M0 = ordP(yK) = max{M | yK ∈ PMA(K[1])}.

Simultaneously
lenghtOA,P

(A(K)/OAyK) = max{M | yK ∈ PMA(K)}.

As A(K[1]) has no PM -torsion, A(K)/PMA(K) injects into A(K[1])/PMA(K[1]), hence these
numbers are equal.

To prove the second statement, let m ∈ Sr(M). By Corollary 2.1.5, there exists a prime ℓ ∤ m
such that ℓ ∈ S1(M) and ord cM (m)λ = ord cM (m). In particular, this implies that

ordP(Pm) = ordP(Pm)λ ≥ ordP(Pmℓ)

by Corollary 2.3.8. Hence for any m ∈ Sr(M), there exists an n ∈ Sr+1(M) such that
ordP(Pm) ≥ ordP(Pn).

This corollary allows the formulation of the following simple but important consequence of
Theorem 2.3.7.

Proposition 2.3.10. Let M and M ′ be two positive integers and let n ∈ S (M + M ′) and
n′ ∈ S (M ′) be two integers such that dM (n), dM ′(n′) ∈X(A/K). Then the Cassels pairing is
given by

⟨dM (n), dM ′(n′)⟩ =
∑︂
ℓ|n

(ℓ,n′)=1

⟨dM+M ′(n), Pn′⟩λ.

Proof. Recall the construction of the Cassels pairing described in the previous section. Indeed
dM+M ′(n) is a suitable choice for d1 as pM

′
dM+M ′(n) = dM (n). By Lemma 2.3.6, it vanishes

for all valuations v prime to n. Hence this sum can be restricted to the primes dividing n. By
the same lemma, Pn′ is a suitable choice for those yλ, for each of those ℓ ∤ n′. If ℓ | n′, then
dM ′(n′)λ = 0 as it is contained in X(A/K). Hence by Theorem 2.3.7, cM ′(n′)λ = 0, and hence
there is no contribution to the pairing for this prime. Summing up the remaining terms gives
the desired conclusion.

2.4 Gross points
We define an analogue of Heegner points on the Gross curve. Assume that the number of factors
of N− has the same parity as the degree of F . Let B′ denote a definite quaternion algebra over
F ramified at all archimedean primes and at each prime dividing N−. Let R be an Eichler order
of level N+. We denoted by X the Gross curve associated to B′ of level R. Let τ denote the
embedding of K into B as constructed in the first chapter.

Definition 2.4.1. The set of CM-points by R is

CM(X, R) = τ(K)×\B′ˆ ×
/F̂

×
R.

We say that x ∈ CM(X, R) has conductor c if τ(K) ∩ xF̂Rx−1 is an order of conductor c.

Inside that set of CM-points we can define some analogue of the Heegner points which we
call Gross points.
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Definition 2.4.2. For each n ∈ S we define an element h(n) of B′ˆ ×
as follows: h((1)) = 1, if

n = ℓ ∈ S1 then the ℓ part of R is R(ℓ)× for some maximal OFℓ
-order R(ℓ) ⊂ Bℓ and we take

h(ℓ) ∈ R(l)∩B×
ℓ ⊂ B

×
ℓ ⊂ B̂

×
such that it satisfies ordℓ(nr(h(ℓ))) = 1, finally if n = ℓ1 . . . ℓr ∈ Sr

with r > 1 and the ℓi ∈ S1 distinct for all i then h(n) = h(ℓ1) . . . h(ℓr) ∈ B̂
×

. The Gross points
on X are the points

xn ∈ X

defined by h(n).
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Chapter 3

Structure Theorem for
Shafarevich-Tate groups

In this section we provide a generalization of Kolyvagin’s results ([McC91]) in the setting of
modular abelian varieties over totally real fields. We continue to follow the notation of the
previous section. We start by reviewing an application of the Fricke involution to the Selmer
and Shafarevich-Tate group of an abelian variety. In the last part we use all the previous results
to prove a structure theorem for the Tate-Shafarevich group.

3.1 Eigenspaces for the Fricke involution

Let f be the Hilbert newform associated to the modular abelian variety A. Let WN be the
matrix (︃

0 1
t 0

)︃
where t ∈ AF such that the projection on the finite adeles generates NÔF .

Definition 3.1.1. The Fricke involution is defined as

(wN (f))(g) = f(gWN ).

Proposition 3.1.2. wN is an involution and if f is a new-eigenform for all Hecke operator then
f is an eigenvector for wN with eigenvalue ϵ ∈ {±1}. Furthermore ϵ is the sign of the functional
equation associated to the L-function of f :

L(f, s) = ϵL(f, 2− s).

Proof. See [How04, chapter 1].

From now on let ϵ be the eigenvalue of the Fricke involution for f and let ϵr = (−1)rϵ.

Lemma 3.1.3. Let n ∈ Sr(M). The point Pn is in the ϵr-eigenspace of (A(K)/PMA(K)).

Proof. This follows from the results in [KL91, Pag. 851 - 852], [Zha01b] and [Zha01a].
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The Fricke involution plays an important role in analyzing the structure of the Shafarevich-
Tate group; it also imposes conditions on the groups A(K)/PMA(K). This is illustrated in the
following Lemma.

Lemma 3.1.4. For all integers M , the group A(K)/PMA(K)−ϵ vanishes. In particular the
map

SP∞(A/K)−ϵ →X(A/K)−ϵ
P∞

is an isomorphism.

Proof. Notice that the submodule OAyK ⊂ A(K) is of finite index. For any integer M , yK = P1

is contained in the ϵ-eigenspace of A(K)/PMA(K) by Lemma 3.1.3. The decomposition into
eigenspaces

A(K)/PMA(K) ∼=
(︁
A(K)/PMA(K)

)︁ϵ ⊕ (︁A(K)/PMA(K)
)︁−ϵ

,

shows that the order of the −ϵ-eigenspace equals the index of the ϵ-eigenspace in this group.
As this index is bounded by the index of OAyK in A(K), the order of the −ϵ-eigenspace is
bounded independently of M . Hence A(K)−ϵ is a finite group and therefore a torsion group.
Since A[P](K) = 0 by Proposition 2.2.11, it follows that A(K)/PMA(K)−ϵ = 0. Consequently
A(K)−ϵ ⊗ FP/OA,P vanishes and thus we obtain the desired isomorphism by the P∞-descent
sequence (1.3).

3.2 Structure Theorem
Since we assumed that yK has infinite order, the Shafarevich-Tate group is finite and so the
Cassels-Tate pairing is non-degenerate and alternating on X(A/K)P∞ for all primes of odd
characteristic. Hence the order of X(A/K) is either a perfect square or twice a perfect square.
Recall that the Tate pairing is τ -equivariant, hence so is the Cassels-Tate pairing. In particular,
the ϵ and −ϵ eigenspaces of X(A/K)P∞ are orthogonal and must therefore both be perfect
squares as well. Let

N1 ≥ N3 ≥ N5 ≥ · · ·
be the integers such that

X(A/K)−ϵ
P∞
∼= (OA/P

N1)2 × (OA/P
N3)2 × · · ·

and let
N2 ≥ N4 ≥ N6 ≥ · · ·

be the integers such that

X(A/K)ϵP∞ ∼= (OA/P
N2)2 × (OA/P

N4)2 × · · ·

By Lemma 1.5.1 the groups X(A/K)±P∞ admit maximal isotropic subgroups D± inducing split
exact sequences

0→ D± →X(A/K)±P∞ → D∗± → 0.

Notice that D−ϵ can be decomposed as D1×D3×· · · where Di is a cyclic OA/P
Ni-module. Anal-

ogously, Dϵ admits a decomposition D2×D4×· · ·. Since the P-primary part of the Shafarevich-
Tate group decomposes as a sum of its τ -eigenspaces we conclude that X(A/K)P∞ admits a
maximal isotropic subgroup D = D1 ×D2 ×D3 × · · · such that the exact sequence

0→ D →X(A/K)P∞ → D∗ → 0 (3.1)

is split. We can now state the fundamental result of this paper which is the relation between the
Nr and the earlier defined Mr.
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Theorem 3.2.1. Assume that yK has infinite order. Then

Nr =Mr−1 −Mr (3.2)

for all r ≥ 1.

Before proving Theorem 3.2.1 we mention a few direct corollaries.

Corollary 3.2.2. We have that

Mr −Mr+1 ≥Mr+2 −Mr+3, ∀ r ≥ 0,

Moreover if Mr =Mr+2, then Mr =Mj for all j ≥ r.

Notice that while the difference Mr − Mr+1 decreases if we increase r by 2, this is not
necessarily true if we increase r only by 1.

Additionally, Theorem 3.2.1 allows us to give an explicit description of the p-torsion order of
the Shafarevich-Tate group.

Corollary 3.2.3. Let m = min{Mr, r ≥ 0}. Then

lenghtOA,P
X(A/K) = 2(M0 −m).

In order to prove Theorem 3.2.1 we need some more preparation in the form of several lemmas.

Lemma 3.2.4. Let ℓ ∈ S1(M) be a prime, then imχℓ is a maximal isotropic subgroup of
H1(Kλ, A[P

M ]).

Proof. Let x, y ∈ imχℓ. Recall from the proof of Theorem 2.3.7 that x and y are inflated from
cocycles in H1(⟨σℓ⟩, A[PM ]). As the Tate-pairing is a cup-product, it satisfies

x ⌣ y = Inf(x′)⌣ Inf(y′) = Inf(x′ ⌣ y′).

As σℓ is totally ramified, its second cohomology group injects in the group H2(I, µpM ), where I
is the inertia group of Kλ. But this group is trivial as ℓ ̸= p (see [Mil06, Lemma 1.2.9]). Hence
x ⌣ y = 0. Maximality follows from the second statement of Theorem 2.3.7.

Lemma 3.2.5. Let ℓ ∈ S1(M) and let S ⊂ S1(M) be a finite set not containing ℓ. Then there
exists a c ∈ H1(K,A[PM ])± such that

1. c ̸= 0,

2. cv ∈ δ(A(Kv)) for all valuations v prime to S ∪ {ℓ},

3. cvλ ∈ im χq for all q ∈ S.

Proof. Let T be the union of S, ℓ, the primes of K extending p, the infinite primes and the
primes where A has bad reduction. Let KT be the maximal extension of K that is ramified only
at the primes in T . Tate global duality [Mil06, Theorem I.4.10] gives a self dual exact sequence

H1(KT /K,A[P
M ])→

⨁︂
v∈T

H1(Kv, A[P
M ])→ H1(KT /K,A[P

M ])∗.

Let G denote the intermediate group. Due to exactness, the image of H1(KT /K,A[P
M ]) is an

isotropic subgroup of G, and by self duality it must be maximal isotropic. As the exponent of
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every group divides pM , all groups can be decomposed as a sum of their τ -eigenspaces. Since
the pairing giving rise to this duality arises from the Tate-pairing, the pairing is τ -equivariant
and hence the eigenspaces are orthogonal. Consequently, the image of H1(KT /K,A[P

M ])± is
a maximal isotropic subgroup of G±. For all q ∈ S, let Hvq = Imχq. For all other places
v ∈ T\{ℓ}, let Hv = δ(A(Kv)). Notice that for all the places v ̸= ℓ there is an inequality
|Hv| ≥ |H1(Kv, A[P

M ])|1/2. Hence the group H1(KT /K,A[P
M ])± is a strictly larger subgroup

of G than the group ⨁︂
v∈T\{ℓ}

H1(Kv, A[P
M ])±

H±
v

.

In particular H1(KT /K,A[P
M ]) cannot map injectively into this group. Hence we can choose

a c ∈ H1(KT /K,A[P
M ]) satisfying properties 1 and 3. It also satisfies 2; By construction of

KT , c is unramified outside T . It follows from [Mil06, Proposition 3.8] that H1(Kur
v /Kv, A) = 0.

Consequently, the map δv : A(Kv)→ H1(Kur
v /Kv, A[P

M ]) is surjective.

The strategy for proving Theorem 3.2.1 is the following: let r be an integer and assume
Mr−1 > Mr. Let n ∈ Sr(Mr−1), Corollary 2.3.8 imposes that dMr−1

(n) ∈ X(A/K). As
ordP(Pn) ≥ Mr, it follows from (2.4) that the order of dMr−1

(n) is at most pMr−1−Mr . For
properly chosen nr, it will be shown that dMr−1

(nr) attains this order. Proceeding inductively,
and choosing the nr independent of ns, s ≤ r, we will show that Nr = Mr−1 −Mr which will
complete the proof. In order to guarantee the independence of the nr, we need the following
proposition.

Proposition 3.2.6. Let r be a positive integer and let C ⊂ SP∞(A/K)ϵr be a sub OA,P-module
generated by r independent elements. Let M > Mr be a square-free integer. Then there exists
an n ∈ Sr(M) such that ord cM (n) = pM−Mr and ⟨cM (n)⟩ ∩ C = {0}.

Proof. As pM
′
cM (n) = cM−M ′(n) for all M ′ ≤ M . It suffices to show that the statement holds

for all M large enough. Hence let M ≥Mr−1 be such that

pM ≥ exponent of C.

Let n ∈ Sr(Mr + 1) be such that ordP(Pn) = Mr, and let L = K(A[PM ]). Recall that there
exists a Galois extension LC/L such that Gal(LC/L) ∼= C∗. Let S be the set of primes dividing
n. For every ℓ ∈ S, fix an extension λL in L. Let X ⊂ C∗ denote the submodule generated by
the characters of all ℓ ∈ S ∩ S (M), and let k denote the rank of the image of X in C∗/pC∗.
Assume that k < r, then there exists an ℓ0 in S such that the primes in S∩S (M)\{ℓ0} generate
the image of X, and we can choose a ψ ∈ C∗ such that

ψ /∈ X + pC∗.

If cMr+1(n) ∈ C, we can impose the additional condition that ψ(cMr+1(n)) ̸= 0, as a finite group
cannot be the union of two proper subgroups. By replacing ℓ0 with a carefully chosen prime ℓ′,
ψ can be added to X. Using Lemma 3.2.5, we choose a c ∈ H1(K,A[P])−ϵr such that

c ̸= 0,

cv ∈ δv(A(Kv)),

cλ ∈ imχℓ,

for all v /∈ S,
for all ℓ ∈ S\{ℓ0}.

(3.3)

Let ⟨C, cMr+1(n)⟩ denote the subgroup of H1(K,A[PM ]) generated by C and cMr+1(n). As both
are contained in the ϵr-eigenspace and c is not, the intersection of this group and ⟨c⟩ is trivial.
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Thus, we can define ϕ ∈ ⟨C, cMr+1(n), c⟩∗ such that

ϕ|C = ψ,

ϕ(cMr+1(n)) ̸= 0,

ϕ(c) ̸= 0.

By Proposition 2.1.4, there exists an ℓ′ ∈ S1(M) such that ϕ = ϕFrob(λ′
L), and hence that

ψ = ψFrob(λ′
L). Moreover, observe that the sum∑︂

v

cMr+1(nℓ
′)v ⌣ cv = 0

vanishes as the sum of invariants of a global class is 0. Let us consider the cup products for
the valuations v not contained in S ∪ {λ′}. In this case it follows from Lemma 2.3.6 that
cMr+1(nℓ

′)v ∈ δv(A(Kv)). Equation (3.3) guarantees that cv ∈ δv(A(Kv)) as well. Since this
is an isotropic subgroup, the cup product vanishes. For the primes ℓ ∈ S\{ℓ0}, it follows from
Theorem 2.3.7 that cMr+1(nℓ

′)λ = χℓ(Pnℓ′/ℓ). By construction cλ is contained in imχℓ as well.
Since this group is again isotropic, the cup product vanishes here as well. Hence the only
remaining terms are the cup products at the primes λ′ and λ0, and we conclude that

cMr+1(nℓ
′)λ′ ⌣ cλ′ = −cMr+1(nℓ

′)λ0
⌣ cλ0

.

For λ′, it follows from (1.1) and (3.3) that

cMr+1(nℓ
′)λ′ ⌣ cλ′ = ⟨dMr+1(nℓ

′)λ′ , x⟩λ′ ,

for some x ∈ A(Kλ′). Theorem 2.3.7 gives the equality

orddMr+1(nℓ
′)λ′ = ord cMr+1(nℓ

′)λ′ = ord cMr+1(n)λ′ .

The choice of ϕ, now guarantees that this cocycle is non-zero by (2.1) and since we have that
ordP(Pn) = Mr, equation (2.4) shows that ordcMr+1(n) = p, which implies that the class
dMr+1(nℓ

′) ∈ H1(K,A)[P]−ϵr . By the choice of c we made, cλ′ has order at most p, and as
ϕ(c) = ϕFrob(λ′

L)(c) ̸= 0, we conclude that cλ′ is non-zero as well. As cλ′ is in the −ϵr-eigenspace
of H1(Kλ′ , A[P]), x is determined uniquely in (A(Kλ′)/PA(Kλ′))−ϵr . As both eigenspaces are
cyclic OA/P

M -modules, it follows from the non-degeneracy of the Tate pairing that

cMr+1(nℓ
′)λ′ ⌣ cλ′ ̸= 0.

It follows that cMr+1(nℓ
′)λ0 ̸= 0, and by Theorem 2.3.7 that Pnℓ′/ℓ0 /∈ PMr+1A(Kλ0). By the

definition of Mr we must therefore have that ordP(Pnℓ′/ℓ0) = Mr. Thus by replacing n with
n′ = nℓ′/ℓ0, we can add ψ to X and increase the rank of its image by 1.

If k = r, we have that X = C∗. In particular we have that S ⊂ S1(M), hence cM (n) exists
and has order pM−Mr . Observe that

{c ∈ C | cλ = 0 for all ℓ ∈ S} =
{c ∈ C | ϕFrob(λL)(c) = 0 for all ℓ ∈ S} =

{c ∈ C | ϕ(c) = 0 for all ϕ ∈ C∗} = {0}.

On the other hand since ordP(Pn/ℓ) ≥Mr−1, it follows that

ord cMr−1
(n)λ = ord cMr−1

(n/ℓ)λ = 1
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for all ℓ ∈ S. Hence
C ∩ ⟨cMr−1

(n)⟩ = 0.

Since cMr−1(n) is a multiple of cM (n) of order pMr−1−Mr , the statement is therefore proved when
Mr−1 > Mr. Hence assume Mr−1 = Mr. By relaxing the condition that C has rank r, it is
easily shown that the lemma holds for C = {0}. In particular, there exists an m ∈ Sr−1(M)
such that ord cM (m) = pM−Mr−1 . By Proposition 2.1.4, there exists an ℓ ∈ S1(M) such that
cMr+1(m)λ ̸= 0. By Theorem 2.3.7, we hence have that dMr+1(mℓ)λ ̸= 0. In particular this
means that dMr+1(mℓ) /∈X(A/K) and hence cMr+1(mℓ) /∈ SP∞(A/K). As C is contained in
this group, we conclude

C ∩ ⟨cMr+1(n)⟩ = 0,

and thus the proposition is proved.

In the process of proving Proposition 3.2.6, the following weaker statement has been proven
as well.

Corollary 3.2.7. Let r be a square-free integer and let M ′ ≥ M ≥ Mr be two integers. Then
for all primes n ∈ Sr(M), there exists an n′ ∈ Sr(M

′) such that ord cM ′(n′) ≥ ord cM (n).

Using this, let r be an odd number and let n ∈ Sr(Mr−1) be such that cMr−1
(n) has or-

der pMr−1−Mr . By Corollary 2.3.8 we have that dMr−1
(n) ∈ X(A/K)−ϵ

P∞ , and therefore that
cMr−1

(n) ∈ SP∞(A/K). By Lemma 3.1.4 dMr−1
(n) has order pMr−1−Mr in this group. As

the Cassels-Tate pairing is alternating on the P-primary part, we conclude that X(A/K)−ϵ
P∞

has a submodule isomorphic to (OA/P
Mr−1−Mr )2. We let cMr−1

and c̃Mr−1
denote the natural

generators of this module.
By proceeding inductively on r = 2m + 1, and imposing by Proposition 3.2.6 that cMr−1

is
chosen independent of {cM2k

, c̃M2k
| k < m}, it follows that X(A/K)−ϵ

P∞ contains a submodule
isomorphic to

(OA/P
M0−M1)2 × (OA/P

M2−M3)2 × · · · .

Let us prove the main theorem.

Proof of Theorem 3.2.1. We proceed by induction on r. By applying Proposition 3.2.6 to
C = {0} and r = 1, it is shown above that there exists an ℓ ∈ S1(M0 −M1) such that the class
dM0−M1(ℓ) ∈X(A/K)−ϵ

P∞ has order pM0−M1 . By the definition of N1 we conclude that

M0 −M1 ≤ N1.

Conversely recall that X(A/K)P∞ admits a maximal isotropic subgroup

D = D1 ×D2 ×D3 × · · · ,

where Di is a cyclic OA/P
Ni-module contained in the ϵi-eigenspace of X(A/K)P∞ . Let di be

a generator for Di. As yK has infinite order, the sequence in (1.3) is split. For every i, let ci
denote the lift of di to SP∞(A/K) under this splitting. For any valuation v, let yi,v ∈ A(Kv)
be an element such that δv(yi,v) = ci. It follows from the definition of M0 = ordP(yK) that
ord cM0+N1

(1) = pN1 . Hence by Corollary 2.1.5, there exists a prime number ℓ1 such that

ordcM0+N1
(1)λ1

= pN1 ,

ordc1,λ1 = pN1 ,

ci,λ1 = 0, for all i ≥ 2.

(3.4)
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The first condition of Corollary 2.1.5 is equivalent to the property that ℓ1 ∈ S1(M0 + N1).
Therefore by Corollary 2.3.8, it follows that dM0

(ℓ1) ∈ X(A/K). Thus for all i and for any
0 ≤M ≤ Ni − 1 we have that

⟨dM0
(ℓ1), p

Mdi⟩ = ⟨dM0−M (ℓ1), di⟩ = ⟨dM0−M+Ni
(ℓ1)λ1

, yi,λ1
⟩λ1

, (3.5)

To see that the last equality holds, observe that dM0−M+Ni
(ℓ1) satisfies the properties of d1

in the definition of the Cassels-Tate pairing. Moreover, all other terms in this sum vanish by
Lemma 2.3.6. By (1.1) and the choice of ℓ1, this term vanishes for i ≥ 2. For i = 1, recall that
this pairing on

A(Kλ1)/P
N1A(Kλ1)×H1(K,A)[PN1 ]

is non-degenerate and τ -invariant. In particular the τ -eigenspaces are cyclic submodules. As
yi,λ1

has order pN1 , it is a generator for A(Kλ)/P
N1A(Kλ)

−ϵ. By Theorem 2.3.7 we have that
ord dM0+N1−M (ℓ1)λ1 = ord cM0+N1−M (1)λ1 = pN1−M > 1. It therefore follows from the non-
degeneracy of this pairing that (3.5) is non-trivial for all 0 ≤M ≤ N1− 1. We conclude that the
character

X1 : d ↦→ ⟨dM0
(ℓ1), d⟩ ∈ D∗

vanishes on D2 × D3 × · · ·. Observe that this character is the image of dM0(ℓ1) in D∗ under
the map in (3.1). As D1 is a cyclic OA/P

N1-module, so is D∗
1 , and since X1 does not vanish

anywhere on D1, we conclude that it must be a generator for D∗
1 . In particular dM0

(ℓ1) has order
at least pN1 . But as its order is bounded by pM0−M1 , we conclude that

N1 ≤M0 −M1,

and hence that
N1 =M0 −M1.

Proceeding inductively, let r > 1 be an integer and assume that for all 1 ≤ j < r we have
Nj =Mj−1 −Mj . Moreover assume that there exist ℓ1, ..., ℓr−1 ∈ S1(M

′) such that

ci,λj
= 0 for all i > j,

and that the characters
Xj : d ↦→ ⟨dMj−1

(nj), d⟩, 1 ≤ j < r

vanish on Dr×Dr+1×· · · and form a diagonal basis for (D1×· · ·×Dr−1)
∗, where nj =

∏︁
i≤j ℓi,

and M ′ is chosen sufficiently large. Let h1 and h2 ∈ A(K)ϵ be two elements forming a OA/P
M ′

for A(K)/PM ′
A(K) and let

C = ⟨δ(h1), δ(h2), c1, ..., cr−1, cM0
(n1), ..., cMr−2

(nr−1)⟩ϵk .

This module is generated by at most r independent elements. Using Proposition 3.2.6, choose
any n ∈ Sr(M

′) such that ord cMr−1
(n) = pMr−1−Mr and C ∩ ⟨cMr−1

(n)⟩ = 0. Assume that
orddMr−1

(n) > Nr. As the sequence in (3.1) splits, we observe that dMr−1
(n) is contained

in the submodule generated by d1, ..., dr−1, dM0
(n1), ..., dMr−2

(nr−1). Let c denote the lift of
dMr−1(n) to SP∞(A/K). If r is odd, the lift is unique and must therefore equal cMr−1(n), which
gives a contradiction as the lift is contained in C. Otherwise, cMr−1(n) − c is contained in the
image of A(K)ϵ⊗FP/OA,P. After multiplying by a power of p if necessary, one can assume that
cMr−1

(n)−c ∈ δ(A(K)/PM ′
A(K)). As this module is generated by δ(h1) and δ(h2), we conclude

that cMr−1
(n) ∈ C. This gives a contradiction, hence orddMr−1

(n) ≤ Nr. Notice that multiplying
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cMr−1
(n) with the order of dMr−1

(n) gives an element in ⟨δ(h1), δ(h2)⟩. By construction this must
be 0, hence cMr−1

(n) has the same order as dMr−1
(n) and therefore

Mr−1 −Mr ≤ Nr.

Conversely, by Corollary 2.1.5 there exists a prime number ℓr ∈ S1(M
′) such that

ordcMr−1+Nr
(nr−1)λr

= pNr ,

ordcr,λr = pNr ,

ci,λr = 0 for all i > r.

Letting nr = ℓrnr−1 and 0 ≤M ≤ Ni − 1, we observe

⟨dMr−1
(nr), p

Mdi⟩ = ⟨dMr−1−M (nr), di⟩ =
r∑︂

j=1

⟨dMr−1−M+Ni
(nr)λj

, yi,λj
⟩λj
.

Notice that this sum vanishes for i > r by the choice of ℓj . By the same argument, for i = r, the
ℓj term vanishes for all j < r. Notice that yr,λr

has order pNr in A(Kλ)/P
NrA(Kλ)

ϵr . Likewise

orddMr−1+Nr−M (nr)λr
= ordcMr−1+Nr−M (nr)λr

= ordcMr−1+Nr−M (nr−1)λr

= pNr−M > 1.

Hence by the non-degeneracy of the Tate pairing described in Proposition 1.5.3, we conclude
that this pairing is non-trivial for i = r and all 0 ≤M ≤ Nr − 1. Therefore the character

Xr : d ↦→ ⟨dMr−1(nr), d⟩

generates D∗
r when restricted to Dr and vanishes when restricted to Di for i > r. Hence the set

{Xj | j ≤ r} vanishes on Dr+1 × Dr+2 × · · · and forms a diagonal basis for (D1 × · · · × Dr)
∗.

The character Xr has order at least pNr , and as it is induced by dMr−1(nr) we conclude that
dMr−1

(nr) has order at least pNr . As its order is bounded by pMr−1−Mr , we conclude that

Nr ≤Mr−1 −Mr

and hence that
Nr =Mr−1 −Mr.
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Chapter 4

Level raising

In this chapter we slightly modify our description of Shimura curve to use a formalism which
will allow us to be more clear in the next chapter. Using this new formalism we can introduce
two important construction which will play an important role later.

4.1 Level raising
Let p be a rational prime, p ⊂ OF and P ⊂ OA be prime above p as in the previous chapter.
We recall that f is the Hilbert newform associated to our abelian variety A, ρ the P-adic
representation of A and ρP is the residual representation at the prime P. By our surjectivity
assumption it follows that the representation is irreducible, so ρ is residually irreducible. We
recall that N = N+N− where the primes in N+ split in K and those of N− are inert. We had
assumed that N− is square-free and that N− as different parity than the degree of F .

From now on we assume that

Assumption 4.1.1. 1. The residual representation ρP ramifies at all prime in N+ and all
q | N− such that N(q) ≡ 1 mod p. Furthermore there are no prime q | N− such that
N(q) ≡ −1 mod p.

2. If N is not square-free, then the residual representation ramifies at least at one place
dividing exactly N− or at least at two places dividing exactly N+.

3. For all prime ℓ such that ℓ2 | N+ we have H1(Fℓ, ρP) = ρDℓ

P = 0 where Dℓ is the decom-
position group at ℓ in Gal(F/F ).

We are going to vary the ramification locus of the quaternion algebra B, and so we use a
notation which is more explicit about it, hence we denote by XN+,N− the Shimura curve attached
to this datum.

Definition 4.1.2. A prime ideal ℓ of OF is called admissible if

• ℓ ∤ NDK/F p;

• ℓ is inert in K;

• p ∤ N(ℓ)2 − 1;

• the P-adic valuation is vP((N(ℓ) + 1)2 − a2ℓ) ≥ 1.
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Let Λ be the set of square-free product of admissible primes and Λ+ (Λ−) be the subset of Λ
where the element are product of an even (odd) number of primes.

Since we assumed that A is a modular abelian variety of GL2 type, the field E = OA ⊗Q is
the field over Q generated by all the eigenvalues of the Hecke operators acting on f .

Let mf denote the kernel of the morphism from the Hecke algebra T acting on the space of
Hilbert modular forms

T→ OA,P/P.

Definition 4.1.3. We say that f is P-isolated if the completion of T at mf is isomorphic to
OA,P.

From now on we chose p such that f is P-isolated and p is unramified in OA. By [Car94] and
[Lon07, Chapter 2.5] we know that the P-adic representation associated to f is equivalent to
the representation ρ associated to the Tate module TPA. Hence when we consider the residual
representation the underlying vector space to ρP is V = A[P].

Theorem 4.1.4. For each admissible prime ℓ there exists a Hilbert newform f ′ of level Nℓ and
a prime P′ in the field of fraction of OA′ , which is generated by the Hecke eigenvalues of f ′,
OA′/P′ ∼= OA/P and for all primes q ̸= ℓ we have

aq(f) (mod P) ≡ aq(f ′) (mod P′)

where both sides lie in OA/P. Equivalently

ρP ∼= ρf ′,P′

where ρf ′ is the representation associated to f ′.

Proof. By our assumption ρ is residually irreducible and P-isolated, so we can apply [Lon07,
Theorem 3.3] and [DS74] to get our claim. Another approach can be found in [Jar99]. This
allows us to raise the level at one admissible prime, but using our assumption on the ramification
of the residual representation we can apply the same argument as in [Zha14, Theorem 2.1] to
raise the level at a product of admissible primes.

Let m ∈ Λ then using this theorem we can get a Hilbert newform fm of level Nm. We adopt
the same notation we used for f adding an index m, so we have a prime Pm such that the
field generated by the Hecke eigenvalues OAm

/Pm
∼= OA/P. We fix this isomorphism. By the

equivalence of the residual representation the underlying two-dimensional OA/P-vector space
does not change, so we denote it by V .

4.2 Kolyvagin system revisited
Let m ∈ Λ+ be admissible with an even number of prime factors, we denote by Xm = XN+,N−m

the Shimura curves arising from the quaternion algebra B(m) which ramifies also at the places
dividing m. If m ∈ Λ− we need some extra step because we are changing the parity of the number
of factor of N−m, so in this case we consider the Gross curve Xm associated to the quaternion
algebra B(mξ) ramifying also at the infinite place ξ and at the places dividing m.

The first case is called the indefinite case and the second one is the definite case. If we
consider the sign of the functional equation of the L-function associated to f in the indefinite
case it is −1 and in the definite one is 1. Due to this we usually want to change the ramification
only by elements of Λ+ because otherwise we would change the sign.

46



CHAPTER 4. LEVEL RAISING

For ease of notation we write in both case Bm for the quaternion algebra we are considering
and Rm for the subgroup generated by the Eichelr order.

Tracing back our construction we have the abelian variety A associated to the Hilbert newform
f and the Shimura curve X. Given m ∈ Λ+ we get a new Shimura curve Xm which generates an
abelian variety Am associated to the Hilbert newform fm that we got by raising the level of f at
m. We denote by OAm

the endomorphism ring of Am.
In this same spirit we can define Heegner points and classes on the object related to the raised

Hilbert modular form. We consider from now on M = 1, and so we drop it from the notation.
Let n ∈ S (1), we define the Heegner points

xn(m) ∈ Xm(K[n]) and yn(m) ∈ Am(K[n])

in the same way as before; similarly, we define the Gross points

xn(m) ∈ Xm.

Following the construction of [Zha14] we con provide a reduction and a specialization map
acting on Heegner points. Since this construction is a simple generalization of the work of Zhang
we just sketch the main steps and provide the required results in our setting. Let Hm denotes
the set of CM-point on the Shimura curve Xm of conductor 1 with positive orientation (for the
precise definition see [Zha01b]).

Lemma 4.2.1. Let m ∈ Λ+, q ∈ Λ a prime not dividing m and q′ ∈ Λ a prime dividing m, let
n ∈ S (1), then there are two maps

Redq : Hm → Xmq,

Spq′ : Hm → Xm/q′

such that
Redq(xn(m)) = xn(mq) ∈ Xmq,

Spq′(xn(m)) = xn(m/q) ∈ Xm/q′ .

Proof. We use the reduction of the canonical integral models as constructed by Zhang in [Zha01b]
and [Zha01a]: Xm has an integral model over Zq parametrizing abelian varieties with auxiliary
structure. Then the integral model has good reduction at q and the set of supersingular points
is Xss

m
∼= Xmq, thus giving us an embedding K ↪→ Bmq. The Heegner points xn(m) reduce to

supersingular points in Xss
m when reducing modulo a prime above q (see [Zha14, Section 3.5]),

so composing with the isomorphism to Xmq we get the map Redq.
Using the theory of Drinfeld and Cerednik we can study the irreducible components of Xm

and the graph associated to them. Using [Zha01b, Proposition 1.3.4] and [Zha01a, Lemma 5.4.4]
we have an adelic description of the group of irreducible components of Xm. Then following
[Zha14, Section 3.4] we construct another embedding K ↪→ Bm/q′ and by [Lon12, Section 7.5] we
find a relation between the set of vertices of the graph associated to the geometrically irreducible
components of Xm and Xm/q′ . The Heegner points xn(m) reduce to non-singular points in the
special fiber of Xm when reducing modulo a prime above q′ (see [Zha14, Section 3.5]), hence we
have a map from Hm to the set of irreducible components, and so composing with the map to
Xm/q′ we get the map Spq′ .

Using the adelic description the required relations follow immediately.
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We now want to define the Kolyvagin classes using the idea of level raising. Let Tm denote
the algebra of Hecke operators on the space Hilbert modular form of parallel weight 2 which are
new at all places dividing N−m, we have a morphism

λfm : Tm → OAm

that gives the eigenvalue of the Hecke operator. We can consider the reduction modulo Pm, and
we get a map

λfm : Tm → OAm
/Pm.

Let M denote the kernel of λfm . We have that Jac(Xm)[M] ∼= V ∼= Am[Pm] since the residual
representation are isomorphic.

Now for every n ∈ S (1) and m ∈ Λ+ we can define a Kolyvagin class

c(n,m) ∈ H1(K,Am[Pm]) ∼= H1(K,V )

derived as before from the Heegner points xn(m) and yn(m). When m = 1 we have the classical
case, so we drop the index: c(n, 1) = c(n).

Definition 4.2.2. Let m ∈ Λ+, then we denote by κm the Kolyvagin system

κm =
{︁
c(n,m) ∈ H1(K,V ) | n ∈ S (1)

}︁
.

We now introduce some local cohomology group which are used to impose local condition on
cohomology classes.

Definition 4.2.3. Let v be a prime non dividing N ,then we define the finite or unramified part
of H1(Kv, V )

H1
fin(Kv, V ) = H1

ur(Kv, V )

as the inflation of H1(Kur
v /Kv, V ) where Kur

v is the maximal unramified extension of Kv.
The singular part is

H1
sing(Kv, V ) = H1(Iv, V )Gal(Kur

v /Kv)

where Iv is the ramification group at v.

By the inflation-restriction exact sequence we get that

0→ H1
fin(Kv, V )→ H1(Kv, V )→ H1

sing(Kv, V ).

We now assume that q is an admissible prime, then the Galois module V is unramified at q,
so as Gal(Kq/Kq)-module the space V splits as

V ∼= OA/P⊕OA/P(1)

where OA/P(1) is the usual twist. Following [Tam21, Lemma 6.6] this decomposition indices a
direct sum in cohomology

H1(Kq, V ) = H1(Kq,OA/P)⊕H1(Kq,OA/P(1)).

Lemma 4.2.4. Let q be an admissible prime, then

1. dimH1(Kq,OA/P) = dimH1(Kq,OA/P(1)) = 1;
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2. In H1(Kq, V ) we have that

H1
fin(Kq, V ) = H1(Kq,OA/P),

H1
sing(Kq, V ) ∼= H1(Kq,OA/P(1)).

Proof. The first part and the equality for the unramified part follows from [Tam21, Lemma 6.19].
For the last part the required isomorphism is induced by the restriction map.

For an admissible prime q we have the following decomposition

H1(Kq, V ) = H1
fin(Kq, V )⊕H1

sing(Kq, V ).

Let v be a place of K, then we define locv : H
1(K,V ) → H1(Kv, V ) the localization map.

We have the following important congruence between Heegner points which in the classical case
over Q is due to Bertolini and Damon and in the case over totally real filed to Longo ([Lon12]).

Theorem 4.2.5. Let m ∈ Λ+ and q1, q2 be two admissible primes not dividing m, then we have

locq1(c(n,m)) ∈ H1(Kq,OA/P) and locq2(c(n,mq1q2)) ∈ H1(Kq,OA/P(1)).

Fixing isomorphisms H1(Kq1 ,OA/P) ∼= OA/P ∼= H1(Kq2 ,OA/P(1)) we have an equality for all
n ∈ S (1) up to a unit in OA/P:

locq1(x(n,m)) = locq2(c(n,mq1q2)).

Proof. Let A0, A0
1, A

0
2 the abelian varieties associated to the Hilbert newforms fm, fmq1 , fmq1q2 ,

they all have the same vector space V associated to their representation by level raising.
We start from calculating locq1(x(n,m)). We have the Kummer map which goes into the

finite part of the cohomology, so we have

δq1 : J(Xm)(Kq1)→ A0(Kq1)→ H1
fin(Kq1 , A

0[Pm]) ∼= H1
fin(Kq1 , V ) = H1(Kq1 ,OA/P).

It follows from [Lon12, Section 7.4] that there exists an eigenform

ϕ : Xmq1 → OA/P

such that

• ϕ is the reduction of the Jacquet-Langlands correspondence of fmq1 , this determines ϕ
uniquely up to a scalar;

• It calculates the image of the local Kummer map of Heegner points on Xm: for a suitable
choice of isomorphism H1(Kq1 ,OA/P) ∼= OA/P we have

ϕ(Redq1(x)) = δq1(x) ∈ OA/P

for all Heegner points.
This follows from [Lon12, Lemma 7.20] as a consequence of Ihara’s lemma for Shimura
curves over totally real fields ([MS21]).

We now calculate locq2(c(n,mq1q2)). Again we want to compute the local Kummer map

δq2 : J(Xmq1q2)(Kq2)→ A0
2(Kq2)→ H1

sing = H1(Kq2 ,OA/P(1)).

The image of A0
2(Kq2) is in the singular part since J(Xmq1q2)(Kq2) has purely multiplicative

reduction at q2 by [Tam21, Theorem 6.13] and [Lon12]. This completes the proof of the first
claim.

Let J = J(Xmq1q2), by [Lon12, Section 7.5] it follows that
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• The Kummer map J(Kq2) → H1(Kq2 , J [M]) = H1(Kq2 , V ) factors through the group
Φ(J/Kq2) of connected components of the Neron model of J over Kq2 ;

• The specialization map always lies in Xmq1 . By [Lon12, Pag. 344] there is a homomorphism
which calculates the specialization to the group Φ(J/Kq2);

• The Hecke eigenform ϕ also calculate the local Kummer map on Xmq1q2 : for a suitable
choice of the isomorphism H1(Kq2 ,OA/P(1)) ∼= OA/P we have

ϕ(Spq2(x)) = δq2(x) ∈ OA/P

for all Heegner points in Hm.

From the previous analysis of the geometric behavior of these two maps in 4.2.1 and the
above description of the Kummer maps in terms of ϕ we get for all n ∈ S (1)

locq1 ◦ δq1(yn(m)) = locq2 ◦ δq2(yn(mq1q2))

up to a unit in OA/P. Now the classes c(n,m) are derived from the Heegner points, so from
the Kummer images of the yn(m) applying the Kolyvagin derivative operator, which by the
construction are compatible when varying m. Then clearly this equality implies the last claim of
the theorem.

Remark 4.2.6. There is an analogue of this theorem in the other index of the class c(n,m) arising
from a finite/singular morphism ψℓ at ℓ ∈ S (1) (cf. 2.3.7):

ψℓ(locℓc(n,m)) = locℓ(c(nℓ,m)).
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Chapter 5

Selmer groups

In this chapter we want to study some properties of the Selmer groups attached to A and the
effect of the level raising on them. This will be important as it is one of the main technique used
in the proof of the final results. The main reference for this chapter is [Tam21].

5.1 Local conditions

Let ℓ be a prime, then we denote by δℓ the Kummer map. We recall the classical definition of
Selmer groups can be written as

Selp(A/K) =
{︁
c ∈ H1(K,A[p]) | locℓ(c) ∈ Im(δℓ) for all ℓ

}︁
.

Since we have identified A[P] with V we can see the image of the Kummer map as a subspace
of H1(Kℓ, V ).

Definition 5.1.1. A system of local conditions is a choice of a subspace

H1
f (Kℓ, A[P]) ⊆ H1

f (Kℓ, A[P])

for all places ℓ.

We take H1
f (Kℓ, A[P]) = Im(δℓ) for all ℓ. Under suitable hypothesis we can describe a system

of local conditions only in terms of Galois structure on V together with the information of the
reduction type at every prime.

Lemma 5.1.2. 1. Let ℓ be a prime and let Galℓ denote the decomposition group at ℓ, then

H1(Fℓ, V ) = 0 ⇐⇒ V Galℓ = 0.

2. If A is an elliptic curve with additive reduction at a prime ℓ ∤ p, then

H1(Fℓ, V ) = 0.

Proof. Since ℓ ∤ p by Tate Theorem [Mil06, Theorem 2.8] the Euler-Poincaré characteristic is
χ(Galℓ, V ) = 1. We recall that V is self dual (det(ρ) is the p-adic cyclotomic character), so
the local duality tells us that H0(Galℓ, V ) is dual to H2(Galℓ, V

∗) = H2(Galℓ, V ), hence they
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have the same dimension. Since H0(Galℓ, V ) = V Galℓ , by the definition of the Euler-Poincaré
characteristic

χ(Galℓ, V ) =
#H0(Galℓ, V )#H2(Galℓ, V )

#H1(Galℓ, V )
,

so the first part of the lemma is proved.
To show the second part we can just prove that V Galℓ = 0 and since ℓ ∤ p it is equivalent to

A(Fℓ)/pA(Fℓ) = 0. A has additive reduction, so there is a filtration A1(Fℓ) ⊂ A0(Fℓ) ⊂ A(Fℓ)
such that A1(Fℓ) is a pro-ℓ-group, A0(Fℓ)/A1(Fℓ) is isomorphic to the residue field of Fℓ and
A(Fℓ)/A0(Fℓ) is isomorphic to the component group of the Neron model of A/Fℓ. The component
group of an elliptic curve has order at most 4, hence A(fℓ)/pA(Fℓ) = 0.

We now want to study how the local conditions change with level raising, so let q be an
admissible prime.

Theorem 5.1.3. For all prime ℓ ̸= q the local conditions does not change

H1
f (Kℓ, A[P]) = H1

f (Kℓ, Aq[Pq]).

If ℓ = q then

H1
f (Kq, A[P]) = H1(Kq,OA/P) and H1

f (Kq, Aq[Pq]) = H1(Kq,OA/P(1)).

Proof. The proof is a direct generalization of [Zha14, Theorem 5.2] and [GP12, Lemma 8] using
the analogues result of [Lon12, Section 5.2], [Tam21, Proof of Theorem 6.17] and [Nek12]. This
is the only place where we need the last item of Assumptions 4.1.1. At primes not dividing Nq
both varieties have good reduction and at primes dividing N both have purely toric reduction,
so the condition are the same. The only prime where things go differently is q since one has
good reduction and the other one purely toric. At primes dividing p we can describe the local
condition using flat cohomology, and they coincide.

We can define four important local condition: we keep the local condition at all primes
different from q and then one of the following at q

• The unramified condition: H1
u(Kq, A[P]) = H1(Kq,OA/P);

• The transverse condition: H1
t (Kq, A[P]) = H1(Kq,OA/P(1));

• The relaxed condition: H1
r (Kq, A[P]) = H1(Kq, A[P]);

• The strict condition: H1
s (Kq, A[P]) = 0.

We define the Selmer groups

Sel∗(A/K) =
{︁
c ∈ H1(K,A[P]) | locℓ(c) ∈ H1

∗ (Kℓ, A[P]) for all ℓ
}︁

where ∗ can be one of the previous four possible condition at q, and we have the following lemma
about the parity of the dimensions of these groups

Lemma 5.1.4. If locq : Selu(A/K)→ H1
u(Kq, A[P]) is non-zero, then

1. dimOA/P Selr(A/K) = dimOA/P Sels(A/K) + 1,

2. Selu(A/K) = Selr(A/K) and Selt(A/K) = Sels(A/K).

If locq : Selt(A/K)→ H1
t (Kq, A[P]) is non-zero, then

1. dimOA/P Selr(A/K) = dimOA/P Sels(A/K) + 1,

2. Selt(A/K) = Selr(A/K) and Selu(A/K) = Sels(A/K).

Proof. This follows from the proof of [Tam21, Lemma 7.8].
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5.2 Rank lowering

Using the parity lemma we can prove the main theorem about the relation between Selmer group
and level raising.

Theorem 5.2.1. If the localization locq : SelP(A/K) → H1
fin(Kq, V ) = H1(Kq,OA/P) is sur-

jective, then we have

dimOAq/Pq
SelPq

(Aq/K) = dimOA/P SelP(A/K)− 1.

Moreover we have

SelPq
(Aq/K) = Ker(locq : SelP(A/K)→ H1

fin(Kq, V )).

Proof. The first part follows immediately from the parity lemma. The second part follows since
SelPq

(Aq/K) = Sels(A/K) is the strict Selmer group and SelP(Aq/K) = Selr(A/K) is the
relaxed Selmer group.

This principle of level raising and rank lowering is at the base of the proof of our main result.
Using this we can prove the non-vanishing of the Kolyvagin system, so our Kolyvagin classes are
non-trivial and can be used to deduce the P-part of the Birch and Swinnerton-Dyer conjecture.

5.3 L-functions

In order to obtain information about the non-vanishing of Heegner points we use the central
values of some L-function and in particular a formula of Zhang [Zha01a] which generalize the
usual Gross formula for modular curves. Let X denote the Gross curve.

Using the Jacquet-Langlands correspondence we can find a normalized eigenform ϕ : X→ OA.
We normalize ϕ in such a way that its Petersson norm is 1 and its image in OA,P contains a
P-adic unit. This determines ϕ up to a P-adic unit. In this case the Petersson product is defined
using the counting measure since the set X is finite. Let xK = TrK[1]/K x(1). We recall that the
degree of the field F is g.

Theorem 5.3.1 (Gross-Zhang formula). The following equality holds

|ϕ(xK)|2 =
N(DK/F )

1/2

2g
L(f/K, 1)

⟨f, f⟩Pet

where DK/F is the relative discriminant of K/F , ⟨·, ·⟩Pet is the Petersson inner product and
L(f/K, s) is the L-function over K.

Let TN+,N− be the N−-new quotient of the Hecke algebra generated by the Hecke operators
acting on the parallel weight 2 forms of level N+. Let λf be the morphism associated to f

λf : TN+,N− → OA ↪→ OA,P.

Definition 5.3.2. • The congruence number ηB is a generator of the congruence ideal, so

(ηB) = λf (AnnTN+,N− ker(λf ))OA,P.

It is well-defined up to a P-adic unit.
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• The canonical or Gross period is

Ωcan
f =

⟨f, f⟩Pet

ηB
.

• The algebraic part of the special value of L(f/K, 1) is

Lalg(f/K, 1) =
L(f/K, 1)

Ωcan
f ηB

.

Remark 5.3.3. We use the congruence number just to define the Gross period, but it has some
really deep application. For example, it is strictly related to the idea of complete intersection
algebras (see [Dia97] and [Len95]) and to the theory of the congruence of modular forms thanks
to the works of Hida.

In particular since f has trivial central character the field E, i.e. the fraction field of OA, is
totally real, hence |ϕ(xK)|2 = ϕ(xK)2. Recall that vP is the P-adic valuation, then

Corollary 5.3.4.
2vP(ϕ(xK)) = vP(Lalg(f/K, 1)).

Assume to be in the indefinite case, i.e. the number of prime factor in N− has different parity
than [F : Q]. In particular in this case the sign of the functional equation for the L-function is
−1 and so L(f/K, 1) = 0, so we cannot use the Gross-Zhang formula. However, we can find a
criterion to test the vanishing of the Heegner points yK using the level raising.

Theorem 5.3.5. Let q be an admissible prime. Assume to be in the indefinite case, then the
class c(1) ∈ H1(K,A[P]) is locally non-trivial at q if and only if the algebraic part Lalg(fq/K, 1)
is a Pq-adic unit.

Proof. Since we are in the indefinite case, the number of factor of N−q has the same parity as
[F : Q], so the central value is not zero.

Let n ∈ S (1), by the Lemma 4.2.1, the reduction at q of the Heegner point xn(1) is
Redq(xn(1)) = xn(q). Hence, we can compare the Heegner divisor xK = x1,K and xq,K which is
the one associated to the reduction:

x1,K = TrK[1]/K x1(1),

xq,K = TrK[1]/K x1(q).

Let ϕq be the normalized eigenform obtained from the Jacquet-Langlands correspondence on
fq, then the reduction

ϕq mod Pq : Xq → OAq
/Pq

is a Hecke eigenform and hence equal to a multiple of the function ϕ of Theorem 4.2.5 considering
m = 1 by [Man21]. Possibly replacing ϕq by a multiple we may assume that ϕq mod Pq = ϕ, in
particular we have

ϕq(xq,K) mod Pq = ϕ(xq,K).

Fixing an isomorphism H1
fin(Kq, V ) ∼= OA/P, by 4.2.5 we have that

locq(c(1)) = ϕ(xq,K) ∈ OA/P.

So by the Gross-Zhang formula, up to a P-adic unit, we have

locq(c(1))
2 = ϕ(xq,K)2 = ϕq(xq,K)2 = Lalg(fq/K, 1) mod Pq

where all values are in OA/P. The theorem then follows.
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Remark 5.3.6. There is also an analogue version when we are in the definite case, see [Tam21,
Thorem 6.19]. In this case we take q as the product of two different admissible primes.

This theorem and its analogue rely heavily on the Ihara’s lemma which has been proven for
Shimura curve over totally real field in [MS21].

The Birch and Swinnerton-Dyer formula over Q was proved in rank zero by Kato, Skinner
and Urban. We need a similar version over totally real fields.

Theorem 5.3.7. Assume that p is a good ordinary prime, the image of the residual Galois
representation contains SL2(Fp) and if [F : Q] is even and the global sign of f is −1 then the
automorphic representation of f is special in at least one finite place, then L(f/K, 1) ̸= 0 if and
only if SelP∞(A/K) is finite, furthermore in this case we have

lenghtOA,P
SelP∞(A/K) = vP(Lalg(f/K, 1)).

Proof. This follows from [Tam21, Theorem 5.2]. Since our representation is residually irreducible
then we can use [Wan15] to apply [Tam21, Remark 6.11] and prove the theorem.

We can now state an important non-vanishing result in the rank one case, but before we need
the following

Lemma 5.3.8. Let c ∈ H1(K,A[P]) be a non-zero class. There exists a positive density of
admissible primes q such that the localization locq(c) is non-zero.

Proof. This is [Tam21, Lemma 7.4]. It is a simple application of the Čebotarev density theorem.

Theorem 5.3.9. If dimOA/P SelP(A/K) = 1 then the class c(1) is non-zero.

Proof. Let c be a generator of SelP(A/K) ⊂ H1(K,A[P]). We can choose an admissible prime
q such that locq(c) ̸= 0. Using level raising we can find a Hilbert newform fq of level Nq. Note
that our Assumptions 4.1.1 are stable under level raising. Then clearly the localization

locq : SelP(A/K)→ H1
fin(Kq, A[P])

is surjective. By Proposition 5.2.1, we have that dimOAq,Pq
SelPq (Aq/K) = 0. In particular

SelP∞(Aq/K) = 0. Therefore, by 5.3.7, we have

vP(Lalg(fq/K, 1)) = 0,

so Lalg(fq/K, 1) is a Pq-adic unit, hence by 5.3.5 the class c(1) is non-zero.

5.4 Triangulization of Selmer groups
We recall some properties of the Kolyvagin system and some consequence for the Selmer groups
which will lead us to construct a triangular basis for it. Let m ∈ Λ+ be a fixed element throughout
this section. Since it is fixed we drop it from the notation to simplify it.

Definition 5.4.1. Let ℓ ∈ S1(1), the transverse part H1
tr(Kℓ, V ) is the subspace of H1(Kℓ, V )

arising from the inflation of H1(K[ℓ]λ, V ) where λ is a prime of K[ℓ] over ℓ.

Following [How04] we have a finite/singular split exact sequence giving the decomposition

H1(Kℓ, V ) = H1
fin(Kℓ)⊕H1

tr(Kℓ, V )

where each component is totally maximal isotropic under the action of the local Tate pairing. In
general the finite part is, by definition, the local condition of Theorem 5.1.3.
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Proposition 5.4.2. The Kolyvagin system κ has the following properties

1. For every prime ℓ and n ∈ S (1) we have

locℓ(c(n)) ∈

{︄
H1

fin(Kℓ, V ) (ℓ, n) = 1

H1
tr(Kℓ, V ) ℓ | n

2. For each prime ℓ ∈ S1(1) there is a finite/singular morphism

ψℓ : H
1
fin(Kℓ, V )→ H1

tr(Kℓ, V )

such that for all n ∈ S (1) with (ℓ, n) = 1 we have

locℓ(c(nℓ)) = ψℓ(locℓ(c(n))).

Proof. The first statement follows by [Tam21], the second one from Theorem 2.3.7.

Recall our surjectivity assumptions on the residue Galois representation, then

Lemma 5.4.3. Let c1, c2 be two OA/P-linear independent elements in H1(K,V ), then there
exists a positive density of primes ℓ ∈ S1(1) such that

locℓ(c1) ̸= 0 i = 1, 2.

Proof. This follows from Proposition 2.1.4.

Lemma 5.4.4. Let ℓ ∈ S1(1) and S a finite subset of S (1) not containing ℓ. Then there exists
c ∈ H1(K,V )± such that

• c ̸= 0;

• locvc ∈ H1
fin(Kv, V ) for all v outside S ∪ {ℓ};

• locvc ∈ H1
tr(Kv, V ) for all v ∈ S.

Proof. The same proof of Lemma 3.2.5 works.

This last lemma tells us that we can pick up an element with a prescribed set of places where
it lays in the transverse part of the cohomology.

Definition 5.4.5. • Let κ be a Kolyvagin system. The vanishing order ν of κ is

ν = min {r ∈ Z+ | ∃ n ∈ Sr(1) such that c(n) ̸= 0} .

If κ = {0} we say that ν =∞.

• A prime ℓ is called a base point of κ if ℓ ∤ DK/FNp and locℓ(c(n)) = 0 for all n ∈ S (1).
The set of all base point is called the base locus of κ and is denoted by B(κ).

The following theorem gives us the structure of the Selmer group, providing it with a trian-
gular basis for some eigenspaces. The important aspect is that this basis is composed only of
Kolyvagin classes. This will be important in the argument to prove the main result. The proof
of this theorem is very similar to the one of the structure theorem for Shafarevich-Tate groups,
in fact it relies more or less on the same technique.
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Theorem 5.4.6. Assume that κ is not trivial (i.e. ν is finite), then we have

1. The ϵν-eigenspace SelϵνP (A/K) is of dimension ν + 1 and Sel−ϵν
P (A/K) has dimension at

most ν;

2. There exist 2ν + 1 distinct prime l1, · · · , l2ν+1 ∈ S1(1) such that the classes

c(ni) ∈ H1(K,V ) ni = lili+1 . . . li+ν−1

for 1 ≤ i ≤ ν + 1 form a basis of SelϵνP (A/K) with the property that for all 1 ≤ i, j ≤ ν + 1

loclν+j
(c(ni))

{︄
= 0 if i > j,

̸= 0 if i = j.

3. Let Sel±P,B(κ)(A/K) be the relaxed Selmer group at the base locus B(κ), i.e. the Selmer
group where we take the relaxed condition at the primes dividing B(κ), then

SelϵνP,B(κ)(A/K) = SelϵνP (A/K) and dimSel−ϵν
P,B(κ)(A/K) ≤ ν.

Proof. We start with proving by induction the following claim: if 0 ≤ j ≤ ν, then there exists a
sequence of primes l1, · · · , lν+j such that

• c(ni) ̸= 0 for all 1 ≤ i ≤ j + 1 where ni = li . . . lν+i−1;

• loclν+i
c(ni) ̸= 0 for all 1 ≤ i ≤ j.

When j = 0 it follows from the definition of ν that there exists n1 = l1 . . . lν ∈ Sν(1) such that
c(n1) ̸= 0. This proves the claim in the case j = 0. Note that the second statement is void in
this case. Now suppose by induction that we have found primes l1, . . . , lν+j satisfying the claim
with 0 ≤ j ≤ ν − 1. We apply Lemma 5.4.4 to S = {lj+2, . . . , lν+j} and ℓ = lj+1 to obtain
c ∈ H1(K,V )−ϵν such that

• c ̸= 0;

• locv(c) ∈ H1
fin(Kv, V ) for all v outside {lj+1, . . . , lν+j};

• locv(c) ∈ H1
tr(Kv, V ) for all v ∈ {lj+2, . . . , lν+j}.

In particular, we have that the class c lies in the opposite eigenspace to c(nj+1). Using the
Lemma 5.4.3 we get a prime lν+j+1 distinct from l1, . . . , lνm+j such that loclν+j+1

(c) ̸= 0 and
loclν+j+1c(nj+1) ̸= 0. We now use the Tate pairing and calculate it as a sum of the local pairings
over all places

0 = ⟨c, c(nj+1lν+j+1)⟩ =
∑︂
v

⟨c, c(nj+1lν+j+1)⟩v.

Now c and c(nj+1lν+j+1) lies in the same eigenspace, so the possibly non-zero contribution only
comes from v ∈ {lj+1, . . . , lν+j+1}. When v ∈ {lj+2, . . . , lν+j} both locvc and locvc(nj+1lν+j+1)
lies in the transverse part H1

tr(Kv, V ), thus the local pairing is zero. When v = lν+j+1 we have
loclν+j+1(c) ̸= 0 in H1

fin(Kv, V )ϵν+1 and

loclν+j+1
c(nj+1lν+j+1) = ψlν+j+1

(loclν+j+1
c(nj+1)) ̸= 0
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in H1
tr(Kv, V )ϵν+1 . Thus the local pairing at lν+j+1 is non-zero. Hence also the other local

contribution cannot be zero, so we have loclj+1
c ̸= 0 and loclj+1

c(nj+1lν+j+1) ̸= 0. Hence

loclj+1
c(nj lν+j+1/lj+1) ̸= 0

or equivalently
loclj+1

c(nj+2) ̸= 0 nj+2 = lj+2 . . . lν+j+1.

In particular, we get that c(nj+2) ̸= 0, which completes the proof of the claim.
We add a prime l2ν+1 ∈ S1(1) such that locl2ν+1

c(nν+1) ̸= 0. Such a prime exists since
c(nν+1) ̸= 0. Thus we have constructed {l1, . . . , l2ν+1} satisfying the statement (2) of the theo-
rem.

By this construction it follows easily that the c(ni) for 1 ≤ i ≤ ν+1 are linearly independent
and belong to the Selmer group SelϵνP (A/K). To complete the proof of the theorem we need to
show that they generate the whole eigenspace of the Selmer group. In order to achieve this we
can prove the stronger statement that they generate the relaxed Selmer group SelϵνP,B(κ)(A/K).

Let c ∈ SelϵνP,B(κ)(A/K), without loss of generality we may assume, up to changing c by
subtracting a suitable linear combination of c(ni)’s, that loclν+j (c) = 0 for all 1 ≤ j ≤ ν + 1.
Let n′ = lν+1 . . . l2ν l2ν+1 ∈ Sν+1(1), then c(n′) is non-zero since by our claim loc2ν+1c(n

′) ̸= 0.
In particular, we find that the classes c and c(n′) are in different eigenspaces. Assume, by
contradiction, that c ̸= 0. By Lemma 5.4.3 there exists a prime l2ν+2 ̸∈ {li | 1 ≤ i ≤ 2ν + 1}
such that locl2ν+2(c) ̸= 0 and locl2ν+2(c(n

′)) ̸= 0. Let n′′ = n′l2ν+2 ∈ Sν+2(1). Then also c(n′′) is
non-zero since our requests on the prime l2ν+2 imply that locl2ν+2(c) ̸= 0 and locl2ν+2(c(n

′′)) ̸= 0.
Moreover the class c(n′′) lies in the same eigenspace of c.

We use again the Tate pairing

0 = ⟨c, c(n′′)⟩ =
∑︂

v∈B(κ)

⟨c, c(n′′)⟩v +
∑︂
ℓ|n′′

⟨c, c(n′′)⟩ℓ

and by the definition of base locus we have locv(c(n
′′)) = 0 for all v ∈ B(κ), so the first sum

on the right-hand side is zero. Furthermore, locli(c) = 0 for all ν + 1 ≤ i ≤ 2ν + 1 but not for
i = 2ν + 2 and so finally we get

0 = ⟨c, c(n′′)⟩ =
∑︂
ℓ|n′′

⟨c, c(n′′)⟩ℓ = ⟨c, c(n′′)⟩l2ν+2
̸= 0

which is a contradiction, hence c = 0. This implies that SelϵνP,B(κ)(A/K) = SelϵνP (A/K) and that
it is generated by the c(ni) for all 1 ≤ i ≤ ν + 1.

The last step in our proof is to show that dimSel−ϵν
P,B(κ)(A/K) ≤ ν. Suppose, by contradiction,

that dimSel−ϵν
P,B(κ)(A/K) > ν. By a dimensional argument, there exists a class c̃ ∈ Sel−ϵν

P (A/K)

such that c̃ ̸= 0 and loclν+i
(c̃) = 0 for all 1 ≤ i ≤ ν. Since c̃ and c(nν+1) belongs to different

eigenspaces we can apply Lemma 5.4.3 to choose a different a prime l2ν+1 such that locl2ν+1
(c̃) ̸= 0

and locl2ν+1(c(nν+1)) ̸= 0. Then we conclude as before calculating the Tate pairing

0 = ⟨c̃, c(nν+1l2ν+1)⟩ =
∑︂

ℓ|nν+1l2ν+1

⟨c̃, c(nν+1l2ν+1)⟩ℓ = ⟨c̃, c(nν+1l2ν+1)⟩l2ν+1
̸= 0

which gives us a contradiction, thus finishing the proof.
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Chapter 6

Birch and Swinnerton-Dyer formula
in the rank one case

We are now ready for the proof of our main result. We will first prove the non-vanishing of our
Kolyvagin system and a parity theorem and then proceed to the main proof.

6.1 Kolyvagin’s conjecture

In order to use our Kolyvagin system we need to know that it is not trivial.

Theorem 6.1.1. Assume that the parity of the number of factor of N− is different from the one
of [F : Q] and our Assumptions 4.1.1 hold. Then

κ =
{︁
c(n) ∈ H1(K,V ) | n ∈ S (1)

}︁
̸= 0.

Proof. We work by induction on the rank

r = dimSelP(A/K).

We assume that the parity conjecture for Selmer group holds for A/K (see [Nek09] and [Nek06]),
so r is always odd since we are in the rank 1 case.

The case r = 1 is Theorem 5.3.9. Suppose now that r ≥ 3 and that µ ∈ {±} is chosen such that
SelµP(A/K) has higher rank than Sel−µ

P (A/K). In particular, we have that dimSelµP(A/K) ≥ 2.
We proceed in the following way: first chose a non-zero c1 ∈ SelµP(A/K). In particular, we
want that c1 ∈ H1(K,V ). Chose an admissible prime q1 such that the image of c1 under the
homomorphism

locq1 : SelP(A/K)→ H1
fin(Kq1 , V )

is non-zero, thus this homomorphism is surjective. Using level raising we get a Hilbert newform
fq1 of level Nq1 together with a prime Pq1 . By Proposition 5.2.1, we have

dimOA/P SelPq1
(Aq1/K) = dimOA/P SelP(A/K)− 1

and
SelPq1

(Aq1/K) = ker locq1 .
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Then we chose a non-zero c2 ∈ SelµPq1
(Aq1/K) and an admissible prime q2 as before. Since

dimSelµPq1
(Aq1/K) ≥ 2, such c2 exists. Again we want c2 ∈ H1(K,V ). Then again by level

raising we obtain a Hilbert newform fq1q2 of level Nq1q2 and a prime Pq1q2 . Again by rank
lowering we have

dimOA/P SelPq1q2
(Aq1q2 ,K) = dimOA/P SelPq1

(Aq1/K)− 1 = dimOA/P SelP(A/K)− 2

and
SelPq1q2

(Aq1q2 ,K) = ker locq1q2 .

Moreover this process is compatible this the action of complex conjugation, hence the dimension
of the µ eigenspace decreases whereas the dimension of the −µ one remain constant.

By induction hypothesis and noting that fq1q2 still satisfies all the hypothesis of this theorem,
we may assume that the family

κq1q2 =
{︁
c(n, q1q2) ∈ H1(K,V ) | n ∈ S (1)

}︁
̸= {0} .

By the reciprocity law 4.2.5 we have for all n ∈ S (1) that locq1(c(n, 1)) = locq2(c(n, q1q2)).
To complete the proof it is enough to show that q2 is not a base point for the Kolyvagin system
κq1q2 . We do this by contradiction, so assume that q2 ∈ B(κq1q2).

The local condition defining the Selmer groups of Aq1q2 and Aq1 differs only at q2, thus we
have a trivial inclusion into thee relaxed Selmer group

Sel±Pq1
(Aq1/K) ⊂ SelPq1q2

,B(κq1q2
)(Aq1q2/K).

We have two cases:

1. dimSelµPq1q2
(Aq1q2/K) remains bigger that dimSel−µ

Pq1q2
(Aq1q2/K);

2. dimSelµPq1q2
(Aq1q2/K) is smaller than dimSel−µ

Pq1q2
(Aq1q2/K). This happens exactly when

dimSel−µ
P (A/K) = dimSel−µ

P (A/K) + 1.

In the first case by the Theorem 5.4.6 we have an equality

SelµPq1q2
(Aq1q2/K) = SelµPq1q2

,B(κq1q2
)(Aq1q2/K).

Hence SelµPq1
(Aq1/K) ⊂ SelµPq1q2

(Aq1q2/K) by the previous inclusion. By our previous choice
the class c2 lies in the first space but not in the second and so we have a contradiction.

In the second case, let νq1q1 denote the vanishing order of κq1q2 as usual. Then by the Theorem
5.4.6 we have

dimSel−µ
Pq1q2

(Aq1q2/K) = νq1q2 + 1,

dimSelµPq1q2 ,B(κq1q2 )
(Aq1q2/K) ≤ νq1q2 .

However, by the previous inclusions the dimension of the relaxed Selmer is at least that of
SelµPq1

(Aq1/K) which is νq1q2 +1 by the previous considerations and thus we have a contradiction
also in this case.

In our particular case we can avoid using the parity conjecture and instead prove it for our
specific case.

Proposition 6.1.2. Assume that we are in the indefinite case, then dimSelP(A/K) is odd and
hence SelP∞(A/K) has odd OA,P-corank.
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Proof. Under our hypothesis we are in the indefinite case, so the root number is −1 and thus
L(f/K, 1) = 0. The case r = dimSelP(A/K) = 0 cannot happen by Theorem 5.3.7.

Suppose by contradiction that r ≥ 2 is even. We have two cases: if one eigenspace has
dimension strictly larger than the other we can apply the same argument as in Theorem 6.1.1
and produce Aq1q2 with dimSelPq1q2

(Aq1q2/K) = r − 2. Otherwise, the two eigenspaces have
the same dimension and we can modify the choice of c2 in the proof of the above theorem and
force c2 ∈ Sel

−νq1q2

Pq1
(Aq1/K). Then we get again an Aq1q2 with dimSelPq1q2

(Aq1q2/K) = r − 2.
Therefore, by induction we get a contradiction. So we have proved the parity in the indefinite
case.

Under our hypothesis the OA/P-vector space SelP(A/K) can be identified with the P-torsion
of SelP∞(A/K). By the non-degeneracy of the Cassels-Tate pairing on the indivisible quotient of
X(A/K) the OA,P-corank of SelP∞(A/K) has the same parity as the dimension of SelP(A/K),
so it has odd corank.

We can now state a more general result which is the Kolyvagin’s conjecture. Let ν(n) denote
the number of factor of n ∈ S (M), so n ∈ Sν(n)(M).

Theorem 6.1.3. Let f be a Hilbert newform over F of parallel weight 2 and level N with trivial
nebentypus, A the associated abelian variety, P a prime ideal of OA above the prime number p
and DK/F the relative discriminant of a CM extension K of F with (DK/F , N) = 1. Assume
that

• N− is square-free and the number of prime factor has opposite parity of [F : Q];

• The residue representation is surjective;

• Assumptions 4.1.1 holds;

• The prime p is ordinary and p is coprime with DK/FN .

Then we have
κ∞ =

{︁
cM (n) ∈ H1(K,A[PM ]) | n ∈ S (1),M ∈ Z+

}︁
̸= 0.

Indeed we have
M∞ = lim

r→∞
Mr = 0.

Proof. This follows easily from Theorem 6.1.1.

From this theorem we can also deduce a construction of the Selmer groups using the Kolyva-
gin’s classes.

Corollary 6.1.4. Let ν be the vanishing order of the Kolyvagin system κ. Then

1. The vector space SelϵνP (A/K) is contained in the subspace of H1(K,V ) spanned by all c(n, 1)
for n ∈ S (1);

2. The vector space SelP(A/K) is contained in the subspace of H1(K,V ) spanned by all c(n,m)
for n ∈ S (1) and m ∈ Λ+.

Proof. The first statement is a consequence of Theorem 5.4.6 and Theorem 6.1.1 above. To prove
the second statement is enough to show that the other eigenspace is generated by the classes
c(n,m). We use induction on the dimension of SelP(A/K) in the same way as in the proof of
Theorem 6.1.1. In fact dimSelPq1q2

(Aq1q2/K) = dimSelP(A/K)−2 and by induction hypothesis
we may assume that SelPq1q2

(Aq1q2/K) is generated by the classes c(n, q1q2m). In particular,
the subspace Sel−ϵν

Pq1q2
(Aq1q2/K) is generated by them. But this two subspace share the same

underlying OA/P-vector subspace by level raising so the corollary follows.
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6.2 The main formula

In this last section we prove the P-part of the Birch and Swinnerton-Dyer conjecture in the rank
one case. We assume to be in the indefinite case. We restrict ourselves to the case where A is
an elliptic curve.

We assume also that vp(
∏︁

v cv) = 0 where cv denotes the Tamagawa number at v. This
assumption excludes only a finite set of primes p. We also assume that p ∤ #A(F )tors and p ∤ DF

where DF is the discriminant of F . Let ⟨·, ·⟩NT denote the Neron-Tate height pairing.

Lemma 6.2.1. Under our assumptions, if L(A/K, s) has a simple zero at s = 1 then the P-part
of the Birch and Swinnerton-Dyer conjecture for A/K is equivalent to

2 · lenghtOA,P
(A(K)/OAyK) = lenghtOA,P

X(A/K).

Proof. We have assumed that N− is square-free, so by [Zha01b], [Zha04] and [YZZ13] the Gross-
Zagier formula con be written as

L′(A/K, 1)

Ωf
=
⟨yK , yK⟩NT

D2
FD

1/2
K/F

.

We can also rewrite the Birch and Swinnerton-Dyer formula following [Dis15] and [GP12] as

L′(A/K, 1)

ΩA
=
D

−1/2
K/F #X(A/K)⟨yK , yK⟩NT

∏︁
v cv

[A(K) : OAyK ]
2

where ΩA is the period associated to A. This period can be computed by integrating a Neron
differential ωA, if it exists, along the quotients composing the Shimura curve X; the Neron
differential is guaranteed to exist only when F = Q, otherwise we should take as ωA any generator
of H0(A,ΩA/F ) and divide by the product over all places v of the indices∏︂

v

[︁
H0(Av,ΩAv/OF,v

) : OF,v˜︁ωA

]︁
of the extension of ωA in the space of top differential on the local Neron models Av/OF,v of A.

Here we have our main problem that arise in the totally real case: we need to compare these
two periods. The problem is that f is a Hilbert modular form and not a quaternionic one,
otherwise we would have the comparison. In particular, this can be rewritten as a comparison
between the periods of f and that of its Jacquet-Langlands transfers to quaternionic forms. For
elliptic curve over Q it was done in [PW11], [GP12] and [Pra09], and the quotient of the periods
is the product of some Tamagawa numbers; hence, in our case, it has valuation zero. In the
totally real case the relation is only conjectured. For a more in depth review of this fact see
[Dis15, Chpater 9]. The conjecture is known to hold in some specific case, for example when A
has complex multiplication (over Q) by [Bla86]. Moreover the comparison of these two periods is
also related to the Bloch-Kato conjecture (see [Tam21, Remark 5.5]). We assume this conjecture
to holds, so comparing the two identities and taking the P-adic valuation we get

2 · lenghtOA,P
(A(K)/OAyK) = lenghtOA,P

X(A/K)

which completes the proof.
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Theorem 6.2.2. Under our assumptions, if L(A/K, s) has a simple zero at s = 1 then the
P-part of the Birch and Swinnerton-Dyer conjecture for A/K holds, so we have

vP

(︄
L′(A/K, 1)

ΩARegA/K

)︄
= lenghtOA,P

X(A/K)

where RegA/K is by definition the Neron-Tate height of yK divided by the square of the cardinality
of the torsion part.

Proof. By Lemma 6.2.1 it is enough to show that

2 · lenghtOA,P
(A(K)/OAyK) = lenghtOA,P

X(A/K)

but by Corollary 3.2.3 we have

lenghtOA,P
X(A/K) = 2(M0 −M∞)

hence, by Theorem 6.1.3 we have that M∞ = 0 and so the theorem follows from Corollary
2.3.9.

We can now use the standard argument to descend the result to F .

Theorem 6.2.3. Under our assumptions, if L(A/F, s) has a simple zero at s = 1 then the
P-part of the Birch and Swinnerton-Dyer conjecture for A/F holds, so we have

vP

(︄
L′(A/K, 1)

ΩARegA/F

)︄
= lenghtOA,P

X(A/K).

Proof. Following the proof of [Zha14, Theorem 1.4] we can pick a field K satisfying all our
assumptions, so the P-part of the Birch and Swinnerton-Dyer conjecture holds for A/K by
Theorem 6.2.2. Let AK denote the quadratic twist of A by K, since L(AK , 1) ̸= 0 the P-part
of the conjecture for AK/F holds true thanks to the work of Xin Wan in [Wan15]. Then the
P-part of the Birch and Swinnerton-Dyer conjecture for A/F follows.

If this theorem holds for every P ⊂ OA above p, then we can descend it to obtain the p-part
of the Birch and Swinnerton-Dyer conjecture in the rank one case for infinitely many p.
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topology 1992 (Taejŏn), Korea Adv. Inst. Sci. Tech., Taejŏn, 1992, pp. 53–79.
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