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Abstract

Let A be a modular abelian variety of GLa-type over a totally real number filed F,
let p be an odd rational prime and let ¥ be an unramified prime above p in its ring of
endomorphisms. In this thesis we start by proving a structure theorem for the Shafarevich-
Tate of A. We then proceed to prove that the Kolyvagin’s conjecture holds for A and we
provide some results on the structure of the Selmer group and the parity of its rank. Last
we restrict ourselves to the case where A is a modular elliptic curve and prove the B-part
of the Birch and Swinnerton-Dyer conjecture for A.

Sommario

Sia A una varieta abeliana modulare di tipo GL2 definita sopra un campo di numeri
totalmente reale, p un primo reale dispari e sia 3 un primo non ramificato sopra p nell’anello
degli endomorfismi di A. In questa tesi iniziamo mostrando un teorema di struttura per il
gruppo di Shafarevich-Tate di A. Successivamente dimostriamo la congettura di Kolyvagin
per A e alcuni risultati sulla struttura del gruppo di Selmer e la parita del suo rango. Infine
ci restringiamo al caso in cui A é una curva ellittica modulare e dimostriamo la B-parte
della congettura di Birch e Swinnerton-Dyer per A.
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Introduction

The Birch and Swinnerton-Dyer conjecture, a Millennium Problem of the Clay Institute, is one
of the most fascinating subjects in modern number theory. Arising as an analogue of the Class
Number Formula, it has become one of the most interesting open problems, in which algebraic
geometry, complex analysis and p-adic methods converge to obtain evidences and partial results.
This conjecture has its roots long away, in fact mathematicians have always been interested in
finding all rational solutions to a polynomial equation with rational coefficients; this type of
problems dates back to the time of Diophantus and the Birch and Swinnerton-Dyer conjecture is
strictly related to this problem: the rational points of an elliptic curve defined over @ are indeed
the rational solutions of a polynomial equation of degree 3 with nonzero discriminant.
To explain the conjecture, let E/Q be an elliptic curve. By the Mordell-Weil Theorem

E(Q) = Zr EB E(Q)tors

where E(Q)tors is a finite (torsion) group and r is a positive integer that we call the arithmetic
rank of E. We can attach to F an L-function L(FE,s) where s is a complex variable and this
function converges if R(z) > 3/2. The modularity theorem of Wiles states that this complex
L-function can be holomorphically extended to all C. One may then look at the value of this
function at s = 1. The first part of the Birch and Swinnerton-Dyer conjecture states that

rankz E(Q) = ords—1 L(E, s)

namely, that the order of vanishing of the L-function L(E,s) at s = 1 is equal to the algebraic
rank r of E. The more precise version (the second part) of the Birch and Swinnerton-Dyer
conjecture offers a precise formula for the leading term of the Taylor expansion of L(FE,s) in
terms of important algebraic invariants of F/, and can therefore be seen as a complete analogue
of the Class Number Formula mentioned above. More precisely, the quantitative part of the
Birch and Swinnerton-Dyer conjecture states that

LO(E,1)  [l,¢ - #1L(E/Q)
QERegEr! o (#E(Q)tor5)2

where

o O = f E(R) WE is the period of the holomorphic differential wg of the Riemann surface
E(R);

e Regp is the regulator of E, defined as the determinant of a matrix whose entries are the
values of the Néron-Tate height pairing on a Z-basis of E(Q)/E(Q)tors;

o III(E/Q) is the Shafarevich-Tate group of E. A deep conjecture of Tate states that this
group is finite, but the result in its generality is still unknown;



® ¢, is the Tamagawa number of E at p.

This conjecture was proven in the cases when the rank is zero, i.e. when there is only a finite
number of rational points, or one. The main result is the following, which is due to contributions
of several mathematicians during the last fifty years ([BBV16], [KL89], [Gro91], [SU14], [Zhal4]
and others).

Theorem. Suppose that L(E,s) has a simple zero at s = 1. Then r = 1 and the Birch and
Swinnerton-Dyer formula is true for all primes p except possibly a finite number.

This result use heavily the fact proven by Wiles that all elliptic curves over Q are modular,
which means that there exists a morphism

1t Xo(N) > E

from the modular curve Xo(NN) of level T'g(IN) where the integer N is the conductor of E. In
particular, we can produce a modular form such that the representation attached to the Tate
module T, E of E coincides with the one attached to the modular form.

We extend this result to the more general settings of elliptic curves (and when possible also
of abelian varieties) over totally real fields.

Let F be a totally real number field of degree g and let K/Q be a CM extension of @. Denote
the ring of integers of F' with O and fix a prime p of Op over the rational prime p. Let N be
an integral ideal of F' which is prime to the relative discriminant of K/F. This ideal factorizes
as N = N~ N7 where all factors in N~ (resp. NT) are inert (resp. split) in K. We assume that
N~ is square-free and that the number of its prime factors (N~ ) has opposite parity than g.
This is usually called Heegner hypothesis.

We consider a principally polarized modular abelian variety of GLs type A, thus A is associ-
ated with a Hilbert modular form f whose L-function is the same as the one attached to A. The
modularity assumption combined with the Jacquet-Langlands correspondence means that there
exists a modular parametrization defined over F'

X — A

where X is the Shimura curve attached to an indefinite quaternion algebra B of discriminant N~
defined over F'. To better describe it, recall that this map generalizes the modular parametriza-
tion Xo(N) — E when F = @ and F is an elliptic curve over Q. The direct analogue of modular
curves over totally real fields are the Hilbert modular varieties, which are quotients of a product of
complex upper half-planes by some Hilbert modular group of GL2(OF); however it is sometimes
easier to use Shimura curves. In our setting, we can use the Jacquet-Langlands correspondence
to realize an adelic Hilbert modular form as a function from a quaternion algebra. In this more
general framework we assume modularity, since, to the best of our knowledge, a full result is not
available, but see [TW95], [Buz12], [FLS15] and [Le 14| for recent results.

The case of totally real fields F' # @Q presents the following crucial difference: as a Riemann
surface, the Shimura curve X (C) can be described as

hp
X(©) =]]ri\x

i.e. as a finite disjoint union of quotients I';\H of the upper complex half-plane
H={z€C|R(2z) >0}

vi



by arithmetic subgroups I';. Here hr denotes the class number of F'. In particular each of these
quotients is compact, which is false when F' = . Thus we do not have cusps for a Shimura
curve.

Another important tool used to study this type of problems is the theory of Galois represen-
tations. Let O 4 denotes the ring of endomorphism of A, F the fraction field of O 4 and P C Oy
a prime over p and M a positive integer. We can define the 3-adic Tate module Tip A of A and
the associated representation p: Gal(F/F) — Aut(TipA® Q). Since A is modular this represen-
tation coincides with the 3-adic representation attached to f. In particular the field generated
by the Hecke eigenvalues of f is the same as the fraction field of O4. We denote with py the
residual representation at B. We assume that

Assumption 1. 1. p is coprime with 6DN,
2. p1[Og: O4] where O is the ring of integers of E,
3. p is unramified in F,

4. For all Y extending p in O4, the map pyp surjects onto the subgroup
{9 € GLo(Oa) | det(g) € Z3}.

Using the theory of complex multiplication we define Heegner points P, on the abelian variety
A for products of admissible prime ideals n C Op, which we call Kolyvagin’s primes (see Defini-
tion 2.2.7). We follow the construction introduced by Nekovar in [Nek07]. These points arise from
the complex multiplication points of the Shimura curve X. In the case F' = Q the CM points
on modular curves have a simple interpretation as point representing couples of elliptic curves
with CM by an order in a quadratic field, but this simple idea does not carry over to Shimura
curves. In this case it is still possible to introduce Heegner points via the moduli description of
the Shimura curve, however we prefer an algebraic approach based on the structure of Eichler
orders of level NT in the quaternion algebra B (see Definition 2.2.3): indeed the description of
the objects that the Shimura curves parametrize is more involved than in the modular curves
case. The Kolyvagin formalism applied to the image via the Kummer map of the Heegner points
P, gives classes ¢, € HY (K, A[BM]) and d, € H' (K, A)[BM]. We can use an explicit description
to compute some interesting properties.

We can define the order at 8 of a Heegner point P, in the following way: write M | P,
whenever P, € PM A(K[n]) where K|[n] is the ring class field of conductor n over K. Define

ordy (Py) = max{M € Z, | B | P, }.

Finally let
M, = min{ordy(Py) | n € 7 (ordp(Pn) + 1)}

where .7, (M) denotes the set of products of r Kolyvagin’s primes for M.

If we assume that P; has infinite order we can find a structure theorem for the Shafarevich-
Tate group of A. In the case of elliptic curves over @ this was done by Kolyvagin (see [McC91]),
where under similar hypothesis he proved

Theorem (Kolyvagin). If A is an elliptic curve over Q, then

HI(A/K) = @ (z/p™Z)

i

where N; = M;_1 — M;.
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Our first result is a generalization of this theorem to our setting which is the following

Theorem (Th. 3.2.1). Under Assumptions 1,

I(A/K) = D (0a/B™)

i
where N1 = Mi,1 — Mz

This theorem is the first important step to prove the Birch and Swinnerton-Dyer conjecture
in our framework.

At this point we need to make several technical assumptions on the prime p we consider,
hence, in addition to the previous ones, we assume that A has good ordinary reduction at p
and that ordy(]],cq) = 0, where ¢q is the Tamagawa number of A at the prime q C Op.
Furthermore, we assume that p t #A(F);ors and p does not divide the conductor of Q4 in E.
These conditions exclude only a finite number of primes p. Finally, we make some assumption
on the representation p:

Assumption 2. 1. pg is irreducible; in this case we say that p is residually irreducible.

2. The residual representation pgp ramifies at all prime in N* and all ¢ | N~ such that
N(q) =1 mod p. Furthermore, there are no prime q | N~ such that N(q) = —1 mod p.

3. If N is not square-free, then the residual representation ramifies at least at one place
dividing exactly N~ or at least at two places dividing exactly N7T.

4. For all prime ¢ such that ¢2 | N* we have H'(Fy, pp) = pgz = 0 where Dy is the decom-
position group at ¢ in Gal(F'/F).

In this setting, we may define {2 to be the period of the Hilbert modular form f attached
to A, which is up to a constant the Petersson inner product (f, f)pe: (see Definition 1.2.10).
We can also attach a period 24 to an abelian variety, which is computed integrating a Neron
differential, which is only guaranteed to exist when F' = Q, or a generator of H°(A, Q4 /r) if the
Neron differential does not exist.

Here lies the main obstruction to an unconditional result: we need to compare these two
periods. The problem is that the period 2y arise from the generalization of the Gross-Zagier
formula (see [YZZ13]) and is related to the Hilbert modular form f and not to a quaternionic
form. This result is known for elliptic curves over @ thanks to [PW11], [GP12] and [Pra09] or
when A has complex multiplication by [Bla86], but the general case is still a conjecture due to
Shimura in [Shi83] and Yoshida in [Yos94] (up to algebraicity). It is also strictly related to the
Shimura’s conjecture on the P-invariants, which is partially proven by Yoshida in loc. cit. For a
deeper discussion on this topic see [Disl15, Chaper 9].

Finally, consider the Néron-Tate height E(Pl) of the Heegner point P;; note that the point Py
under our assumptions is non-torsion and so if it actually belongs to A(F) and A(F) ®7z Q = Q,
then h(Py) is by definition the regulator Reg 4 /- The main result of the thesis is the following

Theorem (Th. 6.2.3). Assume Assumptions 1 and 2 and that the periods Q4 and Qy, where f
is the Hilbert modular form associated to A, are equal in C* up to a p-adic unit in Q*, then if
L(A,s) has a simple zero at s =1, then

L'(A,s)
——— | =lengh .
ords (QARegA/F> enghto, . II(A/K)
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In other words, this result proves the B-part of the Birch and Swinnerton-Dyer conjecture
for abelian varieties over totally real fields for infinitely many primes p. Furthermore, if this
theorem holds for every 8 C O4 above p, then we can descend it to obtain the p-part of the
Birch and Swinnerton-Dyer conjecture in the rank one case for infinitely many p.

We now give an idea of the structure of the proof. The most important tool used is the level
raising/rank lowering method. One application is due to Zhang in [Zhal4]| for elliptic curves over
Q. We say that a prime ideal ¢ of Op is admissible if

e ({ NDg/rp;

e [ is inert in K;

o PIN()? -1

e the P-adic valuation is vy ((N(¢) + 1)* — a?) > 1.

Here Dy is the discriminant of K/F. Given our Hilbert modular form f of level 9 we can
choose a product m of some admissible primes and using the first two item in Assumptions 2
in Theorem 4.1.4 we construct another Hilbert modular form f, with level 9tm such that the
residual representations are isomorphic. Associated to fn, there is another abelian variety Ay, and
in particular we get that the rank of the Selmer group of Ay, is lower than the one of Sely(A/K):
this is proved in Theorem 5.2.1 which requires the last item of Assumptions 2. We use this idea
to prove a parity result about the rank of the Selmer groups: if L(A,s) has a simple zero at
s = 1 then the rank of the Selmer group must be odd.

Next we produce a suitable Kolyvagin system and in particular we prove that it is non-trivial.
This is the main problem to resolve in order to use Heegner points and it is usually called the
Kolyvagin conjecture. In order to achieve this goal we construct another structure theorem
in the same spirit of first one concerning the Selmer group: in Theorem 5.4.6 we provide a
triangular basis for an eigenspace of the Selmer group composed only by Kolyvagin classes; this
last element is the key result to prove the non-vanishing of the Kolyvagin system. For this we
study the relation between the localizations of the classes ¢(n) at various primes and prove some
explicit reciprocity laws, among which the most important is stated in Theorem 4.2.5; here we
need also the third item of Assumptions 2. This problem has been studied by many authors: see
among others [BDO05], [Lon06], [Tam21]| and [Nek07]. We follow the way traced by Bertolini and
Darmon in [BD05| and generalized to totally real field by Longo in [Lonl2]. A technical tools
used is the Thara’s lemma for Shimura curves, recently proved over totally real field by Manning
and Shotton. These explicit reciprocity laws, the theorem on the structure of the Selmer group
and the level raising/rank lowering method allow us to prove the Kolyvagin’s conjecture, which
finally leads us to the proof our main result.

ix






Chapter 1

Modular Abelian Varieties

Let F be a totally real number field of degree g, and let K be a CM-extension of F'.
In this chapter we introduce the notations and the basic constructions that we need in order

to define the Heegner points and Kolyvagin’s classes on modular abelian varieties over a totally
real field.

1.1 Shimura curves

Let € be the quadratic character associated to K/F. Let N be an integral ideal of F' which is
prime to the relative discriminant of K/F. This ideal factorizes as N = N~ NT where all factors
in N~ (resp. NT) are inert (resp. split) in K. We assume that N~ is square-free and that
the number of its prime factors ¥(NN ™) has opposite parity rather than g. This is usually called
Heegner hypothesis.

Let usfix £: F — R areal embedding of F'. We want to construct a Shimura curves associated
to K and N which will be the principal ingredient in order to define the modular abelian varieties.

By our assumption on the parity of the number of factors of N, there exists a unique
quaternion algebra B over F' which is ramified only at the prime divisors of N~ and all the
archimedean prime but £. Using this information about the ramification at the archimedean
places we can fix an isomorphism

B®q R = Myyo(Fe) @ HI?

where F¢ is the completion of F' at £ and IH denotes the real quaternions.
Let A denotes the adele ring of F, A? the subring of finite adeles and A% the infinite part.
We consider the group of units B* which can be endowed with some more structure: there
exists an algebraic group G such that B* is the set of F-rational points of G, i.e. G(F) = B*.
Hence, taking the projection over the first factor in the previous isomorphism, we get a map

G(A%C) = (B ®Q IR)X — GLQ(FE)

which defines an action of A%, and so also of B* on the union of the upper and lower half-plane
HE. We denote by U, the stabilizer of i for this action, and so we identify

HT = G(AY)/Use.

1



1.1. SHIMURA CURVES

If we consider the quotient map G(AS®) — H* we can easily see that it admits a section s defined

) (R )

Following [How04, Section 1.2], at every place v € N~ where B ramifies, K ® F, is a field, and
so we can find an embedding ¢: K — B. Considering the action of B* onto H* we find that
there is only one point w(q) € H* which is fixed by all ¢(a) varying a € K*.

Let Op be a maximal (Eichler) order of B containing ¢(Ok) and define an order

R =q(Ok) +q(N")Og

of reduced discriminant N. Let H C G(A;) be the image of order R under the isomorphism

B =~ G(AL) and let Z denote the center of G, so Z(AL,) = F”. To this datum we can associate
a Shimura curves X which has the associated Riemann surface (which we will also denote by X)
given by

X(C) = GIF)\H* x G(AL)/Z(AL)H
= BX\N* x B"/F"R.

In the case that F' = Q to have a Shimura curve we need to add some extra points, the so-called
cusps; in this case we recover the classical modular curves Xo(N). If F £ Q then X is proper
over Spec(F).
We denote by [z,b] the point of X (C), which are represented by a pair (z,b) € HT x B
This curve is irreducible but not necessarily geometrically irreducible. We have an action of
the normalizer of U on the curve X (C) given by a[z,b] = [2,ba~1]; we denote this automorphism
by J(a). Let v denote the reduced norm v: G(Ar) — A}, then the reciprocity map

recp: B = Gal(F/F)

induces an isomorphism Gal(Fx /F) = F*\A} /v(Z(Ap)UUs) where Fx is an abelian extension
of F' by class field theory.

In many applications we are interested in integral model of these Shimura curves and they
were studied by many authors. When F = Q and B = M>(Q) the curve X is the classical
modular curve Xo(N) which is a coarse moduli space of elliptic curves with I'g(N)-structure.
Katz and Mazur in [KM85] studied this specific case in full detail and were able to construct an
integral model and later to compactify into a regular integral model proper over Spec(Z,) for
some prime p where B does not ramify. If B # M5(Q) we can still use some similar techniques
and we can view X as a coarse moduli space of abelian surfaces with quaternionic multiplication
and some suitable level structure. Thanks to the works of Buzzard we can obtain a proper regular
integral model. Things are more difficult when F' # @Q because they are no more moduli space
of abelian varieties with some structure, in fact we loose altogether the moduli interpretation.
However, we can again find integral models but it is not straightforward. The Shimura curve X
can be related to another unitary Shimura curve that parametrizes some class of abelian varieties
of dimension 4 [F': Q]. This was first studied by Carayol in [Car86] and using his results following
the methods of [CV05] we can find an integral model.

So we can find canonical models, whose existence was proved by Shimura.

Theorem 1.1.1. There is a smooth projective variety X defined and connected over F whose
complex point are isomorphic to X(C) as a Riemann surface. The action of Gal(F'/F') on the

2



CHAPTER 1. MODULAR ABELIAN VARIETIES

geometric components of factor through Gal(Fx/F) and agrees with the action determined by
J(a). If x € X(C) is a CM-point then x is defined over K% and the action of Gal(K%/K)
agrees with the one defined above by the reciprocity map.

Proof. See [How04, Proposition 1.2.2]. O

We now define some correspondences on the Shimura curve. Let m be an integral ideal of F'
coprime to N. For every prime ¢ | m the quaternion algebra B is split. Define A(m) (resp. A(1))
to be the set of elements of @5 with component 1 away from m and such that their determinant
generates m (resp. is a unit) at every prime divisor of m. We define the Hecke correspondence
or operator Ty, on X (C) as

Talzb= Y [zh].

YEA(m)/A(L)

The collection of these operators forms and algebra which is called the Hecke algebra of the
Shimura curve. For more details on this we refer to [Nek07, section 1.12].

There is an interesting class of points on a Shimura curve which will be important in order to
construct the Heegner points later. Our ramification assumptions on the algebra B imply that
there is an F-embedding 7: K — B. We fix such embedding and extend it to the completion at
a prime v as 7,: K ®p F, — B, and to the ring of finite adeles 7: K < B. We recall that we
fixed an embedding ¢: F < R, we extend it to &;: K «— C.

Lemma 1.1.2. There is a unique point z € C with Im(z) > 0 which is fixed by the action of
T(K*) C B* C Bg 5 GL2(R) and furthermore we have that {\ € B* | \(z) =z} = 7(K*).

Proof. See [Nek07, Lemma 2.2]. O

Definition 1.1.3. The Complex Multiplication points, or CM-points, by the CM field K on the
Shimura curve X are the point in the following set

CM(X, K) = {1: —[z,b] € X(C) |be BX}

where z is the same as in Lemma 1.1.2.

Remark 1.1.4. The point z depends on the choice of the embedding 7, but since two different
F-embedding of K into B are conjugated by an element of B* by the Skolem-Noether theorem
the set of CM-points does not depend on this choice.

Using the reciprocity law of class field theory we can find the field of definition of the CM-
points: we have CM(X, K) C X(K%), so we can define an action of the Galois group of the
abelian closure of K on these points in the following way:

reci(s)[z, 0] = [z,7(s))]  Vse K

where recg : K S Gal(K%/K) is the reciprocity map. In particular, we have the following
result

Proposition 1.1.5. Let x = [2,b] € CM (X, K) and K(z) the field of definition of x over K.
Then there is an isomorphism recy: KX\K ™ /# {(bHEF b~1) = Gal(K (z)/K).

Proof. See [Nek07, Proposition 2.5]. O



1.1. SHIMURA CURVES

This isomorphism can be written in a simpler way:
recg: K JKXF" 7 = Gal(K(z)/K)

where Z = %_1(bH(A9;b71) C Oy is an open compact subgroup of (b; containing (b; This Z is
the preimage of R under the map b~17b and is called the endomorphism ring of the CM-point z.
Furthermore, this ring arises from an Op-order in K of the form O, = O 4+ cOg for a non-zero

ideal ¢ C Op as Z = @: The ideal ¢ is called the conductor of x. The corresponding abelian
extension K|c|/K is the ring class field of K of conductor c¢. The reciprocity map reck is also
compatible with the action of Gal(K/F).

It is important to analyze the behavior of primes of K in the ring class field. Each prime
not dividing O is unramified in K|c]/K. If a prime of F' which does not divides ¢ and which is
inert in K/F then it splits completely in K|c]/K.

In this setting it is more difficult to construct explicitly CM-points of a given conductor rather
than in the classical case of modular curves, so we give an example. We will follow [How04].
Fix a prime ¢ which does not divide the discriminant Dg,p nor N and an isomorphism of the
localization of the quaternion algebra B, = My(Fy) in such a way that we can identify R, with
M5(Op,). So we get the following explicit embedding if ¢ is split in K

T(Oke) = {(g 2) |2,y € OF,e}

and the following one if £ is inert in K

O ={ (7 %) o < One}

for some u € O, not a square. Let 7 be an uniformizer of F; and let h[(*] be the element of
By such that under the previous isomorphism behaves as following:

ﬂ.k

if £ splits in K
h[e*] —

if ¢ is inert in K

We can view h[f¥] as an element of G(Ap) with trivial component away from ¢ and extend
h multiplicatively to a map on all integral ideals prime to Dg,rN. These points have nice
properties and in particular we have that

Proposition 1.1.6. There is a collection of CM-points h[m] € X(C) where m runs over all
prime ideal coprime with Dy pN such that h[m] has conductor m and as divisors on X (C)

Ty(h[m]) if £4m and is inert in K
[0+ OF,] normemey )/ xm] (A[m€]) = § Ty(h[m]) — h[m]7¢ — h[m|7¢  if £{m and is split in K
Ty(h[m]) = h[m/{] if £ m

where o¢ and o are the Frobenius automorphisms of the primes of K above £ and O is the
order defined above.

Proof. See [How04, Proposition 1.2.1]. O



CHAPTER 1. MODULAR ABELIAN VARIETIES

1.2 Hilbert modular forms

We fix a totally real number field F', an integral ideal N C Op and a positive number n. Let
H denote the complex upper half-plane. An element M = (My,...,M,) in the group SLy(R)™
acts on the product of n complex upper half-planes as

M(z1,. .. 20) = (Myz1,..., Mpzy)
where the action of SLy(R) on # is the classical one.

Proposition 1.2.1. A subgroup I' C SLo(R)™ is discrete if and only if it acts discontinuously
on H™.

Proof. See [Fre90, Chapter I, Proposition 2.1]. O
Since the field F is totally real of dimension g we can consider the set of real embeddings
Jr ={&,...,&;} and construct an injective map
F — RY

a— (&1(a), ..., &(a)) .

We call an element a € F totally positive if for all £ € Jr the number £(a) is positive. For ease
of notation we are going to identify a and the vector (a1,...,aq) = (&1(a),...,&;(a)). Thus, we
obtain an embedding of the groups GLa(F) — GL2(R)9 and SLo(F) < SL2(R)9.

Definition 1.2.2. The Hilbert modular group of F is
I'r = SLo(OF).

The group Op under the embedding FF — RY is a lattice in RY, hence it is discrete; this
implies that also SLy(Op) is discrete in SLa(R)Y, in particular by the above theorem it acts
discontinuously on H9. Let I' C SLy(R)Y a subgroup, we say that it is commensurable with the
Hilbert modular subgroup if the intersection I' N ' has finite index in both I" and I'p.

Definition 1.2.3. The Hilbert modular variety is
Xr, =Tp\HUF U{oc0}.
Let ' be a subgroup commensurable with I'r, then the Hilbert modular variety of level I is
Xr=T\HUFU{co}.
Proposition 1.2.4. Xr is compact for all ' commensurable with the Hilbert modular group.
Proof. This follows from [Fre90, Chapter I, Theorem 3.6]. O

Following [Fre90] we can give the definition of cusps for a discrete subgroup I', which is similar
to the classical one. In particular, the cusps of the Hilbert modular variety are the elements of
F U {o0}.

Proposition 1.2.5. The Hilbert modular variety has only finitely many cusps classes and their
number is the class number of F.

Proof. This follows from [Fre90, Chapter I, Proposition 3.4] and [Fre90, Chapter I, Corollary
3.5.1]. O
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Let v = (r1,...,74) be a vector of positive integers, for M € SLy(R)? and z € H9 we define
g
jr(M, Z) = H(szz + dz)r‘
i=1
where M = (My,..., M,) and each M; = (% %).

¢ di

Definition 1.2.6. Let I' C SLy(RR)Y be a discrete subgroup that is commensurable with the
Hilbert modular group. A Hilbert modular form of weight r of level I" is a holomorphic function

f:HI=C
such that
o f(Mz)=j.(M,2)f(z) for all M €T

e f is regular at the cusps, i.e. all the negative index coefficients of the Fourier expansion at
the cusps are zero.

If f vanishes at all the cusps, we call f a cusp form.

We now define a norm on the space of Hilbert modular forms. We start by recalling some
basic properties of complex measures.

Proposition 1.2.7. Let z € HY, z = (x1 +iy1, ..., 24 + iyy). The measure

dw, = —=
(Y1 ---yg)?

where dv, denotes the usual Euclidean measure, is invariant under the transformation z — Mz
for all M € SLo(R)9. Furthermore, the space T\H9 has finite volume with respect to this measure.

Proof. This is [Fre90, Chapter II, Remark 1.1 and 1.4]. O

Using this proposition we can prove that if f, g are two Hilbert modular forms, where at
least one of them is cuspidal, the integral

g
f(2)g(2) | 1] (yi") | dew:
Jroo 0 (I
exists.
Theorem 1.2.8. The Petersson pairing
A
)= [ 120 (H@m) o,
[\#s i=1
is a Hermitian inner product on the space of Hilbert modular cusp forms of weight r.

Proof. The proof is the same as in [Fre90, Chapter II, Remark 1.5]. O

6
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We can generalize this construction and switch to an adelic setting in order to define the
adelic Hilbert modular forms. We follow [Ros16] for this construction. A weight r = (rq,...,7y)
is called parallel if ry = ... = r4. Let GL2 be the algebraic group defined over F' of 2 by
2 invertible matrices and GLy(A%)" be the connected component of GL2(A%) containing the
identity; the group GL2(A% )™ can be embedded as before in SL2(R)Y, therefore it acts on HY
by fractional linear transformations. Let K, be the stabilizer of zg = (¢, ...,7) € HY under this
action.

For n an ideal of F' we define the group

Ko(n) = {(gg) € GLy(Op) | ceﬁ}.

Definition 1.2.9. Let r,w be two g-tuple of positive integers, we define the space of adelic
Hilbert modular forms of level Ky(n) and weight r as the space of complex-valued functions f
on GLy(Ar), holomorphic on GLy(A%), such that

flazu) = f(x)jrw(Uoo, 20) for all @ € GLy(F),u € Ko(n) K

where u, denote the infinite part of v and

g
Jraw(M, 2) = [ [(det M;) ™ - (M, 2).

i=1

We say that f is cuspidal if
/ f(ga)da =0 for all g € GLa(AR)
F\Ap

with respect to the Haar measure.

Let G = Redp/qGL2(F), then the adelic Hilbert modular functions can be seen as function
on the Shimura variety

XKo(u) = G(Q)\G(AF)/KOOK(T‘)

In order to have non-zero adelic Hilbert modular forms the elements » and w must be in a precise
relation, in fact 7 — 2w must be parallel; let us call m € Z the value of the entry of this vector.

Definition 1.2.10. Let f, g be adelic Hilbert modular forms, the Petersson inner product is
defined as

(f. ) = /X F(@)g(@)|det ()™ dpssea ) ()
Ko(n)

where fi, () is @ measure on X () which is induced from the standard measure on the Borel
of GL2(Ap). For a precise construction of this measure see [GG12, Section 5.7|.

By the strong approximation theorem, the Shimura variety Xy () can be decomposed as

h+
Xkom) = |J Tai \H?

i=1

where h™ is the narrow class number of F' and T'y, are suitable subgroup indexed by a set of
representatives of the narrow ideal class group. As a consequence, the function f decomposes

7
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as (f1,..., fn+), where each f; is a Hilbert modular forms. Then the two definition of Petersson
product are linked by

h+
(fig9) = ZN(ai)m<fi7gi>~

From now on we work with adelic Hilbert modular forms, so to avoid verbosity we drop the
adjective adelic.

Using the Whittaker operator defined in [ZhaOlb, Section 3] we can find a Fourier expansion
for f and we call an(f) the m-th coefficient of f for m an ideal of Op.

Let m be a non-zero ideal of Op. Let H(m) denote the following subset of GLy(F):

H(m) = {(‘; Z) € GLo(OF) | (d,N) = 1,c € NOp, (ad — be)Op = m@F} .

Definition 1.2.11. The m-th Hecke operator T(m) on the space of cusp form of parallel weight
k is defined by the formula

(T F)) = N [ p(hz)an
H(m)
where dh is the Haar measure on GLy () such that Ko(N) has volume 1.
Proposition 1.2.12. The Fourier coefficients of T(m)f are given by the formula
an(T(m)f) = D N(@)* e (f).
a|(m,n)

Proof. This is [ZhaOlb, Proposition 3.1.4]. O

Let N’ be a factor of N, let d € GLy(F) such that
d ' Ko(N)d C Ko(N')
and let f’ be a Hilbert modular form for Ko(N’) of the same weight of f. Then by [ZhaOlb,
Section 3.1.6] the function f/(z) = f'(dz) is a Hilbert modular form for Ko(N).

Definition 1.2.13. The subspace of the space of cuspidal Hilbert modular forms of level Ky(N)
generated by these f} varying N’ # N is called the space of old forms. The space perpendicular
to the space of old forms is called the space of new forms.

The space of new forms is generated by the newforms, i.e. Hilbert modular forms which are
new, they are eigenforms for all Hecke operators and their first coefficient is 1. Then we have a
strong multiplicity one theorem.

Theorem 1.2.14. Let f1, fo be two newforms of parallel weight k of levels Ko(N1) and Ko(N2)

respectively, such that ay(f1) = ap(f2) for all but finitely many primes p of Op. Then N1 = N

and f1 = fa.

Proof. See [ZhaOlb, Theorem 3.1.7]. O
Let T denote the subalgebra of the C-endomorphisms of the space of cuspidal Hilbert modular

forms generated by the T'(m) with (m, N) = 1.

Corollary 1.2.15. For any linear map a: T — C, there is a unique Hilbert modular form f
such that
am(f) = a(T'(m))
whenever (m, N) = 1.
Proof. See [Zha01b, Corollary 3.1.8]. O
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1.3 Automorphic forms on definite quaternion algebras

Let N an ideal of O like before but here we want the number of factors of N~ to have the same
parity as the degree of F. Let B’ a quaternion algebra over F' which ramifies at all archimedean
places and at the places dividing N~ and R be an Eichler order of level N*.

Definition 1.3.1. The Gross curve of level R is the curve defined as a double coset
x=B"\B /F*R.

Remark 1.3.2. The set X is a finite set, so why is called a curve? Since all primes dividing the
discriminant of B’ are inert in K there is an embedding 7: K < B’. By [BD96, Section 1.2], we
have that the set of homomorphisms Hom(K, B’) con be identified with H*, so we can consider
the curve

X¥=B"\B"" x Hom(K,B)/F"R.

ForgeXletT'y = g’l(FXR)g N B*, then H* /T, are curves of genus zero over F and

X=|JHHr,.

geX

For more details on this construction see [BD96, Section 1.3].

We can now define some special function from the Gross curve to C:

Definition 1.3.3. The space of weight two C-valued automorphic forms for B'* of level R and
trivial central character is

SB(R)={f: X > C}.

Let f adelic Hilbert cuspidal modular forms of parallel weight 2, trivial central character and
level Ko(N). We can transfer it via the Jacquet-Langlands correspondence to a unique (up to
scaling) automorphic form

¢p: X —C

having the same eigenvalues as f under the action of the Hecke algebra. If the Hecke eigenvalues
of f are contained in a ring O, then ¢ can be normalized to take values in Q. See [JL70] for
the general theory and [Lonl2, Section 4] for an application to our case of definite quaternion
algebras.

1.4 Modular abelian varieties

As in the previous section we fix a real number field F', an integral ideal N C Op such that
either [F': Q] is odd or ord,(N) is odd for some finite place v of F, a CM-filed K/F of relative
discriminant Dy /p which we assume satisfies the weak Heegner hypothesis, € the quadratic
character associated to the extension K/F. Let T denote the Hecke algebra for the Hilbert
modular forms of level N. Let f be a Hilbert modular newform of level N and parallel weight 2
on Ar we can consider the map
)\ft Ty — Q
T a1 (Tf)

We denote its kernel by Zy. This homomorphism surjects onto the coeflicient ring of f which is
a finitely generated Z-module and its field of fractions is hence a real number field. In particular

9
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since the action of the absolute Galois group of F' commutes with the Hecke operators action f“
is again a Hilbert newform for all o € Gal(F/F), in particular all its coefficients are real. So the
field of coefficients E of f is a totally real number field.

Let X be the canonical model over F of the complex Shimura curve X (C) defined beforehand.
This curve splits into its irreducible geometric components over a field Fix, so X xp Fx = [[ X;.
By [How04, Section 1.3] we have that every field L/F with X (L) # () must contain Fx. Let us
fix one of the irreducible components and we call it Xy. We define Jx to be the abelian variety
over F obtained by the restriction of scalars of Jac(Xy) from Fx to F. Jx has good reduction
away from N and for every algebraic extension L/F with X (L) # 0

Ix(L) = [[Jac(Xi)(L) = [ Pic®(X; xpy L).

We denote by Tx the Q-algebra generated by the Hecke operators acting on Jx.

Using the Jacquet-Langlands correspondence for every algebra homomorphism «: Tx — C
we can find a level N parallel weight 2 Hilbert newform f such that a(T) = A¢(T'), so we can
associate to every maximal ideal of Tx a Galois conjugacy class of Hilbert newforms and also
we can provide a surjective map T — Tx which endows the Lie algebra of Jx with an action of
T. This follows from [ZhaOlb, Theorem 3.2.1] and the construction in [How04, Section 1.3].

Theorem 1.4.1. There is an isogeny Jx — ®d> Ay where the sum is over all conjugacy classes
of Hilbert newform of parallel weight 2 and level dividing N and the Ay are abelian varieties, such
that the induced map on Lie algebras is T-equivariant. If ¢ is of level exactly N then Lie(Ay) is
free of rank 1 over Fy ®q C. Furthermore, for each ¢ there is an equality of L-functions

Ly(s,4)= ]  Ln(s¢%)

o: Fy —> C
where the subscript N means that the Euler factor at primes dividing N is removed.

Proof. See [How04, Theorem 1.3.1]. O

The Ay of this theorem are the abelian varieties associated to the Hilbert newform ¢.

Definition 1.4.2. An abelian variety A is called a modular abelian variety if it admits a surjective
morphism from Jy.

We now define and embedding of X into Jx which will be very useful in the next sections. In
the classical case we would use the cusps, but there are none in our setting, so we need something
more subtle. We use the Hodge class £ € Pic(X): the unique up to a constant multiple class
whose degree is constant on each geometric component and which satisfies Tin§ = deg(Tim )¢
for every Hecke operator with m prime to Dy, N. In our case the Hodge class is simply the
canonical divisor on each geometric component. Let X (C) = |J; X;(C) the decomposition of X
into connected components and let & the restriction of £ to X;. Let d; the degree of &. There
is a unique morphism X — Jx defined over F such that on complex point it takes p; € X;(C)
to the divisor d;p; — & € Jx(C). Hence we have a map also from X to the abelian variety:
X — JX — A¢.

1.5 Pairings

Let A be a modular abelian variety over any number field F'. For a place v of ' we call F,, the
completion of F' at v. Let p be a rational prime, p an unramified prime of F' above p and P a
prime of 04 above p.

10
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For any abelian variety and for every m not dividing the characteristic of F' we have the Weil
pairing
em: Alm|(F) x AYIm|(F) — pm(F)

where i,,,(F) is the set of m-th root of the unity in F and AV is the dual abelian variety. This
pairing is non-degenerate and commutes with the action of the absolute Galois group of F. In
order to define this pairing we use the dual variety which is no more isomorphic in general to A,
so given a polarization A we can define a pairing on A
el s Alm](F) x A[m)(F) = pm(F)

where e, (a,b) = e, (a, \(b)). This depends on the choice of the polarization. It becomes more
simple if A is principally polarized.

For an explicit definition of the Weil pairing and more properties we refer to [Mil08, p. 1.13].

For abelian varieties whose endomorphism ring is an order in a number field the e,,-pairing
naturally generalizes to an epn-pairing as follows:

Lemma 1.5.1. For any abelian variety A/F whose endomorphism ring is an order O4 in an
finite extension E/Q, and for any unramified, invertible prime B of Oa with residue charac-
teristic p, the restriction of the epm-pairing to the PM _torsion of A defines a non-degenerate
pairing

epm ! A[(,BM] X Av[mM] — MpM .

Moreover, if A admits a principal polarization, this pairing is alternating.

Proof. Let A be an abelian variety as above, let 3 be an invertible prime of O 4, and let M > 0
be an integer. Denote by p the characteristic of its residue field and let 9 be any another
prime extending p. The Q" -torsion points of AV carry the structure of an O 4-module and of an
04/9M-module. By the Chinese remainder theorem, there exists an z € 8 such that x reduces
to 1 modulo QM. In particular, 2 acts as trivially on AY,,. Let a € Agn and b € AV[QYM].
Since the e,m-pairing is O 4-bilinear, it follows that

epm (a,b) = ey, (a, xb) = e m(za,b) = 1.

This shows that the 3 -torsion points of A are orthogonal to the M -torsion points of AV for
all primes 9 # *B. Hence, the e,m pairing restricts to a pairing as described in the Lemma. As
the e, pairing is non-degenerate and alternating when A admits a principal polarization, this
shows that its restriction to A[PM] is non-degenerate as well. O

Let v be a place of F, then the Weil pairing induces also a cup product in cohomology
H'(F,, A[m]) — H'(F,, A [m]) = H?(F,,G,,) 2% /7

which is again non-degenerate and if F' is Galois then it is Gal(F'/Q)-equivariant. If we assume
A to be principally polarized we can forget the dual symbol on the second factor.

The group H%(F,,G,,) is the Brauer group of the multiplicative group G,, and it fits in a
short exact sequence

0 — Br(F) — P Br(F,) — Q/Z — 0.

In this direct sum, v ranges over all places of F' and the second map is given by taking the sum
of the Hasse invariants as before. From the exact sequence we deduce that for ¢ € H!(F, A[m])
and ¢’ € H'(F, AV[m]) we have

11
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Lemma 1.5.2.

Zinvv(cv — ) =0.

v

Proof. The sum of invariants of a global class is zero. See [McC91, Proposition 2.2]. O

Assume that A has multiplication by an order Q4 in a finite extension E/Q. Assume moreover
that A admits a principal polarization. The cup product then becomes a pairing on H*(F, A[])
which acts on A(F)/BMA(F).

Proposition 1.5.3. Assume that the abelian variety A admits a principal polarization, and let
v be a non-archimdean place of F, coprime to pOp, such that A has good reduction at v. Then
the image of A(F,)/BM A(F,) under & is a mazimal isotropic subgroup of H'(F,, A[EM]). In
particular, it gives rise to a non-degenerate pairing

(5w Hl(Fv,A)[‘BM] X A(Fv)/mMA(Fv) — Q/7Z.

Proof. Let v be such a place of F. By [Sil09, Lemma VIIL.2.1], the image of ¢ is unramified. In
particular, the Kummer sequence reduces to

0 — A(E,)/BMA(F,) % HY(FX/F,, ABBM]) — HY(FX/F,, A)[BM] - 0,

where H'(FY /F,, A[BM]) is embedded into H'(F,, A[BM]) via the inflation map. As A has
good reduction at v, the group H'(F"*/F,, A) vanishes [see Mil06, Chapter 1, Lemma 3.8], and
hence § is an isomorphism. We claim that this inflated group is isotropic. As the cup product
commutes with inflation, the restriction of the cup pairing to H!(F¥/F,, A[BM]) is given by a
pairing
HY(F2/Fy, ARFM])  HY(ES [ Fyy AM]) = H2(FX [ Fy, piyer).

But as v is coprime to p, it can be deduced from the Hochschild-Serre spectral sequence that
latter group vanishes (see [Mil06, Lemma 2.9]). It follows that the inflated group us isotropic
and hence so §(A(F,)/BM A(F,)).

In order to prove maximality, it suffices to show that the group H'(F,, A)[BM] is iso-
morphic to A(F,)/BMA(F,). As H'(F*/F,, A) vanishes, it follows from inflation-restriction
that restriction induces an isomorphism H'(F,, A)[BM] = H'(F', A)[BM]9, where G denotes
the Galois group of F/F,. Moreover, as A(F!) is p-divisible, the Kummer sequence in-
duces an isomorphism H!(FY, A[RM]) = HY(F"™, A)[PM], and so an isomorphism of their
G-invariant subgroups. Since the PM-torsion points of A are unramified over F,, the action
of the inertia group I of F, on A[] is trivial. This gives rise to the natural identification
HY(EY, APBM]) = Hom(I, APBM]). Let [ denote the characteristic of the residue field of F,. It
follows from ramification theory that the wild ramification group I of F, is a maximal pro-I
subgroup of I, and since [ # p any homomorphism f : I — A[P] must therefore vanish on
I Serre showed that the quotient I /1" is canonically isomorphic to the product Hq 21 Z,(1),
where Z4(1) := m fign. For a proof of this see [Wei, Section 3.3] and [RS01, Section 2.1.2]. As
any homomorphism f as above factors through this group, we conclude that H'(F,, A)[BM] is
isomorphic to the group Hom (s, , AFBM])9. The group of pM-roots of unity is cyclic, hence this
group of homomorphisms is naturally isomorphic to A[B](F,), and since multiplication by p is
an isomorphism on O,, it follows from [Mil06, Lemma 3.3] that A(F,)/BM A(F,) is isomorphic
to A[BM](F,) as well. It follows that §(A(F,)/PBM A(F,)) is maximal isotropic.

Since it is maximal isotropic, it fits in a short exact sequence

0 — 6(A(F) /BMA(F,)) — H (F,, A[BM]) =5 6 (A(FU)/mMA(Fy))* — 0.

12
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Hence consider the diagram

0 —— A(F,)/BMA(F,) —2— H'(F,, A[PM])) —=— H'(F,, A)[Y] ——— 0

™
|

0 —— A(F,)/BMA(E,) —2— H'(F,, AJRM])) — § (A(F,) /BMA(F,))" — 0.

Here ¢ is the map making this diagram commutative. It is given by the composition ¢, o ev™1,

which is well-defined by exactness. Because all groups are finite, ¢ is an isomorphism. For any
y € A(F,)/PBMA(F,) and d € H*(F,, A)[BM], the pairing is now defined as

(d,y)v =~ " (d)(5(y)).

The non-degneracy of the pairing follows immediately from the fact that ¢ is an isomorphism.
The pairing is alternating as it is induced by the cup product. O

This pairing is also known as the Tate-pairing. In proving the previous proposition, we have
also shown the following useful relation between the cup-product and the Tate pairing:

(tos(€), )y = ¢ — 6(x) (1.1)

1.6 Selmer and Shafarevich-Tate groups
Let a be an endomorphism of A, then
0= Ala] 5 A5 A—0
Passing to cohomology we get a short exact sequence
0 = A(F)/aA(F) % H'(F, Ala]) — H'(F, A)[a] - 0

where ¢ is the Kummer map. If we consider the localization at the places of F' we get the
following commutative diagram

0 —— A(F)/aA(F) —2— H'Y(F, Ala]) —“— H'(F, A)[a] —— 0

| | |

0 — [1, A(F,) /@ A(F,) 2% T], HY(Fy, Ala]) “5 T, HY(F,, A)fa] — 0

Using this diagram we can define two fundamental groups associated to A:

Definition 1.6.1. Let A be an abelian variety over F' and let o be an endomorphism of A.
The a-Selmer group of A over F' is given by

Sa(A/F)_ker< Y(F, Ala] AHHIFU,A)[ ])

The Shafarevich-Tate group of A over F' is given by

v

II(A/F) = ker (Hl(F, A) = [[H'(F, A).)
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Let m € Z, then we can consider the multiplication-by-m map «,, and we write S, (A/F)
for S, (A/F). By the snake lemma, the Selmer group and the Shafarevich-Tate group fit in the
a-descent sequence

0 = A(F)/aA(F) = So(A/F) — II(A/F)a] — 0

Let p be a prime number that is unramified in F and invertible in O4, and let B be any
prime extending p. Define for any M > 0, the group of BM-torsion points of A as

ApM ={PeAla-P=0, for all o« € P}

This group carries a natural structure of a torsion-free O 4 /B -module. Let fy denote the inertia
degree of P over p. As O4/PBM is a finite Z/p™ Z-algebra with additive group isomorphic to
(Z./pMZ)I% | these modules carry a natural structure of Z/p™ Z-module as well. This gives rise
to a decomposition of Z/p™ Z-modules

Ap™) =[] Al
Blp

Multiplication by p™ is an isogeny of degree p?9™ on A, where g is the genus of A, hence the
pM_torsion group of A is free of rank 2g over Z/p™Z. Notice that A[p™] moreover carries the
structure of an O 4 /p™ O 4-module. As O /pM O 4 has rank g as a Z/p™ Z-module, that A[pM]
is free of degree 2 as an O 4 /p™ O 4-module. In particular, by the structure of the decomposition
of this module, it follows that A[P] is free of rank 2 over O /PBM.

For any m < M, restriction of scalars equips A[P™] with an O4/PM-module structure.
Under this structure, multiplication by p gives rise to a short exact sequence of O 4 /B -modules

0— A[P] — APM] B A[pM-1) = o0.

Remark 1.6.2. If 9B is a principal ideal with generator 7, there exists another natural short exact
sequence
0— AP — APBM] 5 ApM-1 0.

While the maps 7 and p are not the same in general, they induce the same map up to composition
with an automorphism of A[M].

Analogously to the rational case, the J-adic Tate module is defined as Tip A = lgl A[pM],
. . M .
and by the same argument, this is a free Op-module of rank 2. Here Oy denotes the completion
of O4 at P. Since p is invertible and unramified in O4, this is the ring of integers of a finite,
unramified extension of Q. As the Tate module is free of degree 2, its automorphism group is
naturally isomorphic to GLy(Og). The absolute Galois group Gal(Q/Q) acts on Ty, and hence
the PB-adic Tate module gives rise to a representation

py - Gal(Q/Q) — GLa(Op).

It follows from [Rib92, Lemma 3.1] that the determinant of this representation is in fact the p-th
cyclotomic character

Xp - Gal(Q/Q) — 7.

The Shaferevich-Tate group of A carries a natural structure of an O 4-module. When it is finite,
it is a torsion module and hence the structure of this group can be analyzed by looking at its
P-primary parts, where P ranges over the primes of O 4. When Q4 is a principal ideal domain,
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this is immediate, but this is not the case in general. Similar to the previous decomposition,
there is a natural decomposition of Z/p™ Z-modules

A(F)/pMA(F) = [T AF) /B A(F).
Blp

As taking cohomology commutes with direct sums, we can define the Kummer map for a prime
B by taking the composition

A(F)[BMA(F) < A(F)[pM A(F) & HY(F, Ap™]) 2% HY(F, Ap™M))

Explicitly, let P € A(F) and consider its reduction modulo M A(F). By the decomposition
above, there exists a Q € A(F) such that Q = P modulo BM A(F) and Q € QM A(F) for all
other primes Q dividing p. The image of P under the Kummer map is then the class generated
by o — a(Q/p™) — Q/p™. For any ¢ € Gal(F/F) this is indeed a P -torsion point, and the
class is independent of a choice of ). This map therefore gives rise to the short exact sequence

0— A(F)/BMA(F) LN HY(F,ApM)) — HY(F, A)[BM] — 0. (1.2)

We define the 8 -Selmer group as

Syt (A/F) = ker (Hl(F, APM) — P H'(F, A))
and retain the short exact sequence
0 — A(F)/PBMA(F) — Sypu (A/F) — LI(A/F)[BM] — 0.
Let
HY(F, A[R™)) = lig H'(F, ARR™]),  and Sy (A/F) = lim Syur (A/F),

where the direct limit is taken over all M. They carry a natural structure of Og-modules and
we obtain a B>°-descent sequence of Op-modules

0= A(F) ®0, Fy/Oq — Sy (A/F) — (A F)qee — 0, (1.3)

where Fiyp is the field of fractions of Og.

1.7 A pairing on the Tate-Shafarevich group

One of the main tool to study the Tate-Shafarevich group is the Cassels-Tate pairing, which is
derived from the Tate pairing.

() - II(A/F) x II(AY/F) = Q/Z

We will define the pairing only on the B-primary part of the Shafarevich-Tate group. The
construction for arbitrary integers m and n is identical.

Let M and M’ € Z, and let d € III(A/F)[BM] and d’ € II(AY/F)[BM'] be two cohomology
classes. Let ¢’ € Sy (AY/F) be a lift of d’ to the Selmer group of AY. By definition of the
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Shafarevich-Tate group, the reduction of d’ modulo v vanishes at every place of F. Hence, via
the Kummer sequence, we can choose a set {y, € A(F,)} such that

8(y,) = ¢,

Next assume that there exists a dy € H*(F, A)[PBM+M'] such that p'd; = d. Multiplication by
pM" sends PM+M _torsion elements to P -torsion elements. Since the reduction of d vanishes
at every place of F, the reduction d , must necessarily be a P -torsion point of H!(F,, A).

The Cassels-Tate pairing is now defined as

(dd) =" (diw, )

v

To see that this pairing is well-defined, let v be a valuation of F' and assume that y, € A(F,) is
another point such that 6(y,) = ¢,. Then ¥/ — y, vanishes under § and is therefore contained in
PM A(F,). Write y!, — y, = aP, as the pairing commutes with the action of O, it follows that

<d1,'u7yi; - yv>v = <d1,v;aP>v = <O[ : dl,v7P>v = 07

since dy , is pM "_torsion. Hence this definition is independent of the choice of y.,. To see that it
is independent of the choice of d; consider another point dy € H'(F, A)[pM+M ,] in the pre-image
of d. The difference d; — ds is contained in H'(F, A)[™’], and hence originates from a global
cocycle ¢ € HY(F, A[&BM/]). Using the relation with the cup product, this implies that

<d1aU - d2,v7 y:;)U =cy U C{U.
But this implies that the Cassels-Tate pairing vanishes here as the sum of Hasse invariants of a

global class is zero.

Remark 1.7.1. Tt is not generally known if such a d; exists. By the clever use of cochains, the use
of such a d; can be avoided, without altering the pairing. This as well as other interpretations
are illustrated in [Mil06, Proposition 6.9] and the corresponding remarks. Other constructions
can also be found in [PS99]. For the classes d considered in this thesis, such a d; always exists.

Note that any polarization ¢ on A gives rise to a pairing

()¢ : HI(A/F) x III(A/F) — Q/Z,
<d7 d/>¢ = <d7 (bd/)
Tate showed that this pairing is alternating if ¢ was a polarization arising from F-rational divisor.
Such a polarization need not exist in general, and one can find examples where the order of the

Shafarevich-Tate group is not a perfect square (see [PS99] or [Keil4]). Flach later showed that
such a pairing is antisymmetric if ¢ is a principal polarization.
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Chapter 2

Heegner points and classes

In this section we introduce the Heegner point and construct the associated derivative classes in
a way that enables us to prove a structure theorem for the Tate-Shafarevich group. We follow
the construction made by Nekovar in [Nek07]. We use the same notation of the previous section.

2.1 Cebotarev density theorem

From now on assume that K/F' is a CM extension of F' of discriminant D = dg/p # 3,4 and that
N splits completely in K. Let A be a modular abelian variety such that its ring of Q-rational
endomorphism O 4 is an order in a field E. Let N as in the first section and let p be a prime
number such that

Assumption 2.1.1. 1. p is coprime with 6DN,
2. p1[Og: O4] where Op is the ring of integers of E,
3. p is unramified in F,

4. For all B extending p in O4, the map py : Gal(F/F) — GLy(Oa ) surjects onto the
subgroup
{g S GLQ(OA,gp) | det(g) S Z;}

Note that these conditions hold for all but finitely many primes p, [see LV17, Lemma 3.7].
Let B be any prime of O, extending p, and let M > 0 be an integer. Denote L = K (A[BM]),
and Oy = Oy /BM.

Lemma 2.1.2. There is a natural injection of Gal(L/F)-modules
H' (K, ApM]) — H'(L, A[B™]) = Hom(Gal(F/L), A[B™).

Proof. As N splits completely in K, it is necessarily coprime to D. As by assumption p is coprime
to D as well, the fields K and F'(A[p]) are disjoint over F', hence so are the fields K and F'(A[3]).
Hence Gal(K(A[B])/K) = Gal(F(A[B])/F). This group naturally injects in G = Gal(L/K),
and contains the cyclic subgroup F; of order p — 1. As p — 1 is coprime to p it follows that
H™(Fr, A[BM]) = 0 for all n > 1. For n = 0, we have that H°(F, A[BM]) = (A[BM)Tr =0
by [Gro91, Section 9]. Inflation-restriction now gives an exact sequence

0 — H™(G/F;, (ABM])Tr) — H™(G, ABM]) — H"(F;, ABM]).
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2.1. CEBOTAREV DENSITY THEOREM

By the above, the last term vanishes and as (A[p])”: » = 0 the first term vanishes as well, hence
H™(G, A[BM]) = 0 for all n > 1. Using inflation-restriction again, we obtain an exact sequence

0— HY (G, A[PM]) — H' (K, A[PM]) — H'(L, ABM)7 — H*(G, A[PM]).
The vanishing of the outer terms now induces an isomorphism
H' (K, A[pM]) = H' (L, A[BM))7,
which concludes the proof. L

Proposition 2.1.3. Let C C Hom(Gal(F/L), A[BM]) be a finite G-submodule, free of rank r
over Opr. Then there exists a finite Galois extension Lo /L such that there is a natural isomor-
phism

Gal(Le/L) = Homg(C, AfpM]),
o ¢y a— afo).

Proof. Let C be given as in the proposition, let aj, ..., a, generate C' as an Oy;-module, and
let H = (Nker(a;). As each of the kernels in the intersection is an open normal subgroup of
Gal(F /L) of finite index, so is its intersection. Hence L is Galois over L, and we have a natural
injection Gal(L¥ /L) < Homg(C, A[¥™]). Thus it remains to show that the map

Gal(F/L) — Homg (C, A[pM])

is surjective. We proceed by induction on r. Observe that there is a natural isomorphism of free
Ops-modules of rank 2r

Homg (C, A[BM]) = Homg (C/{as), A[BM]) x Homg ({a1), A[B™])
¢ = (91, ¢2)

Where ¢; and ¢z are the natural projection and restriction. Consider the fields L¢(q,) and
L(4,y. By the induction hypothesis, their Galois groups over L can be viewed as subgroups of
Gal(L¢/L) and they carry the structure of free Op-modules. Hence so does the Galois group G
of the intersection Lg)(q,) N L(a,)- We claim that G is trivial. The fact that the intersection is
a subfield of L,,), shows that the group G is a submodule of Gal(L,,)/L). Consequently the
image of G under the evaluation map is contained in the (a;) component of Homg(C, A[BM]).
Since G is also a submodule of Gal(L¢/(qa,)/L), it follows from the same argument that the image
of G is contained in the C'//{ay) component of this group. The intersection of these components
is trivial, hence by injectivity of the evaluation map, so is G. In particular, the fields have trivial
intersection and are therefore linearly disjoint over L.

Let ¢ € Homg(C, A[BM]). By the induction hypothesis, there exist o, 7 € Gal(F/L) such
that ¢1 = ¢, and ¢o = ¢,. Since the fields are linearly disjoint, we can impose that o € ker(«a)
and 7 € (), ker(a;). It follows that ¢ = ¢,-, and thus the map is surjective.

To prove the statement for » = 1, we observe that evaluation at « induces an isomorphism

Homg (o), A[PY]) = AFpY].

Hence, let R € A[PM], and consider the exact sequence
M-—1
0— A[PM—1 = APpM] 2— A[B] — 0.
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As « has order pM there must exist a o € Gal(F/L) whose image has order pM. Let @ denote
the image of this . Without loss of generality we may assume that R has order p. As A[}] is
a simple G-module, there exists an n € G such that

nxpM Q= pM R,

As the action of G commutes with addition, it follows that R —a(n* o) € A[BM 1. Surjectivity
now follows inductively by repeating this procedure for AR 1. O

Let C be a free Ops-submodule of H'(K, AfBM]) of rank 7. We can identify C as a subgroup
of Hom(Gal(F /L), A[B*]) by Lemma 2.1.2, and hence find a Galois extension Lo /L with Galois
group isomorphic to Homg(C, A[BM]). Tt is important to remark that these homomorphisms
are in fact Ops-linear homomorphisms. Write ¢ = ¢, for ¢ € Homg(C, A[E]) and let A be any
prime of K. Fix an extension Ay of A to L and denote its decomposition group in Gal(L¢s/L)
by G(Ar,L¢). Then for any ¢ € C,

ex=0% ¢,(c) =0 for all 0 € G(\, Lo). (2.1)

Fix 7 € Frob(co), as its action on A[‘BM} satisfies the equation 72 = 1, its eigenvalues are +1,
and as the order of A[PM] is odd, APY] decomposes as a sum of its T-eigenspaces,

AFBM] = (AR T @ (A[BM])

As p is odd, the e,~ pairing is non-degenerate, alternating, and preserved by 7. It is easy
to verify that (A[BM])™ and (A[PBM])~ are isotropic subgroups with respect to e . Observe

~

that AfBM] = (Opr)? as a module. Since the order of an isotropic subgroup is bounded by
the square root of the order of the group, it follows from the above decomposition that the
eigenspaces must both be isomorphic to Op;. Consider the group of T-invariant Oj,-linear maps
h: HY (K, A[BM]) — ABM]. As the image of any such function must be 7-invariant, it is valued
in the +1 eigenspace of 7. Hence we obtain

Homo,, (H' (K, A[RM]), AFM])™ = Homo,, (H' (K, A[BM]), Onr).
On the other hand, we can identify
H' (K, A[p"])* = Homz (H' (K, A[B"]), Q/Z)

as a Op-module. A simple counting argument shows that both modules are isomorphic to
HY(K,A[BM]) as modules. As both are modules of 7-invariant functions, this allows for a
natural identification

Homo,, (H' (K, A[BM]), A[pM)){7) = oY (K, A[pM]).

This identification allows us to associate a o € Gal(L¢ /L) to any ¢ € C*, and hence a collection
of primes of F. This is illustrated in the following proposition.

Proposition 2.1.4. Let M > 1 be an integer. Let C be a finite submodule of H'(K, A[BM]),
identify C* with Hom(C, A[BM])(7), and let ¢ € C*. There exist infinitely many prime 1, un-
ramified in L such that

1. Frob(l) = Frob(co) in Gal(L/F),

2. ¢ = Grrob(x) for some prime X' of L extending I.
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Proof. Let o € Gal(L¢ /L) be the automorphism such that ¢ = ¢,. Since the order of Gal(L¢ /L)
is odd, and since o is contained in the +1 eigenspace of T, there exists a unique p € Gal(L¢o /L)
such that ¢ = p”p. Notice that 7 acts by conjugation and is its own inverse, hence the expression
simplifies to o = (7p)2. By the Cebotarev Density Theorem there exist infinitely many unramified
primes [ such that 7p € Frob(l). As 7p|;, = 7, condition 1 is satisfied. In particular, [ has degree
two in L/F. Thus, for any prime X of L above I, there exists a 7 € Frob(l) such that 7> = Frob(}).
Thus, for appropriate choice of X', we conclude that Frob()\) = o. O

Let ci,....,c, € HY(K, A[BM]), we say that they are independent elements if any relation
Zi a;c; = 0 with the a; € Z implies that orde; divides a; for all 1 <7 <.

Corollary 2.1.5. Let cy,....,c, € HY(K, AfBM]) be independent elements of order p™i respec-
tively. Then for all 0 < N; < M; there exist infinitely many primes [ such that

1. Frob(l) = Frob(oco) in Gal(L/F),
2. For X the unique prime of K extending | we have

ord ¢; » sz1 foralll <i<n.

Proof. Let C = {(c1,...,¢,), as the ¢; are independent, there exists a ¢ = ¢, € C* such that
ord¢(c;) = p™i. Thus using Proposition 2.1.4 we have that there exist infinitely many [ such
that Frob(l) = Frob(oco) in Gal(L/F) and o = Frob(\') for some X\’ extending . By condition 1,
the prime [ is inert in K, hence X' extends A as well. Choose ! outside the finitely many prime
numbers that ramify in Le. The decomposition group G(), L¢) is then cyclic and generated by
o. Thus we conclude from (2.1) that ord ¢; » = ord ¢, (c;) = p™i which concludes the proof. [

2.2 Heegner points on modular abelian varieties

We consider a modular abelian variety A and let X be the associated Shimura curve and let
t: X — A be the modular map. Let x = [z, b] be a CM-point of X of conductor c(x). We recall
that Klc(z)] is the smallest ring class field of K containing K (z), the field of definition of the
point . We also fix a rational prime p, a prime p of F' and a prime P of O4 over p. There
is a finite set S of non-archimedean primes of F' containing all the ones dividing N~ and such

that we can decompose H (the image of R under the isomorphism B =~ G(A{,)) as H = HgH?®
where

Hg C H Bi
veS

H® = H H, = a maximal compact subgroup of G(A{,)S .
vgS

Let Iy C Ok be the non-zero ideal given by
Ip =lem{(u—1) | u € (Of)tors,u # 1}.

Proposition 2.2.1. If I is an ideal of O such that IOk t Iy and Z is a subgroup of (;);(, the
completion of the order associated to I, then K> N 7 =F* and 0xNzZ=0;5.

Proof. This follows from [Nek07, Proposition 2.10]. O
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CHAPTER 2. HEEGNER POINTS AND CLASSES

In order to work with Heegner points and classes we need to restrict the prime of F' which
are admissible.

Definition 2.2.2. Let . = Urzo 7, be the following set of square-free ideals of Op:

Zo={(1)}
1 = {¢ maximal ideal of OF | £ is inert in K/F,¢ & S, 01 (p)c(x), €Ok { I}
S =Aly... 4 | {; € S distinet Vi=1,...,7} r>1

We now define a special class of CM points on X which are the main ingredient in the later
definition of the Heegner point on A.

Definition 2.2.3. For each n € . we define an element h(n) of B” as follows: h((1)) =1,
if n = ¢ € .7 then the ¢ part of H is H; = R({)* for some maximal Op,-order R({) C By

and we take h(¢) € R(I) N B, C B, C B” such that it satisfies ord,(nr(h(¢))) = 1, finally if

n=1~4;...0 €. withr > 1 and the ¢; € .4 distinct for all ¢ then h(n) = h(¢1)...h(¢,.) € B”.
Using the h(n) we define the CM-point

z(n) = [z,bh(n)] € CM(X, K) ne.s.

From the definition of conductor easily follows that the field of definition of z(n) is contained
in the ring class field K[c(z)n]. We define the subfield K(z(n)) C K(z(n)) as

K(x) ifn=(1)
K(z(6))...K(z(¢.)) ifn=4¢...0. withr>1and ¢; € S Vi

Let u(r) =1 for r > 0 and u(0) = (K* N 7. F*), where Z is the endomorphism ring of
the point z. If we chose the CM-point z such that ¢(x)Ok 1t Ip then by Proposition 2.2.1 we
have that u(0) = 1. We assume this simplification from now on in view of Remark 2.2.8.

Definition 2.2.4 (Heegner points). For each n € . we define the Heegner point
y(n) = u(O)u(r)_l TrK(m(n))/K(a:(n))’ L(J?(‘I‘l)) S A(K(m(n))’)

We can now analyze the behavior of the Galois group of the extension K (z(n))'/K(x) and
prove some interesting relations.

Proposition 2.2.5. Let G(n) = Gal(K (xz(n))' /K (z)), then
1. For each £ € . the group G(¢) is cyclic of order (N(€) +1)/u(0);

2. For each m = 4y...0, € S with r > 1 the map G(n) — G(l1) x --- x G(£,) is an
isomorphism;

3. For each n € .7, with r > 0 the degree becomes [K (z(n)): K(z(n))'] = u(r)u(0)""1.
Proof. See [Nek07, Proposition 4.10]. O

This proposition and the relation between the CM-points imply that the Heegner points x(n)
form an Euler system.

Theorem 2.2.6 (Euler system relations). Let r > 0 and nl € .41 such that n € 7. and
e S . We have that
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1. Trg (o(ne)) /K () Y(W) = apy(n) where ay is the eigenvalue of the Hecke operator T({)
acting on f;

2. For each prime X\ | £ of (x(nf)) we have
y(nl) = u(0) Frob(£)arith y(n) = u(0) Frob(€)geom y(n) (mod A).

Let O4 be the ring of Q-rational endomorphism of A. We define the set of Kolyvagin primes
in a similar way of the set of admissible primes we used before.

Definition 2.2.7 (Kolyvagin primes). Let M > 1 be an integer, let .74 (M) be the set of the
maximal ideals of O such that

g8, t1(p)e()Dreyrs Ok 1 Io

and the conjugacy class of Frob(£) i, in the Galois group Gal(K (x)(A[B™])/F) coincides with
the conjugacy class of the complex conjugation. Let us defines also

(M) ={(1)},
(M) ={ty ... 4. | 4; € A (M) distinet Vi=1,...,7} r> 1
Finally define (M) = U,>, & (M).

The set .1 (M) is not empty and furthermore has positive density by the Cebotarev theorem.
Let £ € (M), then since £ { (p)c(z)dk,r and £ € S we have that the extension K (z)(A[BM])/F
is unramified at ¢ by [Nek07, 5.2.2], so it makes sense to consider the conjugacy class of the
Frobenius morphism. Furthermore ¢ is inert in K/F and so we have an inclusion .1 (M) C ..
Finally by [Nek07, 5.2.5] we have the following important congruences in O 4:

ar =0 (mod PM), N()+1=0 (modpM). (2.2)

Remark 2.2.8. Here we use our hypothesis that ¢(z)Og { Iy because otherwise the first congru-
ence would be modulo M Mo where My = ordg (u(0)) and the second one modulo u(0)B. In
the proof of our result this would give us trouble so we chose the CM-point « in such a way to
avoid this problem.

We recall that for each ¢ € .7 (M) the group G(¢) = Gal(K (x(¢))/K (z) is cyclic so we can
fix a generator oy.

Definition 2.2.9 (Kolyvagin derivatives). Let £ € .1 (M), then we define

Gml-1
Tl"g: Z 0';
i=0

lGEl-1
D= Y o} € ZIG(0)]

i=0
Ifn=+¥...0. € (M) with the ¢; € (M), we define

Dy =Dy, ...Dy, € Z[G(61)] ® -+ @ Z|G(L,)] = Z|G(n))
and these elements satisfies the relation

(o¢—1)Dy = ‘G(€)|—Trg:N(l)+l—Trg. (2.3)
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Definition 2.2.10. Let S be a set of representatives of G(n) in Gal(K (z(n))’/K) then
P, = Z U(Dn yn)~
oc€S
In particular Py = Py = Trg(2)/x Y(1)-
Proposition 2.2.11. Let n € ..(M) for some r > 1, then the image of the point Dy y(n) in
A(K (2(n)) @0 49/BM is contained in (A(K (z(n))) @045 /BM)FM, so by abuse of notation
we can write
Day(n) € (A(K (z(n))") /B A(K (2(n))"))

Proof. Iftn=14{;...¢, with all ¢; € S (M), let m = {5 ...¢,.. Decomposing D,, = Dy, Dy, we have
that

G(n)

(0@1 — 1) D, = (0@1 — 1) Dgl D, = (N(fl) +1 7T1‘g1)Dm

where the last equality follows from the relation 2.3. Using the Euler system relations and the
congruences (2.2) we get that

(06, = 1)Dyy(n) =0 (mod PM)

so o, Dy y(n) = Dyy(n) (mod PM). Since this can be done for all ¢; dividing n we get that
D, y(n) is fixed by all the o, which are the generators of G(n). O

In particular also P, € (A(K(ﬁc(n))l)/mMA(K(x(n))/))G(n)'

2.3 Kolyvagin classes

We impose another condition on the CM-point x in order to simplify the exposition. We assume
that the conductor of z is 1. Under this assumption the previous hypothesis that c¢(z) 1 Iy is
satisfied.

When defining the Heegner points we worked over the smaller field possible K(z(n))’ and
we can define the Kolyvagin classes over it as well, but it is not convenient for our goal. The
usual definition of Heegner point and classes is over the ring class field and in order to get our
results and interface with other work it is better to pursue this way. So we consider that for
n € (M) by the definition of conductor of a CM-point we have K(z(n))’ C K(z(n)) C K|[n]
and K(z) C K[1], which is the Hilbert class field. By our assumption that the conductor of z is
1 we get that y(n) € A(K[n]) and the same is true for P,. We recall that there is an exception
which is P; € A(K) due to the definition.

Remark 2.3.1. For n € (M) we have that ABM](K[n]) = 0 by [LV17, Proposition 3.9] as the
Galois group Gal(K[n]/F) is solvable and under our Assumption 2.1.1 the same argument holds.

The exact sequence Gal(F /F)-modules

0— APM] = A@) = A@) — 0
yields an exact sequence in cohomology for all the extensions E/F
0= A(E) ® Oap /B & H'(B, ABM] - H' (B, A)[BM]) > 0

and we can apply this construction for n a product of admissible primes with £ = K and
E = K(x(n)) taking the invariants under the action of G(n). So we get the following diagram:
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A(K) ® O /B HY (K, A[pM]) ————— H(K, A)[BY]

| 8

(A(K (2(n))) © O3 /BM)® s H (K (2(n))', A[RM]) S

where the vertical res map is the restriction map in cohomology. We want to find a natural
lift of 6,(Py (mod PM)) under the restriction map res.
Let n € (M) be a fixed Kolyvagin prime.

Definition 2.3.2. Let cjs(n) € H' (K, A[BM]) be the unique natural lift of 6,(P, (mod PM))
and let dys(n) the image of cpr(n) in HY (K, A).

Lemma 2.3.3. Let Q, € A(K|[n]) be any point congruent to P, modulo 8™ and congruent to 0
modulo QM for all other primes Q lying above p. Then the cocycle

-1

p p p

is a representative for cp(n), where % is the unique pM -division point of (o — 1)Q,, in

A(K[n]).
Proof. This proof is based on [Nek07, Propositions 5.9 and 5.10]. Let @, be any such point, and
observe that 6,(P,) € HY(K[n], A[B™]) is represented by the cocycle

The existence of the p™-division point of (o — 1)Q, follows from the statement of Proposition
2.2.11 and the fact that Q, € Q™ A(Kn]) for all other primes Q | p. Since two distinct p™-
division points differ by a pM-torsion point we have the uniqueness of the point. The term
o — —% is a cocycle. The expression given in the lemma is therefore a cocycle as well
and it is easy to see that this cocycle takes values in A[BM]. As the first term vanishes for all
o € Gal(K(z(n))'/K), its restriction to K[n] is precisely the representative of d,(P,) describe
above. O

Corollary 2.3.4. The class dyr(n) is represented by the cocycle
(J — 1)Qn

o -
M

Corollary 2.3.5. For all integer M > 2 and n € . (M) we have
pepr(n) = epr—1(n).

Proof. Let @, be a point as described in Lemma 2.3.3, and write ¢z (n) for the associated cocycle.
As (0 — 1)Qn has a unique p*-division point in A(K (z(n))), it also has a unique p ~!-division
point. As multiplication commutes with the action of o € Gal(Q/K), we obtain

(0 - 1)Qn Qn Qn

(pem(n))(o) = T TP TP
- 1 n n n
== (UpM)1Q + Ungq - pzcv;iq = cm—1(n)(0).
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Write BM | P, if P, € BM A(K[n]), and define
ordy (Py) = max{M € Z, | B | P,}.
Observe that cp(n) =0 if PM | P,. In fact for M > ordsy (P,) we have
ordeps(n) = pM—ords(Fn) (2.4)
whenever cys(n) exists. Let
M, = min{ordy(P,) | n € 7 (ordg(P) + 1)}

Equivalently M, is the smallest integer M such that there exists an n € S,.(M + 1) for which
the associated class cpr41(n) is non-trivial. These numbers will later shown to be bounded and
decreasing, allowing us to give an explicit description of the Shafarevich-Tate group.

Let n € (M) and let ¢ € (M) and m € (M) such that n = fm. Let A\ be the
unique prime of K above £. By class field theory we have that A splits completely in K[m]
and furthermore each prime above ¢ of K(z(m)) is totally (tamely) ramified in K (x(n)) (see
[Nek07, Proposition 4.6]). Hence we have an embedding K [m] < K and so we can embed Py, in
A(K)/PMA(Ky) and the image is independent on the choice of the embedding by Proposition
2.2.11.

Let v be a prime of K dividing N (hence a prime where A has bad reduction), and denote
by Ao the component of the identity of the special fiber of A at v. This subgroup is of finite
index in A(K!"), and by abuse of notation, we denote A/Ag for the quotient of these groups.
We impose that A and P satisfy the following conditions If v is a finite place of K where A has
bad reduction then v satisfies one of the following conditions:

1. v is a principal of K,
2. pt[A: Ayl

Notice that the second condition fails to hold for only finitely many primes p since there are only
finitely many places of K where A has bad reduction and the component group is finite for any
such place.

Lemma 2.3.6. Let n € (M), and let v be a valuation of K prime to n, then we have that
cey(n)y € 0,(A(K,)) where 0, is the Kummer map. Moreover, if v = vy for some prime £ below
A inert in K, we have cpr(n)y = dx(P).

Proof. Notice that the first statement is equivalent to the vanishing of d;(n), and this follows
from [Nek07, Proposition 5.12].

Let A be an inert prime of K. By class field theory X is totally split in K[n]. Hence K|[n|
injects into K, and therefore P, € A(K))/PBM A(K)). Its image 65(P,) is represented by the

cocycle o — 0}%‘} — 3—1\2, and ¢y (n) is represented by

(U_l)Qn Qn Qn
U'—)—T—FUW—I?M

As @, is defined over K[n], the first term of this expression is determined solely by its restriction
to Gal(K[n]/K). As a cocycle over K it is therefore determined uniquely by its action on the
decomposition group of A in K[n]. But as A splits completely, its decomposition group is trivial
and hence the term vanishes. The statement is therefore proved. O
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This lemma allows us to prove the following strong relation between the constructed coho-
mology classes

Theorem 2.3.7. Let £ € S (M), with extension X in K. There exists a homomorphism
xe t A(Ky) — H' (K, A[BM])
such that

1. for allm € (M) coprime to { we have

e (M) = xe(Pm),

2. kerx, = PMA(K)) and

Xe(A(K) /RMA(KN)F) € HY (K, ABM])T,

3. x¢ induces an isomorphism

A(KN)/PBMA(EL) = H (K, AR,

Moreover, we have
ord dpr(ml)y = ord cpr(ml)y = ord cpr(m)y.

Proof. Let ¢ € ., (M), with extension A in K and fix an extension A € K. We denote by k, the
residue field at v. Recall that ky has degree 2 over k;. In particular, Frob(¢)? = 1 in End(A(ky)).
Consequently it follows that

ag — (£ 4 1)Frob(¢) = —Frob(£)(Frob(¢)* — a;Frob(£) + ). (2.5)

As this is divisible by the characteristic polynomial of Frob(¢), this endomorphism must vanish on
A(ky). Notice that X splits completely in K (A[BM]). In particular the extension Ky (A[LM])/ K\
has degree 1 and therefore A[B*] can be injected into A(K). As A has good reduction modulo
A and / is coprime to p, reduction modulo A acts injectively on A[p™]. Let P € A(K)) be any
point, since A[p™] injects into A(ky) and since the expression in (2.5) vanishes, there exists a
unique T'p € Apn such that

ag — (¢4 1)Frob(¥¢)

o PETP mod .

Denote its ‘BM -torsion component by Tp and observe that it is K-rational. Let A\, denote the
restriction of A to K[¢]. As ) is principal in K by class field theory it splits completely in K (z),
and hence K, = K. In particular, the extension K,/K) is totally ramified with cyclic Galois
group generated by oy. Given P as above, define x;(P) to be the inflation of the unique cocycle
on Gal(K),/K)) defined by sending oy to Tp. It is clear from its construction that x, is a
homomorphism.

To verify the first property, let n = m¢ € .7 (M), let A, be the restriction of A to K[n], and let
Am be its restriction to K[m]. As X splits completely in K[m], it follows that K, = K and that
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K,, = K,,. We claim that P, € p® A(K,). As the extension K, /K, is totally ramified and
generated by oy, this automorphism acts trivially on &, , hence Dy acts on A(ky,) as £(¢+1)/2.
As BM divides N(£)+1, so does pM and it follows that P, € p™ A(ky, ). In particular there exists
a Q € A(K,,) such that pQ = P, mod \,, and therefore pMQ — P, € A;(K,,), where A;
denotes the kernel of the reduction map to the residue field. This group is naturally isomorphic
to A()\n), the formal group associated to A over the maximal ideal of K . As p is coprime to [,
multiplication by p is an isomorphism on this group, and hence on A;(K),) as well. It follows
that pMQ — P, € p™ A(K,), and thus that P, € pM A(K,,,) proving the claim.
Consider the p™-torsion point
o¢—1)P, P, P,
—gliﬁfliJ+aqj}-§ﬁfefukkn) (2.6)
The extension K, /K is totally ramified, hence oy acts trivially on A(ky,). The reduction of

this point modulo A is therefore congruent to — (U‘;#. Recall from (2.3) and the Euler relation
2.2.6 that

agDnym — (€ + 1)Dmyn = _(UE - 1)Dnyn~

Applying the second part of the same relations shows that

a¢ — (£ + 1)Frob(¢)
M

(¢ — 1)Py

Py =— mod A\,
m pM

This shows that x¢(Py) is defined to be the inflation of the cocycle determined by

(O'Z—].)Pn Pn Pn M
oo (G e ) B

Recall that cpr(n) is represented by
(0 —1)Qn Qn Qn

o ———— = o —
M pM M
hence this cocycle vanishes when restricted to H'(K), , A[B*]). The class cp(n) is therefore
inflated from a class in H (K, /Ky, A[BM]). In particular, using the same cocycle as represen-
tative, we see that the class cpr(n)y is defined uniquely by

(O'E - 1)Qn Qn Qn

UZH_T_FGZ{,BM m]w.
But as this 8 -torsion point is precisely the 3 -component (2.6), we are able to conclude that
Xé(Pm) = CM(mf))\.
The first part of property (2) follows directly from the uniqueness of the point Tp. In order
to prove the second part of property (2) it suffices to show that

xe(TP)g, = =x¢(P)o,-

As oy is in the —1 eigenspace of 7 and oy acts trivially on A[PM], the former is equal to
—7X¢(TP)g,. Since the natural action of 7 coincides with the action of Frob(¢), on ky, it follows
that 7Tp = T, p. But as x¢(P),, = Tp, this proves the property. Recall that A(K))/PBM A(K))
and H'(Ky, A)[BM] are isomorphic as Os-modules. To see that x, induces such an isomorphism,
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it suffices to show that im y, Nim §y = 0. But this follows directly as §) maps onto unramified
cocycles and x, maps onto ramified cocycles.

Finally, using (1) and (3), we see that Py maps to das(mf)y via cpr(mf)y hence they must all
have the same order (here P, is viewed as an element of A(K),)/PBM A(K))). By Lemma 2.3.6
this order is equal to ord cps(m)y. O

This theorem allow us to relate the classes cps(n) with the classes of the divisors of n. In
particular, for any m, ¢ € .¥(M) such that (m,¢) = 1 define

ordg (Pu) = max{M | P, € P A(K))}.

Notice that this is well-defined since it is indeed possible to inject K[m] into Ky whenever ¢ { m.
This enables us to formulate several useful consequences of the theorem.

Corollary 2.3.8. Letne€ S (M). The following statements hold.

1. For all primes £ | n we have
ordg (Py) < ordg(Pr/e)a,
with equality if and only if ord cpr(n) = ord cpr(n)y. Consequently

if Pajo & BMA(KS), then Py ¢ B A(K[n)).

2. For any M >0

dy(n) € II(A/K), if and only if, M < Hzl‘iIlOI'dqg(Pn/g))\.

3. Ifne S.(M,._1), then
dy,_,(n) e II(A/K).

Proof. The second part of the first statement is a direct consequence of the first. Whenever
M > ordg(Py/¢)a, the order of P, in A(K,)/BM A(K)) is naturally given by pM—ords(Pase)x,
By Theorem 2.3.7 this order is equal to ord cps(n),. Hence

M —ordsy (P, M —ords (Pr)
)

D vex = ord epr(n)y < ord epr(n) =p

which proves the first statement. By Lemma 2.3.6, djs(n) vanishes at all valuations prime to n.
For the valuations dividing n, we have

ord dM(n))\ = max{]_7pM_ord‘43(Pn/£)A}7

which vanishes if and only if M < ordy(Pm)r. Applying this condition to all primes dividing n
gives the desired conclusion. Finally, let n € S,.(M,_1) be given. It follows from the definition
of M,y that M,_; < ordy(P,/e) < ordg(Pyn/¢)x for all £ [ n. The conclusion now follows from
the second statement. O

In light of this corollary we can prove a notable property of the M, defined earlier.

Corollary 2.3.9. Assume that yx = Trg )k y((1)) has infinite order in A(K).
Then My = lenght, rn(A(K)/(’)AyK) and M, > M, 1 for all v > 0. In particular M, is finite
for all r ’
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Proof. Assume that yx has infinite order, then by [How04, Theorem A], Oyx is of finite index
in A(K). Since %y = {1} and P; = yk, we have

My = ordg (yx) = max{M | yx € BMA(K[1])}.

Simultaneously
lenght, . (A(K)/Oayk) = max{M | yx € B A(K)}.

As A(K][1]) has no PM-torsion, A(K)/BM A(K) injects into A(K[1])/BM A(K[1]), hence these
numbers are equal.

To prove the second statement, let m € .,.(M). By Corollary 2.1.5, there exists a prime £ { m
such that ¢ € .1 (M) and ord cps(m)y = ord cpr(m). In particular, this implies that

ordy (Py) = ordg (Pm)x > ordsy (Pue)

by Corollary 2.3.8. Hence for any m € .7.(M), there exists an n € .#.11(M) such that
ordg (Py) > ordsy (Py). O

This corollary allows the formulation of the following simple but important consequence of
Theorem 2.3.7.

Proposition 2.3.10. Let M and M’ be two positive integers and let n € (M + M') and
n' € (M) be two integers such that dpr(n),dpr(n') € LHII(A/K). Then the Cassels pairing is
given by
(drr(n),darr (W) = D (darsanr (n), Pa)a.
ln
(£,n')=1

Proof. Recall the construction of the Cassels pairing described in the previous section. Indeed
dpr4ar(n) is a suitable choice for dy as pM dyrypr(n) = das(n). By Lemma 2.3.6, it vanishes
for all valuations v prime to n. Hence this sum can be restricted to the primes dividing n. By
the same lemma, P, is a suitable choice for those y,, for each of those £ f n'. If £ | n’, then
dpr(n')x = 0 as it is contained in IIT(A/K). Hence by Theorem 2.3.7, c¢pr(n'), = 0, and hence
there is no contribution to the pairing for this prime. Summing up the remaining terms gives
the desired conclusion. O

2.4 Gross points

We define an analogue of Heegner points on the Gross curve. Assume that the number of factors
of N~ has the same parity as the degree of F'. Let B’ denote a definite quaternion algebra over
F ramified at all archimedean primes and at each prime dividing N~. Let R be an Eichler order
of level N*. We denoted by X the Gross curve associated to B’ of level R. Let 7 denote the
embedding of K into B as constructed in the first chapter.

Definition 2.4.1. The set of CM-points by R is
CM(X, R) = 7(K)*\B"" /F"R.
We say that z € CM(X, R) has conductor ¢ if 7(K) N zEF Rz~ is an order of conductor c.

Inside that set of CM-points we can define some analogue of the Heegner points which we
call Gross points.
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Definition 2.4.2. For each n € . we define an element h(n) of B as follows: h((1)) =1, if
n = { € %] then the ¢ part of R is R({)* for some maximal Op,-order R(¢) C B, and we take

h(¢) € R(I)NB, C B, C B” such that it satisfies ordg(nr(h(£))) =1, finally ifn = ¢ ... 4, € S

with r > 1 and the ¢; € .#; distinct for all ¢ then h(n) = h(¢1)...h(¢,) € B”™. The Gross points
on X are the points
meX

defined by h(n).
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Chapter 3

Structure Theorem for
Shafarevich-Tate groups

In this section we provide a generalization of Kolyvagin’s results ([McC91]) in the setting of
modular abelian varieties over totally real fields. We continue to follow the notation of the
previous section. We start by reviewing an application of the Fricke involution to the Selmer
and Shafarevich-Tate group of an abelian variety. In the last part we use all the previous results
to prove a structure theorem for the Tate-Shafarevich group.

3.1 Eigenspaces for the Fricke involution

Let f be the Hilbert newform associated to the modular abelian variety A. Let Wy be the

matrix
0 1
t 0

where t € Ay such that the projection on the finite adeles generates NOp.

Definition 3.1.1. The Fricke involution is defined as

(wn(f)(9) = f(gWn).

Proposition 3.1.2. wy is an involution and if f is a new-eigenform for all Hecke operator then
f is an eigenvector for wy with eigenvalue € € {£1}. Furthermore € is the sign of the functional
equation associated to the L-function of f:

L(f,5) = €L(f,2 — 5).
Proof. See [How04, chapter 1]. O
From now on let € be the eigenvalue of the Fricke involution for f and let €, = (—1)"e.
Lemma 3.1.3. Let n € .%,(M). The point P, is in the e.-eigenspace of (A(K)/PMA(K)).

Proof. This follows from the results in [KL91, Pag. 851 - 852|, [ZhaO1b| and [ZhaOla).
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The Fricke involution plays an important role in analyzing the structure of the Shafarevich-
Tate group; it also imposes conditions on the groups A(K)/PBM A(K). This is illustrated in the
following Lemma.

Lemma 3.1.4. For all integers M, the group A(K)/PM A(K)~¢ vanishes. In particular the
map

Sy (A/K) ™ — HI(A/K) g%
s an isomorphism.

Proof. Notice that the submodule O yx C A(K) is of finite index. For any integer M, yx = P,
is contained in the e-eigenspace of A(K)/PBM A(K) by Lemma 3.1.3. The decomposition into
eigenspaces
A(K) [PMAK) = (A(K)/BMA(K)) @ (AK)/BYAK))

shows that the order of the —e-eigenspace equals the index of the e-eigenspace in this group.
As this index is bounded by the index of O yx in A(K), the order of the —e-eigenspace is
bounded independently of M. Hence A(K)~€ is a finite group and therefore a torsion group.
Since A[B](K) = 0 by Proposition 2.2.11, it follows that A(K)/PBM A(K)~¢ = 0. Consequently
A(K)™ ¢ ® Fyp/Oap vanishes and thus we obtain the desired isomorphism by the J3°°-descent
sequence (1.3). O

3.2 Structure Theorem

Since we assumed that yx has infinite order, the Shafarevich-Tate group is finite and so the
Cassels-Tate pairing is non-degenerate and alternating on III(A/K)qe for all primes of odd
characteristic. Hence the order of III(A/K) is either a perfect square or twice a perfect square.
Recall that the Tate pairing is T-equivariant, hence so is the Cassels-Tate pairing. In particular,
the € and —e eigenspaces of III(A/K)pe are orthogonal and must therefore both be perfect
squares as well. Let

N1 > N3 > N5 2>---

be the integers such that
II(A/K)gs 2= (Oa/F)? x (Oa/PB)? x -
and let
Ny > Ny > Ng > -
be the integers such that

II(A/K)ge 2 (0a/FN2)? x (Oa/PN)% x -

By Lemma 1.5.1 the groups III(A/K )%00 admit maximal isotropic subgroups D* inducing split
exact sequences
0— D* - I(A/K)ge — D** — 0.

Notice that D¢ can be decomposed as Dy X D3 X - - - where D; is a cyclic OA/‘BNi—module. Anal-
ogously, D¢ admits a decomposition Dy X Dy X - - -. Since the B-primary part of the Shafarevich-
Tate group decomposes as a sum of its 7-eigenspaces we conclude that III(A/K)qpe~ admits a
maximal isotropic subgroup D = Dy x Dy x D3 X - - such that the exact sequence

0—D — II(A/K)pe — D* =0 (3.1)

is split. We can now state the fundamental result of this paper which is the relation between the
N, and the earlier defined M,..
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Theorem 3.2.1. Assume that yx has infinite order. Then
N, =M, 1 — M, (3.2)
for allr > 1.

Before proving Theorem 3.2.1 we mention a few direct corollaries.

Corollary 3.2.2. We have that
Mr - Mr+1 > Mr+2 - Mr+37 Vo > 07
Moreover if M, = M,4o, then M, = M; for all j > r.

Notice that while the difference M, — M, ; decreases if we increase r by 2, this is not
necessarily true if we increase r only by 1.

Additionally, Theorem 3.2.1 allows us to give an explicit description of the p-torsion order of
the Shafarevich-Tate group.

Corollary 3.2.3. Let m = min{M,,r > 0}. Then
lenghty,, , HI(A/K) = 2(Mo —m).
In order to prove Theorem 3.2.1 we need some more preparation in the form of several lemmas.

Lemma 3.2.4. Let £ € A (M) be a prime, then imx, is a mazimal isotropic subgroup of
H' (K, A[BM]).

Proof. Let x,y € imx,. Recall from the proof of Theorem 2.3.7 that x and y are inflated from
cocycles in H'({oy), A[B™M]). As the Tate-pairing is a cup-product, it satisfies

T~y = Il’lf((E/) ~— Inf(y') = Inf(xl ~ y/)

As oy is totally ramified, its second cohomology group injects in the group H?(I, pi,n ), where I
is the inertia group of K. But this group is trivial as £ # p (see [Mil06, Lemma 1.2.9]). Hence
x — y = 0. Maximality follows from the second statement of Theorem 2.3.7. O

Lemma 3.2.5. Let £ € S1(M) and let S C (M) be a finite set not containing {. Then there
exists a c € HY (K, A[BM))* such that

1. ¢#0,
2. ¢, € 6(A(K,)) for all valuations v prime to S U {{},
3. ¢y, €1m x4 for allge S.

Proof. Let T be the union of S, ¢, the primes of K extending p, the infinite primes and the
primes where A has bad reduction. Let K1 be the maximal extension of K that is ramified only
at the primes in T. Tate global duality [Mil06, Theorem 1.4.10] gives a self dual exact sequence

HY(Kr/K, APM]) — P H (K., ARM)) - H' (Kr /K, AIBM)".
veT

Let G denote the intermediate group. Due to exactness, the image of H(Kr/K, A[BM]) is an
isotropic subgroup of G, and by self duality it must be maximal isotropic. As the exponent of
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every group divides p™, all groups can be decomposed as a sum of their 7-eigenspaces. Since
the pairing giving rise to this duality arises from the Tate-pairing, the pairing is 7-equivariant
and hence the eigenspaces are orthogonal. Consequently, the image of H'(Kr/K, AfEM])* is
a maximal isotropic subgroup of G*. For all ¢ € S, let H,, = Imy,. For all other places
v € T\{¢}, let H, = §(A(K,)). Notice that for all the places v # ¢ there is an inequality
|H,| > |H'(K,, AfBEM])|*/2. Hence the group H' (K1 /K, A[BM])* is a strictly larger subgroup
of G than the group

2> H'(K,, ABM])*

T .
veT\{¢} e
In particular H' (K7 /K, A[BM]) cannot map injectively into this group. Hence we can choose
ac € H' (Kr/K,ABM]) satisfying properties 1 and 3. It also satisfies 2; By construction of
K7, c is unramified outside T'. It follows from [Mil06, Proposition 3.8] that H' (K% /K,, A) = 0.
Consequently, the map J, : A(K,) — H (K™ /K,, A[BM]) is surjective. O

The strategy for proving Theorem 3.2.1 is the following: let r be an integer and assume
M,_1 > M,. Let n € ./.(M,_1), Corollary 2.3.8 imposes that dy._,(n) € HI(A/K). As
ordy(Py) > M,, it follows from (2.4) that the order of dps, ,(n) is at most pMr—1=Mr For
properly chosen n,, it will be shown that dy;,_, (n,.) attains this order. Proceeding inductively,
and choosing the n, independent of n,,s < r, we will show that N, = M,_; — M, which will
complete the proof. In order to guarantee the independence of the n,., we need the following
proposition.

Proposition 3.2.6. Let r be a positive integer and let C' C Sqpee (A/K) be a sub O 4, q3-module

generated by r independent elements. Let M > M, be a square-free integer. Then there exists
an n € (M) such that ord cpr(n) = p™=Mr and (cpr(n)) N C = {0}.

Proof. As pM'epr(n) = epr—p(n) for all M’ < M. Tt suffices to show that the statement holds
for all M large enough. Hence let M > M, _; be such that

pM > exponent of C.
Let n € ..(M, + 1) be such that ordg(P,) = M,, and let L = K(A[JBM]). Recall that there
exists a Galois extension L¢ /L such that Gal(Le/L) =2 C*. Let S be the set of primes dividing
n. For every ¢ € S, fix an extension Ay, in L. Let X C C* denote the submodule generated by
the characters of all £ € SN.7(M), and let k denote the rank of the image of X in C*/pC*.
Assume that k < r, then there exists an £y in S such that the primes in SN.7(M)\{fo} generate
the image of X, and we can choose a i) € C* such that

v ¢ X +pC*.

If cpr.+1(n) € C, we can impose the additional condition that ¥ (cps,+1(n)) # 0, as a finite group
cannot be the union of two proper subgroups. By replacing ¢y with a carefully chosen prime ¢,
1) can be added to X. Using Lemma 3.2.5, we choose a ¢ € H'(K, A]) ¢ such that

c#0,
ey € 8, (A(Ky)), for all v ¢ S, (3.3)
cx € imyy, for all £ € S\{{o}.

Let (C, caz,+1(n)) denote the subgroup of H!(K, A[M]) generated by C and cpy, +1(n). As both
are contained in the e.-eigenspace and c¢ is not, the intersection of this group and (c) is trivial.
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Thus, we can define ¢ € (C, cpr,+1(n), ¢)* such that

Plc =1,
P, +1(n)) # 0,
¢(c) # 0.

By Proposition 2.1.4, there exists an £/ € #1(M) such that ¢ = ¢rrob(n;), and hence that
¥ = Yrrob(n, ). Moreover, observe that the sum

ZCMTH(M’)U — =0

vanishes as the sum of invariants of a global class is 0. Let us consider the cup products for
the valuations v not contained in S U {\'}. In this case it follows from Lemma 2.3.6 that
ea 1), € 6,(A(K,)). Equation (3.3) guarantees that ¢, € §,(A(K,)) as well. Since this
is an isotropic subgroup, the cup product vanishes. For the primes ¢ € S\{{y}, it follows from
Theorem 2.3.7 that cpr, 1(n')x = Xxe(Paej¢). By construction cy is contained in imy, as well.
Since this group is again isotropic, the cup product vanishes here as well. Hence the only
remaining terms are the cup products at the primes A and g, and we conclude that

er,1(nl) v — ex = —cp 1 (), — -
For X, it follows from (1.1) and (3.3) that
em,+1(0)x = e = {dag, 11 (nl)x, T,
for some & € A(Ky/). Theorem 2.3.7 gives the equality
orddys, 11(nl")x = ord cpy, 11 () x = ord cpr, 1 (n)y.

The choice of ¢, now guarantees that this cocycle is non-zero by (2.1) and since we have that
ordg(Py) = M,, equation (2.4) shows that ordcas,41(n) = p, which implies that the class
dyr, 1 (n0') € HY (K, A)B]~¢. By the choice of ¢ we made, cy has order at most p, and as
¢(c) = qbprob()\/L)(c) # 0, we conclude that cy/ is non-zero as well. As ¢y is in the —e,-eigenspace
of HY(Ky, A[RB]), = is determined uniquely in (A(Ky)/BA(Kx))" . As both eigenspaces are
cyclic O 4 /PBM-modules, it follows from the non-degeneracy of the Tate pairing that

CMT+1(I‘L£/)A/ ~ C)/ 7& 0.

It follows that cpz,+1(n€')s, # 0, and by Theorem 2.3.7 that Py /e, ¢ B T1A(K),). By the
definition of M, we must therefore have that ordy(Pne/e,) = M,. Thus by replacing n with
n =nl'/ly, we can add ¢ to X and increase the rank of its image by 1.

If k = r, we have that X = C*. In particular we have that S C .7 (M), hence cps(n) exists
and has order p™ ~Mr_ Observe that

{ceC| ecx=0forallfe S} =
{C€C| ¢Frob()\L)(C):Ofor aHgES}:
{ceC| ¢(c)=0forall p € C*} = {0}.

On the other hand since ordsy (P, /¢) > M, _1, it follows that

ord ¢y, (n)y =ord ey, (n/)\ =1
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for all £ € S. Hence
CnNn{cp,._,(n))=0.

Since ¢y, _, (n) is a multiple of cps(n) of order p*r—1=Mr the statement is therefore proved when

M,._1 > M,. Hence assume M, _; = M,. By relaxing the condition that C' has rank r, it is
easily shown that the lemma holds for C = {0}. In particular, there exists an m € .%._1(M)
such that ord cps(m) = p™~Mr-1 By Proposition 2.1.4, there exists an £ € . (M) such that
e, +1(m)x # 0. By Theorem 2.3.7, we hence have that dps1(mf)y # 0. In particular this
means that das,+1(mf) ¢ HI(A/K) and hence cps,4+1(mf) ¢ Spe(A/K). As C is contained in
this group, we conclude

CN{ear,+1(n)) =0,

and thus the proposition is proved. O

In the process of proving Proposition 3.2.6, the following weaker statement has been proven
as well.

Corollary 3.2.7. Let r be a square-free integer and let M’ > M > M, be two integers. Then
for all primes n € (M), there exists an w' € Z.(M') such that ord cp(n') > ord cpr(n).

Using this, let » be an odd number and let n € .%.(M,_1) be such that cp;._, (n) has or-
der pMr-1=M-_ By Corollary 2.3.8 we have that dy, ,(n) € HI(A/K)gS, and therefore that
e, (n) € Sp=(A/K). By Lemma 3.1.4 dpy, ,(n) has order pM—1=Mr in this group. As
the Cassels-Tate pairing is alternating on the J3-primary part, we conclude that II(A/K );3;
has a submodule isomorphic to (O /PMr-17=Mr)2 We let cpy
generators of this module.

By proceeding inductively on 7 = 2m + 1, and imposing by Proposition 3.2.6 that cps,._, is
chosen independent of {cap,,, Crr,, | k < m}, it follows that III(A/K)y% contains a submodule
isomorphic to

and ¢ps,_, denote the natural

r—1

(/B2 (O BM M2
Let us prove the main theorem.

Proof of Theorem 3.2.1. We proceed by induction on r. By applying Proposition 3.2.6 to
C = {0} and r = 1, it is shown above that there exists an ¢ € %) (My — M) such that the class
dato—nr, (€) € HI(A/K)yS has order pMo=Mi_ By the definition of N; we conclude that

My — M, < Nj.
Conversely recall that III(A/K)pe admits a maximal isotropic subgroup
D:D1XD2XD3X~--,

where D; is a cyclic O4/%"i-module contained in the €;-eigenspace of III(A/K)qe. Let d; be
a generator for D;. As yx has infinite order, the sequence in (1.3) is split. For every 1, let ¢;
denote the lift of d; to S (A/K) under this splitting. For any valuation v, let y; , € A(K,)
be an element such that 6,(y; ) = ¢;. It follows from the definition of My = ordy(yx) that
ord cpr4n, (1) = p™t. Hence by Corollary 2.1.5, there exists a prime number ¢; such that

OrdCMo-H\h (1)>\1 - le ’
orde; y, = p™, (3.4)
cia, =0, for all § > 2.
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The first condition of Corollary 2.1.5 is equivalent to the property that ¢; € 1 (My + Ny).
Therefore by Corollary 2.3.8, it follows that dpz,(¢1) € III(A/K). Thus for all ¢ and for any
0 < M < N; — 1 we have that

<dM0 (‘61)7pjwdi> = <dM0*M(€1)7di> = <dMO*M+Ni (81))\1ayi,)\1>x\17 (35)

To see that the last equality holds, observe that das,—ar+n,(¢1) satisfies the properties of dy
in the definition of the Cassels-Tate pairing. Moreover, all other terms in this sum vanish by
Lemma 2.3.6. By (1.1) and the choice of ¢, this term vanishes for ¢ > 2. For ¢ = 1, recall that
this pairing on

A(Ky) /Y A(K,) x HY(K, AP

is non-degenerate and 7-invariant. In particular the 7-eigenspaces are cyclic submodules. As
Yi n, has order p™1, it is a generator for A(K))/PBNV1 A(K))~¢. By Theorem 2.3.7 we have that
ord dagyrn,—m(€1)x, = ord epryrn, —am(1)x, = pM =M > 1. Tt therefore follows from the non-
degeneracy of this pairing that (3.5) is non-trivial for all 0 < M < N; — 1. We conclude that the
character

Xi: d— <dM0(£1)7d> e D*

vanishes on Dy x D3 X ---. Observe that this character is the image of dp,(¢1) in D* under
the map in (3.1). As Dj is a cyclic O/ -module, so is D}, and since &; does not vanish
anywhere on Dy, we conclude that it must be a generator for Dj. In particular dps, (¢1) has order

at least p™'. But as its order is bounded by pMo—Mi | we conclude that
Ny < My — My,

and hence that
N1 = My — M.

Proceeding inductively, let » > 1 be an integer and assume that for all 1 < j < r we have
N; = M;_y — M;. Moreover assume that there exist {1, ..., {,_1 € % (M’) such that

cix, =0 for all 4 > j,

and that the characters
&j d <de71(nj)’d>’ I1<j<r

vanish on D, x D,41 x - -- and form a diagonal basis for (D1 x -+ x D,_1)*, where n; = HK]- 4;,

and M’ is chosen sufficiently large. Let hy and hy € A(K)€ be two elements forming a O 4 /BM l
for A(K)/PM A(K) and let

C = <(S(h1), (5(h2), Cl, .-y Cr—1, CM, (‘I‘ll), ceny CMr72(nT_1)>ek.

This module is generated by at most r independent elements. Using Proposition 3.2.6, choose
any n € .%,.(M’) such that ord cps,_,(n) = pMr—1=Mr and C' N {cpr,_, (n)) = 0. Assume that
orddys, _,(n) > N,. As the sequence in (3.1) splits, we observe that dps, ,(n) is contained
in the submodule generated by dy,...,dr—1,dp, (n1), ..., dpr,_,(nr—1). Let ¢ denote the lift of
dn,, (n) to Sqpes (A/K). If r is odd, the lift is unique and must therefore equal cps, , (n), which
gives a contradiction as the lift is contained in C. Otherwise, cps._, (n) — ¢ is contained in the
image of A(K)°® Fya/Oa . After multiplying by a power of p if necessary, one can assume that
cn,_ (n)—c € 5(A(K)/PBM A(K)). As this module is generated by §(h1) and §(hs), we conclude
that cpr,_, (n) € C. This gives a contradiction, hence orddys,_, (n) < N,.. Notice that multiplying
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cm,_, (n) with the order of dpy,_, (n) gives an element in (§(h1),d(hs2)). By construction this must
be 0, hence ¢y, _, (n) has the same order as djy,_, (n) and therefore

Mrfl - Mr S Nr'
Conversely, by Corollary 2.1.5 there exists a prime number ¢, € . (M’) such that

N
ordeas, y+n, (Mr—1), =p°7,
OI‘dCTv)\T = erv
cixn,. = 0 for all ¢ > 7.

Letting n, = ¢,n,._; and 0 < M < N; — 1, we observe

T

<dM7-71 (nr)’p]wdi> = <er71*M(nT)7 d1> = Z<er—1*M+Ni (nr))\j ) yi,/\j>)\j .

=1

Notice that this sum vanishes for ¢ > r by the choice of £;. By the same argument, for i = r, the
¢; term vanishes for all j < r. Notice that y, », has order p"¥= in A(K))/PBN" A(K,)*. Likewise

orddas, ,+N,—p(n)x, = ordens, 4N, — (),
= ordens, N, M (Mr—1),
=pVrM > 1.

Hence by the non-degeneracy of the Tate pairing described in Proposition 1.5.3, we conclude
that this pairing is non-trivial for i = r and all 0 < M < N, — 1. Therefore the character

X od— (dy,_, (n.),d)

generates D} when restricted to D, and vanishes when restricted to D; for ¢ > r. Hence the set
{X; | j < r} vanishes on D,41 X D49 x --- and forms a diagonal basis for (D; X --- x D,)*.
The character X, has order at least p™~, and as it is induced by djs,_, (n,) we conclude that
dar,_, (n,) has order at least p™=. As its order is bounded by pM—1=Mr we conclude that

Nr < Mr—l - Mr

and hence that
N, =M,_; — M,.
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Chapter 4

Level raising

In this chapter we slightly modify our description of Shimura curve to use a formalism which
will allow us to be more clear in the next chapter. Using this new formalism we can introduce
two important construction which will play an important role later.

4.1 Level raising

Let p be a rational prime, p C Op and B C Oy be prime above p as in the previous chapter.
We recall that f is the Hilbert newform associated to our abelian variety A, p the PB-adic
representation of A and pg is the residual representation at the prime B. By our surjectivity
assumption it follows that the representation is irreducible, so p is residually irreducible. We
recall that N = N+ N~ where the primes in NV split in K and those of N~ are inert. We had
assumed that N~ is square-free and that N~ as different parity than the degree of F.

From now on we assume that

Assumption 4.1.1. 1. The residual representation pyp ramifies at all prime in Nt and all
q | N~ such that N(q) = 1 mod p. Furthermore there are no prime q | N~ such that
N(q) = -1 mod p.

2. If N is not square-free, then the residual representation ramifies at least at one place
dividing exactly N~ or at least at two places dividing exactly Nt.

3. For all prime ¢ such that ¢ | N* we have H'(Fy, py) = p,g‘ = 0 where Dy is the decom-
position group at ¢ in Gal(F/F).

We are going to vary the ramification locus of the quaternion algebra B, and so we use a
notation which is more explicit about it, hence we denote by X+ n- the Shimura curve attached
to this datum.

Definition 4.1.2. A prime ideal ¢ of OF is called admissible if
® EJfNDK/Fp;
e /is inert in K;
o PIN()? -1
e the P-adic valuation is vy ((N(¢) + 1)* —a?) > 1.

45



4.2. KOLYVAGIN SYSTEM REVISITED

Let A be the set of square-free product of admissible primes and AT (A~) be the subset of A
where the element are product of an even (odd) number of primes.

Since we assumed that A is a modular abelian variety of GLy type, the field F = 04 ® Q is
the field over Q generated by all the eigenvalues of the Hecke operators acting on f.

Let my denote the kernel of the morphism from the Hecke algebra T acting on the space of
Hilbert modular forms

T — OA;B/%.

Definition 4.1.3. We say that f is B-isolated if the completion of T at my is isomorphic to
Oasmp-

From now on we chose p such that f is 9B-isolated and p is unramified in O 4. By [Car94] and
[Lon07, Chapter 2.5] we know that the 93-adic representation associated to f is equivalent to
the representation p associated to the Tate module TigA. Hence when we consider the residual
representation the underlying vector space to pyp is V = A[P].

Theorem 4.1.4. For each admissible prime £ there exists a Hilbert newform f' of level N¢ and
a prime B’ in the field of fraction of O4r, which is generated by the Hecke eigenvalues of f',
O /B =2 O04/B and for all primes q # £ we have

aq(f) (mod P) =aq(f’) (mod P)
where both sides lie in O 4/B. Equivalently

Py = Py
where py: is the representation associated to f'.

Proof. By our assumption p is residually irreducible and 9B-isolated, so we can apply [Lon07,
Theorem 3.3] and [DS74] to get our claim. Another approach can be found in [Jar99]. This
allows us to raise the level at one admissible prime, but using our assumption on the ramification
of the residual representation we can apply the same argument as in [Zhal4, Theorem 2.1] to
raise the level at a product of admissible primes. O

Let m € A then using this theorem we can get a Hilbert newform fy,, of level Nm. We adopt
the same notation we used for f adding an index m, so we have a prime B, such that the
field generated by the Hecke eigenvalues Q4 /PBm = O4/B. We fix this isomorphism. By the
equivalence of the residual representation the underlying two-dimensional O, /9-vector space
does not change, so we denote it by V.

4.2 Kolyvagin system revisited

Let m € AT be admissible with an even number of prime factors, we denote by X = X+ n-m
the Shimura curves arising from the quaternion algebra B(m) which ramifies also at the places
dividing m. If m € A~ we need some extra step because we are changing the parity of the number
of factor of N™m, so in this case we consider the Gross curve X, associated to the quaternion
algebra B(m¢) ramifying also at the infinite place £ and at the places dividing m.

The first case is called the indefinite case and the second one is the definite case. If we
consider the sign of the functional equation of the L-function associated to f in the indefinite
case it is —1 and in the definite one is 1. Due to this we usually want to change the ramification
only by elements of AT because otherwise we would change the sign.
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For ease of notation we write in both case By, for the quaternion algebra we are considering
and Ry, for the subgroup generated by the Eichelr order.

Tracing back our construction we have the abelian variety A associated to the Hilbert newform
f and the Shimura curve X. Given m € AT we get a new Shimura curve X, which generates an
abelian variety Ay, associated to the Hilbert newform f;, that we got by raising the level of f at
m. We denote by Oy4,, the endomorphism ring of Ay,.

In this same spirit we can define Heegner points and classes on the object related to the raised
Hilbert modular form. We consider from now on M = 1, and so we drop it from the notation.
Let n € (1), we define the Heegner points

To(m) € Xm(K[n]) and Yn(m) € Am(K[nD
in the same way as before; similarly, we define the Gross points
m(m) € X,.

Following the construction of [Zhal4| we con provide a reduction and a specialization map
acting on Heegner points. Since this construction is a simple generalization of the work of Zhang
we just sketch the main steps and provide the required results in our setting. Let J#, denotes
the set of CM-point on the Shimura curve X, of conductor 1 with positive orientation (for the
precise definition see [ZhaOlb]).

Lemma 4.2.1. Let m € AT, ¢ € A a prime not dividing m and ¢’ € A a prime dividing m, let
n € .%(1), then there are two maps

Red,: 6 — Xy,

Spq/: %m — :{m/q/

such that
Redg(zn(m)) = ta(mg) € Xy,

Spy (za(m)) = ra(m/q) € X/qr-

Proof. We use the reduction of the canonical integral models as constructed by Zhang in [ZhaO1b|
and [ZhaOla|: X, has an integral model over Z, parametrizing abelian varieties with auxiliary
structure. Then the integral model has good reduction at g and the set of supersingular points
is X3F = X4, thus giving us an embedding K < By,. The Heegner points x,(m) reduce to
supersingular points in X3° when reducing modulo a prime above ¢ (see [Zhal4, Section 3.5]),
so composing with the isomorphism to X, we get the map Red,.

Using the theory of Drinfeld and Cerednik we can study the irreducible components of X,
and the graph associated to them. Using [ZhaO1b, Proposition 1.3.4] and [ZhaOla, Lemma 5.4.4]
we have an adelic description of the group of irreducible components of X,. Then following
[Zhal4, Section 3.4] we construct another embedding K < By, and by [Lon12, Section 7.5] we
find a relation between the set of vertices of the graph associated to the geometrically irreducible
components of Xy, and Xy, /4. The Heegner points z,(m) reduce to non-singular points in the
special fiber of X, when reducing modulo a prime above ¢’ (see [Zhal4, Section 3.5]), hence we
have a map from J, to the set of irreducible components, and so composing with the map to
Xm/q we get the map Sp,,.

Using the adelic description the required relations follow immediately. O
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We now want to define the Kolyvagin classes using the idea of level raising. Let T, denote
the algebra of Hecke operators on the space Hilbert modular form of parallel weight 2 which are
new at all places dividing N~ m, we have a morphism

)\fm : Tm — OAm

that gives the eigenvalue of the Hecke operator. We can consider the reduction modulo Py, and
we get a map

Aot T = Oay /P
Let 9 denote the kernel of Af,,. We have that Jac(Xy)[9] &2 V =2 Ay [P since the residual

representation are isomorphic.
Now for every n € .(1) and m € A* we can define a Kolyvagin class

c(n,m) € HY(K, Apn[Bn]) = HY(K,V)

derived as before from the Heegner points z,(m) and y,(m). When m = 1 we have the classical
case, so we drop the index: ¢(n, 1) = ¢(n).

Definition 4.2.2. Let m € AT, then we denote by ky, the Kolyvagin system
km = {c(n,m) € H'(K,V) |ne s (1)}.

We now introduce some local cohomology group which are used to impose local condition on
cohomology classes.

Definition 4.2.3. Let v be a prime non dividing N ,then we define the finite or unramified part
of HY(K,,V)
Hjip (Ko, V) = Hyp (Ky, V)

as the inflation of H*(K""/K,,V) where K'" is the maximal unramified extension of K.
The singular part is
Hl

sing

(K, V) = HY(I,, V)G /K
where I, is the ramification group at v.

By the inflation-restriction exact sequence we get that

0— Hp;, (K, V) = HY(K,,V) — H;

sing

(K, V).

We now assume that ¢ is an admissible prime, then the Galois module V' is unramified at g,
so as Gal(K,/K,)-module the space V splits as

V=04/Bs04/B(1)

where O 4/9(1) is the usual twist. Following [Tam21, Lemma 6.6] this decomposition indices a
direct sum in cohomology

HY (K, V) = H' (K, Oa /%) ® H' (Kq, 0.4 /PB(1)).
Lemma 4.2.4. Let g be an admissible prime, then

1. dim HY(K,, O4/P) = dim HY (K, O4/B(1)) = 1;
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2. In H'(K,, V) we have that
H}”ML(KfDV) = HI(K(Iv OA/m)v
Hipg(Kq, V) = H Ky, 04 /F(1)).

Proof. The first part and the equality for the unramified part follows from [Tam21, Lemma 6.19].
For the last part the required isomorphism is induced by the restriction map. O

For an admissible prime ¢ we have the following decomposition
HI(KLN V) = H}m(an V) D H, (an V)-

sing
Let v be a place of K, then we define loc,: H(K,V) — H*(K,,V) the localization map.
We have the following important congruence between Heegner points which in the classical case
over @ is due to Bertolini and Damon and in the case over totally real filed to Longo ([Lonl12]).

Theorem 4.2.5. Let m € A" and q1,q2 be two admissible primes not dividing m, then we have
locg, (c(n,m)) € H' (K4, Oa/B)  and  locg,(c(n,mqigo)) € H' (K, Oa/B(1)).
Fizing isomorphisms H' (K, ,04/PB) 2 Oa/P = H' (K, O4/PB(1)) we have an equality for all

ne (1) up to a unit in O /B:
locg, (z(n, m)) = locg, (c(n, mgr¢2)).

Proof. Let AY, AV, AY the abelian varieties associated to the Hilbert newforms fu, fumg:s fmgigs
they all have the same vector space V associated to their representation by level raising.

We start from calculating loc,, (z(n,m)). We have the Kummer map which goes into the
finite part of the cohomology, so we have

6‘11 : J(Xm)(KQ1) - AO(th) - H}in(KquAO[qgm]) = H}in(quv) = Hl(Kqqu/;‘p)'
It follows from [Lonl2, Section 7.4 that there exists an eigenform
¢: Xmg, = Oa/P
such that

e ¢ is the reduction of the Jacquet-Langlands correspondence of fi4,, this determines ¢
uniquely up to a scalar;

e It calculates the image of the local Kummer map of Heegner points on Xy,: for a suitable
choice of isomorphism H'(K,,,04/%B) = O4 /P we have

¢(Redy, (2)) = dq, () € Oa/PB

for all Heegner points.
This follows from [Lonl2, Lemma 7.20] as a consequence of Thara’s lemma for Shimura
curves over totally real fields ([MS21]).

We now calculate locg, (c(n, mg1¢2)). Again we want to compute the local Kummer map
5‘12 : J(Xmlhlh)(KQQ) - A(Z)(KQQ) - Hslzng = Hl (quOA/‘B(l))

The image of AY(K,,) is in the singular part since J(Xmg,q,)(Ky,) has purely multiplicative
reduction at g by [Tam21, Theorem 6.13] and [Lonl2]. This completes the proof of the first
claim.

Let J = J(Xmg,q2)s by [Lonl2, Section 7.5] it follows that
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e The Kummer map J(K,,) — H'(Ky,, JM]) = H'(K,,,V) factors through the group
®(J/K,,) of connected components of the Neron model of J over K,,;

e The specialization map always lies in X4, . By [Lonl2, Pag. 344] there is a homomorphism
which calculates the specialization to the group ®(J/Kg,);

e The Hecke eigenform ¢ also calculate the local Kummer map on Xy4,4,: for a suitable
choice of the isomorphism H'(K,,,0a/PB(1)) = O,/ we have

$(Spy, () = g, () € Oa/P
for all Heegner points in .

From the previous analysis of the geometric behavior of these two maps in 4.2.1 and the
above description of the Kummer maps in terms of ¢ we get for all n € (1)

10C¢11 o 5!11 (yn (m)) = locqz o 5112 (yn (mq1QQ))

up to a unit in O4/9B. Now the classes c(n, m) are derived from the Heegner points, so from
the Kummer images of the y,(m) applying the Kolyvagin derivative operator, which by the
construction are compatible when varying m. Then clearly this equality implies the last claim of
the theorem. O

Remark 4.2.6. There is an analogue of this theorem in the other index of the class ¢(n, m) arising
from a finite/singular morphism 1, at ¢ € (1) (cf. 2.3.7):

Ye(locee(n, m)) = locy(c(nl, m)).
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Chapter 5

Selmer groups

In this chapter we want to study some properties of the Selmer groups attached to A and the
effect of the level raising on them. This will be important as it is one of the main technique used
in the proof of the final results. The main reference for this chapter is [Tam21].

5.1 Local conditions

Let £ be a prime, then we denote by §;, the Kummer map. We recall the classical definition of
Selmer groups can be written as

Sely(A/K) = {c € H' (K, Alp]) | loc,(c) € Im(dy) for all £}.

Since we have identified A[B] with V' we can see the image of the Kummer map as a subspace
of HY(K,, V).

Definition 5.1.1. A system of local conditions is a choice of a subspace
H (Ko, APB]) C H (K¢, A[F])
for all places .

We take H} (Ky, AB]) = Im(d,) for all £. Under suitable hypothesis we can describe a system
of local conditions only in terms of Galois structure on V together with the information of the
reduction type at every prime.

Lemma 5.1.2. 1. Let £ be a prime and let Gal, denote the decomposition group at ¢, then

HY(F;, V) =0 < V&l =g,

2. If A is an elliptic curve with additive reduction at a prime €1 p, then
HY(F,V)=0.
Proof. Since ¢ 1 p by Tate Theorem [Mil06, Theorem 2.8] the Euler-Poincaré characteristic is

x(Galp, V) = 1. We recall that V is self dual (det(p) is the p-adic cyclotomic character), so
the local duality tells us that H%(Galy, V) is dual to H?(Gal,, V*) = H?(Galy, V), hence they
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have the same dimension. Since H°(Galy, V) = VSl by the definition of the Euler-Poincaré

characteristic
B #HO(Galg, V)#HQ(Galg, V)

X(Galb V) - #Hl (Galg, V) ’

so the first part of the lemma is proved.

To show the second part we can just prove that V4¢ = 0 and since ¢ { p it is equivalent to
A(Fy)/pA(F;) = 0. A has additive reduction, so there is a filtration A1 (Fy) C Ao(Fy) C A(Fy)
such that A (Fy) is a pro-f-group, Ag(F;)/A1(F;) is isomorphic to the residue field of Fy and
A(Fy)/Ao(Fy) is isomorphic to the component group of the Neron model of A/Fy. The component
group of an elliptic curve has order at most 4, hence A(f,)/pA(F;) = 0. O

We now want to study how the local conditions change with level raising, so let ¢ be an
admissible prime.

Theorem 5.1.3. For all prime £ # q the local conditions does not change
H (Ko, APB]) = Hj (Ko, Ag[%,))-
If ¢ = q then
H}(KWA[%]) = Hl(vaoA/m) and H}(anAq[mq]) = Hl(vaoA/m(l))~

Proof. The proof is a direct generalization of [Zhal4, Theorem 5.2| and [GP12, Lemma 8] using
the analogues result of [Lonl2, Section 5.2], [Tam21, Proof of Theorem 6.17] and [Nek12|. This
is the only place where we need the last item of Assumptions 4.1.1. At primes not dividing Ngq
both varieties have good reduction and at primes dividing N both have purely toric reduction,
so the condition are the same. The only prime where things go differently is ¢ since one has
good reduction and the other one purely toric. At primes dividing p we can describe the local
condition using flat cohomology, and they coincide. O

We can define four important local condition: we keep the local condition at all primes
different from ¢ and then one of the following at ¢

e The unramified condition: H!(K,, A[B]) = H' (K,, Oa/%R);
e The transverse condition: H} (K, A[P]) = H'(K,, O4/B(1));
e The relaxed condition: H!(K,, A[B]) = H (K,, A[B]);
e The strict condition: H}!(K,, A[R]) = 0.
We define the Selmer groups
Sel,(A/K) = {c € H' (K, A[P]) | loci(c) € H(K,, A[R]) for all ¢}

where * can be one of the previous four possible condition at ¢, and we have the following lemma
about the parity of the dimensions of these groups

Lemma 5.1.4. Iflocy: Sel,(A/K) — H}(K,, A[B]) is non-zero, then
1. dimgp , /q Sel,(A/K) = dime, yq Sel;(A/K) + 1,
2. Sel,(A/K) = Sel,.(A/K) and Sel;(A/K) = Sel;(A/K).
Iflocy: Seli(A/K) — H} (K,, AB]) is non-zero, then
1. dimg , /o Sel,.(A/K) = dimp , /q Sels(A/K) + 1,
2. Sel;(A/K) = Sel,.(A/K) and Sel,,(A/K) = Sel;(A/K).
Proof. This follows from the proof of [Tam21, Lemma 7.8]. O
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5.2 Rank lowering

Using the parity lemma we can prove the main theorem about the relation between Selmer group
and level raising.

Theorem 5.2.1. If the localization locy: Selyg(A/K) — H},, (K, V) = H' (Ky, Oa/R) is sur-
jective, then we have

dimoAq/mq Selng (Aq/K) = dimOA/‘/B Selsp (A/K) — 1.
Moreover we have
Sely, (Aq/K) = Ker(locy: Selp(A/K) — H}m(Kq, V).

Proof. The first part follows immediately from the parity lemma. The second part follows since
Sely, (Aq/K) = Sel,(A/K) is the strict Selmer group and Selp(A,/K) = Sel.(A/K) is the
relaxed Selmer group. O

This principle of level raising and rank lowering is at the base of the proof of our main result.
Using this we can prove the non-vanishing of the Kolyvagin system, so our Kolyvagin classes are
non-trivial and can be used to deduce the P-part of the Birch and Swinnerton-Dyer conjecture.

5.3 L-functions

In order to obtain information about the non-vanishing of Heegner points we use the central
values of some L-function and in particular a formula of Zhang [ZhaOla| which generalize the
usual Gross formula for modular curves. Let X denote the Gross curve.

Using the Jacquet-Langlands correspondence we can find a normalized eigenform ¢: X — O4.
We normalize ¢ in such a way that its Petersson norm is 1 and its image in O4 g contains a
B-adic unit. This determines ¢ up to a P-adic unit. In this case the Petersson product is defined
using the counting measure since the set X is finite. Let rx = Trgy)/x £(1). We recall that the
degree of the field F' is g.

Theorem 5.3.1 (Gross-Zhang formula). The following equality holds

N(Dgyr)'* L(f/K,1)
29 <f7 f>P€t

where Dy p is the relative discriminant of K/F, (-,-)pet is the Petersson inner product and

L(f/K,s) is the L-function over K.

p(ex)* =

Let T+ ny- be the N~-new quotient of the Hecke algebra generated by the Hecke operators
acting on the parallel weight 2 forms of level NT. Let A be the morphism associated to f

)\f: TNJr,N* — 0y — OA7q3.
Definition 5.3.2. e The congruence number np is a generator of the congruence ideal, so
(ng) = )\f(AnnTNth ker(As))Oa .

It is well-defined up to a B-adic unit.
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e The canonical or Gross period is

can <fvf> et
=

e The algebraic part of the special value of L(f/K,1) is

al _L(f/K,1)
L*™(f/K,1) = 79?1”% .

Remark 5.3.3. We use the congruence number just to define the Gross period, but it has some
really deep application. For example, it is strictly related to the idea of complete intersection
algebras (see [Dia97] and [Len95]) and to the theory of the congruence of modular forms thanks
to the works of Hida.

In particular since f has trivial central character the field F, i.e. the fraction field of O4, is
totally real, hence \¢(;K)|2 = ¢(rk)?. Recall that vy is the P-adic valuation, then
Corollary 5.3.4.
20p((ri)) = vp(L7(f /K, 1))
Assume to be in the indefinite case, i.e. the number of prime factor in N~ has different parity
than [F': Q. In particular in this case the sign of the functional equation for the L-function is

—1 and so L(f/K,1) = 0, so we cannot use the Gross-Zhang formula. However, we can find a
criterion to test the vanishing of the Heegner points yx using the level raising.

Theorem 5.3.5. Let q be an admissible prime. Assume to be in the indefinite case, then the
class ¢(1) € HY(K, A[B]) is locally non-trivial at q if and only if the algebraic part L™ (f,/K,1)
is a *PBq-adic unit.

Proof. Since we are in the indefinite case, the number of factor of N~¢ has the same parity as
[F: @], so the central value is not zero.

Let n € (1), by the Lemma 4.2.1, the reduction at g of the Heegner point z,(1) is
Red,(xn(1)) = ta(q). Hence, we can compare the Heegner divisor zx = x1 x and r4 x which is
the one associated to the reduction:

r1 i = Trgpyx x1(1),

Yo = Trrqy/i v1(q)-
Let ¢4 be the normalized eigenform obtained from the Jacquet-Langlands correspondence on
fq, then the reduction

g mod Pg: Xy — Oa, /By
is a Hecke eigenform and hence equal to a multiple of the function ¢ of Theorem 4.2.5 considering

m = 1 by [Man21|. Possibly replacing ¢, by a multiple we may assume that ¢, mod P, = ¢, in
particular we have

$q(tq,x) mod Py = (rg,x)-
Fixing an isomorphism H}m(Kq, V) = O4/%B, by 4.2.5 we have that

locq(c(l)) = ¢(?q,K) € O4/P.
So by the Gross-Zhang formula, up to a 3-adic unit, we have

locq(c(l))2 = ¢(2¢q,K)2 = ¢q(?q,K)2 = Lalg(fq/K, 1) mod P,

where all values are in O4/B. The theorem then follows. O
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Remark 5.3.6. There is also an analogue version when we are in the definite case, see [Tam21,
Thorem 6.19]. In this case we take ¢ as the product of two different admissible primes.

This theorem and its analogue rely heavily on the Thara’s lemma which has been proven for
Shimura curve over totally real field in [MS21].

The Birch and Swinnerton-Dyer formula over Q was proved in rank zero by Kato, Skinner
and Urban. We need a similar version over totally real fields.

Theorem 5.3.7. Assume that p is a good ordinary prime, the image of the residual Galois
representation contains SLo(Fyp) and if [F': Q] is even and the global sign of f is —1 then the
automorphic representation of f is special in at least one finite place, then L(f/K,1) # 0 if and
only if Selp~ (A/K) is finite, furthermore in this case we have

lenghto , , Selype (A/K) = vp(L*9(f/K,1)).

Proof. This follows from [Tam21, Theorem 5.2]. Since our representation is residually irreducible
then we can use [Wanl15] to apply [Tam21, Remark 6.11] and prove the theorem. O

We can now state an important non-vanishing result in the rank one case, but before we need
the following

Lemma 5.3.8. Let ¢ € H*(K, A[R]) be a non-zero class. There exists a positive density of
admissible primes q such that the localization loc,(c) is non-zero.

Proof. This is [Tam21, Lemma 7.4|. It is a simple application of the Cebotarev density theorem.
O

Theorem 5.3.9. If dimp , /q Selp(A/K) =1 then the class c(1) is non-zero.

Proof. Let ¢ be a generator of Sely(A/K) C H'(K, A[]). We can choose an admissible prime
g such that loc,(c) # 0. Using level raising we can find a Hilbert newform f; of level Nq. Note
that our Assumptions 4.1.1 are stable under level raising. Then clearly the localization

locy: Selyp(A/K) — H},p, (Kq, A[B])

is surjective. By Proposition 5.2.1, we have that dimo, . Sely,(4¢/K) = 0. In particular
Selges (Aq/K) = 0. Therefore, by 5.3.7, we have

v (L (fy/ K, 1) =0,
so LU9(f,/K,1) is a B,-adic unit, hence by 5.3.5 the class ¢(1) is non-zero. O

5.4 Triangulization of Selmer groups

We recall some properties of the Kolyvagin system and some consequence for the Selmer groups
which will lead us to construct a triangular basis for it. Let m € AT be a fixed element throughout
this section. Since it is fixed we drop it from the notation to simplify it.

Definition 5.4.1. Let ¢ € .#(1), the transverse part H. (K, V) is the subspace of H'(K;, V)
arising from the inflation of H(K[{]x, V) where X is a prime of K[{] over /.

Following [How04] we have a finite/singular split exact sequence giving the decomposition
HY(Ky,V) = Hp,, (Ko) ® HL (K, V)
where each component is totally maximal isotropic under the action of the local Tate pairing. In

general the finite part is, by definition, the local condition of Theorem 5.1.3.
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Proposition 5.4.2. The Kolyvagin system k has the following properties
1. For every prime £ and n € (1) we have

H} (Ko V) (6m) =1

locy(c(n)) € {ng(m, V) fln

2. For each prime £ € (1) there is a finite/singular morphism
et Hpyp (Ke, V) — Hi, (Ke, V)
such that for alln € (1) with (¢,n) = 1 we have

loce(c(nf)) = Yy (loce(c(n)).

Proof. The first statement follows by [Tam21], the second one from Theorem 2.3.7. O
Recall our surjectivity assumptions on the residue Galois representation, then

Lemma 5.4.3. Let c1,co be two O4/PB-linear independent elements in H'(K,V), then there
exists a positive density of primes £ € %1 (1) such that

loc(c1) #0 i=1,2.
Proof. This follows from Proposition 2.1.4. O

Lemma 5.4.4. Let ¢ € .1 (1) and S a finite subset of 7 (1) not containing £. Then there exists
c€ HYK,V)* such that

e c#0;
e loc,c € H}m(Kv, V) for all v outside S U {¢};
e loc,c € HL.(K,,V) forallv e S.
Proof. The same proof of Lemma 3.2.5 works. O

This last lemma tells us that we can pick up an element with a prescribed set of places where
it lays in the transverse part of the cohomology.

Definition 5.4.5. e Let k be a Kolyvagin system. The vanishing order v of k is
v=min{r € Z; | 3 n € (1) such that ¢(n) # 0} .
If Kk = {0} we say that v = oco.

e A prime / is called a base point of k if £ { Dg,pNp and locg(c(n)) = 0 for all n € .7(1).
The set of all base point is called the base locus of k and is denoted by Z(k).

The following theorem gives us the structure of the Selmer group, providing it with a trian-
gular basis for some eigenspaces. The important aspect is that this basis is composed only of
Kolyvagin classes. This will be important in the argument to prove the main result. The proof
of this theorem is very similar to the one of the structure theorem for Shafarevich-Tate groups,
in fact it relies more or less on the same technique.
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Theorem 5.4.6. Assume that k is not trivial (i.e. v is finite), then we have

1. The €,-eigenspace Selyy (A/K) is of dimension v+ 1 and Sely™ (A/K) has dimension at
most v;

2. There exist 2v + 1 distinct prime ly, -+ ,lo,11 € S1(1) such that the classes
c(ni) S H! (K, V) n;, = lili+1 - li+u—1

for1 <i<wv+1 form a basis of Selyy (A/K) with the property that for all 1 <i,j <v+1

=0 ifi> ],
locy, , ; (c(ns)) {7é 0 ifi=j
3. Let Sel%)%(m) (A/K) be the relaxed Selmer group at the base locus B(k), i.e. the Selmer
group where we take the relaxed condition at the primes dividing #(k), then

Selt

.2(s) (A/K) = Selyy (A/K) and dim Seli (A/K) <v.

B, B(r)

Proof. We start with proving by induction the following claim: if 0 < 7 < v, then there exists a
sequence of primes [y, --- ,l,; such that

e c(n;))#0forall 1 <i<j+1wheren; =1;...0,4i—1;
e loc, . c(n;) #0forall 1 <i<j.

When j = 0 it follows from the definition of v that there exists ny =1y ...1, € .#,(1) such that
¢(ny) # 0. This proves the claim in the case j = 0. Note that the second statement is void in
this case. Now suppose by induction that we have found primes /1,...,l,4; satisfying the claim
with 0 < j < v —1. We apply Lemma 5.4.4 to S = {lj42,...,l,4;} and ¢ = l;41 to obtain
c € HY(K,V)~% such that

e c#0;
e loc,(c) € H},;, (K,, V) for all v outside {lj11,...,l4;};
e loc,(c) € HE(K,,V) for all v € {liga, - L}

In particular, we have that the class c lies in the opposite eigenspace to c¢(n;11). Using the
Lemma 5.4.3 we get a prime [, ;41 distinct from Iy,...,l,, 4; such that loc,, ., (c) # 0 and
locy,, ;,,¢(njy1) # 0. We now use the Tate pairing and calculate it as a sum of the local pairings
over all places

0= (c;c(njralyrirn)) = 3 (e e(jpalugt1))o.

v

Now ¢ and ¢(nj41l,4;+1) lies in the same eigenspace, so the possibly non-zero contribution only
comes from v € {lj41,...,l 4 41}. When v € {l;42,...,l,4;} both loc,c and loc,c(njp1lu4j41)
lies in the transverse part H} (K,, V), thus the local pairing is zero. When v = [,4;+1 we have
locy,,,,,(c) #0in H}m(Kv, V)er+t and

loclu+j+1c(nj+1ll/+j+1) = wlu+j+l (loclu+j+1c(nj+1)) 7& 0
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in H)(K,,V)®+1. Thus the local pairing at l,; ;1 is non-zero. Hence also the other local
contribution cannot be zero, so we have loc;, ¢ # 0 and loclj+lc(nj+1ly+j+1) = (0. Hence

locy, , e(mjlyyj1/lj+1) # 0

or equivalently
IOClj_*_lC(Ilj_i_Q) 7é 0 Nt = lj+2 ce lu+j+l-

In particular, we get that c(n;y2) # 0, which completes the proof of the claim.

We add a prime lz,11 € (1) such that loc,,, c(n,41) # 0. Such a prime exists since
¢(ny41) # 0. Thus we have constructed {l1,...,l2,4+1} satisfying the statement (2) of the theo-
rem.
By this construction it follows easily that the ¢(n;) for 1 <+4¢ < v 41 are linearly independent
and belong to the Selmer group Selfﬁ (A/K). To complete the proof of the theorem we need to
show that they generate the whole eigenspace of the Selmer group. In order to achieve this we
can prove the stronger statement that they generate the relaxed Selmer group Selfﬁ B(r) (A/K).

Let ¢ € Selfﬁ’ Br) (A/K), without loss of generality we may assume, up to changing ¢ by
subtracting a suitable linear combination of c(n;)’s, that loc;,, (c) = 0 for all 1 < j < v+ 1.
Let ' =1,41...loulops1 € F41(1), then ¢(n’) is non-zero since by our claim locg,+1¢(n’) # 0.
In particular, we find that the classes ¢ and c¢(n’) are in different eigenspaces. Assume, by
contradiction, that ¢ # 0. By Lemma 5.4.3 there exists a prime lo,40 & {l; | 1 <i<2v+1}
such that locy,, ., (¢) # 0 and locy,, ., (c(n')) # 0. Let n” = n'ly, 42 € #,42(1). Then also c(n”) is
non-zero since our requests on the prime la, ;5 imply that locy,, ., (¢) # 0 and locy,, ., (¢(n”)) # 0.
Moreover the class ¢(n”) lies in the same eigenspace of c.

We use again the Tate pairing

0=(e.c))= Y (e;e”))y+D {ecn”))

vERB(K) Ln’

and by the definition of base locus we have loc,(c(n”)) = 0 for all v € HB(k), so the first sum
on the right-hand side is zero. Furthermore, loc;,(¢) = 0 for all v + 1 < i < 2v 4+ 1 but not for
1 = 2v + 2 and so finally we get

0= {c,e(n”)) =D {e.e(n”)e = (e, e(n"))ig, 1 # 0

EITL”

which is a contradiction, hence ¢ = 0. This implies that Selfﬁygg(ﬁ)(A/K) = Selyy (A/K) and that
it is generated by the c(n;) for all 1 <¢ < v+ 1.

The last step in our proof is to show that dim Selq}?@(n) (A/K) < v. Suppose, by contradiction,
that dim Selqgf;a(ﬂ)(/l /K) > v. By a dimensional argument, there exists a class ¢ € Sel,™ (A/K)
such that ¢ # 0 and loc;,,,(¢) = 0 for all 1 <4 < v. Since ¢ and ¢(n,41) belongs to different

eigenspaces we can apply Lemma 5.4.3 to choose a different a prime I3, 11 such that loc;,, ., (¢) # 0
and locy,, , , (c(ny41)) # 0. Then we conclude as before calculating the Tate pairing

0= (¢, c(nyqiloyy1)) = Z (€, c(myqilopi))e = (€ c(mugiloy 1)), 70

Ly paloy g1

which gives us a contradiction, thus finishing the proof. O
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Chapter 6

Birch and Swinnerton-Dyer formula
in the rank one case

We are now ready for the proof of our main result. We will first prove the non-vanishing of our
Kolyvagin system and a parity theorem and then proceed to the main proof.

6.1 Kolyvagin’s conjecture
In order to use our Kolyvagin system we need to know that it is not trivial.

Theorem 6.1.1. Assume that the parity of the number of factor of N~ is different from the one
of [F: Q] and our Assumptions 4.1.1 hold. Then

k={cn) e H'(K,V)|ne .2 (1)} #0.
Proof. We work by induction on the rank
r = dim Selyp (A/K).

We assume that the parity conjecture for Selmer group holds for A/K (see [Nek09] and [Nek06]),
so 7 is always odd since we are in the rank 1 case.

The case r = 1is Theorem 5.3.9. Suppose now that r > 3 and that ;1 € {+} is chosen such that
Sel%(A/K) has higher rank than SeI;}”(A/K). In particular, we have that dim Sel%(A/K) > 2.
We proceed in the following way: first chose a non-zero ¢; € Selgg,(A/K ). In particular, we

want that ¢; € H'(K,V). Chose an admissible prime ¢; such that the image of ¢; under the
homomorphism

locg, : Sely(A/K) — H}m(qu V)

is non-zero, thus this homomorphism is surjective. Using level raising we get a Hilbert newform
fq. of level Ng; together with a prime ,,. By Proposition 5.2.1, we have

dimoA/gp Selqul (Ath /K) = dimoA/;n Selqg (A/K) -1

and
Sely, (Ag, /K) = kerlocy, .
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Then we chose a non-zero ¢y € Sel%q (Aq,/K) and an admissible prime go as before. Since
dim Sel‘%q1 (A4 /K) > 2, such ¢y exists. Again we want co € H'(K,V). Then again by level

raising we obtain a Hilbert newform f, 4, of level Ngigo and a prime By 4,. Again by rank
lowering we have

dimoA/m Sels;pql(m (Aq1q2 y K) = dimoA/gp Selqul (Ath /K) —-1= dimoA/sp Selgp (A/K) -2

and
Sely, ., (Agy g, K) = kerlocg, g, -

Moreover this process is compatible this the action of complex conjugation, hence the dimension
of the u eigenspace decreases whereas the dimension of the —p one remain constant.

By induction hypothesis and noting that f,, 4, still satisfies all the hypothesis of this theorem,
we may assume that the family

Kgiqga = {C(WQNJQ) € Hl(Kv V) | ne ,7(1)} 7é {0} .

By the reciprocity law 4.2.5 we have for all n € (1) that locg, (¢(n, 1)) = locg, (c(n, g1g2)).
To complete the proof it is enough to show that ¢ is not a base point for the Kolyvagin system
Kqiqo- We do this by contradiction, so assume that ¢» € B(kq,q,)-

The local condition defining the Selmer groups of Ay, 4, and A, differs only at go, thus we
have a trivial inclusion into thee relaxed Selmer group

Sel, (Agi/K) C Selss, . #(ry,0) (Agiaa/ K)-

We have two cases:

1. dim Selgéq1 (Aq,q,/K) remains bigger that dim Selsif:lq2 (Agiq./K);

a2

2. dim Sel%q1 (Ag o/ K) is smaller than dim Selci’;1 (Agy4./K). This happens exactly when

a2 a2

dim Selyy" (A/K) = dim Selgy" (A/K) + 1.

In the first case by the Theorem 5.4.6 we have an equality
Sel‘%qum (Aq1q2 /K) - Sel%qlm B(Kgyqs) (Aqw2 /K)

Hence Sely, (Aq,/K) C Selly  (A44,/K) by the previous inclusion. By our previous choice
Paq q1 Paiao q192
the class ¢; lies in the first space but not in the second and so we have a contradiction.
In the second case, let vy, 4, denote the vanishing order of x4, 4, as usual. Then by the Theorem
5.4.6 we have
dim Sel{g’;qz (Agiq/ K) = Vgrq, + 1,

dim Sel%ql 00 B (K1 az) (AqlfI2 /K) S Vgiqz+

However, by the previous inclusions the dimension of the relaxed Selmer is at least that of
Selfi,q (Aq, /K) which is v4,4, +1 by the previous considerations and thus we have a contradiction
1

also in this case. O

In our particular case we can avoid using the parity conjecture and instead prove it for our
specific case.

Proposition 6.1.2. Assume that we are in the indefinite case, then dim Sely(A/K) is odd and
hence Selypo (A/K) has odd O 4 s3-corank.
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Proof. Under our hypothesis we are in the indefinite case, so the root number is —1 and thus
L(f/K,1) = 0. The case r = dim Selpz(A/K) = 0 cannot happen by Theorem 5.3.7.

Suppose by contradiction that » > 2 is even. We have two cases: if one eigenspace has
dimension strictly larger than the other we can apply the same argument as in Theorem 6.1.1
and produce Ag, 4, with dimSely, . (Agq,/K) = r — 2. Otherwise, the two eigenspaces have
the same dimension and we can modify the choice of ¢o in the proof of the above theorem and
force ¢y € Sel%:‘l’”"’ (Ag,/K). Then we get again an A, 4, with dimSely, , (Ag,4,/K) =1 — 2.
Therefore, by induction we get a contradiction. So we have proved the parity in the indefinite
case.

Under our hypothesis the O 4 /B-vector space Sely (A/K) can be identified with the B-torsion
of Selyp (A/K). By the non-degeneracy of the Cassels-Tate pairing on the indivisible quotient of
III(A/K) the O 4 s3-corank of Selp~(A/K) has the same parity as the dimension of Sely(A/K),
so it has odd corank. O

We can now state a more general result which is the Kolyvagin’s conjecture. Let v(n) denote
the number of factor of n € (M), so n € 7,y (M).

Theorem 6.1.3. Let f be a Hilbert newform over F of parallel weight 2 and level N with trivial
nebentypus, A the associated abelian variety, B a prime ideal of O 4 above the prime number p
and Dg /F the relative discriminant of a CM extension K of F' with (Dg/p,N) = 1. Assume
that

o N~ is square-free and the number of prime factor has opposite parity of [F: Q];
o The residue representation is surjective;
o Assumptions 4.1.1 holds;
e The prime p is ordinary and p is coprime with Dg/pN.
Then we have
k™ = {cy(n) € H'(K,A[BM]) [ne S (1),M € Zy } #0.

Indeed we have
M, = lim M, =0.

r—00

Proof. This follows easily from Theorem 6.1.1. O

From this theorem we can also deduce a construction of the Selmer groups using the Kolyva-
gin’s classes.

Corollary 6.1.4. Let v be the vanishing order of the Kolyvagin system . Then

1. The vector space Sely (A/K) is contained in the subspace of HY(K,V) spanned by all ¢(n, 1)
forne S (1);

2. The vector space Sely (A/K) is contained in the subspace of H' (K, V') spanned by all c(n, m)
forne (1) andm e AT,

Proof. The first statement is a consequence of Theorem 5.4.6 and Theorem 6.1.1 above. To prove
the second statement is enough to show that the other eigenspace is generated by the classes
c(n,m). We use induction on the dimension of Sely(A/K) in the same way as in the proof of
Theorem 6.1.1. In fact dim Sely, . (Ag,q,/K) = dim Selys(A/K)—2 and by induction hypothesis
we may assume that Sely, . (Ag,q,/K) is generated by the classes c¢(n,gigam). In particular,

the subspace Selii“qz (Ag,q,/K) is generated by them. But this two subspace share the same
L4
underlying O 4 /B-vector subspace by level raising so the corollary follows. O
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6.2 The main formula

In this last section we prove the -part of the Birch and Swinnerton-Dyer conjecture in the rank
one case. We assume to be in the indefinite case. We restrict ourselves to the case where A is
an elliptic curve.

We assume also that v, ([], c,) = 0 where ¢, denotes the Tamagawa number at v. This
assumption excludes only a finite set of primes p. We also assume that p{ #A(F)iors and pt Dp
where Dy is the discriminant of F. Let (-,-) y7 denote the Neron-Tate height pairing.

Lemma 6.2.1. Under our assumptions, if L(A/K,s) has a simple zero at s = 1 then the P-part
of the Birch and Swinnerton-Dyer conjecture for A/K is equivalent to

2-lenghte, , (A(K)/Oayk) = lenghty,  II(A/K).

Proof. We have assumed that N~ is square-free, so by [Zha0Olb|, [Zha04] and [YZZ13] the Gross-
Zagier formula con be written as

L/(A/Kal) <yK7yK>NT

- 1/2
2 D%DK//F

We can also rewrite the Birch and Swinnerton-Dyer formula following [Dis15] and [GP12] as

L'(A/K,1) D;(}f#IH(A/K)(yK yr)NT [, v

Q4 [A(K): Oayk]?

where €24 is the period associated to A. This period can be computed by integrating a Neron
differential wy, if it exists, along the quotients composing the Shimura curve X; the Neron
differential is guaranteed to exist only when F' = Q, otherwise we should take as w4 any generator
of HO(A, Q4 /) and divide by the product over all places v of the indices

[T [H (7, j01,): Oroa]

v

of the extension of w4 in the space of top differential on the local Neron models <, /OF,, of A.

Here we have our main problem that arise in the totally real case: we need to compare these
two periods. The problem is that f is a Hilbert modular form and not a quaternionic one,
otherwise we would have the comparison. In particular, this can be rewritten as a comparison
between the periods of f and that of its Jacquet-Langlands transfers to quaternionic forms. For
elliptic curve over Q it was done in [PW11], [GP12] and [Pra09], and the quotient of the periods
is the product of some Tamagawa numbers; hence, in our case, it has valuation zero. In the
totally real case the relation is only conjectured. For a more in depth review of this fact see
[Dis15, Chpater 9]. The conjecture is known to hold in some specific case, for example when A
has complex multiplication (over Q) by [Bla86]. Moreover the comparison of these two periods is
also related to the Bloch-Kato conjecture (see [Tam21, Remark 5.5]). We assume this conjecture
to holds, so comparing the two identities and taking the B-adic valuation we get

2-lenghte, , (A(K)/Oayk) = lenghty, , II(A/K)
which completes the proof. O
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Theorem 6.2.2. Under our assumptions, if L(A/K,s) has a simple zero at s = 1 then the
PB-part of the Birch and Swinnerton-Dyer conjecture for AJ/K holds, so we have

(L’(A/K, 1)

= lenght HI(A/K
QARegA/K> enghto, , HI(A/K)

where Reg 4 ¢ is by definition the Neron-Tate height of yx divided by the square of the cardinality
of the torsion part.

Proof. By Lemma 6.2.1 it is enough to show that
2-lenghto, . (A(K)/Oayk) = lenghty,  II(A/K)
but by Corollary 3.2.3 we have
lenghto,, , HI(A/K) = 2(Mo — M)

hence, by Theorem 6.1.3 we have that M, = 0 and so the theorem follows from Corollary
2.3.9. O

We can now use the standard argument to descend the result to F.

Theorem 6.2.3. Under our assumptions, if L(A/F,s) has a simple zero at s = 1 then the
B-part of the Birch and Swinnerton-Dyer conjecture for AJ/F holds, so we have

L'(A/K,1)
U (QARegA/F> = lenghty,,  III(A/K).
Proof. Following the proof of [Zhal4, Theorem 1.4] we can pick a field K satisfying all our
assumptions, so the PB-part of the Birch and Swinnerton-Dyer conjecture holds for A/K by
Theorem 6.2.2. Let AX denote the quadratic twist of A by K, since L(AX,1) # 0 the -part
of the conjecture for AX/F holds true thanks to the work of Xin Wan in [Wan15]. Then the
PB-part of the Birch and Swinnerton-Dyer conjecture for A/F' follows. O

If this theorem holds for every B C O 4 above p, then we can descend it to obtain the p-part
of the Birch and Swinnerton-Dyer conjecture in the rank one case for infinitely many p.
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