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Riassunto

Prendiamo in considerazione M DV-modulo olonomo sulla retta com-
plessa V. La trasformata di Fourier-Laplace M∧ di M è un D-modulo
olonomo sulla retta duale V∗. In generale, anche se M è regolare, M∧

è irregolare. É naturale chiedersi quali siano i legami tra la struttura di
Stokes di M∧ e quella di M e ricavare dati sulla prima dalla seconda. La
letteratura al riguardo è , citiamo in particolare i lavori di Malgrange [3],
Mochizuki [4], Hien-Sabbah [2], D’Agnolo-Hien-Morando-Sabbah [1].

Malgrange ha dato una trattazione esauriente dell’argomento, ma il suo
lavoro risulta alle volte di difficile lettura. Mochizuki ha prodotto una de-
scrizione completa della trasformata di Fourier-Laplace di M utilizzando
l’omologia a decrescita rapida introdotta da Bloch-Esnault. Per un tipo par-
ticolare di DV-module, i cosiddetti elementari, Hien-Sabbah hanno dato una
descrizione più esplicita. Utilizzando la corrispondenza di Riemann-Hilbert
come enunciata da Deligne e Malgrange, hanno introdotto una trasfor-
mazione topologica locale di Laplace per i sistemi locali Stokes-filtrati, e
l’hanno calcolata in termini della coomologia di Cech.

Un prospettiva differente sullo studio del fenomeno di Stokes è data
nella versione della corrispondenza di Riemann-Hilbert come descritta da
D’Agnolo-Kashiwara. Questa associa ad un D-modulo olonomo l’ind-fascio
arricchito delle sue soluzioni arricchite. In più, per funtorialità, questa cor-
rispondenza sostituisce trasformata di Fourier-Laplace per D-moduli olonomi
con la trasformata di Fourier-Sato per ind-fasci arricchiti. In questo con-
testo, D’Agnolo-Hien-Morando-Sabbah hanno calcolato esplicitamente la
struttura di Stokes di M∧, nel caso di M olonomo regolare.

In questa tesi, utilizzando questo ultimo punto di vista, il nostro scopo
è quello di ottenere una descrizione della trasformata di Fourier-Laplace di
un DV-modulo elementare. Al contrario di quanto fatto da Hien-Sabbah, il
nostro approccio è puramente topologico. Come nel caso di D’Agnolo-Hien-
Morando-Sabbah, è basato su calcoli fatti in termini di classi di omologia
di Borel-Moore. In particolare, scegliamo le classi naturalmente associate a
questo contesto, quelle provenienti dai cicli a decrescita rapida.
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Abstract

Let V be a complex affine line, and M a holonomic DV-module. The
Fourier-Laplace transform M∧ of M is a holonomic D-module on the dual
affine line V∗. Even if M is regular, M∧ is irregular in general. It is natural
and important to try to describe the Stokes structure of M∧ in terms of
the Stokes structure of M. In the literature dealing with this problem,
let us mention in particular the papers by Malgrange [3], Mochizuki [4],
Hien-Sabbah [2], D’Agnolo-Hien-Morando-Sabbah [1].

Malgrange gave a comprehensive treatment, but his work is notoriously
difficult. Mochizuki has given a recipe for a complete description of the
Fourier-Laplace transform of a general M using the rapid decay homology
theory introduced by Bloch-Esnault. For a particular kind of DV-module, so-
called elementary, Hien-Sabbah gave a more explit description. Using the
Riemann-Hilbert correspondence of Deligne-Malgrange, they introduced a
topological local Laplace transformation at the level of Stokes-filtered local
systems, and computed it in terms of Cech cohomology.

A different point of view to the study of the Stokes phenomena is given
by the Riemann-Hilbert correspondence, as stated by D’Agnolo-Kashiwara.
This associates to a holonomic D-module the enhanced ind-sheaf of its en-
hanced solutions. Moreover, by functoriality, such correspondence inter-
changes Fourier-Laplace transform for holonomic D-modules with Fourier-
Sato transform for enhanced ind-sheaves. Using this point of view, D’Agnolo-
Hien-Morando-Sabbah explicitly computed the Stokes structure of M∧, for
M regular holonomic.

In this thesis, using this same point of view, our aim is to get a description
of the Fourier-Laplace transform of an elementary DV-module. Unlike Hien-
Sabbah, our approach is purely topological. Like D’Agnolo-Hien-Morando-
Sabbah, it is based on computations in terms of Borel-Moore homology
classes. For that, we choose the most natural classes, namely those attached
to steepest descent cycles.
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1. Introduction

1.1. Fourier-Laplace transform. Consider the affine line V = Cz, with
coordinate z, and denote by P := V ∪ {∞} its projective compactification.
Denote by DV = C[z]〈∂z〉 the Weyl algebra, and by DalV the sheaf of rings

of algebraic differential operators. Recall that DV = Γ(V;DalV ), and that
this induces an equivalence between holonomic DV-modules and holonomic
DalV -modules.
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Let V∗ = Cw be the dual affine line, so that the pairing is given by
(z, w) 7→ zw, and consider the projections

V V× V∗
poo q // V∗.

The Fourier-Laplace transform of a DV-module M is the DV∗-module M∧

which coincides with M as a C-vector space, and with the actions of w and
∂w given by

w ·m = −∂z ·m,
∂w ·m = z ·m,

respectively. By [12], this transform reads as follows in terms of holonomic
DalV -modules:

(1.1) M∧al := Dq∗(E−zwal [1]⊗D Dp∗Mal) ∈ Db(DalV∗).

Here, Db(DalV∗) denotes the bounded derived category of DalV∗-modules, Dq∗,

⊗D and Dp∗ denote the operations for Dal-modules, and E−zwal is the DalV×V∗-
module associated with the connection (OalV×V∗ , d+ d(zw)). Note that M∧al
is concentrated in degree zero.

Even if Mal is regular, M∧al is irregular in general, giving rise to Stokes
phenomena. It is natural and important to try to describe the Stokes struc-
ture ofM∧al in terms of the Stokes structure ofMal. In the literature dealing
with this problem, let us mention in particular the papers by Malgrange [13],
Mochizuki [15], Hien-Sabbah [9], D’Agnolo-Hien-Morando-Sabbah [6].

Malgrange gave a comprehensive treatment in [13]. Mochizuki has given
a recipe for a complete description of the Fourier-Laplace transform of a
general Mal using the rapid decay homology theory introduced by Bloch-
Esnault. For a particular kind of DalV -module, so-called elementary, Hien-
Sabbah gave a more explicit description. Using the Riemann-Hilbert corre-
spondence of Deligne-Malgrange, they introduced a topological local Laplace
transformation at the level of Stokes-filtered local systems, and computed it
in terms of Cech cohomology.

A different point of view to the study of the Stokes phenomena is given
by the Riemann-Hilbert correspondence, as stated by D’Agnolo-Kashiwara
[4]. This associates to a (analytic) holonomic D-module the enhanced ind-
sheaf of its enhanced solutions. Moreover, by functoriality, such correspon-
dence interchanges Fourier-Laplace transform for holonomic D-modules with
Fourier-Sato transform for enhanced ind-sheaves. Using this point of view,
D’Agnolo-Hien-Morando-Sabbah explicitly computed the Stokes structure
of M∧, for M regular holonomic.

In this thesis, using this same point of view, our aim is to get a description
of the Fourier-Laplace transform of an elementary DV-module. Unlike Hien-
Sabbah, our approach is purely topological. Like D’Agnolo-Hien-Morando-
Sabbah, it is based on computations in terms of Borel-Moore homology
classes. For that, we choose the most natural classes, namely those attached
to steepest descent cycles.

Let us give more details.
There are several ways of encoding the Stokes structure of a holonomic

DalV -module. We will later do it in the framework of enhanced ind-sheaves.
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For now, recall that another way, obtained using the classical Riemann-
Hilbert correspondence as stated by Deligne and Malgrange, is by assigning:
a local system on P \S, for S ⊂ P the finite set of singular points (including
∞), a Stokes-filtered local system (refer e.g. to [20]) on the circle of directions
at each element of S, and some additional data on S corresponding to the
vanishing cycles. From these data one recovers the so-called exponential
factors as the degrees where the Stokes filtration jumps. Let us briefly recall
how they can be obtained, and how they transform by Fourier-Laplace.

1.2. Elementary modules and stationary phase formula. Let ρ :
Cu → V be the ramification of order p given by z = ρ(u) = up. Let
ϕ ∈ u−1C[u−1], and denote by Eϕal the DalCu-module associated with the

meromorphic connection (OalCu(∗0), d− dϕ). Let Ral be a regular holonomic

DalCu-module with 0 as its only singularity at finite distance.

Definition 1.1. One considers the holonomic DalV -module

El(ρ, ϕ,Ral) := Dρ∗(Eϕal ⊗
D Ral),

and calls it an elementary DalV -module at 0. An elementary DalV -module at
a ∈ P = V ∪ {∞} is obtained by replacing the local coordinate z at 0 with
the local coordinate za at a given by

za =

{
z − a for a ∈ V,
z−1 for a =∞.

Let M be a holonomic DalV -module with a singularity at a ∈ P, and

denote by M(∗a)̂|a its formalization. At the formal level, the Hukuhara-
Levelt-Turrittin theorem states that there is a finite number of elementary
DalV -modules at a such that

M(∗a)̂|a '
⊕
j

El(ρj , ϕj ,Ralj )̂|a,

and that this isomorphism also holds at the asymptotic level on small sectors
with vertex at a. The DalV -module

⊕
j El(ρj , ϕj ,Ralj ) is called the formal

type ofM at a. Each function ϕj can be considered as ramified function of
za, and each of its determinations is called an exponential factor ofM at a.

Remark 1.2. In this thesis we will discuss the Fourier-Laplace transform
of elementary D-modules. By the above result, these may be considered as
some kind of building blocks of general holonomic D-modules.

One knows that the Fourier-Laplace transform of an elementaryD-module
at 0 has singularities only at 0 and∞, with∞ the only irregular singularity.
The first information one can obtain about such a Fourier-Laplace transform
is its formal type at ∞. This is a classical result, called stationary phase
formula. An explicit such formula is

Theorem 1.3. (see [19] or [8]) The formal type of El(ρ, ϕ,Ral)∧ is that of

El(ρ̂, ϕ̂, R̂al), where

(1) ρ̂ : Cζ → (V∗ \ 0), w−1 = ρ̂(ζ) = − ρ′(ζ)
ϕ′(ζ) is a ramification of order

n+ p, where n is the pole order of ϕ at 0,
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(2) ϕ̂(η) = ϕ(η)− ρ(η)
ρ′(η)ϕ

′(η), which has pole order n,

(3) R̂al = Ral ⊗D Ln where Ln is the D-module associated with the

connection (OCη , d− n
2
dη
η )

A similar statement holds when considering the Fourier-Laplace transform
of an elementary D-module at a ∈ P \ {0}.

1.3. Enhanced ind-sheaves. After finding the formal structure of

El(ρ, ϕ,Ral)∧,

the next step is to describe its Stokes structure at ∞. We will do it in the
framework of the Riemann-Hilbert correspondence introduced by D’Agnolo-
Kashiwara [4], using their theory of enhanced ind-sheaves. Let us briefly
recall that framework and theory, referring to the the next sections for more
details.

Denote by DV the sheaf of rings of analytic differential operators on the
complex manifold underlying V. Consider the bordered space V∞ = (V,P),
and denote by Modhol(DV∞) the full subcategory of the category of holo-
nomic DP-modules, whose objects M are localized at ∞, i.e. are such that
M ' M(∗∞). Then Modhol(DV∞) is equivalent to the category of holo-
nomicDalV -modules, and a similar equivalence holds at the level of the derived

category Db
hol(DV∞).

For k a field, denote by Db(kV) the bounded derived category of sheaves of
k-vector spaces on V. Consider an additional real variable t ∈ R, and let P ⊃
Rt be the real projective line. Denote by ẼbR−c(kV∞) the full subcategory

of Db(kV×R) whose objects K extend as R-constructible objects on P × P ,

and satisfy k{t≥0}
+
⊗ K ∼→ K for

+
⊗ the convolution in the t variable. Recall

that any object of the triangulated category EbR−c(IkV∞) of R-constructible

enhanced ind-sheaves can be expressed as the stabilization kE
+
⊗ K of some

K ∈ ẼbR−c(kV∞).
For k = C, the Riemann-Hilbert correspondence provides a fully faithful

functor

SolE : Db
hol(DV∞)→ EbR−c(ICV∞),

so that the Stokes structure of a holonomic DV∞-module M is encoded
in SolE(M). For ϕ(u) a meromorphic functions with poles at 0 and ∞,
let Eϕ be the D(Cu)∞-module associated with the meromorphic connection

(OP(∗{0,∞}), d− dϕ). Recall that one has SolE(Eϕ) ' kE
+
⊗ Eϕ, where

Eϕ := k{t+Reϕ(z)≥0}.

Let a be a singularity of a holonomic DV∞-module M. By the Hukuhara-
Levelt-Turrittin theorem, one knows that on any small sector with vertex at
a, the object SolE(M) decomposes as a finite direct sum of objects of the

form kE
+
⊗ Rρ̃j!(Eϕj ⊗π−1Fj), for ϕj the exponential factors ofM at a and

Fj = Sol(Rj) is the classical solution complex of Rj .
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More in details, for each θ ∈ SaV circle of directions at a, there exists an
open sector Dθ ⊂ V \ {a} such that

π−1kDθ ⊗ Sol
E(M) ' π−1kDθ ⊗

⊕
j

kE
+
⊗ Rρ̃j!(Eϕj ⊗ π−1Fj)

One can use such a covering to encode the Stokes structure of M.
Indeed, for any θ 6= θ′ ∈ SaV with Dθ ∩Dθ′ 6= ∅ we can consider

π−1kDθ∩Dθ′ ⊗
⊕
j

kE
+
⊗ Rρ̃j!(Eϕj ⊗ π−1Fj)

π−1kDθ∩Dθ′ ⊗ Sol
E(M)

π−1kDθ∩Dθ′ ⊗
⊕
j

kE
+
⊗ Rρ̃j!(Eϕj ⊗ π−1Fj)

αθ,θ′ ∼

∼

∼

obtained by restricting the decomposition for Dθ, Dθ′ to Dθ ∩Dθ′ .
The Stokes matrices are then the family of morphisms

{αθ,θ′ ∈ EndEbR−c(kV∞ )(π
−1kDθ∩Dθ′ ⊗

⊕
j

kE
+
⊗ Rρ̃j!(Eϕj ⊗ π−1Fj)}

arising from the diagram.

Remark 1.4. Recall that there are two sets of particular directions associ-
ated with two distinct exponential factors φj , φj′, they are

St({φj , φj′}) = {θ ∈ SaV : Re(φj − φj′)(reiθ) = 0, r → 0}

ASt({φj , φj′}) = {θ ∈ SaV : Im(φj − φj′)(reiθ) = 0, r → 0}
By taking the union over pairs of distinct exponential factors of these sets,

we obtain the classical definition of Stokes and anti-Stokes directions.
The Stokes matrices associated with a cover by sectors such that each

sector contains only one Stokes direction for each pair of distinct exponential
factors are called Stokes multipliers.

1.4. Fourier transform and Fourier-Sato transform. Consider the pro-
jections

V∞ V∞ × V∗∞
poo q // V∗∞.

The Fourier-Laplace transform at the level of DV∞-modules has the same
expression as (1.1)

As first noticed in [11], the Riemann-Hilbert correspondence of [4] inter-
changes the Fourier transform for holonomic D-modules with the Fourier-
Sato transform for enhanced ind-sheaves. Such an operation can also be
defined at the level of enhanced ind-sheaves. More precisely, let M be a
holonomic DV∞-module and let K ∈ ẼbR−c(kV∞) be such that SolE(M) '

kE
+
⊗K. Then one has

SolE(M∧) ' kE
+
⊗Kf,
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where we set

Kf = Rq̃!(E
−zw[1]

+
⊗ p̃−1K),

with q̃ = q × idR and p̃ = p× idR.

1.5. Fourier transform and Stokes phenomenon. The aim of this work
is to give another different description of the Fourier transform of an ele-
mentary D-module. This will be achieved in the framework and with the
language of enhanced ind-sheaves as explained at the end of section 1.3. The
idea comes from the already cited articles [15],[16]. Following [1], the trans-
form is described via the rapid decay homology theory introduced by Bloch
and Esnault in [2]. This approach relies on the presence of peculiar families
of integration cycles: in [15], Mochizuki explicitly construct a family of such
cycles for the elementary case.

Instead of using the explicit family constructed by Mochizuki, we choose
to rely on a family of cycles coming from differential geometry. This family
is well known for its properties related to Fourier transform: it is the family
of steepest descent paths. Following [21], we are able to relate such paths
to the study of critical level sets of the imaginary part of the Legendre
transform.

The study of these cycles and their interactions provides the complete
description of the Fourier transform we are looking for in term of decompo-
sitions on a suitable covering and associated Stokes matrices.

We have already recalled that, in their work [9], Hien and Sabbah per-
formed the same task: in particular, they provided a full set of Stokes mul-
tipliers of the Fourier-Laplace transform of an elementary D-module.

We want to stress out that we are not computing Stokes multipliers: each
of the sectors constituting our covering only contains one Stokes line for a
single pair of exponential factors.

Theoretically, we can recover the Stokes multipliers through our approach,
by computing the product of the right number of Stokes matrices obtained
in the right order.

We decided to maintain the description in term of Stokes matrices.
Apart from the difficulties coming from keeping track of the combinatorics

involved in the definition of these matrices, our choice is due to the work
made by Mochizuki.

Indeed, he also provided Stokes matrices in the elementary case as the
stepping stone from which he proceeds towards the complete description of
the Fourier transform of a general D-module.

Our hope is that this work provides a possible first step towards the same
goal in the framework of D’Agnolo-Kashiwara Riemann-Hilbert correspon-
dence.

1.6. The results. Let us describe in details our results: the notation and
definition are the same as in section 1.2.

Denote by F the solution complex of R.
The hypothesis made on R implies that F gives rise to a local system

L when restricted to Cu \ {0}: we will denote by V its stalk and by T its
monodromy.
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We will assume in this work that n, p are coprime, and our primary focus
will be on ϕ(u) = −αu−n with α = βeiµ ∈ C×.

Consider El(ρ, ϕ,R)∧: as recalled, it is ramified with ramification given
by

w−1 = ρ̂(ζ) =
p

nα
ζn+p.

Our aim is to study the Stokes structure of the D-module

M := Dρ∗2(El(ρ, ϕ,R)∧)

where ρ2 = 1
ρ̂ .

By D’Agnolo-Kashiwara Riemann-Hilbert correspondence, this is equiva-
lent to study the pullback via ρ2 of the enhanced Fourier-Sato transform of

the enhanced sheaf Rρ!(E
−αu−n ⊗ π−1F ), i.e.,

K :=ρ̃−1
2 (Rρ̃!(E

αu−n ⊗ π−1F ))f =

=ρ̃−1
2 Rq̃!(E

−zw[1]
+
⊗ p̃−1(Rρ̃!(E

αu−n ⊗ π−1F )))

Consider the diagram with Cartesian squares

Cv × C×ζ

Cu × C×ζ

Cu Cu × V∗ C×ζ

V V× V∗ V∗

Φ

q3p3

q2p2
ρ′2

ρ ρ′

p1

q1
ρ2

p

q

with Φ(v, ζ) = (vζ, ζ) the blow-up.
Via this diagram, our object of study reduces to (see §8)

K ' Rq̃3!(E
−Ψ̃ ⊗ p̃−1

3 (π−1F ))[1].

with Ψ̃(v, ζ) = nαζ−n(v
−n

n + vp

p ).

Let us denote with vm the n + p-th root of unity e
i 2mπ
n+p and with θm its

argument.
Define Ψ̃m as the fiber of Ψ̃ at vm, i.e.,

Ψ̃m(ζ) = Ψ̃(vm, ζ).

The first goal in our study is to reach a complete knowledge of

K(ζ0,t0) = RΓ(Cv, k{Re Ψ̃ζ0≤t0}
⊗ Φ−1

ζ0
L)[1]

where Ψ̃ζ0(v) = Ψ̃(v, ζ0).
Our approach makes use of the steepest descent paths coming from Morse-

Witten theory.
Notice that the critical points of Ψ̃ζ0 are {vm : m = 0, ..., n+ p− 1}: the

steepest descent paths are cycles associated with each vm and representing
the most natural integration cycles for the transform.
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Namely, they are constructed as solutions to the so-called downward gra-
dient equation

dv(t)

dt
= −∇Re Ψ̃ζ0(v(t))

with limit condition

lim
t→−∞

v(t) = vm.

Since we are dealing with the real part of a meromorphic function, these
curves have an additional property: they are contained in the critical level
set {Im Ψ̃ζ0(v) = Im Ψ̃ζ0(vm)}.

In particular, the steepest descent path ΓΨ
m,ζ0

associated to vm is the
analytic curve component of such critical level set abutting from vm along
the negative eignespace of HessRe Ψ̃ζ0(vm).

We will see that they contain all needed information concerning the co-
homology with compact support in exam; indeed, if we denote by SΓ the
support of a curve Γ, we have

Proposition 1.5. For all t0 ∈ R, we have

RΓc(Cv, k{Re Ψζ0≤t0}\
⋃

m:Reλm≤t0
SΓΨ

m,ζ0

) = 0

In particular this implies that, if t0 is big enough

RΓc(Cv,k{Re Ψζ0≤t0}) ' RΓc(Cv,kSΓΨ
ζ0

)

where we denote by SΓΨ
ζ0

the union
n+p−1⋃
m=0

SΓΨ
m,ζ0

.

Such cycles are disjoint for all ζ0 but a finite set of lines, whose directions
are given by

AStT rp(Ψ) := {Θ ∈ S1
ζ |∃m ∈ [0, ..., n+ p− 1] : Im(Ψ̃m − Ψ̃m+1)(eiΘ) = 0}.

In particular, to each argument in AStT rp(Ψ) we can associate the pairs
(m,m+ 1) satisfying the defining condition.

At these directions, pairs of steepest descent paths associated to the con-
secutive critical points vm, vm+1 degenerate: they are no more disjoint, but
have a critical point in common.

θm+1 θm

We will call the configuration arising tripod.
This phenomenon is the source of the obstruction to a global trivialization

of K.
We can provide a complete description of AStT rp(Ψ).
Recall that, since n, p are coprime, also p, n+ p are: let ap+ b(n+ p) = 1

be one of the associated Bezout identities.

Proposition 1.6. We will distinguish three cases, according to the class of
n+ p modulo 4.
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(i) Assume that n+ p is odd. Then AStT rp(Ψ) = {Θh : h ∈ Z}, with

Θh =
µ

n
+

2h+ 1

2n(n+ p)
π.

The defining condition is satisfied for a single pair (mh,mh + 1), with

mh = a
n+ p+ 1

2
(
n− p+ 1

2
+ h) (mod n+ p).

(ii) Assume that n + p = 0 (mod 4). Then AStT rp(Ψ) = {Θh : h ∈ Z},
with

Θh =
µ

n
+

2h+ 1

n(n+ p)
π.

The defining condition is satisfied for two pairs (m1
h,m

1
h + 1) and

(m2
h,m

2
h + 1), with

m1
h = a(

n− p+ 2

4
+ h) (mod n+ p),

m2
h = a(

n− p+ 2

4
+ h) +

n+ p

2
(mod n+ p).

(iii) Assume that n + p = 2 (mod 4). Then AStT rp(Ψ) = {Θh : h ∈ Z},
with

Θh =
µ

n
+

2h

n(n+ p)
π.

The defining condition is satisfied for two pairs (m1
h,m

1
h + 1) and

(m2
h,m

2
h + 1), with

m1
h = a(

n− p+ 4

4
+ h) (mod n+ p),

m2
h = a(

n− p+ 4

4
+ h) +

n+ p

2
(mod n+ p).

As explained at the end of section 1.3, the description of K is obtained
by covering a punctured neighbourhood of 0 ∈ Cζ with open sectors over
which K admits a trivialization and then study how different decompositions
behave at overlaps.

In the same way as in [6], we can perform this description with closed
sectors instead of open ones, and simply study the behaviour on overlapping
sides.

By all considerations made so far, the covering we use is given by the
closed sectors delimited by consecutive elements in AStT rp(Ψ).

We will denote by Σh the open sector delimited by Θh−1,Θh.
Using the family of steepest descent paths, in Σh we have a well defined

decomposition given by the fact that all cycles are disjoint for arg(ζ0) /∈
AStT rp(Ψ).

We will extend the behavior of this family of disjoint paths to the bound-
ary of Σh by considering the limit cycles Γm,Θh−1+,Γm,Θh−.

They are obtained by taking the limit in the construction of Γm,ζ0eiδ with

arg(ζ0) = Θh−1,Θh, for δ → 0+ for Θh−1 and δ → 0− for Θh.
Such limit cycles are closed components of the tripods arising at the

boundary: thanks to them, we are able to overcome the degeneration and
state the first result about representation of K in sectors.
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Theorem 1.7. For each h ∈ Z, we have an isomorphism in EbR−c(kC×ζ,∞
)

π−1kΣ̄h
⊗K σh−→

∼
π−1kΣ̄h

⊗
n+p−1⊕
m=0

V ⊗ E−Ψ̃m

Now, at each line lh := Σh∩Σh+1 with direction Θh, we have two decom-
position provided by σh, σh+1:

π−1klh ⊗
n+p−1⊕
m=0

(E−Ψ̃m ⊗ V )

π−1klh ⊗K

π−1klh ⊗
n+p−1⊕
m=0

(E−Ψ̃m ⊗ V )

αh

σh

σh+1

Since

EndEbR−c(kC∗ζ,∞ )(

n+p−1⊕
m=0

(E−Ψ̃m ⊗ V )) ⊂ Endk(
n+p−1⊕
m=0

V )

the left vertical line of the above diagram is determined by the linear map
it induces on a stalk at a point (ζ0, t0) with ζ0 ∈ lh and t0 >> 0 big enough.
In particular, at the level of stalk, we have

RΓc(Cv,kSΓΨ
ζ0

⊗ Φ−1
ζ0
L)[1]

σh−→
∼

n+p−1⊕
m=0

V

RΓc(Cv,kSΓΨ
ζ0

⊗ Φ−1
ζ0
L)[1]

σh+1−−−→
∼

n+p−1⊕
m=0

V.

By the construction of σh, σh+1, the morphism αh = σh+1 ◦ σ−1
h arises

then from the linear map obtained by the comparison at lh of the limit
cycles Γm,Θh+,Γm,Θh+.

Computations of σh, σh+1 involves the use of cohomology with compact
support.

However, since we want to compare cycles, it is more convenient to pass
to the dual side and use Borel-Moore homology in order to compute more
easily the multipliers.

The dual of the morphisms above is then

HBM
1 (SΓΨ

ζ0 , (Φ
−1
ζ0
L)∗)

σ∗h←−
∼

n+p−1⊕
m=0

V ∗

HBM
1 (SΓΨ

ζ0 , (Φ
−1
ζ0
L)∗)

σ∗h+1←−−−
∼

n+p−1⊕
m=0

V ∗.
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and the dual morphism σ∗h (σ∗h+1) are defined by taking as a basis for

HBM
1 (SΓΨ

ζ0
) the limit cycles Γm,Θh+ (Γm,Θh−).

The dual morphism α∗h then arises by the change of bases arising.
The algebraic framework in which we will express the result is the follow-

ing.
Denote by 1m the complex vector space of rank one with chosen basis

element 1m. We will keep track of the indices in
n+p−1⊕
m=0

V by writing

n+p−1⊕
m=0

V =

n+p−1⊕
m=1

(1m ⊗ V )

Thus we will describe α∗h as the morphisms arising from elements in

Endk(
n+p−1⊕
m=1

(1∗m ⊗ V ∗)).

We will use the following convention

1∗n+p ⊗ v∗ := 1∗0 ⊗ (T ∗)−1v∗.

Theorem 1.8. (i) Let n+p odd, the morphism α∗h comes from the element

in Endk(
n+p−1⊕
m=1

(1∗m ⊗ V ∗)) given, ∀h = 0, ..., 2n(n + p) − 2, by the

assignments
1∗m ⊗ v∗ 7→ 1∗m ⊗ v∗ for m 6= mh,mh+1,

1∗mh ⊗ v∗ 7→ 1∗mh ⊗ v∗ + 1∗mh+1 ⊗ v∗,

1∗mh+1 ⊗ v∗ 7→ 1∗mh+1 ⊗ v∗.

if h is even and sin(pθmh − nΘh) = 1 or if h odd and sin(pθmh − nΘh) =
−1 and

1∗m ⊗ v∗ → 1∗m ⊗ v∗ for m 6= mh,mh+1,

1∗mh ⊗ v∗ → 1∗mh ⊗ v∗

1∗mh+1 ⊗ v∗ → 1∗mh+1 ⊗ v∗ − 1∗mh ⊗ v∗

if h is odd and sin(pθmh − nΘh) = 1 or if h even and sin(pθmh − nΘh) =
−1.

The morphism α2n(n+p)−1 is defined by composing the morphism ob-

tained by applying the rule above with (−1)ndiag((T ∗)−1).
(ii) Let n+ p even, the morphism α∗h comes from the element in

Endk(

n+p−1⊕
m=1

(1∗m ⊗ V ∗))

defined, ∀h = 0, ..., n(n+ p)− 2, by the assignment

1∗m ⊗ v∗ 7→ 1∗m ⊗ v∗ if m /∈ {mi
h,m

i
h + 1 : i = 1, 2}

1∗
m1
h
⊗ v∗ 7→ 1∗

m1
h
⊗ v∗ + 1∗

m1
h+1
⊗ v∗

1∗
m1
h+1
⊗ v∗ 7→ 1∗

m1
h+1
⊗ v∗

1∗
m2
h
⊗ v∗ 7→ 1∗

m2
h
⊗ v∗

1∗
m2
h+1
⊗ v∗ 7→ 1∗

m2
h+1
⊗ v∗ − 1∗

m2
h
⊗ v∗.
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if sin
(
pθm1

h
− nΘh

)
= +1 or by the assignment

1∗m ⊗ v∗ 7→ 1∗m ⊗ v∗ if m /∈ {mi
h,m

i
h + 1 : i = 1, 2}

1∗
m1
h
⊗ v∗ 7→ 1∗

m1
h
⊗ v∗

1∗
m1
h+1
⊗ v∗ 7→ 1∗

m1
h+1
− 1∗

m1
h
⊗ v∗

1∗
m2
h
⊗ v∗ 7→ 1∗

m2
h,+
⊗ v∗ + 1∗

m2
h+1
⊗ v∗

1∗
m2
h+1
⊗ v∗ 7→ 1∗

m2
h+1
⊗ v∗.

if sin
(
pθm1

h
− nΘh

)
= −1.

The morphism αn(n+p)−1 is defined by composing the morphism ob-

tained by applying the rule above with (−1)ndiag((T ∗)−1).

In the case of a generic

ϕ(u) = αu−n +

n−1∑
j=1

αju
−j ∈ u−1C[u−1],

we are reduced to study the same object K where the exponent is a pertur-
bation Ψ̃prt of the function Ψ̃ obtained by αu−n.

We will then display results concerning the estension of the description of
K in this case.

1.7. Structure of the work. Sections 3,4,5 deals with preliminaries about
the theory of enhanced (ind-)sheaves, the formulation of Riemann-Hilbert
correspondence in that framework and the theory of Fourier transform for
D-module and enhanced sheaves.

Section 6 provides the tools and definitions from Morse-Witten theory
needed, while Section 7.1 introduces Borel-Moore homology in the subana-
lytic framework.

In Section 8 we compute the Fourier-Sato transform for the object in
exam and provide the setting for making its study as easy as possible.

Section 9 deals with the description of level sets related with the geometric
description of the transform: from this we will deduce, in Section 10, how
steepest descent cycles degenerate.

In Sections 11,12 we give the proofs to the main results.
Section 13 shows how the main results stated and their proofs are sufficient

for the result to extend to the general case.
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2. An example

Before dealing with the main matter, let us give an example of the meth-
ods used to prove our results.

2.1. The Fourier transform of E−u−1
. We will discuss here the Fourier

transform of the elementary Dal-module

E−z−1

al = D(id)∗E−u
−1

al = El(id,−u−1,OalCu(∗0))

associated with the trivial ramification id(u) = z and the trivial regular part
OalCu(∗0).

The stationary phase formula associates with such elementary Dal-module
the ramification w−1 = îd(ζ) = ζ−2. Consider the diagram

Cv × C×ζ

Φ
��

q2

''
Cu

id

��

Cu × C×ζ
p1oo q1 //

��

C×ζ
ρ2

��
V V× (V∗ \ {0})

poo q // V∗ \ {0},

where Φ(v, ζ) = (vζ, ζ) is the blow-up and ρ2 = (îd)−1.
If we denote by j : C×u → Cu the open inclusion, we notice that

SolE(OalCu(∗0)) = kECu
+
⊗ π−1kCu .

At the level of enhanced sheaves, we are then interested in computing

K = ρ̃−1
2 ((ĩd!(E

−u−1
))f) ' Rq̃1!(E

−uζ−2 +
⊗ p̃−1

1 E−u
−1

)[1]

' Rq̃1!E
−uζ−2−u−1

[1]

' Rq̃2!E
−ζ−1(v−1+v)[1]

' Rq̃2!k{Re Ψ̃(v,ζ)≤t}[1],

where we set Ψ̃(v, ζ) = ζ−1(v−1 + v) (see §8 for more details).

We then need to study the property of the sublevel set {Re Ψ̃ ≤ t} with
respect to the direct image with proper support via q̃2. We will achieve this
by first studying its stalk at (ζ0, t0) ∈ C×ζ × R:

K(ζ0,t0) ' (Rq̃2!k{Ψ̃(v,ζ)≤t}[1])(ζ0,t0) ' RΓc({Re Ψ̃(v, ζ0) ≤ t0})[1],

where we write for brevity RΓc(A) := RΓc(Cv,kA) for A ⊂ Cv.
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The geometric objects we will use in order to achieve our goal are the
steepest descent paths. Our aim is to show that they provide a decompo-
sition for the stalk which dually corresponds to a set of generators for the
Borel-Moore homology of {Re Ψ̃(v, ζ0) ≤ t0}.

Let us briefly recall here the definition and properties of these paths, see
§6 for a complete presentation.

The steepest descent cycles are oriented cycles attached to any critical
point p of a Morse function f and defined as closures of solutions to limit
problems of the downward gradient equation{

dx(t)
dt = −g∇f(x(t))

lim
t→−∞

v(t) = p

with t ∈] − ∞, 0] and g a Riemannian metric on the domain of f . It is
noticeable that f is non-increasing on flow lines solutions to this problem.
Denote by Ψ̃ζ0(v) := Ψ̃(v, ζ0) the fiber of Ψ̃ at ζ0 ∈ C×ζ : its critical points

are ±1 and are non-degenerate.
Thus we can associate steepest descent paths for Re Ψ̃ζ0 to its critical

points ±1.
Since our framework is complex analytic, we also know that such paths

are contained in critical level sets (i.e. level set at critical values) for Im Ψ̃ζ0 .
Our idea is to study such critical level sets and single out the steepest

descent paths as the branch where Re Ψ̃ζ0 is decreasing on the two sides of
the critical point.

It is easy to notice that the critical level sets for Im Ψ̃ζ0 does not depend
on ε0 := |ζ0|, but only on Θ0 = arg(ζ0). It is hence sufficient to study

ΨΘ0(v) := e−iΘ0(v−1 + v)

If (r, θ) is the set of polar coordinates for Cv, we have

fΘ0(r, θ) := Im ΨΘ0(r, θ) = −r−1 sin(θ + Θ0) + r sin(θ −Θ0).

The critical points are (1, 0), (1, π) with critical values

fΘ0(1, 0) = −2 sin(Θ0)

fΘ0(1, π) = 2 sin(Θ0).

Before studying in details these level sets for Θ0 varying, we have to notice
that, for Θ0 = 0, π, the critical values are not distinct: the steepest descent
for ±1 are then contained in the same critical level set.

Let us deal with this case first: the equation for the level set becomes:

{sin(θ)(r2 − 1) = 0} = {θ = 0} ∪ {θ = π} ∪ {r = 1}.
The critical level set is then made of two analytic curves orthogonally inter-
secting at ±1.

0 +1-1
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It is easy to determine the steepest descent paths: it suffices to restrict
Re ΨΘ0 to the single components of the level set and pick the ones along
which such function is decreasing.

Since

gΘ0(r, θ) := Re ΨΘ0(r, θ) = −r−1 cos(θ + Θ0)− r cos(θ −Θ0)

we have

• for r = 1, gΘ0(1, θ) = −2 cos(θ) cos(Θ0),
• if θ = 0, gΘ0(r, 0) = −gΘ0(r, π) = − cos(Θ0)(r−1 + r)
• if θ = π, gΘ0(r, 0) = −gΘ0(r, π) = cos(Θ0)(r−1 + r)

Since lim
r→0

(r−1 + r) = +∞ and the same holds for the limit r → +∞, the

sign of cos(Θ0) determines which line between {θ = 0} and {θ = π} is of
steepest descent.

If Θ0 = 0, {θ = 0} is the steepest descent path associated with 1, while
{θ = π} is the one associated with −1 for Θ0 = π.

Let us focus on {r = 1}. If Θ0 = 0, notice that gΘ0 is decreasing moving
on both sides of the circle from −1 to +1, while the opposite happens for
Θ0 = π: this means that {r = 1} is of steepest descent for both Re Ψ0 and
Re Ψπ.

0 1

(a) Steepest descent paths
for Θ0 = 0

0-1

(b) Steepest descent paths for
Θ0 = π

Let us now study the case Θ0 6= 0, π and focus on the steepest descent
path associated to (1, 0).

We have then to study the equation

(2.1) r2 sin(θ −Θ0)− 2r sin(Θ0)− sin(θ + Θ0) = 0.

First of all, consider θ = Θ0: the defining equation becomes

−2r sin(Θ0)− sin(2Θ0) = 0⇒ r = − cos(Θ0)

and hence (− cos(Θ0),Θ0) is a point of the level set if cos(Θ0) < 0. For
generic θ, the discriminant of (2.1) is

∆

4
= sin2(Θ0) + sin(θ −Θ0) sin(θ + Θ0) =

sin2(Θ0) +
1

2
[cos(2Θ0)− cos(2θ)] =

sin2(Θ0) +
1

2
[cos2(Θ0)− sin2(Θ0)− cos(2θ)] =

1− cos(2θ)

2
= sin2(θ)
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Hence we have two solutions for the variable r:

r1(θ) =
sin(Θ0)− sin(θ)

sin(θ −Θ0)

r2(θ) =
sin(Θ0) + sin(Θ0)

sin(θ −Θ0)

The condition r > 0 implies that r1 above gives well defined radial parametriza-
tion for a branch of the considered level set if{

π −Θ0 < θ < Θ0 + π if 0 < Θ0 < π

Θ0 − π < θ < 3π −Θ0 if π < Θ0 < 2π

while r2 is a radial parametrization in{
Θ0 < θ < 2π −Θ0 if 0 < Θ0 < π

2π −Θ0 < θ < Θ0 if π < Θ0 < 2π

Furthermore, it is easy to notice the following facts concerning the behaviour
of r1, r2 at the boundary of their domain of definition.

• if 0 < Θ0 < π

lim
θ→(Θ0+π)−

r1(θ) = lim
θ→Θ+

0

r2(θ) = +∞

lim
θ→(π−Θ0)+

r1(θ) = lim
θ→(2π−Θ0)−

r2(θ) = 0
(2.2)

• if −π < Θ0 < 2π

lim
θ→(π+Θ0)+

r1(θ) = lim
θ→Θ−0

r2(θ) = +∞

lim
θ→(3π−Θ0)−

r1(θ) = lim
θ→(2π−Θ0)+

r2(θ) = 0
(2.3)

Hence the critical level set is made of two analytic curves connecting 0
and ∞ and orthogonally intersecting at 1.

The following picture represents the critical level sets for a Θ0 with π
2 <

Θ0 < π.

Since the endpoints of the level set are the singular points 0,∞ of gΘ0 ,
it suffices to study what happens when the two branches come nearer these
points in order to determine the steepest descent path.

From (2.2),(2.3), we know for which argument in the parametrization the
curves go to ∞, hence:
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• if 0 < Θ0 < 2π

lim
θ→(Θ0+π)−

gΘ0(r1(θ), θ) = lim
θ→(Θ0+π)−

r1(θ) cos(θ −Θ0) = +∞,

lim
θ→Θ+

0

gΘ0(r2(θ), θ) = lim
θ→Θ+

0

−r2(θ) cos(θ −Θ0) = −∞

• similarly, if π < Θ0 < 2π

lim
θ→(Θ0+π)+

gΘ0(r1(θ), θ) = +∞

lim
θ→Θ−0

gΘ0(r1(θ), θ) = −∞

Same computations and result holds when dealing with 0.
We get then that the steepest descent path associated to 1 has radial

parametrization given by r2.
Similarly we can compute for the steepest descent path at −1 and find a

radial parametrization given, this time, by

r(θ) =
− sin(Θ0) + sin(θ)

sin(θ −Θ0)
.

We can give an orientation to the paths constructed so far with Θ0 6= 0, π
in the following way.

The theory of flow lines for the downward gradient equation states that,
near the critical point p chosen as limit condition, the solution curves are
abutting from p with tangents given by eigenvectors of the Hessian matrix
of f computed at p and relative to the negative eigenvalue.

It is sufficient to pick one of these eigenvector: the direction chosen will
give the orientation.

In our case

Hess(Re ΨΘ0)(1, 0) =2

(
− cos(Θ0) − sin(Θ0)
− sin(Θ0) cos(Θ0)

)
Hess(Re ΨΘ0)(1, π) =2

(
cos(Θ0) sin(Θ0)
sin(Θ0) − cos(Θ0)

)
Both have determinant equals to −4 and ±2 as eigenvalues.

The eigenspace for −2 is generated by(
cos
(

Θ
2

)
sin
(

Θ
2

))
if the critical point is (1, 0) and by(

− sin
(

Θ
2

)
cos
(

Θ
2

) )
if the critical point is (1, π).

We will use these eigenvectors to orientate our cycles. It is noticeable
that, since all steepest descent are parametrized by θ, it suffices to consider
only the second entry of the eigenvalues, the one relative to the θ component.

The resulting oriented cycles associated with +1 and −1 will be denoted
by ΓΨ

0,Θ0
and ΓΨ

1,Θ0
, respectively.
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In particular, ΓΨ
0,Θ0

will be oriented counterclockwise if sin
(

Θ
2

)
> 0, clock-

wise if sin
(

Θ
2

)
< 0. The same holds by changing ΓΨ

0,Θ0
with ΓΨ

1,Θ0
and sin

(
Θ
2

)
with cos

(
Θ
2

)
.

The importance of the steepest descent cycles is due to the following fact
(see §section 6.5 for a proof): if we denote by SC the support of a curve C,
we have

RΓc({Re Ψ ≤ t0} \ (SΓΨ
−1,Θ0

∪ SΓΨ
+1,Θ0

)) = 0

equivalent to

(2.4) RΓc({Re Ψ ≤ t0}) ' RΓc(SΓΨ
−1,Θ0

∪ SΓΨ
+1,Θ0

))

Since ∀Θ0 6= 0, π the steepest descent paths are disjoint, (2.4) gives a
decomposition for the cohomology with compact support we are dealing
with, i.e.

(2.5) H1
c ({Re Ψ ≤ t0})[1] ' H1

c (SΓΨ
−1,Θ0

)[1]⊕H1
c (SΓΨ

+1,Θ0
)[1]

At Θ0 = 0, π, the degeneration does not allow us to state the same:
indeed, as shown, they intersect at +1 if Θ0 = 0 and at −1 if Θ0 = π. We
will refer to the degenerated configurations at Θ0 = 0, π as

T0 := SΓΨ
−1,0 ∪ SΓΨ

+1,0

Tπ := SΓΨ
−1,π ∪ SΓΨ

+1,π.
(2.6)

This degeneration is the obstruction for a global trivialization of the en-
hanced sheaf K and the source for the Stokes phenomenon underlying the
transform.

The following picture represents the steepest descent for some value of
Θ0.

Figure 2. Steepest descent paths

Let us focus on the left and right side of the picture: they are the steepest
descent paths for 0± δ (on the right) and Θ0 = π ± δ (on the left).

It is noticeable that in the limit δ → 0 they define two closed subsets of
T0, Tπ.
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We will denote them by ΓΨ
0,Θ0± and Γ1,Θ0± for Θ0 = 0, π: we can extend

the orientation accordingly to the limit.
We will show that this construction provides two decompositions for Θ0 =

0, π (see §10):

(2.7)

H1
c (SΓΨ

0,Θ0−)[1]⊕H1
c (SΓΨ

1,Θ0−)[1]

H1
c (TΘ0)[1]

H1
c (SΓΨ

0,Θ0+)[1]⊕H1
c (SΓΨ

1,Θ0+)[1]

σΘ0− ∼

∼σΘ0+

We will use the families of curves constructed so far to determine a triv-
ialization for the enhanced sheaf on the sectors Σ1 = {ζ : 0 ≤ Θ ≤ π} and
Σ2 = {ζ : π ≤ Θ ≤ 2π} (see §11).

π−1
2 kΣ1 ⊗ ρ̃−1

2 (E−
1
u )f

σ1−→
∼

kΣ1 ⊗ (E2ζ−1 ⊕ E−2ζ−1
)[1]

π−1
2 kΣ2 ⊗ ρ̃−1

2 (E−
1
u )f

σ2−→
∼

π−1
2 kΣ2 ⊗ (E2ζ−1 ⊕ E−2ζ−1

)[1]
(2.8)

In particular the families Γ0,Θ0± and Γ1,Θ0± for Θ0 = 0, π will be used
to extend the well defined decomposition (2.5) valid for all Θ 6= 0, π to the
boundary of the sectors Σ1 Σ2.

The isomorphisms (2.8) induce the following diagrams for rays lh with
h = 1, 2

π−1
2 kl1 ⊗ (E2ζ−1 ⊕ E−2ζ−1

)[1]

π−1
2 kl1 ⊗K

π−1
2 kl1 ⊗ (E2ζ−1 ⊕ E−2ζ−1

)[1]

α1

σ1

σ2

π−1
2 kl2 ⊗ (E2ζ−1 ⊕ E−2ζ−1

)[1]

π−1
2 kl2 ⊗K

π−1
2 kl2 ⊗ (E2ζ−1 ⊕ E−2ζ−1

)[1]

απ

σ1

σ2

We can read the Stokes multipliers from the stalk at (ζ0, t0) (with t0 big
enough) of the morphism at the right.

In particular the stalk of the left part of the diagram corresponds, by
construction of σ1, σ2, to 2.7.

Hence the Stokes multiplier αh can be computed as σΘ0+ ◦ σ−1
Θ0−.
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The best way to express this morphism is to pass to the dual side using
Borel-Moore homology based on subanalytic chains (see §7.1).

We recall that, if X is a real analytic manifold, Z is a subanalytic locally
closed subset of X and L is a local system on X, we have

(Hj
c (X,kZ ⊗ L))∗ ' HBM

j (Z,L∗).

An element of this homology is represented by

∆⊗ s

where ∆ is an oriented subanalytic j-chain in Z and s a section of L∗ along
it.

By passing then to the dual side with Borel-Moore homology and de-
noting by HBM

1 (A) = HBM
1 (A,k), we can rephrase (2.7) as the fact that

{Γ0,Θ0+,Γ1,Θ0+} and {ΓΨ
0,Θ0−,Γ

Ψ
1,Θ0−} provides two pairs of basis for

HBM
1 (TΘ0)

with Θ0 = 0, π. The change of bases arising can be deduced by comparing
the behaviour of the cycles in Fig.2.

If Θ0 = π, the embeddings of the curves Γ0,π±, Γ1,π± can be schematically
reproduced as in the picture

ΓΨ
·,π+ΓΨ

·,π−

It is then easy to deduce that α∗1 is given by the assignment

ΓΨ
0,π− 7→ ΓΨ

0,π+ − 2ΓΨ
1,π+

ΓΨ
1,π− 7→ ΓΨ

1,0+

At Θ0 = 0, we have to compare the cycles ΓΨ
0,2π−,Γ

Ψ
1,2π− with ΓΨ

0,0+,Γ
Ψ
1,0+

ΓΨ
·,0+ΓΨ

·,2π−

We have that α∗2 is then defined by

ΓΨ
0,0− 7→ −ΓΨ

0,0+

ΓΨ
1,0− 7→ −Γψ1,0+ − 2ΓΨ

0,0+

3. Enhanced sheaves and ind-sheaves

For the content of this section, we make use of [6, Section 1], which we
reproduce here for the reader’s convenience.

Let us briefly recall the theory of enhanced (ind-)sheaves.
Let M be a real analytic manifold and k be a field.



22 DAVIDE BARCO

3.1. Sheaves. Denote by Db(kM ) the bounded derived category of sheaves
of k-vector spaces on M . For S ⊂ M a locally closed subset, denote by kS
the zero extension to M of the constant sheaf on S with stalk k.

For f : M → N a morphism of real analytic manifolds, denote by
⊗, f−1, Rf!, RHom,Rf∗, f ! the six Grothendieck operations for sheaves.

3.2. Convolution. Consider the maps

µ, q1, q2 : M × R× R→M × R

given by q1(x, t1, t2) = (x, t1), q2(x, t1, t2) = (x, t2) and µ(x, t1, t2) = (x, t1 +
t2). For F1, F2 ∈ Db(kM×R) the functors of convolution in the variable t are
defined by

F1

∗
⊗ F2 = Rµ!(q

−1
1 F1 ⊗ q−1

2 F2)

RHom∗(F1, F2) = Rq1∗RHom(q−1
2 F1, µ

!F2)
(3.1)

The convolution product
∗
⊗ makes Db(kM×R) into a commutative tensor

category with kM×{0} as unit object. We will often write k{t=0} instead of
kM×{0}, and similarly for k{t≥0}, k{t≤0}, etc.

3.3. Enhanced sheaves. Consider the projection

(3.2) M × R π−→M

The triangulated category Eb(kM ) of enhanced sheaves is then the quo-
tient of Db(kM×R) by the stable subcategory π−1Db(kM ). It splits as
Eb(kM ) ' Eb+(kM )⊕Eb−(kM ) where Eb±(kM ) is the quotient of Db(kM×R)

by the stable subcategory of objects K satisfying k{∓t≥0}
∗
⊗ K ' 0.

The quotient functor

(3.3) Q : Db(kM×R)→ Eb(kM )

has a left and a right adjoint which are fully faithful.
Let us denote by Ẽb+(kM ) ⊂ Db(kM×R) the essential image of Eb+(kM )

by the left adjoint, that is, the full subcategory whose objects F satisfy

k{t≥0}
∗
⊗ F ' F . Thus, one has an equivalence

(3.4) Q : Ẽb+(kM )
∼−→ Eb+(kM ).

The functor

(3.5) ε : Db(kM )→ Ẽb+(kM ), G→ k{t≥0} ⊗ π−1G.

is fully faithful. For f : M → N a morphism of real analytic manifolds, it in-

terchanges the operations ⊗, f−1 and Rf! with
∗
⊗, f̃−1 and Rf̃!, respectively.

Here, we set

(3.6) f̃ := f × idR : M × R→ N × R.
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3.4. Ind-sheaves. An ind-sheaf is an ind-object in the category of sheaves
with compact support. There is a natural embedding of sheaves into ind-
sheaves, and it has an exact left adjoint α given by α(“ lim−→ ”Fi) = lim−→Fi.
The functor α has an exact fully faithful left adjoint, denoted by β.

Denote by Db(IkM ) the bounded derived category of ind-sheaves. Denote
by ⊗, RIHom, f−1, Rf∗, Rf!! and f ! the six Grothendieck operations for
ind-sheaves.

3.5. Enhanced ind-sheaves. Consider the morphisms

(3.7) M
i∞−−→M × R̄ π−→M, M × R j−→M × R̄

where R̄ = R ∪ {∞} is the real projective line , i∞(x) = (x,∞), π is the
projection and j the embedding.

The triangulated category Eb(IkM ) of enhanced ind-sheaves is defined by
two consecutive quotients of Db(IkM×R̄): first by the subcategory of objects

of the form Ri∞∗F and then by the subcategory of objects of the form π−1F .
As for enhanced sheaves, the quotient functor has a left and a right adjoint
which are fully faithful. It follows that there are two realizations of Eb(IkM )
as a full subcategory of Db(IkM×R̄). Enhanced ind-sheaves are endowed

with an analogue of the convolutions functors, denoted
+
⊗ and RIhom+.

For f : M → N a morphism of real analytic manifolds, one also has external
operations Ef−1, Ef∗, Ef!! and Ef !. Here Ef−1 is the functor induced by
f̃−1 at the level of ind-sheaves, and similarly for the other operations.

There is a natural embedding Eb(kM ) ⊂ Eb(IkM ) induced by Rj! or,
equivalently, by Rj∗. Set

(3.8) kEM := “ lim−→
a→∞

”k{t≥a} ∈ Eb(IkM )

We will need the following two lemmas on compatibility for enhanced
ind-sheaves and for usual sheaves with an additional variable.

One has:

Lemma 3.1. Let F, F1, F2 ∈ Db(kM×R) and G ∈ Db(kN×R). One has:

(kEM
+
⊗ QF1)

+
⊗ (kEM

+
⊗ QF2) ' kEM

+
⊗ (QF1

+
⊗ QF2)

' kEM
+
⊗ Q(F1

∗
⊗ F2)

Ef−1Q(kEN
+
⊗ G) ' kEM

+
⊗ Qf̃−1G.

(3.9)

If moreover f is proper, then

(3.10) Ef!!Q(kEM
+
⊗ F ) ' kEN

+
⊗ QRf̃!F.

Moreover, we recall in the following lemma properties of the convolution
needed later (see [4, Prop. 4.1.5][4, Lemma 4.3.1],[4, Prop 4.5.10])

Lemma 3.2. Let K1,K2 ∈ Eb(IkM ), F ′ ∈ Db(kM ) L1, L2 ∈ Eb(IkN ),
f : M → N morphism of real analytic manifolds. Then

•
(K1

+
⊗ K2)

+
⊗ K3 ' (K1

+
⊗ K2)

+
⊗ K3,
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•

π−1F ′ ⊗ (K1

+
⊗ K2) ' (π−1F ′ ⊗K1)

+
⊗ K2,

• (Projection formula)

Ef!!(Ef
−1L1

+
⊗ K1) ' L1

+
⊗ Ef!!K1,

•

Ef−1(L1

+
⊗ L2) ' Ef−1L1

+
⊗ Ef−1L2.

Moreover also the following result holds (see [4, Prop. 4.5.11])

Proposition 3.3. Consider a Cartesian diagram of real analytic manifold
as below

M ′ N ′

M N

f ′

g′ g

f

There are then isomorphisms of functors Eb(IkM )→ Eb(IkN ′)

Eg−1Ef!! ' Ef ′!!Eg′−1 Eg!Ef∗ ' Ef ′∗Eg′!

Thanks to the preceding compatibility lemma, we can rewrite the above
result also in term of enhanced sheaves.

The category Eb(IkM ) has a natural hom functor RHomE with values in
Db(kM ).

One has

Lemma 3.4. For F ∈ Db(kM×R) one has

(3.11) RHomE(k{t≥0}, k
E
M

+
⊗ QF ) ' Rπ∗(k{t≥0}

∗
⊗ F ).

3.6. R-constructibility. Denote by Db
R−c(kM ) be the full subcategory of

objects with R-constructible cohomologies. Using notations introduced above,
denote Db

R−c(kM×R∞) the full subcategory of Db
R−c(kM×R) whose objects

F are such that Rj!F (or, equivalently, Rj∗F ) is R-constructible in M × R̄.
Since Rj! is fully faithful, we will consider Db

R−c(kM×R∞) as a full subcate-

gory of Db
R−c(kM×R̄).

The triangulated category ẼbR−c(kM ) of R-constructible enhanced sheaves

is the full subcategory ofDb
R−c(kM×R∞) whose objects F satisfy F ' k{t≥0}

∗
⊗

F . It is a full subcategory of Ẽb+(kM ).

The category EbR−c(IkM ) of R-constructible enhanced ind-sheaves is de-

fined as the full subcategory of Eb(IkM ) whose objects K satisfy the follow-
ing property: for any relatively compact open subset U ⊂ M there exists
F ∈ ẼbR−c(kM ) such that

(3.12) π−1kU ⊗K ' kEM
+
⊗ QF.

The object kEM plays the role of the constant sheaf in EbR−c(IkM )
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4. Riemann-Hilbert correspondence

For the content of this section, we make use of [6, Section 2], which we
reproduce here for the reader’s convenience.

We recall here the Riemann-Hilbert correspondence for (not necessarily
regular) holonomic D-modules. This is based on the theory of enhanced
ind-sheaves. One of the key ingredients of the proof is the description of the
structure of flat meromorphic connections by Kedlaya and Mochizuki.

Let X be a complex manifold. We set for short dX = dimX.

4.1. D-modules. Denote by OX and DX the rings of holomorphic functions
and of differential operators on X, respectively.

Denote by Db(DX) the bounded derived category of left DX -modules. For
f : X → Y a morphism of complex manifolds, denote by ⊗D, Df∗, Df∗ the
operations for D-modules.

Denote Db
hol(DX) the full subcategory of Db(DX) of objects with holo-

nomic cohomologies, and by Db
g−hol(DX) the full subcategory of objects with

good and holonomic cohomologies.
Let D ⊂ X a complex analytic hypersurface and denote by OX(∗D) the

sheaf of meromorphic functions with poles along D. Set U = X \D.
For ϕ ∈ OX(∗D), set

DXeϕ = DX/{P : Peϕ = 0 on U}
EϕU |X = DXeϕ ⊗D OX(∗D).

(4.1)

4.2. Tempered solutions. By the functor β, there is a natural notion of
DX -module in the category of ind-sheaves. We denote Db(IDX) the corre-
sponding derived category.

Denote by OtX the complex of tempered holomorphic functions. It is
related to the functor T hom by the relation

(4.2) αRIhom(F,OtX) ' T hom(F,OX)

for any F ∈ Db
R−c(kX).

Consider the tempered solution functor

(4.3) SoltX : Db(DX)op → Db(IkX), M→ RHomDX (M,OtX).

4.3. Enhanced solutions. There is a natural notion of DX -module in the
category of enhanced ind-sheaves, and we denote by Eb(IDX) the corre-
sponding triangulated category.

Let P = C ∪ {∞} be the complex projective line, and let

(4.4) i : X × R̄→ X × P
be the closed embedding. Denote by τ ∈ P the affine coordinate, so that

τ ∈ OP(∗∞). Consider the exponential DP-module EτC|P.

The enhanced solution functor is given by

(4.5) SolEX : Db(DX)op → Eb(IkX), M→ i−1SoltX×P(M�D EτC|P)[2]

The functorial properties of SolE are summarized in the next theorem.
The statements on direct and inverse images are easy consequences of the
corresponding results for tempered holomorphic solutions. The statement
on the tensor product is specific to enhanced solutions.
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Theorem 4.1. Let f : X → Y be a complex analytic map. Let M ∈
Db
g−hol(DX), M1,M2 ∈ Db

hol(DX) and N ∈ Db
hol(DY ). Assume suppM is

proper over Y . Then one has

SolEX(Df∗N ) ' Ef−1SolEY (N ),

SolEY (Df∗M)[dY ] ' Ef!!SolEX(M)[dX ],

SolEX(M1)
+
⊗ SolEX(M2) ' SolEX(M1 ⊗DM2).

(4.6)

Notation: let D ⊂ X be a closed hypersurface and set U = X \D. For
ϕ ∈ OX(∗D), we set

Eϕ := k{t+Reϕ(x)≥0} ∈ ẼbR−c(kX)

Eϕ := kEX
+
⊗ QEϕ ∈ EbR−c(IkX)

(4.7)

where we set for short

(4.8) {t+Reϕ ≥ 0} = {(x, t) ∈ X × R : x ∈ U, t+Reϕ(x) ≥ 0}

We will also need the following computation.

Theorem 4.2. With the above notations, one has

(4.9) SolEX(EϕU |X) ' Eϕ.

4.4. Riemann-Hilbert correspondence. Let us state the Riemann-Hilbert
correspondence for holonomic D-modules.

Theorem 4.3. The enhanced solution functor induces a fully faithful func-
tor

(4.10) SolEX : Db
hol(DX)op → EbR−c(IkX)

Moreover, there is a functorial way of reconstructing M ∈ Db
hol(DX) from

SolEX(M).

This implies in particular that the Stokes structure of a flat meromorphic
connection M is encoded in SolE(M) (see [4, §9.8]).

4.5. A lemma. We will use the following remark. Let D ⊂ X be a closed
hypersurface, set U = X \D and denote by j : U → X the embedding.

Lemma 4.4. With the above notations, let M ∈ Db
hol(DX) be such that

M'M(∗D). Assume that X is compact. Then there exists F ∈ ẼbR−c(kU )

such that Rj̃!F ∈ ẼbR−c(kX) and

(4.11) SolEX(M) ' kEX
+
⊗ QRj̃!F.
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5. Fourier transform

For the content of this section, we make use of [6, Section 3], which we
reproduce here for the reader’s convenience.

By functoriality, the enhanced solution functor interchanges integral trans-
forms at the level of holonomic D-modules with integral transforms at the
level of enhanced ind-sheaves. (This was observed in [11], where the non-
holonomic case is also discussed.) We recall here some consequences of this
fact, dealing in particular with the Fourier transform.

5.1. Integral transforms. Consider a diagram of complex manifolds

S

X Y

p q

At the level of D-modules, the integral transform with kernel L ∈ Db(DS)
is the functor

(5.1) ∗ D◦ L : Db(DX)→ Db(DY ), M D◦ L := Dq∗(L ⊗D Dp∗M).

At the level of enhanced ind-sheaves, the integral transform with kernel
H ∈ Eb(IkS) is the functor

(5.2) ∗ +◦ H : Eb(IkX)→ Eb(IkY ), K
+◦ H = Eq!!(H

+
⊗ Ep−1K)

Using Theorem 4.1, we get the following

Corollary 5.1. Let M ∈ Db
g−hol(DX) and L ∈ Db

g−hol(DS). Assume that

p−1supp(M) ∩ supp(L) is proper over Y . Set K = SolEX(M) and H =

SolES (L). Then there is a natural isomorphism in EbR−c(IkY )

(5.3) SolEY (M D◦ L) ' K +◦ H[dS − dY ].

Remark 5.2. There is a similar statement with the solution functor replaced
by the de Rham functor. This has been extended to the case whereM is good
but not necessarily holonomic.

5.2. Globally R-constructible enhanced ind-sheaves. Consider the di-
agram of real analytic manifolds induced by 5.1

S × R

X × R Y × R

p̃ q̃

where p̃ = p× idR and q̃ = q × idR.
The natural integral transform for R-constructible enhanced sheaves with

kernel L ∈ ẼbR−c(IkS) is the functor

(5.4) ∗ ∗◦ L : ẼbR−c(IkX)→ ẼbR−c(IkY ), F
∗◦ L = Rq̃!(L

∗
⊗ p̃−1F ).

By corollary 5.1 and Lemma 4.4 we obtain
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Proposition 5.3. LetM∈ Db
g−hol(DX), L ∈ Db

g−hol(DS), and assume that

p−1supp(M)∩ supp(L) is proper over Y . Let F ∈ ẼbR−c(kX), L ∈ ẼbR−c(kS)
and assume that there are isomorphisms

(5.5) SolEX(M) ' kEX
+
⊗ QF, SolES (L) ' kES

+
⊗ QL

Then there is a natural isomorphism in EbR−c(IkY )

(5.6) SolEY (M D◦ L) ' kEY
+
⊗ Q(F

∗◦ L)[dS − dY ].

Note that if X and S are compact, then for any M ∈ Db
hol(DX) and

L ∈ Db
hol(DS) there exists F ∈ ẼbR−c(kX) and L ∈ ẼbR−c(kS) satisfying the

hypothesis of Proposition 5.3.

5.3. Fourier-Laplace transform. Let V be a finite dimensional complex
vector space, denote by P its projective compactification and set H = P \V.

Definition 5.4. Let Db
hol(DV∞) be the full triangulated subcategory of Db

hol(DP)
whose objects M satisfy M'M(∗H).

Let V∗ the dual vector space of V, denote by P∗ its projective compacti-
fication, and set H∗ = P∗ \ V∗. The pairing

(5.7) V× V∗ → C, (z, w)→ 〈z, w〉
defines a meromorphic function on P × P∗ with poles along (P × H∗) ∪

(H× P∗) = (P× P∗) \ (V× V∗). Consider the projections:

P× P∗

P P∗

Definition 5.5. Set

(5.8) L = E−〈z,w〉V×V∗|P×P∗ , La = E〈w,z〉V∗×V|P∗×P

The Fourier-Laplace transform of M∈ Db
hol(DV∞) is given by

(5.9) M∧ =M D◦ L ∈ Db
hol(DV∗∞).

The inverse Fourier-Laplace transform of N ∈ Db
hol(DV∗∞) is given by

(5.10) N∨ = N D◦ La ∈ Db
hol(DV∞).

Theorem 5.6. The Fourier-Laplace transform gives an equivalence of cat-
egories

(5.11) ∧ : Db
hol(DV∞)→ Db

hol(DV∗∞)

A quasi-inverse is given by N → N∨.
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This result is classical. The idea of the proof is as follows. Denoting by DV
the Weyl algebra, there is an equivalence of categories Db(DV) ' Db(DV∞).

Under this equivalence, the Fourier-Laplace transform is induced by the
algebra isomorphism DV ' DV∗ given by zi → −∂wi , ∂zi → wi.

Using the Riemann-Hilbert correspondence and a result from , we give an
alternate topological proof of the above theorem in the remark below.

5.4. Enhanced Fourier-Sato transform. Recall that j : V → P denotes
the embedding.

Definition 5.7. Let ẼbR−c(kV∞) be the full triangulated subcategory of ẼbR−c(kV)

whose objects F satisfy Rj̃!F ∈ ẼbR−c(kP).

Consider the projections

V× V∗ × R

V× R V V∗ × R

p̃ q̃
p̄

Definition 5.8. Recall the notation introduced for exponential enhanced
(ind-)sheaves and set

(5.12) L = E−〈z,w〉[1], La = E〈w,z〉[1].

The enhanced Fourier-Sato transform of F ∈ ẼbR−c(kV∞) is given by

(5.13) Ff = F
∗◦ L ∈ ẼbR−c(kV∗∞)

The enhanced inverse Fourier-Sato transform of G ∈ ẼbR−c(kV∗∞) is given
by

(5.14) Gg = G
∗◦ La ∈ ẼbR−c(kV∞)

The transform F → Ff has been investigated by Tamarkin (in the more
generale case of vector spaces over R). He proved in particular the following
result.

Proposition 5.9. The enhanced Fourier-Sato transform gives an equiva-
lence of categories

(5.15) f : ẼbR−c(kV∞)
'−→ ẼbR−c(kV∗∞)

A quasi-inverse is given by G→ Gg.

Denoting u : V× V∗ → P× P∗ the embedding, one has

(5.16) SolEP×P∗(L) = E〈z,w〉V×V∗|P×P∗ ' kEP
+
⊗ QRũ!L

The next result is easily checked
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Lemma 5.10. Denote by k : V∗ → P∗. Let M ∈ Db
hol(DV∞) and F ∈

ẼbR−c(kV∞) satisfy

(5.17) SolEP ' kEP
+
⊗ QRj̃!F.

Then, there is an isomorphism

(5.18) SolEP∗(M∧) ' kEP∗
+
⊗ QRk̃!F

f[dimV].

Note that, in view of Lemma, for any M ∈ Db
hol(DV∞) there is an F ∈

ẼbkV∞
satisfying (5.17).

6. Morse-Witten theory

By the definition of Fourier-Sato transform introduced in the last section,
we need to compute direct image with proper support of exponential sheaves.

In particular, in order to proceed with our computations, we will need
a way to get information about the cohomology with compact support of
subsets of {Reϕ ≤ t0}, where ϕ is a holomorphic function defined in some
1-dimensional domain.

The right framework is provided by Morse-Witten theory.
Since we will be dealing with meromorphic functions, the analysis pro-

vided from such theory should not be needed.
However, in order to provide the right geometric framework where the

computation are made and from where the ideas came, we want to give a
sketch of the fundamental principles of such theory.

6.1. Morse-Witten theory in the compact case. The explanation be-
low is based on [21]. Let X be a smooth compact real manifold of dimension
n, f : X → R a smooth function.

Let p ∈ X, denote by TXp the tangent space of X at p. We say that p is
a critical point for f if the morphism induced at the level of tangent spaces
Tfp : TXp → TRf(p) is zero. If x = (x1, ..., xn) is a local coordinate system
given by a chart centered at p, this means that

(6.1)
∂f

∂xi
(0) = 0, ∀i = 1, ..., n.

A critical point is called non degenerate if and only if the Hessian matrix

(6.2) (
∂2f

∂xi∂xj
(0))i,j=1,...,n

is non-singular (i.e. its determinant in non-zero). We call f a Morse function
if all its critical points are non-degenerate. In this case, the number of
negative eigenvalues of the Hessian of f at p is called the Morse index of p.

In general, any Morse function f can be used to compute upper bounds
on the rank of real homology (or cohomology) groups of X in terms of its
critical points. More in detail, the rank of the q-dimensional homology of X
(also known as the q-Betti number) is at most the number of critical points
of f of index q. The inequalities arising are called Morse inequalities.



A TOPOLOGICAL APPROACH TO THE FOURIER TRANSFORM 31

If the differences between the indexes of distinct critical points are never
equal to ±1, then f is called perfect Morse function and the inequality above
becomes an equality. In fact, in this case even the integral homology can be
described via the critical points.

The classical approach (see [14] for an exposition) is to show that X
is a CW complex with a q-cell for each critical point of index q. This is
achieved by studying the change in the homology of the sublevel sets of f
when crossing critical values of f .

Another approach, more categorical, is given by the introduction of the
Morse-Witten complex and the homology associated with it.

In [22], Witten described a geometric realization for the boundary oper-
ators of such complex, showing that more information about the homology
of the manifold X under exam could be extracted from peculiar paths asso-
ciated to f and passing by each critical point of f .

In particular, he gave a recipe for constructing a k-cycle Jp attached to
each critical point p with index k, and representing an element of the k-th
homology group: these cycles generate the homology with integer coeffi-
cients.

Let us briefly recall how the construction of Jp is made.
In general, on any manifold X with real coordinates x, pick a Riemannian

metric g on it and consider the downward flow or gradient flow equation

(6.3)
dx(t)

dt
= −g∇f(x(t))

The reason why this equation is called downward flow is given in the
following lemma.

Lemma 6.1. Let f and g as above. Then, except for stationary solutions
which sits at a critical point for all t, f is always non-increasing along a
flow for (6.3)

Proof. It suffices to compute

(6.4)
df(x(t))

dt
= −(∇f(x(t)))T

dx(t)

dt
= −||∇f(x(t))||2g < 0

�

An important property of the flow equation is that if x(t) equals a critical
point at some t, then the flow equation implies that x(t) is constant for all
t. So a nonconstant flow can only reach a critical point at t = ±∞.

Let p be a nondegenerate critical point of f , and consider the down-
ward flow equations on the half-line ] −∞, 0] with the boundary condition
lim

t→−∞
x(t) = p.

If p has index k, the moduli space of such solutions is a k-dimensional
manifold, since there are k independent directions of downward flow from
the critical point p.

We can think of such moduli space as a submanifold of X, by mapping a
downward flow line x(t) to the corresponding point x(0) ∈ X.

This gives an embedding in X since, as the downward flow equation is
first order in time, a flow is uniquely determined by its value at t = 0.
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We can also define it as the submanifold of X consisting of points that
can be reached at any t by a flow that starts at p at t = −∞.

Given a flow line x(t) that reaches a point x∗ ∈ X at t = t∗, the flow line
x(t−t∗) arrives at x∗ at t = 0. A flow line defined on the full line ]−∞,+∞[
will be called a complete flow line.

A similar discussion can be made by considering the gradient equation
with limit condition lim

t→+∞
x(t) = p: we will denote by Ip the submanifold

arising from the same construction above.

6.2. Morse-Witten theory in the non-compact case. IfX is a compact
manifold, f is automatically bounded above and below, and the critical
points of a perfect Morse function determine the ordinary homology of X.

If X is not compact, we can possibly deal with a Morse function f that is
unbounded above and below. According to [21], in such a case, the critical
points of f will no longer determine ordinary homology groups, but relative
homology groups.

They will be the homology groups Hk(X,X−T ), where X−T := {x ∈ X :
f(x) ≤ −T} and T is a large constant.

The construction of Jp is the same as above. It is noticeable that, since X
is no more compact, the gradient flow lines are no more necessarily defined
for all t. Moreover, since f is no more bounded and non-increasing along
flow lines, flow lines can possibly approach regions where f → −∞ and have
endpoints at poles of f .

Once we pick an orientation of Jp, Jp will define a cycle in the relative
homology Hk(X,X−T ) if it is closed, i.e., any sequence of points in Jp has a
subsequence on which f either converges or tends to −∞. This fails precisely
if there is a complete flow line l that starts at p at t = −∞ and ends at
another critical point q at t = +∞. In that case, Jp is not closed, since l
is contained in Jp, but a sequence of points in l can converge to q, which is
not contained in Jp.

It is in general not easy to describe when such degeneration occurs.
In our case, it will be easy to determine a necessary condition for a flow

line to connect two distinct critical points, we will moreover refine such
condition to a sufficient one.

6.3. Morse-Witten theory in the complex analytic setting. We want
to apply the theory explained in the preceding subsections to the real part
of a meromorphic function ϕ on the projective line P1

v with effective poles
at S with ∞ ∈ S. Set U = P1

v \ S ⊂ Cv.
Notice that, with this set-up, ϕ is proper and has a finite number of

critical points {vm} ⊂ U , we will require that they are non-degenerate. We
further require that ϕ has distinct critical values {λm := ϕ(vm)} =: Crit(ϕ),
i.e. λm 6= λm′ ∀vm 6= vm′

By considering the real coordinates given by (v, v̄) and the Kahler metric
ds2 = |dv|2, the downward flow (or gradient flow) equation for Reϕ rewrites
as

(6.5)
dv

dt
= −∂v̄ϕ̄,

dv̄

dt
= −∂vϕ

The downward flow lines have another property in this case.
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Lemma 6.2. Imϕ is preserved along the flow lines of the downward gradient
equation.

Proof. Indeed

d Imϕ(v(t))

dt
=

1

2i

d(ϕ− ϕ̄)(v(t))

dt
= − 1

2i
(∂vϕ

dv(t)

dt
− ∂v̄ϕ̄

dv̄(t)

dt
) = 0

�

We will denote the closure of the cycles Jvm arising from the construction
described above (operation which amounts to add the critical point vm) by
Γϕm and call it the steepest descent path associated to vm.

By Lemma 6.2, they are contained in the critical level set {Imϕ = Imλm}.
It is noticeable that Reϕ restricted to such paths has a maximum at vm.
The non-degeneracy condition and the fact that Reϕ is harmonic implies

that vm are saddles for Reϕ.

Remark 6.3. By considering the cycles Ivm, one obtain another family of
paths, called steepest ascent paths.

Contrary to the steepest descent case, ϕ restricted to such subsets has a
minimum in vm.

Since the downward gradient equation can be linearized near a critical
point vm by the Hessian associated with Reϕ, we have the following result

Lemma 6.4. The submanifold Jvm consist, in a small punctured neighbour-
hood of vm, of two curves abutting from vm with tangents given by eigenvec-
tors of the Hessian of Reϕ associated with the negative eigenvalue.

The same statement holds by considering Ivm and positive eigenvalues of
the Hessian.

Proof. This is a particular case of a general result, the Stable Manifold
Theorem (see [17, Section 2.7, pp. 107]). �

Remark 6.5. By Lemma 6.2, this last result is analogous to the description
of the critical level set {Imϕ = Imλm} in a neighboruhood of vm given by
Morse theory (see [14]).

The following result shows the relation between the level set {Imϕ =
Im λ̄} with λ̄ ∈ Crit(ϕ) and solutions to the downward gradient equation.

Lemma 6.6. The connected components of {Imϕ = Im λ̄} \ {vm} are so-
lutions to the downward gradient equation. More specifically, a connected
component C satisfies only one of the following:

(i) C is an analytic curve with both endpoints in S, in particular Reϕ|C
is a non-increasing diffeomorphism from C to ]−∞,+∞[,

(ii) at least one of the endpoints of C is a critical point v̄ with ϕ(v̄) = λ̄
and C is one of the curves abutting from v̄ described in Lemma 6.4.

Proof. By the implicit function theorem, we know that {Imϕ = Im λ̄}\{vm}
is the union of analytic curves. Moreover Morse lemma assures the presence
of quadruples of them orthogonally intersecting at critical points contained
in ϕ−1(λm).
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Since Imϕ is harmonic, {Imϕ = Im λ̄} can not be closed in U , hence-
forth its boundary has to be in S. Hence the endpoints of the connected
components are in S ∪ {v̄ : ϕ(v̄) = λ̄}.

Suppose C has both endpoints in S: C is then the complete flow line for
the downward gradient problem with initial condition given by one of its
points.

This, together with the fact that endpoints of C are poles of ϕ, implies
that Reϕ|C is a non-increasing diffeomorphism from C to ]−∞,+∞[.

The statement concerning connected components with at least a critical
point as endpoint follows from remark 6.5.

�

6.4. Orientation. As stated in Lemma 6.4, steepest descent paths are ap-
proximated by curves abutting from the critical point with tangents given
by eigenvectors of the Hessian matrix of Reϕ relative to the negative eigen-
value.

In order to give an orientation to Γϕm, it suffices to choose one such eigen-
vector.

6.5. A vanishing result. Our first aim in this thesis is to provide a de-
composition in sectors for the Fourier-Sato transform as sum of exponential
factors.

The first step will be proving this fact at the level of stalk. In the next
result, we will show how steepest descent paths are the suited objects for
the purpose.

Proposition 6.7. Let ϕ, vm and Γϕm as in the previous subsection. Then,
∀t0 ∈ R, we have

(6.6) RΓc(Cv, k{Reϕ≤t0}\
⋃

m:Reλm≤t0
Γϕm

) = 0

Proof. Let τ be the affine coordinate on the target space of ϕ and consider,
for all t0 ∈ R, the set

Nϕ
t0

:= {Re τ ≤ t0} \
d⋃

m=1

(λm + R≤0) ⊂ Cτ .

Notice that, since Nϕ
t0

is a closed half plane with semiclosed intervals re-

moved, RΓc(Cτ , Nϕ
t0

) = 0.
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We will denote by ϕ̄t0 the restriction

ϕ̄t0 : ϕ−1(Nϕ
t0

)→ Nϕ
t0

Let us prove the following

Lemma 6.8. RΓc(Cv, ϕ−1(Nϕ
t0

)) = 0.

Proof. Consider the following commutative diagram:

ϕ−1(Nϕ
t0

) U {pt}

Nϕ
t0

Cτ

ju

ϕ̄t0
ϕ

au

jτ

aτ

Notice that, since ϕ is a finite ramified covering of the projective line to
itself, ϕ̄t0 is a finite covering, in particular it satisfies

Rϕ̄t0!ϕ̄
−1
t0
G '

d⊕
i=1

G

for every G ∈ Db(kCτ ).
Then

RΓc(Cv, ϕ−1(Nϕ
t0

)) 'Rau!Rju!j
−1
u a−1

u k '
' Raτ !Rϕ!Rju!j

−1
u ϕ−1a−1

u k 'Raτ !R(ϕ ◦ ju)!(ϕ ◦ ju)−1a−1
τ '

' Raτ !R(jτ ◦ ϕ̄t0)!(jτ ◦ ϕ̄t0)−1a−1
τ 'Raτ !Rjτ !Rϕ̄t0!ϕ̄

−1
t0
j−1
τ a−1

τ '

'
d⊕
i=1

Raτ !Rjτ !j
−1
τ a−1

τ k '
d⊕
i=1

RΓc(Cτ , Nϕ
t0

) = 0.

(6.7)

�

We have

(6.8) ϕ−1(Nϕ
t0

) = {Reϕ ≤ t0} \
⋃
m

({Imϕ = Imλm} ∩ {Reϕ ≤ Reλm})

Since Γϕm ⊂ {Imϕ = Imλm} ∩ {Reϕ ≤ Reλm}, we obtain

ϕ−1(Nϕ
t0

) ⊂ {Reϕ ≤ t0} \
⋃
m

Γϕm
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In order to complete the proof, it is then sufficient to show that these two
sets have the same cohomology with compact support or, equivalently, that

({Reϕ ≤ t0} \
⋃
m

Γϕm) \ ϕ−1(Nϕ
t0

)

is cohomologically trivial.
This last set can be rewritten as

{Reϕ ≤ t0} ∩
⋃
m

[({Imϕ = Imλm} \ Γϕm) ∩ {Reϕ ≤ Reλm}]

which is union of diffeomorphic images of semi-closed intervals.
Indeed, notice that

(6.9) ({Imϕ = Imλm} \ Γϕm) ∩ {Reϕ ≤ Reλm}

is obtained by removing from the critical level set {Imϕ = Imλm} all solu-
tions to the downward gradient equation having a critical point as endpoint.

By Lemma 6.6, the above set then only consists of complete flow lines γ
connecting two points of S = ∂U .

Again by Lemma 6.6, Reϕ|γ is a diffeomorphism, therefore, ∀t0 ∈ R, we
can find a point vγ on each γ such that Reϕ has value t0.

This means that (6.9) is made of the semi-closed part of the γ’s going
from vγ to the endpoint of γ where Reϕ|γ → −∞.

�

7. Borel-Moore homology

While Morse-Witten theory will provide the tools in order to find triv-
ialization for the Fourier transform in sectors, Borel-Moore homology will
provide the right framework in which we will compute the Stokes multipliers.

It is a classical tool for extending the singular homology theory to the
case of general locally compact spaces.

There are several way to define the integral Borel-Moore homology

HBM
∗ (X,Z)

for a locally compact space X:

• by introducing locally finite chains and taking the homology of the
complex obtained
• as the relative homology H∗(Y, Y \X) with respect to a compactifi-

cation Y of X.
• as

(7.1) HBM
j (X,Z) = H−jRΓ(X,ωX)

where ωX is the dualizing sheaf a!
XZ with aX : X → {pt}.

All definitions can be extended to define the Borel-Moore homology

HBM
∗ (X,L)

with coefficients in a local system L.
For a definition that suits our work, we will refer to the nice description

made in Appendix A in [6].
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7.1. Borel-Moore homology for subanalytic spaces. Let X be a sub-
analytic space, i.e., an R-ringed space locally modeled on closed subanalytic
subsets of real analytic manifolds.

In [10, 9.2], the sheaf CSXp is introduced and defined as the sheaf associ-
ated to the following presheaf.

For V ⊂ X open subset, define CSXp (V ) as the k-vector space spanned
by the symbols [S], where S ranges through the family of subanalytic p
dimensional oriented submanifolds of X, with relations

(1) [S1 ∪ S2] = S1 + S2 if S1 ∩ S2 = ∅,
(2) [S] = [S′] if S ⊂ S′ is open, subanalytic and endowed with the

induced orientation,
(3) [Sa] = −[S], where Sa is the submanifold S endowed with the oppo-

site orientation.

There is a boundary map ∂ : CSXp → CSXp−1 explicitly constructed in [10]
and inducing a complex of sheaves.

This map is the same as the one defined in the usual singular homology,
i.e., ∂[S] = [∂S] in the case of interest to us: the oriented p-dimensional
submanifold S and the embedding S ⊂ S̄ are locally modeled on {x1 > 0}
and {x1 > 0} ⊂ {x1 ≥ 0} for Rp 3 (x1, ..., xp).

For G ∈ ModR−c(kX), we define the space of subanalytic Borel-Moore
p-chains relative to G as the subspace

(7.2) BMX
p (G) ⊂ Hom(G, CSXp )

of morphisms φ ∈ Hom(G, CSXp ) such that for any relatively compact subset

U of X, and s ∈ G(U), there exists σ ∈ CXp (X) with σ∣∣U = φ(s). This

requirement is equivalent to ask supp φ(s), which is closed subanalytic in
U , is subanalytic in X.

The boundary map ∂ induces a complex BMX
• (G).

Using language and result from the theory of subanalytic sheaves, it is
possible to show the following

Lemma 7.1. There is a functorial isomorphism

(7.3) BMX
• (G) ' RHom(G,ωX) ' DRΓc(X,G)

where ωX is the dualizing sheaf and D = RHom(·, k) is the dual in Db(k).

For the proof, see [6].
In particular, if we apply the lemma to the case of L local system of finite

rank and Z ⊂ X locally closed subanalytic, we obtain

BMX
• (kZ ⊗ L) ' RHom(kZ ⊗ LωX) ' RHom(L,RΓZωX)

' RΓ(X,RΓZωX × L ∗) .
(7.4)

It is then natural to define

Definition 7.2. Let L be a local system of finite rank, and Z ⊂ X. For
j ∈ Z, the j-th Borel-Moore homology of Z, with coefficients in L∗ is given

(7.5) HBM
j (Z,L∗) := HjBM

X
• (kZ ⊗ L).
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We immediately obtain from Lemma 7.1

(7.6) HBM
j (Z,L∗) := (Hj

c (X,kZ ⊗ L))∗.

An element in HBM
j (Z,L∗) will be represented as

(7.7) σ ⊗ s

with σ and s respecting the condition as in the definition of BMX
• (G) given

above, for G = kZ ⊗ L.

8. The Fourier transform of an elementary module

8.1. The Fourier transform of elementary D-module. Let ρ : Cu →
V be a ramification of order p of the variable z, i.e. ρ(u) = up,R ∈
Db
reg−hol(kCu) and ϕ ∈ u−1C[u−1].
Let us give the following definition:

Definition 8.1. Define the elementary D-module El(ρ, ϕ,R) as

(8.1) El(ρ, ϕ,R) = Dρ∗(Eϕ
D
⊗ R).

We will from now on focus on ϕ(u) = −αu−n with α ∈ C×. We will deal
with ϕ ∈ u−1C[u−1] in section 13 and show that the results obtained for the
simple case extends to the general case.

Since Eϕ(∗0) ' Eϕ, we can suppose R ' R(∗0). This, in turn, implies
that F ' j!L for some local system L on C×u with j : C×u → Cu open
inclusion.

As recalled in section 1.2, the stationary phase formula provides then the
formal type of the Fourier transform of this D-module, in particular we know
that it is ramified with ramification given by

w−1 = ρ̂(ζ) := − ρ
′(ζ)

ϕ′(ζ)
=

p

nα
ζn+p

In order for the exponential factors and the ramification to be defined in
the same space C×ζ , we will consider

M = Dρ∗2(Dρ∗(Eϕ
D
⊗ R))∧

with ρ2(ζ) := 1
ρ̂(ζ) = nα

p ζ
−(n+p).

Our aim is to studyM and the Stokes phenomenon underlying it. We will
achieve this in the framework provided by the theory of enhanced sheaves.

As recalled in section 5, the Fourier trasform for D-modules is inter-
changed with the enhanced Fourier-Sato transform for enhanced ind-sheaves.

Since the enhanced solution functor also commutes with the inverse image,

K := Eρ−1
2 (Eρ!!(Eϕ

+
⊗ e(F )))∧ = Eρ−1

2 Eq!!(E−zw[1]
+
⊗ Eρ!!(Eϕ

+
⊗ e(F )))

Consider the diagram with Cartesian squares
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Cu × C×ζ

Cu Cu × V∗ C×ζ

V V× V∗ V∗

q2
p2

ρ′2

ρ ρ′

p1

q1
ρ2

p

q

where p1, p2, q1, q2 are standard projections, ρ′ = ρ× idV∗ , ρ′2 = idCu×ρ2.
The enhanced ind-sheaf K can hence be computed as:

Eρ−1
2 (Eρ!(E−αu

−n +
⊗ e(F )))f =

= Eρ−1
2 Eq!!(E−zw

+
⊗ Ep−1Eρ!!(E−αu

−n +
⊗ e(F )))[1]

' Eρ−1
2 Eq!!(E−zw

+
⊗ Eρ′!!Ep−1

1 (E−αu
−n +
⊗ e(F )))[1] '

' Eρ−1
2 Eq!!ρ

′
!![Eρ

′−1E−zw
+
⊗ Ep−1

1 (E−αu
−n +
⊗ e(F ))][1]

' Eρ−1
2 Eq1!![E−u

pw
+
⊗ Ep−1

1 (E−αu
−n +
⊗ e(F ))][1]

' Eq2!!Eρ
′−1
2 [E−u

pw
+
⊗ Ep−1

1 (E−αu
−n +
⊗ e(F ))][1]

' Eq2!!(E
−nα

p
up

ζn+p
+
⊗ Ep−1

2 E−αu
−n +
⊗ Ep−1

2 e(F ))[1]

' Eq2!!(E
−α(n

p
up

ζn+p+u−n) +
⊗ Ep−1

2 e(F ))[1]

(8.2)

Our study will then focus on the enhanced sheaf (recall the functor ε
defined in (3.5))

(8.3) K := Rq̃2!(E
−nα

p
up

ζn+p−αu−n +
⊗ p̃−1

2 ε(F ))[1]

which satisfy K ' kEC×ζ

+
⊗ K .

Recalling Lemma 3.2, we also have

K = Rq̃2!(E
−nα

p
up

ζn+p−αu−n +
⊗ p̃−1

2 (k{t≥0} ⊗ π−1F ))[1] '

' Rq̃2!(E
−nα

p
up

ζn+p−αu−n +
⊗ (k{t≥0} ⊗ p̃−1

2 π−1F ))[1] '

' Rq̃2!((E
−nα

p
up

ζn+p−αu−n +
⊗ k{t≥0})⊗ p̃−1

2 π−1F )[1] '

' Rq̃2!(E
−nα

p
up

ζn+p−αu−n ⊗ p̃−1
2 π−1F )[1]

For computational purposes, we will make a further addition.
Consider the blow-up Φ : Cv × C×ζ → Cu × C×ζ defined by

Φ(v, ζ) = (vζ, ζ)
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Since RΦ̃!Φ̃
−1H ' H, by considering its insertion in 8.2, we get

K 'Rq̃2!RΦ̃!Φ̃
−1(E

−α(n
p

up

ζn+p+u−n) ⊗ p̃2
−1π−1F )[1] '

'Rq̃3!(E
−Φ∗(α(n

p
up

ζn+p+u−n)) ⊗ p̃3
−1π−1F )[1] '

'Rq̃3!(E
−Ψ̃ ⊗ p̃3

−1π−1F )[1]

where q2 = q1 ◦ Φ, p3 = p2 ◦ Φ and

Ψ̃(v, ζ) :=Φ∗(α(
n

p

up

ζn+p
+ u−n)) = α(

n

p

(vζ)p

ζn+p
+ (vζ)−n) =

=αζ−n(v−n +
n

p
vp) = nαζ−n(

v−n

n
+
vp

p
)

(8.4)

We will show that Ψ̃ contains all needed information about M, from its
exponential factors to the Stokes multipliers.

Remark 8.2. Notice that we can already obtain the exponential factors, via
the stationary phase formula. Since

ϕ̂(ζ) =ϕ(ζ)− ρ(ζ)

ρ′(ζ)
ϕ′(ζ) = −αu−n − ζp

pζp−1
(nαu−n−1) =

=− α(1 +
n

p
)ζ−n,

the exponential factors for M are

ϕ̂m(ζ) = ϕ̂(ζe
i 2πm
n+p ) = −α(1 +

n

p
)ζ−ne

−i(n 2mπ
n+p

)
m = 0, ..., n+ p− 1

Now, since e−inθm = eipθm

(8.5)

Ψ̃m(ζ) := Ψ̃(eiθm , ζ) = αζ−n(e−inθm +
n

p
eipθm) = α(1 +

n

p
)ζ−ne

−i(n 2mπ
n+p

)

and hence the exponential factors are encoded in Ψ̃.
This is nothing new: the fact that Ψ̃ can recover the exponential factors in

this way comes from the classical well known studies about Legendre trans-
form. For further reference, one can see [5].

9. Morse-theoretic properties for level sets of Ψ̃

In this section, we want to focus on

K(ζ0,t0) = RΓc(Cv, k{Re Ψ̃ζ0≤t0}
⊗ Φ̃−1

ζ0
π−1F )[1]

where Ψ̃ζ0(v) = Ψ̃(v, ζ0) and Φζ0(v) = Φ(v, ζ0).
Thanks to the result in section 6, we already know that all information

about this cohomology is contained in the family of steepest descent paths
for Re Ψ̃ζ0 . We also know that such paths are contained in the critical level

sets for Im Ψ̃ζ0 .

Our aim in this section is to investigate precisely the level sets of Im Ψ̃ζ0 ,
more specifically we will prove the following
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Proposition 9.1. There exists a covering of C×v made of open sectors with

vertices in 0 and local radial parametrizations of the branches of {Im Ψ̃ζ0 =
t0} in these sectors such that

(i) if the sector contains a critical point of Im Ψ̃ζ0, there are two branches
extending the local quadratic behaviour of the level set around that crit-
ical point,

(ii) if the sector does not contain a critical point, the level set in this sector
consists of a single curve.

Proof. See Proposition 9.6, Proposition 9.7, Proposition 9.8, Proposition 9.9.
�

In particular ,the local radial parametrizations provided and their prop-
erties will allow us to study the change on the behaviour of steepest descent
paths with respect to ζ0 (see section 10).

9.1. Framework and reductions. Let (ε,Θ) be the polar coordinates for
ζ, i.e. ζ = εeiΘ, write βeiµ for the coefficient α.

Denote by Ψ̃ζ0 the fiber of Ψ̃ at ζ0 ∈ C×ζ , i.e.,

(9.1) Ψ̃ζ0(v) := Ψ̃(v, ζ0) = nβε−n0 eµ−nΘ0(
v−n

n
+
vp

p
).

We would like to apply Morse-Witten theory as explained in section 6.3 to
Ψ̃ζ0 .

It is easy to notice that critical level sets of Im Ψ̃ζ0 do not depend on
positive constant, hence on β, n and ε0. We then define

Ψ(v, ζ) = ei(µ−nΘ)(
v−n

n
+
vp

p
).

Introduce the variable κ ∈ R and set ν(Θ) = µ− nΘ =: κ.

Ψκ(v) = eiκ(
v−n

n
+
vp

p
).

The following result summarize the main property of Ψκ.

Lemma 9.2. ∀ζ0 ∈ C×ζ , the function Ψκ0 with κ0 = ν(Θ0) has non-

degenerate critical points {vm = e
i 2πm
n+p : m = 0, ..., n + p − 1} with distinct

critical values {λm = ( 1
n + 1

p)e
ip 2πm
n+p }.

Proof. The first two complex derivatives of Ψκ0 are

∂vΨκ0(v) = eiκ0(−v−n−1 + vp−1)

∂2
vΨκ0(v) = eiκ0((n+ 1)v−n−1 + (p− 1)vp−1)

The critical points of the functions are then solution of vn+p = 1, i.e., the

n+ p-th roots of unity e
i 2πm
n+p for m = 0, ..., n+ p− 1.

The critical points are non-degenerate: indeed, since e−inθm = eipθm , we
have

∂2
vΨκ0(vm) = eiκ0(n+ p)eipθm 6= 0.
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The critical values of Ψκ0 are

Ψκ0(eiθm) = (
1

n
+

1

p
)ei(pθm+κ0)∗.

They are distinct, indeed

eipθm+κ0 = eipθm′+κ0 ⇔ p(θm − θm′) = 0 (mod 2π)⇔
⇔ p(m−m′) = 0 (mod n+ p)

and, since (n, p) = 1 ⇒ (p, n + p) = 1, the system above is equivalent to
m = m′ (mod n+ p). �

In the following, we will denote by Ξ the set of arguments of the n+p-root
of unity vm, i.e. Ξ = {θm := 2m

n+pπ : m = 0, ..., n+ p− 1}.
This lemma implies that we can apply Morse-Witten theory to

gκ0(r, θ) := Re Ψκ0(r, θ) =
r−n

n
cos(nθ − κ0) +

rp

p
cos(pθ + κ0)

and construct the steepest descent paths associated to each critical point
vm: we will denote them by ΓΨ

m,κ0
.

9.2. Level sets of harmonic functions. First of all, some generalities
about the level sets of the imaginary part of a holomorphic function ϕ :
U → C.

It is known that Imϕ is harmonic. This implies that its level sets can not
be made of closed curve in the domain of definition of our function: if so,
by the maximum principle, f would be constant.

This means then that all level curves have extremes at the boundary of
U .

Moreover, suppose a is a pole of ϕ of order n. Then, the local structure
theorem for meromorphic functions tells us that there are exactly 2n lines
of the level set {Imϕ = t0} ∀t0 ∈ R, with a as an endpoint and crossing the
singularity at equal angles.

Let us apply what said so far to Im Ψκ0 which, written in polar coordi-
nates, is:

fκ0(r, θ) = Im Ψκ0(r, θ) = −r
−n

n
sin(nθ − κ0) +

rp

p
sin(pθm + κ0)

It is harmonic and well-defined in ]0,+∞[×S1 and there are exactly 2p lines
of the level sets from ∞ and 2n lines from 0.

Moreover the angle at which each of these lines cross their pole can be

read from the coefficients of rp

n and r−n

n .
For example, for fκ0 , they are the arguments on which sin(pθ + κ0) = 0

at ∞ and the ones for which sin(nθ + κ0) vanishes at 0.
These facts allows us to say that the level sets for fκ0 are made of n+ p

disjoint analytic curves for each t0 which is not a critical value.
Indeed, in this case, we have analytic curves thanks to the implicit func-

tion theorem and each curve must join two germs of curves at 0 or ∞, and
two only: since we have 2(n+ p) such germs, we have exactly n+ p curves
arising.
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Concerning critical level sets, we have no more regular disjoint curves,
however Morse theory still assures us the presence of n+ p analytic curves,
some of which cross orthogonally at critical points.

9.3. A model. In order to proceed into a more visual description, we need
to introduce a model where to picture our level set.

It is similar to the model used by Mochizuki in [15] to introduce his rapid
decay cycles, with some minor changes and additions. It can be thought of
as the plane Cv of which we have taken the real blow-up at 0 and ∞ (the
light gray part in the below figure).

∞

0

In this model, the argument is considered to be growing when moving
from the right to the left.

There are four lines depicted, each of them with its own meaning.

(1) the upper exterior line keeps track of the sign of sin(pθ + κ0)
(2) the upper interior line keeps track of the sign of cos(pθ + κ0)
(3) the lower exterior line keeps track of the sign of sin(nθ − κ0)
(4) the lower interior line keeps track of the sign of cos(nθ − κ0)

Dashed and straight segments characterize the sign of the function as-
sociated to the line (negative, positive). The dots represent zeroes of such
functions.

The dots of a exterior segment is the midpoint of an interior segment on
the same height: this follows from well known properties of cos and sin.

With upper and lower lines we aim to represent the signs of fκ0 and gκ0 :
we recall that, near the poles 0,∞ they display the behaviour of the term
with the highest pole order.

The two upper/lower lines can be hence thought as picturing the sign of
the coefficients of the corresponding pole leading term on S1

r=+∞/S1
r=0.

We will use the exterior lines to picture the level set of fκ0 and the interior
lines to keep track of the behaviour of gκ0 along level sets of fκ0 .

In particular, this will allow us to determine, between all lines of the
critical level sets, which ones are steepest descent paths.

Indeed, they will be the analytic curves contained in the critical level set
connecting dashed interior lines, which represent regions where Ψκ0 → −∞
or semi-closed curves connecting a dashed line and a critical point (in the
case there degeneration).

9.4. Subset of radial critical points. In order to describe what happens
in sectors, it is crucial to study some properties of the level set of the first
partial derivative of fκ with respect to r, denoted by C and called subset of
radial critical points.
C is then defined by {∂rfκ0 = +r−n−1 sin(nθ + κ0) + rp−1 sin(pθ + κ0) =

0}: since r 6= 0 we can rewrite it as rn+p sin(pθ + κ0) + sin(nθ − κ0) = 0.
We can obtain a parametrization:
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(9.2) θ → (rC(θ), θ)

where rC(θ) := [− sin(nθ−κ0)
sin(pθ+κ0) ]

1
n+p

It describes a curve in each of the sectors composing the subset

{sin(pθ + κ0) sin(nθ − κ0) < 0}
domain of definition of the parametrization.

This parametrization completely describes all of C as far as we avoid κ0

at which sin(pθ + κ0) = sin(nθ − κ0) = 0 for some θ.
Let us suppose this does not happen for the time being.
Then, it is easy to notice the following:

(9.3) lim
θ→θ̄

rC(θ) =

{
0 for sin

(
nθ̄ − κ0

)
= 0, sin

(
pθ̄ + κ0

)
6= 0

+∞ for sin
(
pθ̄ + κ0

)
= 0, sin

(
nθ̄ − κ0

)
6= 0

where the limit has to be intended on the domain of definition of the
parametrization.

Moreover, the critical points of fκ0 clearly belongs to C; not only, such
points are also critical for fκ0 |C .

fκ0 |C (θ) =rC(θ)−n(− 1

n
sin(nθ − κ0) +

rC(θ)n+p

p
sin(pθm + κ0)) =

=− (
1

n
+

1

p
)rC(θ)−n sin(nθ − κ0)

d

dθ
rC(θ) =rC(θ)

n cos(nθ − κ0) sin(pθ + κ0)− p sin(nθ − κ0) cos(pθ + κ0)

(n+ p) sin(nθ − κ0) sin(pθ + κ0)

d

dθ
fκ0 |C (θ) =− rC(θ)−n

sin((n+ p)θ)

sin(pθ + κ0)

Equaling the last formula to zero gives us the possible critical points of
fκ0
∣∣C : they are

sin((n+ p)θ) = 0⇒ θ =
h

n+ p
π.

We will distinguish two components for this set: the first is the already
introduced Ξ, the second is

Ξ̃ := {ξm :=
2m+ 1

n+ p
π : m = 0, ..., n+ p− 1}

Since sin(pθm + κ0) sin(nθm − κ0) > 0, the family Ξ does not give contri-
bution to the critical locus.

In the end, by studying the sign of d
dθf �C (θ), we have that ξm is a

maximum if sin(pξm + κ0) > 0 and a minimum if sin(pξm + κ0) < 0.
Let us now consider what happens for value of κ0 where the parametriza-

tion is ill defined at some direction θ.
It is clear that, in this case, the line connecting 0 and ∞ with direction θ

is a component of C.
Let us solve then sin(pθ + κ0) = sin(nθ − κ0) = 0.
The condition

sin(pθ + κ0) = sin(nθ − κ0)
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is equivalent to cos
(n+p

2 θ
)

sin
(p−n

2 θ + κ0

)
= 0.

We have then two possible scenarios

Case 1: let cos
(n+p

2 θ
)

= 0.

This means that θ = 2m+1
n+p π ∈ Ξ̃. Since we also require sin(pθ + κ0) = 0,

this happens for the set of directions

κ0 = hπ − p2m+ 1

n+ p
π with h ∈ Z,m = 0, ..., n+ p− 1

Since sin(pξm + κ0) = sin(nξ + κ0) and cos(pξm + κ0) = − cos(nθ + κ0),
ξm divides two sectors where sin(pξm + κ0) sin(nθ + κ0) < 0 for such direc-
tions.

Indeed

sin(p(ξm ± ε) + κ0) sin(n(ξm ± ε)− κ0) =

sin(pε) sin(nε) cos(pξm + κ0) cos(nξm − κ0) =

sin(pε) sin(nε) cos2(pξm + κ0) < 0

Hence there is another branch of C defined in the sectors nearby ξm and
intersecting the line with direction ξm at

lim
θ→ξm

rC(θ) = lim
θ→ξm

(−sin(nθ − κ0)

sin(pθ + κ0)
)

1
n+p =

= lim
θ→ξm

(−n cos(nθ + κ0)

p cos(pθ + κ0)
)

1
n+p = (

n

p
)

1
n+p

where we used L’Hôpital’s rule in the second passage.
We can picture the situation in our model once we choose a sign for

cos(pξm + κ0): for instance, if it is equal to 1

ξm

Case 2: let sin
(p−n

2 θ + κ0

)
= 0.

We get κ0 = hπ+ n−p
2 θ, by applying sin(pθ + κ0) = 0 we get sin

(n+p
2 θ
)

=
0.

Hence we obtain that θ = θm ∈ Ξ for some m and κ0 = hπ + n−p
n+pmπ.

Since in this case cos(pθm + κ0) = cos(nθm − κ0) and sin(pθm + κ0) =
− sin(nθm − κ0) we have, with computations similar to the ones above, that

sin(p(θm ± ε) + κ0) sin(n(θm ± ε)− κ0) > 0

so that there is no other subset of C in the sectors abiding θm.

9.5. The level set {fκ0 = 0}. It is noticeable that we can study in the
same way as in the last paragraph the level set Z := {fκ0 = 0}.

The only difference comes from the change of sign in the parametrization:

rZ(θ) := [
sin(nθ − κ0)

sin(pθ + κ0)
]
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This forces the domain of definition and the role of Ξ and Ξ̃ to reverse with
respect to C.

As an example,take κ0 at which the parametrization is ill-defined and
θm ∈ Ξ with cos(pθm + κ0) > 0: the picture is

θm

9.6. Level set of fκ0 at θ0 fixed. Let θ0 ∈ S1, we will denote by fκ0,θ0 the

function fκ0 restricted to the line {θ = θ0}, fκ0,θ0(r) = − r−n

n sin(nθ0 − κ0)+
rp

p sin(pθ0 + κ0).

We are interested in the level sets of such function, {fκ0,θ0 = t0} = {fκ0 =
t0} ∩ {θ = θ0} ∀t0 ∈ R.

The following results provide the first step towards the local description
of the level set.

Lemma 9.3. • Suppose sin(pθ0 + κ0) > 0, sin(nθ0 − κ0) < 0. Then

{fκ0,θ0 = t0} =


{r1(θ0, t0), r2(θ0, t0)} if t0 > fκ0,θ0(rC(θ0))

{rC(θ0)} if t0 = fκ0,θ0(rC(θ0))

∅ if t0 < fκ0,θ0(rC(θ0))

where r1(θ0, t0) < rC(θ0) < r2(θ0, t0) ∀θ0, t0 for which they are de-
fined.
• Suppose sin(pθ0 + κ0) < 0, sin(nθ0 − κ0) > 0. Then

{fκ0,θ0 = t0} =


∅ if t0 > fκ0,θ0(rC(θ0))

{rC(θ0)} if t0 = fκ0,θ0(rC(θ0))

{r1(θ0, t0), r2(θ0, t0)} if t0 < fκ0,θ0(rC(θ0))

where r1(θ0, t0) < rC(θ0) < r2(θ0, t0) ∀θ0, t0 for which they are de-
fined.

Proof. The possible critical points of fκ0,θ0(r) are given by solving:

d

dr
fκ0,θ0(r) = r−n−1 sin(nθ0 − κ0) + rp−1 sin(pθ0 + κ0) = 0

hence, a point in C.
Since sin(pθ0 + κ0) 6= 0 we can rewrite the above as:

(9.4) rn+p = −sin(nθ0 − κ0)

sin(pθ0 + κ0)

Concerning the first statement, we notice that there is exactly one critical
point rC(θ0).

It is then straightforward to notice the following properties

• d
drfκ0,θ0(r) > 0 ∀r > rC(θ0), d

drfκ0,θ0(r) < 0 ∀0 < r < rC(θ0)



A TOPOLOGICAL APPROACH TO THE FOURIER TRANSFORM 47

•
lim

r→+∞
fθ0(r) = +∞

•
lim
r→0+

fθ0(r) = +∞

from which we obtain the desired result.
The second statement can be proved similarly. �

Lemma 9.4. Suppose sin(pθ0 + κ0) sin(nθ0 − κ0) > 0. Then ∀t0 ∈ R

{fκ0,θ0 = t0} = {r∼(θ0, t0)}

where, if t0 ≶ 0{
r∼(θ0, t0) ≶ rZ(θ0) if sin(pθ0 + κ0) > 0, sin(nθ0 − κ0) > 0

r∼(θ0, t0) ≷ rZ(θ0) if sin(pθ0 + κ0) < 0, sin(nθ0 − κ0) < 0

Proof. Concerning the first statement, (9.4) has no solution, hence there is
no critical point.

If sin(pθ0 + κ0) > 0, sin(nθ0 − κ0) > 0, we immediately notice the follow-
ing properties:

• d
drfκ0,θ0(r) > 0 ∀r > 0

•
lim

r→+∞
fκ0,θ0(r) = +∞

•
lim
r→0+

fκ0,θ0(r) = −∞

Therefore fκ0,θ0 is a diffeomorphism and its level set for each t0 is always a
point, let us denote it by r∼(θ0, t0)

Moreover, since fκ0,θ0 is increasing, we moreover get r∼(θ0, t0) ≶ rZ(θ0)
if t0 ≶ 0.

The proof in the case sin(pθ0 + κ0) < 0, sin(nθ0 − κ0) < 0 is similar. �

Let us now deal with the case of one or more sines vanishing.

Lemma 9.5. (1) Suppose sin(pθ0 + κ0) = 0. Then
• if sin(nθ0 − κ0) < 0

{fκ0,θ0 = t0} =

{
(− sin(nθ0−κ0)

nt0
)

1
n if t0 > 0

∅ if t0 ≤ 0

• if sin(nθ0 − κ0) > 0

{fκ0,θ0 = t0} =

{
( sin(nθ0−κ0)

nt0
)

1
n if t0 < 0

∅ if t0 ≥ 0

(2) Suppose sin(nθ0 − κ0) = 0. Then
• if sin(pθ0 + κ0) < 0

{fκ0,θ0 = t0} =

{
∅ if t0 > 0

(− sin(pθ0+κ0)
nt0

)
1
n if t0 ≤ 0
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• if sin(pθ0 + κ0) > 0

{fκ0,θ0 = t0} =

{
∅ if t0 < 0

(− sin(pθ0+κ0)
nt0

)
1
n if t0 ≥ 0

(3) If sin(pθ0 + κ0) = sin(nθ0 − κ0) = 0, we have

{fκ0,θ0 = t0} =

{
R>0 if t0 = 0

∅ if t0 6= 0

Proof. If sin(pθ0 + κ0)0 sin(nθ0 − κ0) 6= 0, the function we are considering

is fκ0,θ0(r) = − r−n

n sin(nθ0 − κ0), the first statement is then trivial. Similar
considerations hold for the second.

The third statement is trivial since the function fκ0,θ0 is identically 0.
�

9.7. Level set of fκ0 in sectors with constant coefficient signs. In
this subsection, we will describe the geometry of the level set {fκ0 = t0}
in sectors where the sign of the dominant coefficients is unchanged, using
Lemma 9.3 and Lemma 9.4.

Notice that vm ∈ {v ∈ C : sin(p arg(v) + κ0) sin(n arg(v)− κ0) < 0}.
We will consider a sector S = θ< < arg(v) < θ> contained in a subset

where such dominant coefficients have constant sign for all the arguments
of its elements and maximal with respect to this requirement and call it
elementary.

Proposition 9.6. Let κ0, fκ0 and S ⊂ {sin(pθ + κ0) > 0, sin(nθ − κ0) < 0}
elementary with vm ∈ S. Then {fκ0 = t0} is empty if t0 ≤ 0, it is the union
of two analytic curves Em1 , E

m
2 defined as follows in all other cases.

• If t0 > fκ0(1, θm):

Emi :]θ<, θ>[→ Cv
θ −→ ri(θ, t0)eiθ

for i = 1, 2, r1(θ), r2(θ) as in Lemma 9.3 and

(9.5) lim
θ→θ≶

r1(θ) =

{
0 if sin

(
nθ≶ − κ0

)
= 0

(
− sin(nθ≶−κ0)

nt0
)

1
n if sin

(
θ≶ + κ0

)
= 0

(9.6) lim
θ→θ≶

r2(θ) =

{
(

sin(pθ≶+κ0)
nt0

)
1
n if sin

(
nθ≶ − κ0

)
= 0

+∞ if sin
(
pθ≶ + κ0

)
= 0.

• If t0 = f(1, θm):

Em1 (θ) =

{
r1(θ, t0)eiθ if θ ≤ θm
r2(θ, t0)eiθ if θ > θm

Em2 (θ) =

{
r2(θ, t0)eiθ if θ ≤ θm
r1(θ, t0)eiθ if θ > θm

with same limit conditions (9.5),(9.6) as above.
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• If f(1, θm) > t0 > 0, then ∃θ1(κ0, t0), θ2(κ0, t0) with

θ< < θ1(κ0, t0) < θm < θ2(κ0, t0) < θ>

such that r1, r2 are defined on ]θ<, θ1(κ0, t0)[∪]θ2(κ0, t0), θ>[. Then
Em1 is defined by the union of the two curves parametrized by

]θ<, θ1(κ0, t0)[3 θ → r1(θ, t0)eiθ

]θ<, θ1(κ0, t0)[3 θ −→ r2(θ, t0)eiθ

with r1(θ1(κ0, t0), t0) = r2(θ1(κ0, t0), t0) , while Em2 arises in the
same fashion from

]θ2(κ0, t0), θ>[3 θ → r1(θ, t0)eiθ

]θ2(κ0, t0), θ>[3 θ −→ r2(θ, t0)eiθ

Proof. If t0 6= f(1, θm), by implicit function theorem, {fκ0 = t0} is union of
analytic curves in the sector ]θ<, θ>[. Moreover the values r1(θ, t0), r2(θ, t0)
defined in Lemma 9.3 describes the level set for θ varying and give hence
rise locally to radial parametrization of such analytic curves.

In the case t0 > f(1, θm), r1 and r2 are defined everywhere in ]θ<, θ>[
and divided by the component of the subset of radial critical points in this
sector (see first part of Lemma 9.3).

Therefore they are global radial parametrizations for the level set.
If 0 < t0 < f(1, θm), recall that fκ0 |C attains a maximum at θm with

value fκ0(1, θm) and goes to 0 moving towards θ≶. We can argue from this
the existence of θ1(κ0, t0), θ2(κ0, t0) such that fκ0(rC(θ1(κ0, t0), θ1(κ0, t0)) =
fκ0(rC(θ2(κ0, t0), θ2(κ0, t0)) = t0.

It is then clear that r1 and r2 are well defined on ]θ<, θ1(κ0, t0)[∪]θ2(κ0, t0), θ>[
and that on each of the two components they glue to give rise to a parametriza-
tion of a branch of the level set.

If t0 = f(1, θm), by Morse theory the level set is made by two analytic
curves intersecting orthogonally at (1, θm).

The same argument as above tells us that r1 and r2 are well defined and
analytic in ]θ<, θ>[\{θm}. Since the two curves intersect transversally, a
radial parametrization is given by switching r1 and r2 when crossing θm.

Since r1(θ, t0) < rC(θ) < r2(θ, t0):

(9.7) lim
θ→θ≶

r1(θ, t0) < lim
θ→θ≶

rC(θ) = 0 if sin
(
nθ≶ − κ0

)
= 0

(9.8) lim
θ→θ≶

r2(θ, t0) > lim
θ→θ≶

rC(θ) = +∞ if sin
(
pθ≶ + κ0

)
= 0

The remaining limits are obtained by Lemma 9.4 and its opposite coun-
terpart.

Indeed they are equivalent to studying the fiber of the level set at a
direction where one of the leading cosines annihilates.

At last, since fκ0 > 0 in the sector, the level set for t0 < 0 is empty. �

Similarly one can describe the situation in the case sin(pθ + κ0) < 0 and
sin(nθ − κ0) > 0.
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Proposition 9.7. Let κ0, fκ0 and S ⊂ {sin(pθ + κ0) < 0, sin(nθ − κ0) > 0}
elementary with vm ∈ S. Then {fκ0 = t0} is empty if t0 ≥ 0, it is the union
of two analytic curves Em1 , E

m
2 defined as follows in all other cases.

• If t0 < fκ0(1, θm):

Emi :]θ<, θ>[→ Cv
θ −→ ri(θ, t0)eiθ

for i = 1, 2, r1(θ), r2(θ) as in Lemma 9.3 and

(9.9) lim
θ→θ≶

r1(θ) =

{
0 if sin

(
nθ≶ − κ0

)
= 0

(
− sin(nθ≶−κ0)

nt0
)

1
n if sin

(
θ≶ + κ0

)
= 0

(9.10) lim
θ→θ≶

r2(θ) =

{
(

sin(pθ≶+κ0)
nt0

)
1
n if sin

(
nθ≶ − κ0

)
= 0

+∞ if sin
(
pθ≶ + κ0

)
= 0.

• If t0 = f(1, θm):

Em1 (θ) =

{
r1(θ, t0)eiθ if θ ≤ θm
r2(θ, t0)eiθ if θ > θm

Em2 (θ) =

{
r2(θ, t0)eiθ if θ ≤ θm
r1(θ, t0)eiθ if θ > θm

with same limit conditions (9.9),(9.10).
• If f(1, θm) < t0 < 0, then ∃θ1(κ0, t0), θ2(κ0, t0) with

θ< < θ1(κ0, t0) < θm < θ2(κ0, t0) < θ>

such that r1, r2 are defined on ]θ<, θ1(κ0, t0)[∪]θ2(κ0, t0), θ>[. Then
Em1 is defined by the union of the two curves parametrized by

]θ<, θ1(κ0, t0)[3 θ → r1(θ, t0)eiθ

]θ<, θ1(κ0, t0)[3 θ −→ r2(θ, t0)eiθ

with r1(θ1(κ0, t0), t0) = r2(θ1(κ0, t0), t0) , while Em2 arises in the
same fashion from

]θ2(κ0, t0), θ>[3 θ → r1(θ, t0)eiθ

]θ2(κ0, t0), θ>[3 θ −→ r2(θ, t0)eiθ

We will now deal with dominant coefficients having the same sign. Notice
that, in this case, no critical point vm is in {sin(pθ + κ0) sin(nθ − κ0) > 0},
however, every elementary sector for it is surrounded by two elementary sec-
tors for {sin(pθ + κ0) sin(nθ − κ0) > 0}. Let us say that these neighbouring
elementary sectors contains two consecutive critical points vm, vm+1.

Proposition 9.8. Let S ⊂ {sin(pθ + κ0) > 0, sin(nθ + κ0) > 0} elemen-
tary.

Then {fκ0 = t0} in this sector is given by an analytic curve

Em,m+1 :]θ<,θ>[→ Cv
θ −→ rEm,m+1(θ, t0)eiθ



A TOPOLOGICAL APPROACH TO THE FOURIER TRANSFORM 51

In particular:

• if t0 > 0, rEm,m+1 > rZ and

lim
θ→θ≶

rEm,m+1(θ) =

{
+∞ if sin

(
pθ≶ + κ0

)
= 0

(
sin(pθ≶+κ0)

nt0
)

1
n if sin

(
θ≶ − κ0

)
= 0

• if t0 < 0, rEm,m+1 < rZ and

lim
θ→θ≶

rEm,m+1(θ) =

{
(
− sin(nθ≶−κ0)

nt0
)

1
n if sin

(
pθ≶ + κ0

)
= 0

0 if sin
(
nθ≶ − κ0

)
= 0

Proof. It is clear from Lemma 9.4 that r∼(θ, t0) =: rEm,m+1(θ, t0) is a radial
parametrization for the level set in the sector.

The conditions at the extremes are determined in the same way as in the
last Proposition and by recalling the properties of rZ . �

Similarly one can prove

Proposition 9.9. Let S ⊂ {sin(pθ + κ0) < 0, sin(nθ + κ0) < 0} elemen-
tary.

Then {fκ0 = t0} in this sector is given by an analytic curve

Em,m+1 :]θ<,θ>[→ Cv
θ −→ rEm,m+1(θ, t0)eiθ

In particular:

• if t0 < 0, rEm,m+1 > rZ and

lim
θ→θ≶

rEm,m+1(θ) =

{
+∞ if sin

(
pθ≶ + κ0

)
= 0

(
sin(pθ≶+κ0)

nt0
)

1
n if sin

(
θ≶ − κ0

)
= 0

• if t0 > 0, rEm,m+1 < rZ and

lim
θ→θ≶

rEm,m+1(θ) =

{
(
− sin(nθ≶−κ0)

nt0
)

1
n if sin

(
pθ≶ + κ0

)
= 0

0 if sin
(
nθ≶ − κ0

)
= 0

10. Degeneration of steepest descent cycles

As explained in 6, the steepest descent path ΓΨ
m,κ0

relative to vm begins
and ends in S = {0,∞} as far as there is no complete flow line for the
downward flow equation connecting vm with another critical point. In this
section, we will determine a necessary and sufficient condition showing when
such degeneration arises.

10.1. A necessary and sufficient condition for degeneration. Assume
that there is a complete flow line for the downward gradient field associated
to Re Ψκ0 and connecting two critical points vm and vm′ . In this case,
and only in this case, the closures of ΓΨ

m,κ0
and ΓΨ

m′,κ0
intersect. We call

tripod the configuration given by their union, and denote it by Tm,m′ :=

ΓΨ
m,κ0

∪ ΓΨ
m′,κ0

. Assuming for example that Re Ψκ0(vm′) > Re Ψκ0(vm), the
tripod Tm,m′ is schematically pictured as
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vm
vm′

We will use the following notations

Definition 10.1. Recall that we introduced the map ν : Θ → κ = µ − nΘ.
Let us set

T rp(Ψκ) := {(m,m′) : Im Ψκ(vm) = Im Ψκ(vm′) and |m′ −m| = 1},
AStνT rp(Ψ) := {κ : Im Ψκ(vm) = Im Ψκ(vm+1) for some m},
AStT rp(Ψ) := ν−1(AStνT rp(Ψ)) ⊂ RΘ.

We write m ∈ T rp(Ψκ) to mean that (m,m′) ∈ T rp(Ψκ) for some m′. In
that case, we set Tm = Tm,m′.

Our aim is to prove the following

Proposition 10.2. There is a complete flow line for the downward gradient
field associated to Re Ψκ0 connecting two critical points vm and vm′ if and
only if κ0 ∈ AStνT rp(Ψ) and (m,m′) ∈ T rp(Ψκ0).

In order to prove this result, more information about the level sets of
Im Ψκ0 is needed, and we will deal with it in the following subsections.

10.2. Orientation. Since in this section we will exhibit explicit steepest
descent paths, we also need to provide them with an orientation.

As explained in section 6.4, we can give an orientation to the steepest
descent cycles ΓΨ

m,κ0
by choosing an eigenvector of the Hessian matrix of

gκ0 = Reψκ0 at the critical point (1, θm) and associated with its negative
eigenvalue.

Now we have

(10.1) Hess(gκ0)(1, θm) = (n+ p)

(
cos(pθm + κ0) − sin(pθm + κ0)
− sin(pθm + κ0) cos(pθm + κ0)

)
The determinant of this matrix is −(n+ p)2 with eigenvalues ±(n+ p). We
will use the eigenvector

(10.2)

sin
(
pθm+κ0

2

)
cos
(
pθm+κ0

2

)
relative to −(n+ p) to give an orientation to ΓΨ

m,κ0
.

Notice that, since Γm,κ0 can be parametrized by θ for almost all κ0, such
orientation only depends on the sign of cos(pθm + κ0).

10.3. The fundamental case: the tripod. In this subsection we will
show that steepest descent paths degenerate in the case prescribed by Propo-
sition 10.2. We will assume that n > p: remark about the case n < p will be
done later. Suppose that κ0 ∈ AStνT rp(Ψ) and (m,m + 1) ∈ T rp(Ψκ0).

Then one has sin(pθm + κ0) = sin(pθm+1 + κ0). Recalling that we set
ξm = (θm + θm+1)/2, this implies cos(pθm + κ0) = − cos(pθm+1 + κ0) and
cos(pξm + κ0) = 0.
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There are two possible configurations for this situation, depending on the
sign of sin(pξm + κ0). We depict them in Figure 3.

θm+1 ξm θm θm+1 ξm θm

Figure 3. The case sin(pξm + κ0) = 1 and sin(pξm + κ0) =
−1, respectively

Since they are clearly symmetric, it suffices to deal with one of them.
Suppose then that sin(pθm + κ0) = 1. This implies that cos(pθm + κ0) >

0. As explained above, it suffices to study what happens in the three distinct
sectors composing the picture above, where the sign of the sines is constant.

Using Propositions 9.6,9.8, we obtain the following pictures for the level
set {Im Ψκ0 = λ} with λ = Im Ψκ0(vm) = Im Ψκ0(vm+1).

Notice that the analytic curve in the central sector has to connect the
two branches coming from the first and the third sector by continuity, the
resulting picture is

θm+1 θm

Recalling that Re Ψκ0(vm) > Re Ψκ0(vm+1), one has that ΓΨ
m,κ0

and

ΓΨ
m+1,κ0

are

θm+1 θm

ΓΨ
m+1,κ0

ΓΨ
m,κ0

and the complete flow line is the part of the red region exiting from vm and
entering vm+1.

In the same way one can deal with the second configuration above. The
picture this time is

θm+1 θm

ΓΨ
m+1,κ0

ΓΨ
m,κ0
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In the case n < p, we can argue in the same way that tripods arises. The
only difference is that, instead of two endpoints being 0 and one ∞, the
tripod will have two endpoints at ∞ and one at 0.

10.4. Around the tripod. For future reference, it is useful to describe
what happens for κ0 ± ε for small ε > 0 and κ0 ∈ AStνT rp(Ψ) as above. Let

us start with the case sin(pξm + κ0) = 1.
Notice that

(1) for κ0 − ε one has sin(pθm + κ0 − ε) < sin(pθm+1 + κ0 − ε) and
cos(pξm + κ0 − ε) = − sin(pξm + κ0) sin(ε) < 0

(2) for κ0 + ε one has sin(pθm+1 + κ0 + ε) < sin(pθm + κ0 + ε) and
cos(pξm + κ0 + ε) = sin(pξm + κ0) sin(ε) > 0

The two configurations arising from κ0 ± ε are then as in Figure 5.

Figure 5. The situation for κ0 − ε and κ0 + ε, respectively

We have still to deal with the level set in three sectors: while the situation
in the second and the third is the same as in the presence of a tripod, the
analytic curve in the second sector does not degenerate in the critical point
vm+1 anymore.

Indeed, this is due to sin(pθm + κ0 ± ε) 6= sin(pθm+1 + κ0 ± ε).
Recalling Propositions Proposition 9.6,Proposition 9.8

(1) for κ0 − ε, since sin(pθm + κ0 − ε) < sin(pθm+1 + κ0 − ε), the steep-
est descent cycles Γm,κ0 ends in 0 without intersecting Γm+1,κ0−ε

(2) for κ0+ε, since sin(pθm+1 + κ0 + ε) < sin(pθm + κ0 + ε),the steepest
descent cycles Γm,κ0 ends in ∞ without intersecting Γm+1,κ0+ε

(a) κ0 − ε: first sector (b) κ0 + ε: first sector

By singling out the steepest descent paths, the complete pictures become

ΓΨ
m+1,κ0−ε

ΓΨ
m,κ0−ε

Figure 7. κ0 − ε: Steepest descent paths

Symmetrically, we obtain the description for sin(pξm + κ0) = −1.
In the case n < p, the situation can be dealt with in a similar way.

However, the result is symmetric with respect to κ0 ± ε.
This follows from the fact that the local situation for n < p at 0,∞ comes

from reversing in our picture model the role of upper and lower lines.
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ΓΨ
m+1,κ0+ε

ΓΨ
m,κ0+ε

Figure 8. κ0 + ε: Steepest descent paths

10.5. Orientation issues. Once we try to assign an orientation to the
steepest descent paths just constructed, we discover that the behaviour of
this choice depends on n ≶ p.

We can prove without problems that the orientation of the steepest de-
scent cycles does not change when crossing a tripodal direction, take for
example ΓΨ

m,κ0±ε.
By section 10.2, orientation depends on the sign of cos(pθm + κ0 ± ε),

hence it suffices to consider

(10.3) cos(pθm + κ0 + ε) cos(pθm + κ0 − ε) =
1

2
(cos(pθm + κ0) + cos(ε))

Notice now that cos(pθm + κ0) 6= −1: indeed

cos(pθm + κ0) = cos

(
p(ξm −

π

n+ p
) + κ0

)
=

cos(pξm + κ0) cos

(
p

π

n+ p

)
+ sin(pξm + κ0) sin

(
p

π

n+ p

)
=

− sin

(
p

π

n+ p

)
.

and the last term is different from −1 as far as n 6= p.
Then, for ε small enough, (10.3) is bigger than 0 and the orientation is

preserved. Same computations hold for ΓΨ
m+1,κ0±ε.

On the other hand, when we try to perform the same computation for
ΓΨ
m+1,κ0+ε and ΓΨ

m,κ0+ε (in order to see how they are oriented with respect

to each other on the same side of the tripodal direction κ0), we have

cos(pθm + κ0 + ε) cos(pθm+1 + κ0 + ε) =

1

2
[cos

(
p(θm + θm+1)

2
+ κ0 + ε

)
+ cos

(
p(θm − θm+1)

2

)
] =

1

2
[cos(pξm + κ0 + ε) + cos

(
p

π

n+ p

)
]

Notice that cos(pξm + κ0 + ε) → 0 as ε → 0 by property of ξm, hence the

sign of the last term depends uniquely on cos
(
p π
n+p

)
. Since p

n+p < 1, we

only have to check the following cases

cos

(
p

π

n+ p

)
> 0⇔ 0 < p

π

n+ p
<
π

2
⇔ 0 < 2p < n+ p⇔ n > p

cos

(
p

π

n+ p

)
< 0⇔ π

2
< p

π

n+ p
< π ⇔ n+ p < 2p < 2(n+ p)⇔ n < p

This means that
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• if n > p, the cycles are oriented in the same way with respect to the
variable θ.
• if n < p, they are oriented in a opposite way with respect with the

the variable θ.

10.6. Closed components of the tripod. Consider the families spanned
by the steepest descent paths ΓΨ

m,κ, given by

C± :=
⋃

0<ε�1

(
ΓΨ
m,κ0±ε × {κ0 ± ε}

)
⊂ Cu × Rκ.

Denote by ΓΨ
m,κ0± the fiber at κ0 of the closure of C±. This amounts to

consider the limit of the paths ΓΨ
m,κ for κ→ κ0±.

For m /∈ T rpνκ0
(Ψ), we have ΓΨ

m,κ0± = ΓΨ
m,κ0

.

For m ∈ T rpνκ0
(Ψ), the set ΓΨ

m,κ0± is a closed subset of the tripod Tm.
Assume (m,m + 1) ∈ T rpνκ0

(Ψ), so that Tm = Tm,m+1. (The case (m,m−
1) ∈ T rpνκ0

(Ψ) is similarly treated.)
The work done in the preceding subsection shows that, if n > p

(1) if sin(pξm + κ0) = 1, we have

ΓΨ
m+1,κ0± = ΓΨ

m+1,κ0

while ΓΨ
m,κ0± define two closed subsets of Tm,m+1 as pictured below

vm+1

vm

ΓΨ
m+1,κ0 ΓΨ

m+1,κ0
ΓΨ
m,κ0+ ΓΨ

m,κ0−

Figure 9. sin(pξm + κ0) = 1

(2) if sin(pξm + κ0) = −1, we have

ΓΨ
m,κ0± = ΓΨ

m,κ0

while ΓΨ
m+1,κ0± define two closed subsets of Tm,m+1. We can schemat-

ically picture the situation as

vm
vm+1

ΓΨ
m+1,κ0−ΓΨ

m+1,κ0+ ΓΨ
m,κ0

ΓΨ
m,κ0

Figure 10. sin(pξm + κ0) = −1

For the case n < p, the resulting pictures are symmetric to the ones above
with respect to the central tripod , moreover, the orientation of one of the
cycles is reversed.
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10.7. Borel-Moore homology for the tripod. We want to show that the
construction above provides a pair of basis for the Borel-Moore homology of
tripod.

The change of basis arising is of the utmost importance for the description
of the Stokes multipliers of the Fourier transform and will be described in
7.1.

Proposition 10.3. Let κ0 ∈ AStνT rp(Ψ), m ∈ T rp(Ψκ0) and Tm,m+1 the

associated tripod. Then the paths ΓΨ
m,κ0±,Γ

Ψ
m+1,κ0± are generators for the

Borel-Moore homology of Tm,m+1, i.e. the morphisms

HBM
1 (Γ̃Ψ

m,κ0±)⊕HBM
1 (Γ̃Ψ

m+1,κ0±)
∼−→ HBM

1 (Tm,m+1)

induced by the embeddings of ΓΨ
m,κ0± and ΓΨ

m+1,κ0± in Tm,m+1 are isomor-
phisms. Moreover, the associated change of basis is

(1) {
ΓΨ
m,κ0+ 7→ ΓΨ

m,κ0− − ΓΨ
m+1,κ0−

ΓΨ
m+1,κ0+ 7→ ΓΨ

m+1,κ0−

if sin(pξm + κ0) = 1
(2) {

ΓΨ
m,κ0+ 7→ ΓΨ

m,κ0−
ΓΨ
m+1,κ0+ 7→ ΓΨ

m+1,κ0− + ΓΨ
m,κ0−

if sin(pξm + κ0) = 1

Proof. The embeddings give rise to the following distinguished triangles

RΓc(Tm,m+1) −→ RΓc(Γ̃
Ψ
m,κ0±)⊕RΓc(Γ̃

Ψ
m+1,κ0±) −→ RΓc(Γ̃

Ψ
m,κ0± ∩ Γ̃Ψ

m+1,κ0±)
+1−−→

Observe that ΓΨ
m,κ0± ∩ ΓΨ

m,κ0± is diffeomorphic to a semi-closed interval,
hence the last term of such triangles is 0. We obtain two isomorphisms

(10.4) RΓc(Tm,m+1)
∼−→ RΓc(Γ̃

Ψ
m,κ0−)⊕RΓc(Γ̃

Ψ
m+1,κ0−)

Passing to the dual, the first statement follows.
We have already summarized the situation for sin(pξm + κ0) = ±1 in

Fig. 9, 10: one obtains the changes of bases stated by comparing the paths
on the left to the ones on the right. �

10.8. Level set of Im Ψκ0 for a critical value with Re Ψκ0 negative.
Our goal in this subsection is to prove the following result.

Lemma 10.4. The steepest descent path ΓΨ
m,κ0

associated to a critical point
vm with cos(pθm + κ0) ≤ 0 has as endpoints 0 and ∞.

Proof. (i) First, suppose Re Ψκ0(vm) = −( 1
n + 1

p), i.e., cos(pθm + κ0) = −1.

We are interested in the zero level set of Im Ψκ0 , which is

θm
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Since steepest descent paths connects regions where Re Ψκ0 tends to −∞
and these region are represented here as inner dashed segments, we argue
that ΓΨ

m,κ0
is the straight vertical line connecting 0 and∞ along the direction

θm. The result then holds.

(ii) Suppose now that sin(pθm + κ0) < 0. It is easy to see that one starting
point for ΓΨ

m,κ0
is 0 by checking the possible configurations in a sector around

θm:

θm θm θm θm

In particular, the last picture shows the result for θm nearest to α such
that sin(pα+ κ0) = 0.

In general, however, the sector between θm and such an α is decomposed
in the union of several elementary sectors.

For the ones which have not α as right side, we have two possible config-
urations:

θm θm

It is follows from (9.8) that there is only one branch of the level set in the
first case.

Concerning the second case, notice the following: ∀θm′ satisfying α <
θm < θm′ , we have

sin(pθm′ + κ0) > sin(pθm + κ0),

which is a consequence of the fact that sin(pθ + κ0) < 0 is increasing in the
model going from left to right.

This means that the resulting picture for the level set around such θm′ is

These last pictures show that ΓΨ
m,κ0

starting at 0 in the elementary sector
containing θm never stops in one of the intermediate elementary sectors
before α.

Concerning the sectors with right side α, we have the following configu-
rations and branches of the level set.
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The steepest descent cycle being the upper one, it always has an endpoint
at ∞ tangent to the direction α.

The proof is symmetric for sin(pθm + κ0) > 0.
�

10.9. Proof of Proposition 10.2.

Proof. The study of the tripod perfomed in section 10.3 show the sufficiency.
Concerning the necessity, assume sin(pθm + κ0) = sin(pθm′ + κ0) with

m′ 6= m + 1. As already remarked, this means that cos
(
p
θm+θm′

2 + κ0

)
=

cos
(
p(
θm+θm′

2 + π) + κ0

)
= 0 and cos(pθm + κ0) > 0, cos(pθm+1 + κ0) < 0.

We have two possibilities for
θm+θm′

2 ( the same holds for
θm+θm′

2 + π):

(1) it is equal to some θm̄ ∈ Ξ,

(2) it is equal to some ξm̄ ∈ Ξ̃

In the first case, ΓΨ
m̄,κ0

is an analytic curve connecting 0 and ∞ as a
consequence of Lemma 10.4: since cos(pθm + κ0), cos(pθm+1 + κ0) 6= 0, m̄ 6=
m,m′.

In the second case, there is the tripod Tm̄,m̄+1: notice that under the
assumption m′ 6= m+ 1, m 6= m̄ and m′ 6= ¯m+ 1.

In both cases, it is not possible for {fκ0 = ( 1
n + 1

p) sin(pθm + κ0) =: λ} to

intersect such paths, since they are contained in a critical level set relative
to critical values different from λ.

This prevent the steepest descent paths relative to vm and vm′ to degen-
erate.

�

11. Sectorial representation

Recall that our object of study is

K = Rq̃3!(E
−Ψ̃ ⊗ p̃3

−1π−1F )[1]

with q3 : Cv ×C×ζ → C×ζ standard projection, p3 : Cv ×Cζ → Cu defined by

p3(v, ζ) = (vζ, ζ) and

Ψ̃(v, ζ) = αζ−n(v−n +
n

p
vp).

with |α| = β. We can now prove that K admits a trivialization in sectors
delimited by directions inAStT rp(Ψ) with the exponential factors prescribed
from stationary phase formula.

We recall that the perverse sheaf F is of the form j!L for some local system
L on C×u and j : C×u → Cu the open inclusion. We will denote by V the
k-vector space generic stalk of L.



60 DAVIDE BARCO

Recall that we defined

Ψ̃m(ζ) := Ψ̃(vm, ζ) = α(1 +
1

p
)ζ−ne−inθm

in remark 8.2.

Theorem 11.1. Let Σ ⊂ C×ζ be an open sector centered in 0 delimited by two

consecutive elements Θ1,Θ2 ∈ AStT rp(Ψ). Then we have an isomorphism

in EbR−c(kC×ζ,∞
)

π−1kΣ ⊗K
σ−→
∼
π−1kΣ ⊗

n+p−1⊕
m=0

(V ⊗ E−Ψ̃m)

Proof. We will use the following terminology: if f : X → Y is a function
and A ⊂ X, y ∈ f(A), we will call fiber of A at y the set f−1(y) ∩ A and
denote it by Ay. We will be mainly concerned with fibers of the function q̃3.

Denote by Z the closed subset {Re Ψ̃ ≤ t} ∩ q̃−1
3 (Σ̃× R) ⊂ C×v × C×ζ × R

and let κi = ν(Θi) for i = 1, 2.
For ζ0 = ε0e

iΘ0 ∈ C×ζ , consider the flow lines of the downward gradient

equation (6.5) in C×v \ {vm : m = 0, ..., n+ p− 1} associated to Re Ψ̃ζ0 with
the limit condition

lim
t→−∞

v(t) = vm.

We have already noticed that such cycles for Re Ψ̃ζ0 are the same for the
ones for Re Ψκ0 , where κ0 = ν(Θ0).

Consider
A :=

⋃
ζ∈Σ

ΓΨ
m,ν(Θ) × {ζ}

the family spanned by the flow lines as a subset of C×v × C×ζ .

A is a subset of the connected component of the level set

Im(Ψ̃− Ψ̃m)(v, ζ) = 0

in C×v × Σ containing {vm} × Σ.
This closed subset is the family spanned by the components of the level

sets Im(Ψζ(v) − Ψζ(vm)) = 0 containing vm, intersections of two analytic
curves at vm (see Lemma 6.4).

If we remove {vm}×Σ, we then obtain 4 connected components of dimen-
sion 3, the families spanned by the 4 branches of analytic curves departing
from vm.

In this framework, A is obtained by taking the two connected components
relative to the negative eigenspace of the Hessian of

Re Ψ̃(v, ζ)

at (vm, ζ) with ζ ∈ Σ and rejoining {vm} × Σ.
Consider now Ā closure of A.
Since there are no limit points for A in q3(Σ) by the above description,

we can argue that q3(Σ) ∩ Ā = A, i.e. that the fiber of Ā at ζ0 ∈ Σ is then
exactly the steepest descent path ΓΨ

m,ν(Θ0).

From the construction in section 10.6, it is clear that the fiber of Ā at ζ
with arg(ζ) = Θ1,Θ2 consists of the limit cycles SΓm,κ1,+,SΓm,κ2,−.



A TOPOLOGICAL APPROACH TO THE FOURIER TRANSFORM 61

Denote by Γm the closed subset of C×v ×C×ζ ×R given by Ā×R and define

Wm = Γm ∩ Z
From the considerations made about A, it is easy to notice that its fiber at
(ζ0, t0) is

(11.1) (Wm)(ζ0,t0) =


SΓΨ

m,ν(Θ0) Ψν(Θ0)(vm) ≤ t0εn0
nβ and Θ1 < Θ0 < Θ2

SΓΨ
m,κ1,+ Ψν(Θ0)(vm) ≤ t0εn0

nβ and Θ0 = Θ1

SΓΨ
m,κ2,− Ψν(Θ0)(vm) ≤ t0εn0

nβ and Θ0 = Θ2

∅ otherwise.

Denote by W the union
n+p−1⋃
m=0

Wm.

Notice that, for i = 1, 2 and m ∈ T rpκi , we have

SΓΨ
m,κi,± ∪ SΓΨ

m+1,κi,± = Tm,m+1 = SΓΨ
m,κi ∪ SΓΨ

m+1,κi

Consider the following exact sequence:

0→ kZ\W → kZ → kW → 0

which induces the distinguished triangle

Rq̃3!(kZ\W
+
⊗ p̃3

−1π−1F )[1]→ Rq̃3!(kZ
+
⊗ p̃3

−1π−1F )[1]→
σ−→Rq̃3!(kW

+
⊗ p̃3

−1π−1F )[1]
+1−−→

Since ∀(ζ0, t0) ∈ Σ̄× × R
(Z \W)(ζ0,t0) =Z(ζ0,t0) \W(ζ0,t0) =

={Re Ψ̃(v, ζ0) ≤ t0} \
⋃
m:

Re Ψ̃(vm,ζ0)≤t0

SΓΨ
m,ν(Θ0)

={Re Ψν(Θ0) ≤
t0ε

n
0

nβ
} \

⋃
m:

Re Ψν(Θ0)(vm)≤ t0ε
n
0

nβ

SΓΨ
m,ν(Θ0)

is cohomologically trivial by section 6.5, we obtain

(Rq̃3!kZ\W)(ζ0,t0) = 0

Thus

Rq̃3!(kZ\W ⊗ p̃−1
3 π−1F )[1] ' 0

and σ is a isomorphism.
We moreover have the following exact sequence

0→ kW →
⊕
m

kWm →
⊕
m,m′

kWm∩Wm′ → 0

inducing the following distinguished triangle

Rq̃3!(kW ⊗ p̃−1
3 π−1F )[1]

η−→
⊕
m

Rq̃3!(kWm ⊗ p̃−1
3 π−1F )[1]→

→
⊕
m,m′

Rq̃3!(kWm∩Wm′ ⊗ p̃
−1
3 π−1F )[1]

+1−−→



62 DAVIDE BARCO

Notice that

(Wm ∩Wm′)(ζ0,t0) =



⋃
m∈T rpκ1

SΓΨ
m,κ1− ∩ SΓΨ

m+1,κ1−⋃
m∈T rpκ2

SΓΨ
m,κ2+ ∩ SΓΨ

m+1,κ2+

∅ otherwise

Since this set is cohomologically trivial (see section 10.6), we have

(Rq̃3!kWm∩Wm′ )(ζ0,t0) = 0,

thus

Rq̃3!(kWm∩Wm′ ⊗ p̃
−1
3 π−1F )[1] ' 0

and η is an isomorphism.
Then, η and σ induces an isomorphism at the level of enhanced sheaves

π−1kΣ̄ ⊗K → π−1kΣ̄ ⊗
⊕
m

Rq̃3!(kWm ⊗ p̃−1
3 π−1F )[1]

In order to conclude, notice that

q̃3(Wm) =

{
(ζ0, t0) ∈ Σ̄× R if Re Ψ̃(vm, ζ0) ≤ t0 =

∅ otherwise,

so

q̃3(Wm) ={(ζ, t) ∈ Σ̄× R : Re Ψ̃(vm, ζ) ≤ t} =

={Re Ψ̃m ≤ t} ∩ π−1Σ̄.

We get then by (11.1) that q̃3 restricted to Wm is a trivial fiber bundle on

{Re Ψ̃m ≤ t} ∩ Σ̄ with fiber R.
Indeed we can construct an isomorphism

B : R× ({Re Ψ̃m ≤ t} ∩ π−1(Σ̄))
∼−→Wm

via the parametrization of ΓΨ
m,Θ0

at each (ζ0, t0) ∈ {Re Ψ̃m ≤ t} ∩ π−1(Σ̄).
Consider the commutative diagram

R× ({Re Ψ̃m ≤ t} ∩ π−1(Σ̄))

Φ̃(Wm) Wm {Re Ψ̃m ≤ t} ∩ π−1(Σ̄)

Cu × C×ζ × R Cv × C×ζ × R C×ζ × R

B
π̄

∼

i2

∼
q̃3|

i i1

Φ̃

q̃3

where the isomorphisms of the upper left triangle are induced by B and
Φ̃, i, i1, i2 denote the closed embeddings and π̄ the standard projection.
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Then

Rq̃3!(kWm ⊗ p̃−1
3 π−1F )[1] '

Rq̃3!R(Φ̃−1)!(Φ
−1)−1(kWm ⊗ p̃−1

3 π−1L)[1] '
Rq̃2!(kΦ(Wm) ⊗ p̃−1

2 π−1L)[1] '
Rq̃2!i1!((p̃

−1
2 π−1L)|Φ(Wm)

)[1].

where q̃2 = Φ̃−1 ◦ q̃3 and p̃2 = Φ̃−1 ◦ p̃3 are the standard projections (see 8).
Now p−1

2 π−1L is the local system on C×u × C×ζ × R with stalk V . Since the

fiber of Φ(Wm) with respect to the projection to {Re Ψ̃m ≤ t} ∩ π−1(Σ̄) is
isomorphic to R via B, we can trivialize L on each such fiber and hence on
Φ(Wm).

Rq̃2!i1!(p̃
−1
2 π−1L)|Φ(Wm)

[1] ' Rq̃2!i1!(V|Φ(Wm)
)[1] '

' Rq̃2!(kΦ(Wm) ⊗ V )[1] ' Rq̃2!kΦ(Wm)[1]⊗ V

It remains to study Rq̃2!kΦ(Wm)[1].

Rq̃2!kΦ(Wm)[1] ' Rq̃2!RΦ̃!Φ̃
−1kΦ(Wm)[1] '

Rq̃3!kWm [1] ' Rq̃3!i!(k|Wm )[1] '
Rq̃3!i!RB!B

−1(k|Wm )[1] ' R(q̃3 ◦ i ◦B)!k|R×({Re Ψ̃m≤t}∩π−1(Σ̄))
[1] '

R(i1 ◦ π)!k|R×({Re Ψ̃m≤t}∩π−1(Σ̄))
[1] ' i1!Rπ!k|R×({Re Ψ̃m≤t}∩π−1(Σ̄))

[1] '

i1!k|{Re Ψ̃m≤t}∩π−1(Σ̄)
' k{Re Ψ̃m≤t}∩π−1(Σ̄) ' π

−1kΣ̄ ⊗ E−Ψ̃m .

We then obtain the desired isomorphism σΘ2
Θ1

at the level of enhanced
sheaves

π−1kΣ̄ ⊗K
σ−→
∼
π−1kΣ̄ ⊗

⊕
m

(V ⊗ E−Ψ̃m)

�

By convolution with kEC×ζ,∞
we deduce the isomorphisms:

(11.2) σE : π−1kΣ̄ ⊗K
∼−→ π−1kΣ̄ ⊗

n+p−1⊕
m=0

(E−Ψ̃m ⊗ V )[1]

12. Behaviour at an anti-Stokes direction

In this section we will describe the Stokes multipliers associated to the
sectorial representation of Theorem 11.1.

12.1. When do the tripods occur? Our goal in this subsection is to
achieve a better understanding of the conditions κ ∈ AStνT rp(Ψ) and m ∈
T rp(Ψκ), identifying the presence of tripods.

Recall that we assume (n, p) = 1. This implies (p, n+ p) = 1 and hence,
by Bezout identity, ap + b(n + p) = 1 for some a, b ∈ Z. Note that such an
a is unique modulo n+ p, and its class is the inverse of p in Z/(n+ p)Z.
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Proposition 12.1. We will distinguish three cases, according to the class
of n+ p modulo 4. Let a be as above.

(i) Assume that n+ p is odd. Then AStνT rp(Ψ) = {κq : q ∈ Z}, with

κq =
2q + 1

2(n+ p)
π.

The set T rp(Ψκq) has a single element (mν
q ,m

ν
q + 1), with

mν
q = a

n+ p+ 1

2
(
n− p− 1

2
− q) (mod n+ p).

(ii) Assume that n+p = 0 (mod 4). Then AStνT rp(Ψ) = {κq : q ∈ Z}, with

κq =
2q + 1

n+ p
π.

The set T rp(Ψκq) is the set with two elements (mν,1
q ,mν,1

q + 1) and

(mν,2
q ,mν,2

q + 1), with

mν,1
q = a(

n− p− 2

4
− q) (mod n+ p),

mν,2
q = a(

n− p− 2

4
− q) +

n+ p

2
(mod n+ p).

(iii) Assume that n+p = 2 (mod 4). Then AStνT rp(Ψ) = {κq : q ∈ Z}, with

κq =
2q

n+ p
π.

The set T rp(Ψκq) is the set with two elements (m1
q ,m

1
q+1) and (m2

q ,m
2
q+

1), with

m1
q = a(

n− p
4
− q) (mod n+ p),

m2
q = a(

n− p
4
− q) +

n+ p

2
(mod n+ p).

Proof. Recall that κ ∈ AStνT rp(Ψ) means that Im Ψκ(vm) = Im Ψκ(vm+1)
for some m. This is equivalent to

sin(pθm + κ) = sin(pθm+1 + κ),

which in turn is equivalent to

sin

(
p
θm − θm+1

2

)
cos

(
p
θm + θm+1

2
+ κ

)
= 0.

Since (θm − θm+1)/2 = π/(n + p), the condition sin
(
p θm−θm+1

2

)
= 0 is

equivalent to p = 0 (mod n+ p). This is never satisfied since (p, n+ p) = 1.
We are thus left with the condition

cos

(
p
θm + θm+1

2
+ κ

)
= 0.

Since (θm + θm+1)/2 = (2m+ 1)π/(n+ p), this is equivalent to

κ = −p(2m+ 1)

n+ p
π +

π

2
+ hπ = [n+ p− 2p(2m+ 1) + 2(n+ p)h]

π

2(n+ p)
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for some h ∈ Z. In other words, κ = d π
2(n+p) for d ∈ Z satisfying

2p(2m+ 1) = n+ p− d (mod 2(n+ p))

for some m or, equivalently

(12.1) 4pm = n− p− d (mod 2(n+ p))

(i) If n+ p is odd, also n− p is odd. A necessary condition for (12.1) is that
d = 2q + 1 is also odd. Let us show that this condition is also sufficient by
providing an m = mq such that

2pmq =
n− p− 1

2
− q (mod n+ p).

Recall that a is an inverse of p modulo n + p, and note that 2n+p+1
2 = 1

(mod n+ p). Then we have

mq = a
n+ p+ 1

2
(
n− p− 1

2
− q) (mod n+ p).

(ii) We assume now that n+p = 0 (mod 4). In particular n+p is even, and
since (n, p) = 1 this implies that both n and p are odd. Since n+ p is even,
(12.1) implies that n− p− d = 0 (mod 4). Since p is odd, 2p = 2 (mod 4)
and hence n + p = 0 (mod 4) implies n − p = 2 (mod 4). Thus, we have
d = 2 (mod 4), or equivalently d = 2(2q + 1).

In order to show that this condition is also sufficient, it is enough to
provide a solution m = mq of

pmq =
n− p− 2

4
− q (mod

n+ p

2
).

Since a is an inverse of p also modulo (n+ p)/2, the solution is

mq = a(
n− p− 2

4
− q) (mod

n+ p

2
).

From this, one gets the solutions m = m1
q and m = m2

q of

2pmi
q =

n− p− 2

2
− 2q (mod n+ p)

given by

m1
q = a(

n− p− 2

4
− q) (mod n+ p),

m2
q = a(

n− p− 2

4
− q) +

n+ p

2
(mod n+ p).

(iii) The proof for the case n+ p = 2 (mod 4) is similar. �

Corollary 12.2. With the same notation of 12.1, we have

(1) if n+ p odd

mq+1 −mq = −a(
n+ p+ 1

2
),

(2) if n+ p even

mi
q+1 −mi

q = −a
for i = 1, 2.
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Proposition 12.1 extends to the following results by using the correspon-
dence ν.

Proposition 12.3. We will distinguish three cases, according to the class
of n+ p modulo 4. Let a be as above.

(i) Assume that n+ p is odd. Then AStT rp(Ψ) = {Θh : h ∈ Z}, with

Θh =
µ

n
+

2h+ 1

2n(n+ p)
π.

The set T rp(Ψν(Θh)) has a single element (mh,mh + 1), with

mh = a
n+ p+ 1

2
(
n− p+ 1

2
+ h) (mod n+ p).

(ii) Assume that n + p = 0 (mod 4). Then AStT rp(Ψ) = {Θh : h ∈ Z},
with

Θh =
µ

n
+

2h+ 1

n(n+ p)
π.

The set T rp(Ψν(Θh)) is the set with two elements (m1
h,m

1
h + 1) and

(m2
h,m

2
h + 1), with

m1
h = a(

n− p+ 2

4
+ h) (mod n+ p),

m2
h = a(

n− p+ 2

4
+ h) +

n+ p

2
(mod n+ p).

(iii) Assume that n + p = 2 (mod 4). Then AStT rp(Ψ) = {Θh : h ∈ Z},
with

Θh =
µ

n
+

2h

n(n+ p)
π.

The set T rp(Ψν(Θh)) is the set with two elements (m1
h,m

1
h + 1) and

(m2
h,m

2
h + 1), with

m1
h = a(

n− p+ 4

4
+ h) (mod n+ p),

m2
h = a(

n− p+ 4

4
+ h) +

n+ p

2
(mod n+ p).

Proof. Clearly the given sets are the inverse images via ν of AStνT rp. For

the description of T rp(Ψν(Θh)), it suffices to notice the following

ν(
µ

n
+

2h+ 1

2n(n+ p)
π) = − 2h+ 1

2n(n+ p)
π

ν(
µ

n
+

2h+ 1

n(n+ p)
π) = − 2h+ 1

n(n+ p)
π

ν(
µ

n
+

2h

n(n+ p)
π) = − 2h

n(n+ p)
π

In particular, we can pass from the parameter q for AStνT rp to h by q = −1−
h. The results then follows by applying this substitution in Proposition 12.1.

�

The following corollary is immediate.

Corollary 12.4. With the same notation of 12.3, we have
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(1) if n+ p odd

mh+1 −mh = a(
n+ p+ 1

2
),

(2) if n+ p even

mi
h+1 −mi

h = a

for i = 1, 2.

12.2. Tripodal directions and anti-Stokes directions. Recall that, with
the set {Ψ̃m} of exponential factors of K, we have the classical sets of Stokes
and anti-Stokes directions.

The following result holds

Proposition 12.5. We have AStT rp(Ψ̃) ⊂ ASt({Ψ̃m}), with equality when
n+ p is odd.

Proof. Recall that

ASt({Ψ̃m}) = {Θ: Im(Ψ̃m − Ψ̃m′)(εe
iΘ) = 0, ε→ 0}

and hence it all revolves about computing

Im(ε−ne−inΘ(eipθm − eipθm′ )) = 0

Im ei(pθm+µ−nΘ) = Im ei(pθm′+µ−nΘ)

sin(pθm + κ) = sin(pθm′ + κ)

(12.2)

Recalling the definition of AStT rp(Ψ̃), the first result follows.
Notice that the last equation in (12.2) is equivalent to

sin

(
p
θm − θm′

2

)
cos

(
p
θm + θm′

2
+ κ

)
= 0

It is straightforward to notice that the solutions κ only depends on m+m′

(mod n+ p).
Let now n+ p be odd, notice that the equation

m+m′ = 2m̄+ 1 (mod n+ p)

always has one and only one solution m̄ (mod n+ p). �

12.3. Stokes matrices. We are now ready to show how the sectorial rep-
resentations behave at a tripodal direction.

Consider then Θh,Θh−1,Θh+1 ∈ AStν(Ψ).
Denote by Σh (respectively Σh+1) the sector delimited by Θh−1,Θh (re-

spectively Θh,Θh+1) and by σh, σh+1 the isomorphisms coming from Theo-
rem 11.1 over Σh,Σh+1 respectively.

If we denote by lh the ray with argument Θh, ?? gives us the following
diagram
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π−1
2 klh ⊗

n+p−1⊕
m=0

(E−Ψm ⊗ V )

π−1
2 klh ⊗K

π−1
2 klh ⊗

n+p−1⊕
m=0

(E−Ψm ⊗ V )

αh

σh

σh+1

Due to natural isomorphism

EndEb(kC×
ζ,∞

)(π
−1
2 klΘh ⊗

n+p−1⊕
m=0

(E−Ψm ⊗ V )) ⊂ Endk(

n+p−1⊕
m=0

V )

the morphism αh is determined by the linear map it induces on a stalk at a
point

(ζ0, t0) ∈ π−1
2 (lh) ∩

n+p−1⋂
m=0

{t− Re Ψm(ζ) ≥ 0}.

In particular, we will choose (eiΘh , t0), which satisfies the requirement above
for t0 big enough.

Moreover, in order to keep track of the different copies of V constituting
V n+p, we will use the following notation. Denote by 1m the complex vector
space of rank one with chosen basis element 1m, we will write

V n+p =

n+p−1⊕
m=0

(1m ⊗ V )

Recall that, by section 6.5

K(ζ0,t0) = RΓc(Cv,kZ(ζ0,t0)
⊗ Φ−1

ζ0
L)[1] ' RΓc(Cv,kSΓΨ

ν(Θh)
⊗ Φ−1

ζ0
L)[1]

where we denoted by SΓΨ
ν(Θh) the set

n+p−1⋃
m=1

SΓΨ
m,ν(Θh).

On the level of stalks σh, σh+1 give rise to isomorphisms σh, σh+1

RΓc(Cv,kSΓΨ
ν(Θh)

⊗ Φ−1
ζ0
L)[1]

σh−→
∼

n+p−1⊕
m=0

(1m ⊗ V )

RΓc(Cv,kSΓΨ
ν(Θh)

⊗ Φ−1
ζ0
L)[1]

σh+1−−−→
∼

n+p−1⊕
m=0

(1m ⊗ V ).

Recall that such morphisms are induced by the embedding of the curves
SΓΨ

m,ν(Θh)± in SΓΨ
Θh

.

The morphism αh can then be recovered as σh+1 ◦ σ−1
h .

The easiest way to represent the morphism αh is to pass to the dual side
and consider the Borel-Moore homology.
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By applying what described in Lemma 7.1, we can consider the dual of
the morphisms above:

HBM
1 (SΓΨ

ν(Θh), (Φ
−1
ζ0
L)∗)

σ∗h←−
∼

n+p−1⊕
m=0

(1∗m ⊗ V ∗)

HBM
1 (SΓΨ

ν(Θh), (Φ
−1
ζ0
L)∗)

σ∗h+1←−−−
∼

n+p−1⊕
m=0

(1∗m ⊗ V ∗).

Our aim is then to describe, using definitions and results from section 12.1,
the family of morphisms {α∗h = (σ∗h+1)−1 ◦ σ∗h : Θh ∈ AStT rp(Ψ)}

12.4. Stokes matrices for L = kC×u . Before computing the Stokes matri-
ces in the case of a generic local system L, let us show how they look like
when considering the trivial local system kC×u .

Notice that, in this particular case, Φ−1
ζ0

kC×u = kC×v and the morphism

σh, σh+1 are associated with the two bases {ΓΨ
m,Θh± : m = 0, ..., n + p − 1}

of HBM
1 (SΓΨ

ν(Θh).

Proposition 12.6. (i) Let n + p odd, the morphism α∗h comes from the

element in Endk(
n+p−1⊕
m=1

(1∗m ⊗ V ∗)) given, ∀h = 0, ..., 2n(n+ p)− 2, by

the assignments
1∗m 7→ 1∗m for m 6= mh,mh+1,

1∗mh 7→ 1∗mh + 1∗mh+1,

1∗mh+1 7→ 1∗mh+1.

if h is even and sin(pθmh − nΘh) = 1 or if h odd and sin(pθmh − nΘh) =
−1 and 

1∗m → 1∗m for m 6= mh,mh+1,

1∗mh → 1∗mh
1∗mh+1 → 1∗mh+1 − 1∗mh

if h is odd and sin(pθmh − nΘh) = 1 or if h even and sin(pθmh − nΘh) =
−1.

The morphism α2n(n+p)−1 is defined by composing the morphism ob-

tained by applying the rule above with (−1)ndiag((T ∗)−1).

(ii) Let n+p even, the morphism α∗h comes from the element in Endk(
n+p−1⊕
m=1

(V ∗⊗

1
∗
m)) defined, ∀h = 0, ..., n(n+ p)− 2, by the assignment

1∗m 7→ 1∗m if m /∈ {mi
h,m

i
h + 1 : i = 1, 2}

1∗
m1
h
7→ 1∗

m1
h

+ 1∗
m1
h+1

1∗
m1
h+1
7→ 1∗

m1
h+1

1∗
m2
h
7→ 1∗

m2
h

1∗
m2
h+1
7→ 1∗

m2
h+1
− 1∗

m2
h
.
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if sin
(
pθm1

h
− nΘh

)
= +1 or by the assignment

1∗m 7→ 1∗m if m /∈ {mi
h,m

i
h + 1 : i = 1, 2}

1∗
m1
h
7→ 1∗

m1
h

1∗
m1
h+1
7→ 1∗

m1
h+1
− 1∗

m1
h

1∗
m2
h
7→ 1∗

m2
h,+
⊗ v∗ + 1∗

m2
h+1

1∗
m2
h+1
7→ 1∗

m2
h+1

.

if sin
(
pθm1

h
− nΘh

)
= −1.

The morphism αn(n+p)−1 is defined by composing the morphism ob-

tained by applying the rule above with (−1)ndiag((T ∗)−1).

Proof. For all m 6= mh,mh + 1, we have ΓΨ
m,ν(Θh)− = ΓΨ

m,ν(Θh)+ and no

interaction with other steepest descent paths, since they are all disjoint.
Hence the morphism α∗h is the identity on

⊕
m6=mh,mh+1

1m.

Given the construction made in Theorem 11.1, the morphisms σ∗h, σ
∗
h+1

can be read, at the level of tripod Tmh,mh+1, as

HBM
1 (SΓΨ

mh,Θh−,kC×v )⊕HBM
1 (SΓΨ

mh+1,Θh−,kC×v )

HBM
1 (Tmh,mh+1,kC×v )

HBM
1 (SΓΨ

mh,Θh+,kC×v )⊕HBM
1 (SΓΨ

mh+1,Θh+,kC×v )

σ∗h

σ∗h+1

From 10.3 that we already know that the arising change of basis (which
is αh) depends on the sign of sin(pθmh + ν(Θh)).

Let us use the explicit description given in Proposition 12.3 to achieve a
better knowledge of the sign condition and compute sin(pθmh + ν(Θh)) in
term of sin(pθm0 + ν(Θ0))

Recall the Bezout identity for p, n+ p, ap+ b(n+ p) = 1. Suppose at first
that n+ p is odd, we have

pθm0+hac + ν(Θh) = p
2(m0 + ha(n+p+1

2 ))

n+ p
π + ν(Θ0)− h

n+ p
π =

= pθm0 + ν(Θ0) + h
ap(n+ p+ 1)− 1

n+ p
π =

= pθm0 + ν(Θ0) + h
(n+ p+ 1)(1− b(n+ p))− 1

n+ p
π

pθm0 + ν(Θ0) + h
n+ p+ 1 + b(n+ p)(n+ p+ 1)− 1

n+ p
π =

= pθm0 + ν(Θ0) + h
(n+ p)(1− b(n+ p+ 1))

n+ p
π

pθm0 + ν(Θ0) + h(1− b(n+ p)− b)π = pθm0 + ν(Θ0) + h(ap− b)π.

Thus
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sin(pθm0+hac + ν(Θh)) = (−1)q(ap−b) sin(pθm0 + ν(Θ0))

If we reduce the Bezout identity ap + b(n + p) = 1 modulo 2, we obtain
ap + b(n + p) = ap + b = 1 (mod 2) and hence ap − b = 1 (mod 2). The
value of the term then only depends on the parity of h and on the value of
sin(pθm0 + ν(Θ0)).

The last statement about h = 2n(n + p) is due to the fact that, after a
complete turn around 0 with the argument Θ, we have performed n turns
around 0 in the variable κ.

It is then sufficient to recall that after a turn in the variable κ, the steepest
descent paths reverses orientation.

If n+ p is even, we have to perform the following computations

pθmih
+ ν(Θh) = p

2(mi
0 + ha)

n+ p
+ ν(Θ0)− 2h

n+ p
π =

= pθmi0
+ κ0 + 2q

ap− 1

n+ p
π = pθmi0

+ κ0 − 2qbπ.

Hence we have

sin
(
pθmih

+ ν(Θh)
)

= sin
(
pθmi0

+ ν(Θ0)
)
.

Since m2
0 −m1

0 = n+p
2 (mod n+ p) and p is odd in this case

sin
(
pθm2

0
+ ν(Θ0)

)
= sin

(
pθm1

0
+ ν(Θ0) + pπ

)
= − sin

(
pθm1

0
+ ν(Θ0)

)
.

and the form of the morphism depends only on the sign of sin
(
pθm1

0
+ ν(Θ0)

)
.

The last statement about α∗n(n+p)−1 follows in the same way as in the odd
case.

�

12.5. Stokes multipliers for a generic local system L. Recall that it
is classical to represent the local system L as the pair (V, T ) of its local
sections at a point different from 0 and the monodromy action T . Since
we need to deal with the Borel-Moore homology with coefficient in the dual
system L∗ of L, we recall that the pair associated with L∗ is given by

(1) the generic fiber of L∗, V ∗

(2) the monodromy T ∗ which is characterized by the condition

〈T ∗w, Tv〉 = 〈w, v〉

for all v ∈ V and w ∈ V ∗

In particular, one can argue from the last condition that the transpose of
the monodromy isomorphism T is (T ∗)−1.

In order to deal with this case, we need to make some adjustments. Recall
that we introduced the diffeomorphism

Φ : Cv × C×ζ → Cu × C×ζ
(v, ζ)→ (vζ, ζ)
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in order to ease the computations involved with the descriptions of the steep-
est descent paths. When dealing with the contribution to the Stokes multi-
pliers given by the local system L and its monodromy, it is however easier
to perform computations in Cu.

Therefore, we will consider all objects introduced so far on Cu via the

blow up Φ. In particular we can use the ζ-fiber of Φζ(v) = vζ to define ˜ΓΨ
m,Θ

as Φζ(Γ
Ψ
m,Θ).

Note that the Γ̃Ψ
m,Θ are then of steepest descent for Re Φ∗(Ψζ) and are

attached to the critical point ei(θm+Θ).
All results given up to now can be rephrased in this framework without

changes.
Under this change, the stalk we need to study becomes

Kζ0,t0 = RΓc(Cv,kSΓΨ
m,Θ
⊗ Φ−1

ζ0
L)[1] ' RΓc(Cu,kSΓ̃Ψ

m,Θ
⊗ L)[1]

and the decomposition given by the limit cycles can be rewritten accordingly.
In particular, we can then study the isomorphisms σ∗h, σ

∗
h+1, which can

be read as ⊕
HBM

1 (SΓ̃Ψ
m,ν(Θh)−, L

∗)

HBM
1 (SΓΨ

m,Θ, L
∗)

⊕
HBM

1 (SΓ̃Ψ
m,ν(Θh)+, L

∗)

σ∗h

σ∗h+1

In order to rewrite such morphisms in term of the dual V ∗ of the general
fiber of L, we need an isomorphism for each Θ ∈ S1

ζ

(12.3) HBM
1 (SΓ̃Ψ

m,ν(Θ), L
∗) ' HBM

1 (SΓ̃Ψ
m,ν(Θ))⊗ V

∗

i.e., we need to fix a determination for the section of L∗ along SΓ̃Ψ
m,Θ.

Notice that it suffices to give an element of (L∗)ei(θm+Θ0) in order to have

a local section of L∗ along SΓ̃∗m,Θ by extension.
Such isomorphism is constructed as follows. Consider a determination for

L∗ at 1 ∈ Cu, i.e., an isomorphism V ∗
∼−→ (L∗)1 which associates to each

v∗ ∈ V ∗ an element (s∗)1, stalk of a local section s∗ at 1.
Consider the analytic continuation s̃ of s along the path

γ : [0, θm + Θ]→ S1
u

θ̃ → eiθ̃

This gives rise to an isomorphism V ∗
∼−→ (L∗)

ei(θ+Θ) given by v∗ 7→
(s̃)eiθm+Θ which provides the isomorphism required.

If Θ̄ ∈ AStT rp(Ψ), we can define sΨ
m,Θ̄± sections of L∗ on Γ̃Ψ

m,Θ̄± by taking

the limit in the construction described in 10.6.
The above definition and construction adapts to ΓΨ

m,ν(Θ)±.
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We set

(12.4) Γ̃Ψ
n+p,ν(Θ)± ⊗ v∗ = Γ̃Ψ

0,ν(Θ)± ⊗ (T ∗)−1v∗.

Theorem 12.7. (i) Let n+ p odd, the morphism α∗h comes from the ele-

ment in Endk(
n+p−1⊕
m=1

(1∗m⊗V ∗)) given, ∀h = 0, ..., 2n(n+ p)− 2, by the

assignments
1∗m ⊗ v∗ 7→ 1∗m ⊗ v∗ for m 6= mh,mh+1,

1∗mh ⊗ v∗ 7→ 1∗mh ⊗ v∗ + 1∗mh+1 ⊗ v∗,

1∗mh+1 ⊗ v∗ 7→ 1∗mh+1 ⊗ v∗.

if h is even and sin(pθmh − nΘh) = 1 or if h odd and sin(pθmh − nΘh) =
−1 and

1∗m ⊗ v∗ → 1∗m ⊗ v∗ for m 6= mh,mh+1,

1∗mh ⊗ v∗ → 1∗mh ⊗ v∗

1∗mh+1 ⊗ v∗ → 1∗mh+1 ⊗ v∗ − 1∗mh ⊗ v∗

if h is odd and sin(pθmh − nΘh) = 1 or if h even and sin(pθmh − nΘh) =
−1.

The morphism α2n(n+p)−1 is defined by composing the morphism ob-

tained by applying the rule above with (−1)ndiag((T ∗)−1).
(ii) Let n+ p even, the morphism α∗h comes from the element in

Endk(

n+p−1⊕
m=1

(1∗m ⊗ V ∗))

defined, ∀h = 0, ..., n(n+ p)− 2, by the assignment

1∗m ⊗ v∗ 7→ 1∗m ⊗ v∗ if m /∈ {mi
h,m

i
h + 1 : i = 1, 2}

1∗
m1
h
⊗ v∗ 7→ 1∗

m1
h
⊗ v∗ + 1∗

m1
h+1
⊗ v∗

1∗
m1
h+1
⊗ v∗ 7→ 1∗

m1
h+1
⊗ v∗

1∗
m2
h
⊗ v∗ 7→ 1∗

m2
h
⊗ v∗

1∗
m2
h+1
⊗ v∗ 7→ 1∗

m2
h+1
⊗ v∗ − 1∗

m2
h
⊗ v∗.

if sin
(
pθm1

h
− nΘh

)
= +1 or by the assignment

1∗m ⊗ v∗ 7→ 1∗m ⊗ v∗ if m /∈ {mi
h,m

i
h + 1 : i = 1, 2}

1∗
m1
h
⊗ v∗ 7→ 1∗

m1
h
⊗ v∗

1∗
m1
h+1
⊗ v∗ 7→ 1∗

m1
h+1
− 1∗

m1
h
⊗ v∗

1∗
m2
h
⊗ v∗ 7→ 1∗

m2
h,+
⊗ v∗ + 1∗

m2
h+1
⊗ v∗

1∗
m2
h+1
⊗ v∗ 7→ 1∗

m2
h+1
⊗ v∗.

if sin
(
pθm1

h
− nΘh

)
= −1.

The morphism αn(n+p)−1 is defined by composing the morphism ob-

tained by applying the rule above with (−1)ndiag((T ∗)−1).
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Proof. Let Θh ∈ AStT rp(Ψ). We already know from Proposition 12.6 how
αh behaves at the level of the Borel-Moore homology with coefficients in k.

Clearly, with the exception of tripod pairs, the definition of the morphism
extends unchanged when adding a regular part.

It only remains to examine what happens generically at tripods.
Let (mh,mh+1) the coordinate of tripod, consider sin(pξmh + ν(Θh)) =

+1.
Since Γ̃Ψ

mh+1,ν(Θh)− = Γ̃Ψ
mh+1,ν(Θh)+, the definition of the morphism α∗Θh

extends unchanged.
Consider then Γ̃Ψ

mh,ν(Θh)−⊗v: by (12.3), this corresponds to Γ̃Ψ
mh,ν(Θh)−⊗

(s̃∗)
ei(θmh+Θh) .

The embedding Γ̃Ψ
mh,ν(Θh)− → Tmh,mh+1 gives then a well defined element

Γ̃Ψ
mh,ν(Θh)−⊗(s̃∗)

ei(θmh ) = Γ̃Ψ
mh,ν(Θh)−⊗(s̃∗)

ei(θmh+Θh) ∈ HBM
1 (Tmh,mh+1)⊗V ∗.

Since Γ̃Ψ
mh,ν(Θh)− = Γ̃Ψ

mh,ν(Θh)+ + Γ̃Ψ
mh+1,ν(Θh)+, we have

Γ̃Ψ
mh,ν(Θh)− ⊗ (s̃∗)

ei(θmh+Θh) =

= (Γ̃Ψ
mh,ν(Θh)+ + Γ̃Ψ

mh+1,ν(Θh)+)⊗ (s̃∗)
ei(θmh+Θh) =

= Γ̃Ψ
mh,ν(Θh)+)⊗ (s̃∗)

ei(θmh ) + Γ̃Ψ
mh+1,ν(Θh)+)⊗ (s̃∗)

ei(θmh+Θh)

The choice of the determination made above implies that

Γ̃Ψ
mh,ν(Θh)+)⊗ (s̃∗)

ei(θmh+Θh) = Γ̃Ψ
mh,ν(Θh)+)⊗ v∗.

Notice that the analytic continuation along the path connecting ei(θmh+Θh)

and ei(θmh+1+Θh) in the tripod is the same as the analytic continuation along
the piece of S1

u connecting the same two points, as the path are homotopic.

Hence Γ̃Ψ
mh+1,ν(Θh)+)⊗ (s̃∗)

ei(θmh+Θh) = Γ̃Ψ
mh+1,ν(Θh)+)⊗ (s̃∗)

e
i(θmh+1+Θh) .

We then need only to study what happens to (s̃∗)
e
i(θmh+1+Θh) .

(1) If mh 6= n+ p− 1, (θmh+1 + Θh)− (θmh + Θh) = 2π
n+p < 2π: there is

no monodromy involved since we are not moving more than 2π, and
hence

(s̃∗)
e
i(θmh+1+Θh) = v,

(2) if mh = n+ p− 1, the section considered is

(s̃∗)
ei(θn+p+Θh) = (s̃∗)ei(θ0+2π+Θh) = (T ∗)−1(s̃∗)ei(θ0+Θh)

and hence

Γ̃Ψ
n+p,ν(Θh)+)⊗ (s̃∗)

ei(θn+p+Θh) = Γ̃Ψ
0,ν(Θh)+)⊗ (T ∗)−1(s̃∗)ei(θ0+Θh)

We can similarly deal with the case sin(pξmh + ν(Θh)) = −1.
�

13. The perturbated case

Let us consider the general case, where the exponential factor of the

elementary D-module is given by by ϕ(u) = −αu−n −
n−1∑
j=1

αju
−j .
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If so, stationary phase formula prescribes a ramification

w =ρ̂−1(ζ) :=
nα

p
ζ−(n+p) +

n−1∑
j=1

jαj
p
ζ−j−p =

=
nα

p
ζ−(n+p)(1 +

n−1∑
j=1

jαj
nα

ζn−j) =
nα

p
ζ−(n+p)(1 + o(ζ)).

(13.1)

Notice that, since 1 +
n−1∑
j=1

jαj
nα ζ

n−j is different from zero in 0 ∈ Cζ , we can

consider one of its n+p-th roots h defined in a sufficiently small ball around
0.

Thanks to the change of coordinate ζ → ζ̃ = ζh(ζ), the ramification takes

the form ρ̂−1(ζ) = nα
p ζ
−(n+p) around 0.

We can then perform the same computations as in section 8, by consider-
ing a small neighbourhood of 0 instead of the whole Cζ and with the same
ρ2: we obtain

(13.2) K ' Rq̃3!(E
−Ψ̃prt ⊗ p̃−1

3 π−1F )[1]

with

(13.3) Ψ̃prt(v, ζ) = αnζ−n(
v−n

n
+
vp

p
+
n−1∑
j=1

αj
αn

v−jζn−j).

Our original aim was to prove that the same feature and description of the
Fourier transform given in the preceding subsections for the non-perturbated
case extends to this generic case.

However, this goal still needs some work in order to be perfected.
In the following we will then describe the point reached with the compu-

tations.
In particular, we will show that we can obtain from the non-perturbated

case (the one with αj = 0 ∀j described so far) results concerning the asymp-
totic behaviour of the generic transform on particular open subsets related
to AStT rp(Ψ̃).

Moreover, we will show that the degeneration and consequent arise of
tripods happens in the same way in this case along a particular subvariety
related to AStT rp(Ψ̃).

We will proceed as follows: after proving interesting estimates concerning
Ψ̃prt and Ψ̃, we will use them to provide a result about general behaviour
for steepest descent paths of Ψ̃prt. We will then focus on degeneration, and
how the presence of tripods arises also in this case.

13.1. Notations and observations for Ψ̃prt. As in the non perturbated
case, it suffices to consider the study of the critical level sets of

Ψprt(v, ζ) := ei(µ−nΘ)(
v−n

n
+
vp

p
+

n−1∑
j=1

αj
αn

v−jζn−j)
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Denote by {vm(ζ)} the set of critical points of Ψprt
ζ and notice that, in a

small neighbourhood of 0 ∈ Cζ , they can be approximated as

vm(ζ) = vm + o(ζ)

since vm(0) = vm. Denote by {λm(ζ)} the corresponding set of critical
values, again, we have

λm(ζ) = λm + o(ζ).

We will more precise about the properties of the critical points and values in
the following subsection. Notice moreover that, by similar considerations,
the critical points of Ψprt

ζ are non-degenerate and the critical values are

distinct for each ζ in a small neighbourhood of 0. Denote by AStprtT rp the set

(13.4) AStprtT rp := {ζ|∃m : Imλm(ζ) = Imλm+1(ζ)}

Notice that, since Ψ and Ψprt have the same most polar part with respect
to ζ, AStprtT rp consists of the union of analytic curves abutting from 0 with
tangent in AStT rp.

13.2. Some estimates.

Proposition 13.1. Let 0 < r0 << 1, 0 << R0, A = max
j=1,...,n−1

{|αj |} and

notation as above. Then

(1) ∀C > 0 we have

(13.5) |Ψprt −Ψ| ≤ C on {r0 < |v| < R0} × {|ζ| ≤
Crn−1

0

A(n− 1)
}

(2) ∀0 < r̄ < min{{|vm − vm′ | : m 6= m′ (mod n+ p)}, 1} we have

(13.6) {∂vΨprt = 0} ⊂ (
⋃
Br̄(vm))× {|ζ| ≤M(r̄)}

with M(r̄)→ 0 for r̄ → 0
(3) ∀C > 0 there exists r̄0 > 0 such that

(13.7) |λm(ζ)− λm| < C for ζ : |ζ| ≤M(r̄0)

with M as in (13.6).

Proof. Let K be a compact in Cv and suppose

Kmax := max
v∈K
|v| > 1

0 < Kmin := min
v∈K
|v| < 1

(13.8)

Notice that conditions on Kmax,Kmin imply

K−1
min >> 1⇒ K−jmin < K−kmin for j < k

0 < K−1
max << 1⇒ K−jmax > K−kmax for j < k

(13.9)

Since

|Ψκ(v)| = |eiκ(
v−n

n
+
vp

p
)| = |v|−n| 1

n
+
vn+p

p
|

|∂vΨκ(v)| = |vp−1 − v−n−1| = |v|−n−1|vn+p − 1|
(13.10)
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the absolute values do not depend on κ: we will hence simply write |Ψ|. We
have the following estimates on K

|Ψ| ≤ |v|−n(
1

n
+
|v|n+p

p
) < K−nmin(

1

n
+
Kn+p
max

p
)

|Ψ| ≥ K−nmax min{|K
n+p
max

p
− 1

n
|, |
Kn+p
min

p
− 1

n
|}

|∂vΨ| ≤ K−n−1
min (Kn+p

max + 1)

|∂vΨ| ≥ K−n−1
max min{|Kn+p

max − 1|, |Kn+p
min − 1|}

(13.11)

We have moreover the following estimate again on K for |ζ| < 1

|Ψa −Ψ| = |
n−1∑
j=1

αj
n
v−j | ≤

n−1∑
j=1

|αj
n
||v|−j |ζ|n−j <

< AK−n+1
min

n−1∑
j=1

|ζ|n−j < AK−n+1
min (n− 1)|ζ|

(13.12)

where A is the real number max
j=1,...,n−1

{| αjαn |}

If we apply this last estimate to K = {r0 ≤ |v| ≤ R0} for 0 < r0 << 1
and R0 >> 1 we obtain

(13.13) |Ψa −Ψ| < C if |ζ| < Crn−1
0

A(n− 1)

for C > 0.
Notice that the conditions on r̄, r0, R0 imply

0 < (1− r̄) < 1⇒ (1− r̄)−1 > 1,

1 < (1 + r̄) < 2⇒ 1

2
< (1 + r̄)−1 < 1,

(13.14)

and that

(13.15) max
v∈∂Br̄

|v| = 1 + r̄, min
v∈∂Br̄

|v| = 1− r̄.

Now we want to show that the critical point vm(ζ) is as near as we want
to eiθm for |ζ| small enough. We will achieve this via the following classical
theorem

Theorem 13.2 (Rouche). Let U ⊂ Cv, f, g : U → C be two holomorphic
function, suppose that ∂U is a simple contour (i.e., without self-intersections).
If |g(v)| < |f(v)| on ∂U , then f and f + g have the same number of zeroes
inside U , where each zero is counted as many times as its multiplicity.

More in details, consider the functions

(13.16) f = ∂vΨ = eiκ(−v−(n+1) + vp−1)

and

(13.17) g = ∂v(Ψ
a −Ψ) = −

n−1∑
j=1

j
αj
n
v−j−1ζn−j .
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on U = Br̄ := eiθm + B(0, r̄). We want to find suitable conditions on |ζ|
such that the hypotesis of the theorem holds. Choose r̄ satisfying

(13.18) 0 < r̄ < min{{|eiθm − eθm′ | : m 6= m′ (mod n+ p)}, 1}
and notice that

(13.19) max
v∈∂Br̄

|v| = 1 + r̄ > 1, min
v∈∂Br̄

|v| = 1− r̄ < 1

hence the estimates above hold. The condition about r̄ also implies that

1 < 1 + r̄ < 2⇒ 2−1 < (1 + r̄)−1 < 1

0 < 1− r̄ < 1⇒ (1− r̄)−1 > 1
(13.20)

By (13.12) and the Cauchy estimate on the first derivative we get

(13.21) |∂v(Ψa −Ψ)| < A(1− r̄)−n+1(n− 1)

r̄
|ζ|

Consider now the second estimate in (13.11). We need to compute the

term min{|Kn+p
max − 1|, |Kn+p

min − 1|}. In this case

|Kn+p
max − 1| = (1 + r̄)n+p − 1

|Kn+p
min − 1| = 1− (1− (1− r̄)n+p)

(13.22)

Since

(1 + r̄)n+p − 1 = r̄

n+p−1∑
k=0

(1 + r̄)k

1− (1− (1− r̄)n+p) = r̄

n+p−1∑
k=0

(1− r̄)k
(13.23)

we have (1 + r̄)n+p − 1 > 1 − (1 − r̄)n+p and the minimum we are looking
for is the latter.

The estimate we get is then

(13.24) |∂vΨ| ≥ (1 + r̄)−n(1− (1− r̄)n+p) > 2−n(1− (1− r̄)n+p)

The condition for Rouche’s theorem then rewrites as

(13.25)
A(1− r̄)−n+1(n− 1)

r̄
|ζ| < 2−n(1− (1− r̄)n+p)

Hence, for

(13.26) |ζ| < r̄(1− r̄)n−1(1− (1− r̄)n+p)

(n− 1)2nA

Rouche theorem applies to ∂v(Ψ
a − Ψ) and ∂vΨ. The two functions have

then the same number of zeroes in Br̄: since there is only one zero with
multiplicity 1 for the first, the same holds for the second, proving what
claimed.

Lastly, let us show the following

(13.27) |Ψ(eiθm)−Ψa(vm(θ))| < C

for C > 0 and |ζ| satisfying (13.26) for r̄ > 0 small enough. Notice that,
under these conditions, vm(θ) ∈ Br̄ and hence its absolute value satisfies all
inequalities from belonging to that ball.
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The inequality can be rewritten as

|Fκ(eiθm)− F̃κ(vm(θ))| =

|Fκ(eiθm)− Fκ(vm(θ)) + Fκ(vm(θ))− F̃κ(vm(θ))| ≤

≤ |Fκ(eiθm)− Fκ(vm(θ))|+ |Fκ(vm(θ))− F̃κ(vm(θ))| ≤

≤ max
∂Br̄
|F ′κ| · r̄ + max

∂Br̄
|F̃κ − Fκ| ≤

≤ r̄[(1 + r̄)n+p + 1] +A(1− r̄)−n+1(n− 1)|ζ| ≤

≤ r̄[(1 + r̄)n+p + 1] +A(1− r̄)−n+1(n− 1)
r̄(1− r̄)n−1(1− (1− r̄)n+p)

(n− 1)2nA
≤

≤ r̄

(1− r̄)n
[1 + (1 + r̄)n+p + 2−n(1− r̄)n(1− (1− r̄)n+p)]

(13.28)

Let us denote this last term by M(r̄), it is then easy to notice that

M(0) = 0 and M(r̄) > 0, ∀0 < r̄ < 1

lim
r̄→1

M(r) = +∞

dM

dr̄
(0) > 0

These conditions imply that there exists a right neighbourhood of 0 (i.e.
of the kind ]0, r̄0]) in which M is positive and increasing, in particular a
diffeomorphism on such interval. This means the inequality holds

(1) for any C > M(r̄0) on Br̄ for any r̄ < r̄0,
(2) for any M(r̄0) > C > 0 on Br̄ for any r̄ < M−1(C)

i.e. for any C > 0 and sufficiently near each non-perturbated critical point
eiθm . �

13.3. Consequences of the estimates. In this subsection, we will derive,
as consequence of the estimates just obtained, that the behaviour of level sets
for the perturbated case is indeed the same as in the absence of perturbation.

In particular, we want to show what happens away from directions in
AStT rp(Ψ), denote by ScΘ the closed sector in C×ζ delimited by Θ± c

Proposition 13.3. There exists d0 > 0 such that, ∀d0 > d > 0 ∃c = c(d) >
0 with c→ 0 as d→ 0 such that

(13.29) ∀ζ ∈ {|ζ| < d} \
⋃

Θ∈AStT rp(Ψ)

ScΘ

the steepest descent path for Re Ψprt
ζ are deformations of the steepest descent

paths for Re Ψζ satisfying the following properties:

• they have the same endpoints and tangents,
• they are contained in tubular neighbourhood of steepest descent paths

for Re Ψ,
• the critical point vm(ζ) is contained in a small ball around vm.

Proof. First of all, notice that, since Im Ψprt
ζ and Im Ψζ have the same polar

structure at the singular points 0,∞, the two functions have the same level
set structure near such points.
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Let us fix a radius d0 > 0 which satisfies both the requirement for h to
be well defined and for AStprtT rp(Ψprt) to be written as the disjoint union of
analytic curves.

We will restrict our focus at a singular critical point vm(ζ). As a conse-
quence of Proposition 13.1, we have the following properties

• ∃C > 0 such that

{Im Ψprt
ζ = Imλm(ζ)} ⊂ {Imλm(ζ)− C < Im Ψ < Imλm(ζ) + C}

• ∃r̄ > 0 such that vm(ζ) ∈ Br̄(vm)
• for C, r as above Br̄(vm) ⊂ {Imλm(ζ)−C < Im Ψ < Imλm(ζ) +C}

By restricting r̄ if necessary, we can always suppose that Br̄ is a subset of the
elementary sector containing vm. In the picture above we have an example
of the situation in the case λm(ζ) > 0.

vm

Since Imλm(ζ)−C < Imλm < Imλm(ζ) +C, {Imλm(ζ)−C < Im Ψζ <
Imλm(ζ) +C} is a tubular neighbourhood of the critical level set {Im Ψζ =
λ}.

Furthermore, we know the structure of the level set {Im Ψprt
ζ = Imλm(ζ)}

in a small neighbourhood Um around vm(ζ): it is the union of orthogonally
intersecting analytic curves (see Lemma 6.4).

vm

vm(ζ)→

The resulting four branches exiting from Um have to connect with the
germ of the level set at the singular points without self-intersecting and
remain in the tubular neighbourhood defined above.

The statement about the steepest descent then follows from noticing that
the behavior of Re Ψ and Re Ψprt near the singular points 0,∞ is the same,
hence

�

It remains to show what happens at AStprtT rp(Ψprt). We have already no-

ticed that this variety is contained in sectors around directions inAStT rp(Ψ).

Proposition 13.4. For ζ ∈ AStprtT rp(Ψprt), the steepest descent paths for

Ψprt
ζ degenerate in a tripod T prtm,m+1 for steepest descent associated with vm(ζ), vm+1(ζ)

and m ∈ T rpν(Θ).
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Proof. Since Imλm(ζ) = Imλm+1(ζ) =: λ, we have
(13.30)

{Im Ψprt
ζ = Imλm(ζ)}, {Im Ψprt

ζ = Imλm+1(ζ)} ⊂ {Imλ−C < Im Ψ < Imλ+C}

Moreover, by above consideration, we know that AStprtT rp(Ψprt) ⊂ ShΘ0
.

Hence we have 6 possibilities for Θ:

• Θ < Θ0 and sin(pθm + ν(Θ0)) = ±1,
• Θ = Θ0 and sin(pθm + ν(Θ0)) = ±1,
• Θ > Θ0 and sin(pθm + ν(Θ0)) = ±1.

It is sufficient to focus on one of them, the others can be dealt in a similar
way.

Suppose then Θ < Θ0 with sin(pθm + ν(Θ0)) = 1, the configuration in
the model is then as pictured below

ξmθm+1 θm

The situation in the two extremal sectors have already been dealt in the
previous Proposition, we have only to notice that the two local situations
are linked by a tunnel passing in the intermediate sector.

vm+1 vm

Both the critical level sets have to enter the tunnel and reach the opposite
critical point: the branch is then forcibly unique by the requirement and a
tripod T prtm,m+1 arises in the same fashion as Tm,m+1. �

13.4. An observation. We want to stress out the following fact: we are
able to deduce properties of the steepest descent paths for the perturbated
case in term of the non-perturbated one only away from AStpT rprt and
AStT rp.

Indeed, our estimates do not allow the same study made above for points
neighbouring such varieties.

As an example, just notice that tripods arise in different points depending
on perturbated/non-perturbated case.

Theoretically, for points contained between a branch of AStpT rprt and the
line in AStT rp having the same tangent at 0, the steepest descent cycles are
no more deformation of the other.

Since an endpoint of the steepest descent path changes at a tripodal
direction and we have the same behaviour on one side of the tripodal variety,
there must be in general a different behaviour for steepest descent for points
in the middle of the two subvarieties by continuity.
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13.5. Real blow-up. In order to express what we can achieve from Propo-
sition 13.3, we will the language and framework provided by the real blow-up
of Cζ at 0.

The total real blow-up

$tot : C̃totζ → Cζ
of Cζ at 0 is the map of smooth manifolds locally defined as follows

C̃totζ = {(ε,Θ) ∈ R× S1}

$tot : C̃totζ → Cζ , (ε,Θ)→ εeiΘ
(13.31)

The real blow up C̃ζ of Cζ at 0, is the closed subset {ε ≥ 0} of C̃totζ . Setting

$ = $tot
|C̃ζ

, consider the commutative diagram

S0Cζ C̃ζ

Cζ \ {0}

Cζ

ĩ0

$

j̃0

jo

where S0Cζ = $−1(0) ' S1 is the sphere of tangent directions at 0. Let
Θ ∈ SaCζ and V ⊂ Cζ . One says that V is a sectorial neighborhood of Θ

if V ⊂ Cζ \ {0} and S0Cζ ∪$−1(V ) is a neighborhood of Θ in C̃ζ . This is

equivalent to saying that V = $−1(0) for some neighborhood U of Θ in C̃ζ .
For Θ ∈ S0Cζ , we will:

(1) write for short x→ Θ instead of j̃0(x)→ Θ,

(2) write Θ
·
∈ V to indicate that V is a sectorial neighborhood of Θ.

One says that U ⊂ Cζ \{0} is a sectorial neighborhood of I ⊂ SaCζ if U
·
3 Θ

for any Θ ∈ I.

13.6. Conclusions.

Proposition 13.5. For all Θh,Θh+1 ∈ AStT rp(Ψ̃) there exists a sectorial
neighbourhood Vh of ]Θh,Θh+1[ at each point of which steepest descent paths

for Ψ̃prt
ζ satisfy the same properties described in Proposition 13.3.

Proof. For all d < d0, the space {|ζ| < d} \
⋃

Θ∈AStT rp(Ψ) S
c
Θ consists of the

union over h of open sectors

{ζ : |ζ| < d,Θh + c < Θ < Θh+1 − c}

. The stated neighbourhood Vh is then the union over d < d0 of these sectors
for a fixed h. Notice that, as c → 0 for d → 0, the arising Vh is a sectorial
neighbourhood of ]Θh,Θh+1[ as stated. �

In this sense, with our estimates we are able to deduce the behaviour
asymptotic to consecutive components of AStprtT rp(Ψ̃prt) at 0 of the Fourier
transform in the perturbated case.
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We can then clearly extend Theorem 11.1 to the perturbated case using
the sectorial neighbourhoods provided by the above Proposition.

Let Ψ̃prt
m (ζ) = Ψ̃(vm(ζ), ζ), we have the following

Theorem 13.6. Let Vh ⊂ C×ζ be one of the sectorial neighbourhood described

in Proposition 13.5. Then we have an isomorphism in EbR−c(kC×ζ,∞
)

π−1kVh ⊗K
σ−→
∼
π−1kVh ⊗

n+p−1⊕
m=0

(V ⊗ E−Ψ̃prtm )

Notice that, in order to compute the Stokes matrices, we need the elements
of a covering of 0 where the enhanced sheaf K has a trivialization to have
non-trivial intersection.

In the non-perturbated case, this was achieved by closed sectors with
common sides in AStT rp(Ψ̃); in this case, our covering with sectorial neigh-
bourhoods has no intersection where to compare the jumps in the steepest
descent paths.

Following the spirit of this work and Proposition 13.4, the comparison
should happen at the curves constituting AStprtT rp(Ψ̃prt).

The missing point is then how to extend the different trivializations com-
ing from Theorem 13.6 to be comparable on AStprtT rp(Ψ̃prt) where.

Once this issue is solved, it will be clear that the Stokes matrices for K
are exactly the ones described in ??.
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