UNIVERSITA
DEGLI STUDI
DI PADOVA

Universita degli Studi di Padova

Dipartimento di Matematica“Tullio Levi-Civita”
Corso di Dottorato di Ricerca in Scienze Matematiche

Curriculum Matematica
Ciclo XXXV

SOME NEW REGULARITY RESULTS
FOR LENGTH MINIMIZING CURVES
IN SUB-RIEMANNIAN GEOMETRY

Tesi di Dottorato di Ricerca in Analisi Matematica

Coordinatore Dottorando
Chiar.mo Prof. Giovanni Colombo Alessandro Socionovo

Supervisore Matricola 1232711

Chiar.mo Prof. Roberto Monti






Introduction

The regularity of geodesics (length-minimizing curves) in sub-Riemannian geometry
is an open problem since many years. Its difficulty is due to the presence of the
singular (or abnormal) extremals, i.e., curves where the differential of the end-point
map is singular (it is not surjective). Normal length minimizing curves, corresponding
to regular points of the end-point map, are instead C* regular.

Roughly speaking, a sub-Riemannian manifold is a smooth manifold where the
admissible directions in the tangent bundle are limited to a smooth distribution. We
assign infinite length to other directions and then admissible curves are the ones
having their velocity in the distribution.

In this thesis, we mainly consider classical sub-Riemannian manifolds, i.e triplets
(M, A, g), where M is a smooth manifold, A C T'M is a smooth distribution of rank
2 < d < dim(M) (the distribution of admissible directions), and g is a smooth metric
on A. In a neighborhood U C M of any point ¢ € M, there exist vector-fields
fi,--., fa € Vec(U) such that A = span{fi,..., fa} on U. Since our considerations
are local, we can assume in the sequel that U = M. We also assume that A satisfies

Hormander’s condition

Lie{f1,..., fa}(p) =T,M, pe M, (0.1)

i.e., that A is completely non-integrable.
Let I = [0,1] be the unit interval. A curve v € AC(I; M) is admissible or
horizontal if ¥ € A, a.e. on I, that is

d
Y(t) =D ui(t) fi(y(t), forae tel, (0.2)
i=1
for some unique u = (uy,...,uq) € L*(I;R?), called control of v. Without loss of
generality, we can assume that g makes fi,..., fy orthonormal, in which case the

length of ~ is the L'-norm of its control, i.e.



We can also replace the Banach space L'(I;R?) with the smaller Hilbert space X =
L*(I;R?). Finally, condition (0.1) ensures that M is connected by admissible curves
(Chow-Rashevskii Theorem).

The end-point map £, : X — M with base-point ¢ € M is defined letting
E,(u) = 7,(1), where 7, is the unique solution to (0.2) with 7,(0) = ¢. The point
q = E,(u) is the end-point of the curve 7,. Since ¢ € M is fixed, we shall simply
write £ = E,. Controls u € X where the differential d,£ is not surjective are
called singular and horizontal curves driven by singular controls are called singular or
abnormal extremals. The first chapter of this thesis is devoted to a full and completely
general description of this kind of arguments, summarizing the general theory known
to date.

The existence of singular curves arose for the first time after the paper [24] by
Strichartz was published, more than thirty years ago. In this paper it was claimed,
due to an incomplete application of the Pontryagin Maximum Principle, that all
minimizing curves are normal and, therefore, that they are always smooth, as in
the case of Riemannian geometry where abnormal curves do not appear. Later, the
author admitted that his paper contained an irreparable mistake: he forgot to treat

abnormal singularities of the end-point map.

The first example of a singular curve that is as a matter of fact length-minimizing
was discovered in [20] by Richard Montgomery. After that, many other examples were
discovered, such as in [19]. All such examples are smooth curves, showing that the
nature of abnormal length minimizers is very difficult: it is still an open problem if
constant-speed geodesics, which a priori are only absolutely or Lipschitz continuous,
are always smooth (i.e. C*-regular) in any sub-Riemannian manifold. If the assigned
distribution has step at most 2, then all geodesics are smooth (and, in fact, the claim
by Strichartz is true in this case). It is also an open question even if they are always
Cl-regular. A positive answer to this question is given in [10], but only when the

manifold is analytic of dimension 3.

The problem is open also in the model case of Carnot groups. This special class
of sub-Riemannian manifolds consists of Lie groups whose Lie algebra is stratified,
and it deserves a particular mention since Carnot groups provide an infinitesimal
model for any sub-Riemannian manifold, near any given point (provided the point
satisfies a technical condition, which holds generically). In the context of Carnot
groups, the regularity problem has recently been solved also when the step is at most
3 (independently by Tan-Yang in [27] and by Le Donne-Leonardi-Monti-Vittone in
17)).

The aim of this thesis is to give some new partial results about this regularity
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problem. Necessary conditions for the minimality of singular extremals can be ob-
tained from the differential study of the end-point map. The theory is well-known
till the second order and was initiated by Goh [11] and developed by Agrachev and
Sachkov in [3].

Instead, a recent approach to the regularity problem of length-minimizing curves
is based on the analysis of specific singularities such as corners, spiral-like curves or
curves with no straight tangent line. This approach does not use general open map-
ping theorems but it rather relies on the ad hoc construction of shorter competitors,
see [4, 12, 18, 21, 22].

The differential analysis of the end-point to deduce necessary conditions for the
minimality and the direct study of singularity points of abnormal curves are the main
approaches in literature that have been pursued in an attempt to solve the problem.
They are the guideline, respectively, of Chapters 2 and 3, which are described more
in detail below.

Finally, in Chapter 4, we collect some, in our opinion, interesting open ques-
tions that could be investigated concerning the regularity problem of sub-Riemannian

geodesics.

Chapter 2. Using second order open mapping theorems (index theory), for a strictly
singular length minimizing curve v and for some adjoint curve A, in [1] the authors

prove the validity of the following Goh conditions:

NI Fil))y =0, d5=1,....d (0.3)

The first order conditions (), fi(7)) = 0 are ensured by Pontryagin Maximum Prin-
ciple. Partial necessary conditions of the third order are obtained in [7].

Our goal, in this chapter, is to extend the second order theory of [1] to any order
n > 3 and to get necessary conditions as in (0.3) involving brackets of n vector
fields. The results that we present in this chapter were proved in [8] thanks to the
collaboration of Francesco Boarotto.

There is a clear connection between the geometry of A and the expansion of the
end-point map F. In particular, the commutators of length n should appear in the
n-th order term of the expansion of F. In Section 2.4, we provide a first positive
answer to this idea. In the case of a singular curve ~, of corank-one, i.e., such that
Im(d, F') has codimension 1 in T, 1)M, we get the following result. For the definition

of adjoint curve, see Section 2.8.

Theorem 0.1. Let (M, A, g) be a sub-Riemannian manifold, v =, € AC(I; M) be

a strictly singular length minimizing curve of corank 1, and assume that

D'F =0, h=2,...,n—1. (0.4)
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Then any adjoint curve X € AC(1;T*M) satisfies
forallt € I and for all j1,..., 5, =1,...,d.

We call the differentials D" F appearing in (0.4) intrinsic differentials of F. For
v1,...,v, € X, at the point u = 0 we define

h dh u thvh
DOF('Ul,...,’Uh> = ﬁF<ZT>

t=0

We first restrict DIF to a suitable domain dom(DAF) C X"~! that, roughly speak-
ing, consists of points where the lower order differentials doF', D3F, . . ., Dg_lF vanish.
Then we define DI F' = proj(DAF), with proj projection onto coker(doF'), see Defini-
tion 2.6. A motivation for this definition is the fact that D} F behaves covariantly, in
the sense that, for a given diffeomorphism P € C*°(M; M), D}(P o F) depends only
on the first order derivatives of P.

The proof of Theorem 0.1 relies on an open mapping argument applied to the
extended end-point map F; = (F,J) : X — M x R, where J(u) = %HuH%Q(I;Rd)

the energy of v = 7,. Minimizing the energy is in fact equivalent to minimizing the
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length, because for horizontal curves parameterized by arc-length the L?-norm of the
control coincides with its L'-norm.

Motivated by this application, in Section 2.2 we develop a theory about open
mapping theorems of order n for functions F' : X — R™ between Banach spaces. In
our opinion, this preliminary study is worth of interest on its own. It adapts in a

geometrical perspective some ideas presented in [25].

Theorem 0.2. Let X be a Banach space and let F' € C®(X;R™), m € N, be a
smooth mapping such that DAF = 0 for all 2 < h < n, for some n > 2, and with
reqular Dy F' at the critical point 0 € X. Then I is open at 0.

We refer to Section 2.2 for precise definitions. The notion of “regularity” used
in Theorem 0.2 is delicate because the intrinsic differential Dy F : dom(DjF) —
coker(dpF) is a non-linear mapping defined on a domain without linear structure.
The notion depends on an extension theorem for dom(Dy F') and is fixed in Definition
2.13. When 0 € X is a critical point of corank 1 it becomes more effective, see
Corollary 2.16.

The rest of the chapter is devoted to the study of the open mapping property for

the extended end-point map F); around a singular control u. In fact, we will study
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the auxiliary map G, called variation map, defined by G(v) = F(u + v), in order to
move the base-point from u to 0.

A crucial ingredient in our analysis is the definition of non-linear sets V;, C X,
h € N, consisting of controls with vanishing iterated integrals for any order h < n—1,
see (2.23). Using such controls we are able to catch the geometric structure of the
n-th differential DjG in terms of Lie brackets. The algebraic properties of the sets
V), are studied in Section 2.3.

In Sections 2.4 and 2.5, we use the formalism of chronological calculus [3, Chapter
2] to compute the n-th differential D{G of the variation map and the final outcome
is formula (2.36). This formula contains a localization parameter s > 0 that can be
used to shrink the support of the control in a neighborhood of some point t € [0, 1).
Passing to the limit as s — 0%, we obtain a new map G’ : X — R:

G (0) = [ Ol ol 90 ) N

where ¥, = {0 < t, <t,1 <...<t; <1} is the standard simplex, A € TxM is a
fixed covector orthogonal to coker(d,F'), ¢ = F(q) € M is the end-point, and gff&ti)
is the pull-back of the time-dependent vector field f, = v'f; + ... + v?f,; along the
flow of u. In the corank 1 case, we show that if there exists v € V,,_; with G (v) # 0
then the extended map G is open at 0, see our crucial Theorems 2.28 and 2.29. So
G, = 0 on V,,_; becomes a necessary condition for the length-minimality of singular
extremals.

In Sections 2.6 and 2.7, we study the geometric implications of equation G; = 0.
First, we explore the symmetries of Gy, showing how the shuffle algebra of iterated
integrals interacts with generalized Jacobi identities of order n, see Theorem 2.31. In
spite of the non-linear structure of V,,_;, we are able to polarize the equation Gy =0
on linear subspaces of V,,_; of arbitrarily large dimension, thus de facto bypassing the
non-linearity of the problem.

At this point, we regard the quantities in (0.5) as unknowns of a nonsingular
system of linear equations, thus proving their vanishing. To get this nonsingularity,
we work with families of trigonometric functions having sparse and high frequences,
see Theorems 2.36 and 2.37.

Our argument leading to the final proof of Theorem 0.1 is summarized in Section
2.8. In Section 2.9 we complete the study of a well-known example of singular curve.

In M = R3 we consider the distribution spanned by the vector-fields

0 0
— % and fh=(1—a)
fi 9z, and fy = ( $1)8$2 + T Dy



where n € N is a parameter. Using the theory developed in Sections 2.1-2.5, we
show that for odd n the curve v(t) = (0,¢,0), ¢t € [0,1], is not length minimizing.
This is interesting because, for even n, this singular curve is on the contrary locally
length minimizing. In fact, for even n the n-th differential of the end-point map is
not regular according to Definition 2.13 part i) and our open mapping theorem does
not apply. See our discussion in Remark 2.47.

Concerning the assumptions made in Theorem 0.1, hypothesis (0.4) is restrictive.
Its geometric meaning is explained in Remark 2.42: in fact, it implies (but is not
equivalent to) (A, [fj,, [ - [fis fir]---]](7)) = 0 for h < n — 1. Weakening (0.4)
requires a substantial improvement of Theorem 0.2. The corank 1 assumption on
the length minimizing curve is used when Theorem 0.2 is applied to the end-point
map. We think that it should be possible to drop this assumption, but this certainly

requires some new deep idea.

Chapter 3. The most elementary kind of singularity for a Lipschitz curve is of the
corner-type: at a given point, the curve has a left and a right tangent that are
linearly independent. In [18] and [12] it was proved that length minimizers cannot
have singular points of this kind. These results have been improved in [22]: at any
point, the tangent cone to a length-minimizing curve contains at least one line (a half
line, for extreme points). The uniqueness of this tangent line for length minimizers
is an open problem. Indeed, there exist other types of singularities related to the
non-uniqueness of the tangent. In particular, there exist spiral-like curves whose
tangent cone at the center contains many and in fact all tangent lines, see Example
3.14 below. These curves may appear as Goh extremals in Carnot groups, see [16]
and [17, Section 5]. For these reasons, the results of [22] are not enough to prove the
nonminimality of spiral-like extremals. Goal of this chapter is to show that curves
with this kind of singularity are not length-minimizing. The results that we present
in this chapter were proved in [23].

Our notion of horizontal spiral in a sub-Riemannian manifold of rank 2 is fixed
in Definition 0.3. We will show that spirals are not length-minimizing when the
horizontal distribution D satisfies the following commutativity condition. Fix two
vector fields fi, fo € D that are linearly independent at some point p € M. For
k € N and for a multi-index J = (j1,...,7x), with j; € {1,2}, we denote by f; =
sl [fiess el - - 1] the iterated commutator associated with J. We define its
length as the length of the multi-index J, i.e., len(f;) = len(J) = k. Then, our

commutativity assumption is that, in a neighborhood of the point p,

[fr, fs] =0 for all multi-indices with len(I),len(J) > 2. (0.6)
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This condition is not intrinsic and depends on the basis fi, fo of the distribution D.

After introducing exponential coordinates of the second type, the vector fields
f1, fo can be assumed to be of the form (3.5) below, and the point p will be the center
of the spiral. In coordinates we have v = (v1,...,7,) and, by (3.5), the ~,’s satisty
for j = 3,...,n the following integral identities

25 (t) = 7;(0) + / 0, (7(s))ia(s)ds, ¢ € [0,1].

When 7(0) and =, 7, are given, these formulas determine in a unique way the whole
horizontal curve 7. We call k € AC([0, 1]; R?), k = (1, 72), the horizontal coordinates
of .

Definition 0.3 (Spiral). We say that a horizontal curve v € AC([0, 1]; M) is a spiral
if, in exponential coordinates of the second type centered at ~(0), the horizontal
coordinates k € AC([0, 1]; R?) are of the form

k(t) = te 1 €]0,1],

where ¢ € C'(]0,1]; R") is a function, called phase of the spiral, such that |p(t)] — oo
and |p(t)| — oo as t — 0. The point v(0) is called center of the spiral.

A priori, Definition 0.3 depends on the basis fi, fo of D, see however our comments
about its intrinsic nature in Remark 3.13. Without loss of generality, we shall focus
our attention on spirals that are oriented clock-wise, i.e., with a phase satisfying
(t) — oo and p(t) — —oo as t — 0F. Such a phase is decreasing near 0. Notice
that if () — 0o and ¢(t) has a limit as ¢ — 0" then this limit must be —oc.

The main result in Chapter 3 is the following

Theorem 0.4. Let (M, D, g) be an analytic sub-Riemannian manifold of rank 2 sat-
isfying (0.6). Any horizontal spiral v € AC(]0,1]; M) is not length-minimizing near

its center.

Differently from [18, 12, 22] and similarly to [21], the proof of this theorem cannot
be reduced to the case of Carnot groups, the infinitesimal models of equiregular sub-
Riemannian manifolds. This is because the blow-up of the spiral could be a horizontal
line, that is indeed length-minimizing.

The nonminimality of spirals combined with the necessary conditions given by
Pontryagin Maximum Principle is likely to give new regularity results on classes of
sub-Riemannian manifolds, in the spirit of [4]. We think, however, that the main
interest of Theorem 0.4 is in the deeper understanding that it provides on the loss of

minimality caused by singularities.
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The proof of Theorem 0.4 consists in constructing a competing curve shorter than
the spiral. The construction uses exponential coordinates of the second type and
our first step is a review of Hermes’ theorem on the structure of vector-fields in such
coordinates. In this situation, the commutativity condition (0.6) has a clear meaning
explained in Theorem 3.8, that may be of independent interest.

In Section 3.2, we start the construction of the competing curve. Here we use the
specific structure of a spiral. The curve obtained by cutting one spire near the center
is shorter. The error appearing at the end-point will be corrected modifying the spiral
in a certain number of locations with “devices” depending on a set of parameters.
The horizontal coordinates of the spiral are a planar curve intersecting the positive
r1-axis infinitely many times. The possibility of adding devices at such locations
arbitrarily close to the origin will be a crucial fact.

In Section 3.3, we develop an integral calculus on monomials that is used to
estimate the effect of cut and devices on the end-point of the modified spiral. Then,
in Section 3.4, we fix the parameters of the devices in such a way that the end-point
of the modified curve coincides with the end-point of the spiral. This is done in
Theorem 3.23 by a linearization argument. Sections 3.2-3.4 contain the technical core
and computations of Chapter 3.

We use the specific structure of the length-functional in Section 3.5, where we
prove that the modified curve is shorter than the spiral, provided that the cut is
sufficiently close to the origin. This will be the conclusion of the proof of Theorem
0.4.

We briefly comment on the assumptions made in Theorem 0.4. The analyticity
of M and D is needed only in Section 3.1. In the analytic case, it is known that
length-minimizers are smooth in an open and dense set, see [26]. See also [10] for a
C'-regularity result when M is an analytic manifold of dimension 3.

The assumption that the distribution D has rank 2 is natural when considering
horizontal spirals. When the rank is higher there is room for more complicated
singularities in the horizontal coordinates, raising challenging questions about the
regularity problem.

Dropping the commutativity assumption (0.6) is a major technical problem: get-
ting sharp estimates from below for the effect produced by cut and devices on the
end-point seems extremely difficult when the coefficients of the horizontal vector fields

depend also on nonhorizontal coordinates, see Remark 3.18.
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Chapter 1

The end-point map in

sub-Riemannian geometry

In this chapter, we discuss the general notions concerning sub-Riemannian manifolds.
Despite our definitions given here are quite general, permitting to include all the clas-
sical notions appearing in the literature, we introduce the reader to sub-Riemannian
geometry with an example taken from the real life.

After having introduced the sub-Riemannian (or Carnot-Carathéodory) distance,
we discuss its finiteness and continuity, also known as Chow-Rashevskii theorem.
Then we move to metric properties of sub-Riemannian manifold as metric spaces,
proving in particular existence of length-minimizers.

In the final part of the chapter we introduce the crentral object of this thesis,
namely the end-point map. Its first order analysis leads to Pontryagin extremals,
which are, in fact, curves in the cotangent space corresponding to the critical points
of the end-point map.

The notions and the results presented in this chapter are classical facts of sub-
Riemannian geometry. For this reason we will omit most of the proofs of the state-
ments contained in this chapter. The reader can find all the details of these arguments
in Chapters 2, 3, 6 and 8 of [2].

1.1 Prelimirary notions

In this section we recall some general facts of differential geometry we need in the se-
quel. Since a sub-Riemannian manifold is smooth (see definition 1.10), our definitions
in this section are given in the smooth setting.

We point out that in this section we are not developing the standard theory of



differential geometry, rather just fixing our notations. We assume the reader to be
very confident with the topics covered in this section.

From now on, if it is not specified, M denotes a smooth and connected manifold
of dimension n € N, and C*(M) denotes the set of smooth functions from M to R..

1. Smooth maps, differentials and vector bundles

We assume the reader to be confident with all the notions and properties concerning
vector bundles. The rank of a vector bundle (F, ) over M, is simply denoted with
rankF.

The tangent bundle of a smooth manifold M is denoted with 7'M and it is a
vector bundle over M. Its fiber at a point ¢ € M, denoted with 7, M, is the tangent
space of M at g. Any smooth section X : M — T'M is a smooth vector field over M.
We denote with Vec(M) the set of smooth vector fields over M. We write X(g) or
X, for denoting the evaluation of X at q.

The cotangent bundle of M is denoted with T*M and it is a vector bundle over
M. Its fiber at a point ¢ € M, denoted with T M, is the cotangent space of M at
q. Any smooth section w : M — A¥(T*M) is a smooth k-form over M, where here
AF(T*M) is the exterior algebra over T* M. We denote with Q2*(M) the set of smooth
k-forms over M. We write w(q) or w, for denoting the evaluation of X at q.

The cotangent bundle is the “dual” of the tangent bundle in the sense that any
A € Ty M is a linear form A : T;M — R, and we use the notation A(v) = (A, v),
vel,M.

If p: M — N is a smooth map between two smooth manifolds, its differential is
denoted with dp : TM — TN. We denote with dyp : T,M — T, N the differential
of ¢ at a point ¢ € M, i.e. the restriction of dy on T, M. We also use the notations
¢ and ¢, 4 for the differential.

We denote with ¢* : T*N — T*M the pull-back of ¢, i.e. the unique map
satisfying

A pav) = (" A\v), veT M, NeT;,N.

Notice that, in this case, ¢} : T;j(q)N — T™qM since it is the dual map of ¢, 4.
If feC>(N), ¢*f = f oy denotes the pull-back of f through .
2. Flow of smooth vector fields

We assume that the reader is familiar with the notions of vector field, complete vector
field and flows of vector fields. In particular, we recall that the assumption for a vector

field to be complete is not restrictive thanks to standard compactness arguments.
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Given a complete vector field X € Vec(M), the flow generated by X is a smooth
map denoted with P, = X : M — M. The exponential notation is due to the

following properties

6OX _ ’Ld, etX o 6sX — 6(t—i—s)X7 (etX)—l — e—tX7 (11)
d
¢ (a) = X(¢7(a)- (1.2)

We resume properties (1.1) and (1.2) saying that the family {e/X, ¢ € R} is a one
parameter subgroup of Diff(M).

A nonautonomous vector field is a family of vector fields {X;};cr such that the
map (t,q) — Xi(q) is measurable in ¢ and smooth in g. We point out our attention

in nonautonomous vector fields of the form
Xi(q) =Y wi(t) fi(q), (1.3)
i=1

where wu; are functions in LP, p € [1,4+00], and f; are smooth vector fields.
When X, is complete, its flow is denoted with P,,;. We assume all the properties
of nonautonomous flows to be well-known. In particular, we highlight the following

ones

Pt,t = Zd7 (14)
Ptl,tQ o -Ptg,tg - -Ptl,t37 vt17t27t3 € R (15)

Conversely, every two-parameters family of smooth maps P,; : M — M satistying
(1.4) and (1.5) is called a flow in M, and its infinitesimal generator is the nonau-
tonomous vector field

Xt(q) = % Pt,t+8(Q>7 S M.
s=0

The relationship between autonomous and nonautonomous vector fields is con-
tained in the following statement

Lemma 1.1. Let {P;+}sier be a family of smooth diffeomorphisms satisfying (1.4)-
(1.5). Its infinitesimal generator is an autonomous vector field X € Vec(M) if and
only if

PoroPys = Pyrys, Vs,teR. (1.6)

Remark 1.2 (On the notation). When the infinitesimal generator of the flow is an
autonomous vector field X € Vec(M), we have P,; = P,_, = ¢! X_ With this
notation, (1.6) is exactly the second identity in (1.1). Moreover, property (1.5) for

autonomous flows is a direct consequence of the second identity in (1.1).
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3. Lie brackets and Hormander condition

For X,Y € Vec(M), we denote their Lie bracket with [X,Y]. We also denote adX :
Vec(M) — Vec(M) the adjoint map (adX)Y = [X,Y]. The reader is assumed to be
familiar with Lie brackets and all their differential and algebraic properties.

For a family F C Vec(M) of smooth vector fields we denote with F, the set of its
vector fields evaluated at ¢, namely F, = {X(q)| X € F} C T,M, and

(adF)F = [F,F] =span{[X,Y]| X, Y € F}.

The Lie algebra generated by F, denoted by LieF, is the smallest sub-algebra of
Vec(M) containing F, namely

LieF = P (adF)'F.
i=1
Similarly, we define

Lie’F := (P(adF)'F.
=1

Definition 1.3. Let F C Vec(M) be a family of smooth vector fields. F is said to

be bracket generating (or that satisfies the Hérmander condition) if
Lie, f =T,M, Vq¢& M.

For a bracket generating family F, its step s € N at a point ¢ € M is the minimal
integer satisfying
Lieg F =T, M.

Notice that, in general, the step may depends on the point ¢ € M, and s = s(q)
can be unbounded on M, even for bracket-generating families.

A class of families of vector fields which we are interested in are the distributions.

Definition 1.4. A smooth distribution D of rank m on M is a smooth vector sub-
bundle of rank m of the tangent bundle T'M.
A metric g on D is a smooth map ¢ — g, that assigns to each point ¢ € M a

positive definite scalar product g, on the vector space D,.

4. Poisson bracket and Hamiltonian vector fields

We identify any smooth function a € C*°(M) with the constant on fibers function
m*a € C®(T*M), and any vector field X € Vec(M) with the linear on fibers function
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ax € C®°(T*M), where ax(\) = (A, X(q)), ¢ = m(\). Here w : T*M — M is as usual
the standard projection.

For a,b € C>(T*M) their Poisson bracket is denoted with {a,b}. The reader is
assumed to be familiar with Poisson brackets and all their differential and algebraic

properties. The Hamiltonian vector filed @ € Vec(T*M) associated to a is defined by
a:C®(T*M)— C>®(T*M), db)={a,b}.

Hamiltonian vector fields completely characterize the pull-back of flows of vector fields
on M.

Proposition 1.5. Let X € Vec(M) be a complete vector field with flow Pyy = ™.
The flow on T*M defined by (Fy}')* = (e7'%)* is generated by the Hamiltonian vector
field axt, where ax(\) = (N, X(q)) and ¢ = w(\).

This construction can be extended to the case of nonautonomous vector fields of
the form (1.3).

Proposition 1.6. Let X; be a nonautonomous vector field as in (1.3). Denote by
Py the flow of Xy on M. Then the nonautonomous vector field on T M

Vi=dx, ax,(\) =\ Xi(q),
is the generator of the flow (Py}')*.
Finally, we denote with s € A'(T*M) the tautological (or Liouville) 1-form
s: A= sy €TNT*M), (syn,w)={\mw), NeT*M, weT\(T*M),

and with o = ds € A*(T*M) the canonical symplectic form of M.
The following statement establish the connection among the canonical symplectic

form and Poisson brackets.

Proposition 1.7. For every A\ € T*M and every a,b € C>®(T*M) we have the
identity

—

oA(@(A),b(N) = drb(@(A)) = {a, b} (A).

1.2 The model of the rototranslations in the plane

In this section we present an easy sub-Riemannian model coming from real life: we
study the trajectories of a car moving on the road. Such a model can be viewed as

R3 = (z,y,0), where the first two coordinates (x,y) determine the position of the car

5



in the plane, and the third coordinate 6 define the angle of the car’s wheels, namely
it defines the moving direction of the the car.

When @ is fixed, our car moves in the plane following the direction (cos6,sin6),
i.e. it solves the following PDE

t(t) = cosd,
y(t) = sin 6,
(t) = 0.

In other words we are moving along the v.f. X := cos 00, + sin 69,.
When the car is stopped, we can steer the wheels, namely we are changing the

value of #, solving then the following PDE

(t) = 0,
y(t) =0,
0(t) =1

In this case we are following the v.f. Y := 0.
Finally, what it is not allowed for our car, is to follow the orthogonal vector to
(cosf,sinf). In terms of vector fields, the non-allowed direction is Z := —sin 00, +

cos 00,.

Remark 1.8. The vector fields X and Y do not commute and, in particular, their Lie
bracket is given by [X,Y] = Z. Moreover, the set {X,,Y,, Z,} is a basis of R? for
any point p = (z,y,6). In other words, the distribution defined by D, = {X,,Y,} is

bracket generating.

The distribution D, defined above equipped with any smooth metric (-,-), is
an example of a sub-Riemannian structure on R3, and the triplet (R3 D, (-,-)) is an
example of sub-Riemannian manifold. In Section 1.3 below we give the general notions
of a sub-Riemannian structure over a smooth manifold M and of sub-Riemannian
norm, studying their general properties.

Until now, we were supposing that both the velocity of the car and the velocity
of the angle # is constant and unit. To make our model complete, we have to make
these parameters dynamic, namely all the admissible trajectories for the car are such
curves «y : I — R? that satisfy the following PDE

Y1) = um ()X (y(1) + u ()Y (7(1)), (1.7)

where u; and uy are arbitrary essentially bounded functions from [0, 7] to R, called

controls. Any curve satisfying condition (1.7) is called horizontal or admissible.
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Remark 1.9. In spite of we restrict the set of admissible curves, it is easy to see that
we can join anyway any couple of point of R®. On the other hand, the presence of a
metric (-, -) on the distribution D and condition (1.7) allows us to measure length of
admissible curves. Then, one may define the distance between any couple of points

as the infimum among the length of admissible curves joining such points.

The previous Remark is known as the Chow-Rashevskii theorem. In Section 1.4
below we will generalize the definition of admissible curves and we will study their

main properties.

1.3 Sub-Riemannian structures

In this section we are going to generalize the example described in the previous section.

We recall that M denotes a smooth connected manifold of dimension n.
Definition 1.10. A sub-Riemannian structure on M is a pair (U, f) where:

i) U is an Euclidean vector bundle with base M and Euclidean fiber U,, i.e., for
every ¢ € M, U, is a vector space equipped with a scalar product (-, ), which
is smooth with respect to ¢. For any u € U, we denote with |u| := (u, u)/? the

norm of wu.

ii) The map f: U — T'M is smooth, it is a morphism of vector bundles, and it is

fiber-wise linear. In particular, the following diagram is commutative

U 1M

& |
M
where 7y : U — M and 7 : TM — M are the standard projections.

iii) The family of vector fields D := {f(o)|oc : M — U smooth section} C TM is
bracket generating. Any vector field belonging to D is called horizontal. We

also call step of the sub-Riemannian structure at ¢ the step of D.

When U admits a global trivialization, i.e. U = M x R", we say that (U, f) is a free

sub-Riemannian structure.

A smooth manifold M endowed with a sub-Riemannian structure (U, f) is called
sub-Riemannian manifold, and it is denoted as the triple (M, U, f). When the map

f is fiberwise surjective, (M, U, f) is called a Riemannian manifold.
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Definition 1.11. Let (M, U, f) be a sub-Riemannian manifold. The smooth distri-
bution on M defined by
q = Dq = f(Uq)7

is called the distribution.

Remark 1.12. The set of horizontal vector fields has the structure of a finitely generate
module over C*(M).

Remark 1.13. The distribution {D,},enm can be written in terms of the horizontal

vector fields as

D, = {X(q)|X € D}.

In particular, if (U’ f’) is another sub-Riemannian structure on M with D = D',
then D, = D;, for any ¢ € M. Conversely, condition D, = D, for any ¢ € M, does
not imply D = D’ (see Example 1.35 below).

Definition 1.14. Let (M, U, f) be a sub-Riemannian manifold and let ¢ € M. We
define the bundle rank of M as m := rank(U), and the rank of M at the point ¢ as
r(q) :== dimD,. When r(¢q) = r is constant, we say that the sub-Riemannian structure

(U, f) is regular of constant rank r, otherwise we say that (U, f) is rank-varying.

The rank of a sub-Riemannian manifold (M, U, f) satisfies
r(¢) < min{m,n}, where m =rank(U), n = dim(M). (1.8)

From now on, if it is not specified, a sub-Riemannian manifold (M, U, f) is supposed

to have dimension n and bundle rank m.

Remark 1.15. If the distribution has constant rank and (U’, f’) is another sub-
Riemannian structure on M, then we have D, = Dj, for any ¢ € M, if and only
if D = D’. In this case, D C T'M is a smooth distribution of M, called horizontal
distribution. Conversely, if D is a smooth distribution of M equipped with a smooth
metric as in Definition 1.4, and ¢ : D — TM is the standard inclusion map, then

(M, D, i) is a constant-rank sub-Riemannian manifold.

Definition 1.16. Let (M, U, f) be a sub-Riemannian manifold and let ¢ € M. The
flag of M at the point ¢ is the sequence of subspaces {Df]}ieN of T, M defined by

,Df] = span{[Xl-l, [ .. [Xi4717 le” .. ”XZ - 7Xie € D,g S Z}

17"

By the bracket generating assumption on the family D of horizontal vector fields,
there exists a minimal integer s = s(q) such that D; = T, M, which is called the step
of M at q.



Notice that, by construction, D} C D"

Definition 1.17. Let (M, U, f) be a sub-Riemannian manifold and let {D}};cy the
flag of M at q. Let r;(¢) = dim Df]. We say that M is equiregular if, for every i € N,

the integer 7;(q) = r; is constant and does not depend on q.

We emphasize that D, = D, and r1(q) = 7(q) is the rank of M at ¢. So an
equiregular sub-Riemannian manifold is regular of constant rank.

In what follows we denote points in U as pairs (¢, u), where ¢ € M is an element
of the base and u € U, is an element of the fiber. Following this notation we can

write the value of f at this point as

flgu) or fulq).
We prefer the second notation to stress that, for each ¢ € M, f,(q) is a vector in
T,M.
Remark 1.18. Every sub-Riemannian manifold (M, U, f) is locally free in the follow-

ing sense. Once we have chosen a local trivialization O, x R™ for the vector bundle

U, where O, is a neighborhood of ¢ € M, the following diagram is commutative

0, xR™ — r51(0,) —— TO,

N ﬂu/ (1.9)

Oq

Here 7, is the standard projection, and v is the diffeomorphism of the local trivial-

ization. Then, defining
f=TFo,
(04,04 x R™, f) is a free sub-Riemannian manifold.

Remark 1.19. The local characterization of the previous remark leads to the following
local canonical construction. Once we have chosen a local trivialization Oy, x R™ for
the vector bundle U, we can choose a basis {é1,...,é,} for R™. Using the same
notation as in (1.9), the vectors e; = 1(é;) form a basis for the fibers U, ¢ € O,,.

Then, we can define the vector fields

fz<Q> = f(Q7 61') :f<Q7w(éz>)7 1= 17"'7m (11())

By the linearity on the fibers of the maps f and ¢ we have, for every ¢ € O, and
every u € U,

fula) = Zuifi(Q)7 q € Og,
i=1
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where (uy, ..., u,) € R™ are the coordinates both of u € U, and of & = ¢! (u) € R™

in this trivialization, namely u = """ w;e; and @ = > " | u;é;.

The local arguments of Remarks 1.18 and 1.19 are the basis for nilpotentization
of sub-Riemannian manifolds. In Chapter 3, Theorem 3.5, we describe the nilpoten-
tization of a specific kind of sub-Riemannian manifolds.

From now on, we forgot about the “tilde” notation (and then also the composition

with ¢) when working with local trivializations.

Definition 1.20. Let (M, U, f) be a sub-Riemannian manifold. A family of (hori-
zontal) vector field { fi,..., fi}, m > rank(U), is called a generating family for M if
for any ¢ € M and u € U, there exist uy,...,u, € R such that

f<Q7u> = Zuzfz(Q)

We will discuss in a moment when a sub-Riemannian manifolds admit a generating
family. Before, we introduce the “natural” metric in sub-Riemannian manifolds and

the notion of equivalence of sub-Riemannian structures.

Definition 1.21. Let v € D,. We define the sub-Riemannian norm of v as follows
vl = min{|u| : w € Uy, v = fu(q)}. (1.11)

Notice that, since f is linear, f(g,-)"*(v) C U, is an affine subspace of U, (which
is nonempty because v € D,). Thus, the minimum in (1.11) is uniquely attained at
the orthogonal projection of the origin onto this subspace.

The function defined in (1.11) is in fact a norm, which moreover satisfies the

parallelogram identity. IL.e., it is induced by the scalar product on D,

(Jlv+w|®* = lv —w|?), v,w e D,

] =

<U, U))Dq =

Remark 1.22. If the map f(q,-) : U, — D, is injective (and then necessarily surjective
by (1.8)), then it is automatically an isometry, that is

(v1,v2)p, = (U1, u2)u,, vi = f(q, ), 1 =1,2.

When f is fiberwise injective, we have an isometry of Euclidean bundle between U
and the distribution {D,},en. In this case, the sub-Riemannian norm of any vector

v € D, can be equivalently defined as

[oll = ful, v = flg, ).
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Definition 1.23. Let (U, f) and (U’, f’) be two sub-Riemannian structures on the
same smooth manifold M. They are said to be equivalent as distribution if there exist
an Euclidean bundle V and two surjective morphisms of vector bundles p : V. — U,

p': V — U’ such that the following diagram is commutative

AN, §
bl

SN Y

Remark 1.24. Two sub-Riemannian manifolds (M, U, f) and (M, U’, f') are equiva-
lent as distribution if and only if the two moduli of horizontal vector fields D and D’
coincide. In fact, if (M, U, f) and (M, U’, f') are equivalent as distribution, then the

following diagram is commutative

\Y P y U

%
14 M
RN
U &

f
s TM

and the two moduli of horizontal vector fields D and D’ coincide. In particular, we
deduce that also the distributions D, and D; coincide.

Conversely, if D = D/, then (M, U, f) and (M, U’, f') are equivalent as distribu-
tion taking V = U x U’ and p, p’ the standard projections. Notice that, accord-
ing to Remark 2.7, the equivalence of distributions D, and D;, does not implies the
equivalence of the sub-Riemannian structures as distribution. This is true only for

constant-rank sub-Riemannian manifolds.

Definition 1.25. Let (U, f) and (U’, f’) be two sub-Riemannian structures on the
same smooth manifold M equivalent as distributions. If the projections p, p’' are

compatible with the scalar product, i.e.
|u| = min{|v| : p(v) =u}, Vue U,
|/ = min{|v| : p'(v) =o'}, Vo' € U,
then (U, f) and (U’, f’) are said to be equivalent.

If (U, f) and (U’, f') are two equivalent sub-Riemannian structures on M, then
the norms induced on the distribution coincides, i.e. for each w € D, we have
|w|| = ||lw]/’, where ||w]| is the norm induced on D, by (U, f), and ||w||’ is the norm
induced on D, by (U, f’).
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Definition 1.26. Let R be a family of sub-Riemannian structures on a smooth
manifold M. We call R a class of equivalence for M if all the sub-Riemannian
manifolds (M, U, f) are equivalent for any (U, f) € R. A class of equivalence R is
said to be maximal if there is no other class R’ such that R C R'.

Any maximal class of equivalence of sub-Riemannian structures contains a repre-

sentative (U, f) where U is a trivial bundle, as stated by the following theorem.

Theorem 1.27. Fvery sub-Riemannian structure (U, f) on a smooth manifold M is

equivalent to a sub-Riemannian structure (U, f) on M where U is a trivial bundle.
The importance the of free structures is explained by the next lemma.
Lemma 1.28. Every free sub-Riemannian manifold admits a generating family.

Proof. Let (M, U, f) be a free sub-Riemannian manifold of bundle rank m, i.e. U =
M x R™. A point in U can be written as (¢, u), where ¢ € U and u = (uq,...,u,) €
R™. If we denote by {ej,...,en} an orthonormal basis of R™ then we can define

globally the m smooth (horizontal) vector fields on M

filq) = f(g, &) (1.12)

This construction is similar to Remark 1.19 and the triviality of U make it global.

Then we have, by the linearity on fibers of f

flgu) = Zuifi(Q), g€ M. (1.13)

According to Definition 1.20, the vector fields f; are a generating family. In particular,

the modulus of horizontal vector fields D is globally generated by the f;. m

The vector fields defined in (1.12) are the canonical generating family associated
to an orthonormal basis {ey, . ..e,} of R™. Notice that, if f is not injective, then the
vectors f;(q) are not necessarily orthonormal in D,.

Combining Theorem 1.27 and Lemma 1.28 one obtains the following result.
Corollary 1.29. Every sub-Riemannian manifold admits a generating famaily.

Remark 1.30. Thanks to this result, algebraic and geometric properties of horizontal
vector fields are totally described by the algebraic and geometric properties of a
generating family. We will use this fundamental fact in Section 1.5 below and in
Chapter 2 to study the end-point map, and in Chapter 3 to describe the behavior of

spirals.

12



Any maximal class of equivalence R on M contains an infinite number of free
structures. Indeed, every free sub-Riemannian structure (M x R™', f) for M is equiv-
alent to (M x R™, f) for any m’ > m if f'|y;xgm = f. In this case, in (1.13) we have
u; =0, fori =m+1,...,m/'. This fact suggest the following definition.

Definition 1.31. Let (M, U, f) be a sub-Riemannian manifold and let R be the
maximal class of equivalence containing (U, f). We define the minimal bundle rank
of M as

minrank(M) = min{rank(U) | (U, f) € R}.

The minimal bundle rank of a sub-Riemannian manifold M is actually the bun-
dle rank of the free sub-Riemannian structure of minimal bundle rank inducing an
equivalent structure on M. From now on we suppose, without loss of generality,
for any sub-Riemannian manifold (M, U, f) that the vector bundle U has minimal

bundle rank.

1.3.1 Examples

Our approach to sub-Riemannian geometry is quite general. We end this section
providing some classical examples which are included in our setting. In particu-
lar, Example 1.33 below is the classical setting appearing in the literature for sub-
Riemannian manifolds. The new results concerning the regularity problem of sub-
Riemannian geodesics we will provide in Chapters 2 and 3, are given indeed in this

setting.

Example 1.32 (Riemannian Manifolds). Classically, a Riemannian manifold is de-
fined as a pair (M, (-,-)), where M is a smooth manifold and (-, -), is a scalar product
on T,M, smoothly depending on ¢ € M. This definition, as pointed out in Remark
2.7, is included in Definition 1.10 by taking U = D endowed with the structure
induced by (-,-) and f : D — T'M the canonical inclusion map.

Example 1.33 (Constant rank sub-Riemannian manifolds). We emphasized in Re-
mark 2.7 that a constant-rank sub-Riemannian manifold is given by (M, D, i), where
D C T'M is a smooth Euclidean distribution and ¢ is the inclusion map. Classically, a
constant-rank sub-Riemannian manifold is presented as a triple (M, D, (-, -)), where
(-,-)q 1s a scalar product on D,, smoothly depending on ¢ € M.

In particular, let us analyze the model presented in paragraph 1.2. There, on
M = R? we had the smooth distribution D defined by D, = span{X(q),Y (¢)}.
Then, any scalar product (-,-), defined on D, defines a sub-Riemannian metric. The

triplet (R®, D, (-, -)) is a free sub-Riemannian manifold of constant rank 2.
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Example 1.34 (Carnot groups). A Carnot group (G, ) is a connected, simply con-
nected and nilpotent Lie group G, with a smooth group operation -, whose Lie algebra
g is stratified, i.e., there exists a (fixed) decomposition g = g1 ® g2 @ - -+ @ gs, such
that g; = [g1,9,-1) forany i = 2,...,s and [g, gs] = 0.

The left translation based at a € G, defined by L,(b) = a - b, for b € G, is a
diffeomorphism of G. A vector field X on G is left-invariant if (L,).X = X for
every a € G. Through the differetial at the identity e € G of left translations, we
have T,G = (Lgy)+.9, 1., the tangent bundle is generated by left-invariant vector
fields. In particular, D, = (Lg).81 is a left-invariant and bracket-generating smooth
distribution of TG. Similarly, any scalar product (-,-). on g; defines a left-invariant
sub-Riemannian metric (-,-) on G and (G, D, (-,-)) is an equiregular (and then also
a constant-rank) sub-Riemannian manifold.

In Chapter 3 we will see that Carnot groups are the nilpotent (i.e. first order)

approximations of equiregular sub-Riemannian manifolds.

Example 1.35 (Same distributions with different horizontal vector fields). Let us

consider on M = R? the two free sub-Riemannian structures of bundle rank 2 (R? x
R?, f) and (R? x R?, f') giving by

f(.’ﬂ,y,ul,lbg) = (l’>y,U1,U2$)7 f/<x>y7u17u2) = (x,y,ul,ung).

/

The last coordinate of f and f’ vanish if and only if x = 0, making D, ,) = Di,,

) for
every (z,y) € R?

On the other hand, D' ¢ D. In fact, if X € D', then X = f' o o, where o :
M — R? x R? is an arbitrary smooth section o(x,y) = (z,y, ui(z,y), us(z,y)), for
some smooth wuy, uy. Then, if X € D', we have X (z,y) = (uy, v,2?), for some smooth
functions uy, us. So X € D, because X = f o g with 6(z,y) = (z,y, uq, usx).

Finally, the vector field X (z,y) = (1,2) belongs to D, since it is the composition
of f with o(x,y) = (x,y,1,z), but it does not belong to D'.

1.4 Admissible curves and sub-Riemannian distance

In this section we are going to generalize the second part of the example given in
Section 1.2. Namely, we illustrate the general theory concerning admissible curves in

sub-Riemannian geometry.

Definition 1.36. A Lipschitz curve v : [0,7] — M is said to be admissible or

horizontal for a sub-Riemannian structure (U, f) on M if there exists a measurable
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and essentially bounded function
uw:[0,T] = U, wu(t) € Uyy (1.14)
called control, such that
A(t) = f(v(t),u(t)), for ae. t € [0,T]. (1.15)
In this case, we say that u is a control corresponding or associated to 7.

In other words, an admissible curve « is driven by a measurable and essentially
bounded function w lying on the moving fibers of U along v. We point out the
attention on several facts regarding the definition of horizontal curves, collecting

them in the following remarks

Remark 1.37. A curve v : [0,7] — M such that v(t) = v(0) for every ¢t € [0,7T] is

always admissible

Remark 1.38. When f : U — T'M is fiberwise injective, the control u associated to a

horizontal curve is unique.

Lemma 1.39. Let O, C M be a neighborhood of ¢ € M, and let O, x R™ be a
local trivialization of U. Let {ey,...,en} be an orthonormal basis of R™ and let f;,
i =1,...,m, be the horizontal vector fields defined as in (1.10). A Lipschitz curve
v :[0,T] = Oy is horizontal if and only if there exists w € L>([0,T],R™) such that

§() = S w0 (0), for ae. t€[0,7)
i=1
Proof. The proof is a direct consequence of Remark 1.19. n

Thanks to this local characterization and the Carathéodory Theorem for nonau-
tonomous vector fields (see [2, Theorem 2.15]), it follows that, for each initial condition
q € M and for each control u € L>([0,T],R™), the Cauchy problem

always admits a solution defined on a sufficiently small interval.

Corollary 1.40. For every q € M and for each control w € L>*([0,T],R™), there

exists an admissible curve v with control u and v(0) = q.
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Remark 1.41. An admissible curve « : [0,7] — M is Lipschitz, hence differentiable
at almost every point. Therefore, combining (1.14) and (1.15), we have that its
derivative satisfies

Y(t) € Dy, fora.e. te[0,7]. (1.16)
This is, in general, not also a necessary condition for a curve to be horizontal. Ac-
cording to Remark 1.15, a curve is horizontal if and only if it satisfies condition (1.16)
just for constant-rank sub-Riemannian manifolds.

We resume Lemma 1.39 and Remark 1.41 giving equivalent conditions for a Lip-
schitz curve 7 : [0,7] — M to be horizontal in Remarks 1.42 and 1.43 below.
Remark 1.42. Let M be a free sub-Riemannian manifold with generating family
fi,---, fm (possibly associated in the canonical way to the standard basis of R™).

Let v:[0,7] — M be a Lipschitz curve. Then the following definitions are equivalent

H1) ~ is horizontal.

H2) There exists a function u € L>([0, 7], R™) such that

A(t) = Zui(t) fi(v(t), forae. te0,T]

]

Remark 1.43. Let M be a constant rank sub-Riemannian manifold. Let ~ : [0,7] —

M be a Lipschitz curve. Then the following definitions are equivalent

H1) ~ is horizontal;
H3) 4(t) € Dy, for ae. t € [0,T7.

Example 1.44. In the setting of Example 1.35, let us consider the curve v : ¢t €
[—=1,1] = (¢, %) € R®. We have y(t) € D, and y(t) € D, for all t € [-1,1].

On the other hand, v is admissible for f, since its corresponding control is
(ur,uz) = (1,2), but it is not admissible for f’, since its corresponding control is
uniquely determined as (uy,us) = (1,2/t) for a.e. t € [—1, 1], which is not essentially
bounded (and even not integrable). This situation is compatible with the inclusion

D' C D, because a horizontal vector field for f is not necessarily horizontal for f’.

1.4.1 Length of admissible curves

When the derivative of an horizontal curve is defined, it belongs pointwisely to the
fibers of U along 7. Then, at any differentiability point of v, the velocity norm of

any horizontal curve ~ is defined by
1Y@ = minflu - w € Uy, (1) = fulv(0)}- (1.17)
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Hence, it is well defined the function ¢ — u*(¢) which realizes the minimum in (1.17).

In particular, the norm of % is given, at any differentiability point of v, by

1Y@ = Tu*(@)]-

Notice that, if the function w*(¢) is measurable and essentially bounded, then it is in

fact a control associated to the curve ~.

Lemma 1.45. Let v : [0,T] — M be a horizontal curve and let Diff(y) C [0,T] be
set of differentiability points of v. Let

u* : t € Diff(y) = u*(t) € Uy
be the function defined by

u*(t) = argmin{Ju] - w € Uy, 4(8) = fu(1(t)}. (1.18)
Then u* is a control for vy, i.e. it 1s measurable and essentially bounded.

Actually, the set [0, 7]\ Diff () has null measure. Thus, from now on, with a slight
abuse of notation we will consider the function «* introduced in (1.18) as defined on
the whole [0, 7.

Definition 1.46 (Minimal control). Given a horizontal curve « : [0,7] — M, the

control u* defined in (1.18) is called the minimal control of ~.

Remark 1.47. If the admissible curve v : [0,7] — M is differentiable, its minimal
control is defined everywhere on [0,7]. Nevertheless, it could be not continuous, in
general. Indeed consider, as in Example 1.35, the free sub-Riemannian structure on
M = R? given by

flz,y,ur,uz) = (2, y, up, ugx),
and let v : [0,7] — R? defined by ~(t) = (¢,t*). Its minimal control u*(t) satisfies
(ui(t),us(t)) = (1,2), while (uj(t),us(t)) = (1,0), hence is not continuous.

Definition 1.48. Let v : [0,7] — M be an admissible curve and let v* : [0,7] — U

be its minimal control. We define the sub-Riemannian length of v as

uwzlwmmwzﬁ|w@w

We say that 7 is parameterized by arc length (or arc length parameterized if ||¥(t)|| =
1 for a.e. t €[0,7].
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The length of an admissible curve is, in other words, the L'-norm of its minimal
control. Since L>([0,T],R™) c L'([0,T],R™), any admissible curve has finite length
and the definition is well posed. In particular, for an arc length parameterized curve
we have that L(y) =T.

Lemma 1.49. The length of an admissible curve is invariant by Lipschitz reparam-

eterization.

Lemma 1.50. Every admissible curve of positive length is a Lipschitz reparameteri-

zation of an arc length parameterized admissible one.

Remark 1.51. Up to a reparameterization, we can always assume one of the following

for a horizontal curve ~

i) v is defined on I and has constant speed,;

ii) v is defined on [0, 7] and has unit speed, i.e. it is parameterized by arc-length.

1.4.2 Sub-Riemannian distance and Chow-Rashevskii theo-
rem

Once defined horizontal curves with their length, one can define a distance in M in

the following natural way

Definition 1.52. Let M be a sub-Riemannian manifold with qg,q; € M. We define

the sub-Riemannian (or Carnot-Caratéodory) distance between ¢y and ¢; as
d(qo, q1) = inf{L(~) |~ :[0,T] = M admissible ,v(0) = qo, 7(1) = @1}

Let us recall that, according to Remark 1.28, every sub-Riemannian manifold
admits a generating family of horizontal vector fields {fi,..., fi,}. In these optics,
an admissible curve can only move along the directions of the generating vector fields,
and namely the horizontal directions.

The Chow-Rashevskii Theorem ensures that the sub-Riemannian distance is well

defined, in spite of we restricted the admissible moving directions for horizontal curves.
Theorem 1.53 (Chow-Rashevskii). Let M be a sub-Riemannian manifold. Then
i) (M,d) is a metric space;
ii) The topology induced by (M,d) is equivalent to the manifold topology.

Remark 1.54. One of the main consequences contained in the proof of this result
is that, thanks to the bracket-generating condition, every couple of points in M is

always joined by an admissible curve. Hence, d(qo,q1) < o0, for every qo,q1 € M.

18



1.4.3 Length-minimizers

The aim of this section is to discuss the existence of length minimizing curves, i.e. of
those curves which, roughly speaking, realize the distance between couple of points

(for example, segments in Euclidean spaces).

Definition 1.55. Let v : [0,7] — M be an admissible curve. We say that v is a

length-minimizer (or a length-minimizing curve) if

In other words, a length minimizing curve minimizes the length among admissible
curves with same endpoints. A key fact involving length minimizing curves is the

lower semicontinuity of the sub-Riemannian distance.

Theorem 1.56 (Lower semicontinuity of the distance). Let v, : [0,T7] — M be
a sequence of admissible curves parameterized by arc-length. Suppose that ~, — ~
uniformly on [0,T], with liminf, ., v, < +0o. Then 7 is admissible and

L(v) < liminf~,

n—oo

Corollary 1.57. Let 7, : [0,T] — M be a sequence of length-minimizers parame-
terized by arc-length. Suppose that v, — v uniformly on [0,T]|. Then 7 is a length-

minimaizer.

The (local) existence of length-minimizers is guaranteed by Theorem 1.58 below.
The proof relies upon both the lower semicontinuity of the distance and a natural

compactness assumption.

Theorem 1.58 (Existence of length-minimizers). Let M be a sub-Riemannian man-
ifold and gy € M. Assume that the closed ball By, (r) is compact, for some v > 0.

Then for all ¢ € By, (r) there exists a length minimizer joining qo and q.

Corollary 1.59. Let M be a sub-Riemannian manifold and qo € M. There exists

e > 0 such that for every q € By, () there is a minimizing curve joining qo and q.

Remark 1.60. The compactness assumption in Theorem 1.58 is completely natural
and cannot be removed. In fact, the existence of length-minimizers between two
points is not true in general, as it happens, for example, for two symmetric points
with respect to the origin in M = R"™\ {0}, endowed with the Euclidean metric.

On the other hand, when length-minimizers exist between two fixed, they may

not be unique, as in the case of two antipodal points on the sphere S?.
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The existence of length-minimizing curves leads to a characterization of the metric

completeness of sub-Riemannian distance.

Proposition 1.61. Let M be a sub-Riemannian manifold. Then the three following

properties are equivalent
i) (M,d) is complete;
ii) By,(r) is compact for every ¢ € M and r > 0;
iii) There exists ¢ > 0 such that B,(r) is compact for every q € M.

Remark 1.62. In the proof of proposition 1.61, the fact that the distance is sub-
Riemannian is used only to prove that “(i) implies (ii)”. Actually the same result

holds true in the more general context of length metric space, see [9, Chapter 2].

Combining this result with Corollary 1.59 we obtain the following corollary.

Corollary 1.63. Let (M,d) be a complete sub-Riemannian manifold. Then for every

Go, @1 € M there exists a length minimizer joining qo and q;.

The results contained in this section provide the existence of length minimizers
in sub-Riemannian geometry, but they do not provide any additional regularity with
respect to admissible curves.

The regularity of length minimizing curves in sub-Riemannian geometry is an
open problem since 40 years, and, actually, it is the problem we face-up in this thesis.

In Section 1.5 below, the first order analysis of the end-point map emphasizes that
the root of the problem lies in the abnormal minimizers, i.e. in the singularities of
the end-point map.

In Chapters 2 and 3, we provide new interesting results concerning the regularity

of length minimizers.

1.4.4 Lipschitz vs absolutely continuous admissible curves

In Definition 1.36 we assumed admissible curves to be Lipschitz: we were in fact
defining Lipschitz-admissible curves, requiring the control u to be an L*° function.
Notice that the length of a Lipschitz admissible curve is well defined as the L'-norm
of its minimal control, since L*°([0,T]) C L'([0,T1]).

The same definitions can be given for absolutely continuous curves, as long as we

require the control « to be an L' function.

20



Definition 1.64. An absolutely continuous curve v : [0,7] — M is said to be AC-
admissible if there exists an L' function w : ¢ € [0,T] — u(t) € U,y such that

A(t) = f(y(t),u(t)), for a.e. t € [0,T).

Once defined AC-admissible curve, the minimal control is defined in the same
way as in (1.18) and Lemma 1.49 continues to hold. The length of an AC-admissible
curve is defined again as the L'-norm of its minimal control.

Being the set of absolutely continuous curve bigger than the set of Lipschitz ones,
one could expect that the sub-Riemannian distance between two points is smaller
when computed among all absolutely continuous admissible curves. However this is
not the case thanks to the invariance by reparameterization. Indeed Lemmas 1.49
and 1.50 can be rewritten in the absolutely continuous framework in the following

form.

Lemma 1.65. The length of an AC-admissible curve is invariant by AC' reparame-

terization.

Lemma 1.66. Any AC-admissible curve of positive length is a AC' reparameterization

of an arc length parameterized admissible one.

As a consequence of these results, if we define

dac(qo,q1) = inf{L(7y) |~ :[0,T] — M AC-admissible ,v(0) = qo, (1) = ¢1 },
we have the following statement
Proposition 1.67. For every qo,q1 € M, we have dac(qo,q1) = d(qo, ¢1)

In a similar way, one can introduce Wh2-admissible curve, i.e., those associated
with L? controls. Since L*([0,T]) C L'([0, TY]), their length remains defined as the L'-
norm of the minimal control. Again, with the same arguments as below, one obtains

dyi2 = d.

Remark 1.68. As a consequence of these considerations, we can work indifferently
with L>°, L? or L' controls for horizontal curves. For example, in Section 1.4 below

we define the end-point map in the setting of L? controls.

Remark 1.69. More in general, for any p € N, one can define W' -admissible curves
associated with LP controls. The resulting distance dy1» coincides with the sub-

Riemannian one.
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1.5 End-Point map: first-order analysis and Pon-

tryagin extremals

In this section we introduce the central object of our thesis: the end-point map. Its
first order differential analysis leads to the Pontryagin maximum principle, showing
the existence of two kinds of curves which are candidate to be length minimizing. In
particular, the singular case is the deep reason behind the regularity problem of the
geodesics.

Without loss of generality, we assume our sub-Riemannian manifold M to be
free of bundle rank m, and {fi,..., fi,,} will denote a generating family of smooth
horizontal vector fields. We will also consider, in order to clean up the notation,
horizontal curves defined on the interval I = [0, 1], instead of the interval [0, 7).

Fix gy € M. For every control u € L*(I;R™), the corresponding trajectory based

at qo is the curve that solves the Cauchy problem

V() = fun(¥(1)) = Zui<t>fi(7(t))v 7(0) = qo, (1.19)

and it is denoted with v, or, since gy € M is fixed, simply with ~,,.

Let U,, C L*(I;R™) be the set of controls u such that the corresponding trajectory
. based at gy is defined on the whole interval /. It is a well known fact that U, is
an open subset of L?(I;R™).

Definition 1.70. Let (M, U, f) be a free sub-Riemannian manifold, and fix ¢y € M.
The end-point map based at qq is the map

Eqy : Ugy — M, qu(u) = ’7u(1)7
where 7, : I — M is the unique solution of the Cauchy problem (1.19).

A first property of the end-point map, which is a consequence of the Chow-

Rashevskii theorem, is its openness.

Theorem 1.71. Let (M, U, f) be a free sub-Riemannian manifold, and fix gy € M.
Then the end-point map E,, is open at every u € Uy, .

A second property of the end-point map is its smoothness in the Fréchet sense.

The following theorem provides in fact an explicit formula for its first differential.

Theorem 1.72. Let qo € M. Then, the end-point map Ey, is smooth on Uy,. In
particular, its Fréchet differential D Ey, : L*(I; R™) — T, (yM is given by

1
Do) = [ (B (1.20)

22



Here P} denotes the flow generated by u, while fy = > " vi(t) fi.

The proof of this theorem requires the introduction of a particular formalism of

calculus, named the Chronological Calculus. It will be the object of the next section.

1.5.1 Chronological calculus

In this section we develop a language, called chronological calculus, that will allow
us to work in an efficient way with flows of nonautonomous vector fields. The basic
idea of chronological calculus is to replace a non-linear finite-dimensional object, the

manifold M, with a linear infinite-dimensional one, the commutative algebra C'*(M).

Definition 1.73. For every q € M, we define the evaluation linear functional as
q:C*(M)—=R, qla)=alq).

Notice that, since the set C*°(M) of smooth functions on M is an R-algebra with
the usual operation of pointwise addition and multiplication, for every ¢ € M, the
functional ¢ is a homomorphism of algebras, i.e., it satisfies g(a - b) = q(a) - q(b).

We also emphasize that if ¢(t) = ¢ is a smooth curve in M, then it defines the

curve of operator g;(a) = a(q).

Definition 1.74. For every diffeomorphism P € Diff (M), we define the linear oper-

ator

P:C>(M) — C®(M), P(a)=aoP,
which is an automorphism of the algebra C'*(M).

Remark 1.75. One can prove that for every nontrivial homomorphism of algebras
¢ : C®°(M) — R there exists ¢ € M such that ¢ = ¢. Analogously, for every
automorphism of algebras ¢ : C*(M) — C*(M), there exists a diffeomorphism
P € Diff(M) such that P = ©. A proof of these facts is contained in [3, Appendix
Al

The “hat” operator for tangent vectors and, then, for vector fields, is defined via

the natural action of vectors of functions.

Definition 1.76. For every ¢ € M and v € T,M we define
v:C®(M) =R, v(a)=(dsa,v).

Since the differential of a smooth function satisfies the Leibnitz rules, for every

v € T, M the linear operator v is a derivation on C*(M),
v(a-b) =0(a)b(q) + a(q)v(b), Va,be C(M).
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Remark 1.77. If v € T, M, then it is the tangent vector of a curve ¢(t) = ¢; such that
q(0) = ¢. For every a € C*(M), we have

d .
it a(q) = {dqwa, 4¢)|i=0 = (dga, v).
t=0
Thus, it holds the operator identity
5= & G :C*(M) =R
v = di o qe - .

Definition 1.78. Let X € Vec(M) and let P, = e : C®(M) — C®(M) its flow.
We define
X :C%(M) = C*(M), (Xa)(q) = (dga, X(q)),

or, equivalently,

P, C®(M) = C™(M).

t=0

s d
X =—
dt

Notice that the equivalence of the definitions given above is ensured by Remark

1.77. Consequently, we also have the Leibnitz rule
X(ab) = X(a)b+aX(b), Va,be C®(M).

Remark 1.79. In the following we will identify any object with its dual interpretation
as operator on functions and stop to use a different notation for the same object when
acting on the space of smooth functions.

If P is a diffeomorphism on M and ¢ is a point on M the point P(q) is simply
represented by the usual composition g o P of the corresponding linear operator.
Thus, when using the operator notation, composition works in the opposite side. To
simplify the notation in what follows we will remove the “hat” identifying an object
with its dual, but use the symbol “®” to denote the composition of these object, so
that P(q) will be ¢ ® P.

Analogously, the composition X ® P of a vector field X and a diffeomorphism P
will denote the linear operator a — X (a o P).

Lemma 1.80. Let g € M and let v € T,M. For every P € Dift(M) we have
d,P(v) =v 0 P,
as operators on C®(M).

Proof. We have d,P(v) € TpM. Thus, its action on a function a € C*(M) is given
by
dgP(v)(a) = dpga(dyP(v)) = dy(a o P)(v) = v(ao P) = (v© P)(a).
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Remark 1.81. Recall that, if X € Vec(M) is a smooth vector field, then its pushfor-
ward P,.X through a smooth diffeomorphism P is given by (P,.X)(q) = dp-1(yP(X (P~ '(q))).

Therefore, as a consequence of Lemma 1.80, we have
PX=P'oXoP
as operators on C*°(M).

Definition 1.82. Let P € Diff(M). We define the adjoint operator of P on smooth

vector fields as
AdP : Vec(M) — Vec(M), AdP(X)=POo X0 Pt

With this notation, we have
P.X = (AdP7Y)X.

Now consider a nonautonomous vector field X;. Using the operatorial notation

introduced above, the corresponding nonautonomous ODE on M reads

d

afl(f) =q(t) © X;. (1.21)
As discussed in Section 1.1, the solution to (1.21) defines a flow, i.e. a family of
diffeomorphisms Ps; on M. In terms of chronological calculus, it holds the following

lemma.

Lemma 1.83. Let P,; be the flow defined by a nonautonomous vector field X;. Then
Py, satisfies the operatorial Cauchy problem

a
dt
P,, =id

s :Ps ®X7
et (1.22)

Definition 1.84. We call the solution to (1.22) the right chronological exponential,

and we use the notation

t
P,; = &xp / X.dr. (1.23)

Remark 1.85. The notation introduced in (1.23) is consistent with the exponential
notation defined for autonomous vector fields. Indeed, if X; = X € Vec(M) is

autonomous, we have
t
_ (t—s)X
exﬁ/ Xdr = 9%,
S

which is in fact the flow of X based at the time s.
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Remark 1.86. For a nonautonomous vector field X;, we have in general

t
eﬁ/ X dr # els X7, (1.24)

In (1.24) it holds the equality if and only if the vector fields commute at every time,
i.e. [Xs, X¢| =0 for every s,t € R.

Remark 1.87 (Volterra series). Identity (1.23) can be rewritten in the integral form
t
P, =id+ / P, ® X,dr (1.25)

Denoting Ag(s,t) = {(t1,...,t;) € RF|s <t < --- < t; < t} the k-dimensional

simplex, the iteration of (1.25) N times gives

N-—1
Ps,t:id‘i‘Z/ thQ"'Qthdﬁk—l—RN,
k=1 Ak(s,t)

where the remainder Ry is defined by
RN - / Ps,tN ®Xt1\7 ®®Xt1d£N;
AN(S,t)

and £F denotes the standard k-dimensional Lebesgue measure. Formally, letting

N — oo and assuming that Ry — 0, we can write

o0

Ps,t:id"f'Z/ thQ...Qthde‘
k_]. Ak(s,t)

The convergence of Volterra series and the estimates for the remainder term Ry
plays a role in the proof of Theorem 1.72. Since these arguments are quite long, we
do not develop them, and we refer the reader to [2, Chapter 6] for a very exhaustive

and detailed discussion.

Proposition 1.88. Assume that the flow Py, satisfies the Cauchy problem (1.22).
Then the inverse flow Qs := (Psy)™" satisfies the Cauchy problem

d
EQs,t = —X; O Qsy,
Qs,s = id.

Definition 1.89. We call a solution @, to (1.26) the left chronological exponential,

and we use the notation

(1.26)

Qu = &5 / (X )dr
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Lemma 1.90. Let P;; = e@f; X.dr be a nonautonomous flow. Then AdP;; is a
solution to the Cauchy problem

A=A 0adX,, A, =id, (1.27)

where, as usual, adX : Y +— [X,Y] is the adjoint action on the Lie algebra of vector
fields.

Remark 1.91. As a chronological exponential, we have the identity

Ad (eﬁ / t XTdT) = &xp / t ad X, dr (1.28)

In particular, combining (1.27) and (1.28), in the case of autonomous vector fields we

have
X _

*

tad X

(& €

We conclude this section providing a Variation formula for the flow of the sum of

two nonautonomous vector fields X, Y;. Namely, let us consider the Cauchy problem
A=A 0 (X +Y), A, =id (1.29)

Here, we see Y; as a perturbation of X;, and we want to describe the solution to the

perturbed equation (1.29) as a perturbation of the solution to the original one.

Proposition 1.92 (Variation formula). Let X, Y; be two nonautonomous vector

fields. Then, denoting Ps; = (ﬁf: X.dr, one has

t t t T
ﬁé/ (XT+YT)dr:eﬁ§/ XTdT@(ﬁ/ (cﬁ%/ adXodo> Y, dr
S S S t

t (1.30)
= Lsit ®© eﬁ/ (PT,t)*}/TdT‘

The whole formalism of chronological calculus, and in particular the Variation for-
mula (1.30), will be used in the following and in Chapter 2 to compute the differentials
of the end-point map.

1.5.2 Regularity of the end-point map: proof of Theorem
1.72

This section is devoted to the proof of Theorem 1.72. The proof is divided into two
steps: in the first step, we compute the differential of the end-point map at v = 0,

while in a second moment we prove in fact formula (1.20).
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Step 1.

Step 2.

Using the formalism of chronological calculus, the end-point map can be written

as an operator on C*°(M) in the following way

1
th)(U) =q © eXB/ fv(t)dt7 v e Z/{CIO'
0

Then, for any a € C*°(M), we can write the first order Volterra expansion of

E,(v) evaluated at a, namely

Eg(v)(a) = ¢ © (z’d + /0 1 Foydt + Rg(v)) (a).

The convergence of the Volterra series (discussed in the previous section) pro-

vides, for every a € C*°(M), the following estimate
|90 © Ra(v)(a)| = O(|Jvl|72).

whenever v is sufficiently small. Therefore, we have

' <qu (V) —qo—q0 © /01 fv(t)dt> (a)

Since gy = E,(0) and the map

= O(|[vllZ2)-

1 1
v Qo ®/ fowydt = / foy(qo)dt
0 0

is linear, we have the differentiability of the end-point map at 0. In particular,

1
0

1
oy (1) = / Futo (a0}t = / (BO)).fotey (1),

where the last equality follows from P, = id.

To compute the Taylor expansion of the end-point map at a general u € U,,,

let us consider the map

1
v By (u+v) =qo© ﬁ/ Ju(t)+o(dt,
0

for small v € L?. Using the variation formula, we get
1
Ey(u+v) =00 Yy 0 [ (P fundt.
0
We set q1 = Ey,(u) = qo © Py, and
1
G (v) = q © B / (P fuo . (1.31)
0
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We proceed in a similar way as in Step 1, but for the map G} to compute
its differential at 0. Namely, we replace qo with qi, and fy) with (P{). fuq),

obtaining
1
G (0) = [ (P Fuo (@)t
0

As operators on smooth functions, we have
|(G5.(0) = G, (0) = doG, (v))(a)] = O(ll0][72),

for every a € C*°(M). The last identity, read in terms of the end-point map

qu, gives
1
G By (0) = doG?. (1) = / (B2 fut (@1t

This complete the proof of Theorem 1.72.

Definition 1.93. The map G} defined in (1.31) is called variation map.

Remark 1.94. The definition of variation map is naturally suggested by the Variation
formula applied to the end-point map. It is used to move local differential properties
of the end-point to the origin. Whit similar computations and arguments, one can
deduce the the higher order degree of the Taylor expansion of the end-point map.
Actually, the higher order differentials have to be defined in the correct domain. We
develop this theory in the next chapter of this thesis.

1.5.3 Lagrange multiplier rule and Pontryagin extremals

The aim of this section is to apply the result of Theorem 1.95 below to the case when
F = E,, is the end-point map based at gy and ¢ = J is the sub-Riemannian energy
(see Definition 1.98 below), in order to obtain necessary condition for an admissible

curve to be a length minimizer.

Theorem 1.95 (Lagrange multipliers rule). Let H be an Hilbert space and let M be
a smooth n-dimensional manifold. Let U C H be an open subset of H. Consider two
smooth maps ¢ :U — R and F':U — M. Fix a point ¢ € M and assume that u € U
18 a solution to the minimization problem

min{p(v) | F(v) = ¢} = ming[,_, .
Then there exists a non-null (\,v) € TyM x R, i.e. (\,v) # (0,0), such that
Ao F + vdyp = 0. (1.32)
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Remark 1.96. We point out that formula (1.32) means that for every v € H = T, U
one has
(N, d F(v)) + vd,p(v) =0.

The compact notation in (1.32) will be used also in the sequel, with the same meaning.

Notice that, in the setting of Theorem 1.95, the pair (A, v) has to satisfy, up to a

scalar multiplication, at least one of the following condition:

(N) v = —1. Then from (1.32) we deduce

A F = dyp; (1.33)

(A) v =0. Then A # 0, and from (1.32) we deduce

A, F = 0.

The case (N) is called normal, while the case (A) is called abnormal or singular.

Remark 1.97. Classically, Theorem 1.95 appears with H = R" = (xy,...,2,), M =
R™ = (z1,...,2p), v = & = argmin{p(x)|F(x) = 0} € R", and one adds the
assumption JzF # 0, removing the possibility for Z to be abnormal. In this case,

combining equation (1.33) and the bound F(z) = 0, one gets
Vip—X-F)(Z)=VL(z,\) =0.

The vector A is called Lagrange multiplier and the function L(x, \) = p(x) — - F(x)

is called Lagrangian.

Definition 1.98. We define the energy functional in the following way
2 m 1 2 2
J:L*(I,R™) — R, J(u):§ |u(t)|*dt = [Jul|72.
0

When w is the control of an admissible curve «, then J(u) is called the sub-Riemannian

energy of 7. Sometimes we also write J(y) instead of J(u).

Remark 1.99. While the length is invariant by reparameterization (see Lemma 1.49), .J
is not. Indeed consider, for every a > 0, the reparameterized curve v, : [0, 1/a] — M,

Ya(t) = v(at). Using that 4, (t) = ay(at), we have

J(Va) = @ J(7)

Thus, if the final time is not fixed, the infimum of J, among admissible curves joining

two fixed points, is always zero.
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The following lemma relates minimizers of the energy with fixed final time with

minimizers of the length.

Lemma 1.100. Fix two points qo,qu € M. Let L and J be, respectively, the sub-
Riemannian length and energy functionals. An admissible curve v : I — M is a

solution to the minimum problem

min{.J/ (u)| Eq, (u) = a1},
if and only if it solves the minimum problem

min{ L(u)|E,, (u) = q1 },
and has constant speed.

Notice that in the previous Lemma we have fixed the final time to be 1, avoiding
the problem appearing in Remark 1.99. Then, by the Lagrange multiplier rule one
obtains the following result as a necessary condition for an admissible curve to be a

length minimizer.

Proposition 1.101. Assume that an admissible curve v : I — M w s a length
minimizer. Let u be the minimal control associated to y. Then there exists (\,v) €
TyM x R such that (\,v) # (0,0), and

Ay By + vdyJ = 0. (1.34)

Remark 1.102. Since J(v) = $||v||3,, then d,J(v) = (u,v)r2 and, identifying L? with

its dual, we have d,J = u.

Theorem 1.103 (Pontryagin maximum principle). Let gy € M. Let u be the minimal

control corresponding to a curve v : I — M based at qy, namely

Y(t) = fuy(1(t) a.e. on I, ~(0) =gy € M.

Suppose that ~y is length-minimizing and parameterized with constant speed (or, equiv-
alently, energy-minimizing). Finally, let 1 = E4(u) = ~(1). Then there exists
A € T; M such that, defining A(t) = (P/)* 1, we have at least one of the following

(N) For everyi=1,...,m we have

uilt) = (N0, D)), for ace. te T, (1.35)
and this occurs if and only if u satisfies (1.34) with (\,v) = (A1, —1), namely

Aldquo =u (136)
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(A) For everyi=1,...,m we have
= (A1), fi(y(1))), fora.e tel,
and this occurs if and only if u satisfies (1.34) with (\,v) = (A1,0), namely

AdyEy =0

Remark 1.104. Since ¢; = (1), )\1 € T; M and P}, is the flow of v in M, then
At) = (Pf)* Ay is a lift of (1), i

T(At)) = 4(t), Vtel.

Proof. Let us prove (N). The proof of (A) is analogous.
Assume that u satisfies (1.35) for some A1, and let us prove that the curve defined
by A(t) = (P/4)* A1 satisfies (1.36), which means that for every v € L*(1,R™) we have

(M, duEy(v)) = (u,v) 2. (1.37)

Using (1.20), the left hand side in (1.37) reads

1

<M%@m»aAQMmmmM@»
=A«%WMMMWﬁ

[e=]

<)‘17(Ptu1) (fv (( tl) 1Q1))>dt
(AQ@), S (v(2)))dt

0

Then (1.37) becomes
| sowpuni = |3 wour

Since v is arbitrary, this implies (1.35).

Conversely, let us assume there exists A\; € T, M such that the curve defined
by A(t) = (P{)"\ satisfies (1.35). Then, following the above computations in the
opposite direction, one obtains exactly (1.36). O]

The Pontryagin maximum principle provides a first-order necessary condition for

a curve 7y to be length-minimizing, leading to the following definition

Definition 1.105. Let v : I — M be a horizontal curve based at ¢y with correspond-
ing control u. Assume that v and u satisfy at least one condition between (N) and
(A) of Theorem 1.103 . Then we give the following definitions
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i) The curve A : I — T*M is called adjoint curve;

ii) The couple (u(t), A(t)) is called sub-Riemannian extremal. When the extremal
satisfies (V) it is called normal extremal. Otherwise, it is said to be an abnormal

or a singular extremal.

Remark 1.106. We emphasize that a length minimizer is necessarily an extremal
(normal, abnormal or both), as a consequence of the Lagrange multipliers rule. Con-

versely, there are many examples of extremals which are not length minimizers.

1.5.4 The Hamiltonian viewpoint

In this section, we use the Hamiltonian viewpoint of Pontryagin extremals to prove
regularity of normal ones, and to give some geometric characterization of abnormal

extremals.

Definition 1.107. Let (M, U, f) be a free sub-Riemannian manifold with generating

family {fi1,..., fm}. We define the Hamiltonian linear on fibers functions of M as
hi: T"M =R, h;(AN) =\ fi(q), g=m(N), i=1,...,m.

The associated vector fields h; € Vec(T*M) are called the Hamiltonian vector fields
of M.

Using Definition 1.107 and the language of Section 1.1, Theorem 1.103 immedi-

ately rewrites itself in the following way.

Theorem 1.108. Let v : [0,T] — M be an admissible curve which is a length-
manimazer, parameterized by constant speed. Let u be the corresponding minimal
control. Then there ezists a Lipschitz curve A(t) € T3 M such that

At) = " ai(t)hi(A(t), forae. te[0,T],

and one of the following conditions is satisfied:
(N) hi(A(t)) = w(t), fori=1,...,m;
(A) hi(A(t)) =0, fori=1,...,m.
Moreover in case (A) one has A(t) # 0 for all t € [0,T].
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Notice that Theorem 1.108 says that normal and abnormal extremals appear as
solution of a Hamiltonian system. Nevertheless, this Hamiltonian system is a priori
nonautonomous and depends on the trajectory itself by the presence of the control u
associated with the extremal trajectory.

Moreover, the actual formulation of Theorem 1.108 for the necessary optimality
condition still does not clarify if the extremals depend on the choice of a generating
family {f1,..., fmm} of the sub-Riemannian structure.

The rest of the section is devoted to the geometric intrinsic description of normal
and abnormal extremals, which relies upon the study of the intrinsic sub-Riemannian

Hamiltonian

Definition 1.109. Let M be a sub-Riemannian manifold. The (intrinsic) sub-
Riemannian Hamiltonian is the function on T*M defined as follows

H:T"M — T*M, H(\) = max ((z\, fulq)) — %|u|2) . qg=m(N). (1.38)

ucUy
Proposition 1.110. The sub-Riemannian Hamiltonian H is smooth and quadratic

on fibers. Moreover, for every generating family {f1,..., fm} of the sub-Riemannian

structure, the sub-Riemannian Hamiltonian H is written as follows

1 S 2 1 - 2 *
H(\) = 3 ;u, ) =5 ;hi(A) L NETIM, g==(N). (1.39)
Proof. In terms of a generating family { f1, ..., fi}, the sub-Riemannian Hamiltonian

(1.38) is written as follows

H()) = max (Z(A,f;(qb - %Z Iuil2> (1.40)

i=1 i=1
Differentiating (1.40) with respect to u;, one gets that the maximum in the right hand
side is attained for w; = h;(A), from which formula (1.39) follows. The fact that H is

smooth and quadratic on fibers then easily follows from (1.39). O

Remark 1.111. The sub-Riemannian Hamiltonian H is intrinsic in the sense that

equivalent sub-Riemannian structures induce the same Hamiltonian on M.

Remark 1.112 (Differential of the sub-Riemannian Hamiltonian). Let us denote H, =
H
the differential dyH, : T; M — R is a linear form, hence it can be canonically identified

T M the restriction on fibers of the sub-Riemannian Hamiltonian. For A € Tq*M ,

with an element of T,M. By (1.39), it follows that, for every generating family

{f1,.-., fm}, this canonical identification is given by
dnH, = > b o)
i=1
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and, namely

d\Hy: TyM - R, dyHy =Y hi(A)ha.
=1

Normal extremals

In this paragraph we summarize the fundamental properties of normal extremals,

that are smoothness and minimality.

Theorem 1.113. A Lipschitz curve X : [0,T] — T*M is a normal extremal if and

only if it is a solution of the Hamiltonian system
A(t) = H(A()).

Moreover, giwven a mnormal extremal, the corresponding normal extremal trajectory

A(t) = w(A(t)) is smooth and has constant speed satisfying
L.
SIVOIF = HA®), vt e[0,T]

Remark 1.114. In canonical coordinates A = (p,z) in T*M, H is quadratic with
respect to p and
1 m

=1

The Hamiltonian system associated with H, in these coordinates, is written as follows

OH &

i = o Z(p, fi(@)) fi(z),
= (1.41)
o0H

P=—7-= izl@, fi(@)) fi(x)
From here it is easy to see that if A(t) = (p(t), z(t)) is a solution of (1.41), then also
the rescaled extremal a)(at) = a(p(at), z(at)) is a solution of the same Hamiltonian

system, for every a > 0.

Corollary 1.115. A normal extremal trajectory is parameterized by constant speed.

In particular it is arc length parameterized if and only if its extremal lift is contained
in the level set H 1(1/2).

Finally, a fundamental result about local optimality of normal trajectories is that
small pieces of a normal trajectory are length minimizers. The proof of the following

statement is really nontrivial.
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Theorem 1.116. Let v : I — M be a sub-Riemannian normal extremal. Then, for
every t € [0,1) there exists g > 0 such that for 0 < e < g

i) Yirrte i a length minimizer;

) Y|rrte 5 the unique length minimizer joining (1) and (7 + ¢€), up to repa-

rameterization.

Abnormal extremals

The regularity problem of sub-Riemannian geodesics lies, as emphasized many times
in this thesis, on the presence of abnormal minimizers, since it is not possible to
determine a priori their regularity. In the next chapters, we provide new regularity
results for abnormal extremals when M is a sub-Riemannian manifold of constant
rank.

In this section, we provide a simple geometric characterization of abnormal ex-
tremals, always if M has constant rank m. In spite of 0 is never a regular point for the
sub-Riemannian Hamiltonian H, in this case, thanks to the constant rank theorem,
the set H~1(0) defined by (1.40) is a smooth submanifold of T*M of codimension m.

Let us recall that o denotes the canonical symplectic form of M (see paragraph 4

of Section 1.1 above).

Proposition 1.117. Let H be the sub-Riemannian Hamiltonian associated with a
sub-Riemannian structure of constant rank. Then a Lipschitz curve on H~'(0) is
a characteristic curve for o|g-10) if and only if it is the reparameterization of an

abnormal extremal.

Remark 1.118. From Proposition 1.117 it follows that abnormal extremals do not
depend on the sub-Riemannian metric, but only on the distribution. Indeed the set
H~1(0) is characterized as the annihilator At of the distribution

H'0)={ eT"M|(\v)=0,Vv € Ay} = A CT*M.

Here the orthogonal is meant in the duality sense. Then, the notion of being abnormal

i1s an intrinsic notion of the sub-Riemannian structure.
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Chapter 2

Higher order necessary conditions
for the minimality of abnormal

curves

Let (M, A, g) be a sub-Riemannian manifold of constant rank d with a fixed generating
family fi,..., fs- We also fix a point q9 € M and we denote the end-point map
E =E,.

In the end of the previous chapter, we give some necessary conditions of the first
order for the minimality of abnormal admissible curves, also known as the Pontryagin
maximum principle (Theorem 1.103).

In this section, we develop a deeper study of he end-point map, looking for higher
order necessary conditions for the minimality. Here, for “higher order” we mean
conditions which comes from the study of the n-th differential of the end-point map.

Actually, the theory is well-known till the second order and was initiated by Goh
[11] and developed by Agrachev and Sachkov in [3], and the complete proof of the

following theorem is given in [1].

Theorem 2.1. Let M be a sub-Riemannian manifold and fi,..., f.. be a generating
family. Let u be an abnormal minimizer, let q = E(u), and let A\; € T; M satisfy
MdyE = 0. Assume that ind” \\D?E < +oo. Then the following conditions are
satisfied:

i) (M), [fi, fi1(v(t)) =0, for allt € I, and for everyi,j=1,...,d.
i) (A1), [fu): [fos F)]l(¥(£)) >0, for a.e. t € I, and for every v € RY.

Here we are using the notations of Theorem 1.103: A(t) = (P)*A\1, fort € I, and
v(t) = w(A(t)) are respectively the extremal and the trajectory associated with the
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control u and with the final covector \i.

We clarify the notations used in Theorem 2.1. The map D?E : ker(d,E) —
coker(d, F) is the second intrinsic differential, also called the intrinsic Hessian, of the
end-point map at the point u, and \;D?E : ker d,F — R is a scalar quadratic defined
via the natural action of A\; on Im(d,E)t. The general definition of the intrinsic
differentials of a smooth map F' : X — R™ from a Banach space X onto R™ is
given in Definition 2.6 below. Instead, ind~A;D?FE denotes the (negative) index of
the end-point map at the point wu.

Definition 2.2. Let ) : V — R be a quadratic form defined on a vector space V .
The index (or negative index ) of @) is the maximal dimension of a negative subspace
of Q:

ind”@Q = sup{dim W | Q|po < 0}.

Recall that in the finite-dimensional case, the negative index coincides with the num-

ber of negative eigenvalues in the diagonal form of Q).

Remark 2.3. When the index of the end-point map is finite, an oppen mapping ar-
gument can be applied to the extended end-point map, similarly to the case of the

Pontryagin maximum principle, providing the results of Theorem 2.1.

The statements (i) and (ii) of Theorem 2.1 are called, respectively, Goh conditions
and Generalized Legendre conditions for abnormal minimizers. In particular, Goh
conditions are necessary conditions for the minimality of the second order, in the
sense that a study of the second differential of E involves the Lie brackets of length
2 of the generating vector fields fi,..., f4.

The goal of this chapter is to extend the Goh conditions of order 2 to any order
n > 3 and to get necessary conditions involving brackets of n vector fields through
the study of higher order differentials of the end-point map. In particular, our theory
shows a clear connection between the geometry of A and the expansion of the end-
point map: the commutators of length n of the generating vector fields appear in the
n-th order term of the Taylor expansion of the end-point map.

Our studies are limited to the case of abnormal curves of corank 1, i.e. such that

Im(d, F') has codimension 1 in 7%, 1yM. Our main result is the following.

Theorem 2.4. Let (M, A, g) be a sub-Riemannian manifold, v =, € AC(I; M) be

a strictly singular length minimizing curve of corank 1, and assume that
D'E=0, h=2,...,n—1. (2.1)
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Then any adjoint curve X € AC(I;T*M) satisfies

</\<t>7 [fjn’ [ .- [fj27fj1] - ]](W(t)» =0,
forallt € I and for all j1,...,j, =1,...,d.

We call the differentials D" F appearing in (2.1) intrinsic differentials of E. Their
definition is given in Definition 2.6 below.

As in the cases of the Pontryagin maximum principle and of the Goh conditions,
the proof of Theorem 2.4 relies on an open mapping argument applied to the extended
end-point map F; = (F,J) : X — M x R, where J(u) = %||u||%2(I;Rd) is the energy of
v = 7v.. Motivated by this application, in Section 2.2 we develop a theory about open
mapping theorems of order n for functions F' : X — R™ between Banach spaces. In
our opinion, this preliminary study is worth of interest on its own. It adapts in a

geometrical perspective some ideas presented in [25].

2.1 Intrinsic differentials

Let X be a Banach space and F' € C*°(X;R™), m € N, be a smooth map. For any
n € N we define the n-th differential of /" at 0 € X as the map dgfF': X — R™

dn
dyF(v) = — F(tv

X.
T V€

Mizo:

With abuse of notation, the associated n-multilinear differential is the map djF :

X" — R™ defined in one of the following two equivalent ways, for vy,...,v, € X,

aF )= L P(S )
ViyooyUp) = v
0% Wl Oty...0t, \&=""

:%ﬁdﬁF(ithvo

h=1

(2.2)

ti=-=tp=0

We have the identity djj F'(v) = djF(v,...,v). The differential dj F’ is symmetric, in
the sense that dj F'(vy,...,v,) = djF(vg,, ..., Us,) for any permutation o € S,,. Here
and hereafter, we use the notation o; = (i) for a permutation o and for i = 1,... n.

A different n-multilinear differential for F' at 0 is the map D{F : X" — R™
defined by the formula

n d” “ th’l)h
DOF(Ul,...7Un) = %F(ZT>

. U, ..., U, € XL (2.3)
t=0

The multilinear differential D{ F" is not symmetric.
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The n-multilinear differentials dijF' and DjF' are related via the Faa di Bruno

formula [15]. We denote by .#, the set of n-multi-indices, i.e.,
In={a|la=(a,...,a,) € N},

where N = {1,2,...} starts from 1. When the naturals start from 0 we use the
notation .#°. Also, for d € N we use the notation F.q for the sets of n-multi-indices
a=(ag,...,q,) € S, with values in {1,...,d}". For a € .%,, we use the standard
notation |a| = a3 + -+ + a,, for the length (or weight) of o and a! = a4!...«,! for

its factorial.
Proposition 2.5 (Faa di Bruno). For anyn € N and vy, ...,v, € X we have
" - n!
DyF(vi,..v) =Y Y wdQF(va), (2.4)
h=1 ac.%,,|a|=n
where, for a € S, we set vy = (Vay, - -+, Va,) € X"

The n-differential DjF', n > 2, does not transform covariantly, in the sense that,
for a generic diffecomorphism P € C*°(R™;R™) the differential Djj(P o F') depends
also on the derivatives of P of order 2 and higher. In order to have an “intrinsic”
n-differential, we need to restrict D{F' to a suitable domain and project it onto
coker(doF). We denote by proj : R™ — coker(doF') the standard projection (quotient

map). We can fix coordinates in X and R™ in order to have the splittings
X =ker(dgF) R™,  R™ =R @ Im(doF), (2.5)
where ¢ = dim(coker(doF)) and doF : R™* — Im(doF) is a linear isomorphism.

Definition 2.6 (Intrinsic n-differential). Let F' € C*°(X;R™). By induction on
n > 2, we define a domain dom(DjF) C X" ! and a map DJF : dom(DjF) —
coker(doF'), called intrinsic n-differential of I at 0, in the following way.

When n = 2 we let dom(D2F) = {v e X | DoF(v) =0} = ker(doF') C X and we
define D2F : dom(D2F) — coker(dyF)

D2F(v) = proj(DiF (v, %)), v € dom(DiF). (2.6)
Inductively, for n > 2 we set
dom(DyF) = {v € dom(Dj 'F) x X | D§ 'F(v) =0} c X",
and we define Dy F' : dom(DJF) — coker(doF’) as
Dy F(v) = proj(Dy F (v, %)), v € dom(DgF). (2.7)
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Remark 2.7. The definition of DjF in (2.6) and (2.7) does not depend on the last
argument * € X of DJF. Indeed, by formula (2.4) with v = (vy,...,v,), so with

*x = v,, in the notation above, we have
- n!
DyF(v) = doF(vn) +> Y h'—th(va) (2.8)
h=2 ac ), |al=n

where v, does not contain v, when |a| =n and h > 2, and proj(doF'(v,,)) = 0.

While dom(DZF) = ker(dyF) has finite codimension in X, this might not be the
case when n > 2. In order to develop the theory within a consistent setting we need

some additional assumption on F.

Proposition 2.8. Let F' € C®(X;R™) be a smooth map. If DYF =0 for all2 < h <
n, with n > 3, then dom(DJF) C X" ! is a nonempty affine bundle over ker(dyF)
that is diffeomorphic to ker(doF)"*

Proof. The proof is by induction on n > 3. When n = 3 the domain of DJF is
dom(DGF) = {(v1,v2) € ker(doF) x X | DGF (v1,v2) = 0},

where, as in (2.8), D3F (vy,ve) = doF'(v2) + d3F (vy, v1).
We use the splittings (2.5). Since the map doF : R™~* — Im(doF) is invertible,
we can define ¢ € C*°(ker(doF), R™~) letting

p(v1) = —(doF) " (dGF (v1, v1)).

This is well-defined because, by assumption, we have D3F = 0 and this implies
proj(d2F (vi,v1)) = 0. Now, letting

O (v1,v2) = (v1,02 + p(v1)),

we obtain a diffeomorphism ® : ker(dyF')? — dom(D3F).

Suppose the theorem is true for n and let us prove it for n + 1. Our inductive
assumption is the existence of a diffeomorphism ® € C*(ker(doF)" !, dom(DyF)).
Now we have

dom(DytF) = {(v, w) € dom(D”F) X X | D{F(v,w) = 0}
={(® )€ X™ | u € ker(doF)" ™, DIF(® =0},

and, by (2.8), equation DJF(®(u), w) = 0 reads

w=vl) = kP Y @)

h=2 aeg,|lal=n
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The function v is well-defined because DJF = 0. Now U(u,z) = (u,z + ¢(u)) is a
diffeomorphism from ker(doF)" to dom(Dp F).
[

The following theorem guaranties that for any finite set of elements in ker(dyF)
there exists an extension with “polynomial coefficients” inside dom(DjF') that is
linear in the first factor ker(dyF').

Proposition 2.9. Let F € C®(X;R™) be a smooth map such that DAF = 0 for all
2 < h <mn, for somen > 2. For any vi,... vt € ker(doF) C X, ¢ € N, there exist
vectors U]@ €eX,j=1,....,n—1 and § € I) with |3] = j, such that the function
w € C°(RY X)) with coordinates

wity= >t j=1...n-1, (2.9)
BE%OJ/B\:J'

satisfies w(t) € dom(DRF) for all t € RE. In particular, when e is the i-th vector of

the standard basis of R® we have U‘fi = vl

Proof. The proof is by induction on n > 2.

For n = 2 the statement follows from the fact that dom(D3F) = ker(doF') is a
vector space. In this case, we have j = 1 and 8 = €’ for some i. Fixing vf = v! with
vy = (vl,...,0}), formula (2.9) gives a function w; with values in dom(DZF).

We assume the claim for n—1 and we prove it for n. In particular, for j < n—2, the
vectors vf € X are already fixed so that the functions defined in (2.9) with j <n—2
satisfy (wy(t), ..., w,_o(t)) € dom(DE'F) for all t € RY. Our goal is to find v,
for 8 € #Q with |3| =n — 1, such that w(t) = (wy(t),...,w,_1(t)) € dom(DyF).

The condition w(t) € dom(DyF') is equivalent to

1) (wi(t),. .., w,_o(t) € dom(Dy ' F);
2) Dy F(w(t)) = 0.
The first condition is true by induction. By formula (2.8), the latter is equivalent to

— (n—1)!
hla!

do F (w1 (t)) + db F(we(t)) = 0. (2.10)

h=2 a€e I, |al=n—1

B

We solve this equation to determine the vectors v, _; € X. By linearity, we have

doF(waa ()= > t'deF(v)_y),
pe.sP |Bl=n—1
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and

dyF(wa(t)) = do F(we, (1), - .. wa, (1))

1, ....ph 1 h
D DRI Y [0 o (R o)

ﬁlefgov‘ﬂH:O‘l /Bhefgov‘ﬂhIZO‘h

By the identity principle of polynomials, solving equation (2.10) is equivalent to

solving the set of equations

n—1
(n — 1)‘ 1 h
doF(v) ) + > Wd’gF(vgl, Ly =0, (2.11)
h=2 a€.f,|a|=n—1 o

Blttph=p
for 8 € Z? with | 3] = n—1. This is possible since, by assumption, we have DI F = 0 for
.. . . 1 h . 1 h
1 < h < n—1. This implies that proj(djF(v5 ,....v5 ) =0,1ie, dyF(vs ..., v5") €

Im(dyF) and thus we can find v, € X solving equation (2.11). O

As soon as the splitting X = ker(doF') ® X/ker(doF') is fixed, the differential
B

n

doF . X/ker(doF) — Im(doF') is a linear isomorphism. So the solutions v,_; of
equations (2.11) are unique in X/ ker(doF'). In this sense, Proposition 2.9 gives a
unique extension of the form (2.9) for vectors in ker(doF').

For every t € R with ¢; # 0 we set sgn(t) = (sgn(t1),...,sgn(t,)). We call orthant

each subset of R where sgn(t) is constant. There are 2° orthants. Given 2¢ elements

vi’i, . ,Uf’i € ker(dyF"), Proposition 2.9 gives an extension wslt) ¢ dom(Dg F') of
@%’Sgn(tl), o ,vf’sgn(t‘) that in each orthant has coordinates
T ST e SRS
/Bejgoz‘ﬂlzj

The vectors vf *e1() are the solutions to (2.11) in the orthant of .

Corollary 2.10. Let F' € C*®(X;R™) be a smooth map such that DIF = 0 for all
2 < h < n. For any 20 elements vy, ... viF € ker(doF), the function w*™® defined
for t; # 0 in (2.12) extends to a continuous function w € C(R; dom(DyF)).

Proof. We split the set {1,...,¢} into two subsets 1 < i3 < -+ < 4 < ¢ and
1 <j1 <...<jep </, for some k < ¢. We consider the subspace H = {t € R* |

tiy =---=t; =0} and define the set of multi-indices

I?,H:{Bezg|6i1:"':6ik:0}'

Let t € H be such that ¢;, - --;,_, # 0. We prove by inductionon j =1,...,n—1

that for 3 € J the vectors vf =21 are constant when ¢ is close to . When j = 1
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: . sen(t
we have 8 = e’» and we can use the expression for v; sen(?)

sgn eIP sgn(t;,) Jp-sen(tsy,) n
to obtain v7*# = o =" for t close to t.

We check the inductive step. The vectors v 2"

given by Proposition 2.9

are the solutions to the equation

dO 5sgn +Z Z (TL )th( Blsgn()"” gh, Sgn(t)) :07

hla! » Yoy,
h=2 a9, |a|=n—1

Bt +B"=p
h —
where the vectors vgl’sg @0l are constant for ¢ close to 7, by inductive

assumption. In fact, 5*,...,3" € %?H if g € ,%OH i

Now the existence of the following limit concludes the proof:

sgn(t) T B,sgn(t) - _
. (t)—}}fl oo . j=1,...,n—1

lim w;
€7y IB1=3

t—t

]

Definition 2.11 (Regular extension). We call the function w € C(R% dom(DaF)) of
Corollary 2.10 the regular extension of vV*, ... v5% € ker(dyF) to dom(DyF).

We will use this extension to define the notion of regular n-differential.

2.2 Open mapping theorem of order n

In this section, we prove an open mapping theorem with sufficient conditions on the

differentials of the map up to order n € N.

Definition 2.12. Let F' € C*(X;R™) be a smooth map. We say that 0 € X is a
critical point of F' with corank ¢ € {1,...,m} if dim(coker(doF)) = /.

Definition 2.13 (Regular n-differential). Let F' € C*°(X;R™) be a smooth map
such that 0 € X is a critical point of corank ¢ € {1,...,m} and D}F = 0 for all
2 < h < n, for some n > 2. We say that DJF : dom(DjF) — coker(doF') is regular
if:

i) n is even and there exist 2¢ elements v5*, ... v%* € ker(doF) such that the
function f : R® — coker(doF')

f(t) = DEF(w=O(o(t))), teR, (2.13)

is a bijection with bounded inverse at zero, i.e., there exists 0 < L < oo such
that
|f(7)| < L|7|, 7 € coker(dyF). (2.14)
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Above, o(t) = (sgn(t)[t1|V™, ... sgn(t)|t|"/") and, for t € R, w*s® is the

regular extension of vlsen(t) - qbsen(te)

ii) n is odd and there exist v, ..., v* € ker(dyF) such that the function f in (2.13)

with v = ¢’ is a bijection with bounded inverse at zero.

When the corank is ¢ = 1 the notion of regular n-differential is effective.

Proposition 2.14. Let F' € C*(X;R™) be a smooth map such that 0 € X is a
critical point of corank ¢ = 1 and DIF = 0 for all 2 < h < n, for some n > 2.

Assume that:

i) n is even and there exist 2 elements v= € ker(doF) and t € R such that f(t)
and f(—t) have opposite sign; or,

ii) m is odd and there exists v € ker(doF') and t € R such that f(t) #0 .
Then Dy F is reqular. Above f is the function defined in (2.13).

Proof. When ¢ = 1 and n is even, the function f in (2.13) is piece-wise linear. The
assumption f(t)f(—t) < 0, for some t € R, makes it injective from R to R, and hence
with bounded inverse at zero.
When n is odd, the function f in (2.13) is linear and f(¢) # 0 for some ¢t € R
makes it invertible.
[

Theorem 2.15. Let F € C®°(X;R™) be a smooth map such that DAF = 0 for all
2 < h <n, for somen > 2, and with reqular Dy F at the critical point 0 € X. Then
F' is open at 0.

Proof. We prove the theorem when n is even. Let 0 € X be a critical point for F
of corank ¢ € {1,...,m}. We identify coker(doF) = R’ and we split X = R"™ @
ker(dyF).

The regularity of Dy F means that there exist v*, ... 0% € dom(DAF), with
regular extension w € C(R; dom(DyF)) as in Definition 2.11, such that the function
f R — R%in (2.13) is bijective and satisfies (2.14).

By formula (2.9), the extension w = (wy, ..., w,_1) is of the form
w;(t) = Z tﬂvf’sgn(t), j=1,....,n—1,
BesP,|Bl=j

/B’Sgn

where the vectors v; ™ ¢ X are fixed in the proof of Proposition 2.9.
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We define the map ® : R™ ¢ x R* — X by

n—1
1
O(r,t) =r+ Z ng(' >, (r,t) € R™* x R".

Jj=1

Above and hereafter, we identify » € R~™ with (r,0) € X, so that the sum r + v

with v € X is well defined. We claim that we have the expansion
F(®(r,t)) = doF(r) + Dy F(w(t),0) + R(r, 1), (2.15)
where the remainder satisfies

lim —— = (2.16)

For any positive scalar s > 0, using the homogeneity w;(st) = s’w(t) we obtain

the formula

and, for fixed ¢, the function ¢(s) = F(®(0, st)) has the Taylor expansion

" o@) . (n+1) (3
2 ® S) n
Y 3 AR LI LY Ny
= 7 '

for some s € [0, s].
By definition (2.3), we have ¢ (0) = D{F(wy(t),...,w;_1(t)) and since w(t) €
dom(DpF), we deduce that ¢©)(0) =0 for j =1,...,n — 1, while for j = n we have

©™(0) = DEF(wy(t), ..., wa_1(t),0) = DFF(w(t),0).
From the Taylor expansion (2.17) with s = 1, we obtain
F(®(0,t)) = DyF(w(t),0)+ E(t), tecR"

where the error satisfies the estimate

P (5)

B0 = |y

‘ < O, (2.18)

for some constant C' > 0.

Now, we obtain the expansion (2.15) adding a development in r of the first order.
We are left with the proof of (2.16). Also by (2.18), the error R(r,t) is estimated by
a sum of the form

(ROl < > eyl P

St >V >
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with constants ¢;; such that cp; = 0if j < n and ¢;p = 0. So we have |R(r,t)] <

C(|r|> + |||t| + [t|™™!) and the mixed term is estimated by Young inequality:

1
_wnJrl_

n+1

n

(n+1)/n
i *

rllt] <
n

This finishes the proof of (2.16).
The map F' is open at 0 if the map F o ® is open at 0. And F o ® is open at 0 if
and only if the map

(ryt) = U(r,t) = F(®(r, 0(t)) = doF(r) + D{F(w(o(t)),0) + R(r, o(t))

is open at (r,t) = 0. We will show that ¥ is open at zero by a fixed point argument.
With respect to the factorization (r,t) € R™* x R, we introduce the norm
|(r,t)|| = max{|r|, Ao|t|} and the balls

Bs = {(r,t) e R" ¢ x R : ||(r,1)|| < 6}

for positive § > 0. The balls Bs are compact and convex. The parameter Ag > 0 will
be fixed later.

The map V¥ is open at 0 if for any (small) € > 0 there exists 6 > 0 such that
Bs C ¥(B.). We pick (§,7) € Bs and we look for (r,t) € B. such that U(r,t) = (£, 7).

We factorize

Dy F(w(o(t)),0) = (Dg F(w(e(t))), 9(t)) = (f(1),9(t)),

and R(r, o(t)) = (Ry(r, 1), Ro(r,t)) € R™"*xR’. Here, with a slight abuse of notation,
we are incorporating o into R; and Rj.
Since g is continuous and homogeneous of degree 1, there exists a constant C; > 0
such that
9(0)] < Cult]. (2.19)

By (2.16), for any 0 < ¢ < 1 there exists an € > 0 such that for |r| + |[t| < e (in
particular for (r,t) € B.) we have

| By (r, )] + [Ra(r, )] < o ([r] + [t]). (2.20)

We will fix o in a while.

The equation ¥(r,t) = (£, 7) is then equivalent to the system

(2.21)

doF(r) + g(t) + Ry(r,t) = &
@)+ Ra(r,t) =T,
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that reads as the following fixed-point system

{ = doF (€~ g(1) ~ (1) = a1
t = ffl (7‘ — RQ(T, t)) - h?(fra t)‘

We claim that the map h = (hq, hy) maps B. into itself, provided that 6 > 0, o > 0,
and g > 0 are small enough. Indeed, by (2.19) and (2.20) we have

[ (r, )] < [l do FHI(IEL+ 19 ()] + [Ra(r, 1))
< Co(lg] + [2] + o (|r] + 12])
< Co(6 + 200 + 0¢).

Choosing § < £/3Cy, A\g = 1/6C5, and o < 1/3C, we obtain |hy(r,t)| < e.
On the other hand, by (2.14) and (2.20)

|ha(r,t)| < L(|7[ + [Ra(r, 1))
< L(|r[+ o (|r[ + |t])
< L(Ao6 + 20¢).

Choosing § < e/2L and o < \g/4L we obtain |ha(r,t)| < Age. This finishes the proof
that for each (£, 7) € Bs there exists (r,t) € B, solving the system (2.21).
[

When the corank is ¢ = 1, by Proposition 2.13 we have the following:

Corollary 2.16. Let F' € C*(X;R™) be a smooth map such that 0 € X is a critical
point of corank £ =1 and DIF = 0 for all 2 < h < n, for some n > 2. Assume that:

i) n is even and there exist 2 elements v= € dom(DJF) such that DyD(v™) and

Dy (vt) have opposite sign; or,
i) n is odd and there exists v € dom(DJF') such that DJF(v) # 0 .

Then F' 1s open at 0.

2.3 Integrals on simplexes

In this section, we prove some elementary properties of integrals on simplexes that
will be used in the analysis of the end-point map. Here and hereafter, I = [0, 1]
denotes the unit interval. We fix d € N (it will be the rank of the distribution of
vector fields on the manifold) and in the rest of the Chapter we let

X = L*(I;RY).
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The tensor product ® : R x R™ — R is defined by
(vew)k =vw, k=m@—-1)+7,

where 1 <7 </ and 1 < j < m. Above, we are using the notation v = (v! ...,vz) €

)

R’, etc. The map ® is associative but not commutative.

Definition 2.17. For n € N and t,s € [ such that t + s < 1, we define the n-

dimensional simplex
Salt,s) ={(tr,... . tn) €I" [t <t, <<ty <t+s}.
When ¢ = 0 and s = 1 we use the short notation 3, = ,(0,1). We also let
S(ts)={(t,....t)) EIM |t <ty < <t, <t+s},
and X =¥ (0,1).
For n € N we define the subset of X

Uy, = {v €X | V(ty) @+ @u(ty)dL" = O} : (2.22)

n

Here and in the following, we denote by L£" the Lebesgue measure on R™. We also set
V. =[\Us. (2.23)

For any multi-index a € Z,, 4 = {oz €L, | a; €{1,... ,d}} and v € X, we define the

integral
13@):1/‘Um«%)”.w“@gdcw

Then v € U, if and only if [$(v) =0 for all @ € Z,, 4.
Forve X, neNandt,s € I such that t +s <1, we let

I,(t,s;v) = / v(t,) ® - @v(t)dL",
3n(t,s)
ﬂxts;v):t/‘ V(b)) @ - - @ vt )AL,
b (t,s)
Lemma 2.18. For any v € V,, and t € I we have
L0, t;0) = (=1)"L,(t,1 —t;v). (2.24)

o1



Proof. The proof is by induction on n € N. When n = 1 the claim reads

/Otv(s)ds: —/tlv(s)ds, tel,

1
that holds true because v € V; means / v(s)ds = 0.

0
We assume that formula (2.24) holds for n — 1 and we prove it for n. Indeed,

using first v € U,, and then v € V,,_; we get
t
I(0,t;0) = / v(tn) @ I (0, ty; v)dt,
0
1
_ / 0(t) @ Iy (0, s 0)dt,
t

1
— (—1)"/ V(ty) @ In_1(tn, 1 — t,;v)dt,
¢
= (=1)"L,(t, 1 —t;v).
]

The reverse parameterization of a function v € X is the function v* € X defined
by the formula
V() =v(l—t), tel

Corollary 2.19. Let v € X. Then v € V,, if and only if v° € V.

Proof. If v € V,,, by Lemma 2.18 with t = 0 it follows that v” € V,,. The opposite

implication follows from v” = v. O

The set V,, is stable also with respect to localization. Given v € X, s > 0 and
to € I such that o + s < 1, we define

t—to

Vg s(t) = v (

Lemma 2.20. Ifv eV, then vy, s €V, for all s >0 and t € I such that to +s < 1.

) Xlto,to+s] (t)a tel. (2.25)

Proof. The claim vy, s € X is clear. We prove that, for every 1 <i <mn,
-[i(t()u S, Uto,s) - / Uto,s(ti) K& Uto,s(tl)dﬁn - O
Ei(to,s)

Indeed, by the change of variable (ti,...,t;) = (s71 + to,...,sT; + 1), we get

[i(t0> 3 Uto,S) = 3i[i<07 17 U) = 0.

52



The set V,,_; C X is not a linear space and the map v — I,,(v) = I,,(0, 1;v) is not
additive. However, we can construct linear subsets of V,,_; of any finite dimension

starting from one function. Given v € X, we define vy, v, € X letting
U1 = Vo,1/2 and vy = V1/2,1/2-
These are the localization of v with ¢y = 0,1/2 and s = 1/2.

Proposition 2.21. Ifv €V, | then vy,v9,v1 + vy € V,,_1 and

]n<U1 + Uz) = In(vl) + In(vz).

Moreover, we have I,(v1) = I,(v2) = 57 1,(v).

Proof. The fact that vy, v € V,,_; is proved in Lemma 2.20. We show the remaining

claims. For any multi-index o € Zj, 5, 1 < h < n — 1, consider the integral

%0y, 1) = / oL (0) ..ot (t)dch. (2.26)
Eh

Letting I = [0,1/2] and I, = [1/2,1], the support of the function v} (t1)... v} (t4) is
contained in the product I, X --x1,,. If there exist ¢ < j such that o, = 1 < a; = 2,
then ¥, N1, X -+ x I,, =0, and then I*(v; + v2) = 0.

The complementary case is when oy = --- =, =2 and a1 = --- = = 1 for
some k =0,1,...,h. In this case, the integral in (2.26) splits into the product of two

integrals:

1%(v1, v5) = (/Z

If vy, vy € V,,_; this shows that I*(vy,v2) = 0 for all &« € 7,5 and for all h < n — 1.
This proves that vy + vy € V,,_1.

When h = n the argument above also shows that for all & € Z,5 such that
a#(1,...,1)and a # (2,...,2) we have [*(vy,v2) = 0. We conclude that

vh(th). . .v’g(tk)d[,k> (/

() .v{l(th)dch—k).
Yhok

k

L(vi+va) = Y I%(v1,02) = L(v1) + Ln(wa).

a€ln

2.4 Expansion of the end-point map

In this section we expand the end-point map and we compute its n-th order term. The

computations use the language of chronological calculus for non-autonomous vector

23



fields developed in Section ... . Since our analysis is local, we shall without loss of
generality identify our sub-Riemannian manifold M with R™. So M-valued maps will
be in fact R™-valued, fitting the framework of Section 2.1.

We briefly recall the definitions of the end-point mapo E and of the variation map
G, namely for ¢ € M and u,v € X we have

1
U):qofﬁ/ Jupydt, ue X,
0

and .
Gy(v)=qo (ﬁ/o g:f(’i)dt, veX,

where g:f(’i) is the time-dependent vector field

t
Guy = Ad <e?15 / fu(r>d7) fowy = (Bfy)sfo- (2.27)
1

Here P" denotes as usual the flow of the vector field f, = Z?Zl U fi.
Our goal is to compute the Taylor’s expansion of the variation map. For k € N
and v € X, we define the vector field Wy (v) as
Wi(v) = / adgfj Tk e adgu T ( sﬁg))dﬁk
o (2.28)
— g, g Z? lack.
/Ek (k) (1)

Here and hereafter, we use the following notation for the iterated bracket of vector

fields g, ..., 01:

(95 01] = lgws [+ [92, 1] - -]] = adgg o - - 0 adga(gn)-
For a multi-index 8 € 7, we define the operator (composition of vector fields)
W/g(’U) = ng (U) 0...0 ng (1}) (2.29)

The operator-valued map v — Wj(v) introduced in (2.29) is polynomial in v with

homogeneous degree p = |5|. Its p-polarization is defined via the formula

: (2.30)

ty=-=tp=0

Wa(vy,...,0,) = ! Wﬁ(ZtUJ

p! atl

where vy,...,v, € X. This definition is consistent with (2.2).
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By the argument of Lemma 3.3 and Remark 3.4 in [7], for any p € N and for any
v € X the p-differential of G' has the representation

PG (v Z Z csWp(v (2.31)

k=1 BeLy,|Bl=p

where, for any 8 € Z, we set

k
ca= BN [J(Bi+-+B) " eR.
s=1

Using these formulas we obtain a representation for the differentials D{G.

Lemma 2.22. For any h € N and for all v = (vy,...,v,) € X" we have

pem =Y. ¥ lplz > sWialva),

=1l a€lp |al=h k=1 BeZ;,|Bl=p
where Vo = (Vays - - -5 Va,) for o € I,,.

Proof. Formula (2.4) reads

DiGw)=>_ Y LdgG(va), (2.32)

and by (2.2), (2.31), and (2.30) we deduce that, for w = (wy,...,w,) € X?,

1 oP

t1="--=tp=0

iy Z . (Zthwh) (2.33)
p k=1 BeI; tl ti=-=t,=0
&s|Bl=p 1 P
= E > csWs(w)
k=1 ,8€Z]g7‘ﬁ|:p
O

For a given v € X let us consider the localization vy, , for some ¢, € [0,1) and
small s > 0, as in (2.25).

Proposition 2.23. Let h € N, v € X, and ty € (0,1). For any s € (0,1 —ty) we
have

Waloig) =5 [ 1680021680 JIE" + O[5, (2.34)

Xn
Moreover, there exists a constant C' > 0 such that |O(s"™1)| < Csh* for allv € X
with ||v]|x < 1.
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Proof. With the notation introduced in (2.27) and omitting the superscript u, we
have

Giny oty = Ad (@/1 fu(a)dg) Jurg (1)
d T
=> v, (HAd (eﬁ / fu(g)do> f;
i=1 1

d
=> i ()]
i=1

where g] is defined via the last identity. Letting, for o € Zj, 4,

Jo = / vl (Th) - v (T 9o ,ggll]d[,h, (2.35)
Eh(to,s)

formula (2.28) reads
Wi(vgs) = > Ji

aEI}L,d

With the change of variable ¥; = %, fori=1,...,n, the integral in (2.35) becomes

JE = s / v (V) . ..v“l(ﬁl)[gzihm, L geach
Z}L

Since the maps

t
t g; = Ad (e?f)/ fu(o)da) fi, i=1,....,d,
1

are Lipschitz continuous, for every ¢ = 1,...,dand j = 1, ..., h we have the expansion

gt = gl £ O(s),

(2

with a uniform error O(s) for ¥; € I. So we conclude that
o s = Sh[ggoh, . ,gg’l] / v () . ™M (ﬁl)dﬁh + O(sh“).
Zh

The claim (2.34) follows by summing over o € 7, 4. O

Corollary 2.24. Let v € V},, for some h € N, and ty € (0,1). For any s € (0,1 —to)
we have diG (Viy.s, - - -, Viy.s) = O(s"H1).

Proof. By formula (2.33), the h-differential of G has the representation
h
dbG(w) = Z Z csWi(Vtg.ss -+ s Vtg.s)-
k=1 BeIy,|B|=h
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Let 8 € I; with |8] = h. We claim that the coefficient of s" in the expansion
of s = Ws(viys,--.,01.s) vanishes. Indeed, consider the coordinate j = f;. By

Proposition 2.23 we have

Wiltns) =9 32 lgts] | o700, 0m 0l + 0™
b))

aGijd J
~0(")

because for ;7 < h we have

/ () - ™ ()AL = 0,
)

i
by our assumption v € V}, and by Lemma 2.18. The claim follows.
]

Let v € X and s > 0. Assume that the function wy., s = vy, s belongs to ker(doG).
By Proposition 2.9 with ¢ = 1 and ¢t = 1, there exist functions wj,, € X, j =
2,...,n—1, such that wy s = (Wity.s, - - - s Wn—1:t9,5) € dom(DFG).

Lemma 2.25. If v € V,,_y then ||wjq, sllx = O(s’*) forall j=2,...,n—1.

Proof. The proof is by induction on 7 = 2,...,n — 1. We start with j = 2. Since
(W1.tg.5, Wat.s) € dom(DG) we have DEG(wy.y, s, Wasys) = 0, and by (2.4) this equa-
tion reads

doG(Wa,zy.s) = —dsG (Vs s, Vsy.s) = O(8%),

by Corollary 2.24. The claim follows composing with the inverse of dyG.
Now we assume that the claim holds for 7 < n — 2 and we prove it for j =n — 1.
Since wy, s € dom(DEG) we have Dj 'G(wy, ) = 0 and, by (2.4), this equation reads

n—2
n—1)!
doG(Wn-1t9,5) = —dy ' G(Vtg,55 - - Vrg,s) — Z Z ( Oz'h') dgG((wto,S)a)'

h=2 a€Zy,|a|l=n—1

We clearly have dj "G (viy.s, - - -, Vsy.s) = O(s"), by Corollary 2.24.
We estimate the terms in the sum. When 2 < h < n — 2 and o € 7, with
|a| = n — 1, the multi-index « contains at least one coordinate different from 1 and

does not contain the coordinate n — 1, and so

n—2
Card{j | a; = 1} + Z(z +1)Card{j | aj =i} > |a| =n — 1.

1=2

Then, from our inductive assumption it follows that djG ((wyy,s)a) = O(s™).
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Lemma 2.26. Letv € X, s > 0 and ty € [0,1) be such that vy, s € ker(doG) and let
wy, s € dom(DYG) be the extension of vy, 5. If v € V,,—1 then we have

DiG(wy, ) = cps" / (9005 s T JAL™ 4+ O(s™H). (2.36)
Xn

Proof. By formula (2.32),

|
DEG (wy ) Z 3 OZ)'dOG((wto,s)a).
p=1 a€lp,|al=n

If « € Z, has one entry different from 1, then dfG((wy,s)a) = O(s"™) by Lemma
2.25. The leading term is given by p = n and o € Z,, with a = (1,...,1). The
expansion of this term is given by formula (2.34) with A = n and this yields formula
(2.36).

[

2.5 Open mapping property for the extended end-

point map

In this section, we study the open mapping property for the extended end-point map
at critical points of corank 1.

We recall that the extended end-point map is the map F; : X — M x R given by
Fj(u) = (F(u), J(u)), where J is the energy functional defined in ... . We also recall
that minimize the energy is equivalent to minimize the length. We can also define
the extended variation map G;(v) = (F(u +v), J(u+v)). Then, 0 € X is a regular,
singular, strictly singular critical point of G; if and only if u is a regular, singular,
strictly singular critical point of F, respectively.

We are interested in strictly singular critical points of F);. In this case, Im(d, Fy) =
Im(d, F) @ R, that is, coker(d,Fy) and coker(d,F) are isomorphic and can be iden-
tified. The differential analysis of the extended map F; can be consequently re-
duced to the analysis of the end-point map F. In fact, for any h > 2 we have
Dh'F; = DZF‘ker(duFJ)’ where the kernel ker(d, Fy) = ker(d,F') Nker(d,J) is finitely
complemented in X, and the restriction to ker(d,Fy) means dom(DEF;) = {v €
dom(DEF) | vy € ker(d,J)}. Similarly, we have

DiGr = DGl P22 (2.37)
with ker(dyG ) finitely complemented in X, and
dom(D}G ;) = {v € dom(DLG) | vy € ker(d,J)}. (2.38)
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Finally, 0 € X is a critical point for G; of corank ¢ = 1 if and only if u is a critical
point for G of corank ¢ = 1.

Thanks to the previous remarks, we can without loss of generality consider the
situation where 0 is a corank-one critical point for G. This means that coker(dyG)
has dimension 1. We fix a nonzero dual vector A € coker(dyG)* such that (A, w) =
proj(w), w € R™, where proj is the projection on coker(dyG).

For n > 2 and t, € [0,1), we consider the function G : X — R

G1(0) = [ Ol gl DE", v X (2.39)

This is the coefficient of the leading term in the expansion of DjG(wy, ) in (2.36), up
to the constant c,. Here and hereafter, vector fields are evaluated at the end-point ¢,
with notation as in the previous section.

For a multi-index o € Z,, 4 let us introduce the short notation

961 = lga, - - 9a];
n 1
where the entries o, ..., «, appear in the bracket with reversed order, and

I*(w) = / v (L) . 0™ (t)d L™ (2.40)

n

Then formula (2.39) reads

Gr()= > (\IgeDI%(v).

aEInyd
Lemma 2.27. Ifv € V,_y then v’ € V,_y and G (") = (=1)"7'G}" (v).

Proof. We have v* € V,_; by Corollary 2.19. By Lemma 2.18 — here we use the

assumption v € V,,_1, — the integrals I%(v) can be transformed in the following way:

1
() = / v (1) / 0 (tym) 0 ()AL Y,
0 Sn—1(tn,1—tyn)

1
=t e ([ et e o ) dn
o V0
= (1t [ ) o e
2

b
n

= (—1)" ().

The last identity follows by the change of variable t; = 1 — s;. This proves our claim
Gi. (v") = (=1)""'G}i (v).
]
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In the next step, we show that if G is positive and additive on a suitable subspace
of V,,_1 then the extended map G is open at zero. As usual, m = dim(M) is the

dimension of the manifold.

Theorem 2.28. Let 0 be a strictly singular critical point of Gy with corank 1 and
assume that DgG =0 for2 < h<n-—1withn > 2. Also, assume that there exist
to € [0,1) and vy,...,vx € V,,_1 such that:

i) k> m+1 when n is even and k > m + 2 when n is odd;
i) Gh(vi) =1 fori=1,... k;
ii1) vi, ..., vk sSpan a vector space Y C V,_1 of dimension k;

) Gi is additive on vy, ..., vy, in the sense that

gi ( Xk: Tﬂh‘) = zk: Gio (Tivi)
=1 =1

for any m,..., 7 € R.
Then the extended map Gy is open at 0.

Proof. The kernel ker(dyG) has codimension m — 1 in X and thus ker(dyG;) =
ker(dyG) N ker(dyJ) has codimension at most m in X.

For s > 0, let L, : X = LYI;RY) — X, : L'([to,to + s];RY) be the linear
isomorphism Lg(v) = vy, 5. Since ker(doG ;) N X has codimension at most m in X,
then L;!(ker(dyG;) N X,) C X has codimension at most m and thus

dim(Y N L (ker(doG.1) N X))

>1 when n is even, (2.41)
dim(Y N L (ker(doGy) N X)) > 2 when n is odd.

We discuss the case when n is even. By iv), n-homogeneity and ii), for 7 € R¥,

7 # 0, we have
k k
QZ)(ZTZ-UZ») = ZTZ” > 0.
i=1 i=1

Thus, the function G;! attains a positive minimum on the sphere K = {v € Y :
|lv|lx = 1}: there exists 6 > 0 such that

Gp(v)>d>0 forallve K. (2.42)

By (2.41), for any s > 0 there exists v € K such that vy, s € ker(dyG). This

v € K depends on s. Let wy, s be the extension of v, s given by Proposition 2.9
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applied with £ = 1 and ¢ = 1. We have wy, s € dom(DjG ) for all s > 0. By (2.37)
and by formula (2.36)

Dy G j(wsy) = Dy Glwsy,) = s"caGy (v) + O(s"t),

where |O(s"™)| < Cys%t! for a constant C; > 0 independent of v with ||v]|x < 1.
Choosing 0 < s < £6/C/c,, from (2.42) we deduce that

> 0.

N

DyGy(wspy) > 5" (e (v) — Cis) > s"

By Lemma 2.27, for n even we have G'(v") = —GJ' (v). Repeating the above
argument starting from v}, ..., v}, we conclude that for all s > 0 small enough there
exists wy, , € dom(DyGy) such that D§G (), ) = —1. By Corollary 2.16 part i),
we conclude that G is open at 0.

We pass to the case when n is odd. Let H CY be theset H ={v €Y : Gl (v) =
1}. We claim that there exists v € HNT, !(ker(dyG ;) N X,) such that ||v]|x < Cy for
a constant C5 independent of s > 0.

We may assume that k£ = m + 2 and on Y we fix the coordinates 7 € R* with
respect to the basis v, ..., v, i.e., v = Ty, + - - -+7pv, € Y. The equation Gp! (v) =1
reads

o+ 41 =1 (2.43)

The set YNL; ! (ker(dyGx)NX) contains a hyperplane of the form by7y+- - -+b,7 = 0
where (by,...,bx) # 0 are coefficients depending on s > 0. Without loss of generality
we can assume that by = 1 and |by],...,|bg_1| < 1. Then last equation reads 7, =

—(bym1 + -+ - + bg_17k—1), and equation (2.43) becomes
(i, To1) = =i+ -+ b))+ 1+ T =1 (2.44)

The polynomial p is not the zero polynomial and has homogeneous degree n, that is

odd. So the equation p(7y,...,7,—1) = 1 has solutions, for any by ..., b;_1. We are left

to show that there are solutions bounded by a constant independent of by, ..., b._.
For ¢ € (0,1) consider the set

Qs = {b=(by,... . by_1) € R* [ min{|by|, ..., |b_a|} > 6, max{|by], ..., |bes|} < 1}.

When b € Qs, we look for a solution 7 = (7q,...,7x_1) of equation (2.44) of the form
T = tb/]b] for some t € R, where |b] = \/b% + -4 b2_,. The equation reads

gL

o - |by”} — 1. (2.45)
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On Qs, the quantity (b7 + --- +bF_;)/|b|™ attains the maximum at the points where
all the coordinates are 0 except one that is 1, while —|b|" attains the maximum at
the vertex (0,...,0). So we get
by 44+, b < 1+ (k—2)0"
o[ ~ (14 (k—2)6%)"/2

Since ¥(1) = (k—1)'"2 — (k—1)"/2 < 0 for k > 1, there exist g >0 and 0 < § < 1
such that ¥(0) < —e&o. Now d = d(n) is fixed. The solution ¢ € R of equation
(2.45) is negative and satisfies [t| < g, /" This proves the existence of a solution
(T1,...,7k_1) € RF"1 of (2.44) that is uniformly bounded when b € Qs.

In the case that min{|by|, ..., |br_1|} < 0 we argue as follows. Assume for instance
that |by| < d. With 7, = ... 71 = 0 we have the equation —(by7)" + 7" = 1 that
has a solution 71 > 0 bounded by

()
> ]_—(5” .

Now the proof can be concluded as in the case of even n.

= ((k = 1)8%)"2 = 4(9).

[]

In fact, in order G'; to be open it is sufficient that G is positive at one element
of Vn—l'

Theorem 2.29. Let 0 be a strictly singular critical point of G; with corank 1 and
assume that DG =0 for 2 < h < n —1 with n > 2. If there exist ty € [0,1) and
v € Vi1 such that Gyl (v) # 0, then G is open at .

Proof. For any k € N, we apply iteratively Proposition 2.21 to find 2% functions

V1, ..., U With mutually disjoint support, spanning a linear space in V,,_; and such
that
2k 2k
G (X u) =X G,
i=1 i=1
and G (v;) = 5:G7 (v). The claim follows from Theorem 2.28. O

If G5 is not open at 0 we have G; (v) = 0 for all ¢, € [0,1) and v € V,,_;. Even
though V;,_; is not a linear space, we polarize the map 7' = G, .
The polarization of T': X — R is the multilinear map 7 : X™ — R defined in one

of the two equivalent ways

T(vr, ..., 00) = ﬁj(zthvh)

_ % S [ggop/z VO (£,) . 02 (8) AL,

0ESH OéGInyd

(2.46)
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If Y C X is a linear subspace such that T'= 0 on Y then 7 = 0 on Y". This
follows easily from the differential definition of polarization. Linear spaces Y C V,,_;

where 7' = 0 can be obtained with the following construction.

1 d
e, WS

¢), and fix a selection
function s : {1,...,n} — {1,...,d}, s(i) = s;. This function will be used to select

Fix wy,...,w, € X, with coordinates w; = (w
(with multiplicity) which vector-fields from f, ..., fg appear in the bracket [¢g%].
We can define vy, ..., v, € X setting, fori =1,... n,
v; = (0,...,0,u",0,...,0), withu" =w, (2.47)

where u’ is the i-th coordinate. Then we define u € X as u = (u!,...,u"). The
function v depends on the selection function s, but we do not keep track of this

dependence in our notation. As in (2.40), for a permutation o € S,, we let

7(u) = /E W () - (1)L

When u € V,,_1, where now V,,_; is defined as in (2.23) and (2.22) but with d = n,

the polarization T takes the following form.

Lemma 2.30. For any selection function s, if u € V,,_1 then vy, ..., v, span a linear

subspace of V,,_1 and

Tlon ) = 1 SO0 [ols) 17 ) (2.18)

oESy

Proof. Given ¢ € S, and « € Z,, 4, by the structure (2.47) of vy,. .., v,, there holds

/ W (£) 2 ()L = 0

as soon as there exists i such that a; # s(o;). For the surviving terms it must be

« = so and in this case
/ Ve (tn) - vgt(t)dL" = / wyr (tn) .. LWt (t1)dL™ = 17 (u).

The claim follows from the combinatorial definition of polarization in (2.46).

2.6 Generalized Jacobi identities and integrals on

simplexes

In this section we fix a selection function s : {1,...,n} — {1,...,d} and u =

(u',...,u"), as in (2.47). For varying o € S,, the brackets [g¥] = [g,..., g2]
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satisfy several linear relations. Using generalized Jacobi identities, we clean up for-
mula (2.48) getting rid of these relations. Our goal is to prove the following formula,

where we work with permutations o € S, fixing 1
S,i:{UGSHUl:l}.

Theorem 2.31. For any selection function s and for any vy, ..., v, as in (2.47), we

have the identity
1
T(v1,..0,0,) = =1 > N gD 7 (u). (2.49)
' ceS}

The fact that in (2.49) the sum is restricted to permutations fixing 1 will be
important in the next section. The proof relies upon the generalized Jacobi identities

proved in [6]. For n,j € N with 1 < j < n, let us consider the sets of permutations

Xoj={§€8u|&>&> > =1and § <1 <+ <&}y

and

X = X (2.50)
j=1

The set X,,; contains only the identity permutation, while X, contains only the order
reversing permutation. We are denoting elements of X,, by &, while in [6] they are
denoted by 7.

Let ¢1,..., g, be elements of a Lie algebra. The action of a permutation o € .5,

on the iterated bracket [g,,...,q1] = [gn,[. -, [92,91] - . .]] is denoted by

U[gnv"‘7gl] = [gana"'agal]‘

The selection function s acts similarly, s[g,,...,q1] = [¢gs,,---,9s ], and so in the
notation used above we have [g0] = s[g0].
The generalized Jacobi identities of order n that we need are described in the next

theorem.

Theorem 2.32. For any Lie elements g1,...,9, and for any permutation o € S,
such that oy # 1,

<O’ + Z (—1)5_1(1)05) [Gns---r91] =0, (2.51)

€€ Xn, 0¢(1)=1
where X, is the set of permutations introduced in (2.50).

Proof. The proof of formula (2.51) is contained in [6] on pages 117 and 119. O
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Lemma 2.33. Forvy,...,v, as in (2.47), we have the identity

T(v1,...,0n) = Z g2 ]) Z ceI”¢ (u), (2.52)

o€S] EeXny
where ce = (—1)1*¢ 1),

Proof. Starting from (2.48) and using (2.51), we get

AT (o) = Y GBI+ Y (A9 (w)

ceS}k 0ESy, 01#1
= > N+ Y e\ g8 )7 (w)
O'ESI §€X’IL70‘€SH

0'17517 05(1):1

=Sl (rw Y @l W)

cesS} EeXn,oé 1 (1)#£1
=D Aol D el
UESI éEXn

In the last line, we used the fact that, when o; = 1, we have 0§~ 1(1) = 1 if and only
if ¢ is the identity.
[l

A permutation o € S, acts on the integrals I¢ ' (u) as oI¢  (u) = I°¢" ' (u). So,
the sum over ¢ € X,, appearing in (2.52) reads

> ) = o (Y el (),
EeX, £eXn

where the action is extended linearly. Our next task is to compute the sum in the
round brackets.
A permutation o € S,, acts on the simplexes 3,,(¢,s), with 0 <t <t+ s <1, as

oS, (t,s)o={(t1,....t,) ER" [t <tp, < ... <ty <t+5}.

In particular, if ¢ € S, is the reversing order permutation, 6(i) = n — i + 1, then
P (t,s) = aX,(t,s). We also let X9(t,5) = 0%,(t,s) and X7 = ¥9(0, 1).
Finally, for k =1,...,n we let

L(u) = /Eb u'(sy) ... uF(sp)dL",

k

L (u) = / W (Sp1) - U (5,)dLTTE
En k
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Lemma 2.34. For any j = 2,...,n we have the identity

NI W) =D (W)= > I (2.53)

Eean fEXn] 1

Proof. Fix a permutation { € X,,;, so that {; = 1. In the integral I€ (1) we perform
the change of variable t;, = s;. The integration domain 3, is transformed into the
new domain Eﬁ;l ={0<s1 < < Se1 < 1}:

7 () = / W (#) - (4)dL
- / ()l (b, LT (2.54)
= / u"(s,) ... ut(s1)dL".
D
We denote by §; the variables (sq,...,Sj_1, 541, ..., Sn). Since sg-1; = s, the set
6 s
S =T x 55 5(0,5)),

where s; € I and
s (0, s5) ={5eR"0< s < <51 <55}
nlj J J &n & 21

Since { € X,,;, here we have s, < --- < 55411 < sj and 51 < --- < 5,1 < s;. For
varying £ € X,,;, we obtain all the shuffles of s; < --- < s;_; into s, < --- < 5541 and

thus we have
U 2n 1] O S] Ajfl(sj) X Bn*j(‘%)?

geXn]
where A;_1(s;) = £5_1(0,s;) and B,_;(s;) = £n—;(0, ;).
Summing (2.54) over £ € X,,; we get

S =Y / /Egl [T o (s 3) ) (s s,

E€ X, E€E X, 0,87) kotj

1
_ / (/ [T (s0)de" = 5,) ) (5;)ds;:
0 Aj1(55) X B () joot

The inner integral is the product of two integrals. Namely, letting

(2.55)

f(si) = uj(5j>/ W (sj4) - " (s0)dL
Br—;(s;)
g(sj) = / ujil(Sj_l) . Ul(Sl)dﬁjil,
Aj—1(s5)
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formula (2.55) becomes

3 £ (u) = /O f(s5)9(s;)ds;.

£€an

A primitive for f is the function h(s;) = Osj f(o)do, and an integration by parts

gives

1 1
| rsdatsis = ba) = [ (s,)g s5)ds;
where the boundary term is easily computed:
h(1) = / w (s5) . u"(8,)dLY I =1, (u),
Bn—j+1(1)

g(1) = / W (sg) ot (s)dl T = T (w).
Aj—1(1)
In order to compute the integral, notice that

Jls) =) [ sya) ()

Aj—2(sj)

and thus, by (2.55) but for j — 1, we have

1 1
| wsigtspas = [ (]
0 0 Aj—2(0)XBn—jy1(

= Z 17 (u).

£€Xn,j—1

I1 uk(sk)d,cnfl@,l))uﬂ'*l(a)da

) ktj—1

Corollary 2.35. For any u € V,,_1 there holds

D el (u)=n / ut(ty) .. u" ()AL

§€Xn n

Proof. When u € V,,_; we have [;_1(u) = I,_jy1(u) =0 for j =2,... n. Taking into

account the constants ¢ = (—1)*& ' formula (2.53) reads

Zcflgil(u): Z el (u).

EEXM' EEXn,jfl

67



Applying iteratively this identity, we obtain

Z Cg[g Z Cg[g Z Cg[g -+ Z Cg[g

£€Xn gEXnn £€Xn,n71 gexnl
=2 ) ceI€ (u) + > ceI€ ( 4+ Y ceI¢ (u)
SGXn,nfl SGXn n—2 §€Xn1
=3 Z Cg[5 + Z Cg]5 -+ Z Cg[é )
EeXn,n72 §€Xnn 3 sexnl

=n Z 05[5_1

geX'nl

Since X,,; contains only the identity permutation, the claim follows. O

This corollary concludes the proof of Theorem 2.31.

2.7 Non-singularity via trigonometric functions

We start the study of equation T (vy, ..., v,) = 0 for the polarization map 7 in (2.49).
We will work with functions v; as in (2.47) of trigonometric-type.
For each permutation fixing 1, o € S}, we introduce a real unknow x,. There are

(n —1)! = Card(S}) unknowns. We are interested in the linear system of equations

> I(u)z, =0, TES), (2.56)

where 17(u,) are regarded as coefficients depending on u, € V,,_1. In this section, we

prove the following preparatory result.
Theorem 2.36. There exist u, € V,_y, 7 € S}, such that det(17(u;))yrest # 0.

With a choice of coefficients as in Theorem 2.36, the linear system (2.56) has only
the zero solution, implying x, = 0 for all ¢ € S!. This fact will be used in Section
2.8.

For z=a+ibe€ C and k € N we let

W,k (t) = acos(2knt) + bsin(2knt), tel.

We call w,., a w-type function of parameters z and k, and we call k frequence of
W, We need exact computations for iterated integrals on n-simplexes of w-type

functions. In particular, we are interested in the case when every linear combination
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with coefficients 1 of at most n — 1 frequencies out of a set of n frequencies is not
zero, see (2.59) below. This condition will ensure assumption v € V,,_; in Lemma
2.30.

Any w-type function satisfies the integration formula

1
1
/ we()ds = g (wiek(1) — wik(0), A0 (2.57)
t 7T
and a pair of w-type functions satisfies the multiplication formula (Werner’s identities)
1
WakWeh = 5 (Waciprn + Wanr)- (2.58)

For h € N, we let J, ={1,...,h} and
Ay ={a: T —{1,-1} | ay =1}.

Here we are denoting «(j) = «; and, with a slight abuse of notation, we identify
a € A, with a = (ay,...,ap) € {1, =1} Letting z, = (21,...,24) € C", for each
a € Aj, we define the multiplicative function p, : C* — C

Pa(zn) = H 2 H Z;.

LeJp,ce=1  jETn,a;=-1

Also, letting kj, = (ki, ..., kn) € N" we define the additive function s, : N* — N

h
Sa(kh) = Z ijk‘j.
7=1

Notice that, since ay = 1, Z; never appears in p,(z,) and k; has always positive
sign in s, (kp).

Finally, for ¢,h € N with £ < h we let B} = {8 : Jy — Ju | B injective} and for
ky, = (ki,...,k,) € N" and 8 € Bl we set ki = (kg,,...,ks,) € N. Here, we are

using the math-roman font for vectors and italics for coordinates.

Theorem 2.37. Let k, = (k1,...,k,) € N*, n € N, be a vector of frequencies such
that

sa(k2)#£0 foralla€ A, and BBy, 1<h<n-—1. (2.59)

Then for any 1 < h <n—1, for all z;, = (21,...,2,) € C" and for all t € I we have

/Z ( ) Wk (th) co Wik (t1>d£h = gsh;kh (t) - Z Cg(kh)wpa(iZh);sa(kh)(t)’ (2'60)
n(t,1—t

acAp
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where ci(kn) # 0 and the function gl | satisfies

ggh;kh(o) = Z Cg(kh>wpa(izh)§5a(kh)(0>’ (261>
acAy,
and
/ W skn (tn) co Wy gk (th-f-l)ggh;kh (th+1)d£n_h = 0. (262)
En h

Proof. The proof is by induction on n € N, n > 2. The constants c?(kj,) are given by

the formula

0%,
ky,) . (2.63)
4hﬂ-h H o) (ké)

-----

The formula is well-defined because s, ..., aé)(kg) # 0 by assumption (2.59).

When n = 2 we only have h = 1 and a = 1, so that cj(k;) = 1/27k;. The
integration formula in (2.57) gives (2.60) with g, . = c¢(ki)wiz, (1), a constant.
Identity (2.61) is satisfied and also identity (2.62):

1 1
/ w22;k2 <t2)gzll;k1 dt2 = gZ11;k1 / w22;k2 (tQ)dt2 = 07
0 0

because ko # 0, again by (2.59).
Now we assume the theorem holds for n — 1 and we prove it for n. In particular,

from (2.60) with ¢t = 0 and (2.61) we have the inductive assumption
/ Wy, :kp, (th) v Wy kg (tl)dﬁh = O, h = 1, o, — 2. (264)
Xh
We distinguish the cases h =1 and 2 < h <n—1. When h =1, (2.60) is exactly

the integration formula (2.57) with

1
gil,kl = %wzuiﬁ (1)

The 1-periodicity of w-type functions also prove (2.61). In order to prove (2.62), we

claim

/ wzn;kn (tTL> C) wz2;k2 (tQ)d,Cnil = O
Yn-1
In fact,

/ Wz sk, (tn) oo Wagsky (tQ)dEn_l = g;g,k‘g / Wik, (tn) o Wagiks (tS)d'Cn_2
En 1 Enf2

1
2]{5277'

/ W (t) - Wayiy (£3) Wy (£3) L2
Yn—2
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By the multiplication formula (2.58), in the second integral are involved the vectors
of frequencies (ko £ ks, k4, ..., k,). Both of them satisfies (2.59), by assumption (2.59)
itself. Then both the summands vanish thanks to the inductive assumption (2.64),
proving our claim.

For 2 < h<n-—1,set

D)= [ () ()AL
Sh(t,1—t)

When h > 2, we use the inductive assumption (2.60) for h — 1 and the multiplication
formula (2.58) to obtain

1
Dy(t) = / Wik, (h) </ Way sk (Th1) - Wayiy (tl)dﬁh_1>dth
¢ Ep—1(th,1-1p)

1
- / wzh;kh (th) <g;1h_,11;kh,1 - Z CZ_I(kh_l)wpa(izh71)§5a(kh71))dth
t

a€A,_1

1 1
= / Wik, G2 At Z Ca (k- / (War + wiy ) dt,,
t t

OéEA;L
where s = 2,0 (121-1); Sa(kp_1) + kn and 11 = Zppa(izn_1); Sa(kn_1) — kj, satisfy

Wi = —Wip(,, 1 (i21)35(a,1) (Kn) s

Wit = Wip,, _1)(izn);5(a,~1) (k) -

By the integration formula (2.57), the function D), equals

1 _ W1 (izn)is (o) (kn)  Wpia,—1(izn)i5(a,—1) (kn)
D - h1k7<p(71>h(,1) P, (a,=1) )
h gZ}ukh A Z Ca ( h 1) S(a,l) (kh) S(a1) (kh) )

a€AR_1

where .
gfh,kh (t) = / wzh;khgg;ll;khfldth + C(Zh7 kh)’ (265)
t

with ¢(zp, kp) a constant that we are going to fix in a moment. Using A, = {(«a, 1) |
a€ A1t U{(e,—1) | @ € Ajp_1}, and the relations

1 b1 1 1 h—1 1 =
ES kr )~ k d — kp1)——7—
1 Cqy ( h 1) S, 1)(kh) ( )< h) an 1 Co ( h 1)5(a,_1)(kh)

we conclude that

_Cl(loz,—l)(kh)a

Dh(t) = ggmkh(t) - Z CZ(kh)wPa(iZh);Sa(kh)(t)'

ac Ay,

This proves (2.60).
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We are left with the proof of (2.61) and (2.62). The constant above is

C(Zh7kh) = Z Cg(kh)wpa(izh)§3a(kh)(1)'

aEAp

By the 1-periodicity of ¢ — gg“kh (t), we have

gt 1, (0) =gl (1) = c(zn, kp),

and this shows (2.61).
Finally, we check (2.62). By (2.65) it is sufficient to show that

1
/ Wit () + - Wap i (1) </ wzh;khgg;ll;kh,ldth> dcr" = 0. (2.66)
DI

th+1
and

(2, k) / Wapios(tn) o Wy o (b )AL = 0. (2.67)
z:nfh

Identity (2.67) holds by (2.64) and identity (2.66) holds by the inductive validity of
(2.62).
[

The explicit formula (2.63) for the constants ¢ (k) will be crucial in Lemma 2.40.

Corollary 2.38. Let k, = (k1,...,k,) € N*, n € N, be a vector of frequencies
satisfying (2.59) and assume there exists a unique & € A, of the form a = (a, —1)
with o € A,,_1 such that s5(k,) = 0. Then we have

™ (k,_1)Re (Enpa(izn,l)). (2.68)

DO | —

/ e (b) 0 (1)L = —

n

Proof. Using formulas (2.60) and (2.62) we obtain

1
n n—1
/ Wik - - Wayshey AL = / Wepikn (/ Wy ik -+ Wayky AL )dtn
S 0 S(tn,1—tn)

1
:A wZn;k:n (92;11;1(”,1 - Z Cg_l(knfl)wpa(iznfl)ﬁa(knfl))dtn

acA,_1
1
—1
= _CZ (knfl) / wzn§knwpa(7;znfl)§sa(knfl)dtn'
0

Now we use the multiplication formula (2.58). Only the one term with a resulting

zero frequence contributes to the integral, and we get

1 .
/ Wiy ky -+ - Way ke AL = —502’1(kn,l)Re(ana(zzn,l)).
Z’VL
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Remark 2.39. Let k, = (k1,...,k,) € N" be a vector of frequencies such that

ki=> ki and k> Yk, 2<j<n-—1 (2.69)

j=2 l=j+1

Then k,, satisfies (2.59) and there exists a unique @ = (a,—1) € A, such that
sa(ks) = 0, and namely & = (1, —1,...,—1).

Lemma 2.40. There exists k, = (k1,...,k,) € N" as in (2.69) such that, with
a=(1,-1,...,—1), there holds

e ko) > D e kg k)] (2.70)

Proof. Setting, for £ =3,...,n,

" 1
Q(kﬁa"'akn):H—a
W e+ + ks

by formula (2.63) and by the choice of k; in (2.69), we obtain

2
n—1 .
‘C& (kn71)| - 471—17Tn—1k1q(k3’ R kn)v
and so inequality (2.70) is equivalent to
ks, k) > > gk, ko). (2.71)
c€S) o#id

Notice that k; does not appear in (2.71), whereas ko may appear in the right hand
side.

For i =1,...,n, consider the set of permutations fixing 1, ...,
S:i={oceS,|or=1,...,0i =1}

We claim that there exist ko, ..., k, as in (2.69), such that for any £ = 3,...,n there
holds L
gk, k) > ) > q(kgys - ks, (2.72)
i=0-2 oS, o (i+1)#i+1
Claim (2.72) for ¢ = 3 is exactly (2.71).
We prove (2.72) by induction on ¢ starting from ¢ = n and descending. When
¢ = n, the sums in the right hand side of (2.72) reduce to the sum on one element,

the permutation switching n and n — 1. So, inequality (2.72) reads in this case

1 1

k_n = q(kn) > q(knfl) = knflj
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that holds as soon as 0 < k,, < k,_1.

By induction, assume that k, > --- > k, are already fixed in such a way that
(2.72) holds with ¢ + 1 replacing ¢. Notice that k,_; may and indeed does appear in
the right hand side. We claim that there exists ky—; > k¢ such that (2.72) holds.

We split the sum in (2.72) obtaining

n—2
ke, k) > Y > q(koy, .. ko) + > q(kyy .. ko),

i=0—10eSi o (i+1)#i+1 0€SE2 o(0—1)£0—1
(2.73)
and we consider the quantity
n—2
Q(key. . kn) = qlke, ... k) — q(koys- -y ko,)

A permutation o € S! with i > ¢ — 1 fixes all the k;s with 7 </ — 1 and then we

have
1

L R

Q(k(74+1a ey k(m)v

and thus

3

1 —2
Q(k€7 s 7kn) - m <q<k€+17 BRI kn) - s s q(kUZJrl? T kf’n))
By our inductive assumption, we have Q(ky, ..., k,) > 0. Notice that Q(ke,. .., ky)
does not depend on ky_;.

Conversely, every summand in the second sum in (2.73), i.e., every ¢(ky,, . .., ko, ),
depends on ky,_; and tends to 0 as k,_; — oo. We conclude that for all large enough
ke_1 > k¢ claim (2.73) holds. This ends the proof of (2.72).

]

Proof of Theorem 2.36. We claim that for each 7 € S! there exists u, € V,,_; such

that the matrix (17(u;))s,res: is strictly diagonally dominant and thus invertible.
Let k, = (k1,...,kn) € N" be a vector of frequencies as in (2.69) and satisfying

the claim of Lemma 2.40 and choose complex numbers z, = (21,...,2,) € C" such

that .
— §Re(2npa (1Zn-1)) =1,

where oo = (1,—1,...,—1) € A,_;. The function v = (Ws,.4y, ..., Wsk,) 18 In V4,
by Theorem 2.37, formulas (2.60) and (2.61). By formula (2.68) and by Lemma 2.40

) =l Qo) > Y e oo )l = D 7))

ceS} o#id c€S} o#id



For each 7 € S}, we define u, = (W, gy, . .., Wapikn ), where £ = 771(£). As above, we
have

(M (ur)] > Y 17 (ur)l.

ceSY o#£T

This concludes the proof that (I7(u;)), res: is strictly diagonally dominant.

2.8 Goh conditions of order n in the corank 1 case

Let A C T'M be the distribution spanned point-wise by the vector fields fi,..., fs.
For any n € N and ¢ € M we let

An(q) = spang{[fs., .-, fs)(@) | s1,-. . sn € {1,...,d}} C T,M.

For a given ¢ € M, the annihilator of A,, is
Ay(q) ={XNeT;M | A(v) =0 for all v € A,(q)}.

Theorem 2.41. Let (M, A, g) be a sub-Riemannian manifold, v € AC(I; M) be a
horizontal curve with control w € X, and n € N be an integer with n > 3. Assume
that:

i) D'F =0 forh=2,...,n—1, where F is the end-point map starting from v(0);
i) 7y is a strictly singular length minimizing curve with corank 1.
Then any adjoint curve X\ € AC(I; T*M) satisfies

At) € AX(y(t)) forallt € 1. (2.74)

Proof. 1f  is length minimizing then the extended end-point map F; is not open at u,
i.e., the extend variation map G is not open at 0. By Theorem 2.29 we consequently
have G (v) = 0 for all ¢y € I and for all v € V,,_;. In order to use Theorem 2.29 we
need both assumptions i) and ii). The map G;! is introduced in (2.39) and incorporates
A. The strict singularity of 7 is used to translate the differential analysis from G; to
G.

We polarize the equation Gf' (v) = 0, as explained at the end of Section 2.5. The
polarization, denoted by T, is introduced in (2.46). We have T = 0 on linear spaces
contained in V,,_;. We fix any selection function s : {1,...,n} — {1,...,d} and we

translate our claim (2.74) into the new claim

A, s fal(0(8)) =0, t el (2.75)
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By formula (2.49) for 7 proved in Theorem 2.31, if we choose vy,...,v, € X as
in (2.47) and such that the corresponding u satisfies u € V,,_1, then the equation
T (v1,...,v,) = 0 reads

> gD I7(w) =0, tyel (2.76)

oeS})

We regard (2.76) as a linear equation in the unknowns (X, [¢%]) with coefficients
I7(u).

By Theorem 2.36, for any 7 € S! there exists u, € V,,_; such that the matrix
(17(tr))o,res: is invertible. From (2.76), the definition of adjoint curve (see Definition
1.105), and (2.27) we deduce that for any o € S} and ¢, € T

0=\ gy = N [9e5,5 - 965,])
= (M (Pig)wfsons -+ (P)efson])
= (N (Pg)sl foons - o5 foonl)
= {(Py)" M [fsons - -+ Faor ) (7 (1))
= (A\t0); [fson, -+ fson [ (7(20)))-
This identity with o = id is (2.75).
]

Remark 2.42. We comment on assumption i), D"F =0 for h =2,...,n — 1. This is
equivalent to DG = 0. Using formula (2.36), for v € V},_,

0= DSG(wto,S> = <>‘7 DgG(wto,S>> = Chsh/ <)‘7 [gz(%th)’ T 7g (t1) ]>d£h + O( h+1)
DI/

Dividing by s" and letting s — 0 we deduce that G/ (v) = 0. Now, as in the proof of
Theorem 2.41 we conclude that (A(to), [fs,,---» fs:](7(t0))) = 0, that is

At) € Aj(y(t), forall h=2,...,n— 1. (2.77)

In particular, as a combination of (2.74) and (2.77), if «y is a strictly singular length
minimizer satisfying i), then the associated adjoint curve annihilates all the brackets

up to length n.

Remark 2.43. The inverse implication in Theorem 2.41 does not hold. Namely, a
strictly singular curve satisfying assumption i) and (2.74) in Theorem 2.41 needs not

be length-minimizing. A counterexample is given in the next section.
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2.9 An example of singular extremal

On the manifold M = R3, with coordinates x = (x1, 22, 23) € R3, we consider the
rank 2 distribution A" = span{ fi, fo}, where f; and f, are the vector-fields defined
by
0 0 0
f1($> ax17 fQ(x) ( ‘Tl)ax2 +ZE1 ax3

The vector-field f; depends on the parameter n € N. We fix on A" the metric ¢

(2.78)

making f; and f5 orthonormal.
In this section, we study the (local) length-minimality in (R®, A", g) of the curve
v:1=10,1 - R?
~v(t) = (0,t,0), tel. (2.79)

The curve ~ is in fact defined for all ¢ € R.
Our results rely upon the analysis of the variation map G based on the results of
the previous sections. The minimality properties of v are described in the following

theorem.

Theorem 2.44. Forn € N, let us consider the sub-Riemannian manifold (R3, A", g)
and the curve v in (2.79).

i) For any n > 2, v is the unique strictly singular extremal in (R3, A™) passing

through the origin, up to reparameterization.
i) If n > 2 is even, v is locally length minimizing in (R3, A", g).
iii) If n > 3 is odd, vy is not length minimizing in (R3, A", g), not even locally.

Above, “locally length minimizing” means that short sub-arcs of v are length
minimizing for fixed end-points. Claims i) and ii) are well-known. In particular, claim
ii) can be proved with a straightforward adaptation of Liu-Sussmann’s argument for
n = 2 in [19]. For n = 3, claim iii) is proved in [7] and here we prove the general case.

We compute the intrinsic differentials of G and we show that, for odd n, they
satisfy the hypotheses of Theorem 2.15. This implies that the extended variation
map (G is open and, as a consequence, the non-minimality of .

We denote by +* the horizontal curve with control v = (0,1) and v*(1) = z, so
that 49 = . By the formulas in (2.78) for the vector fields f; and f,, we find

N =21, %) =0C-1)1—az1)+ 22, 235(t) = (t—1)z7] + z5.

The “optimal flow” associated with v is the 1-parameter family of diffeomorphisms
Pl e C=(R3R?), t € R, defined by P}(x) = *(t). For fixed z € R?, the inverse of
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As explained in Section 2.4, see formula (2.33), the differential of G at 0 is

1
doG(v) = / Goy(@)dt, v = (v',v?) € L*(I;R?).
0

Above, we set g}, = v'(t)g; + v*(t)g5 where the vector fields gi and g5 are

0 0 9
=P = — —1)— — _ n—1_Y
g1 =P (z). i = B, + (¢ 1)(%2 n(t —1)z" o
t 1 0 . o
9o =P (v)fo=fo=(1~- xl)a—x2 +x18_x3'
So the differential is given by the formula
1
/ v (t)dt
0
- 1
WGl = / {(t— D)o (t) + (1)}t |- (2.80)
0
0

We deduce that a generator for Im(dyG)* is the covector A = (0,0,1), and that
v € ker(dyG) if and only if

/1 v'(t)dt =0  and /1(tv1(t) +v*(t))dt = 0.

In the computation of the differentials DG, h > 2, we need the following lemma.
For y € L*(I;R) and n > 2, we let

= / y(t) -yt (ts — 11)dL™.

1
Lemma 2.45. Forn > 2 and y € L*(I;R) such that / y(t)dt = 0 we have
0

1 1 n
"= — .
v (/t y(T)dT) dt

78



Proof. We first observe that, integrating by parts, we have

1 1
/ y(t1)<t2 — tl dtl = tQ/ Yy tl dtl —/ tly(t1>dt1
[2)

to

1
/ tl dtl — |: / tl dt1:| / / tl dtldS
/ / tl dtldS

Applying this identity to I'j and integrating by parts again, we get

Sy
[ s [ f [ o
[ ([ ) ate) [ty / / () dtsdsdty ... dt, i,

1

In the last identity, we used our assumption / y(t)dt = 0. Now our claim follows by
0

iterating this integration by parts argument.

[
Theorem 2.46. Let n € N. The variation map G in (R3, A™) satisfies:

i) DAG =0, for h <n;

ii) for any v = (vy,...,v,—1) € dom(DJG),

DrG(v) = /0 1 < /t 1v}<7>d7>ndt, (2.81)

where v} is the first coordinate of vy .

Proof. The Lie brackets of the vector fields ¢t and g5 = f, are, at different times,

., 0
91, 95] = n(n — 1)(t — s)af 28_x3’

t s n—1 a
91, 95] = s +nxy 15
Notice that the bracket in the latter line is time-independent. Then, for 3 < h < n
and iy, ...,4, € {1,2}, the iterated brackets of length h are

n...(n—h+1)(ty —t))ap "2

o3 ifi,=---=1,=1,
[952779511]: n...(n—h+2)(t2—t1)"hﬂaz, leQZZZh:L andz'1:2,
, otherwise.
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For h < n, the coefficient of 9/0x3 in the formulas above vanishes at the point
g = (0,1,0) and thus the projection of these brackets along the covector A = (0,0, 1)

vanishes, for any 2 < h < n,

(N Lot gi(@) = 0.

Using formulas (2.28) and (2.33), we deduce that for any (vy,...,v,_1) € dom(DIG)

we have

DgG<U17 cee 7'Uh71> == </\,D6LG('U1, .o, Up—1, *)(g)) = O,

proving claim 1i).
For h = n, the coefficient of 0/0x3 vanishes at ¢ except for the case i; = -+ =
i, = 1, that is

Then, for any v = (vy,...,v,-1) € dom(DjG) we have

DiG(v) = (N, DyG(v1, ..., Up—1,%)) = n! / vi(ty) ... vl (t,)(ty — t1)dL"™

_ /01 (/tl vi(f)df)ndt.

In the last identity we used Lemma 2.45. This proves claim ii). O]

Before proving claim iii) of Theorem 2.44, we recall that ker(dyG ;) = ker(doG) N
ker(d,J), where J is the energy functional (see Section 6). In particular, for any
v € L*(I;R?) we have

duJ(v):/O (ul(t)vl(t)dt+u2(t)v2(t))dt:/0 v?(t)dt. (2.82)

Proof of Theorem 2.44 - claim iii). Let n € N be an odd integer. We claim that there
exists v = (v1,...,U,-1) € dom(DjG;) C dom(DyG) such that DyG(v) # 0. The
inclusion of domains is ensured by (2.38). By Theorem 2.46 we have DG = 0 for any
h < n. Then from (2.37) it follows that also the extended map satisfies DyG ;(v) # 0
and DYG; = 0 for h < n.

By Proposition 2.14 the differential DjG; is regular; here, we are using the fact
that n is odd. By Theorem 2.15, G; is open at zero and thus F'; is open at u. This

implies that v is not length minimizing.
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So, the proof of our claim reduces to find a function v; € ker(dyG ;) such that

/01 (/tlvi(T)dT)ndt £ 0.

If such a control v, exists, then by Proposition 2.9 there also exist vq,...,v,_1 €
L*(I;R?) such that v = (vy, ..., v,_1) € dom(DJG ;) and by (2.81) it follows DiG (v) #
0.

The condition v; € ker(dyG) is equivalent to dyG(v1) = 0 and d,J(v;) = 0. By
(2.80) and (2.82) this means

/01 or(t)dt = /01 toy (t)dt = /01 vi (t)dt = 0. (2.83)

We choose any funtion v? with vanishing mean. Also choosing vi(t) = X[o l](t) —
)

SX[ ](t) + 3X[§ 1 (t), all the conditions in (2.83) are satisfied. Moreover, we have
47

13
24

| ke = =g, 0+ (51 = 3)xqy 1 () = 30t = Dy 0

[
o
|

and then, after a short computation,

/o1 (/:”}(T)C“)ndt - m@m )

The last quantity is different from 0 for any odd n > 3, completing the proof.
O

Remark 2.47. We briefly comment on claim ii) of Theorem 2.44. By formula (2.81),
when n is even we have DjG(v) > 0 for any v € dom(DJG). So condition i) in
Proposition 2.14 cannot be satisfied. The differential DgG' is not regular in the sense
of Definition 2.13 part i) and so the open mapping Theorem 2.15 does not work.
Though not sufficient to prove the local minimality of ~, this is consistent with claim
ii) of Theorem 2.44.

Remark 2.48. Claim iii) of Theorem 2.44 answers the question raised in Remark 2.43.
By Theorem 2.46, the curve 7 satisfies assumption i) of Theorem 2.41 for any n € N.
On the other hand, the non-vanishing Lie brackets of the vector fields f; and f, are

0 o 0
[f1, fo] = “on + nx .
0
[f17~-,f17f2]Zn(n—l)...(n—h+2)x?—h+1 '
3:(:3
(h — 1)-times
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Then, for any h < n we have

(N[ f1, oo fis fo]((8)) =0, forany t € 1. (2.84)

(h — 1)-times

For 2 < h < n, this is consistent with Remark 2.42: the vanishing of the h-th
differential implies (2.84). When h = n, identity (2.84) is the Goh condition of order
n in (2.75).

Thus, if n is odd the curve ~ satisfies both assumption i) of Theorem 2.41 and
condition (2.75). However, it is a strictly singular curve which is not length minimiz-

ing.
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Chapter 3

New results on the nonminimality

of spiral-like curves

In this chapter, we approach to the regularity problem following the strategy of study-
ing the singularities of horizontal curves by creating a shorter competing curve with
the same end points. In particular, we face-up the case of spiral-like curves. In the
following it will be clarified why this is an interesting case to consider

The most elementary kind of singularity for a Lipschitz curve is of the corner-type:
at a given point, the curve has a left and a right tangent that are linearly independent.
In [18] and [12] it was proved that length minimizers cannot have singular points of

this kind, namely

Theorem 3.1 (Hakavuori, Le Donne 2016). Let 7 : [0, 1] — M be a horizontal curve.

If v has corner-type singularity, then it cannot be length-minimizing.

Here, we give a very basic idea of the proof when M = R? is a sub-Riemannian
manifold of dimension 3 and constant rank 2, as in the example of Section 1.2. Our
computations in the case of the spirals are based on similar ideas.

In this case, a horizontal curve is written v(t) = (71(t),v2(t),73(t)), where the
third coordinate of v is the area of the graph of its horizontal projection x(t) =
(1 (8), ().

Suppose that v has a corner, namely suppose for example that x is a path walking
through the coordinate axes, with corner singularity at the origin.

One builds a competitor curve 4 depending on a fixed positive parameter £ and
on an integer n, modifying the horizontal projection x. This modification on k also
modifies the third coordinate of 7. Since the sub-Riemannian length of ~ is the
Euclidean length of k, such a modification of v is made through the following two

steps
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i) First, one cuts the original curve near the singularity, as in the red path of the

figure below. This implies a gain of length for 7, but it modifies the end point.

ii) In order to restore the end point, one has to correct the curve in such a way to
have a positive gain of length. This step is realized by the green path in the

figure below.

E /9 / Al

In this case, we have for n large enough a gain of length given by
1
() —3)=02-V2 - )e>0.

This prove that the curve v cannot be a length minimizer, because of the presence of
a corner. When M has dimension n and rank m, one needs n —m integer parameters
ki, ..., k,_,n and n —m associated correction paths to restore the end point, solving
a system of linear equations.

The result of Theorem 3.1 has been improved in [22]: here, the authors define
the tangent cone of a horizontal path as its blow-up (for the precise definition of
the tangent cone, we refer the reader to the parer), then they prove the following

statement.

Theorem 3.2 (Monti, Pigati, Vittone 2018). Let v : [0,1] — M be a horizontal
length-minimizing curve. Then, for any t € [0,1], there is at least one horizontal line

in the tangent cone of v at the time t.

The uniqueness of this tangent line for length minimizers is an open problem.
Indeed, there exist other types of singularities related to the non-uniqueness of the
tangent. In particular, there exist spiral-like curves whose tangent cone at the center

contains many and in fact all tangent lines. For this reason, the study of spiral-like
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curves is very interesting, and also nontrivial: these curves may appear as Pontryagin
extremals in sub-Riemannian geometry and theorem 3.2 is not enough to prove the
nonminimality of spiral-like extremals.

Let (M,A,g) be an n-dimensional, n > 3, analytic sub-Riemannian manifold
where A C TM has constant rank 2. Our notion of horizontal spiral in a sub-
Riemannian manifold of rank 2 is fixed in Definition 3.3 below. The aim of this chapter
is to show that spirals are not length-minimizing when the horizontal distribution A
satisfies the following commutativity condition. Fix two vector fields fi, fo € A that
are linearly independent at some point p € M. For k£ € N and for a multi-index
J = (j1,..-,Jk), with j; € {1,2}, we denote by f; = [fi,[.. -, [fi_ss [ic) - ]] the
iterated commutator associated with J. We define its length as the length of the
multi-index J, i.e., len(f;) = len(J) = k. Then, our commutativity assumption is

that, in a neighborhood of the point p,

[fr, fs] =0 for all multi-indices with len(I),len(J) > 2. (3.1)

This condition is not intrinsic and depends on the basis fi, fo of the distribution A.

After introducing exponential coordinates of the second type, the vector fields
f1, fo can be assumed to be of the form (3.5) below, and the point p will be the center
of the spiral. In coordinates we have v = (7,...,7,) and, by (3.5), the v;’s satisfy

for j = 3,...,n the following integral identities

(1) = 75(0) + / 0;(1(3)ia(s)ds, ¢ € [0,1]. (3.2)

When v(0) and 71,2 are given, these formulas determine in a unique way the whole
horizontal curve 7. We call k € AC([0, 1]; R?), k = (71, 72), the horizontal coordinates
of .

Definition 3.3 (Spiral). We say that a horizontal curve v € AC([0, 1]; M) is a spiral
if, in exponential coordinates of the second type centered at ~(0), the horizontal
coordinates k € AC([0,1]; R?) are of the form

k(t) = et €]0,1], (3.3)

where ¢ € C''(]0,1]; R™) is a function, called phase of the spiral, such that |p(t)] — oo
and |¢(t)| — oo as t — 0. The point v(0) is called center of the spiral.

A priori, Definition 3.3 depends on the basis f1, fo of A, see however our comments
about its intrinsic nature in Remark 3.13. Without loss of generality, we shall focus

our attention on spirals that are oriented clock-wise, i.e., with a phase satisfying
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o(t) = oo and p(t) — —oo as t — 0F. Such a phase is decreasing near 0. Notice
that if p(t) — oo and $(t) has a limit as ¢ — 07 then this limit must be —occ.

Our main result in this chapter is the following

Theorem 3.4. Let (M,A,g) be an analytic sub-Riemmanian manifold of rank 2
satisfying (3.1). Any horizontal spiral v € AC([0,1]; M) is not length-minimizing

near its center.

The nonminimality of spirals combined with the necessary conditions given by
Pontryagin Maximum Principle is likely to give new regularity results on classes of
sub-Riemannian manifolds, in the spirit of [4]. We think, however, that the main
interest of Theorem 3.4 is in the deeper understanding that it provides on the loss of
minimality caused by singularities.

The proof of Theorem 3.4 consists in constructing a competing curve shorter than

the spiral. The construction uses exponential coordinates of the second type.

3.1 Exponential coordinates at the center of the
spiral

In this section, we introduce in M exponential coordinates of the second type centered
at a point p € M, that will be the center of the spiral.

Let f1, fo € A be linearly independent at p. Since the distribution A is bracket-
generating we can find vector-fields fs, ..., f,, with n = dim(M ), such that each f; is
an iterated commutator of fi, fo with length w; = len(f;), i = 3,...,n, and such that
fi,..., fn at p are a basis for T, M. By continuity, there exists an open neighborhood
U of p such that fi(q),..., fu(¢) form a basis for T, M, for any ¢ € U. We call
fi,-.., fn a stratified basis of vector-fields in M.

Let ¢ € C*°(U;R"™) be a chart such that ¢(p) = 0 and ¢(U) =V, with V" C R
open neighborhood of 0 € R™. Then ]?1 = Ouf1,- 0 fn = @, fn is a system of point-
wise linearly independent vector fields in V' C R"™. Since our problem has a local
nature, we can without loss of generality assume that M =V = R" and p = 0.

After these identifications, we have a stratified basis of vector-fields fi,..., f, in
R™ We say that x = (xy,...,2,) € R are exponential coordinates of the second

type associated with the vector fields fi,..., f, if we have
x=Plo-..oP"0), zeR" (3.4)
Here, as usual for all this thesis, we are using the notation PX = exp(sX), s € R, to
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denote the flow of a vector-field X. From now on, we assume without loss of generality
that fi,..., f, are complete and induce exponential coordinates of the second type.
We define the homogeneous degree of the coordinate z; of R™ as w; = len(f;). We

introduce the 1-parameter group of dilations 9, : R™ — R™, A > 0,
a(z) = (A"xy, ..., \""xy,), xr €R",

and we say that a function f : R"™ — R is d-homogeneous of degree w € N if
f(ox(x)) = AV f(x) for all z € R™ and A > 0. An example of §-homogeneous function

of degree 1 is the pseudo-norm
]l =) |,z e R™
j=1

The following theorem is proved in [13] in the case of general rank. A more modern

approach to nilpotentization can be found in [5] and [14].

Theorem 3.5. Let A = span{fi, fo} C T'M be an analytic distribution of rank 2.
In exponential coordinates of the second type around a point p € M identified with
0 € R", the vector fields f1 and fs have the form

f1<x) = 8117

- (3.5)
fo() = Oy + ) aj(2)0s,

j=3
for x € U, where U is a neighborhood of 0. The analytic functions a; € C>*(U),

Jj =3,...,n, have the structure a; = p; + r;, where:

(1) p; are §-homogeneous polynomials of degree w;j — 1 such that p;(0,xs, ..., z,) =
0;

(i) r; € C°(U) are analytic functions such that, for some constants Cy,Cy > 0
and for x € U,

|T’j($)| < C'1||x||wj and |(:)xi7“j(x)| < C2||x||wj—wi‘

Proof. The proof that a; = p; +r; where p; are polynomials as in (i) and the remain-
ders r; are real-analytic functions such that r;(0) = 0 can be found in [13]. The proof
of (ii) is also implicitly contained in [13]. Here, we add some details. The Taylor

series of r; has the form

o oo
ri(@) =) rela) =Y Y carr®,
Z:u)j K:wj acAy
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where Ay = {a € N" : aqwy + ... + auw, = £}, 2 = 27" 2% and ¢y € R

are constants. Here and in the following, N = {0,1,2,...}. The series converges

absolutely in a small homogeneous cube Qs = {z € R" : ||z|| < 6} for some § > 0,

i s Z |Cae| < 0.

l=w; a€Ay

and in particular

Using the inequality |2¢| < ||z||® for a € Ay, for z € Qs we get

()| < Chllz)|7,  with Cy =Y 67 Y Jea| < 0.

Zzwj OLG.AZ

The estimate for the derivatives of r; is analogous. Indeed, we have

oo
8%7"]'(];) = Z Z Oéicaéxaiez
é:wj OLE.A[
where o — ¢; € A, whenever a« € A;,. Above, ¢; = (0,...,1,...,0) with 1 at
position ¢ is the canonical ith versor of R™. Thus the leading term in the series has

homogeneous degree w; — w; and repeating the argument above we get the estimate
105,75 (x)] < Cyflx||™ ™ for z € Qs. O

Remark 3.6. Let A = span{ fi, fo} be as in Theorem 3.5. In exponential coordinates

of the second type, we consider the vector fields
filz) = fi(w) = 0,
o) = Ouy + Y 0j(2)0s,.
j=3

It is implicitly proved in [13] that the Lie algebra generated by A = span{fi, fo} is
nilpotent. In particular, when (R" A) is an equiregular sub-Riemannian structure,

then (R™, A) is a Carnot group.

Definition 3.7. Let A = span{f, f2} be as in Theorem 3.5 and let A = span{fy, fo}
be as in Remark 3.6. Then fg, A and (R™, A) are called, respectively, the nilpotent
approximations of fo, A and (R", A).

When the distribution A satisfies the commutativity assumption (3.1) the coeffi-
cients a; appearing in the vector-field f, in (3.5) enjoy additional properties. In the
next theorem, the specific structure of exponential coordinates of the second type will
be very helpful in the computation of various derivatives. In particular, in Lemma

3.9 we need a nontrivial formula from [13, Appendix A], given in such coordinates.
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Theorem 3.8. Let A C T'M be an analytic distribution of rank 2. Then the functions
as,...,a, of Theorem 3.5 depend only on the variables x1 and x5 if and only if A
satisfies (3.1).

Proof. 1f the functions as, . .., a, of Theorem 3.5 depend only on the variables z; and
xq, for every I = (iy,...,1x) with len(I) > 2, we have

n

fr= Z ai,](ff)aa:“

=3
where a; () = a; 1(z1,22) and so [fr, f;] = 0 for every I, J with len(/) > 2.
Suppose now that A satisfies (3.1). Let I' : R x R®™ — R" be the map I'(t,z) =
p/ (), where x € R” and ¢t € R. Here, we are using the exponential coordinates
(3.4). In the following we omit the composition sign o. Defining © : R® x R* — R"
as the map Oy, 4,(p) = P P/ PP PH PR (p), we have

—(z24t)" —21 17 T2

[(t,x) = P'P2,,0, ., ., PP ... P (0).

T, 2+t Tn

We claim that there exists a C' > 0 independent of ¢ such that, for ¢ — 0,
10,0120 P77 — PO, 4, 0y | < CH2. (3.6)

We will prove claim (3.6) in Lemma 3.9 below. From (3.6) it follows that there exist
mappings R, € C*°(R",R") such that

T(t,x) = P P2, Pl PI"O,,, .,(0) + Ri(), (3.7)

xr1 T x2+t
and such that |R;| < Ct? for t — 0.
By the structure (3.5) of the vector fields f; and f, and since ©y,, ., is the

composition of C* maps, there exist C*° functions f; = f;(¢, 1, x9) such that

Oraran (0) = (0,0, fs(t, 21, m2), .., fult, 1, 22)) = exp (Z Filt, 212) fj) (0). (3.8)

Jj=3

By (3.1), from (3.7) and (3.8) we obtain

D(t o) = PLPE exp (Y (@ + fi(tan,22))£3) (0) + Ru(a)

=3

= (v1, 22+t w5+ f3(t, 21, 22), ... @y + ful(t, 01, 22)) + Ry(2),

and we conclude that

d “~ d
— ST(@,n| —a St e ws)| oy
b= e, =00 3 pemna]
Thus the coefficients a;(z1, z2) = %fj(t, x1,%2)|t=0, j = 3,...,n, depend only on the
first two variables, completing the proof. n
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In the following lemma, we prove our claim (3.6).

Lemma 3.9. Let A C T'M be an analytic distribution satisfying (3.1). Then for any
j=3,...,n the claim in (3.6) holds.

Proof. Let f = f; for any j = 3,...,n and define the map Tm1 eois = Otz " —
Psf@t,xlm. For t = 0 the map @0@1@2 is the identity and thus Tg .. = 0. So, claim

sL1,L238

(3.6) follows as soon as we show that

7t O s

0,21,T2;8 E 0 t,x1,r2;8

=0,

for any s € R and for all x1, 25 € R.
We first compute the derivative of ©,,, », with respect to t. Letting ¥, =

Pf;lﬂfQlel we have Oy 4, 4, = sz(x +t)\Ilt7l‘1Pa{227 and, thanks to [13, Appendix A], the

derivative of ¥, ,, at t =0 is

00
\IIO,:El = E Cu,m1WI/7
v=0

where W, = [f1,[- -+ ,[f1, fo] - - -]] with fi appearing v times and ¢, ,, = (—1)"a}/v!.

In particular, we have ¢y, = 1. Then the derivative of ©, 4, 4, at t =0 is

90,;21,;22 = _f2 + deQxQ (\IIO T (Pf2>)

= [yt Z ¢y dP (W, (PL))

= chm szxz (Pf2))

because the term in the sum with v = 0 is dP’ (f2(P{2)) = fo. Inserting this

formula for ©g,, 4, into

Tf

0,x1,x2;s

@0061 I2<P ) dP (60301 902)

we obtain
O:El x2:8 _Zcuzl Pf2 (PfQPf szcl’fl Pf2 (PfZ))

(Wo(PEP])) — dP%, (W, (PE)).

—x9

—dp! ch< dP! dP":
v=1

In order to prove that T({ vanishes for all x1, x5 and s, we have to show that

»T1,22358

g(xa, 5) := dP! AP (W,(PL2P!)) — dP2 (W, (P2)) = 0, (3.9)
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for any v > 1 and for any z, and s. From P} = id it follows that g(z5,0) = 0. Then,
our claim (3.9) is implied by

h(zs, s) := %Q(Z’Q, s) = 0. (3.10)

Actually, this is a Lie derivative and, namely,
h(vs,8) = —dPL,[f,dP2, (W, (P2))].

Notice that h(0,s) = —dP’ [f,W,] = 0 by our assumption (3.1). In a similar way,
for any k£ € N we have
8k

a—xlgh(o, 5) - (_1)k+1dpfs[fa [f2’ T [an Wu] o ]] =0,

with fo appearing k times. Since the function xs — h(xs,s) is analytic our claim
(3.10) follows. O

We conclude this sections with some general remarks.

Remark 3.10. Every Carnot group G of step less or equal than 3 satisfies (3.1) because,
due to the stratification of the Lie algebra, every bracket of length greater or equal
than 4 vanish. If G has rank 2, then it satisfies (3.1) also if it has step 4, but this is

false in general.

Remark 3.11. This remark answer the following question asked by one of the referee
of this thesis:
“If (M, A) has constant rank 2, step 3, dimension 5 and satisfies (3.1), is it necessarily
a Carnot group?”
The answer is negative and here we provide a counterexample.

Consider in R® the distribution A = span{f;, fo} with

2
[1(x) = 0pyy  fo() = Opy + (21 + 73(21)) 0y + %au + 11220,

Here we are using the notation a;(z) = p;(z) + r;(z), 7 = 3,4,5, of Theorem 3.5,
assuming r4 = r5 = 0 and r3 depending only on the variable x;.
By Theorem 3.8, A satisfies (3.1) and, since r3 # 0, A cannot be the distribution

of a Carnot group. Moreover we have

f4 = [flafd] - 7";,/(331)8:03 + 85,;4,
f5 :aac5~
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The Hormander condition on R® is satisfied by A if

d%C+%@ar%m>#0

T 1

In partiular, it is sufficient to have

1
ry(z1) — oy () = 5
where 3 has to satisfy (ii) of Theorem 3.5. For instance, we can take r3(z1) = —35.

Remark 3.12. By Theorem 3.8, we can assume that a;(z) = a;(x;,z2) are functions
of the variables z1, x2. In this case, formula (3.2) for the coordinates of a horizontal
curve v € AC([0,1]; M) reads, for j = 3,...,n,

mw=wm+4%wwwmm%@@,tqam (3.11)

Remark 3.13. Definition 3.3 of horizontal spiral is stable with respect to change of
coordinates in the following sense.

After fixing exponential coordinates, we have that 0 € R™ is the center of the
spiral v : [0, 1] — R", with horizontal projection k() as in Definition 3.3.

We consider a diffeomorphism F € C(R™; R") such that F(0) = 0. In the new
coordinates, our spiral 7 is ((t) = F(y(t)). We define the horizontal coordinates of
¢ in the following way: the set doF(A(0)), where doF is the differential of F at 0,

is a 2-dimensional subspace of R" = Im(dyF'); denoting by 7 : R" — doF'(A(0)) the

orthogonal projection, we define the horizontal coordinates of ¢ as £(t) = w(F'(y(t)).

We claim that &, in the plane doF(A(0)), is of the form (3.3), with a phase w
satisfying |w| — oo and |w| — oco. In particular, these properties of £ are stable up to
isometries of the plane. Then, we can assume that £(t) = (Fi(7y(t)), Fa(y(t))), with
F; : R" — R of class C*, for i = 1,2. In this setting, we will show that |w| — oo.

The function s(t) = |£(t)| = [(F1(y(t)), Fa(y(t)))| satisfies
0<co<s(t) < <oo, te(0,1]. (3.12)

Define the function w € C*((0, 1]) letting £(¢) = s(t)e®). Then differentiating the

identity obtained inverting

_ B((®)
tan(w(s(t))) = F (@)’ t € (0,1],
we obtain .
s (s(t)) = ——z(P(v(1),7(@),  t€(0,1], (3.13)



where the function P(z) = Fi(z)VFy(x) — Fy(2)VF(z) has the Taylor development
as x — 0

P(z) =(VF1(0),2) VF3(0) — (VF(0), 2) VF1(0) + O(|z[*).

Observe that from (3.11) it follows that |¥;(¢)| = O(t) for j > 3. Denoting by V the

gradient in the first two variables, we deduce that as t — 07 we have
(P(7),7) = (FL()V () = F2(1)VE(y), &) + O(?) (3.14)
with
Fi(MVE(®) = F(v)VE() = (VF(0), k) VE(0) — (VF2(0), 5) VEL(0) + O(t).

Inserting the last identity and & = e + itpe™ into (3.14), after some computations

we obtain

(P(7),9) = ¢t* det(do F(0)) + O(t?),

where det(dyF(0)) # 0 is the determinant Jacobian at z; = x5 = 0 of the mapping
(1, 22) = (F1(21,22,0), Fy(x1,22,0)). Now the claim |w(s)| — oo as s = 01 easily
follows from (3.12), (3.13) and from |o(t)| — oo as t — 0.

Example 3.14. An interesting example of horizontal spiral is the double-logarithm
spiral, the horizontal lift of the curve  in the plane of the form (3.3) with phase
o(t) = log(—logt), t € (0,1/2]. In this case, we have

1
~ tlogt’

o(t) t€(0,1/2],
and clearly ¢(t) — oo and $(t) — —oc as t — 01. In fact, we also have ty €
L*>(0,1/2), which means that x and thus « is Lipschitz continuous. This spiral has

the following additional properties:

i) for any v € R? with |v| = 1 there exists an infinitesimal sequence of positive

real numbers (A, ),en such that x(\,t)/A, — tv locally uniformly, as n — oo;

ii) for any infinitesimal sequence of positive real numbers (\,),en there exists a
subsequence and a v € R? with |v| = 1 such that k(A t)/\,, — tv as k — oo,
locally uniformly.

This means that the tangent cone of k at t = 0 consists of all half-lines in R? emanating

from 0.
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3.2 Cut and correction devices

In this section, we begin the construction of the competing curve. Let ~ be a spiral
with horizontal coordinates k as in (3.3). We can assume that ¢ is decreasing and
that ¢(1) = 1 and we denote by ¢ : [1,00) — (0, 1] the inverse function of . For
k € N and n € [0,27) we define ¢, € (0,1] as the unique solution to the equation
O(tky) = 2wk + 1, 1.e., we let tg, = ¥(27k +n). The times

tk:tk0:¢(2ﬂ'k’), k eN,

will play a special role in our construction. The points k(t;) are in the positive z;-axis.
For a fixed k € N, we cut the curve k in the interval [t,1, ;] following the line
segment joining k(tx11) to k(¢x) instead of the path k, while we leave unchanged the

remaining part of the path. We call this new curve k{"* and, namely, we let
K" () = w(t) for t€[0,tp1] U [tr, 1],
K" () = (t,0) for t € [tpyr,ts].

We denote by 7™ € AC([0,1]; M) the horizontal curve with horizontal coordi-
nates k{"* and such that 7§*(0) = (0). For t € [0, tx11], we have v{"(¢) = ~(¢). To
correct the errors produced by the cut on the end-point, we modify the curve k{*
using a certain number of devices. The construction is made by induction.

We start with the base construction. Let & = (h,n,¢) be a triple such that h € N,

0 <n<m/4,and € € R. Starting from a curve & : [0,1] — R? we define the curve
D(k; &) : 0,1+ 2|¢|]] = R? in the following way:

( w(1) € (0.t
K(thy) + (sgn(e)(t — tny), 0) € [tan, thy =+ [el]
D(k;&)(t) =< k(t— |e]) + (g,0) € [thy + lel, th + |€]] (3.15)
k(th) + (2¢ + sgn(e)(t, —t), 0) € [th + |el, tn + 2|¢]]
[ At —2Je]) € [th + 2|e], 1 + 2¢]].

We denote by D(v; &) the horizontal curve with horizontal coordinates D(k; &).
We let D(7y; &) = 4D(v; &) and we indicate by D;(7; &) the i-th coordinate of the
corrected curve in exponential coordinates.

In the lifting formula (3.11), the intervals where 45 = 0 do not contribute to the
integral. For this reason, in (3.15) we may cancel the second and fourth lines, where
Dy(7; &) = 0, and then reparameterize the curve on [0,1]. Namely, we define the
discontinuous curve D(k; &) : [0,1] — R? as

K(t) t €0, thy)
D(k;&)(t) =  #(t) + (£,0) t € (tny,tn)
k() t € [th,1].
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The curve D(k; &)(t). The curve D(x; &)(t).

The “formal” i-th coordinate of the curve D(k; &) is given by

t
D3 6)0) = | (Dl 6)()ia(s)ds
0
The following identities with £ > 0 can be checked by an elementary computation

D(v; &)(t) t € [0, thy)
D(y;8)(t) = D(y:&)(t+e) tE (twytn) (3.16)
D(v; &)(t+ 2¢) t € [ty 1].

When € < 0 there are similar identities. With this notation, the final error produced

on the i-th coordinate by the correction device & is

(1) = Di(y; £)(1 + 2Je) = /0 {ai(k(s)) — ai(D(k; &)(s)) }ia(s)ds. (3.17)
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The proof of this formula is elementary and can be omitted.
We will iterate the above construction a certain number of times depending on a
collections of triples &. We first fix the number of triples and iterations.
Fori=3,...,n,let B; = {(a,8) € N> : a+ 8 = w; — 2}, where w; > 2 is the
homogeneous degree of the coordinate x;. Then, the polynomials p; given by Theorem
3.5 and Theorem 3.8 are of the form

i (21, 22) Z Cop 28T, (3.18)
(a,B)€B;

for suitable constants c,p € R. We set

(= i Card(B
=3

and we consider an (¢ — 2)-tuple of triples & = (&3,...,&;) such that hy < hy_; <
. < hz < k. Each triple is used to correct one monomial.

Without loss of generality, we simplify the construction in the following way. In

the sum (3.18), we can assume that c,5 = 0 for all (o, 5) € B; but one. Namely, we

can assume that
pi(T1,22) = x?’“ § with «o; + 8 = w; — 2, (3.19)

and with ¢,,3, = 1. In this case, we have { = n and we will use n — 2 devices
associated with the triples &3, ..., &, to correct the coordinates i = 3,...,n. By the
bracket generating property of the vector fields f; and f; and by the stratified basis
property for fi,..., fn, the pairs (o, 5;) satisfy the following condition

(i, Bi) # (0, B;) for i # j. (3.20)
In the general case (3.18), we use a larger number ¢ > n of devices, one for each
monomial :I:O‘ng appearing in ps(z1,x2),...,pn(x1,22), and we correct the error

produced by the cut on each monomial. The argument showing the nonminimality
of the spiral will be the same. So, from now on in the rest of the Chapter we will
assume that the polynomials p; are of the form (3.19) with (3.20).

Now we clarify the inductive step of our construction. Let & = (hg,n3,e3) be
a triple such that hy < k. We define the curve k® = D(k{"; &). Given a triple
& = (hy, s, €4) With hy < hy we then define kK® = D(k®:&;). By induction on
¢ € N, given a triple & = (hg,mp,€¢) with hy < hy_1, we define ¥ = D(kV; &).
When ¢ = n we stop.

We define the planar curve D(k; k,&) € AC([0,1 + 2&]; R?) as D(k; k, &) = ™

according to the inductive construction explained above, where & = |e3| 4+ ... + |&,].
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Then we call D(v;k, &) € AC([0,1 + 2&]; M), the horizontal lift of D(k; k, &) with
D(y;k,&)(0) = ~(0), the modified curve of v associated with & and with cut of
parameter k& € N. There is a last adjustment to do. In [0, 1 + 2£] there are 2(n — 2)
subintervals where /%én) = 0. On each of these intervals the coordinates D;(7; k, &)
are constant. According to the procedure explained in (3.15)—(3.16), we erase these
intervals and we parameterize the resulting curve on [0, 1]. We denote this curve by

3 =D(v; k, &).

Definition 3.15 (Adjusted modification of 7). We call the curve ¥ = D(v;k, &) :
[0,1] — M the adjusted modification of 7 relative to the collections of devices & =
(&3,...,6,) and with cut of parameter k.

Our next task is to compute the error produced by cut and devices on the end-
point of the spiral. For i =3,...,n and for ¢ € [0, 1] we let

AT (1) = as(k()ka(t) — as k(1) ko (8).

When t < ty1 or t > tx we have kg = f(g and so the definition above reads

A7 () = (ai(k(t)) — ai(k(t))) fa(t)-

By the recursive application of the argument used to obtain (3.17), we get the

following formula for the error at the final time ¢ = t;, :

t

EPY = yi(l) — 3u(t) = A (t)dt
tet1
(3.21)
/ AT (t dt—l—Z(/ dt+/ Az(t)dt).
B;
In (3.21) and in the following, we use the following notation for the intervals:
B = [tesn, te], Ay = [th; s tn,  Bj = [thyn, thy)s
with t,, = tx. We used also the fact that on [0, ¢;41] we have v = 7.
On the interval F}, we have ko = 0 and thus
/ Avdt= [ {pi) + rifl) Viodt. (3.22)
Fy Fy
On the intervals A; we have k = K and thus
/ Aldt =0, (3.23)
Aj
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because the functions a; depend only on k. Finally, on the intervals B; we have

1_{1 = k1 + €j and Ko = Ro and thus
/ AV dt = / {pi(k) — pi(k+ (g, ))}@dt—i—/ {ri(k) —ri(k+(;,0)) }hodt. (3.24)

Our goal is to find k£ € N and devices & such that Efﬁ =0foralli=3,...,n
and such that the modified curve D(v; k, &) is shorter than .

3.3 Effect of cut and devices on monomials and

remainders

Let v be a horizontal spiral with horizontal coordinates k € AC([0, 1]; R?) of the form
(3.3). We prove some estimates about the integrals of the polynomials (3.19) along
the curve k. These estimates are preliminary to the study of the errors introduced in
(3.21).

For o, 8 € N, we associate with the monomial p.s(z1, 7)) = 29 2 5 the function
Yap defined for ¢ € [0, 1] by

Vaﬁ(t) :/I pa,6’<33'1,372)d5€2:/ paﬂ(k(S))kg(S)dS.
ko, 0

When p; = pags, the function 7,4 is the leading term in the i-th coordinate of v in
exponential coordinates. In this case, the problem of estimating 7;(¢) reduces to the

estimate of integrals of the form

tw .
18 = / Ky () o (£) o (), (3.25)
t

n

where w < 7 are angles, t, = ¥(w) and ¢, = ¢(n). For a,8 € N, h € N and
n € (0,7/4) we also let

2hm+n . 73
g = [ = [Tl (3.20

2hm thn

where in the second equality we set 9 = p(t).

Proposition 3.16. There exist constants 0 < cop < Cop depending on «, B € N such
that for all h € N and n € (0,7/4) we have

Capdny < Tomr opminl < Cagine- (3.27)
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Before proving this proposition, we notice that the integrals Igg in (3.25) are

related to the integrals
7
Jo = / (2542 050 () sin () Y. (3.28)
Lemma 3.17. For any o, 8 € N and w < n we have the identity

(a+ B+ 2100 =teHH2 Dol — 2P Dod — (a4 1) 50 (3.29)

wn
where we set D = cos®*(w) sin” T (w).
Proof. Inserting into I2? the identities ki (£) = tcos(¢(t)), ka(t) = tsin(p(t)), and

ko (t) = sin(ip(t)) + t cos((t))p(t) we get

tw tw
1= [ Dz [ ot o) s (o) 0
t ty

n

and, integrating by parts in the first integral, this identity reads

patB+2 poB ke a1 to
Iaﬂ _ () / ta+ﬂ+2 a + . B2 N dt
wn O{+5+2 . a+ﬁ+2 b COS (QD( ))Sln ((p( ))90( )
n
p+1 /tw +B+2 +2 B .
- [ e cos 2 (1) sin (1)) ()t
at+fB+2),

+ /tt‘” potB+2 cOSa+2((p(t)) Sinﬂ(w(t))gb(t)dt,

n

Grouping the trigonometric terms and then performing the change of variable p(t) =

9, we get
ta+,8+2Da,6 w 1 w
o — |0 s o / 92 cos(¥9) sin® (1) d.
K a+f+2 atfB+2/,
n
This is our claim. O

Proof of Proposition 3.16. From (3.29) with DS = 0 we obtain
a for 2 Na «
(a + 6 + 2)|12h67r,2h7r+17| = tQI_L';ﬁ:;y Dnﬁ + (Oé + 1)‘]2h€r,2h7r+77’

where cqn’tt < D3P < Pt because n € (0,7/4), and

542 2hm+n 542 3 2hm+n 542

+1a+56+ a+pB+ « a+B+

Cagll” Moy < Capt)’ /2 . ty A < S g <71 /2 ty  dU.
s

The claim follows. O]
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Remark 3.18. We will use the estimates (3.27) in the proof of the solvability of the
end-point equations. In particular, the computations above are possible thanks to the
structure of the monomials p;: here, their dependence only on the variables x; and
xg, ensured by (3.1), is crucial. When the coefficients a; depend on all the variables
x1,...,T,, repeating the same computations seems difficult. Indeed, in the integrals
(3.25) and (3.28) there are also the coordinates 7s,...,7,. Then, the new identity
(3.29) becomes more complicated because other addends appear after the integration
by parts, owing to the derivatives of vs,...,7,. Now, by the presence of these new
terms the estimates from below in (3.27) are difficult, while the estimates from above

remain possible.

We denote by k. the rigid translation by € € R in the x; direction of the curve
k. Namely, we let k. ; = ky + ¢ and k.2 = ky. Recall the notation ¢, = ¢ (27h) and
thy = ¥(2mh +n), for h € N and n > 0. In particular, when we take ¢;, h; and n;
related to the j-th correction-device, we have k. |p, = k| B,

In the study of the polynomial part of integrals in (3.24) we need estimates for

the quantities

af _
Ahr]a _/k

Lemma 3.19. We have

Pas(T1, T2)dxs —/ Pap (1, T2)dxs.

k|

elitpy ta) i oth]

AW = (a+ Delyy 5 .+ O(7), (3.30)

where O(e?)/&? is bounded as € — 0.

Proof. The proof is an elementary computation:

A= / ! ko (ko (1) [(ka () + €)™ — ky (1)1 ] at

th"r]
- 1 [t 4

-y (O‘j )gaﬂ—z / koo (£)Ky (£) Ko (1) Pt
i=0 thy

a+1 ol fi=Ls
i 2hm,2hm+n

=0
a—1,
= (Oé + 1)€]2h7r,2€z7r+77 + 0(62)‘

We estimate the terms in (3.22). The quantities A] are introduced in (3.30).
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Lemma 3.20. Let v be a horizontal spiral with phase p. For alli = 3,...,n and for
all k € N large enough we have

‘/ AZdt‘ g/ Bt o\ dt. (3.31)
F, Fy,

Proof. By (3.29) with vanishing boundary contributions, we obtain

a; +1 3.
‘/ka( )Fa | 2k, 2(k+1)m | = o + B; + 2 2k:7r,2(k’+l)7r|
a; 1 13, .
< [ emngar
a; + fi+2 Jg,

so we are left with the estimate of the integral of r;. Using ko = tsin(¢(t)) we get

/F ri(k)fRadt :/F ri(r)(sin() + ¢ cos(p)p)dt
= /F (tri(k) — R;) cos(p)pdt,

where we let

Ri(t) = /t :+1 ro()ds.

From (3.3), we have |x(t)] < t for all ¢t € [0,1]. By part (ii) of Theorem 3.5 we
have |r;(z)] < Cl|z||" for all x € R"™ near 0, with w; = a; + 5; + 2. It follows that
Iri(k(t))| < Ctvi for all ¢t € [0,1], and |R;(¢)| < Ct¥iT!. We deduce that

‘ / ri(/i)/%zdt‘ <O | B o|dt,
Fy Fy
and the claim follows. O
Now we study the integrals in (3.24). Let us introduce the following notation

Lemma 3.21. Let v be a horizontal spiral with phase p. Then for any j = 3,...,n

and for |e;| < tp,,, we have

‘/ A (t dt‘<C|5j|/ £

where C > 0 1s constant.

(t)|dt,
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Proof. Fort € Bj we have ky(t) = ko(t) and k; () = ky(t) +¢;. By Lagrange Theorem
it follows that
(5;: = T’Z(k) — Tz(l_{> = 5j817“i(k*(t)),

where k*(¢) = (kj(t),ko(t)) and ki(t) = ky(t) + 05, 0 < 0; < ;. By Theorem 3.5 we
have |0yr;(z)] < C||x|

wi~! and so, also using 0; < ¢; < t,

|01 (k" (2))] < Clk"(2)]

w;—1
m = (k) + gl + ke(t)]) < O

This implies |07 (t)| < Clej|t“i!.

Now, the integral we have to study is

/Az,dt:/ 5,7_/%;2dt:/ 5Z,Sin<pdt+/ ) tp cos pdt.
B B B B

We integrate by parts the integral without ¢, getting
/ 67 sin pdt = [sin o(t) / 5,7ids} — / {<p oS gp/ 577ids}dt.
B thjnj t:thjnj B; thjnj
Since the boundary term is 0, we obtain
t
/ 57 fepclt = / {té,?i . / 5,7ids}gbcos odt,

and thus

t
[ s < [ {dan+ [ 1alashielar <cley| [ e
Bj B; th.n. B]'

J 375

oldt.

]

Remark 3.22. We stress again the fact that, when the coefficients a; depend on all
the variables x1, ..., ,, the computations above become less clear. As a matter of
fact, there is a non-commutative effect of the devices due to the varying coordinates

V3, - .., Vs that modifies the coefficients of the parameters ¢;.

3.4 Solution to the end-point equations

In this section we solve the system of equations Elk £ = 0,2=3,...,n. The homoge-

neous polynomials p; are of the form p;(z;, x2) = m‘fj+1mgj, as in (3.19).
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The quantities (3.22), (3.23) and (3.24) are, respectively,

/ Aldt = I + / ri(k(t))dt,
F

F,
/ Aldt =0,
A

J

Y4 a; B;
/ Aldt = —AP5 4 / A7 dt,
B B

J J

where we used the short-notation I} b — I;jfi%(k L1y So the end-point equations
EF® =0 read
with

file) = JZ_; (AZ;%EJ — /Bj Azidt> and b, = /Fk Aldt.

We will regard k, h;, and 7, as parameters and we will solve the system of equations
(3.32) in the unknowns ¢ = (e3,...,&,). The functions f; : R"? — R are analytic
and the data b; are estimated from above by (3.31):

|bs| g/ | pldt.
Fy,
Theorem 3.23. There exist real parametersns, ..., n, > 0 and integers hg > ... > h,
such that for all k € N large enough the system of equations (3.32) has a unique
solution € = (e3,...,&,) satisfying
el <C> b, (3.33)
i=3

for a constant C' > 0 independent of k.

Proof. We will use the inverse function theorem. Let A = (a?j)ij:3 € M, »(R)
be the Jacobian matrix of f = (fs,..., f,) in the variables ¢ = (&3, ...,&,) computed
at € = 0. By (3.30) and Lemma 3.21 we have
afi(0 1.5, 1.5,
al, = ‘gg( ) = (oy + 1)Ih;nj1’ﬂl + O(Ih;njl’ﬂl). (3.34)
j

Here, we are using the fact that for h; — oo we have

/Bj i p|dt = O(/Bj twi_1|gb|dt>.

The proof of Theorem 3.23 will be complete if we show that the matrix A is invertible.
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We claim that there exist real parameters ns,...,n, > 0 and positive integers
hs > ... > h, such that

det(A) # 0. (3.35)

The proof is by induction on n. When n = 3, the matrix A boils down to the real
number azs. From (3.34) and (3.27) we deduce that for any 73 € (0,7/4) we have

1 a1 B cva—1 B
|ass| > 5(043 + 1)|If?;n31”83| > Caﬁjfgngl’ﬁ& > 0.

We can choose h3 € N as large as we wish.
Now we prove the inductive step. We assume that (3.35) holds when A is a
(n — 3) x (n — 3) matrix, n > 4. We develop det(A) with respect to the first column

using Laplace formula:

n

det(A) = Z(—l)iﬂazspz‘,

i=3
where

Pi = Pi(a43,...,a4n,...,&ig,...,&m,...,ang,...,ann)
are the determinants of the minors. By the inductive assumption, there exist n4,...,n,

(0,7/4) and integers hy > - -+ > h,, such that |P;| > 0. By (3.27), for any n3 € (0, 7/4)
we have the estimates
cogiin P < lags| < Cojpi M, (3.36)

for absolute constants 0 < ¢y < Cj. The leading (larger) |a;3| can be found in the
following way. On the set A = {(a;, ;) € NxN:¢=3,...,n} we introduce the
order («, 8) < (¢, 3") defined by the conditions a + 5 < o' + ', or a+ =o' +
and 8 < . We denote by («,,,) € A, for some ¢ = 3,...,n, the minimal element
with respect to this order relation.

We claim that, given ¢y > 0, for all hy > hy large enough and for some 0 < 13 <
7/4 the following inequalities hold:

|| P < eolasPl, for i#u. (3.37)

In the case when i = 3,...,n is such that «; + 3; = a, + ,, then we have 5; > £,.
By (3.36) and (3.26), inequality (3.37) is implied by 55" % |P;| < &|P,|, possibly for
a smaller €y. So we fix 13 € (0,7/4) independently from hg such that

50|PL]>1/(51~5L) i L}

O<773§min{<
g
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In the case when i = 3,...,n is such that o; + 5; > «a, + (,, inequality (3.37) is

/ tai+ﬁi
Bs

This holds for all A3 € N large enough.

Now we can estimate from below the determinant of A using (3.37). We have

implied by

g L P PL| «
QO(t) |dt < E0h Bi ﬁ i t B
¢ 3

p(t)]dt.

1
| det(A)] = |asP| - Z |aisl| B 2 5las P
i
and the last inequality holds for all hy € N large enough, after fixing n3 > 0. This
ends the proof of the theorem. n

3.5 Nonminimality of the spiral

In this section we prove Theorem 3.4. Let v € AC([0,1]; M) be a horizontal spiral
of the form (3.3). We work in exponential coordinates of the second type centered at
7(0).

We fix on A the metric ¢ making orthonormal the vector fields f; and f; spanning
A. This is without loss of generality, because any other metric is equivalent to this
one in a neighborhood of the center of the spiral. With this choice, the length of ~ is

the standard length of its horizontal coordinates and for a spiral as in (3.3) we have

L(y):/o |/%(t)|dt:/o V1 + 24(t)2dt.

In particular, v is rectifiable precisely when t¢ € L*(0,1), and k is a Lipschitz curve
in the plane precisely when tp € L>(0, 1).

For k € Nand & = (&, ...,&,), we denote by D(v; k, &) the curve constructed in
Section 3.2. The devices &} = (h;, n;, €;) are chosen in such a way that the parameters
hj,n; are fixed as in Theorem 3.23 and €3, . . ., €, are the unique solutions to the system
(3.32), for k large enough. In this way the curves v and D(v; k, &)(1) have the same
initial and end-point.

We claim that for k € N large enough the length of D(v;k, &) is less than the
length of 7. We denote by AL(k) = L(v) — L(D(v; k, &)) the difference of length and,

namely,

AL(K) = / VI + 252t — (tk 2> |5j|)
Fy s
/ITHPROZ+1 T
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By (3.33), there exists a constant C; > 0 independent of £ such that the solution
e = (e3,...,€,) to the end-point equations (3.32) satisfies

|€’ <Clz|lal'gl <CQZ/ th

We used (3.27) and the fact that w; > 2. The new constants Cy, C3 do not depend
on k.
By (3.38) and (3.39), the inequality AL(k) > 0 is implied by

(t)|dt < 03/ o ()] dt. (3.39)
Fy,

2, 2
POO° sy [ 2o, (3.40)

A/ 1+HE20(t)2+1 F
where C} is a large constant independent of k. For any k£ € N, we split the interval
F, = F UF,” where

Fr={teF,:|to(t)| >1} and F, ={t€ Fy:|to(t)| <1}

On the set F;" we have

2o (t)* 1/ _ / 2 .
dt > = [ t|o(t)|dt > C t2|p(t)|dt, 3.41
e T Ear 1Y 2 3 ), RN O [ Pl (3.41)

where the last inequality holds for all £ € N large enough, and namely as soon as
3C4t, < 1. On the set F}~ we have

(1)

1
dtz—/ ththdtzC’/ 2| (t)|dt, 3.42
e 1 25 ) |&(t)] i |&(t)] (3.42)

k

where the last inequality holds for all £ € N large enough, by our assumption on the
spiral

lim |p(t)| = oo.

t—0+
Now (3.41) and (3.42) imply (3.40) and thus AL(k) > 0. This ends the proof of
Theorem 3.4.
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Chapter 4
Some open problems

In this final very short chapter, we list some open questions concerning the regularity
problem of sub-Riemannian geodesics coming from the arguments developed in this

thesis. This is also an overview of possible future research directions.

Problem 1. An interesting question is the possibility of dropping the assumptions
of vanishing lower differentials. Instead, for a C'™ map F' with critical point 0, our
Definition 2.13 of regular n-differential requires that DIF = 0 for h = 2,...,n — 1.
The assumption is restrictive but natural: it is made to have a dominant term of
order n in the Taylor expansion of F.

A more general definition of regular n-th differentials when lower ones do not
vanish has to preserve this property for the Taylor expansion of F'. In other words,
the correct definition of regular differentials should provide a statement similar to the

following, which is in fact our conjecture:

“Let n € N be such that DJF' is reqular at the critical point 0. Then the dominant

term in the Taylor expansion of F' at 0 is of order n.”

We believe that, with such a definition of regularity, an open mapping property

similar to our Theorem 2.15 is preserved, i.e.,

“If there exists n € N such that Dy F is reqular at the critical point 0, then the map
F' s open at 07

The open mapping theorem is at the basis of our sub-Riemannian theory: we
believe that its application to the end-point map should provide, as in Chapter 2,

Goh conditions of order n in a more general setting.
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Problem 2. Classical and also our higher order Goh conditions are just necessary
for abnormal curves to be length minimizers. Instead, in [2, Chapter 12], there are
proved second order sufficient conditions for the minimality of abnormal curves in

rank-2 sub-Riemannian manifolds. In particular, the key result is the following

Theorem 4.1. Let M be a rank-2 sub-Riemannian manifold and let v : [ — M be
an abnormal trajectory with control u. Suppose that there exists a positive constant
C > 0 such that the second differential satisfies

D2E(u) > Cllvlle, ue LA(I,R?), (4.1)

then v is locally length minimizer in the L? topology of controls. Above, in (4.1) we
set u(t) = [} u(t)dr.

In other words, a local minimality is implied by a “coercivity” of the Hessian. The
proof of this Theorem uses classical order 2 Goh conditions.
Our first question is to generalize, under the assumption of vanishing lower differ-

entials, Theorem 4.1 to the following statement

“Let M be a rank-2 sub-Riemannian manifold and let v : I — M be an abnormal
trajectory with control w. Suppose that there exist an even p € N such that DE =
o =DPYE =0 and a positive constant C' > 0 such that

DLE() = Cllolly,, e LA(1,R2), (4.2)

then 7 is locally length minimizer in the LP topology of controls. Above, in (4.2) we
t 2
set v(t) = [, u(r)dr.

A second more difficult question is to investigate in the general validity of Theorem
4.1 and its higher order version in sub-Riemannian manifolds of rank greater than 2.

A direct application of this theory can be found in the example of Section 2.9.
We consider the curve y(t) = (0,¢,0), t > 0 when M = R?® = (21,29, 73) and A is
spanned, for n € N, by the vector fields

fi= 8%1 fo=(1- w1)a%2 +x?a%3-
As we said in Chapter 2, it was known (see [19]) that v is length minimizer for any
even n, while we proved that v cannot be minimal when n is odd.

Our theorems do not instead apply when n is even, rightly since  is minimal in
this case. We believe that higher order sufficient conditions will provide an alternative
proof of the minimality of 7, based on differential intrinsic properties of the end-point
map. We also believe that a deeper understanding of this example is strictly related

with Problem 3 below.
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Problem 3. The problem presented here is actually an ongoing research project with
Ludovic Rifford and Mario Sigalotti.

As explained in the introductory part, we do not know whether abnormal min-
imizers are more than Lipschitz regular, or whether there is a maximum regularity
bound. So, we are interesting in proving the existence of abnormal minimizers (at
least one) of class C* but not C?.

When M is analytic of dimension 3, Rifford et al. recently proved the C* regularity
for length minimizers in [10]. This setting is very interesting for our purposes because,

when dimM = 3 abnormal curves live on the Martinet surface
Y={xeM:A(x)+[A A](z) #T.M}.

Then we have 2 strong necessary condition for abnormal curves to be minimizer. In
particular, several candidates to reach our claim can be found if 3 is of class C'* but
not C?: every abnormal curve passing through the singularities of ¥ could be a good
candidate to prove our claim.

It is not difficult to build many examples in order to have the situation described
above. Indeed, it is sufficient to consider M = R? = (x1, 29, 73) and A = span{ fi, f2},

where

fl = 80617 f2 - (1 + mlq)(x))am + a(az)@%,

and a, ® have to be chosen in such a way that ¥ is of class C'! but not C?.

For instance, when ® = —1 and a = 2}, we are in the previous case of Problem 2.
In this case X is the plane {x; = 0} and we know that the curve v(¢) = (0,¢,0) is an
abnormal minimizer when n is even. In spite of this curve is smooth, a deeper study
of its minimality will be useful.

When & = 0 it is sufficient to choose a such that X, which in this case is described
by the equation 9,,a = 0, is C'* but not C?.

Problem 4. Generalize the results of Chapter 3 dropping the following commutativ-

ity assumption

Hfiu S [fi5717 f’Ls] .- ']’ [fjl’ BRI I:fjsfl7fjs] - ” - Ov (43)

where s,p > 2, iy,..., 45, j1,-.-,Jp € {1,2} and
flzafbm fQZaxQ—i_Zaj(l')ax]
j=3

113



In spite of assumption (4.3) is algebraically strong, it has no geometric meaning:
it is a technical assumption to ensure a;(z) = a;j(x1, x2). Thanks to this property of

the coefficients a;, in Section 3.3 we proved that

2hm

2hm
/ o ) dt < |19 < Cone / reRip@lde (44)
2hm+n 2hm+n

for some constants ca,a,; Caya, > 0. Here in (4.4) h € N, n € (0,7/4), ¢ is the phase
of the spiral v and .
= [ 0 a0 e (45)
2hm+n
Moreover, when the a; depend only on z; and z,, integrals like in (4.5) describe all
the nonhorizontal coordinates vs,...,7, of the spiral ~.

Without assumption (4.3), we have

i (t) = /0 A (7) g (1) s (1) (7,

and our open problem is to prove that similar estimates as in (4.4) hold also for

integrals of the following type

2hm
Loy = / Y ()M e (1) Ly (1) A (T)dr
2hm+n

Our conjecture is the following statement:

“There exist constants 0 < Cqy..a; < Cay..a; depending on ay,...,a; € N such that
for all h € N and n € (0,7/4) we have

2hm ; 2hm ;

2 j sl ag...o ) I wi| e

Car o /2h ) PS4 dt < | I0] < oy, /M o S wies | (1) | d,
TN TN

where w; is the sub-Riemannian weight of the coordinate x;.”

The difficult part in the proof of this claim is the presence of nonhorizontal coor-
dinates of v in I,C:;'"aj : they generate multiple integrations of the type (4.5) one inside
the other. This makes very hard the proof for the estimates from below, while for the
estimates from above the computations are similar to Section 3.3. Once reached this
claim, it should be easy to prove a more general theorem of nonminimality of spirals
without assumption (4.3).

In our opinion, besides providing a more general result for the non-minimality of
spirals, these kind of computations would be a model to study and understand the

behavior of nonhorizontal coordinates in a general setting.
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