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Introduction

The regularity of geodesics (length-minimizing curves) in sub-Riemannian geometry

is an open problem since many years. Its difficulty is due to the presence of the

singular (or abnormal) extremals, i.e., curves where the differential of the end-point

map is singular (it is not surjective). Normal length minimizing curves, corresponding

to regular points of the end-point map, are instead C∞ regular.

Roughly speaking, a sub-Riemannian manifold is a smooth manifold where the

admissible directions in the tangent bundle are limited to a smooth distribution. We

assign infinite length to other directions and then admissible curves are the ones

having their velocity in the distribution.

In this thesis, we mainly consider classical sub-Riemannian manifolds, i.e triplets

(M,∆, g), where M is a smooth manifold, ∆ ⊂ TM is a smooth distribution of rank

2 ≤ d < dim(M) (the distribution of admissible directions), and g is a smooth metric

on ∆. In a neighborhood U ⊂ M of any point q ∈ M , there exist vector-fields

f1, . . . , fd ∈ Vec(U) such that ∆ = span{f1, . . . , fd} on U . Since our considerations

are local, we can assume in the sequel that U =M . We also assume that ∆ satisfies

Hörmander’s condition

Lie{f1, . . . , fd}(p) = TpM, p ∈M, (0.1)

i.e., that ∆ is completely non-integrable.

Let I = [0, 1] be the unit interval. A curve γ ∈ AC(I;M) is admissible or

horizontal if γ̇ ∈ ∆γ a.e. on I, that is

γ̇(t) =
d∑
i=1

ui(t)fi(γ(t)), for a.e. t ∈ I, (0.2)

for some unique u = (u1, . . . , ud) ∈ L1(I;Rd), called control of γ. Without loss of

generality, we can assume that g makes f1, . . . , fd orthonormal, in which case the

length of γ is the L1-norm of its control, i.e.

L(γ) =

∫
I

g(γ̇(t), γ̇(t))1/2.
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We can also replace the Banach space L1(I;Rd) with the smaller Hilbert space X =

L2(I;Rd). Finally, condition (0.1) ensures that M is connected by admissible curves

(Chow-Rashevskii Theorem).

The end-point map Eq : X → M with base-point q ∈ M is defined letting

Eq(u) = γu(1), where γu is the unique solution to (0.2) with γu(0) = q. The point

q̄ = Eq(u) is the end-point of the curve γu. Since q ∈ M is fixed, we shall simply

write E = Eq. Controls u ∈ X where the differential duE is not surjective are

called singular and horizontal curves driven by singular controls are called singular or

abnormal extremals. The first chapter of this thesis is devoted to a full and completely

general description of this kind of arguments, summarizing the general theory known

to date.

The existence of singular curves arose for the first time after the paper [24] by

Strichartz was published, more than thirty years ago. In this paper it was claimed,

due to an incomplete application of the Pontryagin Maximum Principle, that all

minimizing curves are normal and, therefore, that they are always smooth, as in

the case of Riemannian geometry where abnormal curves do not appear. Later, the

author admitted that his paper contained an irreparable mistake: he forgot to treat

abnormal singularities of the end-point map.

The first example of a singular curve that is as a matter of fact length-minimizing

was discovered in [20] by Richard Montgomery. After that, many other examples were

discovered, such as in [19]. All such examples are smooth curves, showing that the

nature of abnormal length minimizers is very difficult: it is still an open problem if

constant-speed geodesics, which a priori are only absolutely or Lipschitz continuous,

are always smooth (i.e. C∞-regular) in any sub-Riemannian manifold. If the assigned

distribution has step at most 2, then all geodesics are smooth (and, in fact, the claim

by Strichartz is true in this case). It is also an open question even if they are always

C1-regular. A positive answer to this question is given in [10], but only when the

manifold is analytic of dimension 3.

The problem is open also in the model case of Carnot groups. This special class

of sub-Riemannian manifolds consists of Lie groups whose Lie algebra is stratified,

and it deserves a particular mention since Carnot groups provide an infinitesimal

model for any sub-Riemannian manifold, near any given point (provided the point

satisfies a technical condition, which holds generically). In the context of Carnot

groups, the regularity problem has recently been solved also when the step is at most

3 (independently by Tan-Yang in [27] and by Le Donne-Leonardi-Monti-Vittone in

[17]).

The aim of this thesis is to give some new partial results about this regularity
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problem. Necessary conditions for the minimality of singular extremals can be ob-

tained from the differential study of the end-point map. The theory is well-known

till the second order and was initiated by Goh [11] and developed by Agrachev and

Sachkov in [3].

Instead, a recent approach to the regularity problem of length-minimizing curves

is based on the analysis of specific singularities such as corners, spiral-like curves or

curves with no straight tangent line. This approach does not use general open map-

ping theorems but it rather relies on the ad hoc construction of shorter competitors,

see [4, 12, 18, 21, 22].

The differential analysis of the end-point to deduce necessary conditions for the

minimality and the direct study of singularity points of abnormal curves are the main

approaches in literature that have been pursued in an attempt to solve the problem.

They are the guideline, respectively, of Chapters 2 and 3, which are described more

in detail below.

Finally, in Chapter 4, we collect some, in our opinion, interesting open ques-

tions that could be investigated concerning the regularity problem of sub-Riemannian

geodesics.

Chapter 2. Using second order open mapping theorems (index theory), for a strictly

singular length minimizing curve γ and for some adjoint curve λ, in [1] the authors

prove the validity of the following Goh conditions:

⟨λ, [fi, fj](γ)⟩ = 0, i, j = 1, . . . , d. (0.3)

The first order conditions ⟨λ, fi(γ)⟩ = 0 are ensured by Pontryagin Maximum Prin-

ciple. Partial necessary conditions of the third order are obtained in [7].

Our goal, in this chapter, is to extend the second order theory of [1] to any order

n ≥ 3 and to get necessary conditions as in (0.3) involving brackets of n vector

fields. The results that we present in this chapter were proved in [8] thanks to the

collaboration of Francesco Boarotto.

There is a clear connection between the geometry of ∆ and the expansion of the

end-point map F . In particular, the commutators of length n should appear in the

n-th order term of the expansion of F . In Section 2.4, we provide a first positive

answer to this idea. In the case of a singular curve γu of corank-one, i.e., such that

Im(duF ) has codimension 1 in Tγu(1)M , we get the following result. For the definition

of adjoint curve, see Section 2.8.

Theorem 0.1. Let (M,∆, g) be a sub-Riemannian manifold, γ = γu ∈ AC(I;M) be

a strictly singular length minimizing curve of corank 1, and assume that

DhuF = 0, h = 2, . . . , n− 1. (0.4)
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Then any adjoint curve λ ∈ AC(I;T ∗M) satisfies

⟨λ(t), [fjn , [. . . [fj2 , fj1 ] . . . ]](γ(t))⟩ = 0, (0.5)

for all t ∈ I and for all j1, . . . , jn = 1, . . . , d.

We call the differentials DhuF appearing in (0.4) intrinsic differentials of F . For

v1, . . . , vh ∈ X, at the point u = 0 we define

Dh
0F (v1, . . . , vh) =

dh

dth
F
( n∑
h=1

thvh
h!

)∣∣∣∣
t=0

.

We first restrict Dh
0F to a suitable domain dom(Dh0F ) ⊂ Xh−1 that, roughly speak-

ing, consists of points where the lower order differentials d0F,D
2
0F, . . . , D

h−1
0 F vanish.

Then we define Dh0F = proj(Dh
0F ), with proj projection onto coker(d0F ), see Defini-

tion 2.6. A motivation for this definition is the fact that Dh0F behaves covariantly, in

the sense that, for a given diffeomorphism P ∈ C∞(M ;M), Dh0 (P ◦ F ) depends only
on the first order derivatives of P .

The proof of Theorem 0.1 relies on an open mapping argument applied to the

extended end-point map FJ = (F, J) : X → M × R, where J(u) = 1
2
∥u∥2

L2(I;Rd)
is

the energy of γ = γu. Minimizing the energy is in fact equivalent to minimizing the

length, because for horizontal curves parameterized by arc-length the L2-norm of the

control coincides with its L1-norm.

Motivated by this application, in Section 2.2 we develop a theory about open

mapping theorems of order n for functions F : X → Rm between Banach spaces. In

our opinion, this preliminary study is worth of interest on its own. It adapts in a

geometrical perspective some ideas presented in [25].

Theorem 0.2. Let X be a Banach space and let F ∈ C∞(X;Rm), m ∈ N, be a

smooth mapping such that Dh0F = 0 for all 2 ≤ h < n, for some n ≥ 2, and with

regular Dn0F at the critical point 0 ∈ X. Then F is open at 0.

We refer to Section 2.2 for precise definitions. The notion of “regularity” used

in Theorem 0.2 is delicate because the intrinsic differential Dn0F : dom(Dn0F ) →
coker(d0F ) is a non-linear mapping defined on a domain without linear structure.

The notion depends on an extension theorem for dom(Dn0F ) and is fixed in Definition

2.13. When 0 ∈ X is a critical point of corank 1 it becomes more effective, see

Corollary 2.16.

The rest of the chapter is devoted to the study of the open mapping property for

the extended end-point map FJ around a singular control u. In fact, we will study
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the auxiliary map G, called variation map, defined by G(v) = F (u + v), in order to

move the base-point from u to 0.

A crucial ingredient in our analysis is the definition of non-linear sets Vh ⊂ X,

h ∈ N, consisting of controls with vanishing iterated integrals for any order h ≤ n−1,

see (2.23). Using such controls we are able to catch the geometric structure of the

n-th differential Dn0G in terms of Lie brackets. The algebraic properties of the sets

Vh are studied in Section 2.3.

In Sections 2.4 and 2.5, we use the formalism of chronological calculus [3, Chapter

2] to compute the n-th differential Dn0G of the variation map and the final outcome

is formula (2.36). This formula contains a localization parameter s > 0 that can be

used to shrink the support of the control in a neighborhood of some point t0 ∈ [0, 1).

Passing to the limit as s→ 0+, we obtain a new map Gnt0 : X → R:

Gnt0(v) =
∫
Σn

⟨λ, [gt0v(tn), [. . . , [g
t0
v(t2)

, gt0v(t1)]] . . .](q̄)⟩dt1 . . . dtn,

where Σn = {0 ≤ tn ≤ tn−1 ≤ . . . ≤ t1 ≤ 1} is the standard simplex, λ ∈ T ∗
q̄M is a

fixed covector orthogonal to coker(duF ), q̄ = F (q) ∈ M is the end-point, and gt0v(ti)
is the pull-back of the time-dependent vector field fv = v1f1 + . . . + vdfd along the

flow of u. In the corank 1 case, we show that if there exists v ∈ Vn−1 with Gnt0(v) ̸= 0

then the extended map GJ is open at 0, see our crucial Theorems 2.28 and 2.29. So

Gnt0 = 0 on Vn−1 becomes a necessary condition for the length-minimality of singular

extremals.

In Sections 2.6 and 2.7, we study the geometric implications of equation Gnt0 = 0.

First, we explore the symmetries of Gnt0 , showing how the shuffle algebra of iterated

integrals interacts with generalized Jacobi identities of order n, see Theorem 2.31. In

spite of the non-linear structure of Vn−1, we are able to polarize the equation Gnt0 = 0

on linear subspaces of Vn−1 of arbitrarily large dimension, thus de facto bypassing the

non-linearity of the problem.

At this point, we regard the quantities in (0.5) as unknowns of a nonsingular

system of linear equations, thus proving their vanishing. To get this nonsingularity,

we work with families of trigonometric functions having sparse and high frequences,

see Theorems 2.36 and 2.37.

Our argument leading to the final proof of Theorem 0.1 is summarized in Section

2.8. In Section 2.9 we complete the study of a well-known example of singular curve.

In M = R3 we consider the distribution spanned by the vector-fields

f1 =
∂

∂x1
and f2 = (1− x1)

∂

∂x2
+ xn1

∂

∂x3
,
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where n ∈ N is a parameter. Using the theory developed in Sections 2.1-2.5, we

show that for odd n the curve γ(t) = (0, t, 0), t ∈ [0, 1], is not length minimizing.

This is interesting because, for even n, this singular curve is on the contrary locally

length minimizing. In fact, for even n the n-th differential of the end-point map is

not regular according to Definition 2.13 part i) and our open mapping theorem does

not apply. See our discussion in Remark 2.47.

Concerning the assumptions made in Theorem 0.1, hypothesis (0.4) is restrictive.

Its geometric meaning is explained in Remark 2.42: in fact, it implies (but is not

equivalent to) ⟨λ, [fjh , [. . . [fj2 , fj1 ] . . . ]](γ)⟩ = 0 for h ≤ n − 1. Weakening (0.4)

requires a substantial improvement of Theorem 0.2. The corank 1 assumption on

the length minimizing curve is used when Theorem 0.2 is applied to the end-point

map. We think that it should be possible to drop this assumption, but this certainly

requires some new deep idea.

Chapter 3. The most elementary kind of singularity for a Lipschitz curve is of the

corner-type: at a given point, the curve has a left and a right tangent that are

linearly independent. In [18] and [12] it was proved that length minimizers cannot

have singular points of this kind. These results have been improved in [22]: at any

point, the tangent cone to a length-minimizing curve contains at least one line (a half

line, for extreme points). The uniqueness of this tangent line for length minimizers

is an open problem. Indeed, there exist other types of singularities related to the

non-uniqueness of the tangent. In particular, there exist spiral-like curves whose

tangent cone at the center contains many and in fact all tangent lines, see Example

3.14 below. These curves may appear as Goh extremals in Carnot groups, see [16]

and [17, Section 5]. For these reasons, the results of [22] are not enough to prove the

nonminimality of spiral-like extremals. Goal of this chapter is to show that curves

with this kind of singularity are not length-minimizing. The results that we present

in this chapter were proved in [23].

Our notion of horizontal spiral in a sub-Riemannian manifold of rank 2 is fixed

in Definition 0.3. We will show that spirals are not length-minimizing when the

horizontal distribution D satisfies the following commutativity condition. Fix two

vector fields f1, f2 ∈ D that are linearly independent at some point p ∈ M . For

k ∈ N and for a multi-index J = (j1, . . . , jk), with ji ∈ {1, 2}, we denote by fJ =

[fj1 , [. . . , [fjk−1
, fjk ] · · · ]] the iterated commutator associated with J . We define its

length as the length of the multi-index J , i.e., len(fJ) = len(J) = k. Then, our

commutativity assumption is that, in a neighborhood of the point p,

[fI , fJ ] = 0 for all multi-indices with len(I), len(J) ≥ 2. (0.6)
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This condition is not intrinsic and depends on the basis f1, f2 of the distribution D.
After introducing exponential coordinates of the second type, the vector fields

f1, f2 can be assumed to be of the form (3.5) below, and the point p will be the center

of the spiral. In coordinates we have γ = (γ1, . . . , γn) and, by (3.5), the γj’s satisfy

for j = 3, . . . , n the following integral identities

γj(t) = γj(0) +

∫ t

0

aj(γ(s))γ̇2(s)ds, t ∈ [0, 1].

When γ(0) and γ1, γ2 are given, these formulas determine in a unique way the whole

horizontal curve γ. We call κ ∈ AC([0, 1];R2), κ = (γ1, γ2), the horizontal coordinates

of γ.

Definition 0.3 (Spiral). We say that a horizontal curve γ ∈ AC([0, 1];M) is a spiral

if, in exponential coordinates of the second type centered at γ(0), the horizontal

coordinates κ ∈ AC([0, 1];R2) are of the form

κ(t) = teiφ(t), t ∈]0, 1],

where φ ∈ C1(]0, 1];R+) is a function, called phase of the spiral, such that |φ(t)| → ∞
and |φ̇(t)| → ∞ as t→ 0+. The point γ(0) is called center of the spiral.

A priori, Definition 0.3 depends on the basis f1, f2 of D, see however our comments

about its intrinsic nature in Remark 3.13. Without loss of generality, we shall focus

our attention on spirals that are oriented clock-wise, i.e., with a phase satisfying

φ(t) → ∞ and φ̇(t) → −∞ as t → 0+. Such a phase is decreasing near 0. Notice

that if φ(t)→∞ and φ̇(t) has a limit as t→ 0+ then this limit must be −∞.

The main result in Chapter 3 is the following

Theorem 0.4. Let (M,D, g) be an analytic sub-Riemannian manifold of rank 2 sat-

isfying (0.6). Any horizontal spiral γ ∈ AC([0, 1];M) is not length-minimizing near

its center.

Differently from [18, 12, 22] and similarly to [21], the proof of this theorem cannot

be reduced to the case of Carnot groups, the infinitesimal models of equiregular sub-

Riemannian manifolds. This is because the blow-up of the spiral could be a horizontal

line, that is indeed length-minimizing.

The nonminimality of spirals combined with the necessary conditions given by

Pontryagin Maximum Principle is likely to give new regularity results on classes of

sub-Riemannian manifolds, in the spirit of [4]. We think, however, that the main

interest of Theorem 0.4 is in the deeper understanding that it provides on the loss of

minimality caused by singularities.
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The proof of Theorem 0.4 consists in constructing a competing curve shorter than

the spiral. The construction uses exponential coordinates of the second type and

our first step is a review of Hermes’ theorem on the structure of vector-fields in such

coordinates. In this situation, the commutativity condition (0.6) has a clear meaning

explained in Theorem 3.8, that may be of independent interest.

In Section 3.2, we start the construction of the competing curve. Here we use the

specific structure of a spiral. The curve obtained by cutting one spire near the center

is shorter. The error appearing at the end-point will be corrected modifying the spiral

in a certain number of locations with “devices” depending on a set of parameters.

The horizontal coordinates of the spiral are a planar curve intersecting the positive

x1-axis infinitely many times. The possibility of adding devices at such locations

arbitrarily close to the origin will be a crucial fact.

In Section 3.3, we develop an integral calculus on monomials that is used to

estimate the effect of cut and devices on the end-point of the modified spiral. Then,

in Section 3.4, we fix the parameters of the devices in such a way that the end-point

of the modified curve coincides with the end-point of the spiral. This is done in

Theorem 3.23 by a linearization argument. Sections 3.2-3.4 contain the technical core

and computations of Chapter 3.

We use the specific structure of the length-functional in Section 3.5, where we

prove that the modified curve is shorter than the spiral, provided that the cut is

sufficiently close to the origin. This will be the conclusion of the proof of Theorem

0.4.

We briefly comment on the assumptions made in Theorem 0.4. The analyticity

of M and D is needed only in Section 3.1. In the analytic case, it is known that

length-minimizers are smooth in an open and dense set, see [26]. See also [10] for a

C1-regularity result when M is an analytic manifold of dimension 3.

The assumption that the distribution D has rank 2 is natural when considering

horizontal spirals. When the rank is higher there is room for more complicated

singularities in the horizontal coordinates, raising challenging questions about the

regularity problem.

Dropping the commutativity assumption (0.6) is a major technical problem: get-

ting sharp estimates from below for the effect produced by cut and devices on the

end-point seems extremely difficult when the coefficients of the horizontal vector fields

depend also on nonhorizontal coordinates, see Remark 3.18.
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Chapter 1

The end-point map in

sub-Riemannian geometry

In this chapter, we discuss the general notions concerning sub-Riemannian manifolds.

Despite our definitions given here are quite general, permitting to include all the clas-

sical notions appearing in the literature, we introduce the reader to sub-Riemannian

geometry with an example taken from the real life.

After having introduced the sub-Riemannian (or Carnot-Carathéodory) distance,

we discuss its finiteness and continuity, also known as Chow-Rashevskii theorem.

Then we move to metric properties of sub-Riemannian manifold as metric spaces,

proving in particular existence of length-minimizers.

In the final part of the chapter we introduce the crentral object of this thesis,

namely the end-point map. Its first order analysis leads to Pontryagin extremals,

which are, in fact, curves in the cotangent space corresponding to the critical points

of the end-point map.

The notions and the results presented in this chapter are classical facts of sub-

Riemannian geometry. For this reason we will omit most of the proofs of the state-

ments contained in this chapter. The reader can find all the details of these arguments

in Chapters 2, 3, 6 and 8 of [2].

1.1 Prelimirary notions

In this section we recall some general facts of differential geometry we need in the se-

quel. Since a sub-Riemannian manifold is smooth (see definition 1.10), our definitions

in this section are given in the smooth setting.

We point out that in this section we are not developing the standard theory of
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differential geometry, rather just fixing our notations. We assume the reader to be

very confident with the topics covered in this section.

From now on, if it is not specified, M denotes a smooth and connected manifold

of dimension n ∈ N, and C∞(M) denotes the set of smooth functions from M to R..

1. Smooth maps, differentials and vector bundles

We assume the reader to be confident with all the notions and properties concerning

vector bundles. The rank of a vector bundle (E, π) over M , is simply denoted with

rankE.

The tangent bundle of a smooth manifold M is denoted with TM and it is a

vector bundle over M . Its fiber at a point q ∈M , denoted with TqM , is the tangent

space of M at q. Any smooth section X :M → TM is a smooth vector field over M .

We denote with Vec(M) the set of smooth vector fields over M . We write X(q) or

Xq for denoting the evaluation of X at q.

The cotangent bundle of M is denoted with T ∗M and it is a vector bundle over

M . Its fiber at a point q ∈ M , denoted with T ∗
qM , is the cotangent space of M at

q. Any smooth section ω : M → Λk(T ∗M) is a smooth k-form over M , where here

Λk(T ∗M) is the exterior algebra over T ∗M . We denote with Ωk(M) the set of smooth

k-forms over M . We write ω(q) or ωq for denoting the evaluation of X at q.

The cotangent bundle is the “dual” of the tangent bundle in the sense that any

λ ∈ T ∗
qM is a linear form λ : TqM → R, and we use the notation λ(v) = ⟨λ, v⟩,

v ∈ TqM .

If φ : M → N is a smooth map between two smooth manifolds, its differential is

denoted with dφ : TM → TN . We denote with dqφ : TqM → Tφ(q)N the differential

of φ at a point q ∈ M , i.e. the restriction of dφ on TqM . We also use the notations

φ∗ and φ∗,q for the differential.

We denote with φ∗ : T ∗N → T ∗M the pull-back of φ, i.e. the unique map

satisfying

⟨λ, φ∗v⟩ = ⟨φ∗λ, v⟩, v ∈ TqM, λ ∈ T ∗
φ(q)N.

Notice that, in this case, φ∗
q : T

∗
φ(q)N → T ∗qM since it is the dual map of φ∗,q.

If f ∈ C∞(N), φ∗f = f ◦ φ denotes the pull-back of f through φ.

2. Flow of smooth vector fields

We assume that the reader is familiar with the notions of vector field, complete vector

field and flows of vector fields. In particular, we recall that the assumption for a vector

field to be complete is not restrictive thanks to standard compactness arguments.
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Given a complete vector field X ∈ Vec(M), the flow generated by X is a smooth

map denoted with Pt = etX : M → M . The exponential notation is due to the

following properties

e0X = id, etX ◦ esX = e(t+s)X , (etX)−1 = e−tX , (1.1)

d

dt
etX(q) = X(etX(q)). (1.2)

We resume properties (1.1) and (1.2) saying that the family {etX , t ∈ R} is a one

parameter subgroup of Diff(M).

A nonautonomous vector field is a family of vector fields {Xt}t∈R such that the

map (t, q) → Xt(q) is measurable in t and smooth in q. We point out our attention

in nonautonomous vector fields of the form

Xt(q) =
m∑
i=1

ui(t)fi(q), (1.3)

where ui are functions in Lp, p ∈ [1,+∞], and fi are smooth vector fields.

When Xt is complete, its flow is denoted with Ps,t. We assume all the properties

of nonautonomous flows to be well-known. In particular, we highlight the following

ones

Pt,t = id, (1.4)

Pt1,t2 ◦ Pt2,t3 = Pt1,t3 , ∀t1, t2, t3 ∈ R. (1.5)

Conversely, every two-parameters family of smooth maps Ps,t : M → M satisfying

(1.4) and (1.5) is called a flow in M , and its infinitesimal generator is the nonau-

tonomous vector field

Xt(q) =
d

ds

∣∣∣∣
s=0

Pt,t+s(q), q ∈M.

The relationship between autonomous and nonautonomous vector fields is con-

tained in the following statement

Lemma 1.1. Let {Ps,t}s,t∈R be a family of smooth diffeomorphisms satisfying (1.4)-

(1.5). Its infinitesimal generator is an autonomous vector field X ∈ Vec(M) if and

only if

P0,t ◦ P0,s = P0,t+s, ∀s, t ∈ R. (1.6)

Remark 1.2 (On the notation). When the infinitesimal generator of the flow is an

autonomous vector field X ∈ Vec(M), we have Ps,t = Pt−s = e(t−s)X . With this

notation, (1.6) is exactly the second identity in (1.1). Moreover, property (1.5) for

autonomous flows is a direct consequence of the second identity in (1.1).
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3. Lie brackets and Hörmander condition

For X, Y ∈ Vec(M), we denote their Lie bracket with [X, Y ]. We also denote adX :

Vec(M)→ Vec(M) the adjoint map (adX)Y = [X, Y ]. The reader is assumed to be

familiar with Lie brackets and all their differential and algebraic properties.

For a family F ⊂ Vec(M) of smooth vector fields we denote with Fq the set of its
vector fields evaluated at q, namely Fq = {X(q) |X ∈ F} ⊂ TqM , and

(adF)F = [F ,F ] = span{[X, Y ] |X, Y ∈ F}.

The Lie algebra generated by F , denoted by LieF , is the smallest sub-algebra of

Vec(M) containing F , namely

LieF =
∞⊕
i=1

(adF)iF .

Similarly, we define

LiesF :=
s⊕
i=1

(adF)iF .

Definition 1.3. Let F ⊂ Vec(M) be a family of smooth vector fields. F is said to

be bracket generating (or that satisfies the Hörmander condition) if

LieqF = TqM, ∀q ∈M.

For a bracket generating family F , its step s ∈ N at a point q ∈ M is the minimal

integer satisfying

LiesqF = TqM.

Notice that, in general, the step may depends on the point q ∈ M , and s = s(q)

can be unbounded on M , even for bracket-generating families.

A class of families of vector fields which we are interested in are the distributions.

Definition 1.4. A smooth distribution D of rank m on M is a smooth vector sub-

bundle of rank m of the tangent bundle TM .

A metric g on D is a smooth map q 7→ gq that assigns to each point q ∈ M a

positive definite scalar product gq on the vector space Dq.

4. Poisson bracket and Hamiltonian vector fields

We identify any smooth function a ∈ C∞(M) with the constant on fibers function

π∗a ∈ C∞(T ∗M), and any vector field X ∈ Vec(M) with the linear on fibers function
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aX ∈ C∞(T ∗M), where aX(λ) = ⟨λ,X(q)⟩, q = π(λ). Here π : T ∗M →M is as usual

the standard projection.

For a, b ∈ C∞(T ∗M) their Poisson bracket is denoted with {a, b}. The reader is

assumed to be familiar with Poisson brackets and all their differential and algebraic

properties. The Hamiltonian vector filed a⃗ ∈ Vec(T ∗M) associated to a is defined by

a⃗ : C∞(T ∗M)→ C∞(T ∗M), a⃗(b) = {a, b}.

Hamiltonian vector fields completely characterize the pull-back of flows of vector fields

on M .

Proposition 1.5. Let X ∈ Vec(M) be a complete vector field with flow P0,t = etX .

The flow on T ∗M defined by (P−1
0,t )

∗ = (e−tX)∗ is generated by the Hamiltonian vector

field −→aX , where aX(λ) = ⟨λ,X(q)⟩ and q = π(λ).

This construction can be extended to the case of nonautonomous vector fields of

the form (1.3).

Proposition 1.6. Let Xt be a nonautonomous vector field as in (1.3). Denote by

P0,t the flow of Xt on M . Then the nonautonomous vector field on T ∗M

Vt =
−→a Xt , aXt(λ) = ⟨λ,Xt(q)⟩,

is the generator of the flow (P−1
0,t )

∗.

Finally, we denote with s ∈ Λ1(T ∗M) the tautological (or Liouville) 1-form

s : λ 7→ sλ ∈ Tλ(T ∗M), ⟨sλ, w⟩ = ⟨λ, π∗w⟩, λ ∈ T ∗M, w ∈ Tλ(T ∗M),

and with σ = ds ∈ Λ2(T ∗M) the canonical symplectic form of M .

The following statement establish the connection among the canonical symplectic

form and Poisson brackets.

Proposition 1.7. For every λ ∈ T ∗M and every a, b ∈ C∞(T ∗M) we have the

identity

σλ(⃗a(λ), b⃗(λ)) = dλb(⃗a(λ)) = {a, b}(λ).

1.2 The model of the rototranslations in the plane

In this section we present an easy sub-Riemannian model coming from real life: we

study the trajectories of a car moving on the road. Such a model can be viewed as

R3 = (x, y, θ), where the first two coordinates (x, y) determine the position of the car
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in the plane, and the third coordinate θ define the angle of the car’s wheels, namely

it defines the moving direction of the the car.

When θ is fixed, our car moves in the plane following the direction (cos θ, sin θ),

i.e. it solves the following PDE 
ẋ(t) = cos θ,

ẏ(t) = sin θ,

θ̇(t) = 0.

In other words we are moving along the v.f. X := cos θ∂x + sin θ∂y.

When the car is stopped, we can steer the wheels, namely we are changing the

value of θ, solving then the following PDE
ẋ(t) = 0,

ẏ(t) = 0,

θ̇(t) = 1.

In this case we are following the v.f. Y := ∂θ.

Finally, what it is not allowed for our car, is to follow the orthogonal vector to

(cos θ, sin θ). In terms of vector fields, the non-allowed direction is Z := − sin θ∂x +

cos θ∂y.

Remark 1.8. The vector fields X and Y do not commute and, in particular, their Lie

bracket is given by [X, Y ] = Z. Moreover, the set {Xp, Yp, Zp} is a basis of R3 for

any point p = (x, y, θ). In other words, the distribution defined by Dq = {Xq, Yq} is
bracket generating.

The distribution Dq defined above equipped with any smooth metric ⟨·, ·⟩q is

an example of a sub-Riemannian structure on R3, and the triplet (R3,D, ⟨·, ·⟩) is an
example of sub-Riemannian manifold. In Section 1.3 below we give the general notions

of a sub-Riemannian structure over a smooth manifold M and of sub-Riemannian

norm, studying their general properties.

Until now, we were supposing that both the velocity of the car and the velocity

of the angle θ is constant and unit. To make our model complete, we have to make

these parameters dynamic, namely all the admissible trajectories for the car are such

curves γ : I → R3 that satisfy the following PDE

γ̇(t) = u1(t)X(γ(t)) + u2(t)Y (γ(t)), (1.7)

where u1 and u2 are arbitrary essentially bounded functions from [0, T ] to R, called
controls. Any curve satisfying condition (1.7) is called horizontal or admissible.
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Remark 1.9. In spite of we restrict the set of admissible curves, it is easy to see that

we can join anyway any couple of point of R3. On the other hand, the presence of a

metric ⟨·, ·⟩ on the distribution D and condition (1.7) allows us to measure length of

admissible curves. Then, one may define the distance between any couple of points

as the infimum among the length of admissible curves joining such points.

The previous Remark is known as the Chow-Rashevskii theorem. In Section 1.4

below we will generalize the definition of admissible curves and we will study their

main properties.

1.3 Sub-Riemannian structures

In this section we are going to generalize the example described in the previous section.

We recall that M denotes a smooth connected manifold of dimension n.

Definition 1.10. A sub-Riemannian structure on M is a pair (U, f) where:

i) U is an Euclidean vector bundle with base M and Euclidean fiber Uq, i.e., for

every q ∈ M , Uq is a vector space equipped with a scalar product ⟨·, ·⟩q which
is smooth with respect to q. For any u ∈ Uq we denote with |u| := ⟨u, u⟩1/2 the
norm of u.

ii) The map f : U→ TM is smooth, it is a morphism of vector bundles, and it is

fiber-wise linear. In particular, the following diagram is commutative

U TM

M

f

πU
π

where πU : U→M and π : TM →M are the standard projections.

iii) The family of vector fields D := {f(σ)|σ : M → U smooth section} ⊂ TM is

bracket generating. Any vector field belonging to D is called horizontal. We

also call step of the sub-Riemannian structure at q the step of D.

When U admits a global trivialization, i.e. U =M ×Rn, we say that (U, f) is a free

sub-Riemannian structure.

A smooth manifold M endowed with a sub-Riemannian structure (U, f) is called

sub-Riemannian manifold, and it is denoted as the triple (M,U, f). When the map

f is fiberwise surjective, (M,U, f) is called a Riemannian manifold.
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Definition 1.11. Let (M,U, f) be a sub-Riemannian manifold. The smooth distri-

bution on M defined by

q 7→ Dq = f(Uq),

is called the distribution.

Remark 1.12. The set of horizontal vector fields has the structure of a finitely generate

module over C∞(M).

Remark 1.13. The distribution {Dq}q∈M can be written in terms of the horizontal

vector fields as

Dq = {X(q)|X ∈ D}.

In particular, if (U′, f ′) is another sub-Riemannian structure on M with D = D′,

then Dq = D′
q, for any q ∈ M . Conversely, condition Dq = D′

q, for any q ∈ M , does

not imply D = D′ (see Example 1.35 below).

Definition 1.14. Let (M,U, f) be a sub-Riemannian manifold and let q ∈ M . We

define the bundle rank of M as m := rank(U), and the rank of M at the point q as

r(q) := dimDq. When r(q) = r is constant, we say that the sub-Riemannian structure

(U, f) is regular of constant rank r, otherwise we say that (U, f) is rank-varying.

The rank of a sub-Riemannian manifold (M,U, f) satisfies

r(q) ≤ min{m,n}, where m = rank(U), n = dim(M). (1.8)

From now on, if it is not specified, a sub-Riemannian manifold (M,U, f) is supposed

to have dimension n and bundle rank m.

Remark 1.15. If the distribution has constant rank and (U′, f ′) is another sub-

Riemannian structure on M , then we have Dq = D′
q, for any q ∈ M , if and only

if D = D′. In this case, D ⊂ TM is a smooth distribution of M , called horizontal

distribution. Conversely, if D is a smooth distribution of M equipped with a smooth

metric as in Definition 1.4, and i : D → TM is the standard inclusion map, then

(M,D, i) is a constant-rank sub-Riemannian manifold.

Definition 1.16. Let (M,U, f) be a sub-Riemannian manifold and let q ∈ M . The

flag of M at the point q is the sequence of subspaces {Diq}i∈N of TqM defined by

Diq = span{[Xi1 , [. . . [Xiℓ−1
, Xiℓ ]] . . . ]|Xi1 , . . . , Xiℓ ∈ D, ℓ ≤ i}.

By the bracket generating assumption on the family D of horizontal vector fields,

there exists a minimal integer s = s(q) such that Dsq = TqM , which is called the step

of M at q.
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Notice that, by construction, Diq ⊂ Di+1
q .

Definition 1.17. Let (M,U, f) be a sub-Riemannian manifold and let {Diq}i∈N the

flag of M at q. Let ri(q) = dimDiq. We say that M is equiregular if, for every i ∈ N,
the integer ri(q) = ri is constant and does not depend on q.

We emphasize that D1
q = Dq and r1(q) = r(q) is the rank of M at q. So an

equiregular sub-Riemannian manifold is regular of constant rank.

In what follows we denote points in U as pairs (q, u), where q ∈M is an element

of the base and u ∈ Uq is an element of the fiber. Following this notation we can

write the value of f at this point as

f(q, u) or fu(q).

We prefer the second notation to stress that, for each q ∈ M , fu(q) is a vector in

TqM .

Remark 1.18. Every sub-Riemannian manifold (M,U, f) is locally free in the follow-

ing sense. Once we have chosen a local trivialization Oq × Rm for the vector bundle

U, where Oq is a neighborhood of q ∈M , the following diagram is commutative

Oq × Rm π−1
U (Oq) TOq

Oq

ψ

π1

f

πU
π

(1.9)

Here πq is the standard projection, and ψ is the diffeomorphism of the local trivial-

ization. Then, defining

f̃ = f ◦ ψ,

(Oq, Oq × Rm, f̃) is a free sub-Riemannian manifold.

Remark 1.19. The local characterization of the previous remark leads to the following

local canonical construction. Once we have chosen a local trivialization Oq0 ×Rm for

the vector bundle U, we can choose a basis {ẽ1, . . . , ẽm} for Rm. Using the same

notation as in (1.9), the vectors ei = ψ(ẽi) form a basis for the fibers Uq, q ∈ Oq0 .

Then, we can define the vector fields

fi(q) := f(q, ei) = f(q, ψ(ẽi)), i = 1, . . . ,m (1.10)

By the linearity on the fibers of the maps f and ψ we have, for every q ∈ Oq and

every u ∈ Uq

fu(q) =
m∑
i=1

uifi(q), q ∈ Oq0 ,

9



where (u1, . . . , um) ∈ Rm are the coordinates both of u ∈ Uq and of ũ = ψ−1(u) ∈ Rm

in this trivialization, namely u =
∑m

i=1 uiei and ũ =
∑m

i=1 uiẽi.

The local arguments of Remarks 1.18 and 1.19 are the basis for nilpotentization

of sub-Riemannian manifolds. In Chapter 3, Theorem 3.5, we describe the nilpoten-

tization of a specific kind of sub-Riemannian manifolds.

From now on, we forgot about the “tilde” notation (and then also the composition

with ψ) when working with local trivializations.

Definition 1.20. Let (M,U, f) be a sub-Riemannian manifold. A family of (hori-

zontal) vector field {f1, . . . , fm}, m ≥ rank(U), is called a generating family for M if

for any q ∈M and u ∈ Uq there exist u1, . . . , um ∈ R such that

f(q, u) =
m∑
i=1

uifi(q).

We will discuss in a moment when a sub-Riemannian manifolds admit a generating

family. Before, we introduce the “natural” metric in sub-Riemannian manifolds and

the notion of equivalence of sub-Riemannian structures.

Definition 1.21. Let v ∈ Dq. We define the sub-Riemannian norm of v as follows

∥v∥ = min{|u| : u ∈ Uq, v = fu(q)}. (1.11)

Notice that, since f is linear, f(q, ·)−1(v) ⊂ Uq is an affine subspace of Uq (which

is nonempty because v ∈ Dq). Thus, the minimum in (1.11) is uniquely attained at

the orthogonal projection of the origin onto this subspace.

The function defined in (1.11) is in fact a norm, which moreover satisfies the

parallelogram identity. I.e., it is induced by the scalar product on Dq

⟨v, w⟩Dq =
1

4

(
∥v + w∥2 − ∥v − w∥2

)
, v, w ∈ Dq.

Remark 1.22. If the map f(q, ·) : Uq → Dq is injective (and then necessarily surjective

by (1.8)), then it is automatically an isometry, that is

⟨v1, v2⟩Dq = ⟨u1, u2⟩Uq , vi = f(q, ui), i = 1, 2.

When f is fiberwise injective, we have an isometry of Euclidean bundle between U

and the distribution {Dq}q∈M . In this case, the sub-Riemannian norm of any vector

v ∈ Dq can be equivalently defined as

∥v∥ = |u|, v = f(q, u).
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Definition 1.23. Let (U, f) and (U′, f ′) be two sub-Riemannian structures on the

same smooth manifoldM . They are said to be equivalent as distribution if there exist

an Euclidean bundle V and two surjective morphisms of vector bundles p : V → U,

p′ : V→ U′ such that the following diagram is commutative

V U

U′ TM

p

p′ f

f ′

Remark 1.24. Two sub-Riemannian manifolds (M,U, f) and (M,U′, f ′) are equiva-

lent as distribution if and only if the two moduli of horizontal vector fields D and D′

coincide. In fact, if (M,U, f) and (M,U′, f ′) are equivalent as distribution, then the

following diagram is commutative

V U

M

U′ TM

p

p′

πU

f

πU′

f ′
π

and the two moduli of horizontal vector fields D and D′ coincide. In particular, we

deduce that also the distributions Dq and D′
q coincide.

Conversely, if D = D′, then (M,U, f) and (M,U′, f ′) are equivalent as distribu-

tion taking V = U × U′ and p, p′ the standard projections. Notice that, accord-

ing to Remark 2.7, the equivalence of distributions Dq and D′
q does not implies the

equivalence of the sub-Riemannian structures as distribution. This is true only for

constant-rank sub-Riemannian manifolds.

Definition 1.25. Let (U, f) and (U′, f ′) be two sub-Riemannian structures on the

same smooth manifold M equivalent as distributions. If the projections p, p′ are

compatible with the scalar product, i.e.

|u| = min{|v| : p(v) = u}, ∀u ∈ U,

|u′| = min{|v| : p′(v) = u′}, ∀u′ ∈ U′,

then (U, f) and (U′, f ′) are said to be equivalent.

If (U, f) and (U′, f ′) are two equivalent sub-Riemannian structures on M , then

the norms induced on the distribution coincides, i.e. for each w ∈ Dq we have

∥w∥ = ∥w∥′, where ∥w∥ is the norm induced on Dq by (U, f), and ∥w∥′ is the norm

induced on Dq by (U, f ′).
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Definition 1.26. Let R be a family of sub-Riemannian structures on a smooth

manifold M . We call R a class of equivalence for M if all the sub-Riemannian

manifolds (M,U, f) are equivalent for any (U, f) ∈ R. A class of equivalence R is

said to be maximal if there is no other class R′ such that R ⊂ R′.

Any maximal class of equivalence of sub-Riemannian structures contains a repre-

sentative (Ū, f̄) where Ū is a trivial bundle, as stated by the following theorem.

Theorem 1.27. Every sub-Riemannian structure (U, f) on a smooth manifold M is

equivalent to a sub-Riemannian structure (Ū, f̄) on M where Ū is a trivial bundle.

The importance the of free structures is explained by the next lemma.

Lemma 1.28. Every free sub-Riemannian manifold admits a generating family.

Proof. Let (M,U, f) be a free sub-Riemannian manifold of bundle rank m, i.e. U =

M ×Rm. A point in U can be written as (q, u), where q ∈ U and u = (u1, . . . , um) ∈
Rm. If we denote by {e1, . . . , em} an orthonormal basis of Rm, then we can define

globally the m smooth (horizontal) vector fields on M

fi(q) := f(q, ei). (1.12)

This construction is similar to Remark 1.19 and the triviality of U make it global.

Then we have, by the linearity on fibers of f

f(q, u) =
m∑
i=1

uifi(q), q ∈M. (1.13)

According to Definition 1.20, the vector fields fi are a generating family. In particular,

the modulus of horizontal vector fields D is globally generated by the fi.

The vector fields defined in (1.12) are the canonical generating family associated

to an orthonormal basis {e1, . . . em} of Rm. Notice that, if f is not injective, then the

vectors fi(q) are not necessarily orthonormal in Dq.
Combining Theorem 1.27 and Lemma 1.28 one obtains the following result.

Corollary 1.29. Every sub-Riemannian manifold admits a generating family.

Remark 1.30. Thanks to this result, algebraic and geometric properties of horizontal

vector fields are totally described by the algebraic and geometric properties of a

generating family. We will use this fundamental fact in Section 1.5 below and in

Chapter 2 to study the end-point map, and in Chapter 3 to describe the behavior of

spirals.
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Any maximal class of equivalence R on M contains an infinite number of free

structures. Indeed, every free sub-Riemannian structure (M×Rm′
, f) forM is equiv-

alent to (M ×Rm, f) for any m′ ≥ m if f ′|M×Rm = f . In this case, in (1.13) we have

ui = 0, for i = m+ 1, . . . ,m′. This fact suggest the following definition.

Definition 1.31. Let (M, Ū, f̄) be a sub-Riemannian manifold and let R be the

maximal class of equivalence containing (Ū, f̄). We define the minimal bundle rank

of M as

minrank(M) = min{rank(U) | (U, f) ∈ R}.

The minimal bundle rank of a sub-Riemannian manifold M is actually the bun-

dle rank of the free sub-Riemannian structure of minimal bundle rank inducing an

equivalent structure on M . From now on we suppose, without loss of generality,

for any sub-Riemannian manifold (M,U, f) that the vector bundle U has minimal

bundle rank.

1.3.1 Examples

Our approach to sub-Riemannian geometry is quite general. We end this section

providing some classical examples which are included in our setting. In particu-

lar, Example 1.33 below is the classical setting appearing in the literature for sub-

Riemannian manifolds. The new results concerning the regularity problem of sub-

Riemannian geodesics we will provide in Chapters 2 and 3, are given indeed in this

setting.

Example 1.32 (Riemannian Manifolds). Classically, a Riemannian manifold is de-

fined as a pair (M, ⟨·, ·⟩), whereM is a smooth manifold and ⟨·, ·⟩q is a scalar product

on TqM , smoothly depending on q ∈ M . This definition, as pointed out in Remark

2.7, is included in Definition 1.10 by taking U = D endowed with the structure

induced by ⟨·, ·⟩ and f : D → TM the canonical inclusion map.

Example 1.33 (Constant rank sub-Riemannian manifolds). We emphasized in Re-

mark 2.7 that a constant-rank sub-Riemannian manifold is given by (M,D, i), where
D ⊂ TM is a smooth Euclidean distribution and i is the inclusion map. Classically, a

constant-rank sub-Riemannian manifold is presented as a triple (M,D, ⟨·, ·⟩), where
⟨·, ·⟩q is a scalar product on Dq, smoothly depending on q ∈M .

In particular, let us analyze the model presented in paragraph 1.2. There, on

M = R3 we had the smooth distribution D defined by Dq = span{X(q), Y (q)}.
Then, any scalar product ⟨·, ·⟩q defined on Dq defines a sub-Riemannian metric. The

triplet (R3, D, ⟨·, ·⟩) is a free sub-Riemannian manifold of constant rank 2.
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Example 1.34 (Carnot groups). A Carnot group (G, ·) is a connected, simply con-

nected and nilpotent Lie group G, with a smooth group operation ·, whose Lie algebra
g is stratified, i.e., there exists a (fixed) decomposition g = g1 ⊕ g2 ⊕ · · · ⊕ gs, such

that gi = [g1, gi−1] for any i = 2, . . . , s and [g, gs] = 0.

The left translation based at a ∈ G, defined by La(b) = a · b, for b ∈ G, is a

diffeomorphism of G. A vector field X on G is left-invariant if (La)∗X = X for

every a ∈ G. Through the differetial at the identity e ∈ G of left translations, we

have TaG = (La)∗,eg, i.e., the tangent bundle is generated by left-invariant vector

fields. In particular, Da = (La)∗,eg1 is a left-invariant and bracket-generating smooth

distribution of TG. Similarly, any scalar product ⟨·, ·⟩e on g1 defines a left-invariant

sub-Riemannian metric ⟨·, ·⟩ on G and (G, D, ⟨·, ·⟩) is an equiregular (and then also

a constant-rank) sub-Riemannian manifold.

In Chapter 3 we will see that Carnot groups are the nilpotent (i.e. first order)

approximations of equiregular sub-Riemannian manifolds.

Example 1.35 (Same distributions with different horizontal vector fields). Let us

consider on M = R2 the two free sub-Riemannian structures of bundle rank 2 (R2 ×
R2, f) and (R2 × R2, f ′) giving by

f(x, y, u1, u2) = (x, y, u1, u2x), f ′(x, y, u1, u2) = (x, y, u1, u2x
2).

The last coordinate of f and f ′ vanish if and only if x = 0, making D(x,y) = D′
(x,y) for

every (x, y) ∈ R2.

On the other hand, D′ ⊊ D. In fact, if X ∈ D′, then X = f ′ ◦ σ, where σ :

M → R2 × R2 is an arbitrary smooth section σ(x, y) = (x, y, u1(x, y), u2(x, y)), for

some smooth u1, u2. Then, if X ∈ D′, we have X(x, y) = (uσ, vσx
2), for some smooth

functions u1, u2. So X ∈ D, because X = f ◦ σ̄ with σ̄(x, y) = (x, y, u1, u2x).

Finally, the vector field X(x, y) = (1, x) belongs to D, since it is the composition

of f with σ(x, y) = (x, y, 1, x), but it does not belong to D′.

1.4 Admissible curves and sub-Riemannian distance

In this section we are going to generalize the second part of the example given in

Section 1.2. Namely, we illustrate the general theory concerning admissible curves in

sub-Riemannian geometry.

Definition 1.36. A Lipschitz curve γ : [0, T ] → M is said to be admissible or

horizontal for a sub-Riemannian structure (U, f) on M if there exists a measurable
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and essentially bounded function

u : [0, T ]→ U, u(t) ∈ Uγ(t) (1.14)

called control, such that

γ̇(t) = f(γ(t), u(t)), for a.e. t ∈ [0, T ]. (1.15)

In this case, we say that u is a control corresponding or associated to γ.

In other words, an admissible curve γ is driven by a measurable and essentially

bounded function u lying on the moving fibers of U along γ. We point out the

attention on several facts regarding the definition of horizontal curves, collecting

them in the following remarks

Remark 1.37. A curve γ : [0, T ] → M such that γ(t) = γ(0) for every t ∈ [0, T ] is

always admissible

Remark 1.38. When f : U→ TM is fiberwise injective, the control u associated to a

horizontal curve is unique.

Lemma 1.39. Let Oq ⊂ M be a neighborhood of q ∈ M , and let Oq × Rm be a

local trivialization of U. Let {e1, . . . , em} be an orthonormal basis of Rm and let fi,

i = 1, . . . ,m, be the horizontal vector fields defined as in (1.10). A Lipschitz curve

γ : [0, T ]→ Oq is horizontal if and only if there exists u ∈ L∞([0, T ],Rm) such that

γ̇(t) =
m∑
i=1

ui(t)fi(γ(t)), for a.e. t ∈ [0, T ].

Proof. The proof is a direct consequence of Remark 1.19.

Thanks to this local characterization and the Carathéodory Theorem for nonau-

tonomous vector fields (see [2, Theorem 2.15]), it follows that, for each initial condition

q ∈M and for each control u ∈ L∞([0, T ],Rm), the Cauchy problemγ̇(t) = fu(t)(γ(t)),

γ(0) = q,

always admits a solution defined on a sufficiently small interval.

Corollary 1.40. For every q ∈ M and for each control u ∈ L∞([0, T ],Rm), there
exists an admissible curve γ with control u and γ(0) = q.
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Remark 1.41. An admissible curve γ : [0, T ] → M is Lipschitz, hence differentiable

at almost every point. Therefore, combining (1.14) and (1.15), we have that its

derivative satisfies

γ̇(t) ∈ Dγ(t), for a.e. t ∈ [0, T ]. (1.16)

This is, in general, not also a necessary condition for a curve to be horizontal. Ac-

cording to Remark 1.15, a curve is horizontal if and only if it satisfies condition (1.16)

just for constant-rank sub-Riemannian manifolds.

We resume Lemma 1.39 and Remark 1.41 giving equivalent conditions for a Lip-

schitz curve γ : [0, T ]→M to be horizontal in Remarks 1.42 and 1.43 below.

Remark 1.42. Let M be a free sub-Riemannian manifold with generating family

f1, . . . , fm (possibly associated in the canonical way to the standard basis of Rm).
Let γ : [0, T ]→M be a Lipschitz curve. Then the following definitions are equivalent

H1) γ is horizontal.

H2) There exists a function u ∈ L∞([0, T ],Rm) such that

γ̇(t) =
m∑
i=1

ui(t)fi(γ(t)), for a.e. t ∈ [0, T ]

Remark 1.43. Let M be a constant rank sub-Riemannian manifold. Let γ : [0, T ]→
M be a Lipschitz curve. Then the following definitions are equivalent

H1) γ is horizontal;

H3) γ̇(t) ∈ Dγ(t), for a.e. t ∈ [0, T ].

Example 1.44. In the setting of Example 1.35, let us consider the curve γ : t ∈
[−1, 1] 7→ (t, t2) ∈ R2. We have γ(t) ∈ Dγ(t) and γ(t) ∈ D′

γ(t) for all t ∈ [−1, 1].
On the other hand, γ is admissible for f , since its corresponding control is

(u1, u2) = (1, 2), but it is not admissible for f ′, since its corresponding control is

uniquely determined as (u1, u2) = (1, 2/t) for a.e. t ∈ [−1, 1], which is not essentially

bounded (and even not integrable). This situation is compatible with the inclusion

D′ ⊂ D, because a horizontal vector field for f is not necessarily horizontal for f ′.

1.4.1 Length of admissible curves

When the derivative of an horizontal curve is defined, it belongs pointwisely to the

fibers of U along γ. Then, at any differentiability point of γ, the velocity norm of

any horizontal curve γ is defined by

∥γ̇(t)∥ = min{|u| : u ∈ Uγ(t), γ̇(t) = fu(γ(t))}. (1.17)
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Hence, it is well defined the function t 7→ u∗(t) which realizes the minimum in (1.17).

In particular, the norm of γ̇ is given, at any differentiability point of γ, by

∥γ̇(t)∥ = |u∗(t)|.

Notice that, if the function u∗(t) is measurable and essentially bounded, then it is in

fact a control associated to the curve γ.

Lemma 1.45. Let γ : [0, T ] → M be a horizontal curve and let Diff(γ) ⊂ [0, T ] be

set of differentiability points of γ. Let

u∗ : t ∈ Diff(γ) 7→ u∗(t) ∈ Uγ(t)

be the function defined by

u∗(t) = argmin{|u| : u ∈ Uγ(t), γ̇(t) = fu(γ(t))}. (1.18)

Then u∗ is a control for γ, i.e. it is measurable and essentially bounded.

Actually, the set [0, T ]\Diff(γ) has null measure. Thus, from now on, with a slight

abuse of notation we will consider the function u∗ introduced in (1.18) as defined on

the whole [0, T ].

Definition 1.46 (Minimal control). Given a horizontal curve γ : [0, T ] → M , the

control u∗ defined in (1.18) is called the minimal control of γ.

Remark 1.47. If the admissible curve γ : [0, T ] → M is differentiable, its minimal

control is defined everywhere on [0, T ]. Nevertheless, it could be not continuous, in

general. Indeed consider, as in Example 1.35, the free sub-Riemannian structure on

M = R2 given by

f(x, y, u1, u2) = (x, y, u1, u2x),

and let γ : [0, T ] → R2 defined by γ(t) = (t, t2). Its minimal control u∗(t) satisfies

(u∗1(t), u
∗
2(t)) = (1, 2), while (u∗1(t), u

∗
2(t)) = (1, 0), hence is not continuous.

Definition 1.48. Let γ : [0, T ]→ M be an admissible curve and let u∗ : [0, T ]→ U

be its minimal control. We define the sub-Riemannian length of γ as

L(γ) =

∫ T

0

∥γ̇(t)∥dt =
∫ T

0

|u∗(t)|dt

We say that γ is parameterized by arc length (or arc length parameterized if ∥γ̇(t)∥ =
1 for a.e. t ∈ [0, T ].
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The length of an admissible curve is, in other words, the L1-norm of its minimal

control. Since L∞([0, T ],Rm) ⊂ L1([0, T ],Rm), any admissible curve has finite length

and the definition is well posed. In particular, for an arc length parameterized curve

we have that L(γ) = T .

Lemma 1.49. The length of an admissible curve is invariant by Lipschitz reparam-

eterization.

Lemma 1.50. Every admissible curve of positive length is a Lipschitz reparameteri-

zation of an arc length parameterized admissible one.

Remark 1.51. Up to a reparameterization, we can always assume one of the following

for a horizontal curve γ

i) γ is defined on I and has constant speed;

ii) γ is defined on [0, T ] and has unit speed, i.e. it is parameterized by arc-length.

1.4.2 Sub-Riemannian distance and Chow-Rashevskii theo-

rem

Once defined horizontal curves with their length, one can define a distance in M in

the following natural way

Definition 1.52. Let M be a sub-Riemannian manifold with q0, q1 ∈ M . We define

the sub-Riemannian (or Carnot-Caratéodory) distance between q0 and q1 as

d(q0, q1) = inf{L(γ) | γ : [0, T ]→M admissible , γ(0) = q0, γ(1) = q1}

Let us recall that, according to Remark 1.28, every sub-Riemannian manifold

admits a generating family of horizontal vector fields {f1, . . . , fm}. In these optics,

an admissible curve can only move along the directions of the generating vector fields,

and namely the horizontal directions.

The Chow-Rashevskii Theorem ensures that the sub-Riemannian distance is well

defined, in spite of we restricted the admissible moving directions for horizontal curves.

Theorem 1.53 (Chow-Rashevskii). Let M be a sub-Riemannian manifold. Then

i) (M,d) is a metric space;

ii) The topology induced by (M,d) is equivalent to the manifold topology.

Remark 1.54. One of the main consequences contained in the proof of this result

is that, thanks to the bracket-generating condition, every couple of points in M is

always joined by an admissible curve. Hence, d(q0, q1) < +∞, for every q0, q1 ∈M .
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1.4.3 Length-minimizers

The aim of this section is to discuss the existence of length minimizing curves, i.e. of

those curves which, roughly speaking, realize the distance between couple of points

(for example, segments in Euclidean spaces).

Definition 1.55. Let γ : [0, T ] → M be an admissible curve. We say that γ is a

length-minimizer (or a length-minimizing curve) if

L(γ) = d(γ(0), γ(T )).

In other words, a length minimizing curve minimizes the length among admissible

curves with same endpoints. A key fact involving length minimizing curves is the

lower semicontinuity of the sub-Riemannian distance.

Theorem 1.56 (Lower semicontinuity of the distance). Let γn : [0, T ] → M be

a sequence of admissible curves parameterized by arc-length. Suppose that γn → γ

uniformly on [0, T ], with lim infn→∞ γn < +∞. Then γ is admissible and

L(γ) ≤ lim inf
n→∞

γn

Corollary 1.57. Let γn : [0, T ] → M be a sequence of length-minimizers parame-

terized by arc-length. Suppose that γn → γ uniformly on [0, T ]. Then γ is a length-

minimizer.

The (local) existence of length-minimizers is guaranteed by Theorem 1.58 below.

The proof relies upon both the lower semicontinuity of the distance and a natural

compactness assumption.

Theorem 1.58 (Existence of length-minimizers). Let M be a sub-Riemannian man-

ifold and q0 ∈ M . Assume that the closed ball Bq0(r) is compact, for some r > 0.

Then for all q ∈ Bq0(r) there exists a length minimizer joining q0 and q.

Corollary 1.59. Let M be a sub-Riemannian manifold and q0 ∈ M . There exists

ε > 0 such that for every q ∈ Bq0(ε) there is a minimizing curve joining q0 and q.

Remark 1.60. The compactness assumption in Theorem 1.58 is completely natural

and cannot be removed. In fact, the existence of length-minimizers between two

points is not true in general, as it happens, for example, for two symmetric points

with respect to the origin in M = Rn \ {0}, endowed with the Euclidean metric.

On the other hand, when length-minimizers exist between two fixed, they may

not be unique, as in the case of two antipodal points on the sphere S2.
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The existence of length-minimizing curves leads to a characterization of the metric

completeness of sub-Riemannian distance.

Proposition 1.61. Let M be a sub-Riemannian manifold. Then the three following

properties are equivalent

i) (M,d) is complete;

ii) Bq(r) is compact for every q ∈M and r > 0;

iii) There exists ε > 0 such that Bq(r) is compact for every q ∈M .

Remark 1.62. In the proof of proposition 1.61, the fact that the distance is sub-

Riemannian is used only to prove that “(i) implies (ii)”. Actually the same result

holds true in the more general context of length metric space, see [9, Chapter 2].

Combining this result with Corollary 1.59 we obtain the following corollary.

Corollary 1.63. Let (M,d) be a complete sub-Riemannian manifold. Then for every

q0, q1 ∈M there exists a length minimizer joining q0 and q1.

The results contained in this section provide the existence of length minimizers

in sub-Riemannian geometry, but they do not provide any additional regularity with

respect to admissible curves.

The regularity of length minimizing curves in sub-Riemannian geometry is an

open problem since 40 years, and, actually, it is the problem we face-up in this thesis.

In Section 1.5 below, the first order analysis of the end-point map emphasizes that

the root of the problem lies in the abnormal minimizers, i.e. in the singularities of

the end-point map.

In Chapters 2 and 3, we provide new interesting results concerning the regularity

of length minimizers.

1.4.4 Lipschitz vs absolutely continuous admissible curves

In Definition 1.36 we assumed admissible curves to be Lipschitz: we were in fact

defining Lipschitz-admissible curves, requiring the control u to be an L∞ function.

Notice that the length of a Lipschitz admissible curve is well defined as the L1-norm

of its minimal control, since L∞([0, T ]) ⊂ L1([0, T ]).

The same definitions can be given for absolutely continuous curves, as long as we

require the control u to be an L1 function.
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Definition 1.64. An absolutely continuous curve γ : [0, T ] → M is said to be AC-

admissible if there exists an L1 function u : t ∈ [0, T ] 7→ u(t) ∈ Uγ(t) such that

γ̇(t) = f(γ(t), u(t)), for a.e. t ∈ [0, T ].

Once defined AC-admissible curve, the minimal control is defined in the same

way as in (1.18) and Lemma 1.49 continues to hold. The length of an AC-admissible

curve is defined again as the L1-norm of its minimal control.

Being the set of absolutely continuous curve bigger than the set of Lipschitz ones,

one could expect that the sub-Riemannian distance between two points is smaller

when computed among all absolutely continuous admissible curves. However this is

not the case thanks to the invariance by reparameterization. Indeed Lemmas 1.49

and 1.50 can be rewritten in the absolutely continuous framework in the following

form.

Lemma 1.65. The length of an AC-admissible curve is invariant by AC reparame-

terization.

Lemma 1.66. Any AC-admissible curve of positive length is a AC reparameterization

of an arc length parameterized admissible one.

As a consequence of these results, if we define

dAC(q0, q1) = inf{L(γ) | γ : [0, T ]→MAC-admissible , γ(0) = q0, γ(T ) = q1},

we have the following statement

Proposition 1.67. For every q0, q1 ∈M , we have dAC(q0, q1) = d(q0, q1)

In a similar way, one can introduce W 1,2-admissible curve, i.e., those associated

with L2 controls. Since L2([0, T ]) ⊂ L1([0, T ]), their length remains defined as the L1-

norm of the minimal control. Again, with the same arguments as below, one obtains

dW 1,2 = d.

Remark 1.68. As a consequence of these considerations, we can work indifferently

with L∞, L2 or L1 controls for horizontal curves. For example, in Section 1.4 below

we define the end-point map in the setting of L2 controls.

Remark 1.69. More in general, for any p ∈ N, one can define W 1,p-admissible curves

associated with Lp controls. The resulting distance dW 1,p coincides with the sub-

Riemannian one.
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1.5 End-Point map: first-order analysis and Pon-

tryagin extremals

In this section we introduce the central object of our thesis: the end-point map. Its

first order differential analysis leads to the Pontryagin maximum principle, showing

the existence of two kinds of curves which are candidate to be length minimizing. In

particular, the singular case is the deep reason behind the regularity problem of the

geodesics.

Without loss of generality, we assume our sub-Riemannian manifold M to be

free of bundle rank m, and {f1, . . . , fm} will denote a generating family of smooth

horizontal vector fields. We will also consider, in order to clean up the notation,

horizontal curves defined on the interval I = [0, 1], instead of the interval [0, T ].

Fix q0 ∈M . For every control u ∈ L2(I;Rm), the corresponding trajectory based

at q0 is the curve that solves the Cauchy problem

γ̇(t) = fu(t)(γ(t)) =
m∑
i=1

ui(t)fi(γ(t)), γ(0) = q0, (1.19)

and it is denoted with γq0u , or, since q0 ∈M is fixed, simply with γu.

Let Uq0 ⊂ L2(I;Rm) be the set of controls u such that the corresponding trajectory

γu based at q0 is defined on the whole interval I. It is a well known fact that Uq0 is

an open subset of L2(I;Rm).

Definition 1.70. Let (M,U, f) be a free sub-Riemannian manifold, and fix q0 ∈M .

The end-point map based at q0 is the map

Eq0 : Uq0 →M, Eq0(u) = γu(1),

where γu : I →M is the unique solution of the Cauchy problem (1.19).

A first property of the end-point map, which is a consequence of the Chow-

Rashevskii theorem, is its openness.

Theorem 1.71. Let (M,U, f) be a free sub-Riemannian manifold, and fix q0 ∈ M .

Then the end-point map Eq0 is open at every u ∈ Uq0.

A second property of the end-point map is its smoothness in the Fréchet sense.

The following theorem provides in fact an explicit formula for its first differential.

Theorem 1.72. Let q0 ∈ M . Then, the end-point map Eq0 is smooth on Uq0. In

particular, its Fréchet differential DuEq0 : L
2(I;Rm)→ Tγu(1)M is given by

DuEq0(v) =

∫ 1

0

(P u
t,1)∗fv(t)

∣∣
γu(1)

dt. (1.20)
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Here P u
t,1 denotes the flow generated by u, while fv(t) =

∑m
i=1 vi(t)fi.

The proof of this theorem requires the introduction of a particular formalism of

calculus, named the Chronological Calculus. It will be the object of the next section.

1.5.1 Chronological calculus

In this section we develop a language, called chronological calculus, that will allow

us to work in an efficient way with flows of nonautonomous vector fields. The basic

idea of chronological calculus is to replace a non-linear finite-dimensional object, the

manifoldM , with a linear infinite-dimensional one, the commutative algebra C∞(M).

Definition 1.73. For every q ∈M , we define the evaluation linear functional as

q̂ : C∞(M)→ R, q̂(a) = a(q).

Notice that, since the set C∞(M) of smooth functions on M is an R-algebra with

the usual operation of pointwise addition and multiplication, for every q ∈ M , the

functional q̂ is a homomorphism of algebras, i.e., it satisfies q̂(a · b) = q̂(a) · q̂(b).
We also emphasize that if q(t) = qt is a smooth curve in M , then it defines the

curve of operator q̂t(a) = a(qt).

Definition 1.74. For every diffeomorphism P ∈ Diff(M), we define the linear oper-

ator

P̂ : C∞(M)→ C∞(M), P̂ (a) = a ◦ P,

which is an automorphism of the algebra C∞(M).

Remark 1.75. One can prove that for every nontrivial homomorphism of algebras

φ : C∞(M) → R there exists q ∈ M such that φ = q̂. Analogously, for every

automorphism of algebras φ : C∞(M) → C∞(M), there exists a diffeomorphism

P ∈ Diff(M) such that P̂ = φ. A proof of these facts is contained in [3, Appendix

A].

The “hat” operator for tangent vectors and, then, for vector fields, is defined via

the natural action of vectors of functions.

Definition 1.76. For every q ∈M and v ∈ TqM we define

v̂ : C∞(M)→ R, v̂(a) = ⟨dqa, v⟩.

Since the differential of a smooth function satisfies the Leibnitz rules, for every

v ∈ TqM the linear operator v̂ is a derivation on C∞(M),

v̂(a · b) = v̂(a)b(q) + a(q)v̂(b), ∀a, b ∈ C∞(M).
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Remark 1.77. If v ∈ TqM , then it is the tangent vector of a curve q(t) = qt such that

q(0) = q. For every a ∈ C∞(M), we have

d

dt

∣∣∣∣
t=0

a(qt) = ⟨dq(t)a, q̇t⟩|t=0 = ⟨dqa, v⟩.

Thus, it holds the operator identity

v̂ =
d

dt

∣∣∣∣
t=0

q̂t : C
∞(M)→ R.

Definition 1.78. Let X ∈ Vec(M) and let Pt = etX : C∞(M) → C∞(M) its flow.

We define

X̂ : C∞(M)→ C∞(M), (X̂a)(q) = ⟨dqa,X(q)⟩,

or, equivalently,

X̂ =
d

dt

∣∣∣∣
t=0

P̂t : C
∞(M)→ C∞(M).

Notice that the equivalence of the definitions given above is ensured by Remark

1.77. Consequently, we also have the Leibnitz rule

X̂(ab) = X̂(a)b+ aX̂(b), ∀a, b ∈ C∞(M).

Remark 1.79. In the following we will identify any object with its dual interpretation

as operator on functions and stop to use a different notation for the same object when

acting on the space of smooth functions.

If P is a diffeomorphism on M and q is a point on M the point P (q) is simply

represented by the usual composition q̂ ◦ P̂ of the corresponding linear operator.

Thus, when using the operator notation, composition works in the opposite side. To

simplify the notation in what follows we will remove the “hat” identifying an object

with its dual, but use the symbol “⊙” to denote the composition of these object, so

that P (q) will be q ⊙ P .
Analogously, the composition X ⊙ P of a vector field X and a diffeomorphism P

will denote the linear operator a 7→ X(a ◦ P ).

Lemma 1.80. Let q ∈M and let v ∈ TqM . For every P ∈ Diff(M) we have

dqP (v) = v ⊙ P,

as operators on C∞(M).

Proof. We have dqP (v) ∈ TP (q)M . Thus, its action on a function a ∈ C∞(M) is given

by

dqP (v)(a) = dP (q)a(dqP (v)) = dq(a ◦ P )(v) = v(a ◦ P ) = (v ⊙ P )(a).
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Remark 1.81. Recall that, if X ∈ Vec(M) is a smooth vector field, then its pushfor-

ward P∗X through a smooth diffeomorphism P is given by (P∗X)(q) = dP−1(q)P (X(P−1(q))).

Therefore, as a consequence of Lemma 1.80, we have

P∗X = P−1 ⊙X ⊙ P,

as operators on C∞(M).

Definition 1.82. Let P ∈ Diff(M). We define the adjoint operator of P on smooth

vector fields as

AdP : Vec(M)→ Vec(M), AdP (X) = P ⊙X ⊙ P−1.

With this notation, we have

P∗X = (AdP−1)X.

Now consider a nonautonomous vector field Xt. Using the operatorial notation

introduced above, the corresponding nonautonomous ODE on M reads

d

dt
q(t) = q(t)⊙Xt. (1.21)

As discussed in Section 1.1, the solution to (1.21) defines a flow, i.e. a family of

diffeomorphisms Ps,t on M . In terms of chronological calculus, it holds the following

lemma.

Lemma 1.83. Let Ps,t be the flow defined by a nonautonomous vector field Xt. Then

Ps,t satisfies the operatorial Cauchy problem
d

dt
Ps,t = Ps,t ⊙Xt,

Ps,s = id
(1.22)

Definition 1.84. We call the solution to (1.22) the right chronological exponential,

and we use the notation

Ps,t =
−→exp

∫ t

s

Xτdτ. (1.23)

Remark 1.85. The notation introduced in (1.23) is consistent with the exponential

notation defined for autonomous vector fields. Indeed, if Xt = X ∈ Vec(M) is

autonomous, we have

−→exp
∫ t

s

Xdτ = e(t−s)X ,

which is in fact the flow of X based at the time s.
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Remark 1.86. For a nonautonomous vector field Xt, we have in general

−→exp
∫ t

s

Xτdτ ̸= e
∫ t
s Xτdτ . (1.24)

In (1.24) it holds the equality if and only if the vector fields commute at every time,

i.e. [Xs, Xt] = 0 for every s, t ∈ R.

Remark 1.87 (Volterra series). Identity (1.23) can be rewritten in the integral form

Ps,t = id+

∫ t

s

Ps,τ ⊙Xτdτ (1.25)

Denoting ∆k(s, t) = {(t1, . . . , tk) ∈ Rk | s ≤ tk ≤ · · · ≤ t1 ≤ t} the k-dimensional

simplex, the iteration of (1.25) N times gives

Ps,t = id+
N−1∑
k=1

∫
∆k(s,t)

Xtk ⊙ · · · ⊙Xt1dLk +RN ,

where the remainder RN is defined by

RN =

∫
∆N (s,t)

Ps,tN ⊙XtN ⊙ · · · ⊙Xt1dLN ,

and Lk denotes the standard k-dimensional Lebesgue measure. Formally, letting

N →∞ and assuming that RN → 0, we can write

Ps,t = id+
∞∑
k=1

∫
∆k(s,t)

Xtk ⊙ · · · ⊙Xt1dLk.

The convergence of Volterra series and the estimates for the remainder term RN

plays a role in the proof of Theorem 1.72. Since these arguments are quite long, we

do not develop them, and we refer the reader to [2, Chapter 6] for a very exhaustive

and detailed discussion.

Proposition 1.88. Assume that the flow Ps,t satisfies the Cauchy problem (1.22).

Then the inverse flow Qs,t := (Ps,t)
−1 satisfies the Cauchy problem

d

dt
Qs,t = −Xt ⊙Qs,t,

Qs,s = id.
(1.26)

Definition 1.89. We call a solution Qs,t to (1.26) the left chronological exponential,

and we use the notation

Qs,t =
←−exp

∫ t

s

(−Xτ )dτ.
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Lemma 1.90. Let Ps,t =
−→exp

∫ t
s
Xτdτ be a nonautonomous flow. Then AdPs,t is a

solution to the Cauchy problem

Ȧt = At ⊙ adXt, As = id, (1.27)

where, as usual, adX : Y 7→ [X, Y ] is the adjoint action on the Lie algebra of vector

fields.

Remark 1.91. As a chronological exponential, we have the identity

Ad

(
−→exp

∫ t

s

Xτdτ

)
= −→exp

∫ t

s

adXτdτ (1.28)

In particular, combining (1.27) and (1.28), in the case of autonomous vector fields we

have

e−tX∗ = etadX .

We conclude this section providing a Variation formula for the flow of the sum of

two nonautonomous vector fields Xt, Yt. Namely, let us consider the Cauchy problem

Ȧt = At ⊙ (Xt + Yt), As = id. (1.29)

Here, we see Yt as a perturbation of Xt, and we want to describe the solution to the

perturbed equation (1.29) as a perturbation of the solution to the original one.

Proposition 1.92 (Variation formula). Let Xt, Yt be two nonautonomous vector

fields. Then, denoting Ps,t =
−→exp

∫ t
s
Xτdτ , one has

−→exp
∫ t

s

(Xτ + Yτ )dτ = −→exp
∫ t

s

Xτdτ ⊙−→exp
∫ t

s

(
−→exp

∫ τ

t

adXσdσ

)
Yτdτ

= Ps,t ⊙−→exp
∫ t

s

(Pτ,t)∗Yτdτ.

(1.30)

The whole formalism of chronological calculus, and in particular the Variation for-

mula (1.30), will be used in the following and in Chapter 2 to compute the differentials

of the end-point map.

1.5.2 Regularity of the end-point map: proof of Theorem

1.72

This section is devoted to the proof of Theorem 1.72. The proof is divided into two

steps: in the first step, we compute the differential of the end-point map at u = 0,

while in a second moment we prove in fact formula (1.20).
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Step 1. Using the formalism of chronological calculus, the end-point map can be written

as an operator on C∞(M) in the following way

Eq0(v) = q0 ⊙−→exp
∫ 1

0

fv(t)dt, v ∈ Uq0 .

Then, for any a ∈ C∞(M), we can write the first order Volterra expansion of

Eq0(v) evaluated at a, namely

Eq0(v)(a) = q0 ⊙
(
id+

∫ 1

0

fv(t)dt+R2(v)

)
(a).

The convergence of the Volterra series (discussed in the previous section) pro-

vides, for every a ∈ C∞(M), the following estimate

|q0 ⊙R2(v)(a)| = O(∥v∥2L2),

whenever v is sufficiently small. Therefore, we have∣∣∣∣(Eq0(v)− q0 − q0 ⊙ ∫ 1

0

fv(t)dt

)
(a)

∣∣∣∣ = O(∥v∥2L2).

Since q0 = Eq0(0) and the map

v 7→ q0 ⊙
∫ 1

0

fv(t)dt =

∫ 1

0

fv(t)(q0)dt

is linear, we have the differentiability of the end-point map at 0. In particular,

d0Eq0(v) =

∫ 1

0

fv(t)(q0)dt =

∫ 1

0

(P 0
t,1)∗fv(t)(q1)dt,

where the last equality follows from P 0
t,1 = id.

Step 2. To compute the Taylor expansion of the end-point map at a general u ∈ Uq0 ,
let us consider the map

v 7→ Eq0(u+ v) = q0 ⊙−→exp
∫ 1

0

fu(t)+v(t)dt,

for small v ∈ L2. Using the variation formula, we get

Eq0(u+ v) = q0 ⊙ P u
0,1 ⊙−→exp

∫ 1

0

(P u
t,1)∗fv(t)dt.

We set q1 = Eq0(u) = q0 ⊙ P u
0,1, and

Gu
q1
(v) = q1 ⊙−→exp

∫ 1

0

(P u
t,1)∗fv(t)dt. (1.31)
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We proceed in a similar way as in Step 1, but for the map Gu
q1

to compute

its differential at 0. Namely, we replace q0 with q1, and fv(t) with (P u
t,1)∗fv(t),

obtaining

d0G
u
q1
(v) =

∫ 1

0

(P u
t,1)∗fv(t)(q1)dt.

As operators on smooth functions, we have∣∣(Gu
q1
(v)−Gu

q1
(0)− d0Gu

q1
(v)
)
(a)
∣∣ = O(∥v∥2L2),

for every a ∈ C∞(M). The last identity, read in terms of the end-point map

Eq0 , gives

duEq0(v) = d0G
u
q1
(v) =

∫ 1

0

(P u
t,1)∗fv(t)(q1)dt.

This complete the proof of Theorem 1.72.

Definition 1.93. The map Gu
q1

defined in (1.31) is called variation map.

Remark 1.94. The definition of variation map is naturally suggested by the Variation

formula applied to the end-point map. It is used to move local differential properties

of the end-point to the origin. Whit similar computations and arguments, one can

deduce the the higher order degree of the Taylor expansion of the end-point map.

Actually, the higher order differentials have to be defined in the correct domain. We

develop this theory in the next chapter of this thesis.

1.5.3 Lagrange multiplier rule and Pontryagin extremals

The aim of this section is to apply the result of Theorem 1.95 below to the case when

F = Eq0 is the end-point map based at q0 and φ = J is the sub-Riemannian energy

(see Definition 1.98 below), in order to obtain necessary condition for an admissible

curve to be a length minimizer.

Theorem 1.95 (Lagrange multipliers rule). Let H be an Hilbert space and let M be

a smooth n-dimensional manifold. Let U ⊂ H be an open subset of H. Consider two

smooth maps φ : U → R and F : U →M . Fix a point q ∈M and assume that u ∈ U
is a solution to the minimization problem

min{φ(v) |F (v) = q} = minφ
∣∣
F−1(q)

.

Then there exists a non-null (λ, ν) ∈ T ∗
qM × R, i.e. (λ, ν) ̸= (0, 0), such that

λduF + νduφ = 0. (1.32)
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Remark 1.96. We point out that formula (1.32) means that for every v ∈ H = TuU
one has

⟨λ, duF (v)⟩+ νduφ(v) = 0.

The compact notation in (1.32) will be used also in the sequel, with the same meaning.

Notice that, in the setting of Theorem 1.95, the pair (λ, ν) has to satisfy, up to a

scalar multiplication, at least one of the following condition:

(N) ν = −1. Then from (1.32) we deduce

λduF = duφ; (1.33)

(A) ν = 0. Then λ ̸= 0, and from (1.32) we deduce

λduF = 0.

The case (N) is called normal, while the case (A) is called abnormal or singular.

Remark 1.97. Classically, Theorem 1.95 appears with H = Rn = (x1, . . . , xn), M =

Rm = (x1, . . . , xm), u = x̄ = argmin{φ(x)|F (x) = 0} ∈ Rn, and one adds the

assumption Jx̄F ̸= 0, removing the possibility for x̄ to be abnormal. In this case,

combining equation (1.33) and the bound F (x̄) = 0, one gets

∇(φ− λ · F )(x̄) = ∇L(x̄, λ) = 0.

The vector λ is called Lagrange multiplier and the function L(x, λ) = φ(x)−λ ·F (x)
is called Lagrangian.

Definition 1.98. We define the energy functional in the following way

J : L2(I,Rm)→ R, J(u) =
1

2

∫ 1

0

|u(t)|2dt = ∥u∥2L2 .

When u is the control of an admissible curve γ, then J(u) is called the sub-Riemannian

energy of γ. Sometimes we also write J(γ) instead of J(u).

Remark 1.99. While the length is invariant by reparameterization (see Lemma 1.49), J

is not. Indeed consider, for every α > 0, the reparameterized curve γα : [0, 1/α]→M ,

γα(t) = γ(αt). Using that γ̇α(t) = αγ̇(αt), we have

J(γa) = αJ(γ)

Thus, if the final time is not fixed, the infimum of J , among admissible curves joining

two fixed points, is always zero.
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The following lemma relates minimizers of the energy with fixed final time with

minimizers of the length.

Lemma 1.100. Fix two points q0, q1 ∈ M . Let L and J be, respectively, the sub-

Riemannian length and energy functionals. An admissible curve γ : I → M is a

solution to the minimum problem

min{J(u)|Eq0(u) = q1},

if and only if it solves the minimum problem

min{L(u)|Eq0(u) = q1},

and has constant speed.

Notice that in the previous Lemma we have fixed the final time to be 1, avoiding

the problem appearing in Remark 1.99. Then, by the Lagrange multiplier rule one

obtains the following result as a necessary condition for an admissible curve to be a

length minimizer.

Proposition 1.101. Assume that an admissible curve γ : I → M u is a length

minimizer. Let u be the minimal control associated to γ. Then there exists (λ, ν) ∈
T ∗
qM × R such that (λ, ν) ̸= (0, 0), and

λduEq0 + νduJ = 0. (1.34)

Remark 1.102. Since J(v) = 1
2
∥v∥2L2 , then duJ(v) = (u, v)L2 and, identifying L2 with

its dual, we have duJ = u.

Theorem 1.103 (Pontryagin maximum principle). Let q0 ∈M . Let u be the minimal

control corresponding to a curve γ : I →M based at q0, namely

γ̇(t) = fu(t)(γ(t)) a.e. on I, γ(0) = q0 ∈M.

Suppose that γ is length-minimizing and parameterized with constant speed (or, equiv-

alently, energy-minimizing). Finally, let q1 = Eq0(u) = γ(1). Then there exists

λ1 ∈ T ∗
q1
M such that, defining λ(t) = (P u

t,1)
∗λ1, we have at least one of the following

(N) For every i = 1, . . . ,m we have

ui(t) = ⟨λ(t), fi(γ(t))⟩, for a.e. t ∈ I, (1.35)

and this occurs if and only if u satisfies (1.34) with (λ, ν) = (λ1,−1), namely

λ1duEq0 = u (1.36)
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(A) For every i = 1, . . . ,m we have

0 = ⟨λ(t), fi(γ(t))⟩, for a.e. t ∈ I,

and this occurs if and only if u satisfies (1.34) with (λ, ν) = (λ1, 0), namely

λ1duEq0 = 0

Remark 1.104. Since q1 = γ(1), λ1 ∈ T ∗
q1
M and P u

s,t is the flow of γ in M , then

λ(t) = (P u
t,1)

∗λ1 is a lift of γ(t), i.e.

π(λ(t)) = γ(t), ∀t ∈ I.

Proof. Let us prove (N). The proof of (A) is analogous.

Assume that u satisfies (1.35) for some λ1, and let us prove that the curve defined

by λ(t) = (P u
t,1)

∗λ1 satisfies (1.36), which means that for every v ∈ L2(I,Rm) we have

⟨λ1, duEq0(v)⟩ = (u, v)L2 . (1.37)

Using (1.20), the left hand side in (1.37) reads

⟨λ1, duEq0(v)⟩ =
∫ 1

0

⟨λ1,
(
(P u

t,1)∗fv(t)
)
(q1)⟩dt =

∫ 1

0

⟨λ1, (P u
t,1)∗

(
fv(t)((P

u
t,1)

−1q1)
)
⟩dt

=

∫ 1

0

⟨(P u
t,1)

∗λ1, fv(t)(γ(t))⟩dt =
∫ 1

0

⟨λ(t), fv(t)(γ(t))⟩dt

=

∫ 1

0

m∑
i=1

⟨λ(t), fi(γ(t))⟩vi(t)dt.

Then (1.37) becomes∫ 1

0

m∑
i=1

⟨λ(t), fi(γ(t))⟩vi(t)dt =
∫ 1

0

m∑
i=1

ui(t)vi(t)dt.

Since v is arbitrary, this implies (1.35).

Conversely, let us assume there exists λ1 ∈ Tq1M such that the curve defined

by λ(t) = (P u
t,1)

∗λ1 satisfies (1.35). Then, following the above computations in the

opposite direction, one obtains exactly (1.36).

The Pontryagin maximum principle provides a first-order necessary condition for

a curve γ to be length-minimizing, leading to the following definition

Definition 1.105. Let γ : I →M be a horizontal curve based at q0 with correspond-

ing control u. Assume that γ and u satisfy at least one condition between (N) and

(A) of Theorem 1.103 . Then we give the following definitions
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i) The curve λ : I → T ∗M is called adjoint curve;

ii) The couple (u(t), λ(t)) is called sub-Riemannian extremal. When the extremal

satisfies (N) it is called normal extremal. Otherwise, it is said to be an abnormal

or a singular extremal.

Remark 1.106. We emphasize that a length minimizer is necessarily an extremal

(normal, abnormal or both), as a consequence of the Lagrange multipliers rule. Con-

versely, there are many examples of extremals which are not length minimizers.

1.5.4 The Hamiltonian viewpoint

In this section, we use the Hamiltonian viewpoint of Pontryagin extremals to prove

regularity of normal ones, and to give some geometric characterization of abnormal

extremals.

Definition 1.107. Let (M,U, f) be a free sub-Riemannian manifold with generating

family {f1, . . . , fm}. We define the Hamiltonian linear on fibers functions of M as

hi : T
∗M → R, hi(λ) = ⟨λ, fi(q)⟩, q = π(λ), i = 1, . . . ,m.

The associated vector fields h⃗i ∈ Vec(T ∗M) are called the Hamiltonian vector fields

of M .

Using Definition 1.107 and the language of Section 1.1, Theorem 1.103 immedi-

ately rewrites itself in the following way.

Theorem 1.108. Let γ : [0, T ] → M be an admissible curve which is a length-

minimizer, parameterized by constant speed. Let ū be the corresponding minimal

control. Then there exists a Lipschitz curve λ(t) ∈ T ∗
γ(t)M such that

λ̇(t) =
m∑
i=1

ūi(t)⃗hi(λ(t)), for a.e. t ∈ [0, T ],

and one of the following conditions is satisfied:

(N) hi(λ(t)) = ūi(t), for i = 1, . . . ,m;

(A) hi(λ(t)) = 0, for i = 1, . . . ,m.

Moreover in case (A) one has λ(t) ̸= 0 for all t ∈ [0, T ].
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Notice that Theorem 1.108 says that normal and abnormal extremals appear as

solution of a Hamiltonian system. Nevertheless, this Hamiltonian system is a priori

nonautonomous and depends on the trajectory itself by the presence of the control ū

associated with the extremal trajectory.

Moreover, the actual formulation of Theorem 1.108 for the necessary optimality

condition still does not clarify if the extremals depend on the choice of a generating

family {f1, . . . , fm} of the sub-Riemannian structure.

The rest of the section is devoted to the geometric intrinsic description of normal

and abnormal extremals, which relies upon the study of the intrinsic sub-Riemannian

Hamiltonian

Definition 1.109. Let M be a sub-Riemannian manifold. The (intrinsic) sub-

Riemannian Hamiltonian is the function on T ∗M defined as follows

H : T ∗M → T ∗M, H(λ) = max
u∈Uq

(
⟨λ, fu(q)⟩ −

1

2
|u|2
)
, q = π(λ). (1.38)

Proposition 1.110. The sub-Riemannian Hamiltonian H is smooth and quadratic

on fibers. Moreover, for every generating family {f1, . . . , fm} of the sub-Riemannian

structure, the sub-Riemannian Hamiltonian H is written as follows

H(λ) =
1

2

m∑
i=1

⟨λ, fi(q)⟩2 =
1

2

m∑
i=1

hi(λ)
2, λ ∈ T ∗

qM, q = π(λ). (1.39)

Proof. In terms of a generating family {f1, . . . , fm}, the sub-Riemannian Hamiltonian

(1.38) is written as follows

H(λ) = max
u∈Rm

(
m∑
i=1

⟨λ, fi(q)⟩ −
1

2

m∑
i=1

|ui|2
)

(1.40)

Differentiating (1.40) with respect to ui, one gets that the maximum in the right hand

side is attained for ui = hi(λ), from which formula (1.39) follows. The fact that H is

smooth and quadratic on fibers then easily follows from (1.39).

Remark 1.111. The sub-Riemannian Hamiltonian H is intrinsic in the sense that

equivalent sub-Riemannian structures induce the same Hamiltonian on M .

Remark 1.112 (Differential of the sub-Riemannian Hamiltonian). Let us denote Hq =

H|T ∗
qM the restriction on fibers of the sub-Riemannian Hamiltonian. For λ ∈ T ∗

qM ,

the differential dλHq : T
∗
qM → R is a linear form, hence it can be canonically identified

with an element of TqM . By (1.39), it follows that, for every generating family

{f1, . . . , fm}, this canonical identification is given by

dλHq =
m∑
i=1

hi(λ)fi(q)
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and, namely

dλHq : T
∗
qM → R, dλHq =

m∑
i=1

hi(λ)hi.

Normal extremals

In this paragraph we summarize the fundamental properties of normal extremals,

that are smoothness and minimality.

Theorem 1.113. A Lipschitz curve λ : [0, T ] → T ∗M is a normal extremal if and

only if it is a solution of the Hamiltonian system

λ̇(t) = H⃗(λ(t)).

Moreover, given a normal extremal, the corresponding normal extremal trajectory

λ(t) = π(λ(t)) is smooth and has constant speed satisfying

1

2
∥γ̇(t)∥2 = H(λ(t)), ∀t ∈ [0, T ]

Remark 1.114. In canonical coordinates λ = (p, x) in T ∗M , H is quadratic with

respect to p and

H(p, x) =
1

2

m∑
i=1

⟨p, fi(x)⟩2.

The Hamiltonian system associated with H, in these coordinates, is written as follows
ẋ =

∂H

∂p
=

m∑
i=1

⟨p, fi(x)⟩fi(x),

ṗ = −∂H
∂x

=
m∑
i=1

⟨p, fi(x)⟩fi(x)
(1.41)

From here it is easy to see that if λ(t) = (p(t), x(t)) is a solution of (1.41), then also

the rescaled extremal αλ(αt) = α(p(αt), x(αt)) is a solution of the same Hamiltonian

system, for every α > 0.

Corollary 1.115. A normal extremal trajectory is parameterized by constant speed.

In particular it is arc length parameterized if and only if its extremal lift is contained

in the level set H−1(1/2).

Finally, a fundamental result about local optimality of normal trajectories is that

small pieces of a normal trajectory are length minimizers. The proof of the following

statement is really nontrivial.
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Theorem 1.116. Let γ : I → M be a sub-Riemannian normal extremal. Then, for

every t ∈ [0, 1) there exists ε0 > 0 such that for 0 < ε < ε0

i) γ|[τ,τ+ε] is a length minimizer;

ii) γ|[τ,τ+ε] is the unique length minimizer joining γ(τ) and γ(τ + ε), up to repa-

rameterization.

Abnormal extremals

The regularity problem of sub-Riemannian geodesics lies, as emphasized many times

in this thesis, on the presence of abnormal minimizers, since it is not possible to

determine a priori their regularity. In the next chapters, we provide new regularity

results for abnormal extremals when M is a sub-Riemannian manifold of constant

rank.

In this section, we provide a simple geometric characterization of abnormal ex-

tremals, always ifM has constant rank m. In spite of 0 is never a regular point for the

sub-Riemannian Hamiltonian H, in this case, thanks to the constant rank theorem,

the set H−1(0) defined by (1.40) is a smooth submanifold of T ∗M of codimension m.

Let us recall that σ denotes the canonical symplectic form of M (see paragraph 4

of Section 1.1 above).

Proposition 1.117. Let H be the sub-Riemannian Hamiltonian associated with a

sub-Riemannian structure of constant rank. Then a Lipschitz curve on H−1(0) is

a characteristic curve for σ|H−1(0) if and only if it is the reparameterization of an

abnormal extremal.

Remark 1.118. From Proposition 1.117 it follows that abnormal extremals do not

depend on the sub-Riemannian metric, but only on the distribution. Indeed the set

H−1(0) is characterized as the annihilator ∆⊥ of the distribution

H−1(0) = {λ ∈ T ∗M | ⟨λ, v⟩ = 0, ∀ v ∈ ∆π(λ)} = ∆⊥ ⊂ T ∗M.

Here the orthogonal is meant in the duality sense. Then, the notion of being abnormal

is an intrinsic notion of the sub-Riemannian structure.
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Chapter 2

Higher order necessary conditions

for the minimality of abnormal

curves

Let (M,∆, g) be a sub-Riemannian manifold of constant rank d with a fixed generating

family f1, . . . , fd. We also fix a point q0 ∈ M and we denote the end-point map

E = Eq0 .

In the end of the previous chapter, we give some necessary conditions of the first

order for the minimality of abnormal admissible curves, also known as the Pontryagin

maximum principle (Theorem 1.103).

In this section, we develop a deeper study of he end-point map, looking for higher

order necessary conditions for the minimality. Here, for “higher order” we mean

conditions which comes from the study of the n-th differential of the end-point map.

Actually, the theory is well-known till the second order and was initiated by Goh

[11] and developed by Agrachev and Sachkov in [3], and the complete proof of the

following theorem is given in [1].

Theorem 2.1. Let M be a sub-Riemannian manifold and f1, . . . , fm be a generating

family. Let u be an abnormal minimizer, let q1 = E(u), and let λ1 ∈ T ∗
q1
M satisfy

λ1duE = 0. Assume that ind−λ1D2
uE < +∞. Then the following conditions are

satisfied:

i) ⟨λ(t), [fi, fj](γ(t))⟩ = 0, for all t ∈ I, and for every i, j = 1, . . . , d.

ii) ⟨λ(t), [fu(t), [fv, fv]](γ(t))⟩ ≥ 0, for a.e. t ∈ I, and for every v ∈ Rd.

Here we are using the notations of Theorem 1.103: λ(t) = (P u
t,1)

∗λ1, for t ∈ I, and
γ(t) = π(λ(t)) are respectively the extremal and the trajectory associated with the
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control u and with the final covector λ1.

We clarify the notations used in Theorem 2.1. The map D2
uE : ker(duE) →

coker(duE) is the second intrinsic differential, also called the intrinsic Hessian, of the

end-point map at the point u, and λ1D2
uE : ker duE → R is a scalar quadratic defined

via the natural action of λ1 on Im(duE)
⊥. The general definition of the intrinsic

differentials of a smooth map F : X → Rm from a Banach space X onto Rm is

given in Definition 2.6 below. Instead, ind−λ1D2
uE denotes the (negative) index of

the end-point map at the point u.

Definition 2.2. Let Q : V → R be a quadratic form defined on a vector space V .

The index (or negative index ) of Q is the maximal dimension of a negative subspace

of Q:

ind−Q = sup{dimW |Q|W\0 < 0}.

Recall that in the finite-dimensional case, the negative index coincides with the num-

ber of negative eigenvalues in the diagonal form of Q.

Remark 2.3. When the index of the end-point map is finite, an oppen mapping ar-

gument can be applied to the extended end-point map, similarly to the case of the

Pontryagin maximum principle, providing the results of Theorem 2.1.

The statements (i) and (ii) of Theorem 2.1 are called, respectively, Goh conditions

and Generalized Legendre conditions for abnormal minimizers. In particular, Goh

conditions are necessary conditions for the minimality of the second order, in the

sense that a study of the second differential of E involves the Lie brackets of length

2 of the generating vector fields f1, . . . , fd.

The goal of this chapter is to extend the Goh conditions of order 2 to any order

n ≥ 3 and to get necessary conditions involving brackets of n vector fields through

the study of higher order differentials of the end-point map. In particular, our theory

shows a clear connection between the geometry of ∆ and the expansion of the end-

point map: the commutators of length n of the generating vector fields appear in the

n-th order term of the Taylor expansion of the end-point map.

Our studies are limited to the case of abnormal curves of corank 1, i.e. such that

Im(duF ) has codimension 1 in Tγu(1)M . Our main result is the following.

Theorem 2.4. Let (M,∆, g) be a sub-Riemannian manifold, γ = γu ∈ AC(I;M) be

a strictly singular length minimizing curve of corank 1, and assume that

DhuE = 0, h = 2, . . . , n− 1. (2.1)
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Then any adjoint curve λ ∈ AC(I;T ∗M) satisfies

⟨λ(t), [fjn , [. . . [fj2 , fj1 ] . . . ]](γ(t))⟩ = 0,

for all t ∈ I and for all j1, . . . , jn = 1, . . . , d.

We call the differentials DhuF appearing in (2.1) intrinsic differentials of E. Their

definition is given in Definition 2.6 below.

As in the cases of the Pontryagin maximum principle and of the Goh conditions,

the proof of Theorem 2.4 relies on an open mapping argument applied to the extended

end-point map FJ = (F, J) : X →M ×R, where J(u) = 1
2
∥u∥2

L2(I;Rd)
is the energy of

γ = γu. Motivated by this application, in Section 2.2 we develop a theory about open

mapping theorems of order n for functions F : X → Rm between Banach spaces. In

our opinion, this preliminary study is worth of interest on its own. It adapts in a

geometrical perspective some ideas presented in [25].

2.1 Intrinsic differentials

Let X be a Banach space and F ∈ C∞(X;Rm), m ∈ N, be a smooth map. For any

n ∈ N we define the n-th differential of F at 0 ∈ X as the map dn0F : X → Rm

dn0F (v) =
dn

dtn
F (tv)

∣∣
t=0
, v ∈ X.

With abuse of notation, the associated n-multilinear differential is the map dn0F :

Xn → Rm defined in one of the following two equivalent ways, for v1, . . . , vn ∈ X,

dn0F (v1, . . . , vn) =
∂n

∂t1 . . . ∂tn
F
( n∑
h=1

thvh

)∣∣∣∣
t1=···=tn=0

=
1

n!

∂n

∂t1 . . . ∂tn
dn0F

( n∑
h=1

thvh

)∣∣∣∣
t1=···=tn=0

.

(2.2)

We have the identity dn0F (v) = dn0F (v, . . . , v). The differential dn0F is symmetric, in

the sense that dn0F (v1, . . . , vn) = dn0F (vσ1 , . . . , vσn) for any permutation σ ∈ Sn. Here
and hereafter, we use the notation σi = σ(i) for a permutation σ and for i = 1, . . . , n.

A different n-multilinear differential for F at 0 is the map Dn
0F : Xn → Rm

defined by the formula

Dn
0F (v1, . . . , vn) =

dn

dtn
F
( n∑
h=1

thvh
h!

)∣∣∣∣
t=0

, v1, . . . , vn ∈ X. (2.3)

The multilinear differential Dn
0F is not symmetric.
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The n-multilinear differentials dn0F and Dn
0F are related via the Faà di Bruno

formula [15]. We denote by In the set of n-multi-indices, i.e.,

In = {α | α = (α1, . . . , αn) ∈ Nn} ,

where N = {1, 2, . . . } starts from 1. When the naturals start from 0 we use the

notation I 0
n . Also, for d ∈ N we use the notation In,d for the sets of n-multi-indices

α = (α1, . . . , αn) ∈ In with values in {1, . . . , d}n. For α ∈ In, we use the standard

notation |α| = α1 + · · · + αn for the length (or weight) of α and α! = α1! . . . αn! for

its factorial.

Proposition 2.5 (Faà di Bruno). For any n ∈ N and v1, . . . , vn ∈ X we have

Dn
0F (v1, . . . , vn) =

n∑
h=1

∑
α∈Ih,|α|=n

n!

h!α!
dh0F (vα), (2.4)

where, for α ∈ Ih, we set vα = (vα1 , . . . , vαh
) ∈ Xh.

The n-differential Dn
0F , n ≥ 2, does not transform covariantly, in the sense that,

for a generic diffeomorphism P ∈ C∞(Rm;Rm) the differential Dn
0 (P ◦ F ) depends

also on the derivatives of P of order 2 and higher. In order to have an “intrinsic”

n-differential, we need to restrict Dn
0F to a suitable domain and project it onto

coker(d0F ). We denote by proj : Rm → coker(d0F ) the standard projection (quotient

map). We can fix coordinates in X and Rm in order to have the splittings

X = ker(d0F )⊕ Rm−ℓ, Rm = Rℓ ⊕ Im(d0F ), (2.5)

where ℓ = dim(coker(d0F )) and d0F : Rm−ℓ → Im(d0F ) is a linear isomorphism.

Definition 2.6 (Intrinsic n-differential). Let F ∈ C∞(X;Rm). By induction on

n ≥ 2, we define a domain dom(Dn0F ) ⊂ Xn−1 and a map Dn0F : dom(Dn0F ) →
coker(d0F ), called intrinsic n-differential of F at 0, in the following way.

When n = 2 we let dom(D2
0F ) = {v ∈ X | D0F (v) = 0} = ker(d0F ) ⊂ X and we

define D2
0F : dom(D2

0F )→ coker(d0F )

D2
0F (v) = proj(D2

0F (v, ∗)), v ∈ dom(D2
0F ). (2.6)

Inductively, for n > 2 we set

dom(Dn0F ) =
{
v ∈ dom(Dn−1

0 F )×X | Dn−1
0 F (v) = 0

}
⊂ Xn−1,

and we define Dn0F : dom(Dn0F )→ coker(d0F ) as

Dn0F (v) = proj(Dn
0F (v, ∗)), v ∈ dom(Dn0F ). (2.7)
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Remark 2.7. The definition of Dn0F in (2.6) and (2.7) does not depend on the last

argument ∗ ∈ X of Dn
0F . Indeed, by formula (2.4) with v = (v1, . . . , vn), so with

∗ = vn in the notation above, we have

Dn
0F (v) = d0F (vn) +

n∑
h=2

∑
α∈Ih,|α|=n

n!

h!α!
dh0F (vα), (2.8)

where vα does not contain vn when |α| = n and h ≥ 2, and proj(d0F (vn)) = 0.

While dom(D2
0F ) = ker(d0F ) has finite codimension in X, this might not be the

case when n > 2. In order to develop the theory within a consistent setting we need

some additional assumption on F .

Proposition 2.8. Let F ∈ C∞(X;Rm) be a smooth map. If Dh0F = 0 for all 2 ≤ h <

n, with n ≥ 3, then dom(Dn0F ) ⊂ Xn−1 is a nonempty affine bundle over ker(d0F )

that is diffeomorphic to ker(d0F )
n−1.

Proof. The proof is by induction on n ≥ 3. When n = 3 the domain of D3
0F is

dom(D3
0F ) =

{
(v1, v2) ∈ ker(d0F )×X | D2

0F (v1, v2) = 0
}
,

where, as in (2.8), D2
0F (v1, v2) = d0F (v2) + d20F (v1, v1).

We use the splittings (2.5). Since the map d0F : Rm−ℓ → Im(d0F ) is invertible,

we can define φ ∈ C∞(ker(d0F ),Rm−ℓ) letting

φ(v1) = −(d0F )−1(d20F (v1, v1)).

This is well-defined because, by assumption, we have D2
0F = 0 and this implies

proj(d20F (v1, v1)) = 0. Now, letting

Φ(v1, v2) = (v1, v2 + φ(v1)),

we obtain a diffeomorphism Φ : ker(d0F )
2 → dom(D3

0F ).

Suppose the theorem is true for n and let us prove it for n + 1. Our inductive

assumption is the existence of a diffeomorphism Φ ∈ C∞(ker(d0F )
n−1, dom(Dn0F )).

Now we have

dom(Dn+1
0 F ) = {(v, w) ∈ dom(Dn0F )×X | Dn

0F (v, w) = 0}
=
{
(Φ(u), w) ∈ Xn | u ∈ ker(d0F )

n−1, Dn
0F (Φ(u), w) = 0

}
,

and, by (2.8), equation Dn
0F (Φ(u), w) = 0 reads

w = ψ(u) = −(d0F )−1

n∑
h=2

∑
α∈Ih,|α|=n

n!

h!α!
dh0F (Φ(u)α).
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The function ψ is well-defined because Dn0F = 0. Now Ψ(u, z) = (u, z + ψ(u)) is a

diffeomorphism from ker(d0F )
n to dom(Dn+1

0 F ).

The following theorem guaranties that for any finite set of elements in ker(d0F )

there exists an extension with “polynomial coefficients” inside dom(Dn0F ) that is

linear in the first factor ker(d0F ).

Proposition 2.9. Let F ∈ C∞(X;Rm) be a smooth map such that Dh0F = 0 for all

2 ≤ h < n, for some n ≥ 2. For any v11, . . . , v
ℓ
1 ∈ ker(d0F ) ⊂ X, ℓ ∈ N, there exist

vectors vβj ∈ X, j = 1, . . . , n − 1 and β ∈ I0ℓ with |β| = j, such that the function

w ∈ C∞(Rℓ;Xn−1) with coordinates

wj(t) =
∑

β∈I 0
ℓ ,|β|=j

tβvβj , j = 1, . . . , n− 1, (2.9)

satisfies w(t) ∈ dom(Dn0F ) for all t ∈ Rℓ. In particular, when ei is the i-th vector of

the standard basis of Rℓ we have ve
i

1 = vi1.

Proof. The proof is by induction on n ≥ 2.

For n = 2 the statement follows from the fact that dom(D2
0F ) = ker(d0F ) is a

vector space. In this case, we have j = 1 and β = ei for some i. Fixing vβ1 = vi1 with

v1 = (v11, . . . , v
ℓ
1), formula (2.9) gives a function w1 with values in dom(D2

0F ).

We assume the claim for n−1 and we prove it for n. In particular, for j ≤ n−2, the
vectors vβj ∈ X are already fixed so that the functions defined in (2.9) with j ≤ n− 2

satisfy (w1(t), . . . , wn−2(t)) ∈ dom(Dn−1
0 F ) for all t ∈ Rℓ. Our goal is to find vβn−1,

for β ∈ I 0
ℓ with |β| = n− 1, such that w(t) = (w1(t), . . . , wn−1(t)) ∈ dom(Dn0F ).

The condition w(t) ∈ dom(Dn0F ) is equivalent to

1) (w1(t), . . . , wn−2(t)) ∈ dom(Dn−1
0 F );

2) Dn−1
0 F (w(t)) = 0.

The first condition is true by induction. By formula (2.8), the latter is equivalent to

d0F (wn−1(t)) +
n−1∑
h=2

∑
α∈Ih,|α|=n−1

(n− 1)!

h!α!
dh0F (wα(t)) = 0. (2.10)

We solve this equation to determine the vectors vβn−1 ∈ X. By linearity, we have

d0F (wn−1(t)) =
∑

β∈I 0
ℓ ,|β|=n−1

tβd0F (v
β
n−1),
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and

dh0F (wα(t)) = dh0F (wα1(t), . . . , wα1(t))

=
∑

β1∈I 0
ℓ ,|β1|=α1

· · ·
∑

βh∈I 0
ℓ ,|βh|=αh

tβ
1+···+βh

dh0F (v
β1

α1
, . . . , vβ

h

αh
).

By the identity principle of polynomials, solving equation (2.10) is equivalent to

solving the set of equations

d0F (v
β
n−1) +

n−1∑
h=2

∑
α∈Ih,|α|=n−1

β1+···+βh=β

(n− 1)!

h!α!
dh0F (v

β1

α1
, . . . , vβ

h

αh
) = 0, (2.11)

for β ∈ I0ℓ with |β| = n−1. This is possible since, by assumption, we haveDh0F = 0 for

1 ≤ h ≤ n−1. This implies that proj(dh0F (v
β1

α1
, . . . , vβ

h

αh
)) = 0, i.e., dh0F (v

β1

α1
, . . . , vβ

h

αh
) ∈

Im(d0F ) and thus we can find vβn−1 ∈ X solving equation (2.11).

As soon as the splitting X = ker(d0F ) ⊕ X/ ker(d0F ) is fixed, the differential

d0F : X/ ker(d0F ) → Im(d0F ) is a linear isomorphism. So the solutions vβn−1 of

equations (2.11) are unique in X/ ker(d0F ). In this sense, Proposition 2.9 gives a

unique extension of the form (2.9) for vectors in ker(d0F ).

For every t ∈ Rℓ with ti ̸= 0 we set sgn(t) =
(
sgn(t1), . . . , sgn(tℓ)

)
. We call orthant

each subset of Rℓ where sgn(t) is constant. There are 2ℓ orthants. Given 2ℓ elements

v1,±1 , . . . , vℓ,±1 ∈ ker(d0F ), Proposition 2.9 gives an extension wsgn(t) ∈ dom(Dn0F ) of

v
1,sgn(t1)
1 , . . . , v

ℓ,sgn(tℓ)
1 that in each orthant has coordinates

w
sgn(t)
j (t) =

∑
β∈I 0

ℓ ,|β|=j

tβv
β,sgn(t)
j , j = 1, . . . , n− 1. (2.12)

The vectors v
β,sgn(t)
j are the solutions to (2.11) in the orthant of t.

Corollary 2.10. Let F ∈ C∞(X;Rm) be a smooth map such that Dh0F = 0 for all

2 ≤ h < n. For any 2ℓ elements v1,±1 , . . . , vℓ,±1 ∈ ker(d0F ), the function wsgn(t) defined

for ti ̸= 0 in (2.12) extends to a continuous function w ∈ C(Rℓ; dom(Dn0F )).

Proof. We split the set {1, . . . , ℓ} into two subsets 1 ≤ i1 < · · · < ik ≤ ℓ and

1 ≤ j1 < . . . < jℓ−k ≤ ℓ, for some k ≤ ℓ. We consider the subspace H = {t ∈ Rℓ |
ti1 = · · · = tik = 0} and define the set of multi-indices

I0ℓ,H = {β ∈ I0ℓ | βi1 = . . . = βik = 0
}
.

Let t̄ ∈ H be such that t̄j1 · · · t̄jℓ−k
̸= 0. We prove by induction on j = 1, . . . , n−1

that for β ∈ I 0
ℓ,H the vectors v

β,sgn(t)
j are constant when t is close to t̄. When j = 1
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we have β = ejp and we can use the expression for v
β,sgn(t)
1 given by Proposition 2.9

to obtain v
β,sgn(t)
1 = v

ejp ,sgn(tjp )

1 = v
jp,sgn(t̄jp )

1 , for t close to t̄.

We check the inductive step. The vectors v
β,sgn(t)
n−1 are the solutions to the equation

d0F (v
β,sgn(t)
n−1 ) +

n−1∑
h=2

∑
α∈Ih,|α|=n−1

β1+···+βh=β

(n− 1)!

h!α!
dh0F (v

β1,sgn(t)
α1

, . . . , vβ
h,sgn(t)

αh
) = 0,

where the vectors v
β1,sgn(t)
α1 , . . . , v

βh,sgn(t)
αh are constant for t close to t̄, by inductive

assumption. In fact, β1, . . . , βh ∈ I 0
ℓ,H if β ∈ I 0

ℓ,H .

Now the existence of the following limit concludes the proof:

lim
t→t̄

w
sgn(t)
j (t) = lim

t→t̄

∑
β∈I 0

ℓ,H ,|β|=j

v
β,sgn(t)
j , j = 1, . . . , n− 1.

Definition 2.11 (Regular extension). We call the function w ∈ C(Rℓ; dom(Dn0F )) of
Corollary 2.10 the regular extension of v1,±, . . . , vℓ,± ∈ ker(d0F ) to dom(Dn0F ).

We will use this extension to define the notion of regular n-differential.

2.2 Open mapping theorem of order n

In this section, we prove an open mapping theorem with sufficient conditions on the

differentials of the map up to order n ∈ N.

Definition 2.12. Let F ∈ C∞(X;Rm) be a smooth map. We say that 0 ∈ X is a

critical point of F with corank ℓ ∈ {1, . . . ,m} if dim(coker(d0F )) = ℓ.

Definition 2.13 (Regular n-differential). Let F ∈ C∞(X;Rm) be a smooth map

such that 0 ∈ X is a critical point of corank ℓ ∈ {1, . . . ,m} and Dh0F = 0 for all

2 ≤ h < n, for some n ≥ 2. We say that Dn0F : dom(Dn0F ) → coker(d0F ) is regular

if:

i) n is even and there exist 2ℓ elements v1,±, . . . , vℓ,± ∈ ker(d0F ) such that the

function f : Rℓ → coker(d0F )

f(t) = Dn0F (wsgn(t)(ϱ(t))), t ∈ Rℓ, (2.13)

is a bijection with bounded inverse at zero, i.e., there exists 0 < L < ∞ such

that

|f−1(τ)| ≤ L|τ |, τ ∈ coker(d0F ). (2.14)

46



Above, ϱ(t) =
(
sgn(t1)|t1|1/n, . . . , sgn(tℓ)|tℓ|1/n

)
and, for t ∈ Rℓ, wsgn(t) is the

regular extension of v1,sgn(t1), . . . , vℓ,sgn(tℓ).

ii) n is odd and there exist v1, . . . , vℓ ∈ ker(d0F ) such that the function f in (2.13)

with vi,± = vi is a bijection with bounded inverse at zero.

When the corank is ℓ = 1 the notion of regular n-differential is effective.

Proposition 2.14. Let F ∈ C∞(X;Rm) be a smooth map such that 0 ∈ X is a

critical point of corank ℓ = 1 and Dh0F = 0 for all 2 ≤ h < n, for some n ≥ 2.

Assume that:

i) n is even and there exist 2 elements v± ∈ ker(d0F ) and t ∈ R such that f(t)

and f(−t) have opposite sign; or,

ii) n is odd and there exists v ∈ ker(d0F ) and t ∈ R such that f(t) ̸= 0 .

Then Dn0F is regular. Above f is the function defined in (2.13).

Proof. When ℓ = 1 and n is even, the function f in (2.13) is piece-wise linear. The

assumption f(t)f(−t) < 0, for some t ∈ R, makes it injective from R to R, and hence

with bounded inverse at zero.

When n is odd, the function f in (2.13) is linear and f(t) ̸= 0 for some t ∈ R
makes it invertible.

Theorem 2.15. Let F ∈ C∞(X;Rm) be a smooth map such that Dh0F = 0 for all

2 ≤ h < n, for some n ≥ 2, and with regular Dn0F at the critical point 0 ∈ X. Then

F is open at 0.

Proof. We prove the theorem when n is even. Let 0 ∈ X be a critical point for F

of corank ℓ ∈ {1, . . . ,m}. We identify coker(d0F ) = Rℓ and we split X = Rℓ−m ⊕
ker(d0F ).

The regularity of Dn0F means that there exist v1,±, . . . , vℓ,± ∈ dom(Dn0F ), with
regular extension w ∈ C(Rℓ; dom(Dn0F )) as in Definition 2.11, such that the function

f : Rℓ → Rℓ in (2.13) is bijective and satisfies (2.14).

By formula (2.9), the extension w = (w1, . . . , wn−1) is of the form

wj(t) =
∑

β∈I 0
ℓ ,|β|=j

tβv
β,sgn(t)
j , j = 1, . . . , n− 1,

where the vectors v
β,sgn(t)
j ∈ X are fixed in the proof of Proposition 2.9.
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We define the map Φ : Rm−ℓ × Rℓ → X by

Φ(r, t) = r +
n−1∑
j=1

wj(t)

j!
, (r, t) ∈ Rm−ℓ × Rℓ.

Above and hereafter, we identify r ∈ Rℓ−m with (r, 0) ∈ X, so that the sum r + v

with v ∈ X is well defined. We claim that we have the expansion

F (Φ(r, t)) = d0F (r) +Dn
0F (w(t), 0) +R(r, t), (2.15)

where the remainder satisfies

lim
(r,t)→0

R(r, t)

|r|+ |t|n
= 0. (2.16)

For any positive scalar s ≥ 0, using the homogeneity wj(st) = sjw(t) we obtain

the formula

Φ(0, st) =
n−1∑
j=1

sj

j!
wj(t),

and, for fixed t, the function φ(s) = F (Φ(0, st)) has the Taylor expansion

φ(s) =
n∑
j=1

φ(j)(0)

j!
sj +

φ(n+1)(s̄)

(n+ 1)!
sn+1, s ∈ [.0, 1], (2.17)

for some s̄ ∈ [0, s].

By definition (2.3), we have φ(j)(0) = Dj
0F (w1(t), . . . , wj−1(t)) and since w(t) ∈

dom(Dn0F ), we deduce that φ(j)(0) = 0 for j = 1, . . . , n− 1, while for j = n we have

φ(n)(0) = Dn
0F (w1(t), . . . , wn−1(t), 0) = Dn

0F (w(t), 0).

From the Taylor expansion (2.17) with s = 1, we obtain

F (Φ(0, t)) = Dn
0F (w(t), 0) + E(t), t ∈ Rℓ

where the error satisfies the estimate

|E(t)| =
∣∣∣φ(n+1)(s̄)

(n+ 1)!

∣∣∣ ≤ C|t|n+1, (2.18)

for some constant C > 0.

Now, we obtain the expansion (2.15) adding a development in r of the first order.

We are left with the proof of (2.16). Also by (2.18), the error R(r, t) is estimated by

a sum of the form

|R(r, t)| ≤
∑

0≤i≤2,0≤j≤n+1

cij|r|i|t|j
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with constants cij such that c0j = 0 if j ≤ n and c10 = 0. So we have |R(r, t)| ≤
C(|r|2 + |r||t|+ |t|n+1) and the mixed term is estimated by Young inequality:

|r||t| ≤ n

n+ 1
|r|(n+1)/n +

1

n+ 1
|t|n+1.

This finishes the proof of (2.16).

The map F is open at 0 if the map F ◦ Φ is open at 0. And F ◦ Φ is open at 0 if

and only if the map

(r, t) 7→ Ψ(r, t) = F (Φ(r, ϱ(t))) = d0F (r) +Dn
0F (w(ϱ(t)), 0) +R(r, ϱ(t))

is open at (r, t) = 0. We will show that Ψ is open at zero by a fixed point argument.

With respect to the factorization (r, t) ∈ Rm−ℓ × Rℓ, we introduce the norm

∥(r, t)∥ = max{|r|, λ0|t|} and the balls

Bδ = {(r, t) ∈ Rm−ℓ × Rℓ : ∥(r, t)∥ ≤ δ}

for positive δ > 0. The balls Bδ are compact and convex. The parameter λ0 > 0 will

be fixed later.

The map Ψ is open at 0 if for any (small) ε > 0 there exists δ > 0 such that

Bδ ⊂ Ψ(Bε). We pick (ξ, τ) ∈ Bδ and we look for (r, t) ∈ Bε such that Ψ(r, t) = (ξ, τ).

We factorize

Dn
0F (w(ϱ(t)), 0) = (Dn0F (w(ϱ(t))), g(t)) = (f(t), g(t)),

and R(r, ϱ(t)) = (R1(r, t), R2(r, t)) ∈ Rm−ℓ×Rℓ. Here, with a slight abuse of notation,

we are incorporating ϱ into R1 and R2.

Since g is continuous and homogeneous of degree 1, there exists a constant C1 > 0

such that

|g(t)| ≤ C1|t|. (2.19)

By (2.16), for any 0 < σ ≤ 1 there exists an ε > 0 such that for |r| + |t| ≤ ε (in

particular for (r, t) ∈ Bε) we have

|R1(r, t)|+ |R2(r, t)| ≤ σ(|r|+ |t|). (2.20)

We will fix σ in a while.

The equation Ψ(r, t) = (ξ, τ) is then equivalent to the system{
d0F (r) + g(t) +R1(r, t) = ξ

f(t) +R2(r, t) = τ,
(2.21)
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that reads as the following fixed-point system{
r = d0F

−1
(
ξ − g(t)−R1(r, t)

)
= h1(r, t)

t = f−1
(
τ −R2(r, t)

)
= h2(r, t).

We claim that the map h = (h1, h2) maps Bε into itself, provided that δ > 0, σ > 0,

and λ0 > 0 are small enough. Indeed, by (2.19) and (2.20) we have

|h1(r, t)| ≤ ∥d0F−1∥(|ξ|+ |g(t))|+ |R1(r, t)|)
≤ C2(|ξ|+ |t|+ σ(|r|+ |t|))
≤ C2(δ + 2λ0ε+ σε).

Choosing δ ≤ ε/3C2, λ0 = 1/6C2, and σ ≤ 1/3C2 we obtain |h1(r, t)| ≤ ε.

On the other hand, by (2.14) and (2.20)

|h2(r, t)| ≤ L(|τ |+ |R2(r, t)|)
≤ L(|τ |+ σ(|r|+ |t|))
≤ L(λ0δ + 2σε).

Choosing δ ≤ ε/2L and σ ≤ λ0/4L we obtain |h2(r, t)| ≤ λ0ε. This finishes the proof

that for each (ξ, τ) ∈ Bδ there exists (r, t) ∈ Bε solving the system (2.21).

When the corank is ℓ = 1, by Proposition 2.13 we have the following:

Corollary 2.16. Let F ∈ C∞(X;Rm) be a smooth map such that 0 ∈ X is a critical

point of corank ℓ = 1 and Dh0F = 0 for all 2 ≤ h < n, for some n ≥ 2. Assume that:

i) n is even and there exist 2 elements v± ∈ dom(Dn0F ) such that Dn0D(v−) and

Dn0 (v+) have opposite sign; or,

ii) n is odd and there exists v ∈ dom(Dn0F ) such that Dn0F (v) ̸= 0 .

Then F is open at 0.

2.3 Integrals on simplexes

In this section, we prove some elementary properties of integrals on simplexes that

will be used in the analysis of the end-point map. Here and hereafter, I = [0, 1]

denotes the unit interval. We fix d ∈ N (it will be the rank of the distribution of

vector fields on the manifold) and in the rest of the Chapter we let

X = L2(I;Rd).
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The tensor product ⊗ : Rℓ × Rm → Rℓm is defined by

(v ⊗ w)k = viwj, k = m(i− 1) + j,

where 1 ≤ i ≤ ℓ and 1 ≤ j ≤ m. Above, we are using the notation v = (v1, . . . , vℓ) ∈
Rℓ, etc. The map ⊗ is associative but not commutative.

Definition 2.17. For n ∈ N and t, s ∈ I such that t + s ≤ 1, we define the n-

dimensional simplex

Σn(t, s) =
{
(t1, . . . , tn) ∈ In | t < tn < · · · < t1 < t+ s

}
.

When t = 0 and s = 1 we use the short notation Σn = Σn(0, 1). We also let

Σ♭
n(t, s) =

{
(t1, . . . , tn) ∈ In | t < t1 < · · · < tn < t+ s

}
,

and Σ♭
n = Σ♭

n(0, 1).

For n ∈ N we define the subset of X

Un =

{
v ∈ X |

∫
Σn

v(tn)⊗ · · · ⊗ v(t1)dLn = 0

}
, (2.22)

Here and in the following, we denote by Ln the Lebesgue measure on Rn. We also set

Vn =
n⋂
i=1

Ui. (2.23)

For any multi-index α ∈ In,d =
{
α ∈ In | αi ∈ {1, . . . , d}

}
and v ∈ X, we define the

integral

Iαn (v) =

∫
Σn

vαn(tn) . . . v
α1(t1)dLn.

Then v ∈ Un if and only if Iαn (v) = 0 for all α ∈ In,d.
For v ∈ X, n ∈ N and t, s ∈ I such that t+ s ≤ 1, we let

In(t, s; v) =

∫
Σn(t,s)

v(tn)⊗ · · · ⊗ v(t1)dLn,

I♭n(t, s; v) =

∫
Σ♭

n(t,s)

v(tn)⊗ · · · ⊗ v(t1)dLn.

Lemma 2.18. For any v ∈ Vn and t ∈ I we have

I♭n(0, t; v) = (−1)nIn(t, 1− t; v). (2.24)
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Proof. The proof is by induction on n ∈ N. When n = 1 the claim reads∫ t

0

v(s)ds = −
∫ 1

t

v(s)ds, t ∈ I,

that holds true because v ∈ V1 means

∫ 1

0

v(s)ds = 0.

We assume that formula (2.24) holds for n − 1 and we prove it for n. Indeed,

using first v ∈ Un and then v ∈ Vn−1 we get

I♭n(0, t; v) =

∫ t

0

v(tn)⊗ I♭n−1(0, tn; v)dtn

= −
∫ 1

t

v(tn)⊗ I♭n−1(0, tn; v)dtn

= (−1)n
∫ 1

t

v(tn)⊗ In−1(tn, 1− tn; v)dtn

= (−1)nIn(t, 1− t; v).

The reverse parameterization of a function v ∈ X is the function v♭ ∈ X defined

by the formula

v♭(t) = v(1− t), t ∈ I.

Corollary 2.19. Let v ∈ X. Then v ∈ Vn if and only if v♭ ∈ Vn.

Proof. If v ∈ Vn, by Lemma 2.18 with t = 0 it follows that v♭ ∈ Vn. The opposite

implication follows from v♭♭ = v.

The set Vn is stable also with respect to localization. Given v ∈ X, s > 0 and

t0 ∈ I such that t0 + s ≤ 1, we define

vt0,s(t) = v

(
t− t0
s

)
χ[t0,t0+s](t), t ∈ I. (2.25)

Lemma 2.20. If v ∈ Vn then vt0,s ∈ Vn for all s > 0 and t ∈ I such that t0 + s ≤ 1.

Proof. The claim vt0,s ∈ X is clear. We prove that, for every 1 ≤ i ≤ n,

Ii(t0, s; vt0,s) =

∫
Σi(t0,s)

vt0,s(ti)⊗ · · · ⊗ vt0,s(t1)dLn = 0.

Indeed, by the change of variable (t1, . . . , ti) = (sτ1 + t0, . . . , sτi + t0), we get

Ii(t0, s; vt0,s) = siIi(0, 1; v) = 0.
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The set Vn−1 ⊂ X is not a linear space and the map v 7→ In(v) = In(0, 1; v) is not

additive. However, we can construct linear subsets of Vn−1 of any finite dimension

starting from one function. Given v ∈ X, we define v1, v2 ∈ X letting

v1 = v0,1/2 and v2 = v1/2,1/2.

These are the localization of v with t0 = 0, 1/2 and s = 1/2.

Proposition 2.21. If v ∈ Vn−1 then v1, v2, v1 + v2 ∈ Vn−1 and

In(v1 + v2) = In(v1) + In(v2).

Moreover, we have In(v1) = In(v2) =
1
2n
In(v).

Proof. The fact that v1, v2 ∈ Vn−1 is proved in Lemma 2.20. We show the remaining

claims. For any multi-index α ∈ Ih,2, 1 ≤ h ≤ n− 1, consider the integral

Iα(v1, v2) =

∫
Σh

v1α1
(t1) . . . v

h
αh
(th)dLh. (2.26)

Letting I1 = [0, 1/2] and I2 = [1/2, 1], the support of the function v1α1
(t1) . . . v

h
αh
(th) is

contained in the product Iα1×· · ·×Iαh
. If there exist i < j such that αi = 1 < αj = 2,

then Σh ∩ Iα1 × · · · × Iαh
= ∅, and then Iα(v1 + v2) = 0.

The complementary case is when α1 = · · · = αk = 2 and αk+1 = · · · = αh = 1 for

some k = 0, 1, . . . , h. In this case, the integral in (2.26) splits into the product of two

integrals:

Iα(v1, v2) =
(∫

Σk

v12(t1) . . . v
k
2(tk)dLk

)(∫
Σh−k

vk+1
1 (tk+1) . . . v

h
1 (th)dLh−k

)
.

If v1, v2 ∈ Vn−1 this shows that Iα(v1, v2) = 0 for all α ∈ Ih,2 and for all h ≤ n − 1.

This proves that v1 + v2 ∈ Vn−1.

When h = n the argument above also shows that for all α ∈ In,2 such that

α ̸= (1, . . . , 1) and α ̸= (2, . . . , 2) we have Iα(v1, v2) = 0. We conclude that

In(v1 + v2) =
∑
α∈In,2

Iα(v1, v2) = In(v1) + In(v2).

2.4 Expansion of the end-point map

In this section we expand the end-point map and we compute its n-th order term. The

computations use the language of chronological calculus for non-autonomous vector
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fields developed in Section ... . Since our analysis is local, we shall without loss of

generality identify our sub-Riemannian manifoldM with Rm. SoM -valued maps will

be in fact Rm-valued, fitting the framework of Section 2.1.

We briefly recall the definitions of the end-point mapo E and of the variation map

G, namely for q ∈M and u, v ∈ X we have

Eq(u) = q ◦ −→exp
∫ 1

0

fu(t)dt, u ∈ X,

and

Gu
q̄ (v) = q̄ ◦ −→exp

∫ 1

0

gu,tv(t)dt, v ∈ X,

where gu,tv(t) is the time-dependent vector field

gu,tv(t) = Ad

(
−→exp

∫ t

1

fu(τ)dτ

)
fv(t) = (P u

t,1)∗fv. (2.27)

Here P u denotes as usual the flow of the vector field fu =
∑d

i=1 uifi.

Our goal is to compute the Taylor’s expansion of the variation map. For k ∈ N
and v ∈ X, we define the vector field Wk(v) as

Wk(v) =

∫
Σk

adgu,τkv(τk)
◦ · · · ◦ adgu,τ2v(τ2)

(
gu,τ1v(τ1)

)
dLk

=

∫
Σk

[gu,τkv(τk)
, . . . , gu,τ1v(τ1)

]dLk.
(2.28)

Here and hereafter, we use the following notation for the iterated bracket of vector

fields gk, . . . , g1:

[gk, . . . , g1] = [gk, [· · · , [g2, g1] · · · ]] = adgk ◦ · · · ◦ adg2(g1).

For a multi-index β ∈ Ik we define the operator (composition of vector fields)

Wβ(v) = Wβ1(v) ◦ . . . ◦Wβk(v). (2.29)

The operator-valued map v 7→ Wβ(v) introduced in (2.29) is polynomial in v with

homogeneous degree p = |β|. Its p-polarization is defined via the formula

Wβ(v1, . . . , vp) =
1

p!

∂p

∂t1 . . . ∂tp
Wβ

( p∑
i=1

tivi

)∣∣∣∣
t1=···=tp=0

, (2.30)

where v1, . . . , vp ∈ X. This definition is consistent with (2.2).
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By the argument of Lemma 3.3 and Remark 3.4 in [7], for any p ∈ N and for any

v ∈ X the p-differential of G has the representation

dp0G(v) =

p∑
k=1

∑
β∈Ik,|β|=p

cβWβ(v), (2.31)

where, for any β ∈ Ik, we set

cβ = |β|!
k∏
s=1

(β1 + · · ·+ βs)
−1 ∈ R.

Using these formulas we obtain a representation for the differentials Dh
0G.

Lemma 2.22. For any h ∈ N and for all v = (v1, . . . , vh) ∈ Xh we have

Dh
0G(v) =

h∑
p=1

∑
α∈Ip,|α|=h

h!

α!p!

p∑
k=1

∑
β∈Ik,|β|=p

cβWβ(vα),

where vα = (vα1 , . . . , vαp) for α ∈ Ip.

Proof. Formula (2.4) reads

Dh
0G(v) =

h∑
p=1

∑
α∈Ip,|α|=h

h!

α!p!
dp0G(vα), (2.32)

and by (2.2), (2.31), and (2.30) we deduce that, for w = (w1, . . . , wp) ∈ Xp,

dp0G(w) =
1

p!

∂p

∂t1 . . . ∂tp
dp0G

( p∑
i=1

tiwi

)∣∣∣∣
t1=···=tp=0

=
1

p!

p∑
k=1

∑
β∈Ik,|β|=p

cβ
∂p

∂t1 . . . ∂tp
Wβ

( p∑
h=1

thwh

)∣∣∣∣
t1=···=tp=0

=

p∑
k=1

∑
β∈Ik,|β|=p

cβWβ(w).

(2.33)

For a given v ∈ X let us consider the localization vt0,s for some t0 ∈ [0, 1) and

small s > 0, as in (2.25).

Proposition 2.23. Let h ∈ N, v ∈ X, and t0 ∈ (0, 1). For any s ∈ (0, 1 − t0) we

have

Wh(vt0,s) = sh
∫
Σh

[gt0v(th), . . . , g
t0
v(t1)

]dLh +O(sh+1). (2.34)

Moreover, there exists a constant C > 0 such that |O(sh+1)| ≤ Csh+1 for all v ∈ X
with ∥v∥X ≤ 1.
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Proof. With the notation introduced in (2.27) and omitting the superscript u, we

have

gτvt0,s(t) = Ad

(
−→exp

∫ τ

1

fu(σ)dσ

)
fvt0,s(t)

=
d∑
i=1

vit0,s(t)Ad

(
−→exp

∫ τ

1

fu(σ)dσ

)
fi

=
d∑
i=1

vit0,s(t)g
τ
i ,

where gτi is defined via the last identity. Letting, for α ∈ Ih,d,

Jαt0,s =

∫
Σh(t0,s)

vαh
t0,s(τh) . . . v

α1
t0,s(τ1)[g

τh
αh
, . . . , gτ1α1

]dLh, (2.35)

formula (2.28) reads

Wh(vt0,s) =
∑
α∈Ih,d

Jαt0,s.

With the change of variable ϑi =
τi−t0
s

, for i = 1, . . . , n, the integral in (2.35) becomes

Jαt0,s = sh
∫
Σh

vαh(ϑh) . . . v
α1(ϑ1)[g

sϑh+t0
αh

, . . . , gsϑ1+t0α1
]dLh,

Since the maps

t 7→ gti = Ad

(
−→exp

∫ t

1

fu(σ)dσ

)
fi, i = 1, . . . , d,

are Lipschitz continuous, for every i = 1, . . . , d and j = 1, . . . , h we have the expansion

g
sϑj+t0
i = gt0i +O(s),

with a uniform error O(s) for ϑj ∈ I. So we conclude that

Jαt0,s = sh[gt0αh
, . . . , gt0α1

]

∫
Σh

vαh(ϑh) . . . v
α1(ϑ1)dLh +O(sh+1).

The claim (2.34) follows by summing over α ∈ Ih,d.

Corollary 2.24. Let v ∈ Vh, for some h ∈ N, and t0 ∈ (0, 1). For any s ∈ (0, 1− t0)
we have dh0G(vt0,s, . . . , vt0,s) = O(sh+1).

Proof. By formula (2.33), the h-differential of G has the representation

dh0G(w) =
h∑
k=1

∑
β∈Ik,|β|=h

cβWβ(vt0,s, . . . , vt0,s).
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Let β ∈ Ik with |β| = h. We claim that the coefficient of sh in the expansion

of s 7→ Wβ(vt0,s, . . . , vt0,s) vanishes. Indeed, consider the coordinate j = βi. By

Proposition 2.23 we have

Wj(vt0,s) = sj
∑
α∈Ij,d

[gt0αj
, . . . , gt0α1

]

∫
Σj

vαj(ϑj) . . . v
α1(ϑ1)dLj +O(sj+1)

= O(sj+1),

because for j ≤ h we have ∫
Σj

vαj(ϑh) . . . v
α1(ϑ1)dLj = 0,

by our assumption v ∈ Vh and by Lemma 2.18. The claim follows.

Let v ∈ X and s > 0. Assume that the function w1;t0,s = vt0,s belongs to ker(d0G).

By Proposition 2.9 with ℓ = 1 and t = 1, there exist functions wj;t0,s ∈ X, j =

2, . . . , n− 1, such that wt0,s = (w1;t0,s, . . . , wn−1;t0,s) ∈ dom(Dn0G).

Lemma 2.25. If v ∈ Vn−1 then ∥wj;t0,s∥X = O(sj+1) for all j = 2, . . . , n− 1.

Proof. The proof is by induction on j = 2, . . . , n − 1. We start with j = 2. Since

(w1;t0,s, w2;t0,s) ∈ dom(D3
0G) we have D2

0G(w1;t0,s, w2;t0,s) = 0, and by (2.4) this equa-

tion reads

d0G(w2;t0,s) = −d20G(vt0,s, vt0,s) = O(s3),

by Corollary 2.24. The claim follows composing with the inverse of d0G.

Now we assume that the claim holds for j ≤ n− 2 and we prove it for j = n− 1.

Since wt0,s ∈ dom(Dn0G) we have Dn−1
0 G(wt0,s) = 0 and, by (2.4), this equation reads

d0G(wn−1;t0,s) = −dn−1
0 G(vt0,s, . . . , vt0,s)−

n−2∑
h=2

∑
α∈Ih,|α|=n−1

(n− 1)!

α!h!
dh0G

(
(wt0,s)α

)
.

We clearly have dn−1
0 G(vt0,s, . . . , vt0,s) = O(sn), by Corollary 2.24.

We estimate the terms in the sum. When 2 ≤ h ≤ n − 2 and α ∈ Ih with

|α| = n − 1, the multi-index α contains at least one coordinate different from 1 and

does not contain the coordinate n− 1, and so

Card{j | αj = 1}+
n−2∑
i=2

(i+ 1)Card{j | αj = i} > |α| = n− 1.

Then, from our inductive assumption it follows that dh0G
(
(wt0,s)α

)
= O(sn).
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Lemma 2.26. Let v ∈ X, s > 0 and t0 ∈ [0, 1) be such that vt0,s ∈ ker(d0G) and let

wt0,s ∈ dom(Dn0G) be the extension of vt0,s. If v ∈ Vn−1 then we have

Dn
0G(wt0,s) = cns

n

∫
Σn

[gt0v(tn), . . . , g
t0
v(t1)

]dLn +O(sn+1). (2.36)

Proof. By formula (2.32),

Dn
0G(wt0,s) =

n∑
p=1

∑
α∈Ip,|α|=n

n!

α!p!
dp0G((wt0,s)α).

If α ∈ Ip has one entry different from 1, then dp0G((wt0,s)α) = O(sn+1) by Lemma

2.25. The leading term is given by p = n and α ∈ In with α = (1, . . . , 1). The

expansion of this term is given by formula (2.34) with h = n and this yields formula

(2.36).

2.5 Open mapping property for the extended end-

point map

In this section, we study the open mapping property for the extended end-point map

at critical points of corank 1.

We recall that the extended end-point map is the map FJ : X →M ×R given by

FJ(u) = (F (u), J(u)), where J is the energy functional defined in ... . We also recall

that minimize the energy is equivalent to minimize the length. We can also define

the extended variation map GJ(v) = (F (u+ v), J(u+ v)). Then, 0 ∈ X is a regular,

singular, strictly singular critical point of GJ if and only if u is a regular, singular,

strictly singular critical point of FJ , respectively.

We are interested in strictly singular critical points of FJ . In this case, Im(duFJ) =

Im(duF ) ⊕ R, that is, coker(duFJ) and coker(duF ) are isomorphic and can be iden-

tified. The differential analysis of the extended map FJ can be consequently re-

duced to the analysis of the end-point map F . In fact, for any h ≥ 2 we have

DhuFJ = DhuF
∣∣
ker(duFJ )

, where the kernel ker(duFJ) = ker(duF ) ∩ ker(duJ) is finitely

complemented in X, and the restriction to ker(duFJ) means dom(Dh0FJ) = {v ∈
dom(Dh0F ) | v1 ∈ ker(duJ)}. Similarly, we have

Dh0GJ = Dh0G
∣∣
ker(d0GJ )

, h ≥ 2, (2.37)

with ker(d0GJ) finitely complemented in X, and

dom(Dh0GJ) = {v ∈ dom(Dh0G) | v1 ∈ ker(duJ)}. (2.38)
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Finally, 0 ∈ X is a critical point for GJ of corank ℓ = 1 if and only if u is a critical

point for G of corank ℓ = 1.

Thanks to the previous remarks, we can without loss of generality consider the

situation where 0 is a corank-one critical point for G. This means that coker(d0G)

has dimension 1. We fix a nonzero dual vector λ ∈ coker(d0G)
∗ such that ⟨λ,w⟩ =

proj(w), w ∈ Rm, where proj is the projection on coker(d0G).

For n ≥ 2 and t0 ∈ [0, 1), we consider the function Gnt0 : X → R

Gnt0(v) =
∫
Σn

⟨λ, [gt0v(tn), . . . , g
t0
v(t1)

]⟩dLn, v ∈ X. (2.39)

This is the coefficient of the leading term in the expansion of Dn
0G(wt0,s) in (2.36), up

to the constant cn. Here and hereafter, vector fields are evaluated at the end-point q̄,

with notation as in the previous section.

For a multi-index α ∈ In,d let us introduce the short notation

[gt0α ] = [gt0αn
, . . . , gt0α1

],

where the entries α1, . . . , αn appear in the bracket with reversed order, and

Iα(v) =

∫
Σn

vαn(tn) . . . v
α1(t1)dLn. (2.40)

Then formula (2.39) reads

Gnt0(v) =
∑
α∈In,d

⟨λ, [gt0α ]⟩Iα(v).

Lemma 2.27. If v ∈ Vn−1 then v♭ ∈ Vn−1 and Gnt0(v
♭) = (−1)n−1Gnt0(v).

Proof. We have v♭ ∈ Vn−1 by Corollary 2.19. By Lemma 2.18 – here we use the

assumption v ∈ Vn−1, – the integrals Iα(v) can be transformed in the following way:

Iα(v) =

∫ 1

0

vαn(tn)
(∫

Σn−1(tn,1−tn)
vαn−1(tn−1) . . . v

α1(t1)dLn−1
)
dtn

= (−1)n−1

∫ 1

0

vαn(tn)
(∫

Σ♭
n−1(0,tn)

vαn−1(tn−1) . . . v
α1(t1)dLn−1

)
dtn

= (−1)n−1

∫
Σ♭

n

vαn(tn) . . . v
α1(t1)dLn

= (−1)n−1Iα(v♭).

The last identity follows by the change of variable ti = 1− si. This proves our claim
Gnt0(v

♭) = (−1)n−1Gnt0(v).
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In the next step, we show that if Gnt0 is positive and additive on a suitable subspace

of Vn−1 then the extended map GJ is open at zero. As usual, m = dim(M) is the

dimension of the manifold.

Theorem 2.28. Let 0 be a strictly singular critical point of GJ with corank 1 and

assume that Dh0G = 0 for 2 ≤ h ≤ n − 1 with n ≥ 2. Also, assume that there exist

t0 ∈ [0, 1) and v1, . . . , vk ∈ Vn−1 such that:

i) k ≥ m+ 1 when n is even and k ≥ m+ 2 when n is odd;

ii) Gnt0(vi) = 1 for i = 1, . . . , k;

iii) v1, . . . , vk span a vector space Y ⊂ Vn−1 of dimension k;

iv) Gnt0 is additive on v1, . . . , vk, in the sense that

Gnt0
( k∑
i=1

τivi

)
=

k∑
i=1

Gnt0(τivi)

for any τ1, . . . , τk ∈ R.

Then the extended map GJ is open at 0.

Proof. The kernel ker(d0G) has codimension m − 1 in X and thus ker(d0GJ) =

ker(d0G) ∩ ker(d0J) has codimension at most m in X.

For s > 0, let Ls : X = L1(I;Rd) → Xs : L1([t0, t0 + s];Rd) be the linear

isomorphism Ls(v) = vt0,s. Since ker(d0GJ) ∩Xs has codimension at most m in Xs,

then L−1
s (ker(d0GJ) ∩Xs) ⊂ X has codimension at most m and thus

dim(Y ∩ L−1
s (ker(d0GJ) ∩Xs)) ≥ 1 when n is even, (2.41)

dim(Y ∩ L−1
s (ker(d0GJ) ∩Xs)) ≥ 2 when n is odd.

We discuss the case when n is even. By iv), n-homogeneity and ii), for τ ∈ Rk,
τ ̸= 0, we have

Gnt0
( k∑
i=1

τivi

)
=

k∑
i=1

τni > 0.

Thus, the function Gnt0 attains a positive minimum on the sphere K = {v ∈ Y :

∥v∥X = 1}: there exists δ > 0 such that

Gnt0(v) ≥ δ > 0 for all v ∈ K. (2.42)

By (2.41), for any s > 0 there exists v ∈ K such that vt0,s ∈ ker(d0GJ). This

v ∈ K depends on s. Let wt0,s be the extension of vt0,s given by Proposition 2.9
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applied with ℓ = 1 and t = 1. We have wt0,s ∈ dom(Dn0GJ) for all s > 0. By (2.37)

and by formula (2.36)

Dn0GJ(ws,t0) = Dn0G(ws,t0) = sncnGnt0(v) +O(sn+1),

where |O(sn+1)| ≤ C1s
s+1 for a constant C1 > 0 independent of v with ∥v∥X ≤ 1.

Choosing 0 < s < 1
2
δ/C1cn, from (2.42) we deduce that

Dn0GJ(ws,t0) ≥ sn
(
cnGnt0(v)− C1s

)
≥ sn

δ

2
> 0.

By Lemma 2.27, for n even we have Gnt0(v
♭) = −Gnt0(v). Repeating the above

argument starting from v♭1, . . . , v
♭
k, we conclude that for all s > 0 small enough there

exists w♭t0,s ∈ dom(Dn0GJ) such that Dn0GJ(w
♭
s,t0

) = −1. By Corollary 2.16 part i),

we conclude that GJ is open at 0.

We pass to the case when n is odd. Let H ⊂ Y be the set H = {v ∈ Y : Gnt0(v) =
1}. We claim that there exists v ∈ H ∩T−1

s (ker(d0GJ)∩Xs) such that ∥v∥X ≤ C2 for

a constant C2 independent of s > 0.

We may assume that k = m + 2 and on Y we fix the coordinates τ ∈ Rk with

respect to the basis v1, . . . , vk, i.e., v = τ1v1,+ · · ·+τkvk ∈ Y . The equation Gnt0(v) = 1

reads

τn1 + · · ·+ τnk = 1. (2.43)

The set Y ∩L−1
s (ker(d0GK)∩Xs) contains a hyperplane of the form b1τ1+· · ·+bkτk = 0

where (b1, . . . , bk) ̸= 0 are coefficients depending on s > 0. Without loss of generality

we can assume that bk = 1 and |b1|, . . . , |bk−1| ≤ 1. Then last equation reads τk =

−(b1τ1 + · · ·+ bk−1τk−1), and equation (2.43) becomes

p(τ1, . . . , τk−1) = −(b1τ1 + · · ·+ bk−1τk−1)
n + τn1 + · · ·+ τnk = 1. (2.44)

The polynomial p is not the zero polynomial and has homogeneous degree n, that is

odd. So the equation p(τ1, . . . , τk−1) = 1 has solutions, for any b1 . . . , bk−1. We are left

to show that there are solutions bounded by a constant independent of b1, . . . , bk−1.

For δ ∈ (0, 1) consider the set

Qδ =
{
b = (b1, . . . , bk−1) ∈ Rk−1 | min{|b1|, . . . , |bk−1|} ≥ δ, max{|b1|, . . . , |bk−1|} ≤ 1

}
.

When b ∈ Qδ, we look for a solution τ = (τ1, . . . , τk−1) of equation (2.44) of the form

τ = tb/|b| for some t ∈ R, where |b| =
√
b21 + · · ·+ b2k−1. The equation reads

tn
[bn1 + · · ·+ bnk−1

|b|n
− |b|n

]
= 1. (2.45)
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On Qδ, the quantity (bn1 + · · ·+ bnk−1)/|b|n attains the maximum at the points where

all the coordinates are δ except one that is 1, while −|b|n attains the maximum at

the vertex (δ, . . . , δ). So we get

bn1 + · · ·+ bnk−1

|b|n
− |b|n ≤ 1 + (k − 2)δn

(1 + (k − 2)δ2)n/2
− ((k − 1)δ2)n/2 = ψ(δ).

Since ψ(1) = (k− 1)1−n/2− (k− 1)n/2 < 0 for k > 1, there exist ε0 > 0 and 0 < δ < 1

such that ψ(δ) ≤ −ε0. Now δ = δ(n) is fixed. The solution t ∈ R of equation

(2.45) is negative and satisfies |t| ≤ ε
−1/n
0 . This proves the existence of a solution

(τ1, . . . , τk−1) ∈ Rk−1 of (2.44) that is uniformly bounded when b ∈ Qδ.

In the case that min{|b1|, . . . , |bk−1|} ≤ δ we argue as follows. Assume for instance

that |b1| ≤ δ. With τ2 = . . . τk−1 = 0 we have the equation −(b1τ1)n + τn1 = 1 that

has a solution τ1 > 0 bounded by

τ1 ≤
( 1

1− δn
)1/n

.

Now the proof can be concluded as in the case of even n.

In fact, in order GJ to be open it is sufficient that Gnt0 is positive at one element

of Vn−1.

Theorem 2.29. Let 0 be a strictly singular critical point of GJ with corank 1 and

assume that Dh0G = 0 for 2 ≤ h ≤ n − 1 with n ≥ 2. If there exist t0 ∈ [0, 1) and

v ∈ Vn−1 such that Gnt0(v) ̸= 0, then GJ is open at 0.

Proof. For any k ∈ N, we apply iteratively Proposition 2.21 to find 2k functions

v1, . . . , v2k with mutually disjoint support, spanning a linear space in Vn−1 and such

that

Gnt0
( 2k∑
i=1

vi

)
=

2k∑
i=1

Gnt0(vi),

and Gnt0(vi) =
1

2kn
Gnt0(v). The claim follows from Theorem 2.28.

If GJ is not open at 0 we have Gnt0(v) = 0 for all t0 ∈ [0, 1) and v ∈ Vn−1. Even

though Vn−1 is not a linear space, we polarize the map T = Gnt0 .
The polarization of T : X → R is the multilinear map T : Xn → R defined in one

of the two equivalent ways

T (v1, . . . , vn) =
∂n

∂t1 . . . ∂tn
T
( n∑
h=1

thvh

)∣∣∣∣
t1=···=tn=0

=
1

n!

∑
σ∈Sn

∑
α∈In,d

⟨λ, [gt0α ]⟩
∫
Σn

vαn
σn (tn) . . . v

α1
σ1
(t1)dLn.

(2.46)
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If Y ⊂ X is a linear subspace such that T = 0 on Y then T = 0 on Y n. This

follows easily from the differential definition of polarization. Linear spaces Y ⊂ Vn−1

where T = 0 can be obtained with the following construction.

Fix w1, . . . , wn ∈ X, with coordinates wi = (w1
i , . . . , w

d
i ), and fix a selection

function s : {1, . . . , n} → {1, . . . , d}, s(i) = si. This function will be used to select

(with multiplicity) which vector-fields from f1, . . . , fd appear in the bracket [gt0α ].

We can define v1, . . . , vn ∈ X setting, for i = 1, . . . , n,

vi = (0, . . . , 0, ui, 0, . . . , 0), with ui = wsii , (2.47)

where ui is the i-th coordinate. Then we define u ∈ X as u = (u1, . . . , un). The

function u depends on the selection function s, but we do not keep track of this

dependence in our notation. As in (2.40), for a permutation σ ∈ Sn we let

Iσ(u) =

∫
Σn

uσn(tn) · · ·uσ1(t1)dLn.

When u ∈ Vn−1, where now Vn−1 is defined as in (2.23) and (2.22) but with d = n,

the polarization T takes the following form.

Lemma 2.30. For any selection function s, if u ∈ Vn−1 then v1, . . . , vn span a linear

subspace of Vn−1 and

T (v1, . . . , vn) =
1

n!

∑
σ∈Sn

⟨λ, [gt0sσ]⟩Iσ(u). (2.48)

Proof. Given σ ∈ Sn and α ∈ In,d, by the structure (2.47) of v1, . . . , vn, there holds∫
Σn

vαn
σn (tn) . . . v

α1
σ1
(t1)dLn = 0

as soon as there exists i such that αi ̸= s(σi). For the surviving terms it must be

α = sσ and in this case∫
Σn

vαn
σn (tn) . . . v

α1
σ1
(t1)dLn =

∫
Σn

wsσnσn (tn) . . . w
sσ1
σ1 (t1)dLn = Iσ(u).

The claim follows from the combinatorial definition of polarization in (2.46).

2.6 Generalized Jacobi identities and integrals on

simplexes

In this section we fix a selection function s : {1, . . . , n} → {1, . . . , d} and u =

(u1, . . . , un), as in (2.47). For varying σ ∈ Sn, the brackets [gt0σ ] = [gt0σn , . . . , g
t0
σ1
]
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satisfy several linear relations. Using generalized Jacobi identities, we clean up for-

mula (2.48) getting rid of these relations. Our goal is to prove the following formula,

where we work with permutations σ ∈ Sn fixing 1

S1
n = {σ ∈ Sn | σ1 = 1}.

Theorem 2.31. For any selection function s and for any v1, . . . , vn as in (2.47), we

have the identity

T (v1, . . . , vn) =
1

(n− 1)!

∑
σ∈S1

n

⟨λ, [gt0sσ]⟩Iσ(u). (2.49)

The fact that in (2.49) the sum is restricted to permutations fixing 1 will be

important in the next section. The proof relies upon the generalized Jacobi identities

proved in [6]. For n, j ∈ N with 1 ≤ j ≤ n, let us consider the sets of permutations

Xnj = {ξ ∈ Sn | ξ1 > ξ2 > · · · > ξj = 1 and ξj < ξj+1 < · · · < ξn},

and

Xn =
n⋃
j=1

Xnj. (2.50)

The set Xn1 contains only the identity permutation, while Xnn contains only the order

reversing permutation. We are denoting elements of Xn by ξ, while in [6] they are

denoted by π.

Let g1, . . . , gn be elements of a Lie algebra. The action of a permutation σ ∈ Sn
on the iterated bracket [gn, . . . , g1] = [gn, [. . . , [g2, g1] . . . ]] is denoted by

σ[gn, . . . , g1] = [gσn , . . . , gσ1 ].

The selection function s acts similarly, s[gn, . . . , g1] = [gsn , . . . , gs1 ], and so in the

notation used above we have [gt0sσ] = s[gt0σ ].

The generalized Jacobi identities of order n that we need are described in the next

theorem.

Theorem 2.32. For any Lie elements g1, . . . , gn and for any permutation σ ∈ Sn

such that σ1 ̸= 1, (
σ +

∑
ξ∈Xn, σξ(1)=1

(−1)ξ−1(1)σξ
)
[gn, . . . , g1] = 0, (2.51)

where Xn is the set of permutations introduced in (2.50).

Proof. The proof of formula (2.51) is contained in [6] on pages 117 and 119.
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Lemma 2.33. For v1, . . . , vn as in (2.47), we have the identity

T (v1, . . . , vn) =
1

n!

∑
σ∈S1

n

⟨λ, [gt0sσ]⟩
∑
ξ∈Xn

cξI
σξ−1

(u), (2.52)

where cξ = (−1)1+ξ−1(1).

Proof. Starting from (2.48) and using (2.51), we get

n! T (v1, . . . , vn) =
∑
σ∈S1

n

⟨λ, [gt0sσ]⟩Iσ(u) +
∑

σ∈Sn, σ1 ̸=1

⟨λ, [gt0sσ]⟩Iσ(u)

=
∑
σ∈S1

n

⟨λ, [gt0sσ]⟩Iσ(u) +
∑

ξ∈Xn, σ∈Sn

σ1 ̸=1, σξ(1)=1

cξ⟨λ, [gt0sσξ]⟩I
σ(u)

=
∑
σ∈S1

n

⟨λ, [gt0sσ]⟩
(
Iσ(u) +

∑
ξ∈Xn, σξ−1(1)̸=1

cξI
σξ−1

(u)
)

=
∑
σ∈S1

n

⟨λ, [gt0sσ]⟩
∑
ξ∈Xn

cξI
σξ−1

(u).

In the last line, we used the fact that, when σ1 = 1, we have σξ−1(1) = 1 if and only

if ξ is the identity.

A permutation σ ∈ Sn acts on the integrals Iξ
−1
(u) as σIξ

−1
(u) = Iσξ

−1
(u). So,

the sum over ξ ∈ Xn appearing in (2.52) reads∑
ξ∈Xn

cξI
σξ−1

(u) = σ
( ∑
ξ∈Xn

cξI
ξ−1

(u)
)
,

where the action is extended linearly. Our next task is to compute the sum in the

round brackets.

A permutation σ ∈ Sn acts on the simplexes Σn(t, s), with 0 ≤ t < t+ s ≤ 1, as

σΣn(t, s)v =
{
(t1, . . . , tn) ∈ Rn | t < tσn < . . . < tσ1 < t+ s

}
.

In particular, if σ̄ ∈ Sn is the reversing order permutation, σ̄(i) = n − i + 1, then

Σ♭
n(t, s) = σ̄Σn(t, s). We also let Σσ

n(t, s) = σΣn(t, s) and Σσ
n = Σσ

n(0, 1).

Finally, for k = 1, . . . , n we let

I♭k(u) =

∫
Σ♭

k

u1(s1) . . . u
k(sk)dLk,

In−k(u) =

∫
Σn−k

uk+1(sk+1) . . . u
n(sn)dLn−k.

65



Lemma 2.34. For any j = 2, . . . , n we have the identity∑
ξ∈Xnj

Iξ
−1

(u) = I♭j−1(u)In−j+1(u)−
∑

ξ∈Xn,j−1

Iξ
−1

(u). (2.53)

Proof. Fix a permutation ξ ∈ Xnj, so that ξj = 1. In the integral Iξ
−1
(u) we perform

the change of variable tξk = sk. The integration domain Σn is transformed into the

new domain Σξ−1

n = {0 < sξ−1
n
< · · · < sξ−1

1
< 1}:

Iξ
−1

(u) =

∫
Σn

uξ
−1
n (tn) . . . u

ξ−1
1 (t1)dLn

=

∫
Σn

un(tξn) . . . u
1(tξ1)dLn

=

∫
Σξ−1

n

un(sn) . . . u
1(s1)dLn.

(2.54)

We denote by ŝj the variables (s1, . . . , sj−1, sj+1, . . . , sn). Since sξ−11 = sj, the set

Σξ−1

n is

Σξ−1

n = I × Σξ−1

n−1;j(0, sj),

where sj ∈ I and

Σξ−1

n−1;j(0, sj) =
{
ŝj ∈ Rn−1 | 0 < sξ−1

n
< · · · < sξ−1

2
< sj

}
.

Since ξ ∈ Xnj, here we have sn < · · · < sj+1 < sj and s1 < · · · < sj−1 < sj. For

varying ξ ∈ Xnj, we obtain all the shuffles of s1 < · · · < sj−1 into sn < · · · < sj+1 and

thus we have ⋃
ξ∈Xnj

Σξ−1

n−1;j(0, sj) = Aj−1(sj)×Bn−j(sj),

where Aj−1(sj) = Σ♭
j−1(0, sj) and Bn−j(sj) = Σn−j(0, sj).

Summing (2.54) over ξ ∈ Xnj we get∑
ξ∈Xnj

Iξ
−1

(u) =
∑
ξ∈Xnj

∫ 1

0

(∫
Σξ−1

n−1(0,sj)

∏
k ̸=j

uk(sk)dLn−1(ŝj)
)
uj(sj)dsj

=

∫ 1

0

(∫
Aj−1(sj)×Bn−j(sj)

∏
k ̸=j

uk(sk)dLn−1(ŝj)
)
uj(sj)dsj.

(2.55)

The inner integral is the product of two integrals. Namely, letting

f(sj) = uj(sj)

∫
Bn−j(sj)

uj+1(sj+1) . . . u
n(sn)dLn−j,

g(sj) =

∫
Aj−1(sj)

uj−1(sj−1) . . . u
1(s1)dLj−1,
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formula (2.55) becomes

∑
ξ∈Xnj

Iξ
−1

(u) =

∫ 1

0

f(sj)g(sj)dsj.

A primitive for f is the function h(sj) =
∫ sj
0
f(σ)dσ, and an integration by parts

gives ∫ 1

0

f(sj)g(sj)dsj = h(1)g(1)−
∫ 1

0

h(sj)g
′(sj)dsj,

where the boundary term is easily computed:

h(1) =

∫
Bn−j+1(1)

uj(sj) . . . u
n(sn)dLn−j+1 = In−j+1(u),

g(1) =

∫
Aj−1(1)

uj−1(sj−1) . . . u
1(s1)dLj−1 = I♭j−1(u).

In order to compute the integral, notice that

g′(sj) = uj−1(sj)

∫
Aj−2(sj)

uj−2(sj−2) . . . u
1(s1)dLj−2,

and thus, by (2.55) but for j − 1, we have∫ 1

0

h(sj)g
′(sj)dsj =

∫ 1

0

(∫
Aj−2(σ)×Bn−j+1(σ)

∏
k ̸=j−1

uk(sk)dLn−1(ŝj−1)
)
uj−1(σ)dσ

=
∑

ξ∈Xn,j−1

Iξ
−1

(u).

Corollary 2.35. For any u ∈ Vn−1 there holds

∑
ξ∈Xn

cξI
ξ−1

(u) = n

∫
Σn

u1(t1) . . . u
n(tn)dLn.

Proof. When u ∈ Vn−1 we have I
♭
j−1(u) = In−j+1(u) = 0 for j = 2, . . . , n. Taking into

account the constants cξ = (−1)1+ξ−1
1 , formula (2.53) reads∑

ξ∈Xnj

cξI
ξ−1

(u) =
∑

ξ∈Xn,j−1

cξI
ξ−1

(u).
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Applying iteratively this identity, we obtain∑
ξ∈Xn

cξI
ξ−1

(u) =
∑
ξ∈Xnn

cξI
ξ−1

(u) +
∑

ξ∈Xn,n−1

cξI
ξ−1

(u) + · · ·+
∑
ξ∈Xn1

cξI
ξ−1

(u)

= 2
∑

ξ∈Xn,n−1

cξI
ξ−1

(u) +
∑

ξ∈Xn,n−2

cξI
ξ−1

(u) + · · ·+
∑
ξ∈Xn1

cξI
ξ−1

(u)

= 3
∑

ξ∈Xn,n−2

cξI
ξ−1

(u) +
∑

ξ∈Xn,n−3

cξI
ξ−1

(u) + · · ·+
∑
ξ∈Xn1

cξI
ξ−1

(u)

= . . .

= n
∑
ξ∈Xn1

cξI
ξ−1

(u).

Since Xn1 contains only the identity permutation, the claim follows.

This corollary concludes the proof of Theorem 2.31.

2.7 Non-singularity via trigonometric functions

We start the study of equation T (v1, . . . , vn) = 0 for the polarization map T in (2.49).

We will work with functions vi as in (2.47) of trigonometric-type.

For each permutation fixing 1, σ ∈ S1
n, we introduce a real unknow xσ. There are

(n− 1)! = Card(S1
n) unknowns. We are interested in the linear system of equations∑

σ∈S1
n

Iσ(uτ )xσ = 0, τ ∈ S1
n, (2.56)

where Iσ(uτ ) are regarded as coefficients depending on uτ ∈ Vn−1. In this section, we

prove the following preparatory result.

Theorem 2.36. There exist uτ ∈ Vn−1, τ ∈ S1
n, such that det(Iσ(uτ ))σ,τ∈S1

n
̸= 0.

With a choice of coefficients as in Theorem 2.36, the linear system (2.56) has only

the zero solution, implying xσ = 0 for all σ ∈ S1
n. This fact will be used in Section

2.8.

For z = a+ ib ∈ C and k ∈ N we let

wz;k(t) = a cos(2kπt) + b sin(2kπt), t ∈ I.

We call wz;k a w-type function of parameters z and k, and we call k frequence of

wz;k. We need exact computations for iterated integrals on n-simplexes of w-type

functions. In particular, we are interested in the case when every linear combination
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with coefficients ±1 of at most n − 1 frequencies out of a set of n frequencies is not

zero, see (2.59) below. This condition will ensure assumption u ∈ Vn−1 in Lemma

2.30.

Any w-type function satisfies the integration formula∫ 1

t

wz;k(s)ds =
1

2kπ

(
wiz;k(1)− wiz;k(t)

)
, k ̸= 0, (2.57)

and a pair of w-type functions satisfies the multiplication formula (Werner’s identities)

wz;kwζ;h =
1

2

(
wzζ;k+h + wz̄ζ;h−k

)
. (2.58)

For h ∈ N, we let Jh = {1, . . . , h} and

Ah =
{
α : Jh → {1,−1} | α1 = 1

}
.

Here we are denoting α(j) = αj and, with a slight abuse of notation, we identify

α ∈ Ah with α = (α1, . . . , αh) ∈ {1,−1}h. Letting zh = (z1, . . . , zh) ∈ Ch, for each

α ∈ Ah we define the multiplicative function pα : Ch → C

pα(zh) =
∏

ℓ∈Jh,αℓ=1

zℓ
∏

j∈Jh,αj=−1

z̄j.

Also, letting kh = (k1, . . . , kh) ∈ Nh, we define the additive function sα : Nh → N

sα(kh) =
h∑
j=1

αjkj.

Notice that, since α1 = 1, z̄1 never appears in pα(zh) and k1 has always positive

sign in sα(kh).

Finally, for ℓ, h ∈ N with ℓ ≤ h we let Bhℓ = {β : Jℓ → Jh | β injective} and for

kh = (k1, . . . , kh) ∈ Nh and β ∈ Bhℓ we set kβh = (kβ1 , . . . , kβℓ) ∈ Nℓ. Here, we are

using the math-roman font for vectors and italics for coordinates.

Theorem 2.37. Let kn = (k1, . . . , kn) ∈ Nn, n ∈ N, be a vector of frequencies such

that

sα(k
β
n) ̸= 0 for all α ∈ Ah and β ∈ Bnh , 1 ≤ h ≤ n− 1. (2.59)

Then for any 1 ≤ h ≤ n− 1, for all zh = (z1, . . . , zh) ∈ Ch and for all t ∈ I we have∫
Σh(t,1−t)

wzh;kh(th) . . . wz1;k1(t1)dLh = ghzh;kh(t)−
∑
α∈Ah

chα(kh)wpα(izh);sα(kh)(t), (2.60)
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where chα(kh) ̸= 0 and the function ghzh;kh satisfies

ghzh;kh(0) =
∑
α∈Ah

chα(kh)wpα(izh);sα(kh)(0), (2.61)

and ∫
Σn−h

wzn;kn(tn) . . . wzh+1;kh+1
(th+1)g

h
zh;kh

(th+1)dLn−h = 0. (2.62)

Proof. The proof is by induction on n ∈ N, n ≥ 2. The constants chα(kh) are given by

the formula

chα(kh) =
2

4hπh

h∏
ℓ=1

αℓ
s(α1,...,αℓ)(kℓ)

. (2.63)

The formula is well-defined because s(α1,...,αℓ)(kℓ) ̸= 0 by assumption (2.59).

When n = 2 we only have h = 1 and α = 1, so that c11(k1) = 1/2πk1. The

integration formula in (2.57) gives (2.60) with g1z1;k1 = c11(k1)wiz1;k1(1), a constant.

Identity (2.61) is satisfied and also identity (2.62):∫ 1

0

wz2;k2(t2)g
1
z1;k1

dt2 = g1z1;k1

∫ 1

0

wz2;k2(t2)dt2 = 0,

because k2 ̸= 0, again by (2.59).

Now we assume the theorem holds for n− 1 and we prove it for n. In particular,

from (2.60) with t = 0 and (2.61) we have the inductive assumption∫
Σh

wzh;kh(th) . . . wz1;k1(t1)dLh = 0, h = 1, . . . , n− 2. (2.64)

We distinguish the cases h = 1 and 2 ≤ h ≤ n− 1. When h = 1, (2.60) is exactly

the integration formula (2.57) with

g1z1,k1 =
1

2k1π
wz1;k1(1).

The 1-periodicity of w-type functions also prove (2.61). In order to prove (2.62), we

claim ∫
Σn−1

wzn;kn(tn) . . . wz2;k2(t2)dLn−1 = 0.

In fact,∫
Σn−1

wzn;kn(tn) . . . wz2;k2(t2)dLn−1 = g1z2,k2

∫
Σn−2

wzn;kn(tn) . . . wz3;k3(t3)dLn−2

− 1

2k2π

∫
Σn−2

wzn;kn(tn) . . . wz3;k3(t3)wz2;k2(t3)dLn−2
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By the multiplication formula (2.58), in the second integral are involved the vectors

of frequencies (k2±k3, k4, . . . , kn). Both of them satisfies (2.59), by assumption (2.59)

itself. Then both the summands vanish thanks to the inductive assumption (2.64),

proving our claim.

For 2 ≤ h ≤ n− 1, set

Dh(t) =

∫
Σh(t,1−t)

wzh;kh(th) . . . wz1;k1(t1)dLh.

When h ≥ 2, we use the inductive assumption (2.60) for h− 1 and the multiplication

formula (2.58) to obtain

Dh(t) =

∫ 1

t

wzh;kh(th)
(∫

Σh−1(th,1−th)
wzh−1;kh−1

(th−1) . . . wz1;k1(t1)dLh−1
)
dth

=

∫ 1

t

wzh;kh(th)
(
gh−1
zh−1;kh−1

−
∑

α∈Ah−1

ch−1
α (kh−1)wpα(izh−1);sα(kh−1)

)
dth

=

∫ 1

t

wzh;khg
h−1
zh−1;kh−1

dth −
1

2

∑
α∈Ah−1

ch−1
α (kh−1)

∫ 1

t

(
w∗∗ + w††

)
dth,

where ∗∗ = zhpα(izh−1); sα(kh−1) + kh and †† = z̄hpα(izh−1); sα(kh−1)− kh satisfy

w∗∗ = −wip(α,1)(izh);s(α,1)(kh),

w†† = wip(α,−1)(izh);s(α,−1)(kh).

By the integration formula (2.57), the function Dh equals

Dh = ghzh,kh −
1

4π

∑
α∈Ah−1

ch−1
α (kh−1)

(wp(α,1)(izh);s(α,1)(kh)

s(α,1)(kh)
−
wp(α,−1)(izh);s(α,−1)(kh)

s(α,−1)(kh)

)
,

where

ghzh,kh(t) =

∫ 1

t

wzh;khg
h−1
zh−1;kh−1

dth + c(zh, kh), (2.65)

with c(zh, kh) a constant that we are going to fix in a moment. Using Ah = {(α, 1) |
α ∈ Ah−1} ∪ {(α,−1) | α ∈ Ah−1}, and the relations

1

4π
ch−1
α (kh−1)

1

s(α,1)(kh)
= ch(α,1)(kh) and

1

4π
ch−1
α (kh−1)

1

s(α,−1)(kh)
= −ch(α,−1)(kh),

we conclude that

Dh(t) = ghzh,kh(t)−
∑
α∈Ah

chα(kh)wpα(izh);sα(kh)(t).

This proves (2.60).
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We are left with the proof of (2.61) and (2.62). The constant above is

c(zh, kh) =
∑
α∈Ah

chα(kh)wpα(izh);sα(kh)(1).

By the 1-periodicity of t 7→ ghzh,kh(t), we have

ghzh,kh(0) = ghzh,kh(1) = c(zh, kh),

and this shows (2.61).

Finally, we check (2.62). By (2.65) it is sufficient to show that∫
Σn−h

wzn;kn(tn) . . . wzh+1;kh+1
(th+1)

(∫ 1

th+1

wzh;khg
h−1
zh−1;kh−1

dth

)
dLn−h = 0. (2.66)

and

c(zh, kh)

∫
Σn−h

wzn;kn(tn) . . . wzh+1;kh+1
(th+1)dLn−h = 0. (2.67)

Identity (2.67) holds by (2.64) and identity (2.66) holds by the inductive validity of

(2.62).

The explicit formula (2.63) for the constants chα(kh) will be crucial in Lemma 2.40.

Corollary 2.38. Let kn = (k1, . . . , kn) ∈ Nn, n ∈ N, be a vector of frequencies

satisfying (2.59) and assume there exists a unique ᾱ ∈ An of the form ᾱ = (α,−1)
with α ∈ An−1 such that sᾱ(kn) = 0. Then we have∫

Σn

wzn;kn(tn) . . . wz1;k1(t1)dLn = −1

2
cn−1
α (kn−1)Re

(
z̄npα(izn−1)

)
. (2.68)

Proof. Using formulas (2.60) and (2.62) we obtain∫
Σn

wzn;kn . . . wz1;k1dLn =

∫ 1

0

wzn;kn

(∫
Σ(tn,1−tn)

wzn−1;kn−1 . . . wz1;k1dLn−1
)
dtn

=

∫ 1

0

wzn;kn

(
gn−1
zn−1;kn−1

−
∑

α∈An−1

cn−1
α (kn−1)wpα(izn−1);sα(kn−1)

)
dtn

= −cn−1
α (kn−1)

∫ 1

0

wzn;knwpα(izn−1);sα(kn−1)dtn.

Now we use the multiplication formula (2.58). Only the one term with a resulting

zero frequence contributes to the integral, and we get∫
Σn

wzn;kn . . . wz1;k1dLn = −1

2
cn−1
α (kn−1)Re(z̄npα(izn−1)).
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Remark 2.39. Let kn = (k1, . . . , kn) ∈ Nn be a vector of frequencies such that

k1 =
n∑
j=2

kj and kj >

n∑
ℓ=j+1

kℓ, 2 ≤ j ≤ n− 1. (2.69)

Then kn satisfies (2.59) and there exists a unique ᾱ = (α,−1) ∈ An such that

sᾱ(kn) = 0, and namely ᾱ = (1,−1, . . . ,−1).

Lemma 2.40. There exists kn = (k1, . . . , kn) ∈ Nn as in (2.69) such that, with

ᾱ = (1,−1, . . . ,−1), there holds

|cn−1
ᾱ (kn−1)| >

∑
σ∈S1

n,σ ̸=id

|cn−1
ᾱ (kσ1 , . . . , kσn−1)|. (2.70)

Proof. Setting, for ℓ = 3, . . . , n,

q(kℓ, . . . , kn) =
n∏
i=ℓ

1

kℓ + · · ·+ kn
,

by formula (2.63) and by the choice of k1 in (2.69), we obtain

|cn−1
ᾱ (kn−1)| =

2

4n−1πn−1k1
q(k3, . . . , kn),

and so inequality (2.70) is equivalent to

q(k3, . . . , kn) >
∑

σ∈S1
n,σ ̸=id

q(kσ3 , . . . , kσn). (2.71)

Notice that k1 does not appear in (2.71), whereas k2 may appear in the right hand

side.

For i = 1, . . . , n, consider the set of permutations fixing 1, . . . , i:

Sin = {σ ∈ Sn | σ1 = 1, . . . , σi = i}.

We claim that there exist k2, . . . , kn as in (2.69), such that for any ℓ = 3, . . . , n there

holds

q(kℓ, . . . , kn) >
n−2∑
i=ℓ−2

∑
σ∈Si

n,σ(i+1)̸=i+1

q(kσℓ , . . . , kσn). (2.72)

Claim (2.72) for ℓ = 3 is exactly (2.71).

We prove (2.72) by induction on ℓ starting from ℓ = n and descending. When

ℓ = n, the sums in the right hand side of (2.72) reduce to the sum on one element,

the permutation switching n and n− 1. So, inequality (2.72) reads in this case

1

kn
= q(kn) > q(kn−1) =

1

kn−1

,
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that holds as soon as 0 < kn < kn−1.

By induction, assume that kℓ > · · · > kn are already fixed in such a way that

(2.72) holds with ℓ+ 1 replacing ℓ. Notice that kℓ−1 may and indeed does appear in

the right hand side. We claim that there exists kℓ−1 > kℓ such that (2.72) holds.

We split the sum in (2.72) obtaining

q(kℓ, . . . , kn) >
n−2∑
i=ℓ−1

∑
σ∈Si

n,σ(i+1)̸=i+1

q(kσℓ , . . . , kσn) +
∑

σ∈Sℓ−2
n ,σ(ℓ−1)̸=ℓ−1

q(kσℓ , . . . , kσn),

(2.73)

and we consider the quantity

Q(kℓ, . . . , kn) = q(kℓ, . . . , kn)−
n−2∑
i=ℓ−1

∑
σ∈Si

n,σ(i+1)̸=i+1

q(kσℓ , . . . , kσn)

A permutation σ ∈ Sin with i ≥ ℓ− 1 fixes all the kis with i ≤ ℓ− 1 and then we

have

q(kσℓ, . . . , kσn) =
1

kℓ + · · ·+ kn
q(kσℓ+1

, . . . , kσn),

and thus

Q(kℓ, . . . , kn) =
1

kℓ + · · ·+ kn

(
q(kℓ+1, . . . , kn)−

n−2∑
i=ℓ−1

∑
σ∈Si

n,σ(i+1)̸=i+1

q(kσℓ+1
, . . . , kσn)

)
.

By our inductive assumption, we have Q(kℓ, . . . , kn) > 0. Notice that Q(kℓ, . . . , kn)

does not depend on kℓ−1.

Conversely, every summand in the second sum in (2.73), i.e., every q(kσℓ , . . . , kσn),

depends on kℓ−1 and tends to 0 as kℓ−1 →∞. We conclude that for all large enough

kℓ−1 > kℓ claim (2.73) holds. This ends the proof of (2.72).

Proof of Theorem 2.36. We claim that for each τ ∈ S1
n there exists uτ ∈ Vn−1 such

that the matrix (Iσ(uτ ))σ,τ∈S1
n
is strictly diagonally dominant and thus invertible.

Let kn = (k1, . . . , kn) ∈ Nn be a vector of frequencies as in (2.69) and satisfying

the claim of Lemma 2.40 and choose complex numbers zn = (z1, . . . , zn) ∈ Cn such

that

−1

2
Re(z̄npα(izn−1)) = 1,

where α = (1,−1, . . . ,−1) ∈ An−1. The function u = (wz1;k1 , . . . , wzn;kn) is in Vn−1,

by Theorem 2.37, formulas (2.60) and (2.61). By formula (2.68) and by Lemma 2.40

|I id(u)| = |cn−1
ᾱ (kn−1)| >

∑
σ∈S1

n,σ ̸=id

|cn−1
ᾱ (kσ1 , . . . , kσn−1)| =

∑
σ∈S1

n,σ ̸=id

|Iσ(u)|
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For each τ ∈ S1
n, we define uτ = (wz1̄;k1̄ , . . . , wzn̄;kn̄), where ℓ̄ = τ−1(ℓ). As above, we

have

|Iτ (uτ )| >
∑

σ∈S1
n,σ ̸=τ

|Iσ(uτ )|.

This concludes the proof that (Iσ(uτ ))σ,τ∈S1
n
is strictly diagonally dominant.

2.8 Goh conditions of order n in the corank 1 case

Let ∆ ⊂ TM be the distribution spanned point-wise by the vector fields f1, . . . , fd.

For any n ∈ N and q ∈M we let

∆n(q) = spanR
{
[fsn , . . . , fs1 ](q) | s1, . . . , sn ∈ {1, . . . , d}

}
⊂ TqM.

For a given q ∈M , the annihilator of ∆n is

∆⊥
n (q) =

{
λ ∈ T ∗

qM | λ(v) = 0 for all v ∈ ∆n(q)
}
.

Theorem 2.41. Let (M,∆, g) be a sub-Riemannian manifold, γ ∈ AC(I;M) be a

horizontal curve with control u ∈ X, and n ∈ N be an integer with n ≥ 3. Assume

that:

i) DhuF = 0 for h = 2, . . . , n−1, where F is the end-point map starting from γ(0);

ii) γ is a strictly singular length minimizing curve with corank 1.

Then any adjoint curve λ ∈ AC(I;T ∗M) satisfies

λ(t) ∈ ∆⊥
n (γ(t)) for all t ∈ I. (2.74)

Proof. If γ is length minimizing then the extended end-point map FJ is not open at u,

i.e., the extend variation map GJ is not open at 0. By Theorem 2.29 we consequently

have Gnt0(v) = 0 for all t0 ∈ I and for all v ∈ Vn−1. In order to use Theorem 2.29 we

need both assumptions i) and ii). The map Gnt0 is introduced in (2.39) and incorporates

λ. The strict singularity of γ is used to translate the differential analysis from GJ to

G.

We polarize the equation Gnt0(v) = 0, as explained at the end of Section 2.5. The

polarization, denoted by T , is introduced in (2.46). We have T = 0 on linear spaces

contained in Vn−1. We fix any selection function s : {1, . . . , n} → {1, . . . , d} and we

translate our claim (2.74) into the new claim

⟨λ(t), [fsn , . . . , fs1 ](γ(t))⟩ = 0, t ∈ I. (2.75)
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By formula (2.49) for T proved in Theorem 2.31, if we choose v1, . . . , vn ∈ X as

in (2.47) and such that the corresponding u satisfies u ∈ Vn−1, then the equation

T (v1, . . . , vn) = 0 reads ∑
σ∈S1

n

⟨λ, [gt0sσ]⟩Iσ(u) = 0, t0 ∈ I. (2.76)

We regard (2.76) as a linear equation in the unknowns ⟨λ, [gt0sσ]⟩ with coefficients

Iσ(u).

By Theorem 2.36, for any τ ∈ S1
n there exists uτ ∈ Vn−1 such that the matrix

(Iσ(uτ ))σ,τ∈S1
n
is invertible. From (2.76), the definition of adjoint curve (see Definition

1.105), and (2.27) we deduce that for any σ ∈ S1
n and t0 ∈ I

0 = ⟨λ, [gt0sσ]⟩ = ⟨λ, [gt0sσn , . . . , g
t0
sσ1

]⟩
= ⟨λ, [(P 1

t0
)∗fsσn , . . . , (P

1
t0
)∗fsσ1 ]⟩

= ⟨λ, (P 1
t0
)∗[fsσn , . . . , fsσ1 ]⟩

= ⟨(P 1
t0
)∗λ, [fsσn , . . . , fsσ1 ](γ(t0))⟩

= ⟨λ(t0), [fsσn , . . . , fsσ1 ](γ(t0))⟩.

This identity with σ = id is (2.75).

Remark 2.42. We comment on assumption i), DhuF = 0 for h = 2, . . . , n− 1. This is

equivalent to Dh0G = 0. Using formula (2.36), for v ∈ Vh−1,

0 = Dh0G(wt0,s) = ⟨λ,Dh
0G(wt0,s)⟩ = chs

h

∫
Σh

⟨λ, [gt0v(th), . . . , g
t0
v(t1)

]⟩dLh +O(sh+1).

Dividing by sh and letting s→ 0 we deduce that Ght0(v) = 0. Now, as in the proof of

Theorem 2.41 we conclude that ⟨λ(t0), [fsh , . . . , fs1 ](γ(t0))⟩ = 0, that is

λ(t) ∈ ∆⊥
h (γ(t)), for all h = 2, . . . , n− 1. (2.77)

In particular, as a combination of (2.74) and (2.77), if γ is a strictly singular length

minimizer satisfying i), then the associated adjoint curve annihilates all the brackets

up to length n.

Remark 2.43. The inverse implication in Theorem 2.41 does not hold. Namely, a

strictly singular curve satisfying assumption i) and (2.74) in Theorem 2.41 needs not

be length-minimizing. A counterexample is given in the next section.
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2.9 An example of singular extremal

On the manifold M = R3, with coordinates x = (x1, x2, x3) ∈ R3, we consider the

rank 2 distribution ∆n = span{f1, f2}, where f1 and f2 are the vector-fields defined

by

f1(x) =
∂

∂x1
, f2(x) = (1− x1)

∂

∂x2
+ xn1

∂

∂x3
. (2.78)

The vector-field f2 depends on the parameter n ∈ N. We fix on ∆n the metric g

making f1 and f2 orthonormal.

In this section, we study the (local) length-minimality in (R3,∆n, g) of the curve

γ : I = [0, 1]→ R3

γ(t) = (0, t, 0), t ∈ I. (2.79)

The curve γ is in fact defined for all t ∈ R.
Our results rely upon the analysis of the variation map G based on the results of

the previous sections. The minimality properties of γ are described in the following

theorem.

Theorem 2.44. For n ∈ N, let us consider the sub-Riemannian manifold (R3,∆n, g)

and the curve γ in (2.79).

i) For any n ≥ 2, γ is the unique strictly singular extremal in (R3,∆n) passing

through the origin, up to reparameterization.

ii) If n ≥ 2 is even, γ is locally length minimizing in (R3,∆n, g).

iii) If n ≥ 3 is odd, γ is not length minimizing in (R3,∆n, g), not even locally.

Above, “locally length minimizing” means that short sub-arcs of γ are length

minimizing for fixed end-points. Claims i) and ii) are well-known. In particular, claim

ii) can be proved with a straightforward adaptation of Liu-Sussmann’s argument for

n = 2 in [19]. For n = 3, claim iii) is proved in [7] and here we prove the general case.

We compute the intrinsic differentials of G and we show that, for odd n, they

satisfy the hypotheses of Theorem 2.15. This implies that the extended variation

map GJ is open and, as a consequence, the non-minimality of γ.

We denote by γx the horizontal curve with control u = (0, 1) and γx(1) = x, so

that γ q̄ = γ. By the formulas in (2.78) for the vector fields f1 and f2, we find

γx1 (t) = x1, γx2 (t) = (t− 1)(1− x1) + x2, γx3 (t) = (t− 1)xn1 + x3.

The “optimal flow” associated with γ is the 1-parameter family of diffeomorphisms

P t
1 ∈ C∞(R3;R3), t ∈ R, defined by P t

1(x) = γx(t). For fixed x ∈ R3, the inverse of
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the differential of P t
1 is the map P t

1(x)
−1
∗ = P 1

t (x)∗ : Tγx(t)R3 → TxR3

P 1
t (x)∗ =

 1 0 0

t− 1 1 0

−n(t− 1)xn−1
1 0 1

 .

As explained in Section 2.4, see formula (2.33), the differential of G at 0 is

d0G(v) =

∫ 1

0

gtv(t)(q̄)dt, v = (v1, v2) ∈ L2(I;R2).

Above, we set gtv(t) = v1(t)gt1 + v2(t)gt2 where the vector fields gt1 and gt2 are

gt1 = P 1
t (x)∗f1 =

∂

∂x1
+ (t− 1)

∂

∂x2
− n(t− 1)xn−1

1

∂

∂x3
,

gt2 = P 1
t (x)∗f2 = f2 = (1− x1)

∂

∂x2
+ xn1

∂

∂x3
.

So the differential is given by the formula

d0G(v) =


∫ 1

0

v1(t)dt∫ 1

0

{
(t− 1)v1(t) + v2(t)

}
dt

0

 . (2.80)

We deduce that a generator for Im(d0G)
⊥ is the covector λ = (0, 0, 1), and that

v ∈ ker(d0G) if and only if∫ 1

0

v1(t)dt = 0 and

∫ 1

0

(tv1(t) + v2(t))dt = 0.

In the computation of the differentials Dh0G, h ≥ 2, we need the following lemma.

For y ∈ L2(I;R) and n ≥ 2, we let

Γny =

∫
Σn

y(t1) . . . y(tn)(t2 − t1)dLn.

Lemma 2.45. For n ≥ 2 and y ∈ L2(I;R) such that

∫ 1

0

y(t)dt = 0 we have

Γny =
1

n!

∫ 1

0

(∫ 1

t

y(τ)dτ

)n
dt.
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Proof. We first observe that, integrating by parts, we have∫ 1

t2

y(t1)(t2 − t1)dt1 = t2

∫ 1

t2

y(t1)dt1 −
∫ 1

t2

t1y(t1)dt1

= t2

∫ 1

t2

y(t1)dt1 −
[
s

∫ 1

s

y(t1)dt1

]
s=t2

+

∫ 1

t2

∫ 1

s

y(t1)dt1ds

=

∫ 1

t2

∫ 1

s

y(t1)dt1ds.

Applying this identity to Γny and integrating by parts again, we get

Γny =

∫ 1

0

y(tn)

∫ 1

tn

· · ·
∫ 1

t2

∫ 1

s

y(t1)dt1dsdt2 . . . dtn

=

∫ 1

0

y(tn)dtn

∫ 1

0

y(tn−1)

∫ 1

tn

· · ·
∫ 1

t2

∫ 1

s

y(t1)dt1dsdt2 . . . dtn−1

−
∫ 1

0

(∫ 1

tn

y(τ)dτ

)
y(tn)

∫ 1

tn

y(tn−2)· · ·
∫ 1

t2

∫ 1

s

y(t1)dt1dsdt2 . . . dtn−2dtn

=
1

2

∫ 1

0

d

dtn

(∫ 1

tn

y(τ)dτ

)2 ∫ 1

tn

y(tn−2)· · ·
∫ 1

t2

∫ 1

s

y(t1)dt1dsdt2 . . . dtn−2dtn.

In the last identity, we used our assumption

∫ 1

0

y(t)dt = 0. Now our claim follows by

iterating this integration by parts argument.

Theorem 2.46. Let n ∈ N. The variation map G in (R3,∆n) satisfies:

i) Dh0G = 0, for h < n;

ii) for any v = (v1, . . . , vn−1) ∈ dom(Dn0G),

Dn0G(v) =
∫ 1

0

(∫ 1

t

v11(τ)dτ

)n
dt, (2.81)

where v11 is the first coordinate of v1.

Proof. The Lie brackets of the vector fields gt1 and gt2 = f2 are, at different times,

[gt1, g
s
1] = n(n− 1)(t− s)xn−2

1

∂

∂x3
,

[gt1, g
s
2] = −

∂

∂x2
+ nxn−1

1

∂

∂x3
.

Notice that the bracket in the latter line is time-independent. Then, for 3 ≤ h ≤ n

and i1, . . . , ih ∈ {1, 2}, the iterated brackets of length h are

[gthih , . . . , g
t1
i1
] =


n . . . (n− h+ 1)(t2 − t1)xn−h1

∂
∂x3
, if i1 = · · · = ih = 1,

n . . . (n− h+ 2)(t2 − t1)xn−h+1
1

∂
∂x3
, if i2 = · · · = ih = 1, and i1 = 2,

0, otherwise.
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For h < n, the coefficient of ∂/∂x3 in the formulas above vanishes at the point

q̄ = (0, 1, 0) and thus the projection of these brackets along the covector λ = (0, 0, 1)

vanishes, for any 2 ≤ h < n,

⟨λ, [gthih , . . . , g
t1
i1
](q̄)⟩ = 0.

Using formulas (2.28) and (2.33), we deduce that for any (v1, . . . , vh−1) ∈ dom(Dh0G)
we have

Dh0G(v1, . . . , vh−1) = ⟨λ,Dh
0G(v1, . . . , vh−1, ∗)(q̄)⟩ = 0,

proving claim i).

For h = n, the coefficient of ∂/∂x3 vanishes at q̄ except for the case i1 = · · · =
in = 1, that is

⟨λ, [gtnin , . . . , g
t1
i1
](q̄)⟩ = 0, if ij ̸= 1 for some j,

⟨λ, [gtn1 , . . . , gt11 ](q̄)⟩ = n!(t2 − t1).

Then, for any v = (v1, . . . , vn−1) ∈ dom(Dn0G) we have

Dn0G(v) = ⟨λ,Dn
0G(v1, . . . , vn−1, ∗)⟩ = n!

∫
Σn

v11(t1) . . . v
1
1(tn)(t2 − t1)dLn

=

∫ 1

0

(∫ 1

t

v11(τ)dτ

)n
dt.

In the last identity we used Lemma 2.45. This proves claim ii).

Before proving claim iii) of Theorem 2.44, we recall that ker(d0GJ) = ker(d0G) ∩
ker(duJ), where J is the energy functional (see Section 6). In particular, for any

v ∈ L2(I;R2) we have

duJ(v) =

∫ 1

0

(
u1(t)v1(t)dt+ u2(t)v2(t)

)
dt =

∫ 1

0

v2(t)dt. (2.82)

Proof of Theorem 2.44 - claim iii). Let n ∈ N be an odd integer. We claim that there

exists v = (v1, . . . , vn−1) ∈ dom(Dn0GJ) ⊂ dom(Dn0G) such that Dn0G(v) ̸= 0. The

inclusion of domains is ensured by (2.38). By Theorem 2.46 we have Dh0G = 0 for any

h < n. Then from (2.37) it follows that also the extended map satisfies Dn0GJ(v) ̸= 0

and Dh0GJ = 0 for h < n.

By Proposition 2.14 the differential Dn0GJ is regular; here, we are using the fact

that n is odd. By Theorem 2.15, GJ is open at zero and thus FJ is open at u. This

implies that γ is not length minimizing.
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So, the proof of our claim reduces to find a function v1 ∈ ker(d0GJ) such that∫ 1

0

(∫ 1

t

v11(τ)dτ

)n
dt ̸= 0.

If such a control v1 exists, then by Proposition 2.9 there also exist v2, . . . , vn−1 ∈
L2(I;R2) such that v = (v1, . . . , vn−1) ∈ dom(Dn0GJ) and by (2.81) it followsDn0G(v) ̸=
0.

The condition v1 ∈ ker(d0GJ) is equivalent to d0G(v1) = 0 and duJ(v1) = 0. By

(2.80) and (2.82) this means∫ 1

0

v11(t)dt =

∫ 1

0

tv11(t)dt =

∫ 1

0

v21(t)dt = 0. (2.83)

We choose any funtion v21 with vanishing mean. Also choosing v11(t) = χ[0, 12 ]
(t) −

5χ[ 12 ,
3
4 ]
(t) + 3χ[ 34 ,1]

(t), all the conditions in (2.83) are satisfied. Moreover, we have

∫ 1

t

v11(τ)dτ = −tχ[0, 12 ](t) + (5t− 3)χ[ 12 ,
3
4 ]
(t)− 3(t− 1)χ[ 34 ,1]

(t),

and then, after a short computation,∫ 1

0

(∫ 1

t

v11(τ)dτ

)n
dt =

6

5(n+ 1)4n
(
3n−1 − 2n−1

)
.

The last quantity is different from 0 for any odd n ≥ 3, completing the proof.

Remark 2.47. We briefly comment on claim ii) of Theorem 2.44. By formula (2.81),

when n is even we have Dn0G(v) ≥ 0 for any v ∈ dom(Dn0G). So condition i) in

Proposition 2.14 cannot be satisfied. The differential Dn0G is not regular in the sense

of Definition 2.13 part i) and so the open mapping Theorem 2.15 does not work.

Though not sufficient to prove the local minimality of γ, this is consistent with claim

ii) of Theorem 2.44.

Remark 2.48. Claim iii) of Theorem 2.44 answers the question raised in Remark 2.43.

By Theorem 2.46, the curve γ satisfies assumption i) of Theorem 2.41 for any n ∈ N.
On the other hand, the non-vanishing Lie brackets of the vector fields f1 and f2 are

[f1, f2] = −
∂

∂x2
+ nxn−1 ∂

∂x3
,

[f1, . . . , f1︸ ︷︷ ︸
(h− 1)-times

, f2] = n(n− 1) . . . (n− h+ 2)xn−h+1
1

∂

∂x3
.
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Then, for any h ≤ n we have

⟨λ, [f1, . . . , f1︸ ︷︷ ︸
(h− 1)-times

, f2](γ(t))⟩ = 0, for any t ∈ I. (2.84)

For 2 ≤ h < n, this is consistent with Remark 2.42: the vanishing of the h-th

differential implies (2.84). When h = n, identity (2.84) is the Goh condition of order

n in (2.75).

Thus, if n is odd the curve γ satisfies both assumption i) of Theorem 2.41 and

condition (2.75). However, it is a strictly singular curve which is not length minimiz-

ing.
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Chapter 3

New results on the nonminimality

of spiral-like curves

In this chapter, we approach to the regularity problem following the strategy of study-

ing the singularities of horizontal curves by creating a shorter competing curve with

the same end points. In particular, we face-up the case of spiral-like curves. In the

following it will be clarified why this is an interesting case to consider

The most elementary kind of singularity for a Lipschitz curve is of the corner-type:

at a given point, the curve has a left and a right tangent that are linearly independent.

In [18] and [12] it was proved that length minimizers cannot have singular points of

this kind, namely

Theorem 3.1 (Hakavuori, Le Donne 2016). Let γ : [0, 1]→M be a horizontal curve.

If γ has corner-type singularity, then it cannot be length-minimizing.

Here, we give a very basic idea of the proof when M = R3 is a sub-Riemannian

manifold of dimension 3 and constant rank 2, as in the example of Section 1.2. Our

computations in the case of the spirals are based on similar ideas.

In this case, a horizontal curve is written γ(t) = (γ1(t), γ2(t), γ3(t)), where the

third coordinate of γ is the area of the graph of its horizontal projection κ(t) =

(γ1(t), γ2(t)).

Suppose that γ has a corner, namely suppose for example that κ is a path walking

through the coordinate axes, with corner singularity at the origin.

One builds a competitor curve γ̄ depending on a fixed positive parameter ε and

on an integer n, modifying the horizontal projection κ. This modification on κ also

modifies the third coordinate of γ. Since the sub-Riemannian length of γ is the

Euclidean length of κ, such a modification of γ is made through the following two

steps
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i) First, one cuts the original curve near the singularity, as in the red path of the

figure below. This implies a gain of length for γ̄, but it modifies the end point.

ii) In order to restore the end point, one has to correct the curve in such a way to

have a positive gain of length. This step is realized by the green path in the

figure below.

κ(t) =

(0,−t), t ∈ [−1, 2, 0),

(t, 0), t ∈ [0, 1/2].

In this case, we have for n large enough a gain of length given by

ℓ(γ)− ℓ(γ̄) = (2−
√
2− 1

n
)ε > 0.

This prove that the curve γ cannot be a length minimizer, because of the presence of

a corner. When M has dimension n and rank m, one needs n−m integer parameters

k1, . . . , kn−m and n−m associated correction paths to restore the end point, solving

a system of linear equations.

The result of Theorem 3.1 has been improved in [22]: here, the authors define

the tangent cone of a horizontal path as its blow-up (for the precise definition of

the tangent cone, we refer the reader to the parer), then they prove the following

statement.

Theorem 3.2 (Monti, Pigati, Vittone 2018). Let γ : [0, 1] → M be a horizontal

length-minimizing curve. Then, for any t ∈ [0, 1], there is at least one horizontal line

in the tangent cone of γ at the time t.

The uniqueness of this tangent line for length minimizers is an open problem.

Indeed, there exist other types of singularities related to the non-uniqueness of the

tangent. In particular, there exist spiral-like curves whose tangent cone at the center

contains many and in fact all tangent lines. For this reason, the study of spiral-like
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curves is very interesting, and also nontrivial: these curves may appear as Pontryagin

extremals in sub-Riemannian geometry and theorem 3.2 is not enough to prove the

nonminimality of spiral-like extremals.

Let (M,∆, g) be an n-dimensional, n ≥ 3, analytic sub-Riemannian manifold

where ∆ ⊂ TM has constant rank 2. Our notion of horizontal spiral in a sub-

Riemannian manifold of rank 2 is fixed in Definition 3.3 below. The aim of this chapter

is to show that spirals are not length-minimizing when the horizontal distribution ∆

satisfies the following commutativity condition. Fix two vector fields f1, f2 ∈ ∆ that

are linearly independent at some point p ∈ M . For k ∈ N and for a multi-index

J = (j1, . . . , jk), with ji ∈ {1, 2}, we denote by fJ = [fj1 , [. . . , [fjk−1
, fjk ] · · · ]] the

iterated commutator associated with J . We define its length as the length of the

multi-index J , i.e., len(fJ) = len(J) = k. Then, our commutativity assumption is

that, in a neighborhood of the point p,

[fI , fJ ] = 0 for all multi-indices with len(I), len(J) ≥ 2. (3.1)

This condition is not intrinsic and depends on the basis f1, f2 of the distribution ∆.

After introducing exponential coordinates of the second type, the vector fields

f1, f2 can be assumed to be of the form (3.5) below, and the point p will be the center

of the spiral. In coordinates we have γ = (γ1, . . . , γn) and, by (3.5), the γj’s satisfy

for j = 3, . . . , n the following integral identities

γj(t) = γj(0) +

∫ t

0

aj(γ(s))γ̇2(s)ds, t ∈ [0, 1]. (3.2)

When γ(0) and γ1, γ2 are given, these formulas determine in a unique way the whole

horizontal curve γ. We call κ ∈ AC([0, 1];R2), κ = (γ1, γ2), the horizontal coordinates

of γ.

Definition 3.3 (Spiral). We say that a horizontal curve γ ∈ AC([0, 1];M) is a spiral

if, in exponential coordinates of the second type centered at γ(0), the horizontal

coordinates κ ∈ AC([0, 1];R2) are of the form

κ(t) = teiφ(t), t ∈]0, 1], (3.3)

where φ ∈ C1(]0, 1];R+) is a function, called phase of the spiral, such that |φ(t)| → ∞
and |φ̇(t)| → ∞ as t→ 0+. The point γ(0) is called center of the spiral.

A priori, Definition 3.3 depends on the basis f1, f2 of ∆, see however our comments

about its intrinsic nature in Remark 3.13. Without loss of generality, we shall focus

our attention on spirals that are oriented clock-wise, i.e., with a phase satisfying
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φ(t) → ∞ and φ̇(t) → −∞ as t → 0+. Such a phase is decreasing near 0. Notice

that if φ(t)→∞ and φ̇(t) has a limit as t→ 0+ then this limit must be −∞.

Our main result in this chapter is the following

Theorem 3.4. Let (M,∆, g) be an analytic sub-Riemmanian manifold of rank 2

satisfying (3.1). Any horizontal spiral γ ∈ AC([0, 1];M) is not length-minimizing

near its center.

The nonminimality of spirals combined with the necessary conditions given by

Pontryagin Maximum Principle is likely to give new regularity results on classes of

sub-Riemannian manifolds, in the spirit of [4]. We think, however, that the main

interest of Theorem 3.4 is in the deeper understanding that it provides on the loss of

minimality caused by singularities.

The proof of Theorem 3.4 consists in constructing a competing curve shorter than

the spiral. The construction uses exponential coordinates of the second type.

3.1 Exponential coordinates at the center of the

spiral

In this section, we introduce inM exponential coordinates of the second type centered

at a point p ∈M , that will be the center of the spiral.

Let f1, f2 ∈ ∆ be linearly independent at p. Since the distribution ∆ is bracket-

generating we can find vector-fields f3, . . . , fn, with n = dim(M), such that each fi is

an iterated commutator of f1, f2 with length wi = len(fi), i = 3, . . . , n, and such that

f1, . . . , fn at p are a basis for TpM . By continuity, there exists an open neighborhood

U of p such that f1(q), . . . , fn(q) form a basis for TqM , for any q ∈ U . We call

f1, . . . , fn a stratified basis of vector-fields in M .

Let φ ∈ C∞(U ;Rn) be a chart such that φ(p) = 0 and φ(U) = V , with V ⊂ Rn

open neighborhood of 0 ∈ Rn. Then f̃1 = φ∗f1, . . . , f̃n = φ∗fn is a system of point-

wise linearly independent vector fields in V ⊂ Rn. Since our problem has a local

nature, we can without loss of generality assume that M = V = Rn and p = 0.

After these identifications, we have a stratified basis of vector-fields f1, . . . , fn in

Rn. We say that x = (x1, . . . , xn) ∈ Rn are exponential coordinates of the second

type associated with the vector fields f1, . . . , fn if we have

x = P f1
x1
◦ · · · ◦ P fn

xn (0), x ∈ Rn. (3.4)

Here, as usual for all this thesis, we are using the notation PX
s = exp(sX), s ∈ R, to
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denote the flow of a vector-fieldX. From now on, we assume without loss of generality

that f1, . . . , fn are complete and induce exponential coordinates of the second type.

We define the homogeneous degree of the coordinate xi of Rn as wi = len(fi). We

introduce the 1-parameter group of dilations δλ : Rn → Rn, λ > 0,

δλ(x) = (λw1x1, . . . , λ
wnxn), x ∈ Rn,

and we say that a function f : Rn → R is δ-homogeneous of degree w ∈ N if

f(δλ(x)) = λwf(x) for all x ∈ Rn and λ > 0. An example of δ-homogeneous function

of degree 1 is the pseudo-norm

∥x∥ =
n∑
j=1

|xi|1/wi , x ∈ Rn.

The following theorem is proved in [13] in the case of general rank. A more modern

approach to nilpotentization can be found in [5] and [14].

Theorem 3.5. Let ∆ = span{f1, f2} ⊂ TM be an analytic distribution of rank 2.

In exponential coordinates of the second type around a point p ∈ M identified with

0 ∈ Rn, the vector fields f1 and f2 have the form

f1(x) = ∂x1 ,

f2(x) = ∂x2 +
n∑
j=3

aj(x)∂xj ,
(3.5)

for x ∈ U , where U is a neighborhood of 0. The analytic functions aj ∈ C∞(U),

j = 3, . . . , n, have the structure aj = pj + rj, where:

(i) pj are δ-homogeneous polynomials of degree wj − 1 such that pj(0, x2, . . . , xn) =

0;

(ii) rj ∈ C∞(U) are analytic functions such that, for some constants C1, C2 > 0

and for x ∈ U ,

|rj(x)| ≤ C1∥x∥wj and |∂xirj(x)| ≤ C2∥x∥wj−wi .

Proof. The proof that aj = pj+ rj where pj are polynomials as in (i) and the remain-

ders rj are real-analytic functions such that rj(0) = 0 can be found in [13]. The proof

of (ii) is also implicitly contained in [13]. Here, we add some details. The Taylor

series of rj has the form

rj(x) =
∞∑

ℓ=wj

rjℓ(x) =
∞∑

ℓ=wj

∑
α∈Aℓ

cαℓx
α,
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where Aℓ = {α ∈ Nn : α1w1 + . . . + αnwn = ℓ}, xα = xα1
1 · · · xαn

n and cαℓ ∈ R
are constants. Here and in the following, N = {0, 1, 2, . . .}. The series converges

absolutely in a small homogeneous cube Qδ = {x ∈ Rn : ∥x∥ ≤ δ} for some δ > 0,

and in particular
∞∑

ℓ=wj

δℓ
∑
α∈Aℓ

|cαℓ| <∞.

Using the inequality |xα| ≤ ∥x∥ℓ for α ∈ Aℓ, for x ∈ Qδ we get

|rj(x)| ≤ C1∥x∥wj , with C1 =
∞∑

ℓ=wj

δℓ−wj

∑
α∈Aℓ

|cα| <∞.

The estimate for the derivatives of rj is analogous. Indeed, we have

∂xirj(x) =
∞∑

ℓ=wj

∑
α∈Aℓ

αicαℓx
α−ei ,

where α − ei ∈ Aℓ−wi
whenever α ∈ Aℓ. Above, ei = (0, . . . , 1, . . . , 0) with 1 at

position i is the canonical ith versor of Rn. Thus the leading term in the series has

homogeneous degree wj − wi and repeating the argument above we get the estimate

|∂xirj(x)| ≤ C2∥x∥wj−wi for x ∈ Qδ.

Remark 3.6. Let ∆ = span{f1, f2} be as in Theorem 3.5. In exponential coordinates

of the second type, we consider the vector fields

f̂1(x) = f1(x) = ∂x1 ,

f̂2(x) = ∂x2 +
n∑
j=3

pj(x)∂xj .

It is implicitly proved in [13] that the Lie algebra generated by ∆̂ = span{f̂1, f̂2} is
nilpotent. In particular, when (Rn,∆) is an equiregular sub-Riemannian structure,

then (Rn, ∆̂) is a Carnot group.

Definition 3.7. Let ∆ = span{f1, f2} be as in Theorem 3.5 and let ∆̂ = span{f̂1, f̂2}
be as in Remark 3.6. Then f̂2, ∆̂ and (Rn, ∆̂) are called, respectively, the nilpotent

approximations of f2, ∆ and (Rn,∆).

When the distribution ∆ satisfies the commutativity assumption (3.1) the coeffi-

cients aj appearing in the vector-field f2 in (3.5) enjoy additional properties. In the

next theorem, the specific structure of exponential coordinates of the second type will

be very helpful in the computation of various derivatives. In particular, in Lemma

3.9 we need a nontrivial formula from [13, Appendix A], given in such coordinates.
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Theorem 3.8. Let ∆ ⊂ TM be an analytic distribution of rank 2. Then the functions

a3, . . . , an of Theorem 3.5 depend only on the variables x1 and x2 if and only if ∆

satisfies (3.1).

Proof. If the functions a3, . . . , an of Theorem 3.5 depend only on the variables x1 and

x2, for every I = (i1, . . . , ik) with len(I) ≥ 2, we have

fI =
n∑
i=3

ai,I(x)∂xi ,

where ai,I(x) = ai,I(x1, x2) and so [fI , fJ ] = 0 for every I, J with len(I) ≥ 2.

Suppose now that ∆ satisfies (3.1). Let Γ : R × Rn → Rn be the map Γ(t, x) =

P f2
t (x), where x ∈ Rn and t ∈ R. Here, we are using the exponential coordinates

(3.4). In the following we omit the composition sign ◦. Defining Θ : R3 × Rn → Rn

as the map Θt,x1,x2(p) = P f2
−(x2+t)

P f1
−x1P

f2
t P

f1
x1
P f2
x2
(p), we have

Γ(t, x) = P f1
x1
P f2
x2+tΘt,x1,x2P

f3
x3
. . . P fn

xn (0).

We claim that there exists a C > 0 independent of t such that, for t→ 0,

|Θt,x1,x2P
fj
s − P fj

s Θt,x1,x2 | ≤ Ct2. (3.6)

We will prove claim (3.6) in Lemma 3.9 below. From (3.6) it follows that there exist

mappings Rt ∈ C∞(Rn,Rn) such that

Γ(t, x) = P f1
x1
P f2
x2+tP

f3
x3
. . . P fn

xnΘt,x1,x2(0) +Rt(x), (3.7)

and such that |Rt| ≤ Ct2 for t→ 0.

By the structure (3.5) of the vector fields f1 and f2 and since Θt,x1,x2 is the

composition of C∞ maps, there exist C∞ functions fj = fj(t, x1, x2) such that

Θt,x1,x2(0) =
(
0, 0, f3(t, x1, x2), . . . , fn(t, x1, x2)

)
= exp

( n∑
j=3

fj(t, x1x2)fj

)
(0). (3.8)

By (3.1), from (3.7) and (3.8) we obtain

Γ(t, x) = P f1
x1
P f2
x2+t exp

( n∑
i=3

(xj + fj(t, x1, x2))fj

)
(0) +Rt(x)

=
(
x1, x2 + t, x3 + f3(t, x1, x2), . . . , xn + fn(t, x1, x2)

)
+Rt(x),

and we conclude that

f2(x) =
d

dt
Γ(x, t)

∣∣∣
t=0

= ∂2 +
n∑
j=3

d

dt
fj(t, x1, x2)

∣∣∣
t=0
∂j.

Thus the coefficients aj(x1, x2) =
d
dt
fj(t, x1, x2)|t=0, j = 3, . . . , n, depend only on the

first two variables, completing the proof.
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In the following lemma, we prove our claim (3.6).

Lemma 3.9. Let ∆ ⊂ TM be an analytic distribution satisfying (3.1). Then for any

j = 3, . . . , n the claim in (3.6) holds.

Proof. Let f = fj for any j = 3, . . . , n and define the map T ft,x1,x2;s = Θt,x1,x2P
f
s −

P f
s Θt,x1,x2 . For t = 0 the map Θ0,x1,x2 is the identity and thus T f0,x1,x2;s = 0. So, claim

(3.6) follows as soon as we show that

Ṫ f0,x1,x2;s =
∂

∂t

∣∣∣
t=0
T ft,x1,x2;s = 0,

for any s ∈ R and for all x1, x2 ∈ R.
We first compute the derivative of Θt,x1,x2 with respect to t. Letting Ψt,x1 =

P f1
−x1P

f2
t P

f1
x1

we have Θt,x1,x2 = P f2
−(x2+t)

Ψt,x1P
f2
x2
, and, thanks to [13, Appendix A], the

derivative of Ψt,x1 at t = 0 is

Ψ̇0,x1 =
∞∑
ν=0

cν,x1Wν ,

where Wν = [f1, [· · · , [f1, f2] · · · ]] with f1 appearing ν times and cν,x1 = (−1)νxν1/ν!.
In particular, we have c0,x1 = 1. Then the derivative of Θt,x1,x2 at t = 0 is

Θ̇0,x1,x2 = −f2 + dP f2
−x2
(
Ψ̇0,x1(P

f2
x2
)
)

= −f2 +
∞∑
ν=0

cν,x1dP
f2
−x2
(
Wν(P

f2
x2
)
)

=
∞∑
ν=1

cν,x1dP
f2
−x2
(
Wν(P

f2
x2
)
)
,

because the term in the sum with ν = 0 is dP f2
−x2
(
f2(P

f2
x2
)
)
= f2. Inserting this

formula for Θ̇0,x1,x2 into

Ṫ f0,x1,x2;s = Θ̇0,x1,x2(P
f
s )− dP f

s (Θ̇0,x1,x2),

we obtain

Ṫ f0,x1,x2;s =
∞∑
ν=1

cν,x1dP
f2
−x2
(
Wν(P

f2
x2
P f
s )
)
− dP f

s

∞∑
ν=1

cν,x1dP
f2
−x2
(
Wν

(
P f2
x2
)
)

=dP f
s

∞∑
ν=1

cν,x1

(
dP f

−sdP
f2
−x2
(
Wν(P

f2
x2
P f
s )
)
− dP f2

−x2
(
Wν(P

f2
x2
)
))
.

In order to prove that Ṫ f0,x1,x2;s vanishes for all x1, x2 and s, we have to show that

g(x2, s) := dP f
−sdP

f2
−x2
(
Wν(P

f2
x2
P f
s )
)
− dP f2

−x2
(
Wν(P

f2
x2
)
)
= 0, (3.9)
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for any ν ≥ 1 and for any x2 and s. From P f
0 = id it follows that g(x2, 0) = 0. Then,

our claim (3.9) is implied by

h(x2, s) :=
∂

∂s
g(x2, s) = 0. (3.10)

Actually, this is a Lie derivative and, namely,

h(x2, s) = −dP f
−s
[
f, dP f2

−x2
(
Wν(P

f2
x2
)
)]
.

Notice that h(0, s) = −dP f
−s[f,Wν ] = 0 by our assumption (3.1). In a similar way,

for any k ∈ N we have

∂k

∂xk2
h(0, s) = (−1)k+1dP f

−s[f, [f2, · · · [f2,Wν ] · · · ]] = 0,

with f2 appearing k times. Since the function x2 7→ h(x2, s) is analytic our claim

(3.10) follows.

We conclude this sections with some general remarks.

Remark 3.10. Every Carnot groupG of step less or equal than 3 satisfies (3.1) because,

due to the stratification of the Lie algebra, every bracket of length greater or equal

than 4 vanish. If G has rank 2, then it satisfies (3.1) also if it has step 4, but this is

false in general.

Remark 3.11. This remark answer the following question asked by one of the referee

of this thesis:

“If (M,∆) has constant rank 2, step 3, dimension 5 and satisfies (3.1), is it necessarily

a Carnot group?”

The answer is negative and here we provide a counterexample.

Consider in R5 the distribution ∆ = span{f1, f2} with

f1(x) = ∂x1 , f2(x) = ∂x2 + (x1 + r3(x1))∂x3 +
x21
2
∂x4 + x1x2∂x5 .

Here we are using the notation aj(x) = pj(x) + rj(x), j = 3, 4, 5, of Theorem 3.5,

assuming r4 = r5 = 0 and r3 depending only on the variable x1.

By Theorem 3.8, ∆ satisfies (3.1) and, since r3 ̸= 0, ∆ cannot be the distribution

of a Carnot group. Moreover we have

f3 = [f1, f2] = (1 + r′3(x1))∂x3 + x1∂x4 + x2∂x5 ,

f4 = [f1, f3] = r′′3(x1)∂x3 + ∂x4 ,

f5 = ∂x5 .
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The Hörmander condition on R5 is satisfied by ∆ if

det

(
1 + r′3(x1) r′′3(x1)

x1 1

)
̸= 0.

In partiular, it is sufficient to have

r′3(x1)− x1r′′3(x1) ≥ −
1

2
,

where r3 has to satisfy (ii) of Theorem 3.5. For instance, we can take r3(x1) = −1
3
x31.

Remark 3.12. By Theorem 3.8, we can assume that aj(x) = aj(x1, x2) are functions

of the variables x1, x2. In this case, formula (3.2) for the coordinates of a horizontal

curve γ ∈ AC([0, 1];M) reads, for j = 3, . . . , n,

γj(t) = γj(0) +

∫ t

0

aj(γ1(s), γ2(s))γ̇2(s)ds, t ∈ [0, 1]. (3.11)

Remark 3.13. Definition 3.3 of horizontal spiral is stable with respect to change of

coordinates in the following sense.

After fixing exponential coordinates, we have that 0 ∈ Rn is the center of the

spiral γ : [0, 1]→ Rn, with horizontal projection k(t) as in Definition 3.3.

We consider a diffeomorphism F̃ ∈ C∞(Rn;Rn) such that F̃ (0) = 0. In the new

coordinates, our spiral γ is ζ(t) = F̃ (γ(t)). We define the horizontal coordinates of

ζ in the following way: the set d0F̃ (∆(0)), where d0F̃ is the differential of F̃ at 0,

is a 2-dimensional subspace of Rn = Im(d0F̃ ); denoting by π : Rn → d0F̃ (∆(0)) the

orthogonal projection, we define the horizontal coordinates of ζ as ξ(t) = π(F̃ (γ(t)).

We claim that ξ, in the plane d0F̃ (∆(0)), is of the form (3.3), with a phase ω

satisfying |ω| → ∞ and |ω̇| → ∞. In particular, these properties of ξ are stable up to

isometries of the plane. Then, we can assume that ξ(t) = (F1(γ(t)), F2(γ(t))), with

Fi : Rn → R of class C∞, for i = 1, 2. In this setting, we will show that |ω̇| → ∞.

The function s(t) = |ξ(t)| = |(F1(γ(t)), F2(γ(t)))| satisfies

0 < c0 ≤ ṡ(t) ≤ c1 <∞, t ∈ (0, 1]. (3.12)

Define the function ω ∈ C1((0, 1]) letting ξ(t) = s(t)eiω(s(t)). Then differentiating the

identity obtained inverting

tan
(
ω(s(t))

)
=
F2(γ(t))

F1(γ(t))
, t ∈ (0, 1],

we obtain

ṡ(t)ω̇(s(t)) =
1

s(t)2
⟨P (γ(t)), γ̇(t)⟩, t ∈ (0, 1], (3.13)

94



where the function P (x) = F1(x)∇F2(x)− F2(x)∇F1(x) has the Taylor development

as x→ 0

P (x) =⟨∇F1(0), x⟩∇F2(0)− ⟨∇F2(0), x⟩∇F1(0) +O(|x|2).

Observe that from (3.11) it follows that |γ̇j(t)| = O(t) for j ≥ 3. Denoting by ∇̄ the

gradient in the first two variables, we deduce that as t→ 0+ we have

⟨P (γ), γ̇⟩ = ⟨F1(γ)∇̄F2(γ)− F2(γ)∇̄F1(γ), κ̇⟩+O(t2) (3.14)

with

F1(γ)∇̄F2(γ)− F2(γ)∇̄F1(γ) = ⟨∇̄F1(0), κ⟩∇̄F2(0)− ⟨∇̄F2(0), κ⟩∇̄F1(0) +O(t2).

Inserting the last identity and κ̇ = eiφ + itφ̇eiφ into (3.14), after some computations

we obtain

⟨P (γ), γ̇⟩ = φ̇t2 det(d0F̄ (0)) +O(t2),

where det(d0F̄ (0)) ̸= 0 is the determinant Jacobian at x1 = x2 = 0 of the mapping

(x1, x2) 7→ (F1(x1, x2, 0), F2(x1, x2, 0)). Now the claim |ω̇(s)| → ∞ as s → 0+ easily

follows from (3.12), (3.13) and from |φ̇(t)| → ∞ as t→ 0+.

Example 3.14. An interesting example of horizontal spiral is the double-logarithm

spiral, the horizontal lift of the curve κ in the plane of the form (3.3) with phase

φ(t) = log(− log t), t ∈ (0, 1/2]. In this case, we have

φ̇(t) =
1

t log t
, t ∈ (0, 1/2],

and clearly φ(t) → ∞ and φ̇(t) → −∞ as t → 0+. In fact, we also have tφ̇ ∈
L∞(0, 1/2), which means that κ and thus γ is Lipschitz continuous. This spiral has

the following additional properties:

i) for any v ∈ R2 with |v| = 1 there exists an infinitesimal sequence of positive

real numbers (λn)n∈N such that κ(λnt)/λn → tv locally uniformly, as n→∞;

ii) for any infinitesimal sequence of positive real numbers (λn)n∈N there exists a

subsequence and a v ∈ R2 with |v| = 1 such that κ(λnk
t)/λnk

→ tv as k →∞,

locally uniformly.

This means that the tangent cone of κ at t = 0 consists of all half-lines in R2 emanating

from 0.
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3.2 Cut and correction devices

In this section, we begin the construction of the competing curve. Let γ be a spiral

with horizontal coordinates κ as in (3.3). We can assume that φ is decreasing and

that φ(1) = 1 and we denote by ψ : [1,∞) → (0, 1] the inverse function of φ. For

k ∈ N and η ∈ [0, 2π) we define tkη ∈ (0, 1] as the unique solution to the equation

φ(tkη) = 2πk + η, i.e., we let tkη = ψ(2πk + η). The times

tk = tk0 = ψ(2πk), k ∈ N,

will play a special role in our construction. The points κ(tk) are in the positive x1-axis.

For a fixed k ∈ N, we cut the curve k in the interval [tk+1, tk] following the line

segment joining k(tk+1) to k(tk) instead of the path k, while we leave unchanged the

remaining part of the path. We call this new curve kcutk and, namely, we let

kcutk (t) = κ(t) for t ∈ [0, tk+1] ∪ [tk, 1],

kcutk (t) = (t, 0) for t ∈ [tk+1, tk].

We denote by γcutk ∈ AC([0, 1];M) the horizontal curve with horizontal coordi-

nates kcutk and such that γcutk (0) = γ(0). For t ∈ [0, tk+1], we have γcutk (t) = γ(t). To

correct the errors produced by the cut on the end-point, we modify the curve kcutk

using a certain number of devices. The construction is made by induction.

We start with the base construction. Let E = (h, η, ε) be a triple such that h ∈ N,
0 < η < π/4, and ε ∈ R. Starting from a curve κ : [0, 1] → R2, we define the curve

D(κ;E ) : [0, 1 + 2|ε|]→ R2 in the following way:

D(κ;E )(t) =



κ(t) t ∈ [0, thη]

κ(thη) + (sgn(ε)(t− thη), 0) t ∈ [thη, thη + |ε|]
κ(t− |ε|) + (ε, 0) t ∈ [thη + |ε|, th + |ε|]
κ(th) + (2ε+ sgn(ε)(th − t), 0) t ∈ [th + |ε|, th + 2|ε|]
κ(t− 2|ε|) t ∈ [th + 2|ε|, 1 + 2|ε|].

(3.15)

We denote by D(γ;E ) the horizontal curve with horizontal coordinates D(k;E ).

We let Ḋ(γ;E ) = d
dt
D(γ;E ) and we indicate by Di(γ;E ) the i-th coordinate of the

corrected curve in exponential coordinates.

In the lifting formula (3.11), the intervals where γ̇2 = 0 do not contribute to the

integral. For this reason, in (3.15) we may cancel the second and fourth lines, where

Ḋ2(γ;E ) = 0, and then reparameterize the curve on [0, 1]. Namely, we define the

discontinuous curve D(k;E ) : [0, 1]→ R2 as

D(k;E )(t) =


κ(t) t ∈ [0, thη]

κ(t) + (ε, 0) t ∈ (thη, th)

κ(t) t ∈ [th, 1].
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The curve κ(t). The curve κcut(t).

The curve D(κ;E )(t). The curve D(κ;E )(t).

The “formal” i-th coordinate of the curve D(k;E ) is given by

Di(γ;E )(t) =

∫ t

0

ai(D(κ;E )(s))κ̇2(s)ds.

The following identities with ε > 0 can be checked by an elementary computation

D(γ;E )(t) =


D(γ;E )(t) t ∈ [0, thη]

D(γ;E )(t+ ε) t ∈ (thη, th)

D(γ;E )(t+ 2ε) t ∈ [th, 1].

(3.16)

When ε < 0 there are similar identities. With this notation, the final error produced

on the i-th coordinate by the correction device E is

γi(1)−Di(γ;E )(1 + 2|ε|) =
∫ 1

0

{
ai(κ(s))− ai(D(κ;E )(s))

}
κ̇2(s)ds. (3.17)
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The proof of this formula is elementary and can be omitted.

We will iterate the above construction a certain number of times depending on a

collections of triples E . We first fix the number of triples and iterations.

For i = 3, . . . , n, let Bi = {(α, β) ∈ N2 : α + β = wi − 2}, where wi ≥ 2 is the

homogeneous degree of the coordinate xi. Then, the polynomials pi given by Theorem

3.5 and Theorem 3.8 are of the form

pi(x1, x2) =
∑

(α,β)∈Bi

cαβ x
α+1
1 xβ2 , (3.18)

for suitable constants cαβ ∈ R. We set

ℓ =
n∑
i=3

Card(Bi),

and we consider an (ℓ − 2)-tuple of triples Ē = (E3, . . . ,Eℓ) such that hℓ < hℓ−1 <

. . . < h3 < k. Each triple is used to correct one monomial.

Without loss of generality, we simplify the construction in the following way. In

the sum (3.18), we can assume that cαβ = 0 for all (α, β) ∈ Bi but one. Namely, we

can assume that

pi(x1, x2) = xαi+1
1 xβi2 with αi + βi = wi − 2, (3.19)

and with cαiβi = 1. In this case, we have ℓ = n and we will use n − 2 devices

associated with the triples E3, . . . ,En to correct the coordinates i = 3, . . . , n. By the

bracket generating property of the vector fields f1 and f2 and by the stratified basis

property for f1, . . . , fn, the pairs (αi, βi) satisfy the following condition

(αi, βi) ̸= (αj, βj) for i ̸= j. (3.20)

In the general case (3.18), we use a larger number ℓ ≥ n of devices, one for each

monomial xα+1
1 xβ2 appearing in p3(x1, x2), . . . , pn(x1, x2), and we correct the error

produced by the cut on each monomial. The argument showing the nonminimality

of the spiral will be the same. So, from now on in the rest of the Chapter we will

assume that the polynomials pi are of the form (3.19) with (3.20).

Now we clarify the inductive step of our construction. Let E3 = (h3, η3, ε3) be

a triple such that h3 < k. We define the curve κ(3) = D(kcutk ;E3). Given a triple

E4 = (h4, η4, ε4) with h4 < h3 we then define κ(4) = D(k(3);E4). By induction on

ℓ ∈ N, given a triple Eℓ = (hℓ, ηℓ, εℓ) with hℓ < hℓ−1, we define κ(ℓ) = D(k(ℓ−1);Eℓ).

When ℓ = n we stop.

We define the planar curve D(k; k, Ē ) ∈ AC([0, 1 + 2ε̄];R2) as D(k; k, Ē ) = κ(n)

according to the inductive construction explained above, where ε̄ = |ε3| + . . . + |εn|.
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Then we call D(γ; k, Ē ) ∈ AC([0, 1 + 2ε̄];M), the horizontal lift of D(k; k, Ē ) with

D(γ; k,E )(0) = γ(0), the modified curve of γ associated with Ē and with cut of

parameter k ∈ N. There is a last adjustment to do. In [0, 1 + 2ε̄] there are 2(n− 2)

subintervals where κ̇
(n)
2 = 0. On each of these intervals the coordinates Dj(γ; k, Ē )

are constant. According to the procedure explained in (3.15)–(3.16), we erase these

intervals and we parameterize the resulting curve on [0, 1]. We denote this curve by

γ̄ = D(γ; k, Ē ).

Definition 3.15 (Adjusted modification of γ). We call the curve γ̄ = D(γ; k, Ē ) :

[0, 1] → M the adjusted modification of γ relative to the collections of devices Ē =

(E3, . . . ,En) and with cut of parameter k.

Our next task is to compute the error produced by cut and devices on the end-

point of the spiral. For i = 3, . . . , n and for t ∈ [0, 1] we let

∆γ
i (t) = ai(k(t))k̇2(t)− ai(k̄(t)) ˙̄k2(t).

When t < tk+1 or t > tk we have κ̇2 =
˙̄k2 and so the definition above reads

∆γ
i (t) =

(
ai(k(t))− ai(k̄(t))

)
κ̇2(t).

By the recursive application of the argument used to obtain (3.17), we get the

following formula for the error at the final time t̄ = thn :

Ek,Ē
i = γi(t̄)− γ̄i(t̄) =

∫ t̄

tk+1

∆γ
i (t)dt

=

∫
Fk

∆γ
i (t)dt+

n∑
j=3

(∫
Aj

∆γ
i (t)dt+

∫
Bj

∆γ
i (t)dt

)
.

(3.21)

In (3.21) and in the following, we use the following notation for the intervals:

Fk = [tk+1, tk], Aj = [thj−1
, thjηj ], Bj = [thjηj , thj ],

with th2 = tk. We used also the fact that on [0, tk+1] we have γ = γ̄.

On the interval Fk we have ˙̄k2 = 0 and thus∫
Fk

∆γ
i dt =

∫
Fk

{
pi(k) + ri(k)

}
k̇2dt. (3.22)

On the intervals Aj we have κ = κ̄ and thus∫
Aj

∆γ
i dt = 0, (3.23)
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because the functions ai depend only on k. Finally, on the intervals Bj we have

k̄1 = k1 + εj and κ2 = κ̄2 and thus∫
Bj

∆γ
i dt =

∫
Bj

{pi(k)− pi(k+ (εj, 0))}κ̇2dt+
∫
Bj

{ri(k)− ri(k+ (εj, 0))}κ̇2dt. (3.24)

Our goal is to find k ∈ N and devices Ē such that Ek,Ē
i = 0 for all i = 3, . . . , n

and such that the modified curve D(γ; k, Ē ) is shorter than γ.

3.3 Effect of cut and devices on monomials and

remainders

Let γ be a horizontal spiral with horizontal coordinates k ∈ AC([0, 1];R2) of the form

(3.3). We prove some estimates about the integrals of the polynomials (3.19) along

the curve k. These estimates are preliminary to the study of the errors introduced in

(3.21).

For α, β ∈ N, we associate with the monomial pαβ(x1, x2) = xα+1
1 xβ2 the function

γαβ defined for t ∈ [0, 1] by

γαβ(t) =

∫
k|[0,t]

pαβ(x1, x2)dx2 =

∫ t

0

pαβ(k(s))k̇2(s)ds.

When pi = pαβ, the function γαβ is the leading term in the i-th coordinate of γ in

exponential coordinates. In this case, the problem of estimating γi(t) reduces to the

estimate of integrals of the form

Iαβωη =

∫ tω

tη

k1(t)
α+1k2(t)

βk̇2(t)dt, (3.25)

where ω ≤ η are angles, tω = ψ(ω) and tη = ψ(η). For α, β ∈ N, h ∈ N and

η ∈ (0, π/4) we also let

jαβhη = ηβ
∫ 2hπ+η

2hπ

tα+β+2
ϑ dϑ =

∫ th

thη

tα+β+2|φ̇(t)|dt, (3.26)

where in the second equality we set ϑ = φ(t).

Proposition 3.16. There exist constants 0 < cαβ < Cαβ depending on α, β ∈ N such

that for all h ∈ N and η ∈ (0, π/4) we have

cαβj
αβ
hη ≤ |I

αβ
2hπ,2hπ+η| ≤ Cαβj

αβ
hη . (3.27)
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Before proving this proposition, we notice that the integrals Iαβωη in (3.25) are

related to the integrals

Jαβωη =

∫ η

ω

tα+β+2
ϑ cosα(ϑ) sinβ(ϑ)dϑ. (3.28)

Lemma 3.17. For any α, β ∈ N and ω ≤ η we have the identity

(α + β + 2)Iαβωη =tα+β+2
ω Dαβ

ω − tα+β+2
η Dαβ

η − (α + 1)Jαβωη , (3.29)

where we set Dαβ
ω = cosα+1(ω) sinβ+1(ω).

Proof. Inserting into Iαβωη the identities k1(t) = t cos(φ(t)), k2(t) = t sin(φ(t)), and

k̇2(t) = sin(φ(t)) + t cos(φ(t))φ̇(t) we get

Iαβωη =

∫ tω

tη

tα+β+1Dαβ
φ(t)dt+

∫ tω

tη

tα+β+2 cosα+2(φ(t)) sinβ(φ(t))φ̇(t)dt,

and, integrating by parts in the first integral, this identity reads

Iαβωη =

[
tα+β+2Dαβ

φ(t)

α + β + 2

]tω
tη

+
α + 1

α + β + 2

∫ tω

tη

tα+β+2 cosα(φ(t)) sinβ+2(φ(t))φ̇(t)dt

− β + 1

α + β + 2

∫ tω

tη

tα+β+2 cosα+2(φ(t)) sinβ(φ(t))φ̇(t)dt

+

∫ tω

tη

tα+β+2 cosα+2(φ(t)) sinβ(φ(t))φ̇(t)dt.

Grouping the trigonometric terms and then performing the change of variable φ(t) =

ϑ, we get

Iαβωη =

[
tα+β+2
ϑ Dαβ

ϑ

α + β + 2

]ω
η

+
α + 1

α + β + 2

∫ ω

η

tα+β+2
ϑ cosα(ϑ) sinβ(ϑ)dϑ.

This is our claim.

Proof of Proposition 3.16. From (3.29) with Dαβ
2hπ = 0 we obtain

(α + β + 2)|Iαβ2hπ,2hπ+η| = tα+β+2
2hπ+η D

αβ
η + (α + 1)Jαβ2hπ,2hπ+η,

where cαβη
β+1 ≤ Dαβ

η ≤ ηβ+1, because η ∈ (0, π/4), and

cαβη
β+1tα+β+2

2hπ+η ≤ cαβη
β

∫ 2hπ+η

2hπ

tα+β+2
ϑ dϑ ≤ Jαβ2hπ,2hπ+η ≤ ηβ

∫ 2hπ+η

2hπ

tα+β+2
ϑ dϑ.

The claim follows.
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Remark 3.18. We will use the estimates (3.27) in the proof of the solvability of the

end-point equations. In particular, the computations above are possible thanks to the

structure of the monomials pi: here, their dependence only on the variables x1 and

x2, ensured by (3.1), is crucial. When the coefficients ai depend on all the variables

x1, . . . , xn, repeating the same computations seems difficult. Indeed, in the integrals

(3.25) and (3.28) there are also the coordinates γ3, . . . , γn. Then, the new identity

(3.29) becomes more complicated because other addends appear after the integration

by parts, owing to the derivatives of γ3, . . . , γn. Now, by the presence of these new

terms the estimates from below in (3.27) are difficult, while the estimates from above

remain possible.

We denote by kε the rigid translation by ε ∈ R in the x1 direction of the curve

k. Namely, we let kε,1 = k1 + ε and kε,2 = k2. Recall the notation th = ψ(2πh) and

thη = ψ(2πh + η), for h ∈ N and η > 0. In particular, when we take εj, hj and ηj

related to the j-th correction-device, we have kεj |Bj
= k̄|Bj

.

In the study of the polynomial part of integrals in (3.24) we need estimates for

the quantities

∆αβ
hηε =

∫
kε|[thη,th]

pαβ(x1, x2)dx2 −
∫
k|[thη,th]

pαβ(x1, x2)dx2.

Lemma 3.19. We have

∆αβ
hηε = (α + 1)εIα−1,β

2hπ,2hπ+η +O(ε2), (3.30)

where O(ε2)/ε2 is bounded as ε→ 0.

Proof. The proof is an elementary computation:

∆αβ
hηε =

∫ th

thη

k̇2(t)k2(t)
β
[
(k1(t) + ε)α+1 − k1(t)

α+1
]
dt

=
α∑
i=0

(
α + 1

i

)
εα+1−i

∫ th

thη

k̇2(t)k1(t)
ik2(t)

βdt

=
α∑
i=0

(
α + 1

i

)
εα+1−iI i−1,β

2hπ,2hπ+η

= (α + 1)εIα−1,β
2hπ,2hπ+η +O(ε2).

We estimate the terms in (3.22). The quantities ∆γ
i are introduced in (3.30).

102



Lemma 3.20. Let γ be a horizontal spiral with phase φ. For all i = 3, . . . , n and for

all k ∈ N large enough we have∣∣∣ ∫
Fk

∆γ
i dt
∣∣∣ ≤ ∫

Fk

tαi+βi+2|φ̇|dt. (3.31)

Proof. By (3.29) with vanishing boundary contributions, we obtain∣∣∣ ∫
Fk

pi(κ)κ̇2dt
∣∣∣ = |Iαiβi

2kπ,2(k+1)π| =
αi + 1

αi + βi + 2
|Jαiβi

2kπ,2(k+1)π|

≤ αi + 1

αi + βi + 2

∫
Fk

tαi+βi+2|φ̇|dt,

so we are left with the estimate of the integral of ri. Using κ2 = t sin(φ(t)) we get∫
Fk

ri(κ)κ̇2dt =

∫
Fk

ri(κ)(sin(φ) + t cos(φ)φ̇)dt

=

∫
Fk

(tri(κ)−Ri) cos(φ)φ̇dt,

where we let

Ri(t) =

∫ t

tk+1

ri(κ)ds.

From (3.3), we have |κ(t)| ≤ t for all t ∈ [0, 1]. By part (ii) of Theorem 3.5 we

have |ri(x)| ≤ C∥x∥wi for all x ∈ Rn near 0, with wi = αi + βi + 2. It follows that

|ri(κ(t))| ≤ Ctwi for all t ∈ [0, 1], and |Ri(t)| ≤ Ctwi+1. We deduce that∣∣∣ ∫
Fk

ri(κ)κ̇2dt
∣∣∣ ≤ C

∫
Fk

tαi+βi+3|φ̇|dt,

and the claim follows.

Now we study the integrals in (3.24). Let us introduce the following notation

∆γ
ri
=
(
ri(k)− ri(k̄)

)
κ̇2.

Lemma 3.21. Let γ be a horizontal spiral with phase φ. Then for any j = 3, . . . , n

and for |εj| < thjηj , we have∣∣∣ ∫
Bj

∆γ
ri
(t)dt

∣∣∣ ≤ C|εj|
∫
Bj

twi |φ̇(t)|dt,

where C > 0 is constant.
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Proof. For t ∈ Bj we have k2(t) = k̄2(t) and k̄1(t) = k1(t)+εj. By Lagrange Theorem

it follows that

δγri := ri(k)− ri(k̄) = εj∂1ri(k
∗(t)),

where k∗(t) = (k∗1(t), k2(t)) and k∗1(t) = k1(t) + σj, 0 < σj < εj. By Theorem 3.5 we

have |∂1ri(x)| ≤ C∥x∥wi−1 and so, also using σj < εj < t,

|∂1ri(k∗(t))| ≤ C∥k∗(t)∥wi−1 = C
(
|k1(t) + σj|+ |k2(t)|

)wi−1

≤ Ctwi−1.

This implies |δγri(t)| ≤ C|εj|twi−1.

Now, the integral we have to study is∫
Bj

∆γ
ri
dt =

∫
Bj

δγriκ̇2dt =

∫
Bj

δγri sinφdt+

∫
Bj

δγritφ̇ cosφdt.

We integrate by parts the integral without φ̇, getting∫
Bj

δγri sinφdt =
[
sinφ(t)

∫ t

thjηj

δγrids
]t=thj
t=thjηj

−
∫
Bj

{
φ̇ cosφ

∫ t

thjηj

δγrids
}
dt.

Since the boundary term is 0, we obtain∫
Bj

δγriκ̇2dt =

∫
Bj

{
tδγri −

∫ t

thjηj

δγrids
}
φ̇ cosφdt,

and thus∣∣∣ ∫
Bj

δγriκ̇2dt
∣∣∣ ≤ ∫

Bj

{
t|δγri |+

∫ t

thjηj

|δγri |ds
}
|φ̇|dt ≤ C|εj|

∫
Bj

twi |φ̇|dt.

Remark 3.22. We stress again the fact that, when the coefficients ai depend on all

the variables x1, . . . , xn, the computations above become less clear. As a matter of

fact, there is a non-commutative effect of the devices due to the varying coordinates

γ3, . . . , γn that modifies the coefficients of the parameters εj.

3.4 Solution to the end-point equations

In this section we solve the system of equations Ek,Ē
i = 0, i = 3, . . . , n. The homoge-

neous polynomials pj are of the form pj(x1, x2) = x
αj+1
1 x

βj
2 , as in (3.19).
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The quantities (3.22), (3.23) and (3.24) are, respectively,∫
Fk

∆γ
i dt = Iαiβi

k +

∫
Fk

ri(k(t))dt,∫
Aj

∆γ
i dt = 0,∫

Bj

∆γ
i dt = −∆

αiβi
hjηjεj

+

∫
Bj

∆γ
ri
dt,

where we used the short-notation Iαiβi
k = Iαiβi

2πk,2π(k+1). So the end-point equations

Ek,Ē
i = 0 read

fi(ε) = bi, i = 3, . . . , n. (3.32)

with

fi(ε) =
n∑
j=3

(
∆αiβi
hjηjεj

−
∫
Bj

∆γ
ri
dt
)

and bi =

∫
Fk

∆γ
i dt.

We will regard k, hj, and ηj as parameters and we will solve the system of equations

(3.32) in the unknowns ε = (ε3, . . . , εn). The functions fi : Rn−2 → R are analytic

and the data bi are estimated from above by (3.31):

|bi| ≤
∫
Fk

twi |φ̇|dt.

Theorem 3.23. There exist real parameters η3, . . . , ηn > 0 and integers h3 > . . . > hn

such that for all k ∈ N large enough the system of equations (3.32) has a unique

solution ε = (ε3, . . . , εn) satisfying

|ε| ≤ C
n∑
i=3

|bi|, (3.33)

for a constant C > 0 independent of k.

Proof. We will use the inverse function theorem. Let A =
(
ahij
)
i,j=3,...,n

∈ Mn−2(R)
be the Jacobian matrix of f = (f3, . . . , fn) in the variables ε = (ε3, . . . , εn) computed

at ε = 0. By (3.30) and Lemma 3.21 we have

ahij =
∂fi(0)

∂εj
= (αi + 1)Iαi−1,βi

hjηj
+ o(Iαi−1,βi

hjηj
). (3.34)

Here, we are using the fact that for hj →∞ we have∫
Bj

twi |φ̇|dt = o
(∫

Bj

twi−1|φ̇|dt
)
.

The proof of Theorem 3.23 will be complete if we show that the matrix A is invertible.
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We claim that there exist real parameters η3, . . . , ηn > 0 and positive integers

h3 > . . . > hn such that

det(A) ̸= 0. (3.35)

The proof is by induction on n. When n = 3, the matrix A boils down to the real

number a33. From (3.34) and (3.27) we deduce that for any η3 ∈ (0, π/4) we have

|a33| ≥
1

2
(α3 + 1)|Iα3−1,β3

h3η3
| ≥ cαβj

α3−1,β3
h3η3

> 0.

We can choose h3 ∈ N as large as we wish.

Now we prove the inductive step. We assume that (3.35) holds when A is a

(n− 3)× (n− 3) matrix, n ≥ 4. We develop det(A) with respect to the first column

using Laplace formula:

det(A) =
n∑
i=3

(−1)i+1ai3Pi,

where

Pi = Pi(a43, . . . , a4n, . . . , âi3, . . . , âin, . . . , an3, . . . , ann)

are the determinants of the minors. By the inductive assumption, there exist η4, . . . , ηn ∈
(0, π/4) and integers h4 > · · · > hn such that |Pi| > 0. By (3.27), for any η3 ∈ (0, π/4)

we have the estimates

c0j
αi−1,βi
h3η3

≤ |ai3| ≤ C0j
αi−1,βi
h3η3

, (3.36)

for absolute constants 0 < c0 < C0. The leading (larger) |ai3| can be found in the

following way. On the set A = {(αi, βi) ∈ N × N : i = 3, . . . , n} we introduce the

order (α, β) < (α′, β′) defined by the conditions α + β < α′ + β′, or α + β = α′ + β′

and β < β′. We denote by (αι, βι) ∈ A, for some ι = 3, . . . , n, the minimal element

with respect to this order relation.

We claim that, given ε0 > 0, for all h3 > h4 large enough and for some 0 < η3 <

π/4 the following inequalities hold:

|ai3||Pi| ≤ ε0|aι3Pι|, for i ̸= ι. (3.37)

In the case when i = 3, . . . , n is such that αi + βi = αι + βι, then we have βi > βι.

By (3.36) and (3.26), inequality (3.37) is implied by ηβi−βι3 |Pi| ≤ ε0|Pι|, possibly for

a smaller ε0. So we fix η3 ∈ (0, π/4) independently from h3 such that

0 < η3 ≤ min
{(ε0|Pι|
|Pi|

)1/(βi−βι)
: i ̸= ι

}
.
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In the case when i = 3, . . . , n is such that αi + βi > αι + βι, inequality (3.37) is

implied by ∫
B3

tαi+βi |φ̇(t)|dt ≤ ε0η
βι−βi
3

|Pι|
|Pi|

∫
B3

tαι+βι |φ̇(t)|dt.

This holds for all h3 ∈ N large enough.

Now we can estimate from below the determinant of A using (3.37). We have

| det(A)| ≥ |aι3Pι| −
∑
i ̸=ι

|ai3||Pi| ≥
1

2
|aι3Pι|

and the last inequality holds for all h3 ∈ N large enough, after fixing η3 > 0. This

ends the proof of the theorem.

3.5 Nonminimality of the spiral

In this section we prove Theorem 3.4. Let γ ∈ AC([0, 1];M) be a horizontal spiral

of the form (3.3). We work in exponential coordinates of the second type centered at

γ(0).

We fix on ∆ the metric g making orthonormal the vector fields f1 and f2 spanning

∆. This is without loss of generality, because any other metric is equivalent to this

one in a neighborhood of the center of the spiral. With this choice, the length of γ is

the standard length of its horizontal coordinates and for a spiral as in (3.3) we have

L(γ) =

∫ 1

0

|κ̇(t)|dt =
∫ 1

0

√
1 + t2φ̇(t)2dt.

In particular, γ is rectifiable precisely when tφ̇ ∈ L1(0, 1), and k is a Lipschitz curve

in the plane precisely when tφ̇ ∈ L∞(0, 1).

For k ∈ N and Ē = (E3, . . . ,En), we denote by D(γ; k, Ē ) the curve constructed in

Section 3.2. The devices Ej = (hj, ηj, εj) are chosen in such a way that the parameters

hj, ηj are fixed as in Theorem 3.23 and ε3, . . . , εn are the unique solutions to the system

(3.32), for k large enough. In this way the curves γ and D(γ; k, Ē )(1) have the same

initial and end-point.

We claim that for k ∈ N large enough the length of D(γ; k, Ē ) is less than the

length of γ. We denote by ∆L(k) = L(γ)−L(D(γ; k, Ē )) the difference of length and,

namely,

∆L(k) =

∫
Fk

√
1 + t2φ̇(t)2dt−

(
tk − tk+1 + 2

n∑
j=3

|εj|
)

=

∫
Fk

t2φ̇(t)2√
1 + t2φ̇(t)2 + 1

dt− 2
n∑
j=3

|εj|.
(3.38)
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By (3.33), there exists a constant C1 > 0 independent of k such that the solution

ε = (ε3, . . . , εn) to the end-point equations (3.32) satisfies

|ε| ≤ C1

n∑
i=3

|Iαiβi
k | ≤ C2

n∑
i=3

∫
Fk

twi|φ̇(t)|dt ≤ C3

∫
Fk

t2|φ̇(t)|dt. (3.39)

We used (3.27) and the fact that wi ≥ 2. The new constants C2, C3 do not depend

on k.

By (3.38) and (3.39), the inequality ∆L(k) > 0 is implied by∫
Fk

t2φ̇(t)2√
1 + t2φ̇(t)2 + 1

dt > C4

∫
Fk

t2|φ̇(t)|dt, (3.40)

where C4 is a large constant independent of k. For any k ∈ N, we split the interval

Fk = F+
k ∪ F

−
k where

F+
k = {t ∈ Fk : |tφ̇(t)| ≥ 1} and F−

k = {t ∈ Fk : |tφ̇(t)| < 1}.

On the set F+
k we have∫

F+
k

t2φ̇(t)2√
1 + t2φ̇(t)2 + 1

dt ≥ 1

3

∫
F+
k

t|φ̇(t)|dt ≥ C4

∫
F+
k

t2|φ̇(t)|dt, (3.41)

where the last inequality holds for all k ∈ N large enough, and namely as soon as

3C4tk < 1. On the set F−
k we have∫

F−
k

t2φ̇(t)2√
1 + t2φ̇(t)2 + 1

dt ≥ 1

3

∫
F−
k

t2|φ̇(t)|2dt ≥ C4

∫
F−
k

t2|φ̇(t)|dt, (3.42)

where the last inequality holds for all k ∈ N large enough, by our assumption on the

spiral

lim
t→0+
|φ̇(t)| =∞.

Now (3.41) and (3.42) imply (3.40) and thus ∆L(k) > 0. This ends the proof of

Theorem 3.4.
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Chapter 4

Some open problems

In this final very short chapter, we list some open questions concerning the regularity

problem of sub-Riemannian geodesics coming from the arguments developed in this

thesis. This is also an overview of possible future research directions.

Problem 1. An interesting question is the possibility of dropping the assumptions

of vanishing lower differentials. Instead, for a C∞ map F with critical point 0, our

Definition 2.13 of regular n-differential requires that Dh0F = 0 for h = 2, . . . , n − 1.

The assumption is restrictive but natural: it is made to have a dominant term of

order n in the Taylor expansion of F .

A more general definition of regular n-th differentials when lower ones do not

vanish has to preserve this property for the Taylor expansion of F . In other words,

the correct definition of regular differentials should provide a statement similar to the

following, which is in fact our conjecture:

“Let n ∈ N be such that Dn0F is regular at the critical point 0. Then the dominant

term in the Taylor expansion of F at 0 is of order n.”

We believe that, with such a definition of regularity, an open mapping property

similar to our Theorem 2.15 is preserved, i.e.,

“If there exists n ∈ N such that Dn0F is regular at the critical point 0, then the map

F is open at 0”

The open mapping theorem is at the basis of our sub-Riemannian theory: we

believe that its application to the end-point map should provide, as in Chapter 2,

Goh conditions of order n in a more general setting.
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Problem 2. Classical and also our higher order Goh conditions are just necessary

for abnormal curves to be length minimizers. Instead, in [2, Chapter 12], there are

proved second order sufficient conditions for the minimality of abnormal curves in

rank-2 sub-Riemannian manifolds. In particular, the key result is the following

Theorem 4.1. Let M be a rank-2 sub-Riemannian manifold and let γ : I → M be

an abnormal trajectory with control ū. Suppose that there exists a positive constant

C > 0 such that the second differential satisfies

D2
ūE(u) ≥ C∥v∥2L2 , u ∈ L2(I,R2), (4.1)

then γ is locally length minimizer in the L2 topology of controls. Above, in (4.1) we

set v(t) =
∫ t
0
u(τ)dτ .

In other words, a local minimality is implied by a “coercivity” of the Hessian. The

proof of this Theorem uses classical order 2 Goh conditions.

Our first question is to generalize, under the assumption of vanishing lower differ-

entials, Theorem 4.1 to the following statement

“Let M be a rank-2 sub-Riemannian manifold and let γ : I → M be an abnormal

trajectory with control ū. Suppose that there exist an even p ∈ N such that D2
ūE =

· · · = Dp−1
ū E = 0 and a positive constant C > 0 such that

DpūE(u) ≥ C∥v∥pLp , u ∈ L2(I,R2), (4.2)

then γ is locally length minimizer in the Lp topology of controls. Above, in (4.2) we

set v(t) =
∫ t
0
u(τ)dτ . ”

A second more difficult question is to investigate in the general validity of Theorem

4.1 and its higher order version in sub-Riemannian manifolds of rank greater than 2.

A direct application of this theory can be found in the example of Section 2.9.

We consider the curve γ(t) = (0, t, 0), t > 0 when M = R3 = (x1, x2, x3) and ∆ is

spanned, for n ∈ N, by the vector fields

f1 =
∂

∂x1
, f2 = (1− x1)

∂

∂x2
+ xn1

∂

∂x3
.

As we said in Chapter 2, it was known (see [19]) that γ is length minimizer for any

even n, while we proved that γ cannot be minimal when n is odd.

Our theorems do not instead apply when n is even, rightly since γ is minimal in

this case. We believe that higher order sufficient conditions will provide an alternative

proof of the minimality of γ, based on differential intrinsic properties of the end-point

map. We also believe that a deeper understanding of this example is strictly related

with Problem 3 below.
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Problem 3. The problem presented here is actually an ongoing research project with

Ludovic Rifford and Mario Sigalotti.

As explained in the introductory part, we do not know whether abnormal min-

imizers are more than Lipschitz regular, or whether there is a maximum regularity

bound. So, we are interesting in proving the existence of abnormal minimizers (at

least one) of class C1 but not C2.

WhenM is analytic of dimension 3, Rifford et al. recently proved the C1 regularity

for length minimizers in [10]. This setting is very interesting for our purposes because,

when dimM = 3 abnormal curves live on the Martinet surface

Σ = {x ∈M : ∆(x) + [∆,∆](x) ̸= TxM}.

Then we have 2 strong necessary condition for abnormal curves to be minimizer. In

particular, several candidates to reach our claim can be found if Σ is of class C1 but

not C2: every abnormal curve passing through the singularities of Σ could be a good

candidate to prove our claim.

It is not difficult to build many examples in order to have the situation described

above. Indeed, it is sufficient to considerM = R3 = (x1, x2, x3) and ∆ = span{f1, f2},
where

f1 = ∂x1 , f2 = (1 + x1Φ(x))∂x2 + a(x)∂x3 ,

and a,Φ have to be chosen in such a way that Σ is of class C1 but not C2.

For instance, when Φ = −1 and a = xn1 , we are in the previous case of Problem 2.

In this case Σ is the plane {x1 = 0} and we know that the curve γ(t) = (0, t, 0) is an

abnormal minimizer when n is even. In spite of this curve is smooth, a deeper study

of its minimality will be useful.

When Φ = 0 it is sufficient to choose a such that Σ, which in this case is described

by the equation ∂x1a = 0, is C1 but not C2.

Problem 4. Generalize the results of Chapter 3 dropping the following commutativ-

ity assumption [
[fi1 , . . . , [fis−1 , fis ] . . . ], [fj1 , . . . , [fjs−1 , fjs ] . . . ]

]
= 0, (4.3)

where s, p ≥ 2, i1, . . . , is, j1, . . . , jp ∈ {1, 2} and

f1 = ∂x1 , f2 = ∂x2 +
n∑
j=3

aj(x)∂xj .
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In spite of assumption (4.3) is algebraically strong, it has no geometric meaning:

it is a technical assumption to ensure aj(x) = aj(x1, x2). Thanks to this property of

the coefficients aj, in Section 3.3 we proved that

cα1α2

∫ 2hπ

2hπ+η

tα1+α2+2|φ̇(t)|dt ≤ |Iα1α2
h,η | ≤ Cα1α2

∫ 2hπ

2hπ+η

tα1+α2+2|φ̇(t)|dt (4.4)

for some constants cα1α2 , Cα1α2 > 0. Here in (4.4) h ∈ N, η ∈ (0, π/4), φ̇ is the phase

of the spiral γ and

Iα1α2
h,η =

∫ 2hπ

2hπ+η

γ1(t)
α+1γ2(t)

βγ̇2(t)dt. (4.5)

Moreover, when the aj depend only on x1 and x2, integrals like in (4.5) describe all

the nonhorizontal coordinates γ3, . . . , γn of the spiral γ.

Without assumption (4.3), we have

γj+1(t) =

∫ t

0

γ1(τ)
α1+1γ2(τ)

α2 . . . γj(τ)
αj γ̇2(τ)dτ,

and our open problem is to prove that similar estimates as in (4.4) hold also for

integrals of the following type

I
α1...αj

h,η =

∫ 2hπ

2hπ+η

γ1(τ)
α1+1γ2(τ)

α2 . . . γj−1(τ)
αj γ̇2(τ)dτ.

Our conjecture is the following statement:

“There exist constants 0 < cα1...αj
< Cα1...αj

depending on α1, . . . , αj ∈ N such that

for all h ∈ N and η ∈ (0, π/4) we have

cα1...αj

∫ 2hπ

2hπ+η

t2+
∑j

i=1 wiαi |φ̇(t)|dt ≤ |Iα1...αj

h,η | ≤ Cα1...αj

∫ 2hπ

2hπ+η

t2+
∑j

i=1 wiαi |φ̇(t)|dt,

where wi is the sub-Riemannian weight of the coordinate xi.”

The difficult part in the proof of this claim is the presence of nonhorizontal coor-

dinates of γ in I
α1...αj

h,η : they generate multiple integrations of the type (4.5) one inside

the other. This makes very hard the proof for the estimates from below, while for the

estimates from above the computations are similar to Section 3.3. Once reached this

claim, it should be easy to prove a more general theorem of nonminimality of spirals

without assumption (4.3).

In our opinion, besides providing a more general result for the non-minimality of

spirals, these kind of computations would be a model to study and understand the

behavior of nonhorizontal coordinates in a general setting.
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