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Abstract

In this thesis we treat models of collective behavior in networks, where agents

or particles interact among each other following some speciĄc dynamics. We focus

on three speciĄc models that we now brieĆy present and study their properties.

In particular, we treat two different problems: the rigorous derivation of the

Lighthill-Whitham-Richards model for traffic Ćow from the Follow-the-Leader

model and the emergent behavior in cooperative systems under persistent exci-

tation.

In Chapter 1, we deal with the Follow-the-Leader model (FtL), which is a

Ąnite-dimensional dynamical system describing the motion of N cars on a road

lane, in which each car travels with a velocity that depends on its relative distance

with respect to the one immediately in front. The Lighthill-Whitham-Richards

(LWR) model is a hyperbolic conservation law, where the solution is a macro-

scopic density that typically represents the dynamics of the average spatial con-

centration of vehicles. With the FtL model we build a microscopic density which

approximates the macroscopic one. Our main goal is to prove that the dynamics

given by the FtL converges to the one given by LWR. This occurs under suitable

convergence requests on the initial data. Additional stability results of the FtL

model are also presented.

In Chapters 2 - 3, we study cooperative systems, which are models of inter-

acting agents in which interaction is always attractive. The goal is to study the

asymptotic behavior in time towards reaching consensus (in Ąrst-order models)

or Ćocking (in second-order models). We provide sufficient conditions for the

formation of asymptotic consensus or Ćocking, in the case in which dynamics

are subject to communication failures between agents, if the failure satisĄes a

suitable persistent excitation condition. We study such phenomena for Ąrst- and

second-order systems, both in the Ąnite and inĄnite dimensional settings via the

classical mean-Ąeld limit.
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Introduction

In recent years, the study of networks with interacting agents or particles

has become a signiĄcant focus in mathematics, especially when dealing with real-

world situations [2, 7, 17, 47, 48, 52]. This has led to the development of models

that attempt to capture and understand complex behaviors in various Ąelds: traf-

Ąc Ćow [13, 14, 15, 56], politics [8, 39], biology [45, 50, 57, 59], pedestrian Ćow [1,

5, 34, 38], linguistics [25, 26, 27], etc. Whether derived from observations in the

synchronized movements of Ćocks of birds, the coordinated actions of Ąsh schools,

or from intricate movements within human crowds, mathematical models of col-

lective behavior attempt to underscore the emergence of order and patterns from

individual interactions. Many scales can be considered when developing a math-

ematical model, and we can Ąnd in the literature two main types: microscopic

and macroscopic scales (see [54] for a review).

In microscopic models, also known as agent-based models or particle models,

the dynamics of each agent is taken into account, by typically using an ordinary

or stochastic differential equation. We then form a system of such differential

equations accounting for the behavior of the whole set of agents representing the

evolution in time of each agent, through interactions with all the other agents

and the environment. Microscopic models provide a detailed and granular repre-

sentation of individual entities and their interactions, which helps in the realistic

representation of the phenomenon we are dealing with. They can also incor-

porate variations of individual parameters and individual heterogeneity, leading

to the possibility of studying a wide range of scenarios. However, although the

modelling and simulation accuracy might be appreciable, the computational de-

mands of the simulation of such systems increase tremendously as the number

of agents grows. Moreover, the immediate output of the evolution of each single

agents might not be useful in practice, as the focus may instead rely on quantities

like statistical averages, which then leads us to additional post-processing. This

makes us therefore consider the second type of models, the macroscopic models.

vii



viii Introduction

In macroscopic models, also known as continuum models, the dynamics of

averaged quantities such as the mean density or mean velocity of agents is taken

into account by using partial differential equations. We thus focus on the solution

of said partial differential equation, which represents the evolution of the mean

density or velocity of agents. One prominent advantage to be immediately appre-

ciated, as pointed out in the presentation of microscopic models in the previous

paragraph, is the computational efficiency. Indeed, the reduction in detail coming

from the simpliĄcation of complex systems offered by macroscopic models often

results in a signiĄcant decrease in computational demands, especially for large-

scale systems. Another advantage is the very fact that it puts an emphasis on

system-level properties, such as average density, velocity, or concentration, which

simpliĄes the interpretation of results and aids in extracting key information.

This can result in the capture of global trends and emerging patterns, such as

the dynamics of Ćuid Ćows. Finally, another important advantage is its crucial

role in policy design: in Ąelds such as urban planning, traffic engineering, and

public health, macroscopic models prove valuable for designing effective policies,

since they provide a broad description of system-level responses to interventions

without the need to account for individual variations [54, 55]. However, some

disadvantages are present as well, mainly based on the loss of individual iden-

tities of agents due to the consideration of average quantities. Indeed, we now

lose individual-level details and assume homogeneity of agents, which can be a

serious drawback in scenarios where it is critical to study the individual behavior

of special agents. They may not be suitable at not large enough scales, where

the aggregate approach might oversimplify the dynamics. The assumption of ho-

mogeneous parameters across the system may not hold in certain cases, affecting

the accuracy of predictions and limiting the modelŠs robustness, which might also

render the calibration of macroscopic models more complex, see e.g. [60].

Depending on the application, we therefore might want to use either mi-

croscopic models, macroscopic models or a combination of both. The natural

question would be to ask if there is a relationship between them, e.g. whether a

microscopic model has a corresponding macroscopic model and if the properties

are conserved. In such a case, the following question prevails: given a microscopic

model, what happens when the number of agents Şgrows to inĄnityŤ? Naturally,

as the number of agents grows, it becomes increasingly unmanageable to deal

with all the equations describing the behavior of each agent. This is called the

curse of dimensionality. This is one of the most classical problems in kinetic
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theory: going from particle to continuum descriptions, known as mean-Ąeld limit,

introduced for the Ąrst time in the context of gas dynamics [12].

This thesis explores microscopic models and their corresponding macroscopic

models, particularly in the context of traffic Ćow and interacting agents in time-

varying networks. In particular, we focus on three microscopic models: the

Follow-the-Leader model as well as Ąrst- and second-order cooperative models.

The Ąrst model is applied to traffic Ćow in one dimension. Here, we consider a

one-dimensional lane of N cars, that are considered as moving particles. These

particles follow a nearest neighbour type interaction, and in particular each one

moves with a velocity which is proportional to the distance with respect to the

particle in front. The second and third models are applied to a general network

of agents, which could be interpreted as people, animals, opinions, votes, etc. In

these systems, agents communicate with each other and each agent seeks to agree

with the agents with whom it is interacting. In the case of Ąrst-order models and

second-order models, the aim is to study the formation of consensus and Ćock-

ing, respectively. Once we thoroughly study the microscopic behavior of these

three models, we then study the rigorous derivation of the corresponding macro-

scopic model in the case of the Follow-the-Leader model and the conservation of

properties at the microscopic level (independent of the number of agents) in the

macroscopic models in the case of Ąrst- and second-order cooperative models.

This thesis is organized as follows:

• In Chapter 1 we present a new result regarding the mean-Ąeld limit of the

Follow-the-Leader, which is a microscopic model describing the motion of N

cars on a road lane, in which each car travels with a velocity that depends

on its relative distance with respect to the one immediately in front. We

provide a convergence result for general discretization schemes, extending

results given in [32]. We furthermore provide a stability result concerning

the convergence of the approximating proĄles due to two possibly different

discretization schemes.

• In Chapter 2 we consider a class of Ąrst-order cooperative systems, i.e.

where agents attract each other. We study the asymptotic formation of con-

sensus under possible communication failures between agents. We require

the communication to be sufficiently frequent, encoding it into a persistent

excitation condition, and to be strong enough. We show that consensus

holds both in the Ąnite- and inĄnite-dimensional settings. The main novelty
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is the technique introduced, which is to identify and treat the Şworst-case

scenarioŤ, i.e. the speciĄc combination of communication failures between

agents which drives them the furthest from consensus.

• In Chapter 3 we consider a problem similar to Chapter 2, when the coop-

erative system is of second-order. The goal is then to study the asymptotic

formation of unconditional Ćocking. We show here that the Şworst case sce-

narioŤ is the same as in the case of Ąrst-order models, and proceed to treat

it and show that Ćocking holds under suitable assumptions. We then show

that such a property is again conserved in the classical mean-Ąeld setting.
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Chapter 1:

On the continuum limit of the Follow-

the-Leader Model

Among traffic Ćow models, we Ąnd two main types: microscopic models and

macroscopic models. We brieĆy present two models that are intimately related:

the Follow-the-Leader (FtL) model and the Lighthill-Whitham-Richards (LWR)

model.

Let us Ąrst brieĆy describe the FtL model. We consider N + 1 cars on a

one-dimensional road lane. Let ¶xN
j (0)♢N

j=0 denote the initial positions of the

cars evolving in time according to the FtL dynamics. We have a trajectory

¶xN
j (t)♢N

j=0, where each xN
j (t) travels with a velocity depending on the distance

with respect to the car immediately in front of it xN
j+1(t). The leader xN

N(t) has

no cars in front and thus it travels with the maximum velocity vmax. A discrete

function ρE,N , that we denote by Eulerian discrete density, composed of N ∈ N

regions each of mass 1/N is then deĄned by ¶xN
j ♢N

j=0 as

ρE,N(x) :=
N−1
∑

j=0

1/N

xN
j+1 − xN

j

χ[xN
j

,xN
j+1)(x) x ∈ R. (1.0.1)

The reason why the term Eulerian is used is explained in Section 1.2. We now

brieĆy describe the classical LWR model







ρt + (f(ρ))x = 0, t > 0 x ∈ R

ρ(0, x) = ρ̄(x) x ∈ R
(1.0.2)

with ρ̄ a given initial data with compact support. The variable ρ describes a

macroscopic density of cars, and the Ćux f(ρ) at a point x ∈ R represents the

number of cars passing through the given point x ∈ R per unit of time. We

11



12 Ch.1. On the continuum limit of the Follow-the-Leader Model

consider the following Ćux from now on:

f(ρ) := ρv(ρ).

We also assume that the maximal admissible density is ρmax := 1 and that

∥ρ̄∥L1(R) = 1.

From now on, we assume that the velocity function v(ρ) satisĄes the following

assumptions:

v ∈ Lip([0, ρmax]) with Lipschitz constant L, v(ρmax) = 0, v is decreasing.

(V1)

We also use the notation vmax := v(0). In some instances, we also make use of

an additional assumption on the velocity:

the map [0,+∞) ∋ ρ 7→ ρv′(ρ) ∈ [0,+∞) is non-increasing. (V2)

Now that we have a microscopic density ρE,N and a macroscopic density ρ,

we would like to answer the following question: which properties of the initial

data and/or of the convergence of the discretized initial data ensure convergence

of the microscopic density ρE,N to the macroscopic one ρ?

More precisely: let an initial conĄguration ¶xN
j (0)♢N

j=0 be given, and consider

the discrete approximation sequence
{

ρE,N
}

N∈N
, with ¶xN

j (t)♢N
j=0 subject to the

FtL dynamics. Does this sequence converge to the solution ρ of the Cauchy

problem (1.0.2) whenN → ∞? In what topology and how arbitrary can the initial

positioning be? Our main result answers to this question. Before introducing the

result, we Ąrst present a fundamental condition on the support at initial time of

ρE,N . This assumption on initial support condition replaces the requirement of

the scheme in [32] that xN
N(0) − xN

0 (0) = xmax − xmin, where xmax, xmin, denote

the extremal points of the convex hull of the support of ρ. Here instead, it may

well happen that xN
0 (0) < xmin and xN

N(0) > xmax.

DeĄnition 1.0.1 (Uniformly bounded initial support condition). We say that

¶xN
j (t)♢N

j=0 satisĄes the condition of uniformly bounded initial support if there

exists a constant K1 > 0 independent of N , such that for all N ∈ N there holds

xN
N(0) − xN

0 (0) < K1. (1.0.3)
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Theorem 1.0.1. Assume that the velocity map v satisfy (V1). Let ρ̄ ∈ L∞(R; [0, 1])

be with compact support and such that ∥ρ̄∥L1(R) = 1. Let ¶xN
j (t)♢N

j=0 be solu-

tions of the FtL system (1.1.3) that satisfy the uniformly bounded initial support

condition (1.0.3). Consider the corresponding Eulerian discrete density ρE,N ∈
L∞([0,+∞) × R; [0, 1]) deĄned by (1.0.1). Assume that

ρE,N(0) ⇀ ρ̄, (1.0.4)

and that one of the following two conditions hold:

1. ρ̄ ∈ BV (R) and there exists K2 > 0 such that TV(ρE,N(0);R) < K2 for all

N , i.e. such that





1

xN
1 (0) − xN

0 (0)
+

1

xN
N(0) − xN

N−1(0)
+

N−2
∑

j=0

∣

∣

∣

∣

∣

1

xN
j+2(0) − xN

j+1(0)
− 1

xN
j+1(0) − xN

j (0)

∣

∣

∣

∣

∣





< N K2,

for all N ;

2. the velocity function v satisĄes also (V2).

Then the sequence
{

ρE,N
}

N∈N
converges strongly to the weak entropy solution ρ

of the Cauchy problem (1.0.2) in L1
loc([0,+∞) × R; [0, 1]).

Remark 1.0.1. It is important to note that the main difference with respect to

[32, Theorem 3] is the replacement of the speciĄc discretizaton scheme for the

initial data adopted in [32], with a general one satisfying the hypothesis (1.0.4).

Indeed, the discretization scheme provided in [32] satisĄes a stronger assumption

that implies (1.0.4). Here, we show that any other discretization scheme satisfy-

ing the hypothesis (1.0.4) is valid as well. Another novelty here is the proof of

the convergence of the sequence of Eulerian discrete density
{

ρE,N
}

N∈N
, which

is based on the convergence of the cumulative and pseudoinverse functions asso-

ciated to ρE,N , and on the 1-Wasserstein convergence of
{

ρE,N
}

N∈N
. This proof

is simpler than the one presented in [32, Theorem 3], where the authors achieve

the L1-compactness of
{

ρE,N
}

N∈N
relying on a generalization of the Aubin-Lions

lemma.

Another contribution of this article is the following stability result with re-

spect to the 1-Wasserstein distance W1. It is a microscopic stability result for

two different initial discretization schemes, which in turn yields a stability result

with respect to the L1 norm that is uniform in time.
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Theorem 1.0.2 (Discrete Eulerian Stability Theorem). Assume that the veloc-

ity map v satiĄes (V1). Let ¶xN
j (t)♢N

j=0,¶x̃N
j (t)♢N

j=0 be solutions of the FtL sys-

tem (1.1.3) that satisfy the condition of the uniformly bounded initial support

(1.0.3). Consider the corresponding Eulerian discrete densities ρE,N , ρ̃E,N ∈
L∞(([0,+∞) × R); [0, 1]) deĄned by (1.0.1). Then, for all T > 0, and for all

N ∈ N, there holds

sup
t∈[0,T ]

W1(ρ
E,N(t), ρ̃E,N(t)) ≤ W1(ρ

E,N(0), ρ̃E,N(0))+

+ 2LT
N−1
∑

j=0

♣xj+1(0) − xj(0) − (x̃j+1(0) − x̃j(0))♣,

(1.0.5)

L being the Lipschitz constant of v. Moreover, if there holds xN
N(0) = x̃N

N(0) for

all N ∈ N, and

lim
N→+∞

N−1
∑

j=0

♣xj+1(0) − xj(0) − (x̃j+1(0) − x̃j(0))♣ = 0, (1.0.6)

then the following two properties are satisĄed:

1. if there exists K2 > 0 such that TV
(

ρE,N(0);R
)

,TV
(

ρ̃E,N(0);R
)

< K2 for

all N , then for all T > 0 there holds

lim
N→+∞

sup
t∈[0,T ]

∥

∥

∥ρE,N(t) − ρ̃E,N(t)
∥

∥

∥

L1(R)
= 0; (1.0.7)

2. if the velocity v satisĄes also (V2), then for all T > 0 there holds

lim
k→+∞

sup
t∈[1/k, T ]

∥

∥

∥ρE,Nk(t) − ρ̃E,Nk(t)
∥

∥

∥

L1(R)
= 0, (1.0.8)

for some subsequences ¶ρE,Nk♢k , ¶ρ̃E,Nk♢k .

Remark 1.0.2. If xN
N(0) = x̃N

N(0) for all N and there holds (1.0.6), then one can

show that (see Proposition 1.4.1)

lim
N→+∞

W1(ρ
E,N(0), ρ̃E,N(0)) = 0 , (1.0.9)

which implies that ρE,N(0) − ρ̃E,N(0) ⇀ 0. Thus, letting ρ̄, ρ̃ denote the weak*

limit of ¶ρE,N(0)♢N , ¶ρ̃E,N(0)♢N , respectively, we have ρ̄ = ρ̃. Hence, applying

Theorem 1.0.1 we deduce that both sequences
{

ρE,N
}

N∈N
,
{

˜ρE,N
}

N∈N
, converge



15

in L1
loc([0,+∞) ×R) to the weak entropy solution of the Cauchy problem (1.0.2),

which implies

lim
N→+∞

∥

∥

∥ρE,N(t) − ρ̃E,N(t)
∥

∥

∥

L1(R)
= 0 for a.e. t > 0 . (1.0.10)

The main new property provided by Theorem 1.0.2 is the fact that, thanks to the

stability estimate (1.0.5), the convergence in (1.0.10) is actually uniform in time.

Remark 1.0.3. In [44, Theorem 3.6], the authors provide a Cauchy property and

rate of convergence of a Eulerian microscopic density built with a speciĄc dis-

cretization scheme of initial data ρ̄ ∈ L1(R) ∩ L∞(R) satisfying ρ̄ > 0 and
∫

R
♣x♣ρ̄(x)dx < ∞. This is given in the form of a microscopic stability between

ρE,N and ρE,M for M,N ∈ N large enough. The main idea is that the Eulerian

microscopic density is seen as a quasi-entropy solution of the conservation law.

However, it is important to note that Theorem 1.0.2 treats the case of two com-

pletely different discretization schemes ρE,N and ρ̃E,N , but comparing them at the

same level of N . Eventually, these are applicable to initial data ρ̄ ∈ BV (R) with

compact support in case (1), and to initial data ρ̄ ∈ L∞ with compact support

in case (2). Also note that in our case we are essentially providing a result show-

ing that weak convergence implies strong convergence. This is possible when we

have a control of the total variation, as explained in the proof of both Theorem

1.0.1 and Theorem 1.0.2. Both theorems follow the same strategy, and in both

of them we do have a control on the total variation. Therefore, in both theorems

the key is to show that weak convergence holds. In the proof of Theorem 1.0.1

we actually conclude that such a weak convergence holds by a compactness ar-

gument, provided in [32] and further explained in Section 1.2. However, in the

proof of Theorem 1.0.2 for such a weak convergence to hold we Ąnd that we need

hypothesis (1.0.6) to be satisĄed, which concerns only the discretization scheme.

Such a hypothesis is assumed for instance in [37, (2.11)] in the case of initial data

ρ̄ ∈ BV (R) away from vacuum.

The paper is organized as follows. In Section 1.1 we recall the deĄnition of

the Follow-the-Leader dynamics and provide a stability result for it. In Section

1.2 we deĄne the Eulerian and Lagrangian discrete densities, their cumulative

functions with the corresponding pseudo-inverses and discuss their properties

and interpretations. In Section 1.3 we state and prove the main result of the

article, i.e. is Theorem 1.0.1. In Section 1.4 we provide the main stability result,

i.e. Theorem 1.0.2.
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1.1 The Follow-the-Leader model

In this section, we introduce the Follow-the-Leader (FtL) model and study its

behaviour. It is a classical model for road traffic, see e.g. [19, 33] . The goal

here is to investigate its stability properties with respect to the initial data. We

shall Ąrst deĄne the dynamics of the positions of vehicles xj(t), then we consoder

the associated discrete density ρj(t), and Ąnally we introduce the inverse discrete

density yj(t). For each of these quantities, we analize the dynamics and some

useful properties.

We start by considering N + 1 vehicles, of length l, with initial positions

x̄N
0 < · · · < x̄N

N (1.1.1)

satisfying

x̄N
i+1 − x̄N

i ≥ l, l :=
1

N
. (1.1.2)

This standard condition ensures non overlapping of cars.

We now deĄne the FtL dynamics:

DeĄnition 1.1.1. The FtL model is































ẋN
N = vmax

ẋN
j = v

(

l

xN
j+1 − xN

j



j = 0, ..., N − 1,

xN
j (0) = x̄N

j j = 0, ..., N,

(1.1.3)

where the initial positions x̄N
j , j = 0, ..., N , satisfy conditions (1.1.1)-(1.1.2).

The FtL model describes the evolution of each car xN
j that adapts its speed

with respect to the distance with the car immediately in front xN
j+1. As in [32], we

also introduce the corresponding deĄnition of discrete density and of its dynamics.

DeĄnition 1.1.2. Given ¶xN
j (t)♢N

j=0 a solution of (1.1.3), deĄne the discrete

density as

ρN
j (t) :=

l

xN
j+1(t) − xN

j (t)
j = 0, ..., N − 1. (1.1.4)
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Because of (1.1.3), the discrete density satisĄes the dynamics























ρ̇N
N−1 = −N(ρN

N−1)
2
(

vmax − v(ρN
N−1)

)

ρ̇N
j = N(ρN

j )2
(

v(ρN
j ) − v(ρN

j+1)
)

j = 0, ..., N − 2

ρN
j (0) = ρ̄N

j j = 0, ..., N − 1

(1.1.5)

where the initial data is

ρ̄N
j :=

l

x̄N
j+1 − x̄N

j

j = 0, ..., N − 1.

We Ąnally consider the inverse discrete density introduced in [37].

DeĄnition 1.1.3. Given ¶xN
j (t)♢N

j=0 a solution of (1.1.3), deĄne the inverse

discrete density as

yN
j (t) :=

xN
j+1(t) − xN

j (t)

l
j = 0, ..., N − 1. (1.1.6)

Because of (1.1.3), the inverse discrete density satisĄes the dynamics































ẏN
N−1 = N

(

vmax − V (yN
N−1)

)

ẏN
j = N

(

V (yN
j+1) − V (yN

j )
)

j = 0, ..., N − 2

yN
j (0) = ȳN

j :=
x̄N

j+1(t) − x̄N
j (t)

l
j = 0, ..., N − 1

(1.1.7)

where the velocity of the inverse discrete density is deĄned by

V (y) := v

(

1

y



. (1.1.8)

Here, the Ąrst equation of (1.1.7) prescribes that the inverse discrete density of

the leading particle evolves with the maximum velocity

V (yN
N ) = v(0) = vmax, (1.1.9)

which could be viewed as setting ′′yN
N = +∞′′, corresponding to have an empty

road in front of the leader xN
N . As a consequence of (V1), the velocity of the
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inverse discrete density satisĄes the conditions

V ∈ Lip([1,+∞)) with Lipschitz constant L, V (1) = 0, V is increasing.

(V1Š)

Remark 1.1.1 (Discrete Minimum/Maximum Principle). The solution of the FtL

model (1.1.3) and the corresponding discrete density (1.1.5) satisfy a discrete

minimum/maximum principle, which is the microscopic version of the well-known

maximum principle enjoyed by solutions to (1.0.2) (see for example [28, Theorem

6.2.4]). Indeed, the following estimates hold:

min
j=0,...,N−1

(xN
j+1(t) − xN

j (t)) ≥ min
j=0,...,N−1

(x̄N
j+1 − x̄N

j ) ≥ l;

max
j=0,...,N−1

(xN
j+1(t) − xN

j (t)) ≤ max
j=0,...,N−1

(x̄N
j+1 − x̄N

j ) ≤ x̄N
N − x̄N

0 ;

max
j=0,...N−1

ρN
j (t) ≤ max

j=0,...N−1
ρ̄N

j ≤ 1.

(1.1.10)

A proof of (1.1.10) can be found in [32, Lemma 1]. Also the solution of the dis-

crete inverse density (1.1.7) satisĄes a discrete minimum principle due to (1.1.10).

Indeed, it holds

min
j=0,...N−1

yN
j (t) ≥ min

j=0,...N−1
ȳN

j ≥ 1. (1.1.11)

In the same spirit of [37, Lemma 2.3], we now prove a stability estimate

envolving two different solutions of system (1.1.5).

Proposition 1.1.1. Consider two solutions ¶xN
j (t)♢N

j=0, ¶x̃N
j (t)♢N

j=0 of (1.1.3),

with initial positions ¶x̄N
j ♢N

j=0 , ¶˜̄xN
j ♢N

j=0 , respectively. Let ¶ρN
j (t)♢N−1

j=0 , ¶ρ̃N
j (t)♢N−1

j=0

be the corresponding discrete density deĄned by (1.1.4), and let ¶yN
j (t)♢N−1

j=0 ,

¶ỹN
j (t)♢N−1

j=0 be the corresponding inverse discrete density deĄned by (1.1.6). Then,

for all T > 0, there holds

N−1
∑

j=0

♣ρN
j (T ) − ρ̃N

j (T )♣ ≤
N−1
∑

j=0

♣yN
j (0) − ỹN

j (0)♣ . (1.1.12)

Proof. Throughout the proof we drop the superscript N for simplicity of notation.

We will consider two solutions of (1.1.7) parametrized by two different variables t

and τ , and we will use the KruzkovŠs doubling of variables method to provide the

contraction estimate for the inverse densities. Then we will rely on the maximum

principle for the discrete densities to conclude.
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With this aim, we deĄne

Vj(t) := V (yj(t)) Ṽj(τ) := V (ỹj(τ)).

We then notice that, for j = 0, ..., N − 2 it holds

d

dt
♣yj(t) − ỹj(τ)♣ = N sign(yj(t) − ỹj(τ))(Vj+1(t) − Vj(t))

d

dτ
♣yj(t) − ỹj(τ)♣ = N sign(yj(t) − ỹj(τ))(Ṽj(τ) − Ṽj+1(τ)).

Therefore, we deduce that, for j = 0, ..., N − 2, we have

(

d

dt
+

d

dτ



♣yj(t) − ỹj(τ)♣

= N sign(yj(t) − ỹj(τ))[Vj+1(t) − Vj(t) − Ṽj+1(τ) + Ṽj(τ)]

= N
[

− sign(yj(t) − ỹj(τ))(Vj(t) − Ṽj(τ)) + sign(yj+1(t) − ỹj+1(τ))(Vj+1(t) − Ṽj+1(τ))

+(Vj+1(t) − Ṽj+1(τ))[sign(yj(t) − ỹj(τ)) − sign(yj+1(t) − ỹj+1(τ))
]

≤ N
[

− sign(yj(t) − ỹj(τ))(Vj(t) − Ṽj(τ)) + sign(yj+1(t) − ỹj+1(τ))(Vj+1(t) − Ṽj+1(τ))
]

.

(1.1.13)

The last inequality can be recovered as follows:

i) If

yj(t) ≥ ỹj(τ) and yj+1(t) ≤ ỹj+1(τ), (1.1.14)

then one has

Vj+1(t) − Ṽj+1(τ) ≤ 0,

and

sign(yj(t) − ỹj(τ)) − sign(yj+1(t) − ỹj+1(τ)) ≥ 0.

ii) If

yj(t) ≤ ỹj(τ) and yj+1(t) ≥ ỹj+1(τ), (1.1.15)
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then one has

Vj+1(t) − Ṽj+1(τ) ≥ 0,

and

sign(yj(t) − ỹj(τ)) − sign(yj+1(t) − ỹj+1(τ)) ≤ 0.

iii) Otherwise, if neither (1.1.14) nor (1.1.15) are satisĄed, then one has

sign(yj(t) − ỹj(τ)) − sign(yj+1(t) − ỹj+1(τ)) = 0.

Summing up the inequality in (1.1.13), we derive

N−2
∑

j=0

(

d

dt
+

d

dτ



♣yj(t) − ỹj(τ)♣ ≤ N sign(yN−1(t) − ỹN−1(τ))[VN−1(t) − ṼN−1(τ)].

On the other hand , for j = N − 1, it holds

(

d

dt
+

d

dτ



♣yN−1(t) − ỹN−1(τ)♣

= N sign(yN−1(t) − ỹN−1(τ))[vmax − VN−1(t) − vmax + ṼN−1(τ)]

= N sign(yN−1(t) − ỹN−1(τ))[ṼN−1(τ) − VN−1(τ)].

Therefore, we conclude that

N−1
∑

j=0

(

d

dt
+

d

dτ



♣yj(t) − ỹj(τ)♣ ≤ 0. (1.1.16)

Relying on (1.1.16), we can complete the proof with the same arguments of the

proof of [37, Lemma 2.3]. Namely, multiplying (1.1.16) by a non-negative test

function ϕ(t, τ) with ϕ ∈ C∞
0 ((0,∞)×(0,∞)), and then integrating by parts, one

obtains

∫ ∞

0

∫ ∞

0
(ϕt + ϕτ )

N−1
∑

j=0

♣yj(t) − ỹj(τ)♣dtdτ ≥ 0. (1.1.17)
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Next, choose

ϕ(t, τ) = ψ
(

t+ τ

2

)

ηϵ(t− τ),

where ψ ∈ C∞
0 ((0,∞) × (0,∞)) is a non-negative function, and ηϵ is a standard

molliĄer converging to the Dirac delta at the origin as ϵ → 0. Then, inserting

this test function in (1.1.17) and sending ϵ → 0 we get

∫ ∞

0
ψ′(t)

N−1
∑

j=0

♣yj(t) − ỹj(t)♣dt ≥ 0 (1.1.18)

Now, taking ψ in (1.1.18) to be a smooth approximation of the characteristic

function of the interval (t1, t2) ⊂ (0, T ) we get

N−1
∑

j=0

♣yj(t2) − ỹj(t2)♣≤
N−1
∑

j=1

♣yj(t1) − ỹj(t1)♣. (1.1.19)

Then, letting t1 → 0 and t2 → T in (1.1.19), we obtain

N−1
∑

j=0

♣yj(T ) − ỹj(T )♣≤
N−1
∑

j=1

♣yj(0) − ỹj(0)♣. (1.1.20)

Finally, by using (1.1.20) and the maximum principle (1.1.10), we Ąnd

N−1
∑

j=0

♣ρj(T ) − ρ̃j(T )♣ =
N−1
∑

j=0

ρj(T )ρ̃j(T ) ♣yj(T ) − ỹj(T )♣

≤
N−1
∑

j=0

♣yj(T ) − ỹj(T )♣

≤
N−1
∑

j=0

♣yj(0) − ỹj(0)♣ ,

thus establishing (1.1.12).

Remark 1.1.2. In [37] the authors establish the contractive estimate (1.1.20) in

two settings: either they assume to have inĄnitely many equally spaced vehicles

in front of the leading one located at xN
N , assuming a distance M/N between two

consecutive ones, for some constant M > 1, or they require that the location

of the vehicles is periodic in an interval [a, b], so that the distance between the

vehicle located in xN
N and the one located at xN

1 is (b − xN
N) + (xN

1 − a). This
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corresponds to deĄne the inverse discrete density related to the leading vehicle as

yN
N =











M in non-periodic case

N(b− xN + x1 − a) in periodic case.

In the non periodic setting this deĄnition leads to prescribe the velocity

V (yN
N ) = v

(

1

M

)

for the inverse discrete density in front of the leader. Here, instead we obtain the

contractive estimate (1.1.20) prescribing in the Ąrst equation in (1.1.5) that the

velocity of the inverse discrete density in front of the leader is given by (1.1.9),

which is a consequence of having ẋN
N = vmax in (1.1.3). Therefore, Proposi-

tion 1.1.1 here provides an extension of [37, Lemma 2.3], in the non-periodic

setting, to the case ŞM = +∞" corresponding to empty road ahead of the leader.

Finally, we recall the discrete Oleinik-type condition proved in [32, Corollary

1 of Lemma 6]:

Lemma 1.1.1 (Discrete Oleinik-type condition). Consider a solution ¶xN
j (t)♢N

j=0

of (1.1.3), and let ¶ρN
j (t)♢N−1

j=0 be the corresponding discrete density deĄned by

(1.1.4). Assume that v satisĄes (V1) and (V2). Then, for any j = 0, . . . , N − 2,

there holds

v(ρN
j+1(t)) − v(ρN

j (t))

xN
j+1(t) − xN

j (t)
≤ 1

t
∀ t ≥ 0.

1.2 Eulerian and Lagrangian densities

In this section, we Ąrst deĄne two densities that approximate the solution of

(1.0.2): the Eulerian discrete density and the (Dirac) empirical measure. We

then deĄne the Lagrangian discrete density and the inverse Lagrangian discrete

density, which instead provide an approximation of the solution of (1.0.2) ex-

pressed in Lagrangian coordinates. After that, we deĄne the cumulative function

of the Eulerian density and its corresponding pseudo-inverse, which are used to

transform the Lagrangian density into the Eulerian one and viceversa. In the

end, we provide some convergence results. This section is mainly based on the

analysis developed in [32].
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The Eulerian discrete density can be understood as a discrete approximation

of the solution of the LWR model (1.0.2). Its precise deĄnition is given here.

DeĄnition 1.2.1. Given ¶xN
j (t)♢N

j=0 solution of (1.1.3), deĄne the Eulerian dis-

crete density as

ρE,N(t, x) :=
N−1
∑

j=0

ρN
j (t)χ[xN

i
(t),xN

i+1(t))(x), (1.2.1)

where ρN
j are deĄned by (1.1.4).

Notice that the Eulerian discrete density can be seen as a quasi-entropy solu-

tion of (1.0.2), as discussed in [44]. We now deĄne the inverse Eulerian discrete

density and the (Dirac) empirical measure.

DeĄnition 1.2.2. Given ¶xN
j (t)♢N

j=0 solution of (1.1.3), deĄne the inverse Eule-

rian discrete density as

yE,N(t, x) :=
N−1
∑

j=0

yN
j (t)χ[xN

i
(t),xN

i+1(t))(x).

and the (Dirac) empirical measure as

ρD,N(t, x) :=
1

N

N−1
∑

j=0

δxj(t)(x), (1.2.2)

where yN
j are deĄned by (1.1.6), and δx denoted the Dirac delta at the point x.

We Ąnally deĄne the Lagrangian discrete density and the inverse Lagrangian

density. The latter can be understood as a piecewise constant approximation of

the solution of the Lagrangian version of the LWR model, see [37].

DeĄnition 1.2.3. Given ¶xN
j (t)♢N

j=0 solution of (1.1.3), and letting l = 1/N ,

deĄne the Lagrangian discrete density as

ρL,N(t, z) :=
N−1
∑

j=0

ρN
j (t)χ[jl,(j+1)l)(z), (1.2.3)

and the inverse Lagrangian discrete density as

yL,N(t, z) :=
N−1
∑

j=0

yN
j (t)χ[jl,(j+1)l)(z). (1.2.4)
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The coordinate z ∈ [0, 1] can be seen as a Lagrangian mass coordinate. As

pointed out in [37], the integer part of z
l

measures how many vehicles are located

to the left of z.

Notice that, while the L1 norm of the Eulerian discrete density ρE,N represents

the total mass of vehicles, the L1 norm of the inverse Lagrangian discrete density

yL,N provides the measure of their support. Indeed, given ¶xN
j (t)♢N

j=0 solution of

(1.1.3), it holds

∥

∥

∥yL,N(t)
∥

∥

∥

L1([0,1])
=

N−1
∑

j=0

yN
j (t)

∫ 1

0
χ[jl,(j+1)l)(z)dz =

N−1
∑

j=0

xN
j+1(t) − xN

j (t) = xN
N(t) − xN

0 (t).

Therefore, if ¶xN
j (t)♢N

j=0 satisfy the uniformly bounded initial support condi-

tion (1.0.3), relying on the discrete maximum principle (1.1.10) we deduce that

the corresponding inverse Lagrangian discrete density yL,N(t) has a bound in

L1([0, 1]) that is uniform with respect to N , for all t > 0.

1.2.1 Cumulative and pseudo-inverse functions

We recall that the one dimensional Wasserstein distance can be deĄned using the

cumulative or the pseudo-inverse functions, given by DeĄnition A.2.3, as shown

in Proposition A.2.2 see e.g. [63].

Since the discrete density ρE,N is a probability measure in Pc(R), if we apply

DeĄnition A.2.3 to ρE,N we Ąnd that its cumulative distribution takes the form:

FρE,N (t, x) =
∫ x

−∞
ρE,N(t, y)dy

=
N−1
∑

j=0

[

jl + ρN
j (t)(x− xj(t))

]

χ[xj(t),xj+1(t))(x) + χ[xN (t),+∞)(x),
x ∈ R,

(1.2.5)

while the corresponding pseudo-inverse takes the form:

XρE,N (t, z) =
N−1
∑

j=0



xN
j (t) +

z − jl

ρN
j (t)

]

χ[jl,(j+1)l)(z) +
[

xN
N(t)

]

χ¶1♢(z), z ∈ [0, 1].

(1.2.6)

Similarly, if we apply DeĄnition A.2.3 to the (Dirac) empirical measure ρD,N the
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cumulative distribution takes the form

FρD,N (t, x) =
N−1
∑

j=0

[(j + 1)l]χ[xj(t),xj+1(t))(x) + χ[xN (t),+∞)(x) (1.2.7)

while the corresponding pseudo-inverse takes the form:

XρD,N (t, z) =
N−1
∑

j=0

[

xN
j (t)

]

χ[jl,(j+1)l)(z) +
[

xN
N(t)

]

χ¶1♢(z). (1.2.8)

Notice that the cumulative distribution FρE,N is 1-Lipschitz in the x-variable, and

the pseudo-inverse XρE,N satisĄes

ρL,N(t, z) = ρE,N(t,XρE,N (t, z)), yL,N(t, z) = yE,N(t,XρE,N (t, z)) ∀ t ≥ 0, z ∈ [0, 1].

The cumulative function FρE,N then satisĄes

ρL,N(t, FρE,N (t, x)) = ρE,N(t, x), yL,N(t, FρE,N (t, x)) = yE,N(t, x) ∀ t ≥ 0, x ∈ R.

1.2.2 Convergence results of the cumulative and pseudo-

inverse functions

We recall now some results, Ąrst given in [32], about the limits of XρE,N and

XρD,N , as well as of FρE,N and FρD,N . The proofs are valid for any initial data

¶xN
j (0)♢N

j=0 of system (1.1.3) that satisĄes the condition of the uniformly bounded

initial support (1.0.3).

Proposition 1.2.1. Let ¶xN
j (t)♢N

j=0 be solutions of (1.1.3) that satisfy the uni-

formly bounded initial support condition (1.0.3). Consider the corresponding Eu-

lerian discrete density ρE,N ∈ L∞([0,+∞) × R; [0, 1]) deĄned by (1.2.1) and the

(Dirac) empirical measure ρD,N ∈ L∞([0,+∞);W1(Pc(R))) deĄned by (1.2.2).

Let FρE,N , XρE,N , and FρD,N , XρD,N , be the corresponding cumulative distributions

and pseudo-inverses deĄned by (1.2.5), (1.2.6), and (1.2.7), (1.2.8), respectively.

Then, the following hold:

i) there exists a non-decreasing function X ∈ L∞([0,+∞)×[0, 1]) such that, up

to a subsequence, both ¶XρE,N ♢N and ¶XρD,N ♢N converge to X in L1
loc([0,+∞)×

[0, 1]);
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Figure 1.1: The Eulerian discrete density, the inverse Lagrangian discrete
density and the (Dirac) empirical measure profiles (N = 4).
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ii) letting F : [0,+∞) × R → [0, 1] be the map deĄned by

F (t, x) := meas¶z ∈ [0, 1] : X(t, z) ≤ x♢, t ≥ 0, x ∈ R, (1.2.9)

up to a subsequence, both ¶FρE,N ♢N and ¶FρD,N ♢N converge to F in L1
loc([0,+∞)×

R).

Proof. See [32, Proposition 1, Proposition 2, Lemma 4] with L = 1, and R = 1

(due to the maximum principle (1.1.10)), using their notation.

Remark 1.2.1. Notice that, differently from the results in [32], Proposition 1.2.1

here only states the convergence of
{

XρE,N

}

N∈N
,
{

XρD,N

}

N∈N
and

{

FρE,N

}

N∈N
,

{

FρD,N

}

N∈N
up to a subsequence, which is obtained relying on HellyŠs compact-

ness theorem. In [32] the authors conclude that the whole sequences
{

XρE,N

}

N∈N
,

{

XρD,N

}

N∈N
converge, exploiting the fact that their atomization scheme for the

FtL model guarantees that XρD,N+1(t, z) ≤ XρD,N (t, z) for all t ≥ 0 and z ∈ [0, 1].

In turn, by the deĄnition of the Wasserstein distance (A.2.3), the convergence

of the whole sequences
{

XρE,N

}

N∈N
and

{

XρD,N

}

N∈N
yields the convergence of

{

FρE,N

}

N∈N
and

{

FρD,N

}

N∈N
.

Proposition 1.2.2. According with Proposition 1.2.1-(ii), consider two sequences

¶FρE,N ♢N , ¶FρD,N ♢N of cumulative distributions associated to the Eulerian dis-

crete density ρE,N , and to the (Dirac) empirical measure ρD,N , respectively, that

converge to a function F deĄned by (1.2.9), which is Lipschitz continuous with

respect to x. For any t ≥ 0, let ρ(t) be the distributional derivative of x 7→ F (t, x).

Then the following hold:

i) ρ(t) ∈ Pc(R) for all t ≥ 0,

ii) 0 ≤ ρ(t) ≤ 1 for almost every t ≥ 0 and x ∈ R,

iii) ¶ρE,N♢N and ¶ρD,N♢N converge to ρ in L1
loc ([0,+∞);W1(Pc(R))).

Proof. See [32, Proposition 3] with L = 1, and R = 1 (due to the maximum

principle (1.1.10)), using their notation.

Remark 1.2.2. Given a map F : [0,+∞) × R → [0, 1], letting ρ(t) be the distri-

butional derivative of x 7→ F (t, x), and assuming that ρ(t) ∈ Pc(R), then if we

consider the cumulative distribution Fρ(t) as deĄned in (A.2.1), one has

Fρ(t)(x) = F (t, x), for a.e. x ∈ R. (1.2.10)
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Lemma 1.2.1. Let ¶xN
j (t)♢N

j=0 be solutions of (1.1.3), and consider the La-

grangian discrete density ρL,N ∈ L∞([0,+∞) × [0, 1]) deĄned by (1.2.3). Then,

there exists ρL ∈ L∞([0, T ] × [0, 1]) such that, up to a subsequence,
{

ρL,N
}

N∈N

converges to ρL weakly-* in L∞([0,+∞) × [0, 1]).

Proof. See [32, Lemma 5] with L = 1, and R = 1 (due to the maximum principle

(1.1.10)), using their notation.

1.3 Proof of the micro-to-macro convergence

In this section we prove the Ąrst main result of this article, i.e. Theorem 1.0.1.

With this goal, we Ąrst recall standard tools for studying the Cauchy problem

(1.0.2): the deĄnition of weak solution and classical results of existence and

uniqueness of entropy solutions. Then, after proving a technical lemma we present

the proof of Theorem 1.0.1.

Given the Cauchy problem (1.0.2), we recall the deĄnition of weak and en-

tropy weak solution of (1.0.2).

DeĄnition 1.3.1. A function ρ ∈ L∞([0,+∞) ×R) is a weak solution to (1.0.2)

if it holds

∫

R

∫

R+

[ρ(t, x)φt(t, x) + (ρ(t, x)v(ρ(t, x)))φx(t, x)] dt dx+
∫

R

ρ̄(x)φ(0, x)dx = 0

(1.3.1)

for all φ ∈ C∞
c ([0,+∞) × R).

DeĄnition 1.3.2. A function ρ ∈ L∞([0,+∞) ×R) is a KružkovŠs entropy solu-

tion to (1.0.2) if it satisĄes the entropy inequality

∫

R

∫

R+

[♣ρ(t, x) − k♣φt(t, x) + sign(ρ(t, x) − k)[f(ρ(t, x)) − f(k)]φx(t, x)]dtdx

+
∫

R

♣ρ̄(x) − k♣φ(0, x)dx ≥ 0

(1.3.2)

for all φ ∈ C∞
c ([0,+∞) × R) with φ non-negative, and for all constants k ∈ R.

We now present two well-known results about the existence and uniqueness

of the weak entropy solution to the Cauchy problem (1.0.2).

Theorem 1.3.1 (Uniqueness of KružkovŠs solution, [43]). Assume that the Ćux

f(ρ) is locally Lipschitz. For any given initial data ρ̄ ∈ L∞ with compact support,

there exists a unique KružkovŠs entropy solution ρ ∈ L∞([0,+∞)]×R) to (1.0.2).
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Theorem 1.3.2 (Chen and RascleŠs entropy solution, [20]). Assume that the Ćux

is genuinely nonlinear almost everywhere, i.e. there exists no nontrivial interval

on which the Ćux f(ρ) is affine. For a given initial data ρ̄ ∈ L∞ with compact

support, there exists a unique ρ ∈ L∞([0,+∞) × R) weak solution of (1.0.2) in

the sense of DeĄnition 1.3.1 that satisĄes the entropy inequality

∫

R

∫

R+

[♣ρ(t, x) − k♣φt(t, x) + sign(ρ(t, x) − k)[f(ρ(t, x)) − f(k)]φx(t, x)] dtdx ≥ 0

(1.3.3)

for all φ ∈ C∞
c ((0,+∞) × R) with φ non-negative and for all constants k ∈ R.

Moreover, ρ is the unique KružkovŠs entropy solution to (1.0.2)

In Theorem 1.3.2 we see that, if the Ćux is genuinely nonlinear almost every-

where, uniqueness of entropy solution is preserved for a relaxed notion of entropy

solution, which does not require that the entropy inequality (1.3.2) be satisĄed

at t = 0. This is due to the fact that the nonlinearity of the Ćux ensures the

existence of a strong trace at t = 0 of a weak solution to (1.0.2) in the sense of

DeĄnition 1.3.1.

We now present the following lemma, which is used in the proof of Theorem

1.0.1.

Lemma 1.3.1. Consider a function f ∈ L1(R) ∩ L∞(R) which is 1−Lipschitz.

It holds

∥f∥L∞(R) ≤
√

∥f∥L1(R).

Proof. Let N ∈ N. Let x̄N ∈ R and deĄne MN := f(x̄N). Let

MN → ∥f∥L∞(R) as N → +∞. (1.3.4)

Since ♣f ♣ is 1-Lipschitz, notice that for every N ∈ N it holds

♣f(x)♣≥ max¶MN − ♣x− x̄N ♣, 0♢ ∀x ∈ R.

By integrating in space, for every N ∈ N it holds

∫

R

♣f(x)♣dx ≥
∫

R

max¶MN − ♣x− x̄N ♣, 0♢dx = M2
N .

By (1.3.4) we recover the result.
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We are now ready to provide:

Proof of Theorem 1.0.1. Given the Eulerian discrete density ρE,N ∈ L∞([0,+∞)×
R; [0, 1]) deĄned by (1.0.1), to ease notation set

FN := FρE,N ,

where FρE,N denotes the cumulative distribution of ρE,N , and let F (t, x) be the

function deĄned by (1.2.9), which is equal to the cumulative distribution Fρ(t)(x)

of its x-distributional derivative ρ(t) (see Remark 1.2.2).

1. In this step we prove that
{

ρE,N
}

N∈N
, up to a subsequence, is a Cauchy

sequence in L1
loc([0,+∞) × R), in both cases (1) and (2) of Theorem 1.0.1,

and thus it converges in L1
loc([0,+∞) × R) to some limit function ρ ∈

L1
loc([0,+∞) × R).

Recall by Propositions 1.2.1-1.2.2 that, up to a subsequence, and for every

T > 0 it holds

lim
N→+∞

∫ T

0
W1(ρ

E,N(t), ρ(t))dt = lim
N→+∞

∫ T

0

∥

∥

∥FN(t) − F (t)
∥

∥

∥

L1(R)
dt = 0.

(1.3.5)

Since FN , FM are 1−Lipschitz in the x variable, then also the function

FN − FM is 1−Lipschitz in the x variable. Therefore, by Lemma 1.3.1 it

holds

∥

∥

∥FN(t) − FM(t)
∥

∥

∥

L∞(R)
≤
√

∥FN(t) − FM(t)∥L1(R) ∀N,M ∈ N, ∀ t > 0.

(1.3.6)

Notice that since it holds

lim
x→±∞

♣FN(t, x) − FM(t, x)♣= 0, ∀N,M ∈ N, ∀ t > 0,
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then integrating by parts we Ąnd

∫

R

(ρE,N(x) − ρE,M(x))2dx

=
∫

R

d

dx

(

FN(t, x) − FM(t, x)
) (

ρE,N(t, x) − ρE,M(t, x)
)

dx

= −
∫

R

(

FN(t, x) − FM(t, x)
) d

dx

(

ρE,N(t, x) − ρE,M(t, x)
)

dx

≤
∥

∥

∥FN(t) − FM(t)
∥

∥

∥

L∞(R)
TV

(

ρE,N(t) − ρE,M(t);R
)

≤
∥

∥

∥FN(t) − FM(t)
∥

∥

∥

L∞(R)

[

TV
(

ρE,N(t);R
)

+ TV
(

ρE,M(t);R
)]

.

By Hölder inequality and by using (1.3.6), we thus get that for all Ω ⊂ R

bounded, for all N,M ∈ N, and for all t > 0, it holds

∥

∥

∥ρE,N(t) − ρE,M(t)
∥

∥

∥

2

L1(Ω)

≤ meas(Ω)
∥

∥

∥ρE,N(t) − ρE,M(t)
∥

∥

∥

2

L2(Ω)

≤ meas(Ω)
∥

∥

∥FN(t) − FM(t)
∥

∥

∥

L∞(R)

[

TV
(

ρE,N(t);R
)

+ TV
(

ρE,M(t);R
)]

≤ meas(Ω)
√

∥FN(t) − FM(t)∥L1(R)

[

TV
(

ρE,N(t);R
)

+ TV
(

ρE,M(t);R
)]

.

(1.3.7)

The further treatment of this inequality is now adressed in the two cases

(1) and (2) in the two following steps.

1.1. We assume that TV(ρE,N(0);R),TV(ρE,M(0);R) < K2 for all N,M ∈
N for some K2 > 0 independent of N,M . Because of the BV con-

tractivity property enjoyed by ρE,N and ρE,M (see [32, Proposition 5])

and relying on the hypothesis on the total variation of ρE,N(0) and

ρE,M(0), it holds

TV
(

ρE,N(t);R
)

+ TV
(

ρE,M(t);R
)

≤ TV
(

ρE,N(0);R
)

+ TV
(

ρE,M(0);R
)

≤ 2K2.

Thus, we deduce from (1.3.7) that, for all N,M ∈ N, and for all t > 0,

it holds

∥

∥

∥ρE,N(t) − ρE,M(t)
∥

∥

∥

2

L1(Ω)
≤ 2K2 meas(Ω)

√

∥FN(t) − FM(t)∥L1(R).

(1.3.8)
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Notice that, by HölderŠs inequality, we have

∫ T

0

√

∥FN(t) − FM(t)∥L1(R)dt

≤ ∥1∥L2([0,T ])

∥

∥

∥

√

∥FN(t) − FM(t)∥L1(R)

∥

∥

∥

L2([0,T ])

=
√
T

√

∫ T

0
∥FN(t) − FM(t)∥L1(R) dt.

(1.3.9)

Then, integrating (1.3.8) in the time interval [0, T ], and using (1.3.9),

we Ąnd that for all N,M ∈ N there hold

∫ T

0

∥

∥

∥ρE,N(t) − ρE,M(t)
∥

∥

∥

2

L1(Ω)
dt (1.3.10)

≤ 2K2 meas(Ω)
√
T

√

∫ T

0
∥FN(t) − FM(t)∥L1(R) dt. (1.3.11)

Finally, by HölderŠs inequality, we derive from (1.3.10) that

∫ T

0

∥

∥

∥ρE,N(t) − ρE,M(t)
∥

∥

∥

L1(Ω)
dt

≤
√

2K2 meas(Ω) · T 3
4

( ∫ T

0

∥

∥

∥FN(t) − FM(t)
∥

∥

∥

L1(R)
dt
)

1
4

.

(1.3.12)

Therefore, in case (1) the convergence result (1.3.5) implies that, for

every T > 0, and for any bounded Ω ⊂ R,
{

ρE,N
}

N∈N
is a Cauchy

sequence in L1([0, T ]×Ω). Now consider an increasing sequence Tn > 0

and a sequence of bounded domain Ωn such that ∪n([0, Tn] × Ωn) =

[0,+∞)×R. Then, by a diagonal argument we can repeatedly extract

subsequnces of
{

ρE,N
}

N∈N
that have the Cauchy property on each

domain [0, Tn] × Ωn, and thus we construct a Cauchy subsequence in

L1
loc([0,+∞) × R).

1.2. We assume that (V2) holds. Observe that, for any Ąxed T > 0, and

for all N,M ∈ N, it holds

supp(ρE,N(t) − ρE,M(t)) ⊂ ΩT,N,M ∀ t ∈ [0, T ], (1.3.13)

where

ΩT,N,M :=
[

min¶xN
0 (0), xM

0 (0)♢,max¶xN
N(0), xM

M(0)♢ + Tvmax

]

.

(1.3.14)
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Then, because of the condition (1.0.3) on uniformly bounded initial

support, it follows that there will be some constant KT > 0 such that,

for all N,M ∈ N, it holds

meas ( supp(ρE,N(t)−ρE,M(t))) ≤ meas(ΩT,N,M) ≤ KT , ∀ t ∈ [0, T ] .

(1.3.15)

Moreover, relying on (1.3.13), and using the discrete Oleinik estimate

given in Lemma 1.1.1 for ρE,N and ρE,M it follows that, for any Ąxed

T, δ > 0, there will be some constant Kδ,T > 0 such that, for all

N,M ∈ N, it holds

sup
t∈[δ,T ]

[

TV
(

ρE,N(t);R
)

+ TV
(

ρE,M(t);R
)]

=

= sup
t∈[δ,T ]

[

TV
(

ρE,N(t); ΩT,N,M

)

+ TV
(

ρE,M(t); ΩT,N,M

)]

≤ Kδ,T ,

(1.3.16)

(see [31, Proposition 3.3] and [49]). For any given bounded Ω ⊂ R,

with the same analysis in (1.3.7), (1.3.8), it thus follows that, for all

N,M ∈ N, and for all t ∈ [δ, T ], it holds

∥

∥

∥ρE,N(t) − ρE,M(t)
∥

∥

∥

2

L1(Ω)

≤ meas(Ω) sup
t∈[δ,T ]

[

TV
(

ρE,N(t);R
)

+ TV
(

ρE,M(t);R
)]√

∥FN(t) − FM(t)∥L1(R),

≤ 2Kδ,T meas(Ω)
√

∥FN(t) − FM(t)∥L1(R).

(1.3.17)

Integrating in the time interval [δ, T ] and using the HölderŠs inequality

as done in the previous step we then Ąnd that, for all N,M ∈ N, there

hold

∫ T

δ

∥

∥

∥ρE,N(t) − ρE,M(t)
∥

∥

∥

2

L1(Ω)
dt (1.3.18)

≤ 2Kδ,T meas(Ω)
√
T

√

∫ T

δ
∥FN(t) − FM(t)∥L1(R) dt, (1.3.19)

and

∫ T

δ

∥

∥

∥ρE,N(t) − ρE,M(t)
∥

∥

∥

L1(Ω)
dt ≤

≤
√

2Kδ,T meas(Ω) · T 3
4

( ∫ T

δ

∥

∥

∥FN(t) − FM(t)
∥

∥

∥

L1(R)
dt
)

1
4

.

(1.3.20)
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Observe now that, for any Ąxed ϵ > 0, setting δϵ
.
= ϵ/(2 meas(Ω)), we

have

∫ δϵ

0

∥

∥

∥ρE,N(t) − ρE,M(t)
∥

∥

∥

L1(Ω)
dt ≤ ϵ

2
, ∀N,M ∈ N . (1.3.21)

On the other hand, the convergence result (1.3.5), together with (1.3.20),

implies that there exists N(ϵ) > 0 such that

∫ T

δϵ

∥

∥

∥ρE,N(t) − ρE,M(t)
∥

∥

∥

L1(Ω)
dt ≤ ϵ

2
, ∀N,M ≥ N(ϵ) . (1.3.22)

Therefore, combining (1.3.21)-(1.3.22) we Ąnd also in case (2) that,

for every T > 0, and for any bounded Ω ⊂ R,
{

ρE,N
}

N∈N
is a Cauchy

sequence in L1([0, T ] × Ω). Then we conclude as in case (1) that by

diagonal procedure we can estract a Cauchy subsequence
{

ρE,N
}

N∈N

in L1
loc([0,+∞) × R).

Summing up, by treating the cases (1) and (2) in 1.1. and 1.2., respec-

tively, we get in both cases that the sequence
{

ρE,N
}

N∈N
converges in

L1
loc([0,+∞) × R), up to a subsequence, to some function function ρ ∈

L1
loc([0,+∞) × R).

2. In this step we show that the function ρ determined in the previous step is

the weak entropy solution of the Cauchy problem (1.0.2), and that actually

the whole sequence
{

ρE,N
}

N∈N
converges in L1

loc([0,+∞) × R) to ρ.

Recalling that
{

ρE,N(0)
}

N∈N
weakly converges to ρ̄ by hypothesis (1.0.4),

and following the same procedure as in Step 1-Case 1 of the proof of [31,

Theorem 2], we deduce that ρ is a weak solution to (1.0.2) in the sense

of DeĄnition 1.3.1. Furthermore, it also holds that ρ satisĄes the entropy

inequality (1.3.3) by applying the exact same computations as done in the

part (vi) of the proof of [32, Theorem 3]. In turn, this implies that ρ is

a weak entropy solution of the Cauchy problem (1.0.2), thanks to The-

orem 1.3.2. By merging Step 1 and Step 2, we conclude that, up to a

subsequence,
{

ρE,N
}

N∈N
converges in L1

loc([0,+∞)×R) to the unique weak

entropy solution of (1.0.2). Since, with the same arguments, we can show

that any subsequence of
{

ρE,N
}

N∈N
admits a subsubsequence converging

to the unique weak entropy solution of (1.0.2), it follows that the whole

sequence
{

ρE,N
}

N∈N
converges to ρ, thus completing the proof of the theo-

rem.
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Remark 1.3.1. If ρ̄ ∈ BV (R) satisĄes the assumptions of Theorem 1.0.1, relying

on the analysis performed in the above proof one can derive the convergence rate

for the initial Eulerian discrete density ρE,N(0) associated to the atomization

scheme introduced in [32, (19a) and (19b)]), which is deĄned as follows.

Denote by x̄min < x̄max the extremal points of the support of ρ̄. Consider the

following discretization scheme: set

x̃N
0 (0) := x̄min

and recursively

x̃N
j (0) := sup

{

x ∈ R :
∫ x

xN
j−1(0)

ρ̄(y)dy ≤ 1

N

}

, j = 1, ..., N

It is possible to give a convergence rate of such discretization scheme with

respect to the L1 norm in Eulerian coordinates. It has been proved in [32, Propo-

sition 4] that it holds

W1(ρ̃
E,N(0), ρ̄) ≤ (x̃N

N(0) − x̃N
0 (0))

N
.

As shown in Step 1 in the proof, applying the inequality (1.3.7) at t = 0 for

Ω = [x̃N
0 (0), x̃N

N(0)] and by the condition of the uniformly bounded initial support

(1.0.3), we get

∥

∥

∥ρ̃E,N(0) − ρ̄
∥

∥

∥

L1(R)
≤
√

2(x̃N
N(0) − x̃N

N(0)) TV (ρ̄;R)
∥

∥

∥F̃N(0) − Fρ̄

∥

∥

∥

1
4

L1(R)
≤ C

N1/4

where C = C(K,TV(ρ̄;R)) is independent of N , and K being the constant

corresponding to the condition of the uniformly bounded initial support (1.0.3).

Remark 1.3.2. It can also be proved that the sequence of the corresponding em-

pirical measures
{

ρD,N
}

N∈N
where ρD,N is given by (1.2.2) also converges in

L1
loc([0,+∞];W1) to the unique weak entropy solution ρ of (1.0.2). Indeed, notice

that

∫ T

0
W1(ρ

D,N(t), ρ(t))dt ≤
∫ T

0
W1(ρ

D,N(t), ρE,N(t))dt+
∫ T

0
W1(ρ

E,N(t), ρ(t))dt.

(1.3.23)



36 Ch.1. On the continuum limit of the Follow-the-Leader Model

Notice that it holds

∫ 1

0
♣XE,N(z) −XD,N(z)♣dz =

N−1
∑

j=0

yN
j

∫ (j+1)l

jl
[z − jl]dz =

l

2

N−1
∑

j=0

xN
j+1(t) − xN

j (t)

=
l

2

(

xN
N(t) − xN

0 (t)
)

.

Therefore it holds

∫ T

0

∫ 1

0
♣XE,N(t, z) −XD,N(t, z)♣dz ≤ T (xN

N(0) − xN
0 (0) + vmaxT )

2N

and, by the condition of the uniformly bounded initial support (1.0.3), it holds

lim
N→+∞

∫ T

0
W1(ρ

D,N(t), ρE,N(t))dt = 0. (1.3.24)

By PoincaréŠs inequality, for some C > 0 independent of N and for Ω ⊂ R

compact such that supp(ρE,N(t) − ρ(t)) ⊂ Ω for all t ∈ [0, T ], for instance by

choosing Ω = ΩT where ΩT is deĄned by (1.3.14), it holds

∫ T

0
W1(ρ

E,N(t), ρ(t))dt ≤ C
∥

∥

∥ρE,N − ρ
∥

∥

∥

L1([0,T ]×R)
. (1.3.25)

Now consider (1.3.24), (1.3.25) and Theorem 1.0.1. By (1.3.23), it holds

lim
N→+∞

∫ T

0
W1(ρ

D,N(t), ρ(t))dt = 0.

1.4 Proof of stability of Eulerian density

In this section we provide a stability result in both the Wasserstein norm and

in L1 for two different Eulerian discrete densities. In the rest of the paper, we

compare two solutions ¶xN
j (t)♢N

j=0 and ¶x̃N
j (t)♢N

j=0 of the FtL model (1.1.3) and

the corresponding Eulerian discrete densities ρE,N and ρ̃E,N deĄned by (1.2.1).

The goal of this section is to prove Theorem 1.0.2.

We now present three propositions. They lead to the proof of the theorem,

that is postponed at the end of this section.

Proposition 1.4.1. Let two sequences of conĄgurations ¶xN
j ♢N

j=0,¶x̃N
j ♢N

j=0, in-

dexed by N ∈ N, be given. Assume that xN
N = x̃N

N for all N ∈ N. Consider the

corresponding Eulerian densities ρE,N , ρ̃E,N ∈ L∞(R) deĄned by (1.2.1). Then it
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holds

W1(ρ
E,N , ρ̃E,N) ≤ 2

N−1
∑

j=0

♣xj+1 − xj − (x̃j+1 − x̃j)♣.

Proof. Fix j = 0, ..., N − 1 and z ∈ [jl, (j + 1)l). Recalling (1.1.6), we have

∣

∣

∣xN
j − x̃N

j + (z − jl)
(

yN
j − ỹN

j

)∣

∣

∣ =

∣

∣

∣

∣

∣

xN
j − x̃N

j +
z − jl

l

(

xN
j+1 − x̃N

j+1 − (xN
j − x̃N

j )
)

∣

∣

∣

∣

∣

≤
∣

∣

∣xN
j − x̃N

j

∣

∣

∣+
∣

∣

∣xN
j+1 − x̃N

j+1 − (xN
j − x̃N

j )
∣

∣

∣

≤ 2
∣

∣

∣xN
j − x̃N

j − (xN
j+1 − x̃N

j+1)
∣

∣

∣+
∣

∣

∣xN
j+1 − x̃N

j+1

∣

∣

∣

≤ 2





N−1
∑

k=j

∣

∣

∣xN
k − x̃N

k − (xN
k+1 − x̃N

k+1)
∣

∣

∣



+
∣

∣

∣xN
N − x̃N

N

∣

∣

∣ ,

where in the last inequality we repeatedly make use of the triangular inequality

∣

∣

∣xN
k − x̃N

k

∣

∣

∣ ≤
∣

∣

∣xN
k − x̃N

k − (xN
k+1 − x̃N

k+1)
∣

∣

∣+
∣

∣

∣xN
k+1 − x̃N

k+1

∣

∣

∣ k = j + 1, . . . , N − 1

Therefore, by summing in j, it holds

N−1
∑

j=0

∣

∣

∣xN
j − x̃N

j + (z − jl)
(

yN
j − ỹN

j

)∣

∣

∣ ≤ 2





N−1
∑

j=0

N−1
∑

k=j

∣

∣

∣xN
k − x̃N

k − (xN
k+1 − x̃N

k+1)
∣

∣

∣



+N
∣

∣

∣xN
N − x̃N

N

∣

∣

∣

≤ 2N





N−1
∑

j=0

∣

∣

∣xN
j − x̃N

j − (xN
j+1 − x̃N

j+1)
∣

∣

∣



+N
∣

∣

∣xN
N − x̃N

N

∣

∣

∣

= 2
N−1
∑

j=0

∣

∣

∣yN
j − ỹN

j

∣

∣

∣+N
∣

∣

∣xN
N − x̃N

N

∣

∣

∣ .

We are now ready to prove the result:

∫ 1

0
♣XρE,N (z) −Xρ̃E,N (z)♣dz =

∫ 1

0

N−1
∑

j=0

∣

∣

∣xN
j − x̃N

j + (z − jl)
(

yN
j − ỹN

j

)∣

∣

∣χ[jl,(j+1)l)(z)dz

≤
∫ 1

0



2
N−1
∑

j=0

∣

∣

∣yN
j − ỹN

j

∣

∣

∣+N
∣

∣

∣xN
N − x̃N

N

∣

∣

∣



χ[jl,(j+1)l)(z)dz

=
2

N

N−1
∑

j=0

∣

∣

∣yN
j − ỹN

j

∣

∣

∣+
∣

∣

∣xN
N − x̃N

N

∣

∣

∣

= 2
∥

∥

∥yL,N − ỹL,N
∥

∥

∥

L1([0,1])
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Proposition 1.4.2. Let ¶xN
j (t)♢N

j=0,¶x̃N
j (t)♢N

j=0 be solutions of (1.1.3), indexed

by N ∈ N that satisfy the condition of the uniformly bounded initial support

(1.0.3). Consider the corresponding Eulerian discrete densities ρE,N , ρ̃E,N ∈
L∞([0,+∞) × R) deĄned by (1.2.1). Then for all T > 0 it holds

sup
t∈[0,T ]

W1(ρ
E,N(t), ρ̃E,N(t)) ≤ W1(ρ

E,N(0), ρ̃E,N(0))

+ 2LT
N−1
∑

j=0

♣xj+1(0) − xj(0) − (x̃j+1(0) − x̃j(0))♣.

Proof.

Step 1. Set j = 0, . . . , N − 1 and z ∈ [jl, (j + 1)l). In this step we Ąnd a bound for

∣

∣

∣

∣

∣

xN
j (t) − x̃N

j (t) + (z − jl)

(

1

ρN
j (t)

− 1

ρ̃N
j (t)

∣

∣

∣

∣

∣

.

First, notice that for j = N it holds

xN
N(t) − x̃N

N(t) = xN
N(0) − x̃N

N(0)

while for j = 0, . . . , N − 1 it holds

xN
j (t) − x̃N

j (t) = xN
j (0) − x̃N

j (0) +
∫ t

0
v(ρN

j (t)) − v(ρ̃N
j (t))dt.

Thus, for j = N − 1 and z ∈ [1 − l, 1) it holds

∣

∣

∣

∣

∣

xN
N−1(t) − x̃N

N−1(t) + (z − 1 + l)

(

1

ρN
N−1(t)

− 1

ρ̃N
N−1(t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(xN
N−1(t) − x̃N

N−1(t))

(

1 − z − 1 + l

l



+
z − 1 + l

l
(xN

N(t) − x̃N
N(t))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

xN
N−1(0) − x̃N

N−1(0) +
∫ t

0
(v(ρN

N−1(s)) − v(ρ̃N
N−1(s)))ds

)

(

1 − z − 1 + l

l



+
z − 1 + l

l

(

xN
N(0) − x̃N

N(0)
)

∣

∣

∣

∣

∣
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and therefore it holds
∣

∣

∣

∣

∣

xN
N−1(t) − x̃N

N−1(t) + (z − 1 + l)

(

1

ρN
N−1(t)

− 1

ρ̃N
N−1(t)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(xN
N−1(0) − x̃N

N−1(0))

(

1 − z − 1 + l

l



+
z − 1 + l

l
(xN

N(0) − x̃N
N(0))

∣

∣

∣

∣

∣

+

(

1 − z − 1 + l

l



∫ t

0
♣v(ρN

N−1(s)) − v(ρ̃N
N−1(s))♣ds

≤
∣

∣

∣

∣

∣

xN
N−1(0) − x̃N

N−1(0) + (z − 1 + l)

(

1

ρN
N−1(0)

− 1

ρ̃N
N−1(0)

∣

∣

∣

∣

∣

+ L
∫ t

0

∣

∣

∣ρN
N−1(s) − ρ̃N

N−1(s)
∣

∣

∣ ds.

where in the last inequality we have used the Lipschitz continuity of the

velocity, the fact that

1 − z − 1 + l

l
≤ 1 ∀ z ∈ [1 − l, 1],

and the identity

(xN
N−1 − x̃N

N−1)

(

1 − z − 1 + l

l



+
z − 1 + l

l

(

xN
N − x̃N

N

)

= xN
N−1 − x̃N

N−1 + (z − 1 + l)

(

1

ρN
N−1

− 1

ρ̃N
N−1



.

With similar computations, we have that for j = 0, ..., N − 2 and z ∈
[jl, (j + 1)l) it holds

∣

∣

∣

∣

∣

xN
j (t) − x̃N

j (t) + (z − jl)

(

1

ρN
j (t)

− 1

ρ̃N
j (t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(xN
j (0) − x̃N

j (0))

(

1 − z − jl

l



+
z − jl

l
(xN

j+1(0) − x̃N
j+1(0))

+

(

1 − z − jl

l



(∫ t

0
(v(ρN

j (s)) − v(ρ̃N
j (s)))ds

)

+
z − jl

l

(∫ t

0
(v(ρN

j+1(s)) − v(ρ̃N
j+1(s)))ds

)

∣

∣

∣

∣

∣
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and therefore it holds
∣

∣

∣

∣

∣

xN
j (t) − x̃N

j (t) + (z − jl)

(

1

ρN
j (t)

− 1

ρ̃N
j (t)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(xN
j (0) − x̃N

j (0))

(

1 − z − jl

l



+
z − jl

l
(xN

j+1(0) − x̃N
j+1(0))

∣

∣

∣

∣

∣

+ L
∫ t

0

∣

∣

∣ρN
j (s) − ρ̃N

j (s)
∣

∣

∣+
∣

∣

∣ρN
j+1(s) − ρ̃N

j+1(s)
∣

∣

∣ ds

≤
∣

∣

∣

∣

∣

xN
j (0) − x̃N

j (0) + (z − jl)

(

1

ρN
j (0)

− 1

ρ̃N
j (0)

∣

∣

∣

∣

∣

+ 2L
∫ t

0

∣

∣

∣ρN
j (s) − ρ̃N

j (s)
∣

∣

∣ ds.

where in the last inequality we have used the Lipschitz continuity of the

velocity, the fact that

1 − z − jl

l
≤ 1 and

z − jl

l
≤ 1 ∀ z ∈ [jl, (j + 1)l],

and the identity

(xN
j − x̃N

j )

(

1 − z − jl

l



+
z − jl

l
(xN

j+1 − x̃N
j+1) = xN

j − x̃N
j + (z − jl)

(

1

ρN
j

− 1

ρ̃N
j



.

Step 2. By deĄnition of the pseudo-inverse given in (1.2.6), using the bounds found

in Step 1 and using Proposition 1.1.1, it holds

∫ 1

0
♣XρE,N (t)(z) −Xρ̃E,N (t)(z)♣dz

=
∫ 1

0

N−1
∑

j=0

∣

∣

∣

∣

∣

xN
j (t) − x̃N

j (t) + (z − jl)

(

1

ρN
j (t)

− 1

ρ̃N
j (t)

∣

∣

∣

∣

∣

χ[jl,(j+1)l)(z)dz

≤
∫ 1

0

N−1
∑

j=0

∣

∣

∣

∣

∣

xN
j (0) − x̃N

j (0) + (z − jl)

(

1

ρN
j (0)

− 1

ρ̃N
j (0)

∣

∣

∣

∣

∣

χ[jl,(j+1)l)(z)dz

+ 2L
∫ 1

0

∫ t

0

N−1
∑

j=0

∣

∣

∣ρN
j (s) − ρ̃N

j (s)
∣

∣

∣χ[jl,(j+1)l)(z)dsdz.

By Proposition 1.1.1 and integration, it holds

∫ 1

0
♣XρE,N (t)(z) −Xρ̃E,N (t)(z)♣dz

≤
∥

∥

∥XρE,N (0) −Xρ̃E,N (0)
∥

∥

∥

L1([0,1])
+

2Lt

N

N−1
∑

j=0

∣

∣

∣yN
j (0) − ỹN

j (0)
∣

∣

∣ .
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Notice that

∥

∥

∥yL,N(0) − ỹL,N(0)
∥

∥

∥

L1([0,1])

=
N−1
∑

j=0

♣yN
j (0) − ỹN

j (0)♣
∫ 1

0
χ[jl,(j+1)l)(z)dz =

1

N

N−1
∑

j=0

♣yN
j (0) − ỹN

j (0)♣.

Therefore, it holds

∥

∥

∥XρE,N (t) −Xρ̃E,N (t)
∥

∥

∥

L1([0,1])

≤
∥

∥

∥XρE,N (0) −Xρ̃E,N (0)
∥

∥

∥

L1([0,1])
+ 2Lt

∥

∥

∥yL,N(0) − ỹL,N(0)
∥

∥

∥

L1([0,1])
.

From DeĄnition A.2.2, we restate the inequality in terms of of the Wasser-

stein distance:

W1(ρ
E,N(t), ρ̃E,N(t)) ≤ W1(ρ

E,N(0), ρ̃E,N(0)) + 2Lt
∥

∥

∥yL,N(0) − ỹL,N(0)
∥

∥

∥

L1([0,1])
.

By taking the supremum in the time interval [0, T ] for arbitrary T > 0 we

have the result.

Proposition 1.4.3. Assume v satiĄes (V1). Let ¶xN
j (t)♢N

j=0,¶x̃N
j (t)♢N

j=0 be solu-

tions of (1.1.3), indexed by N ∈ N. Consider the corresponding Eulerian discrete

densities ρE,N , ρ̃E,N ∈ L∞([0,+∞) × R) deĄned by (1.2.1). DeĄne

ΩT (ρE,N , ρ̃E,N) :=
[

min¶xN
0 (0), x̃N

0 (0)♢,max¶xN
N(0), x̃N

N(0)♢ + Tvmax

]

. (1.4.1)

DeĄne

W sup := sup
t∈[0,T ]

∥

∥

∥FN − F̃N
∥

∥

∥

L1(R)

Consider the following two cases:

1. Assume that TV
(

ρE,N(0);R
)

,TV
(

ρ̃E,N(0);R
)

≤ K for some K > 0 inde-

pendent of N . For all T > 0, it holds

sup
t∈[0,T ]

∥

∥

∥ρE,N(t) − ρ̃E,N(t)
∥

∥

∥

2

L1(R)

≤ meas(ΩT (ρE,N , ρ̃E,N))
[

TV
(

ρE,N(0);R
)

+ TV
(

ρ̃E,N(0);R
)]√

W sup.
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2. Assume that assumption (V2) holds. For all δ, T > 0, it holds

sup
t∈[δ,T ]

∥

∥

∥ρE,N(t) − ρ̃E,N(t)
∥

∥

∥

2

L1(R)

≤ meas(ΩT (ρE,N , ρ̃E,N))



sup
t≥δ

TV
(

ρE,N(t);R
)

+ sup
t≥δ

TV
(

ρ̃E,N(t);R
)

]√
W sup.

Proof. To ease notation, denote

FN := FρE,N and F̃N := Fρ̃E,N .

Since FN and F̃N are monotone non-decreasing and 1−Lipschitz, then the

function FN − F̃N is 1−Lipschitz. Therefore, by Lemma 1.3.1 it holds

∥

∥

∥FN − F̃N
∥

∥

∥

L∞(R)
≤
√

∥

∥

∥FN − F̃N
∥

∥

∥

L1(R)
∀N ∈ N. (1.4.2)

Omitting the time variable since no dynamics are involved, notice that since

it holds

lim
x→+∞

♣FN(x) − F̃N(x)♣= lim
x→−∞

♣FN(x) − F̃N(x)♣= 0 ∀N ∈ N,

then by integration by parts it holds

∫

R

(ρE,N(x) − ρ̃E,N(x))2dx =
∫

R

d

dx

(

FN(x) − F̃N(x)
) (

ρE,N(x) − ρ̃E,N(x)
)

dx

= −
∫

R

(

FN(x) − F̃N(x)
) d

dx

(

ρE,N(x) − ρ̃E,N(x)
)

dx

≤
∥

∥

∥FN − F̃N
∥

∥

∥

L∞(R)
TV

(

ρE,N − ρ̃E,N ;R
)

≤
∥

∥

∥FN − F̃N
∥

∥

∥

L∞(R)

[

TV
(

ρE,N ;R
)

+ TV
(

ρ̃E,N ;R
)]

.

By Lp inclusion and by using (1.4.2), we thus get that for all Ω ⊂ R bounded,

for all N, T > 0 and for all t ∈ [0, T ] it holds

∥

∥

∥ρE,N − ρ̃E,N
∥

∥

∥

2

L1(Ω)
≤ meas(Ω)

∥

∥

∥ρE,N − ρ̃E,N
∥

∥

∥

2

L2(R)

≤ meas(Ω)
∥

∥

∥FN − F̃N
∥

∥

∥

L∞(R)

[

TV
(

ρE,N ;R
)

+ TV
(

ρ̃E,N ;R
)]

≤ meas(Ω)
√

∥

∥

∥FN − F̃N
∥

∥

∥

L1(R)

[

TV
(

ρE,N ;R
)

+ TV
(

ρ̃E,N ;R
)]

.
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Now notice that for all N, T > 0 and for all t ∈ [0, T ] it holds

supp(ρE,N(t) − ρ̃E,N(t)) ∈ ΩT (ρE,N , ρ̃E,N)

where ΩT (ρE,N , ρ̃E,N) is deĄned by (1.4.1). To ease notation, in the rest of the

proof we simply denote it as ΩT . Thus, for all N, T > 0 and for all t ∈ [0, T ] it

holds

∥

∥

∥ρE,N(t) − ρ̃E,N(t)
∥

∥

∥

L1(R)
=
∥

∥

∥ρE,N(t) − ρ̃E,N(t)
∥

∥

∥

L1(ΩT )
. (1.4.3)

Therefore, by Lp inclusion it holds

∥

∥

∥ρE,N − ρ̃E,N
∥

∥

∥

2

L1(R)
≤ meas(ΩT )

√

∥

∥

∥FN − F̃N
∥

∥

∥

L1(R)

[

TV
(

ρE,N ;R
)

+ TV
(

ρ̃E,N ;R
)]

.

The further treatment of this inequality is now adressed in the two cases (1)

and (2) in the two following steps.

Step 1. We assume that TV
(

ρE,N(0);R
)

,TV
(

ρ̃E,N(0);R
)

≤ K for some K > 0

independent of N . We use the contractivity property in time of the total

variation of ρE,N and ρ̃E,N (see [32, Proposition 5]). Thus, for all t ∈ [0, T ],

it holds

∥

∥

∥ρE,N(t) − ρ̃E,N(t)
∥

∥

∥

2

L1(R)

≤ meas(ΩT )
[

TV
(

ρE,N(0);R
)

+ TV
(

ρ̃E,N(0);R
)]

√

∥

∥

∥FN − F̃N
∥

∥

∥

L1(R)
.

By taking the supremum in time, the Ąrst part of the proposition holds.

Step 2. We assume that (V2) holds. Fix δ > 0. Due to Lemma 1.1.1 we know that

sup
t≥δ

[

TV
(

ρE,N(t);R
)

+ TV
(

ρ̃E,N(t);R
)]

is uniformly bounded with respect to N for an arbitrary δ > 0, see [31,

Proposition 3.3] or [32, Proposition 6]. Thus, for all t ∈ [δ, T ], it holds

∥

∥

∥ρE,N(t) − ρ̃E,N(t)
∥

∥

∥

2

L1(R)

≤ meas(ΩT )



sup
t≥δ

TV
(

ρE,N(t);R
)

+ sup
t≥δ

TV
(

ρ̃E,N(t);R
)

]

√

∥

∥

∥FN − F̃N
∥

∥

∥

L1(R)
.

By taking the supremum in time in the interval [δ, T ], the second part of
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the proposition holds.

We are now ready to prove the main result of this section.

Proof of Theorem 1.0.2. To ease notation, denote

FN := FρE,N , F̃N := Fρ̃E,N .

The proof is based on the concatenation of the above propositions. Notice

that the Ąrst part of the theorem is proved by Proposition 1.4.1 and Proposition

1.4.2. Indeed, applying Proposition 1.4.1 for t = 0, it holds

W1(ρ
E,N(0), ρ̃E,N(0)) ≤ 2

N−1
∑

j=0

♣xj+1(0) − xj(0) − (x̃j+1(0) − x̃j(0))♣. (1.4.4)

Therefore, if it holds

lim
N→+∞

N−1
∑

j=0

♣xj+1(0) − xj(0) − (x̃j+1(0) − x̃j(0))♣ = 0,

then, by (1.4.4) and Proposition 1.4.2, for all T > 0 it holds

lim
N→+∞

sup
t∈[0,T ]

W1(ρ
E,N(t), ρ̃E,N(t)) = 0

and thus the Ąrst part of the theorem is proved. Now Proposition 1.4.3 shows

that as a conssequence, recalling DeĄnition (A.2.2), also the second part of the

theorem holds.



Chapter 2:

First-order cooperative systems un-

der persistent excitation

Studying the self-organization and emergence of patterns derived from col-

lective dynamics has gained signiĄcant prominence in applied mathematics. In

particular, an increasing body of research has focused on achieving a detailed

mathematical comprehension of multi-agent systems, where the goal is to un-

derstand the underlying mechanisms that drive the emergence of consensus. In

simple terms, consensus means that all agents arrive to an agreement, as for in-

stance arriving to a unanimous vote in elections or forming a unanimous opinion

on a subject. Applications of such models are found in a wide variety of Ąelds,

such as in aviation, robotics, social sciences, Ąnance and biology [6, 9, 23, 40, 41,

61, 65].

First-order cooperative models are of the following form:

ẋi(t) =
λi

N

N
∑

j=1

ϕ(xi(t), xj(t)) · (xj(t) − xi(t)) i ∈ ¶1, . . . , N♢ (2.0.1)

Here, we consider the evolution of N ≥ 2 agents identiĄed as points in a conĄg-

uration space, in our case the Euclidean space R
d. The position xi(t) ∈ R

d may

represent opinion, velocity or other attributes of agent i at time t. The (nonlin-

ear) inĆuence function ϕ(xi(t), xj(t)) is used to quantify the inĆuence of agent j

on agent i, where i, j ∈ ¶1, . . . , N♢. The term λi is a scaling parameter. In the

classical case, the function ϕ(xi, xj) is symmetric and λi > 0, [30, 42]. The main

property that helps in the analysis of such a model is precisely the symmetry

of the inĆuence function with respect to i and j. Indeed, for general symmet-

ric inĆuence functions, the mean value is conserved. The system is cooperative

and if the inĆuence function is uniformly bounded in time from below by some

45
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strictly positive constant, we then have that the dynamics converges to the initial

mean state. Such a symmetry in the inĆuence function allows the use of spectral

analysis and l2−based arguments to study the variance of the system.

However, such a model presents the drawback that the dynamics of an agent

is inĆuenced by the weight of all agents. Indeed, when considering such a scaling,

the internal dynamics of a small group of agents located far away from a much

larger group of agents is negligible. As proposed in [46], a more realistic model

has a different weighting procedure setting

λi =
N

∑N
l=1 ϕ(xi, xl)

.

The main feature now is that the inĆuence of agent j on agent i is weighted by

the total inĆuence
∑N

l=1 ϕ(xi, xl) applied to agent i. However, even in the case

where ϕ(xi, xl) is symmetric the resulting model becomes nonsymmetric due to

such scaling, and we cannot therefore rely on standard variance-based strategies

developed in the case of symmetric models. Instead of relying then on L2 theory

and thus studying the variance

B(x, x) :=
1

2N

N
∑

i,j=1

♣♣xi − xj♣♣2

one may opt to consider the L∞ theory and thus study the evolution of the

diameter, which is deĄned as

dX := max
i,j∈¶1,...,N♢

♣xi − xj♣ (2.0.2)

where X = ¶xi♢i∈¶1,...,N♢.

In any case, from the modelling point of view in both of these types of mod-

els, each agent is expected to communicate with its neighbors through a net-

work topology inĆuenced by sensor characteristics and the environment. While

the easiest scenario involves a Ąxed network topology over time (e.g. [51, 64]),

practical situations often involve dynamic changes, due to factors like commu-

nication dropouts, security concerns, or intermittent actuation. As a result, the

time-varying network topology gives rise to potential connection losses between

agents, hindering the attainment of consensus. Therefore, when interactions be-

tween agents are subject to failure, it becomes crucial to investigate whether

consensus can still be achieved or not. In order to consider such scenarios we
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then consider models of the following form:

ẋi(t) =
λ

N

N
∑

j=1

Mij(t)ϕ(xi(t), xj(t)) · (xj(t) − xi(t)) i ∈ ¶1, . . . , N♢

where now the terms Mij : R+ → R+ represent the weight given to the inĆuence of

agent j on agent i. They encode the time-varying network topology and account

for potential communication failures that can occur in the system (e.g., when

they vanish). In order to quantify these possible lack of interactions, we recur to

the condition of persistent excitation (PE from now on):

DeĄnition 2.0.1 (Persistent excitation). Consider a function M ∈ L∞(R+;R+).

Let T, µ > 0 be given. We say that the function M(·) satisĄes the PE condition

with parameters µ, T if it holds

∫ t+T

t
M(s) ds ≥ µ ∀t ≥ 0. (PE)

We further deĄne the space of functions M ∈ L∞([0,+∞); [0, 1]) satisfying

such a condition as

MT,µ :=

{

M ∈ L∞([0,+∞); [0, 1]) s.t.
∫ t+T

t
M(s) ds ≥ µ ∀t ∈ [0,+∞)

}

.

(2.0.3)

Imposing the PE condition on a function M ∈ MT,µ means that such a

function is not too weak on any given time interval of length T . In both this

chapter and in the next one we give results where we impose the PE condition

on the scrambling coefficient (see e.g. [58]) of MN := ¶Mij♢i,j∈¶1,...,N♢, deĄned as

follows

η(MN) := min
i,j∈¶1,...,N♢

1

N

N
∑

k=1

min¶Mik,Mjk♢. (2.0.4)

By letting Mii > 0 for all i ∈ ¶1, . . . , N♢ we get the following interpretation of

the scrambling coefficient: the scrambling coefficient is positive if and only if for

every i, j ∈ ¶1, . . . , N♢ either i and j are interacting with each other or if they

are both following a third agent k ∈ ¶1, . . . , N♢ \ ¶i, j♢.

This chapter is structured as follows. In Section 2.1 we present the class of

Ąnite-dimensional models that we consider and prove that consensus is reached

under suitable PE conditions related to the weight kernels. Then, in Section 2.2
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we consider the inĄnite dimensional setting in the classical mean-Ąeld limit and

prove that consensus is reached using the results from the previous section, and

then cite the result in [11] showing that consensus is reached also in the graph

limit.

2.1 Consensus in the Ąnite-dimensional parti-

cles system

In this section we Ąrst present the class of models we treat and then provide two

main results. In Theorem 2.1.1 we prove that we have exponential consensus

if we impose the PE condition on the scrambling coefficient of ¶Mij♢i,j∈¶1,...,N♢

as deĄned by (2.0.4). In Theorem 2.1.2 we prove that we have consensus if we

impose the PE condition only on the weight kernels Mij without any condition

on the scrambling coefficient, and thus generalizing the previous result.

We consider the following Cauchy problem







ẋi(t) = λi

N

∑N
j=1 Mij(t)ϕij(t) · (xj(t) − xi(t)) t ≥ 0,

xi(0) = x̄i,
(2.1.1)

where x̄i ∈ R
n, where

ϕij := ϕ(♣xj − xi♣) ∀i, j ∈ ¶1, . . . , N♢

and where

λi :=











1 in the case where we consider equal weights

N
∑N

l=1
ϕil

in the case where we consider normalized weights
. (2.1.2)

We assume that the map ϕ(·) : R+ → R and Mij : R+ → [0, 1] satisfy the

following hypotheses:

(H1)
The function ϕ(·) : R+ → R is locally Lipschitz continuous, positive

and bounded from above by some ϕmax > 0.

(H2)
The weight kernels Mij : R+ → [0, 1] are L 1-measurable for all i, j ∈
¶1, . . . , N♢.

We deĄne the collection of solutions ¶xi♢N
i=1 where xi is the solution to system
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(2.1.1) for all i ∈ ¶1, . . . , N♢ as

X(t) := ¶xi(t)♢N
i=1 ∀t ≥ 0. (2.1.3)

We now deĄne the concept of consensus in the Ąrst-order model (2.1.1).

DeĄnition 2.1.1. Let X ∈ R
nN be a solution of system (2.1.1) and the cor-

responding diameter as deĄned in (2.0.2). We say that the system converges to

consensus if it holds

lim
t→+∞

dX(t) = 0. (2.1.4)

By recalling that dX(0) corresponds to the diameter as deĄned by (2.0.2), a

common assumption is given by:

(H3) For some ϕmin > 0, it holds ϕ(x) ≥ ϕmin > 0 for all x ∈ [0, dX(0)].

We now deĄne here for convenience some terms that are recurrently used in

the rest of the chapter. DeĄne

Kmax :=











ϕmax in the case where λi = 1

ϕmax

ϕmin
in the case where λi = N

∑N

l=1
ϕkl

(2.1.5)

and

Kmin :=











ϕmin in the case where λi = 1

ϕmin

ϕmax
in the case where λi = N

∑N

l=1
ϕil

. (2.1.6)

2.1.1 Consensus under PE condition on the scrambling

coefficient

In this section, we prove a similar theorem that has been proved in the con-

text of graphons in [11], with the PE applied to the scrambling coefficient of

¶Mij♢i,j∈¶1,...,N♢ as deĄned by (2.0.4). We follow the same methodology as in [11]

to prove a slightly more general result and provide a simpler way to conclude that

consensus holds. We then provide another strategy to conclude that consensus

holds by treating the Şworst case scenarioŤ, which is the main strategy followed

in the next chapter.
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Theorem 2.1.1. Let T, µ > 0 be given. Let X ∈ R
nN as deĄned by (2.1.3) be

a solution of system (2.1.1) with initial data X0 ∈ R
nN and the corresponding

diameter dX(·) deĄned by (2.0.2). Assume that the inĆuence function ϕ satisĄes

hypotheses (H1) and (H3). Assume that it holds

∫ t+T

t
η(MN(s))ds ≥ µ ∀t ≥ 0 (2.1.7)

where η(MN(·)) is deĄned by (2.0.4) and where ¶Mij♢i,j∈¶1,...,N♢ satisĄes (H2).

Then for system (2.1.1) it holds

dX(nT ) ≤ dX(0)e−n·Kminµ ∀n ∈ N

where Kmin is deĄned by (2.1.6). In particular, consensus in the sense of (2.1.4)

is reached.

Proof. The function

dX(t) = max
i,j∈¶1,...,N♢

♣xi − xj♣

is Lipschitz, because it is the pointwise maximum of a Ąnite family of Lipschitz

equicontinuous functions. By RademacherŠs theorem, it is differentiable almost

everywhere. By DankinŠs theorem (Theorem A.1.2) it thus holds

1

2

d

dt
d2

X(t) = max
i,j∈Π(t)

〈

d

dt
(xi(t) − xj(t)), xi(t) − xj(t)

〉

where Π(t) ∈ ¶1, . . . , N♢ × ¶1, . . . , N♢ represents the nonempty subset of pairs of

indices for which the maximum is reached. Fix arbitrary p, q ∈ Π(t). For easier

notation, from now on we hide the dependence on time. Notice that for the case

of system (2.1.1) with normalized weights it holds

〈

d

dt
(xp − xq), xp − xq

〉

= − 1
∑N

k=1 ϕpk

N
∑

j=1

Mpjϕpj ⟨xp − xj, xp − xq⟩

− 1
∑N

k=1 ϕqk

N
∑

j=1

Mqjϕqj ⟨xj − xq, xp − xq⟩ .

By Lemma A.1.2 it holds

⟨xp − xj, xp − xq⟩ ≥ 0 and ⟨xj − xq, xp − xq⟩ ≥ 0 ∀j ∈ ¶1, . . . , N♢.
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Therefore, by (2.1.6) it holds

〈

d

dt
(xp − xq), xp − xq

〉

≤ −Kmin

N





N
∑

j=1

Mpj ⟨xp − xj, xp − xq⟩ +
N
∑

j=1

Mqj ⟨xj − xq, xp − xq⟩




= −Kmin

N





N
∑

j=1

[Mpj −Mqj] ⟨xp − xj, xp − xq⟩ +
N
∑

j=1

Mqj ⟨xp − xq, xp − xq⟩


 .

(2.1.8)

By adding and substracting Kmin

N

∑N
j=1 min ¶Mpj,Mqj♢ ⟨xj, xp − xq⟩, we get

〈

d

dt
(xp − xq), xp − xq

〉

≤ −Kmin

N

N
∑

j=1

Mpj ⟨xp, xp − xq⟩ +
Kmin

N

N
∑

j=1

Mqj ⟨xp, xp − xq⟩

+
Kmin

N

N
∑

j=1

[Mpj − min ¶Mpj,Mqj♢] ⟨xj, xp − xq⟩

+
Kmin

N

N
∑

j=1

[min ¶Mpj,Mqj♢ −Mqj] ⟨xj, xp − xq⟩

− Kmin

N

N
∑

j=1

Mqj ⟨xp − xq, xp − xq⟩ .

Now, notice that

N
∑

j=1

[Mpj − min ¶Mpj,Mqj♢] ⟨xj, xp − xq⟩ ≤
N
∑

j=1

[Mpj − min ¶Mpj,Mqj♢] max
j∈¶1,...,N♢

⟨xj, xp − xq⟩

and

N
∑

j=1

[min ¶Mpj,Mqj♢ −Mqj] ⟨xj, xp − xq⟩ ≤
N
∑

j=1

[min ¶Mpj,Mqj♢ −Mqj] min
j∈¶1,...,N♢

⟨xj, xp − xq⟩ .

By using Lemma A.1.2, we have

max
j∈¶1,...,N♢

⟨xj, xp − xq⟩ = ⟨xp, xp − xq⟩ , min
j∈¶1,...,N♢

⟨xj, xp − xq⟩ = ⟨xq, xp − xq⟩ .

(2.1.9)
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Therefore it holds

〈

d

dt
(xp − xq), xp − xq

〉

≤ −Kmin

N

N
∑

j=1

min ¶Mpj,Mqj♢ ⟨xp − xq, xp − xq⟩

≤ −Kmin

N
η(MN) ⟨xp − xq, xp − xq⟩

This is valid for every pair p, q ∈ Π(t) and therefore it holds

d

dt
d2

X(t) ≤ −2Kmin

N
η(MN)d2

X(t) ∀t ≥ 0.

We obtain therefore the following differential inequality

d

dt
dX(t) ≤ −Kmin

N
η(MN)dX(t) ∀t ≥ 0. (2.1.10)

Integrating in [0, T ] and using (2.1.7) gives

dX(T ) ≤ dX(0)e−Kmin

∫ T

0
η(MN (t))dt ≤ dX(0)e−Kminµ

Consider now any interval [nT, (n + 1)T ] for any n ∈ N and apply the same

estimates to get

dX(nT ) ≤ dX((n+ 1)T )e−Kminµ

and therefore

dX(nT ) ≤ dX(0)e−n·Kminµ → 0 as n → +∞. (2.1.11)

Remark 2.1.1. We note that the main difference between this proof and the ex-

isting proofs in the literature as in [47] lies in the fact that it does not require

the adjacency operator to be stochastic. We replace this requirement by using

Lemma A.1.2 in the one-dimensional setting in (2.1.9).

An alternative proof of Theorem 2.1.1 is to identify and treat the Şworst case

scenarioŤ, i.e. a speciĄc proĄle of the Mij which, informally, would make the

diameter decrease as less as possible. This approach is taken in Chapter 3 in

the of case of second-order models, but we include here the approach applied to

Ąrst-order models.
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The proĄle corresponding to such a scenario is given by M∗, which we now

deĄne. We then prove the result in Proposition 2.1.1.

DeĄnition 2.1.2. Let T, µ > 0 be given. DeĄne M∗ ∈ MT,µ such that for all

t ≥ 0 and for all n ∈ N it holds

M∗(t) =











0 t ∈ [(n− 1)T, nT − µ)

1 t ∈ [nT − µ, nT ).
(2.1.12)

DeĄnition 2.1.3. Let M ∈ MT,µ, where MT,µ is deĄned by (2.0.3). DeĄne

DM
X : R+ → R to be the solution of the following dynamical system:











d
dt

DM
X (t) = −KminM(t)DM

X (t)

DM
X (0) = d0

X

(2.1.13)

where Kmin is deĄned by (2.1.6).

Proposition 2.1.1. Let T, µ > 0 be given. Consider the space of functions MT,µ

deĄned by (2.0.3). Consider DM
X given by DeĄnition 2.1.3. Let M∗ ∈ MT,µ be

deĄned by (2.1.12). Then, it holds

sup
{

DM
X (t) ♣ M ∈ MT,µ and DM

X (0) = d0
X

}

= DM∗

X (t) ∀t ≥ 0.

Proof. We Ąrst consider t ∈ [0, T − µ]. Let M ∈ MT,µ be Ąxed. It holds

M(t) ≥ 0 = M∗(t).

By integration, it also holds

∫ t

0
M(s) ds ≥ 0 =

∫ t

0
M∗(s) ds.

We now consider t = T . Since M ∈ MT,µ, then it holds

∫ T

0
M(s)ds ≥ µ =

∫ T

0
M∗(s) ds.

Let Ąnally t ∈ [T − µ, T ]. Since M(t) ≤ 1, it holds

∫ t

0
M(s) ds =

∫ T

0
M(s) ds−

∫ T

t
M(s) ds ≥ µ− (T − t) =

∫ t

0
M∗(s) ds.
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Consider now any interval [nT, (n + 1)T ] for any n ∈ N and apply the same

estimates to prove

∫ t

jT
M(s) ds ≥

∫ t

jT
M∗(s) ds ∀t ∈ [nT, (n+ 1)T ].

By concatenation of such estimates, it holds

∫ t

0
M(s) ds ≥

∫ t

0
M∗(s) ds ∀t ≥ 0.

By integrating the linear (time-varying) system (2.1.13) and observing that

the function

x 7→ e−Kminx

is monotonically decreasing, we have

DM(t) = d0
Xe

−Kmin

∫ t

0
M(s) ds ≤ d0

Xe
−Kmin

∫ t

0
M∗(s) ds = dM∗

X (t).

Since this holds for arbitrary M ∈ MT,µ, then the result follows.

Alternative consensus proof to Theorem 2.1.1. By following the proof, we Ąnd

(2.1.10). We thus study the following system











d
dt
dX(t) ≤ −η(MN(t)) ·KmindX(t) ∀t ≥ 0

dX(0) = d0
X

where d0
X corresponds to the diameter of the initial data ¶x̄j♢j∈¶1,...,N♢. Now let

Dη
X be the solution to the following differential equation











d
dt

Dη
X(t) = −Kminη(MN(t))Dη

X(t) ∀t ≥ 0

dX(0) = d0
X

(2.1.14)

Notice that it holds

d

dt
(Dη

X(t) − dX(t)) ≥ −Kminη(MN(t)) (Dη
X(t) − dX(t)) ∀t ≥ 0.

and therefore by using GronwallŠs inequality it holds

Dη
X(t) − dX(t) ≥ (Dη

X(0) − dX(0)) e−Kmin

∫ t

0
η(MN (s))ds = 0 ∀t ≥ 0.
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Therefore,

dX(t) ≤ Dη
X(t) ∀t ≥ 0. (2.1.15)

By Proposition 2.1.1, we then have

dX(t) ≤ Dη
X(t) ≤ DM∗

X (t) ∀t ≥ 0.

We now compute DM∗

X (t). It satisĄes for j ∈ N

d

dt
DM∗

X (t) =











0 t ∈ [0, T − µ]

−KminDM∗

X (t) t ∈ [T − µ, T ]

with initial datum

DM∗

X (0) = d0
X .

It then satisĄes

DM∗

X (T ) = dX(0)e−Kminµ.

Then

dX(T ) ≤ dX(0)e−Kminµ.

By recalling that the diameter of cooperative systems is non-increasing, by in-

duction we have

dX(nT + T ) ≤ dX(nT ) ≤ dX(0)e−n·Kminµ.

Now, notice that by (2.1.10) it holds

d

dt
dX(t) ≤ 0 ∀t ≥ 0.

Then,

lim
t→+∞

dX(t) = 0.
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Remark 2.1.2. We emphasize that, although it is longer than the more direct

proof we have provided in Theorem 2.1.4, it shows to be an efficient way to deal

with second-order models. Indeed, as seen in the next chapter, it helps us in the

sense that we get an Şon/offŤ behavior, and thus restrict ourselves to perform

classical techniques of second-order models in the time intervals where we allow

full communication.

2.1.2 Consensus under PE condition on the weigths

In this section we present a result in one dimension where we impose a persistent

excitation condition solely on the kernel weights ¶Mij♢i,j∈¶1,...,N♢, unlike in the

previous theorem.

Theorem 2.1.2. Let T, µ > 0 be given and let N ∈ N. Let XN as deĄned

by (2.1.3) be a solution of system (2.1.1) with initial data XN,0 ∈ R
N . Assume

that the inĆuence function ϕ satisĄes hypotheses (H1) and (H3). Assume that

Mij ∈ MT,µ for all i, j ∈ ¶1, . . . , N♢, i.e.

∫ t+T

t
Mij(s)ds ≥ µ ∀i, j ∈ ¶1, . . . , N♢ (2.1.16)

where Mij satisĄes hypothesis (H2) for all i, j ∈ ¶1, . . . , N♢. Then, consensus in

the sense of (2.1.4) is reached.

Proof. In the rest of the proof the results are proved in the interval [0, T ]. Then

the same arguments follow when considering time intervals [nT, (n + 1)T ] for

n ∈ N. In all of these time intervals, the agents are labeled according to their

initial order at time t = nT such that

x1(nT ) ≤ x2(nT ) ≤ . . . ≤ xN(nT ) n ∈ N0 (2.1.17)

and we emphasize that such a label is maintained in the considered time interval

[nT, (n+ 1)T ], even though the order might change.

We now informally present the strategy of the proof, and we identify the

agents with their position on the conĄguration space R :

• In Step 1 we deĄne the agents ¶x̃L,n
j ♢j∈¶1,...,N♢ corresponding to the case

where agents go to the left towards x1(nT ) and ¶x̃R,n
j ♢j∈¶1,...,N♢ correspond-

ing to the case where agents go to the right towards xN(nT ). Both depend

on n as they are deĄned on each interval [nT, (n + 1)T ]. Informally, they
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correspond to the case where the agents forming the diameter x1 and xN

become Şfrozen leadersŤ.

• In Step 2 we show that the trajectory of agent xj is always between the

trajectory of x̃L,n
j and the trajectory of x̃R,n

j . Moreover, if initially at time

nT there is no consensus, then the trajectory is strictly bounded by x1(nT )

and xN(nT ), corresponding to the diameter at initial time nT .

• In Step 3 we show that consensus is reached by mainly using the fact that

trajectories were controlled in Step 2.

As it is used multiple times in the proof, notice that, given Kmax deĄned by

(2.1.5), Kmin deĄned by (2.1.6) and the condition Mij ≤ 1, it holds

Kmin

N

N
∑

j=1

Mij ≤ λk

N

N
∑

j=1

Mijϕij ≤ Kmax ∀i ∈ ¶1, . . . , N♢. (2.1.18)

Also, recall that by (2.1.10) it holds

d

dt
dX(t) ≤ 0 ∀t ≥ 0.

We now provide the complete proof.

Step 1 Let n ∈ N0. In this step we deĄne the agents ¶x̃L,n
i ♢i∈¶1,...,N♢ and ¶x̃R,n

i ♢i∈¶1,...,N♢

in each interval [nT, (n+ 1)T ] and then provide some maximum/minimum

principle results satisĄed by both solutions.

For t ∈ [nT, (n+ 1)T ], deĄne ¶x̃L,n
i ♢i∈¶1,...,N♢ solution to











˙̃xL,n
i (t) = Kmax(x1(nT ) − x̃L,n

i (t)),

x̃L,n
i (0) = xi(nT ).

i = 1, . . . , N (2.1.19)

and deĄne ¶x̃R,n
i ♢i∈¶1,...,N♢ solution to











˙̃xR,n
i (t) = Kmax(xN(nT ) − x̃R,n

i (t)),

x̃R,n
i (0) = xi(nT )

i = 1, . . . , N. (2.1.20)

where the initial data ¶xi(nT )♢i∈¶1,...,N♢ corresponds to the position of the
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original agents ¶xi(t)♢i∈¶1,...,N♢ at time t = nT . In particular, notice that

x̃L,n
1 (t) = x1(nT ) and x̃R,n

N (t) = xN(nT ) ∀t ∈ [nT, (n+ 1)T ].

(2.1.21)

In this step, we prove that their orders are maintained in the interval of

time [nT, (n+ 1)T ], i.e. it holds











x̃L,n
1 (t) ≤ x̃L,n

2 (t) ≤ . . . ≤ x̃L,n
N (t)

x̃R,n
1 (t) ≤ x̃R,n

2 (t) ≤ . . . ≤ x̃R,n
N (t)

∀t ∈ [nT, (n+ 1)T ]. (2.1.22)

Furthermore, we prove the following results:

i) for all i ∈ ¶1, . . . , N♢ it holds for all t ∈ [nT, (n+ 1)T ]

x1(nT ) ≤ x̃L,n
i (t) ≤ xN(nT ) ∈ [nT, (n+ 1)T ] (2.1.23)

ii) for all i ∈ ¶1, . . . , N♢ it holds for all t ∈ [nT, (n+ 1)T ]

x̃L,n
i (t) ≥ x̃L,n

i ((n+ 1)T ) and x̃R,n
i (t) ≤ x̃R,n

i ((n+ 1)T ). (2.1.24)

Without loss of generality due to the relabeling process (2.1.17), we focus

on the time interval [0, T ]. Notice that for all k ∈ ¶1, . . . , N − 1♢ we have

that for t ∈ [0, T ] it holds

d

dt

(

x̃L,0
k+1(t) − x̃L,0

k (t)
)

= Kmax(x̄1 − x̃L,0
k+1(t)) −Kmax(x̄1 − x̃L,0

k (t))

= −Kmax(x̃L,0
k+1(t) − x̃L,n

0 (t)).

By GronwallŠs inequality it thus holds for all t ∈ [0, T ]

x̃L,0
k+1(t) − x̃L,0

k (t) = (x̄k+1 − x̄k)e−Kmaxt ∀k ∈ ¶1, . . . , N − 1♢

and by the initial ordering (2.1.17) it holds

x̃L,0
1 (t) ≤ x̃L,0

2 (t) ≤ . . . ≤ x̃L,0
N (t) ∀t ∈ [0, T ] (2.1.25)

and we have thus proved the Ąrst part in (2.1.22). The second part is
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completely equivalent. Now notice that for all i ∈ ¶1, . . . , N♢ it holds

d

dt

(

x̃L,0
i (t) − x̄1

)

= −Kmax(x̃L,0
i (t) − x̄1) (2.1.26)

and therefore by GronwallŠs inequality and by (2.1.17) it holds

x̃L,0
i (t) − x̄1 = (x̄i − x̄1)e

−Kmaxt ≥ 0 ∀i ∈ ¶1, . . . , N♢ (2.1.27)

and thus proving the Ąrst inequality in (2.1.23). The second inequality is

completely equivalent. Now, notice therefore that by (2.1.23) it holds

d

dt
x̃L,0

i (t) ≤ 0 ∀t ∈ [0, T ] ∀i ∈ ¶1, . . . , N♢

which implies that

x̃L,0
i (t) ≥ x̃L,0

i (T ) ∀i ∈ ¶1, . . . , N♢

and we have thus proved the Ąrst part of (2.1.24). The second inequality is

completely equivalent.

Step 2 Let n ∈ N0. In this step we prove that for all i ∈ ¶1, . . . , N♢ it holds

x̃L,n
i (t) ≤ xi(t) ≤ x̃R,n

i (t) ∀t ∈ [nT, (n+ 1)T ]. (2.1.28)

Without loss of generality due to the relabeling process (2.1.17), we restrict

ourselves to the time interval [0, T ]. Before proceeding to the proof of the

statement above, we recall that by the dissipative property of the original

solution ¶xi♢i∈¶1,...,N♢ it holds

x̄1 ≤ xi(t) ≤ x̄N ∀t ∈ [0, T ] ∀i ∈ ¶1, . . . , N♢. (2.1.29)

We now prove that it holds

x̃L,0
i (t) ≤ xi(t) ∀t ∈ [0, T ] ∀i ∈ ¶1, . . . , N♢. (2.1.30)

We have that

d

dt

(

xi(t) − x̃L,0
i (t)

)

=
λi

N

N
∑

j=1

Mij(t)ϕij(t)(xj(t) − xi(t)) −Kmax(x̄1 − x̃L,0
i (t)).
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By using (2.1.18) and (2.1.29) then for all i ∈ ¶1, . . . , N♢ and for t ∈ [0, T ]

it holds

d

dt

(

xi(t) − x̃L,0
i (t)

)

=
λi

N

N
∑

j=1

Mij(t)ϕij(t)(xj(t) − x̄1) +





λi

N

N
∑

j=1

Mij(t)ϕij(t)



 (x̄1 − xi(t))

−Kmax(x̄1 − x̃L,0
i (t))

≥ 0 +Kmax(x̄1 − xi(t)) −Kmax(x̄1 − x̃L,0
i (t))

= −Kmax(xi(t) − x̃L,0
i (t)).

(2.1.31)

By GronwallŠs inequality it thus holds

xi(t) − x̃L,0
i (t) ≥ (x̄i − x̃L,0

i (0))e−Kmaxt = 0 ∀t ∈ [0, T ] ∀i ∈ ¶1, . . . , N♢.

The Ąrst inequality in (2.1.30) is proved. The proof of the second inequality

is completely equivalent.

Step 3 In this step, we show that it holds

lim
t→+∞

dX(t) = 0. (2.1.32)

Observe that the set of permutations of N indices is Ąnite while the set of

discrete times ¶Tn♢n∈N is inĄnite. Therefore, we can choose a subsequence,

which we we still denote by ¶Tn♢n∈N such that Tn+1 ≥ Tn +T for all n ∈ N,

and reorder the indices only once such that

x1(Tn) ≤ x2(Tn) ≤ . . . ≤ xN(Tn) ∀n ∈ N. (2.1.33)

From now on, we only treat such a subsequence. Notice that by the contrac-

tiviy property of the support, we have that xi(t) is bounded both from above

and below for all i ∈ ¶1, . . . , N♢. Therefore, for all i ∈ ¶1, . . . , N♢, there

exists x∗
i ∈ [x̄1, x̄N ] such that by choosing again a subsequence ¶Tn♢n∈N that

we do not relabel, it holds

lim
n→+∞

xi(Tn) = x∗
i ∀i ∈ ¶1, . . . , N♢. (2.1.34)
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We furthermore have that

x∗
1 ≤ x∗

2 ≤ . . . ≤ x∗
N , (2.1.35)

due to the ordering at the discrete times ¶Tn♢n∈N given by (2.1.33).

Consider the time intervals [Tn, Tn + T ], n ∈ N. Notice that for an inĄnite

number of indices n ∈ N we have that

i) either x1(Tn + T ) < x̃L,n
2 (Tn + T )

ii) or x1(Tn + T ) ≥ x̃L,n
2 (Tn + T ).

By choosing a further subsequence, still denoted by ¶Tn♢n∈N, we now con-

sider the following two cases:

i) either x1(Tn + T ) < x̃L,n
2 (Tn + T ) for all n ∈ N

ii) or x1(Tn + T ) ≥ x̃L,n
2 (Tn + T ) for all n ∈ N

and in particular notice that at least one of them holds.

Step 3.1 Consider the time interval [Tn, Tn+T ]. Assume that condition i) holds,

i.e.

x1(Tn + T ) < x̃L,n
2 (Tn + T ) ∀n ∈ N. (2.1.36)

The goal is to prove that (2.1.32) holds. We have two cases.

Step 3.1.1 The Ąrst case corresponds to x∗
N = x∗

1. Then, by construction it

holds

lim
n→+∞

dX(Tn) = lim
n→+∞

xN(Tn) − x1(Tn) = 0.

Since the function dX(·) is non-increasing, in this case (2.1.32)

holds.

Step 3.1.2 We now focus on the second case, that is x∗
N > x∗

1. By the choice of

the subsequence ¶Tn♢n∈N we have that for some k ∈ N sufficiently

big there exists ϵ > 0 such that it holds

x∗
N − x∗

1 > ϵ (2.1.37)
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and

xN(Tn) > x∗
N + ϵ, x1(Tn) < x∗

1 − ϵ ∀n ≥ k.

We now focus on the time interval [Tk, Tk + T ]. Observe that for

all t ∈ [Tk, Tk + T ] and for all j ∈ ¶2, . . . , N♢ it holds

x̃L,k
2 (Tk + T )

(2.1.22)
≤ x̃L,k

j (Tk + T )
(2.1.24)

≤ x̃L,k
j (t)

(2.1.28)
≤ xj(t)

and therefore by (2.1.36) it holds

x1(t) < xj(t) ∀t ∈ [Tk, Tk + T ] ∀j ∈ ¶2, . . . , N♢. (2.1.38)

Therefore, notice that in this case the order of x1(·) is conserved

in [Tk, Tk + T ]. Moreover, by the contractivity of the support and

by the chosen sequence ¶Tn♢n∈N, recalling that Tk+1 ≥ Tk + T , it

thus holds

x1(Tn) ≥ x1(Tn + T ) ∀n > k.

Since the support is non-decreasing in time, we therefore have that

x∗
1 ≥ x1(Tn)

and in particular it thus holds

x∗
1 ≥ x1(t) ∀t ∈ [Tk, Tk + T ]. (2.1.39)

By (2.1.24) and (2.1.28) we therefore have that for t ∈ [Tk, Tk +T ]

it holds

ẋ1 =
λ1

N

N
∑

j=2

M1j(t)ϕ1j(t)(xj(t) − x̃L,k
j (T ) + x̃L,k

j (T ) − x1(t))

≥ λ1

N

N
∑

j=2

M1j(t)ϕ1j(t)(x̃
L,k
j (T ) − x1(t) − x∗

1 + x∗
1 − x1(Tk) + x1(Tk))

=
λ1

N

N
∑

j=2

M1j(t)ϕ1j(t)[(x̃
L,k
j (T ) − x1(Tk)) − (x∗

1 − x1(Tk)) + (x∗
1 − x1(t))]

By (2.1.27) and (2.1.39) we thus have that for t ∈ [Tk, Tk + T ] it
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holds

ẋ1 ≥ Kmin

N

N
∑

j=2

M1j(t)[(xj(Tk) − x1(Tk))e−KmaxT − (x∗
1 − x1(Tk))]

By integrating in [Tk, Tk +T ] and using the PE condition (2.1.16)

and by recalling the bounds (2.1.18), it thus holds

x1(Tk + T )

≥ x1(Tk) −KmaxT (x∗
1 − x1(Tk)) +

Kminµe
−KmaxT

N

N
∑

j=2

(xj(Tk) − x1(Tk))

≥ x1(Tk) −KmaxT (x∗
1 − x1(Tk)) +

Kminµe
−KmaxT

N
(xN(Tk) − x1(Tk))

Notice that by the contractivity property of the support, it holds

xN(Tk) − x1(Tk) ≥ x∗
N − x∗

1. (2.1.40)

DeĄne

η1 :=
1

2
min

{

1

KmaxT

Kminµe
−KmaxT

N
,

ϵ

x∗
N − x∗

1

, 1

}

. (2.1.41)

By i), this implies that

x∗
1 − x1(Tn) ≤ η1(x

∗
N − x∗

1) ∀n ≥ k. (2.1.42)

We also deĄne

µmin :=
2η1KmaxTN

Kmine−KmaxT
.

By (2.1.40) and (2.1.42), it holds

x1(Tk + T ) ≥ x1(Tk) +



Kminµe
−KmaxT

N
−KmaxTη1

]

(x∗
N − x∗

1)

≥ x1(Tk) +
Kminµmine

−KmaxT

2N
(x∗

N − x∗
1)

where in the last inequality we have used the deĄnition of η1 in
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(2.1.41). Therefore, by using (2.1.37), it holds

x1(Tk) +
Kminµe

−KmaxT

2N
ϵ ≤ x1(Tk + T ) ≤ xi(Tk + T ) ∀i ∈ ¶2, . . . , N♢

where we used (2.1.38). By contractivity of the support, it thus

holds

xi(t) ≥ x1(Tk) +
Kminµe

−KmaxT

2N
ϵ ∀t ≥ Tk + T ∀i ∈ ¶1, . . . , N♢.

In particular, by considering our chosen subsequence and by re-

calling that Tn+1 ≥ Tn + T by construction, it thus holds

x1(Tn+1) ≥ x1(Tn) +
Kminµe

−KmaxT

2N
ϵ ∀n ≥ k

which by induction implies that

lim
n→+∞

x1(Tn) = +∞

which is a contradiction, and therefore (2.1.37) cannot hold. Thus

(2.1.32) holds.

Step 3.2 We now the second possibility. Assume that condition ii) hodlds, i.e.

x1(Tn + T ) ≥ x̃L,n
2 (Tn + T ) ∀n ∈ N. (2.1.43)

The goal is to prove that (2.1.32) holds. We prove it by contradiction.

In a Ąrst step, we prove that, if there is no consensus, then at least

two particles realize the minimum and two realize the maximum, at

the limit. In a second step, we prove that this raises a contradiction.

Step 3.2.1 Assume that the diameter does not converge to zero. We prove

that there exists indices j, k, l,m ∈ ¶1, . . . , N♢, labeled as 1, 2, N−
1, N , such that

lim
t→+∞

x1(t) = lim
t→+∞

x2(t) = lim
t→+∞

min
i∈¶1,...,N♢

¶xi(t)♢ (2.1.44)

and

lim
t→+∞

xN(t) = lim
t→+∞

xN−1(t) = lim
t→+∞

max
i∈¶1,...,N♢

¶xi(t)♢. (2.1.45)
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First of all, remark that the contractivity of the support implies

that the function ψ(t) := mini∈¶1,...,N♢¶xi(t)♢ is continuous, non-

decreasing and bounded from above. It therefore admits a Ąnite

limit. Notice that by the choice of the subsequence ¶Tn♢n∈N it

holds ψ(Tn) = x1(Tn), and therefore

lim
n→+∞

ψ(Tn) = x∗
1.

Therefore, to prove (2.1.44), we simply need to prove that

x∗
1 = x∗

2. (2.1.46)

Assume by contradiction that

x∗
1 < x∗

2. (2.1.47)

Then, by the choice of the subsequence ¶Tn♢n∈N we have that for

some k ∈ N sufficiently big there exists ϵ > 0 such that it holds

x1(Tk) ∈ [x∗
1 − ϵ, x∗

1 + ϵ], x2(Tk) ∈ [x∗
2 − ϵ, x∗

2 + ϵ] (2.1.48)

satisfying

x2(Tk) − x1(Tk) ≥ 4ϵ

e−KmaxT
. (2.1.49)

Now, by recalling (2.1.27), it holds

x̃L,k
2 (Tk + T ) = x1(Tk) + (x2(Tk) − x1(Tk))e−KmaxT .

By (2.1.48) and (2.1.49) it thus holds

x̃L,k
2 (Tk + T ) ≥ x∗

1 − ϵ+ (x∗
2 − ϵ− x∗

1 − ϵ)e−KmaxT

> x∗
1 − ϵ+ (x∗

2 − x∗
1)e

−KmaxT − 2ϵe−KmaxT

≥ x∗
1 − ϵ+ 4ϵ− 2ϵe−KmaxT

≥ x∗
1 + ϵ.
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By (2.1.43), it then holds

x1(Tk + T ) ≥ x̃L,k
2 (Tk + T ) ≥ x∗

1 + ϵ. (2.1.50)

Now notice that for all i ∈ ¶2, . . . , N♢ it holds

xi(Tk + T )
(2.1.28)

≥ x̃L,k
i (Tk + T )

(2.1.22)
≥ xL,k

2 (Tk + T ). (2.1.51)

Therefore, by (2.1.50) and (2.1.51) we thus have that

xi(Tk + T ) ≥ x∗
1 + ϵ ∀i ∈ ¶1, . . . , N♢.

By contraction of the support, we have that

xi(t) ≥ x∗
1 + ϵ ∀t ≥ Tk + T ∀i ∈ ¶1, . . . , N♢

and in particular, by considering our chosen subsequence, it thus

holds

x1(Tn) ≥ x∗
1 + ϵ ∀n ≥ k,

which implies

lim
n→+∞

x1(Tn) > x∗
1

which is a contradiction with (2.1.34). Therefore, (2.1.47) does not

hold and, by the ordering (2.1.35), it holds (2.1.46). The proof of

(2.1.45) follows the exact same argument.

Step 3.2.2 We now prove that (2.1.44), (2.1.45) implies x∗
N = x∗

1. By contra-

diction, and recalling that x∗
1 ≤ x∗

N by construction, assume that

there exists ϵ > 0 such that it holds

x∗
N − x∗

1 > ϵ. (2.1.52)

By eventually reducing ϵ > 0 and using (2.1.44), (2.1.45), there
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exists Tk > 0 such that for all t > Tk it holds

x1(Tk), x2(Tk) ∈ [x∗
1 − ϵ, x∗

1 + ϵ], xN(Tk), xN−1(Tk) ∈ [x∗
N − ϵ, x∗

N + ϵ].

(2.1.53)

We now follow the same lines of the argument presented to prove

(2.1.44).

For t ∈ [Tk, Tk + T ] we have that

ẋ1(t) =
λ1

N

N
∑

j=2

M1j(t)ϕ1j(t)(xj(t) − x1(t))

=
λ1

N

∑

¶j: xj(t)≤x1(t)♢

M1j(t)ϕ1j(t)(xj(t) − x1(t))

+
λ1

N

∑

¶j: xj(t)>x1(t)♢

M1j(t)ϕ1j(t)(xj(t) − x1(t)).

Therefore, by (2.1.53) we have that

x∗
1 + ϵ ≥ x1(t) ∀t ∈ [Tk, Tk + T ].

It holds

ẋ1(t) ≥ λ1

N

∑

¶j: xj(t)≤x1(t)♢

M1j(t)ϕ1j(t)(x1(Tk) − x∗
1 − ϵ)

+
λ1

N
M1N(t)ϕ1N(t)(xN(t) − x1(t))

+
λ1

N
M1(N−1)(t)ϕ1(N−1)(t)(xN−1(t) − x1(t)).

By recalling the bounds (2.1.18), it holds

ẋ1(t) ≥ Kmax(x1(Tk) − x∗
1 − ϵ)

+
Kmin

N
M1N(t)(xN(t) − x1(t))

+
Kmin

N
M1(N−1)(t)(xN−1(t) − x1(t)).
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By using (2.1.53), it therefore holds

ẋ1(t) ≥ −3ϵKmax +
Kmin

N
M1N(t)(x∗

N − x∗
1 − 2ϵ)

+
Kmin

N
M1(N−1)(t)(x

∗
N − x∗

1 − 2ϵ).

By integrating in [Tk, Tk +T ] and using the PE condition (2.1.16)

it then holds

x1(Tk + T ) ≥ x1(Tk) +
2µKmin

N
(x∗

N − x∗
1) − ϵ

(

3KmaxT +
µKmin

N
4
)

.

(2.1.54)

I now choose ϵ > 0 such that

2µKmin

N
(x∗

N − x∗
1) − ϵ

(

3KmaxT +
µKmin

N
4
)

> 2ϵ,

namely

ϵ <
2µKmin(x∗

N − x∗
1)

N
(

2 + 3KmaxT + µKmin

N
4
) .

It then holds by (2.1.54)

x1(Tk + T ) − x1(Tk) > 2ϵ

which is a contradiction with (2.1.53). Therefore, (2.1.52) cannot

hold and we thus have that (2.1.32) holds. This raises a contra-

diction with the fact that (2.1.32) does not hold, as required at

the beginning of Step 3.2.

We have then proved that each of the conditions i) and ii) ensure

lim
t→+∞

dX(t) = 0.

Remark 2.1.3. The main usefulness of the one-dimensional setting is that order

exists, which is not the case in the multi-dimensional setting. Notice that the

hypothesis of asking for the kernel weights to be persistently excited themselves

is weaker than imposing on the their scrambling coefficient. Indeed, at least in
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one dimension, we can then see that we can choose Mij such that the scrambling

coefficients are null but we still get to consensus. An even weaker hypothesis

would be to set the PE condition on the in-degree function:

∫ t+T

t

1

N

N
∑

j=1

Mij(s)ds ≥ µ ∀i ∈ ¶1, . . . , N♢. (2.1.55)

2.2 Consensus in inĄnite dimension

In this section we consider the inĄnite dimensional setting. We prove that con-

sensus holds also in the classical mean-Ąeld setting.

When considering the classical mean-Ąeld limit, we can only account for sys-

tems with dynamics which are invariant under permutations of the labels of the

agents. Indeed, it requires all particles to be indistinguishable since it describes

the population by its density. This means that a classical mean-Ąeld limit can

only make sense in the setting where

Mij(t) = M(t) ∀i, j ∈ ¶1, . . . , N♢ (2.2.1)

and we therefore consider the Ąnite particle systems







ẋi(t) = λi

N

∑N
j=1 M(t)ϕ(♣xj(t) − xi(t)♣) (xj(t) − xi(t)) t ≥ 0,

xi(0) = x0
i ,

(2.2.2)

where the inĆuence function ϕ satisĄes hypotheses (H1) and (H3), λi is deĄned

by (2.1.2) and M ∈ MT,µ, deĄned by (2.0.3). Notice that in this case we then

have the following theorem

Theorem 2.2.1. Let T, µ > 0 be given. Let X ∈ R
nN as deĄned by (2.1.3) be a

solution of system (2.2.2) with initial data X0 ∈ R
nN . DeĄne the diameter dX(·)

by (2.0.2). Assume that the inĆuence function ϕ satisĄes hypotheses (H1) and

(H3). Assume that M ∈ MT,µ where MT,µ is deĄned by (2.0.3). Then for system

(2.2.2) it holds

dX(nT ) ≤ dX(0)e−n·Kminµ ∀n ∈ N

where Kmin is deĄned by (2.1.6). In particular, consensus in the sense of (2.1.4)

is reached.
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Proof. Consider system (2.1.1). In the case where ¶Mij♢i,j∈¶1,...,N♢ satisĄes (2.2.1)

we have that it holds

1

N
min

i,j∈¶1,...,N♢

N
∑

k=1

min ¶Mik(s),Mjk(s)♢ = M(t)

and by using Theorem 2.1.1 the result follows by noticing that the solution of

(2.1.1) with ¶Mij♢i,j∈¶1,...,N♢ satisfying (2.2.1) is exactly the solution of (2.2.2).

We now consider the mean-Ąeld setting corresponding to (2.2.2). DeĄne the

diameter for a compactly supported measure ν ∈ P1(R
d) as

dX [ν] := diam(supp ν). (2.2.3)

Let M(Rd) be the set of probability measures on R
d. Then, the continuum

model corresponding to (2.2.2) is











∂tµt + ∇x (V [t, µt]µt) = 0 ∀x ∈ R
d, t > 0

µ0 = µ̄
(2.2.4)

where the initial datum µ̄ ∈ M(Rd). In the case we are treating the particle

system (2.2.2) with equal weights, i.e. λi constant, the non-local vector-Ąeld is

given by

V [t, µt](x) =
∫

Rd
M(t)ϕ(x, y)(y − x)dµt(y) ∀x ∈ R

d. (2.2.5)

In the case we are treating the particle system (2.2.2) with normalized weights,

i.e.

λi =
N

∑N
l=1 ϕ(xi, xl)

.

we deĄne the non-local vector Ąeld by

V [t, µt](x) :=

∫

Rd M(t)ϕ(x, y)(y − x)dµt(y)
∫

Rd ϕ(x, y)dµt(y)
∀x ∈ R

d. (2.2.6)

DeĄnition 2.2.1. Let T > 0. A measure µt ∈ C([0, T ]; M(Rd)) is a measure-

valued solution of (2.2.4) in the time interval [0, T ] with initial datum µ̄ ∈ M(Rd)
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if it holds for all ϕ ∈ C∞
c (Rd × T )

∫ T

0

∫

Rd
(∂tϕ+ V [t, µt](x) · ∇vϕ) dµt(v)dt+

∫

Rd
ϕ(v, 0)dµ̄(v) = 0. (2.2.7)

We now state an existence-uniqueness theorem and a stability theorem of

(2.2.4). Such theorems have been proved in [21] for the case M ≡ 1, i.e. full

communication between agents at all times. However, they still hold true in the

case where we have a uniform multiplicative persistently excited term as shown

in the next lemma, which is basically [21, Lemma 3.4] applied to our case.

Lemma 2.2.1. Let µt ∈ C([0, T ]; M(Rd)) have uniform compact support, i.e.

suppµt ⊂ Bd(0, R), ∀t ∈ [0, T ]

where Bd(0, R) stands for a d-dimensional ball centered at the origin with radius

R > 0. Let M ∈ MT,µ be given, where MT,µ is deĄned by (2.0.3). Then there

exists a constant K > 0 such that

♣V [t, µt](x) − V [t, µt](x̃)♣≤ K♣x− x̃♣

for all x, x̃ ∈ Bd(0, R) and for all t ∈ [0, T ]. Moreover, there exists a constant

C > 0 such that

♣V [t, µt](x)♣≤ C

for all x ∈ Bd(0, R) and for all t ∈ [0, T ].

Proof. For any x, x̃ ∈ Bd(0, R) and by recalling that M(·) ≤ 1, for the vector

Ąeld given by (2.2.5) it holds

♣V [t, µt](x) − V [t, µt](x̃)♣

=
∣

∣

∣

∣

∫

Rd
M(t)ϕ(x, y)(y − x)dµt(y) −

∫

Rd
M(t)ϕ(x, y)(y − x̃)dµt(y)

∣

∣

∣

∣

= ♣M(t)♣ ·
∣

∣

∣

∣

∫

Rd
ϕ(x, y)(y − x)dµt(y) −

∫

Rd
ϕ(x, y)(y − x̃)dµt(y)

∣

∣

∣

∣
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and for the vector Ąeld given by (2.2.6) it holds

♣V [t, µt](x) − V [t, µt](x̃)♣

=

∣

∣

∣

∣

∣

∫

Rd M(t)ϕ(x, y)(y − x)dµt(y)
∫

Rd ϕ(x, y)dµt(y)
−
∫

Rd M(t)ϕ(x̃, y)(y − x̃)dµt(y)
∫

Rd ϕ(x̃, y)dµt(y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

Rd ϕ(x, y)(y − x)dµt(y)
∫

Rd ϕ(x, y)dµt(y)
−
∫

Rd ϕ(x̃, y)(y − x̃)dµt(y)
∫

Rd ϕ(x̃, y)dµt(y)

∣

∣

∣

∣

∣

.

The rest of the computations follows exactly as in the proof of [21, Lemma 3.4].

By such a lemma and by [16, Theorem 3.10] we have local-in-time existence

and uniqueness of a measure-valued solution in the sense of (2.2.7). Furthermore,

this solution exists, given that it remains compactly supported in position, which

is what is proved in the next theorem, where the authors estimate the growth of

the support of µt in order to guarantee global-in-time existence and uniqueness.

Theorem 2.2.2 ([21, Theorem 3.5]). Consider the continuum model (2.2.4) with

µ̄ ∈ M(Rd) and suppose that there exists a constant R > 0 such that

supp µ̄ ⊂ Bd(0, R)

where Bd(0, R) stands for a d-dimensional ball centered at the origin with radius

R > 0. Then, there exists a unique measure-valued solution µt ∈ C([0,+∞); M(Rd))

of (2.2.4) in the sense of (2.2.7). Moreover, µt is uniformly compactly supported

and we have

µt = X(t; ·)#µ̄

where X(t; ·) is the Ćow generated by V [t, µt].

Theorem 2.2.3 ([21, Theorem 3.6]). Let µ1
t , µ

2
t ∈ C([0, T ]; M(Rd)) be two weak

solutions of (2.2.4) subject to uniformly compactly supported initial data µ̄1, µ̄2,

respectively. DeĄne

RT
i,X := max

0≤t≤T
max

x∈supp µt

♣x♣, i = 1, 2.

Then, there exists a constant C > 0, depending only on ϕ, T,RT
i,X , such that

Wp(µ1
t , µ

2
t ) ≤ CWp(µ̄1, µ̄2) ∀t ∈ [0, T ], ∀p ∈ [1,+∞].
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This stability result provides a rigorous passage from the particle system

(2.2.2) to (2.2.4), where the nonlocal vector Ąeld is given by (2.2.5) or (2.2.6),

depending on the choice of the weighting procedure.

Notice that the result of Theorem 2.1.1 is independent of N , and is valid for

system (2.1.1). Then, by following the lines of [21, Theorem 3.7] for the case of

no delay (τ = 0), we extend the result of [24, Theorem 4.1] by adding the case of

(2.2.6) and by considering the more general class of weight kernel M ∈ MT,µ:

Theorem 2.2.4. Let µt ∈ C([0, T ]; P1(R
d)) be a measure-valued solution to

(2.2.4) with compactly supported initial data µ̄ ∈ P1(R
d) with the vector Ąeld

V either given by (2.2.5) or (2.2.6). DeĄne dX [·] by (2.2.3). Assume that the

inĆuence function ϕ satisĄes hypotheses (H1) and (H3), for dX [µ̄]. It then holds

dX [µt] ≤ 2dX [µ̄]e−n·Kminµ ∀n ∈ N.

Proof. Let N ∈ N. DeĄne the family of N−particle approximations of µ̄, namely

¶µ̄N♢N deĄned as

µ̄N :=
1

N

N
∑

i=1

δ(x− x̄N
i )

where ¶x̄N
i ♢i∈¶1,...,N♢ are chosen such that

supp µ̄N ⊆ B(0, dX [µ̄]) ∀N ∈ N (2.2.8)

and

lim
N→+∞

Wp(µ̄, µ̄N) = 0. (2.2.9)

Now let ¶xN
i ♢i∈¶1,...,N♢, with xN

i ∈ R
d, denote the solution to the Ąnite dimen-

sional system (2.2.2) with initial condition ¶x̄N
i ♢i∈¶1,...,N♢. DeĄne

µN
t :=

1

N

N
∑

i=1

δ(x− xN
i (t)) ∀t ∈ [0, T ].

Then, we have that µN
t is a measure-valued solution to the kinetic model (2.2.4)

in the sense of (2.2.7). Now notice that if µt ∈ C([0, T ]; M(R)) is a weak solution

to (2.2.4) with initial datun µ̄, then according to Theorem 2.2.3 there exists a
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constant C > 0 independent of N such that

Wp(µN
t , µt) ≤ CWp(µ̄N , µ̄) ∀t ∈ [0, T ], ∀p ∈ [1,+∞].

Therefore, by (2.2.9) it holds

lim
N→+∞

Wp(µN
t , µt) = 0 ∀t ∈ [0, T ], ∀p ∈ [1,+∞]. (2.2.10)

DeĄne

dN
X(t) := diam(suppµN

t ) t ≥ 0

First, notice that by (2.2.8) we have that it holds

dN
X(0) = diam(supp µ̄N) ≤ 2dX [µ̄]. (2.2.11)

By using Theorem 2.2.1 and (2.2.11) we thus have that for all N ∈ N it holds

suppµN
t ⊂ B(0, dN

X(t)) ⊂ B(0, dN
X(0)e−n·Kminu) ⊆ B(0, dX [µ̄]e−n·Kminu). (2.2.12)

where we recall that dX(·) is deĄned by (2.0.2).

We have that (2.2.10) implies that µN
t → µt weakly-* as measures as N →

+∞ for all t ∈ [0, T ], i.e.

lim
N→+∞

∫

Rd
f(x)dµN

t (x) =
∫

Rd
f(x)dµt(x) ∀f ∈ Cc(R

d). (2.2.13)

We now prove that

suppµt ⊂ B(0, dX [µ̄]e−n·Kminu). (2.2.14)

First, observe (2.2.13). Take now X ⊂ R
d closed, on R

d \ B(0, dX [µ̄]e−n·Kminu)

and observe that (2.2.13) implies

lim
N→+∞

∫

Rd
f(x)dµN

t (x) =
∫

Rd
f(x)dµt(x) = 0 ∀f ∈ Cc(X).

This implies

suppµt ⊂ R
d \X.
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Since X is arbitrary, then (2.2.14) holds. Therefore, we have that

dX [µt] ≤ 2dX [µ̄]e−n·Kminµ ∀n ∈ N.

Another way of considering the mean-Ąeld limit model is by recurring to the

graph limit model, also known as graphon, as explained in [3, 11]. The main

difference between the classical mean-Ąeld model and the graphon model is the

indistinguishability property: in a graphon the agents still have a labeling given by

a generalized index i ∈ [0, 1] which allows to discriminate between agents, while in

the mean-Ąeld limit such a labeling is lost. Thus, when considering the mean-Ąeld

limit, there is an irreversible loss of information on the identiĄcation of agents.

In particular, this means that if the inĆuence function depends explicitely on

the agents labels, then we cannot use to the classical mean-Ąeld limit framework.

Also, there is a possibility to retrieve the classical mean-Ąeld limit from the graph-

limit (see [3, 53]).

In the rest of this chapter, we now present the graphon limit of system (2.1.1).

Consider the following piecewise-constant function

xN(t, i) :=
N
∑

k=1

χ[ k−1
N

, k
N )(i)xk(t) (2.2.15)

and

MN(t, i, j) :=
N
∑

k=1

N
∑

l=1

χ[ k−1
N

, k
N )(i)χ[ l−1

N
, l

N )(j)Mij(t) (2.2.16)

deĄned for i, j ∈ I where

I := [0, 1]. (2.2.17)

The following holds

Proposition 2.2.1 ([11, Proposition 2.8]). Let N ≥ 1 and X(t) be a solution

of (2.1.1). Then, the curve xN ∈ Liploc(R+, L
2(I,Rd)) deĄned by (2.2.15) is a

solution of the Cauchy problem







∂tx
N(t, i) =

∫

I M
N(t, i, j)ϕ

(∣

∣

∣xN(t, i) − xN(t, j)
∣

∣

∣

) (

xN(t, j) − xN(t, i)
)

dj,

xN(0, i) = x0(i),

(2.2.18)
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for almost every i ∈ I, where MN(t, i, j) is deĄned by (2.2.16).

Proof. See [11].

Remark 2.2.1. As noted in [11, Remark 2.9], every Ąnite-dimensional multi-agent

system of the form (2.1.1) can be recast in the context of graphons by using

(2.2.15) and (2.2.16). Therefore, every result in the context of graphons has an

equivalent formulation in the Ąnite-dimensional setting through these piecewise-

constant functions.

We can therefore consider (2.2.18) as an inĄnite-dimensional integro-differential

equation and thus consider the graphon model







∂tx(t, i) =
∫

I M(t, i, j)ϕ (♣x(t, i) − x(t, j)♣) (x(t, j) − x(t, i)) dj,

x(0) = x0.
(2.2.19)

Theorem 2.2.5 ([11, Proposition 2.10]). Let x0 ∈ L2(I,Rd) and assume that the

weight kernel M : R+ × I × I → [0, 1] is L 1 × L 1
⌞I × L 1

⌞I-measurable and the

inĆuence function ϕ satisĄes (H1), where L 1
⌞I stands for the Lebesgue measure

restricted to I. Then, there exists a unique solution x ∈ Liploc(R+, L
2(I,Rd)) to

the Cauchy problem (2.2.19). If it furthemore holds that x0 ∈ L∞(I,R) then it

holds

∥x(t)∥L∞(I) ≤
∥

∥

∥x0
∥

∥

∥

L∞(I)
∀t ≥ 0.

Just as in the Ąnite-dimensional settings, we have the notion of diameter.

DeĄnition 2.2.2. Let x ∈ Liploc(R+, L
2(I,Rd)) be solution of (2.2.19). DeĄne

the diameter as

DX(t) := ess supp
i,j∈I

♣x(t, i) − x(t, j)♣ t ≥ 0. (2.2.20)

We say that the system converges to consensus if it holds

lim
t→+∞

DX(t) = 0. (2.2.21)

We mention the following theorem which is mainly a result given by [11,

Theorem 3.3], and therefore only brieĆy describe the proof.

Theorem 2.2.6. Let T, µ > 0 be given. Let I be deĄned by (2.2.17). Let x ∈
Liploc(R+, L

2(I,Rd)) be the solution to (2.2.19) with equal weights with initial
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datum x0 ∈ L∞(I,Rd). DeĄne the diameter dX(·) by (2.2.20). Assume that the

inĆuence function ϕ satisĄes hypotheses (H1) and

ϕ(x) ≥ ϕmin > 0 ∀x ∈ [0, DX(0)] for some ϕmin > 0. (2.2.22)

Assume moreover that

∫ t+T

t
inf

i,j∈I

∫

I
min¶M(s, i, k),M(s, j, k)♢dk ds ≥ µ ∀t ≥ 0

where M(·, i, j) satisĄes (H2) for all i, j ∈ I. It holds

DX(nT ) ≤ DX(0)e−n·ϕminµ ∀n ∈ N

In particular, by sending n to +∞ we get consensus in the sense of (2.2.21).

Proof. As done in [11, Theorem 3.3], let x ∈ Liploc(R+, L
2(I,Rd)) be a solution

of (2.2.19) and Ąx ϵ > 0. By Scorza-DragoniŠs theorem, there exists a compact

set Iϵ ⊂ I with meas(I\Iϵ) < ϵ such that x : R+ × Iϵ → R is a continuous map.

Consider then the restricted diameter

Dϵ
X(t) = max

i,j∈Iϵ

♣x(t, i) − x(t, j)♣.

The function Dϵ
X(t) is Lipschitz. By RademacherŠs theorem it is differentiable

almost exerywhere and thus by DanskinŠs theorem (Theorem A.1.2) it holds

1

2

d

dt
D2

X(t) = max
i,j∈Πϵ(t)

〈

∂

∂t
(x(t, i) − x(t, j)), x(t, i) − x(t, j)

〉

where Πϵ(t) ∈ Iϵ × Iϵ represents the nonempty subset of indices for which the

maximum is reached. By using Lemma A.1.2, after some computations we arrive

to

d

dt
(Dϵ

X(t))2

≤ −2
(

inf
i,j∈I

∫

I
min¶M(s, i, k),M(s, j, k)♢dk

)

· ϕmin (Dϵ
X(t))2 + 6ϵϕmax (DX(0))2

and by using GronwallŠs lemma and Lemma A.1.1, we get the pointwise conver-

gence

Dϵ
X(t) → DX(t).
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By passing to the limit, it holds

DX(t) ≤ DX(0)e−ϕmin

∫ t

0
infi,j∈I

∫

I
min¶M(s,i,k),M(s,j,k)♢dkds.

As in Theorem 2.1.1, by Ąrst considering the time interval [0, T ] and then subse-

quently all the other time intervals [nT, (n+1)T ] for n ∈ N the estimate holds.

Remark 2.2.2. The added novelty of the proof lies in the use of the combina-

tion of Scorza-DragoniŠs theorem (Theorem A.1.1) and DanskinŠs theorem (The-

orem A.1.2), which allows to use in the graphon setting the tools of the Ąnite-

dimensional setting. We can also prove in an entirely similar way to Proposition

2.1.1 that the Şworst case scenarioŤ would correspond to setting for almost all i, j

M(t, i, j) = M∗

and then study this case.



Chapter 3:

Second-order cooperative systems

under persistent excitation

In the previous chapter we have addressed Ąrst-order models, where we were

interested in reaching consensus. However, in some cases the dynamics that are

exhibited are of second-order, in the sense that agents share further information

like ŞaccelarationŤ or any higher-order information. In these cases, we are there-

fore faced with a higher level of complexity. In second-order models, an agent

does not only look at the velocity of another agent, but also takes into account its

position. The goal now is to not only study consensus of the velocities, but also

to see whether we can achieve Ćocking. In simple terms, Ćocking means that all

agents arrive to a consensus in the velocity variable and remain Şnot too far away

from each otherŤ in the position. Similarly to Ąrst-order models, applications of

such models are found in a wide variety of Ąelds, such as in robotics [4, 6, 23,

62]. Interestingly enough, the Cucker-Smale model, which is one of the models

studied in this article, was originally intented to model language evolution, [25].

Second-order cooperative models are of the following form:











ẋi(t) = vi(t)

v̇i(t) = λi

N

∑N
j=1 ϕ(xi(t), xj(t)) · (vj(t) − vi(t))

i ∈ ¶1, . . . , N♢. (3.0.1)

Here, we consider the evolution of N ≥ 2 agents identiĄed as points in a con-

Ąguration space, in our case the Euclidean space R
2d. For each agent i we now

have that the pair (xi(t), vi(t)) ∈ R
2d represents at time t its position and velocity

in the phase space. The (nonlinear) inĆuence function ϕ(xi(t), xj(t)) is used to

quantify the inĆuence of agent j on agent i, where i, j ∈ ¶1, . . . , N♢ based on their

positions. The term λi is a scaling parameter. Just as in the previous chapter,

79
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we consider λi given by (2.1.2), that we recall here for convenience:

λi :=











1 in the case where we consider equal weights

N
∑N

l=1
ϕ(xi,xl)

in the case where we consider normalized weights
. (3.0.2)

In the case of the Cucker-Smale model [25], the inĆuence function was chosen as

ϕ(xi, xj) =
1

(1 + ♣xi − xj♣)β
β ≥ 0. (3.0.3)

In the case where λi = 1, then we recover the classical Cucker-Smale model.

A crucial property in the Cucker-Smale model is the symmetry of the inĆuence

function ϕ, i.e. ϕij = ϕji for all i, j ∈ ¶1, . . . , N♢. Analogously to the case of

Ąrst-order models, the average velocity is conserved. For β ∈ [0, 1] the Cucker-

Smale dynamics converges to the initial mean velocity just as in the case of

Ąrst-order models and moreover unconditional Ćocking holds, i.e. Ćocking holds

without any restriction on the initial data. For the case β > 1 we have instead

conditional Ćocking (see [35, Proposition 4.1, Proposition 4.3]). For a general

inĆuence function ϕ we have the following result:

Proposition 3.0.1 ([35]). Let ¶xi, vi♢i∈¶1,...,N♢ be a solution to (3.0.1) where ϕ is

a non-negative function. DeĄne

Γ(t) :=
N
∑

i,j=1

♣xi(t) − xj(t)♣2, Λ(t) :=
N
∑

i,j=1

♣vi(t) − vj(t)♣2.

If it holds

Λ(0) <
∫ +∞

Γ(0)
ϕ(x)dx

then Ćocking holds.

In the case where λi = N
∑N

l=1
ϕ(xi,xl)

we recover the Motsch-Tadmor model. It

came as a response to the drawback in the classical Cucker-Smale model regarding

the normalization of the interactions by the total number of agents N , which is in-

adequate for far-from-equilibrium scenarios, as explained in the previous chapter.

For this reason, in [46] the authors introduce the normalized weighting approach,

which was indeed originally intended for second-order models.

Just as in the previous chapter, we would like to study the case where we

might have communication failures between agents. Similarly, we impose a PE
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condition on the scrambling coefficient of MN := ¶Mij♢i,j∈¶1,...,N♢ as done in the

previous chapter, which deĄnition we recall here for convenience:

η(MN) := min
i,j∈¶1,...,N♢

1

N

N
∑

k=1

min¶Mik,Mjk♢. (3.0.4)

As one can expect, the added difficulty now is dealing with the higher complexity

of the model given by the intertwining of the position and velocity variables. We

thus study second-order models of the form











ẋi(t) = vi(t)

v̇i(t) = λ
N

∑N
j=1 Mij(t)ϕ(xi(t), xj(t)) · (vj(t) − vi(t))

i ∈ ¶1, . . . , N♢.

This chapter is organized as follows. In Section 3.1, we Ąrst present the

class of Ąnite-dimensional models we consider and then we show that we get

unconditional Ćocking for suitable conditions on the inĆuence function and PE

condition on the weight kernels as in Theorem 2.1.1. Then, in Section 2.2 we

consider the classical mean-Ąeld setting of a particular class of Ąnite-dimensional

models and show that Ćocking holds as well, under the same conditions as in the

case of Ąnite-dimensional models.

3.1 Flocking in the Ąnite-dimensional particles

system

In this section we Ąrst present the class of models we treat and then provide our

main results. In Proposition 3.1.2 we identify the Şworst case scenarioŤ, which we

then treat in Theorem 3.1.1 to show that unconditional Ćocking holds by imposing

the PE condition on the scrambling coefficient of ¶Mij♢i,j∈¶1,...,N♢ as deĄned by

(2.0.4), similarly as in case of Ąrst-order models.

We consider the following Cauchy problem























ẋi(t) = vi(t)

v̇i(t) = λi

N

∑N
j=1 Mij(t)ϕij(t) · (vj(t) − vi(t))

(xi(0), vi(0)) = (x̄i, v̄i)

i ∈ ¶1, . . . , N♢ (3.1.1)
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where (x̄i, v̄i) ∈ R
2d, where λi deĄned by (3.0.2) and where

ϕij(t) := ϕ(xi(t), xj(t)), ∀i, j ∈ ¶1, . . . , N♢ t ≥ 0

where ϕ(xi, xj) is deĄned by (3.0.3) for all i, j ∈ ¶1, . . . , N♢. Just as in the

case of Ąrst-order models, we assume that Mij satisĄes hypothesis (H2) for all

i, j ∈ ¶1, . . . , N♢.

We deĄne the collection of solutions ¶(xi, vi)♢N
i=1 where (xi, vi) is the solution

to system (3.1.1) for all i ∈ ¶1, . . . , N♢ as

(

XN(t), V N(t)
)

:= ¶xi(t), vi(t)♢N
i=1. (3.1.2)

We now deĄne the concept of diameter in the position and velocity variables,

respectively, as well as the concept of Ćocking.

DeĄnition 3.1.1. Let (XN(t), V N(t)) be a solution of system (3.1.1). DeĄne the

diameter in the position variable as

dX(t) := max
i,j∈¶1,...,N♢

♣xi(t) − xj(t)♣ t ≥ 0 (3.1.3)

and the diameter in the velocity variable as

dV (t) := max
i,j∈¶1,...,N♢

♣vi(t) − vj(t)♣ t ≥ 0. (3.1.4)

We say that the system converges to Ćocking if both conditions hold:

• supt∈[0,+∞) dX(t) < +∞,

• limt→+∞ dV (t) = 0.

We say that unconditional Ćocking holds if Ćocking holds without any restriction

on the initial data.

The goal of this section is to prove the following theorem.

Theorem 3.1.1. Let β ≥ 0 and T, µ > 0 be given. Let (XN(t), V N(t)) deĄned

by (3.1.2) be a solution of system (3.1.1), with ϕ given in (3.0.3), with the cor-

responding diameters dX(·) and dV (·) deĄned by (3.1.3) and (3.1.4), respectively.

Assume that

∫ t+T

t
η(MN(s))ds ≥ µ ∀t ≥ 0
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where η(MN(·)) is deĄned by (3.0.4) and where Mij satisĄes (H2) for all i, j ∈
¶1, . . . , N♢. If β ∈ [0, 1), it then holds

dX(nT ) ≤
[

(1 + 2dX(0))1−β + (1 − β) (K(dV (0), dX(0), T, µ))
]

1
1−β (3.1.5)

for all n ∈ N where

K(dV (0), dX(0), T, µ) := 2dV (0) + (T − µ)
2dV (0)

(1 + 2dX(0))β

+∞
∑

n=1

(

e
− µ

(1+dX (0)+dV (0)T )β

)n1−β

.

In particular, unconditional Ćocking occurs.

We now present two propositions, where the second one is analogous to Propo-

sition 2.1.1, which aims to show that indeed the Şworst case scenarioŤ corresponds

to the dynamics with kernel M∗ deĄned by (2.1.12). After presenting these two

propositions, we provide the proof of the theorem.

Proposition 3.1.1. Let
(

XN(t), V N(t)
)

as deĄned by (3.1.2) be a solution of

system (3.1.1). DeĄne the diameters dX(·) by (3.1.3) and dV (·) by (3.1.4). Let

Mij satisfy hypothesis (H2) for all i, j ∈ ¶1, . . . , N♢. Then for all t ≥ 0 it holds











d
dt
dX(t) ≤ dV (t)

d
dt
dV (t) ≤ −ϕ(dX(t))η(MN(t))dV (t)

(3.1.6)

where η(MN(·)) is deĄned by (3.0.4).

Proof. The functions

dV (t) = max
i,j∈¶1,...,N♢

♣vi(t) − vj(t)♣, dX(t) = max
i,j∈¶1,...,N♢

♣xi(t) − xj(t)♣

are Lipschitz, because they are the pointwise maximum of a Ąnite family of Lips-

chitz equicontinuous functions. By RademacherŠs theorem, they are differentiable

almost everywhere. By Theorem A.1.2 it thus holds

1

2

d

dt
d2

X(t) = max
i,j∈Πx(t)

〈

d

dt
(xi(t) − xj(t)), xi(t) − xj(t)

〉

and

1

2

d

dt
d2

V (t) = max
i,j∈Πv(t)

〈

d

dt
(vi(t) − vj(t)), vi(t) − vj(t)

〉
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where Πx(t) ∈ ¶1, . . . , N♢ × ¶1, . . . , N♢ and Πv(t) ∈ ¶1, . . . , N♢ × ¶1, . . . , N♢
represent the nonempty subset of pairs of indices for which the maximum is

reached in the position phase space and in the velocity phase space, respectively.

Let us Ąrst Ąnd the differential inequality for dX(·). Fix arbitrary px, qx ∈
Πx(t) and pv, qv ∈ Πv(t). It holds

〈

d

dt
(xpx

(t) − xqx
(t)), xpx

(t) − xqx
(t)

〉

= ⟨vpx
(t) − vqx

(t), xpx
(t) − xqx

(t)⟩

≤ ♣vpv
(t) − vqv

(t)♣ ♣xpx
(t) − xqx

(t)♣ .

This is valid for all px, qx ∈ Πx(t) and pv, qv ∈ Πv(t), and therefore

d

dt
d2

X(t) ≤ 2dV (t)dX(t)

which then implies

d

dt
dX(t) ≤ dV (t).

Let us now Ąnd the differential inequality for dV (·). By following the same

steps as in the proof of Theorem 2.1.1, Ąx arbitrary pv, qv ∈ Πv(t). For easier

notation, from now on we hide the dependence on time. Notice that for the case

of system (3.1.1) with normalized weights it holds

〈

d

dt
(xp − xq), xp − xq

〉

= − 1
∑N

k=1 ϕpk

N
∑

j=1

Mpjϕpj ⟨xp − xj, xp − xq⟩

− 1
∑N

k=1 ϕqk

N
∑

j=1

Mqjϕqj ⟨xj − xq, xp − xq⟩ .

By (3.0.3), it holds

1
∑N

k=1 ϕqk

≥ 1

N
.

Therefore, for both cases of equal and normalized weights it holds

〈

d

dt
(xp − xq), xp − xq

〉

≤ − 1

N





N
∑

j=1

Mpjϕpj ⟨xp − xj, xp − xq⟩ +
N
∑

j=1

Mqjϕqj ⟨xj − xq, xp − xq⟩


 .
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Notice that since ϕ(·) is monotone non-increasing, it holds

ϕ(♣xi(t) − xj(t)♣) ≥ ϕ(dX(t)) ∀i, j ∈ ¶1, . . . , N♢ ∀t ≥ 0

and therefore it holds
〈

d

dt
(xp − xq), xp − xq

〉

≤ −ϕ(dX(t))

N





N
∑

j=1

Mpj ⟨xp − xj, xp − xq⟩ +
N
∑

j=1

Mqj ⟨xj − xq, xp − xq⟩


 .

By doing the exact same computations as done in the proof of Theorem 2.1.1, it

holds

d

dt
dV (t) ≤ −ϕ(dX(t))η(MN(t))dV (t).

DeĄnition 3.1.2. Consider the space of functions MT,µ deĄned by (2.0.3), i.e.

MT,µ :=

{

M ∈ L∞([0,+∞); [0, 1]) s.t.
∫ t+T

t
M(s) ds ≥ µ ∀t ∈ [0,+∞)

}

.

Let M ∈ MT,µ. DeĄne (DM
X ,DM

V ) : R+ → R×R to be the solution of the following

dynamical system:























d
dt

DM
X (t) = DM

V (t)

d
dt

DM
V (t) = −M(t)ϕ(DM

X (t))DM
V (t)

(

DM
X (0),DM

V (0)
)

= (DX(0),DV (0))

(3.1.7)

where ϕ(·) is monotone non-increasing.

Proposition 3.1.2. Let T, µ > 0 be given. Consider the space of functions MT,µ

deĄned by (2.0.3). Consider (DM
X ,DM

V ) given by DeĄnition 3.1.2. Let M∗ be

deĄned by (2.1.12), i.e. for all t ≥ 0 and for all n ∈ N

M∗(t) =











0 t ∈ [(n− 1)T, nT − µ)

1 t ∈ [nT − µ, nT )
.
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Then, for all t ≥ 0 it holds

sup
{

DM
V (t) ♣ M ∈ MT,µ and DM

V (0) = d0
V

}

= DM∗

V (t) ∀t ≥ 0.

and

sup
{

DM
X (t) ♣ M ∈ MT,µ and DM

X (0) = d0
X

}

= DM∗

X (t) ∀t ≥ 0.

Proof. In the Ąrst step, we provide the Ąrst time discretization part, which rep-

resents the base case. In the second step, we Ąrst present the time discretization

process along with the recursive argument. The goal is to Ąrst show that it holds

DM∗

V (t) − DM
V (t) ≥ 0 ∀t ∈ [0, T ]

which actually implies, as proven later,

DM∗

X (t) − DM
X (t) ≥ 0 ∀t ∈ [0, T ].

In the third step we explain and handle the two possible cases that might arise

due to our discretization process. In the fourth step we then show the Ąnal result.

Notice that by (3.1.7), by GronwallŠs inequality we have that for all M ∈
MT,µ, and thus including M∗, it holds

DM
V (t) = DV (0)e−

∫ t

0
M(s)ϕ(DM

X
(s))ds > 0 ∀t ≥ 0.

Therefore, we have that for all M ∈ MT,µ, and thus including M∗, it holds

d

dt
DM

X (t) > 0,
d

dt
DM

V (t) < 0 ∀t ≥ 0.

Step 1 In this step we show the base case. For any M ∈ MT,µ, choose any η1

satisfying

max ¶0, µ− (T − µ)♢ ≤ η1 ≤ µ (3.1.8)

such that it holds

∫ T −µ

0
M(s) ≥ µ− η1,

∫ T

T −µ
M(s) ≥ η1. (3.1.9)

Observe that the bounds in (3.1.8) are derived from (3.1.9) by using the
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fact that M ∈ [0, 1].

In this step, we prove that it holds











DM
V (T − µ) ≤ DM∗

V (T − η1),

DM
X (t) ≤ DM∗

X (t) ∀t ∈ [0, T − η1].
(3.1.10)

We Ąrst focus on the interval [0, T − µ]. It holds

DM∗

X (t) − DM
X (t) = DV (0)t− DV (0)

∫ t

0
e−
∫ t

0
M(s)ϕ(DM

X
(s))dsdt ≥ 0 ∀t ∈ [0, T − µ]

and therefore

DM
X (t) ≤ DM∗

X (t) ∀t ∈ [0, T − µ]. (3.1.11)

Since DM∗

X is monotone increasing, it holds

DM∗

V (T − η1) = DV (0)e
−
∫ T −η1

T −µ
ϕ(DM∗

X
(s))ds ≥ DV (0)e−(µ−η1)ϕ(DM∗

X
(T −µ)).

On the other hand, since DM
X is monotone increasing, by (3.1.9) and (3.1.11)

it holds

DM
V (T − µ) = DV (0)e−

∫ T −µ

0
M(s)ϕ(DM

X
(s))ds ≤ DV (0)e−ϕ(DM∗

X
(T −µ))

∫ T −µ

0
M(s)ds

≤ DV (0)e−(µ−η1)ϕ(DM∗

X
(T −µ)).

Thus, we get that

DM
V (T − µ) ≤ DM∗

V (T − η1). (3.1.12)

We now study the difference between DM∗

X and DM∗

X in [T − µ, T − η1].

By recalling that both DM∗

V and DM
V are monotone decreasing, for t ∈
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[T − µ, T − η1] it holds

DM∗

X (t) − DM
X (t) = DM∗

X (T − µ) − DM
X (T − µ) +

∫ t

T −µ
DM∗

V (s) − DM
V (s)ds

≥ 0 +
(

DM∗

V (T − η1) − DM
V (T − u)

)

(t− (T − µ))

≥ 0

(3.1.13)

where we have used (3.1.11) and (3.1.12).

By merging (3.1.11), (3.1.12) and (3.1.13), we recover (3.1.10).

Notice that in particular it holds

DM
V (t) = DV (0)e−

∫ t

0
M(s)ϕ(DM

X
(s))ds ≤ DV (0) = DM∗

V (t) ∀t ∈ [0, T − µ].

and

DM
V (t) − DM∗

V (t) ≤ DM
V (T − µ) − DM∗

V (T − η1) ≤ 0 ∀t ∈ [T − µ, T − η1].

Therefore it holds

DM
V (t) ≤ DM∗

V (t) ∀t ∈ [0, T − η1].

Step 2 In this step, we show the recursive case. We now present the more general

decomposition of the time interval: let N ∈ N and choose any sequence

¶ηi♢N
i=1 such that























η1 := max ¶0, µ− (T − µ)♢
η2 := max ¶0, η1 − (µ− η1)♢
ηi+2 := max ¶0, ηi+1 − (ηi − ηi+1)♢ ∀i ∈ ¶1, . . . , N − 2♢.

(3.1.14)

First, set

∫ T −µ

0
M(s) ≥ µ− η1,

∫ T −η1

T −µ
M(s) ≥ η1 − η2. (3.1.15)

Second, set for i ∈ ¶1, . . . , N − 2♢
∫ T −ηi+1

T −ηi

M(s) ≥ ηi+1 − ηi+2 (3.1.16)
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and

∫ T

T −ηN−1

M(s) ≥ ηN .

In the next steps, we Ąrst prove that the sequence ¶ηi♢i∈N, then show the

recursive argument and Ąnally conclude with the result.

Step 2.1 In this step, we prove that

lim
i→+∞

ηi = 0. (3.1.17)

We Ąrst prove that there exists an i∗ ∈ N such that

ηi∗ = 0. (3.1.18)

By contradiction, assume that (3.1.18) does not hold. Then it holds

by induction























η1 = 2µ− T

η2 = 2η1 − µ = 2(µ− T ) − T

ηi+2 = (i+ 1)(µ− T ) − T ∀i ∈ N.

Since µ < T , it then holds

ηi → −∞

which is a contradiction with (3.1.14). Therefore, (3.1.18) holds. This

implies by construction that

ηi = 0 ∀i ≥ i∗

and thus proving (3.1.17).

Step 2.2 In this step, we present the recursive argument: assume that

ηi+1 < ηi ∀i ∈ ¶1, . . . , N♢.

Assume that

DM
X (T − ηi) ≤ DM∗

X (T − ηi) (3.1.19)
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and

DM
V (T − ηi−1) ≤ DM∗

V (T − ηi). (3.1.20)

We want to prove that it holds











DM
V (T − ηi) ≤ DM∗

V (T − ηi+1),

DM
X (t) ≤ DM∗

X (t) ∀t ∈ [T − ηi, T − ηi+1].
(3.1.21)

Since DM∗

X is monotone increasing, it holds

DM∗

V (T − ηi+1) = DM∗

V (T − ηi)e
−
∫ T −ηi+1

T −ηi
ϕ(DM∗

X
(s))ds

≥ DM∗

V (T − ηi)e
−(ηi−ηi+1)ϕ(DM∗

X
(T −ηi)).

On the other hand, since DM
X is monotone increasing and by (3.1.16)

it holds

DM
V (T − ηi) = DM

V (T − ηi−1)e
−
∫ T −ηi

T −ηi−1
M(s)ϕ(DM

X
(s))ds

≤ DM
V (T − ηi−1)e

−ϕ(DM
X

(T −ηi))
∫ T −ηi

T −ηi−1
M(s)ds

≤ DM
V (T − ηi−1)e

−(ηi−ηi+1)ϕ(DM
X

(T −ηi)).

Therefore, we have that it holds

DM∗

V (T − ηi+1) − DM
V (T − ηi)

≥ DM∗

V (T − ηi)e
−(ηi−ηi+1)ϕ(DM∗

X
(T −ηi)) − DM

V (T − ηi−1)e
−(ηi−ηi+1)ϕ(DM

X
(T −ηi))

= A1 + A2

where

A1 :=
(

e−(ηi−ηi+1)ϕ(DM∗

X
(T −ηi)) − e−(ηi−ηi+1)ϕ(DM

X
(T −ηi))

)

DM
V (T − ηi−1).

and

A2 :=
(

DM∗

V (T − ηi) − DM
V (T − ηi−1)

)

e−(ηi−ηi+1)ϕ(DM∗

X
(T −ηi)).
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By (3.1.19), it holds

e−(ηi−ηi+1)ϕ(DM
X

(T −ηi)) ≤ e−(ηi−ηi+1)ϕ(DM∗

X
(T −ηi))

which implies that A1 ≥ 0. By (3.1.20), we have that A2 ≥ 0. There-

fore, it holds

DM
V (T − ηi) ≤ DM∗

V (T − ηi+1). (3.1.22)

Just as before, we now study the difference between DM∗

X and DM
X in

[T − ηi, T − ηi+1]. For t ∈ [T − ηi, T − ηi+1] it holds

DM∗

X (t) − DM
X (t) = DM∗

X (T − ηi) − DM
X (T − ηi) +

∫ t

T −ηi

DM∗

V (s) − DM
V (s)ds

≥ 0 +
(

DM∗

V (T − ηi+1) − DM
V (T − ηi)

)

(t− (T − ηi))

≥ 0

(3.1.23)

where we have used (3.1.19) and (3.1.22). It therefore holds

DM
X (t) ≤ DM∗

X (t) ∀t ∈ [T − ηi, T − ηi+1]. (3.1.24)

By (3.1.22), (3.1.23) and (3.1.24) we recover (3.1.21). Note that by

deĄning

η0 := µ

we have already proved the base case of the recursive argument in

Step 1.

Step 2.3 In this step, we show the result.

We have proved in the previous step by recursion that if we consider

a sequence ¶ηi♢N
i=1 such that it holds

ηi+1 < ηi ∀i ∈ ¶1, . . . , N − 1♢

then it holds

DM∗

V (T − ηi+1) − DM
V (T − ηi) ≥ 0 ∀i ∈ ¶1, . . . , N − 1♢. (3.1.25)
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Therefore, for all t ∈ [T − ηi, T − ηi+1] and for all i ∈ ¶1, . . . , N♢ it

holds

DM∗

V (t) − DM
V (t) ≥ DM∗

V (T − ηi+1) − DM
V (T − ηi) ≥ 0

and by induction on the time intervals [T − ηi, T − ηi+1] it thus holds

DM∗

V (t) − DM
V (t) ≥ 0 ∀t ∈ [0, T − ηN ] (3.1.26)

which implies

DM∗

X (t) − DM
X (t) =

∫ t

0
DM∗

V (s) − DM
V (s)ds ≥ 0 ∀t ∈ [0, T − ηN ]

and therefore

DM∗

X (t) − DM
X (t) ≥ 0 ∀t ∈ [0, T − ηN ]. (3.1.27)

By (3.1.17), we have that

lim
N→+∞

ηN = 0.

Therefore, for all M ∈ MT,µ it holds

DM
X (t) < DM∗

X (t), DM
V (t) < DM∗

V (t) ∀t ∈ [0, T ].

Consider now the time intervals [nT, (n+ 1)T ] for n ∈ N. By applying

the same argument as done in [0, T ], we get

DM
X (t) < DM∗

X (t), DM
V (t) < DM∗

V (t) ∀t ∈ [nT, (n+ 1)T ] ∀n ∈ N.

Therefore, by induction it holds

DM
X (t) < DM∗

X (t), DM
V (t) < DM∗

V (t) ∀t ≥ 0

and thus the result follows.

We Ąrst state an easy proposition:
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Proposition 3.1.3. For an interval [0, T ] where T > 0, if

dV (t) < Dη
V (t) ∀t ∈ [0, T ]

then dX(0) < Dη
X(0) implies

dX(t) < Dη
X(t) ∀t ∈ [0, T ]. (3.1.28)

Proof. Indeed,

Dη
X(t) − dX(t) = Dη

X(0) − dX(0) +
∫ t

0
(Dη

V (s) − dV (s))ds > 0 + 0 ∀t ∈ [0, T ].

Proof of Theorem 3.1.1. In this proof we only focus on the case β ∈ (0, 1), since

the case β = 0 is trivial as it corresponds to the same setting as in the Ąrst-order

model where Kmin = 1.

Step 1. By Proposition 3.1.1, we study the following system























d
dt
dX(t) ≤ dV (t)

d
dt
dV (t) ≤ −ϕ(dX(t))η(MN(t))dV (t)

(dX(0), dV (0)) = (d0
X , d

0
V )

.

where (d0
X , d

0
V ) corresponds to the diameter of the initial data ¶(x̄i, v̄i)♢i∈¶1,...,N♢.

Let (Dη
X ,Dη

V ) be the solution of the following system























d
dt

Dη
X(t) = Dη

V (t)

d
dt

Dη
V (t) = −ϕ(Dη

X(t))η(MN(t))Dη
V (t)

(Dη
X(0),Dη

V (0)) = (2d0
X , 2d

0
V )

.

In this step, we prove that

dX(t) < Dη
X(t), dV (t) < Dη

V (t) ∀t ≥ 0. (3.1.29)
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Now, notice that it holds

d

dt
(Dη

V (t) − dV (t)) ≥ −η(MN(t)) [ϕ(Dη
X(t))Dη

V (t) − ϕ(dX(t))dV (t)] ∀t ≥ 0

(3.1.30)

Notice that in particular, by (3.1.30) applied at t = 0, we have that

d

dt
(Dη

V (t) − dV (t)) ♣t=0≥ −η(MN(t)) [ϕ(Dη
X(0))Dη

V (0) − ϕ(dX(0))dV (0)] > 0.

Therefore, by continuity of the solution, there exists a time T ∗ > 0 such

that

dV (t) < Dη
V (t) ∀t ∈ (0, T ∗] (3.1.31)

which implies

dX(t) < Dη
X(t) ∀t ∈ (0, T ∗]. (3.1.32)

We now prove (3.1.29). By contradiction, assume that (3.1.29) does not

hold, thus that there exists some time T > 0 such that

dX(T ) ≥ Dη
X(T ) or dV (T ) ≥ Dη

V (T ).

By Proposition 3.1.3, the Ąrst case implies that there exists a time T ′ ∈
[0, T ] such that dV (T ′) ≥ Dη

V (T ′). Then, with no loss of generality, we

assume that

dV (T ) ≥ Dη
V (T ).

By continuity of the solution, this implies that there exists a time t∗ ∈
[T ∗, T ] deĄned as

t∗ := inf¶t ∈ [T ∗, T ] s.t. dV (t) = Dη
V (t)♢.

By (3.1.3), (3.1.32) and by continuity, it holds

dX(t) < Dη
X(t) ∀t ∈ [0, t∗]
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It then holds

Dη
V (t∗) − dV (t∗) ≥ Dη

V (0)e−
∫ t∗

0
η(MN (s))ϕ(DX(s))ds − dV (0)e−

∫ t∗

0
η(MN (s))ϕ(dX(s))ds

= (Dη
V (0) − dV (0))e−

∫ t∗

0
η(MN (s))ϕ(DX(s))ds

+ dV (0)
[

e−
∫ t∗

0
η(MN (s))ϕ(DX(s))ds − e−

∫ t∗

0
η(MN (s))ϕ(dX(s))ds



> 0

which is a contradiction with the deĄnition of t∗. Therefore, (3.1.29) holds.

Step 2. By (3.1.29) and by Proposition 3.1.2, we then have

dX(t) ≤ Dη
X(t) ≤ DM∗

X (t), dV (t) ≤ Dη
V (t) ≤ DM∗

V (t) ∀t ≥ 0. (3.1.33)

where M∗ is deĄned by (2.1.12).

From now on, we focus on (DM∗

V (t),DM∗

V (t)).

In the rest of the proof we only prove that (3.1.1) holds. This implies

that (3.1.1) holds. Indeed, notice that if (3.1.1) holds, then by repeating

the same argument as in the proof of Theorem 2.1.1 one can prove that

consensus in the velocity variable holds.

Let Tn be deĄned by

Tn := nT ∀n ∈ N0.

In this step, we prove by induction that for all n ∈ N it holds

∫ DM∗

X
(Tn)

DM∗

X
(0)

1

(1 + r)β
dr ≤ DM∗

V (0) − DM∗

V (Tn) + (T − µ)
n−1
∑

k=0

DM∗

V (Tk)

(1 + DM∗

X (Tk))β
.

(3.1.34)

We start with the base case. Consider the time interval [0, T ]. Therefore,

if t ∈ [0, T − µ) then we have











d
dt

DM∗

X (t) = DM∗

V (t)

d
dt

DM∗

V (t) = 0
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with initial condition (DM∗

X (0),DM∗

V (0)). It then holds











DM∗

X (T − µ) = DM∗

X (0) + DM∗

V (0)(T − µ)

DM∗

V (T − µ) = DM∗

V (0).
(3.1.35)

If t ∈ [T − µ, T ) then we have











d
dt

DM∗

X (t) = DM∗

V (t)

d
dt

DM∗

V (t) = − 1
(1+DM∗

X
(t))β DM∗

V (t)

with initial condition (DM∗

X (T − µ),DM∗

V (T − µ)). The solution is given by

DM∗

V (T ) − DM∗

V (0) =
(1 + DM∗

X (T − µ))1−β

1 − β
− (1 + DM∗

X (T ))1−β

1 − β
.

By (3.1.35), it thus holds

(1 + DM∗

X (T ))1−β

1 − β
− (1 + DM∗

X (0) + DM∗

V (0)(T − µ))1−β

1 − β
= DM∗

V (0) − DM∗

V (T ).

(3.1.36)

Now notice that the left-hand side satisĄes

(1 + DM∗

X (T ))1−β

1 − β
− (1 + DM∗

X (0) + DM∗

V (0)(T − µ))1−β

1 − β

=
∫ DM∗

X
(T )

DM∗

X
(0)+DM∗

V
(0)(T −µ)

1

(1 + r)β
dr.

By (3.1.36), we have that

∫ DM∗

X
(T )

DM∗

X
(0)

1

(1 + r)β
dr = DM∗

V (T − µ) − DM∗

V (T ) +
∫ DM∗

X
(0)+DM∗

V
(0)(T −µ)

DM∗

X
(0)

1

(1 + r)β
dr

≤ DM∗

V (T − µ) − DM∗

V (T ) + (T − µ)
DM∗

V (0)

(1 + DM∗

X (0))β
.

We now proceed with the induction step. Consider now the time interval

[0, Tn] for n ≥ 2. Assume that

∫ DM∗

X
(Tn−1)

DM∗

X
(0)

1

(1 + r)β
dr ≤ DM∗

V (0) − DM∗

V (Tn−1) + (T − µ)
n−2
∑

k=0

DM∗

V (Tk)

(1 + DM∗

X (Tk))β
.

(3.1.37)
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The goal now is to prove that

∫ DM∗

X
(Tn)

DM∗

X
(0)

1

(1 + r)β
dr ≤ DM∗

V (0) − DM∗

V (Tn) + (T − µ)
n−1
∑

k=0

DM∗

V (Tk)

(1 + DM∗

X (Tk))β
.

By doing the same computations done in the time interval [T − µ, T ] but

now in [Tn − µ, Tn] we get

(1 + DM∗

X (Tn))1−β

1 − β
− (1 + DM∗

X (Tn−1) + DM∗

V (Tn−1)(T − µ))1−β

1 − β

= DM∗

V (Tn−1) − DM∗

V (Tn).

(3.1.38)

Now notice that

(1 + DM∗

X (Tn))1−β

1 − β
− (1 + DM∗

X (Tn−1) + DM∗

V (Tn−1)(T − µ))1−β

1 − β

=
∫ DM∗

X
(Tn)

DM∗

X
(Tn−1)+DM∗

V
(Tn−1)(T −µ)

1

(1 + r)β
dr.

and by recalling (3.1.38) it therefore holds

∫ DM∗

X
(Tn)

DM∗

X
(0)

1

(1 + r)β
dr

= DM∗

V (Tn−1) − DM∗

V (Tn) +
∫ DM∗

X
(Tn−1)

DM∗

X
(0)

1

(1 + r)β
dr

+
∫ DM∗

X
(Tn−1)DM∗

V
(Tn−1)(T −µ)

DM∗

X
(Tn−1)

1

(1 + r)β
dr

≤ DM∗

V (Tn−1) − DM∗

V (Tn) +
∫ DM∗

X
(Tn−1)

DM∗

X
(0)

1

(1 + r)β
dr + (T − µ)

DM∗

V (Tn−1)

(1 + DM∗

X (Tn−1))β

≤ DM∗

V (0) − DM∗

V (Tn) + (T − µ)
n−1
∑

k=0

DM∗

V (Tk)

(1 + DM∗

X (Tk))β

where in the last inequality we have used the induction step (3.1.37). There-

fore, by induction we have that (3.1.34) holds.

Step 3. In this step we prove that

+∞
∑

n=1

DM∗

V (Tn)

(1 + DM∗

X (Tn))β
≤ DM∗

V (0)

(1 + DM∗

X (0))β

+∞
∑

n=1

(

e
− µ

(1+DM∗

X
(0)+DM∗

V
(0)T )β

n1−β

.

(3.1.39)
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Let t ∈ [Tn − µ, Tn]. It holds

d

dt



DM∗

V (t)

(1 + DM∗

X (t))β

]

= − M(t)

(1 + DM∗

X (t))β

DM∗

V (t)

(1 + DM∗

X (t))β
− βd2

V (t)

(1 + DM∗

X (t))β+1

≤ − M(t)

(1 + DM∗

X (t))β

DM∗

V (t)

(1 + DM∗

X (t))β
.

For n = 1, i.e. at time t = T , and by recalling that DM∗

X is increasing, it

holds

DM∗

V (T )

(1 + DM∗

X (T ))β
≤ DM∗

V (0)

(1 + DM∗

X (0))β
e

− 1

(1+DM∗

X
(T ))β

∫ T

0
M(t)dt

≤ DM∗

V (0)

(1 + DM∗

X (0))β
e

− µ

(1+DM∗

X
(T ))β

.

For all n > 1, it similarly holds

DM∗

V (Tn)

(1 + DM∗

X (Tn))β
≤ DM∗

V (Tn − µ)

(1 + DM∗

X (Tn − µ))β
e

− µ

(1+DM∗

X
(Tn))β

.

Now since it holds for all n ∈ N

DM∗

V (Tn − µ) = DM∗

V (Tn−1) and DM∗

X (Tn−1) ≤ DM∗

X (Tn − µ)

then it holds for all n ∈ N

DM∗

V (Tn)

(1 + DM∗

X (Tn))β
≤ DM∗

V (Tn−1)

(1 + DM∗

X (Tn−1))β
e

− µ

(1+DM∗

X
(Tn))β

(3.1.40)

For n > 1, since it holds

DM∗

X (Tk) ≤ DM∗

X (Tn) ∀k ∈ ¶0, . . . , n− 1♢,

then, recalling (3.1.40), by iteration it holds

DM∗

V (Tn)

(1 + DM∗

X (Tn))β
≤ DM∗

V (0)

(1 + DM∗

X (0))β
e

− nµ

(1+DM∗

X
(Tn))β

.

Therefore, it holds

+∞
∑

n=1

DM∗

V (Tn)

(1 + DM∗

X (Tn))β
≤ DM∗

V (0)

(1 + DM∗

X (0))β

+∞
∑

n=1

e
− nµ

(1+DM∗

X
(Tn))β

.
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The goal now is to show that

+∞
∑

n=1

e
− nµ

(1+DM∗

X
(Tn))β ≤

+∞
∑

n=1

(

e
− µ

(1+DM∗

X
(0)+DM∗

V
(0)T )β

n1−β

. (3.1.41)

Notice that for all n ∈ N it holds

DM∗

X (Tn) ≤ DM∗

X (0) + nT · DM∗

V (0)

It thus holds for all n ∈ N

− nµ

(1 + DM∗

X (Tn))β
≤ − nµ

(1 + DM∗

X (0) + n · DM∗

V (0)T )β

≤ − µ

(1 + DM∗

X (0) + DM∗

V (0)T )β
· n1−β

and therefore it holds

+∞
∑

n=1

e
− nµ

(1+DM∗

X
(Tn))β ≤

+∞
∑

n=1

(

e
− µ

(1+DM∗

X
(0)+DM∗

V
(0)T )β

n1−β

thus proving (3.1.39).

Step 4. In this step we show the result. Now notice that by (3.1.34), for all n ∈ N

it holds

∫ DM∗

X
(Tn)

DM∗

X
(0)

1

(1 + r)β
dr ≤ DM∗

V (0) + (T − µ)
+∞
∑

k=0

DM∗

V (Tk)

(1 + DM∗

X (Tk))β
.

Therefore, it holds

(1 + DM∗

X (Tn))1−β

1 − β
≤ (1 + DM∗

X (0))1−β

1 − β
+ DM∗

V (0) + (T − µ)
+∞
∑

k=0

DM∗

V (Tk)

(1 + DM∗

X (Tk))β

and thus

DM∗

X (Tn) ≤


(1 + DM∗

X (0))1−β + (1 − β)

(

DM∗

V (0) + (T − µ)
+∞
∑

k=0

DM∗

V (Tk)

(1 + DM∗

X (Tk))β

]

1
1−β

.

By (3.1.33), it thus holds

dX(Tn) ≤


(1 + DM∗

X (0))1−β + (1 − β)

(

DM∗

V (0) + (T − µ)
+∞
∑

k=0

DM∗

V (Tk)

(1 + DM∗

X (Tk))β

]

1
1−β

.



100 Ch.3. Unconditional Ćocking in second-order cooperative systems under PE

Since (3.1.39) holds and by recalling that (DM∗

X (0),DM∗

V (0)) = (2dX(0), 2dV (0)),

we thus get (3.1.5). In particular, it holds

lim
n→+∞

dX(Tn)

≤


(1 + DM∗

X (0))1−β + (1 − β)

(

DM∗

V (0) + (T − µ)
+∞
∑

k=0

DM∗

V (Tk)

(1 + DM∗

X (Tk))β

]

1
1−β

and therefore we get unconditional Ćocking in the sense of (3.1.1).

Remark 3.1.1. The case β = 1 is more subtle. If we attempt to use the same

arguments as presented in the proof, then by following the same arguments we

get

∫ dX(Tn)

dX(0)

1

1 + r
dr ≤ dV (0) − dV (Tn) + (T − µ)

Tn
∑

k=0

dV (Tk)

1 + dX(Tk)

and again unconditional Ćocking would hold if the sum is Ąnite. In this special

case, notice that for t ∈ [Tk − µ, Tk] we get the following differential equation

d

dt



dV (t)

1 + dX(t)

]

= − dV (t)

(1 + dX(t))2
−
(

dV (t)

1 + dX(t)

2

One attempt to solve it would be to see that

d

dt



dV (t)

1 + dX(t)

]

= −
(

1

dV (t)
+ 1

(

dV (t)

1 + dX(t)

2

and by solving it in [Tk − µ, Tk] it holds

dV (Tk)

1 + dX(Tk)
=

1
1

dV (Tk−µ)

1+dX (Tk−µ)

+
∫ T

T −µ

(

1
dV (s)

+ 1
)

ds

and thus by recursion it holds

dV (Tk)

1 + dX(Tk)
=

1
1

dV (0)

1+dX (0)

+
∑k

j=1

∫ Tj

Tj−µ

(

1
dV (s)

+ 1
)

ds
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Therefore, if one can show for instance that there exists some α > 1 such that

k
∑

j=1

∫ Tj

Tj−µ

(

1

dV (s)
+ 1



ds ∼ kα

then we would get that the sum converges and thus unconditional Ćocking holds

as well.

3.2 Flocking in the mean-Ąeld model for a uni-

form PE

In this section we consider the inĄnite dimensional setting and prove that uncon-

ditional Ćocking holds also in the classical mean-Ąeld setting. Just as motivated

in the mean-Ąeld setting in the case of Ąrst-order models in Section 2.2, we now

consider the case such that it holds

Mij(t) = M(t) ∀i, j ∈ ¶1, . . . , N♢. (3.2.1)

Consider therefore the particle systems











ẋi(t) = vi(t)

v̇i(t) = λi

N

∑N
j=1 M(t)ϕij(t) · (vj(t) − vi(t))

i ∈ ¶1, . . . , N♢ (3.2.2)

where

ϕij(t) :=
1

(1 + ♣xi(t) − xj(t)♣)β
β ≥ 0, t ≥ 0.

and where M ∈ MT,µ.

Theorem 3.2.1. Let β ≥ 0 and T, µ > 0 be given. Let (XN(t), V N(t)) deĄned

by (3.1.2) be a solution of system (3.1.1). DeĄne the diameters dX(·) by (3.1.3)

and dV (·) by (3.1.4). Assume that M ∈ MT,µ where MT,µ is deĄned by (2.0.3).

If β ∈ [0, 1), it then holds

dX(nT ) ≤
[

(1 + dX(0))1−β + (1 − β) (K(dV (0), dX(0), T, µ))
]

1
1−β (3.2.3)
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for all n ∈ N where

K(dV (0), dX(0), T, µ) := dV (0) + (T − µ)
dV (0)

(1 + dX(0))β

+∞
∑

j=1

(

e
− µ

(1+dX (0)+dV (0)T )β

)n1−β

.

In particular, unconditional Ćocking occurs for β ∈ [0, 1).

Proof. Consider system (3.1.1). In the case where ¶Mij♢i,j∈¶1,...,N♢ satisĄes (3.2.1)

we have that it holds

1

N
min

i,j∈¶1,...,N♢

N
∑

k=1

min ¶Mik(s),Mjk(s)♢ = M(t)

and by using Theorem 3.1.1 the result follows by noticing that the solution of

(3.1.1) with ¶Mij♢i,j∈¶1,...,N♢ satisfying (3.2.1) is exactly the solution of (3.2.2).

In this section we consider Ćocking formation in the mean-Ąeld limit of such

particle systems.

DeĄne the diameter for a compactly supported measure ν ∈ P1(R
2d) as

dX [ν] := diam(suppx ν), dV [ν] := diam(suppv ν)

where suppx f and suppv f denote the x-projection and the v−projection, respec-

tively, of suppf .

Let M(Rd × R
d) be the set of probability measures on R

d × R
d. Then, the

continuum model corresponding to (3.2.2) and (3.2.2) is











∂tµt + v · ∇xµt + ∇v · (V [t, µt]µt) = 0, (x, v) ∈ R
d × R

d, t > 0

µ0 = µ̄

(3.2.4)

where the initial datum µ̄ ∈ M(Rd ×R
d). In the case we are treating the particle

system (3.1.1) with equal weights, i.e. λi constant, and the non-local vector-Ąeld

is given by

V [t, µt](x, v) =
∫

R2d
M(t)ϕ(♣x− y♣)(w − v)dµt(y, w) ∀(x, v) ∈ R

d × R
d.

(3.2.5)

In the case we are treating the particle system (3.1.1) with normalized weights,



3.2 Flocking in the mean-Ąeld model for a uniform PE 103

i.e.

λi =
N

∑N
l=1 ϕ(xi, xl)

.

we deĄne the non-local vector Ąeld

V [t, µt](x, v) =

∫

R2d M(t)ϕ(♣x− y♣)(w − v)dµt(y, w)
∫

R2d ϕ(♣x− y♣)dµt(y, w)
∀(x, v) ∈ R

d × R
d.

(3.2.6)

DeĄnition 3.2.1. Let T > 0. A measure µt ∈ C([0, T ]; P1(R
2d)) is a measure-

valued solution of (3.2.4) in the time interval [0, T ] with initial datum µ̄ ∈ P1(R
2d)

if it holds

∫ T

0

∫

R2d
(∂tϕ+ v · ∇xϕ+ V [t, µt] · ∇vϕ) dµt(x, v)dt+

∫

R2d
ϕ(x, v, 0)dµ̄(x, v) = 0

for all ϕ ∈ C∞
c (Rd × R

d × T ).

We now state an existence-uniqueness theorem and a stability theorem of

(3.2.4). Such theorems have been proved in [22] for the case M ≡ 1, i.e. full

communication between agents at all times. However, similarly to the Ąrst-order

mean-Ąeld model, they still hold true in the case where we have a uniform multi-

plicative persistently excited term depending only on time. Similarly to Lemma

2.2.1, there is [22, Lemma 3.1] which is its equivalent in the second-order model

setting, which again is satisĄed in our case by noting that M(·) ≤ 1 and then

following the exact same calculations, as has been shown in Lemma 2.2.1 in the

context of Ąrst-order models. We thus have the following theorem:

Theorem 3.2.2 ([22, Theorem 3.1]). Consider the continuum model (3.2.4) with

µ̄ ∈ P1(R
2d) and suppose that there exists a constant R > 0 such that

supp µ̄ ⊂ B2n(0, R)

where B2n(0, R) stands for a 2d-dimensional ball centered at the origin with radius

R > 0. Then, for T > 0 there exists a unique measure-valued solution µt ∈
C([0, T ]; P1(R

2d)) of (3.2.4) in the sense of (3.2.1). Moreover, µt is uniformly

compactly supported and we have

µt = (X1(t; ·, ·), X2(t; ·, ·))# µ̄
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where (X1(t; ·, ·), X2(t; ·, ·)) is the Ćow generated by (v, V [t, µt]).

Theorem 3.2.3 ([22, Theorem 3.2]). Let µ1
t , µ

2
t ∈ C([0, T ); P1(R

2d)) be two weak

solutions of (3.2.4) subject to uniformly compactly supported initial data µ̄1, µ̄2 ∈
P1(R

2d), respectively. DeĄne

RT
i,X := max

0≤t≤T
max

x∈supp µt

♣x♣, RT
i,V := max

0≤t≤T
max

v∈supp µt

♣v♣ i = 1, 2.

Then, there exists a constant C > 0, depending only on ϕ, T,RT
i,X , R

T
i,V , such that

W1(µ
1
t , µ

2
t ) ≤ CW1(µ̄

1, µ̄2) ∀t ∈ [0, T ).

This stability result provides a rigorous passage from the particle system

(3.2.2) to (3.2.4) where the nonlocal vector Ąeld is given by (3.2.5) or (3.2.6)

depending on the choice of the weighting procedure.

Notice that the result of Theorem 3.1.1 is independent of N . Then, by fol-

lowing the lines of [22, Theorem 3.3] for the case of no delay (τ = 0 using the

authors notation), we thus get the following result:

Theorem 3.2.4. Let T, µ > 0 be given. Let M ∈ MT,µ where MT,µ is deĄned by

(2.0.3). Let µt ∈ C([0, T ]; P1(R
2d)) be a measure-valued solution to (3.2.4) with

compactly supported initial data µ̄ ∈ P1(R
2d) with the vector Ąeld V either given

by (3.2.6) or (3.2.5). If β ∈ [0, 1), it then holds it then holds

dX [µnT ] ≤
[

(1 + dX [µ̄])1−β + (1 − β) (KMF (dV [µ̄], dX [µ̄], T, µ))
]

1
1−β (3.2.7)

for all n ∈ N where

KMF (dV [µ̄], dX [µ̄], T, µ) := dV [µ̄] + (T − µ)dV [µ̄]
+∞
∑

n=1

(

e
− µ

(1+dX [µ̄]+dV [µ̄]T )β

)n1−β

.

then unconditional Ćocking occurs.

Proof. Let N ∈ N. DeĄne the family of N−particle approximations of µ̄, namely

¶µ̄N♢N deĄned as

µ̄N :=
1

N

N
∑

i=1

δ(x− x̄N
i ) ⊗ δ(v − v̄N

i )
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where ¶x̄N
i , v̄

N
i ♢i∈¶1,...,N♢, with xN

i , v
N
i ∈ R

d, are chosen such that

supp µ̄N ⊆ B(0, dX [µ̄]) ×B(0, dV [µ̄]) ∀N ∈ N (3.2.8)

and

lim
N→+∞

Wp(µ̄, µ̄N) = 0. (3.2.9)

Now let ¶xN
i , v

N
i ♢i∈¶1,...,N♢ denote the solution to the Ąnite dimensional system

(3.2.2) or (3.2.2) with initial condition ¶x̄N
i , v̄

N
i ♢i∈¶1,...,N♢. DeĄne

µN
t :=

1

N

N
∑

i=1

δ(x− xN
i (t)) ⊗ δ(x− vN

i (t)) ∀t ∈ [0, T ].

Then, we have that µN
t is a measure-valued solution to the kinetic model (3.2.4)

in the sense of (3.2.1). Now notice that if µt ∈ C([0, T ]; M(R2n)) is a weak

solution to (3.2.4) with initial datum µ̄, then according to Theorem 3.2.3 there

exists a constant C > 0 independent of N such that

W1(µ
N
t , µt) ≤ CW1(µ̄

N , µ̄) ∀t ∈ [0, T ), ∀p ∈ [1,+∞].

Therefore, by (3.2.9) it holds

lim
N→+∞

Wp(µN
t , µt) = 0 ∀t ∈ [0, T ), ∀p ∈ [1,+∞].

By following the same argument as done in Theorem 2.2.4, we have that by

Theorem 3.2.1 it holds

suppx µ
N
t ⊂ B(0, dN

X(t)) ⊂ B(0, C(dN
V (0), dN

X(0), T, µ, β)) ∀t ≥ 0

where

dN
X(t) := diam(suppx µ

N
t ) t ≥ 0

and where C(dN
V (0), dN

X(0), T, µ, β) is the left-hand side of (3.2.3). Now notice

that by (3.2.8) it holds

C(dN
V (0), dN

X(0), T, µ, β) ≤ CMF (dV [µ̄], dX [µ̄], T, µ, β)



106 Ch.3. Unconditional Ćocking in second-order cooperative systems under PE

where CMF (dV [µ̄], dX [µ̄], T, µ, β) is the left-hand side of (3.2.7). Therefore it holds

suppx µ
N
t ⊂ B(0, dN

X(t)) ⊂ B(0, CMF (dV [µ̄], dX [µ̄], T, µ, β)) ∀t ≥ 0

Again, since convergence in Wasserstein implies that µN
t → µt weakly-* as

measures as N → +∞, then we know that the support of a measure is stable

under weak-* limits, as shown in the proof of Theorem 2.2.4. This implies that

suppx µt ⊂ B(0, CMF (dV [µ̄], dX [µ̄], T, µ, β)) ∀t ≥ 0

and therefore

dX(µt) ≤ CMF (dV [µ̄], dX [µ̄], T, µ, β) ∀t ∈ [0, T ]

and since T is arbitrary, then the result follows.



Conclusions

We now present the results we have achieved in each chapter along with

possible future directions.

• In the Ąrst chapter, we have seen in Theorem 1.0.1 that letting the ini-

tial approximation proĄle issued by some discretization scheme converge

weakly to the compactly supported initial data, then the microscopic so-

lution built from the Follow-the-Leader model converges to the entropy

solution of the macroscopic Lighthill-Whitham-Richards model. Moreover,

in Theorem 1.0.2 we have provided a stability result regarding the solution

issued by two different discretization schemes.

A future work could be devoted to the study of the mean-Ąeld limit in

networks and address optimal control problems.

• In the second chapter, we have seen in Theorem 2.1.1 that consensus holds

under a PE condition on the scrambling coefficient of the weights ¶Mij♢i,j∈¶1,...,N♢

for an inĆuence function bounded from below for system (2.1.1). We have

seen that in case the indistinguishability property (2.2.1) holds, then we

can use the result of Theorem 2.1.1 to conclude that consensus holds also

in the mean-Ąeld setting as shown in Theorem 2.2.4. A new result in the

Ąnite-dimensional setting is given by Theorem 2.1.2, where we simply im-

pose the PE condition on the weights ¶Mij♢i,j∈¶1,...,N♢ only, independently

of the state of the dynamics, and guarantee that consensus holds.

A future work is devoted to the generalization of the result in the multi-

dimensional setting. Another open problem is to see whether the one-

dimensional result holds if we impose a PE condition only on the mean of

¶Mij♢j∈¶1,...,N♢ for all i ∈ ¶1, . . . , N♢. Another task is to consider the graph-

limit setting and try to use the same logic as in the Ąnite-dimensional setting

by using Scorza-DragoniŠs theorem (Theorem A.1.1) and DanskinŠs theorem

(Theorem A.1.2) in the spirit of [11]. Since the main goal is to treat the
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case of communicatino failures, it would be interesting to see whether we

can relate the point of view of imposing a PE condition with the point of

view of letting the communication failures follow some stochastic process.

• In the third chapter, we have seen in Theorem 3.1.1 that unconditional

Ćocking holds for β ∈ [0, 1) in the case where we impose a PE condition on

the scrambling coefficient of the weights ¶Mij♢i,j∈¶1,...,N♢. The main tool was

the identiĄcation and treatment of the Şworst-case scenarioŤ in the sense

of Proposition 3.1.2. Then, in Theorem 3.2.1 we have seen that we can use

the result by Theorem 3.1.1 to conclude that unconditional Ćocking holds

under the same assumptions in the mean-Ąeld setting as well.

A future work could be to Ąrst investigate the case of unconditional Ćock-

ing β = 1 as explained in Remark 3.1.1 and then conditional Ćocking for

the case β > 1. Another future work could be to consider the graph limit

of the Ąnite-dimensional model, prove that its Şworst-case scenarioŤ is the

same and, again, by using Scorza-DragoniŠs theorem (Theorem A.1.1) and

DanskinŠs theorem (Theorem A.1.2) in the spirit of [11] conclude that un-

conditional Ćocking holds for β ∈ [0, 1) and again treat as well the case

β ≥ 1.



Appendix A:

Preliminaries

A.1 Measure theory and optimization

In this section, we present some general tools already applied to opinion dynamics

(see e.g. [11]). We now present simpliĄed versions of Scorza-Dragoni and Danskin

theorems.

Theorem A.1.1 (Scorza-Dragoni, [10]). Consider a complete separable metric

space (S , dS ). Let Ω ⊂ R
d be a Borel set and f : R+ × Ω → S be such that x ∈

Ω 7→ f(t, x) ∈ S is L d-measurable for each t ≥ 0, and t ∈ R+ 7→ f(t, x) ∈ S

is continuous for L d-almost every x ∈ Ω. Then for every ε > 0, there exists a

compact set Ωε ⊂ Ω satisfying L d (Ω\Ωε) < ε and such that the restricted map

f : R+ × Ωε → S is continuous.

Theorem A.1.2 (Danskin, [29]). Let Ω ⊂ R
d be a compact set and f : R+ ×Ω →

R be a continuous function such that t ∈ R+ 7→ f(t, x) ∈ R is differentiable for all

x ∈ Ω. Then, the application g : t ∈ R+ 7→ maxx∈Ω f(t, x) ∈ R is differentiable

L 1-almost everywhere, with

d

dt
g(t) = max

x∈Ω̂(t)
∂tf(t, x)

for L 1-almost every t ≥ 0, where we introduced the notation Ω̂(t) := argmax
x∈Ω

f(t, x).

Lemma A.1.1 ([11, Lemma 2.3]). Let Ω ⊂ R
d be a compact set and f ∈

L∞(Ω,Rd). Then, for every δ > 0, there exists ϵ > 0 such that

∥f∥L∞(Ω) − δ ≤ ∥f∥L∞(Ωϵ) ≤ ∥f∥L∞(Ω)
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for all measurable sets Ωϵ ⊂ Ω satisfying meas(Ω\Ωϵ) < ϵ. In particular, it holds

lim
ϵ→0

∥f∥L∞(Ωϵ) = ∥f∥L∞(Ω)

for every family of sets (Ωϵ)ϵ>0 ⊂ P(Ω) satisfying these properties.

We now present a scalar product inequality which is used in the graphon

framework.

Lemma A.1.2 ([11, Lemma 3.4]). Let J ∈ [0, 1] be a closed set, x ∈ C(J,Rd)

and i, j ∈ J be a pair of indices such that

max
k,l∈J

♣x(k) − x(l)♣= ♣x(i) − x(j)♣.

It then holds

max
k∈J

⟨x(k), x(i) − x(j)⟩ = ⟨x(i), x(i) − x(j)⟩

and

min
k∈J

⟨x(j), x(i) − x(j)⟩ = ⟨x(j), x(i) − x(j)⟩.

Remark A.1.1. In particular, Lemma A.1.2 is applied in the Ąnite-dimensional

framework, where indices belong to the closed set ¶1, . . . , N♢, and in the graph

limit framework, where indices belong to [0, 1].

A.2 Optimal transportation

We now present main deĄnitions in optimal transportation.

DeĄnition A.2.1. Let µ be a Borel measure on R
d and let T : Rd 7→ R

d be a

measurable map. DeĄne the push-forward of µ through T as the measure given by

T#µ(B) := µ
(

T−1(B)
)

for all Borel sets B ∈ R
d.

DeĄnition A.2.2. Let µ1, µ2 ∈ M(Rd) be two probability measures on R
d. Let

Π(µ1, µ2) be the set of all probability measures on R
d ×R

d with marginals µ1 and
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µ2,i.e.

∫

Rd×Rd
ϕ(x)dπ(x, y) =

∫

Rd×Rd
ϕ(x)dµ1(x),

∫

Rd×Rd
ϕ(y)dπ(x, y) =

∫

Rd×Rd
ϕ(x)dµ2(x)

for all continuous and bounded functions ϕ ∈ Cb

(

R
d
)

Then, we deĄne the Wasserstein distance of order 1 ≤ p < +∞ between µ1

and µ2 as

Wp(µ1, µ2) := inf
π∈Π(µ1,µ2)

(∫

Rd×Rd
♣x− y♣pdπ(x, y)

)

and for p = ∞ as

W∞(µ1, µ2) := inf
π∈Π(µ1,µ2)

(

sup
(x,y)∈supp(π)

♣x− y♣p


.

Proposition A.2.1. The set of probability measures with Ąnite moments of order

p ∈ [1,+∞), denoted by Pp

(

R
d
)

, endowed with the p-Wasserstein distance Wp is

a complete metric space.

Proof. See [63].

We now deĄne the cumulative distribution of a function and the corresponding

pseudo-inverse.

DeĄnition A.2.3. Consider the space of probabilities

Pc(R) := ¶ρ Radon measure on R with compact support such that ρ ≥ 0, ρ(R) = 1♢.

Given ρ ∈ Pc(R) ∩ L∞(R), deĄne the cumulative distribution Fρ : R 7→ [0, 1]

as :

Fρ(x) := ρ((−∞, x]), x ∈ R, (A.2.1)

and its associated pseudo-inverse Xρ : [0, 1] 7→ R as

Xρ(z) := inf¶x ∈ R ♣ Fρ(x) ≥ z♢, z ∈ [0, 1]. (A.2.2)

Observe that Fρ is non-decreasing and right-continuous. We recall that the

one dimensional Wasserstein distance can be deĄned using the cumulative or the

pseudo-inverse functions, see e.g. [63].
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Proposition A.2.2. The one-dimensional 1-Wasserstein distance between ρ, ρ̃ ∈
Pc(R) is

W1(ρ, ρ̃) = ∥Fρ − Fρ̃∥L1(R) = ∥Xρ −Xρ̃∥L1([0,1]) . (A.2.3)

A.3 Ordinary differential equations

Given an ordinary differential equation, the right-hand side of the dynamics may

present discontinuities, and we thus have to consider a more generalized notion of

solution, see [18]. Throughout this paper we consider the notion of Carathéodory

solution whenever the dynamics studied contain a measurable function on the

right-hand side. We now recall some deĄnitions and theorems, see e.g. [36].

DeĄnition A.3.1 (Carathéodory solution). Consider a non-autonomous ODE

ẋ(t) = f(t, x(t)) (A.3.1)

where x ∈ R
d and g : R × R

d 7→ R
d is a measurable and locally bounded func-

tion deĄned at every point. A Carathéodory solution is an absolutely continuous

function x : [0, T ] 7→ R
d which satisĄes (A.3.1) at almost every time t ∈ [0, T ].

DeĄnition A.3.2 (Carathéodory conditions). Supposed D is an open subset in

R
d+1. We say that f : D 7→ R

d satisĄes the Carathéodory conditions on D if f

is measurable in t for each Ąxed x, continuous in x for each Ąxed t and for each

compact set U of D, there is an integrable function mU(t) such that

♣f(t, x)♣≤ mU(t), (t, x) ∈ U.

Theorem A.3.1. If D is an open set in R
d+1 and f satisĄes the Carathedoroy

conditions on D, then, for any (t0, x0) in D, there is a solution of (A.3.1) through

(t0, x0).

Theorem A.3.2. Supposed D is an open subset in R
d+1, f satisĄes the Carathéodory

conditions on D and for each compact set U in D, there is an integrable function

kU(t) such that

♣f(t, x) − f(t, y)♣≤ kU(t)♣x− y♣, (t, x) ∈ U, (t, y) ∈ U.

Then, for any (t0, x0) in U there exists a unique solution x(t, t0, x0) of (A.3.1)



A.3 Ordinary differential equations 113

passing through (t0, x0). The domain E in R
d+2 of deĄnition of the function

x(t, t0, x0) is open and x(t, t0, x0) is continuous in E.
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