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Abstract

In this thesis we treat models of collective behavior in networks, where agents
or particles interact among each other following some specific dynamics. We focus
on three specific models that we now briefly present and study their properties.
In particular, we treat two different problems: the rigorous derivation of the
Lighthill-Whitham-Richards model for traffic low from the Follow-the-Leader
model and the emergent behavior in cooperative systems under persistent exci-
tation.

In Chapter 1, we deal with the Follow-the-Leader model (FtL), which is a
finite-dimensional dynamical system describing the motion of N cars on a road
lane, in which each car travels with a velocity that depends on its relative distance
with respect to the one immediately in front. The Lighthill-Whitham-Richards
(LWR) model is a hyperbolic conservation law, where the solution is a macro-
scopic density that typically represents the dynamics of the average spatial con-
centration of vehicles. With the FtL model we build a microscopic density which
approximates the macroscopic one. Our main goal is to prove that the dynamics
given by the FtL converges to the one given by LWR. This occurs under suitable
convergence requests on the initial data. Additional stability results of the FtL
model are also presented.

In Chapters 2 - 3, we study cooperative systems, which are models of inter-
acting agents in which interaction is always attractive. The goal is to study the
asymptotic behavior in time towards reaching consensus (in first-order models)
or flocking (in second-order models). We provide sufficient conditions for the
formation of asymptotic consensus or flocking, in the case in which dynamics
are subject to communication failures between agents, if the failure satisfies a
suitable persistent excitation condition. We study such phenomena for first- and
second-order systems, both in the finite and infinite dimensional settings via the

classical mean-field limit.
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Introduction

In recent years, the study of networks with interacting agents or particles
has become a significant focus in mathematics, especially when dealing with real-
world situations [2, 7, 17, 47, 48, 52]. This has led to the development of models
that attempt to capture and understand complex behaviors in various fields: traf-
fic flow [13, 14, 15, 56], politics [8, 39], biology [45, 50, 57, 59], pedestrian flow [1,
5, 34, 38], linguistics [25, 26, 27], etc. Whether derived from observations in the
synchronized movements of flocks of birds, the coordinated actions of fish schools,
or from intricate movements within human crowds, mathematical models of col-
lective behavior attempt to underscore the emergence of order and patterns from
individual interactions. Many scales can be considered when developing a math-
ematical model, and we can find in the literature two main types: microscopic

and macroscopic scales (see [54] for a review).

In microscopic models, also known as agent-based models or particle models,
the dynamics of each agent is taken into account, by typically using an ordinary
or stochastic differential equation. We then form a system of such differential
equations accounting for the behavior of the whole set of agents representing the
evolution in time of each agent, through interactions with all the other agents
and the environment. Microscopic models provide a detailed and granular repre-
sentation of individual entities and their interactions, which helps in the realistic
representation of the phenomenon we are dealing with. They can also incor-
porate variations of individual parameters and individual heterogeneity, leading
to the possibility of studying a wide range of scenarios. However, although the
modelling and simulation accuracy might be appreciable, the computational de-
mands of the simulation of such systems increase tremendously as the number
of agents grows. Moreover, the immediate output of the evolution of each single
agents might not be useful in practice, as the focus may instead rely on quantities
like statistical averages, which then leads us to additional post-processing. This

makes us therefore consider the second type of models, the macroscopic models.
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viii Introduction

In macroscopic models, also known as continuum models, the dynamics of
averaged quantities such as the mean density or mean velocity of agents is taken
into account by using partial differential equations. We thus focus on the solution
of said partial differential equation, which represents the evolution of the mean
density or velocity of agents. One prominent advantage to be immediately appre-
ciated, as pointed out in the presentation of microscopic models in the previous
paragraph, is the computational efficiency. Indeed, the reduction in detail coming
from the simplification of complex systems offered by macroscopic models often
results in a significant decrease in computational demands, especially for large-
scale systems. Another advantage is the very fact that it puts an emphasis on
system-level properties, such as average density, velocity, or concentration, which
simplifies the interpretation of results and aids in extracting key information.
This can result in the capture of global trends and emerging patterns, such as
the dynamics of fluid flows. Finally, another important advantage is its crucial
role in policy design: in fields such as urban planning, traffic engineering, and
public health, macroscopic models prove valuable for designing effective policies,
since they provide a broad description of system-level responses to interventions
without the need to account for individual variations [54, 55]. However, some
disadvantages are present as well, mainly based on the loss of individual iden-
tities of agents due to the consideration of average quantities. Indeed, we now
lose individual-level details and assume homogeneity of agents, which can be a
serious drawback in scenarios where it is critical to study the individual behavior
of special agents. They may not be suitable at not large enough scales, where
the aggregate approach might oversimplify the dynamics. The assumption of ho-
mogeneous parameters across the system may not hold in certain cases, affecting
the accuracy of predictions and limiting the model’s robustness, which might also

render the calibration of macroscopic models more complex, see e.g. [60].

Depending on the application, we therefore might want to use either mi-
croscopic models, macroscopic models or a combination of both. The natural
question would be to ask if there is a relationship between them, e.g. whether a
microscopic model has a corresponding macroscopic model and if the properties
are conserved. In such a case, the following question prevails: given a microscopic
model, what happens when the number of agents “grows to infinity”? Naturally,
as the number of agents grows, it becomes increasingly unmanageable to deal
with all the equations describing the behavior of each agent. This is called the

curse of dimensionality. This is one of the most classical problems in kinetic
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theory: going from particle to continuum descriptions, known as mean-field limit,
introduced for the first time in the context of gas dynamics [12].

This thesis explores microscopic models and their corresponding macroscopic
models, particularly in the context of traffic flow and interacting agents in time-
varying networks. In particular, we focus on three microscopic models: the
Follow-the-Leader model as well as first- and second-order cooperative models.
The first model is applied to traffic flow in one dimension. Here, we consider a
one-dimensional lane of N cars, that are considered as moving particles. These
particles follow a nearest neighbour type interaction, and in particular each one
moves with a velocity which is proportional to the distance with respect to the
particle in front. The second and third models are applied to a general network
of agents, which could be interpreted as people, animals, opinions, votes, etc. In
these systems, agents communicate with each other and each agent seeks to agree
with the agents with whom it is interacting. In the case of first-order models and
second-order models, the aim is to study the formation of consensus and flock-
ing, respectively. Once we thoroughly study the microscopic behavior of these
three models, we then study the rigorous derivation of the corresponding macro-
scopic model in the case of the Follow-the-Leader model and the conservation of
properties at the microscopic level (independent of the number of agents) in the

macroscopic models in the case of first- and second-order cooperative models.

This thesis is organized as follows:

o In Chapter 1 we present a new result regarding the mean-field limit of the
Follow-the-Leader, which is a microscopic model describing the motion of N
cars on a road lane, in which each car travels with a velocity that depends
on its relative distance with respect to the one immediately in front. We
provide a convergence result for general discretization schemes, extending
results given in [32]. We furthermore provide a stability result concerning
the convergence of the approximating profiles due to two possibly different

discretization schemes.

o In Chapter 2 we consider a class of first-order cooperative systems, i.e.
where agents attract each other. We study the asymptotic formation of con-
sensus under possible communication failures between agents. We require
the communication to be sufficiently frequent, encoding it into a persistent
excitation condition, and to be strong enough. We show that consensus

holds both in the finite- and infinite-dimensional settings. The main novelty
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is the technique introduced, which is to identify and treat the “worst-case
scenario”, i.e. the specific combination of communication failures between

agents which drives them the furthest from consensus.

In Chapter 3 we consider a problem similar to Chapter 2, when the coop-
erative system is of second-order. The goal is then to study the asymptotic
formation of unconditional flocking. We show here that the “worst case sce-
nario” is the same as in the case of first-order models, and proceed to treat
it and show that flocking holds under suitable assumptions. We then show

that such a property is again conserved in the classical mean-field setting.
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Chapter 1:

On the continuum limit of the Follow-
the-Leader Model

Among traffic flow models, we find two main types: microscopic models and
macroscopic models. We briefly present two models that are intimately related:
the Follow-the-Leader (FtL) model and the Lighthill- Whitham-Richards (LWR)

model.

Let us first briefly describe the FtL model. We consider N + 1 cars on a
one-dimensional road lane. Let {z}(0)}}_, denote the initial positions of the
cars evolving in time according to the FtL dynamics. We have a trajectory
{zV(t)}]o, where each z}(t) travels with a velocity depending on the distance
with respect to the car immediately in front of it 23, (¢). The leader z}(t) has
no cars in front and thus it travels with the maximum velocity v,... A discrete
function p®, that we denote by Eulerian discrete density, composed of N € N

regions each of mass 1/N is then defined by {z¥} as

The reason why the term Eulerian is used is explained in Section 1.2. We now
briefly describe the classical LWR model

{ pi+(f(p)e=0, t>0 z€R 102)

p(0,2) = p(x) = eR

with p a given initial data with compact support. The variable p describes a
macroscopic density of cars, and the flux f(p) at a point = € R represents the

number of cars passing through the given point x € R per unit of time. We

11



12 Ch.1. On the continuum limit of the Follow-the-Leader Model

consider the following flux from now on:

f(p) = pv(p).

We also assume that the maximal admissible density is ppe: = 1 and that
1Pl ey = 1-
From now on, we assume that the velocity function v(p) satisfies the following

assumptions:

v € Lip([0, pmax]) with Lipschitz constant L, V(Pmax) = 0, v is decreasing.
(V1)

We also use the notation vy, := v(0). In some instances, we also make use of

an additional assumption on the velocity:
the map [0, 4+00) 3 p — pv'(p) € [0, +00) is non-increasing. (V2)

Now that we have a microscopic density p®* and a macroscopic density p,
we would like to answer the following question: which properties of the initial
data and/or of the convergence of the discretized initial data ensure convergence
of the microscopic density p” to the macroscopic one p?

More precisely: let an initial configuration {xé\] (O)}é-V:0 be given, and consider
vey With {7 (t)}}L, subject to the

FtL dynamics. Does this sequence converge to the solution p of the Cauchy

the discrete approximation sequence { pEN }

problem (1.0.2) when N — oo? In what topology and how arbitrary can the initial
positioning be? Our main result answers to this question. Before introducing the
result, we first present a fundamental condition on the support at initial time of
pPN. This assumption on initial support condition replaces the requirement of
the scheme in [32] that 2 (0) — 25 (0) = Tpae — Tinin, Where Zpaz, Tmin, denote
the extremal points of the convex hull of the support of p. Here instead, it may

well happen that 22’ (0) < Zynin and 2N(0) > Tpae-

Definition 1.0.1 (Uniformly bounded initial support condition). We say that
{:Eé-v(t)}év:o satisfies the condition of uniformly bounded initial support if there
exists a constant Ky > 0 independent of N, such that for all N € N there holds

N (0) — 25 (0) < K. (1.0.3)
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Theorem 1.0.1. Assume that the velocity map v satisfy (V1). Let p € L>*(R; [0, 1])
be with compact support and such that ||p|l g = 1. Let {aN ()}, be solu-
tions of the FtL system (1.1.3) that satisfy the uniformly bounded initial support

condition (1.0.3). Consider the corresponding Eulerian discrete density pP €
L>([0,+00) x R;[0,1]) defined by (1.0.1). Assume that
PPN (0) = p, (1.0.4)

and that one of the following two conditions hold:

1. p € BV(R) and there exists Ko > 0 such that TV (p®"(0);R) < K, for all
N, i.e. such that

1 N 1 N NZ—:? 1 B 1 |
21'(0) = 2"(0) 2§ (0) — 2y, (0) =0 xé‘\iz(o) - xﬁl(o) xﬁl(()) - ij(O)
< N K,

for all N;

2. the velocity function v satisfies also (V2).

Then the sequence {pE7N}NeN converges strongly to the weak entropy solution p
of the Cauchy problem (1.0.2) in Li ([0, +00) x R;[0,1]).

loc

Remark 1.0.1. It is important to note that the main difference with respect to
[32, Theorem 3] is the replacement of the specific discretizaton scheme for the
initial data adopted in [32], with a general one satisfying the hypothesis (1.0.4).
Indeed, the discretization scheme provided in [32] satisfies a stronger assumption
that implies (1.0.4). Here, we show that any other discretization scheme satisfy-
ing the hypothesis (1.0.4) is valid as well. Another novelty here is the proof of
the convergence of the sequence of Eulerian discrete density { pEN }NeN’ which
is based on the convergence of the cumulative and pseudoinverse functions asso-
ciated to p®¥, and on the 1-Wasserstein convergence of {pEvN }NGN. This proof
is simpler than the one presented in [32, Theorem 3], where the authors achieve
the L'-compactness of { pEN }NGN relying on a generalization of the Aubin-Lions

lemma.

Another contribution of this article is the following stability result with re-
spect to the 1-Wasserstein distance W;j. It is a microscopic stability result for
two different initial discretization schemes, which in turn yields a stability result

with respect to the L' norm that is uniform in time.
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Theorem 1.0.2 (Discrete Eulerian Stability Theorem). Assume that the veloc-
ity map v satifies (V1). Let {x} (t)} o {ZN(t)};1o be solutions of the FtL sys-
tem (1.1.3) that satisfy the condition of the uniformly bounded initial support
(1.0.3).  Consider the corresponding Eulerian discrete densities pP, pPN €
L>(([0,400) x R);[0,1]) defined by (1.0.1). Then, for all T > 0, and for all

N € N, there holds

Sup Wi (p" N (1), 57N (1)) < Wi(p™™(0), 57(0))+
€10,

N-1
+2LT ) [xj11(0) — 2;(0) — (£541(0) — 2,(0))],
=0
(1.0.5)
L being the Lipschitz constant of v. Moreover, if there holds x3.(0) = #X.(0) for
all N € N, and

lim 3 J2i2(0) = 25(0) = (32(0) = () =0, (1.0.6)

N—+o00 —
then the following two properties are satisfied:

1. if there exists Ky > 0 such that TV (pEJV(O);R) ,TV (ﬁEvN(O); R) < K, for
all N, then for all T > 0 there holds

lim sup |pBN(t) — PN (¢
Jim s [P0 - 75 )

LR 0; (1.0.7)

2. if the velocity v satisfies also (V2), then for all T > 0 there holds

lim  sup [p™Ne(r) — 5PN (1) =0, (1.0.8)

k—=+00 4e1/k, T)

LY(R)
for some subsequences {pPNe}y , {pENeYy, .

Remark 1.0.2. If 2¥(0) = 2¥(0) for all N and there holds (1.0.6), then one can
show that (see Proposition 1.4.1)

lim W, (p®N(0), %N (0)) =0, (1.0.9)

N—+4o00

which implies that pZ(0) — pE~(0) — 0. Thus, letting p, 5 denote the weak*
limit of {p®N(0)}n, {pPN(0)}n, respectively, we have p = p. Hence, applying

Theorem 1.0.1 we deduce that both sequences {pE’N }NeN, { pEN }NeN, converge
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in L{ ([0, +00) x R) to the weak entropy solution of the Cauchy problem (1.0.2),

which implies

Jm o™ () = 7 @)

=0 for a.e. t>0. (1.0.10)
L(R)
The main new property provided by Theorem 1.0.2 is the fact that, thanks to the

stability estimate (1.0.5), the convergence in (1.0.10) is actually uniform in time.

Remark 1.0.3. In [44, Theorem 3.6], the authors provide a Cauchy property and
rate of convergence of a Eulerian microscopic density built with a specific dis-
cretization scheme of initial data p € L'(R) N L>(R) satisfying p > 0 and
Jzlz|p(z)dz < oo. This is given in the form of a microscopic stability between
pPN and pPM for M, N € N large enough. The main idea is that the Eulerian
microscopic density is seen as a quasi-entropy solution of the conservation law.
However, it is important to note that Theorem 1.0.2 treats the case of two com-
pletely different discretization schemes p® and p¥*, but comparing them at the
same level of N. Eventually, these are applicable to initial data p € BV (R) with
compact support in case (1), and to initial data p € L* with compact support
in case (2). Also note that in our case we are essentially providing a result show-
ing that weak convergence implies strong convergence. This is possible when we
have a control of the total variation, as explained in the proof of both Theorem
1.0.1 and Theorem 1.0.2. Both theorems follow the same strategy, and in both
of them we do have a control on the total variation. Therefore, in both theorems
the key is to show that weak convergence holds. In the proof of Theorem 1.0.1
we actually conclude that such a weak convergence holds by a compactness ar-
gument, provided in [32] and further explained in Section 1.2. However, in the
proof of Theorem 1.0.2 for such a weak convergence to hold we find that we need
hypothesis (1.0.6) to be satisfied, which concerns only the discretization scheme.
Such a hypothesis is assumed for instance in [37, (2.11)] in the case of initial data

p € BV (R) away from vacuum.

The paper is organized as follows. In Section 1.1 we recall the definition of
the Follow-the-Leader dynamics and provide a stability result for it. In Section
1.2 we define the Eulerian and Lagrangian discrete densities, their cumulative
functions with the corresponding pseudo-inverses and discuss their properties
and interpretations. In Section 1.3 we state and prove the main result of the
article, i.e. is Theorem 1.0.1. In Section 1.4 we provide the main stability result,
i.e. Theorem 1.0.2.
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1.1 The Follow-the-Leader model

In this section, we introduce the Follow-the-Leader (FtL) model and study its
behaviour. It is a classical model for road traffic, see e.g. [19, 33] . The goal
here is to investigate its stability properties with respect to the initial data. We
shall first define the dynamics of the positions of vehicles z;(t), then we consoder
the associated discrete density p;(¢), and finally we introduce the inverse discrete
density y;(t). For each of these quantities, we analize the dynamics and some

useful properties.

We start by considering N + 1 vehicles, of length [, with initial positions

) << (1.1.1)
satisfying .
T, — ) >, L= (1.1.2)

This standard condition ensures non overlapping of cars.

We now define the FtL. dynamics:

Definition 1.1.1. The FtL model is

(L’% = Umax

{
.N .
AR (LR j=0,..,N—1, 1.1.3
’ (Iévﬂ _xév> ( )
0 = j=0.N

where the initial positions i’jv, j=0,...,N, satisfy conditions (1.1.1)-(1.1.2).

The FtL model describes the evolution of each car xjv that adapts its speed
with respect to the distance with the car immediately in front 27, ;. As in [32], we
also introduce the corresponding definition of discrete density and of its dynamics.

Definition 1.1.2. Given {z}(t)}}_y a solution of (1.1.3), define the discrete

density as

j=0,..,N—1. (1.1.4)
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Because of (1.1.3), the discrete density satisfies the dynamics

PN-1 = —N(pN_1)? (Vmax — v(pN_1))
pY =N (v(p)) —v(py))  G=0,..,N =2 (1.1.5)
py(0)=pY  j=0,.,N—-1

where the initial data is

7N .
= j=0,..,N—1.
! l’jN+1_“7§V

We finally consider the inverse discrete density introduced in [37].

Definition 1.1.3. Given {z'(t)}}L, a solution of (1.1.3), define the inverse

discrete density as

N
N (t) = l j=0,..,N—1. (1.1.6)

Because of (1.1.3), the inverse discrete density satisfies the dynamics

?)%—1 =N (Umax - (yN 1))
gy =N(VEN)-VEY)  i=0,.,N-2 (1.1.7)
zy ()

N (t
yy(0) =7} = J“()l j=0,.,N—1

where the velocity of the inverse discrete density is defined by

1

V(y) = (y) . (1.1.8)

Here, the first equation of (1.1.7) prescribes that the inverse discrete density of

the leading particle evolves with the maximum velocity

V(yn) = v(0) = Vimax, (1.1.9)

which could be viewed as setting "yX = +00”, corresponding to have an empty

road in front of the leader z¥. As a consequence of (V1), the velocity of the
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inverse discrete density satisfies the conditions

V € Lip([1,4+o0)) with Lipschitz constant L, V(1) =0, V is increasing.
(V1)

Remark 1.1.1 (Discrete Minimum/Maximum Principle). The solution of the FtL
model (1.1.3) and the corresponding discrete density (1.1.5) satisfy a discrete
minimum/maximum principle, which is the microscopic version of the well-known
maximum principle enjoyed by solutions to (1.0.2) (see for example [28, Theorem
6.2.4]). Indeed, the following estimates hold:

A proof of (1.1.10) can be found in [32, Lemma 1]. Also the solution of the dis-
crete inverse density (1.1.7) satisfies a discrete minimum principle due to (1.1.10).
Indeed, it holds

i N > > . .
j=Or -1 *) j_anin | g =1 (1.1.11)
In the same spirit of [37, Lemma 2.3], we now prove a stability estimate

envolving two different solutions of system (1.1.5).

Proposition 1.1.1. Consider two solutions {z (t)}",, {Z] () NO of (1.1.3),

with, initial positions {zN }Io  {ZN}IL | respectively. Let {pY ( VIS AN ()15
be the corresponding discrete density defined by (1.1.4), and let {yY ( PRy
{gf(t)}jigl be the corresponding inverse discrete density defined by (1.1.6). Then,
for all T > 0, there holds

§|pf(T) - (1)) < Z__E)!ij(o) — g (0)]. (1.1.12)

Proof. Throughout the proof we drop the superscript /N for simplicity of notation.
We will consider two solutions of (1.1.7) parametrized by two different variables ¢
and 7, and we will use the Kruzkov’s doubling of variables method to provide the
contraction estimate for the inverse densities. Then we will rely on the maximum

principle for the discrete densities to conclude.
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With this aim, we define
Vi(t) = V(y;(t)) V() = V(g;(r)).
We then notice that, for j =0, ..., N — 2 it holds
d . : _
5193(0) = G5()| = Nsign(y;(t) = 7;(r)) (Vi (t) = V;(2))
jT!yj (t) = (7) = Nsign(y;(t) — g;(7) (Vi (1) = V(7).
Therefore, we deduce that, for j =0,..., N — 2, we have

(;lt + ;i) |y;(t) — 5;(7))]

= Nsign(y; (1) = 5DV (1) = Vi(t) = Via (1) + V()]

= N [=sign(y;(t) — 5 (M) (V;(t) = V;(r)) + sign(y;1(t) = G (1) (Vi (8) = V
+(Via(t) = Viaa (7)) [sign(y; (£) — §5(7)) — sign(y;1(t) = G41(7))]
)

o~ —

< N |=sign(y; (1) = ;) (Vi (1) = V(7)) + sign(ys1(t) = G351 (1) (Via (1) = Via (7))

(1.1.13)
The last inequality can be recovered as follows:
i) If
y;i(t) = 4;(7) and y;1(t) < gjsa(7), (1.1.14)
then one has
Viga(t) = Visa(7) <0,
and
sign(y;(t) — §;(7)) — sign(y;41(t) — F41(7)) = 0.
i) If
y;(t) < 9;(7) and y;41(t) = G (7), (1.1.15)
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then one has
Vita(t) = Visa(7) 20,

and

sign(y;(t) — 9;(7)) — sign(y;41(t) — Fj41(7)) < 0.

iii) Otherwise, if neither (1.1.14) nor (1.1.15) are satisfied, then one has

sign(y;(t) — 9;(7)) — sign(y;41(t) — Fj+1(7)) = 0.

Summing up the inequality in (1.1.13), we derive

N— d ~

> (5 ) 0 = B < Vs -10) = B (Vi) - P ()]
On the other hand , for j = N — 1, it holds

d 4 lyn—1(t) — G2 (7)]
(dt dr )

= Nsign(yn—1(t) = Ix-1(7)) [Vmax — Vu-1(t) = Vmax + Viv_1(7)]
= Nsign(yn—1(t) = Gv-1(7))[Vv-1(7) = Viv_a (7))

Therefore, we conclude that

Z:: <dt ! > ly;(t) = 4;(7)] < 0. (1.1.16)

Relying on (1.1.16), we can complete the proof with the same arguments of the
proof of [37, Lemma 2.3]. Namely, multiplying (1.1.16) by a non-negative test
function ¢(t, 7) with ¢ € C§°((0, 00) % (0, 00)), and then integrating by parts, one
obtains

/0 / (¢ + 1) Zlyj — g;(7)|dtdr > 0. (1.1.17)
7=0
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Next, choose

oit.7) = v (55 nle =),

where ¢ € C§°((0,00) x (0,00)) is a non-negative function, and 7, is a standard
mollifier converging to the Dirac delta at the origin as ¢ — 0. Then, inserting

this test function in (1.1.17) and sending ¢ — 0 we get

N—
/ Z|yj — g;(t)]dt >0 (1.1.18)

Now, taking ¢ in (1.1.18) to be a smooth approximation of the characteristic

function of the interval (t1,t3) C (0,7) we get

N—

21ij(tz) Z (1) = g;(t)]. (1.1.19)

Then, letting ¢; — 0 and ¢, — 7" in (1.1.19), we obtain

N—-1
Sy (T) — §;(T \<Z|yg — 7;(0)]. (1.1.20)
=0

Finally, by using (1.1.20) and the maximum principle (1.1.10), we find

N— N—1
Z 1pi(T) — pi (1) = D pi(T)p;(T) |y;(T) — 5;(T)|

=0 §=0
N-1

< |yj (T) — Y (T>|
7=0
N—1

< ‘3/](0) _3]3(0”7
§=0

thus establishing (1.1.12). O

Remark 1.1.2. In [37] the authors establish the contractive estimate (1.1.20) in
two settings: either they assume to have infinitely many equally spaced vehicles
in front of the leading one located at a2, assuming a distance M /N between two
consecutive ones, for some constant M > 1, or they require that the location
of the vehicles is periodic in an interval [a, b], so that the distance between the

vehicle located in ) and the one located at z is (b — 2¥) + (2 — a). This
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corresponds to define the inverse discrete density related to the leading vehicle as

N M in non-periodic case
yN - . . .
N(b—xzx+x —a) in periodic case.

In the non periodic setting this definition leads to prescribe the velocity

V(yy) =v <J\14>
for the inverse discrete density in front of the leader. Here, instead we obtain the
contractive estimate (1.1.20) prescribing in the first equation in (1.1.5) that the
velocity of the inverse discrete density in front of the leader is given by (1.1.9),
which is a consequence of having #N = v4, in (1.1.3). Therefore, Proposi-
tion 1.1.1 here provides an extension of [37, Lemma 2.3], in the non-periodic

setting, to the case “M = +o0" corresponding to empty road ahead of the leader.

Finally, we recall the discrete Oleinik-type condition proved in [32, Corollary
1 of Lemma 6]:

Lemma 1.1.1 (Discrete Oleinik-type condition). Consider a solution {x (t)}IL,

of (1.1.3), and let {pjy(t)}jy:_ol be the corresponding discrete density defined by
(1.1.4). Assume that v satisfies (V1) and (V2). Then, for any j =0,...,N — 2,
there holds

v(pfa(t) —v(py' (1) _ 1
t

v
<
PAOETAOES

Vit > 0.

1.2 Eulerian and Lagrangian densities

In this section, we first define two densities that approximate the solution of
(1.0.2): the Eulerian discrete density and the (Dirac) empirical measure. We
then define the Lagrangian discrete density and the inverse Lagrangian discrete
density, which instead provide an approximation of the solution of (1.0.2) ex-
pressed in Lagrangian coordinates. After that, we define the cumulative function
of the Eulerian density and its corresponding pseudo-inverse, which are used to
transform the Lagrangian density into the Eulerian one and viceversa. In the
end, we provide some convergence results. This section is mainly based on the

analysis developed in [32].
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The Eulerian discrete density can be understood as a discrete approximation
of the solution of the LWR model (1.0.2). Its precise definition is given here.

Definition 1.2.1. Given {z}'(t)}}_, solution of (1.1.3), define the Eulerian dis-

crete density as
— N
)= 3y XN @y, @) (), (1.2.1)
j=0

where pY are defined by (1.1.4).

Notice that the Eulerian discrete density can be seen as a quasi-entropy solu-
tion of (1.0.2), as discussed in [44]. We now define the inverse Eulerian discrete

density and the (Dirac) empirical measure.

Definition 1.2.2. Given {z}(t)}}_, solution of (1.1.3), define the inverse Eule-

rian discrete density as
N—1
E,N ) N
yoN(t ) =y (t)X[ng(t),xﬁl(t))(ﬂf)-
J=0

and the (Dirac) empirical measure as

N—

pPN(t, ) = — Z w0 (1.2.2)

where ij are defined by (1.1.6), and 0, denoted the Dirac delta at the point x.

We finally define the Lagrangian discrete density and the inverse Lagrangian
density. The latter can be understood as a piecewise constant approximation of

the solution of the Lagrangian version of the LWR model, see [37].

Definition 1.2.3. Given {z} (t)}}, solution of (1.1.3), and letting | = 1/N,

define the Lagrangian discrete density as

)X, G (2); (1.2.3)

||P12

and the inverse Lagrangian discrete density as

N-1
yL’N(taz) = Z ij(t)X[jl,(j+1)l)(Z>~ (1.2.4)

<
o
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The coordinate z € [0,1] can be seen as a Lagrangian mass coordinate. As
pointed out in [37], the integer part of ¥ measures how many vehicles are located
to the left of z.

Notice that, while the L! norm of the Eulerian discrete density p" represents

the total mass of vehicles, the L' norm of the inverse Lagrangian discrete density

N

y"N provides the measure of their support. Indeed, given {2 (¢}, solution of

(1.1.3), it holds

N—
O] ony = 2:5“ ) [ (e = X e (0) — 2 (0) = e 0) - o 1),

v

Therefore, if {x}'(t)}}L, satisfy the uniformly bounded initial support condi-
tion (1.0.3), relying on the discrete maximum principle (1.1.10) we deduce that
the corresponding inverse Lagrangian discrete density y“(¢) has a bound in
L*([0,1]) that is uniform with respect to N, for all ¢ > 0.

1.2.1 Cumulative and pseudo-inverse functions

We recall that the one dimensional Wasserstein distance can be defined using the
cumulative or the pseudo-inverse functions, given by Definition A.2.3, as shown

in Proposition A.2.2 see e.g. [63].

Since the discrete density p®" is a probability measure in P.(R), if we apply

Definition A.2.3 to p® we find that its cumulative distribution takes the form:

ﬂmmm:[mfﬂmww
N-1 r € R,
= Z L+ 23 (@ = 25(0)] Xy 0.010) (&) + X (0,400) (),

(1.2.5)

while the corresponding pseudo-inverse takes the form:

z— 7l

Xpox(t,2)= Y [x;y(t) s

J=0

]xwwmw+hmmmmw,zdau

(1.2.6)

Similarly, if we apply Definition A.2.3 to the (Dirac) empirical measure p?V the
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cumulative distribution takes the form
Fyp(t, x) Z I+ DU Xiws0),25110) () + Xfow (@) +00)(2) (1.2.7)

while the corresponding pseudo-inverse takes the form:

Xpox(t,2) Z[ O] xpgeon (2) + [28 (0] Xy (2). (1.2.8)

Notice that the cumulative distribution F e~ is 1-Lipschitz in the z-variable, and

the pseudo-inverse X s~ satisfies
PN (L 2) = PPV X (2)), YN (2) = yPV (1 X (1,2)) V20, 2 € [0,1],
The cumulative function F,z~ then satisfies

pPN(t, Foew (t,x)) = pPN(tx), y"N(t, Fen(t,z)) =y"N(t 2) Vt>0, zeR.

1.2.2 Convergence results of the cumulative and pseudo-

inverse functions

We recall now some results, first given in [32], about the limits of Xz~ and
X,p.n, as well as of F,ev and F,o.v. The proofs are valid for any initial data
{zV(0)}7L, of system (1.1.3) that satisfies the condition of the uniformly bounded
initial support (1.0.3).

Proposition 1.2.1. Let {z (t)}}L, be solutions of (1.1.3) that satisfy the uni-
formly bounded initial support condition (1.0.3). Consider the corresponding Eu-
lerian discrete density pP" € L>([0,+00) x R;[0,1]) defined by (1.2.1) and the
(Dirac) empirical measure pPN € L*°([0,+00); Wi(P.(R))) defined by (1.2.2).
Let Fp.n, X, e, and F,o.n, X,p.~, be the corresponding cumulative distributions
and pseudo-inverses defined by (1.2.5), (1.2.6), and (1.2.7), (1.2.8), respectively.
Then, the following hold:

i) there exists a non-decreasing function X € L*([0,+00)x[0,1]) such that, up
to a subsequence, both {X e.x} 5 and {X p.v } 5 converge to X in L}, ([0, +00) x

[0,1]);
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E,N(t
x) LN (¢, )
P ) Y t,z
"
pa(t) [ ] o vie) °
e——— 0O
pa(t) ¢&—0 yi @)
RO —— o vy (t) ————0
Pa(t) o ya(t) e—— 0
EHO) EHO) x3(t) EHOEAHO) 0 b4 3 2 1
D,N
po (¢, @)
z§(t) zi(t) x3(t) =4 (bl ()x

Figure 1.1: The Eulerian discrete density, the inverse Lagrangian discrete
density and the (Dirac) empirical measure profiles (N = 4).
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ii) letting F : [0,400) x R — [0, 1] be the map defined by
F(t,z) = meas{z € [0,1] : X(t, 2) <z}, t>0, zeR, (1.2.9)

up to a subsequence, both { Fye.n}n and {F,o.v } 5 converge to F in Li, ([0, +00) X
R).

Proof. See [32, Proposition 1, Proposition 2, Lemma 4] with L = 1, and R = 1

(due to the maximum principle (1.1.10)), using their notation. O

Remark 1.2.1. Notice that, differently from the results in [32], Proposition 1.2.1

s {XpD,N} and {FpE,N} s
NeN NeN NeN

{F pD,N}NeN up to a subsequence, which is obtained relying on Helly’s compact-

here only states the convergence of {X pE,N}

ness theorem. In [32] the authors conclude that the whole sequences {X pEN }NeN,
{X pD,N}NeN converge, exploiting the fact that their atomization scheme for the
FtL model guarantees that X ,p.~v+1(t,2) < X,p.n(t,2) for all t > 0 and 2z € [0, 1].
In turn, by the definition of the Wasserstein distance (A.2.3), the convergence

of the whole sequences {X pE,N}NeN and {X pD,N}NGN yields the convergence of

{FpE,N }NEN and {FpD,N }NEN'

Proposition 1.2.2. According with Proposition 1.2.1-(ii), consider two sequences
{Fen}n, {Fpn}n of cumulative distributions associated to the Eulerian dis-
crete density pP, and to the (Dirac) empirical measure pPN | respectively, that
converge to a function F defined by (1.2.9), which is Lipschitz continuous with
respect to x. For anyt > 0, let p(t) be the distributional derivative of x — F(t,x).
Then the following hold:

i) p(t) € P.(R) for allt >0,
it) 0 < p(t) <1 for almost every t > 0 and x € R,

iii) {pPNYn and {pPN}n converge to p in Li . ([0, +00); Wi(P.(R))).

loc

Proof. See [32, Proposition 3] with L = 1, and R = 1 (due to the maximum
principle (1.1.10)), using their notation. O

Remark 1.2.2. Given a map F : [0,+00) X R — [0, 1], letting p(t) be the distri-
butional derivative of x +— F(t,x), and assuming that p(t) € P.(R), then if we

consider the cumulative distribution Fj,; as defined in (A.2.1), one has

Fyp(x) = F(t,z), for ae. z€R. (1.2.10)
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Lemma 1.2.1. Let {z} ()}, be solutions of (1.1.3), and consider the La-
grangian discrete density p"N € L>(]0,+00) x [0,1]) defined by (1.2.3). Then,
there exists pv € L>=([0,T] x [0,1]) such that, up to a subsequence, {pL’N}
converges to p& weakly-* in L*°([0, +o0) x [0,1]).

NeN

Proof. See [32, Lemma 5] with L = 1, and R = 1 (due to the maximum principle
(1.1.10)), using their notation. O

1.3 Proof of the micro-to-macro convergence

In this section we prove the first main result of this article, i.e. Theorem 1.0.1.
With this goal, we first recall standard tools for studying the Cauchy problem
(1.0.2): the definition of weak solution and classical results of existence and
uniqueness of entropy solutions. Then, after proving a technical lemma we present
the proof of Theorem 1.0.1.

Given the Cauchy problem (1.0.2), we recall the definition of weak and en-
tropy weak solution of (1.0.2).

Definition 1.3.1. A function p € L>(]0, +00) X R) is a weak solution to (1.0.2)
if it holds

L L (et )t 2) + ot xolo(t, 2))ga(t, 0] df o+ [ pa)p(0, 2}z = 0
(1.3.1)

for all p € C°(]0,+00) x R).

Definition 1.3.2. A function p € L>(]0,+00) x R) is a Kruzkov’s entropy solu-
tion to (1.0.2) if it satisfies the entropy inequality

Jo L Tp(t,2) = Mt ) +sign (ot 7) = B)[F(p(t, ) = F()ga(t, )l

+ [ 1p(z) = klp(0,2)dz > 0
(1.3.2)
for all p € C°([0,+00) x R) with ¢ non-negative, and for all constants k € R.

We now present two well-known results about the existence and uniqueness

of the weak entropy solution to the Cauchy problem (1.0.2).

Theorem 1.3.1 (Uniqueness of Kruzkov’s solution, [43]). Assume that the fluz
f(p) is locally Lipschitz. For any given initial data p € L* with compact support,
there exists a unique Kruzkov’s entropy solution p € L ([0, +00)] x R) to (1.0.2).
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Theorem 1.3.2 (Chen and Rascle’s entropy solution, [20]). Assume that the fluz
is genuinely nonlinear almost everywhere, i.e. there exists no nontrivial interval
on which the fluz f(p) is affine. For a given initial data p € L with compact
support, there exists a unique p € L>([0,400) x R) weak solution of (1.0.2) in
the sense of Definition 1.3.1 that satisfies the entropy inequality

L. L lt.2) = Klgult, ) +sian(o(t, 2) = B (p(t, ) = F(R)pa(t, )] didz > 0
(1.3.3)

for all ¢ € C((0,400) X R) with ¢ non-negative and for all constants k € R.

Moreover, p is the unique Kruzkov’s entropy solution to (1.0.2)

In Theorem 1.3.2 we see that, if the flux is genuinely nonlinear almost every-
where, uniqueness of entropy solution is preserved for a relaxed notion of entropy
solution, which does not require that the entropy inequality (1.3.2) be satisfied
at t = 0. This is due to the fact that the nonlinearity of the flux ensures the
existence of a strong trace at ¢ = 0 of a weak solution to (1.0.2) in the sense of
Definition 1.3.1.

We now present the following lemma, which is used in the proof of Theorem
1.0.1.

Lemma 1.3.1. Consider a function f € L'(R) N L>®(R) which is 1— Lipschitz.
It holds

11l ooy < /1M1y -
Proof. Let N € N. Let zy € R and define My = f(zy). Let
My = ([l poe my as N — +oo. (1.3.4)
Since |f| is 1-Lipschitz, notice that for every N € N it holds
|f(z)|> max{My — |r — zx],0} VzeR.
By integrating in space, for every N € N it holds
/R|f(x)|dx > /Rmax{MN — |z — Zn|,0}dx = M3,

By (1.3.4) we recover the result. O
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We are now ready to provide:

Proof of Theorem 1.0.1. Given the Eulerian discrete density p® € L>([0, +00)x
R; [0, 1]) defined by (1.0.1), to ease notation set

FN = FpE,N,

where F,e.~ denotes the cumulative distribution of p®*, and let F(t,z) be the
function defined by (1.2.9), which is equal to the cumulative distribution Fj,)(z)
of its z-distributional derivative p(t) (see Remark 1.2.2).

1. In this step we prove that {pE7N }NeN, up to a subsequence, is a Cauchy
sequence in Li. ([0, 400) x R), in both cases (1) and (2) of Theorem 1.0.1,

loc

and thus it converges in L ([0, +00) x R) to some limit function p €
Lioe([0, +00) x R).

Recall by Propositions 1.2.1-1.2.2 that, up to a subsequence, and for every
T > 0 it holds

T T
. E,N _ ;
M Wi (6, pt))dt = lim |

|FN () = F(1)

dt = 0.
R)
(1.3.5)

LY(

Since 'V, FM are 1—Lipschitz in the z variable, then also the function
FN — FM s 1—Lipschitz in the z variable. Therefore, by Lemma 1.3.1 it
holds

|FN @) - FM(t)HLOO(R) < JIFEN@®) = FM @)l gy YN, MEN, V>0,
(1.3.6)

Notice that since it holds

lim |FN(t,2) — FM(t,2)|= 0, VN,M €N, Vt>0,

r—+o00
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then integrating by parts we find

[(P¥ (@) = o @)oo
:/R(ZE (FN(t,2) = FM(t,2)) (p5N (¢ ) = pPM (8, 2)) da

= —/]R <FN(t,x) — FM(t’x)) ;; (pE’N(t,x) . pE,M(t’I)> dr
< [|FY@0) = POy TV (077 (1) = 25 (1 R)

<[PV - FM(t)HLOO(R) TV (PPN () R) + TV (%M (); R) |

By Holder inequality and by using (1.3.6), we thus get that for all @ C R
bounded, for all N, M € N, and for all ¢ > 0, it holds

[ ) = om0

L)
< meas() o2 (1) = o2 (1),
< meas(Q) || F¥ (1) —FM(t)HLOO . TV (PPN (1);R) + TV (07 (); R)]
< meas(Q)\ /I V() = Y1) 3gs) [TV (77 (0:R) + TV (71 (1) R) |

(1.3.7)
The further treatment of this inequality is now adressed in the two cases

(1) and (2) in the two following steps.

1.1. We assume that TV (p®(0); R), TV(p®M(0);R) < K, for all N, M €
N for some Ky > 0 independent of N, M. Because of the BV con-
tractivity property enjoyed by pZ and pPM (see [32, Proposition 5])
and relying on the hypothesis on the total variation of p®¥(0) and
pEM(0), it holds

TV (pPN () R) + TV (p5M (1);R) < TV (0N (0); R) + TV (o™ (0); R)
S 2K2

Thus, we deduce from (1.3.7) that, for all N, M € N, and for all t > 0,
it holds

E.N EM (|2
o0 — o)

< 2K, meas(1 \/HFN MO 1 )-

(1.3.8)
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1.2.

Notice that, by Holder’s inequality, we have

[ TES G = )] i

< U aory [VITF¥ @) = FYE) 11y

- ﬁ\/ [ NF @) = ) .

L2([0,T]) (139)

Then, integrating (1.3.8) in the time interval [0, 7], and using (1.3.9),
we find that for all N, M € N there hold

2
LY (Q)

[l - o)

< 2K, meas(Q)\/T\//OT IEN(E) = FM (1) gy dt. (1311

dt (1.3.10)

Finally, by Holder’s inequality, we derive from (1.3.10) that

[P = 5 @), o
< /2K, meas(Q) -Ti(/OTHFN(t) O] dt>4.
(1.3.12)

Therefore, in case (1) the convergence result (1.3.5) implies that, for
every T > 0, and for any bounded © C R, {pE’N}NeN

sequence in L' ([0, T] x Q). Now consider an increasing sequence T}, > 0

is a Cauchy

and a sequence of bounded domain €2,, such that U,([0,7},] x Q,) =
[0,+00) x R. Then, by a diagonal argument we can repeatedly extract
subsequnces of {pE’N }NeN that have the Cauchy property on each
domain [0,7},] x Q,, and thus we construct a Cauchy subsequence in

LL ([0, +00) x R).

loc

We assume that (V2) holds. Observe that, for any fixed T > 0, and
for all N, M € N, it holds

supp(p” N (t) — p"M (1)) C Qrvm Vtel0,T], (1.3.13)
where

Q= [min{ag (0), 25" (0)}, max{z N (0), 23 (0)} + Tmax]
(1.3.14)
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Then, because of the condition (1.0.3) on uniformly bounded initial
support, it follows that there will be some constant K7 > 0 such that,
for all N, M € N, it holds

meas (supp(p” (t)—p"M(t))) < meas(Qryar) < Kr, Vtelo,T].
(1.3.15)
Moreover, relying on (1.3.13), and using the discrete Oleinik estimate
given in Lemma 1.1.1 for p%" and p®M it follows that, for any fixed
T,0 > 0, there will be some constant K;7 > 0 such that, for all
N, M € N, it holds
sup {TV (pE’N(t); ]R) + TV (pE’M(t); R)} =
te[s,T]
= Sgp} [TV (PE’N(t); QT,N,M) + TV (pE’M(t); QT,N,M)} < Ksr,
tels,T
(1.3.16)
(see [31, Proposition 3.3] and [49]). For any given bounded 2 C R,

with the same analysis in (1.3.7), (1.3.8), it thus follows that, for all
N, M € N, and for all t € [0,T], it holds

E,N EM |2
o0~ o)

< meas(Q) sup [TV (0¥ ():R) + TV (05 (1 R)] TFN () — P (0] 11

te[s,T]

< 2K pmeas(Q), /| FN(8) — FM(t)]] 1 -

(1.3.17)
Integrating in the time interval [d, 7] and using the Holder’s inequality
as done in the previous step we then find that, for all N, M € N, there
hold

2
L1(Q)

[ o=@ = 0P

)

dt (1.3.18)

< 2K meas(sz)ﬁ\/ /5 ' IFN() = FM()| gy dt,  (1.3.19)
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Observe now that, for any fixed € > 0, setting d. = €/(2 meas(£2)), we

I
0

On the other hand, the convergence result (1.3.5), together with (1.3.20),
implies that there exists N(¢) > 0 such that

have

PPN (1) — P (1)

dt <
LH(9)

VN, M eN. (1.3.21)

Y

NN e

dt <

. . YN,M>N(e). (1.3.22)

L@ = o0

NN e

Therefore, combining (1.3.21)-(1.3.22) we find also in case (2) that,
for every T' > 0, and for any bounded €2 C R, {pE’N}NeN is a Cauchy
sequence in L'([0,T] x Q). Then we conclude as in case (1) that by
diagonal procedure we can estract a Cauchy subsequence {pE’N }
in LL ([0, +o0) x R).

NeN

Summing up, by treating the cases (1) and (2) in 1.1. and 1.2., respec-
tively, we get in both cases that the sequence {pE’N }NeN converges in

Ll

loc

Ll

loc

([0,4+00) x R), up to a subsequence, to some function function p €
(10, +00) x R).

. In this step we show that the function p determined in the previous step is

the weak entropy solution of the Cauchy problem (1.0.2), and that actually
the whole sequence {pEvN}NeN converges in L ([0, 4+00) x R) to p.

Recalling that {pE’N (O)}NGN weakly converges to p by hypothesis (1.0.4),
and following the same procedure as in Step 1-Case 1 of the proof of [31,
Theorem 2], we deduce that p is a weak solution to (1.0.2) in the sense
of Definition 1.3.1. Furthermore, it also holds that p satisfies the entropy
inequality (1.3.3) by applying the exact same computations as done in the
part (vi) of the proof of [32, Theorem 3|. In turn, this implies that p is
a weak entropy solution of the Cauchy problem (1.0.2), thanks to The-
orem 1.3.2. By merging Step 1 and Step 2, we conclude that, up to a
subsequence, { pEN }NGN converges in L{ ([0, +00) X R) to the unique weak
entropy solution of (1.0.2). Since, with the same arguments, we can show
that any subsequence of {pE7N }NeN admits a subsubsequence converging
to the unique weak entropy solution of (1.0.2), it follows that the whole
sequence { pEN }NeN converges to p, thus completing the proof of the theo-

rem.
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Remark 1.3.1. If p € BV (R) satisfies the assumptions of Theorem 1.0.1, relying
on the analysis performed in the above proof one can derive the convergence rate
for the initial Eulerian discrete density p®*(0) associated to the atomization
scheme introduced in [32, (19a) and (19b)]), which is defined as follows.

Denote by Ty < Tmax the extremal points of the support of p. Consider the

following discretization scheme: set
L%év(O) = 'fmin

and recursively

x 1
~N _ .
2;(0) =supqz e R: / dy < — 5, =1,.,N
; (0) p{ x;&lm)p(y) y_N} j

It is possible to give a convergence rate of such discretization scheme with
respect to the L' norm in Eulerian coordinates. It has been proved in [32, Propo-
sition 4] that it holds

As shown in Step 1 in the proof, applying the inequality (1.3.7) at ¢ = 0 for
Q = [2{7(0),2Y(0)] and by the condition of the uniformly bounded initial support
(1.0.3), we get

< \/2 — CL’N O))TV P, HFN Fﬁ 1%1(]1{) < N?/4

R ORI

where C' = C(K,TV(p;R)) is independent of N, and K being the constant
corresponding to the condition of the uniformly bounded initial support (1.0.3).

Remark 1.3.2. Tt can also be proved that the sequence of the corresponding em-
pirical measures {pD’N }NeN where pPV is given by (1.2.2) also converges in
L110C

that

/OTWMD,NW@)M /OTW1<pD7N< PPN (1)) dt + / (PPN (8), p(t))dt.
(1.3.23)

([0, +00]; W) to the unique weak entropy solution p of (1.0.2). Indeed, notice
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Notice that it holds

lNl

EN( D.N( = v [Ty
/|X - X )|dz:2%)yj /jl [z — jlld= Zx]H — N(t)
J:
[
=5 (a0 — 25’ (0).
Therefore it holds

T T(zN(0) — 25 (0) + vimaxT)
XE7N _ XD,N < N 0 max
|15 2) = X2 )z < B

and, by the condition of the uniformly bounded initial support (1.0.3), it holds

T

Jim Wi (pP N (t), pP N (t))dt = 0. (1.3.24)
By Poincaré’s inequality, for some C' > 0 independent of N and for 2 C R
compact such that supp(p®¥(t) — p(t)) C Q for all t € [0,T], for instance by
choosing 2 = Qr where Qr is defined by (1.3.14), it holds

[ W @), ple)de < C [P~ p (13.25)

0

L1([0,T]xR)

Now consider (1.3.24), (1.3.25) and Theorem 1.0.1. By (1.3.23), it holds

im [ Wi (PN (1), plt))dt = 0.

N—+o0 .Jo

1.4 Proof of stability of Eulerian density

In this section we provide a stability result in both the Wasserstein norm and
in L' for two different Eulerian discrete densities. In the rest of the paper, we
compare two solutions {z} (¢)}}L, and {Z}(t)}}L, of the FtL model (1.1.3) and
the corresponding Eulerian discrete densities p” and p¥" defined by (1.2.1).
The goal of this section is to prove Theorem 1.0.2.

We now present three propositions. They lead to the proof of the theorem,
that is postponed at the end of this section.
Proposition 1.4.1. Let two sequences of configurations {xj —0 {:C J 0, in-
dexed by N € N, be given. Assume that N = N for all N € N. Consider the
corresponding Eulerian densities pPN, pBN € L®(R) defined by (1.2.1). Then it
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holds

N-1

Wi(p™N, pPN) <23 | — a5 — (&40 — &),
=0

Proof. Fix j =0,...,N —1 and z € [jl,(j + 1){). Recalling (1.1.6), we have

‘x — +(z—jl)( —y])‘

N N, 2]l N N ~N
) =T+ —— ] (%H Titq (xj —xj))i

N N _ =N N _ =N
< ‘xj ’+’ Tip — Ty — (@5 — I )‘
N _ =N N N -N
<2 ‘x] =& = (T — $j+1)‘ + ‘%‘H ~ Tt
N-1
~N N
“Tk — (23 —$k+1)’ + ’xN
k=j

where in the last inequality we repeatedly make use of the triangular inequality

=N N =N _
‘xk —xk‘<’xk — 7y — (201 — Th ‘—I—’ka T k=j5+1,...,N—-1

Therefore, by summing in j, it holds

=0

.

N-1 N—-1N-1
Sl =+ (2=l (v —%)\ﬂ(z .\xﬁ—:ﬁﬁ—(af?ﬂ—fﬁl)\)+N\x%—a?%(
N

We are now ready to prove the result:
1 1 N-1
/0 X e (2) — Xpen(2)|dz = /0 S = a4 (2= (v = 0)| xprgeon (2)dz
j=0

1
<
0
;Z‘ _ya

2 -

2]§1 ‘yj — U ‘JFN’ —5%‘ X[t G+ (2)dz

o

L1([0,1])
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Proposition 1.4.2. Let {z}'(t)}}_ {2} (t)}], be solutions of (1.1.3), indexed
by N € N that satisfy the condition of the uniformly bounded initial support
(1.0.3). Consider the corresponding Eulerian discrete densities p©~, p¥N €

L*([0, +00) x R) defined by (1.2.1). Then for all T > 0 it holds

sup Wi (p™ (1), 5 (1)) < Wi(p™™(0), 577(0))

te[0,7)
N-1
+2LT Y [2j41(0) — 2(0) — (241(0) — 2;(0))]-
=0
Proof.

Step 1. Set j =0,...,N—1and z € [jl,(j + 1){). In this step we find a bound for

while for 7 =0,..., N — 1 it holds

0 =20 = 0 = 20 + [ oo 1) — ol )i

Thus, for j = N —1 and z € [1 —[,1) it holds

Pn-1(t) ﬁ%q(t)

) = e - )

m%_1<t)—a?%_1(t>+(z—1+l><Nl - )‘

(@ (1) — #N_, (1)) <1 _

(x%_l(()) — &N _,(0) + /Ot(U<PJNV—1(5)) - U(ﬁ%—l(s)»d‘g) <1 - ,2_114_1)

= (o - 30)
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and therefore it holds

w1 (t) = I 1 (t) + (2 = 1+1) (p%_ll(t) - ﬁ%—i(ﬂ)‘
z —l1+l> + < _ll+l(a:%(0) _f%(()))|

IA

(2, (0) — #Y_,(0)) <1 _
i (1 B 7”) 1o 5)) = oY (5)) s

e )

< pN_1(0)  p_1(0)
+ L/O ’p%,l(S) - 5%71(5)‘ ds.

where in the last inequality we have used the Lipschitz continuity of the
velocity, the fact that

_z—1+l<

1 <1 Vzell-L1],

and the identity

. z—141 z—1+1 .
- (1= 2 ) 2 - a)

- 1 1
—sa =100 (G )

With similar computations, we have that for j = 0,....,N — 2 and z €
i, (j + 1)1) it holds

xjy(t)—:ij.v(t)Jr(z—jl)( L1 >|

py () (1)

(@(0) - 2 (0)) (1 z ‘ﬂ) 22N (o) - &, (0)

[ l
# (1= 250 ([ o) - ot o)

I ([ @oale) = o (9))ds)
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and therefore it holds

2 (t) = 25 (1) + (= — 1) ( le(t) - ﬁN1<t>> |

0= a0 (1- ) + 25 @0 - o)
HL [ o) = 5 )]+ [oa(e) — )] s

0 =0+ =) (v = vy )|+ 22 10 = 0 .

where in the last inequality we have used the Lipschitz continuity of the
velocity, the fact that

—jl —Jl
1—Zl]§1 and legl Ve 5l (j+ 1)1,
and the identity
N z—Jl z— gl N N ) 1 1
@ =) (1- 5 8) 25 - e = - - (-
Pi P

Step 2. By definition of the pseudo-inverse given in (1.2.6), using the bounds found
in Step 1 and using Proposition 1.1.1, it holds

/|X BN ( XEN (Z>|dZ
1N 1 i . 1 1
/ —Z; () + (2 — jl) <p§v(t) - ﬁé\[(t)>‘X[jl,(j+l)l)(Z)dZ
/1 5:?[(0) + (2 —jl) (pévl(O) - ﬁf1(0)> ' Xt G+ (2)dz

1 e N-1
+2L/0 /0 2 ‘pﬁv(s) - ﬁ;'v(s)‘X[jl,(j—i—l)l)(Z)dez.
7=0
By Proposition 1.1.1 and integration, it holds

/‘X ENt) XEN (z)\dz

oLt =1 ‘ N

< HXPE,N@ ~ X (0) 57 (0) =7 (0)].

vy TN 2

J=0
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Notice that

L*([0,1])
1 N-1

N-1
= Y1 0) - 7O [ e ()= = MAUREAC]

Therefore, it holds

| X () = Ko (1)

Li([0,1])
< [ Xpen (0) = Xm0 (0)

+ 2Lt HyL’N(O) )

L([0,1]) Li([0,1))

From Definition A.2.2, we restate the inequality in terms of of the Wasser-

stein distance:

Wa(p™ (1), 75N (1)) < Wa(p™ (0), 5N (0)) + 2Lt [y (0) — 7 (0)

LY([0,1])

By taking the supremum in the time interval [0, T] for arbitrary 7" > 0 we

have the result.

]

Proposition 1.4.3. Assume v satifies (V1). Let {x} (t)} o {2 (t)} L, be solu-
tions of (1.1.3), indexed by N € N. Consider the corresponding Eulerian discrete
densities p=V , BN € L>(]0,+00) x R) defined by (1.2.1). Define

Qr(pPN, PN = [min{a (0), 20 (0)}, max {2} (0), ZN(0)} + Tvmax| . (1.4.1)
Define

WP = sup HFN

t€[0,T]

L'(R)
Consider the following two cases:

1. Assume that TV (pE’N(O) R) TV (~EN(O) ]R) < K for some K > 0 inde-
pendent of N. For all T > 0, it holds

2

~E,N
Ol 2 @

sup |77 1) ~ 7
t€[0,T)

< meas(Qr(p™N, pPN)) [TV (07N (0); R) + TV (57V(0); R) | VIWswe.
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2. Assume that assumption (V2) holds. For all §,T > 0, it holds

2

sup o4~ 770

te[s,T LY(R)
< meas(Qz(pP, jEN)) lsup TV (pE’N(t); ]R) +sup TV (ﬁE’N(t); R)] VIsup,
t>6 =)

Proof. To ease notation, denote

FN = FE,N and FN = F~E,N.

p p

Since FN and FN are monotone non-decreasing and 1—Lipschitz, then the
function FN — F'N is 1—Lipschitz. Therefore, by Lemma 1.3.1 it holds

I A \/HFN — FN VN eN. (1.4.2)

LY(R)

Omitting the time variable since no dynamics are involved, notice that since

it holds

lim |FN(z) — FN(z)|= lim |[F¥(z) - FN(z)|=0 VN €N,

r—-+00 T——00

then by integration by parts it holds

LN @) = P @)Pdn = [ (FN @)~ FY(@) (05 @)~ 57 (@) da

= [(FY@) = FN@) o (0P ) — 95 () da
<[P = B TV (Y - 57ViR)

[P P [TV (P ) TV (5255

L>®(R

By L? inclusion and by using (1.4.2), we thus get that for all @ C R bounded,
for all N,7 > 0 and for all ¢ € [0, 7] it holds

2 2
E,N _ ~EN < meas(Q) HpE,N . pE,N

Q) = L2(R)
< meas(12) HFN — F'NHLOO(R) [TV (pE’N;R) +TV (ﬁE’N;R)}

Jo

< meaS(Q)\/HFN — FN

b [TV (5 R) + TV (7 R)]



1.4 Proof of stability of Eulerian density 43

Now notice that for all N,7" > 0 and for all ¢ € [0, 7] it holds
supp(p™ N (t) — g7 (1)) € Qr(pN, p5)

where Qp(pP, pP) is defined by (1.4.1). To ease notation, in the rest of the
proof we simply denote it as Q7. Thus, for all N,7 > 0 and for all ¢ € [0,7T] it
holds

a0

HpE,N(t) _ ﬁE7N(t) e = HpE,N(t) —5

. (1.4.3)

Therefore, by LP inclusion it holds

BN _ GBN 2
L1(R)

< meas(QT)\/HFN — FN

TV (p"N;R) + TV (57V;R)| .

Hp L'(R) {

The further treatment of this inequality is now adressed in the two cases (1)

and (2) in the two following steps.

Step 1. We assume that TV (pE’N(O);R> , TV (ﬁE’N(O);R) < K for some K > 0
independent of N. We use the contractivity property in time of the total
variation of pP" and p&V (see [32, Proposition 5]). Thus, for all ¢ € [0, 7],
it holds

2

DR 0] .

< meas(Qr) {TV (pE’N(O); ]R) +TV (ﬁE’N(O); R)} \/HFN — N

L\(R)

By taking the supremum in time, the first part of the proposition holds.

Step 2. We assume that (V2) holds. Fix § > 0. Due to Lemma 1.1.1 we know that

sup [TV (pE’N(t); R) + TV (ﬁE’N(t); R)}

>3

is uniformly bounded with respect to N for an arbitrary § > 0, see [31,
Proposition 3.3] or [32, Proposition 6]. Thus, for all ¢ € [d, T, it holds

2

DR 0] .

LR

< meas(Qr) [sup TV (pE’N(t); R) +sup TV (ﬁE’N(t); R)] \/HFN — FN

t>6 t>6

By taking the supremum in time in the interval [§, T], the second part of
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the proposition holds.

We are now ready to prove the main result of this section.
Proof of Theorem 1.0.2. To ease notation, denote
FN = FpE,N, FN = FﬁE,N.

The proof is based on the concatenation of the above propositions. Notice
that the first part of the theorem is proved by Proposition 1.4.1 and Proposition
1.4.2. Indeed, applying Proposition 1.4.1 for ¢t = 0, it holds

Wi (05N (0), 05V (0)) <2 Y laya(0) = 2,(0) — (&,11(0) — (). (1.4.4)
Therefore, if it holds
lim Z |7j+1(0) = 2;(0) = (%;42(0) = ;(0))[ = 0,

then, by (1.4.4) and Proposition 1.4.2, for all 7' > 0 it holds

lim sup Wi(p™™ (1), p"" (t)) = 0
N=+400 te(0,77]
and thus the first part of the theorem is proved. Now Proposition 1.4.3 shows
that as a conssequence, recalling Definition (A.2.2), also the second part of the
theorem holds.
O



Chapter 2:

First-order cooperative systems un-

der persistent excitation

Studying the self-organization and emergence of patterns derived from col-
lective dynamics has gained significant prominence in applied mathematics. In
particular, an increasing body of research has focused on achieving a detailed
mathematical comprehension of multi-agent systems, where the goal is to un-
derstand the underlying mechanisms that drive the emergence of consensus. In
simple terms, consensus means that all agents arrive to an agreement, as for in-
stance arriving to a unanimous vote in elections or forming a unanimous opinion
on a subject. Applications of such models are found in a wide variety of fields,
such as in aviation, robotics, social sciences, finance and biology [6, 9, 23, 40, 41,
61, 65].

First-order cooperative models are of the following form:

>

Do), ai(t) - (2(t) —@i(t))  i€{l,...,N} (2.0.1)

i=1

@(t) =

=|

Here, we consider the evolution of N > 2 agents identified as points in a config-
uration space, in our case the Euclidean space R?. The position z;(t) € R? may
represent opinion, velocity or other attributes of agent i at time ¢. The (nonlin-
ear) influence function ¢(z;(t), z;(t)) is used to quantify the influence of agent j
on agent i, where 7,5 € {1,..., N}. The term J; is a scaling parameter. In the
classical case, the function ¢(z;,x;) is symmetric and A; > 0, [30, 42]. The main
property that helps in the analysis of such a model is precisely the symmetry
of the influence function with respect to ¢ and j. Indeed, for general symmet-
ric influence functions, the mean value is conserved. The system is cooperative

and if the influence function is uniformly bounded in time from below by some

45
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strictly positive constant, we then have that the dynamics converges to the initial
mean state. Such a symmetry in the influence function allows the use of spectral

analysis and [>—based arguments to study the variance of the system.

However, such a model presents the drawback that the dynamics of an agent
is influenced by the weight of all agents. Indeed, when considering such a scaling,
the internal dynamics of a small group of agents located far away from a much
larger group of agents is negligible. As proposed in [46], a more realistic model

has a different weighting procedure setting

N

N= e
Zl]il ¢($i7$l)

The main feature now is that the influence of agent 7 on agent i is weighted by
the total influence S, é(x;,7;) applied to agent i. However, even in the case
where ¢(z;, x;) is symmetric the resulting model becomes nonsymmetric due to
such scaling, and we cannot therefore rely on standard variance-based strategies
developed in the case of symmetric models. Instead of relying then on L? theory

and thus studying the variance

1 Y )
B = — i — T
(2.2 = g Xl =
one may opt to consider the L* theory and thus study the evolution of the

diameter, which is defined as

dX = max |Z‘1 —Tj (202)

i,5€{1,....,N}
where X = {x;}icq1,. N1

In any case, from the modelling point of view in both of these types of mod-
els, each agent is expected to communicate with its neighbors through a net-
work topology influenced by sensor characteristics and the environment. While
the easiest scenario involves a fixed network topology over time (e.g. [51, 64]),
practical situations often involve dynamic changes, due to factors like commu-
nication dropouts, security concerns, or intermittent actuation. As a result, the
time-varying network topology gives rise to potential connection losses between
agents, hindering the attainment of consensus. Therefore, when interactions be-
tween agents are subject to failure, it becomes crucial to investigate whether

consensus can still be achieved or not. In order to consider such scenarios we
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then consider models of the following form:

. A :
zi(t) = > My()(i(t), (1) - (2;(t) —2i(t))  i€{l,...,N}
j=1
where now the terms M;; : R, — R, represent the weight given to the influence of
agent 7 on agent ¢. They encode the time-varying network topology and account
for potential communication failures that can occur in the system (e.g., when
they vanish). In order to quantify these possible lack of interactions, we recur to

the condition of persistent excitation (PE from now on):

Definition 2.0.1 (Persistent excitation). Consider a function M € L>®(R;R,).
Let T, > 0 be given. We say that the function M(-) satisfies the PE condition
with parameters p, T if it holds

t+T
/ M(s)ds>p  Vt>0. (PE)
t

We further define the space of functions M € L*(]0,+00);[0,1]) satisfying

such a condition as

Moy, = {M € L>=(]0,4+00);[0,1]) s.t. /tHT M(s)ds >pu Vte [0,—1—00)} :

(2.0.3)

Imposing the PE condition on a function M € My, means that such a
function is not too weak on any given time interval of length 7. In both this
chapter and in the next one we give results where we impose the PE condition
on the scrambling coefficient (see e.g. [58]) of My = {M,;}; jeq,..ny, defined as

follows

N

1
My) = i —
n(My) i,jer{I}}.I},N} N

min{ M;p, Mjx}. (2.0.4)
k=1
By letting M;; > 0 for all i € {1,..., N} we get the following interpretation of
the scrambling coefficient: the scrambling coefficient is positive if and only if for
every i,7 € {1,..., N} either i and j are interacting with each other or if they
are both following a third agent £ € {1,..., N} \ {7, j}.
This chapter is structured as follows. In Section 2.1 we present the class of
finite-dimensional models that we consider and prove that consensus is reached

under suitable PE conditions related to the weight kernels. Then, in Section 2.2
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we consider the infinite dimensional setting in the classical mean-field limit and
prove that consensus is reached using the results from the previous section, and
then cite the result in [11] showing that consensus is reached also in the graph

limit.

2.1 Consensus in the finite-dimensional parti-

cles system

In this section we first present the class of models we treat and then provide two
main results. In Theorem 2.1.1 we prove that we have exponential consensus
if we impose the PE condition on the scrambling coefficient of {M;;};jeq,..n}
as defined by (2.0.4). In Theorem 2.1.2 we prove that we have consensus if we
impose the PE condition only on the weight kernels A;; without any condition
on the scrambling coefficient, and thus generalizing the previous result.

We consider the following Cauchy problem

{ IE?) - ?V Ve Mig(0)655(t) - (z;(8) — () 120, (2.1.1)

where x; € R", where

¢ = o(|z; — ) Vi,je{l,...,N}
and where

1 in the case where we consider equal weights
A= . (2.1.2)
ul in the case where we consider normalized weights

leil il

We assume that the map ¢(-) : Ry — R and M;; : Ry — [0, 1] satisfy the
following hypotheses:

The function ¢(-) : Ry — R is locally Lipschitz continuous, positive

(H1

and bounded from above by some ¢, > 0.

The weight kernels M;; : Ry — [0,1] are £*-measurable for all i, j €

(H2) {1,...,N}.

We define the collection of solutions {z;}¥; where ; is the solution to system



2.1 Consensus in the finite-dimensional particles system 49

(2.1.1) for all i € {1,..., N} as
X(t) = {z()}Y, Vt>0. (2.1.3)
We now define the concept of consensus in the first-order model (2.1.1).

Definition 2.1.1. Let X € R™ be a solution of system (2.1.1) and the cor-
responding diameter as defined in (2.0.2). We say that the system converges to

consensus if it holds

lim dx(t) = 0. (2.1.4)

t—+00

By recalling that dx(0) corresponds to the diameter as defined by (2.0.2), a

common assumption is given by:

(H3) For some ¢pin > 0, it holds ¢(x) > ¢min > 0 for all z € [0, dx(0)].

We now define here for convenience some terms that are recurrently used in
the rest of the chapter. Define

¢Omax in the case where \; =1

o (2.1.5)
") 2 i the case where A = I
and
Omin  in the case where \; =1
gmn - in the case where \; = SN éa

2.1.1 Consensus under PE condition on the scrambling

coefficient

In this section, we prove a similar theorem that has been proved in the con-
text of graphons in [11], with the PE applied to the scrambling coefficient of
{Mi;}ijequ,.. Ny as defined by (2.0.4). We follow the same methodology as in [11]
to prove a slightly more general result and provide a simpler way to conclude that
consensus holds. We then provide another strategy to conclude that consensus
holds by treating the “worst case scenario”, which is the main strategy followed

in the next chapter.
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Theorem 2.1.1. Let T, > 0 be given. Let X € R™ as defined by (2.1.3) be
a solution of system (2.1.1) with initial data X° € R™ and the corresponding
diameter dx(-) defined by (2.0.2). Assume that the influence function ¢ satisfies
hypotheses (H1) and (H3). Assume that it holds

/tHT n(My($))ds > VE>0 (2.1.7)

where n(Mny(-)) is defined by (2.0.4) and where {M;;}; jca
Then for system (2.1.1) it holds

ny satisfies (H2).

.....

dx(nT) < dx(0)e ™ Hmnt ¥p e N

where Ky, is defined by (2.1.6). In particular, consensus in the sense of (2.1.4)

18 reached.

Proof. The function

dx(t) = P — X
x(t) Mefﬁ??imm Zj
is Lipschitz, because it is the pointwise maximum of a finite family of Lipschitz
equicontinuous functions. By Rademacher’s theorem, it is differentiable almost

everywhere. By Dankin’s theorem (Theorem A.1.2) it thus holds

where I1(t) € {1,..., N} x {1,..., N} represents the nonempty subset of pairs of
indices for which the maximum is reached. Fix arbitrary p,q € II(t). For easier
notation, from now on we hide the dependence on time. Notice that for the case

of system (2.1.1) with normalized weights it holds

d 1
<dt<xp_$q)7xp_$q> = Zk ¢ : ZMPJ¢PJ xjvxp_xq>
1 Pp

Zk 1¢kz 0i%aj (Tj — Tg, Tp — Tg) -
q

By Lemma A.1.2 it holds

(xp —xj,xp —xg) >0 and (x; —x4,xp—2,) >0 Vje{l,...,N}
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Therefore, by (2.1.6) it holds
d
%(mp — Tq), Tp — Ty
N N
Z My (xp — x5, T, — Tg) + Z Myj (x5 — g, Tp — Tq)
j=1 7j=1
N N
Z (zp _xjvxp_xq>+Zqu<$p_xqv$p_$q> :
j=1 j=1
(2.1.8)
By adding and substracting £zi» SN min {M,,;, My;} (x5, @, — ), we get
d Kmin N Kmin N
—(zp —xy), —:L'>§— > Myi (xp, 1y — Tg) + — > Myj (T, 2p — Tg)
<dtp q)sTp = Lg Nj:1pjppq NjZIqupq
K. N
+ N [Mp; — min {My;, Mg; }] (zj, xp — 4)
j=1
K. N
+ N Z[mm{ pis Majt — Mgj) (@5, 2p — x)
j=1
Kmin al
TN ;qu (Tp — g, Tp — Tq)

Now, notice that

N
Z My — min { My, My;}] (x5, 2p — 24) SZ My; — min {M;, My;

and

N
J=1 J=1

By using Lemma A.1.2, we have

Z[mln{ Pj> qj}_qu]<Ijvxp_xq>§me{ pis Mgjt — Myjl

max <xja$p - xq> = (xp,xp - xq) 5 _min (xj,xp - xq) = {
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Therefore it holds

d Kmin N .
<dt($p_xq)axp_xq> < - N me{ij7qu} (Tp — Tg, Tp — Tg)
j=1

Kmin
N

< - n(My) <Ip — Tg, Tp — xq)

This is valid for every pair p,q € I1(t) and therefore it holds

d
— <

2[(min

n(My)di(t) — Vt>0.

We obtain therefore the following differential inequality

d Kiin
— < — > 0. N

Integrating in [0, 7] and using (2.1.7) gives
dX(T) S dX(O)emein foT n(Mp (t))dt S dX(O)e_KminM

Consider now any interval [nT, (n + 1)T] for any n € N and apply the same

estimates to get
dx(nT) < dx((n+ 1)T)e mint
and therefore
dx (nT) < dx(0)e " mn# — 0 asn — +oo. (2.1.11)

]

Remark 2.1.1. We note that the main difference between this proof and the ex-
isting proofs in the literature as in [47] lies in the fact that it does not require
the adjacency operator to be stochastic. We replace this requirement by using

Lemma A.1.2 in the one-dimensional setting in (2.1.9).

An alternative proof of Theorem 2.1.1 is to identify and treat the “worst case
scenario”, i.e. a specific profile of the A;; which, informally, would make the
diameter decrease as less as possible. This approach is taken in Chapter 3 in
the of case of second-order models, but we include here the approach applied to

first-order models.
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The profile corresponding to such a scenario is given by M*, which we now

define. We then prove the result in Proposition 2.1.1.

Definition 2.1.2. Let T, > 0 be given. Define M* € My, such that for all
t >0 and for alln € N it holds

{0 te(n =0T, nT —p) (2.1.12)

1 t € [nT — u, nT).

Definition 2.1.3. Let M € My, where My, is defined by (2.0.3). Define
DY : R, — R to be the solution of the following dynamical system:

{gtpg‘g(t) = — KoM (t) DY (t) (2.1.13)

DY(0) = d%
where Ky 1s defined by (2.1.6).

Proposition 2.1.1. Let T, p > 0 be given. Consider the space of functions Mr,,
defined by (2.0.3). Consider DY given by Definition 2.1.3. Let M* € My, be
defined by (2.1.12). Then, it holds

sup {D () | M € My, and DY (0) =d%} =DY¥'(t) vt >0.
Proof. We first consider ¢ € [0, — p]. Let M € My, be fixed. It holds
M(t) > 0= M*(t).
By integration, it also holds
t t
/ M(s)ds >0 :/ M*(s)ds.
0 0
We now consider ¢t = T'. Since M € Mr,,, then it holds
T T
/ M(s)ds > ,u:/ M*(s)ds.
0 0
Let finally t € [T — p, T. Since M(t) < 1, it holds

T
0

/OtM(S)ds:/ M(s)ds—/tTM(s)dsZu—(T—t):/OtM*(S)dS'
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Consider now any interval [nT, (n + 1)T] for any n € N and apply the same

estimates to prove

/t M(s)dsZ/t M*(s)ds  Vte [nT,(n+1)T].

iT 3T

By concatenation of such estimates, it holds
t t
/ M(s)ds > / M*(s)ds V>0
0 0

By integrating the linear (time-varying) system (2.1.13) and observing that

the function

—KmninT

T +—e

is monotonically decreasing, we have
M 0 —Kumin [} M(s)ds 0 —Kumin [} M*(s)ds M*
DY (t) = dye 0 < dxe 0 =dy ().

Since this holds for arbitrary M € My, then the result follows. m

Alternative consensus proof to Theorem 2.1.1. By following the proof, we find
(2.1.10). We thus study the following system

Ldx(t) < —n(My(t)) - Kpindx(t) — ¥t>0
dx(0) = d%

,,,,,

D% be the solution to the following differential equation

4D (t) = —Kuint( My (1))D%(t)  VE>0

10)— (2.1.14)

Notice that it holds

jt (DX (t) = dx(t)) = =Kuminn(My(1)) (DX (t) — dx(t)) Vi =0.

and therefore by using Gronwall’s inequality it holds

DL(E) — dx (t) > (D4(0) — dy (0)) e~ Komin Jy 1IN &)s — gy >,
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Therefore,

dx(t) < D% (t) Vit > 0. (2.1.15)

We now compute DY (t). It satisfies for j € N

. 0 tel0,T -
ij (1) = * [ ]
¢ _Kminpé\(/[ (t) le [T - K, T]

with initial datum
DX ’ (0) = dg{-

It then satisfies

Then

By recalling that the diameter of cooperative systems is non-increasing, by in-

duction we have
dx(nT +T) < dx(nT) < dx(0)e~ " mint,

Now, notice that by (2.1.10) it holds

d
—dx(t) < t>0.
7 x(t) <0 vVt >0
Then,
tlg-noo dX(t) =0
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Remark 2.1.2. We emphasize that, although it is longer than the more direct
proof we have provided in Theorem 2.1.4, it shows to be an efficient way to deal
with second-order models. Indeed, as seen in the next chapter, it helps us in the
sense that we get an “on/off” behavior, and thus restrict ourselves to perform
classical techniques of second-order models in the time intervals where we allow

full communication.

2.1.2 Consensus under PE condition on the weigths

In this section we present a result in one dimension where we impose a persistent
excitation condition solely on the kernel weights {Mij}i,je{l,...,N}, unlike in the

previous theorem.

Theorem 2.1.2. Let T, > 0 be given and let N € N. Let XV as defined
by (2.1.3) be a solution of system (2.1.1) with initial data XN° € RY. Assume
that the influence function ¢ satisfies hypotheses (H1) and (H3). Assume that
Mij € MT# foralli,j e {17 ceey N}, i.e.

t+T

M;(s)ds > p Vi,je{l,...,N} (2.1.16)

t

where M;; satisfies hypothesis (H2) for all i,j € {1,...,N}. Then, consensus in
the sense of (2.1.4) is reached.

Proof. In the rest of the proof the results are proved in the interval [0,7]. Then
the same arguments follow when considering time intervals [nT), (n + 1)T] for
n € N. In all of these time intervals, the agents are labeled according to their

initial order at time ¢t = nT" such that
x1(nT) < xo(nT) < ... < axy(nT) n € Ny (2.1.17)

and we emphasize that such a label is maintained in the considered time interval
[nT, (n+ 1)T], even though the order might change.
We now informally present the strategy of the proof, and we identify the

agents with their position on the configuration space R :

o In Step 1 we define the agents {if’"}je{lmN} corresponding to the case
where agents go to the left towards z1(nT') and {:Ef’"}je{l,m, ~} correspond-
ing to the case where agents go to the right towards xy(nT'). Both depend
on n as they are defined on each interval [nT,(n + 1)T]. Informally, they
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correspond to the case where the agents forming the diameter x; and xy

become “frozen leaders”.

e In Step 2 we show that the trajectory of agent x; is always between the
trajectory of :ijL” and the trajectory of irf’”. Moreover, if initially at time
nT there is no consensus, then the trajectory is strictly bounded by x;(nT")

and zy(nT'), corresponding to the diameter at initial time nT.

e In Step 3 we show that consensus is reached by mainly using the fact that

trajectories were controlled in Step 2.

As it is used multiple times in the proof, notice that, given K., defined by
(2.1.5), Kyin defined by (2.1.6) and the condition M;; < 1, it holds

Kmin N Ak al
My < TS Myby < Knex Vi€ (L. N}, (2.1.18)
j=1

=1
Also, recall that by (2.1.10) it holds

d
Zds(t) <0 Vt>0.
dt x(t) = =

We now provide the complete proof.

Step 1 Letn € Ny. In this step we define the agents {i"f’"}ie{l,m,N} and {iﬁ’"}ie{l,m,N}
in each interval [nT, (n + 1)7T] and then provide some maximum/minimum

principle results satisfied by both solutions.

For t € [nT, (n + 1)T], define {#;"" }icq1. vy solution to

ii'Lm(t) - Kmax<xl(nT> - ‘i.zl”n(t))a

i=1,...,N  (2.1.19)
Z™(0) = a;(nT).
and define {isf’"}ie{l,m,N} solution to

E(t) = Kax(an(nT) — 212" (1)),

i=1,...,N. (2.1.20)
Z"(0) = z;(nT)

where the initial data {x;(nT)}icq1,.., v} corresponds to the position of the
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original agents {x;(¢)}icq1,... v} at time t = nT'. In particular, notice that

F"(t) = 2z (nT) and  EX"(t) = 2n(nT) Vt € [nT, (n+ 1)T7.

(2.1.21)

In this step, we prove that their orders are maintained in the interval of
time [nT, (n + 1)T], i.e. it holds

~Ln ~Ln ~L,n

) <zy"() < .. o< aN(t

;n()_ 2Rn()— S J}VM() Vt € [nT, (n+ 1)T].  (2.1.22)
() <3 << a3 ()

Furthermore, we prove the following results:

i) for all s € {1,..., N} it holds for all ¢t € [nT, (n+ 1)T]

z1(nT) < 71" (t) < an(nT) € [nT, (n + 1)T] (2.1.23)
ii) for all 7 € {1,..., N} it holds for all t € [nT, (n+ 1)T
~Ln

it(t) > il ((n+ D)T) and  Z0"4) < 22" ((n+ 1)T).  (2.1.24)

Without loss of generality due to the relabeling process (2.1.17), we focus

on the time interval [0, T]. Notice that for all £ € {1,..., N — 1} we have
that for ¢ € [0, 7] it holds

d (. . S S
2 (T80 = 20°(1) = K (@1 = 253 (8) = Ko (11 = 30°(1))

= _KmaX(jéfl(t) - i'OL’n(t))'

By Gronwall’s inequality it thus holds for all ¢ € [0, 7]
Ty () — 30 (1) = (Tppr — Tp)e Kot VE€{1,...,N —1}

and by the initial ordering (2.1.17) it holds

) <EF() <. <a’(t)  Ytel0,T] (2.1.25)

and we have thus proved the first part in (2.1.22). The second part is



2.1 Consensus in the finite-dimensional particles system 59

Step 2

completely equivalent. Now notice that for all i € {1,..., N} it holds

d

dt ( () - ‘%1) = — Komax (7 (1) — 1) (2.1.26)

and therefore by Gronwall’s inequality and by (2.1.17) it holds
i) — 3y = (T — 7)e Kot >0 Vie{l,...,N} (2.1.27)

and thus proving the first inequality in (2.1.23). The second inequality is
completely equivalent. Now, notice therefore that by (2.1.23) it holds

i~L0()<0 vte[0,T] Vie{l,...,N}

which implies that

i) > (1) Vie{l,...,N}

7

and we have thus proved the first part of (2.1.24). The second inequality is

completely equivalent.

Let n € Ny. In this step we prove that for all i € {1,..., N} it holds

P < a(t) < () Vit e [nT, (n+1)T). (2.1.28)
Without loss of generality due to the relabeling process (2.1.17), we restrict
ourselves to the time interval [0, T]. Before proceeding to the proof of the
statement above, we recall that by the dissipative property of the original

solution {;};cq1,..n} it holds

71 <z(t) < Ty Vte [0,T] Vie{l,...,N}. (2.1.29)
We now prove that it holds

0t < @i(t) Vtelo,T] Vie{l,...,N}. (2.1.30)

1

We have that

> Mg (8)is () (25(8) — ilt)) — Knax (@1 — 77°(2)).

J=1

IS
~
N
B
S
~
v
2\3’
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By using (2.1.18) and (2.1.29) then for all i € {1,..., N} and for ¢t € [0, 7]
it holds

d ~L,0
A CIOREAO)
Ai & Ai &
= S My (00 (1) — ) + | 530 My (0) | (21— (0)
j=1 j=1
- KmaX(a_Cl ~iLO(t>>
> 04+ Kpax(T1 — (1)) — Knax (71 — :Ef’o(t))
— _Kmax(xi(t> - '%zL,O(t))
(2.1.31)
By Gronwall’s inequality it thus holds
zi(t) — 210 (t) > (z; — 27°(0))e Kmnt =0 Wt € [0,T] Vie{l,...,N}.
The first inequality in (2.1.30) is proved. The proof of the second inequality
is completely equivalent.
Step 3 In this step, we show that it holds

lim dx(t) = 0. (2.1.32)

t—+00

Observe that the set of permutations of N indices is finite while the set of
discrete times {7}, }nen is infinite. Therefore, we can choose a subsequence,
which we we still denote by {7}, },en such that T,y > T,,+ T for all n € N,

and reorder the indices only once such that

21(Ty) < 29(Ty) < ... < an(T,) Vn € N. (2.1.33)

From now on, we only treat such a subsequence. Notice that by the contrac-
tiviy property of the support, we have that x;(¢) is bounded both from above
and below for all i € {1,..., N}. Therefore, for all i € {1,..., N}, there
exists z} € [Z1, Zy] such that by choosing again a subsequence {7}, },en that
we do not relabel, it holds

Vie{l,...,N}. (2.1.34)

i aiT3) =
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We furthermore have that
] <azy<...<uzy, (2.1.35)

due to the ordering at the discrete times {7}, },en given by (2.1.33).
Consider the time intervals [T}, T,, + T, n € N. Notice that for an infinite
number of indices n € N we have that

i) either (T, + T) < 5™ (T, + T)

i) or (T, +T) > #5™(T, +T).
By choosing a further subsequence, still denoted by {7, },en, we now con-
sider the following two cases:

i) either (T, + T) < &5 (T,, + T) for all n € N

i) or z(T), + T) > Z5"™(T, + T) for all n € N
and in particular notice that at least one of them holds.

Step 3.1 Consider the time interval [T},, 7,,+7]. Assume that condition i) holds,

i.e.
(T, 4+ T) <Zy™T,+T) VYneN. (2.1.36)

The goal is to prove that (2.1.32) holds. We have two cases.

Step 3.1.1 The first case corresponds to z3 = xj. Then, by construction it
holds

lim dx(7,) = lim xy(T,) —z:1(T,) =0.

n—-+o0o n—-+o0o

Since the function dx(-) is non-increasing, in this case (2.1.32)

holds.

Step 3.1.2 We now focus on the second case, that is 23 > x7. By the choice of
the subsequence {7}, },eny we have that for some k € N sufficiently
big there exists ¢ > 0 such that it holds

Ty —x] > € (2.1.37)
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and
an(T,) >ay+e, x(T,) <zi—€¢ VYn>k.

We now focus on the time interval [T}, Ty + T']. Observe that for
all t € [Ty, Ty, + T] and for all j € {2,..., N} it holds

» (2122) (2124)
(T +T) < 77T +T) < 3,7(1)

and therefore by (2.1.36) it holds
z1(t) < z;(t) Vie [Ty, T +T) Vje{2,...,N}. (2.1.38)

Therefore, notice that in this case the order of z(-) is conserved
in [Ty, Ty + T]. Moreover, by the contractivity of the support and
by the chosen sequence {T,,},en, recalling that Ty, > T), + T, it
thus holds

1 (T,) > x (T, + 1) n > k.
Since the support is non-decreasing in time, we therefore have that
ay = 21(Th)
and in particular it thus holds

xy > xq(t) Vit € [Ty, Tp + T). (2.1.39)

By (2.1.24) and (2.1.28) we therefore have that for ¢t € [T}, T, + T
it holds

Z My () o (1) (a5 (t) — &75(T) + 27"(T) — 24 (1))
Z My;(t)¢r;(t) (T) —x1(t) — ] + 2] — 21(Th) + 21(T))
Z Myt (D[(E5(T) — 21(Th)) — (2 — 21(Ti)) + (2] — 21 (1))

By (2.1.27) and (2.1.39) we thus have that for ¢t € [T, T}, + T it
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> My (O)[(2(Ti) — 21(Tir) Je™ = — (2] — 21(Ti))]

By integrating in [T, T + 7] and using the PE condition (2.1.16)
and by recalling the bounds (2.1.18), it thus holds

Kmin,ueiKmaXT al
> 21(Th) — KnaxT' (2] — 21(T})) + — N > (@(Tx) — 21 (T))
j=2
* Kmin,ue_KmHXT

Notice that by the contractivity property of the support, it holds

en(Ty) — x1(Ty) > xy — 2. (2.1.40)
Define
1 1 Kmin,ue KnaxT €
— mi 1 2.1.41
M 5 min { Ko T N ) o — z } ( )

By i), this implies that
] — 2 (T,) < m(xy —7) Vn > k. (2.1.42)

We also define

o 2m K TN
Mmin = K Koo "

min€

By (2.1.40) and (2.1.42), it holds

Kmin e_KmaxT " *

xl(Tk + T) Z l’l(Tk) + M# - KmaXTnl (xN - 371)
Kmin mine_KmaXT * *
> x1(T) + NJ2N (zy —7)

where in the last inequality we have used the definition of n; in
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(2.1.41). Therefore, by using (2.1.37), it holds

_KrnaxT

Krnin,ue

T
71(Ti) + IN

where we used (2.1.38). By contractivity of the support, it thus
holds

Kmin,ue_KmaXT .
zi(t) 2 a1 (T) + = V2T 4T Vie{l....N}

In particular, by considering our chosen subsequence and by re-

calling that T,,.1 > T, + T by construction, it thus holds

Kmin ~Homan
$1<Tn+1) > .Tl(Tn) + #E vn > k

which by induction implies that

lim z1(7,) = +o0

n—-+o0o

which is a contradiction, and therefore (2.1.37) cannot hold. Thus
(2.1.32) holds.

Step 3.2 We now the second possibility. Assume that condition ii) hodlds, i.e.

(T, +T) > 2y™(T, +T) VneN. (2.1.43)

The goal is to prove that (2.1.32) holds. We prove it by contradiction.
In a first step, we prove that, if there is no consensus, then at least
two particles realize the minimum and two realize the maximum, at

the limit. In a second step, we prove that this raises a contradiction.

Step 3.2.1 Assume that the diameter does not converge to zero. We prove

that there exists indices j, k,l,m € {1,..., N}, labeled as 1,2, N —
1, N, such that

tlgrnoo x1(t) = tginoo xo(t) = tEeroo Z6{1}1111]\[}{561@)} (2.1.44)

and

tLIHlOO xn(t) = tLleroo rn_1(t) = tLleroo Ze?llaXN}{xl(t)} (2.1.45)
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First of all, remark that the contractivity of the support implies

.....

decreasing and bounded from above. It therefore admits a finite
limit. Notice that by the choice of the subsequence {7} en it
holds ¥(T,,) = x1(T},), and therefore

lim (7T,) = zj.

n—-+o0o

Therefore, to prove (2.1.44), we simply need to prove that

] = x3. (2.1.46)
Assume by contradiction that

] < x5 (2.1.47)

Then, by the choice of the subsequence {7}, },en we have that for
some k € N sufficiently big there exists e > 0 such that it holds

r1(Ty) € [x] — €, 2] + €], x2(Ty) € [x5 —€,25+€¢  (2.1.48)

satisfying

4e

e_KxnaxT ’

2o(Ty) — 21(Ty) > (2.1.49)

Now, by recalling (2.1.27), it holds
I (T +T) = x1(Ty) + (22(T3) — 1(Ty,) e KmaxT

By (2.1.48) and (2.1.49) it thus holds

I T +T) > 2t — e+ (25 — e — at — e)e KmneT

>} — e+ (x) — a])e Fmnd Qe HmaxT
> 2% — € + de — 2ee” FmnT

> x] + €.
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By (2.1.43), it then holds
(T +T) > 25" (T +T) > 2 +e. (2.1.50)
Now notice that for all i € {2,..., N} it holds
(2.1.28) (2.1.22)
(T +T) > 8T, +17) > "o, +T). (2.1.51)
Therefore, by (2.1.50) and (2.1.51) we thus have that
(T +T)>x] +e€ Vie{l,...,N}.
By contraction of the support, we have that
xi(t) > 2] + e Vi>T,+T Yie{l,...,N}
and in particular, by considering our chosen subsequence, it thus
holds
x1(T,) > x] + € Vn > k,
which implies
nl_l&loo z1(T,) > x]
which is a contradiction with (2.1.34). Therefore, (2.1.47) does not
hold and, by the ordering (2.1.35), it holds (2.1.46). The proof of
(2.1.45) follows the exact same argument.
Step 3.2.2 We now prove that (2.1.44), (2.1.45) implies x, = x}. By contra-

diction, and recalling that 7 < x}, by construction, assume that
there exists € > 0 such that it holds

Ty — ] > €. (2.1.52)

By eventually reducing € > 0 and using (2.1.44), (2.1.45), there
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exists T}, > 0 such that for all ¢ > T}, it holds

x1(Ty), 22(Ty) € [2] — €, 27 + €], on(Tk), xn_1(Tk) € [z} — €, 2 + €.
(2.1.53)

We now follow the same lines of the argument presented to prove
(2.1.44).

For t € [T}, T}, + T'] we have that

ZMM )b15(1) ( ) — z1(2))

A S My()én () () — o (t))
{jrz;(t)<z1(t)}
AT My () — (1)),

N {izzj(t)>z1(8)}

Therefore, by (2.1.53) we have that
oy +e>xi(t) Vte [Ty, T + T

It holds

iy (1) > = > Myj(t) 1 () (21 (Ty) — 27 — €)
{7iz;(®)<z1(8)}
+ ;\VMlN(t)%N(t)(SUN(t) —71(t))
A

+ M- (@)d1v-1) () (2n-1(E) = 21(2))-

By recalling the bounds (2.1.18), it holds

#1() 2 Kinax (21(Th) — 27 =€)

S 0 (1) () = (1)

Kmin
N

_|_

+

Myn—y () (xn-1(t) — 21(1)).
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By using (2.1.53), it therefore holds

Kmin * *
#1(1) > 3K + —0 M () (2 — 2t — 2¢)

N
Kmin

+ N Ml(N_l)(t)(x}‘v —x] — 2¢).

By integrating in [T}, T} + 7] and using the PE condition (2.1.16)
it then holds

2,u}(min

Kmin
(% —at) — € (3KmaXT + “N4) .
(2.1.54)

I now choose € > 0 such that

2['['-Z(min
N

Kmin
(xy —x]) —€ (3KmaXT + £ N 4) > 2,
namely

QMKmin(m}k\f - ff)

TN (24 3K maxT + Mpind)’

It then holds by (2.1.54)
o (T +T) — x1(Ty) > 2¢

which is a contradiction with (2.1.53). Therefore, (2.1.52) cannot
hold and we thus have that (2.1.32) holds. This raises a contra-
diction with the fact that (2.1.32) does not hold, as required at
the beginning of Step 3.2.

We have then proved that each of the conditions i) and ii) ensure

t—-+o0

]

Remark 2.1.3. The main usefulness of the one-dimensional setting is that order
exists, which is not the case in the multi-dimensional setting. Notice that the
hypothesis of asking for the kernel weights to be persistently excited themselves

is weaker than imposing on the their scrambling coefficient. Indeed, at least in
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one dimension, we can then see that we can choose M;; such that the scrambling
coefficients are null but we still get to consensus. An even weaker hypothesis

would be to set the PE condition on the in-degree function:

t+7 1 N
/ S Myls)ds = Vie{l,... N} (2.1.55)
t =

2.2 Consensus in infinite dimension

In this section we consider the infinite dimensional setting. We prove that con-
sensus holds also in the classical mean-field setting.

When considering the classical mean-field limit, we can only account for sys-
tems with dynamics which are invariant under permutations of the labels of the
agents. Indeed, it requires all particles to be indistinguishable since it describes
the population by its density. This means that a classical mean-field limit can

only make sense in the setting where
M;i(t) = M(t)  Vi,je{l,...,N} (2.2.1)

and we therefore consider the finite particle systems

{ 3i(l) = 5 ZL MO(2s(0) — () () —2i(®) 120, o0
where the influence function ¢ satisfies hypotheses (H1) and (H3), \; is defined
by (2.1.2) and M € My, defined by (2.0.3). Notice that in this case we then

have the following theorem

Theorem 2.2.1. Let T,y > 0 be given. Let X € R™Y as defined by (2.1.3) be a
solution of system (2.2.2) with initial data X° € R"™. Define the diameter dx ()
by (2.0.2). Assume that the influence function ¢ satisfies hypotheses (H1) and
(H3). Assume that M € Mry,, where My, is defined by (2.0.3). Then for system
(2.2.2) it holds

dx(nT) < dx(0)e ™ Hmnt ¥p e N

where Ky, @s defined by (2.1.6). In particular, consensus in the sense of (2.1.4)

18 reached.
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.....

we have that it holds

1 N
R in { Moy (s), Mip(s)} = M(t
i, 3 i (044(6) Mx(6)) = M)

and by using Theorem 2.1.1 the result follows by noticing that the solution of

-----

]

We now consider the mean-field setting corresponding to (2.2.2). Define the

diameter for a compactly supported measure v € P; (Rd) as
dx[v] = diam(suppv). (2.2.3)

Let M(R?) be the set of probability measures on R?. Then, the continuum

model corresponding to (2.2.2) is

Oy + Vi (Vt, =0 VzeR:Y t>0
t (VIt, pelpae) (2.2.4)

Ho = [
where the initial datum z € M(R?). In the case we are treating the particle
system (2.2.2) with equal weights, i.e. \; constant, the non-local vector-field is

given by

VIt pd(@) = [ M@0y - 2)duly) Vo e R (2.25)

R4
In the case we are treating the particle system (2.2.2) with normalized weights,
ie.

N

P
Zl]il Qb(xi’xl)

we define the non-local vector field by

_ Jra M@)P(2, y)(y — x)dpu(y)

d
Jra 0(x, y)dpa(y) Vo e RY. (2.2.6)

VIt ) () :

Definition 2.2.1. Let T > 0. A measure p; € C([0,T]; M(R?)) is a measure-
valued solution of (2.2.4) in the time interval [0, T| with initial datum i € M(R?)
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if it holds for all ¢ € C°(R4 x T)
[ [ @+ Vi) Vo) o)t + [ 60, 0)dpte) =0. (227
0 JR R

We now state an existence-uniqueness theorem and a stability theorem of
(2.2.4). Such theorems have been proved in [21] for the case M = 1, i.e. full
communication between agents at all times. However, they still hold true in the
case where we have a uniform multiplicative persistently excited term as shown

in the next lemma, which is basically [21, Lemma 3.4] applied to our case.

Lemma 2.2.1. Let y; € C([0, T); M(R?)) have uniform compact support, i.e.
supp i C BY0,R), Vt € [0,7]

where B4(0, R) stands for a d-dimensional ball centered at the origin with radius
R > 0. Let M € My, be given, where My, is defined by (2.0.3). Then there

exists a constant K > 0 such that
\V[t, pe](z) = V[t 1] (7)< K| — &

for all x,& € B40,R) and for all t € [0,T]. Moreover, there exists a constant
C > 0 such that

VIt ()< C

for all x € B0, R) and for all t € [0,T).

Proof. For any x,7 € B%(0,R) and by recalling that M(-) < 1, for the vector
field given by (2.2.5) it holds

VI el () = V[t ] (2)]
L MO0y — 2)duy) — [ ME6 o)y - 7))

= M@ | [ o) - D)~ [ o) - Dduly)
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and for the vector field given by (2.2.6) it holds

VIt el () = VI el (2))]

_ Jra M@)ﬁb( )( )d,ut< ) fRd M(t)qﬁ(j,y)(y—j)dut(y)‘
Jra &(x,y)dp(y) Jra O(%,y)dp(y)
Jra 9z, )y — 2)dpu(y)  Jra 0(Z,9)(y — T)dpu(y)
T Jra (@, y)dp(y) Jra 9(F,y)dpe(y) |

The rest of the computations follows exactly as in the proof of [21, Lemma 3.4].
]

By such a lemma and by [16, Theorem 3.10] we have local-in-time existence
and uniqueness of a measure-valued solution in the sense of (2.2.7). Furthermore,
this solution exists, given that it remains compactly supported in position, which
is what is proved in the next theorem, where the authors estimate the growth of

the support of y; in order to guarantee global-in-time existence and uniqueness.

Theorem 2.2.2 ([21, Theorem 3.5]). Consider the continuum model (2.2.4) with
i € M(RY) and suppose that there exists a constant R > 0 such that

supp i C BY(0, R)

where BY(0, R) stands for a d-dimensional ball centered at the origin with radius
R > 0. Then, there exists a unique measure-valued solution j; € C([0, +00); M(R?))
of (2.2.4) in the sense of (2.2.7). Moreover, u; is uniformly compactly supported

and we have

pe = X (&5 )4t
where X (t;-) is the flow generated by V[t, pu].

Theorem 2.2.3 ([21, Theorem 3.6]). Let ul, u? € C([0,T]; M(R?)) be two weak
solutions of (2.2.4) subject to uniformly compactly supported initial data p', 2,
respectively. Define

Ry = max max |z, i=12.
0<t<T x€supp it

Then, there exists a constant C' > 0, depending only on ¢, T, RZX, such that

Wy (py, 1) < CWy(it, i*) Yt € [0,T], Vpe[l,+o0].
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This stability result provides a rigorous passage from the particle system
(2.2.2) to (2.2.4), where the nonlocal vector field is given by (2.2.5) or (2.2.6),

depending on the choice of the weighting procedure.

Notice that the result of Theorem 2.1.1 is independent of N, and is valid for
system (2.1.1). Then, by following the lines of [21, Theorem 3.7] for the case of
no delay (7 = 0), we extend the result of [24, Theorem 4.1] by adding the case of
(2.2.6) and by considering the more general class of weight kernel M € My,

Theorem 2.2.4. Let p, € C([0,T]; P1(RY) be a measure-valued solution to
(2.2.4) with compactly supported initial data i € Py(R?) with the vector field
V' either given by (2.2.5) or (2.2.6). Define dx[-] by (2.2.3). Assume that the
influence function ¢ satisfies hypotheses (H1) and (H3), for dx[pn]. It then holds

dx[p] < 2dx[f)e ™ mmi ¥n € N,

Proof. Let N € N. Define the family of N —particle approximations of i1, namely
{iiV} n defined as

1 N
Z(Sx—x
1:1

where {Z} }ieq1,..n} are chosen such that

.....

supp iV C B(0,dx[ii]) VN € N (2.2.8)
and
Jim W, (i, 1Y) = 0. (2.2.9)

.....

sional system (2.2 2) with initial Condltlon {zN Yiequ,...ny- Define
1 N
Z(Sx—m vt € [0,T].
7,:1

Then, we have that g} is a measure-valued solution to the kinetic model (2.2.4)
in the sense of (2.2.7). Now notice that if u; € C([0,T]; M(R)) is a weak solution
to (2.2.4) with initial datun p, then according to Theorem 2.2.3 there exists a
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constant C' > 0 independent of N such that
Wi’ s ) < OWo(@™, i) VE€[0,T], Vp e [l,+o0].
Therefore, by (2.2.9) it holds
Nl—1>r-l|—looW (N, ) =0 Vte[0,T], Vpe]l, +oal. (2.2.10)
Define
dy (t) = diam(supp i) ¢ >0
First, notice that by (2.2.8) we have that it holds
d3(0) = diam(supp i) < 2dx[f). (2.2.11)
By using Theorem 2.2.1 and (2.2.11) we thus have that for all N € N it holds
supp u C B(0,d%(t)) C B(0,d¥ (0)e " Kmin®y C B(0, dx[p]e ™ F=nv). (2.2.12)

where we recall that dx(-) is defined by (2.0.2).

We have that (2.2.10) implies that u — u; weakly-* as measures as N —
+oo for all t € [0,T], i.e

lim 2)dp (z / fl@)du(x)  Vf € Cu(RY). (2.2.13)

N—+o00

We now prove that
supp py C B(0, dx [fi]e” " Fmint). (2.2.14)

First, observe (2.2.13). Take now X C R? closed, on R?\ B(0, dx[ji]e " Kminv)
and observe that (2.2.13) implies

tim [ F@)dul (@) = [ f@du@) =0 Vf € CX).

N—+4o00 JRd

This implies

supp i C R4\ X.
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Since X is arbitrary, then (2.2.14) holds. Therefore, we have that
dx[p] < 2dx[ple” " Kme=t ¥n € N,

]

Another way of considering the mean-field limit model is by recurring to the
graph limit model, also known as graphon, as explained in [3, 11]. The main
difference between the classical mean-field model and the graphon model is the
indistinguishability property: in a graphon the agents still have a labeling given by
a generalized index i € [0, 1] which allows to discriminate between agents, while in
the mean-field limit such a labeling is lost. Thus, when considering the mean-field
limit, there is an irreversible loss of information on the identification of agents.
In particular, this means that if the influence function depends explicitely on
the agents labels, then we cannot use to the classical mean-field limit framework.
Also, there is a possibility to retrieve the classical mean-field limit from the graph-
limit (see [3, 53]).

In the rest of this chapter, we now present the graphon limit of system (2.1.1).

Consider the following piecewise-constant function

N (t,i) = i X[k,l’%)(z‘)xk(t) (2.2.15)
and
) ()M (1) (2.2.16)
defined for i, j € I where
I:=10,1]. (2.2.17)

The following holds

Proposition 2.2.1 ([11, Proposition 2.8]). Let N > 1 and X(t) be a solution
of (2.1.1). Then, the curve xV € Lipy.(Ry, L*(I,R?)) defined by (2.2.15) is a
solution of the Cauchy problem

{ O (k) = [; MM (84, ) (|a¥ (8,3) — 2N(¢,)|) (2V (¢, 5) = 2V (8,4)) dj,
2N (0,4) = 29(4),
(2.2.18)
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for almost every i € I, where MY (t,1,7) is defined by (2.2.16).
Proof. See [11]. O

Remark 2.2.1. As noted in [11, Remark 2.9], every finite-dimensional multi-agent
system of the form (2.1.1) can be recast in the context of graphons by using
(2.2.15) and (2.2.16). Therefore, every result in the context of graphons has an
equivalent formulation in the finite-dimensional setting through these piecewise-

constant functions.

We can therefore consider (2.2.18) as an infinite-dimensional integro-differential

equation and thus consider the graphon model

{ 8t;p(t7i) = f[ M(t,Z,j)¢(|l’(tal) - l’(t,j)D (l’(t,j) - J}(t,l)) dj, (2219)

Theorem 2.2.5 ([11, Proposition 2.10]). Let 2 € L*(I,R?) and assume that the
weight kernel M : Ry x I x I — [0,1] is L' x LY x LY -measurable and the
influence function ¢ satisfies (H1), where £ stands for the Lebesque measure
restricted to 1. Then, there exists a unique solution x € Lipi.(Ry, L?(I,R?)) to
the Cauchy problem (2.2.19). If it furthemore holds that x° € L>(I,R) then it
holds

le@Ollwy < o]y VEZO.

Just as in the finite-dimensional settings, we have the notion of diameter.

Definition 2.2.2. Let z € Lip,. (R, L*(I,R?)) be solution of (2.2.19). Define

the diameter as

Dx(t) == esssuppl|z(t,i) — z(t, )| t>0. (2.2.20)

1,5€l

We say that the system converges to consensus if it holds

lim Dx(t) = 0. (2.2.21)

t——+o0

We mention the following theorem which is mainly a result given by [11,

Theorem 3.3|, and therefore only briefly describe the proof.

Theorem 2.2.6. Let T,y > 0 be given. Let I be defined by (2.2.17). Let z €
Lipy,.(Ry, L2(I,R?Y)) be the solution to (2.2.19) with equal weights with initial
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datum 2° € L>=(I,R?). Define the diameter dx(-) by (2.2.20). Assume that the
influence function ¢ satisfies hypotheses (H1) and

A(T) > Pmin >0 Vo €[0,Dx(0)]  for some  puyin > 0. (2.2.22)

Assume moreover that

t+T
/ inf /mm{M(s,z,k’) M(s,j, kN dkds > Wt >0

i,j€1

where M(-,,7) satisfies (H2) for alli,j € I. It holds
Dx(nT) < Dx(0)e™¢mint ¥p € N

In particular, by sending n to +00 we get consensus in the sense of (2.2.21).

Proof. As done in [11, Theorem 3.3], let = € Lip,..(R, L*(I,R%)) be a solution
of (2.2.19) and fix € > 0. By Scorza-Dragoni’s theorem, there exists a compact
set 1. C I with meas(I\I.) < € such that = : R, x I. — R is a continuous map.

Consider then the restricted diameter
Di(t) = maxla(t, i) — (t, )]

The function D5 (t) is Lipschitz. By Rademacher’s theorem it is differentiable
almost exerywhere and thus by Danskin’s theorem (Theorem A.1.2) it holds

1d D%(t) = max <§t( (t,1) — x(t, 7)), x(t,i) — x(t,j)>

2dt X 1,j€I1¢(t)

where I1¢(¢) € I. x I, represents the nonempty subset of indices for which the

maximum is reached. By using Lemma A.1.2, after some computations we arrive

to
d
 (Dx ()
< =2 (int [ min{M(s., k), M5, 3.1}k ) - G (D5(0))° + 6eGinan (Dx(0))’

and by using Gronwall’s lemma and Lemma A.1.1, we get the pointwise conver-

gence
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By passing to the limit, it holds

DX(t) < DX(O>€—¢min fot inf; jer f[ min{M(s,Lk),M(s,j,k)}dkds.

As in Theorem 2.1.1, by first considering the time interval [0, 7] and then subse-
quently all the other time intervals [nT, (n+1)T] for n € N the estimate holds. [

Remark 2.2.2. The added novelty of the proof lies in the use of the combina-
tion of Scorza-Dragoni’s theorem (Theorem A.1.1) and Danskin’s theorem (The-
orem A.1.2), which allows to use in the graphon setting the tools of the finite-
dimensional setting. We can also prove in an entirely similar way to Proposition

2.1.1 that the “worst case scenario” would correspond to setting for almost all 7, j
M(t,i,j) = M*

and then study this case.



Chapter 3:

Second-order cooperative systems

under persistent excitation

In the previous chapter we have addressed first-order models, where we were
interested in reaching consensus. However, in some cases the dynamics that are
exhibited are of second-order, in the sense that agents share further information
like “accelaration” or any higher-order information. In these cases, we are there-
fore faced with a higher level of complexity. In second-order models, an agent
does not only look at the velocity of another agent, but also takes into account its
position. The goal now is to not only study consensus of the velocities, but also
to see whether we can achieve flocking. In simple terms, flocking means that all
agents arrive to a consensus in the velocity variable and remain “not too far away
from each other” in the position. Similarly to first-order models, applications of
such models are found in a wide variety of fields, such as in robotics [4, 6, 23,
62]. Interestingly enough, the Cucker-Smale model, which is one of the models

studied in this article, was originally intented to model language evolution, [25].

Second-order cooperative models are of the following form:

ief{l,...,N}. (3.0.1)
0i(t) = 3 iy o(wi(t), 25(1)) - (v;(t) — wi(t))

Here, we consider the evolution of N > 2 agents identified as points in a con-
figuration space, in our case the Euclidean space R??. For each agent i we now
have that the pair (z;(t), v;(t)) € R?? represents at time ¢ its position and velocity
in the phase space. The (nonlinear) influence function ¢(z;(t),z;(t)) is used to
quantify the influence of agent j on agent i, where ¢, 7 € {1,..., N} based on their

positions. The term J; is a scaling parameter. Just as in the previous chapter,

79
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we consider \; given by (2.1.2), that we recall here for convenience:

1 in the case where we consider equal weights
A= . (3.0.2)

W in the case where we consider normalized weights
_ Zq, Xy
=1 z

In the case of the Cucker-Smale model [25], the influence function was chosen as

1
(1 |2 — a;)°

O(z, ;) = S > 0. (3.0.3)

In the case where \; = 1, then we recover the classical Cucker-Smale model.
A crucial property in the Cucker-Smale model is the symmetry of the influence
function ¢, i.e. ¢;; = ¢;; for all 4,5 € {1,...,N}. Analogously to the case of
first-order models, the average velocity is conserved. For 5 € [0, 1] the Cucker-
Smale dynamics converges to the initial mean velocity just as in the case of
first-order models and moreover unconditional flocking holds, i.e. flocking holds
without any restriction on the initial data. For the case § > 1 we have instead
conditional flocking (see [35, Proposition 4.1, Proposition 4.3]). For a general

influence function ¢ we have the following result:

Proposition 3.0.1 ([35]). Let {x;, v;i}icqu,.. vy be a solution to (3.0.1) where ¢ is

a non-negative function. Define

D(t) = > |wit) — 2 OF, A1) = 3 |vi(t) — v (8)]*.

i,j=1 ,j=1

If it holds

+0o0

AQ0) < / é(x)dx

r'(0)

then flocking holds.
In the case where \; = W we recover the Motsch-Tadmor model. It
Zq,2]

came as a response to the drawback in the classical Cucker-Smale model regarding
the normalization of the interactions by the total number of agents N, which is in-
adequate for far-from-equilibrium scenarios, as explained in the previous chapter.
For this reason, in [46] the authors introduce the normalized weighting approach,
which was indeed originally intended for second-order models.

Just as in the previous chapter, we would like to study the case where we

might have communication failures between agents. Similarly, we impose a PE
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condition on the scrambling coefficient of My = {Mij}i,je{l Ny as done in the

,,,,,

previous chapter, which definition we recall here for convenience:

1 N
My) = i — in{ My, M. }. 3.0.4
nMy) = auin oy 2 min{Mie, M) (3.0.4)
As one can expect, the added difficulty now is dealing with the higher complexity
of the model given by the intertwining of the position and velocity variables. We

thus study second-order models of the form

' Lo ie{l,...,N}.
0i(t) = § Xjor My (#)d(i(t), 25(¢)) - (v(t) — vi(t))

This chapter is organized as follows. In Section 3.1, we first present the
class of finite-dimensional models we consider and then we show that we get
unconditional flocking for suitable conditions on the influence function and PE
condition on the weight kernels as in Theorem 2.1.1. Then, in Section 2.2 we
consider the classical mean-field setting of a particular class of finite-dimensional
models and show that flocking holds as well, under the same conditions as in the

case of finite-dimensional models.

3.1 Flocking in the finite-dimensional particles

system

In this section we first present the class of models we treat and then provide our
main results. In Proposition 3.1.2 we identify the “worst case scenario”, which we

then treat in Theorem 3.1.1 to show that unconditional flocking holds by imposing

-----

(2.0.4), similarly as in case of first-order models.

We consider the following Cauchy problem

(1) = u(t)
() = % S0 My(D85(0) - () — () i€l N} (31)

(2:(0),v:(0)) = (Zi, v:)

>

;
0;
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where (7;,7;) € R*, where )\; defined by (3.0.2) and where

¢ij(t) = d(xi(t), z;(t), Vi,je{l,....,N} ¢t>0

where ¢(z;, ;) is defined by (3.0.3) for all 4,5 € {1,...,N}. Just as in the
case of first-order models, we assume that M,;; satisfies hypothesis (H2) for all
i,je{l,...,N}.

We define the collection of solutions {(z;,v;)})*; where (z;,v;) is the solution
to system (3.1.1) for all s € {1,..., N} as

(XN, V) = faa(t), v}, (3.1.2)

We now define the concept of diameter in the position and velocity variables,
respectively, as well as the concept of flocking.
Definition 3.1.1. Let (XY (t), VY (t)) be a solution of system (3.1.1). Define the

diameter in the position variable as

dx(t) = max |z(t) —z;()]  t>0 (3.1.3)

i,5€{1,....N}

and the diameter in the velocity variable as
dy(t) == max |v;(t) —v;(t)] t>0. (3.1.4)

We say that the system converges to flocking if both conditions hold:
* SUDse(0,+o00) dx(t) < 400,

. hmt_>+oo dV (t) =0.

We say that unconditional flocking holds if flocking holds without any restriction

on the initial data.

The goal of this section is to prove the following theorem.

Theorem 3.1.1. Let 3 > 0 and T, > 0 be given. Let (XN (t),VV(t)) defined
by (3.1.2) be a solution of system (3.1.1), with ¢ given in (3.0.3), with the cor-
responding diameters dx(-) and dy(-) defined by (3.1.3) and (3.1.4), respectively.

Assume that
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where N(My(-)) is defined by (3.0.4) and where M;; satisfies (H2) for alli,j €
{1,...,N}. If p €[0,1), it then holds

dx(nT) < [(1 4 2dx(0))' 7 + (1 = B) (K(dy(0),dx(0), T, p)| 7% (3.1.5)
for all n € N where
1-8

oo M n
K(dv(0),dx(0),T, ) = 2dv(0) + (T — u)% Z:l (e‘umxmww)

In particular, unconditional flocking occurs.

We now present two propositions, where the second one is analogous to Propo-
sition 2.1.1, which aims to show that indeed the “worst case scenario” corresponds
to the dynamics with kernel M* defined by (2.1.12). After presenting these two

propositions, we provide the proof of the theorem.

Proposition 3.1.1. Let (XN(t),VN(t)> as defined by (3.1.2) be a solution of
system (3.1.1). Define the diameters dx(-) by (3.1.3) and dy(-) by (3.1.4). Let
M;; satisfy hypothesis (H2) for alli,j € {1,...,N}. Then for allt > 0 it holds

{jtdx(t) < dy(t) (3.1.6)

drdv (t) < —o(dx (t))n(M(t))dv (t)
where n(My(+)) is defined by (3.0.4).

Proof. The functions

dy(t) = max [|vi(t) —v;(O)], dx(t) = max |z:(t) —z;(t)]

are Lipschitz, because they are the pointwise maximum of a finite family of Lips-
chitz equicontinuous functions. By Rademacher’s theorem, they are differentiable

almost everywhere. By Theorem A.1.2 it thus holds

1d o . d
§£dx(t) = max <dt($i(t) — (1)), () — ﬂfj(t)>

and

1d o, . d
yrdi (6= s (400) ~ )~ (0)
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where IL,(¢) € {1,...,N} x {1,...,N} and II,(¢) € {1,...,N} x {1,...,N}
represent the nonempty subset of pairs of indices for which the maximum is

reached in the position phase space and in the velocity phase space, respectively.

Let us first find the differential inequality for dx(:). Fix arbitrary p,,q, €
I1,(¢) and p, g, € 1I,(t). It holds

d
(450000 = 00,50 = 20(0) = (6.0 = 0,0 .0) = 2, (0)
< vp, (1) = vg, ()| |2, () — 24, (2)] -
This is valid for all p,, ¢, € I1,.(t) and p,, g, € I1,(t), and therefore

jtdﬁ((t) < 2dy (t)dx (t)

which then implies

et < dv(t).

dt
Let us now find the differential inequality for dy (). By following the same
steps as in the proof of Theorem 2.1.1, fix arbitrary p,,q, € I1,(¢). For easier
notation, from now on we hide the dependence on time. Notice that for the case

of system (3.1.1) with normalized weights it holds

d 1
<dt<xp_xq)7xp_xq> = Zk 1¢pk ZMPJ%J 13jaxp_37q>
Zk ¢ : Z 0iPaj (Tj — Tq Tp — Tg) -
1Pq
By (3.0.3), it holds
o1
Z;{;\lzl ¢qk o N

Therefore, for both cases of equal and normalized weights it holds

d
<dt(xp —1q), Ty — %>

1 N N
< N (Z Mp;dp; (zp — Ljs Tp — T4) + Z Myjpq; <xj — Tg, Tp — xq>) .
=1

j=1
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Notice that since ¢(-) is monotone non-increasing, it holds

and therefore it holds

d
<dt($p —1q), T — xq>

< _Md])\(;t» (z_:l Mp; (xp — j,Tp — Tg) + Zqu (Tj — g, Tp — xq>) .

J=1

By doing the exact same computations as done in the proof of Theorem 2.1.1, it
holds

d

v (t) < —(dx (1)n(My (t))dy (¢).

Definition 3.1.2. Consider the space of functions Mr,, defined by (2.0.3), i.e.
t+T

Mr, = {M € L>([0,400);[0,1]) s.t. / M(s)ds>p Vte [0,—1—00)} :
t

Let M € My,,. Define (DY, DY) : Ry — RXR to be the solution of the following

dynamical system:
#DX(t) = DY (t)
4DV (t) = =M (t)p(DY (1)) DY (1) (3.1.7)
(DX (0), DY (0)) = (Dx(0), Dy (0))

where ¢(+) is monotone non-increasing.

Proposition 3.1.2. Let T, i > 0 be given. Consider the space of functions Mr,,
defined by (2.0.3). Consider (DY, DY) given by Definition 3.1.2. Let M* be
defined by (2.1.12), i.e. for allt > 0 and for alln € N

. {0 te[(n— 1T, nT — p)
1 t € [nT — p, nT)
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Then, for allt > 0 it holds

sup {DY () | M € My, and DY (0) = dy,} =Dy (t) ¥t > 0.
and

sup {DY () | M € My, and DY (0) = dx} =DY¥'(t) vVt >0.

Proof. In the first step, we provide the first time discretization part, which rep-
resents the base case. In the second step, we first present the time discretization

process along with the recursive argument. The goal is to first show that it holds
DM () —DM(t)>0  Vtel0,T]

which actually implies, as proven later,
DY (1) -DY¥ (@) >0  Vvte|o,T).

In the third step we explain and handle the two possible cases that might arise
due to our discretization process. In the fourth step we then show the final result.

Notice that by (3.1.7), by Gronwall’s inequality we have that for all M €
My, and thus including M*, it holds

DM (1) = Dy (0)e~Jo MOUPX@)s - g yy >,

Therefore, we have that for all M € My, and thus including AM*, it holds

d d
—DMy >0, —DM > ().
o < (t) >0, o v () <0 Yt >0

Step 1 In this step we show the base case. For any M € Mry,, choose any m;
satisfying

max {0, — (T —p)} <m <p (3.1.8)

such that it holds

/OT_”M(s) > fh =, /TT M(s) > m. (3.1.9)

—p

Observe that the bounds in (3.1.8) are derived from (3.1.9) by using the
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fact that M € [0, 1].

In this step, we prove that it holds

DY(T — p) < DY (T —m),

(3.1.10)
DY () < DM (1) Vit e [0,T —m].

We first focus on the interval [0, 7 — p]. It holds

t t
DM (1) — DM (1) = Dy (0)t — Dy (0) / e~ Jo M@ s gy > 0 e [0,T — 1]
0

and therefore

DY) <DY'(t) vtel[0,T - pl (3.1.11)

. * . . . .
Since DY" is monotone increasing, it holds

DM (T — py) = Dy (0)e Jr-u" OPX Vi 5 b () (umm)a(PY” (1),

On the other hand, since DY is monotone increasing, by (3.1.9) and (3.1.11)
it holds

T— * T—
DM(T — ) = Dy (0)e o " M(s)¢(DY (s)ds < Dy (0)e~¢@X (=) " M(s)ds

<Dy (0)6_(H—U1)¢(D¥* (T—p)).

Thus, we get that

DT — p) < DY (T — ). (3.1.12)

We now study the difference between DY and DY in [T — u, T — n].

By recalling that both D¥" and DY are monotone decreasing, for ¢t €
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[T — p, T — ] it holds
t
DY (1) = DY (1) = DY (T — ) = DY (T — 1) + [ DY (5) = DY (s)ds
—H
>0+ (DY (T —m) = DY(T — ) (t — (T — )
>0
(3.1.13)
where we have used (3.1.11) and (3.1.12).
By merging (3.1.11), (3.1.12) and (3.1.13), we recover (3.1.10).
Notice that in particular it holds
DM (t) = Dy (0)e” Jy M@oY s < p (0 = DY (t) Ve [0,T -y
and
Dy (t) =Dy (t) <DY(T —p) =DV (T —m) <0 Vte [T —p,T—ml.
Therefore it holds
DY (1) <Dy (t) VLel[0,T—mnl.
Step 2 In this step, we show the recursive case. We now present the more general

decomposition of the time interval: let N € N and choose any sequence
{n:}}L, such that

m o =max{0,u— (T —p)}
12 = max {0, — (1 —m)} (3.1.14)
Niy2 = max{0,m41 — (i —mip1)} Vie{l,...,N —2}.

First, set
T—p T—m
M(s) > pu—m, / M(s) > n — na. (3.1.15)
0 T—pun
Second, set for i € {1,...,N — 2}
T—ni+1
/T M(S) Z Ni+1 — MNi+2 (3116)
i
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and

[ )z

T—nN-1

In the next steps, we first prove that the sequence {n;};cn, then show the

recursive argument and finally conclude with the result.

Step 2.1 In this step, we prove that
lim n; = 0. (3.1.17)

i——+00

We first prove that there exists an i* € N such that
ni» = 0. (3.1.18)

By contradiction, assume that (3.1.18) does not hold. Then it holds

by induction

7]1:2M—T
n=2m—pu=2pu-"T)-T
N2 =G+ 1)(u—T)—T VieN.

Since p < T', it then holds
N — —

which is a contradiction with (3.1.14). Therefore, (3.1.18) holds. This

implies by construction that
=0 Vi>i*

and thus proving (3.1.17).

Step 2.2 In this step, we present the recursive argument: assume that
Nit1 < 7 Vie{l,...,N}.
Assume that

DY(T —m) < D)Acﬁ(T—m) (3.1.19)



90 Ch.3. Unconditional flocking in second-order cooperative systems under PE

and

DY(T — i) < DY (T — my). (3.1.20)

We want to prove that it holds

Dy(T—m) SD{‘//[*(T—U@'H% (3.1.21)
DY (t) < DY (1) Vi€ [T —n;, T — niva).

Since DY is monotone increasing, it holds

[ A (DA (s)) ds

Dy (T —1nip1) = DY (T —mi)e 7
> ’D{‘//[* (T — ni)e_(m_ni-ﬁ—l)‘ﬁ('D%*(T_”h'))_

On the other hand, since DY is monotone increasing and by (3.1.16)
it holds

T—mn;

DY(T — ;) = DY (T — mi—q)e "7

_ M _n.

< D{V(T _ mil)e*(m*mﬂ)(ﬁ(D%(T*m))'

M()d(DY (5))ds
T—n;
T_:z'—l M (s)ds

Therefore, we have that it holds

DY (T — nisr) — DY(T — i)
> D{‘//I* (T — m)e—(m—m+1)¢(9§?*(T—m)) _ 'D{\f(T _ m_l)e—(m—m+1)¢(D§‘£’(T—m))

=A+ A
where
A = (6—(77i—m+1)¢(D§(4*(T—m)) _ 6—(77i—77i+1)¢(17¥(T—m))> D%(T — Ni_1).

and

Ay = (DY (T = i) = DT = 5-1)) o= (=i 1) S(DY (T—n:))
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By (3.1.19), it holds

6—(771—77¢+1)¢(D¥(T—m)) < e—(m—mﬂ)fb(D%*(T—m))

which implies that A; > 0. By (3.1.20), we have that Ay > 0. There-
fore, it holds

Dy (T —mi) < DY (T — i) (3.1.22)

Just as before, we now study the difference between D¥" and DY¥ in
[T — N, T — ni+1]- For t € [T — N, T— ni—i-l] it holds

DY) = DY() = DY (T =) DY (T =) + || D' (5) — DY (s)as

>0+ (DY (T = mivs) = DV (T =) (t = (T =)

>0
(3.1.23)
where we have used (3.1.19) and (3.1.22). It therefore holds
D) <DY'(t) Vte [T —n;,T —nil. (3.1.24)

By (3.1.22), (3.1.23) and (3.1.24) we recover (3.1.21). Note that by
defining

To == H

we have already proved the base case of the recursive argument in
Step 1.

Step 2.3 In this step, we show the result.

We have proved in the previous step by recursion that if we consider

a sequence {n; }¥, such that it holds
Ni+1 < 7 ViE{l,...,N—l}
then it holds

DY (T — i) —DY(T —m) >0  Vie{l,...,N—1}. (3.1.25)
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Therefore, for all t € [T'— n;, T — n;41] and for all i € {1,..., N} it
holds

DI (1) = DY (1) > DI (T — ysy) = DY (T — ) > 0
and by induction on the time intervals [T — n;, T — n;41] it thus holds
DY (t)-DY () >0  Vtel[0,T—nn] (3.1.26)
which implies
DY () - DY (1) = [ DY (5) = DY (s)ds 20 Vee 0.7~y
and therefore
DY () —D¥(t) >0  Vte[0,T -] (3.1.27)
By (3.1.17), we have that
Nl—i>r—Ii-1t>o = 0.
Therefore, for all M € M7y, it holds
DY (t) < DY (t), DY) <DY'(t) vte[o,T].

Consider now the time intervals [nT, (n+1)T] for n € N. By applying

the same argument as done in [0, T, we get
DY) < DY (1), DY (t)<DM (t) vte[nT,(n+1)T] VneN.
Therefore, by induction it holds

DY () < DY (1), DY) <D¥ () Vvt>0

and thus the result follows.

We first state an easy proposition:
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Proposition 3.1.3. For an interval [0,T] where T > 0, if

dy(t) <Dy (t) Vte|0,T]

then dx(0) < D%(0) implies

dx(t) < D%(t) Vtel0,T]. (3.1.28)

Proof. Indeed,

D% (t) — dx(t) = D%(0) — dx(0) + /Ot(DQ(s) —dy(s))ds >04+0  Vtel0,T].
O

Proof of Theorem 3.1.1. In this proof we only focus on the case § € (0, 1), since
the case § = 0 is trivial as it corresponds to the same setting as in the first-order

model where K., = 1.

Step 1. By Proposition 3.1.1, we study the following system

-----

Let (D%, D{) be the solution of the following system

4DY (1) = DY(1)
#DV () = —(D%(0)n(My (1)) DY (1)
(D%(0), Dy (0)) = (2%, 2y,

In this step, we prove that

dx(t) < DL(t), dy(t) < DL{t) V> 0. (3.1.29)
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Now, notice that it holds
vVt >0

! (DY(t) — dv(t) = —n(Mn(t)) [p(D% (1) DY (t) — d(dx (1)) dv (t)]
(3.1.30)

dt

Notice that in particular, by (3.1.30) applied at ¢t = 0, we have that

dt

d
(Dy(t) = dv (1)) li=o= —n(Mn (1)) [#(D% (0)) Dy (0) — ¢(dx (0))dv (0)] > 0
Therefore, by continuity of the solution, there exists a time 7™ > 0 such

that
(3.1.31)

dy(t) <Dy (t) Vte (0,77

which implies

dx(t) < D%(t) Vte (0,T7]. (3.1.32)
We now prove (3.1.29). By contradiction, assume that (3.1.29) does not
hold, thus that there exists some time 7" > 0 such that

dx(T) =2 DX(T) or dy(T) = Dy(T).

By Proposition 3.1.3, the first case implies that there exists a time 7" €
[0, 7] such that dy(T") > D{(T"). Then, with no loss of generality, we

assume that

dy (T) > DIL(T).

By continuity of the solution, this implies that there exists a time t* €
[T, T) defined as

t* =inf{t € [T*,T] s.t. dy(t) =Dy (1)}

By (3.1.3), (3.1.32) and by continuity, it holds

dx(t) < D%(t) Vte|[0,t*]
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Step 2.

It then holds

*

DY (t*) — dy (t*) > DY(0)e” Jo 1My (5))d(Dx (s))ds _ dy (0)e” Jo (M (9)d(dx (s))ds
= (DI(0) — dy(0))e” S n(My()6(Dx (s))ds

Ty (0) e Jo nOx)0DxNas _ o= [ v (Nalax (s

>0

which is a contradiction with the definition of ¢*. Therefore, (3.1.29) holds.

By (3.1.29) and by Proposition 3.1.2, we then have

dx(t) < DY (t) < DY (1), dy(t) <DL({) <DY'(t)  Vt>0. (3.1.33)
where M* is defined by (2.1.12).
From now on, we focus on (DM"(t), DM"(t)).

In the rest of the proof we only prove that (3.1.1) holds. This implies
that (3.1.1) holds. Indeed, notice that if (3.1.1) holds, then by repeating
the same argument as in the proof of Theorem 2.1.1 one can prove that

consensus in the velocity variable holds.

Let T, be defined by

T, =nT VneN,.

In this step, we prove by induction that for all n € N it holds

D%* (Tn) 1 . . n—1 DM~ (Tk)
——dr <DM(0) - DM (T),) + (T — v .
by rnp <7 O =D L)+ 2 e
(3.1.34)

We start with the base case. Consider the time interval [0, 7T]. Therefore,
if t € (0,7 — p) then we have

DX (1) =Dy (1)
LDM () =0
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with initial condition (DY (0), D¥"(0)). It then holds

{D%*(Tu) = DY"(0) + DY (0)(T — p) (3.1.35)

DY (T - 1) = DY (0)
If t € [T — pu, T) then we have

d M () 1 M
2 Dv (t)——WDV (t)

{i@%*(t) — DY (1)

with initial condition (DY (T — u), DM (T — u)). The solution is given by

M* _ 1-8 * 1-8

By (3.1.35), it thus holds

(L DY D) QDY)+ DY O =)™ par o1 e

1-3 1-p
(3.1.36)
Now notice that the left-hand side satisfies
(L+DY (7)) (1 +DY(0) + Dy (0)(T — )~
1-3 1-5
DY(T) 1
= —dr.
DA (0)+DM* (0)(T—p) (1 +7)P
By (3.1.36), we have that
DY) 1 . . DY (0)+DY T (0)(T—p) 1
. gr=DM(T — ) - DM(T / 4
/D)f\g*(o) (1+41r)8 : v (T—n) v (1) + DY (0) (1+17)8 "
Dy (0)

< DY (T — ) = DY (T) + (T — p)

DY ()

We now proceed with the induction step. Consider now the time interval
[0,T,,] for n > 2. Assume that

DY (Tnn) 1 . . =2 DM(Th)
—— _dr <DM(0) =DM (T,,_1) + (T — V1 .

(3.1.37)
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The goal now is to prove that

DN (T) 1 n—1

———dr < DM (0) - DM (T,) + (T — v .
D%*(O) (1—|—7”>f3 T LUy ( ) \% ( ) ( /Ukz:% (1—|—'D§(/[ (Tk))ﬁ

By doing the same computations done in the time interval [T — u, T but
now in [T, — u, T,,] we get

L+ DY (Tu)"?  (1+ DY (Taor) + DY (L) (T — )7
1-p 1-p5 (3.1.38)
=Dy’ (T1) = DY (To).

Now notice that

(14 DY (T,))'? _
1-p
DM (Ty) 1
oy e g wow (1)

(1+ DY (T,,_1) + DM (T, )(T — p))+=*
-5
dr.

and by recalling (3.1.38) it therefore holds

DM (T,,) 1
/ dr
pY*0) (1+471)°

DM (T, ) — DM (T) + DY (Tnn) ]
TV el Vo DY*(0) (1+7)8
DY (Toe1) DM (T2 ) (T— 1) 1

+f

dr

—d
DY (Tn-1) (L+7)P '
. . DY (Th1) ] DM (T, 1)
M M X Vv n—1
< DY (Tu) = DY (T + [ T e + (T =)

(1+ DY (T,-1))°

where in the last inequality we have used the induction step (3.1.37). There-
fore, by induction we have that (3.1.34) holds.

Step 3. In this step we prove that

) * * 00 p n' =P
JFZ ,D\]y (Tn) < ,D{‘/d (0) JFZ 67(1+D¥*(0)+D‘1>{*(0)T)5 .
= (1L+ DY (1) — (1+DY(0))7

n=1

(3.1.39)
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Let t € [T,, — p, T,,]. Tt holds

A DY ] M DY) B
dt[uw%*(t))ff] T DY P L+ DY (P (L+ DY (1)
0 DY (1)

N

(1+ DY (1)° (1+ DY (1))

For n = 1, i.e. at time ¢t = T, and by recalling that DY~ is increasing, it
holds

DM (T) DM (0) 77(1@%1* TP [ M(t)de
(1+DY(T))F — (1+ DY (0))
DX]\/F (O) B (1+D)]\§* (T))8 ‘

~ (1+DX(0)°
For all n > 1, it similarly holds

DY (T,) < DY (T, — )
(1+ DY (Tn))" — (1+ DY (T — )"

[ E—
e (DT (10))8

Now since it holds for all n € N
DY (T, — p) = DY (To1) and DY (T, 1) < DY (T, — 1)

then it holds for all n € N

DV (T) . DV ()  ~aowptmw (3.1.40)
(1+ DY (1) = (1+ DY (T,0))?

For n > 1, since it holds
DY (Ty) < DY (T,) Vke{0,....,n—1},
then, recalling (3.1.40), by iteration it holds

,D‘]\/F (T”) < D‘]\/ﬁ (O) a (1+D§V§*;L(Tn))5
(L+DY(T))7 ~— (1+DY(0))” '

Therefore, it holds

DT DVO) S Caagtr
(1+Dx"(T,))° — (1+Dx (0))°

n=1 n=1
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The goal now is to show that

nl=8

= - 1\75 B = - M* £ M* B
Ze (1+DY " (Tn)) < (e (4D (0)+Dy! " (0)T) ) ) (3_1_41>
n=1 n=1

Notice that for all n € N it holds
DY (T,) < DY (0) +nT - Dy (0)

It thus holds for all n € N

nuy nu

T (1+D¥(T)) = (14 D¥(0)+n-DM(0)T)°
H 1—
STy ooy "

and therefore it holds

+OO - nf +OO - E3 1 E3 nl_B
Z e (1+p§(f (Tn))B < Z (6 (1+D§/([ (0)+D‘]>/I (O)T)5>
n=1 n=1

thus proving (3.1.39).

Step 4. In this step we show the result. Now notice that by (3.1.34), for all n € N

it holds

DM (T,,) 1 ) +o0 DM~ (Tk>

——dr <DM(0)+ (T — v .

by (L SO T 2 ey
Therefore, it holds
(1+DY(T,) 7 _ (A+DY (07 | X DY ()

< + Dy (0) + (T — :
-5 -5 v O+ T=0 L

and thus

DY () < [+ 200 1 (D 0+ - 3 )|

By (3.1.33), it thus holds

1

(L+ DX (0)"" +(1-5) (Dy* 0+ (T =3 (1 flgg*@k))ﬁ)] B

k=0

dx(T,) <
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Since (3.1.39) holds and by recalling that (DY (0), DM"(0)) = (2dx(0), 2dyv(0)),
we thus get (3.1.5). In particular, it holds

n—-+o00

<|arpror o (oo o -0 S )|

and therefore we get unconditional flocking in the sense of (3.1.1).

Remark 3.1.1. The case f = 1 is more subtle. If we attempt to use the same

arguments as presented in the proof, then by following the same arguments we

get
dX (Tn) ]_ In dV (Tk)
dr < dy(0) —dy(T,) + (T — —_—
/dX(O) 1+r r < dv(0) v(Tn) +( Mkz:%lerX(Tk)

and again unconditional flocking would hold if the sum is finite. In this special

case, notice that for ¢t € [Ty, — u, T}] we get the following differential equation

c;if [1 ivd()t()(t)] G f:litzt))? a <1 ivd(i)@))Z

One attempt to solve it would be to see that

5t Hd(?@)] o <dv1<t> ’ 1) (%)

and by solving it in [Ty — u, T}] it holds

dV<Tk) . 1

1+ dx(Tk) WJFIT?W( 1 +1)ds

d
I+dx (T —h) v(e)

and thus by recursion it holds

dy(Ty) 1

T.
L+dx(Ty) o + 25 Jr, (5 +1) ds

T+dx (0)
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Therefore, if one can show for instance that there exists some a > 1 such that

kT 1
+1)ds~ k°
j;/TM<dv(s) ) i

then we would get that the sum converges and thus unconditional flocking holds

as well.

3.2 Flocking in the mean-field model for a uni-
form PE

In this section we consider the infinite dimensional setting and prove that uncon-
ditional flocking holds also in the classical mean-field setting. Just as motivated
in the mean-field setting in the case of first-order models in Section 2.2, we now

consider the case such that it holds
Mij(t) = M(t) Vi,j e {l,...,N}. (3.2.1)

Consider therefore the particle systems

ie{l,....N} (322)
0i(t) = 3 S50 M()dis(t) - (v5(t) — vilt))

1
(14 [ai(t) — ;1) ])°

Gij(t) = >0, t>0.

and where M € Mq,.

Theorem 3.2.1. Let 3> 0 and T, > 0 be given. Let (XN (t),VN(t)) defined
by (3.1.2) be a solution of system (3.1.1). Define the diameters dx(-) by (3.1.3)
and dy(-) by (3.1.4). Assume that M € My, where My, is defined by (2.0.3).
If B €[0,1), it then holds

1

dx(nT) < [(1+dx(0))° + (1 = B) (K (dy(0), dx (0, T, )| ™7 (3.2.3)
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for all n € N where

K (dy(0), dx (0), T, 1) = dy (0) + (T — ”)ﬂﬁl%))ﬂi (e‘wmidv(wﬁ)” 7

In particular, unconditional flocking occurs for 5 € [0,1).

77777

we have that it holds

1 N
— i E min { M; , M = M(t
N i,je{l,l.r},N} ] m{ k(s) ]k(s)} ( )

and by using Theorem 3.1.1 the result follows by noticing that the solution of
(3.1.1) with {M;; }i jeqr,... Ny satisfying (3.2.1) is exactly the solution of (3.2.2). O

.....

In this section we consider flocking formation in the mean-field limit of such
particle systems.

Define the diameter for a compactly supported measure v € P;(R?*) as
dx[v] = diam(supp, v), dy[v] = diam(supp, v)

where supp, f and supp, f denote the z-projection and the v—projection, respec-
tively, of supp;.
Let M(R? x R?) be the set of probability measures on R? x R%. Then, the

continuum model corresponding to (3.2.2) and (3.2.2) is

Oy + v -V + Vo - (V[t, pue]pe) = 0, (z,v) ERIXRY, ¢ >0

Ho = H
(3.2.4)

where the initial datum g € M(R? x RY). In the case we are treating the particle
system (3.1.1) with equal weights, i.e. A; constant, and the non-local vector-field

is given by

Vit (o) = [ M@O(r —yD(w = v)du(y.w) V(o) € R xR
(3.2.5)

In the case we are treating the particle system (3.1.1) with normalized weights,
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i.e.
N
Zl:l gzﬁ(xz, xl)

we define the non-local vector field

_ Jwa M()¢(|z — y]) (w — v)dp(y, w)
Jaza ¢(| = y[)dpu(y, w)

V[t, ) (z,v) V(z,v) € R* x R

(3.2.6)

Definition 3.2.1. Let T > 0. A measure p; € C([0,T]; P1(R?*?)) is a measure-
valued solution of (3.2.4) in the time interval [0, T] with initial datum i € P, (R?*?)
if it holds

[ [ @60 Vao 4 Vit s - Vod) din(r, )it + [ o, 0,0)d(z, ) = 0
0 JR2 R2d
for all ¢ € C*(RY x R4 x T').

We now state an existence-uniqueness theorem and a stability theorem of
(3.2.4). Such theorems have been proved in [22] for the case M = 1, i.e. full
communication between agents at all times. However, similarly to the first-order
mean-field model, they still hold true in the case where we have a uniform multi-
plicative persistently excited term depending only on time. Similarly to Lemma
2.2.1, there is [22, Lemma 3.1] which is its equivalent in the second-order model
setting, which again is satisfied in our case by noting that M(-) < 1 and then
following the exact same calculations, as has been shown in Lemma 2.2.1 in the

context of first-order models. We thus have the following theorem:

Theorem 3.2.2 (|22, Theorem 3.1)). Consider the continuum model (3.2.4) with
i € P1(R*) and suppose that there exists a constant R > 0 such that

supp i C B**(0, R)

where B*"(0, R) stands for a 2d-dimensional ball centered at the origin with radius
R > 0. Then, for T > 0 there exists a unique measure-valued solution p; €
C([0,T); P1(R?*)) of (3.2.4) in the sense of (3.2.1). Moreover, y; is uniformly

compactly supported and we have

He = (Xl(t; i ')7 X2(t; " ))# T
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where (X1(t;-,-), Xa(t; -, -)) is the flow generated by (v, V[t, ps)).

Theorem 3.2.3 ([22, Theorem 3.2]). Let ul, u? € C([0,7T); P (R?*?)) be two weak
solutions of (3.2.4) subject to uniformly compactly supported initial data ', @* €
P1(R?*), respectively. Define

RTX = max max |z|, R],:= max max |v] i=1,2.
0<t<T x&supp fit 0<t<T VESUPD it

Then, there exists a constant C > 0, depending only on ¢, T, RF X RZ v, such that
Wi (:utlv :uf) < CWl (/217 ﬂ2) vt € [07 T)

This stability result provides a rigorous passage from the particle system
(3.2.2) to (3.2.4) where the nonlocal vector field is given by (3.2.5) or (3.2.6)
depending on the choice of the weighting procedure.

Notice that the result of Theorem 3.1.1 is independent of N. Then, by fol-
lowing the lines of [22, Theorem 3.3] for the case of no delay (7 = 0 using the

authors notation), we thus get the following result:

Theorem 3.2.4. Let T, ;n > 0 be given. Let M € My, where My, is defined by
(2.0.3). Let yu; € C([0,T]; PL(R??)) be a measure-valued solution to (3.2.4) with
compactly supported initial data ji € Py(R>*?) with the vector field V either given
by (3.2.6) or (3.2.5). If B € ]0,1), it then holds it then holds

1

dxlpar) < [(1+ dx[@)' 7 + (1= B) (Krrp(dy [, dx (), T, )] 7 (3.2.7)

for all n € N where

+o0 1-8

K (dy ), dx [, T, ) = dy (1] + (T — p)dy [1] 3 (e‘wxwidv[mf)”

n=1

then unconditional flocking occurs.

Proof. Let N € N. Define the family of N—particle approximations of i, namely
{iiV} n defined as
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where {zZ¥, 0 }ieqr,..ny, with 2V, v € R? are chosen such that
supp i C B(0, dx[p]) x B(0,dv[i]) YN €N (3.2.8)
and
Jim W (, ) = 0. (3.2.9)

-----

~~~~~

Then, we have that p¥ is a measure-valued solution to the kinetic model (3.2.4)
in the sense of (3.2.1). Now notice that if u; € C([0,T]; M(R*")) is a weak
solution to (3.2.4) with initial datum j, then according to Theorem 3.2.3 there
exists a constant C' > 0 independent of N such that

Wl(ui\[’:ut) < CWl(/lNMTL) vt € [07T>? vp € [17+OO]
Therefore, by (3.2.9) it holds
W Wy ) =0 VE€[0,T), Vp €[l +oo].

By following the same argument as done in Theorem 2.2.4, we have that by
Theorem 3.2.1 it holds

supp, 1y C B(0,dx(t)) € B(0,C(dy(0),dx(0),T, u, ) ¥t >0
where
dy(t) = diam(supp, ) t>0

and where C(d{}(0),d%¥(0), T, i, 3) is the left-hand side of (3.2.3). Now notice
that by (3.2.8) it holds

C(dy(0),d%(0), T, p, 8) < Crrr(dy ], dx i, T, 1, 5)
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where Cyrp(dv[], dx ], T, p, ) is the left-hand side of (3.2.7). Therefore it holds

Again, since convergence in Wasserstein implies that Y — p; weakly-* as
measures as N — +o00, then we know that the support of a measure is stable

under weak-* limits, as shown in the proof of Theorem 2.2.4. This implies that

supp,, pe C B(O7CMF(dV[ﬁLdX[Ia]aT?Naﬂ)) vt >0

and therefore

dx () < Cur(dvlpl, dx(p], T, p, 8) YVt € [0,T]

and since T is arbitrary, then the result follows. O]



Conclusions

We now present the results we have achieved in each chapter along with

possible future directions.

o In the first chapter, we have seen in Theorem 1.0.1 that letting the ini-
tial approximation profile issued by some discretization scheme converge
weakly to the compactly supported initial data, then the microscopic so-
lution built from the Follow-the-Leader model converges to the entropy
solution of the macroscopic Lighthill-Whitham-Richards model. Moreover,
in Theorem 1.0.2 we have provided a stability result regarding the solution

issued by two different discretization schemes.

A future work could be devoted to the study of the mean-field limit in

networks and address optimal control problems.

e In the second chapter, we have seen in Theorem 2.1.1 that consensus holds
under a PE condition on the scrambling coefficient of the weights {Mij}i,je{l,...
for an influence function bounded from below for system (2.1.1). We have
seen that in case the indistinguishability property (2.2.1) holds, then we
can use the result of Theorem 2.1.1 to conclude that consensus holds also
in the mean-field setting as shown in Theorem 2.2.4. A new result in the
finite-dimensional setting is given by Theorem 2.1.2, where we simply im-
of the state of the dynamics, and guarantee that consensus holds.

A future work is devoted to the generalization of the result in the multi-
dimensional setting. Another open problem is to see whether the one-
dimensional result holds if we impose a PE condition only on the mean of
{M;;}ieq,..ny foralli € {1,...,N}. Another task is to consider the graph-
limit setting and try to use the same logic as in the finite-dimensional setting
by using Scorza-Dragoni’s theorem (Theorem A.1.1) and Danskin’s theorem

(Theorem A.1.2) in the spirit of [11]. Since the main goal is to treat the
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case of communicatino failures, it would be interesting to see whether we
can relate the point of view of imposing a PE condition with the point of

view of letting the communication failures follow some stochastic process.

In the third chapter, we have seen in Theorem 3.1.1 that unconditional
flocking holds for 5 € [0, 1) in the case where we impose a PE condition on
the scrambling coefficient of the weights {M;;}; jeqr,... n3- The main tool was
the identification and treatment of the “worst-case scenario” in the sense
of Proposition 3.1.2. Then, in Theorem 3.2.1 we have seen that we can use
the result by Theorem 3.1.1 to conclude that unconditional flocking holds

under the same assumptions in the mean-field setting as well.

A future work could be to first investigate the case of unconditional flock-
ing # = 1 as explained in Remark 3.1.1 and then conditional flocking for
the case > 1. Another future work could be to consider the graph limit
of the finite-dimensional model, prove that its “worst-case scenario” is the
same and, again, by using Scorza-Dragoni’s theorem (Theorem A.1.1) and
Danskin’s theorem (Theorem A.1.2) in the spirit of [11] conclude that un-
conditional flocking holds for § € [0,1) and again treat as well the case
B>1



Appendix A:

Preliminaries

A.1 Measure theory and optimization

In this section, we present some general tools already applied to opinion dynamics
(see e.g. [11]). We now present simplified versions of Scorza-Dragoni and Danskin

theorems.

Theorem A.1.1 (Scorza-Dragoni, [10]). Consider a complete separable metric
space (-7, dy). Let Q C RY be a Borel set and f: R, x Q — . be such that x €
O f(t,z) € L is L% measurable for eacht > 0, and t € Ry — f(t,r) € .S
is continuous for L %-almost every x € Q. Then for every ¢ > 0, there exists a
compact set Q. C Q satisfying L% (Q\Q.) < € and such that the restricted map
f Ry x Q. — .7 is continuous.

Theorem A.1.2 (Danskin, [29]). Let Q C R? be a compact set and f : Ry xQ —
R be a continuous function such thatt € Ry — f(t,z) € R is differentiable for all
x € Q. Then, the application g : t € Ry — max,cq f(t,x) € R is differentiable

Lt-almost everywhere, with

d
—9(t) = max 9, f(t, z)
dt 2e)(t)

for L' -almost every t > 0, where we introduced the notation Q(t) := argmaz f(t, ).
€

Lemma A.1.1 ([11, Lemma 2.3]). Let Q@ C R? be a compact set and f €
L>®(Q,RY). Then, for every 6 > 0, there exists € > 0 such that

[l goeqy = 0 < Ml ooy < N lloeie

109



110 Appendix

for all measurable sets Q. C  satisfying meas(Q\Q,) < e. In particular, it holds

o {| f| oo 0,y = Il 2o (@)
for every family of sets (Q)eso C P(L) satisfying these properties.

We now present a scalar product inequality which is used in the graphon

framework.

Lemma A.1.2 ([11, Lemma 3.4]). Let J € [0,1] be a closed set, x € C(J,R?)
and i,7 € J be a pair of indices such that

masxlz (k) — ()= l2() - ()]

It then holds

max(x(k), z(i) — x(3)) = (x(i), z(i) — z(j))

keJ

and

min(z(j), z(i) — z(j)) = (x(j), z(3) — z(j)).

keJ

Remark A.1.1. In particular, Lemma A.1.2 is applied in the finite-dimensional
framework, where indices belong to the closed set {1,..., N}, and in the graph

limit framework, where indices belong to [0, 1].

A.2 Optimal transportation
We now present main definitions in optimal transportation.

Definition A.2.1. Let 1 be a Borel measure on R% and let T : R? — R? be a

measurable map. Define the push-forward of i through T as the measure given by
Tyu(B) = p (T7'(B))
for all Borel sets B € RY.

Definition A.2.2. Let pi, iz € M(R?) be two probability measures on R, Let
(g1, pio) be the set of all probability measures on R? x RY with marginals p, and
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,ug,z'.e.

L, o@intey) = [ o@da@, [, oy = [, o)

Rd x R4

for all continuous and bounded functions ¢ € C,, (Rd)
Then, we define the Wasserstein distance of order 1 < p < 400 between iy

and o as

S 3 _ P
Wy(pa, po) = inf (/Rded’x Y| dﬂ(:c,y))

T‘-EH(Ml 1“2)

and for p = oo as

Weolpur, pig) = _inf < sup !w—yVD)-

m€ll(p1,p2) \ (z,y)esupp(r)

Proposition A.2.1. The set of probability measures with finite moments of order
p € [1,+00), denoted by P, (Rd), endowed with the p- Wasserstein distance W, is

a complete metric space.
Proof. See [63]. O

We now define the cumulative distribution of a function and the corresponding

pseudo-inverse.
Definition A.2.3. Consider the space of probabilities

P.(R) := {p Radon measure on R with compact support such that p >0, p(R) = 1}.

Given p € P.(R) N L*(R), define the cumulative distribution F, : R — [0,1]

as :
F,(z) = p((—o00,x]), z € R, (A.2.1)

and its associated pseudo-inverse X, : [0,1] — R as
X,(z) =inf{z e R | Fy(x)> z}, z € [0,1]. (A.2.2)

Observe that F), is non-decreasing and right-continuous. We recall that the
one dimensional Wasserstein distance can be defined using the cumulative or the

pseudo-inverse functions, see e.g. [63].
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Proposition A.2.2. The one-dimensional 1-Wasserstein distance between p, p €
P.(R) s

Wi(p, p) = HFp - Fﬁ”Ll(R) = HX,D - XﬁHLl([OJ]) : (A.2.3)

A.3 Ordinary differential equations

Given an ordinary differential equation, the right-hand side of the dynamics may
present discontinuities, and we thus have to consider a more generalized notion of
solution, see [18]. Throughout this paper we consider the notion of Carathéodory
solution whenever the dynamics studied contain a measurable function on the

right-hand side. We now recall some definitions and theorems, see e.g. [36].

Definition A.3.1 (Carathéodory solution). Consider a non-autonomous ODE

#(t) = f(t,x(t) (A.3.1)

where € R? and g : R x R? — R? 4s a measurable and locally bounded func-
tion defined at every point. A Carathéodory solution is an absolutely continuous
function x : [0, T] — R which satisfies (A.3.1) at almost every time t € [0,T].

Definition A.3.2 (Carathéodory conditions). Supposed D is an open subset in
R We say that f : D — R? satisfies the Carathéodory conditions on D if f
is measurable in t for each fixed x, continuous in x for each fixed t and for each

compact set U of D, there is an integrable function my(t) such that
|f(t,2)|< mu(t), (t.x)eU.

Theorem A.3.1. If D is an open set in R™ and f satisfies the Carathedoroy
conditions on D, then, for any (to, xo) in D, there is a solution of (A.3.1) through

(to,l’o).

Theorem A.3.2. Supposed D is an open subset in R™ | f satisfies the Carathéodory
conditions on D and for each compact set U in D, there is an integrable function
ky(t) such that

If(t,x) — ft, | ku(®)|z—vy|, (tz)eU, (t,y) eU.

Then, for any (to,xo) in U there exists a unique solution x(t,to,zo) of (A.3.1)
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passing through (to,xo). The domain E in R of definition of the function

x(t, to, o) is open and x(t,to, xy) is continuous in E.
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