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A mio nonno Nuccio
e a mia zia Tiziana



Vá dalla formica, o pigro,
guarda le sue abitudini e diventa
saggio.
Essa non ha né capo,
né sorvegliante, né padrone,
eppure d’estate si provvede il vitto,
al tempo della mietitura accumula il
cibo.
Fino a quando, pigro, te ne starai a
dormire?
Quando ti scuoterai dal sonno?

Libro dei proverbi

"So don’t be frightened, dear friend, if
a sadness confronts you larger than
any you have ever known, casting its
shadow over all you do. You must
think that something is happening
within you, and remember that life has
not forgotten you; it holds you in its
hand and will not let you fall. Why
would you want to exclude from your
life any uneasiness, any pain, any
depression, since you don’t know what
work they are accomplishing within
you?"

Letters to a Young Poet - Rainer
Maria Rilke
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English Abstract

In this thesis we study theoretical and control type properties of three different classes
of PDE: Scalar Conservation Laws with flux discontinuous, respectively, in the space and in
the conserved quantity, and a Partial Integro-Differential Equation. In the first chapter we
analyze the set of attainable profiles, at fixed time (with initial datum regarded as a con-
trol), by solutions to conservation laws with flux having a single discontinuity in the space
and strictly convex or strictly concave behaviour outside the discontinuity. This analysis
yields compactness properties of such a set which is instrumental to study many variational
problems involving the profiles of the solutions. In the second chapter we examine a class
of conservation laws with flux discontinuous in the conserved quantity that emerges in a
model of industrial conveyor belt and in supply chains. We first introduce an appropriate
notion of pair of entropic solution-flux, we provide existence of entropic solution-fluxes by
front-tracking and we show a Kruzkhov’s type stability of such solutions. Next, we analyze
the associated Hamilton-Jacobi equation, we derive an Hopf-Lax type representation for-
mula of the solutions and we show how to recover the pair of entropic solution-flux of the
conservation law from the gradient of the solution of the Hamilton-Jacobi equation. Fi-
nally, we consider the problem of a junction with a buffer (to store processed products) and
with incoming and outgoing belts modeled by the class of conservation laws analyzed be-
forehand. Existence and uniqueness of the solution to the junction problem is established.
The last chapter describes a mathematical model for a robotic root to be used in rescue
technology. The root movement is described by two different Partial Integro-Differential
Equations, one for the body and one for the tip. When the root encounters an obstacle
in a "good" configuration, it moves around it by bending through a determined angular
velocity minimizing the elastic deformation, the cost of moving sand and digging where
the soil is dense. A restarting procedure is instead introduced to handle the crossing of
obstacles in "bad" configuration. Some numeric simulation are also produced.



Italian Abstract

In questa tesi si studiano proprietà teoriche e controllistiche per tre differenti classi di
PDE: Leggi di Conservazione Scalari con flusso discontinuo rispettivamente nello spazio
e nella quantità conservata, ed Equazioni Integro-Differenziali alle derivate parziali. Nel
primo capitolo si analizza l’insieme dei profili raggiungibili, ad un tempo fissato (con dato
iniziale visto come controllo), da soluzioni di leggi di conservazione con flusso avente una
singola discontinuità nello spazio e andamento strettamente convesso o strettamente con-
cavo al di fuori di essa. Questa analisi mostra proprietà di compattezza di tale insieme
che è essenziale al fine di studiare molti problemi variazionali che coinvolgono i profili delle
soluzioni. Nel secondo capitolo si esamina una classe di leggi di conservazione con flusso
discontinuo nella quantità conservata che emerge nei modelli per cinghie di distribuzione
industriale e supply chain. Si introduce una appropriata nozione di coppia entropia- flusso
entropico e si dimostra l’esistenza si una soluzione data dalla coppia densità-flusso mediante
front-tracking, inoltre si prova un risultato di stabilità per queste soluzioni alla Kruzkhov.
Successivamente viene analizzata l’equazione di Hamilton-Jacobi associata e per la quale
si deriva una rappresentazione esplicita della soluzione del tipo Hopf-Lax. Il gradiente di
questa soluzione fornisce la coppia densità-flusso. Conclusivamente si considera il prob-
lema al giunto con un buffer (in cui depositare i prodotti processati) con catene entranti
e uscenti sulle quali il flusso è descritto dalle leggi di conservazione analizzate in prece-
denza. Si dimostra esistenza ed unicità della soluzione per il problema al giunto. L’ultimo
capitolo descrive un modello matematico per una radice robotica da impiegare nelle rescue
technology. Il movimento della radice è descritto da due equazioni integro-differenziali alle
derivate parziali, una per il corpo e una per la punta. Quando la radice incontra un osta-
colo in una "buona" configurazione, lo evita mediante una velocità angolare che minimizza
la deformazione elastica, il costo per spostare sabbia e per scavare dove il suolo è denso.
Quando invece la configurazione è "cattiva", si introduce una procedura di restarting per
ovviare ad essa. Si forniscono per finire alcune simulazioni numeriche.



Introduction

In this thesis we study theoretical, structural and control type properties of three
different classes of PDE: Conservation Laws with flux discontinuous in the space variable,
Conservation Laws with flux discontinuous in the conserved quantity and Partial Integro-
Differential Equations.
Conservation laws with discontinuous flux in space have been and still are a topic of great
interest due to their large number of applications, ranging from road traffic with changing
surface conditions, to sedimentation problems, to oil recovery problems and endovascular
blood flow on vessels of different sizes. Important applications of the theory developed
for such class of PDE arise also in the analysis of: network models, inverse problems for
conservation laws with continuous flux, triangular systems of conservation laws.
The various studies performed so far concern the well-posedness of the Cauchy problem
and the approximation of solutions by numerical schemes. However, until now no general
control analysis has been conducted on this type of equations. As a first step in this
direction, after an overview of the main entropy conditions introduced in the literature
to achieve uniqueness of solutions for the Cauchy problem, we provide in Chapter 1 a
characterization of a set of attainable profiles at a fixed time, for conservation laws that
admit a single discontinuity in the space and are strictly convex (or strictly concave) outside
it. This is the set of profiles that can be attained at a fixed time by solutions of this class
of PDE with bounded initial data. Here, we regard the initial datum as a control affecting
the behaviour of the solution. This analysis yields compactness properties of the attainable
set which is instrumental to study many variational problems iintroduced in the past and
involving the profiles of the solutions. At the end of the Chapter some applications to
optimization problems for road traffic and oil extraction are analyzed.

Conservation laws with discontinuous flux in the conserved quantity is a much less
studied topic in the literature, which presents entirely different feature from the previous
one. These type of equations emerge in most modern supply chain models as well as in
some empirical models for road traffic. Here, the discontinuity in the conserved variable
yields solutions with multivalued flux. Such solutions can be approximated by solutions of
conservation laws with regularized fluxes which exhibit shocks with arbitrarily large slope.
This implies that, for these conservation laws, the fundamental property of finite wave
propagation is lost. Therefore, for such a class of equations the very concept of solution
needs to be better understood and the classical theory needs to be suitably adapted. In
Chapter 2, after a brief summary of the known results on these equations, we analyze
a specific class of conservation laws with flux discontinuous in the conserved quantity
that emerges in studying industrial conveyor belt and in supply chain. We first introduce
an appropriate notion of pair of entropic solution-flux, we provide existence of entropic
solution-fluxes by front-tracking and we show a Kruzkhov’s type stability of such solutions.
Next, we analyze the associated Hamilton-Jacobi equation, we derive an Hopf-Lax type
representation formula of the solutions and we show how to recover the pair of entropic
solution-flux of the conservation law from the gradient of the solution of the Hamilton-
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Jacobi equation. Finally, we consider the problem of a junction with a buffer (to store
processed products) and with incoming and outgoing belts modelled by conservation laws
with discontinuous flux in density (for the evolution of parts on the single chains) and by
an ordinary differential equation (for the processing of parts inside the buffer). Here, the
Hamilton Jacobi approach introduced for the single conveyor belt is crucial in order to
prove existence and uniqueness of the solution to the junction problem. In fact, such a
solution is obtained by a fixed type argument for a contractive map which is defined in
terms of the Hopf-Lax type representation formula of the solutions along the single chains.

The last chapter concerns the control of a class of Partial Integro-Differential Equations
describing the evolution of a robotic root. The idea of this robot stems from the need to
expand those technologies known as "Rescue technologies" which are exploited in saving
human lives. We speak of a robotic root because we want to imitate the behaviours and
capacities of plants in order to optimize performance, especially in unstable environments
like collapsed buildings. The goal of the root is to dig into the ground among the rubble
where the radars pick up heat sources or pulsations that can be traced back to living beings.
The root movement is described by two different partial differential equations, one for the
body and one for the tip. In fact, while the body moves only in response to obstacles or
high-density terrain, the tip also pursues a control that directs towards the target. Every
time the robot encounters an obstacle in a configuration for which it is not possible to
circumvent it, it is shortened by a suitable quantity described by special algorithms and
grows away from the previous trajectory so as not to explore areas already known, i.e.
it builds a map of the regions explored. When, on the other hand, the root encounters
an obstacle in a good configuration, it moves around it by bending through a determined
angular velocity minimizing the elastic deformation, the cost of moving sand and digging
where the soil is dense. Finally we show some simulations of the behaviour of a robotic
root in the presence of an obstacle.

We want to underline that the goal of this thesis is to understand and analyze theoretical
aspects of some real models with all the necessary tools coming from Mathematical Anal-
ysis. In particular, among these, the main ones turn out to be the Theory of: Hyperbolic
Conservation Laws, Hamilton-Jacobi Equations, Partial Integro-Differential Equations and
the Mathematica Theory of Control.



Chapter 1

Scalar conservation laws with space
discontinuous flux

Consider the following Cauchy problem for scalar conservation law in one space dimen-
sion

ut + f(x, u)x = 0, x ∈ R, t ≥ 0 (0.1)
u|t=0 = u0 x ∈ R (0.2)

where the flux f(x, u) is a discontinuous function given by

f(x, u) = fl(u)1x<0 + fr(u)1x>0 (0.3)

Equations of the above type are topic of intense current research since they arise in
a number of recent applications, for example in modeling two phase flow in a porous
media ([43]), in sedimentation problems ([64]) and in traffic flow ([37])(with roads whose
amplitude varies for work in progress or change of number of lanes), in Saint Venant model
of blood flow ([10]).
This kind of problems appear also if we consider conservation laws on network (whose
recent great interest is motivated by the application in data networks, supply chains, air
traffic management, gas pipelines, irrigation channels) when the network is composed only
by two arcs and a junction point. Regardless of how much f and u0 are smooth, it is well
known that classical solutions for this problem may not exist globally since discontinuities
can develop in finite time, hence we need to interpret (0.1),(0.2) in a weak (distributional)
sense. However, weak solutions are, in general, not unique, thus additional admissibility
criteria are necessary to single out a unique solution; these criteria are called entropy
condition. In the case of conservation laws with discontinuous flux, the classical entropy
conditions are still not enough to ensure the uniqueness of weak solutions, therefore a
wide theory has been developed on the right conditions that must be imposed along the
discontinuity in order to obtain uniqueness. In particular our choice of entropy conditions
will be dictated by the interest for any future applications to network problems.
Here we analyze the problem from the point of view of control theory, in particular the
initial data u0 will be considered as a control. Given a set U ⊂ L∞(R) of admissible
controls, we characterize the set attainable profiles at a fixed time T

A(T,U) = {u(·, T ) : u is a solution of (0.1),(0.2) with u0 ∈ U} .
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A brief survey on conservation laws with discontinuous flux

The interest captured by the innumerable applications of scalar conservation laws with
discontinuous flux in space can be measured observing how the literature currently available
on these equations is vast. The challenges regard their well-posedness, numerical analysis,
regularity and controllability. The applications of conservation laws with discontinuous
flux can be gathered in three different groups:

• the first group is represented by those models in which the discontinuity of the flux
comes out from a spatial heterogeneous physical reality and is explicitly modeled.
This is the case of traffic flow models with heterogeneous surface conditions and
continuous sedimentation([64], [34]);

• a second group comes from the study of inverse problems of a standard scalar con-
servation law having a continuous flux ([14]);

• the last one arises in the reformulation of balance laws and triangular systems of
conservation laws in term of conservation laws with discontinuous flux ([55], [54]).

For a deep analysis of the numerous applications see [22].

These equations admit many different L1- contractive semigroup, but the physics of
each model singles out the opportune solution. A large variety of admissibility criteria have
been formulated in recent years and a unified perspective of these is offered by the work
of Andreianov, Karlsen, Risebro [5] in which they show that the whole admissibility issue
can be reduced to the selection of a family of "elementary solutions" which are piecewise
constant weak solutions of the form

c(x) = cl1{x<0} + cr1{x>0}.

They refer such a family as "germ". This approach was suggested by a work of Gar-
avello, Natalini, Piccoli, Terracina [38] in which the authors associate to a particular ad-
missibility criteria a Riemann solver in x = 0.

In the wide range of available entropy conditions, we choose the one introduced in [2]
that the authors refer as AB- interface entropy condition. This particular condition pro-
duces a unique solution of the conservation law satisfying the Kruzkov entropy condition
out of {x = 0} and an opportune inequality involving the left and right traces of this solu-
tion in x = 0. Existence of strong traces for solutions of scalar conservation laws defined
on subsets of R × R+ reached by L1 convergence, is proved in [58], [66] and [6]. In the
next we will explain in detail the notion of AB- interface entropy condition and the associ-
ated AB- entropy solution, moreover we will recall some regularity results for this solutions.

Our contribution to the theory of conservation laws with discontinuous flux will consists
in describing how a solution’s profile is done at fixed time. We remark that what we state is
a necessary and sufficient condition for a given function to be a solution . This means that
for a function satisfying some conditions that we will state later, we are able to construct
an initial datum such that this function is the unique solution for the Cauchy problem.

In the final analysis we study the compactness properties of the set of attainable profiles.
It is easy to understand that compactness is essential for studying functionals that involve
the profile of the solution. The simplest we can imagine is the functional distance from a
target profile, but there are a lot of other possible choices.

The chapter is organized in the following way: in Section 1 we give an overview of
conservation laws with flux discontinuous in the space and we highlight a distinctive feature



of this type of equation, that is, the problem of selecting a single solution by means of
appropriate entropy conditions along the discontinuity interface. To this end we will briefly
describe the main entropy conditions introduced in past years and how to interpret them
in terms of dissipative germs. In Section 2 we state the original results of the chapter,
the full description of the set of attainable profiles for fixed time for scalar conservation
laws with flux as (0.3). Before prooving the main theorem in Section 3 we introduce some
preliminary lemmas which point out peculiarities of the entropy solution associated to the
particular interface entropy condition chosen. In Section 4 and 5 we prove respectively the
main theorem, that is the necessary and sufficient conditions for a function to belong to the
set of attainable profiles and the topological characterization of this set. The analysis done
for convex-convex fluxes can be adapted to the case of concave-concave fluxes and this is
exactly what we do in Section 6 where we also compare how the meaning of the interface
entropy condition changes by showing how to solve the different Riemann problems. Finally
in Section 7 we apply the topological characterizazion of the attainable profiles to some
variational problems emerging on porus media and traffic models.

1 Well posedness of the problem and entropy conditions

The basic difficulty that occurs in the well-posedness for initial value problem of (0.1)
is due to the fact that given a value for the trace of the solution on one side of {x = 0},
the correspondent trace on the other side is not uniquely determined only by asking the
correspondent fluxes to be equal. Therefore in the last decades several methods have been
introduced in order to single out a unique solution of (0.1). They are mainly inspired by
the classic criteria of admissibility for scalar conservation laws with continuous flux, such
as vanishing viscosity and entropy conditions. After recalling the most important examples
of there criteria, we show how we can interpret them in term of L1-dissipative germ.

1.1 Diehl’s Γ condition

In [35] Diehl introduced one of first entropy conditions for equation (0.1) with flux as
(0.3), known as Γ condition. His analysis is limited to piecewise smooth solutions, i.e.
bounded and C1 except along a finite number of C1 curves where both left and right limit
exist. If u is such a function, we use the following notation:

u±(t) = lim
ε→0

u(± ε, t),

u±(t) = lim
ε→0

u±(t+ ε).

Moreover it is assumed that u±(t) are piecewise monotone. In the definition below, for
every Riemann problem along {x = 0} we introduce the functions f̌l(R, u−) and f̂r(R, u+)
consisting respectively in the minimal convex decreasing and increasing functions passing
trough fl(u−) and fr(u+) when both fl and fr are convex. To these functions we can
associate also the sets N(fl, u−) and P (fr, u+) where f̌l(R, u−) and f̂r(R, u+) are strictly
monotone. These elements are crucial in describing the Γ condition.

Definition 1.1. Given u− and u+ ∈ R and the flux functions fl and fr define (see Fig
1.1)

f̌l(u, u−) =

{
maxv∈[u,u−] fl(v), u ≤ u−
minv∈[u−,u] fl(v), u ≥ u−

N(fl, u−) = {u−} ∪ {u : u < ul; f̌l(u+ ε, u−) < f̌l(u, u−), for all ε > 0}
∪ {u : u > u−; f̌l(u− ε, u−) > f̌l(u, u−), for all ε > 0}



f̂r(u, u+) =

{
minv∈[u,u+] fr(v), u ≤ u+

maxv∈[u+,u] fr(v), u ≥ u+

P (fr, u+) = {u+} ∪ {u : u < u+; f̂r(u+ ε, u+) > f̂r(u, u+), for all ε > 0}
∪ {u : u < u+; f̂r(u− ε, u+) < f̂r(u, u+), for all ε > 0}

Observe that f̌l(·, u−) is a decreasing function whose graph consists of strictly decreas-
ing parts separated by plateaus where the function is constant. Analogously f̂r(·, u+) is
an increasing function with constant pieces.

Monotonicity of f̌l(·, u−) and f̂r(·, u+) implies that their intersection is given by an
interval, thus we introduce the following notation

Ū = Ū(u−, u+) = {u ∈ R : f̌l(u, u−) = f̂r(u, u+)},
γ = f̌l(Ū , u−),

In the case of convex fluxes if fl(ul) 6= fr(ur) then Ū is just a point that we can denote
by ū.

Condition Γ: For t fixed and given u−(t), u+(t) ∈ R, (u−(t), u+(t)) ∈ Γ(u−(t), u+(t)) =
{(α, β) ∈ R2 : fl(α) = fr(β) = γ}.

The following result ensures that if u is a solution up to the time t then the Riemann
problem with left and right state given by u−(t), u+(t) admits a solution satisfying the Γ
condition.

Proposition 1.1. Let u−, u+ ∈ R be given, if f̌l(R, u−) ∩ f̂r(R, u+) 6= ∅ then the set
(N(fl, u−)× P (fr, u+)) ∩ Γ(ul, u+) consists exactly in one pair representing left and right
traces for the solution along the discontinuity {x = 0}.

u

fl fr

ul urū f̌l(u, ul)

f̂r(u, ur)

Figure 1.1: Example of how to construct f̌l(u, ul), f̂r(u, ur) starting from the Riemann
problem with states ul and ur

.

The Γ condition has been justified first in [34] by Godunov’s method applied to (0.1),
later in [35] it was proved the equivalence with the so called viscous profile condition
obtained by studying stationary solutions of ut + f δ(u)x = εuxx where f δ is a smooth
approximation of the discontinuous flux (0.3) .



1.2 Audusse-Perthame adapted entropies

In [10] Audusse and Perthame propose to adapt the definition of Kruzkov entropies to
the discontinuous case by introducing partially adapted Kruzkov entropies

Eα(x, u) = |u− kα(x)| (1.1)

where kα(x) satisfies
f(x, kα(x)) = α (1.2)

Hence the new adapted entropy condition is given by

∂t|u− kα(x)|+ ∂x[(f(x, u)− f(x, kα(x))) sgn(u− kα(x))] ≤ 0 (1.3)

In this way the interface does not need a special treatment and no conditions along {x = 0}
are required. Uniqueness follows from an argument very similar to the classical one of
Kruzkov and the main difficulty stands in working with the families of function kα(x).

Definition 1.2. Let u and v ∈ L∞([0, T ],R)∩C0([0, T ], L1
loc(R)) be respectively an entropy

sub- and supersolution of (0.1) if an only if for all α ∈ R+

∂t(u− kα(x)) + ∂x[(f(x, u)− f(x, kα(x))) sgn+(u− kα(x))] ≤ 0 (1.4)

resp
∂t(v − kα(x)) + ∂x[(f(x, v)− f(x, kα(x))) sgn−(v − kα(x))] ≥ 0 (1.5)

Theorem 1.2. Let u and v ∈ L∞([0, T ],R) ∩ C0([0, T ], L1
loc(R)) be respectively and en-

tropy sub- and supersolution to the initial value problem (0.1) with initial data in u0, v0 ∈
L∞([0, T ],R). Assume that The flux f is of the form (0.3) with fl,r continuous, strictly
convex and coercive, then for a.e. t ∈ [0, T ]

∫ b

a
(u(x, t)− v(x, t))+dx ≤

∫ b+Mt

a−Mt
(u0(x)− v0(x))+dx. (1.6)

Hence the previous results immediately implies uniqueness of the solution when u0 = v0.
Theory of adapted entropies was developed for more general discontinuous fluxes but unlike
the solutions obtained by means of the Γ condition, those selected by the adapted entropies
cannot be derived by vanishing viscosity as shown in [48].

1.3 The Karlsen-Risebro-Towers entropy condition

In [56] the Karlsen, Risebro and Towers study entropy condition and uniqueness of
solution for the following Cauchy problem

{
ut + f(γ(x), u)x = 0

u(x, 0) = u0(x)
(1.7)

where u0 ∈ L∞(R) and the flux function f : Rp×R→ R has a spatial dependence through
the vector-valued parameter

γ(x) =
(
γ1(x), ..., γp(x)

)
. (1.8)

The spatial varying coefficient γ is assumed to be piecewise C1 with finitely many jumps
located at η1 < η2 < ... < ηM . They assume also that each γν (ν=1,...p) is locally
Lipschitz while the flux f is Lipschitz continuous in each variable. In this setting the
following definition of entropy solution is suggested:



Definition 1.3. An entropy solution of the initial value problem (1.7) is a function u ∈
L∞([0, T ]×R) that satisfies (1.7) in the distributional sense and the following Kruzkov-type
entropy inequality for all φ ≥ 0 test function:

∫ ∫ (
|u− c|φt + sgn(u− c)(f(γ(x), u)− f(γ(x), c))φx

)
dt dx

−
∫ ∫

([0,T ]×R)\{ηm}Mm=1

sgn(u− c)f(γ(x), c)x φdt dx

+

∫ T

0

M∑

m=1

|f(γ(ηm+), c)− f(γ(ηm−), c)|φ(ηm, t)dt

+

∫

R
|u0(x)− c|φ(x, 0)dx ≥ 0 for all c ∈ R

where

f(γ(x), c)x = γ′(x) · fγ(γ(x), c) =

p∑

ν=1

γ′ν(x)fγν (γ(x), c).

Crossing condition For any jump in γ with associated left and right limits (γ−, γ+),
for any states u and v, the following crossing condition must hold:

f(γ+, u)− f(γ−, u) < 0 < f(γ+, v)− f(γ−, v) =⇒ u < v. (1.9)

From the geometric point of view this condition requires that either the graph of f(γ−, ·)
and f(γ+, ·) do not cross, or if they intersect, the graph of f(γ−, ·) lies above the graph
of f(γ+, ·) to the left of any crossing point.

Existence of traces Let u = (x, t) be an entropy solution to the initial value problem
(1.7). For m = 1, ...,M they assume that u(·, t) admits right and left traces at x = ηm
denoted by u(ηm±, t).

Theorem 1.3. Let u and v be two entropy solutions to the initial value problem (1.7) with
initial data u0,v0 ∈ L∞(R), respectively. If f satisfies the crossing condition and there
exist right and left trace of u(·, t), v(·, t) at the jump point of γ, then for a.e. t ∈ (0, T )

∫ r

−r
|v(x, t)− u(x, t)|dx ≤ C

∫ r+Lt

−r−Lt
|v0(x)− u0(x, t)|dx (1.10)

with L Lipschitz constant of f with respect to the second variable and C > 0 finite constant.
If γ′(x) = 0 for a.e. x ∈ R, then C = 1.

When the crossing condition holds, also solutions selected by Karlsen-Risebro-Towers
entropy condition can be derived by vanishing viscosity as proved in Section 5 of [5].

1.4 Connections

In [2] Mishra, Adimurthi and Verappa introduced the most commonly used entropy
condition for scalar conservation laws with discontinuous flux, the so called AB-interface
entropy condition associated to the connection (A,B). We briefly discuss how it works and
some regularity results. We assume now that fl and fr in (0.3) are strictly convex fluxes
in C2(R;R) with θl and θr points of minima.

Definition 1.4. (Connection) Let (A,B) ∈ R2. Then (A,B) is called a connection (Fig.
1) if it satisfies



u

fl fr

A Ā BB̄θl θr

Figure 1.2: Example of AB connection with fl, fr strictly convex fluxes

(i) fl(A) = fr(B),

(ii) f ′r(B) ≥ 0 and f ′l (A) ≤ 0.

Definition 1.5. Let u ∈ L∞(R× R+) such that u± = u(0±, t) exists a.e t > 0. Then we
define IAB(t), the interface entropy functional, by

IAB(t) =(fl(u
−(t))− fl(A))sgn(u−(t)−A)

− (fr(u
+(t))− fr(B))sgn(u+(t)−B).

The function u is said to satisfy the interface entropy condition relative to the connection
(AB) if for a.e. t > 0

IAB(t) ≥ 0 (1.11)

The meaning of condition (1.11) on the interface entropy functional is that the flux of
the solution on the discontinuity interface must be greater or equal to the value of the flux
on the AB connection. Indeed, by the Rankine-Hugoniot condition (2), inequality (1.11)
is equivalent to

(fl(u
−(t))− fl(A))

[
sgn(u−(t)−A)− sgn(u+(t)−B)

]
≥ 0. (1.12)

Even if (4.9) is satisfied when the two terms have the same sign, convexity of the fluxes
implies that only the case with the two term positive can occur. Following [5], (1.11) can
be rewitten in a more explicit way:

fl(u
−(t)) = fr(u

+(t)) ≥ fl(A) = fr(B), sgn−(u−(t)−A)sgn+(u+(t)−B) ≤ 0. (1.13)

where sgn− = sgn ∨ 0 and sgn+ = sgn ∧ 0.

Definition 1.6. Let (AB) be a connection and f(x, u) = fl(u)1x<0 + fr(u)1x>0. Let
u0 ∈ L∞(R). Then u ∈ L∞(R× R+) is said to be an AB-entropy solution if:

(i) u is a weak solution of

ut + f(x, u)x = 0, x ∈ R, t > 0

u|t=0 = u0 x ∈ R.



(ii) u satisfies Kruzkov entropy condition away from the interface {x = 0}.

(iii) At the interface {x = 0}, u satisfies the AB interface entropy condition (1.1)

In [1] Adimurthi and al. proved that for each choice of a connection (A,B) with, an
AB-entropy solution of (0.1) with bounded initial data, exists and is unique. Existence
is proved by using convergence of some Godunov schemes based on solution of Riemann
problem, for uniqueness they showed that each of these classes of entropy solutions form a
contractive semigroup in L1. Another important result due to Adimurthi, Dutta, Goshal
and Gowda regards boundedness of total variation of the solution. In [40] they proved
that for all the connections such that both A 6= θl and B 6= θr, the entropy solutions for
(0.1) with bounded initial data are in BVloc(R) for all positive times. But also when the
connection passes through one of the two minimum of the fluxes the solution is BVloc for
all the times away from (0, t) which are the only points where the total variation of the
solution can explode (see for an explicit example [1]). However we will prove that right
and left limit exists also in (0, t) for all t > 0. This is very important for the analysis that
we are going to do.

Also AB- entropy solutions can be obtained by vanishing viscosity as proved in [5].
Indeed fixed a connection (AB), it is possible to choose an artificial "adapted viscosity" of
the form

ε(a(x, u))xx

such that the stationary solution c(x) = A1x<0 + B1x>0 of the limit equation is also
solution of the viscous problem

ut + f(x, u)x = ε(a(x, u))xx

f(x, u) =

{
fl(u) x < 0

fr(u) x > 0
a(x, u) =

{
al(u) x < 0

ar(u) x > 0
.

1.5 L1 dissipative germs

The theory of L1 dissipative germs that we are going to describe below, has the merit of
synthesizing all the notions of entropy solutions for scalar conservation laws with discontin-
uous flux introduced so far by treating them in a systematic way. The starting assumption
is that away from the point of discontinuity for the flux, the appropriate notion of entropy
solution is still the one given by Kruzhkov [57].

Kruzhkov entropy condition Let ϕ1, ϕ2 be convex functions. Let ψ′1(s) = f ′r(s)ϕ
′
1(s)

and ψ′2(s) = f ′l (s)ϕ
′
2(s). Then (ϕi, ψi) with i = 1, 2 are called entropy pairs associated to

(0.1).
A weak solution u ∈ L∞(R) of (0.1),(0.2) is said to satisfy Kruzkov entropy condition if
for every entropy pairs (ϕi, ψi) and for every ρ ∈ C1

0 (R× R+) with ρ ≥ 0

∫ ∞

0

∫ ∞

0

(
ϕ1(u)

∂ρ

∂t
+ ψ1(u)

∂ρ

∂x

)
dxdt ≥ −

∫ ∞

0
ψ1(u(0+, t))ρ(0, t)dt,

∫ 0

−∞

∫ ∞

0

(
ϕ2(u)

∂ρ

∂t
+ ψ2(u)

∂ρ

∂x

)
dxdt ≥

∫ ∞

0
ψ2(u(0−, t))ρ(0, t)dt.

Therefore, understanding the problem (0.1) is equivalent to study the coupling con-
dition of two scalar conservation laws across the interface Σ := {x = 0}. The theory of
strong boundary traces for conservation laws [66] allows to encode the coupling across Σ
by the set G∗ of the admissible couples of the left and right-sided traces of u at a.e. point
of the interface.



ql(ul, ûl) := sgn(ul − ûl)(fl(ul)− fl(ûl))
≥ sgn(ur − ûr)(fr(ur)− fr(ûr)) =: qr(ur − ûr). (1.14)

Definition 1.7. Any set G of pairs (ul, ur) ∈ U × U satisfying the Rankine-Hugoniot
condition is called an admissibility germ. If (1.14) holds for all (ul, ur), (ûl, ûr) ∈ G, then
the germ G is called L1-dissipative admissibility germ.

Definition 1.8. A function u ∈ L∞(R+ × R) is a G-entropy solution of (0.1) if it is a
Kruzhkov entropy solution in the domains {±x > 0}, it is a weak solution in the whole
domain (i.e. the Rankine-Hugoniot condition holds), and the adapted entropy inequalities

|u− c(x)|t + (q(x;u, c(x)))x ≤ 0 in D′((0,∞)× R), (1.15)

(where q(x;u, c(x)) = ql(·, cl)1x<0 + qr(·, cr)1x>0 is the adapted entropy flux) hold for
every c(x) = cl1x<0 + cr1x>0 with (cl, cr) ∈ G .

Definition 1.9. Let G be a germ. The dual germ of G, denoted by G∗, is the set of pairs
(ûl, ûr) ∈ U × U such that (1.14) holds for all (ul, ur) ∈ G, and the Rankine-Hugoniot
condition fl(ûl) = fr(ûr) is satisfied.

If G has not trivial extension, then it is called maximal. When G is L1D it is contained
in its dual, if it is maximal it also coincides with the dual.

It is immediate to observe that smaller is G, easier is to check the constraint (1.15). In
most of the cases considered by now, G is a singleton given by the couple (A,B) which is
exactly the connection mentioned previously. Indeed this implies that only one adapted
entropy inequality has to be checked.

Proposition 1.4. (i) If (ul, ur) ∈ G, then the function u := ul1x<0 + ur1x>0 id a G-
entropy solution of (0.1).
(ii) A function u(x) of the above form is a G-entropy solution of (0.1) if and only if
(ul, ur) ∈ G∗

Theorem 1.5. (Andreianov, Karlsen and Risebro [5])
Let G be a given L1D germ with the maximal extention G∗ which is complete. Assume

that the functions fl,r are locally Lipshitz continuous on R. Then for any initial datum
u0 ∈ L∞(R) there exist a unique G-entropy solution of the Cauchy problem (0.1)-(6.1).

There exist infinitely many complete maximal L1D germs. Each germ contains an
unique pair (A,B) extreme of a connection.

Analysis of previous admissibility criteria by germs Here we show how to inter-
pret the conditions along the discontinuity interface {x = 0} described before in term of
the germ theory.

- Vanishing viscosity germ associated to Diehl’ s entropy condition
The germ associated to Diehl’s Γ condition and denoted by GV V is defined as follows



(ul, ur) ∈ GD ⇐⇒
fl(ul) = fr(ur) = s, and




either ul = ur;

or ul < ur and there exists uo ∈ [ul, ur]

such thatfl(z) ≥ s for all z ∈ [ul, uo]

and fr(z) ≥ s for all z ∈ [uo, ur];

or ul > ur and there exists uo ∈ [ur, ul]

such thatfr(z) ≤ s for all z ∈ [ur, uo]

and fr(z) ≤ s for all z ∈ [uo, ul];

This germe is complete and maximal, hence by theorem 1.5, for any given initial data
u0 ∈ L∞ there exists a unique GD entropy solution of (0.1).

- Audusse-Perthame germ

Consider the case of two strictly convex fluxes fl, fr with minima given by θl, θr, in
this context the Audusse-Perthame adapted entropies are entropies constructed from
the step function c(x) = cl1x<0 + cr1x>0 with (cl, cr) pair in the germ GAP . Here
GAP stands for "Audusse-Perthame" germ and is given by

(ul, ur) ∈ GAP ⇐⇒ fl(ul) = fr(ur), sgn(ul − θl) = sgn(ur − θr) (1.16)

This germ is L1D maximal and this confirms uniqueness already shown in [10].

- Karlsen-Risebro-Towers germ

The Karlsen-Risebro-Towers entropy condition corresponds to a particular germ that
we call GKRT and defined below

(ul, ur) ∈ GKRT if and only iffl(ul) = fr(ur) = s

and





either ul = ur;

or ul < ur and for all z ∈ [ul, ur],max{fl(z), fr(z) ≥ s};
or ul < ur and for all z ∈ [ur, ul],min{fl(z), fr(z) ≤ s}.

If the crossing condition (1.9) is satisfied, then GKRT is an L1D germ and is maximal.

- Connection germ The last germ is the one associated to the (A,B)-connection.
It is given by G(A,B) = {(A,B)} and admits a unique maximal extension

(
G(A,B)

)∗

defined as follows

(ul, ur) ∈
(
G(A,B)

)∗

⇐⇒ fl(ul) = fr(ur) ≥ fl(A) = fr(B), sgn−(ul −A) sgn+(ur −B) ≤ 0.

Completeness of
(
G(A,B)

)∗
implies uniqueness of solutions.



2 Attainable profiles

In this section we start describing the original results of this chapter, i.e. the full char-
acterization of the attainable profiles. For this study we make large use of the theory of
generalized characteristics developed by Dafermos in [27].
This kind of analysis is inspired to a previous work of the first author with A. Marson
[4] in which they give a characterization of the set of attainable profiles for a initial value
problem with boundary control for a scalar nonlinear conservation law.

Let us give some notations and definitions that will be used later.
Consider the scalar conservation law (0.1) with flux given by (0.3) and initial data (0.2).
For our study we assume that

1 fl,r : [0, 1]→ R are strictly convex and C2;

2 fl(0) = fr(0) and fl(1) = fr(1);

3 u0 ∈ L∞(R).

By strictly convexity of fl and fr they admits a unique minimum which we call respectively
θl and θr.
We consider solutions of (0.1),(0.2) in a weak sense, that is u ∈ L∞loc(R× R+) such that

∫ ∞

−∞

∫ ∞

0
u
∂ϕ

∂t
+ f(x, u)

∂ϕ

∂x
dxdt+

∫ ∞

−∞
u0(x)ϕ(x, 0)dx = 0.

This condition is satisfied if and only if u is a weak solution of

ut + fl(u)x = 0, x < 0, t > 0, (2.1)
ut + fr(u)x = 0, x > 0, t > 0. (2.2)

and satisfies the Rankine-Hugoniot conditions

fl(u
−(t)) = fr(u

+(t)).

where u+(t) = limt→0+ u(x, t) and u−(t) = limt→0− u(x, t).
But also when fl = fr, weak solutions are not necessarily unique, this leads us to the ne-
cessity of adding entropy conditions both in the interior part of the two domains R−×R+,
R+ × R+ and on the discontinuity interface {x = 0}. For the interior part it is natural to
consider the Kruzkov entropy condition introduced in [57]. For the discontinuity interface
{x = 0} we use the notion of AB- interfece antropy condition described in detail in the
previous section since it turns out to be realistic and useful for future applications on net-
work problems.

Here we state the results concerning the characterization of the set of attainable profiles
A(T ), with some technical propositions and lemmas relevant for the proof of the main
theorems. But before we need to recall the definition L1-contractive semigroup associated
to the conservation law (0.1).

Definition 2.1. (St)t>0 : L∞(R)→ L∞(R) is the L1-contractive semigroup associated to
a conservation law (0.1) with AB-entropy condition if

- Stu0(x) = u(x, t) provides the unique AB-entropy solution with initial data u0;

- S0u = u;



- St+su = St ◦ Ssu for all t, s;

- ‖Stu− Ssv‖L1 ≤ ‖u− v‖L1 + |t− s|.

Theorem 2.1. In connection with problem (0.1),(0.2), for any fixed T > 0,

A(T) = {STu0 : u0 ∈ L∞(R)}

is given by the union of the following two sets:

A1(T) is the set of all the functions ω ∈ BVloc(R \ {0}) for which there exists R > 0 such
that

f ′r(ω(x)) ≥ x

T
for all x ∈ (0, R), (2.3)

f ′r(ω(x)) <
x

T
for all x ∈ (R,+∞), (2.4)

f ′l (ω(x)) >
x

T
for all x ∈ (−∞, 0), (2.5)

ϕ1 :=





x− f ′l (ω(x))T if x < 0

−f ′l (f−1
l fr(ω(x)))

(
T− x

f ′r(ω(x))

)
if 0 < x < R

x− f ′r(ω(x))T if x > R

(2.6)

is a not decreasing function

A2(T) is the set of all the functions ω ∈ BVloc(R \ {0}) for which there exists L ∈ (−∞, 0]
such that

f ′l (ω(x)) ≤ x

T
for all x ∈ (L, 0), (2.7)

f ′l (ω(x)) >
x

T
for all x ∈ (−∞, L), (2.8)

f ′r(ω(x)) <
x

T
for all x ∈ (0,+∞), (2.9)

ϕ2(x) :=





x− f ′l (ω(x))T if x < L,

−f ′r(f−1
r fl(ω(x))

(
T− x

f ′l (ω(x))

)
if L < x < 0,

x− f ′r(ω(x))T if x > 0

(2.10)

is a not decreasing function

A3(T) is the set of all the functions ω ∈ BVloc(R), for which there exist −∞ < L ≤ 0 and
0 ≤ R <∞ such that

f ′l (ω(x)) = f ′l (A) for all x ∈ (L, 0), (2.11)
f ′r(ω(x)) = f ′r(B) for all x ∈ (0, R), (2.12)

f ′r(ω(x)) ≤ x

T
for all x ∈ (R,+∞), (2.13)

f ′l (ω(x)) ≥ x

T
for all x ∈ (−∞, L), (2.14)

ϕ3(x) :=

{
x− f ′l (ω(x))T if x < L,

x− f ′r(ω(x))T if x > R
(2.15)

is a not decreasing function



The meaning of all the conditions on the tree sets is that the backward generalized
characteristics cannot intersect in R×(0, T ) (see Figure 3.2). As mentioned in the previous
section, the key point for using the theory of generalized characteristics is the existence of
right and left limits in each point for a fixed time. This fact is well known for functions in
BVloc(R). But when we consider entropy solution for critical connection, the total variation
can explode in a neighborhood of the origin, therefore the next lemma states that right
and left limits exist also here.

x

t
RT x

ϕ1(x)

y

ϕ1(y)

z

ϕ1(z)

Figure 1.3: Characteristics’s behavior for profiles in A1(T )

Lemma 2.2. Let u be the entropy solution of (0.1),(0.2) with u0 ∈ L∞(R) associated to the
connection passing through max{fl(θl), fr(θr)}. Then limx→0− u(x, t) and limx→0+ u(x, t)
exist for all t > 0.

An interesting fact is that, for conservation laws whose flux verify our hypothesis,
generalized characteristics do not intersect also on the discontinuity interface {x = 0}.
This phenomena is explained in the following result.

Proposition 2.3. For every choice of a connection (AB), the solution of (0.1),(0.2) cannot
develop rarefactions on the discontinuity interface {x = 0} for positive times.

The complete characterization of the attainable sets for conservation laws with discon-
tinuous flux can be used for studying some variational problems or questions regarding
optimization, therefore this leads us to the necessity of doing a topological analysis of
A(T,U). In order to achieve the closure of the attainable sets for (0.1),(0.2) we have to
restrict the class of admissible initial data by using a multifunction G.

Theorem 2.4. Let G : R→ R a measurable uniformly bounded multifunction with convex
and closed values. Denote

U = {ũ ∈ L∞(R) : ũ(t) ∈ G(t) for a.e. t ∈ R} . (2.16)

Then A(U , T ), T > 0 is a compact subset of L1
loc(R)

3 Proof of preliminary lemmas

We first prove 2.2 and 2.3 as they are indispensable for the proof of 2.1. Observe that
although these are technical lemmas, they reveal some peculiarities of the behavior of the
solutions of (0.1)-(0.2)



Proof. (Lemma 2.2) If u(x, t) is in BVloc(R) right and left limits in the statement are
naturally well defined. Therefore assume that the total variation of the solution is not
finite in all the compact sets containing 0 for a fixed time t > 0. Without loss of generality
we can assume that the total variation is exploding in the left neighborhoods of 0 (the
proof is the same if we consider the right one). Let (xn)n∈N be a sequence, with xn < 0
for all n ∈ N and xn → 0, then there exist n0 such that for all n ≥ n0 f

′
r(u(xn, t) <

xn
t .

This fact holds since otherwise u(x, t) restricted to x ≤ 0 would not be affected by the
discontinuity on the interface and therefore the total variation would be finite also in the
neighborhoods of 0 contradicting our assumption.
From boundedness of the solution in L∞ norm we get that also the sequence u(xn, t)
is bounded therefore it admits a convergent subsequences. We need only to prove that
all the subsequences converge to the same limit, thus we procede by contradiction and
assume that there exist two subsequences, (yn)n∈N and (zn)n∈N such that u(yn, t)→ v and
u(zn, t)→ w with v < w. Set d = w−v, there exists n̄ ∈ N such that |u(yn, t)−v| ≤ d

3 and
|u(zm, t)−w| ≤ d

3 for all n,m ≥ n̄, that is u(yn, t) ≤ v+ d
3 < w− d

3 ≤ u(zm, t) for all n,m ≥
n̄. In particular choosing n,m ≥ n̄ such that zm < yn, we can show that the backward
generalized characteristics through (yn, t) and (zm, t) intersect in the set (−∞, 0)× (0,∞).
This means that if tzm and tyn are respectively the times of intersection of the backward
generalized characteristics through (yn, t) and (zm, t) with the discontinuity interface, then
tzm > tyn . The last inequality can be easily verified, indeed u(yn, t) < u(zm, t) implies that
f ′l (u(yn, t)) < f ′l (u(zm, t)) (by strict convexity of the flux), therefore we have

tzm = t− zm
f ′l (u(zm, t))

> t− yn
f ′l (u(yn, t))

= tyn .

By theory of generalized characteristics this is not possible, thus all the subsequences of
u(xn, t) converge to the same limit.

Thanks to this result we are sure that backward generalized characteristics are well
defined on points which belong to the discontinuity interface. As regards Proposition
2.3, its deep meaning is that also on the discontinuity {x = 0} it continues to be valid
uniqueness of the forward characteristic for strict positive times as in the classical theory
for continuous fluxes. Now we see the proof of this fact.

Proof. (Proposition 2.3) We proceed by contradiction and suppose that there exits t0 > 0
such that a rarefaction arises on the discontinuity interface {x = 0} and it opens onto
R+ × R+.
Set limt→t+0 u

+(t) = a and limt→t−0 u
+(t) = b. Since the rarefaction opens in the quadrant

I, it follows that a < b. Furthermore, by an easy substitution in (1.11), we get that a ≥ B
in order to satisfy the interface entropy condition at time t0.

We analyze separately the cases a > B and a = B.

case 1: Assume that a > B then, for preserving the Rankine-Hugoniot condition and (1.11)
at time t0, we must have

lim
t→t+0

u−(t) = ā and lim
t→t−0

u−(t) = b̄

with fl(ā) = fr(a), fl(b̄) = fr(b), 0 < f ′l (ā) < f ′l (b̄) and Ā < ā < b̄.

Consider the sequences {t+n }n∈N, {t−n }n∈N with t+n > t0 and t−n < t0 for all n ∈ N
such that t+n , t−n → t0 for n → ∞. Then we have that u−(t+n ) → ā and u−(t−n ) → b̄.



Take ε = (b̄−ā)
3 , there exist n0, n1 ∈ N such that, for all n ≥ n0 and m ≥ n1 it holds

u−(t+n ) ≤ ā+ ε < b̄− ε ≤ u−(t−m).

This implies, by strict convexity of fl, that for all n ≥ n0 and m ≥ n1, f ′l (u
−(t+n )) <

f ′l (u
−(t−m)). It is easy to verify that we can take n ≥ n0 and m ≥ n1 such that

t+n
t−m

<
f ′l (u

−(t−m))

f ′l (u
−(t+n ))

. (3.1)

Consider now the backward generalized characteristics passing through (0, t+n ) and
(0, t−m), that is

θn0 : t 7→ f ′l (u
−(t+n ))(t− t+n ),

θm0 : t 7→ f ′l (u
−(t−m))(t− t−m)

defined respectively for t ≤ t+n and t ≤ t−m. Inequality (3.1) implies that θn0 and θm0
intersect in a point belonging to R− × (0, t−m) ( Figure 3, case 1) which is an absurd
because the backward generalized characteristics cannot intersect in the open sets
R− × R+, R+ × R+.

case 2: Now assume that a = B. The only Riemann problem which can generate this
rarefaction satisfying also the RH condtions is given by the couple (b̂, b) with b̂ < A
and fl(b̂) = fr(b), therefore we get limx→0− u(x, t0) = b̂. At the same time we have
also that limt→t−0 u

−(t) = b̄ with b̄ > Ā and fl(b̄) = fr(b) for preserving both the
interface entropy condition and the RH condition.
Consider the sequences {xn}n∈N and and {tn}n∈N such that xn < 0, xn → 0, and
tn < t0, tn → t0, then limn→∞ u(xn, t0) = b̂ and limn→∞ u−(tn) = b̄. Let ε <
min {θl − b̂, b̄− θl}, then there exist n0 and n1 such that

u(xn, t0) ≤ b̂+ ε for all n > n0, (3.2)
u−(tm) ≥ b̄− ε for all m > n1. (3.3)

The choice of ε implies that

f ′l (u(xn, t0)) < 0 for all n > n0, (3.4)
f ′l (u

−(tn)) > 0 for all m > n1. (3.5)

In particular we can take n,m for which the following inequality is satisfied

xn + f ′l (u
−(tm))tm − f ′l (u(xn, t0))t0 > 0. (3.6)

Consider now the backward generalized characteristics passing through (xn, t0) and
(0, tm), that is

θxn : t→ xn + f ′l (u(xn, t0))(t− t0) (3.7)
θtm : t→ f ′l (u

−(tm))(t− tm) (3.8)

defined respectively for t ≤ t0 and t ≤ tm. The assumption (3.6) implies that θxn
and θtm intersect in R− × (0, tm) (see Figure 3, case 2), and this is again an absurd.
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Figure 1.4: On the left case 1, on the right case 2

Now we are ready to prove (2.1).

4 Proof of Theorem 2.1

We proceed by dividing the proof into two steps: first we show that any solution of
the problem (0.1),(0.2) satisfies all the conditions of one of the tree sets described in the
statement, then we prove that for any function in A1(T ), A2(T ) and A3(T ), there exist
ũ ∈ L∞(R) such that ST (ũ) = ω.

4.1 Step 1.

The next technical result will highlight an important meaning of the conditions (2.6),(2.10)
and (2.15) not evident at first glance. Throughout the following,

D−ω(x) = lim inf
h→0

ω(x+ h)− ω(x)

h
, D+ω(x) = lim sup

h→0

ω(x+ h)− ω(x)

h
(4.1)

will denote, respectively, the lower and upper Dini derivatives of a function ω at x, while
f−1
r will be the inverse of fr |(−∞,θr] and f

−1
l the inverse of fl|[θl,+∞).

Lemma 4.1. Let ω : R→ R be a bounded right continuous function having right and left
limit in any point. If ω satisfies (2.3)− (2.5) then

ϕ1 :=





x− f ′l (ω(x))T if x < 0

−f ′l (f−1
l fr(ω(x)))

(
T− x

f ′r(ω(x))

)
if 0 < x < R

x− f ′r(ω(x))T if x > R

is a not decreasing function (4.2)

if and only if

D+ω(x) ≤





1
f ′′l (ω(x))T

if x < 0

1
x2

f ′r(ω(x))[f ′l (f
−1
l fr(ω(x))]

2

f ′′l (f−1
l fr(ω(x))(f ′r(ω(x))T−x)+[f ′l (f

−1
l fr(ω(x))]

2
f ′′r (ω(x))

if 0 < x < R

1
f ′′r (ω(x))T if x > R

(4.3)



Analogously if ω satisfies (2.7)− (2.9), ϕ2 is a not decreasing function iff

D+ω(x) ≤





1
f ′′l (ω(x))T

if x < L

1
x2

f ′l (ω(x))[f ′r(f
−1
r fl(ω(x))]

2

f ′′r (f−1
r fl(ω(x))(f ′l (ω(x))T−x)+[f ′r(f

−1
r fl(ω(x))]

2
f ′′l (ω(x))

if L < x < 0

1
f ′′r (ω(x))T if x > 0

and if ω satisfies (2.11)− (2.14), ϕ3 is a not decreasing function iff

D+ω(x) ≤





1
f ′′l (ω(x))T

if x < L

0 if L < x < R

1
f ′′r (ω(x))T if x > R

Proof. We prove the equivalence just for the first case, in the others the procedure is the
same. First observe that nondecreasing monotonicity of ϕ1 is equivalent to

D+ϕ1 ≥ 0 for all x ∈ R. (4.4)

Suppose that x is a point of continuity for ω, then if x < 0 we get

lim sup
h→0

ϕ1(x+ h)− ϕ1(x)

h
= lim sup

h→0

x+ h− f ′l (ω(x+ h))T − x+ f ′l (ω(x))T

h

= 1− T lim sup
h→0

f ′l (ω(x+ h))− f ′l (ω(x))

ω(x+ h)− ω(x)
· ω(x+ h)− ω(x)

h

= 1− f ′′l (ω(x))T lim sup
h→0

ω(x+ h)− ω(x)

h
≥ 0, (4.5)

hence
D+ω(x) ≤ 1

f ′′l (ω(x))T
. (4.6)

Similarly for x > R we get

D+ω(x) ≤ 1

f ′′r (ω(x))T
. (4.7)

Now if we consider 0 < x < R, then

lim sup
h→0

ϕ1(x+ h)− ϕ1(x)

h

= lim sup
h→0

1

h
·
[
f ′l (f

−1
l fr(ω(x+ h))

(
T − x+ h

f ′r(ω(x+ h))

)
+ f ′l (f

−1
l fr(ω(x))

(
T − x

f ′r(ω(x))

)]

=
f ′′l (f−1

l fr(ω(x))f ′r(ω(x))

f ′l (f
−1
l fr(ω(x))

(
T − x

f ′r(ω(x))

)
lim sup
h→0

ω(x+ h)− ω(x)

h

− f ′l (f−1
l fr(ω(x))f ′′r (ω(x)) lim sup

h→0

ω(x+ h)− ω(x)

h
+
f ′l (f

−1
l fr(ω(x))f ′′r (ω(x))

x2
≥ 0

(4.8)



hence

D+ω(x) ≤ 1

x2

f ′r(ω(x))
[
f ′l (f

−1
l fr(ω(x))

]2

f ′′l (f−1
l fr(ω(x)) (f ′r(ω(x))T − x) +

[
f ′l (f

−1
l fr(ω(x))

]2
f ′′r (ω(x))

(4.9)

Observe that both terms of the sum in the denominator of (4.9) are positive, therefore
erasing the first one it follows

D+ω(x) ≤ f ′r(ω(x))

x2f ′′r (ω(x))
(4.10)

which is exactly the same bound obtained in [4].
In case of ω not continuous in x, assume that (4.4) holds, then ω(x−) > ω(x). Indeed if
we assume that it is false, convexity of fl and fr implies that f ′r,l(ω(x−)) < f ′r,l(ω(x)) and
f ′l (f

−1
l fr(ω(x−)) < f ′l (f

−1
l fr(ω(x)), hence there exist y < x such that ϕ1(y) > ϕ1(x) and

this contradicts (4.2).
There follows that

D+ω(x) = lim sup
h→0

ω(x+ h)− ω(x)

h
, (4.11)

thus taking lim sup as h→ 0+ in (4.5) and (4.8) we obtain (4.3).
Since ω and hence ϕ1 are right continuous it follows that ϕ1(x−) > ϕ1(x), due to the

monotonicity of fl and fr, therefore it is sufficient to prove (4.4) for h → 0+. But this
follows immediately from (4.5) and (4.8) with the same argument we used before.

Let ST (ũ) be the solution at time T associated to (0.1) with initial datum ũ ∈ L∞.
Since the solution is BVloc in R \ {0}, right and left limit of ST (ũ) are well defined for
all x ∈ R. Assume that there exists x > 0 such that f ′r(ω(x)) ≥ x

T . We show that
for all 0 < y < x it holds f ′r(ω(y)) ≥ y

T . Consider ξx(t) = x + f ′r(ω(x))(t − T ) and
ξy(t) = y + f ′r(ω(y))(t − T ) the maximal backward generalized characteristics through
(x, T ) and (y, T ), for t ≤ T . By Theorem 3.2 in [27], ξx(t) and ξy(t) are genuine, therefore
they do not intersect in R+ × R+. Let tx and ty the intersections of ξx(t) and ξy(t) with
{x = 0}, we can observe by the previous consideration that tx ≤ ty. Since f ′r(ω(x)) ≥ x

T it
is easy to verify that tx ≥ 0. Therefore we get

ty = T − y

f ′r(ω(y))
≥ 0

from which f ′r(ω(y)) ≥ y
T .

Remark 1. If tx > 0, Proposition 2.3 implies that tx < ty because we can not have
rarefactions arising from {x = 0} for positive time, thus we get f ′r(ω(y)) > y

T for all
0 < y < x.

Next, suppose that {x > 0 : f ′r(ω(x)) ≥ x
T } is not empty, denote with R the sup of this

set. By definition, for all x > R we have f ′r(ω(x)) < x
T . Let R < x1 < x2 be given and

trace that maximal backward characteristics ξx1(·) and ξx2(·) through (x1, T ) and (x2, T ),
respectively. Their form is the following

ξxi(·) = xi + f ′r(ω(xi))(t− T ), i = 1, 2

as long as they exist. Since x1 < x2 and ξx1(·) ξx2(·) are genuine, ξx1(·) ≤ ξx2(·) for
t ∈ [0, T ] and in particular they can intersect only in t = 0. Thus we get

x1 − f ′r(ω(x1))T ≤ x2 − f ′r(ω(x2))T



that is the map which associates to all x ∈ [R,+∞) the value x − f ′r(ω(x))T is not de-
creasing. If the set {x > 0 : f ′r(ω(x)) ≥ x

T } is empty, the previous map results to be not
decreasing for all x ∈ [0,+∞).

Similarly to what was done before, assume that there exists x < 0 such that f ′l (ω(x)) ≤
x
T , we can show that for all x < y < 0 it holds f ′l (ω(y)) ≤ y

T . If {x > 0 : f ′r(ω(x)) ≤ x
T } is

not empty, denote with L the inf of this set. The map which associates to all x ∈ (−∞, L]
the value x− f ′r(ω(x))T is not decreasing. If the set {x > 0 : f ′l (ω(x)) ≥ x

T } is empty, the
previous map results to be not decreasing for all x ∈ (−∞, 0].

Now we just have to analyze the following three situations: R > 0 and L = 0, R = 0
and L < 0, R > 0 and L < 0.

1. R > 0 and L = 0.
For all x ∈ [0, R), the map which associate to x the value T − x

f ′r(ω(x)) (i.e. the
abscissa in the intersection of the maximal backward characteristic through (x, T )
with {x = 0} ) is a not increasing map. Crossing the discontinuity in (0, T −

x
f ′r(ω(x))) the value of the solution along the characteristic which passes through
(x, T ) changes by preserving the Rankine-Hugoniot condition and the entropy in-
terface condition and it is given by f−1

l fr(ω(x)). Therefore the intersection of the
backward characteristic through (0, T − x

f ′r(ω(x))) in R−×R+ with t = 0, it is given by

−f ′l (f−1
l fr(ω(x)))

(
T− x

f ′r(ω(x))

)
. The map which associate to (0, T − x

f ′r(ω(x))) the

value −f ′l (f−1
l fr(ω(x)))

(
T− x

f ′r(ω(x))

)
is not increasing, therefore it is not decreasing

with respect to x for x ∈ [0, R) because composition of two not increasing functions.

2. R = 0 and L < 0
This case is identical to the previous one, with the only difference that we cross the
discontinuity by using the inverse of the function fr |[θr,+∞).

3. R > 0 and L < 0
Let tR and tL be the times in which the minimal backward characteristic through
(R, T ) and the maximal backward characteristic through (L, T ) intersect {t = 0}.
Denote with t0 = max{tR, tL}. For all t ∈ [t0, T ] it holds that f ′l (u(0−, t)) < 0
and f ′r(u(0+, t)) > 0, therefore the solution is undercompressive on the discontinuity
interface for a set of times of positive measure and, by the interface entropy condition,
this can happen only if u(0−, t) = A and u(0+, t) = B for all t ∈ [t0, T ]. Without loss
of generality we can assume t0 = tR, therefore we have tR ≥ tL ≥ 0. Now we show
that all the previous inequalities are actually equality. Indeed, if tR > tL, then for
all t ∈ [tL, tR] we should have f ′r(u(0+, t)) > 0 otherwise a backward characteristics
through (0, t) would intersect at least one of the backward generalized characteristics
between the minimal and maximal through (R, T ). This means that we have again
a set of times of positive measure for in which the solution is undercompressive
on the discontinuity interface, hence u(0−, t) = A and u(0+, t) = B for all t ∈
(tL, tR), that is f ′r(u(0 + .t)) = f ′r(B) in (tL, tR), but this is not possible since also
in this situation, characteristics arising from (0, t) would intersect at least one of
the backward generalized characteristics between the minimal and maximal through
(R, T ), therefore tL = tR. The same argument tells us that tL must be equal to 0.



4.2 Step 2.

Now we take a function A(T ) and show how to build an initial data ũ(x) such that the
solution at time T of 0.1 is exactly the function considered. For this purpose (similarly to
what is done in [4]) we adopt the following procedure:

1. For every x we trace the lines θ−x ,θ+
x through (T, x) with slope fl(ω(x−)) and fl(ω(x+))

if x < 0, fr(ω(x−)) and fr(ω(x+)) if x > 0, which change in the opportune way in-
tersecting {x = 0}. These will be the minimal and maximal backward characteristics
through (x, T ). The assumptions on each set A1(T ),A2(T ),A3(T ) guarantee that
{θ∓x : x < 0} do not intersect in the interior of R− × R+ and {θ∓x : x > 0} in the
interior of R+ × R+.

2. Since the solution is constant along minimal and maximal backward characteristics,
for every y ∈ R for which there exists an x ∈ R such that θ±x (0) = y, we define
ũ(y) = ω(x) if y, x < 0 or x, y > 0, that is the backward generalized characteristic
does not intersect the discontinuity interface,ũ(y) = f−1

l (fr(ω(x))) if y < 0 and
x > 0, ũ(y) = f−1

r (fl(ω(x))) if y > 0 and x < 0. The set of remaining y is a disjoint
union of open intervals in which ũ is defined so as to produce a compression wave
which generate a discontinuity at time T .

3. By using the fact that a solution is constant along genuine characteristics, we define
a function u : R × [0, T ] → R which is candidate to be S(·)(ũ) and we prove that it
is weak entropy solution for (0.1), (0.2) in R− × R+ and R+ × R+.

4. We prove that u satisfies the interface entropy condition associated to the connection
AB and that u(T−, ·) = ω.

1. For this first point we take in consideration only ω ∈ A1(T ), for the function in the
other two sets it is the same. For each x ∈ R consider the lines

θ−x (t) :=





x+ f ′l (ω(x−))(t− T ) if x < 0, t ∈ [0, T ]

x+ f ′r(ω(x−))(t− T ) if x ∈ (0, R], t ∈
[
T − x

f ′r(ω(x−)) , T
]

or x > R, t ∈ [0, T ]

f ′l (f
−1
l fr(ω(x−)))

(
t− T + x

f ′r(ω(x−))

)
if x ∈ (0, R], t ∈

[
0, T − x

f ′r(ω(x−))

]

(4.12)

θ+
x (t) :=





x+ f ′l (ω(x+))(t− T ) if x < 0, t ∈ [0, T ]

x+ f ′r(ω(x+))(t− T ) if x ∈ (0, R), t ∈
[
T − x

f ′r(ω(x+)) , T
]

or x ≥ R, t ∈ [0, T ]

f ′l (f
−1
l fr(ω(x+)))

(
t− T + x

f ′r(ω(x+))

)
if x ∈ (0, R), t ∈

[
0, T − x

f ′r(ω(x+))

]

(4.13)

By the convexity of fl, fr we have that θ−x (t) ≤ θ+
x (t) for all t. Now we show that for any

x < y the lines θ±x and θ±y do not intersect in R× (0, T ). The previous observation tells us
we need only to prove that θ+

x < θ−y in R× (0, T ). If x < 0 and y > R it is immediate to
verify that θ+

x (t) < 0 ≤ θ−y (t). For x < y < 0, by (2.6) we have ϕ1(x) ≤ ϕ1(y), therefore
writing θx(t) and θy(t) as convex combination of x,ϕ1(x) and y,ϕ1(y) respectively, for all
0 < t < T we get

θx(t) = λx+ (1− λ)
(
x− f ′l (ω(x)T

)
= λx+ (1− λ)ϕ1(x) < (4.14)

λy + (1− λ)ϕ1(y) = λy + (1− λ)
(
y − f ′l (ω(y)T

)
= θy(t)



where λ = t
T . The case R ≤ x < y can be checked in the same way. Consider now

0 < x < y < R, if f ′r(ω(x)) ≥ f ′r(ω(y)), we get also f ′l (f
−1
l fr(ω(x))) ≥ f ′l (f

−1
l fr(ω(y))),

that is the inequality between the speeds of generalized characteristic is preserved cross-
ing the discontinuity interface which implies easily that θx(t) < θy(t) for 0 < t < T .
Therefore assume f ′r(ω(x)) < f ′l (ω(y)) and suppose that there exist a τ ∈ (0, T ) such that
θx(τ) = θy(τ) = ξ. If ξ < 0, then immediately follows that ϕ1(y) < ϕ1(x) which is an
absurd because ϕ1 is a non increasing map. If ξ ≥ 0, then θx(t) and θy(t) intersect {x = 0}
in tx and ty with ty ≥ tx, therefore since inequality between the speeds of the characteristic
is preserved crossing the discontinuity interface, we have again ϕ1(y) < ϕ1(x). The re-
maining cases x < 0 < y ≤ R and 0 < x ≤ R < y follow combining the previous situations.

2. Let ω be in A(T ). In order to define the initial data ũ which produces a solution of
(0.1)-(0.2) that attains ω, consider the following partition of R (see Fig.1.5):

I1
.
= {x ∈R : ∃! y : θ−y (0) = x or θ+

y (0) = x},
I2

.
= {x ∈R : ∃y < z : θ+

y (0) = θ−z (0) = x},
I3

.
= {x ∈R : @ y ∈ R : θ−y (0) = x or θ+

y (0) = x,

∃ x′ < x < x′′ and y : θ−y (0) = x′, θ+
y (0) = x′′}.

x

t
ω

I1

yn−1

In−1
3

I1

yn

In3

Figure 1.5: An example of partition of R associated to the profile ω; observe that sup In−1
3 ∈

I2.

Some considerations about the previous partition are necessary for the next.
The set I2 contains at most countably many points, indeed since the backward generalized
characteristic do not intersect in R× R+, for each x ∈ I2 the set

Jx = {y ∈ R : θ−y (0) = x or θ+
y (0) = x} (4.15)

is an interval and Jx ∩ Jx′ = ∅ for any x, x′ ∈ I2 with x 6= x′.
I3 is a disjoint union of at most countably many open intervals In3 of the form

In3 = (x1
n, x

2
n), θ−yn(0) = x1

n, θ
+
yn(0) = x2

n (4.16)

with yn point of discontinuity of ω. First we show that I3 is open in R. Consider x ∈ I3

and assume by contradiction that {xν}ν∈N ⊂ I1 ∪ I2 is a sequence converging to x. Then
there exist a sequence of {yν}ν∈N ⊂ R such that θ±yν (0) = xν , in particular we can assume
that θ+

yν (0) = xν . Since xν is convergent, it is also bounded, therefore by (4.13) also
yν is bounded, hence it admits a converging subsequence which is still denoted with yν .



Set ȳ its limit, we can assume up to a subsequence that f ′(ω(yν)) → f ′(ω(ȳ)). Then
x = limν→∞ xν = limν→∞ θ+

yν (0) = θ+
ȳ (0) which gives a contradiction.

It follows naturally that I3 is a disjoint union of at most countably many open intervals
In3 = (x1

n, x
2
n) with x1

n, x
2
n ∈ I1 ∪ I2. Set

y1
n = sup {y ∈ R : θ−y (0) = x1

n, θ
+
y (0) = x1

n},
y2
n = inf {y ∈ R : θ−y (0) = x2

n, θ
+
y (0) = x2

n}.

Then y1
n = y2

n = yn. Indeed y1
n ≤ y2

n because the characteristics do not interserct in R×R+,
and if y1

n < y2
n then we can choose y ∈ (y1

n, y
2
n) for which there is a x ∈ (x1

n, x
2
n) such that

x = θ±y (0), that is a contradiction. Finally it is possible to define the initial data (the
control) which produces the given profile:

ũ(x) =





f−1
r fl(ω(y±)) if x ∈ I1, x > 0 θ±y (0) = x,

f−1
l fr(ω(y±)) if x ∈ I1, x < 0 θ±y (0) = x,

f−1
r fl(ω(supJx−)) if x ∈ I2, x > 0,

f−1
l fr(ω(supJx−)) if x ∈ I2, x < 0,

fr
−1flf

′
l
−1
(

yn
T−s

)
if x ∈ In3 , x > 0,

fl
−1frf

′
r
−1
(

yn
T−s

)
if x ∈ In3 , x < 0.

(4.17)

The parameter s in (4.17) is the unique value for which are satisfied

flf
′
l
−1
(

yn
T − s

)
= frf

′
r
−1
(
−x
s

)
if x > 0 and yn < 0,

frf
′
r
−1
(

yn
T − s

)
= flf

′
l
−1
(
−x
s

)
if x < 0 and yn > 0,

s is zero if both (yn, T ), (x, 0) belong to R− × R+ or R+ × R+. Moreover the compo-
sitions fl−1fr and f−1

r fl are the identity map when the couples (x, 0), (y, T ) if x ∈ I1,
(x, 0), (supJx, T ) if x ∈ I2, (x, 0), (yn, T ) if x ∈ In3 belong to R− × R+ or R+ × R+ to-
gether. Observe that (4.17) is a pointwise definition given for x 6= 0. For x = 0 is not
possible to do the same because of the doscontinuity of the flux, however right and left
limits of ũ(x) are well defined in 0. This can be proved using arguments similar to those
used in (2.2).

3. Given the initial data ũ(x) we can define the solution u(x, t) for t ∈ (0, T ). For each
x ∈ In3 ⊆ I3 consider the line

θx(t) = f ′rfr
−1fl(ũ(x))

(
t+

x

f ′l (ũ(x))

)
for x < 0 and 0 < t < T

θx(t) = f ′lfl
−1fr(ũ(x))

(
t+

x

f ′r(ũ(x))

)
for x > 0 and 0 < t < T.

It is entirely contained in the open set {(η, τ) : 0 < τ < T, θ−yn(τ) < η < θ+
yn(τ)}. Each

θx cannot intersect one of the θy± in R × R+. Our goal now is to show that for any
(η, τ) ∈ R × (0, T ) there exists a unique line through (η, τ) which belongs to Θ = {θy± :
y ∈ R} ∪ {θx : x ∈ I3}. For the existence, observe that if η 6= θy

±(τ) for any y ∈ R then
there exists x ∈ I3 such that θx(τ) = η. Indeed the set

B(τ) := {η ∈ R : @y ∈ R : θy
±(τ) = η}



is open. The proof of this fact is identical to what done for openess of I3. Now, consider
the connected component (η1, η2) of B(τ) which contains η. There exists y ∈ R such that
θy
−(τ) = η1 and θy+(τ) = η2. It is immediate that θy−(0) = x1

n, θy
+(0) = x2

n for a certain
n ∈ N, hence y = yn. Moreover there exists x ∈ (x1

n, x
2
n) such that

θ̇x(t) =





yn−η
T−τ if sgn yn = sgn η, max

{
0, T − yn(T−τ)

yn−η

}
< t < T

or yn = 0, 0 < t < T,

fl
−1frf

′
r
−1
(
yn−η
T−τ

)
if yn > 0, η ≥ 0, 0 < t < max

{
0, T − yn(T−τ)

yn−η

}
,

fr
−1flf

′
l
−1
(
yn−η
T−τ

)
if yn < 0, η ≤ 0, 0 < t < max

{
0, T − yn(T−τ)

yn−η

}
,

η
τ−s if sgn yn 6= sgn η, 0 < t < s
yn
T−s if sgn yn 6= sgn η, s < t < T

where s is the unique value for which are satisfied

flf
′
l
−1
(

η

τ − s

)
= frf

′
r
−1
(

yn
T − s

)
if yn > 0 and η < 0; (4.18)

frf
′
r
−1
(

η

τ − s

)
= flf

′
l
−1
(

yn
T − s

)
if yn < 0 and η > 0. (4.19)

Consider now the function u : R \ {0} × (0, T )→ R given by

u(η, τ) =





ω(y±) if ∃y ∈ R : θ±y (τ) = η and sgn y = sgn η,

fl
−1fr(ω(y±)) if ∃y ∈ R : θ±y (τ) = η and η < 0 < y,

fr
−1fl(ω(y±)) if ∃y ∈ R : θ±y (τ) = η and y < 0 < η,

ũ(x) if ∃x ∈ I3 : θx(τ) = η and sgn y = sgn η,

fl
−1fr(ũ(x)) if ∃x ∈ I3 : θx(τ) = η and η < 0 < x,

fr
−1fl(ũ(x)) if ∃x ∈ I3 : θx(τ) = η and x < 0 < η

. (4.20)

In the next we show that for a fixed time τ in (0, T ), (4.20) is continuous w.r.t the first
variable in R− and R+, on order to do this we prove the following three properties:
(i) if there exists y ∈ R such that θ−y (τ) = η then u(·, τ) is left continuous in η;
(ii) if there exists y ∈ R such that θ+

y (τ) = η then u(·, τ) is right continuous in η;
(iii) if η ∈ B(τ), u(·, τ) is continuous in η.
Since the considerations necessary for proving these three points are similar, we analyze
only the first one and in particular we show left continuity only in R−, for R+ it is analogous.
Let η < 0 and y with θ−y (τ) = η, choose ε > 0, δ > 0 such that (y − δ, y) ⊂ R+ if y > 0
and

|ω(z)− ω(y−)| ≤ ε for all z ∈ (y − δ, y). (4.21)

First consider the case y ≤ 0, by (4.20) u(η, τ) = ω(y−). Let ηδ = θ+
y−δ(τ), by point 1 it

holds ηδ < η therefore for all ζ ∈ (ηδ, η),

|u(ζ, τ)− u(η, τ)| ≤ ε. (4.22)

Indeed if ζ = θ±z (τ) for a z ∈ (y − δ, y) then

|u(ζ, τ)− u(η, τ)| = |ω(z±)− ω(y−)| ≤ ε; (4.23)

if ζ ∈ B(τ) so that θ−yn(τ) < ζ < θ+
yn(τ) for some n ∈ N and ζ = θx(τ) for some x ∈ In3 ,

then



|u(ζ, τ)− u(η, τ)| < |ω(yn−)− ω(y−)| ≤ ε (4.24)

If η < 0 < y, in the previous estimate we need only to take in account the jump on the
discontinuity interface by applying the change f−1

l fr, hence in (4.23) we have

|u(ζ, τ)− u(η, τ)| = |f−1
l fr(ω(ζ±))− f−1

l fr(ω(y−))|

≤ 1

f ′l (Ā)
|fr(ω(ζ±))− fr(ω(y−))| ≤ M

f ′l (Ā)
|ω(ζ±)− ω(y−)|

≤ M

f ′l (Ā)
ε;

where the former inequality can be justified observing that f ′l (u) ≥ f ′l (Ā) for characteristics
crossing the discontinuity with positive speed and fl

−1 = 1
f ′l
; the latter comes from the

local lipschitzianity of strictly convex functions. Instead (4.24) becomes

|u(ζ, τ)− u(η, τ)| < |f−1
l fr(ω(yn−))− f−1

l fr(ω(y−))|

≤ 1

f ′l (Ā)
|fr(ω(yn−))− fr(ω(y−))| ≤ M

f ′l (Ā)
|ω(yn−)− ω(y−)|

≤ M

f ′l (Ā)
ε.

Combining (i),(ii),(iii) we are now able to derive the continuity of u(·, τ) in R \ {0}. In
fact if η = θ−y (τ) = θ+

y (τ) for some y ∈ R or η ∈ B(τ), continuity is obvious. Otherwise
assume that η = θ−yn(τ) < θ+

yn(τ) for some n ∈ N. Since ζ ∈ B(τ) for any ζ ∈ (η, θ+
yn(τ)),

if sgn yn = sgn η then

lim
ζ→η+u(ζ,τ)

= lim
ζ→η+

f ′−1
l,r

(
yn − ζ
T − τ

)
= f ′−1

l,r (f ′l,r(ω(yn−))) = u(η, τ);

if sgn yn 6= sgn η then

lim
ζ→η+

u(ζ, τ) = lim
ζ→η+

f ′−1
l,r

(
ζ

τ − s(ζ)

)
= f ′−1

l,r

(
η

τ − s(η)

)

= f−1
l,r f

−1
r,l (ω(yn−)) = u(η, τ).

In the same way it can be proved continuity in η when θ−yn(τ) < θ+
yn(τ) = η for some n ∈ R.

Next step is to show that u(·, τ) is differentiable almost everywhere and we do this
proving that it u is locally Lipschitz continuous. We proceed finding a bound from above
for the upper Dini’s derivative and a bound from below for the lower Dini’s derivative of
u. This results are collected in the following lemma.

With the same argument of Step 1, the way in which we construct u(η, τ) starting from
ω in A, implies that u satisfies the assumption of one of the three attainable profiles. In
particular assume that u is built starting from ω ∈ A1. Then there exist R′ > 0 such that
the map ϕ1 defined as (2.6) replacing R with R′, T with τ and ω with u is not decreasing.
Therefore we compute the upper Dini derivative of u(η, τ) we get



D+
η u(η, τ) ≤





1
f ′′l (u(η,τ)τ

if x < 0

1
x2

f ′r(u(η,τ))[f ′l (f
−1
l fr(u(η,τ))]

2

f ′′l (f−1
l fr(u(η,τ))(f ′r(u(η,τ))τ−η)+[f ′l (f

−1
l fr(u(η,τ))]

2
f ′′r (u(η,τ))

if 0 < x < R′

1
f ′′r (u(η,τ))τ if x > R

(4.25)
For the lower bound of the lower Dini’s derivative the approach is different.

If D−η u(η, τ) ≥ 0 we do not have to prove anything, otherwise assume that τ < T ′ < T
and observe that by construction

u(η, τ) =

{
u(η + f ′l,r(u(η, τ))(t− τ), t) or

f−1
l fr

(
u
(
f ′rf
−1
r fl(u(η, τ))

(
t− τ + η

f ′r(u(η,τ))

)
, t
))

for all t ∈ [τ, T ]. The first or second expression is valid according to whether the charac-
teristic intersects the discontinuity or not. Therefore, fixing τ , for all η ∈ R there exist a
unique z = z(η) such that

η = z + f ′l,r(u(z, T ′))(τ − T ′) and u(η, τ) = u(z, T ′) or (4.26)

η = f ′lf
−1
l fr(u(z, T ′))

(
τ − T ′ + z

f ′r(u(z, t))

)
and u(η, τ) = f−1

l fr(u(z, T ′)). (4.27)

If we are in case of (4.26) then

D−η u(η, τ) = lim inf
z→z(η)

u(z, T ′)− u(z(η), T ′)
(z − z(η)) + [f ′l,r(u(z, T ′))− f ′l,r(u(z(η), T ′))](τ − T ′)

lim inf
z→z(η)

(
z − z(η)

u(z, T ′)− u(z(η), T ′)
+

[f ′l,r(u(z, T ′))− f ′l,r(u(z(η), T ′))]

u(z, T ′)− u(z(η), T ′)
(τ − T ′)

)−1

.

Choose a sequence {zν}ν∈N converging to z(η) such that

D−η u(η, τ) = (4.28)

= lim
ν→∞

(
zν − z(η)

u(zν , T ′)− u(z(η), T ′)
+

[f ′l,r(u(zν , T
′))− f ′l,r(u(z(η), T ′))]

u(zν , T ′)− u(z(η), T ′)
(τ − T ′)

)−1

,

(4.29)

by continuity of u(·, T ′)

lim
ν→∞

[f ′l,r(u(zν , T
′))− f ′l,r(u(z(η), T ′))]

u(zν , T ′)− u(z(η), T ′)
= f ′′l,r(u(z(η), T ′))

and
lim
ν→∞

zν − z(η)

u(zν , T ′)− u(z(η), T ′)

does exists. Call this limit λ, it should be negative otherwise for ν large enough, since f ′l,r
is increasing we get

u(ην , τ)− u(η, τ)

ην − η
=
u(zν , T

′)− u(z(η), T ′)
ην − η

> 0 (4.30)



where ην = zν + f ′l,r(u(zν , T
′))(τ − T ′) and this contradicts the previous assumption on

D−η u(η, τ). By (4.28) we get

D−η u(η, τ) ≥ 1

f ′′l,r(u(η, τ))(τ − T ′) (4.31)

If we are in case (4.27) we can take τ < T ′′ < T ′ such that

η = z + f ′l (u(z, T ′′))(τ − T ′) and u(η, τ) = u(z, T ′′) (4.32)

and proceed as in the previous case.
Since u(x, t) is locally Lipschitz continuous in R \ {0} it is also a.e. differentiable, and

satisfies by construction ut + f ′l (u)ux = 0 for x < 0, ut + f ′r(u)ux = 0 for x > 0, and the
interface entropy condition on {x = 0}.

5 Proof of Theorem 2.4

Let {ũn}n∈N ⊂ U . Since G is bounded,

‖Stũn(x)‖∞ ≤ ‖ũn(x)‖∞ ≤ C for all t ∈ [0, T ], for all n ∈ N. (5.1)

Hence ST ũn is weakly∗ relatively compact in L∞(R) and we can assume

ST ũn
∗
⇀ ω in L∞(R) (5.2)

S(·)ũn
∗
⇀ u in L∞(R× R+) (5.3)

with ω ∈ L∞(R) and u ∈ L∞(R × R+). Our claim is that ω ∈ A(T,U) and there exists
a subsequence of {ST ũn} converging to ω in L1

loc(R). Indeed ST ũn is BVloc(R \ {0}) for
all n ∈ N and we have an uniform bound on the sequence given by (5.1). Moreover
boundedness of the upper derivative implies that the total variation of ST ũn is uniformly
bounded in all the compact subsets of R \ {0} and Stũn is locally Lipschitz in time respect
the L1-norm. By Helly’s theorem there exists a subsequence {Stũnk}k∈N which converges to
some function ω′(·, t) in L1

loc(R\{0}) for all t ∈ [0, T ]. By (5.3) ω′ must coincide with u and
hence by (5.1) the original sequence {Stũn} converge to u(·, t) in L1

loc(R\{0}). in particular,
by (5.2) u(·, T ) = ω. Now we need only to check that ω is an AB-entropy solution of (0.1),
corresponding to a datum ũ ∈ U . By (5.1) and regularity of fl, fr it can be assumed
that, {fl(ST ũn)}n∈N, {fr(ST ũn)}n∈N converge respectively to {fl(u)}n∈N, {fr(u)}n∈N in
L1(R \ {0}). Therefore for any non negative function ρ ∈ C1 with compact support in
R \ {0} × [0, T ] and for any k ∈ R it holds:

∫ ∫
{|u− k|ρt + (fl,r(u)− fl,r(k)) sgn (u− k)ρx}dxdt =

lim
n→∞

∫ ∫
{|Stũn − k|ρt + (fl,r(Stũn)− fl,r(k)) sgn (Stũn − k)ρx}dxdt

≥ 0

which shows that u is weak kruzkhov entropic solution of (0.1) in R \ {0} × [0, T ]. It is
immediate to check that also the interface entropy condition is satisfied in the distributional
sense, indeed for any non negative function ρ ∈ C1 with compact support in R× [0, T ]

∫ ∫
{|u− c(x)|ρt + (f(u)− f(c(x)) sgn (u− c(x))ρx}dxdt =

lim
n→∞

∫ ∫
{|Stũn − c(x)|ρt + (f(Stũn)− f(c(x)) sgn (Stũn − c(x))ρx}dxdt

≥ 0



where c(x) = A1x<0 +B1x>0 ad f(x, u) = fl(u)1x<0 + fr(u)1x>0 as in (0.3).
Now observe that if we take the initial data in U ′ ⊂ U which contains functions with

compact support, then A(T,U ′) is compact in L1(R) and this guarantees the existence of
optimal controls for a class of minimization problems. Therefore we can state the following
result.

Corollary 5.1. Let F : L1(R) → R be a lower semicontinuous functional and let U ′ the
set of functions defined in 2.4 but with compact support. Then for every fixed T > 0 the
optimal control problem

min
ũ∈U ′

F (ST ũ(·)) (5.4)

admits a solution.

6 The concave-concave case

The analysis on the attainable profiles that we did in the previous sections when the
fluxes fl and fr are both convex can be authomatically extended to the case of fluxes both
concave. Indeed if we consider the scalar conservation law

ut + f(x, u)x = 0, x ∈ R, t ≥ 0 (6.1)
u|t=0 = u0 x ∈ R (6.2)

where f(x, u) = fl(u)1x<0 + fr(u)1x>0 with fl and fr strictly concave functions on
R and u0 ∈ L∞, an AB-entropy solution is again a weak solution of (6.1) which satisfies
Kruzkov entropy condition away from the interface {x = 0} and the AB-interface entropy
condition (1.1) on the discontinuity interface.

fl fr

B B̄AĀ
u

Figure 1.6: Example of AB connection with fl, fr strictly concave fluxes

However the meaning of the AB- interface entropy condition is different in the concave-
concave flux case, since it implies that the flux of the solution along the discontinuity
{x = 0} must be lower or equal to the value of the flux on the connection. In Figure 5 we
show how an AB-connection is in the case of concave-concave flux. By easy considerations
we can show that the sets of attainable profiles for initial data u0 ∈ L∞ and fixed time T
is exactly the same that we described in Theorem 2.1. It is enough to observe that given a
scalar conservation law ut + f(u)x = 0 with concave flux, it can be rewritten into another



one with convex flux of the form wt + g(w)x = 0 where w = −u and g = −f ◦ (−I) (I is
the identity map).

Therefore in order to characterize the attainable profiles for the Cauchy problem (6.1)-
(6.1) we can pass to the equivalent problem

wt + g(x,w)x = 0, x ∈ R, t ≥ 0 (6.3)
w|t=0 = −u0 x ∈ R (6.4)

where g(x, u) = gl(u)1x<0 + gr(u)1x>0 with gl = −fl ◦ (−I) and gr = −fr ◦ (−I) studying
the unique entropy condition associated to the connection (-A)(-B). By Theorem 2.1 we
are able to characterize the attainable profiles for the equation (6.3) for fixed time, hence
we can switch to the equation (6.1) just changing sign.
In the next figures we compare the AB-entropy solutions of some Riemann problems in the
case of convex-convex or concave-concave fluxes.

u

fl fr
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fl fr

B B̄AĀul urūl
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Figure 1.7: Left: ul < A < B < ur; Right: ul < Ā < B̄ < ur
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Figure 1.8: Left: A < ul < B < ur; Right: Ā < ul < B̄ < ur
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Figure 1.9: Left: A < ul < ur < B; Right: Ā < ul < ur < B̄
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Figure 1.10: Left: A < Ā < ul < B < ur; Right: Ā < A < ul < B̄ < ur
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Figure 1.11: Left: A < ur < ul < B; Right: Ā < ur < ul < B̄



7 Some applications

After the theoretical results of the previous sections in the following we show how to
apply them to some realistic problems. We briefly introduce the porus media model whose
first simplification when the medium is heterogenous is a scalar conservation law with
discontinuous flux in the convex-convex case and the LWR models for traffic flow which
brings an example in the concave-concave case. We study some minimization problems
involving profiles of the solutions in both the cases.

7.1 Porous Media Flows in Oil Field Development

In the oil industry, waterflooding or water injection is an inexpensive and simple en-
gineering technique used in extraction of petroleum. It consists in drilling injection wells
into an oil reservoir and introducing hot water. Water and oil inside the reservoir are im-
miscible, therefore, depending on the water rate injected, oil is displaced from the reservoir
to the production wells.

Their flow can be described as the so-called two-phase flow in porous media, consist-
ing of a saturation equation for the wetting phase and an equation for the total specific
discharge. Assume for each phase the Darcy’s Law

v = −λ(∇P − ρG)

where v is the Darcy speed, λ is the mobility, P the phase pressure, ρ is the density and
G the gravitational term. Combining Darcy’s law with the source free equation of mass
conservation for each phase

ρt +∇(vρ)

we get
α(ϕρwsw)t + (αρwFw)x = 0 (7.1)

that is the one-dimensional saturation equation, ignoring the capillarity effects. In (7.1), α
stands for the one dimensional cross-section area, ϕ is the rock porosity, ρw is the density
of water and sw is the saturation of the water at position x and time t. When α, ϕ,
ρw are constant the saturation equation (7.1) can be simplified in a non-linear hyperbolic
conservation law known as the Buckley - Leverett equation given by

(sw)t +
1

ϕ
(Fw)x = 0. (7.2)



The flux function Fw can depend both on position and saturation, Fw = Fw(sw, x). For a
more detailed description of the physics of the problem we remand to [43].

Figure 1.12: Both in continuous and discontinuous setting, Fw is in general not convex,
but "bell-shaped", however it presents a region of convexity given by the interval [0, c].
If we restrict the initial data to this region, our analysis is still true. Observe that the
connection, given by the blue segment on the right, passes through the maximum of the
two minima.

In many applications, the porous medium is heterogenous hence the flow domain has to
be divided into subdomains corresponding to different types of rock separated by lines or
surfaces, along which the porosity and the absolute permeability of the rock type change,
for example, the medium may consist of two rock types separated at the interface {x = 0}
and the flow is modeled by a scalar conservation law with a flux function discontinuous in
the space variable as the following

Fw(sw, x) = Fw,l(sw)1{x<0} + Fw,r(sw)1{x>0}. (7.3)

In [53] the author derive an entropy inequality on the discontinuity interface by a regularisa-
tion procedure, where the physical capillary pressure term is added to the Buckley-Leverett
equation. This entropy turns out to be our AB-interface entropy condition with AB crit-
ical connection, that is the connection passing through one of the two minima of the fluxes.

The first optimal control problem that we analyze is the classical minimization of the
distance from a target function, which can represent the saturation regime (of water)
necessary so that the gain received from the oil production is not lower than the cost
for the injection of hot water into the reservoir. Hence if we consider a target function
l ∈ L2([a, b]) ([25]) with [a, b] interval in which the porosity does not change, then the
problem is

min
sw∈U

∫ b

a
|ST sw(x)− l(x)|2dx. (7.4)

where U is a set of controls as (2.16). Consider a minimizing sequence {sw,n}n∈N, since U
is uniformly bounded ‖ST sw,n‖L∞([a,b]) ≤ C for all n ∈ N, it follows that

‖ST sw,n‖L1([a,b]) ≤ C(b− a).



The estimate on the upper Dini derivative in Lemma 4.1 implies an uniform bound on
the total variation of ST sw,n, therefore the sequence of solutions associated to the minimiz-
ing one is also uniformly bounded in the BV -norm. By the compact immersion of BV in
L2 there exists a subsequence that converges strongly in the L2 norm. Hence by continuity
of the L2 norm the minimizing sequence reaches the minimum.

The second optimal control problems we consider is the maximization of net present
value (NPV) of the waterflooding process ([47]). NPV is the difference between the present
values of the expected cash inflows and outflows over the production period. Water injec-
tion and production costs are the two sources of cash outflow while oil production represents
revenue generation. Assume that the injection cost Ri depends on the water saturation
sw in a region near the injection well ([a,b]), production cost Rp and oil production Ro
depend on the water saturation near the production well ([c, d]) then we get the following
variational problem

max
sw∈U

∫ T

0

[∫ d

c
(Ro(sw(x, t))−Rp(sw(x, t))) dx−

∫ b

a
Ri(sw(x, t))dx

]
dt (7.5)

The evolution of water saturation is considered in the whole interval [a, d] containing the
change of porosity. We assume that Ri, Rp and Ro are polynomial functions of the water
saturation. For initial data in u ∈ U , the set of attainable profiles, at fixed time and in an
interval not containing the change of porosity, is compact with respect to the L1-topology.
Proof of existence of a maximum is completely identical to the one we will prove in the
next application, hence we omit it now.

7.2 LWR model for traffic flow

The LWR model, proposed by Lighthill and Whitham (1955) and by Richards (1956),
describes the traffic flow at a macroscopic level, namely it considers speed, concentration
and flows without taking into account the individual behaviour of the vehicles. In our ap-
plication we deal with the simplest version, modelling the traffic flow on a one-dimensional
highway.
Let u(x, t) be the density of cars, its evolution is given by the scalar conservation law

ut + [uV (u)]x = 0 (7.6)

where V represents the vehicle’s velocity. In the classical model the velocity has a maximum
representing the limit speed, and is inversely proportional to the density, since in presence
of a large number of cars each driver goes slowly. This aspects are collected in the choice
of a bounded decreasing speed which multiplied for the density produces a strictly concave
flux.

In particular consider the LWR model on a junction made by one incoming and one out-
going road (this situation occur when the highway presents a changing surface condition),
we get a scalar conservation law with discontinuous flux

F (x, u) =

{
Fl(u) x<0
Fr(u) x>0

. (7.7)

where right and left fluxes are of the form Fl,r(u) = uVl,r(u). As entropy on the discon-
tinuity of the flux we can consider the AB-interface entropy condition with AB critical
connection, that is the one passing trough the minimum of the two maxima of right and
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Figure 1.13: Velocity and flux in the LWR model, and a discontinuous flux with critical
connection

left fluxes ([64]). We can consider again the problem of minimizing the distance from a
target function l ∈ L2([a, b]) with [a, b] not containing the junction:

min
u∈U

∫ b

a
|STu(x)− l(x)|2dx. (7.8)

Here STu(x) is the unique AB- entropy solution at time T of (7.6) while l can be, for
example, the optimal traffic density in a stretch of road near a school at time of exit. The
approach to prove existence of a minimizer is exactly the same of (7.4)

In order to quantify the overall fuel consumption of all the vehicles in the LWR model,
Ramdan and Sebold ([68]) introduce the average FC (Fuel Consumption) function, given
by the following polynomial function of the speed

K(V ) = 5.7×10−12V 6−3.6×10−9V 5+7.6×10−7V 4−6.1×10−5V 3+1.9×10−3V 2+1.6×10−2V+0.99.
(7.9)

Multiplying K for the density u(x, t) we get the Fuel Consumption rate of the whole
road traffic. Now it is natural to consider the problem of minimizing the Fuel Consumption
in space and time:

min
u∈U

∫ T

0

∫ b

a
Stu(x)K (V (Stu(x))) dxdt. (7.10)

For initial data in u ∈ U the set of attainable profiles at fixed time and in an interval
not containing the origin is compact with respect to the L1-topology, therefore we just
need to show that the functional is continuous with respect to the L1-topology in order to
prove existence of minimizers for (7.10).
First observe that the map ū 7→

∫ b
a ū(x)K (V (ū(x))) dx is continuous as function from

{ū ∈ A(U , t)} into R w.r.t. the L1-norm and
∣∣∣∣
∫ b

a
Stu(x)K (V (Stu(x))) dx

∣∣∣∣ ≤ C(b− a) sup
s∈[0,Vm]

K(s) (7.11)

hence by the dominated convergence theorem also the map ū 7→
∫ T

0

∫ b
a ū(x)K (V (ū(x))) dxdt

is continuous w.r.t. the L1-norm. Therefore given a minimizing sequence {ũn}n∈N, by
Theorem 2.4 the associated sequence of solution {Stũn}n∈N ⊂ A(U , t) is compact in L1

topology which implies existence of a minimizer in (7.10).





Chapter 2

Conservation law models for supply
chains

1 Conveyor belts and supply chain

Conveyor belts are component used in automata distribution and warehousing, whose
origin dates back to 1892, by Thomas Robinson. They were introduced for carrying coal,
ores and other products, but not too late they found wide use in other different sectors.
In fact nowadays conveyor systems have large application in industries for transportation
of materials, goods and passengers, since they represent a quick and efficient technology
which allows to move objects of different nature and has also some popular consumer ap-
plication, as in supermarkets and airports (see Fig. 2.1 for an example of conveyor belt).
The conveyor also conceptually the load-bearing element of a supply chains, that is a
system of organizations, people, activities, information, and resources involved in mov-
ing/processing a product or service from supplier to customer. In the last decade several
mathematical models were developed in order to describe the flow of particles along a
single conveyor belt. The main distinction is between the microscopic (discrete) models
which track each part in the material flow and macroscopic (continuous) models relying
on conservation laws which determines the motion of the part density ([30]).
The former models captures the most accurate dynamics but get computational extremely
costly and produce inefficient simulation times, while the latter are inspired to continuous

Figure 2.1: Classic prototype conveyor belt
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traffic flow models and captures phenomena such as queuing and congestion.
We will describe mathematically an infinite conveyor belt with finite capacity, modelled by
a scalar conservation law whose flux is increasing, concave and multivalued at maximum
density of particles representing the capacity of the chain. This choice for the flux was
introduced for the first time in [8] to study shutdown of the production line due to a fail-
ure, and the time evolution of the recovery of the production line once the failure has been
repaired. Therefore we have to deal with a scalar conservation law with discontinuous flux,
and the discontinuity is in the conserved quantity. Even if there is now a vast literature
for the case of spatial discontinuity as seen in the first chapter, the same cannot be said
for the case that we want to analyze. However there is no way to avoid this peculiarity
of the flux since conveyors used in industrial settings include tripping mechanisms which
allow for workers to immediately shut down the conveyor when a problem arises ([31]).
Hence to get a realistic description we need to consider this kind of discontinuity. The first
to consider scalar conservation laws with flux discontinuous in the conserved quantity was
Gimse in [42] in models for two phase flow in porous media.
Dias and al. in [33] analyze the limit case of a phase transition and study the problem by
regularizing the flux function through some Friedrichs’ mollifiers to fall back into classical
theory (this is also the same approach used in [8] ).
Carrillo proved existence and uniqueness of solutions in the case of a finite number of
discontinuities of the flux in the density by passing though a continuous reformulation of
the flux [24]. His results are extended to the case of fluxes that have at most countably
number of monotone jumps by Buliceck and al. in [21].
A different point of view is given in [49] where the authors introduce an explicit transition
phase approach enlarging the set of variable for the equation and considering non only the
density but also the phase which can be free or congested.

Below we explain the original contributions of this chapter. We consider scalar conser-
vation laws with flux flux concave and discontinuous at maximum density. First of all we
prove existence an uniqueness of solution for bounded initial data having well defined limit
at +∞, then a stability result for solutions of the Kruzkhov type. What we are going to
do is also an analysis of the Hamilton-Jacobi formulation associated to this conservation
law. Although the HJ equation is also non-trivial to treat because of the discontinuity of
the Hamiltonian in the gradient, it reveals the information required in the definition of
solution for the conservation law in a sense explained later.
We will recall the definition of a viscosity solution in the case of discontinuous Hamilto-
nian, then we prove existence of solutions by approximating the Hamiltonian as done for
the conservation law in [33] and [21] . We will show that it is also possible in our hypotheses
to give an explicit formulation (Hopf Lax type) of the solution. As in the classical case, the
explicit formulation can be computed through a variational problem and in this particular
case through the combination of the optimal solution of two variational problems. After
the analysis of the single chain, we proceed to insert it into a more complex structure, i.e.
a supply chain on network. In particular we focus on the evolution of particles on a single
junction point. In order to have a model as realistic as possible we require both incoming
and outgoing chains to have finite capacity, moreover we assume that in the junction there
is a buffer of finite capacity where to store products already processed waiting to enter
in the outgoing chains. The evolution of the density of particles on the single chain is
described by the scalar conservation law with flux satisfying the assumptions mentioned
before, while the evolution of the buffer is described by an ODE. The Hamilton-Jacobi
formulation introduced for the scalar conservation law turns out to be the key tool in order
to achieve uniqueness of the solution for the junction problem.



The chapter is organized as follows: in Section 2.2 we recall the main models for the
evolution of particle density on a single conveyor belt / chain introduced so far, in section 3
we briefly outline the available results for scalar conservation laws with flux discontinuous
in the conserved quantity. Section 4 is devoted to the study of the Cauchy problem for a
single conveyor belt, in particular we introduce an opportune notion of entropy condition
and analyze first the single Riemann problem, then the interaction of several Riemann
problems. Existence and Uniqueness of the solution are proved in Section 5 respectively
by Front-Tracking and the stability result. In Section 6 we introduce the Hamilton-Jacobi
reformulation of the Cauchy problem and we study an Hopf-Lax type formula for the
solution which can be obtained by two combined optimization problems. In section 7
we clarify why the Hamilton-Jacobi approach is significant for our conservation law by
introducing the Selection Principle. Finally in section 8 we move to the junction problem
for which we prove both existence uniqueness of the solution of the Cauchy problem.

2 Models for supply chain

In this section we recall the main continuous models for conveyor belt and supply
chain introduced in the last years which arise from such strictly applicative situations,
these models offer important challenges also and above all from a theoretical point of view.

2.1 Armbruster- Degond-Ringhofer 2006

The first continuous model for conveyor belt was introduced in [7], inspired by traffic
flow models for which a large body theory had already been developed. It is based on
conservation laws of the form

∂tu+ ∂x min {N, u} = 0 (2.1)

where the variable x ∈ [a, b] represents the position along the single chain, u : [0,+∞) ×
[a, b]→ [0,+∞), function of time and position, stands for the product density, and N is a
bound on the rate of flux.

u

F lux

N

Figure 2.2: Flux in the conservation law 2.1

The number of parts processed is conserved, therefore a scalar conservation law is actu-
ally the most appropriate kind of equation to describe the physical behavior. Equation (2.1)
is standard with a Lipschitsz continuous flux, hence it can be studied using the classical
theory. However, although the flux is bounded, the density of parts can grow indefinitely
which means that the chain has infinite capacity, this makes the model physically not very
realistic. The defect was solved in the following model.



2.2 Armbruster - Gottlich - Herty 2011

In [8] the authors give a contribute to the body of continuous models by developing a
model for supply chains or factories with finite work in progress. For evolution of parts
they consider scalar conservation laws of the form

ut + F (u)x = 0 (2.2)

with

F (u) =

{
a u if u < M,

0 if u ≥M

where M is the maximum storage capacity in the processor.
The flux is discontinuous at maximum density and the most important consequence is the
fact that the flux of the solution can not be uniquely determined through evaluation of u
in M . Indeed assume that in a point a solution of (2.2) is exactly equal to M, then we are
not able to say (in such a point) if the correspondent flux is 0 or lims→M− F (s). Since at

u

F lux
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M

Figure 2.3: Flux in 2.2

the beginning it was not clear how to deal directly with this kind of equation, the problem
was studied by considering continuous approximation of the flux. A more direct approach
was introduced in [49].

2.3 Herty-Jorres-Piccoli 2013

In their work ([49]) equation (2.2) is studied by modifying the dynamic in the following
way: the flux F is replaced with a flux G with argument the density u ∈ [0,M ] and a second
argument S attaining value in the finite set {F , C} and representing the status of the belt.
Here F is the free phase and C the congested. More explicitly G : [0,M ]× {F , C} → R is
given by

G(u,S) =





F (u) if 0 ≤ u < M, S = F
limu→M− F (u) if u = M, S = F
F (u) if 0 ≤ u < M, S = C
0 if u = M, S = C

(2.3)

where the third case never occurs and is added just to have a well defined function G on
the full domain [0,M ]× {F , C}.
The evolution of (u(t, x),S(t, x)) corresponding to (2.2) is given by a conservation law
paired to a state constraint :



{
ut +G(u,S)x = 0

S(t, x) = C(t, x) =⇒ u(t, x) = M
. (2.4)

The meaning of the state constraint is that the congested phase can appear only when
u(t, x) = M , that is at maximal density.

In this setting they first prove existence of solutions to the Riemann problem and then
existence of solution for the Cauchy problem with initial data given by the couple density-
status, that is (u0,S0). In particular u0 is an integrable function and S0 is constant in
every non trivial interval where u0 = M .

3 Preliminary result about fluxes discontinuous in the den-
sity

Here we present an oveview of the known results and approaches to scalar conservation
laws with flux discontinuous in the conserved quantity that can be also interpreted as a
transition phase.

3.1 Gimse

The first to be interested in scalar conservation laws with flux discontinuous in the
conserved quantity was Gimse in [42]. In particular he considered the following equation

ut + F (u)x = 0

with flux function having a unique discontinuity at u = ū, so that

lim
u→ū−

F (u) 6= lim
u→ū+

F (u).

Hence, we can view F as a multivalued map where we set

F (ū) = { lim
u→ū−

F (u), lim
u→ū+

F (u)}.

The study was motivated by several physical application, above all for two phase flow in
porous media. Indeed in this model it is possible to have a discontinuous flux function
when the flow properties change abruptly at some saturation.
The Riemann problem is studied and the solution turns out to be a couple given by the
conserved quantity and the correspondent flux. The main contribution of his work concerns
the full description of the interaction of several Riemann problems, moreover he introduces
the notion of zero-shock which is a curve along which the conserved quantity is constant
but the flux is discontinuous, i.e. the curve that identifies the phase transition.

For Gimse the initial data for the Cauchy problem is given by the couple conserved
quantity-flux (u0, f0). In particular u0 is a piecewise constant function and the flux satisfies
f0 ∈ F (u0).

At this point a notion of entropic solution is not yet available therefore the stability
results are obtained only with restrictive assumption through which the analysis can be
traced back to the classical case for continuous fluxes. More in detail, he asks the regions
of congestion for the initial data to be concentrated inside a compact set, in this way there
is no propagation of congestions from ±∞.



3.2 Dias, Figueira and Rodrigues

In the study of phase transitions in fluid dynamic or in elasticity it is common to
find non convex flux associated to system of first order non linear conservation laws ([52],
[67]). If we freeze one or more dependent variable we get a scalar conservation law for
a continuous flux function F̄ with the graph as in Fig 2.4 where the interval [um, uM ]
corresponds to the transition phase.

u

F

um uM

F̄ (u)

Figure 2.4: Flux F̄

When the interval collapse to one point we get the discontinuous flux F in Fig 2.5
defined by

u

F

F (u)

Figure 2.5: Flux F̄

F (u) = u+ 1−H(u)

whereH is the Heaviside function. Motivated by this example Dias, Figueira and Rodrigues
([33]) started analyzing scalar conservation laws with flux discontinuous in the conserved
quantity of the form

ut + F̃ (u)x = 0 (3.1)

where F̃ (u) = F (u) if u 6= 0 and F̃ (0) = [0, 1]. They introduced the definition of weak
solution below.

Definition 3.1. A function u ∈ L∞(R+×R) is said a weak solution to the Cauchy problem
for the equation (3.1), with initial data u0 ∈ L∞(R), if there exist v ∈ L∞(R+ × R) such
that v(t, x) ∈ F̃ (u(t, x)) a.e. and

∫ ∞

0

∫

R
u
∂ϕ

∂t
+ v

∂ϕ

∂x
dxdt+

∫

R
u0(x)ϕ(x, 0)dx = 0



for each ϕ ∈ C∞c (R+ × R).

Here the solution is given by the couple conserved quantity-flux and the initial data is
just the conserved quantity. It is obtained by considering conservation laws associated to
particular regularization of the multivalued flux. Such a procedure provides a preliminary
selection of the flux in the initial data (at the discontinuity point). Existence of a solution
for the Cauchy problem is proved for initial data of the form

u0(x) =

p∑

i=1

ui(x)χIi(x), x ∈ R (3.2)

where for each i, χIi is the characteristic function of the open interval Ii, Ii ∩ Ij = ∅ if
i 6= j and ui is given by a constant or a function in C2(Īi) ∩ L∞(Ii) with u′i(x) 6= 0 for all
x ∈ Ii. Their approach is based on continuous regularization of the flux and the study of
the limits of the sequences of solutions obtained.

3.3 Czech-Polish Group

The last contribution to the phase transition theory for conservation laws we mention
is given by the work of the Czech-Polish Group consisting of Bulicek, Gwiadza, Malek and
Swierczewska-Gwiadza ([21]) and inspired by a previous one of Carrillo ([24]). The main
idea is to appropriately redefine the conservation law in order to work with continuous flux.

Consider the scalar conservation law

ut + F (u)x = 0 (3.3)

with initial data given only by the conserved quantity u0 ∈ L∞(R)∩L1(R) and the flux F
given by a locally bounded regulated function (i.e. with left and right limits well defined
in the points of discontinuity) of the form

F (s) = λs+G(s) for s ∈ [−M,M ], (3.4)

where

M = ‖u0‖∞, λ ∈ R and G is strictly monotone so that U = G−1 ∈ C(G[−M,M ]).
(3.5)

Definition 3.2. A couple (u, f) is a weak solution if

u ∈ L∞([0, T ];L∞(R) ∩ L1(R)), f ∈ L∞([0, T ];L∞(R)), (3.6)
f(x, t) ∈ F (u(x, t)) for a.a (t, x) ∈ R+ × R, (3.7)

and the identity

−
∫ ∞

0

∫ ∞

−∞
uφtdxdt−

∫ ∞

0

∫ ∞

−∞
fφxdxdt =

∫ ∞

−∞
u0(x)φ(0, x)dx (3.8)

holds for all φ ∈ D(R2).

As already mentioned, existence and uniqueness of solutions is proved by passing
through a reparameterization of the equation with continuous flux.

If we now compare the definitions of solution for scalar conservation laws with discon-
tinuous flux in the conserved quantity seen in the previous sections we can notice that for
all of them the solution is defined as a pair (u, f).



On the other side, initial data is only the conserved quantity in works of Dias, Figueira
and Rodrigues and the Czech-Polish group, while for Gimse it is given by the pair (u0, f0).
So now the question is: how should we really state a Cauchy problem for phase transition?
In particular how should the initial data be taken so that the problem is well posed? The
answer to this question will be given in the next sections while we study scalar conservation
law for conveyor belt.

4 The Cauchy problem for an infinite conveyor belt

In this section we introduce a Cauchy problem for the evolution of parts density on a
conveyor belt of infinite length which will be the starting problem and whose resolution is
our goal throughout this and the next sections.
Consider {

ut + F (u)x = 0(
u(0, x), f(0, x)

)
= (u0(x), f0(x))

(4.1)

where the flux F is a multifunction that satisfies the following assumptions:

F : [0,M ]→ [0, N ], the restriction of F on [0,M) is a single valued map such that

s 7→ F (s) smooth , ∂sF > 0, ∂2
sF ≤ 0, F (0) = 0

and F (M) = [0, N ] with N = lim
s→M−

F (s). (4.2)
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Figure 2.6: Two example of fluxes which satisfy (4.2)

and u0 ∈ L∞(R) and f0 = F (u0) if u0 ≤M while f0 ∈ [0, N ] if u0 = M .

Definition 4.1. We say that a couple (u, f) is a weak solution of (4.1) if

u ∈ C([0, T ];L∞(R)), f ∈ L∞([0, T ];L∞(R)), (4.3)
f(x, t) ∈ F (u(x, t)) for a.a (t, x) ∈ R+ × R, (4.4)

and the identity

−
∫ ∞

0

∫ ∞

−∞
uφtdxdt−

∫ ∞

0

∫ ∞

−∞
fφxdxdt =

∫ ∞

−∞
u0(x)φ(0, x)dx (4.5)

holds for all φ ∈ D(R2).

We remember that for continuous flux, a function u is called entropy weak solution of
(4.1) if it satisfies the equation in the sense of distribution and if

η(u)t + q(u)x ≤ 0 (4.6)



holds in the sense of distributions for all the entropy/entropy flux pairs (η, q) where η is a
convex smooth function and q satisfies q′(u) = η′(u)F ′(u). The continuity of the flux plays
an important role in proving existence of a solution for the Cauchy problem. However,
in (4.1) the flux is a set-valued map, therefore the classical theory must be revised and
adapted to the particular problem.

4.1 Entropy solution and Riemann solver

We now analyze entropy solutions for scalar conservation laws with flux discontinuous
in the conserved quantity. In previous works entropy solutions were studied by passing
through continuous reparamenterization of the flux and employing classical entropy in-
equality on such reparametrerized solutions.

After recalling the definition of entropy admissible solutions in the theory for smooth
fluxes we introduce and justify a new version of Kruzkhov entropies, then we show how to
solve a Riemann problem according to these.

Reformulation of Kruzkhov entropy conditions

Consider the scalar conservation law

ut + F (u)x = 0 (4.7)

with F smooth flux. A weak solution u of (4.7) is said to be entropy admissible if it
satisfies (4.6) in the distributional sense, for every pair (η, q), where η is a convex entropy
and q the correspondent entropy flux. Condition (4.6) is sufficient to single out a unique
solution for initial data in L∞. In particular, for each constant k we can consider the
functions

η(u) = |u− k| q(u) = sgn(u− k)(F (u)− F (k)) (4.8)

(Kruzkov entropies) and say that a locally integrable function u is an entropy solution of
(4.7) if

∫ ∫
|u− k|ϕt + sgn(u− k)(F (u)− F (k))ϕxdxdt ≥ 0 (4.9)

for every positive C1 function ϕ with compact support in the half plane where t > 0.
Continuity of the flux F implies that the entropy flux q is well defined also when u = k
and is equal to 0. Assume now that F satisfies assumption (4.2). Clearly it is no more
possible to consider entropies like (4.8) since for u = k = M the entropy flux is not well
defined. Therefore we need introduce a modified version of the Kruzkov entropies, adapted
to the case of the scalar conservation law with flux discontinuous in the conserved quantity.
Since a solution of (4.1) is given by the couple representing the conserved quantity and
the correspondent flux, the new entropies must depend on this couple. Also the constant
k must be replaced with a couple (k, fk) where fk = F (k) if k < M and fk ∈ [0, N ] if
k = M . Hence we introduce the new pair of Kruzkhov entropies (η, q) which are maps
defined on the graph of F . i.e

G(F ) = {(u, fu) ∈ R2; fu ∈ F (u)} (4.10)

and given by
η(k,fk)(u, fu) = |u− k| (4.11)

q(k,fk)(u, fu) =

{
sgn(u− k)(fu − fk) if u 6= M or u = M and k 6= M

−|fu − fk| if u = k = M
(4.12)



for all (u, fu) and (k, fk) in G(F ) . We will prove that also (4.11)-(4.12) single out a unique
solution of (4.1).

Definition 4.2. A pair of functions (u, fu) is an entropy solution of (4.7) if
∫ ∫

η(k,fk)(u, fu)ϕt + q(k,fk)(u, fu)ϕxdxdt ≥ 0 (4.13)

for all the pairs (k, fk) ∈ G(F ) and every positive C1 function ϕ with compact support in
the half plane where t > 0.

Remark 2. Entropy inequality (4.13) coincides with (4.9) when the flux of the solution is
alway Fc.

In the next result we justify the new term in the entropy flux by considering Kruzkov
entropies for scalar conservation laws with continuous fluxes converging to F in the sense of
the graph. As in the classical theory of set-valued functions, we use the Hausdorff distance.

Proposition 4.1. Let Fn : [0,M ] → R+ be a sequence of continuous fluxes converging to
F in the sense of the graph. Given (u, fu), (k, fk) in G(F ) with u = k = M , consider
(un, Fn(un)), (kn, Fn(kn)) ∈ G(Fn) such that

dist
(

(un, Fn(un)), (u, fu)
)
−→ 0

dist
(

(kn, Fn(kn)), (k, fk)
)
−→ 0

as n→∞. Then
qk,n(un) −→ −|fu − fk| = q(k,fk)(u, fu). (4.14)

as n→∞.

Proof. Assume that fk > fu. For all ε > 0 such that ε < fk−fu
2

∃ nk s.t. for all n ≥ nk dist
(

(kn, Fn(kn)), (k, fk)
)
≤ ε

∃ nu s.t. for all n ≥ nu dist
(

(un, Fn(un)), (u, fu)
)
≤ ε

Therefore for all n ≥ max{nk, nu} we get

|Fn(kn)− fk| ≤ dist
(

(kn, Fn(kn)), (k, fk)
)
≤ ε and

|Fn(un)− fu| ≤ dist
(

(un, Fn(un)), (u, fu)
)
≤ ε

which immediately implies

Fn(un) ≤ fu + ε < fk − ε ≤ Fn(kn) (4.15)

By definition (4.2), all the level sets of F consist into two points (which coincides when
F = N). If fk < N , let k′ be the other point where F = fk. Clearly we have that k′ < k.
For ε < min{fk−fu2 , k−k

′

2 } define U = {(x, y) ∈ R+ × R+| dist((x, y),Graph(F)) < ε}.
Then there exist nU ∈ N such that Graph(Fn) ⊂ U for all n ≥ nU . Hence by (4.15) and
continuity of Fn it follows that un > kn for all n ≥ max{nk, nu, nU}. Analogously we can
prove that if fu > fk for n large enough Fn(kn) < Fn(un) and un < kn, thus (4.14) holds.



Example. Assume that F (u) = N
M u for 0 ≤ u < M and F (M) ∈ [0, N ]. It is

immediate to check that it satisfies (4.2). Let Fn the sequence of continuous concave
approximation converging to F in the sense of the graph described below:

Fn(u) =

{
nN

nM−1u if 0 ≤ u < M − 1
n

−nN(u−M) if M − 1
n < u ≤M

Consider fu, fk ∈ [0, N ] and let un, kn their preimage with respect to Fn restricted to
[M − 1

n ,M ], i.e

un = F−1
n (fu) = M − fu

nM
, kn = F−1

n (fk) = M − fk
nM

.

Both un, kn converge to M as n → ∞, and if fu < fk then un > kn else if fu > fk then
un < kn. This implies that

qkn(un) = sgn(un − kn)(fu − fk) = −|fu − fk| = q(k,fk)(u, fu)

when u = k = M

4.2 The single Riemann problem

We are going to show how to solve a single Riemann problem for scalar conservation
laws with flux as in (4.2). The discontinuity in the conserved quantity brings a pathological
behaviour in the interaction of several Riemann problems. However, once clear how to solve
two coupled Riemann problems, it is immediate to derive an algorithm in order to find a
solution for piecewise constant initial data. This kind of analysis was done for the first
time by Gimse in [42] for scalar conservation laws with flux having a positive jump in the
conserved quantity, here we present a more systematic treatment adapted to the case of
negative jump which naturally appears modelling conveyor belts.

From now on we indicate with Fc the function given by

Fc =

{
F (u) u ∈ [0,M)

limu→M F (u) u = M
(4.16)

i.e. the continuous part of F .

Lemma 4.2. Let F be a flux satisfying (4.2). Then the Riemann problem

ut + F (u)x = 0,

(u0, f0)(x) =

{
(ul, fl) x < 0,

(ur, fr) x > 0,
(4.17)

admits a unique selfsimilar entropy solution (u, fu) which fulfils a maximum principle with
respect to the conserved quantity u, i.e ‖u‖L∞ ≤ ‖u0‖L∞.

There may be the following cases:

i. If ul, ur ≤ M and fl = Fc(ul), fr = Fc(ur), it is the classical Riemann problem
for a continuous monotone flux, hence by the Lax entropy condition there exists a
unique solution (u, fu) with u presenting a rarefaction if ul > ur and a single shock
if ul < ur, while f is simply given by Fc(u).



ii. If ul < M , fl = Fc(ul) and ur = M , fr ∈ [0, N), the unique solution is given by
(u, fu) where u presents a shock of speed fl−fr

ul−ur connecting the left to the right state
and fu is just given by Fc(ul) for x < fl−fr

ul−ur t, by fr for x > fl−fr
ul−ur t .

x

ul

0

ur

ul ≤M ur = M

iii. If ul = M , fl ∈ [0, N) and ur ≤ M , fr = Fc(ur), the unique solution is given by
(u, f) where u presents a rarefaction connecting the left state ul = M with associated
flux fl = N to the right state ur ≤M , fr = Fc(ur). Hence fu = Fc(u).

x
0

ul = M ur

ul = M ur ≤M

iv. If ul, ur = M and fl, fr ∈ [0, N ] the unique solution is given by (u, fu) where u = M
and f = fr. Hence, again the solution is constant.

x
0

u = M,f = fr

ul = M ur = M

Proof. Solutions described in i, ii, iii, iv obviously satisfy the maximum principle, therefore
it is only necessary to check that they are entropic solutions.
For the case i and iii, by Remark 2, the entropy condition coincides with the classical one
for continuous flux which is clearly satisfied.
In the case ii the discontinuity generated by the shock wave x = λt with λ = fl−fr

ul−ur in ii.
is entropy admissible. Indeed condition (4.9) with entropies (4.12) implies that

λ
(
η(k,fk)(ur, fr)− η(k,fk)(ul, fl)

)
≥ q(k,fk)(ul, fl)− q(k,fk)(ur, fr). (4.18)

which is satisfied by all the couples (k, fk) ∈ G(F ).
Finally the last case is just a check.

For the sake of clarity it is useful now to introduce a Riemann Solver that synthesizes
what we saw in the previous lemma. Hence we define the following map

R : R4 → R4

(
(ul, fl), (ur, fr)

)
7→ R

(
(ul, fl), (ur, fr)

)
(4.19)



where R is defined as

R
(

(ul, fl), (ur, fr)
)

:=





(
(ul, fl), (ur, fr)

)
in case i, ii

(
(M,N), (ur, fr)

)
in case iii

(
(M,fr), (M,fr)

)
in case iv

(4.20)

4.3 Shock interaction

The next step is to study how to construct a solution for piecewise constant initial
data. The starting point is the interaction of two Riemann problems at time t = 0 when
the solution of one of the two contains a wave with infinite speed, hence here we show how
to solve it.

Consider the Cauchy problem (4.1) with initial data

(u0, f0) =





(ul, fl) x < a

(um, fm) a < x < b

(ur, fr) x > b

(4.21)

where a, b ∈ R

Case 1 If the two couples (um, fm), (ur, fr) satisfy assumptions of point i. or ii. in 4.2, then
the Riemann problem (ul, fl) (um, fm) can be solved as in Lemma 4.2

Case 2 If (um, fm), (ur, fr) satisfy assumptions of point iii. in 4.2. Then the Riemann prob-
lem (ul, fl) (um, fm) can be solved as prescribed in Lemma 4.2, hence the situation
is identical to the previous one

Case 3 If (um, fm), (ur, fr) satisfy assumptions of point iv. in 4.2. then the Riemann problem
(ul, fl) (um, fm) is solved as (ul, fl) (M,N) following Lemma 4.2. This is due to the
fact that the Riemann problem connecting the intermediate state with the left one
produces a shock of speed −∞ (Gimse’s zero shock) which interacts at time t = 0
with the other Riemann problem.

x

um = M urul

um = Mul < M ur ≤M

Case 4 (um, fm), (ur, fr) satisfy assumptions of point v. in 4.2, the Riemann problem (ul, fl)
(um, fm) is solved as (ul, fl) (M,fr) following Lemma 4.2.

x

ul

u = M,f = fr

um = M ur = M



Similarly to what was done in [42] we give an algorithmic procedure to determine the
solution of (4.1) with piecewise initial data

i. Solve the Riemann problem starting from right to left, if a shock with speed −∞
evolves, change the right state of the left next Riemann problem

ii. Once all the Riemann problems at time t = 0 are solved, let τ be the first positive
time in which an interaction occur in space, let’s solve again the Riemann problems
according to i.

iii. when all the interactions at time t = τ are solved, proceed to the next interaction.

Through this procedure we can observe that for t > 0

(u, f)(t, x) = (M,α) with α ∈ [0, N) ⇐⇒ lim
x→+∞

(u0, f0) = (M,α) (4.22)

Remark 3. In general by the way we solve the Cauchy problem for piecewise initial data
we can observe that if in a certain point (t, x) the solution is equal to (M,α) (as defined in
(4.22)) then it is definitively equal to (M,α) on the line {t}× [x,+∞). This means that if
limx→+∞(u0, f0) = (M,α) then there exists a curve which separates the region where the
solution is definitively equal to (M,α) from the region where we have simply the solution
of the scalar conservation law with flux given by Fc.

5 Existence and Uniqueness

We prove existence of a solution for (4.1) by the method of front tracking .
Given an initial data (u0, f0) with 0 ≤ u0 ≤M satisfying the following assumptions

∃c ∈ [0,M ] such that (u0 − c) ∈ BV (R) (5.1)

and
f0 ∈ BV (R), f0 = F (u0) if u0 < M otherwise f0 ∈ [0, N ], (5.2)

we construct a sequence {(un, fn)}n∈N of piecewise constant approximate solutions of (4.1)
with (un(0, ·), fn(0, ·)) → (u0, f0). The compactness argument for the approximate con-
served quantities rests on Helly’s theorem, but also on the fact that every solution has a
very rigid structure as observed in the Remark 3. The convergence of the approximate flux
is instead more delicate as we will see later.

5.1 Piecewise constant approximation

Fix n ∈ N and let Fn be the piecewise affine function which coincides with F in all the
nodes iM2n with i = 0, ..., 2n − 1, and Fn = [0, N ] in M , i.e

Fn(s) =
s− iM2n

M
2n

· F
(

(i+ 1)
M

2n

)
+

(i+ 1)M2n − s
M
2n

· F
(
i
M

2n

)

s ∈
[
i
M

2n
, (i+ 1)

M

2n

]

and Fn(M) = [0, N ]} (5.3)

Let ũ be a piecewise constant function with values in {iM2n , i = 0, ..., 2n}, definitively
constant outside a compact set. The associated approximated initial flux is given by
f̃(x) = Fc

(
iM2n
)

if ũ(x) = iM2n for i = 0, ..., 2n − 1 and f̃(x) ∈ {j N2n , j = 0, ..., 2n} if
ũ(x) = M .



u

F

j N2n

iM2n

N

M

Now we show that the Cauchy problem
{
ut + Fn(u)x = 0

(u, f)(0, x) = (ũ, f̃)(x)
(5.4)

admits a globally defined in time solution with values in {iM2n , i = 0, ..., 2n} for the conserved
quantity and {Fc

(
iM2n
)
, i = 0, ..., 2n} ∪ {j N2n , j = 0, ..., 2n} for the flux.

Consider the Riemann problem

(u, f)(0, x) =

{
(u−, f−) if x < 0

(u+, f+) if x > 0
(5.5)

where (u−, f−) and (u+, f+) admits values in the same sets of (ũ, f̃). We analyze separately
the case u− < u+ and u− > u+.

1. Assume u− < u+. The largest convex function F# such that

F#(s) ≤ Fn(s) for all s ∈ [u−, u+]

is the straight line with slope λ = f+−f−
u+−u− . This is clearly motivated by the concavity of

Fn. By Lemma 4.2, the function

(v(x, t), fv(x, t)),=

{
(u−, f−) if x < λt

(u+, f+) if x > λt
(5.6)

is a weak entropy solution for (5.4).

2. If u+ < u−, the smaller function F# with convex subgraph such that

F#(s) ≥ Fn(s) for all s ∈ [u+, u−]

is given by the same Fn. Define u+ = v0 < v1 < ... < vl = u− the points of non
differentiability for Fn and f+ = f0, f1, ..., fl = f− the correspondent values of the flux. If
u− < M or u− = M and f− = N , let λh be the sequence of speeds

λh =
fh − fh−1

vh − vh−1
h = 1, ..., l (5.7)



while if u− = M and f− ∈ [0, N) set

λl =
N − fl−1

M − vl−1
, (5.8)

λh as in (5.7) for h = 1, ..., l − 1 and switch the value of the flux from f− to N . We claim
that the function

(v(x, t), fv(x, t)),=





(u−, N) if x < λlt

(vh, fh) if λht < x < λh−1t,

(u+, f+) if x > λ1t

(5.9)

is a weak entropy solution of (5.4).
Indeed let φ be a C1 non-negative function with compact support in the half plane where
t > 0; fix the couple (k, fk) with k constant function, fk = Fn(k) if k < M and fk ∈ [0, N ]
if k = M . Define the characteristic function

χ[vh−1,vh](k) :=

{
1 if k ∈ [vh−1, vh]

0 if k /∈ [vh−1, vh]
(5.10)

The following computation shows that (5.9) is an entropy solution :
∫ ∫ {

|v − k|φt + q(k,fk)(v, fv)φxdx dt
}

=
l∑

h=1

∫ {(
|vh − k| − |vh−1 − k|

)
λh −

[
q(k,fk)(vh, fh)− q(k,fk)(vh−1, fh−1)

]}
φ(t, λht)dt

=
l∑

h=1

∫ [(
vh + vh−1 − 2k

)
λh + 2fk − fh − fh−1

]
χ[vh−1,vh](k)φ(t, λht)dt

≥ 0 (5.11)

We can observe that the solutions obtained by solving the Riemann problem (5.4)−(5.5)

have values only in the set {iM2n , i = 0, ..., 2n} for the conserved quantity and {Fc
(
iM2n
)
, i =

0, ..., 2n} ∪ {j N2n , i = 0, ..., 2n} for the correspondent flux.

Consider now the Cauchy problem (5.4) with piecewise initial data (ũ, f̃) as described
above and let x1, ..., xν be the points where ũ has the discontinuities. Solving the inter-
acting Riemann problems according to the procedure introduced in Section 4.3, we obtain
a local solution of (5.4) which can be prolonged up to a first time t1 where some lines of
discontinuity intersect. We can solve again the Riemann problems and extend the solution
to the next time where a set of wave-front interactions take place and so on.

Now we show that the total number of interaction is finite, hence the solution can be
prolonged for all t ≥ 0. Indeed, let

ξ1(t) < ... < ξm(t) (t < τ) (5.12)

the curves of finite speed where the solution has m discontinuities interacting at time t = τ
and let u0, u1, ..., um the constant values taken by u. If limx→∞(u0(x), f0(x)) = (M,α)
with α ∈ [0, N), it is possible to have one more curve of discontinuity, whose speed can be
arbitrary large (with horizontal pieces). This could be a discontinuity in the density with



arbitrary large negative slope, or in the flux with −∞ slope. Denote with ξ̃ this curve,
then it is always greater than ξm.

Consider the jumps

ui − ui−1 = u(t, ξi(t)
+)− u(t, ξi−1(t)+) for i = 1, ...,m and

M − um if ξ̃ occurs . (5.13)

Observe that the last one can be not properly a jump in the classical sense, that is a
jump in the conserved quantity, indeed if um = M then the curve ξ̃ represents a phase
transition, i.e. a jump in the flux of measure α−N and we treat it as normal shock.

If all the jumps have the same sign, the Riemann problem determined by the interaction
is solved as in the classical theory by a single jump connecting u0 to um or u0 to M if
ξ̃ occurs. Indeed by construction all the incoming fronts are entropy admissible, which
means that

ξ̇i =
Fc,n(ui)− Fc,n(ui−1)

ui − ui−1
for i = 1, ...,m,

and ˙̃
ξ =

α− Fc,n(um)

M − um
(5.14)

where Fc,n stands for the continuous part of the piecewise affine approximation of the flux.
Since all the fronts are meeting in the same point, (5.12) implies that ˙̃

ξ < ξ̇m < ... < ξ̇1.
By concavity of Fn we deduce that the single jump (u0, um) with speed

ξ̇ =
Fc(um)− Fc(u0)

um − u0
(5.15)

or the jump (u0,M) with speed

ξ̇ =
α− Fc(u0)

M − u0
(5.16)

when ξ̃ occurs are entropy admissible. Moreover, the total variation of u is not changing
and the number of discontinuity with finite possibly large slope is decreasing at least by 1.

If at least two of the jumps in (5.13) have opposite sign, the total number of wave
front can increase, but the total strength of the outgoing fronts is given by the difference
in modulus between the last state from the left and the last one from the right, and the
total variation of the solution decreases at least by M

2n . Since we are considering initial
data with finite total variation, this last case can occur only a finite number of times.

Theorem 5.1. Let F be a flux satisfying assumption (4.2) and let (ũ, f̃) an initial data
where ũ is a function as (5.1) and f̃ satisfies (5.2). Then the Cauchy Problem (4.1) admits
an entropy weak solution (u, f) = (u(t, x), f(t, x)) defined for all t > 0 with

T.V.{u(t, x)} ≤ T.V.{ũ(t, x)}, ‖u(t, ·)‖L∞ ≤ ‖ũ‖L∞ (5.17)

and f(t, x) =

{
Fc(u(t, x)) if u < M

α ∈ [0, N ] if u = M
. (5.18)

where α = limx→+∞ f̃ . In particular if (u(t̄, x̄), f(t̄, x̄)) = (M,α) with α ∈ [0, N) then the
solution is constantly equal to (M,α) for a.e. x ≥ x̄.

Proof. Set M:= ‖u(t, ·)‖L∞ and let (ũn, f̃n) a sequence of piecewise constant initial data
such that



i. ũn(x) ∈ {iM2n , i = 0, ..., 2n} and f̃n(x) = Fc

(
iM2n
)
if ũn(x) = iM2n for i = 0, ..., 2n − 1,

f̃n(x) ∈ {j N2n , j = 0, ..., 2n} if ũn(x) = M for all x,

ii. ‖ũn − ũ‖L1 → 0 and ‖f̃n − f̃‖L1 → 0,

iii. T.V.{ũn} ≤ T.V.{ũ},
Observe that if the initial data is congested at +∞ (i.e. limx→+∞(ũ, f̃)(x) = (M,α)

with α ∈ [0, N)) we can approximate it only with piecewise constant couples of data
also congested (limx→+∞(ũn, f̃n)(x) = (M,αn) with αn ∈ [0, N) and αn → α). On the
other side, if the initial data is not congested two different situations can occurr : if
limx→+∞ ũ < M then the couple (ũ, f̃) is approximable only with not congested piecewise
constant couples, if limx→+∞(ũ, f̃)(x) = (M,N) we can approximate it both with free and
congested data.
Consider the sequence of piecewise constant entropy solutions (un, fn) of the Cauchy prob-
lem (5.4), with initial data (ũn, f̃n), constructed by the front tracking procedure of the
previous section. Since we solve the Riemann problems from right to left the unique con-
gested state that can survive is the one at +∞ and all the previous states (M,α(x)) with
α(x) ∈ [0, N) are switched in (M,N). Therefore if (ũn, f̃n) is a sequence of free initial data
we have that for all n ∈ N and t > 0, (un, fn) = (un, Fc,n(un)), hence all the approximate
solutions are in free region, which means that they solve the scalar conservation law with
the continuous part of the flux. Instead if (ũn, f̃n) are congested, all the solutions (un, fn)
have a rigid structure: for all n ∈ N there exists a connected piecewise affine curve γn
separating the solution into two different regions, in the first one the solution is free, i.e.
(un, fn) = (un, Fc,n(un)), in the other it is congested, that is (un, fn) = (M,αn) with
αn = limx→+∞ f̃n(x).

When the sequence (un, fn) is free, we fall in the classical analysis. Indeed

T.V.{un(t, ·)} ≤ T.V.{ū}, |un(t, x)| ≤M for all n, x, t, (5.19)

and
‖un(t, ·)− un(t′, ·)‖L1 ≤ L|t− t′|T.V.{ū} for all t, t′ > 0 (5.20)

hence by Theorem 2.4 in [15] there exists a subsequence of solutions {uk}k∈N converging to
a function u in L1

loc(R+×R). Moreover Fc,n converges uniformly to Fc. Since (un, Fc,n(un))
is an entropy solution by construction it follows that

∫ ∫
{|u(t, x)− k|φt + q(k,fk)(u(t, x), Fc(u(t, x)))φx}dx dt =

lim
n→∞

∫ ∫
{|un(t, x)− k|φt + q(k,fn,k)(u(t, x), Fc,n(u(t, x)))φx}dx dt ≥ 0 (5.21)

for every C1 non negative function φ with compact support in the half space t > 0. Here
fn,k is equal to Fc,n(k) if k < M and fn,k ∈ [0,M ] if k = M .

Analyze now the case of (un, fn) congested. Condition (5.19) still holds by construction.
Hence if we prove a condition analogous to (5.20), we can conclude the L1

loc convergence
of a subsequence of solutions {uk}k∈N to a function u.

Let 0 < t′ < t and let αh be a smooth approximation of the interval [t′, t] such that
limh→∞ αh = χ[t′,t]. Define

ϕh(τ, y) = αh(τ)φ(y) (5.22)

where φ is any smooth function with compact support. If we insert this into the weak
formulation



∫ ∫
(unϕh,t + fnϕh.x) dx dt+

∫
ϕh(0, x)un(0, x) dx = 0

and let h→∞, we get
∫
φ(y)

(
un(t, y)− un(t′, y)

)
dy +

∫ t′

t

∫
φyfn dy ds = 0.

It follow that

‖un(t, ·)− un(t′, ·)‖L1 = sup
|φ|≤1

∫
φ(y)

(
un(t, y)− un(t′, y)

)
dy

= − sup
|φ|≤1

∫ t′

t

∫
φyfn dx

≤
∫ t′

t
T.V.(fn)ds.

As mentioned before, if (un, fn) is congested, then for all n ∈ N there exist a curve γn
separating the free region were fn = Fc,n(un) from the congested region where fn =
limx→∞ f̄n, this implies that we can complete the previous estimate with

‖un(t, ·)− un(t′, ·)‖L1 ≤
[
TV {ū}L+N

]
|t′ − t|. (5.23)

The last step is to show that also fn converges in L1
loc to a function f . If we prove that

the sequence of curves γn converges to a curve which separates the congested region (set
it Ωu) from the free one ((R+×R) \Ωu), we get also the convergence of fn to the function
f given by

f(t, x) =

{
Fc(u(t, x)) if (t, x) ∈ (R+ × R) \ Ωu

limx→+∞ f̄(x) if (t, x) ∈ Ωu

(5.24)

in L1
loc. The proof of the convergence of the sequence γn will be done in a forthcoming

work on the structural stability of entropy solution for the conservation laws with flux
discontinuous in the conserved quantity. If we assume it true for now we can conclude
again as in the non-congested case.

5.2 Kruzkhov’s type stability result

In this section we prove the classical theorem of Kruzkhov adapted to the case of scalar
conservation law with flux discontinuous in the conserved quantity. This theorem provides
an estimate on the L1 distance of two bounded entropy admissible-solutions of (4.1) and
in particular it implies uniqueness of the solution with in the class of L∞ functions.

Theorem 5.2. Let F be a a flux satisfying assumption (4.2).
Let (u, fu), (v, fv) ∈ L∞((0,+∞), BV (R))2 be entropy admissible solutions of (4.1)

defined for t ≥ 0 and let M , L such that

|u(t, x)| ≤M, |v(t, x)| ≤M for all t, x (5.25)
|Fc(w)− Fc(w′)| ≤ L|w − w′| for all w,w′ ∈ [0,M ]. (5.26)

Then, for every R > 0 and τ > τ0 ≥ 0 one has
∫

|x|≤R
|u(τ, x)− v(τ, x)|dx ≤

∫ R

−R+L(τ0−τ)
|u(τ0, x)− v(τ0, x)|dx. (5.27)



if {τ} × (−R,R) is contained in the free region of both the solutions, and

∫

|x|≤R
|u(τ, x)− v(τ, x)|dx ≤

∫ R

−R+L(τ0−τ)
|u(τ0, x)− v(τ0, x)|dx

2L+R sup |F ′′c | TV (u(τ0, ·))
F ′c(M)2

(∫ R

−R−L(τ−τ0)
|fu(τ0, z)− f∞v,0|dz

∫ R

−R−L(τ−τ0)
|f∞u,0 − fv(τ0, z)| dz

)
+ (τ − τ0)|f∞u,0 − f∞v,0| (5.28)

with f∞u,0 = limx→+∞ f0,u(x) (flux of the initial data for (u, fu)) and f∞v,0 = limx→+∞ f0,v(x)
(flux of the initial data for (u, fu)) if {τ}× (−R,R) intersects at least one of the conjested
region for the solutions.

Proof. Let (u, fu), (v, fv) be entropy admissible solutions of (4.1).
If fu = Fc(u) and fv = Fc(v) a.e. on {τ}× [−R,R], both the solutions are in free region

which means that they solve the scalar conservation law with flux given by the continuous
part Fc, hence the classical Kruzkhov theorem holds.
If u, v = M and fu, fv ∈ [0, N) a.e. on {τ} × [−R,R], then both the solutions are in the
congested region, therefore Kruzkhov theorem loses meaning.
The most complex case is that one in which the trapezoid intersects the congested regions
of (u, fu) and (v, fv) with the side {τ} × [−R,R] therefore in the following we show how
to treat this case.

Given two couples (k, fk) and (k′, fk′) such that fk ∈ F (k) and fk′ ∈ F (k′) and any
smooth function ϕ(s, x, t, y) ≥ 0 with compact support contained in the set where s, t > 0,
by assumption we have
∫ ∫

{|u(s, x)− k|ϕs(s, x, t, y) + q(k,fk)(u(s, x), fu(s, x))ϕx(s, x, t, y)}dx ds ≥ 0, (5.29)

∫ ∫
{|v(t, y)− k′|ϕt(s, x, t, y) + q(k′,fk′ )

(v(t, y), fv(t, y))ϕy(s, x, t, y)}dx ds ≥ 0. (5.30)

Set k = v(t, y) in (5.29) and integrate w.r.t y, t, analogously set k′ = u(t, y) in (5.30) and
integrate w.r.t s, x, then adding the two results we get
∫ ∫ ∫ ∫

{|u(s, x)− v(t, y)|(ϕs + ϕt)(s, x, t, y) (5.31)

+ q(v(t,y),fv(t,y))(u(s, x), fu(s, x))(ϕx + ϕy)(s, x, t, y)}dx dy ds dt ≥ 0, . (5.32)

Now consider ρ : R→ [0, 1] a C∞ such that
∫ ∞

−∞
ρ(z)dz = 1, ρ(z) = 0 for all z /∈ [−1, 1],

and define
ρn(z) = nρ(nz), αn(z) =

∫ z

−∞
ρn(s)ds. (5.33)

For any non-negative function ψ = ψ(T,X) compactly supported in the half-space where
T > 0, define

ϕ(s, x, t, y) = ψ

(
s+ t

2
,
x+ y

2

)
ρn

(
s− t

2

)
ρn

(
x− y

2

)
, (5.34)



by easy computation it follows that

(ϕs + ϕt)(s, x, t, y) = ψT

(
s+ t

2
,
x+ y

2

)
ρn

(
s− t

2

)
ρn

(
x− y

2

)
,

(ϕx + ϕy)(s, x, t, y) = ψX

(
s+ t

2
,
x+ y

2

)
ρn

(
s− t

2

)
ρn

(
x− y

2

)
.

For n large enough, the support of ψ is contained in the set where s, t > 0. Replacing the
right hand side of the last two identities in (5.32) we obtain

∫ ∫ ∫ ∫
ρn

(
s− t

2

)
ρn

(
x− y

2

){
|u(s, x)− v(t, y)|ψT

(
s+ t

2
,
x+ y

2

)

+ sgn(u(s, x)− v(t, y))[fu(s, x)− fv(t, y)]ψX

(
s+ t

2
,
x+ y

2

)}
dx dy ds dt

≥ 0. (5.35)

Now introduce the following change of variable in (5.35)

T =
s+ t

2
, S =

s− t
2

, X =
x+ y

2
, Y =

x− y
2

and compute the limit as n→∞, renaming again the variables T,X we obtain
∫ ∫ {

|u(t, x)− v(t, x)|ψt (t, x) + q(v(t,x),fv(t,x))(u(t, x), fu(t, x))ψx (t, x)
}
dx dt ≥ 0.

(5.36)

for all the test function ψ with compact support in the half plane t > 0.
Let 0 < τ0 < τ and R > 0 be given. We construct a smooth approximation ψ to the
characteristic function of the in Fig (5.2) by setting

ψ(x, t) =
[
αn(t− τ0)− αn(t− τ)

]
·
[
αn(x+R− L(t− τ))− αn(x−R)

]
(5.37)

where αn is the same defined in (5.33). Replacing the test function (5.37) in (5.36), it
follows

∫ ∫
|u(t, x)− v(t, x)|

[
ρn(t− τ0)− ρn(t− τ)

]
·
[
αn(x+R− L(t− τ))

− αn(x−R)
]
dx dt

≥
∫ ∫ {

|u(t, x)− v(t, x)|
[
αn(t− τ0)− αn(t− τ)

]
Lρn(x+R− L(t− τ))

− q(v(t,x),fv(t,x))(u(t, x), fu(t, x))
[
αn(t− τ0)− αn(t− τ)

]
·
[
ρn(x+R− L(t− τ))− ρn(x−R)

]}
dx dt

=

∫ ∫ {[
L|u(t, x)− v(t, x)| − q(v(t,x),fv(t,x))(u(t, x), fu(t, x))

]
ρn(x+R− L(t− τ))

+ q(v(t,x),fv(t,x))(u(t, x), fu(t, x))ρn(x−R)
}[
αn(t− τ0)− αn(t− τ)

]
dx dt (5.38)

Consider now the sets Ωu and Ωv where respectively (u, fu) and (v, fv) are congested.
We can split the last integral and study singularly what happens on Ωu ∩Ωv, Ωu4Ωv and
outside Ωu ∪ Ωv.



Figure 2.7: The blue and red curves separate the free from the congested region

Starting from the last one we get

∫ ∫

Ωu∩Ωv

{[
L|u(t, x)− v(t, x)| − q(v(t,x),fv(t,x))(u(t, x), fu(t, x))

]
ρn(x+R− L(t− τ))

+ q(v(t,x),fv(t,x))(u(t, x), fu(t, x))ρn(x−R)
}[
αn(t− τ0)− αn(t− τ)

]
dx dt

=

∫ ∫

Ωu∩Ωv

{[
L|u(t, x)− v(t, x)|+ |fu(t, x)− fv(t, x)|

]
ρn(x+R− L(t− τ))

− |fu(t, x)− fv(t, x)|ρn(x−R)
}[
αn(t− τ0)− αn(t− τ)

]
dx dt

≥ −
∫ ∫

Ωu∩Ωv

|fu(t, x)− fv(t, x)|ρn(x−R)
[
αn(t− τ0)− αn(t− τ)

]
dx dt (5.39)

Consider now the set (R+ × R) \ (Ωu ∪ Ωv). Here both the solution are in free region.
By monotony of Fc and (5.26) it follows that

∫ ∫

(R+×R)\(Ωu∪Ωv)

{[
L|u(t, x)−v(t, x)|−q(v(t,x),fv(t,x))(u(t, x), fu(t, x))

]
ρn(x+R−L(t−τ))

+ q(v(t,x),fv(t,x))(u(t, x), fu(t, x))ρn(x−R)
}[
αn(t− τ0)− αn(t− τ)

]
dx dt

=

∫ ∫

(R+×R)\(Ωu∪Ωv)

{[
L|u(t, x)−v(t, x)|−sgn(u(t, x)−v(t, x))(fu(t, x)−fv(t, x))

]
ρn(x+R−L(t−τ))

+ sgn(u(t, x)− v(t, x))(fu(t, x)− fv(t, x))ρn(x−R)
}[
αn(t− τ0)− αn(t− τ)

]
dx dt

=

∫ ∫

(R+×R)\(Ωu∪Ωv)

{[
L|u(t, x)−v(t, x)|− |Fc(u(t, x))−Fc(v(t, x))|

]
ρn(x+R−L(t−τ))

+ |Fc(u(t, x))− Fc(v(t, x))|ρn(x−R)
}[
αn(t− τ0)− αn(t− τ)

]
dx dt ≥ 0. (5.40)

Now the last case.



∫ ∫

Ωu4Ωv

{[
L|u(t, x)− v(t, x)| − q(v(t,x),fv(t,x))(u(t, x), fu(t, x))

]
ρn(x+R− L(t− τ))

+ q(v(t,x),fv(t,x))(u(t, x), fu(t, x))ρn(x−R)
}[
αn(t− τ0)− αn(t− τ)

]
dx dt

≥
∫ ∫

Ωu4Ωv

[
q(v(t,x),fv(t,x))(u(t, x), fu(t, x))ρn(x−R)

− q(v(t,x),fv(t,x))(u(t, x), fu(t, x))ρn(x+R− L(t− τ))
][
αn(t− τ0)− αn(t− τ)

]
dx dt

(5.41)

Assume that (u, fu) = (M, δ) in Ωu \Ωv and (v, fv) = (M,η) in Ωv \Ωu. Then we can
rewrite (8.20) as follows

∫ ∫

Ωu4Ωv

[
q(v(t,x),fv(t,x))(u(t, x), fu(t, x))ρn(x−R)

− q(v(t,x),fv(t,x))(u(t, x), fu(t, x))ρn(x+R− L(t− τ))
][
αn(t− τ0)− αn(t− τ)

]
dx dt

=

∫ ∫

Ωu\Ωv

[
q(v(t,x),fv(t,x))(M,f∞u,0)ρn(x−R)

− q(v(t,x),fv(t,x))(M,f∞u,0)ρn(x+R− L(t− τ))
][
αn(t− τ0)− αn(t− τ)

]
dx dt

+

∫ ∫

Ωv\Ωu

[
q(M,f∞v,0)(u(t, x), fu(t, x))ρn(x−R)

− q(M,f∞v,0)(u(t, x), fu(t, x))ρn(x+R− L(t− τ))
][
αn(t− τ0)− αn(t− τ)

]
dx dt

≥ −
∫ ∫

Ωu\Ωv
|f∞u,0−fv(t, x)|

[
ρn(x+R−L(t−τ)+ρn(x+R−L(t−τ))

][
αn(t−τ0)−αn(t−τ)

]
dx dt

−
∫ ∫

Ωv\Ωu
|fu(t, x)−f∞v,0|

[
ρn(x+R−L(t−τ)+ρn(x+R−L(t−τ))

][
αn(t−τ0)−αn(t−τ)

]
dx dt

(5.42)

Recalling that the maps t 7→ u(t, ·), t 7→ v(t, ·) are both continuous from [0,+∞) into
the L1

loc, if we compute the limit for n→ +∞ in (5.38),(5.39),(8.31),(8.20),(5.42) we obtain

∫

|x|≤R
|u(τ, x)− v(τ, x)|dx

≤
∫ R

−R+L(τ0−τ)
|u(τ0, x)− v(τ0, x)|dx+H1(Graph(γ1) ∩ (Ωu ∩ Ωv))|f∞u,0 − f∞v,0|

+

∫

I1

|fu(s, γ1(s))− f∞v,0|ds+

∫

I2

|fu(s, γ1(s))− f∞v,0|ds

+

∫

I′1

|f∞u,0 − fv(s, γ1(s))|ds+

∫

I′2

|f∞u,0 − fv(s, γ2(s))|ds (5.43)

where

I1 = {s ∈ [τ0, τ ] : (s, γ1(s)) ∈ (Ωv \ Ωu)}
I2 = {s ∈ [τ0, τ ] : (s, γ2(s)) ∈ (Ωv \ Ωu)}
I ′1 = {s ∈ [τ0, τ ] : (s, γ1(s)) ∈ (Ωu \ Ωv)}
I ′2 = {s ∈ [τ0, τ ] : (s, γ2(s)) ∈ (Ωu \ Ωv)} (5.44)



Since u ∈ L∞((0,∞), BV (R)), there exist limx→γ1(t)+ u(t, x) and limx→γ2(t)− u(t, x) for
a.e. t ∈ (τ0, τ) therefore it is possible to define the following injective maps which associates
to all the points in Graph(γ1) ∩ (Ωv \ Ωu) and Graph(γ2) ∩ (Ωv \ Ωu) the intersection
respectively of the maximal and minimal backward generalized characteristic with the line
{t = τ}:

Ψ1(s) = γ1(s) + F ′c(u(s, γ1(s)+))(τ0 − s) for a.e s ∈ I1 (5.45)

Ψ2(s) = γ2(s) + F ′c(u(s, γ2(s)−))(τ0 − s) for a.e s ∈ I2 (5.46)

Since the backward generalized characteristic can not intersect each other, the map Ψ1

is strictly increasing, while Ψ2 is strictly decreasing and

sup
I1

Ψ1 < inf
I2

Ψ2 (5.47)

We use these maps to change variable in the second-last integral of (5.43) and estimate
the L1-distance of the fluxes along γ1 and γ2 with the distance along {τ0} × [−R− L(τ −
τ0), R]. Indeed

∫

I1

|Fc(u(s, γ1(s)))− f∞v,0|ds =

∫

Ψ1(I1)
|Fc(u(τ0, z))− f∞v,0|(Ψ−1

1 )′(z)dz (5.48)

where

Ψ−1
1 (z) =

z +R− Lτ − F ′c(u(τ0, z))τ0

L+ F ′c(u(τ0, z))
. (5.49)

It is possible to estimate from above the derivative of (3.11) as follows

(Ψ−1
1 (z))′ =

L+ F ′c(u(τ0, z))−D(F ′c(u(τ0, z))[z +R+ L(τ + τ0)]
(
L+ F ′c(u(τ0, z))

)2

≤
L
(

2 + sup |F ′′c | TV (u(τ0, ·))(τ + τ0)
)

F ′c(M)2
(5.50)

Analogously we have

∫

I2

|fu(s, γ2(s))− f∞v,0|ds =

∫

I2

|Fc(u(s,R))− f∞v,0|ds (5.51)

=

∫

Ψ2(I2)
|Fc(u(s,R))− f∞v,0| (Ψ−1

2 )′(z)dz

(5.52)

with

Ψ−1
2 (z) =

R− z
F ′c(u(τ0, z))

. (5.53)

Again we can estimate the derivative as follows



(Ψ−1
2 (z))′ =

F ′c(u(τ0, z)) + (R− z)D(F ′c(u(τ0, z))

F ′c(u(τ0, z))2

≤ L+R sup |F ′′c | TV (u(τ0, ·))
F ′c(M)2

(5.54)

By gathering (3.11)− (5.54) we get
∫

I1

|fu(s, γ1(s))− f∞v,0|ds+

∫

I2

|fu(s, γ1(s))− f∞v,0|ds

≤ 2L+ max{L(τ + τ0), R} sup |F ′′c | TV (u(τ0, ·))
F ′c(M)2

∫ R

−R−L(τ−τ0)
|Fc(u(τ0, z))− f∞v,0| dz.

(5.55)

The same procedure allows to find the following inequality
∫

I′1

|f∞u,0 − fv(s, γ1(s))|ds+

∫

I′2

|f∞u,0 − fv(s, γ1(s))|ds

≤ 2L+ max{L(τ + τ0), R} sup |F ′′c | TV (v(τ0, ·))
F ′c(M)2

∫ R

−R−L(τ−τ0)
|f∞u,0 − Fc(v(τ0, z))| dz.

(5.56)

If we assume that R ≥ L(τ − τ0), we get (5.28).

This results immediately implies uniqueness of the solution for the Cauchy problem
(4.1).

In the next section we study the Hamilton-Jacobi reformulation of problem (4.1). In
fact, it provides a more concise way to study our conservation law as, as we shall see,
the solution of the Hamilton-Jacobi contains all the information about the pair conserved
quantity-flux.

6 The Hamilton-Jacobi reformulation

Classically, the HJ associated with a scalar conservation law is obtained by taking the
Hamiltonian identically equal to the flux and in the Cauchy problem, the initial datum
equal to the integral of the initial datum for the CL.
An immediate question that arises is the following: since the initial datum for a con-
servation law with flux discontinuous in the conserved quantity is constituted by a pair
representing the density and the correspondent flux, how does the HJ inherit the informa-
tion of the initial flux?
In the next we will show that in the case of a system like the following

{
ut + F (u)x = 0

(u, f)(0, x) = (u0, f0)(x)
(6.1)

with flux satisfying (4.2), u0 ∈ L∞(R) as in (5.1), f0 as (5.2), the information about
the initial flux f0 is inherited by the Hamiltonian, which will be given by the flux suitably
modified.
We are going to introduce a new Cauchy problem, our main goal in next sections is to



study it and prove that it is exactly the Hamilton-Jacobi reformulation of (6.1).

Define F̃ as

F̃ (s) =





F (s) if s < M

lims→M− F (s) if limx→+∞ u0(x) < M

and s = M

limx→+∞ f0(x) if limx→+∞ u0(x) = M

and s = M

(6.2)

and consider the Cauchy problem
{
ωt + F̃ (ωx) = 0

ω(0, x) = ω0

(6.3)

where ω0 =
∫ x
c u0(s)ds which is clearly Lipschitz continuous.

Since the Legendre transform of F̃ is not well defined because of its discontinuity in M , it
is not clear how to compute the solution of (6.3) using the classical Hopf-Lax formula for
concave Hamiltonian, when a congestion occur at +∞ in the initial data of CL. Therefore
we show that we can obtain the solution as limit of a sequence of Lipschitz functions which
are solutions of Cauchy problems with the same initial datum and continuous concave
Hamiltonian F̃ε converging to F̃ in an opportune sense.

Before we recall the definition of viscosity sub- and supersolution for Hamilton-Jacobi
equation with Hamiltonian defined in a dense subset of an open set of R (for proofs and
more details see [41]).

In the following we denote with h and h̄ the upper an lower semicontinuous envelope
of a function h defined on a set L of a metric space X with values in R∪ {±∞}. If hε is a
function with the same assumption as before, we define the upper relaxed limit as

h̄(z) = (lim sup
ε→0

∗hε)(z)

= (lim sup
ε→0

){hδ(η); η ∈ L ∪Bε(z), 0 < η < ε}, (6.4)

and the lower relaxed limit as

h(z) = (lim inf
ε→0

∗hε)(z)

= (lim inf
ε→0

){hδ(η); η ∈ L ∪Bε(z), 0 < η < ε}, (6.5)

Definition 6.1. Let Ω be an open set in R, T > 0. Let H be a function defined on Ω with
real values. Consider the Hamilton-Jacobi equation

ωt(x, t) +H(ωx(x, t)) = 0 (6.6)

(i) Assume that H is upper semicontinuous in Ω with values in R ∪ {−∞}. A superso-
lution of (6.6) is defined in the classical sense;



(ii) Assume that H is lower semicontinuous in Ω with values in R∪ {∞}. A subsolution
of (6.6) is defined in the classical sense;

(iii) Assume that H is defined only on a dense subset of Ω an that −∞ < H ≤ H̄ <∞.

– If ω is a subsolution of

ωt(x, t) +H(ωx(x, t)) = 0 (6.7)

in R× (0, T ), then ω is called subsolution of (6.6).

– If ω is a supersolution of

ωt(x, t) + H̄(ωx(x, t)) = 0 (6.8)

in R× (0, T ), then ω is called supersolution of (6.6).

The previous definition was introduced for the first time by H. Ishii and used after
by Y.Giga for treating some HJ equations arising in mean curvature flow problems. In
recent years different definitions of viscosity solution for HJ equations with discontinuous
Hamiltonian were given (we refer to [23] for a comparison between the existing definitions),
the last one is due to P.L. Lion and P.E.Souganidis ([59]), but the discontinuities were only
in space. In our problem the situation is more delicate since we have a discontinuity in the
gradient.

6.1 Existence by continuous approximation of the Hamiltonian

In order to construct a solution of (6.6) by approximating the equation, the classical
locally uniform convergence of a sequence of continuous Hamiltonians cannot be used since
we are dealing with a discontinuous Hamiltonian, therefore we replace it with the upper
and lower relaxed limit (6.4),(6.5). The next is a stability result (due to Giga [41])) in its
strong form.

Theorem 6.1. Let Ω be an open set in R and T > 0. Let O be an open set in Ω× (0, T ).
Assume that Hε and H are lower (resp. upper) semicontinuous in Ω̄ with values in R ∪
{−∞} (resp. R ∪ {+∞}) for ε > 0 satisfying the following inequality

H ≤ lim inf
ε→0

∗Hε in Ω (resp. H ≥ lim sup
ε→0

∗Hε in Ω). (6.9)

.

If ωε is a subsolution (resp. supersolution) of

ωt(x, t) +Hε(ωx(x, t)) = 0 (6.10)

in O, then ū = lim sup∗ε→0 ωε (resp.lim infε→0
∗ωε) is a subsolution of

ωt(x, t) +H(ωx(x, t)) = 0 (6.11)

in O provided that ω̄(z) <∞ (resp. ω(z) > −∞) for each z in O.

This is clearly the natural stability that has to be applied in our setting.



Some remarks on the graph convergence

We recall now some useful facts about the convergence in the sense of the graph in
order to understand why it turns out to be naturally adequate for our purposes. This
kind of convergence is the same used in [21] to approximate the flux and prove existence
of solutions for the conservation laws. We will use the same notion for the continuous
approximations of our Hamiltonian. For a systematic and detailed treatment of this topic
we refer to [44].

Definition 6.2. A sequence of functions fn : R → R graph converges to a function
f : R→ R if for each set U ⊂ R×R containing the graph Gr(f) of the function f there is
a positive integer k such that Gr(fn) ⊂ U for all n ≥ k .

The key points to highlight are:

1. The graph convergence of fn to f implies also the pointwise convergence to the same
function and this is more in general true for sequence of functions defined on T1

topological spaces.

2. Uniform convergence does not implies the graph confergence unless fn and f are
continuous.

3. The graph limit f of continuous functions fn is almost continuous in the sense of
Stallings, that is for all the open sets U containing the graph of f there is a continuous
function g whose graph is contained in U .

Now we are ready to state the existence result.

Theorem 6.2. Consider the Cauchy problem (6.3) with Hamiltonian F̃ satisfying assump-
tion (4.2)-(6.2) and initial data ω0(x) =

∫ x
c u0(z)dz with u0 ∈ L∞(R) as in (5.1). There

exists a viscosity solution in the sense of definition (6.1) and it is Lipschitz continuous with
Lipschitz constant given by ‖u0‖L∞.
Proof. Let {F̃n}n∈N be a sequence of continuous concave Hamiltonians F̃n : [0,M ] → R
converging to F in the sense of the graph. Thanks to the previous facts about the graph
convergence it is immediate to check that the uniform limit of F̃n is given by the upper
semicontinuous envelope of F̃ which coincides also with the upper relaxed limit as defined
in (6.4), while the lower relaxed limit of F̃n coincides with the same F̃ . For all n ∈ N the
Cauchy problem

{
ωt + F̃n(ωx) = 0

ω(0, x) = ω0

admits a unique viscosity solution ωn which can be computed through the classical
Hopf-Lax formula, and it is uniformly Lipschitz continuous with Lipschitz constant given
by ‖u0‖L∞ .

The sequence of solutions {ωn} is equi-Lipschits and uniformly bounded on compact
sets, hence it converges locally uniformly to a Lipschitz continuous function ω.
By the stability results (6.1), ω is viscosity supersolution of the Cauchy problem with
Hamiltonian given by the upper relaxed limit of F̃n (which coincides with the upper semi-
continuous envelope of F̃ ), and a viscosity subsolution of the Cauchy problem with Hamil-
tonian given by the lower relaxed limit of F̃n (which coincides with the lower semicontinuous
envelope of F̃ ) . It follows that ω is a viscosity solution of (6.3) in the sense of definition
(6.1).



Remark 4. We remind here a stability result for the Legendre transfrom.

Theorem 6.3. If fn is an increasing sequence of upper semicontinuous concave functions,
then the Legendre transform of the upper semicontinuous regularization of lim fn is equal
lim f∗n (limit of the Legendre transform).

It clarifies why it is not possible to use a classical Hopf-Lax formula for solving the
problem (6.3). Indeed, the knot lies in the fact that if we compute the Legendre transform
of a function satisfying assumptions (4.1) what we get that one of the upper semicontinuous
envelope, hence the information of discontinuity is lost. For this result and in general for
a systematic study of the Legendre transformation we refer to [50].

6.2 Hopf-Lax type formula

We first briefly recall the Hopf-Lax formula for HJ equation with concave continuous
Hamiltonian and after we show how to generalize this one to the case of an Hamiltonian
satisfying assumptions (4.2).
Consider the Cauchy problem for the Hamilton Jacobi equation

{
vt +H(vx) = 0

v(0, t) = φ(x)
(6.12)

If the Hamiltonian is continuous, concave, depends only on the gradient and

lim
|p|→∞

H(p)

|p| = −∞, (6.13)

and if the initial datum φ(x) is Lipschitz continuous, Hopf in 1965 established the
following formula for a global Lipschitz solution of (6.12)

v(x, t) = max
y∈R

{
φ(y) + tH∗

(
x− y
t

)}
(6.14)

with

H∗(q) = inf
z∈R
{qz −H(z)}. (6.15)

In the following result we state an Hopf-Lax type formula for the Cauchy problem (6.3),
the solution is given for a concave discontinuous Hamiltonian.

Theorem 6.4. Let F̃ : [0,M ] → [0, N ] a function which satisfies (6.2), and consider the
Cauchy problem (6.3) with initial datum ω0(x) =

∫ x
c u0(s)ds and u0(x) as in (5.1). Then

the function

ω(x, t) = max

{
max
y∈R

{
ω0(y) + tF̃ ∗

(
x− y
t

)}
, inf
y∈R
{ω0(y)−M(y − x)− f∞t}

}
(6.16)

with F̃ ∗(q) = infz∈R{qz− F̃ (z)} and f∞ = limx→+∞ f0(x) (f0 is the flux for the initial
data of the conservation law), is a viscosity solution in the sense definition 6.1 and it is
also Lipschitz continuous.



The inf inside the bracket represents the solution of a Cauchy problem in which the
Hamiltonian is defined only in one point.

Remark 5. The way in which ω0 is defined implies that ω0,x ≤ M , thus the difference
ω0(y) −M · y inside the inf is a decreasing function that reaches its infimum at +∞. If
this infimum is −∞ then

(6.16) = max
y∈R

{
ω0(y) + tF̃ ∗

(
x− y
t

)}
(6.17)

otherwise

(6.16) = max

{
sup
y∈R

{
ω0(y) + tF̃ ∗

(
x− y
t

)}
,Mx− f∞t+ C1

}
(6.18)

where C1 = limy→+∞ ω0(y)−M · y.
Before proceeding with the proof of 6.4, we show that (6.16) satisfies the classical

recursive property of the Hopf-Lax formula, this will play an important role proving that
(6.16) is a viscosity solution of (6.3).

Theorem 6.5. For each x ∈ R and 0 < s < t we have

ω(x, t) = max

{
max
y∈R

{
ω(y, s) + (t− s)F̃ ∗

(
x− y
t− s

)}
, inf
y∈R
{ω(y, s) +M(x− y)− f∞(t− s)}

}
.

(6.19)

Proof. 1. Assume that at time s

ω(y, s) = ω0(z) + sF̃ ∗
(
z − y
s

)

for z ∈ R. Since F̃ ∗ is concave and z−x
t =

(
1− s

t

) x−y
t−s + s

t
y−z
s we have

F̃ ∗
(
z − x
t

)
≥
(

1− s

t

)
F̃ ∗
(
x− y
t− s

)
− s

t
F̃ ∗
(
y − z
s

)
.

Therefore

ω(x, t) ≥ ω0(z) + tF̃ ∗
(
z − x
t

)

≥ ω0(z) + (t− s)F̃ ∗
(
x− y
t− s

)
+ sF̃ ∗

(
y − z
s

)

= ω(y, s) + (t− s)F̃ ∗
(
x− y
t− s

)
. (6.20)

Assume now that at time s

ω(y, s) = ω0(z)−M(z − y)− f∞s

from (6.16) we get



ω(x, t) ≥ inf
h∈R
{ω0(h)−M(h− x)− f∞t}

= inf
h∈R
{ω0(h)−Mh+My −My +Mx+ f∞s− f∞s− f∞t}

= ω(y, s)−M(y − x)− f∞(t− s). (6.21)

Combining (6.20) and (6.21) it follows that

ω(x, t) ≥ max

{
sup
y∈R

{
ω(y, t) + (t− s)F̃ ∗

(
x− y
t− s

)}
, inf
y∈R
{ω(y, t)−M(y − x)− f∞(t− s)}

}
.

2. Let z ∈ R such that

ω(x, t) = ω0(z) + tF̃ ∗
(
y − z
s

)

and set y =
(
1− s

t

)
x+ s

t z, then
y−x
t−s = z−x

t = z−x
t .

Consequently

ω(y, s) + (t− s)F̃ ∗
(
x− y
t− s

)
≥ (t− s)F̃ ∗

(
x− y
t− s

)
+ sF̃ ∗

(
y − z
s

)
+ ω0(z)

≥ ω0(z) + tF̃ ∗
(
x− z
t

)
= ω(x, t). (6.22)

If z ∈ R is such that

ω(x, t) = ω0(z)−M(z − x)− f∞t,

it easily follow that

ω(y, s)−M(y − x)− f∞(t− s) ≥ inf
h∈R
{ω0(h)−M(h− y)− f∞s} −M(y − x)− f∞(t− s)

= inf
h∈R
{ω0(h)−Mh+Mx−My +My − f∞s+ f∞s− f∞t}

= ω0(z)−M(z − x)− f∞t = ω(x, t). (6.23)

From (6.22) and (6.23) it follows that

ω(x, t) ≤ max

{
sup
y∈R

{
ω(y, t) + (t− s)F̃ ∗

(
x− y
t− s

)}
, inf
y∈R
{ω(y, t)−M(y − x)− f∞(t− s)}

}

which concludes the proof.



Proof. Now we can prove 6.4. Lipschitz continuity is immediate, indeed

ω1(x, t) = max
y∈R

{
ω0(y) + tF̃ ∗

(
x− y
t

)}
(6.24)

is the unique viscosity solution of the Cauchy problem
{
ωt + Fc(ωx) = 0

ω(0, t) = ω0(x)

with Fc is the constinuous part of the Hamiltonian. Therefore its Lipschitz continuity
is well known by the classical theory, while the function

ω2(x, t) = inf
y∈R
{ω(y, t)−M(y − x)− f∞t} (6.25)

is clearly affine, hence also Lipschitz. Since sup of two Lipschitz functions is still
Lipschitz, we can conclude. In order to show that (6.16) is a viscosity solution, consider
a test function ϕ ∈ C∞(R × R+) and assume that ω − ϕ has a minimum in (x0, t0). For
(x, t) close enough to (x0, t0) with t < t0 we have

(ω − ϕ)(x0, t0) ≤ (ω − ϕ)(x, t)

which implies that

ϕ(x0, t0)− ϕ(x, t) ≥ ω(x0, t0)− ω(x, t).

Set t0 − t = h and x = x0 − hq, by (6.5) it follows that

ϕ(x0, t0)− ϕ(x, t) ≥ (t− t0)F̃ ∗
(
x0 − x
t0 − t

)
= h (q) .

Thus dividing by h and doing the limit for h→ 0, we get

ϕt(x0, t0) + ϕx(x0, t0) · q − (q) ≥ 0

which holds for all q ∈ R, in particular taking the inf for q ∈ R of the sum on the left
side in the previous inequality we have

ϕt(x0, t0) + F̄ (ϕx(x0, t0)) ≥ 0,

hence ω is a viscosity supersolution.

Assume now that ω − ϕ has a local maximum in (x0, t0), we need to distinguish two
cases:

• ω(x0, t0) = ω1(x0, t0) ≥ ω2(x0, t0)

• ω(x0, t0) = ω2(x0, t0) > ω1(x0, t0).

Consider the first case and suppose by contradiction that

ϕt(x0, t0) + F (ϕx(x0, t0)) ≥ θ > 0,

Since F ≤ F̄ it follows also that



ϕt(x0, t0) + F̄ (ϕx(x0, t0)) ≥ θ > 0. (6.26)

By continuity of ∇ϕ and F̄ , inequality (6.26) holds also in a neighborhood of (x0, t0).
Let (x1, t− h), with h > 0 be a point in this neighborhood such that by (6.5)

ω(x0, t0) = ω(x1, t− h) + h(
x0 − x1

h
)

.
Maximality of the point (x0, t0) implies that

ω(x0, t0)− ω(x1, t− h) ≥ ϕ(x0, t0)− ϕ(x1, t− h).

Thanks to easy computations we get the following chain of inequalities

ϕ(x0, t0)− ϕ(x1, t− h) =h

∫ 1

0
[ϕx(sx0 + (1− s)x1, t0 + (s− 1)h)

x0 − x1

h

+ ϕt(sx0 + (1− s)x1, t0 + (s− 1)h)]ds

≥ h
∫ 1

0
[ϕt(· · · ) + F̄ (ϕx(· · · )) + (

x0 − x1

h
)]ds

> h(
x0 − x1

h
) + θh

= ω(x0, t0)− ω(x1, t− h) + θh.

which gives an absurd since (x0, t0) is a maximum of ω − ϕ.

The case ω(x0, t0) = ω2(x0, t0) > ω1(x0, t0) is immediate since by continuity of ω1 and
ω2, ω2−ω1 must be positive also in a neighborhood of (x0, t0) where therefore ω(x, t) is an
affine function of the form Mx− f∞t+ c with constant given by infy∈R{ω0(y)− y}. Hence
∇ϕ(x0, t0) = ∇ω(x0, t0) = (M,−f∞) which states that ω is also a subsolution.

6.3 Variational formulation

As in the classical case of continuous and concave Hamiltonians, the Hopf-Lax type
formula (6.16) that we stated before can be obtained by minimizing a cost functional.
Therefore in the next we introduce a minimization problem that admits a unique minimizer
given exactly by our Hopf-Lax type formula.

We shall first introduce a convenient way of writing the Hamiltonian F̃ . Let Fc be the
upper semicontinuous envelope of F̃ , it is easy to check that it is given by Fc introduced
in (4.16) and consider Fd (’d’ stands for ’degenerate’ ) the function given by

Fd =

{
+∞ u ∈ [0,M)

f∞ u = M
, (6.27)

we observe immediately that
F̃ = min {Fc, Fd} (6.28)

Hence a viscosity solution of (6.3) is also a viscosity supersolution of
{
ωt + Fc(ωx) = 0

ω(0, x) = ω0

(CPC)

{
ωt + Fd(ωx) = 0

ω(0, x) = ω0

(CPD)



It follows that (6.16) can be derived through superposition of two variational problems
of different nature, a maximization and minimization one.
The maximization problem is naturally associated to the Cauchy problem (CPC) and the
minimization one to (CPD). Unfortunately, the competition between the concavity of Fc
and the convexity of Fd does not allow a formulation with a single Lagrangian.

Optimization problem For u0 ∈ L∞(R) as (5.1) consider ω0(x) =
∫ x
c u0(z)dz, we

want to analyze the following two variational problems

maximize C(x(·)) and minimize D(γ(·)) (6.29)

where

C(x(·)) = ω0(x(0)) +

∫ t̄

0
Fc
∗ (ẋ(t)) dt (6.30)

and the maximum is sought among all the absolutely continuous curves

x : [0, t̄]→ R such that x(t̄) = x̄; (6.31)

while

D(γ(·)) = ω0(x(a)) +

∫ t̄

0
Fd
∗
(
ẋ(s)

ṫ(s)

)
ṫ(s)ds. (6.32)

and the minimum is studied among all the absolutely continuous curves

γ : [a, b]→ R ∪ {∞} × R+ (6.33)

s 7→ (x(s), t(s))

such that
γ(a) = (x(a), t̄), γ(b) = (x̄, t̄) and ṫ = 0 for a.e. s ∈ [a, b]. (6.34)

We attack the first variational problem using the direct method of calculus of variations.
So let {xn}n∈N a maximizing sequence for (6.30), i.e

lim
n→∞

{
ω0(xn(0)) +

∫ t̄

0
Fc
∗ (ẋn(t)) dt

}
= A, (6.35)

Applying the Jensen inequality to the concave function Fc∗ we obtain
∫ t̄

0
Fc
∗ (ẋn(t)) dt ≤ t̄Fc∗

(
x̄− xn(0)

t̄

)
(6.36)

hence
lim
n→∞

{
ω0(xn(0)) + t̄Fc

∗
(
x̄− xn(0)

t̄

)}
= A, (6.37)

The following argument shows that we can assume

x̄− xn(0)

t̄
∈ [F ′c(M), F ′c(0)] for all n ∈ N. (6.38)

indeed if we consider xn(0) ≤ x−n = x̄− t̄F ′c(0) then

ω0(xn(0)) + t̄Fc
∗
(
x̄− xn(0)

t̄

)
≤ ω0(x−n ) + t̄Fc

∗
(
x̄− x−n

t̄

)



while if xn(0) ≥ x+
n = x̄− t̄F ′c(M) we get

ω0(xn(0)) + t̄Fc
∗
(
x̄− xn(0)

t̄

)
≤ ω0(x+

n ) +M(xn(0)− x+
n ) + t̄ ·M · x̄− x

+
n

t̄
−N · t̄

= ω0(x+
n ) +M(x̄− x+

n )−N · t̄ = ω0(x+
n ) + t̄Fc

∗
(
x̄− x+

n

t̄

)
.

Since {xn(0)}n∈N is bounded, we can estract a subsequence converging to a point y.
This implies

ω0(y) + t̄Fc
∗
(
x̄− y
t̄

)
= A (6.39)

which means that the affine function

x(t) = y + t
x̄− y
t̄

(6.40)

is an optimal control curve for the variational problem (6.30) and that the minimum is the
first term in (6.16).

For the second variational problem it is enough to make some observations:

1. The Legendre Transform for Fd∗ is just given by the linear map p 7→ M · p − f∞
hence (6.32) can be rewritten simply as

D(γ(·)) = ω0(x(a)) +M(x̄− x(a))− f∞t̄; (6.41)

2. ω0(x(a))−M · x(a) is a decreasing map, hence it reaches the infimum when x(a)→
+∞ which means that a minimizing sequence of control curves converges to the
semiline [x̄,+∞). This implies that the the minimum is given by the second term
inside the brackets in (6.16).

7 Selection principle

We have abundantly talked about the fact that a solution for a conservation law with
flux discontinuous in the conserved quantity, as (4.1), is not given by a single function from
R+ × R into R, but by a pair representing the conserved quantity and the correspondent
flux which can’t be uniquely determined just by checking the value of F in u. However this
definition is not constructive and the few cases of equation with this kind of discontinuity
analyzed by now have been studied considering regularization of the flux.
In the next we show that passing through the Hamilton-Jacobi reformulation we can deal
directly with the scalar conservation law without using continuous approximation of the
flux. Indeed the gradient of the solution for the HJ contains both the informations given
by (4.3)-(4.4).

Proposition 7.1. Let ω be the solution of (6.3) given by the Hopf-Lax type formula (6.16).
Then the couple (ωx,−ωt) is the unique solution of (4.1) law in the sense of definition 3.2.

Proof. We start observing that by Theorem 6.4 the solution ω of the Cauchy problem, given
by the Hopf-Lax type formula, is Lipschitz continuous, hence by Radamacher’s theorem,
is differentiable for a.e. (t, x) and the couple (ωx,−ωt) is well defined.
Chose any test function v smooth with compact support in R+ × R, multiply the HJ
equation ωt + F (ωx) = 0 by vx and integrate over R+ × R:



∫ ∞

0

∫ ∞

−∞
[ωt + F (ωx)] vxdxdt = 0. (7.1)

Observe

∫ ∞

0

∫ ∞

−∞
ωtvxdxdt = −

∫ ∞

0

∫ ∞

−∞
ωvtx dxdt−

∫ ∞

−∞
ωvx dx|t=0

=

∫ ∞

0

∫ ∞

−∞
ωxvt dxdt−

∫ ∞

−∞
ωxv dx|t=0.

Remember now that ω(0, x) = ω0(x) =
∫ x
c u0(z)dz, thus ωx(0, x) = u0(x) for a.e. x.

It follows that
∫ ∞

0

∫ ∞

−∞
ωtvxdxdt =

∫ ∞

0

∫ ∞

−∞
ωxvt dxdt−

∫ ∞

−∞
u0v|t=0 dx.

Finally if we substitute the last identity into (7.1) and use that ωx = u and F (u) = −ωt
we get ∫ ∞

0

∫ ∞

−∞
uvtdxdt−

∫ ∞

0

∫ ∞

−∞
ωtvxdxdt =

∫ ∞

−∞
u0v|t=0dx (7.2)

We conclude that (ωx,−ωt) satisfies the definition 4.1 and is exactly the unique entropy
solution of (4.1). Indeed where the solution to the HJ is given by the first term in the
Hopf-lax formula, then the solution of conservation law is in free region, while where the
solution to the HJ is given by the second term, the solution for the conservation law is
in the congested region. This tells us that the set of points where the two terms of the
Hopf-Lax formula are equal corresponds exactly to the curve γ mentioned in the proof of
existence by front-tracking.

Remark 6. Essentially the previous result shows that −ωt selects in a natural way the
correct value of the flux of the solution for the conservation law (that is the second function
in the couple), implementing what from now on we will call the Selection Principle.

7.1 Some examples

In this section we want to expose two significant examples that clearly illustrate what
has been proved so far. We show in parallel the resolution of two Cauchy problems associ-
ated to the same conservation law whose flux satisfies assumption (4.2) and the correspon-
dent Hamilton-Jacobi equation. For these two examples it is evident that the solution of
the Hamilton-Jacobi provides the correct value of the flux for the solution of the conser-
vation law, thus implementing the Selection Principle.

Example 1 Consider the Cauchy problem (4.1) with flux given by
and initial datum

u1
0(x) =





0 x ≤ 0

1 0 < x ≤ 1

0 x > 1

f1
0 (x) = 0 for all x ∈ R

It is possible to compute the explicit solution using continuous approximation of the flux
and considering the limit of the sequence of solutions. It turns out to be equal to (7.5)

The solution apparently has two parallel shocks, but there is an hidden shock of speed
−∞ in (1, 0) which represents a phase transition (change of color between the two 1).



u

F (u)

1

F (u) :=

{
u 0 ≤ u < 1

0 u = 1
(7.3)

x

t

0
1

0

0 1 0

u1 :=





0 x < t

1 t < x < t+ 1

0 t+ 1 < x

(7.4)

Consider now the Hamilton-Jacobi version of the Cauchy problem (4.1) with initial data
given by

ω1
0(x) =

∫ x

0
u1

0(s)ds =





0 x ≤ 0

x 0 < x ≤ 1

1 x > 1

It admits a unique solution which can be computed though the Hopf Lax Type formula
and given by

x

t

0 x− t 1

0 x 1

ω1 :=





0 x < t

x− t t < x < t+ 1

1 t+ 1 < x

(7.5)

Example 2 The Cauchy problem (4.1) with flux (7.3) and initial data

u2
0(x) =





1 x ≤ 0

0 0 < x ≤ 1

1 x > 1

admits a unique solution given by (7.7).
The solution ω2 presents apparently two shocks starting at time t = 0 which meet at

time t = 1 and generate a new shock of speed −∞. But again we have a third shock of
speed −∞ starting at time t = 0 in x = 0. Moreover:



x

t

1
0

1

1 0 1

ω2 :=





1 x < t and t < 1

0 t < x < 1

1 1 < x or t > 1

(7.6)

• we have two phase transition in different times denoted by the change of color of the
value 1 for the solution (7.7);

• the characteristic with infinite speed are stopped only entering in shocks which con-
nect with value of the solution different from the point of discontinuity of the flux;

• for the same value of the solution we have two values of the flux.

Passing to the Cauchy problem with the Hamilton-Jacobi equation with initial data

ω2
0(x) =

∫ x

0
u2

0(s)ds =





x x ≤ 0

0 0 < x ≤ 1

x− 1 x > 1

we get the solution (7.7)

x

t

x− t
0

x− 1

x 0 x− 1

ω2 :=





x− t x < t and t < 1

0 t < x < 1

x− 1 1 < x or t > 1

(7.7)

Conclusively if ω1,2
x = 1 then −ω1,2

t = 1 or 0, thus we can distinguish the value of the
flux and where there is a phase transition.

7.2 Comparison with Herty-Jorres-Piccoli approach

We proved that the solution to the Hamilton-Jacobi reformulation of the Cauchy prob-
lem for the scalar conservaiton law with flux satisfying assumption(4.2), is Lipschitz con-
tinuous, hence differentiable a.e. and its gradient gives the solution for the conservation
law in the sense of definition (4.1) (Selection principle). In this section we compare our
analysis with the one introduced by Herty and al. in [49]. In this work the authors studied
the Cauchy problem (4.1) by modifying the dynamic in the way we have already described
in Section 2.3.



The following correspondences follow immediately

(u(x, t),F) solution of (2.4) ⇐⇒ (ωx(t, x),− ωt(t, x)) solution of (4.1)
with ω(t, x) = ωc(t, x)

(u(x, t), C) solution of (2.4) ⇐⇒ (ωx(t, x),− ωt(t, x)) solution of (4.1)
with ω(t, x) = ωd(t, x)

We remark that what we are saying is that we have congestion only when the solution
of the HJ corresponds to the solution of (CPD), while we are in free phase if it is solution
of (CPC)

In the next table we summarize what said by now about the correlation among the
definition (4.1), the Selection Principle and the reformulation (2.4).

Conservation laws Hamilton Jacobi Phase transition

1 (u(t, x), f(t, x)) solution, 0 ≤
u(t, x) < M and f(t, x) ∈
F (u(t, x))

(u(t, x), f(t, x))=
(ωx(t, x),−ωt(t, x)) where
ω(t, x) = ωc(t, x)

(u(t, x),F) solution

2 (u(t, x), f(t, x)) solu-
tion, u(t, x) = M and
f(t, x) ∈ F (u(t, x))

(u(t, x), f(t, x))=
(ωx(t, x),−ωt(t, x)) where
ω(t, x)= ωc(t, x) ∨ ωd(t, x)

(u(t, x),S) solution with S =
F or C

So it is evident from the table that

- The definition of solution for Conservation Laws given in Section 4 helps to de-
velop an independent theory for the case of fluxes discontinuous in in the conserved
quantity, however it is not enough to use it if we want to get practical information
about the state of the conveyor belt

- The Phase Transition approach introduced by Herty et al. and based on the
transformation of the dynamics is ingenious but forces us to check two variables
instead of one

- The Hamilton Jacobi approach is clean and allows us to study the conservation
law through the associated HJ without worrying about the flux value that can be
determined thanks to the Selection Principle.



8 The Junction problem for Supply Chain with buffer

The analysis of conveyor belt models constitute the fundamental element through which
we can study more complex structures such as the flow of goods in a supply chain. Below
we introduce a model to describe supply chain on network, in particular we zoom on a
single junction point, that is a node of the network in which we suppose to be present a
buffer where products coming from incoming chains are stored waiting to be placed in the
outgoing chains.

Consider a family of n + m arcs joining at a node. We denote with indices i ∈
{1, ...,m} = I the in coming arcs, with j ∈ {1, ..., n} = O the outgoing arcs.

buffer

incoming arcs outgoing arcs

On the k − th arc the density of parts is described by the scalar conservation law

ut + Fk(u)x = 0

with t > 0, x ∈ [−∞, 0] for incoming and x ∈ [0,+∞) for outgoing arcs. On the flux Fk
we impose the following assumptions:

s→ Fk(s) smooth on [0,Mk), ∂2
sFk ≤ 0, F (0) = 0 and Fk(Mk) = [0, Nk]. (8.1)

u

Fk(u)

Mk

u

Fk(u)

Mk

Figure 2.8: Two example of fluxes which satisfy (4.2)

The initial data on each arc is given by the couple

(uk(0, x), fk(0, x)) = (uk,0(x), fk,0(x)) k = 1, ..., n+m (8.2)

satisfying the following assumption

for i ∈ I ui,0 ∈ L1(R−), fi,0(x) =

{
Fi,c(ui,0(x)) if ui,0(x) < Mi

∈ [0, Ni] if ui,0(x) = Mi

(8.3)



and

for j ∈ O ∃cj ∈ [0,Mj ] such that (uj,0 − cj) ∈ BV (R+),

fj,0(x) =

{
Fj,c(uj,0(x)) if uj,0(x) < Mj

∈ [0, Nj ] if uj,0(x) = Mj

, fj,0 ∈ BV (R+) (8.4)

where Fc,· stands again for the continuous part of the flux. We need to add a suitable set of
boundary conditions in order to determine a unique solution. These boundary conditions
provide additional constraints on the traces of the good densities

ūk(t) =

{
limx→0− uk(t, x) k ∈ I
limx→0+ uk(t, x) k ∈ O

(8.5)

and the correspondent fluxes

f̄k(t) =

{
limx→0− fk(t, x) k ∈ I
limx→0+ fk(t, x) k ∈ O

(8.6)

near the junction.
Since we want to consider a realistic model, we assume that in the buffer in the junction
point has limited capacity. The state of the buffer is represented by a function q : [0,∞)→
[0,M b] which is the amount of goods from the incoming arcs waiting to enter in one of the
outgoing arcs with equal probability.
Following [39], define

αi :=

{
fi if ui < Mi

Ni if ui = Mi

i ∈ I (8.7)

the maximum possible flux at the end of an incoming chain, and

αj :=

{
fj if uj = Mj

Nj if uj < Mj

j ∈ O (8.8)

We require that the incoming fluxes are given by

f̄i(t) = min
{
αi,

M b − q(t)
|I|

}
i ∈ I, (8.9)

and the outgoing fluxes by

f̄j(t) =




αj if q(t) > 0

min
{
αj ,

∑
i∈I f̄i(t)

|O|

}
if q(t) = 0

(8.10)

Moreover we introduce the quantity

h(q(t)) = min
{
Ni,

M − q(t)
I

}
(8.11)

which is the maximum allowed incoming flux in the buffer at time t.
Conservation of the total number of parts implies that

q̇(t) =
∑

i∈I
f̄i(t)−

∑

j∈O
f̄j(t). (8.12)



Therefore the final model consists of a system of Conservation Laws coupled with an
Ordinary differential equation





∂tu(t, x) + ∂xFk(u(t, x)) = 0 k ∈ I ∪ O
q̇(t) =

∑
i∈I f̄i(t)−

∑
j∈O f̄j(t)

(uk(0, x), fk(0, x)) = (uk,0(x), fk,0(x))

q(0) = c q0 ≥ 0

(JP)

8.1 The Cauchy problem on a Junction

In this section we study the Cauchy problem (JP).
Incoming chain. For i ∈ I and x ≤ 0, consider as initial data for the Hamilton Jacobi

equation the function ωi,0 given by

ωi,0 =

∫ x

−∞
ui,0(z)dz (8.13)

Then the explicit solution is given by

ωi(t, x) = max
{

max
y≤0

{
ωi,0(y) + tF ∗i,c

(x− y
t

)}
,

Mx+ max
0≤t′≤t, y≤0

{
ωi,0(y) + t′F ∗i,c

(−y
t′

)
−
∫ t

t′
h(q(s))ds

}}
(8.14)

The function ωi(t, x) can be interpreted as the amount of goods which at time t are in
the region (−∞, x] if the incoming chain i. The difference

ωi,0(0)− ωi(t, 0)

measure the amount of goods exited from the incoming arc in the time interval [0, t].
Now we have to determine the total number of particles at time that have reached the

buffer before the time t and that are waiting inside the buffer to enter the outgoing chains.
Let ηi(t) be defined as

ηi(t) = max
{
k ∈ (−∞, 0];

∫ 0

k
ui,0(z)dz = ωi,0(0)− ωi(t, 0)

}
. (8.15)

It represents the position at time 0 of the particle that reaches the buffer at time t, then
the number of particles waiting to enter in the outgoing chain j is given by

Gj(t) =
q0 +

∑
i∈I
∫ 0
ηi(t)

ui,0(z)dz

|O| . (8.16)

Outgoing chain For j ∈ O and x > 0 we consider as initial data for the Hamilton
Jacobi equation the function

ωj,0(x) =

∫ x

0
uj,0(z)dz. (8.17)

Then the solution is given by

ωj(t, x) = max
{

max
y≥0

{
ωj,0(y) + tF ∗j,c

(x− y
t

)}
, Mx+ lim

y→+∞

(
ωj,0(y)−My

)
− f∞j,0 · t,

max
0≤t′≤t

{
−Gj(t) + (t− t′)F ∗j,c

( x

t− t′
)}}

(8.18)



with Gj as in (8.16) and f∞j,0 = limx→+∞ fj,0.
Here the quantity ωj,0(x)− ωi(t, x) is the number of goods which crossed the buffer in

the time interval [0, t] . So at time t, the length of the buffer is

q(t) =
∑

i∈O
Gj(t) +

∑

j∈O
ωj(t, 0) (8.19)

Definition 8.1. We say that the functions uk (with k ∈ I∪I) and q provide an admissible
solution to the Cauchy problem (JP) with junction condition (8.9)-(8.10) if there exist
Lipschitz continuous functions ωk = ωk(t, x) such that

1. For i ∈ I ωi satisfies (8.14);

2. For j ∈ O ωj satisfies (8.18);

3. q satisfies (8.19);

Remark 7. The termMx of the second maximization problem in (8.14) is a cost associated
to an horizontal piece of optimal trajectory as proved in the analysis of conservation laws
for the single conveyor belt and represents a congestion arriving from the boundary. We
will find it also on the explicit formulation for the outgoing chain where it represents the
congestion coming from +∞.

8.2 Uniqueness of the solution

Here we show that the Cauchy problem (JP) associated with the model for processing
goods near a buffer is well posed.

Theorem 8.1. Consider the flux functions satisfying (4.2) and let the initial data as (8.3)-
(8.4), then (JP) has a unique admissible solution in the sense of definition 8.1 globally
defined for all t ≥ 0.

Proof. We show that on a small interval [0, T ] the solution of the Cauchy problem (JP)
can be obtained as the unique fixed point of a contractive map. Let t 7→ q(t) be a Lipschitz
continuous function whose Lipschitz constant is given by

Lq =
∑

k∈I∪O
Nk (8.20)

and consider the sequence of maps

q 7→ (ωi)i∈I 7→ (Gj)j∈O 7→ (ωj)j∈O 7→ Λ(q). (8.21)

where ωi are the solutions for the Hamilton Jacobi equation on the incoming chain given in
(8.14), the function Fj is the same in (8.16), ωj are the solutions for the Hamilton Jacobi
equation on the outgoing chain (8.18) and Λ(q) is defined in (8.19).

In order to prove that (8.21) is a contractive map, consider two Lipschitz continuous
functions q and q̄ and define

δ = sup
t∈[0,T ]

∣∣q(t)− q̄(t)
∣∣. (8.22)

For all i ∈ I the functions hi(q) are Lipschitz continuous with Lipschitz constant given by
L
|I| =

maxi∈I Lc,i
|I| , hence by (8.14) we can deduce the estimate

sup
i∈I, t∈[0,T ], x≤0

∣∣ωi(t, x)− ω̄i(t, x)
∣∣ ≤ L

|I|Tδ (8.23)



which in particular implies

sup
i∈I, t∈[0,T ]

∣∣ωi(t, 0)− ω̄i(t, 0)
∣∣ ≤ L

|I|Tδ. (8.24)

Combining (8.24) with (8.16) we obtain

∣∣Gj(t)− Ḡj(t)
∣∣ ≤

∑
i∈I
∣∣ωi(t, 0)− ω̄i(t, 0)

∣∣
|O| ≤ L

|O|Tδ. (8.25)

Now, if we pass on the outgoing chain, by (8.18) it follows

sup
j∈I, t∈[0,T ]

∣∣ωj(t, 0)− ω̄j(t, 0)
∣∣ ≤ L

|O|Tδ. (8.26)

In the last step of the composition we find

∣∣Λ(q)(t)− Λ(q̄)(t)
∣∣ =

∣∣∣
∑

i∈O
Fj(t) +

∑

j∈O
ωj(t, 0)−

∑

i∈O
Ḡj(t)−

∑

j∈O
ω̄j(t, 0)

∣∣∣

≤
∑

j∈O

∣∣∣Gj(t)− Ḡj(t)
∣∣∣+

∑

j∈O

∣∣∣ωj(t, 0)− ω̄j(t, 0)
∣∣∣ ≤ 2LTδ. (8.27)

Therefore, by taking T = 1
4L we can conclude that

sup
t∈[0,T ]

∣∣Λ(q)(t)− Λ(q̄)(t)
∣∣ ≤ 1

2
sup
t∈[0,T ]

∣∣q(t)− q̄(t)
∣∣. (8.28)

which means that Λ is a strict contraction.

The next goal is to show that the map t 7→ Λ(q)(t) is Lipschitz continuous. Thus
consider i ∈ I, x ≤ 0 and 0 < t1 ≤ t2. Assume that ωi(t1, x) = ωi,0(y) + t1F

∗
i,c

(
x−y
t1

)
for

some y ≤ 0. The concavity of Fi,c implies that

ωi(t2, x) ≥ ωi,0(y) + t2F
∗
i,c

(x− y
t2

)
≥ ωi,0(y) + t1F

∗
i,c

(x− y
t1

)
≥ ωi(t1, x) + (t2 − t1)F ∗i,c(0).

It follow that
0 ≤ ωi(t1, x)− ωi(t2, x) ≤ (t2 − t1)Ni. (8.29)

Analogously if

ωi(t1, x) = Mx+ ωi,0(y) + t′F ∗i,c
(−y
t′

)
−
∫ t1

t′
hi(q(s))ds

for some y ≤ 0 and 0 ≤ t′ ≤, then

ωi(t2, x) ≥Mx+ ωi,0(y) + t′F ∗i,c
(−y
t′

)
−
∫ t2

t′
h(q(s))ds = ωi(t1, x)−

∫ t2

t1

hi(q(s))ds.

which implies again (8.29). Now letting x → 0 and remembering that hi(q) ∈ [0, Ni] we
conclude that t 7→ ωi(t, 0) is Lipschitz continuous with constant Ni.



In the same way we can deduce that for all j ∈ O, ωj satisfies (8.29) with 0 ≤ t1 < t2.
Now by (8.15) and (8.16) we get

|Gj(t1)−Gj(t2)| ≤ 1

|O|
∑

i∈I
|ωi(t1, 0)− ωi(t2, 0)| ≤ (t2 − t1)

|O|
∑

i∈I
Ni.

This implies that the function

t 7→ Λ(q)(t) =
∑

i∈O
Fj(t) +

∑

j∈O
ωj(t, 0) (8.30)

is Lipschitz continuous with Lipschitz constant given by
∑

k∈O∪I Nk = Lq.

Consider the set Z ∈ C([0, T ],R) of all the Lipschitz function q with Lipschitz constant
Lq and such that q(0) = q0. Given initial data (8.13),(8.17) and q0, the map q 7→ Λ(q)(t)
is a strict contraction of Z in itself, thus there exists a unique fixed point which provides
the unique admissible solution to the Cauchy problem in the time interval [0, T ].

To complete the proof we just need to show that the solution can be extended on a
sequence of time intervals [Tn, Tn+1] with Tn+1 → +∞ as n goes to +∞. By gathering
(8.11) with the equation for the evolution of the buffer, we obtain the following differential
inequality

d

dt
(M − q(t)) ≥ −(M − q(t))

whose solution is given by
M − q(t) ≥ e−t(M − q0). (8.31)

This means that M − q(t) is always greater then zero for finite time and the buffer is full
only when t → +∞. Hence we can repeat the previous construction for all the sequence
of time intervals such that Tn+1 − Tn = 1

4L .

8.3 Variational formulation of the Junction Problem

This section is devoted to the study of two optimization problems. In both the problems
we show that the optimal solutions are piecewise affine functions, and the correspondent
value functions are exactly the Hopf-Lax type formulas introduced in the previous section
for the boundary value problem associated to the H-J equation on the incoming and out-
going chain.

Optimization problem on the incoming chain. For any i ∈ I, given an initial
data ωi,0 as in (8.13), and the length of the buffer q, consider the two variational problem
below

maximize: J1
i (x(·)) := ωi,0(x(0)) +

∫ t̄

0
F ∗i,c(ẋ(t))dt (8.32)

maximize: J2
i (x(·)) := ωi,0(x(0)) +

∫ t̄

0
L(x(t), ẋ(t))dt+Mix̄ (8.33)

where the payoff function L in (8.33) is defined as

L(x(t), ẋ(t)) =

{
F ∗i,c(ẋ(t)) if x(t) < 0

−hi(q(t)) if x(t) = 0
. (8.34)



The maximum in (8.32) is sought among all the absolutely continuous functions x :
[0, t̄] 7→ R such that

x(t̄) = x̄, x(t) ≤ 0 for all t ∈ [0, t̄] (8.35)

while in (8.33) among all the absolutely continuous functions x : [0, t̄] 7→ R such that

x(t̄) = 0, x(t) ≤ 0 for all t ∈ [0, t̄]. (8.36)

We focus for a moment on the second variational problem. The following lemma is the
key tool in order to understand the structure of the optimal control curve.

Lemma 8.1. Consider an absolutely continuous function x : [0, t̄] 7→ (−∞, 0] which satis-
fies assumptions (8.36). Define

a = min{t ∈ [0, t̄] : x(t) = 0}, b = max{t ∈ [0, t̄] : x(t) = 0}

and the curve

x̃(t) =

{
0 if x ∈ [a, b],

x(t) if x 6= [a, b].
(8.37)

Then x̃ satisfies assumption (8.36) and achieves a larger payoff.

Proof. The proof ca be obtained by adapting the same of Lemma 1 in [17] in the case of
gi = F ∗i,c.

Proposition 8.2. Let a continuous function t 7→ q(t) be given, together with the initial data
ωi,0. For i ∈ I, define ωi as in (8.14) and consider the variational problems (8.32),(8.33).
Then the following holds.

1. For every time t̄ > 0 and x̄ < 0 there exist optimal solutions x∗1(·) of (8.32) and x∗2(·)
of (8.33). The solutions are piecewise affine and satisfy ẋ∗1,2(t) ∈ [F ′i,c(Mi), F

′
i,c(0)]

for a.e. t ∈ [0, t̄] such that x∗1,2(t) < 0.

2. The maximum attainable values of (8.32) and (8.33) are respectively the first and
second terms inside the bracket of (8.14).

3. The maximum between the two value functions of (8.32) and (8.33) is a function ωi
such that (ωi,x,−ωi,t) is an entropy weak solution to the conservation law

∂tu(t, x) + ∂xFi(u(t, x)) = 0 (8.38)

with initial data (8.3) and boundary fluxes (8.9).

Proof. We know by the classical theory of Hamilton-Jacobi equation with concave Hamil-
tonian that the variational problem (8.32) admits a unique maximum given by

max
y≤0

{
ωi,0(y) + tF ∗i,c

(x− y
t

)}
, (8.39)

that is the first term inside the bracket in (8.14). We also know that the optimal trajectory
x∗1(·) is given by a straight line connecting the point (t̄, x̄) to a point (0, y) with y ≤ 0 and
such that ẋ∗1(·) ∈ [F ′i,c(Mi), F

′
i,c(0)].

Analogously, by Proposition 1. in [17], we find that the functional J2 admits a unique
maximum given by

Mix̄+ max
0≤t′≤t, y≤0

{
ωi,0(y) + t′F ∗i,c

(−y
t′

)
−
∫ t

t′
h(q(s))ds

}
(8.40)



which is the second term inside the bracket in (8.14). In this case the optimal trajectory
has the form

x∗2(t) =

{
t′−t
t̄′
y if t ∈ [0, t′]

0 if t ∈ [0, t′]
(8.41)

where y ≤ 0 and 0 ≤ t′ ≤ t. The fact that the set of times where x∗2 = 0 in (8.41) is
connected is a directed consequence of Lemma 8.1. Also in this case it is known that
ẋ∗2(·) ∈ [F ′i,c(Mi), F

′
i,c(0)] when x∗2(·) < 0. Then point 1. and 2. are proved, it remains only

to prove point 3.
Observe that ωi(t, x) = max{8.39, 8.40} is a Lipschitz continuous function, this comes from
the Lipschitz continuity of ωi,0 and hi(q). Moreover it provides a a viscosity solution to
the Hamilton-Jacobi equation

ωt + F̃i(t, ωx) = 0 (8.42)

where F̃i is defined as follows

F̃i(t, s) =





Fi(s) if s < Mi

h(q(t)) if s = Mj

. (8.43)

Therefore (ωi,x,−ωi,t) is an entropy solution of (8.38) on the domain R+ × R−.
We need just to check that the boundary condition are satisfied. Consider the curve

γi(s) = (ti(s), xi(s)) contained in R+ × R− which divides the open set into two regions:

Aid the set of points where the solution to the Hamilton Jacobi equation is given by the
value function of (8.32);

Ab the set of points where the solution is given by the value function of (8.33).

Consider the following two cases.
CASE 1. If γj(s) = (tj(s), 0), then for each x ≤ 0 there exists a point yx such that

ωi(t, x) = ωi,0(yx) + tF ∗i,c
(
x−yx
t

)
. The map x 7→ yx is non decreasing hence there exist the

limit yx → y as x→ 0− where y < 0. By continuity we find that

ωi(t, 0) = ωi,0(y) + tF ∗i,c
(−y
t

)

thus the optimal trajectory has speed −yt > 0 and

ūi(t) = lim
x→0−

ui(t, x) = lim
x→0−

ωi,x(t, x) (8.44)

is well defined. It is clear also that ūi(t) ≤ Mi. Therefore the maximum outgoing flux is
f̄i(t) = Fi,c(ūi(t)) = ωi,t(t, 0). To complete the proof, it remains to show that

f̄i(t) ≤ hi(q(t)) = min
{
Ni,

M b − q(t)
|I|

}
. (8.45)

Assume that (8.45) fails, by the continuity of q there exists δ0 > 0 and ε0 > 0 small such
that

f̄i(t) > hi(q(τ)) + δ0 for all τ ∈ [t− ε0, t]. (8.46)

In this case the trajectory

xb(s) =

{(
1− s

t−ε

)
y ifs < t− ε

0 ifs ≥ t− ε
(8.47)



achieves a larger payoff in (8.33) for ε ∈ (0, ε0] sufficiently small. The proof of this fact is
identically similar to the CASE 1 of Proposition 1 in [17].

Hence condition (8.9) is satisfied.
CASE 2. If γj(s) = (tj(s), x(s)) with x(s) > 0 then (t̄, x̄) ∈ Ab implies that we can

find a δ such that (t, x) ∈ Ab for all t ∈ [t̄+ δ, t̄− δ] and x ∈ [x̄, 0) and

ωi(t, x) = Mix+ ωi,0(y) + t′F ∗i,c
(−y
t′

)
−
∫ t

t′
h(q(s))ds (8.48)

with the same y ≤ 0 and t′ ≥ 0. Therefore ωi,t(t, x) = h(q(t)) and letting (t, x) → (t, 0)
we find f̄i(t) = h(q(t)) which proves (8.9).

x

t

x

t

x

t

x

t

Figure 2.9: On the left we see the curve which separates the two families of optimal
trajectory on the incoming chain. On the right we show an example of trajectory given by
the straight line and one passing trough the boundary.

Optimization problem on the outgoing chain. For any j ∈ O and fixed point
(t̄, x̄) with t > 0 and x > 0, given an initial data ωj,0 as in (8.17) and Gj in (8.16), consider
the following two variational problem

maximize: J1
j (x(·)) := ωi,0(x(0)) +

∫ t̄

0
F ∗j,c(ẋ(t))dt (8.49)

maximize: J2
j (x(·)) := −Gj(τ) +

∫ t̄

τ
F ∗j,c(ẋ(t))dt. (8.50)

The maximum is sought among all the absolutely continuous functions x : [0, t̄] 7→ R such
that

x(t̄) = x̄, x(t) ≥ 0 for all t ∈ [0, t̄]. (8.51)

Proposition 8.3. For j ∈ O, let t 7→ Gj(t) ≥ 0 be given together with the initial data ωj,0
as in (8.17) and consider the variational problem (8.49),(8.50). Then the following holds.

1. For every time t̄ > 0 and x̄ > 0 there exist optimal solutions x∗1(·) of (8.49) and
x∗2(·) of (8.50). The solutions are affine and satisfy ẋ∗1,2(t) ∈ [F ′i,c(Mi), F

′
i,c(0)] for

a.e. t ∈ [0, t̄].

2. The maximum attainable values of (8.49) and (8.50) are respectively the first and
third terms inside the bracket of (8.18).



3. The maximum among the two value functions of (8.49), (8.50) and

Mx̄+ lim
y→+∞

(
ωj,0(y)−Mjy

)
− f∞j,0 · t (8.52)

is a function ωj such that (ωj,x,−ωj,t) is an entropy weak solution of the conservation
law

∂tu(t, x) + ∂xFj(u(t, x)) = 0 (8.53)

with initial (8.4) and boundary condition (8.10).

Proof. As in the proof of Proposition 8.2, we know that the optimal trajectory x∗1(·) of
(8.49) is a straight line (t̄, x̄) to (0, y) for some y ≥ 0 and ẋ∗1(t) ∈ [F ′i,c(Mi), F

′
i,c(0)],

moreover the value function is the first term inside the bracket in (8.18).
By Proposition 3 of [17] we have also that (8.50) admits a unique maximum and the

optimal trajectory is given by a is a straight line x∗2(·) connecting (t̄, x̄) to (τ, 0) for some
τ ≥ 0, ẋ∗2(t) ∈ [F ′j,c(Mi), F

′
j,c(0)] and the value function is the third term inside the bracket

in (8.18). Hence both point 1. and 2. are proved.
Denoted with ωj the maximum among the value functions of (8.49), (8.50) and (8.52),

it is a Lipschitz continuous function. Moreover it is immediate to check that ωj provides
a viscosity solution to the Hamilton-Jacobi equation

ωt + F̃j(ωx) = 0 (8.54)

where F̃j is defined as follows

F̃j(s) =





Fj(s) if s < Mj

lims→M−j
Fj(s) if limx→+∞ uj,0(x) < Mj

and s = M

limx→+∞ fj,0(x) if limx→+∞ uj,0(x) = Mj

and s = Mj

. (8.55)

By the theory developed in Section 6, the couple (ωj,x,−ωj,t) exists a.e. and provides a
weak entropy solution to the scalar conservation law (8.53) on the open domain R+×R+.
The initial data ωj(0, x) = ωj,0(x) is also satisfied. So the last step is to show that also the
boundary conditions are satisfied. Thus consider the curve γj(s) = (tj(s), xj(s)) contained
in R+ × R+ which divides the open set into two regions:

Aid the set of points where the solution to the Hamilton Jacobi equation is given by the
value function of (8.49) or by (8.52);

Ab the set of points where the solution is given by the value function of (8.50).

We need to analyze two cases:
CASE 1. If γj(s) = (tj(s), 0), then ωj(0, t) = limy→+∞

(
ωj,0(y) −Mjy

)
− fj,∞t (we

omit the dependence of t on s). This follows by point 1, since the optimal trajectory for
(8.49) has strictly positive speed. We have also that

(ωj,x(t, 0),−ωj,t(t, 0)) = (uj(t, 0),−fj(t, 0)) = (Mj ,−fj,∞). (8.56)

If q(t) > 0 then (8.10) is automatically satisfied. If q(t) = 0 then ωj(t, 0) = −Fj(t).
Assume that at time t both ωj(t, 0) and Fj(t) are differentiable, we have

0 = lim
h→0

ωj(t+ h, 0)− ωj(t, 0)

h
−ωj,t(t, 0) ≥ lim

h→0

−Fj(t+ h) + Fj(t)

h
+fj,∞ = −F ′j(t)+fj,∞.



On the other hand, by (8.16), for a.e. t > 0,

G′j(t) =
1

|O|
∑

i∈I
fi(t, 0)

fj(t, 0) = fj,∞ ≤
1

|O|
∑

i∈I
fi(t, 0)

. therefore (8.10) is again satisfied.
CASE 2. If γj(s) = (tj(s), x(s)) with x(s) > 0 then by definition in every point

(t, x) ∈ Ab the solution to the Hamilton-Jacobi equation (8.54) is given by the maximum
of (8.50). If (t̄, x̄) ∈ Ab, it follows that (t̄, x) ∈ Ab for all x ∈ (0, x̄) and there exists a time
τx ∈ [0, t̄) such that

ωj(t̄, x) = −Gj(τx) + (t̄− τx)F ∗j,c
( x

t̄− τx

)
. (8.57)

By the characterization of the attainable profiles on the outgoing chain for concave fluxes
proved in Chapter 1, we know that for x ∈ (0, x̄), the map x 7→ τx is non increasing, which
implies that limx→0+ τx is well defined and coincides t̄, otherwise we would have that there
exists an optimal trajectory with speed less than F ′j,c(Mj) and this contradicts point 1.
We conclude that the following limits exist

lim
x→0

x

t̄− τx
= ` with ` ∈ [F ′j,c(M), F ′j,c(0)] (8.58)

and by (8.57), (8.58)

ωj(t̄, 0) = lim
x→0+

−Gj(τx) + (t̄− τx)F ∗j,c
( x

t̄− τx

)
= −Gj(t̄). (8.59)

Now if q > 0, this means that the particles which reached the buffer before the time t̄
are not exited, hence there is at list one outgoing chain congested and the outgoing flux is
maximum on the chains where there is not congestion, hence

ωj,t(t̄, 0) = Nj . (8.60)

If q = 0, then all the particles reaching the buffer at time t̄ try to enter the outgoing
chain with the maximum flux allowed by the capacity, hence

ωj,t(t̄, 0) = min
{
Nj ,

M − q(t̄)
O

}
. (8.61)

We conclude the boundary conditions are satisfied.
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Figure 2.10: On the left we see again the curve which separates the tree families of optimal
trajectory on the outgoing chain. On the right we show examples of trajectory arriving
respectively from the boundary, from t = 0 and from +∞.





Chapter 3

Soil Searching by an Artificial Root

1 Bio-inspired robotics

1.1 Soil exploration and plants

Soil exploration machanisms are widely studied thanks to their vast range of appli-
cations which vary from searching for resources in the soil, to planetary exploration and
rescuing people trapped by cataclysms. These technologies can be divided into two main
species: invasive including drilling devices and not invasive as radars. Drilling devices used
today are able to create straight and vertical drilling holes but they are not ideal for small
subterranean research because of the power and heavy equipment required. Moreover they
are inappropriate in unstable lands, even more so in the presence of human lives to be
saved. Robotic technology for soil exploration and monitoring has been scarcely devel-
oped compared with that one available for exploration and monitoring above ground and
underwater (above all talking about autonomous systems). This motivates the growing
interest in biologically inspired solutions [61]. Several penetration devices have been devel-
oped which mimic techniques used by animals such as wood wasps, locusts, and clam, but
plants are the most efficient at soil exploration among living organisms, since they are able
to grow and adapt inside the medium. Plant roots have the ability to find low-resistance
pathways and exploit cracks in the soil, overcoming soil penetration resistance.

Figure 3.1: Roots growing in the rocks.

Their behaviour is incredible adaptive, above all interacting with the environment and
most of these abilities are a consequence of apical growth, i.e. a growth process wherein
new cells are added at the root apex by mitosis while mature cells of the root remain
stationary and in contact with the soil.
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1.2 Continuum robots inspired by plants

Continuum robots are biologically inspired robots with capability to bend anywhere
along their length, this structural advantage allows them to reach spaces that are difficult
by traditional rigid-link structured to negotiate. A sub-class is given by the thin-continuum
robots designed to be long in order to reach region of high density in the soil, delicate region
in human body and navigate in environments with solid obstacles ([74],[45]). Many of the
currently designed robots are inspired by the stems and roots of plants, for the reasons
mentioned in the previous section([71],[72],[46],[75]).

Each robotic root includes a tubular body, a growing head,
and a sensorized tip that commands the robot behaviors
(Fig. 1). The growing head is a customized 3D printer-like
system that builds the tubular body of the root in the format of
circular layers by fusing and depositing the filament of a raw
material at the tip level. This miniature 3D printer-like ma-
chine includes an extruder and plotting units (Fig. 2A, B). The
extruder unit (similar to FDM 3D printers) includes a gear-
based feeder mechanism, a guiding tube, a heater as a liq-
uefier, and a nozzle (Fig. 2B). The gear-based feeder provides
a gripping action to the thermoplastic filament, pulling it from
the reservoir and then pushing it toward the heater and nozzle.

The guiding tube changes the direction of the filament
(*90!) from the external gate of the feeder to the internal gate
of the heater. The components of the extruder are mounted on
two parallel disks, called the deposition disk and rim (Fig. 2).
After the final assembly, these disks are fixed together and the
deposition process occurs by the relative rotational motion of
these disks with respect to the tubular body of the root. The
plotting unit is responsible for providing this relative rota-
tional motion by means of a DC gear motor and an internal
gear, placed between the motor holder disk and the deposition
head (Fig. 2A). This assembly smoothly functions as a flat
bearing due to two couples of raceways on the corresponding
surfaces of the disks filled with bearing spheres.

The internal gear, which also functions as the main body of
the 3D printer, is interfaced with the root tubular body
through four flexible clamping fingers installed on its cir-
cumferential sides (Fig. 2A). The flexibility of these fingers

and the sharpness of their corners provide an interaction with
the tubular body that prevents the rotation of the growing
mechanism inside the printed tubular body and, at the same
time, allows the axial sliding of the growing system along the
growth direction. The deposition process of the root body
occurs under the rim of the deposition head. The addition of
each new layer between the deposition head and the tubular
body pushes the growing tip forward to penetrate the soil. The
pressure generated by the soil on the deposited layers guar-
antees the realization of a compact and solid robotic root
structure because they stick to each other.

A customized tip, including miniaturized sensors (see
Sadeghi et al.33 for details) and connected through a bearing
to the deposition head, collects environmental information
and decides on the growth orientation on the basis of the
embedded behavior (Fig. 2C).33

Robotic root movement in soil by growing

The simultaneous actions of feeding and rotational plotting
permit the layer-by-layer deposition of the fused material in a
tubular shape for the realization of the root body. The layers
can be deposited in complete circles or in sectors of circular
patterns. The compliancy and softness of the fused material
can be tuned by controlling the heater temperature and the
feeding speed; this aspect, together with the independency of
the extruder and the plotting units, allows controlling the
speed and orientation of the plotting. These features provide
flexibility in the resulting thickness, shape, and position of

FIG. 1. A general view of a PLANTOID: a robot with several (two in the picture for clarity) growing roots for soil
exploration. Each root has its local control unit at the tip level, while another electronic unit placed inside the trunk manages
the communications between the roots and an operator. The root tips are equipped with soft touch sensors at their apex to
measure the soil pressure and detect obstacles, a gravity sensor to determine the tip orientation, and sensors for temperature,
humidity, and chemicals on their peripheral surface to monitor the surrounding environmental conditions and implement
the plant root behaviors.33
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Figure 3.2: Robotic model inspired by plants root. The original picture is contained in [71].

All the many engineering models are not accompanied by as many mathematical mod-
els, therefore it is necessary to develop the latter appropriately, in order to better under-
stand the operation and optimization of these new technologies. Our goal in this chapter
is to introduce a mathematical model for a continuum robot, with apical growth which
explores the soil in order to reach a certain target. It imitates root of plants, hence it is
able to bend when the soil is too hard or when it finds an obstacle. The evolution will be
described by a system of two partial differential equation, one for the growth of the body,
and the other for the extension of the tip. The angular velocity of the root is obtained as
solution of an optimization problem with state constraint, indeed it is physically meaning-
ful that the robot bends minimizing the deformation energy and the cost to move sand or
to drill in high-density regions.

1.3 Mathematical models in botany

Before starting to study robotic models inspired by plants, it is essential to understand
the mathematics of plants themselves. The interest in this topic started some centuries
ago, but it is recently attracting enormous attention. The current research focuses on the
behaviour of individual components or on the overall structure of the plant ([13],[12]) and
the interaction with the environment or with other plants. In the first group we underline
above all the works on the growth and symmetry of the leaves and their organization
([77],[51],[76]), on the growth of the roots ([32]), on the behaviour of stems and phenomena
as gravitropism, i.e. the slow reorientation of plant growth in response to gravity ([73],[11])



or more in general tropism phenomena due to time-varying stimuli ([62]) . In the second
group we can mention the studies about optimal shape of the crowns and the network
organization of the roots ([20]), the plant soil interaction ([70],[69]) and the competition
among plants ([16]).
What is interesting to observe is the great variety of mathematical methods and theories
involved in these studies:

- Discrete Dynamical Systems are used for studying phyllotaxis problems, i.e. the
arrangement of leaves on a plant stem ([9]);

- Optimal Ramified Transport appears in studying the optimal shape of tree branches
assuming that the primary goal of tree leaves (tree roots) is to gather sunlight (water
and nutrients from the soil, respectively) ([20]);

- Scalar Conservation Laws are used to describe the variations of properties such as
meristem density, which remains constant within the system in the absence of external
sources or sinks ([36]);

- Smoothed-Particle Hydrodynamics framework is adopted to study growth in plant
tissues at different scales ([63]);

- Homogenization approach is used in the analysis of water transport in plant tissues
with periodic microstructures ([26]).

- Control Theory is the main tool for studying stabilization of growth, in the vertical
direction for stems ([3]);

- Game Theory allows to model competition among plants ([16]);

- Mean Field Approximation appears in modelling heterogeneous population of plants
in competition ([65]).

1.4 A model for Stem Growth

For the elastic model of robotic roots that we will introduce later there exists a corre-
spondent model of growth for the stems that has been abundantly analyzed in [19],[18],[3]
and that we recall briefly below.

Assume that new cells are generated at the tip of the stem and they grow in size, they
induce at time t ≥ 0 an elongation during the time interval [s, s + ds] whose measure is
d` = ds. Denote by k(t, s) the unit tangent vector to the stem at the point P (t, s), so that

k(t, s) =
Ps(t, s)

|Ps(t, s)|
, Ps(t, s) :=

∂

∂s
P (t, s). (1.1)

We impose also the curvature to vanish at the tip, which means that

∂

∂s
k(t, s)

∣∣∣
s=t

= 0. (1.2)

Let {e1, e2, e3} be the standard orthonormal basis in R3 with e1 oriented in the upward
direction, at every point P(t,s), with s ∈ [0, t] the change of position in response to gravity
is described by

∂

∂t
P (t, s) =

∫ s

0
µe−β(t−σ)

(
k(t, σ)× e3

)
×
(
P (t, s)− P (t, σ)

)
dσ (1.3)



where µ > 0 is a constant which measure the strength of the response, e−β(t−s) is the
stiffness factor and µe−β(t−σ)

(
k(t, σ) × e3

)
is an angular velocity determined by the

response to the gravity in the point P (t, σ).
In [3] the authors analyzed equations (1.3),(1.2) and proved that the vertical direction is
stable for certain values of the parameters µ, β.

Figure 2: Numerical simulations of stem growth, at discrete times, taking µ = 1 and di↵erent sti↵ness
constants. Left: � = 0.1, center: � = 1.0, right: � = 2.5.

achieved. To make this more precise, we introduce a concept of stability for stem growth
(Fig. 1, right). Given a point x = (x1, x2, x3) 2 IR3, its horizontal projection is here defined
as ⇡horx = (x1, x2).

Definition 1. We say that the equations of growth (1.11), (1.5) are stable in the vertical
direction if, for every "0 > 0 and t0 > 0, there exists � > 0 such that the following holds. If

���⇡hork(t0, s)
���  � for all s 2 [0, t0] (1.12)

then

��⇡horP (t, s)
��  "0 and

��⇡hork(t, s)
��  "0 for all t � t0 , s 2 [0, t] . (1.13)

Roughly speaking, if at the initial time t0 the stem is almost vertical, then at all later times
t � t0 the stem should remain inside a vertical cylinder with radius ". Notice that, because of
the exponential sti↵ening term, asymptotic stability cannot be expected. Indeed, as t ! +1
the stem will not approach a vertical line.

Our main goal is to analyze the equations (1.11), (1.5), and prove that they are indeed stable
in the vertical direction, at least for certain values of the parameters µ,�. The proof will be
achieved by writing an evolution equation for the first two components of the tangent vector
k = (k1, k2, k3), and proving that these are stable in the space L1(IR+) as well as in L1(IR+).

The remainder of the paper is organized as follows. In Section 2 we derive a linearized version
of the growth equations. Section 3 provides a linearized stability analysis in a non-oscillatory
regime, with � suitably large. Roughly speaking, this means that if the stem initially bends
only on one side, then it will keep bending on the same side for all future times (Fig. 2, right).
Here the analysis is based on pointwise estimates, obtained by comparison arguments. In
Section 4 we study linearized stability in the oscillatory regime (Fig. 2, left and center). For a
somewhat wider range of the sti↵ening constant � > 0, linearized stability can now be proved

4

Figure 3.3: Numerical simulations of stem growth, at discrete time with µ = 1 and stiffness
constant β = 0.1 on the left, β = 1.0 in the center and β = 2.5 on the right.

In [19],[18] two more terms are added to the evolution equation (1.3), a first term
describing the clinging phenomena of the stem to an obstacle Ω, a second one that interprets
the reaction thanks to which the stem does not penetrate inside Ω. Therefore the final
evolution equation is given by

∂

∂t
P (t, s) =

∫ s

0
µe−β(t−σ)

(
k(t, σ)× e3

)
×
(
P (t, s)− P (t, σ)

)
dσ

+

∫ s

0
e−β(t−σ)

(
∇ψ(P (t, σ))× k(t, σ)

)
×
(
P (t, s)− P (t, σ)

)
dσ

+ v(s) (1.4)

where the function ψ is a map describing the ability of the stem to feel the presence of
an obstacle within a certain distance, the vector field v belongs to the cone of admissible
reaction of the obstacle. Existence and uniqueness of solution to equation (1.4) are proved
when the initial configuration is not a so called breakdown configuration, whose definition
will be recalled later in the chapter. An important role in these works is played by the
explicit formulation of the reaction v(s) that we lose in our study. Indeed for the stem it
is assumed that the angular velocity produced by the obstacle reaction minimizes only the
elastic defomation, while in our case we will ask to minimize a Lipschitz cost.

The chapter is organized as follows: in section 2 we introduce basic element of the
evolution of our artificial root, in Section 2.1 and 2.2 we describe respectively a rigid and
an elastic model for the robot, introducing a restarting procedure when it is no more able
to grow because of an obstacle. But we will focus above all on the elastic model since it is
more flexible and challenging from the mathematical point of view, this is done in Section
3. Section 4 is devoted to the construction of the solution for the model and finally in
section and finally in Section 5 we show some numerical implementation. All the models



proposed, except for some technical results in 4, are completely original and represents a
first step in the development of a mathematical theory for bio-robotics.

2 Growing an artificial root

We seek to model the movement of an artificial root, which penetrates the ground
searching for water, chemical compounds, cavities where earthquake survivors may be
trapped, etc. . .

For this purpose, we need to assign

(I) An equation describing the scalar velocity at which the length of the root grows.

(II) An equation describing how the orientation k(t) of the tip of the root changes in
time.

(III) A rule determining when the growth stops, the root shrinks to an earlier configura-
tion, and then starts growing in a new direction.

2.1 A rigid root

In this first model we assume that the root is rigid. The portion of the root that has
already grown does not move. In this case, apart from restarting times, the growth can be
determined by a second order ODE.

1. At any time t, the root will be described by a C1,1 curve

s 7→ γ(t, s), s ∈ [0, t], (2.1)

parameterized by arc-length. For simplicity we assume that the root grows at unit speed,
so that at time t its length is simply `(t) = t. We denote by

k(t, s)
.
= γs(t, s) (2.2)

the unit tangent vector to the curve.

2. For convenience we shall denote by

P (t)
.
= γ(t, t), k(t)

.
= k(t, t) = γs(t, t) (2.3)

respectively the position and the orientation of the root tip.
Two types of control will be implemented. Namely:

(i) At every time t, the orientation of the tip is modified.

(ii) At a finite number of times 0 < t1 < t2 < · · · , if the root hits an obstacle, a restarting
procedure is adopted and growth is restarted in a different direction.

3. At any time t, we assume that the direction k(t) of the root tip can change, subject to
a minimum radius of curvature. Namely,

k̇(t) = u(t)× k(t), |u(t)| ≤ κ0 (2.4)

Here u(·) is a measurable control function, describing the angular velocity at which we
bend the tip of the root.

4. We now introduce a feedback rule, assigning the control u in terms of the position
of the tip. Toward this goal, we consider two scalar functions.



• A function φ : R3 7→ R, given at the beginning and never modified afterwards.
Roughly speaking one may think of φ(x) as the expected distance from a (random)
target.

• A function ψ : R3 7→ R, measuring a kind of closeness to previously reached points.
A bit more precisely, if Γ(t) is the union of all points reached by the artificial root
during previously failed attempts, we could define

ψ(x)
.
=

∫

y∈Γ(t)
e−|x−y| dy, (2.5)

The growth of the root can then be described by

Ṗ (t) = k(t), k̇(t) = u(t)× k(t), (2.6)

where the control vector u is determined by

u(t) = arg max
|ω|≤κ0

〈
ω × k(t) , ∇φ(P (t))−∇ψ(P (t))

〉
. (2.7)

Note: in (2.5), instead of e−|x−y|, one could use some other kernel K(|x − y|), where
s 7→ K(s) is a smooth, decreasing function.

In some cases, the control in (2.7) may not be unique. To achieve a well posed evolution
equation, it is convenient to replace (2.7) with

u(t) = arg max
|ω|≤κ0

{〈
ω × k(t) , ∇φ−∇ψ

〉
− ε|ω|2

}
. (2.8)

The strict convexity of the right hand side yields a unique maximizer, depending Lipschitz
continuously on x. Of course, other approximations are possible, with C∞ dependence on
k,∇φ,∇ψ.

Having done this, the local existence and uniqueness of solutions to the evolution
problem is trivial.

Figure 3.4: Rocks with different average sizes should determine different restarting strategies.
The white circles denote the targets.

5. In addition, there must be a rule prescribing when the growth should stop and the
root should go back to a previous configuration, and restart.

We denote by γi(·, ·) the curve constructed at the i-th trial run, and write Pi(t) = γi(t, t)
for the position of the tip of this curve at time t. The i-th curve starts with length t−i and
grows up to a maximum length t+i .

Here h : R3 7→ [0, 1] is some scalar function, not known a priori, accounting for the
“hardness" of the soil. For example, h = 0 when the soil offers no resistance (say, inside a
crack), while h >> 1 along an impenetrable obstacle (say, a wall).



A reasonable stopping rule is then

t+i
.
= min

{
t > t−i ; h(P (t)) ≤ h0

}
. (2.9)

Here h0 > 0 is a threshold value, assigned a priori. The idea is that, if the tip of the root
encounters very hard soil or a rock, it is better go back and restart in another direction.

The restarting procedure must also be carefully defined. Calling t+i the length of the
root when we decide to restart, we choose a new length t−i+1 < t+i and set

γ(s, t−i+1) = γ(s, t+i ) s ∈ [0, t−i+1]. (2.10)

In general, the new length will be determined by a restarting function:

t−i+1 = R
(
t+i , t

−
i , ψ(P (t+i ))

)
. (2.11)

By (2.11), we are saying that the amount by which the root shrinks depends on

• the length t+i and the change in the length t+i − t−i , achieved during the previous
failed attempt,

• the density ψ(P (t+i )), measuring how much the region near P (t+i ) has already been
explored.

A first basic example of restarting function that we can consider is

R1

(
t+i , t

−
i , ψ(P (t+i ))

)
= t+i + c

(
e−ψ(P (t+i )) − 1

)(
t+i − t−i

)
(2.12)

with c > 1. We can interpret it as follows: if the value of ψ(P (t+i )) is large (which
means that P (t+i ) is close to many trajectories already explored in previous attempts),
then we need to go back a strictly greater quantity than the last change of length t+i − t−i ,
if ψ(P (t+i )) is small, we do not need to restart so far from the last starting point P (t−i ).
A second prototype restarting function could be the following

R2

(
t+i , t

−
i , ψ(P (t+i ))

)
= t+i + c

(
1 + 2ρχ[0,ρ](|P (t+i )−P (t−i )|)

)(
e−ψ(P (t+i ))− 1

)(
t+i − t−i

)

(2.13)
which differs from the first by a single factor measuring the length of the last attempt.
Indeed if the last elongation is small (in the interval [0, ρ]), then probably the root has not
enough space to move, therefore it is reasonable to shorten a quantity much greater then
t+i − t−i .

Remark. In practice, the rate of growth of the root will likely depend on the hardness
of the soil at the tip. In other words, at time t the total length will not be `(t) = t. Rather,
it may increase at a rate

˙̀(t) =
1

1 + h
(
γ(`(t))

) , (2.14)

so that
Ṗ (t) =

d

dt
γ(t, `(t)) =

k(`(t))

1 + h
(
γ(`(t))

) . (2.15)

This more general case can be reduced to the previous setting by using a rescaled time
τ(t) = `(t). In this way, as in [3, 18, 19], we can assume that at time τ the curve γ(τ, ·)
has length τ . This length thus increases at unit rate.
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Figure 3.5: Three attempts at growing a root past a rock.

2.2 An elastic root

In the previous model the growing root was completely rigid. Since the previously
constructed portions of the root do not move, the equation of growth reduces to a simple
ODE.

We now consider an alternative model, where the root is allowed to change its shape,
in response to obstacles. The instantaneous deformation of the root is determined as a
minimizer of an elastic deformation energy, plus a cost for displacing the nearby soil.

Let s 7→ γ(t, s), s ∈ [0, t], be an arc-length parameterization of the root at time t.
Moreover, let h = h(x) ≥ 0 be a function describing the hardness of the soil at the point
x, and fix a constant α > 0.

0

ω

k

σ

γ(s,t)

(s,t)

σ(  ,t)

γ(  ,t)

Figure 3.6: An infinitesimal rotation at the point γ(σ, t) produces a displacement of all points
γ(t, s) with s ∈ [σ, t].

If the soil around the tip is very hard, or if obstacles are encountered, the root may be
forced to bend. This can be achieved by means of a field of angular velocities ω(t, ·). As
in [18, 19] the evolution of the curve γ is described by

γt(t, s) =

∫ s

0
ω(t, σ)×

(
γ(t, s)− γ(t, σ)

)
dσ, (2.1)

while

Ṗ (t) = k(t) +

∫ t

0
ω(t, σ)×

(
γ(t, s)− γ(t, σ)

)
dσ, (2.2)



As in (2.4), this equation must be supplemented with a boundary condition describing how
the orientation of the tip changes in time:

k̇(t) =

(
u(t) +

∫ t

0
ω(t, σ) dσ

)
× k(t). (2.3)

Here the feedback control u(t) can be chosen as in (2.8), in order to approach the target
as fast as possible. Notice that the integral term in (2.3) accounts for the change in the
orientation of the tip coming from the elastic deformation.

At each given time t, following [18] we assume that the field of angular velocities ω(·)
in (2.1)–(2.3) is determined by an instantaneous minimization problem, which we now
describe.

n

n
γ

γ

Ω

Ω

Ω

Figure 3.7: By an infinitesimal elastic deformation, the curve γ is kept outside the obstacle. Left:
outside the obstacle there is empty space. Right: the obstacle is surrounded by softer soil.

Assume that the external environment consists of soil whose hardness is described by
a scalar function h = h(x) ≥ 0, together with impenetrable obstacles, whose union we
denote by Ω ⊂ R3. We assume that Ω is an open set with C2 boundary ∂Ω. The unit outer
normal vector at a point x ∈ ∂Ω will be denoted by n(x). At a contact point γ(t, s) ∈ ∂Ω,
this unit outer normal is denoted by

n(t, s)
.
= n(γ(t, s)).

In our model, the angular velocity ω(t, ·) ∈ L2([0, t]) is determined as the solution to
the following optimization problem.

(OP) Find an angular velocity ω ∈ L2([0, t]) which minimizes the functional

J(ω)
.
=

∫ t

0
|ω(s)|2 ds+

∫ t

0
h(γ(t, s)) ·

∣∣∣γt(t, s)× k(t, s)
∣∣∣ ds+ αh(P (t)) ·

〈
Ṗ (t),k(t)

〉
+

= J1(ω) + J2(ω) + J3(ω) .
(2.4)

Here γt and Ṗ are recovered from ω(·) by the formulas (2.1)-(2.2), while

〈v,w〉+ .
= max{〈v,w〉 , 0}

denotes the positive part of an inner product. The global minimizer of the functional
(2.4) is sought under the constraints

〈
n(t, s) , γt(t, s)

〉
≥ 0 for all s such that γ(t, s) ∈ ∂Ω. (2.5)



In the case where P (t)
.
= γ(t, t) ∈ ∂Ω, we impose the additional constraint

〈
n(t, t) , Ṗ (t)

〉
≥ 0. (2.6)

Remark 2.1. The three terms on the right hand side of (2.4) can be interpreted as

[elastic bending energy] + [soil hardness]×[swept area] + [soil hardness]×[tip penetration].

The coefficient α > 0 allows to better calibrate the relative weight of these terms.

Remark 2.2. In [18, 19], the surface of the obstacle was modeled as a smooth frictionless
surface. In alternative, one could impose that there is some friction between the obstacle
and the tip of the root. For example, one can impose that the tip can move only if

〈
n(t, t) , k(t, t)

〉
≥ κ0 , (2.7)

for some κ0 ∈ ]− 1, 0].

Remark 2.3. In the first model, considered in Section 2.1, the root is completely rigid, in
the sense that the portion that is already grown does not change its position at any later
time. On the other hand, in this second model the dynamics is more complex, because it
takes into account the elasticity of the root.

The difference is only in the dynamics. The optimal control (orienting the tip in the
direction where it is more likely to find the target), as well as the restarting strategy, can
be chosen in the same way as in the model discussed in the first two sections.

3 Solutions to the elastic root model

From a theoretical point of view, the model with an elastic root is much more interest-
ing. Toward a proof of well-posedness, two steps are required.

1. At any time t ≥ 0, the instantaneous growth is determined by solving an minimiza-
tion problem with constraints. We need to prove that this optimization problem admits a
unique solution. Moreover, this minimizer depends continuously on the data, except when
a “breakdown configuration" is reached, as in the model studied in [19].

2. Following [18], we should then introduce a suitable weighted distance among root
configurations, and prove that the evolution problem is well posed.

Aim of this section is to prove a local existence theorem, valid as long as a “breakdown
configuration" is not reached, as shown in Fig. 3.8.

Definition 3.1. We say that a curve γ : [0, t0] 7→ R3\Ω is in a breakdown configuration
w.r.t. the obstacle Ω if the following holds

(B) The tip γ(t0) touches the obstacle perpendicularly, namely

γ(t0) ∈ ∂Ω , γs(t0) = −n(γ(t0)). (3.1)

Moreover,
γss(s) = 0 for all s ∈ ]0, t0[ such that γ(s) /∈ ∂Ω . (3.2)



n

Ω

goodgood bad

Figure 3.8: For the two initial configurations on the left and in the center, the constrained growth
equations for the root admit a unique solution. The root configuration on the right satisfies the
condition (B). In such case, the Cauchy problem is ill posed.

3.1 Computing the instantaneous velocity of the root.

At each time t ≥ 0, the velocity of points on the curve γ(t, ·) and of the root tip P (t)
is determined by (2.1) and (2.2), respectively. In our model, the instantaneous bending
rate ω(t, ·) ∈ L2([0, t] ; R3) is determined as the unique global minimizer of the functional
(2.4), subject to the constraints (2.5)-(2.6). We recall that h : R3

− 7→ R is a smooth scalar
function, describing the hardness of the soil.

Lemma 3.2. If γ(t, ·) is not a breakdown configuration, then the functional (2.4) has a
unique minimizer, subject to (2.1)-(2.2) and the constraints (2.5)-(2.6).

Proof.
1. Call A ⊆ L2([0, t]) the set of angular velocities for which constraints (2.5)-(2.6) are

satisfied. Observe that the maps

ω(·) 7→ γt(t, ·), ω(·) 7→ Ṗ (t)

are linear and affine, respectively.
If γ(t, ·) does not satisfy all conditions in (B), then the same arguments used in

Lemma 1 of [19] show that A is a nonempty, closed, affine subspace of L2.
Indeed assume that v ∈ H2([0, t];R3) is a velocity field produced by the obstacle

reaction when γ(t, ·) touches ∂Ω or a reaction due to hardness of the soil with

v(0) = v′(0) = 0, 〈v′(s) , k(t, s)〉 = 0 for all s ∈ [0, t]. (3.3)

Then there exist a unique angular velocity field ω ∈ L2([0, t];R3) such that

‖ω‖L2 ≤ C‖v‖H2 (3.4)

〈ω(s),k(t, s)〉 = 0 for all s ∈ [0, t]. (3.5)

v(s) =

∫ s

0
ω(σ)× (γ(t, s)− γ(t, σ))dσ for all s ∈ [0, t]. (3.6)

To see it, we first observe that by condition (3.3) and differentiating (3.6) it results
that ω(·) satisfies (3.6) if and only if

v′(s) =

∫ s

0
ω(σ)dσ × k(t, s) for all s ∈ [0, t]. (3.7)



Now , consider a family of orthonormal frames {e1(s), e2(s), e3(s)} such that e1(s) =
k(t, s) for all s ∈ [0, t]. We want to find two scalar functions ω2, ω3 : [0.t]→ R (ω1 = 0 by
condition (3.5)), components of the vector function

ω(s) = ω2(s)e2(s) + ω3(s)e3(s) (3.8)

satisfying (3.6).
By the orthogonality assumption in (3.6), we get two scalar functions z2 and z3 such

that

v′(s) = z2(s)e2(s) + z3(s)e3(s) =

∫ s

0

(
ω2(σ)e2(σ) + ω3(σ)e3(σ)

)
dσ × e1(s) (3.9)

Projecting respectively along e2(s) and e3(s) we get

z2(s) =

∫ s

0
〈e2(σ)× e1(s), e2(s)〉ω2(σ)dσ +

∫ s

0
〈e3(σ)× e1(s), e2(s)〉ω3(σ)dσ;

z3(s) =

∫ s

0
〈e2(σ)× e1(s), e3(s)〉ω2(σ)dσ +

∫ s

0
〈e3(σ)× e1(s), e3(s)〉ω3(σ)dσ.

By a property of the triple product 〈· × · , ·〉 we can rewrite

z2(s) =

∫ s

0

[
〈e2(σ), e3(s)〉ω2(σ) + 〈e3(σ), e3(s)〉ω3(σ)

]
dσ

z3(s) = −
∫ s

0

[
〈e2(σ), e2(s)〉ω2(σ) + 〈e3(σ), e2(s)〉ω3(σ)

]
dσ

Since all the function involved in (3.9) are in H1 we can differentiate again and obtain
the following system




ω3(s) = z′2(s)−

∫ s
0

[
〈e2(σ), e′3(s)〉ω2(σ) + 〈e3(σ), e′3(s)〉ω3(σ)

]
dσ

ω2(s) = −z′3(s)−
∫ s

0

[
〈e2(σ), e′2(s)〉ω2(σ) + 〈e3(σ), e′2(s)〉ω3(σ)

]
dσ

(3.10)

which is a linear system of of Volterra integral equation, whose unique solution can be
obtained by a fix point argument. Indeed, introducing the vector notation

U =

(
ω2

ω3

)
, Z =

(
−z3

z2

)
, (3.11)

(3.10) can be rewritten as

U(s) = Z ′(s) +

∫ s

0
B(s, σ)U(σ)dσ = P[U ](s) (3.12)

where the matrix B(s, σ) has norm

|B(s, σ)| ≤ 2|e′2(s)|+ 2|e′3(s)| := b(s). (3.13)

The operator P defined in (3.12) is a strict contraction on the space L1([0, T ];R2) with
the equivalent norm



‖U‖ :=

∫ t

0
exp

{
−2

∫ s

0
b(σ)dσ|U(s)|

}
|U(s)|ds (3.14)

In fact, for any U1, U2 ∈ L1, if we integrate by part we get

‖P[U1]− P[U2]‖ ≤
∫ t

0
exp

{
−2

∫ s

0
b(σ)dσ

}
b(s)

(∫ s

0
|U1(σ)− U2(σ)|

)
ds

=

∫ t

0

1

2
exp

{
−2

∫ s

0
b(σ)dσ

}
|U1(s)− U2(s)|ds

− 1

2
exp

{
−2

∫ t

0
b(σ)dσ

}(∫ s

0
|U1(σ)− U2(σ)|dσ

)

≤
∫ t

0

1

2
exp

{
−2

∫ s

0
b(σ)dσ

}
|U1(s)− U2(s)|ds

=
1

2
‖U1 − U2]‖

therefore by the contraction principle, equation (3.12) has a unique solution in L1([0, T ];R2),
moreover we have

‖U‖L1 ≤ C1‖Z ′‖L1 ≤ C2‖Z ′‖L2 (3.15)

with C1, C2 constants depending on t and b(·). Conclusively we obtain that

‖U‖2L2 ≤ 2‖Z ′‖2L2 +

∫ t

0
b2(s)

(∫ s

0
U(σ)σ

)2
ds

≤ 2‖Z ′‖2L2 + 2‖b‖2L2‖U‖2L1

≤ (2 + 2‖b‖2L2C
2
2 )‖Z ′‖L2

hence also ω1 and ω2 are in L2. To conclude we just need to observe that ‖Z ′‖L2 =
O(1) · ‖v‖H2 and ‖b‖L2O(1)‖γ‖H2 . Condition (3.5) plays an essential role in uniques of
the angular velocity ω, indeed without that we can produce infinitely many solution for
the system (3.10).

2. We now observe that the functional J in (2.4) is non-negative, strictly convex, and
coercive on L2.

Let (ωn)n≥1 be a minimizing sequence in A ⊆ L2. By coercivity, the norms ‖ωn‖L2 are
uniformly bounded. By possibly extracting a subsequence, we can thus assume the weak
convergence ωn ⇀ ω∗.

Since the functional J is convex, it is lower semicontinuous w.r.t. weak convergence.
Therefore

J(ω∗) ≤ lim inf
n→∞

J(ωn) = inf
ω∈A

J(ω).

Recalling that A is closed, we conclude that ω∗ ∈ A is a global minimizer.
Finally, the strict convexity of J implies that this minimizer is unique.

3.2 Solutions to the evolution problem.

Given a feedback control u = u(x) accounting for the desired bending of the tip, we
can now give a precise definition of “solution" the the evolution problem describing the
growth of the artificial root.

At each time t, the position of the root is described by a map γ(t, ·) from [0, t] into
R3. Of course, the domain of this map grows with time. Following [19], it is convenient



to reformulate our model as an evolution problem on a functional space independent of t.
We thus fix T > t0 and consider the Hilbert-Sobolev space H2([0, T ]; R3). Any function
γ(t, ·) ∈ H2([0, t]; R3) will be canonically extended to H2([0, T ]; R3) by setting

γ(t, s)
.
= γ(t, t) + (s− t)γs(t, t) for s ∈ [t, T ] . (3.16)

Notice that the above extension is well defined because γ(t, ·) and γs(t, ·) are continuous
functions. In the following we shall study functions defined on a domain of the form

DT .
=
{

(t, s) ; 0 ≤ s ≤ t, t ∈ [t0, T ]
}
, (3.17)

and extended to the rectangle [t0, T ]× [0, T ] as in (3.16).

γ(t0, s) = γ(s), s ∈ [0, t0]. (3.18)

Definition 3.3. We say that a function γ = γ(t, s), defined for (t, s) ∈ [t0, T ]× [0, T ] is a
solution to the root growth problem if the following holds.

(i) The map t 7→ P (t, ·) is Lipschitz continuous from [t0, T ] into H2([0, T ]; R3).

(ii) For a.e. t ∈ [t0, T ] the partial derivative ∂tγ(t, ·) is given by

γt(t, s) =

∫ s

0
ω(t, σ)×

(
γ(t, s)− γ(t, σ)

)
dσ, (3.19)

for s ∈ [0, t], while

γt(t, s) =

∫ t

0
ω(t, σ)×

(
γ(t, s)− γ(t, σ)

)
dσ + u(t)×

(
γ(t, s)− γ(t, t)

)
(3.20)

if s ∈ [t, T ]. Here the angular velocity ω(t, ·) is the unique solution to the optimization
problem (OP), in Section 2.2.

(iii) The initial conditions hold:

γ(t0, s) =





γ(s) if s ∈ [0, t0],

γ(t0) + (s− t0)γs(t0) if s ∈ [t0, T ].
(3.21)

(iv) The pointwise constraints hold:

γ(t, s) /∈ Ω for all t ∈ [t0, T ], s ∈ [0, t]. (3.22)

4 Construction of solutions

4.1 Technical lemmas and known estimates

We now recall some notations, technical results and estimates contained in [19] that
will be useful in order to prove the main theorem of this chapter.

Let γ̄ be a curve in H2([0, t0];R3), satisfying the following assumptions

γ̄(0) = 0 ∈ R3, |γ̄′(s)| = 1, γ̄(s) /∈ Ω for all s ∈ [0, t0]. (4.1)



and such that it is not a breakdown configuration as described in 3.1. Given T > t0, it
is possible to extend γ̄ to a map [0, T ]→ R3 as we showed in (3.16). For a fixed radius ρ
and T > t0 we can define the following tubolar neighborhood of γ̄ in H([0, T ],R3)

Vρ :=
{
γ ∈H([0, T ],R3), γ(0) = 0, γ′(0) = γ̄′(0),

|γ′(s)| = 1 for all s ∈ [0, t],

∫ t

0
|γ′′(s)− γ̄′′(s)|2ds ≤ ρ

}
(4.2)

The following result shows that given a curve satisfying (4.1) and which it is not a
breakdown configuration, then there exists a tubolar neighborhood as described before
such that each curve in this set can be pushed away from the obstacle by a small rotation.

Lemma 4.1. Let γ̄ : [0, t0] 7→ R3 \Ω an initial curve which satisfies (4.1) and such that it
does not satisfies simultaneously all conditions in (3.1),(3.2). Then there exists T > t0, ρ,
δ > 0, and a constant C0 such that the following holds.

Set φ : R3 7→ R+ the function signed distance defined as

φ(x) :=

{
d(x, ∂Ω) if x /∈ Ω

−d(x, ∂Ω) if x ∈ Ω
. (4.3)

Let t ∈ [t0, T ] and consider any curve γ ∈ Vρ. Then there exists ω : [0, t] 7→ R3, with

‖ω‖L2 ≤ C0 (4.4)

such that, for all s ∈ [0, t] with |φ(γ(s))| ≤ δ one has
〈∫ s

0
ω(σ)× (γ(s)− γ(σ)),∇φ(γ(s))

〉
≥ 1 (4.5)

The proof is based on the analysis of three different cases in which one of the condition
(3.1),(3.2) is not satisfied.
We introduce now the following quantity

E(t, γ,Ω) := sup
{
d(γ(s), ∂Ω); s ∈ [0, t], γ(s) ∈ Ω

}
(4.6)

that measures the maximum depth at which the initial portion of a curve γ penetrates
inside the obstacle Ω. In the same hypothesis of 4.1 we can prove that there exists a
tubolar neighborhood Vρ of γ̄ such that for every curve γ inside there exist a unique
angular velocity ω̄ minimizer of OP which push out the curve and his norm is bounded by

‖ω̄‖L2 ≤ 2C0 · E(t, γ,Ω) (4.7)

for some constant C0 independent of γ ∈ Vρ.
We introduce now a nonlinear push out operator P. Given an angular velocity ω ∈ R3,

let R[ω] be the 3× 3 rotation matrix

R[ω] := eA :=
∞∑

k0

Ak

k!
, A :=




0 −ω3 −ω2

ω3 0 −ω1

−ω2 ω1 0


 . (4.8)

It is well known that for every v̄ ∈ R3, the vector R[ω]v̄ is the solution at time t = 1 of
the following system

v̇(t) = ω × v(t), v(0) = v̄. (4.9)



If γ is a curve in H2([0, t],R3), and ω̄ is the unique minimizer of the associated OP, then
we use the previous notation to define

P[γ](s) :=

∫ s

0
R
[ ∫ σ

0
ω̄(ξ)dξ

]
γ′(σ)dσ (4.10)

By (4.7), the depth at which P[γ] can penetrate inside Ω can be estimate as follows

E(P[γ], ω) ≤ O(1)‖ω̄‖2L2 ≤ C · E(γ, ω) (4.11)

with C uniform constant.

4.2 The existence result for a single attempt

Here we state and prove the main result of the chapter, that is the existence of a
single trajectory for the root. By now we said that the root stops growing only because
of a breakdown configuration, but since it is a robot, the growth can be interrupted also
because of the physical limits of the machine itself, like a bound on the extension.

Theorem 4.2. Let a C1 feedback control function u = u(x,k) be given. Assume that the
initial configuration γ ∈ H2([0, t0];R3) is not a breakdown configuration. Then there exists
T > t0 and a solution to the root evolution problem, defined on an interval [t0, T ].

Proof. First observe that if we differentiate (3.19) and (3.20) with respect to s and
then integrate with respect to t, we get the following equation

k(t, s) = k(t0, s)+

∫ t

t0

(∫ τ∧s

0
ω(σ)dσ

)
×k(τ, s)dτ +H(s− t0)

∫ t∧s

t0

u(τ)×k(τ, s)dτ (4.1)

with s ∈ [0, T ] and H the Heaviside function .
We proceed by constructing a sequence of approximate solutions, to this end we use a

splitting operator scheme. Let γ ∈ H2([0, t0];R3) be a the initial configuration and assume
that it is not a breakdown configuration.
Fix a time step ε and set tk = t0 + kε. Assume that the approximate tangent vector to
the curve k = k(t,s) has been constructed for all the times t ∈ [0, tk] and s ∈ [0, t] starting
from

{
k(t0, s) if s ∈ [0, t0]

k(t0, t0) if s ∈ [t0, T ]
(4.2)

To extend the solution on [tk, tk+1] we proceed as follows: we define

k(t, s) = R [(t ∧ s− tk)u(tk)H(s− tk)] k(tk, s) (4.3)

for all t ∈ [tk, tk+1[ and s ∈ [0, T ] and ωk the angular velocity obtained as solution of (OP)
at time t = tk. Taking t = tk+1, the previous construction produces a curve

s 7→ γ(tk+1−, s) =

∫ s

0
k(t, σ)dσ. (4.4)

Observe that the physical meaningful portion of the curve, that is the part with s ∈
[0, tk+1] may lie inside the obstacle therefore we need to use a push-out operator and replace
γ(tk+1−, s) by a new curve, by setting

γ(tk+1, s) = P [γ(tk+1−, ·)] (s) =

∫ s

0
R

[∫ σ

0
ωk+1(ξ)dξ

]
γs(tk+1−, σ)dσ (4.5)



with ωk+1(·) solution to (OP) at time t = tk+1. This is equivalent to say that

k(tk+1, s) =

∫ s

0
R

[∫ σ

0
ωk+1(ξ)dξ

]
k(tk+1−, s) (4.6)

.
By (4.7) and (4.11), as long as the approximation remains inside the neighborhood Vρ,

there exists a constant C3 such that

‖ω̄k+1‖L([0,tk+1]) ≤ C3E
(
tk+1, γ(tk+1−, ·),Ω

)
(4.7)

E
(
tk+1, γ(tk+1, ·),Ω

)
≤ C3E

2
(
tk+1, γ(tk+1−, ·),Ω

)
(4.8)

This last inequality express the fact that every time we apply the non linear push-out (4.5),
this entails a deformation of the curve of ε2 if the depth of the curve inside the obstacle is
of the order of ε. When we apply the rotation (4.3), the root penetration depth increases
of a quantity of the order of ε, that is

E
(
tk+1, γ(tk+1−, ·),Ω

)
≤ E

(
tk, γ(tk, ·),Ω

)
+ C4ε (4.9)

for some constant C4. Thus for ε > 0 small enough, the estimates (4.8)-(4.9) yelds the
implication

E
(
tk, γ(tk, ·),Ω

)
≤ ε =⇒ E

(
tk+1, γ(tk+1, ·),Ω

)
≤ ε (4.10)

Since by assumption the initial curve γ̄ lies outside the obstacle, this means thatE
(
t0, γ̄(t0, ·),Ω

)
=

0, this by induction, for all k ≥ 1 it follows that

E
(
tk+1, γ(tk+1, ·),Ω

)
≤ ε (4.11)

which combined with (4.7)-(4.8) implies

‖ω̄k+1‖L2[0,tk+1] ≤ C5ε. (4.12)

Thanks to the previous construction , for every time step ε > 0 small enough, we get
a piecewise continuous approximate solution kε = kε(t, s) defined for all s ∈ [0, t] and
t ∈ [t0, Tε], where Tε is given by

Tε = sup
{
τ ∈ [t0, T ] : γε(τ, s) =

∫ s

0
kε(τ, σ)dσ ∈ Vρ

}
.

As long as the approximation γε(τ, ·) remains inside Vρ we have the following estimates

‖kε(t, ·)− kε(t
′, ·)‖H1([0,tk]) ≤ C6|t− t′| for all t, t′ ∈ [tk, tk+1], (4.13)

‖kε(tk+1, ·)− kε(tk+1−, ·)‖H1([0,tk+1]) ≤ C6ε, (4.14)

for some constant C6 independent of k, ε. The first inequality derives from the boundedness
of u(t,k), while the second one is a consequence of (4.12). Gathering (4.13) and (4.14) we
obtain the next estimate

‖kε(τ, ·)− kε(t, ·)‖H1([0,t]) ≤ C7(ε+ τ − t) (4.15)

for all t < τ and some constant C7. Since by construction

γε(tk, 0) = 0 and kε(t, 0) = k̄(0) for all t ≥ 0 (4.16)



then we can conclude that (4.15) implies

γε(t, ·) ∈ Vρ for all t ∈ [0, T ], (4.17)

for some T > 0 independent of ε. The estimates implies also that for ε small enough, all
the approximations kε = kε(t, s) are well defined.

In order to get the converge of a subsequence we need to observe that:
1. All the functions t 7→ kε(t, ·) have uniformly bounded total variation as map from [t0, T ]
into H1([0, T ]).
2. Since γε(t, ·) ∈ Vρ, for any fixed t we have that kε(t, ·) are uniformely bounded in
H1([0, T ]).
Therefore by a weak version of Helly’s selection principle for BV functions with value in
metric spaces ([29],[60]), there exists a subsequence kεn and a function k ∈ BV ([t0, T ], H1([0, T ]),R3)
such that kεn(t, ·) ⇀ k(t, ·) in H1 for every t ∈ [t0, T ]. By the compact embedding of
H1([0, T ]) into C([0, T ]) we get also the uniform convergence up to subsequences.

The next step is to prove that by taking the limit of kε as ε → 0 we obtain exactly
(4.1). We showed before that kε converges uniformly for (t, s) ∈ [t0, T ]×[0, T ] to a function
k and this implies that

γε(t, s) =

∫ s

0
kε(t.σ)dσ ⇒

∫ s

0
k(t.σ)dσ → γ(t, s). (4.18)

Therefore if we consider the sequence of convex functionals

Jε(ω) =

∫ t

0
|ω(s)|2 ds+

∫ t

0
h(γε(t, s)) ·

∣∣∣γε,t(t, s)× kε(t, s)
∣∣∣ ds+αh(P (t)) ·

〈
Ṗε(t),kε(t)

〉
+

(4.19)
with ω ∈ L2([0, t]), it is equibounded in a neighborhood of each point and converges
pointwise to the convex functional J in (2.4). By Theorem 5.12 in [28], the sequence {Jε}
Γ-converges to J in L2([0, t]) as ε→ 0. Hence we have also the convergence of the sequence
of minimizers ωε to the minimizer ω of J in L2([0, t]). The L2-convergence in a bounded
domain implies the L1 convergence and hence the pointwise convergence a.e. in [0, t].

Now thanks to the matrix estimate

∣∣∣v + (ω1 + ...+ ωn)× v −R[ω1] ◦ · · · ◦R[ωn]v
∣∣∣ = O(1)

(∑

i

|ωi|
)2
|v|

the uniform convergence of kε, and pointwise convergence almost everywhere of ωε we
conclude that

k(t, s)− k(t0, s) = lim
ε→0
H(s− t0)

kε(t)∑

k=0

(tk+1 ∧ s− tk)u(tk)× kε(t
ε
k, s)

+ lim
ε→0

kε(t)∑

k=0

(∫ tk∧s

0
ωεk(σ)dσ

)
× k(tεk, s).

The final step is to show that the curve γ obtained is differentiable for a.e. t ∈ [t0, T ].
By the previous passages, the derivative kt is well defined for a.e. (τ, σ) ∈ [t0, T ] × [0, T ]
and satisfies a uniform bound |kt| ≤ C. Hence there exists a negligible set of times in
[t0, T ] such that for all t not inside this set, the partial derivative kt(t, s) exists for a.e.



s ∈ [0, T ]. By the Lebesgue dominated convergence theorem and for a.e. t ∈ [t0, T ] we
obtain

γt(t, s) = lim
ε→0

γ(t+ ε, s)− γ(t, s)

ε
= lim

ε→0

∫ t+ε

t

∫ s

0

kt(τ, σ)

ε
dσdτ

=

∫ s

0

k(t+ ε, σ)− k(t, σ)

ε
dσ =

∫ s

0
kt(t, σ)dσ

This implies the Lipschitz continuity of γ as map from [t0, T ] to H2([0, T ],R3).

5 Numerical implementation

In this section we present some numerical simulations for the elastic model proposed in
Section 2.2. We first show how to rewrite it in the planar case, and the simulations will be
done in dimension two. For any vector v = (v1, v2) let k⊥ = (−v2, v1) be the perpendicular
vector obtained by a counterclockwise rotation of π/2. Then the equation for the evolution
of the tangential speed of the root is given by

kt(t, s) =
(∫ t∧s

0
ω(σ)dσ +H(s− t)u(t)

)
k⊥(t, s) (5.1)

The root is discretized with uniform arc-length ∆s and time step is taken such that
∆t = ∆s. Given an initial configuration, represented by an array of nodes, we construct
a new node following the direction of the target. In our simulation the target will be the
whole axis y = 0, which means that the first goal of the root is to grow in depth compati-
bly with the prescribed bound on the curvature, that is, the root cannot suddenly change
direction. Simulations are carried out in Matlab.

Simulation 1 In the first simulation the obstacle is a disc with center (a, b) = (1.4, 1)
and radius r = 0.3. The root has origin in (2, 2) and initial shape y = x for 1.4 ≤ x ≤ 2.
We fix the bound on the curvature κ0 = 4. As we can see in Fig 3.9, the root bends, avoid
the obstacle and grows perpendicularly.

Simulation 2 Here we want to show how the restarting procedure works when the root
is in breakdown configuration. The obstacle is now a disc with center (a′, b′) = (1, 1.5) and
radius r = 0.3. The root has origin in (1, 2.5) and initial shape is x = 1 for 1.8 ≤ y ≤ 2.5.
The bound on the curvature is again κ0 = 4. As we can see in Fig 3.10, the original root
meets the obstacle perpendicularly with no curvature, hence by applying the restarting
algorithm (2.12) the new attempt grows far from the previous one. In this way we can
map the region already explored.

The main difference with respect to the simulations conducted in the case of the stems
lies in the fact that the evolution of the curve is described by two different equations, one
for the body and one for the tip. Therefore the way in which we add nodes is different, in
fact in our case we have to take into account the control.
Furthermore the robotic root must be able to restart once a break configuration has been
encountered. This involves having to take into account all previous attempts in order not
to travel trajectories already investigated. We underline the fact that in our simulations
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Figure 3.9: Artificial root not in breakdown configuration whose goal is to growth in depth
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Figure 3.10: Artificial root in breakdown configuration which restarts

we are assuming zero soil density, i.e. the case in which for example the root descends into
an empty cavity in which only stones are present.
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