




Abstract
Shallow water models of geophysical flows must be adapted to geometric characteristics
in the presence of a general bottom topography with non-negligible slopes and curva-
tures, such as a mountain landscape. In this thesis we derive an intrinsic shallow water
model starting from the Navier-Stokes equations defined on a local reference frame
anchored on the bottom surface. The resulting equations are characterized by non-
autonomous flux functions and source terms embodying only geometric information.
We show that the proposed model is rotational invariant, admits a conserved energy,
is well-balanced, and it is formally a second order approximation of the Navier-Stokes
equations with respect to a geometry-based order parameter.

We then derive numerical discretization schemes compatibles with the intrinsic
setting of the formulation, starting from studying a first order upwind Godunov Finite
Volume scheme intrinsically defined on the bottom surface. We analyze convergence
properties of the resulting scheme both theoretically and numerically. Simulations on
several synthetic test cases are used to validate the theoretical results as well as more
experimental properties of the solver. The results show the importance of taking into
full consideration the bottom geometry even for relatively mild and slowly varying
curvatures.

The low-order discretization method is subsequently extended to the Discontinuous
Galerkin framework. We implement a linear version of the DG scheme defined intrin-
sically on the surface and we start from the resolution of the scalar transport equation.
We test the scheme for convergence and then we move towards the intrinsic shallow
water model. Simulations on synthetic test cases are reported and the improvement
with respect to the first order finite volume discretization is clearly visible.

Finally, we consider a finite element method for advection-diffusion-reaction equa-
tions on surfaces. Unlike many previous techniques, this approach is based on the
geometrically intrinsic formulation and the resulting finite element method is fully in-
trinsic to the surface. In the last part of this work, we lay out in detail the formulation
and compare it to a well-established finite element scheme for surface PDEs. We then
evaluate the method for several steady and transient problems involving both diffu-
sion and advection-dominated regime. The experimental results show the theoretically
expected convergence rates and good performance of the established finite element
methods.





Sommario
I modelli di equazioni Shallow Water (SWE) per flussi geofisici devono essere adattati
alle caratteristiche geometriche del fondo su cui scorrono in presenza di pendenze e
curvature non trascurabili, come ad esempio nei pendii montani. Questa tesi si occupa
di derivare un modello SWE intrinseco, partendo dalle equazioni di Navier-Stokes defi-
nite su un sistema di riferimento locale ancorato alla superficie del fondo. Le equazioni
risultanti sono caratterizzate da flussi non autonomi e termini sorgente che conten-
gono solo informazioni geometriche. Si dimostra che il modello proposto è invariante
per rotazioni, conserva l’energia ed è well-balance. Inoltre, il modello è formalmente
un’approssimazione del secondo ordine delle equazioni di Navier-Stokes rispetto ad un
parametro dipendente dalla geometria per piccole altezze del pelo libero.

In seguito, si propone la soluzione numerical del modello studiato con metodi di
discretizzazione compatibili con il setting intrinseco della formulazione. Un approccio
numerico completamente intrinseco offre diversi vantaggi sia teorici che pratici. Per
prima cosa la forma originale delle equazioni viene mantenuta in termini di leggi di
conservazione (o bilancio) che rimangono descritte come tali in un quadro discreto.
Questo permette di sfruttare al meglio le proprietà dello schema di discretizzazione an-
che per equazioni definite su superfici. Inoltre, l’analisi dello schema risulta facilitata
perché un’estensione dell’analisi nel caso standard. Infine, l’uso di un sistema di rife-
rimento locale garantisce migliori caratteristiche di ben-condizionamento dello schema
numerico anche in casi complessi.

Viene quindi sviluppato uno schema ai volumi finiti, upwind alla Godunov, definito
intrinsicamente sulla superficie del fondo. Sono analizzate le proprietà di convergenza
dello schema risultante sia dal punto di vista teorico che numerico. Diverse simulazioni
su casi test sintetici sono usate per validare i risultati teorici, cos̀ı come proprietà
sperimentali del solutore. I risultati mostrano l’importanza di tenere in considerazione
la geometria del fondale anche per curvature relativamente piccole e quasi costanti.

Lo schema ai volumi finiti del primo ordine è successivamente esteso al framework
dei metodi di Galerkin discontinui. Viene implementata la versione con funzioni di
base lineari di uno schema DG definito intrinsecamente sulla superficie. Dapprima
viene verificata la convergenza dello schema per la risoluzione numerica di equazioni di
trasporto scalari e in seguito il metodo è applicato alla soluzione del modello intrinseco
delle equazioni di Shallow-Water. Sono riportate simulazioni su alcuni casi test sinte-
tici: è possibile apprezzare il miglioramento rispetto allo schema FV del primo ordine
precedentemente considerato. Si rileva infatti una più accurata rappresentazione dei
treni d’onda a monte del fronte e una drastica diminuzione della viscosità numerica



necessaria per la stabilità dello schema in presenza di soluzioni caratterizzate da fronti
ripidi o discontinuità.

Infine, viene proposto un metodo ad elementi finiti per equazioni di convezione-
diffusione-reazione su superfici. Diversamente da molte tecniche precedenti, questo ap-
proccio si basa su una formulazione geometrica intrinseca e di conseguenza anche il me-
todo ad elementi finiti risultante è completamente intrinseco alla superficie. Nell’ultima
parte di questo lavoro si riporta il dettaglio della formulazione e il confronto con uno
schema agli elementi finiti per PDE su superfici preso dalla letteratura. In seguito il
metodo è verificato su diversi problemi sia stazionari che transitori in regime diffusivo
e convettivo. I risultati confermano le stime di convergenza attese teoricamente e la
buona performance dello schema proposto.
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1
Introduction

In many practical geophysical applications, such as large-scale modeling of fluid motion
in oceans and rivers [49], river morphodynamics and debris flow [75, 53, 51], avalanche
dynamics [40], and atmospheric circulation [50], the Shallow Water (SW) approxima-
tion is used as an effective tool to derive appropriate reduced dimensionality models
for quantitative simulations of such phenomena. Generally, the typically accepted hy-
pothesis is that the flow develops preferentially along one direction, e.g., horizontal,
or, equivalently, that one component of the fluid velocity is negligible with respect
to the other two. This is the so-called SW assumption. In most cases, the negligi-
ble component of the flow velocity is perpendicular to the surface over which motion
develops. Then dimensionality reduction proceeds via depth integration of the three
dimensional governing equations, e.g., the Navier-Stokes (NS) equations, to arrive at a
two-dimensional system with specific flow rate and water depth as unknowns [see e.g.
31].

For slowly varying bottom topographies fluid depth is evaluated along the vertical
direction as an approximation of the bottom normal. This approach is generally used in
modeling large scale ocean dynamics or atmospheric flows, where the bottom boundary
is the geo-sphere and the normal direction coincides with the direction of gravitational
forces [61]. Also at smaller scales, typical of models of river hydraulics or granular and
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2 CHAPTER 1. INTRODUCTION

snow avalanches, the vertical direction is ordinarily utilized [52]. However, this approx-
imation is valid only for relatively small bottom slopes, commonly estimated at about
six degrees with respect to horizontal [22], and for negligible curvatures of the bottom
relief. To improve accuracy, ad hoc pressure corrections are often devised to take into
account deviations of the vertical pressure profile from the hydrostatic behavior due
to bathimetry variability [49]. More recent attempts look at extensions of the Boussi-
nesq scaling approach to evaluate these corrective terms [34], employing sufficiently
low order Green-Naghdi polynomial expansions of the vertical pressure profile to com-
bine accuracy and computational efficiency of the resulting model [74]. Another recent
non-hydrostatic pressure solver for the nonlinear shallow water equations is proposed
in Aricò and Lo Re [7].

The presence of a curved bottom topography plays an important role, increasing
the geometric complexity of the fluid streamlines. It is then difficult to accurately
identify the negligible velocity component under the SW hypothesis, as the average
flow field drastically departs from a rectilinear behavior. To address this problem, Sav-
age and Hutter [66, 67] developed a formulation of the SW model in local curvilinear
coordinates based on depth integration along the normal to the topography. Their
approach is valid only for small and essentially one-dimensional bottom curvatures
and in practice assumes that the fluid surface is parallel to the bottom. This strategy
was extended by Bouchut et al. [17], Bouchut and Westdickenberg [16] to consider
two-dimensional settings and less restrictive bottom geometries. Starting from the NS
equations, the flow velocity component perpendicular to the bottom is considered neg-
ligible and a hydrostatic pressure distribution is assumed along local normals. The
resulting SW equations are derived by depth integration along the normal direction,
under the further hypotheses of a linear velocity distribution (equivalent to assuming
constant depth-averaged velocity) and of a fluid depth sufficiently small to guarantee
the invertibility of the coordinate transformation. In addition, Bouchut and Westdick-
enberg [16] proved that their SW system (i) admits a conservative energy equation,
(ii) preserves the steady-state of a lake-at-rest, and (iii) is an approximation of order
ε2, where ε is the aspect ratio between the depth of the fluid layer and the charac-
teristic length along which the phenomenon develops (the SW hypothesis states that
ε � 1). Applications of this model are described in Fernández-Nieto et al. [38], Pelanti
et al. [62], Bouchut and Boyaval [15], Moretti et al. [56]. A more intrinsic approach
was recently proposed by Fent et al. [37], who suggests to perform depth integration
following the so-called “cross-flow” path, along which the tangential component of the
fluid velocity is zero. Unfortunately the definition of the “cross-flow” paths is implicit,



3

as it requires the knowledge of the unknown NS velocity field. For this reason, Fent
et al. [37] approximate the “cross-flow” path with the direction normal to the bottom
starting from a NS system defined on a curvilinear coordinate frame defined on the
bottom geometry. The system of SW Equations (SWE) resulting from depth integra-
tion turns out to be closely related to the model of Bouchut and Westdickenberg [16],
and shares similar approximations and limitations in terms of the geometry of bed
topography.

In this work, we propose a new geometrically intrinsic formulation of the SWE on
general topography and study its mathematical structure and numerical solution. Our
developments take inspiration from the works of Bouchut and Westdickenberg [16] and
of Fent et al. [37], both of whom include the effects of the bottom geometry on the
SW system. In the former, the derived model includes the bottom geometry using a
three-dimensional Cartesian coordinate system. As a consequence, the SWEs contain
non-conservative terms that need to be properly handled in the numerical solution
phase. In the latter approach, depth integration proceeds using a local coordinate sys-
tem defined on the bottom surface. Again, non-conservative terms arise in the covariant
form of the equations. Similarly, in our work we describe the SW model on a local ref-
erence frame. However, differently from previous work, by careful use of contravariant
and covariant vectors we are able to arrive at a system that is completely intrinsic to
the bottom geometry, with a source term that contains only bottom slope and curva-
ture information. The resulting set of equations is characterized by spatially varying
flux functions and bottom-related sources. We study the mathematical structure of
the proposed approximation, proving order of accuracy with respect to a “geometric”
aspect ratio parameter εG that includes information on local curvatures and slope of the
bottom surface. We then study the hyperbolic structure of the proposed system using
bottom-intrinsic differential operators and show that it is invariant under rotational
transformations, satisfies the lake-at-rest condition, and admits a conserved energy in
absence of bed resistance.

The intrinsic nature of the developed SWE allows the formulation of an intrinsic
Finite Volume (FV) discretization, with some complications due to the presence of non-
autonomous fluxes and space-varying source terms. Rossmanith et al. [63] were among
the first to study the numerical solution of a hyperbolic system on a general manifold
by means of a FV scheme defined on a quadrilateral grid. However, the discretization of
geometric quantities based on the surface fundamental forms by quadrilateral meshes
turns out to be non-consistent [57]. For this reason, in this work we use triangular grids
to derive a first order Godunov type FV method. Surface interpolation of the geometric
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quantities and the existence of an intrinsic divergence theorem provide the necessary
tools to produce a bottom-intrinsic discretization. We prove that approximated geo-
metric quantities converge over subsequent refinements of the surface mesh with second
order with respect to the mesh parameter h, and consequently that the discrete diver-
gence theorem is exact up to second order. Using the rotation invariance of the SW
equations, we define a geometrically adapted one-dimensional Riemann problem on
the curvilinear triangle edges. The exact Riemann solver, proposed by Toro [70] for
dam-break problems in classical SW system, is directly applied in solving the Riemann
problem after carefully assigning the left and right states at the triangle edges in the
corresponding local reference frames. The same considerations are implemented in the
HLL and HLLC schemes used to address problems with more general wave patterns.
Particular attention is required in order to maintain the well-balance property in the
discrete setting. We follow the approach proposed by Audusse et al. [8], Bouchut [14]
who introduce a general strategy based on a local hydrostatic reconstruction that en-
sures well-balance and preserves the non-negativity of the water height. We extend the
same idea to our intrinsic setting, obtaining a quadrature rule for the curvilinear source
integrals that is consistent with the order of the scheme and is exact in a steady-state
configuration.

A number of test cases performed over slowly varying bottom topography are used
to show the effectiveness of the numerical approach and to verify the importance of
considering the geometric features of the bed topography in the equations. The bottom
surfaces are defined by explicit formulas, thus allowing the exact calculation of the
metric tensor. The approximation of these quantities starting from real digital elevation
maps requires the use of computational geometry tools [see e.g. 59, 58], which is beyond
the scope of this study.

The promising results obtained with a low order discretization scheme suggested
the formulation of our approach using higher-order methods. For this purpose we
chose to work within the framework of the Discontinuous Galerkin (DG) approach
for its similarity to the FV method. For example, [3] describe a DG scheme for the
standard SWEs that generalizes and extends the Godunov FV method [21] in several
ways. The choice of DG methods was also dictated because of other reasons. First,
the use of higher-order polynomials is naturally built into the method. Instead of
computing higher-order terms through some sort of ad hoc post-processing procedure,
such as in the reconstruction phase in ENO-WENO approaches in FV [see e.g. 55],
they are defined directly in the variational formulation. Second, diffusive terms can
be incorporated into the method using the local DG methods as described in [3].
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In addition, the DG method allows the use of non-conforming grids, i.e., grids with
hanging nodes without the use of mortar spaces. This feature could be very useful in
dealing with complicated geometries and adaptive meshes.

DG methods, associated with Runge-Kutta discretization in time, were first ana-
lyzed by Cockburn and Shu in a series of papers [25, 27, 28, 29, 26]. Extensions to
the Local DG (LDG) method were initially provided in [24]. Stability for nonlinear
advection-diffusion systems and a priori error estimates for constant coefficient prob-
lems were studied in [20]. Finally, Cockburn and Dawson [23] generalized these results
to multi-dimensional equations with spatially varying coefficients.

Our application of the DG method to our intrinsic framework starts from the sim-
pler scalar transport equation and then moves to the ISWE model. Because of the
inherent limitations of surface approximations, we confine the developments to linear
basis functions. Again, the approach remains completely intrinsic by a proper formu-
lation of the linear basis functions and geometric interpolations to define quadrature
points starting from surface information on triangulation nodes.

Building on this work on DG, we extend the intrinsic approach at linear basis func-
tions on triangles to address convection-diffusion problems on surfaces with conforming
Galerkin Finite Element (FE) methods. Starting from the recent review work of Dziuk
and Elliott [36] and the more recent work of Olshanskii et al. [60], we develop linear
FEM in a completely intrinsic framework for the convection-diffusion-reaction equa-
tion on surfaces. The development is carried out in such a way that the convergence
results reported in Dziuk and Elliott [36] can be immediately extended in the intrin-
sic approach. Numerical examples taken from the literature are used to reaffirm the
previous assertion experimentally.

The successful development of the intrinsic FEM approach suggested the possi-
bility to extend to surface equations the Entropy-Viscosity (EV) approach recently
proposed by [45, 41, 44, 47]. Entropy viscosity methods are appealing for several
reasons. At a fundamental level, the notion of driving numerical dissipation via the
physical dissipation dictated through an entropy inequality has sound grounding in the
mathematical theory for hyperbolic conservation laws [43]. More practically, entropy
viscosity methods are valid for complex geometries with unstructured meshes and bring
many desirable features of finite volume methods to a continuous Galerkin finite ele-
ment framework. That is, they can be advanced with explicit time integration and are
maximum principle preserving (or invariant domain preserving in the case of systems)
[46, 44]. Then it is completely natural to try to extend this approach to our intrinsic
setting to handle the numerical solution of PDEs on surfaces. In this thesis, only a
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preliminary work mostly dedicated to the development of the formulation is reported,
while implementation and testing are left as future work.

The thesis is organized as follows. Chapter 2 contains all the definitions and results
related to differential geometry that are needed for the development of the thesis work.
Chapter 3 addresses the derivation of the intrinsic shallow water equations from the
Navier-Stokes system. We start from the formal definition of a local reference frame,
covariant differential operators, and progresses by performing the depth-integration.
The chapter ends with the analysis of the properties of the model. Chapter 4 develops
the first order finite volume method. First the approximations of the geometrical
quantities are described and analyzed. Subsequently, the full model is derived and
its properties are studied. Finally, numerical results ranging from simple domains
to complex three-dimensional surfaces are reported. All the theoretical results are
verified experimentally. Chapter 5 deals with the extension of the FV approach to
the discontinuous Galerkin method. After an initial development part on the scalar
transport equation, the extension to ISWE is reported, and the chapter concludes with
numerical examples. In chapter 6 we address the intrinsic conforming finite element
method for the advection-diffusion-reaction equation. Building on the developments of
the DG method, the intrinsic scheme is described and tested on literature examples.



2
Geometric Setting

In this chapter we summarize the basic geometric notions that will be needed to treat
partial differential equations on surfaces. We will take advantage of the concepts pre-
sented mainly in two classical differential geometry books: Abate and Tovena [2] and
Do Carmo [33], reporting here standard results for the most parts without proofs. We
will take care of replacing the proofs by proper citations. We start by the definition
of regular surfaces and tangent planes. Then, we present some geometric properties,
as the first and second fundamental forms, the notion of curvatures and geodesics. We
conclude this chapter by applying these concepts to the field of PDEs and we introduce
the setting of surface PDEs, with some examples.

2.1 Regular surfaces

We start this section with the definition of regular surface in R
3. Roughly speaking a

regular surface is a special subsets of R3 that in a certain sense is two-dimensional and
smooth enough so that the usual notion of calculus can be extended to it. The proper
definition is stated as:

Definition 2.1.1. A subset S ⊂ R
3 is said to be a Ck -regular surface if, for each

p ∈ S, there exists a neighborhood V ⊂ R
3 and a map φp : U → V ∩ S of an open set

7
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U ⊆ R
2 onto V ∩ S ⊂ R

3 such that:

i) φp(U) ⊆ S is an open neighborhood of p ∈ S (i.e., there exists an open
neighborhood of p, V ⊂ R

3, such that φp(U) = V ∩ S);

ii) φp is a homeomorphism with its image ;

iii) the differential dφq : R2 → R
3 is injective for all q ∈ U (i.e., it has maximum

rank).

We call φp the parametrization or the system of (local) coordinates in p. The
inverse map φ−1

p is called the local chart in p. The neighborhood V ∩ S of p in S is
called a coordinate neighborhood, and the coordinates (x1

p, x
2
p) = φ−1

p (p) are called local
coordinates of p. The curve λ 	→ φp(o + λej) is the j-th coordinate curve through
p = φp(o). Given two points p,q ∈ S and their local parametrizations φp, φq, with
Up ∩Uq 
= ∅, if the transition map φp ◦φ−1

q is a Ck-diffeomorphism we say that the local
parametrizations are compatible. A family {φα} of compatible local parametrizations
φα : Uα → S such that S = ⋃

α φα(Uα) is called an atlas for a surface S ⊂ R
3. We will

neglect the subscript p when indicating the parametrization symbol φ in cases when
the central point p is obvious by context.

We give now some examples of regular surfaces.

Example 2.1. Given p ∈ R
3 and two linearly independent vectors v1,v2 ∈ R

3, the
plane S ⊆ R

3 through p and parallel to the two vectors is a regular surface with a
single local parametrization φ : R2 → R

3, given by φ(x) = p + x1v1 + x2v2. In this
case we have obviously a global parametrization for S.

Example 2.2. Let U be is an open subset of R2 and f : U → R an arbitrary smooth
function. Then, the graph of f ,

Graph(f) := {(x1, x2, f(x1, x2)) | (x1, x2) ∈ U} ,

is a regular surface in R
3. The map φ : U → R

3 given by φ(x) = (x1, x2, f(x1, x2)) is a
single local parametrization. We can check if it satisfies the conditions in the definition.
Item i) is clearly satisfied. The restriction to Graph(f) of the projection on the first
two coordinates is the inverse of φ, and it is continuous, so item ii) is satisfied. For the
third condition, we have:

Jφ(x) =

⎡
⎢⎢⎢⎣

1 0
0 1

∂f
∂x1 (x) ∂f

∂x2 (x)

⎤
⎥⎥⎥⎦ ,
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that has rank 2 everywhere.

We can give an alternative definition of a regular surface with a constructive flavor.
We start from the following definition.

Definition 2.1.2. Let V ⊂ R
3 be an open set, and f : V → R a C∞ function. If

df : R3 → R is surjective we say that p is a regular point for f , otherwise we call it a
critical point for f . If p ∈ V is a critical point, then we say that f(p) ∈ R is a critical
value. A point q ∈ f(V ) that is not a critical value is a regular value.

With this definition in mind, we can state the following fact, whose proof comes
from a special application of the implicit function theorem.

Proposition 2.1.3. Let V ⊆ R
3 be an open set, and f ∈ C∞(V ). If q ∈ R is a regular

value of f , then every connected component of the level set f−1(q) = {p ∈ V | f(p) = q}
is a regular surface.

We present now a local converse of example 2.2, that says that every regular surface
is locally the graph of a differentiable function, [2, prop. 3.1.29].

Proposition 2.1.4. If S ⊂ R
3 is a regular surface and p ∈ S, then there exists a local

parametrization φ : U → S in p that takes one of the following forms:

φ(x1, x2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(x1, x2, f(x1, x2)), or

(x1, f(x1, x2), x2), or

(f(x1, x2), x1, x2),

for a certain function f ∈ C∞(U). In particular, there is an open neighborhood NS ⊆
R

3 of S such that S is closed in NS .

As introduced before, the main idea behind the definition of a regular surface is
to define a set that is two-dimensional and regular enough so that the notions of
calculus can be extended to it. Let us see how to use local parametrizations to define
functions over a surface, and in particular how to extend the notions of continuity and
differentiability.

Definition 2.1.5. Let S ⊂ R
3 be a regular surface and consider p ∈ S. A function

f : S → R is of class C∞, or smooth, at p if there exists a local parametrization
φ : U → S at p such that f ◦ φ : U → R is of class C∞ in a neighborhood of
φ−1(p) ⊂ R

2.
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A smooth function is automatically continuous. Moreover, note that being smooth
on a regular surface is a property of the function, and does not depend on the local
parametrization, as the following theorem states [2]:

Theorem 2.1.6. Let S be a surface, and let φ : U → S, ψ : V → S be two lo-
cal parametrizations, with W = φ(U) ∩ ψ(V ) 
= ∅. Then, the map φ−1 ◦ ψ

∣∣∣∣
ψ−1(W )

:

ψ−1(W ) → φ−1(W ) is a diffeomorphism.

2.1.1 The tangent space

We want to describe now some of the properties and objects that arise naturally when
dealing with surfaces. We start from the notion of tangent space and tangent bundle.
Consider a curve σ of class C∞ lying on a regular surface S, i.e., a differentiable
function:

σ : (−ε, ε) → S ,

and define p := σ(0). A tangent vector to S at p is a vector of the form σ′(0) (σ′ is
called velocity vector for obvious analogy). The collection of the velocity vectors of all
the curves passing through p as t = 0 is the tangent cone of S at p:

TpS := {σ′(0) | σ : (−ε, ε) → S and σ(0) = p} �

Since S is a regular surface defined by a smooth parametrization, we have that for
every p ∈ S the tangent cone TpS is a plane and does not degenerate into a straight
line or a point. Let us show what happens in the simplest case of the plane.

Example 2.3. Let U ⊆ R
2 be an open set, and p ∈ U . Every curve contained in U is

planar, and so the tangent vectors to U at p lie in R
2. Conversely, if v ∈ R

2, the curve
σ : (−ε, ε) → S given by σ(λ) = p + λv has its support within U for ε small enough,
and v is the tangent vector. Thus, we proved that TpU = R

2.

If we consider a local parametrization for the surface, we can describe the relation
between subsets of the plane and the surface (see fig. 2.1), obtaining the following:

Proposition 2.1.7. Let S ⊂ R
3 be a surface, p ∈ S, and φ : U → S a local

parametrization at p with φ(x0) = p, x0 ∈ U . Then, dφx0 is an isomorphism between
R

2 and TpS.

In particular, TpS = dφx0(R2) is always a 2-dimensional vector space, and dφx0(R2)
does not depend on φ but only on S and p.





12 CHAPTER 2. GEOMETRIC SETTING

Let W ⊂ φ(U) be a neighborhood of p in S, then we can formally write

W = TpS + O
(
diam(W )2

)
� (2.1)

The isomorphism given by proposition 2.1.7 allows us to define a special basis for
the tangent plane. Let S ⊂ R

3 be a regular surface, p ∈ S and φ : U → S a local
parametrization centered in p (i.e., φ(o) = p). Consider {e1, e2} the canonical basis
of R2, then we can define:

∂i|p = ∂

∂xi

∣∣∣∣
p

= dφo(ei) = ∂φ

∂xi
(o) i = 1, 2 �

These are vectors lying on the tangent plane in p. The set {∂1|p, ∂2|p} forms a basis
for TpS and is called the basis induced by the local parametrization.

Example 2.4. Let Graph(f) ⊂ R
3 be the graph of a function f ∈ C∞(U). Con-

sider the local parametrization from example 2.2. The basis induced by φ at p =
(x1, x2, f(x1, x2)) ∈ Graph(f) is defined by:

∂

∂x1

∣∣∣∣
p

=

⎡
⎢⎢⎢⎣

1
0

∂f
∂x1 (x1, x2)

⎤
⎥⎥⎥⎦ ,

∂

∂x2

∣∣∣∣
p

=

⎡
⎢⎢⎢⎣

0
1

∂f
∂x2 (x1, x2)

⎤
⎥⎥⎥⎦ �

Remark 2.2. It is useful to remind what a coordinate system and a coordinate frame are.
Intuitively, for a regular surface S ⊂ R

3 we can always use the “straight” coordinate
system of R3 to describe the surface. This is classically denoted by (x1, x2, x3), and in
this case the canonical basis {e1, e2, e3} is the coordinate frame at each point. The
basis does not change with the point, and we will call this the Global Coordinate
System (GCS). In general, we are interested in different coordinate systems, which can
describe the surface in a more intrinsic way. An example of what is called “curvilinear”
coordinate system is the Local Coordinate System (LCS) in the coordinates (x1

p, x
2
p)

derived from a local parametrization of the surface. In this case the definition strictly
depends on the point. The induced basis, as previously defined, is the coordinate (or
reference) frame for TpS.

Remark 2.3. It is important to underline that each local parametrization φ : U → S
defines a coordinate system on S starting from the coordinate system on U . Different
local parametrizations provide different local coordinate systems.

We give now the definition of the so-called Lie bracket, a more algebraic concept
related to the notion of vector fields. Given two vector fields X, Y ∈ T S, the tangent
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frame. In particular, in every coordinate system, the induced local basis vectors ∂1, ∂2

commute. It is also possible to prove that this is also a sufficient condition in the
construction of a basis reference frame for the tangent plane, as stated in the following
theorem [1, thm. 3.7.4]:

Theorem 2.1.10. Given two linearly independent vector fields X1, X2 of T S, then the
following are equivalent:

i) for every point p ∈ S there exists an open subset V of S containing p and a
coordinate system defined on V such that

∂

∂xi
= Xi

∣∣∣∣
V

for i = 1, 2 ,

ii) [Xi, Xj] = 0 for i, j = 1, 2.

A coordinate system satisfying item i) is called a flat coordinate system.

2.2 Intrinsic and extrinsic quantities

Now that we have the basic structure of a regular surface, we focus on its geometric
properties. In particular, we want to underline the differences between intrinsic and
extrinsic quantities related to the surface. Geometry is first born from an extrinsic
point of view by watching objects embedded in some space and considering their char-
acteristics in relation to the surrounding space. Examples of extrinsic quantities are
the tangent vectors seen as vectors of R3, or any quantity expressed in the GCS.

The intrinsic point of view allows to consider features of an object without an
explicit reference to the space in which the object might be immersed. The concept
of metric is the basic intrinsic quantity that allows all the computations to be made
without “leaving” the surface. The first fundamental form is an example of such a
metric in the case of regular surfaces. Because of the main theme of this work, we will
present these quantities with a direct focus on the intrinsic geometry of the surface.

2.2.1 The first fundamental form

We start this section by introducing the first fundamental form of a regular surface, a
positive definite quadratic form defined on each tangent plane that allows us to compute
lengths of tangent vectors to the surface, as well as areas of regions of the surface. Let
S ⊂ R

3 be a regular surface. For all p ∈ S we denote by 〈·, ·〉p the positive definite
scalar product on the tangent plane TpS induced by the canonical scalar product of
R

3.
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Definition 2.2.1. The first fundamental form Ip is the (positive definite) quadratic
form associated with the scalar product:

Ip : TpS → R , Ip(v) = 〈v,v〉p ≥ 0 �

Remark 2.4. As introduced before, the term intrinsic refers to properties that do not
depend on the immersion of the surface in R

3. In particular, the properties that only
depends on the first fundamental forms are called intrinsic.

The knowledge of the first fundamental form Ip is equivalent to the knowledge of
the scalar product 〈·, ·〉p:

〈v,w〉p = 1
2 [Ip(v + w) − Ip(v) − Ip(w)] = 1

4 [Ip(v + w) − Ip(v − w)] �

In particular, we can also give a definition of it by considering a given local parametriza-
tion φ : U → S at p ∈ S, and {∂1, ∂2} the basis of TpS induced by φ. We can write
any tangent vector as a linear combination of basis vectors, i.e., for every v ∈ TpS,
v = v1∂1 + v2∂2. Then, we can express the scalar product 〈v,w〉p between two vectors
v,w ∈ TpS in coordinates as:

〈v,w〉p = v1w1 〈∂1, ∂1〉p + (v1w2 + v2w1) 〈∂1, ∂2〉p + v2w2 〈∂2, ∂2〉p �

Then we can define the metric coefficients E,F and G as the scalar products of the
basis vectors of TpS as in the following definition.

Definition 2.2.2. The metric coefficients of S with respect to φ are the functions
E,F,G : U → R given by

E(x) = 〈∂1, ∂1〉p , F (x) = 〈∂1, ∂2〉p , G(x) = 〈∂2, ∂2〉p ,

for all x ∈ U .

We can relate the first notation introduced by Gauss in the early 19th century to
the modern notation of differential geometry (and Einstein summation rule) whereby
repeated lower/upper indices are implicitly summed, and write:

E = g11 , F = g12 = g21 , G = g22 ,

〈v,w〉p = gij(p)viwj =: 〈v,w〉Gp
,

where Gp = (gij)ij is called the metric tensor and we replace the operator 〈·, ·〉p by the
symbol 〈·, ·〉Gp

when the vectors are expressed with respect to the basis vector of TpS.
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We will drop the subscript p when the dependence on the point p is clear from the
context.

For a regular surface the metric coefficients are functions in C∞(U) and they com-
pletely determine the first fundamental form and the scalar product, so we can write:

Ip(v) = E(x)(v1)2 + 2F (x)v1v2 +G(x)(v2)2 =

=
[
v1 v2

] ⎡
⎣E(x) F (x)
F (x) G(x)

⎤
⎦
⎡
⎣v1

v2

⎤
⎦ = vTGv = 〈v,v〉G ,

for all p = φ(x) ∈ φ(U) and v ∈ TpS. Note that, the metric coefficients strongly
depend on the chosen local parametrization, even though the first fundamental form is
related to the intrinsic metric properties of the surface. For the applications we have
in mind, the importance of Ip comes from the fact that we can treat metric questions
on a regular surface without further references to the ambient space R

3.

Length of a curve. The first fundamental form allows us to compute lengths of
curves. Given σ : I → S a parametrization of a curve lying on the surface, easy
calculations yield:

σ(λ) =
∫ λ

0
|σ′(τ)| dτ =

∫ λ

0

√
Iσ(τ)(σ′(τ)) dτ �

Conversely, if we can compute the length of curves with support on the surface S,
we can define the first fundamental form. Indeed, given p ∈ S and v ∈ TpS, let
σ : (−ε, ε) → S be a curve in the parameter λ ∈ (−ε, ε), with σ(0) = p and σ′(0) = v,
with length σ. Then, taking the derivative of σ from the first equality of the above
equation we obtain immediately:

Ip(v) =

∣∣∣∣∣∣
(
dσ
dλ

(0)
)2
∣∣∣∣∣∣ �

Moreover, if the support of the curve σ(λ) = φ(x1(λ), x2(λ)) is contained in a coordinate
neighborhood corresponding to the parametrization φ(x1, x2), we can compute also the
angle θ of the coordinate curves of the parametrization:

cos θ = 〈∂1, ∂2〉
‖∂1‖ ‖∂2‖

= F√
EG

,

noting that, the coordinate curves of a parametrization are orthogonal if and only if
F = 0 for all the points in the neighborhood. In this case, the parametrization is called
orthogonal, and as a consequence the metric tensor G is diagonal.
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Example 2.5. Let S ⊂ R
3 be a plane passing through p ∈ R

3 parallel to v1,v2 ∈
R

3 two linearly independent vectors, and let φ(x) = p + x1v1 + x2v2 be its local
parametrization introduced in example 2.1. For each p ∈ TpS, the induced basis of the
tangent plane is given by ∂1 = v1, ∂2 = v2, and the metric coefficients are:

E = 〈v1,v1〉 , F = 〈v1,v2〉 , G = 〈v2,v2〉 �

If the two vectors are orthonormal, then E = G = 1, and F = 0.

Example 2.6. Let U ⊆ R
2 be an open set, f ∈ C∞(U), and φ the local parametrization

of the graph of f , as in example 2.2. In this case, the metric coefficients are:

E = 1 +
∣∣∣∣∣ ∂f∂x1

∣∣∣∣∣
2

, F = ∂f

∂x1

∂f

∂x2
G = 1 +

∣∣∣∣∣ ∂f∂x2

∣∣∣∣∣
2

�

Remark 2.5. As apparent from example 2.5, an identity metric tensor implies a flat
(planar) surface. Indeed, it can be shown that if E = G = 1 and F = 0, then the
surface is locally isometric to a plane. If this happens at all points of the surface, then
the surface is essentially flat (a plane).

Area of a regular region. The first fundamental form allows also to compute the
area of bounded regions of a surface. First, we need to define what a region of a surface
is:

Definition 2.2.3. A regular region R ⊆ S is a connected compact subset of S obtained
as the closure of its interior R◦ and whose boundary is parametrized by finitely many
curvilinear polygons with disjoint supports. If S is compact, then R = S is a regular
region without boundary.

Definition 2.2.4. Let R ⊆ S be a regular region of a surface S. A partition of R is a
finite family R = {R1, � � � , Rn} of regular regions contained in R, such that R = ⋃

iRi

and Ri ∩ Rj ⊆ ∂Ri ∩ ∂Rj, for i, j = 1, � � � , n and i 
= j. The diameter diamR of a
partition is the maximum of the diameters of the elements of R.
A pointed partition of R is a pair (R,P) given by a partition R of R and a n-tuple
P = {p1, � � � ,pn} of points of R such that pi ∈ Ri, i = 1, � � � , n.

The notion of partition of a region will be useful also later in the numerical sections,
where we will describe the discretization of the domain by introducing the definition
of triangulation.
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Definition 2.2.5. Let R ⊆ S be a regular partition of a regular surface S and (R,P)
a pointed partition of R. For all Ri ∈ R, denote by πi (Ri) the orthogonal projection of
Ri on the affine tangent plane pi + Tpi

S. The area of the pointed partition is defined
as:

Area(R,P) =
∑
i

Area(πi (Ri)) �

The region R is rectifiable if the limit

AR = lim
diamR→0

Area(R,P)

exists and is finite. If it is the case, the limit is the area of R.

Note that the concept of rectifiability of a region is the direct extension of the idea of a
rectifiable curve. Intuitively, a rectifiable region is a finite union of piece-wise smooth
surfaces, and as such it has the desirable properties of smooth surfaces.

The following result [2, thm. 4.2.5], derived from the classical theorem of Change
of Variables for multiple integrals, states how to compute the area of a region:

Theorem 2.2.6. Let R ⊆ S be a regular region contained in the image of a local
parametrization φ : U → S of a surface S. Then, R is rectifiable and its area is

AR =
∫
φ−1(R)

√
EG− F 2 dx �

Moreover we have that:

Lemma 2.2.7. Given φ : U → S a local parametrization of a surface S, then:

‖∂1 ∧ ∂2‖ =
√
EG− F 2 ,

where the symbol ∧ denotes the vector product in R
3. Moreover, if ψ : V → S is

another local parametrization with W = ψ(V ) ∩φ(U) 
= ∅, and f = ψ−1 ◦φ|φ(U)−1, then

∂1 ∧ ∂2|φ(x) = det(Jf)(x) ∂̃1 ∧ ∂̃2|ψ◦f(x)

for all x ∈ φ−1(W ), where {∂̃1, ∂̃2} is the basis induced by ψ.

Integral of a function and Stokes theorems. A direct consequence of the previous
lemma is the fact that the integral does not depend on the local parametrization, and
thus we can define the integral of a function over a surface as follows:

Definition 2.2.8. Let R ⊆ S be a regular region contained in the image of a local
parametrization φ : U → S of a regular surface S, and f : R → R a continuous
function. The integral of f on R is given by∫

R
f =

∫
φ−1(R)

(f ◦ φ)
√
EG− F 2 dx �
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p

Tpσ

σ

Figure 2.3: Example of the osculating circle at the point p of a planar curve σ.

Moreover, we are interested in applying Stokes theorems, and to be able to speak
about them we need to introduce the concept of 1-form. Here we just quickly recall the
results we need, forgoing some precision for the sake of brevity. We refer to differential
geometry books, such as [13, 1], for a rigorous and detailed description of this topic.

Let f, g ∈ C∞(S) be two smooth scalar functions, then a general 1-form is given
by ω = f dx1 + g dx2. The differential of ω is given by dω = ( ∂g

∂x1 − ∂f
∂x2 ) dx1 ∧ dx2,

where now ∧ denotes the wedge product and dx1 ∧dx2 is the volume form for S. Then,
Stokes theorem can be written as [1]:

Theorem 2.2.9. Let S ⊂ R
3 be a surface with smooth boundary ∂S and ω a 1-

differential form with compact support on S. Then:∫
∂S
ω =

∫
S

dω �

Using the above expressions for ω and dω, we can write
∫
∂S
f dx1 + g dx2 =

∫
S

(
∂g

∂x1
− ∂f

∂x2

)
dx1 ∧ dx2 , (2.2)

that is the classical Gauss-Green theorem.

2.2.2 Second fundamental form and curvatures

In this section we move towards the notion of curvature of a surface. The idea forms
its basis in the definition of the curvature of a curve in R

2, which intuitively can be
defined by the rate of change of the tangent line to the curve. The direct extension of
this concept to regular surfaces suggests the idea of trying to measure how rapidly a
surface S pulls away from its tangent plane TpS in a neighborhood of a point p, or,
in other words, we want to measure the rate of change of the normal to the surface.
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Another equivalent intuitive definition for the curvature of a planar curve is to relate
it to the reciprocal of the radius of the “osculating circle”, which is the unique circle
tangent to the curve (fig. 2.3). In this case, the extension to two dimensions is not
the radius of the tangent sphere, but we would need to consider the principal radii of
a ellipsoid tangent to the surface. This is because in principle the surface can have
different curvatures along different directions.

We start our discussion from the definition of the normal vector field and of the
map that relates a point on the surface to the outer normal to the surface.

Definition 2.2.10. A normal vector field on a surface S ⊂ R
3 is a map N : S → R

3

of class C∞, such that N(p) is orthogonal to the tangent plane TpS for all p ∈ S. If
‖N‖ = 1, i.e., N ∈ S2, N is called the normal versor field to S and the map N : S → S2

is called the Gauss map.

Not every surface has a normal vector field globally, but given a local parametriza-
tion φ : U → S at a point p, then the Gauss map of φ(U) always exists and is defined
by:

N(p) = ∂1 ∧ ∂2

‖∂1 ∧ ∂2‖
(p) �

Remark 2.6. The existence of the normal vector field is related to the notion of ori-
entability. Following [33], we give the subsequent definition of orientability: a regular
surface S is called orientable if it is possible to cover it with a family of coordinate
neighborhoods in such a way that if a point p belongs to two neighborhoods of the
family, then the change of coordinates has a positive Jacobian at p. Note that this
definition of orientation is purely intrinsic.

The Gauss map determines uniquely the tangent planes to the surface, since N(p)
is orthogonal to TpS. Thus, its variation measures how the tangent planes change
over the surface. In particular, the Gauss map is differentiable and its differential is a
vector of the tangent plane TpS related to the rate of change of N, that is, how close
is a surface from being planar. As example, recall the parametrization of the plane in
example 2.1, the normal versor is simply the vector resulting from the vector product
of v1,v2, that is constant along the plane, and thus, the differential is zero.

We state here an important property of the Gauss map:

Proposition 2.2.11. Given a surface S ⊂ R
3 with Gauss map N : S → S2, the

differential dNp is an endomorphism of TpS, symmetric with respect to the scalar
product 〈·, ·〉p, for all p ∈ S.
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Remark 2.7. The map W : T S → T S, that for each point p ∈ S is defined as
Wp = dNp : TpS → TpS, the endomoprhism of the tangent plane, is called the Wein-
garten map.

We are now able to give the following definitions:

Definition 2.2.12. The second fundamental form of S is the quadratic form IIp : TpS → R

given by
IIp(v) = − 〈dNp(v),v〉p , ∀ v ∈ TpS �

Given φ : U → S a local parametrization of the surface centered at p, the form coeffi-
cients of S with respect to φ are the functions e, f and g : U → R defined by:

e(x) = − 〈dNφ(x)(∂1), ∂1〉p , f(x) = − 〈dNφ(x)(∂1), ∂2〉p , g(x) = − 〈dNφ(x)(∂2), ∂2〉p ,

for all x ∈ U .

As in the case of the metric coefficients, the form coefficients completely determine
the second fundamental form. For all p = φ(x), x ∈ U , and v = v1∂1 + v2∂2 ∈ TpS,
we get:

IIp(v1∂1 + v2∂2) = e(x)(v1)2 + 2f(x)v1v2 + g(x)(v2)2 �

And, again as for the metric coefficients, they depend on the chosen local parametriza-
tion.

Example 2.7. Let Graph(f) ⊂ R
3 be the graph of f : U → R, and φ the usual

parametrization (see example 2.2). The Gauss map exists globally and is given by:

N ◦ φ = ∂1 ∧ ∂2

‖∂1 ∧ ∂2‖
= 1√

1 + ‖∇ f‖2

⎡
⎢⎢⎢⎢⎢⎢⎣
− ∂f

∂x1

− ∂f

∂x2

1

⎤
⎥⎥⎥⎥⎥⎥⎦ �

If we compute now the differential of N in p, we obtain:

dNp(∂j) = ∂N ◦ φ
∂xj

(x) =

= 1
(1 + ‖∇ f‖2)3/2

⎡
⎣ ∂f
∂x1

∂f

∂x2

∂2f

∂xj∂x2
−
⎛
⎝1 +

(
∂f

∂x2

)2
⎞
⎠ ∂2f

∂xj∂x1

⎤
⎦ ∂1

+ 1
(1 + ‖∇ f‖2)3/2

⎡
⎣ ∂f
∂x1

∂f

∂x2

∂2f

∂xj∂x1
−
⎛
⎝1 +

(
∂f

∂x1

)2
⎞
⎠ ∂2f

∂xj∂x2

⎤
⎦ ∂2 �
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And finally, we can compute the second fundamental form:

IIp(v) = − 〈dNp(v),v〉p =

= − 〈dNp(∂1), ∂1〉p (v1)2 − 2 〈dNp(∂1), ∂2〉p v
1v2 − 〈dNp(∂2), ∂2〉p (v2)2 =

= 1√
1 + ‖∇ f‖2

[
∂2f

∂(x1)2 (v1)2 + 2 ∂2f

∂x1∂x2
v1v2 + ∂2f

∂(x2)2 (v2)2
]
,

that can be written in matrix form with respect to the basis {∂1, ∂2} of TpS as
IIp(v) =

(
1 + ‖∇ f‖2

)−1/2
H(f), where H(f) is the Hessian matrix of f . In partic-

ular the form coefficients are:

e = 1√
1 + ‖∇ f‖2

∂2f

∂(x1)2 , f = 1√
1 + ‖∇ f‖2

∂2f

∂x1∂x2
, g = 1√

1 + ‖∇ f‖2

∂2f

∂(x2)2 �

The fact that dNp (see proposition 2.2.11) is a symmetric endomorphism helps
us to define new quantities. The first definition follows from the fact that dNp is
diagonalizable:

Definition 2.2.13. A principal direction of S at p is an eigenvector of dNp of length
one, and the corresponding eigenvalue with the sign changed is a principal curvature.

If v ∈ TpS is a principal direction with principal curvature k, we have the relation:

IIp(v) = − 〈dNp(v),v〉p = − 〈−kv,v〉p = k �

Moreover, we can give a name to the trace and determinant of IIp:

Definition 2.2.14. The Gaussian curvature of S is the function K : S → R given by:

K(p) = det(dNp) , ∀ p ∈ S �

The function H : S → R, defined as:

H(p) = −1
2 tr(dNp) , ∀ p ∈ S ,

is called the mean curvature of S.

Since these quantities are directly computed from the Gauss map, the Gaussian cur-
vature and the absolute value of the mean curvature do not depend on the parametriza-
tion of the surface. If we denote the principal curvatures of S at p by k1, k2, then
K(p) = k1k2 and H(p) = (k1 + k2)/2. Moreover, it is interesting to note that the
Gaussian curvature can be interpreted in terms of ratios of areas. Given φ : U → S a
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local parametrization of a surface S at p, if Bε ⊂ R
2 is a ball centered in p and with

radius ε > 0, then if K(p) 
= 0 we have:

|K(p)| = lim
ε→0

Area(N ◦ φ(Bε))
Area(φ(Bε))

�

We can now relate the coefficients of the metric tensor and the second fundamental
form. Let M ∈ R

2,2 be the matrix representing the endomorphism dNp with respect
to the induced basis {∂1, ∂2} of the tangent plane in p. For every v = v1∂1 + v2∂2,w =
w1∂1 + w2∂2 ∈ TpS we have:

− 〈dNp(v),w〉p =
[
w1 w2

] ⎡⎣e f

f g

⎤
⎦
⎡
⎣v1

v2

⎤
⎦ =

= −
[
w1 w2

] ⎡⎣E F

F G

⎤
⎦ M

⎡
⎣v1

v2

⎤
⎦ ,

and we can directly compute the values of M :

M = − 1
EG− F 2

⎡
⎣eG− fF fG− gF

fE − eF gE − fF

⎤
⎦ �

In particular, the Gaussian curvature is given by

K = det(M) = eg − f 2

EG− F 2 ,

the mean curvature is

H = −1
2 tr(M) = 1

2
eG− 2fF + gE

EG− F 2 ,

and the principal curvatures are

k1,2 = H ±
√
H2 −K �

2.2.3 Geodesics

The goal of this section is to extend to the surface the role that straight lines have in the
plane. There are different ways of defining lines: a global geometric characterization
that sees a line segment as the shortest curve between its endpoints; and a local analytic
one, defining a line as the curve with a constant tangent vector. The extension on a
surface of the global characterization presents some issues, such as the fact that the
curve may not exists or not be unique; while, the local characterization seems to be
more consistent with the intrinsic approach we are pursuing, but needs some additional
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definitions. We start here by the introduction of the definition of covariant derivative,
which helps in the definition of constant vectors on a surface.

Recall that a tangent vector field in an open set W ⊂ S of a regular surface S is a
map X that assigns at each point p ∈ W a vector X(p) ∈ TpS. In particular, we can
consider the vector field along a curve σ : I → W of class C∞, defined as:

X : I → R
3 such that X(λ) ∈ Tσ(λ)S , ∀λ ∈ I �

The tangent vector σ′(λ) of a curve σ is a typical example of vector field along a curve.

Definition 2.2.15. Let X ∈ T S be a vector field along a curve σ : I → S of class C∞,
and fix p = σ(λ̄) and Y = σ′(λ̄) for some λ̄ ∈ I. The vector obtained by the orthogonal
projection of dX

dλ
(λ̄) onto the plane TpS is called the covariant derivative at p of the

vector field X relative to the vector Y and is defined as:

DYX = πp

(
dX

dλ
(λ̄)

)
,

where πp (·) : R3 → TpS is the orthogonal projection on the tangent plane to S at p.

Remark 2.8. If we do not fix the parameter λ̄ ∈ I, we can define the vector field
DX : I → R

3 as DX(λ) = Dσ′(λ)X ∈ Tσ(λ)S. This is called the covariant derivative of
the vector field X along a curve σ.

The above definition uses a particular curve σ(λ), tangent to Y at p. However, the
covariant derivative is a purely intrinsic notion that depends on the first fundamental
form of S. To show this fact let us express DYX in local coordinates. If φ : U → S be a
local parametrization whose image contains the support of a curve σ : I → S, then we
have σ(λ) = φ(σ1(λ), σ2(λ)). A vector field X along σ can be written in components
with respect to the local induced basis as X(λ) = X1∂1 +X2∂2, then we can compute
the covariant derivative and obtain:

DYX =
2∑

k=1

⎡
⎣dXk

dλ
+

2∑
i,j=1

(
Γkij ◦ σ

)
σ′
iX

j

⎤
⎦ ∂k � (2.3)

In particular, if the curve is aligned to one of the coordinate curve, i.e., Y = ∂j, and
the vector field is also tangent to a coordinate curve, X = ∂i, then:

DYX =
2∑

k=1
Γkji∂k �
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Definition 2.2.16. The functions Γkij are called Christoffel symbols with respect to the
parametrization φ, and they can be computed by the following formula:

Γkij = 1
2

2∑
l=1

gkl
(
∂gil
∂xj

+ ∂glj
∂xi

− ∂gij
∂xl

)
,

where gij are the coefficients of the first fundamental form, and gij of its inverse.

Definition 2.2.17. A vector field X on a parametrized curve σ : I → S is said to be
parallel if DX(λ) = 0 for every λ ∈ I.

Definition 2.2.18. A geodesic on a surface S is a curve σ : I → S of class C∞ such
that σ′ ∈ T S is parallel, i.e., such that Dσ′ = 0.

As previously said, a geodesic curve on a surface plays the role of a straight line
on the plane, in term of distances and connection of points. We need to show that
geodesics exist. Given a curve σ on a surface S and a local parametrization φ : U → S
that contains the curve, we can say from eq. (2.3) that the curve σ = φ(x1, x2) is a
geodesic if and only if satisfies the following system of differential equations:

σ′′
k +

2∑
i,j=1

(
Γkij ◦ σ

)
σ′′
i σ

′′
j = 0 , k = 1, 2 � (2.4)

The previous system of equations is called geodesic equation.

Proposition 2.2.19. For all p ∈ S and v ∈ TpS there exists a geodesic σ : I → S
such that 0 ∈ I, σ(0) = p and σ′(0) = v. Moreover, if σ̃ : Ĩ → S is another geodesic
satisfying the same conditions, then σ and σ̃ coincide in I ∩ Ĩ. In particular, for
all p ∈ S and v ∈ TpS there exists a maximal open interval Iv and unique geodesic
σv : Iv → S such that σv(0) = p and σ′

v(0) = v.

Thus, geodesics exist on regular surfaces and can be computed solving the geodesic
equation. However, the explicit computation of geodesics is very difficult even for
simple surfaces. Let us show this in the case of the graph of a function f ∈ C∞(U), for
U ⊆ R

2. Recalling the definition of the Christoffel symbols and eq. (2.4), the system
to solve is:

σ′′
k + 1

1 + ‖∇ f ◦ σ‖2

(
∂f

∂xk
◦ σ

)
〈(H(f) ◦ σ) · σ′, σ′〉 = 0 , k = 1, 2 �

Moreover, for parallel vector fields we have that:

Lemma 2.2.20. Given σ : I → S with 0 ∈ I and p = σ(0), then for all v ∈ TpS there
exists a unique parallel vector field X such that X(0) = v.
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there is a unique set of coefficients, u(i), such that

�u =
∑
i

u(i)ei �

The values u(i) are called the physical components of �u relative to the standard basis
set, and we denote them by subscripts surrounded with parentheses. Consider now
a regular surface in R

3 and a local parametrization φ : U → S of S centered at p,
with local coordinates (s1

p, s
2
p). We can compute the induced reference basis vectors

∂φ/∂s1, ∂φ/∂s2 ∈ TpS, that we will denote respectively by t1 and t2 for simplicity of
notation. The associated metric GS, namely the first fundamental form of S at p, is
defined by the following:

GS :=
⎛
⎝〈t1, t1〉 〈t1, t2〉

〈t2, t1〉 〈t2, t2〉

⎞
⎠ �

Note that, we have used the subscript S to relate the first fundamental form to the
surface S and distinguish the associated 2×2 metric tensor from the 3×3 metric tensor
necessary in the R

3 local reference frame that will be defined in the next paragraphs.
In view of the equations and quantities we are going to study later, we need to

define a three-dimensional local system of curvilinear coordinates, i.e., a coordinate
system spanning a neighborhood Np ⊂ R

3 of a point p belonging to the surface. We
have the following proposition [33]:

Proposition 2.3.1. Let S be a regular surface and φ : U → S a local parametrization
centered at p ∈ S. Then there exists a neighborhood W ⊂ φ(U) of p in S and a number
ε > 0 such that the segments of the normal lines passing through points q ∈ W , centered
at q and with length 2ε, are disjoint.

The union of all the segments of normal lines of length 2ε passing through q is called
the tubular neighborhood Np of W . The previous proposition allows the extension of
the local coordinate system to a tubular neighborhood of each point p. We can define
a t3 that extends the local basis {t1, t2} to a triplet of basis vectors attached to p ∈ S
that can be used to describe all other points in Np. This three-dimensional reference
frame will be called the “Local Curvilinear coordinate System” (LCS), and it will be
associated with the local coordinates (s1, s2, s3), with metric tensor G. Because of
proposition 2.3.1, the three-dimensional coordinate transformation Φp of each point
p ∈ Np from the global to the local coordinate is a differentiable map whose inverse is
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ε

q

S

Figure 2.5: Example of normal intersection for a point q outside the tubular neighbor-
hood.

differentiable (it is a diffeomorphism). We can identify these transformations as:

Φp : R3 → R
3 Ψp := Φ−1

p : R3 → R
3 , (2.5)

xp 	→ sp sp 	→ xp

GCS → LCS LCS → GCS

where xp = (x1
p, x

2
p, x

3
p) and sp = (s1

p, s
2
p, s

3
p) are the coordinates of p with respect to the

GCS and the LCS, respectively. Note that, if we restrict the domain of Φp to points
on the surface, this is exactly the local parametrization φ.

Remark 2.9. Given a neighborhood Np of p, every point q ∈ Np can be expressed in
the LCS as follows. Let q ∈ Np be given in the GCS by q = (x1

q, x
2
q, x

3
q). Consider the

line passing through q and parallel to t3, which can be given the following parametric
form:

γ(λ) : λ 	→ (x1(q), x2(q), x3(q)) − t3λ, (2.6)

with r = γ(λ̄) the intersection between the coordinate line γ and S. Thus, the tuple:

(s1(q), s2(q), s3(q)) =
(
x1(r), x2(r), λ̄

)
,

consists of the associated local coordinates of the point q.

Remark 2.10. The LCS thus defined is not a global bijection. In fact, singular points
may arise, for example, at the intersection of normal vectors leaving S, fig. 2.5. How-
ever, proposition 2.3.1 ensures that this LCS is a diffeomorphism in the tubular ε-
neighborhood of p, where Φq and Φ−1

q exist for each point q in this neighborhood and
are continuous, i.e., the transformation of coordinates is a diffeomorphism.

We have now two coordinate systems, (x1, x2, x3) and (s1, s2, s3) for the neighbor-
hood Np ⊆ R

3, for all p ∈ S, where x1, x2, x3 are the standard Cartesian coordinates,
while s1, s2, s3 are the local curvilinear ones, and we assume to have their transformation
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relations Φp and Ψp. As usual, the Jacobian matrix of the coordinate transformation
is the matrix of the change of coordinates between GCS and LCS. Going back to con-
sider the “physical” vector �u, we assume it attached to the surface S. Then, the vector
field �u can be written as �u = ∑

i u
iti, where ui are the components with respect to

the induced local basis and are called “contravariant” components. Following standard
notation, contravariant components are identified by means of superscripts. Note that
the LCS basis ti is formed by “covariant” vectors, and we use subscripts for their iden-
tification. If we consider an orthogonal reference frame, the relation between physical
and contravariant components can be shown directly as:

u(i) =
∑
i

√
giiu

i �

2.3.2 Differential operators

We start here by the definition of the intrinsic differential operators on a regular sur-
face. We present the following proposition that we state without proof. The proof is
immediate.

Proposition 2.3.2. Let (s1, s2) be the curvilinear coordinates on S and GS the associ-
ated metric tensor. Let f : S → R a scalar differentiable function on S, X : S → R

2 a
vector field on S and T : Ω → R

3×3 a rank-2 contravariant tensor given by T = {τ ij}.
Then, the intrinsic differential operators on S expressed in the local curvilinear coordi-
nate system are given by the following expressions:

• the intrinsic gradient of f is:

∇G f = G−1
S ∇ f = gij

∂f

∂si
; (2.7)

• the intrinsic divergence of X is:

∇G ·X = 1√
det(GS)

∇ ·
(√

det(GS)X
)

= ∂X i

∂si
+ ΓiijXj ; (2.8)

• the j-th component of the divergence of T is:

(∇G ·T)j = ∇Giτ
ij = 1√

det(GS)
∂

∂si

(√
det(GS)τ ij

)
+ Γjikτ ik , (2.9)

where ∇G ·τ (·j) identifies the divergence of the j-th column of T, and Γkij denote
the Christoffel symbols;
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• the intrinsic Laplace-Beltrami operator of f is:

ΔGf = ∇G · ∇G f = 1√
det(GS)

∂

∂si

(√
det(GS)gij ∂f

∂sj

)
� (2.10)

We state now some classical results useful in the study of partial differential equa-
tions that are still valid in the framework of surfaces. Starting from Stokes theo-
rem 2.2.9 and Gauss-Green theorem given in eq. (2.2), with reference to the definition
of the intrinsic differential operators, it is possible to write the divergence theorem on
surfaces in the following intrinsic form:

Lemma 2.3.3. Let S ⊂ R
3 be a surface with smooth boundary ∂S and X be continu-

ously differentiable vector field. Then:
∫

S
∇G ·X ds =

∫
∂S

〈X,μ〉G dσ

where μ : S → R
2 denotes the vector tangent to S and normal to ∂S with components

written with respect to the local reference frame (i.e., μ = μ1∂1 + μ2∂2), and ds and dσ
are the surface area measure and the curve length measure, respectively.

Another consequence of theorem 2.2.9 is the intrinsic Green’s formula (or integration
by parts):

Lemma 2.3.4. Let S ⊂ R
3 be a surface with smooth boundary ∂S and f, g ∈ C2(S̄)

be continuously differentiable functions over S̄. Then:
∫

S
〈∇G f,∇G g〉G ds = −

∫
S

ΔGf g ds +
∫
∂S

〈∇G f, μ〉G g dσ , (2.11)

where μ : S → R
2 denotes the vector tangent to S and normal to ∂S with components

written with respect to the local reference frame, and ds and dσ are the surface area
measure and the curve length measure, respectively.

2.3.3 Examples

Let us introduce now some classical examples of partial differential equations defined
on a surface S. We consider Γ ⊆ S a compact subset of the surface S, to be able to
handle boundary conditions.

Laplace equation. Laplace equation is one of the simplest example of elliptic partial
differential equation. Let u : Γ → R be a scalar function defined on the surface, then
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Laplace equation is a second-order PDE and it can be defined on a surface considering
the definition of the Laplace-Beltrami operator defined in eq. (2.10):

ΔGu = ∇G · ∇G u = 0 �

This can be directly extended considering a variable diffusion tensor K and the equa-
tion:

∇G · (K ∇G u) = 0 �

Note that the tensor K is physically an intrinsic quantity that measures the diffusivity
on the surface. Hence, in our setting the equation is well-defined and we do not need
to proceed with further adaptation, like projections of quantities on the surface (like
the approach presented in [36]).

Transport equation. Consider now a time-dependent case. The transport equation
is a first order conservation law for the quantity u : Γ × [0, tf ] → R. Assume Γ be
fixed in time, and w : Γ × [0, tf ] → R

2 a given velocity field everywhere tangent to the
surface. Then the linear transport equation reads:

∂u

∂t
+ ∇G · (w u) = 0 � (2.12)

The equation can be written as:

∂u

∂t
+ 〈w,∇G u〉G = 0 ,

if we assume a divergence-free velocity vector, i.e., ∇G ·w = 0.

Advection-diffusion-reaction equation. The advection-diffusion-reaction equa-
tion is a combination of the diffusion and advection equations used to describe a
combination of physical phenomena. The general equation reads:

∂u

∂t
− ∇G · (K ∇G u) + 〈w,∇G u〉G + c u = f , (2.13)

where u : Γ × [0, tf ] → R is the variable of interest and is a scalar function defined on
the surface, w : Γ × [0, tf ] → R

2 is a given divergence-free velocity field everywhere
tangential to the surface, K is the diffusion tensor, and we assume c ≥ 0 and f ∈ L2(Γ).
We also assume Γ to be fixed in time.
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Navier-Stokes equations. We conclude by considering the Navier-Stokes equations
for incompressible fluids. This system is defined in a three-dimensional domain, which
we denote by Ω ⊂ R

3, and we assume that Ω ⊆ NS , the tubular neighborhood of a
regular surface. In other words, we assume that the fluid moves on the surface S. Let
�u : Ω × [0, tf ] → R

3 be the velocity of the fluid, ρ the density, p : Ω × [0, tf ] → R is the
pressure and ε the kinematic viscosity. The following nonlinear equations govern the
movement of an incompressible viscous fluid:

∂�u

∂t
+ �u · ∇G �u = −1

ρ
∇G p+ εΔG�u (2.14)

∇G ·�u = 0 � (2.15)

These equations are written with respect to an LCS anchored on the surface S, which is
considered as the bed over which the fluid moves. The proper and complete definition
of the LCS will be described in the next chapter. This is the more complex and more
interesting example we presented, and gives the basis of the study of Shallow Water
Equations that are the focus of this work. We will see in the next chapter how this
system of equations enters into account.



3
Intrinsic Shallow Water Equations

Shallow Water models are two-dimensional models for fluid dynamics based on the
assumption that the fluid moves in waves with amplitude that is negligible with respect
to wave length. These equations are derived from the three-dimensional Navier-Stokes
equations after a process of depth average along a specific direction. Their importance is
due to the fact that depth integration allows the reduction from three to two dimensions
enabling efficient numerical computations, decreasing the burden and the complexity of
a three dimensional model at large scales. Shallow Water models arise in a wide variety
of applications, from meteorologic and atmospheric models to oceanography. Recently,
applications for modeling avalanches, debris flows, landslides and other phenomena
have been proposed. Although defined at smaller spatial scales than the previously
mentioned models, these applications must consider a general topography, such as
mountain landscapes, and this fact requires a rigorous derivation of the equations that
takes into account the geometric setting.

Savage and Hutter [66, 67] were the first to develop a formulation of the SW model
in local curvilinear coordinates based on depth integration along the normal to the
topography. Their approach is valid only for small and essentially one-dimensional
bottom curvatures and in practice assumes that the fluid surface is parallel to the
bottom. This strategy was then extended by Bouchut et al. [17] and Bouchut and

33
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Westdickenberg [16] to consider two-dimensional settings and less restrictive bottom
geometries. Starting from the NS equations, the flow velocity component perpendicular
to the bottom is considered negligible and a hydrostatic pressure distribution is assumed
along local normals. A more intrinsic approach was recently proposed by Fent et al.
[37], who approximate the optimal integration path, named the “cross-flow” path, with
the direction normal to the bottom starting from a NS system defined on a curvilinear
reference frame anchored to the bottom surface.

The aim of this chapter is to derive a new geometrically intrinsic formulation of
the SWE on general topography, which we call the Intrinsic Shallow Water Equations
(ISWE), from the Navier-Stokes system and prove some of their main properties. Our
developments take inspiration from the works of Bouchut and Westdickenberg [16] and
of Fent et al. [37], both of whom include the effects of the bottom geometry on the
SW system. In the former, the derived model includes the bottom geometry using a
three-dimensional Cartesian coordinate system. As a consequence, the SWEs contain
non-conservative terms that need to be properly handled. In the latter approach, depth
integration proceeds using a local reference frame defined on the bottom surface. Again,
non-conservative terms arise in the covariant form of the equations. Similarly, in our
work we describe the SW model on a local reference frame. However, differently from
previous work, by careful use of contravariant and covariant vectors we are able to arrive
at a system that is completely intrinsic to the bottom geometry, with a source term that
contains only bottom slope and curvature information. The resulting set of equations is
characterized by spatially varying flux functions and bottom-related sources. We study
the mathematical structure of the proposed approximation, proving order of accuracy
with respect to a “geometric” aspect ratio parameter εG that includes information
on local curvatures and slope of the bottom surface. We then study the hyperbolic
structure of the proposed system using bottom-intrinsic differential operators and show
that it is invariant under rotational transformations, satisfies the lake-at-rest condition,
and admits a conserved energy in absence of bed resistance.

3.1 Incompressible Navier-Stokes equations

The incompressible Navier-Stokes equations are a system of four partial differential
equations that fully describe the dynamics of a viscous fluid, in which the stresses
are assumed proportional to the gradient of velocity. They are an important example
of hyperbolic partial differential equations, directly derived from the equations for
the conservation of mass and momentum. Consider the incompressible Navier-Stokes
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equations on an open domain Ω ⊂ R
3 written as:

∇ ·�u = 0 , (3.1a)
∂�u

∂t
+ ∇ ·(�u⊗ �u) = −1

ρ
∇ p+ 1

ρ
∇ ·T + �g , (3.1b)

where �u : Ω × [0, tf ] → R
3 is the fluid velocity, ρ its density, assumed constant, p :

Ω × [0, tf ] → R is the fluid pressure, T : Ω → R
3×3 the deviatoric stress tensor, and

�g the gravity acceleration. Note that we have used the product rule of differentiation
and the incompressibility condition (3.1a) to write the convective term in conservative
form. Explicitly, we exploited the relation: ∇ ·�u ⊗ �u = �u · ∇ �u + �u∇ ·�u. Moreover,
using the standard Reynolds averaging in time and the Boussinesq simplification it is
possible to relate the term ∇ ·T with the more usual εΔ�u [69], to recover the more
classical formulation as seen in eq. (2.14). We assume that the domain boundary ∂Ω is
smooth and formed by the union of the bottom surface (SB), the free surface (SF), and
the lateral surface. Smoothness is detailed by the hypothesis that all these surfaces
are regular and can be identified by the graph of some function. Thus, the bottom
surface will be given by the graph of the function B : U ×R → R, U ⊂ R

2 open, i.e., in
a global (Cartesian) coordinate system x1, x2, x3 (GCS) with x3 assumed aligned with
the action of gravity but in the opposite direction:

SB :=
{
(x1, x2, x3, t) ∈ R

3 × R such that x3 = B(x1, x2)
}
�

Equivalently, SB can be defined as F−1

B (0), where FB(x1, x2, x3) := x3 − B(x1, x2). Sim-
ilarly, we can define the fluid free surface F̂ : U × [0, tf ] → R as:

SF̂ :=
{
(x1, x2, x3, t) ∈ R

3 × R such that x3 = F̂(x1, x2, t)
}

= F
−1

F̂ (0) ,

where FF̂(x1, x2, x3, t) := x3 − F̂(x1, x2, t). The lateral boundary is fixed and indepen-
dent of time and does not enter our discussion. Next, we want to move our geometric
description to a new coordinate system s1, s2, s3 that locally follows the bottom surface.

3.1.1 Working on arbitrary topography

Following Fent et al. [37] we define a local curvilinear reference system (LCS) positioned
on the surface representing the topography of the bottom. All the developments,
including depth integration, will be carried out with respect to this local reference
system. We would like to describe the motion of a fluid particle using a coordinate
system that satisfies the following two main conditions:
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and
∂φ

∂s2
=
(
∂x1(s1, s2)

∂s2
,
∂x2(s1, s2)

∂s2
,
∂x3(s1, s2)

∂s2

)
= (0, 1,Bs2) ,

where Bsi = ∂B/∂si, for i = 1, 2. We need to underline that in general the induced
reference frame is not orthonormal, and not even orthogonal. In fact:

〈∂1φ, ∂1φ〉 = 〈(1, 0,Bs1), (1, 0,Bs1)〉 = 1 + B2
s1 ,

〈∂1φ, ∂2φ〉 = 〈(1, 0,Bs1), (0, 1,Bs2)〉 = Bs1Bs2 ,

〈∂2φ, ∂2φ〉 = 〈(0, 1,Bs2), (0, 1,Bs2)〉 = 1 + B2
s2 �

With reference to the examples related to the graph of a scalar function in chapter 2,
it is easy to compute all the other important geometric quantities.

To ensure numerical stability we are interested in a reference frame with orthogonal
vectors. We present here two theoretical results following [2].

Theorem 3.1.1. Given two differentiable and linearly independent vector fields X1, X2

on a surface S, then there exists a local parametrization φ : U → S such that ∂1φ is
proportional to X1 and ∂2φ is proportional to X2. Moreover, the support of the integral
lines coincide with the support of the coordinate lines.

Corollary 3.1.2. There exists a local parametrization at each point of S such that ∂1φ

and ∂2φ are orthogonal.

Proof. To prove this corollary it is enough to apply theorem 3.1.1 to the two vector
fields of an existing frame, the second of which has been orthogonalized with respect
to the first one using Gram-Schmidt.

As a consequence, we are allowed to select orthogonal vector fields and find a flat
coordinate system for them. In our case, a coordinate frame can be formed by taking
∂1φ and applying Gram-Schmidt to orthogonalize ∂2φ with respect to ∂1φ. Then, the
resulting coordinate system is well-defined, as summarized in the following proposition:

Proposition 3.1.3. Given a regular surface SB ⊂ R
3 defined by the graph of a differ-

entiable function B ∈ C∞(U), U open subset of R2. Let φ : (s1, s2) → (s1, s2,B(s1, s2))
be the Monge parametrization for SB, ∂1, ∂2 be the induced basis for the tangent plane,
and define:

t1 := a ∂1 and t2 := b

(
∂2 − ∂2 · ∂1

∂1 · ∂1

∂1

)

for some function a, b ∈ C∞(SB). Then, around each point p ∈ SB there exists a
neighborhood Ṽ and a parametrization φ̃ : Ũ → Ṽ such that the two partial derivatives
∂̃1 and ∂̃2 coincide with t1 and t2 on Ṽ .



38 CHAPTER 3. INTRINSIC SHALLOW WATER EQUATIONS

Moreover, the two vectors t1 and t2 form an orthogonal flat coordinate system, i.e.:
⎧⎨
⎩ 〈t1, t2〉 = 0

[t1, t2] = 0
�

Proof. Given the parametrization φ : U → SB, φ(s1, s2) = (s1, s2,B(s1, s2)) and the
natural coordinate frame {∂1, ∂2}, let X1, X2 be the vector fields given by X1 = ∂1,
X2 = ∂2 − ∂2·∂1

∂1·∂1
∂1. From corollary 3.1.2, there exists a parametrization φ̃ : Ũ → SB,

with coordinates s̃1, s̃2 ∈ Ũ , such that:

∂φ̃

∂s̃1
∝ X1 ,

∂φ̃

∂s̃2
∝ X2 ,

or equivalently that there exist a, b ∈ C∞(SB) such that ∂̃1 = aX1 and ∂̃2 = bX2.
Using the equivalence stated in theorem 2.1.10, we conclude that ∂̃1 and ∂̃2 satisfy:

⎧⎨
⎩ 〈aX1, bX2〉 = 0

[aX1, bX2] = 0
,

where the first equation is satisfied by construction.

In the next paragraph we take care of giving an explicit expression for our vectors,
after the extension of the local coordinate system to the three-dimensional tubular
neighborhood.

Local curvilinear system (LCS). Recall that we are interested in a local curvilin-
ear system anchored to the bottom surface that can characterize all the fluid domain
Ω ⊂ R

3 and that satisfies the two main conditions in items i) and ii). With reference
to section 2.3.1, we know that we can extend the local coordinate system on SB to a
three-dimensional coordinate system for the tubular neighborhood of the surface. In
particular, see eq. (2.5) for the definition of the three-dimensional coordinate transfor-
mation Φ. Thus, regarding the ensuing reference frame, the previous requests amount
to asking that the three vector fields t1, t2, t3 in R

3 are such that:

t1(p), t2(p) ∈ TpSB ∀ p ∈ SB ,

and we define t3(p) in order to be orthogonal to the other two frame vectors and such
that the right-hand rule is satisfied. This is equivalent to define an orientation to the
surface (see remark 2.6). Moreover, as previously mentioned, we need that t1, t2, t3

commute in all R3 and to be pairwise orthogonal. The practical definition of the LCS
proceeds as follows. First, we calculate the two tangent vectors t̂1(p) and t̂2(p), which
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is equivalent to compute the differential of Φp applied to the canonical basis e1, e2, e3,
of the GCS, or, equivalently, as the derivatives of the coordinate transformation with
respect to the LCS variables:

t̂i(p) = dΦp(ei) =
(
∂x1

∂si
,
∂x2

∂si
,
∂x3

∂si

)
, i = 1, 2 ,

where dΦp is the Jacobian matrix of the coordinate transformation. Then, vector t̂2 is
orthogonalized with respect to t̂1 via Gram-Schmidt, yielding the desired orthogonal
frame t1, t2 on TpSB. The frame-completing vector t3 is chosen to be orthogonal to the
previous two and unitary, i.e. ‖t3(p)‖ = 1. Note that normalization of the other two
basis vectors cannot be done, as this would amount to assume a zero curvature of SB

at p, loosing all the geometric information we would like to preserve in our LCS. The
explicit expression of the LCS frame vectors at p ∈ SB is:

t1(p) = (1, 0,Bs1) , (3.2a)

t2(p) =
(

− Bs1Bs2

1 + (Bs1)2 , 1,
Bs2

1 + (Bs1)2

)
, (3.2b)

t3(p) = N(p) = t1(p) ∧ t2(p)
‖t1(p)‖ ‖t2(p)‖ = (−Bs1 ,−Bs2 , 1)

‖t1(p)‖ ‖t2(p)‖ � (3.2c)

The associated metric tensor, as a consequence of the orthogonality property, be-
comes the diagonal matrix given by:

G :=

⎛
⎜⎜⎜⎝

‖t1(p)‖2 0 0
0 ‖t2(p)‖2 0
0 0 ‖t3(p)‖2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
h2

(1) 0 0
0 h2

(2) 0
0 0 1

⎞
⎟⎟⎟⎠ � (3.3)

It is important to underline that this particular definition of the tangent vectors has
been made for our convenience, but any local coordinate system that satisfies items i)
and ii) can be used. What follows is independent on the parametrization of the surface
and the definition of the LCS.

Remark 3.1. To simplify the exposition, we do not fully employ the classical tensor
calculus notation and do not use Einstein summation convention. However we need to
distinguish physical, covariant, and contravariant versions of vectors and tensors, to en-
sure coordinate invariance. As previously described we denote the physical components
of vectors by subscripts surrounded with parentheses. In the particular case of our LCS
s1, s2, s3, equipped with the associated diagonal metric G and the reference basis vectors
ti, the physical vector components need to be scaled with

√
G, or √

gii = h(i). Hence,
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a vector field �u can be written as �u = ∑
i u

iti, where the contravariant components ui

are related to the physical components by the relation:

u(i) = h(i)u
i �

We recall that, following standard notation, contravariant components are identified
by means of superscripts, while covariant components are denoted by subscripts.

Next, we need to adapt to the LCS the expressions of the differential operators
that appear in the Navier-Stokes equations, i.e., the gradient of a scalar function,
the divergence of a vector field, and the divergence of a tensor field, as stated in
proposition 2.3.2. We report here the particular formulation we obtain considering the
LCS:

• the gradient of a scalar function f is:

∇G f =
(

1
h2

(1)

∂f

∂s1
,

1
h2

(2)

∂f

∂s2
,
∂f

∂s3

)
; (3.4)

• the divergence of a contravariant vector field �u = u1t1 + u2t2 + u3t3 is:

∇G ·�u = 1
h(1)h(2)

(
∂ (h(1)h(2)u

1)
∂s1

+ ∂ (h(1)h(2)u
2)

∂s2
+ ∂ (h(1)h(2)u

3)
∂s3

)
; (3.5)

• the j-th component of the divergence of a 3 × 3 rank-2 contravariant tensor
T = {τ ij} is:

(∇G ·T)j = ∇G ·τ (·j) + 1
h(j)

(
2τ 1j ∂h(j)

∂s1
− τ 11h(1)

h(j)

∂h(1)

∂sj

)

+ 1
h(j)

(
2τ 2j ∂h(j)

∂s2
− τ 22h(2)

h(j)

∂h(2)

∂sj

)
, (3.6)

where ∇G ·τ (·j) identifies the divergence of the j-th column of T.

Remark 3.2. In the next sections, we will reduce our system to a two-dimensional
tangent-following local system describing only points of the bottom surface by means
of the coordinates s1, s2. In this case, the metric tensor reduces to the sub-tensor
containing only the information related to those two directions, identified previously
with GSB . For simplicity, we will use the same symbols, equations, and operators in
compact form independently of the spatial dimension, and the context will provide the
appropriate definition.
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Curvilinear Navier-Stokes equations. Using eqs. (3.4) to (3.6), the Navier-Stokes
equations given in eq. (3.1) can be written in the LCS as:

∇G ·�u = 0 , (3.7a)
∂�u

∂t
+ ∇G ·(�u⊗ �u) = −1

ρ
∇G p+ 1

ρ
∇G ·T + �g � (3.7b)

3.2 Derivation of the intrinsic SW model

The derivation of the SWE starts from the formulation of Navier-Stokes equations in
the local coordinate system eq. (3.7). Next, we perform depth integration along s3, the
direction locally normal to the terrain surface running between the bottom and the free
surfaces. We start this task by looking at the boundary conditions on these surfaces.

Boundary conditions

Using the LCS, the bottom and free surfaces are given by:

SB :=
{
(s1, s2, s3) ∈ R

3 such that s3 = B(s1, s2) ≡ 0
}
,

SF :=
{
(s1, s2, s3, t) ∈ R

3 × [0, tf ] such that s3 = F(s1, s2, t) ≡ η(s1, s2, t)
}
,

where η(s1, s2, t) = F(s1, s2, t) − B(s1, s2) denotes the fluid depth. We assume that the
bottom is not eroding and thus maintains a fixed geometry, while the fluid surface is a
function of time. The kinematic conditions postulate that the free surface moves with
the fluid and that the bottom is impermeable. Thus we can write:

dFM

dt
= ∂FM

∂t
+ �u · ∇G FM

∣∣∣∣
M

= 0 ,

where M = B or F . Since FB = s3 − B(s1, s2) and FF = s3 − F(s1, s2, t), we obtain
immediately:

dFB

dt
= �u

∣∣∣∣
B

· ∇G FB = �u · ∇G FB

∣∣∣∣
s3=0

= 0 , (3.8a)

dFF

dt
= −∂η

∂t
+ �u · ∇G Fη

∣∣∣∣
s3=η

= −∂η

∂t
−
(
u1

h(1)

∂η

∂s1
+ u2

h(2)

∂η

∂s2
− u3

) ∣∣∣∣
s3=η

= 0 � (3.8b)

Moreover, assuming that the external actions on the fluid surface are negligible, the
dynamic condition at the fluid-air interface translates into a zero-stress boundary equa-
tion:

TF · NF = 0 , NF = ∇ F
||∇ F|| , (3.9)
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where NF is the unit normal vector on the free surface F . The bed boundary condition
imposes the value of the shear stress:

TB · NB = fB = τ 1
b t1 + τ 2

b t2 + pBt3 , (3.10)

where pB indicates the bottom pressure. The values for τ ib are expressed by means
of classical steady-state empirical friction laws (e.g., Chezy, Manning, or Gauckler-
Strickler equations).

Depth integration of the Navier-Stokes equations

Starting from the Navier-Stokes equations written in the local curvilinear coordinate
system as given in eq. (3.7), we perform depth integration along the normal direction
s3 from s3 = B(s1, s2) ≡ 0 to s3 = F(s1, s2, t) ≡ η(s1, s2, t). In the interest of space, we
will omit the measure symbol ds3 in all the integrals.

The continuity equation (eq. (3.7a)). Applying Leibniz rule and recalling the
kinematic boundary conditions given by eq. (3.8), we obtain:∫ η

0
∇G ·�u =

∫ η

0

1
h(1)h(2)

(
∂ (h(1)h(2)u

1)
∂s1

+ ∂ (h(1)h(2)u
2)

∂s2
+ ∂ (h(1)h(2)u

3)
∂s3

)
=

= 1
h(1)h(2)

∂

∂s1

∫ η

0
h(1)h(2)u

1 + 1
h(1)h(2)

∂

∂s2

∫ η

0
h(1)h(2)u

2

+ u3
∣∣∣∣
s3=η

− u1

h(1)

∂F
∂s1

∣∣∣∣
s3=η

− u2

h(2)

∂F
∂s2

∣∣∣∣
s3=η

− u3
∣∣∣∣
s3=0

+ u1

h(1)

∂B
∂s1

∣∣∣∣
s3=0

+ u2

h(2)

∂B
∂s2

∣∣∣∣
s3=0

=

=∂η
∂t

+ ∇G ·
∫ η

0
�u ,

where �u := [u1, u2]T and the curvilinear divergence operator ∇G · is adapted to the two-
dimensional setting (see remark 3.2). Recall that application of Leibniz rule requires
enough regularity of both bottom and free surfaces as well as the velocity vector �u.

The momentum equation (eq. (3.7b)). Integration along the s3-direction yields:∫ η

0

∂�u

∂t
+
∫ η

0
∇G ·(�u⊗ �u) = −1

ρ

∫ η

0
∇G p− g

∫ η

0
∇G x

3 + 1
ρ

∫ η

0
∇G ·T �

Employing Leibniz rule and the kinematic BC, the left-hand-side can be written as:
∂

∂t

∫ η

0
�u− �u

∂η

∂t
+ ∇G ·

∫ η

0
�u⊗ �u− (�u⊗ �u) ∇G F

∣∣∣∣
s3=η

+ (�u⊗ �u) ∇G B
∣∣∣∣
s3=0

=

= ∂

∂t

∫ η

0
�u+ ∇G ·

∫ η

0
�u⊗ �u− �u

(
∂η

∂t
+ �u · ∇G F

∣∣∣∣
s3=η

)
= ∂

∂t

∫ η

0
�u+ ∇G ·

∫ η

0
�u⊗ �u ,
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H0/L0 = ε � 1. We would like to connect this idea with the order of approximation
of the model in our curvilinear setting.

Denote by V0 the scale of the contravariant tangential velocity components u1 and
u2, and by W0 the scale of the contravariant normal component u3. From the hypothesis
of regularity of the bottom surface, the metric coefficients can be considered of order
O(1), and represent just the length scale of the coordinate transformation between the
GCS and the LCS. However, we do not have any a priori information on the order
of magnitude of the derivatives of these metric coefficients. Formal application of the
chain rule of differentiation to the continuity equation (3.7a) yields:

∇G ·�u = 1
h(1)h(2)

(
∂

∂s1
(h(1)h(2)u

1) + ∂

∂s2
(h(1)h(2)u

2) + ∂

∂s3
(h(1)h(2)u

3)
)

=

= ∂u1

∂s1︸︷︷︸
O
(

V0
L0

)
+ ∂u2

∂s2︸︷︷︸
O
(

V0
L0

)
+ ∂u3

∂s3︸︷︷︸
O
(

W0
H0

)
+ u1

h(1)︸︷︷︸
O(V0)

∂h(1)

∂s1
+ u1

h(2)︸︷︷︸
O(V0)

∂h(2)

∂s1
+ u2

h(1)︸︷︷︸
O(V0)

∂h(1)

∂s2
+ u2

h(2)︸︷︷︸
O(V0)

∂h(2)

∂s2
= 0 �

Multiplying by H0, we have that:

H0

L0
V0 +W0 +H0V0 max

{
∂h(1)

∂s1
,
∂h(2)

∂s1
,
∂h(1)

∂s2
,
∂h(2)

∂s2

}
∼ 0 ,

from which we can estimate the scaling of the s3-velocity as:

W0 ∼ max
{
ε,H0

∂h(1)

∂s1
, H0

∂h(2)

∂s1
, H0

∂h(1)

∂s2
, H0

∂h(2)

∂s2

}
V0 = εGV0 � (3.12)

This defines a “geometric” aspect ratio εG given by::

εG := max
{
ε,H0

∂h(1)

∂s1
, H0

∂h(2)

∂s1
, H0

∂h(1)

∂s2
, H0

∂h(2)

∂s2

}
, (3.13)

that connects local curvatures information to the global length scale parameter ε.
Hence, the SW approximation can be restated by the assumption εG � 1, which
effectively adds a restriction on the shape of the bottom surface that ensures that the
derivatives of the metric coefficients are of the order of 1/L0.

Formal order of approximation and the SW hypothesis

Starting from the integrated Navier-Stokes equations in the curvilinear coordinate sys-
tem shown in eq. (3.11), we proceed by applying the SW hypothesis. Thus we postulate
that the fluid motion is much faster in the tangential directions than in the normal
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direction, i.e., u3 = εGu
i, i = 1, 2, εG � 1, and we expand the components of the

velocity vector in powers of the parameter εG:

ui = ui(0) + εGu
i
(1) + ε2

Gu
i
(2) + O

(
ε3

G

)
i = 1, 2 , (3.14a)

u3 = εGu
3
(1) + ε2

Gu
3
(2) + O

(
ε3

G

)
� (3.14b)

We also expand the general stress tensor components using the same parameter εG to
obtain:

τ ij = τ ij(0) + εGτ
ij
(1) + ε2

Gτ
ij
(2) + O

(
ε3

G

)
i, j = 1, 2, 3� (3.15)

Again, we assume that the terms τ i3 = τ 3i, i = 1, 2, 3, which contain u3, can be
expanded as:

τ 3i = εGτ
3i
(1) + ε2

Gτ
3i
(2) + O

(
ε3

G

)
for i = 1, 2, and τ 33 = ε2

Gτ
33
(2) + O

(
ε3

G

)
�

We split the velocity vector and stress tensor as the sum of the corresponding average
values �U and T and fluctuations ũ and τ̃ around the mean. Thus we write:

�u = �U + ũ, where �U(s1, s2, t) = 1
η

∫ η

0
�u(s, t) ds3,

∫ η

0
ũ(s, t) ds3 = 0 , (3.16)

T = T + τ̃ , where T(s1, s2, t) = 1
η

∫ η

0
T(s, t) ds3,

∫ η

0
τ̃(s, t) ds3 = 0 � (3.17)

Expansions in powers of εG are readily written for all these quantities. Rearranging
terms, we can write the velocity vector as its average value times a perturbation of the
identity 1 = [1, 1, 1]T :

�u =

⎡
⎢⎢⎢⎣
U1 + ũ1

U2 + ũ2

U3 + ũ3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
U1(1 + ũ1/U1)
U2(1 + ũ2/U2)
U3(1 + ũ3/U2)

⎤
⎥⎥⎥⎦ = �U ◦ (1 + ũ) ,

where the symbol ◦ denotes the component-wise product (Hadamard product) and

1 + ũ =

⎡
⎢⎢⎢⎣
1 + ũ1

1 + ũ2

1 + ũ3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1 + ũ1/U1

1 + ũ2/U2

1 + ũ3/U3

⎤
⎥⎥⎥⎦ �

Using eqs. (3.16) and (3.17), depth integration of �u and T yields:∫ η

0
�u = �U ◦

∫ η

0
(1 + ũ) = η�U ,

∫ η

0
T =

∫ η

0
(T + τ̃) = ηT �

The averaged tensor continues to display velocity fluctuations and can be expressed as:
∫ η

0
�u⊗ �u =

∫ η

0

⎡
⎣ (U1(1 + ũ1))2

U1U2(1 + ũ1)(1 + ũ2)
U1U2(1 + ũ1)(1 + ũ2) (U2(1 + ũ2))2

⎤
⎦ =

= �U ⊗ �U ◦
∫ η

0
(1 + ũ) ⊗ (1 + ũ) = �U ⊗ �U ◦

∫ η

0
I + ũ ⊗ ũ = η�U ⊗ �U ◦ A ,
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where the “reduced fluctuation” tensor associated with �u is defined as:

A = 1
η

∫ η

0
I + ũ ⊗ ũ � (3.18)

The intrinsic shallow water equations. Using the formal expansions in powers
of εG in the normally integrated NS system eq. (3.11) we obtain our reduced formula-
tion, which we name Intrinsic Shallow Water Equations (ISWE), as given in the next
theorem. We use the following notation. The couple (s1, s2) indicates the curvilinear
coordinate system associated with the LCS defined in eq. (3.2) with the ensuing metric
tensor Gsw given by the principal 2-minor of eq. (3.3). The vector �q = [ηU1, ηU2]T

denotes the depth-averaged velocity vector, while the tensors

Asw =
⎡
⎣α11 α12

α21 α22

⎤
⎦ and Tsw = η

⎡
⎣T11 T12

T21 T22

⎤
⎦

are the principal 2-minors of A and T, respectively. Vector fB = [τ 1
b , τ

2
b ]T is the vector

field accounting for bed friction. The we can state the following theorem.

Theorem 3.2.1. The intrinsic shallow water equations, written with respect to the
LCS (eqs. (3.2) and (3.3)), are given by:

∂η

∂t
+ ∇G ·�q = 0 , (3.19a)

∂�q

∂t
+ ∇G ·

(
1
η

(�q ⊗ �q) ◦ Asw +
(
gη2

2
∂x3

∂s3

)
G−1

sw

)
(3.19b)

+ gη2

2 ∇G

(
∂x3

∂s3

)
+ gη∇G(x3) − 1

ρ
(∇G ·Tsw + fB) = 0 �

They provide an approximation of order O(ε2
G) of the Navier-Stokes equations, under

the assumption of thin fluid layer, η = O(εG).

Proof. We start by re-writing eq. (3.11b) component-wise. Using the operators defined
in eqs. (3.4) to (3.6) and recalling that the terms ∂h(1)/∂s

3, ∂h(2)/∂s
3 vanish, the third

equation, describing momentum conservation along s3, takes on the form:

∂

∂t

∫ η

0
u3 + 1

h(1)h(2)

(
∂

∂s1

∫ η

0
h(1)h(2)u

1u3 + ∂

∂s2

∫ η

0
h(1)h(2)u

2u3 + ∂

∂s3

∫ η

0
h(1)h(2)(u3)2

)
=

= −1
ρ

∫ η

0

∂p

∂s3
− g

∫ η

0

∂x3

∂s3
+ 1
ρh(1)h(2)

(
∂

∂s1

∫ η

0
h(1)h(2)τ

31 + ∂

∂s2

∫ η

0
h(1)h(2)τ

32

+ ∂

∂s3

∫ η

0
h(1)h(2)τ

33
)

+ pB

ρ
,
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where pB is the bed pressure as given in eq. (3.10). Introducing the expanded velocity,
eq. (3.14), and tensor components, eq. (3.15), we obtain

1
ρ

∫ η

0

∂p

∂s3
+ g

∫ η

0

∂x3

∂s3

+ εG

[
∂

∂t

(
ηU3

(1)

)
+ 1
h(1)h(2)

(
∂

∂s1

(
ηU1

(0)U
3
(1)α13h(1)h(2)

)
+ ∂

∂s2

(
ηU2

(0)U
3
(1)α23h(1)h(2)

))

− 1
ρh(1)h(2)

(
∂

∂s1

∫ η

0
τ 31

(1)h(1)h(2) + ∂

∂s2

∫ η

0
τ 32

(1)h(1)h(2)

)
+
pB,(1)

ρ

]
+ O

(
ε2

G

)
= 0 , (3.20)

where the term pB,(1) , the s3-component of the shear stress TB · NB , is a first order ap-
proximation (as evidenced by the (1) subscript) and thus is assumed to be proportional
to εG. Looking at the zero-order terms, i.e., the terms proportional to ε0

G, we can write:

1
ρ

∫ η

0

∂p

∂s3
+ g

∫ η

0

∂x3

∂s3
= O(εG)

that corresponds to the hydrostatic pressure condition along the normal direction to
the bottom surface. Since we neglect the effects of surface tension and wind on the
free surface, we can set p

∣∣∣∣
s3=η

= patm = 0, to obtain:

p
∣∣∣∣
0

= ρgη
∂x3

∂s3
+ O(εG) � (3.21)

Recall that the term ∂x3

∂s3 does not depend on s3, since we are assuming the direction
s3 to be rectilinear. This condition states, up to terms of order εG, that the fluid
pressure varies linearly along the s3 direction. Substitution of this algebraic expression
for the pressure ensures the actual reduction of the system of PDEs from four to three
equations, as in the classical SWE derivation.

We turn now our attention to the other two components of eq. (3.11b). Focusing
only on the s1-equation, the other being analogous, we can write:

∂

∂t

∫ η

0
u1 + 1

h(1)h(2)

[
∂

∂s1

∫ η

0
h(1)h(2)(u1)2 + ∂

∂s2

∫ η

0
h(1)h(2)u

1u2 + ∂

∂s3

∫ η

0
h(1)h(2)u

3u1
]

+
∫ η

0

(u1)2

h(1)

∂h(1)

∂s1
+ 2

∫ η

0

u1u2

h(1)

∂h(1)

∂s2
−
∫ η

0
(u2)2h(2)

h2
(1)

∂h(2)

∂s1
=

= −1
ρ

∫ η

0

1
h2

(1)

∂p

∂s1
− g

∫ η

0

1
h2

(1)

∂x3

∂s1
+ 1
ρh(1)h(2)

[
∂

∂s1

∫ η

0
h(1)h(2)τ

11 + ∂

∂s2

∫ η

0
h(1)h(2)τ

12

+ ∂

∂s3

∫ η

0
h(1)h(2)τ

13
]

+ 1
ρ

(∫ η

0

τ 11

h(1)

∂h(1)

∂s1
+ 2

∫ η

0

τ 21

h(1)

∂h(1)

∂s2
−
∫ η

0
τ 22h(2)

h2
(1)

∂h(2)

∂s1

)
+ τ 1

b

ρ
�

Again, we enforce an approximation of order εG and recalling the expansions in eqs. (3.14)
and (3.15), we obtain:
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• for the left-hand-side

∂ηU1
(0)

∂t
+ 1
h(1)h(2)

∂

∂s1

(
ηα11(U1

(0))2h(1)h(2)

)
+ 1
h(1)h(2)

∂

∂s2

(
ηα12U

1
(0)U

2
(0)h(1)h(2)

)

+ηα11(U1
(0))2 1

h(1)

∂h(1)

∂s1
+2ηα12U

1
(0)U

2
(0)

1
h(1)

∂h(1)

∂s2
−ηα22(U2

(0))2h(2)

h2
(1)

∂h(2)

∂s1
+O(εG) ;

• for the right-hand-side

− η

ρh2
(1)

∂p

∂s1
− ηg

h2
(1)

∂x3

∂s1
+ 1
ρh(1)h(2)

[
∂

∂s1

∫ η

0
τ 11

(0)h(1)h(2) + ∂

∂s2

∫ η

0
τ 12

(0)h(1)h(2)

]

+ 1
ρh(1)

∂h(1)

∂s1

∫ η

0
τ 11

(0) + 2
ρh(1)

∂h(1)

∂s2

∫ η

0
τ 12

(0) − h(2)

ρh2
(1)

∂h(2)

∂s1

∫ η

0
τ 22

(0) +
τ 1
b (0)

ρ
+ O(εG) �

Inserting the expression for the pressure given in eq. (3.21) yields:

− η

h2
(1)

∂

∂s1

(
ηg
∂x3

∂s3

)
− ηg

h2
(1)

∂x3

∂s1
+ 1
ρ

(
∇G ·Tsw,(0)

)1
+
τ 1
b (0)

ρ
+ O(εG) �

The final divergence form of the model is obtained by applying the chain rule
on the first term of the previous equation. This implies the assumption that the
depth function η and ∂x3

∂s3 are differentiable functions. We obtain:

η

h2
(1)

∂

∂s1

(
ηg
∂x3

∂s3

)
= g

h2
(1)

∂

∂s1

(
η2

2
∂x3

∂s3

)
+ gη2

2h2
(1)

∂

∂s1

(
∂x3

∂s3

)
�

Recalling the definition of �q, the momentum equation can be re-written in compact
form intrinsic to the bottom surface as:

∂�q

∂t
+ ∇G ·

(
1
η

(�q ⊗ �q) ◦ Asw +
(
gη2

2
∂x3

∂s3

)
G−1

sw

)

+ gη2

2 ∇G

(
∂x3

∂s3

)
+ gη∇G(x3) − 1

ρ
∇G ·Tsw − fB

ρ
+ O(εG) = 0 �

Note that the higher order terms have the same form and are all proportional to η.
Hence, if we add the further assumption of η = O(εG) the final form of the momentum
equation is an approximation of order O(ε2

G). Finally, note that the continuity equation
eq. (3.11a) is exact and does not alter the order of approximation.

3.2.1 Properties of the model

As already mentioned in the introduction, the ISWE model is similar to the model
proposed by Bouchut and Westdickenberg [16]. The most important improvement
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of our new formulation eq. (3.19) is that only geometric terms appear in the source
term and that the full divergence form is maintained for the conserved quantities. In
addition to securing a more compact form of the equations, our formulation allows the
development of a fully intrinsic discretization as will be seen in chapter 4. Here we
prove some fundamental mathematical properties, namely that the proposed model is
invariant under rotation, it admits an energy equation, and is well-balanced (preserves
the steady state of lake-at-rest).

Proposition 3.2.2. The ISWE system defined in eq. (3.19) is invariant under rotation,
it admits a conserved energy in the absence of stresses, and is well-balanced.

Proof. The first statement is proved by showing that all involved operators are rotation
invariant. Consider first the gradient operator ∇G. For any function f : Ω → R, where
Ω ⊂ R

d, and for any rotation operator R ∈ R
d×d, the following relation holds:

∇G f̃(x) = RT ∇R

G f(x̃)
∣∣∣∣
x̃=Rx

,

where f̃(x) = f(Rx), and ∇R

G is the gradient operator in the rotated coordinates. This
follows immediately from the application of the chain rule formula. Note that in our
case d = 2, since we are considering points lying on the bottom surface. Concerning
the divergence operator, we consider first its application to a vector-valued function
u : Ω → R

d. We have:

∇G ·ũ = ∇R

G ·u
∣∣∣∣
x̃=Rx

,

where R ∈ R
d×d is a rotation matrix, ũ = RTu is the rotated vector, and ∇R

G · is the
divergence in the rotated coordinate system. With the same notation, the following
holds for the divergence of a tensor product u⊗ u:

∇R

G ·(ũ⊗ ũ) = ũ · ∇R

G ũ+ ũ∇R

G ·ũ = (RTu ·RT ∇G)RTu+RTu∇G ·u =

= RT (u · ∇G u+ u∇G ·u) = RT ∇G ·(u⊗ u) �

The rotational invariance of eq. (3.19) follows by noting that the above relation can be
directly extended also to a diagonal tensor.

The energy expression for the system in eq. (3.19) can be derived by setting Tsw = 0
and fB = 0 (zero stress) in eq. (3.19b). Scalar multiplication by the conservative velocity
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�U gives:
〈
�U,
∂η�U

∂t

〉
G︸ ︷︷ ︸

[A]

+
〈
�U,∇G ·(η�U ⊗ �U)

〉
G︸ ︷︷ ︸

[B]

+
〈
�U,∇G

(
1
2gη

2∂x
3

∂s3

)〉
G︸ ︷︷ ︸

[C]

+ 1
2gη

2
〈
�U,∇G

(
∂x3

∂s3

)〉
G︸ ︷︷ ︸

[D]

+ gη
〈
�U,∇G x

3
〉

G︸ ︷︷ ︸
[E]

= 0 �

We proceed now by applying the chain rule to the different terms. We obtain for the
term [A]:

[A] =gmjUm∂t
(
ηU j

)
= gmjU

mU j∂t η + ηgmjU
m∂t U

j =
∣∣∣�U ∣∣∣2

G
∂t η + η∂t

(
|�U|2

G
2

)
=

=
∣∣∣�U ∣∣∣2

G
∂t η + ∂t

(
η

|�U|2

G
2

)
−

∣∣∣�U ∣∣∣2
G

2 ∂t η = ∂t

(
η

|�U|2

G
2

)
+ |�U|2

G
2 ∂t η ,

and for term [B]:

[B] = gmjU
m

[
∂

∂si

(
ηU iU j

)
+ ΓiikηUkU j + ΓjikηU iUk

]
=

= ηU i gmjU
m∂U

i

∂si︸ ︷︷ ︸
[∗]

+ η
(
gmjU

mU j
) ∂U i

∂si
+ ηgmjU

mU jΓiikUk

︸ ︷︷ ︸
“η|�U|2

G ∇G �U ′′

+ ΓjikU iUkgmjU
mη + gmjU

mU jηU i ∂η

∂si︸ ︷︷ ︸
“�U ·�U⊗�U ∇G η′′

=

= ηU i

[
∂

∂si

(
|�U|2

G
2

)
− 1

2ΓiimgkjUmU j − 1
2ΓkijgmjUmU j

]
︸ ︷︷ ︸

[∗]

+ΓjikU iUkgmjU
mη

+ η
∣∣∣�U ∣∣∣2

G
∇G �U + �U · �U ⊗ �U ∇G η =

= ∂

∂si

(
ηU i |�U|2

G
2

)
− |�U|2

G
2

∂

∂si

(
ηU i

)
+ η

∣∣∣�U ∣∣∣2
G

∇G �U + �U · �U ⊗ �U ∇G η =

= ∂

∂si

(
ηU i |�U|2

G
2

)
+ 1

2ηgmjU
mU jΓiikUk − |�U|2

G
2

∂

∂si

(
ηU i

)

+
∣∣∣�U ∣∣∣2

G

∂

∂si

(
ηU i

)
+ 1

2ηgmjU
mU jΓiikUk −

∣∣∣�U ∣∣∣2
G
U i ∂η

∂si
+ gmjU

mU jηU i ∂η

∂si
=

= ∇G ·
(
η

|�U|2

G
2
�U

)
+ |�U|2

G
2 ∇G ·

(
η�U

)
�

The analogous computations for the other terms are not reported here because they are
similar. Finally, putting everything together and collecting common terms exploiting
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the relations in eqs. (3.4) to (3.6), the energy equation for the system becomes:

∂

∂t

⎛
⎜⎝η

∣∣∣�U ∣∣∣2
G

2 + 1
2gη

2∂x
3

∂s3
+ gx3

Bη

⎞
⎟⎠

+ ∇G ·

⎡
⎢⎣
⎛
⎜⎝η

∣∣∣�U ∣∣∣2
G

2 + 1
2gη

2∂x
3

∂s3
+ gx3

Bη + 1
2gη

2∂x
3

∂s3

⎞
⎟⎠ �U

⎤
⎥⎦ = 0 ,

where x3
B is the elevation of the bottom with respect to the the GCS, and

E = η

∣∣∣�U ∣∣∣2
G

2 + 1
2gη

2∂x
3

∂s3
+ gx3

Bη , p = 1
2gη

2∂x
3

∂s3

are the kinetic energy and the pressure term, respectively.
Next, we show that the system is well-balanced, in the sense that it preserves the

steady-state of a lake-at-rest. Let the functions η = η(s1, s2) and �q = �q(s1, s2) be time
independent. Then, the model results in a zero velocity field and thus the steady-state
for a horizontal free fluid surface (lake-at-rest) is preserved. Explicitly, from the mass
conservation equation we get �U = 0, and in the momentum equation the remaining
terms are:

∇G

(
1
2gη

2∂x
3

∂s3

)
+ 1

2gη
2 ∇G

(
∂x3

∂s3

)
+ gη∇G x

3 = 0 �

Again, after the application of the chain rule, we obtain the following relation for the
depth of the fluid:

η
∂x3

∂s3
+ x3

B = const � (3.22)

3.3 Balance law formulation of ISWE

In this final section of the chapter we want to write the ISWE system in a compact
form, which highlights its formulation as balance law and is useful to the development
of the numerical discretizations addressed in the following chapters. System (3.19) can
be written in divergence form as the balance law:

∂U
∂t

+ divG F (s,U) + S(s,U) = 0 � (3.23)

Here the conservative variable is given by U = [η, ηU1, ηU2]T = [η, q1, q2]T, where
η : Γ × [0, tf ] → R, and q = [q1, q2], q : Γ × [0, tf ] → R

2. From now on we make the
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assumption that αij = 1 in Asw, as commonly done in practical applications. The flux
function F takes the form

F (s,U) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1 q2

(q1)2

η
+ gη2

2h2
(1)

∂x3

∂s3

q1q2

η
q1q2

η

(q2)2

η
+ gη2

2h2
(2)

∂x3

∂s3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F η

F q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
� (3.24)

Note that the flux F is a function of s because of the appearance of the components h(i)

of the metric tensor Gsw and the presence of the bottom slope ∂x3/∂s3. The symbol divG

denotes the divergence operator applied to the flux function as divergence of a vector
for the first row and divergence of a 2×2 tensor for the last two rows. We can define it
as divG = [∇η

G ·,∇q
G ·]T. The source function S comprises the metric tensor coefficients,

the bottom slope and its derivatives, the two-dimensional averaged stress tensor Tsw,
the bottom friction parameter τb, and the conserved variable η. We summarize this
dependency by explicitly writing it out in S(s, η). We have then:

S(s, η) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

gη2

2h2
(1)

∂

∂s1

(
∂x3

∂s3

)
+ gη

h2
(1)

∂x3

∂s1
− 1
ρ

[∇G ·Tsw](1,·) − τ 1
b

ρ

gη2

2h2
(2)

∂

∂s2

(
∂x3

∂s3

)
+ gη

h2
(2)

∂x3

∂s2
− 1
ρ

[∇G ·Tsw](2,·) − τ 2
b

ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sη

Sq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
� (3.25)

The regularity assumption on the bottom surface implies the uniform continuity of the
flux and source functions with respect to s.



4
Intrinsic Finite Volume Scheme

One of the standard approaches in dealing with shallow water flows on variable to-
pography is to supplement the system of balance laws with an equation for the fixed
geometry, and this leads to a system in non-conservative form [54, 35, 18, 19]. Here we
are able to develop a first order upwind Godunov-type Finite Volume scheme defined
intrinsically on the LCS coordinate system that solves directly eq. (3.23). We consider
a low order discretization scheme because we want to highlight the importance of the
correct geometrical formulation of the ISWE system rather than focus on their nu-
merical discretization. Thus, we adopt a simple but robust solver, favoring resiliency
over accuracy. The aim is to derive intrinsic definitions of the geometric differential
operators.

We assume that the final system (3.19) is defined on a compact subset of the
bottom surface, Γ ⊂ SB, and that a well-defined curvilinear boundary, denoted by
∂Γ = ∂Γ, exists. We start our work on R(Γ), a partition of the region Γ, where
the divergence and integration by parts theorems are naturally defined. Following a
standard development workflow for FV methods, we test eq. (3.23) with a piece-wise
constant (in space and time) function and apply the divergence theorem to obtain the

53
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following set of equations valid for all regions Ri ∈ R(Γ) and for t ∈ [tk, tk+1]:

Uk+1
i = Uk

i − 1
ARi

Nσ(i)∑
j=1

ij

∫ tk+1

tk
Fij(U) dt−

∫ tk+1

tk
Si(η) dt , (4.1)

where we use the cell-averaged and edge-averaged quantities defined intrinsically in
R(Γ) as:

Ui = 1
ARi

∫
Ri

U ds , Fij = 1
ij

∫
σij

〈
F, νij

〉
G

dσ , Si = 1
ARi

∫
Ri

S ds � (4.2)

Note that the quantities Fij and Si are depending only on the unknown U but not
on the space variable s, since they are integrated in space. Moreover, it is important
to underline that no numerical approximations are done up to this point. Now we
need to devise numerically computable approximations of the quantities appearing in
eq. (4.1), namely in eq. (4.2). Thus, the following steps need to be appropriately
defined: i) time stepping; ii) normal fluxes on edges; iii) quadrature rules; iv) Riemann
problem. Moreover, we need to properly define the partition of the domain, namely a
triangulation. The scope of the next sections is to give an exhaustive definition of all
these steps, starting from the ones related to the approximation of the surface, then
the time discretization and the definition of the numerical fluxes.

4.1 Surface triangulation

The derivation of a numerical scheme starts from the definition of the computational
mesh.

Definition 4.1.1. Let Γ ⊆ S be a regular region (Γ = S with S compact is allowed).
A (regular) triangulation of Γ is a family T (Γ) = {Ti}i of surface triangles such that:

• Γ = ∪iTi;

• the intersection of two different triangles is either empty, or consists of vertices,
or is a whole side;

• every vertex of the boundary of R is a vertex of (at least) one triangle of the
triangulation.

Proposition 4.1.2. Let Γ ⊆ S be a region on a regular surface S, and U an open
cover of Γ. Then, there exists a triangulation T (Γ) of Γ such that for all T ∈ T (Γ)
there exists U ∈ U with T ⊂ U .
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Thus, triangulations exist and it is possible to choose arbitrarily small triangles. In
particular, we can see triangulations as particular case of partitions. We work on the
compact set Γ and we define the partition R(Γ) = T (Γ), as a surface triangulation
formed by the union of non-intersecting geodesic triangles (edges are geodesics). Obvi-
ously, we have that T (Γ) = ∪NT

i=1Ti = Γ and σij = Ti ∩ Tj is an internal geodesic edge.
We will also use the approximate triangulation Th(Γ) defined by the piece-wise linear
surface identified by the union of 2-simplices in R

3 (flat three-dimensional triangles)
with vertices coinciding with the vertices of T (Γ) and edges corresponding to secants
joining two vertices. We assume that this triangulation is closely inscribed in T (Γ) in
the sense of Morvan [57] (the tangent spaces of T (Γ) and of Th(Γ) are close in some
sense). Quantities belonging to the approximated triangulation Th(Γ) will be identi-
fied with the subscript h. Thus the symbol σh,ij will identify the common (straight)
edge between triangles Th,i and Th,j. Note that the mesh parameter h denotes also
the length of the longest triangle edge in Th(Γ). We denote by rT the radius of the
circle inscribed in Th and by hT the longest side of Th, and write h = maxT hT and
r = minT rT . We assume that Th(Γ) is shape-regular, i.e., there exists a strictly positive
constant ρ independent of h such that:

rT

hT
≥ ρ ∀T ∈ Th(Γ) �

Consequently, the surface triangulation T (Γ) is also shape-regular if the surface is
regular. We will denote by AT (Ai) the area of cell T (Ti) in T (Γ), and by ATh

(Ah,i)
the corresponding area in Th(Γ). Analogously, we will denote with σ (ij) the length
of the geodesic edge σ (σij) in T (Γ), and σh

(h,ij) the corresponding length in Th(Γ).
Let us explain more in details the relations between the surface triangulation T (Γ)

and the approximated triangulation Th(Γ). We recall from proposition 2.3.1 the notion
of tubular neighborhood NΓ, and from eq. (2.6) the relation to project points to the
surface Γ, and we give the following definition:

Definition 4.1.3. A subset W ⊂ R
3 is closely near to Γ if it lies in NΓ and if the

restriction of the orthogonal projection pr to W is one-to-one.

In particular, given a point q ∈ Th, we indicate with pr(q) the point in T ⊂ T (Γ)
of which q is the orthogonal projection along the surface normal direction N(pr(q)).
Thus, the orthogonal projection map given by

pr : Th(Γ) → T (Γ) (4.3)

is well defined for all the points of the approximated triangulation. From the regularity
of the surface it is possible to prove that the projection map is continuous. Moreover, we
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the maximum of the absolute values of the principal curvatures of Γ along N in pr(q).
Then, we can define the deviation angle, the relative curvature, and the relative height
of Th with respect to T .

Definition 4.1.5. Given a (regular) point q ∈ Th, let the angle θq ∈ [0, π2 ] be the
angle between the tangent spaces TqTh and Tpr(q)T . The deviation angle θmax of Th with
respect to T is the maximum over all the points q ∈ Th, i.e., θmax = maxq∈Th

θq.

Remark 4.2. The geodesic edge σ is the projection by pr of σh. The deviation angle θp

in p, shown in the right panel of fig. 4.1, is the angle formed by σh and tp, the vector
tangent to σ in p.

For any point q ∈ Th, the relative curvature of Th with respect to T in q is the
function ωΓ(q) formed by the product of the Euclidean distance

∣∣∣∣−−−−→
pr(q)q

∣∣∣∣ between pr(q)

and q times
∥∥∥Wpr(q)

∥∥∥, i.e., ωΓ(q) =
∣∣∣∣−−−−→
pr(q)q

∣∣∣∣ ∥∥∥Wpr(q)
∥∥∥. Then, the relative curvature of

a subset U of Γ is given by:

Definition 4.1.6. Given U ⊂ Γ, closely near, its relative curvature ωΓ(U) with respect
to Γ is ωΓ(U) = supq∈U ωΓ(q).

Finally we define the relative height of Th with respect to T as follows:

Definition 4.1.7. The real number defined by

πΓ(Th) = sup
q∈Th

hT
∥∥∥IIpr(q)

∥∥∥ , (4.4)

where
∥∥∥IIpr(q)

∥∥∥ denotes the usual norm of the second fundamental form of Γ at pr(q),
is called the relative height of Th with respect to T .

Now we are in the position to describe some approximation results related to these
geometric invariants [57]. We start with an estimate of the distance between triangles
in T (Γ) and Th(Γ).

Proposition 4.1.8. The Hausdorff distance dist(Th, T,) between any cell Th and its
projection T satisfies:

dist(Th, T ) ≤ hT ≤ 2rT �

Moreover, ωΓ(Th) ≤ πΓ(Th).

Next we move to the angular deviation between the surface and the approximate
triangulation:

sin θmax ≤
( √

10
rig(Th)(1 − ωΓ(Th))

+ 1
1 − ωΓ(Th)

)
πΓ(Th) ,



58 CHAPTER 4. INTRINSIC FINITE VOLUME SCHEME

where rig(Th) is the maximum among the cell vertices of the absolute value of the sinus
of the vertex angle, and is called the rightness of Th. We also need the following lemma
that is part of the proof of the previous result and is a direct application of the mean
value theorem:

Lemma 4.1.9. Given two points p,q ∈ T , the angle θpq ∈ [0, π2 ] between the two unit
vectors tp, tq tangent to the surface at p and q, respectively, satisfies:

sin(θpq) ≤ |IIT | pq , (4.5)

where |IIT | denotes the supremum over Γ of the norm of the second fundamental form
of Γ, and pq is the geodesic distance between p and q.

Using the above results, it is now easy to prove the following proposition, detailing
the estimates that will be later used in the proofs of the convergence of our approxi-
mations of Γ.

Proposition 4.1.10. The following relations hold:

1. the curvilinear length σ of edge σ is related to the Euclidean length σh
via the

inequalities:
σh

≤ σ ≤ 1
1 − ωΓ(σh)

σh
,

where ωΓ(σh) is the relative curvature with respect to Γ;

2. the difference between the unit vector v−→pq aligned to the chord σh and the unit
tangent vector tp to the geodesic edge at p satisfies:

∣∣∣v−→pq − tp
∣∣∣ ≤ 1

2 |IIT | σ ,

where |IIT | is the supremum over Γ of the norm of the second fundamental form
of Γ;

3. the surface area of the cell T is related to the planar area of Th by the relation:

|AT − ATh
| ≤ CΓ

(
θ2

max + ωΓ(Th)
)
,

where CΓ is a constant depending on Γ.

Remark 4.3. For any U ⊆ Th we have that for all q ∈ U the length of the orthogonal
projection

−−−−→
pr(q)q is bounded by the square of the length of the longest triangle edge,

i.e.,
∣∣∣∣−−−−→
pr(q)q

∣∣∣∣ ≤ C2
σh

[36]. From the definition of the relative curvature we find imme-

diately ωΓ(U) = supq∈U

∣∣∣∣−−−−→
pr(q)q

∣∣∣∣ ∥∥∥Wpr(q)
∥∥∥ ≤ C2

σh
, where here C is a generic constant.
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Remark 4.4. Analogously, the deviation angle θmax of Th with respect to T is bounded
by the radius of the triangle circumcircle, leading to the bound θmax ≤ Cσh

[57].

Remark 4.5. Note that the spectral norm of the second fundamental form of Γ at p
is exactly the principal curvature of Γ at p. Thus, |IIT | can be interpreted as the
maximum principal curvature of Γ.

Intrinsic quadrature rules and sampling points

The aim is to exploit these relation in order to define numerical quadrature rules for our
surface integrals consistent with the first order Godunov method we plan to use and
with minimal sampling points. This will allow to solve a minimal number of Riemann
problems per triangle edge. Linear consistency with a single sampling point is achieved
by the midpoint formula, which can be written as:

∫
σ
f(s) dσ ≈ σf(mσ) , (4.6)∫

T
f(s) ds ≈ ATf(mT ) , (4.7)

where σ is the length of the geodesic edge and AT the area of the surface triangle, and
f(mσ) and f(mT ) denote the evaluation of the surface function at the edge and cell
midpoints, respectively.

To address step iii) of the FV development mentioned at the beginning of this chap-
ter, we need to establish the approximations of the necessary geometric quantities. An
important feature we want to maintain in our numerical approach is the exclusive use
of geometrically intrinsic quantities. Up to this point, our FV scheme is defined in-
trinsically on the LCS attached on the bottom surface. To continue our development
within this setting, we assume that all the relevant intrinsic information, namely the
tangent plane, is known (in exact or approximate form) at the vertices of the triangu-
lation. Then the task is to develop intrinsic approximations of the geometric quantities
starting from these data.

Approximation on edges. With reference to fig. 4.2, we directly approximate the
LCS (or equivalently the tangent plane) at the edge midpoint mσ using nodal in-
formation, without actually resorting to an explicit expression for mσ. We start by
approximating the tangent plane TmσΓ from the linear interpolation of the tangent
vectors ti(A) and ti(B), i = 1, 2, with re-orthogonalization. The frame completing
normal vector is naturally obtained using the normalized outer product of t̃i. The
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where the third component of this parametric curve is the vertical projection of the
chord onto the surface and not the real geodesic curve connecting A and B. Then,
we compute the derivatives at the extremal points of this curve, obtaining the vectors
tangent to the relevant edge at the triangle nodes, which in our case are:

τA = σ̇(0), τB = σ̇(1) �

The tangent vector at mσ of the geodesic edge is then given by linear interpolation of
τA and τB, orthogonalized with respect to the Ñmσ to project it on TmσΓ:

τ ′
mσ

= 1
2 (τA + τB) , τ̃mσ = τ ′

mσ
−

〈
τ ′

mσ
, Ñmσ

〉
〈
Ñmσ , Ñmσ

〉Ñmσ �

Hence, the outer product of τ̃mσ and Ñmσ gives the approximation of the intrinsic
normal to the geodesic edge, namely:

ν̃mσ = τ̃mσ ∧ Ñmσ � (4.9)

To complete the definition we need to express ν̃mσ and τ̃mσ using the LCS bases. This
provides the approximate vectors that define a proper rotation and projection in the
direction orthogonal to the edge at the midpoint.

Approximation on cells. Analogous approximations need to be done in order to
define the geometric information on the cells, namely the tangent plane at the gravity
center of the cell mT . As before, we start from nodal data and construct the following
vectors:

t̃1(mT ) = 1
3t1(A) + 1

3t1(B) + 1
3t1(C),

t′
2(mT ) = 1

3t2(A) + 1
3t2(B) + 1

3t2(C), t̃2(mT ) = t′
2 −

〈
t′

2, t̃1
〉

〈
t̃1, t̃1

〉 t̃1,

t̃3(mT ) = t̃1 ∧ t̃2∥∥∥t̃1
∥∥∥ ∥∥∥t̃2

∥∥∥ ,

with the associated metric tensor

G̃mT
=

⎡
⎢⎣
∥∥∥t̃1

∥∥∥2
0

0
∥∥∥t̃2

∥∥∥2

⎤
⎥⎦ �
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Approximation error estimates

In this paragraph we derive approximation error estimates for the quantities defined
in the previous paragraphs. In particular, we need to control the accuracy of the
quadrature rule and, as a consequence, of the divergence theorem so that consistency
of the IFV is ensured. In addition, the given estimates will relate these errors with the
geometrical properties of the bottom surface.

For a regular surface, the piece-wise linear interpolant Ihf of a smooth function is
characterized by quadratic error [36]:

‖f − Ihf‖L2(T ) ≤ C2
σh

∥∥∥D2f
∥∥∥
L2(T )

�

In section 4.3.2 we will show the experimental convergence results confirming this fact in
our setting. Since we assume that the flux and source functions are Lipschitz regular,
their evaluation at the sampling points maintains the order of accuracy. Thus, to
complete our analysis, we are left with the study of the approximation errors introduced
in the quadrature rules by the definition of the tangent/normal reference frame in TmσΓ.
In particular, we analize here the quadrature rule for an integral over the edge σ of a
general Lipschitz regular vector function F . Here we denote with F̃ ν(mσ) the evaluation
of the function F on the approximate TmσΓ at the edge midpoint mσ projected along
the approximate normal direction ν̃mσ . Then, we have the following result:

Proposition 4.1.11. Given a Lipschitz regular vector function F defined on the geodesic
edge σ we have: ∫

σ
〈F, ν〉G dσ = σh

F̃ ν(mσ) + O
(
2
σh

)
�

Proof. Direct application of the mid-point rule yields [39]:∫
σ

〈F, ν〉G dσ = σ 〈F, ν〉G (mσ) + O
(
3
σ

)
�

Next we address explicitly the different approximations made in the definition of TmσΓ.
We first note that, by proposition 4.1.10, item 2, we have:

|τ − τ̃mσ | ≤
∣∣∣τ − v−−→

AB

∣∣∣ +
∣∣∣v−−→

AB
− τ̃mσ

∣∣∣ ≤ Cσ ,

where C is a constant depending on the surface curvature. By construction, the ap-
proximate normal ν̃mσ shares the same first order error estimate. Recalling remark 4.3,
essentially proposition 4.1.10, item 1 states that |σ − σh

| ≤ C3
σh

. Linear interpola-
tion of the nodal quantities ensures that the approximate metric and tangent plane in
mσ are second order accurate, i.e.:

G(mσ) = G̃mσ + O
(
2
σ

)
and F (mσ) = F̃ (mσ) + O

(
2
σ

)
�
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Thus, expanding the scalar product 〈·, ·〉G and combining all the terms, we can write:

σ 〈F, ν〉G(mσ) + O
(
3
σ

)
=

= σ
(
F̃ (mσ) + O

(
2
σ

)) (
G̃mσ + O

(
2
σ

))
(ν̃mσ + O(σ)) + O

(
3
σ

)
=

= σ
(
F̃ (mσ)G̃mσ ν̃mσ + O(σ)

)
+ O

(
3
σ

)
=

= σh
F̃ ν(mσ) + O

(
2
σh

)
,

which yields the desired result.

Because of its importance in our IFV scheme, we report here the following corollary
whose proof is an immediate consequence of the previous proposition.

Corollary 4.1.12. Given a Lipschitz regular vector function F defined on the geodesic
triangle T we have:

∫
T

∇G ·F ds =
Nσ∑
j=1

h,jF̃
ν(mσj

) + O
(
2
σh

)
�

We end this section by noting that all these estimates can be directly related to the
global mesh parameter h. This is classically defined as the maximum of the lengths of
the triangulation edges, i.e., h = maxσh∈Th(Γ) σh

. Noting that, by remarks 4.3 and 4.4
and proposition 4.1.10, item 3, the area of Th converges quadratically to the area of
T , we can conclude that all our geometric approximations involved in the calculation
of the right-hand-side of eq. (4.10) are consistent with the global accuracy of our IFV
discretization.

4.2 The scheme in the geometric setting

The previous section dealt with the definition of the surface approximation, presenting
theoretical results on convergence. This section progresses by presenting the complete
FV scheme in our geometric setting. Step i) uses a first order explicit Euler time
stepping scheme. To maintain a well-balanced scheme we use an adaptation of the
approach proposed by Audusse et al. [8], Bouchut [14] and include the source terms
in the flux. Then, the following FV equations are defined for each Ti:

Uk+1
h,i = Uk

h,i − Δt
Ah,i

Nσ(i)∑
j=1

h,ij
[
Fh,ij(Uk

h,i,U
k
h,j) + Sh,ij(Uk

h,i,U
k
h,j)

]
, (4.10)

where Fh,ij is the numerical approximation of the edge-averaged normal flux Fij at σij,
and Sh,ij is calculated so that ∑Nσ(i)

j=1 h,ijSh,ij is a consistent quadrature rule for the
last integral in eq. (4.2) and maintains the discrete version of eq. (3.22).
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4.2.1 The Riemann problem

As customary in upwind-Godunov methods, the numerical fluxes Fh,ij in eq. (4.10)
are defined by evaluating the flux function Fν

ij from solutions of Riemann Problems
(RPs) at quadrature points of the cell edges. Since our equations are invariant under
linear transformations and, specifically, rotations, each RP can be formulated as a one-
dimensional problem in the tangent plane TmσΓ, passing through the quadrature point
mσ in the direction of the local edge normal ν̃mσ .

Given the tangent plane TmσΓ on the edge, with associated metric tensor G̃mσ , and
denoting by ν̃mσ = [ν1, ν2]T and τ̃mσ = [τ 1, τ 2]T the normal and tangent vectors to the
geodesic edge, the normal flux function can be written as:

Fν(s,U) =
〈
F, ν̃mσ

〉
G

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1h2
(1)ν

1 + q2h2
(2)ν

2

(q1)2

η
h2

(1)ν
1 + 1

2gη
2∂x

3

∂s3
ν1 + q1q2

η
h2

(2)ν
2

q1q2

η
h2

(1)ν
1 + (q2)2

η
h2

(2)ν
2 + 1

2gη
2∂x

3

∂s3
ν2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
� (4.11)

Using an edge-based LCS aligned with the normal and tangent vectors, we can write:

qN = 〈�q, ν̃mσ〉G = q1h2
(1)ν

1 + q2h2
(2)ν

2

qT = 〈�q, τ̃mσ〉G = q1h2
(1)τ

1 + q2h2
(2)τ

2 = −q1h2
(1)ν

2 + q2h2
(2)ν

1 ,

where we have used the relation τ̃mσ = [τ 1, τ 2]T = [−ν2, ν1]T. Finally, the normal flux
function in the edge LCS takes on the expression:

Fν(s,U) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

qN

q1qN

η
+ 1

2gη
2∂x

3

∂s3
ν1

q2qN

η
+ 1

2gη
2∂x

3

∂s3
ν2 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that our flux function is non-autonomous as it depends on the space variable
defined on the local coordinate system. In this case difficulties in the well-posedness of
the RP may arise (see, e.g., Andreianov et al. [5, 6], Andreianov and Sbihi [4]). Thus,
we write the Riemann problem as follows. Let V =

[
η, qN , qT

]T
= [η, ηv1, ηv2]T be the

vector of conservative variables, where, qN and qT indicate the components of the flux
(discharge) vector defined along the directions ν̃mσ and τ̃mσ , respectively. Denote with
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x1

x3
B,L x3

B,Rx3
B,σ

ηR

x1

x3
B,L x3

B,Rx3
B,σ

ηR

Figure 4.3: Examples of wet and dry regions around edge σ, over the triangulation
Th(Γ).

x the space variable along ν̃mσ . Then, the RP is formally given by:

Vt + Fν(x,V)x = 0,

Fν : (x,V) ∈ Γ × TmσΓ 	→

⎧⎪⎨
⎪⎩

FL(V) if x < 0

FR(V) if x > 0
, (4.12)

V(x, 0) =

⎧⎪⎨
⎪⎩

VL if x < 0

VR if x > 0
,

where Fν is the normal flux function as defined in eq. (4.11). To simplify the problem,
we advocate the assumption of continuity of the flux function with respect to the first
argument. This allows us to approximate the RP by assuming FL(V) = FR(V), thus
recovering the standard form of the shallow-water RP. This approximation deserves
further investigation, which is however outside the scope of this work and we leave it
to future studies.

Consistently with the first order accuracy, we use cell values to define the left and
right initial states VL and VR. However, the physical quantities of depth and velocity
need to be written in the correct reference system attached on the edge midpoint. For
each cell, η represents the cell average of the water column (measured in the normal
direction) at the cell midpoint mT . Since we consider a surface triangulation, the
midpoint of the cell can have a different elevation with respect to the GCS than the
midpoint of the edge. Thus, the depth value needs to be properly moved to the point
mσ, where the RP is defined. For edge σ, we calculate the left and right edge elevations
η(L) and η(R) from the cell elevations ηL and ηR of cells TL and TR as follows:

η(k) = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩0,

ηk
∂x3

∂s3

∣∣∣∣
k

+ x3
B,k − x3

B,σ

∂x3

∂s3

∣∣∣∣
σ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ k = L,R ,
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where ∂x3

∂s3

∣∣∣∣
k

and x3
B,k are defined at the gravity center of the k-th cell. The zero bound

is introduced to ensure non-negativity of water depth. We need to define the edge-
quantities ∂x3

∂s3

∣∣∣∣
σ

and x3
B,σ. Because of the regularity of the bottom surface, we can

set ∂x3

∂s3

∣∣∣∣
σ

= ∂x3

∂s3 (mσ). Definition of the edge bottom elevation x3
B,σ must take into

consideration the fact that the edge might be in a dry region (i.e., the edge midpoint
is at a higher elevation with respect to the cell water elevation). Following [14, 8], we
then set

x3
B,σ = max{x3

B,L, x
3
B,R, x

3
B(mσ)} ,

where x3
B(mσ) is the approximated value at the edge center mσ. This ensures that

dry regions with η = 0 are captured so that wetting-and-drying processes are handled
seamlessly (fig. 4.3).

Concerning the velocity, the vector q must be “parallel” transported from the cell
gravity center to the edge midpoint, so that all quantities in the RP belong to TmσΓ.
This is achieved by a first order linearization of the ODE system defining parallel
transport. Again, for edge σ we can write [63, 37]:

q1
(k)(smσ

) = q1(sk) − (s1
mT

− s1
k)
(
Γ1,(k)

11 q1(sk) + Γ1,(k)
21 q2(sk)

)
(4.13a)

k = L,R �

q2
(k)(smσ

) = q2(sk) − (s2
mT

− s2
k)
(
Γ2,(k)

11 q1(sk) + Γ2,(k)
21 q2(sk)

)
(4.13b)

Note that this first order linearization maintains the accuracy of the overall scheme.
However, its most important role is to perform the change of coordinate systems from
the cell-attached to the edge-attached tangent planes.

The Riemann solver

We use two different types of Riemann solvers. The first is an extension to the curvilin-
ear case of the exact Riemann solver described in Toro [70]. The second is the classical
HLL and its variant HLLC [48, 71], which easily adapts to our equations.

Exact Riemann Solver. As typical, to unveil the wave structures of the problem,
eq. (4.12) is written in non-conservative form, leading to:

Vt + A(V)Vx = 0 ,
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where A(V) is the Jacobian matrix of Fν , with eigenvalues and eigenvectors denoted
by (λ1, λ2, λ3), and (r(1), r(2), r(3)), respectively. The Jacobian takes on the form:

A(V) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

ηg
∂x3

∂s3
−
(
qN

η

)2

2q
N

η
0

−qNqT

η2
qT

η

qN

η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0

a2∂x
3

∂s3
− (v1)2 2v1 0

−v1v2 v2 v1

⎤
⎥⎥⎥⎥⎥⎦ ,

where a = √
ηg indicates the wave celerity. Its eigenvalues are:

λ1 = v1 − a

√
∂x3

∂s3
, λ2 = v1 , λ3 = v1 + a

√
∂x3

∂s3
, (4.14)

with corresponding eigenvectors given by:

r(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
v2⎛

⎝v1 − a

√
∂x3

∂s3

⎞
⎠ 1
v2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, r(2) =

⎡
⎢⎢⎢⎢⎢⎣
0

0

1

⎤
⎥⎥⎥⎥⎥⎦ , r(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
v2⎛

⎝v1 + a

√
∂x3

∂s3

⎞
⎠ 1
v2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�

The wave structure is the same as the standard SW equations with the additional
presence of the bottom slope term ∂x3

∂s3 . Thus, the solution described in Toro [70]
applies with only slight modifications. We present here a brief summary of the possible
wave patterns.

There are four possible wave patterns that may occur in the solution of the Riemann
problem, and note that in each pattern there are three waves. The left and right
eigenvalues corresponding to the one-dimensional shallow water equations are either
shocks or rarefactions. See fig. 4.4 for all the possible cases:

(a) the left wave is a rarefaction wave and the right wave is a shock;

(b) the left wave is a shock wave and the right wave is a rarefaction;

(c) both the left and right waves are rarefaction;

(d) both the left and right waves are shock waves.

The middle wave arises from the presence of the second component in the momentum
equation and it is always a shear wave. The three waves are associated with the three
eigenvalues λ1, λ2, λ3 of the linearized problem. The waves separate four constant states
denoted, from left to right, by VL, V∗

L, V∗
R and VR. The region between the left and
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right waves is called the star region and is subdivided in two sub-regions. We denote
the constant states of the water depth and fluid velocity (along the normal direction)
in the star region by η∗ and v∗ respectively.

The types of nonlinear left and right waves are determined by the following condi-
tions:

η∗ > ηL the left wave is a shock wave,

η∗ ≤ ηL the left wave is a rarefaction wave,
(4.15)

and
η∗ > ηR the right wave is a shock wave,

η∗ ≤ ηR the right wave is a rarefaction wave.
(4.16)

The basic step now is to derive a single algebraic nonlinear equation for the water
depth η∗ in the star region. To this aim, we will connect the state v∗ in the star
region to the data on the left and on the right considering two appropriate functions,
namely fL(η, ηL) and fR(η, ηR). These functions govern the relations of flow quantities
across the left and right waves respectively. In our case, these waves are either shock
or rarefaction waves then, in deriving fL and fR we make use of either generalized
Riemann invariants or Rankine-Hugoniot conditions, as appropriate.

• Wet case solution:

Proposition 4.2.1. The solution η∗ for the Riemann problem is given by the
roots of the algebraic equation

f(η) = fL(η, ηL) + fR(η, ηR) + (vR − vL) = 0, (4.17)

where the functions fL and fR are

fL =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2∂x
3

∂s3
(√gη − √

gηL) if η ≤ ηL (rarefaction)

(η − ηL)
√

1
2g
∂x3

∂s3

η + ηL
ηηL

if η > ηL (shock)
,

fR =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2∂x
3

∂s3
(√gη − √

gηR) if η ≤ ηR (rarefaction)

(η − ηR)
√

1
2g
∂x3

∂s3

η + ηR
ηηR

if η > ηR (shock)
�

The solution for the particle velocity v∗ in the star region follows as

v∗ = 1
2(vL + vR) + 1

2[fR(η∗, ηR) − fL(η∗, ηL)] � (4.18)

Proof. There are four possible cases to consider, namely:
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– left rarefaction wave

v∗ = vL − fL(η∗, ηL) ,

fL(η∗, ηL) = 2∂x
3

∂s3
(√gη∗ − √

gηL) ;

– right rarefaction wave

v∗ = vR + fR(η∗, ηR) ,

fR(η∗, ηR) = 2∂x
3

∂s3

(√
gη∗ − √

gηR
)

;

– left shock wave

v∗ = vL − fL(η∗, ηL) ,

fL(η∗, ηL) = (η∗ − ηL)
√

1
2g
∂x3

∂s3

η∗ + ηL
η∗ηL

;

– right shock wave

v∗ = vR + fR(η∗, ηR) ,

fR(η∗, ηR) = (η∗ − ηR)
√

1
2g
∂x3

∂s3

η∗ + ηR
η∗ηR

�

Elimination of v∗ in all four cases gives

fL(η∗, ηL) + fR(η∗, ηR) + vR − vL = 0 ,

and thus η∗ is the root of eq. (4.17). Assuming the root η∗ is available, then v∗

follows directly from any of the equations in the cases above, or from a mean
value as

v∗ = 1
2(vL + vR) + 1

2[fR(η∗, ηR) − fL(η∗, ηL)],

that is exactly eq. (4.18). Hence, the proposition is proved.

The last step that we need to develop is how to solve the algebraic eq. (4.17) for
the depth in the star region. There is no general closed-form solution, therefore,
we solve it numerically using an iterative technique. We first re-write the algebraic
nonlinear equation:

f(η) := fL(η, ηL) + fR(η, ηR) + Δv = 0 , with Δv = vR − vL ,
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for the unknown η in the star region. Given the particular behavior of f(η), a
Newton-Raphson iteration scheme can be used. At the generic step , the scheme
is:

η(�+1) = η(�) − f(η(�))
f ′(η(�)) , (4.19)

for  = 0, 1, � � �. To start the iteration we require a guess value η(0), that can be
chosen using the two-rarefaction approximation, an expression that comes from
the study of the depth function. We turn to Toro [70] for a precise study of the
behavior of the depth function f(η).

The iteration eq. (4.19) is stopped whenever the change in η is smaller that a
tolerance value TOL, namely when

Δη =

∣∣∣η(�+1) − η(�)
∣∣∣

(η(�+1) + η(�))/2 < TOL�

So far we have an algorithm for finding η∗ and v∗ in the star region. By comparing
η∗ with ηL and ηR (see eq. (4.15) and eq. (4.16)), we can determine when the left
and right waves are shock or rarefaction waves and compute the exact solution
of the one-dimensional Riemann problem for the variables η and v.

• Dry case solution:

There are three possible cases as described in Toro [70] all for the rarefaction
wave, because the a shock wave cannot be adjacent to a region of dry bed. We
will consider the dry bed on the right side. The characteristic speed that coincides
with the front is S∗

L and corresponds to the left eigenvalue λ = v − a
√

∂x3

∂s3 .

– Left rarefaction wave. Right dry bed. Consider a point of contact disconti-
nuity, the characteristic of speed S∗

L that coincides with the front is

S∗
L = dx

dt
= vc −

√
gηc

∂x3

∂s3
�

By connecting √
gηc and vc to the data on the left-hand-side via Riemann

invariant v − 2
√
gη ∂x

3

∂s3 = const, we obtain

vc + 2
√
gηc

∂x3

∂s3
= vL + 2

√
gηL

∂x3

∂s3
�

Along the discontinuity ηc = 0, so

S∗
L = vc = vL + 2

√
gηL

∂x3

∂s3
�
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The limit speeds are:
a) on the left, the eigenvalue SL

SL = vL −
√
gηL

∂x3

∂s3
;

b) on the right, the speed S∗
L

S∗
L = vL + 2

√
gηL

∂x3

∂s3
;

c) in the middle, it is necessary to compute the status and the solution

√
gη = 1

3

[
2√

gηL + 1
∂x3

∂s3

(vL − dx

dt
)
]
,

u = 1
3

⎛
⎝vL + 2

√
gηL

∂x3

∂s3
+ 2dx

dt

⎞
⎠ �

– External rarefaction waves. Dry bed in the middle. This case is reached when
S∗
L < S∗

R, so when

vL − 2
√
gηL

∂x3

∂s3
≤ vR + 2

√
gηR

∂x3

∂s3
,

ηcrit = vR − vL + 2
√
∂x3

∂s3
(√gηR + √

gηL) ≥ 0 �

Then, we apply this case of dry bed in the middle and we compute all the
speeds:

SHL = vL −
√
gηL

∂x3

∂s3
, SSL = vL + 2

√
gηL

∂x3

∂s3
,

SSR = vR − 2
√
gηR

∂x3

∂s3
, SHR = vR +

√
gηR

∂x3

∂s3
�

HLL/HLLC solvers. The HLL scheme estimates the smallest and largest wave
speeds SL, SR in the solution of the Riemann problem starting from the left and right
data UL,UR defined in the neighboring cells to the edge and the corresponding fluxes
FL = Fν(VL) and FR = Fν(VR). It is easy to calculate the extremal eigenvalues of
the Jacobian as:

SL = min

⎧⎨
⎩0, min

⎧⎨
⎩vL −

√
gηL

∂x3

∂s3

∣∣∣∣
L
, vR −

√
gηR

∂x3

∂s3

∣∣∣∣
R

⎫⎬
⎭
⎫⎬
⎭ ,

SR = max

⎧⎨
⎩0, max

⎧⎨
⎩vL +

√
gηL

∂x3

∂s3

∣∣∣∣
L
, vR +

√
gηR

∂x3

∂s3

∣∣∣∣
R

⎫⎬
⎭
⎫⎬
⎭ �
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Considering the normal direction defined in eq. (4.12), the HLL flux on the edge is
then computed as:

Fν
HLL =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

FL if SL ≥ 0

SRFL − SLFR + SRSL(UR − UL)
SR − SL

if SL ≤ 0 ≤ SR

FR if SR ≤ 0

� (4.20)

Note that, this approach ignores intermediate waves, such as shear waves and con-
tact discontinuities. Consideration of these waves is achieved in the HLLC approach
described in Toro et al. [71], whose extension to our setting is straightforward.

4.2.2 Well-balance

We look here at the well-balance property for the “lake-at-rest” condition. In this
case, we have a steady-state condition with zero velocity and thus a time-independent
horizontal free surface. Our intrinsic SW equation then becomes:

⎧⎪⎪⎨
⎪⎪⎩

�q = 0

∇G ·
(

1
2gη

2∂x
3

∂s3
G−1

sw

)
= −1

2gη
2 ∇G

∂x3

∂s3
− gη∇G x

3
B

,

which is equivalent to eq. (3.22). We would like to note that more accurate well-balance
properties would be needed in case of higher order methods, but in this work we content
ourselves with simple well-balance property in the form of the “lake-at-rest”. We will
consider as future studies the more complex situation of a fully well balanced scheme
as done in [9, 11]. The divergence theorem can be used to express the cell-integral of
the source term as a sum of integrals on the edges. In fact, from the steady momentum
conservation equation we can write the following equality:

∫
Ti

(
1
2gη

2 ∇G
∂x3

∂s3
+ gη∇G x

3
B

)
ds = −

∫
Ti

∇G ·
(

1
2gη

2∂x
3

∂s3
G−1

sw

)
ds =

= −
3∑
j=1

∫
σij

〈
1
2gη

2∂x
3

∂s3
G−1

sw , νij

〉
G

dσ ≈ −
3∑
j=1

h,ij

〈
1
2g

(
η∗
ij

)2 ∂x3

∂s3

∣∣∣∣∗
ij

G−1
sw , νij

〉
G
, (4.21)

where the starred quantities are evaluated at appropriate sampling points so that dis-
crete well-balance is maintained. Then, the integral of the source S(s, η) over Ti can



74 CHAPTER 4. INTRINSIC FINITE VOLUME SCHEME

be written as:

∫
Ti

S ds ≈

⎡
⎢⎢⎢⎣

0

−∑3
j=1 h,ij

〈
1
2g

(
η∗
ij

)2 ∂x3

∂s3

∣∣∣∣∗
ij

G−1
sw , νij

〉
G

⎤
⎥⎥⎥⎦ =

=
3∑
j=1

h,ij

⎡
⎢⎢⎢⎣

0

−
〈

1
2g

(
η∗
ij

)2 ∂x3

∂s3

∣∣∣∣∗
ij

G−1
sw , νij

〉
G

⎤
⎥⎥⎥⎦ =

3∑
j=1

h,ij

⎡
⎢⎣ 0

Sij

⎤
⎥⎦ �

The idea is to apply the latter relation as a quadrature rule for the source integral in
the scheme also in the non steady-state case. This quadrature rule is, by definition,
exact when the velocity is zero and we need to prove that its approximation error is of
order O(h) when the velocity is non-zero. Moreover, it has to be consistent with the
flux term Fij computed via Riemann solvers.

We first define the sampling values η∗
ij and ∂x3

∂s3

∣∣∣∣∗
ij

used in Sij that ensure well-
balance and consistency, with the first condition satisfied exactly. In the case of a
steady horizontal water table, discrete well-balance implies that, with respect to the
GCS, the total water elevation at the cell-center must equal the total water elevation
at the edge center:

ηi
∂x3

∂s3

∣∣∣∣
i
+ x3

B,i = ηij
∂x3

∂s3

∣∣∣∣
ij

+ x3
B,ij , (4.22)

which yields immediately:

ηij =
ηi
∂x3

∂s3

∣∣∣∣
i
+ x3

B,i − x3
B,ij

∂x3

∂s3

∣∣∣∣
ij

, (4.23)

where we define the values at the edge as described in section 4.2.1. Then, we ensure
non-negativity of water depth by defining η∗

ij = max{0, ηij}. We then have the following
proposition.

Proposition 4.2.2. The intrinsic finite volume scheme (4.10) i) preserves the non-
negativity of ηi; ii) is well-balanced, i.e. preserves the steady-state of a lake-at-rest
(eq. (4.22)); iii) is consistent with the continuous ISWE model (eq. (3.19)).

Proof. Statement i) follows directly from the definition of η∗
ij, which ensures 0 ≤ η∗

ij ≤
ηi and 0 ≤ η∗

ji ≤ ηj.
Property ii) of steady-state for lake-at-rest is maintained by the consistency of the

flux Fij, valid by construction, and the definition of the source terms at the interface.
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To prove Property iii) we need to establish the consistency of the scheme for the
general case of a nonzero velocity, i.e., �q 
= 0. To this aim it is sufficient to prove that
the left and right fluxes for edge σij, FL = Fij + Sij and FR = Fji + Sji, respectively,
satisfy the following condition [14]:

FL + FR = f(η)h+ o(h) , (4.24)

where f(η) indicates a general vector function of the depth only. Obviously, our nu-
merical flux Fij is consistent:

Fij =
〈
F (U∗), νij

〉
G

=
〈
F (U∗),−νji

〉
G

= −Fji �

It remains to show the consistency for the edge source terms, that are nonzero only
for the two momentum conservation equations. Recall that, due to the assumption
of regularity of the bottom surface SB, Taylor expansions for functions living on Γ
are well defined [see 33]. Moreover, for a general surface vector v written in physical
coordinates and a scalar function f we can write 〈∇G f,v〉G = 〈∇ f,v〉. Hence we have:

x3
B,ij = x3

B,i + ∇ x3
B,i · (sij − si) + o(h) ,

∂x3

∂s3

∣∣∣∣
ij

= ∂x3

∂s3

∣∣∣∣
i
+ ∇

(
∂x3

∂s3

∣∣∣∣
i

)
· (sij − si) + o(h) ,

ηij = ηi + ∇ ηi · (sij − si) + o(h) ,

where sij, si are the LCS coordinates of mσij
and mTi

, respectively, and we have used
the fact that |sij − si| = O(h). Analogously, from eq. (4.23), we can write:

η∗
ij

∂x3

∂s3

∣∣∣∣∗
ij

= ηi
∂x3

∂s3

∣∣∣∣
i
+ x3

B,i − x3
B,ij = ηi

∂x3

∂s3

∣∣∣∣
i
+ ∇ x3

B,i · (sij − si) + o(h) �

From corollary 4.1.12, applying the divergence theorem to the constant vectors [1, 0]
and [0, 1] we obtain:

0 =
∫
∂Ti

ν dσ =
3∑
j=1

h,ijνij + O
(
h2
)
�

Thus, we add to the edge-evaluated source a term that, when summed over all the cell
edges, gives a O(h2) contribution:

S�qij =
〈

1
2g

(
η∗
ij

)2 ∂x3

∂s3

∣∣∣∣∗
ij

G−1
sw , νij

〉
G

−
〈

1
2gη

2
i

∂x3

∂s3

∣∣∣∣
i
G−1

sw , νij

〉
G

+ O
(
h2
)
�
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Then we can write:

S�qij + S�qji = (4.25)

=
〈

1
2g

[(
η∗
ij

)2 ∂x3

∂s3

∣∣∣∣∗
ij

− η2
i

∂x3

∂s3

∣∣∣∣
i

]
G−1

sw , νij

〉
G

+
〈

1
2g

[(
η∗
ji

)2 ∂x3

∂s3

∣∣∣∣∗
ji

− η2
j

∂x3

∂s3

∣∣∣∣
j

]
G−1

sw , νji

〉
G

+ O
(
h2
)

=

=
〈

1
2g

[(
η∗
ij

)2 ∂x3

∂s3

∣∣∣∣∗
ij

− η2
i

∂x3

∂s3

∣∣∣∣
i
+
(
η∗
ji

)2 ∂x3

∂s3

∣∣∣∣∗
ji

− η2
j

∂x3

∂s3

∣∣∣∣
j

]
G−1

sw , νij

〉
G

+ O
(
h2
)
�

Substituting the Taylor expansions written above, the term within the square brackets
becomes:[
η∗
ij

(
ηi
∂x3

∂s3

∣∣∣∣
i
+ ∇ x3

B,i · (sij − si)
)

− η2
i

∂x3

∂s3

∣∣∣∣
i

]

+
[
η∗
ji

(
ηj
∂x3

∂s3

∣∣∣∣
j

+ ∇ x3
B,j · (sji − sj)

)
− η2

j

∂x3

∂s3

∣∣∣∣
j

]
+ O

(
h2
)

=

= (ηi + ∇ ηi · (sij − si))
(
ηi
∂x3

∂s3

∣∣∣∣
i
+ ∇ x3

B,i · (sij − si)
)

− η2
i

∂x3

∂s3

∣∣∣∣
i

+ (ηj + ∇ ηj · (sji − sj))
(
ηj
∂x3

∂s3

∣∣∣∣
j

+ ∇ x3
B,j · (sji − sj)

)
− η2

j

∂x3

∂s3

∣∣∣∣
j

+ O
(
h2
)

=

=
(
ηi ∇ x3

B,i + ηi
∂x3

∂s3

∣∣∣∣
i
∇ ηi

)
· (sij − si) +

(
ηj ∇ x3

B,j + ηj
∂x3

∂s3

∣∣∣∣
j
∇ ηj

)
· (sji − sj)

+ ∇ ηi · (sij − si) ∇ x3
B,i · (sij − si) + ∇ ηj · (sji − sj) ∇ x3

B,j · (sji − sj) + O
(
h2
)
,

which, once inserted in eq. (4.25), proves eq. (4.24).

4.2.3 Boundary conditions

The implementation of boundary conditions in our FV is obtained by specifying the
appropriate edge value to the Riemann solver. In practice, on a boundary edge σ we
define an outer Uout

σ and an inner Uin
σ state that form, depending on the direction

of the local edge normal ν̃mσ , the left and right states for the edge Riemann solver.
The boundary value Uout

σ is assumed to be given directly with respect of the reference
system in the tangent plane TmσΓ, while internal values Uin

σ are defined on edge σ

by parallel transport (4.13). In practice, following Toro [70], we implemented two
types of boundary conditions: transmissive boundaries and solid reflective boundaries.
Transmissive boundaries are given by:

ηout = ηin, qout = qin ,
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while, solid reflective boundaries are imposed by setting:

ηout = ηin, qout = −qin ,

where ηin,qin are the state values in the internal cell. Other more complex types of
boundary conditions, such those presented in [68], require adaptation to our setting
and are not considered here.

4.3 Numerical results

Our numerical tests are designed to experimentally verify the applicability of the de-
veloped scheme to the simulation of the SWE on surfaces. Specifically, we want to test
selected properties of the obtained numerical solution showing the robustness of the
proposed approach. To this aim, we first show convergence of the discretization of the
geometric quantities on smooth surfaces, then look at experimental convergence on full
scale realistic tests.

4.3.1 Description of the test cases

We use a global parametrization x3 = B(x1, x2) of the bottom surface SB, with B
a sufficiently smooth height function, whereby we start from a regular triangulation
of a rectangular subset U ⊂ R

2 and move the nodes vertically on Γ. In all cases,
we assume that all relevant quantities of the bottom surface are known or can be
approximated at the nodes of the triangulation, and use interpolation to define needed
quantities at other points, as described in the previous section. We first consider simple
one-dimensional domains, a rectangular flat domain, a sloping plane and one with
simple one-dimensional curvatures. Then, we consider a centrally symmetric surface
and finally examine a more realistic fully three-dimensional bottom topography taken
from [37].

Flat case. In this case we consider a subset U = [0, 10] × [0, 1] ⊂ R
2 and a constant

height function B ≡ 0. We tested this case on a specific example of application for
which an exact analytic solution for the SW model is available, in order to compare
the exact solution with our numerical results.

Sloping plane. In this case we use the rectangular subset U = [0, 10] × [0, 1] ⊂ R
2

and the height function given by:

B(x1, x2) = − 1
10x

1 + 1 �
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x3
B

∂
∂s1

(
∂x3

∂s3

)
h� EL∞ eoc� EL2 eoc� EL∞ eoc� EL2 eoc�

0.760 5.51E-03 1.79E-02 6.80E-05 1.67E-04
0.381 1.38E-03 2.01 4.47E-03 2.01 1.70E-05 2.01 4.17E-05 2.01
0.191 3.45E-04 2.00 1.12E-03 2.00 4.26E-06 2.00 1.04E-05 2.00
0.095 8.63E-05 2.00 2.79E-04 2.00 1.07E-06 2.00 2.61E-06 2.00
0.048 2.17E-05 1.99 6.98E-05 2.00 2.66E-07 2.00 6.52E-07 2.00
0.024 5.57E-06 1.96 1.75E-05 2.00 6.65E-08 2.00 1.63E-07 2.00

Table 4.1: Parabola case: L∞ and L2 norms of the experimental errors on cells and
order of convergence of the approximations to the bottom geometric quantities.

by:
B(x1, x2) = −4

5

√
(x1)2 + (x2)2 + 1 � (4.26)

Figure 4.5, top right, shows the geometry of the bottom surface, named for simplicity
hyperboloid-central-bump (HCB), and the spatial distribution of the metric coefficient
in the s1-direction, the s2-distribution being analogous and thus not shown.

Fully 3D surface. The final test case is taken from [37] and is a fully three-dimensional
bottom surface defined on the subset U = [−10, 10]× [−4, 4] ⊂ R

2 with height function
expressed as:

B(x1, x2) = − 1
500(x1)3 − 1

100x
1(x2)2 �

In this case the bottom topography presents different curvature values in the two di-
rections (fig. 4.5, bottom) and varying characteristics that influence the flow dynamics.

4.3.2 Convergence of the surface quantities

In this section we verify the accuracy of the proposed approximation to the needed
surface quantities. Thus, we look at the L∞- and L2- norms of the difference between
the approximated values and exact values at the gravity centers of cells and edges,
respectively. Given the errors E(h�) and E(h�+1) at grid levels  and +1, respectively,
we calculate the experimental order of convergence eoc�. In particular, we look at the
approximation errors to some of the geometric information that enter the SW system
as approximated in the FV approach, namely bottom elevation x3

B, metric coefficients
h(1) and h(2), tangent vectors ∂x3

∂s1 and ∂x3

∂s3 , and their derivative ∂
∂s1

(
∂x3

∂s3

)
. We look at

these statistics for the bottom surfaces shown in fig. 4.5. The numerical results are
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x3
B

∂x3

∂s3

h� EL∞ eoc� EL2 eoc� EL∞ eoc� EL2 eoc�

0.668 4.38E-02 9.10E-02 1.20E-02 2.43E-02
0.334 1.17E-02 1.91 2.29E-02 1.99 3.72E-03 1.69 6.22E-03 1.96
0.167 3.05E-03 1.93 5.73E-03 2.00 9.71E-04 1.94 1.57E-03 1.99
0.083 7.81E-04 1.97 1.43E-03 2.00 2.45E-04 1.99 3.92E-04 2.00
0.042 1.97E-04 1.98 3.58E-04 2.00 6.10E-05 2.00 9.80E-05 2.00
0.021 4.96E-05 1.99 8.96E-05 2.00 1.53E-05 2.00 2.45E-05 2.00

∂x3

∂s1
∂
∂s1

(
∂x3

∂s3

)
0.668 2.68E-02 4.00E-02 6.07E-02 4.29E-02
0.334 7.35E-03 1.86 1.02E-02 1.97 1.82E-02 1.74 1.08E-03 1.98
0.167 1.93E-03 1.93 2.57E-03 1.99 5.11E-03 1.83 2.78E-03 1.96
0.083 4.88E-04 1.98 6.44E-04 2.00 1.29E-03 1.98 6.99E-04 1.99
0.042 1.23E-04 1.99 1.61E-04 2.00 3.27E-04 1.98 1.75E-04 2.00
0.021 3.09E-05 1.99 4.03E-05 2.00 8.18E-05 2.00 4.38E-05 2.00

Table 4.2: HCB: L∞ and L2 norms of the experimental errors on cells and order of
convergence of the approximations to the bottom geometric quantities.
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h(1) h(2)

h� EL∞ eoc� EL2 eoc� EL∞ eoc� EL2 eoc�

1.046 1.57E-03 5.96E-03 1.09E-03 3.63E-03
0.530 4.07E-04 1.99 1.49E-03 2.05 2.99E-04 1.90 9.12E-04 2.04
0.268 1.04E-04 2.00 3.71E-04 2.02 7.90E-05 1.94 2.28E-04 2.02
0.134 2.61E-05 2.00 9.28E-05 2.01 2.03E-05 1.97 5.71E-05 2.01
0.067 6.57E-06 2.00 2.32E-05 2.01 5.13E-06 1.99 1.43E-05 2.01
0.034 1.65E-06 2.00 5.80E-06 2.00 1.29E-06 1.99 3.57E-06 2.00

∂x3

∂s1
∂x3

∂s3

1.046 4.26E-03 1.97E-02 9.23E-04 3.73E-03
0.530 1.06E-03 2.05 4.92E-03 2.05 2.35E-04 2.02 9.29E-04 2.05
0.268 2.66E-04 2.02 1.23E-03 2.02 5.90E-05 2.02 2.32E-04 2.02
0.134 6.65E-05 2.01 3.07E-04 2.01 1.48E-05 2.01 5.80E-05 2.01
0.067 1.66E-05 2.01 7.68E-05 2.01 3.69E-06 2.01 1.45E-05 2.01
0.034 4.16E-06 2.00 1.92E-05 2.00 9.24E-07 2.00 3.62E-06 2.00

Table 4.3: Fully 3D surface: L∞ and L2 norms of the experimental errors on edges and
order of convergence of the approximations to the bottom geometric quantities.



82 CHAPTER 4. INTRINSIC FINITE VOLUME SCHEME

shown in table 4.1 for the parabola, in table 4.2 for the hyperboloid-central-bump, and
in table 4.3 for the fully 3D surface, and invariably show second order of convergence
both on cell centers and edge midpoints, in agreement with the theoretical results
described in the previous section.

4.3.3 Simulations and experimental convergence

The design of the test cases needs to be aware of the assumption underlying our con-
tinuous formulation and the discretization approach. All the test cases simulate a
gravity-driven fluid in a dam-break setting, without any stress tensor. The initial con-
ditions are defined to initiate a dam-break phenomenon, with water depth in any case
small enough to exclude the issue of the intersection of the local normals so that the
coordinate transformation is always a diffeomorphism. Different initial conditions on
water depth are considered depending on the shape of the bottom surface, while we
always consider zero initial velocities. No-flow boundary conditions are imposed ev-
erywhere except at the outlet boundary, where a free outflow is enforced. The value of
the time step Δt is calculated so that CFL ≈ 0�1. We choose a triangulation of the
domain that is aligned with three cross sections uniformly distributed across the main
flow directions that are used to evaluate stream-flows (i.e., discharge vs. time).

Analytic solutions to SWE are rare and each of them has a limited scope in terms
of flow conditions. To first validate our scheme we are interested in solutions for a dam
break problem on a flat bottom surface. Then, since no analytical solution is available
for the case of variable bottom geometry if not for simple cases (i.e., planar free surface
[32]), we investigate numerical stability and convergence by looking at errors calculated
as differences with a fine-grid solution, assumed as reference solution. We look at L1-
and L2- error norms and calculate the experimental order of convergence.

The well-balance property was tested on the sloping plane and the parabola test
cases by verifying that a dam-break wave reached a horizontal steady-state that was
stable in time. The simulations are not reported here.

Flat domain. Research on dam break started with Ritter (1892), who first studied
the problem, deriving an analytic solution for the case of dam break over dry bed
without friction, based on the method of characteristics. In the 1950’s this solution
was extended by Dressler and Whitham for dam breaks on a dry bed including the
effect of friction (in particular, Chézy friction law). A few years later, Stoker generalized
Ritter’s solution for a wet bed downstream the dam to avoid wet/dry interactions. We
consider here Stoker’s solution, or dam break on a wet bed domain. See [32]. Let
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Figure 4.6: Dam-break wet bed problem: comparison between exact solution and
numerical approximation on refined meshes, water depth (left panel) and velocity profile
(right panel).

assume an ideal dam break on a wet domain, i.e. the dam break is instantaneous, over
a flat bottom and without friction. The discretized domain is described in section 4.3.1,
and we assume a regular triangulation of the domain. Essentially, this test case is a
Riemann problem, whose initial conditions is defined as follows:

η(x1, x2, 0) =

⎧⎪⎨
⎪⎩

0�005 if x1 ≤ 5

0�001 if x1 > 5
and vi(x1, x2, 0) = 0�

Even if our solution comes out of a two-dimensional model, the problem in this case
is one-dimensional, and so we can compare our approximated depth and velocity (in
particular, the norm of our velocity vector) with the analytic results. Figure 4.6 shows
the solution obtained for different spatial and temporal discretizations compared to
the analytical solution at t = 6 s. The approximate solutions seem convergence to the
exact one as h → 0 with a monotone behavior for η, while small oscillations in the
velocity magnitude are visible but tend to disappear as the mesh is refined. The large
amount of numerical viscosity typically introduced by first Godunov methods is clearly
noticeable.

Sloping plane. Initial conditions describe a dam located at x1 =2.0 m with a water
depth of 0.5 m upstream and 0.2 m downstream, with wall boundary conditions ev-
erywhere except at the outlet located at x1 = 10 m. Figure 4.7 shows the numerically
evaluated evolution of the gravity wave in terms of water depth η at t = 0.0 s, 0.50 s,
1.00 s and 1.50 s. The mesh used in these simulations is a Delaunay triangulation
characterized by an average mesh parameter h� ≈ 0�23 m and a total of 588 surface
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η
∥∥∥η�U∥∥∥2

h� EL1 eoc� EL2 eoc� EL1 eoc� EL2 eoc�

0.448 6.76E-02 4.78E-02 1.26E-01 9.23E-02
0.224 4.30E-02 0.65 3.40E-02 0.49 7.97E-02 0.66 6.60E-02 0.48
0.112 2.57E-02 0.74 2.32E-02 0.55 4.69E-02 0.76 4.50E-02 0.55
0.056 1.38E-02 0.90 1.43E-02 0.70 2.48E-02 0.92 2.79E-02 0.69
0.028 5.58E-03 1.30 6.66E-03 1.10 9.91E-03 1.32 1.32E-02 1.08

Table 4.4: Sloping plane: experimental L1- and L2- error norms and order of conver-
gence.

cells. Figure 4.8 shows the behavior of the discharge vs. time (stream-flow) at three
sections located at x1 =2.5 m, 5.0 m and 7.5 m. These results are compatible with
the work presented in [37]. The trapezoidal rule is used to evaluate the area under the
curves, showing that mass is accurately maintained throughout the simulation.

Experimental convergence is tested on a mesh sequence built by uniformly refining
an initial Delaunay grid with average mesh parameter h0 ≈ 0�448 m, for a total of
154 surface cells. The mesh sequence comprises 5 uniform refinements of the initial
triangulation, with the finest grid having h5 ≈ 0�014 m. We use the same initial
conditions as before and we assume for simplicity no flow boundary conditions for all
the boundary edges. Care is taken to ensure that the initial volumes are the same in
the entire simulation sequence. Table 4.4 reports the convergence results at t = 0.16 s,
a sufficiently early time to avoid reflections from the downstream boundary. The errors
are calculated with respect to the reference solution obtained at  = 5. Both L1 and
L2 relative error norms of the depth value and of the norm of the velocity magnitude
are calculated (table 4.4) together with the experimental orders of convergence. As
expected, first order convergence is achieved by both water depth and velocities.

Parabola. The parabola test case considers a simple one-dimensional flow where the
effects of curvature in the model can be verified. We run our simulations on a grid
with average mesh parameter h = 0.26 m, giving a total of 588 FV cells. We simulate
the breaking of a dam located at x1 =2.0 m, with initially zero velocity everywhere
and water depth of 0.5 m upstream and 0.2 m downstream the dam. We use the HLL
Riemann solver, but no differences are noted with respect to the HLLC RS. Figure 4.9
shows the calculated distribution of the water depth η at times t = 0.00 s, 0.50 s, 1.00 s
and 1.50 s. The progress of the dam-break wave towards the outlet is characterized
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η
∥∥∥η�U∥∥∥2

h� EL1 eoc� EL2 eoc� EL1 eoc� EL2 eoc�

0.494 4.14E-01 2.04E-01 1.71E-00 9.49E-01
0.248 2.58E-01 0.69 1.42E-01 0.52 1.02E-00 0.76 6.50E-01 0.55
0.124 1.47E-01 0.81 9.29E-02 0.62 5.92E-01 0.78 4.36E-01 0.57
0.062 7.58E-02 0.96 5.50E-02 0.76 3.11E-01 0.93 2.68E-01 0.70
0.032 3.02E-02 1.32 2.51E-02 1.13 1.27E-01 1.30 1.26E-01 1.09

Table 4.5: Parabola case: experimental convergence rates of L1 and L2 cell-based error
norms.

by a variable speed of propagation. The downwind shock initially smoothed by the
numerical viscosity introduced by the 1st order solver is sharpened downstream by
curvature effects, as the decreasing slope is decelerating the wave front. Also the
upstream wave seems to sharpen, as evidenced by a shorter wave length at the end of
the simulation. The results display some oscillations, in particular at the tail of the
downstream wave, which remain always bounded and do not seem to interfere with the
trailing wave. We attribute these oscillations to our treatment of the non-autonomous
flux function, since they are not present in planar cases with a spatially constant metric.
Figure 4.10 represents the time behavior of the simulated discharge at three channel
cross sections located at x1 = 2.5 m, 5.0 m and 7.5 m. Mass balance calculated a
posteriori is exactly satisfied up to quadrature error.

We carried out a convergence test by using a mesh sequence starting from a coarse
level characterized by h0 = 0.49 m and 154 FV surface cells and composed by five
mesh levels built by uniform refinement. Table 4.5 reports the L1 and L2-norms of the
errors for the water depth and the velocity magnitude at time t = 0.20 s. We assume
the numerical solution calculated on the finest grid ( = 5, average mesh parameter
h5 ≈ 0�016) is the reference exact solution. First order convergence rates are attained
by the L1, L2 error norms for both water depth and velocity.

Hyperboloid-central-bump. The following test case that presents an “almost” cen-
trally symmetric domain is designed to verify the ability of the FV scheme to maintain
symmetry on an unstructured grid. The square subset U defined in section 4.3.1 is
discretized by a Delaunay triangulation with average mesh parameter h = 0.34 m,
generating a total of 1238 FV surface cells. The nodal values are then raised using
eq. (4.26). The initial conditions outline a central area of radius 0.5 m with upstream
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Figure 4.12: HCB: velocity vectors at t = 0�20.
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Figure 4.13: HCB: stream-flows at the three control sections.
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η
∥∥∥η�U∥∥∥2

h� EL1 eoc� EL2 eoc� EL1 eoc� EL2 eoc�

0.560 1.16E+00 3.05E-01 5.42E+00 1.32E+00
0.281 7.20E-01 0.69 2.02E-01 0.60 2.98E+00 0.87 7.56E-01 0.81
0.140 4.03E-01 0.84 1.27E-01 0.67 1.49E+00 0.99 4.44E-01 0.77
0.070 2.13E-01 0.92 7.32E-02 0.79 8.61E-01 0.80 3.16E-01 0.49
0.035 9.54E-02 1.16 3.66E-02 1.00 3.22E-01 1.42 1.32E-01 1.26

Table 4.6: HCB: experimental convergence rates of L1 and L2 cell-based error norms.

2.5 m are shown in fig. 4.13.
For the convergence test we start from a coarse grid with average mesh parameter

h0 = 0.56 m and 424 FV surface cells. The mesh sequence is obtained by uniform re-
finements with a total of 6 mesh levels. The reference solution is obtained at level  = 5
(average mesh parameter h = 0.018). Table 4.6 presents L1 and L2 error norms and
related experimental orders of convergence for the solutions at time t = 0.08 s. Con-
sistently with the previous test cases, the expected first order convergence is achieved
in both norms.

Fully 3D surface. The final test case considers a bottom surface with variable cur-
vature. The discretization of U is obtained again with a Delaunay triangulation with
average mesh parameter h = 0.62 m, in this case generating a total of 1656 FV sur-
face cells. The initial conditions consider a uniform water depth of 2.0 m upstream
of x1 = -8.5 m, and 1.0 m downstream. We would like to note that the choice of
initial conditions of a 2.0 m deep reservoir avoids the singularities of the coordinate
transformation by ensuring that the water depth is sufficiently shallow, so that the
local normals to the bottom surface do not intersect within the fluid layer. No flow
conditions are imposed in all boundaries, with an outlet located at x1 = 10 m. The
approximate HLL Riemann solver is used.

Figure 4.14 describes the numerically evaluated water depth η at times t = 0.0 s,
0.80 s, 1.60 s and 2.40 s. The evolution of the profile is similar to what reported
in Fent et al. [37]. Water accumulates within the central portion of the first bowl and
then disperses towards the lateral boundaries in the concave region, until it finds the
impermeable lateral walls. At the end water exits from the downstream edge, where
the outlet is located. Figure 4.15 shows stream-flows at the three different sections
located at x1 = -5.0 m, 0.0 m and 5.0 m. Again, the results compare well with those
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η
∥∥∥η�U∥∥∥2

h� EL1 eoc� EL2 eoc� EL1 eoc� EL2 eoc�

1.113 6.95E+00 8.58E-01 3.14E+01 4.19E+00
0.564 4.15E+00 0.76 5.48E-01 0.66 1.74E+01 0.86 2.54E+00 0.74
0.284 2.36E+00 0.82 3.47E-01 0.66 9.30E+00 0.92 1.53E+00 0.73
0.142 1.22E+00 0.96 2.03E-01 0.78 4.55E+00 1.04 8.77E-01 0.81
0.071 4.97E-01 1.29 9.32E-01 1.13 1.76E+00 1.37 3.99E-01 1.14

Table 4.7: Fully 3D surface: experimental convergence rates of L1 and L2 cell-based
error norms.

obtained by Fent et al. [37].
The mesh sequence used to test convergence of the FV scheme starts with coarse

grid with average mesh parameter h0 = 1.11 m, for a total of a 480 FV surface cells,
uniformly refined 5 times to yield 6 meshes. The finest, used for the reference solution,
is characterized by h5= 0.036 m and 491520 FV surface triangles. The initial conditions
defined on the coarsest mesh  = 0 are projected on each mesh level using the local
normals taking care that the initial water volume and the location of the dam are
consistently the same across the entire mesh sequence.

Table 4.7 reports the L1 and L2-error norms of the depth and of the velocity mag-
nitude at t = 0.20 s together with the experimental order of convergence. The same
behavior as for the previous test is observed, with optimal rates being reached by the
water depth and the velocity field.



5
Intrinsic Discontinuous Galerkin Scheme

The promising results obtained in the previous chapters lead us to consider higher
order discretizations in the numerical resolution of eq. (3.23). An option would be to
set up a second order finite volume scheme. This will be addressed as a future work,
since the reconstruction of gradients at the interface of surface cells needs additional
investigation. We decided to consider here the implementation of a discontinuous
Galerkin scheme. First, the use of higher-order polynomials is naturally built into the
DG method. Instead of computing these higher-order terms through some sort of ad hoc
post-processing procedure, they are defined through the variational equation. Second,
diffusive terms can be easily incorporated into the method, contrary to the FV method
that provides only large-stencil mechanisms for dealing with second-order derivatives
[see e.g. 12]. Furthermore, the DG method allows for the use of non-conforming grids,
i.e., grids with non-matching faces, without the use of hanging nodes or mortar spaces.
This feature could be very useful in dealing with complicated geometries and adaptive
meshes.

We consider here the so-called Runge-Kutta Discontinuous Galerkin (RKDG) scheme,
a combination of DG discretization in space with an explicit Runge-Kutta time-marching
algorithm. The aim of this chapter is to set the scheme in the geometric framework. We
first address the linear scalar transport equation and define the variational formulation

93
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(in its geometric form), the discrete function spaces and the quadrature rules. Then
we extend this framework to the ISWE approach. We build our construction on the
development of the FV scheme described in the previous chapter. Thus, for the ISWE
system, we follow the work of Aizinger and Dawson [3] that generalizes and extends
the Godunov FV method [21] in several ways, thus forming an ideal starting point.
Due to the limitations of our approximation of the surface quantities, as presented in
section 4.1, we are able to exploit only up to second order discretization schemes, and
thus we will describe DG with linear basis functions.

5.1 The intrinsic scalar transport equation

The aim of this section is to present the discontinuous Galerkin method applied to a
scalar transport equation defined on a surface, eq. (2.12). The starting hypotheses are
the same as in the previous chapter. We assume that the surface PDE is defined on
a compact subset of the bottom surface, Γ ⊂ S, and that a well-defined curvilinear
boundary, denoted by ∂Γ = ∂Γ, exists. We work on the compact set Γ and we assume
that the triangulations T (Γ) and Th(Γ) are given and have the properties presented in
section 4.1. We assume Γ is fixed in time. Then, denoting with u : Γ × [0, tf ] → R the
scalar conserved variable, and w : Γ × [0, tf ] → R

2 a given velocity field everywhere
tangent to the surface, we recall the transport equation:

∂u

∂t
+ ∇G · (w u) = 0 � (5.1)

The derivation of the DG scheme proceeds as follows. First, we discretize the
equation in space using the discontinuous Galerkin approach. For each time t ∈ [0, tf ],
the approximated solution uh is sought in the finite element space of discontinuous
functions:

VΓ
h = {v ∈ L∞(Γ) : v|T ∈ V (T ) ∀ T ∈ T (Γ)} , (5.2)

where V (T ) is the so-called local space. In this work we assume V (T ) = P1(T ), the
space of affine functions defined in T . We can test eq. (5.1) with vh ∈ VΓ

h and integrate
in space. Recalling that Γ = ∪NT

i=1Ti, we can localize the integration over each single
cell T ∈ T (Γ), i.e., the following equation must be valid for all T ∈ T (Γ):∫

T
∂t u vh ds +

∫
T

∇G · (wu) vh ds = 0 �

Then, we substitute the exact solution u with its approximation uh and apply the
divergence theorem:∫

T
∂t uh vh ds +

∫
∂T

〈wuh, ν〉G vh dσ −
∫
T

〈wuh,∇G vh〉G ds = 0 ,
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where ν is the vector tangent to the surface and normal to the boundary of the cell,
pointing outward of T . Note that, when we consider the union of all triangles, the
trace of uh is discontinuous on ∂T and the scalar product 〈wuh, ν〉G does not have a
precise meaning. Thus, we replace the scalar product by a numerical flux function
f̃∂T (u), which takes into consideration the jumps of uh. The value of the numerical
flux f̃∂T (uh(p)) at the point p ∈ ∂T depends on the two values at either sides of ∂T of
the solution in p:

f̃∂T (u(p)) = f̃(uL(p), uR(p)) �

This will be suitably discussed later.
We can now introduce the weak discrete formulation of eq. (5.1):

Problem 5.1. Find uh ∈ VΓ
h such that

d

dt

∫
T
uh vh ds = −

∫
∂T
f̃∂T (uh) vh dσ +

∫
T

〈wuh,∇G vh〉G ds ,

for any function vh ∈ VΓ
h .

Note that the formulation of the problem is completely intrinsic. We would like to
remain within this setting as much as possible. Approximation issues arise when we
need to practically compute quantities. As proceeded for the FV method, we devise
appropriate steps in order to set up the entire resolution algorithm. In practice, we
need to define: i) basis functions for VΓ

h ; ii) quadrature rules; iii) numerical fluxes on
edges; iv) time discretization for the resulting ODE. We will give a full characterization
of all these steps in the next sections.

5.1.1 Basis functions

We start this paragraph by underlying that the choice of basis and degrees of free-
dom does not affect the algorithm, which is completely determined by the choice of
the function space VΓ

h , the numerical fluxes, the quadrature rules and the time dis-
cretization. However, a suitable choice of basis and degrees of freedom may simplify
the implementation and computations, and guarantee stability of the algorithm.

We examine the case of first order affine functions on each cell, and we define the
basis functions ϕ1, ϕ2, ϕ3 spanning VΓ

h by means of the classical interpolation property:

ϕj ∈ VΓ
h , ϕj(pi) = δij i, j = 1, 2, 3 ,

where pi ∈ Γ are the vertices of the cell, for each cell of T (Γ), see fig. 5.1.
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where q = p1 +t3(p1), and t3(p1) the unitary normal to the surface in p1 (see fig. 5.1).
Then, given a point pj ∈ T and the normal vector to the surface at that point, it
is possible to compute the expression of Tpj

Γ. Let us consider the same point p1,
the normal vector to the surface t3(p1) =: N = (N1,N2,N3), then the tangent plane
passing through p1 and orthogonal to N is described by:

N1(x1 − x1
p1

) + N2(x2 − x2
p1

) + N3(x3 − x3
p1

) = 0 �

Substituting the value of x3 of the points of the plane into the expression of ϕ̃1, we
obtain:

ϕ̃1(x) = ã+ b̃x1 + c̃x2 + d̃

(−N1(x1 − x1
p1

) − N2(x2 − x2
p1

)
N3 + x3

p1

)
,

and collecting terms:

a = ã+ d̃

(
N1x1

p1
+ N2x2

p1

N3 + x3
p1

)
, b = b̃− d̃

N1

N3 , c = c̃− d̃
N2

N3 ,

which are the new coefficients of ϕ1 in the LCS.

We are now able to write every function vh in the functional space VΓ
h as:

vh(s) =
3∑
j=1

vjϕj(s) s ∈ T , (5.3)

with vj the j-th coefficient and by the above interpolation properties they coincide
with vh(sj). In particular, we express our approximate solution uh inside the cell T as
follows:

uh(s, t) =
3∑
i=1

ui(t)ϕi(s) ,

where the degrees of freedom ui(t) are the values of the numerical solution at the nodes
of the cell. Then, the weak formulation takes the form:

3∑
i=1

(
dui
dt

∫
T
ϕiϕk ds

)
= −

3∑
j=1

∫
σj

f̃j,T (uh)ϕk dσ +
3∑
i=1

∫
T
uiϕi 〈w,∇G ϕk〉G ds , (5.4)

where now f̃j,T (uh) denotes the numerical flux along the j-th edge of cell T . Moreover,
for each cell T ∈ T (Γ) we can define, for i, k = 1, 2, 3,

Mik =
∫
T
ϕiϕk ds (5.5)

Rk(Uh) = −
3∑
j=1

∫
σj

f̃j,T (uh)ϕk dσ +
3∑
i=1

∫
T
uiϕi 〈w,∇G ϕk〉G ds , (5.6)



98 CHAPTER 5. INTRINSIC DISCONTINUOUS GALERKIN SCHEME

respectively the local mass matrix and the vector of the right-hand-side, and write the
following system of ODE:

M
dUh

dt
= R(Uh) , (5.7)

where we denote with Uh = {ui(t)} the vector of the degrees of freedom.
The formulation then proceeds by the appropriate definition of the quadrature rules

on the surface and the approximation of the parametrization at the quadrature points
pj, or equivalently of the tangent plane Tpj

Γ, needed to define the numerical fluxes
along the edges. It is completed by the definition of a time discretization scheme.

5.1.2 Quadrature rules and Gaussian points

Theoretical analysis of the method [29] shows that, using P1 basis functions, optimal
(second order) convergence is obtained if the quadrature rule for the edges of the
elements is exact for polynomials of degree 3, and the quadrature rules for the interior
of the elements is exact for polynomials of degree 2. We replace the space integrals by
Gaussian quadrature rules:

∫
T
f(s) ds ≈ AT

3∑
m=1

ωmf(pm) ,

∫
σ
f(s) dσ ≈ σ

2∑
l=1

ωlf(pl) �

Concerning the interior of the cell T , we need a rule based on three points and, in
particular, we apply the three mid-point rule:

∫
T
f(s) ds ≈ ATh

3

3∑
m=1

f̃(mσm) ,

where mσm are the mid-points of the edges, and f̃(mσm) denote the evaluation of the
surface function at the edge midpoints. We refer to section 4.1 for the explicit definition
of the tangent vectors and the relative metric tensor at the mid-point of edges, so we
have already the complete surface information to perform computations. Hence, the
following proposition is easily proved.

Proposition 5.1.1. Given a Lipschitz regular function f defined on the surface triangle
T we have: ∫

T
f(s) ds = ATh

3

3∑
i=1

f̃(mσi
) + O

(
h2
T

)
,

where f̃(mσi
) denote the approximate value of the surface function at the edge mid-

points, in the approximated LCS.
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Proposition 5.1.2. Given a Lipschitz regular function f defined on the geodesic edge
σ we have: ∫

σ
f(s) dσ = σh

2

2∑
i=1

f̃(pσ,i) + O
(
2
σh

)
,

where f̃(pσ,i) denote the approximate value of the surface function at the edge Gaussian
points in the approximated LCS system.

Remark 5.1. Note that, in our particular case, f(s) = 〈wuh, ν〉G is the numerical flux
along the local normal to the edge. As seen in the previous chapter, we are introducing
a number of second order approximations in the calculation of f̃(s). Indeed, the first
approximation is done in calculating the tangent plane at the central interpolation
point, which is evaluated using the vertical instead of the normal projection. As a
consequence, the metric forms computed at the two interpolated points is only second
order accurate. Then, the edge normal vectors ν(pσ,i) are approximated with a first
order error. Following the proof of proposition 4.1.11, global second order accuracy is
obtained, as stated in the proposition.

Explicitly, the procedure of computing geometric information over the edge is the
following. The tangent vectors at the two Gaussian points pσ,i, i = 1, 2, are given by:

t̃1(pσ,i) = t1(mσ) + t1(B) − t1(A)
2 λi +

(
t1(A) + t1(B)

2 − t1(mσ)
)
λ2
i ,

t̃2(pσ,i) = t′
2 −

〈
t′

2, t̃1
〉

〈
t̃1, t̃1

〉 t̃1 ,

with t′
2(pσ,i) = t2(mσ) + t2(B) − t2(A)

2 λi +
(

t2(A) + t2(B)
2 − t2(mσ)

)
λ2
i ,

t̃3(pσ,i) = t̃1 ∧ t̃2∥∥∥t̃1
∥∥∥ ∥∥∥t̃2

∥∥∥ ,
where i = 1, 2 and λ1 = −1/

√
3, λ2 = 1/

√
3. The final vectors are orthogonalized by

Gram-Schmidt.
The computation of the numerical fluxes in the DG weak formulation of the problem

requires the approximation of the normal/tangent reference frame to the geodesic edge
at the quadrature points. This is achieved again by considering quadratic interpolation.
For i = 1, 2, the tangent plane is identified by its normal and given by Ñσ,i = t̃3(pσ,i) .
Then, we compute the derivatives of the approximate parametrization σ at the extremal
points and at the mid-point of this curve, obtaining the following vectors tangent to
the edge:

τA = σ̇(0), τB = σ̇(1), τmσ = σ̇(1/2) �
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The tangent vectors to the geodesic edge at quadrature points are the evaluated using
the following quadratic interpolation:

τ ′
σ,i = τmσ + τB − τA

2 λi +
(
τA + τB

2 − τmσ

)
λ2
i ,

τ̃σ,i = τ ′
σ,i −

〈
τ ′
σ,i, Ñσ,i

〉
〈
Ñσ,i, Ñσ,i

〉Ñσ,i ,

and the approximation of the intrinsic normal to the geodesic edge is obtained by
applying the outer product to τ̃σ,i and Ñσ,i:

ν̃σ,i = τ̃σ,i ∧ Ñσ,i � (5.8)

Finally, the vectors ν̃σ,i and τ̃σ,i have to be expressed using the LCS bases at the
quadrature points of interest.

5.1.3 Numerical flux

One of the main idea behind RKDG methods is that they are constructed in such a
way that they are high-order accurate schemes that reduce to a monotone Godunov-
like scheme when a piece-wise constant approximation is used. As a consequence, the
numerical flux needs to satisfy some conditions: the function f̃ is defined to be locally
Lipschitz, it is consistent with the flux, i.e., f̃(u, u) = 〈wu, ν〉G, and it is calculated via
an exact or approximate Riemann solver. Moreover, it has to be conservative, that is:

f̃σ,T (uTL(p), uTR(p)) + f̃σ,T ′(uT ′
L (p), uT ′

R (p)) = 0 , T ∩ T ′ = σ �

As we did in the FV scheme, we take into consideration the Godunov approach,
i.e., the numerical flux f̃j,T in eq. (5.4), or eq. (5.6), is defined by evaluating the flux
function from solutions of Riemann problems at quadrature points of the cell edges.
We know from proposition 3.2.2 that the intrinsic transport equation is invariant under
rotations. Hence each RP can be formulated as a one-dimensional problem in the
tangent plane Tpj

Γ, at quadrature point pj, in the direction of the local edge normal
νσ,j. The Godunov flux can be written as:

f̃G(uνL, uνR) =

⎧⎪⎨
⎪⎩

minuν
L≤u≤uν

R
〈wu, ν〉G , if uνL ≤ uνR

maxuν
L≥u≥uν

R
〈wu, ν〉G , if uνL > uνR

�

Other definitions of numerical flux are allowed, e.g., the local Lax-Friedrichs flux,
the Lax-Friedrichs flux or the Roe flux, with different characteristics (e.g., amount
of artificial viscosity) but similar performances. These have the advantage over the



102 CHAPTER 5. INTRINSIC DISCONTINUOUS GALERKIN SCHEME

Godunov flux that they do not need to solve a Riemann problem, which, as seen in the
previous chapter, may be problematic in the case of non autonomous fluxes. However,
we stick this method in order to unveil all the difficulties related to our geometric
framework.

5.1.4 Time discretization

As suggested by several authors and to maintain the accuracy achieved by the spatial
discretization, the last step iv) is addressed by discretizing in time the ODE eq. (5.7),
with a second-order accurate Runge-Kutta method. Let {tn}Nn=0 be a partition of
the time interval [0, tf ], and denote by Δtn = tn+1 − tn the n-th time step for n =
0, � � � , N − 1, a s-step time-marching algorithm reads as follows:

• Set u0
h = Ph(u0);

• For n = 1, � � � , N − 1 compute un+1
h from unh as follows:

1. u(0)
h = unh;

2. for k = 1, � � � , s compute the intermediate functions:

u
(k)
h =

k−1∑
l=0

αkl u
(l)
h + βkl Δtn R

(
u

(l)
h

)
;

3. set un+1
h = u

(s)
h .

Note that the method is very easy to code and only a single routine computing the
right-hand-side is needed. Different Runge-Kutta methods depend on the choice of the
parameters α and β. Since we are considering a second order discretization in space
we are interested in a 2-step time discretization. The Runge-Kutta update for the
approximate solution then simplifies in:

un+1
h = unh + Δtn

2 [R(unh) + R (unh + Δtn R(unh))] ,

or

un+1
h = unh + Δtn R

(
unh + Δtn

2 R(unh)
)
,

called the Heun and Runge formula, respectively. The former can be interpreted as an
explicit version of the Crank-Nicolson method, where we have resolved the implicitness
deriving by the use of the trapezoidal rule by estimating the right-hand-side R(un+1

h )
with one step of Forward Euler. Analogously, Runge’s scheme can be thought of as the
use of the mid-point quadrature rule where R(un+1/2

h ) is again evaluated using Forward
Euler with a step-size Δt/2.



5.2. THE ISWE FORMULATION 103

5.2 The ISWE formulation

The aim of this section is to apply the Runge-Kutta Discontinuous Galerkin method
to the final system ISWE (3.19). The extension to a multidimensional system comes
out directly, and the description of the main steps has been already addressed in the
previous section. Here we discuss only the main differences.

We rewrite here for convenience the final system written as balance law, namely
eq. (3.23):

∂U
∂t

+ divG F (s,U) + S(s,U) = 0 , (5.9)

defined on a compact subset of the bottom surface, Γ ⊂ SB, with a well-defined curvilin-
ear boundary ∂Γ. We recall that U = [η, q1, q2]T is the three-components conservative
variable. We assume that the triangulations T (Γ) and Th(Γ) are given. For each time
t ∈ [0, tf ], we test the system 5.9 with the vector-valued test function vh ∈ VΓ

h and
integrate in space, over each single cell T ∈ T (Γ):

∫
T
∂t U vh ds +

∫
T

divG F (s,U) vh ds +
∫
T

S(s,U) vh ds = 0 �

Then, application of the divergence theorem yields:
∫
T
∂t U vh ds +

∫
∂T

Fν
∗(s,U) vh dσ −

∫
T

〈
F (s,U),∇G vh

〉
G

ds +
∫
T

S(s,U) vh ds = 0 ,

where Fν
∗(s,U) denotes the numerical flux at the boundary of the cell. We substitute

the solution U with the approximate solution Uh, and the weak formulation of eq. (5.9)
reads:

Problem 5.2. Find Uh ∈ VΓ
h such that

d

dt

∫
T

Uh vh ds = −
∫
∂T

Fν
∗(s,Uh) vh dσ +

∫
T

〈
F (s,Uh),∇G vh

〉
G

ds −
∫
T

S(s,Uh) vh ds ,

for any function vh ∈ VΓ
h .

The function space VΓ
h and the basis functions are obvious extensions of the def-

initions given in section 5.1.1. Indeed, we consider first order affine functions over
each cell, and denote with ϕ1, ϕ2, ϕ3 the basis functions spanning VΓ

h . For each cell
T ∈ T (Γ) we can represent the approximate conservative variable Uh by means of the
basis functions:

Uh(s, t) =
3∑
i

Uh,i(t)ϕi(s) ,
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where Uh,i(t) are the values of the numerical solution at the nodes at time t. Thus, we
can write the weak formulation as:

∑
i

(
dUh,i

dt

∫
T
ϕiϕk ds

)
= −

∫
∂T

Fν
∗(s,Uh)ϕk dσ

+
∫
T

〈
F (s,Uh),∇G ϕk

〉
G

ds −
∫
T

S(s,Uh)ϕk ds �

Moreover, for each i, k = 1, 2, 3, we have that

Mik =
∫
T
ϕiϕk ds ,

Rk = −
∫
∂T

Fν
∗(s,Uh)ϕk dσ +

∫
T

〈
F (s,Uh),∇G ϕk

〉
G

ds −
∫
T

S(s,Uh)ϕk ds ,

are respectively the local mass matrix and the vector of the right-hand-side for each of
the components of Uh. Then, the ODE system becomes:

M
dUh

dt
= R ,

for each cell T ∈ T (Γ).
The definition of the scheme proceeds as described in the previous sections. One

of the main difference is in the choice of the numerical fluxes on the edges. Due to the
complexity of the equations, in this case we rely on the Riemann solvers described in
section 4.2.1, and we need to solve one Riemann problem for each quadrature point on
the edge. The quadrature rules we consider are the same as for the scalar transport
case.

5.3 Numerical results

The numerical tests have the purpose to experimentally verify the applicability of the
developed scheme, both to the simulation of the scalar transport equation and to the
SWE on surfaces. Specifically we want to validate the code on a simple case, with
experimental verification of the numerical convergence, and then run simulations over
more complex surfaces. We consider the same bottom surfaces as in section 4.3: a flat
domain, a sloping plane and a parabola case to test the scheme in one-dimensional
cases, the hyperboloid-central-bump (HCB) and the fully 3D surface for the more
complex three-dimensional cases. A complete description of the surfaces is presented
in section 4.3.1, and the spatial distribution of the metric coefficients is reported in
fig. 4.5.
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Figure 5.3: Flat domain: initial conditions of a one-dimensional manufactured solution.

5.3.1 Scalar transport equation

We start by solving problem 5.1. We run a simulation considering a manufactured
smooth solution over the flat domain to test the convergence of the scheme. Non-
smooth solutions are considered over the parabola and the fully 3D surface, taking into
account both the cases with a constant and variable advection velocity vectors. The
Heun formula is applied for the time discretization in all the test cases.

Flat domain. In this case we verify the convergence of the scheme over the domain
U = [0, 10]× [0, 1] ⊂ R

2 with constant height function x3 ≡ 0. We consider the smooth
solution:

u(x, t) = sin
(
π(x1 + 10) − t

5

)
+ 2 ,

and impose the initial condition u0 = u(x, 0) (see fig. 5.3). We run the simulation in
the time interval [0, tf ], with tf = 6�0 s.

Table 5.1 shows the L2-norm of the error between the exact and numerical solutions
at final time over a mesh sequence. The mesh sequence in built by uniform refinements
of a structured grid with a coarse mesh parameter of h0 = 0�707 m, with a total of 40
triangles. The sequence comprises 4 meshes, with the finest grid having h3 = 0�088 m.
The error shows second order convergence as expected.

Parabola. Here we consider a simple one-dimensional case where the effects of cur-
vature can be verified. We run our simulations on a grid with average mesh parameter
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η q1 q2

h� EL2 eoc� EL2 eoc� EL2 eoc�

1800.0 2.30E-03 4.54E-03 4.54E-03
900.0 5.79E-04 1.99 1.15E-03 1.98 1.15E-03 1.98
450.0 1.45E-04 2.00 2.89E-04 1.99 2.89E-04 1.99
225.0 3.62E-05 2.00 7.22E-05 2.00 7.22E-05 2.00

Table 5.2: Manufactured solution: L2 norm of the error between the exact and numer-
ical solution on refined meshes and order of convergence.

5.3.2 Shallow water system

Now we move to the resolution of the ISWE system. We start presenting a test case
over a flat domain that considers a manufactured smooth solution, while all the other
test cases simulate a gravity-driven fluid in a dam-break setting, without any stress
tensor. Again, the Heun formula is applied for the time discretization for all the tests.

A manufactured solution

We consider here an example with the exact solution presented in [73]. We define a
triangulation of the domain U = [x1

a, x
1
b] × [x2

a, x
2
b] ⊂ R

2 and a constant height function
x3 = 0�0. The manufactured solution has the following form:

η = 2 η0
cos (ω (x1 − x1

a)) cos (ω (x2 − x2
a))

cos (ω (x1
b − x1

a)) cos (ω (x2
b − x2

a))
cos (ω (t+ τ)) + 2�0 ,

q1 = q1
0

sin (ω (x1 − x1
a)) cos (ω (x2 − x2

a))
cos (ω (x1

b − x1
a)) cos (ω (x2

b − x2
a))

sin (ω (t+ τ)) ,

q2 = q2
0

cos (ω (x1 − x1
a)) sin (ω (x2 − x2

a))
cos (ω (x1

b − x1
a)) cos (ω (x2

b − x2
a))

sin (ω (t+ τ)) ,

where ω is the angular frequency that we set to 2π/43200, τ is the phase shift and is
set to 0. The domain is set to exactly fit one period, i.e. x1

b − x1
a and x2

b − x2
a are set

to 43200, and q1
0 = q2

0 = η0 = 0�25. Note that, the initial depth is translated in the
vertical direction by a value 2.0 in order to have always a positive depth value.

The convergence is tested over a mesh sequence that comprises 4 mesh levels ( =
0, � � � , 3). The coarse mesh is characterized by a mesh parameter h0 =1800.0 m and 1250
cells, then by uniform refinements the finest mesh contains 80000 triangles, with a mesh
parameter h3 =225.0 m. The simulation runs in the interval [0, tf ] with tf = 10000 s,
and the value of the time steps are calculated so that CFL ≈ 0�1. Table 5.2 shows the
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lution of the gravity wave in terms of water depth η at t = 0.0 s, 0.50 s, 1.00 s and
1.50 s. The mesh used in these simulations is a Delaunay triangulation characterized
by an average mesh parameter h� ≈ 0�23 m and a total of 588 surface cells. We can
note that, compared to the FV simulations, smaller numerical viscosity is present and
the wave front is sharper. Note that no oscillations are visible although no limiters
were used. This is expected since the metric form is constant over the domain. As
a consequence, the fluxes are autonomous and pose no difficulties in the definition of
the Riemann problem and its solution. A small wave trailing the main shock is visible
especially at t = 1�50 s. This phenomenon is actually observed in experiments and
known to be difficult to be modeled [64, 65]. In our case we believe that it is the higher
order approximation and the stability and robustness of the developed DG approach
that allows the simulation of these trailing waves. The first order approximation prop-
erty together with high numerical viscosity of the Godunov FV scheme hinders the
appearance of these phenomena in the numerical solution.

Parabola. The simulation over the parabola considers a grid with average mesh
parameter h = 0.26 m, giving a total of 588 cells. We simulate the breaking of a dam
located at x1 =2.0 m, with initially zero velocity everywhere and water depth of 2.0 m
upstream and 1.0 m downstream the dam. Figure 5.8 shows the calculated distribution
of the water depth η at times t = 0.00 s, 0.30 s, 0.60 s and 0.90 s.

The distribution of the depth at different times shows a compact downhill shock
wave reproduced with very little smearing, thus providing further confirmation to the
observation reported in the previous test case that second order accuracy of DG dras-
tically improves the resolution of steep fronts. Very small oscillations are barely de-
tectable at the foot of the shock (see fig. 5.9, right panel), attributable to the non-
autonomous fluxes. This is more visible upstream of the front, in particular at the
latest time (see fig. 5.9, left panel). In this region the numerical solution shows a
number of trailing waves that dissipate moving upward. This is the same phenomenon
discussed in the previous test case, but here it is more developed because of the presence
of steeper slopes in the bottom surface. We can conclude that the use of high-order nu-
merical approximations is fundamental to fully capture the physical behavior of gravity
flows over non-flat terrains.

Hyperboloid-central-bump. This test case considers the hyperboloid-central-bump
case, defined starting from a subset U = [−3, 3] × [−3, 3] ⊂ R

2 and a height function
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t = 0.00 t = 0.13

t = 0.26 t = 0.40

Figure 5.10: HCB: evolution of the gravity wave. Water depth at initial time (t = 0�0),
and at t = 0�13, 0�26, 0�40 s.

given by:
x3(x1, x2) = −4

5

√
(x1)2 + (x2)2 + 1 � (5.11)

The mesh is generated by a Delaunay triangulation of U with average mesh parameter
h = 0.34 m, generating a total of 1238 surface cells. The nodal values are then raised
using eq. (5.11). The initial conditions outline a central area of radius 0.5 m with
upstream water depth of 2.0 m and downstream water depth of 1.0 m, leading to an
initially symmetric gravity wave. Wall conditions are imposed on all boundaries.

Figure 5.10 shows the numerically evaluated evolution of the initial wave in terms
of water depth η at times t = 0.0 s, 0.13 s, 0.26 s and 0.40 s. The initial wave moves
downward with accurately reproduced radial velocity vectors (fig. 5.11).

Fully 3D surface. The final test case considers the fully 3D bottom surface with
variable curvature defined on the subset U = [−10, 10] × [−4, 4] ⊂ R

2 with height
function expressed as:

x3(x1, x2) = − 1
500(x1)3 − 1

100x
1(x2)2 �
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Figure 5.11: HCB: velocity vectors at t = 0�13 s.







6
Intrinsic Finite Element Method

Given the encouraging results obtained in the extension of DG, namely the definition of
affine basis functions and consistent surface quadrature rules developed in the previous
chapters, it is natural to extend our intrinsic approach to finite element methods. Thus,
in this chapter we move from hyperbolic to elliptic and parabolic equations on surfaces,
within the framework of finite element methods. Among first contributions in the study
of PDEs on surfaces and numerical methods to solve them we cite Dziuk and Elliott
[36], which consider a piece-wise polygonal approximation of the surface and introduce
a finite element space defined on this triangular surface mesh, the so-called surface
finite element methods (SFEM). Another contribution considered in this chapter is the
work of Olshanskii et al. [60] that provides a new method of discretize a surface PDE
based on an outer mesh. The test cases proposed in this chapter are all taken form
these two references.

Here we want to focus on the study of the intrinsic formulation for FEM. As shown
in the previous chapter, we have already a framework for the definition of a conforming
function space considering the geometry of the surface. The aim of this chapter is to
apply the same idea to the continuous Galerkin discretization. Our proposed approach
seems ideally adaptable to this application. We are interested in developing continuous
P1 Galerkin FEM for advection-diffusion-reaction equations on surfaces (see eq. (2.13)).

117
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We will develop an innovative intrinsic FE scheme and compare it with the embed-
ded technique described by [36]. While the geometric data requirements are similar
between the two approaches, the advantage of the intrinsic approach is that it is auto-
matically tailored to the surface (that we recall needs to be regular for both approaches)
and can use different charts for different regions. Moreover, it maintains the symme-
tries of the PDEs, and is hopefully more robust as it does not need to project vector
quantities back to the surface. Similarly to chapter 5, we start the development from
a scalar equation, in this case a scalar advection-diffusion-reaction equation. In what
follows we will describe both the approach of Dziuk and Elliott [36], which we term
embedded, and our intrinsic approach so that a critical comparison can be made.

6.1 Surface advection-diffusion-reaction equation

Consider a compact surface Γ ⊂ R
3 over which we would like to solve an advection-

diffusion-reaction equation of the form:

∂u

∂t
− ε Δu+ 〈w,∇u〉 + c u = f on Γ , (6.1)

where Γ is assumed to be fixed in time, the solution u : Γ × [0, tf ] → R is a scalar
function defined on the surface and w : Γ × [0, tf ] → R

3 is a given divergence-free
velocity field everywhere tangential to the surface. The coefficient ε is the diffusion
coefficient, ε ∈ (0, 1], and we assume the function c : Γ → R non-negative and f ∈ L2(Γ)
to ensure well-posedness of the elliptic terms of eq. (6.1). The differential operators Δ
and ∇, the Laplacian and gradient, respectively, and the scalar product 〈·, ·〉 need to be
properly defined on the surface to follow the geometric setting of the problem. In the
following sections we are going to develop two different approaches for the numerical
solution of eq. (6.1) with different specifications for these operators, we will use the
above symbols for the generic version, and add specific subscripts when adapted to the
different approaches. If the surface has a boundary (i.e., ∂Γ 
= {∅}) we assume zero
Neumann boundary conditions.

The classical variational formulation for eq. (2.13) on Γ is given by:

Problem 6.1. Find u ∈ H1(Γ) such that

m(∂t u, v) + a(u, v) + b(u, v) + c(u, v) = F (u) ∀ v ∈ VΓ ,

where the bilinear forms m(·, ·), a(·, ·), b(·, ·) and c(·, ·), are called the mass, stiffness,
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transport, and reaction forms, respectively. They are defined as:

m(∂t u, v) =
∫

Γ
∂t uv ds , a(u, v) = ε

∫
Γ

〈∇u,∇ v〉 ds ,

b(u, v) =
∫

Γ
〈w,∇u〉 v ds , c(u, v) =

∫
Γ
c uv ds ,

together with the linear (load) form F (·):

F (v) =
∫

Γ
fv ds �

The test space VΓ is given by:

VΓ =

⎧⎪⎨
⎪⎩

{v ∈ H1(Γ) | ∫Γ v ds = 0} if c = 0

H1(Γ) if c > 0
,

where H1(Γ) is the classical Hilbert space of functions defined on Γ that are square
integrable and with all the first derivatives that are square integrable.

Note that this is the formal definition for the variational problem. We will define the
problem rigorously after the specification of the operators for both the approaches we
are using.

Given the shape-regular triangulations T (Γ) and Th(Γ) of Γ, the classical FEM
formulation for Problem 6.1 is given by:

Problem 6.2. Find uh ∈ VΓ
h such that

m(∂t uh, v) + a(uh, v) + b(uh, v) + c(uh, v) = F (uh) ∀ v ∈ VΓ
h ,

where VΓ
h ⊂ H1(Γ) is one of the classical conforming finite dimensional FEM spaces.

More specifically, we will be interested in piece-wise linear Galerkin methods and
we will indicate with P1(T (Γ)) and P1(Th(Γ)) the relative discrete functional spaces of
affine functions on T (Γ) and Th(Γ), respectively.

6.1.1 Embedded approach

In this section we describe what we call the embedded FEM method as proposed by Dz-
iuk and Elliott [36]. We term this approach as embedded as opposed to our intrinsic
approach. In this setting, a function f : Γ → R is actually defined on the points of
Γ seen as points in R

3. We define also a companion differentiable function f̄ as the
smooth extension of f in the set of points belonging to the tubular neighborhood of Γ
such that f̄ |Γ = f .
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Differential operators

We can define the tangential gradient of f to the surface Γ as follows:

Definition 6.1.1 ((Embedded) Tangential Gradient). The tangential gradient of f at
a point p ∈ Γ is given by

∇Γ f(x) = ∇ f̄(x) −
〈
∇ f̄(x),N(x)

〉
N(x) = P(x) ∇ f̄(x), (6.2)

where x = x(p) = (x1
p, x

2
p, x

3
p) denotes the canonical Cartesian coordinates in R

3, the
projection tensor P is P(x)ij = δij − Ni(x)Nj(x) (i, j = 1, 2, 3). The symbol ∇ denotes
the gradient in R

3, N(x) is the unit normal to the surface Γ at p, and the bilinear form
〈·, ·〉 is the standard scalar product in R

3.

Note that the unit normal N(x) is always well defined for all p ∈ Γ because we assume
Γ is a regular surface. Since 〈∇Γ f(x),N(x)〉 = 0, the gradient ∇Γ f(x) belongs to TpΓ,
the tangent plane to Γ at p. We will use the notation

∇Γ f(x) = [D1f(x), D2f(x), D3f(x)] �

for the components of the tangential gradient.

Definition 6.1.2 ((Embedded) Laplace-Beltrami operator). The Laplace-Beltrami op-
erator applied to a twice differentiable function f ∈ C2(Γ) is given by:

ΔΓf = ∇Γ · ∇Γ f =
3∑
i=1

DiDif � (6.3)

Definition 6.1.3. For Γ ∈ C2 the matrix

Hij = DiNj (i, j = 1, � � � , 3) , (6.4)

is a symmetric matrix having a zero eigenvalue in the normal direction, i.e. HN = 0.
The other two eigenvalues are the principal curvatures of Γ. The quantity

H(x) = tr(H(x)) (6.5)

is the mean curvature of Γ at the point x ∈ Γ.

For an embedded surface we can express the theorem of integration by parts in terms
of the projected differential operators. Thus, given a compact surface Γ ∈ R

3 possi-
bly with smooth boundary ∂Γ, integration by parts holds, as the following theorem
states [36].



6.1. SURFACE ADVECTION-DIFFUSION-REACTION EQUATION 121

Theorem 6.1.4. Assume that Γ ⊂ R
3 is a regular surface with smooth boundary ∂Γ

and u ∈ C1(Γ̄). Then,
∫

Γ
∇Γ u dx =

∫
Γ
uHN dx +

∫
∂Γ
uμ dσ ,

where μ denotes the co-normal vector, i.e., the vector field normal to ∂Γ and tangent
to Γ.

This theorem directly implies the following version of Green’s Lemma.

Theorem 6.1.5 (Green’s formula). Let Γ ⊂ R
3 be a regular surface with smooth

boundary ∂Γ and u ∈ C2(Γ̄) be a continuously differentiable function over Γ̄. Then
∫

Γ
〈∇Γ u,∇Γ v〉 dx = −

∫
Γ

ΔΓu v dx +
∫
∂Γ

〈∇Γ u, μ〉 v dσ , (6.6)

where μ is the co-normal vector.

Surface finite element method

We can now proceed with the development of the embedded Surface Finite Element
Method (SFEM) as described in [36]. We can define the piece-wise affine FEM space
as follows:

VΓ
h = {v ∈ C0(Th(Γ)) : v|Th

∈ P1(Th) ∀Th ∈ Th(Γ)} ,

where P1(Th) is the space of affine functions defined in Th ⊂ R
3. The space VΓ

h is
spanned by the nodal basis functions ϕ1, � � � , ϕNdof defined by:

ϕj ∈ VΓ
h , ϕj(xi) = δij i, j = 1, � � � , N dof ,

where xi ∈ Γ ∩ Γh are the vertices of the triangulation. Then, every function v in the
functional space VΓ

h can be written as

v(x) =
Ndof∑
j=1

vjϕj(x) x ∈ Γh ,

with vj the nodal coefficients. The projection tensor is naturally restricted to the
approximate triangulation as:

Ph = I − NhNT
h ,

and the differential operator ∇Γh
is changed accordingly. Moreover, the advective

velocity field is also projected onto Γh as wh = Phw. The surface FEM for Problem 6.1
can now be written as follows:
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Problem 6.3. Find uh ∈ VΓ
h such that

mh(∂t uh, v) + ah(uh, v) + bh(uh, v) + ch(uh, v) = Fh(v) ∀ v ∈ VΓ
h ,

where the linear and bilinear forms are mesh-dependent and are given by:

mh(∂t uh, v) =
∫

Γh

∂t uh v dx , ah(uh, v) = ε
∫

Γh

〈
∇Γh

uh,∇Γh
v
〉

dx ,

bh(uh, v) =
∫

Γh

〈
wh,∇Γh

uh
〉
v dx , ch(uh, v) =

∫
Γh

c uh v dx ,

and
Fh(v) =

∫
Γh

fh v dx �

The implementation of the method proceeds similarly to the standard case with the
caution that a logically two-dimensional triangulation is used with nodes defined in R

3.
We refer to Dziuk and Elliott [36] for the analysis of the described method. We want
to mention only the fact that optimal O(h2) convergence is achieved by this embedded
SFEM in the L2(Γ) norm if u ∈ H2(Γ) (i.e., u has square integrable second derivatives).

We can represent the numerical solution as linear combination of the basis functions,
i.e., uh(x, t) = ∑

j uj(t)ϕj(x). For every i = 1, � � � , N dof we obtain:
Ndof∑
j=1

∂t ujmh(ϕj, ϕi) +
Ndof∑
j=1

uj

(
ah(ϕj, ϕi) + bh(ϕj, ϕi) + ch(ϕj, ϕi)

)
= Fh(ϕi) ,

and in particular, in matrix form we can write:

M ∂t u + (A + B(t) + C) u = b , (6.7)

where u = {ui} is the vector of the solution coefficients, and b = {Fh(ϕi)} is the
right-hand side vector. The above matrices take on the following expressions:

Mij =
∫

Γh

ϕjϕi dx , Aij = ε
∫

Γh

〈
∇Γh

ϕj,∇Γh
ϕi

〉
dx ,

Bij(t) =
∫

Γh

〈
wh(t),∇Γh

ϕj

〉
ϕi dx , Cij =

∫
Γh

c ϕjϕi dx �

Note that we still have to define a discretization scheme for the time derivative and a
quadrature rule for the matrix elements. Concerning the time, we consider an Implicit
Euler scheme. Let {tn}Nn=0 be a partition of [0, tf ], and Δtn = tn+1 − tn the n-th time
step, for n = 0, � � � , N − 1, the scheme reads:( 1

Δtn M + A + Bn+1 + C
)

un+1 = b + 1
Δtn M un ,

where the superscripts indicate the time-step evaluation. Then, we compute the inte-
grals in space applying the surface mid-point rule, which is a consistent rule with the
same accuracy of the linear SFEM. For the solution of the linear system, because of
its non-symmetric property, we use the ILU-preconditioned BiCGSTAB solver [72].
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6.1.2 An intrinsic SFEM approach

In this section we present our intrinsic approach to SFEM. The idea is to consider
a local curvilinear coordinate system (LCS) anchored to the surface and write the
equations with respect to this local reference system, as described in chapter 2. The
resulting intrinsic differential operators contain all the geometric information arising
from the surface where the LCS is established (see proposition 2.3.2). All the involved
variables and quantities are intrinsic to the surface and no projection is needed for their
definition. The intrinsic SFEM variational formulation presented in problem 6.3 can
be then written in the LCS as:

Problem 6.4. Find uh ∈ VΓ
h (T (Γ)) such that

m(∂t uh, v) + a(uh, v) + b(uh, v) + c(uh, v) = F (v) ∀ v ∈ VΓ
h (T (Γ)) ,

where the linear and bilinear forms are given by:

m(∂t uh, v) =
∫

Γ
∂t uh v ds , a(uh, v) = ε

∫
Γ

〈∇G uh,∇G v〉G ds ,

b(uh, v) =
∫

Γ
〈w,∇G uh〉 v ds , c(uh, v) =

∫
Γ
c uh v ds ,

and
F (v) =

∫
Γ
fh v ds �

Note that in this intrinsic formulation the original advective velocity w is used directly
once expressed in the proper reference frame, contrary to the embedded approach where
the velocity wh is projected onto Th(Γ).

Up to the definition of the test space VΓ
h (T (Γ)), no numerical approximations are

done until this point, since all the operators and integrals are defined on T (Γ) whose
interior coincides with the surface Γ. We would like to remain within this setting as
much as possible. Approximation issues arise when we need to practically compute
quantities. To this aim, we assume that all the relevant geometric information related
to the surface are known (in exact or approximate but consistent form) at the vertices
of the triangulation. Then, we need to define the functional space VΓ

h and appropriate
quadrature rules for the surface integrals, and proceed with the approximation of the
relevant quantities on cells.

P1-basis functions. We start from the definition of the basis functions generating
the finite-dimensional FEM space VΓ

h . Again, we use the lowest order conforming
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approach, so that the FEM space is given by:

VΓ
h = {v ∈ C0(T (Γ)) : v|T ∈ P1(T ) ∀ T ∈ T (Γ)} , (6.8)

the space of continuous functions defined on the surface whose restriction on each
T ∈ T (Γ) is an affine function. We define the nodal basis functions ϕ1, � � � , ϕNdof

spanning VΓ
h by means of the classical interpolation property:

ϕj ∈ VΓ
h , ϕj(pi) = δij i, j = 1, � � � , N dof ,

where pi ∈ Γ are the nodes of the triangulation. Note that these functions are defined
on the curvilinear (geodesic) triangles T , and not, as in the embedded case, on the
approximate (flat) triangles Th.

The practical definition of ϕj works on an element-by-element basis and proceeds
similarly to section 5.1.1. In the following we adapt the previous definition to the
conforming FEM case. Given the global coordinates x(p) of p ∈ T , we can define the
affine function ϕ̃j

T (x) = ã + b̃x1 + c̃x2 + d̃x3 as a function in R
3. Composition of ϕ̃j

T

with the surface parametrization expresses the basis function in local coordinates:

ϕT

j (s1, s2) = ϕ̃j
T ◦ φ(s1, s2) �

Since the integrals in problem 6.4 are calculated by means of Gaussian quadrature
rules, we need to evaluate of the nodal basis functions at quadrature points pj inside
the cell T . Noting that, when using P1 basis functions optimal convergence is ensured
by the mid-point rule, the evaluation of the integrand at the cell mid-point mT is
required. As done in the DG setting, assuming T ⊂ φmT

(U) for some open set U ⊂ R
2,

eq. (2.1) allows us to work on the linear approximation of our surface, i.e., φmT
(T ) =

TmT
Γ + O(h2). As a consequence, the local basis functions

ϕT

j (s1, s2) ≈ ϕ̃j
T ◦ φmT

(s1, s2)

obtained by neglecting the higher order terms span the set of affine functions in T .
The global basis function ϕj is then formed as usual by gluing together the elemental
components. We are now able to write every function v in the functional space VΓ

h as:

v(s) =
Ndof∑
j=1

vjϕj(s) s ∈ Γ , (6.9)

with vj the nodal coefficients, and proceed as in the standard finite element method
obtaining the linear system as in eq. (6.7).
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vectors:

t̃1(mT ) = 1
3t1(A) + 1

3t1(B) + 1
3t1(C),

t′
2(mT ) = 1

3t2(A) + 1
3t2(B) + 1

3t2(C) , t̃2(mT ) = t′
2 −

〈
t′

2, t̃1
〉

〈
t̃1, t̃1

〉 t̃1 ,

and the associated metric tensor

G̃mT
=

⎡
⎢⎣
∥∥∥t̃1

∥∥∥2
0

0
∥∥∥t̃2

∥∥∥2

⎤
⎥⎦ �

6.1.3 Stabilization

For advection-diffusion-reaction equation the surface finite elements method is unstable
when the advective term is dominant with respect to the diffusive one, as the classical
plain FEM. More precisely, spurious oscillations appear when the mesh Peclet number
is higher than one. We define the cell Peclet number as

PeT = hT ‖w‖∞
2ε , (6.12)

where hT is the diameter of the cell T . To overcome the problem of spurious oscilla-
tions the stabilized finite elements method adds some stabilization terms to the weak
formulation. The stabilized finite element method for both the embedded and intrinsic
approaches can be written as:

Problem 6.5. Find uh ∈ VΓ
h such that:

mh(∂t uh, v) + ah(uh, v) + bh(uh, v)

+ ch(uh, v) + sh(uh, v) = Fh(v) + sFh
(v) ∀ v ∈ VΓ

h ,

where sh(uh, v), sFh
(v) are the stabilization terms.

Note that the actual bilinear forms used in the intrinsic FEM contain the h subscript
to indicate that numerical quadrature is used in the evaluation of the integrals.

We specify the surface versions of the stabilized FEM based on the standard SUPG
approach. In the embedded approach the stabilization terms are defined projecting the
relevant operators onto the approximate triangulation Th(Γ), yielding:

sh(uh, v) =
∑

Th∈Th(Γ)
δTh

∫
Th

(
∂t uh − εΔΓh

uh +
〈
wh,∇Γh

uh
〉

+ c uh
) 〈

wh,∇Γh
v
〉

dx ,

sFh
(v) =

∑
Th∈Th(Γ)

δTh

∫
Th

fh
〈
wh,∇Γh

v
〉

dx �
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The stabilization parameter δTh
depends on Th ∈ Th(Γ), and can be written as [30]:

δTh
=
(

4ε
h2
T

+
2 ‖wh‖T,∞

hT
+ c̃Th

)−1

, (6.13)

where c̃Th
takes into account the coefficient of the mass matrix and the reaction term,

i.e., c̃Th
= 1

Δtn + cTh
.

The intrinsic formulation reads:

sh(uh, v) =
∑

T∈T (Γ)
δT

∫
T

(
∂t uh − εΔGuh + 〈w,∇G uh〉G + c uh

)
〈w,∇G v〉G ds ,

sFh
(v) =

∑
T∈T (Γ)

δT

∫
T
f 〈w,∇G v〉G ds ,

with δT taking on the form:

δT =
(

4ε
h2
T

+
2 ‖w‖T,∞

hT
+ c̃T

)−1

, (6.14)

where c̃T = 1
Δtn + cT . We note that many alternative definitions of the stabilization

parameter δT have been explored in the literature. In particular, the formulation
proposed by Bazilevs et al. [10] has shown promise for highly dynamic problems in
complex geometries. The adaptation of this approach to our intrinsic scheme is given
by:

δT,G =
(

4c̃2
T + ‖w‖G + 9ε2 ∑

i

gii

)−1/2

,

where the surface metric tensor replaces the Jacobian of the change of coordinate
between the reference and physical triangle. In all the test problems considered in this
work we observed similar behavior across all the definitions of δT and report only the
results using eqs. (6.13) and (6.14).

The stabilized problem at time t can be re-written in matrix form as:

M̃(t) ∂t u +
(
Ã(t) + B̃(t) + C̃(t)

)
u = b̃(t) ,

where now every term depends on time through the stabilization term. We denote with
a tilde the matrices that contain the relative stabilization term, i.e.:

M̃ij(t) =
∫

Γ
ϕjϕi ds +

∑
T∈T (Γ)

δT

∫
T
ϕj 〈w(t),∇G ϕi〉G ds ,

Ãij(t) = ε
∫

Γ
〈∇G ϕj,∇G ϕi〉G ds +

∑
T∈T (Γ)

δT

∫
T

(−εΔGϕj) 〈w(t),∇G ϕi〉G ds ,

B̃ij(t) =
∫

Γ
〈w(t),∇G ϕj〉G ϕi ds +

∑
T∈T (Γ)

δT

∫
T

〈w(t),∇G ϕj〉G 〈w(t),∇G ϕi〉G ds ,

C̃ij(t) =
∫

Γ
c ϕjϕi ds +

∑
T∈T (Γ)

δT

∫
T
c ϕj 〈w(t),∇G ϕi〉G ds ,
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and analogously for the vector of the right-hand-side:

b̃i(t) =
∫

Γ
fh ϕi ds +

∑
T∈T (Γ)

δT

∫
T
fh 〈w(t),∇G ϕi〉G ds �

Note that, in the P1 case, Ã = A because the Laplacian of an affine function in zero.
The system is then discretized in time in the interval [0, tf ] by means of an implicit
Euler scheme, which takes the form:( 1

Δtn M̃n+1 + Ãn+1 + B̃n+1 + C̃n+1
)

un+1 = b̃n+1 + 1
Δtn M̃n+1 un ,

where Δtn = tn+1 − tn, as the usual notation.

6.2 Numerical results

Our numerical tests are designed to experimentally verify the applicability of the de-
veloped schemes to the solution of advection-diffusion-reaction equation on surfaces,
eq. (6.1). Specifically, we want to test the experimental convergence of the schemes on
known solutions, from simple ones to more complex expressions.

First, we validate the codes on literature examples. In these test cases we consider
first a simple flat unit square domain. Next we look at the example proposed in [36]
and work on the surface defined as Γ = {x ∈ R

3 | H(x) = 0} with the level set function:

H(x) = (x1)2

4 + (x2)2 + 4(x3)2(
1 + 1

2 sin(πx1)
)2 − 1 � (6.15)

Then, we run simulations on the following three surfaces. We consider the same hy-
perboloid (hyperboloid-central-bump (HCB)) used in the FV and DG test cases (see
section 4.3) and described on the subset U = [−3, 3]× [−3, 3] ⊂ R

2 by the parametriza-
tion given by the height function:

x3(x1, x2) = −4
5

√
(x1)2 + (x2)2 + 1 � (6.16)

Subsequently, we consider the unit sphere. For simplicity we take only a portion of the
sphere so that an explicit parametrization can be used with one single chart. However,
no real difficulties would arise if an atlas formed by more than one chart was used. Thus
the boundary of the surface corresponds to ∂U = {(x1, x2) | (x1)2 + (x2)2 = 0�75} ⊂ R

2.
Finally we use the more complex surface proposed in [37], and already used in the
previous chapters to addresses a fully three-dimensional case. This surface is defined
starting from the subset U = [−10, 10] × [−4, 4] ⊂ R

2 and using the height function:

x3(x1, x2) = − 1
500(x1)3 − 1

100x
1(x2)2 � (6.17)
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ε = 1 ε = 10−4

h� EL2(u) eoc� EL2(∇G u) eoc� EL2(u) eoc� EL2(∇G u) eoc�

0.400 7.10E-04 1.62E-01 3.36E-03 1.63E-01
0.200 1.79E-04 1.99 8.10E-01 1.00 1.14E-03 1.55 8.13E-02 1.00
0.100 4.44E-05 2.01 4.05E-02 1.00 3.10E-04 1.88 4.06E-02 1.00
0.050 1.11E-05 2.00 2.02E-02 1.00 7.82E-05 1.99 2.03E-02 1.00
0.025 2.77E-06 2.00 1.01E-02 1.00 1.96E-05 2.00 1.01E-02 1.00
0.125 6.92E-07 2.00 5.06E-03 1.00 4.89E-06 2.00 5.06E-03 1.00

Table 6.1: Flat domain, intrinsic approach: L2 error norms for u and ∇G u and corre-
sponding experimental convergence rates.

Figure 6.2 shows the geometry of the three different surfaces described by the parametriza-
tion, and the spatial distribution of the metric coefficients. In all cases, we assume that
the relevant surface quantities are known or can be approximated at the nodes of the
triangulation, and use the interpolation described above to define needed quantities at
other points.

Flat domain

We start considering stationary problems with a reaction coefficient constant in space.
The equation simplifies as follow:

− ε Δu+ 〈w,∇u〉 + c u = f on Γ � (6.18)

Here the equation contains the general symbols for gradient and divergence that will
be specify later in the specific examples based on the approach we apply.

We consider a structured triangulation of a flat domain defined by a subset U =
[0, 1]× [0, 1] ⊂ R

2 and a constant height function x3 ≡ 0. We apply both the embedded
and intrinsic approach. Note that, on this flat test case both approaches should collapse
to the standard P1 Galerkin method. The convergence tests are carried out by using
a mesh sequence built by refining an initial structured mesh with h0 = 0�4 m and a
total of 16 nodes. The mesh sequence is composed by 7 mesh levels built by uniform
refinement, with the finest level characterized by h6 ≈ 0�125 m and 9409 nodes. We
consider the stationary problem eq. (6.18), with constant velocity field w = (1, 1), for
the intrinsic case (w = (1, 1, 0) = wh for the embedded case), and reaction coefficient
c = 1. We work with the exact solutions u(x) = x1 (to test exactness on linears) with
diffusion coefficient ε = 10−4, and u(x) = x1x2 with diffusion coefficients ε = 1, 10−4.
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ε = 1

h� EL2(u) eoc� EL2(∇Γh
u) eoc�

0.428 2.02E-01 8.34E-01
0.225 4.14E-02 2.47 2.85E-01 1.67
0.115 1.03E-02 2.07 1.29E-01 1.17
0.058 2.57E-03 2.02 6.29E-02 1.05
0.029 6.41E-04 2.01 3.13E-02 1.01

Table 6.2: Literature example, embedded approach: L2 error norms for u and ∇Γh
u

and corresponding experimental convergence rates.

In this case the mesh Peclet number Pe = maxT∈T (Γ) PeT varies in the range 0.01-0.20
with a diffusion coefficient equal to 1, while Pe is in the range 101-104 in the second
case.

The results show that the equation is solved exactly in the case of the linear solution
u(x) = x1. Table 6.1 shows the L2 errors and experimental orders of convergence for the
solution and its gradient for the exact solution u(x) = x1x2. As expected, the results
show second order convergence rates for the solution and first order for the gradient.
Similar results are obtained applying the embedded approach, whose convergence rates
are not reported here.

Comparison with a literature example

In this test case we consider an example presented in [36]. We are interested in this
example to verify the implementation of the embedded code, and we applied only
the embedded approach due to the complexity of the surface requiring more that one
chart and of the corresponding mesh generation procedure. The surface is described in
eq. (6.15). The example considers the Laplace-Beltrami equation on the surface. We
want to verify the convergence for the exact solution u = x1x2. To this aim, the forcing
function is computed as f(x) = −ΔΓh

u(x). We can calculate the forcing function in
terms of the mean curvature of the surface as follows:

f(x) = 2N1(x)N2(x) +H(x)
(
x2N1(x) + x1N2(x)

)
,

where N = ∇ H
|∇ H| is the surface normal.

In practice, we impose ε = 1, w = 0 and c = 0. For the convergence test we start
from a coarse grid with average mesh parameter h0 = 0.428 m and 162 surface nodes.
The mesh sequence contains 5 levels, the finest characterized by a mesh parameter
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Figure 6.3: Literature example, embedded approach: numerical solution over the finest
mesh (h4 = 0.029 m) for the u(x) = x1x2 solution.

h4 = 0.029 m and 40962 surface nodes. Figure 6.3 shows the numerical solution over
the finest mesh. Table 6.2 shows the L2 errors and experimental orders of convergence
for the solution and its gradient. Consistently with the example presented in [36] we
notice second order convergence rates for the solution and first order for the gradient
as expected from theoretical results.

Hyperboloid-central-bump

We consider again the stationary problem eq. (6.18), with reaction coefficient c =
1. Two diffusion coefficients are tested ε = 1, 10−4, with the lowest value requiring
stabilization. We work with the exact solution u(x) = x1x2 and compute the resulting
forcing function f .

Embedded approach. In the case of the embedded approach, the surface is given
by Γ = {x ∈ R

3 | H(x) = 0}, where the level function is:

H(x) = −4
5

√
(x1)2 + (x2)2 + 1 − x3(x1, x2) �
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ε = 1 ε = 10−4

h� EL2(u) eoc� EL2(∇Γh
u) eoc� EL2(u) eoc� EL2(∇Γh

u) eoc�

0.560 6.14E-02 8.86E-01 2.43E-01 1.31E+00
0.281 1.37E-02 2.17 4.44E-01 1.00 7.87E-02 1.63 6.94E-01 0.92
0.140 3.23E-03 2.09 2.22E-01 1.00 2.38E-02 1.73 3.63E-01 0.94
0.070 7.90E-04 2.03 1.11E-01 1.00 6.91E-03 1.79 1.95E-01 0.90
0.035 1.96E-04 2.01 5.56E-02 1.00 1.92E-03 1.85 9.91E-02 0.98
0.018 4.90E-05 2.00 2.78E-02 1.00 4.87E-04 1.98 4.30E-02 1.21

Table 6.3: HCB, embedded approach: L2 error norms for u and ∇Γh
u and correspond-

ing experimental convergence rates.

The right-hand side forcing function is:

f(x) = −ε ΔΓh
u+

〈
wh,∇Γh

u
〉

+ u ,

where the operators are defined as in section 6.1.1. The velocity field is constant and
given by w = (1, 1), yielding a projected velocity wh = Phw. Experimental conver-
gence of the scheme is tested on a mesh sequence built by refining an initial Delaunay
triangulation of U with mesh parameter h0 ≈ 0�560 m for a total of 424 surface nodes.
The nodes of this planar triangulation are moved vertically according to eq. (6.16).
The mesh sequence comprises 5 uniform refinements of the initial triangulation, with
the finest level  = 5 characterized by h5 ≈ 0�018 m. We look at the L2-norm of
the difference between the approximated and exact values of the solution u and its
gradient ∇Γh

u, calculated by means of the trapezoidal and midpoint rules described
in eqs. (6.10) and (6.11). Table 6.3 reports the convergence results for the cases ε = 1
and ε = 10−4. Second order of convergence for the solution and first order convergence
for its gradient are invariably obtained.

Intrinsic approach. For the intrinsic approach the right-hand side forcing function
is computed by:

f(x) = −ε ΔGu+ 〈w,∇G u〉G + u ,

with the differential operators, defined in proposition 2.3.2, which contain the surface
geometric information. The velocity field is defined by w = (1/h(1), 1/h(2)). The
convergence test is carried out on the same mesh sequence used in the embedded
approach, starting from a coarsest level characterized by h0 = 0.560 m and 424 surface
nodes, and consisting of 5 refinement levels. Table 6.4 reports the L2-norms of the errors
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ε = 1 ε = 10−4

h� EL2(u) eoc� EL2(∇G u) eoc� EL2(u) eoc� EL2(∇G u) eoc�

0.560 4.68E-02 8.72E-01 1.30E-01 1.00E+00
0.281 1.07E-02 2.13 4.38E-01 1.00 4.43E-02 1.56 5.12E-01 0.97
0.140 2.56E-03 2.07 2.19E-01 1.00 1.27E-02 1.80 2.50E-01 1.03
0.070 6.27E-04 2.03 1.10E-01 1.00 3.40E-03 1.91 1.24E-01 1.01
0.035 1.56E-04 2.01 5.49E-02 1.00 9.14E-04 1.90 6.27E-02 0.99
0.018 3.89E-05 2.00 2.75E-02 1.00 2.39E-04 1.93 3.08E-02 1.03

Table 6.4: HCB, intrinsic approach: L2 error norms for u and ∇G u and corresponding
experimental convergence rates.

ε = 10−6

h� EL2(u) eoc� EL2(∇Γh
u) eoc�

0.329 2.13E-02 1.90E-01
0.176 3.80E-03 2.76 5.72E-02 1.93
0.091 1.27E-03 1.65 1.55E-02 1.96
0.046 3.30E-04 2.00 6.78E-03 1.22
0.023 8.89E-05 1.92 3.94E-03 0.79
0.012 2.36E-05 1.92 2.38E-03 0.74

Table 6.5: Sphere, embedded approach: L2 error norms for u and ∇Γh
u and corre-

sponding experimental convergence rates.

for the solution and its gradient. The expected second and first order of convergence
for the solution and its gradient is obtained.

Sphere

Here we solve eq. (6.18) on the unit sphere, considering a variant of the example
proposed in Olshanskii et al. [60]. The diffusion parameter is set to be ε = 10−6, the
reaction coefficient is c = 1, while the advection velocity vector is chosen to be tangent
to the sphere and will be specified in the following paragraphs. We consider the exact
solution given by:

u(x) = x1

π
arctan

(
x2

√
ε

)
�
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ε = 10−6

h� EL2(u) eoc� EL2(∇G u) eoc�

0.329 1.94E-02 1.96E-01
0.176 3.41E-03 2.78 5.54E-02 2.02
0.090 1.09E-03 1.71 1.53E-02 1.94
0.046 2.87E-04 1.98 6.88E-03 1.18
0.023 7.93E-05 1.88 4.12E-03 0.75
0.012 2.14E-05 1.90 2.50E-03 0.72

Table 6.6: Sphere, intrinsic approach: L2 error norms for u and ∇G u and corresponding
experimental convergence rates.

Embedded approach. The sphere is defined by a level set function as Γ = {x ∈
R

3 | (x1)2 + (x2)2 + (x3)2 − 1 = 0}. Here, the tangential velocity field is expressed in
the three-dimensional x components and is given by:

w =
(

−x3
√

1 − (x2)2, 0, x1
√

1 − (x2)2
)
�

It is easy to verify that this vector field is tangent to the sphere. As before, the forcing
function is computed by using the values of the exact solution to yield:

f(x) = −ε ΔΓh
u+

〈
wh,∇Γh

u
〉

+ u �

The circular subset U = {(x1, x2) | (x1)2 + (x2)2 ≤ 0�75} is discretized by a Delaunay
triangulation and then the nodal values are raised using the height function x3(x1, x2) =√

1 − (x1)2 − (x2)2. For the convergence test we start from a coarse grid with average
mesh parameter h0 = 0.329 m and 39 surface nodes. The mesh sequence is obtained
by uniform refinements for a total of 6 mesh levels (the finest mesh level  = 5 has
an average mesh parameter h5 = 0.012). Due to the boundary layer we compute the
error in the domain D = {x ∈ Γ | |x2| ≥ 0�3}. Table 6.5 shows the L2 errors and
experimental orders of convergence for the solution and its gradient. Consistently with
the previous test cases, we notice second order convergence rates for the solution and
first order for the gradient. Convergence rates slightly smaller that one are attributable
to the complexity of the solution in the pole of the sphere, as shown in fig. 6.4

Intrinsic approach. The mesh sequence used to test convergence is the same as in
the embedded approach. In this case, we define the advection velocity vector using
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Figure 6.4: Sphere, intrinsic approach: numerical solution over the finest mesh
(h5 = 0.012 m).

local coordinates and, in the s components, we can write:

w =
(

−1 − (s2)2

h(1)

, 0
)
�

Figure 6.4 shows the numerical solution over the finest grid characterized by h5=0.012 m
and 30977 surface nodes. Table 6.6 reports the L2-error norms computed in D = {x ∈
Γ | |x2| ≥ 0�3}. Again, second and first order convergence for the solution and its
gradient, respectively, are observed, with the same slight loss of convergence in the
solution gradient already seen in the embedded approach.

Fully 3D surface (intrinsic approach)

For the final test case we solve the complete non-stationary problem eq. (6.1) with
the intrinsic approach. The mesh used in this test case was obtained from a Delau-
nay triangulation of U = [−10, 10] × [−4, 4] and elevated using the height function
of eq. (6.17). The mesh parameter is h = 0.62 m for a total of 880 surface nodes.
We consider a diffusion coefficient ε = 10−2, and a zero reaction term. The advection
velocity vector varies in space and in time and is given by the finite volume solution of
the Intrinsic Shallow Water Equations defined in section 4.3. The simulation for the
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t = 0.00 t = 0.80

t = 1.75 t = 3.60

Figure 6.5: Fully 3D surface: advection-diffusion equation solved with FEM code
on a mesh with h = 0�62 m. The concentration in reported at different times,
t = 0�00, 0�80, 1�75, 3�60 s.

ISWE is set to be a dam-break wet bed problem, with initial condition that considers
uniform water depth of 2.0 m upstream of x1 = -8.5 m, and 1.0 m downstream. No
flow conditions are imposed in all boundaries, except at x1 = 10 m where the outlet is
located. We run the simulation up to 2 s and store all the values of the velocities. The
time steps are calculated in order to satisfies a CFL condition, with value CFL ≈ 0�1.

The initial condition for the concentration u is represented in fig. 6.5, top left. The
advection velocity w is read in from the FV solution and the time steps are defined as
the time difference between successive input velocity fields (velocities are not interpo-
lated in time). Because of the relatively large velocity magnitude and small diffusion,
the mesh Peclet numbers vary in the range 101-104, thus requiring stabilization. The
simulated concentration is reported in fig. 6.5 at three different times. Qualitatively
the solution shows the expected behavior. The initial plume moves following the ve-
locity field, concentrating at the beginning towards the upper depression and starting
to spread wider when reaching the central mound. This simulation shows that SUPG
stabilization with parameter eq. (6.14) is very effective in maintaining monotonicity,
although possibly overcompressive.
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t = 0.80 t = 1.75

t = 0.80 t = 1.75

Figure 6.6: Fully 3D surface: transport equation solved with FV code on two different
levels of refinement of a mesh (a coarse mesh with h = 0�62 m, top panels, and a refined
mesh with mesh parameter h = 0�142, bottom panels) at times t = 0�80, 1�75 s.

Comparison with Intrinsic Finite Volume. To complete the treatment of this
test case, we go back to our IFV scheme applied to the surface scalar transport equation.
We take in input the advection velocities from the shallow water problem, and we
consider a simple upwind method for the flux on the edges. We run the simulation over
two different refinements of the mesh: a coarse mesh (the same as the FEM simulation)
with h = 0�62 m and 1656 cells; a fine mesh, obtained by two uniform refinement of the
coarse one, with h = 0�142 and 34496 surface triangles. As in section 5.3.1, in this case
the time steps need to adapt to the time interval of the input velocity, thus imposing a
variable in time CFL number to the simulation. We proceed with linear interpolation
to assign the correct values of the velocities at the actual simulation times, making
sure to never exceed CFL≈ 0�5. The resulting values of the CFL number at each time
steps are far from optimal and large numerical viscosity is expected.

Figure 6.6, top panels, show the simulation over the coarse mesh at times t =
0�80, 1�75 s, while fig. 6.6, bottom panels, contain the simulation over the fine mesh
at the same times t = 0�80, 1�75 s. We can see that the behavior of the solution
is qualitatively similar to the solution obtained by intrinsic FEM. The most striking
difference is that the plume is more spread spatially as a consequence of the large
numerical diffusion typically introduced by a first order Godunov scheme. This is
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enhanced by the fact that times step sizes are dictated by input data and are not
optimal in minimizing numerical diffusion.

6.3 Future developments

Starting from the promising results of the intrinsic P1-FEM approach developed in
this thesis, it is natural to take into consideration the method of edge-based entropy-
viscosity (EV) recently proposed by [44], and extend it to PDEs on surfaces. In our
developed intrinsic approach this extension becomes straight forward, showing again
the advantages of our approach.

We work on the scalar conservation law written as:

∂t u+ ∇G ·F(u) = 0 in Γ , (6.19)

subject to the initial condition u(s, 0) = u0 and appropriate boundary conditions. The
EV algorithm is based on an explicit P1 finite element approximation. We consider the
computational meshes T (Γ) and Th(Γ), and we define on the surface triangulation the
finite element space VΓ

h as in the previous section, see eq. (6.8). For i = 1, � � � , N dof ,
we denote with ϕi the i-th basis functions of the space, with Si its support and I(Si)
is the set of indices of basis functions that have a non-zero value in Si.

Entropy-viscosity method. The hyperbolic behavior of an equation makes the
computations challenging and high-order methods are known to produce spurious os-
cillations in shocks, as previously seen. There exists a large class of methods to solve
this problem in an efficient way, but the majority of them relies on limiters to avoid
spurious oscillations, which are non-trivial to develop. We start by presenting the orig-
inal entropy-viscosity approach formulated in [45], which avoids the use of limiters and
non-oscillatory reconstructions by adding a degenerate nonlinear dissipation to the nu-
merical discretization of the equation or the system at hand. The viscosity coefficient
is based on the local size of an entropy production. Scalar conservation equations have
many entropy pairs and most physical systems have at least one entropy function sat-
isfying an auxiliary entropy inequality. The entropy satisfies a conservation equation
only in the regions where the solution is smooth and satisfies an inequality in shocks;
this inequality then becomes a selection principle for the physically relevant solution.
The amount of violation of the entropy equation is called entropy production. By
making the numerical diffusion to be proportional to the entropy production, we add a
large numerical dissipation in the shock regions and almost no dissipation in the regions
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where the solution remains smooth. This simple idea is mesh and approximation in-
dependent and can be applied to equations or physical systems that are supplemented
with an entropy inequality.

Consider eq. (6.19). Using a Galerkin approximation, the idea is to construct a
stabilization term based on a nonlinear entropy viscosity formulation as:∫

Γ
∂t uh v ds +

∫
Γ

∇G ·F(uh)v ds +
∑
T∈T

∫
T
νT 〈∇G uh,∇G v〉G ds = 0 �

Here νT is a nonlinear artificial viscosity coefficient for the cell T and it is defined by:

νT = min{νLT , νET } ,

where

νLT = CmaxlT ‖JF‖L∞(T ) and νET =
CEl

2
T ‖Rh(E(uh))‖L∞(T )

E(uh) − Ē(uh)
,

with Cmax and CE are user-defined constants, lT is the length of the smallest edge of
T , E is the entropy that is combined with an entropy flux G to satisfy an entropy
inequality:

R(uh) = ∂tE(uh) + ∇G ·G(uh) ≤ 0 ,

and Ē is the globally-averaged value of the normalized entropy viscosity, i.e.,

Ē = 1
AΓ

∫
Γ
E(uh) ds �

We denote by R(uh) the entropy residual and by Rh its time approximation, which for
example can be computed using first-order differences in time:

Rh(E(uh)) = E(unh) − E(un−1
h )

Δtn + ∇G ·F(unh) ,

or = E(unh) − E(un−1
h )

Δtn + 〈JF(unh),∇G E(unh)〉G �

Examples of entropy-entropy flux pairs for the linear transport equation (i.e., F(uh) =
w uh) include E(uh) = 1

2u
2
h, E(uh) = |uh|p, p ≥ 1 or E(uh) = log (|uh(1 − uh)| + 10−14),

and G = wE.

Second order maximum principle preserving scheme. Subsequently, the ap-
proach in [41] updates this original EV scheme and as a result offers a fairly general
second-order scheme for nonlinear scalar problems that satisfies a maximum principle.
The setting is very similar to the original one, and look at H1 conforming spaces based
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on polynomial approximations. It does require a function space where the lumped mass
matrix is positive definite. The main ingredients of the method are: i) the use of the
graph Laplacian in the viscous regularization term; ii) the use of the Flux-Corrected-
Transport (FCT) paradigm to perform limiting between the low and high-order ap-
proximations; iii) the use of a mass-lumping correction term. The basic weak form
is: ∫

Γ
∂t uh v ds +

∫
Γ

∇G ·F(uh)v ds + sh(uh, v) = 0 ,

where again the third term is a viscous stabilization term. Here, the bilinear form
sh(·, ·) can be written as:

sh(uh, v) =
∑

T∈T (Γ)

∑
i,j∈I(T )

νT uj vi sh(ϕj, ϕi) ,

with

sh(ϕj, ϕi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1
2AT i 
= j , i, j ∈ I(T )

AT i = j , i, j ∈ I(T )

0 otherwise

,

a definition that reminds of a graph Laplacian. The local artificial coefficient νT can
be defined by:

νT = max
i�=j∈I(T )

∣∣∣∣∣
∫
Sij

〈JF(uh),∇G ϕj〉G ϕi ds
∣∣∣∣∣

−
∑

K∈T (Γ)
K⊂Sij

sh(ϕj, ϕi)
, (6.20)

where Sij = Si ∩ Sj is the intersection of the supports of the i, j-th basis functions. In
this case, the solution update can be written as:

un+1
i = uni − Δtm−1

i

∑
T∈Si

(
νnT sh(unh, ϕi) +

∫
T

∇G ·F(unh)ϕi ds
)
,

where mi :=
∫
Si
ϕi ds is the i-th coefficient of the lumped mass matrix.

Remark 6.1. In [41] the authors show that the low-order scheme satisfies a local discrete
maximum principle. Let β be a suitable upper bound on the wave speed, i.e.,

β = sup
v∈{u∗

min,u
∗
max}

‖JF(v)‖ ,

then the low-order order scheme satisfies a local discrete maximum principle under the
CFL condition:

βΔtn

l
≤ 1
λ(1 + ρ−1) �

Here, λ is a constant based on the integrals of the basis functions, l is the global
minimum mesh size, i.e., l = minT lT , and ρ = 1/2 in the case of a triangulation.
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The above technique is then extended to make it higher-order using the notion of
entropy-viscosity. We call low-order viscosity νLT the coefficient defined in eq. (6.20).
Then, we define an high-order viscosity term based on the entropy residual. Explicitly,

νHT = min

⎛
⎜⎝νLT , CTRT + CJ maxσ∈∂T Jσ∥∥∥E(uh) − Ē(uh)

∥∥∥
L∞(T )

⎞
⎟⎠ , (6.21)

where Jσ is the edge-based stabilization term, which at time tn is given by:

Jnσ =
∥∥∥〈JF(unh), μ ∂νE(unh)〉G

∥∥∥
L∞(σ)

,

and μ the local normal vector to the edge. The key improvement over earlier versions
of the method is that the high-order viscosity coefficient does not require a notion of
mesh-size. However, the constants CT and CJ are still to be defined, thus the method
is not yet parameter free. The applications investigated in [41] work satisfactorily with
CT = 1 and CJ = 4.

Moreover, due to the high dispersion induced in working with a lumped mass matrix,
it is convenient to work with a consistent mass matrix even though this strategy makes
the method loose the maximum principle property. To partially remedy this issue,
[42] proposes a conservative treatment of the mass matrix. Specifically, they define
B = (ML − MC) M−1

L , where ML and MC are the lumped and consistent mass matrix,
respectively. Then, the consistent mass inverse can be formally approximated as:

M−1
C = M−1

L

(
I + B + B2 + � � �

)

Finally, the high-order solution can be approximated formally by:

Un+1
H = Un − Δtn M−1

L (I + B) FH ,

where Un = {uni } is the vector of the degrees of freedom at time tn.

Edge-based viscosities. More recently, the entropy-viscosity technique moved to
using edge-based viscosities. Guermond and Popov [44] lay out a second-order invariant
domain preserving approximation based on the edge-based formulation. The approach
differs from [41] and suggests that limiting viscosities attain better solutions than
directly limiting the solution. Authors also identify some methods that are maximum
principle preserving but do not converge to the correct entropy solution when the flux
is non-convex. In particular, Galerkin FEM with just FCT may converge to entropy
violating weak solutions if the flux is nonlinear.
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The scheme uses the observation that F(unh) = ∑Ndof

j=1 F(unj )ϕj if F is linear, to
consider a formally second-order accurate approximation of the form:∫

Γ
∇G ·F(unh)ϕi ds ≈

∑
j∈I(Si)

F(unj )
∫

Γ
(∇G ϕj)ϕi ds ,

where we denote by unh = ∑
i u

n
i ϕi the approximate solution at time tn written with

respect to the nodal basis functions ϕi, for i = 1, � � � , N dof . The generic formulation of
the edge-based updates with lumped mass matrix can be written as:

mi
un+1
i − uni

Δtn +
∑

j∈I(Si)

(〈
F(unj ), cij

〉
G

− dniju
n
j

)
= 0 , (6.22)

where
mi =

∫
Γ
ϕi ds , cij =

∫
Γ
ϕi ∇G ϕj ds ,

and the coefficient dnij is an artificial viscosity for the pair (i, j) that requires:

dnij ≥ 0 if i 
= j , dnij = dnji , dnii :=
∑

i�=j∈I(Si)
−dnij �

Thus, ∑j∈I(Si) d
n
ij = 0, which implies that the method is conservative. In fact, summing

(6.22) over all the degrees of freedom gives:

∫
Γ
un+1
h ds =

∫
Γ
unh ds − Δtn

Ndof∑
i=1

∑
j∈I(Si)

[〈
F(unj )), cij

〉
G

− dniju
n
j )
]

=

=
∫

Γ
unh ds − Δtn

Ndof∑
i=1

∑
j∈I(Si)

〈
F(unj ), cij

〉
G

=

≈
∫

Γ
unh ds − Δtn

∫
Γ

∇G ·
⎛
⎝ ∑
j∈I(Si)

F(unj )ϕj

⎞
⎠ ds �

Moreover, this implies also that eq. (6.22) can be re-written as:

mi
un+1
i − uni

Δtn +
∑

j∈I(Si)

[〈
F(unj ) − F(uni ), cij

〉
G

− dnij(unj + uni )
]

= 0 , (6.23)

or equivalently:

un+1
i = uni

⎛
⎝1 −

∑
i�=j∈I(Si)

2Δtndnij
mi

⎞
⎠ +

∑
i�=j∈I(Si)

2Δtndnij
mi

ūn+1
ij , (6.24)

where the auxiliary variable ūij is defined at time tn+1 by

ūn+1
ij = 1

2(unj + uni ) −
〈

F(unj ) − F(uni ), cij
2dnij

〉
G

� (6.25)
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The following observation motivates the choice of the artificial viscosity coefficient dnij.
In fact, if we set νij := cij/ |cij| and τ := |cij| /2dnij, eq. (6.25) takes the form:

ūn+1
ij = 1

2(unj + uni ) − τ
〈
F(unj ) − F(uni ), νij

〉
G
,

which can be related to the solution of a Riemann problem. In particular, τ denote a
“fake time” value, and the CFL condition motivates the definition for dnij:

dnij = max
{
λmax(νij, uni , unj ) |cij| , λmax(νji, unj , uni ) |cji|

}
, (6.26)

where λmax(νij, uni , unj ) is the maximum speed of propagation at the interface.

Concluding remarks. This method has not been implemented concretely yet. It is
our intention to do it in the near future. However, as seen from the above developments,
its extension to surfaces is straight forward in our intrinsic approach, thus showing the
advantage of our method with respect to previously used surface based schemes. Not
only is the extension of the method immediate, but also all the theoretical properties
are maintained and extended directly to the surface case. The only requirements in
the development of sufficiently accurate quadrature rules.



7
Conclusions

We have presented a novel formulation of the intrinsic shallow water equations with
variable topography. The SW equations are obtained by integrating the Navier-Stokes
equations along local normals defined on a local reference system anchored on the
bottom surface. The resulting reduced model is written in a form intrinsic to the
bottom geometry. The formulation is a second order approximation of the NS equation,
is rotational invariant, maintains the lake-at-rest solution, and admits a conserved
energy in case of no stresses.

The main advantage of the proposed intrinsic balance system of hyperbolic equa-
tions is that source terms contain only information related to bottom slope and cur-
vatures, and not to the velocity field. The geometrically intrinsic description of the
equations, and thus the existence of an intrinsic diverge theorem, allows a direct deriva-
tion of a well-balanced Godunov finite volume discretization defined on a bottom tri-
angulation. The geometric information of the bed surface is assumed to be available
only at the triangulation nodes. Careful interpolation together with a discretized ver-
sion of parallel transport is used to define approximate tangent planes on the triangle
edges and barycenters. As typical of the Godunov approach, flux evaluation proceeds
by approximately solving a Riemann problem on the edges. Appropriately modified
midpoint quadrature rules are used to evaluate integrals over curvilinear edges and
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triangles.
The first order FV method is then extended to the Discontinuous Galerkin frame-

work. The function space is set in the intrinsic formulation and quadrature rules on
surfaces of appropriate accuracy are developed. We implemented P1 basis functions
together with a second order time-discretization technique to obtain a second order
scheme in space and time for the numerical solution of both the scalar transport equa-
tion and the ISWE model on surfaces.

The FV and DG schemes are tested on several realistic examples showing that
optimal order of convergence is obtained for smooth solutions. Mass conservation
properties are verified by looking at streamflows across several control sections, and
results are shown in the FV setting. The results show that the approaches are accurate
and robust and can be effectively used to solve hyperbolic systems on general bottom
topographies. Further studies concerning well-balance properties need to be done for
the DG formulation. However, the main issue that needs to be addressed in the future
is how to deal with the presence of non-autonomous fluxes and thus the definition of
the Riemann problems.

Finally, the P1 Finite Element Method has been adapted to the intrinsic approach
for the solution of advection-diffusion-reaction equations on surfaces. Numerical test
cases to verify the applicability of the scheme are reported. The intrinsic formulation
is compared to another surface finite element code already presented in the literature,
and test cases considering exact solutions are used to show the convergence rates of
the scheme.

Several improvements of out intrinsic formulation merit attention in the near future.
Errors involved in the evaluation of the geometrical quantities on the surface need to be
assessed in the case of surfaces defined starting from measured data, such as remotely
sensed digital elevation maps. Moreover, the modeling of a movable bed, to take into
account erosion and sedimentation, has to be properly addressed within the context
of complex terrains to obtain robust and reliable predictions of natural phenomena as
hyper-concentrated and debris flows.
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