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Preface

This document offers a large overview of the eight months’ schedule of Seminario Dottorato
2018/19. Our “Seminario Dottorato” (Graduate Seminar) is a double-aimed activity. At
one hand, the speakers (usually Ph.D. students or post-docs, but sometimes also senior
researchers) are invited to think how to communicate their researches to a public of math-
ematically well-educated but not specialist people, by preserving both understandability
and the flavour of a research report. At the same time, people in the audience enjoy a
rare opportunity to get an accessible but also precise idea of what’s going on in some
mathematical research area that they might not know very well.
Let us take this opportunity to warmly thank the speakers once again, in particular for
their nice agreement to write down these notes to leave a concrete footstep of their par-
ticipation. We are also grateful to the collegues who helped us, through their advices and
suggestions, in building an interesting and culturally complete program.

Padova, June 20th, 2019

Corrado Marastoni, Tiziano Vargiolu

Università di Padova – Dipartimento di Matematica 2
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Abstracts (from Seminario Dottorato’s web page)

Wednesday 3 October 2018

Exact and meta-heuristic approach for Vehicle Routing Problems

Nicola GASTALDON (Padova, Dip. Mat. and Trans-Cel s.n.c., Albignasego PD)

The Vehicle Routing Problem (VRP) includes a wide class of problems studied in Operations

Research and relevant from both theoretical and practical perspectives. In its basic formulation,

the problem is to find a set of routes for a given fleet of vehicles through a set of locations, so

that each location is visited by exactly one vehicle and the total travel cost is minimized. Such

problem is often enriched with many attributes rising from real-world applications, such as capac-

ity constraints, pickup and delivery operations, time windows, etc. VRP belongs to the class of

combinatorial optimization problems, and it is very hard to solve efficiently and researchers have

developed many exact and (meta-)heuristic algorithms. The former takes advantage of the struc-

ture of the mathematical model to obtain a speedup through decomposition methods. The latter

exploits heuristic techniques to obtain solutions that trade off quality and computational burden,

such as evolutionary algorithms and neighborhood search routines.

In our research, we consider the VRP arising at Trans-Cel, a freight transportation company based

in Padova. We devised a Tabu Search heuristic implementing different neighborhood search poli-

cies, and now embedded in the tool supporting the operation manager at Trans-Cel. The algorithm

runs in an acceptable amount of time both in static and dynamic settings, and the quality of the

solutions is assessed through comparison with results obtained by a Column Generation algo-

rithm that solves a mathematical programming formulation of the problem. Current research aims

at developing data-driven techniques that exploit the information available from the company’s

repositories to support stochastic transportation demand arising in real time.

Wednesday 21 November 2018

Congruent numbers, Heegner method and BSD conjecture

Yan HU (Padova, Dip. Mat.)

The “Congruent number problem” is an old unsolved major problem in number theory. In this

seminar we provide a brief introduction to it. We will start from the original version of the problem,

and lots of objects will be introduced during the talk. If time permits, some current progresses

relateted to the BSD conjecture will also be described.

Università di Padova – Dipartimento di Matematica 3



Seminario Dottorato 2018/19

Wednesday 5 December 2018

Regular domain perturbation problems

Paolo LUZZINI (Padova, Dip. Mat.)

The study of the dependence of functionals related to partial differential equations and of quantities

of physical relevance upon smooth domain perturbations is a classical topic and has been carried

out by several authors.

In this talk we will give an introductory overview about regular domain perturbation problems. We

will provide concrete examples, highlight the motivations and the possible applications, and present

an outline of some new results obtained in collaboration with P. Musolino and R. Pukhtaievych.

Wednesday 19 December 2018

Real Options: An overview

Dimitrios ZORMPAS (Padova, Dip. Mat.)

Financial options are contracts that derive their value from the performance of an underlying asset.

They give to their holder the right, but not the obligation, to buy/sell an asset at a predetermined

price and time. Contracts similar to options have been used since ancient times. However, the

most basic model for their pricing was proposed in the early 1970’s leading to a Nobel prize in

1997.

In the late 1970’s the term Real Options is coined by Stewart Myers. According to the real options

approach an investment characterized by uncertainty and irreversibility is like a financial option on

a real asset. For instance, a potential investor has the right but not the obligation to pay a given

amount of money in order to make an investment and gain access to the corresponding profit flow.

Using standard option pricing tools one can also study the option to leave a market, outsource

production, mothball a production plant etc.

In this seminar, I will refer to the correspondence between financial and real options and then

present the simplest model in the real options literature that has to do with a potential investor

who is considering undertaking an uncertain and irreversible investment. Then I will present

a number of applications of the real options approach from the broad literature of operations

management and finally make a reference to applications of the real options approach in energy

economics.
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Wednesday 30 January 2019

Conservation law models for supply chains

Maria Teresa CHIRI (Padova, Dip. Mat.)

Many real situations are modelled by nonlinear hyperbolic first order partial differential equations

(PDEs) in the form of conservation or balance laws. Beside the classical case of Euler equations

of gas dynamics, such PDEs arise for instance in traffic flow, gas pipelines, telecommunication

networks, blood flow in arteries.

In this talk, after a short review on the basic theory of scalar conservation laws, we introduce a new

model for supply chains. Here, we are considering large volume production that allows a continuous

description of the product flow in terms of conservation laws, accompanied by ordinary differential

equations describing the processing capacities. A key feature of this model is the behaviour of

solutions in presence of a discontinuous dynamics with respect to the unknown conserved quantity

(number of parts being processed).

This is a joint work with Prof. Fabio Ancona from University of Padova.

Wednesday 13 February 2019

Mean field interacting particle systems and games

Guglielmo PELINO (Padova, Dip. Mat.)

Mean field theory studies the behaviour of stochastic systems with a large number of interacting

microscopic units. Under the mean-field hypothesis, it is often possible to give a macroscopic easier

description of the phenomena, which still allows to catch the main characteristics of the complex

pre-limit model. The main purpose of the talk is to motivate a system of two coupled forward-

backward partial differential equations, known as the mean field game system, which serves as a

limit model for a particular class of stochastic differential games with N players. For reaching this

goal, an introductive overview on macroscopic limits for mean field interacting particle systems

and games under diffusive dynamics will be presented. In the last part of the talk I will briefly

review my contributions in the context of finite state mean field games.

Wednesday 27 February 2019

On the Alexander polynomial of line arrangements in P2

Federico VENTURELLI (Padova, Dip. Mat.)

The Alexander polynomial was first introduced in the context of knot theory, and it was used to

study the local topology of plane curve singularities; this notion was later extended to projective

hypersurfaces (zero loci of a single polynomial equation in a projective space), which is the case that
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will be discussed in this talk. The Alexander polynomial of a hypersurface V encodes information on

the monodromy eigenspaces of H1(F,C), where F is the Milnor fibre of V ; while these eigenspaces

are well understood for smooth hypersurfaces, they are significantly harder to compute if the

hypersurface is singular, even in the simplest cases i.e. hyperplane arrangements.

In my talk I will try to give a basic introduction to this problem, explaining how the combinatorics

of a hyperplane arrangement can help in determining its Alexander polynomial and presenting

some known results; throughout the exposition some detours will be made, in order to discuss

explicit examples and to introduce (or clarify) concepts that could be unfamiliar to non-specialists.

Wednesday 13 March 2019

An introduction to stochastic control in discrete time with an application to the securi-
tization of systematic life insurance risk

Maren Diane SCHMECK (Univ. Bielefeld, Germany)

The basic idea behind insurance is to diversify risks. If a systematic risk is involved, this idea does

not work well any more. So the idea arose to transfer the insurance risk to financial markets. Even

though not perfectly linked to the own portfolio, these securitisation products work similarly to

a reinsurance contract. For an investor, the products give a possibility to diversify an investment

portfolio. Also insurers may act as investor and in this way diversify their own risk to regions

where they have not underwritten contracts.

The literature on securitisation products considers either the point of view of an investor, or

the product is used to perform a Markovitz optimisation. From the point of view of an insurer,

this only partially answers the question how to choose a securitisation portfolio. We will here

use utility theory and stochastic control in discrete time to determine the optimal portfolio. In

order to simplify the presentation we consider the case of a mortality catastrophe bond. Similar

consideration would also apply for other securitisation products.

The first part of the presentation will give an introduction to the methodology that we use in our

research: stochastic control in discrete time. That is, we will look at the dynamic programming

principle, also called Bellman?s equation and some results about the optimal strategy.

Wednesday 27 March 2019

Covers and envelopes of modules

Giovanna Giulia LE GROS (Padova, Dip. Mat.)

Approximation theory of modules is the study of left or right approximations of modules, also

known as covers or envelopes, with respect to certain classes of modules. For a class C of R-

modules, the aim is to characterise the rings over which every module has a C-cover or a C-

envelope and furthermore to characterise the class C itself. For example, if one considers the
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class of injective modules, then it is well-known that every module has an injective envelope (or

injective hull). Instead, Bass proved that projective covers rarely exist and characterised the rings

over which every module admits a projective cover, which are known as perfect rings. Moreover,

precovers and preenvelopes are strongly related to the notion of a cotorsion pair, which is a pair

of Ext-orthogonal classes in the category of R-modules.

The aim of this talk is to give a basic introduction to the theory of covers and envelopes, and

to describe them with respect to some well-known classes of R-modules, along with a review of

concepts in homological algebra that will be useful in this exposition.

Wednesday 10 April 2019

Probability and Information in Finance

Claudio FONTANA (Padova, Dip. Mat.)

In mathematical finance, tools from stochastic analysis are applied to the study of investment

and valuation problems arising in financial markets. In this talk, we introduce some basic and

fundamental concepts and results, with a focus on no-arbitrage properties and optimal investment

problems. After a general overview, we will discuss the role of information and explore the interplay

between information, arbitrage, and optimal investment.

Wednesday 8 May 2019

An introduction to Riemann-Hilbert correspondence

Davide BARCO (Padova, Dip. Mat.)

The 21st Hilbert problem concerns the existence of a certain class of linear differential equa-

tions on the complex affine line with specified singular points and monodromic groups. Arising

both as an answer and an extension to this issue, Riemann-Hilbert correspondence aims to es-

tablish a relation between systems of linear differential equations defined on a complex manifold

and suitable algebraic objects encoding topological properties of the same systems. The goal

was first achieved for systems with regular singularities, thanks to the works by Deligne, Kashi-

wara and Mebkhout. Moreover, Deligne and Malgrange established a generalized correspondence

(called Riemann-Hilbert-Birkhoff correspondence) for systems with irregular singularities on com-

plex curves, encoding and describing the Stokes phenomenon which arises in this case. In more

recent years, the correspondence has been extended to take account of irregular points on complex

manifolds of any dimension by D’Agnolo and Kashiwara.

In this talk we give a basic introduction on the subject by providing concepts and classical example

from the theory.
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Wednesday 22 May 2019

Including topographic effects in shallow water modeling

Elena BACHINI (Padova, Dip. Mat.)

Shallow water equations are typically used to model fluid flows that develop predominantly along

the horizontal (longitudinal and lateral) direction. Indeed, the so-called Shallow Water (SW)

hypothesis assumes negligible vertical velocity components. The typical derivation of the SW

equations is based on the integration of the Navier-Stokes equations over the fluid depth in com-

bination with an asymptotic analysis enforcing the SW assumptions. In the presence of a general

terrain, such as a mountain landscape, the model must be adapted to geometrical characteristics,

since the bottom surface can be arbitrarily non-flat, with non-negligible slopes and curvatures.

After an introduction on the standard SW model, we will present a new formulation of the two-

dimensional SW equations in intrinsic coordinates adapted to general and complex terrains, with

emphasis on the influence of the geometry of the bottom on the solution. The proposed model

is then discretized with a first order upwind Godunov Finite Volume scheme. We will give an

overview of the numerical method and then show some results. The results indicate that it is

important to take into full consideration the bottom geometry and slope even for relatively mild

and slowly varying curvatures.

Wednesday 12 June 2019

Serre’s p-adic modular forms and p-adic interpolation of the Riemann zeta function

Giacomo GRAZIANI (Padova, Dip. Mat.)

The so-called zeta functions are among the most famous and discussed objects in mathematics, the

simplest of which is the (in)famous Riemann zeta function. In order to work with them (and with

the strictly related L-functions as well), mathematicians decided to isolate simpler pieces and hence

ultimately to address the problem of their p-adic interpolation. In this seminar, after introducing

the various objects involved, we will focus on easiest example of the Riemann zeta function and

describe the surprising interpolation exploited by Serre using his notion of p-adic modular forms.
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Exact and meta-heuristic approach

for Vehicle Routing Problems

Nicola Gastaldon (∗)

Abstract. The Vehicle Routing Problem (VRP) includes a wide class of problems studied in
Operations Research and relevant from both theoretical and practical perspectives. In its basic
formulation, the problem is to find a set of routes for a given fleet of vehicles through a set of loca-
tions, so that each location is visited by exactly one vehicle and the total travel cost is minimized.
Such problem is often enriched with many attributes rising from real-world applications, such as
capacity constraints, pickup and delivery operations, time windows, etc. VRP belongs to the class
of combinatorial optimization problems, and it is very hard to solve efficiently and researchers
have developed many exact and (meta-)heuristic algorithms. The former takes advantage of the
structure of the mathematical model to obtain a speedup through decomposition methods. The
latter exploits heuristic techniques to obtain solutions that trade off quality and computational
burden, such as evolutionary algorithms and neighborhood search routines. In our research, we
consider the VRP arising at Trans-Cel, a freight transportation company based in Padova. We
devised a Tabu Search heuristic implementing different neighborhood search policies, and now
embedded in the tool supporting the operation manager at Trans-Cel. The algorithm runs in an
acceptable amount of time both in static and dynamic settings, and the quality of the solutions is
assessed through comparison with results obtained by a Column Generation algorithm that solves
a mathematical programming formulation of the problem. Current research aims at developing
data-driven techniques that exploit the information available from the company’s repositories to
support stochastic transportation demand arising in real time.

1 Introduction

The Vehicle Routing Problem refers to a wide class of problems studied in Operations
Research and nowadays still provides challenges in several real-world applications. In its
basic formulation, the problem is to find a set of routes given a fleet of vehicles and a set of
locations so that each location are visited by exactly one vehicle and the total travel cost is
minimized. Such problem is often enriched with many attributes rising from the real-world
cases, such as the capacity constraints, pickup and delivery operations, time windows, etc.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; and

Trans-Cel s.n.c., Albignasego PD. E-mail: . Seminar held on October 3rd, 2018.
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This problem belongs to the class of combinatorial optimization problems, and it is very
hard to solve efficiently. In order to solve such problem in an acceptable computational
time, researchers have developed many exact and (meta-)heuristic algorithms. The former
takes advantage of the structure of the mathematical model to obtain a speedup through
a decomposition into sub-problems. The latter exploits heuristic techniques to obtain
solutions close to the optimum, such as evolutionary algorithms and neighborhood search
routines.

2 The Vehicle Routing Problem (VRP)

The Vehicle Routing Problem (VRP) considers a fleet of vehicles and a set of locations and
requires a solution to be a set of routes that minimizes the overall travel cost while visiting
exactly once each location (see [13]). Such problem arises both in freight transportation
companies and in the public transport context. In real world applications multiple at-
tributes have to be considered, for instance there may be different type of operations
(pickup or delivery operations) to be satisfied at each location, capacity constraints on ve-
hicles, precedence policies on the route design, soft and hard time windows within which
any operation can be performed etc. In particular there are cases when the decision maker
must take into account simultaneously several attributes, and such setting is known as the
Multi-Attribute Vehicle Routing Problem (MAVRP) [1].
In the Operations Reserch literature devoted to MAVRPs several exact approaches were
studied, suitable for many variants of the VRP. In [2, 3] a set partition formulation is solved
by cut-and-column generation algorithm. A real-world VRP involving several attributes
(multiple capacities, hours-of-service regulations, open routes, split-delivery, client-vehicle
compatibility constraints etc.) is solved in [5] through a column generation approach and
a bounded bidirectional dynamic programming algorithm for the pricing problem.
In real-world applications often the operation manager needs to take decision in short
time. On the other hand, exact approaches rarely meet the efficiency required, so many
heuristics have been designed by the researchers. In [12] and [14] there is an overview of
several flexible heuristics able to adapt to the VRP definitions arising in different settings,
and handle a variety of objectives and side constraints. Meta-heuristic approaches, such
as Tabu Search, Genetic Algorithms, Ant Colony Optimization etc., are very popular for
solving MAVRPs [4]. The research presented in [15] hybridizes genetic algorithms and lo-
cal search, and proposes a unified framework for solving a wide range of large-scale vehicle
routing problems with time windows, route-duration constraints and further attributes
related to client assignment.
We devised solving methods for the MAVRP on the base of Trans-Cel, a freight trans-
portation company in Padova, dealing with long-medium hauls (north and middle Italy)
where several attributes must be considered in the planning phase.
Trans-Cel offers a just-in-time service to its customers and adopts the groupage technique,
meaning that different type of freight and/or packaging can be loaded in the same vehicle.
The orders consist of multiple pickup and delivery operations, and all the pickup opera-
tions must be satisfied before any delivery operation. A priority is associated to orders, so
that they can be regular, urgent or mandatory. A date for the operation to take place is

Università di Padova – Dipartimento di Matematica 10
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provided, as well as a time window that can be soft (i.e: delays w.r.t. the time window end
are penalized in the objective function), or hard (i.e: delays w.r.t. the time window end
are not feasible). Further data related to the order are the revenue obtained, the duration
of the operations and possible loading facilities required (i.e: a tail lift).
Trans-Cel has a heterogeneous fleet, whose vehicles have their own volume and weight
capacity. They also have a cost per distance unit and a fixed cost for deployment. A
vehicle may or may not be equipped with particular loading facilities (i.e: tail lift), and it
has a time window of availability during a day.
The routes are daily routes, they are open (they may or may not start and end at the
depot) and they may start with some pending orders from the day before and finish with
some pending orders for the day after. Drivers are subject to the European hours of service
Regulation, which states that a break of 45 minutes is required after 4:45 hours of cumu-
lated driving time and a night break of 9 hours is required after either 9 hours of cumulated
driving time or 13 hours of cumulated working time (driving time + loading/unloading
time).

3 Explicit and Implicit Formulation

The VRP can be modeled through a complete graph G = (N,A), where N is the set
of nodes and A the set of arcs. The node 0 corresponds to the depot, while the nodes
1, . . . , |N | represent customer locations. A distance parameter cij is associated with each
arc (i, j) ∈ A between node i and j. We set V as the set of available vehicles and we
define a set of binary variables xkij assuming value 1 if vehicle k traverses the arc (i, j),
0 otherwise. The VRP can be modeled by the following Arc-Flow formulation with 3
indices (see [13]):

min
∑
k∈V

∑
(i,j)∈A

cijx
k
ij(1)

s.t.
∑
k∈V

∑
i∈δ−(j)

xkij = 1 ∀j ∈ N \ {0}(2)

∑
k∈V

∑
j∈δ+(i)

xkij = 1 ∀i ∈ N \ {0}(3)

∑
k∈V

∑
j∈δ+(0)

xk0j ≤ |V |(4)

∑
j∈δ+(S)

xkij ≥ 1 ∀S ⊆ N,S 6= ∅, k ∈ V(5)

xkij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ V(6)

We observe that the objective function (1) is to minimize the overall cost of the solution.
We have the flow conservation constraints (2) and (3) so that each node is visited by
exactly one vehicle. Constraint (4) prevent the solution to use more vehicles than the size
of the fleet. Constraints (5) are known as the sub-tour elimination constraints, that force
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any tour in the solution to contain the depot node. This set of constraints is exponentially
large, so solving methods must be devised to tackle such a complexity.

The model can be enriched with attributes featuring in variants of the classic VRP.
For instance we can make the model take into account the capacity constraints on vehicles
by defining the variables uki representing the cumulated load on board of vehicle k after
the operation at node i and new parameters: qi which is the amount of load to pick up at
node i, Q is the capacity of a vehicle.
We add the constraints

uki − ukj +Qxkij ≤ Q− qj ∀(i, j) ∈ A, k ∈ V

that substitutes sub-tour elimination constraints, and the capacity constraint

qi ≤ uki ≤ Q ∀i ∈ N, k ∈ V.

We observe that the model is composed of difficult (binding) constraints and easy (non-
binding) constraints, for example:

qi ≤ uki ≤ Q ∀i ∈ N,k ∈ V non binding∑
k∈V

∑
i∈δ−(j)

xkij = 1 ∀j ∈ N \ {0} binding

In the constraint matrix, non-binding constraints are represented by diagonal blocks. The
goal is to find a way to exploit such structure in order to devise a solving algorithm with
good performance.

The VRP can be formulated as a Set-Partitioning problem ([13]):

min
∑
r∈Ω

crxr(7)

s.t.
∑
r∈Ω

airxr = 1 ∀i ∈ N \ {0}(8) ∑
r∈Ω

xr ≤ |V |(9)

xr ∈ {0, 1} ∀r ∈ Ω(10)

Where Ω is the set of all feasible routes, cr is the cost of route r ∈ Ω, air is 1 if node i is
visited by route r, 0 otherwise and xr is 1 if route r is part of the solution, 0 otherwise.
The objective function (7) represent the total cost of the solution, constraints (8) ensure
that each node is covered by exactly one route and constraint (9) forces the number of
routes to be less or equal to the number of vehicles available.
Let us observe that we are not able to directly solve such a Linear Problem as is, due to
the (exponentially) large number of variables. We need to make use of suitable algorithms
to deal with such a problem formulation.
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4 Column Generation Algorithm

4.1 General

The Column Generation algorithm (CG) takes advantage of a decomposition of the original
problem (called the Master Problem (MP))into two sub-problems to obtain an efficient
solving method:

• the Reduced Master Problem (RMP) is defined as the MP but on a restricted set of
variables Ω̄ ⊂ Ω in such a way that there exist at least a feasible solution;

• the Slave Problem(SP) is a problem whose solution is a variable in Ω \ Ω̄.

We give the following remark on what can guarantee optimality of a solution for a
Linear Programming problem:

Remark 1 Let x∗ be a feasible basic solution to a linear problem P = min{cTx : Ax =
b, x ≥ 0}. If all variables out of base xFj have reduced cost c̄j ≥ 0, then x∗ is optimal.

Therefore if the SP builds a path r (variables in MP) with c̄r < 0, we can add it to
RMP and solve it (e.g. with the simplex algorithm), else the solution to the current RMP
is also optimal for the original problem defined on the entire Ω.
Moreover observe that since variables in the MP correspond to paths in the graph G of
our VRP model, the non-binding constraints are handled only in the SP, whereas binding
constraints are handled only in the RMP.

By the duality theory in linear programming, we know that given the dual solution u∗

of a linear programming problem, the following relation holds:

c̄r = cr − (u∗)TAr,

where cr is the cost of path r in the objective function and Ar is the column related to
path r in the matrix of constraints .
For each arc (i, j) we can define the reduced cost on the arc c̄ij := cij − uj , so we can
compute:

c̄r = cr − (u∗)TAr =
∑

(i,j)∈r

cij −
∑

(i,j)∈r

uj =
∑

(i,j)∈r

(cij − uj),

then
c̄r =

∑
(i,j)∈r

c̄ij .

Observe that:

• finding reduced cost variables is equivalent to solving a Shortest-Path Problem (SPP);

• solving a SPP on a graph Ḡ equal to G except that the costs on each arc (i, j) is set
as c̄ij provides a feasible route with the minimum reduced cost for the MP

• if the SPP solution has a non-negative value, we know that the optimal solution to
RMP is also optimal to MP
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• there exist efficient dynamic programming algorithms for the solution of SPP (e.g.
Bellman-Ford algorithm)

We can sum up the overall CG algorithm by the iteration of the procedure below:

(a) We solve the RMP. We obtain x∗ and u∗;

(b) We compute c̄ij and solve SP;

(c) If c̄r < 0 we add r to RMP and restart, else x∗ is optimal for MP .

Remark 2 The Column Generation algorithm provides a solution to the linear relaxation
of the original problem (it is a bound to the optimum). A branching method need to be
integrated in order to obtain the (integer) optimal solution (Branch-and-Price).

4.2 Trans-Cel Problem

In order to adapt the algorithm to Trans-Cel model, we need to take into account some
observations. First, the objective function is to maximize profit (≡ minimize the sum of
overall cost and missed revenues). This means that inconvenient orders can be rejected
by the algorithm. there is a set of Mandatory orders OM contained in the set of all orders
O that cannot rejected by the algorithm. We define the following variables:

• yr takes value 1 if route r is in the solution, 0 otherwise

• xo takes value 1 if order o is rejected, 0 otherwise

We define o(i) ∈ O as the order containing node i ∈ N , and qo is the revenue of order o.
We can state now the following formulation of the problem (see [11]):

min
∑
v∈V

∑
r∈Ωv

cryr +
∑

o∈O\OM
qoxo(11)

s.t.
∑
v∈V

∑
r∈Ωv

airyr = 1 ∀ i ∈ N : o(i) ∈ OM(12) ∑
v∈V

∑
r∈Ωv

airyr + xo(i) = 1 ∀ i ∈ N : o(i) ∈ O \OM(13) ∑
v∈V

∑
r∈Ωv

yr ≤ |V |(14)

yr ∈ {0, 1} ∀ r ∈ Ωv, v ∈ V(15)

xo ∈ {0, 1}, ∀ o ∈ O \OM(16)

As observed before, we can use efficient dynamic programming algorithms to solve in
pseudo-polynomial time the Shortest Path Problem. We mention two main algorithms,
which are the Bellman-Ford algorithm, that have O(|N ||A|) complexity, and the Dijk-
stra algorithm, with O(|N | log(|N |)) complexity has the requirement that each cost of the
graph must be non-negative.
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Definition 1 (Label) A label πi for SPP from node s to node d is the cost of the shortest
path from node s to node i.

Since we are dealing with a Multi-Attribute VRP we cannot use either of these
algorithms, because not all paths are feasible. This type of problem is called Resource-
Constraint Elementary SPP (RCESPP), where elementary means that a path does
not visit a node more than once and resources carry data useful to check feasibility at
each node in a path (i.e. cumulated driving time). The idea is to generalize the concept
behinds Bellman-Ford algorithm taking into account (not binding) constraints on routes
(i.e. Capacity, Time Windows, . . . ) and evolution of resources. In this context, the
definition of label is generalized by adding also the resources values to it:

λi = (ρ1
i , . . . , ρ

r
i , πi) ρmi with m = 1, . . . , r resources.

The algorithm solving this problem is based on starting from an initial empty label at
the source node and extend it through the reachable nodes in the graph till it is no more
possible to build a path that may be an optimal solution to RCESPP.

Due to the large number of labels that may rise during the algorithm iterations, the
time of convergence may increase dramatically. This is why there are two main sub-routine
of the algorithm that must be implemented wisely:

• a Dominance Rule should be implemented as a criterion to discard labels that
certainly will not take to an optimal path. We introduce the following notation:
(ρmi )λi represents the m-th resource of the label λi related to the node i. We say
that for a node i a label λi dominates the label µi if for all m = 1, . . . , r we have
(ρmi )λi > (ρmi )µi and (πi)µi > (πi)λi (≡ the path in λi is shorter and the set of all
feasible extensions of λi contains the set of all feasible extensions of µi).

• the Extension of a Label must be performed incrementally (this is the essence of
dynamic programming).

Example 1 Let us consider a Maximum-Duration VRP, where we have a constraint on
the maximum duration of a route.
A = 10 is the max duration of a route;
tij = travel time from node i to node j. cij = distance from node i to node j. λi = (τi, πi),
with τi as cumulated time elapsed from s to i.
The extension from i to j generates the label λj = (τj , πj), by data of label λi:

τj = τi + tij

πj = πi + cij

The dominance rule imposes that both τj and πj are less or equal to the dominated label.

(7, 2) dominates (8, 5)

(9, 3) does not dominate (8, 5)
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If we discarded (8, 5) keeping (9, 3), we would miss all extensions of travel time 2 ((9, 3)
would break the time constraint), which may contain the optimal solution.

The steps of the algorithm can be summarized as below:

(a) Initialize: set initial label at source node s

(b) Iterate: for each node extend all labels related to it. Eliminate infeasible labels
and dominated labels

(c) Stop: when all labels has been processed (no further extensions available)

(d) return label at d with smaller cost

In the case of Trans-Cel we are dealing with many attributes, so there are more complex
domination rule and label extension function.
A label in such problem is defined as [11]:

L = (i, tw, td, w, v,O,U , π〉)

• i the last node of the path;

• tw and td cumulative working and driving time;

• w and v volume and weight on board after visiting i;

• O is the set of ”open orders”;

• U is the set of unreachable nodes;

• πi the path cost.

Further details on label extension and dominance rule can be found in [11].

5 Meta-Heuristic Approach

Exact Methods are often time-consuming when dealing with large-scale problems. Real
world applications need fast answers to events. To this end, heuristic approaches have
been deeply studied by researchers.
We can identify two main types of heuristics:

• Constructive: build a solution from scratch (e.g. Greedy)

• Improving: refine a given solution (e.g. Local Search)

The heuristics algorithm are designed in such a way that they provide a feasible solution
of high quality in short time. Nevertheless they cannot guarantee the optimality.
Moreover many of these algorithms are set up in the solution space, which usually have
a nasty topology (in combinatorial optimization the solution space is the discrete set of
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all possible combinations of values assigned to decision variables), so analytical tools are
not available (i.e: the gradient). For instance there is no definition for open or close
sets, so a neighborhood of a solution cannot be defined through open sets but by a set of
perturbations (moves).
The Local Search algorithm as is is based on the concept of exploring a neighborhood
and updating the current solution as long as an improving one is found. As soon as no
improving solutions are found during the exploration the algorithm stops. This means that
such an algorithm risks to get stuck in local minima. Algorithms called Meta-Heuristics
have been designed so that they can implement techniques to escape such local minima.
Meta-Heuristic algorithms are mainly divided into three approaches:

• Trajectory-Based algorithms (i.e: Tabu Search, Simulated Annealing etc.);

• Population-Based algorithms (i.e: Ant Colony, Genetic Algorithm etc.);

• Hybrid algorithms of the two types.

We can say that Trajectory-Based algorithms rely on exploration of neighborhoods, whereas
Population-Based algorithms exploit sampling and combining solutions at each iteration.
We now consider the Tabu Search (TS) algorithm, describing its main features.
The TS algorithm performs an exploration of one or more neighborhoods similarly to the
Local Search, but as soon as no improving solution is found, it updates the current solu-
tion with the best one found even if worsening. This acceptance criterion takes place only
for a predefined number of iterations. Moreover, in order to prevent cycling on solution
already explored, moves are stored in a First-In-First-Out list so that an inverse move is
not accepted during the exploration phase (is made Tabu).
We devised several tabu-search based heuristics fro the MAVRP arising in Trans-Cel, as
described in [8], [6], [9], [11], [10] and [7]: in the following we summarize their main
features.

We consider, among others, three different neighborhoods:

• 1-Order Relocation (1R) : move one order from one route to another;

• 2-Order Swap (2S) : swap two order in two different routes;

• 2-Order Relocation (2R) : move two order from one route to another.

The TS performs an exploration of the neighborhoods above in a Variable Neighborhood
Descent fashion. This means that we explore hierarchically each neighborhoods in such
a way that when no improving solution is found in one neighborhood, we start exploring
the next one. Whenever an improving solution is found, we start over the routine. If no
improving solution is found in any of the neighborhoods, we update the current solution
according to one of the following criteria:

(a) we choose the best solution found in all the neighborhoods (TS DET );

(b) we choose a random solution among the best 5 found in all the neighborhoods (TS
STOCH );
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The second criterion is useful for a diversification phase in the search procedure. Our full
solving algorithm (that we denote by RND) runs a TS DET and 3 TS STOCH.

We also set up different enhancements for such algorithm in order to increase the
efficiency:

• we relaxed some of the problem constraints on specific sub-routes of the solution to
obtain a speed-up, then a destroy-and-repair phase is triggered to fix infeasibility.
This relies on the fact that such infeasibility are rarely met;

• we set up a granular exploration of 2R. This means that we filter moves such that
the pair of orders we want to relocate are ”far” from each other given a metric in
the order space;

• we designed a parallel exploration of each neighborhood through a decomposition
of the moves. Each thread explores one of the sub-set of moves.

6 Computational Results

The algorithm was implemented in C++ and tests run on an Intel Core i5-5200 2.20 GHz
CPU with 8 GB RAM. We made our experiments on real instances collected in Trans-Cel
operations’ office, and we partitioned the set of instances into different groups based on
the number of nodes in the instance.

In Table 1, CG bound is the percentage of CG run that converged within a time limit of
1 hour, CG opt is the percentage of CG run that returned an integer optimal solution,
RND opt is the percentage of instances where RND found the optimal solution, RND gap
is the average, min and max values of the gap between RND sub-optimal solution and the
CG bounds.

Group CG bound (%) CG opt (%) RND opt (%) RND gap (%)

0-40 100.0 77.8 66.7 0.8 (0.4 ; 1.1)
41-80 77.8 66.7 22.2 1.4 (0.4 ; 3.1)
81-90 90.0 60.0 0.0 0.8 (0.1 ; 1.4)
91-100 100.0 77.8 11.1 0.8 (0.2 ; 2.4)
101-116 66.7 33.3 0.0 0.6 (0.0 ; 0.9)

all 88.4 65.1 20.9 0.9 (0.0 ; 3.1)

Table 1. Results on real instances: optimality gap.

Notice that the optimality gap of RND is on average 0.6%, with worst case 3.1%.

In Table 2, BI vs RND is the gap between the initial solution found through a Best In-
sertion heuristic (BI) and RND, DET vs RND is the gap between TS DET and RND,
and the remainder columns show the execution time in seconds for each mentioned routine.
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Group BI vs RND (%) DET vs RND (%) BI (s) DET (s) RND (s)

0-40 2.8 (0.0 ; 13.3) 0.1 (0.0 ; 0.8) 0.0 (0.0 ; 0.0) 0.3 (0.0 ; 2.4) 1.4 (0.0 ; 9.7)
41-80 5.6 (0.0 ; 14.6) 0.0 (0.0 ; 0.4) 0.1 (0.0 ; 0.3) 3.2 (0.0 ; 8.5) 12.9 (0.0 ; 32.3)
81-90 6.2 (0.2 ; 10.8) 0.7 (0.0 ; 3.3) 0.2 (0.1 ; 0.3) 5.4 (2.4 ; 12.0) 23.7 (14.1 ; 40.1)
91-100 8.8 (3.0 ; 14.1) 0.3 (0.0 ; 1.7) 0.4 (0.2 ; 0.8) 9.0 (3.8 ; 20.1) 40.3 (18.5 ; 79.9)
101-116 8.2 (3.5 ; 14.8) 0.2 (0.0 ; 1.0) 1.1 (0.3 ; 4.3) 19.1 (4.4 ; 56.7) 77.7 (22.9 ; 196.8)

all 6.2 (0.0 ; 14.8) 0.3 (0.0 ; 3.3) 0.3 (0.0 ; 4.3) 6.5 (0.0 ; 56.7) 27.8 (0.0 ; 196.8)

Table 2. Results on real instances: basic algorithms.

Observe that the RND algorithm obtains better results than the sole DET routine up to
3.3% improvement.

In the end, Tables 3 and 4 show the difference respectively in terms of objective gap and
run time of RND, RND with granular filter (RND + F) and RND with granular filter and
parallelized exploration (RND + F + 4P).

Group RND RND+F RND+F+4P

0-40 - 0.0 (0.0;0.0) 0.0 (0.0 ; 0.4)
41-80 - 0.0 (0.0;0.4) 0.0 (-0.7 ; 0.4)
81-90 - 0.1 (-1.9;0.8) 0.2 (0.0 ; 0.8)
91-100 - 0.6 (-0.9;3.1) 0.8 (-0.9 ; 3.9)
101-116 - 0.0 (-0.2;0.2) 0.3 (-0.2 ; 1.0)

all - 0.1 (-1.9;3.1) 0.3 (-0.9 ; 3.9)

Table 3. Results on real instances: speed-up effects. (gap towards RND).

Group RND RND+F RND+F+4P

0-40 - 1.5 (0.0;9.8) 1.0 (0.0;6.1)
41-80 - 14.9 (0.0;43.5) 8.6 (0.0;19.6)
81-90 - 24.2 (12.4;44.5) 15.4 (6.5;29.7)
91-100 - 34.5 (16.7;67.9) 18.5 (8.1;33.3)
101-116 - 66.3 (23.3;96.0) 33.9 (11.8;48.6)

all - 25.5 (0.0;96.0) 14.2 (0.0;48.6)

Table 4. Results on real instances: speed-up effects. (running times).

We observe that at the cost of negligible changes in the objective function we obtain a
large increasing in efficiency thanks to filtering and parallel design.
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Congruent numbers, Heegner method

and BSD conjecture

Yan Hu (∗)

Abstract. The congruent number problem is an old unsolved major problem in number theory.
In this note we will give a brief introduction to the topic. We will start from the original version
of the problem, and lots of mathematical objects will be introduced. The progress of study of the
congruent number problem and other related topics such as BSD conjecture will also be presented.

1 Introduction

Number Theory is one of the oldest branches in mathematics which is the study of prop-
erties of the positive integers. In this topic, a great many of its problems are simple to
state yet very difficult to solve. The congruent number problem, the written history of
which can be traced back at least a millennium, is the oldest unsolved major problem in
number theory.

The original version of congruent number problem is written in an Arab manuscript
[2] before 972 as follows:

Question 1.1 (Congruent number problem(Original version) Given an integer n, find a
(rational) square γ2 such that γ2 ± n are both (rational) square.

We will talk about the progress of the congruent number problem and explain the
connection among the congruent number problem with other open questions in number
theory such as BSD conjecture.

2 Congruent numbers

We first want to explain what is a “congruent number”.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on November 21st, 2018.
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Definition 2.1 A positive integer n is called a congruent number if there exist positive
rational numbers a, b, c such that

a2 + b2 = c2, n =
1

2
ab.

We also give the equivalence form of congruent number as follows:

Definition 2.2 (Triangular version) A positive integer n is called a congruent number if
it is the area of a right-angled triangle, all of whose sides have rational length.

,

Example 2.3 24 is a congruent number:

62 + 82 = 102, 24 =
1

2
× 6× 8

So is 6:

32 + 42 = 52, 6 =
1

2
× 3× 4

It is clear that we can assume n has no square factors.(Such n is called square-free integer)

Conjecture 2.4 (Fibonacci) 1 is not a congruent number.

It took 400 year until it was proved by Fermat using the method called infinite descent.

3 Congruent number problem

Now we can introduce the congruent number problem.

Question 3.1 (Congruent number problem) Given an integer n, determining it is a con-
gruent number or not.

Some modern theory of number theory grew out of the study of this problem. For
example, in the 17th century, Fermat gave a wonderful proof of the first special case of
this problem. Fermat noted that his proof that 1 is not a congruent number also implies
that there are no rational numbers x and y with xy 6= 0 such that x4 + y4 = 1. It also led
Fermat to his so called Last Theorem (now solved by Andrew Wiles). Now let us talk a
bit about Fermat’s method.
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3.1 Fermat’s method

Theorem 3.2 (Fermat) 1,2,3 are non-congruent.

Fermat’s idea was based on the ancient Euclidean formula:

Lemma 3.3 (Euclidean formula(300 BC)) Given (a,b,c) positive integers, pairwise co-
prime and a2 + b2 = c2. Then there is a pair of coprime positive integers (p, q) with p+ q
odd, such that

a = 2pq, b = p2 − q2, c = p2 + q2.

Thus we have a congruent number generating formula:

n = pq(p+ q)(p− q)/�

Now we can give the sketch of the proof of Theorem 3.2.

Proof. [6]

1. Suppose 1 is congruent. Then is an integral right triangle with minimum area: � =
pq(p+ q)(p− q).

2. As all 4 factors are co-prime,

p = x2, q = y2, p+ q = u2, p− q = v2.

3. Thus we have an equation with the solution as follows:

(u+ v)2 + (u− v)2 = (2x)2.

4. Then (u+v, u−v, 2x) forms a right triangle and with a smaller area y2. Contradiction!

Fermat called the method the infinite descent.

The following example shows that it is also very difficult to compute a precise triangle
when you already know the corresponding area.

Example 3.4 Zagier has computed a precise triangle with area 157:

157 =
1

2
ab, a2 + b2 = c2.

a = 411340519227716149383203
21666555693714761309610 ,

b = 6803298487826435051217540
411340519227716149383203 ,

c = 224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830 .

Now we want to think about the congruent number problem in another way which is
related to the arithmetic of elliptic curve.
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4 Congruent number problem revisited(Elliptic curve version)

An elliptic curve E/Q is given by:

E : y2 = x3 + ax+ b, a, b ∈ Q;

where ∆ := −16(4a3 + 27b2) 6= 0.
The following figures show some types of elliptic curves:

Now we can give a new form of congruent number problem:

Question 4.1 (Congruent number problem(Elliptic curve version)) For a positive integer
n, find a rational point (x, y) with y 6= 0 on the elliptic curve:

En : ny2 = x3 − x

The equivalence with the original version is given by:

x =
p

q
⇔ (a, b, c) = (2pq, p2 − q2, p2 + q2).

Now our research objects have changed. We can study the congruent number problem
by studying the elliptic curve over Q.

5 Elliptic curve E/Q

Recall that an elliptic curve E/Q is given by:

E : y2 = x3 + ax+ b, a, b ∈ Q;

where ∆ := −16(4a3 + 27b2) 6= 0.

Write

E(Q) = {(x, y) ∈ Q2 : y2 = x3 + ax+ b} ∪ {∞}.
Basic problem: Given an elliptic E, find all the rational points on the curve.

Università di Padova – Dipartimento di Matematica 24



Seminario Dottorato 2018/19

5.1 Addition law

Let O =∞ be the point ”at infinity”. We define an additional operation ”+” on E/Q by
the following law:

Proposition 5.1 Let P,Q ∈ E, let L be the line through P and Q (if P = Q, let L be
the tangent line to E at P ), and let R be the third point of intersection of L with E. Let
L′ be the line through R and O. Then L′ intersects E at R, O, and a third point. We
denote that third point by P +Q.

Proof. The proof and more details can be found in Chapter 3 of [4].

It is not so easy to understand what the addition law is only by the description above.
Let us see the figures below which can help us understand it easily:

P1 + P2 = P4, P3 = −P4 Q = P + P = 2P

The addition law on E(Q) has the following properties:

Proposition 5.2
(a) P +O = O + P = P , for all P ∈ E(Q).
(b) P + (−P ) = O, for all P ∈ E(Q).
(c) P + (Q+R) = (P +Q) +R, for all P,Q,R ∈ E(Q).
(d) P +Q = Q+ P , for all P,Q ∈ E(Q)

In other words, under the addition E(Q) is an abelian group with identity O.

Proof. See the proof of Proposition 2.2 in [4].

Let us see a numerical example about the operation on the elliptic curve over Q.

Example 5.3

E : y2 = x3 − 5x+ 8.
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The point P = (1, 2) is on the curve E(Q). Using the tangent line construction

2P = P + P =

(
−7

4
,−27

8

)
.

Let Q =
(
−7

4 ,−27
8

)
. Using the secant line construction, we find that

3P = P +Q =

(
553

121
,−11950

1331

)
.

5.2 Group structure of E(Q)

The understanding of the group structure of E(Q) is a major question in modern number
theory and arithmetic algebraic geometry. Thus we have the following theorem:

Theorem 5.6 (Mordell-Weil) Let E be an elliptic curve over Q. Then

E(Q) ' E(Q)tor ⊕ Zr

for some r > 0, where E(Q)tor is the finite torsion subgroup of E(Q).

Proof. The proof and more details can be found in Chapter VIII of [4].

Remark 5.5

• The integer r is called the rank of E(Q).

• The description of all possible E(Q)tors is clear:

Theorem 5.6 (Mazur) There are exactly 15 possible finite groups for E(Q)tors. In par-
ticular, E(Q)tors has order at most 16.

Now we can study the congruent number problem in another point of view.

Question 5.7 For a positive integer n, let En be the elliptic curve

En : ny2 = x3 − x.

Then n is a congruent number if and only if r = rank(E(Q)) > 0. It means that there are
infinitely many rational solutions (x, y) satisfying the equation of En.

Thus given an elliptic curve over Q, determining the rank is one of the most important
problems in the theory of elliptic curves.
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5.3 L-series

In this section, we want to introduce that how we study the elliptic curve. In complex
analysis, we know the famous Riemann zeta function:

ζ(s) =
∞∑
n=1

1

ns

where s is a complex variable.
Zeta function plays an very important role in number theory. Swinnerton-Dyer said:

”the zeta function knows everything about number field, we just have to prevail on it to
tell us”. Thus we study the L-series which is the generalization of Riemann zeta function.

The L-series has very close connection to the elliptic curve. Before giving the definition
of the L-series attached to the elliptic curve, we will first introduce some notations.

Let E/Q be an elliptic curve over Q:

E/Q : y2 = x3 + ax+ b

∆ = −16(4a3 + 27b2) 6= 0 discriminant of E/Q.

Np = ]{solutions of y2 ≡ x3 + ax+ b mod p}.
ap = p−Np.

For the ap, we have the following theorem:

Theorem 5.8 (Hasse (1922)) If p - ∆, then

| ap |≤ 2
√
p.

Remark 5.9

For each x (mod p), there is a 50% chance that y2 ≡ x3 +ax+ b (mod p) has solution.

If y2 ≡ x3 + ax+ b (mod p) has solution, then we get two solutions (x, y) and (x,−y).

Thus we might expect Np is approximately

Np ≈
1

2
· 2 · p = p.

Hence | ap |=| Np − p | should be small compared with p.
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Now we can define the L-series attached to E/Q:

L(E, s) =
∏
p-2∆

(
1− ap

ps
+

1

p2s−1

)−1

s is a complex variable, s ∈ C.

L(E, s) is absolutely convergent for Re(s) > 3
2 . (Hasse)

L(E, s) has holomorphic continuation to C. (Wiles, et al.)

6 BSD Conjecture

We are now talking about a deep conjecture related to the congruent number problem.
The conjecture originated from B. Birch and H.P.F. Swinnerton-Dyer [1] in the 60’s.

Conjecture 6.1 (Birch and Swinnerton-Dyer) The Taylor expansion of L(E, s) at s = 1
has the form

L(E, s) = c(s− 1)r+ higher order terms of (s− 1)

with c 6= 0 and r= rank E(Q). In particular L(E, 1) = 0 if and only if E(Q) is infinite.

Remark 6.1 For more details about the BSD conjecture, people can see [5].

6.1 Some results

BSD conjecture is still an open problem in the field of number theory and is widely
recognized as one of the most challenging mathematical problems. The conjecture was
chosen as one of the seven Millennium Prize Problems listed by the Clay Mathematics
Institute, which has offered one million prize for the first correct proof. We only show two
results here and then you will know how difficult to prove the conjecture.

Theorem 6.3 (Gross-Zagier, Kolyvagin) The BSD conjecture is true if rank(E(Q)) ≤ 1.

Jerrold Tunnell made significant progress by connecting congruent numbers to elliptic
curves. He showed that there is a formula for determining whether any positive number
n is a congruent number or not, but the complete validity of his formula depends on the
truth of BSD conjecture.

Theorem 6.4 (Tunnell (1983)) Let n be an odd square-free positive integer. Consider the
two conditions:

(A) n is a congruent number;

(B) the number of triples of integers (x, y, z) satisfying 2x2 +y2 +8z2 = n is equal to twice
the number of triples satisfying 2x2 + y2 + 32z2 = n.

Then
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• (A) implies (B)

• If the BSD conjecture is true, then (B) implies (A).

6.2 Application to congruent number problem

The L-series has a functional equation s⇔ 2− s with sign

ε(n) =

{
1 n ≡ 1, 2, 3 mod 8

−1 n ≡ 5, 6, 7 mod 8

This gives a partition N = S t T according to ε = ±1, i.e, ε(n) = 1, n ∈ S, otherwise
n ∈ T .

Thus we have the following conjectures:

Conjecture 6.5 100% of n ∈ S are non-congruent numbers.

Conjecture 6.6 100% of n ∈ T are congruent numbers.

7 Heegner method

The first person to prove the existence of infinitely many square-free congruent numbers
was Heegner. Heegner published his paper in 1952 as a 59 years old nonprofessional
mathematican. He showed that every prime number p of the form p = 8n + 5 is a
congruent number. In the same paper, Heegner solved Gauss’s class number one problem.
The importance of Heegner’s paper was realized only in the late 1960s, after the discovery
of the conjecture of Birch and Swinnerton-Dyer. We now introduce his method.

Definition 7.1 Heegner number is a square-free positive integer d such that the imaginary
quadratic field Q(

√
−d) has class number 1.

Example 7.2 Only 9 Heegner numbers: 1, 2, 3, 7, 11, 19, 43, 67, 163

Heegner’s main idea of constructing solution to E : y2 = x3 − x is by using modular
functions:

f : H := {z ∈ C, Re(z) > 0} → E(C).

Example 7.3 eπ
√

163 is almost an integer.
eπ
√

163 = 262537412640768743.99999999999925...
Consider the modular function:

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + · · ·

where q = e2πiτ .
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8 Conjecture

Following the BSD conjecture, we have the following conjecture concerning the distribution
of congruent numbers:

Conjecture 8.1 If n ≡ 5, 6, 7 mod 8, then n is congruent.

Conjecture 8.2 If If n ≡ 1, 2, 3 mod 8, then n has probability 0 to be congruent:

lim
X→∞

]{n ≤ X : n ≡ 1, 2, 3 mod 8 and congruent}
X

= 0.

9 Concluding remarks

In this note, we only give a brief introduction to the congruent number problem and also
give some very basic knowledge about number theory and arithmetic algebraic geometry.
Of course, many topics and applications have been omitted. For more details, readers can
refer to the book [3].
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Regular domain perturbation problems

Paolo Luzzini (∗)

Abstract. The study of the dependence of functionals related to partial differential equations and
of quantities of physical relevance upon smooth domain perturbations is a classical topic and has
been carried out by several authors. In this note we give an introductory overview about regular
domain perturbation problems. We provide concrete examples, highlight the motivations and the
possible applications, and present an outline of some new results on the longitudinal fluid flow
along a periodic array of cylinders.

1 An informal introduction

We start this note with an informal introduction to regular perturbation problems of
domains. By means of concrete examples we try to give an idea of what this type of
perturbation problems are and, moreover, we explain the motivations that lead to study
such problems. With this aim, in this section we avoid to be too rigorous, preferring a
colloquial exposition also understandable by the non-specialists.

Let Ω be a subset of Rn which represents a physical object, and let J(Ω) be a quantity
(a functional) which depends on the shape of the object represented by Ω. A very simple
example is the case in which the quantity J(Ω) is the volume of the object Ω, that is

J(Ω) ≡ Vol(Ω).

Else, the set Ω could represent the shape of a drum, and J(Ω) could be its fundamental
tone. As a last example, the set Ω could play the role of an airplane’s wing, and J(Ω)
could be the aerodynamic resistance on the wing. If one starts to smoothly deform the
shape of Ω (see Figure 1, then possibly the quantity J(Ω) will be affected. Back to the
previous examples, this deformation maybe produces a change in the sound of our drum,
or maybe the aerodynamic of our wing changes. The question that we are interest in
answering here is the following:

what can be said on the regularity of the map Ω 7→ J(Ω)?

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on December 5th, 2018.
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Ω Ω Ω

Figure 1

The previous question immediately raises an issue: at this point we do not have a
structure on the class of admissible shapes which gives sense to say that the map Ω 7→ J(Ω)
has some regularity. In the next sections we will see how to mathematically formalize a
structure on the class of admissible shapes. However, here we leave this issue at an intuitive
level: one has to think that the admissible perturbations of the shape of Ω are the ones
which do not produce holes or cracks or other types of singularities, and there is some
structure that measures such perturbations.

We now present with more details three examples. The first two examples come from
mathematical problems, although they have a precise applied interpretation. The last
example comes instead from an applied problem.

Example 1.1 Let uΩ be the solution of the following Dirichlet problem for the Laplace
equation

(1)

{
∆u = 0 in Ω,

u = g on ∂Ω.

Let x ∈ Ω. Let J1(Ω) be the solution of the problem computed at x, i.e.

J1(Ω) ≡ uΩ(x).

Moreover, let J2(Ω) be the energy integral of the solution of the problem, i.e.

J2(Ω) ≡
ˆ

Ω
|DuΩ(y)|2 dy.

How do the functionals J1, J2 depend on the variation of the shape of Ω? We answer to
this question in Subsection 2.1.

Example 1.2 Let λ1(Ω) be the first eigenvalue of the Dirichlet Laplacian with homoge-
neous boundary conditions. We set

J(Ω) ≡ λ1(Ω).

How does the functional J depend on the variation of the shape of Ω? We answer to
this question in Subsection 2.2. We note that this problem is related to the example of
the drum we made at the beginning of this section. Indeed, the pure tones of a drum are
strictly related to the eigenvalues of the Dirichlet Laplacian (see e.g. Kac [9]).
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Example 1.3 Let the domain Ω represent the shape of an airplane’s wing, and let J(Ω)
be the drag (aerodynamic resistance parallel to the fluid flow) or the lift (aerodynamic
resistance perpendicular to the fluid flow) on the wing (see Figure 2). How do small
changes and perturbations of the wing’s shape affect the drag or the lift on the wing?

Figure 2

The reasons that lead to study these types of problems are several. Here we only
mention that these problems arise in shape optimization. The aim of shape optimization
is to find (if it exists) a set Ω∗ which minimizes (or maximizes) a given functional J over
a class of admissible sets O:

Ω∗ ∈ O, J(Ω∗) = min
Ω∈O

J(Ω).

If one knows that the functional J is somehow “regular” (for example if it enjoys some
differentiability properties), then one can apply differential calculus in order to find critical
shapes as a first step in order to find optimal shapes. One can think about the finite
dimensional case: the first step in order to find the points of minimum (and maximum)
of a function of several real variables is to find the points where the gradient vanishes.
Otherwise, for a constraint optimization problem one can use the Lagrange multipliers
method. A generalizations of these techniques can be used also in the infinite dimensional
case of shape optimization.

If we go back to Example 1.3 regarding the airplane’s wing, a shape optimization
problem could be to find the shape Ω of the cross-section of the wing which maximizes
the lift J(Ω) under some constraints, e.g. fixed volume and fixed drag (see Figure 3). If
one knows that the lift J(Ω) is differentiable with respect to the deformation of the shape
of Ω, then by using tools from differential calculus one could in principle obtain some
information on the critical shapes and accordingly on the optimal shapes.
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Figure 3

There exists a vaste literature regarding shape analysis and optimization of functionals
related to partial differential equations or quantities of physical relevance, both from the
theoretical and numerical point of view. Without being exhaustive we mention Soko lowski
and Zolésio [19], Henrot and Pierre [8], Novotny and Soko lowski [17], Mohammadi and
Pironneau [15], Laporte and Le Tallec [11].

2 Some known results

In this section we present some known results on regular perturbations of the problems
introduced in Examples 1.1 and 1.2. Here we start to be less colloquial and more rigorous.
Accordingly, first of all we have to formalize the shape perturbations of sets.

2.1 The Dirichlet problem for the Laplace equation

We fix Ω to be a bounded open subset of Rn such that

• Ω is connected;

• Rn \ Ω is connected;

• Ω is of class C1,α for some α ∈]0, 1[.

Then we consider the following class of diffeomorphisms on ∂Ω.

A∂Ω ≡ {ψ ∈ C1(∂Ω,Rn) : ψ, dψ(y) are injective ∀y ∈ ∂Ω}

If φ ∈ A∂Ω, the Jordan-Leray separation theorem ensures that Rn \ φ(∂Ω) has exactly
two open connected components, and we denote by I[φ] the bounded open connected
component of Rn \ φ(∂Ω) (see Figure 4).
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φ(∂Ω)

I[φ]
Ω

∂Ω

φ

Figure 4

The φ-dependent set I[φ] plays the role of the perturbed set, and the perturbation is
made by perturbing the diffeomorphism φ ∈ A∂Ω ∩C1,α(∂Ω,Rn), which is an open subset
of the Banach space C1,α(∂Ω,Rn).

Next, we fix g ∈ C1,α(∂Ω) and we consider the following Dirichlet problem for the
Laplace equation in the φ-dependent set I[φ].{

∆u = 0 in I[φ],

u = g ◦ φ−1 on φ(∂Ω).

It is well known that this problem admits a unique solution u[φ] ∈ C1,α(I[φ]). We are
interested in understanding the dependence of the solution u[φ] and of its energy integral´

Ω |Du[φ]|2dy upon the diffeomorphisms φ, i.e upon the shape of the set. This problem has
been considered in Lanza de Cristoforis [12], where is proved that these quantities depend
analytically upon φ. Here, and throughout the present note, ‘analytic’ means always ‘real
analytic’. For the definition and properties of analytic operators in Banach spaces, we
refer for example to Deimling [5, §15].

Theorem 2.1 (Lanza de Cristoforis ’07) Let φ0 ∈ A∂Ω ∩ C1,α(∂Ω,Rn). Let x ∈ I[φ0].
Then there exists an open neighborhood U of φ0 in A∂Ω ∩ C1,α(∂Ω,Rn) such that

(i) x ∈ I[φ] for all φ ∈ U .

(ii) The map from U to R which takes φ to u[φ](x) is real analytic.

φ0(∂Ω)

φ(∂Ω)

x

Theorem 2.2 (Lanza de Cristoforis ’07) The map from A∂Ω ∩ C1,α(∂Ω,Rn) to R which
takes φ to

´
I[φ] |Du[φ]|2dy is real analytic.

2.2 Eigenvalues of the Dirichlet Laplacian

We fix Ω to be an open subset of Rn such that
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• Ω is connected;

• Ω is of finite measure.

Then we consider the following class of bi-Lipschitz homeomorphisms on Ω.

ΦΩ ≡

ψ ∈ (Lip(Ω))n : inf
x,y∈Ω
x 6=y

{ |ψ(x)− ψ(y)|
|x− y|

}
> 0


If φ ∈ ΦΩ, the φ-dependent set φ(Ω) plays the role of the perturbed set, and the pertur-
bation is made by perturbing the homeomorphism φ ∈ ΦΩ (see Figure 5).

φ(Ω)
Ω

φ

Figure 5

Next, we consider the eigenvalue problem for the Dirichlet Laplacian in the φ-dependent
set φ(Ω): {

−∆u = λu in φ(Ω),

u = 0 in ∂φ(Ω).

More precisely, we consider its weak formulation. That is the problem

ˆ
φ(Ω)

Dv(Dw)t dx = λ

ˆ
φ(Ω)

vw dx ∀w ∈W 1,2
0 (φ(Ω))

in the unknown v ∈ W 1,2
0 (φ(Ω)) (the Dirichlet eigenfunctions) and λ ∈ R (the Dirichlet

eigenvalues). Such a problem is well known to have a sequence of eigenvalues

0 < λ1[φ] < λ2[φ] ≤ λ3[φ] ≤ . . .

which we write as many times as their multiplicity. Accordingly, we are interested in
understanding the dependence of the eigenvalues λk[φ] (k ∈ N \ {0}) upon the homeomor-
phism φ, i.e. upon the shape. Before stating the results, we must introduce a subclass
of ΦΩ. Let F ⊆ N \ {0} be of finite cardinality. Let ΦF

Ω be the subset of ΦΩ of those
transformations for which the eigenvalues with index in F may coincide but must not be
equal to any of the remaining eigenvalues. That is

ΦF
Ω ≡

{
φ ∈ ΦΩ : λk[φ] /∈ {λm[φ] : m ∈ F} ∀k ∈ N \ (F ∪ {0})

}
.

The following result of Prodi [18] shows that simple eigenvalues depend analytically on
the shape of the set.
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Theorem 2.3 (Prodi ’94) Let F = {j}. Then the map from ΦF
Ω to R which takes φ to

λj [φ] is analytic.

The case of multiple eigenvalues is more involved since the multiplicity of the eigenval-
ues may change under small shape perturbations. However, it turns out that the symmetric
functions of the eigenvalues with index in F depend analytically on φ. In fact we have the
following result of Lanza de Cristoforis and Lamberti [10].

Theorem 2.4 (Lamberti and Lanza de Cristoforis ’04) The map from ΦF
Ω to R which

takes φ to

ΛF,s[φ] ≡
∑

j1,...,js∈F
j1<...<js

λj1 [φ] · · ·λjs [φ]

is analytic, for all s = 1, . . . , |F |.

The previous result is a generalization of the result of Prodi. Indeed, if |F | = 1 Theo-
rem 2.4 immediately implies Theorem 2.3. Moreover, as a further corollary of Theorem 2.4
we have that a multiple eigenvalue depends analytically on those shape transformations
which do not change the multiplicity of the eigenvalue. That is, if we set

ΘF
Ω ≡

{
φ ∈ ΦF

Ω : λm[φ] have a common value λF [φ] ∀m ∈ F
}
,

then we have the following.

Corollary 2.5 The map from ΘF
Ω to R which takes φ to λF [φ] is real analytic.

More recently, similar results have been proved for the eigenvalues of other operators.
We mention without being exhaustive Grinfeld [6] for the C2 regularity for the biharmonic
operator, Buoso and Lamberti [3] for the analyticity for the Reissner-Mindlin system, and
Buoso [2] for the analyticity for elliptic systems.

We conclude this section by explaining a possible application in the framework of shape
optimization of the previous regularity results for eigenvalues. The celebrated Rayleigh-
Krahn-Faber Theorem states that the ball minimizes the first eigenvalue of the Dirichlet
Laplacian among all the domains in Rn with a prescribed finite measure. That is, if Bn is
the n-dimensional ball with a fixed radius then λ1(Bn) ≤ λ1(D) for all D ⊆ Rn such that
|D| = |Bn| (see Figure 6).

D
Bn

Figure 6

Do there exist other sets which minimize the first eigenvalues? The answer turns out to be
negative. This can be proved exploiting the regularity of the first eigenvalues upon shape
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deformations. Indeed, one can apply the Lagrange multipliers method and easily deduce
that if a domain D minimizes the first eigenvalue of the Dirichlet Laplacian among the
sets with a prescribed finite volume, then D must be a ball.

3 The longitudinal flow along a periodic array of cylinders

In this section we present some new results regarding the regular perturbation of a problem
which comes from the study of the properties of porous materials. More precisely, we
study the regularity of the longitudinal fluid flow along a periodic array of cylinders upon
perturbations of the shape of the cross-section of the cylinders and of the periodicity
structure.

First of all, we introduce the problem in an informal way. We consider an infinite
periodic array of parallel cylinders of any shape and a Newtonian fluid which is flowing at
low Reynolds numbers along the cylinders (see Figure 7).

Figure 7

The equations that describe the fluid motion in the case of a Newtonian fluid are the
Stokes flow equations: {

µ∆u−Dp = 0,

div u = 0.

where

• u = (u1, u2, u3) is the velocity field of the fluid;

• Dp is pressure gradient;

• µ is the viscosity of the fluid.

We assume the so called no-slip condition, which says that the velocity field is zero at the
solid boundary, i.e.

u = 0 at the boundary of the cylinders.
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Moreover, we also assume that

• Dp is constant and parallel to the axis of the cylinders, and without loss of generality
we assume Dp = (0, 0, 1);

• µ = 1.

Under such assumptions one readily verifies that the first two components of the veloc-
ity field are zero, and the third component u3 satisfies a periodic Dirichlet problem for
the Poisson equation with homogeneous boundary conditions in the cross-section of the
cylinder’s array (see e.g. Adler [1]). That is


∆u3 = 1, in Q \D
u3 periodic w.r.t. the cell Q,

u3 = 0 on ∂D.

∆u = 1,

Q

D

Then we define the average flow velocity over the cell as

Σ ≡ 1

|Q|

ˆ
Q\D

u3 dx.

We are interested in studying the dependence of the average flow velocity Σ upon the
perturbation of the cylinder’s cross-section shape and of the periodicity structure. This
quantity has been studied by several authors. Here, for example, we mention Hasimoto
[7], Mityushev and Adler [14] (see also references therein), and Musolino and Mityushev
[16].

As before, first we have to formalize the shape perturbations of our setting. We fix
l ∈]0,+∞[ and we define the periodicity Ql cell and the periodicity matrix ql as

Ql ≡ ]0, l[×]0, 1/l[ , ql ≡
(
l 0
0 1/l

)
.

We note that |Ql| = 1 for all l ∈]0,+∞[. This choice helps making the computations
simpler and the exposition clearer and it is of course physically meaningful. However, this
restriction is not necessary and we could consider a more general periodic structure and a
more general perturbation of the periodic structure. Next, we fix Ω as in Subsection 2.1
and we set

AQ1

∂Ω ≡ {ψ ∈ A∂Ω : ψ(∂Ω) ⊆ Q1}.
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As in Subsection 2.1, if φ ∈ AQ1

∂Ω we denote by I[φ] the bounded open connected component

of R2 \ φ(∂Ω). Next, if l ∈]0,+∞[ and φ ∈ AQ1

∂Ω we set

S[l, φ]− ≡ R2 \
⋃
z∈Z2

(qlz + qlI[φ]),

(see Figure 8). The set S[l, φ]− plays the role of the cross-section of the cylinder’s ar-
ray. The perturbation of this set is performed by perturbing (l, φ) ∈]0,+∞[×(AQ1

∂Ω ∩
C1,α(∂Ω,R2)).

1/l

l

QlS[l, φ]−

qlφ(∂Ω)

Figure 8

Now, we can rewrite the problem in the set S[l, φ]−:
∆u = 1 in S[l, φ]−,

u is ql-periodic,

u = 0 on qlφ(∂Ω).

This problem is known to have a unique solution u[l, φ] in C1,α(S[l, φ]−). Then the average
flow velocity over the cell can be written as

Σ[l, φ] ≡
ˆ
Ql\qlI[φ]

u[l, φ] dx.

We are interested in understanding the regularity of Σ[·, ·] upon (l, φ). Our main result,
which solve this issue, is the following (see [13]).

Theorem 3.1 (L., Musolino, and Pukhtaievych ’18) The map

Σ[· , ·] : ]0,+∞[×
(
AQ1

∂Ω ∩ C1,α(∂Ω,R2)
)
−→ R

which takes a pair (l, φ) to Σ[l, φ] is real analytic.
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We conclude this note with some possible applications and future developments. As
we have already said, this type of results are very useful in shape optimization: our result
permits to apply differential calculus in order to find critical ”rectangle-shape” pairs (l, φ)
as a first step in order to maximize or minimize the average flow velocity Σ[l, φ] under
some constraints. Furthermore, suppose that we have a one-parameter analytic family
of pairs (lδ, φδ)δ∈]−δ0,δ0[ parametrized by a small parameter δ ∈] − δ0, δ0[. Then, by the
analyticity of Σ[·, ·] we have

(2) Σ[lδ, φδ] =

+∞∑
j=0

cjδ
j ,

for δ close to zero. For practical applications it is of interest to compute the coefficients
(cj)j∈N. Dalla Riva, Musolino, and Pukhtaievych [4] developed a completely constructive
method to compute the coefficients for the effective conductivity of periodic two-phase
dilute composite. The computation is based on the solutions of systems of integral equa-
tions. This type of approach can be exploited also in this case, in order to obtain an
explicit expression for all the coefficients {cj}j∈N in the series (2). This is the object of
future investigations and Theorem 3.1 provides the theoretical background for this aim.
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[12] M. Lanza de Cristoforis, Perturbation problems in potential theory, a functional analytic ap-
proach. J. Appl. Funct. Anal. 2 (2007), 197–222.

[13] P. Luzzini, P. Musolino, and R. Pukhtaievych, Shape analysis of the longitudinal flow through
a periodic array of cylinders. J. Math. Anal. Appl. 477 (2019), no. 2, 1369–1395.

[14] V. Mityushev and P.M. Adler, Longitudinal permeability of spatially periodic rectangular arrays
of circular cylinders. II. An arbitrary distribution of cylinders inside the unit cell. Z. Angew.
Math. Phys. 53 (2002), 486–517.

[15] B. Mohammadi and O. Pironneau, “Applied Shape Optimization for Fluids”. Oxford Univer-
sity Press, 2001.

[16] P. Musolino and V. Mityushev, Asymptotic behavior of the longitudinal permeability of a
periodic array of thin cylinders. Electron. J. Differential Equations 290 (2015), 1–20.

[17] A.A. Novotny and J. Soko lowski, “Topological derivatives in shape optimization”. Interaction
of Mechanics and Mathematics. Springer, Heidelberg, 2013.

[18] G. Prodi, Dipendenza dal dominio degli autovalori dell’operatore di Laplace. Ist. Lombardo
Accad. Sci. Lett. Rend. A. 128 (1994), 3–18.

[19] J. Soko lowski and J.P. Zolésio, “Introduction to Shape Optimization. Shape sensitivity anal-
ysis”. Springer Series in Computational Mathematics, 16. Springer-Verlag, Berlin, 1992.
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Real Options: an overview

Dimitrios Zormpas (∗)

Abstract. Financial options are contracts that derive their value from the performance of an
underlying asset. They give to their holder the right, but not the obligation, to buy/sell an asset
at a predetermined price and time. Contracts similar to options have been used since ancient times.
However, the most basic model for their pricing was proposed in the early 1970’s leading to a Nobel
prize in 1997. In the late 1970’s the term ”real options” is coined by Stewart Myers. According
to the real options approach an investment characterized by uncertainty and irreversibility is like
a financial option on a real asset. For instance, a potential investor has the right but not the
obligation to pay a given amount of money in order to make an investment and gain access to the
corresponding profit flow. Using standard option pricing tools one can also study the option to
leave a market, outsource production, mothball a production plant etc. In this seminar, I refer to
the correspondence between financial and real options and then I present the simplest model in the
real options literature. Finally, I make a reference to an application of the real options approach
in energy economics.

Keywords: Investment analysis, Real options

JEL classification: C61, D92, G30

1 Introduction

Financial derivatives are contracts between two parties. For instance, a European call
option on the amount of X units of a certain asset with strike price K and exercise date
T (> 0) is a contract written at time t = 0 with the following properties: The holder of
the contract has the right, but not the obligation, to buy X units of the asset at time T
from the issuer of the contract paying a price K. Similarly, a put option gives the right to
the holder of the option to sell X units of a certain asset. On the contrary, an American
call/put option allows the exercise of the option at any time before T .

According to Björk (2009), ”Options of the type above are traded on options markets
all over the world, and the underlying objects can be anything from foreign currencies to
stocks, oranges, timber or pig stomachs. For a given underlying asset there are typically
a large number of options with different expiration dates and different strike prices.” The
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main question that the relevant literature addresses is ”what is a fair price for an option-
like contract”, or, in other words, how much money should the writer of a financial option
ask for writing such an option? The Black-Scholes-Merton model that was published in the
early 1970’s is the first model answering this question leading eventually to a Nobel prize
in Economics in 1997. Since then the model has been refined and today more sophisticated
versions of it are widely used worldwide.

In the late 1970’s the term ”real options” is coined by Stewart Myers who argues that
an investment is like a financial option (e.g. an American call option) on a real asset. In
fact, a potential investor (holder of the option) has the right but not the obligation to
pay a given amount of money (the strike price) in order to make an investment (infinite
or quasi-infinite horizon) and gain access to the corresponding profit flow (the underlying
asset). Apart from the option to invest, real options are also the option to abandon a
current business activity, the option to mothball a production plant reactivating it latter
if the conditions improve etc. For an analytical overview of the real options approach see
Dixit and Pindyck (1994).

2 The option to invest

In this section I discuss the simplest real option, namely, the option to invest.
Suppose that a potential investor is contemplating investing in a project of known

cost I > 0 and that the project’s value is fluctuating over time according to the following
geometric Brownian motion:

(1)
dVt
Vt

= αdt+ σdzt

where dzt ∼ N(0, dt). The question that the potential investor needs to answer is: ”How
big should Vt be before spending I?”.

The value of the option to invest is:

(2) F (Vt) = max

{
Vt − I,

1

1 + rdt
Et [F (Vt + dVt)]

}
where Vt − I, is the termination value, i.e., the value of the option to invest at the time
of the investment and 1

1+rdtEt [F (Vt + dVt)], is the continuation value, i.e., the value of
postponing the investment for the next period. If the optimal investment threshold is VT
and V0 ≥ VT then the problem reduces to a mere maximization of the net-present value
of the investment. On the contrary, in the more interesting case where V0 < VT , i.e.,
when the optimal investment threshold lies somewhere in the future, Eq. (2) reduces to
F (Vt) rdt = Et [F (dVt)] which gives:

(3)
1

2
σ2V 2FV V + αV FV − rV = 0
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Eq. (3) needs to be solved subject to the following constraints:

F (0) = 0(4)

F (VT ) = VT − I(5)

F ′(VT ) = 1(6)

The condition F (0) = 0 suggests that if the value of the project goes to zero, also the
value of the option to invest in such a project goes to zero. Eq. (5) verifies that as soon
as the option holder exercises the option s/he will receive exactly the termination value.
Last, Eq. (6) is a standard smooth pasting condition. In order to solve this second-order
ordinary differential equation of Eq. (3) we guess a solution of type F (Vt) = AV β. From
this we get:

(7)
1

2
σ2β (β − 1) + αβ − r = 0

This has two roots:

(8) β1,2 =
1

2
− α

σ2
±
√(

α

σ2
− 1

2

)2

+
2r

σ2
with β1 > 1, β2 < 0

Summing up, the general solution of 1
2σ

2V 2FV V + αV FV − rV = 0 is

(9) F (Vt) = A1V
β1 +A2V

β2

Thanks to F (0) = 0, Eq. (9) reduces to F (Vt) = A1V
β1 . From the value matching and

the smooth pasting conditions we obtain:

A1 =
VT − I
V β1
T

> 0(10)

VT =
β1

β1 − 1
I(11)

Last, the value of the option for V0 < VT is:

(12) F (Vt) = (VT − I)

(
V0

VT

)β1
Note that VT = β1

β1−1I > I. This means that when an investment is characterized by
uncertainty and irreversibility the net-present value criterion which suggests that VT = I
does not hold anymore. On the contrary, there is a wedge β1

β1−1 > 1 that is capturing the
value of the option to wait before investing.

Note that ∂VT
∂σ > 0, ∂VT∂α > 0 and ∂VT

∂r < 0. In words, as uncertainty soars up or the
project becomes more promising, a higher threshold for investment is required. On the
contrary, the more impatient the potential investor, the earlier the investment.
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3 Investing in electricity production under a reliability options scheme

3.1 Capacity remuneration mechanisms and reliability options

The penetration of renewable energy sources in electricity systems worldwide contributes
to the decarbonisation of electricity production and this is an important step towards
a greener future. However, the phenomenon of decarbonisation sheds light on the issue
of electric capacity security. Since energy production from photovoltaics or wind farms
depends on weather patterns, the managers of electricity supply need to make sure that
the supply of electric energy will meet the corresponding demand even when the weather
patterns are unfavorable.

Capacity remuneration mechanisms are instruments used by energy-system operators
worldwide explicitly to encourage investments in electricity production. Among them the
reliability options scheme is gaining momentum. A reliability option is reminiscent of a
financial option in the sense that it is a contract between a power plant (writer of the
reliability option) and the energy-system operator (buyer of the reliability option) that
gives the right to the latter to buy from the former energy at a predetermined price paying
a premium in return. For more details see Andreis et al. (2018).

The question that I address below is: ”How do reliability options affect investments
in the energy sector?”. In particular, what is the effect in the timing and the value of the
option to invest?

3.2 Investing in electricity production under a reliability options scheme

A potential investor contemplates investing in a power plant. The price of electricity is
assumed to fluctuate over time according to the following geometric Brownian motion:

(13)
dPt
Pt

= αdt+ σdWt with P0 = P

The unit production cost of electricity is assumed to be constant and equal to c ≥ 0.
The problem for the potential investor is: ”when to invest if the sunk investment cost
associated with the project is I > 0?”.

Note that when there is not a reliability options scheme in place, the instantaneous
profit is πt = Pt − c and the value of the option to invest for P < PT is F (Pt) =(
PT
r−α − c

r − I
)(

P
PT

)β1
where PT = β1

β1−1 (r − α)
(
c
r + I

)
is the optimal investment thresh-

old.
On the contrary, when a reliability options scheme is in place the instantaneous profit

function is πt = min {Pt,K} − (c−m) where K > 0 is the strike price of the reliabil-
ity options scheme and m > 0 is the premium that the power plant receives ex-ante.
Alternatively, we can write:

(14) πt =

{
Pt − n for Pt ≤ K
K − n for Pt > K

where n = c−m.
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The new profit function results in a new value function:

(15) V (Pt) =

{
AP β1t + Pt

r−α − n
r for Pt ≤ K

BP β2t + K−n
r for Pt > K

where A = − r−β2α
(r−α)(β1−β2)rK

1−β1 < 0 and B = − r−β1α
(r−α)(β1−β2)rK

1−β2 < 0.

The terms AP β1t and BP β2t capture the obligation of the power plant to respect the
reliability options contract. More precisely, the former captures the obligation of the power
plant to cash K as soon as Pt > K. On the contrary, the latter captures the obligation of
the power plant to cash Pt whenever Pt ≤ K.

As before, the value of the option to invest is:

(16) F (Pt) = max

{
V (Pt)− I,

1

1 + rdt
Et
[
F (Pt + dPt)

]}
Note that two possible cases arise. On one hand, we might have a K that is larger than, or
at most equal to, the optimal investment threshold or, on the other, K might be smaller
than the optimal investment threshold.

One can show that, provided that K ≥ β1
β1−1 (r − α)

(
n
r + I

)
, the optimal investment

threshold is equal to

(17) P ∗T =
β1

β1 − 1
(r − α)

(n
r

+ I
)

(≤ K)

and the value of the option to invest is equal to

(18) F (Pt) =

(
AP ∗β1T +

P ∗T
r − α −

n

r
− I
)(

P

P ∗T

)β1
Notably, P ∗T < PT , i.e., the investment takes place earlier than in the case without a
reliability options scheme in place. Unsurprisingly, ∂P ∗T /∂m < 0, ∂F (Pt) /∂m > 0 and
∂F (Pt) /∂K > 0.

On the other hand, provided that K ∈
(
Ir + n, β1

β1−1 (r − α)
(
I + n

r

))
, the optimal

investment threshold is equal to

(19) P ∗∗T =

[
1

B

β1

β1 − β2

(
I − K − n

r

)] 1
β2

and the value of the option to invest is equal to:

(20) F (Pt) =

(
BP ∗∗β2T +

K − n
r
− I
)(

P

P ∗∗T

)β1
As expected: ∂P ∗∗T /∂m < 0, ∂P ∗∗T /∂K < 0, ∂F (Pt) /∂K > 0, ∂F (Pt) /∂m > 0. Interest-
ingly, in this case the effect of the reliability options mechanism both on the timing and
the value of the option to invest is ambiguous.
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Summing up, here I present a simple extension of the standard real options model
discussing investments in electricity production when a reliability options scheme is in
place. A reliability options scheme sets a cap at the price of electricity but at the same
time pays a premium to the power plants that write reliability options. I show how the
combination of the price cap and the option premium that characterize the reliability
option determine the timing and value of investments in the electricity sector.

4 Conclusion

The real options approach treats investments characterized by uncertainty and irreversibil-
ity. It builds on the idea that investments are like financial options in real assets in the
sense that a potential investor has the right but not the obligation to pay the invest-
ment cost in order to gain access to the stochastic profit flow generated by the investment
project under question. In this seminar I present the most simple model in the real options
literature and then I refer to some results from my ongoing research work.
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Conservation laws with transition

phase for supply chains

Maria Teresa Chiri (∗)

Abstract. We present an overview of existing models for manufacturing process of industrial goods
involving PDEs and in particular conservation laws. Then we introduce a new model for supply
chains on a network based on conservation laws with discontinuous flux evolving on each arc (sub-
chain) and on buffers of limited capacity in every junction (separating sub-chains). The dynamics
of every arc is governed by a continuity equation describing the evolution of the density of objects
processed by the supply chain. The flux is discontinuous at the maximal density since it admits
different values according with the free or congested status of the supply chain.

1 Introduction

Conveyor belts are component used in automata distribution and warehousing, whose ori-
gin dates back to 1892, by Thomas Robinson. They were introduced for carrying coal,
ores and other products, but not too late they found wide use in other different sectors.
In fact nowadays conveyor systems have large application in industries for transportation
of materials, goods and passengers, since they represent a quick and efficient technology
which allows to move objects of different nature and have also some popular consumer
application, as in supermarkets and airports. Hence conveyor belts constitute the pivot on
which a more complex structure is based: we are talking about supply chain, a system of
organizations, people, activities, information, and resources involved in moving/processing
a product or service from supplier to customer.

In the last decade several mathematical models were developed in order to describe the
flow of particles along a single conveyor belt and more generally along a chain or network
of conveyor systems. The main distinction is between the microscopic (discrete) models
which track each part in the material flow and macroscopic (continuous) models relying on
conservation laws which determines the motion of the part density (DGHP10) The former
models captures the most accurate dynamics but get computational extremely costly and
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produce inefficient simulation times, while the latter are inspired to continuous traffic flow
models and captures phenomena such as queuing and congestion.

Figure 1. Classic prototype conveyor belt.

After a brief overview of already existing continuous models for supply chains, based
on scalar conservation laws, we will introduce a new model that presents more realistic
features. It is based on scalar conservation laws with flux discontinuous in the conserved
quantity. This choice of the flux was introduced for the first time in [AGH11] to study
shutdown of the production line due to a failure, and the time evolution of the recovery
of the production line once the failure has been repaired. If there is now a vast literature
for the case of conservation laws with spatial discontinuous flux (see [BK08] for a brief
introduction), the same cannot be said for the case that we consider. However there is no
way to avoid this peculiarity of the flux since conveyors used in industrial settings include
tripping mechanisms which allow for workers to immediately shut down the conveyor when
a problem arises. Hence to get a realistic description we need to consider this kind of dis-
continuity. The first to consider scalar conservation laws with flux discontinuous in the
conserved quantity was Gimse in [Gim93] in models for two phase flow in porous media
where flow properties change abruptly at some saturation.
Dias and al. in [DFR05] analyze the limit case of a phase transition and studied the
problem by resorting regularization of the flux function though some Friedrichs’ mollifiers
to fall back into classical theory (this is also the same approach used in [AGH11] ).
In [BvcGMSG11] the authors find an extended framework for fluxes with jump disconti-
nuity, introducing a concept of weak solution for the conservation law and establishing its
existence for a class of fluxes that have at most countably number of monotone jumps.
A different point of view is given in [HJP13] where the authors introduce an explicit tran-
sition phase approach enlarging the set of variable for the equation and considering not
only the density but also the phase which can be free or congested. The Hamilton Jacobi
formulation associated to this kind of conservation law is studied in [AC19]. Although the
HJ equation is also non-trivial to treat because of the discontinuity of the Hamiltonian in
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the gradient, its solution reveals important information about the solution for the conser-
vation law. Moreover under the hypotheses stated in the following it is possible to give an
explicit formulation (Hopf Lax type) for the solution of the HJ.

2 Previous Models

In this section we recall the main continuous models for supply chain introduced in the
last years. Although they arise from such strictly applicative situations, these models offer
important challenges also and above all from a theoretical point of view.

2.1 Armbruster- Degond-Ringhofer 2006

The first continuous model for conveyor belt was introduced in [ADR07], inspired by traffic
flow models for which a large body theory had already been developed. It is based on
conservation laws of the form

(2.1) ∂tu+ ∂x min {µ, u} = 0

where the variable x ∈ [a, b] represents the position along the single chain, u : [0,+∞) ×
[a, b]→ [0,+∞), function of time and position, stands for the product density, and µ is a
bound on the rate of flux.

u

F lux

µ

The number of parts processed is conserved but can be large, therefore a scalar conservation
law is actually the most appropriate kind of equation to describe the physical behavior.
Equation (2.1) is standard with a Lipschitsz continuous flux, hence it can be studied using
the classical theory. However, although the flux is bounded, the density of parts can
grow indefinitely which means that the chain has infinite capacity, this makes the model
physically not very realistic. The defect was solved in the following model.

2.2 Armbruster - Gottlich - Herty 2011

In [AGH11] the authors give a contribute to the body of continuous models by developing
a model for supply chains or factories with finite work in progress. For evolution of parts
they consider scalar conservation laws of the form

(2.2) ut + Fx(u)x = 0
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with

F (u) =

{
a u if u < M,

0 if u ≥M
where M is the maximum storage capacity in the processor.
The flux is discontinuous at maximum density and the most important consequence is
the fact that the flux of the solution can not be uniquely determined through evaluation.
Indeed assume that in a point a solution of (2.2) is exactly equal to M, then we are not
able to say (in such a point) if the correspondent flux is 0 or lims→M− F (s).

u

F lux

a · u

M

Since at the beginning it was not clear how to deal directly with this kind of equation, the
problem was studied by considering continuous approximation of the flux. A more direct
approach was introduced in [HJP13].

2.3 Herty-Jorres-Piccoli 2013

In their work equation (2.2) is studied by modifying the dynamic in the following way:
the flux F is replaced with a flux G with argument the density u ∈ [0,M ] and a second
argument S attaining value in the finite set {F , C} and representing the status of the belt.
Here F is the free phase and C the congested. More explicitly G : [0,M ]× {F , C} → R is
given by

(2.3) G(u,S) =


F (u) if 0 ≤ u < M, S = F
limu→M− F (u) if u = M, S = F
F (u) if 0 ≤ u < M, S = C
0 if u = M, S = C

where the third case never occurs and is added just to have a well defined function G on
the full domain [0,M ]× {F , C}.
The evolution of (u(t, x),S(t, x)) corresponding to (2.2) is given by a conservation law
paired to a state constraint :

(2.4)

{
ut +G(u,S)x = 0

S(t, x) = C(t, x) =⇒ u(t, x) = M
.
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The meaning of the state constraint is that the congested phase can appear only when
u(t, x) = M , that is at maximal density.

Both (2.1) and (2.2) have been largely studied for evolution of parts not only on a
single chain but also on network. A more recent model for supply chain is described in
[AC19]. Here we give just a brief description of it.

3 A New Model

Consider a family of n+m arcs joining at a node. We denote with indices i ∈ {1, ...,m} = I
the incoming arcs, with j ∈ {1, ..., n} = O the outgoing arcs. On the k− th arc the density
of parts is described by the scalar conservation law

ut + Fk(u)x = 0

with t > 0, x ∈ [−∞, 0] for incoming and x ∈ [0,∞] for outgoing arcs. On the flux Fk we
impose the following assumptions:

(3.1) s→ Fk(s) smooth on [0,Mk), ∂2
sFk ≤ 0, F (0) = 0 and Fk(Mk) ∈ [0, Nk].

u

Fk(u)

Mk

u

Fk(u)

Mk

Figure 2. Two examples of fluxes which satisfy (3.1).

Given an initial data on each arc

(3.2) uk(0, x) = uk,0(x) k = 1, ..., n+m

we need to add a suitable set of boundary conditions in order to determine a unique
solution. These boundary conditions provide additional constraints on the traces of the
good densities

ūk(t) =

{
limx→0− uk(t, x) k ∈ I
limx→0+ uk(t, x) k ∈ O

near the junction.
Since we want to consider a realistic model, we assume that in the junction there is a buffer
of limited capacity. The state of the buffer is represented by a function q : [0,∞)→ [0,M b]
which is the amount of goods from the incoming arcs waiting to enter in one of the outgoing
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arcs with equal probability.
We require that the incoming fluxes are given by

(3.3) F̃i(t) = min{Fi(ui(0, t)),
M b − q(t)
|I| } i ∈ I,

and the outgoing fluxes by

(3.4) F̃j(t) =

{
q(t)
|O| if (uj(0, t), Fj(uj(0, t))) 6= (Mj , 0)

0 else
j ∈ O

Conservation of the total number of parts implies that

(3.5) q̇(t) =
∑
i∈I

F̃i(t)−
∑
j∈O

F̃j(t).

Therefore the final model consists of a system of Conservation laws coupled with an
Ordinary differential equation

(JP)


∂tuk(t, x) + ∂xF (uk(t, x)) = 0 k ∈ I ∪ O
q̇(t) =

∑
i∈I F̃i(t)−

∑
j∈O F̃j(t)

uk(t, 0) = uk,0(x)

q(0) = c c ≥ 0

4 The Hamilton-Jacobi reformulation

As mentioned in section 2.2, a solution for equation (2.2) is defined not only by the con-
served quantity, but also by the correspondent flux. For this reason we need to adapt the
classical definition of solution to the case of scalar conservation laws with flux discontin-
uous in the conserved quantity.

Definition 4.1 Let (u0, f0) ∈ L∞(R) × L∞(R) and F ∈ L∞loc(R) be regulated. We say
that a couple (u, f) is a weak solution to the Cauchy problem if

u ∈ L∞([0, T ];L∞(R)), f ∈ L∞([0, T ];L∞(R)),

f(x, t) ∈ coF (u(x, t)) for a.a (t, x) ∈ R+ × R,
with coF (u) = [min {F (u−), F (u+)},max {F (u−), F (u+)}]

and the identity

−
ˆ ∞

0

ˆ ∞
−∞

uφtdxdt−
ˆ ∞

0

ˆ ∞
−∞

fφxdxdt =

ˆ ∞
−∞

u0(x)φ(0, x)dx

holds for all φ ∈ D(R2).

Now consider the single Cauchy problem

(CP1)

{
ut + F (u)x = 0 t > 0, x ∈ R
(u, f)(0, x) = (u0, f0)(x)
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where F satisfies (3.1), u0 ∈ L∞(R) and f0(x) = F (u0(x)) if u0(x) < M , f0(x) ∈ [0, N ] if
u0(x) = M . The correspondent Hamilton-Jacobi reformulation is given by the following
Cauchy problem

(CP2)

{
ωt + F̂ (ωx) = 0

ω(0, x) = ω0(x)

where ω0(x) =
´ x

0 u0(s)ds, F̂ (s) = F (s) for 0 ≤ s < M and F̂ (M) = limx→+∞ f0(x).

Theorem 4.1 The Cauchy problem (CP2) admits a unique viscosity solution in the sense
of Ishii’s definition [Ish85]. Moreover if ω is the solution of (CP2), the couple (ωx,−ωt)
is a weak entropy solution of (CP1)

The previous result is a strong and the key tool to prove the following.

Theorem 4.2 Let the flux functions Fk : [0,Mk]→ [0, Nk], with k ∈ I ∪ O, be such that

s→ Fk(s) smooth on [0,M), ∂2
sFk ≤ 0, F (0) = F (M) = 0,

uk0 ∈ L∞(R) and ‖uk0‖ ≤Mk. The Cauchy Problem JP on the single junction has a unique
admissible solution globally defined for all the time.

The solution is obtained as fixed point of a contractive map

(4.1) q → (ωi)i∈I → G→ (ωj)j∈O →
(
G+

∑
ωj(0, t)

)
= Λ(q)

where

• (ωi)i∈I is the vector of solutions of the boundary value problems for the HJ with
Hamiltonian Fi

• G is the amount of parts that reach at time t the junction

• (ωj)j∈O is the vector of solutions of the boundary value problems for the HJ with
Hamiltonian Fj

• G+
∑
ωj(0, t) is the amount of parts inside the buffer waiting to enter the arcs j.
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Mean field interacting particle

systems and games

Guglielmo Pelino (∗)

Abstract. Mean field theory studies the behaviour of stochastic systems with a large number
of interacting microscopic units. Under the mean-field hypothesis, it is often possible to give a
macroscopic easier description of the phenomena, which still allows to catch the main characteristics
of the complex pre-limit model. The main purpose of the talk is to motivate a system of two coupled
forward-backward partial differential equations, known as the mean field game system, which serves
as a limit model for a particular class of stochastic differential games with N players. For reaching
this goal, an introductive overview on macroscopic limits for mean field interacting particle systems
and games under diffusive dynamics will be presented. In the last part of the talk I will briefly
review my contributions in the context of finite state mean field games.

1 Introduction

Originally formulated for applications to physics (more in particular statistical mechanics),
mean field models have been since then employed in a wide range of different disciplines
such as biology, sociology, economics, finance and computer science. In general, mean field
theory deals with large systems of small interacting stochastic units. The basic purpose is
to give a macroscopic description (usually deterministic) by studying the limit when the
number of units diverges. The study of the resulting limit model allows then to retrieve
informations on the pre-limit one. Thanks to the mean-field hypothesis - according to
which the effect of all the other individuals on any given individual is approximated by
a single averaged effect - it is often possible to perform the above-mentioned macroscopic
limit procedure.

The main difference between mean field models for interacting particle systems and
games is that in the first ones units follow prescribed laws of motion, thus they have zero-
intelligence and we refer to them as particles. In games instead, the microscopic dynamics
are controlled, and the interaction is given through some individual optimization procedure
(minimization of a cost/ maximization of a reward functional), which puts the units in

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on February 13th, 2019.
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competition. Mean field interacting particle systems will serve us as a benchmark for
introducing the main techniques for the macroscopic limit procedure.

As stated in the abstract, the purpose of these notes is to justify the following system
of two coupled forward-backward PDEs, known as the mean-field game system:

(1)


−∂tu− ∂xxu+ |∂xu|2

2 = F (x,m(t)) in [0, T ]× R,
∂tm− ∂xxm− ∂x(m∂xu) = 0 in [0, T ]× R,
u(T, x) = G(x,m(T )), m(0, ·) = m(0) in R.

Note that for simplicity we restricted ourselves to the one-dimensional case, but all the ar-
guments can be extended easily to the multidimensional case, with analogous assumptions
on the dynamics.

2 Preliminary notions

We denote by (Ω,F ,P) the underlying probability space in which all the processes we
consider are living. The triple is made of a sample space, Ω, which models all the possible
realizations ω ∈ Ω of the randomness, F , a σ-algebra of subsets of Ω, the collection of
events, and P : F → [0, 1], a probability measure which measures the likelihood of any
possible event of F .

A real-valued random variable X is a function X : Ω → R, which is measurable with
respect to the σ-algebra F , by endowing R with its Borel σ-algebra B(R), i.e., for any
B ∈ B(R) we have X−1(B) ∈ F .

The probability measure P induces a probability measure on the state space of X,
(R,B(R)), which we refer to as the law (or distribution) of the random variable. It is
defined by

Law(X)(B) := P(X ∈ B) = P(ω ∈ Ω : X(ω) ∈ B),

for any B ∈ B(R).
The definition we are aiming to is that of a stochastic process. Informally speaking,

a stochastic process is a collection of random variables X(t), indexed by some parameter
t, which typically represents time. We consider here only continuous time stochastic
processes in a finite interval of time, thus t ∈ [0, T ], with T < ∞. In order to properly
define a stochastic process, we need the concept of filtration. A filtration is a collection
of increasing σ-algebras (Ft)t∈[0,T ], such that Ft ⊆ F for all t ∈ [0, T ], which carries the
information available up to time t. We call (Ω,F , (Ft)t∈[0,T ],P) a filtered probability space.
We are now ready to give the following

Definition 1 (Stochastic process) A continuous-time stochastic process with values in
(R,B(R)) is a family of R-valued random variables X = (X(t))t∈[0,T ] that are measurable
with respect to F . We say that X is adapted to the filtration (Ft)t∈[0,T ] if X(t) is
measurable with respect to Ft.

The probability measure in the definition of a stochastic process induces a time-varying
flow of probability measures on the state space of X. The definition is analogous to the
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random variable case: for any B ∈ B(R), we set

m(t)(B) = Law(X(t))(B) := P(X(t) ∈ B) = P(ω ∈ Ω : X(t)(ω) ∈ B).

We refer to m(t) as the law or distribution of the process X at time t.
The processes we consider enjoy some additional properties: in particular, they are

Markov processes. A stochastic process X is Markov if, for all 0 ≤ s < t,

P(X(t) ∈ ·|Fs) = P(X(t) ∈ ·|Xs).

In words, the future of the process depends only on the current state and not on the whole
previous history. Even though we do not give any proof, both PDEs which emerge in the
mean field game system are derived by making an extensive use of the above property and
its consequences.

3 Mean field interacting particle systems

In this section we address the problem of taking the macroscopic limit of a mean field
interacting particle system, when at the microscopic level the particles evolve according
to a system of interacting diffusion processes.

3.1 Single particle dynamics

A single particle evolves according to a diffusion process. A diffusion process is a
particular Markov process with continuous paths. For our purposes, it can be defined as
a solution to a stochastic differential equation (SDE) of the form

(2)

{
dX(t) = b(t,X(t))dt+ σdW (t),

X(0) = x0,

where X(t) : Ω→ R is the state of the particle, b : [0, T ]×R→ R is called drift function,
σ > 0 and (W (t))t∈[0,T ] is a standard one-dimensional Brownian motion. This equation
can be thought of as a random perturbation of a deterministic ODE with vector field b,
the strength of the perturbation being regulated by the parameter σ. In (2), the process
(W (t))t∈[0,T ] is defined as

Definition 2 Given a filtered probability space (Ω,F , (Ft)t∈[0,T ],P), we say that (W (t))t∈[0,T ]

is an R-valued Brownian motion if it is an adapted stochastic process with the following
properties:

• W (0) = 0 almost surely;

• W (t)−W (s) ∼ N (0, t− s) for all s < t;

• W (t1)−W (s1) and W (t2)−W (s2) are independent for all s1 < t1 ≤ s2 < t2;

• almost surely W has continuous paths.
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The last property means that there exists an A ∈ F with P (A) = 1 such that for all ω ∈
F , we have that t→W (t)(ω) is a continuous function of time. We work under regularity
assumptions that guarantee that Equation (2) is well-posed. In our case, globally Lipschitz
assumptions and sublinear growth for the drift function are sufficient for obtaining the
well-posedeness of (2), analogously to the deterministic case.

3.2 N -particle dynamics

We now consider the N -particle version of Equation (2). Let Xi denote the stochastic
process describing the state of the i-th particle in the system, where i = 1, . . . , N . The
interacting particles system takes the form

(3)

{
dXi(t) = b(t,Xi(t),mN (t))dt+ σdW i(t),

Xi(0) ∼ m0.

In the above equation, the W i’s are N independent Brownian motions. We choose in-
dependent and identically distributed initial states Xi(0)’s according to a common law
m0.The drift function has an additional argument w.r.t the single particle case. Indeed,
we have b : [0, T ]× R× P(R)→ R, where we endowed P(R) with the Wasserstein metric.
The term mN (t) is defined as the empirical measure of the N particles at time t,

mN (t) :=
1

N

N∑
j=1

δXj(t).

Thus, mN (t) is a random probability measure (theXj(t)’s are random points!), which gives
weight 1

N to the state of each particle in the system at time t. This form of interaction
is called of mean-field type. Indeed, any particle in the system interacts with each other
particle only through this macroscopic quantity mN . This particularly symmetric and
weak interaction is what gives us hopes to obtain a macroscopic limit for the model. In
this case, the macroscopic limit would be a model for describing the evolution of the
density of the particles, rather than describing each single microscopic unit in the system.
Formally, the limit distribution of the particles is the limit of the sequence of the empirical
measures mN , when N →∞.

3.3 Macroscopic limit: McKean-Vlasov diffusions

The macroscopic limit of system (3) consists in proving the convergence of the sequence
of the empirical measures mN (t) to some limit distribution m(t), i.e. giving a law of large
numbers. Recall that, if we have a sequence of random variables (ξi)i=1,...,∞ which are
i.i.d with mean µ, then, the law of large numbers states that

1

N

N∑
i=1

ξi
N→∞−−−−→ µ.

Thus, randomness is removed in the limit.
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When looking for a macroscopic description of System (3), we are aiming to prove the
same kind of averaging property

(4) mN (t) ⇀m(t),

for N → ∞. Here, the convergence must be intended in the weak sense of stochastic
processes. Specifically, if we think of (mN (t))t∈[0,T ] as a stochastic process with values in
P(R), then we have that, for every continuous bounded function f ∈ Cb([0, T ];R), and for
every t ∈ [0, T ], ˆ

R
f(t, x)dmN (t)

N→∞−−−−→
ˆ
R
f(t, x)dm(t),

almost surely in Ω. It can be shown that, for mean-field interacting particle systems,
proving the law of large numbers (4) is equivalent to proving the asymptotic indendepence
between the particles. This last property is known as propagation of chaos:

Definition 3 (Propagation of chaos)) Assume (Xi(0))i=1,...,N ∼ m0 i.i.d. We say that
System (3) propagates chaos if, for any k ≥ 1, any k-uplet (i1, . . . , ik) and any 0 < t ≤ T

Law(Xi1(t), . . . , Xik(t))
N→∞−−−−→ Law(Xi1(t))⊗ · · · ⊗ Law(Xik(t)).

The macroscopic limit of System (3) is thus described by an infinite number of particles
(Xi(t))i=1,...,∞, which are all independent and identically distributed according to the limit
distribution m(t) in (4). Since they are all i.i.d, we can choose to describe one single
reference particle, whose dynamics is thus

(5)

{
dX(t) = b(t,X(t),m(t))dt+ σdW (t),

X(0) ∼ m0,

with m(t) = Law(X(t)). Equation (5) is a non standard SDE. In the literature it is referred
to as McKean-Vlasov diffusion. It is non-linear in the sense that the solution is dependent
on the law of the process itself. Another consequence of the law of large numbers (4) for
System (3) is that, when the limit distribution m(t) is regular enough to admit a density
m(t, x) (i.e. m(t) = m(t, x)dx), the density function m(t, x) satisfies the Fokker-Planck
PDE:

(6)

{
∂tm(t, x) = −∂x [b(t, x,m(t))m(t, x)] + σ2

2 ∂xxm(t, x), in [0, T ]× R
m(0) = m0, in R.

The above PDE describes the evolution in time of the density of the infinite particles in
the limit. It is precisely the macroscopic ”easier” description of the phenomena which we
referred to in the Introduction. This equation is one of the two equations appearing in
the MFG system (1).
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4 Mean field games

In this section we mimic the structure of the previous one, by adding in the story the
control component. We introduce first a linear quadratic optimal control problem, our
1-player game, then we consider the N -player version of it. Under the mean-field assump-
tions on the cost functionals, we then address the macroscopic limit, describing the limit
configuration of Nash equilibria through the mean field game system (1).

4.1 Stochastic control theory: ”1-player” games

We modify the SDE (2) according to

(7) dXα(t) = α(t,Xα(t))dt+ σdW (t),

where now α : [0, T ] × R → R is the so-called feedback control function. It is chosen to
minimize a cost functional of the form

(8) J(α) = E
[ˆ T

0

( |α (s,Xα(s)) |2
2

+ F (Xα(s))

)
ds+G(Xα(T ))

]
.

For every possible choice of control α, we have a different SDE (7), whose state is denoted
by Xα(t) to explicitly highlight the dependence of the solution on the control function.
We only allow controls which are such that (7) is a well-posed equation, and such that the
cost is finite. The cost functional is made of three terms:

• |α(s)|2
2 , which penalizes high velocities;

• F : R→ R a running cost;

• G : R→ R a terminal cost, paid when exiting the game at time T .

The optimal control problem just formulated is of linear-quadratic type, since the control
function appears linearly in the dynamics (7), and quadratically in the cost functional
(8). When F and G are quadratic in X themselves, a typical condition for the admissible
controls is given by

E
[ˆ T

0

|α (s,Xα(s)) |2
2

ds

]
<∞,

together with α globally Lipschitz in the x-variable and of sublinear growth. In this
context, we know that there exists a unique solution to the control problem. It can be
found by defining the function

(9) v(t, x) := min
α

Et,x
[ˆ T

t

( |α(s,Xα(s))|2
2

+ F (Xα(s))

)
ds+G(Xα(T ))

]
,

where the expectation is conditioned on dynamics (Xα(s))t≤s≤T starting at time t in
Xα(t) = x. We call v the value function of the optimal control problem. A basic principle
in optimal control problems allows us to deduce an equation for the value function. Such
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principle is known as dynamic programming, according to which we can recursively recon-
struct the value function by going backward in time. In our context, if we fix any h > 0,
it establishes that

v(t, x) = min
α

E
[
v(t+ h,Xα(t+ h)) +

ˆ t+h

t

( |α(s)|2
2

+ F (Xα(s))

)
ds

]
.

If we now differentiate with respect to time the above expression, and apply It’s formula
to d

dtE [v(t,Xα(t))], we get

(10)

{
−∂tv − σ2

2 ∂xxv + |∂xv|2
2 = F (x), in [0, T ]× R

v(T, x) = G(x), in R.

In order to close the argument, one is left to show what in literature is known as Verification
Theorem: it establishes that, if one is able to solve the Hamilton-Jacobi-Bellman equation
(10), then the solution provides the value function of the optimal control problem, and
the optimal feedback function is given by

α∗(t, x) = −∂xv(t, x).

Finally, we remark that the Hamilton-Jacobi-Bellman equation is the first of the two
equations appearing in the mfg system (1), except for the coupling (the term on the right-
hand side of the equality) which is different from Equation (10). More on this will come
shortly.

4.2 N -player games

We now consider a game of the same type as before, but for a system of N controlled
diffusions. The state of the i-th player is denoted by Xi(t), for i = 1, . . . , N , and the
dynamics are given by the system

(11)

{
dXi(t) = αi(t,X(t))dt+ σdW i(t),

Xi(0) ∼ m0,

where X(t) := (X1(t), . . . , XN (t)) is the vector representing the state of the whole pop-
ulation, and αi : [0, T ] × RN → R is the feedback control function for the i-th player.
Observe that αi now depends on the whole state of the population at time t. We associate
to each player a cost functional J i, of the form
(12)

J i(α1, . . . , αN ) := E

[ˆ T

0

(∣∣αi (s)
∣∣2

2
+ F

(
Xi(s),mN,i(s)

))
ds+G

(
Xi(T ),mN,i(T )

)]
,

where

mN,i(t) :=
1

N − 1

N∑
j=1,j 6=i

δXj(t)
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is the empirical measure of the N−1 players except for the i-th. In this way, the interaction
among players is of mean-field type. Observe that the cost functionals J i’s now depend
on the strategies chosen by every player. In this context, it is not straightforward to even
give a definition of solution for the N -player game. For our purposes, we are interested in
one particular concept of equilibrium for the game, the so-called Nash equilibrium.

Definition 4 A strategy vector α∗ := (α1,∗, . . . , αN,∗) is said to be a Nash equilibrium
for the N -player game if, for each i = 1, . . . , N

J i(α∗) = min
β
J i([β;α∗,−i]),

with

[β;α∗,−i]j :=

{
α∗,j , j 6= i

β, j = i.

In words, α∗,i is the optimal control for the i-th player, when the other N − 1 players play
the strategies α∗,−i.

With this concept of solution in mind, one can mimic the strategy shown in the previous
section for the 1-player case for constructing an equilibrium in the N -player version of the
model:

• define vi,N (t,x) := minβ J
i([β;α∗,−i]) the value function of the i-th player, computed

minimizing the choices for the i-th player’s control, freezing the others’ controls in
the Nash equilibrium, and conditioning to have initial states at time t given by
X(t) = x;

• by dynamic programming, the functions vi,N ’s solve a system of N coupled HJB
equations;

• αi,∗(t,x) = −∂xivN,i(t,x) provides the Nash equilibrium by a Verification Theorem.

The system of N coupled HJB equations for the value functions, which we call Nash
system, is given by
(13)−∂tvN,i(t,x)−∑N

j=1 ∂xjxjv
N,i(t,x) +

|∂xivN,i(t,x)|2
2 +

∑
j 6=i ∂xjv

N,j∂xjv
N,i = F (xi,m

N,i),

vN,i(T,x) = G(xi,m
N,i).

In general, the above system becomes highly not tractable for N big, even from a numerical
point of view. However, the mean-field interaction, expressed in the cost functions F and
G, generates a first symmetrization in the value functions, which can be proved to be of
the form:

(14) vN,i(t,x) = vN (t, xi,m
N,i).

Accordingly, the Nash equilibrium satisfies the same symmetric properties

αi,∗(t,x) = α∗,N (t, xi,m
N,i) = −∂xivN (t, xi,m

N,i).

Università di Padova – Dipartimento di Matematica 64



Seminario Dottorato 2018/19

4.3 Macroscopic limit: the mean field game system

The symmetric properties (14) of the value functions hint that we have a chance to observe
a mean-field limit for the system (13). If we look at the optimal dynamics of the N players
when each of them is in the Nash equilibrium, we have the following system of SDEs

(15) dXi(t) = α∗,N (t,Xi(t),mN,i(t))dt+ σdW i(t).

If we compare it with the mean-field system of interacting particles given in (3) they look
quite similar at first glance. The additional difficulty in obtaining a macroscopic limit for
(15) is that the drift function - α∗,N - now depends explicitly on N , while in (3) it was
fixed to a function b. Thus, the symmetries expressed in (14) may not suffice to apply
standard results from the theory of propagation of chaos. The additional challenge here is
to prove that the sequence of the value functions vN admits some limit. A breakthrough
was achieved with [2], where the authors obtained a rigorous convergence of the sequence
vN to a limit function U , which solves an infinite-dimensional PDE on the space of prob-
ability measures. Without giving any other detail, we here assume we can prove a law
of large numbers/propagation of chaos for the empirical measures of the N players, with
the heuristic motivation that when N grows one player influences the others less and less.
Thus,

mN,i(t) ⇀m(t) ∈ P(R),

for N → ∞. In the limit configuration, we end up with an infinite number of players
(Xi(t))i=1,...,∞, which are all independent and identically distributed. The reference player
in this case optimizes its strategy by considering the distribution m(t) of the other infinite
players to be fixed. Thus, given m(t), the reference player chooses α∗, the optimal control,
which must coincide with the limit of the Nash equilibrium sequence α∗,N . At the same
time though, the rest of the population is also in the Nash equilibrium: we must then
have that the distribution of the reference player in the optimal dynamics coincides with
that of the rest of the population. In formulae, we have the mean-field condition on the
optimal dynamics

Law(Xα∗(t)) = m(t).

The above argument can be summarized by finding a fixed point of a map

m(t)→ u(t)→ α∗ → Xα∗(t)→ m̃(t),

where m is the distribution of the other players, u is the value function of the reference
player and α∗ its optimal control, and m̃ is the distribution of the optimal dynamics of
the reference player. A mean-field game equilibrium is such that we have m(t) = m̃(t) for
every t. This fixed point map can be reformulated via the system of two PDEs (1) which
we introduced in the beginning, which we here restate for clarity:

(16)


−∂tu− ∂xxu+ |∂xu|2

2 = F (x,m(t)) in [0, T ]× R,
∂tm− ∂xxm− ∂x(m∂xu) = 0 in [0, T ]× R,
u(T, x) = G(x,m(T )), m(0, ·) = m(0) in R.
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The first of the two equations governs the optimal choice of the reference player given the
distribution m of the other infinite players, by describing the backward in time evolution of
its value function u. The second one is instead explaining how the distribution of players
evolves with time. At the same time such distribution coincides with the distribution of
the reference player itself (look at the u appearing in the equation for m).

5 Finite state mean field games and perspectives

When the processes describing the dynamics of the players take value in a finite space
Σ := {1, . . . , d} we talk about finite state mean field games. The processes describing
the evolution of the players are continuous-time Markov chains, and the controls are
the transition rates among the possible states. Specifically, we have that αiy(t, x,x

N,i)
represents the rate at which player i decides to go from state x to state y, when x 6= y,
xN,i being the states of the other N − 1 players at time t. In formulae

P
[
Xi(t+ h) = y|Xi(t) = x,XN,i(t) = xN,i

]
= αiy(t, x,x

N,i)h+ o(h).

For these kinds of models, results were obtained in two opposite scenarios:

(a) Uniqueness scenario: when the mean field game system has a unique, regular solu-
tion;

(b) Non-uniqueness scenario: when the mean field game system possesses multiple so-
lutions.

In both cases, the focus was on stuyding the convergence of the N -player Nash equilibrium
and dynamics to the limiting mean field game configuration(s).

The uniqueness scenario is analyzed in [3], which we refer to for details. Here we make
only a list of the most important results proved:

• the rigorous convergence of the (unique) Nash equilibrium to the limiting (unique)
solution to the MFG;

• a Law of Large Numbers for the empirical measures of the players;

• refined asymptotics for the latter: a Central Limit Theorem and a Large Deviation
Principle.

For ensuring uniqueness of the limit mfg system, we employed the so-called monotonicity
conditions on the costs: in the context of finite state space mean field games these read
as, for any m,m′ ∈ P (Σ),∑

x∈Σ

(F (x,m)− F (x,m′))(m(x)−m′(x)) ≥ 0,

and the same for the cost function G. It is not hard to see that this condition implies -
at least for local mean field games - that it is less costly for players to occupy states of
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the space with a low density of players: essentially, players prefer to spread rather than
to aggregate.

The non-uniqueness scenario (2) is instead treated in [4], where we restricted to a
binary state space {−1, 1}, in order to have explicit computations for the solutions of the
mean field game. Moreover, we considered F ≡ 0 and an anti-monotonic final cost G,
meaning that here players tend to favor the aggregation with the state of the majority,
but at the same time they are in a non-cooperative setting, thus making highly non-trivial
to guess what happens at the limit level. Still, at the level of the N -player game we have
existence and uniqueness of the Nash equilibrium. In [4] we proved:

• existence of multiple solutions to the MFG system;

• convergence of the (unique) Nash equilibrium to one solution of the MFG (the
entropy solution to a conservation law, the master equation);

• the other solutions are almost Nash equilibria (ε-Nash, with ε
N→∞−−−−→ 0);

• Law of Large Numbers for initial values of the empirical measure outside an ”inde-
cision” point.

Finally, a perspective work aims at weakening the mean-field assumption. As stated in
the introduction, the interaction graph in the mean-field case is a complete graph. Can we
erase some connections and still hope to retrieve the same mean-field limit in the context
of games? In particular, the goal of this future work is to consider the case of Erdos-Renyi
graphs, where the edges between the nodes are all i.i.d and each of them has a probability
pN to exist and 1− pN to not be present. For N -player games on this class of graphs, we
are interested in constructing approximate Nash equilibria by using the mean field limit
configuration which one would find if the graph was complete under mean-field interaction,
where the error in the approximation tends to 0 with N going to infinity. In particular,
we want to allow pN to go to 0 with N . Presumably, in order to find the same mean field
limit one should have that pN goes to zero at most with a speed such that NpN →∞ for
N → ∞. Indeed, NpN is the average degree in the Erdos-Renyi graph, and thus if the
average degree tends to infinity we are likely to retrieve a mean-field effect on the game.
The mean-field interacting particle system counterpart of this result is analyzed in [6],
where they prove that the condition on the diverging average degree is indeed necessary
for getting a mean-field limit.
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On the Alexander polynomial

of line arrangements in P2

Federico Venturelli (∗)

Abstract. In [M] Milnor proved that to any homogeneous polynomial f in n + 1 indeterminates
one can associate the smooth locally trivial fibration f : Cn+1 \ f−1(0) → C∗; the C-linear auto-
morphism induced by the geometric monodromy of the generic fibre F on the cohomology group
Hi(F,C) is called i-th algebraic monodromy of f , and its characteristic polynomial is called i-th
Alexander polynomial of the projective hypersurface V := V (f) ⊂ Pn. When V is smooth these
Alexander polynomials are known by the work of Brieskorn [B]; however, much less is known al-
ready when V has only isolated singularities. In these notes we will present some results concerning
the simplest case one can focus on in the latter situation: the computation of the first Alexander
polynomial when f ∈ C[x, y, z] factors into linear homogeneous polynomials, i.e. when V ⊂ P2

consists of a collection of lines.

Organization of the text

In the first part of these notes we review some notions that are necessary in order to
state the definition of the (first) Alexander polynomial: in particular, we show how the
homotopy lifting property of fibrations allows us to define the geometric monodromy of F ,
and we recall the definition of (de Rham) cohomology groups with complex coefficients for
complex manifolds. We then introduce the intersection lattice of a hyperplane arrangement
and state a long-standing conjecture on the Alexander polynomial of non-central line
arrangements in P2.

The second section is devoted to the presentation of a formula, due to Libgober (see
[L1]), that allows for the explicit computation of the Alexander polynomial of a plane pro-
jective curve. Its introduction is justified by the fact that computing this polynomial using
the definition is in most cases unfeasible, and it will enable us to state (and understand)
a classical result of Zariski on the Alexander polynomial of a very particular plane curve.
By using this formula, the interested reader will be able to verify the following (perhaps
surprising) fact: the vast majority of line arrangements one can draw on paper have trivial
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Alexander polynomial, where by ’trivial’ we mean ’of the form (t − 1)r−1 where r is the
number of lines’.

If one compares this formula with the expression of the Alexander polynomial of a non-
central line arrangement suggested by the conjecture, the latter may seem quite mysterious;
however, once we introduce the notion of k-net on a line arrangement we will see that some
of this mystery might be explained. The highlight of the last part of this section is a recent
result by Papadima and Suciu on some classes of arrangements that admit 3-nets (see [PS]),
that seems to suggest that highly symmetric line arrangements are the only ones having
a non-trivial Alexander polynomial.

In the last section we will first recall some notions from complex geometry (basic
Hodge theory and the definition of deformation) and then proceed to illustrate an original
result: namely, we will present a very specific class of line arrangements whose Alexander
polynomial is trivial. The link between these two topics is provided by a result of Libgober
(see [L2]) that relates the Alexander polynomial of a plane curve C to the irregularity of
a surface S associated to C.

1 Explaining the title

In the same way vector bundles π : E → B encode the information of a family of vector
spaces (the fibres of Eb of π) parametrised by a base space B, fibrations π : X → Y
describe families of topological spaces parametrised by a base topological space Y ; however,
fibrations enjoy an additional property, called homotopy lifting property (HLP in the
following). The exact statement of the HLP is rather involved, so we will only explain
why it is important to us and what it allows us to do. But first, we define properly what
a fibration is:

Definition 1.1 A fibration is a continuous surjective map π : X → Y between topological
spaces that satisfies the HLP; it is called locally trivial if for any open subset U of Y the
preimage π−1(U) is homeomorphic to U × Z for some topological space Z.

Assume now f ∈ C[x0, . . . , xn] is a homogeneous polynomial. For any t ∈ C we can
define Xt as the zero-locus in Cn+1 of the polynomial f − t (sets like these are called affine
hypersurfaces). If we want to think of all the Xt’s as a continuous family depending on
the parameter t, we can consider the polynomial map associated to f , i.e. f : Cn+1 → C
s.t. x 7→ f(x); clearly Xt = f−1(t). An important theorem by Milnor (see [M]) tells us
the following:

Theorem 1.1 The restricted map f : Cn+1\X0 → C∗ is a smooth locally trivial fibration.

By smooth we mean that all the fibres, i.e. all the Xt’s with t 6= 0, are smooth affine
hypersurfaces (in particular we can think of them as complex manifolds) and that they
are all diffeomorphic as differentiable manifolds. The removal of the fibre X0 is clearly
necessary: using the Jacobian Criterion, one can verify that the affine variety V (f) ⊂ Cn+1

associated to a homogeneous polynomial is always singular at the origin. It is customary
to denote the fibre X1 by F , and to call it the Milnor fibre of f .
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Now, why is the HLP so important? Fix a point in C∗, for example (and for simplicity)
1, and consider any path α : [0, 1]→ C∗ going from 1 to t: if we fix an element x1 in the
fibre X1 = F , we can ’lift’ the path α to a path α′ in Cn+1 \ X0 going from x1 to some
element xt ∈ Xt. The HLP guarantees that this lifted path α′ is unique up to homotopy:
if β is a path in C∗ different from α going from 1 to t that can be ’continuously deformed
onto α’, then the lifted path β′ in Cn+1 \X0 is a path from x1 ∈ F to xt ∈ Xt that can
be continuously deformed onto α′.

If the path α we choose is actually a loop (α(0) = α(1) = 1) then xt is again an element
of F (denote it by x′1), but we will not always have x1 = x′1. The situation is the following:
there is an action, called monodromy action, of the fundamental group π1(C∗, 1) on the
Milnor fibre F , or, equivalently, a representation ρ : π1(C∗, 1) → Aut(F ). In particular,
to a generator α of π1(C∗, 1) we can associate an automorphism h : F → F of the Milnor
fibre, called the geometric monodromy of F (or of f).

1 t0

Cn+1 \X0

C∗

F Xt

x1

xt

1 0

Cn+1 \X0

C∗

F

x1

x′1

The lifting of a path and of a loop, respectively. The dashed line represents the removed singular fibre X0.

We now need to recall the notion of (de Rham) cohomology groups of a complex
manifold M . These are C-vector spaces H i(M,C) defined as the quotient of the set of the
closed complex-valued differentiable i-forms on M by the set of the exact complex-valued
differentiable i-forms on M . For i = 1, the case we are mainly interested in, we get 1-forms
i.e. expressions like this

(1.1) ω =
n∑
i=1

fi(z)dzi +
n∑
i=1

gi(z)dzi

where n := dim(M), fi and gi are complex-valued differentiable functions, the zi’s are
holomorphic coordinates for M and dzi,dzi satisfy the formal properties of the differential.
While their definition seems to be related to calculus, these cohomology groups do reflect
geometric properties of M , as the following example shows.

Università di Padova – Dipartimento di Matematica 71



Seminario Dottorato 2018/19

Example 1 H1(C∗,C) is the 1-dimensional C-vector space generated by the class of the
1-form ω := dz

z ; on the other hand H1(C,C) = 0 since all 1-forms on C are exact. In this
case, the first cohomology group ’detects’ the fact that C is simply connected while C∗ is
not.

It is a standard fact that an automorphism of a complex manifold M induces an
automorphism of the spaces H i(M,C) for all i.

Now, to sum things up: if f is a homogeneous polynomial in n+ 1 indeterminates we
can associate to it:

• Its zero-locus V := V (f) in the projective space Pn (these sets are called projective
hypersurfaces).

• The Milnor fibre F arising from the fibration f : Cn+1 \X0 → C∗.

• The geometric monodromy h : F → F and the induced automorphism T : H1(F,C)→
H1(F,C), called (first) algebraic monodromy of F .

We have explained all the notions we need in order to define the (first) Alexander
polynomial:

Definition 1.2 The (first) Alexander polynomial of the projective hypersurface V (of the
polynomial f) is the characteristic polynomial ∆V of T . We will refer to it simply as to
the Alexander polynomial.

One can prove that the geometric monodromy is given by h(x0, . . . , xn) = (ηdx0, . . . , ηdxn)
where d is the degree of f and ηd is a primitive d-th root of unity. In particular h is
unipotent (after applying h for d times we get the identity), so T is unipotent too; as a
consequence we get that T is diagonalizable and ∆V is a product of cyclotomic polynomi-
als Φk with k dividing d.

We can now turn our focus to hyperplane arrangements: they are defined as finite
collections A = {H1, . . . ,Hr} of codimension 1 linear subspaces of some Kn, where K is
any field. The number of questions that have been raised about such objects is huge, and so
is the literature (see [D] for a recent introductory textbook on the topic); in order to study
our problem, we will specialize the definition by requiring that the Hi are codimension 1
vector subspaces of C3 (so 0 ∈ Hi for all i). Setting n = 3 is actually not a critical change,
but requiring that the Hi be vector spaces is: it allows us to associate to the arrangement
A consisting of affine planes in C3 its projectivization, which is an arrangement of lines in
P2. The latter objects are the ones we care about, and we will indicate them again by A;
they can be described as the zero-locus in P2 of a homogeneous polynomial f that factors
into linear homogeneous polynomials; in particular they are projective hypersurfaces, so
we can speak of their Alexander polynomial ∆A.

To a line arrangement A we can associate the intersection lattice L(A), which keeps
track of the incidence relations between the various lines of A. In the figure below we
present the line arrangement that we will use as main example throughout these notes,
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and the associated intersection lattice: this arrangement is usually referred to as the A3

arrangement, and it can be realized by the polynomial f = xyz(x− y)(x− z)(y − z):

l6 = y − zl2 = y l3 = z

l1 = x

l5 = x− z l4 = x− y

p1 p2p3

p4

p5 p6

p7

P2

l1 l2 l3 l4 l5 l6

p1 p2 p3 p4 p5 p6 p7

∅

There is a long-standing conjecture on the Alexander polynomial of line arrangements:

Conjecture 1.2 The Alexander polynomial of a non-central line arrangement A ⊂ P2

consisting of d lines has the form

(1.2) ∆A(t) = (t− 1)d−1(t2 + t+ 1)a[(t+ 1)(t2 + 1)]b = Φ1(t)d−1Φ3(t)a[Φ2(t)Φ4(t)]b

and the exponents a, b are determined by L(A).

By ’non-central’ we mean that not all lines of A pass through the same point.

Remark 2 We have seen that for arrangements A of d lines ∆A is a product of factors Φαk
k

where Φk is the k-th cyclotomic polynomial, αk ≥ 0 and k divides d; as a consequence,
one would expect the ’complexity’ (number of non-trivial cyclotomic factors) of ∆A to
increase with the number of divisors of d. Formula (1.2) suggests instead that the only
divisors of k that matter are 1, 2, 3 and 4: but why should line arrangements of, say,
35 = 5 · 7 lines, which are arguably more complicated than those with, say, 6 = 2 · 3 lines,
have an Alexander polynomial that is simpler than the one of the latter arrangements? A
possible explanation is suggested in the next Section.

2 A formula for ∆A and the importance of symmetry

Since the Alexander polynomial is the characteristic polynomial of an automorphism of a
vector space, we have a ’standard’ way to compute it: find a basis B for H1(F,C), write
the matrix MB of T associated to B and compute the determinant of MB− t · Id; however,
finding a basis for H1(F,C) is in general a difficult task, unless F is quite simple.

Example 3 Pick f = xy ⊂ C[x, y, z] and let A = V (f) ⊂ P2 (line arrangement consisting
of two incident lines), then F is given by V (xy−1) ⊂ C3; we can compute H1(F,C) using
the holomorphic de Rham complex of F (for those who know: because affine varieties are
Stein spaces): if we call S := C[[x, 1

x , z]] it reads
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0 S Sdx⊕ Sdz Sdx ∧ dz 0
d0 d1 d2

f ( dfdxdx,
df
dzdz)

(gdx, hdz) (dhdx −
dg
dz )dx ∧ dz

We haveH1(F,C) = Ker(d1)/Im(d0) = C·[dxx ]. Since the degree of f is 2 the geometric

monodromy h is described by h(x, 1
x , z) = (−x,− 1

x ,−z), so we get T ([dxx ]) = [d(−x)
(−x) ] = [dxx ]

i.e. MB = Id and ∆A(t) = t− 1.

An alternative way to compute the Alexander polynomial is provided by a formula by
Libgober, which we are going to describe and explain now. This is where the exposition
will get (even) sketchier, since in order to avoid using the language and formalism of
sheaves (and schemes) we will need to give some ad hoc definitions; the reader who wishes
to know how things work should consult [L1] and [L2].

Let C ⊂ P2 be any curve, and let Σ = {p1, . . . , pr} be the set of its singular points. To
any pi in Σ and to any germ of holomorphic function φ around pi one can associate a non-
negative rational number kφ which, when positive, is called constant of quasi-adjunction
of pi relative to the function germ φ. For line arrangements any singular point p is an
ordinary multiple point i.e. it has a local equation of the type xm−ym = 0 for some m ∈ N;
the constants of quasi-adjunction of p are summarized in the following table (holomorphic
functions are analytic, so we can restrict to computing kφ when φ is a monomial function
germ):

Functions φ around p Corresponding kφ
Constants m−2

m
x, y m−3

m
x2, xy, y2 m−4

m
· · · · · ·

Monomials of degree m− 3 1
m

We can see immediately that for a line arrangement A the singular points that admit
constants of quasi-adjunction are those whose order is 3 or bigger; we denote this set of
points by Σ′ := {p1, . . . , ps}. We are now ready to give two definitions:

(a) Let k ∈ R and i = 1, . . . , s. We denote by V i
k the vector space of holomorphic

function germs around pi whose constant of quasi-adjunction is bigger than or equal
to k (and set V i

k := {0} if there are none); we denote by Zk the set of the finitely
many couples (pi, V

i
k ), and define its length l(Zk) as the sum of the dimensions of

the V i
k .

(b) Let k ∈ R and i = 1, . . . , s. Denote by Ji ⊂ C[x, y, z] the ideal of the point pi ∈
Σ′ (the set of all polynomials in C[x, y, z] vanishing on pi). We denote by eik the
maximum degree of monomial function germs in V i

k plus one if V i
k 6= {0}, and set
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eik := 0 if V i
k = 0; we also set Ik := ∩i=1,...,sJ

eik
i . The Hilbert function of Ik in degree

t is hIk(t) := dimC(C[x, y, z]/Ik)t.

This is probably rather confusing, so let us try and clarify things with an example. If
we consider the A3 arrangement we have Σ′ = {p1, p2, p4, p7} and J1 = (x, y), J2 = (x, z),
J4 = (y, z), J7 = (x− y, x− z).

y − zy z

x

x− z x− y

p1 p2

p4

p7

Since all points of Σ′ have order 3 they admit only one constant of quasi-adjunction,
namely 1

3 (which is relative to constant function germs); this means we only have two
possibilities:

• If k ≤ 1
3 we get V i

k = C and eik = 1 for all i, so l(Zk) = 4 and Ik = J1 ∩ J2 ∩ J4 ∩ J7.

• If k > 1
3 we get V i

k = 0 and eik = 0 for all i, so l(Zk) = 0 and Ik = C[x, y, z].

We can now describe Libgober’s formula

Theorem 2.1 Let C ⊂ P2 be a curve of degree d and let k1, . . . , kn be all the constants
of quasi-adjunction of the singular points of C. The Alexander polynomial of C is

(2.1) ∆C(t) = (t− 1)r−1

dkj∈N∏
j=1,...,n

[(t− e2πikj )(t− e−2πikj )]s(kj)

where r is the number of irreducible components of C, Nd(kj) := d − 3 − dkj and the
number s(kj) is given by the difference l(Zkj )− hIkj (Nd(kj)).

The number s(kj) is a generalisation of the so-called defect of a linear system. Pre-
cisely, for any finite set of points Σ ⊂ P2 and any d ∈ N, we can define Sd(Σ) := {g ∈
C[x, y, z]d s.t. g vanishes on Σ} (the linear system of homogeneous polynomials of degree
d vanishing on Σ) and def(Sd(Σ)) := |Σ| − codimC(Sd(Σ),C[x, y, z]d) (its defect); the
latter value measures, in some sense, the dependence of the points in Σ with respect to
curves of degree d.

Example 4 Consider d = 1 and |Σ| = 3: if the points of Σ are collinear (i.e. ’dependent
with respect to lines’) then def(S1(Σ)) = 1; otherwise def(S1(Σ)) = 0. Consider instead
d = 2 and |Σ| = 6. The space of conics in P2 has dimension 5 (can you see why?), so it
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is not always true that we can find a conic passing through all the points of Σ; if this is
possible, we get def(S2(Σ)) = 1, otherwise we get def(S2(Σ)) = 0.

The number s(kj) generalises the defect by replacing |Σ| (cardinality of a set of points)
with l(Zkj ) (’cardinality of a set of points with multiplicities’) and codimC(Sd(Σ),C[x, y, z]d)
with hIkj (Nd(kj)).

Remark 5 The previous discussion on the number s(kj) as a generalisation of the defect
shows that the Alexander polynomial of a plane curve C does not depend only on the
number and type of singular points, but also on their relative position; this was known
since the classical example by Zariski (see [Z]) of an irreducible (r = 1) curve of degree
6 having 6 cusps as singularities (i.e. points with local equation y2 − x3 = 0): if these
cusps lie on a conic then ∆C(t) = Φ6(t) = t2 − t+ 1, otherwise ∆C(t) = 1 (compare with
previous example).

By using formula (2.1) for computations, one quickly realizes that line arrangements
with non-trivial Alexander polynomial are pretty rare; one of them is A3 (what is its
Alexander polynomial?), which enjoys particular symmetry properties: we can in fact
partition its set of lines into three classes A1 := {x, y − z}, A2 := {z, x − y} and A3 :=
{y, x − z} of the same cardinality in such a way that lines from different Ai meet only
at triple points and the number of lines in Ai passing through a triple point is constant
in i. We can summarise the situation by saying that A3 admits a 3-net with base locus
{p1, p2, p4, p7}.

Definition 2.1 A k-net on a line arrangement A is a pair (N ,X ) where N is a partition
of A into k ≥ 3 classes A1, . . . ,Ak and X is a set of multiple points of order at least 3
(called base locus) such that:

(a) The Ai contain the same number of lines.

(b) For any l ∈ Ai and l′ ∈ Aj with i 6= j, the point l ∩ l′ belongs to X .

(c) For any p ∈ X , there is exactly one line of Ai passing through p for each i.

Below we show the 3-nets on the A3 arrangement and on the Pappus arrangement; the
latter has Alexander polynomial (t− 1)8(t2 + t+ 1).

y − zy z

x

x− z x− y
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The following recent result (proved in [PS]) shows that the existence of a 3-net is in
some cases a necessary and sufficient condition for the non-triviality of ∆A:

Theorem 2.2 Let A be a line arrangement consisting of d lines with multiple points of
order 2 and 3 only, then:

• ∆A(t) = (t− 1)d−1(t2 + t+ 1)a with 0 ≤ a ≤ 2.

• a 6= 0 if and only if A admits a 3-net.

• a depends only on L(A).

This Theorem links the presence of a non-trivial factor Φa
3 in ∆A to the existence of a

3-net on A with base locus given by multiple points of order three, under an admittedly
very restrictive hypothesis on the multiplicities of the singular points. This provides a way
to convince ourselves that the form of ∆A suggested by Conjecture 1.2 is not as strange
as we initially thought: Yuzvinsky proved in fact (see [Y]) that on a line arrangement
A there can be a k-net with base locus of cardinality at least two only if k ≤ 3, 4 (the
condition on the cardinality of the base locus is necessary: a central arrangement of k lines
admits a k-net for any k). By analogy with the previous Theorem one could hypothesise
that the presence of a non-trivial factor [Φ2Φ4]b is linked to the existence on a 4-net on
A. However, while arrangements admitting 3-nets are not too rare, only one non-central
arrangement admitting a 4-net is known up to now: the so-called Hesse arrangement, a
representation of which is shown in the picture below:

Its Alexander polynomial is (t− 1)11[(t+ 1)(t2 + 1)]2, so it is indeed non-trivial; another
interesting feature of this arrangement is that if we remove all the lines of a single class,
we get the Pappus arrangement.

3 Some complex geometry and the T2k arrangement class

As anticipated, we begin this section by recalling some notions in complex geometry; the
interested reader should refer to [V] for the details, especially for the Hodge theory part.
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In Section 1 we explained what a differentiable complex-valued 1-form on a complex
manifold M of dimension n is: if we look back at the expression (1.1), we can see that
we can write it as the sum of two 1-forms α and β where α only involves holomorphic
differentials dzi and β only involves antiholomorphic differentials dzi; any 1-form is thus
the sum of a 1-form of type (1, 0) and a 1-form of type (0, 1). In general, a k-form on M
of type (p, q) for p+ q = k (also called simply a (p, q)-form) is given by an expression like

ω =
∑

|I|=p,|J |=q

fI,J(z)dzI ∧ dzJ for I, J ⊂ {1, . . . , n}

where dzI := dzi1∧· · ·∧dzip and dzJ := dzj1∧· · ·∧dzjq . If we differentiate a (p, q)-form
ω, taking advantage of the properties of the differential we see that we obtain the sum of
a (p + 1, q)-form and a (p, q + 1)-form. If we denote by Ωp,q

M the space of (p, q)-forms on
M , we can define the following operators:

∂ : Ωp,q
M → Ωp+1,q

M s.t. ω 7→ (p+ 1, q)-part of dω Holomorphic differential

∂ : Ωp,q
M → Ωp,q+1

M s.t. ω 7→ (p, q + 1)-part of dω Dolbeault operator

Both ∂ and ∂ give 0 if applied consecutively, so for any p = 0, . . . , n we can consider
the following complex

0→ Ωp,0
M

∂−→ . . .
∂−→ Ωp,n

M
∂−→ 0

and we can define

Hp,q(M) :=
Ker(∂ : Ωp,q

M → Ωp,q+1
M )

Im(∂ : Ωp,q−1
M → Ωp,q

M )
hp,q := dimCH

p,q(M)

The vector spaces Hp,q(M) contain (p, q)-forms which are ∂-closed but not ∂-exact,
and their dimensions hp,q are called Hodge numbers of M . When M falls into a particular
class of complex manifolds, namely compact Kähler manifolds, for any i = 0, . . . , n we
have the following equalities:

H i(M,C) =
⊕
p+q=i

Hp,q(M) Hodge decomposition

Hp,q(M) =Hq,p(M) Hodge symmetry

These two facts are very important for us, because we will be dealing with projec-
tive manifolds, which are in particular compact Kähler manifolds. The information on
the cohomology of a projective manifold M can thus be resumed in the so called Hodge
diamond ; if n = 2, it reads
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H2,2(M)

H2,1(M) H1,2(M)

H2,0(M) H1,1(M) H0,2(M)

H1,0(M) H0,1(M)

H0,0(M)

but using Hodge symmetry and Serre duality (for the latter see for example [H]) we
can see that the only essential part of it is the lower leftmost triangle

H2,0(M) H1,1(M)

H1,0(M)

H0,0(M)

One of the many reasons why the Hodge numbers are important is that they are
’constant for families of manifolds’: what this means is that if π : X → B is a deforma-
tion, i.e. a morphism between complex manifolds satisfying some technical conditions and
parametrising a family of manifolds as the fibres Xb := π−1(b), then hp,q(Xb) = hp,q(Xb′)
for any p, q and b, b′ ∈ B. We can relax the definition of deformation by requiring X
and S to be simply projective varieties (zero-loci of homogeneous polynomials in some
projective space); in this case the fibres Xb can have singularities, and we say that π is an
equisingular deformation if all the Xb have the same singularities.

Now we go back to line arrangements. Consider 4 points pi in P2 such that no three
of them lie on the same line, and consider arrangements A consisting of

• k − 1 lines passing through p1 but noth through p2.

• k − 1 lines passing through p2 but noth through p1.

• A line passing through p1 and p2.

• A line l passing through p3 and p4.

with k ≥ 4; we call any arrangement like this of type T2k. Note that any arrangement of
this type can have from zero to k−1 triple points lying on the line l (the next figure shows
an arrangement of type T8).
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l

p2p1

Our aim is to prove that all arrangements of type T2k have trivial Alexander polynomial.
Key to our argument is the following result by Libgober, a proof of which can be found
also in [D]:

Theorem 3.1 Let C := V (f) ⊂ P2 be a curve of degree d, F ⊂ C3 be the corresponding
Milnor fibre, SC := V (yd − f) ⊂ P3 a surface and S̃C ⊂ P3 its resolution of singularities.
If we write the non-trivial part of the Alexander polynomial of C as

∏
1<k|d Φαk

k , we have

2h0,1(S̃C) =
∑

1<k|d

deg(Φk)αk

We can now sketch the proof of the aforementioned result on arrangements of type T2k:

(a) First, note that an equisingular deformation of any arrangement A gives rise to
an equisingular deformation of the surface SA, and from the latter we obtain a
deformation of the smooth surface S̃A; thus, we get a family of complex projective
manifolds of dimension 2, one of whose members is S̃A.

(b) Any two arrangements A and A′ of type T2k having the same number of triple points
can be equisingularly deformed one onto the other; this means that arrangements
of type T2k can be divided into k ’equisingular deformation-equivalence’ classes,
depending on the number of triple points they have. For each of these classes we
take a representative Ai

(c) Up to an automorphism of P2, we can assume that p1 = (0 : 0 : 1) and p2 = (0 : 1 : 0);
this makes it possible to write an explicit equation for each Ai, and to compute their
Alexander polynomial (which turns out to be trivial) using Libgober’s formula (2.1).

(d) Using the previous Theorem, we can conclude that any A in the same class as Ai has
trivial Alexander polynomial, because h0,1(S̃A) = h0,1( ˜SAi) = 0. We can conclude
that all the arrangements of type T2k have trivial Alexander polynomial.

Note that arrangements of type T2k do not admit 3-nets nor 4-nets, so this result is
another hint towards the fact that nets are necessary in order to have non-trivial Alexander
polynomial.
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An introduction to stochastic

control in discrete time with an

application to life insurance

Maren Diane Schmeck (∗)

Abstract. We review the basic theory of stochastic control in discrete time in intuitive, informal
way. The dynamic programming principle we then apply to a problem in life insurance: We
consider an insurance company, which wants to hedge against systematic mortality risk by trading
into an adequate securitziation product, maximizing utility of terminal wealth. In this setting, we
show how to calculate the optimal strategies.

1 Introduction

The first aim of this note is to give an intuitive introduction to dynamic programming in
discrete time. Here, one aims at finding a optimal dynamic strategy U0, U1, U2, . . . , UT
over a time horizont, giving an optimal strategy at each point of time. The dynamic pro-
gramming principle then states that one can reformulate the problem, solving it backwards
in time, in each step optimizing only over a decision at a single point of time. First one
solves the problem for the last time period. The result is then used to optimize over the
period before the last period, and so on. Here, we follow closely [2].
In this framework, we discuss a problem from life insurance that is taken from [1]. An
insurance company is exposed to systematic mortality risk, which he/she wants to transfer
to the financial market by trading into a mortality securitization product. The Insurer then
wants to determine the trading strategy that maximises expected utility from terminal
wealth. Here, we focus on the case of catastrophe mortality risk, that can effect all
individuals of the homogeneous cohort of the insurer simultaneously. The second aim of
this note is then to illustrate how to calculate the strategies in this framework.

(∗)Center for Mathematical Economics (IMW), Bielefeld University, Universitätsstrasse, 33615 Bielefeld,

Germany. E-mail: . Seminar held on March 13th, 2019.
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2 Stochastic Control in Discrete Time

This section follows the textbook of Schmidli [2] in an informal way. Consider an iid series
of random variables {Yn : n ∈ N∗}, modeling the stochastic changes over time. Consider
further the natural filtration {Fn} = {FYn }. Now, a decision is made at each point of
time n ∈ N, modeled through the random variable Un. We assume that the decision Un
is adapted, that is only based on the information available at time n. Let Un be in some
space U . Furthermore, letU denote the set of admissible strategies, i.e. the adapted
strategies U = {Un} that are allowed.
Let’s construct the controlled stochastic process. Let X0 = x be the initial value. The
process at time n+ 1 is

Xn+1 = f(Xn, Un, Yn+1) ,

where f is a measurable function. Here, the next state of the process X only depends on
the present state and the present decision.
Let r(Xn, Un) be the reward at time n ∈ N. The value connected to some strategy U is
then

V U
T (x) = E

[
T∑
n=0

r(Xn, Un)e−δn

]
.

The parameter δ ≥ 0 is a discounting parameter. The goal is to maximize V U
T (x). Define

therefore the value function

VT (x) = sup
U∈U

V U
T (x) .

It is not feasible to find V (x) by calculating the value function V U
T for each possible strategy

U . But it turns out that the dynamic programming principle helps to characterize the value
function. It says that, if one knows the value function for T − 1 steps, it is optimal to
maximize only over the first step. If we are at time 1 then only T − 1 time units are left
and we denote the remaining value with VT−1(x) and V U

T−1(x).
Let U be an arbitrary strategy. Then X1 = f(x, U0, Y1) and

V U
T (x) = r(x, U0) + E

[
T∑
n=1

r(Xn, Un)e−δn

]

= r(x, U0) + e−δ E

[
T−1∑
n=0

r(Xn+1, Un+1)e−δn

]

Define X̃n = Xn+1, Ũn = Un+1 and Ỹn = Yn+1. Then X̃n+1 = f(X̃n, Ũn, Ỹn+1).

V U
T (x) = r(x, U0) + e−δ E

[
E

[
T−1∑
n=0

r(Xn+1, Un+1)e−δn
∣∣∣X1, U0

]]
= r(x, U0) + e−δ E

[
V Ũ
T−1(X1)

]
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Thus, by conditioning on time 1 we have found a relationship between V U
T (x) and V Ũ

T−1(X1)

for some strategies U and Ũ as described above. Now, taking the supremum over the
strategies U ∈U , one can show that the problem reduces to finding the optimal strategy
for the fist point of time, if one knows the value function VT−1. Thus, the decisions that
have to be taken at the following times enter indirectly VT−1, and one has to approach
the problem backwards in time.

Theorem 1 (Bellman’s equation) Suppose that VT (x) is finite. The function VT (x) fulfils
the dynamic programming principle

VT (x) = sup
u∈U

{
r(x, u) + e−δ E [VT−1(f(x, u, Y ))]

}
,(1)

where Y is a generic random variable with the same distribution as Yn.

For the proof of the Bellmann’s equation, see Schmidli [2]. Thus, the Bellmann prin-
ciple tell us that one can solve the problem backwards, finding the optimal strategies and
value function V1(x) if one stands at time T − 1 and only 1 step is left. This can then be
used to find the optimal strategy if we are two time steps before final time T

V2(x) = sup
u∈U

{
r(x, u) + e−δ E [V1(f(x, u, Y ))]

}
,

and so on. That is, we aproach the problem recursively with a series of optimization
problems. Each of these problems optimizes only over one decision u ∈ U , and not over a
series of decisions as in the initial formulation.

3 Example from ’Mortality Options: the Point of View of an Insurer’ [1]

This example is taken from Schmeck and Schmidli [1]. There, we consider a life insurer,
who faces systematic mortality risk. Let’s consider the special case of catastrophe mor-
tality risk: for example due to an epidimia or extreme weather conditions. The Insurer
wants to transfer this risk to the financial market by trading into a securitization product
(SP). Both insurance contract and SP are assumed to make payments at terminal time n
only.

We consider two indices: I models the cohort of the insurer, L the reference portfolio.
We further assume that the interest rate r is constant and that the price of a unit of the
index is given by the conditional expectation of the discounted payoff. Conditional on
the number of survivors in the reference portfolio at time t, Ln is binomially distributed
with parameters Lt and n−tpx+t(t). Thus the price of a unit of the index at time t ≤ n is

n−tpx+t(t)(1 + r)−(n−t)Lt.
The insurer starts with a wealth W0 = w. At time k, the insurer buys θk units of the

Università di Padova – Dipartimento di Matematica 84



Seminario Dottorato 2018/19

mortality bond. Thus the wealth at time k + 1 is then given by

Wk+1 =
(
Wk − θk n−k

px+k(k)Lk
(1 + r)n−k

)
(1 + r) + θk

n−k−1px+k+1(k + 1)Lk+1

(1 + r)n−k−1

= Wk(1 + r) + θk
n−k−1px+k+1(k + 1)Lk+1 − n−kpx+k(k)Lk

(1 + r)n−k−1
.

Denote by
Vn(w, x, I0, L0) = sup

θk

IIE[u(Wn − fI(In))]

the maximal expected utility for a time horizon of length n. The variable x denotes the
underlying cohort.

Recursively, we get

Vn+1(w, x, I0, L0) = sup
θ

IIE
[
Vn

(
W1, x+ 1, I1, L1

)]
.

This is the Bellman equation connected to our problem.

At time s < t the best prior estimate of the probability of death for a member of the
cohort in the period (t − 1, t] is 1qx+t−1(0). At time t, the realised death probability is

1qx+t−1(t) = 1qx+t−1(0)Zt, where {Zt} are iid positive variables with expected value 1.
We assume in addition that 1qx+t−1(t) ≤ 1.
Suppose the value function Vn(w, x, I, L) is known. We consider now a securitisation
product with payoff in n+ 1. The value of the wealth process at time 1 reads

W1 = W0(1 + r) + θ0
npx+1(1)L1 − n+1px(0)L0

(1 + r)n
.

Consider the index L. Because we assume a large portfolio, we can model the index as
Ln+1 = Ln 1px+n(n+ 1) = Ln(1− (1− 1px+n(0))Zn+1). This yields in particular

L1 = 1px(1)L0 = (1− (1− 1px(0))Z1)L0 .

Thus

npx+1(1)L1 − n+1px(0)L0 = npx+1(0)(1− (1− 1px(0))Z1)L0 − n+1px(0)L0

= (1− Z1)(npx+1(0)− n+1px(0))L0 ,

where we used that npx+1(1) = npx+1(0) since the left hand side is the best estimate for
the future. Because npx+1 here models a survival probability when the cohort is x+1 years
old (that is from time 1 on), we get the first information on the realised mortality in period
2. Note that npx+1(0) > n+1px(0). We assume that In+1 = In(1 − (1 − 1px+n(0))Z̃n+1),
also assuming a large portfolio. Then the process I behaves in the same way as L but
with different random variables.
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Consider the exponential utility function u(x) = −e−αx for some α > 0. We claim that
Vn(w, x, I, L) = − exp{−αnw+ fn(x, I, L)} for some function fn and αn = α(1 + r)n. We
find by induction

Vn+1(w, x, I, L)eαnw(1+r)

= sup
θ
− IIE

[
exp
{
−αnθ

(1− Z1)(npx+1(0)− n+1px(0))L

(1 + r)n
+ fn(x+ 1, I1, L1)

}]
= − inf

θ
IIE
[
exp
{
−αnθ

(1− Z1)(npx+1(0)− n+1px(0))L

(1 + r)n
+ fn(x+ 1, I1, L1)

}]
.

We have αn+1 = αn(1 + r) = α(1 + r)n+1 and, with I1 = (1 − (1 − 1px(0))Z̃1)I and
L1 = (1− (1− 1px(0))Z1)L,

fn+1(x, I, L)

= inf
θ

log IIE
[
exp
{
−αnθ

(1− Z1)(npx+1(0)− n+1px(0))L

(1 + r)n
+ fn(x+ 1, I1, L1)

}]
= inf

θ
log IIE

[
exp
{
−αθ(1− Z1)(npx+1(0)− n+1px(0))L+ fn(x+ 1, I1, L1)

}]
.(2)

Since V0(x) = −e−α(w−I0), the form is proven. Thus, the initial wealth is not relevant
for the optimal strategy in this modelling framework, which is to be expected for the
exponential utility function. As a specific model, assume that

Z̃1 = γU1 + (1− γ)Z1 ,(3)

where Z1, U1 ∼ U [1
2 ,

3
2 ] are independent and γ ∈ (0, 1). As we assume a linear dependence

between Z̃ and Z, its dependence structure is determined by its correlation coefficient
being equal to 1− γ.

3.1 One time step before maturity of the contracts

After stating the relevant modelling assumptions, we use the relation (2) to calculate the
optimal strategy and optimal function f1(x, I, L). That is, the insurer is one time step
before maturity of the insurance contract. We get α0 = α and f0(I) = αI. Noting

0px+1(0) = 1, we obtain

f1(x, I, L)

= inf
θ

log IIE
[
exp{−αθ(1− Z)(0px+1(0)− 1px(0))L+ f0(1− (1− 1px(0))Z̃)I)}

]
= inf

θ
log IIE

[
exp{−αθ(1− Z)(1− 1px(0))L+ α(1− (1− 1px(0))Z̃)I}

]
= α 1px(0)I + inf

θ
log IIE

[
exp{α(1− 1px(0))[θL− (1− γ)I](Z − 1)}

]}
+ log IIE

[
exp{α(1− 1px(0))γI(1− U)}

]
= α 1px(0)I + log

sinh(1
2α(1− 1px(0))γI)

1
2α(1− 1px(0))γI

+ inf
θ

log
sinh(1

2α(1− 1px(0))[θL− (1− γ)I])
1
2α(1− 1px(0))[θL− (1− γ)I]

.
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Now, g(x) = 1
x sinh(x) takes its unique minimum in x = 0 with g(0) = 1. Thus,

θ∗ := (1− γ)
I

L
,(4)

and

f1(x, I, L) = α 1px(0)I + log
sinh(1

2α(1− 1px(0))γI)
1
2α(1− 1px(0))γI

.

Note that f1 does not depend on L. Because part of the mortality in the reference portfolio
changes as the mortality in the own portfolio, the strategy is to hedge this dependent part
of possible survivors with the securitisation product. Therefore, the form of our optimal
portfolio is due to the simple model we use. Note that, if we replace L by ζL, we can get
the same value by choosing θ/ζ. Therefore, a θ proportional to 1/L is to be expected.

Figure 1. Left: The optimal functions f2(I, L) (solid line) and f1(I, L) (dashed). Right: The optimal

strategies θ∗2 (solid line) and θ∗1 (dashed) if there are two and one time step left before maturity of the

products.

3.2 Two time steps before maturity of the contracts

Taking into account that f1 does not depend on L we have that

f2(x, I, L) = inf
θ

log IIE [exp{−αθ(1− Z)(1px+1(0)− 2px(0))L+ f1(x+ 1, I1, 0)}]

= inf
θ

log IIE
[
exp{−αθ(1− Z)(1px+1(0)− 2px(0))L

+α 1px+1(0)I1}
sinh(1

2α(1− 1px+1(0))γI1)
1
2α(1− 1px+1(0))γI1

]
.
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where we have used the relation (2) and I1 = (1 − (1 − 1px(0))Z̃)I, where again Z̃ =
(1− γ)Z + γU and Z, U ∼ U [1

2 ,
3
2 ]. Note that the expectation on the right hand side does

not have an explicit analytical representation. Nevertheless, we would like to illustrate
its behaviour numerically for the parameters γ = 0.5, 1px(0) = 0.99, 1px+1(0) = 0.95,

2px(0) = 1px(0) 1px+1(0) = 0.9405 and α = 0.5.

The first panel in Figure 1 shows the resulting optimal function f2(I, L). As in the
first time step, it is independent of L. For comparison we have added f1(I, L) (dashed
line). Note that we have added the subscripts to the θ if we want to emphasize that θ2 is
a position to hold if two time steps are left, and θ1 is the position to hold if only one time
step is left. The last panel shows θ∗2 as a function of I, note the rather linear shape. Again
for comparison, we have added the optimal strategy θ∗1 (dashed line) if only one unit of
time is left before the insurance product is paid out. The lines seem to be identical.
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Covers and envelopes of modules

Giovanna Giulia Le Gros (∗)

Abstract. Approximation theory of modules is the study of left or right approximations of modules,
also known as covers or envelopes, with respect to certain classes of modules. For a class C of
R-modules, the aim is to characterise the rings over which every module has a C-cover or a C-
envelope and furthermore to characterise the class C itself. For example, if one considers the
class of injective modules, then it is well-known that every module has an injective envelope (or
injective hull). Instead, Bass proved that projective covers rarely exist and characterised the rings
over which every module admits a projective cover, which are known as perfect rings. Moreover,
precovers and preenvelopes are strongly related to the notion of a cotorsion pair, which is a pair
of Ext-orthogonal classes in the category of R-modules.
The aim of this note is to give a basic introduction to the theory of covers and envelopes, and
to describe them with respect to some well-known classes of R-modules, along with a review of
concepts in homological algebra that will be useful in this exposition.

1 Preliminaries

In these notes, the ring R will always denote an associative ring with unit.

Definition 1.1 A right R-module is an abelian group (M,+) with a right action of R on
M , · : M ×R→M , such that the following conditions hold.

(a) (m+ n) · r = m · r + n · r for every m,n ∈M and r ∈ R.

(b) m · 1R = m for every m ∈M .

(c) m · (r + s) = m · r +m · s for every m ∈M and r, s ∈ R.

(d) m · (rs) = (m · r) · s.

For convenience the right action m · r will simply be denoted mr.

Let M,N be right R-modules. A homomorphism of right R-modules is a map f : M → N
such that f preserves the abelian group operation and is right R-linear. That is,

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on March 27th, 2019.
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(a) f(m+ n) = f(m) + f(n),

(b) f(m · r) = f(m) · r for every m ∈M and r ∈ R.

Let Mod-R denote the collection (or more precisely, the category) of all right R-
modules. The left R-modules are defined analogously with the action of R on the left,
however, when R is commutative, the right R-modules and left R-modules coincide. In
these notes we refer always to right R-modules, although everything can be written in
terms of left R-modules.

Example 1.2 Let K be a field. Then Mod-K is exactly the category of vector spaces
over K. This category is particularly well-behaved as every K-module is isomorphic to a
direct sum of copies of K.

Example 1.3 An abelian group G can be considered a Z-module, and every homomorph-
ism of abelian groups a Z-module homomorphism. Therefore, one can think of Mod-Z as
the category of abelian groups, where the action of Z is x · n = x+ · · ·+ x︸ ︷︷ ︸

n times

for x ∈ G and

n ∈ Z.

We will say a diagram (as below) of R-module homomorphisms commutes if the homo-
morphism is the same no matter what path of homomorphisms you choose. That is, the
following diagram commutes exactly when g′ ◦ f = f ′ ◦ g.

A
f //

g

��

B

g′

��
C

f ′ // D

The arrow ↪→ will always denote an injective homomorphism and the arrow � will always
denote a surjective homomorphism.

Definition 1.4 The direct sum of R-modules M and N is a module denoted M ⊕ N
where every element can be written as a unique sum m+ n where m ∈M and n ∈ N .
For an infinite set of modules {Mi}i∈I indexed by I, the direct sum

⊕
i∈I
Mi is the R-module

where every element can be written as a unique finite sum of elements in the Mi.
If a module L can be written as M ⊕ N for submodules M,N ⊆ L, then M and N are
referred to as direct summands of L, or one writes M,N ≤

⊕
L.

For an index set I, the module M (I) will denote the direct sum
⊕
i∈I
Mi where Mi = M for

each i.
Some useful properties of modules are preserved under direct sums and direct sum-

mands, therefore it will be useful to know when a module decomposes as a direct sum of
two of its submodules. In fact, for N,N ′ ≤ M , M = N ⊕N ′ if and only if N + N ′ = M
and N ∩N ′ = 0.
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Similarly, suppose f : N → N is an isomorphism that factors through M . Then the
following diagram commutes (that is if p ◦ i = f), and i(N) is a direct summand of M .

N
i
//

f

$$
M p

// N

In fact, M = i(N)⊕Kerp.
Direct sums of copies of the ring are called the free modules, that is, the R-modules which
have a basis, or a linearly independent generating set. We recall the following fact which
will be useful, as well as some useful classes of modules.

Remark 1.5 For every module M ∈ Mod-R, there exists a surjective map R(α) �M for
some cardinal α.

An R-module D is divisible in Mod-R if for every non-zero divisor r ∈ R, D = Dr.
For example, Q is divisible in Mod-Z as Qn = Q for every n ∈ Z. Also, every K-vector
space is divisible since K itself is divisible in Mod-K.

A right R-module M is torsion if for every element m ∈M there exists a non-zero divisor
r ∈ R such that mr = 0. For any module M , there exists a maximal unique torsion
submodule denoted t(M).
A right R-module M is torsion-free if its unique torsion submodule is 0, or equivalently
if for every element m ∈ M and every non-zero divisor r in R, m · r = 0 implies that
m = 0. In the case of abelian groups, these two notions coincide with the usual notion of
torsion and torsion-free abelian groups. For example, Z and Q are torsion-free but Z/2Z,
Q/Z, Z/3Z⊕Z are not. The modules Q/Z and Z/2Z are torsion, and the maximal torsion
submodule of Z/3Z⊕ Z is Z/3Z.
A submodule of a torsion module is always torsion, and similarly a submodule of a torsion-
free module is always torsion-free. The only module that is both torsion and torsion-free
is 0.

2 Short exact sequences

The next two sections will introduce briefly some constructions in Mod-R. More informa-
tion about the content of the following two sections can be found any standard text on
homological algebra, for example [4].
For an R-homomorphism f , one can define the following useful R-modules.

Definition 2.1 The kernel of a homomorphism f : M → N is the R-module

Kerf = {m ∈M : f(m) = 0} ≤M.

The image of a homomorphism f : M → N is the R-module

Imf = {n ∈ N : n = f(m) for some m ∈M} = f(M) ≤ N.
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The cokernel of a homomorphism f : M → N is the R-module

Cokerf ∼= N/Imf.

A homomorphism is injective if and only if its kernel is 0. Dually, a homomorphism
is surjective if and only if its image is the whole codomain (Imf = N) or equivalently
Cokerf = 0.

The sequence

A
f−→ B

g−→ C

is called exact at B if Kerg = Imf . That is if both g ◦ f = 0 and if g(b) = 0 for b ∈ B,
there is an a ∈ A such that f(a) = b.

Examples 2.2 The following are examples of sequences which are exact at the centre
module. The first two examples are in Mod-Z, while the rest are in Mod-R for some ring
R. We let 2 denote multiplication by 2 and nat the natural homomorphism from a module
to its quotient by a submodule (that is, it sends each element to the equivalence class
containing it).

•
Z 2−→ Z nat−−→ Z/2Z

•
Z/4Z 2−→ Z/4Z 2−→ Z/4Z

• For I a right ideal of R.

I ↪→ R
nat−−→ R/I

• Moreover, if I a right ideal of R as above and R(α) � I is a surjective map for some
cardinal α, the following row is exact where φ is the composition of the surjective
map R(α) � I and the inclusion map I ↪→ R.

R(α) φ //

"" ""

R
nat// R/I

I
/�

??

For any f : A→ B, the following are exact.

•
Kerf → A

f−→ B

It follows from the above sequence that 0→ A
f−→ B exact if and only if f is injective

(that is, Kerf = 0).
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•
A

f−→ B → Cokerf ∼= B/f(A)

It follows from the above sequence that B
g−→ C → 0 is exact if and only if f is

surjective (that is, Img = C).

For reasons now clear from the last two examples, 0 → A → B and B → C → 0 will be
used to denote injective and surjective homomorphisms, respectively.

Definition 2.3 The sequence

0→ A
f−→ B

g−→ C → 0

is called a short exact sequence if f is injective, g is surjective, and Imf = Kerg. That is,
the sequence is exact at each module A,B, and C.

The following lemma characterises a type of short exact sequence which simplifies in
a nice way, called a split short exact sequence.

Lemma 2.4 A short exact sequence 0→ A
f−→ B

g−→ C → 0 splits if any of the following
hold.

(a) There exists f ′ : B → A such that f ′ ◦ f = idA.

(b) There exists g′ : C → B such that g ◦ g′ = idC .

(c) There exists an isomorphism h such that the following diagram commutes.

0 // A
f // B

h∼=
��

g // C // 0

0 // A
iA // A⊕ C pC // C // 0

2.1 Projective and injective modules

Short exact sequences are strongly related to two classes of modules: the projective mod-
ules, and the injective modules, which are defined dually to each other.

A module P is projective if for every map P
h−→ C and surjection B

g−→ C, there exists a
map h′ : P → B such that g ◦ h′ = h.

P
∃h′

~~
h
��

B g
// C // 0

We will denote by P the class of projective modules in Mod-R.
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Example 2.5 In Mod-Z, the projective modules are of the form Z(α) for all cardinals α.
That is, they are exactly the free abelian groups. More generally, the projective modules
in Mod-R are exactly the directs summands of free modules (direct sums of copies of R),
so P is projective if and only if P ≤

⊕
R(α) for some cardinal α.

It follows that arbitrary direct sums of projective modules are projective.

We now define the dual of the projective modules.

A module E is injective if for every map A
k−→ E and injective map A

f−→ B, there exists a
map k′ : B → E such that k′ ◦ f = k.

0 // A
f //

k
��

B

∃k′~~
E

We will denote by I the class of injective modules in Mod-R. We will give some
examples of injective modules. In general, they are less easily characterised than the
projective modules.

Example 2.6 In general, every injective module is divisible. In Mod-Z, the converse also
holds, that is an abelian group is injective if and only if it is divisible. For example, Q
and Q/Z are injective modules, as it is clear that Q = nQ for every n ∈ Z, and moreover
n(Q/M) = Q/M for any submodule M of Q.

The injective modules have the following nice property.

Lemma 2.7 Every R-module can be embedded in an injective R-module.

Example 2.8 We will give an example in the case of abelian groups. Take M ∈ Mod-Z.
We know there exists a short exact sequence of the following form.

0→ S →
⊕

Z→M → 0

Then M ∼= (
⊕

Z)/S ⊆ (
⊕

Q)/S and Q/S is divisible, so is injective in Mod-Z.

The following two lemmas will make precise the relationship between short exact se-
quences and the injective and projective modules.

Lemma 2.9 The module P is projective if and only if every short exact sequence of the

form 0→ A
f−→ B

g−→ P → 0 splits.

Proof of forward direction. Suppose the module P is projective. Then for every surjection
g : B → P , the identity map on P factors through g as follows.

P
∃g′

��
idP
��

0 // A
f // B g

// P // 0
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Therefore the sequence splits by Lemma 2.4.

Lemma 2.10 The module E is injective if and only if every short exact sequence of the

form 0→ E
f−→ B

g−→ C → 0 splits.

Proof of forward direction. Suppose the module E is injective. Then for every injection
f : E → B, the identity map on E factors through f as follows.

0 // E
f //

idE
��

B g
//

∃f ′~~

C // 0

E

Therefore the sequence splits by Lemma 2.4.

3 Extensions

Fix A,C ∈ Mod-R. The short exact sequences of the form 0 → A
f−→ B

g−→ C → 0 are
called extensions of C by A.
Two extensions are said to be equivalent if there exists an isomorphism h such that the
following diagram commutes.

0 // A
f // B

h∼=
��

g // C // 0

0 // A
f ′ // B′

g′ // C // 0

It can be shown that these extensions form an abelian group denoted Ext1
R(C,A). The

identity element of this abelian group corresponds to the split extension, that is the ex-
tension that has the property of Lemma 2.4. It follows that Ext1

R(C,A) = 0 if and only if
every extension of C by A splits.
This construction gives us another equivalent characterisation of projective modules and
injective modules.

Lemma 3.1 A module P is projective if and only if Ext1
R(P,M) = 0 for every M ∈

Mod-R. Dually, a module E is injective if and only if Ext1
R(M,E) = 0 for every M ∈

Mod-R.

4 Envelopes and preenvelopes

The remaining sections follow [3] or [2].

Let C be a class in Mod-R closed under isomorphisms (that is, if C ∈ C and C ∼= D
then also D ∈ C) and M a right R-module.
A C-preenvelope of M is a homomorphism ε : M → C where C ∈ C with the property
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that for every homomorphism g : M → C ′ with C ′ ∈ C, there exists g′ : C → C ′ such that
g′ε = g.

M

g   

ε // C

∃g′
��
C ′

A C-envelope of M is a C-preenvelope with the property that for every g : C → C such
that gε = ε, g is an isomorphism.

M

ε
  

ε // C

g∼=
��
C

The existence of a C-envelope or a C-preenvelope of a module depends often on the
class C and the module M . If M does have a C-envelope, we can describe the relationship
between the C-preenvelopes and C-envelopes of a module M .

Lemma 4.1 Suppose M has a C-envelope ε : M → C and a C-preenvelope of M ε′ :
M → C ′. Then C ′ = D ⊕D′ where D ∼= C and Imε ⊆ D. Additionally, ε : M → D is a
C-envelope of M .
Moreover, it follows that ε′ : M → C ′ is a C-envelope of M if and only if M is not
contained in a proper direct summand of C ′.

Proof. In the following diagram, the existence of g and f follow by the C-preenvelope
properties of ε′ and ε respectively. That g ◦ f is an isomorphism follows from the C-
envelope property of ε.

M
ε // C

f
��

g◦f∼=

{{

M
ε′ // C ′

g

��
M

ε // C

So C ′ = f(C)⊕Kerg. As f is injective, f(C) ∼= C, so we set D = f(C) and D′ = Kerg
as in the statement of the lemma. Also Imε ⊆ D follows by the commutativity of the
top square. Using the C-envelope property of ε again, it follows that ε : M → D is a
C-envelope of M .
If M is not contained in a proper direct summand of C ′, it forces that Kerg = 0, so ε′ is
already a C-envelope. For the converse, if ε′ is a C-envelope and is contained in a proper
direct summand of D, it would contradict the envelope property of ε′.

The above lemma also tells us that two C-envelopes of M are isomorphic. For the next
examples we will fix the class C to be the class of injective modules I.
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Example 4.2 Recall from Lemma 2.7 that every module can be embedded in an injective
module. It follows that an I-preenvelope of M must be an injective homomorphism.

M
ε //� q

##

E

∃h
��

E(M)

There is a characterisation of when an injective preenvelope is an injective envelope
for any module M . First, recall that a submodule N of E is essential in E (or N ≤e E)
if for H ≤ E, H ∩N = 0 implies that H = 0.

Lemma 4.3 An I-preenvelope ε : M → E is an I-envelope if and only if M is essential
in E.

Proof. For the forward direction, suppose that ε : M → E is a I-envelope. Take H ≤ E
such that H ∩ M = 0 and denote the projection map by p : E → E/H. Then the
composition pε : M → E/H is injective. Therefore, there exists h : E/H → E since E is
an injective module as in the following commuting diagram.

0 //M
ε // E

p
����

0 //M
pε // E/H

∃h
��

0 //M
ε // E

By the envelope property of ε, hp is an automorphism so p is an isomorphism and H = 0.
For the converse, suppose that ε : M → E is a I-preenvelope such that M ≤e E. Take
g : E → E such that gε = ε. We will show that g is an isomorphism.
To see that g is injective, note Kerg ∩ ε(M) = 0 since if ε(m) = gε(m) = 0, then m = 0
by the injectivity of ε. So Kerg = 0.
Now we will show that g is surjective. Since we have just shown that g is injective, we
have the following short exact sequence.

0 // E g
// E p

//

g′

{{
E/g(E) //

p′

yy
0

As E is injective, the sequence splits and E = g(E)⊕ p′(E/g(E)). However, ε(M) ⊆ g(E)
(since ε(M) = gε(M) ⊆ g(E)) so ε(M) ∩Kerp = 0 and Kerp = 0 as ε(M) ≤e E.

Injective envelopes were shown to exist as stated in the following proposition.

Proposition 4.4 (Eckmann and Schopf (1953)) Every R-module has an injective enve-
lope.
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Example 4.5 In Mod-Z, the following is an injective envelope.

0→ Z→ Q

It is straightforward to see this as Z is essential in Q. More generally, if R is an integral
domain (that is, contains no zero divisors and is commutative), then the injective envelope
of R is its field of fractions.

There are certain properties of a module that are preserved by its envelope, as we see
in the following example.

Example 4.6 An I-envelope of a torsion-free module M is itself torsion-free. To see this,
take the following I-envelope of M .

0→M → E

If t(E) is the torsion submodule of E, then t(E) ∩M = 0 as it is a submodule of both a
torsion and a torsion-free module, so is 0. Thus t(E) = 0 since M is essential in E.

5 Covers and precovers

As before, let C be a class closed under isomorphisms in Mod-R and M a right R-module.

Definition 5.1 A C-precover of M is a homomorphism φ : C →M where C ∈ C with the
property that for every homomorphism f : C ′ →M where C ′ ∈ C, there exists f ′ : C ′ → C
such that φf ′ = f .

C ′

∃f ′
��

f

  
C

φ
//M

A C-cover of M is a C-precover with the additional property that for every homo-
morphism f : C → C such that φf = φ, f is an isomorphism.

C

f ∼=
��

φ

  
C

φ
//M

As with envelopes and preenvelopes, the existence of a C-cover or a C-precover of a
module depends often on the class C and the module M . Dually to the case of envelopes,
if M does have a C-cover, we can describe the relationship between the C-precovers and
C-covers of a module M .

Lemma 5.2 Suppose M has a C-cover φ : C →M and a C-precover of M φ′ : C ′ →M .
Then C ′ = D ⊕D′ where D ∼= C and D′ ⊆ Kerφ′. Additionally, φ′ �D is a C-cover of M .
Moreover, it follows that φ′ : C ′ → M is a C-cover of M if and only if C ′ contains no
non-zero direct summands contained in Kerφ′.
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Proof. Dual to Lemma 4.1.

Certain properties of the class C allow us to describe the C-precovers and C-covers.
For example, if R ∈ C and φ : C → M is a C-precover, then φ must be surjective. This
is because every element in the module M is in the image of a homomorphism from R.
Therefore, one applies the precover property to get the following commutating diagram
where m ∈M and fm : 1R 7→ m.

R

∃g
��

fm

  
C

φ
//M

Therefore, every element of M must be in the image of φ, so φ is surjective.

In the next examples, we will fix C to be the class of projective modules, P.
First we note that M ∈ Mod-R, and P projective, φ : P →M is a P-precover if and only
if φ is surjective. This follows by the lifting property of the projective modules, and we
conclude that every module has a P-precover.

P ′

∃f ′
��

f

  
P

φ
//M // 0

Furthermore, analogously to the case of injective envelopes and essential submodules, we
can describe P-covers more explicitly. Recall that a module K is superfluous in P (or
K � P ) if for H ≤ P , H +K = P implies that H = P

Lemma 5.3 A P-precover φ : P →M is a P-cover if and only if Kerφ is superfluous in
P .

Proof. Dual to Lemma 4.3.

Unlike in the case of injective envelopes, projective covers do not necessarily exist for
every module, though projective precovers do.

Example 5.4 In Mod-Z, an abelian group M has a P-cover if and only if M is projective.
For example, consider the following P-precover of Z/2Z.

0→ Kerφ→ Z φ−→ Z/2Z→ 0

Then φ is a P-cover if and only if Kerφ is superfluous in Z. But the only superfluous
submodule of Z is 0 (for any ideal aZ 6= 0 of Z, there exists a proper ideal bZ such that
aZ + bZ = Z). So φ is not a P-cover.

For the next examples we will look at projective covers of cyclic modules. In particular,
one sees that the existence of a projective cover is related to ring theoretic properties of
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the ring. To this end, recall that the Jacobson radical of a ring R is the intersection of
maximal right ideals of R, J(R) :=

⋂
m≤R max

m. The ideal J(R) is superfluous in R. If not,

there would exist a proper ideal H of R such that if J(R) +H = R. As H is proper, there
is m ⊇ H, so m = J(R) + m = R, a contradiction.
Moreover, a right ideal I is superfluous in R if and only if I ≤ J(R). It follows that J(R)
is equal to the sum of the superfluous ideals of R, J(R) =

∑
K�R

K.

We now can describe projective covers of cyclic modules.

Example 5.5 For I a right ideal of R, the following is a P-cover if and only if I ⊆ J(R).

0→ I → R→ R/I → 0

Therefore, Example 5.4 follows from the fact that the Jacobson radical of Z is 0.

Example 5.6 For any right ideal I, if R/I has a P-cover then either I ⊆ J(R) or I
contains a non-zero direct summand of R (that is, there is a decomposition L1 ⊕ L2 = R
such that L1 ⊆ I).
To see this, let 0 → K → PR/I → R/I → 0 be the P-cover of R/I extracted from

R
nat→ R/I as in the following diagram from Lemma 5.2.

0 // K ⊕ L // PR/I ⊕ L // R/I // 0

0 // I // R
nat // R/I // 0

So L is a non-zero direct summand of R such that L ≤ I.

5.1 Flat modules

For more information about flat modules and direct limits (which are not defined here),
refer to any standard text on algebra, for example [2].

Definition 5.7 A flat right R-module is a module F such that for every injective map
f : A→ B of left R-modules, the map induced by the tensor product F ⊗R f : F ⊗R A→
F ⊗R B is also injective.

For abelian groups, the flat modules F are exactly the torsion-free groups. Over a
general ring R all flat modules are torsion-free, but the converse doesn’t necessarily hold.
For every ring R, all projective modules (and therefore all free modules) are flat in Mod-R
for any ring R. Moreover, the flat modules have the property that a direct limit of flat
modules is still flat, as well as the following property.

Remark 5.8 (Govorov-Lazard Theorem) Every flat module can be written as a direct
limit of finitely generated free modules.

Therefore, P ⊆ lim−→P = F always holds.
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In 1981, Enochs conjectured that every R-module has a flat cover. This was proven
to be true in 2001 as stated in the following theorem.

Theorem 5.9 (Bican, El Bashir, Enochs (2001)) Every R-module has a flat cover.

In some sense, this can be seen as the dual to the existence of injective envelopes, even
though the projective modules are constructed dually to the injective modules. It is then
natural to ask over what rings does every module have a projective cover. These rings
were characterised by Bass in the following classical theorem, both in terms of homological
properties of Mod-R and ring theoretic properties of R.

Theorem 5.10 (Theorem P, Bass (1960) [1]) For a ring R, the following conditions are
equivalent.

(a) R is right perfect (that is, every right R-module has a projective cover).

(b) Every flat right R-module is projective.

(c) The projective right R-modules are closed under direct limits (lim−→P = P).

(d) Every decreasing chain of left principal ideals terminates. That is, for the sequence
of principal ideals

Ra1 ⊇ Ra2 ⊇ · · · ⊇ Rai ⊇ · · ·
where ai ∈ R, there exists an n ∈ N such that Ran = Ram for all m ≥ n.

Examples of right perfect rings include left artinian rings. Also, a commutative domain
is perfect if and only if it is a field.

6 Cotorsion pairs

Let C be a class of right R-modules closed under isomorphisms. The right Ext1
R-orthogonal

class is the class

C⊥ = {M ∈ Mod-R : Ext1
R(C,M) = 0 for all C ∈ C}.

The left Ext1
R-orthogonal class is the class

⊥C = {M ∈ Mod-R : Ext1
R(M,C) = 0 for all C ∈ C}.

Definition 6.1 A cotorsion pair is a pair of classes (A,B) which are Ext-orthogonal to
each other. More precisely, A = ⊥B and B = A⊥.

This means that for every A ∈ A and B ∈ B, the following short exact sequence splits.

0→ B →M → A→ 0
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Note that for every cotorsion pair (A,B), P ⊆ A and I ⊆ B.

Examples 6.2 The following are all cotorsion pairs. From the lemmas concerning the
properties of projective and injective modules, it is clear that the first two pairs are
cotorsion pairs.

• (Mod-R, I) where I is the class of injective modules.

• (P,Mod-R) where P is the class of projective modules.

• For a class C,
(⊥(C⊥), C⊥

)
is a cotorsion pair and is said to be generated by C. Dually,(⊥C, (⊥C)⊥) is a cotorsion pair and is said to be cogenerated by C.

• (F , C) where F denotes the class of flat modules and C := F⊥.

The notion of Ext-orthogonal classes allow us to define a particular type of preenvelope
and precover.

A special C-preenvelope of M is a C-preenvelope ε such that ε is injective and Cokerε ∈
⊥C.

0→M
ε−→ C → C/M → 0

A special C-precover of M is a C-precover φ such that φ is surjective and Kerφ ∈ C⊥.

0→ Kerφ→ C
φ−→M → 0

A complete cotorsion pair in Mod-R is a cotorsion pair (A,B) such that every module in
Mod-R has a special A-precover or equivalently every module has a special B-preenvelope.
It follows that every P-precover and I-preenvelope is special.
Any short exact sequence of the form 0 → M → B → A → 0 is a special B-preenvelope
and dually 0→ B → A→M → 0 is a special A-precover.

Examples 6.3 The following are examples of complete cotorsion pairs.

• (P,Mod-R) and (Mod-R, I).

• (F , C) where F is the class of flat modules.

•
(⊥(S⊥),S⊥

)
where S is a set in Mod-R.

• More generally, for n ≥ 0, (Pn,P⊥n ) where Pn = {M ∈ Mod-R : p.dimM ≤ n}. So
M ∈ Pn if there exists an exact sequence of the following form with Pi ∈ P.

0→ Pn → Pn−1 → · · · → P1 → P0 →M → 0

• (⊥In, In) where In = {M ∈ Mod-R : i. dimM ≤ n} where i. dim is defined analo-
gously to p. dim above.

• (Fn,F⊥n ) where Fn = {M ∈ Mod-R : fl.dimM ≤ n} where fl.dim is defined analo-
gously to p. dim above.
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Thinking of the projective modules as the left-hand class of a complete cotorsion pair,
the following theorem generalises the implication (3) =⇒ (1) of Theorem 5.10 of Bass.
Instead of stating the result in its full generality, we will state it using cotorsion pairs.

Theorem 6.4 ([Enochs and Xu, [5]]) Let (A,B) be a complete cotorsion pair such that A
is closed under direct limits. Then every module admits an A-cover.

For example, suppose P = F . Then we already have that (P,Mod-R) is a complete
cotorsion pair and furthermore by assumption P = F is closed under direct limits, so by
the above theorem every module has a P-cover.
Additionally, once we know that the flat cotorsion pair (F , C) is in fact a cotorsion pair
and is complete, then we know that every module admits a F-cover. This was one of the
methods used to show that every module has a flat cover.
Instead, the converse is still an open problem.

Conjecture 6.5 (“Enochs Conjecture”) Let (A,B) be a complete cotorsion pair. If A is
covering then A is closed under direct limits.

By Bass’s Theorem 5.10, Enoch’s conjecture holds for the projective modules P. That
is, if P is covering then P is closed under direct limits.
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Abstract. In this work, we aim at answering the following question: How much is an investor
willing to pay in order to learn some additional information that allows to achieve arbitrage?
Whenever such a value exists, we call it the value of informational arbitrage. We provide a general
answer to the above question by relying on an indifference valuation approach. To this effect, we
establish some new results on models with additional information and study optimal investment-
consumption problems in the presence of initial information and arbitrage. We characterize when
the value of informational arbitrage is universal, in the sense that it does not depend on the
preference structure. This short expository paper is based on [CCF18], to which we refer for full
details and proofs.

1 Introduction

The notion of information plays a particularly important role in the analysis of investment
decisions. In line with economic intuition, access to more precise sources of information
gives an informational advantage when trading in financial markets. The problem of
quantifying such an informational advantage (which we generically call additional infor-
mation) represents a central question in finance, dating back to the early contributions
[LV68, Mor74, Wil89]. In mathematical finance, this problem has been first addressed
in the seminal works [PK96, EGK97] and then substantially studied in general settings
(see, e.g., [AIS98, ABS03, ADI06, Hil05]). The starting point of the present work is rep-
resented by [ABS03]. In that paper, the authors adopt an indifference valuation approach
and derive a monetary value for additional information in a general semimartingale model.

The availability of additional information increases the profitability of investment
strategies and, in extreme cases, can lead to the appearance of arbitrage opportuni-
ties(1). This happens for instance in cases of insider trading, where arbitrage profits can
be achieved by exploiting some private information on the assets traded in the market.
Such extreme cases are not allowed by the setting considered in [ABS03]. In this work,

(1)Let us recall that an arbitrage opportunity is an admissible trading strategy requiring zero net invest-
ment that generates a non-negative non-zero payoff at some future date.
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we explicitly allow for the possibility that the additional information yields arbitrage op-
portunities. We shall introduce and study the value of informational arbitrage, namely
a monetary value for some additional information that can be exploited to generate ar-
bitrage. This leads to new results on (no-)arbitrage in initially enlarged filtrations and
allows to consider several interesting situations motivated by insider trading phenomena.

2 A Motivating Example

In order to illustrate some of the main concepts and tools, we present a simple example
for the value of informational arbitrage. Let W = (Wt)t∈[0,1] be a Brownian motion on a
filtered probability space (Ω,A,F,P), where F = (Ft)t∈[0,1] is the P-augmentation of the
natural filtration of W and T = 1 represents a fixed investment horizon. We consider an
elementary financial market where a single risky asset with discounted price S = (St)t∈[0,1]

is traded, with

(2.1) St = exp(Wt − t/2), for all t ∈ [0, 1].

The tuple (Ω,F,P;S) represents an arbitrage-free and complete financial market. Indeed,
S is a P-martingale and, hence, absence of arbitrage holds in the strong form of NFLVR (see
[DS94, Fon15]). Furthermore, W has the martingale representation property on (Ω,F,P)
and, therefore, every contingent claim can be attained by self-financing trading in the
market (market completeness).

In this context, the ordinary (publicly available) information is represented by the
filtration F, corresponding to the information generated by the price process S itself. We
assume that the additional information is generated by the observation at time t = 0 of the
realization of the random variable L = 1{W1≥0}. Due to (2.1), this additional information
is equivalent to the knowledge at t = 0 of whether the final price of the risky asset will be
above or below the threshold 1/

√
e. A similar information has been considered in [PK96,

Example 4.6] and [AI05, Example 2.12].
To the random variable L, we associate the initially enlarged filtration G = (Gt)t∈[0,1],

defined as

(2.2) Gt = Ft ∨ σ(L), for all t ∈ [0, 1].

It is easy to check that the financial market (Ω,G,P;S) allows for arbitrage opportunities,
which can also be realized by means of suitably chosen buy-and-hold strategies. Intuitively,
the initial information revealed by L contains an anticipation on the final value of the stock
price and, therefore, a trader having access to the information flow G can exploit this
informational advantage when trading in the market. In this situation, we say that the
random variable L leads to informational arbitrage. For H ∈ {F,G} and v > 0, we denote
by AH(v) the set of all H-predictable processes θ = (θt)t∈[0,1] such that θ is S-integrable

on (Ω,H,P) and the value process V v,θ := v+
´ ·

0 θu dSu is non-negative. This corresponds
to self-financing trading starting from initial wealth v, under a solvability constraint.

Let us consider an agent with initial wealth v > 0 and preferences described by a
strictly increasing and concave utility function U : (0,+∞) → R. Suppose that at t = 0,
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before the beginning of trading, the agent has the possibility of learning the content of
the additional information L by paying a price π > 0. The agent has to choose between
the following two options:

(i) Construct a self-financing portfolio with initial wealth v on the basis of the ordinary
information F, solving the problem

(2.3) sup
θ∈AF(v)

E
[
U
(
V v,θ

1

)]
=: uF(v).

(ii) Pay the price π in order to learn the information L and then construct a self-financing
portfolio with the residual capital v−π by relying on the information G, solving the
problem

(2.4) sup
θ∈AG(v−π)

E
[
U
(
V v−π,θ

1

)]
=: uG(v − π).

Note that, since S is a martingale on (Ω,F,P), problem (2.3) is solved by the trivial
strategy θ∗,F ≡ 0, so that uF(v) = U(v). We denote by θ∗,G the optimal strategy for
problem (2.4).

In the spirit of [ABS03], we want to determine the maximal price π(v) that an agent
is ready to pay for learning the additional information L, determined as the solution
π = π(v) ∈ R+ to the equation

(2.5) uG(v − π) = uF(v).

We call the quantity π(v) the value of informational arbitrage. Since the knowledge of L
allows to exploit arbitrage opportunities, we have that uG(v) > uF(v), for every v > 0.
This implies that an investor will always be willing to pay some strictly positive price to
learn the realization of L before starting to trade. In the context of the present example,
we can state the following result.

Theorem 2.1 Let U : (0,+∞)→ R be any strictly increasing and concave utility function.
Then, for every v > 0, it holds that

π(v) = v/2.

Moreover, the optimal strategy for every informed agent with initial wealth v is explicitly
given by

θ∗,Gt =
(
1{W1≥0} − 1{W1<0}

) 1√
2π(1− t)

exp

(
− W 2

t

2(1− t)

)
v

St
, for t ∈ [0, 1].

The most striking aspect of the above result is that there is no dependency on the utility
function U . In this sense, the value v/2 represents a universal value of informational
arbitrage. Similarly, the strategy θ∗,G is optimal for every utility function U and has
several interesting features:
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(i) it represents an arbitrage opportunity for the informed agent, since V 0,θ∗,G

t ≥ −v/2
for all t ∈ [0, 1] and V 0,θ∗,G

1 = v/2 > 0 a.s. Moreover, it corresponds to the strategy
realizing the optimal arbitrage in (Ω,G,P;S), in the sense of [CT15];

(ii) it generates the numéraire portfolio (see [KK07]) for the financial market (Ω,G,P;S);

(iii) the strategy is always long or short in the risky asset depending on the content of
the additional information L revealed before the beginning of trading;

(iv) the strategy is a bet on the risky asset: the position on the risky asset increases if
the asset price decreases and, vice versa, decreases if the asset price increases;

(v) it holds that limt→1 θ
∗,G
t = 0, meaning that the position in the risky asset is fully

liquidated at the end of the investment horizon.

Proof. Referring to [CCF18] for a complete proof of Theorem 2.1, let us briefly discuss
the intuition behind Theorem 2.1. As mentioned above, it holds that uF(v) = U(v). On
the other hand, suppose that at t = 0 one pays the price π(v) = v/2 in order to learn the
realization of L = 1{W1≥0} and starts trading according to the strategy θ∗,G. By applying
Itô’s formula, it can be verified that the associated wealth process is given by

V
v/2,θ∗,G

t :=
v

2
+

ˆ t

0
θ∗,Gu dSu = v

(
Φ

( −Wt√
1− t

)
1{W1<0} + Φ

(
Wt√
1− t

)
1{W1≥0}

)
,

for all t ∈ [0, 1], where Φ denotes the distribution function of a standard Normal random
variable. In particular, it holds that

V
v/2,θ∗,G

0 = v/2 and V
v/2,θ∗,G

1 = v a.s.

This shows that, in the presence of the additional information L, an initial capital of v/2
is sufficient to reach a final wealth equal to v with probability one. This is possible since
L generates informational arbitrage. In turn, this implies that

uG(v/2) ≥ E
[
U

(
v

2
+

ˆ 1

0
θ∗,Gu dSu

)]
= U(v).

Conversely, for every strategy θ ∈ AG(v/2), Jensen’s inequality implies that

E
[
U

(
v

2
+

ˆ 1

0
θu dSu

)]
≤ U

(
E
[
v

2
+

ˆ 1

0
θu dSu

])
= U

(
2E
[(

v

2
+

ˆ 1

0
θu dSu

)∣∣∣W1 ≥ 0

]
+ 2E

[(
v

2
+

ˆ 1

0
θu dSu

)∣∣∣W1 < 0

])
≤ U(v).

Taking the supremum over all θ ∈ AG(v/2), we obtain the inequality uG(v/2) ≤ U(v).
This proves the claim that uG(v/2) = uF(v), so that π(v) = v/2.
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3 The General Semimartingale Framework

Motivated by the example considered in Section 2, we now discuss the value of informa-
tional arbitrage in a general semimartingale setting, with respect to a general additional
information.

3.1 Setting

We consider a filtered probability space (Ω,A,F = (Ft)t∈[0,T ],P) supporting a d-dimensional
non-negative semimartingale S = (St)t∈[0,T ], representing the discounted prices of d risky
assets, with investment horizon T < +∞. As in Section 2, the filtration F represents
the ordinary information flow. We suppose that there exists a unique Equivalent Local
Martingale Measure (ELMM) Q for S on (Ω,FT ), under which S is a Q-local martingale.
The existence of an ELMM implies that the financial market (Ω,F,P;S) is arbitrage-free
(in the sense of NFLVR), while the uniqueness of Q implies that every Q-local martingale
can be represented as a stochastic integral of S. The latter property corresponds to the
completeness of the financial market (Ω,F,P;S).

3.2 The additional information filtration

The additional information is represented by an A-measurable random variable L, taking
values in a Lusin space E and with unconditional law λ. The corresponding enlarged
filtration G = (Gt)t∈[0,T ] is defined as in (2.2), i.e., the smallest filtration containing F and
such that L is G0-measurable. For each t ∈ [0, T ], we denote by νt a regular version of the
Ft-conditional law of L. We shall work under the following standing assumption, which
corresponds to the well-known density hypothesis introduced in the seminal work [Jac85].

Assumption 3.1 For all t ∈ [0, T ], it holds that νt � λ in the a.s. sense.

Assumption 3.1 implies the existence of a regular family of densities q : Ω × [0, T ] ×
E → R+ such that νt(dx) = qxt λ(dx) a.s. for all t ∈ [0, T ]. In the present context,
Assumption 3.1 has several fundamental consequences. First and foremost, as shown in
[Jac85], Assumption 3.1 implies the validity of the so-called H ′-hypothesis (i.e., every F-
semimartingale is also a G-semimartingale). In a frictionless financial market, the failure
of the semimartingale property is incompatible with the solution of portfolio optimization
problems. In addition, Assumption 3.1 allows to prove a new martingale representation
result in the initially enlarged filtration G.

Proposition 3.2 Let M = (Mt)t∈[0,T ] be a local martingale on (Ω,G,P). Then there
exists a G-predictable S-integrable process K = (Kt)t∈[0,T ] such that

Mt =
Zt

qLt

(
M0 +

ˆ t

0
Ku dSu

)
a.s. for all t ∈ [0, T ],

where Z = (Zt)t∈[0,T ] denotes the density process of Q on (Ω,F,P).

In the proof of Proposition 3.2, the results of [Fon18] play a central role. In the present
setting, the relevance of this proposition consists in the fact that it allows to transfer the
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martingale representation property from the original space (Ω,F,Q) onto the enlarged
space (Ω,G,P).

The following result, which relies on [AFK16], will play a fundamental role in the anal-
ysis of the (no-)arbitrage properties of the financial market in the presence of additional
information.

Theorem 3.3

(i) NUPBR holds in G if and only if the set {qx = 0 < qx−} is evanescent for λ-a.e.
x ∈ E.

(ii) NFLVR holds in G if and only if qxT > 0 a.s. for λ-a.e. x ∈ E.

Moreover, if the condition appearing in part (i) holds, then the financial market (Ω,G,P;S)
admits a unique equivalent local martingale deflator (ELMD), given by the process Z/qL.(2)

Remark 3.4 The necessary and sufficient conditions appearing in Theorem 3.3 closely
resemble analogous conditions for the absence of arbitrage under absolutely continuous
changes of probabilities, as considered in [Fon14]. This is due to the deep relation existing
between enlargement of filtrations and absolutely continuous changes of probabilities, see
[Jac85, Son13, Yoe85].

3.3 Admissible portfolios and preferences

We fix a stochastic clock κ = (κt)t∈[0,T ], which is a non-decreasing F-adapted bounded
process with κ0 = 0 and such that P(κT > 0|σ(L)) > 0 a.s. The stochastic clock κ
represents the notion of time according to which consumption is assumed to occur. A
portfolio is defined as a triplet Π = (v, θ, c), where v > 0 represents the initial capital,
θ = (θt)t∈[0,T ] is an S-integrable process representing the holdings in the d risky assets and
c = (ct)t∈[0,T ] is a non-negative process representing the consumption rate (with respect
to the clock κ). For an ordinary agent, the strategy θ and the consumption process c are
required to be measurable with respect to the F-predictable and F-optional sigma-fields,
respectively. On the other hand, an informed agent is allowed to construct portfolios by
choosing G-predictable strategies θ and G-optional consumption processes c. The value
process V v,θ,c = (V v,θ,c

t )t∈[0,T ] of a portfolio Π = (v, θ, c) is defined as

V v,θ,c
t := v +

ˆ t

0
θu dSu −

ˆ t

0
cu dκu, for all t ∈ [0, T ].

Given initial wealth v > 0, a couple (θ, c) is said to be admissible if V v,θ,c
t ≥ 0 a.s. for all

t ∈ [0, T ], denoted by (θ, c) ∈ AH(v), for H ∈ {F,G}.
We assume that preferences are defined with respect to intermediate consumption

and/or terminal wealth. To this effect, we introduce a stochastic utility field U : Ω ×
(2)We recall that, in the financial market (Ω,G,P;S), an equivalent local martingale deflator is a strictly

positive G-local martingale ZG = (ZG
t )t∈[0,T ] with ZG

0 = 1 such that ZS is a G-local martingale. The
existence of an ELMD is a weaker property than the existence of an ELMM (see, e.g., [Fon15]) and is
equivalent to the validity of NUPBR (see [KK07]).
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[0, T ] × R+ → R ∪ {−∞}, satisfying suitable technical requirements (see [CCF18] for
full details). For H ∈ {F,G}, the optimal investment-consumption problem of an agent
having access to the information flow H and starting with initial wealth v > 0 is given by

(3.1) uH(v) := sup
(θ,c)∈AH(v)

E
[ˆ T

0
U(ω, u, cu(ω)) dκu(ω)

]
.

In order to ensure that the investment-consumption problem (3.1) is well-posed in G,
we shall work under the standing assumption that the condition appearing in part (i) of
Theorem 3.3 holds. Problem (3.1) can then be solved by means of martingale methods,
taking into account the possible presence of arbitrage and non-trivial initial information.
In the general incomplete market case, problem (3.1) can be solved by means of convex
duality techniques, by relying on [CCFM17]. For logarithmic and power utility functions,
problem (3.1) can be shown to admit explicit solutions, fully characterized in terms of the
processes κ, Z and qx|x=L, thereby generalizing [ABS03, Corollary 4.7].

3.4 The value of informational arbitrage

As in Section 2, our main goal consists in studying the value of informational arbitrage,
defined as the solution π = π(v) ∈ R+ to the equation

uF(v) = uG(v − π).

In this section, we present a short outline of the main results on the value of informational
arbitrage obtained in [CCF18]. First, as long as the optimal investment-consumption
problem (3.1) is well-posed in G, the utility indifference price π(v) always exists, is finite
and unique, for every v > 0. Moreover, for every utility stochastic field, π(v) is always
strictly positive if the additional information L generates arbitrage opportunities in G.
Under suitable conditions, we also derive universal lower and upper bounds for π(v).

In the case of logarithmic and power utility functions, the value π(v) can be explicitly
computed. For instance, if κ is deterministic and U(ω, t, y) = log(y), for all (ω, t) ∈
Ω× [0, T ], it holds that

πlog(v) = v

(
1− exp

(
−
´ T

0 E[log(qLu )] dκu

κT

))
.

Several interesting properties of the value of informational arbitrage can be deduced,
for instance:

(a) the value of informational arbitrage is increasing with respect to the investor’s initial
wealth;

(b) in the presence of intermediate consumption, the value of informational arbitrage is
lower than in the case of utility from terminal wealth only (compare with [LPS10]);

(c) πlog(v) is related to the Shannon information between L and FT , which reduces
to the entropy of L whenever L is a discrete FT -measurable random variable (see
[ADI06]).
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Finally, coming back to the example considered in Section 2, the most striking feature
of the example is represented by the fact that the value of informational arbitrage is
universal, in the sense that it does not depend on the utility function. This situation is
fully characterized by the following result.

Theorem 3.5 Suppose that κ = δT and Q = P. Then the following are equivalent:

(i) the random variable qLT is a.s. equal to a constant;

(ii) for every v > 0, there exists a value π(v) such that, for every increasing concave
utility function U , it holds that uF(v) = uG(v − π(v)).

In this case, for every utility function U , the indifference value π(v) is given by the uni-
versal value

π(v) = v

(
1− 1

qLT

)
.

Furthermore, under the conditions of Theorem 3.5, it can be shown that the optimal
wealth process for an informed agent with initial wealth v who acquires the additional
information at the indifference price π(v) = v(1 − 1/qLT ) is given by vqLt /q

L
T a.s., for all

t ∈ [0, T ]. The proof is based on a stochastic dominance argument. It is interesting to
remark that the result of Theorem 3.5 is non-trivial only if the random variable L generates
arbitrage opportunities in G.

In [CCF18] we illustrate the above results by means of several explicit examples, in
the context of continuous as well as discontinuous price processes and multi-dimensional
financial markets. In particular, we discuss a general class of models where the conditions
of Theorem 3.5 are satisfied.
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An introduction to

Riemann-Hilbert correspondence

Davide Barco (∗)

Abstract. The 21st Hilbert problem concerns the existence of a certain class of linear differen-
tial equations on the complex affine line with specified singular points and monodromic groups.
Arising both as an answer and an extension to this issue, Riemann-Hilbert correspondence aims
to establish a relation between systems of linear differential equations defined on a complex mani-
fold and suitable algebraic objects encoding topological properties of the same systems. The goal
was first achieved for systems with regular singularities, thanks to the works by Deligne, Kashi-
wara and Mebkhout. Moreover, Deligne and Malgrange established a generalized correspondence
(called Riemann-Hilbert-Birkhoff correspondence) for systems with irregular singularities on com-
plex curves, encoding and describing the Stokes phenomenon which arises in this case. In more
recent years, the correspondence has been extended to take account of irregular points on complex
manifolds of any dimension by D’Agnolo and Kashiwara.
In this short note we give a basic introduction on the subject by providing concepts and classical
example from the theory.

The original 21st Hilbert problem was stated in the following way:

“In the theory of linear differential equations with one independent variable z, I wish to
indicate an important problem, one which very likely Riemann himself may have had in
mind. This problem is as follows: To show that there always exists a linear differential
equation of the Fuchsian class, with given singular points and monodromic group.”

Arising both as an answer and an extension to this issue, Riemann-Hilbert correspondence
aims to establish a relation between systems of linear differential equations defined on a
complex manifold X and suitable algebraic objects encoding topological properties of the
same systems.

We are then concerned with analytic linear differential equations, that is, equations of the
form

(1) an(z)∂nz f + an−1∂
n−1
z f + ...+ a0(z)f = 0

where ai(z) ∈ OU ∀i = 0, ..., n, z ∈ U , U open connected subset of C and ∂z the derivation

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on May 8th, 2019.
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associated with z, i.e. ∂z = d
dz .

It is usual to classify the points in U with respect to a differential equation in the following
way.

Definition Let z0 ∈ U and consider the differential equation (1). Then

• z0 is said to be an ordinary point if an(z0) 6= 0

• z0 is said to be a regular singular point if an(z0) = 0 and

ord
z=z0

an − n ≤ ord
z=z0

aj − j ∀j = 0, ..., n− 1

• z0 is a irregular singular point otherwise.

Notice that, thanks to Cauchy theorem, we are always able to solve the differential
equation on any simply connected open subset of U not containing singular points.

The above differential equation setting can be expressed in a more algebraic way by
introducing the ring of differential operators and its module theory.

Definition The ring of holomorphic differential operators DU is the subalgebra of
EndC(OU ) generated by OU and ∂z. More explicitly

DU =
⊕
k∈N
OU∂kz

and its elements are of the form

P = an(z)∂nz + an−1(z)∂n−1
z + ...+ a0(z)

where ai(z) ∈ OU , ∀i = 0, ..., n

Let us see the relation between these two different descriptions.

Let P ∈ DU , we associate to this operator the left DU -module MP := DU
DUP , quotient

of DU by the ideal generated by P .

In this setting, if we consider the set SolU (MP ) := HomDU (MP ,OU ), we get an
isomorphism

HomDU (MP ,OU ) ' {ψ ∈ HomDU (DU ,OU ) | ψ(P ) = 0}
We see then, by HomDU (DU ,OU ) ' OU (ψ → ψ(1)) that

HomDU (MP ,OU ) ' {f ∈ OU | Pf = 0}
In this way, we have shown how MP encodes all information about the differential

equation associated to P .

Let us describe some examples.
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• Consider P = ∂zz∂z = z∂2
z + ∂z : this equation has a regular singular point in 0.

Notice moreover that, in each open ball not containing 0, a local basis for the so-
lutions of the differential equation Pf = 0 is given by {1, log(z)}, where log(z) =
log(|z|) + i · arg(z) is the principal value of the complex logarithm.

The complete description of SolU (MP ) for U = B(z0, r) is then

(2) SolU (
DU

DU (z∂2
z + ∂z)

) =

{
C · 1 + C · log(z) if z0 6= 0 and 0 /∈ U
C if z0 = 0

Let γ be the unit circle in C, 1 ∈ γ and f(z) = α ·1 +β · log(z) a solution of z∂2
z +∂z

in a small ball centered in z0. If we perform analytic continuation of f along γ, we
obtain a function f̃(z) in a neighbourhood of z0 defined as follows:

f̃(z) = α · 1 + β(log(z) + 2πi) = (α+ 2πiβ) · 1 + β · log(z)

This corresponds exactly to a change of basis from {1, log(z)} to {1, log(z) + 2πi},
which can be described by

(3)

[
1 2πi
0 1

]
We will call this matrix the monodromy matrix associated to z∂2

z + ∂z

• Consider as another example P = z∂z − λ: 0 is still regular singular.

In this case, a local basis for the solution of Pf = 0 is given by {zλ}, where zλ =
eλ log(z).

Notice that, if λ ∈ N, then the solutions are monomials of degree λ: they are therefore
defined in the whole complex line and 0 is then a ‘false’ singular point.

If λ ∈ C \ N, the analytic continuation of f(z) = αzλ along γ is then f̃(z) =
αeλ(log(z)+2πi) = αe2πiλzλ and the corresponding monodromy matrix is (e2πiλ).

Again, notice that if λ ∈ Z<0, solutions are of the kind α
zλ

: there is no monodromy
involved and solution can be defined in a whole punctured neighbourhood of 0.

More in general, suppose P ∈ DU with {z1, ...zm} as regular singular points, z0 ordinary
point for P .

Recall that π1(U \ {z1, ..., zm}, z0) ' Zm, where a basis is provided by the classes [γ1]
of the loops γi based in z0 and encircling only the singular point zi, i = 1, ...,m.

The monodromy representation

MonP : π1(U \ {z1, ..., zm}, z0)→ GLn(C)
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is then a morphism of groups associating to each [γi] the monodromy matrix coming from
the comparison between a local basis for the solutions at z0 and its analytic continuation
along a representative of [γi].

From the examples above, it is clear that we can associate to each differential equa-
tion its monodromic representation: what Hilbert aimed at was then solving the inverse
problem in dimension 1.

It is possible to pose such a question also in higher dimensions.

The main ingredient for the topological part is the equivalent in higher dimensions of
the datum of Sol(MP ) together with a monodromic representation: such objects are called
C-constructible sheaves and their bounded derived category is denoted by Db

C−c(CX).

On the differential equation side, we can also extend the definition of the ring of
holomorphic differential operators to a general analytic manifold X.

Then, analytic differential operators are replaced by holonomic D-modules, while
analytic differential operators with only regular singularities are replaced by regular holo-
nomic D-modules.

Their bounded derived categories are respectively denoted by Db
h(DX) and Db

rh(DX).

We are then able to state the Hilbert problem using these categories.

The following fundamental result, known as Riemann-Hilbert correspondence for reg-
ular holonomic D-modules, constitutes then the positive answer to this classical question.

Proposition (Kashiwara [3]) Let X be an analytic manifold. Then the functor

SolX := RHomDX (·,OX) : Db
rh(DX)→ Db

C−c(CX)

is an equivalence of categories. Moreover, by restricting to the hearts of suitable t-structures
on both sides, this provides an equivalence of categories between the full subcategories
Modrh(DX) and Perv(X) (perverse sheaves).

When trying to extend the above result to include differential equations with irregular
singular points, several issues arise.

Consider for example P = z2∂z + 1 in C: 0 is the only singular point, it is irregular
singular and a local basis for the solutions is given by e

1
z .

First, notice that all the solutions have an essential singularity at 0: this is a general
feature which distinguishes regular and irregular singularities.

As such, solution displays different growth behaviour in the two cases.

• In the case of regular singularities, solutions are of moderate growth in all sectors S
departing from 0:

∃N ∈ N, C > 0 s.t. |f(z)| < C|z|−N ∀z ∈ S

• In the case of irregular singularities, solutions are instead exponentially decreasing
in certain sectors and exponentially increasing in others.
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The second noticeable thing is that the local system arising as solution of the D-module
MP is the same as the local system Sol(Mz∂z+1).

In other words, Sol is not able to distinguish between the two differential equations and
the equivalence as written above can not be extended to take care of irregular singularities.

However, there is another feature displayed by such differential operators, the so-called
Stokes phenomenon.

In order to give an idea of what the Stokes phenomenon is, we need a better under-
standing of the structure of the solutions of a differential equation.

In particular, we need to have information about formal solutions, i.e. solutions ob-
tained by requiring that a series solves the equation without necessarily converging.

There is a classical result concerning the formal structure of solutions for a differential
operator in dimension 1 having an irregular singular point.

Theorem (Hukuhara-Levelt-Turrittin; see [5]) Suppose 0 ∈ U is irregular singular for the
differential operator P . There exist a basis of formal solutions F̂ for Pf = 0 given by

f̂i(z) = e
φi(

1

zd
)
zλiFi(z

1
d ), i = 1, ..., n

where d ∈ N>0, λi ∈ C, φi ∈ t−1C[t1] and Fi are formal power series.

The φi’s are called exponential factors.

It is usual to associate to each couple of them two set of directions: they are the
directions at which Stokes phenomenon appears.

Define the Stokes line relative to the pair of exponential factors (φi,φj) by the con-
dition Re(φi − φj) = 0: along this line the magnitude of eφi and eφj is the same.

Define the anti-Stokes line relative to the pair of exponential factors (φi, φj) by the
condition Im(φi − φj) = 0: when crossing this line, eφi and eφj go from a dominant
(subdominant) to a subdominant (dominant) behaviour with respect to each other.

You can improve the preceding result. However, there is a price to pay: you have to
choose a direction.

Lemma (Borel, Ritt) Let θ ∈ S1. There exists a sector S centered at the direction θ and
F = {fi ∈ OS}i=1,...,n such that F is a basis for the solution of Pf = 0 in S and fi ∼ f̂i,
that is, ∀z ∈ S and i = 1, ..., n the following holds

(4) ∀N ∈ N ∃C > 0 s.t. |fi(z)− f̂Ni (z)| < C|eφi(z)zλi+N
d |

where f̂Ni denotes f̂i in which the formal term Fi have been truncated at the N -th term.

We now have all necessary ingredients: let us describe the Stokes phenomenon with
an example.

Consider the differential operator ∂2
z − z: the associated differential equation is called

Airy equation, it has an irregular singular point at ∞.
Its exponential factors are φ± = ±2

3z
3
2 . Its solutions are two entire holomorphic

functions called Ai(z) and Bi(z).
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The restrictions Ai(x) and Bi(x) to the real line of such functions is of interest in
physics.

In 1857 Stokes noticed that the asymptotic behaviours of Ai(x) for x → ±∞ were
different.

Ai(x) ≈ 1√
π
|x|− 1

4 cos(
2

3
|x| 32 − π

4
), x→ −∞

Ai(x) ≈ 1

2
√
π
|x|− 1

4 e−
2
3
|x|

3
2 , x→∞

The explanation for such a change in the asymptotics can be found in the complex
line.

In the case of Airy equation, the Stokes lines for (φ−, φ+) are at directions −π
3 , π,

5π
3 ,

while the anti-Stokes lines at directions 0, 2π
3 ,

4π
3 .

When looking at the complex picture and crossing the anti-Stokes direction 2π
3 , the

function Ai(z) has a change of asymptotic lift from

Ai(z) =
1

2
√
π
z−

1
4 e−

2
3
z
3
2 (1 + ...)

to

Ai(z) =
1

2
√
π
z−

1
4 e−

2
3
z
3
2 (1 + ...) + i

1

2
√
π
z−

1
4 e+ 2

3
z
3
2 (1 + ...)

This phenomenon, which explains the different asymptotic behaviour for Ai(x), is
called Stokes phenomenon.

Following the glimpse given from the Airy equation, we can describe the Stokes phe-
nomenon in dimension 1 as follows.

We can cover a pointed neighborhood of the singularity with a family of sectors for
which Borel-Ritt lemma holds.

Suppose S, S′ in this family are such that S ∩ S′ 6= ∅ and , F = {fi}, F ′ = {f ′i} are
asymptotic to the formal solutions F̂ as in Hukuhara-Levelt-Turrittin theorem.

We can then compare F and F ′ in the common sector

f ′i =

n∑
j=1

aijfj .

The aij are called Stokes multipliers, (aij) the Stokes matrix: this set of data completely
encodes the Stokes phenomenon.

Deligne and Malgrange proved, moreover, that it is possible to recover the original
differential equation from this information, hence establishing an extended version of
the original Riemann-Hilbert correspondence called Riemann-Hilbert-Birkhoff cor-
respondence.

Several efforts have been made in order to provide a description fitting for higher
dimensions.
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As explained above for the one dimensional case, one of the keypoints is to keep track
of the growth of the solutions near the singularity.

In particular, this is related to the study of the behaviour of Re(φi) and their mutual
interactions.

The idea developed by D’Agnolo and Kashiwara is to consider an extra real variable
to take care of this issue.

They then introduced the category EbR−c(ICX) of enhanced ind-sheaves, algebraic
objects defined on X×R (no more on X as the classical local systems) which locally encode
information about the growth of the exponential factors by considering {Re(φi) ≥ t}.

The theory they developed has brought to the following result, extending the one for
regular holonomic D-modules.

Proposition (D’Agnolo-Kashiwara [1]) Let X be an analytic manifold. Then there exists
a fully faithful functor

SolEX : Db
h(DX)→ EbR−c(ICX).

Moreover, there is a way of reconstructing: there exist a functor Hom(·,OEX) and an
isomorphism

M→Hom(SolE(M),OEX)

functorial in M∈ Db
h(DX).
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Including topographic effects

in shallow water modeling

Elena Bachini (∗)

Abstract. Shallow water models of geophysical flows must be adapted to geometrical characteristics
in the presence of a general bottom topography with non-negligible slopes and curvatures, such as
a mountain landscape. We study a shallow water model defined intrinsically on the bottom surface
from a mathematical and numerical point of view.

1 Introduction

Shallow water equations are typically used to model fluid flows that develop predominantly
along the horizontal (longitudinal and lateral) direction. Indeed, the so-called Shallow
Water (SW) hypothesis assumes negligible vertical velocity components.

Application of SW equations ranges from
large-scale models in meteorology, oceanog-
raphy [9], or tsunami modeling [12], but also
to smaller scale models of river morphology
[11], avalanches [8], debris flows and land-
slides [7, 10] and, at even smaller scales, lu-
brication theory. Most of these applications
must consider a general bottom topography,
commanded for example in the field of our in-
terest by mountain landscapes (see fig. 1), in-
troducing mathematical difficulties that have
not yet a comprehensive solution. This is in

Figure 1. An example of landslide (2016).

contrast with the increasing necessity of reliable models, both in environmental and in-
dustrial applications.

Our particular interest is to take into account as much as possible the influence of the
topography in the flow equations. The dynamics are now well understood in the flat case,
but the situation is different for the non-flat case, especially working in several dimensions.
In this report, we will present a new formulation of the two-dimensional SW equations
in intrinsic coordinates adapted to general and complex terrains, with emphasis on the
influence of the geometry of the bottom on the solution. The proposed model is then

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
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discretized with a first order upwind Godunov Finite Volume scheme. We will give an
overview of the numerical method and then show some results. The results indicate that
it is important to take into full consideration the bottom geometry and slope even for
relatively mild and slowly varying curvatures.

2 Shallow Water Model

The typical derivation of the SW equations is based on the integration of the time-averaged
Navier-Stokes equations over the fluid depth in combination with an asymptotic analy-
sis enforcing the SW assumptions. Consider the classical incompressible Navier-Stokes
equations on an open domain Ω ⊂ R3 as:

∇ · ~u = 0 ,(1a)

∂~u

∂t
+∇ · (~u⊗ ~u) = −1

ρ
∇p+

1

ρ
∇ · T + ~g ,(1b)

where ~u : Ω × [0, T ] → R3 is the fluid velocity, ρ its density, assumed constant, p :
Ω × [0, T ] → R is the fluid pressure, T : Ω → R3×3 the stress tensor, and ~g the gravity
acceleration. Note that we have used the product rule of differentiation and the incom-
pressibility condition (1a) to write the convective term in conservative form. We assume
that the domain boundary ∂Ω is smooth and formed by the union of the bottom sur-
face (SB), the free surface (SF ), and the lateral surface. Smoothness is detailed by the
hypothesis that all these surfaces are regular and can be identified by the graph of some
function. For almost flat bottom topographies, fluid depth is evaluated along the direction
normal to the bottom surface. This approach is generally used to model large scale ocean
dynamics or atmospheric flows, where the bottom boundary is the geo-sphere and the
normal direction coincides with the direction of gravitational forces. In these cases, the
SW approximation, essentially stating that the fluid vertical velocity is small compared to
the horizontal components.

In the case of a generally curved bottom, our case of interest, the essence of the
SW approximation requires that the integration path along which depth averaging is
performed be at any point orthogonal to the fluid velocity. This path has been identified
with the so called “cross-flow” curves [5, 6]. Integrating along small segments of this path
would allow to define a specific discharge which is a constant of the motion in all the
parallel cross-flow paths. Unfortunately, the knowledge of these cross-flow paths would
require the knowledge of the velocity of the fluid and to know a priori which point of
the free surface the path would intersect. Thus this would be an implicit definition of
the problem, since the velocity is one of the unknowns, and would not give rise to a
solvable system of equations. For this reason, Fent et al. [6] approximate the “cross-flow”
path with the direction normal to the bottom starting from a NS system defined on a
curvilinear coordinate reference frame defined on the bottom geometry. The system of
SW Equations (SWE) resulting from depth integration turns out to be closely related
to the model of Bouchut and Westdickenberg [4], that also presents a model of SWE
on arbitrary topography, and shares similar approximations and limitations in terms of
geometry of the bed topography.
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Following Fent et al. [6] we define a local curvilinear reference system (LCS) positioned
on the surface representing the topography of the bottom. All the developments, including
depth integration, will be carried out with respect to this local reference system. We would
like to describe the motion of a fluid particle using a coordinate system that satisfies the
following two main conditions:

(a) the first two coordinates run along the
bottom surface SB, their tangent vec-
tors belonging at each point P ∈ SB to
the tangent plane TpSB;

(b) the third coordinate crosses the surface
orthogonally so a vector tangent to SB
is everywhere orthogonal to ~N, the sur-
face normal vector.

x3

x2

x1

(x1, x2)

(x1, x2,B(x1, x2))
s1

s2

s3

Regarding the ensuing reference frame, the previous requests amount to asking that there
exist three vector fields t1, t2, t3 in R3 such that

t1(P), t2(P) ∈ TpSB ∀P ∈ SB ,

are vector fields in the tangent plane of SB at point P, and t3(P) is orthogonal to the other
two frame vectors and such that the right-hand rule is satisfied. Moreover, we ask that
t1, t2, t3 commute in all R3 and, to ensure numerical stability, be pairwise orthogonal.
Note that normalization of the other two basis vectors cannot be done, as this would
amount to assume a zero curvature of SB at P, loosing all the geometric information we
would like to preserve in our LCS. The associated metric tensor, as a consequence of the
orthogonality property, becomes the diagonal matrix given by:

(2) G :=

 ‖t1(P)‖2 0 0

0 ‖t2(P)‖2 0

0 0 ‖t3(P)‖2

 =

 h2
(1) 0 0

0 h2
(2) 0

0 0 1

 ,

and the metric coefficients enter in the definition of the expressions of the differential
operators that appear in the Navier-Stokes equations, i.e., we will have a new definition
for the gradient of a scalar function, the divergence of a vector field, and the divergence
of a tensor field.

Remark 1 We will use the standard notation with the subscript G to denote the intrinsic
differential operators. Namely, ∇G and ∇G· will be the gradient and divergence symbol,
respectively.

The derivation of the SWE starts from the formulation of Navier-Stokes equations in
the local coordinate system. Using new the definition of the differential operators, the
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Navier-Stokes equations given in eq. (1) can be written in the LCS as:

∇G · ~u = 0 ,(3a)

∂~u

∂t
+∇G · (~u⊗ ~u) = −1

ρ
∇Gp+

1

ρ
∇G · T + ~g .(3b)

We need to complete the system considering appropriate boundary conditions. Using the
LCS, the bottom and free surfaces are given by:

SB :=
{

(s1, s2, s3) ∈ R3 such that s3 = B(s1, s2) ≡ 0
}
,

SF :=
{

(s1, s2, s3, t) ∈ R3 × [0, T ] such that s3 = F(s1, s2, t) ≡ η(s1, s2, t)
}
,

where η(s1, s2, t) = F(s1, s2, t) − B(s1, s2) denotes the fluid depth. We assume that the
bottom is not eroding and thus maintains a fixed geometry, while the fluid surface is a
function of time. The kinematic conditions postulate that the free surface moves with
the fluid and that the bottom is impermeable. Moreover, assuming that the external
actions on the fluid surface are negligible, the dynamic condition at the fluid-air interface
translates into a zero-stress boundary equation (we do not present here the expressions
for the boundary conditions, see [2] for the complete formulation).

Starting from the Navier-Stokes equations written in the local curvilinear coordinate
system as given in eq. (3), we perform depth integration along the normal direction s3

from s3 = B(s1, s2) ≡ 0 to s3 = F(s1, s2, t) ≡ η(s1, s2, t). As example of computation, we
report here the integration of the continuity equation (3a). Applying Leibniz rule and the
kinematic boundary conditions, we obtain:

ˆ η

0
∇G · ~u =

ˆ η

0

1

h(1)h(2)

(
∂
(
h(1)h(2)u

1
)

∂s1
+
∂
(
h(1)h(2)u

2
)

∂s2
+
∂
(
h(1)h(2)u

3
)

∂s3

)
=

=
1

h(1)h(2)

∂

∂s1

ˆ η

0
h(1)h(2)u

1 +
1

h(1)h(2)

∂

∂s2

ˆ η

0
h(1)h(2)u

2

+ u3
∣∣∣
s3=η
− u1

h(1)

∂F
∂s1

∣∣∣
s3=η
− u2

h(2)

∂F
∂s2

∣∣∣
s3=η

− u3
∣∣∣
s3=0

+
u1

h(1)

∂B
∂s1

∣∣∣
s3=0

+
u2

h(2)

∂B
∂s2

∣∣∣
s3=0

=

=
∂η

∂t
+∇G ·

ˆ η

0
~u ,

where ~u := [u1, u2]T reduces to the two component tangential velocity, and the curvilinear
divergence operator ∇G· is adapted to the two-dimensional setting. Recall that application
of Leibniz rule requires enough regularity of both bottom and free surfaces as well as the
velocity vector ~u. Analogous computations are done for the momentum equations.
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η ∼ H0

s1, s2 ∼ L0

Figure 2. Example of a thin and wide layer of

fluid over an horizontal bottom surface.

The classical SW hypothesis states that the
characteristic depth of the fluid is smaller
than the characteristic wavelength. In the
present context, this statement is equivalent
to our assumption of small normal velocity.
To see this, assume a setting with a relatively
thin and wide fluid moving on the terrain sur-
face (fig. 2). Denote with L0 the length scale

in a direction tangential to the bottom and with H0 the length scale of the fluid depth
measured along the normal. The shallow water scaling assumes that H0/L0 = ε� 1.

We would like to connect this idea with the order of approximation of the model in
our curvilinear setting. Denote by V0 the scale of the contravariant tangential velocity
components u1 and u2, and by W0 the scale of the contravariant normal component u3.
Formal application of the chain rule of differentiation to the continuity equation (3a)
yields:

0 = ∇G · ~u =
1

h(1)h(2)

(
∂

∂s1
(h(1)h(2)u

1) +
∂

∂s2
(h(1)h(2)u

2) +
∂

∂s3
(h(1)h(2)u

3)

)
=

=
∂u1

∂s1︸︷︷︸
O
(
V0
L0

)
+

∂u2

∂s2︸︷︷︸
O
(
V0
L0

)
+

∂u3

∂s3︸︷︷︸
O
(
W0
H0

)
+

u1

h(1)︸︷︷︸
O(V0)

∂h(1)

∂s1
+

u1

h(2)︸︷︷︸
O(V0)

∂h(2)

∂s1
+

u2

h(1)︸︷︷︸
O(V0)

∂h(1)

∂s2
+

u2

h(2)︸︷︷︸
O(V0)

∂h(2)

∂s2
.

With standard properties of the BigO notation, we obtain a relation between the normal
velocity scale and the tangential one:

(4) W0 ∼ max

{
ε,H0

∂h(1)

∂s1
, H0

∂h(2)

∂s1
, H0

∂h(1)

∂s2
, H0

∂h(2)

∂s2

}
︸ ︷︷ ︸

εG

×V0 ,

where εG is the new “geometric” aspect ratio, that connects local curvatures information
to the global length scale parameter ε. Hence, the SW approximation can be restated by
the assumption εG � 1, which effectively adds a restriction on the shape of the bottom
surface that ensures that the derivatives of the metric coefficients are of the order of 1/L0.

Using the formal expansions in powers of εG in the normally integrated NS system we
obtain our reduced formulation, which we name Bottom-Adapted Shallow Water (BASW)
equations, as given in the next theorem. We use the following notation. The couple (s1, s2)
indicates the curvilinear coordinate system associated with the LCS with the ensuing
metric tensor Gsw given by the principal 2-minor of eq. (2). The vector ~q =

[
ηU1, ηU2

]T
denotes the depth-averaged velocity vector, while the tensor

Tsw = η

[
T11 T12

T21 T22

]
is the principal 2-minors of T. Vector fB = [τ1

b , τ
2
b ]T is the vector field accounting for bed

friction. Then, we can state the following theorem.
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Theorem 2.1 The bottom-adapted shallow water equations, written with respect to the
LCS, are given by:

∂η

∂t
+∇G · ~q = 0 ,(5a)

∂~q

∂t
+∇G ·

(
1

η
(~q ⊗ ~q) +

(
gη2

2

∂x3

∂s3

)
G−1
sw

)
(5b)

+
gη2

2
∇G
(
∂x3

∂s3

)
+ gη∇G(x3)− 1

ρ
(∇G ·Tsw + fB) = 0 .

They provide an approximation of order O
(
ε2G
)

of the Navier-Stokes equations, under the
assumption of thin fluid layer, η = O(εG).

As already mentioned in the introduction, the BASW model is similar to the model
proposed by Bouchut and Westdickenberg [4] and the two model share fundamental math-
ematical properties:

Proposition 2.2 The BASW system defined in eq. (5) is invariant under rotation, it
admits a conserved energy in the absence of stresses, and is well-balanced.

We refer to Bachini et al. [2] for the complete development of the computations and
the proofs.

3 Numerical Solution

The intrinsic nature of the developed SWE allows the formulation of a Finite Volume
(FV) discretization, adapted to our intrinsic setting. We assume that our final system (5)
is defined on a compact subset of the bottom surface, Γ ⊂ SB, and that a well-defined
curvilinear boundary, denoted by ∂Γ = ∂Γ, exists. System (5) can be written in divergence
form as the balance law:

(6)
∂U

∂t
+ divGF (s,U) + S(s,U) = 0 .

Here the conservative variable is given by U =
[
η, ηU1, ηU2

]T
=
[
η, q1, q2

]T
, where η :

Γ× [0, T ]→ R, and q =
[
q1, q2

]
, q : Γ× [0, T ]→ R2. The flux function F takes the form

(7) F (s,U) =


q1 q2

(q1)2

η
+

gη2

2h2
(1)

∂x3

∂s3

q1q2

η
q1q2

η

(q2)2

η
+

gη2

2h2
(2)

∂x3

∂s3

 =


F η

Fq

 .

Note that the flux F is a function of s because of the appearance of the components h(i)

of the metric tensor Gsw and the presence of the bottom slope ∂x3/∂s3. The symbol divG
denotes the divergence operator applied to the flux function as divergence of a vector for
the first row and divergence of a 2×2 tensor for the last two rows. We can define it as divG =
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[∇Gη·,∇Gq·]T. The source function S comprises the metric tensor coefficients, the bottom
slope and its derivatives, the two-dimensional averaged stress tensor Tsw, the bottom
friction parameter τb, and the conserved variable η. We summarize this dependency by
explicitly writing it out in S(s, η). We have then:

(8) S(s, η) =


0

gη2

2h2
(1)

∂

∂s1

(
∂x3

∂s3

)
+

gη

h2
(1)

∂x3

∂s1
− 1

ρ
[∇G ·Tsw](1,·) − τ1

b

ρ
gη2

2h2
(2)

∂

∂s2

(
∂x3

∂s3

)
+

gη

h2
(2)

∂x3

∂s2
− 1

ρ
[∇G ·Tsw](2,·) − τ2

b

ρ

 =


Sη

Sq

 .

The regularity assumption on the bottom surface implies the uniform continuity of the
flux and source functions with respect to s.

Finite Volume scheme

The derivation of the scheme starts from the definition of the computational mesh. We as-
sume that there exists a surface triangulation T (Γ) formed by the union of non-intersecting
geodesic triangles with vertices on Γ (edges are geodesics). Obviously, we have that
T (Γ) = ∪NTi=1Ti = Γ and σij = Ti ∩ Tj is an internal geodesic edge. We will also use
the approximate triangulation Th(Γ) defined by the piecewise linear surface identified by
the union of 2-simplices in R3 (flat three-dimensional triangles) with vertices coinciding
with the vertices of T (Γ). We assume that this triangulation is closely inscribed in T (Γ)
in the sense of Morvan [13] (the tangent spaces of T (Γ) and of Th(Γ) are close in some
sense). Quantities belonging to the approximated triangulation Th will be identified with
the subscript h. Thus the symbol σh,ij will identify the common edge between triangles
Th,i and Th,j .

We start our work on T (Γ), where the divergence and integration by parts theorems
are naturally defined. Following a standard development workflow for FV methods, we test
eq. (6) with a piecewise constant (in space and time) function and apply the divergence
theorem to obtain the following set of equations valid for all triangles Ti ∈ T (Γ) and for
t ∈ [tk, tk+1]:

Uk+1
i = Uk

i −
1

|Ti|

Nσ(i)∑
j=1

|σij |
ˆ tk+1

tk
Fij(U) dt−

ˆ tk+1

tk
Si(η) dt ,

where we use the cell-averaged and edge-averaged quantities defined intrinsically in T (Γ)
as:
(9)

Ui =
1

|Ti|

ˆ
Ti

U ds , Fij =
1

|σij |

ˆ
σij

〈
F , νij

〉
G
dσ , Si =

1

|Ti|

ˆ
Ti

S ds .

We denote by |Ti| , |σij | the area of the cell Ti and the length of the curvilinear edge
σij , respectively, and νij is the outer normal to the edge σij . Note that the quantities
Fij ,Si are depending only on the unknown U but not on the space variable s, since
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they are integrated in space. Moreover, it is important to underline that no numerical
approximations are done up to this point. Now we need to devise numerically computable
approximations of the above quantities. Thus, the following steps need to be appropriately
defined: (i) time stepping; (ii) normal fluxes on edges; (iii) quadrature rules; (iv) Riemann
problem.

For the time integration we use a first order explicit Euler time stepping scheme, while
in space we consider a mid-point rule both on edges and cells. To maintain a well-balanced
scheme we use an adaptation of the approach of Audusse et al. [1], Bouchut [3] and include
the source terms in the flux. Then, the following FV equations are defined for each Ti:

(10) Ũk+1
h,i = Uk

h,i −
∆t

|Th,i|

Nσ(i)∑
j=1

|σh,ij |
[
Fh,ij(U

k
h,i,U

k
h,j) + Sh,ij(U

k
h,i,U

k
h,j)
]
,

where Fh,ij is the numerical approximation of the edge-averaged normal flux Fij at σij ,

and Sh,ij is calculated so that
∑Nσ(i)

j=1 |σh,ij |Sh,ij is a consistent quadrature rule for the
last integral in eq. (9) and maintains the discrete version of the well-balance property. As
standard in FV scheme, the flux on the edges is computed by solving appropriate Riemann
problems, that in our case need to be adapted to the geometric framework.

To be able to perform all these computations we require the approximation of the
relevant surface quantities. By assumption we have all the geometric information at the
nodes as given data of the problem, and we decide to perform linear interpolation of these
values to compute geometric quantities at the quadrature points. Again we refer to [2] for
the full description of our approximations.

Simulations

A number of test cases performed over slowly varying bottom topography are used to show
the effectiveness of the numerical approach and to verify the importance of considering the
geometric features of the bed topography in the equations. We use a global parametrization
x3 = B(x1, x2) of the bottom surface SB, with B a sufficiently smooth height function,
whereby we start from a regular triangulation of a rectangular subset A ⊂ R2 and move
the nodes vertically on SB. All the test cases simulate a gravity-driven fluid in a dam-
break setting, without any stress tensor. The initial conditions are defined to initiate
a dam-break phenomenon, with water depth in any case small enough to exclude the
issue of the intersection of the local normals so that the coordinate transformation is
always a diffeomorphism. Here we present the simulations of two test cases: a simple one-
dimensional domain with simple one-dimensional curvature, and a centrally symmetric
surface. Figure 3 shows the distribution in space of the metric coefficients.
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Figure 3. Spatial distribution of the metric coefficients h(1) for the parabola case (left) and the hyperboloid-

central-bump (right).

The parabola test case considers a simple one-dimensional flow where the effects of curva-
ture in the model can be verified. We simulate the breaking of a dam located at x1 =2.0 m,
with initially zero velocity everywhere and water depth of 0.5 m upstream and 0.2 m down-
stream the dam. No-flow boundary conditions are imposed everywhere except at the outlet
boundary, where a free outflow is enforced. Figure 4 shows the calculated distribution of
the water depth η at times t = 0.00 s, 0.50 s, 1.00 s and 1.50 s. The progress of the
dam-break wave towards the outlet is characterized by a variable speed of propagation.
The downwind shock initially smoothed by the numerical viscosity introduced by the 1st
order solver is sharpened downstream by curvature effects, as the decreasing slope is de-
celerating the wave front. Also the upstream wave seems to sharpen, as evidenced by a
shorter wave length at the end of the simulation.

t = 0.00 t = 0.50 t = 1.00 t = 1.50

Figure 4. Parabola case: evolution of the gravity wave, shown both as color codes and depth elevation,

the latter with a vertical magnification factor of 2.0.

The second test case presents an “almost” centrally symmetric domain, hyperboloid with
a central bump (HCB for simplicity), and it is designed to verify the ability of the FV
scheme to maintain symmetry on an unstructured grid. The initial conditions outline a
central area of radius 0.5 m with upstream water depth of 2.0 m and downstream water
depth of 1.0 m, and zero initial velocity.

Figure 5 shows the numerically evaluated evolution of the initial wave in terms of water
depth η at times t = 0.0 s, 0.20 s, 0.40 s and 0.60 s. The initial wave moves downward
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with radial velocity vectors towards the outlet. The dynamics of the flow is such that the
downstream portion of the initial dam-break wave accelerates faster than the upstream
region because of the larger bottom slope. Some oscillations are created by the Riemann
solver at the tail of the downstream wave, but these remain bounded and do not interfere
with the trailing wave. Nonetheless, the numerical results shows a rather symmetric wave
pattern, demonstrating the robustness of the chosen numerical approach. This is further
evidenced in fig. 6 (left panel), where the velocity vectors at t = 0.20 s are shown. The
streamflows at the three different sections, located at a radial distance from the center of
1.0 m, 1.75 m and 2.5 m are shown in fig. 6 (right panel).

t = 0.00 t = 0.20

t = 0.40 t = 0.60

Figure 5. HCB: water depth at initial time (t = 0.0), and at t = 0.20, 0.40, 0.60.

0 0.5 1 1.5 2
0

20

40

60

t

di
sc

ha
rg

e

Sect. 1
Sect. 2
Sect. 3

Figure 6. HCB: velocity vectors at t = 0.20 (left) and streamflows at the three preselected sections (right).
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Serre’s p-adic modular forms and p-adic

interpolation of the Riemann zeta function

Giacomo Graziani (∗)

Abstract. The so-called zeta functions are among the most famous and discussed objects in
mathematics, the simplest of which is the (in)famous Riemann zeta function. In order to work with
them (and with the strictly related L-functions as well), mathematicians decided to isolate simpler
pieces and hence ultimately to address the problem of their p-adic interpolation. In this seminar,
after introducing the various objects involved, we will focus on easiest example of the Riemann
zeta function and describe the surprising interpolation exploited by Serre using his notion of p-adic
modular forms.

1 Introduction

In 1637 Fermat claimed he could prove that all the integral solutions of the equation

an + bn = cn, n ≥ 3

have abc = 0. As it is well known he didn’t provide any proof of this fact, so the quest for
proving (or disproving) this statement begun. A remarkable attempt was that of Lamé
in 1847: one can suppose n = p is a prime and, for a primitive p-th root of unity ξ, he
used prime factorisation in the ring Z [ξ] to prove Fermat’s claim. As Liouville pointed
out, Lamé’s proof had a flaw, namely the fact that Z [ξ] doesn’t have prime factorisation
in general (as Z does, for example), but Kummer’s work, that set the fundations of both
modern algebra and algebraic number theory, showed that something could be saved.

Definition 1.1 Let p be a prime number, we say that it is regular if all the ideals I⊆Z [ξ]
such that Ip is principal are principal.

Kummer made Lamé’s proof work for regular primes, but we know that not all primes
are regular (the first irregular one is 37). Even more, we know that there are infinitely
many irregular primes, while it is still an open problem to determine if the regular ones

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:

. Seminar held on June 12th, 2019.
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are finite or not. In any case Kummer also gave a criterion to estabilish the regularity of
a prime in terms of Bernoulli numbers (Definition 3.1).

Theorem 1.2 Let p ≥ 3 be a prime, then p is regular if and only if it divides the
denominator of Bk for some k = 2, . . . , p− 3.

Proof. [Was82, Theorem 5.34, p. 78].

In view of computations of Euler (Remark 3.4) we see that the theorem of Kummer reduces
the study of the regularity of primes to the study of congruence properties of special values

ζ (−n) = −Bn+1

n+ 1
for n ≥ 0 odd

of the Riemann zeta function (that are indeed rational!). As we will see, the introduction
of the p-adic numbers will give a nice tool for dealing with congruences modulo powers of
p and therefore it is natural to look for a p-adic interpolation of the Riemann zeta function
based on these special values, which will be seen as elements of Qp. More precisely we
would like to prove a statement of the kind

Claim There exists an analytic function ζ× on Zp such that ζ (−n) = ζ× (−n).

This task can be accomplished in various ways, notably following the measure-theoretic
approach of Kubota and Leopoldt (see [CoSu06]). Here we will follow the (almost) ele-
mentary approach of J.-P. Serre, built on previous works of Klingen and Siegel, to the
interpolation of the special values discussed above, which has the advantage of taking
us through another fundamental theme of modern number theory: that of complex and
p-adic modular forms.

2 Riemann zeta function

Let us start considering one of the most famous functions in mathematics, the Riemann
zeta function

ζ (s) =
∑
n≥1

n−s.

This is a holomorphic function {< (s) > 1} → C which can be analytically continued to
C\ {1}, having a simple pole at s = 1 with residue 1, and it satisfies the functional equation

ζ (s) = 2sπs−1 sin

(
1

2
πs

)
Γ (1− s) ζ (1− s) .

Here Γ (s) denotes the analytic continuation of the function

s 7→
ˆ ∞

0
ts−1e−tdt

from {< (s) > 0} to C\Z<0. In view of the factor sin
(

1
2πs
)

appearing in the relation above,
we find the so-called trivial zeros of ζ, namely we have

ζ (−2n) = 0 for n ∈ N.
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It can be shown, and this is essentially the same thing as the Fundamental Theorem of
Arithmetic, that ζ can be reprensented as an Euler product

ζ (s) =
∏

p prime

(
1− 1

ps

)−1

.

Corollary 2.1 There are infinitely many primes.

Proof. The harmonic series is divergent hence the product must be infinite.

Note 2.2 This proof, given by Euler, was acknowledged by Dirichlet as one of the
inspirations behind his theorem on arithmetic progressions.

3 Bernoulli numbers

A discussion about Riemann ζ function can’t be untied from that on Bernoulli numbers.

Definition 3.1 Define the Bernoulli numbers Bk as

X

eX − 1
=
∑
k≥0

Bk
Xk

k!
.

Lemma 3.2 The Bernoulli numbers are rational and, for k ≥ 3 odd, Bk = 0.

Proof. The expansion of

eX − 1

X
=

1

X

∑
k≥1

Xk

k!
=
∑
k≥1

Xk−1

k!
∈ Q [[X]] .

Since the constant term is not zero, we see that it is invertible in the ring Q [[X]]×, hence
its inverse has rational coefficients. To prove the last statement we just need to see that
the function

X

eX − 1
+
X

2
= 1 +

∑
k≥2

Bk
Xk

k!

is even, which is a straightforward computation.

Example 3.3 Here we list the first few Bernoulli numbers

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, . . . , B12 = − 691

2730
, . . .
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Remark 3.4 It was shown by Euler, with a direct computation, that for every integer
n ≥ 1 the equality

ζ (2n) = (−1)n+1 (2π)2n

(2n)!
· B2n

2

holds. It follows that

ζ (−n) = (−1)n
Bn+1

n+ 1
for every n ≥ 1 odd.

3.4 Complex modular forms

We let Γ denote the group SL2 (Z), that is, the group of 2× 2 matrices with entries in Z
and determinant 1 and we let h = {τ ∈ C | = (τ) > 0} be the complex upper half plane.

For

(
a b
c d

)
∈ Γ and τ ∈ h we set

(
a b
c d

)
· τ =

aτ + b

cτ + d
,

the so-called Moebius transformation. One checks that

=
(
aτ + b

cτ + d

)
=
= (τ)

|cτ + d|2
> 0

hence this action preserves h. Modular forms are holomorphic functions on h which are
particularly well behaved with respect to this action of Γ.

Definition 4.1 Let k ∈ Z, a modular form of weight k (and level Γ) is a holomorphic
function f : h→ C such that

• for every

(
a b
c d

)
∈ Γ we have

(1) f

(
aτ + b

cτ + d

)
= f (τ) (cτ + d)k ;

• f is “holomorphic at infinity”.

Note 4.2 We explain the condition at infinity: note that T =

(
1 1
0 1

)
∈ Γ, therefore a

holomorphic function f that satisfies Equation (1) has the property that for every τ ∈ h

f (τ + 1) = f (T · τ) = f (τ) ,
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which means that is periodic of period 1. From classical analysis one knows that there
exist an’s with

f (τ) =
∑
n∈Z

ane
2πinτ

(Fourier expansion). The condition at infinity is that an = 0 if n < 0. One usually sets

q = q (τ) = e2πiτ

and f (q) =
∑

n≥0 anq
n is called the q-expansion of f .

Theorem 4.3 (q-expansion principle) Let f, g be two modular forms with the same weight
k, then f = g if and only if they have the same q-expansion.

Definition 4.4 For k ∈ Z denote Mk the C-vector space of modular forms of weight k.

Theorem 4.5 We have

1. Mk = 0 for k < 0, when k is odd and for k = 2;

2. dimCMk = 1 for k = 0, 4, 6, 8, 10;

3. dimCMk = 1 + dimCMk−6.

Proof. [Ser94, Théorème 4, p. 88]. We can give a quick proof of the first fact: note that(
−1 0
0 −1

)
∈ Γ and, when k is odd, Equation (1) reads f (τ) = −f (τ) and this shows that

Mk = 0 when k is odd. All the other statements require a more sophisticated approach

involving the Theorem of Riemann-Roch applied to compactified Riemann surface
(

h
Γ

)∗
'

P1.

4.1 Eisenstein series

Let k > 2 be an even integer, we define

Gk (z) =
∑

(0,0)6=(m,n)∈Z2

1

(m+ nz)k
,

this is a well-defined holomorphic function h→ C (it is important to have k 6= 2 here) and
it is clear that it satisfies Equation (1) in weight k. The q-expansion of Gk is given by

Gk (q) = 2ζ (k)

1− 2k

Bk

∑
n≥1

σk−1 (n) qn


where

σk−1 (n) =
∑
d|n

dk−1,

Università di Padova – Dipartimento di Matematica 135



Seminario Dottorato 2018/19

in particular it is a modular form of weight k.

Definition 4.6 Let k ≥ 4 be an even natural number, set

Ek =
1

2ζ (k)
· Bk

2k
·Gk = −Bk

2k
+
∑
n≥1

σk−1 (n) qn,

called the Eisenstein series of weight k.

Theorem 4.7 A basis for the C-vector space Mk is given by the monomials Eα4E
β
6 with

4α+6β = k. In particular the graded C-algebra M =
∑
Mk is isomorphic to the polynomial

algebra C [E4, E6] where Ei is given weight i.

Example 4.8 We have E8 = E2
4 , E10 = E4E6, E12 = 1

691

(
441E3

4 + 250E2
6

)
.

4.2 Examples from the geometry of elliptic curves and Monstrous moonshine

A first example is the modular discriminant ∆ = (60G4)3 − 27 (140G6)2 : it is a modular
form of weight 12 with no zeros on h. Its q-expansion is given by

∆ (q) = q
∏
n≥1

(1− qn)24 .

Its importance lies in the fact that a Weierstrass equation

y2 = 4x3 − g4x− g6,

defines an elliptic curve (i.e. it is smooth) if and only if g3
4 − 27g2

6 6= 0. In view of the
moduli theoretic approach to the theory of modular forms, this shows that ∆ has no zero
on h and a zero at infinity.

Another example arising from the same context is the j-invariant

j = 1728
(60G4)2

∆

which is not exactly a modular form, since it has a pole at infinity. It has the property
that two Weierstrass equations as above define isomorphic elliptic curves if and only if j
takes the same value.

Note The j-invariant is also famous in view of its q-expansion

j (q) =
1

q
+ 744 + 196884q + 21493760q2 + 864299970q3 + · · · ∈ 1

q
+ Z [[q]] .

Let M be the Monster Group, then if rn is the sequence of the (increasing) dimensions of
its irreducible representations, we have

1 = r1

196884 = r1 + r2

21493760 = r1 + r2 + r3

8642999720 = 2r1 + 2r2 + r3 + r4
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and so on. This surprising connection (and subsequent extensions) are known as Monstrous
moonshine and their explanation set connections among modular functions, string theory,
quantum gravity and representation theory.

5 p-adic modular forms

Remark 5.1 In view of the so-called q-expansion principle we can identify a modular
form with its q-expansion.

For an integer k we denote Mk⊆Mk the subset of weight k modular forms whose
coefficients are rationals with p-adic norm ≤ 1.

Definition 5.2 Given f =
∑

n≥0 anq
n ∈ Qp [[q]], we define

|f |p = sup
n≥0
|an|p .

A p-adic modular form is an element f ∈ Qp [[q]] for which there exists a sequence fi ∈Mki

with fi → f uniformly (i.e. |f − fi|p → 0).

5.1 p-adic weights

An important issue is to determine what happens to the weights ki when taking the limit
in Definition 5.2.

Theorem 5.3 Let f, g be in Mk and Mt respectively (i.e. with rational coefficients) and
suppose that

|f − g|p ≤ p−m |f |p
for some m ≥ 1. Then if f 6= 0 we have

k ≡ t (mod (p− 1) pm).

Proof. [Ser73, Théorème 1, p. 198].

Recall that the Chinese Reminder Theorem states that for every m ≥ 1 we have an
isomorphism

Z
(p− 1) pm

' Z
p− 1

× Z
pm

and, in view of our description of elements of Zp we have

Corollary 5.4 Let f be a p-adic modular form and suppose that fi ∈Mki is a sequence
converging to f . Then the sequence of weights (ki)i defines an element of Z

p−1 × Zp which
does not depend on the sequence (fi)i.
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Definition 5.5 Call X = Z
p−1 ×Zp the p-adic weight space. It comes with a natural map

ε : X → Endc
Z (Zp×) given by

vκ := ε (κ) (v) = vu1v
s
2

where κ = (u, s) ∈ X and v = v1v2 ∈ Zp× ' µp−1 × (1 + mp). We say that κ is even if
u ∈ 2Z

p−1 , otherwise we say that it is odd.

5.2 Getting the job done

Fix an element κ ∈ X and a sequence of positive even integers (ki)i such that |ki|∞ →∞
for the usual absolute value and ki → κ in X. For a natural number d we have p-adically

lim
i→∞

dki−1 =

{
0 p | d
dκ−1 p - d

and hence
lim
i→∞

σki−1 (n) = σ×κ−1 (n) :=
∑
d|n, p-d

dκ−1.

It follows that

lim
i→∞

(
Eki +

Bki
2ki

)
=
∑
n≥1

σκ−1
× (n) qn.

Theorem 5.6 (Serre) Let

f (i) =
∑
n≥0

a(i)
n q

n

be a sequence of p-adic modular forms of weights κ(i) and suppose that

1. for every n ≥ 1, the sequence a
(i)
n has a p-adic limit an;

2. the sequence κ(i) has a limit κ in X.

Then the sequence a
(i)
0 has a p-adic limit a0 and moreover f =

∑
n≥0 anq

n is a p-adic

modular form of weight κ with f (i) → f .

In view of Serre’s Theorem we conclude that there exists the limit

a0 = lim
i→∞

(
−Bki

2ki

)
,

but in view of our discussion on Riemann ζ function this means that there exists

ζ× (1− κ) = lim
i→∞

ζ (1− ki)

defined on the even elements of X\ {1}. Since X = Z
p−1 ×Zp, we will see ζ× as a function

in two variables, we then have p− 1 functions

s 7→ ζ× (u, s)
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such that

Theorem 5.7

1. ζ× (•, u) ≡ 0 for u even, while for u odd it has a finite number of zeros on Zp;

2. For n ≤ 0 an integer, let u = n (mod p− 1), then

ζ× (n, u) =
(
1− p−n

)
ζ (n) =

∏
` 6= p prime

(
1− `−n

)−1

is the prime-to-p part of the Riemann ζ function.

Proof.

1. The first statement follows from the fact the Bk = 0 for odd k, while the second
follows from the analyticity property of ζ× (we won’t talk about) on Weierstrass
Preparation Theorem.

2. This is more complicated and follows after comparing ζ× with Kubota-Leopoldt
p-adic ζ function, see [Ser73, Théorème 3, p. 206].

A p-adic numbers

Over the rational numbers Q we have the standard absolute value |x|∞ = max {x,−x}
and this leads to the well known field of real numbers. There are other norms on Q: fix a
prime number p and, for a

b ∈ Q\ {0} write

a

b
= pn

x

y

where both x, y are coprime with p. Of course here n ranges in Z. We set∣∣∣a
b

∣∣∣
p

= p−n.

Example A.1 We have

• |m|p ≤ 1 for every m ∈ Z, called the non-archimedean condition

•
∣∣7

8

∣∣
2

= 8;
∣∣140

297

∣∣
5

= 1
5 .

This assigment satisfies

• |x|p = 0 ⇐⇒ x = 0, |1|p = 1

• |xy|p = |x|p |y|p
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so no surprise so far. The interesting fact about |•|p is that the the non-archimedean
condition is equivalent to the following ultrametric inequality

|x+ y|p ≤ max
{
|x|p , |y|p

}
which is much stronger than the usual condition |x+ y| ≤ |x| + |y|. We will list a bunch
of consequences later.

Definition A.2 We define Qp as the completion of Q with respect to the absolute value
|•|p. We define

Zp =
{
x ∈ Qp | |x|p ≤ 1

}
mp =

{
x ∈ Qp | |x|p < 1

}
.

Remark A.3 Using the ultrametric property one sees that Zp is a ring (the point being
that it is closed under addition), furthermore it is a local ring whose maximal ideal is mp

which is principal generated by p and Qp is its fraction field. This definition allows to
describe Zp explicitly: it is the completion of Z with respect to |•|p, hence an element
x ∈ Zp is an (equivalence class of) sequence (an)n⊆Z with the property that for every
m ∈ N there exists an integer N such that

an ≡ an+1 mod pm for every n ≥ N,

that is which is definitively constant modulo pm for every m. A consequence of this is
that there are well defined maps Zp → Z/pm (since every element is eventually constant
mod pm) whose kernel is mm

p = pmZp).

Example A.4 Another remarkable consequence of the ultrametric property is that, given
a sequence (an)n⊆Qp, then∑

n≥0

an is convergent if and only if lim
n→0

an = 0.

As an application we check that 1 + mp (where 1 here denotes the constant sequence
(1, 1, . . . )) is a multiplicative group: in fact given x ∈ mp we have formally

1

1 + x
= 1− x+ x2 − · · · =

∑
n≥0

(−1)n xn

but this series is convergent by the criterion above, since x ∈ mp means that |x|p < 1.

Note A.5 As a way to become more confident with p-adic numbers, we discuss here a
topic that will play a major role: that of p-adic interpolation. In the form we are going
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to need it, the problem asks if, given a function f : Z→ X where X is some space, there
exists a continuous function f : Zp → X that restricts to f . Of course this amounts to
check that f is continuous with respect to the p-adic topology. Let x ∈ 1+mp, the simplest
function, also in view of Example A.4, we would like to interpolate is

fx : Z→ 1 + mp

n 7→ xn

We compute
|xp − 1|p = |x− 1|p

∣∣xp−1 + · · ·+ x+ 1
∣∣
p
≤ p−1 |x− 1|p

since x ≡ 1 (mod p) hence xp−1 + · · ·+x+ 1 ≡ 0 (mod p). More generally for n ∈ Z write
n = tpr with p - t, then

|xn − 1|p ≤ p−r |x− 1|p = |n|p |x− 1|p .

It follows that fx is continuous with respect to the p-adic topology and hence the function

fx : Zp → 1 + mp

α = [(an)n] 7→ xα := lim
n→∞

xan

is well defined and does not depend on the particular sequence we pick to represent α. The
group 1 + mp is particularly important, in fact one can show that there exists a natural
group homomorphism (called the Teichmüller character) [•] : Fp× → Zp× such that the
composition

Fp×
[•]−→ Zp×

(mod p)−→ Fp×

is the identity. This shows that there is a natural decomposition

Zp× ' µp−1 × (1 + mp) .

This will play a role talking about p-adic weights.

Exercise A.6 Show that the map fx : Zp → 1 + mp in Note A.5 is injective for x 6= 1.

B This is very nice, but why bother?

I am writing this section because everybody, at some point, wonders why people care so
much about Riemann hypothesis.

Conjecture (Riemann hypothesis, or RH) The zeros of ζ in the strip 0 ≤ < (s) ≤ 1 lie
on the line < (s) = 1

2 .

Let x > 0 be a real number, we define

π (x) = # {primes ≤ x} ,
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so that π (1) = 0, π (5) = π (5.57) = π (6) = 3. A major progress in number theory is the
following result proved independently by de la Vallée-Poussin and Hadamard in 1896

Theorem (Prime Number Theorem)

lim
x→∞

π (x)

x/ ln (x)
= 1.

Which means that for x very large, π (x) can be computed as x/ ln (x) with good approx-
imation.

The proof of the Prime Number Theorem has little to do with Riemann hypothesis, in fact
de la Vallée-Poussin and Hadamard had to prove that ζ has no zeros on the line < (s) = 1,
while an elementary proof given by Selberg and Erdos in 1949 made no use of ζ at all
(even if de la Vallée-Poussin and Hadamard’s estimations were more precise). In any case
assuming it one can prove

Theorem Assuming RH we have

π (x) =
x

ln (x)
+O

(
x

1
2 ln (x)

)
.

We give now a funny application of RH: let n = pk11 . . . pktt be the decomposition into
prime factors of a natural number n, where the pi’s are distinct and ki ≥ 1. We define

µ (n) =

{
(−1)t if ti = 1 for every i

0 otherwise

called the Möbius function, and for x ∈ R>0

M (x) =
∑

n∈N, n≤x
µ (n) .

Theorem B.1 Without any condition, we have(3)

M (x) = Ω
(
x

1
2

)
.

(3)There is some ambiguity in the meaning of Ω (•). Following the Hardy–Littlewood definition, we say
that (always understood for x→ +∞)

f(x) = Ω(g(x)) if lim sup
x→∞

∣∣∣∣f(x)

g(x)

∣∣∣∣ > 0.
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Proof. The funny part of this Theorem is its proof (cfr. [TiHB86, Theorem 14.26 (B),
p. 371]). First one shows it assuming RH is false, and then one shows it assuming RH is
true. In the end this gives an unconditional proof.

Another fact about M (x) is the following

Theorem B.2 RH is equivalent to

M (x) = O
(
x

1
2

+ε
)
.
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