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Abstract

Stark-Heegner points, also known as Darmon points, were introduced by H. Darmon

in [11], as certain local points on rational elliptic curves, conjecturally defined over

abelian extensions of real quadratic fields. The rationality conjecture for these points

is only known in the unramified case, namely, when these points are specializations of

global points defined over the strict Hilbert class field H+
F of the real quadratic field

F and twisted by (unramified) quadratic characters of Gal(H+
F /F ). We extend these

results to the situation of ramified quadratic characters; we show that Darmon points

of conductor c ≥ 1 twisted by quadratic characters of G+
c =Gal(H+

c /F ), where H+
c is

the strict ring class field of F of conductor c, come from rational points on the elliptic

curve defined over H+
c .
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Riassunto

I punti di Stark-Heegner, noti anche come punti di Darmon, furono introdotti da H.

Darmon in [11], come certi punti locali su curve ellittiche razionali, congettualmente

definiti su estensioni abeliane di campi quadratici reali. La congettura sulla razionalità

di questi punti è nota solo nel caso non ramificato, vale a dire, quando questi punti

sono specializzazioni di punti globali definiti sull’Hilbert class field stretto H+
F del

campo quadratico reale F e twistati tramite caratteri quadratici (non ramificati) di

Gal(H+
F /F ). Noi estendiamo questi risultati al caso di caratteri quadratici ramificati, e

mostriamo che i punti di Darmon di conduttore c ≥ 1 twistati per caratteri quadratici di

G+
c =Gal(H+

c /F ), dove H+
c è il ring class field stretto di F di conduttore c, provengono

da punti razionali sulla curva ellittica definiti su H+
c .

v
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Introduction

Darmon points

The theory of complex multiplication gives a collection of points defined over class fields

of imaginary quadratic fields. Birch related these points to the arithmetic of elliptic

curves which plays an important role in Number Theory. Particularly, the work of

Gross-Zagier [25] and the work of Gross-Kohnen-Zagier [24] depend on the properties

of these points. H. Darmon extended Birch’s idea to the case when the base field is

not an imaginary quadratic field. In his fundamental paper [11], Darmon describes a

conjectural p-adic analytic construction of global points on elliptic curves, points which

are defined over the ring class fields of real quadratic fields, which are non-torsion

when the central critical value of the first derivative of the complex L-function of the

elliptic curve over the real quadratic field does not vanish. These points are called

Stark-Heegner points or Darmon points. Note that the absence of a theory of complex

multiplication in the real quadratic case, available in the imaginary quadratic case,

makes the construction of global points on elliptic curves over real quadratic fields and

their abelian extensions a rather challenging problem. The idea of Darmon was that

the points are defined by locally analytic method, and conjecture that these come from

global points. Following [11], many authors proposed similar constructions in different

situations, including the cases of modular and Shimura curves, and the higher weight

analogue of Stark-Heegner, or Darmon cycles; with no attempt to be complete, see for

instance [14], [19], [36], [37], [54], [20], [47], [30], [29], [28], [27], and [26].

Let E be a rational elliptic curve of conductor N = Mp, with p - M an odd prime

ix
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number and M ≥ 1 and integer. Fix also a real quadratic field F , the arithmetic setting

of the original construction in [11] should satisfy the following Heegner assumption:

1. The prime p is inert in F ;

2. All primes ` |M are split in F .

Under these assumptions, the central critical value L(E/F, 1) of the complex L-

function of E over F vanishes. Darmon points are local points Pc for E defined over

finite extension of Fp, the completion of F at the unique prime above p; their definition

and the main properties are recalled in Chapter 3 below. The definition of these points

depends on the choice of an auxiliary integer c > 1 which c is prime to p, called the

conductor of a Darmon point Pc. The rationality conjecture predicts that these points

Pc are localizations of global points Pc which are defined over the strict ring class field

H+
c of F of conductor c.

The rationality conjectures for Darmon points are the most important open prob-

lems in the theory of Darmon points and for now only partial results are known toward

the rationality conjectures for Darmon points, or more generally cycles. The first re-

sult on the rationality of Darmon points is obtained by Bertolini and Darmon in the

paper [4], where they show that a certain linear combination of these points with coef-

ficients given by values of genus characters of the real quadratic field F comes from a

global point defined over the Hilbert class field of F . Instead of directly comparing the

constructions of the two points, the main idea behind the proof of these results is to use

a factorization formula for p-adic L-functions to compare the localization of Heegner

points and Darmon points. The first step is the comparison between the Darmon point

and the p-adic L-function. More precisely, the proof consists in relating Darmon points

to the p-adic L-function interpolating central critical values of the complex L-functions

over F attached to the arithmetic specializations of the Hida family passing through

the modular form attached to E. The second step consists in expressing this p-adic

L-function in terms of a product of two Mazur-Kitagawa p-adic L-functions, which are

known to be related to Heegner points by the main result of [3]. A similar strategy has

been adopted by [21], [49], [38], [39] obtaining similar results.

All known results in the direction of the conjectures in [11] involve linear combi-
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nation of Darmon points twisted by genus characters, which are quadratic unramified

characters of Gal(H+
F /F ), where H+

F is the (strict) Hilbert class field of F . The goal of

this paper is to prove a similar rationality result for more general quadratic characters,

namely, quadratic characters of ring class fields of F , so we allow for ramification.

In the remaining part of the introduction we briefly state our main result and the

main differences with the case of genus characters treated up to now.

The Main Result

Let E/Q be an elliptic curve of conductor N . Let F/Q be a real quadratic field

F = Q(
√
D) of discriminant D = DF > 0, prime to N . We assume that N = Mp with

p -M and satisfies Heegner assumption:

1. The prime p is inert in F ;

2. All primes ` |M are split in F .

Fix an integer c prime to D ·N and a quadratic character

χ : G+
c = Gal(H+

c /F )→ {±1},

where, as above, H+
c denotes the strict class field of F of conductor c. Let Oc be the

order in F of conductor c. Recall that G+
c is isomorphic to the group of strict equivalence

classes of projective O+
c -modules, which we denote Pic+(Oc), where two such modules

are strictly equivalent if they are the same up to an element of F of positive norm. We

assume that χ is primitive, meaning that it does not factor through any G+
f with f a

proper divisor of c.

Fix embeddings F ↪→ Q̄ and Q̄ ↪→ Q̄p throughout. Let Pc ∈ E(Fp) be a Darmon

point of conductor c (see Chapter 3 below for the precise definition of these points)

where, as above, Fp is the completion of F at the unique prime of F above p. It

follows from their construction that Darmon points of conductor c are in bijection with

equivalence classes of quadratic forms of discriminant Dc2, and this can be used to

define a Galois action Pc 7→ P σ
c on Darmon points, where Pc is a fixed Darmon point
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of conductor c and σ ∈ G+
c . We may then form the point

Pχ =
∑
σ∈G+

c

χ−1(σ)P σ
c (1)

which lives in E(Fp). Finally, let logE : E(Cp)→ Cp denote the formal group logarithm

of E. Note that, since p is inert in F , it splits completely in H+
c , and therefore for any

point Q ∈ E(H+
c ) the localization of Q at any of the primes in H+

c dividing p lives in

E(Fp). Our main result is the following:

Theorem 1. Assume that c is odd and coprime to DN . Let χ be a primitive quadratic

character of G+
c . Then there exists a point Pχ in E(H+

c ) and a rational number n ∈ Q×

such that

logE(Pχ) = n · logE(Pχ).

Moreover, the point Pχ is of infinite order if and only if L′(E/F, χ, 1) 6= 0.

If c = 1, this is essentially the main result of [4]. To be more precise, the work

[4] needed to assume E had two primes of multiplicative reduction because of this

assumption in [3]. However, this assumption has been removed by very recent work of

Mok [43], which we also apply here.

The proof in the general case follows a similar line to that in [4]. However, some

modifications are in order. The first difference is that the genus theory of non-maximal

orders is more complicated than the usual genus theory, and the arguments need to

be adapted accordingly. More importantly, one of the main ingredients in the proof of

the rationality result in [4] is a formula of Popa [46] for the central critical value of the

L-function over F of the specializations at arithmetic points of the Hida family passing

through the modular form associated with the elliptic curve E. However, this formula

does not allow treat L-functions twisted by ramified characters. Instead, we recast an

L-value formula from [41] which allows for ramification, expressed in terms of periods

of Gross-Prasad test vectors, in a more classical framework to get our result.
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Chapter 1

Preliminaries

In this chapter we provide a brief introduction to the objects that will be used in the

thesis.

1.1 Hecke operators

Let H be the Poincaré upper half-plane: H = {z ∈ C | Im(z) > 0}. Let N be a positive

integer. The principal congruence subgroup of level N is

Γ(N) =


 a b

c d

 ∈ SL2(Z) :

 a b

c d

 ≡
 1 0

0 1

 (mod N)

 .

Definition 1.1.1. A subgroup Γ of SL2(Z) is a congruence subgroup if Γ(N) ⊂ Γ for

some N ∈ Z+, in which case Γ is a congruence subgroup of level N .

For any positive integer N , the group

Γ0(N) :=
{ a b

c d

 ∈ SL2(Z) such that N divides c
}

is called the Hecke congruence group of level N . Denote by S2(N) := S2(Γ0(N)) the

space of cusp forms of weight 2 on Γ0(N).

The vector space S2(N) is equipped with a non-degenerate Hermitian inner product

〈f1, f2〉 =

∫
H/Γ0(N)

f1(τ)f2(τ̄)dxdy,
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known as the Petersson norm. It is also equipped with an action of certain Hecke

operators Tp indexed by rational primes p and defined by the rules

Tp(f) :=


1
p

p−1∑
i=0

f
(
τ+i
p

)
+ pf(pτ) p - N,

1
p

p−1∑
i=0

f
(
τ+i
p

)
p | N.

Let an := an(f) be the Fourier coefficient of f . These operators act linearly on S2(N)

and their effect on the q-expansions at ∞ is given by the following formula:

Tp(f) :=


∑
p|n
anq

n/p + p
∑
anq

pn p - N,∑
p|n
anq

n/p p | N.

It is convenient to extend the definition of the Hecke operators to operators Tn indexed

by arbitrary positive integers n by equating the coefficient of n−s in the identity of

formal Dirichlet series:
∞∑
n=1

Tnn
−s :=

∏
p-N

(1− Tpp−s + p1−2s)−1
∏
p|N

(1− Tpp−s)−1.

1.2 Atkin-Lehner theory

Let T be the commutative subalgebra of EndC(S2(N)) generated over Z by the Hecke

operators Tn and let T0 denote the subalgebra generated only by those operators Tn

with (n,N) = 1.

The space S2(N) does not decompose in general into a direct sum of the one-

dimensional eigenspaces Sλ, where λ : T → C is C-algebra homomorphism. However,

there is a distinguished subspace of S2(N), the so-called space of newforms, which

decomposes as a direct sum of one-dimensional eigenspaces under both the actions of T

and T0. A modular form in S2(N) is said to be an oldform if it is a linear combination

of functions of the form f(d′z), with f ∈ S2(N/d) and d′ | d > 1. The new subspace of

S2(N), denoted Snew
2 (N), is the orthogonal complement of the space Sold

2 (N) of oldforms

with respect to the Petersson norm.

Theorem 1.2.1. (Atkin-Lehner). Let f ∈ Snew
2 (N) be a be a simultaneous eigenform

for the action of T0. Let S be any finite set of prime numbers and g ∈ S2(N) an
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eigenform for Tp for all p /∈ S. If ap(f) = ap(g) for all p /∈ S, then g = λf for some

λ ∈ C.

Proof. See [2].

The simultaneous eigenvector f satisfying the further condition a1(f) = 1 is called

the normalised newform of level N .

1.3 L-series

We can define the L-series attached to a newform f of level N :

L(f, s) =
∞∑
n=1

an(f)n−s,

where an(f) is the Fourier coefficients of f .

We can also show that the L-series of a Hecke eigenform has a Euler product:

Theorem 1.3.1. If f is a normalized Hecke eigenform, then

L(s, f) =
∞∑
n=1

ann
−s =

∏
p

(1− app−s + pk−1−2s)−1,

where an is the Fourier coefficient.

Proof. See the proof of Theorem 1.4.4 in [6].

Now we can define twisted L-functions L(s, f, χ) associated with f and indexed by

the primitive Dirichlet character χ:

L(s, f, χ) =
∞∑
n=1

χ(n)ann
−s.

Next let us consider the L-series of f over field F associated with quadratic Dirichlet

character attached to F . The L-series is defined by

L(f/F, s) = L(f, s) · L(f, χ, s),
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where χ is the quadratic Dirichlet character attached to F and L(f, χ, s) is the twisted

L-series. The L(f/F, s) = L(f, s) · L(f, χ, s) factors into an Euler product:

L(f/F, s) =
∏
p|N

(1− aN(p)N(p)−s)−1
∏
p-N

(1− aN(p)N(p)−s + N(p)k−1−2s)−1,

where N(p) is the norm map, the product being taken this time over all the finite places

p of F .

Now let us introduce the definition of discriminant.

Definition 1.3.2. Let F be a number field and α1, . . . , αn be a basis for F/Q. Let

σ1, . . . , σn: F → C be all embeddings. The discriminant of F is defined as:

∆F = det


σ1(α1) σ1(α2) · · · σ1(αn)

σ2(α1) σ2(α2) · · · σ2(αn)
...

...
. . .

...

σn(α1) σn(α2) · · · σn(αn)



2

.

In particular, let F = Q(
√
D) be a quadratic field, D is square free. The quadratic

discriminant of F is

∆F =

D D ≡ 1 (mod 4);

4D D ≡ 2, 3 (mod 4).

The discriminant defined above is also called fundamental discriminant. A discriminant

of a quadratic field is said to be a prime discriminant if it has only one prime factor, so

it must be one of the following type:

−4,±8,±p ≡ 1 (mod 4).

The product of coprime discriminants is again a discriminant. Every discriminant

D can be written uniquely as a product of prime discriminants D = P1 · · ·Pt. For

the discriminant Dc2, c is odd, we can write ∆1 = D1d and ∆2 = D2d for some

d = ±c =
s∏
j=1

`∗j where `∗j = (−1)(`j−1)/2`j with `j | c and D = D1 · D2 a factorization

into coprime discriminants, allowing D1 = D or D2 = D. For any such decomposition
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Dc2 = ∆1 ·∆2, we define a character χ∆1∆2 on ideals by setting

χ∆1∆2(p) =


χ∆1(N(p)) p - ∆1

χ∆2(N(p)) p - ∆2

χ`∗j (N(p)) p | c and p - `j

(χm(n) =
(
m
n

)
is the Kronecker symbol). We can extend it to all fractional ideals by

multiplicativity. More details about genus character can be found in [9].

Let χ be the character of G+
c , then we have the twisted L-function:

L(f/F, χ, s) =
∏
p|N

(1− χ(p)aN(p)N(p)−s)−1
∏
p-N

(1− χ(p)aN(p)N(p)−s + χ(p)2N(p)k−1−2s)−1,

where N(p) is the norm map, the product being taken this time over all the finite places

p of F .

1.4 Modular curves and modular spaces

Let Γ be the subgroup of the SL2(Z). The modular curve for such a Γ is defined as the

quotient space of orbits under Γ,

YΓ = H/Γ(N),

the action of Γ on H is the usual Möbius transformation. The modular curves for

Γ0(N) is denoted YΓ0(N) = H/Γ0(N). The quotient H/Γ(N) inherits from the complex

structure on H the structure of a non-compact Riemann surface. To compactify the

modular curve YΓ, define H∗ = H ∪Q ∪ {∞} and take the extended quotient

X(Γ) = H∗/Γ.

The quotient H∗/Γ0(N) can even be identified with the set of complex points of an

algebraic curve defined over Q, denoted by X0(N). This algebraic curve structure

arises from the interpretation of H/Γ0(N) as classifying isomorphism classes of elliptic

curves with a distinguished cyclic subgroup of order N , which we shall explain now.

If γ ∈ Γ0(N) and τ ∈ H/Γ0(N), then the subgroup {〈 1
N
〉} ⊂ C

Z+Zτ remains invariant

under the action of γ. Thus H/Γ0(N) is a moduli space for the problem of determining
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equivalence classes of pairs (E,C), where E is an elliptic curve and C ⊂ E is a cyclic

subgroup of order N . There is a 1-1 correspondence between finite subgroups Φ ⊂ E

and isogenies φ : E → E ′ given by the association Φ ↔ kerφ. Thus the point of

H/Γ0(N) can also be viewed as classifying triples (E,E ′, φ), where φ : E → E ′ is an

isogeny whose kernel is cyclic of order N . More details are discussed in C.13 of [52].

The following theorem of Eichler and Shimura establishes a relationship between

these two L-series.

Theorem 1.4.1. Let f be a normalised eigenform whose Fourier coefficients an(f) are

integers. Then there exists an elliptic curve Ef over Q such that

L(Ef , s) = L(f, s).

Proof. See the proof of Theorem 2.10 in [12].

Let J0(N) denote the Jacobian variety of X0(N). The modular curve X0(N) is

embedded in its Jacobian by sending a point P to the class of the degree 0 divisor

(P )− (i∞). Let

ΦN : X0(N)→ Ef

be the modular parametrisation obtained by composing the embedding X0(N)→ J0(N)

with the natural projection J0(N)→ Ef arising from the Eichler-Shimura construction.

1.5 Complex multiplication

Let K = Q(ωD) be a quadratic imaginary subfield of C, where D < 0 is the discriminant

of K and

ωD =

 1+
√
D

2
if D ≡ 1(mod 4),

√
D
2

otherwise.
(1.5.1)

Definition 1.5.1. Let K be a number field. An order O of K is a subring of K that is

finitely generated as Z-module and satisfies O ⊗Q = K.
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Every order is contained in the maximal order OK = Z[ωD] and is uniquely de-

termined by its conductor c, a positive non-zero integer such that O = Z ⊕ ZcωD.

(3.1 [12]).

Theorem 1.5.2. Let Λ be a lattice in C and E = C/Λ be an elliptic curve over C.

Then one of the following is true:

(i) End(E)∼= Z.

(ii) End(E) is isomorphic to an order in a quadratic imaginary field K.

Proof. See the proof of Theorem 5.5 in [52].

Definition 1.5.3. An elliptic curve E/C is said to have complex multiplication if

its endomorphism ring is isomorphic to an order in quadratic imaginary field. More

precisely, given such an order O, one says that E has complex multiplication by O if

End(E)' O.

If E has complex multiplication by O, the corresponding period lattice of E is a

projective O-module of rank 1. If Λ ⊂ C is a projective O-module of rank 1, the

corresponding elliptic curve E has complex multiplication by O. Thus, there is a

bijection E/C with CM by O,

up to isomorphism.

 '−→

 Rank one projective O-modules,

up to isomorphism.


The set on the right is called the Picard group of O and is donated Pic(O).

Theorem 1.5.4. There exists an abelian extension Hc of K which is unramified outside

of the primes dividing c, and whose Galois group is naturally identified, via the Artin

map, with Pic(O).

Remark 1.5.5. If p is a prime ideal of K which is prime to c, we denote by πp a

uniformiser of Kp, and by[p] the class in Pic(O) attached to the finite idèle ιp(πp). The

Artin reciprocity law map

rec: Pic(O)→ Gal(Hc/K)

sends the element [p] to the inverse σ−1
p of the Frobenius element σp at p.
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Remark 1.5.6. The theorem above is a special case of the main theorem of the class

field theory. For more details, one can see the Chapter VII, Theorem 5.1 in [7].

The extension Hc whose existence is guaranteed by the theorem is called the ring

class field of K attached to O.

1.6 Heegner points on X0(N)

A non-cuspidal point on the curve X0(N) over Q is given by a pair of (E,E ′) of elliptic

curves over Q and an isogeny φ : E → E ′. We represent the point x by the diagram

(φ : E → E ′).

The ring End(x) associated to the point x is the subring of pairs (α, β) in End(E)×

End(E ′) which are defined over Q and give a commutative square

E
φ //

α
��

E ′

β
��

E
φ

// E ′.

The ring End(x) is isomorphic to either Z or an order O in K.

Assume End(x)=O and let OK be the ring of integers of K. The conductor c of O

is defined as the index of O in OK . Then O = Z + cOK and the discriminants of OK
and O are dK and D = dKc

2. x is a Heegner point if End(x)=O and the conductor c

of O is relatively prime to N .

Heegner points exist when all prime factors p of N are either split or ramified in K

and every prime p with p2 dividing N is ramified in K.

Remark 1.6.1. The article [23], the seminal article [25] and the follow-up article [24]

provide lots of information on Heegner points and their connections with special values

of the associated Rankin L-series.



Chapter 2

The p-adic upper half plane

In this chapter, we want to recall some basic theory of the p-adic upper half plane.

Let p be a prime, let |.|p denote the usual normalised p-adic absolute value on Q,

and let Qp denote the completion of Q with respect to this absolute value. Let Q̄p be an

algebraic closure of Qp; the field obtained by completing Q̄p with respect to the p-adic

valuation is a complete algebraically closed field which is denoted by Cp. Let G be the

group GL2(Qp) and Zp denote the ring of integers in Qp. We will also use the additive

valuation

vp : Qp −→ Z ∪ {∞}

normalized so that vp(p) = 1.

Let V = Q2
p be a fixed two dimensional vector space, viewed as a space of row

vectors, on which G acts from the left by the formula

g.(x, y) = (ax+ by, cx+ dy), g =

 a b

c d

 ∈ G, (x, y) ∈ Q2
p.

The homogeneous coordinates (x, y) ∈ Q2
p are called unimodular if both coordinates

are integral, but at least one is not divisible by p.

2.1 The p-adic upper half plane

The p-adic upper half plane is defined set theoretically to be
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Hp:=P1(Cp)− P1(Qp).

To construct Hp, we need to describe an admissible covering that defines its rigid

structure. Now we will introduce an easy form of Grothendieck topology which is called

a G-topology.

Definition 2.1.1. Let X be a set. A G-topology T on X is given by the following data

and requirements:

1. A family F of subsets of X with the properties: ∅, X ∈ F and if U ,V ∈ F , then

U ∩ V ∈ F .

2. For each U ∈ F a set Cov(U) of coverings of U by elements of F .

Cov(U) requires the following properties:

3. {U} ∈ Cov(U).

4. For V ,U ∈ F with V ⊂ U and U ∈ Cov(U) the covering U ∩V := {U ′ ∩V | U ′ ∈

U} belongs to Cov(V ).

5. Let U ∈ F , {Ui}i∈I ∈ Cov(U) and Ui ∈ Cov(Ui), then ∪i∈IUi := {U ′ | U ′ belongs

to some Ui} is an element of Cov(U).

The U ∈ F are called admissible sets or T -open and the elements of Cov(U) are

called admissible coverings or T -coverings.

Given x ∈ P1(Cp), we may choose homogeneous coordinates x = [x0, x1] for x that

are unimodular. For a real number r > 0, let

W (x, r) = {y ∈ P1(Cp) : vp(y0x1 − y1x0) ≥ r},

where we always take a unimodular representative [y0, y1] of y. Also define

W−(x, r) = {y ∈ P1(Cp) : vp(y0x1 − y1x0) > r}.

Lemma 2.1.2. Let x and x′ be two elements of P1(Qp), and let n be a positive integer.

Then W (x, n) ∩W (x′, n) 6= ∅ if and only if [x0, x1] ≡ λ[x′0, x
′
1] (mod pn) for some unit

λ ∈ Z∗p

Proof. See the proof of Lemma 1.2.1 in [15].
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Remark 2.1.3. For each integer n > 0, let Pn be a set of representatives for the points

of P1(Qp) modulo pn. Let Hn be the set

Hn := P1(Cp) \
⋃

x∈Pn
W (x, n)

Let H−n ⊂ Hn be the set

H−n := P1(Cp) \
⋃

x∈Pn
W−(x, n− 1)

Then

Hp=
⋃
n

Hn=
⋃
n

H−n .

Proposition 2.1.4. Hp is an admissible open subdomain of P1(Qp) and the coverings

of Hp by the families {Hn}∞n=1 and {H−n }∞n=1 are admissible coverings.

Proof. See the discussion following lemma 3 in [48]

2.2 The p-adic uniformisation

The role of holomorphic functions on H is played by the rigid analytic functions on Hp.

These are functions that admit nice expressions when restricted to certain distinguished

subsets of Hp, called affinoids.

Let

red: P1(Cp)→ P1(F̄p)

be the natural map given by reduction modulo the maximal ideal of the ring of integers

of Cp.

The set

A : = red−1(P1(F̄p)− P1(Fp))

= {τ ∈ Hp such that | τ − t |≥ 1, for t = 0, ..., p− 1, and | τ |≤ 1}

is contained in Hp since red (P1(Qp)) ⊂ P1(Fp). It is an example of a standard affinoid

in Hp. We can also define the annuli
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Wt = {τ such that 1
p
<| τ − t |< 1}, t = 0, ...p− 1,

W∞ = {τ such that 1 <| τ |< p}.

Two lattices Λ1 and Λ2 are homothety classes in Q2
p if there is a scalar a ∈ Zp so that

Λ1 = aΛ2.

Definition 2.2.1. Let T be the graph whose vertices are homothety classes [Λ] of

Zp-lattices Λ ⊂ Q2
p, where two vertices x and y are joined by an edge if x = [Λ1] and

y = [Λ2] with

pΛ1 ( Λ2 ( Λ1.

Proposition 2.2.2. The graph T is a homogeneous tree of degree p+1.

Proof. See the proof of Proposition 1.3.2 in [15]

Let Λ be the Zp-lattice generated by x1 and x2, i.e. Λ = 〈x1, x2〉 = Zpx1 + Zpx2.

The group G acts on T as follows:

γ.l = [γ.Λ := 〈γx1, γx2〉], l = [Λ] and γ ∈ G.

Here we view xi as column vectors in Qp and γxi is the usual matrix multiplication.

For λ ∈ Q×p , we know that γ.λΛ = λγ.Λ and hence two lattices Λ and Λ
′

satisfies

Λ ∼ Λ
′ ⇒ γ.Λ ∼ Λ

′
. The action is well-defined.

The tree space T is treated as a combinatorial object: a collection T0 of vertices

indexed by homothety classes of Zp-lattice in Q2
p and a collection T1 of edges consisting

of pairs of adjacent vertices. An ordered edge is an ordered pair e=(v1,v2) of adjacent

vertices. Then we can denote by s(e):=v1 and t(v):=v2 the source and target of e

respectively. Write E(T ) be the set of ordered edges of T and write V(T ) be the set of

vertices of T .

Let v0 ∈ T0 be the distinguished vertex of T attached to the homothety class of

the standard lattice Z2
p ⊂ Q2

p. The edges having v0 as endpoint correspond to index p

sublattices of Z2
p and thus are in canonical bijection with P1(Fp). Label these edges as

e0,..., ep−1, e∞ ∈ T1.

Proposition 2.2.3. There is a unique map
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r: Hp → T = T0 ∪ T1

satisfying the following properties:

1. r(τ)=v0 if and only if τ ∈ A;

2. r(τ)=et if and only if τ ∈ Wt;

3. r is G-equivariant, i.e.,

r(γτ)=γr(τ), for all γ ∈ G.

Proof. The proof of this proposition is explained in Proposition 5.1 of [12].

If e = {v1, v2} is an edge of T , it is convenient to denote by ]e[⊂ T the singleton {e}

and call it the open edge attached to e. The subset [e]:={e, v1, v2} of T is called the

closed edge attached to e. The sets A[e] := r−1([e]) and W]e[ := r−1(]e[) are called the

standard affinoid and the standard annulus attached to e respectively. Note that A[e] is

a union of two translates by G of the standard affinoid A glued along the annulus W]e[.

The collection of affinoids A[e], as e ranges over T1, gives a covering of Hp by standard

affinoids whose pairwise intersections are either empty or of the form Av := r−1(v) with

v ∈ V(T ).

Fix an affinoid A0 ⊂ Hp. A rational function having poles outside A0 attains its

supremum on A0 (with respect to the p-adic metric). Hence the space of such functions

can be equipped with the sup norm.

Definition 2.2.4. A Cp-valued function f on Hp is said to be rigid-analytic if, for each

edge e of T , the restriction of f to the affinoid A[e] is a uniform limit, with respect to

the sup norm, of rational functions on P1(Cp) having poles outside A[e].

Remark 2.2.5. Let Γ be a discrete subgroup of SL2(Qp). The quotientHp/Γ is equipped

with the structure of a rigid analytic curve over Qp and can be identified with the rigid

analytification of an algebraic curve X over Qp [17]. Not every curve over Qp can be

expressed as such a quotient. In fact, it can be shown that if X = Hp/Γ where Γ acts

on T without fixed points, then it has a model over Zp whose special fiber is a union

of projective lines over Fp intersecting transversally at ordinary double points. The

converse to this statement is a p-adic analogue of the classical complex uniformisation

theorem.
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2.3 p-adic measures

Let Γ ⊂ SL2(Qp) be a discrete subgroup as in the previous section.

Definition 2.3.1. A form of weight k on Hp/Γ is a rigid analytic function f on Hp

such that

f (γτ) = (cτ + d)kf (τ) for all γ=

 a b

c d

 ∈ Γ.

Denote by Sk(Γ) the Cp-vector space of rigid analytic modular forms of weight k

with respect to Γ. The space S2(Γ) can be identified with the space of rigid analytic

differential forms on the quotient Hp/Γ. In particular, the dimension of S2(Γ) over Cp

is equal to the genus of this curve.

The set P1(Qp) is endowed with its p-adic topology in which the open balls of the

form

B(a, r)={t such that |t− a| < p−r}, a ∈ Qp,

B(∞, r)={t such that |t| > pr}

form a basis. These open balls are also compact, and any compact open subset of

P1(Qp) is a finite disjoint union of open balls of the form above.

Definition 2.3.2. A p-adic distribution on P1(Qp) is a finitely additive function

µ: {compact open U ⊂ P1(Qp)} −→ Cp

satisfying µ(P1(Qp)) = 0.

If µ is any p-adic distribution on P1(Qp), and g is a locally constant function on

P1(Qp), then the integral
∫
P1(Qp)

g(t)dµ(t) can be defined as a finite Riemann sum. More

precisely, letting

P1(Qp) = U1 ∪ · · · ∪ Um

be a decomposition of P1(Qp) as a disjoint union of open balls such that g is constant

on each Uj, one defines
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∫
P1(Qp)

gdµ :=
m∑
j=1

g(tj)µ(Uj)

where tj is any sample point in Uj. The distribution relation satisfied by µ ensures that

this expression does not depend on the decomposition.

Definition 2.3.3. A p-adic measure is a bounded distribution, i.e., a distribution for

which there is a constant C satisfying

|µ(U)|p < C, for all compact open U ⊂ P1(Qp).

If λ is any continuous function on P1(Qp), then the integral of λ against µ can be

defined by the rule

∫
P1(Qp)

λ(t)dµ(t) = lim
C={Uα}

∑
α

λ(tα)µ(Uα),

where the limit is taken over increasingly fine covers {Uα} of P1(Qp) by disjoint compact

open subsets Uα, and tα is a sample point in Uα.

Remark 2.3.4. In [33], it is shown that the integral is well-defined.

The following lemma shows that the connection between measures and rigid analytic

function on Hp.

Lemma 2.3.5. Let µ be a measure on P1(Qp).

(1) The function f defined by

fµ(z) =

∫
P1(Qp)

(
1

z − t
)dµ(t)

is a rigid analytic function on Hp.

(2) If µ is a Γ-invariant measure on P1(Qp), i.e.,γµ(t) = µ(γt) = µ(t), then fµ

belongs to S2(Γ).

Proof. See the proof of Lemma 5.8 in [12].

Denote by Meas(P1(Qp),Cp)
Γ the space of all Γ-invariant measures on P1(Qp).
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Theorem 2.3.6. (Schneider, Teitelbaum) The assignment µ 7→ fµ is an isomorphism

from Meas(P1(Qp),Cp)
Γ to S2(Γ).

Proof. See the proof of Theorem 5.9 in [12].

Definition 2.3.7. A harmonic cocycle on T is a function c: E(T )→ Cp satisfying

1. c(e) = −c(ē), for all e ∈ E(T );

2.
∑

s=(e) c(e) = 0 and
∑

t(e)=v c(e) = 0, for all v ∈ T0.

A harmonic cocycle c gives rise to a distribution µc on P1(Qp) by the rule

µc(Uc) = c(e).

Conversely, c can be recovered from the associated distribution by the rule above.

Under this bijection, the Γ-invariant distributions correspond to Γ-invariant harmonic

cocycles on T .

2.4 p-adic line integrals

Let f be a rigid analytic function on Hp. We need to define a notation of p-adic line

integral attached to such a function. This line integral should be an expression of the

form
∫ τ2
τ1

f (z)dz ∈ Cp and it should be linear and satisfy:∫ τ2

τ1

f (z)dz +

∫ τ3

τ2

f (z)dz =

∫ τ3

τ1

f (z)dz, ∀τ1, τ2, τ3 ∈ Hp.

If f (z)dz = dF is an exact differential on H, one defines∫ τ2

τ1

f (z)dz = F (τ1)− F (τ2). (2.4.1)

The equation dF = f (z)dz is sufficient to define F up to a locally constant function

in the complex setting. In the p-adic topology, there are plenty of locally constant

functions which are not constant, because Hp is totally disconnected. This leads to

an ambiguity in the choice of F , which is remedied by working with the rigid analytic

topology in which all locally constant functions are constant.

However, in general there need not exist a rigid analytic F on Hp such that dF =

f (z)dz. One may try to remedy this situation by singling out an antiderivative of
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certain rational functions. The p-adic logarithm defined on the open disc in Cp of

radius 1 centered at 1 by the power series

log(1− z) =
∞∑
n=1

zn

n

is singled out by the property of being a homomorphism from this open disc to Cp.

Choose an extension of the p-adic logarithm to all of C×p

log: C×p → Cp

by fixing some element π ∈ Cp satisfying | π |p< 1 and let log(π)=0 (it is a homomor-

phism on C×p ). The standard choice is obtained by taking π = p.

Having fixed a choice of p-adic logarithm, for each rational differential f (z)dz on

P1(Cp), a formal antiderivative of the form

F (z) = R(z) +
t∑

j=1

λjlog(z − zj),

where R is a rational function, the λ′js belong to Cp, and the zj are the poles of f (z)dz.

This antiderivative is unique up to an additive constant, and hence the equation 2.4.1

can be used to fix a well-defined line integral attached to f (z)dz.

Definition 2.4.1. Let f be a rigid analytic function on Hp. Assume that its associated

boundary distribution µf is a measure. Choose a branch log: C×p → Cp of the p-adic

logarithm. Then the p-adic line integral associated to this choice is defined to be∫ τ2

τ1

f (z)dz :=

∫
P1(Qp)

log(
t− τ2

t− τ1

)dµf (t), τ1, τ2 ∈ Hp. (2.4.2)

Note that the integral is a locally analytic Cp-valued function on P1(Qp), so that

the integral converges in Cp. The equation 2.4.2 can be justified by the following

computation relying on the Lemma 2.3.5:∫ τ2

τ1

f (z)dz =

∫ τ2

τ1

∫
P1(Qp)

(
dz

z − t
)dµf (t) =

∫
P1(Qp)

log(
t− τ2

t− τ1

)dµf (t).

Because the p-adic measure µf comes from a harmonic cocycle taking value in Z

and not just Zp, it is possible to define the multiplicative refinement of the p-adic line

integral by formally exponentiating the expression in 2.4.2

×
∫ τ2

τ1

f (z)dz := ×
∫
P1(Qp)

(
t− τ2

t− τ1

)dµf (t) ∈ C×p ,
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where

×
∫
P1(Qp)

g(t)dµf (t) := lim
C

∏
Uα∈C

g(tα)µ(Uα)

the limit is taken over increasingly fine covers C={ Uα }α of P1(Qp) by disjoint compact

open subsets, with tα ∈ Uα. This limit exists if logg is locally analytic and g takes

values in a compact subset of C×p .

Remark 2.4.2. The multiplicative integral has the advantage over its more classical

additive counterpart that it does not rely on a choice of p-adic logarithm and carries

more information. The two integrals are related by the formula∫ τ2

τ1

f (z)dz = log(×
∫ τ2

τ1

f (z)dz).



Chapter 3

Darmon points

This chapter reviews the definition of Darmon points given in [11]. Let the notation be

as in the introduction: E/Q is an elliptic curve of conductor N = Mp with p - M and

F/Q is a real quadratic field of discriminant D = DF such that all primes dividing M

are split in F and p is inert in F .

3.1 Modular symbol

For any field L, let Pk−2(L) be the space of homogeneous polynomials in 2 variables of

degree k − 2, and let Vk−2(L) be its L-linear dual. Let γ =

 a b

c d

 ∈ GL2(L) act

from the right on P (x, y) ∈ Pk−2(L) by the formula

(P | γ)(x, y) = P (ax+ by, cx+ dy)

and we equip Vk−2(L) with the dual action.

Definition 3.1.1. Let G be an abelian group. An G-valued modular symbol is a

function

I: P1(Q) × P1(Q) → G

(x, y) 7→ I{x→ y}

satisfying
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1. I{ x → y }=−I{ y → x }, for all x, y ∈ P1(Q).

2. I{ x → y }+ I{ y → z }= I{ x → z }, for all x, y, z ∈ P1(Q).

Denote by MS(G) the group of G-valued modular symbols. The group GL2(Q) acts

from the left by fractional linear transformations on P1(Q), and if G is equipped with

a left GL2(Q)-action, then MS(G) inherits a right GL2(Q)-action by the rule

(I | γ){x→ y} := γ.I{γ−1x→ γ−1y}.

For any positive integer M , the group

Γ0(M) :=
{ a b

c d

 ∈ SL2(Z) such that M divides c
}

is called the Hecke congruence group of level M . Denote by Sk(M) := Sk(Γ0(M)) the

space of cusp forms of weight k on Γ0(M). Denote by MSΓ0(G) the space of Γ0(M)-

invariant modular symbol.

Given f ∈ Sk(M), we may attach to f the standard modular symbol Ĩf ∈MSΓ0(Vk−2(C)),

explicitly, for r, s ∈ P1(Q) and P (x, y) ∈ Pk−2(C) an homogeneous polynomial of degree

k − 2, put

Ĩf {r → s}(P (x, y)) = 2πi

∫ s

r

f (z)P (z, 1)dz.

Remark 3.1.2. The integral is along any path in H between r and s which is discussed

in [35]. According to the cuspidality of f , the integral converges. The details about the

convergence of the integral are discussed in [12].

Remark 3.1.3. We can check that

(Ĩf | γ)(P (x, y)) = γ.Ĩf {γ−1r → γ−1s}(P (x, y))

= 2πi

∫ s

r

f (z)P (z, 1)dz

= 2πi

∫ γ.s

γ.r

f (γ−1z)P (γ−1z, 1)dγ−1z

= Ĩf {γ.r → γ.s}((P | γ−1)(x, y)).
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In [12], it is defined an action of the Hecke operators Tp, for p -M , by

Tp(I){x→ y} = I{px→ py}+

p−1∑
j=0

I{x+ j

p
→ y + j

p
}.

Let ΛE denote the so-called Neron lattice of E, generated by the periods of a Neron

differential on E. Let tE be the greatest common divisor of the integer p + 1− ap(E),

where p ranges over all primes which are congruent to 1 modulo M .

Theorem 3.1.4. The modular symbol mf attached to fE takes values in a lattice Λ,

which is contained in 1
tE

ΛE with finite index.

Proof. See the proof of Theorem 2.20 in [12].

The matrix ω∞ =

 1 0

0 −1

 normalises Γ0 and induces an involution on the

space MSΓ0(M)(Vk−2(C)). Let Ĩ+
f and Ĩ−f denote the plus and minus eigencomponents

of If for the involution. Suppose that f is a normalized eigenform and let Kf be the

field generated over Q by the Fourier coefficients of f . Thus we have the following

proposition:

Proposition 3.1.5. There exists complex periods Ω+
f and Ω−f with the property that the

modular symbols

I+
f := (Ω+

f )−1Ĩ+
f , I−f := (Ω−f )−1Ĩ−f

belong to MSΓ0(M)(Vk−2(Kf )). These periods can be chosen to satisfy

Ω+
f Ω−f = 〈f , f 〉,

where 〈f , f 〉 is the Petersson scalar product of f with itself.

Proof. The proof is explained in Section 1.1 of [34] and [40].

Choose a sign at infinity ω∞ ∈ {+1,−1}, and set

Ωf :=

 Ω+
f ω∞ = +1;

Ω−f ω∞ = −1;
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If :=

 I+
f ω∞ = +1;

I−f ω∞ = −1.

Let H1
c denote compactly supported cohomology.

By Proposition 4.2 of [1], we can get

MSΓ0(M)(Vk−2) ∼= H1
c (Γ0(M), Vk−2).

Moreover we have a natural map H1
c (Γ0(M), Vk−2)→ H1(Γ0(M), Vk−2), which sends a

modular symbol I to the 1-cocycle: γ 7→ I{γ.x→ x}.

3.2 Double integrals

Let f be the newform of level N attached to E by modularity. Let M2(Z[1/p]) denote

the ring of 2 × 2 matrices with entries in Z[1/p], and let R ⊂ M2(Z[1/p]) denote the

subring of matrices which are upper-triangular modulo M . Define the group

Γ = {γ ∈ R× | det(γ) = 1},

which acts on Hp by Möbius transformations. Let P denote a subset of P1(Q). The

following proposition is key to the definition of Darmon points.

Proposition 3.2.1. There exists a unique system of Z-valued measure on P1(Qp),

indexed by r, s ∈ P and denoted µf {r → s}, satisfying the following properties.

1. For all r, s ∈ P,

µf {r → s}(P1(Qp)) = 0, µf {r → s}(Zp) = If {r → s}.

2. For all γ ∈ Γ, and all compact open U ⊂ P1(Qp),

µf {γ.r → γ.s}(γ.U) = µf {r → s}(U).

Proof. See the proof of Proposition 2.6 of [13].

The measures µf can be used to define a double multiplicative integral attached to

τ1, τ2 ∈ Hp and x, y ∈ P, by setting

×
∫ τ2

τ1

∫ y

x

ωf := ×
∫
P1(Qp)

(
t− τ2

t− τ1

)dµf {x→ y}(t) ∈ Cp.
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The following lemma shows the properties of the multiplicative integral defined

above:

Lemma 3.2.2. The double multiplicative integral defined above satisfies the following

properties:

1.×
∫ τ3

τ1

∫ y

x

ωf = ×
∫ τ2

τ1

∫ y

x

ωf ××
∫ τ3

τ2

∫ y

x

ωf

2.×
∫ τ2

τ1

∫ x3

x1

ωf = ×
∫ τ2

τ1

∫ x2

x1

ωf ××
∫ τ2

τ1

∫ x3

x2

ωf

3.×
∫ γτ2

γτ1

∫ γy

γx

ωf = (×
∫ τ2

τ1

∫ y

x

ωf )
ω|γ|ω

sgn(γ)
∞ , for all γ ∈ R×.

Proof. See the proof of Lemma 1.10 in [11] where more details are discussed.

Let q ∈ pZp be the Tate period attached to E, and write

ΦTate:C×p /qZ → E(Cp)

for the Tate uniformisation. See [53] for details.

Let logq:C×p → Cp denote the branch of the p-adic logarithm satisfying logq(q)=0,

and define a homomorphism

logE:E(Cp) → Cp

by the rule

logE(P ):=logq(Φ
−1
Tate(P )).

Define the additive version of the double multiplicative integral to be∫ τ2

τ1

∫ s

r

ωf := logq(×
∫ τ2

τ1

∫ s

r

ωf ). (3.2.1)

3.3 Indefinite integrals

We introduce the notion of indefinite integral. The following result justifies the choice

of branch of p-adic logarithm that was made in 3.2.1.
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Proposition 3.3.1. There is a unique function from Hp × P× P to Cp, denoted

(τ, r, s) 7→
∫ τ ∫ y

x

ωf

satisfying

1. For all γ ∈ Γ, ∫ γτ ∫ γy

γx

ωf =

∫ τ ∫ y

x

ωf .

2. For all τ1, τ2 ∈ H,∫ τ2
∫ y

x

ωf −
∫ τ1

∫ y

x

ωf =

∫ τ2

τ1

∫ y

x

ωf .

3. For all x, y, z ∈ P,∫ τ ∫ y

x

ωf +

∫ τ ∫ z

y

ωf =

∫ τ ∫ z

x

ωf .

Proof. The proof of this proposition is explained in [11].

The function characterised indirectly in the proposition above is called the indefinite

integral attached to f .

Remark 3.3.2. It is the existence of the indefinite integral that relies crucially on the

branch of p-adic logarithm chosen. The uniqueness of the indefinite integral is also

discussed in [4].

The double multiplicative integral gives rise to a 1-cocycle c̃f ,τ (γ) ∈ Z1(Γ,M(C×p ))

by the rule

c̃f ,τ (γ){x→ y} = ×
∫ γτ

τ

∫ y

x

ω.

The natural image cf of c̃f ,τ in H1(Γ,M(C×p )) is independent of the choice of τ .

The Cp-valued 2-cocycle d̃τ,x ∈ Z2(Γ,C×p ) is defined by setting

d̃τ,x(α, β) := c̃f ,τ (α
−1){x→ βx} = ×

∫ α−1τ

τ

∫ βx

x

ω.

The natural image d of d̃τ,x in H2(Γ,C×p ) does not depend on the choice of τ and x.

Recall thatM(Cp) denotes the left Γ-module of Cp-valued modular symbol on P1(Q)

and F denote the Cp-valued functions on P1(Q).

The map ∆: F →M(Cp) defined by
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(∆f){x→ y}:= f (y)− f (x)

is surjective and has as kernel the space of constant functions. Taking the cohomology

of the short exact sequence of Cp[Γ]-modules

0→ Cp → F
∆→M(Cp)→ 0

yields a long exact sequence in cohomology:

H1(Γ,F)→ H1(Γ,M(Cp))
δ→ H2(Γ,Cp)→ H2(Γ,F)

All the cohomology groups appearing in the exact sequence are endowed with a natural

action of the Hecke operators Tl with l - N , defined as in [51]. These groups are

equipped with the Atkin-Lehner involution W∞ at ∞, defined using the matrix a∞ = 1 0

0 −1

 which belongs to the normalisers of the groups Γ0(N), Γ0(M), Γ
′
0(M)(:=

apΓ0(M)a−1
p , ap is the matrix used to define the Atkin-Lehner involution Wp) and Γ in

R×. On modular symbols W∞ is defined by the rule

(W∞m){x→ y} = m{a∞x→ a∞y} = m{−x→ −y},

and on H1(Γ,M(Cp)) by the rule

(W∞c)(γ){x→ y} = c(γa∞){−x→ −y}.

Let qZ = {qn : n ∈ Z} be the discrete subgroup of C×p . We have the following theorem:

Theorem 3.3.3. There exists a lattice Λp ⊂ C×p commensurable with qZ and such that

the natural images of d in H2(Γ,C×p /Λp) and of c in H1(Γ,M(C×p /Λp)) are trivial.

Proof. See the proof of Theorem 5.2 in [5].

We can define an modular symbol mτ ∈ C0(Γ,M(C×p /qZ)) and a 1-cochain ξτ,x ∈

C1(Γ,C×p /qZ) by the rules

c̃τ = dmτ , d̃τ,x = dξτ,x.

It is useful to adopt the notation

×
∫ τ ∫ y

x

ωf := mτ{x→ y} ∈ C×p /qZ,



26 Darmon points

Proposition 3.3.4. The indefinite multiplicative integral ×
∫ τ ∫ y

x
ωf satisfies the follow-

ing properties:

×
∫ τ2

τ1

∫ y

x

ω = ×
∫ τ2

∫ y

x

ω ÷×
∫ τ1

∫ y

x

ω, (mod qZ)

×
∫ τ ∫ x3

x1

ω = ×
∫ τ ∫ x2

x1

ω ××
∫ τ ∫ x3

x2

ω, (mod qZ)

×
∫ γτ ∫ γy

γx

ω = (×
∫ τ ∫ y

x

ω)ω
|γ|ω

sgn(γ)
∞ , (mod qZ)

for all γ ∈ R×.

Proof. See the proof of Lemma 3.7 in [11].

Note that logq(q
Z)=0, and we can write∫ τ ∫ y

x

ωf = logq(×
∫ τ ∫ y

x

ωf ).

3.4 Darmon points

We now define Darmon points using indefinite integrals above. Since p is inert in F ,

the set Hp ∩ F is non-empty. The order associated to τ ∈ Hp ∩ F is defined to be

Oτ =
{ a b

c d

 ∈ R such that aτ + b = cτ 2 + dτ
}

.

Via the map

 a b

c d

 7→ cτ + d, Oτ is identified with a Z[1/p]-order of F . Given τ

∈ Hp ∩ F , let γτ=

 a b

c d

 denote the unique generator for the stabiliser of τ in Γ

satisfying cτ + d >1 (with respect to the chosen embedding F ⊂ Q̄). Let ΦTate: Cp/q
Z

→ E(Cp) denote the Tate uniformisation of E at p. We associate to τ a multiplicative

and an additive period by choosing any base point x ∈ P1(Qp) and setting

J×τ := ×
∫ τ ∫ γτx

x

ωf ∈ Cp, Jτ := logq(J
×
τ ) =

∫ τ ∫ γτx

x

ωf .
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The image of J×τ under ΦTate is well-defined in E(Cp) ⊗ Q, and is called the Darmon

point attached to τ and f :

Pτ := ΦTate(J
×
τ ); logE(Pτ ) = Jτ .

3.5 Shimura reciprocity law

Fix an integer c prime to D ·N and let Oc be the order of F of conductor c. Let QDc2

denote the set of primitive binary quadratic forms Ax2 + Bxy + Cy2 of discriminant

Dc2. The group SL2(Z) acts from the right on the set QDc2 via the formula

(Q | γ)(x, y) = Q(ax+ by, cx+ dy), Q ∈ QDc2 and γ =

 a b

c d

 ∈ SL2(Z).

(3.5.1)

The set of SL2(Z)-equivalence classes of primitive integral binary quadratic forms of

discriminant Dc2 is equipped with the group structure given by Gaussian composition

law. If H+
c is the strict ring class field of F of conductor c, then its Galois group

G+
c = Gal(H+

c /F ) is isomorphic to the group QDc2/SL2(Z) via global class field theory(

[9], Theorem 14.19).

The modified Heegner hypothesis implies that there exists an element δ ∈ Z satis-

fying

δ2 ≡ D (mod 4M).

Fix such a δ and let FDc2 denote the subset of QDc2 consisting of forms Q(x, y) =

Ax2 +Bxy + Cy2 such that

M | A and B ≡ δ (mod 2M).

The group Γ0(M) acts on the set FDc2 by the formula 3.5.1. The natural map

FDc2/Γ0(M)→ G+
c
∼= QDc2/SL2(Z)

obtained by sending the class of the quadratic form Q = Ax2 + Bxy + Cy2 to its

corresponding SL2(Z)-equivalence class is seen to be a bijection and hence FDc2/Γ0(M)
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is endowed with the structure of a principal homogeneous space under G+
c . If Q ∈

FDc2/Γ0(M) and σ ∈ G+
c , write Qσ for the image of Q by σ.

Define

HDc2

p = {τ ∈ Hp ∩ F | Oτ = Oc}.

Given Q = Ax2 +Bxy + Cy2 ∈ FDc2 , let

τQ :=
−B + c

√
D

2A

be a fixed root of the quadratic polynomial Q(x, 1). Note that τQ belongs to HDc2

p , and

that its image in Γ \ HDc2

p is well-defined. Given σ ∈ G+
c , write τσQ ∈ HDc2

p for the root

of any quadratic form in the Γ0(M)-equivalence class of τQσ .

Let P be a point in E(H+
c ). Since p is inert in F , it splits completely in H+

c , and

therefore, after fixing a prime of H+
c above p, the point P localizes to a point in E(Fp),

where Fp is the completion of F at unique prime above p.

Denote by τp ∈ Gal(H+
c /Q) the Frobenius element at p. Since the prime p is inert in

F , the element τp, which is only defined up to conjugation, corresponds to a reflection

in the dihedral group Gal(H+
c /Q). This reflection corresponds to the involution in

Gal(Fp/Qp) after fixing an embedding H+
c → Fp. Proposition 5.10 of [11] asserts there

exists an στ ∈ G+
c satisfying

τp(Jτ ) = −ωMJτστ (3.5.2)

and

τp(Pτ ) = ωNPτστ

where ωM and ωN are the signs of the Atkin-Lehner involution WM and WN , respec-

tively, acting on f .

τp does not commute with ΦTate in general, but rather satisfies

τpΦTateτp = apΦTate = −ωpΦTate.

Conjecture 3.5.1. The Darmon point PτQ is the localization of a global point Pc,

defined over H+
c , and the Galois action on this point is described by the following

Shimura reciprocity law: if Pc ∈ E(H+
c ) localizes to PτQ ∈ E(Fp) then P σ

c localizes to

Pτσq .
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Hida theory

4.1 Hida families

This chapter gives the definition of the indefinite integral and of Darmon points in

terms of periods attached to Hida families.

Definition 4.1.1. A profinite group is a topological group G which is Hausdorff and

compact, and which admits a basis of neighbourhoods of 1 ∈ G consisting of normal

subgroups.

The Iwasawa algebra, usually denoted by Λ, is the complete group algebra Zp[[G]]

of a profinite group G, which is noncanonically isomorphic to Zp. More details about

Iwasawa algebras and Iwasawa modules can be found in Chapter V of [45].

Let

Λ̃ := Zp[[Z×p ]], Λ=Zp[[(1 + pZp)×]]

denote the usual Iwasawa algebras, and let

X = Hom(Z×p ,Z×p ) ' Z/(p− 1)Z× Zp

be the space of continuous p-adic characters of Zp, equipped with its natural p-adic

topology. Elements of X can also be viewed as continuous algebra homomorphisms

from Λ̃ to Zp. The set Z embeds naturally in X by the rule

k 7→ xk, with xk(t) = tk−2 for t ∈ Z×p .
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Note that with these conventions, the element 2 corresponds to the augmentation map

on Λ̃ and Λ.

If U ⊂ X is an open subset of X , then A(U) denote the collection of analytic

functions on U , i.e, the collection of functions which can be expressed as a power series

on each intersection U ∩ ({a} × Zp), a ∈ Z/(p − 1)Z. Assume that U is contained in

the residue disk of 2, then A(U) is simply the ring of power series that converge on an

open set of Zp.

A Hida family is a formal q-expansion

f∞ =
∞∑
n=1

an(k)qn, an(k) ∈ A(U),

satisfying the following properties. Let Z>2 denote the set of integers which are > 2:

1. If k belongs to U ∩ Z>2, the q-expansion

fk :=
∞∑
n=1

an(k)qn

is a normalised eigenform of weight k on Γ0(N). It is new at the primes dividing

M = N/p. It is referred to as the weight k specialisation of f∞. More precisely,

if k ∈ U ∩ Z>2, the modular form fk arises from a normalised newform on Γ0(M),

denoted f ]k =
∑
n

an(f ]k)q
n. If (p, n) = 1, then an(f ]k) = an(fk). Letting

1− ap(f ]k)p
−s + pk−1−2s = (1− αp(k)p−s)(1− βp(k)p−s)

denote the Euler factor at p that appears in the L-series of f ]k, we may order the roots

αp(k) and βp(k) in such a way that

αp(k) = ap(fk), βp(k) = pk−1ap(fk)
−1.

With this convention, we have

fk(z) = f ]k(z)− βp(k)f ]k(pz).

2. For k = 2, let f2 = f .

The field Ffk generated by the Fourier coefficient of the normalised eigenform fk is a

finite extension of Q. For each k ∈ U ∩ Z≥2, we choose the Shimura periods Ω+
k := Ω+

fk
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and Ω−k := Ω−fk as in 3.1.5, requiring that

Ω+
2 Ω−2 = 〈f, f〉, Ω+

k Ω−k = 〈f ]k, f
]
k〉 (k > 2).

Thanks to these periods we may talk about the Vk(Cp)-valued modular symbols I+
fk

and

I−fk associated to each fk.

4.2 Periods attached to Hida families

Let L∗=Z2
p denote the standard Zp-lattice in Q2

p, and let L
′
∗ denote its set of primitive

vectors, i.e, the vectors in L∗ which are not divisible by p. Let D denote the space of

compactly supported Qp-valued measures on W :=Q2
p-{(0, 0)}, and let D∗ denote the

subspace of measures that are supported on L
′
∗. The group Z×p acts on W and L

′
∗ by

the rule: λ(x, y) = (λx, λy), for λ ∈ Λ, which defines the Λ and Λ̃ module structure

on D and D∗. The module D is also equipped with a right Λ̃-linear action of GL2(Qp)

defined by the rule ∫
W
Fd(γ|µ) =

∫
γ−1W

(F |γ)dµ

where GL2(Qp) operates on the continuous functions on W by the rule:

(F |γ) := F (ax+ by, cx+ dy), for γ =

 a b

c d

 .

Let Γ0(pZp) be the group of matrices in GL2(Zp) which are upper triangular modulo

p. For all k ∈ Z≥2, there is a Γ0(pZp)-equivariant homomorphism

ρk : D∗ → Vk−2(Cp).

defined by

ρk(µ)(P (x, y)) :=

∫
Zp×Z×p

P (x, y)dµ(x, y).

which induces a Γ0(pZp)-equivariant map

ρk : MSΓ0(M)(D∗)→ MSΓ0(N)(Vk(Cp)).
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where the space MSΓ0(M)(D∗) is equipped with a natural action of the Hecke operators

and of the operator Up. Let MSord
Γ0(M)(D∗) denote the largest submodule on which Up

acts invertibly and call this the ordinary subspace of MSΓ0(M)(D∗).

Recall the ring Λ† ⊂ Λ of power series which converges in some neighbourhood of 2

∈ X , and set

D†∗:=D∗
⊗

Λ Λ†.

Similar notations are adopted, with the obvious meanings, when D∗ is replaced by D.

If

µ=λ1µ1+· · ·+λtµt, with λi ∈ Λ†, µi ∈ D∗

is any element of D†∗, then there exists a neighbourhood Uµ of 2 ∈ H on which all the

coefficients λi converge. We call such a region Uµ a neighbourhood of regularity for µ.

Given k ∈ Z, a function F on W is said to be homogeneous of degree k, if

F (λx, λy))=λkF (x, y) for all λ ∈ Zp. For any k ∈ Uµ ∩ Z≥2, and any homogeneous

function F (x, y) of degree k − 2, one can integrate F against µ on any compact open

region X ⊂ W by the rule∫
X

Fdµ := λ1(k)

∫
X

Fdµ1 + · · ·+ λt(k)

∫
X

Fdµt.

The space MSΓ0(M)(D∗) is equipped with a natural action of the Hecke operators,

including an operator Up. More precisely, it is given by the formula∫
X

Fd(Upµ){r → s} =

p−1∑
a=0

∫
p−1γaX

(F | pγ−1
a )dµ{γar → γas}.

Proposition 6.1 of [22] shows the module MSΓ0(M)(D∗) is free of finite rank over Λ.

Therefore the same is true of the Λ†-module

MSord
Γ0(M)(D∗)† := MSord

Γ0(M)(D∗)⊗Λ Λ†.

Theorem 4.2.1. There exists a D†∗-valued modular symbol µ∗ ∈ MSord
Γ0(M)(D∗)† such

that

1. ρ2(µ∗)=If ;

2. For all k ∈ Uµ∗ ∩ Z≥2, there exists a scalar λ(k) ∈ Cp such that
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ρk(µ∗)=λ(k)Ifk .

Proof. This is Theorem 5.13 of [22] and the proof is explained in section 6 of that

paper.

Remark 4.2.2. Note that µ∗ depends on the choice of sign ± and that there are two

D†∗-valued modular symbols, µ±∗ ∈ MSord
Γ0(M)(D∗)†, such that ρ2(µ±∗ ) = I±f and for all

integers k ∈ U , k ≥ 2, there is λ±(k) ∈ Cp such that ρk(µ
±
∗ ) = λ±(k)I±fk ; also, U can be

chosen so that λ±(k) 6= 0 for all k ∈ U .

Proposition 4.2.3. There is a neighbourhood U of 2 ∈ X , with λ(k) 6= 0, for all

k ∈ U ∩ Z≥2.

Proof. See the proof of Proposition 1.7 in [3].

Define a collection of D†-valued modular symbols µL indexed by the Zp-lattices in

Q2
p. Recall the group defined as follows:

Γ=
{
γ =

 a b

c d

 ∈ GL2(Z[1/p]) with M |c, det(γ) > 0
}

.

Proposition 4.2.4. There exists a unique collection {µL} of D†-valued modular sym-

bols, indexed by the Zp-lattices L ⊂ Q2
p and satisfying:

1. µL∗=µ∗;

2. For all γ ∈ Γ, and all compact open X ⊂ W,∫
γX

(F |γ−1)dµγL{γr → γs} =

∫
X

FdµL{r → s}.

Proof. See the proof of Proposition 1.8 in [3].

Some properties of the measure µL are recorded in a sequence of lemmas.

Lemma 4.2.5. Let L be a lattice and L′ be its set of primitive. The distributions

µL{r → s} are supported on L′, for all r,s ∈ P1(Q).

Proof. See the proof of Lemma 1.9 in [3].
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Lemma 4.2.6. Suppose that L2 ⊂ L1 is a sublattice of index p in L1. Then for all

k ∈ U ∩ Z≥2, for all homogeneous functions F on L
′
1 ∩ L

′
2 of degree k-2, and for all

r,s ∈ P1(Q), we have∫
L
′
1∩L

′
2

FdµL2{r → s} = ap(k)

∫
L
′
1∩L

′
2

FdµL1{r → s}.

Proof. See the proof of Lemma 1.10 in [3].

4.3 Indefinite integrals revisited

The relevance of Hida families to Darmon points can be explained by the fact that the

system of distribution-valued modular symbols µL{r → s} can be used to give a direct

formula for this indefinite integral.

When τ ∈ Hp ∩ Fp, and hence is defined over a quadratic unramified extension of

Qp. In that case, the function

(x, y) 7→ x− τu

identifies Q2
p with Fp. Let Lτ be the Zp-lattice in Q2

p defined by

Lτ = {(x, y) | x− τy ∈ OF ⊗ Zp}.

Recall the notation in Chapter 3,

Theorem 4.3.1. For all τ ∈ Hp ∩ Fp, and for all r,s ∈ P,∫ τ ∫ s

r

ωf =

∫
L′τ

log(x− τy)dµLτ{r → s}(x, y),

where log : F×p → Fp is any branch of the p-adic logarithm.

Corollary 4.3.2. The Darmon point PτQ associated to

Q ∈ FDc2/Γ0(M)

satisfies

logEPτQ = Jτ =

∫
(Z2
p)′

log(x− τr)dµ∗{r → γτr}(x, y).
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Proof. See the proof of Theorem 2.5 and Corollary 2.6 in [4].

Theorem 4.3.3. If Q ∈ FDc2, then

logE(PτQ) =

∫
(Z2
p)′

logE(x− τQy)dµ±∗ {r → s}(x, y).

Proof. This follows from 4.3.1 as in 4.3.2 noticing that the set

{(x, y) ∈ Q2
p | x− τQy ∈ OK ⊗ Zp}

coincides with Z2
p.
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Chapter 5

Automorphic forms

In this chapter, we will review some basic knowledge about automorphic forms.

5.1 Haar measure and Tamagawa measure

Definition 5.1.1. Let X be a topological space. The ring B(X) of Borel sets on X is

the smallest collection of subsets of X such that:

(1) every open subset of X is in B(X),

(2)
∞⋃
i=1

Ai ∈ B(X), whenever Ai ∈ B(X) for i = 1, 2, . . . ,

(3) A ∩ (X −B) ∈ B(X) whenever A,B ∈ B(X).

Definition 5.1.2. Let G be a locally compact group. A left Haar measure, dL : B(G)→

[0,∞] is a measure, defined on the ring of Borel sets such that:

(1) no open set has measure 0,

(2) no compact set has measure ∞,

(3) dL(U) =sup{dL(K) | K is compact, and K ⊂ U} for all open sets U ,

(4) dL(A) =inf{dL(U) | U is open, and A ⊂ U} for all A ∈ B(G),

and dL satisfies the invariance property

dL(g.S) = dL(S), ∀g ∈ G,S ∈ B(G).

A right Haar measure is defined in the same way, except that the action is from the

right.
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Theorem 5.1.3. Let G be a locally compact group. Then there exists left (right) Haar

measure B(G)→ [0,∞], which is unique up to scalars.

Proof. See 15.8 in [31].

Definition 5.1.4. A locally compact group G is unimodular if there is a nonzero

constant C such that dRg = CdLg.

Theorem 5.1.5. Let G be a locally compact abelian group. Then the set G∗ of all

continuous homomorphisms g∗ : G → C× with | g∗(g) |= 1 (∀g ∈ G) is a locally

compact abelian group, called the Pontryagin dual of G, with the group law being

(g∗1 · g∗2)(g) = g∗1(g) · g∗2(g), (∀g ∈ G, g∗1, g∗2 ∈ G∗),

and the topology being the compact-open topology. Furthermore (G∗)∗ ∼= G.

Proof. See the section 24 in [31].

Let G be a commutative locally compact group, G∗ its dual. For g∗ ∈ G∗ a character

of G, its value at a point g of G is written as 〈g, g∗〉. Let φ be a continuous function

on G, integrable for a Haar measure dLg, given on G. Then the function φ∗ defined on

G∗ by

φ∗(g∗) =

∫
G

φ(g)〈g, g∗〉dLg

is called the Fourier transform of φ with respect to dLg. By the theory of Fourier

transforms, there is a Haar measure d∗Lg on G∗, such that the function φ∗ is integrable

on G∗, and φ is given by

φ(g) =

∫
G∗
φ∗(g∗)〈−g, g∗〉d∗Lg∗.

This measure d∗L is called the dual measure to dL. In particular, assume that G∗ has

been identified with G via some isomorphism of G onto G∗, then d∗L = mdL, with some

m ∈ R×+ and there is a unique Haar measure on G such that d∗L = dL. In this case,

when G ∼= G∗, we call dLg the self-dual Haar measure on G.

Remark 5.1.6. For more information about Haar measure and topological groups, people

can see [31] for details.
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Let V be an algebraic variety of dimension n, defined over F . Let x0 be a point of

V and x1, · · · , xn be local coordinates on V at x0. A differential n-form on V is defined

in a neighbourhood of x0 in V as follows:

ω = f(x)dx1 · · · dxn

where f is a rational function on V which is defined at x0. The form ω is said to be

defined over F if f and the coordinate functions xi are defined over F .

Let v denote a prime of F . Let G be a connected algebraic group over F and Fv be

the completion F at v. We shall use ω to construct measure ωv on the local group GFv

where GFv is the set of points of G with coordinates in Fv.

The rational function f can be written as a formal power series in ti = xi− x0
i with

coefficients in F . If x0
i are in Fv then f is a power series in the xi with coefficients

in Fv which converges in some neighbourhood of the origin in F n
v . Hence there is a

neighbourhood U of x0 in GFv such that ϕ : x 7→ (t1 . . . tn) is a homeomorphism of U

onto a neighbourhood ϕ(U) of the origin in F n
v and the power series above converges

in ϕ(U). In ϕ(U), we have the positive measure | f(t) |v dt1 · · · dtn (where dt1 · · · dtn is

the product measure µv × · · · × µv on F n
v ); pull this back to U by means of ϕ and we

have a positive measure ωv on U . Explicitly, if g is a continuous real-valued function

on GFv with compact support, then∫
U

gωv =

∫
ϕ(U)

g(ϕ−1(t)) | f(t) |v dt1 · · · dtn.

The measure ωvis independent of the choice of local coordinates xi.

Let Gov be the compact subgroups of GFv . If the product

∏
v 6=∞

ωv(Gov)

converges absolutely, we define the Tamagawa measure by

τ =
∏
v

ωv.

More details are explained in the Chapter 2 of [55] and Chapter 10 of [7].
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5.2 The adèle group GL2(AQ)

Denote by AQ the adèle ring of Q. The center of AQ is denoted by ZA:

ZA =


 t 0

0 t

 : t ∈ A×Q

.

The adèle group GL2(AQ) is the restricted product (relative to the maximal compact

subgroups Up = GL2(Zp))

GL2(AQ) = GL2(R)×
∏′

p GL2(Qp)

where restricted product (relative to the subgroups Up) means that all but finitely many

of the components in the product are in Up. An element g ∈ GL2(AQ) will be denoted

in the forms

g = {gv}v≤∞ = {g∞, · · · , gp, · · · }

where gv ∈ GL2(Qv) for all v ≤ ∞ and gp ∈ Up for all but finitely many primes p.

Given g, g
′ ∈ GL2(AQ), we define multiplication of these elements as follows:

gg
′
= {g∞g

′

∞, · · · , gpg
′

p, · · · },

where gv · g
′
v simply denotes matrix multiplication in GL2(Qv) for all v ≤ ∞.

5.3 The action of GL2(Q) on GL2(AQ)

The group GL2(Q) may be diagonally embedded in GL2(AQ) as follows:

i : GL2(Q)→ GL2(AQ) γ 7→ {γ, γ, · · · }.

We also define the embedding at ∞ by the rule

i∞ : GL2(R)→ GL2(AQ) α 7→

α,
 1 0

0 1

 ,

 1 0

0 1

 , · · · ,

.

The group i(GL2(Q)) acts from the left on GL2(AQ) by matrix multiplication.
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Definition 5.3.1. Let L2(GL2(Q) \GL2(AQ)) denote the Hilbert space of measurable

function f on GL2(AQ) such that

(1)f (γg) = f (g) for all γ ∈ GL2(Q);

(2)f (gz) = f (g)χ(z) for all z ∈ ZA;

(3)

∫
ZAGL2(Q)\GL2(AQ)

| f (g) |2 dg <∞.

5.4 Adèlic automorphic forms

We regard automorphic forms as the C-valued functions f on GL2(Q)\GL2(AQ) which

satisfy additional conditions.

Definition 5.4.1. A C-valued function f on GL2(AQ) is said to be smooth if for every

fixed g0 ∈ GL2(AQ), there exists an open set U of GL2(AQ), containing g0, and a

smooth function f∞U : GL2(R)→ C such that f (g) = f∞U (g∞) for all g ∈ U .

Definition 5.4.2. LetO(2,R) be the orthogonal group. WriteK = O(2,R)
∏

p GL2(Zp)

which is a maximal compact subgroup of GL2(AQ). A function f : GL2(AQ) → C is

said to be right K-finite if the set

{f (gk) | k ∈ K},

of all right translate of f (g) generates a finite dimensional vector space.

Let g =

 a b

c d

 ∈ GL2(AQ) where a, b, c, d ∈ AQ. Define a norm function by

|| g ||:=
∏
v≤∞

max{| av |v, | bv |v, | cv |v, | dv |v, | avdv − bvcv |−1
v }.

Definition 5.4.3. f is said to be moderate growth if there exists constants n, c ≥ 0

such that

| f (g) |≤ c || g ||n

for all g ∈ GL2(AQ).
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Let g = gl(2,R). Let U(g) be the universal enveloping algebra of gC = g⊗R C.

Definition 5.4.4. Let Z(g) denote the center of U(g). A smooth function

f : GL2(Q) \GL2(AQ)→ C

is said to be Z(g)-finite if the set {Df (g) | D ∈ Z(g)} generates a finite dimensional

vector space.

Definition 5.4.5. A Hecke character of A×Q is defined to be a continuous homomor-

phism

χ : Q× \ A×Q → C×.

A Hecke character is said to be unitary if all its values have absolute value 1.

A unitary Hecke character of A×Q is characterized by the following four properties:

(1) χ(gg
′
) = χ(g)χ(g

′
), (∀g, g′ ∈ A×Q);

(2) χ(γg) = χ(g), (∀γ ∈ Q×, ∀g ∈ A×Q);

(3) χ is continuous at {1, 1, 1, · · · };

(4) | χ(g) |= 1, ∀g ∈ G.

Now we will give the definition of an automorphic form for the adèle group.

Definition 5.4.6. Fix a unitary Hecke character χ : Q× \ A×Q → C×. A function f on

GL2(Q) \GL2(AQ) is called an automorphic form with a central character χ if

(1) f is smooth.

(2) f (zg) = χ(z)f (g), (∀g ∈ GL2(AQ), z ∈ A×Q).

(3) f is right K-finite, K is defined above.

(4) f is of moderate growth.

(5) f is Z(g)-finite.

Definition 5.4.7. For each unitary Hecke character χ, let A(GL2(AQ), χ) be the C-

vector space of all adèlic automorphic forms for GL2(AQ) with central character χ.

Definition 5.4.8. An adèlic automorphic form f is called a cusp form if∫
Q\AQ

f

 1 u

0 1

 g

 du = 0

for all g ∈ GL2(AQ). Here u ∈ AQ and du is the Haar measure on AQ.
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5.5 Automorphic representations

Definition 5.5.1. The ring of finite adèles over Q, denoted Af , is defined as follows:

Af = {(xv) : xv = 1 if v =∞} ⊂ A.

Fix a unitary Hecke character χ. Recall that a representation is determined by

a vector space and linear actions on the vector space. We are going to define three

actions, two of them using right translation by suitable elements and a third one will be

a Lie algebra action. In this section, we will explain these actions and these following

three actions form the foundation for the construction of automorphic representations:

Define an action πf : GL2(Af )→ GL(A(GL2(AQ), χ)). For φ ∈ A(GL2(AQ), χ):

πf (af ).φ(g) := φ(gaf ),

for all g ∈ GL2(AQ), af ∈ GL2(Af ). Here, πf (af ).φ denotes the action of af on the

vector φ.

Define an action πK∞ : K∞ → GL(A(GL2(AQ), χ)) as follows. The group K∞ =

O(2,R) can be embedded in GL2(AQ) If k∞ ∈ K∞, then

k∞,
 1 0

0 1

 ,

 1 0

0 1

 , . . .


is an element of GL2(AQ). Let φ ∈ A(GL2(AQ), χ) and define

πK∞(k).φ(g) := φ(gk), g ∈ GL2(AQ),

where k =

k∞,
 1 0

0 1

 ,

 1 0

0 1

 , . . .

, with k∞ ∈ K∞. Here πK∞(k).φ denotes

the action of k on the vector φ.

Before explaining the action of U(g), we need to introduce some definitions.

Definition 5.5.2. Let α ∈ gl2(R) and F : GL2(R) → C, a smooth function. The we

define a differential operator Dα acting on F by the rule:

DαF (g) :=
∂

∂t
F (g · exp(tα)) |t=0=

∂

∂t
F (g + t(g · α)) |t=0 .

Remark 5.5.3. Recall that exp(tα) = I +
∞∑
k=1

(tα)k

k!
, where I denotes the identity matrix

on gl2(R). Since we are differentiating with respect to t and then setting t = 0, only

the first two terms for exp(tα) matter.
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We may extend the action of gl2(R) on smooth functions F : GL2(R) → C to an

action of the complexification gl2(R)⊗R C = gl2(C), as follows:

Definition 5.5.4. Let β ∈ gl2(R) and F : GL2(R)→ C, a smooth function. Then we

define a differential operator Diβ acting on F by the rule:

DiβF (g) := iDβF (g).

More generally, if α + iβ ∈ gl2(C), with α, β ∈ gl2(R), then

Dα+iβ = Dα + iDβ.

The differential operator Dα+iβ generate an algebra of differential operators which

is isomorphic to the universal enveloping algebra U(g)(Chapter 4 in [18]).

Now we can define the action of U(g) by differential operators.

Let g = gl2(C) and D ∈ U(g) be a differential operator as defined above. We

may define an action πg of U(g) on the vector space A(GL2(AQ), χ) as follows. For

φ ∈ A(GL2(AQ), χ) let

πg(D).φ(g) := Dφ(g), g ∈ GL2(AQ),

where πg(D).φ denotes the action of D on φ(g), which is given by the differential

operator D acting in the variable g∞.

Remark 5.5.5. The action of the finite adèles by right translation commutes with the

action of O(2,R) and the action of the U(g). The action of O(2,R) and the action of

U(g) do not commute, but satisfy the relation πg(Dα).πK∞(k) = πK∞(k).πg(Dk−1αk).

Remark 5.5.6. The action of the finite adèle by right translation defines a group rep-

resentation of GL2(Af ). The action of K∞ = O(2,R) by right translation defines a

group representation of K∞. The action of U(g) does not define a group representation

because U(g) is not a group.

The space A(GL2(AQ), χ) is preserved by these three actions. The details are

discussed in [18].

Now we can define the following two important types of modules.
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Definition 5.5.7. Let g = gl2(C), K∞ = O(2,R), and U(g) denote the universal

enveloping algebras. We define a (g, K∞)-module to be a complex vector space V with

actions

πg : U(g)→ End(V ),

πK∞ : K∞ → GL(V ),

such that, for each v ∈ V , the subspace of V spanned by {πK∞(k).v | k ∈ K∞} is finite

dimensional, and the actions πg and πK∞ satisfy the relations

πg(Dα).πK∞(k) = πK∞(k).πg(Dk−1αk)

for α ∈ g, Dα, and all k ∈ K∞. Further, we require that

πg(Dα).v = lim
t→0

1

t
(πK∞(exp(tα)).v − v)

for all v ∈ V and α in the Lie algebra of K∞, which is contained in g.

We shall denote the pair of actions (πg, πK∞) by π and shall also refer to the ordered

pair (π, V ) as a (g, K∞)-module.

Definition 5.5.8. Let g = gl2(C) and let K∞ = O(2,R). Also let GL2(Af ) denote the

finite adèles. We define a (g, K∞)×GL2(Af )-module to be a complex vector space V

with actions

πg : U(g)→End(V ),

πK∞ : K∞ →GL(V ),

πf : GL2(Af )→GL(V ),

such that V , πg and πK∞ form a (g, K∞)-module, and in addition the relations

πf (af ) · πg(Dα) = πg(Dα) · πf (af ),

πf (af ) · πK∞(k) = πK∞(k) · πf (af ),

are satisfied for all α ∈ g, Dα ∈ Ug, k ∈ K∞, and af ∈ GL2(Af ).

We let π = (πg, πK∞), πf ), and refer to the ordered pair (π, V ) as a (g, K∞) ×

GL2(Af )-module.
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Definition 5.5.9. Let the complex vector space V be a (g, K∞) ×GL2(Af )-module.

We say the (g, K∞)×GL2(Af )-module is smooth if every vector v ∈ V is fixed by some

open compact subgroup of GL2(Af ) under the action

πf : GL2(Af )→GL(V ).

The (g, K∞) ×GL2(Af )-module is said to be irreducible if it is non-zero and has no

proper non-zero subspaces preserved by the actions πg, πK∞ , πf .

Now we define a type of morphism between these modules.

Definition 5.5.10. Let V , V ′ be complex vector spaces which are two (g, K∞)-modules

with associated actions:

πg : U(g)→End(V ), π′g : U(g)→End(V ′),

πK∞ : K∞ →GL(V ), π′K∞ : K∞ →GL(V ′).

A linear map L : V → V ′ is said to be intertwining if

L ◦ πg(D) = π′g(D) ◦ L, (∀D ∈ U(g)), L ◦ πK∞(k) = π′K∞(k) ◦ L, (∀k ∈ K∞).

If the linear map L is an isomorphism, then we say the two (g, K∞)-modules are

isomorphic.

Definition 5.5.11. Let V , V ′ be complex vector spaces which are two (g, K∞) ×

GL2(Af )-modules with associated actions:

πg : U(g)→End(V ), π′g : U(g)→End(V ′),

πK∞ : K∞ →GL(V ), π′K∞ : K∞ →GL(V ′).

πf : GL2(Af )→GL(V ), π′f : GL2(Af )→GL(V ′)

A linear map L : V → V ′ is said to be intertwining if

L ◦ πg(D) = π′g(D) ◦ L, (∀D ∈ U(g)),

L ◦ πK∞(k) = π′K∞(k) ◦ L, (∀k ∈ K∞),

L ◦ πf (af ) = π′Af (af ) ◦ L, (∀af ∈ GL2(Af )).
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If L is an isomorphism, then we say the two (g, K∞) ×GL2(Af )-modules are iso-

morphic. Sometimes these maps are called intertwining operators.

Let V be a (g, K∞)×GL2(Af )-module with actions: πg, πK∞ , πf , which is defined

above.

Let W ′ ⊂ W ⊂ V be vector subspaces of V . If W , W ′ are closed under the action

of πg, πK∞ , πf , then W/W ′ is equipped with a (g, K∞) ×GL2(Af )-module structure

as follows. Let w + W ′ denote a coset in W/W ′ with w ∈ W . Then for all w ∈ W ,

D ∈ U(g), k ∈ K∞ and af ∈ GL2(Af ), we may define

πg(D).(w +W ′) := πg(D).w +W ′,

πK∞(k).(w +W ′) := πK∞(k).w +W ′,

πf (af ).(w +W ′) := πf (af ).w +W ′.

These actions define a (g, K∞)×GL2(Af )-module which is called a subquotient of V .

Definition 5.5.12. Fix a unitary Hecke character χ : Q× \A×Q → C. An automorphic

representation with central character χ is defined to be a smooth (g, K∞)×GL2(Af )-

module which is isomorphic to a subquotient of the complex vector space of adèlic

automorphic forms A(GL2(AQ), χ).

Definition 5.5.13. Fix a unitary Hecke character χ : Q×\A×Q → C. Let g = gl2(C) and

K∞ = O(2,R). We define a cuspidal automorphic representation with central character

χ to be a smooth (g, K∞)×GL2(Af )-module which is isomorphic to a subquotient of

the complex vector space of all adèlic cusp form for GL2(AQ) with central character χ.

Remark 5.5.14. The automorphic forms are a (g, K∞)×GL2(Af )-module and the sub-

space of cuspforms is a (g, K∞)×GL2(Af )-submodule.
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5.6 Local L-function theory and Whittaker func-

tions

5.6.1 The Fourier expansion of a cusp form

Let (π, Vπ) be a cuspidal automorphic representation. Let ϕ ∈ Vπ be a cusp form on

GL2(AQ) and N(AQ) = N2(AQ) =


 1 x

0 1

 | x ∈ AQ

 be the maximal unipotent

subgroup of GL2(AQ).

For each continuous additive character ψ : Q \ AQ → C×, we define a ψ-Fourier

coefficient of ϕ by

Wϕ,ψ(g) =

∫
Q\AQ

ϕ

 1 x

0 1

 g

ψ−1(x)dx, g ∈ GL2(AQ), x ∈ AQ.

This function satisfies

Wϕ,ψ

 1 x

0 1

 g

 = ψ(x)Wϕ,ψ(g).

Since ϕ is automorphic, we have ϕ(x+ a) = ϕ(x), for a ∈ Q. Thus ϕ is periodic under

Q, then we have the Fourier expansion of ϕ:

ϕ(g) =
∑
ψ

Wϕ,ψ(g).

If we fix a non-trivial character ψ of Q\AQ, then the additive characters of the compact

group Q \ AQ correspond to the elements in Q by the map:

γ 7→ ψγ,

where ψγ is the character of the form ψγ(x) = ψ(γx), γ ∈ Q, so

ϕ(g) =
∑
γ∈Q

Wϕ,ψγ (g).

Since ϕ is cuspidal, for γ = 0 we have

Wϕ,ψ0(g) =

∫
Q\AQ

ϕ

 1 x

0 1

 g

 dx = 0
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and since ϕ is automorphic, for γ 6= 0, we have

Wϕ,ψγ (g) =

∫
Q\AQ

ϕ

 1 x

0 1

 g

ψ−1
γ (x)dx

=

∫
Q\AQ

ϕ

 γ 0

0 1

 1 x

0 1

 g

ψ−1
γ (x)dx

=

∫
Q\AQ

ϕ

 1 γx

0 1

 γ 0

0 1

 g

ψ−1(γx)dx.

We make the change of variable x 7→ γ−1x, then we have

Wϕ,ψγ (g) = Wϕ,ψ

 γ 0

0 1

 g

 ,

which gives the Fourier expansion for GL2(AQ)

ϕ(g) =
∑
γ∈Q×

Wϕ

 γ 0

0 1

 g


where we set Wϕ,ψ = Wϕ.

5.6.2 Whittaker models

Consider the functions W = Wϕ which appear in the Fourier expansion of the cusp

forms ϕ ∈ Vπ. These are smooth functions on GL2(AQ) satisfying W (ng) = ψ(n)W (g)

for all n ∈ N(AQ). Let

W(π, ψ) = {Wϕ | ϕ ∈ Vπ}.

The group GL2(AQ) acts on the space W(π, ψ) by right translation and the map

ϕ 7→ Wϕ intertwines Vπ
∼−→W(π, ψ).

The space W(π, ψ) is called the Whittaker model of π.

The idea of a Whittaker model makes sense over a local field. Let Qv be a local

field and ψv be a non-trivial continuous additive character of Qv. Let W(ψv) denote

the space of smooth functions W : GL2(Qv) → C which satisfy W (ng) = ψv(n)W (g)
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for all n ∈ N(Qv), where N(Qv) is the maximal unipotent subgroup of GL2(Qv). This

is the space of smooth Whittaker functions on GL2(Qv) and GL2(Qv) acts on it by

right translation.

If (πv, Vπv) is a smooth irreducible admissible representation of GL2(Qv), then an

intertwing

Vπv →W(ψv) denoted by ξv 7→ Wξv

gives a Whittaker model W(πv, ψv) of πv.

Fix a representation (π, Vπv), we can define a non-trivial continuous Whittaker func-

tional Λv : Vπv → C satisfying:

Λv(πv(n)ξv) = ψv(n)Λv(ξv)

for all n ∈ N(Qv) and ξv ∈ Vπv .

A model ξv 7→ Wξv gives a functional by

Λv(ξv) = Wξv(e), e is the identity of GL2(Qv),

and a functional Λv gives a model by setting

Wξv(g) = Λv(πv(g)ξv), g ∈ GL2(Qv).

The fundamental result on local Whittaker models is due to Gelfand and Kazhdan

(v <∞, [16]) and Shalika (v | ∞, [50]).

Theorem 5.6.1. Given (πv, Vπv) an irreducible admissible smooth representation of

GL2(Qv), the space of continuous Whittaker functionals is at most one dimensional

and πv has at most one Whittaker model.

Definition 5.6.2. A representation (πv, Vπv) having a Whittaker model is called generic.

Consider the smooth cuspidal representation (π, Vπ). If we factor π into local com-

ponents

π ' ⊗′πv with Vπ ' ⊗
′
Vπv
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then any Whittaker functional Λ on Vπ determines a family of Whittaker functionals

Λv on the Vπv by

Λv : Vπv ↪→ ⊗
′
Vπv

∼−→ Vπ
Λ−→ C

such that Λ = ⊗Λv.

The Theorem 5.6.1 has the following consequences.

Corollary 5.6.3. If π = ⊗′πv is any irreducible admissible smooth representation of

GL2(AQ) then the space of Whittaker functionals of Vπ is at most one dimensional,

that is, π has a unique Whittaker model.

The Vπ has a global Whittaker functional given by

Λ(ϕ) = Wϕ(e) =

∫
N(Q)\N(AQ)

ϕ(n)ψ−1(n)dn.

Corollary 5.6.4. If (π, Vπ) is cuspidal with π ' ⊗′πv then π and each of its local

components πv are generic.

5.6.3 Eulerian Integral Representations

Let (π, Vπ) be a cuspidal representation of GL2(AQ) and χ : Q×\A×Q → C× be a unitary

idèle class character, that is a cuspidal automorphic representation of GL1(AQ).

For ϕ ∈ Vπ, we set

I(ϕ, χ, s) =

∫
Q×\A×Q

ϕ

 a 0

0 1

χ(a) | a |s−
1
2 d×a.

Proposition 5.6.5. (1) I(ϕ, χ, s) is absolutely convergent for all s ∈ C, hence entire.

(2) I(ϕ, χ, s) is bounded in vertical strips.

(3) I(ϕ, χ, s) satisfies the functional equation

I(ϕ, χ, s) = I(ϕ̃, χ−1, 1− s)

where ϕ̃(g) = ϕ(tg−1).

Proof. See the discussion in Lecture 5 of [8].
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The integrals, as ϕ varies over Vπ, are analytic and we want to see that the integrals

are Eulerian, i.e, admit an expansion as an Euler product. First we replace ϕ by its

Fourier expansion:

I(ϕ, χ, s) =

∫
Q×\A×Q

ϕ

 a 0

0 1

χ(a) | a |s−
1
2 d×a

=

∫
Q×\A×Q

∑
γ∈Q×

Wϕ

 γa 0

0 1

χ(a) | a |s−
1
2 d×a

=

∫
A×Q

Wϕ

 a 0

0 1

χ(a) | a |s−
1
2 d×a Re(s) > 1.

Since π ' ⊗πv and require ϕ = ⊗′vξv, then from the uniqueness of the Whittaker model

we have

Wϕ(g) =
∏
v

Wξv(gv).

Since χ(a) =
∏
χv(av) and | a |=

∏
| av |v, we have

I(ϕ, χ, s) =
∏
v

∫
Q×v
Wξv

 av 0

0 1

χv(av) | av |
s− 1

2
v d×av

=
∏
v

Ψv(Wξ, χv, s) Re(s) > 1,

where we define

Ψv(Wξv , χv, s) =

∫
Q×v
Wξv

 av 0

0 1

χv(av) | av |
s− 1

2
v d×av

as the local integral.

This gives a factorization of our global integral into a product of local integrals.

5.6.4 Local L-function: the Non-Archimedean Case

Let (π, Vπ) be an irreducible admissible smooth unitary generic representation of GL2(Qp)

and (π′, Vπ′) be an irreducible admissible smooth unitary generic representation of

GL1(Qp).
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A Schwartz-Bruhat function is a complex valued function on Qp, which is locally

constant and has compact support. Let S(Qp) denote the vector space of Schwartz-

Bruhat functions on Qp. The basic analytic properties of the Whittaker functions are

given in the following proposition.

Proposition 5.6.6. There is a finite set of finite functions, say X(π), depending only

on π, such that for every W ∈ W(π, ψ), there exist Schwartz-Bruhat functions φχ ∈

S(Qp) such that for a ∈ Q×, we have

W

 a 0

0 1

 =
∑

χ∈X(π)

χ(a)φχ(a).

Proof. See the Proposition 2.2 in [32].

From the factorization of the global integrals, we have defined families of local

integrals {Ψ(W,χ, s)}, for W ∈ W(π, ϕ) and χ is Hecke character. Then we have the

following basic result.

Proposition 5.6.7. (1) Each local integral Ψv(W,χ, s) converges for Re(s) > 1.

(2) Each Ψv(W,χ, s) ∈ C(q−s) is a rational function of q−s and hence extends

meromorphically to all of C.

(3) Each Ψv(W,χ, s) can be written with a common denominator determined by

X(π) and X(π′). Hence the family has bounded denominators.

Proof. See the Proposition 6.2 in [8].

Theorem 5.6.8. The family of local integrals I(π × π′) = 〈Ψ(W,χ, s)〉 is a C[qs, q−s]-

fractional ideal of C(q−s) containing the constant 1.

Proof. See the discussion in Theorem 6.1 in [8].

Since the ring C[qs, q−s] is a principal ideal domain, the fractional ideal I(π × π′)

has a generator. Since 1 ∈ I(π × π′), we can take a generator having numerator 1 and

normalized (up to units) to be of the form P (q−s) when P (X) ∈ C[X] and P (0) = 1.

Definition 5.6.9. The local L-function L(π × π′, s) = P−1(q−s) is the normalized

generator of the fractional ideal I(π × π′) spanned by the local integrals. We set

L(π, s) = L(π × 1, s) where χ is the trivial character of GL1(Qp).
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Remark 5.6.10. L(π × π′, s) is the minimal inverse polynomial P (q−s)−1 such that

Ψ(W,χ,s)
L(π×π′,s) ∈ C[qs, q−s] are polynomials in qs and q−s and so are entire for all choices

W ∈ W(π, ψ) and χ.

Theorem 5.6.11. There exists a rational function γ(π × π′, ψ, s) ∈ C(q−s) such that

Ψ(W̃ , χ̃, 1− s) = ωπ′(−1)n−1γ(π × π′, ψ, s)Ψ(W,χ, s)

for all W ∈ W(π, ψ) and χ and ωπ′ is the central character.

We say that γ(π × π′, ψ, s) is the local γ-factor. An equally important local factor

is the local ε-factor

ε(π × π′, ψ, s) =
γ(π × π′, ψ, s)L(π × π′, s)

L(π̃ × π̃′, 1− s)

with the local functional equation becomes

Ψ(W̃ , χ̃, 1− s)
L(π̃ × π̃′, 1− s)

= ωπ′(−1)n−1ε(π × π′, ψ, s) Ψ(W,χ, s)

L(π × π′, s)
.

5.6.5 Local L-functions: the Archimedean Case

Let π be a representation of GL2(R) associated with a representation ρπ of the Weil

group WR of R and π′ be a representation of GL1(R) associated with a representation

ρ′π of the Weil group WR of R. Then we define the L-function for π and π′ as follows:

L(π × π′, s) = L(ρπ ⊗ ρ′π, s)

ε(π × π′, ψ, s) = ε(ρπ ⊗ ρ′π, ψ, s)

and we set

γ(π × π′, ψ, s) =
ε(π × π′, ψ, s)L(π̃ × π̃′, 1− s)

L(π × π′, s)

=
ε(ρπ ⊗ ρ′π, ψ, s)L(ρ̃π ⊗ ρ̃π ′, 1− s)

L(ρπ ⊗ ρ′π, s)
.

Then we have the following propositions and the details are discussed in [8].

Proposition 5.6.12. Let π be an irreducible admissible generic representation of GL2(R)

which is smooth of moderate growth. Then there is a finite set of finite functions X(π)
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depending only on π such that for every W ∈ W(π, ψ), there exist Schwartz functions

φχ ∈ S(R2) such that for a ∈ R and k ∈ R, we have

W

 a 0

0 1

 k

 =
∑

χ∈X(π)

χ(a)φχ(a, k).

Proposition 5.6.13. Each local integral Ψv(W,χ, s) converges absolutely for Re(s)� 0

and if π and π′ are both unitary, they converge absolutely for Re(s) ≥ 1.

Let M(π × π′) = M(ρπ ⊗ ρ′π) be the space of all meromorphic functions φ(s)

satisfying:

If P (s) ∈ C[s] is a polynomial such that P (s)L(π × π′, s) is holomorphic in the

vertical strip S[a, b] = {s | a ≤ Re(s) ≤ b}, then P (s)φ(s) is holomorphic and bounded

in S[a, b].

Theorem 5.6.14. The integrals Ψv(W,χ, s) extend to meromorphic functions of s and

Ψj(W,χ, s) ∈M(π × π′). In particular,
Ψj(W,χ,s)

L(π×π′,s) are entire.

Theorem 5.6.15. We have the local functional equation

Ψ(W̃ , χ̃, 1− s) = ωπ′(−1)n−1γ(π × π′, ψ, s)Ψ(W,χ, s)

with γ(π × π′, ψ, s) = γ(ρπ ⊗ ρ′π, ψ, s) and ωπ′ central character.

5.7 Global L-function

Let us consider the global setting. Let Σ be the set of all places of Q. Take ψ : Q\AQ →

C× a non-trivial continuous additive character.

Let (π, Vπ) be a cuspidal representation of GL2(AQ), which then decomposes as

π w ⊗′πv. Let (π′, Vπ′) be a cuspidal representation of GL1(AQ), which then decomposes

as π′ w ⊗′π′v.

For each place v ∈ Σ, we have defined local L-factors and ε-factors:

L(πv ⊗ π′v, s) and ε(πv ⊗ π′v, ψv, s).

Then we define the global L-function and ε-factor as Euler products.
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Definition 5.7.1. The global L-function and ε-factor for π and π′ are

L(π ⊗ π′, s) =
∏
v∈Σ

(πv ⊗ π′v, s)

and

ε(π ⊗ π′, s) =
∏
v∈Σ

ε(πv ⊗ π′v, ψv, s).

The product defining the L-function is absolutely convergent for Re(s)� 0 and the

ε-factor is independent from the choice of ψ. More details are discussed in Lecture 9

of [8].

The following theorem shows that these L-functions have nice analytic properties.

Theorem 5.7.2. If π is a cuspidal representation of GL2(AQ) and π′ is a cuspidal

representation of GL1(AQ), then the global L-functions L(π ⊗ π′, s) are nice in the

sense that

(i) L(π ⊗ π′, s) converges for Re� 0 and extends to an entire function of s;

(ii) this extension is bounded in vertical strips of finite width;

(iii) it satisfies the functional equation

L(π ⊗ π′, s) = ε(π ⊗ π′, s)L(π̃ ⊗ π̃′, 1− s).

Proof. See the Lecture 9 of [8].



Chapter 6

Complex L-functions of real

quadratic fields

We recast the special value formula in [41], restricted to the setting of the thesis, in a

form convenient for our purpose.

Let f ∈ Sk(Γ0(M)) be a even weight k ≥ 2 newform for Γ0(M). Let F/Q be a

real quadratic field of discriminant D > 0, prime to M , and let χD be the associated

quadratic Dirichlet character. We also denote by the same symbol χD : A×Q → C× the

associated Hecke character, where AQ is the adèle ring of Q. Assume that all primes

` |M are split in F .

Let c be an integer prime to D ·M and let H+
c be the strict ring class field of F

of conductor c. Let G+
c =Gal(H+

c /F ). A character χ is primitive if it does not factor

through G+
f for a proper divisor f | c. Let χ : G+

c → C× be a primitive character. We

will denote by the same symbol χ : A×F → C× the associated Hecke character, where

AF is the adèle ring of F .

6.1 Quaternion algebra

A quaternion algebra over a field F is a 4-dimensional central simple algebra over F .

Any quaternion algebra over a field F of characteristic 6=2 is isomorphic to an algebra
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of the form(
a, b

F

)
:= F ⊕ Fi⊕ Fj ⊕ Fk, where i2 = a, j2 = b, ij = −ji = k,

for some a, b ∈ F×. A quaternion algebra B over F is said to be split if it is isomorphic

to the ring M2(F ) of 2×2 matrices with entries in F . More generally, if K is an extension

field of F , then B is said to be split over K if B⊗F K is a split quaternion algebra over

K.

For any place v of F , let Fv denote the completion of F at v and let Bv := B⊗F Fv.

B is said to be split at v if Bv is a split quaternion algebra. Otherwise B is said to be

ramified at v.

Let Z be a finitely generated subring of F .

Definition 6.1.1. A Z-order in B is a subring of B which is free of rank 4 as a Z-

module. A maximal Z-order is a Z-order which is properly contained in no larger

Z-order. An Eichler Z-order is the intersection of two maximal Z-orders.

6.2 Optimal embedding theory

Let us denote by B = M2(Q) the split algebra over Q and denote by R0 the order in

B consisting of matrices in M2(Z) which are upper triangular modulo M . Let OF be

the ring of integer of F and Oc = Z + cOF be the order of F of conductor c. Let

Emb(Oc, R0) be the set of optimal embedding ψ : F → B of Oc into R0 (ψ(Oc) =

R0 ∩ ψ(F )). For every prime ` | M , equip R0 and Oc with local orientations at `, i.e.,

ring homomorphisms

D` : R0 → F`, o` : Oc → F`.

Two embeddings ψ, ψ
′ ∈ Emb(Oc, R0) are said to have the same orientation at a

prime ` | M if D ◦ (ψ |Oc) = D` ◦ (ψ
′ |Oc) and otherwise are said to have opposite

orientation at `. ψ ∈ Emb(Oc, R0) is an oriented optimal embedding if

D` ◦ (ψ |Oc) = o`
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for all primes ` |M . The set of all such oriented optimal embeddings will be denoted by

E(Oc, R0). The action of Γ0(M) on Emb(Oc, R0) from the right by conjugation restricts

to an action on E(Oc, R0). If ψ ∈ E(Oc, R0) then ψ∗ := ω∞ψω
−1
∞ belongs to E(Oc, R0),

where ω∞ =

 1 0

0 −1

, and ψ and ψ∗ have the same orientation at all ` | M . If

` is a prime dividing M then ψ and ω`ψω
−1
l , where ω` =

 0 −1

` 0

, have opposite

orientations at ` and the same orientation at all primes dividing M/`.

Let a ⊂ Oc be an ideal representing a class [a] ∈ Pic+(Oc) and let ψ ∈ Emb(Oc, R0).

The left R0-ideal R0ψ(a) is principal; let a ∈ R0 be a generator of this ideal with positive

reduced norm, which is unique up to elements in Γ0(M). The right action of ψ(Oc) on

R0ψ(a) shows that ψ(Oc) is contained in the right order of R0ψ(a), which is equal to

a−1R0a. This defines an action of Pic+(Oc) on conjugacy classes of oriented embeddings

given by

[a] · [ψ] = [aψa−1]

in Emb(Oc, R0)/Γ0(M). The principal ideal (
√
D) is a proper Oc-ideal of F ; denote

D its class in Pic+(Oc) and define σF := rec(D) ∈ G+
c , where rec is the arithmetically

normalized reciprocity map of class field theory. If a = (
√
D) then we can take a =

ω∞ψ(
√
dD) in the above discussion, which shows that

D · [ψ] = [ω∞ψω
−1
∞ ] = [ψ∗].

Using the reciprocity map of class field theory, for all σ ∈ G+
c and [ψ] ∈ Emb(Oc, R0)/Γ0(M)

define

σ · [ψ] := rec−1(σ)[ψ].

In particular, σF · [ψ] = [ψ∗] for all ψ ∈ Emb(Oc, R0).

If ψ is an oriented optimal embedding then the Eichler order a−1R0a inherits an

orientation from the one of R0 and it can be checked that we get an induced action of

Pic+(Oc) (and G+
c ) on the set E(Oc, R)/Γ0(M), and this action is free and transitive.

To describe a (non-canonical) bijection between E(Oc, R)/Γ0(M) and G+
c , fix once and

for all an auxiliary embedding ψ0 ∈ E(Oc, R); then σ 7→ σ[ψ0] defines a bijection
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E : G+
c → E(Oc, R0)/Γ0(M)

whose inverse

G = E−1 : E(Oc, R0)/Γ0(M)→ G+
c

satisfies the relation G([ψ∗]) = σFG([ψ]) for all ψ ∈ E(Oc, R0). Choose for every σ ∈ G+
c

an embedding ψσ ∈ E(σ), so that the family {ψσ}σ∈G+
c

is a set of representatives of the

Γ0(M)-conjugacy classes of oriented optimal embeddings of Oc into R0. If γ, γ
′ ∈ R0

write γ v γ
′
to indicate that γ and γ

′
are in the same Γ0(M)-conjugacy class, and adopt

a similar notation for (oriented) optimal embeddings of Oc into R0. For all σ, σ
′ ∈ G+

c ,

one has σψσ′ v ψσσ′ and ψ∗σ v ψσF σ for all σ ∈ G+
c .

Finally, note that the set E(Oc, R0)/Γ0(M) is in bijection with FDc2/Γ0(M), since

both sets are in bijection with G+
c ; explicitly, to the class of the oriented optimal

embedding ψ corresponds the class of the quadratic form

Qψ(x, y) = Cx2 − 2Axy −BY 2

with ψ(
√
Dc) =

 A B

C −A

.

Remark 6.2.1. For more details, see the section 4.2 of [37].

6.3 Adèlic ring class groups

In this section, we want to view the ring class group G+
c adelically. We also want to

describe the relation with the ray class groups. In this section only, we allow F to be

any arbitrary quadratic field of discriminant D and do not require c to be coprime to

D.

6.3.1 Ideal class groups

Let O be a Dedekind domain.

Definition 6.3.1. A fractional ideal of F is a finitely generated O-submodule a 6= 0 of

F .
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For instance, an element a ∈ F× defines the fractional principal ideal (a) = aO.

Proposition 6.3.2. The fractional ideals form an abelian group, the ideal group JF of

F . The identity element is (1) = O, and the inverse of a is

a−1 = {x ∈ F |xa ⊆ O}.

Proof. This follows from the Proposition 3.8 in [44].

The fractional principal ideals (a) = aO, a ∈ F×, form a subgroup of the group of

ideals JF , which will be denoted PF . The quotient group

ClF = JF/PF

is called the ideal class group of F .

6.3.2 Adèlic ring class groups

Let A×F denote the idèle group of F .

The idèle class group IF of an algebraic number field F is the topological union of

the groups

AS
F =

∏
p∈S

F×p ×
∏
p/∈S

Up,

where Fp is completion with respect to p, Up = O×Fp
for p finite, Up = R×+ for p infinite

real and S runs over all the finite set of places. Thus one has

A×F = ∪SAS
F .

Define the diagonal embedding

F× → A×F ,

which associate to a ∈ F× the idèle α ∈ A×F whose p-th component is the element

a ∈ Fp. We call the elements of F× in A×F principal idèles. The intersection

F S = F× ∩ AS
F

consists of the numbers a ∈ F× which are unites at all primes p /∈ S, p -∞ and which

are positive in Fp = R for all real infinite places p /∈ S.
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Definition 6.3.3. The element of the subgroup F× of IF are called principal idèle and

the quotient group

CF = A×F/F
×

is called the idèle class group of F .

There is a surjective homomorphism between the idèle class group and the ideal

class group ClF induced by :

A×F −→ JF , α 7→ (α) =
∏
p.∞

pvp(αp).

Its kernel is

AS∞
F =

∏
p|∞

F×p ×
∏
p-∞

Up.

Given a number field F , a module in F is a formal product

m =
∏
p

pnp

over all primes p, finite or infinite, of F , where the exponent must satisfy:

(1) np > 0, and at most finitely many are nonzero.

(2) np = 0 wherever p is a complex infinite prime.

(3) np 6 1 wherever p is a real infinite prime.

A module m may be written m0m∞, where m0 is an OF -ideal and m∞ is a product

of real infinite primes of F . More details are discussed in Section (8, A) of [10].

For every place p of F we put U
(0)
p = Up, and

U
(np)
p =


1 + pnp p -∞

R×+ ⊂ F×p p is real

C× = F×p p is complex

(6.3.1)

for np > 0. Given αp ∈ F×p we write

αp ≡ 1 mod pnp ⇐⇒ αp ∈ U (np)
p .
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For a finite prime p and np > 0 this means the usual congruence; for a real place, it

symbolizes positivity, and for a complex place it is the empty condition.

Definition 6.3.4. The group

Cm
F = AF,mF

×/F×,

formed from the idèle group

AF,m =
∏
p

U
(np)
p

is called the congruence subgroup mod m, and the quotient group CF/C
m
F is called the

ray class group mod m.

The ray class groups can be given the following ideal-theoretic description. Let

c ∈ N and m = mfm∞ where mf = cOF and m∞ a subset of the real places F . For a

real place v, let σv be the associated embedding of F into R. Let Jm be the group of

fractional ideals of OF which are prime to mf . Let F 1
m be the subset of F× consisting

of x such that σv(x) > 0 for each v ∈ m∞ and vp(x − 1) ≥ vp(c) for p | mf , and P 1
m

denote the set of principal ideals generated by elements of F 1
m. Then we get the group

Clm(F ) = Jm/P
1
m and

Proposition 6.3.5. ( [44],Chapter VI, Prop 1.9) The homomorphism

( ) : IF → JF , α 7→ (α) =
∏
p-∞

pvp(αp),

induces an isomorphism

CF/C
m
F
∼= Clm(F ).

Let F Z
m be the set of x ∈ F× such that σv(x) > 0 for each v ∈ m∞ and for each

p | mf there exists a ∈ Z coprime to c such that vp(x − a) ≥ vp(c). Let P Z
m be the set

of principal ideals in F generated by elements of F Z
m . Then the ring class group mod m

of F is Gm(F ) = Jm/P
Z
m . Note we can write

F Z
m =

⊔
a∈(Z/cZ)×

aF 1
m.
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Hence Gm(F )/(Z/cZ)× ' Clm(F ). (The map from (Z/cZ)× to Gm(F ) is not necessarily

injective.)

Via the usual correspondence between ideals and idèles, Jm is identified with F̂×m /Ô×F ,

where F̂×m consists of finite idèles (αv) such that αv ∈ O×F,v for all v | mf and Ô×F =∏
v<∞
O×F,v. For v <∞, we put Wv = O×F,v unless v | mf , in which case Wv = 1 +mfOF,v.

For v | ∞, we put Wv = F×v unless v | m∞, in which case Wv = R>0. Define

W =
∏
Wv and A1

F,m =
∏′

v-m F
×
v ×

∏
v|mWv,

then we also can write

F 1
m = F× ∩ A1

F,m and Jm ' A1
F,m/W,

so Clm(F ) = F 1
m \ A1

F,m/W = F× \ A×F/W .

For the ring class group, again we can realize it as a quotient of the idèles class

group F× \ A×F , but now it will be a quotient by a subgroup U =
∏
U` × U∞ which

is a product over rational primes, rather than primes of F . As usual, for a rational

prime ` <∞, write OF,` for OF,` ⊗Z Z`, which is isomorphic to Z` ⊕ Z` if ` splits in F

and otherwise is OF,v if v is the unique prime of F above `. Now set U` = O×F,` if ` - c

and U` = (Z` + cOF,`)× if ` | c. We can uniformly write U` = O×c,` for ` < ∞, where

Oc = Z + cOF and Oc,` = Oc ⊗Z Z`. For later use, we will write Ô×c =
∏
U`. Note this

is not the same as
∏
v<∞
O×c,v, where v runs over primes of F in the case that c is divisible

by primes which split in F . Put U∞ = W∞ =
∏
v|∞

W∞ and AZ
F,m =

∏′
v-m F

×
v ×

∏
v|m Uv,

then F Z
m = AZ

F,m ∩ F× and we see the ring class group is

Gm(F ) = F Z
m \ AZ

F,m/U = F× \ A×F/U .

In our case of interest, namely F is real quadratic and m∞ contains both real places

of F , we write U∞ = F+
∞. Thus we can write our strict ring class group as

G+
c = F× \ A×F/Ô

×
c F

+
∞. (6.3.2)

6.4 Special value formulas

We return to our case. Let F/Q be a real quadratic field of discriminant D and f be a

weight k newform for Γ0(M). Let c be an integer coprime with DM and Oc = Z+cOF .
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Let Hc be the corresponding ring class field and hc be the degree of Hc/F , which

coincides with the cardinality of Pic(Oc). Let h+
c be the cardinality of G+

c , then h+
c /hc

is equal to 1 or 2. Fix ideals aσ for all σ ∈ Gc=Gal(Hc/F ) in such a way that Σc =

{aσ | σ ∈ Gc} is a complete system of representatives for Pic(Oc). Clearly Σ+
c = Σc is

also a system of representatives for Pic+(Oc) if h+
c = hc, while if h+

c 6= hc the set Σ+
c of

representatives of Pic+(Oc) can be written as Σc ∩ Σ
′
c with Σ

′
c = {daσ | σ ∈ Gc} and

d = (
√
D). Let εc > 1 is the smallest totally positive power of a fundamental unit in

O×c and for all σ ∈ G+
c define γσ = ψσ(εc). Finally, define

α =
∏

`|c,(D
`

)=−1

`, (6.4.1)

where ` runs over all rational primes dividing c which are inert in F .

Denote by πf and πχ the automorphic representations of GL2(AQ) attached to f

and χ, respectively.

Theorem 6.4.1. Let c be an integer such that (c,DM) = 1. Let χ be a character of

G+
c such that the absolute norm of the conductor of χ is c(χ) = c2. For any choice of

the base point τ0 ∈ H, we have

L(πf ⊗ πχ, 1/2) =
4

α2 · (Dc2)(k−1)/2
|
∑
σ∈G+

c

χ−1(σ)

∫ γσ(τ0)

τ0

f (z)Qψσ(z, 1)(k−2)/2dz |2 .

When c=1, this is the positive weight case of Theorem 6.3.1 in [46], which also treats

weight 0 Maass forms.

Proof. Write π := πf = ⊗′vπv, where v runs over all places of Q, and let n`(π) be the

conductor of π` for each prime number `. Define

Uf (M) =
∏
`

U`(M), U`(M) =


 a b

c d

 ∈ GL2(Z`) : c ≡ 0 mod M

 .

We associate to f the automorphic form ϕπ = ϕf ∈ A(GL2(AQ), χ) given by

ϕπ : Z(A)GL2(Q) \GL2(AQ)/Uf (M)→ C

ϕπ

 a b

c d

 = 2j(g; i)kf

(
ai+ b

ci+ d

)
,
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for g =

 a b

c d

 ∈ GL2(R)+, where we write j(g; i) =det(g)1/2(ci + d)−1 for the

automorphy factor. Then ϕπ is R0,`-invariant for each finite prime `. The scaling

factor of 2 is present so that the archimedean zeta integral of ϕπ gives the archimedean

L-factor.

For φ ∈ π, let

(φ, φ) =

∫
Z(AQ)GL2(Q)\GL2(AQ)

φ(t)φ(t)dt

be the Petersson norm of φ, where we take as measures on the groups GL2(AQ) and

Z(AQ) the products of the local Tamagawa measures. Here, as usual, we take the

quotient measure on the quotient, giving GL2(Q) ⊂ GL2(AQ) the counting measure.

Denote by πF the base change of π to F . Let L(πF ⊗ χ, s) be the L-function of πF

twisted by χ, which equals the Rankin-Selberg L-function L(πf ⊗ πχ, s). Since F splits

at each prime ` where π is ramified and at ∞, ε(πF,v ⊗ χv, 1/2) = +1 for all places v of

Q. Then, in our setting, the main result in [ [41], Theorem 4.2] states that

| Pχ(ϕ) |2

(ϕ, ϕ)
=
L(πF ⊗ χ, 1/2)

(ϕ′π, ϕ
′
π)

· 4√
Dc(χ)

·
∏
`|c

(
`

`− χD(`)

)2

, (6.4.2)

where ϕ ∈ π is a suitable test vector,

Pχ(ϕ) =

∫
F×A×Q \A

×
F

ϕ(t)χ−1(t)dt,

and ϕ
′
π (denoted ϕπ in loc. cit) is a vector in π differing from ϕπ only at∞. We describe

ϕ and ϕ
′
π precisely below. Similar to before, we take the products of local Tamagawa

measures on A×F and A×Q, and give F× the counting measure.

First we describe the choice of the test vector ϕ, which we only need to specify up

to scalars, as the left-hand side above is invariant under scalar multiplication. We will

take ϕ = ⊗′vϕv, where v runs over all places of Q. For ` a finite prime of Q, let c(χ`)

denote the smallest n such that χ` is trivial on (Z` + `nOF,`)×. Since χ is a character

of G+
c , we have c(χ`) ≤ v`(c) for all `. In particular, χ` is trivial on Z×` , so c(χ`) is

the smallest n such that χ` is trivial on (1 + `nOF,`)×, and thus agrees with the usual

definition of the conductor of χ` when ` is inert in F . Similarly, if ` is ramified in F ,

say ` = p2, then c(χ`) is twice the conductor of χ` = χp:
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F×p → C×,

though this case does not occur by our assumption (c,D) = 1. If ` = p1p2 is split in F ,

then we can write χ` = χp1 ⊗ χp2 with χp1 , χp2 characters of Q×` , which are inverses of

each other on Z×` as χ` is trivial on Z×` . Hence χp1 and χp2 have the same conductor,

which is c(χ`). Consequently, c(χ), the absolute norm of the conductor of χ, is

c(χ) = Norm

(∏
`

`c(χ`)

)
=
∏
`

`2c(χ`), (6.4.3)

where ` runs over all the primes of F but not the rational primes.

Note that since (c,M) = 1, we have c(χ`) = 0 whenever π` is ramified, i.e., the

conductor c(π`) > 0. If c(χ`) = 0, let Rχ,` be an Eichler order of reduced discriminant

`c(π`) in M2(Q`) containing OF,`. If c(χ`) > 0, so π` is unramified, let Rχ,` be a maximal

order of M2(Q`) which optimally contains Z` + `c(χ`)OF,`. In either case, Rχ,` is unique

up to conjugacy and pointwise fixes a 1-dimensional subspace of π`. For ` < ∞, take

ϕ` ∈ π
Rχ,`
` nonzero, normalized in such a way that ⊗′ϕ` converges. For instance, we

can take ϕ` = ϕπ,` at almost all `. Each ϕ` is a local Gross-Prasad test vector [ [41],

Section 4.1], and our assumptions imply that the local Gross-Prasad test vectors ϕ` are

(up to scalars) translates of the new vectors ϕπ,`. (Gross-Prasad test vectors are not

translates of new vectors in general.)

Embed F into M2(Q) as follows. Consider a quadratic form

Q(x, y) = −C
2
x2 + Axy +

B

2
y2 ∈ FDc2 .

This means Q is primitive of discriminant Dc2 = A2 + BC, 2 | B and 2M | C, which

implies A2 ≡ Dc2 mod 4. Take the embedding of F into M2(Q) induced by

√
Dc 7→

 A B

C −A

 .

Then Oc = R0 ∩ F , and

F×∞ =

g(x, y) :=

 x+ A By

Cy x− Ay

 ∈ GL2(R)

 .
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For a prime ` - c, we have Oc,` = OF,` ⊂ R0,`. Thus we may take Rχ,` = R0,` for ` - c

such that χ` is unramified, in particular, for ` - cD. When χ` is ramified, we may take

Rχ,` = R0,` if and only if c(χ`) = v`(c). By assumption,

c(χ) =
∏
`

`2c(χ`) = c2,

so we may take Rχ,` = R0,` at each finite place `. Thus we may and will take ϕ` to be

ϕπ,` at each `.

Now we describe ϕ∞. Note we can identify F×∞/Q×∞ with F 1
∞/{±1}, where

F 1
∞ = F 1,+

∞ ∪ F 1,−
∞ , F 1,±

∞ = {g(x, y) ∈ F×∞ : detg(x, y) = x2 −Dc2y2 = ±1}.

Let

γ∞ =

 A+
√
Dc A−

√
Dc

C C

 .

Then

γ−1
∞

 A B

C −A

 γ∞ =

 √Dc 0

0 −
√
Dc

 .

So

γ−1
∞ F 1

∞γ∞ =


 x+ y

√
Dc 0

0 x− y
√
Dc

 : x2 −Dc2y2 = ±1

 .

The maximal compact subgroup of F 1
∞ is

ΓF = γ∞


 ±1 0

0 ±1

 γ−1
∞ = {±I,±g(0,−(

√
Dc)−1)},

where one reads the ± signs independently. Let U∞ = γ∞O(2)γ−1
∞ , where O(2) de-

notes the standard maximal compact subgroup of GL2(R). Then U∞ ⊃ ΓF , and the

archimedean test vector in [ [41], Section 4.1] is the unique up to scalars nonzero vector

ϕ∞ lying in the minimal U∞-type such that ΓF acts by χ∞ on ϕ∞. Specifically, we can

take

ϕ∞ = π∞(γ∞)(ϕ∞,k ± ϕ∞,−k), (6.4.4)
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where ϕ∞,±k = 1
2
π∞

 ±1 0

0 1

ϕπ is a vector of weight ±k in π∞, and the ± sign in

6.4.4 matches the sign of χ∞

 −1 0

0 1

. This completely describes the test vector ϕ

chosen in [41].

For our purposes, we would like to work with a different archimedean component

than ϕ∞, corresponding to (a translate of) ϕπ. Let ϕ− be the pure tensor in π which

agrees with ϕ at all finite places, and is defined like ϕ∞ at infinity except using the

opposite sign in the sum 6.4.4. Then necessarily any χ∞-equivariant linear function

on π∞ kills ϕ−∞, so Pχ(ϕ−) = 0. Hence Pχ(ϕ) = Pχ(ϕ′) where ϕ′ = ϕ + ϕ−, and we

can write ϕ′ = ⊗ϕ′v, where ϕ′` = ϕ` for finite primes ` and ϕ
′
∞ = π∞(γ∞)ϕπ, i.e.,

ϕ′(x) = ϕπ(xγ∞).

Finally, we describe the vector ϕ
′
π appearing in 6.4.2. It is defined to a factorizable

function in π whose associated local Whittaker functions are new vectors whose zeta

functions are the local L-factors of π at finite places, and at infinity is the vector in the

minimal O(2)-type that transforms by χ∞ under

 ±1 0

0 ±1

 such that the associated

Whittaker function (restricted to first diagonal component) at infinity is

W∞(t) = 2χ∞

 t 0

0 1

 | t |k/2 e−2π|t|.

(This normalization gives L∞(s, π) =
∫∞

0
W∞(t) | t |s−1/2 d×t.) Thus ϕ

′
π agrees with

ϕπ at all finite places and ϕ
′
π,∞ = 2(ϕ∞,k ± ϕ∞,−k), where the ± sign matches that in

6.4.4.

Hence ϕ = 1
2
π(γ∞)ϕ

′
π, so by invariance of the inner product we have (ϕ, ϕ) =

1
4
(ϕ
′
π, ϕ

′
π), and 6.4.2 becomes

| Pχ(ϕ′) |2=| Pχ(ϕ) |2= L(πF ⊗ χ, 1/2) · 1√
Dc
·
∏
`|c

(
`

`− χD(`)

)2

. (6.4.5)

Now we want to rewrite Pχ(ϕ′). Recall that εc > 1 is the smallest totally positive power

of a fundamental unit in O×c . From 6.3.2, we obtain the isomorphism

A×QF
× \ A×F/Ô

×
c ' G+

c · (F+
∞/〈εc〉Q+

∞) ' G+
c · (F 1,+

∞ /〈±εc〉).
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We may identify

F 1,+
∞ /〈±εc〉 =


 x+ Ay By

Cy x− Ay

 ∈ SL2(R) : 1 ≤ x+ y
√
Dc < εc

 ,

and the orbit of γ∞i in the upper half plane by this set is the geodesic segment con-

necting γ∞i to εcγ∞i, i.e., the image under γ∞ of {iy : 1 ≤ y ≤ ε2c} ⊂ H. Let us call

this arc Υ.

Since

A×Q ⊂ F×Ô×c F+
∞ and G+

c ' F× \ A×F/Ô
×
c F

+
∞,

where F+
∞ = (R>0)2, we see that χ is trivial on A×QÔ×c F+

∞. The Tamagawa measure

gives that

vol(F×A×Q \ A
×
F ) = 2L(1, η) = 4hF logεFvol(Ô×),

where η is the quadratic character of A×Q/Q× attached to F/Q and εF is the fundamental

unit of F . This implies that

vol(A×QF× \ A
×
F/Ô×c ) = 2h+

c len(Υ),

where len(Υ)=2logεc is the length of Υ with respect to the usual hyperbolic distance.

Thus we compute

Pχ(ϕ′) = 2vol(Ô×c )
∑
t∈G+

c

χ−1(t)

∫
F 1,+
∞ /〈±εc〉

ϕπ(tgγ∞)dg

= 4vol(Ô×c )
∑
t∈G+

c

χ−1(t)

∫ εc

1

j(tγ∞

 u 0

0 u−1

 ; i)kf (tγ∞

 u 0

0 u−1

 · i)d×u
= 2vol(Ô×c )

∑
t∈G+

c

χ−1(t)

∫ ε2c

1

j(tγ∞

 y 0

0 1

 ; i)kf (tγ∞

 y 0

0 1

 · i)d×y,
where we use that f has trivial central character and the substitution y = u2 at the last

step.

For ` a rational prime dividing c, note that

O×F,`/O
×
c,` ' Z×` /(1 + cZ`)
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when ` splits in F and

O×F,`/O
×
c,` ' (O×F,`/(1 + cOF,`))/(Z×` /(1 + cZ`))

when ` is inert in F . Hence, with our choice of measures,

vol(Ô×c ) = vol(Ô×F )
∏
`|c

[O×F,` : O×c,`]
−1 =

1√
D

∏
`|c,(D

`
)=1

1

(`− 1)`v`(c)−1
·

∏
`|c,(D

`
)=−1

1

(`+ 1)`v`(c)
,

where ` runs over rational primes.

The next task is then to rewrite the integral appearing in the right-hand side of the

above formula. Let z = γ∞iy. Then

z =
A

C
+

√
Dc

C

(
1− 2

1 + iy

)
.

Since

2iy

(1 + iy)2
=

2

1 + iy
− 1

2

(
2

1 + iy

)2

=
BC + 2ACz − C2z2

2Dc2
,

we have

j

γ∞
 y 0

0 1

 ; i)

−2

=
C(1 + iy)2

2
√
Dcy

=
2i
√
Dc

−Cz2 + 2Az +B
=

i
√
Dc

Q(z, 1)
,

and

dz =
2iy
√
Dc

C(1 + iy)2
d×y i.e. d×y =

2
√
Dc

−Cz2 + 2Az +B
dz =

√
Dc

Q(z, 1)
dz.

Making the change of variable z = γ∞iy, the above expression can be rewritten as

Pχ(ϕ′) =
2vol(Ô×c )

ik/2 · (
√
Dc)(k−2)/2

·
∑
t∈G+

c

χ−1(t)

∫
Υ

f (tz) ·Q(z, 1)(k−2)/2dz.

After another change of variable z′ = tz, the above integral becomes∫
tΥ

f (z′) ·Q(t−1z′, 1)(k−2)/2dz′ =

∫
tΥ

f (z′) · (Q | t−1)(z′, 1)(k−2)/2dz′

=

∫ (tεct−1)τt

τt

f (z′) · (Q | t−1)(z′, 1)(k−2)/2dz′

where τt = tγ∞i. Now, as long as t varies in G+
c , the quadratic forms Q | t−1 are

representatives for the classes in FDc2/Γ0(M), as discussed in 6.2. Moreover, since Υ is

closed in H/Γ0(N), this integral does not depend on the choice of base point. Plugging

this into 6.4.5 gives the asserted formula.
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6.5 Genus fields attached to orders

From now on, we assume that c is odd. The genus field attached to the order Oc of

discriminant Dc2 is the finite abelian extension of Q, with Galois group isomorphic

to copies of Z/2Z, contained in the strict class field H+
c of F of conductor c and

generated by the quadratic extensions Q(
√
Di) and Q(

√
`∗) where D =

∏
i

Di is any

possible factorization of D into primary discriminants, ` | c is a prime number and

`∗ = (−1)(`−1)/2`. See [ [9], pp. 242-244] for details.

Assume a quadratic character χ : G+
c → {±1} is primitive. By 6.4.3, this means

c(χ) = c2. Then χ cuts out a quadratic extension Hχ/F which is biquadratic over Q.

Each quadratic extension of Q contained in the genus field of the order Oc is of the

form Q(
√

∆) for some ∆ = D
′ ·
∏s

j=1 `
∗
j , with `j | c and D

′
a fundamental discriminant

dividing D. Write Hχ = Q(
√

∆1,
√

∆2), with ∆i = Di ·
∏si

j=1 `
∗
i,j for i = 1, 2 as above

(so `i,j are primes dividing c), and let K1 = Q(
√

∆1) and K2 = Q(
√

∆2). Since the

third quadratic extension contained in Hχ is the quadratic extension is Q(
√
D), we

have ∆1 · ∆2 = D · x2 for some x ∈ Q×. We can write ∆1 = D1d and ∆2 = D2d for

some d =
∏s

j=1 `
∗
j with `i | c primes and D = D1 ·D2 a factorization into fundamental

discriminants, allowing D1 = D or D2 = D. If d 6= ±c, then χ factors through

the extension H+
d 6= H+

c by the genus theory of the order of conductor Dd2, and

therefore χ is not a primitive character of H+
c . So d = ±c. Therefore, we conclude that

K1 = Q(
√
D1d) and K2 = Q(

√
D2d) of Q satisfy the following properties:

• D1 ·D2 = D, where D1 and D2 are two coprime fundamental discriminants (pos-

sibly equal to 1).

• d = ±c and d is a fundamental discriminant.

Let χD1d and χD2d be the quadratic characters attached to the extensions K1 and K2

respectively; thus χD1d(x) =

(
D1d

x

)
and χD2d(x) =

(
D2d

x

)
. Let χD be the quadratic

character attached to the extension F/Q; thus χD(x) =

(
D

x

)
. In particular, for all

` - c we have

χD(`) = χD1d(`) · χD2d(`).

Say that χ has sign +1 if Hχ/F is totally real, and sign −1 otherwise. If χ has sign
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ω∞ ∈ {±1}, put If = Iω∞f and Ωf = Ωω∞
f . Define

L(f , χ) :=
∑
σ∈G+

c

χ−1(σ)If {τ0 → γψσ(τ0}(Qψσ(x, y)(k−2)/2).

Lemma 6.5.1. L(f , χ) = ω∞ · L(f , χ).

Proof. This follows from the discussion in [ [46],§6.1]. Define

Θψ := If {τ0 → γψ(τ0)}(Qψ(x, y)(k−2)/2),

which is independent of the choice of τ0 and the Γ0(M)-conjugacy class of ψ. Let

z → z̄ denote complex conjugation. A direct computation shows that Θ̄ψ = Θψ∗ where

ψ∗ = ω∞ψω
−1
∞ . From the discussion in 6.2, we have σF · [ψ] = [ψ∗], and it follows that

Θ̄ψ = ΘσFψ. Taking sums over a set of representatives of optimal embeddings shows

that L(f , χ) = χ(σF ) · L(f , χ). Let Hχ be the field cut out by χ. The description of a

system of representatives Σc and Σ+
c of Gal(Hc/F ) and Gal(H+

c /F ) in 6.4 shows that

if χ(σF ) = 1 then Hχ is contained in Hc, and therefore Hχ is totally real. On the other

hand, if χ(σF ) = −1, then Hχ cannot be contained in Hc, and therefore it is not totally

real, so it is the product of two imaginary extensions. By the definition of the sign of

χ, this means that L(f , χ) is a real number when χ is even, and is a purely imaginary

complex number when χ is odd, and the result follows.

Using the relation

L(πg × πχ, 1/2) = 4
(2π)k

((
k − 2

2

)
!

)2

L(f /F, χ, k/2),

it follows from Lemma 6.5.1 that Theorem 6.4.1 can be rewritten in the following form:

L(f /F, χ, k/2) =
(2πi)k−2 · Ω2

f · ω∞((
k − 2

2

)
!

)2

· α2 · (Dc2)(k−1)/2

· L(f , χ)2. (6.5.1)

Remark 6.5.2. By the lemma, the sign ω∞ should also appear in equation (28) of [4],

as the left hand side of that equation is not positive when χ is odd. However, the main

result in [4] still follows as this sign will cancel out with a sign arising from Gauss sums

as in our argument in next chapter.
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Chapter 7

p-adic L-functions

Recall the notation introduced in Chapter 4: f∞ is the Hida family passing through

the weight two modular form f of level N = Mp associated to the elliptic curve E

by modularity; U is a connected neighbourhood of 2 in the weight space X . µ±∗ is a

measure-valued modular symbol satisfying the property that for all integers k ∈ U, k ≥

2, there is λ±(k) ∈ C×p such that ρk(µ
±
∗ ) = λ±(k)I±fk and λ±(2) = 1.

Let If ]k
be the modular symbol attached to f ]k via the choice of complex period Ωk,

which are introduced in section 4.1. The modular symbol satisfies the relation

Ifk{r → s}(P ) = If ]k
{r → s}(P )− pk−2ap(k)−1If ]k

{r/p→ s/p}(P (x, y/p)).

7.1 The Mazur-Kitagawa p-adic L-function

Let χ:(Z/mZ)× → {±1} be a primitive quadratic Dirichlet character of conductor m

with χ(-1)=(−1)(k−2)/2ω∞, and let

τ(χ) :=
m∑
a=1

χ(a)e2πia/m

denote the Gauss sum attached to χ. For each k ∈ U ∩ Z≥2, 1 ≤ j ≤ k − 1 with j odd

and let Ωfk = Ωω∞
fk
, λ(k) = λω∞(k), µ∗ = µω∞∗ . The expression

Lalg(fk, χ, j) :=
(j − 1)!τ(χ)

(−2πi)j−1Ωfk

L(fk, χ, j)
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belongs to Kfk ; it is called the algebraic part of the special value L(fk, χ, j).

One defines Lalg(f ]k , χ, j) similarly, by replacing fk by f ]k in the definition above. We

have

Lalg(fk, χ, j) = (1− χ(p)ap(k)−1pk−1−j)Lalg(f ]k , χ, j).

We use the measure µ∗{r → s} to define the Mazur-Kitagawa two variable p-adic

L-function attached to f and a Dirichlet character χ:

Definition 7.1.1. Let χ be a primitive quadratic Dirichlet character of conductor m

satisfying χ(−1)=(−1)(k−2)/2ω∞. The Mazur-Kitagawa two-variable p-adic L-function

attached to χ is the function of (k, s) ∈ U ×H defined by the rule:

Lp(f∞, χ, k, s) =
m∑
a=1

χ(pa)

∫
Z×p ×Z×p

(x− pa

m
y)s−1yk−s−1dµ∗{∞ →

pa

m
}.

This function satisfies the following interpolation property with respect to special

values of the classical L-function Lalg(fk, χ, j).

Theorem 7.1.2. Suppose that k ∈ U ∩ Z>2, and that 1 6 j 6 k − 1 satisfies χ(−1) =

(−1)j−1ω∞. Then

Lp(f∞, χ, k, j) = λ(k)(1− χ(p)ap(k)−1pj−1)Lalg(fk, χ, j).

Proof. See Theorem 1.12 of [3].

Corollary 7.1.3. Suppose that χ(−1) = (−1)k/2−1ω∞. Then for all k ∈ U ∩ Z≥2,

Lp(f∞, χ, k, j) = λ(k)(1− χ(p)ap(k)−1pj−1)(1− χ(p)ap(k)−1pk−1−j)Lalg(f ]k , χ, j).

In particular, when j = k/2, one obtains

Lp(f∞, χ, k, k/2) = λ(k)(1− χ(p)ap(k)−1p(k−2)/2)2Lalg(f ]k , χ, k/2). (7.1.1)
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7.2 p-adic L-functions attached to real quadratic fields

Given Q = Ax2 + Bxy + Cy2 ∈ FDc2 , let τ = τQ and τ be the root of the quadratic

polynomial Q(x, 1). For any κ ∈ U , define

Q(x, y)(κ−2)/2 = expp(
κ− 2

2
logq(〈Q(x, y)〉))

where expp is the p-adic exponential and for x ∈ Qp, we let 〈x〉 denote the principal

unit of x, satisfying x = pvp(x)ζ〈x〉 for a (p − 1)-th root of unity ζ. Recall the Hida

family f∞ introduced in Section 4.1.

Definition 7.2.1. Let Q ∈ FDc2 and let γτQ be the generator of the stabilizer of the

root τQ of Q(z, 1), chosen as in Section 3.4.

1. Let r ∈ P1(Q). The partial square root p-adic L-function attached to f∞, a choice

of sign ± and Q is the function of κ ∈ U defined by

L±p (f∞/F,Q, κ) =

∫
(Z2
p)′
Q(x, y)

(κ−2)
2 dµ±∗ {r → γτQ(r)}(x, y).

2. Let χ be a character of G+
c . The square root p-adic L-function attached to f∞,

a choice of sign ± and χ is the function of κ ∈ U defined by

L±p (f∞/F, χ, κ) :=
∑
σ∈G+

c

χ−1(σ)L±p (f∞/F,Q
σ, κ).

3. The p-adic L-function attached to f∞, the sign ± and χ is the function of κ ∈ U

defined by

L±p (f∞/F, χ, κ) = L±p (f∞/F, χ, κ)2.

Let χ : G+
c → {±1} be a quadratic ring class character. Let ε be the sign of χ

and set ω∞ = ε. Denote µ∗ = µω∞∗ , Ωfk = Ωω∞
fk

, λ(k) = λω∞(k) and Lp(f∞/F, χ, k) =

Lω∞p (f∞/F, χ, k). Recall the newform f ]k whose p-stabilization is the weight k special-

ization of the Hida family f∞ introduced in the section 4.1. Define the algebraic part

of the central value of the L-function of the newform f ]k twisted by χ to be

Lalg(f ]k /F, χ, k/2) =
(k

2
− 1)!2

√
Dc

(2πi)k−2Ω2

f ]k

L(f ]k /F, χ, k/2).
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Proposition 7.2.2. For all k ∈ U ∩ Z≥2, for all P ∈ Pk(Cp) and for all r, s ∈ P,∫
(Z2
p)′
P (x, y)dµ∗{r → s}(x, y) = λ(k)(1− ap(k)−2pk−2)If ]k

{r → s}(P ).

Proof. See the proof of Proposition 2.4 in [4].

Theorem 7.2.3. For all integers k ∈ U , k ≥ 2, we have

Lp(f∞/F, χ, k) = λ(k)2 · α2(1− ap(k)−2pk−2)2 · (Dc2)
k−2
2 · Lalg(f ]k /F, χ, k/2).

where α = 2
∏

`|c,(D
`

)=−1

`

Proof. By Definition 7.2.1 and Proposition 7.2.2

Lp(f∞/F,Q, k) =

∫
(Z2
p)′
Q(x, y)

(k−2)
2 dµ∗{r → γτQ(r)}(x, y)

= λ(k)(1− ap(k)−2pk−2)If ]k
{r → γτQ(r)}(Q(k−2)/2).

We get, in the notation of Section 6.5,

Lp(f∞/F, χ, k) = λ(k)2 · (1− ap(k)−2pk−2)2 · L(f ]k , χ)2.

Then using 6.5.1 gives the result.

7.3 A factorization formula for genus characters

Let χ : G+
c → {±1} be a primitive character, and let χD1d : Q(

√
D1d) → {±1} and

χD2d : Q(
√
D2d)→ {±1} be the associated quadratic Dirichlet characters.

Theorem 7.3.1. The following equality

Lp(f∞/F, χ, κ) = α2 · (Dc2)
κ−2
2 · Lp(f∞, χD1d, κ, κ/2) · Lp(f∞, χD2d, κ, κ/2)

holds for all κ ∈ U , where α =
∏

`|c,(D
`

)=−1

`.

Proof. Let χDid denote the quadratic characters associated with the extension Q(
√
Did).

Since p is inert in F , we have χD(p) = −1, and since χD(`) = χD1d(`) · χD2d(`), we get

χD1d(p) = −χD2d(p).
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It follows that Euler factor (1 − ap(k)−2pk−2)2 appearing in Theorem 7.2.3 is equal to

the product of the two Euler factors

(1− χD1d(p)ap(k)−1p(k−2)/2)2 and (1− χD2d(p)ap(k)−1p(k−2)/2)2

appearing in the 7.1.1 above. By comparison of Euler factors, we see that for all even

integers k ≥ 4 in U we have

L(f ]k /F, χ, s) = L(f ]k , χD1d, s) · L(f ]k , χD2d, s). (7.3.1)

Therefore, from Theorem 7.2.3 and the factorization formula 7.3.1, it follows that for

all even integers k ≥ 4 in U the following formula holds:

Lp(f∞/F, χ, k) =

(
α2 ·
√
Dc · (Dc2)(k−2)/2 · ω∞
τ(χD1d) · τ(χD2d)

)
· Lp(f∞, χD1d, k, k/2) · Lp(f∞, χD2d, k, k/2).

(7.3.2)

Since Did are fundamental discriminants, τ(χDid) =
√
Did (interpreting

√
x as i

√
| x |

for x < 0), so

√
Dc

τ(χD1d) · τ(χD2d)
= ω∞,

and the formula in the statement holds for all even integers k ≥ 4 in U . Since Z∩U is

a dense subset of U , and the two sides of equation 7.3.2 are continuous functions in U ,

they coincide on U .
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Chapter 8

The Main Result

Let the notation be as in the introduction: E/Q is an elliptic curve of conductor

N = Mp with p - M , p 6= 2 and F/Q a real quadratic field of discriminant D = DF

such that all primes dividing M are split in F and p is inert in F . Finally, c ∈ Z is a

positive integer prime to ND and χ : G+
c → {±1} is a primitive quadratic character

of the strict ring class field of conductor c of F . Let ω∞ be the sign of χ and as

above put Lp(f∞/F,Q, κ) = Lω∞p (f∞/F,Q, κ), Lp(f∞/F, χ, κ) = Lω∞p (f∞/F, χ, κ) and

Lp(f∞/F, χ, κ) = Lω∞p (f∞/F, χ, κ).

We begin by observing that Lp(f∞/F,Q, 2) = 0, since its value is µf{r → γτQ(r)}(P1(Qp)),

and the total measure of µf is zero. For the next result, let ωM be the sign of the Atkin-

Lehner involution acting on f . Also, let logE: E(Cp)→ C denote the logarithmic map

on E(Cp) induced from the Tate uniformization and the choice of the branch logq of

the logarithm fixed above.

Theorem 2. For all quadratic characters χ : G+
c → {±1} we have

d

dκ
Lp(f∞/F, χ, κ)κ=2 =

1

2
(1− χD1d(−M)ωM)logE(Pχ).

where Pχ is defined as in 1.

Proof. We have

d

dκ
LQ(f∞/F, χ, κ)κ=2 =

1

2

∫
(Z2
p)′

(logq(x− τQy) + logq(x− τ̄Qy))dµ∗{r → γτQ(r)}

=
1

2
(logE(PτQ) + logE(τpPτQ)).
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By [3.5.2], τp(JτQ) = −ωMJτστQQ

and by [ [4], Proposition 1.8], we know that χ(σ) =

χD1d(−M), so the result follows summing over all Q.

Theorem 3. Let χ be a primitive quadratic character of G+
c with associated Dirichlet

characters χD1d and χD2d. Suppose that χD1d(−M) = −ωM . Then:

(1) There is a point Pχ in E(Hχ)χ and n ∈ Q× such that logE(Pχ) = n · logE(Pχ).

(2) The point Pχ is of infinite order if and only if L′(E/F, χ, 1) 6= 0.

Proof. By Theorem 2 we have

1

2

d2

dκ2
Lp(f∞/F, χ, κ)κ=2 = log2

E(Pχ).

On the other hand, by the factorization of Theorem 7.3.1 we have

Lp(f∞/F, χ, κ) = α2 · (Dc2)(κ−2)/2 · Lp(f∞, χD1d, κ, κ/2) · Lp(f∞, χD2d, κ, κ/2),

where the integer α =
∏

`|c,(D
`

)=−1

`. Let sign(E,χDid) = −ωNχDid(−N), where ωN is the

sign of the Atkin-Lehner involution at N . This is the sign of the functional equation of

the complex L-series L(E,χDid, s). Since

χD1d(−N) · χD2d(−N) = χD(−N) = −1,

we may order the characters χD1d and χD2d in such a way that sign(E,χD1d) = −1 and

sign(E,χD2d) = +1. So χD1d(−N) = ωN and since χD1d(−M) = −ωM it follows that

χD1d(p) = −ωp = ap. So the Mazur-Kitagawa p-adic L-function Lp(f, χD1d, κ, s) has an

exceptional zero at (κ, s) = (2, 1) and its order of vanishing is at least 2. We may apply

[ [3], Theorem 5.4], [ [42], Sec. 6] and [ [43], Theorem 3.1], which show that there is a

global point PχD1d
∈ E(Q

√
D1c) and a rational number `1 ∈ Q× such that

d2

dκ2
Lp(f∞, χD1d, κ, κ/2)κ=2 = `1log2

E(PχD1d
)

and this point is of infinite order if and only if L′(E,χD1d, 1) 6= 0. Moreover, `1 ≡

Lalg(f, ψ, 1) mod ((Q×)2) for any primitive Dirichlet character ψ for which L(f, ψ, 1) 6= 0

and such that ψ(`) = χD1d(`) for all ` |M and ψ(p) = −χD1d(p). Now

`2 =
1

2
Lp(f∞, χD2d, 2, 1) = Lalg(E,χD2d, 1)
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is a rational number which is non-zero if and only if L(E,χD2d, 1) 6= 0. In this case,

`1`2 is a square: choose t ∈ Q× such that t2 = `1`2 if `2 6= 0 and t = 1 otherwise, and

let Pχ = PχD1d
in the first case and 0 otherwise. Now the first part of the theorem

follows setting n = α · t. Finally, for the second part note that L(E,χD2d, 1) 6= 0 if and

only if L′(E/F, χ, 1) = 0 thanks to the factorization 7.3.1.
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