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Abstract

This Dissertation is devoted to the study of boundary value problems and concerns two research
areas. The first one is related to the perturbation analysis of boundary value problems in
perforated domains and its application to the investigation of effective properties of composite
materials. We investigate the dependence of the solutions of transmission boundary value
problems upon some parameters and their behavior when the parameter corresponding to
the size of the inclusions tends to zero, and the other parameters tend to some fixed values.
Then we apply our results to study the effective conductivity of periodic composites. We also
investigate the behavior of the solution of the Dirichlet problem for the Poisson equation in the
domain in R? which consists of a periodic array of cylinders upon perturbation of the shape of
the cross-section of the cylinders and the periodic structure. Moreover, we apply our results to
study the behavior of the longitudinal permeability of a periodic array of cylinders upon such
perturbation. The second part of the Dissertation is related to the development of tools for
solving boundary value problems for functions taking values in commutative Banach algebras.
In particular, we investigate the properties of logarithmic residues of monogenic (continuous
and differentiable in the sense of Gateau) functions and the behavior of the certain Cauchy
type integral on the boundary of its definition.

The Dissertation consists of two parts and is organized as follows.

Part I consists of three chapters. In Chapter 1 we investigate the asymptotic behavior of
the solutions of singularly perturbed (ideal and nonideal nonlinear) transmission problems in
a periodically perforated domain. In Chapter 2 we apply the results of Chapter 1 to study
the asymptotic behavior of the effective thermal conductivity of a periodic two-phase dilute
composite. Chapter 3 is devoted to the study of the behavior of the longitudinal permeability
of a periodic array of cylinders upon perturbation of the shape of the cross section of the
cylinders and of the periodic structure.

Part II consists of two chapters. In Chapter 4 we introduce a three-dimensional commutative
algebra over C with a one-dimensional radical and study the logarithmic residues of monogenic
functions in this algebra. Chapter 5 is devoted to the investigation of a certain analog of
Cauchy type integral taking values in the mentioned algebra and its limiting values on the
boundary of the domain of definition. At the end of the Dissertation, we have enclosed three
appendices with some results which we have exploited in the Dissertation.
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Introduction

The Dissertation is devoted to the study of boundary value problems in finite-dimensional
Euclidean spaces and in commutative Banach algebras.

In Euclidean spaces we are interested in the singular and regular perturbation analysis of
boundary value problems (transmission problems for the Laplace equation, a Dirichlet problem
for the Poisson equation) in perforated domains and its application to the investigation of
effective properties of composite materials. We use techniques which allow us to look at the
boundary value problems from the different point of view in comparison with the classical
ones. Our techniques are mainly based on the Functional Analytic Approach, which has been
proposed by Lanza de Cristoforis [76, 79] for the analysis of singular perturbation problems in
perforated domains. Such an approach aims at representing the solution or related functionals in
terms of real analytic functions of the singular perturbation parameter and of explicitly known
functions of such a parameter (see, e.g., Dalla Riva and Musolino [35], Lanza de Cristoforis
and Musolino [84]). The main advantage of this approach is the possibility to expand the
investigated functionals into convergent power series of the mentioned parameter when it is
small. Moreover, the coefficients of such power series can be explicitly determined by computing
the solutions of recursive systems of integral equations (see, e.g., Dalla Riva, Musolino, and
Rogosin [39]).

In commutative Banach algebras, we are interested in developing a theory similar to
the theory of analytic functions of one complex variable within the framework of creating
tools for solving boundary value problems in such algebras. We note that one of the first
applications of analytic functions with values in commutative Banach algebras for describing
spatial potential fields has been done by Ketchum [68], Ward [162], Wagner [161], and Kunz
[73]. As a generalization of the ideas presented in these works, Mel'nichenko [100, 101] has
proposed the Algebraic-Analytic Approach to elliptic equations of mathematical physics, which
aims in finding commutative Banach algebras such that functions, which are differentiable in
the sense of Gateaux and have values in these algebras, have components satisfying the given
partial differential equation. In the Dissertation we consider one of those algebras, namely, the
three-dimensional commutative Banach algebra over C with one-dimensional radical, and we
study properties of monogenic (continuous and differentiable in the sense of Gateaux) functions
and a certain analog of the Cauchy type integral. Based on the obtained results and using
commutative Banach algebras, we plan to develop hypercomplex tools and methods for solving
boundary value problems. Some advantages of using two-dimensional commutative algebras for
solving boundary value problems can be found in Gryshchuk and Plaksa [57, 58]. In particular,
using a hypercomplex analog of the Cauchy type integral, Gryshchuk and Plaksa reduced a
Schwartz-type boundary value problem for biharmonic monogenic functions to a system of
Fredholm integral equations on the real axes.

The Dissertation is organized as follows. The first part is devoted to the perturbation analysis
of boundary value problems in perforated domains and its application to the investigation of
effective properties of composite materials. The second part is devoted to the development of
tools for solving boundary value problems for functions taking values in commutative Banach
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algebras.

Below, we describe in more details the structure of the Dissertation.

PART I: Perturbation problems and applications

Part I consists of three chapters. In Chapter 1 we investigate the asymptotic behavior of
the solutions of singularly perturbed (ideal and nonideal nonlinear) transmission problems
in a periodically perforated domain. In Chapter 2 we apply the obtained results to study
the asymptotic behavior of the effective thermal conductivity of a periodic two-phase dilute
composite. Chapter 3 is devoted to the investigation of the behavior of the longitudinal
permeability of a periodic array of cylinders upon perturbation of the shape of the cross section
of the cylinders and of the periodic structure.

Asymptotic behavior of the solutions of transmission problems
in a periodic domain

The asymptotic behavior of the solutions of transmission problems in periodic domains has
been studied by many authors and by different approaches. The most common approach is
the one of Asymptotic Analysis, aiming at computing asymptotic expansions of the solutions
or of related functionals with respect to some parameter which tends to zero. We mention
works of Ammari and Kang [7], Ammari, Kang, and Kim [8], and Ammari, Kang, and Lim
[9], where the authors derive asymptotic expansions for some effective parameters of periodic
dilute two-phase composites. For the application of asymptotic analysis to dilute and densely
packed composites, we refer to Movchan, Movchan, and Poulton [115], and to Nieves [120] for
transmission problems in solids with many inclusions. Concerning asymptotic methods for
general elliptic problems we mention, e.g., Maz’ya, Nazarov, and Plamenewskij [98, 99] and
Maz’ya, Movchan, and Nieves [97]. The technique of Asymptotic Analysis allows to produce
asymptotic expansions and has revealed to be extremely versatile for a wide range of problems.
On the other hand, one should note that this method usually does not allow to show that the
power series associated with an asymptotic expansion is convergent.

Moreover, transmission problems in domains with periodic circular inclusions have been
extensively analyzed with the method of Functional Equations, which aims at obtaining
representation formulas in terms of power series of the radius of inclusions. As an example,
we mention the works by Castro and Pesetskaya [26] and Drygas and Mityushev [44] for a
transmission problem with nonideal (or imperfect) contact, the works by Mityushev [108],
Kapanadze, Mishuris, and Pesetskaya [65, 66], and Rogosin, Dubatovskaya, and Pesetskaya
[141] for a transmission problem with ideal (or perfect) contact, and, finally, the works of
Mityushev, Obnosov, Pesetskaya, and Rogosin [111] and Mityushev and Rogosin [112, Ch. 5],
where the two problems have been considered. One should note such a method applies to
specific geometries as, for example, the cases of circular and elliptic inclusions and only in the
two-dimensional case.

Here, instead, we use the alternative Functional Analytic Approach, which has been proposed
by Lanza de Cristoforis for the analysis of singular perturbation problems in perforated domains.
There are many papers in which such an approach was developed and adapted to analyze a
variety of problems. Among them, we mention works of Lanza de Cristoforis [76, 77, 78, 79, 80],
Dalla Riva and Lanza de Cristoforis [31], Lanza de Cristoforis and Musolino [83, 85], and
Musolino and Mishuris [118]. Moreover, this approach has been applied to a mixed problem
for the Poisson equation and to the Dirichlet problem for the Laplace equation in a domain
with two moderately close holes by Dalla Riva and Musolino [36, 37|, to the Dirichlet problem
for the Laplace equation in a domain with a hole that approaches the outer boundary of the
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domain at a certain rate by Bonnaillie-Noél, Dalla Riva, Dambrine, and Musolino [25], and
to the Dirichlet problem for the Laplace operator where holes are shrinking towards a point
of the boundary that is the vertex of a plane sector by Costabel, Dalla Riva, Dauge, and
Musolino [30]. Concerning transmission problems, by this approach, Dalla Riva and Musolino
[35] have investigated a nonideal singularly perturbed linear transmission problem, and Lanza
de Cristoforis and Musolino [84] have studied a quasi-linear heat transmission problem (see also
Dalla Riva, Lanza de Cristoforis, and Musolino [32]). For other contributions for the analysis
of nonlinear transmission problems, we refer to Dalla Riva and Mishuris [34] and Lanza de
Cristoforis [80].

In the Dissertation we adapt the Functional Analytic Approach in order to study the behavior
of solutions of singularly perturbed (ideal and nonideal nonlinear) transmission problems in a
periodically perforated domain and, then, we apply obtained results to investigate the effective
properties of composite materials.

In order to introduce the geometry of the problem, we
fix once for all n € N\{0,1} and (q11, ..., qnn) €J0, +o0[". F
Then, we define a periodicity cell @ := II?" 4]0, ¢;;[ and a
diagonal matrix ¢ = (d;jqj5)ijeq1,...n}, Where 6; ; = 1 if
i=jand d;; =0if i # jforalli,j € {1,...,n}.

d & {

Then we fix o €]0, 1] and take a bounded open con- ’ <
nected subset of Q of R™ of class C1® such that R™ \ cl{
is connected, and 0 € ). Obviously, for a fixed point
p € Q, there exists €y €]0, 400[ such that ;
ptecdQCQ ’ q

for all € €] — €9, o[ and, to shorten our notation, we set

Qe :=p+eQ for all e € R. The set Q represents the Figure 1: The model of the composite
shape of each inclusion and if € €] — €g, €[ then ,,  plays " R?

the role of the inclusion in the fundamental cell @ (see

Figure 1). Then we introduce the periodic domains

S[Qp.e == U (g2 +Qpe),  S[Qpel™ :=R"\ clS[Q ]
ZEL"

for all € €] — €g, €o[. The set S[Q, ] corresponds to the region occupied by the periodic set of

holes or inclusions; the matrix, instead, is represented by its complementary set S[{2, ]™.
Next, we take two positive constants A*, A7, a constant ¢ € R, functions f € C%(99Q)o and

g € CH(09), a function p :]0, eg[— R\ {0}, and we consider the following linear transmission

problem for a pair of functions (ut,u™) € Cp*(cIS[Qy,c]) x Cr(cIS[y.]7):

Aut =0 in S[Q, ],

Au™ =0 in S[Q ],

ut(x + gep) = u™ () Vo € cS[Qy ], Vhe{l,...,n},

u” (x4 gep) = u™ (z) Vo €cS[Qy ™, VYhe{l,...,n}, (1)
N () = N () = f((w = p) ) Vo € 0

sl (ut (@) —u=(2)) = g((z — p)/e) Vz € 0,

faﬂp,e utde =c

for all € €]0, €.

The analysis of problem (1) will allow us to study a (more general) transmission problem,
which we introduce below (see problem (2)). So, let a matrix B € M;x,(R) and F be a
real analytic map from (C’O’O‘(é?Q)o)2 to R. For (e, f,g,¢) €]0,e[xC%*(0Q)y x CH*(09) x R,



viii Introduction

we consider the following nonideal nonlinear transmission problem for a pair of functions

(uh,u7) € Ol (clS[Qy,e) x Croe (cIS[Qy,e] 7):

Aut =0 in S[QP,E],

Au” =0 in S[€,

ut(z + qep) = u'(x) + Bey, Vo € CIS[Qp’e] , Vhe {1,...,n},

u” (z +qep) =u (x) + Bey, Vo € clS[Q, ™, Vhe {1,...,n},

A o) = AT ;;Zg* (1) = f((z=p)fe) V&€, @)

Fli—(pte) go—(p+e)

+oig(ut(@) — U‘(fﬂ)) =9((x —p)/e) Vo edy,,

faﬂw utdo =c¢

for all € €]0, €.

Problems of this type usually arise in fluid dynamics and thermodynamics. If we assume
that the set of inclusions and the matrix are filled with two different homogeneous and isotropic
heat conductor materials, then the parameters AT and A\~ play the role of thermal conductivity
of the materials which fill the inclusions and the matrix, respectively. Therefore, the solutions
of problems (1) and (2) represent the temperature distribution on the set of inclusions S[2, ]
and in the matrix S[, ]”. Then the third and fourth conditions in problems (1) and (2)
mean periodicity and periodicity up to a given linear function, respectively, of the temperature
distribution. The fifth condition of such problems says that the normal component of the heat
flux presents a jump which equals a given function. The sixth condition of the two problems
is different: the one in (1) says that the temperature distribution presents a jump on the
interface equal to a given function, while the one in (2) says that the jump on the interface of
the temperature distribution plus a given function is proportional to a quantity which depends
on the heat flux. In case g = 0, such a condition means that the jump of the temperature
distribution is proportional to a quantity which depends nonlinearly on the heat flux and can
be seen as a nonlinear counterpart of the linear nonideal transmission problem considered by
Dalla Riva and Musolino [35], where the parameter p(e) plays the role of the boundary thermal
resistivity. Finally, the last condition of problems (1) and (2) is just a normalization condition,
which we need in order to “fix” the solution.

Due to the presence of the factor 1/p(¢€), the boundary conditions may display a singularity
as € tends to 0. We consider the case in which lim,_,o+ p(€)/€ exists in R. This assumption will
allow us to analyze problems (1) and (2) around the degenerate value € = 0, and if it holds
then we set r, :=lim._,o+ p(€)/e. We also note that such an assumption is alternative to that
considered by Dalla Riva and Musolino [35], where they assumed that lim,_,o+ €/p(€) exists in
R. Clearly, both assumptions are satisfied in case p(e) = e.

As we shall see, problems (1) and (2) have unique pairs of solutions which we denote
by (ut[e, f,g,c],u"[e, f,g,c]) and by (u't[e, f,g,c],u"[e, f, g, c]), respectively. Our aim is to
investigate the behavior of (u™,u~) and (u',u™) when ¢ is close to the degenerate value
€ = 0, in correspondence of which the inclusions collapse to points. From the physical point of
view, this situation corresponds to the case of a dilute composite.

We prove our main result, stating that the solutions of problems (1) and (2) can be
represented in terms of real analytic maps of € and of some additional functions. Our results
imply that such solutions can be expanded into absolutely convergent power series what is used
in the sequel of Dissertation in order to study the effective conductivity of composites.

Finally, we briefly outline our strategy. First, we convert problem (1) into a system of
integral equations by exploiting layer potential representations. Taking the assumption on p(e)
into account, this system can be analyzed when (¢, f, g, ¢) is close to the degenerate quadruple
(0, f0,90,c0). We do so by means of the Implicit Function Theorem and we represent the
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unknowns of the system of integral equations in terms of analytic functions of €, p(€)/e, f and
g. Next we exploit the integral representations of the solutions in terms of the unknowns of the
system of integral equations, and we deduce the representation of u™t[e, f, g, | and u™[e, f, g, |
in terms of real analytic maps of €, p(€)/¢, f, g, and c. Finally, we convert problem (2) into
a linear periodic transmission problem and we apply the previously discussed results for the
derivation of representation for (u™le, f, g,c|,u”[e, f, g, c]).

Effective conductivity of a periodic dilute composite

There is a vast literature devoted to the study of the effective properties of composites. We first
mention the Homogenization method which is a common method to study the effective properties.
It aims at giving a proper description of materials that are composed of several constituents,
intimately mixed together (see Bensoussan, Lions, and Papanicolaou [18], Bakhvalov and
Panasenko [12], Jikov, Kozlov, and Oleinik [63], Markov [96], and Milton [105]). We also note
that due to the fact that the microstructure of the composite is close to periodic, one can apply
the periodic homogenization, which allows reducing the investigation of the global problem for
a composite to the investigation of the local problem for a cell of periodicity. The application
of the periodic homogenization to study effective properties of heat conductors with interfacial
contact resistance can be found in Monsurré6 [113, 114], Donato and Monsurré [42], and Faella,
Monsurré, and Perugia [45]

Concerning the Asymptotic Analysis, we note that Ammari, Kang, and Touibi in [10]
computed an asymptotic expansion of the effective electrical conductivity of a periodic dilute
composite with the ideal contact condition, and Ammari, Kang, and Kim [8] have presented
the asymptotic expansions of the effective electrical conductivity of periodic dilute composites.
Also, Ammari, Garnier, Giovangigli, Jing and Seo [5] considered transmission problems in
order to study the effective admittivity of cell suspensions, and Ammari, Giovangigli, Kwon,
Seo, and Wintz [6] studied these problems in order to determine microscopic properties of cell
cultures from spectral measurements of the effective conductivity. One should note that despite
this approach is extremely versatile for a wide range of problems, it usually does not provide
constructive formulas for all the coefficients of the power series associated with an asymptotic
expansion.

Concerning Functional Equation Method, which is very useful to express the effective
conductivity in terms of a convergent power series of the diameter of inclusions in two-
dimensional case, we note the works of Castro, Pesetskaya, and Rogosin [27], Pesetskaya [122],
Kapanadze, Miszuris, and Pesetskaya [67], and Drygas and Mityushev [44]. We also note that
this method can be applied to random composite materials as it was shown by Berlyand and
Mityushev [20, 21].

We also mention the paper by Gryshchuk and Rogosin [56], where, using a method based
on expansions in the Taylor’s and Laurent’s power series, the authors studied the effective
conductivity of a two-dimensional circular composite material.

Concerning numerical results for the effective conductivity, we refer to Zuzovsky and Brenner
[163] for studying composites with spherical inclusions, to Godin [54], and Alali and Milton
[4], who obtained the series expansion of the effective electric conductivity tensor with exactly
determined coefficients for composites with thin interphase regions. Moreover, Sciacca, Jou,
and Mongiovi [149] have studied the effective thermal conductivity of narrow channels filled
with helium II, which was used by Saluto, Jou, and Mongiovi [144] to analyze the effective
thermal resistance. We also mention that Zheng, Yuan, Hu, and Luo [90] analyzed the effective
thermal conductivity of the silicone/phosphor composite and its size effect.

Here, instead, we continue to adapt the Functional Analytic Approach and we investigate the
properties of the composite in the dilute case, i.e., when the singular perturbation parameter
€, which controls the size of the inclusions, tends to 0. By this approach, we can investigate
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functionals in terms of real analytic maps of the singular perturbation parameter € and, in turn,
such a result allows to justify representation formulas in terms of convergent power series of €.
A preliminary step in the explicit computation of the series expansions has been performed
in Dalla Riva, Musolino, and Rogosin [39], regarding the solution of a Dirichlet problem for
the Laplace equation in a bounded domain with a small hole. Here, we present the first
extension of such a computation to periodic domains and to different transmission
boundary conditions.

Before we define the effective conductivity, we formulate three transmission boundary value
problems: the first two in R™ for any n € N'\ {0, 1}, and the third one only for n = 2 but the
results can be easily extended to the higher dimensions.

To begin with, we take two positive constants A*, A™. Then for each j € {1,...,n} and all
e €]0, o], we consider the so-called ideal transmission problem, which is a problem for a pair of

functions (u} uj,uj) € C’l (cIS[Qp.]) x C’ﬁ)?(clS[Q ¢J7) satisfying
Auj+ =0 in S[Q, ],
Au; =0 in S[Q¢]~
u;’(x + gnnen) = u;“(a:) +0njq;; Vx € CIS[QW], Vh e {l,...,n}, (3)
[

u; (z + qrnen) = uj (x) +0pjq;; Vo € clS[KY ™, Vhe{l,... n},
faQw ujda =0

with the following boundary conditions

_ Ou; + out
{)\ i () = X g (1) = 0 Vi € 0y, "

uj(:v) —u;(z) =0 Vo € 00 .

The analysis of the ideal transmission problem can be deduced by the analysis of a more general
transmission problem which, in turn, can be considered as a particular case of problem (2).
Such a more general transmission problem is a problem for a pair of functions (uj, Uy ) €
o " (cIS[Qy,]) x C L " (cIS[Qp,e] ), which satisfy system (3) and the following boundary conditions

loc loc

{Aayﬂ_ (@) = N g (a) = f((w = p)/e) Vo € 0D 5

L (uf () — uj (2) = g((a — p)/e) Vi € 00

for a given number m € {1,...,n — 1}, and given functions f € C%*(9Q)y and g € C1*(09Q).
Clearly, if (f,g,¢) = (0,0,0) in (5) then the two problems coincide.

In order to formulate the third problem, which we consider in R?, we additionally introduce
a function p from 0, y[ to ]0, +-00[ equals 1/74 or €/r4, where r4 is a positive real number.
Then, we consider the so-called nonideal transmission problem for a pair of functions (u;r, u]_) €
cL 2 (cIS[Qy.]) x cL " (cIS[Qy,e] ) satisfying system (3) with n = 2 and the following boundary

loc loc

conditions
ou. ouT
N g (2) = M g () = f((z = p)/e) Vo € 0.,
ot (6)

Mo (@) + 5 (uj(x) —uj (@) = g(z—p)fe) Vo €Y,

Finally, we introduce the effective conductivity matrix A\ [¢] with (k, j)-entry )\zfjf [€] defined
by means of the following.

g L (4 [ 2@ 2y 9
)‘k:]H- ‘Q|n<)\ / ) oz, dr + A\~ /Q\lep,e Oxy, dx

4 /6 = pm d%>

(7)
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for all € €]0,¢[ and all k,57 € {1,2,...,n}, where (uj[e],uj_ [€]) is the unique solution in

C’llo’?(clS[Qp7e]) X Cllc)’?(clS[Qp7€]_) of system (3) with boundary conditions (4) with f =0, or
(5), or (6). We note that the integral of the function f is not presented in the right hand side
of expression (7) when we consider the transmission problem with the boundary condition (4).
Moreover, we observe that expression (7) extends that of Benveniste and Miloh [19] to the case
of nonhomogeneous boundary conditions and coincides with the classical expression when f
and g are identically 0 in systems (5) and (6).

Our aim is to investigate the asymptotic behavior of the effective conductivity
of a periodic two-phase composite. As our main result, for € small we prove that the effective
conductivity can be represented as a convergent power series in € and we determine all the
coefficients in terms of the solutions of explicit systems of integral equations. Moreover, we
compute some coefficients in the series expansion of the effective conductivity in case when
the inclusions are in the form of a disk. One should note that for the nonideal transmission
problem, the real analytic dependence of the effective conductivity on the parameter € around
the degenerate value € = 0 has been proved by Dalla Riva and Musolino [35].

The different variations of formula (7) for the effective conductivity can be found in the
papers by Benveniste and Miloh [19, 104], Lipton and Vernescu [92], Ammari, Kang, and Touibi
[10], Drygas and Mityushev [44], Castro, Pesetskaya, and Rogosin [27], and Dalla Riva and
Musolino [35], where the authors considered different contact conditions in materials and the
case when there are more then one inclusion in the unite cell (). We also note that Benveniste
and Miloh [19] introduced their expression for defining the effective conductivity of a composite
with imperfect contact conditions by generalizing the dual theory of the effective behavior of
composites with the ideal contact. Moreover, Dalla Riva and Musolino [35] introduced the
effective conductivity as an extension of the classical definition to the case of nonhomogeneous
boundary conditions.

We now briefly outline our strategy. We first consider problem (3) with boundary conditions
(4) and (5). We begin by computing the power series expansions for two auxiliary functions
and then we prove our main results: we describe the effective conductivity )\Zg-f [€] in terms of
real analytic functions and obtain the power series expansion for it with explicitly determined
coefficients. After that, we compute some coefficients in the series expansion of )x?}f [€] in case
inclusions are in the form of a ball. Finally, we apply the similar strategy in order to consider
problem (3) with boundary conditions (6).

Shape analysis of the effective longitudinal permeability of a
periodic array of cylinders

In this part of the Dissertation, we study the behavior of longitudinal permeability of a periodic
array of cylinders upon perturbation of the shape of the cross section of the cylinders and
the periodic structure, when a Newtonian fluid is flowing at low Reynolds numbers around
the cylinders. The shape of the cross section of the cylinders is determined by the image of
a base domain through a diffeomorphism ¢ and the periodicity cell is a rectangle of sides of
length [ and 1/1, where [ is a positive parameter. We also assume that the pressure gradient
is parallel to the cylinders. Under such assumptions, the velocity field has only one nonzero
component which, by the Stokes equations, satisfies a Poisson equation. Then, by integrating
the longitudinal component of the velocity field, for each pair (I, ¢), one defines the longitudinal
permeability Krr[l, ¢]. Here, we are interested in studying the behavior of Kj[l, ¢] upon the
pair (1, ¢).

The longitudinal permeability of arrays of cylinders has been studied by several authors by
exploiting different methods. For example, Hasimoto [61] has investigated the viscous flow past
a cubic array of spheres and he has applied his results to the two-dimensional flow past a square
array of circular cylinders. His techniques are based on the construction of a spatially periodic
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fundamental solution for the Stokes’ system and apply to specific shapes (circular/spherical
obstacles and square/cubic arrays). Schmid [148] has investigated the longitudinal laminar flow
in an infinite square array of circular cylinders. Sangani and Yao [146, 147] have studied the
permeability of random arrays of infinitely long cylinders. Mityushev and Adler [109, 110] have
considered the longitudinal permeability of periodic rectangular arrays of circular cylinders.
By means of complex variable techniques, they have transformed the boundary value problem
defining the permeability into a functional equation and then they have derived a formula for
the longitudinal permeability as a logarithmic term plus a power series in the radius of the
cylinder. Finally, in Musolino and Mityushev [119] the asymptotic behavior of the longitudinal
permeability of thin cylinders of arbitrary shape has been considered. They have proved that
the longitudinal permeability can be written as the sum of a logarithmic term and a power
series in a parameter which is proportional to a diameter of the cylinders.

Here, instead, we are interested in the dependence of the
longitudinal permeability upon the sides of the rectangular array
and the shape of the cross section of the cylinders (see Figure 2).
In particular, in contrast with other approaches, we do not need
to restrict ourselves to particular shapes, as circles or ellipses.
In order to introduce the mathematical problem, for [ €]0, 00|,
we define

The cross section arca

Qoo a=( ).

Clearly, 72 = {qiz : z € Z*} is the set of vertices of a periodic
subdivision of R? corresponding to the fundamental periodicity
cell Q;. Moreover, we find convenient to set @ := @1. Then
we take a €]0, 1, fix a bounded open connected subset 2 of R?
of class C1® such that R? \ clf is connected, and we consider
a class of diffeomorphisms Ay from 9 into Q. If ¢ € Ay, the Jordan-Leray separation
theorem ensures that R? \ ¢(92) has exactly two open connected components, and we denote
by I[¢] and E[¢] the bounded and the unbounded open connected components of R? \ ¢(992),
respectively.

Then we consider the periodic domains Sy, [¢I[¢]] := U.cz2 (@12 + qil[¢]) and Sy, [¢l[¢]] ™ =
R2\ cIS,, [¢1[¢]]. If 1 €]0, +oo] and ¢ € Ay, the set clS,, [¢I[¢]] x R represents an infinite array
of parallel cylinders. Instead, the set S, [gI[¢]]” x R is the region where a Newtonian fluid
of viscosity p is flowing at low Reynolds number. Then we assume that the driving pressure
gradient is constant and parallel to the cylinders. As a consequence, by a standard argument
based on the particular geometry of the problem (see, e.g., Adler [1, Ch. 4], Sangani and Yao
[147], and Mityushev and Adler [109, 110]), one reduces the Stokes system to a Poisson equation
for the nonzero component of the velocity field. Since we are working with dimensionless
quantities, we may assume that the viscosity of the fluid and the pressure gradient are both set
equal to one. For a more complete discussion on spatially periodic structures, we refer to Adler
[1, Ch. 4]. Accordingly, if I €]0, +oo[ and ¢ € Apq, we consider the following Dirichlet problem
for the Poisson equation:

Figure 2: The periodic array
of cylinders in R3

Au=1 in Sq [q1[]] ™,
u(z + qz) =u(z) Va € Sy [qlld)]~ ,Vz € Z2, (8)
u(z) =0 Vo € 0Sy, [ql]¢]]~ .

If 1 €]0, 4+00[ and ¢ € Ayq, then the solution of problem (8) in the space Ca(c1Sq [ql[¢]] )
of g-periodic functions in clSy, [qI[@]]~ of class C1® is unique and we denote it by u[l, ¢]. From
the physical point of view, the function ull, ¢] represents the nonzero component of the velocity
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field (see Mityushev and Adler [109, Sec. 2]). By means of the function u[l, ¢], we can introduce
the effective permeability Krr[l, ¢] which we define as the integral of the opposite of the flow
velocity over the unit cell (see Adler [1], Mityushev and Adler [109, Sec. 3)), i.e.,

K[l 9] := —/ ull, ¢|(x) dx V1 €]0, 40, ¢ € Asq,
Qi\q:1[¢]

and our aim is to investigate the regularity of the map (I, ¢) — Ki;[l, ¢].

Shape analysis of functionals related to partial differential equations or quantities of physical
relevance has been carried out by several authors and it is impossible to provide a complete list
of contributions. Here we mention, for example the monographs by Henrot and Pierre [62], by
Novotny and Sokotowski [121], and by Sokolowski and Zolésio [155]. Most of the works deals
with differentiability properties. Here, instead, we are interested in proving higher regularity
and we show that Kj[l, ¢] depends analytically on (I, ¢).

Our main result is the following: we have proved the fact that the map

(I,¢) = K[l ¢] 9)

is real analytic. Such a result implies, in particular, that if we have a one-parameter analytic
family of pairs (ls, ¢5)se)—s0,50[, With some dp, then we can deduce the possibility to expand
the permeability as a power series, i.e., Kys[ls, ¢s] = Z;’io c;07 for ¢ close to zero. Moreover,
by the analyticity of the map in (9), the coefficients in the series expansion of K5 can be
constructively determined by computing the differentials of Kj;[ls, ¢s] (cf. [136], Dalla Riva,
Musolino, and the author [38] for the effective conductivity). Furthermore, another important
consequence of our high regularity result is that it allows to apply differential calculus in order
to find critical pairs (I, ¢) rectangle-shape as a first step to find optimal configurations.

Finally, we briefly outline our strategy which is also in the framework of Functional Analytic
Approach. As a first step, we transform the Dirichlet problem for the Poisson equation (8) in a
Dirichlet problem for the Laplace equation which, it turn, we convert into an integral equation
defined on 02 by exploiting layer potential representations. Then we analyze the dependence
of the solution of the integral equation upon (I, ¢) by exploiting the Implicit Function Theorem
and we prove that it depends real analytically on (I,¢). Finally, we exploit the obtained
results and the integral representation of the solution of the boundary value problem to analyze
Ky, 9.

PART II: Properties of monogenic functions in a three-dimen-
sional commutative algebra with one-dimensional radical

Part II consists of two chapters. In Chapter 4 we introduce a three-dimensional commutative
algebra over C with one-dimensional radical and study the logarithmic residues of monogenic
functions in this algebra. Chapter 5 is devoted to the investigation of the certain analog of
Cauchy type integral taking values in the mentioned algebra and its limiting values on the
boundary of definition.

There are many works devoted to developing hypercomplex methods and their application
for solving problems of mathematical physics. Among them, we first note those which are
related with noncommutative hypercomplex numbers: Sudbery [156], Giirlebeck and Sprossig
[59, 60], Kravchenko and Shapiro [72], Kisil [69], Kisil and Ramirez de Arellano [70], Fokas
and Pinotsis [46], Colombo, Sabadini, and Struppa [29], Pinotsis [123], and Shpakivskyi and
Kuz'menko [154], etc. The analysis in noncommutative algebras is well developed and have
many applications. Here, instead, we are interested in considering commutative algebras and
developing techniques for their application to solving boundary value problems. One should
note that such an analysis is at a preliminary stage and some results in this research area can
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be found in works of Kovalev and Mel’'nichenko [71], Mel’nichenko [100, 101], Mel’nichenko
and Plaksa [102, 103], Plaksa and Shpakivsky [126], and Gryshchuk and Plaksa [57, 58].
Below we describe the content of the chapters.

Logarithmic residues of monogenic functions

The logarithmic residue in a Banach algebra means the contour integral of the logarithmic
derivative of a hypercomplex function. It was considered by many authors in many algebras, for
instance, in an algebra of all bounded linear operators on a complex Banach space (Mittenthal
[107] and Bart, Ehrhardt, and Silbermann [14, 16]), matrix algebras (Bart, Ehrhardt, and
Silbermann [17]), a biharmonic algebra (Grishchuk and Plaksa [55]), a three-dimensional
algebra with two-dimensional radical (Plaksa and Shpakivskyi [129]). We note that Bart [13]
considered the logarithmic residue for functions acting from the field of complex numbers C to
a commutative Banach algebra. One of the main issues considered by Bart [13] (see also Bart,
Ehrhardt, and Silbermann [14, 16]) is whether the vanishing of a logarithmic residue implies
that a function takes only invertible values inside an integration contour, where contours are
considered on the complex plane. We note that the answer is negative in general.

We also mention that Bart, Ehrhardt, and Silbermann [15] considered the logarithmic
residues of locally analytic and meromorphic functions f given in bounded Cauchy domains
in the complex plane and taking values in a Banach algebra A with a unit element over C.
For definitions of locally analytic functions, meromorphic functions, and Cauchy domains, we
refer, e.g., to Taylor and Lay [158, Sec. V.1.]. For instance, it was proven that if f: C — A is
an analytic or meromorphic function in a bounded Cauchy domain in C then the logarithmic
residue of f is equal to a linear combination of idempotents of A with integer coefficients (see
Bart, Ehrhardt, and Silbermann [15, Thm. 6.1, Thm. 7.1]). For the residues in multidimensional
complex analysis and their applications, we refer to Aizenberg and Yuzhakov [3], Aizenberg,
Tsikh, and Yuzhakov [2], and Tsikh [160].

The logarithmic residues of monogenic (continuous and differentiable in the sense of Gateaux)
functions were considered in Grishchuk and Plaksa [55], and Plaksa and Shpakivskyi [129]. For
instance, they calculated the logarithmic residue of monogenic function and it was shown that
it is always an integer number. In the general case, it can be a hypercomplex number.

Here, instead, we consider the logarithmic residues of monogenic functions taking values in
a three-dimensional commutative associative Banach algebra Ay over C with one-dimensional
radical.

In order to define the logarithmic residue, we introduce some notation. Let Ay be a three-
dimensional commutative associative Banach algebra over C with one-dimensional radical (see,
e.g., Plaksa and the author [125], Mel’'nichenko and Plaksa [103]). This algebra has a basis
{1, I2, p} with the following multiplication rules for its elements

L*=1, L*=1I, Lp=p, ©Lly=p"=ILp=0.

The unit of Ay is represented as 1 = I + I».
Let ¢ = c1 11 +cola+csp, where ¢1, co, cg € C. The element c is invertible if and only if ¢; # 0
and ¢z # 0, moreover, the inverse element ¢~ is represented as ¢! = 1/¢1I1 + 1/cols — c3/c2p.
Then we take three vectors eq, eg, and e3 in Ay that are linear independent over R. We
denote by
Es :={zey + yes + zes : x,y,2z € R}

the linear span over R in the algebra Ag generated by the vectors of basis {e; = 1, €9, e3}.
Let © be a domain in F3 and the function @ : 2 — Ao be continuous in 2. We say that &

is monogenic in Q if @ is differentiable in the sense of Gateaux at every point of €, i.e., if for

every ¢ € Q there exists an element ®’(¢) € Ay such that

(®(C+¢eh) —®(C)e L =hd'(¢) VheEs.

lim
e—040
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Then we consider the linear continuous functionals fi, fo : Ay — C satisfying the equalities

fih) = fo(I2) =1, fi(l2) = fi(p) = f2(11) = f2(p) =0,

and, for any nonnegative real number R and a point (o € E3, we set Ko r({o) :={( € E3: 0<
1f1(¢) = f1(Co)| < R, 0 < |fa(C) — f2(Co)| < R}

We define the logarithmic residue of monogenic functions in the following way. We take
(o € B3 and R €]0, +0o0]. If the functions ® : Ko g({p) — Az and ®'®~! are monogenic in the
domain Ko r(¢o) then we say that the integral

./<Mo@@rwa (10)

21
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where r €]0, R[ and I',((p) is a curve of a certain type in Ko r(o), is the logarithmic residue of
the monogenic function ® at the point (p.

Our aim is to calculate the logarithmic residue of monogenic functions, i.e., to
calculate integral (10) over the curve T'.((p).

Now, we briefly outline our strategy. We start by proving some properties of Laurent series
of monogenic functions in As. Then we exploit the Laurent series to calculate the logarithmic
residue of monogenic function. Using this result, we establish our main results for a curvilinear
integral of the logarithmic derivative of a monogenic function along a family of curves. We
show that the logarithmic residue depends on zeros, singular points, and, also, on those points
at which the function takes values in the ideals of Ay. Moreover, we show that the logarithmic
residue is a hypercomplex number.

Limiting values of a Cauchy type integral

Cauchy-type integrals are widely used for solving singular integral equations in boundary value
problems for analytic functions of a complex variable. Among many works we mention those
by Plemelj [130], Privalov [133], Muskhelishvili [116], Zygmund [164], Magnaradze [95], Salaev
[143], and Babaev and Salaev [11], and Blaya, Reyes, and Kats [23].

One should mention the monographs by Gakhov [48] and by Muskhelishvili [116] where it
is proven the existence of limiting values of Cauchy type integral

1 -1
o [ VOE-97a  gechT, ()
r
under classical conditions, namely, when I' is a smooth curve in the complex plane and a
function ¢ : I' — C is Holder continuous. In case I' is a closed Jordan rectifiable curve Davydov
[40] has obtained sufficient conditions for the existence of limiting values of integral (11) on I'
from the interior and exterior domains bounded by I'. Moreover, if

suppu{t €' |t —to| <e} =0O(¢e) as ¢ — 0, (12)
toel

where p denotes the Lebesgue measure on I', and the modulus of continuity

wy,r(e) = sup 9 (t1) = (t2)]

t1,t2€l, [t1—t2|<e

of a function ¢ : I' — C satisfies the Dini condition fol wy r(n)/ndn < oo, then integral (11)
has limiting values in every point of I' from the mentioned above domains. This result was
proven by Gerus [49], where he used results of Davydov [40].
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Some analogs of integral (11) in commutative Banach algebras have been the subject of
investigations since the last decades. In particular, Blaya, Pefia, and Reyes [22, 24] investigated
boundary properties of a Cauchy type integral over regular curves in the finite-dimensional
Douglis algebras (see, e.g., Douglis [43]) and applied it to solve Riemann boundary value
problem for some functions which act from R? to such algebras (see also Gilbert and Zeng [53],
and Gilbert and Buchanan [52]).

Unlike authors mentioned in the last paragraph, Plaksa and Shpakivskyi [127, 128] consid-
ered the integral of type (11) in a three-dimensional commutative algebra with two-dimensional
radical, where I" is a plane curve in some three-dimensional real subspace of the algebra satisfy-
ing condition (12), and v satisfies the Dini condition. Taking the structure of zero-divisors into
account, it has been proven by Plaksa and Shpakivskyi [129] that such an integral is defined in
two unbounded domains with the common cylindrical boundary for which the curve I is the
generatrix and that it has limiting values I'. Also, under additional assumptions on the density
1, the existence of limiting values on the whole cylindrical boundary from both domains has
been proven in Plaksa and Shpakivskyi [127].

Here, instead, we consider a certain Cauchy type integral in the three-dimensional commu-
tative algebra Ay. One should note that the structure of zero-divisors in this algebra leads to
an increase in the number of domains of definition for such an integral and to the complication
of their geometry.

In order to formulate the problem we recall some notation. The algebra Ay has the the
basis {I1, I2, p} and 1 = I + I,. Here we take three specific vectors e; = 1, es = il; + p, and
e3 = i1y, which are linearly independent over C, and we denote by F3 C As the linear span of
{e1,e2,e3} over R.

Let @ : E3\ ¥ — Ay be a function defined as follows

3(() = [ o(M)(r - ldr Ve e Es\ X, (13)
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r

where I' is a plain closed Jordan rectifiable curve, a function ¢ : I' — R is Dini-continuous,
and X is a set of singularithies of the function ® in F3. Our aim is to investigate the
behavior of ®(¢) when ( tends to a point of ¥. One should note that the Cauchy type
integral presented in (13) is a monogenic function in six domains obtained by removing the
set 3 from the linear space Fs, but it does not exist on 3. Our main result is that we have
established sufficient conditions for the existence of limiting values of (13) on 3 and have shown
the validity of analogue of Sokhotskii-Plemelj formulas. We also note that if I" is a straight
line then integral (13) was considered in the paper of the author and Plaksa [140], and it was
shown that the set of definition of ® consists of four domains and integral (13) has different
limiting values on I' when ( tends to I' from each of such the domains.

Now, we briefly outline our strategy. Taking the representation of the unit element in As
into account, we split the function ® into three parts. We denote such parts by &1, -, and
®3, and study them separately. We first prove the existence of limiting values of ®; and ®o
on the boundary of domains of definition. Then we analyze the behavior of ®3 on the curve
of integration I' and on the boundary of domains of definition. Then, using the obtained
results, we prove the existence of limiting values of integral (13) on the boundary of domains
of definition and establish the validity of analog of the Sokhotskii-Plemelj formulas.

Note: Some of the results presented in the Dissertation have been published in the following
papers:

e PUKHTAIEVYCH, R. Asymptotic behavior of the solution of singularly perturbed trans-
mission problems in a periodic domain. Math. Methods Appl. Sci. 41, 9 (2018),
3392-3413.
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e PukHTAIEVYCH, R. Effective conductivity of a periodic dilute composite with perfect
contact and its series expansion. Z. Angew. Math. Phys. 69, 3 (2018), 69-83.

e DaLLA Riva, M., MusoLINO, P., AND PUKHTAIEVYCH, R. Series expansion for the

effective conductivity of a periodic dilute composite with thermal resistance at the
two-phase interface. Asymptot. Anal. (2018 ACCEPTED).

e Luzzini, P., MusoLINO, P., AND PUKHTAIEVYCH, R. Shape analysis of the effective
longitudinal permeability of a periodic array of cylinders. In preparation (2018).

e PUKHTAIEVYCH, R., AND PLAKSA, S. On logarithmic residue of monogenic functions
in a three-dimensional commutative algebra with one-dimensional radical. An. Stiing.
Univ. “Owvidius” Constanta Ser. Mat. 25, 3 (2017), 167-182.

e PUKHTAIEVYCH, R., AND PLAKSA, S. Some properties of a Cauchy type integral in a
three-dimensional commutative algebra with one-dimensional radical. Submitted (2018).
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Notation

Throughout the dissertation, R and C denote the sets of real and complex numbers, respectively,
the symbol N denotes the set of natural numbers including 0.

Let n € N. We denote the norm on a normed space X by || - [|x. Let X and ) be normed
spaces. We endow the space X x Y with the norm defined by ||(z,y)||lxxy = ||z|lx + |ly||y for
all (z,y) € X x ), while we use the Euclidean norm for R”. We also denote by {e1,ea,...,e,}
the canonical basis in R"™.

Let a set D C R™. Then clD denotes the closure of D and JD denotes the boundary of D.
We also set D™ = R"™\ cID. For all R > 0, z € R", |z| denotes the Euclidean modulus of x in
R™, and B, (z, R) denotes the ball {y € R" : |z —y| < R}. For a number k € {1,2} the symbol
My (R) denotes the space of k x n matrices with real entries.

Let €2 be an open subset of R"”. Let r € N\ {0}. Let f € C"(2). Then Df denotes the

vector (%)le{l,...,n}' For a multi-index n = (m1,...,m,) € N” we set [n| =n1 + - +n,. Then
D" f denotes %. The subspace of C"(2) of those functions f whose derivatives D7 f of
1 -0%n

order |n| <r can be extended with continuity to cl? is denoted by C"(clQ2). The subspace of
C"(cl?) whose functions have r-th order derivatives which are uniformly Hoélder continuous
with exponent « €]0, 1] is denoted by C™*(clf2). The subspace of C"(cl2) of those functions f
such that fions,(0,r)) € C"*(cl(QN B, (0, R))) for all R €]0, 400 is denoted C} ¢ (clQ2).
Now let Q be a bounded open subset of R™. Then C"(cl2) and C™*(cl)) are endowed
with their usual norm and are well known to be Banach spaces. We say that a bounded open
subset € of R” is of class C" or of class C™¢, if clf) is a manifold with boundary imbedded
in R” of class C" or C™%, respectively. We define the spaces C’k’a((?Q) for k € {0,...,r} by
exploiting the local parametrizations (cf., e.g., Gilbarg and Trudinger [51, Sec. 6.2]). The
trace operator from C*%(cl) to C*(9€) is linear and continuous. For standard properties
of functions in Schauder spaces, we refer the reader to Gilbarg and Trudinger [51] (see also
Lanza de Cristoforis [75, Sec. 2, Lem. 3.1, 4.26, Thm. 4.28|, Lanza de Cristoforis and Rossi [87,
Sec. 2]). We denote by vq the outward unit normal to 02 and by do the area element on 0f.
We retain the standard notation for the Lebesgue space L!(92) of integrable functions. By
|0€2|,—1, we denote the n — 1-dimensional measure of 9. To shorten our notation, we denote by
fag ¢ do the integral mean m J g @ do for all ¢ € LY(09). Also, if X is a vector subspace

of L'(8Q) then we set Xy = {f € X : [, fdo =0} . For the definition and properties of real
analytic operators, we refer, e.g., to Deimling [41, p. 150].
If Q is an arbitrary open subset of R", k € N, § €]0, 1], we set
CF(cl) := {u € C*(cI) : DYu is bounded Vy € N" such that |y| < k},

and we endow CF(cl2) with its usual norm

lullcpan) = D sup [DTu(z)]  Yue CF(cl).
|,y|§kx€clﬂ
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Then we set
CEP (D) := {u € CPP(cIQ) : DYu is bounded ¥y € N such that |y| < k},
and we endow C’f » (cl2) with its usual norm

lulgsoay = D= sup [Du(@)|+ 3 |DMuzcQls  Yue Gy (cle),

"Y|§k zccl) "Y‘:k

where |DVu : cl€2|g denotes the S-Hélder constant of D7u.
Next we turn to periodic domains. If {1 is an arbitrary subset of R™ such that clQ)g C @,
then we set

S[Q] == | (g2 + Q) =qZ" + Qg , S[Qg]™ = R™\ cIS[Qq] -
ZEL™

Then a function u from cIS[Qg] or from cIS[Q2g]™ to R is g-periodic if u(x + guren) = u(x)
for all z in the domain of definition of u and for all h € {1,...,n}. If Qg is an open sub-
set of R™ such that clQ2g C @ and if £ € N and 8 €]0, 1], then we denote by C(];(ClS[QQ]),
CEA(cIS[Qg)]), CE(cIS[Qq] ™), and CHP(cIS[Qq] ™) the subsets of the g-periodic functions belong-
ing to CF(cIS[Qq)), to C’f’ﬁ(clS[QQD, to CE(cIS[Qg] ™), and to C{f’ﬁ (cIS[Qg] ™), respectively. We
regard the sets C’Z;(clS[QQ]), C’gﬁ(clS[QQ]), C'(]]“(CIS[QQ]_), C’gﬁ(clS[QQ]_) as Banach subspaces
of CF(cIS[Qg)), of CFP(cIS[g)), of CF(cIS[Qg] ), of CF P (cIS[] ™), respectively.

Then, we introduce the Roumieu classes. For all bounded open subsets €' of R and p > 0,
we set

8]
CBP(CIQ') = {u € C™(clY) : sup LHDBUHCO(CIQI) < —l—oo} ,
’ penr |B]!

and
Jul N Yue €2, (a9)
u||co N = sup —— ul|coery ueC, (c ,
Cw’p(CIQ ) ﬂeN’ﬂ ‘B“ C' (CIQ ) P
for all g := (B1,...,0n) € N". As is well known, the Roumieu class (Cg’p(le’), Il - |’087p(619/))
is a Banach space.
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CHAPTER 1

Asymptotic behavior of the solutions of
transmission problems in a periodic domain

This chapter is mainly devoted to the study of the asymptotic behavior of the solutions of
singularly perturbed transmission problems in a periodically perforated domain. The domain
is obtained by making in R™ a periodic set of holes, each of them of a size proportional to
a positive parameter e. We first consider an ideal transmission problem and investigate the
behavior of the solution as € tends to 0. In particular, we deduce a representation formula in
terms of real analytic maps of € and of some additional parameters. Then we apply such a
result to a nonideal nonlinear transmission problem.

Our analysis is based on the Functional Analytic Approach proposed by Lanza de Cristoforis
for the analysis of singular perturbation problems in perforated domains (see Lanza de Cristoforis
[76, 79], Dalla Riva and Lanza de Cristoforis [31]). Such an approach aims at representing the
solution or related functionals in terms of real analytic functions of the singular perturbation
parameter and of explicitly known functions of such a parameter. By this approach, Dalla
Riva and Musolino [35] have investigated a nonideal singularly perturbed linear transmission
problem in a periodic domain, and Lanza de Cristoforis and Musolino [84] have investigated a
quasi-linear heat transmission problem (see also Dalla Riva, Lanza de Cristoforis, and Musolino
[32]). For other contributions for the analysis of nonlinear transmission problems, we refer to
Dalla Riva and Mishuris [34] and Lanza de Cristoforis [80].

The chapter is organized as follows. In Section 1.1 we introduce some notation and pose the
linear and nonlinear transmission problems. Sections 1.2 and 1.3 contain preliminary results.
In Section 1.4 we formulate the linear transmission boundary value problem in terms of a
system of integral equations and we study the dependence of the unknown of the system upon
€ and some additional parameters. In Section 1.5 we show that the results of Section 1.4 can
be exploited to prove our main Theorems 1.5.1 and 1.5.2. Finally, in Section 1.6 we apply the
results of Section 1.5 to the nonideal nonlinear transmission problem.

Some of the results presented in this chapter have been published in the paper [135] by the
author.

1.1 Preliminaries and notation

In this section we consider singularly perturbed transmission problems in a periodically
perforated domain and introduce some notation.

In order to define the geometry of the problems, we fix once for all n € N\ {0,1} and
(@11 -+ Gnn) €]0,4+00[". We introduce the periodicity cell @ and the diagonal matrix ¢ by
setting
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qu 0 ... 0
0 ... 0
Qi=ILil0qul. = | ™ T
0 0 ... qun

Clearly, gZ™ = {qz : z € Z"} is the set of vertices of a periodic subdivision of R™ corresponding
to the fundamental cell Q.
Then we take o €]0,1[. We fix once and for all in Chap-

R? ter 1 and Chapter 2 a subset 2 of R" satisfying the following
assumption:

P ) is a bounded open connected subset of R" (1.1)
- of class C1®, R™\ clf) is connected, and 0 € Q. '
\“*\\\0 QO 4 Let p € @ be fixed. Then there exists ¢g € R such that

. €0 €]0,400[ such that p+eclQ CQ Ve €] —e€, e, (1.2)

and we also fix it. The set 2 represents the shape of each

) inclusion (see Figure 1.1). Then we set
Figure 1.1: The domain Q

Qpe:=p+ed Ve € R.

For all € €] — €, €g], the set Q,  plays the role of the inclusion in the fundamental cell @ (see
Figure 1.2).
Then we introduce the periodic domains

H{Q

S = | (a2 4+ D), S[Qpe]™ :=R"\ cIS[Qy,e]

ZEL™

for all € €] — €y, €e9[. The set S[Q, ] corresponds to ”
the region occupied by the periodic set of holes or T
inclusions; the matrix, instead, is represented by its i
complementary set S[Q, |~ (see Figure 1.3). g 0 /
Next, we take two positive constants AT, A7, a s Q !
constant ¢ € R, functions f € C%*(9Q)y and g € \ '
C12(9Q), a function p :]0, eg[— R\ {0}, and we consider .ot
the following linear transmission problem for a pair of
functions (v, u™) € CH(cIS[Q,c]) x Cp*(cIS[y,] 7):

Figure 1.2: The domain Q, .

Aut =0 in S[€2],

Aum=0 in S[Q.],

u (2 + qen) = ut(x) Vo € dS[Q, ], Vhe{l,...,n},

u” (2 +gen) = u” () Vo €S| ]™, Vhe{l,....n}, (1.3)
A () = X () = f(z—p)/e) Vo € DD,

ot (@) —u™ () = g((x = p)/e) Vo € 00,

fan,e utdo = ¢

for all € €]0, €.

The analysis of problem (1.3) will allow us to study a (more general) transmission problem,
which we introduce below (see problem (1.4)). So let a matrix B € Mix,(R) and F be a
real analytic map from (CO’O‘(GQ)O)2 to R. For (e, f, g,¢) €]0,e0[xC%*(9Q)o x CH*(0N) x R,
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' I ”-
#’
”
o=
1
A
e 0
N
A
A

Figure 1.3: The periodic domains S[§, (] and S[Q, ]~

we consider the following monideal nonlinear transmission problem for a pair of functions

(ut,u”) € CL(cIS[Qy.]) x CLE(cIS[Qy.]7):

loc loc

Aut =0 in S[Q.,
Au™ =0 in S[QP,E]_’
ut(z + gep) = ut(z) + Bey, Vo € clS[Qy], Vh e {1,...,n},
u” (z + gep) =u (x) + Bey, Vo € clS[Qy ™, Vhe {1,...,n},
A g (2) = AP (a) = f((x —p)fe) Vo € O, (19)
Flfi—(p+e) pe—(p+e)
+og(ut (@) —u(2) = g((x —p)/e) Vo € 0,
faﬂp  utdo=c

for all € €]0, €.

If we assume that the set of inclusions and the matrix are filled with two different homoge-
neous and isotropic heat conductor materials, then the parameters AT and A\~ play the role
of thermal conductivity of the materials which fill the inclusions and the matrix, respectively.
Therefore, the solutions of problems (1.3) and (1.4) represent the temperature distribution
on the set of inclusions S[€2, (] and in the matrix S[€2), |~, under different conditions. More
precisely, the third and fourth conditions in problems (1.3) and (1.4) mean periodicity and
periodicity up to a given linear function, respectively, of the temperature distribution. The fifth
condition of problems (1.3) and (1.4) says that the normal component of the heat flux presents
a jump which equals a given function. The sixth condition of the two problems is different: the
one in (1.3) says that the temperature distribution presents a jump on the interface equal to a
given function, while the one in (1.4) says that the jump on the interface of the temperature
distribution plus a given function is proportional to a quantity which depends on the heat
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flux. In case g = 0, such a condition means that the jump of the temperature distribution is
proportional to a quantity which depends nonlinearly on the heat flux and can be seen as a
nonlinear counterpart of the linear nonideal transmission problem considered by Dalla Riva
and Musolino [35], where the parameter p(e) plays the role of the boundary thermal resistivity.
Finally, the last condition of problems (1.3) and (1.4) is just a normalization condition, which
we need in order to “fix” the solution.

As we shall see, problems (1.3) and (1.4) have unique pairs of solutions which we denote
by (utle, f,g,c],u" [, f, g,c]) and by (u't[e, f,g,c],u"[e, f, g,¢c]), respectively. Our aim is to
understand the behavior of those pairs when ¢ is close to the degenerate value ¢ = 0, in
correspondence of which the inclusions collapse to points. From the physical point of view, this
situation corresponds to the case of a dilute composite.

Due to the presence of the factor 1/p(e€), the boundary conditions may display a singularity
as € tends to 0. We consider the case in which

lim ple) exists finite in R. (1.5)
e—0t €

Assumption (1.5) will allow us to analyze problems (1.3) and (1.4) around the degenerate
value ¢ = 0. We also note that we make no regularity assumption on the function p. If
assumption (1.5) holds, then we set

re = lim &
e—0t €

(1.6)

Incidentally, we observe that assumption (1.5) implies that

i 20 =0,
Assumption (1.5) is alternative to that considered by Dalla Riva and Musolino [35], where they
assumed that lim,_,o+ €/p(€) exists finite in R. Clearly, both assumptions are satisfied in case
ple) =e.

We also note that some results on the study of transmission problems can be found,
for example, in Ammari, Kang, and Touibi [10], Ammari, Kang, and Kim [8], Ammari,
Garnier, Giovangigli, Jing and Seo [5], Castro, Pesetskaya, and Rogosin [27], Pesetskaya [122],
Kapanadze, Miszuris, and Pesetskaya [67], and Drygas and Mityushev [44], Lanza de Cristoforis
and Musolino [84], and Dalla Riva, Lanza de Cristoforis, and Musolino [32].

We complete this section recalling some properties of layer potentials which we use in order
to convert the analysis of our transmission problems to that of systems of integral equations.
To do so, we first recall that there exists a g-periodic tempered distribution S, , such that

1
ASq,n = Z 6qz - my

ZEL™

where d,, denotes the Dirac distribution with mass in gz (see Theorem B.0.1 in Appendix B).
The distribution Sy, is determined up to an additive constant, and we can take

1

2mi(q~12)-x
2|4—1,|2
e, Wl Q)

)

Sqn(z) == —

where the series converges in the sense of distributions on R™. Then S, is real analytic in
R™ \ ¢Z™ and is locally integrable in R™ (see Theorem B.0.1 in Appendix B). One should
note that Ammari and Kang [7, p. 53] and Lanza de Cristoforis and Musolino [81] used the
Poisson summation formula to obtain the construction for S, presented above, but there also
exist other ways to construct and compute such a periodic fundamental solution. For example,
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Hasimoto [61] used Ewald’s techniques in order to approximate Sg . Cichocki and Felderhof
[28] obtained expressions for S, in the form of rapidly convergent series (see also Sangani,
Zhang, and Prosperetti [145] and Poulton, Botten, McPhedran, and Movchan [131]). Finally,
Mityushev and Adler [109] used elliptic functions to construct a formula for S;2. We also
mention Berdichevskii [74] and Shcherbina [150] who described algorithms to construct the
periodic fundamental solutions for certain equations.

Let S,, be the function from R™ \ {0} to R defined by

» log |z| Vr € R?2\ {0}, ifn=2,
S"(x) = " 1 2—n n :
where s, denotes the (n — 1)-dimensional measure of 9B, (0,1). S, is well known to be the
fundamental solution of the Laplace operator (see, e.g., Folland [47, Thm. 2.17])
Then S;, — Sy can be extended to an analytic function in (R™\ ¢Z™) U {0} and we find
convenient to set
Ryn :=S¢n — Sn in (R"\ ¢Z™)U {0}

(see Theorem B.0.1 in Appendix B). Moreover, if € € R and € R™ are such that ex € R™\ ¢Z"
then the following trivial equality holds

log |e|
2

Syn(ex) = €78, (x) + do.n + Ryn(ex). (1.7)

We now recall the definition and some properties of the classical single layer potential.
Let o €]0,1[ and T be an open bounded connected subset of R™ of class C1**. Then for all
6 € C%(a1), the single layer potential v[l, 6] is represented as follows

o[OL, 0](¢) = / Su(t—s)0(s)dos VR
ol

For the properties of single layer potential we refer to Theorem A.0.2 in Appendix A. Here,

we just mention that v[0L, 6] is continuous on R™ and harmonic in R™ \ JI, the function

vT[OL, 0] := v[IL, 0] er belongs to C1*(cll), and the function v~ [9L, 0] := v[OL, 0] gn\; belongs

to CL%(R™ \ I). Also, we set

loc

wi[OL,0](t) := [ DSy(t — s)v1(t)0(s) dos vt € 01,
ol

and recall that the function w, [0, §] belongs to C%*(d1), and we have

(;;Ivi[a]l, 0] = ¢%0 + w,[01,6]  on Ol

(see Theorem A.0.2 in Appendix A).
We now recall the definition and some properties of the periodic single layer potential. We
fix once and for all a subset Qg of R" satisfying the following assumption:

Qg is a bounded open connected subset of R" of class C L such that

1.8
clflg € Q and R™ \ clf2g is connected. (18)

Then for all § € C%*(0Qq), the periodic single layer potential v,[09(), 0] is represented as
follows
v4[0Q0, 0](x) = Sgn(x —v)0(y) doy, Vo € R™.
900
For the properties of the periodic single layer potential we refer to Theorem B.0.2 in Ap-
pendix B. Here, we just mention that v,[0Qq, 0] is continuous in R”, the function v, [0Qq, 0] :=
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04[090q, 0] |asja,,) belongs to Ca(cIS[Qq]), and v; [0Qq, 0] := 0q[092q, 0] |c1sjng)- Pelongs to
C;’O‘(CIS[QQ]_). Then, we introduce the function wy .[0€q, 0] by setting

wq [0, 0](z) = DSyn(z — y)va, (2)0(y) doy, Vr € 9Qg, V0 € CO*(0Q0),
990
which belongs to C%*(9€g). Then we have the following jump formulas:

0
Ovg,

1
vE[09q, 0] = Fol +we.[0900,0]  on 90q

(see Theorem B.0.2 in Appendix B).

Finally, we briefly outline our strategy. First, we convert problem (1.3) into a system of
integral equations by exploiting layer potential representations. Taking assumption (1.5) into
account, this system can be analyzed when (e, f,g,c) is close to the degenerate quadruple
(0, f0,90,c0). We do so by means of the Implicit Function Theorem and we represent the
unknowns of the system of integral equations in terms of analytic functions of €, p(€)/e, f and
g. Next we exploit the integral representations of the solutions in terms of the unknowns of the
system of integral equations, and we deduce the representation of u*tl[e, f, g, c] and u™[e, f, g, c|
in terms of real analytic maps of €, p(€)/e, f, g, and c. Finally, we convert problem (1.4) into
a linear periodic transmission problem and we apply the previously discussed results for the
derivation of the representation for (u*le, f, g, cl,u”[e, f, g,c]).

1.2 A linear transmission problem for periodic functions

In this section we collect some results which we use in order to reformulate problem (1.3)
in terms of a system of integral equations. We first have the following uniqueness result for
a periodic transmission problem, whose proof is based on a standard energy argument for
periodic harmonic functions.

Proposition 1.2.1. Let AT, A~ €]0, +oo[. Let (vt,v™) € Cp*(cIS[Qq]) x CL*(cIS[Qq] ™) be
such that

Avt =0 in S[Qg],

AvT =0 in S[Qg]~,

v (x + qep) = vt (2) Vo € cIS[Qq], Yh e {1,...,n},

v (z + qep) = v (2) Vo € clS[Qg]™, Yhe {1,...,n}, (1.9)
A~ 831;@ (z) — A+%(a:) =0 VzedQg,

vi(z) —v (z)=0 Vx € 090,

faQQ v do=0.

Then vt =0 on clS[Qg] and v~ =0 on cIS[Qg]~.
Proof. By the Divergence Theorem and by the periodicity of v—, we have

0§/|Vv+(t)2dt: /er(t) 9 vt (t)doy
dva,
o 904
N . o
_ A _ A <0.
W | O e = / Vo () 2dt < 0
904 Q\cl0g
Thus

/yvv+(t)|2dt: / |Vo~(t)dt =0,

Qg Q\clg
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and so, by the periodicity of v+ and v,

vi(z) =c" Va e cS[Qg),
v (z) =c  VxecdS[Qq],

for some ¢*, ¢~ in R. By virtue of the sixth and the seventh equalities of (1.9), we conclude
that ¢ = 0 = ¢~ and the proposition is proved. O

In the following proposition we consider an operator which we will use in the sequel.

Proposition 1.2.2. Let AT, A\~ €]0, +oo[. The operator A from C%*(0Qq)o to C**(992)o
defined by

1 AT = AT
T

is a linear homeomorphism.

Al W [0Qg, 1] Y€ C¥¥(00g)o

Proof. First we note that the map p1 — wq [0, u] from C%*(9Qq)o to C%*(99q)o is compact
(see Theorem B.0.2(vii) in Appendix B) and thus A is a Fredholm operator of index 0. Thus,
by Fredholm Theory and by the Open Mapping Theorem, in order to prove that A is a linear
homeomorphism, it suffices to prove that A is injective. So let u € CO’O‘((?QQ)O be such that

1 AT = At

Then we note that equality (1.10) can be rewritten in the following way

_ 0 G
AT v, (000, u] — A ey

v [0Q0,u] =0 on 0Qp.
vy QQq[ Q1] Q

We observe that the pair of functions (u’, u®) = (v [0Q0q, u], vy [0Qq, 1)) satisfies the first
six conditions of problem (1.9). Then the proof of Proposition 1.2.1 implies that there exists
¢ € R such that

v;' [0Qq, p] =c¢ in cIS[Qg], v [0Qq, p] = c in cIS[Qg]™ .

Then the jump formulae for the normal derivative of the periodic single layer potential on 9€¢g
imply that ;4 = 0. Hence, A is injective and thus a linear homeomorphism. O

We now study an integral operator which we need in order to solve a periodic transmission
problem by means of periodic single layer potentials.

Proposition 1.2.3. Let AT, A~ €]0, +o0[. Let J := (J1, J2) be the operator from (C%%(99¢)o)?
to C4(9Qg)o x CH*(000)o defined by

i _(1 o o 1 % %
Ji[p', 1] = A <2u + we [0Qq, 1 }) - A" (—2u +wq,*[89Q>#]) :

J2['ui”uo] ::U;[aQQa”i]\QQQ - ]gg U;_[OQQ’MZ} do — Uq_ [GQQ’NO]WQQ
Q

—i—][ vy [0, p°] do,
990

for all (p*, u°) € (C%*(9820)0)?. Then J is a linear homeomorphism.
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Proof. By continuity of v;[0€q, ] and of wq [0, ] (see Theorem B.0.2 in Appendix B), one
verifies that .J is a continuous linear operator from (C%%(9£2q)0)? to C%®(9Qg)o x CH*(99q)o-
As a consequence, by the Open Mapping Theorem, in order to show that J is a homeomorphism,
it suffices to prove that J is bijection. Let (¥, ®) € C%*(98q)o x C1¥(90¢)o. We first show
that there exists at most one pair (u’, u°) such that

It ) = (0, ). (111)

So let us assume that there exists a pair (u’, u°) € (C%*(99Q¢)o)? such that (1.11) holds. We
first note that by Lemma B.0.4 there exists a unique pair (i, ) € C%*(9Qg)o x R such that

D = v, (000, 1] + ¢

locg

Accordingly, Jo[u', ] = @ on 9 can be rewritten as

0|00, 1i* — 1) _]{99 0|00, p* — p°ldo =& on 00,
Q

and we deduce that
ph =t —p° on g, (1.12)

= —][ 0[0Q0, 1" — p°) do.
900

By virtue of (1.12) we can rewrite equality Ji[u’, u°] = ¥ as

L A 1090, 1) = \1;
el UL b ey v ey e

1 AT = At 1 AT (
2

1
— S i+ wg . [09q, uﬁ]) . (1.13)

Since the right hand side belongs to C% (0£2g)o, Proposition 1.2.2 implies that there exists
unique p® € C%*(99Qq)o such that (1.13) holds and, accordingly, u° is uniquely determined.
Then equation (1.12) uniquely determines p? and thus uniqueness follows. On the other hand,
by reading backward the argument above, one deduces the existence of a pair (uf,u°) €
(C%(99¢)0)? such that (1.11) holds. O

By the jump formulae for the normal derivative of the periodic single layer potential, we
can now deduce the validity of the following theorem.

Theorem 1.2.4. Let AT, A\~ €]0,+oc[. Let (¥, ®,c) € C¥*(0Qg)o x CH*(0Qg) x R. Let J
be as in Proposition 1.2.3. Then the following statements hold.

(i) A pair (pt, u°) € (CO*(000)0)? satisfies the equality

J[p', 1% = (‘I!,CD - ]fm <1>d0—> (1.14)
Q

if and only if the pair (vh,v™) € C3*(cIS[Qq]) x C;*(cIS[Qq] ™) defined by

C
S 1.15
9201 (1.15)

c
vo =wv, [09 ,uo—][ v [0Qg, 1u° da—][ ®do+ ———, 1.16
¢ 092, 1°] o, (092, 1°] o 990 (1.16)
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solves problem

Avt =0 in S[Qg),

AvT =0 in S[Qq]~,

v (z + qep) = vF () Vz € cIS[Qq], Vh e {l,...,n},

v (z +qep) = v (2) Vz € clS[Qg]~, Vh e {1,...,n}, (1.17)
A~ 88;;2(9 () — A*%(w) = U(z) VzedQg,

v (z) — v (z) = P(x) Vo € 0Qq,

fBQQ vtdo =c.

(i) Problem (1.17) has a unique solution and it is delivered by the pair of functions defined in
(1.15), (1.16), where (u', u°) is the unique solution in (C%*(90q)0)?* of equation (1.14).

Proof. Statement (¢) is a direct verification based on standard properties of periodic layer
potentials (see Theorem B.0.2 in Appendix B). To prove statement (iz) we first note that Propo-
sition 1.2.1 implies that problem (1.17) has at most one solution. Then by Proposition 1.2.3,
there exists a unique solution (uf, u°) € (C%*(9Qq)o)? of (1.14), and, as a consequence, the
validity of (i7) follows. O

1.3 A non-periodic linear transmission problem

We now turn to non-periodic problems and we prove some results which we use in the sequel to
analyze problem (1.3) around the degenerate case in which e = 0. We first have the following
uniqueness result.

Proposition 1.3.1. Let A, A~ €]0, 400[. Let (vH,v7) € C12(cl) x CLY(R™ \ Q) be such

that
Avt =0 in Q,
AvT =0 in R™\ clQ,
AT () —2\FRL () =0 Ve 99,
o | )_ o () (1.18)
vt(t)—v= () =0 Vt € 09,
Joqvtdo =0,
lim v~ (t) € R.
t—o0

Then vt =0 on clQ and v~ =0 on R™\ Q.

Proof. By the Divergence Theorem and by the third and the fourth equalities of (1.18), we
have
0< / Vot (t)]2dt = /v+(t)av+(t)dat A U_(t)iv_(t)do*t.
- ovg AT ovg
Q onN oN

By virtue of the sixth condition of (1.18), we set R 3 & = limy_,o0 v~ (¢). Thus, v~ (¢) — &
is harmonic in R™ \ ¢l and at infinity. Then by the Divergence Theorem and by the decay
properties of v~ (t) — £ and of its radial derivative (see Folland [47, Prop. 2.75]), we deduce that

AT .0 _ AT _ o , _

e (t)5—v (t)do =37 (v (1) — 5)%@ (t) — §)doy

o0

v

oN
EXT [0, _ A P
+A+/6m(v (75)*€)d0t:—)\—+ / |Vo~(t)dt < 0.
o0 R\ cl2
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Thus
/|w+(t)|2dt _ / Vo () 2dt = 0,
Q R™\clf2
and so
vt(t) =ct VtecdQ,
v (t) =c YteR"\clQ,
for some ¢*, ¢ € R. By virtue of the fifth and the fourth equalities of (1.18), we conclude
that c™ = 0 = ¢~ and the proposition is proved. ]

We can now study an integral operator which we need in order to solve (non-periodic)
transmission problems in terms of classical single layer potentials.

Proposition 1.3.2. Let \t, A\~ €]0, +oo|. Let K = (K1, K3) be the operator from (C%*(0Q))?
to V(009 x CH¥(00)g defined by

K[0°,60°] := A\~ (;00 + w*[aQ,eo}) -t <;0 + w, [09, ei]) :
K[0",0°] == vT[09Q,0"] )50 — ][ vt[09, 0" do — v~ [09,0%) 90 + ][ v [09,60°) do
onN o

for all (6%,6°) € (C%*(0Q)9)?. Then K is a linear homeomorphism.

Proof. We first note that K is linear and continuous. As a consequence, by the Open Mapping
Theorem, in order to show that K is a linear homeomorphism, it suffices to prove that K is
bijection. In other words, we need to prove that for each pair (¥, ®) € C%¥(9Q)y x C1*(9Q)g
there exists a unique pair (8, 0°) € (C%%(09)¢)? such that

A~ (36°() + w02, 60°)(1))
ot (_192'( )+ w09, 0°)(1)) = () Vi€ ON,
v [09,0°](1) — fyq vt aQ 6] do
[asz,e )+ foq v [09,6% do = B(t) 'Vt € OQ.

(1.19)

We note that by Proposition A.2(i7) of Lanza de Cristoforis and Musolino [84], there exists
and is unique a triple (6%,0°,¢) € (C%%(092)¢)? x R such that

U(t) Vte o,
)

1.20
Vit € 0f). ( )

wm+wmmuﬁﬁw>”mmwm—%
v [0, 0°](t) — o0 v [0, 0] do — v~ [0K2, 6°)(t) — € = (¢

Since ® € C1%(9N), by integrating the second equality of (1.20) on 052, we immediately

have
€= —][ v~ [09,0°] do.
0N

As a consequence, the existence and uniqueness of a pair (6%,6°) € (C%*(9Q)o)? satisfying
(1.19) follows and thus the proof is complete. O

By Propositions 1.3.1, 1.3.2, and by the jump formulae for the normal derivative of the
classical single layer potential, we immediately deduce the validity of the following result
concerning the solvability of a non-periodic transmission problem.
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Theorem 1.3.3. Let A*, A\~ €]0,+oc[. Let K be as in Proposition 1.3.2. Let (V,®) €
C%(9Q)g x CL(0N)g. Let (67,0°) € (C%*(0Q)g)? be such that

K[0',60°) = (U, ®). (1.21)
Let (vt,v7) € CH2(cl) x CL%(R™\ Q) be defined by
=" [0, 0] — ][ v [09, 0] do, (1.22)
o0
vT =0 [09,6°] —][ v~ (09, 6% do . (1.23)
oN

Then (v, v™) is the unique solution in C*(clQ) x CL*(R™\ Q) o

loc

Avt =0 in Q,
AvT =0 in R™\ clQ,
— v~ vt
A Gug (1) = AT G- (t) = V(t) Ve dn, (1.24)
vt (t) — v (t) = B(t) vt € 09, '
Joqvtdo =0,
lim v~ (¢) € R.
t—00

Proof. We first note that Proposition 1.3.1 implies that problem (1.24) has at most one solution.
By Proposition 1.3.2, there exists a unique solution (%, 0°) € (C%*(9Q)g)? of equation (1.21).
Then, by classical potential theory, we verify that the pair of functions defined by (1.22) and
(1.23) solves problem (1.24). O

1.4 Formulation of the linear transmission problem in terms
of integral equations

In Proposition 1.4.1 below, we formulate problem (1.3) in terms of integral equations on
092. To do so, we exploit Theorem 1.2.4 and the rule of change of variables in integrals. By
Theorem 1.2.4, one can reformulate such a problem in terms of a system of integral equations
defined on the e-dependent domain 0€),.. Finally, by exploiting an appropriate change of
variable, one can get rid of such a dependence and obtain an equivalent system of integral
equations defined on the fixed domain 052, as Proposition 1.4.1 below shows.

We now find convenient to introduce the following notation. We first introduce the maps A
and A, from ] — €, o[ x CP¥(92) to C1*(9Q) and to C*(90), respectively, by setting

Ale, 0](t) :== - Ry (et —s))0(s)dos vVt € 092,

and
Ayle, 0](t) :== DRy (e(t — s))va(t)d(s)dos vt € 01,
o0
for all (e,0) €] — €q, o[ xCO*(9Q)g.
Let AT, A~ €]0, 400, then we denote by M := (My, M) the map from | — €, o[ xR x
C%2(002) x CL(9Q) x (C%(aN 0) to C0(00)g x C1*(99Q)y defined for all t € 9N by

~—

Ml[ea 6/7f7970i760]< )

A (20°8) + w09, 0°1(8) + AL e, 00](t))
—_\t (

(1.25)

l\DM—l/—\
N =

t) + w.[0Q, 0°](t) + "IA,,[e,Hi](t)> — f(t),
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Msle, €, f,g,0% 6°)(t) :== vT[0Q, 0] (t) + " 2A[e, 67](t)
_ ][ (109, )(s) + € 2A[e, 6](s))) dory
N
—v7[09, 0°)(t) — " 2A[e, 6°)(t)
+ ]gﬂ (071092, 0°)(s") + €"2A[e, 0°)(s") ) dory — €'g(t) + ¢ 7{)9 gdo

for all (67 6/3 faga 02" 00) 6] — €0, EO[XR X 007a(aQ)0 X Cla(aQ) X (CO,a(aQ)O)Q-
Then we have the following proposition.

(1.26)

Proposition 1.4.1. Let At A\~ €]0,+oo[. Let ¢ € R. Let p be a function from |0, €[ to
R\ {0}. Let e €]0,e0[. Let f € C¥*(0Q)g. Let g € CH*(0Q). Then the unique solution
(uTle, f,g,cl,u[e, f,g,¢]) in Cp(cIS[Q.c]) x Cy*(cIS[Qpe] ™) of problem (1.3) is delivered by

u*le, 9,6l (&) =0 0%, 0le, £,9)(( — p)/€))(2)

-1 1900l £ 9~ +
w6, £, 90l () =07 [0, 0°le, £,9)((- — p) /)] (2)

AR AT (T

prﬁ

C
m Vo € CIS[QP’E],

o0 f ol =p)de,+ et Ve e s

D€

where (0], f,g],0°le, f, g]) denotes the unique solution (6%,0°) in (C%*(8)0)? of

€

M [e, p(e),f,g,ei,aﬂ =0. (1.27)

Proof. By a simple computation based on the rule of change of variables in integrals and on
equality (1.7), we note that equation (1.27) can be written as

T =)/ 0 )/
_ ( (=P ol 1)/ ple) |

e

g((y—p)/e) de)

on 05}, ¢, where the operator J is defined as in Proposition 1.2.3 with g = Q, .. Thus, there
exists a unique pair (6%,60°) in (C%*(99Q)0)? such that (1.27) holds. Finally, by Theorem 1.2.4,
we deduce the validity of the proposition. O

Now, we are reduced to analyze system (1.27). We note that it does not make sense for
e = 0, but it makes perfectly sense if ¢ — 0, which implies that p(e)/e — r.. So, we will
analyze system (1.27) by replacing (e, p(€)/e, f, g) by (0,7*, fo,go) for some fo € CO*(982)g
and go € C1*(9Q).

As a first step, we note that if (67, 6°) € (C%*(9€),)” and if we let ¢ tend to 0, we obtain a
system which we will call the “limiting system”, and which has the following form

A= (30°(8) + wa[09,0°)(1) ) — A (= 30°(1) + w.[09,0°)()) = fo(®),
v [0, 01)(t) — fag [0, 0Ydo — v~ [09, 0°)(t) (1.28)
+ f8Q v [0, 0°)do = r.go(t) — r« 3[89 godo
for all t € 092.
Then we have the following theorem, which shows the unique solvability of system (1.28),

and its link with a boundary value problem which we will call the “limiting boundary” value
problem.
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Theorem 1.4.2. Let At A\~ €]0,+oo[. Let p be a function from ]0,¢e| to R\ {0}. Let
assumption (1.5) hold. Let v, be as in (1.6). Let fo € CO%*(09Q)g. Let go € CH*(0Q). Then
the following statements hold.

(i) The “limiting system” (1.28) has one and only one solution (8°,0°) € (CO’O‘(BQ)O)z.

(ii) The “limiting boundary value problem”

Aut =0 in Q,
Au~ =0 in R™\ clQ,
AU () — AT (g = vt € 09,
G (1) A (1) = folt) o)
ut(t) —u= () = 14go(t) — 7« fyq godo Yt € 09,
Joqutdo =0,
lim v~ (¢) € R
t—00
has one and only one solution (G, a~) € CY*(cl) x CLY(R™\ Q), delivered by
it = o0, §] — ][ w109, 0] do, (1.30)
oN
i = o [99,0°] —][ V109, 6°) do . (1.31)
oN

Proof. We first note that the system of integral equations (1.28) can be rewritten as

K[0",0° = (fo, T+go — T*][ 90 da) on 99,
o0

where the operator K is defined in Proposition 1.3.2. Then, by Proposition 1.3.2, there exists
a unique pair (6?,60°) € (C%*(9Q)¢)? such that (1.28) holds. Accordingly, the validity of
statement (i) follows. To prove (ii), we observe that Theorem 1.3.3 and classical potential
theory imply that the pair of functions delivered by (1.30)-(1.31) is the unique solution of
problem (1.29). O

We are now ready to analyze system (1.27) for (e, €', f, g) in a neighborhood of (0, 7, fo, g0)
by means of the following.

Theorem 1.4.3. Let AT, A\~ €]0,+oc[. Let fo € C¥¥(0Q)g. Let go € CL¥(00Q). Let p be
a function from 10, €[ to R\ {0}. Let assumption (1.5) hold. Let r. be as in (1.6). Let M
be as in (1.25)-(1.26). Let (9'[-,-,-],6°[-,-,-]) be as in Proposition 1.4.1. Let (6%,6°) be as in
Theorem 1.4.2. Then there emst €1 6]0,60], an open neighborhood U,., of r« in R, an open
neighborhood U of (fo,g0) in C¥*(0Q)y x CL*(AN), an open neighborhood V of (6°,6°) in
(C%(09)0)2, and a real analytic map (O, 0°) from | — €1, e1[xU,, x U to V such that

'O(;) € U,, Ve €]0, e1],

and such that the set of zeros of M in | — e1,e1[xU,, Xx U X V coincides with the graph of
(©%,8°). In particular,

(6o 22 1ig] 00 [ 2, ] ) = (110107 £.01)
for all (e, f, g) €]0,e1[xU, and

(6710, fo, 90), ©°[0, 7+, fo, g0]) = (¢",0°)..
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Proof. We plan to apply the Implicit Function Theorem to equation

M[e,p(e),f,g,ei,eo —0
€

around the point (O,r*, fo,go,éi,éo). By standard properties of integral operators with
real analytic kernels and with no singularity, and by classical mapping properties of layer
potentials (see Lanza de Cristoforis and Musolino [82, Sec. 4], Miranda [106], Lanza de
Cristoforis and Rossi [87, Thm. 3.1]), we conclude that M is a real analytic map from
] — €0, €[ XR x C%%(9Q)o x C1(090) x ((]()’C“(ﬁﬂ)o)2 to 0% (9Q)o x C1¥(02)o. By definition
of (6,0°), we have MI0,7y, fo,go,0%,6°] = 0. By standard calculus in Banach spaces, the
differential of M at the point (0, 74, fo, 9o, 6t 9~0) with respect to the variables (8¢, 6°) is delivered
by the formula

(8(91‘}90)]\4[0, Tx, fo, g0, éi, éo]) (él, 9_0) = K[éz, éo]

for all (67,60°) € (C%*(89Q)0)?, where the operator K is defined in Proposition 1.3.2. Then, by
Proposition 1.3.2, 0(9¢,90)M[0,7“*, fo, g0, 0%,6°] is a linear homeomorphism from (C%%(9Q))?
onto C%¥(92)g x C1¥(0€)o. Hence, the existence of €1, U.,, U, V, O, ©° as in the statement

follows by the Implicit Function Theorem for real analytic maps in Banach spaces (see, e.g.,
Deimling [41, Thm. 15.3]). O

1.5 A functional analytic representation theorem for the solu-
tions of the linear transmission problem

In the following theorem we investigate the behavior of u™[e, f, g, c| when € is small and positive
and the triple (f,g,c) belongs to U x R.

Theorem 1.5.1. Let the assumptions of Theorem 1.4.3 hold. Then there exists a real analytic
map UT from | — €1, e1[xU,, x U to CH*(cIQ) such that

o fgl 0+

el="e

|05 —1

utle, f,g,cl(p+et) =eUT vt € cll,

for all (e, f,g,c) €]0,e1[xU x R, where u™le, f, g, c| is as in Proposition 1.4.1. Moreover,
UT0, 74, fo,g0](t) = @at(t)  Vtecl, (1.32)
where @ is defined as in Theorem 1.4.2.

Proof. If € €]0, €[, then a simple computation based on the rule of change of variables in
integrals shows that

90, ' [e, p(j),f, g” (t) + " 1A {e,@" [e, p(j),f,gH (t)
)

€&, —>, f, g” (s') + " %A [e, e [e, p(:,f, g” (3’)) dogy

'LL+[€, f’g7c](p+ Gt) = 6U+

f

el e

|05 —1

90, O

+
for all t € clf). (see also Proposition 1.4.1 and Theorem 1.4.3). Therefore, it is natural to set
Utle,é, f,g](t) :==vT [(9(2, SN g]} (t) 4 "2\ [6, Q' [e, €, f, g” (t)

— ]éﬂ <U+ [8(2, o' le.€, f, g]} (s") + € 2A {e, o' le.€, f, g]] (s')) dog
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for all t € clIQ? and for all (¢,€, f,g) €] — €1, e1[xU,, x U. By standard properties of integral
operators with real analytic kernels and with no singularity, by classical mapping properties
of layer potentials (see Lanza de Cristoforis and Musolino [82, Sec. 4], Miranda [106], Lanza
de Cristoforis and Rossi [87, Thm. 3.1]) and by Theorem 1.4.3, we conclude that U™ is real
analytic. Moreover, Theorem 1.4.3 implies that ©%[0, ., fo, go] = 0" and thus the validity of
equality (1.32) follows (see also Theorem 1.4.2). O

Let 6°, @~ be as in Theorem 1.4.2. Then by classical potential theory and by equality
faQ 0° do = 0, we deduce that

[7:=lim a (t) = _]{90 v~ [09, 6°) do . (1.33)

t—o00

In the following theorem we investigate the behavior of u™[e, f, g, ¢] for e small and positive.

Theorem 1.5.2. Let the assumptions of Theorem 1.4.3 hold. Then there exists a real analytic
map C~ from | — €1, e1[xU., X U to R such that

C™[0,7r4, fo,90] = - r*][ go do, (1.34)
oN

and such that the following statements hold.

(i) Let Q be an open bounded subset of R™ such that cIQ N (p + qZ") = 0. Let k € N. Then
there exist €q €]0, 1] and a real analytic map Uy from | — €q, €[ XUy, X U to C*(clQ)

such that clQ C S[Q, ]~ for all € €] — eg, €5[, and such that
1-n
wledg. ) =0 [ 29 pg| vz [ 2D pgl @)+ 575
€ Q € |05 —1

for all z € I and for all (e, f, g, ) €]0, e[ XU XR, where u™ e, f, g, c| is as in Proposition
1.4.1. Moreowver,

Ug [0, 74, fo, go](2)
1.36
= DSyn(z — p) (/39 q(s)a (s)dos — /39 s%u das) ( )

for all z € clQ, where G~ is defined as in Theorem 1.4.2.

(ii) Let Q be a bounded open subset of R™ \ cI). Then there exist e~ €]0,¢e1| and a real
analytic map Vg~ from | — iy [XUT* x U to CH*(clQ) such that p + eclQ C cIS[Q, ]~

for all e €] — e# eé[, and "
u”[e, f,9,c](p +et) = eC™ {e, p(:)’ ,g} +eVy {e, '0(:),1", g} (t) + \8;2]::
for all t € 1Y and for all (e, f, g, ¢) €]0, eg[xl/{ x R. Moreover,
Vo 0,74, fo, 90)(t) =@~ (t) =1~ Ve, (1.37)

where 4~ is defined as in Theorem 1.4.2.
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Proof. We set
Ol fua)i= = f (10RO, £

(1.38)
+ 6"2/ Ryn(e(t —5))0%e, €, f, gl(s)dos )dat - e’][ gdo
o0 o0
for all (e,€, f,g) €] — €1, e1[xU,, x U. By standard properties of integral operators with real
analytic kernels and with no singularity, by classical mapping properties of layer potentials (see
Lanza de Cristoforis and Musolino [82, Sec. 4], Miranda [106], Lanza de Cristoforis and Rossi
[87, Thm. 3.1]) and by Theorem 1.4.3, we deduce that C'~ is real analytic. Then, by (1.33)
and by equality ©°[0, ., fo, go] = 6° one verifies the validity of (1.34).
We now consider the proof of statement (i). By taking e small enough, we can assume
that clQ C S[Q,]~ for all € € [~eg, €] By Proposition 1.4.1 and Theorem 1.4.3, we have

wledgd@ =t [ Siua-p-)e [« 2D, 1.g) () do,

= VR P

l—n

C ~
—ple do + Vx € clfl,
A, 997+

for all € €]0, €[. We note that if € € [—€q, €g], then IS[(;, ] NclQ = . Also, we observe that if
x € clf), then 2 — p — €8s does not belong to gZ" for any s € 09, € €] — €q, €[, and § € [0, 1].
Accordingly, we can invoke the Taylor formula with integral remainder and write

1
Sqn(z —p—€s) — Syn(x —p) = —e/ DSyn(x —p— Pes)sdp
0

for all (z,s) € cl x 9Q and € €]0,eg[. Since S0 ©° e, p(€) /€, f,g] do = 0 for all (e, f,g) €
10, e [xU, we conclude that

wle L) == | ( [ DSunte == e dﬁ) 0 [ 2 1] (5o,
- e]{m (v_ [89,@0 [e, p(:),f, g” (t) 4+ " 2A [e, Q° [e, ”(;), 1. g” (t)> doy (1.39)

l—nc

€
—p(e ][ gdo +
) L0 gl

for all z € cIQ and for all (e, £, g, ¢) €]0, €g[xU x R. Thus, it is natural to set

Usle,d, f,g)(a) /m (/ DSyn(a —p—ﬁes)sdﬁ) O°le,c', f.gl(s)dos  (1.40)

for all z € cl, and for all (¢, €, f, g) €] — €, €q[xUy, x U. Then the validity of (1.35) follows
by definitions (1.38), (1.40) and equality (1.39). By standard properties of integral operators
with real analytic kernels and with no singularity (see, e.g., Lanza de Cristoforis and Musolino
[82, Sec. 3]) and by arguing exactly as in the proof of Theorem 5.1(i) of Lanza de Cristoforis
and Musolino [83], one verifies that Uy defines a real analytic map from | — eg, €q[xUy, X U to
C*(cl). Tt remains to prove formula (1.36). Theorem 1.4.3 implies that ©°[0, ., fo, go] = 6°.
Then we fix k € {1,...,n}. By well known jump formulae for the normal derivative of the
classical single layer potential, we have

/ skéo(s)das:/ skav_[ﬁﬁ,éo](s)das—/ SkivﬂaQ,éo](s)das.
20 oo O oo 0

149] 149]
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Then by the Green Identity, we have

49}

0 o _ no
/m st (060,8°)(5) do, = /{m(m(s))kvﬂaa,e 1(s) do

Moreover, %ﬂ_ = %v_[aﬂ,éo] on 0Q and [, (va(s))x dos = 0. Thus,

/ (va(s))kvt [0, 0°)(s) dos / (vo(s))kv~ [09, 0°)(s) dos / (vo(s))ki~(s) dos
o2 1s)9)

[2/9]

As a consequence,

/ 510°(s) dos = / kot () do / (vea(s))uii™ (s) dors,
oN 49} [2/9]
and accordingly (1.36) holds.

To prove statement (i7) we use the same approach as in the proof of Theorem 5.1(ii) of
Lanza de Cristoforis and Musolino [83] (see, also, Dalla Riva and Musolino [35, Thm. 7.2]).
Since there exists R > 0 such that (cIQ U clQ) C B, (0, R), it is convenient to consider a set
Q* =B, (0, R) \ clQ instead of Q. The advantage of Q* with respect to Q is that Q* is of class
C' and that accordingly C?(cl2*) is continuously embedded into C1®(cl2*), a fact which we
exploit below (see, e.g., Lanza de Cristoforis [75, Lem. 2.4(ii)]).

According to Lanza de Cristoforis and Musolino [83, Lem. A.5(i7)], there exists eg* €10, €]
such that p + eclQY* C @, and p + €Q* C S[Q, (|7, for all € € [—eg*,eé*] \ {0}. Therefore, we
find it convenient to set €5 = eg*.

By equality faﬂ O° [e, p(€) /e, f,g] (s)dos = 0 and by a simple computation based on the
rule of change of variables in integrals and on equality (1.7), we have

u”le, f,9,c](p+et) = el Syn(e(t —s))O° [6, '0(:), f, g] (s)dos

o

+€"72A [e, o° [e, p(:),f, g” (t)) +eC™ [e, p(;),f, g} + ’5;’::

for all ¢ € clQ* and for all (e, f, g,c) €]0, eg[xu x R (see also (1.38)). Thus it is natural to set
Vole €, £, gl / Sn(t — 8)0%e, €, f,g](s) dos + " 2A [e,0%¢, €, £, g](t)] (1.41)

for all t € cl)* and for all (e, €', f,g) €] — €& , e [xUy, x U. Since v~ [0Q, ]qq- is linear and

continuous from C%%(92)g to C1(cl*) and ©° is real analytic, the map from | — €7, €7

Z,el #[xU,, x
U to C1(cl*) which takes (¢, ¢, f,g) to the function [, Su(t — 5)0°e, €, f, g](s) dos of the
variable t € clQ2* is real analytic (see, e.g., Miranda [106], Lanza de Cristoforis and Rossi
[87, Thm. 3.1]). Clearly, we have (p + eclQ*) N (9S[Qp] \ Q) = 0 for all € €] — ef2 €7 [ As
a consequence, standard properties of integral operators with real analytic kernels and with
no singularity imply that the map from | — e# e#[xLl(ﬁQ) to C2(cl2*) which takes (e, ¢) to
the function [5, Ryn(e(t — s))¢(s) dos of the Varlable t € clQ?* is real analytic (see Lanza de
Cristoforis and Musolino [82, Sec. 4]). Then by the analyticity of ©° and by the continuity of
the embeddings of C%“(99Q)q into L'(9€) and of C?(cl*) into CH*(clQ*), we conclude that
the map from | — eé e#[xur* x U to C1(clQ*) which takes (e, €, f, g) to the second term in
the right hand side of (1 41) is real analytic. So, by standard calculus in Banach space, we



20 Asymptotic behavior of the solutions of transmission problems in a periodic domain

deduce that V. is real analytic. Then we set VQ_ equal to the composition of V. with the
restriction operator from Ch®(clQ*) to C1(cl). As a consequence, Vg is real analytic. Then,

by Theorem 1.4.2, by equality ©°[0, 4, fo, go] = 6, and by (1.33), the validity of (1.37) follows.
Thus, the proof is complete. O

1.6 A functional analytic representation theorem for the solu-
tions of the nonideal nonlinear transmission problem

In this section we exploit the previous results in order to analyze the asymptotic behavior of
the solution of problem (1.4). To do so, we want to find a way in which problem (1.4) can be
converted into a periodic linear transmission one, and then obtain the desired results applying
Proposition 1.4.1 to the new problem. We exploit such a strategy to prove the following
proposition.

Proposition 1.6.1. Let AT, A\~ €]0, +0c0[. Let c € R. Let B € Mix,(R). Let f € C%%(08)o.
Let g € CY(0R). Let F be a real analytic map from (Co7a(8Q)0)2 to R. Let p be a
function from 0, e[ to R\ {O} Let € €]0,€9[. Then problem (1.4) has a unique solution
(utle, f,g,cl,u"[e, f,g,c]) in Cloc (cIS[.e]) x C’llc)’g(clS[Qp7E}_). Moreover, such a pair is deliv-
ered by the formulas

utle, f,g,c(x) =u" [¢,f[f], g, cle, c]] (x) + Bq 'z Vze clS[Qy. ], (1.42)

u [e, f,9,c(x) =u |6, f[f], g, cle, c]](x)
du”[e, f[f] ,cle, d]]
Ovg

Ou”[e, £[f], 9, cle, c]]

ovq

+ple)F (p+e) + Bq lvg(), (1.43)

P,€

(p+e)+ qulyg(-) +Bg 'z Vze cIS[Qyp.] ™,

D€

where the pair (u* [+, - -], u" [+, ]) is defined as in Proposition 1.4.1, the function f[f](t) =
ft)+ (AT = X7)Bq lug(t) for allt € 092, and cle,c] = —Bq™* faﬂps ydoy + c.

Proof. We first note that one can convert nonlinear problem (1.4) into a periodic linear one.

Indeed, if the pair (u™[e, f[f], g, cle, ]|, u™[e, £[f], g, c[e, c]]) solves the problem
Aut =0 in S[Q ],
Au™ =0 in S[Q, ],
ut(z + qep) = ut(x) Vo € clS[Qye], Vhe{l,...,n},
u” (x4 qep) = u () Vo €clS[Qp]™, Vhe{l,....n}, (1.44)
NG (@) — N2 () = £~ p)/0) V€
L (ut (2) — u (2) = g((z - )/ Vo € 0
IBQW ut do = cle, ],

then a straightforward computation implies that the pair of functions delivered by the right-
hand side of (1.42)-(1.43) is a solution of problem (1.4). Conversely, if a pair (u™,u™) solves
problem (1.4), then one verifies that the pair of functions (u;, u, ) defined by

u;(w) = u+($) — qulx Va € cIS[Q, ], (1.45)
ou~ out B .
v, . (p+e), aT(p +e)| —Bqg 'z Va € cIS[Qy.] 7, (1.46)

p,€

uy (z) =u(2) — p(e)F
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solves problem (1.44) and thus (u;,uﬁ_) = (uT[e, f[f], g, cle, ], u[¢, £[f], g, cle, c]]). Further-
more, formulas (1.45)-(1.46) and the uniqueness of the solutlons of problem (1.44) imply that
if there are two pairs (uf,u;) and (uj,u;) which solve problem (1.4), then we have

u ( ) Bq T =uy (T ( ) Bq x Vo € CIS[Qp,e]a
_ ou ou; _
uy (z) — p(e)F [6,&1 (p-i-e-)vayﬂl (p+6-)] —-Bg 'z
— +
—uy (@) - p(OF | 222 (pye), 2%y )| —Bele VeedS[,
al/pr 8VQP’€

uf (z) = uj (v) V€ cIS[Qp ],

u; (z) = u; (x) Va € cIS[Q, ]
Thus, we conclude that problem (1.4) has a unique solution and we denote such a solution by
(utle, f,9,c),u"[e, f, g, c]) and, clearly, it is delivered by formulas (1.42)-(1.43). O

Our aim is to investigate the behavior of u™[e, f, g, c] and u™[e, f, g, ¢] when (¢, f, g, ) is close
to the degenerate quadruple (0, fo, go, co). Proposition 1.6.1 tells us how to represent the solution

(utle, f,g,c),u"[e, f,g,c]) of problem (1.4) in terms of the solution (u*[-,-, -, ],u"[-,-,-,-]) of
the appropriate periodic linear problem. As a consequence, applying Theorems 1.5.1-1.5.2 for
(ut[- - J,u [+ ]), one can analyze the behavior of u'le, f, g, c] and u™[e, f, g, ¢]. Indeed,

the following two theorems hold.

Theorem 1.6.2. Let AT, A\~ €]0, +oo[. Let c € R. Let B € Mix,(R). Let F be a real analytic
map from (Co’a(ﬁﬁ)o)z to R. Let p be a function from |0, e[ to R\ {0}. Let assumption (1.5)
hold. Let ry be as in (1.6). Let €1, fo, go, U, Uy, be as in Theorem 1.4.3. Then the following
statements hold.

(i) The “limiting system”
A (30°(8) +w.[09,0°)(1) ) — A* (—30°(1) + w.[002,0(1) )
= fo( ) ( AT )\_)Bq_ll/Q(t) vt € 092,
v [0, 07](t) — fo0 v [09,6']do — v [0S0, 6°)(t) + f,o v [0, 0°)do
= 7490(t) — T« foq, godo Yt € 00
has one and only one solution (8%,6°) € (CO*(9)o)>.

(ii) The “limiting boundary value problem”

Aut =0 in Q,

Au— =0 in R™\ cl,
A~ Gu (1) = MG (1) = fo() + (AT = A7) Bq () Vi€ 09,
ut(t) —u= () = 14go(t) — 74 foq, go do vt € 09,
Joqutdo =0,

tlggo u (t) eR

has one and only one solution (u™,u~) € CH*(clQ) x C’1 AH(R™\ ), defined by
09,67 — ][ +0Q, 0 do,
oN

u” =wv [09, 00 ][ ~[09, 90 do .
o0
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(iii) There exists a real analytic map Ut from | — €1, e1[xU,, x U to CH*(cIQ) such that

61fn

utle, f,g,c(p+et) =€eUT
e S 9.cl(p+ et oo

€, @, 7/, g} (t) + c vt € clfl,
€

for all (e, f,g,c) €]0,e1[xU x R, where (ut[e, f,g,c],u"[e, f,g,c]) is the unique solution
of problem (1.4). Moreover,

Ut(0,7s, fo, 90](t) = at(t) + B¢ 't — Bqlf sdoy VYt ecl. (1.47)
o0

Proof. First we note that the validity of statements (i) and (ii) follows from Theorem 1.4.2.
Now, we turn to prove statement (ii7). By using Theorem 1.5.1, by representation (1.42),
and by simple computations based on the rule of change of variables in integrals, we have

1-n

utle, f,g,c](p+et) =eUT |e, p(;),f[f],g} (t) 4+ eBq~ 't — qu_I][ sdos +

—C
29 |02 11

for all ¢ € clf), where U™ is defined in Theorem 1.5.1 and f[f] is as in Proposition 1.6.1. So, it
is natural to set

Utle, e, ,ql(t) = U* e, & €[], g1(¢) + Bq~t — Bg~! ][ sdoy Ve,
o0

for all (e, €, f,g) €] —e1, e1[xUyr, xU. By the real analyticity of map U in | — ey, €1[xUy, XU (see
Theorem 1.5.1), one can conclude that UT is also a real analytic map from | — ey, 1 [xU,, X U
to C1%(cl). Then, if (¢, €, f,g) tends to (0,74, fo, go), we have that

U0, 4, fo, 90](t) = UT[0, 7, £[fo], 90](t) + Bq~ 't — Bq™* ]éﬂ sdos VWt € clQ.

Finally, using the definition of U™, Theorem 1.4.3, and also statements (i) and (ii) of this
theorem, one can show that U1[0, 7., f[fo], go] () = u™(¢) for all ¢ € cl2. Thus, the validity of
(1.47) follows and the proof is complete. O

Before formulating the next theorem, we find it convenient to introduce the following
notation. Let 6°, u~ be as in Theorem 1.6.2. Then by classical potential theory and by equality
S50 60° do =0, we can set

[ = lim @ (t) = —][ v [09, 6] do
[2)9]

t—o00

Theorem 1.6.3. Let AT, A\~ €]0,+00]. Let ¢c € R. Let B € Myx,(R). Let F be a real analytic
map from (C’Ovo‘(aQ)o)2 to R. Let p be a function from |0, € to R\ {0}. Let assumption (1.5)
hold. Let r, be as in (1.6). Let €1, fo, g0, U, Uy, be as in Theorem 1.4.3. Let u~ be as in
Theorem 1.6.2(i7). Then there ezists a real analytic map C~ from | — ey, €1[xU,, X U to R such
that

C_[Ovr*7f07g()]:l___r*f gdU—Bq_lf SdUS
o0 [2/9]

_ _ 1.48)
ou~ ou™ (
+r lu + Bq_lug, au_ + Bq_IVQ

81/9 aVQ

and such that the following statements hold.



1.6 A functional analytic representation theorem for the solutions of the nonideal nonlinear
transmission problem 23

(i) Let Q be an open bounded subset of R™ such that cIQ N (p + qZ") = 0. Let k € N. Then
there exist g €]0, €1 and a real analytic map Ug from | — eq, eq[xUyp, x U to C*(cl)

such that c1Q C S[Q, ]~ for all € €] — eg, €g[, and such that
u[e, f,9,¢|(x) = Bq"'x — Bq'p+eC™ [e, p(j), f; g}
S @ 6lfn
+€"Ug {e, ; ,f,g} (x) + \3Q!n—1c

for all x € cIY and for all (e, f, g, c) €]0, e [xU x R. Moreover,

U, (0,74, fo, go](z)
1.49
= DSyn(z —p) (/89 q(s)u"(s)dos — /69 S%U das) ( )

for all z € I,

(ii) Let Q be a bounded open subset of R™ \ cI). Then there exist e~ €]0,¢e1| and a real
analytic map Vg from | — et [XL{T* x U to CH(clQ) such that p + eclQ C cIS[Q, ]~

Q?
for all e €] — e# Eg[, and
1—-n
ule, f,g,d(p+et) =eC™ [e, p(;), ,g} +eVy {e,p(j),f,g} (t) + 18652|n_1c
for allt € cIY and all (e, f, g, ) E]O,Gg[xu x R. Moreover,
V5 [0,74, fo, go](t) = u™(t) — I"+Bqg 't Vvt € clQ. (1.50)

Proof. Let f[f], c[e, c] be as in Proposition 1.6.1. First, we consider the function

du”[e, f[f], g, cle, c]]

e (p+e€)+ Bqg 'val(),

(e, f,9,¢) = F

| du[e£[f], g, cle. ]
al/ﬂp’s

(p+e) +Bq‘1m(->]

from ]0, 1 [xU x R to R (actually, we are going to show that it depends only on (¢, f,g)). By
Theorem 1.6.2(i77) and equality (1.42), we have

u'le,£1f], 9 cle, CH(eret) + Bq lvq(t) = (ai)UJr

LN ¥ IO

Ovg

D€

for all t € 0Q2. Moreover, by the fifth equality of (1.4), equalities (1.43) and (1.51), we have

p(e)

du” e, £[f], g, cle,c]] At o U+[ e,f,g] (t)+Ai_f(t) (1.52)

(p+et) + Bg 'vg(t) = A dvg

ovq,.

for all t € 0. Furthermore, taking into account equalities (1.51)-(1.52) which do not depend
on ¢, it is natural to define the map F from | — €1, €1[xU,., x U to R by setting

+
Fle, €, f,g]:=F %%Uﬂﬁ €, f,9() + /\1_f(-),aiQU+[e, €, f, g](~)]



24 Asymptotic behavior of the solutions of transmission problems in a periodic domain

for all (e,€, f,g) €] — €1, €1[xU,, x U. Then, by the real analyticity of the map F, we deduce
that F is real analytic and that

p[0u”[eflf] g ¢le, ] Ou'[e, f[f], 9, cle, c]]

(p+e€)+ Bg 'val:),

(p+e)+ Bqlm(‘)}

81/91” 8V§2p,5
_F{ p(e) Ny }
for all (e, f,g,c) €]0,e1[xU x R. We also note that
out
F[O,T*7f07g0]:FlA(M+Bq VQ) fO: +Bq VQ‘|
S R EJFB—% (1.53)
- a Vo q Q5 aVQ q Q . .

We now consider the proof of statement (7). By Theorem 1.5.2, and by arguing as in the
proof of Theorem 1.5.2(7), and by equality (1.43), we have

p(e)

€

wle £o90l(@) = 0 [ AL p1f1, ] + 0y [0, 2 1719 (0

1-n

€ 1
|05 —1

+ p(e)F [ (6>,f7 ] Bq_lp—qu_lfmsdaer ¢+ Bqg 'z

for all z € clQ and all (e, f, g, ¢) €]0, ea[xU x R. It is natural to set

Cle €, frg] = Cle.c,£[f]. 9] + €Fle. €, frg] - Bqlf sdos,
o0

Ug e, e, f,gl(z) = Ug e, ¢, £f], g](z) Va € clQ,

for all (e, €, f,g) €] — €g, €[ xUr, x U. Clearly, by the real analyticity of Ug , we deduce that
U, is a real analytic map in | — €g, e [XUy, X U.
Now we note that Theorems 1.4.3 and 1.6.2(¢) imply that

(6710, £1fo] 90], €10, s, £[fo], 9] ) = (6,67), (1.54)

where the pair (0, -,-,-],0°[,-,-,]) is defined as in Theorem 1.4.3, and the pair (6%,6°) as in
Theorem 1.6.2(z). Now, by virtue of equalities (1.38), (1.54), and Theorem 1.6.2(ii), one can
show that

Ci[oar*7f[f0]7g0] = l_i - T*][ gdav
oN

which together with equality (1.53) implies the validity of equality (1.48). Then, by exploiting
equality (1.54) and Theorem 1.6.2(i7), one verifies the validity of equality (1.49) in the same
way as it is done for equality (1.36).

We now consider statement (i7). By arguing as in the proof of Theorem 1.5.2(ii) and by
equality (1.43), we have

. _ € _ €
wle fogndloet) = 0 [0 2D t1) ] + vy [ 2D k0] 0
—€eB _1][ sdo —|—ic—|— (e)F[epEf ]—I—EB Lt
q 59 S |aQ|n,1 p Y € ’ 7g q
1-n

+ ¢ c
|0 -1

=eC™ {e, p(;) . f g} + eV {6, p(:),f[f],g} (t) +eBqg~ 't
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for all ¢ € clQ and for all (e, f, g,¢) €0, eg[xu x R. Thus, it is natural to set
Valed, fgl(t) = Vi [, £l g)(6) + Ba 't Vi edd

and for all (e,€, f,g) €] — €g,€5[xU,, x U. By the real analyticity of Vg » we have that Vg
is a real analytic map from | — €g,€q[xU,, x U. Then, by exploiting equality (1.54) and
Theorem 1.6.2(4i), one verifies equality (1.50) in the same way as it is done for equality (1.37).
Thus, the proof is complete. O

As a conclusion, we note that our results imply that the solutions of (1.3) and (1.4) can be
expanded into absolutely convergent power series. Moreover, one can compute explicitly such
power series and adopt the technique presented in this chapter to compute expansions for the
effective properties of periodic composite materials as you can see in the next chapter.
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CHAPTER 2

Effective conductivity of a periodic dilute composite

In this chapter we study the asymptotic behavior of the effective thermal conductivity of a
periodic two-phase dilute composite obtained by introducing into an infinite homogeneous
matrix a periodic set of inclusions of a different material, each of them of a size proportional to
a positive parameter e. We consider three mathematical models for composites of such a type
assuming an ideal or nonideal contact at constituent interfaces. Each model is represented by a
boundary value problem with specific transmission conditions. For instance, we will consider an
ideal transmission condition when the normal component of the heat flux and the temperature
field are continuous, and a nonideal transmission condition when the normal component of the
heat flux is continuous but the temperature field displays a jump proportional to the normal
heat flux. For € small we prove that the effective conductivity can be represented as a convergent
power series in € and we determine all the coefficients in terms of the solutions of explicit
systems of integral equations. We note that a preliminary step in the explicit computation of
the series expansions has been performed in Dalla Riva, Musolino, and Rogosin [39], regarding
the solution of a Dirichlet problem for the Laplace equation in a bounded domain with a small
hole. Here, we present the first extension of such a computation to periodic domains and to
different transmission boundary conditions.

The chapter is organized as follows. In Section 2.1 we introduce the effective conductivity of
a periodic composite. Then, in Section 2.2 we investigate the asymptotic behavior the effective
conductivity for a composite with ideal contact. We begin with some preliminaries collected
in Subsection 2.2.1 and computing the power series expansions for two auxiliary functions in
Subsection 2.2.2. Then, in Subsections 2.2.3 and 2.2.4, we prove our main results: we describe
the effective conductivity in terms of real analytic functions (Theorem 2.2.9) and obtain its
power series expansion with explicitly determined coefficients (Theorems 2.2.11 and 2.2.12). We
complete the section by Subsection 2.2.5 devoted to the computation of the first few coefficients
in the series expansion of the effective conductivity when the inclusions are in the form of a
ball. Then, in Section 2.3 we apply the same strategy to study the asymptotic behavior the
effective conductivity for a composite with nonideal contact.

Throughout this chapter, we retain the notation of Chapter 1.

Some of the results presented in this chapter have been published in the paper [136] by the
author and in the paper [38] by Prof. Matteo Dalla Riva, Dr. Paolo Musolino, and the author.

2.1 Definition of the effective conductivity of a periodic com-
posite

In this section we consider the effective properties of composite materials and derive a formula
for defining the effective conductivity.

27
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Mostly, when we study the mathematical model for composites, we need to determine the
characteristics of the composite material as a single whole which are also called the effective
characteristics of the composite material. Since the micro-structure of the composite is periodic,
one can apply the periodic homogenization (see, e.g., Bensoussan, Lions, and Papanicolaou [18],
Bakhvalov and Panasenko [12], Jikov, Kozlov, and Oleinik [63], Markov [96], Milton [105]). Due
to the periodic homogenization, it suffices to study effective properties of a periodic composite
only for one of its periodic cell, which is called fundamental or a cell of periodicity.

In this chapter, we consider three models of composite materials. To begin with, we recall
that we fixed « €]0,1[, a point p € @, a set Q as in (1.1), and ¢y as in (1.2). Let us consider
for each j € {1,...,n} the pair of functions (u] [¢], u; [¢]) € CL(cIS[Qp.]) X CL(cIS[Qp]7)
which are harmonic in S[Q, ] and S[Q, |7, i.e.,

{ Auf =0 inS[Q,],
Au; =0 in S[Q]",

are quasi-periodic in clS[Q, ] and cIS[, |7, i.e.,

uj(x + qnnen) = uj(:c) + 5h7jqjj Vx € CIS[QP,G], Vh e {l,...,n},
uj (z + qnnen) = uj (x) +0pjq;; Vo € clS[KY ™, Vhe{l,... ,n},

and satisfy some transmission conditions on 02,  (see problems (2.8), (2.9), and (2.63) below),

where the normal component of the heat flux has a jump on 02, . equals to some given function
f € C%(00)y, i.e.,

] 25 Vi € 90 9.1
) <N )= (e ) Vo € 00 @1

Then, by adapting the argument of Benveniste and Miloh [19], we introduce the effective
conductivity.

Now, let us consider a periodic composite from a physical point of view and pick a piece
of material which contains only the fundamental periodic cell Q with a temperature field T
inside, where

T(z) = {u;r(a:) ?f x € Qpe, (2.2)
u; (x) if 2 €@\l

Then we are interesting in two quantities in (). The first one is the heat flux, which we denote
by H, and the second one is the temperature gradient V1'. These two quantities are related by
the following equality

H=-AVT in Q, (2.3)

where A is the conductivity of the cell () and it is a matrix valued function on Q.

Some physical evidences lead to the conclusion that the composite behaves in average as
a homogeneous material and our plan is to evaluate the average heat flux and the average
temperature gradient in the cell. Thus we have to calculate the average heat flux and the
average temperature gradient by means of quantities which can be measured on the boundary
of Q. To do so, we suppose that @ is filled with a homogeneous material with no sinks or
sources of heat. Under this assumption H € C(clQ),

divH =0 in Q,

and we calculate the average heat flux < H > as seen from the boundary of @) by means of the
following

1 1
< H>= o /QH(a:)dx = o /BQ zH(x) - vo(z)dos. (2.4)
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Similarly, we obtain the formula for the average temperature gradient V7. If the material is
homogeneous and has no sinks or sources of heat then 7' € C?(clQ), and AT = 0, and we have

! 1
a0 Jy 7T = s f Tt 25)

We observe that equalities (2.4) and (2.5) express the average heat flux and average temperature
gradient by means of the normal component of the boundary heat flux and by means of the
boundary temperature, respectively.

Then, denoting by A\ the effective conductivity matrix of the composite, one can deduce
it by the following relation

< VT >=

<H>=-X\T<vr > (2.6)

as an analog of equality (2.3). Our aim is to find the matrix \°f.
Since we can see only the boundary of @ and keeping identity (2.2) in mind, we observe
that the boundary temperature is nothing else but ;, and the k’s normal component of the

boundary heat flux is nothing else but 8uj_/8a:k, where k € {1,2,...,n}.
Also, taking the quasi-periodicity of u; in cIS[$;,]” and identity (2.2) into account, we
observe that for all z € 0Q such that x + gpnen € 0Q

T(x + qnnen) = T(x) + 0n,jqj; Vh e {l,...,n}.
Then there exists a function 7 : 0Q) — R such that
T(x) =T (z)+x; Vo € 0Q.

Hence, we have

1
1Qlr /E,Q(T(x) + zj)vq(v)do,

1 1
= dogy + —— ; dog.
ol 8Q7-(x)1/@(a:) o+ o0 /{9@:6]1/@(95) o

The first integral in the right-hand side is equal to zero due to periodicity of the function 7,
and the second one is equal to |Q|ne;. Thus, we deduce that

< VT >=

< VT >= €.

Now, we denote by Hy, the k’s normal component of the boundary heat flux. Then, using
the Divergence theorem and equality (2.1), we calculate the average of Hy,

< Hp >= —1/ l‘k)\_aij_dam
1Qln Jag 0wy,
A~ / ou; 1 / _Ou; 1 _Ou;
Qln Jog ™" Oz 1Qln Jag,. " By 1Qln Jag,. " By

A~ / u; 1 / ou’ 1
= — —doy — —— AT —Ldo, — / zrf((x —p)/e)doy,
Qln Jo\a1,.. Ok 1Qln Joa, . Oy, Qln Jag,. ( )/e)

AT / Ouy At ouT 1 /
= —doy — —— — doy — —— zpf((x —p)/e)doy.
Qhn Jaran,. 92 "7 7 1@ Jo,. 900" T QI Sy, TV

The expressions for the average heat flux, for the average of the temperature gradient, and
relation (2.6) lead to the following equality

e, = — < Hy > Vk,j e {1,2,...,n}.

Hence, we introduce the effective conductivity matrix A°%[¢] with (k, j)-entry )\zgf [€] defined
by means of the following.
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Definition 2.1.1. Let AT, A~ €]0, +oo[. Let (uj[e],u]_ [€]) be the unique solution in the space
Cl’a(clS[ijg]) X C’l’o‘(clS[Qp,E]_) of problem (2.8), or of problem (2.9) with m € {1,...,n—1},

loc loc

f e 0% (00)g, g € CH(09Q), c € R, or of problem (2.63) with the same f, g, and c. We set

ge L (e [ 0@, 25
Ag; €] := an ()\ /Q o dz + M /Q o, oy da -

+ /69,),6 f((z —p)/e)xy dax>

for all € €0, €] and all k,j € {1,2,...,n}.

We note that the integral of the function f is not presented in the right-hand side of
expression (7) when we consider the transmission problem with the boundary condition (4).
Moreover, we observe that expression (7) extends that of Benveniste and Miloh [19] to the case
of nonhomogeneous boundary conditions and coincides with the classical expression when f
and g are identically 0 in systems (5) and (6).

Variations of formula (2.7) can be found in the papers of Benveniste and Miloh [19, 104],
Lipton and Vernescu [92], Ammari, Kang, and Touibi [10], Drygas and Mityushev [44], Castro,
Pesetskaya, and Rogosin [27], and Dalla Riva and Musolino [35], where the authors considered
different contact conditions in materials and the case when there are more than one inclusion
in the unite cell (). We also note that Benveniste and Miloh [19] introduced their expression
for defining the effective conductivity of a composite with imperfect contact conditions by
generalizing the dual theory of the effective behavior of composites with the ideal contact.
Moreover, Dalla Riva and Musolino [35] introduced the effective conductivity as an extension
of the classical definition to the case of nonhomogeneous boundary conditions.

2.2 Effective conductivity of a periodic dilute composite with
ideal contact

In this section we consider the ideal transmission problem and study the effective conductivity
of a periodic two-phase composite.

The section is organized as follows. In Subsection 2.2.1 we pose the problem, introduce some
notation and prove some auxiliary statements. In Subsection 2.2.2 we compute the power series
expansions for two auxiliary functions. In Subsections 2.2.3 and 2.2.4, we prove our main results:
we describe the effective conductivity /\igf [€] in terms of real analytic functions (Theorem 2.2.9)
and obtain the power series expansion for it with explicitly determined coefficients (Theorems
2.2.11 and 2.2.12). We complete the section by Subsection 2.2.5 devoted to the computation of
some coeflicients in the series expansion of )\z?f [€] in case inclusions are in the form of a ball.

2.2.1 Preliminaries and notation

To pose the problem, we again take two positive constants AT, A~, and, for each j € {1,...,n}
and a pair of functions (u},u;) € CL(eIS[Q, ) x Ct(cIS[Qy.]7), we consider the following

problem, which we call the ideal transmission problem:
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At =0 in 5[0,
Au; =0 in S[Qp.] ",
u; ul (z + qnnen) = u; J (@) +0njqj; Vo edS[d, Vhe{l,.. . n},
uj (T + qrnen) = (+ T) 05455 Vo € clS[Qy]T, Vhefl,. .. n}, (2.8)
) - X =0 e oy
Uj(m) — u;(x) =0 Vo € 08,

+ —
fc’)ﬂp,e u;do =0

for all € €]0, €.

The analysis of problem (2.8) can be deduced by the analysis of a more general transmission
problem and which can be considered as a particular case of problem (1.4). In order to formulate
this more general problem, we additionally take a number m € {1,...,n — 1} and functions
f € CY(00)y and g € C1*(9Q). Then, for each j € {1,...,n} we consider the following
transmission problem for a pair of functions (ul,u) € O a(clS[Q J)yx ol (cIS[Qp.]7):

7o %y loc loc

Au;Ir =0 in S[Q.],
Au; =0 in S[Q.] 7,

;_(l‘ + gnnen) = (x) + 0n,54j; Vo € clS[Q, ], VYhe{l,...,n},

u; (x + qunen) = uj () + 0n,;4j; Vo € dS[Qp]™, Vhe{l,...,n}, (29

ou u',"

N o () = X i (a) = f((x —p)fe) V€ O
an (uf (2) —uj (z)) = g((z —p)/e) Ve € 0,
faQW u;rdo' =c

for all € €]0, ¢o[. Clearly, if (f,g,¢) = (0,0,0) in (2.9) then the two problems coincide.

The parameters A™ and A\~ play the role of thermal conductivity of the materials which
fill the inclusions and the matrix, respectively. Therefore, the solutions of problems (2.8) and
(2.9) represent the temperature distribution on the set of inclusions S[€2, (] and in the matrix
S[Qp.c]~, under different conditions. More precisely, the third and the fourth conditions in
problems (2.8) and (2.9) express a growth for the temperature distribution in the direction ey,
and periodicity in all other directions. The fifth and the sixth conditions of problem (2.8) say
that the normal component of the heat flux and the temperature distribution are continuous
on the interface. At the same time, the fifth condition in (2.9) says that the normal component
of the heat flux presents a jump which equals a given function and the sixth condition in (2.9)
says that the jump on the interface of the temperature distribution is proportional to a given
function by means of the parameter €. Finally, the last condition of problems (2.8) and (2.9)
is just a normalization condition, which we need in order to “fix” the solution.

Before studying the effective conductivity, we have to solve problem (2.9) what can be
done by exploiting the results obtained in Chapter 1. To begin with, we recall some auxiliary
properties of the periodic analog of the fundamental solution of the Laplace equation and then
convert problem (2.9) into a system of integral equations.

We recall that if S,, is the fundamental solution of the Laplace operator and S, ,, is its
periodic analog, then R, , = Sy, — Sy in (R™\ ¢Z™) U {0} is analytic in (R™ \ ¢Z") U {0}, and

we have that
M= 30,
zeZ"\{0} n

in the sense of distributions (see Theorem B.0.1 in Appendix B). Since

Ryn(z1,...,—x, ..., xp) = Ryp(x1,..., 20, ..., 2Tn)
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for all I € {1,...,n}, we have that R, is an even function and
(D"Rg,)(0) =0 Vy € N*  with |y| odd, (2.10)

where (D7R, ,,)(0) means the value of the derivative DR, ,, at the point 0, and, moreover,

(0i0;Ry7)(0) =0 Vi,j € {l,...,n} such that i # j. (2.11)

Also, since Ry, is even and (AR ,)(0) = —1/|Q|n, one verifies that if @) is an n-dimensional
cube, i.e., q11 = q22 = - - = Qnn, then

1

PRy p)(0)=———  Vie{l,...,n} 2.12

(0; Rgn)(0) lan { } (2.12)

As shown in Section 1.6, we can convert problem (2.9) into an equivalent system of integral

equations by means of the periodic simple layer potential. Now, let 7 € {1,...,n} and

m € {1,...,n — 1}. To provide an integral equation formulation of problem (2.9), we also

define the map M; := (M1, M;2) from | — g, o[ (0070‘(89)0)2 to C%%(9Q)o x CL*(9Q)g b
setting

Miale,6/,6°)(8) =A™ (56°(0) + w0, 671(8) + € e, 6°)))
1 ) I3 n— 7
At (-29 (£) + w.[09, 07](£) + A e, 6 ](t))
— f(t)+ (AT = AT (va1);,
M e, 00, 6°)(t) =0 (00, 07)(8) + €2 Ale, 67]( ]ég

— v~ [092, 0°](t) — €2 Ale, 6°) (1) +][ ~109, 60 + €2 Ale, 00]) do
o0

(v71092,6] + € 2Ale, 07]) do

— e lg(t) +em! ][ gdo
o0

for all £ € 9 and for all (¢, 67, 6°) €] — €, eo[x (CO*(9Q)o)°.
In the following proposition, we convert problem (2.9) into a system of integral equations
by means of the operator M;.

Proposition 2.2.1. Let AT, A\~ €]0,+oo[. Let j € {1,...,n}. Let m € {1,...,n —1}. Let
f € 0% (09Q), g € Cla(aﬁ) and ¢ € R. Let € €]0,e[. Then problem (2.9) has a unique
solution (uj [e], uj [€]) in CIOC (cIS[€2p.]) % Cllog(clS[Q ) 7). Moreover, such a pair is delivered

by the formulas

uf [e](2) =vg [0, O5[e ]((-—p)/e)](l‘)—][ Vg [0Qp.e, G5[e)((- = p)/€)] do
O, e

. (2.13)
+@j— ]éQp,e yjdoy + ‘an eln—1 Vo € CIS[QP,GL
uy [€)(@) =07 [0, 020l (- = p)/O)] () — ]ég 07 [0, 021 (- — p) )] do
—ef g/, (2.14)
Op,e

c
+x-—][ yidoy + Vo € clS[Qp ],
! 0, e Y |8Qp6|n 1 P

where (é; [e],é;[e]) denotes the unique solution (6°,6°) in (C**(0Q))? of

M;[e, 60,6 =0
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Proof. We first note that one can convert non-periodic problem (2.9) into a periodic one (see,
also, the proof of Proposition 1.6.1). To begin with, we introduce the following notation:
£111) == f&) + (AT = A7) (va(t)), for all t € 99, and c;le, ] := — faﬁp,e yj doy + c. Then if
the pair (" [e],u " [€]) solves the problem

Aut =0 in S[Q, ],

Au~ =0 in S[Q, ],

ut(x + gppen) = ut(z) Vo € clS[Qpe], Vhe{l,...,n},

u” (z + qunen) = u (x) Vo € cS[Q, )7, Vhe{l,...,n}, (2.15)
N (@) = X (@) = £[f]((x —p)/e) Yz € 0y,

an (ut(z) —u~(2)) = g((z = p)/e) Yz € 0,

fanp,e utdo = cjle, cl,

a straightforward computation implies that the pair of functions delivered by the right-hand
side of (2.13)-(2.14) is a solution of problem (2.9). Conversely, if (u™[€],u[€]) solves problem
(2.9), then one verifies that the pair of functions (u;, uy") defined by

ug (x)

uy ()

uj' [€](x) — z; Va € cIS[Qp ],
0

l€](x) — x; V€ clS[Qy ],

solves problem (2.15). Consequently, there is a bijective correspondence between the solutions
of problem (2.9) and those of problem (2.15). Therefore, Proposition 2.2.1 implies that
problem (2.9) has a unique solution which we denote by (u;r €], u; [€]) and which is delivered
by formulas (2.13)-(2.14). O

In order to investigate the asymptotic behavior of the (k,j)-entry )\Z?[E] of the effective
conductivity tensor as € — 07, we need to study the functions u;r €] and u; [€] for € close to
the degenerate value 0. On the other hand, Proposition 2.2.1 tells us how to represent uj (€]
and u; [€] in terms of the densities é; [e] and é;[e] Therefore, the analysis of )\zf;f[e] for e close
to 0 can be deduced by the asymptotic behavior of 0}[e] and 69[e]. Accordingly, as a first step,

in the following theorem we present a regularity result for 9; [e] and 95’ [€] (see Theorem 1.4.3
and Theorem 1.6.2).

Proposition 2.2.2. Let AT, A~ €]0,+oo[. Let j € {1,...,n}. Let m € {1,...,n —1}. Let
f € C%(00)g, g€ CH*(09Q), and c € R. Let € €]0,¢q[. The following statements hold:

(i) M;j is a real analytic map from | — €, €g[x (CO*(02)0)? to CO*(0N)g x CH*(N)o.

(ii) There exists a unique pair (5}, 5;’) € (C%(00)0)? satisfying the following “limiting system”
of integral equations
M; [0,5,65] = 0.
(iii) There exist €1 €]0, e[ and a real analytic map € — (©'[e], O%[¢]) from | — €1, e to
(CY(0)0)? such that
M; [6, @;[e], @?[6]} =0 Ve €] — €1, €1]. (2.16)

In particular,

(@;[6],@?[6]) = (é;[e},éj[e]) Ve €]0,e1] and (@;[0],@?[0]) = (é;,é;’),

where the pair (é; €], é;)[ﬁ]) is defined in Proposition 2.2.1.
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Proof. By standard properties of integral operators with real analytic kernels and with no
singularity, and by classical mapping properties of layer potentials (see Lanza de Cristoforis
and Musolino [82, Sec. 4], Miranda [106], Lanza de Cristoforis and Rossi [87, Thm. 3.1]), one
verifies that M is a real analytic map from | — €, €o[ X (Co’a(aﬁ)o)Q to CO2(00)9 x CH*(09)o,
and statement (i) is proven.

To verify (i), we note that the system of integral equations M; {0, 63;, éﬂ = 0 can be written
as

. (;é%t) + .00, 6°] <t>) -t (—;5"@) + w02, Wf))
= f(t) = (A" = AN (va(t),,

ot [09, Fldo — v (09, 0°)(t) + ][ v (09, 8%do
o0N

= 01,m <g(t) - ]fm gda)

for all t € 0f2. Then, by Proposition 1.3.2, the above “limiting system” has a unique solution
in (C%*(0€)0)2.
Finally, the validity of (¢iz) follows from Theorem 1.4.3. O

o+ [09, 71 (1) — f

o0

The real analyticity result of Proposition 2.2.2(ii7) implies that there exists € €]0, €;] small
enough such that ©%[e] and ©F[e] can be expanded into power series of €, i.e.,

@i _ X 0§7h h o° _ = egyh h 217
j[ﬁ]—zh,€7 j[ﬁ]— Wev (2.17)
h=0 " h=0 "

for some {Hé,h}heN» {07, then and for all € €] — € €[. Moreover,

= (0keld) 09, = (9hesld)

le=0 le=0’
for all h € N. As a consequence,
+00 i b +o0 eqh
N _ J;h _h nor,.1 — I, _h
0[] = e 07[e] = e
h=0 ' h=0 '

for all € €]0, €[. Therefore, in order to obtain a power series expansion for )\zgf €] for e close to 0,
we want to exploit the expansion of (é; [e], éjo [e]) (or equivalently of (©%[e], ©9[e])). Since the
coefficients of the expansions in (2.17) are given by the derivatives with respect to e of ©%e]
e=0 and (6?@]0.[6])|E:0.
The plan is to obtain such equations by differentiating equality (2.16) with respect to €, which
then leads to

and ©9[e], we would like to obtain some equations identifying (8?@; [e])

o (M [e,0i[d,05d]) =0 Vec]—e,al, VheEN. (2.18)

Then by taking e = 0 in (2.18), we will obtain integral equations identifying (8?@; [e]) and

le=0
(8?(9? [6]) le=0"

In order to compute the derivative in (2.18), we recall that

h
O (Fle)(x) - Gle|(z)) = ) (?) 0! (Flel(x)) 9(GCle)(x)) (2.19)
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and that Bl
N (H (ex)) = Z EI‘:UO‘(DO‘H)(EJU) (2.20)
lal=h

forall h € N, e € R, z € R”, and for smooth enough functions F', GG, and H.
We begin with a preliminary lemma.

Lemma 2.2.3. Let €, €]0,¢[. Let € — 0e] be a real analytic map from | — e€f), €4] to CO*(9Q)o.
Possibly shrinking €}, assume that {0 }nen is a sequence in C%*(0Q) such that

0
Ole] = Z ﬁeh Ve €] — €5, €/
where the series converges uniformly for € €] — €}, ey in CO*(0Q)g. Then the following

statements hold.

(i) The map € — Ale,0€]] from | — €}, ey to C1*(09Q) is real analytic and we have

Afo,0[0)) =0, (ol (" 2Ae, 9[6]]))‘610 =0 Vhe{l,...n-1},  (2.21)

and

(0 (e *Ale.01e) (1))

le=0
h-n+t2 bl (2.22)
= ; Da n - @ -n — S
>, ¥ sz O R | =505
for allt € 0 and for all h € N\ {0,...,n — 1},
(ii) The map € — A, [e, 0[€]] from | — €, eh[ to CO(0R) is real analytic and we have
A0, 0[0] =0, (9 (eI Aufe, a[en))| =0 Vhe{l..on—1}  (223)
and
h ([ n—1
(0 (e Aleold]) ()
h—n+1 Bl (2.24)
= : D“DRyy, —8)“ Oh—ni1- s
I e G B [ =90 i(s)do
for allt € 0 and for all h € N\ {0,...,n—1}. Moreover,
M (eMy]e,0]€]])do =0 Ve €] —ep,eh], VheN, (2.25)

o0
Proof. We first consider statement (i). The analyticity of the map
e — Ale, 0[€]]

from | — €}, ey to C1*(99) follows by the analyticity of e — f[¢] and by standard properties
of integral operators with real analytic kernels and with no singularity (see, e.g., Lanza de
Cristoforis and Musolino [82, Sec. 4]). Clearly,

A[0,6[0]](t) = Ry.n(0) /8Q 0[0](s)dos =0 Vit € 0.
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Using equalities (2.19)—(2.20), one verifies the validity of equality (2.22). By a straightforward
computation, one verifies the second equality in (2.21) for all A < n — 1. In particular, if
h =mn — 2 it is verified by using the equality A[0,0[0]] = 0. If h = n — 1, instead, by the fact
that 0; € C%*(9Q)o and by equality (2.10), one deduces that

(02 (2L, 0[e]]) (1)), _ = (= 1)! (A6 0[e]](1)) =g

1

— (=1 3 (D*Ry0)(0) /BQ(t —8)%0y_y(s)dos =0 Ve oN,

=0 |a|=l

and, accordingly, equality (2.22) follows.

We now turn to prove (ii). Again, by the analyticity of € — 6[e] and by standard properties
of integral operators with real analytic kernels and with no singularity (see, e.g., Lanza de
Cristoforis and Musolino [82, Sec. 4]), we deduce the analyticity of the map

e Ayle, O[e]]

from | — €f), €y to C%*(9Q). Moreover, by standard calculus in Banach spaces and by formulas
(2.19)—(2.20), we deduce the validity of (2.24). Clearly,

A0, 60]](t) = DRy (0)a(t) /6 0o =0 Ve o,

which also implies

(or=t (e Ay fe,00e]]) (t))‘ezo —0  Vteon.

Also, by a straightforward computation, one can verify the validity of the second equality in
(2.23) for all h € {1,...,n —2}.

It remains to prove (2.25), we note that the map e — H][e] from | — €}, ef[ to C1(clQ)
defined by the equality

HAO = [ Ryulelt=s)pld(s)do, e an

is real analytic. Moreover,

Ay Ry n(e(t — s))0[€](s)dos :62/ (ARgn)(e(t — s))0[€l(s)dos
[2)9] [2)9]

E2

=— / Ole](s)dos =0 Vit € cl€,
o0

1Qln

and thus H[e] is harmonic in € for all € €] — €, €;[. Therefore,

/aﬂ%He =0 Ve €] — €5, € -
On the other hand, a straightforward computation shows that

0

BVQH[ €] = eAy[e, Oe]] Ve €] — €5, €] -
As a consequence,

/8Q eAy[e, 0[]l do =0 Ve €] — €, €. (2.26)

By differentiating equality (2.26) with respect to €, we deduce that

=" = h — e, ehl.
0= 0 (/m eAy[e,Q[e]]da> = [ ool dr e e e

Thus the proof is complete. O
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In view of Lemma 2.2.3, we find convenient to introduce the following notation:

h—n+2 h

Ao, ..., 0p—n)(t) = > Z — n!+2 — l)!(Daqu)(O) / (t = 8)*Oh—nt2-i(s)dos

=2 Jaj=1 @ a0

for all (6, ..., 0h_n) € (CO2(00))" ™, all t € 9, and all h € N\ {0,...,n — 1}, and

AIJ[907 .. .,9h n]( )

h—n+1
lz; laz:l —n+1 D! 1 (DD Rgn)(0)va(t) /69@—3) Oh—n+1-1(s)dos

for all (6o, ..., 0h_n) € (CO*(0Q))" ™™ , and all € 0Q, and all h € N\ {0,...,n— 1}. We
observe that by (2.10), A"[fy,...,0,_,]) and A2[0y,...,0,_,] depend only on the 6;’s with k
odd if h — n is odd, and only on the 6;’s with k even if h — n is even. As a consequence, we
have the following.

Lemma 2.2.4. Let h € N\ {0,...,n — 1} be such that h — n is odd. 1If 6y,...,0h_, €
C%(9Q)g are such that 0; = 0 for all odd j € {1,...,h —n} then A"[0p,...,0,_n](t) =0 and
A6y, ..., 0,_,](t) =0 for all t € 0.

2.2.2 Power series expansions of two auxiliary functions

In order to compute the asymptotic expansion of the effective conductivity, we start with the
following proposition where we identify the coefficients of the power series expansions of O €]
and of ©7[e] in terms of the solutions of systems of integral equations.

Proposition 2.2.5. Let AT, A\~ €]0,+oo[. Let j € {1,...,n}. Let m € {1,...,n —1}. Let
f € CY(0R)g, g € CH¥(0R), and ¢ € R. Let 1 and € (@;[6},@?[6]) be as in Proposi-
tion 2.2.2(ii1). Then there exist e2 €]0,€1] and a sequence {(eé,haeg,h)}hEN in (C%(052)9)?
such that

) —+o0 91 +o0 90
O'le] = “Zh ch and Ofe] = 2 ch Ve €] — €2, €] (2.27)
J hl J h' )y €210,

where the two series converge uniformly for € €] — ez, 3] in C%*(9Q)g. Moreover, the following
statements hold.

(i) The pair of functions (0; 0

system of integral equations

0%0) is the unique solution in (C%(0Q)0)? of the following

A (505000 + w092 8501(0) ) = X+ (—5880(0) + w02, 050)(0) )
= f()+ (AT =2)(wa(t);  VtedQ,

(2.28)

w09, 67 0](t) —][ vt 09, 0% gldo — v [09,609,](t) + ][ v [0, 02 )do
o o (2.29)

=01,m <g(t) - ][ gda> vt € 0N
0N

(ii) We have (6" gha 2p) = (0,0) for all h € {1,...,n— 1} \ {m — 1}. Moreover, if m > 1

09,,_1) is the unique solution in (C%*(92)9)? of the

then the pair of functions (6 S m—1

7,m—1
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following system of integral equations

A (30ma(®) + wn[02.65,1100)
- A" (—;9;1, L (£) + wi[09, 65, 1](t )) =0 VtedQ,

(00,01, 1](t)—fm 00,61, Jdo — v (09,602, ](1)

N ]{m (09,62, 1)do = (m —1)! (g(t) - ]{mgda> vt € 0.

111) For a > n the pair of functions (0%, ,0°,) is the unique solution in @ 0)° o
For all h h f f 0;7,1 037,1 h [ CY%(002))? of

the following system of integral equations which involves {(Gj b H;Z) o

A (5020000 + w09, 0500)) = 3 (50500 + 0 002.03,00)

(2.30)
_>\+Ah[9] 05 >9§,h—n]( ) AT Ah[ 7,000 - 70;‘)7h—n](t) vt e GQ,
o 109,61,](1) — f o090, 01, ]do — v~ 09, 62,](1) +][ o™ (09,62, ]do
’ 90 ’ 0 ’
AL 0 )0 + ]gg N b, ... 0 o (2.31)

A8 62, () ][ AMB2, ... 62, Jdo Vi€ DR,
o002

Proof. We first note that Proposition 2.2.2(ii7) implies the existence of €5 €]0,¢1[ and a
sequence {(927,1, 0% 1,)hen in (C%(09)0)? such that representation (2.27) holds. By standard
properties of real analytic maps, one has

(6% ,09,,) = (0rO5[0],0!09[0])  VheN.

In order to determine (9;0, 0;’70), we note that, by taking e = 0 and keeping the first equality
n (2.21) in mind, equality (2.16) can be immediately written as the system of integral
equations (2.28)—(2.29). The existence and uniqueness of solution for this system are then
ensured by Proposition 2.2.2(i7).

Now, we turn to prove statements (i) — (i7¢). Since equality (2.16) holds for all € €] — €, €3]
(see Proposition 2.2.2(7i7)), the map e — M; {e, @;- (€], @;’[eﬂ has derivatives which are equal to
zero, i.e.,

o (M; [e,0i[d,05d]) =0 Vec]—ep e VheN\ {0}
Then, a straightforward calculation shows that
O (M;ale, ©3[el, ©3[e]]) (¢)
-~ (Gehesla) + w. o0, 2 e5ldI(0) + ok (A, e, 651 1)) ) (2.32)

oy <_ SN (1) + w00, ALON[C)(r) + DL (¢ A [e, O [6”(’5))) =0
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o (Mjale. ©3[d) ©51d]) (1) =" 00,01 63(e)(1) ~ { 0" (062, 010} [ejdo

o0
— v 09, 9!OY[€]] (¢ )+][ v [09,0!'0[e]|do

+oh (6"_2 < €, @’ ][ Ale, @l >> (2.33)

- ot (2 (Al 051l ~ £ Ale.5lelar ) )

(o - f ) -

for all t € 0 and for all € €] — €, €2, and for all h € N\ {0}.
Now, taking equalities (2.21) and (2.23) into account, one verifies that for all natural
h € {l,...,n— 1}, the system of integral equations (2.32)—(2.33) takes the following form

A~ (; 2 1(t) + w. [0, 02,](t )> — At <_; ! () () + w, [0, 05 (¢ )](t)) =0 (2.34)

v1[00Q, i L)) — ]éﬁ v+[8Q,9§7h]da — v~ [082, 07 ,](t) + ]{’m v (09,07 ]do

= Ghnelm =11 (90~ f _go)

for all t € 0. Proposition 1.3.2 implies that system (2.34)-(2.35) has only a unique solution
for all h € {1,...,n — 1}. Moreover, (9§7h,0;?7h) = (0,0) for all h € {1,...,n =1} \ {m — 1}.
Thus, the validity statement (ii) follows.

Finally, we consider the case h > n. First we note that equations (2.32) and (2.33) take the
form (2.30) and (2.31), respectively. Then, by observing that the right-hand sides of (2.30) and
(2.31) belong to C%*(92)¢ and C1(99Q)g, respectively, Proposition 1.3.2 again ensures the
existence and uniqueness of the solution ( ;}h, 2n) € (C%(0£2)0)? for the system (2.30)(2.31)
for all A > n. Thus, the proof is complete. O

(2.35)

We complete the section with two remarks which we will use in the sequel.

Remark 2.2.6. We observe that the pair (9}70, 0%¢) coincides with the pair (9;, 93’) (see Propo-
sition 2.2.2(i1) ), or, in others words, the pair of the first coefficients in the series expansions

(2.27) is the unique solution of the “limiting system” of integral equations M, [0,6°,6°] = 0.

Remark 2.2.7. By Lemma 2.2.4 and Proposition 2.2.5, we observe that if m is odd and n is
even then ( ;,m ]Oh) = (0,0) for all odd h and, as a consequence,

. = ¢ T2 69
O'le] = Z 5.2 (2h and O%)e] = Z J:2h 2h Ve €] — e, €.
J = (2h)! J = (2h)!

2.2.3 A functional analytic representation theorem for the effective conduc-
tivity

Definition 2.1.1 tells us how to represent )\zg-f[e] in terms of the solution (u]+ [e], uj [e]) of

problem (2.9). Thus, in order to study the asymptotic behavior of the effective conductivity,

we find it convenient to study the asymptotic behavior of u;r[e] and u; [e] first.

In the following theorem we show that uj[e] and u; [e] can be represented in terms of real
analytic maps.
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Theorem 2.2.8. Let AT, A\~ €]0,+o00[. Let j € {1,...,n}. Let m € {1,...,n —1}. Let
f € C%(0Q)y, g € CY0N), and ¢ € R. Let (u; [], u; e]) be the unique solution of
problem (2.9) for all € €]0,¢o. Let 1 and € — (O©%[e ] Slel) be as in Proposition 2.2.2(iii).
Then the following statements hold.

(i) Let Uj be the map from | — €1, e[ to CH¥(9N) defined by

U [d(t) i=v" (00, 0[] (£) + " 2A[e, OF[e]](¢)

. . (2.36)
_][ (U+ [69, @;[e]} + €2 A€, Oj[e]] )da +1; —f yjdoy
o0 o0
for allt € O and for all € €] — €1, €1[. Then U;r is real analytic and
n " El—n
ul[e)(p + et) = €US[€)(t) + o vt € 09, (2.37)

for all € €]0,€1].

(ii) Let C; and V; be the maps from ] —e1,€e1] to R and to CH*(9Q), respectively, defined by

C;le:=— ]([99 (v_ {89, @?[6]} + "2, O7el] )da —em! ]{99 gdo — ]ég y;jdoy

V7 [e](t) == v [09,O9[]](t) + " *Ale, O[€]](t) +t; V€ 09, (2.38)

for all e €] —e1,e1[. Then C; and V; are real analytic and

6l—n

|0 —1

u; [e](p + et) = €C; [e] + €V [e](t) + c  Vteon, (2.39)

for all € €]0, €1].

Proof. By simple computations based on the rule of change of variables in integrals and by
equality (2.13), we have

uwf[d(p+ et) = et 09, 0}[e]| (1) + € Ale, O3] (1)
1-n

— ev™ |09, OLe]| + " LAle, Oe da—i-t'—f yido —1—670
f (e [on0i] €Ol Jdor 45 = f o + o

for all ¢ € O and for all € €]0, €1[. Then by Theorem 1.5.1, one shows that UJr is real analytic

on | — €1, €1[, and, by the definition of UJr the validity of statement (i) follows
Now we consider statement (ii). As we have done above, by equality (2.14), we have

3 [ (p -+ et) =ev™ [0, 0[] (1) + "~ Ale, 516l (1
_ ]{m (ev_ [aQ, 93[6]} + e Ale, ©9[e]] )d(,

1-n
—em][ gda+etj—e][ yjdayﬂ—eic vVt € 0N2.
0 90 0 n—1

Then by arguing as in the proof of Theorem 1.5.2, one verifies that C; and V; are real analytic
on | — €1, €1] and the validity of equality (2.39). O
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Equalities (2.37) and (2.39) allow us to describe suitable restrictions of u;“ €] and u; [¢] in
terms of real analytic maps. As a consequence, they can be exploited to obtain an analogous
representation for /\ijf [e]. We do so in the following theorem.

Theorem 2.2.9. Let the assumptions of Theorem 2.2.8 hold. Let k € {1,...,n}. Then there
exists a real analytic function Ay; from | — ey, €1 to R such that

AeTe] = A6k, + € Agjle] (2.40)
for all € €]0, €1].

Proof. We first note that if € €]0, €[ then, by the Divergence Theorem, we have

ouT[el(x
I 2l | i@, @hdo. = [ UTA@ @) do,
Qp,e l‘k/‘ BQIM onN

where U;r is as in (2.36). We find it convenient to introduce the function AZ]- from | — €1, €1
to R by setting

Aj;ld = , U [€)(t) (va(t))rdoy (2.41)

for all € €] — €1, €1[, which is real analytic on | — €1, €] due to Theorem 2.2.8(3).
Next, let V~ be as in Theorem 2.2.8(ii). Then, by the Divergence Theorem and by the
periodicity of the function which takes x to u; [e](z) — z;, we have

ou-
[ @) g / W (@) o, (@) do
Q. Ok A(Q\c1,.) ’

= [ wld@eetdo— [ urld@n, o) do
oQ Oy, e
:/BQ (ug_ [e](x) — xj) (VQ(x))k doy + /é)Q Hfj(VQ(:C))k doy
~ / w7 () (v, . ()i dog = — / a5 1)) (v, () o + 65 5|Qln
O, e O, e

=" Vi e(®)(va(t))r dot + 0k
o0

Qln Ve €]0, e1].
We also find it convenient to introduce the function A;; from | — €y, 1] to R by setting

Agld = [ VI @a()don (2.42)

for all € €] — €1, €1], which is real analytic on | — €1, €1] due to Theorem 2.2.8(i7).
Finally, we can introduce the function Ay; from | — €1, €[ to R by setting

AT
Apjle] == @Akj[e] -

’g]n A];] [6] + |Q1‘n 00 f(t)tk dO’t Ye E] — €1, 51[_ (243)

The function Ay; is real analytic on | — €1, €1[. Then, keeping Definition 2.1.1 in mind, one
verifies that equality (2.40) holds. O
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2.2.4 Power series expansion of the effective conductivity

To compute the series expansion for the effective conductivity, as an intermediate step, we
find it convenient first to compute the power series expansions for the functions Azj and A,;j,
which are defined in the proof of Theorem 2.2.9. So, the following lemma holds.

Lemma 2.2.10. Let A*, A\~ €]0,+oo[. Let k,j € {1,...,n}. Letme {l,...,n—1}. Let f €
CO(00)g, g € CH*(0R), and c € R. Let €, be as in Proposition 2.2.2(iii) and {(0;'-7,1, 05 1) then
be as in Proposition 2.2.5.
(i) Then there exists ea™ € |0,¢€1] such that the real analytic function Azrj defined in (2.41)
can be represented as follows

AL =190k + /6 ot 02,05 (00O doy

- (17”_5117;' </aQ ot [89’ §7m*1] (&) (va(t))k d0t> em—1

3 ([ [p20] @eowidn

[ N B JO0RO)d )

for all € €] — ea™, ea™ [, where the series converges uniformly for all such e.

(ii) Then there exists o~ € |0, €1] such that the real analytic function Ay; defined in (2.42)
can be represented as follows

A ] =10 + /6 109 050)() (alt) o

" m (/aQ ot [89, 9}’,m,1} ) (va(t))k dat> em1

400
+ 3 ([, v ool ea@an

+ - AR 705 - .,9;?7hn](t)(ug(t))kdat) "

for all € €] — €27, €27 [, where the series converges uniformly for all such e.

Proof. We first consider statement (7). Let €1 be as in Proposition 2.2.2(iii). Using equalities
(2.36), (2.41), and the Divergence Theorem, we can write A,Jgj [e] as follows

Al = 1920k, + /a ot 09,63 [d)] (6) (va(t) ) doy »
2.44

n—2 7
te /69A[e,®j[e]](t)(ug(t))kdat

for all € €] — €1, €1]. Since Azj is real analytic on | — €1, €1[ (see the proof of Theorem 2.2.9),
there exist 2™ €]0, €[ and a sequence {ap, }pen in R such that

+oo

ap
Az;j[e] = hz:o Heh Ve €] — e, €2+[,

where the series converges uniformly for all € €] — a1, e[ Then, keeping equalities (2.27) in

mind, by taking € = 0 in equality (2.44), and by using equality (2.21) if n = 2, one verifies that

ap = AG[0] = [Qn0k + /8 ) ot (09,050 (8) (v (t) i do.
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Also, to compute the others coefficients, one can use the equality aj = (8£(A,Jg] [€]))|e=0 Which
holds for all h € N\ {0}. We note that the derivative of order h € N\ {0} of Azj [e] has the

following form

(AL ) = /

vt [09,0L63[d] (1) (va(®))y doy
0N

| (2.45)
+ /8 ) o (e2Ale, ©3[d](1)) (va(t))ndor.

Then, taking e = 0 in (2.45), we obtain that

an = (M(AS), = /a ) vt [09,0,4] (1) (wa(®))x doy

le=0
- /8 ) CACRINCHAIO)) oo Walt)doy

for all h € N\ {0}. Then, equalities (2.21) and Proposition 2.2.5(i7) imply that ap = 0 for all
he{l,...,n—1}\ {m — 1}, and that

A / ot (00,0, ] (8 (va(t) ) do
o0N

in case m > 1. Then, since aj can be written for all h > n as follows

ap = /8 ) ot [aﬂ,e;,h] () (v (), doy + /8 ) A, .0 ) (1) (va(t))rdoy,

the validity of statement (i) follows.

Now, we consider statement (ii). Using equalities (2.38), (2.42), and the Divergence
Theorem, we can write A [e] as follows

Al = [9nde; + /8 o090, OO (B do + /8 Al 51 0) v (1)

for all € €] — €1, €1]. Then, by arguing as we have done for A:j [e], one verifies the validity of
statement (i1). O

In the following theorem we prove the main result of this section, where we expand )\2?[6]
into a power series and we provide an explicit and constructive expression for the coefficients
of such series.

Theorem 2.2.11. Let AT, A\~ €]0,+oc[. Let k,j € {1,...,n}. Let m € {1,...,n — 1}.
Let f € C%*(0Q)g, g € CH*(09Q), and ¢ € R. Let €1 be as in Proposition 2.2.2(iii) and
{(9;,1, 9§7h)}heN be as in Proposition 2.2.5. Then there exists €3 €)0, €1] such that

e — 1 Ckf ym—1 m_ = Ckf h n
A le] = A0 + a0 <C(k,j),o +(1- 517m)7((m])_ e B (hj.) €h> € (2.46)
n : hen !

for all € €]0, €3], where
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Criyo =M /6 ) o™ 09,65 0] (D(va(®) dov — A~ /B 07109, 630]() () dov
) Qe + /a HOteden, (2.47)
gyt <A /d v [09.85,1] (D00 (0 do
A [ 010205, 0 0a (O dor
Cosyn =M /8 (07 (0985 0 A Bl B l(0) ()i

— AT /zm ( ~[09,69,)(t) + A" [0, - ..,Ogvh_n](t)) (vo(t))rdos  Yh > n.

Moreover, if m is odd and n is even, then for all € €]0, es|
)\eﬁ"[e] :>\_6 . + ( _ 61 )C(krj)vmfl Em—l + —io c(kzj)»2h €2h En (2 48)
& kit ’Q‘n k)0 . (m - 1>! h=n/2 (Qh)! . ‘
Proof. We first note that equality (2.46) follows by the equalities (2.40), (2.43), and Lemma
2.2.10. Moreover, if m is odd and n is even then Lemma 2.2.4 and Remark 2.2.7 imply that

all odd coefficients ¢ ;) , in (2.46) are equal to 0 and, thus, (2.46) takes the form (2.48). The
proof of the theorem is now complete. O

Now, we restrict ourself to considering problem (2.8) instead of (2.9). As a consequence of
Theorem 2.2.11, one immediately concludes the validity of the following proposition.

Proposition 2.2.12. Let AT, A\~ €]0,+oc[. Let k,j € {1,...,n}. Let {(G;i’hﬁ;’h)}heN -
(C%(09)0)? be the sequence defined as follows:

o the pair ( ;-70, 9;?70) 1s the unique solution of the following system of integral equations

A (5050(8) + w.[0R,050)(8)) = X (= 30%0(t) + w09, 655100
= (V=X wl)),
w9, 6} o] (1) — ][ w09, 0} ldo — v~ [0, 6%,](t) + ][ v [09,69]do = 0
o0N o0N

for all t € 092,
o (01,,,09,) = (0,0) forallh € {1,...,n—1},
o for all h > n the pair of function (Hj,h, 05 ),) is the unique solution of system (2.30)-(2.31).

Then there exists e, €]0, €g| such that

)\ng[ﬁ] = )\_6,14;7]‘ + W (C(k,j ,0 + Z 7]) . h) ¢ Ve E]Ov E*[v (2‘49)

where



2.2 Effective conductivity of a periodic dilute composite with ideal contact 45

Clejyo =AT /a ) ot [09,0)0] (1) (va(t))x doy
A [ 0102650 a0 o+ (A = X
Clegyh =AT /8 Q( (09,05,] (1) + A" 8}, 0 ,_)(8)) (va(t) xdoy
3 [ (70205,0(0) + A 05,,)0)) () Bz .

Moreover, if n = 2, then for all € €]0, €[
Aﬁ¢ﬂ5m‘@<%m+z ”%%>~ (2.50)

2.2.5 Power series expression of the effective conductivity in a composite
with spherical inclusions

In this section we introduce more restrictive assumptions on problem (2.8), which allow us
to obtain simpler expressions for some coefficients {C(k,j),h}heN in the series expansion of the
effective conductivity in terms of the given positive constants A™ and A\~. So, we assume that

(f? g7 C) = (07 07 0)7 Q E]O7 1[”7 a'nd Q = Bn(07 1)'

We begin by observing that if (f, g, c) = (0,0,0) than the system of integral equations (2.28)-
(2.29) takes the following form

A (; 2o(t) + . [09, 02, (¢ ))

_ A+(_§ i o() + w.[09,05](1)) = (\* = A7) (va(®);,

(2.51)

v 100, i tol(t) — ][ v1[00Q, Qé,o]d‘f — v [082, 05 ](¢) + ][ v~ 09,67 0]do =0 (2.52)
oN oN
for all t € 02, which is equivalent to the system of the following equations

du (092, 02, )
() =

o085 - f

o0N

3@[59710](15) = (AT = A7) (va(t);,
vQ

o (09,0 o)do — v 99, 0%) (1) + ][ 07 [09,0%0)do = 0
o0

A

for all t € 0€).
Then, one can verify that if the pair ( ;10, 70) is the solution in (C%(9£2)9)? of the system
(2.51)-(2.52), then there exists a constant ¢y € R such that

; AT — A
v 09, 05 0](1) N (n = 1)tJ + ¢o Vit € clf),
U, (2.53)
J

[69, ]0]():_)\++)\_(n_1)w VtGRn\Q.

Then, taking equalities (2.47) and (2.53) into account, by a simple computation, one verifies

that N
c(k,j),O = TL)\i >\+ + )\ ( )|Q’n6k,j7
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and, as a consequence of equality (2.49), we have that if k,j € {1,...,n} then

At — AT
AP+ A" (n—1)

AT = A~ (1 +n \Qyne"> Spj + O(e2m)

ase— 0.
Power series expression of the effective conductivity for the two-dimensional case

We want to find explicitly more coefficients in the series expression of )\igf [e]. To do so, we
restrict ourself to consider the two-dimensional case. So, we assume that

n=2 Q=]0,1[x]0,1[, and Q=DBy(0,1)

(see Figure 2.1).

Figure 2.1: The composite with the inclusions in the form of a disk

Taking into account that €2 is the unit ball, we have that

w,[99, 0](t) :/mD(sq,g(t— ) va(t)0(s) dos — %/MD(Iog\t— o) va()0(s) do
1

_ 1 — —5) -
_ L / L5 10(s) do = / (=12 = 52) - (B t2) g g
2 B

oo |t — s? 27 |t —s]?
1 -t 3 —t
:_/ Lo AThs T g g, (2.54)
21 Jaq t1 — 2t181 + s1+it5 — 2t959 + 53
1 1-— t181 — t282
=— 0(s)d
2T o0 2 — 2t181 — 2t282 (5) s
1
=— 0(s)dos =0
4 o0 (8) s

for all § € C%*(09Q)y. Moreover, using the definitions of A? and A2 (see Section 2.2.1), and
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equalities (2.10)-(2.12), by a straightforward computation, we have the following

1 i (i . .
AZ[Bo)(t) =23 <1> D (,ﬁ) (0105™" DRy)(0)a(t) /a (1= 50" (t2 = 52/ o (s)dor

J) h=o

=2 <;1L> (a?aé_hDRq)(O)VQ(t)/ (t1 — S1)h(t2 — 82)1_h90(3)dgs
[2/9)

= (2.55)
9 —%tl /aﬂ(t1 — $)0(s)dors — %tg /aQ(tg—Sg)@()(s)das>
:/ (t181 + t282)90(8)d03 Vit € 00, VO € CO’O‘((?Q)O,
o2
A2[00]() =3 (2> > (j)<8haj‘hR )0) [ (b= 52)" 02 = 52)7 00 ()
Jj=1 J h=0 h H ! o9 - S
:i <2> (0102 R,)(0) / (t1 — 51)" (s — 52)2 P80 (s)do
o\ T oot ’ (2.56)

=-3 ((t1 —51)° + (t2 — 32)2) 0o (s)dos
2 Joo
:/ (t151 + t2s2)bo(s)dos Vt € 09, VO € CV*(00Q).
oN

Then, keeping equalities (2.53) in mind, by using the jump formulae for the normal derivative
of the simple layer potential (see Theorem A.0.2(v) in Appendix A) and equality (2.54), one
verifies that

i AT =T o
Got) = 2mt]~ =07,(t) vVt € 09. (2.57)

Then, taking h = 2 in the system of integral equations (2.30)-(2.31), one can rewrite it as

follows

v~ (09, 05 5] +8v (09,0 L) o 2ipi )
- _ — \TAZ[6% — ATA2[0° 2.
AT G () = X () = XEAZIBE () — A ALB0) (), (259)
o109, 0L5](t) ][ o109, 0L )do — v~ (09, 0%, )+][ o [00.0%,)de =0 (2.59)
a0 a0
for all t € 99Q. Also, using equalities (2.55), (2.56), and (2.57), one can show that
2001 ,J() = A2[0%)(8) = A2[010](8) = A2[6%,](8) — 22—y, 2.60
00)(1) = A2[050)(0) = AZI050)(0) = A2 = 25—ty (260)
for all t € 0€). Again, if (9 2,075) is the solution in (CO(0€2)0)? of the system (2.58)-(2.59),
then, taking equalities (2.60) into account, one can verify that there exists a real constant c;
such that

A’
vt [0, ]2]( )= —2m <)\++)\> tj +c1 vt € clf2,

) (2.61)
109,02 )(1) = 2 [ ) L yere 0

B O S S A '

Then by equalities (2.50), (2.53), (2.60), and (2.61), we deduce that if k,j € {1,2} then

off - A=A, M oay 2 4 6
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as € — 0. We note that series expansion (2.62) agrees with the series expansion of the effective
conductivity obtained by Ammari, Kang, and Touibi in [10, Thm. 5.3], and Pesetskaya in [122,
Sec. 5] for the case where the unit cell @ has only one inclusion. Moreover, taking A\~ = 1, we
observe that (2.62) agrees with the series expansion obtained by in Berlyand and Mityushev in
[20, Sec. 4].

2.3 Effective conductivity of a periodic dilute composite with
nonideal contact

In this section we consider a nonideal transmission problem in the two-dimensional case and
study the effective conductivity of a periodic two-phase composite.

The section is organized as follows. In Subsection 2.3.1 we introduce the problem and collect
some preliminaries on potential theory and on the integral equation formulation of problem
(2.63). In Subsection 2.3.2 we compute the power series expansion under the assumption of
present the constant interfacial thermal resistance. Finally, in Subsection 2.3.3 we analyze of
the effective conductivity in the case the interfacial thermal resistance is proportional to a
parameter related to the size of inclusions in a composite.

2.3.1 Preliminaries and notation

Within this section, we deal only with the two-dimensional case. Thus, we find it convenient
to recall some notation of Section 1.1. We fix once for all (q11,¢22) €]0, +oo[2. Then Q =
10, q11[x]0, ga2[ is the periodicity cell and the diagonal matrix ¢ = (0;;45)ijef1, 2 Then
|Q|2 = q11g22 denotes the two-dimensional measure of the fundamental cell @) and ¢~ denotes
the inverse matrix of q. Clearly, ¢Z? = {qz : z € Z?} is the set of vertices of a periodic
subdivision of R? corresponding to the fundamental cell Q.

We recall that the domain €2 is as in (1.1) and fixed, € is as in (1.2) and fixed, and for a
fixed point p € @ and all € €] — €, €[ the set Q, = p + €2 plays the role of the inclusion in
the fundamental cell @), where € is as in (1.2). We also recall that S[Q), ] = U,cz2(q2 + Qp.e)
and S[Q, ]~ = R?\ cIS[Q2, ] for all € €] — €, €o]-

Next, we take two positive constants AT, A7, a function f in C%%(99)o, a function g in
C%(9Q), and a function p from )0, o[ to ]0, +oc], and for eachj € {1,2} we consider the follow-

ing transmission problem for a pair of functions (u} uj,uj) € Cloc (cIS[€2y ]) % Cloc (cIS[y ]7):

Auf uj =0 in S[Q, ],
Auj_ =0 in S[Q]”

ul (x + qunen) = u () + Onjqnn Va € clS[Qp’e], vh e {1,2},

uj (z + gnnen) = uwj () + Onjqnn va € dS[Qd 7, Yhe (1.2} (g6

ou uJT :
A g (1) = AT %J (z) = f((z —p)/e) Ve € 0y,
out -

At %ﬂ (@) + 5 (u+(:c) —u; (2)) = gz = p)/e) Vo€ I,
faQ uj T(x)doy =0

for all € €]0, €.

In problem (2.63), the functions uj and u; play the role of the temperature field in the
inclusions occupying the periodic set S[€2, | and in the matrix occupying S[Q, ], respectively.
The parameters A™ and A~ represent the thermal conductivity of the materials which fill the
inclusions and the matrix, respectively, while the parameter p(e) is the interfacial thermal
resistance. The fifth and the sixth condition in (2.63) describe the jump of the normal heat
flux and of the temperature field across the two-phase interface.
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Such a discontinuity in the temperature field is a well-known phenomenon and has been
largely investigated since 1941, when Kapitza carried out the first systematic study of thermal
interface behavior in liquid helium (see, e.g., Swartz and Pohl [157], Lipton [91] and references
therein).

Problem (2.63) has been investigated by Dalla Riva and Musolino [35] under the assumption
that

the limit lim —— exists finite in R. (2.64)
e—07t p(G)

As in the paper by Dalla Riva and Musolino [35], we consider the effective conductivity
matrix X\ [¢] with (k, j)-entry )\zfjf [€] defined by means of Definition 2.1.1, where (uj+ €], uj [e])
denotes the unique solution in Cﬁ)’? (cIS[€2p.]) % Cllo’ff (cIS[2p,e] ™) of problem (2.63).

Dalla Riva and Musolino [35] have proved that under assumption (2.64) the effective
conductivity can be continued real analytically in the parameter € around the degenerate value
e=0.

In this section, we investigate two specific cases, namely, when p(e) = 1/ry or p(€) = €/r4,
where r4 is a positive real number, for which )\zgf[e] can be expanded into a (convergent) power
series for e. We observe that the first case corresponds to the situation where the thermal
boundary resistance p(e) is independent of €, whereas in the second case the resistance is
proportional to the size of the contact interface 92, .. This latter case has been considered
also in the works of Castro, Pesetskaya, and Rogosin [27] and of Drygas and Mityushev [44].

Now, let j € {1,2} and let p(-) be either € — 1/ry or € — €/ry. To provide an in-
tegral equation formulation of problem (2.63), we define the map N; := (N;1,Nj2) from
] — €0, o[ (CY(02)0)? to (C*¥(02)0)? by setting

Nyale,6/,6°)(0) 1= A~ (56°(0) + w.[09,6°)(0) + e e, °](0) )
=T (=580 + wa[00,6(0) + e e 010)) — £+ (O =X )wa(®); Ve o,
Njale 61, 0°)(8) = X (= 507(0) + w,[092.61(8) + e e, 7))
S i e 01(t) —
+ = (102010 + Al )0~ f

—v~ [082, 6°)(t) — Ale, 0°](t) + ]{m

(vF1092,0 + Ale, 0'] ) do
(v7[09, 6] + Ale, %)) da)
—g(t)+]éﬂgda+/\+(m(t))j vt € 09,

for all (e, 0%,6°) €] — g, €g[x (CO*(0Q)g)?.
By means of the operator N, we can convert problem (2.63) into a system of integral

equations, as the following proposition shows (for a proof we refer to Dalla Riva and Musolino
[35, Prop. 6.1]).

Proposition 2.3.1. Let either p(e) = 1/ry for all € €] — €g,e0] or p(e) = €/ry for all
€ €] —eo,e0[. Let € €]0,e0[. Let j € {1,2}. Then the unique solution (uj €|, uj [€]) in
Cl’a(clS[Qp,e]) X CI’Q(CIS[QILJ*) of problem (2.63) is delivered by

loc loc

uf [e](x) =vf [0,e, Gi[e] (- = p)/€))(x) — ]{99 07 109, 65[ (- —p)/€)] do

+x; — ][ yj doy Va € cIS[Qp ],
Oyp.,e
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u; [e](x) =g (02,6, B[l (- —p) /€)](2) — ](QQ Vg 109, 651E)((- — p) /)] do

—p(e) ]{m 9((y —p)/e)doy + x; — ][ yjdoy  Vx € clS[Qp ],

D,€

where (9; €], é;’[e]) denotes the unique solution (6°,0°) in (C**(0Q)9)? of
N [e,6',0°) =0.

Again, in order to investigate the asymptotic behavior of the (k,j)-entry )\zgf[e] of the

effective conductivity tensor as e — 07, we need to study the functions u;r [e] and u; [e] for €

close to the degenerate value 0. On the other hand, Proposition 2.3.1 tells us how to represent
uj [e] and u; [¢] in terms of the densities 05[] and 62[e]. Therefore, the analysis of )\zi;f[e] for e
close to 0 can be deduced by the asymptotic behavior of é; [€] and é? [€]. Accordingly, as a first

step, in the following theorem we present a regularity result for é; [€] and ég’ €] for € small and
positive (see Dalla Riva and Musolino [35, Prop. 5.2, Thm. 6.2 and Thm. 6.3]).

Proposition 2.3.2. Let either p(e) = 1/ry for all € €] — €y, €0 or p(e) = €/ry for all
€ €] — e, €0 Let j € {1,2}. The following statements hold.

(i) Nj is a real analytic map from | — €o, eo[x (CO*(992))? to (C¥(8Q)0)?.

(ii) There exists a unique pair (5;, éjo) € (C%(082)0)? such that N, [0, 9?-, éﬂ =0

(iii) There exist €1 €]0,€p] and a real analytic map € — (@;[e],@g[e]) from | — e1,€1] to
(C%(99)0)? such that

N; {e, @}[e], @;’[e]] =0 Ve €] —e1, €] (2.65)
In particular,
(©4[e), ©3le]) = (0i[), 03[]) Ve €]0,e1[ and (5[0}, 03(0]) = (6}, 63),
where the pair (HA; [e], éjo[e]) is defined in Proposition 2.3.1.

Now, we note again that the real analyticity result of Proposition 2.3.2 (iii) implies that
there exists €3 €]0, €1] small enough such that we can expand @é» [e] and ©Fe] into power series

of ¢, i.e.,
too go

+o0 i
i h o h
O el = Z ﬁ(—:h, Ofle] = Z #eh, (2.66)
h=0 h=0
for some {9;'-7,1};661\;, {05 1, ren and for all € €] — €2, €2[. Moreover,

i = (006i14) 00 = (00021))

le=0"’ le=0"’
for all £ € N. As a consequence,
400 pi N 400 Oh
Nir.1 Jh _h nor_1 __ Jh _h
0[] = e HEES e
h=0 h=0

for all € €]0, €2]. Therefore, in order to obtain a power series expansion for /\zgf [¢] for e close to

0, we want to exploit the expansion of (é; €], éjo[e]) (or equivalently of (©%[e], ©9[¢])). Since the
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coefficients of the expansions in (2.66) are given by the derivatives with respect to € of ©%[¢]

J
hpno
- and (66 05 [GD\E:O'
The plan is to obtain such equations by differentiating with respect to e equality (2.65), which
then leads to

and ©f[e], we would like to obtain some equations identifying (6?9;- [e])

o (N; [e,0i[d,050d]) =0 Vee]—er,al,  VheN. (2.67)

Then by taking e = 0 in (2.67), we will obtain integral equations identifying (8?0; [e])‘ S and
(oro2le])

le=0"

2.3.2 Power series expansion for the constant interfacial thermal resistance

Throughout this section, we consider the case where
ple) =1/ry Ve €] — €o, €0l (2.68)

In order to compute the asymptotic expansion of the effective conductivity under assumption
(2.68), we start with the following proposition where we identify the coefficients of the power
series expansions of ©%[e] and of ©9[¢] in terms of the solutions of systems of integral equations.

Proposition 2.3.3. Let j € {1,2}. Letey, € = @i[ ], and € — Of[e] be as in Proposition 2.3.2.
Then there exist €3 €]0, €1 and a sequence {(0} ,,07),)}hen in (CO *(00)9)? such that

+oo i +o0 o
O e] = Z ;L—"hﬁh and Ofe] = Z #'heh Ve €] — €2, €2, (2.69)
h=0 h=0

where the two series converge uniformly for e €] — e, €3] in (C%*(0Q)9)2. Moreover, the
following statements hold.

(i) The pair of functions (9;}0,95-’70) is the unique solution in (C%“(92)0)? of the following
system of integral equations

—% jo(t) + w.[09, 05,](t) =Ai+ (g(t) - ]gﬂgda) ~ (va(t));, (2.70)
30500+ 000,050 == (90~ f_gdo+ 1) = Gl0); (270

for all t € 09).

(ii) The pair of functions (0; 1,091) is the unique solution in (CO(082)0)? of the following
system of integral equations

1 i r i 7
= 5051(8) + w.[09,05,](t) = — /\% <U+[5Q»9j,0] (t) = ]([99 0109, 6] ldo

(2.72)
o[, 0%,](t) + ]gg v[BQ,Gﬁdda) ,
1., o
S004(0) + we[00,62,1(1) ——;f( 09.0301(0) — f " (0820} -

VOO0 + f o085yl )
o0

for all t € 09Q).
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(iii) The pair of functions (9; 9,05 5) is the unique solution in (CY(0€2)0)? of the following
system of integral equations

_% ;2(75) + wy [89,0;72] (t) = —A; [ ;,0] (t) — 2;f ( 092,65, jl (@) (2.74)
—][ o0, 01 do — v~ [0, 09,](1) +][ v (00, 0571]d0> ,
o0 o0
%9;?, (t) + wi[09, 095](t) = —AZ[09,](t) — 2;1*( 092, 6% 4](¢)
(2.75)

_ ]gg vt[o9, 93171](10 — v~ [0Q,05,](t) —i-][ 1)_[8979]0»71](10)

o0
for all t € 09Q2.

(iv) For all h € N\ {0,1,2} the pair of functions (9§’h,9;-”h) is the um’que'solution in
(CY(90)0)? of the following system of integral equations which involves {(65 105 1) Z;é

300+ (00, 83,)(0) = —AL [B0,.. 01 o] (0 = SE (07 102,05, 1100

—f 01096, o 010069, 110+ o7 (09.65, Jdo )
0N 0

A @ (2.76)
T 7 I3 I3
—)\f(Ah U8 0 () — ]iQAh Uiy, 00, ldo

AP B g B+ A B 8 sl )

o)

Loo. (¢ o9 = —AM[ee o e (w+i00
2020+ 0. [09,03,0(0) = —AL [0, 053] () = S (7102051100

—][ v 09, 65 1 ]do — T[99, 65,1 ](¢ )+][ [8979?,h1]d‘7)

i9) (2.77)

hr i
—)\?%<Ah 1[]0""’ jh— 3 f Ah 1 ]07"’79j,h73]d0-

B )0+ N B 0ol )
for all t € 092.

Proof. We first note that Proposition 2.3.2 (iii) implies the existence of e and of a family
{(6§7h, 0% 1) then such that (2.69) holds. By standard properties of real analytic maps, one has

(65.0:05.) = (0FO5[0),075[0])  VheN.

By equality p(e) = 1/ry and by taking e = 0, equation (2.65) can be immediately written as
the system of integral equations (2.70)—(2.71). The existence and uniqueness of solution for this
system are then ensured by Proposition 2.3.2 (ii). Then observe that N; {e, @;- [e], ©F [e]} = 0 for

all € €] — €2, 2] (see Proposition 2.3.2 (iii)). Accordingly, the map € — N; [e, G);- €], @;’[e]} has

derivatives which are equal to zero, i.e., (N [e Q' [e, @5)[6]]) =0 for all € €] — €2, €2] and all
h € N\ {0}. Keeping equality p(e) =1 / r4 in mind, a straightforward calculation shows that

M ECHERCHEING
=X~ (goresiel(n) +w. [0, 8l6gld] (1) + o (e [, ©14]) (1) (2.78)
2

o <_;age;1 (1) + w. [0, 01| (£) + 0 (eA, [, O[] (t)> =0,
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ol (Njz [e, ©ifd. ©1d]) (1) = A* (_;ag@;i () +w. [00,01e1[d] (1)
+0! (edy |6, 03[d]) (1)) + ery (v [09, 010} (1) + 0% (A [e, O[] ) ()
- 7{99 (v* |09, 00051 + 0l (A |e, ©i[e]] ) ) do — v~ [092, 01031 (1)

ot (s [esid]) @+ f (o [on.0besid] + ot (a [e.e5ld]) ) do)

o2

+ hry <v+ [aQ, ar-lei [e]} (t) + o1 (A [e, CH [e]D (t) — ][

” (v* |00, 0716}

01" (3 031d] ) s -~ ot ogid] (0 -0 (1 st )

+f (v [oneitesta] + 07t (A [e.0gld]) ) dr ) =0

for all t € 09, all € €] — €9, €2], and all h € N\ {0}. Then, by Lemma 2.2.4, one verifies that
system (2.78)-(2.79) with € = 0 can be rewritten as (2.72)-(2.73) if h = 1, as (2.74)-(2.75) if
h =2, and as (2.76)—(2.77) for all h € N\ {0,1,2}.

One can easily verify that the integral on 02 of the functions on right-hand sides of (2.72)
and (2.73) vanishes. Then, by Lemma A.0.3 in Appendix A one proves that the solution
(0% 1,02,) € (CO*(8)0)? of (2.72)-(2.73) exists and is unique (we have already observed that
the existence is granted by Proposition 2.3.2 (iii)). By Lemma 2.2.4 one also has that

/{)QAQL[;,O,...,e;?h_Q} dr=0  and /89A5[§70,...,0§7h_2} do =0

for all h € N'\ {0,1}. Then a straightforward computation shows that the right hand sides of
(2.74)—(2.77) belong to C%¥(d)¢ for all h € N\ {0,1}. Hence, Lemma A.0.3in Appendix A
ensures that the solution (0;'-7,1, 05,) € (CY(0Q)0)? of system (2.74)—(2.75) for k = 2 and of
system (2.76)—(2.77) for all h € N\ {0, 1,2} exists and is unique (the existence also follows by
Proposition 2.3.2 (iii)). The proof is now complete. O

(2.79)

Now, we proceed to compute the series expansion for the effective conductivity under
assumption (2.68). To do so, we need the following two lemmas where we compute the power
series expansions of two auxiliary maps.

Lemma 2.3.4. Let k,j € {1,2}. Let e — O%[e] and € — OY[€] be as in Proposition 2.3.2.
Let €3 and {(0§,h=0§,h)}h€N be as in Proposition 2.3.3. Let Uj+ be the map from | — ez, €2 to
CH(09) defined by

U () :=vt [09,05[d] (1) + A |e, O[] (1)

J
][ (v"‘ {5){2,@;[6]} +A {e, @;[E]D do+t; — ][ sjdos vt € 0f2.
0N o0
Then Uj+ is real analytic and there exists €3 €]0, ea[ such that

U [e](t)(va(t))k dor = |Q20y,
onN

+ /BQ vt[09, 9}70](t)(ug(t))k do + € /89 vt[09, 9271](t)(ug(t))k doy (2.80)

+ :ZO:;, ( /6 ) (v 1092, 0 )(8) + A" 00, -, 05 5o] (1) (e ())i dat) o

for all € €] — €3, €3], where the series converges uniformly for € €] — €3, €3].
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Proof. We first note that by Dalla Riva and Musolino [35, Thm. 7.1], U ]+ is a real analytic
map from ] — ez, e2[ to C1*(9R). Therefore, there exist e3 €]0, €2] and a sequence {a; s }ren in
CH2(99) such that

Xt
U;‘[e](t) = hz J’Z!()eh Ve €] —e3,€e3[, Vt e 0,
=0

where the series converges uniformly for € €] — €3, e3[. By taking e = 0 and by Lemma 2.2.4, we
verify that

0(t) = 0 PR 030)(0) - £ o PR Gjeldo by~ f sidon vecon.

In order to compute the other coefficients, we take the derivative of order h € N\ {0} of the
map € — U f [e] and we obtain

o (U 1) (1) =v* 00, akei[d]] (t) + ol (Ale, ©}[d]) ()
— vt |0Q, "0 ]| + 9" (Ale, ©il€]])) do Vit € OQ.
F (o [on.0teiid] + ot (ale 04
Again, by taking e = 0 and by Lemma 2.2.4, we find
a;1(t) =v*[09,00](t) ][ ot (0000, do e on,
o0
ajn(t) =t (00, 0,1(6) + A" [0 0, 0o (1)
—][ (v109,00,] + A" (8, 05| ) do V€00 WheN\{0,1}.
o0

As a consequence, possibly shrinking €3, we have

[ orawoande - | :Zoh (0 dov
f;(/ (1) (0 don )

where the series converges uniformly for € €] — €3, €3[. Then we consider separately the cases
h=0,h=1,and h € N\ {0,1}, and we have

| a®a®)don
o0

:/69 ( (092, 85,01 () — ]{99 v 00, 05 do + t; — ][m Sj das> (va(t))k doy
_ /a HO9.03)(1) (v (1)) dor — ]{m 109,61 o] do /8 () doy

+ /89 ti(va(t)) doy — ]éﬂ s;jdos /Em(l/g(t))k dot
_ / o0, 81 o) (1) (vea(8) s doy + / 5 (va(t)k do.,
o9 o9

and

/8 a0 vnlt)edor = /a ) (v 1092.8,,100) - ]égvﬂﬁﬂﬁil]do) (vet) s dov
- / o109, 0 1(8) (v (1) dor,
o0
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and

Agaj,h(t)<yg(t))kdat:[39( 00,00,1(6) + A [0, 05,5] (1

_]{m( (0. 60,] + A" (8,05 2Ddo>(ug(t))kdat
:/Em( (09, 05,)(2) + A [0, 05 o] (1)) (va()i dor.

Moreover, by the Divergence Theorem one verifies that

ot;
/ Z/Q kdO't / ] dt = |Q|25k7]‘.
oQ

Accordingly, the validity of (2.80) follows. O

Lemma 2.3. 5. Let k,j € {1,2}. Let e — ©'[e] and e — OY[e] be as in Proposition 2.3.2.

Let €3 and {(0: i he 05 091,) }hen be as in Proposition 2.3.3. Let Vi~ be the map from | — €2, €] to
Ch2(0Q) defined by
V() =™ [00,090d] (1) + A [, 09| (1) +1; vt € an.

J

Then V™ is real analytic and there exists es €0, e2] such that

/ V(1) (va() o = (920
o0N

+/aQ ~[092, 65,](t) (v ())k d0t+5/89 v [09,07,](t)(va(t))k do (2.81)
n io E (/ (v71092,02,) ) + A" [050, -, 0512 (2)) (m(t))kdot) e,
—= h! 50 s Js B

where the series converges uniformly for € €] — €4, €4].

Proof. We first note that by Dalla Riva and Musolino [35, Thm. 7.2 (ii)] V; is a real analytic

map from | — ez, e2[ to C1*(92). Therefore, there exist €4 €]0, e2[ and a sequence {b; s }ren in
Ch%(9Q) such that

+oo
_ bin(t
Vol = ]’Z'()eh Ve €] — eq, 4] Vit € OQ,
h=0 ’

where the series converges uniformly for € €] — €4, €4[. By taking e = 0 and by Lemma 2.2.4, we
verify that
bjo(t) = v [0, 05,](t) +t;  Vte 0.

In order to compute the other coefficients, we take the derivative of order h € N\ {0} of
the map € — V" [¢e] and we obtain

o (V1) () = v~ (09, 0le3[e)(t) + 0 (Ale, ©5[e]]) (1) ¥t € 0.
Again, by taking ¢ = 0 and by Lemma 2.2.4, we find

bja(t) = v~ [09,69,](t) V€I,
bin(t) =™ (09, 62,)(t) + A" |80, . 0ns| (1) VEE OO
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and for all h € N\ {0,1}.
As a consequence, possibly shrinking €4, we have

400 b B +00 1 ' N
/mvj [€)(6) (vea(£)) dort = /BQh 0 (m(t))kdat_hz:%ﬁ (/(39b]7h(t)(ug(t))kdat)e

where the series converges uniformly for € €] — €4, €4[. Then we consider cases h =0, h = 1,
and h € N\ {0, 1} separately and we have

[ bio®a®dor = [ (710965010 + 1) (o) do
9}9]

o0
= [ w008 O0aO) d + |2

[ bia@aOndo = [ 07100.0,10 000 do
o0 o0
/a bin(®)(va) doi = /a ) (v71092,0,)) + A" [050, -, 025, 2] (1)) (vaa(t) i do.

Accordingly, the validity of (2.81) follows. O

We are now ready to prove the main result of this section, where we expand /\ijf[e] as a
power series and we provide explicit and constructive expressions for the coefficients of the
series.

Theorem 2.3.6. Let k,j € {1,2}.Let €2 and {(9;-7}1, 0% 1) then be as in Proposition 2.3.5. Then
there exists es €0, e2] such that

1 XNcmy

ef‘f — (hv )’h h

Ajle] = A0k j + 627’(02‘2 E hj‘ €
h=0 :

for all € €]0, 5], where
o =N [ 000 Bl don + (1 = A)[Dadi

— A" v~ [09Q, 07 0] (1) (va(t))k dot + f)ty doy,
[2)9] o0

pa =N [ 00,000 e do = [ 000000 00O dor
gy =AT /8 Q( (09,60, 1(8) + A" [0 ..6,,5] (1) (va(t))x dov
—A /m( “[09,09,)(t) + A" (050, 054 s] (1)) (va()r o,

for all h e N\ {0,1}.
Proof. By Dalla Riva and Musolino [35, Thm. 8.1], if we set

/\+

AT -
Agjle] := Q% /m U [el(t) (va(t)), dow — 0 /BQVJ- [e](t)(va )k dot + == [ f(t)tr doy

\Qb o0

for all € €] — €, €2], then we have
)\E{j[e] = )\76]“]' + 62Akj [6] Ve E]O, 62[.

Then the definition of {c(; ;) n}then and Lemmas 2.3.4, 2.3.5 imply the validity of the statement.
O
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Application to the effective conductivity in the composite with inclusions in the
form of a disc

Introducing more restrictive assumptions, it is possible to obtain simpler expressions for the
coeflicients c(j, j) - For example, in this subsection we will assume that

Q =]0,1[x]0,1[, f=0, gisareal constant, and  =By(0,1) (2.82)

(see Figure 2.1 in Section 2.2), and will we write the first five coefficients as simple functions of
r4, AT, and A~. We begin by observing that, with assumptions (2.82) the system of integral
equations (2.70)—(2.71) takes the following form

1 .
—5050(t) + w.[09,050](t) = —(va(t); V€O, (2.83)
1
59;-”0(15) +w.[09, 07 0] (t) = —(va(t)), Yt € 09, (2.84)
which is equivalent to the system of the following equations
Ao GLUT t) = t vt € 00
Tt = ~a), Ve on,
ov~ 109,02,

5 LIE (1) = —(vg(t); Ve dn.
Vo

Hence, one can verify that if (0;-70, 02,) is the solution in (CO(99)0)? of system (2.83)-(2.84),
then there exists a constant ¢y € R such that

[89, jO]( ) =—t;+ ¢ Vit € cl€,

0 [09,02,]() = |if2 Vi € B2\ . (285)
We now note that, since € is a unite ball, we have
w,[09,0] =0 VO € CO¥00)0 (2.86)
(see equality (2.54)). Then by (2.83)-(2.84) and (2.86) we have that
"’ o(t) = 215, 20(t) = —2t; Vit e o (2.87)

Next, taking equalities (2.85) into account and since t; = (vq(t)); on 0%, the system of
integral equations (2.72)—(2.73) takes the following form

_%9;17 () + w,[00,61,](t) = 2;# (va(t);  Vie€an, (2.88)
%9;; (1) + w.[09,02,](1) = 2;# (va(t);  Vteon, (2.89)

or, equivalently,

v t[09Q, 0’ N _ 2y
a’U_[aQ, 9;’1] QT#
If (9; 1,05 1) is the solution in (CY(9€2)0)? of system (2.88)-(2.89), then one can verify that

there exists a constant ¢; € R such that

2r
v [0, 0% ,](t) = /\ft fo ViedQ,
27’# tj

(2.90)
[897 7s 1]( ) = |t|2 vt e RZ \ Q?
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and, moreover, by (2.88)-(2.89) and (2.86), one has
i 4r o 4r
0l (t) = Af ti, o 0%,(t) = )\#t] vt € 99 (2.91)

Next, we rewrite the system of integral equations (2.74)—(2.75) as follows

ovt [69, 91'-72} A2 [pi _ 27‘#
S 0 = 83 6] (6 - T (vtom 63,0 o
—][ o109, 00, 1o — v 99, ]1]()+][ o [99, ]1]da> vt € 0,
o0 o0
v~ [aQa 2] A2 o _27"#
SR ) = A2 [o5,] (0 - 2T (w1065, o

—][ w09, 0% 1)do — ™[99, 62,](¢) +][ v [09,02 1}da) Vit € 09,
0N 0N

and, moreover, for h = 3 we rewrite the system of integral equations (2.76)-(2.77) as follows

W( £) = =3 [030,051] (8) - 3;?%(114'[89,9;72](25)
_ ]{m o (09,00 ]do — v [09,62,)(1) + ]gg (09,6, ]do ) (2.94)
- S (W0~ f AW oldo — A50)0) + f A0l )
sl ) = g [o7007,] 0~ 5 (100,000
- ][m o109, 0L do — v (99, 02,)(1) + fm v [99, e;ﬂdg) (2.95)
3ry

-3t <A2[9§,0](t) —ﬁ N[0} odo — A2[02,](t) +][m A% ;{0]da)

for all t € 09.

We now exploit (2.92)-(2.93) and (2.94)-(2.95) to add other two explicit terms in our
expansion. To do so, we first note that kipping in mind that 2 is a unit disk, using the definition
of A3 (see Section 2.2.1), and equalities (2.10)-(2.12), by a straightforward computation, we
have the following

AJ[61]()
:322: <2> ZJ: () (0795 "DR )(O)VQ(t)/ (t1 — s1)"(t2 — 82)7 02— (s)do
=\j) & 105 q 1T stz s 2 j s
=3 2) 21: <1 (010, "DR )(O)Vﬂ(t)/ (t1 — 51)"(ta — 52) "0 (s)dor (2.96)
1) =\l H ! P * '

1
27 Jag
(t151 + tos0)01(s)dos, Yt e N, VO € CUY(N),.

Then, using equalities (2.55), (2.56), (2.96), (2.87), and (2.91), one can show that

A2[07 o] (t) = 2mt;, A2[09,0](t) = —2mt; Vvt € 09,

AS[05l(2) = 27t AZI070)(t) = —2nt; vt € 0Q, (2.97)
P 127y o 127y

1050, 051)(t) = ==t AJ1650,031(1) = — Tt Ve € 0



2.3 Effective conductivity of a periodic dilute composite with nonideal contact 59

Again, if (9;-’2, 07 ,) and (0;:73, 05 5) are the solutions in (C9(9Q)p)? of the systems (2.92)-(2.93)
and (2.94)-(2.95), respectively, then, taking equalities (2.90) and (2.97) into account, one can
verify that there exists a real constant co such that

v*100,03,](t) = _2<2(§‘i)2 (L+l)s )t fe Vieds,

x , (2.98)
T4 )
o9 =2 Tt Vte R?\ Q.
o =2 (N2 (e b))l weerny
Similarly, by (2.98) one verifies that there exists a real constant c3 such that
12(rg)d (1 1)\2
vt 09, 0% 4](t) = Af <H+A> ti+cs Vit € clf,
(2.99)

T 2 .
v 109, 075](t) = — 1i,# ((r#)2 <;+ + ;) - 27r> II;TQ vt e R?\ Q.

Then, by Theorem 2.3.6 and equalities (2.85), (2.90), (2.98), and (2.99) we deduce that if
k,j € {1,2} then

1 1 1
A €] ()\_—27TA € +47T7"#63—47r(( )2<)\++)\ —277)\_)64
of 1 1) 5o+ 0
+dmry | (r4) = + =) 21 | €| O + O(e)

as e — 0.

2.3.3 Power series expansions for the variable interfacial thermal resistance

Throughout this section we consider the case where
ple) =¢€/ryp Ve €] —eo, el (2.100)

As done in Section 2.3.2, in order to compute the asymptotic expansion of the effective
conductivity under assumption (2.100), we start with the following proposition, where we
identify the coefficients of the power series expansions of @3- ] and of ©F[e] in terms of the
solutions of systems of integral equations

Proposition 2.3.7. Let ¢1, € — O'[e], and e — OI[€] be as in Proposition 2.3.2. Then there
exist €3 €]0,€1] and a sequence {(9§7h, 0% 1) then in (CY(09)0)? such that

400 pi 400 pgo
i j,h o ,h
Oje] = 2 ;L! " and CHEES 2 ;L! " Ve €] — €2, €], (2.101)

where the two series converge uniformly for € €] — e, €3] in (C¥*(0Q)9)2. Moreover, the
following statements hold.

(i) The pair of functions (0; 0

system of integral equations

GJO»’O) is the unique solution in (C%*(90)0)? of the following

A (38500 + . 02050)(1)) = X (=5 850(6) + w.[0%.63)))
— (0 + (O =X wa(®); = .

(2.102)
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N (= 3800 + w.109,8501(0) ) + 105,631

— ][ vt (09, 05 gldo — v [0, 09,](t) + ][
o0

v (09, 9;{0]do> (2.103)
o0

~9(t)+ _gdo+ X (va(®); =0
o0
for all t € 00Q2.
(ii) For all h € N, we have (9§’2h+1, 0% op41) = (0,0).

(iii) For all h € N\{0} the pair of functions (9§,2h= 05 1) is the unique solution in (CO(09)0)?

of the following system of integral equations which involves {(9§,2h7 (93?72,1) ;‘;é

AT (; T on(t) + Wi [09, 07 5] (t)> - <_;9§’2h(t) o 0§’2h](t))

(2.104)
:)\+A12/h[ ;'70, ceey 9}72}1_2]@) - /\_A?,h[ ;‘)707 AR 9;2}1—2}(15))
3 (= 05an(t) + w00, 8] (0)) + i (07 02, 8]0
— ]([m vt[00, 9§72h]d0 — v [09,0795](¢)
+ ]gg v (09, e;%]da) = —XFAPOL o, 0 o] (1) (2.105)

— T (AZh[ ;’,O: cee 76§,2h—2](t) - ]éQ AQh[ ;’,07 cee 79§,2h—2]d0—

ST M O SO U W Ly

for allt € 02, where we can take (9§,2h+1> 0% on41) = (0,0) for all h € N.

Proof. The existence of €3 and {(0§,h70?,h)}h€N for which (2.101) holds true is granted by
Proposition 2.3.2 (iii). By equality p(€) = ¢/r4 and by taking € = 0, equation (2.65) can be
written as the system of integral equations (2.102)—(2.103). The uniqueness of the solution for
this system is then ensured by Proposition 2.3.2 (ii) (see also Dalla Riva and Musolino [35,

Prop. 5.2]). Next, we observe that N; {e, O’ [d, @?[eﬂ = 0 for all € €] — €9, €2] (see Proposition
2.3.2 (iii)). Accordingly, the map € — N; {e, @; [e], ©F [eﬂ has all the derivatives equal to zero,
ie., OM(N; [e, @é[e],@?[e]}) = 0 for all € €] — €2,€e2[ and all h € N\ {0}. Keeping equality

p(€) = €/ry in mind, a straightforward calculation shows that
o (N [e ©ilel, 031] ) (1
(1 o o 0
)\ (zaggj [€)(t) + w. |00, 0205[d | (t) + 0! (eA, ¢, ©51d]] ) (t)) (2.106)

o (_;ag@;l (1) + . [0, 0101 (£) + 0 (eA, [, O[] (t)> =0,
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o (Njz2 e ©3fd, 031] ) (1
At (_;ag@;i [€)(2) + w. |09, 0065 | (1) + O (eAy [¢, ©)[€]] ) (t))

by <U+ 00, 8keid] (1) + ! (A [e.0ifd]) (1 (2.107)
— ]ég (v+ [89,8?@;[6]] + ot (A[e, @3[6“)) do — v~ [89,8363[6]} (t)

~op (s [ 05id)) 0+ f (v [on.0re51d] + 0t (4 [e.05]) ) do) =0

oN
for all t € 012, all € €] — €3, €2[, and all h € N'\ {0}. By taking € = 0 in (2.106)(2.107) and
noting that (9§’h, 074) = (Z?Eh@; [0], 8?@;?[0]) for all b € N, we deduce that (¢; ;,07,) is a solution
of the following system

A (é (1) 4w [0, 07,](¢ )> - AT (—;93';1(75) +w*[39,9§;1](t)> =0, (2.108)
+(_Ly w i r ot i 1do

(3w *[ag,ej,ﬂm) (1090, - £ o7109.63,1d -
VR0, + {v02.05,0d0) = 0

for all t € 9 (see also Lemma 2.2.4), and that, for h € N\ {0,1}, the pair (0;7,1,0;?7,1) is a
solution of the following system

A (5000 + w0 109,85,0) ) = A (= 363,(0) + w[09,,)(0) )

| (2.110)
=NEAL [0, 00 o] (1) = ATAL 090,00, 0] (1) Wt € 00,
L i i
3 (a0 + 0,090,000 )+ (v DRI — | 706203,
—07[09,02,](¢) +][ v 09, M]da) = —NPAL 010,00 0] (1)
o0 (2.111)

_ T#<Ah {QJO’”.,Q;ZJL_Q} (t) _]é A" [930,...,9;1’h_2} do

—AN (02, 050 (1) + ”

Since the right-hand sides of equalities (2.108)—(2.109) and (2.110)—(2.111) belong to the
space C%(98)p, the uniqueness of the solution to (2.108)—(2.109) and of the solution to
(2.110)—(2.111) follows by Dalla Riva and Musolino [35, Prop. 5.2] (we have already observed
that the existence is granted by Proposition 2.3.2 (iii)). Moreover, (9; 1,051) = (0,0). Also,
by Lemma 2.2.4 and by the uniqueness of the solution to system (2.110)—(2.111), one can
verify that (6%, ,609,.,) = (0,0) for all h € N\ {0}. The validity of the proposition is now

proved. O

A (05, 090 2] da) vt € 99

By Proposition 2.3.7, we immediately deduce the validity of the following.

Corollary 2.3.8. Let the assumptions of Proposition 2.3.7 hold. Then

. =0 X009
©'le] = Z 320 2h and O%e] = Z 52N (2h Ve €] — e, €2],
I 2 (1) J = (2h)!

where {(0;172,1, 0% o1) then is as in Proposition 2.5.7.
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Then, by exploiting Proposition 2.3.7, we can prove the following Lemmas 2.3.9 and 2.3.10.
The proofs can be implemented by a straightforward modification of the proofs of the analogous
Lemmas 2.3.4 and 2.3.5 and it is accordingly omitted.

Lemma 2.3.9. Let k,j € {1,2}. Let e — O'[e] and € — O[] be as in Proposition 2.3.2.
Let €3 and {(9§,h’9?,h)}h€N be as in Proposition 2.3.7. Let Uf be the map from | — ez, €3] to
C12(0Q) defined as in Lemma 2.3.4. Then UjJr is real analytic and there exists e3 €]0, €] such
that

/ U;_[e](t)(yg(t))k doy :/ U+[aQ,9;’O](t)(VQ(t))k doy + ‘Q|2(5k,j
o0 o0

400 1 ' ‘ '
+ Z @n) </m <U+[8Q,0§72h](t) + A2 0 ,0;.72,1_2](75)) (vo(t))k dgt) 2h
h=1 '

for all € €] — €3, €3], where the series converges uniformly for € €] — es, e3].

Lemma 2.3.10. Let k,j € {1,2}. Let e — ©'[e] and e — O[e] be as in Proposition 2.3.2. Let
€2 and {(0;-7,1, 0% 1,)hen be as in Proposition 2.3.7. Let V™ defined as in Lemma 2.5.5. Then

Vi~ is real analytic and there exists €4 €]0, €2 such that

Vi lel(t) (va(t))x do; = / v[09,03,](t) (va(t))k dot + 220k, ;

o0N o0

+oo
+ hZ::l (21h)' </m (U+ (09,05 5,,] (1) + A2 205 - ,0]0-,2,1_2](75)) (v (t))k dUt) 2h

for all € €] — €4, €4], where the series converges uniformly for € €] — €4, e4].

By Lemmas 2.3.9 and 2.3.10 and by arguing as in the proof of Theorem 2.3.6, one deduces
the validity of the following result concerning the expansion of )\if; [€].

Theorem 2.3.11. Let k,j € {1,2}. Let €2 and {(Gé’h,G?’h)}heN be as in Proposition 2.5.7.
Then there exists €5 €]0, €2] such that

+z°:° Uk.j)2h 2n

1
eff oy 2
Nj €] = A0k +€ an (2h)!
h=0 ’

for all € €]0, €5], where
digno =A" 109, 0 ] (t ) d AT — A7) Q20
(k7])70 QQU [ ? ],0]( )(VQ< ) k Jt—i_( )’ ‘2 k,j

a0 [09.6%,)(8) (va(t) )i doy + /d F)tedon,

oN
k. jy.on =A* /
o0

-\ /89 (v_[aﬁ, Hjoﬂh] (t) + A2h[ ;?707 A 03047%72]@)) (va (b)) doy

(07109, 0521 ()) + A2 [0, 05 2, 2](8)) (ve(8) o

for all h € N\ {0}.
Application to the effective conductivity in the composite with inclusions in the
form of a disc

As in Subsection 2.3.2 we consider assumption (2.82), but this time with p(e) = €/ry. We
will write the first 3 terms of the series expansion of Azgf in terms of simple functions of
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r4, AT, and A7. We begin by noting that under assumption (2.82) the system of integral
equations (2.102)—(2.103) takes the following form

A (5050(8) + w.[0R,050)(8)) = X (= 30h0(t) + w09, 6501(0))
+ T = A (a®); =0 Vteon,

A (_; o () + w.[09, 01 ] (t)) + A (va(t); + g <v+[397 0.0)()

—][ U+[8Q,9§-70}d0 ~109,070](1) —1—][ U_[09,9]0-70]d0> =0 VteoQ,
oN

o0

which are equivalent to the following equations

v~ [09, OO0, 0
A~ 2O o) gy e 2O B0l ) 1 (am — )y 0 veeoR,  (212)
ovq Ovq

ovt[090, 0% ] ; ;
A*T]U( VAT (va(t)); + 14 (zﬁ[aa,ej,o] () — ][ o 09, 81 o]do
@ o0 (2.113)
(09, 02)(1) + £ o000 O]da> ~0 Vteon.
o0

If (6}, 60%) is the solution in (C%*(99Q)o)* of system (2.112)-(2.113), one can verify that
there exists a constant ¢y € R such that

2A_T#
of) =—(1- t; Vit € clf)
[ ’ ]O]( ) < )\_A-’_ + )\+T# + )\_r#> 7 + Co €c )
. (2.114)
_ 0 Ty tj 2
0,02, =(1- — te R\ Q.
v [8 ’ ],O]( ) ( A+ )\+T# T )\_T#> |t|2 Vit € \

Then we recall that, by the jump formula for the normal derivative of the single layer potential
(see Theorem A.0.2(v) in Appendix A), if Q@ = B2(0,1), then

ovT[09Q, 0] ov~[09, 0]
2 2
ovg Ovg

o(t) = - (1) =

for all § € C%*(99)y. Therefore, by (2.114) and (2.115), one has

(t)  Vte o, (2.115)

i 2)\77’#

i (y=2(1—=

jolt) ( ATAT F Ay + Ay
2A+T#

° (Y=-21-—

]’O( ) < A+ )\+T# + )\_7’#

) t; Yt € 011,
(2.116)

>tj vVt € 092.

Now if h = 1, the system of integral equations (2.104)—(2.105) takes the form
- v~ (09, 05 5] )\+8v+[8§2 0% 5]

(0 - D32 (1)~ \tA21010)(0) — A A2l020)() e 00, (2.01)
ovT 012, .
QOO ) g (07 1900,03000) — 100,01k 719000200

- _ 21gi . 2 B 2000 1do '
+fmv mﬂ]da)— NI = (W00~ £ NWjoldo (2119

— A%[69 ][AQ da> vt € 09,
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since 9;-71 =0 and ¢7; = 0. Then, by equalities (2.55), (2.56), and (2.116), we obtain that

i ; 227 r
219t — A2[pt = _ # .
A j,o](t) AZ[ ]’0](75) 2m (1 NN Ty T )\T#> t; VteoQ,

(2.119)
A?[67,](t) = AZ[B50)(1) = =2 | 1 — A t; Vte o
30 via0 At A+ Ay )

It (93-’2, 09 5) is the solution in (CO(9€2)0)? of system (2.117)-(2.118), then, taking equali-

ties (2.119) into account, one verifies that there exists a constant ¢; € R such that

109, 00,)(t) = —2r (1 NNy ' Wt € clf)
v (00, 05 ,](t) = -2 _()\—)\++/\+r#+)\—r#)2 j+c € clil,
) (2.120)
v [09Q,09,)(t) = —27 | 1 — 2y L R \ Q
R ATAT A+ Ay + Ay ||t '

Then by Theorem 2.3.11 and equations (2.114), (2.120), we have that if k, j € {1,2}, then

22T r
e = = (1-2n (1 - # 2
ki [ < i < ATAT + ATy + /\_7"#) ‘

9 (2.121)
2\t
2 2 1— # 4 Su s O 6
e < /\_/\++)\+7‘#+)\_7’#> 6) ks +O(€)
as € — 07, Taking A\~ = 1, we observe that series expansion (2.121) agrees with the first terms

in the series expansion of the effective conductivity obtained in Dryga$ and Mityushev [44] for
the case where the unit cell () contains only one inclusion.



CHAPTER 3

Shape analysis of the effective longitudinal
permeability of a periodic array of cylinders

This chapter is devoted to the study of the behavior of the longitudinal permeability of a
periodic array of cylinders upon perturbation of the shape of the cross section of the cylinders
and the periodic structure when a Newtonian fluid is flowing at low Reynolds numbers around
the cylinders. The shape of the cross section of the cylinders is determined by the image of
a base domain through a diffeomorphism ¢ and the periodicity cell is a rectangle of sides of
length [ and 1/1, where [ is a positive parameter. We also assume that the pressure gradient
is parallel to the cylinders. Under such assumptions, the velocity field has only one non-zero
component which, by the Stokes equations, satisfies a Poisson equation (see problem (3.2)).
Then, by integrating the longitudinal component of the velocity field, for each pair (I, ¢), one
defines the longitudinal permeability Kjs[l, ¢|. Here, we are interested in studying the behavior
of Kirll, ¢] upon the pair (I, ¢).

The chapter is organized as follows. In Section 3.1 we collect some preliminaries, introduce
the problem and describe our strategy. Here we show that K;[l, ¢] can be represented as a sum
of two integrals and we will study their dependence on (I, ¢) separately. We show that such a
dependence is analytical. In Section 3.2 we prove the analyticity of the first integral. Then,
using some auxiliary results collected in Section 3.3, we prove the analyticity of the second
integral in Section 3.4. Moreover, Section 3.4 contains our main result, namely, Theorem 3.4.7
on the analytical dependence of Kj;[l, ¢] upon the pair (I, ¢).

We also note that throughout this chapter we retain the notation of Chapter 1 for the case
n = 2 (see also the notation of Section 2.3)

Some of the results of this chapter are presented in the paper [94] by Paolo Luzzini, Paolo
Musolino, and the author.

3.1 Preliminaries and notation

In order to introduce the mathematical problem, for I €]0,+o00], we introduce the periodicity
cell @; and the diagonal matrix ¢; by setting

I 0
Ql —]O,Z[X]O, 1/l[7 qr ‘= ( 0 ]./l ) )
and for an arbitrary subset €2 of R? such cl€ly € @Q; we also introduce the following periodic

domains (see Figure 3.1)

Sg, [Qﬁ] = U (@z +afy), Sq, [Qﬁ]i = R? \ clSy, [Qﬁ]
2€72

65
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Figure 3.1: The periodic domains Sq,[2] and Sq,[2]~

Clearly, the area |Q;| of the cell Q; is equal to one and ¢Z? = {qz : z € Z*} is the set of
vertices of a periodic subdivision of R? corresponding to the periodicity cell Q;. Moreover, we
find it convenient to set

Q:=Q1, qg:=aq.

Here we fix a €]0, 1] and we fix once and for all throughout Chapter 3 a subset {2 of R?
satisfying the following assumption (cf. assumption (1.1)):

Q is a bounded open connected subset of R? of class C** such that

) (3.1)
R\ cl€? is connected.

In contrast to Chapters 1 and 2, we do not require here that the domain  contains 0.

In order to formulate the problem, we need to introduce some class of diffeomorphisms. Let
Q be as in (3.1) and let Q be a bounded open connected subset of R? of class C1**. We denote
by Apq and by Aqq the set of functions of class (952, R?) and of class C!(cl€2, R?) which
are injective and whose differential is injective at all points z € 9Q and at all points x € cl€Y,
respectively. One can verify that Apq and Aqq are open in C1(9Q,R?) and C*(cl€Y, R?),
respectively. Then we find convenient to set

Apa = {9 € Apa : $(09) C Q},
Aclg/ = {‘I) € Aaqy : @(CIQ/) - @}

If ¢ € Apq, the Jordan-Leray separation theorem ensures that R? \ ¢(9Q) has exactly two
open connected components, and we denote by I[¢] and E[¢] the bounded and unbounded
open connected components of R2 \ ¢(892), respectively. Since ¢(82) C Q, a simple topological
argument shows that Q \ cll[¢] is also connected.

If 1 €]0, +oo[ and ¢ € Apq, the set clS, [¢/I[¢]] x R represents an infinite array of parallel
cylinders. Instead, the set Sy, [¢I[¢]]~ x R is the region where a Newtonian fluid of viscosity
w1 is flowing at low Reynolds number. Then we assume that the driving pressure gradient is
constant and parallel to the cylinders. As a consequence, by a standard argument based on
the particular geometry of the problem (see, e.g., Adler [1, Ch. 4], Sangani and Yao [147], and
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Mityushev and Adler [109, 110]), one reduces the Stokes system to a Poisson equation for the
non-zero component of the velocity field. Since we are working with dimensionless quantities,
we may assume that the viscosity of the fluid and the pressure gradient are both set equal
to one. For a more complete discussion on spatially periodic structures, we refer to Adler [1,
Ch. 4]. Accordingly, if I €]0,+o0[ and ¢ € Asq, we consider the following Dirichlet problem
for the Poisson equation:

Au=1 in Sq,[q1]¢]]”,
u(z + qz) = u(z) Va € ISy [ql[d)]~ ,Vz € Z2, (3.2)
u(z) =0 Vo € 0Sy, [ql[¢]] ™.

which has the unique solution in the space C*(clSy, [q/l[¢]]~), and we denote by wu(l, ¢] this
solution. From the physical point of view, the function u[l, ¢] represents the non-zero component
of the velocity field (see Mityushev and Adler [109, Sec. 2]). By means of the function u[l, ¢],
we can introduce the effective permeability Kr[l,¢] which we define as the integral of the
opposite of the flow velocity over the unit cell (see Adler [1], Mityushev and Adler [109, Sec.
3]), i.e., we set

Kig[l, ¢] := —/ ull, ¢](x) dx VI €]0, +oo[, V¢ € Agg N CH* (90, R?).
Qi\q1[4]

We are interested in studying the dependence of the longitudinal permeability upon the
sides of the rectangular array and the shape of the cross section of the cylinders, and in proving
higher regularity results. We also note that we do not need to restrict ourselves to particular
shapes, like circles or ellipses. Our main result is Theorem 3.4.7, where we prove that the map

(I,9) = Kl ¢] (3-3)

form ]0, +o0o[x Agq N CH*(99, R?) to R is real analytic.
Now, we outline our strategy. Clearly, in order to prove regularity properties of the map in
(3.3), one can work locally. Thus, as the first step, we fix

a function ¢ € Asn N CH(90, R?), (3.4)
and for ¢g as in (3.4) we find convenient to fix

an open connected Lipschitz subset Ag of R? such that

2 (3.5)
R\ clAy is connected and clAg C I[¢o].

Moreover, we also fix a point py in Ayp.
Since the norm in Ayn N CH(9Q, R?) is stronger then the uniform norm, we have the
following lemma.

Lemma 3.1.1. There exist an open connected subset B of R? such that R? \ clB is connected
and an open neighborhood Uy of ¢o in Agg N CL(9Q, R?) such that

Ay CBCBCI[¢] Vo € Up.

Then we want to transform the Dirichlet problem for the Poisson equation (3.2) in a
Dirichlet problem for the Laplace equation. To do so, we need to have a function B such
that AB = 1. We introduce such a function in the following lemma, which is an immediate
consequence of Musolino [117, Thm. 2.1].
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Lemma 3.1.2. Let | €]0,4o00[ and Uy be as in Lemma 3.1.1. Let B; be the function from
R2\ (qipo + @1Z?) to R defined by

By(x) == =Sg2(z —qpo) Vo € R\ (qipo + aZ?).
Then for all ¢ € Uy the following statements hold.
(1) Bijas, (g1~ € Cg;* (c1Sq lal[¢]] ).
(it) AB; =1 in Sy [ql[¢]] .

Now, by means of Lemma 3.1.2, we can convert problem (3.2) for the Poisson equation into
a nonhomogeneous Dirichlet problem for the Laplace equation. If [ €]0, +o00[ and ¢ € Uy, we
denote by ux|l, ¢] the unique solution in Cj-*(cISy,[q/[¢]]~) of the auxiliary boundary value
problem

Au=0 in Sq,[q1[¢]]”,
u(z + qz) = u(z) Va € ISy [ql[d)]~,Vz € Z2, (3.6)
u(z) = —Bi(z) Vo € dSy[qllg]]”.

Clearly, if [ €]0, 4+o00[, Up is as in Lemma 3.1.1, and ¢ € Uy, then

ull, ] = Br+ugll, 9] in clS [ql¢]]™,

and, accordingly,
Kl == [ B@d- [ ull el (3.7)
Q:\q1[¢] Qi\q1[¢]

Then, we plan to investigate the dependence of two integrals in the right-hand side of (3.7)
upon the pair (I, ¢) separately. More precisely, we will investigate the map

(1,9) — B(z) dx (3.8)
Qi\q:1[¢]

and the map

Qi\a1[4)]

which act from ]0, 400[xAgq N C1*(9Q, R?) to R. The results related to the map in (3.8) are
presented in Section 3.2, and those related to the map in (3.9) are collected in Section 3.4.

3.2 Analyticity of the integral of the auxiliary function

In this section we investigate the map in (3.8). We briefly outline our strategy. First, we
formulate two lemmas and introduce the exterior volume potential. Then we prove the
analyticity of a certain map which we use in order to prove our main result, i.e., Proposition
3.2.5.

The first auxiliary result is proved by Lanza de Cristoforis and Rossi [88, Lem. 2.4, Prop.
2.5, Lem. 2.7] (see also Lanza de Cristoforis and Musolino [81, Lem. 4.1]).

Lemma 3.2.1. Let B € CL¥(0Q,R?) be such that |5(z)| = 1 and B(x) - vo(z) > 1/2 for all
x € 0). Then the following statements hold.
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(i) There exists 6q €]0,+o00[ such that for all § €]0,dq[ the sets
Qs ={x+tf(x) 20, tel—04[},
QE(; ={zx+tp(x):x €00, te]—90[}
Qg5 :={r +tB(x) : 2 € 99, t €]0,4[}
are connected and of class C1®, and
gs={x+th(x):xcdN, te{-60}},
8(2;75 ={x+t6(z) 2 €0Q,te{-60}}
Mg s ={z+tp(z) 2 €00t €{0,}},
and
0, S0, Qg5 CR?\ .
(i) Let § €]0,00]. If ® € Auq,, then ®jpq € Asq.
(iii) If 6 €]0,dq[, then the set
0, = 1P € Adng,; 1 B(Q5) C I[P jaal}

is open in Acgq, , and ®(25 5) € E[@)pq] for all @ € -A,clﬂﬁ,(;'

(iv) If § €]0,0q[ and ® € A,le@,(; N CH(clp.5,R?), then both @(QE(;) and (€25 5) are open

sets of class C1®, and

OB(Qf5) = (0N 5), 9B(Q55) = (9N 5)-

Keeping in mind that ¢ is in AgoNCH* (09, R?), which is a subspace of AgoNCH*(99Q, R?),
we have the following consequence of Lanza de Cristoforis and Rossi [88, Prop. 2.6] (see also
Lanza de Cristoforis and Musolino [81, Lem. 4.1]).

Lemma 3.2.2. Let 3, dq be as in Lemma 3.2.1. Then the following statements hold.
(i) There exist &y €)0, [ and O € Aélﬂﬁ,éo NCh(clQg 5., R?) such that ¢g = Dojp0-

(i) Let &g and ®o be as in (i). Then there exist an open neighborhood Wy of ¢o in
Aga N CH*(0,R?), and a real analytic extension operator By of C1(0Q,R?) to
CH(clp.5, R?) which maps Wy to Aémﬁ’éo NCL2(clQg 5, R?) and such that Eg[po] = P
and Eo[¢]jaq = ¢ for all ¢ € Wh.

Then, in the sequel of this section, we will exploit the exterior periodic volume potential
P[], which we introduce in the following proposition.

Proposition 3.2.3. The following statements are true.
(i) If o € L®(Q \ clAg) then the function Py lp] defined by

P lel(z) = /@“\ | Saale—ye)dy Vo< R (3.10)

is continuous and G-periodic.

(ii) If o € C%(Q \ clAg) then Py [l is in the space C’g’a(@ \ cl4y). Moreover,

AP = o)~ [ ey vee@\day (3.11)
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(iii) Let A be an open subset of R? such that clAg C A C clA C @ Then there ex-

ists po €]0,+oo[ such that for all p €]0,po and ¢ € Cg7w7p(clSq[A0]_), the restric-

tion of Py [golé\cmo] to cIS4[A]™ belongs to C3, ,(cIS4[A]™). Moreover, the map ¢ —
Py [‘p@\cle]lclSq[A]* from C2, ,(c1S4[Ao] ™) to CF , ,(cIS4[A]7) is linear and continuous.

Proof. First of all, by virtue of Section 4 of Dalla Riva, Lanza de Cristoforis, and Musolino
[33], we observe that the kernel S;9 in (3.10) belongs to a certain class of functions which
belongs to those classes defined in Definitions 3.15 and 3.34 of [33]. Then we immediately
deduce that Proposition 3.6 (v) of [33] and Theorem 3.40 (ii) of [33] can be applied to P; [¢].
Thus, statements (i) and (ii7) are straightforward consequences of [33, Prop. 3.6 (v)] and of
[33, Thm. 3.40 (i7)], respectively.
Then, by arguing as in the proof of Lanza de Cristoforis and Musolino [85, Prop. A.1],
using Gilbarg and Trudinger [51, Lem. 4.2, Thm. 4.6], one proves statement (7).
O

We are now ready to formulate the following theorem, where we prove the analyticity of
the auxiliary map which will be used in order to investigate the map in (3.8).

Theorem 3.2.4. Let p €]0,+00[ and Uy be as in Lemma 3.1.1. Then the map

(0,G)— | G(z)dz
Q\I[¢]

from Uy x Cg7w7p(clSq[A0]_) to R is real analytic.

Proof. By virtue of equality (3.11), we can write the restriction G of the function G to

the set Q \ clAg as follows

|Q\cl4o

G(r) = AP; [Glé\cle] (x) + /@\CIA G(y)dy vz e Q\ clAg,

and, accordingly,

/~ G(z)dx = /~ AP, [G@\cle] (x) dx + /~ /~ G(y) dy dz. (3.12)
Q\I[¢] Q\I[¢] Q\I[¢] J/ Q\clAp

Then we consider the two integrals in the right-hand side of (3.12) separately. We begin with
the second one. By the Divergence Theorem, we have

/~ /N G(y)dydx = /v da?/~ Gy)dy = (1 —/ dx) /y G(y) dy
Q\I[¢] J/Q\clAg Q\I[¢] Q\clAg I[¢] Q\clAg

1
= (1 — 2/ T - V) () dax> /~ G(y) dy.
»(09) Q\clAg

The map G + | G\el o G(y) dy from Cg,w, »(€1S5[A0]7) to R is linear and continuous, and, thus,

real analytic. It immediately follows from the linearity and continuity of the map G — G G\el o

from CY,, (cISg[Ag]™) to L(Q \ cl4p) and of the map f J&\ea, £ () dy from LY(Q\ cl4y)
to R.
Then, by Lemma C.0.4(i) of Appendix C, we have that

/WQ) 7 1) () dow = /m 6(y) - (vgg) © 6(v))519) () dory.

Since the map (f,g) + f - g from (C%%(09Q,R?))? to C**(09Q) is bilinear and continuous,
and the embedding of C%*(9Q) in L'(92) and the map h — [y, hdo from L'(99) to R
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are linear and continuous operators, by using Lemma C.0.4 and we deduce that the map
¢ | s00) T Vilg) (z) do, from Uy to R is real analytic. Accordingly, the map

(6,C) /~ /~ Gly) dy do
Q\I[¢] Y Q\clAg
from Uy x CY

7w.p(C1S[Ao] ™) to R is real analytic.
Next, we consider the first integral in the right-hand side of equality (3.12) and our plan is
to prove that the map

(¢,G) — AP, [G |(x) dzx (3.13)

Q\ilg) Qcto

from Uy x C’%w,p(cng[Ao]_) to R is real analytic. By the Divergence Theorem and by the

periodicity of the volume potential Py [G |, we have

1Q\clAo

_ APG 5 4 ] () da
/Q\M 1o
= D (P |G = T -1/~xdam—/ D (P |G~ ) ) - vg () doy
fi5? Crlgan) @) sg@rdos = [ D (Pi1604]0) 1)
= — D (P |G = x)) - vy (x) dog.
/q;(BQ) ( 7l \Q\clAO]( )> 1) (%)
Let 69, Wy, and Eg be as in Lemma 3.2.2, U := Uy N W), and B be as in Lemma 3.1.1.

Clearly,
Ay CBCcBCIgCQ Vol

By Proposition 3.2.3 (iii), there exists pg €]0, p[ such that the map I~ Py [F]

@\cle] |clSg[B]~
from C’L%M 00 (€1Sg[Ao] ™) to C’g,% 00 (c1Sg[B] ™) is linear and continuous. Then taking the linearity
and continuity of the embedding of Cf, (cIS4[Ag]™) in CF, , (c1S3[Ao]”) into account, we
deduce that the map

G =Py [G|§\CIA0] |cIS4[B]-

from CP,, ,(c1Sg[Ao]™) to CP,, ,,(cIS¢[B]™) is linear and continuous, and, thus, real ana-

lytic. Then possibly taking smaller py €]0, p[, Proposition C.0.3 of Appendix C implies

that a%qu_ G belongs to CY,,  (clS[B]™) for each j € {1,2}, and that the map

|é\c1Ao] |c1S4[B]~ aw,po

0 . _
G —P; G

0z @\Cmo] |clSq[B]~

from CJ, ,(c1Sq[Ao] ™) to CP, ,,(c1Sq[B]~) is linear and continuous. We also note that the

restriction operator from C’gw, po (1Sg[B]7) to Cy 0 (clQ\ B) is linear and continuous, and, thus,
real analytic. Then, possibly shrinking g and U/, we can assume that

lEo[¢](Qp5,) CQ\ B Yo el

and using Lemma 3.2.2 and by Theorem C.0.1, we obtain that for each j € {1,2} the map

o __
P; [G\Q\cle] o Eo[¢]

from U x CF , ,(cIS4[Ao] ™) to C1*(clQps.5,) is real analytic.
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Then, keeping in mind that Eq[¢]gq = ¢ for all ¢ € U (see Lemma 3.2.2 (7)), we have

/¢(89)D <P‘§ & 3\e10] (x)) i) (7) dog

= o DP(; [G|§\01A0} o EO[Qb] ($) . VH[¢] o gb(;p)a'[gb] (CL’) dO’x

= - DP; [G|Q\CIAO} o ¢(x) - vyig) © ¢(2)5[9] () dos.

By the linearity and continuity of the map f — [, f do from LY(09) to R, using Lemma
C.0.4 and the linearity and continuity of the embedding of C%(9Q) in L'(99), and of the
trace operator from C%%(clQg ) to C%*(9), we conclude that the map

(6.G) /(b oo 2 (PG00 ) ) g 0) o

from U x CF , ,(cIS4[Ao] ™) to R is real analytic. Accordingly, the map in (3.13) is real analytic

and, thus, the validity of the statement follows. O

We are now ready to analyze the dependence of the map in (3.8) on (I, ¢).

Proposition 3.2.5. Let Uy be as in Lemma 3.1.1. Then the map in (3.8) from ]0,+oo[xUp
to R is real analytic.

Proof. To begin with, we note that

/ Bi(x) du = /~ Bi(qur) de = — / Spola(@—po))de  (3.14)
Qi\q1[¢] Q\I[¢] Q\I[¢]

for all (I, ¢) €]0, +oo[xUp. Our plan is to show first that the map [ — Sy, 2(q(- — po)) from

0 ~ . . .
10, +oo[ to Cy, ,, ,(Q \ I[¢]) is real analytic and then to apply Theorem 3.2.4 to the last integral

in (3.14), that is sufficient to prove the validity of the proposition.
To achieve our goal, one can work locally. Thus, let [y be an arbitrary point in ]0, +00[ and
let £y be an arbitrary neighborhood of Iy such that £y C]0, +oo[. Then we set

Qo = {ql S MQXQ(R) :le ﬁo}

Clearly, Qp is open and bounded in Msx2(R) and clQy C Mayo(R).
Then we take an open bounded connected subset W of R? of class C* such that

AQCW and WnN(z+cd) =2  VzeZ?\{0}.
By Lanza de Cristoforis and Musolino [86, Thm. 8], there exists p €]0, +00[ such that the map

@+ Sq.2(q1 )|\ Ag)—po

from Qp to C’B’p((ch\Ao) — po) is real analytic. Since the translation operator from
CY (W \ Ag) — po) to CJ ,(cIW \ Ag) which takes f to f(- — po) is linear and continu-
ous, we have that the map

@+ Sg2(@(- = po))jaw 4,
from Qg to 027 o(clW \ Ap) is real analytic. Then, by virtue of the real analyticity of the map
[ — q from Ly to Mayo(R), we obtain that the map

L= Sg.2(q(- = po))jeaw\ Ao
from Ly to ngp(ch \ Ag) is real analytic.
Finally, taking Lemma C.0.2 of Appendix C into account, we deduce that the map

I S 2(a(- — po))
from Ly to C?

G.w,p(c1Sg[Ag]7) is real analytic. Using this result and applying Theorem 3.2.4 to
the last integral in (3.14), we conclude the validity of the statement. O
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3.3 Analyticity of the periodic double layer potential

This section consists of two lemmas which we will exploit in order to investigate the map in
(3.9) upon the pair (I, ¢). Namely, we study the dependence upon [ and ¢ of some integral
operators related to the double layer potential.

We start with the following result.

Lemma 3.3.1. Let 8 and 0q be as in Lemma 3.2.1, and n €]0,1[. Let

ACngﬂg = AE:IQB’L; N ACIQB’L; Yo 6]0, 5Q[

Then there exists 6, €)0,dq[ such that if § €]0,6,] then the map which takes
(1,,0) €]0, +00[x (Ayq, , N CH (el 5, R?)) x C12(09)

to the function W [l,®, 0], which is defined as a continuous extension to CIQ/};& of the function

_/ DSqp(a®(@) = 5) - vgua)(s)(6 o oo ql_l)(s)dgs Vo € Q/g 5
a®(09)
is real analytic from O(n) x Uy 5 x CH*(0) to C’l’o‘(leE&), where

O(n) = {l €]0, +oo[: max{l2 1} < 77_1} ,

Uy s = {<I> € Acmﬁ ,NCH(clQp,5,R?) 1 [det(DP)| < 77—1}.

Proof. To prove this lemma, we will follow the strategy of the proof of Corollary 5.7 in Lanza
de Cristoforis and Musolino [81]. Thus, it is sufficient to show that maps

(1,®,0) — WT[l,®,0], (1,9,0) — aawﬂl, ®,0] Vke {1,2}, (3.15)
L
are real analytic from O(n) x Uy, 5 x C1*(0%) to CO’O‘(CIQE(;). To do so, we first need to rewrite

the operators W, %WJF and %WJF in terms of a single layer potential.

Let 6 €]0, dg[ and let F be a linear and continuous operator from C1%*(99) to C1%(clB2(0, R))
with R > sup,couq, ; |2, such that F[0] 5o = 0 for all 6 € C1(99) (see, e.g., Troianiello [159,
Thm. 1.3 and Lem. 1.5]). Then, by using [81, Eq. (5.8) and (5.9)], we obtain that

2

WL, ®,0] = ]Z ai, (V¥ [Laro ®.mjla o @)6]) (Dl@o®) ) (3.16)
and
8(; (W+[l ® 9]> Zl 8(qé;k<1>)
x J’tilait (V+ [l qro®, Mj[l,qo® 0]]) ((D(ql o@))’l)ij (3.17)
+§:18 AR [ wlaro #0010 o 0)(5)do,



74 Shape analysis of the effective longitudinal permeability of a periodic array of cylinders

for all k € {1,2}, where

M.l g0 ®,6] :=[(D(g; 0 @))—t . VQ|71><
2

=1 i=1
2 2
() )U@Q)z-) (zﬂgfb ((D(gio®)) ))]
i=1 i=1 ¢
and
_( (D(@o®) "t vy
e ®)i= <|<D< ro®))~" m\)
and

Vibao (= [ Syala®() =) (uo (o) V) (do. Ve CHeom)
02 (09)
By the chain rule, we have
(D(qo ®))ij = (@)i(D®)ij Vi, j € {1,2},

(Do ®) )y = (D)) - Vije {12}, (3.18)

(D(go®) " =q " (DP)™".

Then we consider V', and we note that
ViLaotul @) = [ Suaad() ) (1o 8V og ) (s)do
@2 (09)
[ Suaa(@@) - ) (uo o) (s)do,
(89)

for all p € C1*(99) and all = € Qgﬁ. Then we set

Sgi12(x) = Sg 2(qx) Vz € R? \ZQ. (3.19)

We note that the ¢-periodic function qum(-) is a g-periodic analog of the fundamental solution
of the operator

18 L8
12 023 0x3’
namely, , )
10 9 0
<l28x o ) w2 = 2 %=1,
2€72

in the sense of distributions (see Lanza de Cristoforis and Musolino [81, Sec. 1]). Thus, we can
write

| Suata(@@) - 9) (o o) (s)do,
(89)
= / Si12(®(x) = 5) (o @7V) (s)doy = V7 [1,®,4] () Vo € O,
(89)

and for all (I, ®, u) €]0, +oo[xU,, 5 x CO(5Q).
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Now, we can rewrite the operators W, :2-W* and 52- W™ using the single layer potential
. 1 T2
V;;‘. Thus, keeping equalities (3.16) and (3.17) in mind, using equalities (3.18), one has

2
WL e, 0 =— Y ai» (17; [l,@,ﬁj[l,é]e]) (qll)” ((D@)—l)im (3.20)
myi,j=1 % %
and
aik (Wi, @,0)
29D, 20 /- — 1 _
=L gn w2 g, (W et g (007), ey

Qe
S

O
B
—
N

U

S)
»

e, [ e
Rt al'k qi)rr 00 L% Yy)uly
for all k € {1,2}, where

Mrj[laq)ae] = ’qfl : (Dq))_t : VQ|_1><

- -1 1 O(F[0]) .
[(i:l ((D(I)) )“’ (CIl)ii( )i> Ox; <(D(I>) )ij (QZ)z‘i>
1

(
2 . 2 O(F[o 1
(izl ((D(I)) )ij ()i ) (i: (336[1']) ((D(I)) >iT (QZ)n')]

2
1=

>

X
1

vQ
(vQ)i
1

and

B, [l, ) = ( g ' (D®)tvg ) ‘
J

g - (D®)~" - v

By Lanza de Cristoforis and Musolino [86, Thm. 7], the map (I,x) + Sz;2(x) from
10, +0o[xR? \ §Z2 to R is real analytic. Moreover, the map I — (I72,1?) from ]0, +-00[ to R? is
real analytic. Accordingly, assumptions (1.8) of Lanza de Cristoforis and Musolino [81, pp. 78,
79] are satisfied and we can use the results of [81]. Then Proposition 5.1 of [81] implies that
there exists 9, €]0, dg[ such that, by Proposition 5.6 of [81], for all ¢ €]0, ,[ the map

(1, ®,0) — V[, ®,0] (3.22)

from ]0, +o00[xU, 5 x C**(0Q) to Cl’a(clﬁgﬁ) is real analytic.

If 6 €]0,0,[ then by the real analyticity of the pointwise product in Schauder spaces and by
the real analyticity of the map which takes an invertible matrix with Schauder functions as
entries to its inverse, and by the real analyticity of the linear and continuous map F'[-] and of
the trace operator, and by the real analyticity of the map in (3.22), and by identities (3.20)
and (3.21), we conclude that maps (3.15) are real analytic from O(n) x U, 5 x CH*(98) to
Cl’o‘(clﬂg 5)- Thus, the proof is complete. O

Then we have the following lemma where we prove the analyticity of the trace of the
periodic double layer potential upon the periodicity parameter, the shape, and the density.

Lemma 3.3.2. The map from |0, +oo[x (Asq N CH¥(9Q, R?)) x C1*(9Q) to CH(9Q) which
takes a triple (1, ¢,0) to the function

Wi, ¢,0)(x) := —/WQ) DSy 2(ad(x) = ) - vgug) (@s) (0 0 67V 0 g ) (s)dos V€ 09
@

is real analytic.
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Proof. Clearly, it is sufficient to show that if (I, ¢, 6.) belongs to
10, +o0[x (Asa N C12 (99, R?)) x CLa(09),

then the map
l,,0 — WL, ¢,0]

is real analytic in a neighborhood of (L, ¢«, 0«). To do so, we will exploit Lemma 3.3.1.
Let f3, 09, Eg, and W be as in Lemma 3.2.2, and § €]0, dg[. Possibly shrinking W, we can
assume that there exists n €]0, 1] such that

sup sup |det(DEg[¢](z))] <n~' and I, € O[n],
dEWD $€CIQB’5

where O[n] is as in Lemma 3.3.1. Moreover, possibly shrinking ¢ and W), we can also assume
that

Eo[¢](clQs45) CQ VYo € Wp.

Then using the jump formula for the double layer potential, we obtain that

1 +
Wl ¢,0) = =50+ (W [17E0[¢],9])I6Q on 99, (3.23)
for all (1,¢,0) € O[n] x Wy x C1*(09), where W+ is as in Lemma 3.3.1 for arbitrary § €
10, min{dg, 0, }[. Then, by Lemma 3.2.2 and Proposition 3.3.1, by the linearity and continuity
of the trace operator from Cl’o‘(clﬂg’é) to C1*(0Q) and by equality (3.23), one verifies the
validity of the lemma. O

3.4 Analyticity of the effective longitudinal permeability

In order to investigate the map in (3.9), we would like to exploit some of the results of Musolino
[117], where the behavior of a (singularly) perturbed Dirichlet problem for the Laplace equation
is studied by means of periodic potential theory.

As we shall see, one can formulate a Dirichlet problem in terms of an integral equation. To
show that, we first formulate the following auxiliary result on a boundary integral operators
which is proved in Musolino [117, Prop. A.3].

Lemma 3.4.1. Let | €]0, +oo[ and ¢ € Agq N CH*(0Q,R?). Then the map pu — M) from
CL(q0l[¢]) to itself defined by

M) o= — gt g @dligl 1] Vi € O (@idl6)

is a linear homeomorphism from C1%(q01[#]) to C1*(g01[4)]).

Then we have the following result where we establish a correspondence between the solution
of a Dirichlet problem and the solution of an integral equation.

Proposition 3.4.2. Let [ €]0,+oc[ and ¢ € Apo N CH (0, R?). Let T € CH(qd[¢]). Then
the following boundary value problem

Au=0 in Sq al[¢]]”,
u(z + qz) =u(z) Vo € Sy, [ql¢]]~,Vz € Z2, (3.24)
u(x) =T'(x) Vo € q0l[¢]

has a unique solution u in Cy*(clSy [ql[¢]] ™). Moreover

u(z) = wy, [qdl[], u(x) Vo € ISy, [qle]], (3.25)
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where  is the unique solution in CY*(q0l[@]) of the following integral equation

— () + 0y @dTl6], (@) =T@) Vo € qollg] (3.26)

Proof. By the maximum principle for periodic functions in clISg, [¢;I[¢]]~, problem (3.24) has
at most one solution (see Musolino [117, Prop. A.1]). As a consequence, it suffices to prove
that the function defined by (3.25) solves problem (3.24). By Lemma 3.4.1, there exists a
unique solution pu € C**(g01[¢]) of the integral equation (3.26). Then, by the properties of
the periodic double layer potential (see Theorem B.0.3 in Appendix B), the function defined
by (3.25) is the solution of problem (3.24) (see Musolino [117, Thm. 2.3]). O

Proposition 3.4.2 tells us that the unique solution wg[l, ¢] of problem (3.6) is represented in
form (3.25) with the unknown function p which satisfies the following integral equation

— 9w+ wy [adld), k() = Sya(e —aipo) V€ dllg) (327)

Thus, in order to study the dependence of uy[l, ¢] upon (I, ), we first need to understand
how p depends on (I, ¢). To do so, we find it convenient to transform equality (3.27) into the
equality defined on the boundary of the domain 2. The following lemma holds.

Lemma 3.4.3. Let [ €]0,+00[. Let Uy be as in Lemma 3.1.1 and ¢ € Uy. Then the function
0 € C*(09Q) solves the equation

) _
300 - /qs(aQ) DSq2(a(6(t) = 5)) - vgug(@s) (0 0 61 (s)dos (3.28)

— Sg2(@(d(t) —po) =0 Vie o9,
if and only if the function p € CH*(qdl[g)), with p delivered by

wla)=(Oop og)(z) Ve qdllg, (3.29)
solves the equation (3.27). Moreover, equation (3.28) has a unique solution in C1(9).

Proof. The equivalence of equation (3.28) with the unknown 6 and equation (3.27) with the
unknown g delivered by (3.29) is a straightforward consequence of the Theorem of change of
variables in integrals.

Taking Lemma 3.1.2 (i) into account, we can apply Lemma 3.4.1 to equation (3.27). Thus,
we have the existence and uniqueness of a solution of equation (3.27) in C1%(92). Finally, due
to the equivalence of equations (3.27) and (3.28), we deduce the existence and uniqueness of a
solution of (3.28). Thus, the proof is complete. O

Now, our aim is to prove the analyticity of the function 6 which solves equation (3.28)
upon (I, ¢) by exploiting the Implicit Function Theorem for real analytic maps. To shorten
our notation, we find it convenient to introduce the map A from ]0, +oo[xUy x C1¥(9Q) to
Ch2(99Q) by setting

M6, 0)) = 00— | oy D520 =) Vg (a)(0 0 97 5)dow

= Sy2(qu(o(t) —po))  VteoQ,

for all (1, ¢,0) €]0, +o0o[xUy x C1¥(09Q), where Uy is defined in Lemma 3.1.1.
In order to apply the Implicit Function Theorem to the equation

A[l7¢70:| = 07

we need to understand the regularity of A. As a first step, we show that the function
Sq.2(q1(é(-) — po)) depends analytically on (I, ¢).
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Lemma 3.4.4. Let Uy be as in Lemma 3.1.1. Then the map

(1,0) = Sq2(@(e(-) — po))
from 10, +oo[xUy to CH*(0R) is real analytic.
Proof. We take a bounded open connected subset W of R? of class C* such that
AQCW and WnN(z+cd) =2 VzeZ?\{0}.

By virtue of the proof of Proposition 3.2.5, we have that the map

L Sg2(ai(- — po)) w4,

from ]0, +-o00[ to C3_,(clW \ Ay) is real analytic.
Let 09, Wy, and Eq be as in Lemma 3.2.2, and U = Uy N W)y. Let B be as in Lemma 3.1.1.
Then, in particular, we have that

Ay CBCcBCIg|CQ Voel.
Possibly shrinking dp and U, we can assume that

clEo[¢o](Q.5,) € Q \ clB,

and N
clEo[¢](28,5,) € Q \ clB Vo e U.

Applying Lemma 3.2.2 and Lemma C.0.1 of Appendix C to the map

(1, 0) = Sg.2(q(- — po)) o Eo[¢]

from ]0, +oo[xU to C1*(clQs5,), we immediately obtain that it is real analytic. Then, to
complete the proof, it is sufficient to note that the trace operator from CH%(clQg 5,) to C1*(99)
is linear and continuous. O

We are now ready to show that the solution of equation (3.28) depends analytically on
(I, ¢) by using the Implicit Function Theorem for real analytic maps in Banach spaces.

Proposition 3.4.5. Let Uy be as in Lemma 3.1.1. Then the following statements hold.

(i) For each (I,¢) €]0,4+o00[xUp, there exists a unique § in CH*(9Q) such that A[l, ¢,0) = 0,
and we denote such a function by 0[l, ¢|.

(i) The map (1, ) + 0[l, @] from |0, +oo[xUy to C1*(0Q) is real analytic.

Proof. Statement (i) is a straightforward consequence of Lemma 3.4.3.
Next, we consider statement (ii). Keeping in mind the definition of A[l, ¢, 0], we observe
that Lemmas 3.3.2 and 3.4.4 imply that the map

(l7 ¢’ 0) '_> A[Z’ ¢7 9]

from ]0, +oo[xUy x CH*(9N) to C1(9N) is real analytic.

To prove statement (iz) we will work locally. Thus, fixing ({1, ¢1) in ]0, +oo[xUp, by standard
calculus in normed spaces, the differential pA[l1, ¢1,0[l1, ¢1]] of A at (I1, ¢1,0[l1, $1]) with
respect to the variable 6 is delivered by the following formula:

00 iy, 61,811, A I(W)(0) = (1)

- /¢(aQ) DSy, 2(an (¢(t) = 8)) - vy 11g) (a1, 8) (¥ oY) (s)dos Yt e AN, Y € CL(AQ).
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By Lemma 3.4.1 and by the proof of Lemma 3.4.3, we deduce that dgA[l1, ¢1,0[l1,¢1]] is a
linear homeomorphism of C1%(9€2) onto C**(9Q). Then by the Implicit Function Theorem
for real analytic maps in Banach spaces, we deduce that the map (I, ¢) — 0[l, ¢] is real analytic
in some neighborhood of (I1, ¢1). Since (I1, ¢1) is an arbitrary pair in |0, +oo[xUp, the validity
of the statement follows. O

Finally, in the following theorem we prove the analyticity of the map in (3.9) upon the pair
(1, ).

Theorem 3.4.6. Let Uy be as in Lemma 3.1.1. Then the map in (3.9) from |0, 4o00[xUp to R
is real analytic.

Proof. By virtue of Proposition 3.4.5 (i), using equalities (3.25) and (3.29), we can write the
solution u[l, ¢] of problem (3.6) as follows

ull, ¢](x) = wylad(09), 6l 9o ¢~ 0 g )(x)  Var € ISy [qllg]]”
and for all (I, ¢) €]0, +oo[xUp. Accordingly,

[ upltslin= [ ugla@0).00 61067 oqr ds

Qi\a1[¢)] Qi\al[¢]

for all (I, ¢) €]0, +oo[xUy. By the definition of the periodic double layer potential, we have
wy [ d(09),6[, ¢ 0 ¢7" 0 g, ']()

0
- /sb(aﬂ) msqzﬁ(x —y)(0[l, P o b to ql—l)(y) do,
@ qQ

_ / DSy a(x —y) - v (1) (01, ] 0 6" 0 g7 ) () dor,
q19(082)

2
0 _
Yo / i SE =D O 91067 o)) o

2

> L 0%, () O L0 67 o g (@) Ve € Sy ]

7j=1 J

and for all (I, ¢) €]0, +o00[xUy. Therefore, we have

[ wlas00).01.60 67 o)) d (3:30)
Qi\q1[¢)]

o 609, G 0610 67 o )
- Q:\a1[¢)] 0x] & Palld % ’

7=1

for all (1, ¢) €]0, +o00[xUp.
Now we fix j € {1,2}. Using consequently the Divergence Theorem, the periodicity and
the continuity on 9€) of the periodic single layer potential, we obtain

0
| ot 009, (raga)s 61l 6] 2 67 o g ) da
Q\al[¢] “j

- /8  l9(09), (45)i 00, 6] 067" 047 (@) v () o

[ 900, (01,61 067 06 N ) o
@ $(0%2)
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- / Vg [09(99). (Vi) (01, 0] 0 ¢l o qfl)](f)(l/qlm] (2)); dog (3.31)
qp(09)

= /ag 0o [ d(09), (vgu1e)5 (01, ¢] 0 67" 0 g N(@d()) (vgue); © @d)(2)5[¢](x) dog

=- /m Ve [ad(09Q), (Var); (01, 8] 0 67" 0 g N (@d(2))(Vgr14))j © @) (x)6[¢](x) do,

fo all (I,¢) €]0, +oo[xUp. Then for S;;» defined as in (3.19), we have

[ d(89), (V)i (011 ¢] 0 0~ 0 g7 ) (a()) (3.32)
= / Sq;,2(Ql¢(x) - y)(yql]l[qﬁ] (y))](e[la QS] © ¢_1 © QZil)(y) day
@ $(02)

= [ Suaalé(e) ) s @n)i 016 67 w) doy
#(09)

= /QS( Sa1.2(8(2) = v) (Vg (@y)); (6L 6] 0 ¢~ 1) (y) doy
=: 1,g[6(09), ((vgui)j © wd)Oll, 9]) 0 6™ H)(9(x)) V€ 0

and for all (I,¢) €]0,+oo[xU. Here 7;4[¢(012),-] is the ¢-periodic single layer potential
associated to Sg; 2.
Now, we want to prove that the map

(1, ) = T1,g[d(0), (((guie))s © @)O[L @) 0 6™ )] 0 ¢ (3.33)

from 0, +-00[xUy to CH*(09) is real analytic, by using Theorem 5.10 (i) of Lanza de Cristoforis
and Musolino [81]. To do so, we first note that due to the real analyticity of the map (I, ¢) — q;¢
from ]0, +o00[xUy to Agn N C1¥(0Q, R?), Lemma C.0.4 (ii) implies that the map

(1, 9) = (V)i © @1

from ]0, +oo[xUy to C%*(9Q) is real analytic. Then, using Proposition 3.4.5 (i), one verifies
that the map

(1, 8) = ((vq119))5 © @9)O[L, @]

from 0, +oo[xUy to C**(9) is real analytic. Finally, taking also the real analyticity of the
map | — (I72,1?) from )0, +oo[ to R? into account, we can apply [81, Thm 5.10 ()] to the map
in (3.33), and, thus, the real analyticity of (3.33) follows.

Then using the real analyticity of the map in (3.33), identity (3.32), equality (3.31), Lemma
C.0.4 (i), and the linearity and continuity of the map f — [y, f do from L'(09) to R, we
conclude that the map

o _ _ _
(l7 d)) = Tvql [QZ¢(8Q)7 (Vql]l[qﬁ])j (9[l7 ¢] © ¢ ! °q 1)](33) deE
Qi\allg] 9%j
from ]0, +-00[xUp to R is real analytic. Accordingly, equality (3.30) implies that the map
(L, ¢) = we, [a(992), (1, ¢] 0 6" 0 ¢ 1] (x) da,
Qi\ql[¢]

is real analytic from |0, +oo[xUp to R. Thus the validity of the statement follows. O

Finally, using representation formula (3.7) for the effective permeability Ki;[l, ¢], Proposi-
tion 3.2.5, and Theorem 3.4.6, we immediately have the following result on the analyticity of
the map (I, ¢) — Ky[l, ¢].
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Theorem 3.4.7. The map (I, ¢) — Ki1[l, ¢| from |0, 400X (Aag N C’l’a(aﬁ,R2)) to R is real
analytic.

Theorem 3.4.7 implies, in particular, that if we have a one-parameter analytic family
of pairs (lg,(lsg)(ge],goﬁo[, with some §g, then we can deduce the possibility to expand the
permeability as a power series, i.e., Ks(ls, ¢5] = 3272 ¢;j07 for & close to zero. Moreover, by
the analyticity of the map (I, ¢) — Kj|l, ¢], the coefficients in the series expansion of K; can
be constructively determined by computing the differentials of Kjs[ls, ¢s] as it has been done
for the effective conductivity in Chapter 2. Furthermore, another important consequence of
our high regularity result is that it allows applying differential calculus in order to find critical
pairs (I, @) rectangle-shape as a first step to find optimal configurations.
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CHAPTER 4

Logarithmic residues of monogenic functions

This chapter is devoted to the analysis of monogenic functions in the three-dimensional
commutative algebra As over C with one-dimensional radical and some their properties. In
particular, we calculate logarithmic residues of monogenic functions acting from a three-
dimensional real subspace of As into As. We show that the logarithmic residue of a monogenic
function is a hypercomplex number (cf. Grishchuk and Plaksa [55], and Plaksa and Shpakivskyi
[129]) and it depends not only on zeros and singular points of the function but also on points
at which the function takes values in ideals of As.

We note that here we deal with a certain specific three-dimensional algebra and the obtained
results are ones of the first steps to develop tools for solving boundary value problems in any
finite-dimensional Banach algebras.

The chapter is organized as follows. In Section 4.1 we introduce the algebra As mentioned
above, monogenic functions taking values in this algebra, and some additional notation used in
the sequel. In Section 4.2 we study the logarithmic residues of monogenic functions in As.

Some of the results presented in this chapter have been published in the paper [137] by the
author and Prof. Sergiy Plaksa.

4.1 Three-dimensional commutative algebra with one-dimen-
sional radical and monogenic functions

In this section we introduce the three-dimensional commutative algebra As over C with
one-dimensional radical and basic notation. To begin with, we note that there exist four
three-dimensional commutative associative Banach algebras over C (see, e.g., Mel'nichenko and
Plaksa [103]) and we consider one of them.

Let Ay be a three-dimensional commutative associative Banach algebra over C with one-
dimensional radical (see, e.g., Plaksa and the author [125], and Mel'nichenko and Plaksa [103]).
This algebra has a basis {I, I, p} with the following multiplication rules for its elements

112211, [22:[2, IQp:p, 11[2:p2:fl,0:0.

The unit of Ay is represented as 1 = I1 + Is.
Let ¢ = ¢1 11 + calo + c3p, where ¢y, co,c3 € C. The element c is invertible if and only if
c1 # 0 and ¢y # 0, moreover, the inverse element ¢! is represented as

1 1 c
= —L+—1I — %p
C1 Cc2 Cc5
There are two maximal ideals in Ao:
Il = {t1]2 + tgp : tl,tg S C}, Ig = {tlfl + tQp : tl,tg S (C}
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Both ideals together include all non-invertible elements of the algebra Ay and consist of such
elements only. We denote by R := Z; N Zs the radical of this algebra. R is a one-dimensional
subspace of As.

We consider the linear continuous functionals f1, fo : Ay — C satisfying the equalities

fith) = fa(l2) =1, fi(l2) = fi(p) = fo(I1) = f2(p) = 0.

The maximal ideals Z;, 7o are kernels of the functionals fi, fo, respectively. For an arbitrary
set X in Ao, we find it convenient to set

Di(X):={¢€C: €= fi(a) Yae X},

Dy(X):={6e€C: £=fo(a) Vae X}

Obviously, the sets D1 (X) and Dy(X) are the images of the set X in C under the mappings fi
and fo, respectively.

Now we want to construct the three-dimensional linear subspace over R in the algebra A,.
To begin with, we take three vectors ey, e9, and e3 of the following form

e1r =1, ex=pili +p2la+p3p, e3=qi1l1+q2l2+q3p,

where pi,qx € C for all k € {1,2,3}, and assume that they are linear independent over R.
Then we denote by
Es :={zey + yes + zes : x,y,2z € R}

the linear span over R in Ay generated by the vectors of basis {e; = 1, e, e3}. We also assume
that
Dy(E3) =C Vk € {1,2}. (4.1)
Obviously, condition (4.1) holds if and only if at least one of the numbers py or g belongs to
C\R for all k € {1,2}.
Since eq, es, and es are linearly independent over R, we can define the Fuclidean norm in
FE5 in the following way

lall := y/av|? + lasf? + [as? (4.2)

for all @ = aje; + ases + azes € F3, where ay,as,a3 € R. Moreover, if this triple is linearly
independent over C then {ej, e, e3} is a basis of Ag, and the norm in Ay is defined as in (4.2)
for all a = a1e1 + ases + agzez € Ao, where aq,az, a3 € C.

In what follows, let x,y,2 € R and z, y, and z with arbitrary sub-indexes be also real. We
find it convenient to set

¢ := zey +yea + zes, Co = xoe1 + Yoe2 + z0€3,
§1:=7+p1y+qiz, §10 := To + P1Yo + q120,
§2 1= T+ pay + q22, §20 := To + p2yo + q220,

el = (RepiImq; —ImpReqi)e; —Imgies + Impies,
e5 := (Repaolmgy — ImpoRega)e; — Imgaes + Impoes,
Li(¢) :={C+tel: teR}, La(Q):={C+tey: t R} V(¢ € Es.
Here, & and & are the images of the point ¢ and (j, respectively, by the functional fi : Ay — C,
for all £ € {1,2}. The union of the straight lines L1 (¢) and L2(({) represent the set of points
in E5 such that the element 7 — ¢ is non-invertible for all 7 € L1(¢) U L2(¢). Furthermore,

setting &g, = fr(7) for all k € {1,2} and 7 € E3, we have that for any ( € F3 and all
T € E3\ (L1(¢) U La(C)) the following equality is true:

1 1 ;=
(1=t = ——D+ i |

Gt e —e? @ e’ (4.3)
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(see, e.g., Mel'nichenko and Plaksa [103, Sec. 8]).
We will often consider domains which are convex in some directions.

Definition 4.1.1. Let 2 be a domain in Es and k € {1,2}. We say that § is convex in the
direction Ly if the set QN Lk (C) is connected for all ¢ € Q.

Then, for two arbitrary vectors a,b € FE3 defined as a = aje; + ases + azez and b =
bie1 + boea + bses, we denote

axb:= (a2b3 — agb2)61 + (a3b1 — albg)eg + (albg — agbl)eg.

It is an analog of the vector product in R3.
Let v be an angle in | — 7/2,0[U]0,7/2[. We find it convenient to set

8y = e] X eq, if e] = e3,
cixey i el e,
el x (e] x e1), if e} =e3,
€9 1= e es i ok
ey sina + iy cos a, i el # e,

HOHC = {C 4+ t161 +toéy : ti,t2 € R} V(¢ € Ejs.

If a = /4 then we will simply write I instead of Il, ¢ for all ¢ € E3. The set II,, ¢ is a specific
plane E3 which we need in order to introduce the logarithmic residue.
Now we define monogenic functions by means of the following.

Definition 4.1.2. Let  be a domain in E3 and the function ® : Q0 — Ay be continuous in 2.
We say that ® is monogenic in € if ® is differentiable in the sense of Gateauz at every point of
Q, i.e., if for every ¢ € Q there exists an element ®'(¢) € Ay such that

lim (®(¢ +eh) — ®(¢)) et = hd'(¢) Vh € E;.

e—=0+

’(¢) is called the Gateaux derivative of the function ® at the point (.
We recall the following result proved by Shpakivskyi [152, Thm. 5.4].

Theorem 4.1.3. Let a domain Q C E3 be convex in the direction Ly and fi(Q2) = C for all
k € {1,2}. Then every monogenic function ® : Q — Ag can be expressed in the form

(¢) = Fi(&1) i + Fo(&) 2 + ((p3y + q32)F3(&2) + Fo(&2)) p Y(EQ, (4.4)

where Fy is a holomorphic function in the domain D1(QY), and Fy and Fy are holomorphic
functions in the domain D2(2).

We also note that representation (4.4) was also proved by Plaksa and the author [125,
Thm. 4] for the case where the basis {e1, e2, e3} satisfies the following conditions:

eltestes =0 er#0 Vke{l,23}.

If these conditions are satisfied then the basis {ej,ea,e3} is called a harmonic basis (see
Mel’'nichenko and Plaksa [103, pp. 17, 18]). Additionally, we note that if the basis {e1, e2, e3}
is harmonic then any monogenic function is the solution of the Laplace equation in the domain
of its definition.

To complete the section, we recall two results which we exploit in the sequel. The first one
is an analog of the Cauchy integral theorem for monogenic functions in Ay, and the second one
is an analog of the classical Cauchy integral formula. The proofs can be found in Shpakivskyi
[152, Thm. 4.2] and [152, Thm. 6.1], respectively.



88 Logarithmic residues of monogenic functions

Theorem 4.1.4. Let Q) be a domain in E3 convex in directions L1 and Lo. Let ® : Q) — Ay be
a momnogenic function in . Let v C Q be a closed Jordan rectifiable curve which is homotopic
to a point of Q. Then

L@(g)dg = 0.

Theorem 4.1.5. Let Q be a domain in E3 convex in directions L1 and Lo. Let ® : Q — Ag be
a monogenic function in . Then for every point (y € Q the following equality is true:

B(60) = 5 [ PO~ G
Y

where 7y is a closed Jordan rectifiable curve in Q, that surrounds once the set L1((o) U La(Co)-

4.2 On the logarithmic residues of monogenic functions

In this section we consider the logarithmic residues of monogenic functions taking values in the
algebra Ay and we calculate the logarithmic residues of monogenic functions which act from a
three-dimensional real subspace F3 into As.

To begin with, we note that the logarithmic residue in a Banach algebra is a contour
integral of the logarithmic derivative of a hypercomplex function. The logarithmic residues
of monogenic functions were considered by Grishchuk and Plaksa in [55] and by Plaksa and
Shpakivskyi in [129], where the logarithmic residue of monogenic functions was calculated and
it was shown that it is always an integer number. In general case, it can be a hypercomplex
number, as it is shown in this section

The section is organized as follows. In Subsection 4.2.1, we introduce some standard
notation and the logarithmic residue. In Subsection 4.2.2 we consider some properties of
Laurent series of monogenic functions in Ap. Subsection 4.2.3 is devoted to the logarithmic
residues. In this subsection, we exploit the Laurent series to calculate the logarithmic residue
of monogenic function (see Lemma 4.2.11). Using this result, we establish the validity of
Theorem 4.2.15 and Theorem 4.2.16 for a curvilinear integral of the logarithmic derivative of a
monogenic function along a family of curves.

4.2.1 Preliminaries and notation

Let ¢ = ¢c111 4 cola + c3p, where ¢y, ca,c3 € C. We define the logarithm in As in the same way
as it is done by Lorch [93, p. 422], and it takes the following form in the basis {I1, I2, p}

Inc:=(Incy)l1 + (Incg)lo + z—gp, (4.5)
2

where In ¢1, In co are the principal branches of appropriate logarithmic functions.
Then, for any nonnegative real numbers r and R such that r < R, and a point (o € E3, we
find it convenient to set

Kr(¢o) :={¢ € E3: [& — &0l < R, |&2 — &20| < R},
Krr(Co) ={C€E3: 0<r <[ —&o] <R <00, 07 <& — &l < R < oo},

and we define the logarithmic residue as follows.

Definition 4.2.1. Let {; € E3 and R €]0,+00]. Let ® : Ko r(¢o) — Az be a monogenic
function in the domain Ko (o), and the function ®®~1 be monogenic in Ko r(o). We say
that the integral

L / (0)(®@(0)) " dc. (4.6)

211
F’V‘ (CO)
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where r €]0, R[ and I';(Go) = {¢ € TI(Go) : &0 — f1(Q)] = 7, [€20 — f2(Q)] = 1}, is the
logarithmic residue of the function ® at the point (.

By virtue of Theorem 4.1.4, which is the analog of the Cauchy integral theorem, we conclude
that the value of logarithmic residue is independent of r for 0 < r < R.

Finally, we note that the logarithmic residues of monogenic functions which take values in
commutative Banach algebras different from Ay were considered in Grishchuk and Plaksa [55],
and in Plaksa and Shpakivskyi [129]. They calculated the logarithmic residue of monogenic
functions which is always an integer.

4.2.2 Properties of Laurent series of monogenic functions

In order to investigate the logarithmic residue, we will exploit the property of monogenic
functions in Ao to be expanded into the convergent Laurent series.

To prove such a property, we will use the following auxiliary statement, which we need in
order to apply Theorem 4.1.3 to monogenic functions in K, zr({p).

Lemma 4.2.2. Let {y € E3, R €]0,400] and r € [0,R[. Then the domain IC; r((o) can
be represented as a union of domains KCy g(¢o) and K, r(Co), each of them is convex in both
directions Ly and Lo, and IC; r(Co) N Ky r(Co) is an open set.

Proof. The proof is constructive. We first note that the case L1 = Lo is trivial. It is enough to

set K. r(Co) = Krr(Co) = Ko(C0)-
Next, we suppose that L; and Lo do not coincide. Let

HZO = {C() + tle“f + tgez 2 ty,t0 € R}

be a plane in Ej. If 7 # 0 then the planes IT¥ . . and IIf _ . split Kr.r(Co) into six parts. By
construction, there are four parts located between the planes and we denote them by P, P,
Ps, P;. One can uniquely indicate two pairs of sets from { P, P, P3, P4} such that the union
of the sets in the pair is convex in both directions L; and Ls. Without loss of generality, we

assume that the indicated pairs are {P;, P»} and {Ps, P;}. Then, we set
Krr(C) = Krr(Q) \(PLUP), Ky r(Go) = Krr(Co) \ cl(P3 U Py).

By construction, one observes that both sets IAC'Ty r(Co) and Ier, r(Co) are open and convex in
directions L1, Lo. As a conclusion, I%T,R(CO) N ]/(\:T,R(CO) is an open set.

If » = 0 then we take one plane HZO and split it into four parts by the straight lines Lj({p)
and La((p). Then, by arguing as above, we deduce the validity of the lemma. O

We observe that by the construction of /@, r(Co) and /ET, r(Co) the following conditions are
true:

Dy (EO,R(@)) =D (EO,RKO)) ={£eC: 0<|§~ &0l <R},
Dy (Ko.r(G)) = D2 (Kor(¢o)) ={€ € C: 0< ¢ — 20| < R}.
Then, we define the following properties for curves in Ej.

Definition 4.2.3. Let (y be a point in Q and C((p) be a circle in Q with the center at (.
Let k € {1,2}. We say that the circle C((y) surrounds the set L (o) if fx(Co) lies inside the
domain in C bounded by Dy (C((o)).

Definition 4.2.4. Let {y be a point in Q and v be a closed curve in Q. Let k € {1,2}. We
say that v surrounds once the set Ly ((y) if there exists a circle C((p) C Q which is homotopic
to v in the domain Q\ Ly (o) and surrounds Ly ((p).
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Now, using Lemma 4.2.2, we prove the following result on the Laurent series expansion for
a monogenic function.

Theorem 4.2.5. Let (s € E3 and R €]0,4+00]. Let ® : Ko r(¢p) — Az be monogenic in
Ko,r(Co). Let an, by, and c, be the coefficients of the Laurent series of the functions in
decomposition (4.4):

Fi&)= Y an(&e—&0)",  Fa(&)= D bu(&2— &)
Fo(&) = D cnlée—&o)".
Then ® can be represented as a sum of absolutely convergent Laurent series
DO Y dalC— )" (48)
where (¢ — (o)™ := ((¢ — (o) ™1)™™ for all negative integer n, and
dn = andy 4+ bpda + ((n+ 1) (p3yo + ¢320)bnt1 + cn)p. (4.9)

Proof. By Lemma 4.2.2, the domain Ky r((p) can be represented as a union of domains 1607 r(Co)
and IEQR({()), which are convex in both directions L and Lo, and IEQR(CO) N IEO,R(CO) is an
open set.

We first consider the domain Ko r((o). Clearly, Ko r((o) is convex in both directions L

and Ls, and the function ® is monogenic in Ko r((p). Then, by Theorem 4.1.3, equality (4.4)
holds in IEO’ r(Co) and, moreover, the function Fj is analytic in D (/60, R(CO)) and the functions

F5 and Fy are analytic in Do (IEO, R(CO)) and, thus, the series in (4.7) are absolutely convergent.
Using (4.4) and (4.7) we have:

D) = Y an(&t—&0)"Ii+ Y bu(éa—&0)" ]2
+(psy+a32) Y mba(&—&0)" o+ D enl&e—&0)"p V¢ € Kor(C).

Now, using the following equalities:

(¢ —<o)"I1 =(&1 — &10)" 11,
(¢ = C0)"I2 =(& — &20)" L2 + n(p3(y — o) + a3(z — 20)) (&2 — &20)" ' p,
(€ —¢0)"p=(&2 — £20)"ps

which hold for all integer n, we obtain representation (4.8) for the function ®, where the series
is absolutely convergent in 1607 r(Co)-

Now, we consider the domain EO,R(CO). In the same way as for 16073(@), we obtain the
validity of (4.8) in Ko r(¢o). Then, since the monogenic function ® has representation (4.8) in

both domains KCp r({p) and KO,R(QO), and IEQR(CO) N /6073(@) is an open set, using Theorem 2
of [139], we deduce the validity of the theorem. O

We also note that the coefficients d,, can be represented (cf. Shpakivskyi [151, Thm. 4]) by

the formula .
_ _ —n—1
dy, = 5 O(7)(¢ — Co) dr Vn € Z,

5
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where v is an arbitrary closed Jordan rectifiable curve in KCp r({p) surrounding once the straight

lines L1(Co), L2(Co)-
Next, we define types of singular points of a monogenic function.

Definition 4.2.6. Let ® be a monogenic function in a domain Q2 C E3 and let (o € . We
say that the point (y is

e a removable singularity of © if there exists a finite limit

lim O(() = A
¢—¢o, ¢&L1(¢o)UL2(Co)

e a pole of ® if there exists an infinite limit

im P(¢) = oo
¢—Co, C¢L1(C0)UL2(Co)

e an essential singularity of ® if a limit of ®(¢) does not exist as ( — (p and ( ¢
L1(¢o) U L2(Co)-

It is known that the isolated singularity can be only removable. Otherwise, if ® has a
non-removable singularity at the point (5 €  then all points of the set QN L1({y) or the set
QN Lay(Co), or both these sets are singular for ® (cf., [139, Sec. 3]).

4.2.3 Main result on logarithmic residues of monogenic functions

First of all, we note that one needs to consider logarithmic residues not only at zeros and
singular points of the function ® but also at those points where values of ® belong to the ideals
of AQ.

Before formulating the main theorem, we prove some auxiliary results. The statement is a
necessary and sufficient condition for the existence of integral (4.6).

Lemma 4.2.7. Let {y € E3 and R €]0,400]. Let @ : Ko r(Co) — Az be monogenic in Ko r((o)-
The following statements are equivalent:

(i) There exists Ry < R such that integral (4.6) exists for all r €]0, Ry].
(i) There exists Ry < R such that ®(¢) ¢ Z1 ULy for all ¢ € Ko r,(Co)-

Proof. First, we prove that (i) implies (ii). Assume, for the sake of contradiction, that the
statement does not hold. In other words, for all arbitrarily small Ry > 0 there exist points
¢ € Ko,r,(Co) for which ®(¢) € Zj, for some k € {1,2}. Then the inner point £k of the domain
Dy (Kgr,(p)) is a limit point of the set of zeros of the holomorphic function Fj appearing in
equality (4.4). Hence, according to the Uniqueness theorem for holomorphic functions of a
complex variable (see, e.g., Rudin [142, p. 209]), Fi = 0 and, in view of equality (4.4), we
conclude that all values of the function ® belong to the ideal Z;. Therefore, integral (4.6) does
not exist and we have a contradiction.

Now, we prove that (¢7) implies (¢). It is enough to note that the assumption ®(¢) ¢ 7, UZ,
for all ¢ € Ko g, (¢o) implies that ®'(¢) ((I)(C))_l exists for all ¢ € Ko g,(¢p) and is monogenic
in Ko r,(Co). We set R; = Ry and, thus, integral (4.6) exists for all r €]0, R1][. O

Lemma 4.2.8. Let ® : Ko (o) — Az be a monogenic function in the domain Ko r(o)
and dy, be defined in (4.8). If ®(¢) ¢ Iy for any k € {1,2} and all { € Ko r((o), the set
Zi:={n€Z: d, ¢ I} is nonempty.

Proof. Since ® is a monogenic function in the domain Ko r({p), it can be represented in form
(4.8). Assume, for the sake of contradiction, that Zj is empty. Then d,, (¢ — {p)" € Zj for all
n € Z, which implies that ®(¢) € Zj, for all ¢ € Ko r({p). We have a contradiction. d
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By virtue of Lemma 4.2.8, the assumption ®(¢) ¢ Z; UZ; for all ( € Ko, r(¢o) implies that
both Z, and Zsy are nonempty. Additionally, we assume that

Zy, Zy are bounded from below (4.10)
and we set
n1 = minn and N9 1= min n.
neZy neEls

Lemma 4.2.9. Let ® be a monogenic function in Ko r(¢o). Let assumption (4.10) hold. Then
there exist two monogenic functions ¢1, ¢2 in the domain Kr({o) and a monogenic function 1
in Ko r(Co) such that

P(¢) = (€ =)™ (O + (¢ = €)™ 2O 2 +¥(C)p V¢ € Ko,r(C0)- (4.11)
Proof. Using relations (4.8) and (4.9), definitions of Z;, Zy and assumption (4.10), we have

D)= D an(C—C) "+ D bu(¢— )"
+ > ((n+1)(psyo + q320)bnt1 + n) (¢ — C0)"p
=(C =)™ Y an(¢— )" I+ (€= )™ Y. bal(¢ — C)" "2y

neZ1 n€ls

+ > ((n+1)(psyo + 4320)bnt1 + cn) (¢ — C0)"p,

n=—oo

where a,,, by, ¢, are defined in (4.9). To complete the proof it is natural to set

$1(¢) == D an(¢=G)" ™, $2(¢) = Y bal¢ — )",

neZy n€Zs
Y(¢) = Z ((n 4+ 1)(p3yo + q320)bn+1 + cn) (¢ — Co)"-

O

In the following lemma, we consider some properties of functions ¢, ¢ presented in the
statement of Lemma 4.2.9.

Lemma 4.2.10. Let assumptions of Lemma 4.2.9 hold. Moreover, let ®(¢) ¢ Z1 UZy for all
¢ € Ko,r(Co)- Then ¢1(C), ¢2(C) & L1 ULy for all ¢ € Ko,r(Co)-

Proof. We first assume, for the sake of contradiction, that the statement does not hold for ¢.
Let there exist (1 € Ko r(¢o) such that ¢1(¢1) € Z;. Then ({1 — (o)™ ¢1(¢1)I1 = 0, and, by
virtue of (4.11), ®(¢1) € Z;. We have a contradiction.

Now, we note that ¢; can be rewritten as follows

01(Q) = D an(& = &0)" ML+ ) an(& — &0)" M

nely neZq

+ > (n—n1)an(€a — &0)" ™ (p3(y — vo) + g3(z — 20))p-
neZq

and we assume that there exists (o € Ko r((o) such that ¢1(¢2) € Zo. This assumption implies
that
Z ap """ =0, where &= f2((2) — &20.

nezi
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Let us consider the set

K(¢o,0) :=={¢ € Ko,r(C0) : &1 — &0l =[], |€2 — &20l = [6]}-
Then, there exists (o € K((o, ) such that fi(Cz) — &10 = 6. Thus,
> an(fi(é2) — &)™ ™ =0,

neZq

which implies that ¢1(C~2) € 7, and, by arguing as above, we have a contradiction. Considering
@2 in a similar way as ¢1, we deduce the validity of the lemma. O

In the following lemma we find the logarithmic residue of ® at the point (y.

Lemma 4.2.11. Let ® be a monogenic function in Ko r(¢o) and ®({) ¢ Z1 UZy for all
¢ € Ko,r(Co). Moreover, let ® have representation (4.11), where ¢1, ¢2 are monogenic functions
in the domain Kr((o) and v is monogenic in Ko r(o). Then

1
21
I'r(¢o)

(I),(C)(q)(g))ild( =n1l1 +nals (4.12)

for an arbitrary r € R such that 0 < r < R.

Proof. By Lemma 4.2.7, the integral on the left hand side of equality (4.12) exists. Moreover,
by Lemma 4.2.10, ¢1 and ¢2 do not take values in the ideals of Ay for all { € Ko r((o), that
implies the existence of (¢1(¢))~! and (¢2(¢))~! for all ¢ € Ko g({o)-

By (4.11), we immediately have

() =n1(¢ — )™ 1 (O1 + (€ — Q)™ L)1 +n2(C — o)™ () L2
+(C=C)" ()2 +¢'(QOp V¢ € Kor(lo)s

(@(0) " =(¢ =€) ™ ($1(Q)) T+ (¢ = €)™ (62(Q) Mo
= (€= ) (@) H(Op V€ Kor(Go)-
Taking into account (4.13) and (4.14), we obtain

(4.13)

(4.14)

1 1
5 / ¥(Q)(@(C) =T~ / (C=Go) ¢+ Nig— / 94(¢)(91(¢)"dg
I'r (o) I'r (o) I'r(Co)
1
thpt [ (=@ by [ 6Ol
I'r(Co) I'r(Co)
1 !
—pg € @A) ()] dC
I'r(Go)
(b +nak)ys [ (G- B [ aO@)
T (Co) I‘r(o
1 / TLQ — !
s [ 800 -5 [ 6@ o0 o] a
I'r(Co) I'r(Co)

=1 (nil1 +nalo)Ay + L1A2 + I2Az + pAy.

By virtue of Theorem 4.1.5, we have A1 = 1. Then, using Theorem 4.1.4, we obtain
the equality Ay = A3 = 0 because the functions ¢} (¢)(¢1(¢))™! and ¢5(¢)(d2(¢))~! are
monogenic in the domain Kr((p). Finally, taking into account the continuity of the function
(¢ = Co)73m2(2(¢)) 39(¢) on the curve T'.({p), we obtain the equality A4 = 0. O
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The following result follows from Lemma 4.2.11.

Corollary 4.2.12. Let assumptions of Lemma 4.2.11 hold. If n1 = no then the logarithmic
residue of the monogenic function ® at the point (o is an integer.

Here, we find it convenient to introduce the set Lg((y) by setting

L4 (Co) U LQ(CO) if either (I)(Co) € R or £1p1is
a non-removable singularity for F; and
&90 is a non-removable singularity for Fo,
Lyi(¢p) if either ®((p) € Z1 \ R or &9 is a non-removable
Ly (o) == singularity for F} and £ is not a non-removable
singularity for Fs,
Lo(Cp) if either ®((p) € Zo \ R or &jois not a non-removable
singularity for | and &y is a non-removable
singularity for F5.

Definition 4.2.13. Let the function ® be monogenic in the domain Ko (o) and ®(¢) ¢ T UL,
for all ¢ € Ko r(Co). Let either ®({op) € Z1 UZy or (o is a non-removable singular point of ®.
Then we say that (y is a singular point of the logarithmic derivative of function ®

Obviously, if (p is a such a point then every point of Kr({y) N La((o) is a singular point of
the logarithmic derivative of ®.

Definition 4.2.14. Let the function ® be monogenic in the domain Ko r((o) and ®(¢) ¢ Ty ULy
for all ¢ € Ko,r(Co). Let either ®({p) € Z1 Uy or (y is a non-removable singular point of
®. Let assumption (4.10) holds. Then we say that a hypercomplex number nil; + nols is a
singularity index of the logarithmic derivative of function ® at the point (y.

For an arbitrary set {2 C Ej3, we find it reasonable to set

Sa () :={¢ € Q: ( is a non-removable singularity of ®},
I@(Q) :{C e @(C) el UIQ}.

Let G C Il be a domain in II;. Then clG and OG denote the closure and the boundary of
G in the induced topology of Il;, respectively.

Now, we can formulate our main result, namely, two theorems on the logarithmic residue
for monogenic functions taking values in the algebra A,.

Theorem 4.2.15. Let 2 be a domain in Es and ® be a monogenic function in Q\ Se(€2).
Let (o be an arbitrary point in 2. Let G C I, be a domain in I, such that clG C Q
and 0G be a closed Jordan rectifiable curve. Let OG do mot contain singular points of the
logarithmic derivative of function ®, So(G)UZe(G) = {(k}}y, where m is finite, and there exist
R €]0, +00] such that assumption (4.10) holds in Ko r(Cx) for all k € {1,2,...,m}. Moreover,
let nixly 4+ no Iy denoting the singularity index of the logarithmic derivative of function ® at
the point (i, be finite for all k € {1,2,...,m}. Then

o [ @) = S (el + noele)

21
T k=1

where I is an arbitrary closed Jordan rectifiable curve in the domain Q\ (Se(2) UZgp(Q)) which
is homotopic to OG in this domain.
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Proof. Let R €]0,+00] be such that the sets Ko r((x) C Q are pairwise disjoint for all
ke {1,2,...,m}. Since I' is homotopic to G in Q\ (Ss(2) UZs(£2)), by Theorem 4.1.4, we

have
1 1 1 & _1
— lac=—— [ )@ — (¢ d
o [ 20 C= g [ PO@E) =50 S ¢
N oG B F’V‘( k
for any r €]0, R].
Now, to complete the proof one can apply Lemma 4.2.11. ]

The following theorem is true.
Theorem 4.2.16. Let assumptions of Theorem 4.2.15 hold. Then

— ®'(¢)(®(¢))d¢ = (Ng, — Pr)Iy + (Np, — Pp,) s, (4.15)

211
I

where N, , Pr, are the numbers of zeros and poles, respectively, of the function F}, in the
domain Di(G) for k =1,2.

Proof. Since I is homotopic to G in Q\ (S (Q) UZs(92)), we conclude that I' does not contain
singularities of the logarithmic derivative of function ®. Then the following equality is true:

1
211

(@) = 5 [ FO@) = 5B d(©). (410

r oG

where Ay In @(() denotes the increment of function In ®(¢) as ¢ passes the curve 0G. Equalities
(4.5) and (4.4) yield the equality

(p3y + q32)F5(&2) + Fo((fz)p

n®(¢) = F (&)1 +In Fy(&) L + Fy(&)

for all ¢ € I', where & € D1(0G), & € D2(0G).

Since ® does not take values in the ideals on the curve G, by virtue of (4.4), we conclude
that the function Fj is not equal to zero on the curve Dy(9G) in the complex plane. Therefore,
the function ((psy+qsz)F5(&2) + Fo(&2))/Fa(&2) is continuous on the curve Dy (OG) and, hence,
its increment in passing this curve is equal to zero.

Thus, Age In@(C) = Ap, (9a) F1(§1) 11 + D p,aa) F2(§2) 12 and, in view of the principle of
argument for analytic functions of a complex variable (see, e.g., Rudin [142, Ch. 10]), equality
(4.16) is transformed into (4.15). O

Finally, we formulate the result which follows from Theorem 4.2.16.

Corollary 4.2.17. Let the assumptions of Lemma 4.2.11 hold. Let functions Fy1, Fs be as in
(4.4). Then the logarithmic residue of a monogenic function ® at the point (o is an integer if
and only if the logarithmic residue of Fy at the point £&19 and the logarithmic residue of Fo at
the point &9 coincide. If so, the logarithmic residues of all these functions coincide.
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CHAPTER 5

Limiting values of a Cauchy type integral

In this chapter we study a certain analog of the Cauchy type integral taking values in the
algebra Ay. A certain analog in commutative Banach algebras has been considered by Plaksa
and Shpakivskyi [127, 128]. They considered a three-dimensional commutative algebra with
two-dimensional radical where such an integral is defined in two unbounded domains with
the common cylindrical boundary. In Plaksa and Shpakivskyi [129] the authors proved the
existence of limiting values of it on the whole cylindrical boundary from both domains.

Here, instead, we consider a certain Cauchy type integral in the algebra Ag of the following
form

8(0) = 5= [ wlr)(r =)l

T

where a curve I' and a function ¢ satisfy some appropriate assumptions. One should note
that the structure of zero-divisors in A, leads to an increment in the number of domains of
definition for such an integral and to the complication of their geometry. For example, such an
integral is defined in six domains obtained by removing two specific cylindrical surfaces from
the linear space F3. We consider the limiting behavior of the function ® on these surfaces and
establish sufficient conditions for the existence of limiting values of ® on these two surfaces
and show the validity of analogs of Sokhotskii-Plemelj formulas.

Now, we briefly outline our strategy and the structure of the chapter. Taking the represen-
tation of the unit element in Ay into account, we split the function ® into three parts denoted
by @1, @5, and ®3, and study them separately. First, in Section 5.1 we introduce some notation
and collect some preliminary results. In Section 5.2 we prove the existence of limiting values
of ®; and P on the boundary of domains of definition. Sections 5.3 and 5.4 are devoted to
the behavior of ®3 on the curve of integration and on the boundary of domains of definition,
respectively. In Section 5.5, using Propositions 5.2.2, 5.3.3, and 5.4.1, we prove the existence
of limiting values of ® on the boundary of domains of definition and establish the validity of
analogs of the Sokhotskii-Plemelj formulas.

Throughout this chapter, we retain the notation of Chapter 4.

Some of the results of this chapter are presented in the paper [138] by the author and Prof.
Sergiy Plaksa.

5.1 Preliminaries and notation

In this section we introduce new notation and recall some of Section 4.1.
In contrast to Chapter 4, we consider here the vectors ey, es, e3 in Ay defined as follows

er = Iy + I, e =il + p, ez = ils.

97
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Since they are linearly independent over C, {ej, e, e3} is also a basis of Ag, and for all
a = aije1 + ases + ageg € Ay, where ay, a9, a3 € C, we can define the norm in A, as follows

lall = \/laa]? + [as]? + |as|?.
We note that the following inequalities holds:
labl| < callal[ |6l Va,b e A, (5.1)

where c; is a positive real constant which does not depend on a or b. One can take c; equals 14.

Now we define a curvilinear integral in E3. Let I' C FE3 be a rectifiable curve, I'g :=
{(z,y,2) € R3: mey + yeq + ze3 € T'} be the congruent curve in R3, and a continuous function
¥ : ' = As be of the form

2
¢(C) = Z(uk(Q:?y? Z) + ivk(xvya Z))Ik + (Ug(ﬂ?,y, Z) + iv3(l"y7 Z))p V¢ e,
k=1

where ug : T'r — R and vy : I'g — R are continuous functions defined on T'g for all k € {1,2,3}.
We define an integral of ¢ along I' by the equality

/w(C)dC = /(ul(w,y, 2)dx — vi(z,y, 2)dy) —l—i/(vl(x,y, z)dx +ui(x,y, 2)dy) | 1
r

FR FR

+ / (us( y, =)dz — va(z,y, 2)d2) + i / (v(@, s 2)dz + sz, y, 2)d2) | Io
_FR FR

+ /(Ug(ﬂj’,y,Z)dZE—FUQ(ZL‘,y, Z)dy—U3($,y,2)dZ)
S\

+i/(U3(Z‘,y, Z)d$+v2($ay7 z)dy—{—u;),(:n,y,z)dz)] P
I'r

where d( = dxe; + dyes + dzes and all integrals in the right-hand side are taken in the
Lebesgue-Stieltjes sense (see, e.g., Kamke [64], Privalov [134, p. 26]). Moreover, if u;(x,y, 2)
and vi(z,y, 2z) do not depend on z then

/(ul(:n, y)dx — vy (z,y)dy) + i /(U1 (z,y)dz + ui(x,y)dy)
T'r I'r

— / (ul(x,y)+iv1($,y))d§17

Dy (I)

where d&; = dx + idy, and if us(x,y, z) and va(x,y, z) do not depend on y then

/(uQ(x, z)dx — va(x, z)dz) + i /(vg(ar, z)dx + us(x, 2)dz)

I'r I'r

— / (ug(x, 2) + iva(x, 2))dEs,

D1(T)
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where d€s = dx 4 idz. Thus, one can write the integral of ¢/ along I' as follows

/IZJ(C)dC = / (ul (x,y) + ivl(x,y))dflll + / (UQ(:U, Z) + ivz(x, Z))d§212
r D

1(T) Da(T)
4 / (us(a, v, 2)de + us(z, 2)dy — v(, , 2)d2) (5.2)
I'r

+1 /(vg(x, Y, z)dx + va(z, 2)dy + uz(x, y, z)dz)} p-.
I'r

We also note that for any rectifiable curve I' and a continuous function ¢ : I' — Ao the
following estimate holds:

/ P(r)dr|| < e / l (o)l el (5.3)
T T

where ¢y is a positive real constant which does not depend neither on I" nor on 9 (cf. Shpakivskyi
[153, Lem. 5.1]). One can take cp equals 6v/2.

Let I be a closed Jordan rectifiable curve, ¢ € I', and p denote the linear Lebesgue measure
on I', then we set

94“71"(8) = ,u{T el: HT - CH < 5}, 91*(5) = iu%) 947[‘(5) Ve € [0, —|-OO[.
S

These metric characteristics have been introduced by Salaev [143].
In what follows, we fix

e an angle o in | — 7/2,0[U]0, /2],
e a point v := xzye; + Ypea + 2pe3 in Fs.

We observe that for any 71,72 in the plane II, , (see Section 4.1)
71 = 72l [sinaf <[f2(m1) = fa(m2)| < |11 — 72| (5-4)
Next, we impose the following assumption on the curve I :
I is a closed Jordan rectifiable curve, I' C Il ,, and fp(e) = O(¢e) as € — 0. (5.5)

Moreover, we denote the modulus of continuity of a function ¢ : I' =+ R on I' by

we,r(e) = sup (1) — ()| Ve €[0,400],

T1,m2€L, |11 —T2||<e
and we say that ¢ is Dini-continuous on I, if
1
/w%;(n)dn < 0. (5.6)
0

One should note that every Dini-continuous function on I' is continuous on I'.

Let € be a bounded domain in Il ,,. We denote the closure and the boundary of (2 in the
induced topology of the plane Il ., by cl) and 0f, respectively. In what follows, let a domain
Q C I, be bounded by I', and we set

Y= {< € by : fl(C) € Dl(F)}, Yo = {C € b3 : fQ(C) € DQ(F)}7

07 :={CeBs: filQ)eDi(Q)}, T :={CeEs: fi(¢) ¢ Di(cl)},
I :={C€Bs: fo(Q) € D2V}, I :={C€Ez: fo(C) ¢ Da(cl)}.

—_—~ o~
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Obviously, E3 = II] UTl; UY; =117 U, U Ss.
Let dr and k. be defined as follows

1
dr := max |1 — 7] and ko = { J +1,

r1,70€l | sin o

where |z] is the largest integer less than or equal to x for all z € R. Obviously, dr is the
diameter of the curve I'. Then, for any € €]0, +oo[ and (p € ', we set

Lo(Co):={r el ||t =l < kac}, Q. (o) :={m€Q: |7 =l < kag}-

Obviously, if kne > dp then I';((y) = 09Q:(¢p) =T for any (s € I.
In the sequel, we need the next result which follows immediately from Plaksa [124, Prop. 1].

Lemma 5.1.1. Let T' be as in (5.5), € € [0,dr], and a function ¢ : T' — R satisfy (5.6). Then
the following statements hold:

(i) [Of} e () gr. (1 sg 1 (20)dn.

dr
(ii) [ ‘£] “er( gor () < /fQGFf”)w% r(2n)dn.
€,dr €

Our aim is to study a function @ : E3 \ (X1 U X2) — Ay defined as follows

1

5 | PN =TT Ve By \ (S1U ) (5.7)

o(¢) :=

r

where the curve I' is as in (5.5), and the function ¢ : I' — R is Dini-continuous. One should
note that Cauchy type integral (5.7) is a monogenic function in six domains obtained by
removing the set X1 U X5 from the linear space Es3, but it does not exist on X7 U X5. And we
are interested in the investigation of the behavior of ®({) when ¢ tends to a point on %1 U Xo.

Taking equality (4.3) and d7 = d&1.11 4+ d&2,-I2 + dy;p into account, the function ® can be
represented as a sum of three functions

/ AT el Ve Es\Sh, ke {1,2),
27” ‘fk"r_

N ! Yy
@3({) : 27” ( ) <fg-,— 52 (527 52) d§27—> VC € Fj3 \ Y.

Hence, the analysis of ® on ¥; U 3y can be deduced from the behavior of @, k € {1,2,3}, on
this set and it is convenient to begin our investigation with these three functions.

5.2 On the existence of limiting values of ¢, on the surface X,
ke {1,2}

In this section we prove the existence of limiting values of ®; and ®5 on the boundary of
domains of definition.

First of all, we note that ®j, is continuous in the domains I} and II;, for all k& € {1,2}. In
order to investigate the limiting behavior of ®; on the surface ¥, one can exploit corresponding
results on a Cauchy-type integral in C. To do so, we introduce some additional notation and
formulate auxiliary statements.
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Let I" be a closed Jordan rectifiable curve in 11, . Clearly, for any 7 € I, ,
zr — 2o = (Yr — yo) tana,
and, accordingly,
Zr = yrtana — y, tan o + 2z, (5.8)
Yr = 27 COb v — 2, COb v + . (5.9)

Keeping equalities (5.8), (5.9) in mind, we find it convenient to introduce the functions
1 : D1(I') — R and 2 : Do(I") — R defined as follows

p1(&1r) = ¢1(zr, yr) = p(arer + yrea + (y- tana — yo tana + zy)es), (5.10)
02(&27) = pa(xr, 27) := p(xre1 + (zr cot @ — 2y, cot a + Yy ) e + zre3) (5.11)

for all 7 = xre1 + yrea + zreg € I'. Obviously, ¢1(&17) = ¢(7) for all £ € Di(I") and 7 € T
such that &1, = f1(7), and moreover, v2(&2r) = ¢(7) for all {3 € Do(T") and 7 € T" such that

§or = f1(7)
Using the monotonicity of the modulus of continuity w,r and of the function 6, r, one
verifies the following lemma.

Lemma 5.2.1. For k € {1,2}, the following statements hold:

(i) Let o be a point on Y. If ¢ € Ej \ X tends to Co then & tends to fk(&)) and
1€k — fr(Co)| < IIC — Coll-

(i) IfT is as in (5.5) then Dy(I') is a closed Jordan rectifiable curve in C, and 0p, (ry(¢) = O(e)
as € — 0.

(iii) If ¢ : T — R is Dini-continuous on I' then ¢y : Di(I') — R is Dini-continuous on Di(T).

In the following proposition we prove that ®; has limiting values on the surface X,
ke {1,2}.

Proposition 5.2.2. Let I' be as in (5.5) and ¢ : I' = R satzsfy (5.6). Then for each k € {1, 2}
and all {y € S, the function ®y(C) has limiting values <I> (Co) when ¢ approaches Co from H
Moreover,

o (o) = ! /MdfkrIkJr@(Co)Ik,

2mi Err — &ko
iy L [elr) —e()
) (G0) = 5 / £ — Ero d&kr I

for all {y € Xy, where the point (y € T is such that fr(o) = frx(Co)-

Proof. Using equalities (5.2), (5.10), and (5.11), we can represent ®;, as follows
Pp(C) = Fi(&r)l V(€ E3\ Xy,

where F (&) = Qm ka 0r(&kr)/ (Ekr — &k )dEkr. Thus, the analysis of ® nearby I' can be
deduced from the behav1or of Fy, nearby Dy(T).

Assumptions on I' and Lemma 5.2.1(77) imply that Dy(T") is a closed Jordan rectifiable
curve and 0p, (ry(¢) = O(¢) as € tends to 0. Then, the Jordan-Leray separation theorem ensures
that C\ Dg(T") has exactly two open connected components and it is convenient to denote by
F ,:' and Fy the limiting values of the function Fj, from interior Q% and exterior 2~ domains
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bounded by Dg(I"). Obviously, the limiting values of ® on I' depend on the limiting values of
F}, on Dg(T") and, moreover, @f = F,f[k.

Also, assumptions on ¢ and Lemma 5.2.1(#¢) imply that ¢y : Di(I') — R is Dini-continuous
on D(T). Thus, by Gerus [49], the function F}, has limiting values on Dy (T") from QF and Q™
and, furthermore, taking the equality fk(fo) = ko into account, we have

1 -
F (&no) = 37 / @k(&;kz — ?:O(ék(])dék‘r + 0r(&ro),
_ 1 i (&kr) — er(&ro) '
Fy (&ko) = 5~ / o — 1o d&pr
Dy (T)

for all £k € Dg(T"). Finally, using equalities (5.10)-(5.12), one verifies the validity of the
statement. t

Proposition 5.2.2 implies that
®f (Co) — D (C0) = (o)l Vo € B, k€ {1,2},

and, thus, @y is a functiog which is monogenic in H: UII, and has a jump equalsy((o)l L at
each point of the surface (y € X, where the point (y € I is such that fi(¢o) = fx(Co)-

5.3 On the existence of limiting values of ®3; on the curve I

In this section we investigate the behavior of ®3(¢) when ¢ approaches the curve I' along some
curve v C Héc. To do so, we need to introduce some assumptions on v, namely, we assume that
v is a curve in F3 \ Xy such that

dme[0,1] V¢er, Vrel: |y—y|<m|¢(—T]. (5.13)

Assuming that |y — y,| # 0, we observe that a triangle with the vertexes ( = xej + yea + zes,
T = xre1 + yrea + zre3, and ze; + yreo + zes is the right triangle with the right angle at the
vertex zej + yres + zes, and, thus, condition (5.13) is equivalent to the following one

dn e 0,00 VCe€7vy, Vrel: |y—uy:| <nl&— &yl (5.14)

We note that parameters m and n can be considered as the values of cosine and of cotangent,
respectively, of the angle at the vertex 7. Clearly, both equalities hold automatically, if
|y — y-| = 0. One should also note that in comparison with (5.14), assumption (5.13) is more
natural and says that v can not be a tangent to the line {z e + teg + zre3 € E3, t € R}, while
assumption (5.14) is more convenient to use.

To begin with, we need to prove some auxiliary statements that will be done in the two
following lemmas.

Lemma 5.3.1. Let T be as in (5.5) and ¢ : I’ — R satisfy (5.6). Let ¢ tend to a point (p € T
along a curve v C E3 \ Xg satisfying (5.13) and € = || — Col|- Then

1 -
/ (o (1) = ¢(Co)) (5% 5 Md&J p|| =0 (5.15)
Iz (o)
as € — 0, and
N 1 Y~ Y
i ({) (o(7) = ¢(¢o)) <§2T v dy- o — )’ 52O)chfgf) p|| =0 (5.16)

as € — 0.
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Proof. First, we consider (5.15). Let us take a point & on the curve Dy(I.(¢p)) satisfying the
following condition

€ — &= min €&

£eD2(I'(Co))

and let (o € T'c({p) be such that fo((s) = &. Using inequality (5.3), we obtain

| [ ) =—ele) +ole) — olo (g o — o= ) |
T'«(Co)
<alol [ Ier) = o(@)l|gg v — e
I'c(Co)

1
+le@) = e@liell| [ (gt~ )
T (¢o)

o) = 2@ (,, Iyl
g@nmr({) ol (14 =)

1
T lo(G) — (o)l / (@T—@d - =k dggf) Aot + A,
Fe(CO)

where ¢ is as in (5.3). Taking the equivalence of conditions (5.13) and (5.14) into account, we
have

A< (0t mealol [ Mnd I
(S I

where the constant n is as in (5.14). By the triangle inequality, one shows that o, — &o| >
|€2r — &2]/2 , and then, using inequality (5.4), we can estimate Ag; in the following way:

|
[l

2c2(1 4 n)||p|| / lo(7) — ¢(C2)
N Py =Gl
e (Co
<M / Wp,I ( )d9 ( )
~  |sina] n
[0,2kq¢]

where the last integral is taken in the Lebesgue-Stieltjes sense. Then, by Lemma 5.1.1(7) and
assumption (5.5), one verifies that Ag; vanishes when ¢ tends to 0.

Now, we consider Ags. Using the equality I'z({o) = 99 (o) \ (092:(¢p) \ T'e(¢o)), and since

lp(C2) — (Co)| < sup lo(m1) — o(12)] < wepr(kag),

T1,72€L: (Co)s |71 =72 (| <[ G2 —Coll

we obtain the following inequality:

1
A < lollorthos) ||| [ (&g 6P i)

Q. (CO)

) (ae eape)
Qe (C0)\T=(Co)
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We proceed to estimate Age. Using (5.4), we have that for all 7 € 9Q-(¢o) \ I'=(o)
|ar — &a| =[§2r — 20 + &20 — §2| = [§27r — 20| — [§20 — &2 (5.17)
> [sinel|lT = Goll = ¢ = Goll = (kal|sinal — 1) > 0.

Then, using inequalities (5.3), (5.14), (5.17), and the equality dr = d&1-1; + d€a, 12 + dy.p, we
obtain the following:

Yr — Yy (1+n)02

8QE(CO) aQE(CO)\FE(CU)
(1 + neaflpllwp.r(kag) 21k (1 4 1)callpll
< : 2mkqe < ko
S halsina] — 1) Ref S =1y Wer(kas) =0
as € — 0. Thus, (5.15) is proven.

Now we consider (5.16). By a straightforward estimation, using (5.3) and (5.14), one can
have the following:

[ o) = et (g — it ) o

Sar — 520)
FE(CO)
o(1) — ()
<(tmaalol [ EDZE gy,
E(CO)
Further, we estimate the last integral in the same way as Aoj. O
Lemma 5.3.2. Let assumptions of Lemma 5.3.1 hold. Then
&2 — &2
o(1) — (¢
/ (o) =l O))<(§QT —&2)(§2r — &20)
F\FE(CO)
Yr — Y Yr — Yo
d&or déor —0
 (Gr — &)? St (§ar — €20)? @ )p

as e — 0, where e = ||¢ — (o

Proof. To begin with, we note that

§2 — a0 Yr —y Yr )
dy, — sdésr + Ry,
<(€2T —&)(&r — &20) (€r — &2 (&ar — &0)®
-1 -1 52 - 520
= (¢ — T — T — drly — d€or I 5.18
(€ =C)(T=¢) (T =) 2 G = &) o — Ea0) Sorly (5.18)
for all 7 € T'\ T'o(¢p) and ¢ € IIy UTI,, what can be verified by using (4.3).
Then, without loss of generality, we assume that ¢ is less than dr/k,. Using equalities (4.3),
(5.18), and Iy = I3, inequalities (5.1) and (5.3), we obtain the following relations:

- §2 — Cx0 e e
T\I'< (o)

A=

_Yr—Y
T — ) df?T)

_ o(1) — (o)
< |62 = &) / (or — &2)(2r — §20)d§2T12
I\« (¢o)

+ (€= o) / (o(1) = 0 (Co))(Ta(T = )~ (Ta(7 = Co)~)dr
\Ie(¢o)
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<derll¢ — Gl / o(r) — o(Co)] X
F\FE(CO)

(527 1— 52]2 N (§2y:—_ffy2)2 p) <§2T i 52012 - ﬁ p> H I

+alblie -l [ | §2¢f722|_§f<c_°)§20| dEa|

X

I\I«(Co)

> [p(7) = # (o)
— d
\I« (o)

2 i~ (1) — ¢(Co)l ly- =yl | |y —yol g
Teieall¢ ~ Gl / €2 — &2/[2r — 20 <|£27’ — & - |€ar — 520|> lelliari

T« (o)
(1) — (G
ralblie gl [ g I
F\FE(CO)

where ¢; and ¢y are positive constants defined in inequalities (5.1) and (5.3), respectively. Since
T, (o € Iy, it follows that

lyr —yol _ [cotallzr — 2z

|&or — &20| = |27 — 20

< |cot a. (5.19)

Thus, taking condition (5.14), inequalities (5.19), |£2 — &20] < ||¢ — (o|| = €, and the equality
dr = d€1:11 + d€or I + dy,p into account, we have

r<dalnle [ ,'““”‘“ﬂ“' ldr|

Eor — &2l|62r — E20]
T« (o)
lo(1) — (o)
+ 2 £ / + | cot a])||d
cica|lpl| E0r — EallEo — Ea0) (n + | cot af)[|dT|
I'\I'c (¢o)

lo(1) — ¢(Co)| lo(1T) — ©(Co)|
d d
T edll2fle / € — EallEs — &) 14T = CF / Er — EallEr — &0 1971

F\Fs(CO) F\FE(CO)

where the constant n is as in (5.14), and the constant C' := cyca(c1 (|| L]+ p||(n+]| cot «]))+ || I2]])
does not depend on e. Since 7 € I'\ T'c((p), we have ||7 — {p|| > ke that together with (5.4)
imply the estimation |£2r — &20| > kqo|sinale, and, thus,

1
el —
= kol sinq|

|27 — a0l (5.20)

Then, using inequalities [§27 — &2| = [§2r — §20 — |€2 — 20!, [§2 — &20] < [|C = Coll = ¢, and (5.20),
we obtain the following inequality:

1

ko|sinal —1
kq| sin o

|§2r — &2| > (1 > |§27 — &20| = 1§27 — a0 (5.21)

ko | sin
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Finally, by virtue of inequalities (5.21) and (5.4), we continue to estimate A:

p<Cokelsinal [ el - el

“kolsinal -1 |€ar — E20]?
MI'e(Co)
Ckq|sinale / Mud |
~sin? a(kqlsinal — 1) I — Coll?
Chac W (n)
’ de
~|sinaf(kq|sinal — 1) / n? a.r(n),
[k:aa,dr]

and, using Lemma 5.1.1(7¢) and assumption (5.5), we verify that A vanishes as ¢ tends to
Zero. O

In the following proposition we prove the existence of some limiting values of ®3 on the
curve I'.

Proposition 5.3.3. Let I' be as in (5.5) and ¢ : I' — R satisfy (5.6). Then there exists the
limiting value ®3({y) of the function ®3(() when ( tends to a point (s € ' along a curve
v C E3\ X9 satisfying (5.13). Moreover,

1 1 Yr
(CO) i /(80(7) —¢(C0)) <£2T 520 Yr (52752())(15%) V(o €T

r
Proof. To begin with, we note that ®3 can be represented as follows

NN e 1 Yr =y
#3(0) = 57 [ (0(r) = plco) (g — = adeer ) 0

T
©(Co) 1 Yr — Y
o F/ (@T —§2d (b2r — &2)2 ngT)

for all ¢ € F5\ X9 and for any (p € I'. By a straightforward integration, one can compute the
second integral in (5.22). Accordingly, we have

e VLl

Now we consider the first integral in (5.22). Our aim is to prove that ®3 has the limiting
values @3({0) at all points (y € I', when ¢ tends to the point (y along a curve v C E3 \ X5
satisfying (5.13). And to do so, without loss of generality, we take € = || — (p|| smaller than
dr/ke and consider the following difference

1 Yr — Y
J 60— et (g - 6 — &) i)

r

1 Yr
_/(SD(T)_MCO)) <§27 520 T  (&r - 620) d§27>

r

= [ totn) = et (g - e ) o
T (¢o)

1 Yr
_F ({)W(T)_SO(CO)) (527 520 vr (& — 520) d§2T>

&2 — &0 Yr — Y Yr
*F\F/(C)“D(T)S”“O))((f%—sz)(ng—520>dyT Ryl R ey df%)

(5.22)
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Since the integrals in the right hand side have been estimated in Lemmas 5.3.1-5.3.2, we
use those estimations and obtain the following result:

. 1 Yr — Y
§%1Clg,n<€v F/(SD(T) ~ (o)) (fQT — fzd (&2r — &2)? d§2T>

= [t6) ot (et — Ly, ) p = ()

§or — &20 (E27 — &20)?

for any ~y satisfying (5.13) and (y € T. O

5.4 On the existence of limiting values of ®3 on the surface 3.,

The method applied in Section 5.3 to prove the existence of EI\>3 on the curve I' does not work
when we consider the whole surface 5 instead of I'. But the existence of limiting values of ®3
on the surface s can be proved under some additional assumptions.

The following proposition is true.
Proposition 5.4.1. Let T be as in (5.5). Let ¢ : T' — R be absolutely continuous on T' and

satisfy (5.6), and ¢’ satisfy (5.6). Then for all o 1= Zoe1 + Yoez + Zoez € Xa, the function
®3(C) has limiting values (I%(Co) when ¢ approaches (y from H;E. Moreover,

~_7 ) — 1 Yr
@m—mﬂw>wmQ%&or@”&wm)

(' (1) = ¢ (C0)) (T — Co) " drp — (yo — T0)¢' (Co)p Vo € T,
(5.23)
§or — €20 (§2r — &20)?

(¢ (1) — &' (Co)) (T — Co)Mdrp V(o € o,

/

55 00) = o [ (60 = 0(@)) (g — e ) o
r
/

where the point (o € T is such that f2(¢o) = f2((o).

Proof. Keeping the definition of ®3 abd equalities (5.9) and (5.2) in mind, we can represent
the function ®3 as follows

_i 1 Y-y cot o ©2(&27)
3(¢) _27ri/ (") (527 52 (&2r — &2)? d&T) - 2mi €ar _§2dz7p
D () (5.24)
_L zTcotOz—zvcotoH-yU—ydE
2w | PTG ey .
Dy ()

for all ¢ € E5\ ¥3. The absolutely continuity of ¢ on I' implies that ¢y is absolutely
continuous on Dy(I") due to the definition of ¢o. Also, taking the absolutely continuity of
(2r cot a — z, cot a + y, — y) /(€2 — €2)? on Do(T') into account, one can integrate by parts the
last integral in (5.24) which is taken in the Lebesgue-Stieltjes sense (see, e.g., Kamke [64, Sec.
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9.42]). Hence, we have the following:

1 Zreota — zycota+ 1y, — ¥y
_ - d€ar
omi | 280 (Sor — &2)? &
Dy (T")
— [ ealear)(ercot tat s~ ) ()
57 A p2(&27)(zrcota — zycot a4+ 1y, — ¥y or — &
D2

=9 / £2T 2 d (p2(&27) (27 cot @ — 2z cot a + Yy, — )

D»(T)
1 , zrcot o — z, cot o+ Yy, — Y cot o v2(&ar)
. i dgay — ¢ dzr 5.25
omi | &) b — & oo | eog®r 0P
D5y (T) D, (T)
Then, equalities (5.24) and (5.25) imply that
1 zrcota — zycota+ 1y, —y
o = —— H(Eor d&or
3(0) = —5 - / ©3(82r) r— §orp
Do (T)
for all ¢ € E5\ Xo.
Now, taking equality (5.9) into account, we rewrite ®3 as follows
1 (zr — 20 + 20) cot a — zy, cot v + Yy, — y
P = 5 . : T d T
3(¢) 57 / P (E2r) r— §arp
Dy (T)
cot «
=5 / 802(527)5 - _5 > dEarp
Do (T")
_zZpcota—zycota+y, —y ©h(&ar) derrp
271 or — &2
Dy (T")
cot Yo—Y ©5(&2r)
_ . O dgyp— =Y [ 228y
57 / v(&2 )é’ 52 Eorp = 75— / r— &2
Dy (T) Do (T)
= —cotaAi(&)p — (Yo — y)A2(&)p (5.26)

for all ( € E3\ X9. Then we want to investigate the behavior of Aq(-)p and Aa(-)p on Xs.
We begin with Aj. Setting ¢(&2r) := @' (&27) (27 — 20) for all &, € Do(T), we observe that ¢
vanishes at & and is Dini-continuous on Dy(T") due to the Dini-continuity of ¢’ on I' (see
Lemma 5.2.1(7i7)). Now, we apply results of Gerus [49] to A; and deduce that A; is continuous
on Dy(T"). Accordingly, we have

1 . .
A1(&2)p — 3 / @5(5%)%%%0 as ¢ — Co- (5.27)

Do (T)

Moreover, the integral in (5.27) can be written as follows (see Plaksa and Shpakivskyi [127,
p. 125):

L 1 o
— / @é(&ZT)mdeTp - _ (102(52 ) (p2(€20)d27p

27 271 §o2r — €20
D2 (T) D2 (T)
1 (p2(82r) — pa(620))(2r — 20)
2mi / (2r — &20)? e (5.28)
Da(T)
1 1 Zr —

—— (p2(&2r) — ¢2(£20)) <

21
Do (T)

§or — &20 a%r = (&or — 520) déQT)
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Now, we turn to the consideration of Ay(-)p. The Dini-continuity of ¢’ on I" and Lemma
5.2.1(#i7) imply the Dini-continuity of ¢5, on Do(T"). Thus, the integral A2(£2) can be continuously
extended onto Da(T") (see Gerus [49]) from the interior and exterior domains bounded by Ds(T'),
and, consequently, Az(§2)p has limiting values at all points (o € ¥5. Denote by A (&20)p the
limiting values of A2(&2)p when ¢ — G, C € Hi Since the condition ¢ — (o 1mphes that
& — £90, one can easily see that

A3 (&20)p :% / %(52;) — ?220(520) d&arp + P5(€20)p;
P (5.29)
_ 1 3 (Ear) — ¢5(€20) '
Ay (€20)p =5 / F— déarp.
Do(T")

Finally, using conditions (5.26), (5.26), (5.28), and (5.29), we obtain

1,5, cota _ 1 &=
"G =5 (/F (o)~ ) (e tor o aoadear) s
- y027—Tiyo / 902(5;;3 :21(£20)d§270 — (30 — Go)#a(E20)p Vo € T,
Ds(I)
cot a 1 Zr —
o3 (Co) = s D{F) (p2(E2r) — ¥2(&20)) <§27 e dzr — 6 = 520) d§2r>
Yo — Fo 05 (&2r) — £5(20) :
e (/F e Qe Voo € T,

where @?(g:g) are the limiting values of the function ®3(¢) when (¢ tends to the pomt Co €3y

from TI§. Then, using equalities (5.9), (5.2), and (4.3), one can easily represent ®((p) as in
(5.23). O

We observe that for all {; € T, the value of the functions ®3 (¢p) and ®3(lp) coincide.

5.5 On the existence of limiting values of ® on the boundary
of domains of its definition

In this section we present sufficient conditions for the existence of limiting values of the function
® on the set X1 UXs. These results follow from Propositions 5.2.2, 5.3.3, 5.4.1, and the following
equality

() = 1(C) + P2(¢) + P3(¢)  VC € B3\ (X1 U ). (5.30)

We find it convenient to formulate the results in two theorems. In the first one, we prove the
existence of limiting values of ® on the set (3 \ X2) UT.

Theorem 5.5.1. Let T' be as in (5.5). Let ¢ : I' — R satisfy (5.6). Then the following
statements hold:

(i) For all {y € X1\ Xo, the function ®(() has limz’ting values ®F((p), @~ (Co), @E(Co), and
¥ ((o), when ¢ approaches o from the sets IIT NTI, TI; NI, T NI, and I N1I3,
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respectively. Moreover,

(&) = 5 [ (60) = PG = &) + 0l
r
(&) = 5r; [ (60 = PG (= &)l
o ] (5.31)
(%) = 5 [ (6(0) = PG = &) + wlG)
~ 1 ' -
(%) = 5 [ (60) = PG (= &) + oG
r

where the point ¢y € T is such that f1(¢o) = f1((o).

(ii) For all {y € T, the function ®(C) has limiting values ®T(Co), D~ (Co), DE(Co), and BF((p),
when ¢ approaches (y along a curve v C E3\ (X1 U X9) satisfying (5.13) from the sets
07 NI, Ty NIy, Of N5, and T N1, respectively. Moreover,

B00) = 57 [ (60) = PG = G) M + 0l
r

B(00) = 5r; [ (40— PG (= ) ldr
r

B4(00) = 5 [ (6(7) — 9T = G0) M + (o)
r

B7(60) = 5 [ (6(7) = 9T = )N+ el
r

and

Ot (o) — @ (¢o) = 9(C) VG €T,

Proof. We begin with (7). To prove it, we want to exploit equality (5.30). First, we note that
the function ®; has limiting values on ¥; \ 32 due to Proposition 5.2.2.

Then, since ®3 and ®3 are continuous on ¥; \ X2, we can represent their sum in the following
form:

Do((o) + P3(Co)

1 yr —
761 I — y - —L e,
27”/52T J2(¢o) oot 2m r/ ( — fa( Co (§ar — f2(C0))? @ )

:217”} (p(r) — olco))(r — &) NdrEy + £ / et
@(CO) Yr — Y
" om F/d<§2f—f2(§o)>p
_ 1 53— ¢ (Co) 1
- F/ (o) = plGo))(r = &)y + £ F/ e, (5:32)
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for all o € ¥1 \ Xo, where the point ¢y € I is such that f1((p) = f1(Co). To get equality (5.32),
we used the following relation

Yr

- 1 1
— o) Nt ly = ——————dEo Iy + ————dy,p— — L
(7 =) drh, Srl2 + Y e — B

desrp,  (5.33
€2r — 2(Co) €2r — 2(Co) Srpr (5:33)

that can be verified by using (4.3).
Moreover, the following equality holds:

SO(CO)]éa if 50 € H;v
2m / - f2 o derl = {07 g (5.34)

it (o elly.

Now, one can see that equality (5.30), Proposition 5.2.2, and equalities (5.32), (5.34) imply
the validity of statement (7).

We turn to the consideration of (ii). To prove it, we just note that functions ®; and ®o
have limiting values on I" due to Proposition 5.2.2, and ®3 has the limiting values </153 on I' due
to Proposition 5.3.3. Thus, the validity of statement (i7) follows from equality (5.30) and two
mentioned propositions. ]

In the following theorem we impose stricter conditions on the function ¢ what allows us to
extend the existence of limiting values of the function ® onto the whole surface Y.

Theorem 5.5.2. Let T be as in (5.5). Let p : T'— R be absolutely continuous on T’ and satisfy
(5.6), and ¢’ satisfy (5.6). Then the following statements hold:

(i) For all {o = Foe1 + Goea + Zoe3 € Yo \ By, the function ®(C) has limiting values ot (),
d=((o), *(o), and qﬁ(CO) when ¢ approaches (o from the sets TIT NTIT, T} NI,
I NI, and I NIIJ, respectively. Moreover,

(&) = 5 [ (B0 =BG = Gy M+ B(6o)
r
(&) = o [ (B0~ B~ &) lar
o ) (5.35)
(&) = 5 [ (B0 =BG = &) + HG,
T
%) = o [ (B0~ BG@) (= &) + HG
I

where 3(-) == ¢(-) — (yo—o)#'(-)p on T, and the point (o € T is such that f2(¢o) = f2(Co)-

(i) For all {o = Zoe1 + Goea + Zoes € o N X, the function ®(C) has limiting values ot (o),
d=((o), (o), and ®F((y), when ¢ approaches o from the sets o NIy, 1, NIy,
Hf NIL;, and II7 N H;, respectively. Moreover,
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(&) =57 [ (#7) — G = Go) Ny + (G
I
+ o [ (@0 = BN - )Nt + 3G e
T
© (&) =57 [ (6(7) — G = Gy

I
4o [ @) = BN - ) s

) " (5.36)
(%) =5 [ (6(7) — @) = Gy
r
Fol@N + 5 [ (B) = B@)( — o) dr,
r
(&) =5 [ (6(7) — @) = Gy
r
t o [ (B0) — B — o) Ndrhy + B(Go) o

where ¢(-) is the same as in (5.35), and the points (5, Co € I' are such that f1(¢5) = f1 (&)
and f2(¢o) = f2(Co). Moreover,

T (Go) — 27 (o) = &(G) VG T

Proof. We first consider the functions ®s and ®3. By virtue of Propositions 5.2.2 and 5.4.1,
®, and @3 have limiting values at all points of ¥5. Furthermore, using equality (5.33) with
Co = (p, we observe that

B3+ 21 (60 = 5 [ P0) =000 ye, 1, + (G

2mi §or — &20

1 1 Yr
+ Py F/(‘P(T) — ¢(Co)) (527_ . dyr — (527520)d€2T>
SB[ () = ) — o) o = (0 — )¢ Gl
. r (5.37)

=5 | (1) = @(C))(T ~ o) M Iy + ¢(Co) 12

T

-t / (/(7) ~ (@) — o) drp
— (Yo — Go)p / (r—Co) tdrly + 3(Co) I
T

for all {y € ¥y. Similarly, we obtain

1 ~
5 (Co) + 5 (o) 2/ (r—¢)~'drly ¥ € Xa. (5.38)
T
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Now, we consider the function ®;. First, let 50 € 39 \ ¥1. Obviously, ®; is continuous on
Y5\ X1, and, thus,

(¢ déi- 1

@) 27”/517 fi Co)

©(Co) 1
d 1r - —d&1- 1
27?1/517 f1 il 2mi F/&T—fl(Co) “arh

(6() ~ eleo))(r — o)y + A / gt

271'1
I

for all {y € Xy \ ¥1, where the point ¢y € T' is such that f2((o) = f2((o). Also, since @I = @I
on I', we can write ®1 as follows

D1 (o) = !

2mi

~ ~ N $(Co) 1
F/(SO(T) ~ PN — Q) drh + 2 F/ éir — f1(§0)d€h[1 (5:39)

for all ¢y € X9 \ X1. Moreover,

5(Co) L if G € IO,

2772 / §1r — f1 (Co)

Then, equalities (5.30), (5.37), (5.38), (5.39), and (5.40) imply the validity of statement (i).

Now, we consider the case when ¢y € 5 N Y. Clearly, ®; has the limiting values (I)i(€0>

on Yo N X1 due to Proposition 5.2.2. Furthermore, using the identity ¢l = @Iy on I, <I) (¢o)
can be expressed by the followmg formulas:

27TZ/§1T f1 dgT TeG)h

“oni | (B(7) = BT = Co)~Hdrly + GG, (5.41)
- ©(65) 1 [ . o
") 2m/ e e = 3 [ 0 =t =Gt

for all {y € ¥1 N ¥y, where ¢ € T is such that f1(¢5) = f1(Co).
Then, the validity of statement (i) follows from equalities (5.30), (5.37), (5.38), and
(5.41). O

Theorems 5.5.1, 5.5.2 tell us that, under the suitable assumption, the integral defined in
the right-hand side of (5.7) can be continuously extended onto the boundary of each domain of
definition. We also observe that its limiting values are represented by different formulas on
different parts of the union X U Xs.

Remark 5.5.3. We note that one can prove the existence of limiting values of ® by using
assumptions on the curve I' and the function ¢ different from those in Theorems 5.5.1, 5.5.2.
In particular, one can use the assumption that the curves D1(T') and D2(T) are quasiconformal
(see, e.g., Lehto and Virtanen [89]). Indeed, if D1(I') and D2(T") are quasiconformal, the
function ¢ : T' — R is continuously differentiable on T, and ¢’ satisfies (5.6), then one can
prove the validity of equalities (5.31), (5.35) and (5.36). The proof is based on Lemma 4 of
Gerus [50] and Theorems 5.5.1, 5.5.2, and it can be done similarly to the proof of Theorem 4.2
in Plaksa and Shpakivskyi [127].
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We also note that one can consider analogs of the Cauchy type integral in other commutative
algebras. Comparing Theorems 5.5.1, 5.5.2 and the results of Plaksa and Shpakivskyi [127],
one can note that an increase in dimensionality of the radical of a commutative algebra leads
to an increase in number of domains of definition of such an integral, and to an increase in
number of forms for its limiting values.



APPENDIX A

Results of classical potential theory on the layer
potentials

In this appendix we collect some results of potential theory for the classical layer potentials.

Let a €]0,1] and T be an open bounded connected subset of R of class C1®. Let v denote
the outward unit normal to 0l. We define functions harmonic at infinity by means of the
following (see, e.g., Folland [47, Prop. 2.74, p. 114]):

Definition A.0.1. We say that a harmonic function uw on R™ \ cll is harmonic at infinity if it
satisfies the following condition

sup [z["*[u(z)| < oo
lz|>R

for some R > 0 such that cll C B, (0, R).

We now introduce the classical single (or simple) layer potential v[0], 6] and the double
layer potential w[Ol, §] with moments @ for all § € L?(9) by setting

v[0L, 0](t) = . Sn(t —s)8(s) dos vt e R",
0

w(0L, 0](t) := 1 D

Sp(t —s)8(s) dos vt e R".

We have the following result.

Theorem A.0.2. Let a €]0,1[. Let I be a bounded connected open subset of R™ of class C1.
Let R > 0 be such that cll C B, (0, R). Then the following statements hold.

(i) Let 0 € C°(01). Then the function v[0L, 0] is continuous on R"™ and harmonic in R™ \ L.
If n =2 then the function v~[0L, 0] = v[0L, 0]jgn\1 is harmonic at infinity if and only if
Jop 0do = 0. If s0, then lim;_,oo v~ [OL, 0](t) = 0. If n > 3, then the function v=[9L, 6] is
harmonic at infinity.

(it) If 6 € CO*(9N), then v*[9L,0] = v[L, 01 € CH*(cll), and the map of C**(dl) to
CH(cll) which takes 6 to v*[0L, ] is linear and continuous.

loc loc
which takes 6 to v~ [ON, 0] g\ is linear and continuous.

(iii) If 0 € CO*(9L), then v~ [OL, 0] gn\; € CL*(R™\1), and the map of C%*(81) to CL*(R™\1)

(iv) Let @ € CO*(01). If n =2 and [, 0do = 0, then the function v~[01,0] € CH*(R™\I). If
n >3, then the function v~ [0L, 0] € CH*(R™ \ T).
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(v) If § € C%(9N), then the function

wy[0L, 0](t) = | DSyt — s)vi(t)0(s) dos vVt e oI,
ol

belongs to CO%(9). Moreover, the following jump formulas hold:

o .1
%v [OL, 0] = —50 + w,[0L, 0] on Ol
9 one = Lo rwione  on ar
oV O 0] = 50 + w. (L, 0 :

Proof. For the proof we refer to Folland [47]. The proof of regularity results can be found in
Miranda [106] and Lanza de Cristoforis and Rossi [87, Thm. 3.1]. O

In the Dissertation we also use the following results.

Lemma A.0.3. The maps 0 — 10 + w.[0L,60] and § — —360 + w.[0L, 0] are bounded linear
isomorphisms from C%(dl)q to dtself.

Proof. Since § € C%(91)q, we have that fm fdo = 0 and, thus, the validity of the statement
follows from Folland [47, Ch. 3.E]. O



APPENDIX B

Results on periodic layer potentials

In this appendix we collect some results on the periodic layer potentials and we begin with the
following one for a periodic analog of the fundamental solution of the Laplace operator.

Theorem B.0.1. The generalized series

1 St
Sqm(x) = _ Z We%ﬂ(q z)x 7
ZGZ"\{O} 47T |q Z| |Q’n

defines a tempered distribution in R™ such that Sy, is g-periodic, that is,
S‘Ln('—i_qjjej) :Sq,n(') Vj e {1727"‘7”}7
and such that

Z(qu_ina

ZEL™
where 0. denotes the Dirac measure with mass at qz, for all z € Z™. Moreover, the following
statements hold.

(1) Sqn is real analytic in R™ \ qZ"
(1) Rqn = Sqn — Sn is real analytic in (R™\ ¢Z™) U {0}, and we have

Mun= 3 8- o
2€7Z7\{0} n

(iii) Sgn € Li (R™).
(tv) Sgn(x) = Sqn(—2z) for all x € R™\ ¢Z".

Proof. For the proof we refer to Lanza de Cristoforis and Musolino [81, Sec. 3] (see also
Musolino [117, Thm. 2.1}). O

Then let o €]0,1[ and g be as in (1.8). We now introduce the periodic single (or
simple) layer potential v,[0€q, #] and the double layer potential w,[0€¢, 6] with moments 0
for all § € L?(01) by replacing S,, by S, in the definitions of classical layer potentials (see
Appendix A). Thus, for all # € L?(9I), we set

v4[09Q0q, 0] / Sen(x —y)0(y) doy Ve € R",
990

wq[09Qq, 0] () = - msq n(z—1y)0(y)doy Vz € R™.

We have the following results.
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Theorem B.0.2. Let a €]0,1[. Let Qg be as in (1.8) and 0 € CO¥*(0Q). Then the following
statements hold.

(1) The function vy[0Qq, 0] is continuous on R™ and q-periodic, i.e.,

Uq[aﬂQ,e](t—qujej) :vq[OQQ,H}(t) VteR", Vje{l,2,...,n}.

Moreover,
Avg000,01(t) = ——— [ 6(s)do, Vit € S[Qg] US[Qq]".
Qln Joo
(ii) The functions
v (090, 0] = 141090, 0)|asiag) Vg [092q, 0] = vq[00¢q, 0] |c1sjag) -

belong to Cy®(cIS[Qq]) and Cp(cIS[Qq]™), respectively.

(iii) The map 0 — v;r 090, 9]|le@ of CY*(00Qq) to CH(clg) is linear and continuous. Let
V' be a bounded open connected subset of R™ such that clQQ CV and

cdVnel(Qg+qz)=0  VzeZ"\ {0}

Set
W=V \clQq.

The map 0 — vy [0Qq, 0] jaw from C¥*(00q) to CH*(cIW) is linear and continuous.

(iv) The function

wq«[0, 0] () = - DSy n(z — y)va, (2)0(y) doy, Vo € 09q,
Q

belongs to C%*(0Qq) and the following jump relations hold:

0 1
g vl 09q, 0] = —50 + wq [0, 0] on 09Qq,
_ 1
qu [OQQ, 9] = 50 —+ wqy*[GQQ, 9] on 89@

(v) The map 0 — wy 4|00, 0] from C%*(90q) to CO*(9Qq) is compact.
(vi) If 0 € CO*(0Qq)o then wy«[0Qq, 0] € C¥*(9920)o-
(vii) The map 0 — wq.[0Qq, 0] from CO*(0Qg)o to CO*(90g)o s compact.

Proof. For the proof of (i)-(iv) we refer to Lanza de Cristoforis and Musolino [81, Thm. 3.7].
The proof of (v)-(vii) can be found in Dalla Riva and Musolino [35, Lem. 4.2(4i7)]. O

We also formulate some properties of the periodic double layer potential, which are proved
in Musolino [117].

Theorem B.0.3. Let o €]0,1[. Let Qg be as in (1.8) and 0 € C%*(8Qq). Then the following
statements hold.

(i) Let 0 € CO*(0Qq). Then wy[0Q0,0)] is q-periodic and

A(wy[09q, 0])(x) =0 Vo € R™\ 0S[0€q].
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(i) If 0 € CH*(0Qq) then the restriction we[0Q¢q, Ol|sja,) can be extended uniquely to an
element w} [0Qq, 0] of C1*(cIS[Qq)), and the restriction w, [0, Olising)- can be extended
uniquely to an element w; [0, 0] of C3*(cIS[Qq] ™), and we have

w; (00,0 = %9 +wg[0Q0,0]  on 09g.

(iii) The map 6 — w][0Qq,0] from Che(00q) to C’f’a(clS[QQ]) is continuous for all k €
{1,2}. The map 6 — wy [0Qq, 0] from CF(99Qq) to Cg“(dS[QQ]_) is continuous for
all k € {1,2}.

We also introduce the following known results.
Lemma B.0.4. Let o €]0,1[. Let Qg be as in (1.8). Then the following statements hold.

(i) The map from C%*(9Qq)o xR to the Banach subspace of C’;’a(clS[QQ]_) of those functions
which are harmonic in S[Qq]~ which takes a pair (0,c) to v, [082q, 0] + c is a linear
homeomorphism.

(ii) The map from C%*(00q)o xR to the Banach subspace of C*(cIS[Qq)]) of those functions
which are harmonic in S[Qq] which takes a pair (6,c) to v} [0Qq,0] + c is a linear
homeomorphism.

Proof. The proof can be found in Lanza de Cristoforis and Musolino [85, Lem. A.5], [83,
Lem. 3.2]. O
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APPENDIX C

Some results on the Roumieu spaces and the
composition of operators

In this appendix we collect some technical results that we have used in Chapter 3. We retain
here all the notation of Chapter 3 and, briefly, we recall

Q =]0,1[x]0,1], q:(é ?)

We first introduce the following slight variant of Preciso [132, Prop. 1.1, p. 101] on the real
analyticity of a composition operator (see also Lanza de Cristoforis and Musolino [82, Prop.
5.2] and Lanza de Cristoforis [78, Prop. 9, p. 214])

Theorem C.0.1. Let o €]0,1], p €]0,+oo[. Let Qq, ' be a bounded open subsets of R?.
Let ' be of class C*. Then the composition operator T from CJ ,(cl€d1) x C1*(cl¥', Q1) to
Che(clY) defined by

Tlu,v] :=uow, V(u,v) € C’g’p(clﬁl) x CH(clY, ),
is real analytic.

Also, in the following lemma, we show that it is sufficient to work on a suitable neighbourhood
of the periodicity cell when we deal with periodic functions in the Roumieu class.

Lemma C.0.2. Let p €]0,+00[. Let A be an open connected subset of R? such that R? \ clA
is connected and such that

clA C @

Let W be a bounded open connected subset of R? such that
AQCW and cdWn(z4cd) =0 VzeZ?\{0}.

Then the restriction operator from C'g%p(clSq[A]_) onto the subspace

Co, (W \ A) = {v € OO, (clW \ A):
Ju € C(cIS4[A] ™) such that u is G-periodic,v = u‘CIW\A},

of CQ ,(cIW \ A) induces a linear homeomorphism
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Proof. If u e C9, ,(c1S5[A]™), then its restriction wun 4 belongs to CJ,, (clW \ A). Indeed

by the g-periodicity of u we have that

plfl
bup |IB"HD UHCO CIW\A) = bU‘p |6|'||D ||CO(01§\A)

Conversely let v € Cfl] wp(clW \ A), then there exists a unique g-periodic function u from

clS4[A]~ to C such that v = U\CIW\A and clearly u € ng »(clSz[A]7). Then the restriction

operator is a bijection from CJ , (cISg[A]7) to Cf, ,(cIW \ A). Since it is clearly linear and

continuous, then the Open Mapping Theorem implies the validity of the statement. O
We also have the following result.

Proposition C.0.3. Let p €]0,+o00[ and po 6]0 pl. Let Q be an open subset of R? such that
dQ C Q. Let k € N> with || = 1. Ifu € C9, (cIS4[Q7), then D*u € C2  (cIS;[Q]7).

qu ~ q,w,pP0
Moreover, the operator u + D"u from C9  (cIS4[Q]7) to C2, , (cIS4[Q]7) is linear and

q,w,p q,w,po
continuous.
Proof. For u € qu p(clSq[Q]_) we have
\5| \5| (18] + 1) 18]+1
p
DP D" = pi+s -
pex , T 12" 2" loasor) = P A g e il egasiar

1 (po)lb’ﬂ plBIH1 ot
= sup — | — Gl +1 DP ™y A—
ez po \ p (BI+ D legesiar

1 po\ P11 plBl+1 5
< — sup () Bl +1 sup D ul| co s 61—
Po BENQ{ p (161+1) 18] + il legesarr)

L L) g L
< — su — + U IS A0~
PO ﬁel\% P O p(CISall™)

Since pg < p, we have that

po\ A1+
sup {<p> (|ﬁ|+1)} < 400

and, thus, the validity of the proposition follows. O

Finally, we formulate the following technical lemma (see Lanza de Cristoforis and Rossi [87,
p. 166], and Lanza de Cristoforis [78, Prop. 1]).

Lemma C.0.4. Let a €]0,1[. Let  be a bounded open connected subset of R? of class CH*
such that R?\ clQ) is connected. Then the following statements hold.

(i) For each ¢ € ApnNCYH (00, R?) there exists a unique &[¢] € C¥(9) such that 5[¢] > 0

and

/ wis) do, = / wo d)olAl(w) doy, Ve € L (p(09)).
$(89) Fe)

Moreover, the map ¢ — &[@] from Agq N CH2(0Q,R?) to C¥*(99) is real analytic.

(i) The map ¢ v~ vyg) © ¢ from Asn N CLo(09Q,R?) to C%*(9Q, R?) is real analytic.
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