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Abstract

This doctoral dissertation is concerned with the study of static and dynamical observ-
ables of random graphs, with a particular attention to concentration phenomena and
phase transitions. The thesis is divided in two parts.

The first part of the thesis is devoted to the asymptotic analysis of two types of
static graph observables. In the first chapter, we analyze the edge-triangle model, a
random graph exhibiting dependence among edges. We prove concentration of the tri-
angle count and, for some approximations of the model, we obtain more refined results
including standard and non-standard central limit theorems, depending on the value of
the parameters. In a mean-field setting, our results are supported by simulations. The
results rely on large deviation principles and the analyticity properties of the free energy
of the model. In the second chapter we consider a family of inhomogeneous directed ran-
dom graphs, which includes the Chung–Lu directed graph and stochastic block models,
and we consider their adjacency matrices. We establish the existence of eigenvalues out-
side the bulk of their spectrum, for which we prove Gaussian fluctuations. The results
are based on the trace method and a perturbative analysis.

In the second part of the thesis, we consider the simple random walk (SRW) on
directed random graphs, we characterize its mixing properties and we give particular
emphasis to the cutoff phenomenon. In the third chapter we analyze the SRW on the
Chung–Lu directed graph. For this dynamics we prove the occurrence of the cutoff
phenomenon at entropic time. We characterize the size of the cutoff window, in which
the total variation profile converges to a universal Gaussian shape, independent of the
parameters. Finally, the fourth chapter is concerned with the mixing properties of the
SRW on a directed graph exhibiting a community structure, corresponding to a directed
version of the stochastic block model. For this model we show the occurrence of a mixing
trichotomy, related to the strength of the community structure. In particular, we identify
three mixing regimes, where the cutoff survives to the bottleneck perturbation or is
substituted by an exponential relaxation, and we provide a first-order characterization
of the total variation profile. A substantial part of the analysis is given by a control on
the homogenization of the random environment.
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Sommario

Questa tesi dottorale si occupa dello studio asintotico di osservabili statiche e dinamiche
nei modelli di grafi aleatori, con particolare attenzione ai fenomeni di concentrazione e
alle transizioni di fase. La tesi è suddivisa in due parti.

La prima parte è dedicata all’analisi asintotica di due tipi di osservabili su grafi. Nel
primo capitolo analizziamo il modello edge-triangle, un grafo casuale che presenta dipen-
denze tra gli archi. Dimostriamo la concentrazione del numero di triangoli e, per alcune
approssimazioni del modello, otteniamo risultati più raffinati, che includono teoremi di
limite centrale, sia standard che non standard, a seconda del valore dei parametri. In un
contesto di tipo mean-field, i nostri risultati sono supportati da simulazioni. L’analisi
si basa su principi di grandi deviazioni e sulle proprietà di analiticità dell’energia libera
del modello. Nel secondo capitolo consideriamo una famiglia di grafi casuali diretti in-
omogenei, che include il grafo di Chung–Lu e lo stochastic block model, e ne studiamo
la matrici di adiacenza: dimostriamo la presenza di autovalori al di fuori del nucleo
principale, per i quali otteniamo fluttuazioni Gaussiane. I risultati si basano sul metodo
della traccia e su un’analisi perturbativa.

La seconda parte della tesi riguarda l’evoluzione della passeggiata aleatoria semplice
su grafi casuali diretti. In particolare, ne caratterizziamo le proprietà di mescolamento,
dando enfasi al fenomeno del cutoff. Nel terzo capitolo analizziamo la passeggiata
aleatoria semplice sul grafo diretto di Chung–Lu. Per questa dinamica dimostriamo
l’occorrenza del cutoff a tempo entropico. Caratterizziamo inoltre la dimensione della
finestra di cutoff, all’interno della quale il profilo della variazione totale converge a una
forma gaussiana universale. Infine, il quarto capitolo riguarda le proprietà di mescola-
mento della passeggiata aleatoria semplice su un grafo diretto con comunità, corrispon-
dente a una versione diretta dello stochastic block model. Per questo modello, mostriamo
l’esistenza di una tricotomia nel comportamento di mescolamento, legata all’intensità
della struttura di comunità. In particolare, identifichiamo tre regimi distinti, in cui il
cutoff sopravvive alla perturbazione oppure cede il posto a un rilassamento esponenziale,
e forniamo una caratterizzazione al primo ordine del profilo della variazione totale. Una
parte sostanziale dell’analisi è data da un controllo sull’omogeneizzazione dell’ambiente
casuale.
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Introduction

Complex networks represent a ubiquitous and modern tool for modeling real-world sys-
tems. They are natural to describe, and they are perfect for applications in biological,
social sciences, computer science, and economics. The enormous list of available ex-
amples includes collaboration or social networks, webpage and internet architectures,
microscopical structures describing proteins and polymers, transport and energy grids
(see the reviews Albert and Barabási [2002], Newman [2003]). All these instances are
given by a finite but large number of elements. More remarkably, although they come
from completely different environments, they often share relevant common features, such
as inhomogeneity, scale-freeness, and small-world properties.

These common tendencies have led to the possibility of modeling a large class of net-
works through simplified probabilistic models. In this sense, random graphs represent a
young and versatile field of research that occupies a central role in the modern mathe-
matical framework. In the last three decades, there has been an explosion in the number
of contributions in this field, and its growth rate has been substantially stable in recent
years. Many models have been designed to reproduce various asymptotic features as the
size of the network grows. For example: Stochastic Block Models exhibit community
structures and are used for community detection purposes (see Abbe [2018]); Chung-Lu
graphs (see Chung and Lu [2002b]) and other inhomogeneous graphs provide networks
with huge hubs; preferential attachment models describe small worlds (see Albert and
Barabási [1999]); exponential random graphs exhibit prescribed expected local densi-
ties and capture clustering (see Strauss [1986]). See the books Bollobás [2001], van der
Hofstad [2016, 2024], Newman [2010] for an introduction to random graphs.

A crucial aspect for most of these models lies in the dependence on external param-
eters, which can originate many non-trivial and interesting behaviors. In fact, the large
size of random networks allows them to exhibit an important feature, called complexity.
A system with a finite number of agents is said to be complex if, despite a simple formu-
lation, the behavior of its macroscopic observables does not depend linearly on external
parameters and cannot be easily determined as the number of agents grows. In partic-
ular, in the thermodynamic limit, where the ”volume” of the systems diverges, slight
variations in the parameters can produce huge qualitative and quantitative changes.
Such thresholds in the nature of a system are referred to as phase transitions, and in
the literature, there are plenty of probabilistic models that present such behavior. Their
study has become a great source of mathematical problems, giving birth to an actual
branch of discrete mathematics lying at the interface between probability and theoretical
physics. Among the most famous examples in statistical physics, it is worth mentioning
lattice systems such as the Ising model and percolation. Analogous threshold phenom-
ena arise naturally in the context of random graphs regarding global properties, such as
the size of connected components component, typical distances, local features, such as
the density of certain substructures, and even dynamical observables.
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Useful notation

In general, a random graph is a sequence of random variables, say (Gn)n∈N, defined on
a common probability space (Ω,F ,P). For each n ∈ N, Gn takes values in a suitable space
Gn of graphs with n vertices and satisfies suitable consistency conditions. Equivalently,
a random graph can be seen as a choice, for every n ∈ N, of a probability distribution
on Gn. This also defines a probability measure Pn. Graphs can be simple or have multi-
edges, they can be undirected or oriented, and the right specification of the graph set
allows random graphs to cover a wide range of applications.

Although a rigorous formalism is more than satisfactory, it is sometimes more intu-
itive to define random graphs via algorithmic stochastic procedures. The easiest example
of a random graph is the Erdős–Rényi random graph. In this model a parameter p ∈ [0, 1]
is fixed and edges are included in an empty graph with vertex set [n] := {1, 2, . . . , n},
independently and with probability p. This procedure results in a given simple graph G

with |E| edges with probability p|E|(1 − p)(
n
2)−|E|. Although very simple to define and

interesting to study, the Erdős–Rényi model constitutes a pure mathematical abstraction
rather than a physically descriptive model.

Firstly, the Erdős–Rényi graph exhibits edge independence. This property facilitates
the achievement of exact limit statements, but it is not present in real–work networks.
This can be easily motivated, for example, in the context of social networks; if two
people share a common friend or interest, it is more likely that they form a connection
themselves. Exponential random graphs, which are part of the contents of this disserta-
tion, go beyond this constraint, allowing edge dependence and allowing the probability
density associated with the graph to depend on prescribed fixed subgraph densities.

Secondly, the Erdős–Rényi graph is a homogeneous random graph, which is another
unrealistic property for most networks. For this reason, many generalizations of this
model have been defined over the years, which keep the independence of edges. An
example, which will be central in this thesis, is the Chung–Lu random graph, which was
proposed and analyzed in Lu [2002] and Chung and Lu [2002b,c, 2003, 2006a,b], and
which is defined as follows. Given a sequence of positive weights (w̃x)x∈[n], corresponding
to the choice of expected degrees, two distinct vertices x, y ∈ [n] are connected by an
edge, independently and with probability

p(CL)
xy = p(CL)

yx =
w̃xw̃y∑
z∈[n] w̃z

∧ 1.

This choice allows to model inhomogeneity, since weights correspond to the degree
tendency of vertices. The model is easily adapted to a directed framework, which is
more suitable for applications to the World Wide Web. Here, two sequences (w̃−

x )x∈[n],
(w̃+

x )x∈[n] with equal sum are taken, and the connection probability is set to

p(DCL)
xy =

w̃+
x w̃

−
y∑

z∈[n] w̃
+
z

∧ 1.

In this dissertation, we present some contributions to the study of random graphs
and the convergence to the equilibrium of random dynamics in such environments. The
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Useful notation

thesis is articulated in two parts that tackle problems related to scaling limits, static
and dynamical phase transitions of random graphs. Both parts are preceded by an in-
troduction and each chapter is self-contained. Although the main mathematical objects
have a consistent notation in the whole manuscript, we warn the reader that there may
be some changes and adaptations from chapter to chapter. For instance, this will be the
case for the notation of the Chung–Lu directed graph.

Part I is focused on the asymptotic properties of the two above generalizations of the
Erdős–Rényi random graph, which are shaped by two different constraints specifications.
In both cases, we are interested in the study of the asymptotics of relevant observables.

In Chapter 1, we consider a model belonging to the family of Exponential Random
Graphs. These graphs generalize the Erdős–Rényi graph by introducing a dependency
between edges, which is modeled by a Gibbs distribution. In this setting, the proba-
bility of a specific graph display is a parametric function of certain subgraph counts.
This corresponds to fixing the expected value of certain subgraph densities and making
certain local structures more or less probable. For this model, we study the asymptotic
behavior of the triangle density, providing a law of large numbers. Then, we consider two
approximations of the model, exhibiting the same phase diagram, for which we prove a
central limit theorem for the triangle density.

In Chapter 2 we consider a family of inhomogeneous directed random graphs, which
includes the Chung-Lu directed random graph and stochastic block models. For these
models, in a non-sparse setting, we study the spectrum of the adjacency matrix, estab-
lishing the presence and the typical scaling the eigenvalues outside the bulk. Then, we
provide a CLT for their fluctuations.

In Part II we are interested in studying random dynamics on random graphs. In
particular, we analyze the mixing properties of simple random walks on random digraphs
(i.e., directed graphs).

In Chapter 3, we study the mixing time of the simple random walk on the Chung–Lu
directed graph. In this setting, we prove that with high probability, the simple random
walk exhibits a cutoff. Moreover, we determine the presence of a window with Gaussian
shape. Both statements hold uniformly in the starting position, namely for the worst-
case and best-case scenarios.

In Chapter 4, we study the mixing time of the simple random walk on a directed
stochastic block model. This random graph is inspired by the classical stochastic block
model and exhibits a community structure. Building on the results coming from Chapter
3, and some technical analysis of the first community jump time, we establish a mixing
trichotomy, namely the existence of three mixing regimes. In particular, depending on
the strength of the community structure, there is a fast mixing phase where the random
walk exhibits a cutoff at entropic time, a slow mixing phase, where the random walk has
a limit profile with exponential shape, and a critical phase, where the two mechanisms
enter in competition.
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Useful notation

We conclude the introduction with a few comments on the chosen regimes.
The specification of exponential random graph that we consider is suitable for the dense
setting. The graphon formalism and the overall approach that will be used later is
meaningful for graphs such that parameters and average edge densities are bounded
away from zero. Sparse instances of this model may be considered by letting parameters
vanishing as the number of vertices grows, or passing to a micro-canonical setting with
a conditioned number of edges. However, these are typically harder to study.
For the analysis of the directed Chung–Lu model, we consider a non-sparse regime where
the average degree grows at least polylogarithmically in the size of the graph. This of
course includes the dense regime. This condition is required for the appearance of outliers
in the spectrum of the adjacency matrix and to provide a control on error terms, in
accordance with the undirected setting. For what concerns the mixing analysis, a dense
regime would constitute a huge speeding factor, since the random walk is expected to
mix in a constant number of steps. On the other side, to have a well defined problem,
the simple random walk has to be irreducible, and in a directed setting this happens
when average degrees are at least logarithmic, which is our assumption.
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Introduction to Part I

Given an instance of a large real-world network, identifying the best theoretical model
that captures its features is a crucial task. Understanding the asymptotic properties of
a random graph is then very useful for applicative purposes.

As their size grows, graph statistics, despite their discrete nature, can converge to
continuous limits, and there is high interest in establishing their existence and features,
and the same can happen for graphs themselves. For instance, dense graphs can converge
to graphons, namely functions g : [0, 1]2 → [0, 1], which can be endowed with a metric
structure (see Borgs et al. [2008, 2012] and Lovász [2012]), while sparse ones are well
described by local weak limits, which make use of rooted infinite trees to describe the
neighborhood of a fixed vertex in the limiting structure (see Benjamini and Schramm
[2001] and van der Hofstad [2024]).

Concerning graph observables, many issues can be considered and examples involve:
metric properties, such as diameter and typical distances; combinatorial properties, re-
lated to chromatic numbers and matching issues; global properties, linked to connected
components, expansion, and bottlenecks (which can influence dynamics); local prop-
erties, such as degree distributions, clustering coefficients, and subgraph counts. The
interest is usually quantifying their asymptotic order and the nature of their fluctu-
ations around the mean. Laws of large numbers, Central limit theorems, and large
deviation principles constitute the main target of the analysis. Sometimes, some graph
properties do not hold asymptotically almost surely. In that case, we may be interested
in proving that a statement holds with high probability. Given, for every n ∈ N, a subset
An ⊆ Gn, we say that a family of events, or simply an event, (An)n∈N happens with high
probability (shortly w.h.p.) if

P(Gn ∈ A∁
n) −−−−−→n→+∞

0,

where A∁
n denotes the complement set. In Part I we will analyze spectral observables

and subgraph densities in two different random graph ensembles.

Phase transitions in random graphs

As mentioned, the study of limit properties of networks constitutes an extremely wide
research area, where phase transitions are very likely to take place. The most famous
example is, with no doubt, the one undergone by the connectivity properties of the
Erdős–Rényi graph. In that setting, a relevant scale for the connection probability is
given by the choice p = n−a, for a > 0. Certain values of a > 0 have been shown to be
thresholds for certain (monotone) properties. In particular, a = 1 has been shown to be
the threshold for the presence, with high probability, of triangles and cycles. Moreover,
in the regime p = λ/n, where λ > 0 is constant, λ = 1 has been shown to be a threshold

2



Introduction to Part I

for the existence, with high probability, of a connected component of linear size Erdős
and Rényi [1960]. See Frieze and Karoński [2016], van der Hofstad [2016] for a description
of this probabilistic threshold.

A large deviation principle (LDP), is one of the tools that can reveal the presence
of a phase transition. A LDP corresponds to the determination of a functional, called
rate function, which provides exponential asymptotics for the probability of a family of
events. Studying the minima of the rate function, it is possible to achieve information
on typical realizations. Changes in the number of minima, or their form, are a sign that
a threshold has been attained. See Chatterjee [2016] for an introduction to LDPs for
random graphs. An important contribution in this direction has been given in Chatterjee
and Varadhan [2011], where a LDP for the Erdős–Rényi random graph is derived. Here,
as a byproduct, a LDP for the number of triangles is provided, and the presence of a
double transition for the minima of the rate function can be read. We also mention
other instances of notable LDPs: in Andreis et al. [2021, 2023] a LDP for the empirical
measure of the size of connected components in sparse random graphs is derived; in
Chakrabarty et al. [2022] a LDP for the largest eigenvalue of a dense inhomogeneous
Erdős–Rényi graph is given.

Subgraph densities in exponential random graphs

One question among sociologists is to understand how local communities can affect the
overall network structure. For this reason, the study of subgraph densities constitutes
a usual target in the context of random graphs, which provides good insights on the
network. For example, a high number of triangles implies a high local density and that
the network is clustered. The presence of other structures, such as squares without
diagonal elements, could be typical of more regular lattice geometries.

Exponential random graphs (ERGs) provide a framework where expected subgraph
densities are controlled by external parameters, leading to a flexible modeling. In this
class of random graphs, introduced in Strauss [1986], the probability measure over the
state space is designed to enhance or decrease the probability of certain structures,
biasing their occurrence. Following a statistical mechanics approach, the bias is encoded
by a function called Hamiltonian, contained in an exponential term, and the probability
measure is then a Gibbs distribution. In particular, let Gn denote the set of simple graphs
with n vertices. For a fixed number k ∈ N of simple graphs H1, . . . ,Hk and a vector
of (possibly negative) parameters β = (β1, . . . , βk) ∈ Rk, the associated exponential
random graph has law given by a probability distribution on Gn defined by

Pn(G) = Pn;β(G) ∝ exp

(
n2

k∑
i=1

βit(Hi, G)

)
, G ∈ Gn,

where for i = 1, . . . , k, t(Hi, G) is the homomorphism density of H in G (see Subsection
1.1.1). Due to their versatility, exponential random graphs are widely used for the anal-
ysis and modeling of social multi-layered networks (see Caimo and Gollini [2023], Harris
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[2013], Lusher et al. [2012]). However, statistical estimation is a difficult theoretical
problem. See Fischer et al. [2025], Xu and Reinert [2021], based on Reinert and Ross
[2019], where Stein’s method is employed to this aim. Many important and rigorous
results have been obtained on this model so far in Chatterjee and Dey [2010], Chatterjee
and Diaconis [2013], sometimes imposing constraints on subgraph densities Kenyon and
Yin [2017], Neeman et al. [2023]. In particular, in Chatterjee and Diaconis [2013] the
authors derive a LDP for the model, showing that in a certain regime of parameters,
called ”replica symmetric regime”, minimizers of the rate function are given by constant
graphons. Using this result, Radin and Yin [2013] characterized the phase diagram of
the model, showing the presence of a parametric curve, ending in a critical second-order
point, where the rate function admits two different minima.

There is an active line of literature that is concerned with proving limit theorems for
sums of dependent variables. In the the framework of ERGs, a Central Limit Theorem
(CLT) for the edge density was first established in Mukherjee and Xu [2023] for the
two-star model, a class of ERGs in which edge dependencies arise from the presence of
two-stars (i.e., subgraphs consisting of three vertices with two edges sharing a common
vertex). For this model, correlation inequalities have been derived in Bianchi et al. [2022].
Subsequently, Bianchi et al. [2024] obtained the first CLT for the edge-triangle model, a
specific class of ERGs whose Hamiltonian depends exclusively on the edge and triangle
densities. Their approach employs the analyticity properties of the free energy density.
A LLN and a CLT for the edge density were derived, together with a non-standard
CLT at the critical point for a mean-field approximation of the model. Their result was
later strengthened in the work of Fang et al. [2025a], which not only generalizes, via
Stein’s method (see Stein [1972]), the result of Bianchi et al. [2024] to a broader class of
ERGs, but also makes the CLT quantitative in terms of both the Kolmogorov and the
Wasserstein distance. In the latter, the authors apply Stein’s method Stein [1972] to
prove a CLT for general subgraph counts. This is a powerful technique, also used for spin
systems in Ellis and Newman [1978], Eichelsbacher and Löwe [2010], which provides a
normal approximation to the distribution of dependent random variables. This approach
often requires higher-order concentration inequalities for controlling the error terms. The
analysis was initially restricted to a specific parameter regime known as Dobrushin’s
uniqueness region, and was only recently extended to include the so-called subcritical
regime, or high-temperature regime (see for instance Bhamidi et al. [2011], at the very
end of Subsec. 1.1 for a precise definition of this regimes). The work Winstein [2025]
goes further, covering the supercritical regime, or low-temperature regime, including the
critical curve, albeit with certain caveats applying exclusively along that curve. Both
works restrict to the case where the coefficients of subgraph densities (other than the
edge density) are nonnegative. We also point out the very recent work of Fang et al.
[2025b], which studies the asymptotic distribution of the number of two-stars in a model
of ERG where the number of edges is conditioned to satisfy some constraint. Chapter
1, is concerned with the asymptotics of the triangle density in edge-triangle models.
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Overview of chapter 1:
Density of triangles in edge-triangle models

This chapter contains the results of the works Magnanini and Passuello [2025a,b]. We
consider the edge-triangle model, where k = 2, H1 corresponds to a single edge, and H2

corresponds to a triangle, and two related models.
The models are presented in Section 1.1. In Subsection 1.1.1 we introduce the expo-

nential random graph family and we recall results present in the literature, highlighting
that in the dense setting, the free energy density of the model can be written in terms
of a one-dimensional maximization problem. In Subsection 1.1.2 we specialize to the
edge-triangle model. The Hamiltonian in this case can be expressed, for a given simple
graph G ∈ Gn as

Hn;α,h(G) = α
Tn(G)

n
+ hEn(G),

where α and h are real parameters and Tn(G) and En(G) represent, respectively, the
number of triangles and the number of edges in G. We describe the phase diagram
of the model in the replica symmetric regime, where there exists a curve ending in
a critical point, where the variational problem describing the free energy admits two
distinct solutions. Subsection 1.1.3 is devoted to the mean-field approximation of the
model. In Subsection 1.1.4 we fix the notation and show how the model can be seen
as system of interacting spins. In Subsection 1.1.5 we define an approximated model,
where the integer part of the triangle count is considered.

In Section 1.2 we state the results. The main result for the edge-triangle model is
a strong law of large numbers (SLLN), Theorem 1.4, valid for the triangle density. In
the mean-field setting, we consider an approximated triangle count, for which we can
prove a SLLN, a phase coexistence result at the critical curve, Theorem 1.8, a standard
CLT out of criticality, Theorem 1.9, a non-standard CLT at the critical point, Theorem
1.10, and a result on the rate on these convergences. These results hold also on the
critical curve if we consider some conditional measures, as Theorem 1.14 states. Finally
in Subsection 1.2.3 we consider the integer part model, for which we state a standard
CLT out of criticality, Theorem 1.18, valid for the triangle density. Our results allow
the parameters of the model to be negative.

Section 1.3 is devoted to the proofs. In Subsection 1.3.1, we provide some prelim-
inary background on the graphon formalism. Subsection 1.3.2 focuses on the proof of
Theorem 1.5, which provides a concentration result valid on the critical curve. Here
the known LDP for the Erdős–Rényi graph is employed, after having noticed that the
probability measure of the edge-triangle model can be represented as a tilted measure
on the space of graphons. This is later used to prove Theorem 1.4. Subsections 1.3.3–
1.3.7 are devoted to the mean-field model. In particular, in Subsection 1.3.3 we present
some additional helpful notation and we state Lemma 1.23, which provides a very useful
expression of the partition function of the model in terms of tractable Riemann sums.
In Subsection 1.3.8, the proof of Theorem 1.18 is given. This is based on the possibility
to express the partition function of the model as a polynomial, which implies uniform
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convergence for the derivatives of the free energy.
Finally, in Sec. 1.4 we outline why we expect that the fluctuations observed for the

approximated triangle density should also hold for the original triangle density in the
edge-triangle model, supporting our heuristic argument with simulations.

Spectra of random graphs

Other statistics that are useful to investigate the connectivity structure of a graph con-
cern its spectrum. The spectrum of the adjacency matrices of a graph can give informa-
tion on the number of its connected components, or reveal the presence of a community
structure. The eigenvalues of its associated Laplacian matrix highlight the presence of
bottlenecks. Moreover, the normalized Laplacian of undirected graphs provides infor-
mation on the convergence rate of Markov dynamics.

The study of spectral properties of large matrices has been a central theme in prob-
ability theory and mathematical physics for decades, motivated by applications to the-
oretical physics and data analysis. Given a n × n matrix An, for large n, one of the
typical object of interest is its empirical spectral distribution (ESD), defined by

µAn =
1

n

n∑
i=1

δλi(An),

where (λi(An))i≤n represents the set of eigenvalues of A. In the classical Hermitian set-
ting, under quite general hypotheses, the ESD of random matrices converges to limits
that do not depend on the specific random matrix realization nor on the specific model.
The most famous result in this direction is the celebrated Wigner semicircular law, ob-
served for the first time in Wigner [1955]: symmetric random matrices with i.i.d. entries
and bounded second moment, when rescaled by n−1/2 have ESD converging to the so-
called semicircular distribution with density (2π)−1

√
4− x21[−2,2](x) dx. The analysis

can also regard the edge of the spectrum, which is usually Tracy-Widom distributed
Tracy and Widom [1993, 1996]. See the books Mehta [1991], Anderson et al. [2009] and
Erdős and Yau [2017] for an introduction to random matrices.

A strong interest relies in studying the spectrum of low-rank perturbation of random
matrices Baik et al. [2005], Benaych-Georges and Nadakuditi [2011], Pizzo et al. [2013],
Tao [2013]. For instance, in a homogeneous Erdős–Rényi graph with appropriate scaling,
almost all eigenvalues of the adjacency matrix An lie near the semicircular bulk, except
the largest one, that is typically closely tied to the average degree Erdős et al. [2013]. In
this setting, the matrix E[An] corresponds to a rank-1 perturbation added to the matrix
An − E[An], which constitutes a centered i.i.d. noise.

In real-world networks, edge probabilities are inhomogeneous, varying across vertex
pairs. Recent works have characterized the spectrum of an inhomogeneous Erdős–Rényi
graph. Chakrabarty et al. [2021] identified the limiting ESD of the adjacency and Lapla-
cian matrix, and Chakrabarty et al. [2020] analyzed the eigenvalues outside the bulk
(outliers) in such model. These studies confirm that connection probabilities exhibiting
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low-rank deterministic structures can lead to a handful of eigenvalues straying away from
the bulk of the spectrum. In Cipriani et al. [2025], the limiting adjacency ESD for a
kernel-based generalization of scale-free percolation is characterized.

Regarding general inhomogeneous random matrices, we mention Brailovskaya and
van Handel [2024], where a general universality principle for extreme singular val-
ues is proved. Extreme eigenvalues for rectangular arrays were studied in Götze and
Tikhomirov [2023] where sparse i.i.d. matrices with a logarithmic number of non-zero
entries are studied and in Dumitriu and Zhu [2024], where inhomogeneous matrices are
considered. The largest eigenvalues of directed graphs with fixed degrees have been
studied in Bordenave [2020] and Coste [2021].

Overview of chapter 2:
Spectral properties of the directed Chung–Lu graph

In this chapter, we present the results of an ongoing work by the author and R. S. Hazra.
We consider a directed inhomogeneous Erdős–Rényi graph. We study the spectrum of
its adjacency matrix An, focusing on its largest eigenvalues. In particular, we consider
two models, the directed Chung–Lu graph, and a more general model with higher (but
finite) rank. In this setting, connection probabilities are given in additive form as the
sum of rank one matrices, corresponding to eigenvectors of E[An].

In Section 2.1 the setup is described. In Section 2.1.1 the objects of the analysis are
introduced. Subsection 2.1.2 is devoted to the definition of the models. In Subsection
2.1.3 the results are stated. We prove that the eigenvalues of the random matrix An

correspond to small perturbations of those of E[An]. In particular, provided that the
average degree uniformly grows as a sequence sn = Ω(log(n)4), their distance from their
deterministic counterparts is at most O(

√
sn). This implies the existence of outliers at

the scale of sn, stated in Theorems 2.5 and 2.7. In Theorem 2.6 we provide a similar result
for the transition matrix of the simple random walk. Theorems 2.8 and 2.9 provide a
refinement of the previous theorems: we show that outliers exhibit Gaussian fluctuations
around their mean. Subsection 2.1.4 contains a discussion of the methods.

In Section 2.2 we study the outlier problem for the rank-one model. We use Bauer–
Fike Theorem (Subsection 2.2.1) to provide a bound on the spectral norm of the matrix
An − E[An] (Subsection 2.2.2). We then repeat the analysis for the transition matrix
(Subsection 2.2.3). after that fluctuations of the outliers, are characterized (Subsection
2.2.4). This is done by identifying, via concentration inequalities, a fixed-point equation
satisfied by the outlier with very high probability, and invoking Lindeberg CLT.

Section 2.3 contains the adaptation of Section 2.2 to the higher-rank framework. In
particular, Subsection 2.3.1 employs again Bauer–Fike Theorem in a different fashion,
to prove the bound on the spectral norm of the centered matrix, and Subsection 2.3.1
introduces a r × r matrix whose eigenvalues are exactly the outliers of An, and then
establishes the desired convergence in distribution.

In Section 2.4 we prove some technical lemmata and finally, in Section 2.5 we state
a conjecture regarding the limiting empirical spectral distribution of the matrix 1√

sn
An.
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Chapter 1

Density of triangles in

edge-triangle models

Exponential random graphs (ERGs) are a widely studied class of models that aim to
incorporate typical tendencies, such as clustering, commonly observed in real networks.
As a generalization of the Erdős-Rényi model Erdős and Rényi [1961], ERGs allow
for dependencies between edges. Their probability distribution is obtained by tilting
the Erdős-Rényi measure by an exponential weight that contains different subgraph
densities. This is done by introducing an Hamiltonian, parametrized by real coefficients,
to bias the probability measure over the space of graphs, enhancing or penalizing the
density of specific subgraph counts. From a statistical mechanics perspective, ERGs can
be interpreted as finite spin systems, where each edge corresponds to a spin in {0, 1}.

In this chapter, building on Bianchi et al. [2024], we consider the edge-triangle model
and study two approximations. We first consider a mean-field approximation, where the
triangle density in the Hamiltonian is substituted by a normalized power of the edge
density, and then a model, where number of triangles per vertex is substituted by its
integer part. Both models share the same free energy of the original model, whose
analytical expression and phase diagram are known, in a region of parameters called
replica symmetric regime Chatterjee and Diaconis [2013].

As a main advantage, the mean-field approximation allows for exact computations.
Indeed, the Hamiltonian can be expressed as a function of the edge density, which plays
the same role as the magnetization in the Curie-Weiss model. For an approximated
triangle density, we prove a standard CLT out of criticality and a non-standard CLT at
criticality. We are driven by the belief (supported by simulations) that such approxima-
tion asymptotically behaves the same as the original model.

On the other hand, the integer part model allows for a polynomial expression of
the free energy. Then, the theory developed in Lee and Yang [1952] provides a uniform
convergence of its derivatives, which is the crucial point to prove, for the triangle density,
a standard CLT out of criticality.
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Chapter 1. Density of triangles in edge-triangle models

1.1 Models and background

1.1.1 Exponential random graphs

Given H and G in Gn, let |hom(H,G)| denote by the number of homomorphism of H
in G, namely mappings φ : H → G that are edge-preserving: if u,w are adjacent in H,
then φ(u), φ(w) are adjacent in G. For example, if H is a triangle, then |hom(H,G)| =
6Tn(G), where Tn(G) denotes the number of triangles in G. If H is a two-star (or wedge)
and G is a triangle, then |hom(H,G)| = 3 · 22; indeed, there are three copies of H in
G (one for each root) and for each of them 4 possible homorphisms. We define the
homomorphism density as

t(H,G) :=
|hom(H,G)|
|V (G)||V (H)| ,

where the notation V (·) denotes the vertex set of a graph. For a fixed k ∈ N, we consider
H1, H2, . . . ,Hk pre-chosen finite simple graphs (such as edges, stars, triangles, cycles,
. . . ) weighted by a collection of real parameters contained in the vector β = (β1, . . . , βk).
The Hamiltonian is a function Hn;β : Gn → R defined as

Hn;β(G) := n2
k∑

i=1

βit(Hi, G) , for G ∈ Gn. (1.1)

As probability measure on the space Gn we take the Gibbs probability density

µn;β(G) :=
exp (Hn,β(G))

Zn;β
, with Zn;β :=

∑
G∈Gn

exp (Hn;β(G)) , (1.2)

where the normalizing constant Zn;β is called partition function. Random graphs whose
distribution is a Gibbs measure of the form (1.2) are called exponential random graphs.
We will denote the related Gibbs measure and average by Pn;β and En;β, respectively.
Two crucial functions for studying the model are the finite-size and infinite-size free
energy:

fn;β :=
1

n2
lnZn;β and fβ := lim

n→+∞
fn;β .

An explicit expression of this function has been obtained in Chatterjee and Diaconis
[2013] when the vector of parameters β lies in a specific region called replica symmetric
regime (term borrowed from spin glasses theory). As stated in [Chatterjee and Diaconis,
2013, Thm. 4.1], if β2, . . . , βk are non-negative, then

fβ = sup
0≤u≤ 1

(
k∑

i=1

βi u
|E(Hi)| − 1

2
I(u)

)
, (1.3)

where |E(Hi)| denotes the number of edges in Hi and I(u) := u lnu + (1 − u) ln(1 −
u). Despite this result covers only non-negative values of the parameters, the replica
symmetric regime can be slightly extended including (not too big) negative values of
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β2, . . . , βk (see Chatterjee and Diaconis [2013], Thm. 4.2). More precisely, (1.3) holds
whenever β2, . . . , βk are such that

k∑
i=2

|βi||E(Hi)|(|E(Hi)| − 1) < 2 . (1.4)

Notice that the quantity above does not depend on the number of edges |E(H1)| and
if we are not interested in considering the density of edges as a relevant statistics, it
suffices to take β1 = 0 .

1.1.2 Edge-triangle model

The edge-triangle or Strauss model Strauss [1986] is obtained by considering only the
contribution of edges and triangles in the Hamiltonian (1.1). By convention we assume
H1 to be a single edge and H2 to be a triangle. More precisely, by setting β3 = · · · =
βk = 0 in (1.1), we get

Hn;β(G) = n2 [β1t(H1, G) + β2t(H2, G)] G ∈ Gn .

Let En(G) (resp. Tn(G)) denote the number of edges (resp. triangles) in G. By recalling
the definition of homomorphism density, we have

t(H1, G) =
2En(G)

n2
and t(H2, G) =

6Tn(G)

n3
. (1.5)

Therefore, by performing the change of variable h := 2β1; α := 6β2, we can equivalently
consider

Hn;α,h(G) =
α

n
Tn(G) + hEn(G) with α, h ∈ R . (1.6)

We will denote by Pn;α,h the Gibbs measure related to this Hamiltonian, and by En;α,h

the corresponding expectation. Notice that in this setting condition (1.4) reads |α| =
6|β2| < 2, and, therefore, the replica symmetric regime coincides with the region α > −2,
h ∈ R. The free energy (1.3) reduces then to

fα,h = sup
0≤u≤1

(
α

6
u3 +

h

2
u− 1

2
I(u)

)
=

α

6
(u∗)3 +

h

2
u∗ − 1

2
I(u∗), (1.7)

where I(u) is defined below (1.3) and u∗ = u∗(α, h) is a maximizer that solves the
fixed-point equation

eαu2+h

1 + eαu2+h
= u . (1.8)

A numerical investigation of the optimizers of the free energy when α is negative and
|α| is large has been done in Giardinà et al. [2021]. Equation (1.8) can admit more than
one solution at which the supremum in (1.7) is attained, and this denotes the presence
of a phase transition inside the replica symmetric regime. When the parameters α, h
are chosen in this region, the edge-triangle model, when n goes to infinity, becomes
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Figure 1.1: Illustration of the phase in replica symmetric regime taken from Bianchi et al.
[2024]. The curve Mrs (1.9) represents the region of (α, h) where the optimization problem (1.7)
admits two solutions. Inside the blue region, that includes the critical point (αc, hc), the scalar
problem (1.7) admits a unique solution.

indistinguishable from an Erdős-Rényi graph with connection probability u∗ (we refer
the reader to Sec. 1.3.1, where these notions are made precise). This remains true even
when the supremum is not unique; in this case the parameter u∗ is randomly chosen
according to some (unknown) probability distribution on the set of solutions of (1.7)
(see Chatterjee and Diaconis [2013], Thm. 4.2). The effect of the phase transition is
then a jump between very different values of the edge density u∗ of the limiting object.
We refer to this as a phase transition as it entails a lack of analyticity of the free energy,
even though the qualitative structure of the limiting object remains the same.

Phase diagram. We recall that the limiting free energy fα,h is well defined on the
whole replica symmetric regime α > −2, h ∈ R. However, the fixed point equation (1.8)
can admit more than one solution, and this is strictly related to the loss of analyticity
of fα,h. It has been proved (see [Radin and Yin, 2013, Prop. 3.2]) that (1.7) has exactly
one optimizer on the whole replica symmetric regime except for a certain critical curve
Mrs that starts at the critical point (αc, hc) :=

(
27
8 , ln 2−

3
2

)
and that can be written

as h = q(α) for a (non-explicit) continuous and strictly decreasing function q:

Mrs := {(α, h) ∈ (αc,+∞)× (−∞, hc) : h = q(α)} . (1.9)

It is worth noting that along this critical curve, the scalar problem (1.7) admits
multiple maximizers (precisely two), as the notation Mrs is meant to suggest. The free
energy is analytic on the region Urs \ {(αc, hc)}, where

Urs := ((−2,+∞) × R) \Mrs.

Here, in contrast, we use the notation Urs to denote the region where the scalar problem
(1.7) has a unique maximizer. Moreover, at the critical point (αc, hc) the second order
partial derivatives of fα,h diverge (see Radin and Yin [2013], Thm. 2.1), while along the
curve Mrs the first order partial derivatives of fα,h have jump discontinuities. Fig. 1.1
provides a qualitative representation of the phase diagram.
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1.1.3 A mean-field model

As a consequence of the convergence of the ERG to the Erdős-Rényi graphon with
parameter u∗ (which holds in probability w.r.t. the so-called cut distance, see [Chatterjee
and Diaconis, 2013, Thm. 4.2]), we can heuristically approximate the triangle density
(as well as other graph-statistics) in the large n limit. The Erdős-Rényi random graph
with parameter u∗ and n vertices has, on average, u∗3

(
n
3

)
triangles and u∗

(
n
2

)
edges. We

observe that

u∗3
(
n

3

)
≈ 4

3n3

(
u∗
(
n

2

))3

.

What we expect is that the same holds, within the replica symmetric regime and when
n is large, for the ERG. Thus, we introduce the approximated count of triangles

Tn(G) ≈ 4

3n3
En(G)3 =: T̄n(G). (1.10)

We can equivalently say that we approximate the number of triangles Tn(G) = n3t(H2,G)
6

(see (1.5)) with T̄n(G) = n3t3(H1,G)
6 . Definition (1.10) leads to the following mean-

field approximation, originally introduced in Bianchi et al. [2024], of the edge-triangle
Hamiltonian (1.6):

H̄n;α,h(G) :=
α

n
T̄n(G) + hEn(G) , for G ∈ Gn. (1.11)

We borrow this terminology from statistical mechanics, due to the similarities with the
Curie–Weiss model (see e.g. [Friedli and Velenik, 2017, Chap. 2]), which we are going to
highlight further in the next paragraph. The big advantage of Hamiltonian (1.11) is that

it is just a function of the one dimensional parameter t(H1, G) = 2En(G)
n2 , taking values

in Γn :=
{
0, 2

n2 , . . . , 1− 1
n

}
, as it is for the Erdős–Rényi graph. We denote by P̄n;α,h and

Ēn;α,h the corresponding measure and expectation, respectively. Moreover, as usual, we
define the finite size free energy as

f̄n;α,h :=
1

n2
ln Z̄n;α,h.

A crucial property of this approximated model is the following (see [Bianchi et al., 2024,
Thm. 8.2]). Let (α, h) ∈ (−2,+∞)× R and let fα,h as in (1.7). Then

lim
n→+∞

f̄n;α,h = fα,h . (1.12)

In other words, the edge-triangle model and this mean-field approximation share the
same infinite volume free energy; this result will be extensively used in the proofs.

1.1.4 Notation and preliminaries

We denote by En the edge set of the complete graph on n vertices, with elements la-
beled from 1 to

(
n
2

)
and we set An := {0, 1}En . We observe that there is a one-to-one

12



Chapter 1. Density of triangles in edge-triangle models

correspondence between An and the set of n × n symmetric adjacency matrices with
zeros on the diagonal and the graphs in Gn. As a consequence, to each graph G ∈ Gn we
can associate an element x = (xi)i∈En ∈ An where xi = 1 if the edge i is present in G,
and xi = 0 otherwise. With an abuse of nomenclature, we can write En(x) = En(G),
Tn(x) = Tn(G) and T̄n(x) = T̄n(G) whenever x ∈ An is the adjacency matrix of a
graph G ∈ Gn. This representation allows for the following equivalent formulation of the
Hamiltonians (1.6)–(1.11), as functions on An:

Hn;α,h(x) =
α

n

∑
{i,j,k}∈Tn

xixjxk + h
∑
i∈En

xi, (1.13)

H̄n;α,h(x) =
4α

3n4

(∑
i∈En

xi

)3
+ h

∑
i∈En

xi, (1.14)

where Tn := {{i, j, k} ⊂ En : {i, j, k} is a triangle}. The Gibbs probability Pn;α,h

(resp. P̄n;α,h) will act consequently on An.

Remark 1.1. The sequence of measures (Pn;α,h)n≥1 (as well as (P̄n;α,h)n≥1) satisfies
proper consistency conditions allowing for the application of Kolmogorov Existence The-
orem (see, for example, Appendix A.7 in Ellis [1985]). As a consequence, there exists a
unique probability measure Pα,h on the space

(
{0, 1}N,B({0, 1}N)

)
with marginals corre-

sponding to the measures Pn;α,h, for all n ∈ N (here B denotes the Borel σ−algebra).

Remark 1.2. Note that Hamiltonian (1.13) has the same form of the energy function
typically used in the field of interacting particle systems. We can think of an ERG as
a system where each edge is a particle having a spin (0 or 1), which interacts with its
neighbors. For instance, as observed in Mukherjee and Xu [2023], the two-star model
can be thought as an of Ising model on a d-regular graph with n(n − 1)/2 nodes, where
d = 2(n − 2). The notion of “neighbor” depends on the specific choice of the subgraphs
H1, . . . ,Hk; for the edge-triangle model, two edges are neighbors if they are adjacent.
This interaction is not global, however, if we ignore the relative position of edges, we
recover (1.14): ∑

{i,j,k}∈Tn

xixjxk =
∑
i∈En

xi
∑

j,k∈En:
{i,j,k}∈Tn

xjxk ≈
∑
i∈En

xi
∑

j,k∈En

4xjxk
3n3

,

where the factor 4 appears when we replace the number of wedges roughly with
(

2
n2

∑
i∈En xi

)2
,

and adjusting the normalization in accordance with the choice x = (xi)i∈En ≡ 1. The
factor 1/3 avoids overcounting.

We are interested in understanding the asymptotic behavior of the number of tri-
angles inside the replica symmetric regime. We prove classical limit theorems for the
sequences (Tn)n≥1 ≡ (Tn(X))n≥1 and (T̄n)n≥1 ≡ (T̄n(X))n≥1, where X = (Xi)i∈En ∈ An

is a random adjacency matrix, whose law will be specified case by case. The core of our
results is concerned with the sequence (T̄n)n≥1 under the mean-field distribution, since

13



Chapter 1. Density of triangles in edge-triangle models

the approximation encoded by the Hamiltonian (1.14) allows for explicit computations.
This quantity is in principle not related to the number of triangles, but we believe that
it captures the correct limiting behavior of triangle density.

Definition 1.3. For each n ∈ N, we define

m̄∆
n (α, h) :=

6Ēn;α,h

(
T̄n
n

)
n2

and v̄∆n (α, h) := ∂αm̄
∆
n (α, h).

It is easy to see that
Ēn;α,h(T̄n)

n3 = ∂αf̄n;α,h and
V̄arn;α,h(T̄n)

n3 = ∂ααf̄n;α,h.
Therefore, m̄∆

n (α, h) = 6∂αf̄n;α,h and v̄∆n (α, h) = 6∂ααf̄n;α,h (and the same holds for the
edge-triangle model, replacing f̄n;α,h with fn;α,h). In the rest of the paper we will use the
following notation to distinguish the optimizer(s) of the scalar problem (1.7), sometimes
dropping the dependence on (α, h) to the sake of readability:

u∗0(α, h) if (α, h) ∈ Urs \ {(αc, hc)},
u∗1(α, h) and u∗2(α, h) if (α, h) ∈ Mrs,

u∗c(α, h) =
2
3 if (α, h) = (αc, hc) .

1.1.5 An integer part model

The Hamiltonian (1.6), can be modified as follows, taking into account only the integer
part of the normalized number of triangles:

Ĥn;α,h(G) := α

⌊
Tn(G)

n

⌋
+ hEn(G). (1.15)

We denote by µ̂n;α,h the associated Gibbs probability density and by P̂n;α,h the related

measure, with normalizing partition function Ẑn;α,h, and expectation Ên;α,h. Finally, we
indicate by

f̂n;α,h :=
1

n2
ln Ẑn;α,h and f̂α,h := lim

n→+∞
f̂n;α,h (1.16)

the finite-size and the limiting free energy, respectively. Importantly, f̂α,h = fα,h. This
immediately follows from the decomposition

Tn(G)

n
=

⌊
Tn(G)

n

⌋
+

{
Tn(G)

n

}
,

where {·} ∈ [0, 1] denotes the fractional part. This model amounts to a minimal per-
turbation of the edge-triangle model, which will turn to be analytically tractable. Its
partition function can be expressed in a polynomial in the variable z = eα and this will
be used to prove standard CLT for the density of triangles.

14
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1.2 Main results

1.2.1 Edge-triangle model

Theorem 1.4 (SLLN for Tn). For all (α, h) ∈ Urs,

6Tn

n3

a.s.−−−−−→
n→+∞

u∗3(α, h) w.r.t. Pα,h,

where u∗ =

{
u∗c , if (α, h) = (αc, hc)
u∗0, otherwise

solves the maximization problem (1.7).

Theorem 1.5. For all (α, h) ∈ Mrs and for all sufficiently small ε > 0, there exists a
constant τ = τ(ε;α, h) > 0 such that if

J(ε) := (u∗1
3(α, h)− ε, u∗1

3(α, h) + ε) ∪ (u∗2
3(α, h)− ε, u∗2

3(α, h) + ε),

then, for large enough n

Pn;α,h

(
6Tn

n3
∈ J(ε)

)
≥ 1− e−τn2

,

where u∗1(α, h) and u∗2(α, h) are the two maximizers of the scalar problem (1.7).

Remark 1.6. Our proof of Thms. 1.4 and 1.5 follows the approach of Bianchi et al.
[2024], and strongly relies on the LDP proved in Chatterjee and Varadhan [2011], and
on [Ellis, 1985, Thm. II.7.2]. Consequently our techiniques differ from those used in
[Radin and Sadun, 2023, Thm. 6], where an analogous result to Thm. 1.5, for a model
with subgraph densities subject to hard constraints, has been proven.

After having proved a SLLN, it would be natural to investigate the fluctuations of the
triangle density around its mean value. In Sec. 1.4 we perform simulations and sketch
some heuristics, also based on the mean-field investigation of Sec. 1.3, which suggest
that this result holds. In order to establish it, a powerful tool is the Yang-Lee theorem
[Lee and Yang, 1952, Thm. 2], implies uniform convergence of the derivatives of the free
energy. This is applicable to our case if the partition function of the model admits a
polynomial representation in z := eα. The results for the integer part model, stated in
Subsection 1.2.3, follow this approach. Another tool which could be useful for proving
the central limit theorem, is the Griffiths, Hurst and Sherman inequality Griffiths et al.
[1970], which allows for the interchange of limits and derivatives in spin systems; for the
broader class of exponential random graphs this result has not been proven (although it
was recently established for the two-star model Bianchi et al. [2022])

1.2.2 Mean-field approximation

Theorem 1.7 (SLLN for T̄n). For all (α, h) ∈ Urs,

6T̄n

n3

a.s.−−−−−→
n→+∞

u∗3(α, h) w.r.t. P̄α,h,

15
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where u∗ =

{
u∗c , if (α, h) = (αc, hc)
u∗0, otherwise

solves the maximization problem (1.7).

Theorem 1.8. For all (α, h) ∈ Mrs,

6T̄n

n3

d−−−−→
n→+∞

κδu∗
1
3(α,h) + (1− κ)δu∗

2
3(α,h) w.r.t. P̄n;α,h,

where u∗1, u
∗
2 solve the maximization problem in (1.7), and

κ :=

√[
1− 2α (u∗1)

2 (1− u∗1)
]−1

√[
1− 2α (u∗1)

2 (1− u∗1)
]−1

+

√[
1− 2α (u∗2)

2 (1− u∗2)
]−1

.

Theorem 1.9 (CLT for T̄n). If (α, h) ∈ Urs \ {(αc, hc)},

√
6

T̄n
n − n2

6 m̄∆
n (α, h)

n

d−−−−→
n→+∞

N (0, v̄∆0 (α, h)) w.r.t. P̄n;α,h,

where N (0, v̄∆0 (α, h)) is a centered Gaussian distribution with variance

v̄∆0 (α, h) :=
3u∗0

4(α, h)

4c0
, (1.17)

being c0 ≡ c0(α, h) :=
1−2α[u∗

0(α,h)]
2[1−u∗

0(α,h)]
4u∗

0(α,h)[1−u∗
0(α,h)]

.

Theorem 1.10 (Non-standard CLT for T̄n). If (α, h) = (αc, hc),

6
T̄n
n − n2

6 m̄∆
n (αc, hc)

n3/2

d−−−−→
n→+∞

Ȳ w.r.t. P̄n;αc,hc ,

where Ȳ is a generalized Gaussian random variable with Lebesgue density ℓ̄c(y) ∝ e−
38

214
y4.

Proposition 1.11. For all (α, h) ∈ Urs \ {(αc, hc)},

lim
n→+∞

n · Ēn;α,h

(∣∣∣∣6T̄n

n3
− u∗0

3(α, h)

∣∣∣∣) = E(|X̄|) , (1.18)

where X̄ is a centered Gaussian random variable with variance 6v̄∆0 (α, h) =
9u∗

0
4(α,h)
2c0

,

being c0 ≡ c0(α, h) =
1−2α[u∗

0(α,h)]
2[1−u∗

0(α,h)]
4u∗

0(α,h)[1−u∗
0(α,h)]

> 0. Moreover, at the critical point

lim
n→+∞

√
n · Ēn;αc,hc

(∣∣∣∣6T̄n

n3
− u∗3(αc, hc)

∣∣∣∣) = E(|Ȳ |) ,

where Ȳ is a generalized Gaussian random variable with Lebesgue density ℓ̄c(y) ∝ e−
38

214
y4.
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Corollary 1.12. For all (α, h) ∈ Urs \ {(αc, hc)}, we have

lim
n→+∞

n · (m̄∆
n (α, h)− u∗0

3(α, h)) = 0 , (1.19)

while for (α, h) = (αc, hc)

lim
n→+∞

√
n · (m̄∆

n (αc, hc)− u∗3(αc, hc)) = 0 . (1.20)

Remark 1.13 (Generalization to a clique graph). As we approximated the number of
triangles Tn with T̄n, we can similarly approximate the number of cliques Kn with ℓ ≥ 3
vertices by

K̄n :=

(
2En

n2

)(ℓ2)
· n

ℓ

ℓ!
=

(
2
∑

i∈En Xi

n2

)(ℓ2)
· n

ℓ

ℓ!
.

Using the techniques from Thms. 1.7, 1.8, 1.9, and 1.10, similar results can be derived
for the approximated clique density. Specifically, within the uniqueness region, the al-

most sure limit of ℓ!K̄n/n
ℓ will be (u∗0(α, h))

(ℓ2), where u∗0(α, h) solves the maximization
problem in (1.7). In this region, one can further prove both Gaussian and non-Gaussian
fluctuations, respectively for the terms

√
ℓ!

K̄n

nℓ−2 − Ēn;α,h

(
K̄n

nℓ−2

)
n

and ℓ!
K̄n

nℓ−2 − Ēn;αc,hc

(
K̄n

nℓ−2

)
n3/2

.

Conditional measures. When (α, h) lies in the multiplicity curve Mrs, where the
solution of (1.8) is not unique, we can still characterize the limiting behavior of the
triangle density in the mean-field approximation, provided that we constraint the edge
density to be close to one of the maximizers of the scalar problem (1.7). To this aim,
we consider a conditioned model, as follows. For (α, h) ∈ Mrs, let u∗i (α, h) (i = 1, 2) be
the solutions of the scalar problem (1.7). For n ∈ N and any fixed δ ∈ (0, 1), consider
the event

Bu∗
i
≡ Bu∗

i
(n, δ) :=

{
x ∈ An :

∣∣∣∣2En(x)

n2
− u∗i (α, h)

∣∣∣∣ ≤ n−δ

}
, (1.21)

and define the conditional probability measures

P̂(i)
n;α,h ( · ) ≡ P̂(i),δ

n;α,h ( · ) := P̄n;α,h

(
·
∣∣Bu∗

i
(n, δ)

)
, for i = 1, 2 . (1.22)

We denote the corresponding averages by Ê(i)
n;α,h and we set m̂

(i)
n (α, h) := Ê(i)

n;α,h

(
6T̄n
n3

)
.

The next statements represent the analog of the results presented in Subsec. 1.2.2, when
the parameters belong to the multiplicity region Mrs. The next statements are valid for
every δ ∈ (0, 1) and for this reason the dependence is omitted.

Theorem 1.14 (Conditional SLLN and CLT). For i = 1, 2 and for all (α, h) ∈ Mrs,

6T̄n

n3

a.s.−−−−−→
n→+∞

u∗i (α, h) w.r.t. P̂(i)
n;α,h, (1.23)
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and
√
6

T̄n
n − n2

6 m̂
(i)
n (α, h)

n

d−−−−→
n→+∞

N (0, v̄∆i (α, h)) w.r.t. P̂(i)
n;α,h, (1.24)

where N (0, v̄∆i (α, h)) is a centered Gaussian distribution with variance v̄∆i (α, h) :=
3u4

i
∗
(α,h)

4ci
, being ci ≡ ci(α, h) :=

1−2α[u∗
i (α,h)]

2[1−u∗
i (α,h)]

4u∗
i (α,h)[1−u∗

i (α,h)]
.

Proposition 1.15. For i = 1, 2 and for all (α, h) ∈ Mrs,

lim
n→+∞

n · Ê(i)
n;α,h

(∣∣∣∣6T̄n

n3
− u∗i

3(α, h)

∣∣∣∣) = E
(∣∣∣X̄(i)

∣∣∣) ,
X̄(i) is a centered Gaussian random variable with variance 6v̄∆i (α, h) =

9u∗
i (α,h)

4

2ci
, being

ci ≡ ci(α, h) =
1−2α[u∗

i (α,h)]
2[1−u∗

i (α,h)
4u∗

i (α,h)[1−u∗
i (α,h)]

.

Corollary 1.16. For i = 1, 2 and for all (α, h) ∈ Mrs, we have

lim
n→+∞

n ·
(
m̂(i)

n (α, h)− u∗i
3(α, h)

)
= 0,

where we recall that m̂
(i)
n (α, h) := Ê(i)

n;α,h

(
6T̄n
n3

)
.

Remark 1.17 (Beyond the edge-triangle model). Theorems 1.4 and 1.5 can be easily
extended to the Gibbs measure Pβk,β1, whose associated Hamiltonian is obtained by setting
βi = 0 for all i ̸= 1, k (with k > 2) in (1.1), i.e.

Hn;βk,β1(G) := n2 [βkt(Hk, G) + β1t(H1, G)] , for G ∈ Gn,

where Hk, which takes the place of H2, is a simple graph with p ≥ 3 edges. The limiting
free energy is given by the scalar maximization problem (1.3) and the replica symmetric
region is defined by the condition βk ≥ 0 combined with (1.4). The phase diagram has
been fully characterized in [Radin and Yin, 2013, Prop. 3.2] and is completely analogous
to those illustrated in Fig. 1.1 for the edge-triangle model. More precisely, in the replica
symmetric regime, there is still a region Urs where the solution to the maximization
problem (1.3) is unique, and a critical curve Mrs, ending in the critical point (βc

k, β
c
1) =

1
2

( pp−1

(p−1)p , log(p − 1) − p
(p−1)

)
, where the maximization problem (1.3) has two distinct

solutions.

1.2.3 Integer part model

Theorem 1.18 (CLT for Tn w.r.t. P̂n;α,h). For all (α, h) ∈ Urs \ {(αc, hc)}

√
6

Tn/n − Ên;α,h(Tn/n)

n

d−−−−→
n→+∞

N (0, v̂∆0 (α, h)) w.r.t. P̂n;α,h,

where v̂∆0 (α, h) := 3u∗2α,h∂αu
∗
α,h and N (0, v̂∆0 (α, h)) is a centered Gaussian distribution.
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Extension to three parameters. The above theorem immediately extends to a 3-
parameter setting. Assume that H1 is a single edge, H2 has p edges, and H3 has q
edges, with 2 ≤ p ≤ q ≤ 5p − 1. Let fβ1,β2,β3 the limiting free energy arising from the
Hamiltonian (1.1) by setting βk = 0 for all k ≥ 4. Such function, inside the domain
Drs := {(β1, β2, β3) : β2 ≥ 0, β3 ≥ 0, β1 ∈ R} (again, by [Chatterjee and Diaconis, 2013,
Thm. 4.1]) exists and equals 1

fβ1,β2,β3 = sup
0≤u≤1

(
β3u

q + β2u
p + β1u− 1

2
I(u)

)
= β3u

∗q + β2u
∗p + β1u

∗ − 1

2
I(u∗),

where u∗ solves

u =
e2β3quq−1+2β2pup−1+2β1

1 + e2β3quq−1+2β2pup−1+2β1
. (1.25)

In this setting, the phase diagram, studied in [Yin, 2013, Thm. 1], is also known. The
free energy fβ1,β2,β3 is analytic in Drs except for a certain continuous surface S which
includes three bounding curves C1, C2, and C3, and that can be characterized as follows:

• the surface S approaches the plane β1 + β2 + β3 = 0 as β1 → −∞, β2, β3 → ∞;

• the curve C1 is the intersection of S with the plane {(β1, β2, β3) : β3 = 0};

• the curve C2 is the intersection of S with the plane {(β1, β2, β3) : β2 = 0};

• the curve C3 is a critical curve, and is given parametrically by

β1(u) =
1

2
ln

u

1− u
− 1

2(p− 1)(1− u)
+

pu− (p− 1)

2(p− 1)(q − 1)(1− u)2
,

β2(u) =
qu− (q − 1)

2p(p− 1)(p− q)up−1(1− u)2
,

β3(u) =
pu− (p− 1)

2q(q − 1)(q − p)uq−1(1− u)2
,

where we take p−1
p ≤ u ≤ q−1

q to meet the non-negativity constraints on β2, β3.

Consider now the 3-parameter Hamiltonian obtained from (1.1) by taking H1 a single
edge, H2 a triangle, and H3 a simple subgraph with q ∈ [3, 14] edges, and setting βk = 0
for all k ≥ 4. Similarly to what we did for the edge-triangle case, we denote by

Ĥn;β1,β2,β3(x) = β3n
2t(H3, x) + β2⌊n2t(H2, x)⌋+ β1n

2t(H1, x), (1.26)

and by P̂n;β1,β2,β3 the associated Gibbs measure. Then, the following generalization of
Thm. 1.18 holds.

1We stress that, from [Chatterjee and Diaconis, 2013, Thm. 6.1], Drs is actually a subset of the region
where the free energy is known. However, the phase diagram is characterized only to that restriction.
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Theorem 1.19 (CLT for Tn w.r.t. P̂n;β1,β2,β3). For all (β1, β2, β3) ∈ Drs \ S

√
6
Tn/n− Ên;β1,β2,β3(Tn/n)

n

d−−−−→
n→+∞

N (0, v(β1, β2, β3)) w.r.t. P̂n;β1,β2,β3 ,

where v(β1, β2, β3) := 18u∗2β1,β2,β3
∂β2u

∗
β1,β2,β3

and u∗ solves (1.25).

Note that, unlike in the definition of α, h (see below (1.13)), this generalization
retains a constant factor within the homomorphism density. This explains why the two
variances in Thm. 1.19 and Thm. 1.18 differ by a factor of 6.

Remark 1.20. Some remarks are in order.

1. Based on the result valid for the mean-field version of the edge-triangle model, we

conjecture that the variance v̂∆0 (α, h) in Theorem 1.18 is
3u∗4

α,h

4c0
, where c0 as in

Theorem 1.9.

2. The choice of including triangles in the statistics of (1.15) and (1.26) is crucial,
as it allows us to connect the expectation of ⌊Tn/n⌋ and hence the scaled cumulant
generating function defined in (1.73) below, to the derivative of the finite-size free
energy. This will be a key step in the proof of Thm. 1.18.

3. The integer part of the normalized triangle count plays a crucial role when we
represent the partition function as a polynomial (see Subsec. 1.3.8). The other
subgraph counts collected in the Hamiltonian (see e.g. (1.26)), can be taken without
such integer value, as they contribute only to the coefficients of the polynomial, and
do not affect the validity of the representation.

4. Our main theorem covers the replica symmetric regime (except for the critical
curve), without any further restrictions. Moreover, unlike the setting considered in
[Fang et al., 2025a, Cor. 3.1] or [Winstein, 2025, Cor. 1.2], our framework allows
the parameter controlling the triangle density to take slightly negative values.

5. The technique of Thm. 1.18 can be easily extended to other subgraph counts but also,
in principle, to more general families of ERGs, provided that the phase diagram of
the free energy is known.

1.3 Proofs

We first we provide a short overview of the main notions and results on graph limits
theory, relevant to the proof of Thm. 1.5. We refer the reader to Borgs et al. [2008,
2012], Lovász [2012] for a thorough description of these concepts.
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Chapter 1. Density of triangles in edge-triangle models

1.3.1 Key results on graph limits

Let (Gn)n≥1 be a sequence of simple, dense graphs whose number of vertices tends to
infinity; the limit object of this sequence is a symmetric measurable function on the
unitary square called graphon. A crucial step for understanding where this definition
comes from, is to introduce the notion of checkerboard graphon Lovász [2012].
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Figure 1.2: Graph H with m = 6 vertices on the left and its checkerboard graphon gH on the
right. The gray regions are constantly equal to one, whereas the white regions are constantly
equal to zero (example from den Hollander et al. [2018]).

Let H be a finite simple graph H with vertex set [m]. The checkerboard graphon
gH , corresponding to H, is defined by

gH(x, y) :=

{
1 if {⌈mx⌉, ⌈my⌉} is an edge in H
0 otherwise

,

where (x, y) ∈ [0, 1]2. In other words, gH is a step function corresponding to the ad-
jacency matrix of H (see Fig. 1.2). It is important to stress that any finite simple
graph admits a graphon representation, therefore the sequence (Gn)n≥1 can be equiva-
lently turned into a sequence of checkerboard graphons (gGn)n≥1. Very intuitively, if we
imagine to assign a black pixel to each block constantly equal to 1 appearing in the step
function gH (and conversely a white pixel to each block constantly equal to 0), then, as n
gets large, pixels become finer and finer and the density of black pixels can be expressed
as a number between 0 and 1. It is then more natural to see that the limit of (gGn)n≥1

can be represented by a measurable and symmetric function g : [0, 1]2 → [0, 1] (called,
indeed, graphon). The set of all graphons is denoted by W; also notice that checker-
board graphons allow to represent all simple graphs as elements of the space W. The
definition of convergence is formalized by making use of the notion of homomorphism
density t(H,Gn) and its continuous analog, the so-called subgraph density

t(H, g) :=

∫
[0,1]m

∏
{i,j}∈E(H)

g(xi, xj) dx1 . . . dxm, (1.27)

21



Chapter 1. Density of triangles in edge-triangle models

where E(H) denotes the edge set of H and we recall that m is the number of vertices of
H. A sequence of graphs (Gn)n≥1 is said to converge to the graphon g if, for every finite
simple graph H,

lim
n→+∞

t(H,Gn) = t(H, g).

Any sequence of graphs that converges in the appropriate way has a graphon as limit, and
vice-versa every graphon arises as the limit of an appropriate graph sequence. Intuitively,
the interval [0, 1] represents a continuum of vertices and g(xi, xj) corresponds to the
probability of drawing the edge {xi, xj}. For instance, the limit of a sequence of dense
Erdős-Rényi graphs is represented by the function that is constantly equal to p on the
unit square. In order to take into account the arbitrary labeling of the vertices when
they are embedded in the unit interval, one needs to introduce an equivalence relation
on W. Let Σ be the space of all bijections σ : [0, 1] → [0, 1] preserving the Lebesgue
measure. We say that the functions g1, g2 ∈ W are equivalent, and we write g1 ∼ g2,
if g2(x, y) = g1(σ(x), σ(y)) for some σ ∈ Σ. The quotient space under ∼ is denoted by

W̃ and τ : g 7→ g̃ is the natural mapping associating a graphon with its equivalence
class. The space W̃ can be equipped with the so-called cut distance that turns W̃ into a
compact metric space (see Lovász and Szegedy [2007], Thm. 5.1). On the space (W̃, δ□)
a large deviation principle for the sequence of measures (P̃ER

n;p)n≥1 of a dense Erdős-Rényi
random graph has been proved by Chatterjee and Varadhan in Chatterjee and Varadhan
[2011]. Here P̃ER

n;p denotes the probability distribution on W̃ induced by the Erdős-Rényi

graph G = G(n, p) via the mapping G 7→ gG 7→ g̃G. We report below the large deviation
principle:

Theorem 1.21 (Chatterjee and Varadhan [2011], Thm. 2.3). For each fixed p ∈ (0, 1),

the sequence (P̃ER
n;p)n≥1 satisfies a large deviation principle on the space (W̃, δ□), with

speed n2 and rate function

Ip(g̃) =
1

2

∫ 1

0

∫ 1

0
Ip(g(x, y)) dx dy,

where g is any representative element of the equivalence class g̃ and, for u ∈ [0, 1], we
set Ip(u) = u ln u

p + (1− u) ln 1−u
1−p .

We will strongly rely on Thm. 1.21 for the proof of Thm. 1.5.

1.3.2 Exponential convergence for the edge-triangle model

Proof of Theorem 1.5. The proof consists in showing that the sequence of the laws of
the triangle density w.r.t. the measure Pn;α,h is exponentially tight; this is made by
representing the measure Pn;α,h as a tilted probability measure on the space of graphons,
that has as a priori measure the Erdős-Rényi one. Let H2 be a triangle. Note that the
homomorphism density is then t(H2, G) = 6Tn(G)

n3 . An important property that we are

going to use is that t( · , G) = t( · , g̃), where g̃ is the image in W̃ of the checkerboard
graphon gG of G and t(·, g̃) is the subgraph density (1.27). This allows us to extend
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Chapter 1. Density of triangles in edge-triangle models

the edge-triangle Hamiltonian Hn;α,h to the space W̃ replacing homomorphism densities
with subgraph densities. Indeed, for all G ∈ Gn,

Pn;α,h(G) =
exp (Hn;α,h(G))∑

g̃∈W̃
∑

G∈[ g̃ ]n exp (Hn;α,h(G))
=

exp (Hn;α,h(g̃))1(g
G ∈ g̃)∑

g̃∈W̃ |[ g̃ ]n| exp (Hn;α,h(g̃))
, (1.28)

where [ g̃ ]n := {G ∈ Gn : gG ∈ g̃} and | · | denotes the cardinality of a set. Notice that
thanks to the fact that we can replace the homomorphism density with the subgraph
density, the internal sum

∑
G∈[ g̃ ]n in the second term of (1.28) simply reduces to the

cardinality of the set [ g̃ ]n. Since for p = 1
2 the Erdős-Rényi measure becomes uniform

on Gn, we can equivalently write |[ g̃ ]n| = 2n(n−1)/2PER
n; 1

2

([ g̃ ]n). As a consequence, from

(1.28), we obtain

Pn;α,h(G) =
2−n(n−1)/2 exp (Hn;α,h(g̃))1(g

G ∈ g̃)∑
g̃∈W̃ exp (Hn;α,h(g̃)) P̃ER

n; 1
2

({g̃})
. (1.29)

We now express the Hamiltonian in terms of homomorphism densities; to do so, we
introduce the function

Uα,h(G) := α
6 t(H2, G) + h

2 t(H1, G),

so that Hn;α,h(G) = n2Uα,h(G). For each n ≥ 1 and each Borel set Ã ⊆ W̃, we define
the probabilities

Q̃n;α,h(Ã) :=

∑
g̃∈Ã exp

(
n2Uα,h(g̃)

)
P̃ER
n; 1

2

(g̃)∑
g̃∈W̃ exp (n2Uα,h(g̃)) P̃ER

n; 1
2

(g̃)
. (1.30)

Since Uα,h is a continuous and bounded function on the metric space (W̃ , δ□) (see Borgs

et al. [2008, 2012]), by [Ellis, 1985, Thm. II.7.2], the sequence {Q̃n;α,h}n≥1 of probability
measures satisfies a large deviation principle with speed n2 and rate function

Iα,h(g̃) := I 1
2
(g̃)− Uα,h(g̃)− inf

g̃∈W̃

{
I 1

2
(g̃)− Uα,h(g̃)

}
. (1.31)

The function I 1
2
is lower semicontinuous (see [Chatterjee and Varadhan, 2011, Lem. 2.1]),

and, therefore Iα,h is lower semicontinuous as well, as it is the sum of lower semicon-

tinuous functions; thus it admits a minimizer on the compact space W̃. In particular,
for (α, h) ∈ Mrs the minimizers of (1.31) are given by the set C̃∗ = {ũ∗1, ũ∗2}, where ũ∗1
and ũ∗2 are the constant graphons in W̃ with density given by the solutions u∗1, u

∗
2 to

the scalar problem (1.8) (we know that they are exactly two thanks to [Radin and Yin,
2013, Prop. 3.2]). For all sufficiently small ε > 0, we define the open interval

J(ε) := (u∗1
3 − ε, u∗1

3 + ε) ∪ (u∗2
3 − ε, u∗2

3 + ε)
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Chapter 1. Density of triangles in edge-triangle models

and we consider the sets

C̃∗
ε := {g̃ ∈ W̃ : t(H2, g̃) /∈ J(ε)} and C∗

ε :=

{
G ∈ Gn :

6Tn(G)

n3
/∈ J(ε)

}
.

It is important to observe that, due to (1.29) and (1.30), Q̃n;α,h(C̃
∗
ε ) = Pn;α,h (C

∗
ε ).

Moreover, C̃∗
ε does not contain any element of C̃∗, indeed, for the constant graphons

ũ∗i , i ∈ {1, 2}, it holds t(H2, ũ
∗
i ) = u∗i

3 ∈ J(ε) ⇒ C̃∗
ε ∩ C̃∗ = ∅. Hence, since C̃∗

ε is
closed and does not contain any minimizer of the rate functional (1.31), Thm. II.7.2(b)
in Ellis [1985] guarantees that, for sufficiently large n, there is some positive constant
τ = τ(C̃∗

ε ) > 0, corresponding to the infimum of the rate functional on C̃∗
ε , such that

Q̃n;α,h(C̃
∗
ε ) ≤ e−n2τ . The thesis follows since

Pn;α,h

(
6Tn

n3
∈ J(ε)

)
= 1− Q̃n;α,h(C̃

∗
ε ) ≥ 1− e−n2τ .

When (α, h) ∈ Urs, namely we work in the uniqueness regime, the proof above can be
carried out exactly in the same way, and it gives exponential convergence of the sequence(
6Tn/n

3
)
n≥1

to u∗3 (being u∗ = u∗0 or u∗ = u∗c , depending on (α, h)). Indeed in Urs, the

set of minimizers of (1.31) coincides with the singleton C̃∗ = {ũ∗}, where ũ∗ is the image

in W̃ of the unique solution u∗ to the scalar problem (1.7). As pointed out in [Bianchi
et al., 2024, Thm. 1.5], as a byproduct of this proof, we obtain an LDP for Q̃n;α,h:

Remark 1.22 (Bianchi et al. [2024], Rem. 7.5). The sequence (Q̃n;α,h)n≥1 obeys a large

deviation principle on the space (W̃ , δ□), with speed n2 and rate function Iα,h.

We are now ready to prove the strong law of large numbers stated in Thm. 1.4.

Proof of Theorem 1.4. The thesis immediately follows as a consequence of Borel-Cantelli
lemma, since exponential convergence provided by Thm. 1.5 implies almost sure conver-
gence (see Ellis [1985], Thm. II.6.4). We stress that this almost sure convergence holds
w.r.t. a probability measure Pα,h on the space

(
{0, 1}N,B({0, 1}N)

)
, with marginals cor-

responding to the measures Pn;α,h, for all n ∈ N (see Rem. 1.1).

1.3.3 Preliminaries for the mean-field analysis

We start from some preliminaries that are preparatory to the proofs of this section.
First, we observe that the Hamiltonian H̄n;α,h (given in (1.14)), which is defined on An,
is actually a function of the edges density m ≡ m(x) := 2En(x)/n

2, x ∈ An, taking
values in the set Γn :=

{
0, 2

n2 ,
4
n2 ,

6
n2 , . . . , 1− 1

n

}
. In particular, for all x ∈ An such that

2En(x)
n2 = m, we have

H̄n;α,h(x) = H̄n;α,h(m) = n2

(
α

6
m3 +

h

2
m

)
.
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As a consequence, we can also write, with a little abuse of notation,

P̄n;α,h(A) =
∑
m∈A

Nmen
2(α

6
m3+h

2
m)

Z̄n;α,h
, for A ⊆ Γn, (1.32)

where Nm :=
( n(n−1)

2
n(n−1)m

2

)
coincides with the number of adjacency matrices in An with

edge density m. From representation (1.32) arises another important function, that we
call energy function; for any (α, h) ∈ R2, it is defined as

gα,h(m) :=
α

6
m3 +

h

2
m− I(m)

2
, for m ∈ Γn. (1.33)

The first two terms coincide with the exponent in (1.32), whereas the entropic term
I(m) = m lnm+(1−m) ln(1−m), defined below (1.3), comes from the Stirling approx-
imation of the binomial coefficient Nm. Let fα,h be the infinite volume free energy of
the edge-triangle model, as given in (1.7), and let u∗i , i = 0, 1, 2, or u∗c be a solution of
(1.8), depending on the range of (α, h). We stress that, by construction, gα,h(u

∗
i ) = fα,h

if (α, h) ̸= (αc, hc), and gαc,hc(u
∗
c) = fαc,hc .

Neighborhoods of the maximizer(s). Fix 0 < δ < 1. We will mainly work in the
following neighborhoods of the maximizer(s) (whose definition was anticipated in (1.21)):

Bu∗
i
≡ Bu∗

i
(n, δ) = {m ∈ Γn : |m− u∗i | ≤ n−δ}, i = 0, 1, 2 (1.34)

Bu∗
c
≡ Bu∗

c
(n, δ) = {m ∈ Γn : |m− u∗c | ≤ n−δ} (1.35)

making extensive use of the following Taylor expansions from Bianchi et al. [2022]:gα,h(m)− gα,h(u
∗
i ) = −ci(m− u∗i )

2 + ki(m− u∗i )
3 if (α, h) ̸= (αc, hc)

gα,h(m)− gα,h(u
∗
c) = −81

64(m− u∗c)
4 + kc(m− u∗c)

5 if (α, h) = (αc, hc),
(1.36)

where

ci := −
g′′α,h(u

∗
i )

2
=

1− 2α(u∗i )
2(1− u∗i )

4u∗i (1− u∗i )
> 0, (1.37)

ki := g′′′α,h(ũi)/6, kc := g
(v)
αc,hc

(ũc)/5!, (1.38)

for some ũi, ũc such that |ũi − u∗i | < n−δ, |ũc − u∗c | < n−δ.

Lattice sets. As a result of suitable changes of variables, obtained as fluctuations of
m ∈ Γn, we will need to consider the following integration ranges:

R
(n)
i,δ :=

(
−n1−δ, n1−δ

)
∩
{
−nu∗i ,−nu∗i +

2

n
, . . . ,−nu∗i + (n− 1)

}
, (1.39)

R
(n)
c,δ :=

(
−n

1
2
−δ, n

1
2
−δ
)
∩
{
−
√
nu∗c ,−

√
nu∗c +

2

n
3
2

, . . . ,−
√
nu∗c +

n− 1√
n

}
, (1.40)

25



Chapter 1. Density of triangles in edge-triangle models

where i = 0, 1, 2. The following lemma shows how the main contribution to Z̄n;α,h is
given by sums over these sets.

Lemma 1.23 (Bianchi et al. [2024], Lemma 8.1). Let (α, h) ∈ (−2,+∞) × R and let
fα,h be the infinite volume free energy of the edge-triangle model given in (1.7).

Fix δ ∈ (0, 1). If (α, h) ̸= (αc, hc) and ci, ki as in (1.37)–(1.38), let

D
(n)
i :=

∑
x∈R(n)

i,δ

2

n

e−cix
2+

ki
n
x3√(

u∗i +
x
n

) (
1− u∗i −

x
n

) , for i = 0, 1, 2. (1.41)

Fix δ ∈
(
0, 38
)
. If (α, h) = (αc, hc) and kc as in (1.38), let

D(n)
c :=

∑
x∈R(n)

c,δ

2

n3/2

e
− 81

64
x4+ kc√

n
x5√(

u∗c +
x√
n

)(
1− u∗c − x√

n

) . (1.42)

Then, as n → +∞,

Z̄n;α,h =
en

2fα,h

2
√
π

(
D(n)(α, h)

)
(1 + o(1)), (1.43)

where

D(n)(α, h) :=


D

(n)
0 if (α, h) ∈ Urs \ {(αc, hc)}

D
(n)
1 +D

(n)
2 if (α, h) ∈ Mrs

√
nD

(n)
c if (α, h) = (αc, hc)

.

Remark 1.24. Lem. 1.23 directly proves (1.12).

Remark 1.25. The quantities defined in (1.41)–(1.42) are Riemann sums with volume

elements respectively given by 2/n and 2/n3/2. Indeed the points x ∈ R
(n)
i , i = 0, 1, 2

(resp. inside R
(n)
c ) are evenly spaced with gaps of length 2/n (resp. 2/n3/2). It is pos-

sible to show that on the ranges R
(n)
i,δ it holds e−cix

2+
ki
n
x3 ≤ e−(ci−kin

−δ)x2
which is in

turn bounded by e−0.99cix
2
for sufficiently large n. With this domination and point-wise

convergence, we get (similar bounds can be done at criticality),

D
(n)
i

n→+∞−−−−−→ Di := 2

√
π
[
1− 2α (u∗i )

2 (1− u∗i )
]−1

, i ∈ {0, 1, 2} (1.44)

D(n)
c

n→+∞−−−−−→ Dc :=
3√
2

∫ ∞

−∞
e−

81
64

x4
dx ≈ 3.63 , (1.45)

where for (1.45) we used u∗c =
2
3 . These terms will play the role of normalization weights.
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1.3.4 Phase coexistence on the critical curve and SLLN

Proof of Theorem 1.7. In this part, we denote by u∗ both terms u∗0 or u∗c , indistinguish-
ably (recall that the region (α, h) ∈ Urs includes the critical point (αc, hc)). Fix ε > 0
and set K(ε) := {m ∈ Γn : |m− u∗| ≥ ε/3}. We prove almost sure convergence via the

exponential convergence of 6T̄n
n3 to u∗3 (similarly to [Ellis, 1985, Thm. IV.4.1]). Indeed,

P̄n;α,h

(∣∣∣∣6T̄n

n3
− u∗3

∣∣∣∣ ≥ ε

)
≤

∑
m∈K(ε)

Nmen
2(α

6
m3+h

2
m)

Z̄n;α,h

≤ Cn3e−n2(fα,h−maxm∈K(ε) gα,h(m)) 2
√
π

D(n)(α, h)
(1 + o(1))

= Cn3e−n2 minm∈K(ε)(fα,h−gα,h(m)) 2
√
π

D(n)(α, h)
(1 + o(1)),

where in the second inequality we used (1.43), together with the following Stirling ap-
proximation (see [Friedli and Velenik, 2017, Chap. 2, Eq. (2.11)]):

cn−1e−
n2

2
I(m) ≤ Nm ≤ Cne−

n2

2
I(m), (1.46)

where c and C are positive constants. As stated in [Radin and Yin, 2013, Prop. 3.2], when
(α, h) ∈ Urs and for sufficiently small ε, the function fα,h−gα,h(m) is positive, convex and
admits u∗ as unique zero. Therefore, the minimum appearing at the exponent is strictly
positive, and we obtain the exponential convergence. Finally, almost sure convergence
follows as a consequence of Borel-Cantelli lemma (Ellis [1985], Thm. II.6.4).

Proof of Theorem 1.8. We will determine the limit of

Ēn;α,h

[
φ
(
6T̄n/n

3
)]

,

for any continuous and bounded real function φ. First we observe that, since m ≡
m(x) = 2En(x)

n2 , we obtain T̄n(x) =
n3m3

6 . Then, using (1.32), we get:

Ēn;α,h

[
φ

(
6T̄n

n3

)]
=
∑
m∈Γn

φ(m3)
Nmen

2(α
6
m3+h

2
m)

Z̄n;α,h
. (1.47)

We split the sum in (1.47) over the sets Bu∗
1
, Bu∗

2
given in (1.34), and C ≡ C(n, δ) :=

Γn \
(
Bu∗

1
∪Bu∗

2

)
, considering the three contributions separately. First we observe that

whenever we work inside the sets Bu∗
i
, i = 1, 2, the bounds in (1.46) can be made more

precise, because n−2 ≪ m ≪ 1−n−2 and, consequently, n2m → ∞ and n2(1−m) → ∞,
as n → ∞. Hence, the following Stirling approximation is valid

Nm =
e−

n2

2
I(m)

n
√

πm(1−m)
(1 + o(1)) . (1.48)
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This, together with Lem. 1.23, yields the following representation:

∑
m∈Bu∗

i

φ(m3)
Nmen

2(α
6
m3+h

2
m)

Z̄n;α,h
=

∑
m∈Bu∗

i

2

n

φ(m3)√
m(1−m)

e−n2(fα,h−gα,h(m))

D
(n)
1 +D

(n)
2

(1 + o(1)) ,

where i ∈ {1, 2} and gα,h is the energy function defined in (1.33). By performing the
change of variable x = n(m− u∗i ), and using the Taylor expansion (1.36), we obtain:

∑
m∈Bu∗

i

φ(m3)
Nmen

2(α
6
m3+h

2
m)

Z̄n;α,h
=
∑

x∈R(n)
i,δ

2

n

φ((u∗i +
x
n)

3)√
(u∗i +

x
n)(1− u∗i −

x
n)

e−cix
2+

ki
n
x3

D
(n)
1 +D

(n)
2

(1 + o(1))

n→+∞−−−−−−→ φ(u∗i
3)

Di

D1 +D2
,

where Di is defined in (1.44) and R
(n)
i,δ , given in (1.39), represents the range of values of

x. To conclude the analysis, we show that the sum over the remaining set C provides
no contribution in the limit. Outside the sets Bu∗

i
, i = 1, 2, the Stirling approximation

(1.48) is not valid anymore. However, from (1.46) we deduce:∑
m∈C

Nmen
2(α

6
m3+h

2
m) ≤ Cn

∑
m∈C

en
2gα,h(m) <

C

2
n3en

2 maxm∈C gα,h(m), (1.49)

where the last inequality is due to the fact that C contains at most
(
n
2

)
points. Since

fα,h = gα,h(u
∗
i ), i = 1, 2 we obtain

en
2 maxm∈C gα,h(m) = en

2fα,he−n2(gα,h(u
∗
i )−maxm∈C gα,h(m)) ≤ en

2fα,he−kn2−2δ
, (1.50)

where k > 0 is a constant that does not depend on n and δ ∈ (0, 1). The last inequality
follows from the Taylor expansion (1.36), exploiting the fact that |m−u∗i | > n−δ for i =
1, 2 and for all m ∈ C. As a consequence, from the rough Stirling approximation (1.46)

and the consequent rough bound Z̄n;α,h ≥ minm∈Γn Nmen
2(α

6
m3+h

2
m) ≥ cn−1en

2fα,h , we
get ∑

m∈C Nmen
2(α

6
m3+h

2
m)

Z̄n;α,h
< c−1Cn4e−kn2−2δ n→+∞−−−−−−→ 0, (1.51)

being 2− 2δ > 0 by assumption. In conclusion,

lim
n→+∞

Ēn;α,h

[
φ

(
6T̄n

n3

)]
= φ(u∗1

3)
D1

D1 +D2
+ φ(u∗2

3)
D2

D1 +D2
.

This proves the thesis.
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1.3.5 Rate of convergence of triangle density

Proof of Proposition 1.11. The proof implements the same machinery of Thm. 1.8. Let
(α, h) ∈ Urs; we analyze the case (α, h) ∈ Urs \ {(αc, hc)} first, and then we move to the
critical point. Note that

Ēn;α,h

(∣∣∣6T̄n

n3
− u∗0

3
∣∣∣) =

∑
m∈Γn

|m3 − u∗0
3|Nmen

2(α
6
m3+h

2
m)

Z̄n;α,h
. (1.52)

We split the average in (1.52) in two parts, one over Bu∗
0
given in (1.34), and the other

over C ≡ C(n, δ) := Γn \ Bu∗
0
. The contribution of the average over C is negligible,

exploiting exactly the same argument in (1.49)–(1.51) with u∗0 in place of u∗i (i = 1, 2),
and bounding, very roughly, |m3 − u∗0

3| = |m − u∗0|(m2 + mu∗0 + u∗0
2) by the constant

3. We now focus on the sum over Bu∗
0
. By Lem. 1.23 and the Stirling approximation

(1.48), we obtain

Ēn;α,h

(∣∣∣6T̄n

n3
− u∗0

3
∣∣∣) =

∑
m∈Bu∗0

|m3 − u∗0
3|Nmen

2(α
6
m3+h

2
m)

Z̄n;α,h
(1 + o(1))

=
∑

m∈Bu∗0

2

n

|m3 − u∗0
3|√

m(1−m)

e−n2(fα,h−gα,h(m))

D
(n)
0

(1 + o(1)) ,

where we recall that T̄n(x) = n3m3

6 and Bu∗
0
is defined in (1.34). From the Taylor

expansion (1.36) we get

Ēn;α,h

(∣∣∣6T̄n

n3
− u∗0

3
∣∣∣) =

∑
m∈Bu∗0

2

n

|m3 − u∗0
3|√

m(1−m)

e−n2c0(m−u∗
0)

2+n2k0(m−u∗
0)

3

D
(n)
0

(1 + o(1)).

(1.53)

We now perform the change of variable x = n(m− u∗0), and we use the identity

m3 − u∗0
3 =

(
u∗0 +

x

n

)3
− u∗0

3 = 3u∗0
2x

n
+ 3u∗0

x2

n2
+

x3

n3
, (1.54)

thus obtaining

n · Ēn;α,h

(∣∣∣6T̄n

n3
− u∗0

3
∣∣∣) =

∑
x∈R(n)

0,δ

2

n

|3u∗02x+ 3u∗0
x2

n + x3

n2 | · e−c0x2+
k0
n
x3√(

u∗0 +
x
n

) (
1− u∗0 − x

n

)
·D(n)

0

(1 + o(1)),

(1.55)

where R
(n)
0,δ is defined in (1.39) and the constants c0 and k0 are given in (1.37)–(1.38).

Consider the term ∑
x∈R(n)

0,δ

2

n

|3u∗02x| · e−c0x2+
k0
n
x3√(

u∗0 +
x
n

) (
1− u∗0 − x

n

)
·D(n)

0

(1 + o(1)),
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together with the sequence of probability densities

ℓn(x) :=
2

n

e−c0x2+
k0
n
x3√(

u∗0 +
x
n

) (
1− u∗0 − x

n

)
·D(n)

0

1
R

(n)
0

(x) , x ∈ R , (1.56)

where D
(n)
0 is the normalization weight defined in (1.41). If, for every n ∈ N, Xn is a

random variable with density ℓn, then∑
x∈R(n)

0,δ

2

n

|3u∗02x| · e−c0x2+
k0
n
x3√(

u∗0 +
x
n

) (
1− u∗0 − x

n

)
·D(n)

0

(1 + o(1)) = E(|3u∗0
2Xn|)(1 + o(1)).

Collecting all contributions, we can upper and lower bound the sum in (1.55) using the
following chain of inequalities: |a| − |b| ≤ ||a| − |b|| ≤ |a + b| ≤ |a| + |b|, a, b ∈ R, with
a := 3u∗0

2x and b := 3u∗0
x2

n + x3

n2 . We have:

E(|3u∗0
2Xn|)(1 + o(1))−

(∫
R

∣∣∣∣3u∗0x2n +
x3

n2

∣∣∣∣ ℓn(x)dx) (1 + o(1)) (1.57)

≤ n · Ēn;α,h

(∣∣∣6T̄n

n3
− u∗0

3
∣∣∣) ≤

E(|3u∗0
2Xn|)(1 + o(1)) +

(∫
R

∣∣∣∣3u∗0x2n +
x3

n2

∣∣∣∣ ℓn(x)dx) (1 + o(1)). (1.58)

Notice that, reasoning as for the convergence D
(n)
0

n→+∞−−−−−→ D0 (see Rem. 1.25) and the

Scheffé Lemma, we obtain Xn
d−−→ X, where X is a Gaussian random variable with

density

ℓ(x) =

√
c0
π
e−c0x2

, x ∈ R . (1.59)

Moreover, the random variables Xn have finite exponential moments for any sufficiently
large n. Therefore, by the dominated convergence theorem, applied to both bounds in
(1.57)–(1.58), we obtain

n · Ēn;α,h

(∣∣∣6T̄n

n3
− u∗0

3
∣∣∣) n→+∞−−−−−−→ 3u∗0

2E(|X|).

Indeed, the second summand in (1.57)–(1.58) vanishes, being 3u∗0
x2

n + x3

n2 = o(1), for fixed

x. Setting X̄ := 3u∗0
2X, and noticing that X has variance (2c0)

−1, we recover (1.18).
We now move to the critical case, so we consider (α, h) = (αc, hc) and u∗c = u∗(αc, hc).
Here, the proof works exactly the same. We split the average in (1.52) in two parts, one
over Bu∗

c
given in (1.35), and the other over C ≡ C(n, δ) := Γn \ Bu∗

c
. The contribution

of the average over C is negligible, exploiting the same argument in (1.49)–(1.51). This
time, by injecting the Taylor expansion (1.36) at the critical point in (1.50), and using
the fact that |m− u∗c |4 > n−4δ for m ∈ C, we get∑

m∈C Nmen
2(αc

6
m3+hc

2
m)

Z̄n;αc,hc

< c−1Cn4e−kn2−4δ n→+∞−−−−−−→ 0, k > 0,
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since δ < 3/8 by assumption. We now restrict the average (1.52) to a sum in Bu∗
c
. In

place of (1.53) we get:

Ēn;αc,hc

(∣∣∣6T̄n

n3
− u∗c

3
∣∣∣) =

∑
m∈Bu∗c

2

n
3
2

|m3 − u∗c
3|e−n2 81

64
(m−u∗

c)
4+n2kc(m−u∗

c)
5√

m (1−m) ·D(n)
c

(1 + o(1)),

where Bu∗
c
is defined in (1.35), and the constant kc is given in (1.38). Notice that here

the Taylor expansion (1.36) provides the fourth-order term (m − u∗c)
4 at the exponent,

while Lem. 1.23 brings the normalization weight D
(n)
c . After the change of variable

y :=
√
n(m− u∗c), recalling that u∗c =

2
3 and by means of the identity

m3 − u∗c
3 =

(
u∗c +

y√
n

)3
− u∗c

3 =
4

3

y√
n
+ 2

y2

n
+

y3

n
3
2

,

we obtain

√
n · Ēn;αc,hc

(∣∣∣6T̄n

n3
− u∗c

3
∣∣∣) =

∑
y∈R(n)

c,δ

2

n
3
2

|43y + 2 y2√
n
+ y3

n | · e−
81
64

y4+ kc√
n
y5√(

u∗c +
y√
n

)(
1− u∗c −

y√
n

)
D

(n)
c

(1 + o(1)),

where R
(n)
c,δ is given in (1.40). For every n ∈ N, let Yn be a real random variable with

Lebesgue density

ℓcn(y) :=
2

n3/2

e
− 81

64
y4+ kc√

n
y5√

(u∗c +
y√
n
)(1− u∗c −

y√
n
) ·D(n)

c

1
R

(n)
c,δ

(y) , y ∈ R . (1.60)

Note that D
(n)
c provides the right normalization rate. The random variable Yn has finite

exponential moments for any sufficiently large n. By Scheffé Lemma and dominated
convergence theorem, we conclude

√
n · Ēn;αc,hc

(∣∣∣6T̄n

n3
− u∗c

3
∣∣∣) n→+∞−−−−−−→ 4

3
E(|Y |),

where Y is a generalized Gaussian random variable with Lebesgue density ℓc(y) ∝ e−
81
64

y4 .

Setting Ȳ := 4
3Y , since Y has scale parameter 23/2

3 , Ȳ is a generalized Gaussian random

variable with scale parameter 27/2

32
, thus proving the thesis.

With the same strategy we can immediately prove the following corollary.

Proof of Corollary 1.12. Recall that m̄∆
n (α, h) = Ēn;α,h

(
6T̄n
n3

)
. By following the proof of

Prop. 1.11, we obtain,

• for all (α, h) ∈ Urs \ {(αc, hc)},

n·
(
m̄∆

n (α, h)− u∗0
3(α, h)

)
= E

(
3u∗0

2Xn

)
(1+o(1))+o(1)

n→+∞−−−−−−→ E(X̄) = 0,
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• for (α, h) = (αc, hc) ,

√
n ·
(
m̄∆

n (αc, hc)− u∗c
3(αc, hc)

)
= E

(4
3
Yn

)
(1 + o(1)) + o(1)

n→+∞−−−−−−→ E(Ȳ ) = 0.

1.3.6 Standard and non-standard mean-field CLT

We use Cor. 1.12 to prove Thms. 1.9 and 1.10. We start with the analysis at criticality.

Proof of Theorem 1.10. Let u∗c = u∗(αc, hc). We consider the decomposition

6
T̄n
n − n2

6 m̄∆
n (αc, hc)

n3/2
= Ūn +

√
n
(
u∗c

3 − m̄∆
n (αc, hc)

)
,

where

Ūn := 6
T̄n
n − n2

6 u∗c
3

n3/2
.

By (1.20) and Slutsky theorem (see [Klenke, 2020, Thm. 13.18]), it is enough to study

the convergence in distribution of the variable 6( T̄n
n − n2

6 u∗c
3)/n3/2. We show that, for

any t ∈ R,
M̄n(t) := Ēn;αc,hc

(
et·Ūn

)
n→+∞−−−−−−→

∫
R
ety ℓ̄c(y)dy, (1.61)

where ℓ̄c is given in the statement. Again, we split the average in (1.61) in two parts,
one over Bu∗

c
given in (1.35), and the other over C ≡ C(n, δ) := Γn \

(
Bu∗

c

)
. We obtain:

∑
m∈C

Nmet
√
n(m3−u∗

c
3)+n2(αc

6
m3+hc

2
m)

Z̄n;αc,hc

(1.46)

≤
∑
m∈C

Ce3t
√
n+n2gαc,hc (m)

Z̄n;αc,hc

≤ Cn3e3t
√
n+n2fαc,hc−n2(gα,h(u

∗
c)−maxm∈C gαc,hc (m))

Z̄n;αc,hc

≤ c−1Cn3e3t
√
n−kn2−4δ n→+∞−−−−−−→ 0, (1.62)

for some constant k > 0. In the second to last inequality we used that fαc,hc = gαc,hc(u
∗
c),

and that the set C contains at most
(
n
2

)
elements. In the last inequality we used the

Taylor expansion (1.36) at the critical point, the rough bound Z̄n;α,h ≥ cn−1en
2fα,h

coming from (1.46), and the fact that |m− u∗c |4 > n−4δ for m ∈ C. The assumption
δ < 3/8 guarantees that 2 − 4δ > 1/2. As a consequence of (1.62), we can reduce the
average in (1.61) into a sum on Bu∗

c
:

M̄n(t) =
∑

m∈Bu∗c

Nmet
√
n(m3−u∗

c
3)+n2(αc

6
m3+hc

2
m)

Z̄n;αc,hc

(1 + o(1))

=
∑

m∈Bu∗c

2

n
3
2

et
√
n(m3−u∗

c
3)−n2(fαc,hc−gαc,hc (m))√

m(1−m) ·D(n)
c

(1 + o(1)) ,

(1.63)

32



Chapter 1. Density of triangles in edge-triangle models

where the last identity is due to Lem. 1.23 and the Stirling approximation (1.48). In-
jecting in (1.63) the Taylor expansion (1.36) at the critical point, we get

M̄n(t) =
∑

m∈Bu∗c

2

n
3
2

et
√
n(m3−u∗

c
3)− 81

64
n2(m−u∗

c)
4+kcn2(m−u∗

c)
5√

m(1−m) ·D(n)
c

(1 + o(1)).

By the change of variable y =
√
n(m− u∗c), and recalling that u∗c(αc, hc) =

2
3 , we find

M̄n(t) =
∑

y∈R(n)
c,δ

2

n
3
2

e
t( 4

3
y+2 y2√

n
+ y3

n
) · e−

81
64

y4+kc
y5√
n√(

u∗c +
y√
n

)(
1− u∗c −

y√
n

)
D

(n)
c

(1 + o(1)).

Exploiting the range of R
(n)
c,δ , given in (1.40), we observe that −n1/2−3δ < 2 y2√

n
+ y3

n <

2n1/2−2δ + n1/2−3δ. By isolating the term

M̄∗
n(t) :=

∑
y∈R(n)

c,δ

2

n
3
2

et
4
3
y · e−

81
64

y4+kc
y5√
n√(

u∗c +
y√
n

)(
1− u∗c −

y√
n

)
D

(n)
c

(1 + o(1)), (1.64)

we obtain:
e−tn1/2−3δ

M̄∗
n(t) ≤ M̄n(t) ≤ et(2n

1/2−2δ+n1/2−3δ)M̄∗
n(t). (1.65)

In (1.64) we recognize the probability density ℓcn of the random variable Yn, introduced

in (1.60). From (1.64) we then deduce that M̄∗
n(t) = E(et

4
3
Yn)(1 + o(1)) . By Scheffé

Lemma, Yn converges in distribution to a generalized Gaussian random variable Y with
Lebesgue density ℓc(y) ∝ e−

81
64

y4 , therefore

M̄∗
n(t) = E(et

4
3
Yn)(1 + o(1))

n→+∞−−−−−−→ E(et
4
3
Y ).

With the further constraint 1
4 < δ < 3

8 , from (1.65) it holds M̄n(t)
n→+∞−−−−−→ E(et

4
3
Y ). By

setting Ȳ := 4
3Y we conclude the proof.

Proof of Theorem 1.9. The object that we want to study is in this case the random
variable

√
6

T̄n
n − n2

6 m̄∆
n (α, h)

n
= V̄n +

n√
6

(
u∗0

3 − m̄∆
n (α, h)

)
, (1.66)

where

V̄n :=
√
6

T̄n
n − n2

6 u∗0
3

n
.

By (1.19) and Slutsky theorem, it is enough to study the moment generating function
of V̄n, restricting again the analysis on the neighborhood Bu∗

0
(the contribution over the
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set C ≡ C(n, δ) := Γn \ Bu∗
0
can be treated as in (1.62), with 0 < δ < 1). To simplify

constants, we consider
√
6V̄n instead of V̄n. We then get:

M̄n(t) =
∑

m∈Bu∗0

2

n

1√
m(1−m)

etn(m
3−u∗

0
3)−c0n2(m−u∗

0)
2+k0n2(m−u∗

0)
3

D
(n)
0

(1 + o(1)).

The change of variable x = n(m− u∗0), identity (1.54), and the Taylor expansion (1.36)
yield

M̄n(t) =
∑

x∈R(n)
0,δ

2

n

et(3u
∗
0
2x+3u∗

0
x2

n
+ x3

n2 ) · e−c0x2+k0
x3

n√(
u∗0 +

x
n

) (
1− u∗0 − x

n

)
D

(n)
0

(1 + o(1)) .

As in the proof of Thm. 1.10, let

M̄∗∗
n (t) :=

∑
x∈R(n)

0,δ

2

n

e3tu
∗
0
2x · e−c0x2+k0

x3

n√(
u∗0 +

x
n

) (
1− u∗0 − x

n

)
D

(n)
0

(1 + o(1)). (1.67)

Furthermore, by exploiting the range of R
(n)
0,δ , given in (1.39) we obtain

e−tn1−3δ
M̄∗∗

n (t) ≤ M̄n(t) ≤ et(3u
∗
0n

1−2δ+n1−3δ)M̄∗∗
n (t). (1.68)

In (1.67) we recognize the probability density ℓn of the random variable Xn, introduced

in (1.56); we then rewrite (1.67) as M̄∗∗
n (t) = E(e3tu∗

0
2Xn)(1 + o(1)). By Scheffé Lemma

Xn converges in distribution to a real random variable X with Gaussian density ℓ given
in (1.59), therefore

M̄∗∗
n (t) = E(e3tu

∗
0
2Xn)(1 + o(1))

n→+∞−−−−−−→ E(e3tu
∗
0
2X).

With the further constraint 1
2 < δ < 1, from (1.68), it holds M̄n(t)

n→+∞−−−−−→ E(e3tu∗
0
2X).

Note that X is a centered Gaussian random variable with variance (2c0)
−1, where c0 ≡

c0(α, h) =
1−2α[u∗

0(α,h)]
2[1−u∗

0(α,h)]
4u∗

0(α,h)[1−u∗
0(α,h)]

. In conclusion, V̄n converges in distribution to the

centered Gaussian random variable 3u∗0
2X/

√
6, with variance v̄∆0 (α, h) =

3u∗
0
4

4c0
, as wanted.

1.3.7 Conditional measures

Proof of Proposition 1.15. Let (α, h) ∈ Mrs and let u∗i = u∗i (α, h), i = 1, 2 the two
solutions of the scalar problem (1.7). The proof of this proposition can be carried on
exactly as the proof of the analog Prop. 1.11, but in the conditional setting introduced
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in Subsec. 1.2.2. Without loss of generality, we consider the case i = 1:

Ê(1)
n;α,h

(∣∣∣∣6T̄n

n3
− u∗1

3

∣∣∣∣) =
∑

m∈Bu∗1

|m3 − u∗1
3|Nm en

2(α
6
m3+h

2
m)

Z̄n;α,h(Bu∗
1
)

=
∑

m∈Bu∗1

2

n

|m3 − u∗1
3|√

m(1−m)

e−n2(fα,h−gα,h(m))

D
(n)
1

(1 + o(1)),

where Ê(1)
n;α,h is the expectation associated with the measure P̂(1)

n;α,h defined in (1.22), and

Z̄n;α,h(Bu∗
1
) denotes the restriction of the partition function to the set Bu∗

1
. The Taylor

expansion (1.36) and the change of variable x = n(m− u∗1) yield

n · Ê(1)
n;α,h

(∣∣∣∣6T̄n

n3
− u∗1

3

∣∣∣∣) =
∑

x∈R(n)
1,δ

2

n

|3u∗12x+ 3u∗1
x2

n + x3

n2 | · e−c1x2+
k1
n
x3√(

u∗1 +
x
n

) (
1− u∗1 − x

n

)
·D(n)

1

(1 + o(1)),

where R
(n)
1,δ is as in (1.39). If (X

(1)
n )n≥1 is a sequence of random variables with probability

density

ℓ(1)n (x) :=
2

n

e−c1x2+
k1
n
x3√(

u∗1 +
x
n

) (
1− u∗1 − x

n

)
·D(n)

1

1
R

(n)
1,δ

(x), x ∈ R, (1.69)

where D
(n)
1 is the normalization weight defined in (1.41), we obtain, as in (1.57)–(1.58),

E(|3u∗1
2X(1)

n |)(1 + o(1))−
(∫

R

∣∣∣∣3u∗1x2n +
x3

n2

∣∣∣∣ ℓ(1)n (x)dx

)
(1 + o(1)) (1.70)

≤ n · Ê(1)
n;α,h

(∣∣∣6T̄n

n3
− u∗1

3
∣∣∣) ≤

E(|3u∗1
2X(1)

n |)(1 + o(1)) +

(∫
R

∣∣∣∣3u∗1x2n +
x3

n2

∣∣∣∣ ℓ(1)n (x)dx

)
(1 + o(1)). (1.71)

Arguing as at the end of proof of Prop. 1.11, we conclude

n · Ê1
n;α,h

(∣∣∣6T̄n

n3
− u∗1

3
∣∣∣) n→+∞−−−−−−→ 3u∗1

2E(|X(1)|),

where X(1) is a standard Gaussian variable with variance (2c1)
−1. Indeed, the second

summand in (1.70)–(1.71) vanishes, being 3u∗1
x2

n + x3

n2 = o(1), for fixed x. Setting X̄(1) :=

3u∗1
2X(1), we obtain a random variable with variance 6v̄∆1 (α, h) =

9u∗
i (α,h)

4

2c1
, as wanted.

The same proof holds for the case i = 2.

Proof of Corollary 1.16. The proof follows immediately, as for Cor. 1.12.

As mentioned, the next theorem is the analog of Thm. 1.7 and Thm. 1.9, when the
edge density is conditioned to take values in a neighborhood of the two maximizers of
the scalar problem (1.7).
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Proof of Theorem 1.14. Let (α, h) ∈ Mrs and let u∗i = u∗i (α, h), i = 1, 2 the two so-
lutions of the scalar problem (1.7). We focus on the case i = 1, being the case i = 2
completely analogous. We start proving (1.23) via exponential convergence, which again
implies the a.s. convergence by a standard Borel-Cantelli argument (see Ellis [1985],
Thm. II.6.4 and Rem. 1.1). Fix η > 0. We define

R ≡ R(η;n) :=
{
m ∈ Γn : η/3 ≤ |m− u∗1| < n−δ

}
.

Notice that for large n, the set R is empty. When this does not hold, we have

P̂(1)
n;α,h

(∣∣∣∣6T̄n

n3
− u∗1

3

∣∣∣∣ ≥ η

)
≤
∑
m∈R

Nmen
2(α

6
m3+h

2
m)

Z̄n;α,h(Bu∗
1
)

≤ Cc−1n4e−n2(fα,h−maxm∈R gα,h(m))

≤ Cc−1n4e−n2 minm∈R(fα,h−gα,h(m)), (1.72)

where in the second to last passage we used the rough bound Z̄n;α,h(Bu∗
1
) ≥ cn−1en

2fα,h

coming from Stirling approximation (1.46). As stated in [Radin and Yin, 2013, Prop. 3.2],
for sufficiently large n, the function fα,h − gα,h(m), restricted to the neighborhood Bu∗

1
,

is positive, convex and admits u∗1 as unique zero. Hence

min
m∈R

(fα,h − gα,h(m)) = min{fα,h − gα,h(u
∗
1 − η), fα,h − gα,h(u

∗
1 + η)} > 0.

When R is nonempty, the probability in (1.72) vanishes, as n → ∞. This provides the
desired exponential convergence, for every choice of η > 0. We now move to the proof
of (1.24). By means of decomposition (1.66), and Cor. 1.16 we can reduce our analysis
to the random variable

V̄ (1)
n :=

√
6

T̄n
n − n2

6 u∗1
3

n
,

studying, for any t ∈ R, its moment generating function

M̂n(t) := Ê(1)
n;α,h

(
etV̄

(1)
n

)
.

We consider
√
6V̄

(1)
n instead of V̄

(1)
n (to simplify constants), and we follow the same line

of arguments as in the proof of Thm. 1.9. We get:

M̂n(t) =
∑

m∈Bu∗1

2

n

1√
m(1−m)

etn(m
3−u∗

1
3)−c1n2(m−u∗

1)
2+k1n2(m−u∗

1)
3

D
(n)
1

(1 + o(1)).

By the change of variable x = n(m− u∗1), identity (1.54), and the Taylor expansion
(1.36),

M̂n(t) =
∑

x∈R(n)
1,δ

2

n

et(3u
∗
1
2x+3u∗

1
x2

n
+ x3

n2 ) · e−c1x2+k1
x3

n√(
u∗1 +

x
n

) (
1− u∗1 − x

n

)
D

(n)
1

(1 + o(1)) ,
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where R
(n)
1,δ is defined in (1.39). By defining

M̂∗∗
n (t) :=

∑
x∈R(n)

1,δ

2

n

e3tu
∗
1
2x · e−c1x2+k1

x3

n√(
u∗1 +

x
n

) (
1− u∗1 − x

n

)
D

(n)
1

(1 + o(1)),

we observe that M̂∗∗
n (t) = E(e3tu∗

1
2X

(1)
n )(1 + o(1)) , where, for each n ∈ N, X

(1)
n is a

random variable with density ℓ
(1)
n (x) given in (1.69).

Notice that X
(1)
n converges in distribution to a centered Gaussian random variable X(1)

with variance (2c1)
−1, where c1 ≡ c1(α, h) =

1−2α[u∗
1(α,h)]

2[1−u∗
1(α,h)]

4u∗
1(α,h)[1−u∗

1(α,h)]
. Therefore

M̄∗∗
n (t) = E(e3tu

∗
1
2X

(1)
n )(1 + o(1))

n→+∞−−−−−−→ E(e3tu
∗
1
2X(1)

).

With the further constraint 1
2 < δ < 1, exploiting the same bounds as in (1.68), we also

obtain the convergence M̂n(t)
n→+∞−−−−−→ E(e3tu∗

1
2X(1)

) for all t ∈ R. In conclusion, V̄
(1)
n

converges in distribution to the centered Gaussian random variable 3u∗1
2X(1)/

√
6, with

variance v̄∆1 (α, h) =
3u∗

1
4

4c1
, as wanted. The same proof works for i = 2.

1.3.8 CLT for the integer part model

This section is dedicated to the proof of Thm. 1.18; the proof of Theorem 1.19 is omitted,
as it follows exactly the same argument. To describe the fluctuations of ⌊Tn/n⌋ around its
mean value, in view of the decomposition Tn/n = ⌊Tn/n⌋+{Tn/n} combined with Slutsky’s
theorem (see [Klenke, 2020, Thm. 13.8]), it is enough to study the asymptotic behavior

of the moment generating function of Wn :=
√
6

⌊Tn/n⌋−Ên;α,h(⌊Tn/n⌋)
n . Specifically, we are

going to relate this generating function to the second order derivative of the cumulant
generating function of ⌊Tn/n⌋, which is defined as

cn(t) := 6n−2 ln Ên;α,h[exp(t⌊Tn/n⌋)], t ∈ R. (1.73)

Remark 1.26. Note that, by a direct calculation, we get

c′n(t) =
6Ên;α+t,h (⌊Tn/n⌋)

n2
and c′′n(t) =

6Varn;α+t,h(⌊Tn/n⌋)
n2

. (1.74)

This comes after noticing that cn(t) = 6n−2(ln Ẑn;α+t,h − ln Ẑn;α,h) and from general
properties of Gibbs densities.

The limit of the sequence (c′′n(t))n≥1 for t = tn = o(1) will give the variance of the
limiting Gaussian. The existence of this limit follows from the Yang–Lee theorem (see
Thm. 1.27). To apply it, we first need a suitable representation of the partition function,
which we provide as a first step. Following this, we establish some auxiliary results that
will be used in the proof, which is deferred to the end of the section.
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Chapter 1. Density of triangles in edge-triangle models

Representation of the partition function. We start from the partition function
obtained by plugging (1.13) in the expression of the partition function, and then we
incorporate the integer part. First, we have:

Zn;α,h =
∑
x∈An

e
α
n

∑
{i,j,k}∈Tn xixjxk+h

∑
i∈En xi .

Notice that there is a bijection between An and the power set P(En), that maps an
element x ∈ An to the set S = {i ∈ En : xi = 1}. We can then decompose An in disjoint
subsets as

An =

(n3)⋃
m=0

(n2)⋃
ℓ=0

⋃
S⊆En:|S|=ℓ,

|{{i,j,k}⊂S : {i,j,k}∈Tn}|=m

{x ∈ An : xi = 1 ⇔ i ∈ S},

and write

Zn;α,h =

(n3)∑
m=0

eα
m
n

(n2)∑
ℓ=0

G
(n)
m,ℓe

hℓ,

where G
(n)
m,ℓ := |{S ⊆ En : |S| = ℓ, |{{i, j, k} ⊂ S : {i, j, k} ∈ Tn}| = m}| . Setting z := eα

and K
(n)
m,h :=

∑(n2)
ℓ=0 G

(n)
m,ℓe

hℓ, we obtain

Zn;α,h(z) =

(n3)∑
m=0

K
(n)
m,hz

m
n ,

which is not a polynomial since m
n is not necessarily an integer. For example, when n = 3

we have G
(3)
0,0 = G

(3)
1,3 = 1 and G

(3)
0,1 = G

(3)
0,2 = 3, yielding Z3;α,h = (1+3eh+3e2h)+z1/3e3h.

Instead, by taking the integer part, we obtain the following polynomial representation:

Ẑn;α,h ≡ Ẑn̄(z) :=
n̄∑

k=0

K̃
(n)
k,hz

k , (1.75)

where n̄ := ⌊ (n−1)(n−2)
6 ⌋, and K̃

(n)
k,h :=

∑
m:⌊m

n
⌋=k K

(n)
m,h. Note that (1.75) can be equiva-

lently written as

Ẑn̄(z) = K̃
(n)
n̄,h

n̄∑
k=0

K̃
(n)
k,h

K̃
(n)
n̄,h

zk.

Let Ẑ ′
n̄(z) :=

∑n̄
k=0

K̃
(n)
k,h

K̃
(n)
n̄,h

zk. If z1, . . . , zn̄ are the complex roots of the polynomial Ẑ ′
n̄(z),

then we can write

Ẑ ′
n̄(z) =

n̄∏
j=1

(z − zj) =

n̄∏
j=1

zj ·
n̄∏

j=1

(
z

zj
− 1

)
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and, since
∏n̄

j=1 zj = (−1)n̄
K̃

(n)
0,h

K̃
(n)
n̄,h

, we get

Ẑ ′
n̄(z) = (−1)n̄(−1)n̄

K̃
(n)
0,h

K̃
(n)
n̄,h

n̄∏
j=1

(
1− z

zj

)
=

K̃
(n)
0,h

K̃
(n)
n̄,h

n̄∏
j=1

(
1− z

zj

)
.

Therefore we obtain

Ẑn̄(z) = K̃
(n)
0,h

n̄∏
j=1

(
1− z

zj

)
. (1.76)

Uniform convergence of derivatives. The following theorem can be now applied to
this polynomial representation.

Theorem 1.27 (Lee and Yang [1952], Thm. 2). Let Zn(z) =
∏n̄

j=1 K̃
(n)
(
1− z

zj

)
a the

polynomial representation of a partition function as above. If there exists a region R ⊆ C
containing a segment of the real positive axis that is always root-free then, as n → +∞
and for z ∈ R, all quantities

1

n
lnZn(z),

dk

d(ln z)k
1

n
lnZn(z), with k ∈ N, (1.77)

converge to analytic limits with respect to z. In particular, the limit and derivative
operations switch in the whole region R.

Remark 1.28. Recall that fα,h = f̂α,h. With a slight abuse of notation, we might

also denote the limiting free energy by the function α 7→ f
(h)
α := limn→∞

1
n2 ln Ẑn̄(e

α).

Since f
(h)
α is real analytic for all h such that (α, h) ∈ Urs

α,h\{(αc, hc)} (see Radin and Yin
[2013], Thms. 2.1 and 3.9), we claim that in this parameter regime the partition function
(1.76) verifies the assumption of Theorem 1.27. Let us set z0 := eα

∗ ∈ R+, for some
α∗ in the analyticity region. For finite n, z0 can not be a zero of Ẑn̄(z). Indeed, since
the polynomial (1.76) has strictly positive coefficients, for each fixed n it can only have
non-real complex roots, which occur in conjugate pairs. As n grows, a phase transition
in the system is usually associated to the presence of a real positive accumulation point
of zeros of Ẑn̄(z) (see [Lee and Yang, 1952, Sec. IV, Item (2)] and [Bena et al., 2005, p.
4276]). As the phase diagram of the free energy has been completely characterized in Yin
[2013], we know that, as n grows, no phase transition appears in the parameter regime
under consideration. Therefore we claim, that in the limit n → ∞ there exists a region
R, containing the point z0, which is always root-free, and the partition function (1.76)
fulfills the assumption of Theorem 1.27.

Corollary 1.29. Let (α, h) ∈ Urs
α,h \ {(αc, hc)}. Then,

lim
n→+∞

6

n2
∂αf̂n;α,h = u∗3α,h and lim

n→+∞

6

n2
∂ααf̂n;α,h = 3u∗2α,h∂αu

∗
α,h (1.78)
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Proof. The result is an immediate application of Rmk. 1.28 and Thm. 1.27, which holds
true since we are working in the region Urs

α,h \ {(αc, hc)}, where the limiting free energy
exists and is analytic. We observe that, since in the polynomial representation (1.75)

we have z = eα, then d
d(ln z)

1
n2 ln Ẑn̄(z) = ∂αf̂n;α,h and d2

d(ln z)2
1
n2 ln Ẑn̄(z) = ∂ααf̂n;α,h.

Therefore, Thm. 1.27 allows to commute limit and derivative to get

lim
n→+∞

6

n2
∂αf̂n;α,h = 6 lim

n→+∞
∂αf̂n;α,h = 6∂α

[
lim

n→+∞
f̂n;α,h

]
= 6∂αfα,h = u∗3α,h.

where the last equality follows by directly differentiating (1.7) with respect to α, recalling
that u∗α,h satisfies (1.8). The second limit on the r.h.s. of (1.78) can be proved in the
same way.

Theorem 1.27 implies that derivatives of the free energy converge locally uniformly.

Proposition 1.30 ([Bianchi et al., 2024, Prop. 4.2]). Under the hypotheses of Thm. 1.27,
the quantities displayed in (1.77) converge locally uniformly (in n) inside the region R.

Remark 1.31. Recalling (1.74) and the definition (1.16) of f̂n;α,h, a direct computation
shows that

c′n(0) =
6

n2
∂αf̂n;α,h and c′′n(0) =

6

n2
∂ααf̂n;α,h.

Therefore, from (1.78),

lim
n→∞

c′n(0) = u∗3α,h and lim
n→∞

c′′n(0) = 3u∗2α,h∂αu
∗
α,h = v̂∆0 (α, h). (1.79)

Proof of the CLT. The proof of our main theorem is then just one step further. We
will rely on the analyticity of the free energy and on the uniform convergence of the
sequence (c′′n(t))n≥1 guaranteed by Thm. 1.27 and Prop. 1.30.

Proof of Thm. 1.18. Recall v̂∆0 (α, h) = 3u∗2α,h∂αu
∗
α,h and Wn =

√
6

⌊Tn/n⌋−Ên;α,h(⌊Tn/n⌋)
n .

We want to show that

lim
n→+∞

Ên;α,h(exp(tWn)) = exp
(
1
2 v̂

∆
0 (α, h)t2

)
for all t ∈ [0, η) and some η > 0. We aim to express Ên;α,h (exp(tWn)) in terms of c′′n(t).
Consider t > 0 and set tn :=

√
6t/n. We get

ln Ên;α,h(exp(tWn)) = ln Ên;α,h

(
exp(tn⌊Tn/n⌋) exp

(
−tnÊn;α,h(⌊Tn/n⌋)

))
(1.73),(1.74)

=
n2

6
[cn(tn)− tnc

′
n(0)].

Notice that, since cn(0) = 0, the term in square brackets is the difference between the
function cn(tn) and its first order Taylor expansion at zero. Therefore, by using Taylor’s
theorem with Lagrange remainder, one gets

ln Ên;α,h(exp(tWn)) =
c′′n(t

∗
n)t

2

2
,
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for some t∗n ∈ [0,
√
6t/n]. To conclude the proof of the central limit theorem, we need

to control the limiting behavior of c′′n(t
∗
n). To this end, we recall from (1.79) that

limn→∞ c′′n(0) = v(α, h), and that, by Prop. 1.30, the derivatives of cn(t) converge lo-
cally uniformly. These two properties together yield the following result, which was first
proved in a slightly different setting but applies unchanged in the present context.

Lemma 1.32 ([Bianchi et al., 2024, Lem. 6.1]). For (α, h) ∈ Urs
α,h \ {(αc, hc)}, there

exists η > 0 such that we have limn→+∞ c′′n(tn) = v̂∆0 (α, h) for all tn ∈ [0, η) with
limn→+∞ tn = 0.

From the lemma above, we obtain the convergence of c′′n(t
∗
n), and, in turn, the conver-

gence of the moment generating function. Therefore Wn
d→ N (0, v̂∆0 (α, h)) (see Billings-

ley [1986], Sect. 30). Finally, the convergence in distribution of

√
6

Tn/n − Ên;α,h(Tn/n)

n
= Wn +

√
6
{Tn/n} − Ên;α,h({Tn/n})

n

follows from Slutsky’s theorem, as
√
6

{Tn/n}−Ên;α,h({Tn/n})
n → 0 in probability, being the

numerator bounded almost surely.

Remark 1.33. To extend Thm. 1.18 to the measure Pn;α,h it remains to show

lim
n→+∞

Ên;α,h(exp(tWn)) = lim
n→+∞

En;α,h(exp(tWn)), (1.80)

the latter expectation being associated with Pn;α,h. A natural approach is to compare the
two expectations directly. In particular, with a direct computation one can show that

En;α,h(e
tWn) =

Ên;α,h(e
tWn+α{Tn

n
})

Ên;α,h(e
α{Tn

n
})

,

and the same identity holds if we interchange the role of En;α,h and Ên;α,h. Therefore

|En;α,h

(
etWn

)
− Ên;α,h

(
etWn

)
| =

∣∣∣Ên;α,h

(
etWn+α{Tn

n
}
)
− Ên;α,h

(
etWn

)
Ên;α,h(e

α{Tn
n

})
∣∣∣

Ên;α,h(e
α{Tn

n
})

.

Proving that the variables etWn and eα{
Tn
n

} are asymptotically independent would be then
sufficient to prove (1.80).

Remark 1.34. In order to make our approximation more precise, we can introduce a
parameter r ∈ N and consider the family of Hamiltonians

Ĥ(r)
n;α,h(x) :=

α

r

⌊∑
{i,j,k}∈Tn xixjxk

n
· r

⌋
+ h

∑
i∈En

xi, r ∈ N.

It is not difficult to observe that for each r ∈ N the related partition function can be
represented as polynomial in the variable z = e

α
r and, as a consequence, noted with
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Ê(r)
n;α,h the associated expectation, it is possible to prove a CLT which is analogous to

Theorem 1.18 and valid for the random variable

W (r)
n =

√
6

r

⌊Tn/n · r⌋ − Ê(r)
n;α,h(⌊Tn/n · r⌋)
n

.

Since −1
r ≤ 1

r ⌊tr⌋ − t ≤ 1
r for every t ∈ R, this extension leads to

e−
|α|
r ≤

Ê(r)
n;α,h(exp(tW

(r)
n ))

Ên;α,h(exp(tW
(r)
n ))

≤ e
|α|
r .

As r grows, the interval (e−
|α|
r , e

|α|
r ) shrinks and the claim (1.80) can be made asymp-

totically exact up to a subsequence. This is however beyond our scopes.

1.4 Heuristics on the mean-field model

For what concerns small deviations, the comparison between the mean-field approxima-
tion and the edge-triangle model respectively encoded by Hamiltonian (1.13) and (1.14)
remains an open problem. We refer the reader to [Bianchi et al., 2024, Sec. 8.3] for
a discussion on the main difficulties in proving that they asymptotically coincide. In
particular we mention that, as observed there, in order to get a control on the distance
of moment generating functions for centered and rescaled densities, we are required a
bound on

n2tn
[
m∆

n (α+ t∗n, h)− m̄∆
n (α+ t̄∗n, h)

]
=n2tn

[
(m∆

n (α+ t∗n, h)−m∆
n (α, h)) + (m∆

n (α, h)− u∗3(α, h))
]

−n2tn

[
(m̄∆

n (α+ t̄∗n, h)− m̄∆
n (α, h)) + (m̄∆

n (α, h)− u∗3(α, h))
]
,

where t ∈ R, t∗n, t̄∗n ∈ (0, 6t/n3/2) at the critical point and t∗n, t̄
∗
n ∈ (0,

√
6t/n) elsewhere

in Urs. For (α, h) ∈ Urs \ {(αc, hc)} we do not have a control on the second term of the
second line, while at criticality, even the first term of the second and third line explode,
due to the second order transition. However, we conjecture that Thms. 1.8, 1.9, 1.10,
proved for the mean-field model, hold true when replacing T̄n by Tn. This belief stems
both from heuristic computations based on the large deviation principle that we have
at hand (see Rem. 1.22), combined with simulations, as well as from the fluctuations of
the edge density studied in Bianchi et al. [2024].

We quickly sketch our heuristic argument for the CLT. To guarantee convexity of
the rate function Iα,h, we restrict here to the region (α, h) ∈ (−2, αc] × R (see Radin
and Yin [2013], Prop. 3.2). First, we obtain the following decomposition:

√
6

Tn
n − n2

6 m∆
n (α, h)

n
= Vn + n(u∗0

3(α, h)−m∆
n (α, h)), if (α, h) ̸= (αc, hc),(1.81)

6
Tn
n − n2

6 m∆
n (αc, hc)

n3/2
= Un +

√
n(u∗3(αc, hc)−m∆

n (αc, hc)) (1.82)
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where Vn := n√
6

[
6Tn
n3 − u∗0

3(α, h)
]
, Un :=

√
n
[
6Tn
n3 − u∗3(αc, hc)

]
and m∆

n is defined as in

Def. 1.3, but for the edge-triangle model. At the moment, we don’t have control over
the shift terms in (1.81)–(1.82), as we don’t have the equivalent of Cor. 1.12, which is
valid instead for the mean-field approximation. For the remaining terms, Un and Vn, we
claim, as n → ∞

Pn;α,h (Vn ∈ dx) = Pn;α,h

(
6Tn
n3 ∈ u∗3 +

√
6

n
dx

)
≈ e

−n2Iα,h

(
3
√

u∗3+
√
6

n
x

)
dx

= e
−

I′′α,h(u∗)x2

3u∗4
+o(x2)

dx, (1.83)

Pn;αc,hc (Un ∈ dx) = Pn;αc,hc

(
6Tn
n3 ∈ u∗3 + dx√

n

)
≈ e

−n2Iαc,hc

(
3
√

u∗3+ x√
n

)
dx

= e−
38

214
x4+o(x4)dx, (1.84)

where Iα,h(x) = 1
2 [x lnx + (1 − x) ln(1 − x)] − α

6x
3 − h

2x + fα,h. In the second to last
passage in displays (1.83)-(1.84) we have used the LDP of Rem. 1.22, which reduces
to a scalar problem whenever we work in replica symmetric regime. The rate function
Iα,h coincides with Iα,h, which is continuous, positive, strictly convex (see Radin and
Yin [2013], Prop. 3.2) and admits a unique zero at x = u∗. In the last passage in
(1.83)-(1.84), we used

Iα,h(u
∗ ± δ) =

{
I′′α,h(u

∗)

2 δ2 + o(δ2), if (α, h) ∈ (−2, αc)× R
81
64 δ

4 + o(δ4), if (α, h) = (αc, hc) =
(
27
8 , ln 2−

3
2

) ,
recalling that u∗(αc, hc) = 2

3 . A direct computation shows that I ′′α,h(u
∗) = 2c0 (where

c0 is given in (1.37)), therefore in (1.83) we recognize the density of a Gaussian random

variable with variance 3u∗4

2I′′α,h(u
∗) , as stated in Thm. 1.9 (Eq. (1.17)). Similarly, in (1.84)

we can immediately recognize the same density ℓ̄c stated in Thm. 1.10. Importantly,
the error terms appearing in (1.83)–(1.84) might be relevant, although we believe they
could compensate the contribution of the shift terms in (1.81)–(1.82), thus producing the
conjectured results. To support this belief, in the next section we present two simulations
that show the asymptotic Gaussian fluctuations outside the critical curve.

1.4.1 Simulations

We perform a discrete-time Glauber dynamics, namely an ergodic reversible Markov
chain on An with stationary distribution Pn;α,h. A step of the Glauber dynamics can be
described as follows:

1. Uniformly sample ℓ ∈ En, and let x+ (resp. x−) be the adjacency matrix, with
x+ℓ = 1 (resp. x−ℓ = 0), that coincides with x for all elements except for xℓ. Let
Wℓ := {{i, j} : i, j ∈ En, i ∼ j, {i, j, ℓ} ∈ Tn ⇔ xℓ = 1} the set of two-stars insisting
on the edge (or non-edge) xℓ. Here, the symbol ∼ denotes that the two edges i
and j are neighbors.
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Chapter 1. Density of triangles in edge-triangle models

2. Given the current state represented by x ∈ An, the next state is obtained by
performing the transition x 7→ x+ (resp. x 7→ x−) with probability

pn(x, ℓ) :=
e
α
∑

{i,j}∈Wℓ
xixj+h

1 + e
α
∑

{i,j}∈Wℓ
xixj+h

(resp. 1− pn(x, ℓ) ) . (1.85)

The update probability (1.85) is given in [Bhamidi et al., 2011, Lem. 3] (or equivalently
Bhamidi et al. [2015], pag. 18). Moreover in [Bhamidi et al., 2011, Thm. 5] it has
been proved that the mixing time of the Glauber dynamics is Θ(n2 ln(n)) whenever
(α, h) ∈ Urs. Fig. 1.3 shows a numerical simulation of the probability distribution of

Figure 1.3: The picture displays a simulation of the distribution of
√
6

Tn
n −n2

6 m∆
n (α,h)

n obtained
with n = 150, M = 5000 samples, and parameters h = 1, α = ±1 (histogram), and the pdf of
the Gaussian distribution introduced in Thm. 1.9 (continuous line).

√
6

Tn
n

−n2

6
m∆

n (α,h)

n obtained with n = 150 and M = 5000 samples, both for negative and
positive values of α. The picture also displays the Gaussian probability density function
given in Thm. 1.9, showing that it approximates the histogram with good accuracy.

Remark 1.35. Note that, despite [Bhamidi et al., 2011, Thm. 5] holds in Urs, which
includes (αc, hc), when we perform the Glauber dynamics at the critical point, the mixing
time that we observe is not Θ(n2 ln(n)), as we would expect. We believe that the proximity
of the point to the critical curve Mrs where the mixing time is exponential (see [Bhamidi
et al., 2011, Thm. 6]), is responsible for this behavior. As a consequence, the incredibly
high computational cost prevented us from getting an equivalent simulation for supporting
the non-standard CLT (Thm. 1.10).
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Chapter 2

Spectral properties of

the directed Chung–Lu graph

In this chapter, we investigate the spectral properties of directed inhomogeneous random
graphs. In the Chung–Lu-type setting, each vertex x is assigned a positive weight w+

x

for its out-degree tendency and w−
x for its in-degree tendency, and an edge from x to

y is present with probability px,y proportional to w+
x w

−
y (independently for all directed

pairs). The picture can be generalized to a model with higher but finite rank r. In
this setting, connection probabilities are given in additive form as the sum of rank-one
matrices, corresponding to eigenvectors of E[An].

Our study is motivated by the desire to bridge the gap between classical random ma-
trix theory —which often assumes identically distributed entries—and network models
that exhibit degree heterogeneity. We aim to understand how outlier phenomena extend
to this inhomogeneous, non-symmetric setting.

2.1 Setup and results

2.1.1 Notation

For a given n×n complex-valued matrixMn, we denote by (λi(Mn))1≤i≤n the sequence of
(complex) eigenvalues of Mn, ordered so that |λ1(Mn)| ≥ |λ2(Mn)| ≥ · · · ≥ |λn(Mn)| ≥
0, and by (σi(Mn))1≤i≤n its (real) singular values, defined, for all i, by

σi(Mn) :=
√
λi(MnM∗

n),

where M∗
n = M̄T

n is the adjoint of Mn. It holds σ1(Mn) ≥ σ2(Mn) ≥ · · · ≥ σn(Mn) ≥ 0.
Its spectral norm is ∥Mn∥ := σ1(Mn). If Mn is self–adjoint, then ∥Mn∥ = |λ1(Mn)|.

Through the chapter, we will write

µn
w−−−−→

n→+∞
µ
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Chapter 2. Spectral properties of the directed Chung–Lu graph

to say that a sequence of probability distributions converges weakly to some limit µ.
Besides the usual Landau notation, we will also write that for two positive sequences an
and bn it holds an ≪ bn (resp. an ≲ bn, an ≍ bn, and an ∼ bn) if limn→+∞ an/bn = ℓ
and ℓ = 0 (resp. 0 ≤ ℓ < +∞, 0 < ℓ < +∞, and ℓ = 1). In addition, for two random
variables Xn and Yn, we will write Xn = Ov.h.P(Yn) (the subscript will stand for very
high probability) if there exist K > 0 and η > 1 such that,

P(|Xn/Yn| ≥ K) ≤ e−(log(n))η ,

and we will write Xn = ov.h.P(Yn) if, for every δ > 0, there exists η > 1 such that,

P(|Xn/Yn| ≥ δ) ≤ e−(log(n))η .

Finally, we will say that an event holds with very high probability (w.v.h.p.) if there
exists η > 1 such that the probability of its complement decays as in the previous display.
This strengthens the notation OP(·) and oP(·), which simply means that the probabilities
on the left vanish.

2.1.2 Models

For any n ∈ N, we consider the random directed graph Gn on the vertices [n] =
{1, 2, . . . , n}, whose adjacency matrix An, has independent entries with distribution

Axy ∼ Ber(px,y), x, y ∈ [n].

We consider two choices for the connection probabilities px,y, each defined in terms of
a common scaling factor sn. In both cases, we denote by P the probability measure
associated with the graph.

Chung–Lu digraph. Our first model corresponds to the choice

px,y =
w+
x w

−
y

w
sn ∧ 1, x, y ∈ [n], (2.1)

where (w+
x , w

−
x )x∈[n] denote a family of non-negative bi-weights such that∑

x∈[n]

w+
x =

∑
x∈[n]

w−
x = w.

In our setting for large n it will be px,y < 1, so that the truncation at level 1 becomes
unnecessary. We work under the following assumption, regarding the joint empirical
distribution of the weights. An assumption on sn will be given later.

Assumption 2.1. The weights are bounded and there exists a compactly supported dis-
tribution ρ = ρ+,− such that

1

n

∑
x∈[n]

δ√ n
w
(w+

x ,w−
x )

w−−−−−→
n→+∞

ρ.
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Chapter 2. Spectral properties of the directed Chung–Lu graph

A higher-rank model. Our second model is more general. Let v±1 , . . . , v
±
r ∈ Rn be a

family of 2r bi-orthogonal vectors, i.e., such that (v+i )
T v−j = δij for i, j = 1, . . . , r. We

can assume without loss of generality ∥v+i ∥ = 1 for each i = 1, . . . , r. Let θr > θr−1 >
· · · > θ1 be positive constants, and set

px,y = sn

r∑
j=1

θlv
+
j (x)(v

−
j (y))

T ∧ 1, x, y ∈ [n], (2.2)

where, for x ∈ [n], v±i (x) denotes the x-th entry of v±i . The rank-one model can be
recovered by taking r = 1, θ1 = 1, and v±1 (x) = w±

x /
√
w for x ∈ [n]. Assumption 2.1 is

accordingly generalized.

Assumption 2.2. The entries of
√
n v±i are uniformly bounded and there exists a com-

pactly supported distribution ρ = ρ+,−
1,...,r on R2r

+ such that

1

n

∑
x∈[n]

δ(
√
nv±1 (x),...,

√
nv±r (x))

w−−−−−→
n→+∞

ρ.

The above generalization is quite natural: every diagonalizable matrix can be decom-
posed in the additive form (2.2), where the (v±i ) correspond to left and right eigenvectors.

Example 2.3 (Stochastic block model). Let n be even and let a > b > 0. If

px,y =

{
asn/n if max{x ∨ y, n− x ∧ n− y} ≤ n

2

bsn/n otherwise,

the obtained graph falls in our hypotheses. The expected adjacency matrix has eigenvalues
θ1 = a−b

2 sn and θ2 = b+a
2 sn. The eigenvector corresponding to θ1 contains information

on the community structure, and the asymptotic behavior of its random realization can
be studied as in [Chakrabarty et al., 2020, Theorems 2.4-2.5].

Any inhomogeneous graph whose expected adjacency matrix is symmetric with rank
r, with eigenvalues θrsn > · · · > θ1sn, falls within this framework. In this setting
there exists an orthonormal basis of (unit) eigenvectors (vl)l≤r (the vectors (v+l )l≤r and
(v−l )l≤r coincide). Of course, symmetry is not a necessary condition. To construct a
non-symmetric example, if 2r < n, we can take r orthogonal 2-dimensional subspaces
V1, . . . , Vr of Rn and choose v±l ∈ Vl on the sphere of radius 2 in such a way that
(v+l )

T v−l = 1.

2.1.3 Main results

For both models, we will work under the following assumption, which implies that aver-
age degrees diverge sufficiently fast.

Assumption 2.4. There exists ξ > 4 such that sn ≫ logξ(n).
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Chapter 2. Spectral properties of the directed Chung–Lu graph

Under this assumption, the graph results to be w.h.p. strongly connected. Indeed, the
threshold for this property is attained when the connection probability is O(log(n)/n)
(see Cooper and Frieze [2012]). We are ready to state the results.

Theorem 2.5 (Existence of outlier - rank-one case). Consider the Chung–Lu model with
px,y as in Eq. (2.1). If Assumption 2.4 holds, then

max {|λ1(An)− λ1(E[An])| , |λ2(An)|} = Ov.h.P(
√
sn). (2.3)

In particular, there exists a constant K0 > 0 such that w.v.h.p.

K0sn ≤ λ1(An) ≤ 2K0sn.

We again stress that the notation in (2.3) means that there exist K > 0 and η > 1 such
that

P (max {|λ1(An)− λ1(E[An])| , |λ2(An)|} ≥ K
√
sn) ≤ e−(log(n))η .

A similar theorem can be stated for the transition matrix of the simple random walk.
As observed in Lemma 2.21, degrees are uniformly positive with high probability, so that
the diagonal matrix Dn with entries Dxx = D+

x , for x ∈ [n], where D+
x is the out-degree

of x, is with high probability invertible. If this is not the case, we can set

D−1
n (x, x) =

{
1/D+

x if D+
x > 0,

0 otherwise.

Theorem 2.6 (Existence of outlier, random walk). Consider the Chung–Lu model with
px,y as in Eq. (2.1). Let Tn = D−1

n An. Then

max {|λ1(Tn)− λ1(E[Tn])| , |λ2(Tn)|} = Ov.h.P

(
1

√
sn

)
.

Theorem 2.7 (Existence of outliers - rank r case). Consider the model where px,y is as
in Eq. (2.2). If Assumption 2.4 holds, then

max
{
(|λi(An)− λi(E[An])|)i≤r , |λ2(An)|

}
= Ov.h.P(

√
sn).

In particular there exists a constant K0 > 0 such that w.v.h.p.

2K0sn ≥ λ1(An) ≥ · · · ≥ λr(An) ≥ K0sn.

Theorem 2.8 (Gaussian fluctuations, rank-one case). Consider the Chung–Lu model
with px,y as in Eq. (2.1). If If Assumptions 2.4 and 2.1 holds, then√

w

sn
(λ1(An)− E[λ1(An)])

d−−−−→
n→+∞

G,
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where G is a centered Gaussian random variable with variance

Var (G) =

(∫
R2
+

(x+)2x− dρ(x+, x−)

)(∫
R2
+

x+(x−)2 dρ(x+, x−)

)
(∫

R2
+

x+x− dρ(x+, x−)

)2 . (2.4)

Notice the variance in (2.4) is finite, due to the compact support of ρ.

Theorem 2.9 (Gaussian fluctuations, rank-r case). Consider the model where px,y is as
in Eq. (2.2). Let f : R2r → (0,+∞) be the function defined by f(x+1 , x

−
1 , . . . , x

+
r , x

−
r ) =∑r

k=1 θkx
+
k x

−
k . If Assumptions 2.4 and 2.2 holds, then√

n

sn
(λi(An)− E[λi(An)])1≤j≤r

d−−−−→
n→+∞

G,

where G = (Gi)1≤i≤r is a centered Gaussian random vector with covariances given, for
i, j = 1, . . . , r, by

Cov(Gi,Gj) =

∫
R2r
+

x+i x
−
i f(x

±
1 , . . . , x

±
r )x

+
j x

−
j dρ(x

±
1 , . . . , x

±
r )(∫

R2r
+

x+i x
−
i dρ(x

±
1 , . . . , x

±
r )

)(∫
R2r
+

x+j x
−
j dρ(x

±
1 , . . . , x

±
r )

) .

2.1.4 Methods

Let us first mention that, since the matrix An is not symmetric, standard self-adjoint
techniques— such as the Hoffman-Wielandt inequality, which quantifies the impact of
matrix perturbations on the spectrum—do not apply. In order to study the behavior of
λ1(An), we will consider An as a random perturbation of E[An]. In this non-reversible
setting, we will employ Theorem 2.10, which applies to non-symmetric but diagonalizable
matrices, and which will reduce the problem to establish a bound to the spectral norm
of a given random matrix. To do so, we will employ the so-called high trace method,
which was firstly developed in the context of undirected graphs with independent edges
in Chung and Lu [2002a], Füredi and Komlós [1981], and then extended to directed
graph with dependencies in Bordenave [2020], Coste [2021]. This provides a general way
to bound the expectation of sufficiently high (diverging with n) moments of the spectral
norm of the given random matrix. The analysis relies on a combinatorial estimate
involving Catalan numbers and Dyck words.

When the existence of outliers living at the scale sn is established, it is natural to
investigate the fluctuations around the mean. To address this problem, we will follow
the approach of Chakrabarty et al. [2020] and Erdős et al. [2013], writing the maximal
eigenvalue λ1(A) as the solution of a fixed-point equation involving a random series.
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Employing concentration results and high-probability estimates, the series can be writ-
ten, up to lower order terms, as a an additive perturbation of E[λ1(A)] by a sum of
independent random variables. These, rescaled by

√
sn
n , satisfy Lindeberg CLT, and are

thus responsible for the emergence of Gaussian fluctuations. The same is done for the
rank r model in (2.2), where the object to study is a random vector and there is the
need to circumvent the inapplicability of Hoffmann–Wielandt inequality.

2.2 Analysis of outlier, rank-one case

2.2.1 Perturbation of non-Hermitian matrices

In order to provide a uniform control on the spectrum of a perturbed matrix it is possible
to employ the following theorem, proved in Bauer and Fike [1960]. See also [Coste, 2021,
Th. 4] for a modern formulation. We denote by B(λ, εn) the complex ball of center λ ∈ C
and radius εn > 0.

Theorem 2.10 (Bauer–Fike, Bauer and Fike [1960]). Let Sn be a n × n matrix such
that Sn = PnDP−1

n for an invertible matrix Pn and a diagonal matrix D. Let Hn be a
n× n arbitrary matrix and εn = ∥Pn∥∥P−1

n ∥∥Hn∥.

(i) Then the spectrum of Sn +Hn is contained in the union
⋃n

i=1 B(λi(Sn), εn).

(ii) Moreover, if for I ⊆ [n] it holds⋃
i∈I

B(λi(Sn), εn) ∩
⋃
i∈I∁

B(λi(Sn), εn) = ∅,

then Sn +Hn has exactly |I| eigenvalues inside
⋃

i∈I B(λi(Sn), εn).

In the rank-one case, the previous statement can be specialized as follows.

Lemma 2.11 ([Coste, 2021, Lemma A.1]). Let x and y be two vectors of Rn and
Sn = xyT . Let Hn be a real n× n matrix.

(i) The eigenvalues of the matrix Sn +Hn are contained B(0, εn)∪B(yTx, εn), where

εn = 2∥x∥2∥y∥2(yTx)−2∥Hn∥;

(ii) If B(0, εn)∩B(yTx, εn) = ∅, then there is exactly one eigenvalue of Sn+Hn inside
B(yTx, εn) and all the other eigenvalues of Sn +Hn are contained in B(0, εn).

2.2.2 Existence of the outlier

Consider the real matrix Cn := An − E[An], so that An = E[An] + Cn. We choose

Hn = Cn, x =
√
snv

+ and y =
√
snv

−, where v±x := w±
x√
w
. To prove Theorem 2.5, we

only need to check that

εn = 2∥v+∥2∥v−∥2((v−)T v+)−2∥Cn∥ = Ov.h.P(
√
sn).
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Since ∥v+∥2∥v−∥2((v−)T v+)−2 is bounded, it suffices to control the spectral norm of Cn,
as provided by the next proposition.

Proposition 2.12. There exists a constant K1 > 0 and η > 1 such that, for large n,

P (∥Cn∥ ≥ K1
√
sn) ≤ e−(log(n))η .

The proof of this proposition relies on the following lemma.

Lemma 2.13. There exists a constant K2 > 0 such that, for 1 ≪ m ≪ 4
√
sn,

E[∥Cn∥2m] ≤ 6n (K2sn)
m .

Proof of Proposition 2.12. Taking t such that t2m = 6n (K2sn)
m(1 + ε)2m, where ε =

( log(n)
ξ

sn
)1/4, by the 2m–moment Markov inequality we obtain

P(∥Cn∥ ≥ t) ≤ 1

t2m
E[∥Cn∥2m] ≤ e−2m log(1+ε) ≤ e−(log(n))ξ/4 .

We are left with the proof of Lemma 2.13. To embark on the proof, we make some
notational preliminaries. Since by definition ∥Cn∥2 = ∥CnC

∗
n∥, we write

∥Cn∥2m = λ1(CnC
∗
n)

m = λ1((CnC
∗
n)

m) ≤ Tr((CnC
∗
n)

m)

=
∑

x1,x2,...,x2m

Cx1x2 C∗
x2x3

Cx3x4 C∗
x4x5

· · ·Cx2m−1x2m C∗
x2mx1

=
∑

x1,x2,...,x2m

Cx1x2Cx3x2Cx3x4Cx5x4 · · ·Cx2m−1x2mCx1x2m ,

(2.5)

where the indices x1, . . . , x2m run from 1 to n. Our aim is to provide a bound on the
expectation of the latter sum. Using the notation e− = x, e+ = y for any e = (x, y) ∈ E,
we can define

Pm :=
{
p = (e1, . . . , e2m) ∈ E2m : e+2i−1 = e+2i, e−2i = e−2i+1 for all i ∈ {1, . . . ,m}

}
,

with the convention that e2m+1 = e1. This set denotes a family of alternating edge-paths.
For instance, if m = 1, elements of Pm will be of the form ((x1, x2), (x1, x2)) for x1, x2 ∈
[n], while for m = 2 we will have elements of the form ((x1, x2), (x3, x2), (x3, x4), (x1, x4))
for x1, x2, x3, x4 ∈ [n], and so on.

Then (2.5) reads

∥Cn∥2m ≤
∑
p∈Pm

2m∏
s=1

Ces(p),

where es(p) denotes the s-th edge of p and, if e = (x, y), we set Ce to be the corresponding
entry of Cn, Cxy. When taking expectation on both sides, we can restrict the sum to the
smaller set of paths having each edge repeated at least twice, because Cn = An −E[An]
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has independent and centered entries. Let us denote with Rm such subset of Pm. Let
us also denote with ℓ(p) the number of distinct edges in p ∈ Rm and with E(p) =
(ẽ1, . . . , ẽℓ(p)) the ordered sequence of such distinct edges of p ∈ Rm. We get

E[∥Cn∥2m] ≤
∑

p∈Rm

ℓ(p)∏
s=1

E
[
C

ks(p)
ẽs(p)

]
, (2.6)

where ks(p) ≥ 2 denotes the multiplicity of ẽs(p) in p. We are ready to prove Lemma
2.13.

Proof of Lemma 2.13. Given a path p ∈ Rm, consider the sequence of vertices defined
by the following iterative procedure. For j = 0, set ṽ0 = ẽ−1 . Then, for j = 1, . . . , ℓ(p):

• set ṽj = ẽ+j if the first occurrence of ẽj in p occupies an odd position;

• set ṽj = ẽ−j otherwise (if the first occurrence of ẽj in p occupies an even position).

Let V (p) = (ṽ0, . . . , ṽℓ(p)). Notice that while E(p) has exactly ℓ(p) distinct edges, V (p)
has exactly ℓ(p) + 1 vertices and maybe some of them will be repeated. Let #V (p)
denote the number of distinct vertices in V (p).

In what follows, we want to identify a subfamily of paths in Rm that provides the
main contribution to the sum in (2.6). To this aim, for 1 ≤ p− 1 ≤ l ≤ m, let us define

Rm,l,p := {p ∈ Rm | ℓ(p) = l,#V (p) = p},

so that (2.6) becomes

E[∥Cn∥2m] ≤
m∑
l=1

l+1∑
p=2

∑
p∈Rm,l,p

ℓ(p)∏
s=1

E
[
C

ks(p)
ẽs(p)

]
. (2.7)

We will show that the sum over Rm,m,m+1 will give the leading order for the total sum.
To see it, we first associate to each path p = (e1, . . . , e2m) ∈ Rm a code c(p) =

(c1, . . . , c2m) of 2mmarks, in the following way. Recall the notation E(p) = (ẽ1, . . . , ẽℓ(p)).
For j = 1, . . . , ℓ(p):

• if ej appears for the first time, set cj = +;

• if ej appears for the second time, set cj = −;

• otherwise, if ej = ẽk for some k ∈ [ℓ(p)], set cj = k.

We want to count the number of possible codes that can be built with this procedure.
First of all, by definition of ℓ(p), notice that there can be at most 2m − 2ℓ(p) marks
different from ”±”: their positions can be chosen in at most

(
2m

2m−2ℓ(p)

)
ways and each of

them can takes values in a set of ℓ(p) elements. Moreover, notice that, for every j ≤ 2m
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the number of marks ”−” up to level j cannot exceed the number of marks ”+” up to
level j. In particular, writing ℓ for ℓ(p) for simplicity, the number of such ”±” sequences
(which are called Dyck words) is given by the ℓ-th Catalan number

Cℓ :=
(
2ℓ

ℓ

)
1

ℓ+ 1
≤ 4ℓ.

As a consequence, the number of possible meaningful codes is at most

Cℓ
(

2m

2m− 2ℓ

)
ℓ2m−2ℓ ≤ 4ℓ(2mℓ)2m−2ℓ ≤ 4mm4(m−ℓ).

It is not difficult to see that, for each l = 1, . . . ,m, the paths p in Rm,l,l+1 are
in bijection with the corresponding couples (c(p), V (p)). Indeed, reading a code c it is
possible to completely reconstruct the structure of the path p, and the further knowledge
of a sequence V with distinct vertices will allow to identify the labels of its vertices. This
does not hold anymore for paths in Rm,l,p with p < l + 1: in that case, the information
contained in a couple (c, V ) is no more sufficient to determine the order of appearance
for the repetitions of certain subsequences of directed edges. For instance, consider the
couple (c, V ) where

c = (+,+,+,+,+,+,+,+,−,−,−,−,−,−,−,−), V = (1, 2, 3, 4, 1, 5, 6, 7, 1) ∈ [n]9.

If we try to assign a path p ∈ Rm,l,p to (c, V ), the first 6 edges of the path are unequiv-
ocally determined, but the order of the remaining 6 edges (which will be repetitions of
the first 6) can be chosen in 8 different ways. Two possibilities are, e.g., the sequence

((1, 2), (3, 2), (3, 4), (1, 4), (1, 5), (6, 5), (6, 7), (1, 7)),

and the sequence

((1, 7), (6, 7), (6, 5), (1, 5), (1, 2), (3, 2), (3, 4), (1, 4)).

However, we can bound the number of possible permutations of repeated vertices, by
observing that the worst case is achieved when a vertex is repeated in V (p) a number of
l+1−p times. Taking into account 2 possible orientations for any meaningful sub–path
(e.g. ((1, 2), (3, 2), (3, 4), (1, 4)) or ((1, 4), (3, 4), (3, 2), (1, 2)) in the previous example) we
end up with an upper bound of

2l+1−p(l + 1− p)! ≤ (2(l + 1− p))l+1−p

possible paths leading to a given couple (c, V ).

At this point, let us observe that, for every k ≥ 2 and x, y ∈ [n], it holds

E[Ck
xy] = (1− px,y)

kpx,y + (−px,y)
k(1− px,y) ≤ px,y.
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Indeed, for k even, we have (1−px,y)
k−1+(px,y)

k−1 < (1−px,y+px,y)
k−1 = 1 which im-

plies (1−px,y)
k+(px,y)

k−1(1−px,y) < 1, while for k odd we have (1−px,y)
k−1 < 1+pk−1

x,y ,

implying (1− px,y)
k − pk−1

x,y (1− px,y) < 1.

As a consequence, the contribution of each path with l distinct edges will be at most
given by plmax, where pmax = maxx,y∈[n] px,y. Moreover, since the number of sequences V

with #V = p can be bounded by npl(l+1−p) (p vertices chosen in [n] and the remaining
l + 1− p among the first p ≤ l), we can upper bound (2.7) as follows

E[∥Cn∥2m] ≤
m∑
l=1

l+1∑
p=2

∑
p∈Rm,l,p

plmax

≤
m∑
l=1

4mm4(m−l)
l+1∑
p=2

(2(l + 1− p))l+1−pnpll+1−pplmax.

(2.8)

Since

l∑
p=2

(2(l + 1− p))l+1−pnpll+1−p ≤
(
2l2
)l+1

l∑
p=1

( n

2l2

)p
≤
(
2l2
)l+1

2
( n

2l2

)l+1
≤ 2nl+1,

we can bound the l.h.s. of (2.8) by 3 · 4m
∑m

l=1Em,l, where Em,l := m4(m−l)nl+1plmax.
Let us now consider the ratio

Em,m

Em,l
=

nm+1pmmax

m4(m−ℓ(p))nl+1plmax

=
(npmax

m4

)m−l
. (2.9)

Since pmax ∼ sn/n by (2.1) and the boundedness of weights, and 1 ≪ m ≪ 4
√
sn, the

term in brackets diverges as n grows, we get

E[∥Cn∥2m] ≤ 3 · 4m
m∑
l=1

Em,l ≤ 6 · 4mEm,m = 6 · 4mnm+1pmmax ≲ 6n(4sn)
m, (2.10)

which concludes the proof of Lemma 2.13.

Remark 2.14 (Boundedness of weights). Notice that weights must be bounded for the
proof of Lemma 2.13 to hold. In particular, if some some vertices have diverging weights,
then the relevant contribution in the sum over Rm,l,p is given by paths involving those
weights, and the uniform asymptotic bound in Eq. (2.10) does not work.

Remark 2.15. Assumption 2.4 is crucial in estimating the term in (2.9). If it does not
hold, then the term Em,m does not dominate the others and the asymptotic bound in Eq.
(2.10) does not work.
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2.2.3 Transition matrix

We adapt here the proof of Theorem 2.5 to the transition matrix case.

Proof of Theorem 2.6. Let us consider the transition matrix of the simple random walk
on Gn, Tn = D−1

n An. In this setting, we consider the matrix C̃n = D−1
n (An − E[An]),

which is not centered, and we apply Lemma 2.11 with Hn = C̃n and the choice of vectors

x =
sn√
w
(D−1

1 w+
1 , . . . , D

−1
n w+

n ) and y = v− =
1√
w
(w−

1 , . . . , w
−
n ).

In order to conclude the proof, we need to provide a suitable bound for the radius

ε̃n = 2∥x∥2∥y∥2(yTx)−2∥C̃n∥.

Let us start by analyzing ∥C̃n∥. Since C̃n is not centered, we cannot directly apply the
machinery developed in Subsection 2.2.2. We then define

Cn := (E[Dn])
−1 (An − E[An]) = (E[Dn])

−1Cn.

This matrix is centered and by sub-multiplicativity, it holds

∥C̃n − Cn∥ = ∥(D−1
n − (E[Dn])

−1)Cn∥ ≤ ∥D−1
n − (E[Dn])

−1∥∥Cn∥.

Thanks to the above analysis (Proposition 2.12) it holds ∥Cn∥ = Ov.h.P(
√
sn).

By Lemma 2.21, there exists η > 4/3 such that

P
(
max
x∈V

∣∣∣∣ 1

D+
x

− 1

w+
x sn

∣∣∣∣ ≥ 2s
− 4

3
n

)
≤ exp(− log(n)η).

Recalling that E[D+
x ] = w+

x sn, this implies that ∥D−1
n − (E[Dn])

−1∥ = Ov.h.P(s
−4/3
n ).

Then
∥C̃n − Cn∥ = Ov.h.P(s

−5/6
n ) = Ov.h.P(s

−1/2
n ).

Then we can repeat the procedure of Subsection 2.2.2 to the centered matrix Cn and
get that

∥C̃n∥ ≤ ∥C̃n − Cn∥+ ∥Cn∥ = Ov.h.P(s
−1/2
n ).

It remains to bound the other terms appearing in the definition of ε̃n. Notice that
x is a random vector and hence the same holds for the unique non-zero eigenvalue of
S = y(x)T , which is

λ1(S) = yTx =
∑
x∈V

w−
y

w

w+
x sn

D+
x

.

However,

|λ1(S)− 1| =

∣∣∣∣∣∑
x∈V

w−
y

w

(
w+
x sn

D+
x

− 1

)∣∣∣∣∣ ≤ ∑
x∈V

w−
x

w

∣∣∣∣w+
x sn

D+
x

− 1

∣∣∣∣ ≤ max
x∈V

∣∣∣∣w+
x sn

D+
x

− 1

∣∣∣∣ ,
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where the first inequality is by convexity, and the last term is Ov.h.P(s
− 1

3
n ) thanks to

Lemma 2.21. Then

|λ1(S)
2 − 1| ≤ |λ1(S)− 1| · |λ1(S) + 1| ≤ |λ1(S)− 1| · (2 + |λ1(S)− 1|),

and we conclude that |λ1(S)
2 − 1| = Ov.h.P(s

− 1
3

n ). Moreover

∥x∥2 =
∑
x∈V

1

w

(
w+
x sn

D+
x

)2

≤ n

w
max
x∈V

(
w+
x sn

D+
x

)2

≤ n

w

(
1 + max

x∈V

∣∣∣∣w+
x sn

D+
x

− 1

∣∣∣∣)2

,

which yields ∥x∥2 = Ov.h.P(1), again by Lemma 2.21. Then, it holds ε̃n = Ov.h.P(s
− 1

2
n ).

Thus, w.v.h.p. , it holds B(0, ε̃n) ∩ B(λ1(S), ε̃n) = ∅, and, applying Lemma 2.11(ii),
there exists a unique eigenvalue of P around 1, which is 1 itself; the other eigenvalues
are contained in B(0, ε̃n). This completes the proof of Theorem 2.6.

2.2.4 Fluctuations around the mean

For notational convenience let λ = λ1(An) and let v denote a corresponding unit eigen-
vector. It holds Anv = Cnv + E[An]v = λv, and pre-multiplying by vT ,

vTCnv + vTE[An]v = λ.

By Theorem 2.5, λ is of order sn w.v.h.p. and, due to Proposition 2.12, vTCnv has lower
order (it holds ∥Cn∥ = Ov.h.P(

√
sn)). We get that vTE[An]v/sn = vT (v+)(v−)T v does

not vanish w.v.h.p., and so does (v−)T v. Moreover, there exists η > 1 and K > 0, such
that the event {∥Cn∥ ≥ K

√
sn} has probability at most exp(− log(n)η), and thus the

matrix In − Cn
λ is w.v.h.p. invertible, so that w.v.h.p. the following display holds:

(λIn − Cn)v = E[An]v

=⇒ λv =

(
In − Cn

λ

)−1

E[An]v

=⇒ λv =
+∞∑
k=0

(
Cn

λ

)k

E[An]v

=⇒ λ(v−)T v =
+∞∑
k=0

(v−)T
(
Cn

λ

)k

E[An]v

⇐⇒ λ(v−)T v =

+∞∑
k=0

(v−)T
(
Cn

λ

)k

snv
+(v−)T v.

(2.11)
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Since (v−)T v ̸= 0, w.v.h.p. we end up with

λ = sn

+∞∑
k=0

(v−)T
(
Cn

λ

)k

v+.

Let L = ⌈log(n)⌉. We have that, w.v.h.p.

λ = sn(v
−)T v+ + sn(v

−)T
Cn

λ
v+ +R(1) +R(2) +R(3), (2.12)

where

R(1) = sn

+∞∑
k=L+1

(v−)T
(
Cn

λ

)k

v+. (high exponent)

R(2) = sn

L∑
k=2

(v−)T
(
Cn − E[Cn]

λ

)k

v+, (centering)

R(3) = sn

L∑
k=2

(v−)T
(
E[Cn]

λ

)k

v+, (main contribution)

We are going to show that the only relevant term is the third one, being the other
two negligible. For what concerns R(1), thanks to Proposition 2.12 and Theorem 2.5,
w.v.h.p. it holds

|R(1)| ≤
+∞∑

k=log(n)+1

sn
∥v−∥∥v+∥∥W∥k

λk
≤

+∞∑
k=log(n)+1

(
K1s

1/2
n

K0sn

)k

= O
(
s− log(n)/3
n

)
.

To estimate R(2), applying Lemma 2.25 and Theorem 2.5, w.v.h.p.

|R(2)| ≤ sn

L∑
k=2

(
s
1/2
n log(n)ξ/4

)k
n1/2

(
1

K0sn

)k

=
sn

n1/2

L∑
k=2

(
log(n)ξ/4

K0s
1/2
n

)k

= O

(√
log(n)ξ

n

)
.

Combining the above two estimates, we have

λ = (v−)T v+sn + sn

L∑
k=2

(v−)T
(
E[Cn]

λ

)k

v+ +Ov.h.P

(√
log(n)ξ

n

)
(2.13)

It would be tempting to think that R(3) behaves as R(1) and R(2), but it turns out that
the term sn(v

−)T v+ alone does not provide an estimate of E[λ], which has to be given in
terms of the entire sum over k ∈ {0, . . . , L} as Lemma 2.16 and Lemma 2.17 will show.
To get this, consider the fixed point equation

x = h(x) := sn

log(n)∑
k=0

(v−)TE[W k
n ]v

+

xk
= sn(v

−)T v+ + sn

log(n)∑
k=2

(v−)TE[W k
n ]v

+

xk
. (2.14)
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For fixed n, h : (0,+∞) → (0,+∞) is decreasing as x grows, so that there exists a
unique solution λ̃. Moreover choosing x = tsn, for t ∈ (0 +∞), and using Lemma 2.24,
we get that

h(tsn)

sn
= (v−)T v+ +

log(n)∑
k=2

(v−)TE[W k
n ]v

+

(tsn)k
= (v−)T v+(1 + o(1)),

so that we conclude that λ̃ = (v−)T v+sn(1 + o(1)).

Lemma 2.16. In the present setting, it holds

λ− λ̃ = sn
(v−)TCnv

+

λ̃
+ ov.h.P

(√
sn
n

)
.

Proof. Combining (2.13) with the definition of λ̃ we get

λ− λ̃ = sn
(v−)TCnv

+

λ
+ sn

log(n)∑
k=0

(
1

λk
− 1

λ̃k

)
(v−)TE[W k

n ]v
+ +Ov.h.P

(√
log(n)ξ

n

)
.

By Theorem 2.5 it holds

1

λk
− 1

λ̃k
= (λ̃− λ)

(∑k−1
j=1 λ̃

jλk−j

λkλ̃k

)
= (λ̃− λ)Ov.h.P

(
k

sk+1
n

)
, (2.15)

so that, applying Lemma 2.24, it results∣∣∣∣∣∣sn
log(n)∑
k=0

(
1

λk
− 1

λ̃k

)
(v−)TE[W k

n ]v
+

∣∣∣∣∣∣ ≤ |λ− λ̃|Ov.h.P

sn

log(n)∑
k=2

k

sk+1
n

(K1sn)
k/2


= Ov.h.P

(
|λ− λ̃|
sn

)
,

(2.16)

where we used that
∑log(n)

k=2 k/s
k/2
n = O(1/sn). As a consequence,

λ− λ̃ = sn
(v−)TCnv

+

λ
+Ov.h.P

(
|λ− λ̃|
sn

)
+Ov.h.P

(√
log(n)ξ

n

)
. (2.17)

By Lemma 2.23 and Theorem 2.5 it holds sn
(v−)TCnv+

λ = Ov.h.P(
√

sn
n ). Then, Eq. (2.17)

implies

|λ− λ̃| = Ov.h.P

(√
sn
n

)
. (2.18)
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Consequently, we can omit the second addend in the r.h.s. of Eq. (2.17) and get the
more precise estimate

λ− λ̃ = sn
(v−)TCnv

+

λ
+ ov.h.P

(√
sn
n

)
. (2.19)

Reasoning as in (2.15), and thanks to (2.18), we also have∣∣∣∣( 1

λ
− 1

λ̃

)
(v−)TCnv

+

∣∣∣∣ = ov.h.P(|λ− λ̃|) = ov.h.P

(√
sn
n

)
.

Then, we can change the λ in the denominator of (2.19) to λ̃. This proves Lemma
2.16.

Lemma 2.17. It holds E[λ]− λ̃ = o
(√

sn
n

)
.

Proof. Let R := λ− λ̃− sn(v
−)T Cn

λ̃
v+. By equation (2.19) there exists η > 1 such that,

for any δ > 0, it holds

E[|R|] < δ

√
sn
n

+

(
E

[(
λ− λ̃− sn

v−Cnv
+

λ̃

)2
]) 1

2

exp

(
−(log(n))η

2

)
= o

(√
sn
n

)
.

Since |E[λ]− λ̃| = |E[R]| ≤ E[|R|], we conclude.

We are ready to prove the main theorem.

Proof of Theorem 2.8. Thanks to Lemma 2.16 and Lemma 2.17, it holds√
n

sn
(λ1(An)− E[λ1(An)]) =

√
nsn

(v−)TCnv
+

λ̃
+ ov.h.P(1).

The first term of the r.h.s. is a sum of independent random variables satisfying the
hypotheses of Lindeberg CLT. To identify the variance we just need to compute

Var
(
√
nsn

(v−)TCnv
+

λ̃

)
=

nsn

(
∑

x∈[n] v
+
x v

−
x sn)2(1 + o(1))

∑
x,y∈[n]

(v−x )
2(v+y )

2v+x v
−
y sn(1− px,y),

∼

(
1
n

∑
x∈[n](

√
n
ww−

x )
2(
√

n
ww+

x )
)(

1
n

∑
y∈[n](

√
n
ww−

y )(
√

n
ww+

y )
2
)

(
1
n

∑
x∈[n](

√
n
ww+

x )(
√

n
ww−

x )
)2 .

(2.20)

Using the hypothesis, the sums converge to integrals and we get (2.4).
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2.3 Analysis of outliers, higher-rank case

2.3.1 Existence of outliers

For the model defined in (2.2), Proposition 2.12 and Lemma 2.13 still hold, with the
according definition of Cn. To establish Theorem 2.7, we just need to adapt the Bauer–
Fike step, by employing directly Theorem 2.10, with the choice Sn = E[An]. We need
to show that

εn = ∥Pn∥∥P−1
n ∥∥Cn∥ = Ov.h.P(

√
sn),

where Pn is a diagonalizing change of basis for E[An]. In this setting, the change of basis
P can be chosen to be

Pn = (v+1 , . . . , v
+
r , er+1, . . . , en),

where (el)r+1≤l≤n is an orthonormal basis of Span(v−1 , . . . , v
−
r )

⊥. Pn is not an or-
thogonal matrix, but it holds ∥Pn∥F =

√
n. Moreover, considering the matrix Xn =

(v−1 , . . . , v
−
r , er+1, . . . , en), we have that X

∗
nPn is lower triangular with unit determinant,

so that det(Pn) = det(Xn)
−1. It holds

max
i,j≤r

dist(v−i , v
−
j )

2 =
1

n
·max
i,j≤r

∑
x∈[n]

(√
n v−i (x)−

√
n v−j (x)

)2
,

and the l.h.s. is uniformly bounded, thanks to Assumption 2.2 (3). Then

det(Xn) =

r−1∏
l=0

dist(v−l+1, V
−
l ) = O(1).

We have the bound (which is the main contribution in Guggenheimer et al. [1995])

∥Pn∥∥P−1
n ∥ ≤ 2

|det(Pn)|

(
∥Pn∥F√

n

)n

= 2| det(Xn)|.

Then, by Proposition 2.12 we conclude εn = Ov.h.P(
√
sn).

2.3.2 Fluctuations around the mean

Let us fix l ∈ {1, . . . , r}. To simplify the notation, let λl = λl(An). We also consider the
r × r matrix with entries

Vn(i, j) := sn
√
θiθj(v

−
i )

T

(
In − Cn

λl

)−1

v+j 1{∥W∥<λl} i, j = 1, . . . , r. (2.21)

Notice that, thanks to Theorem 2.9 and by the conditions on (v±i )i≤r, it holds that

Vn = snDiag(θ1, . . . , θr)

(
1 + ov.h.P

(
∥Cn∥
λl

))
,

that is, Vn is a perturbation of a diagonal matrix and it is diagonalizable (say, because
it is with high probability strictly dominant). Precisely, the outliers of An provide all
the eigenvalues of Vn, as the following lemma states.
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Lemma 2.18. With very high probability it holds λl(An) = λl(Vn).

Proof. Let v be a right unit eigenvector of An corresponding to the eigenvalue λl =
λl(An),

λlv = Cnv + sn

r∑
j=1

θjv
+
j (v

−
j )

T v. (2.22)

Reasoning as in (2.11), w.v.h.p. it holds

λlv =

(
In − Cn

λl

)−1

sn

r∑
j=1

θjv
+
j (v

−
j )

T v,

so that, pre-multiplying by
√
θi(v

−
i )

T , for i = 1, . . . , r, and recalling the definition (2.21),
we have

λl

√
θi(v

−
i )

T v =
r∑

j=1

Vn(i, j)
√

θj(v
−
j )

T v, i = 1, . . . , r.

Calling u± = (
√
θ1(v

±
1 )

T v, . . . ,
√
θr(v

±
r )

T v)T , we have u− that is a candidate eigenvector
of eigenvalues λl for Vn. We just have to show that it is not the null vector. Pre-
multiplying (2.22) by vT it holds

λl = vTCnv + snu
+u−.

Since λl is of order sn w.v.h.p. and vTCnv has lower order (thanks to Proposition 2.12
it holds ∥Cn∥ = Ov.h.P(

√
sn)), we deduce that u− has at least one non-vanishing entry.

This shows that λl(An) ∈ Sp(Vn). To have the thesis, it suffices to employ Gerschgorin
Theorem ([Varga, 2004, Theorem 1.6] or [Chakrabarty et al., 2020, Fact 5.1]) as in
[Chakrabarty et al., 2020, Lemma 5.2], after having noticed that An does not need to
be symmetric.

Let us rewrite Vn as the following sum

Vn =

+∞∑
k=0

Vk,n,

where for every k ∈ N, Vk,n is the matrix with entries

Vk,n(i, j) := sn
√

θiθj(v
−
i )

T (Cn)
k v+j i, j = 1, . . . , r.

The decomposition (2.12) needs to be adapted to the r-dimensional context. This will
be the aim of the next Lemmata. Let us consider the following fixed point equation

x = hl(x) := λl

(
L∑

k=0

E[Vk,n]

xk

)
,
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which generalizes the one in (2.14). Letting x = tsn for t ∈ (0,+∞), by Lemma 2.24 it
holds ∥∥∥∥∥

L∑
k=2

E[Vk,n]

(tsn)k

∥∥∥∥∥ ≤
+∞∑
k=2

(tsn)
−k(K1sn)

k/2+1 =

(
K1

t

)2

(1 +O(s−1/2)).

As a consequence, by definition of V0,n and the properties of (v±i )i≤r,

s−1
n

L∑
k=0

(tsn)
−kE[Vk,n] = Diag(θ1, . . . , θr)(1 + o(1)).

In particular hl(tsn) = θlsn(1 + o(1)). From this follows that, for t < θl and large n it
holds tsn < hl(tsn), and the converse for t > θl. Thus, the equation must have a solution
λl living at the scale sn.

Lemma 2.19. In the present setting, it holds

λl − λ̃l = Ov.h.P

(
∥V1,n∥
sn

+

√
sn
n

)
,

Proof. Let S
(0)
n = Vn. Thanks to (2.21), this matrix is is with high probability diagonal-

izable and the entries of its eigenvectors turn to be approximated, up to a multiplicative
error 1+ov.h.P (∥Cn∥/λ) of the ones of Diag(θ1, . . . , θr), which are given by the canonical

basis. as a consequence eigenvectors of S
(0)
n are approximately orthogonal. Let now

L = ⌈log(n)⌉ and consider the following r × r matrices:

S(1)
n =

L∑
k=0

Vk,n

λk
l

,

S(2)
n = V0,n +

V1,n

λl
+

L∑
k=2

E[Vk,n]

λk
l

,

S(3)
n =

L∑
k=0

E[Vk,n]

λ̃k
l

.

It is not difficult to see that for ℓ = 1, 2, 3, the same diagonal approximation holds

and S
(ℓ)
n is a random perturbation of the matrix S

(ℓ−1)
n . Then it is possible to apply

sequentially Theorem 2.10 with the choices H
(ℓ)
n = S

(ℓ)
n − S

(ℓ−1)
n and get that with high

probability
|λl(S

(ℓ)
n )− λl(S

(ℓ−1)
n )| ≤ ∥P (ℓ)

n ∥∥(P (ℓ)
n )−1∥∥H(ℓ)

n ∥,

where P
(ℓ)
n has as columns the (unit) eigenvectors of S

(ℓ−1)
n . Because of the bound

∥P (ℓ)
n ∥∥(P (ℓ)

n )−1∥ ≤ 2

| det(P (ℓ)
n )|

(
∥P (ℓ)

n ∥F√
n

)n

≲ 2,
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(which comes from Guggenheimer et al. [1995]) we get that

|λl − λ̃l| = |λl(S
(0)
n )− λl(S

(3)
n )| ≤ 2(∥H(1)

n ∥+ ∥H(2)
n ∥+ ∥H(3)

n ∥).

Hence, it is sufficient to bound the l.h.s. to prove the thesis. ∥H(1)
n ∥ is bounded in the

same way as M1 was bounded in the rank-one case. To bound ∥H(2)
n ∥, it is sufficient to

observe that

∥H(2)
n ∥ ≤

L∑
k=2

∥Vk,n − E[Vk,n]∥ ≤ K5max
i,j≤r

L∑
k=2

|Vk,n(i, j)− E[Vk,n(i, j)]|,

and then employ Lemma 2.25 to bound the terms in the r.h.s. of the above display,

uniformly in i, j. Finally, to bound ∥H(3)
n ∥, notice that

∥H(3)
n ∥ =

∥∥∥∥∥V1,n

λl
+

L∑
k=2

E[Vk,n]

(
1

λk
l

− 1

λ̃k
l

)∥∥∥∥∥ . (2.23)

Reasoning as in the proof of Lemma 2.16, we can bound the r.h.s. of (2.23) by

∥∥λ−1
l V1,n

∥∥+ |λl − λ̃l|
L∑

k=2

∥E[Vk,n]∥
∑k−1

j=1 λ̃
j
lλ

k−j

λkλ̃k
l

,

which in the fashion of (2.16) and thanks to Theorem 2.7, needed to estimate the first
term, implies that

∥H(3)
n ∥ = Ov.h.P

(
∥V1,n∥
sn

)
+ |λl − λ̃l|Ov.h.P(sn

−1).

Putting all estimates together we get,

|λl − λ̃l|(1 +Ov.h.P(s
−1
n )) = Ov.h.P

(
∥V1,n∥
sn

+

√
sn
n

)
,

which concludes the proof of Lemma 2.19.

Finally, we can refine the previous result to the following one, which is analogous to
Lemma 2.16.

Lemma 2.20. In the present setting, it holds

λl − λ̃l = snθl
(v−l )

TCnv
+
l

λ̃l

+ ov.h.P

(
∥V1,n∥
sn

+

√
sn
n

)
.

Proof. Let us apply again the Bauer-Fike approach with the choice, for the third step,

S̃(3)
n =

V1,n

λl
+

L∑
k=0

E[Vk,n]

λ̃k
l

=
V1,n

λl
+ S(3)

n ,
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where S
(3)
n as in the previous proof. We get that∣∣∣∣∣λl − λl

(
V1,n

λl
+

L∑
k=0

E[Vk,n]

λ̃k
l

)∣∣∣∣∣ = ∣∣∣λl(S
(0)
n )− λl(S̃

(3)
n )
∣∣∣

= ov.h.P(|λl − λ̃l|) = ov.h.P

(
∥V1,n∥
sn

+

√
sn
n

)
,

where the first asymptotic estimate can be obtained reasoning as in (2.16), and the
second one follows from Lemma 2.19. Let us now consider the matrices

H̃ := S̃(3)
n − S̃(3)

n (l, l)In,

M̃ := S̃(3)
n − V1,n

λl
−
(
S̃(3)
n (l, l)− V1,n(l, l)

λl

)
In,

obtained adding and subtracting to S̃
(3)
n and S̃

(3)
n − V1,n

λl
multiples of the identity (we

highlight that V1,n(l, l) = snθl(v
−
l )

TCnv
+
l is the (l, l) entry of V1,n). Since this just

translate eigenvalues, it follows

λl

(
S̃(3)
n

)
= λl(H̃) + S̃(3)

n (l, l) = λl(H̃) +
V1,n(l, l)

λl
+ λl

(
S̃(3)
n − V1,n

λl

)
− λl(M̃),

which means, recalling that S̃
(3)
n − V1,n

λl
= S

(3)
n and λl

(
S
(3)
n

)
= λ̃l,

λl

(
V1,n

λl
+

L∑
k=0

E[Vk,n]

λ̃k
l

)
= λ̃l +

V1,n(l, l)

λl
+ λl(H̃)− λl(M̃).

To conclude the proof of the lemma, we need to show

|λl(H̃)− λl(M̃)| = ov.h.P

(
∥V1,n∥
sn

)
.

This follows reasoning as in the proof of [Chakrabarty et al., 2020, Lemma 5.8], where
the same kind of estimate is shown, after having noticed that symmetry is not used.

The obvious analogous of Lemma 2.17, and some computations as in (2.20), provide
what remains to prove Theorem 2.9.

2.4 Inequalities and lemmata

2.4.1 Concentration results

We recall that, being D+
x a sum of Bernoulli random variables, the following inequalities

hold (see for example [van der Hofstad, 2016, Prop. 2.21]):

P(D+
x ≥ E[D+

x ] + t) ≤ exp

(
− t2

2(E[D+
x ] + t/3)

)
, (2.24)

P(D+
x ≤ E[D+

x ]− t) ≤ exp

(
− t2

2E[D+
x ]

)
. (2.25)
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Choosing t = s
2
3
n in (2.24) and (2.25), thanks to due to Assumption 2.4, we get for

example

P(max
x∈V

|D+
x − w+

x sn| ≥ s
2
3
n ) ≤ 2n exp

(
−s

1
3
n

)
= o

(
e− log(n)η

)
,

for some η > 4
3 . Choosing t = mE[D+

x ] in (2.24) and (2.25), we get

P
(

1

D+
x

≥ 1

E[D+
x ](1−m)

)
≤ exp

(
−m2E[D+

x ]

2

)
,

P
(

1

D+
x

≤ 1

E[D+
x ](1 +m)

)
≤ exp

(
− m2E[D+

x ]

2(1 +m/3)

)
.

Taking m = s
− 1

3
n , since (1±m)−1 = 1∓m+ o(m), the following lemma holds.

Lemma 2.21. There exists η > 4
3 such that,

P
(
max
x∈V

∣∣∣∣w+
x sn

D+
x

− 1

∣∣∣∣ ≥ 2s
− 1

3
n

)
≤ 2n exp

−cs
1
3
n

3

 ≤ exp(− log(n)η).

2.4.2 Useful lemmata

Lemma 2.22. Var((v−)TCnv
+) = O(sn/n).

Proof. By direct computation

Var((v−)TCnv
+) = Var((v−)TAv+) =

∑
x,y

(w−
x )

2(w+
y )

2

w2
px,y(1− px,y) = O

(
sn

n2

w3

)
.

Lemma 2.23. |(v−)TCnv
+| = OP

(√
sn
n

)
.

Proof. It holds

E[|(v−)TCnv
+|] ≤

√
Var((v−)TCnv+) = O

(√
sn
n

)
.

Lemma 2.24. There exists a constant K1 < +∞ such that, for 2 ≤ k ≤ L,∣∣∣E [(v−)TCk
nv

+
]∣∣∣ ≤ (K1sn)

k/2 .

Moreover,
(v−)TCnv

+ = ov.h.P(sn). (2.26)
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Proof. By Proposition 2.12, there exists K > 0 and η > 1 such that for the event
A := {∥Cn∥ ≤ C

√
sn} it holds P(A∁) ≤ e−(log(n))η . Then∣∣∣E [(v−)TCk

nv
+
]∣∣∣ ≤ ∣∣∣E [(v−)TCk

nv
+1A

]∣∣∣+ ∣∣∣E [(v−)TCk
nv

+1A∁

]∣∣∣ .
The first addend can be estimated by |E∥v−∥∥v+∥∥Cn∥| = K1s

k/2
n . For the second

addend, noticing that
(
(v−)TCk

nv
+
)2

cannot exceed a power of n, say nkC′
, for C ′ > 0,

by Cauchy–Schwartz,∣∣∣E [(v−)TCk
nv

+1A∁

]∣∣∣ ≤ (E [((v−)TCk
nv

+
)2]) 1

2

P
(
A∁
) 1

2

≤ nkC′/2e−(log(n))η/2 = o(1).

To prove (2.26), recalling that Cn = An − E[An], Hoeffding inequality can be employed
to have that, for every ε > 0, it holds

P

(∣∣∣∣∣ ∑
x,y∈[n]

v−x Axyv
+
y −

∑
x,y∈[n]

E
[
v−x Axyv

+
y

] ∣∣∣∣∣ > εsn

)

≤ 2 exp

(
− 2ε2s2n
n2((maxxw

±
x −minxw

±
x )/w)2

)
.

Since weights are bounded, the r.h.s. is at most O(exp(−2ε2(log(n))2ξ)).

Lemma 2.25. There exists η > 1 such that

max
2≤k≤L

P
(∣∣∣(v−)TCk

nv
+ − E[(v−)TCk

nv
+]
∣∣∣ > sk/2n n−1/2 log(n)kξ/4

)
= O

(
e−(log(n))η

)
.

Proof. The proof of this result comes by showing that it holds

E[
∣∣∣(v−)T (Ck

n − E[Ck
n]
)
v+
∣∣∣p] < (K3kp)

kps
kp
2
n ,

where p := log(n)η

K3k
. This high moment estimate is obtained adapting [Erdős et al., 2013,

Lemma 6.5] to the inhomogeneous setting as in [Chakrabarty et al., 2020, Lemma 4.3]
and observing that in our non–reversible setting the entries of the matrix are truly
independent, so that there is no need to decompose Cn in a sum of a upper and lower
triangular matrix.

2.5 A conjecture on the bulk

In this section, we present a non-rigorous discussion on the spectrum of the Chung–Lu
digraph. In particular, we present and motivate a conjecture regarding the limiting
empirical spectral distribution (ESD) of its adjacency matrix. We recall that the ESD
of a n× n matrix Mn is defined as

µMn =
1

n

n∑
i=1

δλi(Mn).
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The circular law. As mentioned, the eigenvalues of non-Hermitian (not symmetric)
matrices spread out in the complex plane. In the 1950s, matrices of size n and with i.i.d.
centered entries with variance 1/n, have been conjectured to satisfy a limiting circular
law, meaning that the eigenvalues become uniformly distributed in the unit disk, as n
grows (see the survey Bordenave and Chafäı [2012]). After many other contributions,
in Tao and Vu [2010], the circular law was established for 1√

n
Bn, where Bn is a dense

n× n matrix with i.i.d. entries and bounded second moments.
The argument of Tao and Vu [2010] is articulated as follows. The first ingredient is a

general replacement principle that ensures that the limiting ESD does not depend on the
specific law of matrix entries. Since the circular law for Gaussian matrices was proved
in Mehta [1967], this leads to a universal statement. The replacement principle can be
applied provided that the function log(·) is integrable w.r.t. the empirical singular value
distribution of the shifted matrices 1√

n
Bn − zIn, for z ∈ C. To prove it, a bound on the

smallest singular value of the matrix is needed, together with a control on the cumulative
contribution of small singular values. Finally, the limit for the empirical singular value
distribution of 1√

n
Bn − zIn is studied.

In a sequence of works, the analysis has also been extended to sparser matrices with
entries of the form δxyXxy, where Xxy are i.i.d. centered random variables with unit
variance, and δxy are i.i.d. Bernoulli random variables with parameter pn ≪ 1 such
that npn ≫ 1 Basak and Rudelson [2019], Götze and Tikhomirov [2010], Rudelson and
Tikhomirov [2019], Tao and Vu [2008]. The sparse case, with pn of order 1/n, has been
recently considered, and it has been shown that, in that case, an atom at the origin
arises Sah et al. [2025].

Beyond the i.i.d. case, in Tao and Vu [2008] and Tao and Vu [2010], matrices whose
entries are independent but not identically distributed were also considered, extending
part of the estimates of least singular values (and the consequent universal results) to an
inhomogeneous setting. Moreover, matrices with various dependency structures or vari-
ance profiles often still exhibit a circular-type limiting distribution. For example, when
row sums are constrained (random stochastic matrices), the eigenvalue cloud remains
circular under suitable conditions, as shown in Bordenave et al. [2012]. In Bordenave
et al. [2014] the limiting ESD of the random walk generator of a sparse directed random
graph is characterized. In Litvak et al. [2021] the circular law is proved for the adjacency
matrix of a sparse regular random directed graph.

The framework that we considered in the previous sections corresponds to a non-
centered, inhomogeneous and (weakly) sparse setting where average degrees scale as
log(n)4 ≪ sn = pnn ≪ n. Here the determination of the limiting behavior of the ESD
for some rescaling of the matrix is a difficult and technical problem. Surprisingly, in the
aforementioned work Basak and Rudelson [2019], the techniques from Tao and Vu [2010]
could be employed and extended to a matrix with non i.i.d. and non-centered entries.
In particular, the circular law has been shown to hold for the adjacency matrix of a
sparse directed Erdős–Rényi graph with connection probability pn ≫ log(n)2/n, as the
following theorem states.
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Theorem 2.26 ([Basak and Rudelson, 2019, Thm. 1.7]). Let An be the adjacency
matrix of a directed Erdős–Rényi graph, with connection probability pn ∈ (0, 1). It
p̄n = min{pn, 1 − pn} and np̄n ≫ log(n)2 then, as n → +∞, the ESD of the rescaled

matrix (npn(1− pn))
− 1

2An converges weakly in probability to the circular distribution.
Moreover, there exists c > 0 such that, if np̄n > exp(c

√
log(n)) the convergence is

almost sure.

Remark 2.27. The assumption npn ≥ log(n)2, implied by Assumption 2.4 has been
shown to be technical, and in Rudelson and Tikhomirov [2019] the circular law has been
proved to hold whenever npn diverges. In this more general setting, the matrix has many
zero row and columns with constant (non-zero) probability. This requires deeper analysis
than the one in Basak and Rudelson [2019].

Notice that their construction of the Erdős–Rényi digraph is slightly different, since
it does not allow self-loops. We are convinced that the approach developed in Tao and
Vu [2010] and Basak and Rudelson [2019] to study small singular values can be extended
to our random matrices. For this reason, following Theorem 2.26, we conjecture that the
limiting ESD of (sn)

−1/2An is equal to the one of the random matrix n−1/2D̄+
n YnD̄

−
n ,

where Yn is a n×n i.i.d. standard Gaussian array and D̄±
n are the n×n diagonal matrices

containing the vectors ( n
w )−1/4(w±)−1/2. Notice that this choice centers the entries and

modifies their variance from px,y(1− px,y) to the asymptotically equivalent px,y.

Free probability. Before stating our precise conjecture, we introduce the notion of
non-commutative probability space and free independence, which will provide the nec-
essary notation. See Mingo and Speicher [2017] for an introduction to the topic.

Definition 2.28 (Non-commutative probability space). A pair (A, φ) consisting of a
unital algebra A and a linear functional φ : A → C with φ(1) = 1 is said to be a
non-commutative probability space. An element of a ∈ A is called random variable,
and a probability distribution µa is said to be the law of a if it is the unique probability
distribution µa on R such that, for any k ∈ N,∫

R
tk dµa(t) = φ(ak).

Definition 2.29 (Free and asymptotically free independence). Let (A, φ) be a non-
commutative probability space. Given a family (ai)i∈I ⊆ A, its elements are said to be
free (or freely independent) if it holds

φ
(
(ai1 −φ(ai1)1)(ai2 −φ(ai2)1) · · · (aik −φ(aik)1)

)
= 0, , ∀k ∈ N, ∀i1, i2, . . . , ik ∈ I.

Given a family of n × n random matrices (Mn,i)i∈I , its elements are said to be asymp-
totically free if there exists a non-commutative probability space (A, φ) and a family of
free operators (ai)i∈I ⊆ A such that

lim
n→+∞

1

n
Tr(Mn,i1Mn,i2 · · ·Mn,ik) = φ(ai1ai2 · · · aik), ∀k ∈ N, ∀i1, i2, . . . , ik ∈ I.
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Definition 2.30 (Free sums and products). If Mn,1 and Mn,2 are asymptotically free
random matrices with limiting ESD µ1 and µ2 respectively, and a1 and a2 denote the
corresponding free operators in a non-commutative probability space (A, φ), the free ad-
ditive convolution µ1 ⊞ µ2 of µ1 and µ2 is defined as the law of a1 + a2. Analogously,
the free multiplicative convolution µ1 ⊠ µ2, is defined as the law of a1a2.

The conjecture. Given a random matrix Bn, consider, for z ∈ C, the symmetrized
matrix (

0 Bn − zIn
B∗

n − z̄In 0

)
, (2.27)

and call θBn,z its ESD. It has been shown (see [Bordenave and Chafäı, 2012, Lemma 4.3]
and [Kösters and Tikhomirov, 2018, Theorem 2.1]) that, under suitable hypotheses, the
determination of a limit θz for the θBn,z, for every z ∈ C, is sufficient to reconstruct the
limit of µBn . It will be indeed given by the unique probability distribution µ such that,
for every z ∈ C, ∫

log |ζ − z| dµ(ζ) =
∫

log |x|dθz(x).

We can prove the following result, which can be used to determine θz in our setting.

Proposition 2.31. Let ρ√
w± denote the weak limits of the empirical distributions

1

n

∑
x∈[n]

δ
4
√

n
w

√
w±

x
.

If ρ√
w+ = ρ√

w− = ρ√w, then, for every z ∈ C, the matrices(
D̄+

n 0
0 D̄−

n

)
,

(
0 1√

n
Yn

1√
n
Y ∗
n 0

)
, and

(
0 −zIn

−z̄In 0

)
,

are asymptotically free.

For the sake of brevity, we omit the proof of this proposition, which is based on the bi-
unitary invariance of Gaussian matrices, and we refer to [Götze et al., 2015, Proposition
5.8] for further details. We only recall that a random matrix Mn is bi-unitary invariant
if the joint distribution of the entries of Mn and those of UnMnVn are the same for every
choice of unitary matrices Un and Vn.
The symmetrized version (2.27) of n−1/2D̄+

n YnD̄
−
n is given by(

D̄+
n 0
0 D̄−

n

)(
0 n−1/2Yn

n−1/2Y ∗
n 0

)(
D̄+

n 0
0 D̄−

n

)
+

(
0 −zIn

−z̄In 0

)
.

Moreover, the symmetrized version of n− 1
2Yn has a semicircular limit (by standard facts

on Wishart matrices, see again Mingo and Speicher [2017]), and the one of −zIn has
eigenvalues ±|z|. Then, we are finally ready to state the conjecture, which corresponds
to a non-Hermitian counterpart of Proposition 5.2 in Chakrabarty et al. [2021].
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Conjecture 2.32. Let ρ√
w± denote the weak limits of the empirical distributions

1

n

∑
x∈[n]

δ
4
√

n
w

√
w±

x
.

If ρ√
w+ = ρ√

w− = ρ√w, then µ 1√
sn

An
converges weakly in probability to a limit µ, which

is the unique probability measure on C such that, for all z ∈ C,∫
C
log |ζ − z| dµ(ζ) =

∫
R
log |x| d

[
ρ√w ⊠ s⊠ ρ√w ⊞ 1

2

(
δ−|z| + δ|z|

)]
(x) ,

where s is the semicircular distribution with density ds(x) = 1
2π

√
4− x21[−2,2](x)dx,

while ⊞ and ⊠ respectively denote free additive and multiplicative convolutions of prob-
ability distributions (see Def. 2.30).

Remark 2.33. The probability distributions ρ√
w+ and ρ√

w− are well defined. Indeed,
given the convergence in Assumption 2.1, it is possible to deduce the convergence of other
empirical distributions related to the bi-weight distribution (w+

x , w
−
x )x∈[n]. For instance,

projecting onto the first or second component, we obtain the two marginals, and taking
square roots, by the continuous mapping theorem, we get that the distributions ρ√

w± can
be expressed as a push-forward of ρ. In the homogeneous case, we recover the circular
law in Theorem 2.26.
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Mixing time of random walks
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Introduction to Part II

The study of stochastic processes evolving on a random structure is fundamental for the
understanding of many real-world systems that are characterized by intrinsic random-
ness. The latter can be due to the presence of many microscopical forces, noisy channels,
impurity of materials and media, or the unpredictability of human behavior. Random
graphs endow with a source of randomness the interaction networks where agents can
flow, exchange information and update according to probabilistic rules, so that random-
ness is encoded in two steps. The first step of randomness is given by the environment,
whose associated probability measure is denoted by P. The second step is given by
the dynamics, which depends on the specific instance of G. We will denote by PG the
quenched distribution associated with the dynamics. Given the discrete nature of the
state space, the simplest and probably most effective way of describing some random
dynamics is a Markov chain. Let us briefly mention that a different but related line of
research is related to random walks in random environment, meaning random walks on
a deterministic lattice, which evolve according to random transition probabilities. These
are in turn given by weights, which form the environment. See Zeitouni [2004].

Markov chains on random graphs

The state space for the Markov dynamics can be chosen to be the vertex set of the graph
or something more complex, such as the set of binary spin configurations supported on
the graph. This choice has been particularly fruitful in the context of mathematical
statistical physics (see Durrett [2007], van der Hofstad [2025]). Classical spin systems
are defined on lattices and the most studied models in this class, introduced, e.g., in
Liggett [1985, 1999], are the stochastic Ising model, the contact process and the voter
model. The dynamics is usually given by exponential clocks attached to each particle
(or spin), and the state of the spin is modified, according to some random rule, as the
clock rings. The main questions are concerned with the characterization of the evolution
towards the equilibrium, the determination of metastable timescales, phase transitions
and, for the finite random graph formulation, understanding the link with the model on
infinite and deterministic trees. We will now mention some contributions in this area,
with no aim of being exhaustive, since the literature on this topic is extremely vast.
For the Ising model, introduced to study ferro-magnetic interactions, the update rule
is given through an acceptance-rejection scheme, depending on the energy gain of the
transition. Besides contributions in the analysis of the static model, such as Dembo
and Montanari [2010], we mention Dommers [2017], Dommers et al. [2017], Bovier et al.
[2021] and den Hollander and Jovanovski [2021] for achievements on sparse graphs.
In the contact process, which describes the evolution of an infectious disease, active
vertices spread an infection and recover from it at certain rates. We mention Mourrat
and Valesin [2016] and Bhamidi et al. [2021], where phase transitions for the model on
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sparse random graphs are determined, and Chatterjee and Durrett [2009], Mountford
et al. [2013], for achievements in a power-law setting.
In the voter model, which describes opinion dynamics, the selected vertex updates its
state adopting the one of a random neighbor. The quantity of interest is the consensus
time at which all spins are aligned. In Cooper et al. [2009/10] a sparse regular graph is
studied, while in Fernley and Ortgiese [2023] and Hermon et al. [2022] more general mod-
els are considered. See Avena et al. [2024] and Capannoli [2025] for recent achievements
in the directed setting, which is of our interest.

Random walks represent a simple yet interesting model for diffusion phenomena and
real-world applications (e.g., the Web-indexing PageRank algorithm Page et al. [1999]).
Moreover, they constitute a fundamental brick before passing to more complicated dy-
namics. In this regard, it is worth mentioning that, under suitable hypotheses, the
coalescing time of a system of independent random walks can be used to determine
a first-order asymptotics for the consensus time in the voter model, as established in
Oliveira [2012]. Indeed, the graphical representation of the model reveals that its dual is
given by a system of coalescing walkers. Quantities of interest for random walks are, e.g.,
cover, meeting and mixing times. Part II will be devoted to the mixing time, which we
are going to introduce in the following paragraph. As it will be soon clear, its asymptotic
behavior can undergo a phase transition, called cutoff.

Mixing times of Markov chains

Given a finite state space Markov chain it is classical that, under irreducibility conditions,
there exists a unique equilibrium distribution π, independent of the initial state, towards
which the dynamics evolves. In this framework a fundamental question concerns the time
needed to converge to the equilibrium, namely the mixing time. Given a discrete time
Markov chain with t-step transition kernel P t(·, ·), and a distance d(·, ·) for probability
distributions, for ε > 0, the ε-mixing time is defined as

tmix(ε) := inf{t > 0 : max
x∈[n]

d(P t(x, ·), π) ≤ ε},

that is the minimal time at which the distribution of the chain is ε-near to the equilib-
rium. If the distance is convex, the maximum can be taken over all initial distributions.
An interesting case is given by the total variation distance ∥ · ∥TV, which corresponds
to a L1 distance. Besides a theoretical interest, providing estimates for the mixing time
can be very useful from an applicative perspective, motivated for instance, by Monte
Carlo simulations.

Estimates on the mixing time can be derived in several ways. The relaxation time of
the chain, given by the inverse of the second least eigenvalue of the infinitesimal generator
of the chain can be used to derive exponential contraction of the total variation distance
and provide an upper bound on the mixing time. In discrete time, the generator is given
by I−P , where P denotes the transition matrix. In this setting, the quantity of interest
is instead the least eigenvalue modulus, up to pass to the lazy version the chain with
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transition matrix (P + I)/2. Other approaches include the estimate Cheeger constants
and logarithmic Sobolev inequalities. See Levin and Peres [2017] for an introduction on
the topic. All these techniques work well in the reversible setting, where the state space
of the process can be endowed with a Hilbert space structure. This is not the case for
non-reversible Chains, even though recent advances show that it is possible to define a
relaxation time in such a way that certain bounds are preserved Chatterjee [2025].

There is a strong interest in studying how the distance to equilibrium decays in time
and, in particular, in characterizing the precise shape of its graph as the size of the
system grows. I,f under proper rescaling of time, a limit object exists, it is referred to as
a limit profile. A remarkable limit profile is achieved when the process has a fast mixing.
A process is said to exhibit cutoff if for every ε > 0,

lim
n→+∞

tmix(ε)

tmix(1− ε)
= 1.

In a few words, this means that the decay of its distance to equilibrium takes place in
an abrupt manner: there exists some t (which depends on the size of the system) such
that, for any ε > 0, at time (1−ε)t its distribution is arbitrarily far from the equilibrium
one, while at time (1+ ε)t it is arbitrarily near. In this sense, the “parameter” inducing
the phase transition here is time, and for this reason it is often said that this is an
example of a dynamical phase transition. This limit behavior was studied in the context
of random transpositions by Diaconis and Shahshahani [1981] and for random walks on
the hypercube by Aldous [1983], and later again by Aldous and Diaconis [1986], Diaconis
[1996], and Diaconis and Saloff-Coste [1996] in the context of card shuffling.

More recently, this topic has received a renovated interest and the occurrence of the
cutoff has been proved for several models. For what concerns random walks on random
graphs, to which the following sections will be devoted, we first refer to the seminal work
Lubetzky and Sly [2010]. We also mention birth and death chains Ding et al. [2010], the
Ising model on the lattice Lubetzky and Sly [2013], the exclusion process on segment
and circles Lacoin [2016a,b], and the averaging process on complete and bipartite graphs
Chatterjee et al. [2022], Caputo et al. [2023]. Despite an increasing amount of work on
the subject, the cutoff phenomenon is still far from being completely understood, and the
research of simple conditions (i.e., easy-to-check and model independent) guaranteeing
the presence of a cutoff is very active. Remarkable advances have been obtained for non-
negatively curved Markov Chains employing functional inequalities and entropy criteria.
See Salez [2024a,b], Pedrotti and Salez [2025] and references therein.

In the second part of the dissertation we turn to the analysis of dynamics on a
random graph. Specifically in Chapters 3 and 4 we will study the mixing time of the
simple random walk on inhomogeneous random directed graphs.

Cutoff for random walks on random graphs

As mentioned, random walks on random graph nowadays represent a prototypical exam-
ple of Markov chains that exhibit the cutoff phenomenon. In recent years, random walks
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on random graphs have been extensively studied on various random graph models.
Many attempts have been done to characterize the mixing time of this dynamics.

See, e.g., Benjamini et al. [2014] (initially submitted in 2006), Fountoulakis and Reed
[2008], and references therein. Notice that, in this setting the mixing time and the
total variation profile are random objects, being observables depending on the graph,
and it is crucial to understand the relation between environment and dynamics. We
again mention the work Lubetzky and Sly [2010], which constituted a breakthrough
in the field. Other notable contributions include the establishment of the cutoff for
random walks on the giant component of the Erdös-Rényi graph Berestycki et al. [2018],
on the configuration model Ben-Hamou and Salez [2017], Ben-Hamou et al. [2019], on
all Ramanujan graphs Lubetzky and Peres [2016], and on random lifts Bordenave and
Lacoin [2022], Conchon-Kerjan [2022].

Part of these investigations has also focused on the directed setting, which, as men-
tioned, is particularly challenging due to the non-reversibility of the dynamics and the
poor knowledge of the stationary distribution. In this setting, the stationary distribu-
tion of the Markov chain is not explicit and its characterization represents itself an and
important theoretical challenge (see, e.g., Caputo and Quattropani [2020], Chen et al.
[2014, 2017], Garavaglia et al. [2020]). This framework was explored in Bordenave et al.
[2018, 2019], where the cutoff was established for random walks on the directed con-
figuration model, and later extended to PageRank dynamics Caputo and Quattropani
[2021a] and to the case of heavy-tailed degrees Cai et al. [2023]. Other results in the
same spirit have also been obtained in Dubail [2024a,b]. A common thread in all these
works is the characterization of the mixing time in terms of the entropy production rate
(or simply, the entropy) of the random walk on its local weak limit. The cutoff, and hence
mixing, time is then shown to given by logarithm of the size of the system, normalized
by the entropy. This quantity is called entropic time.

Overview of chapter 3:
Cutoff for the SRW on the directed Chung–Lu graph

Chapter 3 contains the result of Bianchi and Passuello [2025].
Here we analyze the motion of a random walk on the Chung–Lu directed graph. In
Section 3.1 we introduce the model and state the results. Subsection 3.1.1 is dedicated
to the definition of the Chung–Lu directed graph in terms of in- and out-weights. Then
we introduce the discrete time simple random walk, namely the Markov chain (Xt)t∈N,
with transition matrix

P (x, y) :=

{
1

D+
x

if x → y

0 otherwise
, ∀x, y ∈ [n],

where D+
x denotes the out-degree of the vertex x ∈ [n], and the notation x → y means

that the oriented edge (x, y) is in the graph, and we provide some comments on the
existence of its invariant distribution π.
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As mentioned above, an important quantity to describe the mixing time of this
dynamics is given by the entropy, which we denote by H. In Subsection 3.1.3 we define
it properly in terms of the expectation of a random variable (see (3.10)), with variance
σ2 (see (3.11)), and we provide the main result, Theorem 3.3 which can be summarized
as follows: for β > 0 and β ̸= 1, it holds

max
x∈[n]

∣∣∥PG
x (Xβtent ∈ ·)− π∥TV − 1{β<1}

∣∣ P−−−−−→
n→+∞

0.

This means that, rescaling time by tent, the total variation profile approximates a step
function, so that cutoff displays. A refinement of this statement holds when adding to
the entropic time tent a term lying at the scale of the lower order term went =

σ
H

√
tent.

This is our second result, Theorem 3.5, which states that if the variance σ2 satisfies a
proper non-degeneracy condition (see (3.15)), then, for λ ∈ R fixed, it holds

max
x∈[n]

∣∣∣∣∥PG
x (Xtent+λwent ∈ ·)− π∥TV − 1√

2π

∫ +∞

λ
e−

u2

2 du

∣∣∣∣ P−−−−−→
n→+∞

0.

It means that inside a window of size went the total variation profile takes a smooth
Gaussian universal shape, independent of the parameters.

Section 3.2 is devoted to outline the proof. The main idea is to identify some proper-
ties, valid for random walk paths of asymptotic length tent that hold with high probability
and which allow for a fast mixing. Paths satisfying them are called nice paths (see Def-
inition 3.7). The main one is related to the mass of a path p = (x0, . . . , xt) ∈ [n]t, which
is defined as m(p) =

∏t−1
s=0 P (xs, xs+1) .

In Section 3.3 the main tools of the analysis are designed. In Subsection 3.3.1 we
describe the distribution of the annealed random walk, the process with law given in
terms of the averaged measure Pan(·) = E[PG(·)]. This non-Markovian evolution on the
averaged graph will turn to provide a good approximation on the Markovian dynamics,
especially for short times t = o(

√
n). The main result of the section is Lemma 3.10,

which shows that, on the event that the trajectory visits a new fresh vertex, the dis-
tribution of the annealed walk is well described by the a distribution to in-weights. In
Subsection 3.3.2 we consider some properties of the graph: degree concentration, which
allows to provide the first asymptotics of the entropy (Proposition 3.2), the size of in-
neighborhoods (Lemma 3.18), and the shape of out-neighborhoods (Lemma 3.19). A
common denominator is that the graph exhibits a locally tree-like structure.

Subsection 3.4 contains the core the analysis, Theorem 3.21. The latter is a concen-
tration result for the mass of random walk paths of length t = Θ(tent), whose statement,
which reminds the shape of the main theorem, goes as follows. If θ ∈ (0, 1) is such that
there exists ρ > 0, ρ ̸= 1, satisfying log θ = ρHt(1 + o(1)), then

max
x∈[n]

∣∣PG
x (m(X0, X1, . . . , Xt) > θ)− 1{ρ>1}

∣∣ P−−−−−→
n→+∞

0.

This result is referred to as quenched law of large numbers, and it is refined to the
quenched CLT 3.22 for the window analysis.
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Everything is wrapped up in Section 3.5. In Subsection 3.4.2 we prove the previous
results to show that random walk paths are nice with high probability. In Subsection
3.5.1, the upper bound on the mixing time is provided thanks to Proposition 3.26, which
exploits the properties of nice paths and makes use of a suitable concentration result
for independent variables. The lower bound is proved in Subsection 3.5.2, applying the
Quenched LLN 3.21. Finally in Subsection 3.5.3, the asymptotics for the cutoff window
is proved. The further result which is needed here is given by Proposition 3.29, a bound
on the L2 of π, which allows to complete the proof of the lower bound.

Perturbed Markov chains

An interesting line of further investigations is related to parametric perturbations of
Markov chains that exhibit a cutoff. More explicitly, focusing the analysis on a particular
choice of chain and a way of implementing the perturbation, it is interesting to quantify
the robustness of the cutoff phenomenon with respect to the strength of the perturbation.

In this setup, the mixing time of the dynamics may exhibit an additional phase
transition, governed by the strength of the perturbation and referred to as a mixing tri-
chotomy. This involves the identification of a subcritical regime, where the perturbation
is sufficiently weak to preserve the mixing behavior of the original chain, contrasted with
a supercritical regime, where the “cutoff picture” is disrupted, leading to smooth rather
than abrupt mixing. As in the broader framework of statistical physics, the description
of such a phase transition is typically accompanied by the identification of a critical
regime, at the interphase between the other two, where the system exhibits some sort of
intermediate behavior.

Among the models for which such a phenomenon has been rigorously proved, we
recall: Glauber dynamics for the Ising model Lubetzky and Sly [2013, 2014], random
walks on dynamic graphs Avena et al. [2019, 2022], Caputo and Quattropani [2021b],
random walks with reset (and the so-called PageRank dynamics) Caputo and Quat-
tropani [2021a], Vial and Subramanian [2025], Ehrenfest urns with multi-type particles
Quattropani [2024], mass redistribution models Caputo et al. [2024]. In particular, al-
though the models in Avena et al. [2019], Caputo and Quattropani [2021a,b] are very
different from each other, they all share a common feature: in the supercritical regime,
the total variation distance over time—properly rescaled—converges to an exponential
function. Moreover, in all these examples, such an exponential decay of the distance
to equilibrium can be read from the point of view of the trajectory of the process: the
arrival at equilibrium is due to the occurrence of a certain event, and the time of the
first occurrence of the latter event is (asymptotically) exponentially distributed.

From a high-level perspective, this is the cartoon underlying another classical phe-
nomenon in statistical physics, known as metastability : the system is trapped in a local
equilibrium up to some (large) exponential time in which the global equilibrium is even-
tually reached. In other words, looking through the lens of the mixing trichotomy ap-
proach, one might be tempted to see metastability and cutoff as “opposed” phenomena.
To make this idea more convincing, it is worth recalling that the emergence of a cutoff
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is often explained in terms of a concentration phenomenon. Conversely, the memory-
lessness of the exponential distribution, which characterizes metastable behaviors, can
be seen as the complete opposite of concentration.

In the landscape of the previous paragraph, a quite natural choice is given by altering
the random graph structure, in order to alter the mixing behavior of the random walk.
This has been done in Ben-Hamou [2020] for the non-backtracking random walk on the
configuration model. Here, a two community structure is considered, whose strength is
governed by a parameter α. This creates a bottleneck which disrupts the cutoff, if and
only if α asymptotically dominates the inverse of the entropic time. This was extended
later in Hermon et al. [2025] for the simple random walk. Here a m-community structure
is considered and the same kind of dichotomy is proved. In Chapter 4 we extend their
results to the simple random walk on a directed Erdős–Rényi graph. We consider a
m-community structure, depending on a parameter α, for which we achieve a complete
trichotomy picture. We provide sharp results on the total variation profile, where an
exponential profile appears, when α touches the inverse of the entropic time.

Overview of chapter 4:
Mixing trichotomy for the SRW on directed block models

In this Chapter we discuss the results in Bianchi et al. [2025].
We consider a block model with m > 1 communities, constructed from m independent
directed Erdős–Rényi random graphs on the sets (Vi)1≤m corresponding to m distinct
copies of [n] (the communities) and a random rewiring procedure governed by a param-
eter α ≡ αn ∈ [0, 1], which introduces connections between these communities. The
smaller α, the sparser the inter-community connectivity. We then analyze the conver-
gence to the equilibrium of a random walk on the resulting graph, letting the interaction
parameter α, or rather the sequence αn, n ∈ N, vary on [0, 1].

In Section 4.1 we present the model and the main result. Subsection 4.1.1 is dedicated
to the formal definition of the graph model. Specifically, we work in a weakly sparse
regime, setting the connection probability of the Erdős–Rényi communities to p ≡ pn =
λ log(n)/n, for a constant λ > 1, and assuming that each edge is rewired so as to point to
a different community with probability α ≫ (λn log n)−1. The choice λ > 1 ensures that,
before the rewiring, each community is strongly connected with high probability. The
requirement α ≫ (n log n)−1 is needed for the communities to be typically connected,
even though such connections may be sparse.

After having recalled some preliminary material from Chapter 3 in Subsection 4.1.2,
we employ Subsection 4.1.3 to state the trichotomy, Theorem 4.3, which can be described
as follows. For high values of α, say, α ≫ t−1

ent, the system is in a subcritical regime with
cutoff at time tent, as described in Eq. (4.3). For lower values of α, say, α ≪ t−1

ent,
the system enters a supercritical regime where the cutoff behavior is disrupted. In this
regime, we identify two relevant timescales.

(i) The first corresponds to the attainment of a local equilibrium within the starting

78



Introduction to Part II

community, which causes a sharp drop in the total variation distance from 1 to
(m− 1)/m at time tent (see Eq. (4.5)).

(ii) The second timescale is of order α−1, and governs the convergence to the global
equilibrium through a smooth exponential decay of the total variation distance:

for t = βα−1 with β > 0, the distance converges to m−1
m e−

βm
m−1 (see Eq. (4.6)).

At criticality, for α ≍ t−1
ent, where the two timescales are of the same order, the dynamics

exhibits an intermediate behavior, where (i) and (ii) are visible at the same scale, as
illustrated on the rightmost side of Figure 4.1 (see Eq. (4.4)). Comments on possible
generalization follow in Subsection 4.1.4.

Section 4.2 contains some auxiliary material, that follows from Chapter 3, on which
the forthcoming analysis is based: the characterization of the stationary distribution
of the simple random walk on a single community (Subsection 4.2.1); the fact local
neighborhoods are tree–like (Subsection 4.2.2); asymptotics on the annealed random
walk (Proposition 4.10 in Subsection 4.2.3) are proved in the spirit of the proof of the
quenched LLN 3.21.

Section 4.3 is devoted to the analysis of the weakly supercritical regime. Here, the
annealed approximation is successful and allows to prove asymptotics on the first time at
which the random walk changes community (Subsection 4.3.1), on the law of the random
walk at the time scale α−1, corresponding to the local equilibrium, (see Theorem 4.13
in Subsection 4.3.2), and on the law of the the random walk at the time scale tent (see
Proposition 4.14 in Subsection 4.3.3).

Section 4.4 is devoted to the analysis of the strongly supercritical regime. This section
contains the real technical core of the work. In this context, the annealed approximation
is no more valid. Nevertheless, we can substitute Proposition 4.10 and Theorem 4.14
with equivalent statement, Proposition 4.15 and Theorem 4.16. To do this we construct
an iterative coupling of the original process with a new one, for which explicit and
exact computations are feasible. The entire section is devoted to the construction of
the random coupling. In Subsection 4.4.1 we study, for each community Vi, the set Gi

of vertices that provide a notion of out-boundary, which we call gates (see Eq. (4.21)).
The computation of its hitting times τGi is necessary to study mixing. In Subsection
4.4.2 we introduce the notion of quasi stationary distribution. If (Xt)t∈N denotes the
random walk initialized on Vi, the quasi stationary distribution µ⋆

i corresponding to Gi

is the distribution on Vi such that

PG
µ⋆
i
(Xt = x| τGi > t) = µ⋆(x), ∀x ∈ Vi \ Gi.

This implies exact geometric distribution for τGi and for this reason we use µ⋆
i for the

initial distribution for our new dynamics. In Subsection 4.4.3 the iterative coupling is for-
mally constructed (see Definition 4.24): the new process (Yt)t∈N is a random walk whose
initial distribution is the one-step evolution of µ⋆

i and which is reset each time that fails
to change community, after having reached Gi. When the transition is successful, the
procedure is repeated on the new community. For the new process, in Proposition 4.27,
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it is proved that the time needed to change community, rescaled by α−1 is asymptoti-
cally distributed as an exponential variable of parameter 1. To do this, homogenization
properties of the graph are considered, together with the results on the typical points of
Gi. The two give that the hitting distribution of G is asymptotically uniform and that
the number of failures before changing community is asymptotically geometric. Later,
the coupling is proved to be successful with high probability, as stated in Proposition
4.25. Subsection 4.4.4 concludes the proof of Proposition 4.15 and Theorem 4.16.

Section 4.5 is devoted to the analysis of the subcritical and critical regimes, which
correspond to the adaptation to the m community case of the entropic method.

In Section 4.6 we formally prove the trichotomy, wrapping up all previous results
and completing with Lemma 4.35 the estimate for the critical case.
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Chapter 3

Cutoff for the simple random walk

on the directed Chung–Lu graph

In the present chapter, which contains the result of Bianchi and Passuello [2025], we
analyze the motion of a random walk on a Chung–Lu digraph. This is an inhomogeneous
random network obtained by sampling edges independently via vertex weights, which
represent fixed average degrees. This setting clearly includes the directed homogeneous
Erdős–Rényi graph. To ensure that the random graph is strongly connected, and hence
to guarantee the uniqueness of the equilibrium measure, we will work on a weakly sparse
regime, where the average vertex degrees grow as log n, n being the size of the graph.

Our study will mainly refer to the techniques introduced in Bordenave et al. [2018,
2019] to deal with the dynamics on the directed configuration model in the sparse regime.
As highlighted in these papers (see also Avena et al. [2024], Cai et al. [2023], Caputo
and Quattropani [2020, 2021a] for further developments), two fundamental statistics for
the characterization of the mixing time are the in-degree distribution, which provides an
easily computable approximation of the reversible measure, and the entropy of the graph,
which measures the spread of the random walk among the network. However, a main
hurdle in implementing theses ideas in our framework is that vertex degrees are random,
as well as the corresponding in-degree distribution. To overcome this difficulty we shall
introduce an approximated, but deterministic, in-degree distribution (see (3.4)), and
then leverage on some concentration results on the vertex degrees in order to control
this approximation error along the dynamics and to characterize asymptotically the
entropy (see (3.10) and Proposition 3.2). By implementing this entropic method, devised
in Bordenave et al. [2018, 2019], we will prove that under suitable assumptions the
dynamics exhibits a cutoff phenomenon at a time of order log n/ log logn. Moreover, we
will show that, in an appropriate time window, the cutoff profile approaches a Gaussian
tail function. This work can be seen as a generalization of the cutoff results achieved in
Bordenave et al. [2018], Cai et al. [2023], where hard constraints on vertex degrees are
replaced with a softer randomized version.
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3.1 Setup and results

3.1.1 Model

Let [n] := {1, . . . , n} represent a set of vertices of size n ∈ N, and consider two sequences
(w−

x )x∈[n] and (w+
x )x∈[n] of positive numbers, called weights, such that∑

x∈[n]

w+
x =

∑
x∈[n]

w−
x =: w(n) = w .

We consider a directed version of the Chung–Lu model, where two distinct vertices
x, y ∈ [n] are connected by an oriented edge from x to y, in short x → y, independently
and with probability

px,y = w+
x w

−
y

log n

n
∧ 1 , ∀x, y ∈ [n] , x ̸= y . (3.1)

We will denote by P = Pw±
n the measure associated to this Chung–Lu random graph and

by E the corresponding average, and write G for a given realization of the graph. The
next remark shows that this formulation of the model is equivalent to the one given in
Chapter 2.

Remark 3.1. The standard non-oriented Chung–Lu model, introduced in Chung and
Lu [2002a], is defined through a sequence of positive weights (w̃x)x∈[n] and connection
probabilities

p(CL)
xy :=

w̃xw̃y

ℓn
∧ 1, ∀x ̸= y ∈ [n], where ℓn :=

∑
x∈[n]

w̃x.

This can be easily adapted to the above directed framework taking two sequences (w̃±
x )x∈[n]

with equal sum, and setting

p(DCL)
xy :=

w̃+
x w̃

−
y

ℓn
∧ 1, ∀x ̸= y ∈ [n], where ℓn :=

∑
x∈[n]

w̃+
x =

∑
x∈[n]

w̃−
x . (3.2)

Choosing w̃±
x = w±

x w
logn
n and plugging this value in (3.2), we get that ℓn =

∑
x∈[n] w̃x =

w2 logn
n , and we recover our model.

As main observables on this random structure, we introduce the random out-degree
of a vertex x ∈ [n], denoted by D+

x , and set

δ+ := min
x∈[n]

D+
x and ∆+ := max

x∈[n]
D+

x ,

which are, respectively, the minimum and maximum out-degree of the random graph.
With obvious notation, we introduce also the corresponding in-degrees random variables
(D−

x )x∈[n], δ− and ∆−.
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By assumption, the out- and in-degrees of each vertex x ∈ [n] are distributed as a
sum of independent Bernoulli random variables of parameters px,y and py,x respectively,
for y ∈ [n] \ {x}. In particular, their averages are easily given by

E[D±
x ] =

∑
y∈[n]\{x}

w±
x w

∓
y

log n

n
.

Along the paper, we will use usual Landau asymptotic notation (cfr. p. vii). In Sub-
section 3.1.2, we will set assumptions on (w±

x )x∈[n] which imply, in the above notation,
that E[D+

x ] = Θ(log n), for x ∈ [n]. The corresponding random graph will be then in a
weakly sparse regime.
At last, note that the Erdős–Rényi digraph with connection probability p = λ log n/n,
for λ > 0, corresponds to a homogeneous Chung–Lu digraph with constant weights

√
λ.

The Chung–Lu model that we have just portrayed offers a good framework to study
random dynamics. We consider the discrete time simple random walk, (Xt)t∈N, whose
transition matrix is

P (x, y) :=

{
1

D+
x

if x → y

0 otherwise
, ∀x, y ∈ [n].

For every time t > 0 (for the sake of simplicity t has to be understood as an integer, or
its integer part), we denote with P t(·, ·) its related t-step transition kernel, while for an
oriented path p = (x0, . . . , xt) in the graph, we define the probability mass of p as

m(p) :=
t−1∏
i=0

P (xi, xi+1) , (3.3)

which corresponds to the probability that a random walk starting at x0 follows the
trajectory p. We point out that m(·), as the transition kernel P (·, ·), is a random object
whose dependence on the random graph is implicit in the notation.

For any given realization G of the random graph, we can consider the probability
measure PG

µ associated to the simple random walk, when the initial position of the walk
has distribution µ on [n]. For a probability distribution µ on [n], we will denote with
PG

µ (Xt ∈ ·) the quenched law of the random walk at time t with initial distribution µ.
When µ = δx for some x ∈ [n], this can also be denoted by P t(x, ·). Averaging over all
graph realizations, we obtain the corresponding annealed measure Pan

µ , which is defined

by Pan
µ (A) := E[PG

µ (A)] for every measurable set A of trajectories of the random walk.
In our framework the random structure is fixed once forever. We refer to Avena et al.
[2019, 2022], Caputo and Quattropani [2021b], Sousi and Thomas [2020] for the analysis
of dynamic networks.

Uniqueness of the invariant distribution. As long as a realization G of the Chung–
Lu digraph is strongly connected, i.e. there exists a directed path among every couple
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of vertices x, y ∈ [n], the irreducibility condition of simple random walks is satisfied and
this guarantees that there exists a unique invariant measure π on [n] such that πP = π.

Then, we are at first interested in finding sufficient conditions which ensure strong
connectivity with probability tending to 1 as n → ∞ (in short with high probability or
simply w.h.p.). It was proved in Cooper and Frieze [2012] that the Erdős–Rényi digraph
with parameter λ log n/n, where λ > 1, is w.h.p. strongly connected. To be more precise
this remains true when (λ − 1) log(n) → +∞ as n → +∞. Provided that there exists
a constant λ such that w+

x w
−
y ≥ λ > 1 for every x, y ∈ [n], and since the strong con-

nectivity is a monotone increasing property of graphs, a simple coupling argument leads
to the same conclusion for the Chung–Lu graph. Hence, this condition guarantees the
existence and uniqueness of the invariant distribution π, and it will be part of the set
of assumptions on the graph setting that will be given below, before stating the main
results. Let us mention that we do not need the edge density to be of the order log(n)/n
for a strongly connected component to exist. However, below that threshold, the latter
will contain w.h.p. some dead ends (i.e., vertices with null out-degree), and this will
prevent the random walk to be irreducible.

Provided that the stationary distribution is unique, the main goal of this work is to
characterize the mixing time of the random walk, which is defined, for any initial state
x ∈ [n] and any precision ε ∈ (0, 1), as

t
(x)
mix(ε) := inf{t > 0 : ∥P t(x, ·)− π∥TV ≤ ε} ,

where ∥µ−ν∥TV := 1
2

∑
x∈[n] |µ(x)−ν(x)| =

∑
x∈[n] [µ(x)− ν(x)]+, is the total variation

distance among the probability measures µ and ν. Here [u]+ := max{0, u}, for u ∈ R.
We stress once more that the mixing time depends on the realization G of the graph,

though the dependence is implicit in the notation. We will prove that our estimates on

t
(x)
mix(ε) hold in P-probability as n → ∞.

In-degree distribution. One of the main hurdles to estimate the mixing time of
simple random walks on digraphs is that the stationary measure π cannot be explicitly
computed. In this respect, a useful tool is provided by the following probability measure
on the set [n],

µin(x) :=
w−
x

w
, for x ∈ [n] . (3.4)

The measure µin can be seen as an approximate averaged in-degree distribution. Specif-
ically, under the upcoming assumption (3.5), we can deduce that for large n

E[D−
x ] = w

log(n)

n
w−
x (1 + o(1)),

∑
x∈[n]

E[D−
x ] = w2 log(n)

n
(1 + o(1)),

and then, taking the ratio among the two terms, we get

µin(x) =
E[D−

x ]∑
x∈[n] E[D

−
x ]

(1 + o(1)) .
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The measure µin will then simply referred to as in-degree distribution, and it will nat-
urally appear through the proofs as a fundamental object in understanding the mixing
mechanism of the dynamics.

3.1.2 Assumptions

We assume that:

1. There exist constants M0,M1 > 1 such that, for every n ∈ N,

M0 ≤ w+
x ≤ M1 < +∞, ∀x ∈ [n]; (3.5)

2. There exist constants M2 > 0 and 0 < η < 1 such that, for every n ∈ N,∑
x∈[n]

(w−
x )

2+η ≤ M2n. (3.6)

Notice that, as a consequence of (3.5),

w = Θ(n) and E[D+
x ] = Θ(log n) , ∀x ∈ [n] .

Moreover, exploiting (3.6), we get that maxx∈[n] (w
−
x )

2+η ≤ M2n, and thus

w−
x ≤ (M2n)

1
2+η ≤ (M2n)

1
2
− η

6 , ∀x ∈ [n] , (3.7)

which in turn implies, by (3.1), that

pmax := max
x ̸=y∈[n]

px,y = o(n− 1
2
− η

7 ), (3.8)

and
µmax
in := max

x∈[n]
µin(x) = O(n− 1

2
− η

6 ). (3.9)

In particular, following the terminology introduced in Caputo and Quattropani [2021a],
the above assumptions imply that µin is a widespread measure.

3.1.3 Main results

Before stating the main results, and following the procedure traced in Bordenave et al.
[2018], we need to introduce two fundamental quantities that will characterize the mixing
time and the cutoff window of the dynamics. We define the entropy H of the Chung–
Lu model as the mean logarithmic out-degree of a vertex sampled from µin (see (3.4)).
Formally, we set

H := E

∑
x∈[n]

µin(x) log
(
D+

x ∨ 1
) , (3.10)
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and

σ2 := E

∑
x∈[n]

µin(x) log
2
(
D+

x ∨ 1
)−H2 . (3.11)

We also define the entropic time

tent :=
log n

H
,

which we will show to be precisely the mixing time of the dynamics. In this sense, it is
useful to state the following preliminary result which provides the asymptotic behavior
of H and σ2, as n → ∞.

Proposition 3.2. Under the assumptions (3.5) and (3.6), it holds

H = log log n(1 + o(1)), σ2 = O(log log n).

While the proof of the above proposition is postponed to Subsection 3.3.2, we can
immediately argue that the entropic time tent is asymptotically of order log n/ log logn.
With that in mind, and with the usual convention that the discrete dynamics is evaluated
in the integer part of each considered time, we can state our main results.

Theorem 3.3 (Cutoff). Let β ∈ (0, 1). It holds

min
x∈[n]

∥P (1−β) tent(x, ·)− π∥TV
P−−−−−→

n→+∞
1. (3.12)

and
max
x∈[n]

∥P (1+β) tent(x, ·)− π∥TV
P−−−−−→

n→+∞
0. (3.13)

Remark 3.4. By the monotonicity properties of the function t 7→ ∥P t(x, ·) − π∥TV for
x ∈ [n], we get that (3.12) holds for any t ≤ (1 − β)tent, while (3.13) holds for any
t ≥ (1 + β)tent.

The statement can be rephrased as follows: for every precision ε ∈ (0, 1),

max
x∈[n]

∣∣∣∣∣t
(x)
mix(ε)

tent
− 1

∣∣∣∣∣ P−−−−−→
n→+∞

0.

This means that regardless of the starting point and the precision, the random walk
takes, with high probability for n large enough, logn/ log logn steps to mix.

This abrupt transition from 1 to 0 of the distance to stationarity can be further
explored by zooming in around the cutoff point tent, and in particular by taking an
appropriate window of size went, with

went :=
σ

H

√
tent . (3.14)
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To avoid pathological situations, we will assume that σ2 is non-degenerate in the follow-
ing weak sense: there exists δ > 0 such that

σ2 ≫ (log log n)2+
δ

δ+2

(log n)
δ

δ+2

. (3.15)

Note that as δ → ∞, the r.h.s. reaches the order (log log n)3/ log n, providing a non-
degeneracy condition similar to that given in Bordenave et al. [2018]. This condition is
expected to hold when the amount of inhomogeneity in the graph is sufficiently high.
The next result shows that, inside this window and under this assumption, the cutoff
shape approaches the tail distribution of the standard normal, as observed in Bordenave
et al. [2018].

Theorem 3.5 (Cutoff window). Assume that the σ2 satisfies the non-degeneracy con-
dition (3.15). Then, for tλ := tent + λwent + o(went) with λ ∈ R fixed, it holds

max
x∈[n]

∣∣∣∣∥P tλ(x, ·)− π∥TV − 1√
2π

∫ +∞

λ
e−

u2

2 du

∣∣∣∣ P−−−−−→
n→+∞

0.

Remark 3.6. Notice that the statements of Theorems 3.3 and 3.5 can be easily ex-
tended to Chung–Lu digraphs with random sequences of weights (W+

1 , . . . ,W+
n ) and

(W−
1 , . . . ,W−

n ) which satisfy a.s. the constraints (3.5) and (3.6).

3.2 Proof outline and main ingredients

3.2.1 General strategy

A main hurdle in the analysis of the mixing time of simple random walks on digraphs is
the lack of an explicit formula for the stationary measure π. To cope with that, we will
introduce an explicit probability measure π̃ that well approximates π itself.

Using this idea, and looking first at an upper bound on the mixing time, by the
triangle inequality we can write

∥P t(x, ·)− π∥TV ≤ ∥P t(x, ·)− π̃∥TV + ∥π̃ − π∥TV, ∀x ∈ [n] .

Note that if the first term in the r.h.s. is oP(1) uniformly in x ∈ [n], where Xn = oP(Yn)
means that |Xn/Yn| vanishes in probability, then the same must hold for the second
term since

∥π̃ − π∥TV = ∥π̃ − πP t∥TV =
∑
x∈[n]

π(x)∥P t(x, ·)− π̃∥TV . (3.16)

This is what we will prove for t ≥ (1 + β)tent, taking π̃ := µinP
hε , with ε > 0 and

hε :=
ε log n

20H
. (3.17)
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More precisely, we will prove the following slightly weaker condition

∥P t(x, ·)− π̃∥TV = oP(1) , ∀x ∈ V ⋆
ε , (3.18)

where V ⋆
ε is a subset of [n] whose vertices have a locally tree-like out-neighborhood. This

result will be sufficient to derive a proper upper bound on the mixing time as stated in
(3.13) of Theorem 3.3.

As a further main tool to obtain (3.18), which also enters in the proof of the lower
bound on the mixing time, we will introduce a suitable set of t-length paths, called nice
paths, that will be shown to be typical trajectories of the simple random walk. Taking
advantage of their properties, we will prove that, for any δ > 0,

∥P t(x, ·)− π̃∥TV ≤ Qx,t

( 1

n log3 n

)
+ 3δ ,

where for x ∈ [n] and θ ∈ (0, 1), Qx,t(θ) is the quenched probability that the mass of a
path of length t selected by a random walk with initial point x is bigger than θ. Formally

Qx,t(θ) := Px(m(X0, X1, . . . , Xt) > θ), (3.19)

where Px is the quenched measure associated to a random walk starting at x as in
Subsection 3.1.1, and m(·) is the mass of a path as given in (3.3).

A similar approach can be implemented to obtain a lower bound on the total variation
distance as stated in (3.12). In particular, for t = (1 − β) log n and θ = loga n/n (with
a suitable a ∈ N), it will lead to the inequality

Qx,t(θ) ≤ ∥π̃ − P t(x, ·)∥TV + oP(1) . (3.20)

The function Qx,t(θ) is thus one of the main characters of our analysis, and it will carry a
very powerful limit result: in Theorem 3.21 we will observe that according to the choices
(t, θ), it may vanish or saturate to 1. This dichotomy will actually conclude the proof of
the cutoff regime (Theorem 3.3), and provide the main strategy for the proof of cutoff
profile (Theorem 3.5).

We would like to emphasize again that the overall strategy of our proofs follows the
entropic method developed by Bordenave, Caputo, and Salez in Bordenave et al. [2018,
2019] for analyzing random walks on sparse directed configuration models. While we
draw on these ideas, our implementation occurs in a different connectivity regime, where
average degrees diverge, and other significant modifications are necessary. In the case of
directed configuration models, the analysis often relies on combinatorial computations,
which are feasible due to the deterministic nature of in- and out-degrees. However, this
approach is not applicable to the Chung–Lu setting, where the in- and out-degrees are
themselves random. Instead, the Chung–Lu model benefits from the independence of
edges, a property we crucially exploit in our analysis, along with appropriate concentra-
tion inequalities for the in- and out-degrees.

Finally, note that our results are consistent with Theorem 3 in Lubetzky and Sly
[2010], which is set in the context of undirected regular random graphs in a weakly sparse
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setting. Although we are not aware of analogous results for the undirected Chung–Lu
model in this regime, we believe that similar conclusions can be drawn for a broad
class of undirected random graphs. However, in this setting, the speed of the random
walk enters the game and needs to be properly analyzed (see Berestycki et al. [2018]
for the study of sparse undirected graphs). It is also worth mentioning the analysis in
Fountoulakis and Reed [2008], where the authors study the mixing time of random walks
on the giant component of Erdős–Rényi graphs with average degree at most O(

√
log n),

which is below the assumptions of the present study. For average degrees d = Ω(log(n)2),
we refer to Hildebrand [1996], where it is shown that the mixing time of the random
walk is slightly above log(n)/log(d), which turns to be the diameter of the graph and
matches our result.

3.2.2 Typical paths and tree-like neighborhoods

We explain here the properties that a path of length t has to satisfy in order to be called
nice.

Definition 3.7 (Nice path). Let γ = ε
80 , ε ∈ (0, 1), hε as in (3.17), and

s := (1− γ)tent, t := s+ hε + 1 = (1 + 3γ)tent + 1.

We say that a path p = (x, x1, x2, . . . , xt−1, y) of length t from x to y is nice if

(i) the entire path is such that m(p) ≤ 1
n log3 n

;

(ii) the first s steps are contained in certain tree Tx(s), defined below;

(iii) the last hε steps form the only path in G of length at most hε from its origin to y;

(iv) it holds P (xs, xs+1) = 1/D+
xs

≥ 1
C logn , for some constant C > 0.

Remark 3.8. Definition 3.7 and the consequent machinery can be extended to times
t = tλ, lying in the critical window of Theorem 3.5. In that case we set s = tλ − hε.

To formalize the above properties, it remains to define the tree Tx(s).

Construction of the tree Tx(s). For a given realization of the graph G, a fixed root
node x ∈ [n] and a time s ∈ N, we construct with an iterative procedure two sequences
(Gℓ)ℓ≥0 and (T ℓ)ℓ≥0 such that, for every ℓ ≥ 0, Gℓ is a subgraph of G with ℓ edges, while
T ℓ is a spanning tree of Gℓ. The criterion adopted is similar to the one in [Cai et al.,
2023, Sect. 3.2].

Set H := (1+γ)H, where γ = ε
80 as in Definition 3.7. To initialize, let G0 = T 0 := {x}.

Then, for ℓ ≥ 1:
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1. Let Eℓ be the set of edges with tails (i.e., starting points) belonging to Gℓ−1, and
which have not been yet visited by the first ℓ− 1 iterations of the algorithm. For
an edge e ∈ Eℓ, define the cumulative mass

m̂(e) := m(px,v−e )
1

D+

v−e

, (3.21)

where v−e is the tail of e, and px,v−e denotes the unique path in T ℓ−1 from x to v−e .
In particular, m̂(e) corresponds to the probability that the random walk follows
px,v−e and then the edge e.

2. Choose eℓ ∈ Eℓ such that:

(a) v−eℓ is at distance at most s− 1 from the root x,

(b) m̂(eℓ) = maxe∈Eℓ m̂(e) and m̂(eℓ) ≥ e−Hs.

If such edge does not exist, stop the procedure and set κx ≡ κx(s) = ℓ− 1 ;

3. Generate Gℓ by adding eℓ to Gℓ−1 ;

4. If step (2) does not break the tree structure of T ℓ−1, generate T ℓ by adding eℓ to
T ℓ−1 and otherwise set T ℓ = T ℓ−1.

Note that κx ≡ κx(s) is the last step of the iteration, and that it is finite as the graph
itself is finite. We then set Gx(s) := Gκx and Tx(s) := T κx . We observe that Gx(s) is

generated by all paths with mass at least e−Hs and length at most s.

We will show that the properties of nice paths are satisfied w.h.p. for s as in Definition
3.7 and uniformly in all starting points x ∈ V ⋆

ε , where V ⋆
ε ⊂ [n] is the random set of

vertices mentioned in Eq. (3.18) and defined as follows.
For h ∈ N and x ∈ [n], let us denote with B+

x (h) (resp. B−
x (h)), the set of vertices

y ∈ [n] that are connected to x by an oriented path of length at most h and starting
(resp. ending) at point x. They will be called out- (resp. in-)neighborhood of x of radius
h. Then we set

V ⋆
ε := {x ∈ [n] : B+

x (hε) is a directed tree}. (3.22)

As in Lubetzky and Sly [2010], vertices x ∈ V ⋆
ε are named hε-roots. We will prove that

V ⋆
ε is attractive in a sense that will be specified in Lemma 3.20.

3.3 Tools

3.3.1 Annealed random walk

In this subsection we will give an alternative construction of the annealed law of a random
walk. We will actually generalize this object to the joint annealed law of K independent
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random walks defined on the same random graph. This will be used in the forthcoming
sections to compute the K-th moment of certain quenched statistics.

Let K ∈ N. Given an initial distribution µ and a time T , we define iteratively the

non-Markovian process (X(k))k∈{1,...,K}, where X(k) = (X
(k)
t )0≤t≤T is a random walk of

length T whose evolution is, for every k ≥ 2, conditioned to the previous k − 1 walks.
Formally, every random walk X(k) is defined by the following procedure:

(1) Set X
(k)
0 ∼ µ;

Then for all t ∈ {1, . . . , T}:

(2) • IfX
(k)
t−1 was never visited before by the previous walks or for s ≤ t−1, generate

its out-neighborhood B
X

(k)
t−1

:= B+

X
(k)
t−1

(1), according to the probability P, and

select a vertex v uniformly at random on B
X

(k)
t−1

;

• If X
(k)
t−1 has been already visited, extract v uniformly at random from the

previously generated out-neighborhood of X
(k)
t−1;

(3) Set X
(k)
t = v.

The key point of the above construction is that the law of (X(k))k∈{1,...,K} corresponds

to the annealed joint law Pan,K
µ ((XG,1, . . . , XG,K) ∈ ·) of a system of K independent

random walks (XG,k)k∈{1,...,K} (we recall that G denotes a realization of the graph).

Indeed, given a measurable set of trajectories A ⊆ [n]T×K , we have

Pan,K
µ ((XG,1, . . . , XG,K) ∈ A) = E

[
PK

µ ((XG,1, . . . , XG,K) ∈ A)
]
=

=E
[ ∑
{xj

t}t,j∈[n]T×K∩A

K∏
j=1

µ(xj0)

T−1∏
t=0

P (xjt , x
j
t+1)

]
=

=E
[ ∑
{xj

t}t,j∈[n]T×K∩A

K∏
j=1

µ(xj0)

T−1∏
t=0

E
[
P (xjt , x

j
t+1)

∣∣(B
xj
r
)r<t , (Bxℓ

r
)r≤T,ℓ<j

] ]
,

which characterizes the law of (X(k))k∈{1,...,K}.

Remark 3.9. Notice that the annealed random walk has an applied interest: its defin-
ing algorithm constructs samples of independent random walks moving on a common
structure. Understanding their self-repetition properties could provide information on
the geometry of the graph, which is very important for statistical inference purposes.

For a single random walk X = (Xt)t∈N and any time s ∈ N, we introduce the event
that the vertex Xs was never visited before the step s, formally written as

Ls = {Xs ̸= Xu, ∀u ∈ {0, . . . , s− 1}} ,

91



Chapter 3. Cutoff for the SRW on the directed Chung–Lu graph

where for s = 0, the event L0 should be understood as the whole sample space. Using
this notation, we are going to prove a result which highlights the role of the measure
µin, defined in (3.4), along the dynamics. Before giving the statement, we recall that

µmax
in = maxx∈[n] µin(x) = O(n− 1

2
− η

6 ), as observed in (3.9).

Lemma 3.10. For every initial distribution µ and any positive s = O
(
n1/2

)
, it holds

Pan
µ (Xs = z,Ls−1) = µin(z)

[
1 +O

( 1
3
√
log n

)]
.

Proof. If s > 1, and setting z = zs ∈ [n], we can write

Pan
µ (Xs = z,Ls−1) =

∑
z0,...,zs−1∈[n]

zs−1 /∈{z0,...,zs−2}

µ(z0)E

[
s−1∏
i=0

1{zi→zi+1}

D+
zi

]

=
∑

z0,...,zs−1∈[n]
zs−1 /∈{z0,...,zs−2}

µ(z0)E

[
s−2∏
i=0

1{zi→zi+1}

D+
zi

]
E
[
1{zs−1→z}

D+
zs−1

]
,

(3.23)

Where we used that 1{zs−1→zs} is independent of the other indicator functions, by defi-
nition of Ls−1. From the concentration results on the out-degree D+

x that will be shown
in Subsection 3.3.2, the conditional average appearing in the last display is given, up to
lower order terms, by (E[D+

zs−1
])−1 = (ww+

zs−1
log n/n)−1(1 +O(1/ 3

√
log n)) (see Remark

3.17). Inserting this value in (3.23), using that pzi,zi+1 = w+
ziw

−
zi+1

log n/n, and from the
explicit form of µin, we get

∑
z0,...,zs−1∈[n]

zs−1 /∈{z0,...,zs−2}

µ(z0)E

[
s−2∏
i=0

1{zi→zi+1}

D+
zi

]
µin(z)

[
1 +O

( 1
3
√
log n

)]

= Pan
µ (Ls−1)µin(z)

[
1 +O

( 1
3
√
log n

)]
.

We now observe that, for every i ≤ s− 1, thanks to (3.8) and our hypothesis on s,

1− o(n− η
7 ) = 1− spmax ≤ Pan

µ (Li) ≤ 1.

Then the claimed statement holds for all s > 1.
If s = 1, being L0 the whole sample space, we get more directly, by the same

estimates,

Pan
µ (X1 = z) =

∑
z0∈[n]

µ(z0)E
[
1{z0→z}

D+
z0

]
= µin(z)

[
1 +O

( 1
3
√
log n

)]
.
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Remark 3.11. By Lemma 3.10 and Remark 3.17,

Pan
µ (Xs = z,Ls−1) = Pan

µ (Ls−1)µin(z)(1 + ϵz),

where 0 < ϵz = O(1/ 3
√
log n) and Pan

µ (L∁
s−1) = o(n− η

7 ). As a consequence

1 =
∑
z∈[n]

Pan
µ (Xs = z,Ls−1) + Pan

µ (L∁
s−1)

=Pan
µ (Ls−1)

(
1 +

∑
z∈[n]

µin(z)ϵz
)
+ Pan

µ (L∁
s−1) = 1 +

∑
z∈[n]

µin(z)ϵz + o(n− η
7 ) ,

which leads to
∑

z∈[n] µin(z)ϵz = o(n− η
7 ). Then, we conclude,

2∥Pan
µ (Xs = ·)− µin∥TV ≤

∑
z∈[n]

|Pan
µ (Xs = z,Ls−1)− µin(z)|+ Pan

µ (L∁
s−1)

≤
∑
z∈[n]

µin(z)|ϵz − o(n− η
7 )|+ Pan

µ (L∁
s−1)

≤
∑
z∈[n]

µin(z)(|ϵz|+ |o(n− η
7 )|) + Pan

µ (L∁
s−1) = o(n− η

7 ).

(3.24)

Let us now define, for every 0 < s < t the event As,t that the trajectory (Xu)s≤u<t

has no self-intersections, formally given by

As,t ≡ AX
s,t := {Xu ̸= Xv, ∀u ̸= v ∈ {s, . . . , t− 1}} . (3.25)

We set also At := A0,t.
The next result shows that, if the initial measure µ is Unif([n]), then the event AT

is indeed typical for a time T = log2 n, which is asymptotically much bigger than tent.
This will be crucial to prove the convergence result inside the cutoff window.

Lemma 3.12. Let T := log2 n. If µ = Unif([n]), then there exists a constant C1 > 0
such that

Pan
µ (A∁

T ) ≤ C1 log
4 n/n .

Proof. Let τ be the first self-intersection time of X, given by

τ := min{s > 0 : ∃u < s such that Xs = Xu} ,

and write

Pan
µ (A∁

T ) = Pan
µ (τ < T ) =

T−1∑
t=1

Pan
µ (τ = t), (3.26)

where

Pan
µ (τ = t) =

∑
z∈[n]

(
Pan
µ (X0 = Xt = z, τ = t) +

∑
0<s<t

Pan
µ (Xs = Xt = z, τ = t)

)
. (3.27)
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We estimate separately the two terms appearing in the above summation.
The first term can be written as

Pan
µ (X0 = Xt = z, τ = t) = Pan

µ (Xt = z, τ = t|X0 = z) · Pan
µ (X0 = z)

= Pan
z (Xt = z, τ = t)µ(z) ≤ Pan

z (Xt = z,Lt−1)µ(z)

=
1

n
µin(z)(1 + o(1)),

(3.28)

where the last identity follows from Lemma 3.10 and using that µ = Unif([n]). Inserting
this value in (3.27) and summing over z, we conclude that this term provides an overall
contribution to Pan

µ (τ = t) equal to 1/n+ o(1/n).
Let us turn to the second term. For all s < t ≤ T , we introduce the event

Bs,t ≡ BX
s,t := {Xv ̸= Xu, ∀u ∈ {0, . . . , s− 1} and v ∈ {s, . . . , t− 1}} , (3.29)

corresponding to the event that the trajectory (Xv)v∈[s,t) does not intersect the trajectory
(Xu)v∈[0,s). Note that, in this notation, At = As ∩ As,t ∩ Bs,t, and we can write

Pan
µ (Xs = Xt = z, τ = t) ≤ Pan

µ (Xs = Xt = z,At)

= Pan
µ (Xs = Xt = z,As ∩ As,t ∩ Bs,t)

=
∑

v∈([n]\z)s
self-avoiding

Pan
µ (Xt = z,As,t|(Xk)0≤k≤s = (v, z), Bs,t)

× Pan
µ ((Xk)0≤k≤s = (v, z), Bs,t).

(3.30)

Thanks to the conditioning, the first factor can be written as P̃an
z (Xt−s = z,At−s) where

P̃an
z (·) = Ẽ[Pz(·)] denotes the annealed measure induced by a Chung–Lu probability

measure P̃ on a graph with n− s nodes. To the sake of readability we do not stress the
dependence of P̃ on the vector v ∈ ([n] \ z)s. We conclude observing that, thanks to
Lemma 3.10,

P̃an
z (Xt−s = z,At−s) ≤ P̃an

z (Xt−s = z,Lt−s) = µin(z)(1 + o(1))

Plugging this identity in (3.30), summing over v ∈ ([n] \ z)s, and applying once more
Lemma 3.10, we end up with

Pan
µ (Xs = Xt = z, τ = t) ≤ µin(z)Pan

µ (Xs = z, As ∩ Bs,t)

≤ µin(z)Pan
µ (Xs = z, As) ≤ µin(z)Pan

µ (Xs = z, Ls−1)

= µin(z)
2(1 + o(1))

Inserting this value in (3.27), summing over s < t and z ∈ [n], and noting that, by
assumption (3.6), there exists a finite constant C1 such that∑

z∈[n]

µin(z)
2 ≤ M2n/w

2 ≤ C1

n
, (3.31)

we conclude that the contribution to Pan
µ (τ = t) of this second term is at most C1

T−1
n .

The claimed statement follows including these estimates in (3.26).
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Remark 3.13. Note that the bound of order log4 n/n is due to the specific choice of
the time T . The result can be generally stated for any time T ≥ log(n)2 which grows
poly-logarithmically in n, providing an estimate of order O(T 2/n). The requirement over
the initial measure can be similarly weakened by replacing Unif([n]) with a measure µ
sufficiently widespread over [n], so that maxx∈[n] µ(x) = O(T/n) and the term in (3.28)
can be properly controlled.

3.3.2 Properties of the random graph

In this subsection we consider some non-trivial properties of the environment which are
the ground floor to understand the typical behavior of random walk paths. We will state
two main results about the in- and out-neighborhood of a given vertex, and provide the
proof of Proposition 3.2 regarding the entropy asymptotics.

Concentration of out-degrees and entropy. Our first two results concern with
the out-degree properties of the graph. They are straightforward consequences of the
Chernoff bounds, which we provide below for the reader’s convenience (see Prop. 2.21,
van der Hofstad [2016]).

Let Xi ∼ Ber(pi), i = 1, . . . , n, be independent Bernoulli random variables of param-
eter pi ∈ (0, 1) and let X =

∑n
i=1Xi. Then, for every choice of t > 0,

P(X ≥ E[X] + t) ≤ exp

(
− t2

2(E[X] + t/3)

)
,

P(X ≤ E[X]− t) ≤ exp

(
− t2

2E[X]

)
.

(3.32)

The above Chernoff bounds, applied to the random variables (D+
x )x∈[n], yields the

following bounds on ∆+ and δ+ (maximum and minimum out-degree).

Lemma 3.14. There exists C > 1 such that the event E+ := {δ+ ≥ 2}∩{∆+ ≤ C log n}
satisfies

P(E+) = 1− o(1).

Proof. Fix a single vertex x ∈ [n]. It holds

P(D+
x < 2) =

∏
y ̸=x

(1− px,y) +
∑
z ̸=x

px,z
∏

y ̸=x,z

(1− px,y),

and recalling that log(1− t) ≤ −t for every |t| < 1,

P(D+
x < 2) ≤ e−

∑
y ̸=x px,y +

∑
z ̸=x

px,ze
−

∑
y ̸=x,z px,y = O(n−w+

x log n).

Since w+
x > 1 for every x ∈ [n], by a union bound we get P(δ+x < 2) = o(1).
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To bound below ∆+, we apply the Chernoff bounds (3.32) to get

P(D+
x > C log n) ≤ exp

(
− (C log n− E[D+

x ])
2

2
(
E[D+

x ] +
1
3(C log n− E[D+

x ])
)) ,

and note that we can choose C sufficiently large to obtain a uniform estimate in x, so
that the r.h.s. is of order n−γ , for any γ > 0. Then, with a union bound on x ∈ [n],

P(∆+ ≤ C log n) = 1− o(1).

Being w±
x > 1, δ+ could be proved to be greater than any constant, but we take

δ+ ≥ 2 in analogy to strongly connected configuration models.

Lemma 3.15. There exists a constant c > 0, independent of n, such that, for every
vertex x ∈ [n],

P(D+
x ≤ c log n) = o(1) .

Proof. Applying the Chernoff bounds (3.32) with X = D+
x and t := E[D+

x ]− c log n > 0
it holds

P(D+
x ≤ c log n) ≤ exp

(
−(E[D+

x ]− c log n)2

2E[D+
x ]

)
. (3.33)

By assumption (3.5), for every x ∈ [n] it holds E[D+
x ] = Θ(log n), with asymptotic

constant uniformly bounded in n. Then, there exists c > 0, independent of n, such that

1

log n
· (E[D

+
x ]− c log n)2

2E[D+
x ]

= Θ(1) , ∀x ∈ [n].

This completes the proof.

Remark 3.16. Since w−
x > 1 for every x ∈ [n], for a point-wise estimate we can simply

take c = 1. In general, to perform a union bound in (3.33) and prove that δ+ > c log n
w.h.p., it must hold, for x ∈ [n],

1

log n
· (E[D

+
x ]− c log n)2

2E[D+
x ]

= α(x)(1 + o(1)),

for a constant α(x) such that α(x) > 1 uniformly in x ∈ [n] and n ∈ N. This can
happen only if, for large n and for every x ∈ [n], (ww+

x /n− c)2 > 2ww+
x /n. Since for

every n ∈ N, c ∈ (0,ww+
x /n), passing to the roots we derive the equivalent condition

that c < ww+
x /n−

√
2ww+

x /n for large n and for every x ∈ [n].

However, this condition is not always satisfied under our general hypotheses. For
instance, on the Erdős–Rényi graph with parameter λ log n/n, where 1 < λ <

√
2, it

holds that ww+
x /n ≡ λ, and the above condition is satisfied only if c is such that 0 <

c < λ−
√
2λ < 0, yielding a contradiction. The above strategy is then insufficient to deal

with this specific case.
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Remark 3.17. The Chernoff bounds (3.32) provide a precise estimate on the average of
the reciprocal of out-degrees. To see this, it is sufficient to plug X = D+

x and t = mE[D+
x ]

into (3.32). Since E[D+
x ] = Θ(log n), the choice m = 1/ 3

√
log n implies

E
[

1

D+
x

]
=

1

E[D+
x ]

[
1 +O

( 1
3
√
log n

)]
.

Notice that, thanks to Jensen’s inequality, the multiplicative error term has to be
greater than 1. We conclude this subsection providing the proof of Proposition 3.2 about
the entropy H. It is a straightforward application of the two previous lemmas.

Proof of Proposition 3.2. From the definition of the entropy H given in (3.10), we can
conveniently rewrite

H =
∑
x∈[n]

µin(x)

n∑
i=2

log iP(D+
x = i) . (3.34)

By Lemmata 3.14-3.15, for every fixed vertex x ∈ [n],

P(D+
x > C log n) = o(1/n), P(D+

x < c log n) = o(1),

where C > 1 and c = c(x) > 0 uniformly in n. Hence

log(c log n) + o(1) ≤
n∑

i=2

log iP(D+
x = i) ≤ log(C log n) + o(1/n),

which together (3.34), implies that H = log log n(1 + o(1)).
From the definition of σ2 given in (3.11), we can write

σ2 =
∑
x∈[n]

µin(x)

n∑
i=2

(log i)2P(D+
x = i)−H2 .

Since for every C ∈ (0 + ∞) it holds (log(C log n))2 = (log log n)2 + 2 logC log log n +
log2C, from the previous displays, and inserting the derived estimate of H, we conclude
that σ2 = O(log log n).

The entropy H provides an average observable of the system. In the forthcoming
sections it will be shown to be deeply connected with the dynamics of the random walk.
More precisely, we will deduce from Theorem 3.21 that the probability mass of a typical

random walk path of length t is e−Ht+O(
√
Ht).

Size of in-neighborhoods. We now focus on the analysis of the in-neighborhood
properties of the graph, that will turn to be fundamental in understanding the spread
of the random walk on the environment.

Recall that for x ∈ [n] and s ∈ N, B+
x (s) and B−

x (s) denote, respectively, the out-
and in-neighborhood of x with depth s. Following the general proof strategy traced in
Cai et al. [2023], we are going to show that, w.h.p. and uniformly in x, the size of an
in-neighborhood of radius εtent/20 is at most n1/2+ε.

97



Chapter 3. Cutoff for the SRW on the directed Chung–Lu graph

Lemma 3.18. Let hε =
ε logn
20H as in (3.17), and define the event

S−
ε := {∀x ∈ [n], |B−

x (hε)| ≤ n1/2+ε}. (3.35)

Then P (S−
ε ) = 1− o(1).

Proof. The idea is to provide a suitable upper bound on P(|B−
x (hε)| > n1/2+ε), and then

conclude the proof by a union bound. In this spirit, we claim that, for n large enough,

E[|B−
x (hε)|2 · 1E+ ] ≤ w−

x n
ε log3 n , (3.36)

where E+ is the typical event described in Lemma 3.14. Assuming its validity, we readily
get, by Markov’s inequality, that

P(|B−
x (hε)| > n1/2+ε , E+) ≤ E[|B−

x (hε)|2 · 1E+ ]

n1+2ε
≤ w−

x log3 n

n1+ε
.

From Lemma 3.14, applying a union bound on x ∈ [n] and by the assumption (3.6), we
conclude that for large n

P(S−
ε
∁
) = P(S−

ε
∁ ∩ E+) + o(1) ≤

∑
x∈[n]

P(|B−
x (hε)| > n1/2+ε , E+) + o(1)

≤ log3 n

n1+ε

∑
x∈[n]

w−
x + o(1) = o(1) ,

which proves the statement.
It remains to show inequality (3.36). Let B±

x = B±
x (hε) and write

E[|B−
x |2 · 1E+ ] =

∑
y∈[n]

∑
z∈[n]

P(x ∈ B+
y , x ∈ B+

z , E+) ,

where

P(x ∈ B+
y , x ∈ B+

z , E+) ≤ P(x, z ∈ B+
y , E+) + P(x ∈ B+

y , x ∈ B+
z , z /∈ B+

y , E+). (3.37)

We start by estimating the first term on the r.h.s. of the last display. Note that, from
the independence of the edge connectivity and applying Lemma 3.14, we can write

P(x, z ∈ B+
y , E+) = P(x ∈ B+

y , E+)P(z ∈ B+
y |E+) = P(x ∈ B+

y , E+)P(z ∈ B+
y , E+)(1+o(1)) ,

and it is then enough to bound P(x ∈ B+
y , E+) for general x ∈ [n].

On the event E+, the out-neighborhood B+
y contains at most (C log n)hε vertices.

Moreover, the probability that a vertex u ∈ [n] \ {x} is connected to x is

pu,x = w+
u w

−
x

log n

n
≤ M1w

−
x

log n

n
,
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where M1 is the constant given in the assumption (3.5). Let Ax denote the subset of
[n], of size (C log n)hε , whose vertices maximize the parameters (pu,x)u∈[n]\{x}. Then,
for large n,

P(x ∈ B+
y , E+) ≤ P

( ⋃
u∈B+

y \{x}

{u → x} ∩ E+

)
≤ P

( ⋃
u∈Ax

{u → x} ∩ E+

)

≤ (C log n)hεM1w
−
x

log n

n
≤ w−

x n
ε
10
log n

n
.

We now bound the second term in (3.37). Note that, given that x ∈ B+
y and z /∈ B+

y ,
the event x ∈ B+

z can be obtained if either x is the closest vertex to y in B+
y ∩ B+

z , or
there exists u ̸= x which is the closest vertex to y in ∈ B+

y ∩ B+
z and that is connected

to x by a directed path.
Reasoning as before, and for large n, the first scenario has probability less than

(w−
x n

ε
10

logn
n )2, while the second scenario is included in the event Ey,z,u = {u ∈ B+

y ∩
B+
z } ∩ {x ∈ B+

u } that has probability

P(Ey,z,u ∩ E+) ≤ w−
x (w

−
u )

2n
3ε
10
log3 n

n3
.

All in all, and by assumption (3.6), we get

P(x ∈ B+
y , x ∈ B+

z , z /∈ B+
y , E+) ≤ w−

x w
−
z n

ε
5
log2 n

n2
+M2w

−
x n

3ε
10
log3 n

n2
.

Summing over y, z ∈ [n], and using that w = Θ(n), we get that for large n

E[|B−
x |2 · 1E+ ] ≤ w−

x n
ε log3 n ,

which concludes the proof of the claimed inequality (3.36), and then of the lemma.

Tree excess of out-neighborhoods. Following Bordenave et al. [2019], we introduce
a quantity that measures how much subgraphs look like trees. Given a graph S = (V,E),
we define its tree excess Tx(S) as the minimum number of edges to remove in order to
obtain a directed tree, that is

Tx(S) := 1 + |E| − |V | . (3.38)

Then, for every s ≥ 0, we define the bad event G+(s) as the set of graphs such that there
exists a vertex having an out-neighborhood of depth s with tree-excess greater than 1,
that is

G+(s) :=
⋃

x∈[n]

{Tx(B+
x (s)) ≥ 2} .

Lemma 3.19. Let hε be as in (3.17). Then, for all ε sufficiently small, it holds

P(G+(2hε)) = o(1) .
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Proof. First note that, for any x ∈ [n], the event {Tx(B+
x (s)) ≥ 2} corresponds to the

event that, while drawing iteratively B+
x (s), at least two vertices are explored at least

twice.
Let C > 1 be a constant such that P(E+) = 1 − o(1), as in Lemma 3.14, so that,

being {∆ ≤ C log n} ⊃ E+, it holds that

P(G+(2hε)) = P(G+(2hε) ∩ {∆+ ≤ C log n}) + o(1).

On the event {∆+ ≤ C log n}, the ball B+
x (s) has size at most (C log n)2hε , and hence the

probability of the event {Tx(B+
x (s)) ≥ 2} can be bounded above using, as a counter of

vertices which are explored at least twice, a binomial random variable Bin(m, q), where
m = (C log n)2hε is the maximum size of B+

x (s), and q bounds above the maximum
probability of choosing an already explored vertex.

In particular, letting pmax := maxx,y∈[n] px,y and with a union bound on the vertices

y ∈ B+
x (s), we set q = (C log n)2hεpmax and get

P(Tx(B+
x (s)) ≥ 2 |∆+ < C log n) ≤ P (Bin (m, q) ≥ 2)

≤
(
(C log n)4hεpmax

)2
.

Since pmax = O(n− 1
2
− η

7 ), due to (3.8), and inserting the explicit value of hε, the r.h.s. of

the above inequality turns to be O(n−1+ 4ε
5
− 2η

7 ). Observing that

P(Tx(B+
x (s)) ≥ 2 , ∆+ < C log n) = P({Tx(B+

x (s)) ≥ 2} ∩ {∆+ < C log n})(1 + o(1)),

choosing ε sufficiently small, e.g. such that 4ε
5 < 2

7η, we conclude the proof by a union
bound over x ∈ [n].

3.4 Typical properties of random walk trajectories

3.4.1 Mass of a typical trajectory

Having at hand some remarkable properties of the random environment, we switch to
consider their impact on the random walk trajectories. The goal of this subsection is
to characterize the typical mass of a random walk of length t = Θ(tent). In particular,
Theorem 3.21 below can be interpreted as a quenched law of large numbers for this
quantity (or rather its logarithm). This last result will be then refined to a central limit
theorem, which applies to all trajectories of length t, with t taken in an appropriate
critical window (see Theorem 3.22 below).

We start with a simple lemma, that is a direct adaptation of Lemma 3.1 in Cai et al.
[2023] and that will be useful in the next computations. Recall the definition of the
vertex-set V ⋆

ε given in (3.22), whose elements are called hε-roots. We are going to show
that w.h.p. with respect to the graph setting, the quenched probability that the random
walk does not belong to Vε after t steps decays at least exponentially in t.
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Lemma 3.20. Let hε be as in (3.17). Then, for all ε sufficiently small and all t ≤ hε,

P(max
x∈[n]

PG
x (Xt /∈ V ⋆

ε ) ≤ 2−t) = 1− o(1).

Proof. First note that, in the notation introduced in Subsection 3.3.2, we can rewrite

V ⋆
ε = {y ∈ [n] : Tx(B+

y (hε)) = 0}.

In particular, due to Lemma 3.19, we can restrict ourselves, with an error of order o(1),
to the event

(G+(2hε))
∁ =

⋂
x∈[n]

{Tx(B+
x (2hε)) ≤ 1} .

In other words, under this event, the out-neighborhood B+
x (2hε) is a directed tree except

for at most one directed edge, for all x ∈ [n]. If B+
x (2hε) is a tree, then also B+

Xt
(hε)

is a tree and hence Xt ∈ V ⋆
ε . If B+

x (2hε) is not a tree, then it contains precisely one
cycle and we can identify the closest node to x on this cycle, say y, that will be at a
distance s < 2hε from x. Note that if s < t, then necessarily B+

Xt
(hε) is a tree, as the

contrary would imply the existence of a second cycle in B+
x (2hε), which is impossible

under (G+(2hε))
∁. Instead, if t ≤ s, the event {Xt /∈ V ⋆

ε } is realized only if the random
walk follows the unique directed path from x to y for t steps. In view of Lemma 3.14,
we can further restrict on the event E+, which ensures that δ+ ≥ 2, and on this event we
derive the bound PG

x (Xt /∈ V ⋆
ε ) ≤ 2−t, that holds w.h.p. and concludes the proof.

Before stating and proving the main results of this section, let us introduce some
notation.

Let (Dk)k≥1 be independent copies of D
+
V , the random out-degree of a random vertex

V ∈ [n] sampled from µin. This sequence is defined w.r.t. a probability measure that
with a little abuse of notation will be simply denoted by P. Moreover, for t ∈ N, set

St :=
t∑

k=1

Lk , where Lk := log(Dk ∨ 1) .

Then, for every θ ∈ (0, 1) and t ∈ N, we define

qt(θ) := P

(
t∏

k=1

1

Dk ∨ 1
> θ

)
= P (St < − log(θ)) . (3.39)

Note that qt(θ) corresponds to the probability that a path made of t i.i.d. samples from
the in-degree distribution has mass at least θ. Under suitable hypotheses, we will show
that the quenched probability Qx,t(θ), given in (3.19), is well approximated by qt(θ).
This is the crucial idea in order to prove the next result.

Theorem 3.21 (Quenched Law of Large Number). Let Qx,t(θ) be the quenched proba-
bility given in (3.19), and assume that t = Θ(tent) and θ ∈ (0, 1) are such that

− log θ

Ht

n→+∞−−−−−→ ρ. (3.40)
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Then,

max
x∈[n]

|Qx,t(θ)− 1{ρ>1}|
P−−−−→ 0 .

Note that, since Ht = Θ(log n), the assumption (3.40) implies that log θ = Θ(log n).
A possible choice could be θ = n−ρ, with possible multiplicative poly-log corrections.

Proof. Our proof follows the strategy given in [Cai et al., 2023, Prop 3.2]. For ℓ =
3 log log n, we define

Q̄x,t(θ) :=
∑
y∈[n]

P ℓ(x, y)Qy,t(θ).

This has the following interpretation. The first ℓ steps do not affect the total mass of the
trajectory, but in view of Lemma 3.20, they are sufficient to let the walk move w.h.p. to a
hε-root vertex. Hence, we let the random walk move for ℓ steps and then start recording
the mass of the trajectory. For ε ∈ (0, η/2), with η ∈ (0, 1) as in (3.6), we claim that

max
x∈V ⋆

ε

|Q̄x,t(θ)− qt(θ)|
P−−−−→ 0. (3.41)

Before proving the claimed convergence, we explore the asymptotic properties of qt(θ),
and then we complete the proof assuming the validity of (3.41). As a first step, note
that since {Lk}k≥1 are i.i.d., and in view of Proposition 3.2, it holds that

E(St) = Ht = log n(1 + o(1)) , Var(St) = σ2t = O(log n) .

From the hypothesis (3.40), it turns that − log θ = ρE[St](1 + o(1)), so that we may
expect the event in the definition of qt(θ) to be typical or rare according to the value of
ρ. Formally:

(i) if ρ > 1 then, for large n, it holds − log θ − E[St] > 0 and

1− qt(θ) = P (St ≥ − log θ) = P (St − E[St] ≥ − log θ − E[St])

(ii) if ρ < 1 then, for large n, it holds log θ + E[St] > 0 and

qt(θ) =P (St < − log θ) = P (−St + E[St] ≥ log θ + E[St])

In both cases, we can bound above the expression on the right-hand side of the last two
displays by Chebyshev’s inequality, and get

P (|St − E[St]| ≥ | log θ + E[St]|) ≤
Var(St)

(log θ + E[St])
2 = o(1)

=⇒ qt(θ)
P−−−−→

{
1 if ρ > 1
0 if ρ < 1

.

(3.42)
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Going back to the proof of our main statement, let us first observe that since the mass
of a path of length ℓ is always in [∆−ℓ

+ , δ−ℓ
+ ], it holds that

Qx,t(θ) ≤ PG
x (m(Xℓ, Xℓ+1, . . . , Xt) > θδℓ+) = Q̄x,t−ℓ(θδ

ℓ
+)

≤ PG
x (m(Xℓ, Xℓ+1, . . . , Xt) > θδℓ+|Xℓ ∈ V ⋆

ε ) +PG
x (Xℓ /∈ V ⋆

ε )

≤ max
y∈V ⋆

ε

Qy,t−ℓ(θδ
ℓ
+) +Px(Xℓ /∈ V ⋆

ε )

≤ max
y∈V ⋆

ε

Q̄y,t−2ℓ(θδ
2ℓ
+ ) +PG

x (Xℓ /∈ V ⋆
ε )

≤ max
y∈V ⋆

ε

Q̄y,t(θδ
2ℓ
+∆−2ℓ

+ ) +PG
x (Xℓ /∈ V ⋆

ε ) .

By Lemma 3.20 and assuming the validity of (3.41), we get that

max
x∈[n]

Qx,t(θ) ≤ qt(θδ
2ℓ
+∆−2ℓ

+ ) + oP(1) .

Since qt(·) is decreasing, and both w.h.p. ∆+ ≤ C log n and δ+ ≥ 2 are valid, we conclude
that

max
x∈[n]

Qx,t(θ) ≤ qt(θ2
ℓ(C log n)−ℓ) + oP(1). (3.43)

Similarly, we first observe that by definition

Qx,t(θ) ≥ PG
x (m(Xℓ, Xℓ+1, . . . , Xt) > θ∆ℓ

+) = Q̄x,t−ℓ(θ∆
ℓ
+)

≥ PG
x (m(Xℓ, Xℓ+1, . . . , Xt) > θ∆ℓ

+|Xℓ ∈ V ⋆
ε )P

G
x (Xℓ ∈ V ⋆

ε )

≥ min
x∈V ⋆

ε

Qx,t−ℓ(θ∆
ℓ
+)P

G
x (Xℓ ∈ V ⋆

ε )

≥ min
x∈V ⋆

ε

Q̄x,t−2ℓ(θ∆
2ℓ
+ )PG

x (Xℓ ∈ V ⋆
ε ) .

By Lemma 3.20 and assuming again the validity of (3.41), we obtain

min
x∈[n]

Qx,t(θ) ≥ min
x∈V ⋆

ε

Q̄x,t−2ℓ(θ∆
2ℓ
+ )(1− 2−ℓ − oP(1))

≥ qt−2ℓ(θ∆
2ℓ
+ ) + oP(1) ≥ qt(θ∆

2ℓ
+ ) + oP(1) .

Since qt(θ) is decreasing in t and ∆+ ≤ C log n w.h.p. , we conclude that

min
x∈[n]

Qx,t(θ) ≥ qt(θ(C log n)2ℓ) + oP(1). (3.44)

At last note that, setting θ′ = θ(C log n)±2ℓ, then log θ′ = log θ + O((log logn)2). Since
the asymptotic value of qt(·) is not sensitive to perturbations θ′ such that | log θ′−log θ| =
O((log log n)2), Eqs. (3.43)-(3.44), together with (3.42), conclude the proof of our state-
ment.
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Let us finally prove the claimed convergence (3.41). To this aim, we are going to
show that, for all δ > 0,

P(1x∈V ⋆
ε
Q̄x,t(θ) ≥ qt(θ) + δ) = o(n−1), (3.45)

and then we apply a union bound over x ∈ V ⋆
ε . This will give only half of (3.41), but

actually the same argument applies to 1− Q̄x,t(θ) and 1− qt(θ), completing the proof.

For any fixed K ≥ 1, by Markov’s inequality we get

P
(
1x∈V ⋆

ε
Q̄x,t(θ) ≥ qt(θ) + δ

)
≤

E
[
1x∈V ⋆

ε

(
Q̄x,t(θ)

)K]
(qt(θ) + δ)K

. (3.46)

We now follow the strategy of the proof given in [Cai et al., 2023, Prop. 3.2].
Consider the annealed measure Pan,K

x associated to the process (X(k))k∈{1,...,K} defined
in Subsection 3.3.1, for T = t + ℓ, where ℓ = 3 log log n as above. The process consists
of K random walks of length t + ℓ and initial measure δx, realized one after the other
together with the partial graph structure that they explore. Let K = ⌊log2(n)⌋ and, for
every 1 ≤ j ≤ K, define the event Bj through the following conditions:

(i) the union of the first j trajectories up to time ℓ, that is (X
(1)
s , . . . , X

(j)
s )s≤ℓ, forms

a directed tree;

(ii) for every i ≤ j, the last t steps of the i-th walk, that is (X
(i)
s )s∈[ℓ+1,ℓ+t], define a

path p of mass m(p) > θ;

(iii) The vertices in the first j trajectories have out-degree at least 2.

By definition, note that the event {x ∈ V ⋆
ε } is contained in the event that the K

trajectories form a tree up to depth ℓ. Hence

E[1x∈V ⋆
ε
(Q̄x,t(θ))

K ] ≤ Pan,K
x (BK) = Pan,K

x (B1)

K∏
j=2

Pan,K
x (Bj | Bj−1). (3.47)

Note that, given Bj−1:

1. either the j-th walk follows one of the previously traced trajectories up to time ℓ,
thus keeping unchanged the tree structure of depth ℓ around x.

2. or the j-th walk explores a new vertex before time ℓ. In that case, the event Bj

takes place if the j-th walk keeps exploring new vertices at least up to time ℓ, in
order to preserve the whole tree structure, and then moves its last t steps on a
path p with mass m(p) > θ.

104



Chapter 3. Cutoff for the SRW on the directed Chung–Lu graph

Since the out-degree of these vertices is at least 2 by the conditioning, the first
scenario happens, for all j ≤ K, with conditional probability which is at most

(K − 1)2−ℓ ≤ K2−ℓ = e2 log logn−ℓ log 2 = o(1).

To estimate the probability of the second scenario, first note that, at each step, the
conditional probability to visit an already explored vertex is less than K(t + ℓ)pmax.
Summing this term for all the ℓ + t steps of the path, we obtain that the conditional
probability that the j-th walk visits an already explored vertex, and create a cycle along
the whole process, is less than (t + ℓ)2Kpmax = o(1), for all j ≤ K. Hence the tree
structure is preserved w.h.p. along the whole trajectory.

Moreover, on the event that the j-th trajectory always visits new vertices, the con-
ditional law of its last t steps corresponds to the annealed law of a random walk of
length t defined on a reduced Chung–Lu graph, which is obtained by removing the
vertices explored by the whole process before its last t steps, on the event that it has
no self-intersections. In particular, from Lemma 3.10 and Eq. (3.24), each step of this
random walk can be chosen approximately as a sample of µin. In other words, after
exiting the already visited trajectories, the rest of the path up to step t + ℓ, can be
coupled with an i.i.d. sample from µin with an overall total variation cost which is of
order O((t + ℓ)2Kpmax) = o(1). The second scenario is then satisfied with probability
qt(θ) + o(1).

Altogether, this shows that, for all δ > 0 and for all j ≤ K,

Pan,K
x (Bj | Bj−1) ≤ qt(θ) +

δ

2
,

that, thanks to Eqs. (3.46)-(3.47), implies (3.45). This ends the proof of the claimed
convergence (3.41) and of the theorem.

Let us now consider a time window of size went :=
σ
H

√
tent, as given in (3.14). Then

it holds the following.

Theorem 3.22 (Central Limit Theorem). Let tλ := tent + λwent + o(went), with λ ∈ R
fixed, and assume that θ ∈ (0, 1) is such that

log θ +Htλ
σ
√
tλ

−−−−−→
n→+∞

λ, (3.48)

where σ2 satisfies the non-degeneracy condition (3.15). Then

max
x∈[n]

∣∣∣Qx,tλ(θ)−
1√
2π

∫ ∞

λ
e−u2/2 du

∣∣∣ P−−−−−→
n→+∞

0.

Note that, since tλ = tent(1+o(1)) and Htλ = log n+λσ
√
tent, the assumption (3.48)

implies that log θ = − log n(1+ o(1)). A possible choice could be θ = n−1, with possible
multiplicative poly-log corrections.
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Proof. To ease the notation, let t = tλ. In view of the convergence (3.41), we first focus
on the probability qt(θ). By Eq. (3.39), we can write

qt(θ) = P
(
St −Ht

σ
√
t

< − log(θ) + Ht

σ
√
t

)
.

Looking at the argument of that probability, while the r.h.s. converges to −λ due to
assumption (3.48), we will prove that the l.h.s. converges in distribution to a Normal.
We can indeed check that the Lyapunov condition of the Lindeberg-Feller Central Limit
Theorem holds (see, e.g., Klenke [2020], Lemma 15.41). Specifically, we need to prove
that there exists δ > 0 such that

lim
n→+∞

1

Var(St)1+δ/2

t∑
k=1

E[|Lk −H|2+δ] = 0 . (3.49)

We observe that, due to Lemmata 3.14 and 3.15, and by our choice of t, for all δ > 0,

t∑
k=1

E[Lk
2+δ] = tE[L1

2+δ] = log n(log log n)1+δ(1 + o(1)) .

Using that E[|Lk −H|2+δ] ≤ 21+δ
(
E[|Lk|2+δ] + H2+δ

)
, and thanks to Proposition 3.2,

we then get that the numerator of (3.49) is O(log n(log log n)1+δ).
On the other hand, let δ > 0 be such that the non-degeneracy condition (3.15) on

σ2 is satisfied. Then

Var(St)
1+δ/2 = (tσ2)1+δ/2 ≫ log n(log log n)1+δ ,

and the Lyapunov condition (3.49) is verified. As a consequence,

lim
n→+∞

qt(θ) =
1√
2π

∫ −λ

−∞
e−

u2

2 du =
1√
2π

∫ +∞

λ
e−

u2

2 du.

The thesis now follows thanks to the convergence (3.41), together with the bounds (3.43)
and (3.44), and to the fact that the asymptotic value of qt is not sensitive to perturbations
θ′ such that | log θ′ − log θ| = O((log log n)2).

3.4.2 Tree-like trajectories

The goal of this subsection is to analyze the random kernel of the random walk in or-
der to prove that the properties characterizing nice paths, listed in Definition 3.7, hold
w.h.p. as n → ∞. We will first show that, for all times s ≤ (1−γ)tent, where γ = ε

80 as in
Definition 3.7, the random walk trajectories of length s live w.h.p. in the tree Tx(s) given
in Subsection 3.2.2. Accordingly to Remark 3.8, this result can be extended with few
little adjustments to times s = tλ − hε, with tλ lying in the critical window of Theorem
3.5. We will briefly comment at the end of the subsection.
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We start with a preliminary result. Recall the notation introduced in Subsection 3.2.2
and the procedure to construct the tree Tx(s) ⊂ Gx(s), which involves the sequences of
graphs (Gℓ)ℓ≥0 and (T ℓ)ℓ≥0, and the sequence of edges (eℓ)ℓ≥0. In particular, remind
that Tx(s) := T κx , where κx is the index of the last iteration of the algorithm.

Lemma 3.23. For all 1 ≤ ℓ ≤ κx, let eℓ denote the edge chosen by the ℓ-th iteration of
the algorithm defining Tx(s). Then, on the event E+, it holds that

e−Hs ≤ m̂(eℓ) ≤
2

2 + ℓ
, (3.50)

where m̂(eℓ) was given in (3.21), and H = (1 + γ)H. As a consequence, κx ≤ 2eHs.

Proof. See the proof of [Bordenave et al., 2018, Lemma 11], which applies to the present
setting without substantial changes.

With this result at hand, we can prove the following proposition, which shows that,
w.h.p., a random walk starting from a vertex in V ⋆

ε performs a trajectory in Tx(s). To
state the result, let us denote by P(x, y, s,H) the set of paths from x to y of length s,
in a subgraph H of G .

Proposition 3.24. For all ε, γ ∈ (0, 1) and s ≤ (1− γ)tent, it holds

min
x∈V ⋆

ε

∑
y∈[n]

∑
p∈P(x,y,s,Tx(s))

m(p)

 P−−−−−→
n→+∞

1.

Proof. Note that, by the definition of Tx(s), a path p ∈ P(x, y, s,G) is not in P(x, y, s, Tx(s))
if one of the two following conditions holds:

(1) m(p) ≤ e−Hs = 1/n1−γ2
(1 + o(1)).

(2) p has edges in Gx(s) \ Tx(s).

For j = 1, 2, we denote with Pj,∗
x,y the set of paths in P(x, y, s,G) for which condition (j)

does not hold, and observe that by definition∑
y∈[n]

∑
p∈P1,∗

x,y

m(p) ≥ Qx,s(1/n
1−γ2

) , ∀x ∈ [n] .

Since Hs
Hs = 1 + γ > 1, Theorem 3.21 applies and we get that

min
x∈[n]

{ ∑
y∈[n]

∑
p∈P1,∗

x,y

m(p)

}
P−−−−−→

n→+∞
1 , (3.51)

which proves that condition (1) is not likely to be satisfied. To estimate the probability
that condition (2) is satisfied, let us define iteratively (Mℓ)

κx
ℓ=0 setting

M0 := 0 , Mℓ := Mℓ−1 + m̂(eℓ)1(ℓ ≤ κx)1(v
+
eℓ

∈ V (Gℓ−1)), ∀ℓ ∈ {1, . . . , κx} ,
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where V (H) denotes the vertex set of a graph H and v+e denotes the head of an edge
e. Note that Mℓ represents the total probability mass that is excluded from Gℓ in the
generation of T ℓ. We recall that eℓ is the edge selected by the ℓ-th iteration of the
algorithm. In particular

Mκx =
∑
y∈[n]

∑
p∈P2,∗

x,y

m(p).

We want to show that, for all δ > 0,

P(∃x ∈ V ⋆
ε : Mκx > δ) = o(1).

To this aim, we first prove

P(Mκx > δ, E+) = o(n−1), (3.52)

so that Lemma 3.14 and a union bound over x ∈ V ⋆
ε are sufficient to conclude the proof.

Let ℓε = 2hε . Remember that condition (1) above is satisfied with vanishing prob-
ability for s = hε = Θ(tent) and observe that (m̂(eℓ))ℓ≥0 is decreasing in ℓ. Moreover
notice that, being x ∈ V ⋆

ε , Tx(hε) is a tree. Combining these facts, it follows that
w.h.p. Tx(hε) = Gx(hε) = B+

x (hε). In conclusion, w.h.p. , κx = |Tκx | ≥ |B+
x (hε)| ≥ 2hε =

ℓε.
As a by-product of the previous lines, we get that in the first ℓε steps of the con-

struction of Tκx , no mass is thrown away and then Mℓ = 0 for all ℓ ≤ ℓε. Moreover, due
to (3.50), on the event E+

Mℓ −Mℓ−1 ≤
2

2 + ℓε
≤ 2−hε+1 ≤ 1 , ∀ℓ ≥ ℓε + 1 . (3.53)

Let Fℓ denote the σ-field associated to the first ℓ generation steps of Tx(s). By the
previous estimates, it turns out that

E[(Mℓ−Mℓ−1)1E+ | Fℓ−1] ≤
2

2 + ℓ
·P(v+eℓ ∈ V (Gℓ−1) , E+| Fℓ−1) , P−a.s. , ∀ℓ ≥ ℓε+1 ,

(3.54)
where

P(v+eℓ ∈ V (Gℓ−1) , E+| Fℓ−1) ≤ max
y∈V (Gℓ−1)

∑
z∈V (Gℓ−1)

py,z ≤ M1
log n

n

∑
z∈V (Gℓ−1)

w−
z . (3.55)

To estimate the r.h.s. of the display, note that, for any S ⊂ [n] and taking ζ such that
6ζ < η, with η as given in assumption (3.6), we can apply Hölder’s inequality and get,
for p = 2 + 6ζ, ∑

z∈S
w−
z ≤

[∑
z∈S

(w−
z )

p

] 1
p

|S|1−
1
p ≤

[
M2n

|S|

] 1
2+6ζ

|S|. (3.56)
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We take S = V (Gℓ−1) and observe that 1
2+6ζ < 1

2 − ζ. Since |V (Gℓ−1)| ≤ κx ≤ 2n1−γ2
,

where the last inequality is due to Lemma 3.23, we obtain that∑
z∈V (Gℓ−1)

w−
z = o(n1−ξ),

for ξ > 0 sufficiently small, depending on the given ζ and γ. Inserting this estimate in
(3.55) and then in (3.54), we conclude that, for any ℓ ≤ κx,

E[(Mℓ −Mℓ−1)1E+ | Fℓ−1] =
1

ℓ
o

(
log n

nξ

)
,

and in a similar way that

E[(Mℓ −Mℓ−1)
2 1E+ | Fℓ−1] =

1

ℓ2
o

(
log n

nξ

)
.

Consequently,

a :=

κx∑
ℓ=1

E[Mℓ −Mℓ−11E+ | Fℓ−1] = o

(
log2 n

nξ

)
, (3.57)

b :=

κx∑
ℓ=1

E[(Mℓ −Mℓ−1)
2 1E+ | Fℓ−1] = o

(
log n

nξ

)
, (3.58)

where we used the fact that
∑κx

ℓ=1 ℓ
−1 = O(log κx). For ℓ ∈ {0, . . . , κx}, we define

Zℓ+1 :=
cξ
δ
(Mℓ+1 −Mℓ − E[(Mℓ+1 −Mℓ)1E+ |Fℓ])1E+ , (3.59)

where cξ := 2/ξ + 2. Thanks to (3.53), |Zℓ+1| ≤ 1 for large n. Since κx ≥ ℓε, we also
define

ϕu :=
u∑

i=ℓε

Zi+1 , ∀u ∈ {ℓε, . . . , κx} .

The sequence (ϕu)ℓε≤u≤κx is a martingale. Observe that Mκx = a + δ
cξ
ϕκx . Thanks to

the estimates (3.57) and (3.58), we can assume that a ≤ δ
cξ

for large enough n. Hence,

recalling that cξ − 2 = 2/ξ, we can write

P
(
Mκx ≥

cξ − 1

cξ
δ, E+

)
≤ P

(
ϕℓ ≥

2

ξ
for some ℓ ≥ ℓε , E+

)
. (3.60)

At last, let us consider the conditional variance

b′ :=
ℓ∑

i=1

Var(Zi|Fi).
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On E+, thanks to (3.58)-(3.59), b′ ≤ (cξ/δ)
2b = o

(
logn
nξ

)
uniformly in ℓ. Choosing

c(n) = logn
nξ , for all n ≫ 1 it holds

P
(
b′ > c(n) for some ℓ ≥ ℓε , E+

)
= 0 ,

and thus

P
(
ϕℓ ≥

2

ξ
for some ℓ ≥ ℓε , E+

)
= P

(
ϕℓ ≥

2

ξ
, b′ ≤ c(n) for some ℓ ≥ ℓε , E+

)
.

As in [Cai et al., 2023, Lemma 3.3], we apply [Freedman, 1975, Theorem 1.6] to bound
the r.h.s. with

e
2
ξ

(
c(n)

2
ξ + c(n)

) 2
ξ
+c(n)

= o(n−1).

Inserting this bound in (3.60), we obtain (3.52) which concludes the proof.

Remark 3.25. The statement of this proposition can be easily generalized to time s =
tλ − hε, with tλ lying in the critical window of Theorem 3.5. Indeed, with this specific
choice, it holds s = (1 − 4γ)tent(1 + o(1)) and n1−4γ ≤ eHs ≤ n1−γ2

. All the estimates
involving s, and specifically Lemma 3.23 and the convergence (3.51), come true without
substantial changes.

3.5 Proof of the main results

3.5.1 Upper bound

We now prove Eq. (3.13) of Theorem 3.3. We start by rearranging in a more convenient
form the total variation distance of the statement. For h = hε as in (3.17), let

π̃ := µinP
h ,

and write, by the triangle inequality,

∥P t(x, ·)− π∥TV ≤ ∥P t(x, ·)− π̃∥TV + ∥π̃ − π∥TV.

If the first term in the r.h.s. is oP(1) uniformly in x ∈ [n], then by the triangle inequality
and (3.16), the same must hold for the second term. Let t′ = t + ℓ, with ℓ = log log n
and t = (1 + β)tent. Applying the Markov property,

max
x∈[n]

∥P t′(x, ·)− π̃∥TV = max
x∈[n]

∥
∑
y∈[n]

P ℓ(x, y)(P t(y, ·)− π̃ )(1{y∈V ⋆
ε } + 1{y/∈V ⋆

ε })∥TV

≤ max
x∈[n]

1

2

∑
z∈[n]

∑
y∈V ⋆

ε

P ℓ(x, y)|P t(y, z)− π̃(z)|+max
x∈[n]

1

2

∑
y∈[n]\V ⋆

ε

2P ℓ(x, y)

≤ max
y∈V ⋆

ε

∥P t(y, ·)− π̃∥TV +max
x∈[n]

PG
x (Xℓ /∈ V ⋆

ε ),
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where the first inequality is obtained by the triangle inequality and bounding the total
variation distance by 2, while the second inequality is obtained by changing the order of
the sums and maximizing over y (so that x disappears).

The second term is arbitrarily small due to Lemma 3.20. We then focus on the first
term. For sake of readiness we will keep calling x the maximizing variable and we will
bound maxx∈V ⋆

ε
∥P t(x, ·)− π̃∥TV. For every x, y ∈ [n], let P̃ t(x, y) be the probability to

go from x to y in t steps following a nice path, that is

P̃ t(x, y) =
∑

p∈P̃(x,y,t,G)

m(p) , (3.61)

where P̃(x, y, t, G) is the set of nice paths from x to y of length t in G. Moreover we set

q̃(x) := 1−
∑
y∈[n]

P̃ t(x, y) .

Then, for all δ > 0, it holds

∥P t(x, ·)− π̃∥TV ≤
∑
y∈[n]

[
(1 + δ)π̃(y) +

δ

n
− P̃ t(x, y)

]+
. (3.62)

To handle the term in the r.h.s. above, we apply Proposition 3.26 below in order to
remove the positive part [u]+ = max{0, u} in (3.62). From this statement, we get that
for all δ > 0, and w.h.p., (3.62) becomes∑

y∈[n]

[
(1 + δ)π̃(y) +

δ

n
− P̃ t(x, y)

]
= 2δ + q̃(x), (3.63)

It is now sufficient to provide an upper bound on q̃(x), uniformly over x ∈ V ⋆
ε . This can

be derived by bounding above the probability that some conditions in Definition 3.7 fail.

Condition (i) fails, by definition, with quenched probability Qx,t

(
1

n log3 n

)
, for all x ∈ [n].

Condition (ii) holds with quenched probability 1 − oP(1) for all x ∈ V ⋆
ε , by Proposi-

tion 3.24.
Condition (iii) is satisfied with quenched probability bounded below by PG

x (Xs+1 ∈ V ⋆
ε ).

Taking the minimum over x ∈ V ⋆
ε , and thanks to Lemma 3.20, we conclude that (iii)

holds with quenched probability 1− oP(1), uniformly for x ∈ V ⋆
ε .

At last, condition (iv) holds w.h.p. for all x ∈ [n] due to Lemma 3.14.

In conclusion,

max
x∈V ⋆

ε

q̃(x) ≤ max
x∈V ⋆

ε

Qx,t

(
1

n log3 n

)
+ oP(1) . (3.64)

Note that for θ = 1
n log3 n

and t = (1 + β)tent condition (3.40) is satisfied with ρ < 1.

Hence, Theorem 3.21 applies to the r.h.s. in the last display, and ends the proof.

It now remains to state and prove the result that was applied in order to reduce (3.62)
to (3.63). Set β = 3γ = 3ε

80 . In the notation introduced above, it holds the following.
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Proposition 3.26. Let t = s + h + 1 with s = (1 − γ)tent, γ > 0 as in Definition 3.7
and h ≡ hε as in (3.17). Then, for all δ > 0,

P
(
max
x∈V ⋆

ε

P̃ t(x, y) ≤ (1 + δ)π̃(y) +
δ

n
,∀y ∈ [n]

)
= 1− o(1).

Proof. To prove the statement, we will perform a time-gluing procedure among the first
s steps of the walk (which is confined w.h.p. in the tree Tx(s)) and the last h steps
(where the path to a target end point y is unique). Thanks to a partial conditioning
on the starting and ending subpaths (of length resp. s and h), we will be able to prove
a concentration result for the trajectories of length t which will lead to the desired
inequality.

Let us stress that the entire strategy closely follows the proof of Proposition 3.6 in
Cai et al. [2023], given in the context of directed configuration models, but requires
significant adaptations to address the directed Chung–Lu framework. In particular,
while the analysis for the directed configuration model relies heavily on combinatorial
computations, which reflect the nature of the model where the in- and out-degrees are
deterministic, our approach leverages the independence of connections between vertices,
along with appropriate concentration inequalities for the in- and out-degrees. This shift
is particularly evident in the computations beginning with (3.68).

Given x ̸= y ∈ [n], let F = F(x, y) denote the partial environment obtained after the
generation of Tx(s) and B−

y (h). Consider κx and κy to be the number of matchings needed
to generate respectively the two subgraphs. It holds κx = |Tx(s)|−1 and κy ≤ |B−

y (h)|−1.

Let V −
F denote the set of vertices in ∂B−

y (h) such that there exists a unique path of

length h to y, and V +
F be the set of unmatched vertices at depth s in Tx(s). Note that,

by construction, ∑
z∈V +

F

m(px,z) ≤ 1, (3.65)

and ∑
v∈V −

F

µin(v)m(pv,y) ≤ µinP
h(y) =

∑
v∈[n]

µin(v)P
h(v, y). (3.66)

With this notation, we develop P̃ t(x, y), the probability to follow a nice path of length
t from x to y, as

P̃ t(x, y) =
∑
z∈V +

F

∑
v∈V −

F

m(px,z)
1

D+
z
m(pv,y)1{z→v}1{p is a nice path}, (3.67)

where p = px,z ∪ (z, v)∪ pv,y, with a little abuse of notation. Note that, in this represen-

tation of P̃ t(x, y), the last indicator highlights the validity of conditions (i) and (iv) of
definition 3.7 of nice paths, since (ii) and (iii) are satisfied by construction.

We want study the conditional expectation of (3.67) on the partial environment F .
By linearity, we are reduced to analyze the random variables 1{z→v}/D

+
z for z ∈ V +

F , v ∈
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V −
F . Since the Bernoulli variables 1{z→v} are independent from the partial environment

F , it holds

E
[
1{z→v}

D+
z

∣∣F] = pz,vE
[

1

D+
z

∣∣F ,1{z→v} = 1

]
, (3.68)

Some of the indicator functions defining the out-degree of z may have been sampled
during the generation of the partial environment F = F(x, y). However it holds

D+
z ≥

∑
w∈[n] :

(z,w)/∈F ∪(z,v)

1{z→w} + 1{z→v} =: Y v
z + 1{z→v} .

Thus, we can write

E
[
1{z→v}

D+
z

∣∣F] ≤ pz,vE
[

1

Y v
z + 1

∣∣F] = pz,v
E[Y v

z |F ]
(1 + o(1)),

where the last equality follows by Remark 3.17. For y ∈ [n], we then define the events

Wy := {κy ≤ n
1
2
+ε} and W := ∩y∈[n]Wy. Since W ⊇ S−

ε , where S−
ε is defined in (3.35),

by Lemma 3.18 we get
P(W) ≥ P(S−

ε ) = 1− o(1) . (3.69)

On Wy, the number of Bernoulli variables removed from D+
z in the definition of Y v

z is

at most n
1
2
+ε. Moreover, thanks to (3.8), the connection parameter is at most pmax =

o(n− 1
2
− η

7 ). We assume since now on that F ∈ Wy. Then, if ε < η/7, we get that
E[Y v

z |F ] = E[D+
z ](1+o(1)) = ww+

z log n/n(1+o(1)), and consequently we may conclude
that

E
[
1{z→v}

D+
z

∣∣F] ≤ w−
v

w
(1 + o(1)) = µin(v)(1 + o(1)). (3.70)

Taking the conditional average in (3.61) and plugging there (3.70), we obtain that

E[P̃ t(x, y) | F ] ≤
∑
z∈V +

F

∑
v∈V −

F

m(px,z)E
[
1{z→v}

D+
z

∣∣F]m(pv,y)

≤
∑
z∈V +

F

∑
v∈V −

F

m(px,z)µin(v)m(pv,y)(1 + o(1))

≤
∑
v∈V −

F

µin(v)m(pv,y)(1 + o(1)) ≤ µinP
h(y)(1 + o(1)),

where the last lines follows from (3.65) and (3.66). This implies that for every δ > 0 and
for n large enough, it holds(

1 +
δ

2

)
E
[
P̃ t(x, y)

∣∣F] ≤ (1 + δ)µinP
h(y) = (1 + δ) π̃(y) . (3.71)
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Let us consider the random variables

Xz :=
∑
v∈V −

F

m(px,z)
1

D+
z
m(pv,y)1{z→v}1{p is a nice path} , z ∈ V +

F ,

where p = px,z ∪ (z, v) ∪ pv,y. These random variables are conditionally independent.
Moreover, thanks to condition (i) of Definition 3.7, we have

m(px,z)
1

D+
z
m(pv,y) ≤

1

n log3 n
,

and thanks to requirement (iv) of Definition 3.7, it holds

|{v ∈ V −
F : px,z ∪ (z, v) ∪ pv,yis nice}| ≤ C log n.

Then, Xz is uniformly bounded in z ∈ V +
F by the quantity

M = M(n) :=
C log n

n log3 n
=

C

n log2 n
.

For a > 0 and M as above, we can apply the Bernstein inequality to the conditional
probability measure P( · |F), and get

P
(
P̃ t(x, y)− E

[
P̃ t(x, y)

∣∣F] ≥ a
∣∣F) ≤ exp

(
− a2

2M(E[P̃ t(x, y)|F ] + a)

)
. (3.72)

Reasoning as in [Bordenave et al., 2019, Prop. 14], we write r = nE[P̃ t(x, y)|F ] and
let a = δ

n(
r
2 + 1). Then the r.h.s. of (3.72) turns to

exp

(
− δ2(r + 2)2

4Mn(r(2 + δ) + 2δ)

)
≤ exp

(
−c(δ)C

Mn

)
= exp

(
−c(δ) log2 n

)
,

where c(δ) > 0, is obtained optimizing over r ≥ 0. In this notation, we rewrite (3.72) as

P
(
P̃ t(x, y) ≥

(
1 +

δ

2

)
E
[
P̃ t(x, y)

∣∣F]+ δ

n

∣∣F) ≤ exp
(
−c(δ) log2 n

)
. (3.73)

In conclusion, by (3.71) and (3.73), we get that, for all F ∈ Wy,

P
(
P̃ t(x, y) ≥ (1 + δ)π̃(y) +

δ

n

∣∣F) = exp
(
−c(δ) log2 n

)
= o(n−3). (3.74)

We are almost done. Reasoning as in [Cai et al., 2023, Prop. 3.6], for x ∈ V ⋆
ε and y ∈ [n],

let

Zx,y :=

{
P̃ t(x, y) ≥ (1 + δ)π̃(y) +

δ

n

}
.

With a little abuse of notation we can write

P(∪x∈V ⋆
ε ,y∈[n]Zx,y ∩W) ≤ n2 max

x∈V ⋆
ε ,y∈[n]

P(Zx,y ∩Wy) ≤ n2 max
x∈V ⋆

ε ,y∈[n]
max
F∈Wy

P(Zx,y|F) ,
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where the last probability is precisely the l.h.s. in (3.74). Then, having in mind (3.69),

P
(
∩x∈V ⋆

ε ,y∈[n] Zx,y

)
≥ 1− P(∪x∈V ⋆

ε ,y∈[n]Zx,y ∩W)− P(W∁) = 1− o(1) ,

which concludes the proof.

Remark 3.27. This proof works well also for times tλ, lying in the critical window of
Theorem 3.5, for which s = (1− 4γ)tent(1 + o(1)), as explained in 3.25.

3.5.2 Lower bound

We now prove Eq. (3.12) of Theorem 3.3. One possible achieve it consists in achieving
inequality (3.20), and then applying the law of large number stated in Theorem 3.21.
The bored reader can skip to Subsection 3.5.3 for this approach. We present here an
alternative proof, in the spirit of Cai et al. [2023], which exploits the equivalent con-
struction of the annealed random walk described in 3.3.1.

The idea of the proof is that, on one hand, the stationary distribution π is w.h.p. well
distributed on [n], in a sense that is specified by Lemma 3.28 below (see also the stronger
result stated in the Proposition 3.29). On the other hand, after t = (1−β)tent steps, the
random walk concentrates on a set of size at most n1−β2

which cannot cover the entire
graph, and hence the mixing is far to be achieved at this timescale.

Formally, for β ∈ (0, 1), let t = (1−β)tent and let Pβ
x,y denote the set of paths from x

to y of lenght t and with probability mass bigger or equal than 1/n1−β2
. An easy check

shows that ∑
y∈[n]

|Pβ
x,y| ≤ n1−β2

, (3.75)

and hence the set Sx := {y ∈ [n] : Pβ
x,y ̸= ∅} satisfies |Sx| ≤ n1−β2

. From the notation
of distance in total variation, we can write

min
x∈[n]

∥P t(x, ·)− π∥TV ≥ min
x∈[n]

(
P t(x, Sx)− π(Sx)

)
≥ min

x∈[n]
P t(x, Sx)−max

x∈[n]
π(Sx).

Note that, by definition of Sx and of the quenched probability Qx,t(θ) in (3.19), it holds
that

P t(x, Sx) ≥ Qx,t(n
1−β2

) , ∀x ∈ [n] .

We can then apply Theorem 3.21 with θ = n1−β2
and t = (1 − β)tent, so that the

condition ρ = limn→∞− log θ
Ht = 1 + β > 1 is satisfied, and conclude that

min
x∈[n]

P t(x, Sx) ≥ 1− oP(1) .

Going back to (3.75), it now remains to show that maxx∈[n] π(Sx) is negligible. We stress
that, by monotonicity of the total variation distance, we may assume β2 < η, where η is
such that (3.6) holds. Then, we can apply the following lemma with δ := β2/6, which
provides the desired estimate and ends the proof of the lower bound.
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Lemma 3.28. For all δ ∈ (0, η6 ), with η ∈ (0, 1) as in (3.6), it holds

P(∀S ⊂ [n] such that |S| ≤ n1−6δ : π(S) ≤ n−δ/2) = 1− o(1).

Proof. Let us first define, for any y ∈ [n] and t′ ∈ N,

µt′(y) :=
1

n

∑
x∈[n]

P t′(x, y) . (3.76)

By the properties of the total variation distance (see [Levin and Peres, 2017, 4.4]), it
holds that

∥P ks(x, ·)− π∥TV ≤ (2∥P s(x, ·)− π∥TV)
k ,

for any k, s ∈ N. Thanks to the upper bound (3.13), it holds ∥P 2tent(x, ·)− π∥TV ≤ 1/2e.
Then, choosing k = log2 n, s = 2tent, and setting T = ks, we get

∥P T (x, ·)− π∥TV ≤ (2∥P 2tent(x, ·)− π∥TV)
log3/2 n ≤ e− log3/2 n ,

which implies

max
v∈[n]

|π(v)− µT (v)| = o(e− log3/2(n)) , (3.77)

As a consequence, we can prove the thesis for µT in place of π.
To prove the statement, it is now sufficient to show that, given L := ⌈n1−6δ⌉, then

max
S:|S|=L

P(µT (S) ≥ n−δ) = o(n−L) .

So let S ⊂ [n] with |S| = L, set K = δ−1L, and consider the annealed measure
Pan,K
unif associated to the process (X(k))k∈{1,...,K} defined as in Subsection 3.3.1, for T =

log2 n · tent. For every j ≤ K, let Bj be the event defined by the following property: the
first j walks end in S. It holds

E[µT (S)
K ] = Pan,K

unif (BK) = Pan,K
unif (B1)

K∏
j=2

Pan,K
unif (Bj |Bj−1) .

Since 6δ < η, we can apply the same argument used in (3.56), with p = 2 + 6δ, and get∑
v∈S

w−
v = O(n

1
2
−δL

1
2
+δ) = O(n1−3δ−6δ2) ,

where we used that 1
2+6δ < 1

2 − δ and that |S| = L = ⌈n1−6δ⌉.
Given Bj−1, the j-th trajectory can end in S if it replicates from the beginning one

of the previous j − 1 trajectories (this happens with probability at most KT
n ), or if it

enters at least once the set S or the set formed by the j − 1 trajectories. Non-fresh
vertices (i.e., the ones belonging to the previous trajectories) affect only logarithmically
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the order of L, and the probability of entering S from a fresh vertex at a given step is
bounded by

max
x∈[n]

∑
v∈S

px,v ≤ M1
log n

n

∑
v∈S

w−
v = o(n−3δ).

Since the j-th trajectory has T = O(log3 n) steps, we conclude that

Pan,K
unif (Bj |Bj−1) ≤

KT

n
+ T o

(
n−3δ

)
= o(n−2δ).

This proves that E[µT (S)
K ] = o(n−2δK) = o(n−2L). By Markov’s inequality, and being

K = δ−1L, we obtain

P(µT (S) ≥ n−δ) ≤ E[µT (S)
K ]

n−L
= o(n−L) ,

and conclude with a union bound on the O(nL) sets S with |S| = L.

3.5.3 Cutoff window

We are going to provide upper and lower bounds on the total variation distance which
appears in the Theorem 3.5. We first prove the upper bound.
Recall the notation introduced in the Theorems 3.21, 3.22 and in Eq. (3.39), and take
a reference time tλ := tent + λwent + o(went) with λ ∈ R fixed. Since Var(Stλ) = σ2tλ,
choosing θ = 1

n , it holds that

Htλ + log θ√
Var(Stλ)

=
λσ
√

logn
log logn(1 + o(1))

σ
√

logn
log logn(1 + o(1))

−−−−−→
n→+∞

λ ,

and we are then under the hypothesis (3.48) of Theorem 3.22. Thanks to this result,
together with the inequality (3.64), we get that for every δ > 0 and w.h.p.

max
x∈V ⋆

ε

q̃(x) ≤
∫ +∞

λ

1√
2π

e−
u2

2 du+ δ .

Applying Proposition 3.26, we may conclude that for every δ > 0 and w.h.p.

∥P tλ(x, ·)− π̃∥TV ≤ 2δ + q̃(x) ≤
∫ +∞

λ

1√
2π

e−
u2

2 du+ 3δ .

For the lower bound, we first observe that, for θ ∈ (0, 1),

P tλ(x, y) ≥
∑

p∈P(x,y,tλ,G)

m(p)1m(p)≤θ .

Then, for every distribution ν on [n],

ν(y)−
∑

p∈P(x,y,tλ,G)

m(p)1m(p)≤θ ≤
[
ν(y)− P tλ(x, y)

]+
+ ν(y)1P tλ (x,y)>θ.
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Summing over y ∈ [n], using that there are less than 1/θ vertices such that P tλ(x, y) > θ,
and by the Cauchy-Schwarz inequality, we get

Qx,tλ(θ) ≤ ∥ν − P tλ(x, ·)∥TV +

√√√√1

θ

∑
y∈[n]

ν2(y) . (3.78)

We just need to show that for suitable choices of ν and θ ∈ [0, 1], (3.78) implies the
claimed statement.

1. A quite straightforward proof of this fact can be done under a further assumption
on the weigths (w−

x )x∈[n]. Explicitly, let w
−
max(n) := maxx∈[n]w

−
x , and assume that

w−
max(n) = o(e

√
logn) . (3.79)

Choosing ν = π̃ and θ = w−
max(n)

log4 n
n , we want to show that

1

θ
E

∑
x∈[n]

π̃2(y)

 = o (1) . (3.80)

Then Markov’s inequality will be sufficient to conclude that

Qx,tλ(θ) ≤ ∥ν − P tλ(x, ·)∥TV + oP(1) ,

and the desired lower bound will be a consequence of the central limit Theo-
rem 3.22.

To prove (3.80), first note that, since π̃ = µinP
h,

E

∑
x∈[n]

π̃2(y)

 = Punif
µin

(X
(1)
h = X

(2)
h ) ,

where X(1) and X(2) are two random walks as defined in Subsection 3.3.1, and with
initial distribution µin. Thanks to assumptions (3.7) and (3.79), the probability
that they start from the same vertex is less than

µmax
in = o(w−

max(n)/n) = o(1),

On the other hand, the probability that X(2) meets X(1) at a certain step 0 <
s ≤ h is less than (h + 1)2pmax, where pmax = o(w−

max(n) log n/n). Thanks to the
assumption (3.79), we globally get

1

θ
E

∑
x∈[n]

π̃2(x)

 =
1

θ
Punif
µin

(X
(1)
h = X

(2)
h ) = O

(
1

log n

)
,

and thus conclude the proof of (3.80) and of the lower bound.
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2. To get rid of assumption (3.79), we may proceed in a similar way but choosing
ν = π and θ = 1

n log8 n, so to stay again under the hypothesis (3.48) of Theorem
3.22. To recover the analogue of (3.80), with π instead of π̃, we will need to apply
the Proposition 3.29 below. Given this, we can easily recover the estimate (3.80),
and then conclude with the application of Theorem 3.22.

Proposition 3.29. In the above notation and setting, it holds that

E

∑
x∈[n]

π2(x)

 ≤ C1
log6 n

n
,

where C1 > 0 is the finite constant given in Lemma 3.12.

Proof. Let T = log2 n. Let X(1) and X(2) be two independent random walks of length
T , moving on the same random graph and with initial distribution Unif([n]). Note that,
according to Subsection (3.3.1), their joint annealed law is equivalently described by the
measure Pan,2

unif , that for the sake of readability we simply write Pan.
Denoting by µT their common distribution at time T , as in (3.76), we can immedi-

ately argue from (3.77) that being T ≫ tent, then

E

∑
x∈[n]

(π(x))2

 = E

∑
x∈[n]

(µT (x))
2

 (1 + o(1)) = Pan(X
(1)
T = X

(2)
T )(1 + o(1)) .

We then focus on the probability on the r.h.s. of the above display, that will be estimated
using similar ideas to those appeared in Lemmata 3.12 and 3.10.

At first, let T denote the first time such that the trajectory of X(2) meets that of

X(1), formally given by T := min{s > 0 : ∃u ≤ T such that X
(2)
s = X

(1)
u } , so that

Pan(X
(1)
T = X

(2)
T ) ≤ Pan(T ≤ T ) =

T∑
t=0

Pan(T = t). (3.81)

Since the initial measure is uniform over [n], we immediately get that Pan(T = 0) ≤ T
n .

For t = 1, . . . , T , it is instead convenient to consider the events

Aj
s ≡ AX(j)

s , for j = 1, 2 and s ∈ {0, . . . T} ,

given in (3.25), and to introduce, for any s, t ∈ {0, . . . T}, the events

B1,2
s,t :=

{
X(2)

v ̸= X(1)
u , ∀u ∈ {0, . . . , s− 1} and v ∈ {s, . . . , t− 1}

}
,

which are analogues of the events defined in (3.29). With this notation, we can first
write

Pan(T = t) ≤ Pan(T = t,A2
t ) + Pan((A2

t )
∁) , (3.82)
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where Pan((A2
t )

∁) ≤ Pan((A2
T )

∁) ≤ C1 log
4 n/n due to Lemma (3.12), and then express

the first summand as

Pan(T = t,A2
t ) =

T∑
s=0

∑
z∈[n]

Pan(X
(2)
t = X(1)

s = z,B1,2
T,t ∩ A2

t ) . (3.83)

Conditioning over the whole trajectory of X(1), we get

Pan(X
(2)
t = X(1)

s = z,B1,2
T,t ∩ A2

t )

=
∑

v∈[n]T+1:
vs=z

Pan
(
X

(2)
t = z, A2

t |(X(1)
s )s≤T = v,B1,2

T,t

)
Pan

(
(X(1)

s )s≤T = v,B1,2
T,t

)
=

=
∑

v∈[n]T+1:
vs=z

P̃an(Xt = z,At)Pan
(
(X(1)

s )s≤T = v,B1,2
T,t

)
,

where P̃an(·) := Ẽ[PG
unif(·)] denotes the annealed measure induced by a Chung–Lu proba-

bility measure P̃ on a graph with vertex-set [n]\{vk}k∈[0,T ]\{s} and X is a simple random
walk with initial uniform distribution. To the sake of readability we do not stress the
dependence of P̃ on the path v.

Thanks to Lemma 3.10, P̃an(Xt = z,At) ≤ P̃an(Xt = z,Lt−1) = µin(z)(1 + o(1))
uniformly over the paths v ∈ [n]T+1 so that, inserting this value in the last display, we
get

Pan(X
(2)
t = X(1)

s = z,B1,2
T,t ∩ A2

t ) ≤ µin(z)Pan(X(1)
s = z,B1,2

T,t)(1 + o(1)) .

As a further application of Lemmata 3.10 and 3.12, it holds that

Pan(X(1)
s = z,B1,2

T,t) ≤ Pan(X(1)
s = z) ≤ Pan(X(1)

s = z,A1
s)+Pan((A1

s)
∁) ≤ µin(z)(1+o(1)) ,

and altogether, going back to Eq. (3.83) and replacing the value of T , we obtain

Pan(T = t,A2
t ) ≤

T∑
s=0

∑
z∈[n]

µin(z)
2(1 + o(1)) = O

(
T

n

)
,

where in the last identity we used the approximation (3.31). We conclude that the

leading term in (3.82) is indeed provided by Pan(A2
t
∁
), so that

Pan(T = t) ≤ C1
log4 n

n
(1 + o(1)) ,

which inserted in (3.81) yields the claimed inequality.
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Chapter 4

Mixing trichotomy for the simple

random walk on directed block models

This chapter presents the contents of Bianchi et al. [2025]. We characterize the mix-
ing time of the simple random walk on a directed random graph exhibiting a com-
munity structure. The first tentative to study the mixing time of random walks on
random graphs with many communities is due to Ben-Hamou [2020], who studied the
non-backtracking random walk on a variant of the configuration model incorporating a
2-community structure. In Hermon et al. [2025], the authors extended the analysis to
the simple random walk and allowed multiple communities. These results reveal that
the community structure can create a configurational bottleneck in the set of random
walk trajectories, depending on the strength of interactions between communities, and
disrupt the entropic picture. In fact, the mixing behavior displays a phase transition
among a subcritical regime, where the interaction strength is sufficiently high so that
the random walk exhibits cutoff at the same time as in the single-community case, and
a supercritical regime, where the low interaction strength results in a smooth–rather
than abrupt–mixing, and the convergence to equilibrium is driven by the occurrence of
the inter-community transitions. In both these works, the intensity of inter-community
connections is modeled via a parameter α ∈ [0, 1], and the critical scaling for this param-
eter is shown to correspond to the inverse of the entropic time of a single community.
Nevertheless, in Ben-Hamou [2020], Hermon et al. [2025] the authors do not attempt a
refined analysis of the total variation distance profile in the supercritical regime, being
their focus on the cutoff/non-cutoff transition. This chapter makes the heuristic picture
discussed so far as explicit as possible by means of a simple (but natural) model. We
rely on the results from Bianchi and Passuello [2025], contained in the previous chapter,
concentration properties of the vertex degrees, the characterization of the stationary
distribution given in Cooper and Frieze [2012], and the properties of quasi-stationary
distributions stated in Aldous [1982].
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Chapter 4. Mixing trichotomy for the SRW on directed block models

4.1 Setup and results

In this section, we introduce the necessary notation and preliminaries, and we state
our main results. We begin in Section 4.1.1 by providing a precise definition of the
graph model. Then, in Section 4.1.2, we review key concepts essential for stating and
interpreting our main result, Theorem 4.3, which is presented and discussed formally in
Section 4.1.3. In Section 4.1.4, we comment on our choice of the graph model and explore
potential extensions of the framework considered in this chapter. The proof of the main
result is developed in several sections, from Section 4.2 to Section 4.6. A detailed road
map that describes the structure of this technical part is provided in Section 4.1.5.

4.1.1 Model

We consider the following model, which we call Directed Block Model and denote by
DBM(n,m, p, α):

(1) Consider m ∈ N \ {1} independent directed Erdős–Rényi random graphs with n
vertices and connection probability p ∈ (0, 1), that is, any ordered couple of vertices
presents an oriented edge with probability p. We call these graphs G1 = (V1, E1),
. . . , Gm = (Vm, Em). More precisely, for each i ≤ m, the vertices in Vi will be
labeled by the integers in [n], with the superscript (i) identifying their community
of membership.

(2) For each edge of each graph, throw a coin with a success probability α ∈ [0, 1/2).
If it is a head, rewire the edge as follows: if the edge is in the graph Gi with i ≤ m
and it goes from x(i) to y(i), for x, y ∈ [n], remove the edge (x(i), y(i)), choose
j ∈ [m] \ {i} uniformly at random, and let the new edge be (x(i), y(j)).

We denote by G = (V,E) such a graph on the mn vertices. Notice that, rather than
a technical constraint, the requirement α < 1

2 is a physical assumption that guarantees
some sort of community structure, since the majority of edges out-going a given vertex
point towards its same community (i.e., are not rewired). Throughout the chapter, we
will write P (resp. E) to denote the probability measure (resp. expectation) encoding
the randomness of the two-step graph generation process just described. As usual in the
random graph literature, we will be interested in the asymptotic regime in which n → ∞,
and all the asymptotic notation will refer to that limit. As will become clear soon, we
will keep m as a fixed number We will let the parameters p and α depend on n. Since
we want to understand how the mixing behavior depends on the relation between α and
n, the dependence of α on n will be considered later. We will say that an event occurs
with high probability (or simply w.h.p.), if the probability of its occurrence is a function
of n that converges to 1 in the limit n → ∞. Besides the usual Landau notation, we will
also write that (cfr. p. vii), for two positive sequences an and bn, it holds an ≪ bn (resp.
an ≲ bn, an ≍ bn, and an ∼ bn) if limn→+∞ an/bn = ℓ and ℓ = 0 (resp. 0 ≤ ℓ < +∞,
0 < ℓ < +∞, and ℓ = 1).

Assumption 4.1. We make the following assumptions on the parameters of the model.
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• We consider p = λ log(n)
n for some λ > 1 to ensure that each graph is strongly

connected with high probability (see Section 4.2 below).

• We also assume λ ≍ 1, to have a logarithmic average degree. Due to the result
of Chapter 3, this assumption ensures that the random walk in each of the graphs
(before the rewiring) exhibits a cutoff with high probability.

• We consider m ≍ 1.

Let us now introduce some further notation. For each vertex x ∈ V , we denote by
D+

x the out-degree of x, and write

D+
x = O+

x + I+x ,

where

O+
x := #{out-edges of x pointing to other graphs}

I+x := #{out-edges of x not affected by the rewiring}

In the same fashion, we can denote by D−
x = O−

x + I−x the in-degree of x ∈ V .
Notice that while the out-degree D+

x is the same before and after the rewiring, the
in-degree D−

x could be different, and for this reason, we introduce the symbol D−
x,i,

to denote the in-degree of a vertex x ∈ Vi before the rewiring procedure. It will also
be convenient to define the function c : V → {1, . . . ,m} that maps each vertex to its
community.

We will first consider the random walk on Gi for i ≤ m, i.e., on a graph before the
rewiring, and we write PGi

µ (·) for the associated probability measure when the initial
position of the walk has distribution µ on Vi. Recall that the latter is a random measure,
since it depends on the realization of the environment Gi, and for this reason we will
refer to PGi

µ (Xt ∈ ·) as quenched law at time t. If the graph Gi turns out to be strongly
connected and aperiodic (which is the case with high probability), we will call πi the
stationary distribution of the random walk on Gi.

Similarly, we will consider the random walk on the whole graph G (after the rewiring
procedure), and we will denote by PG

µ (Xt ∈ ·) its law at time t when the initial position
of the walk has distribution µ (on V ). If µ = δx for some x ∈ V , we can denote it
by P t(x, ·). We denote by π its stationary distribution, if unique. We will show below
that, in the setting we are dealing with, the measures π and (πi)i≤m are w.h.p. unique.
To avoid ambiguities, we will conventionally set them to coincide with the uniform
distribution (on the corresponding vertex sets) in the unlikely event that they are not
uniquely defined.

4.1.2 Preliminaries

Recall that, for i ≤ m, Gi denotes an Erdős–Rényi random digraph with vertex set Vi

and connection probability p = λ logn
n , with λ > 1 and λ ≍ 1. For any i ≤ m, we will
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let Pi denote the transition kernel of the simple random walk (SRW in short) on the
digraph Gi, and we will call

H := E
[
log(D+

x ∨ 1)
]
= −

∑
y∈Vi

E [Pi(x, y) log(Pi(x, y))] (4.1)

the average row entropy of Pi. Let us stress that, thanks to the symmetry of the graph
model, the above quantity is independent of the choice of i ≤ m and x ∈ Vi and thus
equivalent to the one in Eq. (3.10). Moreover, a first order estimate of H, for n → ∞,
can be easily deduced to be (see Proposition 3.2 in Chapter 3)

H ∼ log log(n) .

Let us denote the entropic time associated to the entropy in (4.1) with

tent :=
log(n)

H
. (4.2)

We now re-state, in the new notation, Theorem 3.3 from Chapter 3, which establishes a
uniform cutoff for the random walk on Gi, taking place at the entropic time (4.2).

Theorem 4.2. Let β > 0 and β ̸= 1. Then for i ≤ m,

max
x∈Vi

∣∣∥PGi
x (Xβtent ∈ ·)− πi∥TV − 1{β<1}

∣∣ P−−−−−→
n→+∞

0.

Theorem 4.2 is in the same spirit as the findings in Bordenave et al. [2018], Cai
et al. [2023] for the directed configuration model. In Section 4.5, its proof will be
readapted to analyze the random walk on the whole graph DBM(n,m, p, α) when α is
large enough, and to show the occurrence of a similar cutoff behavior as described in
Eq. (4.3) below. We point out that its proof does not require an explicit point-wise
knowledge of the stationary measures (πi)i≤m, in contrast to what usually happens in
the reversible setting.

4.1.3 Main results

We are now in a good position to present our main results.

Theorem 4.3. Let G be a realization of the random digraph DBM(n,m, p, α) defined in
Section 4.1.1, and tent the entropic time given in (4.2). The following mixing trichotomy
takes place.

• Subcritical case (Fig. 4.1): if α−1 ≪ tent and α ≤ 1
2 , then, for all β > 0 with

β ̸= 1,

max
x∈V

∣∣∥PG
x (Xβtent ∈ ·)− π∥TV − 1{β<1}

∣∣ P−−−−−→
n→+∞

0 . (4.3)

• Critical case (Fig. 4.1): if α−1 ∼ Ctent for some constant C > 0, then, for all
β > 0 with β ̸= 1,

max
x∈V

∣∣∣∥PG
x (Xβtent ∈ ·)− π∥TV − 1{β<1} − m−1

m e−
β
C

m
m−11{β>1}

∣∣∣ P−−−−−→
n→+∞

0 . (4.4)

124



Chapter 4. Mixing trichotomy for the SRW on directed block models

• Supercritical case (Fig. 4.2): if α−1 ≫ tent and α−1 ≪ λn log(n), then

– (local equilibrium at tent) for any β ̸= 1

max
x∈V

∣∣∥PG
x (Xβtent ∈ ·)− π∥TV − 1{β<1} − m−1

m 1{β>1}
∣∣ P−−−−−→

n→+∞
0 , (4.5)

– (whole mixing at α−1) for any β > 0

max
x∈V

∣∣∣∥PG
x (Xβα−1 ∈ ·)− π∥TV − m−1

m e−
βm
m−1

∣∣∣ P−−−−−→
n→+∞

0 . (4.6)

β = 1

1

0 t = βtent

m = 6
m = 5
m = 4
m = 3
m = 2

β = 1

1

0 t = βtent

m = 6
m = 5
m = 4
m = 3
m = 2

Figure 4.1: Plot of the (theoretical) limiting mixing profile in the subcritical case (left)
and critical case (right) with C = 2 and m = 2, 3, 4, 5, 6.

β = 1

1

0 t = βtent

1

0 t = βα−1

m = 6
m = 5
m = 4
m = 3
m = 2

Figure 4.2: Plot of the (theoretical) limiting mixing profile in the supercritical case, with
m = 2, 3, 4, 5, 6, in the two timescales t ≍ tent (left) and t ≍ α−1 (right).

Theorem 4.3 represents a neat example of the trichotomy phenomenon, and the mech-
anisms underlying this behavior are easy to read through the mathematical statement
and with the help of Figures 4.1 and 4.2. In the subcritical case, the mixing behavior
of the walk is totally unaffected by the presence of a macroscopic community structure,
since the inter-community jumps occur on a much shorter timescale compared to the
entropic time, which represents the time needed to reach the local equilibrium in a single
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community. In contrast, in the supercritical phase, the random walk abruptly reaches
the local equilibrium of the community where it started, in the time tent. Then, the
process essentially behaves as a mean-field random walk on the communities, i.e., as a
Markov chain with transition matrix

Q =


1− α α

m−1 . . . α
m−1

α
m−1

. . .
. . .

...
...

. . .
. . . α

m−1
α

m−1 . . . α
m−1 1− α

 , (4.7)

which is in fact easily checked to exhibit the mixing behavior in (4.6). Finally, in the
critical case, the two behaviors interpolate, giving rise to the half-cutoff picture, as
shown on the right side of Figure 4.1. In light of this interpretation, the reader might
already foresee that the proof of Theorem 4.3 essentially reduces to establishing a form
of homogenization property for the random environment. This will be achieved through
different methods in the (sub)critical and supercritical cases, and by identifying two
distinct sub-regimes within the supercritical phase. We will provide more details on the
organization of the proofs in Section 4.1.5.

4.1.4 Comments on the graph model

As mentioned in the beginning of this chapter, this work aims to establish a simple
yet natural framework for studying the mixing trichotomy induced by the presence of
a bottleneck in the state space. In this sense, the model we consider is somehow the
minimal one to this aim, both in terms of notation and of technicalities required for a
rigorous proof. However, it would be possible to extend our findings to more general
versions of the model presented in Section 4.1.1. In this section, we present some remarks
in the direction of such generalizations.

Weakening the assumptions on λ. Let us stress that our assumptions on the con-
nectivity parameter λ are not expected to be sharp to prove a mixing trichotomy. For
example, λ > 1 is sufficient but not necessary to guarantee the strong connectivity of
communities, and it would be enough to have (λ− 1) log(n) → +∞ as n → +∞ Cooper
and Frieze [2012]. On the other hand, we do not expect λ ≍ 1 to be sharp either; rather,
we anticipate that any λ = no(1) would yield similar results. In fact, as long as λ = no(1),
it should be possible to show that the random walk on a single community exhibits a
cutoff at the entropic time, which itself forms a divergent sequence in terms of n. How-
ever, since this observation is not rigorously stated in any of the aforementioned works,
we retain this generalization here.

Less rigid rewirings. We chose to define the rewiring procedure in the model as being
strictly tied to the “labels” of the vertices. The same result can be obtained assuming
that the edges are rewired uniformly at random. Although this would require only minor
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adjustments, it would introduce additional notation to describe the rewiring process. To
maintain clarity, we choose to omit this generalization. We believe that the argument
presented in the chapter is robust to more general non-singular rewiring mechanisms,
provided that the rewiring is uniform among the other communities.

Removing dependencies between inter- and intra-community out-degrees.
The construction in Section 4.1.1, introduces, for every x ∈ V , a correlation between
the random variables O+

x and I+x , which is not present in the context of the classical
stochastic block model. However, by randomizing the number of vertices of the graph,
it is possible to remove this kind of dependencies. In particular, assuming that each
community has a number N ∼ Pois(n) of vertices, for every n ∈ N, it holds that
O+

x ∼ Bin(D+
x , α) ∼ Pois(nαp) and I+x ∼ Bin(D+

x , 1− α) ∼ Pois(n(1− α)p). Moreover,
the last two variables turn out to be independent as desired. Being |N − n| = O(

√
n)

w.h.p., the arguments given in the proofs remain valid and lead to the same results.

Heterogeneous communities. We believe that, with some extra work, the results
presented in this work could be generalized to the case in which the communities have
different intra-community connectivities, say λ1, . . . , λm, with mini≤m λi > 1, differ-
ent rewiring parameters (αi,j)i,j≤m with maxj,k≤m

αi,j

αi,k
≲ 1, or with different sizes, say

n1, . . . , nm, with maxi,j≤m
ni
nj

≲ 1. In particular, while the result in Theorem 4.3 should

remain unaffected by the heterogeneity of the λj ’s, we believe that in the latter two
cases the matrix Q has to be modified, and the (super)critical exponential profile should
change to a more general mixing profile, depending on the asymptotic behavior of the
corresponding auxiliary Markov chain. Also notice that when the community sizes are
different, the rewiring procedure described in Section 4.1.1 is not well defined, and should
be suitably modified, e.g., by allowing a rewired edge to point to a uniformly random
vertex in the new chosen community, as mentioned above.

Diverging number of communities. Although not the focus of our study, Theorem
4.3 suggests that even when the number of communities is slowly diverging, the charac-
terization of the critical and supercritical regimes should remain unchanged. However, if
m ≫ 1 grows sufficiently fast, the mixing behavior of the model could undergo significant
changes. For instance, choosing the parameters (α,m, λ) so that the average number of
rewired edges within each community is ≍ log(m), we expect a cutoff behavior even in
the supercritical regime α−1 ≫ tent.

In particular, rescaling the time by α, we expect that the dynamics is well ap-
proximated by a simple random walk on a coarse-grained graph obtained by collapsing
each community to a single point and erasing multiple edges. In that case, the coarse-
grained graph is precisely a directed Erdős–Rényi random graph on m vertices in the
weakly sparse regime, for which cutoff is now well known to take place. In conclusion,
in that setting and for α−1 ≫ tent, we expect to observe a cutoff on the timescale
tent,m = α−1 log(m)/Hm ≫ 1, where Hm ∼ log log(m) is the row-entropy of the random
walk on the coarse-grained graph.
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4.1.5 Organization of the proof

The proof of Theorem 4.3 is articulated on several parts, depending on the different
regimes for the parameter α. We now provide a road map to the forthcoming sec-
tions. We start in Section 4.2 by presenting some preliminary facts that will be needed
throughout the analysis of both the sub- and supercritical case. In Section 4.3 we deal
with the subregion of the supercritical regime (α ≪ tent), which we will call weakly
supercritical. Here tent ≪ α−1 ≪

√
n log−2(n) and the parameter α is sufficiently large

to allow a control on the total variation distance to equilibrium for both the timescales
appearing in Eq. (4.5) and Eq. (4.6). The arguments rely on the analysis of the so-
called annealed random walk (recalled in Section 4.2). Section 4.4 is the technical core
of our work, and it deals with the remaining subregion of the supercritical case, i.e.√
n log−2(n) ≲ α−1 ≪ λn log(n), which we will refer to as strongly supercritical. In this

case, α is too small and arguments based on annealed random walks are doomed to fail,
requiring us to employ alternative technical tools to establish a form of homogenization
property of the graph. This, in turn, offers a level of control over the total variation
distance comparable to that achieved in Section 4.3 for the weakly supercritical case.
Section 4.5 deals with the analogue of the results in the previous sections but for the
subcritical and the critical case. Here, the arguments can be seen as an adaptation of
those in Bordenave et al. [2018], Cai et al. [2023], and Chapter 3 to the DBM case.
Finally, in Section 4.6 we collect all the estimates obtained throughout the chapter and
conclude the proof of Theorem 4.3.

4.2 Approximations and auxiliary processes

In this section we aim at presenting some background material and the first statements
about the behavior of the random walk on short timescales, i.e., for t ≪

√
n log(n)−2.

These results will be used later in the chapter in all three regimes. In particular, in
Section 4.2.1 we present some approximation of the stationary distribution of the local
random walks in terms of the in-degree sequences; in Section 4.2.2 we recall some classical
facts about the local structure of a (weakly) sparse graph seen from a vertex; while in
Section 4.2.3 we introduce the annealed random walk and use it as a tool to provide some
key approximation for the law of the inter-community jumps performed by the random
walk, see Proposition 4.10.

4.2.1 Approximating the stationary distribution

After the statement of Theorem 4.2, we claimed that the proof does not require explicit
knowledge of the stationary distribution. Nevertheless, a uniform first-order approxima-
tion for the latter in our setup has been obtained by Cooper and Frieze, as stated by the
following theorem. Recall that D−

x,i denotes the in-degree of a vertex x ∈ Vi before the
rewiring procedure, so that the next statement, valid for m disjoint Erdős–Rényi digraph
of parameter p, holds.
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Theorem 4.4 (Cooper and Frieze [2012]). The local stationary distributions are ap-
proximated at first order and uniformly by the (normalized) local in-degree sequences. In
formulas,

max
i≤m

max
x∈Vi

∣∣∣∣∣∣πi(x)D−
x,i

pn2

− 1

∣∣∣∣∣∣ P−−−−−→
n→+∞

0 .

The latter result is partially based on the fact that, given the choice λ > 1, uniform
concentration properties for the degrees of vertices of G are true.

Proposition 4.5. There exist two positive constants C1 and C2 such that, w.h.p. ,

max
i≤m

max
x∈Vi

max{D+
x , D

−
x , D

−
x,i} ≤ C2λ log(n),

min
i≤m

min
x∈Vi

min{D+
x , D

−
x , D

−
x,i} ≥ C1λ log(n) .

Proof. The thesis follows immediately from concentration bounds for binomial random
variables (see e.g. Lemmata 3.14 and 3.15) and an application of the union bound. For
instance, the uniform lower bound on (D−

x,i)x∈[n] can be derived as follows. For every
t > 0 and c > 0 it holds

P
(
D−

x,i < c log(n)
)
= ect log(n)

(
1 + p(e−t − 1)

)n ≤ ect log(n)+np(e−t−1),

and taking t = log
(
λ
c

)
we have

P
(
D−

x,i < c log(n)
)
≤ elog(n)(c log(

λ
c )+c−λ) = nc log(λ

c )+c−λ.

Since as c → 0 the exponent in the r.h.s. converges to −λ < −1, there exists c ∈ (0, λ)
such that the union bound can be performed. To conclude, it suffices to set C1 = c/λ.

As a consequence we may conclude that w.h.p. the stationary distribution πi is
uniform, up to corrections bounded away from zero and infinity, and this will be helpful
in the characterization of the stationary distribution of the random walk on the whole
G. This fact can then be used to deduce the following byproduct of Theorems 4.2, 4.4,
and Proposition 4.5, which allows us to control the ℓ∞-distance to equilibrium of local
random walks.

Corollary 4.6. Let S = 3tent log(n). Then

max
i≤m

max
x,y∈Vi

∣∣∣∣PGi
x (XS ∈ y)

πi(y)
− 1

∣∣∣∣ = oP(1).

Proof. Recall the subadditivity property of the total variation distance, which implies
that

P
(
max
i≤m

max
x∈Vi

∥PGi
x (X2ktent ∈ ·)− πi∥ ≤ e−k

)
= 1− o(1) .

Then, by choosing k = ⌊32 log(n)⌋,

max
i≤m

max
x∈Vi

∥∥PGi
x (XS ∈ ·)− πi

∥∥
TV

= oP(n
−1) ,

and the desired result follows by Theorem 4.4 and Proposition 4.5.
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4.2.2 Local neighborhoods are tree-like

The digraphs (Gi)i≤m and G are w.h.p. locally tree-like in the sense that has been
described in Chapter 3: the out-neighborhood B+

x (4εtent) of depth 4εtent (growing with
n) of any vertex x ∈ V , locally look like trees for small ε, as the next proposition,
inherited from Lemmata 3.18 and 3.19, clarifies.

Lemma 4.7. For a digraph S = (V,E), let Tx(S) = |E| − |V |+1 denote the tree-excess
of S as in Eq. (3.38) and, for ε > 0,

Gε := {∀x ∈ V, Tx(B+
x (4εtent)) < 2}.

Let (Xt)t∈N denote the SRW on Gi or G and, for t ≤ 2εtent, consider the set and related
event

V ⋆
ε :=

{
x ∈ V | Tx(B+

x (4εtent)) = 0
}
, Vε := {max

x∈V
PG

x (Xt /∈ V ⋆
ε ) ≤ 2−t} . (4.8)

For a sufficiently small ε > 0 (independent of n), it holds P (Gε ∩ Vε) = 1− o(1).

Proof. The proof for Gi follows from Lemmata 3.18 and 3.19 from Chapter 3 and can
be adapted to G.

This means that out-neighborhoods of depth 4εtent are at most trees with an extra
edge, and if they are not trees, each step of SRW (up to 2εtent steps) w.h.p. halves the
quenched probability to have extra edges.

4.2.3 Annealed random walk

A key analysis tool is the so-called annealed random walk. Let us recall its definition
and outline its construction in our setting.

By annealed random walk one simply means the non-Markovian process in which
the underlying random graph is constructed together with the random walk on it. More
precisely, at time t = 0 all vertices are unrevealed, in the sense that its out-neighbors are
unknown. Then, for any t ≥ 0, assuming Xt = x ∈ V ,

1. If x is revealed, go directly to step (3).

2. If x is unrevealed, reveal it by generating its out-neighborhood, i.e.:

(i) for each vertex y ∈ Vc(x) toss a coin with success probability p;

(ii) for each y ∈ Vc(x) which resulted in a success in (i), toss a coin with success
probability α;

(iii) for each y ∈ Vc(x) which resulted in a success in (i) and a failure in (ii), add
an arrow from x to y;

(iv) for each y ∈ Vc(x) which resulted in a success both in (i) and (ii), sample a
label i u.a.r. in {1, . . . ,m} \ {c(x)} and add an arrow from x to the vertex in
Gi corresponding to y (i.e., the vertex with the same label of y).
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3. Let Xt+1 be one of the out-neighbors of x sampled u.a.r..

Clearly, such a random process will eventually stop to reveal new vertices. Moreover,
the joint law of the revealed vertices coincides with their joint law under P. The striking
feature of the annealed random walk is that, for any initial probability distribution µ
on V , its law Pan

µ ((X0, . . . , Xt) ∈ ·) coincides with the expectation of the quenched law,
i.e., for any t ≥ 0

Pan
µ

(
(X0, . . . , Xt) ∈ ·

)
= E

[
PG

µ

(
(X0, . . . , Xt) ∈ ·

)]
.

In what follows we will be interested in the event

Ct = {(X0, . . . , Xt) is cycle-free} ,

where by cycle-free we simply mean that the random walk does visit any vertex more
than once.

Lemma 4.8. For any x ∈ V , if t ≪
√
n,

Pan
x (Xt = z, Ct) =

Qt(c(x), c(z))

n

(
1 +O

(
t2

n

))
, ∀z ∈ V ,

where

Qt(i, j) =
1 + (m1i=j − 1)(1− m

m−1α)
t

m
, i, j ≤ m, t ≥ 0, (4.9)

Remark 4.9. Notice that (4.9) corresponds to the t-step transition probability of the
Markov chain with transition matrix Q as in (4.7). This can be verified computing the
powers of the diagonal form of Q.

Proof. Fix z0 = x ∈ V and zt = z ∈ V . We will say that a sequence (z1, . . . , zt−1) in V
is cycle free if (z0, . . . , zt) does not contain repeated vertices. Start by writing

Pan
x (Xt = z, Ct) =

∑
(z1,...,zt−1)∈V t−1

cycle-free

E

[
t−1∏
i=0

1{zi→zi+1}

D+
zi

]

=
∑

(z1,...,zt−1)∈V t−1

cycle-free

t−1∏
i=0

P(zi → zi+1)E
[

1

D+
zi

∣∣∣1{zi→zi+1} = 1

]
.

Conditionally on 1{zi→zi+1} = 1, the out-degree of zi has the same distribution as 1+D,
where D ∼ Bin(n− 2, p). Then

E
[

1

D+
zi

∣∣∣1{zi→zi+1} = 1

]
=

1

np

(
1 + o

(
n−1

))
,
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and as a consequence

Pan
x (Xt = z, Ct) =

(
1 + o

(
t
n

)) ∑
(z1,...,zt−1)∈V t−1

cycle-free

(np)−t
t−1∏
i=0

P(zi → zi+1) .

Moreover,

P(zi → zi+1) =

{
p α
m−1 if c(zi) ̸= c(zi+1)

p(1− α) if c(zi) = c(zi+1)
,

and therefore Pan
x (Xt = z, Ct) can be expressed as

(
1 + o

(
t
n

)) ∑
(z1,...,zt−1)∈V t−1

cycle-free

1

nt

t−1∏
i=0

(
α

m− 1
1c(zi) ̸=c(zi+1) + (1− α)1c(zi)=c(zi+1)

)
.

Since the term within the brackets is bounded above by 1 uniformly in (zi, zi+1), we
could take the sum over all the possible sequences (z1, . . . , zt−1) ∈ V t, so having nt−1

rather than (n− 2) · · · (n− t) summands. Overall, Pan
x (Xt = z, Ct) can be expressed as

(
1 +O

(
t2

n

)) ∑
(z1,...,zt−1)∈V t−1

1

nt

t−1∏
i=0

(
α

m− 1
1c(zi )̸=c(zi+1) + (1− α)1c(zi)=c(zi+1)

)
,

and since t = o(
√
n), the prefactor does not change the first order term. Now we notice

that the sum over V t−1 collapses into a sum over [m]t−1. More precisely, using the
shorthand notation ci = c(zi), for i ≤ t and defining

J(c0, . . . , ct) =
t−1∑
j=0

1cj+1 ̸=cj ,

we have

Pan
x (Xt = z, Ct) =

(
1 +O

(
t2

n

)) 1

n

t−1∑
k=0

∑
(c1,...,ct−1)∈[m]t−1

J(c0,...,ct)=k

( α

m− 1

)k(
1− α

)t−k
.

Notice that the quantity expressed by the double sum above can be be interpreted as the
probability that the Markov chain with transition matrix as in Eq. (4.7) is in ct = c(z)
at time t. Therefore

Pan
x (Xt = z, Ct) =

1

n
Qt(c(x), c(z))

(
1 +O

(
t2

n

))
.
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Lemma 4.8 can be strengthened to a statement valid for the quenched law of the
SRW (Xt)t≥0, provided that we consider sufficiently small times, as it will be shown in
the next subsection.

Proposition 4.10. For any α = αn ∈ [0, 1], let 1 ≪ t ≪
√
n log(n)−2. Then,

max
i≤m

max
x∈V

∣∣PG
x (Xt ∈ Vi)−Qt(c(x), i)

∣∣ = oP(1) , (4.10)

where, Qt(c(x), i) is defined as in Eq. (4.9).

Proof. Notice that, since m ≍ 1, it suffices to prove (4.10) for a fixed i ≤ m. We first
consider the case in which α ≪ 1. Let K = ⌊log2 n⌋ and call E the event that all the
vertices in the graph have out-degree at least C1 log(n) and D the event in which each
vertex has a tree-excess at most 1 in its out-neighborhood of height 4. Recall that,
thanks to Proposition 4.5 and Lemma 4.7, P(D ∩ E) = 1− o(1). Then

P(1E∩DPG
x (Xt ∈ Vi) ≥ Qt(c(x), i) + δ) ≤ E[1E∩DPG

x (Xt ∈ Vi)
K ]

(Qt(c(x), i) + δ)K
.

Consider now K annealed random walks (X(ℓ))ℓ≤K starting at some x ∈ V . We let the
walks evolve—all starting from x—one after the other, for a time t. Clearly, these walks
are not independent, but each is independent of the previous ones conditionally on the
environment discovered so far. Let us define the family of events (Bℓ)ℓ≤K . For each
ℓ ≤ K, Bℓ is the event that:

(i) X
(j)
t ∈ Vi for each j ≤ ℓ;

(ii) all the out-degrees of the vertices visited by the first ℓ walks are at least C1 log(n)
(cf. Prop. 4.5);

(iii) the out-neighborhood of x of height 4 discovered by the first ℓ trajectories has a
tree excess at most 1.

With this definitions we have

E[1E∩DPG
x (Xt ∈ Vi)

K ] ≤ Pan
x (BK) = Pan

x (B1)
K∏
ℓ=2

Pan
x (Bℓ|Bℓ−1) .

We start by noting that, given Bℓ−1, the event Bℓ is contained in the union of the
following events:

(1) For all times s ≤ 4 the ℓ-th trajectory is always in a vertex already visited by one
of the previous walks. Since we are working on the events (ii) and (iii), for any
couple (x, y) there are at most 2 paths of length 4 joining x to y and each such
path has a weight ≤ (C1 log(n))

−4. The probability of the event described above
is thus upper bounded by

8K(C1 log(n))
−4 = o(1) .

133



Chapter 4. Mixing trichotomy for the SRW on directed block models

(2) The event in (1) does not occur, i.e., there exists some s ≤ 4 such that the walk
visits an unvisited vertex, and there exists a time s′ ∈ (s, t] at which the trajectory
intersects again one of the previous walks (including itself); this happens with
probability less than

Kt2

n
= o(1) .

(3) None of the events above occurs, and at time s = 4 the walk is out of Vc(x). Since
α ≪ 1, this happens with probability at most

1− (1− α)4 = o(1) .

(4) None of the event above occurs, yet at time t the ℓ-th trajectory is found in Vi;
thanks to Lemma 4.8, this happens with probability at most

max
s≤4

max
y∈Vc(x)

Pan
y (Xt−s ∈ Vi, Ct−s) = max

s≤4
Qt−s(c(x), i)

(
1 +O

(
t2

n

))
= max

s≤4
Qt−s(c(x), i) + o(1)

= Qt(c(x), i) + o(1) ,

where the first identity comes from the fact that, by symmetry, the annealed
probability on the l.h.s. is independent of y ∈ Vc(x); the second one follows from
the fact that Qt(c(x), i) ≤ 1 and t2 ≪ n; the third one uses that t ≫ 1.

In conclusion, uniformly over ℓ ≤ K we have Pan
x (Bℓ|Bℓ−1) = Qt(c(x), i) + o(1). Thanks

to the choice of K, we conclude that, being δ > 0 fixed,

P(1E∩DPG
x (Xt ∈ Vi) ≥ Qt(c(x), i) + δ) ≤

(
Qt(c(x), i) + o(1)

Qt(c(x), i) + δ

)K

= o(n−1).

Therefore

P
(
max
x∈V

PG
x (Xt ∈ Vi) ≥ Qt(c(x), i) + δ

)
≤

P(1E∩D max
x∈V

PG
x (Xt ∈ Vi) ≥ Qt(c(x), i) + δ) + P(E ∪ D) = o(1) .

(4.11)

To prove a uniform lower bound on PG
x (Xt ∈ Vi), one can consider the events

Ēx,i,δ =
{
PG

x (Xt ∈ Vi) ≤ Qt(c(x), i)− δ
}

and

Êx,j,δ =
{
PG

x (Xt ∈ Vj) ≥ Qt(c(x), j) +
δ

m− 1

}
.

Clearly, for any i ≤ m, x ∈ Vi and δ > 0, ∪j ̸=iÊx,j,δ ⊇ Ēx,i,δ. Therefore,

P
(
min
x∈V

PG
x (Xt ∈ Vi) ≤ Qt(c(x), i)− δ

)
= P

(
∪x∈V Ēx,i,δ

)
≤ P

(
∪j ̸=i ∪x∈V Êx,j,δ

)
≤ mmax

j≤m
P
(
∪x∈V Êx,j,δ

)
.

(4.12)
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Since m ≍ 1 and since the probability on the r.h.s. of (4.12) coincides, replacing δ with
δ

m−1 , with the one on the l.h.s. of (4.11), we conclude that

P
(
min
x∈V

PG
x (Xt ∈ Vi) ≤ Qt(c(x), i)− δ

)
= o(1) . (4.13)

Therefore, in the case α ≪ 1, (4.10) follows from (4.11) and (4.13) and a union bound
over i ≤ m.

We are left to consider the case α ≍ 1. In this case, Qt(j, i) = 1
m + o(1) for any

t ≫ 1. We can argue as above, but rather than the events (1), (2), (3) and (4), we can
consider the events (1), (2) and (4’), where

(4’) The events (1) and (2) do not occur, yet at time t the j-th trajectory is found in
Vi; thanks to Lemma 4.8, this happens with probability at most

max
s≤4

max
y∈V

Pan
y (Xt ∈ Vi, Ct) = max

s≤4
max
j≤m

Qt−s(j, i)

(
1 +O

(
t2

n

))
=

1

m
+ o(1) .

This completes the proof.

4.3 Weakly supercritical regime

In this section and in the following one, we approach the regime α−1 ≫ tent.

4.3.1 First jump across two communities

We now consider the first time at which the random walk traverses a rewired edge,

τjump = min{t > 0 : c(Xt) ̸= c(Xt−1)} . (4.14)

Letting z0 = x, and arguing as in the proof of Lemma 4.8 we obtain

E[PG
x (τjump > t, Ct)] =

∑
(z1,...,zt)∈V t

c(x)

cycle-free

t−1∏
i=0

P(zi → zi+1)E
[

1

D+
zi

∣∣∣1{zi→zi+1} = 1

]

= (1− α)t
(
1 +O

(
t2

n

))
.

(4.15)

We now show that, if t is (twice) the entropic time then, w.h.p.—and uniformly over the
starting position—the quenched probability to see a jump to another community before
t is small. Before stating the proposition, we need a preliminary lemma that serves as a
bootstrap for the forthcoming Proposition 4.12.

Lemma 4.11. If α ≪ 1, for any constant a ∈ N,

max
x∈V

PG
x (τjump ≤ a) = oP(1) .
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Proof. Let E again denote the event that all the vertices in the graph have out-degree
at least C1 log(n). It is enough to prove that

max
x∈V

O+
x

D+
x

= oP(1) . (4.16)

To see the validity of the estimate in the latter display, we use Bennett’s inequality,
which gives, for any fixed ε > 0

− logP(O+
x ≥ εD+

x , E) ≥ − logP(O+
x ≥ εC1 log(n)) ≳ ε log(εα−1) log(n) .

Then (4.16) follows by Proposition 4.5, the fact that log(εα−1) ≫ 1, and a union bound.

Proposition 4.12. Let α−1 ≫ tent. Then for T ≪ min{α−1,
√
n(log(n))−2},

max
x∈V

PG
x (τjump ≤ T ) = oP(1) .

Proof. We proceed by the same line of argument as in the proof of Proposition 4.10.
Notice that in this case there is no loss of generality in assuming T ≫ 1, since the
(random) map T 7→ PG

x (τjump ≤ T ) is deterministically increasing for any choice of
x ∈ V . Let K = ⌊log2 n⌋ and call E the event that all the vertices in the graph have
out-degree at least C1 log(n) and D the event in which each vertex has a tree-excess at
most 1 in its out-neighborhood of height 4. Then

P(1E∩DPG
x (τjump ≤ T ) ≥ δ) ≤ E[1E∩DPG

x (τjump ≤ T )K ]

δK
.

Consider now K annealed random walks (X(ℓ))ℓ≤K starting at some x ∈ V . Let us
define the family of events (Bℓ)ℓ≤K . For each ℓ ≤ K, Bℓ is the event that:

(i) inf{s ≥ 1 | c(X(j)
s ) ̸= c(x)} ≤ T , for all j ≤ ℓ;

(ii) all the out-degrees of the vertices visited by the first ℓ walks are at least C1 log(n);

(iii) the out-neighborhood of x of height 4 discovered by the first ℓ trajectories has a
tree excess at most 1.

With this definitions we have

E[1E∩DPG
x (τjump ≤ T )K ] ≤ Pan

x (BK) = Pan
x (B1)

K∏
ℓ=2

Pan
x (Bℓ|Bℓ−1) .

Let us start by noting that given Bℓ−1, the event Bℓ is contained in the union of the
following four events:

(0) The ℓ-th trajectory jumps to some y ∈ V such that c(y) ̸= c(x) at some time s ≤ 4
(the probability of this event is o(1) thanks to Lemma 4.11);
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(1) For all s ≤ 4 the ℓ-th trajectory is always in a vertex already visited by one of
the previous walks; thanks to (iii), for any y there are at most 2 paths of length
4 joining x to y, moreover, thanks to (ii), this happens with probability at most
8K(C1 log(n))

−4 = o(1);

(2) There exists some s ≤ 4 such that the walk visits an unvisited vertex, and there
exists a time s′ ∈ (s, T ] at which it intersects again one of the previous walks

(including itself); this happens with probability less than KT 2

n = o(1);

(3) None of the event above is verified, yet before time T the ℓ-th trajectory jumps
to some y ∈ V such that c(y) ̸= c(z); thanks to Eq. (4.15), this happens with
probability at most

Pan
x (τjump ≤ T, CT )(1 + o(1)) = o(1) .

In conclusion, we have Pan
x (Bℓ|Bℓ−1) = o(1). Thanks to the choice of K, we conclude,

for δ > 0 fixed,

P(1E∩DPG
x (τjump ≤ T ) ≥ δ) ≤

(
o(1)

δ

)K

= o
(
n−c

)
, ∀c > 0 .

Therefore

P(max
x∈V

PG
x (τjump ≤ T ) ≥ δ) ≤ P(1E∩D max

x∈V
PG

x (τjump ≤ T ) ≥ δ) + o(1) = o(1) .

4.3.2 Local equilibrium: a first timescale

In what follows we will sometimes commit a slight abuse of notation by lifting πi to a
probability measure on the entire vertex set V .

Theorem 4.13. Let α−1 ≫ tent. Then, for any fixed ε > 0 and T ≪ min{α−1,
√
n(log(n))−2},

max
i≤m

max
x∈Vi

max
t∈[(1+ε)tent,T ]

∥PG
x (Xt ∈ ·)− πi∥TV = oP(1) .

Proof. Fix i ≤ m, and notice that there is no loss of generality in assuming ε ∈ (0, 1].
Let J = [(1 + ε)tent, T ]. By the triangle inequality

max
t∈J

max
x∈Vi

∥PG
x (Xt ∈ ·)− πi∥TV

≤ max
t∈J

max
x∈Vi

∥PG
x (Xt ∈ ·)−PGi

x (Xt ∈ ·)∥TV +max
t∈J

max
x∈Vi

∥PGi
x (Xt ∈ ·)− πi∥TV

≤ max
x∈Vi

PG
x (τjump ≤ T ) + max

x∈Vi

∥PGi
x (X(1+ε)tent ∈ ·)− πi∥TV ,

where the second inequality can be deduced by coupling the random walk on (Gi)1≤i≤m

and G in the natural way up to time τjump. Thanks to Proposition 4.12 and Theorem
4.2, respectively, we may maximize the two terms on the r.h.s. over i ≤ m and x ∈ Vi

and get the desired upper bound.
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In conclusion, Theorem 4.13 shows that for T ≪ min{α−1,
√
nlog(n)−2} the dynam-

ics is trapped in the local equilibrium corresponding to the starting community.

4.3.3 Global equilibrium: a second timescale

In the section, we are going to show that each T ≫ α−1 provides an upper bound
on the mixing time of the SRW on our digraph. The claim will be divided into two
parts depending on the value of α. In particular, here we will focus on the window
tent ≪ α−1 ≪

√
n log(n)−2, while we postpone to Section 4.4 the discussion of the

strongly supercritical regime, where
√
n log(n)−2 ≲ α−1 ≪ nλ log(n). As it will be clear

along the proofs, the two regimes require different tools and techniques.

Theorem 4.14. Let α be such that tent ≪ α−1 ≪
√
nlog(n)−2. If T is such that

T ≫ α−1, then
max
x∈V

∥∥PG
x (XT ∈ ·)− π

∥∥
TV

= oP(1) .

Moreover, it holds
∥∥ 1
m

∑m
i=1 πi − π

∥∥
TV

= oP(1) .

Proof. Start by fixing T ≪ n
1
2 log(n)−2. The thesis will hold for general T by mono-

tonicity. Notice also that there is no loss of generality in replacing T by T + 2tent. We
use the deterministic bound∥∥∥∥∥PG

x (XT+2tent ∈ ·)− 1

m

m∑
i=1

πi

∥∥∥∥∥
TV

=

∥∥∥∥∥∥
∑
y∈V

P T (x, y)P 2tent(y, ·)− 1

m

m∑
i=1

πi

∥∥∥∥∥∥
TV

=

∥∥∥∥∥∥
m∑
i=1

∑
y∈Vi

P T (x, y)P 2tent(y, ·)− πi
m

∥∥∥∥∥∥
TV

≤
m∑
i=1

∥∥∥∥∥∥
∑
y∈Vi

P T (x, y)P 2tent(y, ·)− πi
m

∥∥∥∥∥∥
TV

.

(4.17)

Notice that, thanks to Proposition 4.10, we can bound

max
i≤m

max
x∈V

∣∣∣∣PG
x (XT ∈ Vi)−

1

m

∣∣∣∣ = oP(1). (4.18)

Let us fix i ≤ m and focus on the total variation distance on the r.h.s. of (4.17). We
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have

max
i≤m

max
x∈V

∥∥∥∥∥∥
∑
y∈Vi

P T (x, y)P 2tent(y, ·)− πi
m

∥∥∥∥∥∥
TV

≤ max
i≤m

max
x∈V

∥∥∥∥∥∥
∑
y∈Vi

P T (x, y)
(
P 2tent(y, ·)− πi

)∥∥∥∥∥∥
TV

+max
i≤m

max
x∈V

∣∣∣PG
x (XT ∈ Vi)−

1

m

∣∣∣
≤ max

i≤m
max
x∈V

∑
y∈Vi

P T (x, y)
∥∥P 2tent(y, ·)− πi

∥∥
TV

+ oP(1)

≤ max
i≤m

max
y∈Vi

∥∥P 2tent(y, ·)− πi
∥∥
TV

+ oP(1) = oP(1) ,

(4.19)

where both in the second and in the third inequalities we used (4.18), and the last
asymptotic bound follows from Theorem 4.13. Plugging (4.19) into (4.17) we deduce
that

max
x∈V

∥∥∥∥∥PG
x (XT+2tent ∈ ·)− 1

m

m∑
i=1

πi

∥∥∥∥∥
TV

= oP(1) .

Then, ∥∥∥∥∥π − 1

m

m∑
i=1

πi

∥∥∥∥∥
TV

≤
∑
x∈V

π(x)

∥∥∥∥∥PG
x (XT+2tent ∈ ·)− 1

m

m∑
i=1

πi

∥∥∥∥∥
TV

≤ max
x∈V

∥∥∥∥∥PG
x (XT+2tent ∈ ·)− 1

m

m∑
i=1

πi

∥∥∥∥∥
TV

= oP(1) .

This concludes the proof.

4.4 Strongly supercritical regime

If
√
n log(n)−2 ≲ α−1 ≪ λn log(n), the relevant timescale, beyond the scale of tent, is

α−1 ≳
√
n log(n)−2. We cannot rely on the approximation obtained in Proposition 4.10

to control the random walk behavior of such a timescale. For this strongly supercritical
regime, we need to generalize the estimates obtained for the weakly supercritical regime
in Section 4.3 using a different set of tools. In particular, the following two statements
provide the analogue of Proposition 4.10 and Theorem 4.14.

Proposition 4.15. For
√
n log(n)−2 ≲ α−1 ≪ λn log(n), there exists some C ≫ 1 such

that, if t ≤ Cα−1,
max
i≤m

max
x∈Vi

∣∣PG
x (Xt ∈ Vi)−Qt(i, i)

∣∣ = oP(1) ,

where, Qt(c(x), i) is defined as in Eq. (4.9).
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Theorem 4.16. For
√
nlog(n)−2 ≲ α−1 ≪ λn log(n), if T is such that T ≫ α−1, then

max
x∈V

∥∥PG
x (XT ∈ ·)− π

∥∥
TV

= oP(1) . (4.20)

Moreover,
∥∥ 1
m

∑m
i=1 πi − π

∥∥
TV

= oP(1) .

As mentioned above, despite the clear analogy with Proposition 4.10 and Theorem
4.14, the proofs of Proposition 4.15 and Theorem 4.16 exploit a different line of argument,
based on quasi-stationary distributions, which also shows the emergence of homogeniza-
tion for such small values of α. In order to facilitate the reading, before entering the
details, we provide a brief account of the organization of the rest of this section.

Organization of the section. The rest of the section is divided into five parts. In
Section 4.4.1 we introduce the notion of gates. In words, a gate is a vertex that has an
edge that points toward another community. Clearly, in the strongly supercritical regime,
gates are rare, since only few vertices have such inter-community connections. With this
idea in mind, in Section 4.4.2 we provide a control on the first time the random walk visits
the set of gates. In particular, using the framework of quasi-stationary distributions, we
show that such a first visit is well approximated by an exponential random variable and
characterize its expectation. In Section 4.4.3 we use the understanding of the hitting
time of the set of gates to couple the random walk with a toy process which enjoys some
sort of renewal property which makes it simpler to analyze. Finally, in Section 4.4.4 we
use this coupling to complete the proof of Proposition 4.15 and Theorem 4.16.

4.4.1 Gates

Fixed a community i ≤ m, the idea is to couple the random walk on G started at some
x ∈ Vi with a simpler process on Vi, up to the first time when the random walk moves
to another community. To provide further details, it is necessary to first introduce some
additional notation. We we call gates of Vi the subset of vertices in Vi having at least a
rewired out-edge, i.e.,

Gi := {y ∈ Vi | O+
y > 0} . (4.21)

In the regime α−1 ≳
√
n log(n)−2, this set turns out to be small, in the sense that it has

a small stationary value, as explained by the next result.

Lemma 4.17. If α−1 ≫ λ log(n),

max
i≤m

∣∣∣∣ πi(Gi)

αλ log(n)
− 1

∣∣∣∣ = oP(1) .

Proof. For i ≤ m, thanks to Theorem 4.4, πi(Gi) is w.h.p. well approximated by
∑

x∈Gi

D−
x,i

n2p
.

The latter is a sum of random variables taken on a random set, but it is not difficult to
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show that it concentrates around its expectation. Indeed, for k > 0 it holds

P(
∣∣|Gi| − E[|Gi|]

∣∣ > k) ≤ Var(|Gi|)
k2

=

∑
x∈Vi

Var(1{O+
x >0})

k2

= (1 + o(1))
n(λα log(n))(1− λα log(n))

k2
,

(4.22)

where we used that, for x ∈ Vi, we have P(x ∈ Gi) = 1− (1−αp)n = λα log(n)(1+ o(1)).
Choosing k such that

√
nλα log(n) ≪ k ≪ nλα log(n), we get that

P
(∣∣|Gi| − λnα log(n)

∣∣ > k
)
= o(1). (4.23)

Fixed any ε > 0, using the Chernoff bound, we obtain

P

{∣∣∣∣ ∑
x∈Gi

D−
x,i − |Gi|λ log(n)

∣∣∣∣ > ε|Gi|λ log(n)

}
∩
{∣∣∣|Gi| − nαλ log(n)

∣∣∣ < k

}
≤ max

δ∈[− 1
10

, 1
10

]
P

∣∣∣∣∣∣
nαλ log(n)(1+δ)∑

y=1

D−
y,i − nα(λ log(n))2(1 + δ)

∣∣∣∣∣∣ > (1 + δ)εnα(λ log(n))2


≤ 2 exp

{
−ε2nα(λ log(n))2

4

}
.

(4.24)

Notice that the event {x ∈ Gi} does not depend on D−
x,i, and hence we can rely on

the classical bound for the sums of i.i.d. Bernoulli random variables. Then, choosing
ε = 1

log(n) suffices to make the estimate in (4.24) vanish. The desired result then follows

by combining (4.23) and (4.24).

4.4.2 First visit time to gates

We now introduce the so-called quasi-stationary distribution, that is, the long-run dis-
tribution of the walk on Gi conditioned to the event of not having hit the set Gi yet.
Let [Pi]Gi be the sub-Markovian kernel in which the rows and columns indexed by the
vertices in Gi have been removed. Then, called li the largest eigenvalue of [Pi]Gi , by
the Perron-Frobenius theorem there exists a probability distribution µ⋆

i which is a left
eigenvector for [Pi]Gi associated to the eigenvalue li. In particular, the hitting time of Gi

for the simple random walk on Vi (with kernel Pi) started at µ⋆
i is exactly geometrically

distributed with parameter li. This li can be shown to be < 1 and can also be charac-
terized at first order by the expected hitting time of Gi starting at πi. If we denote by
τS := min{t ≥ 0 : Xt ∈ S} the hitting time of a set S, these fact are summarized by the
following proposition due to Aldous [1982].

Theorem 4.18 (Cf. Prop. A.1 and Lemma A.2 in Quattropani and Sau [2023]). Let
(Wt)t≥0 be a Markov chain on a finite state space Ω with transition matrix Π and unique
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stationary distribution ρ, fully supported on Ω. Let ∂ ∈ Ω be a target state. Then, there
exist a unique probability distribution µ⋆ on Ω \ ∂ and a unique l ∈ (0, 1) such that

lim
t→∞

Pρ (Wt = x | τ∂ > t) = µ⋆(x) , ∀x ∈ Ω \ ∂ ,

and
Pµ⋆ (τ∂ > t) = (1− l)t , ∀t ≥ 0 .

Moreover, observing that l = (Eµ⋆ [τ∂ ])
−1, it holds∣∣∣∣Eµ⋆ [τ∂ ]

Eρ[τ∂ ]
− 1

∣∣∣∣ = ∣∣∣∣ l−1

Eρ[τ∂ ]
− 1

∣∣∣∣ ≤ 20

3

tmix(2 + logEρ[τ∂ ])

Eρ[τ∂ ]
,

where

tmix = inf

{
t ≥ 0 | max

x∈Ω
∥Π(y, ·)− ρ∥TV ≤ (2e)−1

}
.

Additionally, consider a sequence of Markov chains with ΩN = [N ], for N ∈ N. If

lim
N→∞

T × ρ(∂) = 0 ,

where

T = tmix × log

(
1/ min

x∈ΩN

ρ(x)

)
,

then, the expected hitting time of ∂, starting at stationarity can be estimated asymptoti-
cally by

lim
N→∞

Eρ[τ∂ ]

R/ρ(∂)
= 1 , (4.25)

where

R =
T∑
t=0

P∂(Wt = ∂) .

In our setting, the target state is actually a target set, namely Gi. This is not a big
issue: indeed, if one considers the Markov kernel P̃i on Ṽi = (Vi \Gi)∪∂, where the state
∂ represent the merging of Gi into a single state and the transitions are set to

P̃i(x, y) =


Pi(x, y) x, y ̸= ∂∑

z∈Gi
Pi(x, z) x ̸= ∂ and y = ∂∑

z∈Gi

πi(z)
πi(Gi)

Pi(z, y) x = ∂ and y ̸= ∂∑
z∈Gi

∑
v∈Gi

πi(z)
πi(Gi)

Pi(z, v) x = ∂ and y = ∂

,

then one can realize at once that the restriction of P̃i to Vi\∂ coincides with the restriction
of Pi to Vi \ Gi. Moreover, by direct computation, it is possible to see that, as soon as
Pi has a unique stationary distribution πi, then P̃i has a unique stationary distribution
π̃i satisfying

π̃i(x) =

{
πi(x) x ̸= ∂

πi(Gi) x = ∂
.
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For each i = 1, . . . ,m, we take the choice Π = P̃i. Replacing ρ(∂) by πi(Gi), and R by

R̃i = 1 +

T̃i∑
t=1

P̃ t
i (∂, ∂) , (4.26)

where

T̃i = t̃mix,i × log

(
1/min

x∈Ṽi

π̃i(x)

)
,

and

t̃mix,i = inf

{
t ≥ 0

∣∣∣∣max
x∈Ṽi

∥P̃ t
i (x, ·)− π̃i∥TV ≤ (2e)−1

}
, (4.27)

we may estimate the quantity
Eπi [τGi ] = Ẽπ̃i [τ∂ ]

as in (4.25), and provide the following rewriting of Theorem 4.18, in which we achieve
a first-order asymptotic approximation of the rate l, and which will be proved in the
following subsection.

Proposition 4.19. With high probability, for every i ≤ m there exists a probability
distribution µ⋆

i , supported on Vi \ Gi, and a real number li such that

PGi
µ⋆
i
(τGi > t) = (1− li)

t ,

where li satisfies
li = (1 + oP(1))λα log(n) . (4.28)

In particular

max
i≤m

sup
t≥0

∣∣∣PGi
µ⋆
i
(λα log(n) · τGi > t)− e−t

∣∣∣ = oP(1) .

Before embarking on the proofs we provide a brief scheme of the upcoming state-
ments. The proof pf Proposition 4.19 is straightforward if we can provide a control on
the objects which appeared above. This is done in Lemmata 4.20 and 4.21. To prove
the two lemmata, will rely on Lemma 4.22. We will first prove the latter, and then prove
Lemmata 4.20 and 4.21.

Lemma 4.20. Recalling the definition in (4.27)

P
(
max
i≤m

t̃mix,i ≤ 6tent log(n)
)
= 1− o(1) . (4.29)

Lemma 4.21. Recalling the definition in (4.26)

max
i≤m

R̃i = 1 + oP(1).

Proof of Proposition 4.19. Plugging the estimates in Lemmata 4.17, 4.20, and 4.21 into
Theorem 4.18 (and recalling Theorem 4.4 and Proposition 4.5), Proposition 4.19 follows
at once.

143



Chapter 4. Mixing trichotomy for the SRW on directed block models

To conclude, we just need to prove the two lemmata. To this aim and to ease the
notation, in what follows we will call

µGi(x) =
πi(x)1x∈Gi

πi(Gi)
, x ∈ Vi , (4.30)

the restriction of πi to Gi and we set

µout
Gi

(x) = µGiPi(x) , x ∈ Vi . (4.31)

The latter is the distribution after one step starting at a random gate sampled with
probability proportional to πi. With this notation

R̃i =

T̃i∑
t=0

PGi
µGi

(X̄t ∈ Gi) = 1 +

Ti∑
t=1

PGi
µGi

(X̄t ∈ Gi) ,

where (X̄t)t≥0 is the process in which the transition probabilities out of any vertex in Gi

are set to µout
Gi

, and the other transition probabilities are the same as X̃ (and X). Notice

that X̃ is a projection of X̄, and clearly,

PGi
µGi

(X̄t ∈ Gi) = PGi
∂ (X̃t = ∂) , ∀t ≥ 0 .

The proofs of Lemmata 4.20 and 4.21 rely on the following technical estimate, which
will be immediately proved.

Lemma 4.22. Let

τ̄Gi = inf
{
t ≥ 0 | X̄t ∈ Gi

}
and τ̄+Gi

= inf
{
t ≥ 1 | X̄t ∈ Gi

}
.

Then
max
i≤m

PGi
µGi

(τ̄+Gi
≤ log(n)3) = oP

(
n−1/3

)
. (4.32)

Proof of Lemma 4.22. We consider the following partial construction of Gi:

1. For each x ∈ Vi, sample a random variable D+
x with distribution Bin(n− 1, p).

2. Attach, to each x ∈ Vi, D
+
x tails of arrows.

3. To each tail, attach a Ber(α) random variable and call marked a tail for which
such a random variable is 1.

We call Σ the set of all possible realizations generated by the randomness just described.
Notice that, in order to end up with a (sub-)graph having the correct distribution, it
is enough to select, for each vertex x ∈ Vi with D+

x tails the same number of (distinct)
vertices in Vi \ {x}. Notice also that the set of gates is fully determined by Σ, since it
coincides with the set of vertices having at least one marked tail.
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Let M be the set of probability measures on Gi defined as

M =

{
µ ∈ P(Gi) | max

x,y∈Gi

µ(x)

µ(y)
≤ C

}
, (4.33)

for some bounded C > 0 that depends on C1, C2 in Proposition 4.5. It holds

P(µGi ̸∈ M) = o(1) . (4.34)

where µGi is the probability measure defined in Eq. (4.30). This is an immediate
consequence of Theorem 4.4 and Lemma 4.17. Let F ⊆ Σ be the set of realizations
such that the event in Proposition 4.5 concerning (D+

x )x∈Vi is satisfied, and such that
1
2nαλ log(n) ≤ |Gi| ≤ 2nαλ log(n) . Thanks to Proposition 4.5 and Eq. (4.22) in the
proof of Lemma 4.17, it holds

P(F∁) = o(1). (4.35)

We will later show that

max
σ∈F

P
(
max
µ∈M

PGi
µ (τ̄+Gi

≤ log(n)3) > n−1/3 | σ
)

= o(1) , (4.36)

but let us first point out how the desired result can be derived from (4.36):

P
(
PGi

µGi
(τ̄+Gi

≤ log(n)3) > n−1/3
)

≤ P
(
PGi

µGi
(τ̄+Gi

≤ log(n)3) > n−1/3,F
)
+ P(F∁)

≤ P
(
PGi

µGi
(τ̄+Gi

≤ log(n)3) > n−1/3,F , µGi ∈ M
)
+ P(µGi ̸∈ M) + P(F∁)

≤ max
σ∈F

P
(
max
µ∈M

PGi
µ (τ̄+Gi

≤ log(n)3) > n−1/3 | σ
)
+ P(µGi ̸∈ M) + P(F∁) = o(1) .

The three terms on the r.h.s. of the latter display vanish due to (4.36), (4.34), and (4.35),
respectively. This would complete the proof of (4.32).

We are left to prove (4.36). Observe that if µ ∈ M, then

max
x∈Gi

µ(x) ≤ min
y∈Gi

µ(y)C ≤ C/|Gi|.

As a consequence, for any σ ∈ F and all n large enough, so that C < log(n),

P
(
max
µ∈M

PGi
µ (τ̄+Gi

≤ log(n)3) > n−1/3 | σ
)

≤ P

∑
x∈Gi

PGi
x (τ̄+Gi

≤ log(n)3)

|Gi|
>

1

n1/3 log(n)
| σ

 .

(4.37)

Write µu for the uniform distribution on Gi, and consider the chain ( ¯̄X)t≥0 in which,
when visiting Gi, the chain is instantaneously set at some vertex in Gi u.a.r.. Clearly,

PGi
µu
(τ̄+Gi

≤ log(n)3) = PGi
µu
(¯̄τ+Gi

≤ log(n)3) , (4.38)
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where ¯̄τ+Gi
is the analogue of τ̄+Gi

for the chain ( ¯̄Xt)t≥0. By Markov’s inequality,

max
σ∈F

P
(
PGi

µu
(¯̄τ+Gi

≤ log(n)3) >
1

n1/3 log(n)
| σ
)

≤ log(n)n1/3max
σ∈F

E[PGi
µu
(¯̄τ+Gi

≤ log(n)3) | σ] .
(4.39)

Call Pan
σ the measure associated to the annealed walk conditioned to σ and with starting

distribution µu, which is defined as follows:

(i) Select an element of Gi u.a.r.;

(ii) select one of its tails u.a.r., match it to a vertex u.a.r. in Vi and move the random
walk to such a vertex;

(iii) as soon as the vertex currently visited by the walk is not in Gi continue in this
fashion, but if the selected random tail is already matched, then simply follow the
edge while, if it is not matched, match it to a vertex chosen u.a.r. among those
that are not currently connected to the present vertex yet, and move the random
walk accordingly;

(iv) if instead the vertex visited by the walk at time r ≥ 1 is some v ∈ Gi, then select
a vertex w ∈ Gi with probability µu, one of its tail u.a.r., and move the random
walk as described above. In this case, set ¯̄τ+,an

G = r.

Notice that, for any σ,

E[PGi
µu
(¯̄τ+Gi

≤ log(n)3) | σ] = Pan
σ (¯̄τ+,an

G ≤ log(n)3) . (4.40)

Let At be the event in which there exists two distinct times s, s′ ∈ [1, t] such that
the random walk visits the same vertex at s and s′. Since we are focusing on σ ∈ F , for
t = log(n)3, and large n, it holds

Pan
σ (¯̄τ+,an

Gi
≤ t) ≤ Pan

σ (¯̄τ+,an
Gi

≤ t,A∁
t ) + Pan

σ (At)

≤ t
|Gi|
n

+
t2

n
≤ 2nαλ log(n)4 + log(n)6

n
= o(n−1/2 log7(n)) ,

(4.41)

and therefore (4.36) follows at once by (4.37), (4.38), (4.39), (4.40) and (4.41).

We can now prove Lemmata 4.20 and 4.21.

Proof of Lemma 4.20. Consider again the process (X̄t)t≥0 in which the transition prob-
abilities out of any vertex in Gi are given by the distribution µout

Gi
defined in Eq. (4.31),

and denote with P̄i its transition kernel. Called π̄i the stationary distribution associated
to P̄i, and defined

t̄mix,i = inf

{
t ≥ 0

∣∣∣∣max
x∈Vi

∥P̄ t
i (x, ·)− π̄i∥TV ≤ (2e)−1

}
,
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it is immediate that t̃mix,i ≤ t̄mix,i, since the process X̃ is a projection of X̄. Notice also
that, thanks to Lemma 4.17,

∥π̄i − πi∥TV ≤ πi(Gi) = oP(1) . (4.42)

We are interested in bounding, for S = 3tent log(n),

max
x∈Vi

∥∥P̄ 2S
i (x, ·)− π̄i

∥∥
TV

.

Let now, for A ⊂ Vi and x ∈ Vi,

Ox(A) :=
∣∣PGi

x (X̄2S ∈ A, τ̄Gi ≤ 2S)−PGi
x (Xi

2S ∈ A, τGi ≤ 2S)
∣∣

=

∣∣∣∣∣∣
2S∑
s=0

∑
y∈Gi

PGi
x (τ̄Gi = s, X̄s = y)

[
PGi

µout
Gi

(X̄2S−s ∈ A)−PGi
y (Xi

2S−s ∈ A)

]∣∣∣∣∣∣ .
Since X̄ can be perfectly coupled, up to the first hitting of the set Gi, with the simple
random walk on Gi, that in this proof we explicitly denote by Xi to avoid confusion, we
have

max
x∈Vi

∥∥P̄ 2S
i (x, ·)− π̄i

∥∥
TV

≤ max
x∈Vi

∥P 2S
i (x, ·)− πi∥TV +max

x∈Vi

max
A⊂Vi

Ox(A) + oP(1)

= max
x∈Vi

max
A⊂Vi

Ox(A) + oP(1) ,
(4.43)

where we used Corollary 4.6. It holds

Ox(A) ≤ Osmall
x (A) +Olarge

x (A) , (4.44)

where

Osmall
x (A) :=

∣∣∣∣∣∣
S∑

s=0

∑
y∈Gi

PGi
x (τ̄Gi = s, X̄s = y)

[
PGi

µout
Gi

(X̄2S−s ∈ A)−PGi
y (Xi

2S−s ∈ A)

]∣∣∣∣∣∣ ,
Olarge

x (A) :=

∣∣∣∣∣∣
2S∑
s=S

∑
y∈Gi

PGi
x (τ̄Gi = s, X̄s = y)

[
PGi

µout
Gi

(X̄2S−s ∈ A)−PGi
y (Xi

2S−s ∈ A)

]∣∣∣∣∣∣ .
On the one hand, for what concerns Olarge

x (A), since X̄ is coupled with Xi up to time
τ̄Gi , bounding the quantity between square brackets by 2, using Corollary 4.6 and Lemma
4.17 it follows, for large n,

max
x∈Vi

max
A⊂Vi

Olarge
x (A) ≤ 2max

x∈Vi

2S∑
s=S

PGi
x (Xi

s ∈ Gi)

≤ 5Sπi(Gi) = oP(1) .

(4.45)
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On the other hand, Osmall
x (A) can be bounded as follows: for any A ⊂ Vi

max
x∈Vi

Osmall
x (A) ≤ max

y∈Gi

max
s≤S

∣∣∣∣PGi

µout
Gi

(X̄2S−s ∈ A)−PGi
y (Xi

2S−s ∈ A)

∣∣∣∣
≤ max

y∈Gi

max
s≤S

∣∣∣∣PGi

µout
Gi

(X̄2S−s ∈ A)− π̄i(A)

∣∣∣∣+
+max

y∈Gi

max
s≤S

∣∣PGi
y (Xi

2S−s ∈ A)− πi(A)
∣∣+ |πi(A)− π̄i(A)|

= max
s≤S

∣∣∣∣PGi

µout
Gi

(X̄2S−s ∈ A)− π̄i(A)

∣∣∣∣+ oP(1) ,

(4.46)

where we added and subtracted πi(A)+ π̄i(A), used twice the triangle inequality, Corol-
lary 4.6 and (4.42). Taking the maximum over A ⊂ Vi, we get

max
A⊂Vi

max
x∈Vi

Osmall
x (A) ≤ max

s≤S

∥∥∥µout
Gi

P̄ 2S−s
i − π̄i

∥∥∥
TV

+ oP(1)

≤ max
s≤S

∥∥∥µout
Gi

P 2S−s
i − πi

∥∥∥
TV

+ oP(1) = oP(1)
(4.47)

where for the last equality we simply applied Theorem 4.2, while for the second inequality,
we added and subtracted µout

Gi
P 2S−s
i − πi, used the triangle inequality, and used that,

thanks to Lemma 4.22,

max
s≤S

max
A⊂Vi

∣∣∣∣∣∣
∑
y∈Vi

µout
Gi

(y)
(
P̄ 2S−s
i (y,A)− P 2S−s

i (y,A)
)∣∣∣∣∣∣ ≤ PGi

µout
Gi

(τ̄Gi < 2S) = oP(1) .

(4.48)

At this point, the desired result, Eq. (4.29), follows by putting together (4.43), (4.44),
(4.45), (4.46), (4.47) and (4.48).

Proof of Lemma 4.21. Follows at once by Lemmata 4.20 and 4.22 and the fact that, by
Theorem 4.4 and Proposition 4.5,

log

(
1/min

x∈Ṽi

π̃i

)
= (1 + oP(1)) log(n) .

Remark 4.23. In the following, it will be useful to consider the transition matrix P̂i

of a SRW on Vi, where the external out-edges of Gi (i.e, pointing towards another com-
munity) are canceled instead of being rewired. Notice that the very same conclusion of
Lemma 4.22, can be obtained replacing Pi, with P̂i to define the modified random walk
X̄. Indeed, the only point at which the argument differs is the step (iv) in the definition
of the annealed walk (right below (4.39)): instead of selecting a tail of w ∈ Gi u.a.r., one
has to select u.a.r. a non-marked tail of w ∈ Gi. Nevertheless, up to the first return to
the set Gi, the two processes coincide.
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Notice also that the property of belonging to M in (4.33) is stable under small pertur-
bations. Then, Lemma 4.22 holds for any approximation µ̌ of µGi (which is defined in
(4.30)) such that supx∈Gi

µ̌(x)/µGi(x) is w.h.p. bounded. Later, our choice of µ̌ we will
be the restriction to Gi of the distribution P s

i (x, ·), for some s ≥ log(n)2 and x ∈ Vi.
Indeed, Corollary 4.6 ensures that P s

i (x, ·) can be w.h.p. approximated in ℓ∞-norm by
πi, and then, on this event, its restriction to Gi is near to µGi in ℓ∞-norm.

4.4.3 The coupling

For an arbitrary initial state x ∈ Vi, we will now consider a coupled construction of
the simple random walk on G started at x, (Xt)t≥0, and a toy process (Yt)t≥0, which is
related to the quasi-stationary behavior of the random walk out of Gi.

Definition 4.24. We consider the joint Markov processes (Xt, Yt)t≥0:

1. On the one hand, marginally (Xt)t≥0 is the simple random walk on G with initial
distribution δx for some x ∈ Vi;

2. on the other hand, marginally (Yt)t≥0 is a random walk on Gi, started at the
quasi-stationary distribution µ⋆

i , such that, when it hits Gi, at the next step Y is
reinitialized at µ⋆

iPi. Moreover, we enrich such a process by appending a mark,
(κt, ρt), defined as follows: we start by setting (κ0, ρ0) = (0, 0) and, whenever at
some time t > 0, Yt = v, for some v ∈ Gi, we set κt = κt−1+1 and toss a coin with
probability of success O+

v /D
+
v : if it is a success, we set ρt = ρt−1 + 1, otherwise

ρt = ρt−1.

We couple the two processes as follows: the coupling is articulated in stages, and each
stage is made by two steps each, (A) and (possibly) (B), where

(A) we use the optimal coupling between P t
i (x, ·) and µ⋆

iP
t
i (·) up to the first time t such

that:

(i) either Xt = Yt; in this case, we then let the two walks evolve following the
same path up to the hitting time of the set Gi.

(ii) or Xt ̸= Yt and Yt ∈ Gi; in this case we declare the coupling as failed and
continue the construction of the two processes independently.

(iii) or Xt ̸= Yt, and Xt traverses a rewired edge; in this case, we declare the
coupling as failed and continue the construction of the two processes indepen-
dently.

(B) In case (i), call v ∈ Gi the vertex visited by the two processes and:

(iv) Toss a coin with success probability O+
v /D

+
v :

∗ if it results in a head, we say that the random walks X traverses a rewired
edge of v u.a.r., declare the coupling as successful and continue the con-
struction of the two processes independently;
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∗ if it results in a tail, then let the random walk X choose one of the internal
out-edges of v u.a.r., and let the random walk Y choose a new starting
point according to µ⋆

iPi. After that, repeat stage (A).

We will call P̂Gi
x,µ⋆

i
the probability measure associated to the coupling just described.

In short, the random iterative coupling with measure P̂Gi
x,µ⋆

i
is successful if Xt and Yt

meet before hitting Gi at any iteration, until, moving together, they traverse a rewired
edge. We now state that this happens with high quenched probability.

Proposition 4.25. Let S denote the event that the coupling in Definition 4.24 is suc-
cessful. Then

max
i≤m

max
x∈Vi

P̂Gi
x,µ⋆

i
(S) = 1− oP(1) .

Before presenting the proof, let us point out that on the event S, the time τjump

at which the random walk does its first inter-community jump coincides with a much
simpler random time, namely

τρ = inf{t ≥ 0 | ρt > 0} . (4.49)

Thanks to the fact that (Yt)t≥0 is reinitialized to µ⋆
iPi any time it hits Gi, and since

µ⋆
iPi(Gi) = li, we have that (κt − κt−1)t≥1 are i.i.d. Bernoulli random variables with

parameter li. Therefore, the quantities

σk = inf{t ≥ 0 | κt = k} − inf{t ≥ 0 | κt = k − 1} , k ≥ 1 ,

are i.i.d. geometrically distributed with parameter li. Since, thanks to Proposition 4.19,
li = (1 + oP(1))αλ log(n), as an immediate corollary, we have the following estimate,
which will be useful later.

Corollary 4.26. For every k ≥ 0 it holds

max
i≤m

P̂Gi
µ⋆
i

(
σk < n

1
3

)
≤ n− 1

7 .

Proof. It holds

P̂Gi
µ⋆
i

(
σk < n

1
3

)
= 1− (1− li)

n
1
3 ∼ 1− exp (−n

1
3αλ log n).

Since α ≪ n−1/2 log2(n), then the latter decays as n
1
3α log n ≪ n− 1

7 .

Notice that if in stage (B) we had thrown, at each time t that κt − κt−1 = 1, a coin
with success probability (λ log(n))−1, then we could immediately deduce that the time
of the first success is asymptotically exponentially distributed with rate α. Of course, for
the process (Yt)t≥0, ”the probability of success“ is not (λ log(n))−1: it depends on the
gate visited by the process (through its out-degree and the number of its rewired out-
edges). The next proposition shows that, thanks to a sort of homogenization property,
the toy model just described actually captures the correct picture.
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Proposition 4.27. Recalling the definition of τρ in (4.49)

max
i≤m

sup
t≥0

∣∣∣P̂Gi
µ⋆
i
(ατρ > t)− e−t

∣∣∣ = oP(1) . (4.50)

Being the coupling w.h.p. successful by Proposition 4.25, as a consequence of Propo-
sition 4.27 we deduce the following.

Corollary 4.28. Recalling the definition of (4.14),

max
i≤m

max
x∈Vi

sup
t≥0

∣∣PG
x (ατjump > t)− e−t

∣∣ = oP(1) .

Proof of Proposition 4.27. Fix i ≤ m. The proof is articulated in five steps:

[1] First, we show that the density of gates in Gi which have a out-degree different (at
first order) than λ log(n) is at most log(n)−2;

[2] Then we show that the same is true for the gates x ∈ Gi which have O+
x ≥ 2;

[3] Then we show that the distribution of the first element of Gi visited by the random
walk initialized at µ⋆

i is essentially uniform;

[4] Call nice the subset of gates which do not have the properties in step [1] and [2].
We show that the first log(n)3/2 visits to Gi occur at nice gates;

[5] We wrap up the argument developed in the previous steps to conclude the validity
of (4.50).

Step [1]. Call

Eε =
{
#
{
x ∈ Gi :

∣∣D+
x − λ log(n)

∣∣ ≥ ελ log(n)
}
> |Gi| log(n)−2

}
.

As mentioned, we want to show that P(Eε) = o(1), for some ε = o(1). Notice the
distribution of the out-degree of x conditioned on the event {x ∈ Gi} can be written
explicitly as follows: for any j ∈ [1, n]

P(D+
x = j|x ∈ Gi) =

P(x ∈ Gi|D+
x = j)P(D+

x = j)

P(x ∈ Gi)

=
(1− (1− α)j)P(D+

x = j)∑n
k=1(1− (1− α)k)P(D+

x = k)

=
(1− (1− α)j)P(D+

x = j)

1− (1− αp)n
≤ 2P(D+

x = j) .

Since by the Chernoff bound it holds

P
(
|D+

x − λ log(n)| > ε log(n)
)
≤ exp

(
−1

3ε
2λ log(n)

)
,
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we get
P
(
|D+

x − λ log(n)| > ε log(n) | x ∈ Gi

)
≤ 2 exp

(
−1

3ε
2λ log(n)

)
.

Now, notice that, thanks to Eq. (4.23),

P(Eε) = P
(
Eε ∩ {|Gi|/(nαλ log(n)) ∈ [1/2, 2]}

)
+ o(1) .

On the event {|Gi|/(nαλ log(n)) ∈ [1/2, 2]}, we can use the union bound and the fact
that log

(
N
m

)
= m log(Nm)(1 + o(1)) ≤ 2m log(Nm), for m ≪ N , to get

P
(
Eε ∩ {|Gi|/(nαλ log(n)) ∈ [1/2, 2]}

)
≤ max

C∈[ 12 ,2]

(
2nαλ log(n)

Cnαλ log(n)−1

)(
2 exp

(
−1

3ε
2λ log(n)

))Cnαλ log(n)−1

≲ max
C∈[ 12 ,2]

exp

(
2
Cnαλ

log(n)
log

(
2

C
log(n)2

))(
2 exp

(
−1

3ε
2λ log(n)

))Cnαλ
log(n)

≲ max
C∈[ 12 ,2]

exp

(
2Cnαλ

log(log(n)2)

log(n)

)
2

Cnαλ
log(n) exp

(
−C

3 ε
2λ2nα

)
≤ exp

(
nαλ

(
8
log log(n)

log(n)
+

2 log(2)

log(n)
− ε2

6

λ

))
.

Therefore, we can choose, for example, ε = log(n)−1/3, and have

P(Eε) = o(1) . (4.51)

Step [2]. Call Gi,bad = {x ∈ Gi | O+
x ≥ 2} , and consider the event

R =
{
|Gi,bad| > |Gi| log(n)−2

}
.

To show that the latter has a vanishingly small probability it is enough to realize that

E[|Gi,bad|] ≤ nα2λ2 log(n)2 .

Indeed, by Markov inequality, and recalling α ≪ n−1/2 log(n)2,

P (R) = P
(
R∩ {|Gi| ≥ 1

2E[|Gi|]}
)
+ o(1)

≤ 2nα2λ2 log(n)4

nαλ log(n)
+ o(1) −−−−−→

n→+∞
0 .

(4.52)

Step [3]. Now we focus on the probability distribution on the set of gates, according
to which the first gate is visited, when starting at quasi-stationarity. We define

µin
Gi
(x) =

∑
y∈Vi\Gi

µ⋆
i (y)P (y, x)∑

y∈Vi\Gi
µ⋆
i (y)

∑
z∈Gi

P (y, z)

= (1 + oP(1))

∑
y∈Vi\Gi

µ⋆
i (y)P (y, x)

αλ log(n)
, x ∈ Gi ,
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where the second line is due to µ⋆
iP (Gi) = li and the oP(1) term is uniform over x ∈ Gi.

We claim that

max
x ̸∈Gi

µ⋆
i (x)

πi(x)
≤ 1 + oP(1) .

To prove it, recalling the definition of S in Corollary 4.6, we follow the same argument
as in [Manzo et al., 2021, Eqs. 5.15–5.19]. We have that, for any x ̸∈ Gi,

µ⋆
i (x) = (1− li)

−S
∑

y∈Vi\Gi

µ⋆
i (y)[Pi]

S
Gi
(y, x)

≤ (1− li)
−S

∑
y∈Vi\Gi

µ⋆
i (y)P

S
i (y, x)

= (1 + oP(1))(1− li)
−S

∑
y∈Vi\Gi

µ⋆
i (y)πi(x)

= (1 + oP(1))(1− li)
−Sπi(x)

= (1 + oP(1))πi(x) ,

where the first line follows by the definition of quasi-stationary distribution; the second
line follows by the trivial fact [Pi]

S
Gi
(y, x) ≤ PS

i (y, x) for any x, y ̸∈ Gi; the third line
follows by Corollary 4.6 and the fact that, thanks to Theorem 4.4 and Proposition 4.5,
πi(x)+oP(1) = (1+oP(1))πi(x) uniformly in x ∈ Vi; in the fourth line we simply took the
sum over y ∈ Vi \Gi; and in the last line we used that, thanks to Eq. (4.28), liS = oP(1).
Therefore,

max
x∈Gi

µin
Gi
(x) ≤ (1 + oP(1))max

x∈Gi

∑
y∈Vi\Gi

πi(y)P (y, x)

αλ log(n)

≤ (1 + oP(1))max
x∈Gi

πi(x)

αλ log(n)
= OP

(
1

|Gi|

)
,

(4.53)

where the last bound follows from Theorem 4.4 and Lemma 4.17. In other words, the
gates visited by the process are essentially uniformly distributed.

Step [4]. Fix ε = log(n)−1/3 and call

Gi,nice =
{
x ∈ Gi \ Gi,bad | D+

x ∈ [(1− ε)λ log(n), (1 + ε)λ log(n)]
}
.

Notice that, thanks to steps [1] and [2], in particular Eqs. (4.52) and (4.51) respectively,

P
(
|Gi,nice|
|Gi|

≥ 1− 2 log(n)−2

)
= 1− o(1) . (4.54)

Call (Bk)k≥1 the the sequence of vertices in Gi that are visited by the process (Yt)t≥0.
Consider the event

W = {Bk ∈ Gi,nice, ∀k ≤ log(n)3/2}.
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From step [3], particularly (4.54) and (4.53), it follows

P̂Gi
µ⋆
i

(
W
)
= 1− oP(1) . (4.55)

Step [5]. Now recall the notation (κt, ρt)t≥0 given in Definition 4.24 and τρ as in
Eq. (4.49). Set s = t/α. We want to control

P̂Gi
µ⋆
i
(τρ > s) = P̂Gi

µ⋆
i
(ρs = 0) = P̂Gi

µ⋆
i
(ρs = 0,W) + P̂Gi

µ⋆
i
(ρs = 0,W∁) . (4.56)

The second term on the r.h.s. of (4.56) is oP(1) thanks to (4.55). Let us bound the other
one. Recalling that (κs−κs−1)s≥1 are i.i.d. Bernoulli random variables with parameter li,
it immediately follows that κs ∼ Bin(s, li), so that, as li = λα log(n)(1 + oP(1)) = oP(1),
it holds

V̂ar
Gi

µ⋆
i
(κs) = s(li − l2i ) = sλα log(n)(1 + oP(1)) = ÊGi

µ⋆
i
[κs](1 + oP(1)).

Taking δ = (log log log(n))−1 and s ∈
[

1
αCn

, Cn
α

]
, for some sequence Cn diverging suffi-

ciently slowly, by Chebychev inequality,

P̂Gi
µ⋆
i

(∣∣∣∣ κs
sαλ log(n)

− 1

∣∣∣∣ ≥ δ

)
≤

ÊGi
µ⋆
i
[κs]

δ2(ÊGi
µ⋆
i
[κs])2

(1 + oP(1))

≤ (log log log(n))2Cn

λ log(n)
(1 + oP(1)) = oP(1) .

In conclusion, the first term on the r.h.s. of (4.56) can be bounded, for s as above, by

P̂Gi
µ⋆
i
(ρs = 0) = (1− oP(1))P̂

Gi
µ⋆
i

(
ρs = 0

∣∣∣∣W ∩
{∣∣∣∣ κs

sαλ log(n)
− 1

∣∣∣∣ < δ

})
+ oP(1)

= (1− oP(1))

(
1− 1

(1 +O(ε))λ log(n)

)(1+O(δ))sαλ log(n)

+ oP(1)

= e−sα + oP(1) ,

where we used that ε and δ are vanishing and, in the second line, we used the conditioning
and that, for sα log(n) ≪ log(n)3/2, on the event W, the gates visited by the random
walk have degrees in [(1− ε)λ log(n), (1 + ε)λ log(n)]. Then, provided that Cn diverges
sufficiently slowly, we get

max
s∈

[
1

αCn
,Cn

α

] ∣∣∣P̂Gi
µ⋆
i
(τρ > s)− e−sα

∣∣∣ = oP(1) .

The proof ends recalling that sα = t.

We are now in a good position to present the proof of Proposition 4.25.
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Proof of Proposition 4.25. First of all we observe the following fact: if ρt > 0 for some
t ≥ 0 then, at time t, we have sufficient information to declare if the coupling is suc-
cessful or failed . Therefore, thanks to Proposition 4.27, with probability 1 − oP(1) the
coupling consists of less than log(n)3/2 stages. Moreover, thanks to Theorem 4.2 and the
subadditivity of the total variation distance, the probability of a meeting before time
log(n)2 is 1− oP(n

−1) by Corollary 4.6. This means that the probability that along the
coupling there is a stage in which the two processes meet after time log(n)2 is oP(1).

Now, each stage the coupling might fail because of two alternative reasons:

1. On the one hand, a stage might produce a failure if (ii) in Definition 4.24 happens:
the process Y hits Gi before meeting the first process under optimal coupling. By
Corollary 4.26 the probability that Y hits Gi before time log(n)2 is oP(n

− 1
7 ). Hence,

the probability that the coupling fails due to this kind of event is oP(log(n)
3/2n− 1

7 ).

2. On the other hand, a stage might produce a failure if (iii) in Definition 4.24 hap-
pens: the process X might visit Gi and traverse a rewired edge before time log(n)2.
For what concerns the first stage, in which the starting point of the walk is arbi-
trary, thanks to Proposition 4.12, the probability of this event is oP(1). For any
successive stage, first notice that after time log(n)2, by Corollary 4.6, the distribu-
tion of the random walk X can be w.h.p. approximated in ℓ∞-norm by πi. Thanks
to Lemma 4.22, complemented with Remark 4.23, we have that the expected num-
ber of visits to Gi within time log(n)2 is oP(n

−1/3). Hence, the probability that

there exists a stage in which Gi is visited before log(n)2 is oP(log(n)
3/2n− 1

3 ).

4.4.4 Proof of Proposition 4.15 and Theorem 4.16

We are almost ready to conclude the proof of Proposition 4.15, and then to show how
Theorem 4.16 can easily be deduced from it using the same set of arguments used to
deduce Theorem 4.14 from Proposition 4.10.

We start by stressing that, thanks to Corollary 4.28, we know that the jumping time
of the process starting at any x ∈ V , properly scaled, is well approximated by a standard
exponential random variable. We now want to show that the jumps occur uniformly at
random among communities.

Lemma 4.29. For
√
n log(n)−2 ≪ α−1 ≪ λn log(n)

max
i≤m

max
j ̸=i

max
x∈Vi

∣∣∣∣PG
x (Xτjump ∈ Vj)−

1

m− 1

∣∣∣∣ = oP(1) .

Proof. Notice that vertices in Gi,nice have, by definition, a unique rewired edge. To each
y ∈ Gi,nice, one can assign a mark J(y), chosen u.a.r. in [m] \ {i}, representing the
community to which the unique rewired edge of y connects after rewiring. We will then
partition

Gi,nice = ⊔j ̸=iGj
i,nice ,
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where Gj
i,nice is the subset of Gi,nice having mark j. Since |Gi,nice| = ωP(1), and by the

uniform choice,

max
i≤m

max
j ̸=i

∣∣∣∣∣ |G
j
i,nice|/|Gi,nice|
(m− 1)−1

− 1

∣∣∣∣∣ = oP(1) . (4.57)

Moreover, specializing (4.53) to the case x ∈ Gi,nice, where D+
x can be well estimated,

one has

max
x∈Gi,nice

µin
Gi
(x) ≤ (1 + oP(1))

1

|Gi|
= (1 + oP(1))

1

|Gi,nice|
, (4.58)

where in the last step we used (4.54). As a consequence, the hitting measure of Gi is
asymptotically uniform on Gi,nice. In conclusion, the desired result follows by putting
together Proposition 4.25, (4.57) and (4.58).

Thanks to Lemma 4.29 we can couple the evolution of the non-Markovian process
(c(Xt))t≥0 with the evolution of a simple random walk on a complete graph with m
vertices, with transitions as in (4.7). Using this fact, we can finally prove Proposition
4.15 and Theorem 4.16.

Proof Proposition 4.15. We consider the following iterated version of the coupling in
Definition 4.24:

• We start the coupling at some x ∈ Vi for some i ≤ m.

• If the coupling succeeds and at time τjump the process is found at some y ∈ Vj with
j ̸= i, then the coupling is restarted with the initial distribution δy ⊗ µ⋆

j .

• Iterate this procedure up to the first iteration at which the corresponding coupling
fails.

Call P̂G
x the measure associated to this coupling, and fix an arbitrary sequence of integers

C ≡ Cn ≫ 1. Call Esucc
C the event in which the coupling succeeds up to the C2-th

iteration. Then, thanks to Proposition 4.25

min
x∈V

P̂G
x (Esucc

C ) = (1− oP(1))
C2

. (4.59)

Call now E iter
C the event in which by time t = Cα−1 there are at most C2 iterations.

Then,

min
x∈V

P̂G
x (E iter

C ∩ Esucc
C ) = min

x∈V
P̂G

x (Esucc
C )P̂G

x (E iter
C | Esucc

C ) = (1− oP(1))
2C2

, (4.60)

where in the second equality we used (4.59) and Corollary 4.28 on a union bound on the
C2 iterations of the coupling, which ensures that—conditionally on the event Esucc

C —the
length of each iteration is asymptotically geometrically distributed with parameter α.
As a consequence, the oP(1) in (4.60), is the maximal one among the errors in (4.59) and
Corollary 4.28. In conclusion, as soon as C ≫ 1 is chosen to diverge sufficiently slowly,
the iterative version of the coupling will be successful w.h.p. up to time t = Cα−1. In
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particular, up to that time, the number of iterations will be w.h.p. at most C2 and the
length of such iterations will be w.h.p. coupled to an independent geometric random
variable of rate α. Moreover, thanks to Lemma 4.29, the inter-community jump ending
each iteration is approximately uniformly distributed among the other communities.

Therefore, if (τ
(ℓ)
jump)ℓ≤C2 denotes the sequence of the lengths of the first C2 iterations,

we can couple the sequence
(
c(X

τ
(ℓ)
jump

)
)
ℓ≤C2 with the trajectory (of length C2) of the

process with transition matrix Q at a total-variation cost bounded by 1−C2oP(1). The
latter goes to 1 as soon as C diverges sufficiently slowly. At this point the desired result
follows at once by noting that if, for any t ≥ 0, we sample i.i.d. geometric random
variables of parameter α up to the first time in which their cumulative sum is above
t (hence, sampling the jump times), and then we sample the path of a simple random
walk on the complete graph, we can entirely reconstruct the trajectory of process with
transition matrix Q.

Proof of Theorem 4.16. The proof of this fact follows the same line of argument as in
Theorem 4.14. In our setting, Eq. (4.18) follows from Proposition 4.15 for any T ≪
Cα−1, where C ≫ 1 is as given in Proposition 4.15. The remainder of the argument
proceeds through the same steps, leading to the validity of Eq. (4.20) for any α−1 ≪
T ≪

√
Cα−1. Finally, by the monotonicity of the distance to equilibrium, the result

holds for any T ≫ α−1.

4.5 Critical and subcritical regime

In this section, we analyze the mixing behavior of the random walk in the regime
α−1 ≲ tent. This range of α includes both the subcritical and critical cases, described
in Eqs. (4.3) and (4.4). The proofs of these results are adaptations of the techniques
developed in Bordenave et al. [2018] and Chapter 3 to the current setting with multiple
communities. Since it will be useful later, in what follows we take α−1 = Ctent, for
C > 0. We again stress that Eq. (4.3) will hold only for C → 0.

4.5.1 Concentration results for random walk paths

In this section we recall some of the results given in the previous chapter, and restate
them in a different fashion. The first random object we need is the following. For each
oriented path p = (x0, . . . , xt) in G, let the quenched probability mass of p be

m(p) :=
t−1∏
s=0

P (xs, xs+1) .

We state the following result, which can be written in the shape of a Law of Large
Numbers for the variables log(P (Xs, Xs+1)).
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Theorem 4.30 (Quenched LLN). Let t = Θ(tent) and θ ∈ (0, 1) be such that there exists
ρ > 0, ρ ̸= 1, satisfying log θ = ρHt(1 + o(1)). Then

max
x∈V

∣∣PG
x (m(X0, X1, . . . , Xt) > θ)− 1{ρ>1}

∣∣ P−−−−−→
n→+∞

0.

Proof. The proof follows by a straightforward adaptation of the proof of Theorem 3.21
from Chapter 3 which, in turn, is an adaptation of the proof of [Bordenave et al., 2019,
Theorem 4]. Indeed, all vertex out-degrees have the same law, Bin(n, p), and the proof
in the above mentioned references does not rely on the details of the graph structure but
only on the out-degree distribution and the fact that the random walk is w.h.p. non-
backtracking on the timescale log(n).

This result has the same shape of Eq. (4.3) and is the core of the cutoff result. In fact,
it is easy to observe that θ = e−Htent = n−1 provides a threshold for the concentration
of the mass of the paths with length tent. That specific choice of θ is not covered by the
theorem above, but in Chapter 3 it is possible to find a quenched CLT refinement, valid
in this critical regime, to describe the cutoff window under a suitable hypothesis.

The second ingredient is provided by the following family of paths, which allows us
to capture typical features of SRW paths.

Definition 4.31 (Nice paths). Let ε ∈ (0, 1), and

η := 2εtent, σ := (1− ε)tent, t := σ + η + 1 = (1 + ε)tent + 1.

We say that a path p = (x, x1, x2, . . . , xt−1, y) of length t from x to y is nice if:

(i) the entire path is such that m(p) ≤ 1
n log3 n

;

(ii) the sub-path (xσ+1, . . . , xt−1, y) is the unique path in G of length at most η from
xσ to y;

(iii) the sub-path (x, x1, . . . , xσ) is contained in the random tree Tx(σ) constructed as
follows:

Fix a realization of G and a root node x ∈ V . Let G0 = T 0 := {x}. Then, for
ℓ ≥ 1:

(1) Let Eℓ := {(v, y) : v ∈ Gℓ−1, y ∈ B+
v (1) \ Gℓ−1}, be the set of edges which have

not been visited by the first ℓ− 1 iterations, and with tails in Gℓ−1.

(2) Choose e = (v, y) ∈ Eℓ such that, if px,v is the unique path from x to v in Gℓ−1,
m(px,v)(D

+
v )

−1 is not below e−(1+ε)Hσ and it is maximal among (v, y) ∈ Eℓ,
and v is at distance at most σ − 1 from x (use a deterministic criterion to
break ties).
If such edge does not exist, stop the procedure and set Tx(σ) := T ℓ−1;

(3) Generate Gℓ by adding e to Gℓ−1 ;
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(4) Generate T ℓ by adding e to T ℓ−1 if it results in a tree, otherwise T ℓ = T ℓ−1.

Finally, for every fixed x, y ∈ V , we define P t
nice(x, y) to be the probability that the simple

random walk started at x arrives at y at time t after having followed a nice path.

As mentioned above, nice paths w.h.p. host typical trajectories of the SRW:

Proposition 4.32. Fix β > 1 and t = βtent. Then, uniformly in a starting position in
V ⋆
ε , defined in Eq. (4.8), the SRW w.h.p. follows nice paths. More precisely,

max
x∈V ⋆

ε

(
1−

∑
y∈V

P t
nice(x, y)

)
= oP(1).

Proof. Thanks to Lemma 4.7, the requirements (ii) and (iii) of Definition 4.31 are
w.h.p. satisfied. Then, letting θ = (n log3 n)−1,

max
x∈V ⋆

ε

(
1−

∑
y∈V

P t
nice(x, y)

)
≤ max

x∈V ⋆
ε

PG
x (m(X0, X1, . . . , Xt) > θ) + oP(1),

and the l.h.s. (namely, the cost of requirement (i)) vanishes by Theorem 4.30.

4.5.2 Bounds on the total variation profile

With the latter tools at hand and with the help of Proposition 4.33 below, which is an
adaptation of Proposition 3.26 from Chapter 3, it is possible to bound effectively the
distance to equilibrium.

Proposition 4.33. Let α−1 ≲ tent, x ∈ V , and t = σ + η + 1 as in Definition 4.31.
Then,

P
(
P t
nice(x, y) ≤ (1 + δ)νc(x)(y) +

δ

n
, ∀x,∈ V ⋆

ε , ∀y ∈ V,

)
= 1− o(1), ∀δ > 0,

where Qσ+1(·, ·) is defined in Eq. (4.9) and, for i ≤ m,

νi(y) :=
1

n

∑
w∈V

Qσ+1(i, c(w))P η(w, y). (4.61)

Proof. Let x ∈ V ⋆
ε , as defined in Eq. (4.8), and let F denote the partial environment

generated by the tree Tx(σ) and B−
y (η), the in-neighborhood of y of depth η. We split

P t
nice(x, y) in m different addends. For i = 1, . . . ,m, let

P t
nice,i(x, y) =

∑
z∈V +

F (i)

∑
v∈V −

F

m(px,z)
1

D+
z
m(pv,y)1{z→v}1{p is a nice path},

where V +
F (i) is the set of vertices at depth σ in Tx(σ)∩Vi, and V −

F is the set of vertices in
∂B−

y (η) such that there exists a unique path of length η to y. Then, it holds P t
nice(x, y) =∑

i≤m P t
nice,i(x, y). Setting PF (·) := P(· |F), we have that, for z, v ∈ V ,

E
[
1{z→v}

D+
z

∣∣F] = E
[
1{z→v}

D+
z

∣∣F ,1{z→v} = 1

]
P ((z, v) ∈ E) =

pzv
np

(1 + o(1)).
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Then,

E[P t
nice,i(x, y) | F ] ≤

∑
v∈V −

F

∑
z∈V +

F (i)

m(px,z)E
[
1{z→v}

D+
z

∣∣F]m(pv,y)

≤
∑
v∈V −

F

∑
z∈V +

F (i)

m(px,z)
pzv
np

m(pv,y)(1 + o(1)).

Since the random walk performs w.h.p. a nice path with support concentrated on the
vertices of the tree Tx(σ) (Proposition 4.32), and thanks to Proposition 4.10, for i ≤ m,
w.h.p. it holds ∣∣∣∣∣∣∣

∑
z∈V +

F (i)

m(px,z)−Qσ(c(x), i)

∣∣∣∣∣∣∣ = o(1).

Then, observing that pzv
p = Q(c(z), c(v)), it holds

E[P t
nice,i(x, y) | F ] ≤ Qσ(c(x), i)

∑
v∈V −

F

Q(i, c(v))

n
m(pv,y)(1 + o(1))

≤ Qσ(c(x), i)
∑
w∈V

Q(i, c(w))

n
P η(w, y)(1 + o(1)).

Summing over i ≤ m, we conclude

E[P t
nice(x, y) | F ] ≤

∑
w∈V

Qσ+1(c(x), c(w))

n
P η(w, y)(1 + o(1)) (4.62)

= νc(x)(y)(1 + o(1)).

The proof then continues as in Proposition 3.26, employing Eq. (4.62), a suitable Bern-
stein’s concentration inequality, and averaging over the partial environment F .

We now proceed with our analysis, pursuing an upper bound and a lower bound for
the distance to stationarity at times t greater than βtent for β > 1, and smaller than
βtent for β < 1, respectively.

Upper bound. We start stating the following straightforward lemma.

Lemma 4.34. Let α−1 = Ctent. Then for each j = 1, . . . ,m, it holds π(Vj) =
1
m(1 +

oP(1)).

Proof. By definition of stationarity, for each j = 1, . . . ,m, and for t = (log(n))2,∣∣∣∣π(Vj)−
1

m

∣∣∣∣ ≤ ∑
x∈V

π(x)

∣∣∣∣PG
x (Xt ∈ Vj)−

1

m

∣∣∣∣ ≤ max
x∈V

∣∣∣∣PG
x (Xt ∈ Vj)−

1

m

∣∣∣∣ ,
which is oP(1) by Proposition 4.10.
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Choose now a time t ≥ βtent, for β > 1. Applying Proposition 4.33, and later
Proposition 4.32, for every δ > 0 it holds

max
x∈V ⋆

ε

∥P t(x, ·)− νc(x)∥TV ≤ max
x∈V ⋆

ε

∑
y∈V

[
(1 + δ)νc(x)(y) +

δ

n
− P t

nice(x, y)

]

≤ max
x∈V ⋆

ε

1−
∑
y∈V

P t
nice(x, y)

+ 2δ = 2δ + oP(1).

(4.63)

Then, thanks to Lemma 4.7 and Eq. (4.63), for ℓ = 3 log log(n),

max
x∈V

∥P t+ℓ(x, ·)− νc(x)∥TV ≤ PG
x (Xℓ /∈ V ⋆

ε ) + max
x∈V ⋆

ε

∥P t(x, ·)− νc(x)∥TV = oP(1). (4.64)

Since, for every w ∈ V , it holds
∑m

i=1Q
σ+1(i, c(w)) = 1, we can define

ν :=
1

m

m∑
i=1

νi =
1

mn

∑
w∈V

P η(w, ·). (4.65)

Employing Lemma 4.34 and later Eq. (4.64), it holds

∥ν − π∥TV =

∥∥∥∥∥ 1

m

m∑
i=1

νi −
∑
z∈V

π(z)P (1+ε)tent(z, ·)

∥∥∥∥∥
TV

=

∥∥∥∥∥∥
m∑
i=1

∑
z∈Vi

π(z)
[
νi − P (1+ε)tent(z, ·)

]∥∥∥∥∥∥
TV

+ oP(1)

≤ max
i≤m

max
z∈Vi

∥∥∥P (1+ε)tent(z, ·)− νc(z)

∥∥∥
TV

= oP(1).

(4.66)

This means that ν constitutes a good proxy for π. Then, by the triangle inequality, and
thanks to Eqs. (4.64) and (4.66), we can conclude the following upper bound

max
x∈V

∥∥∥P t+ℓ(x, ·)− π
∥∥∥
TV

≤ max
x∈V

∥∥∥P t+ℓ(x, ·)− νc(x)

∥∥∥
TV

+max
i≤m

∥νi − ν∥TV + ∥ν − π∥TV

≤ max
i≤m

∥νi − ν∥TV + oP(1).

(4.67)

Lower bound. Let t ≤ βtent, for β < 1. We are going to show that the law of Xt at
a time t ≤ βtent, is w.h.p. concentrated on a set with cardinality o(n). To this end, let
θ = n−β(2−β) and let

Sx := {y ∈ V : there exists a path p of length t such that m(p) ≥ θ} .
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We have |Sx| ≤ θ−1 = nβ(2−β) = o( n
log(n)), since, for β < 1, we have β(2 − β) < 1.

Moreover, it holds − log θ
Ht = 2− β > 1, and we conclude the following lower bound:

min
x∈V

∥∥PG
x (Xt ∈ ·)− π

∥∥
TV

≥ min
x∈V

[
PG

x (Xt ∈ Sx)− π(Sx)
]

≥ min
x∈V

PG
x

(
m(X0, . . . , Xt) ≥ n−β(2−β)

)
−max

x∈V
π(Sx)

= 1− oP(1),

(4.68)

where the last inequality holds combining Theorem 4.30 with the observation that

max
x∈V

π(Sx) = oP(1) ,

thanks to Theorem 4.4 and Proposition 4.5.

4.6 Proof of the main results

4.6.1 Supercritical regime

In this regime, the proof of Theorem 4.3 is split into two parts, depending on the chosen
timescale. We first analyze the case t ≍ tent, proving Eq. (4.5), and then move to the
case t ≍ α−1, proving Eq. (4.6).

Relaxation to a local equilibrium. Let us first assume tent ≪ α−1 ≪
√
n log(n)−2.

We will sometimes commit a slight abuse of notation by lifting πi to a probability measure
on the entire vertex set V . Let t = βtent for some β < 1. By Theorem 4.2,

min
i≤m

min
x∈Vi

∥PGi
x (Xi

t ∈ ·)− πi∥TV = 1− oP(1) , (4.69)

In particular, for every δ > 0 and x ∈ Vi, it must hold

1

2

∑
y∈V

∣∣∣∣PGi
x (Xi

t = y)− 1

m
πi(y)

∣∣∣∣ ≥ 1− m− 1

2m
− δ + oP(1),

otherwise it would be∥∥PGi
x (Xi

t ∈ ·)− πi
∥∥
TV

≤ 1

2

∑
y∈V

∣∣∣∣PGi
x (Xi

t = y)− 1

m
πi(y)

∣∣∣∣+ 1

2
· m− 1

m

∑
y∈V

πi(y)

< 1− m− 1

2m
− δ +

m− 1

2m
+ oP(1) = 1− δ + oP(1),

which is in contradiction with (4.69). As a consequence, using the characterization of π
given in Theorem 4.14, and using that, by Proposition 4.12,∥∥PG

x (Xt ∈ ·)−PGi
x (Xi

t ∈ ·)
∥∥
TV

≤ max
i≤m

max
x∈Vi

P̌x(Xt ̸=Xi
t)

≤ max
i≤m

max
x∈Vi

PG
x (τjump ≤ t) = oP(1),
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we have that, for every δ > 0 and x ∈ Vi,

∥∥PG
x (Xt ∈ ·)− π

∥∥
TV

=

∥∥∥∥∥∥PGi
x (Xi

t ∈ ·)− 1

m

m∑
j=1

πj

∥∥∥∥∥∥
TV

+ oP(1)

=
1

2

∑
y∈V

∣∣∣∣PGi
x (Xi

t = y)− 1

m
πi(y)

∣∣∣∣+∑
j ̸=i

1

2m

∑
y∈V

πj(y) + oP(1)

≥ 1− m− 1

2m
− δ +

m− 1

2m
+ oP(1) = 1− δ + oP(1).

(4.70)

Let now β > 1. By definition of total variation distance

min
i≤m

min
x∈Vi

∥PG
x (Xt ∈ ·)− π∥TV ≥ min

i≤m
min
x∈Vi

∣∣PG
x (Xt ∈ Vi)− π(Vi)

∣∣
=

m− 1

m

(
1− m

m− 1
α

)t−1

+ oP(1) ,
(4.71)

where we have used Proposition 4.10 and the characterization of π given in Theorem
4.14. By our choice t = βtent ≪ α−1, one gets

min
i≤m

min
x∈Vi

∥PG
x (Xt ∈ ·)− π∥TV ≥ m− 1

m
− oP(1) . (4.72)

For what concerns the upper bound, for β > 1, let us fix some γ ≥ 0, possibly depending
on n, and ε > 0 such that (1 + ε)tent + γ ≤ βtent. By splitting over the vertex on which
the SRW sits at time (1 + ε)tent, and over the community of such vertex one gets, for
x ∈ V ,

P (1+ε)tent+γ(x, ·) =
∑
y∈V

P γ(x, y)P (1+ε)tent(y, ·) =
m∑
i=1

∑
y∈Vi

P γ(x, y)P (1+ε)tent(y, ·) .

Using Theorem 4.13, we can write

max
x∈V

∥∥∥∥∥P (1+ε)tent+γ(x, ·)−
m∑
i=1

P γ(x, Vi)πi

∥∥∥∥∥
TV

= oP(1).

Let us now focus on the case tent ≪ α−1 ≪
√
n log(n)−2. By Proposition 4.10 we get

max
x∈V

∥∥∥∥∥P (1+ε)tent+γ(x, ·)−
m∑
i=1

Qγ(c(x), i)πi

∥∥∥∥∥
TV

= oP(1).

Thanks to Theorem 4.14 and recalling the definition in (4.9), we then obtain

max
x∈V

∥∥∥P (1+ε)tent+γ(x, ·)− π
∥∥∥
TV

=
1

2

m∑
i=1

∣∣∣∣Qγ(c(x), i)− 1

m

∣∣∣∣+ oP(1)

=
(m− 1)(1− m

m−1α)
γ

m
+ oP(1).

(4.73)
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Taking γ ≪ α−1 and by monotonicity, we conclude that

max
x∈V

∥∥∥P βtent(x, ·)− π
∥∥∥
TV

≤ m− 1

m
+ oP(1). (4.74)

Then, putting together Eqs. (4.70), (4.72), and (4.74), Eq. (4.5) follows. Similarly, in the
case

√
n log(n)−2 ≪ α−1 ≪ λn log(n), instead of Proposition 4.10 and Theorem 4.14,

we use Proposition 4.15 and Theorem 4.16, leading to the same result.

Convergence to the global equilibrium. Let us first assume tent ≪ α−1 ≪
√
n log(n)−2.

Using Eq. (4.71), with t = βα−1, for β > 0,

min
i≤m

min
x∈Vi

∥PG
x (Xt ∈ ·)− π∥TV ≥ m− 1

m
e−

βm
m−1 + oP(1) .

For the upper bound, consider now, in Eq. (4.73), γ = t − (1 + ε)tent ∼ βα−1. Then,
again by monotonicity, we have

max
x∈V

∥PG
x (Xt ∈ ·)− π∥TV ≤ m− 1

m
e−

βm
m−1 + oP(1) ,

concluding the proof. Similarly, in the case
√
n log(n)−2 ≪ α−1 ≪ λn log(n), instead of

Proposition 4.10 and Theorem 4.14, we use Proposition 4.15 and Theorem 4.16 , leading
to the same result. This proves Eq. (4.6).

4.6.2 Subcritical regime

The upper bound in Eq. (4.3) (which is non-trivial only for β > 1) can be obtained
observing that in the subcritical case α−1 ≪ tent, it holds

Qσ(i, ·) = 1

m
(1 + o(1)), ∀i ≤ m,

Then, recalling the definitions in Eqs. (4.61) and (4.65), it follows

max
i≤m

∥νi − ν∥TV = oP(1).

This, plugged in Eq. (4.67), concludes the upper bound. The lower bound in Eq. (4.3)
(which is non-trivial only for β < 1) is precisely Eq. (4.68).

4.6.3 Critical regime

We fix C > 0 and t = βtent, for some β > 0, β ̸= 1. We want to prove Eq. (4.4). For
β < 1, the bound is, again, precisely given by Eq. (4.68). Then, we consider β > 1. By
a trivial bound and Proposition 4.10,

min
x∈V

∥∥∥P βtent(x, ·)− π
∥∥∥
TV

≥ min
x∈V

∣∣∣P βtent(x, Vc(x))− π(Vc(x))
∣∣∣

= m−1
m

(
1− m

m−1α
)βtent

+ oP(1)

= m−1
m e−

β
C

m
m−1 (1 + o(1)) + oP(1).
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In the what follows we will prove the following result, which closes the discussion for
β > 1.

Lemma 4.35. For every 0 < ε < β − 1,

max
x∈V

∥∥∥P βtent(x, ·)− π
∥∥∥
TV

≤ m−1
m e−

β
C

m
m−1 (1 + o(1)) +

6mε

C
+ oP(1).

Since ε > 0 can be taken arbitrarily small, we get Eq. (4.4).

To prove Lemma 4.35, it is useful to consider, for every i ≤ m, the measures

πVi(x) =
π(x)1{x∈Vi}

π(Vi)
, x ∈ V.

Lemma 4.36. Let α−1 = Ctent, for C > 0. Then

P

max
i≤m

∥∥∥∥∥∥ 1n
∑
y∈Vi

P εtent(y, ·)− πVi

∥∥∥∥∥∥
TV

≤ 4mε

C

 = 1− o(1).

Proof of Lemma 4.36. Using the inequality |a+ b| ≥ |a| − |b|, for a, b ∈ R, we have∥∥∥∥∥ 1

mn

∑
y∈V

P η(y, ·)− 1

m

m∑
i=1

πVi

∥∥∥∥∥
TV

=
1

2

m∑
j=1

∑
z∈Vj

1

m

∣∣∣∣∣∣∣
1

n

∑
y∈Vj

P η(y, z)−
m∑
i=1

πVi(z) +
1

n

∑
y∈V ∁

j

P η(y, z)

∣∣∣∣∣∣∣
≥ 1

2

m∑
j=1

∑
z∈Vj

1

m


∣∣∣∣∣∣ 1n
∑
y∈Vj

P η(y, z)− πVj (z)

∣∣∣∣∣∣− 1

n

∑
y∈V ∁

j

P η(y, z)


=

1

2

m∑
j=1

1

m

∑
z∈Vj

∣∣∣∣∣∣ 1n
∑
y∈Vj

P η(y, z)− πVj (z)

∣∣∣∣∣∣− 1

n

∑
y∈V ∁

j

P η(y, Vj)

 .

(4.75)

On the other hand, for every j ≤ m it holds∥∥∥∥∥∥ 1n
∑
y∈Vj

P η(y, ·)− πVj

∥∥∥∥∥∥
TV

=
1

2

∑
z∈V

∣∣∣∣∣∣ 1n
∑
y∈Vj

P η(y, z)− πVj (z)

∣∣∣∣∣∣
=

1

2

∑
z∈Vj

∣∣∣∣∣∣ 1n
∑
y∈Vj

P η(y, z)− πVj (z)

∣∣∣∣∣∣+ 1

n

∑
y∈Vj

P η(y, V ∁
j )

 .

(4.76)
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Putting Eqs. (4.75) and (4.76) together, it follows

m∑
j=1

1

m

∥∥∥∥∥∥ 1n
∑
y∈Vi

P η(y, ·)− πVi

∥∥∥∥∥∥
TV

≤

∥∥∥∥∥∥ 1

mn

∑
y∈V

P η(y, ·)− 1

m

m∑
i=1

πVi

∥∥∥∥∥∥
TV

+Φ(ε), (4.77)

where

Φ(ε) :=
1

2m

m∑
j=1

1

n

( ∑
y∈V ∁

j

P η(y, Vj) +
∑
y∈Vj

P η(y, V ∁
j )
)
=

1

m

m∑
j=1

1

n

∑
y∈Vj

P η(y, V ∁
j ).

Invoking Proposition 4.10, we get∣∣∣∣∣∣Φ(ε)− 1

m

m∑
j=1

Qη(j, [m] \ {j})

∣∣∣∣∣∣ = oP(1).

Using that, for tent = α−1/C, and for each j ≤ m,

Qη (j, [m] \ {j}) = m− 1

m

(
1−

(
1− m

m−1α
)η)

=
m− 1

m

(
1− e−

m
m−1

2ε
C (1 + o(1))

)
≤ 2ε

C
(1 + o(1)),

(4.78)

As a consequence, w.h.p. Φ(ε) ≤ 3ε
C . Recalling that π = 1

m

∑m
j=1 πVj (1 + oP(1)), thanks

to Lemma 4.34, from Eq. (4.77) we conclude that w.h.p. it holds

1

m

m∑
j=1

∥∥∥∥∥∥
∑
y∈Vj

1

n
P η(y, ·)− πVj

∥∥∥∥∥∥
TV

≤

∥∥∥∥∥∥ 1

mn

∑
y∈V

P η(y, ·)− π

∥∥∥∥∥∥
TV

+
3ε

C
,

which is at most 3ε
C + oP(1), thanks to Eq. (4.66). Then, w.h.p., each term of the sum is

bounded by 4mε
C .

Proof of Lemma 4.35. We consider a time t = βtent, where ε > 0 is chosen such that
β > 1 + ε. For x ∈ V , it holds

∥∥P t(x, ·)− π
∥∥
TV

≤

∥∥∥∥∥∥P t(x, ·)−
m∑
j=1

Qt(c(x), j)πVj

∥∥∥∥∥∥
TV

+

∥∥∥∥∥∥
m∑
j=1

Qt(c(x), j)πVj − π

∥∥∥∥∥∥
TV

.

Being π =
∑m

j=1 π(Vj)πVj , taking the maximum over x ∈ V , the second summand
provides

max
x∈V

∥∥∥∥∥∥
m∑
j=1

Qt(c(x), j)πVj −
m∑
j=1

π(Vj)πVj

∥∥∥∥∥∥
TV

= max
x∈V

1

2

m∑
j=1

∣∣Qt(c(x), j)− π(Vj)
∣∣

≤ max
x∈V

1

2

m∑
j=1

∣∣∣∣Qt(c(x), j)− 1

m

∣∣∣∣+ oP(1) =
m− 1

m

(
1− m

m− 1
α

)t

+ oP(1),

(4.79)
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where we have employed Lemma 4.34 and the triangle inequality in the second line. This
will provide the leading term. We now consider the first summand. By Proposition 4.10,
it holds

max
x∈V

max
j≤m

∣∣∣P (β−1−ε)tent(x, Vj)−Q(β−1−ε)tent(c(x), j)
∣∣∣ = oP(1).

Then

max
x∈V

∥∥∥∥∥∥P βtent(x, ·)−
m∑
j=1

Qβtent(c(x), j)πVj

∥∥∥∥∥∥
TV

≤ max
x∈V
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m∑
i=1

∑
z∈Vi

P (β−1−ε)tent(x, z)

P (1+ε)tent(z, ·)−
m∑
j=1

Q(1+ε)tent(i, j)πVj

∥∥∥∥∥∥
TV

+ oP(1)

≤ maxmax
z∈Vi

∥∥∥∥∥∥P (1+ε)tent(z, ·)−
m∑
j=1

Q(1+ε)tent(i, j)πVj
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TV

+ oP(1)

≤ max
i≤m
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m∑
k=1

Qσ+1(i, k)

n

∑
y∈Vk

P η(y, ·)−
m∑
j=1

Q(1+ε)tent(i, j)πVj
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TV

+ oP(1)

(4.80)

where the third inequality follows from Eq. (4.64) (recall that, according to Definition
4.31, (1 + ε)tent = σ+ η+ 1) Using the semigroup property of Q(·, ·), we can bound the
last expression in Eq. (4.80) by

max
i≤m

m∑
k=1

Qσ+1(i, k)

∥∥∥∥∥∥ 1n
∑
y∈Vk

P η(y, ·)−
m∑
j=1

Qη(k, j)πVj
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TV

+ oP(1)

≤ max
k≤m

∥∥∥∥∥∥ 1n
∑
y∈Vk

P η(y, ·)− πVk

∥∥∥∥∥∥
TV

+

∥∥∥∥∥∥πVk
−

m∑
j=1

Qη(k, j)πVj
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TV

+ oP(1),

Now w.h.p. we can bound the first summand in the last display with 4mε
C by Lemma 4.36.

The second summand has the same magnitude: reasoning in the spirit of Eqs. (4.79)
and (4.78), it holds

max
k≤m

∥∥∥∥∥∥πVk
−

m∑
j=1

Qη(k, j)πVj
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TV

= max
k≤m

1

2
|1−Qη(k, k)|+ 1

2

∑
j ̸=k

Qη(k, j)

= max
k≤m

m− 1

m

(
1−

(
1− m

m−1α
)η)

≤ 2ε

C
(1 + o(1)).
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C. Bordenave, P. Caputo, and D. Chafäı. Spectrum of Markov generators on sparse
random graphs. Comm. Pure Appl. Math., 67(4):621–669, 2014.

C. Bordenave, P. Caputo, and J. Salez. Random walk on sparse random digraphs.
Probab. Theory Relat. Fields, 170(3):933–960, 2018.

C. Bordenave, P. Caputo, and J. Salez. Cutoff at the “entropic time” for sparse Markov
chains. Probab. Theory Relat. Fields, 173(1):261–292, 2019.

C. Borgs, J. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi. Convergent sequences
of dense graphs I. Subgraph frequencies, metric properties and testing. Adv. Math.,
219(6):1801–1851, 2008.

C. Borgs, J. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi. Convergent sequences
of dense graphs II. Multiway cuts and statistical physics. Ann. Math., 176(1):151–219,
2012.

A. Bovier, S. Marello, and E. Pulvirenti. Metastability for the dilute Curie-Weiss model
with Glauber dynamics. Electron. J. Probab., 26:Paper No. 47, 38, 2021.

T. Brailovskaya and R. van Handel. Universality and sharp matrix concentration in-
equalities. Geom. Funct. Anal., 34(6):1734–1838, 2024.

X. S. Cai, P. Caputo, G. Perarnau, and M. Quattropani. Rankings in directed config-
uration models with heavy tailed in-degrees. Ann. Appl. Probab., 33(6B):5613–5667,
2023.

170



Bibliography

A. Caimo and I. Gollini. Recent advances in exponential random graph modelling.
Mathematical Proceedings of the Royal Irish Academy, 123A(1):1–12, 2023.

F. Capannoli. Evolution of discordant edges in the voter model on random sparse di-
graphs. Electron. J. Probab., 30:Paper No. 6, 24, 2025.

P. Caputo and M. Quattropani. Stationary distribution and cover time of sparse directed
configuration models. Probab. Theory Relat. Fields, 178:1011–1066, 2020.

P. Caputo and M. Quattropani. Mixing time of Pagerank surfers on sparse random
digraphs. Random Structures Algorithms, 59:376–406, 2021a.

P. Caputo and M. Quattropani. Mixing time trichotomy in regenerating dynamic di-
graphs. Stochastic Processes Appl., 137:222–251, 2021b.

P. Caputo, M. Quattropani, and F. Sau. Cutoff for the averaging process on the hy-
percube and complete bipartite graphs. Electron. J. Probab., 28:Paper No. 100, 31,
2023.

P. Caputo, M. Quattropani, and F. Sau. Repeated Block Averages: entropic time and
mixing profiles. arXiv preprint arXiv:2407.16656, 2024.

A. Chakrabarty, S. Chakraborty, and R. S. Hazra. Eigenvalues outside the bulk of
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Ann. Inst. Henri Poincaré Probab. Stat., 49(1):64–94, 2013.

177

https://api.semanticscholar.org/CorpusID:1508503
https://api.semanticscholar.org/CorpusID:1508503


Bibliography

M. Quattropani. Mixing trichotomy for an Ehrenfest urn with impurities. Electron.
Commun. Probab., 29:13, 2024.

M. Quattropani and F. Sau. On the meeting of random walks on random dfa. Stochastic
Process. Appl., 166:104225, 2023.

C. Radin and L. Sadun. Optimal graphons in the edge-2star model. arXiv preprint
arXiv:2305.00333, 2023.

C. Radin and M. Yin. Phase transitions in exponential random graphs. Ann. Appl.
Probab., 23(6):2458–2471, 2013.

G. Reinert and N. Ross. Approximating stationary distributions of fast mixing Glauber
dynamics, with applications to exponential random graphs. The Annals of Applied
Probability, 29(5):3201–3229, 2019.

M. Rudelson and K. Tikhomirov. The sparse circular law under minimal assumptions.
Geom. Funct. Anal., 29(2):561–637, 2019.

A. Sah, J. Sahasrabudhe, and M. Sawhney. The limiting spectral law for sparse iid
matrices. arXiv preprint arXiv:2310.17635, 2025.

J. Salez. Cutoff for non-negatively curved Markov chains. J. Eur. Math. Soc. (JEMS),
26(11):4375–4392, 2024a.

J. Salez. The varentropy criterion is sharp on expanders. Ann. H. Lebesgue, 7:239–250,
2024b.

P. Sousi and S. Thomas. Cutoff for random walk on dynamical Erdős-Rényi graph. Ann.
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