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Riassunto

In questa tesi studiamo alcune stime integrali su gruppi di Lie e loro spazi omogenei.

Nella prima parte della tesi sviluppiamo una strategia generale per ottenere stime multilineari
di tipo Brascamp-Lieb su spazi omogenei compatti e la applichiamo ai casi del toro e della
sfera unitaria reale. Otteniamo anche delle disuguaglianze di tipo Brascamp-Lieb nel contesto
non compatto dei gruppi di Lie stratificati.

Nella seconda parte della tesi, come conseguenza di stime integrali per armoniche sferiche
quaternioniche, dimostriamo alcuni limiti dal basso per le norme (L?, L?) degli operatori di
proiezione sugli spazi delle armoniche sferiche sulla sfera quaternionica, per p € [1,2]. Inoltre,
in analogia con risultati di J. Duoandikoetxea sulla sfera unitaria reale, dimostriamo alcune
stime non dipendenti dalla dimensione per armoniche sferiche bigradate sulle sfere unitarie
complessa ¢ quaternionica.
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Abstract

This thesis is devoted to the study of some integral inequalities on Lie groups and their
homoegencous spaces,

In the first part of the thesis we provide a general strategy to obtain multilinear incqualitics
of Brascamp-Lich tvpe on compact homogeneous spaces and we apply it to the case of the
torns and of the real unit sphere. We also obtain some Brascamp-Lieh type inequalities in the
noncompact contexi. of siratilied Lic groups.

I the second part of the thesis, as & conscequence of integral bounds for quaternionic spherical
harmonics. we prove sonte bounds from below for the (L, L?) norm of the harmonic projection
operators on the quaternionic sphere, for p € [1,2]. Moreover, in analogy with some carlier
resulis by I Duoandikoeixea on the real unit sphere. we prove some dimension lree bounds
for bigraded spherical harmonics on the complex and quaternionic unil spheres.
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Introduction

In this thesis we study integral inequalities of different types in the context of Lie groups and
their homogeneous spaces.

In the first part of the thesis we develop a general approach to obtain certain multilinear
inequalities on compact homogeneous spaces and provide some applications. We also obtain
similar inequalities in the noncompact context of stratified Lie groups.

In the second part of the thesis we prove some bounds from below for the operator norm of
the harmonic projection operators on the quaternionic sphere, and sharp dimensions free LP
bounds for bigraded spherical harmonics on complex and quaternionic spheres.

In the rest of the introduction we describe in detail the topics treated in the thesis.

Part 1

Many well-known multilinear inequalities commonly used in analysis, such as multilinear
Hoélder’s inequality, Loomis—Whitney inequality and the sharp Young convolution inequality,
can be seen as instances of a broader family of estimates: the so called Brascamp—Lieb
inequalities. These are inequalities of the form

/ H [i(Bjx)dr < C H /51l o3 (s (1)
R j=1

where p; € [1,00], Bj : R" — R™ are linear surjective maps and the functions f; : R — R
are measurable, for j = 1,...,m. The constant C' in (1) is the smallest constant, either finite
or infinite, over all measurable inputs f; for which (1) holds. This constant depends on the
maps B; and on the exponents p; and is called the Brascamp-Lieb constant.

These inequalities were extensively studied in the last years, starting from the works of Rogers
[49] Brascamp, Lieb and Luttinger [12] and Brascamp and Lieb [11], where the authors studied
the rank-one case, that is the case where n; = 1 for all j, using rearrangement techniques.
In particular they proved that the Brascamp-Lieb constant is the same if one restricts the
inputs to Gaussians, a result known as Lieb’s Theorem. This result was then extended to the
higher rank case by Lieb in [41], then Barthe gave an alternative proof using transportation
of mass techniques in [2].

Another approach to the problem was introduced by Carlen, Lieb, Loss who used heat flow
methods to prove Lieb’s Theorem in the rank one case in [18|. This approach was rediscovered
independently and used by Bennett, Carbery, Christ and Tao to prove Lieb’s Theorem in the
general case in |7]. In particular they were able to prove the following theorem.

vii



viii Introduction

Theorem 0.0.1 ([7]). The constant C in (1) is finite if and only if the scaling condition

T
D vy =n )
=1
and the dimension condition
L
dim(V) < ij_] dim(B;V), (3)
=1

for all subspaces V- C R"™, are satisfied.

The heat flow technique consists in studying the monotonicity properties of a certain function,
depending on a parameter that can be thought of as time, that is related to the heat evolution
of some functions. Comparing this function at different times is a way of producing inequalities.
For example in [7] the authors study, among other things, the case of the so called geometric
Brascamp-Lieb inequality (already studied by Ball in [1] and Barthe in [2]), in which the
linear maps B; are such that B} is an isometry and the condition

m

> p;'B;Bj =1Idgn (4)
j=1

holds. They show that for nonnegative Schwartz functions f; the quantity

T

Q0 = [ Tuit.)ia (5)
-

is nondecreasing, where w;(t, z)P is the solution of the heat equation in R" with initial datum
f;’-f o Bj. Inequality (1) is then obtained by comparing lim,_.o Q(t) which gives the left-hand
side of it with limy—~ Q(¢t) which gives the right-hand side.

In this thesis we will interpret inequality (1) in the following way: we are given a family
of functions f; o B;, each one having some degree of symmetry (indeed, these functions are
constant on the fibers of the maps Bj, that are affine subspaces parallel to ker B;) and we
want to find exponents p; for which the inequality holds with a finite constant C' for all choices
of functions. Theorem 0.0.1 gives a complete answer to this question in the Euclidean setting,
relating the exponents p; to the geometry of the maps B, and to the scale invariant structure
of R™.

An interesting issue is to extend inequality (1) to other settings. This problem was already
addressed in the works [18, 19| where some inequalities were obtained in the case of spheres
and of the permutation group on d elements Sy (see also |4, 3| for further comments).

In particular in [18, Theorem 1.1] the authors proved that for nonnegative measurable functions
fi on the unit sphere S"~1 of R" depending only on one variable x; (that are functions f
defined on the interval [—1, 1] and pulled-back to the sphere by the projection on the i-th
variable m; : §"~1 — [~1,1]), the estimate

1 n
G- ol ol

holds, with p > 2, where do is the normalized uniform measure on the sphere and

sy = [, VP do(u).
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The authors also proved that the inequality is sharp. in the sense that there exist n functions
in LP(S"1) for p < 2, each depending on a different variable, for which the right-hand side of
(6) is finite and the left-hand side diverges.

Inequality (6) can be interpreted in two ways:

e as a Holder type inequality, but with the sum of the reciprocal of the exponents bigger
than one, a condition that cannot be achieved for general functions just by multilinear
Hélder’s inequality and continuous embeddings of Lebesgue spaces on the sphere;

e as a Brascamp-Lieb type inequality, plugging in it the estimate || fjom ler < | f;|

Lr([-1,1]):

The proof of inequality (6) is based on the heat flow method and relies on the fact that the
sphere is a compact homogeneous space. Indeed S"~! = SO(n — 1)\SO(n), where SO(n) is
the group of real orthogonal matrices with determinant 1.

Following the ideas of [18] in the first chapter of this thesis we find inequalities similar to
(6) in the setting of general compact homogeneous spaces of type M = K\G, where G is a
connected, unimodular Lie group and K is a closed subgroup of G. We endow M with the
unique normalized measure dp induced by the Haar measure on G. We fix a finite set of
vector fields 7 in the Lie algebra of left invariant vector fields g of G satisfying Hormander’s
bracket generating condition and we construct the sum of squares sub-Laplacian L., which is a
syminetrie, negative, essentially self-adjoint, hypoelliptic operator acting on smooth functions
defined on G and on its quotient M. By means of the heat semigroup {e'*};~, we consider
the nonlinear heat flow

v(t, &) = (eu‘fp) 1;’;01
where p > 1 and f € C°°(M), which is the solution of the nonlinear equation
|VI'U(t?:I?)|2

v(t, )

where V7 is the gradient with respect to the vector ficlds in Z.
Taking m different nonnegative functions f; € C*(M) and considering their nonlinear
evolutions v;(¢, x) we will prove that the function

dv(t,xz) =(p—1) + Lu(t, x),

o(t) = /M H vi(t, z)dp (7)

j=1

is nondecreasing for p > m. By a comparison between limy_,g ¢(¢) and limy_,~ ¢(t), it will

then follow that .

m
[ T e < T lscan, )
M Fane

for p > m. In the case of general functions f; the estimate (8) can also be obtained as a
straightforward consequence of multilinear Holder’s inequality and continuous embeddings
of Lebesgue spaces on M. This is not surprising, since with generic functions f; one cannot
expect to improve on Holder’s exponents. Nevertheless, if we let the functions involved have
some kind of symmetries, we will obtain better exponents not directly deducible by Hélder’s
inequality and continuous embeddings.

The relevant symmetries in our analysis are those that can be described by means of subsets
A of T made of vector fields that commute with L. We call a subset A of T maximal if
(AyNT = A, where (A) is the smallest Lie subalgebra of g containing A. We say that a
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function f € C*(M) is A-symmetric if X f = 0 for all vector fields X in 4. Functions that
are A-symmetric are constant on certain nonintersecting submanifolds that cover the manifold
M. The commutation property with L of the vector fields in A ensures that the symmetry is
preserved by the heat flow.

The main result of the first chapter, contained in Theorem 1.6.1, says that taking m functions,
each Aj-symmetric for some maximal subset 4; of Z the function (7) is nondecreasing for p
greater than or equal to a critical p that depends on the combinatorics of the sets A;. In
Theorem 1.6.2 we obtain an analogous result, but we let each f; evolve under a nonlinear heat
flow with a different p;. We prove that the function

o(t) = /M 11 (et o) Py (9)
i

=1

is nondecreasing if each p; is greater than or equal to a critical p; that again depends on the
combinatorics of the sets A;.

As a first application of this machinery, in Chapter 1 we study the (abelian) case of the
torus T" = R"/Z"; here the Hormander system Z = {0,, : ¢ = 1,...,n} is associated to
an orthonormal basis of R". By means of Theorem 1.6.1 we are able to recover a result by
Calderon in [15] and a family of local geometric Brascamp-Lieb inequalities associated to
projections to collections of coordinate variables.

In Chapter 2 we apply the results of Chapter 1 to the case of the sphere

§"t = S0(n — 1)\SO(n)
in R™; here 7 is given by the vector fields
IJ-i,j = :1:1-6,,.3. — :Ejam”

for 1 <4 < j < n. These vector fields form a basis of so(n) and so they verify Hérmander’s
condition. In the case of the sphere we are able to classify all possible maximal subsets of Z,
thus getting an easy algorithm to produce multilinear inequalities involving functions with
special symmetries. With this language we recover the result of [18] for functions depending
on one variable and extend it to functions depending on k variables, for 1 < k < n — 1,
describing these properties of the functions as A-symmetries for specific maximal subsets A.
A function f of k variables can be understood as a function f defined on the k-dimensional
unit ball By, of R* and pulled-back to the sphere by the projection 7 : S*~! — By, on the k
variables involved.

Let C(n, k) = (2) We prove that if fi,..., fo(m k) are nonnegative measurable functions, each
depending on a different collection of k variables, denoted with z,,, where w; C {1,...,n},
|wi| = &, the inequality

C(n,k)
filzw) - fomp) (Zwpu )do < H I fill Lo (sn—1y (10)

=n—1
J 8" i=1

S ny n—2
P=p= k k)

Moreover we prove that this inequality is sharp in the sense of [18]. Since for a function
f depending on k variables, ||f|lr» = ||f o 7|lLs S [|fllr(By), We can interpret (10) as a

holds for
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Brascamp-Lieb type inequality.
Inequality (10) is first proved for a small range of exponents that is then extended by
interpolation. In Chapter 2 we study in what range of exponents the inequality can hold.
obtaining some optimal result.
If we add an additional symmetry to the functions, requiring that each function depends
radially on k variables we prove an (again sharp) improvement of inequality (10), obtaining a

lower critical exponent
=9 n—2
1=\p—1)

We also address the case of functions each having a different kind of symmetry, providing
an algorithm to compute the critical exponents and showing that they are sharp in some
examples. We conjecture that the exponents obtained by this method are always sharp. We
plan to treat this problem in future work.

In the remaining part of Chapter 2 we discuss some possible applications of our inequalities. In
particular we provide some estimates in Lebesgue spaces with mixed angular-radial norms and
some local Brascamp-Lieb inequalities for maps B; associated to projections on collections of
variables (see |6, 61| for possible applications of these local inequalities).

Finally, by transferring the Carlen Lieb Loss inequality on S"~! to the Euclidean space
R™"~! via stereographic projection, we obtain a family of weighted nonlinear Brascamp- Lieb
inequalities of the form

N 5 A
ol Doieiy Ko - i _ < @i n—1y,
,/Rn—lg!i’( 1, bR i l)(Xf+"'+Xz +4)2 ME” ‘-‘.||L2([R 1y,

n—1

where the functions ¢; are constant on certain nonintersecting (n — 2)-dimensional spheres
that cover the whole space R"~1.

In Chapter 3 we extend the methods of 7] to stratified groups, that are nilpotent Lie groups
whose Lie algebra g decomposes as

9=01D---Bgr

with

[ghgl]:gf-’rl} lzl:"':\'r_]-'

These groups G can be identified with their Lie algebra via the Baker-Campbell-Hausdorff
formula (see [28]). They are equipped with a family of anisotropic dilations d5, for s > 0, acting
diagonally on the subspaces g1, ...,g,. The quantity @ = dimg; + 2dimgs + -+ + rdimg,
is called the homogeneous dimension of G and is related to the volume growth of balls. We
consider projections 7@ : G — M@ = HON\G, where the H® are homogeneous subgroups
(with respect to the same dilations) of G of homogeneous dimension Q(®). Moreover we require
that these projections commute with the dilations, making the quotient M(® a homogenecous
space in the sense of Coifman and Weiss of homogeneous dimension Q(® = Q — Q(®. The
standard hypoelliptic negative sub-Laplacian L on G is the sum of the squares of vector
fields {X71,..., X, } forming an orthonormal basis of the first layer g;. Recall that, as in the
Euclidean space, the heat kernel of L enjoys the homogeneity property

pi(g) = t‘QﬂP((St_Wg),

for t > 0, where P is a strictly positive Schwartz function. The sub-Laplacian also acts on the
quotient, via the push-forward related to m(,), so one can consider the heat equation of the
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sub-Laplacian on the homogeneous spaces M (@) and obtain the following result. We suppose
that

p QM + .-+ QY = Q. (11)

Then the inequality

/ f(l)(?r(l}(g))p‘ ..._}F(” (?T(D(g)]pidg 2 (/ f(l)(gl)figl)m ( _}F{”(gi)dm)
G M M

Pi

(12)

holds on G, The constant I appearing in this estimate is given by
I = / P(])(W(]')(Ei),?T“')(g))pl o P(” (ﬁ(“(e)ﬂ(ﬂ(g))md‘g
G

and is finite under appropriate assumptions on the maps 7(%. Condition (11) is the analog
in the stratified groups context of condition (2) in the Euclidean case. The proof of this
result, mutatis mutandis, follows the monotonicity approach of [7, Proposition 2.8], where the
functions appearing in the integral in the definition of ¢ evolve under the heat flow of the
sub-Laplacian L.

As an application we study the case of Holder’s inequality and Young convolution inequality.
Finally we deduce a family of inequalities for stratified groups where the subgroups H® are
given by the flows of the vector fields X, in the first layer g; in g. Applying this inequality
on the Heisenberg group H; we are able to prove an inequality of Gagliardo-Nirenberg type,
giving for a Schwartz function f on H; the estimate

£l Lars S IV FllLss

where V denotes the horizontal gradient. By standard arguments (see |48, 16, 17]) this
estimate leads to a sub-Riemannian isoperimetric inequality.

In this thesis we do not address the problems of extremisers (that should be related to the
heat kernels on () and extremisability, leaving it to a future work.

Part 11

The final chapter is devoted to the proof of some sharp bounds (some of them depending on
the dimension and some not) for bigraded spherical harmonics on complex and quaternionic
spheres, in the spirit of some earlier work by C. Sogge and J. Duoandikoetxea. These estimates
have been successfully applied to different problems in harmonic analysis, like Strichartz
estimates for solutions of the Schrédinger equation [13, 14, 23], LP summability of Bochner
Riesz means [52, 22|, unique continuation problems [36, 53].
More precisely, denoting by S%~! the unit sphere in R, d = 1,2, 4, we start from the
well-known direct sum decomposition of the space of square-integrable functions on S9~1,
that is,

LQ(sdn—l) — @ VT : (]3)

TEF

¢ ifd=1
S
¢ ifd=24,

where
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and
N ifd=1
F=¢NxN ifd=2
{((,0yeNxN: (>0} ifd=4.

The spaces V7 are formed by the so called spherical harmonics. If d = 1, it is well known
that the V7 are eigenspaces for the Laplace-Beltrami operator Agn-1, corresponding to the
eigenvalues ¢(¢ +n — 2). If d = 2 or 4, then the V7 turn out to be eigenspaces both for
the Laplace-Beltrami operator Agan—1 to the eigenvalues (€ + ¢') (¢ + ¢’ + dn — 2), and for a
suitably defined sub-Laplacian L to the eigenvalues Ay, given by 200" + (n — 1)(¢ + ¢') for
d =2 and by 4(£¢' + (n — 1) + nt’) for d = 4. For this reason, the elements of V™ when d = 2
or 4 are sometimes called bigraded joint spherical harmonics.

We recall that sharp estimates, depending on n, for the projections mapping L?(S9*~!) onto
V7, are already known in many cases. To be more precise, C. Sogge proved them in the real
case, not only on the unit sphere, but also in the more general framework of Riemannian
manifolds [51]. In the complex case, analogous bounds were proved in [20]. In collaboration
with Casarino and Ciatti we recently started to study the quaternionic case, proving some
bounds from below for the (L?, L?) norm of the quaternionic harmonic projectors g, mapping
the space L2(S*~1) onto the eigenspace consisting of joint spherical harmonics of bidegree
(0.0, for p € [1,2].

To prove these kind of inequalities, we are led to study the LY norms of the functions Yy € H?,
for g > 2, since

|Yeer|| La
lmeer | (p.2) = o>
P2 = Ve || 2

(14)
for ¢ > 2 and Yy € H', due to the fact that the transposed operator Ty HE — La(Stn1)
is the inclusion operator (here 1/p+ 1/q=1).

Our bounds are therefore strictly related to the problem of size concentration of the spherical
harmonics. In the real framework, Sogge highlighted the existence of two classes of spherical
harmonics with competing behaviors, the highest weight vectors and the zonal functions,
playing an essential role in the analysis of the real harmonic projectors and also in some
related applications (we refer to [51, 14] and especially to [13] for an application to Strichartz
estimates). Analogously, both the complex highest weight vectors and the complex zonal
functions turn out to be the key to understand the behavior of complex harmonic projectors.
The quaternionic context is slightly different. since we identify three classes of spherical
harmonics with competing behaviors, giving rise, in light of (14), to different estimates from
below for || ||(,2) on three subintervals of p € [1,2]. In fact, for p close to 2, the bounds are
more sensitive to a sparse concentration along the Equator; in this case, we obtain bounds
from below by considering the highest weight spherical harmonics, since these functions spread
out in a small neighborhood around the Equator. When p is close to 1, exactly as in the
real and complex case, the bounds for |7y ||(,2) turn out to be sensitive to a high pointwise
concentration. Thus we obtain bounds from below by considering the quaternionic zonal
functions Zgp, which are highly concentrated at the North Pole. Anyway, in a third interval
inside [1, 2], more precisely when p € (4/3,2(4n — 3)/(4n — 1)), we obtain better bounds from
below for [|m||(,2), by considering a third class of spherical harmonics.

In Chapter 4 we will discuss these features of ’HM, which have no analog in the real or complex
case and are related to representation-theoretic questions on $**~1. It is worth mentioning
that all the aforementioned bounds on S~ d = 1,2, 4, strongly depend on the dimension
n and may indeed be considered a discrete version of the restriction estimates of Stein and
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Tomas (we refer to [54] for a thorough discussion of this point).

Shortly after Sogge’s estimates appeared, anyway, Duoandikoetxea proved some dimension
free bounds for spherical harmonics on the real sphere [24, 25]. More precisely, on the unit
sphere §"~! C R™ endowed with normalized Lebesgue measure, he showed that a generic
spherical harmonic Y, of degree k satisfies

Yallzr < (0 = 121 Yl 2 (15)

for all p > 2. In addition, he proved that (15) is sharp, in the sense that no inequality like
(15) may hold with an exponent lower than k/2. Recently, Duoandikoetxea’s estimates were
successfully applied in an algebraic context. Indeed, G. Blekherman used some bounds from
[24] to compare the size of compact sections of the cones of nonnegative polynomials, of sums
of squares and of sums of even powers of linear forms |8, 5].

Inspired, in particular, by this recent application, in the final section of Chapter 4 we prove
sharp dimension-free estimates for joint complex and quaternionic spherical harmonics.

The free-dimensional approach proposed by Duoandikoetxea, indeed, may be easily adapted,
finally covering the case of all spheres Sin—1 ¢ = 1,2,4. In Section 4.2, in fact, we prove
analogous estimates for bigraded spherical harmonics on the unit complex and quaternionic
sphere. Our focus is mainly on the sharpness.
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CHAPTER 1

A general framework

1.1 Homogeneous spaces

In this chapler we provide a general Traniework to obtain a family of multihnear inegualitios.
Let & be a counected, unimodular Lie group. with bi-invariant Haar measure dge and let K be
a closed subgroup so that the homogencous space Af = K\(¢ is compact and has no bouneary.
Denote by 71 G — K\G the canonical projection. Recall (see [33. Theorem 1.2, Ch. 1I]) that
M is defined as the space of right coscts

M={Kyg:g9e G}

and has an analytic structure. We will sometimes write [g] for a representative of the coset
space Kg.

If djt is the Haar measure on G we have a unique (up to scalars) bi-invariant measinre on K\G
(efr. |33. Theorem 1.7. Ch. X|). which we will still denote by dye. defined as the push-forward of
die by wmcans of the projection . We asswme that this measure is nonalized, Lo, dp(AM) = 1.
The left translation on the group G is the map

7: G — End(G).
defined by
T4(h) = gh.

There is an action of the group G on the set C(G) given by lelt translations:

G x CF(G) = CF(G)
(g.f) > fory
Abusing notation we still denote this action by 7. writing 7, f(h) = [{gh).
A left invariant vector field is o first order dilferential operator X that conmutes with all left
translation, i.c. such that
X(7f) = (7)(X )
for all g € (7 and f € C™(). The Lie algebra g of the Lic group ¢ is the voctor space of all

left invariant veetor liclds on &, endowed with the Lie algebra strueture given by the bracket

[X.Y]= XY —YX,



4 A general framework

for all X,Y € g.

Recall that the exponential map exp : g — G is a local diffeomorphism from a neighborhood
of 0 € g to a neighborhood of the identity in G (see [58]). Since the vector fields are left
invariant, the map exp parametrizes a small neighborhood of every point in G providing an
atlas for the group. Recall that left invariant vector fields are defined by

Xf(g) = &I aexp(tX))ico

for X € T.G, where T.G denotes the tangent space to G at the neutral element e, and
f € C>(G). For a vector field X, its adjoint X is the vector field satisfying

[ xXgau= [ rexg)an

G G

for all f,g € CX(G), where C°(G) is the space of compactly supported smooth functions.
We have the following proposition.

Proposition 1.1.1. For X € g we have that 'X = — X,

Proof. Let f,g € C*(G). By the bi-invariance of the Haar measure we have

[ fexp(t))g(wesp(tX))dn = [ fodn.

Differentiating in ¢ and evaluating at ¢ = 0 both sides we obtain

[ 1xodu+ [ xpgdu=o.
G G
which proves the proposition. 0

There is a one-to-one correspondence between smooth real-valued functions f on the quotient
space M = K\G and smooth functions f on G that are constant on coset spaces, i.e.

C(K;G) = {f € C®(G) : f(g) = f(kg), for all k € K}.
We denote this correspondence by
U:C®(M) = C*(K;G),
where (¥1)(g) == f([g]), and by
¥ L O®(K;G) — €=(M)

with (lI'_lf)([g]) = f(g), its inverse. Note that, for f € C*(M), (Uf) is indeed a function in
C*(K;G), since, taking k € K we have (¥ f)(kg) = f([kg]) = f(lg]) = (¥f)(g). Analogously,
for f € C®(K;G), (=1 f) is well defined as a function in C (M), since taking [¢'] = [g] € M,
we have that g’ = kg, which implies (T~ £)([¢']) = f(g') = f(kg) = f(g) = (T~ )([g)).

Let f € C°(M) and f = U(f). A left invariant vector field X € g acts on smooth functions
on M via the pushforward of the map = (that we denote with T'r):

Xf=9(Tr(X)f).

The same argument can be extended to left invariant differential operator in the universal
enveloping algebra of g, U(g). We write X instead of T'w(X) for vector fields of g acting on
C*(M).



1.2 Hormander systems 5

Remark 1.1.2. Note that Proposition 1.1.1 yields an integration by parts formula on M:

/ (X f)gdu = / F(Xq)di
M M

for X € g and f,g € C°°(M). The boundary terms are absent due to the compactness of the
quotient.

1.2 Hormander systems

Fix a finite subset Z = {X1,..., X;} of g.

Definition 1.2.1. We say that Z is a Hormander system if (Z) = g, where (Z) is the smallest
Lie subalgebra containing 7.

We now define some differential operators on M = K\G adapted to a Héormander system Z.
First of all we define a gradient:

Definition 1.2.2. Let f € C°(M). The Z-gradient of f is defined as

Vif(@) = (Xif@),.... Xif (@) (1.1)
for all . € M.
Next we define a divergence operator:

Definition 1.2.3. Let F € (C*(M))!. The Z-divergence of F is defined as
l
divy F(z) = > X;Fy(x) (1.2)
i=1

for all x € M.

Remark 1.2.4. We call the operator just defined Z-divergence since it is the adjoint of the
T-gradient. Indeed, for f € C*°(M) and G € (C®(M))" we have

l
/M (Vzf) - Gdp = /M ; (X:f) Gidu

l
= — ]A;-j f (Z (X?G.?)) dp = — A}I [ dive Gdy,

i=1
where - denotes the usual scalar product in R! and where we used Proposition 1.1.1.
Finally we define a sum of squares operator which we will sometimes refer to as sub-Laplacian.

Definition 1.2.5. Let f € C*(M). The Z-sub-Laplacian of f is defined as

1
Lrf(x) =) XIf(z) (1.3)

i=1

for all x € M.
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Remark 1.2.6. We call the operator Lz defined in (1.3} sub-Laplacian since it can be
understood as divz Vz. Indeed, for f € C°(M) we have

{ !

diveVof =Y Xi(Vef);, = > XIf
il i—l

Cousider the Hilbert space L2{3) with respect to the measure dye. We denote by (-, -} the

scalar product in L2{M). The operator Lz is initially defined in the subspace C{A{). which

is denge in L2(A7) (recall that Af is compact).

Proposition 1.2.7. The operator Lz is symanelrie and postive,

Proof. Let f.g € C*{Af). 1t suthices to prove that cach operator —X f s symmetric and
positive. BBy the integration by parts formula we have

—(XPf.0) = (X:if. Xig) = —(f. XPg).
so —X? is symmetric. Morcover
—(X7F ) = (X X f) = 1K F N o gary 20,
henee — Lz is positive. |

Since the vector ficlds in 7 satisfy Coudition 1.2.1 the operator Lz is hypoclliptic by Hérman-
der's theorem. By Nelson’s theoram (see [16]) we conclude that the operator Lz is essentially
self-adjoint. Moreover, since M i compact — Ly has a real discrete nonnegative spectruin
Y BT wilh eigenvalues, counted with multiplicily,

O=Ag <Al << A <.

with Ay = ox as bk — o

The associaled LP-normalized eigenfunclions o; fornn a complete orthonormal svstew for
L?{A). Since the operator Lz is hypoelliptic. the cigenfunetions are € (Af) and in particular
they are bounded. Note that Ay has multiplicity 1 and g = 1.

The spectral theorem provides a funetional calewlus for the operator — Ly, if moe L™, the
operator m{—Lz) defined by

m( La)f =Y mO){f e

e
i=0

is bounded on L2(Af).

1.3 The heat flow

We consider the Cauchy problem for the heal cquation on Af associaled to Lz will inilial
datum f,
SQul. ) = Lrult.e) (hox) e RT x A
u(0,2) = f(x) x e M.

It is known (see |39]) that for all £ > 0 the solution at time ¢ of the heat equation with initial
datum f € C>(M) is obtained by applying the heat semigroup e/5Z. which is given by the
nultiplier ¢ 17 : £ = R, Explicitly we have

(1.1)

ol
dEf =3 e e (1.5)
=0
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Remark 1.3.1. Expression (1.5) makes sense also for f € L?. Indeed one can prove, by
Lebesgue’s dominated convergence theorem, that e'*7f is C*°(M) for all t > 0. If f is
continuous, the initial datum is recovered in a limit sense:

lim &P f(z) = f(x),

t—0
for all &z € M.

Proposition 1.3.2. Letu : RTx M — C be a solution of (1.4) with initial datum f € C*>°(M).
Then the following properties hold.

1. If f is nonnegative, u(t,x) is strictly positive fort > 0.

2. The total mass of the solution is preserved at each time t > 0:
/ u(t,z)dp = / fdu.
Jm JM

3. The operators etLT enjoy the semigroup property, i.e. eFILT — Lz esLt fort s> ()
or, equivalently, u(t + s,z) = u(s,u(t, z)).

4. The solution at each point x € M converges to the mean of the initial datum, i.e.

lim u(t,z) = fdpu.

t—o0 M

Proof. Properties (1) and (2) follow from Hunt’s theorem (see [34]) for the group G and pass
to the quotient M (see [44, Section 2.5]). Property (3) is obvious. Property (4) follows from
the fact that 0 is an eigenvalue for Lz with constant eigenfunction o = 1 and that (1.5)
converges to (f, o) = fM fdp as t — oco. O

In particular, notice by Property (4) that if f is nonnegative, we have
Jim u(t, ) = (| fll 2y

Now fix p > 1 and consider the nonlinear evolution for a nonnegative f € C°°(M) given by
o(t, ) = (e )77 (a). (1.6)

We say that v(t, z) is a nonlinear evolution because when p > 1 it satisfies a nonlinear equation,
indeed
. e | 1 i
8;1-'(t, T) =0 (ef-Lpr) /p —_ (EE.Lpr) v LIeiLpr
p

1
= v P(t,2) L1V (¢, ).
D

Since L7 = divz(V7z), we have that

VzoP(t,x) = po?~ L (t, 2)Vzu(t, x),
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so that
LzvP = divg(Vzo?) = pVzoP ™! - Vo + poP~ Lo
= p(p — )vP~2|Vzv|? + pvP~ L Lo,
where - denotes the usual scalar product in R! and | - | the associated norm. Hence we see

that v(t, z) solves the nonlinear equation

|[Vzo(t, z)|?

v(t, x)

We have an analog of Proposition 1.3.2 for the nonlinear evolution (1.6).

d(t,z)=(p—1) + Lzv(t, x). (1.7)

Proposition 1.3.3. Let v: RT x M — C be a solution of equation (1.6) with initial datum
feC>™(M). Then the following properties hold.

1. If f is nonnegative, v(t,x) is strictly positive for everyt > 0.

2. The LP mass of the solution is preserved at each time t > 0:

/ u(t, z)Pdp = frdpu.
JM M

3. The operators (e”‘z(-)p)l’!p enjoy the semigroup property, i.e. v(t + s,x) = v(s,v(t,x)).

4. The solution converges to the LF(M) norm of the initial datum at each point x € M,

1/p
3 e Y P
&}n&w(t,x} = ([,4 f d;a) ;

Proof. All the properties are easy consequences of the properties stated in Proposition 1.3.2
applied to the function v”, which is a solution of the linear heat equation (1.4) with initial
datum f?. O

1. €.

1.4 A monotonicity result

Fix p > 1 and m € N. Consider a set {f1,..., fm} of nonnegative smooth functions on M
and the associated nonlinear flows

vilt ) = (L2 )P (2). (1.8)

For fixed ¢ > 0 consider the function of ¢ given by the integration over M of the product of
the nonlinear evolutions v;(t, z):

T

o(t) = AIHv.g(t,m)d;z.. (1.9)
|
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Lemma 1.4.1. If the function (1.9) is nondecreasing, the following inequality holds:

m T
A} Hf?fd“' = H 1 fill Lo (ar)- (1.10)
=1 i=1

Proof. Since ¢(t) is nondecreasing we have

}1_% o(t) < hm Qb(f) (1.11)

By Remark 1.3.1, on the left-hand side we obtain the integral of the product of the initial
data. For the right-hand side, by Property (4) of Proposition 1.3.3, each v;(t, ) converges to
”fi”LP(Mr} and the result follows since fM ldp = 1. O

Remark 1.4.2. Since the space M is compact, the best constant in inequality (1.10) is 1
and is attained for constant functions, since for a nonnegative constant a € R, |[a||zr(ar) = @
for all 1 < p < oo, by the fact that du(M) = 1.

Remark 1.4.3. At first sight the estimate (1.10) looks like Holder’s inequality, but it is noL.

since in (1.10) there are in general no constraints on the exponent p. In particular )", p,_,

need not be 1. In fact, proving the monotonicity of ¢ under certain assumptions that will be
made clear later on, we will get exponents that do not satisfy Holder’s condition.

Let us first find an explicit formula for the time derivative of the function ¢(t). Note that ¢
is differentiable in time. By Property (1) of Proposition 1.3.3, each v;(¢, ) is strictly positive.
We define, for t >0 andi=1,...,m,

i(t, x) = log(vi(t, x))

and
e

)= Hv{(t,;r:).
i=1

Proposition 1.4.4. Under the assumptions above we have

—¢’ —IZ/MZX;UJOCQ (¢, x)dp
_Zzzf il ) X)) Gl (1.12)

lelk:l

Proof. By the Leibniz rule and (1.7) we have

jt /H%frd;;
=/3;H tTd,u—Zf df(',(t’tﬁ (t,z)d
M i

i=1 1
J#
_Z/M( (f I) 4 Lzvi(t, )) [T vt 2)dp. (1.13)

i=1

i
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We split each integral in the sum into two pieces:

: 2 b
/ (p—])MHU-t rd;x—k/ Lzvi(t, x) Hv?t x)dp
Jum :

g b
J?é? J#
= Ii(t) “t _[I?(f)
For I;(t) we have

2 T

|v[_gva(t *E
Li(t) = (p—1) [ YEPh I
i(t)=(p ). Uil £) H vj(t,z)dp
J?‘?
—(p- 1)/ Vigvihs )P o 2y = (p - 1)/ Ve, it @) PG (t, 2)dp
m it x) M

!
={p—1) jM ;(Xjﬁi(t,x))QG(t,x)dﬂ.

For I1;(t), integrating by parts, we obtain:

™m

ILi(¢) = ['u Lzvi(t,x) H vi(t, x)dp

j=1

i
! m
= Z X?'v?;(t, x) H vj(t, z)dp
j=1vM j=1
i

l
= Z " Xvi(t, x)X; H'Uj(f,.’l?) du,
g=1°%

j=1
J#i
which, using again the Leibniz rule, gives
1 m
ILi(t) = —Z Xjvi(t, 1)2 Xjue(t,x) H v (t, ) | dp
j=1"M k=1
R75: K ik
I m m
Xovi(t,w ! t
=33 [ ARSI ([] weitn) |
i i.r,;(t._:r) vi(t, z) o)
k#i
= —ZZ/ X;0i(t, x) X;0p(t, )G(t, x)dp.
i=1 k=1
ki
Finally, taking the sum,
Tt
> (L) + T1i(1)

we obtain the result. |
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Remark 1.4.5. The time derivative of ¢ can be equivalently written as

!

d m ‘
a(ﬁ(t) =(-1) ; ]M Z (Xjf’i(t:x))z G(t,x)dp

j=1

m | i—1
—22 2.0, /1 (X0 (t, 2) X0k (¢, x)) G (¢, x)dp. (1.14)

i=1 j=1 k=1"M

We observe that this expression contains all possible square type terms (X;o; )2, and all
possible double products 2X;5; X0 for j =1,...,land i,k =1,...,m, with i < k.

One could allow each nonnegative f; € C°°(M) to evolve with a different nonlinear evolution.
Indeed, one could choose a different p; > 1 for each f; and define

N 1/pi
vi(t, x) = (etlz fPi) & (z).
Concerning this point, we state a simple modification of Proposition 1.4.4.

Proposition 1.4.6. In the hypotheses above we have

T

d  reue s ’
4 o) = ;ﬁ; = 1);: (X;7i(t, 2)2 C(t, )dp

Tr

m 1 .
=D /u (X;0i(t, 2) X0k (t, @) G(t, x)dp. (1.15)

i=1 j=1k=1""
SR
Proof. The proof is the same as for Proposition 1.4.4, once noted that each v;(¢, ) solves the
equation
|Vzvi(t, x)[?

8tvi(ts z) = (;U:;. - 1) 'Ug(ﬁ x)

+ Lgv; (t, .1,“) .
O

As a simple corollary of Proposition 1.4.4 we obtain multilinear Holder’s inequality for a
restricted range of exponents.

Corollary 1.4.7 (Multilinear Holder’s inequality). Let f; € C°°(M) be nonnegative functions,
fori=1,....m. Then we have

m m
/ Hfa‘d# < H | fill L agy-
JM i=1

Proof. Fix p > 1. Let v;(t,x) be the evolution under the nonlinear flow of the functions
fi,..., fim as in (1.6), with the same exponent p for all i = 1,...,m. Consider the function
¢(t) defined in (1.9). From (1.14) we see that, for fixed X; there are m(m — 1)/2 double
product terms 2.X;%; X0y, with ¢ < k. In particular, each term X;v; appears m — 1 times in
the double products. If we take p = m we have

d mo 1
M= 3 Z]w(m — 1) (X;0i(t,x))* G(t, x)dp

i=1 j=1"4
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m L i-1
- QZZZ / (X;0:(t, 2) X;0x(t, ) G(t, x)dp
i=1 j=1 k=1" M
!

— Z/ Z (X405 — Xj'i:‘k)Q G(t,x)du > 0,
M =1

k<i

since G(t,z) > 0. So for p = m the function ¢ is nondecreasing. The conclusion follows from
Lemma 1.4.1. 0

More generally, looking at the proof of the result above, we note that, allowing the exponents
p;i to be different, as in Proposition 1.4.6, and taking p; > m, the time derivative of function
(1.9) can be arranged in the form

d i fel .
G060 =33 [ (5= m)Ctit,2) Gt )
: i=1 j=1YM
m |
+3 ) / (m — 1) (X;(t, x))? G(t, x)dp
i=1 j=1"M
m 1 i—1
—2) >y / (X;9:(t, o) X j0x(t, ) G(t, x)dp
i=1 j=1 k=1"M
m
= Z Z / (pi —m)(X;7;(t,2))°G(t, z)dp
i=1 j=17M
-
+ Zj > (X0 — X;ik)? G(t,x)dp > 0,
k<i M j=1

since both summands are nonnegative.
Hence we can formulate the following immediate corollary.

Corollary 1.4.8. Let f; € C°°(M) be nonnegative functions, fori=1....,m, and p; > m

Jor all ©. Then we have
e kil
/ [T fidu < TT 1 fill s any.
J M =i i1

Remark 1.4.9. Corollary 1.4.8 does not come as a surprise. Indeed, since M has finite
measure, we have continuous embeddings of LP(M) spaces as p grows. Precisely we have that

LP(M) < LI(M)

whenever p < ¢, with operator norm 1, since the measure dp is normalized. Taking into
account this remark, Corollary 1.4.8 is a straightforward consequence of Corollary 1.4.7.

We give the following definition which will be useful in what follows.

Definition 1.4.10. Let fi,..., fi;n be nonnegative measurable functions and p; > 1 for
i=1,...,m. We say that the inequality

[ T sau<]T0s
M =1 i=1
1L

is nontrivial if Zizlp{_l > 1, i.e. if it does not follow directly from Holder’s inequality and
continuous embeddings of Lebesgue spaces.

| s
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1.5 Functions with symmetries

As the proof of Corollary 1.4.7 suggests, the choice of the exponent p depends in a combinatorial
fashion on the number of vector fields and on the number of functions. Corollary 1.4.7 from
this point of view represents the worst case, in which one considers all vector fields of the
family Z applied to all functions. In what follows we will investigate the cases where some of
the functions are annihilated by a subset of the vector fields in the family 7.

Definition 1.5.1. Let A C g. We say that a function f € C*°(M) is A-symmetric if X f =0
for all X € A. We denote with C'°(M) the space of A-symmetric functions, which is also an
algebra with respect to pointwise multiplication.

Remark 1.5.2. By the simple observation that if X,Y are such that Xf=0and Y f =0,
then also [X,Y]f = 0, we see that if a function is A-symmetric, then it is also (A)-symmetric,
where (A) is the smallest subalgebra of g containing A. In particular, if .4; and Ay are subsets
of g such that (A;) = (Az), we have that CF (M) = CF (M).

Functions that are A-symmetric enjoy invariance properties on the group G, and hence on

the manifold M.

Definition 1.5.3. Let G' < G be a Lie subgroup of G. We say that f € C*°(G) is G'-invariant
if f(gg') = f(g) for all ¢’ € G".

Lemma 1.5.4. Let G' < G be a Lie subgroup of G and g’ its Lie algebra, which is a Lie
subalgebra of g. Let f € C*(G). Then f € Cg?(G) if and only if f is G'-invariant.

Proof. Suppose that f is G'-invariant. Let X € g’. Observing that exp(tX) € G’, we have

d
Xf(z) = 2 f(zexp(tX))l=o
d
= af(i}”t:(] = ().
Conversely, let f € C g,o . Then, for t small enough, we have

f(xexp(tX)) = f(x),

for all X € g’. The result follows since exp is a local diffeomorphism between g’ and G’ and
G' is connected. O

Definition 1.5.5. Let A C g and Z be a Hormander system. We say that A is an Z-set if
Lz commutes with all the elements in A, i.e. [Lz,X] = Lz X — XLz=0.

In this definition the bracket is extended to the universal enveloping algebra U(g) of g by the
Poincaré-Birkhoff-Witt Theorem.

Remark 1.5.6. If A is a Z-set, then so is (A), so it is enough to test the commutativity on
the set A rather than on the whole generated subalgebra (A). Indeed, if L7 commutes with
X,Y € A, we have

[Lz,[X,Y]] = Lz[X,Y] - [X,Y]Lz
=LzXY - L;YX - [X,Y]Lz
= XLzY —YL7X — [X,Y]Ls
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= XVIs—RXE:V X = [X, ¥z
=0.

Alternatively, this can be seen as a consequence of the Jacobi identity for the bracket product
extended to the universal enveloping algebra.

For a vector field that commutes with the operator Lz we have the following lemma.
Lemma 1.5.7. Let X € g such that [Lz, X] = 0, then e*2X = Xe'*Z for all t > 0.
Proof. Let f € C*°(M). Consider the map

P(s) = Lz Xtz f,
Computing the derivative in s we get

%w(s) = LI (LeX — X Lr)elt®Ez f = 0.
Thus 1(0) = 9(t), which yields
Xellzf =etlzxf.

O

We will be interested in functions that are A-symmetric, with 4 some Z-set. For these
functions we have the following proposition.

Proposition 1.5.8. Let A C g be an I-set and let f € C3P(M). Then etlr f ¢ CX (M) for
allt > 0.

Proof. This is a direct consequence of Lemma 1.5.7. O

Remark 1.5.9. It is easy to see that an analog of Proposition 1.5.8 also holds for the nonlinear
How (e“‘f I 3”)1K P for p > 1, with f € C% (M) nonnegative. Indeed, under the assumptions
above, if X € A, we have

l—p

X (ebzgr) /P = L (ethx pp)FE xetlapr — g,
r

since [X, e'tZ] =0 and fP € CF(M). Then (eu‘ffi")up e CX(M).

Thus the heat flow preserves the symmetry: if A is an Z-set and if the initial datum is
A-symmetric, then so is its evolution, either linear or nonlinear, under the heat equation.
Given a subalgebra A C g we can consider the vector space of functions C'(M) that
are annihilated by all vector fields in A. The Lie algebra g has a (nonunique) direct sum
decomposition as a vector space:

a=A3® B,

where B is a vector subspace of g.

As we saw in Proposition 1.4.4, for the task of proving the inequalities we are interested in,
it suffices to take into account only the action of vector fields in the system Z. So we can
only consider Z M A or we may as well consider subalgebras generated by subsets of vectors in
TI. Different subsets of T could generate the same subalgebra and we do not want to make a
distinction between them. This leads us to the following definition.
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Definition 1.5.10. Let A C Z. We say that A is maximal in Z if for every A’ C T such that
(A) = (A"), we have that A" C A.

Lemma 1.5.11. Let A CZ. Then (A) NI is maximal in I.

Proof. The proof is straightforward, since (A) N Z contains all possible linear combinations
and brackets of elements in A that are in Z. O

From the point of view of functions, for each function f € C°°(M) we have a maximal subset
of Z, which we denote by Ay, such that for X € Ay, Xf =0, and for Y € T\A;, Yf # 0.
With this observation we can reduce the symmetry property to a matter of subsets of the
Hormander system Z. Indeed, for every function f, Z decomposes as the disjoint union

IZAIU.A?,

where the complement is taken with respect to Z.
Let us introduce a notation. If A;,... A, are finite sets, for a multi-index j = (ji,...,5m) €
{0,1}™ we denote by

the intersection of the sets A; such that j; = 1.

1.6 Inequalities for functions with symmetries

We are now ready to state the main result of this chapter.

Theorem 1.6.1. Let Ay, ..., Ay be mavimal subsets of I that are I-sets. Let f; € CF (M)
be nonnegative functions, for i =1,...,m. The following inequality holds

i K

/ Hft'd'.u < H | fill Lo cary
M i=1

for p = p, where p is the number of occurrences of the most recurrent element among the finite
sets A5, i.e.

P = max max |j

P acl; AT j:N;A73a 1
Proof. Since the functions f; are A;-symmetric, and the sets A; are Z-sets, by Proposition
1.5.8 the nonlinear evolutions, defined in (1.8), are also A;-symmetric. By Proposition 1.4.4
all possible double products of the form X;v;X;0;, with ¢ < k and X; € A; N Aj., will appear
in the time derivative of ¢. Recall that p — 1 depends on how many square type elements are
needed to complete the squares. In order to have positive derivative, we will need p — 1 to
be at least as big as the number of occurrences of the most recurrent vector field among the
AS. O

It is easy to deduce the following sufficient condition to obtain a nontrivial inequality in the
sense of Definition 1.4.10.

Proposition 1.6.1. Let Ay, ..., A, be mazimal subsets of I that are I-sets. To obtain a
nontrivial inequality from the nonlinear heat flow associated to Lz the condition

ﬁA;‘- =0 (1.16)
=1
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must be fulfilled. Condition (1.16) is equivalent to
T
|}t =2 (1.17)
i=1

Proof. The nontriviality condition when all exponents are the same reads

which implies that p < m. By Theorem 1.6.1 we have a nontrivial inequality if p < m and
this happens if no elements of Z appear in all the sets A, yielding condition (1.16). O

So far we considered the case where all functions evolve under the same nonlinear flow, i.e.
with the same exponent p > 1. If we consider different exponents p; for different evolutions
we have the following result.

Theorem 1.6.2. Let Ay,..., A, be mazimal subsets of T that are T-sets. Let f; € Cj’,“j(ﬂff)
be nonnegative functions, for i =1,...,m. The following inequality holds

m 1

j ]___[ fidp < H I fill o (ary
M i=1

for p; > pi, where p; is the number of occurrences of the most recurrent element of AS among
& i
the finite sets Af,, i.e.
p; = max max |[f].
acA? j:njAL3a

Proof. The proof follows by the same argument as the proof of Theorem 1.6.1. O

1.7 The abelian case

As a first example, in this section we analyze the inequalities discussed in the previous section
when the Lie group is (R",+). We fix an orthonormal basis {ej,...,e,} of R" and consider
the corresponding Cartesian coordinates (1, ...,2,). We take the quotient by the discrete
subgroup Z",

Rﬂ/zn s ']I‘ﬂ-’

where T is the n-dimensional torus, which can be understood as the cube [0,1]" in R™ with
identifications of opposite sides.
The Lie algebra of R" is generated by the vector fields

Xt' = E}r,

fori=1,...,n. Clearly
[Xi, X5 =0
foralli,j=1,...,n.
In this setting a Hormander system of vector fields must necessarily contain a basis for the
Lie algebra, since all commutators are trivial. So let

IZ{YM--%K{}



1.7 The abelian case 17

with [ > n and let {Y7,...,Y,} be a basis for the Lie algebra. Obviously each Y; can be
written as

T
Y; =) a;uXy, (1.18)
k=1

with a; € R. We denote by a’ the vector consisting of the components of Y} in the basis
{X1,..0, X}, ie. |
a? = (ai1,. . 1840)

as in (1.18). For vectors by,...,b, € R", we denote by
det(by, ..., by)

the determinant of the matrix with b; as the i-th column. Finally, for vectors ¢y, ..., ¢, we
denote by
rank(cq, ..., cp)

the rank of the matrix with ¢; as i-th column.
Note that by the assumption that {Y7,...,Y,} is a basis for g, we have

det(al,...,a™) # 0.

In this abelian setting all subsets A C 7 are Z-sets, since every two vectors commute. So we
can pick any subset of 7 and we have the following proposition.

Proposition 1.7.1. A subset A ={Y;,,.... Y.} of Z, with1 <1y < --- < i5 <, is mazimal
if and only if, for all X € T\ A,

rank(Y;,,..., Y, X) # rank(Y;,,..., Y:,). (1.19)

Proof. We know that (A) NZ is maximal. Since g is abelian, vectors in (A) NZ that are not
in A are vectors of Z that are linearly dependent from the vectors in A. Condition (1.19)
ensures that A already contains these vectors. [

Let us treat the case | = n, i.e. when 7 is a basis for g. In this case all subsets of T are
maximal, so we have 2" possible maximal subsets to which we can apply Theorem 1.6.1. If A
is any subset, the vector space sum decomposition

g = (A) & (A9

is also a Lie subalgebras decomposition, meaning that [(A), (A%)] = {0} . All subsets have
maximal complement and we can directly consider the complements of the annihilating sets.
Let us discuss the case where Z = {Xy,...,X,}. Consider a subset A C T given by
A={Xi,...,X; } with s < n. The Lie subalgebra {A) is just the vector subspace of g given
by

span(Xi,, ..., Xi.),

which corresponds to the Lie subgroup A given by
Span(ey; ;«.«y€, )

A nonnegative function
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on the torus T™ which is A-symmetric is constant on translates by vectors in the Lie subgroup
(A), Le.
flz+v) = f(z),

for all v € A. In other words, the function f does not depend on the variables x;,, ..., x;,
and we can think of it as a function of the remaining n — s variables. Suppose for simplicity
that i; = j, for j =1,...,s, then f can be identified with a function

F:R"/R* ~R"* - R"

such that F(zey1,...,2,) = flz1,... 24,541 ..., 2,) for any s-tuple (xq,...,2,). Equiva-
lently we can write
F=fonm,

where 7 : T" — T"® is the linear projection

77(3-:1} o 'aig'n) — (-I:s+13 . '13:71)-
We follow the notation of [15], denoting with w finite subsets of {1,...,n} and with z,, the
set of variables {x;,,... ,::;,:lwl}, where w = {i1,...,i|,}. We denote with f, a function only

depending on z,,. Note that

folzw)dzy = fo(zy)dry ... day,
Tle| T

from which we get that
| foll Lo(riety = Il fellLom), (1.20)

for all p > 1.
Let C(n, k) := (}). We have the following proposition.

Proposition 1.7.2. Let wy, ... ,we (k) be the possible k-tuples of elements in {1,...,n}, and
let f,, be nonnegative measurable functions only depending on the collection of variables w;.

The inequality
C(n.k) C(n,k)

[' I folze)de < T Ifwlloen (1.21)
S = i=1

n—1
> 9=
R (kr—l)‘

Proof. In the language developed in this chapter, the sets A are given by {X;,,..., X; } and
they are in correspondence with the collection of variables wx,,, where w; = {i1,...,ix}. By
Theorem 1.6.1 it suffices to check which is the number of occurrences of the most recurrent
element among the AY, or, equivalently, the most recurrent variable x; among the collections

Ty,. It is easy to see that in this case every variable x; appears exactly (::i) times. O

holds, for

Remark 1.7.3. Proposition 1.7.2 is a local version of a result due to A. P. Calderén in [15]
(see also the work of H. Finner [27] for further results). In the notation above, Calderén
proved the inequality

C(n.k) Cink)

/n H fwg(wwi)dmf H ”fu;”Lﬁ(m;iwil}*
i=1 i=1
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with p = (fj) by induction on the cardinality k of the subsets w;. If the functions f,, are
supported in the unit cubes of R« Calderén inequality becomes

Cn.k) Cn.k)

[T ateaddz < TT Wuallaareny
"= i=1

which by (1.20) is equivalent to (1.21).

Remark 1.7.4. The case k = n — 1 is a local version of Loomis-Whitney inequality (see

j43)).

All the estimates above (Calderén inequalities, Loomis-Whitney inequality and their local
versions) can be proved by a smart iteration of Holder’s inequality.

Another way of proving this kind of inequalities is the heat flow method used in |7]. Recall
that a geometric Brascamp-Lieb inequality is an estimate of the type

b T

/n H fi(Biz)dx < CH | fill Loi ey (1.22)
=l i=1

where B; : R™ — RR™ are surjective linear maps such that B} is an isometry, i.e. B;B; = Idgn;,
fi : R™ — R are measurable functions, and the relation

Y p'BiB; = ldgn (1.23)
i=1

is satisfied. In [7] the authors prove that under condition (1.23), inequality (1.22) holds with
C' = 1. Restricting the supports of the functions to unit cubes in R™ this local version of the
inequality obviously holds

1 e

[ 1Bz < TLMAlonomo, (1.24)

M i=1

under the same assumption (1.23).

Let us consider the case m = C(n, k), B; = T, being the projection onto the set of variables
x,,;. The maps B} are isometries, being inclusion maps. We have to check for what exponents
p; assumption (1.23) is satisfied.

It is easy to see that B} B; is given by a diagonal matrix such that (B} B;);; = 1 if and only if

Jj € w;, for j =1,...,n. Hence condition (1.23) requires that
-1
> pil=1
& widj

for j = 1,...,n. Each sum is made by G::]]) terms, so that condition (1.23) is certainly

satisfied if p; ! = (::i) foralli=1,...,C(n, k).
We note that the general condition (1.23) gives rise to exponents that are not covered by

Proposition 1.7.2.



20

A general framework




CHAPTER 2

The case of the sphere

In this chaprer we will find inequalities for functions with some degree of symmetry on spheres
of all dimensions i > 2. We consider the Enelidean space R, with the standard sealar produet
{-.-y and the induced norm | -], Let {e1,. ... e, be an orthonormal basis and (51, ..., x,) the
associated coordinates. The {n — 1)-dimensional unit sphere is the set

8'”_1 = {;‘]’T = ]_%’“ : :I?E + - +:rﬁ = 1}‘

which we endow with the normmalized uniform measure do,
The sphere S®! can be seen as a homogeneous space of the special orthogonal group

s = SO(n — 1\SO(n).

where SO(n 1) is intended as a closed subgroup of SO0} that fixes one direction. The
measure do is, up to normalization, the push-forward through the projection map on the
quotiont 8771 of the bi-invariant llaar measure on SO{n).

2.1 Functions depending on % variables

In what follows we will use cartesian coordinates to deseribe points on the sphere. In particular

we will often write f(z,....x,) for functions f: §*~1 — R, implicitly assuming the condition
-t =

We will consider functions on the sphere depending on & variables. with 1 < &k < n — 1. Let
w=1{ir,...,ix} beasubset of {1.....n}, with |w| = & and let @y, = (a4, ..., ). We will
use the notation w' = {igy. ..., 4} for the complement of w in {1....,n}.

Consider the projection
Mo Sn—l N R.ﬂr

that maps (... o) — (... ..x5, ). The image of the map =, is the closed unit ball 5y,
:  h
in K~.

Definition 2.1.1. We say that a function f @ 871 = R depends on & variables, for
1 < k& < n—1if there exists a function f : £2, — R such that

f=Ffom,

for some subsct w of {1,.... nt. with |w] = k.

21
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By abuse of notation we will often write f(x,,) for a function on the sphere depending on k
variables, meaning f(z,,).

Functions on the sphere depending on k variables enjoy special symmetry properties. Indeed,
they are constant on (n — k — 1)-dimensional subspheres of the original sphere. Indeed, the
fiber of a point y € By, is given by

wujl(y) = {{@y; ey @p) E gr—-1 PXi; =Yy for j=1,...,k},

so the set 7! (y) is the intersection of the sphere S"~! with the (n — k)-dimensional affine
subspace of equation

Ty =11

Ti, = Yk-

Thus, the fiber of y € By is the set of points satisfying the equation

x’?k+1 +"l+x‘l?n zl_y%_"l_yzﬂ
which describes a sphere $"7*~1 of radius 1 —y? — - — y? contained in S"~!. Note that for

fixed w, 751 (y) # 75 (y) if y # 3/, so that the subspheres 7' (y) indexed by y € By do not
intersect one each other and cover the whole §7~1,

Example 2.1.2. A function on $? in R? depending on one variable, say x3, is constant on
circles lying on planes orthogonal to the x5 direction.

Figure 2.1: Level sets for a function on $? depending on the variable 3.

Remark 2.1.3. Functions on S"! depending on n — 1 variables, say x1,...,%,_1, are
essentially generic functions. Indeed, they are constant on 0-dimensional spheres, i.e. couples
of points symmetric with respect to the hyperplane z, = 0. In other words, these functions
take the same value on two opposite hemispheres. It is easy to see that any generic function
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f: 8" ! 5 R on the sphere can be written as a sum of two functions each depending on n — 1
variables

F@1eesmn) = £ (21,00 B0m1, (L= 2 = oo =22 )Y2) Xga,m0)
+ f (.’I.']_._. ceagipn—1, _(l - J"% - 3"?%?,—1)1’?2) X{x,,<0} = f] + f2:'
where y 4 is the characteristic function of a set A C R"™.

For a generic function f : S"~! — R we have

/ f(xh---,:ranJ:%/ [f ($1=---,xn—1,(1—mf—‘-'—-’ri_l)m) (2.1)
2 Sﬂ—l Bn—l

. 2 2 \1/2 2 -1/2 ,
+F | Bupeilnage ==& = =iy 5) (1_3'1_”’_3771—1) dry...dzTn_1,

where B,,_1 is the unit ball in R®~!. The constant ¢, only depends on the dimension.
For convenience of the reader, in the following proposition we derive a similar and well known
integration formula for functions depending on k variables.

Proposition 2.1.4. Let w = {i1,... i} be a subset of {1,...,n} with |w| = k, for 1 <
k<n-—1. Let f :S""! = R be a function depending on the k variables z,,. The following
integration formula holds:

—

i : k—2
fair = eng [ f@)0 =, =~ ) . (22)
k

gn—1
The constant ¢, 1. depends only on the dimension n and on the number of variables k.

Proof. Consider the parametrization of "' in spherical coordinates

xj, = costh
x;, = sinf; cos by

i, = sinf;sinfy . ..sinf_ cos by (2.3)

x;, , =sinflysinfly...sinf, pcosp

| %3, = sinfysinfy...sin6, osiny

where 6; € [0,7) fori=1,...,n—2 and ¢ € [0,27). It is well known (see for instance [31])
that in these coordinates

Q,do = sin® 20y sin" 20, . ..sin?0,,_3sinb,_2d0; . . . df,_odep,

where (2, is the (n — 1)-dimensional Hausdorff measure of the sphere §"~1. For our function
f we have:

d ™ e
/ f'(;cw)dozﬂglf / / flcosfy, ... sinfysinby...sinb;_q cosly)
gn—1 0 0o Jo

x sin""2 0, sin" "0, .. .sin2 0,,_3sin O,_odf; . .. d0,_odp

m T
=8k / . / fleosfy,...,sinfysinfy...sinb_; cosly)
<40 0
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x sin™ 2 0y sin™ 2 6y ...sin™" %1 G,db; . . . dby,

where the constant ¢, j is given by

m m
= 21} f / sin™ %20, 1 ...8in0h_9d0kyy ... dOn_o.
0 0

It follows from (2.3) that

.']’,'z‘j
cosf; = > =
\/1_:53‘1_"'_3:@_1

so that

2 2
_ \/l—mil—---—.rij
sinf; = :
I 1 _ 22 2
\/_‘Bil_..._&':ij—l

Note that —1 <=;; <1for j=1,...,k and that

;:c;gl + .'E;i e .???k =1—sin?6;sin®fy...sin% 6 <1,
so that the points (z;,,...,;, ) lie in the unit ball By, of R*. Moreover
dry ...dzy = sin® 0y sin* 1 0, . .. sin® 0 sin Oxdb; . . . dby.

In conclusion we have

flzy)do ~ Fl@iy, ... i) (sinfy sinby . .. sin0x)" 2 day, ... du;,
gn—1 Bk
9 5 n—k—2
= A f(:fgl,...,.l.'gk) (1—:3;,:'—---—:5%) 2 dxil——-difik-
k

O
Remark 2.1.5. Note that for functions on the sphere "' depending on one variable, i.e.
the case k = 1, we recover the well known integration formula:

n—3

1 .
fla;)do ~ /_1 flzi) (1— xf)_f dz;.

Jgn—1

For functions depending on n — 1 variables, i.e. the case k = n — 1, we recover formula (2.1):

1
i 2 2 2
/ If(:lfi“...,ﬂfgﬂ__l)dﬂ'“/ If(:r'-ila---sa:‘i“_l)(]_xﬁ _“'_xin—l) d;rf:l"‘dx'én—l‘
S‘ﬂ— Bn.—

Remark 2.1.6. Let w be as above, with |w| =k, for 1 <k <n—2,and let f:S"! = R be
a function depending on k variables. Since

n—k—2
(1—wf —e—nf) & <1,
we have the trivial inequality
fando < [ fa)da. (2.4)
gn-1 Bk

In this way, we obtain a family of continuous immersions
LP(B*, dx,) < LP(S"7!, do),

for 1 <p<oc.
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2.2 The Lie algebra of the special orthogonal group

Recall that a basis for so(n), the Lie algebra of SO(n), in the coordinates (z1,...,x,) is given
by the vector fields

L{,j = xt—é)xj — .’L‘jax“
for 1 <i< j <n. Obviously L;; = —L; ;. The dimension of so(n) is therefore n(n —1)/2.
Let 0; j be the Kronecker delta. The bracket of two basis elements L; ; and Ly is given by

[Lij, Lig] = (2i0r; — 202, ) (2402, — 210x,) — (240r; — 210y, ) (2i0; — x0y;)
= Zi0; xOp — 0 1 0n, — 240,10y, +28;10,,
= (xkéﬁ,iaxj — 2x01,i0z, — T104,i0z; + 210 O, )
= (2105, — Tj0s,) Ok + (205 — 10s,) 0%
+ (202, — 210y, 8iy + (2400, — T:0s,) Oy
= Ly j0ix + Lii6jk + Ljxbig + Ly 61 1 (2.5)

Hence the commutator of two elements of the basis {L; ; }i<;, if not trivial, is again an element
of the basis. Indeed, the right hand side of (2.5) consists of at most one element, since getting
two or more summands in (2.5) would force three or all indices among i, j, k.l to be equal.
making the identity trivial. Note that if the indices i, j, k, [ are pairwise different the vector
fields commute.
This basis of so(n) will be our Hormander system Z. The corresponding sum of squares
operator is given by

L=>) I, (2.6)

i<j
Proposition 2.2.1. The operator L defined in (2.6) commutes with all the vector fields L; ;.

Proof. Fix a vector field L; j. As we noticed, L; ; commutes with all vector fields L;; when
the indices 14, j, k, [ are pairwise different, and so it commutes also with Liz- It obviously also
commutes with itself. The remaining terms can be arranged in the following way:

> L3 L,;,j] =Y [F: Ligl + D _[L3), Liy]

k<l k<i I>i
17
2 2
+ Z[Lk,j° Li ] + Z[Lj_.z: Li ).
k<j I=j

ki

The previous sum can be written as

[Z Ly, L.;,,;] = (L3, Lig) + [L3;, Lig))

k<l =3

+ > (o Ligl + B3, Lagl) + Y (L35 Ligl + L2, Lagl) . (2.7)

k<i i<ls<]
For vector fields A, B, we have

[A2, B = AAB — BAA = A[A,B] + ABA — B, AJA — ABA
= A[A, B] + [A, B]A. (2.8)
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Let us compute a term in the first sum of (2.7). From (2.8) we get
[L2), Li ) + (L3, Li ) = LigLsg, L) + [Lig, Li g\ Ly + Ll L, Lig) + [Ljg, Li g1 Ljg
= L.f_‘ng‘g -+ Lj‘gL-,;‘j = LjJLz',j - L?:?ij‘j = 0,
where we used (2.5). Similarly, by using (2.8) and (2.5) one can see that each summand in

(2.7) is zero, proving the proposition. O

Proposition 2.2.1 does not come as a surprise. Indeed, the operator L is the quadratic Casimir
operator, which is an element of the center of the universal enveloping algebra U(so(n)), so it
commutes with all left invariant differential operators.

Note also that L is the Laplace Beltrami operator on SO(n) with the Riemannian metric
induced by the Killing form B : so(n) x so(n) — R, given by

B(X,Y)=Tr(ad X adY),
where ad X : so(n) — so(n), for fixed X € so(n), is the Lie endomorphism defined by

2.3 Structure of maximal subsets

We now discuss the structure of maximal subsets of the system Z = {L; j }i<j.

In order to visualize the subsets of 7 we associate to the vector fields {L; j }i<; the set of pairs
{(i,7)}icj. Consider a subset A C {(i,7)}i<j. We can relate to this subset an undirected
simple graph G 4 = (V, E) where the set of vertices V' is given by {1,...,n} and the edges E
are given by the (unordered) pairs (¢, j) € A, so that we can identify A with E.

Example 2.3.1. In s0(6), consider the set A = {(1,2),(1,3),(1,4),(5,6)}. The associated
graph G4 has V ={1,...,6} and F = A.

4
The set A is not maximal. Indeed, by (2.5) we see that
(A) NI ={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(5,6)},

with associated graph
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Note that in this graph each connected component is complete. Indeed, the following
proposition holds.

Proposition 2.3.2. Let A be a subset of . A is a maximal subset if and only if the associated
graph G 4 = (V. E) splits in complete connected components.

Proof. First of all note that if (a,b) € E and (b,c) € E, then (a,c) € E by the maximality
assumption on the subset A and (2.5). Since connected components are path connected, each
connected component of a graph associated to a maximal subset is complete. The converse is
straightforward, again by (2.5). |

We also have the following result.
Proposition 2.3.3. Let A be a mazximal subset of T and G o = (V, E) its associated graph.

Each complete connected component G = (V, E), identifying E with a subset of T, has the
property that (E) ~ so(|V]).

Proof. Let V= {i1,... ig}, with ip < --- < i, so that |T7| = k. Since G is complete, E
contains all the edges in E with vertices in V. It is easy to see that, by property (2.5), the
map

(E) — so(k)

that maps L;, 5, + Ljy, for i; < i, is a Lie algebra isomorphism. Moreover the set Eisa
basis for (E). O
Let us introduce some notation. Let a = (a',...,a") € {0,1}" be a multi-index and denote
by |a| = al +--- + a® its length. The scalar product o - 3 = '8 + - .- + " 3" indicates the
number of 1’s in common between « and 3, so that two multi-indices are orthogonal if they
do not have 1’s in common.

We will denote with so, the Lie algebra isomorphic to so(|a|) generated by the set {Ly; :
o =a = 1}. For example, if n = 5 and a = (1,0,1,1,0), the algebra so, is the algebra
isomorphic to so0(3) spanned by {L1 3, L14, L34}

We can now deduce the following theorem describing the structure of subalgebras generated
by maximal subsets associated to basis systems of so(n).

Theorem 2.3.1. Let A be a mazimal subset of T = {L; j}i<j. Then there exist multi-indices
ai,...,an pairwise orthogonal, with |ay| > |as| > --- > |ay| and |aq| + - - + |an| < n, such
that

N
(A) = @50%, (2.9)
k=1

where on the right-hand side we have a direct sum of Lie algebras, i.e. each subalgebra
commutes with the others.

Proof. By Proposition 2.3.2 and Proposition 2.3.3 the graph associated to A splits in N,
say, complete connected components G, = (Va,, Fa, ), where i = 1,..., N, each describing a
graph associated to a basis system of a Lie algebra of type so(k) for some k. Without loss of
generality we can assume that |V, | > --- > |V, | so that |ai| > --- > |an|. The multi-indices
are pairwise orthogonal since the graphs G, are disconnected so that V,,, NV, =0 for i # j.
It is clear that |ag| + -+ + |an| = |V] < n. Finally the sum in (2.9) is direct by (2.5). O
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Remark 2.3.4. To the splitting of the subalgebra (A4) we can associate a partition of the
finite set .4 into basis systems of each subalgebra so,,. Each basis system will have cardinality

foxi]

(‘3.
We now study the properties of functions annihilated by maximal subsets of vectors in
Z ={L;;}icj C so(n). First we consider the case of a singleton, i.e. A= {L;;}.

Lemma 2.3.5. Let f : S*~! - R, with f € C>*(S"1) and L; j be as above. Then L; ; f(z) =0
for all x € S"~1 if and only if there exists a function f such that

f(:rla"'ax'is ¥ ._..'L'j,‘..,iﬂﬂ) = f('f'.? + x‘?sxls' %4 :‘%ie"‘smjs’ L :fﬂn)a (210)
for all (xy,...,2,) € SV, where by #; we mean that the variable x; is not appearing.
Proof. Clearly, (2.10) implies

Liif(z1,-. - 2n) = Lij f(x? + 2% By g )

= Q:C,j;Clef - 2:6ij.le =0

for all # € S" !, where D; denotes the partial derivative with respect to the first variable of
[

Conversely, suppose that f satisfies L; j f(x) = 0 for all z € S"~. Since L, ; is the infinitesimal
generator of rotations in the x;z;-plane, it fixes circles of the type z7 + J;f = 72 for some
r > 0. Hence, f, being annihilated by L; ;, is constant on these circles, thus it depends on x;
and x; through 27 + xf O

An analogous property holds if we consider functions annihilated by a maximal subset A of Z
whose generated Lie algebra is isomorphic to so(k).

Lemma 2.3.6. Let f:S" 1 = R, with f € C>®(S" 1) and A be a mazimal subset of T such
that {(A) ~ so(k) for some k <n, i.e. A={L;, ;i }i,<i withij i € {i1,...,ix} C{L,...,n}.
Then Li, i, f(x) =0 for all x € S"1 and Li; i € A if and only if there exists a function f
such that

f(;r:l}'"3$‘£'|'.‘"'!x‘i;\:'}"‘!m'ﬂ.) zf(élfz?l +“'+$§k7xl:~'--1£i13-"1:%ik3-"1:nrz)s (211)

for all (z1,...,2,) € S*7L,

Proof. The assertion is proved arguing as in Lemma 2.3.5, once noted that the subalgebra
(A) generates the rotations in the k-plane related to the coordinates x;,,...,x;,. O
By abuse of notation we will just write f in place of f.

Remark 2.3.7. If a function f € C>(S""!) is A-symmetric with respect to a maximal subset
A of Z such that (A) ~ so,, for some multi-index o with |a| = k, the function f is a function
of n — k variables in the sense of Definition (2.1.1). Without loss of generality, assume o' =1

for i =1....,k and zero otherwise. By Lemma 2.3.6 we have that
N Pl 2 _
f(m]':"'uj’n)_f(ml+”'+xk1mk+1:"'7xﬁ-)'
SR 2 o P i
But, since zf +---+zxf=1—-2{, ; — - — T,
2 2 2 2
f("r:]_+"‘+$ks;rk+l1"':$ﬂ) :f(l _‘T"k-f—l_”'_mnvmk-f—l:"':"r'n-):

so that f is a function of the n — k variables xp.q, ..., 2,.
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A generic maximal subset A of T splits by Theorem 2.3.1 into N disjoint subsets, labeled by
a family of multi-indices ;. Each of these subsets generates a subalgebra of so(n) isomorphic
to s0(|a;|). In Theorem 2.3.1 we ordered these subsets by cardinality. We will interpret the
splitting in the following way: the subalgebra related to the multi-index «; tells us on how
many variables the functions annihilated by A depend, as explained in Remark 2.3.7; the
subalgebras related to the multi-indices ay, for 2 < i < N give instead information concerning
radiality in the variables. To be more precise, functions in C*°(S"~1) that are A-symmetric
depend on the n — |ay| variables z; for which a«i_ = 0, and depend radially on the collections
of |a;| variables associated to each multi-index «; (that are disjoint by the orthogonality of
the multi-indices).

Example 2.3.8. Consider the maximal system in so(7) given by
A= {Lsg,Ls7, Le 7, L12, L34},

that splits as
{Ls6, Lsr, Ler} U {L12} L {L34},

and whose generated subalgebra (A) splits therefore as
504, (3) @ 604, (2) @ 504,4(2),

with a; = (0,0,0,0,1,1,1), a2 = (1,1,0,0,0,0,0), a5 = (0,0,1,1,0,0,0). A function
f € C*(S" 1) that is A-symmetric will depend on the n — |ay| = 7 — 3 = 4 variables
xr1, T2, 3, x4 and will be radial in the collections of variables xq, 2 associated to as and w3, x4
associated to ag. So it will be written as
f(at + a3, 23 + ).
Remark 2.3.9. We stick to the convention of ordering the subsets by cardinality. We remark
that all orderings are equivalent. Indeed, in Example 2.3.8 one could have considered instead
the splitting
500 (2) ® 504, (3) @ 500, (2).
In this point of view, a function f € C°(S" 1) that is A-symmetric is a function of the
n — |as| = 7 — 2 = 5 variables x3, 24, x5, Tg, T7, radial in the collections of variables x5, zg, o7
associated to v and z3, x4 associated to ag. So it can be written as
f(af + %, a3 + 23 + 23),
but since 22 + 22 + 22 = 1 — 22 — 23 — 2% — 22, we can reduce the dependence to x5 + z3 and
.Lf - :L'%, thus obtaining the same numerology as in Example 2.3.8.
In the rest of the chapter we will study on the sphere "' some interesting instances of
multilinear inequalities of the type (1.10) related to the system Z = {L; ; }i<; described above.
We will obtain nontrivial inequalities in the sense of Definition 1.4.10. As we saw, functions
involved in the inequalities have symmetry properties determined by the maximal system
A that annihilates them. We will also be able to show for some of the inequalities that the
exponents p found by means of Theorem 1.6.1 are sharp in a sense that we make precise with
the following definition.

Definition 2.3.10. We will say that the exponent p is sharp if the inequality

/ TT fidwe < TT I £illosnesys
- SR i=1

holds for p = p and is false for p < p, i.e. there exist functions f; for which the right-hand
side is finite and the left-hand side diverges.
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2.4 Carlen—Lieb—Loss inequality

The first inequality we discuss was discovered by Carlen, Lieb and Loss in [18|. This is an
inequality for n functions each depending on a single different variable. In the terminology
developed so far we have n maximal subsets Ay, ..., A,. The subalgebra generated by each
maximal subset A; is isomorphic to so(n — 1). Note that the splitting of (A4;) given by
Theorem 2.3.1 in this case has just one direct summand. The multi-index associated to this

direct summand is a; = (1,...,1,0,1,...,1) with 0 only in the i-th place. It is clear that
n—1 (n—1)(n—2)
A = ~r—ns
2 2

for all ¢ = 1,...,n. Each maximal subset A; contains the vector fields Ly ; in Z with both
k,l # i. The complement A of A; in T is made of the vector fields Ly ; with k =i or [ =i,

e 1= (5)- (") =1

for all i = 1,...,n. By Remark 2.3.7 a function f € C®(S"!) that is A;-symmetric is a
function of the variable z; only. As we saw we can think of functions depending on one
variable as functions defined on the one-dimensional unit ball, i.e. the interval [—1, 1], pulled
back to the sphere S"~1 via the projections m; : §*~! — [~1, 1] mapping x € S"! to its i-th
coordinate. We will write f(z;) for f(mi(x)), with = € §"~1.

We have the following theorem.

Theorem 2.4.1 ([18]). Let fi,..., fn be nonnegative measurable functions, f; : [—1,1] — R*.
The inequality

A1) ... falan)do < T I fill oy (2.12)
i=1

Sr(—l
holds for p > p = 2. Moreover inequality (2.12) is sharp in the sense of Definition 2.53.10.

Remark 2.4.1. We will give a proof of Theorem 2.4.1 based on Theorem 1.6.1, which is
in the spirit of the original proof of [18]|. Our proof is however written in a more abstract
language to open up the way to our later discussion. Note that the exponent p = 2 found in
this case is independent of the dimension and that the inequality obtained is nontrivial in the
sense of Definition 1.4.10 for n > 3.

Proof. By Theorem 1.6.1, the exponent p is given by the number of occurrences of the most
recurrent element among the finite sets A¢, for i = 1,...,n. As we saw the elements of A
are vector fields of type L;; for j > i or Ly; for k <i. An element of type L; ; belongs only
to the sets A and A and an element of type Ly; belongs only to the sets A7 and Aj. As a
result, every element of A§ occurs exactly twice among the sets 4;. This implies, by Theorem
1.6.1, that (2.12) holds for p = 2. This, together with continuous embeddings of Lebesgue
spaces on S"!, concludes the first part of the proof.

To prove that the exponent p = 2 is sharp we give an explicit counterexample, taken from
[18]. We assume n > 3, the case n = 2 being trivial by Holder’s inequality.

Let f; : [-=1,1] = R™ be the functions given by

_(n=1)

filz) = |z "+ Q—22)~ =, (2.13)
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with 4 > 0 to be determined. Let p > 1. Thanks to the integration formula (2.2) we have that

A o, _[n=17\P
1Al sy = /s (e + (1= )~ 22)" do

. (rn— l)ﬁ‘
< / |zi|~"Pdo + / (1—z)~ T do
gn—1 gn—1

1 1= 1 n—1 =
5/ 2] 7P (1 — 22) "5 day +j (1 — 22)~" 2 day
-1 -1

1 1
= 5, —in—1)yp4+n—3
5[ |4 ’*”dx@+/ (1—z2) 2 dr;,
1 1

which is finite for —yp > —1,ie. yp<1,and —(n —1)p+n—3 > —2. i.e. yp < 1, again.
So the left-hand side of (2.12) with our functions f; is finite if vp < 1.
Now we want to make the right-hand side unbounded. We have that

n—1

n
(n—1)
/Sn_ll_.[fi(xi)dnggn_l (H il ‘f) (1-22)""7 do
i=1 i
. . : ‘ _n—1)y drq...dr, 1
S ([T e ot
B'u—] i=1 (]_ _:Ul iR ] )

L1

where we ignored many nonnegative summands in the product []; fi(z;) and used once

more the integration formula (2.2). Using the fact that |z;| < (2% + ---—i—;r:i__l)ug for
i=1,...,n— 1, and passing to polar coordinates in the ball B,,_, we get that
= dx ATy
f [1 fitai)do 2 f (23 4 -+ 4 a2 _y) =07 =
Sn—l =1 Bn—l (1 _J:%_”‘_xﬁ—l)
1
—~ / p—2(ﬂ—l)*rpn—2(1 _pZ)—l;‘de
Jo
1
N/ 0—2{71—1}’}‘-1—71—2(1 —pz)_lﬂdp,
0
which diverges for —2(n —1)y+n—-2< —1,ie v > 1/2.
Pick v = 1/2. Since yp < 1, this provides a counterexample to (2.12) whenever
p<—= 2= ﬁa
i
thus proving the result. O

Remark 2.4.2. One could ask if it is possible to obtain an inequality of type (2.12) with a
different p; for each f;. Of course this is possible as a direct consequence of Theorem 2.4.1 |
by continuous embeddings of LP(S"™!) spaces, as long as each p; > p = 2. Anyway a use of
Theorem 1.6.2 in this particular case is not effective. Indeed, even if one allows different p;’s
in the nonlinear heat evolution associated to the operator L defined in (2.6), the presence of
functions of one variable for each variable x,...,x, forces all the exponents p; to be equal,
since each element of each set A occurs exactly twice in the the sets A, for k=1,....n
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Remark 2.4.3. Since constant functions are trivially functions of one variable, inequality
(2.12) also holds for m < n functions depending on one variable, with m different variables.
The inequality is nontrivial for m > 3, since the case m = 2 is just Holder’s inequality and the
case m = 1 follows from continuous embeddings of Lebesgue spaces on the sphere. Note that
also in this case an application of Theorem 1.6.2 is not effective, since for each AS there is at
least one vector field with two occurrences in the sets Ajf, for £ = 1,...,m, i.e. the vector

field L;; if i < k or Ly; if k <.

2.5 Inequalities for functions depending on k& variables

In this section we will generalize the result of [18] to functions depending on 1 <k <n — 1
variables.

The case of functions depending on n — 1 variables is the easiest one and we treat it separately.
In this case we have (n’il) = n possible (n — 1)-tuples of variables, which correspond to empty
maximal systems A4;, for which (A;) = {0}. Indeed, functions depending on n — 1 variables
are almost generic functions, as explained at the beginning of the chapter, and there is no
hope to obtain something better than Hoélder’s inequality, i.e. p = n. This is confirmed by
Theorem 1.6.1, since each element in each AS = 7 occurs in all A7, for k=1,...,n.

Let us now consider the case of functions depending on 1 < k < n — 2 variables. We have
(?) := C(n, k) possible choices ok k-tuples out of the set {1,...,n}. We will label them as
Wis - Won, k) following the notation introduced at the beginning of the chapter. To each
collection of variables w; = {i1,...,ix} corresponds a maximal subset A; which contains the
vector fields L;; for which j,1 # is for all s =1,... k.

The subalgebra generated by each maximal subset A; is isomorphic to so(n — k) and the
splitting of (A;) given by Theorem 2.3.1 has just one direct summand so,,, with a; a multi-
index such that o =01if j € w;, for j=1,...,n.

It is clear that ;
1n—K
41=("35)

foralli=1,...,C(n, k). The complement AS of A; in 7 is made of the vector fields Ly ; for
which either j or I, or both, are in w;, and

0-()-(5)

for all i = 1,...,C(n. k). By Remark 2.3.7 a function f € C*°(S"~!) that is A;-symmetric is
a function of the variable z,, in R¥. As we saw we can think of a function depending on z,,,
as a function defined on the k-dimensional unit ball By, ¢ R¥, pulled back to the sphere $"~!
via the projection m,, : S"~! — By, mapping a point x € S"! to z,,,. We will write f(z,)
for f(m,,(x)), with z € S*~1,

We have the following theorem.

Theorem 2.5.1. Let f1,..., fomp) be nonnegative measurable functions, f; : By — R*. The
mequalily
Clnk)
F1(@w) - fomm @uemn)do < T 1illoee— (2.14)
S‘u—l : i1
holds for
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Moreover inequality (2.14) is sharp in the sense of Definition 2.3.10.

Remark 2.5.1. For k£ = 1 we recover the result of [18], since

() ()

Note that inequality (2.14) is nontrivial in the sense of Definition 1.4.10 for n > 3, since

p<C(n,k).

Proof. By Theorem 1.6.1, the exponent p is given by the number of occurrences of the most
recurrent element among the sets AS, for i = 1,...,C(n, k). As we said, the elements of A{
are vector fields of type L;; with either j or [ or both j,l in w;. So an element L;; will occur
in all A apart from those for which j,/ ¢ w;. The number of sets w; made of & elements
taken from {1,...,n} that do not contain two fixed elements j,1 is {”’;2). This means that

each vector field will occur in exactly

O A 2
P=\k k
sets A¢, proving the first half of the theorem.

To show that p is sharp we construct a counterexample. We consider functions f; : By — RT,
where By, is the unit ball in R*, of the form

Filew) = (l@iyl|zig .-l )% + (L= 23 )72 4o+ (1= 2] )2, (2.15)

ke

where v, d are positive constants to be determined. This seems to be a natural guess, since
for k =1 this set of functions reduces to the counterexample in [18].

The right-hand side of inequality (2.14) must be finite. We first compute the L” norm of
these functions. Without loss of generality we focus on the case w = {1,2,...,k} and work
with f(z1,...,2E).

Let p > 1. We have

ok 5 _5/2]P
||f||Ep(5n_1}=/ ] [(|$1||$2|...|3:k|) Wk 4 (1—g?)/2 4o 4 (1—22) 75/2] do

S?! -y

: / [(|-‘1'.'1||3.‘.2| )T (1= (1 .-z:}i)‘?'é'pﬂ} do
Jgn—1
k
N [én_lﬁlmlum o |zi) TP *do + Z/g (1 —a2)"%/2dg
' S

n—1
k
=:Iy+ Zf@.
i=1

For the first term Iy we have

195] (lz1] ... |zk)"P*(1 = 2 — - — 22) D2, | day
By,

ko1
< / || P * d
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where we used the integration formula (2.2), the fact that (1 — 23 — -+ — 22)("=#=2/2 < 1 ip
By, since k < n — 2, and also that B C [-1, l]k. So [ is finite if yp < k.
For each of the terms I; we have

l X, ¥ 3 "
Li= [ —ady - o) s,
J-1

by the integration formula (2.2). So I; is finite whenever vdp < (n — 1).
We conclude that the right-hand side of (2.14) is finite if

=1
vp < min {k, —5—} : (2.16)
To estimate the left-hand side of (2.14) we pass to polar coordinates in the hyperplane
R™ ! with coordinates T1,...,Tp—1; on the sphere S"~1 the variable |z,,| will then just be
(1—p%)"/2

There are ('”;]) functions not involving the x,, variable, and (}::;) involving it. For the

functions not depending on x,, we select the first summand of (2.15), for those depending on
&, we select the summand (1 — 22)779/2,
So for the left-hand side we have:

Cln.k)

/ H filze; )do
gn— 1 i—1

1— p?
where we used the trivial fact that |z;| < (T% 44 .7:_%_])]"’2, fori=1,...,n—1.
The left-hand side of (2.14) diverges when — [’y (ngl) + ’)*5(2:})] +n—-2<-1,ie.

7> (n—1) [(’”;1) +a(?’;:i)r. (217)

Comparing (2.16) and (2.17) we see that, in order to make the right-hand side finite and the
left-hand side divergent, we must have

— 1
p <~ 1min {k, ! 3 }

<ok S () 0G5

=:g(d) < m: a).
9()_151;13(9()

Easy computations show that g attains its maximum at § = ”T__l, for which we have

peo(B) = (i) (20) -2

thus proving the sharpness of the exponent p. O
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Remark 2.5.2. One could ask as in the case of functions of one variable if it is possible to
obtain an inequality like (2.12) which is not a consequence of embeddings of LP(S"~1) spaces
with a different p; for each f;. In this case also an application of Theorem 1.6.2 is not effective.
Indeed, even if one allows different p;’s in the nonlinear heat evolution associated to the
operator L defined in (2.6), the presence of functions of k variables for each k-tuple of elements
from xy,...,x, forces all exponents p; to be equal, since by symmetry each element of each
finite set A$ has the same number p of occurrences among the sets A§, for k=1,...,C(n, k).

Remark 2.5.3. Since constant functions are trivially functions of k variables, inequality (2.12)
also holds for m < C(n, k) functions of m different k-tuples of variables. The inequality is non-
trivial for m > p, since when m < p a direct application of multilinear Holder’s inequality gives
a better outcome in terms of exponents. Note that in this case an application of Theorem 1.6.2
could be effective. For example consider functions on the sphere S* depending on 2 variables,
for which p = 7. There are 10 possible pairs of variables in the set {1,...,5}. Take just m =8
functions, say those associated to the pairs (1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4).
We denote with f;; the nonnegative function depending on variables x;, x; and with A . 54 the
associated maximal set. It is easy to see that the vector field Ly lies in all Af ; except for
A§ 4. So the exponent associated to all functions except f34 will be p = 7. It is alqo easy to
check that each element of A§ 4 occurs at most six times among all the complements of the
maximal sets. So an application of Theorem 1.6.2 shows that the inequality

\/%4 f12f13f14f15f23f24f25f34d0
< |l fi2ll7ll frsllzll frall 7]l f15

holds. This inequality is nontrivial and is not a direct consequence of Theorem 2.5.1.
Remark 2.5.4. Thanks to Formula (2.4) it is possible to rewrite equation (2.14) in the form

C(n,k) Cn.k)}

]Sﬂ_l H fi(rwx)do H | fill Lo By (2.18)

i=1

which has the structure of a Brascamp-Lieb inequality.

2.6 Inequalities for radial functions on £ variables

In this section we improve on Theorem 2.5.1 by adding an additional symmetry. We consider
functions of k variables, i.e. functions that are defined on a k-dimensional unit ball and
pulled-back to the sphere by means of a projection, that are radial with respect to the variables
in the k-dimensional ball, for 1 < k < n—1. Given a subset w; = {i1,...,ip} of {1,...,n}, we
will use the notation r(z,,) to denote the radius (;1:?1 +o :z:fk)lfg‘ A functions depending
radially on the variables x,, is a function f : [0,1] — R pulled back to the sphere via the
composition r o m,,. We will write f(r(zy,)) for f((r(m,(z)))), with z € S*~1.

We have (}) := C(n, k) possible choices of k-tuples out of the set {1,...,n}, as in the generic
case of functions depending on k variables. We will label the tuples by wi,...,we(n.k), as in
the previous section. To each collection of variables w; = {iy,..., i} corresponds a maximal
subset A; which contains all the vector fields Ly for which h,l ¢ w;, but also the vector fields
Ly, for which both h,! € w;, by the radiality assumption.



36 The case of the sphere

The subalgebra generated by each maximal subset A; is isomorphic to the direct sum
s0(n — k) @ so(k) and has the form

(Ai) = 50,4, B so0g,,

where a; is a multi-index such that cu:; =0ifjew; and B; = (1,1,...,1) — a;.
Note that by the convention of Theorem 2.3.1 the splitting should be ordered by the cardinality
of multi-indices. We can reduce to the cases where £k < L%J Indeed, consider a function f that
depends radially on the k variables {x;,,...,2; } and let {z;_,,...,z;,} be the remaining
n — k variables. It is straightforward that

Fad oo bad) = U= (@, 4o bad) = glad,, oo+ ad)

i T

for some function g. There is a correspondence between functions that depend radially on
k variables and functions that depend radially on n — k variables. Indeed. the number of
possible choices of k-tuples and (n — k)-tuples is the same, since (1}:) = (-ntk')T for k < L%J
Morecover the splittings of the corresponding associated maximal subsets is the same up to
change in the order of the direct summands.

We will stick to the convention that the first direct summand is related to the longest multi-
index, so it suffices to look at the case k < [%]. The case of n even and k = n/2 is a bit
different and will be treated separately at the end of the section. In the other cases, i.e. when

k < n/2, we have that
] = n—=k . k
Ty @ 2)’

=)= ("))
fori=1,...,C(n, k).

We have the following theorem.

so that

Theorem 2.6.1. Let k < n/2. Let fi,..., fompr) be nonnegative measurable functions,
fi :[0,1] = R™. The inequality

C(n.k)

[Sn_l.f](r(‘q’,wl))"'fC(n._k)(r(j’,w{?’(n.k:}))dgS H | fill Lo (sn—1y (2.19)

i1
n—2

p=>p=2 ’

= (k—l)

Moreover inequality (2.19) is sharp in the sense of Definition 2.3.10.

holds for

Remark 2.6.1. The result of [18] is again recovered, since functions that depend radially
on one variable are just even functions of one variable. Indeed, for k = 1 we have p = 2.
Note that the exponent p obtained for this type of functions is smaller than that obtained for
generic functions of k variables. This in particular implies that inequality (2.19) is nontrivial
in the sense of Definition 1.4.10.

Proof. By Theorem 1.6.1, the exponent p is given by the number of occurrences of the most
recurrent element among the sets A§, for i = 1,...,C(n, k). The elements of A are vector
fields of type Lj; with exactly one among h and [ in w;. So an element Lj; will occur in all
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Af associated to subsets w; containing either A but not [, which are (‘;::f) or [ but not h,

which are again (’;:%) Altogether, each vector field L ; will occur 2(’::%) times among the
Af, yielding the exponent p.
To prove that p is sharp we construct an explicit counterexample. Consider functions
fi :10,1] — R*, of the form

Flr(@a)) = (@ 4o+ B) TR (L = ), (220)
where 7, d are positive constants to be determined. One could proceed with an unknown 6
and then optimize as we did in the proof of Theorem 2.5.1, but to simplify the proof we will
take the optimal 4, that is ”;k, from the outset.
The right-hand side of inequality (2.19) must be finite. We start computing the LP norm of
such functions. Without loss of generality we focus on the case w = {1,...,k} and work with
f(@2+ -+ 23).
Let p > 1. We have

ey _xn—k) 1P
Mgy = [ [t a2 s o= a5
y y{n—kj
gn—1
< [ [t
By,
; (n—k) i
1=t == )] (L - )R

1 ;
& i o i 5 _ a(n—k) n—k—2
5/ pTIHRTL (L = p) BRI g (1 - )T
0

where we used the integration formula (2.2) and then passed to polar coordinates. This
integral is finite if vp < k.
We control the left-hand side of (2.19) by the following trivial bounds:

@+ 4R 2@+ Rt o e )T

with v > 0, for terms not involving the x, variable, and

=g~ v =gh)™Y 2 Q=)™
for terms involving the z,, variable. We make this distinction since we want to pass to polar
coordinates in the hyperplane R" ! with coordinates Zly...,Tp—1; on the sphere gn—1 |
will then just be (1 — p?)1/2.

There are (n;l) terms not involving ,, and (E:i) involving it. For the functions not depending
on x, we select the first summand of (2.20), for those depending on z,, we select the second
one.

For the left-hand side we have:

Cin,k)

[ H fi(r(zy,;))do
Jsn-1 5

> / (x%+---+xﬁ_])‘§("il)(1 _1-?2%)-%‘51,—"'(;-._1)(36
Sn—l
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] n— nn—K f—
> / s~ OO G422
0 1— p2

This integral diverges for

v>(n—1) [(”;1) +$(E:i)}_l (2.21)

Comparing the condition vp < k and (2.21) we see that, in order to make finite the right-hand
side and divergent the left-hand side, we must have

p<ky!

k n—1 n—kfn-—1
<l R
“n-—1 k k k—1

n—2
=92 =D

(51) =

thus proving the optimality of the exponent p. O

In the case of n even and functions depending radially on k = n/2 variables, the splitting
associated to a maximal subset is of type so(n/2) @ so(n/2) so that there are two possible
orderings. This corresponds to the fact that, given a subset w; = {i;,...,i,/2} of {1,...,n},
the set {i-'.(njz}ﬂ, ..., in} being its complement, a function radial in the variables of w; is also
radial in the variables of its complement, but in this case both sets have cardinality n/2. So one
needs to consider a family of (different) k-tuples w;, for i = 1,...,C(n,k)/2, with w; Nw; # ()
for all i, j. Different choices of families of subsets w; give equivalent types of functions. In
this setting we have that [A;| = 2 (% — 1), so that |Af| = %2, foralli=1,...,C(n,k)/2.
We have the following theorem.

Theorem 2.6.2. Let n > 3 be even and k = n/2. Let w; be a family of C(n,k)/2 different
k-tuples such that w; Nw; # O for all i,j. Let fi,..., for)/2 be nonnegative measurable
Junctions, f;:[0,1] = RT. The inequality

Cln.k)/2
fl (T(J"wl)) i) fC('rt.k)/Q(?‘(me(“_k};z))d’g S H ||ff||LP(§“_l] (222)

i=1
N n—2
p—p_ k—]_ *

Moreover inequality (2.22) is sharp in the sense of Definition 2.3.10.

JEn-1

holds for

Proof. We need to understand how many the occurrences of each vector field Ly among the
sets A¢ are. As before we must consider sets w; containing either £ or [, but not both. To a
k-tuple o containing h and not | corresponds a unique k-tuple T containing ! and not h such
that o N7 = (). By the assumptions on the w;, one and just one between ¢ and 7 is among
the sets w;. Thus, each vector field Ly occurs (}::f) times among the A§. This provides the
exponent p.

To prove the sharpness we use essentially the same argument as in Theorem 2.6.1. Without
loss of generality, upon renaming variables, we consider a family of w; such that n ¢ w; for all
i=1,...,C(n,k)/2. We consider functions f; : [0,1] = R" of the form

filr(mw,)) = (@& + -+ + 2k )2 (2.23)
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with 4 > 0 to be determined. The right-hand side is finite for vp < k. by the same computations
as in the previous proof. For the left-hand side we have

: Clnk) /2
[ 11 st
snl =
> [ rak ) E
gn—1
5 /1 - arc:(-;.:c)_’_ﬂ_z dp :
0 1-—p2
which diverges for
('n —-1) :
C TR (2.24)

Comparing the conditions vp < k and (2.24) we see that, in order to make the right-hand
side finite and the left-hand side divergent, we must have

p< k’y_l
2 k (n) __n (-n. — 2)
“2(n—1)\k 2n—k)\k—-1
n—2 .
- (L - 1) i
since (n — k) = n/2, thus proving the sharpness of the exponent p. O

Remark 2.6.2. In the case n even and k = n/2 one could also apply Theorem 2.6.1 and work
with all k-tuples w; of elements in {1,...,k}. This means counting twice functions that have
the same subalgebra of annihilating vector fields, upon commutating the direct summands.
Anyway one could understand the product of function f(;}:?] S U xi‘_}g(;}:i\_ﬂ S TOE ’I’?l)
as a function F(z? +--- + xfk) Since the exponent p in Theorem 2.6.1 is the double of
that of Theorem 2.6.2, from Theorem 2.6.2 applied to the C'(n, k)/2 functions F; just defined
we can deduce the result of Theorem 2.6.1 by applying Cauchy-Schwarz inequality. Indeed,
let w; be a family of subsets satisfying the hypotheses of Theorem 2.6.2 and let w{ be their
complements. We have

Cln,k)/2 Cn.k)/2
[S' ) H filr(zy,))gi(r( Tw ))do = / . H Fi(r(zw,)
S8 i=1 e
C(nk)/2 C(nk)/2
< II 1Flwe-y= [I Ifigillisgn
=1 =1
Cln.k)/2
< H | fill 26 (sn-1)l19ill p255n -1y
=1

which is exactly the estimate in Theorem 2.6.1.

2.7 Inequalities for different exponents

In Remark 2.5.2 of Theorem 2.5.1 we saw that an application of Theorem 1.6.1 always yields
the same exponent for all functions. In this section we want to understand for what exponents
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Pls- -+ PC(n,k) a0 inequality of the type

C(n,k) Cln,k)

[sn ! II fiwe)do < H || fill Los (sn-1) (2.25)

=1

may hold. Each p; can vary between 1 and oc, so that ;u;l varies in [0, 1]. A point in the
unit cube Q = [0, 1]k in REK) jdentifies a choice of exponents. The inequality holds for
points (pl_l, - ‘pg‘%n.k}) € Q for which

C(n.k)

> i<

by Hélder’s inequality and continuous embeddings of Lebesgue spaces. By Theorem 2.5.1 we
know that (2.25) also holds for (p~1,...,p7!) € Q, with p= (}) — ("% ). Then inequality
(2.25) holds for points (pfl? s 4 ,pg_,:n k)) € Q for which

C(n,k)

Z gt C(r1 k)

with p; > p for all i = 1,...,C(n,k), by using again continuous embeddings of Lebesgue
spaces on the sphere.

Nevertheless we can extend the range of exponents for which (2.25) is valid by interpolation.
We now state a result that we will use for this purpose.

Theorem 2.7.1 (Multilinear interpolation). Let (X, ) be a measure space. Let 1 < pg,qr <
oo, withk=1,...,n, and for 8 € [0,1] let
1 6 1-86

e Pk qk

Suppose that a multilinear map T' satisfies

U o a1 < s T [ il ey

i=1
and

|T(f11 “idi =fn)| < Ap H ”gi”[.q-aﬁ(X)s

i=1
for fi € LP{(X) and g; € L%(X). Then we have

IT (v o )l < A4S TN

i=1

Lri(X),

for fi € L™(X).

A proof of Theorem 2.7.1 can be found in [47] (see also [31]).
In our case the measure space is (By, (1 — |x12)(”"‘"2}ﬂdm), where dz is the Lebesgue measure
in R* and the functional is

T(fuooSoom) = [ T flmon)io
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Recall that thanks to the integration formula (2.2) we have

Ilfi © 7w | Logn—1y = I fill Loy (1= |2y -20/2d) -

From Theorem 2.7.1, by interpolating the exponents that verify Holder’s condition with the

point (p~1,...,p1), we obtain the following corollary.

Corollary 2.7.1. Let (p7*,... ’pg’in‘k)) € Q be such that
Cn,k)
Y opt<t
i=1

Then the mequality

Cln,k) C(n.k)
[ T fteaddo < TT Wil
St o1 i=1
holds for all exponents r; such that
10,10
Ty bi p
foralli=1,...,C(n,k) end @ € [0, 1].

So (2.25) holds in the convex hull R of the region Zp;l < 1 and the point (p~1,...,p71).
We conjecture that outside R the inequality (2.25) is false, or in other words that for all points
(p7t, ... =P5fn,k)) & R there are functions f; such that the right-hand side of (2.25) is finite,

while the left-hand side diverges. Theorem 2.5.1 excludes the points (pl_] e pg,]n‘ k)J e Q
such that p; < p for all ¢, that are not in R, but do not exhaust the complement o} R in Q.
Unfortunately we do not have a complete proof of the conjecture. We have however the
following partial result for points in the hyperplane in @ given by the equation

Cn.k)

C(n,k
Z Py 1_ (Tf ),
i=1 P

1

to which the point (p~1,..., 5~ 1) belongs.

Theorem 2.7.2. Let (pl_],...,pazn k)) € Q be such that

C(n.k)

1 Cln,k -
Y pt =22, (2:26)
=1

For any | consider the set J; consisting of the indices j such that | € w; (then |.Jj| = (E:}))
If there is | such that
n—1
5, &8 ]

e (2.27)
J F ?
JEJ; p

then the inequality (2.25) is false.
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Proof. Without loss of generality suppose that [ = n in the hypothesis. We label the (’;:%)
n—1

sets w; for which n € w; withi=1,..., (k_l). Consider functions f; : By — R, where By, is
the unit ball in R*, of the form

L o« Ti(n=1) o «_2iln=1)
fil@w) = (mallon] . lea ) * + L —af) "%+t (L-af) % . (228)
From the proof of Theorem 2.5.1 we know that each f; is in LPi(S"~1) if
ipi < k (2.29)

for alli =1,...,C(n, k), so that under this assumption the right-hand side of (2.25) is finite.
For the left-hand side we proceed as follows. For the functions not depending on the variable
,, we select the first summand in (2.28), for those depending on x,, we select the summand

. i(n—1)
(1—a2)~"
So the left-hand side satisfies:

Cn,k)

/511_1 E Jilxw,)do

R ¥ (?:;J yiln—1)
- i L L
2/ oy ]._.[ (lziy |- - |2a [) ™ (1—x)" " 2 do
v e

1
> [ B e
0

V1=p2
where we proceeded as in the proof of Theorem 2.5.1. We call I the set {(::i) +1,...,C(n,k)}
and J the set {1,..., (}~])}. The left-hand side of (2.25) diverges if

_Zyi_?1;127j+n—-2=—1,

iel - jed

that is
1
Su=-1(1-7 50,
iel jed

Since by (2.29) > e < kD e pi_l, to make the left-hand side divergent we must have

((n— 1)—&'-2;0;1) < -n;] Zf}'j.

iel jed

Since by (2.29) > ,c;7 < k2 ey pj_l._ we must also have
1 k o, | ]. - |
'—R_IZ&- <ZZ'}_;<ZPJ- :
iel jeJd jed
It is possible to choose v; so that k1S jeg Vi is squeezed between these two terms if

k _ _
(1_n—1zpﬁ'1) <25

icl Jjed
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which by (2.26) becomes

i n;il Ll _Zp;l = ij_]*

p = Jjed

which is equivalent to

- ko\7t k C(n,k)
Yo' (1-75) (-5,

jed
from which one deduces the assumption in the theorem. O

Remark 2.7.2. Note that there are n and % for which the assumptions of Theorem 2.7.2 are
not fulfilled. For example, consider n = 4 and k = 2, i.e. the case of functions of two variables
on the sphere §?, for which p = 5. There are 6 possible tuples (4,j), with 1 < i < j < 4.
We will denote by p;; the exponent corresponding to the pair (i, j). It is easy to check that
choosing p1a = p13 = pog = paa = 10, pe3 = p1y = 5/2, we have that Z_Kj p;jl = 6/5.
Nevertheless, Theorem 2.7.2 cannot be applied, since for all [ and all triples (71, j2,J3) we
have pj, + pij, + pij; < 3/5, so that (2.27) is never satisfied.

2.8 Thecasen=3and k=1

In this section we will discuss in more detail the case of functions of one variable on the sphere
S2. We want to understand for which (p]_l Dy ¥ pgl) € Q = [0,1]? the inequality

L fi(@1) fo(2) f3(x3)do < || fill per g2yl fall Loz 2y | f3 ]l Los (s2) (2.30)

holds true for all measurable functions f; : [-1,1] — R, for i = 1,2,3. As explained in the
previous section, the inequality holds in the region R, which is the convex hull of the the

Holder’s tetrahedron and the point (1/2,1/2,1/2) given by Theorem 2.4.1.

1/p3

+ 1/pa

1/p1
Figure 2.2: Holder’s tetrahedron and the point P = (1/2,1/2,1/2).
Moreover in this case the assumptions of Theorem 2.7.2 are always fulfilled, since given any

triple (pl_l,pz_l,pgl) # (1/2,1/2,1/2) such that pfl —I—-pz_l —|—p§l = 3/2, by pigeonholing there
must always be one p; > 1/2. This implies that the point (1/2,1/2,1/2) is the only point in
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the hyperplane pl_l + py kel pgl = 3/2 where inequality (2.30) holds.

From this we also deduce that inequality (2.30) cannot hold for points in Q such that
pyt+ pgl +p3 > 3/2. Indeed, by interpolation with points in R this would yield points in
the hyperplane pl_l —1—-p2_1 —I—pgl = 3/2 for which the inequality holds. providing a contradiction.
This goes in the direction of our conjecture, that the region R is the optimal region of validity
for inequality (2.30).

1/p3

1/pa

1/p1
Figure 2.3: The conjectured sharp region R.

The only points left are those outside of R for which 1 < pfl + pz_l + pgl < 372, Inithis
range we have the following proposition which leads to a partial improvement towards the
sharpness.

Proposition 2.8.1. Suppoese that 1 < pl_l + pg_l + p_{l < 3/2 and that the condition

1 1 1

—+—>2(1——) (2.31)
holds for at least one choice of a,b,c in {1,2,3} with a,b, ¢ pairwise distinct. Then inequality
(2.30) is false.

Proof. We make the usual construction. Assume for instance that a = 1,b=2,¢ = 3. We let

_ (n— l)'yi-

fla) = laal D+ (1= 2D = [ e (1 - 2D

for i = 1,2,3. As usual the integrability condition for the right-hand side of (2.30) is vp; < 1.
For the left-hand side, taking the first summand for f; and f> and the second one for f3, we
get that

[, i@ fotas) fo(ea)do
JEG

1
-~ / p—Tl—’Yz—Q‘rs-H dp .
~Jo 1—p?
which diverges for vy; + v3 + 2v3 = 2, that is for

Y1+ Y2

o =1 —
/3 2
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From the condition ~;p; < 1 we get that we need to have

1 1 1
21l —— | <m+p<—+—.
P3 P P2

Clearly 1 + 72 can be in this range only when (2.31) holds. ]

Remark 2.8.2. To sum up, we do not know what happens in the range 1 < 'pl_l +psy 14 P3 L&
3/2, outside of R, where none of the conditions (2.31) is satisfied for any exponent p;. An
example of a point in this region is (2/3,2/3,0).

2.9 Inequalities with other symmetries

In the last sections we saw applications of Theorem 1.6.1 in special cases, where the choices of
the maximal subsets A; of {L;;};< reflected particular symmetries of the functions involved.
Nevertheless, Theorem 1.6.1 (and Theorem 1.6.2) can also be applied to other type of
symmetries. Indeed, let A; be maximal subsets for i = 1,...,m.

An easy algorithm to compute the exponent p of Theorem 1.6.1 and the exponents p; of
Theorem 1.6.2 is as follows. We consider the matrix of zeros and ones with m rows indexed
by the m maximal subsets and (g‘) columns indexed by the vector fields of the basis of so(n).
We set a;; = 1 if the vector field corresponding to the j-th column is in Af and zero otherwise.
In this way the exponent p of Theorem 1.6.1, being the number of occurrences of the most
recurrent element among the Af, is just

m
max E Ajj.
i
i=1

The exponent p; in Theorem 1.6.2, being the number of occurrences of the most recurrent
element in A, is given by

where we take the maximum only over the columns j for which a;; = 1, so that we check how
many times the vector fields that are contained in A occur in the sets Af.

Here we show two examples. We remark that also in these examples the exponents given by
Theorem 1.6.1 turn out to be sharp.

Example 2.9.1. On the sphere S* consider three functions, f; depending on the vari-
able 1, fo depending on the variable x2, and f3 depending radially on x; and z2 (or
equivalently depending radially on x3 and z4). The maximal subset annihilating f; is
A1 ={L23, Lo, L34}, with (A1) ~ so0(3), so that Af = {L12, L13,L14}. The maximal sub-
set annihilating fo is Ay = {L1 3, L1.4, L3 4}, with (A3) ~ s0(3), so that AS = {L12, La3, L24}.
The maximal subset annihilating f3 is A3 = {L12, Lsa}, with (43) ~ s0(2) & s0(2), so that
A§ = {L13,L14,L23,Las}. Each Af has an element that occurs twice among the sets Af,
for k =1,2,3, so by Theorem 1.6.1 we have p = 2. It follows that

/53 filar) f2(z2) f3(x} + 23)do < || fill 2 | foll 2y 1 F3 1 L2 gs3)-
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Moreover this inequality is sharp. Indeed, consider the functions f;(z;) = |a;| =1/ for i = 1,2
and the function f3(z? + x3) = (2% + 23)71/2. 1t is easy to see, proceeding in the same way
as above, that || fi||Lrs3) < 0o with p < 2 for i = 1,2, 3. Nonetheless we have that

/53 fifafsdo = [53 @1 |72 o T2 (2} + 23) " 2do

~ / |21 |7V 3| @a|~ 2 (22 + 23) V21 — 22 — 22) 422D 24z dxy

1 1
Z/ ﬂ‘““)_“”’_lﬂdﬁ=/ ptdp,
0 0
that diverges.

Example 2.9.2. On the sphere §* we consider functions depending on k = 3 variables, with
radial dependence on two of them. This corresponds to the case of maximal subsets A; with
two elements L; j, Ly with 4, j, k, [ pairwise distinct so that the generated subalgebras have
the form

(Ai) = 50(2) @ 50(2).

As we discussed above, the first subalgebra indicates the number of variables the functions
depend on, in this case we have n — k = 5 — 2 = 3. The second subalgebra refers to radiality in
two of the variables involved. The ambiguity in the order of the subalgebras is not a problem,
since the two possibilities are equivalent in the following sense. If A = {L1 2, L34} we are
considering a function f either of type f(z3 + 22, 25) or a function of type f(x? + 23, 5)
which are equivalent, since 3 + 22 = 1 — 2? — 23 — 2. _

There are (;’) = 10 possible choices for L; j, and having fixed i and j we have (j) = 3 choices
for L;;. By the aforementioned equivalence we have 15 possible maximal subsets.

It is easy to see that in this case the critical exponent given by Theorem 1.6.1 is p = 12 and it
is sharp. Indeed, consider the functions

E o Dy ¥ _ 4
F @i 22+ 2F) = |z "Y' 2 (22 + 2f) V12 1 (1 — )Y (2.32)

Note that the function jfl is equivalent to the function ffw where {7’,1'} is the complement
in {1,...,5} of the set {, 4,1}, so that the variable x; is fixed but we can change j,[ obtaining
an equivalent function. Thanks to this remark we can choose functions in a way that the
variable x5 never appears in the radial part. The L? norm of f/ ! is controlled by

1 W sty S /S (lod 122 4+ 2y P2 4 (1 - a}) ) do

o TR, S ; P
N/B |z p"u(:r:;+;}:f) p“(l—xf—mﬁ-—mf) 2 dxidrjdr
<03
« 1 .
~1
1 1 rl 1 .
s /l|m.,-_|_f"”2d:r,; /1 /1(..r?+xf)_pfl2d:rjd;rg+ /l(l—m?)_pm“d;z:h

which is finite for p < 12. On the left-hand side of the inequality we take for i £ 5 the first
term in (2.32) and for i = 5 the second. Hence we choose the first term 12 times and the
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second one 3 times. We use the estimate [x;|~7 (25 + 7)™ > (V/a] + 23 + 23 + 7)™,
whenever i, j, | # 5, obtaining

j —~37512 ‘
[ Hfffdo > / (\/;1:7{+;r%+.q:§+3;§) (1_:6%)—%.5&,0
JE4 Jg4
G [lp—sp—ipLii i /10—1(1'7,0
Jo Vi—-022 o M- 2
which diverges, thus proving the sharpness of p = 12.
2.10 Mixed norm inequalities

As an application of the inequalities found in this chapter we prove some inequalities in mixed
norm spaces. We introduce, for a nonnegative function f, defined on R", the mixed norms

”f”Lf&dLg = ([0 (/_’«’jn—l f(P-’TJ’)qdo'(;}:")) 4 p.n—ldp)
(/U “.f(P'}”Eq(gn—l)pn_ldp) d ,

where R" 3 z = pz’ with 2’ € §"7!, and in this case the measure do is not normalized. Using
the same notation as above to denote k-tuples of variables, by applying Theorem 2.5.1 we
obtain the following proposition.

Proposition 2.10.1. Let fi : RF - R fori=1,...,C(n,k) and let G = (}) — (".%). The

inequality
C(n,k) C(n,k)

/. [T ftede s TT Willag o

holds, with sz-_l =1and ¢ > q.

These estimates are obtained observing that a function f : R — R* restricted to a sphere of
radius p gives rise to a function which is defined on the sphere and depends on k variables in
the sense of Definition 2.1.1.

Proof. The proof is just an application of Theorem 2.5.1 and Holder’s inequality. Indeed,
passing to spherical coordinates we have

C(n,k) Cln.k) da
. )dT = . ; Pl
f Hft(rg-f /0 1-[S"l£[f *lQ Y
l Z oo C(n.k)
[
<ol re / [T 10 lsniom-ne'do
Cn,k)
H ||ff-||1,f_§(,f,g"¢ ?
i=1 ’

where the normalizations factors are introduced in order to apply Theorem 2.5.1 and in the
last line we used Holder’s inequality with exponents p;. O
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Observe that an analogous result can be obtained by considering other types of symmetries
and applying Theorem 1.6.1 or Theorem 1.6.2 in their general form.

Remark 2.10.2. If we integrate the product 1‘[531’"’“) fi(zy,) over a ball B,(0,R) of R",
centered at 0 and of radius I, we obtain a local Brascamp-Lieb inequality with a blow-up
factor. Indeed, by using (2.18), we see that

Cn.k)

C(n.k) R
/ H fi(xw,)dx ~ / / H fi(pi‘:ﬁ)dﬁpn_ldp
IBaO,R) 1 Jo Jenn U

R Cn.k)

5/ H 1 £ (o)l Loi (B (0,0)0™ " dp
JO f=1

C(n.k)

) —1
~ / ]:[ ||fl‘-”_,‘1,‘1'&U‘_}k(l-".p)),()_k?Z"-;TJl pn—ldp
C(n.k) ” 1
; o ; -
S—' H ||ji|,{,f;g(]:g;.—.}/0 P ZQ, +1 ldp,

=1

for g; > §. Observing that n —1— (kY ¢; ') >n—1—k(})¢ ", and that

ny ., (n—1)n
—1— kK = — — >
n—1 k(k)q k—2n—|—1+n 1 >0,

for k=1,...,n— 2, we finally obtain that

. C(n.k) Cn.k)

- n—=~k o g
[T fiteadde S RS TT il
Bn(0,R) =1 i=1

The same type of inequalities can be proved on any spherically symmetric manifold. These
are Riemannian manifolds M, that topologically coincide with R" and are endowed with a
metric that in spherical coordinates can be written as g = dp? + 1/%(p)ggn-1, where 1 is a
positive smooth function on R such that ¢(0) = 0 and 4/(0) = 1 and ggn-—1 is the standard
metric on the sphere 8"~ (see [32] for further details). The parameter p coincides with the
Riemannian distance. The case ¥(p) = p corresponds to the Euclidean metric on R”. Here as
an example we treat the case 1/(p) = tanh(p/2) that corresponds to the hyperbolic space H"
with the hyperbolic metric. In spherical coordinates the Riemannian measure of H" is given
by
dn(z) = sinh™ ! pdoga-1(w)dp.

Define
Hp = {tanh(p/2)w : p < R,w € S" 1},

which is the geodesic ball of radius R around 0. For functions depending on two variables,
using first Theorem 2.5.1 and then Hélder’s inequality we obtain, for 1 <i < j <mn,

It
‘/;IR Efij(yhyj)dﬂ(y) = /u /571_1 E fi;(tanh(p/2)w;, tanh(p/2)w;)do(w) | sinh™ ™! pdp

R Zn—3
< / H (j s (ta.nh(,o/Z)wi,ta,nh(p/Z)wj)2”_3dwidwj) sinh™ ! pdp
Jo Ba(0,1)

i<j
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nin—1) nin—1)
R (dn—0)
s H / / fij (tanh(p/2)w;, tanh(p/2)w zn Jd“"td“"’i sinh" ! pdp
ici \ /0 Ba(0,1)
<J
Then by changing coordinates we find
[T foww)anto)
Hp i<j
2
rifn—1) n{n—-1)

R (4n—6) so1.n—1
. iinh
S f (/ fii(xi'-xj)zn_gdxidxj 61?[1?.—1) £ dp
FT 0 B3 (0,tanh(p/2)) tanh =31 (,0/2)

) By
= / / fij(wi, ;)" P daida;
= AJo J Ba(0,tanh(p/2))

3(n—1)2 . (n=1)(n—3) =1}
x cosh 273" psinh™ 2v-3 pdp

1
2R 3(n=1)2 _ . (n=1)(n=3) By P
5 cosh™27=3" p sinh™ 2n—3 pde fzj(ri,rj) dxidz;
0

i<]

xeleol | 1EZ1

L2“—3(]R'.2 }

with C(R) diverging exponentially as R — oc.

2.11 Some weighted nonlinear Brascamp—Lieb inequalities

In this section we show how to derive from Carlen—Lieb—Loss original inequality, i.e. Theorem
2.4.1, with n = 3, an inequality for functions on the plane that are constant on certain curves.
The idea is to use stereographic projection to transfer the inequality from the sphere to the
plane.

Consider the unit sphere S? in R® centered at the origin. Let N = (0,0,1) and S = (0,0, —1).
Let P = (z,y,2) € S? and Q = (0,0,2). Let m be the tangent plane to 2 at S, which we
endow with cartesian coordinates with origin S and axes X and Y parallel respectively to x
and y. We call P/ = (X,Y) the point of m which lies on the line joining N and P. We notice
that the triangle of vertices N, P, @ and that of vertices N, S, P are similar, so that, since
NQ=1—2ze NS =2, we have

P’S_ 2
PQ 1-2z
Moreover,
X_y_ps
z y PQ
so that o o
= 2 oy
1—2=2 1-—2=2

We also note that the triangle of vertices N, P, S and that of vertices N, S. P’ are similar,

so that
BN NS

NS P'N’
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that is (PN)(P'N) = (NS)?, thus

x PQ PN NS?
X PS PN PN

Since (P'N)? = X2 + Y2 + 4, we find that

z NG§? B 4
X PN?2 X2+Y2+4
that is
T_i‘{l 5
T X24Y2447
analogously
YTXxTivreas

Finally, plugging the two expressions for x and y just obtained in the equation of the sphere,

it. follows that
X2 +Y2 -4

= X24+Y244°
In particular the points of the circle that are the intersection between S? and the plane x = x,

for 0 < g < 1, satisfy
To(X2+Y? +4) = 4X,

that can be written as

2 ? 2 4 2
(X——) +Y2=S(1-23), (2.33)

siic Sy s ) 1 e 8 — il
that is a circle in the plane m with center (mu, 0) and radius W‘/l x§.

Figure 2.4: Stereographic projection of the circles x = xp in §? for 0 < zg < 1.
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Analogously the points of the circle that is the intersection between S and the plane y = g,
0 < yg < 1, originate a circle in the plane 7 with equation

X% 4 y- 2 2—1(1—-2‘) (2.34)
w) _® '

Finally, points that are on the circle that is the intersection between S? and the plane z = zp,

4(1+z0)

for |29 < 1, give rise to a circle on 7 centered at the origin and with radius T

Let us consider three functions f; : [-1,1] — R*. By Theorem 2.4.1 we have

f@ fi(x) f2(y) f3(2)do(z,y, 2) < | full L2l Fell Lz enap | f3ll 2= 11))-

We define the functions

. 4
&1 (X,Y) = fi (mx) ]

. 4
5(X,Y) = fo (—Xz —— 4y)
and
X2 4+Y2i— 4)

¢3(X,Y) = f3 (m

The function ¢; is constant on the circles of 7 given by equation (2.33) (see Figure 2.4), where
it is equal to fi(xg). Analogously ¢s is constant on the circles of m given by equation (2.34),
where it is equal to fa(yp). Finally ¢3 is constant on the circles

4(1+ 2p)
XAy e T
(1—=20)°
where it is equal to f3(zp).
We have
do(@,y,2) = ——adt___ _ 20
VI—a2 =2 |z(zy)]
X2 4+Y%2 44

Computing the Jacobian we find out that in the coordinates (X,Y) we have

XLV 4L

4— X2 V2]

X2+Y2+f_4 |4—X2—Y2|I Ay

|4 — X2 -Y2|(X24+Y2+4)3
dXdY

(X2 +Y244)%

do(x,y,2) = drdy

=16

The left hand side of the inequality becomes therefore

| A@ R0 o .0.2)
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dXdY
(X2+Y2+4)2

=16 [ 61(X.Y)0a(X.V)is(X.Y)

Thus we obtain

dXdy
XY
' )(X2+Y'2+4)‘2

= j; fi(x) fa(y) fa(z)do(z,y, 2)
< allezq-rpllfellLzg—1, 1 3l L2 =1,17)- (2.35)

16 /ﬂ% UK Y)2(X, Yo

We now look for a relation between || f1

|L‘2([—1,1]) and
4X L

— =) dXdY.
/szl (X2+Y2+4)

4X
bl e C

the fundamental theorem of calculus and Fubini’s theorem give

) z(X)Y) d .
/1;2 fi(z(X,Y))?dXdy = ./m? (/ E(fl(t)z)dt) dXdy

—00

- / %(fl(t)Q) ([ _ dXdY) dt
JR WL JUXY )z (XY ) >}

- [ F(BeRa,

Writing

where
A:(t) = |{{X,¥): (X, Y) >t}

Integrating by parts we find that

d

fie(X V)P dxaY = [ Z(ROPA(ba
R2 R dt
=~ [ AP Ert0e (236)
e
So we need to compute %/\w(t). Note that
4X

Sl R g P

Suppose first £ > 0. The region where

4X
e e

is the region where (X, Y') is bounded by

Y g
(X—;) +Y <t72—4.
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1

This inequality defines a disk of radius R(t) = 2 (;15 - 1) 2 and center (%,[]); hence

Mﬁ)zﬂR%ﬂ=4ﬁ(é—J)
and

d 1
a/\L(f) = —8’.‘Tt—,3

The case t < 0 can be treated analogously.
Substituting this in (2.36), we find

[ Aexaxay = [ P g

Being 1 > || we finally obtain
|[o ”%3([%2) =|fio I"%?(R?)

=‘/ fi(x(X,Y))2dxdy
JE2

L 5 1
= 871'/ fi(t)? —dt
J-1 [t

1
> SW_/lfl(f)gdi - 8W||f1||32(—1,1y

Analogous computations hold also for fy and f3, so (2.35) implies

. dXdY
»2 (rBl(X! Y)¢2(X;Y)¢"5(X Y) (X2 + y2 + 4)2

- ]S H@) B ()o@, 2)

S Wfillzeqerpl foll 2, 13l L2 =11
S o1l e ey D2l 2 wey |83l L2 (m2) »

from which we get

| dXdy
- (,bl(Xv Y)(P?(X: Y)¢3(X= Y) (Xz +Y2 4 4)‘2

S el 2wz o2l L2me) |93 1l L2 (m2), (2.37)

which indeed can be interpreted as a nonlinear weighted Brascamp-—Lieb inequality, holding
however for very special functions.

We can extend the previous argument to other cases. Consider the stereographic projection
from the sphere §"~1 onto the (n — 1)-dimensional hyperplane 7 : z,, = —1 tangent to S*~!
at the south pole S = (0,...,0,—1). With the same notation as above we have, for a point
P = (z1,...,2,) € S}, and P/ = (X1,...,Xn_1) defined as the intersection of the line
passing through N and P with the hyperplane , that the following relations hold

4
" X2 et X2 g 34
1 n—1

€&

X; (2.38)
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fori=1,...,n— 1, and by the sphere condition we also obtain

|‘X12 +Xn 1 |
X7+ ---+Xn._1

|‘Bn| =

Let us consider intersections of the sphere with hyperplanes of the type z; = x;p, with
|z; 0] < 1. We saw in the previous sections that this intersection is a (n — 2)-dimensional
sphere ¥; inside S"~!. By stereographic projection this sphere maps to

Tio(XT 4+ X351 +4) =4X,,

that is the (n — 2)-dimensional sphere ¥ onw given by the equation

2 2 \? 2 L
R¥fawod | 1 = o X2 gl [
:I:tllo T:‘r‘.n

with center in w given by (( ,2/xi0,...,0) (where the only nonzero coordinate is in the

i-th place) and radius ﬁ,;’l —:1:%-,0, fori=1,...,n—1. For &, = xn0, |Tno| < 1, the

sphere is instead given by

4(1
O e 2 = T B

(1 == -'E'n,ﬂ) '
with center (0,...,0) and radius 1!%
We consider functions f; : [—1,1] — R and define
4X;
pi( X1, ..., X 1) =T
(P?-( 1, ] n ]) f?- (X%+"'+Xg_l+4)’

fori=1,...,n—1 and

X]2+ +X’l1 1 4)

(Ko Ko Ni=
d)’ﬂ.( 1, s <in ]) fn (X12 +X1 1+4

Functions ¢; are constant on the (n — 2)-dimensional spheres f]z
It is easy to see that

dXy...dX,
(XZ2+---+X2_, +4)%

do(zy,...,x,) =16

so that

dX, . an 1
..... g .

n— l'J 1
/%ﬂ ll__[fz dar<H||fz||L2[ 1,1])-

Hence, we need a relation between || f;|| 12((~1.1}) and

4X; .
: dX;...dX,,
An—lfa(X%+ —|—X2 1+4) 4 3
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fori=1,...,n—1 and an analogous formula for f,,. Arguing as in the case n = 3 it is easy
to see that || fi|l L2(j-1,1)) S 19ill L2en-1). Hence we get another family of nonlinear weighted
Brascamp-Lieb inequalities

2 A e R g £
i X .-..|X- — ; < ) 2(@En—1y. 239
/ua,._l Lo, X = g S L Wil .

Remark 2.11.1. Note that inequalities (2.39) and (2.37) are not scale invariant. We obtained
these estimates by stereographic projection starting from inequalities on the unit sphere. The
fact that the inequalities are not scale invariant is due to the fact that after scaling, the level
sets are not anymore circles coming from a stercographic projection.

Considering the case n = 3, one could extend inequality (2.37) to the sphere about the origin
of arbitrary radius a. The corresponding inequality is then

dXdY

. - - 4
/Rz @1(X,Y)(P2(X,Y)¢3(X,Y)(X2+Y2+4a2)2 Sa ||¢1||L2(RQ)”¢2

z2(r2) |03l L2 (r2ys

where the functions ¢; are constant on the circles in the plane tangent to aS? at the point
(0,...,0,—a), which are stereographic projections of the intersections of the sphere aS? with
hyperplanes z; = x; o with —a < ;9 < a.

The inequality is invariant under the transformations W, 5, that send the circles related to aS?
to the circles related to bS?, i.e. o = 8Dy, S, !, where S, : 7§ — R? is the stercographic
projection associated to the sphere rS? onto the plane tangent to its south pole, and D, is
the usual isotropic dilation in R®.

Remark 2.11.2. With the same argument as above one could obtain analogous results starting
from inequalities involving functions that depend on more than one variable, transferring
inequality (2.14) through the stereographic projection S : §"~! — R"~! onto the hyperplane
7 : 2, = —1. In this case the (n — k — 1)-dimensional subspheres of 8?1 will be mapped to
nonintersecting (n — k — 1)-dimensional spheres covering the hyperplane 7.
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CHAPTER 3

Brascamp—Lieb inequalities on stratified groups

3.1 Preliminaries

Let (G be a connected. simply conneeted nilpotent Lic group. We can and will identify (¢ with
its Lic algebra g by means of the exponential map. In the exponential coordinates the aar
measure on G coincldes wilh the Lebesgue measure, dg. on g.

The convolution on & is delined by

frglo)= | Flng(y™ r)dy.

Setting ¥ =y ' and using the right and left invarianee of the wmeasure. the convolution may

be also wrilten as
fgla)= /( e Dolu)du = L Flemaly Hdy. (3.1)

where the last icentity is a consequence of d(y™1) = dy.
We assume that G i3 stratified. meaning that g decompodes as vector space into a direet sum

g=g % D,
and
[g,-_._gl_' = iy I = 1._...._':"— 1.
Therefore the maps {3, }og. defined by
5. X =X
if X € gy and extended to g by linearity, are automorphisms. We assuine morcover that g,
is endowed with an inner produet {-.-}, that cxtended by translations to the entire group

defines a sub-Riemannian metrie, Stratified groups are also called Carnot groups. The nnaber
& =dimgy + 2dimgs — - -- + rdin g, 15 Lhe homogencous dimension of G We have

¢ / Fldig)dg = / flg)dg. (3.2)
SO SO

a7
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for all integrable f and ¢t > 0.
Fix an orthonormal basis {X1,...,X,} of gi and define the corresponding sub-Laplacian

L=X+---+X3

which is a second order. negative, symmetric, differential operator. Since the vector fields
{Xi,--+, X} generate the entire Lie algebra L, by the Hérmander theorem, is a hypoelliptic
operator. It is well known that (see [28]), for a Schwartz function f on G, the solution the
the problem

{ du(t,g) — Lu(t,g) =0 t>0
u(0,9) = f(g)

is given by
ut.g) = o) = F+mi(o) = [ f@pla o),

where the heat kernel {p; };~0 associated to L, may be written as (see [26])

pi(9) =t P(5_y9), (3.3)

with P = py is a (strictly) positive Schwartz function that satisfies

/P(g)d_q =1,

It follows in particular that {p;},~0 is an approximation of the identity, in fact, by (3.2) we
have

/Ps(g)dg =1 forallt=>0.

In this regard we recall the classical estimates for the heat kernel on a stratified group (see,
for instance, [59] or [26]), according to which

2

_Q _.lg*
plg) SCt e, (3.4)
where | - | is any homogeneous norm on G satisfying |g192| < (|g1] + |g2|) and C,c > 0 are
constants.

Recall also that p; is a symmetric function of g, that is

pi(g™") = pe(g)

for all g € G and t > 0.

We now introduce a family {H W . H D} of not necessarily normal subgroups of G with Lie
algebras {h(1), ..., h®} respectively. We define M® = H(®\@G and denote by 7@ : G — M@
the canonical projection (which is a group homomorphism when H(®) is a normal subgroup).
The Haar measure of ¢ decomposes for all a according to the formula

| g = [ ( / .f(h.-<“)g)dh<“>) dg®, (3.5)
G HE@NG \JH(@
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for all measurable f on G, where dh\® is the Haar measure on H(® (see [60, Chapter 2|).
The inner integral

FOU@)y= | f(h@g)dn
Hila)

defines a function on H®\@G, since for k(@) € H@ by the invariance of dh'®) we have

F(WDED g)dh@ = F(h g)dh'®).
Hia) Hla)

We fix global sections, ¢(@ : M(®) — @, of the principal bundles (G, 7(®, M), Recall that
this means that 7(® o ¢(® is the identity on M(®), which, in particular implies, that

(@) (h(a)c,(a) (g("‘"))) = g(@,

for g € M@ and h(® € H®,
We make the following assumptions on the groups H®),

e We assume for any a that the restriction of &, to H® makes it a stratified group of,
say, homogeneous dimension Q(®). It follows in particular that §,H( c H'® for all s
and that the map defined by

6 orx@ =7@og, s>0, (3.6)

yields a one parameter group of dilations on M(®) making it a space of homogeneous
type in the sense of Coifman and Weiss with homogeneous dimension Q) = Q — Q(®.
It follows in particular that

@ o (5&“} =4ds0 J(“), for all s > 0.

e We assume that the layers of H@ are given by hga} = b N g, so that

h@ =5 g...0p.
The push-forwards 7% X j, of the vector fields X; are denoted by Xj(-a}A The push-forward,

L@ = (X}‘”f TR (X(“})2 =mP (L),

T

of L is a sub-Laplacian on M@, It is well known (see, for instance, [44, Formula (2.11)]) that
the heat kernel, ﬁga), of L) ig given by

_‘I.jfu.} (;g(a)_l y(al) — ﬁia) (?r(“}(;}:), rr(“')(y)) = -/H{ }p-;_(y_lh(“).r)dh-(“). (3.7)

Note that, since by the left and right invariance of dh(® we have

P (ki@ (), k@) (y)) = /Hm pe(y " (k) A k) dnl®)

= / pe(y~ h ) dn®,
Hia)
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f)ia') (:.z:(c‘),y{“)) makes sense as a function on M@ x M (@),
Formula (3.7) can be proved showing that for each Schwartz function f(*) on M(® the function

ﬁ{“)(t.x(“)) — Lﬂ )ﬁga) (_x(a},y(a}))f(u}(y(a})dy(a) t>0,

solves the problem

(3.8)

a[ﬁ.(a} (t‘ x(ﬂ)) + L(-’l) ﬁ{a)(f, .'I-'(ﬂ'}) — 0} £>0
al@) (0, ;I:("'}) = f(“}(:x:(“}),

which has a unique solution.
To do that, first observe that

(¢ d _
Xéa)pi 1)(3:(&)1?)(&)) — _d_s_ /H[aJ Di (y lh(a).‘l: exp(sX))dh(a)

= ] (Xpt) (y_l h(“)x) dh(@
Hla)

s=0

=X, | pu(y ' hDz)dn@,
Hia}

where we introduced the index x in Xf,a) and X, to indicate that the vector field acts on the

variable . Therefore,

LOp (@), y@) = f |
H{a)

- L,ﬂ/ i (y_lh(”'):,t:) dh(®),
Hla)

Lp, (:f;'lh.(“)a:) dn(@

which implies

8,0 (t,;t:(“}) _ . 5&ﬁ§a) (;;;(‘1),y("')))f("')(y(“))dy(“)
Mla

= f F(@) (@) ( / By~ h(a-);r.)dh.(“)) dy@
Mta) (a)

:/ f(a}(y(a)) (] Lp;(y_lh{“)x)dh(“)) d,y(a)
M(a) i la)

= / Fo () (L f pt(y‘lh(“)x)dh(“}) dy@

J el Hia)

_ / F0) (@) L@ (50), @)) gy @)

M@

_ @ / F@) (@5 (2@ | (@) gy (@
M@ ‘
== L(a)ﬂ(ﬂ) (t, :L,{a,)).

From (3.3) and (3.7) it follows that

—t+ % / Py (y ') dh®
Hia) 2
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— % /' P(ﬂ_%(y_w(ﬁ_1hmh(ﬂ_%mndth

I

)y gla)
= t_%t 2 /H{M p(((g %y)—lk(u)(éi_%x))dk{a)

S —lp(a)fs .. .(a)

=t 2 o P((ﬁtéy) k (05_%.1’:))0{1{.

_ t—%j‘;a (5(a}l ;I.'(a'}1 5(&)l y{u))$ (3_9)
A =

where we replaced 5:‘ 1 h(®) with k(@ and P® is the function on M@ x M@ defined by

P° (ﬁ(“} () x(@) (y)) = / P (y_l h.{a).l':) dh'®, (3.10)
Hia)

Since P is a positive, symmetric, Schwartz function, it is easy to see that P? is also a positive
symmetric, i.e. P4(z(@, y@) = pa(y(@) 2(@)) Schwartz function on M@ x M(@. Moreover,
it satisfies

/ Ifj(;(x(a), y(a})dy(r;) e 1:
M=)

identically. Indeed, by (3.5) we have

Pz, @) dyl®) = f (/ P(y'lh(”')x)dh.(“)) dy'@ (3.11)
Mia) Hia)

= / P(ytz)dy
(&)

=/PM®=L
&)

Mia)

3.2 Brascamp—Lieb inequalities
For any a consider a Schwartz function f(® : G — R invariant under the left action of the
group H),
F@(Dg) = f(g) for all B'Y € H®,
Clearly, f(*) is the pullback on G of a function on M@, which will be denoted f(@), that is

F@ = (@) f@) = Fla) o pla)

The functions f(*) enjoy the following property, which is actually a characterization of functions
which are invariant under the left action of H(®

F9(g) = fD (D@D (g))) = (R W@ (n(g'¥))) forall g€ G and all H¥ € H®.

It is sometimes convenient to think of the functions f(®) as functions on the manifolds defined
by

and, for any fixed h(®) € H(@), by

2(“)

= {h{a)o(a) (g(“)) : g e M'(a)}_
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Clearly, (@ and E{ (},J are smooth submanifolds of G of the same dimension of M(®),

Recall that T,7(® : T G— Tﬂm(g)i’lfﬂ @) ig the linear map defined, for any given X € T, ¥G, by

(179 07 (59 0)) = (7)) (9 0)) = £TEO ()

1=0’
where f is any function in C*(M(®)) and + is a smooth curve satisfying 4(0) = g and 4(0) = X
(notice that (@ o~ is a smooth curve in H(@\@G). We will use, according to our convenience,

both the notation T'w and ..
To a given smooth curve v in G based in g (meaning that v(0) = g), we associate the curve

Thiw (1) = KDl (7 (y(1)),
where h(® is the element of H® defined by
g =h@gl®) (ﬂ.(a)(g))_

It is clear that ¥}, is a curve in E(m C G based in h{®g(@) (ﬁ{“}(g)), meaning that v(0) =
= h(@g(@) (7(@)(g)).
Let. X =4(0) € TyG. The vector

X({L) d =a ( )‘

hor = ¢ Thi®) t t=0

lies in the tangent space, TQELHJ to Eéu}” at g = h{o@(gl@), Obviously X_,E‘;), depends
linearly on X and is called the horizontal component of X with respect to w(®). It satisfies
@ _ 9.
hor — E I(g(a} (t)‘t=0

d
e (a) (a) ((a)
dth o (7? (’y(f)))|

t=0
d @ [
= 27w (F(x(1))|
d (47 i
= o ( o900, )

o)

O'(ﬂ}{fr(“)(g))Th(Q}T‘JT[a](g}g{a}TQ?T(u) (X). (3.12)

t=0

bl 8
= Tth[‘l)TW(a}tg)J( ) (aﬂ-( )(,\ ,

(recall that 7, denotes the left translation by h).
Since 47, (t) = K g@ (7@ (y(2))) and 7 (R(@D (@ (7l (g))) = (@) (g), for all g € G and

h@) € H@ we have

d

TS"W(G) (Xf(l(:r).r) df (ﬂ) (F}h(") (t))‘ L
d i a a a
= 2@ (Ao [ )(7*(75))])‘1!:0
d
_ 9 @ 7@
- (7(‘5))‘1:0 T,m 9 (X)
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A vector Y € T, is said to be vertical with respect to x(@) if
T,m?(X) = 0.

Any tangent vector X € T,G decomposes into its horizontal and vertical components (with
respect to ﬂ'(“'))} the latter being defined by

X=X + x5

vert:
We can prove the following proposition.
Proposition 3.2.1. A smooth function f on G is invariant under the left action of H'®

if and only if it is annihilated by all vertical vectors with respect to 7% . Moreover, if f is
invariant under the left action of H@) | then

Xf=X9;%, (3.13)

hor
for all tangent vectors X.

Proof. Suppose first that X f = 0 for all vertical X € T, and all ¢ € . Assume by
contradiction that for some g € G and hy, he € H'® we have

f(hig) # f(ha2g).

Let v : (=1,1) — G be a smooth curve satisfying v(—1/2) = gh; and v(1/2) = ghs and
m(y(t)) = 7(g) for |t| < 1. Then 4(t) is a vertical vector for all ¢, which implies that

d :

— F(y(t = (5(t t)) =0,

ZF0()] _ = (05 (@) =0,
but f(v(—1/2)) # f((~(1/2)), vielding a contradiction.

To prove the converse let f be a smooth function on M(®. Consider X € T,G such that

?ria}(X) = 0. There are a smooth curve v based in g and € > 0 so that 7@ (y(t)) = 7(@(g)

for all |t| < € and 4(0) = X, hence,

(FO )N (9)) = £ (1)) = L) =0.

To conclude the proof it suffices now to notice that (3.13) is equivalent to the first part of the
assertion. O

We introduce the functions u(®) : RT x G — R, which are defined as the unique solutions of

the Cauchy problems

{ Bul(t,g) — Lu(t,g) =0, t>0 (3.1

w@(0,g) = f@ (r9(g)).

These functions are left invariant under the action of the groups H®): we state this observation
as a lemma.

Lemma 3.2.2. The functions u'® are invariant under the left action of H'®), that is
u.(“)(t.;h(“]g) - u(“}(t,g)

for all K\®) ¢ H@) qll g€ G and all t > 0.



64 Brascamp—Lieb inequalities on stratified groups

Proof. Let a be fixed. Because of the left invariance of the sub-Laplacian L we have
At(Th ) — Lty u®) = T (O — Lul) = 0.
Since we also have
(T@ul?)(0,9) = ul?(0,hg) = 7 (= (r¥g)) = £ (x(?)(g)),

the functions 7 () ul) satisfy the same Cauchy problem (3.14) satisfied by u(®. Therefore
Th(m,u("'} = u(® proving the lemma. O

The main result of this section is a consequence of the theorem that follows. The proof of it
is essentially the same as that of [7, Proposition 2.8 |, which is in turn based on Lemma 2.6 in
that paper. To do that and also to highlight the analogy with the proof of Proposition 2.8 in
[7], we introduce a bit more notation.

Let, for g € G,

Bl =T nl® (3.15)
and
* R
(Béa}) s J{a)(rm(g))rh(a}OTN{Q)(Q)J(G), (3.16)

(here 7 denotes the right translation by h).
Let ul@ : Rt x G — R* be the functions introduced in (3.14), fora =1,...,1. Set

)
(a) X;ul(t, g)
Je t1 =
1‘1. ( g) U{a}(t,g)

= Xilogul(t,g),
which, in vector notation, becomes

v @(t, 9) = V@ logu(t, g)
= (X1logu(t,9)) X1(g) + - + (Xnlogul”(t, 9)) Xu(9)-

With this notation the first equation in (3.14) becomes
0 = Gu'® — (X;+--+X7) @ = gu'® — div (u("‘)v{“)),
where, for v = vy X1 + - -+ 4+ v, Xy, we set
div(v) =div(vi X1+ - + v Xn) = X1 (v1) + -+ + Xn(vn)-
Theorem 3.2.3. Fiz a set of positive numbers {py,...,pm}. Assume, for all g € G, that
QO BO) B + -+ pQY(BY)BY) = I, (3.17)

where I, is the identity on T,G. Define, fort > 0, the function

@w=f“Wwwuﬁmea
G

then
®'(t) > 0, (3.18)

for allt > 0.
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Proof. The proof of (3.18) is based on |7, Lemma 2.6]. That lemma, which in [7] is stated in
R™, works also in our context by the same proof.

We start noticing that condition (11), which is required in Lemma 2.6 of [BCCT] is automati-
cally satisfied by (3.14). Then we set

V= plQ(l}'U(l) 4 e IJIQ(”'U{I),

so that also condition (12) in Lemma 2.6 of [BCCT)] is fulfilled.
It remains to verify condition (13) in the same lemma. To accomplish that task, we recall
that by (3.12),

hor o

X(G) =i (t'b){7.-(3'3{g})Th(ﬂ]T—,T(ﬂ)(QJU{GJITQW(&}(X)’
which by the definitions (3.15) and (3.16) may be written as

(B{V)" B X = (B{)"B{" Xhor = Xy, (3.19)
for all X € T,G. This formula by (3.13) implies
vj(g) = (B;“))*Béa)?_:j(g).

Observe also that Bg(Béa)}"‘ is a projection from T,G onto Tﬂ[a;@(ﬂvﬂ“)). As in the proof
of Lemma 2.6 in [BCCT)] it follows from (3.17) and (3.19) that (13) (in that paper) is also
satisfied, proving (3.18). O

Theorem 3.2.4. Assume the hypotheses above and suppose moreover that
QW+ +pQY =Q. (3.20)

Then the mequalily

CED (D P FO (O (gy\P (1) " 0 &
(}f (@)™ e PO () 'IQSI(/ﬂ_ﬂnf (m)dgl) ---(/Mmf (gx)dgz)
(3.21)

holds on GG. The constant I appearing in this estimate is given by
I'e LP{I}(ﬁ(l)(e),ﬁ(l)(Q))p‘ ... PO (70 ()7 ()" dg
and is fintte if there is A > 0 salisfying
oD@ ()] + - + 100 (@ (g))] > Algl

for all g € G, where |- | is any homogeneous norm.

Remark 3.2.5. Observe that in the abelian case, taking into account (3.11), the constant I
reduces to the constant obtained in |7].

Proof. Since all the functions u(® are Schwartz on M| it is easy to see that the initial
condition in (3.14) implies by monotone convergence that

tim () = [ 7O ()" .. 1O (0(g))"ds. (3.22)
G

{—0+
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Suppose that
PIQ(” Hevamardfe .p{Q(l) =Q. (3.23)

From this condition, using (3.6), we deduce

{

_% Palla = » i
B(t)=t o / ( / f(gl)P(”(o(il.gl,o(ihw“)(g))dgl)
M 2 A
_ 2l
"( umf( PO, 51,00 500 )
L
B 1 PL
( Pl)(a” (6 ))d_ql)
]r[l] ?
; } o
gr,w(}(él_%g))dgr) dg,

) ( F(g) PO (69
M t

which, replacing 51*‘ 19 by x, becomes

1
o0 = [ ([ 1@POE 00 @)an)" .
™
N (/;um Flgr) PO (5?% gr, 7" () )dg-r) dz.

Since fU, ..., f® are Schwartz functions we may apply Fatou’s Lemma, obtaining

hm d(t) = ([ P (?T{l)( ), 7 (g N ..pD (fr(”(e),ﬁ(”(g))mdg)
Ja

g P P
X U f(yl)dg]) - ( f(g-r)dg-r) . (3.24)
M M

From (3.18), (3.22) and (3.24) we finally establish the following inequality

/ FO D) ... fO(xO(g))P dg

G

= (/é P (D (), n D (g))" ... PH (x)(e), w\)(g ))pxdg)

™m o
X ( f(gl)dgl) ( f(gf-)dgr) :
ML) M@

It remains to discuss the finiteness of the integral

I= / P(l)(ﬂ.(l)(e): ﬂ.{l)(g))m ...PU}(?T{”(E’-),?T(”(g))mdg,
JG

1

|\..[¢0

L

which by (3.10) is given by

1 Pl
/(/ P(eW(xW(yg h{l))dh{l)) (/ P[U(”(ﬂ(”(g))hw)dh(”) dg.
G H() H

Since P is a Schwartz function, for any positive integers N there is a constant C'y such that

-N
P(a(x ()h®) < Cx (1+[0(2(g))] + 1))
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for all a. Taking N sufficiently large (N > max{QW, ..., QW} suffices), we find

r<ch [ (1+1e0E0) " (140 ) g

~N(p1+-+p1)
<O [ (141D +-+ 100G @)) T dg < oo,
G

since
oD @D(@)] + - + eV (x D (g))] > Alg],
concluding the proof. O
Example 3.2.6. In the case of Holder’s inequality we have [ = dimG =d,
MY =...= y@ =g,

prt-+pa=1,

and 7(® coincides with the identity on @ for all @ € {1,...,d}. In particular, we have
PY =...= P4 = P which implies

I= / PO (20 (e), 71 ()™ ... P (x(D(e), x ) (g))"dg
JG

=/ P(g)f* ... P(g)t4dg
G

=/GP(g)dg=1.

Example 3.2.7. Young’s convolution inequality on the group G is equivalent to

//fl 2) fo(y) o= army<(l[Gfl)*’l (/Gh)m (/Gh)p

(with f1, f2, fs > 0), where p; + p2 +p3 = 2.
Here, to apply our machinery we consider the direct product, G = G x G, of two copies of G.
The group G5 is endowed with the family of dilations {6; x 0; };~0. We consider the following
subgroups of G:

HO =G x{e}, H® ={e}xG, H®={(g,9):9€G}
and the corresponding homogeneous spaces: MM, M2 M®) with the projections

(g, y) =y, 7®(z,y) = 3z, y) =z 1y.

The heat kernel on G is given in terms of the heat kernel on G, py, by the product g;(z,y) =
pi(2)pi(y). Therefore we have

(”(y)=/H(]}Q£($vy)d$:pt(y)’

i?(x) = / qi(x, y)dy = pi(),
JH?)
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and

72 (7D (e,e), 7 (@, 9)) = | a((e,e) (g, 9)(x,y))dg

a((9.9)(x.y))dg

a((9z. 9y))dg

pe(gr)p(gy)dg

pe(9)pe(gr y)dy

Il

pi(9)pe(9y ' x)dg,

by the invariance of Haar measure and the symmetry of the kernel. It follows that

I= [ PO ()" PO (5 (2,)" PO (5 (2, ) " dody
GxG

B3
:/ 57 Pl [ P z:t ly)dz) dzxdy
JGXG G

3
:f y)P' Pz ( P(z ;B_ly)dz> dady
GxG
2/ Plp P"(
(.IIYXCI' (:

:/ P(y)P P(z)P2 (P % P)P* (z~Ly)dady,
GxG

S~ 3

P3
P(z)P(z" a7 g)dz) dxdy

S

where to obtain the last expression we used the invariance of the measure and the symmetry
of P. With the same tools we finally obtain

1:/ P(y)" P(2) (P % PY? (2~ \y)dzdy
GxG

- ]G P(y)" (PP * (P * PYP) (y)dy

- jp P(y ) (P72 (P P?) (4)dy

= ((sz * (P x P)P3) x PP')(e).

Example 3.2.8. In this example we identify the Lie algebra of the group G with the tangent
space at the identity 7,G. We denote by X" and X! the right and left invariant vector fields
associated to X € T.G. Recall that dimg; = n and that {X;,...,X,} is a basis of g;.

We look for inequalities of the form

(n) (a] I < (] (a) (o) g{a]) . 3.95
LI Geoe) asTL(f, 7o e

where M@ = H@\ @G, with

H® = {exp(tX,) :t€R), a=1,...,n.
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Since the groups H(@ coincide with the flow associated to X,, the functions f(® lift to
functions f(* which are right invariant along the flow of X,. Therefore, when the functions
f@ are smooth, their lifts satisfy X7 f(®) = 0,

Since the vectors X, lie in the first layer of the Lic algebra, the groups H(® have homogenecous
dimension 1 and hence the spaces M(® have homogeneous dimension @ — 1. Therefore,
condition (3.20) now reads

Q

P= G-

By (3.10) we have

P“(ﬁ(“}(;r),ﬂ{“)(y)) = [%P(y_l exp(tX,)z)dt,

which by the symmetry of P yields

P® (ﬂ(a)(e),i'r(a')(y)) = / P(exp(—tX,)y)dt,
R
from which we obtain

m—e : Q - Q
I :] p(lJ(w(U(e)’ﬂ.(l)(y))m...p(i)(ﬁ(i)(e)’ﬂ{f)(y))mdy
G

= P(exp(—tX1)y)dt ﬁ | P(exp(—tX;)y)dt (Q?;mdy. (3.26)
G R R

One can show that the last integral is finite using the classical estimates (3.4) holding for P,
which show that
Plg) e ¥,

where | - | is a homogeneous norm on G and ¢ > 0 (see [26]).
We have just proved the following inequality.

Theorem 3.2.9. Let, fora =1,---,n, let {9 be a Schwartz function on the space M'®).
Then

- h
Q—1)n
/( I I f(o (a) )) R f] I (/M[ Jf(a a})dﬁj(a}>t K _ (3.27)

The constant I in (3.27) is given by (3.26).

Remark 3.2.10. Observe that condition
writing Q@ = pn, we get

ﬁ < 1 is satisfied for @ > n > 2. In fact,

Q __pm __p
—“—@—-1n (pm—1n pn-—-1’

yielding

which is always satisfied when n > 2 and p > 1.

From inequality (3.27) we may deduce the isoperimetric inequality on G for any stratified Lie
group. In the next section we consider the case of the three dimensional Heisenberg group,
leaving the discussion of the general case of stratified groups to a forthcoming paper.
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3.3 The Heisenberg group

In this section we specialize the example above to the Heisenberg group H;. Since now n = 2

and @Q = 4, we have p = ﬁ = % A basis of right invariant fields of the Lie algebra is

given by

X" =0, 4+ éyc’)z, Y7 =8y — %:1.-82, Z=20,. (3.28)
The corresponding left invariant fields are given instead by

1

1
X'=08,— 5¥0:, Yi=0,+ 500z, 2 =0

Adopting, as usual, exponential coordinates we write
g =exp(zX +yY + 22).
The subgroup H in these coordinates is given by
HW = {exp(tX):t € R} = {(£,0,0) : t € R}.
Hence, (u,v,w) € HVg = HW et X+y¥Y+2Z if and only if
(u,v,w) = (i +ty,z+ %) .
We chose representatives for the classes HYg of the form (0,7, 2) = exp(§Y + 2Z) and,

abusing notation, write (7, z) = HW el 22 In this way, we identify M) with R2. The fiber
over (y,z) is

(rr(”)_l(g,z?) = {exp(tX)exp(yY + 2Z) : t € R}

= {exp(tX—l—g}Y—i— (Z—F%ﬁt) Z) :T.E]R}.

H® = {exp(tY) : t e R} = {(0,t,0) : t € R}.

Similarly,

The representatives for the classes H ) g of the form (&,0,%) = exp(zX + 2Z). We write
(z,2) = HP X422 and identify M(® with R2. The fiber over (Z, %) is

(17(2))_1(5:, z) = {exp(tY) exp(zX + zZ) : t € R}

={exp(;ﬁX+tY+(§—%;x:t)Z) :tER}.

In the coordinates just described the measures dg!) and dg‘® coincide with the Lebesgue
measures, dydz and dzdz, on R2.

Theorem 3.3.1. With the notation above we have the following inequality

/EH FO (20 (9))¥ 7@ (2 (g)) ¥ dg

2
< (/ ,Fu)(qm)dq(n)s (/ f(a)(g@))dgm) _ (3.29)
N ' M@

@it
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Proof. We compute first the heat kernels on the homogeneous spaces M) and M(?. Since
g texp(tX) = exp(—zX —yY — 2Z) exp(tX)

= exp ((f —x)X —yY — 27 — %ty[Y, X])

= exp ((t —z)X —yY + (%tu - z) Z) \

we have

p(l)(ﬁ(l)(e),ﬂ{l)(g)) = P(])((J,‘Tf(l)(g)]

:/P(g_l exp(tX))dt
B

:/P(exp ((t—x)X—yY—i— (lt-y—z) Z)) dt
” 2
= / P (t, -, %(f +x)y — z) dt,

where we slightly abused notation writing P(u, v, w) for P (exp(uX + vY + wZ)). Now, using
the the classical bounds holding for P = p; (see for instance [57, Prop. 2.8.2]), we obtain

/P(t,—y,%(t—i—m)y—z) dt < /exp (—C(y2+t2)—c )dt
E JIR

< exp (—0_1,-'2) f exp (—ctz) exp (—c: z— l:;:y - l-yrtD dt,

& 3™ ™3
1

/ P (t,—y:—(t—i—;r:)y - z) dt

JR 2

z—%@+$w

hence,

; 1 n
< exp (—cy?) exp (—c z =5y ) / exp (—et?) exp (%h;ﬂ) dt
R
15 1 1. Y2
< exp (—l—gcyg) exp (—c z— Ea:y ) /chp (—c (t — Zy) ) dt
].I. L3 1
< exp (—1—2(: yz) exp (—c Z= §3:y ) '

Similarly, to obtain a formula for P(2), we compute

gl exp(tY) = exp(—xX — yY — 2Z) exp(tY)

= exp (—;IIX +(t—y)Y — (z + étm) Z) ;

which, using the same bounds on P as before, gives

meﬂmﬁlﬂmwﬂ=14P(mm(—%X+ﬁ—ynﬁ—(z+%m)z))ﬁ
b3 /Rexp (—c(x2 +#%) —c ) dt

z—%&+yﬁ
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Sexp(—c 3:2) /

R

exp (—ct2) exp (—c 5 — %Q:y - %:rt ) dt,

and finally

/ P (exp (—:rX +(t—y)Y — (z + lt:r) Z)) dt
R
15 . 1
< ——ez? —c|z — =z ;
Nexp( lﬁcr)exp( c Q.Ty)
These estimates imply that the constant in the inequality, which is given by
2
1 3
I 5/ (/ P (t,—y,—(t—i—:r)y—z) dt)
Rli B 2
o
1 3
X (/ P (—.‘B,S? —z — 5(5 +y)a‘:) ds) dxdydz,
R

is finite. |

]

To obtain the isoperimetric inequality we start observing that for a Schwartz function f we
have

1 d 1
Iy = ’ z 4+ =1 = — . ) Z o

1 d 1
Ly F — —1 = —F H y o — —L
Y'f (33, y+tz Q_ty) dtf (3,y+t, zty),

for all (x,y,z) € Hy. The first of these relations, by the fundamental theorem of calculus,
implies that

e d . T
f(:r,@,z)z—/; aj (x+t,y,4T§ty) dt

B 1
:-/ X"f(:z:—i—t,y:z—l—ity) dt,
0

from which it follows that

5 dt

o0
1 1
= / |X£f (;r+t7y7z+§ty)‘ dt
—03

o0
% f |X£f (u,y,z— %:ﬂy—i— %uy)‘ du

=¢ (y,z - %xy) : (3.30)

(s u]
| flz.9.24)| g/‘X‘{f (;{:+t,y,z+lty)
0

I
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Similarly we obtain

fewal<s [

1
= (.-I:, z+ —.-ry) : (3.31)
2
We note that by (3.28) we have

X"¢=0, Y =0.

This property by Proposition 3.2.1 means that there are two smooth functions ¢ : M1) — R
and ¥ : M®) — R, satisfying

1 - 1 _
¢ (y, z— E"ry) =¢o ?r(l)(;r, Y, z), (:3:, z+ E;ny) =Yor? (o).

_ 3
( / 1;')(9(2))(19(2))
M(2)
- : :
:( 5(§,z)dgdz) ( / -a;'?(;z-?z)d;ﬁdz) : (3.32)
R2 B2

recalling that the measures dg'') and dg® coincide with the Lebesgue measure on R,
From (3.32) we obtain

Therefore, we may apply (3.27) to obtain

/ H(rV(9)) $9(x P (9)) g < (Lm w(g(”)dg(”)

I,

3 L]

flidedyaz = [ 171F |11 dedyas
3151

1 3 1 3
< / o] (y, z— ‘—:r:y) W (;r:, z+ ‘—.-r:y) dxdydz
JH, 2 2
2 2
_ 3 _ E
< (/ q’)(’ﬂi)d@d?) (/ W(ZT, )d.}r‘:dz) .
B2 &2

Therefore, we have the bound

1704 6, = ( / | f|%dmdydz)

( Dy, 2 de-Z)
B2

Hy

(1)

b=

1 2
< = ( ‘Xf T, z)‘dxdydz) (/ ‘Yf(x,y,z)‘d:nflydz)
2 23 B3
1 ;
< - (/ ‘Xf (z,y, ‘d:x:dydz + / ‘Yf(:.-:,y, z)‘dmdydz)
4 \Jgs J w3

rdydz

}l[é:s ‘Vf(:r:,y,z)

1
= Z”Vf”L'(H,)a

where we used the arithmetic-geometric mean inequality.
We have thus proved the following result.
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Theorem 3.3.2 (Gagliardo-Nirenberg inequality for Hy). On Hy Schwartz functions obey
the estimate

1
||f||L§(Hl) = Z”Vf"m(u-ul)- (3.33)

The isoperimetric inequality, relating the horizontal perimeter (for the definition see for
instance [17]) of a set to its volume, was first proved on H; by P. Pansu in [48] and then
extended to general stratified groups by L. Capogna, D. Danielli, N. Garofalo in [16] (see also
[29] and recent works [40], [45]). It is well known that this inequality may be obtained as a
consequence of the Gagliardo—Nirenberg inequality (see for instance [17] or |50]), therefore, as
a corollary of the theorem above we obtain the following result.

Corollary 3.3.3. Let E be a measurable bounded subset of Hy. Then
E|T < P(EB), (3.34)
where P(E) denotes the horizontal perimeter of E.

By essentially the same argument one can show that on any stratified group the Gagliardo
Nirenberg and the isoperimetric inequalities are a consequence of (3.27).
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A discrete restriction theorem on the
quaternionic sphere






CHAPTER 4

L? joint eigenfunctions bounds on spheres

This final chapter is devoted to the study of some sharp bounds (some of them depending on
the dimension and some not} for bigraded spherical harmonics on complex and quaternionic
spheres, in the spirit of some carlier work by C. Sogece and J. Duoandikoetxea. These estimates
have heen suceessfully applied to different problems in harmonic analysis, like Strichartz
estimates for solutions of the Schrédinger equation [13. 14, 23], LP summability of Bochner
Ricsz means [52, 22|, unique conlinuation problewns |36. 53)|.

Throughout this chapter we use the notation A ~ B to indicate that the ratio of the two sides
ig hounded above and helow.

4.1 Estimates for quaternionic harmonic projection operators

In this section we prove some hounds from below for the (L¥. £?) norm of the projection
operators mapping the space of square integrable functions defined on the quaternionic nnit

Uin H”, where H is the skew-feld of quaternions, onto certain subspaces of

sphere §Y
quatcrnion spherical harmonics into which L2(S*~1) decomposes. The results contained in
this section wore obtainad in ecollaboration with V. Casarino and P. Ciatti and are publishee

in |10].

4.1.1 Notation and preliminaries

We denote by H the skew [ield of qualernions ¢ = xg +oagd +owef | wsh over R, where
X, 41, o, 2 are real numbers and the imaginary units 4, 1. & satisfy 2 = j2 = k% = —1.ij =
—ji =kiik = —ki = —j, ik = —kj = i. The conjugate § and the modulus |g| are defined

hy G =@y — 217 — 29f — sk and g2 = g7 = Z_‘;:n :?f?, respectively. For » 2 1 the symbol

H™* will denoie the n-dinensional veclor space over H. By abuse ol notalion, we write ¢

also to denote (g1.....¢,) € H* Somectimes we will adopt a complex notation. writing
. . P - A

q= (Z] + JZng1s .oy I+ J2op ), with 2.0 29y, € €L

Let §1~! be the unit sphere in H", that is,

‘54”'_] = {Q‘ = (Q‘Iw‘ S tn) C qH {:q'- {1:} = 1}

where the inner producet (-, -} on A" is defined as {g,¢") = q1g] + - - - + Gnetl,» with g, ¢’ € E™.
The sphere S 1 may be identilicd with the homogeneous space {with quotient on the left)

K /A = Sp(n) x Sp(1)/Sp(n — 1) x Sp(1)

-]
=1
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where Sp(n) denotes the group of n x n matrices A with quaternionic entries, such that
ATA = AAT = [,.
We introduce on §*~1 the coordinate system

) (4.1)
(s = 0 sin b, s=2,...,n,

{ql = cosf(cost + gsint)
where 0 € [0,7/2], t € [0,7], 05 € H with .7, |0s]> = 1. Moreover, for § € H with
|G]> = 1 and R = 0, we will write § = cos )i + sin ) cos @j + sin ¥ sin gk, with ¢ € [0, 7] and
@ € [0,27].

We remark that (sintsin sin g, sintsini cos g, sintcos ), cost) yields a coordinate system
for Sp(1).

The normalized invariant measure do = dogan—1 on with respect to the spherical
coordinates (4.1) is, up to a constant depending only on the dimension n,

S4?1—1

sin"~? @ cos® 0df sin? tdtdogin-—sdo(q), (4.2)

do(q) denoting the measure on the unit sphere in R3.
By L%(S*~!) we denote the Hilbert space of square integrable functions on $**~!, with
respect to the inner product

(f,9)12 = é_m_l f(@)g(q)do.

Johnson and Wallach, starting from some earlier work by Kostant [39], proved in |37| that
this space may be decomposed as

S4n. J. @ Hé'f" (43)

(=020
where each subspace H
1. is irreducible under K;

2. is generated under K by the "highest weight vector"

1

Pon(z,2) =225 (212042 — 20Zn1)’; (4.4)

3. is finite dimensional.

We will denote by Ig the set of indices {(¢,¢') e NxN:0< ¢ < (}.

In [21] the authors studied the LP — L? norm of the joint spectral projectors mp, (¢,¢') € Ig,
mapping LP(S*~1) onto H' 1 < p < 2. They proved sharp bounds for these norms under
the additional assumptions ¢ — ¢’ < ¢y or ¢/ < ¢, for some positive constants cg, ¢1. Here, we
prove some crucial estimates from below for ||me[|(,2) in the general case.

In the following subsections we will prove the following result.

Theorem 4.1.1. Letn > 2,1 <p < 2. Set p, = 2(4n— 3)/(4n — 1). Then the following
estimate holds

I|7Tff’||(p 2) 2 FL L p)ﬂ(ﬁs”)(l + fr‘)ﬁ{i‘”) (¢— ¢4 1)’}'(%.1&)5 (4.5)
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where i i 4
a(—,n)=2mn—-1)(-—=) forall <p<2,
(p ) :=2( )(p 5 P
1 20n—1)(t —3) -2 if1<p<p,
B(=,n) := 1(? 1)(p 3) =3 Ef —P=p
p 5(z —3) fpn <p<2,
and
1 3:-H-1 ifi<p<si
Y(=—ym) = ](p 1 2) ? f4_p ’
p S—% fz3<p<2

for all (£,0") € Is, such that ¢ — €' and ¢ are sufficiently large. The implicit constants depend
only on the dimension n and on the exponent p.

4.1.2 Estimates for zonal functions

We call zonal function of bidegree (£,¢") with pole e; = (1,0...,0) a M-invariant function in
H  ie. a function f on S~ such that f(z) = f(mx) for all m € M, z € $*"~1, where =
has to be interpreted as an element of the quotient K /M.

An explicit formula for the zonal function Zyy» with pole e; is given for all (¢,¢') € Is by

-t Pg{;zn—s,f—e’ﬂ) (cos 26)

dger sin((£— 0+ 1)t) o
Pﬁ(jz-n—s,e—z"ﬂ) B

Win—1 (€ — ¢+ 1)sint &) ’ (4.6)

Zew(0,t) =

In—3,0-¢'+1) . ;
; Pg(, 2 ) s a Jacobi

where t € [0,7],0 € [0, 5], wan—1 denotes the surface area of gan—=1
polynomial and dg is the dimension of H', given by

(l+2n—2)! (¢ +2n—3)

> > 0. .
@+ DiEn—3) flgn—11* (=420 1D

dpp = (040 +2n—1)(f — € +1)?

We recall the Mehler-Heine formula for the so-called disk polynomials, proved in |9, p. 10].
The symbol .J, denotes the Bessel function of the first kind of order a.

Proposition 4.1.1. Fixn € N. Let j,k € N, j < k. Then

. p(2n—3.k—75) (20
i (eos{—y)* 2 (cos(Z0) _ 1on — 9y 2n-3020)
}i::iz; \/j_k R}Qn—d,k—j)(l) f2n—3

where I' denotes the gamma function. This limil holds uniformly i every compact interval.

We also recall (see |9, p. 12|) that for all j,k € N, j <k,

sup

P_(Qn—-'i,k_-'” ( 308(29)) ‘ <
oD/

(cos )T L
Pj{?n—d,fc—)) (1)

For g > 2 set

/2 P{,271_3’£'_€’+1)(00529) |4 g 1/q
T = ( /ﬂ | ep“”‘”‘“”u) (cosﬂ)‘--‘*‘ (51r16)4“""((:os9)3(1]6') . (4.9
eﬂ'
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Lemma 4.1.2. For all ¢ > 2 and for all (¢,¢") € Is such that ' is sufficiently large, we have
E > {gz)(zn—’z}(%—%)—%3(271—2)(%—§

I, ™

P(Zn—l},t’—g’-i-l) ( COS( 20

e \/P_ﬂ”)) (Cos(g/\/@))f—f’-{-l

Pé?ﬂ-—s,f—f"-l-] }(] )

L4([0,1]:04—5d8)

Proof. Observe that

/UV@T Pg{f?n—lﬂ,ﬂ—f”-i—l) (cos 26)

) 2 i
( "f') Jo PEI(F‘J’I-—J_.f—f +1)(1)

(cos 0)—" ‘q (sin 0)*"5(cos 0)>d0

q

/1_/\/23? Pg{jZn—:}.E—f’—H) (cos 26)

—'42
S (cos®) a
i Pﬁ(’zn.—s.f—f ()

(sin 0)*"°do

o /IXW PE,_{,QH_M_PIH} (cos 26)
0

~

- a. . n—F
PRSI () (cos 6)° “'l‘ (sin0)*"~"do),
ef

where the last inequality follows from the fact that 8 € (0,1/v '), with 1/v£0' < 1/2, so
that cos@ ~ 1, independently of ¢, . Then, after a change of variables we get

do
Ve

(cos(e/\/@))g—f’“‘q(e/\/@)*"'“‘”’da/(\/@)

(2n—3,0—'+1) T
(Iq)q Z /{;1 ‘ PE" (COS(QH/W)) ((:05(9/\/@))3—3'+1 ‘q(sin(e/\/@))&n—ﬁ

Pg{{‘Zn—B,E’—P’+1} (1)

| |5 (=341 (cos 26/ VET))
. Péan.-:;.f—ﬂ’+1) (1)
26

i "f’)) (cos(0/V/ee)) =t +1
(1)

q

2n—3.0—0'+1
e{fn ; +}(CO

s (Eff)—(gﬂ-—2} (4‘1[])

pln—3.0-+1
12 La([0,1]:84n—5d8)

It is convenient to set

Pé‘?n—:j,f—f"+l} ( COS( A )

vee ) (cos(0/V/EE))t=E+1,

Péf?n—:i,t?—f”-i—l) (1)

Fpp (0) =

For ¢ = 2 we obtain a more precise estimate. Indeed, from standard properties of zonal
harmonics it follows that ||Zee||2 ~ (deer)'/? which, by means of (4.6), yields

o [™sin((€—¢ +1)t)2
P sin ((
oo ~ (de) /{; ((— 0 +1)sint

X/MQ Pg{zﬂ—&e—f*ﬂ)(cosge)

5 ‘ szn—a,ﬁ—ﬁfﬂ)(l)
.

J

sin? tdt

.12
(cos 0) "] (sin®)*~(cos 6)3do.

Since
sin((6—¢"+1)t))2

.2  __ 7 -2 -
((— 07 1)oint sin tdt ~ (£ — £/ +1)7%, (4.11)

we have

(Z2)? ~ (£ =€ + 1) (dger) ™. (4.12)
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Then, combining (4.10) and (4.12), we get for all ¢ > 2

g - iy
I—Z 2 (€€ + 1) (dee) /2 (£0)~Cn=D/9)| Fyyr (8) | La((o,1):04n-5 o)

(ﬁ}(?ﬂ .5};’2‘;{2?1 23’”(}[") (2n— Q)MHFQF* )l

La([0,1];64m—5d8)

5 (g!){?‘n 2)(3-1)- 6(271 2){___)||F£P*( )||Lq([0,1];34“—5d9)-
]
To state the following lemma we set, for g > 2,
Tisin((0 -+ 1)) 9 ., /g
= et . 4.1
T (/0 (¢ — 0 +1)sint | LE2 f) (4.13)

Lemma 4.1.3. For all ¢ > 2 and for all (¢,0') € Is such that ¢ — ' is sufficiently large, we

have
7 (-2 +1)1-3/9 for all g > 3
7“ ~ ¢ (log(¢ — £))/3 forallq=3
: for all ¢ < 3.

Proof. We start recalling that

sin ((¢ — ¢+ 1)t)
sint

= 0((t — ¥ + 1)) PED (cost),

[56, p.60]. Thus, using a known asymptotic integral estimate (see [56, p.391]), we see that

/2 sin ((£ — ¢ + 1)t , .
Ud%l | (.e(—(£f+1)suzx) sin” tdt ~ (€~ €' +1)7, (4.14)

for ¢ > 3 and ¢ — ¢ sufficiently large. Combining (4.11) and (4.14) we get the expected
estimate for J,/Js for all ¢ > 3. Similarly, the other two cases follow from [56, p.391|, and
(4.11). 0

Combining Lemma 4.1.2 and Lemma 4.1.3 we obtain a bound from below for ||my||(,,2), with
l<p=<2

Proposition 4.1.4. Fiz n > 2. For all (¢,0') € Is such that ' and { — {' are sufficiently
large, and for all ¢ = 2 we have

: (6 — 0 + 1)1=3/a(pp)@n=2)1/2-1/) =12 for all g > 3
”szq 2 { (log(€ — €))/3(ee) =202V =12 for g =3 (4.15)
CI | ()@ /2-1/0) =12 for all q < 3.

Proof. For q > 3. as a consequence of Lemma 4.1.2 we have

Zopp
|| ff”(]‘ > ({ {;J_i_l 1- 3,"-‘;1' /IQ

7 (1‘; - ﬁf + 1)1—3;”(}(gf!)(?ﬂ—?)(],/2—],1(;)(?)—1[{2”}73?(9)

| Lagoan—sas,[0.1))-

Then the first inequality in (4.15) follows from a slight variation of Proposition 4.1.1, (4.8)
and some trivial asymptotics for the Bessel function. The proof of the other two inequalities
is similar. O
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4.1.3 Estimates for the highest weight spherical harmonics.

In this subsection we will estimate the norm of the highest weight spherical harmonics Py ¢ in
H' | defined in (4.4).
In [21, Lemma 5.3] the authors proved that for all (; € R, {; > 0, and for all (s € N one has

= 21| n. = = 205 7. Cn DiGi+Ca+ 2+ 1) :
z 21Zn+2 — 292 do = ; 4.16
/5‘94“—1' nitl eI = aadn[ o = T o oG D) (4.16)
They also proved that as a consequence of (4.16) the following bound holds
(¢ + 1) :
Poplla ~ ; 4.17
1Peerl2 ((f--l- I (T 1)) (4.17)

Proposition 4.1.5. Let Py be the highest weight vector defined by (4.4). For all ¢ > 2 we

have :

0 +1)2
lim sup( " 2( _—; ) :
st N+ )2 (-0 +1

1 1
57 IPeell
: > 0. 4.18
)) [Pe,erl2 W18

Proof. Fix any q > 2 and let (¢,{') € Is. First of all, we choose 2(; = ({ — ¢')q. Then, if
¢'q € 2N, (4.16) applied to Py with 2(; = ¢'q yields

en T(30+2)T(30 4+ 1)
r@EE+2)+2n) (3(6—-2)+1)

IPeelld =

Now a standard application of Stirling’s estimate leads to
(46 + 1)3+0+D/a(gp 4 1)5¢+1/C)
(§(£+&) +2n — DIEHOPEID/ (4 pr) 4 1)1/’

IPeerllg ~

which, combined with (4.17), yields

l i

Hmmmw( (¢ +1)2 ) _ i)
[Peell2 (P =2+ 1)

This proves the assertion under the assumption ¢'q € 2N.

Ifg= %?’él for some my. ng € N*, it suffices to replace ' with 2ngf’ and then choose (o = myf’.

By considering (¢,¢') € Is such that £ > 2npl’, we get an estimate analogous to (4.19) for

|Pe.onge|lq, yielding (4.18).

Finally, if ¢ is not rational, the desired estimate follows from the continuity of the L7 norms
and the previous arguments for rational values of g. |

e
1=

4.1.4 Estimates for mixed spherical harmonics.

We consider the function Qg , given by

. g PP D sy

In—3,0—0 41
2 (1)

Qur (0, p,t) = (sintsin -i,“}e"i“’)f_w (cos @)

(4.20)

for all (¢,0') € Is, with t,4) € [0,7], ¢ € [0,27], § € [0, F]. Observe that Qg is obtained
replacing the factor sin ((¢ — ¢ +1)t)/((¢ — ¢’ + 1) sin t)_l in (4.6) with the highest weight
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spherical harmonic of degree ¢ — ¢’ in ¥3, the unit sphere in R*. For a discussion about the
role of ¥3 (or, equivalently, of Sp(1)) in our analysis we refer to [21, Remark 2.3].
We recall here that H*' is a joint eigenspace for the spherical Laplacian Agin—1 and for
an operator I', which essentially coincides with the Casimir operator on Sp(1) and in our
coordinates reads as

1 9] ) 1 1 0

.2 -
= —=—sSint—+——F———sinY—+ ———5— 55—
sin®t ot At sin®tsine OY Oy sin® tsin® 02p

We refer to [37] and [35, p. 696| for a discussion about the role of this operator. Then it is
easily seen that Qg belongs to H' | since it is an eigenvector for both Agin—1 and T'.

Proposition 4.1.6. Fizn > 2. For all ({,V') € Is, such that {' and ¢ — (' are sufficiently
large, and for all ¢ > 2 we have

||Q€£’”q > (0 — 1 +1)V/2-Va(ggy@n=D)(1/2-1/0) g =1/2,
||Qee||2

Proof. The estimate in the assertion follows from Lemma 4.1.2, Proposition 4.1.1 and some
basic bounds for the spherical harmonics in ¥? (see [51, Theorem 4.1]). O

Remark 4.1.7. A comparison between Proposition 4.1.4, Proposition 4.1.5 and Proposition
4.1.6 leads to the estimates of Theorem 4.1.1, thus proving it.

Remark 4.1.8. The proof of the reverse inequality of (4.5), which involves both real and
complex interpolation arguments, multiplier theorems for Agin—1, I' and for £, and a very
detailed analysis of the Jacobi polynomials, is quite long and involved. This work is already
under way.

4.2 Dimension free estimates for bigraded spherical harmonics

In this section we prove some dimension free estimates for bigraded spherical harmonics on
complex and quaternionic spheres, inspired by an earlier paper by Duoandikoetxea [24]. Our
focus is on the sharpness of these estimates

4.2.1 Some dimension free estimates

We start recalling some well-known decompositions of the spaces of square-integrable functions
on spheres. More precisely, we recall that the space L?(S"~!) may be written as

s =, (4.21)

feN

where each subspace Vi, formed by the spherical harmonics of degree ¢, is invariant under the
action of the orthogonal group O(n) [55]. If 8"~ ! is replaced by the complex unit sphere in
C", 8?1 ~ U(n)/U(n — 1), Vilenkin (see [38]) proved a finer decomposition of L?(S**~1)
as direct sum of invariant subspaces Hy ¢, irreducible under the action of the unitary group
U(n), that is

L3S 1) = @ Hyp. (4.22)

(€,£')ENXN
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The relationship between (4.21) and (4.22) is given by

P Hee (4.23)

0=k

Moreover, by identifying the unit sphere S¥~! in the quaternionic vector space of dimension
n, H", with (Sp(n) x Sp(1))/(Sp(n — 1) x Sp(1)), as we saw in Section 4.1, Kostant proved
that

s = @ Huw, (4.24)

>8>0

where each subspace Hyp is irreducible under the action of Sp(n) x Sp(1) (see [39]).
It is also well known that

@ Heer (4.25)

Il =

We refer to [37] for a unified representation-theoretic approach to these decompositions.
From the spectral side, it is well known that the V} are eigenspaces for the Laplace—Beltrami
operator Agn-1, corresponding to the eigenvalue £(¢ + n — 2). In the complex and in the
quaternionic case, Hyp and Hyp turn out to be eigenspaces both for the Laplace Beltrami
operators on S?*~1 and §*~! corresponding to the eigenvalues (¢ + ¢') (¢ + ¢’ 4+ 2n — 2) and
(£ + ) (L + '+ 4n — 2), respectively, and for a suitably defined sub-Laplacian L to the
eigenvalue \gpr, given by 20¢' + (n— 1)(£+¢') in the complex case and by 4(£¢' + (n— 1) +nt")
in the quaternionic case (see [21]). For this reason, the elements of Hy and Hyp are usually
called bigraded spherical harmonics.

On $2"~1 ¢ C" we consider the standard coordinate system (see [38, 11.1.4])

£ = e¥sin,_;...sinb;
€y = €2 sinf,_;...cosb
q (4.26)

n—1 = €"¥r-15in6,_; cosfp_2

§n = €' cos Oy—1,
LY

with 8; € [0,7/2], j € {1,...,n— 1}, pr € [0,27], k € {1,...,n}, and the corresponding
normalized Lebesgue measure, given by

1 1

O Hn 19 cos b, do;11;_  dey,

where [S2"71| = -ﬁ?—% = (ff%-l (see 38, 11.1.8]).

On $*~1 ¢ H™ we adopt a system of coordinates different from those used in Section 4.1.
These coordinates were introduced in [38, 11.7.1] and are given by

(q1 = uy sinf,_1sinf,_»...sinfysin 6y
gqo = us sinf,_1sinfl,_o ...sinls cos b
Ni (4.27)

Gn—1 = Up—18in 6,1 cos Oy o

| Gn = Un COSOp_1,
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where
u = e"* coswy, + e"F sinwyg

with 0; € [0,7/2], j € {1,...,n — 1}, ¢k, ¥ € [0,27], wr € [0,7/2], k € {1,...,n}. The

corresponding normalized Lebesgue measure is

dn—5 i 4n—9 ]

do sin’ -1 cos® 01 5in° ) cos® Gpo... sin” (7 cos® ) sin® 04 cos® 64

=[St
X dbp_1d0,_o . .. dfsdly

X sinwy coswy .« ..8inwy coswpdwy . ..dwyder ... doydidy ..o dipy,,
where

o2

an—1| __
S7 = I'(2n)

(4.28)

If S denotes S*"~! or $*"~! endowed with the normalized Lebesgue measure, we define

11 = [ 1fwPdota).
The following result was proved in the case of the real sphere in |24]. In the complex and
quaternionic framework it is a straightforward consequence of [24, Theorem 1].

Proposition 4.2.1. Let Yy be any bigraded spherical harmonic in Hyp or Hep, with (£,0") €
N x N. If Yy € Hypr, we assume in addition that £ > ¢'. Then

[ Yeer|lp < C(6,€) (0 — 1) 2 Yyp | for all p > 2. (4.29)

Proof. The proof is very similar to that of [24, Theorem 1], as long as we replace the standard
Hecke’s identity for spherical harmonics by means of Hecke’s identity for bigraded spherical
harmonics (for a proof of this identity the complex case, see for instance [30] or [57]; the
quaternionic case may be treated analogously). O

4.2.2 Sharpness of the results
In the following, we shall focus on the sharpness of the bound found in the last subsection.

Proposition 4.2.2. Estimate (4.29) is sharp, in the sense that there exist spherical harmonics
in Hyp or Hepr such that the reverse inequality holds with the same exponent (¢ + £')/2.

Proof. We consider the complex and the quaternionic case separately.

. . . . . — !
The complex case. Consider the "highest weight spherical harmonic" Qur = 2{ %" . From
now on we shall assume £ > ¢. We have

1
Qe |5 = W(%)n-}n(?:f, ') x J(p, €, ¢), (4.30)
where
/2 Py
Ju(p, 6,0') = / (sin6,_1) P 0050, 1d0,
Jo

w2

X
S~

0! ol A ﬂ’}2 N 1 B
(sin 9,,_..-3) (+€)p+2n—5 cos Oy —odl, 5 %« % f (sin 92) (E+£)p+3 cos fadbly
0
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and

e . 1T (ep/24+1)T(¢'p/2+1)
J(p, .0 =/ in 01)P 1 (cos 0,) P do, = —
(p'.! ] ) 4 (blIl 1) (CO“’ 1) 1 2 F((€+P')p/2+2)

From Stirling’s formula we easily get

1

—— (2m) /2Pl /p (0)4/2+1/p) (¢ /2+1/ @)
21/p

N/P o,
J(p, €, 1) (640 + 2/p)£/2+f’.’;’2+3f(2p) !

so that
(J(p, £, 0NYP 1 1 1111 14 P ¢ e
-_— 22 27V dep 2 ——— =
P LR ] w77 B G 77
% (€+ g! _’_2/?))1/‘4—1/‘(2;1)
> (C+ 0 +2/p)l/A-1/Cp) (4.31)

2

for all p = 2.
Another standard application of Stirling’s formula shows that, for m,s € N, m > 3 sufficiently
large, s > 1, p € R and p > 2, we have

P(m/?)r(sp/Z + 1) m/2—1/2 sp/2+41/2 —(sp+m)/2+1/2
T(ptm))2) vV (m —2) (sp) (sp +m — 2) . (4.32)
When m = 2, we have in particular
/2T 2+1
T((sp + m)/2)
Then (4.32), combined with (4.33), yields
Jo(p, 0,002 ((€+ )p/2+1)'P 1111 e B
(}n(i’ glf;))]_{f-z - (( )p/ 1{)2 (Qn—Qr(n))g :,?l_glp }4(2% _ 2)(,1, 3)(n—3)
(Jn(2,6,€)) (£+£&+1)
x (€+ g’)z{'_') (£+€)/2+1/(2p) 9—(¢+£')/2~1/4
0+ 2)2+ (2n — 2)) eI 2Hn2-1
(( )2+ (2n — 2)) (4.34)

((g £ fl)p + (2'!3 . 2))({""?;);’24‘”}‘1’—”{21’}'
s a consequence of (4.30), (4.31), an .34) we finally get
A f (4 d (4.34 finally g
2 L y X
1Qull, _ (20" (Ju(p.£,0)"" (J(p,, €))7
1Qeellz  [S2—LY/P=1/2 (J,(2,£,€)Y/2 (J(2,6,€))Y/2

. 1/
o plEH)/291/p1/2 ((e+)p/2+2)""
(¢+¢+2)"

Hel—

A
T2p

,J

(£’+€’)% %—é]g—(£+f’)/2—l/4

) (2n — 25D ((¢+2)2+ (2n - 2))§ )
((€+¢)p+(2n—2 )%(n_% (2n —2) 3(n-3

L (e en- 3] Rl ETTERTIV 223
(e+e)p+(2n— )PH}’W (€+€"+1)5(?_5)
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1/p
) 55 9—(t+0)/2

~ pl+e)/29=1/2 pl/p ((6+¢)+4/p
(6+e +2)"?

()24 @0 - 2)) /2 3G9 g3 G-

((+ O+ @n—2) " (¢ 1)e

7

[

where we used the fact that

(2n — 2)72) (€ +€)2 + (2n —2)) 3D ,
(¢ + )p + (2n — 2)) 772 (2n —2)z(n=3) '
Since, moreover,
((€+2)+4/p)'P | N
>c
+e+2)'? (pro+1)572
for some positive constant ¢, we have
|Qer |l > /2 9=1/2 pl,fp,ﬁ_%—% 9= (E+£)/2
1Qeerll2 —
(£+0)/2
y ((£+ )2+ (2n —2)) ., AG-DAG-D
((€+ &)p + (2n — 2)) T+
. (e+0)/2
S o, )pert)a 5 L+ )2+ (2n—2)) Ad-hHpid-d

((e+ )p+ (on— 2)) N2
> O, 0)p 2 x (0r) 7
2 Gl EpHin,

proving the assertion in the complex framework.

The quaternionic case. By convention, we shall write ¢ € H" as ¢ = (21 + jzp+1.22 +

JZn+2y .oy 2n 4+ J22n), 21, .., 22, € C. Then consider the highest weight spherical harmonic
- =8 = ¢
Pop(2,2) = 2,71 (21Zn+2 — 22Zn41) (4.35)

(we refer to [42, p. 2999] for an explicit computation). Then

. 1 : (—¢)p+1 P (4
| Peer||P = <— | sinew, ‘( e |e"1e™ 2 cos wy sinwy — €721 coswa sinwy |
PT§InT Jou

3 (40 p+dn—5 ;
X (smﬂn_])( TR AR5, 3 (7

40" ) p+-4n—9 I+ )\ p+7 :
){ Jpt+4n )(+ Jp cos‘%ﬁg

x (sin o R W ivs s (sin 6y
x (sin 6y )Eﬁg (costh )e’p+3

H” 1d9 COS W1 . .. Sinwy, cos wy I} dwy dprdiby

11
= ST o em) I, )23((F+ ¢)p/2 +2n — 2,2)
% %B((E’ +8)p/2+ 20— 4,2) X ... % %B((f +0)p/2+4,2)

x 5B((t9)/2+2,(¢D)/2+2),
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where B denotes the beta function and

!

: —0')p+1
P smwl‘( )P

Jg“g’p = /W s ../% |ei*'°‘e_i"{'2 coswy sinwsy — €P2e ™1 cos ws sinwy
cos wy dwy dwadpydpadipy dips.
As a consequence of (4.28), we finally obtain
T((p)/2 +2)T((¢'p)/2 + 2)
L((£+¢)p/2+ 2n)

@ \L((p)/2+2)T((¢'p)/2 +2) G
Vo) = Tas oprzr gy~ (E+ O/

i) x B((e+€)p/2,2n),

1Peellf = (J;qg )T (2n) x

1
v
i)

I'((¢+ ¢)p/2)T'(2n)
L((£+€)p/2+ 2n)

where

T'((fp)/2+2)T((¢'p)/2 +2)
T((6+ ¢)p/2 +4)

" 1 7
Jie =720 ,) ((¢+)p/2)*

Finally, Stirling’s approximation vields

p(ﬁ+ﬂ"}/2—lf(2p)(g+ {;x)(ﬁ+£’)z’2—lf{2p)(2,”)(211-1{2)/;7

P (qz 1/p
” £ ”p ( £,¢, ) x 2(€+€’],/2—1f(2p}((£' + f,)p/2 + 2n)(f+é”]f2+(2n—lf2)fp}

and

p(f?+f’)/2—1/(2p} (¢ + f:)(ﬂf’}ﬂ—l,’(?p) (Qn)(zn._y:z);p

2E+)/2-1/(20) (£ + )p/2 + 2n) T2+ A1/
2{e+£’)/2—1/4(£ Ty 2.:.,1)(3+f’)/2+n—1/4

% 2E+)/2-1/4(¢ 4 gr)(9+3’)K2—1/4(2n)n—1/4

pEH2=1/C0) (¢ 4 )i %

|| Peer | 1 1/2
Uil . (76,7700

(q) 1/p (q) -1/2
T g (Lrtmpn, e
((f—i-f’)p—i— 4n)(ﬂ+w)f2 m ((€+ €,)p/2+2ﬂ_)(2n-1/2);p.
Since
(!f Sy S Qn)“-% o T et
2n ’
and
( 2n )(2”‘_%);&’ 6_11;1f4(‘?+€f)
(L+p/2+2n :
one has

2 pUEHE/2=1/(20) (g 4 ¢1)i™ %

|| Peer || p - (jr(f;) )lfp(}(r;') )
2—1/(2p) ’

(71

(L4 ¢ + 2n)EHE)/2
((0+2)p+4n) e
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4.2 Dimension free estimates for bigraded spherical harmonics

Note that for n large

206+ ¢)+ 4”)“’”’” 2 _ o+t /2, 5 log (2EEn)

p({+ ')+ 4n
(p=2)(£+£") 24t (p=2) (46"

( {+0 4+ 2n )(f+f’)!2 _ 2_(24—;»)/2(
_ o-(t+ei e (-Gl | ot N S

p(l+ ') +4n
> 2—(€+?’J/2€_&2£ (i(_ﬁe;}tri) ,

and this latter function is bounded as a function of p. Thus

|| Peer || y e+e')
> f(0,2,p) x ptt)/2
[Parlls =T B EP) %P

proving the assertion in the quaternionic case.
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