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Abstract

In this thesis, we investigate classical integral functionals in the Calculus of Variations and study conditions
on the Lagrangian that guarantee the absence of the Lavrentiev Phenomenon. In particular, we focus on
Lagrangians that are non-convex, possibly highly discontinuous, and unbounded with respect to the gradient
variable.

Our first step to prove the non-occurrence of the Lavrentiev Phenomenon is to prove the representation
of the lower semicontinuous envelope of a functional defined in W1°°(£2) as an integral functional whose
Lagrangian is given by the bipolar of the original one.

Specifically, we adapt a technique presented in [40] for the bounded case, and a refinement of a method
due to Cellina [29, 30], for the unbounded case. The integral representation also allows us to apply recent
results [14, 17, 20] to the non-convex setting.

We establish the integral representation of the lower semicontinuous envelope and the corresponding
absence of the Lavrentiev Phenomenon under very weak assumptions in the autonomous case and under suit-
able anti-jump conditions on the spatial variable in the non-autonomous case. Furthermore, using a technique
presented in [14], we prove the strong convergence of the approximating sequence for minimizers or under
specific growth assumptions on the Lagrangian.

These results provide new insights into the interplay between regularity assumptions, relaxation methods,
and the avoidance of the Lavrentiev Phenomenon, thereby extending recent advances to a broader class of
variational problems.
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Chapter 1

Motivations of the Research

1.1 The study of minima in the Calculus of Variations

We consider the following class of functionals
Fyw) = [ S ula), Vula)) o, we g+ Wor(@),
Q

where 1 < p < oo,  is an open bounded subset of RY, o € W1>°(Q), and f(x,u,&) : @ x R x RN = R
is a suitable Borel function, classically named the Lagrangian, which is not necessarily convex with respect
to its last variable.

Some of the most extensively studied problems in the Calculus of Variations are the analysis of existence,
uniqueness, and regularity of minimizers in Sobolev spaces. More precisely, one aims to characterize the

solutions of
min {Fp(u) |luep+ Wol’p(Q)}.

There are two main approaches to address these problems. The first consists in studying the minimizer
as a solution of the Euler-Lagrange equations associated with the functional F},. The second is to apply the
Direct Method in the Calculus of Variations, which allows one to investigate the existence and qualitative
properties of minimizers without requiring an explicit solution.

The main limitation of the first approach is that, in many cases, certain assumptions on the regularity of
the minimizers are required, and, in general, the analysis of the associated PDEs can be very challenging.
Moreover, in some situations, the minimizer does not satisfy the Euler-Lagrange equations: an example,
presented in [7], is the functional

1
/ [(x2 — u3)£14 + 652} dx
0

subject to the boundary conditions

for suitable choices of € and k.

The second approach is based on the Weierstrass Theorem by means of two fundamental properties of
the functional, coercivity and sequential lower semicontinuity. In this method, it is essential to choose an
appropriate topology for the underlying functional space, which has to be weak enough to guarantee the
existence of suitable compact sets, yet strong enough to ensure the lower semicontinuity of the functional and
it turns out that the weak topology in Sobolev spaces is well suited to this aim.

We recall that a functional F' is coercive if, for every K > 0, the set

{ue WH(Q) | |F(u)| < K}

is weakly precompact in W1 (Q).



A functional F' : WP(Q) — R U {+o0}, with p € [1,00), is sequentially lower semicontinuous with
respect to the weak topology of W () if, for every sequence

Up — U,

we have
F(u) <liminf F(ug).
k— o0

Many classical problems are naturally formulated in the framework of ’regular’ functions, such as, for
example, the space of C! functions. However, in order to apply the Direct Method and actually obtain
a minimizer, it is necessary to extend the problem to a larger space, typically a Sobolev space W1 (£2)
endowed with the weak topology.

In some cases, in fact, the actual minimizers belong to a space of less regular functions. One of the most
well-known examples is the brachistochrone problem, where the solution of

mJMH

is not a C1([a, b]) function, but belongs only to W11([a, b])

Consequently, a substantial area of research in the Calculus of Variations and Partial Differential Equa-
tions is devoted to the study of the regularity properties of minimizers.

When the minimizer does not satisfy the regularity properties desired, one seeks to approximate it by
a sequence of more regular functions converging, in an appropriate sense, to it. For instance, given u €
@ + WP (€2) with p < g, our goal is to construct a sequence u,, € ¢ + Wy'?(£2) such that

up, —u in WHP(Q)
and

We note that, in order to apply the Direct Method in the Calculus of Variations, one only requires lower
semicontinuity; hence, in general, it may happen that

F(u) < liminf F(uy).

n— 00

In 1926, Lavrentiev [53] provided an example in which it is not possible to approximate the value of the
minimizer in AC([a, b]) by a sequence in C?([a, b]), introducing the notion of what is now known as the
Lavrentiev Phenomenon and then the problem of determining conditions guaranteeing good approximability
properties emerged as a crucial problem in the Calculus of Variations.

1.2 The Lavrentiev Phenomenon

Given a topological space X, a dense subset Y C X, and a real-valued functional E, we say that the
Lavrentiev Phenomenon occurs between X and Y for E if

P < g )

More specifically, we focus on the case X = WJP(Q), Y = W[9(Q), and E = F},, particularly when p = 1
and ¢ = oo. In 1934, Mania [54] provided an example with a polynomial Lagrangian in the one-dimensional
scalar case:

1 1
min / (z —u®(2))? |/ (2)|® dz < inf / (x —u(2))?|u (2)|® dx .
[0,1]) Jo ([0,1]) Jo

id+w([o, id+ W,

Since this functional is not coercive, in 1995, Zhikov showed ([69]) that the functional

/0 (2 — (@)’ (@)|° + el (2)| F da



still presents the Lavrentiev Phenomenon. Furthermore, in the same paper he presented an example with a
p, g-type Lagrangian depending only on (z, &) with domain 2 = B;(0) C R2. He considered the following
Lagrangian
—Eir2 . ifpix9 > 0,
f(@,€) = [ + a7, a(x) = VT

0 ifl’ll'Q S 07

where 1 < p < 2 < 3 < ¢ and proved that there exists a suitable boundary condition ¢ such that

inf )/Qf(x,Vu(m))dx< inf /Qf(m,Vu(x))dx.

P+Wy P (0 P+We ()

We emphasize that in this example the choice of a is crucial for the occurrence of the Lavrentiev Phenomenon.
In [16] the authors proposed some continuity assumptions on the function a to guarantee the non-occurrence
of the Lavrentiev phenomenon for every double phase functional.

In both of these examples, the spatial variable plays a crucial role in the occurrence of the Lavrentiev
Phenomenon. There exists an extensive literature of examples of Lavrentiev Phenomenon, particularly in
the non-autonomous case; we cite [34] for the multidimensional scalar case, [5, 6, 43] for the applications
of fractal sets in the multidimensional scalar case and [2, 4, 42] for the vectorial case. Other examples are
proposed in [9, 50].

The starting point of this PhD thesis is the study of conditions ensuring the non-occurrence of the Lavren-
tiev Phenomenon, via the integral representation of the lower semicontinuous envelopes of integral function-
als in the multidimensional scalar case.

Studying conditions that prevent the Lavrentiev Phenomenon is important in several areas of theoretical
and applied analysis, including the regularity of solutions, the presence of microstructures in materials [45],
and the numerical approximation of minimizers.

We observe that, if the functional [}, admits a minimizer u € Wl (€2), then the Lavrentiev Phenomenon
between W .7 (Q2) and W 14(2) does not occur. This provides a link between the theory of regularity and
the non-occurrence of the Lavrentiev Phenomenon. More generally, the problem reduces to the existence of
a minimizing sequence (u,) C W}4(Q) for F,,.

The one-dimensional case has been extensively studied and many authors have proved the non-occurrence
of the Lavrentiev Phenomenon under weak assumptions on the Lagrangian; see, for example, [3, 52, 54, 58,
59, 60]. In [3], the authors proved that in the autonomous case, under certain boundedness hypotheses on the
Lagrangian, for every u € WP (Ja, b[) there exists a sequence (u,,), C W°°(]a, b]) such that

b b
o~ ullwrs 0 and [ fun(o),u (@) do > [ fluo). /(@)
a a
We remark that the sequence (u,,) constructed in the proof satisfies only

up(a) = u(a),

and not necessarily
un (b) = u(b).

In [58], the author extended this result to the non-autonomous case by assuming an anti-jump condition:
for every K, there exist constants k, 5 > 0, a function v € Ll(I), and €* > 0 such that for all 1,25 €
[t —e*,z2+¢e*|NI,u € Bg,and { € R”,

|f(x2,u,§) - f(x1,u7§)| < (k:f(x,u,f) +/B|€|p +7(‘r))|m2 _‘rl"

In this case, the approximating sequence preserves both boundary values.

In the multidimensional scalar case, many authors have proved the absence of the Lavrentiev Phenomenon
under the assumption that the Lagrangian is convex with respect to the gradient variable. As examples, we
cite some works on the non-occurrence of the Lavrentiev Phenomenon in this setting: [8, 10, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 28, 51, 56, 69] for the multidimensional scalar case and [8, 37, 38, 41, 42, 49] for the
vectorial case.



In 1992, Buttazzo and Mizel [28] proposed to interpret the Lavrentiev Phenomenon as a relaxation prob-
lem for integral functionals, introducing the notion of the Lavrentiev Gap. Let F : X — R U {+oco} be
sequentially lower semicontinuous on X, and let Y C X. They then define

e
and they consider the lower semicontinuous envelope of Fy on X:
sc” (Fy) :=sup{Glsc.onX |G< FonY }.
The Lavrentiev Gap at v is defined as the difference between sc™ (Fy )(u) and F'(u), that is,
sc” (Fy)(u) = F(u) + L(u).

They consider in particular the case where F' = F), is an integral functional with Lagrangian f(x,u,€) :
O xR xRN = R, where Q € RY. We recall that

Fy(w) = [ f(oulo). Va(@) de,  u o+ W3H(9),
Q
and that, for every u € ¢ + Wol’p(Q),

s¢” (Fy1.q)(u) = inf { lim inf/ [z, un(2), Vu (z)) do ‘ Uy — uin Wl’p(Q)}.

We note that if the Lavrentiev Gap is identically zero, then the Lavrentiev Phenomenon does not occur.
Many authors have established the non occurrence of the Lavrentiev Phenomenon by proving the absence
of the Lavrentiev gap under the assumption that f is convex with respect to its last variable. We report
[16, 17, 18, 20, 21] for the multidimensional scalar case and [37, 38, 41] for the vectorial case.

1.3 Convexity and sequential lower semicontinuity

In the multidimensional scalar case, there is a strong connection between the weak sequential lower semi-
continuity of Fj, in W'1(Q) and the convexity of the Lagrangian with respect to its last variable. This
relationship was first investigated by Tonelli [66] in the one-dimensional scalar case.

We recall Theorem 1.3 from [32]:

Theorem 1.3.1. Letn,N € N, p > 1, Q C R"™ be a bounded open set with Lipschitz boundary, and let
f: QxRN x RN 5 R be a non-negative continuous function. Define

I(u) = / f(z,u(z), Vu(z)) dz.
Q
1. If the function & — f(x,u,&) is convex, then I is sequentially weakly lower semicontinuous in
wtr(Q).
2. Conversely, ifn = 1 or N = 1, and I is sequentially weakly lower semicontinuous in WP (Q), then
& fx,u, &) is convex.

A more general version of this theorem, under weaker assumptions on the Lagrangian, can be found in
[40].

For completeness, we recall that in the multidimensional vectorial case, convexity with respect to the
last variable is replaced by the notion of quasiconvexity. A locally bounded Borel-measurable function
f: R™*4 5 R is quasiconvex if

[ @) - ) de 0
B(0,1)

forall A € Rm*4,
Acerbi and Fusco proved in [1] the following theorem.
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Theorem 1.3.2. Let f : R x R™ x R¥X™ — R, (x,v, A) v f(x,v, A), be a Carathéodory function such
that
0< f(a,v,4) < a(z) + C(jvl” + |AP),

where C' > 0 is a constant and a(x) is an integrable function. Then the functional

Flu] = /Qf(x,u(x),Vu(x)) dx

is sequentially weakly lower semicontinuous in the Sobolev space WP (£, R™), with p > 1, if and only if f
is quasiconvex.

1.4 Integral representation of the lower semicontinuous envelope

In the multidimensional scalar case, when the Lagrangian is no longer convex with respect to the gradient
variable, one considers the weak lower semicontinuous envelope of F}, in ¢ -+ W, ().

Given u € o+ WP (), the objective is to construct a sequence (u,,) C o + W, (Q) such that u,, — u
in LP(€)) and

n—oo

lim f(x,un(x),Vun(x))dx:/f**(:c,u(x),Vu(x))dx, (1.4.1)
Q Q

where f** denotes the bipolar (convex envelope) of f.
In terms of the integral representation of the lower semicontinuous envelope, the problem can be formu-
lated as proving the following equality:

n—oo

inf { lim inf /Q fz,un(z), Vuy(x)) de

unéuinwl’p(Q)} :/f**(;v,u(:z:),Vu(x))dx, (14.2)
Q

where (uy,) C W1P(€).

The integral representation of the lower semicontinuous envelope has been extensively studied in the
literature, starting with the works [63], [40], and [55]. Also in this case there is an extensive literature, we
report only some paper focused on relaxing the continuity assumptions with respect to u ([24], [25], [26],
(271, [33D).

In [40], a constructive method is presented to solve the approximation problem for integral functionals
with Carathéodory Lagrangians in the case p = oo. The authors first consider a function

f(2,8): Q x Bg(0) = R

depending only on the spatial variable and the gradient, defined for gradients in a bounded set. For an affine

function u, they show
n+1

F (@, V() <D fla, &) +e,
=1

and use the Scorza-Dragoni Theorem to decompose the domain into small balls where the spatial variable can
be treated as constant. They further subdivide these balls into (at most) n+ 1 regions where the approximating
function is affine, with values £, and apply the McShane lemma to match the boundary data. Finally,
techniques from numerical and functional analysis are used to extend the construction to the general case.

In [55], the authors proved the representation formula (1.4.2) in the case p = +oo for Lagrangians that are
upper semicontinuous with respect to the gradient variable ¢ and continuous with respect to u, uniformly over
bounded sets of £. The key idea is to show that the right-hand side of (1.4.2) defines an integral functional
whose Lagrangian is exactly the bipolar f** of the original Lagrangian.

We report, for the sake of completeness, that other types of relaxation are also studied considering other
definitions of convexity with respect to the last variable for the Lagrangian. We cite [61] and [48] for the
relaxation in L™ in the vectorial case. In these works supremal representations are presented in nonlocal and
local setting, respectively.
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Chapter 2

Description of the results

The aim of this thesis is to investigate the absence of the Lavrentiev Phenomenon via the integral representa-
tion of the lower semicontinuous envelopes for a broad class of integral functionals. The work addresses both
convex and non-convex settings, including functionals with discontinuous or unbounded Lagrangians, and
examines the existence of approximating sequences that preserve both energy and convergence properties.

The results of this thesis are presented in Chapters 3, 4 and 5 and each of them contains one of the
following papers

Chapter 3: Tommaso Bertin, Integral representations of lower semicontinuous envelopes and Lavren-
tiev Phenomenon for non continuous Lagrangians, [10].

Chapter 4: Tommaso Bertin, Giulia Treu, Integral representations of lower semicontinuous envelopes
for non convex, possibly unbounded, Lagrangians, [12].

Chapter 5: Tommaso Bertin, Paulin Huguet, Relaxation of Non-Convex Integral Functionals in the
Multidimensional Scalar Case, [11].

Here we resume the main results obtained.

2.1 Absence of the Lavrentiev Phenomenon for Non-Continuous La-
grangians

The Chapter 3 addresses integral representations for relaxed functionals. We assume the following hypothe-
ses:

Hypothesis 2.1.1. Let f(z,u,£) : Q x R x RN — R. We assume:
a) f is Borel measurable in all its variables;

b) For every bounded set B C R x R¥ | there exists a € L*() such that

If (z,u,8)| <a(x) forall (u,&) € B;

¢) For every u € W°(Q), every bounded set B C RY, and every § > 0, there exists a compact set
T C Qwith [Q\ T| < 0 such that f(z,u(x),&) is continuous in z € T uniformly with respect to
§ € B;

d) For almost every = € 2, the map u — f(x,u, &) is continuous uniformly with respect to £ in bounded
sets.

The main result of the chapter is the following theorem:

12



Theorem 2.1.2. Let Q C RY be an open bounded Lipschitz domain, and let f : Q x R x RNV — R satisfy
Assumptions 2.1.1. Then, for every u € W1°°(Q), there exists a sequence u,, € U + I/Vol’OO (Q) such that

nhHH;O [t — || oo () = O

and

lim [ f(x,un(x), Vuy(x))de = [ f*(x,u(z), Vu(x)) dz.

n—r oo Q Q

Moreover,

s (Fuo) (@) = / £ (@, (), V() da,

where sc™ (Fi ) denotes the lower semicontinuous envelope of

Fw(u):/ﬂf(m,u(m),Vu(x))dx

with respect to the weak* topology of W ().

In particular, under Hypothesis 2.1.1 on the original Lagrangian, for every u € W°°(2), we construct a
sequence u, € u + Wy ™ () such that

U, —u in L(Q)

and formula (1.4.1) holds, that is,

/Qf(x, Un (), Vup(z))de — | [ (z,u(z), Vu(x)) dz.

Q
Moreover, the lower semicontinuous envelope of an integral functional with a non-convex Lagrangian,

with respect to the weak™ topology of W;’“(Q), can be represented as an integral functional whose La-
grangian is the bipolar of the original one. More precisely, the following representation formula holds:

inf { lim inf/ (@, un(2), Vu, () dr | u, = win Wl’OO(Q)} = / 7 (x,u(x), Vu(z)) dz.
n—oo [ Q

The main novelty of the results presented in this chapter and in the whole thesis is that we do not assume
continuity of the Lagrangian with respect to the gradient variable. The techniques used in the proofs are
adapted from the classical reference [40]. To extend this approach to the non-continuous case, we assume
a uniform version of the Lusin Theorem in the spatial variable, together with continuity with respect to w,
uniform with respect to £ on bounded sets.

The main idea of the proof is to construct an approximating sequence for an affine function » with the
Lagrangian

f(fC,E) = fK(x7H($)7§)’
where
f(z,u,8), if|l€]] < K,

fr(z,u, &) = {+oo, if|lE] > K.

One then writes
n+1

[ @, Vu(@) <> fa,6) + ¢,
i=1

and uses the uniform Lusin Theorem to decompose the domain into small balls where the spatial variable
can be treated as constant. Then, all small balls are further subdivided into at most n + 1 regions where the
approximating function is affine (with values £7), and we use the McShane Lemma to match the boundary
data. This last step requires the boundedness of the Lagrangian.

13



Next, we extend the construction to a general function u € W1:°°(£2), approximating it using a technique
similar to finite element methods. We also introduce dependence on the variable u, exploiting the uniform
continuity with respect to u for bounded &, to establish

inf{liminf/ f@un, Vuy)dz | w, = @, |Vt < K} = /(fK)**(:c,ﬂ(x),Vﬂ(x))dz,
Q Q

with u,, € @+ Wy ™(Q).
Passing to the limit as K — +o00, we obtain

inf { liminf/ f(z, un, Vuy,) dz ‘ Uy —> u} = / ™ (z,u(x), Vu(z)) de,
Q Q

with u,, € u+ WO1 "*°(Q). Using a diagonal argument, we can construct an approximating sequence 7, such
that

lim |G, — Tl =0,
n— o0

and

lim [ f(z,@,(x), Va,(x))de = /Qf**(x,ﬂ(x), Vu(x)) de.

n—oo Q

In the last part of the chapter, we exploit a recent result ([20]) to prove the absence of the Lavrentiev
Phenomenon between the spaces ¢ + W, ">°(€2) and ¢ + W, () for autonomous functionals whose La-
grangian is non-convex and non-continuous with respect to the gradient variable. In the autonomous case,
one can work under the following simpler set of hypotheses.

Hypothesis 2.1.3. The function f : R x RY — R satisfies:
i) f(u,&) is Borel measurable;
i) f(u,&) is continuous with respect to u, uniformly for ¢ in each bounded subset of RY;
iii) For every u € R, f(u, -) is bounded on bounded subsets of RY.
We now state the following theorem.

Theorem 2.1.4. Let Q@ C RY be a bounded open set with Lipschitz boundary, and let o € W1°°(Q).
Assume that f : R x RN — R¥ satisfies Hypothesis 2.1.3 and is uniformly superlinear; that is, there exists
a superlinear function  : RN — R such that

f(u, &) > 0(¢) forallu € Rand & € RV,

Assume further that {** is continuous in both variables. Then, for every u € ¢ + WO1 & (),
s (F)w) = [ 1 (ula), Vu(e) da,
Q
where sc™ (F) denotes the lower semicontinuous envelope of

= | Fut), uta) e e s Wo(0)
+oo ifue o+ Wil \ W =(@),

with respect to the weak topology of W ().

14



Thus, under these growth and regularity assumptions, for every u € W' 1p(Q) with Lipschitz boundary
data, there exists a sequence (u,,) C W.1>(€2) such that

U, —u in WHH(Q)

and

/f(a:,un(x),Vun(x))dx%/f**(x,u(a;),Vu(x))dac.
Q Q

In other words, the lower semicontinuous envelope on W 11(§2) of an integral functional originally defined on
W1:5°(Q) admits an integral representation with Lagrangian given by the bipolar of the original Lagrangian.

The main idea of the proof is to apply [17, Theorem 1.1] to the relaxed functional with Lagrangian f. For
every u € W1 (€2), there exists an approximating sequence (uy,) C W.°°(£2) such that

up —u  in WHH(Q),
and

k—o0

tiw [ f(eyun(e), Vun(o))dz = [ (@.u(a), Vu(a)da.
Q Q

For each uy, we can construct a sequence (u}) C Wé’OO(Q) such that

up — u  in L°°(Q),

and
lim flx,up(z), Vup (z))de = | f**(z,ux(z), Vug(z))d.

By a diagonal argument, we can then extract a sequence () C W;’OO(Q) such that

tin [ f(euno). Vun(e)do = [ £ (2, u(e), Vu())dz,
and, thanks to the uniform superlinearity of f(x,u, -),

Up —u  in WHH(Q).

2.2 Absence of the Lavrentiev Phenomenon for Unbounded Lagrangians

In Chapter 4, we extend the validity of (1.4.1) to the case where the Lagrangian depends only on the gradient
and satisfies very weak assumptions, including situations in which it is finite only on a countable set. The
assumptions are as follows.

(HF) (i) There exist ¢; > 0 and co € R such that
f(Q) = al¢|+ e for every ¢ € RV,

(ii) For every & € RN, either f**(¢) = f(€) or there exist k € {1,..., N}, {& 1! ¢ RY and
o, ¢ C R such that o > orevery:=1,...,k+ 1, o =1, & =&, an
M1 Rsuchth 0 f yi=1,.. . k+1, 3 1, 3 d

k+1

S aif(&) = 1),

Moreover, we also assume that dim Span(&y,...,&k+1) = k.
(iii) For every R > 0 there exist N + 1 vectors ¢; € RY such that B(0, R) C co( U! {¢;}) and

f(&) = () < +o0 forevery j=1,...,N +1.

15



The main theorem is the following.

Theorem 2.2.1. Let Q C RYN be an open bounded Lipschitz set, and let f : RN — R U +oo satisfy the
assumption (HF). Let w € ¢ + WO1 5 (Q) be differentiable almost everywhere.

Then, for every € > 0, there exists a function v € ¢ + VVO1 ’1(9), differentiable almost everywhere, such
that

[ ru@yas < [ (Vuto)as +-
Q Q

Thus, for every u € Wévl(Q) that is differentiable almost everywhere and for every ¢ > 0, we can
construct an approximating sequence with the same boundary datum, converging to u, such that (1.4.1) holds.

The main novelty of this result is that the Lagrangian is assumed to be neither continuous nor bounded
with respect to the gradient variable. Consequently, the approximating sequence must be constructed in such
a way that its gradients take values only where the original Lagrangian is finite. Our approach is inspired by
techniques developed in the study of non-convex problems in the Calculus of Variations and in non-convex
Differential Inclusions, first introduced by Cellina in [30]. In particular, we rely on a recent refinement of this
method presented in [31].

The main idea is to consider, for almost every € (2, a small neighborhood where u is differentiable,
and to approximate it with a pyramidal function whose differential takes values only in the region where
the Lagrangian is finite. The main difficulty in applying this technique is that we do not assume, as in [30]
and in subsequent works such as [31], that (Vu(zo), f**(Vu(xp))) lies in the interior of an N-dimensional
face of the epigraph of f**. In other words, we address the case where the value of f** is not necessarily
representable as a convex combination of exactly N + 1 points.

In this case, the approximating function belongs to W1 (2). Moreover, if u € W} >(Q), then the
approximating function v also lies in W;v‘x’(ﬂ).

In the last part of the chapter, we apply the results of [17] to prove the following theorem.

Theorem 2.2.2. Let §) be an open bounded Lipschitz subset of RN, ¢ € W1>°(Q), and assume that f :
RN — RU {+o0} satisfies the assumption (HF) and is superlinear. Then, for every u € ¢ + WO1 1 (Q), there
exists a sequence (uy,) C o 4+ Wy () such that

Up —u in WHH(Q),
and

lim /Qf(Vun(x))dx:/Qf**(Vu(:v))dx

n— oo

This result shows that the Lavrentiev Phenomenon does not occur between ¢ + WO1 1(Q) and ¢ +
VVO1 "°°(£2), and it yields a representation of the lower semicontinuous envelope of an integral functional
with an unbounded Lagrangian as an integral functional whose Lagrangian is the bipolar of the original one.

2.3 Convergence in 1//1? and absence of the Lavrentiev Gap

In Chapter 5, we address questions arising from Chapter 3. The first problem is, given u € W>°(Q), to
identify geometric conditions that guarantee the existence of a sequence u,, € u + WO1 "°°(£2) such that

ui\u
n

and formula (1.4.1) holds, that is,

lim [ f(z,un(x), Vuy(z)) de = /Qf**(gc, u(z), Vu(z)) de.

n—oo O

Such a sequence attains the infimum in (1.4.2).
Givenu € Wé“’ (€2), the convergence of the approximating sequence with respect to the weak-x topology
of Wé*‘x’ (€) is closely related to the following condition: for every K > 0, there exists K’ > K such that

((fe)™) e = (K 2.3.1)
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where f is defined as in the Chapter 3.
If condition (2.3.1) is satisfied for every K > 0, then for every u € W;v"o(ﬂ) there exists an approxi-
mating sequence u,, € W.>°(£2) such that

U, —u  in WHe(Q).
Conversely, if such a sequence exists, then there exists K" > ||u||y1. such that
(fr)™ (2, u(z), Vu(z)) = [ (2, u(z), Vu(z))

for almost every x € (.
We have identified two simple sufficient conditions, involving the so-called de-touching set and the growth
of f at 4oc.

Lemma 2.3.1. Let f : RY — [0, 00], and let A C B C RY be such that for any é4 € A and £ ¢ B, there
exists £ € [£4,&p) N B satisfying
(&) = (&)

Then ~
(Fo)™ = f* on A.

This condition is satisfied in many situations that are easy to verify. Some examples are given in the
following corollary.

Corollary 2.3.2. Let f :  x R x RN — [0, 00], and let I be a compact interval of R.
e If there exists K > 0 such that
flzyu, &) = f*(x,u,§), forae x€Q, Yuel, V€ OBk, (2.3.2)

then ~
(fr)™(x,u, &) = f*(x,u,§), forae xze€Q, Yuel, V¢ € By.

In particular, if (2.3.2) holds for a sequence (K,,) with K,, — 400 and for every compact interval I,
then f satisfies (2.3.1).

* Assume that the connected components of the sets
D(f,z,u) :={£ e RN : f*(z,u,€) < f(z,u,8)}, z€Q,uecl,

are uniformly bounded, i.e., there exists M > 0 such that for a.e. x € Q and all u € I, every connected
component of D(f, x,w) has diameter smaller than M. If this holds for all compact intervals I, then f
satisfies (2.3.1).

The second sufficient condition is the uniform superlinearity of f(z,u, -) with respect to (z, u).
Theorem 2.3.3. Let T be asetand f : T x RN — [0, o0] satisfy:

o there exists a superlinear function ® : RN — [0, 00) such that

f(s,6) > ®(€), VseT, Ve eRY;

e forany p > 0, there exists p' > p such that (f,,/)** is bounded on T x B,,.

Then, for any K > 0, there exists K' > K such that

(fx)*™* = f** onT x Bg.
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The main idea in the proofs of these results is to write

£ @) = sup {1(6) | Laffine, () < f(w,u, )},

and to show that no affine function lies strictly above f** and below f.

We note in particular that, under our assumptions, this implies the continuity of f** with respect to (u, &).
This issue has been recently addressed, for example, in [55].

In the second part, we provide a generalization of the result in the Chapter 3 concerning the non-
occurrence of the Lavrentiev phenomenon between Wé’l () and Wé"’o(Q) in the autonomous case.

Theorem 2.3.4. Let f : R x RN — [0, 00) satisfy Hypothesis 2.1.3, and let ¢ € W'°°(QQ). Then, for any
u € Wh(Q), there exists a sequence (uy,) C W 2> (Q) such that

up, = u in LY(Q),

and

/Q fun(2), Vuy(2)) de — /Q 7 (u(z), Vu(x)) dz.
Moreover:
o If there exists a superlinear function ® : RN — [0, 00) such that
flu,€) > @), VueR, ¥éeRY,
then the sequence (u,,) can be chosen so that

U, —u  weakly in W (Q);

o If, for some p € (1, 00), there exist constants c1, co > 0 such that
f(u,€) > e1lélP —ca, Vu€eR, VE€RY,
and u € WP (Q), then the sequence (u,,) can be chosen so that

U, —u  weakly in WP(Q).

Furthermore, we propose conditions on an autonomous Lagrangian, which may be nonconvex and, in
some cases, noncontinuous with respect to the last variable, such that for every function u € Wq}p(ﬂ) there
exists a sequence (u,,) C W1>°(9) satisfying

u, —u strongly in WP (),

and

/f(un(x),Vun(a?))dx%/f(u(x),Vu(x))da:.
Q Q

In particular, we prove this result in the case where

flu(@), Vu(z)) = 7 (u(z), Vu(z)).

The main novelty, even in this case, is that the Lagrangian f is not assumed to be continuous with respect
to the last variable. Another situation considered is when the Lagrangian is continuous and dominated by a
convex function.

The key idea of the proofs is to apply the main theorem of [17] to the relaxed functional, or to an appro-
priate auxiliary functional, in order to construct a sequence with the same boundary datum that converges to
u both in W1P(€) and in energy. Then, using Fatou Lemma, we show that for each term of the auxiliary
functional the sequence converges to u in W1P(Q) and in energy.
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In the final part, we apply recent results ([14]) to extend our approach to the non-autonomous case, under
a so-called “anti-jump” condition: for every L = (L1, La) € (0, 00)?, there exists a constant Cz, > 0 such
that for almost every z € €, for every (u, &) € [~L1, L;] x RY, and for every £ > 0, it holds

L
()" @uwd) < 5 = gl <1+ () (@), (H1)

where
_ _ inf
9- (z,u,€) yeegggg(m)g(y,u,f),

and (g2 )**(x, u, &) denotes its convex envelope.
In particular, we prove that, given u € W)-'(Q), there exists a sequence (u,,) C W>*(€2) such that

Up —u  in WHH(Q),

and formula (1.4.1) holds also in the non-autonomous case. Moreover, all results of Section 2 can be extended,
provided that the anti-jump condition is satisfied for every auxiliary function.
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Chapter 3

The case of Lagrangians depending on
(x,u, Vu)

In this chapter, we report the paper Integral representations of lower semicontinuous envelopes and Lavrentiev
Phenomenon for non continuous Lagrangians ([10]).

3.1 Introduction

We consider the functional
Fy(u) = / flz,u(x), Vu(z))dz ue p+ Wol’q(Q)
Q

where 1 < ¢ < oo, 2 is an open bounded subset of RN, p € W17q(Q) and f : © x R x R¥ is a suitable
Borel function that is not necessarily assumed to be convex in the last variable. Due to the lack of convexity
of the Lagrangian, the functional is not sequentially lower semicontinuous with respect to the weak topology
in the case 1 < ¢ < oo, resp weak™ topology in the case ¢ = co. We address the problem of representing the
sequential weak lower semicontinuous envelope of F.

To be more precise, for every 1 < p < ¢, we define the functional

— Fy(u) ifu€ o+ W,9Q)
Fp(u) = . Lp 1,9
+oo  ifue o+ WyP(Q)\ Wy4(Q)

and we are interested in determining sufficient conditions for the following identity to hold
sc (Fp)(u) = / £ (zyu(z), Vu(z))de — Yu € o+ WyP(Q) (3.1.1)
JQ

where sc™ (F},)(u) denotes the greatest sequentially weak (weak* in the case of p = 0o) lower semicontinuos
functional, with respect to WP ((2), that is less or equal to F}, and f** is the convexified function of f w.r.t.
the last variable. In the literature this problem has been studied from two different points of view. From one
hand if f is not convex with respect to the last variable then F} is not weakly lower semicontinuous and it is
interesting to consider sc™ (Fq). On the other hand, even in the case where f is convex w.r.t. the last variable,
it is important to represent sc (F),) for p < g. In this chapter we put together the two approach. Despite
the fact that the identity in (3.1.1) seems very natural, we know that it does not hold true, for the case p < g,
even for ’very regular’ functionals. In fact every functional exhibiting the so called Lavrentiev phenomenon
(introduced for the first time by Lavrentiev in [53]) cannot satisfy the identity (3.1.1). In the classic example

by Mania ([54]) it has been shown that

1 1
min / (z —u®(2)? | (z)|® do < inf / (x —u?(x))?|u/ (x)|® do
id+w, ' ([0,1]) Jo id+w, > ([0,1]) Jo
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and we notice that, in this case, the Lagrangian is not only smooth in the three variables, but it is also convex
w.r.t. the derivative variable. Further examples in which the minimum, or the infimum, in v € ¢ + WO1 P(Q)
is strictly less than the minimum, or the infimum, in u € ¢ + VVO1 1(Q)), with p < g, can be found for
one-dimensional case in [7], [S1] and for multidimensional case in [69]. In [39] the authors present some
p, q growth conditions to reach the regularity of the minimum for sc™ (Fp) In the present chapter we focus
our attention on the scalar multidimensional case but we have to mention, for the sake of completeness, that
there are examples also in the vectorial case (see [9] for a wide list of examples). The problem of detecting
conditions that prevent Lavrentiev phenomenon is important in particular for numerical approximations and
engineering applications. The problem is well studied in dimension 1 with very weak hypotheses about the
Lagrangian ([3], [58]). In higher dimension usually Lagrangians are assumed convex ([14], [17], [18], [20],
[29], [30D).

The approach to the Lavrentiev phenomenon as a problem of representation of the relaxed functional
has been considered for the first time, as far as we know, in [28] where the authors introduced the notion of
Lavrentiev gap at a fixed u € o+ WO1 P(Q). Precisely they say that the Lavrentiev gap occurs at u, for convex

Lagrangians, when the difference between sc™ (F},)(u) and [, f(z, u(x), Vu(z))dz is strictly positive.

Starting from [63], [40] and [55] the problem of integral representation for sc™ (F},) was investigated by
many authors ([23], [24], [25], [26], [27], [33], [45], [51]). Many of these papers are devoted to avoid the
assumption of continuity of the Lagrangian with respect to u and study the property of the functional sc™ (F,)
over different subsets of 2. The main goal of our chapter is to prove the validity of (3.1.1) in the scalar
multidimensional case without hypothesis of continuity with respect to £ for non autonomous Lagrangians
in the case p = ¢ = oo (cfr Theorem 3.3.3) and for autonomous Lagrangians in the case p = 1,q = oo (cfr
Theorem 3.5.14).

In section 3.2 we start considering Lagrangians depending by x and Vu. We take inspiration by the
constructive method by Ekeland and Temam in [40] to find for every u € ¢ + I/VO1 °°(£2) a function v €
© + Wy ™(Q) sufficiently near to u with F, (v) sufficiently near to Jo [ (x, Vu(z))dz. We modified the
proof presented in [40, Proposition 3.2, page 330] to deal with the absence of continuity of f w.r.t. Vu. We
notice, in particular, the fact that our construction uses the Vitali covering Theorem. The main advantage of
this argument is that it allows us to construct an explicit sequence u,, converging to u in L°°(€2) and such that
the value Fi (u,,) converges to [, f**(z, Vu(z))dx. We deduce also a first relaxation result and the validity
of (3.1.1) in the case p = q¢ = o0.

In section 3.3 we still consider the case p = ¢ = oo and we extend the results of section 3.2 to the case
of a general Lagrangian f(z,u, §) satisfying a suitable set of assumption that we will denote by Hypothesis
3.3.1. In particular we use a truncation method for f with respect to the variable £ considering the auxiliary
function fx(z,u,§) equal to f(z,u,&) if ||€]] < K and 400 otherwise. It is interesting to note that for
fxc it is possible to find a sequence u, r — wu such that Jo fr (@, un k (), Vun, k ())dz converges to
Jq [ (x,u(x), Vu(x))dz. Later on, for f (2, u, &) we pass to the limit K — oo and it can happen, in general,

that there does not exist a sequence such that u,, — u and Fi, (u,,) converges to Jo [ (z,u(x), Vu(z))de.

In section 3.4 we observe that under our hypotheses, the non occurrence of Lavrentiev Phenomenon for
the relaxed functional [, f**(x, u(x), Vu(z))dx implies the non occurrence of Lavrentiev Phenomenon for
the original functional.

In section 3.5 we firstly apply the general results of sections 3.3 and 3.4 to autonomous Lagrangians. This
is a case of great interest in many applications of the Calculus of Variations and has the peculiarity that the
assumptions in these case appear more natural. We focus on this family of Lagrangians to apply a recent
result by Bousquet ([17]) which prove, in the case of autonomous, continuous and convex Lagrangian, for
every u € ¢ + W, (Q) the existence of a sequence u,, € @ + W, () such that u,, — win W' and
Fo(up) converges to Fy(u). This theorem allows us, under suitable hypothesis, to exclude the Lavrentiev
phenomenon for autonomous non convex Lagrangians and to prove the validity of the (3.1.1) on the case
where ¢ = oo and p = 1. The validity of (3.1.1) with this special choice of p and ¢ implies that the value of
the functional

/ 7 (z,u(zx), Vu(z))dz
Q
can be approximated evaluating

/ f(z,u(z), Vu(z))dz
Q
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on a suitable sequence of Lipschitz functions. This fact has a great impact on numerical estimates of the
functional since the Finite Element Method, for example, relies on the use of Lipschitz functions.

Future developments will be to find some general geometrical condition on Lagrangian f to apply the
result of ([17]) to f** and try to extend the relaxation results to the non autonomous cases. For the sake of
completeness we cite an interesting paper ([14]), which has to appear, about an approximation result similar
to ([17]) in the case of non autonomous Lagrangians continuous and convex.

3.2 An approximation result for Lagrangians depending only on x
and Vu

In this section we consider a Lagragian f (z,£) which satisfies following Hypotheses.

Hypothesis 3.2.1. Let 2 be an open bounded Lipschitz subset of RY, B (0) C R™ the open ball with center
0 and radius K > O and f : Q x Bk (0) — R be a function such that

a) f(z,€): Q x Bg(0) — R coincides a.e. with a borelian function;
b) there exists a € L'(Q) such that 0 < f(z, &) < a(z) for every &€ € B (0);

¢) forall & > 0 then there exists 7' C €2 compact such that |2\ 7'| < § and f(z, §)|Tx By (0) 18 continuous
with respect to  uniformly as £ varies in Bx (0) .

Remark 3.2.2. We do not assume any continuity for f with respect to £. This is the main novelty with respect
to [40], where the Lagrangian is assumed to be a Caratheodory function, and to [55], where the Lagrangian
is upper semicontinuous with respect to &.

The next two lemmas state some properties directly implied by Hypothesis 3.2.1.

Lemma 3.2.3. Let f : 2 x Bg(0) — R satisfy Hypothesis 3.2.1 and let T' C € be a compact set such that
Hypothesis 1 c) is satisfied. Then f(x,&) is uniformly continuous as x varies in T uniformly as £ varies in
Bk (0).

Proof. Given € > 0 for every x € T there exists a 7,, such that

|f(i'7€) —f($,€)| <e

for every & €]x — 1, ¢ + 1, [T and for every £ € Bx (0) .
Since {]z — 1y, © + 1, [NT'}, is an open covering of T', which is compact, we can extract a finite subcov-
ering and in particular there exists a 7 > 0 such that

[f(21,8) = flz2,€) <€

for every 1,22 € T such that |21 — 23| < 7 and for every £ € Bg(0).
O

Given a function f(z,u,&) we indicate with f**(z,u,&) the bipolar of f with respect to £. Actually
f*(z,u, ) is the biggest function lower semicontinuous and convex with respect to £ lower or equal than
fx,u, &) (cfr [40, Proposition 4.1, pag 18]).

In the next lemma we prove that Hypothesis 3.2.1 implies that f** is continuous on T X By (0) for every
T such that Hypothesis 3.2.1 ¢) holds and that f** is a Borel function on 2 x Bg (0).

Lemma 3.2.4. If [ : Q x Bg(0) — R satisfies Hypothesis 3.2.1 then f** is continuous on T x B (0) for
every T as in Hypothesis 3.2.1 ¢). Furthermore f** is a borelian function on Q X B (0).

Proof. First of all we prove that f**(z, £) is continuous w.r.t.  in T uniformly as £ varies in B (0). We fix
xo € T and for every € > 0 there exists > 0 such that if z, 29 € T and |z — xg| < 7 then

[f(@,8) = f(x0,8)] <& V€€ Bk(0)
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and so we have B ~ B
f**(xag) —e< f(.%',f) —e< f($07€)
Now f**(x,£) — ¢ is convex in & and and so

F(@,6) —e < [ (20,€).

By Lemma 3.2.3 f(-, &) is uniformly continuous in 7" uniformly as & varies in Bx (0), thus we can change
the roles of x and x( in the previous inequalities and we obtain

|F*(2,€) = [ (20,€)| <& V&€ Bg(0).

Since f**(z,-) is continuous in By (0) for every z, for every sequence (z,,&,) € T x Bx(0) converging to
(0,&0) € T x Bk (0) we have that

lim | (an, &) = ** (20, €0)
<Hm|[f** (@n, &0) = [** (@0, &)| + lim | f** (20, €n) — F** (20, &0)[ = 0

i.e. f** is continuous on T x By (0).
Now, recalling that

f (@, &) = H(fiz, x B (0) ™ (2, €)

with |\ T,,| — 0, the continuity of (f|z, x B (0))** implies that f** is borelian on Q x R".
O

The next Theorem is inspired by the analogous one in [40, Chapter X, Proposition 3.2]. The main novelty
here is that we do not assume continuity of the Lagrangian with respect to the variable £. Af far as we know,
this is the first case in literature in which the identity (3.1.1) about integral representation of sc™ (Fi) is
proved without assuming continuity with respect to &.

Theorem 3.2.5. Let ) be an open bounded Lipschitz subset of RN, K € N and f : Q x B (0) — R satisfiy
Hypothesis 3.2.1.
Then for every u € W1>°(Q) such that

IVulloo < K

there exists a sequence v, € u+ Wy ™ (Q) such that

IV, lleo < K, lirlln||vnfu||0<j -0

and

lim
n

/f(x,an(x))dac—/f**(%Vu(x))dx —0.
Q Q
Furthermore

s¢” (Fao)(u) = / F*(x, Vu(z))dz
Q
where with sc~ (Fu, ) we denote the lower semicontinuous envelope of
Foo(u) = / f(z, Vu(z))dz
Q

with respect to the weak* topology of W ().

Proof. Step 1. First of all we observe by Lemma 3.2.4 that f **(x, &) coincides a.e. with a borelian function
on 2 x Bg/(0).

Step 2. For the first part is sufficient to show that for every € > 0 there exists v, € u + Wol’oo(Q) with
|[Vve|| < K such that

= v loo < &, ’/Qf(x,VUE(x))da:—/Qf**(sc,Vu(a:))dx <e.
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Following the same approach as in [40] we start considering the case where u is affine, i.e. Vu = & and
we construct a Lipschitz function sufficiently close to u, preserving the boundary datum and such that its
gradient is a.e. in a suitable set.

For every x € 2 we can write f**(x, ) as [32, Remark 3.27]

_ n+1 B n+1 n+1
f**(2,€) = inf {Za?’f(x,ff) af > 0,68 € B(0),Y af =1, afe 5}
=1 =1

i=1

50 that, for & > 0, we can choose i > 0, £ € Bg(0) such that 37 a? =1, 2" o = € and

=1
n+1 B B B c
;azf(x7£z)_f (x7£)<m

We fix 0 < § < e such that for every w C Q with |w| < ¢ then

€
/wa(x)dx <5

where a € L' () satisfies Hypothesis 3.2.1 b). R B
Hypothesis 3.2.1 ¢) implies there exists 7' C {2 compact such that fl*ifx B (0) (+,€) is uniformly continuous
(since T' is compact), f|TX B (0)(,&) is uniformly continuous with respect to x uniformly as £ varies in

Bg(0) and |2\ T'| < § so that
€

/Q\T a(z)dr < TR (3.2.1)

Moreover for every x € T there exists a neighbourhood of =, U, C €2, such that

€

YyeUsnT  |f(y,€) — f(z,8)] < ol V¢ € Br(0) (3.22)

and
< - ~ - e

Vyel.NT  [f7(y,&) - [ (28] < o/
In particular we have

n+1
VyeU.nT | aff(y.&8) — (1, < = - (3.2.3)
=1

IN

1Y

Now, for every x € T, there exists a regular family of closed balls of center = and radius 7 denoted as
B,(x) C U,, 0 < r < r,, that covers T in the sense of Vitali. Then we can apply Vitali Covering theorem
(cfr [64, Chapter IV, 3, page 109]) to find a countable family of

w’ = B,,(z;) (3.2.4)
such that . ‘
‘T\ij|:07 wWwrNw? =0 ji1#j2.
J

We remark that in general
TC ij .
J
By [40, Chapter X, Theorem 1.2, pag. 300] we deduce that for every w’ and

)
0<(5j<§
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we can find n + 1 subsets of w”, w{ and a locally Lipschitz function v; such that
|lwl] — al?[o?]| < al?5; for 1<i<n+1, (3.2.5)

Vo, =¢&7 on w!

i
[Vvjlloo < K on w’,
o, —ul <8 on

vj=u on Ouw.

In particular the first property implies

. , , . 5
[l | = 1 J 1] < Jlo?] = D ldl] < 55 - (3.2.6)

We define the function 4
vi(z) if zew,

«— oo
ve(z) = u(z) if z€Q\ U o’
j=1
and it easily turns out that v, € u + W, (), [|[Vue||oo < K and, since § < e,
[lve — ulloo < €.

Step 3. Our aim now is to evaluate

’/Qf(x»vvs(x))dx—/Qf**(a:,Vu(x))d;p‘,

We start observing that
’/f(x,va(x))dx—/ f**(x,Vu(w))dx‘ 3.2.7)
Q Q
g/ @ Voe(2) = (2, Vu())|da
Q\ U w?

+Z‘ y fla, Vo (a ))dw—/w f**(w,Vu(x))dx’

Since |7\ U2 w;| = 0, we can estimate the first term in the right hand side of (3.2.7) using (3.2.1) and
recalling that by assumption b), f** is non negative. We then obtain

f g e T~ e Vuide < [ a@de < 2

O\T

We consider now each term in the last sum of (3.2.7). We have that

‘ f z, Vo (z))dx — f**(x,Vu(:E))dx‘ (3.2.8)

n+1

‘ f (z, Vo (z))dx — Za f (z §tj)dx‘
nt1

+ ‘ Za f z, &7 ) dr — _ f**(a:,Vu(x))dx‘

wd
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and, recalling the definition of the functions v, and v;, we can estimate the right hand side in (3.2.8) as

n+1

’ fl@, Vo (a)da — Z f z 5””J)da:’ (3.2.9)

n+1

+ ‘ Za f (z,&7)dz y f**(:c,vu(x))dx’

<’§V J(@,&)dw = o7 /wjf(:c,ffj)dz“

+/ _ f(x’ Vo;(z))dz
wi\U, w?
n+1

+‘Za f$§LJ)dx—/

wi

f**(w,Vu(:c))dx' .

We consider each term in the first sum of the right hand side of (3.2.9) and we obtain

(3.2.10)

/ ,f@ &) de —a? | f(z,&7)de

f z,&7) — fla, &7)dx

i /jf(xj’gfj)dx*af”’ a6 da

wd

+ «

j Fa, &) = f(a, €5 da

Since f (z;,£7) is constant, by the first property in (3.2.5), we can estimate the second term in the right hand
side as follows

’/a flag, &) de — i [ flay, &) da| < o7 6| (2, 67)] -

wi

In order to evaluate the other two terms in (3.2.10) we notice that, by the definition of w7 in (3.2.4) and the
property (3.2.2)

. . - c
VwajﬂT |f(xv§z ) f(xja§ )‘Sm
and so
‘/ f(l‘,gfj)dx—/ f(x],fz])dx‘ < 5‘0») |
wZﬂT wZﬂT 9|Q|
T Pt T X s o EOZ-zj |wj|
o [ fapgar—al [ fegi) < k]
winT winT 9|Q|
It follows that

/w_?_ Fla, &9)da — o /w_ Fe, €5 )da <

lw]| ga;? |w|

+/ a(x) + a7 6| f(xj, &7 +i7+a;’_vj/ alz) .
012 " Jurir () M (@3, &)+ =gy o (z)
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Coming back to the sum on ¢ in (3.2.9) and recalling the first property of (3.2.5) we have

n+1
Fe,67)do - o f(w@f-’)dx]
>/, [

: - 2|w? d;
5J'm?X{f(xjvf%,})|}+g(9||g||) _~_9€|é|+/j\Ta(x)+/U j\Ta(:r). (3.2.11)

Since | f(z,€)| < a(z) and ﬁTng (0)(, &) is uniformly continuous in 2 uniformly as £ varies in B (0),
then ﬁTX,gK(O) (z,€) is bounded. In fact fixed T then f(f, €) is bounded for every £ € B (0) and it exists a
modulus of continuity such that

<

|f(l',f) - f(fa 5)' < ’Y(|x - f|)

for every x € T and £ € Bk (0). Thus there exists C' > 0 which does not depend by z; or §f 7 such that

e ay.62)1} < €.

Now we note that C' depends only by the choose of the compact 7. So we can take ¢; sufficiently small such
that ,
2e|w |
S 460+ =L < :

9192 912 — 319

Now (3.2.11) becomes

n+1
> [ [ fwgnd-ar [ f<x,ff">dx]

=1
elw| / /
+ a(z) + a(z)
319 wI\T U, w\T

and we have completed the estimate of the first term in the right hand of (3.2.9).
Now we turn to evaluate the second term. By assumption b)

/ ‘ f(a:,ij(x))dac < / a(x)dz
wI\U; ! w\U; @]

where we recall by (3.2.6) that

; - 1)
] = 1wl < 55
We split the third term in the right hand side of (3.2.9)

n+1

’ Z a;’ [ fla, &7 dx — v 7 (x, Vu(a:))da:’
i=1 w’ wi

Flagyds - |

winT

f**(x7Vu(x))dx’ + / a(z)dz .

wi\T
By (3.2.3) we have

n+1 6‘0Jj|

3o | feean= [ P uw] < S
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Considering together these tree evaluations we can rewrite (3.2.8) as

’ f (x, Vo (z))dx — j f**(m,Vu(w))dx‘
‘ foUE dx—nzéla /fxfTJd;v‘
n+1

+’Z@ fxf )dx — _f**(x,Vu(a:))dx’

<‘H§Ufw£ dz — o /f(x,éfj)dw]‘

A

n+1

+]Za [ Feyio— [ Fe vata)as)

elw’| / / elw’|
< +2 a(x) + a(z) + a(z)dx + :
39| WI\T U, w/\T w\U, wf 310

We recall by (3.2.1)

€
dr < —
/Q\T a() 24

Uy (@ \Ued)| = (] = 3 ) < 6

and furthermore by (3.2.6)

so that also in this case

a(x)dr < —
/Uj (w\U, w?) 24

Since by definition w’ are mutually disjoints we can conclude recalling the estimate (3.2.7) which become

| [ FeVoonds— [ F o Tual
= /Q\T dHZ‘L T, Ve(2 ))d%/w 7 (z, Vu(z))da

5 + 2|Qe L6
30 6

i.e.

‘ (z, Voe(z))de — [ f**(x, Vu(x))dm‘ <e
Q Q

Step 4. Now we consider the case where u is piecewise affine, so that we can split €2, minus a negligible
set N/, in an union of disjoint Lipschitz open sets {24 }4, with 1 < d < M, where w is affine. Thanks to the
previous steps, for every d € {1,..., M}, we can find a function v¢ such that

vl eu+ W™ (Qa), Jo? —ulle <e, [[Volo < K

and

[ vot@de - [ F V()] < <2
o o ]
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So we define

Jul(@) in Qg
ve(e) = {u(x) in N’

and we have
ve € u+ Wy (Q),

[ve —u)loo <€, ||VUe|oo < K

and

‘/QJE(LVUE(:Z:))d:cf/ﬂf**(x,vu(x))dx <e.

Step 5. In the general case if u € W1°°(Q) by [40, Chapter X, Proposition 2.9, page 317] then there
exists a sequence of Lipschitz open sets 2; C €2 and a sequence u; € u+ WO1 "°°(£2) such that v, is piecewise
affine over €2; and

2\ Q] =0, IV]loo < |Vulloo +¢(l)  where c(l) — 0,

lur — ulloc — O, Vu, — Vu ae. in().

Since f**(z,-) is continuous for every z, then f**(x, Vu;(z)) converges a.e. to f**(x, Vu(z)). So, by
assumption b) and Lebesgue dominated convergence Theorem, we obtain

lim /Q | (x, V() — £ (z, Vu(z))|de = 0.

l—+oo

So there exists & € u + I/VO1 () and Q C Q such that 4 is piecewise affine over Q,

1) ~ - E
/ a@) < S, Vil < K, |li—ullo < &,
Q\Q 4 2

and
/ 7 , Vi) — (V) < 5
Q

Now, using the results of the previous steps, we can find ¥ € @ + I/VO1 oo(Q) such that

g
IVolleo <K, [l0—tfloc < 5

and
| [ . 9i@) = P, Va)ds| < §
So taking
V() :{12(:1:) i.n @
a(xz) in Q\Q

then we have
ve €U+ Wl’OQ(Q), [lve — ulloo <&, [[VUe|loo < K
and

‘ f(x, Vo (z))dz — [ f**(x, Vu(z))dz| < e.
Q Q

Step 6. Now we want to prove the second part of the statement about the integral representation of
s¢ (Fy ). By previous steps for every u € W10 (€2) there exists a sequence u,, € u -+ Wy ™ () such that

HvunHoo <K, Hun —Ulloe =0
and

lim Qf(x,Vun(x))da:z/Qf**(a:,Vu(x))dx.

n—roo
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Up to a subsequence, we can suppose that u,, — wu, i.e. u, weakly* converges to u in W1 and we
know, by a generalization of Tonelli theorem about lower semicontinuity of integral functionals with convex
Lagrangian (cfr [40, Chapter VIII, Theorem 2.1, page 243]), that

n—oo

/ f** (z, Vu(z))dx < hmlnf/ f x, Vo, (z

for every v, € u + Wy ().
Thus we have that

inf { liminf/ f(x, Vv, )dx
Q

Vp—U, U € U+ Woloo(Q)} = / 4 (x, Vu(z))da .
Q

ie.
sc_(Foo)(u):/Qf**(x,Vu(x))dx

where sc™ (Fy.) is the lower semicontinuous envelope respect to the weak* topology of W1°(Q).
O

Remark 3.2.6. We want to discuss assumption ¢) of Hypothesis 3.2.1. First of all we notice that assumption
a) and Lusin’s Theorem would imply that for every £ and for every 6 > 0 there exists Ty C €2 compact such
that |Q \ T¢| < & and f(-,€ )T, is continuous. In other words in our hypothesis c) we state a property that
requires that Lusin’s Theorem holds uniformly as £ varies in Bk (0).

In [40][Theorem 3.3, page 332], the authors assumed that f(x, §) is a function Carathéodory, then Scorza-
Dragoni Theorem implies that our assumption ¢) holds true.

Moreover, we remark that the function f(z,£) := g(z)h(€), with g(z) € L'(2) and h(€) borelian and
bounded on bounded sets, satisfies our assumption, but is not Carathéodory.

3.3 An approximation result for the general case

In this section we want to generalize the validity of the integral representation formula (3.1.1) withp = ¢ =
oo proved in Theorem 3.2.5 to a general Lagrangian f(z,u, ) : Q x R x RN — R which satisfies following
hypotheses.

Hypothesis 3.3.1. The function f(z,u, &) : @ x R x RN — R satisfies
a) f(z,u,&): QxR x RY — Ris aborelian function;

b) for every bounded set of B C R x R there exists a € L'(2) such that |f(z,u,£)| < a(z) for all
(u,§) € B,

¢) for every u € W°(Q), for every B C RY bounded set and for every & > 0 there exists 7' C
compact such that [\ T'| < ¢ and f(z,u(z),§) is continuous with respect to = € T" uniformly as {
varies in B,

d) for almost every x the function f(z,u,&) is continuous with respect to v uniformly as £ varies in
bounded sets.

We introduce the following auxiliary functions that will be useful in the next proposition and in the main
theorem of this section. For every function f : 2 x R x RY — R and for every K in N we define fx as

fla,u, &) if ¢l < K,

33.1
+oo it Jl¢l > K. G3-D

fK(xauaE) = {

We remark that (fr)** (z,u, &) > (f**)x(z,u,§) for every (z,u,£) € R x RY and in general the strict
inequality may hold. Moreover it is straightforward that

(fK)**(x’u’ 5) > (fK+1)**(377U,§)
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for every (x,u,&) € Q x R x RY and in particular (fx)** is a monotone decreasing sequence pointwise
convergent to f**.

Proposition 3.3.2. Let Q be an open bounded Lipschitz subset of R and let f : Q x R x RN — R satisfy
Hypotheses 3.3.1.
For every u € W1>°(Q) and for every K € N such that

[l + [ VElloo < K
there exists a sequence ., € U+ W, > (Q) such that
HVUK,nHOO < K, UK, n Lﬁ
and

lim
n—oo

/f(m,uK,n(x),vuKm(x))dx—/(fK)**(x,a(x),W(x))dx ~0.
Q Q

Proof. By Hypothesis 3.3.1 b) we fix u € W1>°(Q) and we can choose K € N and ax € L'({) such that
[lloo + IVElloo < K (33.2)

and
|f(z,u(z),8)| < ak(z)

for every £ € Bk/(0).
We define fx : 2 x Bg — Ras

fre(@,8) = f(,u(2),§) + ax(z).
We observe that f x satisfies Hypothesis 3.2.1, in fact
o fr(z,8) : Q x Bg — Ris borelian,
© 0 < fr(x,€) < 2ax(z) forall (z,£) € Q x Bg/(0),

« for every § > 0 then there exists a compact set T C Q such that |Q\ T'| < § and fx (z, €) is continuous
with respect to = € T uniformly as £ varies in Bg (0).

We can apply Theorem 3.2.5 to fx and thus for every n € N we can find ug , in @ + W01,00(Q) such that

1
IVugalloe <K, lurn =l <~

and
‘/ fK(x,VuK,n(a:))dx—/(fK)**(x,Vu(x))daz‘ < 1 (3.3.3)
Q (9] n
i.e.

| [ fasita), Vasn(oe — [ ()" (a70(0), V)] <+

Now, in order to prove our propositions, it is sufficient to show that

lim | /Q e (@), Vit (@))da — /Q Pl 1(a), V()| = 0.

n—+o0

We recall that, by (3.3.2) and (3.3.3), there exists K in N such that
||UK,7L||<><> <K

and so

(ug.n (), Vug () € [-K, K] x Bg(0) ae.in Q.
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We recall that Hypothesis 3.3.1 d) implies that f(z, u, £) is uniformly continuous on  in [—K' K ] uniformly
as & varies in B (0) for almost every a and we observe that, from this fact and the uniform convergence of
UK n touin €, it follows

flz,ugn(z), Vug n(x)) — f(z,a(x), Vug n(z)) = 0

forae. z € Q.
By Hypotheses 3.3.1 b) there exists az € L'(€2) that

(2, u,6)] < ag(z)

in Q x [—f( K ] x Bk (0) and so by Lebesgue dominated convergence theorem

lim /Qf(a:,uK,n(a:),VuKm(a:))da:—/Qf(x,ﬂ(m),VuKm(x))dx =0.

n—-+oo

Therefore, passing to a suitable subsequence, we get the conclusion.

Now we are ready to prove the main result of this section.

Theorem 3.3.3. Let ) be an open bounded Lipschitz subset of RN and let f : Q x R x RN — R satisfy
Hypotheses 3.3.1.
For every @ € W>°() exists a sequence u,, € @+ Wy '™ (Q) such that

lim ||y, —Ullec =0
n—oo
and

n—oo

i [ (2). Vo o) = /Q P @), Vii(z))da .

Furthermore

scm(Foo)(@) = /Q £ (@, 1), Va(e) ) da

where with sc™ (Fu,) we denote the lower semicontinuous envelope of

(u) = /Q F(,u, Vu(z))de

with respect to the weak* topology of W ().

Proof. Forevery K in N we consider the function f (z, u, £) defined in (3.3.1) and its lower semi-continuous
convex envelope w.r.t. £ that, as usual, we denote by (fx )* (z,u,&). We remark that

(fK)**(x’uag) (fK-i-l) *(x,u,§)

for every (u, ) € R x RY and in particular (fz)** is a monotone decreasing sequence pointwise convergent
to f**.
Fixed u € W1>°(Q) we have (fx)**(-,u(-), Vu(-)) is a decreasing sequence pointwise a.e. convergent to
£ (), va()).
Let K such that o

[@lloe + VUl < K.

By Hypothesis 3.3.1 b), there exists az € L' (£2) such that for every K > K and for a.e. z € Q
(&)™ (z,u(x), Vu(z)) < (fx)(z,u(z), Va(z)) = f(z,u(x), Vu(z)) < ag(z) .

Monotone convergence theorem implies that

lim a(x) — (fx)" (z,u(x), Vu(x))de = /Qag(a:) — ™ (x,u(zx), Vu(z))dx
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and also
lim (f)™(z,u(x), Vu(z))dz = / f (x,u(x), Vu(x))dz .
K—+o00 Jq Q
By Proposition 3.3.2, for every 7 € W°°(Q) and for every K € N such that
[@lloe + IVElloo < K
there exists a sequence u ,, € @+ W, > (£2) such that

IVurcnll < K. ugen =

and
tin | [ fousen(a), Vusen(a)ds ~ [ (fi) (@ u(z), Vate)ds| 0.
Taking the double limit

lim (lim /Qf(x,uK7n(x)7VuK,n(x))d$> :/Qf**(m7ﬂ(:b)7VH(x))dm.

K—+o0o \ n—oo
This implies the existence of a sequence %,, in & + VVO1 "°°(£2) such that

lim |G, — Ul =0,
n—oo

n—oo

lim f(x,ﬂn(x),Vﬂn(m))dx:/f**(x,ﬂ(x),Vﬂ(x))da:.
Q Q

Furthermore for every K

inf { liminf/ﬂf(m,un(x),Vun(x))dx

Up T, ||Vt |loo < K} < /Q(f;()**(x,ﬂ(ac),VH(x))dx.
(3.3.4)

Since (fx)**(x,u, &) is convex and lLs.c. with respect to & we have (for example by [40, Chapter VIII,
Theorem 2.1, page 243]) that the functional

/ (i)™ (&, ulz), Vu())de
Q

is sequentially lower semicontinuous with respect to the weak topology of W11(£2). So a fortiori

inf { liminf/ﬂf(x,un(x),Vun(x))dx

Un ST, [V < K} > [ () (@, 0(e), V(o)
Q
(3.3.95)
and then (3.3.4) and (3.3.5) imply that the equality holds

inf { liminf/ﬂf(x,un(x),Vun(x))dx

Up T, ||V |loo < K} = /Q(fK)**(x,ﬂ(x),Vﬂ(x))dx.

Finally we have that, for K — +o0,

inf { liminf/Qf(z,un(x),Vun(z))dx

uniu} :/f**(x,ﬂ(x),Vﬂ(x))dx.
Q

i.e.

scf(Foo(ﬂ)):/Qf**(x,ﬂ(x),Vﬂ(x))dx.
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Remark 3.3.4. We notice that Hypothesis 3.3.1 d) on the continuity of the Lagrangian w.r.t. u is strongly
used in the proof of our result. The same assumption is also present in previous papers [40] and [55].

Remark 3.3.5. We point out the fact that, as a corollary, we can replace Hypotheses 3.3.1 ¢) and d) with the
more restrictive request that for every bounded set B c RY and for every 0 > 0 there exists a compact set
T C Qsuchthat |[Q\ T| < ¢ and f(z,u,&) is continuous with respect to (z,u) € T x R uniformly as &
varies in B.

Remark 3.3.6. Proposition 3.3.2 can be seen as a generalization of Theorem 3.7 in [40, Chapter X], at
least for the case of Lipschitz functions. In particular we underline that in [40] the authors assume that the
Lagrangian is a Carathéodory function, continuous w.r.t. (u,§).

Remark 3.3.7. In [55] is presented a relaxation result under the assumption that f(z, u, £) is continuous on u
uniformly as & varies in a bounded set of R™Y and f is also assumed to be upper semicontinuous with respect
to . Thus f(z,u,§) is upper semicontinuous with respect to (u,&). In the next examples we show that our
Hypotheses 3.3.1 c) and d) are neither more general nor more restrictive than the one presented in [55].

Example 3.3.8. We consider the set 2 :=] — 7, 7] and the function f :] — 7, Z[xR — R defined by
0 if &> tan(x
fg =17 ! )
1 if & <tan(z).

It is easy to check that f(x,&) is upper semicontinuous on {2 x R. On the other hand, given M € R and

d < 2arctan M, we have that, for every T' C| — 7, Z[ such that || — 7, Z[\T'| < 4, there exists = € 1" such

that f is not continuous at (Z, tan Z). This shows that the assumptions in [55] do not imply our hypotheses.

Example 3.3.9. On the other side if f(x,u,&) := g(x, u)h(§) with

g(z,u) = =] + |u|

_J1if ¢€Q
h(f)'_{1 if €€R\Q

and

then f(z,u, &) satisfies Hypothesis 3.3.1 but it is not upper semicontinuous with respect to &.

3.4 Lavrentiev Phenomenon

In this section we apply the results of previous sections to show that whenever the Lavrentiev phenomenon
does not occur for the functional

/ o (x,u(x), Vu(z))dz
Q

then it does not occur also for the functional
[ #auta), Vuta)da.
Q

Theorem 3.4.1. Let Q2 be an open bounded Lipschitz subset of RN, let f : Q x R x RN — R satisfy
Hypotheses 3.3.1, o € W1>°(Q) and 1 < p < +o0.
If

inf /f**(x,u(x),Vu(w))dx: inf /f**(w,u(x),Vu(m))da: (3.4.1)
@) Ja @ Ja

o+ Wy? O+ Wy

then

inf (Q)/Qf(x,u(x),Vu(a:))dx: inf (Q)/Qf(x,u(a:),Vu(x))dx.

50+W01’p §0+W01’oc
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Proof. The properties of f and f** imply that, for every ¢ € W1:°°(Q),

inf )/Qf**(x,u(:c),Vu(x))dxg inf )/Qf(x,u(x),Vu(x))dx (3.4.2)

P+W, (2 P+, (2

for every 1 < ¢ < oo. We have also that

inf (Q)/Qf(%u(x),Vu(x))dx < inf (Q)/Qf(a:,u(ac),Vu(m))dw

4p+W01’p QD+W01'°C

and, using both hypothesis (3.4.1) and (3.4.2) we get

inf (Q)/Qf**(x,u(x),Vu(:E))dx< inf )/Qf(:v,u(x)7Vu(ac))dx.

o+Wo P+Wy (9

Furthermore Theorem 3.3.3 states that

inf (Q)/Qf(x,u(x),Vu(x))dxz inf (Q)/Qf**(x,u(x),Vu(x))d:c

90+W01’°° Lp+W01’°°
and so
inf /f**(x,u(x),Vu(x))dx§ inf /f(x,u(x),Vu(x))dm
erwe@) Ja P+ Wy (Q) Jo
< inf /f(x,u(:c),Vu(x))dx: inf /f**(x,u(x),Vu(x))dx. (3.4.3)
e+Wy () Ja e+Wy () Ja

It follows that all the inequalities in (3.4.3) are equalities, proving the thesis.
O

3.5 Approximation results for the autonomous case

Now we focus on autonomous Lagrangians, in order to apply some recent results about this case. As far as we
know, also in the autonomous case our results were never proved before without assuming the continuity of
Lagrangian respect to £. So we prefer report explicitly them also for Lagrangians which satisfy the following
hypotheses which imply Hypothesis 3.3.1 and that are quit natural.

Hypothesis 3.5.1. The function f : R x RY — R satisfies
i) f(u,&): R x RY — R is borelian,
ii) f(u,€) is continuous with respect to u uniformly as & varies on each bounded set of R,
iii) f(u,-) is bounded on bounded sets of R"V for every u € R.
Now we show that Hypotheses 3.5.1 imply Hypotheses 3.3.1.

Lemma 3.5.2. Let Q be an open bounded Lipschitz subset of RN and let f : R x RN — R satisfy Hypothesis
3.5.1. Then f satisfies Hypotheses 3.3.1.

Proof. Hypotheses 3.3.1 a) and d) are immediately verified and to prove b) we can observe, arguing as in
Lemma 3.2.3, that f(u, &) is uniformly continuous with respect to u in bounded sets of R uniformly as &
varies in bounded sets of R,

Thus for every u € W>(Q) and Bx (0) C R¥ there exists a non decreasing modulus of continuity w(-)
such that

[f(@(x), &) — f(u(y),§)] < w(lulz) —uly)]) <w(Mlz—yl)

for every £ in B (0). So f(u(x), &) is uniformly continuous for a.e. « € £ uniformly as £ varies in B (0).
Finally to prove the validity of Hypothesis 3.3.1 ¢) it is sufficient to show that f is bounded on bounded
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sets. Given (u,&) € [—M, M] x Bg(0), the function f(u,&) is uniformly continuous with respect to u €
[—M, M] uniformly as £ varies on Bk (0). Furthermore for every u € R then f(u,-) is bounded on B (0)
by Hypothesis 3.5.1.

So there exists a finite set {u;|i = 1,..., N} C [-M, M] such that

8 < 1+ e {9} < 14 max { s {109} e B

1IN\ ¢eBk (0)

for every u € [—M, M| and for every £ € Bg(0).

We are ready to state the results in the autonomous case.

Proposition 3.5.3. Let Q be an open bounded Lipschitz subset of RN and let f : R x RN — R satisfy
Hypothesis 3.5.1.
For every u € W1>°(Q) and for every K € N such that

[tlloc + [IVE]loe < K
there exists a sequence uk , € U+ WOLOO(Q) such that
IVugnlleo < K, UK .n Sa i Wh(Q)
and

lim
n—oo

[ fusenta), Vusenta)ds - [ (1) (@la), Vale)dz| 0.

Q Q

Proof. In view of Lemma 3.5.2 it is a immediate consequence of Proposition 3.3.2.

O

Theorem 3.5.4. Let ) be an open bounded Lipschitz subset of R and let f : RxRN — R satisfy Hypothesis
3.5.1
For every @ € W>°() there exists a sequence u,, € @+ Wy ™ (Q) such that

lim ||, —Ullec =0
n—oo
and

fim [ fua@), Vun(@)de = [ (@(e). Vaa)do

n— oo Q

Furthermore

so(Fau) (@) = /Q P @), V) de

where with sc~ (Fx,) we denote the lower semicontinuous envelope of

Foo(u):/ﬂf(u(x),Vu(x))dw

with respect to the weak* topology of W1>°(£2).

Proof. As for the previous proposition we have only to notice that it is an immediate application of Theorem
3.3.3.
O

Remark 3.5.5. The assumption that f is bounded on bounded sets in particular implies that, for every K > 0,
(fr)** is bounded from below.
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Remark 3.5.6. We notice that in our setting it could happen that f** = —oo. In this case Theorem 3.5.4
implies that there exists a sequence in u,, € W1°°(2) such that u,, converges to % in L> and

lim [ f(un(x), Vuy(z))de = —oc0.

n—roo Q

Remark 3.5.7. If f(z,u,&) := g(z,u) + h(u,§) where g is Carathéodory and h satisfies Hypothesis 3.5.1
then f(z,u, &) satisfies Hypotheses 3.3.1 but does not necessarily satisfy the hypotheses assumed on [40] or
on [55].

Now we can apply the previous results about Lavrentiev Phenomenon for the autonomous case.

Theorem 3.5.8. Let Q) be an open bounded Lipschitz subset of RY, let f : R x RN — R satisfy Hypothesis
3.5.1, p € WH(Q) and 1 < p < 0.

If

inf 7 (uw(x), Vu(x))de = inf 7 (u(z), Vu(x))dx .
e+ Wyt (Q) Jo P+Wy = (Q) Jo

then

inf /Q F(u(@), Vu(@))de = inf /Q Fu(), Vu(z))dz

P WP () L)

Proof. In view of Lemma 3.5.2 it is an immediate consequence of Theorem 3.4.1.
O

Now we recall a recent result by Pierre Bousquet ([17, Theorem 1.1]) and then we will use it to prove
Theorem 3.5.14.

Theorem 3.5.9. Let 2 be an open bounded Lipschitz subset of R™Y and o € W1>°(Q). Assume g : RxRN —
R continuous in both variable and convex with respect to the last variable. For every u € VV1 1(Q) there
exists a sequence (uy), € W5 (Q) such that u, strongly converges to u in W'(Q) and

/Qg(un( x), Vg, (x) d:c%/ x), Vu(z))dz

Theorem 3.5.10. Let Q be an open bounded Lipschitz subset of RN. Let o € W1*°(Q) and assume f :
R x RN — R¥ satisfies Hypothesis 3.5.1 and f** continuous in both variables, then

inf /f(u(x),Vu(x))dx: inf /f (z))dx .

u€p+Wi Q) Jo u€p+Wy ™ (2)

Proof. We can apply Theorem 3.5.9 to f** and so we note that

inf / f @), Vae)de =t / 7 (ule), Vu(z))dz .

u€p+Wy () Jo u€p+Wy

Now the assumptions of Theorem 3.5.8 are satisfied.
O

Remark 3.5.11. In general, under Hypothesis 3.5.1, the function (u, £) — f**(u, &) could be not continuous
(cfr [55, Example 3.9]). In [55, Corollary 3.12] the authors proved that if

i) f(u,&) is continuous in u uniformly with respect to £ € RY
or
ii) f(u,f) > )\1”5”0‘ + Ay witha > 1, Ay > 0and Ay € R

then f**(u, £) is continuous in both variables.
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In the next lemma we prove that Hypothesis 3.5.1 implies that (f)** is continuous on R x Bk (0) for
every K € N and that f** is a Borel function on R x RY,

Lemma 3.5.12. If f : R x R™ — R satisfies Hypothesis 3.5.1 then (fx )** is continuous on R x By (0) for
every K € N. Furthermore f** is a borelian function on R x RV,

Proof. First of all we prove that (fx)**(u, ) is continuous w.r.t. u uniformly as £ varies in B (0). We fix
uo € R and Hypothesis 3.5.1, ii) guarantees that for every € > 0 there exists ¢ > 0 such that if |u — ug| < ¢
then

|f(u, &) = f(uo,§)| <e V&€ Bk(0)
and so we have
(f)™(w,§) —e < f(u, §) — e < f(uo, ).
Now (fx)**(u, &) — € is convex in ¢ and and so

(fr)™(u,§) —e < (fr)™ (uo,€) -

Since f(+,&) is uniformly continuous in [—M, M| uniformly as & varies in By (0), thus we can change the
roles of u and g in the previous inequalities and we obtain

|(fre)™ (u, &) — (fr)™ (u0,8)| <& V&€ Bk(0).

Since (fx)**(u, -) is continuous in B (0) for every wu, for every sequence (u,,,&,) € R x Bk (0) converging
to (ug,&p) € R x B (0) such that

lim |(f50) (1, &) = (f0)* (0, €0)|
<1im |(fx)" (ts €0) = (F0)* (10, )]
+1im [ (fx)™ (w0, &n) = (Fx)™ (w0, &)
=0

i.e. (fx)** is continuous on R x Bg(0).
Now, recalling that

17, €) = it (fac)™ (w,€) = (1) (u,),

the continuity of (fz)** implies that f** is borelian on R x R,
O

Corollary 3.5.13. Let Q be an open bounded Lipschitz subset of RY and let f : R x RN — R satisfies
Hypothesis 3.5.1. If for every K > 0 there exist K' > K such that

(fK/)T]ngK = (f**)leBK

then f** is continuous in both variables.

Proof. By Lemma 3.5.12 we know that ( fK/)TD.:{ « By 1S continuous in both variables. Thus every restriction
of f** is continuous and so f** is globally continuous in both variables.
O

Now we state a relaxation result that holds under the assumption of uniform superlinearity of the La-
grangian.

Theorem 3.5.14. Let Q be an open bounded Lipschitz subset of RN. Let o € W1°°(Q) and assume f :
R x RN — R satisfies Hypothesis 3.5.1, be uniformly superlinear, i.e. there exists a superlinear function
0 : R™ — R such that

fu,§) >0(¢) VueR
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and ** be continuous in both variables.
Then for every u € ¢ + Wy ()

sc‘(ﬁ)(u):/Qf**(u(x),Vu(m))dx

where sc (Fy) is the lower semicontinuous envelope of

Fr(w) = { Ja (@), Vu@)ds i uep+Wo™(Q)
+oo if uw €@+ Wy () \ Wy (Q)
with respect to the weak topology of W ().

Proof. By theorem 3.5.9 for every u € ¢ + W' (Q) there exists a sequence (uy)x C @ + Wy () such
that
up — u  strongly in W1 (Q)

and

liin /Q F (ug(z), Vug(z))dr = /Q f (u(zx), Vu(z))dz .
By Theorem 3.5.4, for every uy, there exist a sequence (u,(cn))n C ¢ 4 Wy>°(9) such that

u,(cn) —u, in L™(Q)
and
liTILn/Q f(u,(cn) (x), Vu,in)(m))dx = /Q I (ug(x), Vug(x))dz .
Thus there exists a sequence u,, € @ + WO1 () such that
Up, =1 U

and

li7rln/Q flun(z), Vuy(x))de = /Q 7 (u(zx), Vu(z))dz .

Since f(u, &) is uniformly superlinear there exists 6 superlinear such that
sup/ O(Vun(x))de < Sup/ fun(z), Vuy(x))de < +o0o0
n JQ n JQ

thus, unless considering a subsequence, Vu,, converges weakly in L' to some v € L!. It is easy to see (using
the integration by parts) that actually v = Vu.
So we have

Up —wil U.

Since by [40, Chapter VIII, Theorem 2.1, page 243]

/ [ (u(z), Vu(z))d < / f (o), Vo, (2))da
Q Q
for every v, —p1.1 u then
sc” (Fy)(u) = /Qf**(u(a:),Vu(x))dx.
O

Remark 3.5.15. An interesting question regards which conditions guarantee the continuity of f** in both
variables. A first result in this direction will be present in the Chapter 5.

Remark 3.5.16. In general the result of Theorem 3.5.14 for non autonomous Lagrangians is false and it is
possible to find counterexamples in [34], in [14] and in [16].
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Chapter 4

The case of unbounded Lagrangians
depending on Vu

In this chapter, we report the paper Integral representations of lower semicontinuous envelopes for non con-
vex, possibly unbounded, Lagrangians ([12]).

4.1 Introduction

The Lavrentiev phenomenon, first discovered by M. Lavrentiev in 1926 [53], represents a fundamental prob-
lem in the Calculus of Variations. It occurs when the infimum of a variational functional taken over a smaller,
smoother class of admissible functions, for instance Lipschitz or C! functions, is strictly greater than the
infimum taken over a larger, weaker class, such as Sobolev functions. In other words, the expected ap-
proximation of minimizers by smooth functions fails, revealing a gap between the two infima and highlight-
ing situations where regularity and approximation properties break down. Several examples of its occur-
rence have been exhibited in various cases of the Calculus of Variations also for very regular Lagrangians
[2,5, 6,34, 42, 43, 50, 54, 69].

The problem of determining sufficient conditions for the non occurrence of the Lavrentiev gap has been
studied in various settings, including problems with non-standard growth conditions, constraints, or degen-
eracies in the integrand. We cite here some of the results in this direction, without claiming to be exhaustive
[3, 8,10, 16, 14, 17, 20, 21, 22, 28, 37, 38, 41, 42, 49, 51, 52, 54, 58, 69]

Understanding the mechanisms that give rise to or prevent the Lavrentiev phenomenon not only deep-
ens the theoretical framework of the calculus of variations but also has implications for numerical analysis,
materials science, and the theory of partial differential equations. Recently, its implications in Al have been
highlighted. We underline that, while most of the results cited above deal with Lagrangians that are convex
in the gradient variable, in the framework of Al non convex problems play a crucial role.

In this work, we consider the functional

F(u):/ﬂf(Vu)dw ue o+ W, (Q) 4.1.1)

where Q@ C R¥ is an open bounded Lipschitz domain, f : RV — R U {+oco} is a Borel function, ¢ is
assumed to be Lipschitz.

In Theorem 4.4.3, we prove that the functional (4.1.1) does not exhibit the Lavrentiev phenomenon as soon
as we assume f is superlinear and satisfies a very weak assumption, see (HF’) (ii) and (iii). We remark that
f is not necessarily continuous, convex, or bounded, as it has been underlined in Example 4.2.1.

The main difficulty in the proof of this result consists in the fact that we cannot use approximations of
the function u by means of convolutions. Instead, we must explicitly construct a suitable approximating
sequence that has the property that each function in the sequence has a gradient taking values where f and
its lower semicontinuous convex envelope f** coincide. This is achieved in Theorem 4.3.1 where, refining
a construction by Cellina [30] (see also [45]) later developed in [67, 65, 31], we show that, for any almost
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everywhere differentiable Sobolev function v and any € > 0, we can define a suitable function v, coinciding
with « on 0f2, such that

F) < F*™(u)+¢
where

(o) = /Q £ (Vo) da.

The proof of the non occurrence of the Lavrentiev phenomenon for the functional F' then works as follows.
First of all, we exploit some recent results [17, 20] that state the non occurrence of the gap for autonomous
convex problems, applying them to the functional F'**. Then, denoting by w,, a sequence of Lipschitz func-
tions that is minimizing for F'**, we apply Theorem 4.3.1 to each element u,,, obtaining a new sequence of
Lipschitz v,, that is minimizing for the functional F'.

4.2 Notation, preliminaries and assumptions

We denote by | - | the Euclidean norm in RY and by || - ||« the norm in L®; by e; the i-th vector of the
canonical basis in RY and by a - b the scalar product between two vectors a, b € R™. In the whole chapter f
will denote a Borel function f : RY — R U {+oc0}.

We will use the lower semicontinuous convex envelope of f i.e., the function f** : R — R U {+o0}.
Recalling ([32],[40]) can be represented as

N+1 N+1 N+1 }

f**(f)inf{Zaif(fi): Zai&:& a; 2 0, Zaizl
i=1

1=1 i=1
or also as
76 = sup{l(f) : | affine, [ < f}

We assume that f satisfy the following properties.
(HF) (i) There exist ¢; > 0, co € R such that
f(Q) > cll+ ¢ for every ¢ € RY

(ii) Forevery & € RY either f**(¢) = f(&) or there exist k € {1,..., N}, {&;}iz1.. k41 C RY and
k41
: -1,

{ai}i=1...k+1 C R such that o is strictly positive forevery i = 1,...,k+ 1, > o

k41
St i = Eand
kt1

Zaiﬂ&) = (9.

Moreover we also assume that dim Span(&y, ..., {g+1) = k.
(iii) For every R > 0 there exist N + 1 vectors ¢; € R such that B(0, R) C co(UN'{¢;1) and

Jj=1
f(¢) = f7(¢5) < +o0 forevery j =1,...., N + 1.

The first of the following examples will show that the assumption (HF) is very general and includes functions
that assume the value +oo on very large sets, possibly a.e. on RY. The second one will exhibit a function
that does not satisfy (HF) (ii).

Example 4.2.1. Condition (HF) (ii) is satisfied by any function f : R — R such that for any face F of the
epigraph of f** it holds

F=co{(n, f () : f(n) = f(n)and (n, f*(n)) € F}
These class includes, for instance, functions that could be equal to +co almost everywhere. The function
defined by
nl?, ifn e ZV,
f(n) = { (4.2.1)

Inl? + g(n), otherwise.
where g : R" — RU {+00}, g(n) > 0, satisfies assumption (HF) (ii).
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Remark 4.2.2. We underline the fact that, in the case N = 2, the function defined in (4.2.1) assumes the
value +00 on every line passing through the origin with an irrational slope.

Example 4.2.3. We consider the function defined by

f(m) = g(lnl),
where
[t2 — 1], ift#1,
g(t) = ,
1, ift=1,

then f does not satisfy condition (HF) (ii). In fact f**(n) = 0 for every n € B(0,1) while f(n) > 0 for
every n € RV,

In the proofs of our results we will use some consequences of assumption (HF).
Lemma 4.24. Let f : R™ — R U {400} satisfy assumption (HF). Then the following properties hold.
(a) The effective domain of f** is RN, i.e., f** : RN — R;

(b) If & &, o are as in (HF) (ii), then f(&;) = f**(£) and there exist a € R™ such that a € 0f**(£) N
(Ni=1,... k10 (&)).

To conclude this section, we list some further notations that we will use in the chapter. Since we will
need to use Lebesgue measures in spaces of different dimensions, when dealing with the measure in RY,
we write A; whereas when dealing with the measure in a subspace of dimension k, we use ;. We use the
standard notations for the Sobolev spaces W11 (), W1>°(), W,"' (Q) and W, (). In particular, we
denote by — the weak convergence in W' (Q), by = the weak* convergence in W1 (), and by || - [|yyr1.1
and || - ||y 1. respectively the norms in W11(£2) and in W1:2°(0Q).

4.3 An approximation result

In this section, we prove a theorem that constitutes the first step in identifying sufficient conditions to prevent
the Lavrentiev phenomenon for integral functionals with non-convex and discontinuous Lagrangians. Given
a function u € W;vl, assumed also to be differentiable almost everywhere in {2, we will construct a function
v whose gradients take values where the functions f and f** coincide. The construction is carried out so that
the value of F'(v) is not far from F**(u).

Theorem 4.3.1. Let be ) a open bounded Lipschitz subset of RN and assume that f : RY — R U {+o0}
satisfies assumption (HF). Let u € ¢ + VVO1 - (Q) be differentiable almost everywhere.
Then for every € > 0 there exists v € p + WO1 o1 (), differentiable almost everywhere, such that

/Qf(Vv)d:L’S/Qf**(Vu)ders.

Proof. The construction of the function v proceeds in several steps. We start by defining a piecewise affine
function that will be used to modify the function u in a suitable neighborhood of a fixed point zy where u
is differentiable. We also provide an estimate of the difference between F**(u) and the value F** () in the
modified function. In the last step of the proof we use the Vitali Covering Theorem to obtain the desired
function v. The proof is inspired by by a technique due to Cellina [30] in the framework of non-convex
problems. The main difficulty we have to face here is that we do not assume, as in [30] and subsequent
papers [65, 31, 67], that (Vu(zo), f**(Vu(zg))) is in the interior of a N-dimensional face of the epigraph
of f**.

In the whole proof we assume, without restriction, that [, f**(Vu) dx < 4o0.

Step 1. Local construction in the case k = N.
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We remark that in this case we can argue as in [31] and take advantage of the construction performed there.
We repeat the construction here for the sake of clarity and, moreover, to later underline the difficulties of the
case k < N.

We fix a point 2o € € such that u is differentiable at 2o and we denote £ = Vu(xp). Let &, a; 1 <k < N,
the vectors and the coefficients involved in (HF) (i1). We define

1
o = max{lo: max (&—¢)- <1t an f=_max & —¢

and we notice that assumption (HF) (ii) implies o > 0 and that

alr — xo| < i_lma>]§+1(§i —&) - (z —x0) < Bl — x| VzeRY.

=1,...,

Now, for every s € R, s > 0, we define
Dzp,5(x) = u(x0) + £ - (z — x0)

1
+omax (& =€) (@ —wo) = 5

and

wmo,S(x) = ‘Dzo,S(x) IB(ro,S)(m)

where

1 if z € B(xo,s)
+o00  otherwise.

IBé(zo)(m) = {

We claim that there exists § such that for every 0 < s < 5, = min{3, 2a5}, we have

u(r) < wyy,s(T) on OB (mo, g) . (4.3.1)
and
Wao,s(x) < u(z) on B <a:0, (268—|—a)) . 4.3.2)

To prove (4.3.1) and (4.3.2) we first recall that the differentiability property of u in xy implies that there exists
S > 0 such that B(xo,3) C Q and, for every = € B(zg,35), we have
(6%
u(xo)+E€ - (x — o) — §|x — x| (4.3.3)
5|

<u(x)<u(xo)+§~(a:—:c0)+2 x — Tgl.

It follows, for every « € 9B (z¢, £),
a
u(r) <ulzo) + & (v —20) + 5\95 — o]

< ulzo) + € (o —z0) + 5 max (€~ ) (¢~ o)

=u(xzo) +&- (x —x9) + L .Iirlc;a,vx+1(§i — &) (z — x0)
1
P 1,_1_??%“(&- — &) (2 — o)

<wu(xo) +&- (x—x0) + 1’.1.1-17511\[5(_"_1(& —&) - (z —x0)

ay |
— — | — Xo|.
2 0

and the proof of (4.3.1) is completed observing that if x € 0B (xo, i) the last expression coincides with
wIOnS (JJ) :
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To prove (4.3.2) we consider z € B (:170, ﬁ) and we compute

S

u(xo) +& - (v — o) + 1,?1,?\1}&1(& —&) - (x—x0) — 3

< u(wo) + &+ (¢~ x0) + Bl — ol - 5

< ulao) + € (@ — 20) + Bla — ol — 3 (26 + o) & — g
= u(zo) + € - (z — o) — %|x — 20| < u(x).
Inequality (4.3.1) implies that the function
Ugg,s := min{u, wy, s(7)}

coincides with w in  \ B (xo, a) hence also on 9f2.
We denote by E,, s the set {z € B 7) Ug,.s = Wx,,s(2)} and we notice that, (4.3.1) and (4.3.2)

S
B (xo, ia ) C E,.CB (:co, a) . (4.3.4)

Now we want to estimate F™** (i, s). A key point is the property (b) in Lemma 4.2.4. We observe that, since
Uz, = U, and hence also Vi, s = Vu, on Q\ E,, , it is sufficient to compare

/ **(Vu)dr  and / [ (Viig,,s) da.
E E

zq,s zq,s

The convexity of f**, assumption (HF) (ii) and Lemma 4.2.4 imply that we can choose a selection p(-) €
Of**(-) such that p(Vi, s(x)) = a for a.e. € Q. It follows

/E T (Vu)da

> / ™ (Vig, ) dx + / a(Vu — Vi, ) dz
E E

g, xQ,s

= / f**(VﬂmO,s) dz + / CL(VU, — vazo,s) dx
E

205 B(zo,%)

- [E F* Vi, 5) da.

xQ,s

We notice that the last two equalities follow from the fact that Vu = Vi, s a.e on B(xg, =) \ Eqy,, s and
observing that diva = 0.
Finally we also underline that assumption (HF) (ii) and (iii) imply

/E frvndez [ f(Vi,.)do

Step 2. Construction of a suitable piecewise affine function in the case k < N.

As in the previous step, we fix a point 2o € ) such that v is differentiable at o, we denote £ = Vu(xg) and
we fix R such that R > |£] + 1. Let &;, o, ¢; be the vectors and the coefficients that satisfy assumption (HF)
(>ii) and (HF) (iii) for £ and R.

To begin with we need to fix some parameters that are needed in the construction. As we will see, some of
them will depend on the choice of z(. In order to keep the notation light, we will not always make explicit
the dependence on x. We fix ¢ > 0. We assumed f**(Vu) € L' () and so there exists § > 0 such that if
QO C Qand A(QY) < ¢ implies

|f*(Vu)| dz < (4.3.5)
Ql

g
3NQ)
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We still denote by a the vector in RV given by Lemma 4.2.4 (b) such that a € 9f**(&;) for every i =
1,...,k+ 1 and we choose 77 € R such that

€
0 i 1 4.3.6
< <min{ st ) (20
)
= —. 4.3.7
=) (4.3.7)
We set
My, = max{|f (&)l 1F(G)], 1} < +o0 (4.3.8)
and we fix the real number S,, such that
1 1 3
Sy > max — o ( 4.3.9)
N-k |1—(1—L)~N—%
1 — (1 _ M,,,O)\(?Z)3N+1) ( k)
Without losing generality, we assume that
& € Span{ey,...,ep} =V Vi=1,...,k+1
and we denote
V+ = Span{epy1,...,en}.
Given a point  := (x1,...,2y) € RY we denote by 2’ = (x1,...,x;) its projection on V and by
2" = (Tp41,...,TN) its projection on V. We consider the function wy, : V — R defined by
. _ /
wi(2') = max (& —§)-x
and we will also use
1" _ )
[ o e = max |
B:={2' € V:w(2') <~}
Q:={z=(/,2") e RY rwy(2') < yand |2"| v2 < Sy},
Q:={z=(/,2") e RN :wy(2') < vand [z yr < S, — 1}.
In the following, we will use that
Q) = A(B)SYF (4.3.10)
MQ) = M\ (B)(S,, — )N * (4.3.11)
An-1(0Q \ 0Q) = 2(N — k)Ae(B)S) ! (4.3.12)

We introduce the function w : R — R defined by

A

w(z) := max{wg(z'), S

|x//|oo,Vl}

Using the positive 1—homogeneity of wy, and | - |, v/ and the definition of (), it follows that the function w
is 1-positively homogeneous, and satisfies the following properties:

fr e R : w(z) <7} = Q;

there exist 0 < o < B suchthat oalz| < w(z) < Blz| Vo eRY (4.3.13)

where the last property can be obtained in a similar way to the analogous one of Step 1.
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We define the function @ : R™Y — R defined by

w(z) := max{wy(z'), Y(|2"|oc,vr = (S5 = 1))}

and we prove that

w(z) <w(r) in Q, (4.3.14)
w(z) =w(r) on 0Q (4.3.15)
w(z) = wp(z) in Q. (4.3.16)

In fact, since wy, > 0 and [2” | y2 < S; — 1in Q, then (4.3.16) follows. To prove (4.3.14) and (4.3.15), it
is sufficient to note that if |z”| < S,

g
V(2" |oo,ve = (Sy = 1)) < 57\973”007\/L
n

where the equality holds if (and only if) |2"|, 2+ = 5.
Now let A be the set
A={z€Q:w(z) =7(]2"ccyr — (Sy — 1))}

and notice that, by the definition of w and (4.3.16), it follows that

AcCQ\Q and |V (z)| =+ < 1ae. in A.

Denoting by ¢; the vectors chosen at the beginning of this step, since B(£,1) C B(0, R+1) C o (Uj»v;ll {1

it follows that Vw(z) € B(0,1) C (U;V:J’il{gj — &}) and hence we can use the construction performed by
Cellina in [30] and then subsequently refined by many authors (see [31] and references therein) to obtain a
function w4 : A — R such that

<wWa(z) <w(x) foreveryzx € A, (4.3.17)

and, observing that 0 € intco{¢; — &£}
Vwa(z) =¢ — Vu(zg) ae.in A.
Now we consider the function w : R™ — R defined by

_ . Jw) ifzeRN\A
W) = wy(x) ifxeA.

Step 3. Local construction in the case K < N.
In this step we use the function w defined in Step 2 to obtain the desired local modification of the function u
in a suitable neighborhood of the point z( fixed at the beginning of Step 2. First of all, we recall that in Step
1 we already remarked that, by the differentiability of u at ¢, there exist ¥ € R such that B(zg,7) C  and
inequalities (4.3.3) holds for every x € B(xo,T).
We consider the set
Qzos ={z € R" 1wz — 20) < 57} =0 + 5Q

and we have that there exists S, such that, for every 0 < s < Sg,, Qu,,s C B(zo,T). For every s €]0, Sz, |
it also holds: s
u(x) <ulxg) + € (x—x0) + wlr —x0) — 27 Vo € 0Qz,,s (4.3.18)

and
w(zo) + € - (v — x0) + w(z — x0) — %'y <u(r) YT € Qups- (4.3.19)
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In fact, using the second inequality in (4.3.3) and (4.3.13), we get
!
u(z) < u(zo) + & (x — 20) + 5|$ — o]

<wulxog)+&-(x—x0) + %w(x — )

=u(zg) +&- (x —z0) + w(z — x0) — iw(m — )

and recalling that on 0Q), s we have w(z — z9) = sy we obtain (4.3.18). To deduce (4.3.19) we notice that
in Qy,, s it holds 3w(x — xp) < s7; we use the first inequality in (4.3.3) and (4.3.13), so that

u(@o) +& - (& — 7o) + wlz — o) ~ 37

<wulzg) +&-(x—x0) +w(x—xzo) — gw(x — )
<u(zo) + &+ (x — o) — %|$ —xo| < u(x).

Now we define

ws(x) = s@(f)

S

and we note that ws(z) = sy for every z € s0Q), and w; < w(x) for every z € sQ. Hence, from (4.3.14)
and (4.3.15), we also have that

u(x) < u(wo) + & (x —x0) + Ws(x — x0) — 37 Ve € 0Qu, s (4.3.20)
and 5

u(zo) + & (x — x0) + Ws(x — o) — 57 <u(z) V€ Quys- (4.3.21)
We define s

C:)xo’s(l') = u(xo) + 5 . (‘Z - 1’0) + @5(1' - xO) - 5’7
and
Weo,s = ‘I}ZQ,SIQZO,S

where

]‘ n Qazo,s k)
+o00 otherwise .

Ig,, . (x) = {

Analogously to Step 1, we consider the function i, s : 2 — R defined by
Ugy,s(2) = min{u(x), Wy}

and we denote by E,, s the set {z € Quy.s © Uzg,s = Wao.s(2)}. By (4.3.20) and (4.3.21), it follows that

Quo,5 C Ergs C Qug s (4.3.22)

‘We observe that
Viig, s(x) = Vu(z) forae. € Quys \ Eug.s (4.3.23)
Vig,s(x) € {&,i=1,....,k+1}U{¢, j=1,..., N+ 1} (4.3.24)

forae. xz € on,s N Eyy.ss
(Vg s(z)) = ™ (Vig, s(x)) ae. x € Eyy 5. (4.3.25)

Analogously to Step 1, we compare

/ f(Vu) dx and / f(Vig, s) dz.
E E

zg,s zg,s
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We start by considering

/ £(Vu) dz (4.3.26)
Ezo,s
:/ i f**(Vu)d;vf/ i (Vg s) dx
By e (Qug.e\Qig.e) By o(Qug.e\Bag o)
_|_/ i f**(vﬂxo,s)dl'—F/ i f**(vu) dm
Ezo,sm(on,S\on,S) Ezo,stzo,s

By the convexity of f** and Lemma 4.2.4 (b), we can choose a selection p(-) € f**(-) such that p(§;) = a
foreveryt =1,...,k + 1, so that also using (4.3.24) we get

/ (V) de (4.3.27)
E.’I?D,Sleo,S
> / [T (Vig,,s) dx +/ a-(Vu—Vilg,s)dz

Ewo,stmo.s Erg,sﬂon,s

:/ ) F(Vig,.s) dx+/ a-(Vu— Vi, ) dz
Fay,oNGag s G .o

where, in the last equality, we applied (4.3.23). The fact that a is constant on Q~$0,s implies that

[ a- (Vu— Vi, ) dr = / (U= iy s)a - vpd HN T (4.3.28)
Qwo,s ang,s

where v, denotes the external normal to on,s- By construction and (4.3.20), recalling that B = {2’ € V :
wi(z") < 7}, it follows that

{I e 8@3?0,8 U(l’) ;A ﬂxo,s(z)} C a@{to,s \aQ.’Eo,S
={reR": 2’ € sBand |z"| v = s(S, — 1)}

thus, recalling (4.3.12),

Av_1({z € ano,s cu(w) # ﬂwo,S(x)})
< Av-1(s(092)\ 0Q))
=2(N — k)s™N I\ (B)(S, — )N TR

Furthermore, using (4.3.13), (4.3.17) and (4.3.3), we have, on 8(2%75,
- 3
|uw0’s($) —u(z)| < 53'7

so that, returning to (4.3.28), we have the following

[ a- (Vu— Vi, s)dx
on,s

< 3y(N — k)lalsY Au(B)(S, — )N
SNAk(B)(Sn — 1)N_k_1

= 3+ 5(N — k)l

3N
= 3V (N — k)[al A (Quo,3)
< 3NN = k)|l AM(Eay,s)-
Recalling (4.3.6) we get
/ 0 (Vi — Vi, o) da| < & 2Fms) (4.3.29)
Eag,sNQug s ’ 3 A9
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Now we want to estimate the measure of the set of integration in the expression

/ i 7 (Vu)dx .
Ewo,sm(Qwo,S\Qwo,S)

By the choice of .S;, in (4.3.9) and by (4.3.10) and (4.3.11), we obtain

AMEzy,s N (Qag,s \ Quons)) < AMQugys \ Quo.s) (4.3.30)
=s"AQ\ Q)
= s"Ae(B) (S)7F — (S, - )N )
<3 (2) (B (5 — (8, - ¥
Ao ,5)

S NAMQuo.5) < 5w~

It remains to estimate

/ ) [ (Vig,,s) dz.
Emo,sﬂ(Qmo.S\Qmo,S)

Using (4.3.8) and (4.3.25) we obtain
|f**(Vd$O’S(:L‘))\ = |f(Vﬂ$O,S(CE))| < My,

forae. z € Eyp s N (Qup,s \ on,s), so that, using once again (4.3.9), (4.3.10) and (4.3.11), we obtain

[ (Vig, ) dz (4.3.31)

‘/;mo,.im(on,s\ng,.g)
< Mon(Qwo,s \ on,s) = MwosN)‘K(B) (Swjy\fik - (Sn - l)Nik)

€ (Ezo,S)
=3 YD)

Collecting (4.3.26), (4.3.27), (4.3.29), (4.3.30), (4.3.31) and recalling that f**(Viig, s(z)) = f((Viig,.s(2))
fora.e. x € E,, ; we obtain that

/ F(Viig, o) dz = / F (Vilgy o) da (4.332)
E«'C[va Ewo‘s
g/ ™ (Vu) dx
Emo,s
A By s
+ / i f(Vu) dx +2EM.
By N(Qug.e\@rg o) 3 AQ)

Step 4. Construction of the function v.
‘We consider the bounded measurable set

Q := {2 € Q : uis differentiable at 2 and f(Vu(z)) # f**(Vu(x))}.

For every x € ) we can consider the family of sets £, 5,0 < s < 5, determined in Step 1 for the case where
Vu(x) satisfies assumption (HF) (ii) with & = N or in Step 3 for the case k < N.
We prove, as in Claim 2.5 of [31], that for every E, , there exists a closed set I, ; such that

)‘(ELS) = )‘(F:Ls) (4.3.33)
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and
Bo.CF,,CB (x f) if k=N (4.3.34)
(6%
Ex,s c Fa:,s C Qm,s if k < N.

To this aim, we consider

G. .= {(L’GB(I’,S) : u(x)>wxys(:c)} if k=N
T {2 € Qus: ule) > was(@))  if k<N

The assumption that u is a.e. differentiable implies that, for a.e. y € G, s, there exists B(y, r,,) such that
B(y, s) € Gy,s. Defining

F’E s = .
v Qa:,s \ UmGGIYSB(]L S) if k<N

we completed the proof~0f (4.3.33) and (4.3.34) an~d recalling also (4.3.4) and (4.3.22) we have that the family
F s, for z varying in @, is a Vitali covering of (), (see Theorem 3.1 in [62]). Then there exists an at most
countable family (F, s,) = (Fy)nen of mutually disjoint elements of F such that

{B(x, s) \Uyea, . Bly,s) if k=N

A (Q \ UneNFn) =\ (Q \ UneNEn) -0

where we denoted I, := E,_ , .
Finally we can define

(z) = Uy, (z) ifzxeF,
v = u(z) ifxé U,F,.

Exploiting (4.3.32) we obtain

/Qf(Vv)d;v :/Q\UnFn f**(Vu)dm—i—/ (Vu)dz

Un Fip

/Q\U”Fn f**(Vu)dx+ ;/Fn f**(vv)dx

< /Q\u”Fn f**(Vu)dx + ;/Fn f**(vu)dx

2
2 AEe, ..
3 ( )

HERPAIY(5)

/ i (Vo) dx
EnN(Qup sn \Qup,sn)

S/Qf**(Vu(x)dx +e.

We notice that in the last inequality we used the estimate (4.3.30) on the measure of the sets £, N (Qq,, s, \
mesn) and the choices of 7 and § in (4.3.7) and (4.3.5). To complete the proof it is sufficient to notice that,
by construction, we have v = ¢ on 0f2 and that the last inequality, together with assumption (HF) (i) and
Poincaré inequality, implies that v € ¢ + Wol Q).

O

4.4 Non-occurrence of the Lavrentiev gap
The aim of this section is to apply the construction of Section 4.3 to obtain a result on the non-occurrence

of the Lavrentiev gap. First of all, the next theorem is a consequence of Theorem 4.3.1 that shows that if
u €+ VVO1 "°°() then there exists a sequence v, € © + WO1 "°°(£2) such that approximates « in energy,
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Here we need to slightly modify the assumption (HF) requiring that the growth of the Lagrangian is superlin-
ear. To be more precise, we formulate the following

(HF’) (i) There exist ¢ : RT™ — R such that lim;_, ; o @ = 400 and

FQ) = a(lcl)  forevery¢ e RY

(ii) Forevery & € RY either f**(¢) = f(&) or there exist k € {1,..., N}, {&}ic1. k41 C RY and
{ai}i=1... .k+1 C R such that «; is strictly positive for every ¢ = 1,....k + 1, f:ll o; = 1,

k41
Yoty ;& = & and
k+1

me(&) = (9).

Moreover we also assume that dim Span(&y, ..., {gv1) = k.
(iii) For every R > 0 there exist N + 1 vectors (; € R" such that B(0, R) C @(Uév;ll{(j}) and

f(¢) = () < +o0 forevery j =1,...., N + 1.
Remark 4.4.1. By [44][Theorem 4.98], if f is superlinear and lower semicontinuous, then it satisfies (HF”)
(ii).
Now we can prove the following theorem.

Theorem 4.4.2. Let Q) be an open bounded Lipschitz subset of RN and assume that f : RN — R U {+oco}
satisfies assumption (HF’). Then for every u € W1-°° () there exists u, € u+ W, > () such that

U, =u in Whe(Q)

and

lim /Q F(Vup)da = /Q £ (V) da,

Proof. First of all we notice that, by Lemma 4.2.4 (a), it follows that [, f**(Vu) dz is finite. Moreover u
is a.e. differentiable in (2, so that we can repeat the same construction that we made in the proof of Theorem
4.3.1.

We fix u € W°(Q) and R = || Vul|o + 1. We can consider the set

Q' ={zeQ: f*(Vu(z)) # f(Vu(x)) and u is differentiable at '}

For every z € Q' there exist k(z) € {1,..., N}, & (), ay(z) satisfying (HF) (ii). Moreover (HF) (iii) states
that there exist (5, j = 1,..., N + 1, such that

B(0, R) c co(UAH{¢

j=1

and we notice that the vectors ¢; do not depend on the choice of z.
Using Theorem 4.3.1 we deduce that, for every n € N, there exists v,, € u + I/VO1 o1 () such that

1
f(Vuy)dx < | f*™(Vu)dx + —
Q Q n

We claim that v,, € u + Wy*>° () and that there exists K € R such that |[Vu,||o, < K for every n € N.
To prove this claim it is sufficient to recall that in the proof of Theorem 4.3.1 we obtain that Vv, (z) €
{Uiz1,.. k(@) +1&i(7), Uj=1,... n41(;}, for ae. @ € ', and then it is sufficient to show that there exists
M > 0 such that for every x €

&i(z)| < M foreveryi=1,...,k(z)+ 1.
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To this aim we fix x € ' and, in order to keep the notation light, we denote ¢ = Vu(x) and we drop the
dependence on z in the &; and k. By Lemma 4.2.4 (b) it follows that there exists a € 9 f**(¢) such that

&) =€) +a- (& -9 foreveryi=1,...k+ 1. 4.4.1)

We define

9(¢) = max [ +b-(C—n)
bedf**(n)meB(0,[Vullw)

and we observe that, by (4.4.1) and the convexity of f**, it turns out that,

9(&) = (&) foreveryi=1,...k+ 1. (4.4.2)
The inequality
9(() < _max  f7(n)+ max _ [b|(|¢] + [[Vulloo)
n€B(0,[Vulleo) bedf*(n)meB(0,[Vulleo)

shows that the function g grows at most linearly and hence, by the superlinearity of f and f** there exists
M > 0 such that if |[{| > M then g(¢) < f**(¢). Thus, by (4.4.2), the claim is proved and we have that
[Vunlloo < K :=max{M,|(],j=1,...,N+1}.
A standard argument implies the existence of a subsequence that we still denote by v,, such that v,, = v and,
by the weak™*-lower semicontinuity of F™**, we obtain

/ [ (Vu)dz < lim inf/ 7 (Vuy)dx = liminf [ f(Vu,)dz
[9) n Q n Q

glimsup/ f(Vop)dz < / ™ (Vu)dz
n Q Q

Now we can apply the previous result to prove the non-occurrence of the so-called Lavrentiev gap.

Theorem 4.4.3. Let Q be an open, bounded, Lipschitz subset of RN. Let ¢ be in W1°°(Q) and assume
that f : RN — R U {400} satisfies assumption (HF’). Then for every u € o + Wy (Q) there exists
U, € @ + W)™ (Q) such that

up, —u in WHH(Q)

and

lim /Q F(Vup)de = /Q £ (Va)da.

Proof. 1s sufficient to consider the case where fQ f**(Vu) dz. Theorem 1.1 in [17] and Theorem 5 in [20]

state that for every u € ¢ + WO1 "1 () there exists a sequence in u,, € @ + W1°°(Q) such that u,, strongly
converge in W11(£2) to u and

lim/f**(an)dx:/f**(Vu)dx.
nJQ Q

By Theorem 4.4.3, for every v, we can construct a sequence {v”},¢cy such that v € ¢ + Wol °°(Q) for
every h, and

ol By, in WHR(Q),

lim [ f(Vo)dz = [ f*(Vv,)dz.
L e) Q

Thus, via a diagonal argument, we can determine a sequence {uy, }nen such that

lim/f(Vun)dx:/f**(Vu)dx
n Ja Q
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and then we also have that

/Qqﬁ(|Vun|)d:c§/Qf(Vun)dacS/Qf**(Vu)dm—&-C

for a suitable C' € R. By de la Vallée Poussin Theorem we can conclude that, up to a subsequence, u,, — u
in Wh(Q). 0

As a consequence, we can also prove the non-occurrence of the Lavrentiev phenomenon for the functional
F'. We will argue as in Theorem 30 in [10].

Theorem 4.4.4. Let Q be an open, bounded and Lipschitz subset of RN, let f : RN — R U {+o0} satisfy
(HF’) and o be in W1 (Q). Then

inf (Q)/Qf(Vu)dac: inf (Q)/Qf(Vu)dx.

o+Wot p+Wye

Proof. Tt is sufficient to observe that

inf /Qf(Vu)d:c = o inf (Q)/Qf (Vu)dx

P+W, () Wyt

< inf )/Qf(Vu)da: < inf (Q)/Qf(Vu)dx

—_ 4p+W01'1(Q ¢+W01,oo

where the first equality has been proved in Theorem 4.4.3. O
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Chapter 5

Sufficient conditions of the existence of a
convergent approximating sequence

In this chapter, we report the paper Relaxation of Non-Convex Integral Functionals in the Multidimensional
Scalar Case ([11]).

5.1 Introduction

We consider the following integral functional

Bf)(w) = /Q f(u(), Va(x))dz,

where € is an open, bounded, Lipschitz subset of RY, v € W'P(Q,R) with 1 < p < 400 and f :
Q2 x R x RN — [0,00) is a Lagrangian which satisfies suitable hypotheses. Given ¢ € W1°°(2) and
1 < p < q < 400, we say that the Lavrentiev Phenomenon occurs between W1 () and W 2-4(€2) if

inf E[f]< inf E[f],
WP (Q) W (Q)

where Wé’p(Q) denotes the space of WP functions on ) agreeing with » on 9. Lavrentiev [53] and
Mania [54] proposed the first examples of Lavrentiev Phenomenon. In particular, the example of Mania
is a polynomial Lagrangian in the one-dimensional scalar case. Further examples, in particular in the non
autonomous case, can be found in [5], [6], [14], [21], [34], [42], [43] and [69] .

The study of the non-occurrence of the Lavrentiev Phenomenon, in particular for p = 1, ¢ = oo, is
important for the application of several numerical approximation techniques, for example the finite elements
method. More generally, given u € W1P(Q), we seek a more regular sequence (u,) C W14(Q) that
converges in some sense to v and such that

E[f](un) = E[f](w).

This problem has been studied in the one-dimensional case with weak assumptions on the Lagrangian
([31,[58]); usually in the multidimensional scalar case the Lagrangian is assumed to be convex with respect to
the gradient variable ([14],[17], [18], [20], [29], [30]). The relation between relaxation of functionals and the
Lavrentiev Phenomenon was proposed, as far as we know, for the first time in [28]. This problem has been
well studied in the literature, in particular when f is convex with respect to the last variable ( [17], [18], [20],
[21], [37], [38], [41]). Roughly speaking, the weak sequential lower semicontinuity of E[f] in W1(Q) is
equivalent to the convexity of the Lagrangian with respect to the last variable. If the Lagrangian is no more
convex with respect to the gradient variable, it is interesting to study the weak-* lower semicontinuous en-
velope of E[f] in W.>°(€). Assuming some continuity assumptions with respect to (u, £), in [40] and [55]
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the following integral representation formula holds: for every u € W1°°(2),

n—-+o0o

inf{liminf/ f (@, un (), Vg, (2))dr | (un) C WES(Q), up =% u in Wl’oo(ﬂ)}
Q

:/Qf**(:c,u(a:),Vu(x))dx, (5.1.1)

where f** is the bipolar of the Lagrangian with respect to the last variable.

The integral representation of the lower semicontinuous envelope was studied by many authors, we cite
for example [23], [24], [25], [26], [27], [33], [35], [45], [51], starting from [63], [40] and [55]. In [10] the
formula (5.1.1) is proved without any continuity assumptions with respect to the last variable, but under some
conditions on the state variable u. Furthermore, given u € W1°°(Q), there exists (u,) C u + Wy ™ (Q)
such that

lun — ullpee = 0, and E[f](u,) — E[f*](u). (5.1.2)

At this point, the natural question is whether, given u € W1 (Q), there exists (u,,) C u + W™ such that
up, =" u, and E[f](u,) = E[f*](u), (5.1.3)

which would be stronger than (5.1.2). To be more precise, along all this chapter, we will use that a sequence
(un) C WH(Q) goes weakly-* to some u, denoted by u,, —* u if

ltun —ullpe — 0 and sup ||Vau,|[n= < +oc. (5.1.4)

In Section 5.2, we expose a condition that implies the existence of an approximating sequence as in
(5.1.3). The main novelty compared to other similar results, such as in [40] or [55], is that the assumed
regularity of the Lagrangian is weaker than usual (especially with respect to the last variable) and that the
convergence considered here is with respect to the weak-* topology in W°°(Q) (compared to uniform
convergence in already existing literature). It is referenced as Theorem 5.2.23 in the following and is stated
as such:

Theorem 5.2.23. Let f : Q x R x RN — [0,00) satisfy Hypothesis 5.2.4. Assume that f also satisfies
condition (K). Then for every u € W (Q), there exists a sequence (u,,) C W2>°(2) such that

u, —=*u in WhHe(Q),
and

n——+oo

lim /Qf(a:,un(x),Vun(m))dx:/Qf**(x,u(x),Vu(x))dm.

We do not detail conditions 5.2.4 and (/C) here. Let us only mention that Hypothesis 5.2.4 refers to
regularity assumptions on f, while condition (K) is a geometrical condition introduced in Section 5.2.3. The
main appeal of this new result compared to the already existing literature is condition (K), which as stated
before, ensure the existence of a converging sequence in W1°°(2) weak-*. We find in Corollaries 5.2.27
and 5.2.31 two distinct conditions which are sufficient for this condition (K) to hold. The first condition is
the uniform boundedness of the connected components of the detachment set (i.e., the set where f** < f);
the second condition is the superlinearity in the variable £ uniformly in the other two variables. The main
idea of the proofs is to show that, under one of these conditions, one has

n—-+oo

inf { liminf/ flx,up(z), Vuy,(z))dx
Q

U, =" u in Wl’OO(Q)}

n—-+4oo

= inf { liminf/Q fz,un(z), Vuy, (z))dz

U, —=*u in WHO(Q),  ||[Vuu||p~ < K},
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where u,, = u on 0f) in the trace sense and K is chosen large enough so that ||Vu| f-~ < K.

In Section 5.3, we focus on the autonomous case (that is, no dependency of the Lagrangian on the z
variable). In particular, we apply the existence of an approximating sequence in W°°(2) that satisfies
(5.1.2) to the nonconvex case. Firstly, we use Theorem 3.5.4 to avoid the Lavrentiev phenomenon for a large
class of Lagrangian (see Theorem 5.3.4). Then we prove the following

Theorem 5.3.5. Let f : R x RN — [0, 00) satisfy Hypothesis 5.3.3, and let o € W1>°(Q). Then for any
u € Wh'(Q), there exists a sequence (un) C W2 (Q) such that

up, —u in LY(Q),

and

tim [ flun(e). Vs a))ds = [ 17 (ua), Vu(e)de

n—-+oo Q

Moreover,

e ifthere exists ® : RY — [0, 00) superlinear such that
fu, &) > @), VueR, VEeRY,
then the sequence (u,,) can be chosen so that u,, — u weakly in W1(Q);
o if for some p € (1, 00) it holds that
fu, &) > c1lélP —c2,  VueR, VEERY,

for some c1,ca > 0, and u € WP (Q) then the sequence (u,,) can be taken so that u,, — u weakly in
Whp(Q).

The main idea is to apply the result [17, Theorem 1.1] to E[f**] to find an approximating sequence
(ur) € W2*°(€) such that up, — win WHH(Q) and E[f**](ux) — E[f**](u). For every uj, we can
construct an approximating sequence as in (5.1.2), then use a diagonal extraction argument. Furthermore, in
Theorem 5.3.9, if E[f](u) = E[f**](u) we recover the strong convergence in W (£2) of the approximating
sequence:

Theorem 5.3.9. Let f : R x RN — [0, 00) satisfies Hypothesis 5.3.3, as well as p € W1°(S2). Assume
u € Wévp(Q)for some p € [1,00), and satisfies

/f** ), Vu(z dx—/f (2))da.

Then there exists a sequence (uy,) C W2>°(Q) such that
U, —u stronglyin WP(Q),

and

lim fun(x), Vuy (2))de = A fu(x), Vu(z))d.

n—-+oo Q

We remark that, in all the results presented above, the Lagrangian is not necessarily assumed to be con-
tinuous with respect to the variable £. If the Lagrangian is continuous and is dominated by a convex function
g such that E[g](u) < +o0, (Theorem 5.3.14 and corollaries) we can find a sequence (u,,) C W1°°(£2) such
that u,, — u strongly in W?(Q) and E[f](u,) — E[f](u). In fact, all of these results also ensure the con-
servation of the boundary condition all along the approximating sequence, assuming that u|sq € Lip(09).
The main idea is to use [17, Theorem 1.1] to the dominating function and use Fatou Lemma. We can also
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see these results as integral representations of the lower semicontinuous envelope with respect to the strong
topology of W1:P(€Q), this is the content of Remark 5.3.7.

Then in Section 5.4, we apply a result in [14] to extend the results of Section 5.3 to the non-autonomous
case, assuming an anti-jump condition with respect to the variable z (called condition (#1) in this chapter).
The main novelty is to prove that condition (#;) for a non convex Lagrangian implies that the condition holds
also for its bipolar. At this point, most of the proofs follow similar patterns to the ones in Section 5.3. The
main additional difficulty is to make sure that condition (#;) stays true for the various auxiliary Lagrangians
we consider for calculation purpose.

5.2 Geometrical conditions for the weak-* approximation in 17/1:>°((2)

This section is devoted to finding geometric conditions on the Lagrangian f such that for every u € W°(2)
there exists a sequence (u,,) C u + W, ™ (Q) such that

u, —*u in WHe(Q), (5.2.1)

and

/f(x,un(:c),Vun(m))dx%/f**(x,u(x),Vu(:c))da:. (5.2.2)
Q Q

Our main result and contribution for this section will be Theorem 5.2.23, stating that, under a geometric
condition on the Lagrangian (see condition (X)), a sequence such that (5.2.1) and (5.2.2) hold does exist.
We will then, in Section 5.2.4 work to state a few sufficient properties on the Lagrangian f ensuring that it
satisfies (K0).

Notation 5.2.1. In the whole chapter, we will use the following conventions and notations:
¢ () is an open, bounded, Lipschitz domain of RY, for some N > 1.
e Given K > 0, By will denote the closed ball of radius K and center 0 in RY.

* Given ¢ € Wh(Q), we will write
Wé’p(ﬂ) =+ WyP(Q) = {U eW'P(Q) : u=¢ on 89},

for every p € [1,00]. Hence, W }?(€) is the set of functions in W'?(Q) which agree with ¢ (in the
sense of the trace) on 0€).

5.2.1 On measurability and basic assumptions

Definition 5.2.2. Given a metric space X, we denote by B(X) the Borel o-algebra of X. Moreover, if X is
a subset of an euclidean space, then £(X) will denote its Lebesgue o-algebra. We will say that a function
f: QxR xRN — [0,00] is Lebesgue-Borel measurable if it is measurable for the o-algebras

L(Q) @ BR) @ B(RY) — B([0, 00)).

This notion of measurability for Lagrangians is made in such a way that, if v : Q@ — Rand v : Q — RV
are Lebesgue measurable, then
z = flz,u(z), v(z)),
is measurable on 2, and thus the quantity [, f(z,u(x), v(z))dz makes sense. This will of course be used
in the case v € W11(Q) and v = Vu. In a large part of the literature on the subject, the usual assumptions
made on the Lagrangian is the following Carathéodory property:

Definition 5.2.3. We say that f :  x R x RY — [0, oc] is a Carathéodory function if it is Lebesgue-Borel
measurable and for a.e. 2 € (2, the mapping (u, &) — f(x,u, &) is continuous on RY,
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In this Thesis, we will usually have a less restrictive assumption on the Lagrangian. In particular, the
continuity in £ will be withdrawn from the assumptions for most of Section 5.2. We assume the following for
the Lagrangian f:

Hypothesis 5.2.4. The function f : Q x R x RY — [0, co) satisfies
a) f is Lebesgue-Borel measurable;

b) for a.e. z € Q, the function u — f(x,u, &) is continuous with respect to u uniformly as £ varies in
bounded sets. That is, for every bounded set B C RV, for every ug € R,

Ve >0, 36 >0, Vu e R, V¢ € B,
|U*’LLO|<5 = |f(1’,u,§)ff(x,u0,§)|<€;

c) for every bounded set B C R x RY, there exists a € L() such that f(z,u,&) < a(z) forae. z €
and all (u,&) € B;

d) for every u € WH>(Q), for every bounded set B C R and for every > 0 there exists T C £
compact such that |Q\ 7| < nand z — f(z,u(x), &) is continuous on T" uniformly as £ varies in B,
that is, for every g € T,

Ve >0, 36 >0, Vx € T, V€ € B,
|z —xzo] <d = |f(a:,u(m)7§) —f(xo,u(mo),f)‘ <.

Remark 5.2.5. We point out the fact that we can replace Hypotheses 5.2.4-b) and -d) with the more restrictive
request that for every bounded set B C R¥ and for every n > 0 there exists a compact set 7' C 2 such that
|2\ T'| < nand f is continuous with respect to (z,u) € T x R uniformly as £ varies in B.

A typical example of a Lagrangian f satisfying Hypothesis 5.2.4, is if the dependency in £ is bounded
and separated from the other variables. That is, if

f@,u,€) = g(a, u)h(§),

for some g : Q x R — [0, 00) Carathéodory satisfying that for every compact interval I C R, there exists
a € LY(Q) such that g(x,u) < a(z), forae. x € Qand all u € I; and h : RN — [0, 0c0) Borel bounded on
bounded set. Another interesting case, which is very useful in application is for Carathéodory Lagrangians:

Proposition 5.2.6. Let f : Q x R x RN — [0, 00) be a Carathéodory function. Then f satisfies assumptions
5.2.4-a), -b) and -d).

Proof. 5.2.4-a) is obvious by definition. To prove 5.2.4-b), it is enough to use the fact that, for a.e. = € €2,
the map (u, &) — f(x,u, &) is continuous. The rest follows from a simple compactness argument on the
bounded set B.

We now prove 5.2.4-d). Let u € WH®(Q), B C R" a bounded set and n > 0. Let g(x,&) :=
f(z,u(x),€). Then gis L£(2) ® B(RY)-measurable and continuous with respect to £. By the Scorza-Dragoni
Theorem (see [40, Chapter VIII, Section 1.3]), there exists T C € compact such that |2\ T'| < 7 and g is
continuous on 7" x RY. Now since B is bounded, another compactness argument shows that g is continuous
with respect to x € T uniformly as £ varies in B. O

Remark 5.2.7. In this chapter, we will work only with non-negative Lagrangians for simplicity. However,
it might be interesting to keep in mind that the various approximation results in Section 5.2.3 (Proposition
5.2.18, and Theorems 5.2.20, 5.2.23) would still hold if f were only assumed to be real-valued, and with
assumption 5.2.4-c) replaced by

¢’) for every bounded set B C R x RY, there exists a € L'(Q) such that |f(x,u,&)| < a(x) for a.e.
z € Qandall (u,§) € B.

Indeed, if b’) were to hold, considering the (non-negative) auxiliary Lagrangian g(z,u,&) = f(z,u,&) +
a(x), it would satisfy Hypothesis 5.2.4. All of these approximation results would thus hold for g, and thus
for f as an immediate calculation would show.
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5.2.2 Basic tools, notations and some reminder about convexification
We introduce the following technical definition:
Definition 5.2.8. Forevery f : Q x R x RY — [0, o0] and for every T' C R we define

fle,ug) if €eT

. (5.2.3)
+00 otherwise.

fT(l‘,U,f) = {

In the special case T' = By for some K > 0, we let
f~K = fBK'

As convexification is a crucial tool whenever mentioning weak or weak-* convergence for integral func-
tional, we define it and mention some standard facts on the subject.

Definition 5.2.9. Let f : RV — [0, 00]. We define the function f** : RN — [0, 0o] as the convexification of
f. That is, f** is the greatest lower semicontinuous convex function on R"V which stays under f.

The following facts are classical, the reader can have a look at [40, Chapter I] for a more complete
overview of convex analysis.

Proposition 5.2.10. Let f : RY — [0, c0].
o The function f** can be written as the supremum of all affine maps on RN which bound f from below.

o Assume that f takes finite values in a neighborhood of some & € RN. Then
f) = inf{z aif(§i)}7 (5.2.4)
where the infimum is taken over all convex combinations (v, &;) C [0,1] x RN such that Y, o; = 1

and § =3, ;&

Proof. The first point is a consequence of the Hahn-Banach theorem (see [40, Chapter I, Proposition 3.1] for
a detailed proof). We prove the second point. Let g : RY — [0, co] be the functional on the right hand side
of (5.2.4). We claim that g is convex. Indeed, take £,¢ € RY as wellas A € (0,1). Let 3, a;&; and > B¢
be convex combinations of § and ( respectively. Then (1 — A)a;& + > ; AB;(; is a convex combination
of (1 — A\)¢ + A¢, and by definition of g,

(1= NE+A) < (=) Y aif (&) + A3 B F(G)-

Now taking the infimum over all convex combinations of £ and ¢ respectively, we finally obtain g((1 — \)£ +
AC) < (1 —A)g(&) + Ag(¢). Now using the fact that f** is convex and f** < f, for every &,

7€) = inf {Z aif**(fi)} < inf {Z Olif(fi)} =g(¢),

where the infimum is again taken over all convex combinations of £. Therefore f** < g < f. Now assume
that f is finite in a neighborhood of some ¢ € R™V. By [40, Chapter I, Corollary 2.3], ¢ is continuous at point
¢ and by [40, Chapter I, Proposition 5.2], there exists an affine map ¢ on R" such that

(<g<f and (&) =g(S)

By the first point of the proposition, one has f**(£) > ¢(§) = g(&), which achieves the proof. O
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Remark 5.2.11. Using the notation introduced in (5.2.3), ( fT)** is the greatest function which is convex,
lower semicontinuous with respect to the last variable and stays under f on 7. In particular, ( f ) >
on By and in general the strict inequality may hold. Indeed, consider for instance f(£) = exp(—|¢]). Then
f** =0onRY, but for every K > 0,

(fx)*=e X on Bg.
The previous remark allows to formulate the following lemma:

Lemma 5.2.12. Let f : RN — [0,00). Then the family of mapping ((fx)**)xso is non-increasing as
K — 400 and converges pointwise to f**.

Proof. The fact that the family is non-increasing as K — oo easily follows from the definition of ( f K)*E
Now define ¢ := limg 1o (fx)™ = infxso(fx)**. By definition of f**, it is clear that f** < g (see

Remark 5.2.11). Moreover, since the family ((fx)**)x>o is totally ordered, it holds that g is convex and
g < fonall of RV (given & € R, one can choose K > |£]). Since f is finite valued, so is g and thus g is
lower semicontinuous on RY. Therefore g < f**. O

In the case of an integral functional which may depend on x and v and not just on Vu, it is relevant to
consider the convexification only with respect to the variable &:

Definition 5.2.13. Let f : Q x Rx RY — [0, 00). We define the function f** : Q@ x R x RY — [0, 00) as the
convexification of f with respect to the last variable. More specifically, for every (z,u) € Q X R, f**(z, u, -)
is the greatest lower semicontinuous convex function on RY which stays under f(x,u, ).

Since the Lagrangian f might be non-convex with respect to the last variable, we prove that f** is at least
measurable.

Lemma 5.2.14. Let f : Q x R x RY — [0, c0) satisfy Hypothesis 5.2.4. Then for every K > 0, (fK)** isa
Carathéodory function on 2 x R x (B )°. Furthermore f** is Lebesgue-Borel measurable on Q x R x RV,

Here (B )° denote the centered open ball of radius K.

Proof. Firstly, we prove that u — (fx)**(x, u, ) is continuous uniformly as & varies in By, for a.e. = € Q
and for every K > 0. We fix ug € R and Hypothesis 5.2.4-b) guarantees that for a.e. x € €2, for every ¢ > 0,
there exists § > 0 such that if |u — ug| < d then

If(x7u7£)_f(m7u07£)| <g, V£EBK3 (525)
and so we have ~
(fK)**(x,u,g)—€Sf($,u,§)—€Sf(x,U(),g), \V/feBK (526)
Now (fx)** (z,u, &) — ¢ is convex and lower semicontinuous in ¢ and so

(fK)**(l‘,u,f)—ES(fK)**(.Z‘,Uo,g), V§GBK

Reversing the roles of u and ug in (5.2.6), one gets

\(Fr)** (2, u, €) — (fr)™ (z,u0,€)| <&,  VE€ Bg. (5.2.7)

Now for every u € R, since the function f(x,u, -) is finite-valued, it holds that (see [40, Chapter I, Corollary
2.3]) B
(f)™(x,u,-) iscontinuouson (Bg)°. (5.2.8)

Therefore, if (un, &) C R x (Bg)® is a sequence converging to (ug,&p) € R x (Bg)°, then
limsup |(fx)** (2, un, &) — (FK)™ (0, 0, &)

n——+oo
< limsup |(fx )™ (2, un, &) — (fx)™ (2,10, &)

n—-4oo

+limsup |(fx) ™ (2, w0, €0) = (&)™ (2, w0, )|

n——4oo

:07
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by (5.2.7) and (5.2.8). That is, for a.e. = € €, (fx)*™(z,-,-) is continuous in R x (Bx)°. By [40,
Chapter VIII, Proposition 1.1], to prove that ( f )** is Carathéodory, it is therefore enough to show that
x = (fr)**(z,u,§) is Lebesgue measurable for every (u, &) € R x (Bg)°. We fix (ug, &) € R x (Bg)°.
Using 5.2.4-d), there exists an increasing sequence of compact sets (77,) of {2 such that |2\ T},| — 0 and for
every n, the mapping x — f(x, ug, ) is continuous on 7T}, uniformly as £ varies in By . Now by a similar
argument to the one developed above (equations (5.2.5)-(5.2.8)), z +— ( 1, %)™ (2, u0, &) is continuous on T;,.
Taking the limit as n — +o00, this same mapping is an almost everywhere limit of continuous maps, and is
thus Lebesgue measurable on ).
Now, for every K € N, we let gx be defined as such:

fr) ™ (z,u ) if |€] < K/2
9k (@, u, ) = Ure)™ ) K< K
+o0 if ¢ > K/2.
Since (fx )** is Carathéodory on  x R x (B )°, then gx is Lebesgue-Borel measurable on  x R x RV,
Recalling Lemma 5.2.12, we have

f (xvuvf) = I%ng(x,u,f) = KligrloogK(Zvuag)7

hence, f** is Lebesgue-Borel measurable on 2 x R x RN, O
Remark 5.2.15. It might be interesting to point out that f** may not be a Carathéodory function in full
generality. The issue is that the joint continuity in (u,{) may not be satisfied. We give here an example,
which was initially presented in [55, Example 3.11]. Consider the following mapping f(u, &) := (|¢] + 1)
for (u,&) € R x RL. Itis clear that it is continuous, however

f ("’5){1 it Jul < 1.

which is not continuous (not even lower semicontinuous).

However, we will now study some conditions on the Lagrangian f to ensure that f** is Carathéodory.
The problem has already been studied in [55, Corollary 3.12]. Assuming a p—growth or continuity in u
uniformly in &, the authors proved that f** is a Carathéodory function. Theorem 5.2.17 below, with the help
of a different kind of argument, extends the p-growth case to superlinear Lagrangians.

Proposition 5.2.16. Let f : R x RN — [0,00) satisfies Hypothesis 5.2.4. If for every compact interval
I C Rand K > 0, there exists K' > K such that

(fK’)** = f** on I x BK, (529)
then f** is continuous on R x RV,

Proof. Ttis enough to prove that f** is continuous on I x By for every compact interval I C R and K > 0.
Fix such a choice of I and K. Let K’ > K such that (5.2.9) apply. If K’ > K, by Lemma 5.2.14, (fx/)** is
continuous on I x By, and (5.2.9) gives our conclusion. If K = K’, we cannot apply immediately Lemma
5.2.14 because ( fx+)** may not be continuous on {{ € 0Bk }. However, choosing K = K’ 4+ 1 > K, then

(Fier)™ = (o)™ 2 f* = (F)™ on Ix By

Thus (fx»)*™ = f** on I X By, and since (fx)** is continuous on I X Bg by Lemma 5.2.14, this proves
the result in the case K’ = K. O

The condition (5.2.9) used in the statement of the previous proposition is quite similar to condition (K)
presented below in Section 5.2.3, which will play a major role in our discussion. Actually, a similar argument
given in Remark 5.2.22 was used in the proof of Proposition 5.2.16.

This result leads to the following, less abstract statement:
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Theorem 5.2.17. Let f : 2 x R x RN — [0, 00) satisfy Hypothesis 5.2.4. Furthermore, assume that for a.e.
x € Q and every compact interval I C R, there exists @, 1 : RN — [0, 00) superlinear such that

fl@,u,8) > @, 1(6),  Vuel, VEeRY. (5.2.10)
Then f** is a Carathéodory function.

Before proving it rigorously, we will need some other tools, in particular regarding superlinearity (Theo-
rem 5.2.28). We refer the reader to the end of Section 5.2.4 for a detailed proof of Theorem 5.2.17.

5.2.3 Known results of weak-x relaxation on 171>°(Q)) and condition (X).

We now present multiple results of relaxation on W1>°(§) with respect to the weak-* topology. As men-
tioned above, the main contribution of this section is Theorem 5.2.23. Before that, we need some intermediary
results, already proved (for instance by P. Marcellini and C. Sbordone in [55]). The following proposition,
proved in [10], is the most recent formulation,with the weakest initial assumptions that we are aware of.

Proposition 5.2.18. Let f : O x R x RY — [0, c0) satisfy Hypothesis 5.2.4. For every u € W1>°(Q) and
for every K € N such that
V|~ < K, (5.2.11)

there exists a sequence (ug ) C W&oo(Q) such that
[Vurnllre < K, U, —*u in Wh(Q),

and

lim /Qf(x,uKm(x),VuK,n(x))dx:/Q(fK)**(x,u(a:),Vu(x))dx.

n—-+o00

Here, the weak-* convergence denoted by —* refers to the one introduced in (5.1.4). We recall that,
consistent with Notation 5.2.1, W1->°(Q) denotes the space of functions in W1:°°(2) which agree with u on

0.
By the previous result we have that for every K € N, u € W1°°(Q) satisfying (5.2.11),

(un) C W&OO(Q)
Up —* 1 < /(fK)**(%u(x),Vu(x))dx. (5.2.12)
V|| < K ¢

inf liminf/f(x,un(x)7Vun(x))dx
Q

n—-+o0o

Since ( f K )** is Carathéodory and is convex, lower semicontinuous with respect to £ we have the following
(see for instance [47, Chapter 4, Theorem 4.5]):

Lemma 5.2.19 (Tonelli). The integral functional
U / (fr)** (z,u(z), Vu(z))dz,
Q

is sequentially lower semicontinuous with respect to the weak topology of W11(Q).

So a fortiori, since any sequence converging weakly-* in W1°°(Q) also converges weakly in W1(£2),
we have that
(un) C Wy=(Q)
Uy —* U > / (fr)** (z,u(z), Vu(x))de. (5.2.13)
Q
[Vun|[pe < K

inf ¢ liminf | f(z,u,(z), Vu,(z))dz

n—+4o0o Q
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(Here we used the fact that f > (fK)** on  x R x Bg). Thus, combining (5.2.12) and (5.2.13),

(un) C Wy (Q)
min liminf/ f(z, un(x), Vuy (z))dx Uy —* U = / (fx)*™ (2, u(z), Vu(z))ds
n—+oo [o Q

Vil < K
(5.2.14)
The fact that the infimum is in fact a minimum in (5.2.14) comes from the existence of a minimizing sequence
(see Proposition 5.2.18). Now = — (fx)**(x, u, Vu) is a non-increasing sequence bounded from above and
converging pointwise to  — f**(z,u, Vu) (by Lemma 5.2.12). Thus taking the limit as X — oo and
using a diagonal argument, we obtain the following result, stated in [55] in the continuous case, or in [10] for

the general case:

Theorem 5.2.20. Let f : Q x R x RY — [0, c0) satisfy Hypothesis 5.2.4. For every u € W(Q), there
exists a sequence (u,) C W1 (Q) such that

u, > u in L>(Q),

and

lim /f(z,un(x),Vun(a:))dx:/Qf**(:c,u(x),Vu(x))da:.

n—-+oo Q

Furthermore,

inf {lim inf [ f(x,un(x), Vuy(z))dx

n—-+oo Q

(tn )u c W@ } /f**:cu ), Vu(z))dz. (5.2.15)

Notice that (5.2.15) is obtained by taking the limit as K — 400 in (5.2.14). Now our aim is to find some
conditions on the Lagrangian f in order to reach the infimum in (5.2.15), that is, our question is whether there
exists a sequence (u,) C W21°°(Q) such that

Up —*u in WH™(Q), (5.2.16)

and

flx un(x), Vup(z))de — | f*(z,u(x), Vu(z))d. (5.2.17)
Q Q

We will see that in general, such a sequence does not exist. Before moving on, we study the situation in more
details. Let w € WH°(Q) and (u,,) C WH°°(Q) be such that u,, —* u. Let K’ > ||Vu| = such that

IV, |lpe < K, Vn € N.

Consider for instance the Lagrangian f(£) = exp(—|¢|) presented in Remark 5.2.11. Then because f is
bounded from below by exp(—K") on B, necessarily,

liminf/ F(Vun(@))dz > |Q]e X > 0 = E[f*](u).

n—-+oo

In particular, (5.2.17) cannot hold. More generally, if f :  x R x RN — [0, o0) is any Lagrangian satisfying
Hypothesis 5.2.4, by (5.2.14),

/(fK/)**(:r,u( ), Vu(z))dx <hm1nf/ [z, un (), Vu,(z))dz
Q

n—-+oo
Thus, recalling that (fx/)** > f**, the existence of a K’ > ||Vu| 1 such that
(i)™ (z,u(z), Vu(z)) = £ (2, u(z), Vu(z)), forae. x € Q,

is a necessary condition in order to reach the infimum in (5.2.15). Actually this is also a sufficient condition,
as it is stated in the following Theorem 5.2.23.

The previous discussion allows us to characterize the property (named condition /C in the sequel) which
is needed on the Lagrangian to ensure the existence of a sequence satisfying (5.2.16) and (5.2.17).

63



Definition 5.2.21. We say that f : Q xR x Riv — [0, o] satisfies condition (K) if for every compact interval
I c Rand K > 0, there exists K’ > K and 2 C Q such that |2\ 2| = 0 and

(fe)™ = f* on QxIx Bg. (K)
Remark 5.2.22. A simple observation is that, if g : R — [0, oo], then
(gK/)** Z (gK”)** Z g** On BK7

for every K" > K’ > K > 0 (by Remark 5.2.11). Therefore, if condition (K) applies for f and some
K’ > K, then it will still apply for any K" > K.

Theorem 5.2.23. Let f : Q x R x RN — [0, 00) satisfy Hypothesis 5.2.4. Assume that f also satisfies
condition (K). Then for every u € W (Q), there exists a sequence (u,,) C W.2>°(Q2) such that

u, —=*u in WhHe(Q),
and

lim /Qf(x,un(m),Vun(x))dx:/Qf**(x,u(m),Vu(x))dx.

n—-+oo

In particular, the sequence (uy,) reaches the minimum for (5.2.15).

Proof. Let u be in W°°(Q), then there exists a compact interval I C R such that
u(z) €1,
for almost every z in 2 and there exists X > 0 such that
|Vulle < K.

By assumption we can take K’ > K such that condition (K) applies, and so in particular

(fr )™ (z,u(z), Vu(z)) = f (2, u(z), Vu(z)), forae. x € Q.
By Proposition 5.2.18 there exists a sequence (u,,) C W.21°°(Q) such that

u, =*u in WHe(Q),

and
/f(x,un(w),Vun(x))dxﬁ/(fK/)**(x,u(x),Vu(x))da?:/f**(m,u(x),Vu(x))dm.
Q Q Q
Since by Theorem 5.2.20,

(un) C Wy>(Q)

n—-+oo Up, N u

inf {liminf‘/ﬂf(x7un(ac),Vun(x))d;v

} = / 7 (z,u(z), Vu(z))de.
Q
then (uy,) reaches the minimum in (5.2.15). O

5.2.4 Sufficient geometric and analytic conditions for ().

Now we seek conditions on f so that the Lagrangian satisfies condition (/C). We begin by stating some results
when f depends only on the third variable .

Lemma 5.2.24. Let f : RN — [0, 00]. Assume that A C B C RY satisfy that for any €4 € A and g ¢ B,
there exists £ € [€4,Ep] N B such that f(€) = f**(£). Then

(fB)" =f" on A
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Proof. Firstly, one has fB > f, hence ( f B)™ > f**. We turn to the proof of the converse inequality:
assume by contradiction that it is false, then without loss of generality, one may assume that 0 € A and that
(fB)**(0) > f**(0). In particular, thank to Proposition 5.2.10, there must exist an affine map ¢ on RY such
that

(< fg and £(0)> f*(0). (5.2.18)

Define g := f** — (. Then g is a convex function satisfying ¢(0) < 0 and
g(¢()>0, V¢CeRN\B. (5.2.19)

Indeed, for ¢ ¢ B, there exists by assumption { € [0,¢] N B such that f(§) = f**(¢). If f(§) = +o0, then
g(&) = +oo. Otherwise,

g(&) = (&) — &) > f(&) — fB(&) = f(&) — (&) = 0.

Therefore, in any case g(£) > 0 and because g(0) < 0, (5.2.19) holds. We derive from (5.2.19) that £ < f on
RY, indeed:

e on B, one has f = f B and the conclusion follows from (5.2.18) in this case;
» on RV \ B, this comes from (5.2.19) and the fact that f** < f.

Finally, one gets that £ is an affine map which bounds f from below, thus ¢ < f**. But this is in clear
contradiction with (5.2.18), therefore the proof is complete. O

Lemma 5.2.24 has a few consequences:
Corollary 5.2.25. Let f : RN — [0, o0].
o If A C RY isclosed and f = f** on OA, then (fA)** = f** on A.
e Assume that the detachment set of f defined by
D(f):={€eRY : (&) < f(&)}

has uniformly bounded connected components (i.e. there exists M > 0 such that diam(C) < M for
any such component). Then for any K > 0, there exists K' > K such that

(f)™ =™ on Bg.
Proof. e Taking B = A in Lemma 5.2.24 and noticing that by assumption 0A C A, it gives the result.

e Take K > O and let K/ > K + M. Then for any &; € By, & ¢ Bk, one has [§; — &] > M and
as such, there must exist some & € [£1, &2] with €] < K’ such that f(§) = f**(£). The result follows
from Lemma 5.2.24.

O

Remark 5.2.26. The assumption that A is closed in the first assertion of the previous corollary is crucial.
Take for instance f : R — [0, co) defined by

,
ﬂo={5' Hoeed

0 otherwise.

One can verify easily (using the second point of Proposition 5.2.10 for instance) that

.
fﬂ@_{£| it £<0

0 otherwise.
Taking A = (—o0, 1), then f = f** on OA = {1}. However, f is convex on A and therefore
(fa)™* =f#f" on A
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We now generalize Corollary 5.2.25 to the case of  and u dependency, whose proof is immediate:
Corollary 5.2.27. Let f : Q x R x RN — [0, oc]. Let I be a compact interval of R.

e [fthere exists K > 0 such that
flzyu, &) = f*" (x,u,§), forae x €, Yuel, V¢ € 0Bk, (5.2.20)

Then ~
(fr)™(z,u, &) = f(z,u,§), forae x€Q, Yuel, V¢ € Bg.

In particular, if (5.2.20) holds for a sequence (K,,) of positive numbers such that K,, — +oo, and for
every such I, then f satisfies (IC).

* Assume that the connected components of the sets

are uniformly bounded. That is, there exists M > 0 such that for a.e. x € §, for all u € I, every
connected component of D(f, x,u) has diameter smaller than M. If this holds for all compact interval
I, then f satisfies (IC).

The second condition that we present here, independent of the geometry of the detachment set, is the
superlinearity of the Lagrangian with respect to the variable £. In the following result, we will consider the
dependency in (z,u) as auxiliary, taken into account in the parametric set I". It is an abstract statement and
one may identify I" as {2 x I, for I C R a compact interval (see Corollary 5.2.31 below which gives a more
explicit statement).

Theorem 5.2.28. Let T be a setand f : T x RN — [0, 0o] be such that:

o there exists ® : RN — [0, 00) superlinear such that

f(s,6) > ®(€),  VseT, véeRY; (5.2.21)

* for any p > 0, there exists p’ > p such that (fpz)** is bounded onT' x B,,.
Then for any K > 0, there exists K' > K such that
(fx)™ = f** on T x Bg.

Remark 5.2.29. Following the same convention introduced in Definition 5.2.13, the convexification in this
Theorem is to be understood with respect to the variable ¢ € RY.

Proof. Let p’ > 0 satisfy the second assumption for p = K + 1, and define

M= sup (fy)™ < 4oc.

FXBK+1

By (5.2.21), there exists K’ > p’ such that
f(5,8) > (M +1)[¢] + M, Vs €T, V¢ e RV \ Bg. (5.2.22)

Fix now ¢ € (0, 1] and consider (so,&p) € I' x By, then by Proposition 5.2.10, there exists an affine map ¢
of slope ¢ € RV, (i.e. V£ = (), such that

< fi(s0,-) and £(&) > (fir) ™ (s0,60) — e (5.2.23)

Owing to (5.2.23), one has

3 *k C _ i _ _
1< () <so,5o>—ase<so)s€(f<m)—f((KH)m) <M,
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because £ < (fx+)**(so,-) and supBKH(fK/)**(so, ) < M. Hence |(| < M + 1. Our goal is to show that ¢
is an affine minorant of f(so, -). The fact that £ < f(sg,-) on B~ is an immediate consequence of (5.2.23).
Now let us consider & which is not in By, then by (5.2.22):

(&) = (§,€) +£(0) < (M + 1)|g| + M < f(s0,),
which proves that £ < f(sg,-) on RY and thus that £ < f**(sq, -). In particular, one has by (5.2.23) :
(fK’)**<SO7EO) S f**(s()ago) + g,

letting e — 0, it gives (fx/)** < f** on I’ x Bg. The converse inequality being obvious, we finally obtain
that

(fx)** = f* on I x Bg.

Figure 5.1: ( f K+)** is infinite on the angular sector guided by 6. Yet, it is not the case for f**.

Remark 5.2.30. The second assumption of Theorem 5.2.28 is crucial in this result. So much that it may fail
without it: consider for instance the function (depending only on &), f : R? — [0, oc] defined by:

f(0,0) =0
f(gn) = |£n|2 Vn eN
f© = 400 otherwise,

where &, := (n,1). Then f is superlinear (taking for instance ®(¢) = |¢|? is enough), but we claim that it
does not satisfy (). Indeed, f is finite on the set

A:={(0,00}U{&,&,... }

therefore f** is finite on conv A D [0, 0o[x]0, 1]. But for any K’ > 0, Bx- contains only a finite number of
the &,, and thus (fx-)** is infinite on an angular sector (see Figure 5.1).

For the sake of comprehensibility, we now state a version of Theorem 5.2.28 in the case where f :
QxR xRN - [0, 00]:

Corollary 5.2.31. Let f : Q x R x RY — [0, oc]. Assume that for every compact interval I C R,
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o there exists ®; : RN — [0, 00) superlinear such that

f(z,u, &) > ®;(8),  forae ze€Q, Yuecl, VEeRY,; (5.2.24)

o there exists Q C Q such that |2\ Q| = 0 and for any p > 0, f is bounded on Q x I x B,
Then f satisfies condition ().

Proof. Let g C () a measurable set with full measure such that (5.2.24) holds for every = € (. Let
I' = (20 N Q) x I. Then the first condition of Theorem 5.2.28 holds by construction, and the second comes
from the fact that

(fo)™ <f, on QxIxB,,

thus the choice p’ = p is enough. [

On another note, Theorem 5.2.28 allows us to prove Theorem 5.2.17, which gave a sufficient condition
for f** to be Carathéodory..

Proof of Theorem 5.2.17. By Lemma 5.2.14, we know that f** is Lebesgue-Borel measurable. It is therefore
enough to show that it is continuous with respect to (u, £) for a.e. € Q. Let Ay be a measurable subset of
Q with full measure such that (5.2.10) holds for every x € Aj and every compact interval I. According to
Hypothesis 5.2.4-c), for any integer n > 1, there exists a,, € L*(,[0,00)) and a measurable set A4,, C {2
with full measure such that

flz,u,8) < ap(x) < +o0, Vz € Ay, V(u,&) € [-n,n] X By, (5.2.25)

For z € A := Np>0A,, define g : (u, &) — f(z,u,&). We will show that g satisfies the assumption of
Theorem 5.2.28 with I" = I. Fix I C R a compact interval. Firstly by (5.2.25), ¢ is bounded on bounded sets
and thus the second assumption of Theorem 5.2.28 is satisfied with p’ = p. For the first assumption, notice
that by (5.2.10), it is satisfied with ® := ®, ;. We can therefore finally apply Theorem 5.2.28, which tells us
that g satisfies (5.2.9) of Proposition 5.2.16 and thus that g** is continuous. The conclusion follows from the
fact that A has full measure in 2, and hence we have proved that (u, &) — f**(z,u, £) is continuous for a.e.
x € : f** is a Carathéodory function. O

Remark 5.2.32. In this Section 5.2.4, we have given two distinct sets of assumptions ensuring that the
Lagrangian satisfies (XC). On the one hand, a boundedness condition on the detachment set (Corollaries
5.2.25 and 5.2.27). On the other hand, the superlinearity of the Lagrangian (Theorem 5.2.28 and Corollary
5.2.31). We wish to show that these sets of assumptions are independent and none implies the other.

o Let f: (&1,&) — (1+5sin(&1))(1 +sin(&2)). Then f is clearly not superlinear, however f** = 0 and
thus f satisfies the detachment set condition, (second point of Corollary 5.2.25) because f = f** on a
square grid of side-length 27r.

* Conversely, let f : R? — [0, 00) defined by

Flen6) = (16 - 1) + |&.

It is clearly superlinear. However, we show that the line {{; = 0} is contained in the detachment set of
f, thus contradicting the boundedness condition. Indeed, notice that by Proposition 5.2.10, for every
& €R,

F7(0.6) < 5(F(-1,6) + £(1.&))
= &/
<|&f*+1

= f(0,&).
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5.3 Approximation in W'?(Q) for the autonomous case

In this paragraph, we state an important result which answers the question of the Lavrentiev gap when the
Lagrangian is autonomous, that is f = f(u,&) does not depend on x. Some regularity is still needed (in
particular, the convexity with respect to £). The detailed proof may be found in [17].

Theorem 5.3.1. Let f : R x RN — [0,00) be a continuous Lagrangian, which is convex in & (the last
variable), and let o € W->°(Q). Then for any u € W2 '(Q), there exists a sequence (u,) C W2 >(Q)
such that
Up —u  stronglyin - WhH(Q),
and
tiw [ fun(e), Vun(o)de = [ flu(e), Va(e)ds,
Q Q

n——+oo

Moreover, if u € WP () for some p > 1, then the sequence (u.,,) can be chosen so that u,, — u strongly in
Wir(Q).

Remark 5.3.2. We can see Theorem 5.3.1 through another perspective by defining another functional:

(un) € WE(2) }

n—r+oo Up =Wl U

Ero[f](u) = inf {lim inf/ﬂf(un(ac), Vuy(z))dz

By the Fatou Lemma we have that if f(u, &) is continuous then for every u € W' ()

E[fl(u) < Eralf](u),

with an equality for every u € W;’OO(Q). Now Theorem 5.3.1 implies that if g(u,&) is continuous and
convex with respect to the last variable then

E[g] = Ere [g} on Wé’l(Q)

Now a natural question arising from this statement is to wonder whether the assumption concerning
convexity is needed for this result to hold. In this Section, we will extend this result to a larger class of
Lagrangians. In the autonomous case we have a simpler set of assumptions.

Hypothesis 5.3.3. The function f : R x RY — [0, 00) satisfies
a) fis Borel,
b) f is continuous with respect to « uniformly as ¢ varies in bounded sets of RV,
¢) f is bounded on bounded sets,
d) f**, the bipolar of f with respect to the second variable, is continuous in (u, ).

In the autonomous case Hypothesis 5.3.3 implies Hypothesis 5.2.4 (this is pretty clear but a detailed proof
is given in [10, Lemma 18]). We recall that Theorem 5.2.17 gives a sufficient condition for 5.3.3-d) to hold:
it is enough to assume that f is superlinear with respect to £ uniformly as u varies in bounded sets of R. It
might be of interest to note that again, Hypothesis 5.3.3 does not request that f is continuous with respect to
(1, ).

Of course, Theorem 5.3.1 implies the non occurrence of the Lavrentiev phenomenon for continuous and
autonomous Lagrangians which are convex in £. Actually, more is true, as stated in the following result:

Theorem 5.3.4. Let f : R x RY — [0, 00) satisfy Hypothesis 5.3.3. Then no Lavrentiev phenomenon occurs
for the integral functional E|[f], that is:

inf{Em(u) ue W;’l(Q)} = inf{E[f](u) Lue W;”’"(Q)}.
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Proof. For the sake of simplicity, write X = W1 (Q) and Y = W 1:>°(Q). Then

inf E[f] > inf E[f**] = inf E[f**] = inf E[f] > inf EJf].

inf E[f] > inf E[f*"] = inf E[f*"] = nf B[f] > inf E[f]
Indeed, the first and last inequalities are clear, the second comes from Theorem 5.3.1 and the third from
Theorem 5.2.20. O

As a byproduct of this proof, we deduce that (if f satisfies Hypothesis 5.3.3), for any p € [1, 00),
mf{E[f](u) L ue W;”’(Q)} - inf{E[f**](u) L ue W;”’(Q)}. (5.3.1)

5.3.1 Weak relaxation on W' (Q).

Now we extend Theorem 5.3.1 to the non convex case. The following theorem is a generalization of [10,
Theorem 30].

Theorem 5.3.5. Let f : R x RN — [0, 00) satisfy Hypothesis 5.3.3, and let o € W1°°(Q). Then for any
u € WH(Q), there exists a sequence (u,,) C W2 (Q) such that

up —u in LY(Q),

and

Jim / Fltn (@), Vun(2))da = /Q £ (ule), Va(a))da.

n—+oo /o

Moreover,

o if there exists ® : RN — [0, 00) superlinear such that
f(u, &) > ®(§), Vu € R, V€ e RY, (5.3.2)
then the sequence (u.,) can be chosen so that u,, — u weakly in W1(Q);
e if for some p € (1,00) it holds that
fu,€) > cifélP —ca,  Vu€R, ¥E€RY, (5.3.3)

for some cy,ca > 0, and u € WP (Q) then the sequence (u,,) can be taken so that u,, — u weakly in
Whr(Q).

Remark 5.3.6. Notice that, compared to Theorem 5.3.1, the assumptions on f are relaxed: indeed in par-
ticular, f is not assumed to be convex in £&. However, the conclusion is slightly weaker in the sense that the
strong convergence of Theorem 5.3.1 was replaced by an L' (or W!-weak) convergence. Apart from that,
both results have similar conclusions, up to noticing that f = f** in the assumptions of Theorem 5.3.1.

Proof of Theorem 5.3.5. Fix u € Wl (Q). If [, f**(u(x), Vu(x))dx = 4oc, the result follows from Fatou
Lemma. Indeed, take any sequence (un) C W 2>>°(9Q) converging to u strongly in W' () (such a sequence
always exists). Then up to a subsequence, ( n(2), Vup(z)) — (u(z), Vu(x)) for ae. x € Q, and by
continuity of f**, it holds that f**(u,,(z), Vun(x)) — f**(u(z), Vu(x)) for a.e. x € 2. Thus

liminf/ flup(x), Vuy(x) dx>hm1nf/ 7 (un(x), Vug, (x))dx

n—-+oo Q n—-+o0o

> /Q £ (ul(), Vu(z))dz

= +00.
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We assume from now on that E[f**](u) < +oo. By Theorem 5.3.1, there exists a sequence (v,) C W} (Q)
such that v,, — u in WH1(Q) and E[f**](v,) — E[f**](u). Now for each n, one may use Theorem 5.2.20
to find a sequence (v;) C W 1>°(€2) such that ||[v} — v,/ — 0 (in particular, v} — v, in L') and

lim inf E[f](v%) < E[f**](v,) + 1/n.

k—+o00

Using a diagonal argument, one obtains a sequence (u,) C W;’OO(Q) such that u,, — wu in L' and
E[f](un) — E[f**](u). To conclude, notice that conditions (5.3.2) and (5.3.3) respectively gives weak
compactness for the approximating sequence in W1:! (by the Dunford-Pettis Theorem) and WP Therefore
it is an immediate corollary that the approximating sequence weakly converges to u in that case. O

Remark 5.3.7. We can see Theorem 5.3.5 from a functional point of view.
We define

E\[f](u) := inf {liminf/ [ (un(x), Vuy(x))ds (5349
n—+oo [o Up, 4W1,1 u

(un) W;mm)} .

If f** is convex in & and continuous in (u, £), by [47, Chapter 4, Theorem 4.5] the integral functional

uH/ﬂf**(u(x),Vu(m))dx,

is weakly lower semicontinuous on W11(£2). So we have

/Qf**(u(x)7 u(x) dx<hm1nf/ fop(z), Vo (x))dz

n—-+oo

for every (v,) C W(Q) such that v,, —y1.1 u, that is

|77 ule). Vut)de < Balrw).
Now we know by Theorem 5.3.5 that if f satisfies Hypothesis 5.3.3 and is uniformly superlinear then for
every u € W1 (9Q),
E[f)(u) = Ex[f](u),

and furthermore the infimum in (5.3.4) is actually a minimum.

5.3.2 A geometric condition to recover strong convergence.

In Theorem 5.3.5 we do not have the strong convergence of the approximating sequence. Now we study other
cases in which the approximating sequence converges strongly in W1(£2). Before stating the main result,
we will need a useful lemma.

Lemma 5.3.8. Let v € L' (Q,RY). Then there exists ® : R — [0, 00) convex and superlinear such that

/Q(D(v(x))dac < 400,

Proof. The proof is rather straightforward and uses a similar argument to the one used in the proof of the
Dunford-Pettis Theorem. Let (M,,) be an increasing sequence of positive real numbers such that M,, — +o0
and

/ lo|de <277, Vn € N. (5.3.5)
{lv|=Mn}
Then define .

&) => (I -M)",  VEeRN,

neN
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where we used the standard notation a* := max(a, 0). The assumption that M,, — +o0 ensures that the
sum in the definition of ® is effectively finite at each point, and therefore ® takes values into [0, o). Each of
the functions & — (|€] — M,,)™ is convex, thus so is @ as a supremum of convex functions. Also, the identity

D(&)/¢] =,,(1 — M, /|£])T ensures that ® is superlinear. To achieve the proof, it is finally enough to use
(5.3.5) and notice the following:

+oo —+oo
O(v(x))de = / [v| = Mp)dz < 27" < o0
‘/Q ng() {lv‘zj\/fn} ( ) ng()

O

Theorem 5.3.9. Let f : R x RY — [0,00) satisfies Hypothesis 5.3.3, and let ¢ € W (Q). Assume
u € Wé’p(Q)for some p € [1,00), and satisfies

/f** ), Vu(z dx—/f (z))dz. (5.3.6)

Then there exists a sequence (uy,) C W2>°(Q) such that
up — u  stronglyin  WP(Q),

and

lim /f(un(x),Vun(x))dx:/Qf(u(m),Vu(x))dx

n—+oo [
In fact, equality (5.3.6) happens to be also a necessary for the existence of such an approximating sequence
(see Remark 5.3.13).

Proof. Assume first that p = 1. In the case where E|[f](u) = +o0, this follows from the Fatou lemma just
as in the proof of Theorem 5.3.5. Otherwise, we assume E[f](u) < +oo. By Lemma 5.3.8, there exists
® : RY — [0, 00) convex and superlinear such that

/ O(Vu(z))dr < +oo.
Q
We define
9w, §) = f(u,§) + () + V1 + €]

Because g(u,£) > ®(£), Theorem 5.2.17 ensures that g** is Carathéodory and thus g satisfies Hypothesis
5.3.3. By Theorem 5.3.5, there exists a sequence (u,,) C W.1°°(2) such that u,, — w in W"*(Q) and

/Qg(un(x),Vun(x))dx = | g (u(z), Vu(x))dx

Q
SE[f](u)—F/Q (Vu da:—&—/vl—i—\Vu )|2dz.

(The inequality is a simple consequence of g** < g.) Therefore,

lim sup <E[f](un)+/fb(Vun d:ch/ V1+|Vu,(z 2dm> (5.3.7)
Q

n—-+4oo
gE[f](u)—i—/ O(Vu(x dx+/ V1+|Vu(z)]?de < +o00
Q

By convexity with respect to the last variable and continuity, we have again by Tonelli’s result (see Lemma
5.2.19) the following estimates

n——+oo

< hmme[f]( n)s

n—-+4o0o

u):/ﬂf**(u(x), () dm<hm1nf/f (un (), Vi (2))dee
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as well as
n—-+oo
/ 1+ |Vu(z)|?dz < liminf/ L+ [Vuy (z)2dz,
Q n—-+oo Q

and thus, combining this with (5.3.7), one see that we have in fact convergence of each of these terms. In

particular:
E[f](un) = E[f](u) and /Q V14 |Vu,|?de — /Q V14 |Vu|?de.

From the second point, we deduce that u,, — w strongly in Wl*l(Q) (see Lemma 5.3.10 below), which
achieves the proof. When p > 1, the proof is similar, as one only needs to take g(u,&) = f(u,&) + |£|P in
this case.

/@(Vu(x))dxgliminf/ O(Vuy(x))de,
Q Q

O

Lemma 5.3.10. Letp € [1,00) and (v,) C LP. Assume that v, — v weakly in LP.

e Ifp=1land [ \/1+ |v,]? = [ \/1+ |v|? then v, — v strongly in L.

. pr>1andf|vn|p%f|v

P then v, — v strongly in LP.

Proof. For the case p = 1, see [46, Section 1.3.4, Proposition 1]. For p > 1, this is a consequence of the
uniform convexity of the space LP. O

Remark 5.3.11. It might be relevant to emphasize the fact that, using the inequality f** < f, condition
(5.3.6) in Theorem 5.3.9 is satisfied if and only if

fu(x), Vu(z)) = f**(u(z), Vu(z)), fora.e. z € Q.

This Theorem 5.3.9 has as a consequence the following interesting corollary, which prevent the Lavrentiev
gap for functions @ which are already known to be minimizers of the energy.

Corollary 5.3.12. Let f : R x RY — [0, 00) satisfies Hypothesis 5.3.3, and let ¢ € W1>°(Q). Ifu is a
minimizer of E[f] on WP (), for some p € [1,00), then there exists a sequence (u,) C W2>(Q) such
that

U, — W stronglyin WP(Q),

and

lim /Qf(un(x),Vun(x))dx:/Qf(ﬂ(x),Vﬂ(x))dx

n—-+oo

Proof. By Theorem 5.3.9, it is enough to prove that @ satisfies (5.3.6). Thank to equality (5.3.1), we obtain
E[f)(@) = inf { ELf*](w) : we WEr (@)}
— inf {E[f](u) L ue W;”’(Q)}
= E[f](@).
The reverse inequality comes from f** < f. O

Remark 5.3.13. We can see Theorem 5.3.9 as a generalization of Theorem 5.3.1 to the case of non convex
Lagrangians. Indeed, if f = f**, then (5.3.6) is trivially satisfied for every v and we recover the original
statement of Theorem 5.3.1. In fact more can be said on this matter: Theorem 5.3.9 states that (5.3.6) is a
sufficient condition for the existence of a sequence (u,,) strongly converging to u satisfying E[f](u,) —
E[f**](u). We claim that under the assumption that f is continuous, the converse is also true. Indeed, in that
case, by the Fatou Lemma,

E[f](u) < liminf B[f)(u,) = E[f**](u),

n—-+4oo

and the fact that f** < f gives the reverse inequality.
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5.3.3 Convergence results for convex-dominated Lagrangians.

In the following theorem we show another case in which E[f](u) = E,q[f](u) (the notation E,..[f] was
introduced in Remark 5.3.2), with some interesting implications.

Theorem 5.3.14. Let f : R x RN — [0, 00) continuous, and let o € W>°(Q). Let u € W1 (R) for some
p € [1,00) and assume that there exists g : R x RNV — [0, 00) globally continuous and convex with respect
to the last variable, such that f < g and

/Qg(u(;l:), Vu(x))dx < +o0. (5.3.8)

Then there exists a sequence (uy) C W2>°(Q) such that
u, —u stronglyin WP(Q),

and

lim /Qf(un(x),Vun(x))dx:/Qf(u(m),Vu(x))dx

n—-+oo
In fact, the previous theorem is an immediate consequence of the more general following one:

Theorem 5.3.15. Let f : R x RY — [0, 00) continuous, and let ¢ € W1>°(Q). Let u € WP () for some
p € [1,00) and assume that there exists a continuous g : R x RY — [0, 00) satisfying Hypothesis 5.3.3, such
that f < g, (5.3.8) is satisfied, as well as

/ﬁwwmvwmm:/mwmwwmm.
Q Q

Then there exists a sequence (uy,) C W2>°(Q) such that
U, —u  stronglyin WP(Q),
and

n—-+o0o

lim /Qf(un(x),Vun(ac))dx:/Qf(u(x),Vu(x))dx

Proof. We begin by noticing that g satisfies the assumptions of Theorem 5.3.9. Therefore, there exists (u,) C
W2>°(Q) such that

u, — u strongly in W'P(Q),
and

ngrfoo Qg(un(x),Vun(x))dx:/Qg(u(x),Vu(x))dw. (5.3.9)

Since f and g — f are continuous and non-negative, by the Fatou Lemma,

lim inf E[](un) > B[f)(u), (5.3.10)
and
lim inf Elg — f](un) > Elg — f)(u). (5.3.11)

Thus, using (5.3.9) and (5.3.11),

lim sup E[f](up) = lim sup [E[g](un) — FElg— f](un)}

n——+oo n—-+oo

< Elg)(u) — liminf Elg — f](un)

< Elg|(u) — Elg — f](u)
= E[f](u).

Which, with the help of (5.3.10), concludes the proof. ]
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Here is a consequence of Theorem 5.3.14:

Proposition 5.3.16. Let f : R x RN — [0,00) continuous, p,q € [1,00) such that W*P(Q) — Li(Q),
and let o € WH>°(Q). Assume that there exists g : R x RN — [0, 00) globally continuous and convex with
respect to the last variable, such that

Fu,€) < g(u,€) < e(f(u,€) + [P + |ul? +1),  VueR, VEeRY,
for some ¢ > 0. Then for any u € WlP(Q), there exists a sequence (u,) C W2 >(Q) such that
up — u  stronglyin  WHP(Q),
and

lim /Qf(un(x),Vun(x))dx:/Qf(u(m),Vu(x))dx

n—-+oo

Proof. In the case where E[f](u) = +oo, this follows from the continuity of f and the Fatou Lemma.
Otherwise, we can apply Theorem 5.3.14. By assumption, g is convex with respect to ¢ and furthermore

/QQ(U(x%VU(z))dx <c (/Q fu(@), Vu(@))dz + [ VullZ, + [lul7. + IQ>
< H-o00,
which is what we needed. O
Proposition 5.3.16 has a few interesting consequences:

Corollary 5.3.17. Let f : R x RN — [0, 00) continuous such that f** is continuous, p, q € [1,00) such that
WP(Q) — L4(Q), and let o € W12 (L2). Assume that

Flu,©) < e(f(w,&) + € + ul” +1),  VueR, Ve RY,
for some ¢ > 0. Then for any u € WP (Q), there exists a sequence (u,) C W 2> (Q) such that

U, —u stronglyin WP(Q),

and
Jim / Flun (), Vit (2))da = / Fu(@), Vu(z))dz.
n—-+oo Q Q
Proof. 1tis sufficient to take g := ¢(f** + |£|P + |u|? 4 1) in Proposition 5.3.16. O

Corollary 5.3.18. Let f : R x RN — [0, 00) be a continuous function, p,q € [1,00) such that WirP(Q) —
L4(Q), and let o € W1>°(Q). Assume that f is “convex at infinity”; that is, there exists f : R x RN —
[0, 00) convex in & and continuous as well as K > 0 such that
fu,&) =f(u,8), VueR, V&RV \ Bg.

Assume furthermore that

sup { f(,€) = F(u,€) + €€ Bic} = O(ful), s [u] = 0. (53.12)
Then for any w € W} P(Q), there exists a sequence (uy,) C W > (Q) such that

un, — u  stronglyin  WhP(Q),

and

lim [ Fun(a), Vi (2))da = / Fu(@), Vu(z))dz.
Q Q

n—r-+oo
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Proof. By (5.3.12) and continuity in « of the term on its left-hand side, there exists M > 0 such that
P8 < [, €) + M(jul? +1),  VueR, ¥R,
Now let g(u, &) := f(u, &) + M(Ju|? + 1) and apply Proposition 5.3.16. O

The following result consists in the case where f = f(&) is C? and not far from being convex (more
specifically, the eigenvalues of the Hessian of f are not too largely negative). Before stating it, here are some
notations: given f : RY — [0, 00) a C? function, we define the function A[f] : RY — R by

M) = inf (V2f(6)-¢,©), VERY.

Hence A[f](£) is the smallest eigenvalues of the Hessian of f at point £&. Notice that f being C?, \[f] is
continuous on RY. We can now state the result:

Corollary 5.3.19. Let f : RN — [0,00) be a function of class C? and p € [1,00). Denote

o(r) := sup ()\[f](f))i, Vr > 0. (5.3.13)
|€l=r
(Here we used the notation a~ = max(—a, 0)). We assume that §(r) = O(r?=2), as r — +o0. Moreover,

if p = 1, we assume that f0+oo 0(r)dr < +oo. Then for any u € WP (Q), there exists a sequence (uy) C
W2 (Q) such that
up — u  stronglyin  WHP(Q),

and

Jim / F(Vun@)dz = [ F(Vu(z))da.
n—=+oo Jo Q

Proof. As always, we can assume that fQ f(Vu)dz < +o00, otherwise the result follows by the Fatou Lemma.
Notice first that if § = 0, then f is convex and Theorem 5.3.1 can immediately be applied. We assume in the
following that € is not identically 0 on [0, 00). Let v : [0,00) — [0, 00) be C? such that v(0) = +'(0) = 0
to be fixed later on, as well as g; : £ — (|¢]) defined on RY. As such, g; is a C? radial function on R¥.
Let ¢ € RV \ {0} and B an orthonormal basis of R having £/|£| as its first vector, then a straightforward
calculation using the radial property of g; gives that its Hessian quadratic form is represented in the basis B
as the following diagonal matrix:

diag (7/(Ig)), €171 (IED), -, 16177 (1€D)

and so,

spectrum [V2g1(6)] = {(7/(IE)). 117 (€D}, ve € RV \ {0} (53.14)

e If p > 1, choose v to be a C? function on [0, o0) such that v(0) = /(0) = 0 and such that y(r) = r?
if » > 1. Then (5.3.14) gives the existence of some ¢ > 0 such that it holds

Ag](€) = clgfP=2, v e RV \ By.

To be clear, here B, refers to the centered ball of radius 2 in R". Now using the assumption we made
on @, one can find R > 2 and M > 1 such that,

Ag](€) = M7'o(l¢), V&€ RN\ Bg. (5.3.15)

If f + Mgy is convex on RY, then we can take g := f + Mg, and apply Theorem 5.3.14. Indeed,
recall that w € W'?(€2) and thus that [, g1 (Vu)dz < +oc. Otherwise, because f and g; are C* on
RY, it holds that
0> inf A[f + M¢](€) = —¢c > —o0. (5.3.16)
§€BR

Let go : RY — [0, 00) be any C? convex function with linear growth satisfying that A[g2] > ¢, on Bpg.

Then, by (5.3.13), (5.3.15) and (5.3.16), f + Mgy + g- is convex on RV, Taking g = f+ Mgy, + go
in Theorem 5.3.14 gives the result.
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e If p = 1, the proof is slightly different. Firstly, instead of taking (r) = r, we choose -y such that
7" = 0 (as well as y(0) = v/(0) = 0). We claim that 7"/ (r) = O(r~—14/(r)), as r — +o0. Indeed,
~' is a non decreasing function, converging to & := f0+oo 6 > 0. Thus r—4/(r) ~ é&~'. However,
7" (r) = 0(r) = O(r—') by assumption. Let R > 0 and M > 1 be such that for every 7 > R, it holds
that

v (r) < Mr=ty/(r). (5.3.17)

Using the fact that M > 1, as well as (5.3.14) and (5.3.17), we obtain once again (5.3.15). Moreover,
we have that g, has sublinear growth (because ' is bounded), thus again [, g1 (Vu)dz < +oc. From
this point on, the proof follows just as in the case p > 1.

O

5.4 Generalization to the non-autonomous case

In this section we want to extend Theorem 5.3.5 to the non autonomous case, applying the results from [14].
Firstly we report [14, Theorem 3], the main conditions used in the paper are the following : we say that a
measurable function g : 2 x R x RY — [0, 0o) satisfies condition (H;) if for every L = (L1, Ly) € (0, 00)2,
there exists a constant C, > 0 such that for a.e. z € 2 and every (u,&) € [—Lq, L1] x RY, for every € > 0,
it holds

L
(0)" (@) < 5 = g(e,u,8) < CL(l+ (97)7 (2.0, 6)), (1)

where
9: (z,u, &) = yeeggggx)g(% u, §). (5.4.1)

We also say that a measurable function g : Q x R x RY — [0, 0o) satisfies condition (H.s) if there exists
0 € [1,00], a € LY(2) and a real number uo > 0 such that

g(z,u,0) < a(a:)|u\%t, forae. x € Q, Yu € R\ [—ug, ug)- (H2)

Here p* and 6’ are respectively the Sobolev and Holder conjugate exponents of p and 6. We now state the
result proved in [14]:

Theorem 5.4.1. Let f : Q x R x RN — [0,00) be a Carathéodory function which is convex with respect
to the last variable, and let o € W1°°(Q). Also assume that f satisfies (H1). If N > 2, we assume
furthermore that f satisfy (Ha). Then, for every u € WP (Q) such that E[f](u) < oo there exists a
sequence (u,) C W1°°(Q) such that u, — u strongly in W' (Q) and

lim /Qf(:v,un(:c),Vun(:c))d:c:/Qf(x,u(x),Vu(x))d:v.

n—+oo
Hypothesis 5.4.2. We will work with the following set of assumptions:
a) f satisfies Hypothesis 5.2.4,
b) f satisfies condition (1),
c) if the dimension IV of €2 is strictly greater than 1, f satisfies condition (H5),
d) f**is a Carathéodory function.

We introduce a technical lemma about an anti-jump condition to impose on the original Lagrangian f to
obtain the condition (#1) for f**.

Lemma 5.4.3. Let f : Q x R x RY — [0, 00) be a measurable function. Then for any € > 0,

() =)
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The notation in this lemma is as introduced in (5.4.1)

Proof. Since f** < f, then
() <) (54.2)

To show the other inequality, we first recall that, using Proposition 5.2.10,
=) (z, u, :inf{ al( ess inf J Uy 1)’ ;& = }7
(£ (2,u,€) Z [ Sssinf f(y,u. &) Z ¢

and

) = essint (inf {3 ouf . 6) | ok =c}).

For every convex combination we have that

Zaz essinf f(y,u,&) < essinf Zaz (y,u, &),

yEQNB. (z) yEQNB. (z)
and
inf (ye%sgll%nf {Zaz y,u,&;) ‘ Zazfz = })
= y;ggérglfﬂ(inf { Xi:aif(y,u,fi) ’ zi:aifi = f}),
and so,

inf{gaz( Sssinf fly,u ) ‘ Zazé} = }
it (o] Sostins| Soc=e}).
< snit, (o (S| Sos=c
thatis, (f2)** < (f**)-. Since (f.)** is a convex function with respect to &, we have

(o)™ < (™)),
thus with (5.4.2),
(f) = (™))
O

Lemma 5.4.4. Let f : Q x R x RN — [0, 00) be a measurable function. Then if f satisfies condition (H1),
[** satisfies it as well.

Proof. By the previous lemma we can rewrite condition (#1) for f as

((F))" (20,8 < % = flz,u,8) <O+ ((f7))" (z,u,8))

and since f** < f we have

(7)) (@,u,8) < % = [T, u,8) < Co(1+((f7)) ™ (@, u,8)).

Now we can extend Theorem 5.3.5 to the non-autonomous case.
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Theorem 5.4.5. Let f : Q x R x RN — [0, 00) satisfy Hypothesis 5.4.2, and let o € W1>°(Q). Then for
any u € W2 (Q), there exists a sequence (uy,) C W2>°(Q) such that u, — win L*(2) and

lim /Qf(:v,un(x),Vun(x))dx:/Qf**(m,u(x),Vu(x))dx.

n—+4oo
Moreover,
e if there exists ® : RN — [0, 00) superlinear such that
flz,u,&) > ®(§), forae € Q, Yu R, VéE € RY,
then the sequence (u.,) can be chosen so that u,, — u weakly in W1(Q);
o if for some p € (1, 00) it holds that
flz,u, &) > 1|é|P — ca forae x€Q, YueR, V¢ e RY,

for some cy,cy > 0, and u € WHP(Q) then the sequence (u,,) can be taken so that u,, — u weakly in
wWir(Q).

Proof. Just as in the proof of Theorem 5.3.5, we can assume without loss of generality that E[f**](u) < 4o0.
By assumptions f** is a Carathéodory function and if N > 2, for |u| > up and a.e. € Q,

f**(x,u,O) < f($7ua0) < a(m)|u|%j,

thus f** satisfies (Hz) in this case. By Lemma 5.4.4 and the fact that f satisfies (1), for every L =
(L1, L2) € (0,00)?, there exists a constant Cz, > 0 such that for a.e. z € Q and every (u, &) € [—L1, L1] x
RY, for every € > 0 it holds

((F))" (@,u,8) < EL% = [ (@,u,8) <CL(l+ ((f7)) 7 (2,1, 8))-

Thus we can apply Theorem 5.4.1 to f** (which is a Carathéodory function by 5.4.2-d)) and so, for every
u € W)'(Q) there exists a sequence (v,) C W }>°(Q) such that v, — u in W'(Q) and

lim /Qf**(ac,vn(x),an(m))dx:/Qf**(:v,u(x),Vu(x))dm.

n—-+oo

By Theorem 5.2.20, for every n there exists a sequence (vF) C W2>(Q) such that vk — win L>®(Q) as
k — o0, and

i k k = *(x, u, (x w, (z))dz.
lim /Qf(x,vn(fv)7an(x))dI—/Qf (1 1 (), Vi ()

k—+oo

Thus, using a diagonal argument, there exists a sequence (u,,) C W}*°(Q) such that u,, — w in L' () and

lim /Qf(x,un(ac),Vun(x))dx:/Qf**(x,u(x),Vu(x))dx.

n—-+oo

If there exists ® superlinear such that

n

sup/ﬂ@(VUn(x))d:E < Strllp/ﬂf(x,un(z),Vun(x))dm < 400,

then, up to considering a subsequence, (Vu,,) converges weakly in L' to some v € L!. It is easy to see
(using an integration by parts argument) that actually v = Vu. So we have

u, —u weaklyin Wh(Q).

If p > 1 the proof is the same taking ®(&) = ¢1|£P — ca. O
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At this point, we finally generalize Theorem 5.3.9 to the non-autonomous case.

Theorem 5.4.6. Let f : Q x R x RY — [0, 00) satisfy Hypothesis 5.4.2, and let o € W>(Q). Assume
u € Wé’p(Q)for some p € [1,00), and satisfies

/ ™ (z,u(x), Vu(z))de = / f(z,u(z), Vu(x))de.
Q Q
Then there exists a sequence (u,,) C W2>°(Q) such that

up — u  strongly in  WHP(Q),

and

lim /Qf(a:,un(x),Vun(x))dm:/Qf(x,u(x),Vu(x))dx.

n—+oo

Proof. We work as in the proof of Theorem 5.3.9. For the case p = 1, we make use again of Lemma 5.3.8 to
get the existence of some ® : RY — [0, 0o) superlinear and convex such that jQ ®(Vu(x))dr < +oo. Then
we define

g(aau,g) = f(:L‘/U,,f)—f—@(f)—f— 1+|§‘2

The only thing we have to show is that, under the assumption that f satisfies (#1) and (H2), g satisfies them
as well. The remainder of the proof will follows then just as in Theorem 5.3.9. Notice that, by definition of
g and the fact that ¢ — f does not depend on x and u, it holds

g;(x’uaf):f;(x’uv€)+(b(€)+ 1_|'|£|2

Therefore we have, from the fact that & was assumed to be convex, that

(92)" (2w, 8) = (f2)" (2, u,§) + @) + V14 [ (5.4.3)

by definition of (g2 )**. By Hypothesis 5.4.2, given L = (L1, La) € (0, 00)?, there exists a constant Cy, > 0
such that for a.e. z € Q and every (u, &) € [—L1, L1] x R, for every £ > 0, it holds

) @ <22 = fnu <O+ () (@w0).

If for a.e. € Q and every (u,&) € [~Ly, L;] x RY forevery ¢ > 0,

()" (.6 < 22,

then (f=)**(z,u,&) < La/eN by (5.4.3), and thus

f(@,u,8) < Cr(1+ (f2)" (2, u,§)).
So, taking C' = max(1, C), we have by (5.4.3),

9(x,u,8) < CL(1+ (f2)"(x,u,8)) + (§) + V1 +[¢]?
< C(1+ (92)" (a,u,8)),

and thus g satisfies (H1). Now in the case N > 2, since f satisfies condition (H5) there exists C’ > 0 such
that
fl@,u,0) +1+®(0) < Cla(z)u]7,  forae zeQ YueR\ [—u,ug.

Here, up to modify a by taking @ := max(a, 1), we assumed that the function a in condition (#5) satisfies
a(z) > 1 on Q.By Theorem 5.2.17 we have that g** is a Carathéodory function since g is superlinear with
respect to the last variable. So g satisfies Hypothesis 5.4.2, thus we can apply Theorem 5.4.5 to g and argue
as in the proof of Theorem 5.3.9. If p > 1 the proof is the same replacing ®(£) + /1 + [£|? by |€]P.

O
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In [14, Appendix A] there are some applications of Theorem 5.4.1 to the case f(z,w,-) nonconvex but
dominated by a convex function g. The following result follows this idea:

Theorem 5.4.7. Let f : Q x R x RN — [0,00) be a Carathéodory function, and let o € W (Q). Let
u € WhP(Q) for some p € [1,00) and assume that there exists g : @ x R x RN — [0, 00) a Carathéodory
function satisfying the assumptions of Theorem 5.4.1 and a € L*(€2,[0,00)) such that

flzyu, &) < g(z,u, &) + alx), forae. € Q, YueR, VE e RY,

and

/ g(z,u(z), Vu(x))dr < +o00.

Q

Then there exists a sequence (uy,) C W2>°(Q) such that

up —u  stronglyin  WHP(Q),
and

tin [ o (e), Vun()ds = [ Flou(e), Vale)ds,
n—-+oo Q Q

Proof. Applying Theorem 5.4.1 to g, there exists a sequence (u,,) C W;’W(Q) converging to u in W1P(Q)
such that

ngr-lr-loo Qg(a:, Un (), Vuy(2)) + a(z)dz = /Qg(x,u(x), Vu(z)) 4+ a(z)dr < +o0.

The reminder of the proof follows just as in Theorem 5.3.14, using the fact that f is Carathéodory and the
Fatou Lemma. O
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