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Abstract

The following Ph.D. thesis consists of three chapters and explores various applications
of Hawkes processes and affine models within the field of risk modeling. Each chapter
corresponds to a distinct paper.

In the first project, we address an hedging problem, specifically we look for a semi-static
variance-optimal strategy. We minimize the variance of the hedging error, combining static
and dynamic positions in different market instruments. The problem is analyzed in an
affine modeling framework, featuring stochastic volatility and self-exciting jumps in the
log-price. The optimal strategy is characterized analytically through multi-dimensional
complex integrals and computed numerically. We also perform a parameter sensitivity
analysis and examine the impact of incorporating jumps on the hedging error.

The second work focuses on a stochastic control problem applied to cyber-risk mitiga-
tion. A continuous-time stochastic model is developed, incorporating Hawkes processes
to describe the arrival of cyberattacks targeting a specific entity. We formulate a con-
trol problem which is solved via dynamic programming, and we determine the optimal
investment strategy. We then perform numerical experiments to highlight the role that
attack modeling plays in determining the optimal response and resource allocation.

The third chapter addresses a theoretical problem. Given an affine process under a cer-
tain probability measure, we characterize the family of all stable measure transformations
that preserve the affine structure of the process. This theoretical insight is fundamental
for applications such as pricing and risk management, ensuring that the affine properties
are maintained under different probability measures.





Sommario

La seguente tesi di dottorato è composta da tre capitoli ed esplora diverse applicazioni dei
processi di Hawkes e dei modelli affini nell’ambito della modellizzazione del rischio. Ad
ogni capitolo corrisponde un articolo scientifico.

Nel primo progetto affrontiamo un problema di copertura ottimale, in particolare stu-
diamo una strategia semi-static variance-optimal. Minimizziamo la varianza dell’errore di
copertura, combinando posizioni statiche e dinamiche in diversi strumenti di mercato. Il
problema viene analizzato nel caso di un modello affine che presenta volatilità stocastica
e salti autoeccitanti nel prezzo. La strategia ottimale è caratterizzata analiticamente at-
traverso integrali multipli su domini complessi e calcolata numericamente. Eseguiamo
anche un’analisi di sensibilità dei parametri ed esaminiamo l’impatto dell’incorporazione
dei salti sull’errore di copertura.

Il secondo lavoro si incentra su un problema di controllo stocastico applicato al con-
tenimento del rischio informatico. Sviluppiamo un modello stocastico a tempo continuo,
che utilizza i processi di Hawkes per descrivere l’arrivo degli attacchi informatici diretti
ad una specifica entità. Formuliamo un problema di controllo che risolviamo tramite pro-
grammazione dinamica, determinando la strategia di investimento ottimale. Eseguiamo
poi alcuni esperimenti numerici per evidenziare il ruolo che la modellazione degli attacchi
svolge nel determinare la risposta ottimale e l’allocazione delle risorse.

Nel terzo capitolo affrontiamo un problema teorico. Definito un processo affine sotto
una certa misura di probabilità, caratterizziamo la famiglia di cambiamenti di misura
che preservano la struttura affine del dato processo. Questa analisi è fondamentale per
applicazioni quali il pricing e la gestione del rischio, garantendo che le proprietà affini
siano mantenute sotto varie misure di probabilità.
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Introduction

Quantitative finance researchers often face a natural question: what happens when we
introduce jumps? This consideration reflects a broader challenge in stochastic modeling:
diffusion processes, despite their elegance and mathematical tractability, are often unable
to capture the complexity of real-world systems.

Poisson processes constitute the most elementary tools for modeling discontinuities,
describing the occurrence of independent events under the assumption of a constant
arrival rate. Combined with diffusion, in a simple jump-diffusion setting, they can repro-
duce several realistic market features. Nevertheless, they remain too simplistic, as they
cannot incorporate the dependence between event arrivals and the clustering that may
arise in empirical observations. These features emerge in different contexts and cannot be
overlooked: financial markets might face cascades of defaults during a crisis, insurers may
experience waves of claims after a natural disaster, and cyberattacks often occur in bursts
due to the interconnection of digital infrastructures. Capturing such behaviors requires
richer classes of processes.

Hawkes processes naturally extend the Poisson framework by allowing the probability
of a new event occurring to depend on past arrivals, making them suitable to describe self-
exciting effects. In a more general setting, one can rely on affine processes to reproduce
analogous features. Their mathematical structure allows jump intensities to be stochastic
and state-dependent, making them suitable for modeling dependencies across different
risk factors. Clearly, this increased realism comes at a cost: moving from purely con-
tinuous to jump-driven dynamics, and from deterministic to stochastic intensities, entails
significant mathematical challenges, requiring the development of advanced analytical
and computational techniques.

In this thesis, we employ Hawkes and affine processes to develop a risk modeling
framework which incorporates jumps and cross-excitation between factors. The disserta-
tion is organized in three chapters, each one addressing a distinct problem.

In Chapter 1, we tackle a hedging problem in an incomplete affine market model with
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self-exciting jumps. We compute the semi-static variance optimal strategy in this framework
and analyze how the introduction of contagion-type jumps affect the hedging error.

Chapter 2 develops a stochastic setting for modeling cyberattacks using Hawkes pro-
cesses. Within this setting, we address an optimal control problem aimed at quantifying
the optimal cybersecurity investment when attacks arrive in clusters.

In Chapter 3, we investigate a more theoretical subject. We study probability measure
transformations for affine models, establishing necessary and sufficient conditions under
which the affine property is preserved.

Before delving into the three research questions addressed in this thesis, we provide
an overview of Hawkes and affine processes.

A brief tour on Hawkes and affine processes

As mentioned in the title, the two central classes of stochastic processes employed through-
out the thesis are Hawkes and affine processes. In this section, we present the main con-
cepts underlying these mathematical objects, explaining their connections, and providing
an overview of their key properties and applications.

Hawkes processes Hawkes processes, introduced in the seminal work of Hawkes (1971),
are self-exciting point processes. They are counting processes characterized by a stochastic
intensity, which represents the instantaneous rate at which new events occur given the past.
Unlike standard Poisson processes, where events occur independently at a constant rate,
Hawkes processes capture interdependent arrivals: each occurrence of an event increases
the likelihood of future events, leading to clustered events. While several processes have
stochastic intensities, such as Cox processes in D. R. Cox (1955), Hawkes explicitly model
endogenous self-excitation through their structure.

Mathematically, we denote by (𝑁𝑡)𝑡≥0 the counting process, where 𝑁𝑡 represents the
total number of event arrivals in a system up to time 𝑡, and by (𝑇𝑛)𝑛≥1 the jump times. The
Hawkes intensity process is defined by

𝜆𝑡 = 𝜆0 +
𝑁𝑡∑︂
𝑛=1

𝐾(𝑡 − 𝑇𝑛) for all 𝑡 ≥ 0,

where 𝜆0 > 0 is the baseline intensity and 𝐾 : [0,∞) → [0,∞) is the excitation kernel.
Each jump of 𝑁 increases the intensity, with size and persistence depending on 𝐾. The
choice of the kernel 𝐾 is crucial on determining the properties of the process. For a general
kernel 𝐾, Hawkes processes are non-Markovian, as the intensity can depend on the entire
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past history. In this thesis, as usual in the applications of Hawkes processes, we focus
on the exponential kernel case, 𝐾(𝑡) = 𝜉𝑒−𝛽𝑡 . This particular choice ensures the Markov
property and will be central to our analysis. The memoryless property of exponential
Hawkes processes makes them a natural choice for the applied problems addressed in
the first two chapters. Moreover, only with this kernel choice Hawkes processes can be
embedded in the class of affine processes, which are analyzed in Chapter 3. Extensions
such as marked and multi-dimensional Hawkes processes (see Laub et al. (2021, Section
3.6) for an overview) exist and are discussed in the following chapters of the thesis.

Due to their self-exciting nature, Hawkes processes have been applied in a wide range
of fields. In seismology, they capture aftershocks following an earthquake, see Ogata
(1978); in neuroscience, they describe the neuronal spike train activity, see Reynaud-
Bouret et al. (2013); in insurance, they simulate the arrival of aggregated claims, see
Stabile and Torrisi (2010). In this dissertation, we concentrate on applications in finance
and cyber-risk, respectively in the first and second chapter. Chapter 1 applies Hawkes
processes to model contagion in the market price, similarly to Aït-Sahalia et al. (2015) and
Filimonov et al. (2014). The focus is on the implications of jump incorporation in risk
assessment. Beyond this specific case, Hawkes processes have wide applicability in fin-
ance, including high-frequency trading, market microstructure modeling, and contagion
mechanisms underlying credit defaults (an overview is provided in Bacry et al. (2015)).
Chapter 2 concentrates on cyber-risk, employing Hawkes processes to describe the arrival
of cyberattacks. Cyber threats often arrive in bursts and propagate through networks in a
self-exciting manner, making Hawkes processes well-suited to model attack dynamics, see
Baldwin et al. (2017), and Bessy-Roland et al. (2021). We study how this cluster modeling
influences the optimal investment strategy in cybersecurity. The third chapter is mainly
theoretical, so it does not tackle any specific application, but the obtained results can be
exploited in all the above mentioned applicative fields.

Affine processes General affine processes were first introduced in Duffie, Filipović et al.
(2003), and are a well-established class of stochastic processes in probability and mathem-
atical finance. They are Markov processes whose characteristic function is exponentially
affine in the initial state. Mathematically, this property can be expressed as follows. Let
(𝑋𝑡)𝑡≥0 be an affine process taking values in a suitable state space. Then, the conditional
expectation of the exponential transform of 𝑋𝑡 admits the closed-form representation

E
[︁
𝑒⟨𝑢,𝑋𝑡⟩ |𝑋0 = 𝑥

]︁
= exp

(︁
𝜙(𝑡 , 𝑢) + ⟨𝜓(𝑡 , 𝑢), 𝑥⟩

)︁
,

3
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where 𝑢 is a complex vector in the domain of definition of the transform, ⟨·, ·⟩ is an
inner product, and 𝜙, 𝜓 are deterministic functions solving a system of generalized
Riccati ordinary differential equations. This elegant mathematical structure simplifies
the computation of many crucial quantities, such as moments, in a theoretical setting, or
option and bond prices, from an applied point of view.

A major strength of affine processes lies on their ability to unify different models
within one theoretical framework. They can incorporate a wide range of stylized features
such stochastic volatility, mean reversion, heavy tails and jumps. Due to our interest on
discontinuous models, it is worth highlighting that affine processes potentially reproduce
quite sophisticated jumps behavior: they allow for finite, but also for infinite intensity,
simultaneous jumps in multiple components, and stochastic intensities. In particular, the
intensity can depend in an affine way on any non-negative component, allowing for cross-
excitement and self-excitement effects between factors. Exponential Hawkes processes can
be embedded into the class of affine models, as they can be interpreted as point processes
with affine drift and intensity which is linearly dependent on the process itself.

Affine processes have emerged as highly attractive class of processes across a wide
range of fields, offering a balance between flexible modeling and analytical tractability.
Interestingly, even before their formal definition in Duffie, Filipović et al. (2003), many
widely used models were in fact affine in nature. For instance, the CBI (continuously
branching with immigration) processes introduced by Kawazu and Watanabe (1971) be-
long to the affine class. Similarly, classical interest rate models, such as Vasicek (1977) and
J. C. Cox et al. (1985) are special instances of affine processes. The same holds for major
financial models, such as Black-Scholes, Heston (1993) and Bates (1996). Subsequently,
affine processes have been also employed in credit risk, see e.g. intensity-based models
in Duffie (2005), and in longevity and mortality risk modeling, see Biffis (2005), Schrager
(2006) and Luciano and Vigna (2008). The examples above are by no means exhaustive.
Thanks to their generality, affine processes provide a versatile framework that can be
tailored to model a broad spectrum of phenomena.

The first and third chapters of this dissertation rely heavily on affine processes. In
Chapter 1, we study an affine generalization of the Heston model with self-exciting jumps.
The characterization of its Laplace transform function through ordinary differential equa-
tions will be key in the study of the problem. Chapter 3 takes a broader perspective,
focusing on structural properties of affine processes under measure changes. This ana-
lysis ensures that the affine structure can simultaneously be exploited under different
probability measures.

4
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Structure of the Ph.D. thesis

The dissertation consists of three chapters, each corresponding to a paper. The problems
addressed in each chapter are self-contained, but they are connected to risk modeling via
Hawkes and affine processes. The papers are presented in chronological order.

Chaper 1: Semi-static variance-optimal hedging with self-exciting jumps The first
chapter is based on Callegaro, Di Tella et al. (2025). This work tackles one of the key
problems in mathematical finance: hedging against financial risk. With the increasing
complexity of financial instruments, and the introduction of more sophisticated models,
hedging remains a relevant challenge. The inclusion of additional sources of randomness
in market models, such as stochastic intensity and volatility, improves model realism at the
cost of market completeness. In literature, multiple approaches to hedging in incomplete
markets have been proposed (see Björk (2009, Section 15.8) for an overview, and Dana and
Jeanblanc (2003, Chapter 8) for an introduction on the topic). In this work, we focus on
a semi-static variance-optimal hedging approach. Specifically, we hedge a variance swap by
minimizing the residual variance under the risk-neutral measure, combining a dynamic
trading strategy with a static position in a fixed basket of European options. The underly-
ing model includes a stochastic, Heston-like volatility component, and self-exciting jumps
in the log-asset price, driven by a marked Hawkes process with exponential kernel. This
setup allows to capture stylized features observed in real markets by several authors (see,
e.g., Aït-Sahalia et al. (2015) and Herrera and González (2014)), and nowadays regarded
as well-established properties of price dynamics. The work advances both the theoretical
understanding and practical implementation of semi-static hedging strategies in affine
models with self-exciting jumps. We highlight the principal contributions as follows.

• Theoretical contribution. The main theoretical advancement of the work con-
cerns the characterization of the model’s Laplace transform. In the context of
semi-static variance-optimal hedging, discounted asset prices are required to be
square-integrable martingales under a risk-neutral measure, and this assumption is
tightly linked with the Laplace transform domain. The investigated model belongs
to the class of affine processes, meaning that its Laplace transform can be described
via a system of Riccati equations. Since a closed-form solution of this system is
not available, we provide an analytical study of the Laplace transform domain (see
Section 1.3 and Proposition 1.7). Differing from similar works in the literature (e.g.
Brachetta et al. (2024, Lemma B.1)), our setting incorporates exponential marks in the
intensity, leading to nontrivial technical challenges connected to the non-existence

5
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of all exponential moments.

• Computational contribution. A major contribution of our work consists in the
development of numerical techniques to evaluate the hedging error. The optimal
hedging strategy requires the computation of four-dimensional complex integrals,
see Theorem 1.21. It is also needed to implement Monte Carlo simulations, and to
numerically solve and evaluate the Riccati system. We develop computational tech-
niques for simulating the model efficiently and for dealing with high-dimensional
integration.

• Applicative relevance. From an applied perspective, our study provides an explicit
derivation of the semi-static variance-optimal hedging strategy for a variance swap
hedged through a basket of European options. The strategy is expressed via a multi-
dimensional integral representation. Although these integrals must be evaluated
numerically, all the key coefficients are derived in closed form, ensuring analytical
tractability for practical applications. Moreover, we conduct a sensitivity analysis on
the model parameters, assessing their impact on the hedging error.

Chapter 2: A stochastic Gordon-Loeb model for optimal cybersecurity investment under
clustered attacks In the second chapter, we present the results of Callegaro, Fontana
et al. (2025). In this work, we address a stochastic optimal control problem in a Hawkes
setting, with an application to cyber-risk. In the last five years years, cyber-risk has
emerged as one of the most relevant sources of risk, attracting increasing attention from
both academia and industry. Due to the interconnected nature of IT systems, a successful
breach may trigger a cascade of subsequent attacks, as highligted in the empirical analysis
of Baldwin et al. (2017). To reproduce this clustered effect, Hawkes processes have been
recently applied to the modeling of cyber-risks in Bessy-Roland et al. (2021) and Hillairet
et al. (2023). Our study aims at applying stochastic control techniques to determine the
optimal risk mitigation strategy for an entity facing cyberattacks. While previous studies
have mostly addressed this problem under deterministic settings (see Gordon and Loeb
(2002) and Krutilla et al. (2021)) or within diffusion-based frameworks (see Tatsumi and
Goto (2010)), we focus instead on the stochastic nature of cyberattacks and, in particular,
on their contagion effects. Our work contributes in different directions to the emerging
literature on the application of stochastic control methods to cybersecurity.

• Modeling contribution. Our proposed model is a continuous-time, dynamic, and
stochastic generalization of a well-established model in cybersecurity, introduced

6
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in Gordon and Loeb (2002). It is the first formulation of the Gordon-Loeb model
that incorporates Hawkes processes to describe the arrival of cyberattacks. Gordon
and Loeb model assumes that cyberattacks which thread an entity are filtered by its
security system, depending on a certain vulnerability. The cybersecurity investments
increase the level of information security, reducing the vulnerability of the system
and, consequently, the number of cyberattacks which penetrate it. We model the
number of attacks with an Hawkes process and represent the cumulated losses
through a compound process. In this setting, the control acts on the vulnerability of
the system, in an attempt to contrast the clustering arrivals of attacks. To determine
the optimal investment in cybersecurity, we build upon the criterion proposed by
Gordon and Loeb (2002). We maximize a utility function, which represents the
benefit-cost tradeoff obtained by the entity when investing.

• Theoretical contribution. The problem is framed as a stochastic control problem
with jumps and is addressed using dynamic programming techniques. The optimal
value is characterized by a partial-integro differential equation. Although the value
function cannot be computed analytically, we analyze its main properties. We in-
vestigate the rate of growth of the solution, and study its convexity and Lipschitz
properties with respect to the state variables of the problem. Lastly, we prove a
verification theorem under suitable regularity assumptions.

• Computational contribution. As mentioned above, the control problem formula-
tion is not analytically tractable. To study the behavior of the value function and
of the optimal control, we employ different numerical techniques (finite differences,
method of lines) to solve the PIDE and characterize the optimal strategy. The lit-
erature on PIDEs under Hawkes dynamics is limited (see e.g. Gaïgi et al. (2025)
and Houssard et al. (2025) for some recent results), and mostly develops methods
tailored to specific contexts. Moreover, unlike most of the existing literature on
control with Hawkes processes, our analysis considers a three-dimensional setting,
which significantly increases the complexity of the problem.

• Applicative relevance. Finally, one of the aims of this work is to highlight the
practical implications of considering clustered cyberattacks. For this purpose, we
develop a series of numerical experiments showing that accounting for attack clus-
tering leads to more responsive and effective investment policies. We conclude that
ignoring the possibility of clusters of cyberattacks might result in a severe underes-
timation of cyber-risk and suboptimal response strategies.

7
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Chapter 3: Stable measure transformations for affine jump-diffusions The third chapter
is part of an ongoing research project with Prof. Claudio Fontana. We provide a complete
characterization of structure-preserving measure changes within the class of affine pro-
cesses. As highlighted above, such processes provide a powerful framework for modeling
risk across different areas.

A key question is whether the affine structure is maintained when changing the prob-
ability measure. Moving from one probability to a locally equivalent one is a standard
procedure in finance. For example, statistical estimation and risk management are usually
performed under the real-world probability, while pricing derivatives requires working
under a risk-neutral measure. In general, changes of measure are not structure-preserving.
Retaining the affine property would be highly desirable, as it allows to continue exploiting
the analytical advantages of these models. This provides a natural motivation for our the-
oretical investigation. Previous papers have examined this research question in the affine
setting (see, e.g., Cheridito, Filipović and Kimmel (2007), Fontana (2012) and Kallsen and
Muhle-Karbe (2010)). Our contribution goes beyond these works by establishing neces-
sary and sufficient conditions to identify stable transformations, thereby providing a full
characterization in the general affine jump–diffusion setting. The chapter advances the
understanding of structure-preserving measure changes in an affine setting, by combining
a rigorous theoretical analysis with applicative insights. The main contributions can be
summarized as follows.

• Theoretical contribution. In the work, we provide necessary and sufficient con-
ditions to characterize the admissible structure-preserving transformations. We
consider an affine process under a certain probability measure and we establish a
criterion that guarantees, when fulfilled, that under a locally equivalent probability,
the given process remains affine. Conversely, any measure change preserving the
affine structure must meet our conditions. Achieving a full characterization is non-
trivial. The key challenge consists in verifying that the considered density process
is a true martingale. By deriving necessary and sufficient conditions, we completely
identify the class of admissible transformations in a general affine jump–diffusion
setting, providing the sharpest criterion possible. Compared to prior works on
related problems in an affine context, our study addresses a more general affine set-
ting than Cheridito, Filipović and Kimmel (2007) and Fontana (2012), and provides
a more comprehensive characterization than the one in Kallsen and Muhle-Karbe
(2010). A complete comparison with the existing literature is provided in Section
3.4.

8
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• Applicative relevance. Our analysis goes beyond a purely theoretical investigation
by establishing conditions that are explicit and manageable, enhancing the practical
relevance of our result. In Section 3.5, we illustrate the applicative impact of our
contribution. We provide various examples, showing how our characterization can
be implemented in widely used jump-diffusion models. We also focus on Hawkes
processes, analyzing their construction via measure changes and identifying which
transformations preserve their structure. These applications demonstrate the prac-
tical relevance of our findings, simplifying calculations and supporting tractable
modeling in tasks such as risk management, pricing, and credit assessment.
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CHAPTER 1

Semi-static variance-optimal hedging with
self-exciting jumps

This chapter is based on Callegaro, Di Tella et al. (2025) and it is a joint collaboration
with Prof. Giorgia Callegaro, Dr. Paolo Di Tella and Prof. Carlo Sgarra. Submitted
in November 2024, the corresponding paper is published on Mathematics of Operations
Research.

The aim of this work is to investigate a quadratic, i.e., variance-optimal, semi-static
hedging problem in an incomplete market model where the underlying log-asset price is
driven by a diffusion process with stochastic volatility and a self-exciting jump process
of Hawkes type. More precisely, we aim at hedging a claim at time 𝑇 > 0 by using
a portfolio of available contingent claims, so to minimize the variance of the residual
hedging error at time 𝑇. In order to improve the replication of the claim, we look for
a hybrid hedging strategy of semi-static type, in which some assets are continuously
rebalanced (the dynamic hedging component) and for some other assets a buy-and-hold
strategy (the static component) is performed. We discuss in detail a specific example
in which the approach proposed is applied, i.e., a variance swap hedged by means of
European options, and we provide a numerical illustration of the results obtained.
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1.1. INTRODUCTION

1.1 Introduction

Two of the main targets of financial mathematics are pricing and hedging of contingent
claims. The aim of this work is to investigate a quadratic, i.e., variance-optimal, semi-static
hedging problem in an incomplete market model where the underlying log-asset price is
driven by a diffusion process with stochastic volatility and a self-exciting jump process
of Hawkes type. Before introducing our framework, we briefly summarize some key
findings in the variance-optimal hedging literature.

In Kallsen and Vierthauer (2009) the authors determine the variance-optimal hedge for
a subset of affine processes including a number of popular stochastic volatility models.
They obtain semi-explicit formulas for the optimal hedging strategy and the minimal
hedging error by applying general structural results and Laplace transform techniques.
In Černý and Christoph (2023), they investigate quadratic hedging in a semimartingale
market that does not necessarily contain a risk-free asset and they establish an equivalence
result for hedging with and without change of numéraire.

Lim (2004) deals with the problems of quadratic hedging and pricing, and mean-
variance portfolio selection in an incomplete market setting with continuous trading,
multiple assets, and Brownian information. In particular, the author assumes that the
parameters describing the market model may be random processes.

In Schal (1994) an option with maturity time 𝑇 corresponding to a contingent claim
𝐻 in an incomplete market is considered and the work investigates what would be a fair
hedging price for 𝐻 by taking into account an optimal dynamical hedging plan against 𝐻.

Here we denote by 𝑆 a stochastic process modeling the price of some financial asset
traded in the market. We want to hedge a contingent claim 𝜂0 written on 𝑆 by means of
a basket of other contingent claims 𝜂𝜂𝜂 = (𝜂1 . . . , 𝜂𝑑)⊤, by adopting a semi-static strategy.
Semi-static hedging consists in taking a dynamic (i.e., continuously rebalanced) position in
𝑆, denoted by 𝜗, and a static (i.e., buy-and-hold) position in the fixed basket of contingent
claims, 𝜈𝜈𝜈. For certain hedging problems, semi-static strategies allow for perfect replication
even in incomplete markets: see, e.g., the semi-static replication of variance swaps in Carr
and Madan (2001), Neuberger (1994). We require the strategy to be variance-optimal,
meaning that we will perform a minimization of the variance of the residual hedging
error at a terminal time 𝑇 > 0:

12



CHAPTER 1. SEMI-STATIC VARIANCE-OPTIMAL HEDGING WITH SELF-EXCITING JUMPS

𝜀2 = min
𝜈𝜈𝜈∈R𝑑 ,𝜗∈𝐿2(𝑆),𝑐∈R

E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝

𝑐⏞⏟⏟⏞
initial capital

−

cost of static portfolio⏟ˉ̄⏞⏞ˉ̄⏟
E[𝜈𝜈𝜈⊤𝜂𝜂𝜂] +

∫ 𝑇

0
𝜗𝑠 𝑑𝑆𝑠⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞

dynamic position

−(𝜂0 −

static position⏟⏞⏞⏟
𝜈𝜈𝜈⊤𝜂𝜂𝜂 )

⎞⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1.1)

given 𝐿2(𝑆) a suitable space where the stochastic integral is well defined.

A procedure for finding the solution to problem (1.1) is provided in Di Tella et al.
(2019) and Di Tella et al. (2020), in a general setting. The main idea is to rewrite the
problem as an inner and an outer problem, which can be solved separately. In particular,
the inner problem is a classic variance-optimal hedging problem which can be solved
with standard techniques, see, e.g. Föllmer and Sondermann (1986). On the other hand,
the outer problem turns out to be a finite-dimensional quadratic optimization problem.
The solution of the outer problem is then a function of three coefficients 𝐴, 𝐵, 𝐶, which
depend on a particular decomposition (Galtchouk-Kunita-Watanabe decomposition, see
Kunita and Watanabe (1967)) of the claims 𝜂0, 𝜂𝜂𝜂. The semistatic hedging strategies have
been computed already in Di Tella et al. (2019) for different models for 𝑆: Heston, the 3/2
and a model driven by Lévy jumps. Note that the numerical analysis in Di Tella et al.
(2020) has been performed only for the Heston model.

The purpose of this work is to solve the semi-static variance optimal hedging problem in
a new market model and for a variance swap 𝜂0, by means of a basket of European options
𝜂𝜂𝜂. The model considered is proved to be affine and the stock price process 𝑆 encompasses
both a Hawkes-type jump component, which describes the self-exciting features, and a
stochastic volatility model of Heston type. Research into models with jumps, especially of
self-exciting type, is significant as it has been observed that prices the financial markets,
see, e.g., Filimonov et al. (2014), and for energy market, see, e.g., Herrera and González
(2014) - exhibit spikes displaying a clustering behavior. Hawkes-based jump diffusion
models have been used to describe the dynamics of asset prices across several different
classes, see Aït-Sahalia et al. (2015) and Hainaut and Moraux (2018) for equities, Brignone
et al. (2024) and Gonzato and Sgarra (2021) for commodity markets, Errais et al. (2010) for
credit risk derivatives, Hainaut (2016) for interest rates, Rambaldi et al. (2015) for foreign
exchange rates.

As a first contribution, we introduce a new stochastic setting, by studying its properties
as an affine semimartingale model. We characterize the Laplace transform, studying its
existence under suitable conditions on the parameters. This latter analysis is mainly based
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1.1. INTRODUCTION

on an investigation of the Laplace transform domain, as, although the transform can be
described through the solution of a system of generalized Riccati equations, determining
the explosion time of this system is non-trivial. We remark that characterizing the Laplace
transform is relevant, since we want to express contingent claims via a Fourier transform
representation, in the spirit of Kallsen and Pauwels (2010). This, as we shall show, allows
to obtain more explicit results for the quadratic hedging strategy.

As a second contribution we provide, as an explicit example, the computation of the
semi-static hedging strategy of a variance swap by means of a portfolio of European
options written on the underlying. Variance swaps contracts are commonly traded in
equity markets, typically on S&P index, but a remarkable interest in variance swaps
has grown in recent years in commodity markets and, in particular, in energy markets. In
Prokopczuk et al. (2017), e.g., the authors analyze the variance risk of commodity markets,
constructing synthetic variance swaps and finding significantly negative realized variance
swap payoffs in most markets. By following the general methodology exposed in Di Tella
et al. (2019, Theorem 3.2) we obtain a semi-explicit expression of 𝐴, 𝐵, 𝐶 appearing in
the Galtchuk-Kunita-Watanabe decomposition. The inclusion of self-exciting jumps in the
model gives rise to some non-trivial difficulties, especially in determining the existence of
the expectation appearing in the expressions for 𝐴, 𝐵, 𝐶. We analyze this aspect in detail
in Appendix 1.D, where we also provide some explicit formulas for the moments.

The third contribution of the present work is the numerical computation of the optimal
strategies. The task in non-trivial as in our specific case, the quantities 𝐴, 𝐵, 𝐶 can be
explicitly written in terms of integrals over time, expectations of random variables and
multiple integrals on strips of the complex plane. Moreover, the integrands cannot be
expressed explicitly and depend on the numerical solutions of the Riccati equations, hence
making it necessary to simulate the model via Monte Carlo and to apply quadrature rules.

The chapter is organized as follows: In Section 1.2 we introduce the self-exciting jump-
diffusion model with stochastic volatility, focusing on the SDEs that describes the price
dynamics, on the jump measure and its compensator. In Section 1.3 we study the existence
of exponential moments for the the main stochastic processes involved in our model. In
Section 1.4, we investigate the affine structure of the model, identifying the domain of
existence of its exponential moments and characterizing the Laplace transform in terms
of a system of generalized Riccati equations. In Section 1.5, we then introduce the general
hedging problem, by highlighting its connection with the Fourier representation of the
contingent claims. In Section 1.6 we shall solve the semi-static hedging problem in the
case of a variance swap hedged by a basket of European options. Finally, in Section 1.7
we provide some numerical results related to our specific example. Appendices 1.A, 1.B
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and 1.D contain auxiliary technical results and Appendix 1.C the proof of one of the main
results used in the work.

1.2 The model

We fix a probability space (Ω,ℱ , P) and 𝐸 := R×R+ and we consider the 𝐸-valued marked
point-process (𝑇𝑛 , 𝑌𝑛)𝑛 which is completely characterized by the discrete-random measure

𝜇(d𝑡 , d𝑥, d𝑦) =
∞∑︂
𝑛=1

1{𝑇𝑛<+∞}𝛿(𝑇𝑛 ,𝑌𝑛)(d𝑡 , d𝑥, d𝑦) (1.2)

where 𝑌𝑛 = (𝜂𝑋𝑛 , 𝜂𝜆𝑛), 𝑛 ≥ 1, 𝑇0 = 0, 𝑌0 = 0, 0 < 𝑇𝑛 ↑ +∞ as 𝑛 → +∞, 𝑇𝑛 < 𝑇𝑛+1 on
{𝑇𝑛 < +∞} and 𝑌𝑛 ≠ 0 if and only if 𝑇𝑛 < +∞ and 𝛿𝑎 is the Dirac measure located at
point 𝑎. We assume that the marks (𝜂𝑋𝑛 )𝑛 are i.i.d. and Gaussian with 𝜂𝑋1 ∼ N (𝛾, 𝛿2),
while the marks (𝜂𝜆𝑛)𝑛 are independent of (𝜂𝑋𝑛 )𝑛 , i.i.d. and exponentially distributed with
𝜂𝜆1 ∼ 𝐸𝑥𝑝(𝜁).

We denote by 𝑁 =
∫ ·

0

∫
𝐸
1R2(𝑥, 𝑦)𝜇(d𝑠, d𝑥, d𝑦) the point-process associated with 𝜇, so

that the following identity holds:

𝑁𝑡 =

∑︂
𝑛≥1

1{𝑇𝑛≤𝑡} , 𝑡 ≥ 0.

We denote by F𝜇 the smallest filtration satisfying the usual conditions such that 𝜇 is an
optional integer-valued random measure. The random times (𝑇𝑛)𝑛 are then F𝜇-stopping
times and the process𝑁 is a point process with respect to F𝜇. The process𝜆 is then defined
by

d𝜆𝑡 = 𝛽𝜆(𝛼𝜆 − 𝜆𝑡−)d𝑡 + d𝐽𝜆𝑡 , 𝜆0 ∈ R+ (1.3)

where 𝐽𝜆𝑡 =
∫ 𝑡

0

∫
𝐸
𝑦1R(𝑥)𝜇(d𝑠, d𝑥, d𝑦), 𝑡 ≥ 0. Equivalently, in integral form, we have:

𝜆𝑡 = 𝛼𝜆 + (𝜆0 − 𝛼𝜆)𝑒−𝛽𝜆𝑡 +
𝑁𝑡∑︂
𝑛=1

𝑒−𝛽𝜆(𝑡−𝑇𝑛)𝜂𝜆𝑛 . (1.4)

We also introduce 𝐽𝑋𝑡 =
∫ 𝑡

0

∫
𝐸
𝑥1R+(𝑦)𝜇(d𝑠, d𝑥, d𝑦) and we have the identities

𝐽𝜆𝑡 =

𝑁𝑡∑︂
𝑖=1

𝜂𝜆𝑖 , 𝐽𝑋𝑡 =

𝑁𝑡∑︂
𝑖=1

𝜂𝑋𝑖 .
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The marked-point process 𝜇 is the jump-measure of the R2-valued F𝜇-semimartingale
(𝐽𝜆 , 𝐽𝑋).

We assume that the F𝜇-dual predictable projection of 𝜇 under P is given by

𝜈(d𝑡 , d𝑥, d𝑦) = 𝜆𝑡−𝜃(d𝑥, d𝑦)d𝑡 , (1.5)

where 𝜃(d𝑥, d𝑦) = 𝜃𝑋(d𝑥)𝜃𝜆(d𝑦), with 𝜃𝑋 and 𝜃𝜆 denoting the distribution functions of
𝒩(𝛾, 𝛿2) and 𝐸𝑥𝑝(𝜁), respectively, that is,

𝜃𝑋(d𝑥) = 1√
2𝜋𝛿2

exp
(︂
−(𝑥 − 𝛾)2

2𝛿2

)︂
d𝑥 𝜃𝜆(d𝑦) = 𝜁𝑒−𝜁𝑦1R+(𝑦)d𝑦.

Clearly, the process 𝑁
𝑝

𝑡 =
∫ 𝑡

0

∫
𝐸
1R2(𝑥, 𝑦)𝜈(d𝑠, d𝑥, d𝑦) =

∫ 𝑡

0 𝜆𝑠−d𝑠, 𝑡 ≥ 0, is the F𝜇-
predictable compensator of 𝑁 . In other words, 𝑁 is a self-exciting counting process,
also called Hawkes point-process.

This model can be obtained (at least over a fixed-time horizon [0, 𝑇], 𝑇 > 0) starting
from a probability measure Q under which 𝜇 is a Poisson random measure with F𝜇-dual
predictable projection 𝜈Q(d𝑡 , d𝑥, d𝑦) = 𝜃(d𝑥, d𝑦)d𝑡 and then defining the measure P by

𝐿𝑇 := dP
dQ

|︁|︁|︁|︁
ℱ 𝜇
𝑇

= ℰ
(︂ ∫ ·

0
(𝜆𝑠− − 1)d(𝑁𝑠 − 𝑠)

)︂
𝑇
,

the Doléans-Dade exponential ℰ(
∫ ·

0 (𝜆𝑠−−1)d(𝑁𝑠 − 𝑠)) > 0 being a (Q, F𝜇) martingale with
mean one (see Brachetta et al. (2024, Proposition 2.6) and Brémaud (1981, Theorems VIII.6
and VIII.10) for details). In particular, under Q the marks (𝑌𝑛)𝑛 are assumed to fulfill the
same properties as under P. We also have an explicit expression for 𝐿𝑇 :

𝐿𝑇 = 𝑒−
∫ 𝑇

0 (𝜆𝑠−1)d𝑠+
∫ 𝑇

0 log(𝜆𝑠− )d𝑁𝑠 . (1.6)

Remark 1.1. Notice that under Q the random variables (𝑇𝑛 , 𝜂𝑋𝑛 , 𝜂𝜆𝑛)𝑛 are independent (and
so also the Q-Poisson process 𝑁 is independent of (𝜂𝑋𝑛 , 𝜂𝜆𝑛)𝑛), while this is not the case
for 𝑁 under P, where (𝜂𝑋𝑛 )𝑛 and (𝜂𝜆𝑛)𝑛 remain independent, but (𝑇𝑛)𝑛 is not independent
of (𝜂𝜆𝑛). Under P, independence holds between the marks (𝜂𝑋𝑛 )𝑛 and (𝑁, (𝜂𝜆𝑛)𝑛). What is
more, the law of the random variables (𝜂𝑋𝑛 , 𝜂𝜆𝑛)𝑛 is the same both under P and Q.

We now consider a two dimensional Gaussian process𝑊 = (𝑊 (1),𝑊 (2)), where𝑊 (𝑖) is
a Brownian motion, 𝑖 = 1, 2, with respect to the smallest filtration F𝑊 satisfying the usual
conditions such that 𝑊 is adapted. We assume that ⟨𝑊 (1),𝑊 (2)⟩𝑡 = 𝜌𝑡, where 𝜌 ∈ [−1, 1],
and that F𝜇 and F𝑊 are independent. We fix a time-horizon 𝑇 > 0 and assume that
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ℱ = ℱ 𝜇
𝑇

∨ ℱ 𝑊
𝑇

. The reference filtration F is the enlargement of F𝜇 by F𝑊 , that is,

F = F𝜇 ∨ F𝑊 .

Because of the independence between F𝜇 and F𝑊 , F is right-continuous too, hence it
satisfies the usual conditions. Furthermore, the F-dual predictable projection 𝜈F of 𝜇

coincides with 𝜈 in equation (1.5).
The market model is given by a stock𝑆 = e𝑋 where, for real parameters𝜅1, 𝛽𝑣 , 𝛼𝑣 , 𝜎𝑣 , 𝛽𝜆 , 𝛼𝜆,

we assume ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d𝑋𝑡 =

(︂
− 1

2𝑉𝑡 − (𝜅1 − 1)𝜆𝑡−
)︂
d𝑡 +

√︁
𝑉𝑡d𝑊 (1)

𝑡 + d𝐽𝑋𝑡 , 𝑋0 = 𝑥0 ∈ R,

d𝑉𝑡 = 𝛽𝑣(𝛼𝑣 −𝑉𝑡)d𝑡 + 𝜎𝑣
√︁
𝑉𝑡d𝑊 (2)

𝑡 , 𝑉0 = 𝑣0 ∈ R+,

d𝜆𝑡 = 𝛽𝜆(𝛼𝜆 − 𝜆𝑡−)d𝑡 + d𝐽𝜆𝑡 , 𝜆0 ∈ R+.

(1.7a)

(1.7b)

(1.7c)

In the present setting, we fix the risk-free rate 𝑟 = 0, so no discounting is required. If
we choose the parameters in such a way as to ensure that the price process 𝑆 = e𝑋 is a
local martingale with respect to P, the NFLVR arbitration requirement is fulfilled due to
the First Fundamental Theorem of Asset Pricing. Since the model is incomplete, by the
second fundamental theorem of asset pricing, there are infinitely many equivalent local
martingale measures. In the present setting we choose to stand on a risk-neutral modeling
approach by specifying the dynamics directly under the risk-neutral probability measure.

For notational convenience, we will denote the triplet as 𝑍 = (𝑋,𝑉,𝜆). The model
proposed encompasses several models available in the literature: Heston, Jump-diffusion
models both of Lévy and Hawkes type. It exhibits both jumps and stochastic volatility
features, with jumps clustering. As already mentioned in the Introduction, these features
have been observed in the market by several authors and nowadays are considered well-
established properties of prices dynamics.

Remark 1.2. The choice of a Gaussian probability distribution for the log-return’s jumps
has a long tradition dating back to Merton (1976). As pointed out in Cont and Tankov
(2003, Section 4), the simplest jump-diffusion models that properly capture the log-returns
dynamics are those with Gaussian distributed jump sizes and Kou-type models in Kou
(2002), where they assume a double exponential distribution for jump sizes. On the other
hand, the choice for the exponential distribution of the jump’s intensity is motivated by
the non-negative support of the probability density. A similar model assuming Kou-
type jumps for both the log-returns and the intensity jumps’ size has been proposed
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in Hainaut and Moraux (2018). Also Brignone et al. (2024) and Liu and Zhu (2019)
address a similar structure, however, they do not incorporate marks in the intensity.
The methodology presented in this work can be adapted to different settings, considering
different probability distributions for the marks. However, important properties must
be preserved. For example, the joint Laplace transform must exist finite in an open
neighborhood of the origin. Furthermore, to ensure that 𝑆 = e𝑋 is a square-integrable
martingale under P, we need to ensure that (1, 0, 0) and (2, 0, 0) belong to this open
neighborhood (see Corollary 1.10 below). Clearly, this has to be traduced in terms of
the parameters on which the chosen distribution depends. These conditions have to be
treated case by case.

In order to ensure the strict positivity of 𝑉 , 𝑉 > 0, we assume that 𝑣0, 𝛼𝑣 , 𝛽𝑣 , 𝜎𝑣 > 0
and that the Feller condition 2𝛼𝑣𝛽𝑣 ≥ 𝜎2

𝑣 holds. We choose 𝜅1 = 𝑒𝛾+𝛿
2/2 and we assume

that 𝜅1 > 1/2 and 𝜁 > 𝑇E(𝑒2|𝜂𝑋1 |), so that 𝑆 is a square-integrable martingale. This is a
crucial assumption as it implies that P is a risk-neutral measure. Further details on this
will be given below. Here we notice that this special choice of 𝜅1 ensures that 𝑆 is a local
martingale. Indeed, applying Itô formula to e𝑋 we get

𝑆𝑡 = 𝑆0 +
∫ 𝑡

0
𝑆𝑠−𝜆𝑠−(e(𝛾+

𝛿2
2 ) − 𝜅1)d𝑠 +

∫ 𝑡

0

√︁
𝑉𝑠𝑆𝑠−d𝑊 (1)

𝑠

+
∫ 𝑡

0

∫
R2
𝑆𝑠−(e𝑥 − 1)1R+(𝑦)(𝜇 − 𝜈)(d𝑠, d𝑥, d𝑦)

and the drift vanishes if and only if 𝜅1 = 𝑒(𝛾+
𝛿2
2 ).

We assume 𝛼𝜆 , 𝛽𝜆 > 0 and 𝛽𝜆 >
∫ ∞

0 𝑥𝜃𝜆(d𝑥), that imply the stationarity of 𝜆 and the
existence of all the moments of 𝜆𝑡 , 𝑡 ∈ [0, 𝑇], see, e.g., Dassios and Zhao (2011, Subsection
3.4) . We also require, for technical simplifications in dealing with exponential moments
of the random measure 𝜇, that 𝜆0 > 𝛼𝜆 > 1, which implies 𝜆𝑡 > 1 P-almost surely and for
every 𝑡 ∈ [0, 𝑇].

We recap all the assumptions on model parameters in Table 1.1.

From (1.7a), the integral form of 𝑋 is

𝑋𝑡 = 𝑋0 −
1
2

∫ 𝑡

0
𝑉𝑠d𝑠 − (𝜅1 − 1)

∫ 𝑡

0
𝜆𝑠−d𝑠 +

∫ 𝑡

0

√︁
𝑉𝑠d𝑊 (1)

𝑠 + 𝐽𝑋𝑡 .
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Stochastic process # Assumption Implication
𝑋 𝑖) 𝜅1 = 𝑒𝛾+𝛿

2/2 𝑆 martingale
𝑖𝑖) 𝜅1 > 1/2 𝑆 square-integrable

𝜁 > 𝑇E(𝑒2|𝜂𝑋1 |)
𝑉 𝑖𝑖𝑖) 𝑣0, 𝛼𝑣 , 𝛽𝑣 , 𝜎𝑣 > 0 Positivity

𝑖𝑣) 2𝛼𝑣𝛽𝑣 ≥ 𝜎2
𝑣 Feller condition

𝜆 𝑣) 𝛼𝜆 , 𝛽𝜆 > 0 Stationarity + moments
𝑣𝑖) 𝛽𝜆 >

∫ ∞
0 𝑥𝜃𝜆(d𝑥) Stationarity + moments

𝑣𝑖𝑖) 𝜆0 > 𝛼𝜆 > 1 Existence of exp moments

Table 1.1: All the model parameters’ assumptions at a glance.

1.3 Moments

We gather in this section key results on the moments of the random building blocks of
our model. Whenever an expectation E[·] is written without a superscript, it is computed
under the probability measure P.

Proposition 1.3. Given 𝑇 > 0 and 𝜆 as in equation (1.4), if 𝑎 ∈ R, 𝑎 < 𝜁
𝑇 we have:

EQ[𝑒 𝑎
∫ 𝑇

0 𝜆𝑠d𝑠] < ∞. (1.8)

Moreover, if 𝑎 < 1 and 𝜁 > 𝑇, then

E
[︂
𝑒 𝑎

∫ 𝑇

0 𝜆𝑠d𝑠
]︂
< ∞.

Proof. Since 𝜆 is positive, the result holds trivially for 𝑎 ≤ 0. Therefore, we will focus on
the case 𝑎 > 0 from now on. First of all notice that, from equation (1.4) and for 𝑐 > 0, we
have:

𝜆𝑠 ≤ max{𝜆0, 𝛼𝜆} +
𝑁𝑠∑︂
𝑛=1

𝜂𝜆𝑛 =: 𝑐 +
𝑁𝑠∑︂
𝑛=1

𝜂𝜆𝑛 (1.9)

so that, using the fact that, under Q, 𝑁 is independent of (𝜂𝜆𝑛)𝑛 (recall Remark 1.1) and
that the Laplace transform for an exponential random variable 𝜂𝜆1 ∼ 𝐸𝑥𝑝(𝜁) is known, we
find

EQ
[︂
𝑒 𝑎

∫ 𝑇

0 𝜆𝑠d𝑠
]︂

≤ 𝑒 𝑎𝑐𝑇EQ
[︂
𝑒 𝑎

∫ 𝑇

0
∑︁𝑁𝑇
𝑛=1 𝜂

𝜆
𝑛d𝑠

]︂
= 𝑒 𝑎𝑐𝑇EQ

[︄
𝑁𝑇∏︂
𝑛=1

𝐸Q
(︂
𝑒 𝑎𝑇𝜂

𝜆
1

)︂]︄
= 𝑒 𝑎𝑐𝑇EQ

[︄(︃
𝜁

𝜁 − 𝑎𝑇

)︃𝑁𝑇 ]︄
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which is finite if 𝑎𝑇 < 𝜁. Indeed, under Q, the random variable 𝑁𝑇 ∼ 𝑃𝑜(𝑇) and we have

EQ

[︄(︃
𝜁

𝜁 − 𝑎𝑇

)︃𝑁𝑇 ]︄
=

+∞∑︂
ℓ=0

Q(𝑁𝑇 = ℓ )
(︃

𝜁
𝜁 − 𝑎𝑇

)︃ℓ
=

+∞∑︂
ℓ=0

𝑒−𝑇
𝑇ℓ

ℓ !

(︃
𝜁

𝜁 − 𝑎𝑇

)︃ℓ
= 𝑒−𝑇 𝑒

𝜁𝑇
𝜁−𝑎𝑇

and so

EQ
[︂
𝑒 𝑎

∫ 𝑇

0 𝜆𝑠d𝑠
]︂

≤ 𝑒 𝑎𝑐𝑇 𝑒−𝑇 𝑒
𝜁𝑇

𝜁−𝑎𝑇 ≤ 𝑒 𝑎𝑐𝑇 𝑒
𝜁𝑇

𝜁−𝑎𝑇

which is finite since 𝜁 and 𝑇 are positive and fixed and 𝑎𝑇 < 𝜁.
We now aim at investigating the Laplace transform of

∫ 𝑇

0 𝜆𝑠d𝑠 under the measure P.
Exploiting the change of measure in equation (1.6), we pass under the measure Q:

E
[︂
𝑒 𝑎

∫ 𝑇

0 𝜆𝑠d𝑠
]︂
= EQ

[︂
𝐿𝑇 𝑒

𝑎
∫ 𝑇

0 𝜆𝑠d𝑠
]︂
= EQ

[︂
𝑒(𝑎−1)

∫ 𝑇

0 𝜆𝑠d𝑠+𝑇+
∫ 𝑇

0 log(𝜆𝑠−)d𝑁𝑠

]︂
.

Since 𝑎 < 1, exploiting equation (1.41) and the convergence result in equation (1.8) for
𝜁 > 𝑇

E
[︂
𝑒 𝑎

∫ 𝑇

0 𝜆𝑠d𝑠
]︂
≤ 𝐶EQ

[︂
𝑒
∫ 𝑇

0 log(𝜆𝑠−)d𝑁𝑠

]︂
= 𝐶EQ

[︂
𝑒
∫ 𝑇

0 (𝜆𝑠−−1)d𝑠
]︂
< ∞.

□

Remark 1.4. Notice that Assumption 𝑖𝑖) in Table 1.1 implies that 𝜁 > 𝑇.

We now compute the exponential moments E[𝑒𝐻∗𝜇𝑇 ], with 𝜇 the random measure in
equation (1.2), 𝐻 : [0, 𝑇] × R × R+ → R and where

𝐻 ∗ 𝜇𝑇 :=
∫ 𝑇

0

∫
R×R+

𝐻(𝑡 , 𝑥, 𝑦)𝜇(d𝑡 , d𝑥, d𝑦).

Proposition 1.5. Given 𝑐1, 𝑐2 ≥ 0 and 𝐻 defined as

𝐻(𝑡 , 𝑥, 𝑦) = 𝑐11R+(𝑦)|𝑥| + 𝑐21R(𝑥)𝑦,

if the intensity process 𝜆 satisfies 𝜆𝑡 > 1 P-almost surely and for every 𝑡 ∈ [0, 𝑇] and if

𝑇 <
𝜁 − 𝑐2

E(𝑒 𝑐1|𝜂𝑋1 |)

then E[𝑒𝐻∗𝜇𝑇 ] < ∞.
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Proof. First of all notice that 𝐻 ∗ 𝜇𝑇 = 𝑐1
∑︁𝑁𝑇
𝑖=1 |𝜂𝑋𝑖 | + 𝑐2𝐽

𝜆
𝑇
. We have, passing under Q and

via equation (1.6):

E[𝑒𝐻∗𝜇𝑇 ] = EQ[𝐿𝑇 𝑒𝐻∗𝜇𝑇 ] = EQ[𝑒−
∫ 𝑇

0 (𝜆𝑠−1)d𝑠+
∫ 𝑇

0 log(𝜆𝑠−)𝑑𝑁𝑠 𝑒 𝑐1
∑︁𝑁𝑇
𝑖=1 |𝜂

𝑋
𝑖
|+𝑐2𝐽

𝜆
𝑇 ]

Now, being the intensity process 𝜆𝑡 > 1 P and Q almost surely and for every 𝑡 ∈ [0, 𝑇], we
immediately find:

EQ[𝑒−
∫ 𝑇

0 (𝜆𝑠−1)d𝑠+
∫ 𝑇

0 log(𝜆𝑠− )𝑑𝑁𝑠 𝑒 𝑐1
∑︁𝑁𝑇
𝑖=1 |𝜂

𝑋
𝑖
|+𝑐2𝐽

𝜆
𝑇 ] ≤ EQ[𝑒

∫ 𝑇

0 log(𝜆𝑠− )𝑑𝑁𝑠 𝑒 𝑐1
∑︁𝑁𝑇
𝑖=1 |𝜂

𝑋
𝑖
|+𝑐2𝐽

𝜆
𝑇 ]

If we introduce ˜︁𝐻(𝑡 , 𝑥, 𝑦) := 1R×R+(𝑥, 𝑦) log(𝜆𝑡−) +𝐻(𝑡 , 𝑥, 𝑦) we can use equation (1.42) in
Appendix 1.B (recall that 𝜈Q(d𝑡 , d𝑥, d𝑦) = 𝜃(d𝑥, d𝑦)d𝑡 = 𝜃𝑋(d𝑥)𝜃𝜆(d𝑦)d𝑡) and prove that

E[𝑒𝐻∗𝜇𝑇 ] ≤ EQ
[︂
𝑒
∫ 𝑇

0 log(𝜆𝑠− )𝑑𝑁𝑠 𝑒 𝑐1
∑︁𝑁𝑇
𝑖=1 |𝜂

𝑋
𝑖
|+𝑐2𝐽

𝜆
𝑇

]︂
= EQ

[︂
𝑒
˜︁𝐻∗𝜇𝑇

]︂
= EQ

[︃
𝑒

∫ 𝑇

0

∫
R×R+

(︂
𝑒
˜︁𝐻(𝑡 ,𝑥,𝑦)−1

)︂
𝜃𝑋 (d𝑥)𝜃𝜆(d𝑦)d𝑡

]︃
= EQ

[︃
𝑒

∫ 𝑇

0

∫ +∞
−∞

∫ +∞
0

(︂
𝑒11R×R+(𝑥,𝑦) log(𝜆𝑡−)+𝑐111R+(𝑦)|𝑥|+𝑐211R(𝑥)𝑦−1

)︂
𝜃𝑋 (d𝑥)𝜃𝜆(d𝑦)d𝑡

]︃
≤ EQ

[︃
exp

(︃∫ 𝑇

0

∫ +∞

−∞

∫ +∞

0
𝑒11R×R+ (𝑥,𝑦) log(𝜆𝑡−)+𝑐111R+ (𝑦)|𝑥|+𝑐211R(𝑥)𝑦𝜃𝑋(d𝑥)𝜃𝜆(d𝑦)d𝑡

)︃]︃
= EQ

[︃
exp

(︃∫ +∞

−∞

∫ +∞

0
𝑒 𝑐1|𝑥|+𝑐2𝑦

(︃∫ 𝑇

0
𝑒 log(𝜆𝑡−)𝑑𝑡

)︃
𝜃𝑋(d𝑥)𝜃𝜆(d𝑦)

)︃]︃
= EQ

[︃
exp

(︃∫ 𝑇

0
𝜆𝑡d𝑡 · EQ(𝑒 𝑐1|𝜂𝑋1 |)EQ(𝑒 𝑐2𝜂𝜆1 )

)︃]︃
= EQ

[︃
exp

(︃∫ 𝑇

0
𝜆𝑡d𝑡 · E(𝑒 𝑐1|𝜂𝑋1 |) 𝜁

𝜁 − 𝑐2

)︃]︃

where we used the moment generating function for an exponential random variable
for 𝜁−𝑐2 > 0. It remains now to use the moment generating function for the folded normal
|𝜂𝑋1 | , with 𝜂𝑋1 ∼ 𝒩(𝛾, 𝛿2):

E[𝑒 𝑐1|𝜂𝑋1 |] = 𝑒
𝛿2𝑐21

2 −𝑐1𝛾Φ

(︃
𝑐1𝛿2 − 𝛾

𝛿

)︃
+ 𝑒

𝛿2𝑐21
2 +𝑐1𝛾Φ

(︃
𝑐1𝛿2 + 𝛾

𝛿

)︃
where Φ is the cumulative distribution function of a standard Gaussian. So, we finally
have:

E[𝑒𝐻∗𝜇𝑇 ] ≤ EQ
[︃
exp

(︃∫ 𝑇

0
𝜆𝑡d𝑡 · E(𝑒 𝑐1|𝜂𝑋1 |) 𝜁

𝜁 − 𝑐2

)︃]︃
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which is finite, in virtue of Proposition 1.3, using 𝑎 = E(𝑒 𝑐1|𝜂𝑋1 |) 𝜁
𝜁−𝑐2

. □

Remark 1.6. Assumption 𝑣𝑖𝑖) in Table 1.1, i.e., 𝜆0 > 𝛼𝜆 and 𝛼𝜆 > 1, implies that the
condition 𝜆𝑡 > 1 P-almost surely and for every 𝑡 ∈ [0, 𝑇] is satisfied (recall equation (1.4))

1.4 From the affine structure to the Laplace transform of
(𝑋,𝑉,𝜆)

It is possible to prove that 𝑍 = (𝑋,𝑉,𝜆), as defined in system (1.7), is an affine process.
Exploiting this property, we will then compute its Fourier-Laplace transform.

We start by referring to the definition of semimartingale characteristics given in Jacod
and Shiryaev (2013, Definition II.2.6), working with the standard truncation function
ℎ(𝑥) = 𝑥1{|𝑥|≤1} .

The triplet we are interested in is (𝑏, 𝑐, 𝐾), the local (or differential) characteristics of 𝑍, as
defined in Eberlein and Kallsen (2019, Definition 4.3). It can be easily computed as:

𝑏𝑡 =
⎛⎜⎜⎝
−1

2𝑉𝑡 − (𝜅1 − 1)𝜆𝑡− +
∫
R ℎ(𝑥)𝜃

𝑋(d𝑥)𝜆𝑡−
𝛽𝑣(𝛼𝑣 −𝑉𝑡)

𝛽𝜆(𝛼𝜆 − 𝜆𝑡−) +
∫
R+
ℎ(𝑥)𝜃𝜆(d𝑥)𝜆𝑡−

⎞⎟⎟⎠ , (1.10)

𝑐𝑡 =
⎛⎜⎜⎝
𝑉𝑡 𝜌𝜎𝑣𝑉𝑡 0

𝜌𝜎𝑣𝑉𝑡 𝜎2
𝑣𝑉𝑡 0

0 0 0

⎞⎟⎟⎠ , (1.11)

𝐾𝑡(d𝑥) = 𝜃𝑋(d𝑥1)𝛿0(d𝑥2)𝜃𝜆(d𝑥3)𝜆𝑡−. (1.12)

The local characteristics (𝑏, 𝑐, 𝐾) are clearly affine functions of (𝑋,𝑉,𝜆). Up to a
permutation of the indices, the triplet (𝑏, 𝑐, 𝐾) is admissible in the sense of Eberlein and
Kallsen (2019, Section 6.1, Equation (6.26)) and it follows by Theorem 6.6 in Eberlein and
Kallsen (2019) that 𝑍 is an affine multivariate process. In particular, 𝑍 is Markov and
time-homogeneous.

By exploiting the affine property of the model, we can provide a characterization of
its Laplace transform. We fix a time horizon 0 ≤ 𝑇 < 𝑇∗, where 𝑇∗ is the explosion time
associated to the Heston model, see Andersen and Piterbarg (2007, Proposition 3.1). First,
we characterize the domain of existence 𝒟ℒ(𝑍𝑇 ) of the real Laplace transform of 𝑍𝑇 :

𝒟ℒ(𝑍𝑇 ) = {𝑢 ∈ R3 : E[exp(𝑢⊤𝑍𝑇)] < ∞}. (1.13)
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Proposition 1.7. Under the Assumptions in Table 1.1 , and for 𝑇 < 𝑇∗, the existence domain for
the Laplace transform of 𝑍𝑇 satisfies

𝒟ℒ(𝑍𝑇 ) ⊇ ℰ :=
{︂
(𝑢1, 𝑢2, 𝑢3) ∈ R3 : 𝑢1(𝜅1 − 1) + 1 > 0, 𝑢2 ∈ R, 𝑢3 < 𝜁 − 𝑇E(𝑒𝑢1|𝜂𝑋1 |)

}︂
.

Proof. Notice that negative values of 𝑢3 are trivially included in the Laplace domain,
so that in the proof we focus on positive values of 𝑢3. First of all notice that, using
𝑋Heston
𝑇

= 𝑋0 − 1
2

∫ 𝑇

0 𝑉𝑠 d𝑠 +
∫ 𝑇

0
√
𝑉𝑠d𝑊 (1)

𝑠 , we find

E[exp(𝑢1𝑋𝑇 + 𝑢2𝑉𝑇 + 𝑢3𝜆𝑇)] = E
[︃
exp

(︃
𝑢1𝑋

Heston
𝑇 − 𝑢1(𝜅1 − 1)

∫ 𝑇

0
𝜆𝑠d𝑠 + 𝑢1𝐽

𝑋
𝑇 + 𝑢2𝑉𝑇 + 𝑢3𝜆𝑇

)︃]︃
so that, due to the independence of F𝑊 and F𝜇, the above expectation is finite if and only
if

E[exp(𝑢1𝑋
Heston
𝑇 + 𝑢2𝑉𝑇)] < ∞, (1.14)

E
[︃
exp(−𝑢1(𝜅1 − 1)

∫ 𝑇

0
𝜆𝑡d𝑡 + 𝑢1𝐽

𝑋
𝑇 + 𝑢3𝜆𝑇)

]︃
< ∞. (1.15)

The expected value in (1.14) is finite for every 𝑢1, 𝑢2 ∈ R, since we have assumed that
𝑇 < 𝑇∗. Focusing now on the expected value in (1.15), via inequality (1.9) and since
𝜆0 > 𝛼𝜆 by Assumption 𝑣𝑖𝑖) in Table 1.1, we find:

E
[︃
exp

(︃
−𝑢1(𝜅1 − 1)

∫ 𝑇

0
𝜆𝑡d𝑡 + 𝑢1𝐽

𝑋
𝑇 + 𝑢3𝜆𝑇

)︃]︃
≤ E

[︃
exp

(︃
−𝑢1(𝜅1 − 1)

∫ 𝑇

0
𝜆𝑡d𝑡 + 𝑢1𝐽

𝑋
𝑇 + 𝑢3(𝜆0 + 𝐽𝜆𝑇 )

)︃]︃
≤ ˜︁𝑐 E [︃

exp
(︃
−𝑢1(𝜅1 − 1)

∫ 𝑇

0
𝜆𝑡d𝑡 + 𝑢1𝐽

𝑋
𝑇 + 𝑢3𝐽

𝜆
𝑇

)︃]︃
with ˜︁𝑐 = 𝑒𝑢3𝜆0 . We now pass under Q through the change of measure in equation (1.6), to
exploit the richer independence (recall Remark 1.1):

E
[︃
exp

(︃
−𝑢1(𝜅1 − 1)

∫ 𝑇

0
𝜆𝑡d𝑡 + 𝑢1𝐽

𝑋
𝑇 + 𝑢3𝐽

𝜆
𝑇

)︃]︃
= EQ

[︂
𝑒−

∫ 𝑇

0 (𝜆𝑡−1)d𝑡+
∫ 𝑇

0 log(𝜆𝑡−)𝑑𝑁𝑡 𝑒−𝑢1(𝜅1−1)
∫ 𝑇

0 𝜆𝑡d𝑡+𝑢1𝐽
𝑋
𝑇
+𝑢3𝐽

𝜆
𝑇

]︂
= 𝑒𝑇EQ

[︂
𝑒−

∫ 𝑇

0 𝜆𝑡[𝑢1(𝜅1−1)+1]d𝑡𝑒
∫ 𝑇

0 log(𝜆𝑡−)𝑑𝑁𝑡 𝑒𝑢1𝐽
𝑋
𝑇
+𝑢3𝐽

𝜆
𝑇

]︂
.
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Under the assumption 𝑢1(𝜅1 − 1) + 1 > 0, being 𝜆0 > 1 and the positive stochastic process
𝜆 (see Remark 1.6), we find

E
[︃
exp

(︃
−𝑢1(𝜅1 − 1)

∫ 𝑇

0
𝜆𝑡d𝑡 + 𝑢1𝐽

𝑋
𝑇 + 𝑢3𝐽

𝜆
𝑇

)︃]︃
≤ 𝑒𝑇EQ

[︂
𝑒
∫ 𝑇

0 log(𝜆𝑡− )𝑑𝑁𝑡 𝑒𝑢1𝐽
𝑋
𝑇
+𝑢3𝐽

𝜆
𝑇

]︂
= 𝑒𝑇EQ[𝑒𝐻∗𝜇𝑇 ]

with 𝐻(𝑡 , 𝑥, 𝑦) := 1R×R+(𝑥, 𝑦) log(𝜆𝑡−) + 𝑢11R+(𝑦)𝑥 + 𝑢31R(𝑥)𝑦. Since we clearly have:

𝐻(𝑡 , 𝑥, 𝑦) ≤ 1R×R+(𝑥, 𝑦) log(𝜆𝑡−) + 𝑢11R+(𝑦)|𝑥| + 𝑢31R(𝑥)𝑦

which is ˜︁𝐻 in the proof of Proposition 1.5 for 𝑐1 = 𝑢1, 𝑐2 = 𝑢3, by exploiting the same
ideas there we find that EQ[𝑒𝐻∗𝜇𝑇 ] < ∞ if E(𝑒𝑢1|𝜂𝑋1 |) 𝜁

𝜁−𝑢3
< 𝜁

𝑇 . To conclude, the expectation
E[exp(𝑢1𝑋𝑇 + 𝑢2𝑉𝑇 + 𝑢3𝜆𝑇)] is finite if{︄

𝑢3 < 𝜁 − 𝑇E(𝑒𝑢1|𝜂𝑋1 |)
𝑢1(𝜅1 − 1) + 1 > 0.

□

Finally, we characterize the complex, conditional Laplace transform of 𝑍𝑇 .

Theorem 1.8. Given 𝑢 ∈ 𝒮(𝒟ℒ(𝑍𝑇 )) := {𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ C3 : ℜ𝔢(𝑢) ∈ 𝒟ℒ(𝑍𝑇 )} , 𝑇 < 𝑇∗, the
conditional Laplace transform of 𝑍𝑇 given ℱ𝑡 , 𝑡 ∈ [0, 𝑇], can be written as follows:

E[exp(𝑢⊤𝑍𝑇)|ℱ𝑡] = exp
(︁
𝜙(𝑇 − 𝑡 , 𝑢) + 𝑢1𝑋𝑡 + 𝜓(𝑇 − 𝑡 , 𝑢)𝑉𝑡 + 𝜒(𝑇 − 𝑡 , 𝑢)𝜆𝑡

)︁
(1.16)

where 𝜑 , 𝜓 and 𝜒 are the unique solutions of the extended Riccati system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜕𝜙
𝜕𝑡 (𝑡 , 𝑢) = 𝛼𝑣𝛽𝑣𝜓(𝑡 , 𝑢) + 𝛼𝜆𝛽𝜆𝜒(𝑡 , 𝑢), 𝜙(0, 𝑢) = 0
𝜕𝜓
𝜕𝑡 (𝑡 , 𝑢) = −1

2𝑢1 + 1
2𝑢

2
1 − 𝛽𝑣𝜓(𝑡 , 𝑢) + 𝜌𝜎𝑣𝑢1𝜓(𝑡 , 𝑢) + 1

2𝜎
2
𝑣𝜓(𝑡 , 𝑢)2, 𝜓(0, 𝑢) = 𝑢2,

𝜕𝜒
𝜕𝑡 (𝑡 , 𝑢) = −𝛽𝜆𝜒(𝑡 , 𝑢) − (𝜅1 − 1)𝑢1 + 𝑒𝛾𝑢1+𝛿2𝑢2

1/2 𝜁
𝜁−𝜒(𝑡 ,𝑢) − 1, 𝜒(0, 𝑢) = 𝑢3,

(1.17)

and 𝜙,𝜓, 𝜒 are 𝒞1 complex functions such that

𝜙 : 𝑡 ↦→ 𝜙(𝑡 , 𝑢), 𝜓 : 𝑡 ↦→ 𝜓(𝑡 , 𝑢), 𝜒 : 𝑡 ↦→ 𝜒(𝑡 , 𝑢),ℜ𝔢(𝜒(𝑡 , 𝑢)) < 𝜁.

Proof. The proof of this proposition is provided below in Section 1.4.1. □

Remark 1.9. The explicit expression for the function 𝜓(𝑡 , 𝑢) in the Riccati system (1.17) is
known, see Alfonsi (2015, Prop. 4.2.1). In particular, for 𝑢 ∈ 𝒮(𝒟ℒ(𝑍𝑡)), 𝜓(𝑡 , 𝑢) it is given
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by

𝜓(𝑡 , 𝑢) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢2 + (𝑟− − 𝑢2)

1−exp
(︁
−𝑡

√
Δ

)︁
1−𝑔 exp(−𝑡

√
Δ) , Δ(𝑢1) ≠ 0,

𝑢2 + (𝑟− − 𝑢2)2 𝜎2
𝑣 𝑡

2+𝜎2
𝑣 𝑡(𝑟−−𝑢2)

, Δ(𝑢1) = 0 .

where Δ(𝑢1) = (𝜌𝜎𝑣𝑢1 − 𝛽𝑣)2 − 𝜎2
𝑣(𝑢2

1 − 𝑢1), 𝑟± = 𝑟±(𝑢) := 1
𝜎2
𝑣

(︂
𝛽𝑣 − 𝜌𝜎𝑣𝑢1 ±

√︁
Δ(𝑢1)

)︂
, 𝑔 =

𝑔(𝑢) = 𝑟−−𝑢2
𝑟+−𝑢2

. The following convention holds

exp(−𝑡
√
Δ) − 𝑔

1 − 𝑔
:= 1,

1 − exp(𝑡
√
Δ)

1 − 𝑔 exp(𝑡
√
Δ)

:= 0

whenever the denominator of 𝑔 is equal to zero.

Corollary 1.10. Under the Assumptions in Table 1.1, the stochastic process 𝑆 = 𝑒𝑋 with𝑋 defined
in equation (1.7a) and 𝜅1 = 𝑒𝛾+𝛿

2/2 is a square-integrable martingale.

Proof. The process 𝑆 is square-integrable if (2, 0, 0) ∈ ℰ ⊆ 𝒟ℒ(𝑍𝑇 ). Recalling Proposition
1.7, the condition holds if 𝜅1 > 1

2 , 𝜁 > 𝑇E(𝑒2|𝜂𝑋1 |), which correspond with Assumptions 𝑖𝑖)
in Table 1.1. Moreover, using once more Proposition 1.7, we also have that (1, 0, 0) ∈ ℰ ⊆
𝒟ℒ(𝑍𝑇 ). Thus, we can write equations (1.16), (1.17) for 𝑢 = (1, 0, 0) and observe that the
martingality condition for 𝑆 = 𝑒𝑋 , i.e., E[exp(𝑋𝑇)|ℱ𝑡] = exp(𝑋𝑡), 0 ≤ 𝑡 ≤ 𝑇, holds since if
𝜅1 = 𝑒𝛾+𝛿

2/2 the unique solution (𝜙,𝜓, 𝜒) of the following system is exactly (0, 0, 0)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜕𝜙
𝜕𝑡 (𝑡 , 𝑢) = 𝛼𝑣𝛽𝑣𝜓(𝑡 , 𝑢) + 𝛼𝜆𝛽𝜆𝜒(𝑡 , 𝑢), 𝜙(0, 𝑢) = 0,
𝜕𝜓
𝜕𝑡 (𝑡 , 𝑢) = −𝛽𝑣𝜓(𝑡 , 𝑢) + 𝜌𝜎𝑣𝜓(𝑡 , 𝑢) + 1

2𝜎
2
𝑣𝜓(𝑡 , 𝑢)2, 𝜓(0, 𝑢) = 0,

𝜕𝜒
𝜕𝑡 (𝑡 , 𝑢) = −𝛽𝜆𝜒(𝑡 , 𝑢) − (𝜅1 − 1) + 𝑒𝛾+𝛿2/2 𝜁

𝜁−𝜒(𝑡 ,𝑢) − 1, 𝜒(0, 𝑢) = 0.

□

1.4.1 Proof of Theorem 1.8

It is enough to prove formula (1.16) for 𝑡 = 0, in the case of the non-conditional Laplace
transform. Indeed, assume that

E[exp(𝑢⊤𝑍𝑇)] = exp
(︁
𝜙(𝑇, 𝑢) + 𝑢1𝑋0 + 𝜓(𝑇, 𝑢)𝑉0 + 𝜒(𝑇, 𝑢)𝜆0

)︁
, (1.18)

where (𝜙,𝜓, 𝜒) is the solution to system (1.17). Since 𝑍 is a time-homogeneous Markov
process, equation (1.16) follows as direct consequence of the Markov property.
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Let us then focus on equation (1.18). The proof is based on the application of Keller-
Ressel and Mayerhofer (2015, Theorem 2.26), where a formula for the complex Laplace
transform of an affine process is provided. Let us state the main ideas of the theorem
in the case of a general affine process 𝑍 = (𝑍1

𝑡 , 𝑍
2
𝑡 , 𝑍

3
𝑡 ) having state space 𝐷 ⊆ R3 and

affine characteristics (𝑏, 𝑐, 𝐾). Without loss of generality, we can assume that 𝐾𝑡(d𝑥) can
be written as 𝐺(𝑍𝑡 , d𝑥) where

𝐺(𝑧, d𝑥) = 𝐺(𝑧1, 𝑧2, 𝑧3, d𝑥) = 𝑧1𝐺1(d𝑥) + 𝑧2𝐺2(d𝑥) + 𝑧3𝐺3(d𝑥).

First of all, consider the convex set

𝒴 =

⋂︂
𝑧∈𝐷

{︃
𝑦 ∈ R3 :

∫
| |𝑥| |≥1

𝑒𝑦
⊤𝑥𝐺(𝑧, d𝑥) < ∞

}︃
(1.19)

and the strip 𝒮(𝒴◦) = {𝑢 ∈ C3 : ℜ𝔢(𝑢) ∈ 𝒴◦}, where 𝒴◦ is the interior of 𝒴.
Following the statement of the theorem, one has to take 𝑢 ∈ 𝒮(𝒴◦) such that the

extended Riccati system, see Keller-Ressel and Mayerhofer (2015, Definition 2.10), has
solution for initial value ℜ𝔢(𝑢) up to time 𝑇. If (𝑝, 𝑞1, 𝑞2, 𝑞3) is the solution of the extended
Riccati system, then one must verify that (𝑞1, 𝑞2, 𝑞3)(𝑡 ,ℜ𝔢(𝑢)) ∈ 𝒴◦. Under the latter
condition, also the complex Riccati system, defined in Keller-Ressel and Mayerhofer (2015,
Definition 2.22), has unique solution (Φ,Ψ1,Ψ2,Ψ3) with initial value 𝑢 and up to time
𝑇. The theorem concludes that if all the previous conditions are satisfied, then for all
𝑡 ∈ [0, 𝑇], E[| exp(𝑢⊤𝑍𝑡)|] < ∞ and

E[exp(𝑢⊤𝑍𝑡)] = exp (Φ(𝑇, 𝑢) +Ψ1(𝑡 , 𝑢)𝑋0 +Ψ2(𝑡 , 𝑢)𝑉0 +Ψ3(𝑡 , 𝑢)𝜆0) .

We will apply the theorem to our specific case, where 𝑍 = (𝑋,𝑉,𝜆) is the affine process
in equation (1.7) having state space 𝐷 = R × R2

+ ⊆ R3 and affine characteristics (𝑏, 𝑐, 𝐾) as
in equations (1.10), (1.11), (1.12). We write

𝐾𝑡(d𝑥) = 𝐺(𝑧, d𝑥) = 𝑧3𝐺3(d𝑥), 𝐺3(d𝑥) = 𝜃𝑋(d𝑥1)𝛿0(d𝑥2)𝜃𝜆(d𝑥3) (1.20)

noticing that 𝐺3(d𝑥) is a Lévy measure. We will proceed in steps: first we will investigate
the shape of 𝒴, introduced in equation (1.19), and of its interior in our specific model.
Then, we will identify a subset of 𝒴 such that the extended Riccati system has solution
when taking initial value in that subset. We will then verify that the solution stays in 𝒴◦.
The extended and the complex Riccati systems will be characterized and we will see that
the latter completely coincide with the system in equation (1.17). Finally, we will assemble
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the steps and verify formula (1.16).

Step 1) Characterizing the convex set 𝒴 and its interior 𝒴◦.

Proposition 1.11. Consider 𝑍 = (𝑋,𝑉,𝜆) as in equations (1.7) and 𝐷 = R×R2
+. The following

equality holds

𝒴 =

⋂︂
𝑧∈𝐷

{︃
𝑦 ∈ R3 :

∫
R3
𝑒𝑦

⊤𝑥𝐺(𝑧, d𝑥) < ∞
}︃
= R × R × (−∞, 𝜁).

Proof. Let us focus on the first identity. By equation (1.20), we have that 𝐺(𝑧, d𝑥) is the
multiplication of 𝑧3 with the Lévy measure 𝐺3(d𝑥). Then, for every 𝑧 fixed, it follows by
in Sato (1999, Theorem 25.17) that when dealing with Levy measure∫

| |𝑥| |≥1
𝑒𝑦

⊤𝑥𝐺3(d𝑥) < ∞ if and only if
∫
R3
𝑒𝑦

⊤𝑥𝐺3(d𝑥) < ∞,

which is equivalent to∫
| |𝑥| |≥1

𝑧3𝑒
𝑦⊤𝑥𝐺3(d𝑥) < ∞ if and only if

∫
R3
𝑧3𝑒

𝑦⊤𝑥𝐺3(d𝑥) < ∞.

Recalling the link between 𝐺(𝑧, d𝑥) and 𝐺3(d𝑥) in equation (1.20), the first equality is
then proved. The second identity follows writing explicitly 𝐹 for our specific model, as
expressed in equation (1.20). Fix 𝑧 = (𝑧1, 𝑧2, 𝑧3) ∈ 𝐷, then∫

R3
𝑒𝑦

⊤𝑥𝐺(𝑧, d𝑥) =
∫
R3
𝑒𝑦1𝑥1+𝑦2𝑥2+𝑦3𝑥3𝑧3𝜃

𝑋(d𝑥1)𝛿0(d𝑥2)𝜃𝜆(d𝑥3)

= 𝑧3

∫
R
𝑒𝑦1𝑥1𝜃𝑋(d𝑥1) ·

∫
R
𝑒𝑦3𝑥3𝜃𝜆(d𝑥3). (1.21)

Referring to the properties of the exponential moments of the Gaussian and Exponential
distributions, one can conclude that the quantity (1.21) is finite only if 𝑦3 < 𝜁, where 𝜁 is
the parameter of the exponential random variable. As there are no restrictions on 𝑦1, 𝑦2,
the second equality in the statement follows. □

Remark 1.12 (On the interior of 𝒴). By Proposition 1.11, one observes that 𝒴 is open, then
𝒴◦ = 𝒴.

Step 2) Finding a subset of 𝒴 such that the extended Riccati system has solution
when choosing an initial value in it. As stated in Keller-Ressel and Mayerhofer (2015,
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Theorem 2.14), 𝒟ℒ(𝑍𝑇 ) ⊆ 𝒴, where 𝒟ℒ(𝑍𝑇 ) is the domain of the exponential moments of
𝑍𝑇 , as defined in equation (1.13). In Keller-Ressel and Mayerhofer (2015, Theorem 2.14),
they also state that if 𝑦 ∈ 𝒟ℒ(𝑍𝑇 ), i.e., E[exp(𝑦⊤𝑍𝑇)] < ∞, then the extended Riccati system
has solution (𝑝, 𝑞1, 𝑞2, 𝑞3)(𝑡 , 𝑦) up to time 𝑇. The subset we are looking for is exactly
𝒟ℒ(𝑍𝑇 ).

Step 3) Proving that if a solution of the extended Riccati system exists, then it stays
in 𝒴◦. Recall that we are working with an affine process having state space 𝐷 ⊆ R3.
In this case, the extended Riccati system, as defined in Keller-Ressel and Mayerhofer
(2015, Definition 2.10), is a system of four generalized Riccati differential equations whose
solution is given by (𝑝, 𝑞1, 𝑞2, 𝑞3). In particular, fixed 𝑦 ∈ 𝒴 such that the solution exists
and 𝑡 ∈ [0, 𝑇], by definition we have that

𝑝 : 𝑡 ↦→ 𝑝(𝑡 , 𝑦) ∈ R, 𝑞𝑖 : 𝑡 ↦→ 𝑞𝑖(𝑡 , 𝑦) ∈ 𝒴

are 𝒞1-functions for 𝑖 = 1, 2, 3. Since 𝒴 is open, as stated in Remark 1.12 then 𝑞(𝑡 , 𝑦) ∈
𝒴 ≡ 𝒴◦.

Step 4) Extended and complex Riccati systems. We now characterize the extended and
complex Riccati systems, introduced in Keller-Ressel and Mayerhofer (2015, Definition
2.10, Definition 2.22), respectively.

Proposition 1.13 (Extended Riccati system). Let 𝑇 ≥ 0 and 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝒴. The
extended Riccati system associated to 𝑍 = (𝑋,𝑉,𝜆) is the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑝
𝜕𝑡 (𝑡 , 𝑦) = 𝛼𝑣𝛽𝑣𝑞2(𝑡 , 𝑦) + 𝛼𝜆𝛽𝜆𝑞3(𝑡 , 𝑦), 𝑝(0, 𝑦) = 0,
𝜕𝑞1
𝜕𝑡 (𝑡 , 𝑦) = 0, 𝑞1(0, 𝑦) = 𝑦1,
𝜕𝑞2
𝜕𝑡 (𝑡 , 𝑦) = −1

2 𝑞1(𝑡 , 𝑦) + 1
2 𝑞1(𝑡 , 𝑦)2 − 𝛽𝑣𝑞2(𝑡 , 𝑦) + 𝜌𝜎𝑣𝑞1(𝑡 , 𝑦)𝑞2(𝑡 , 𝑦) + 1

2𝜎
2
𝑣𝑞2(𝑡 , 𝑦)2, 𝑞2(0, 𝑦) = 𝑦2,

𝜕𝑞3
𝜕𝑡 (𝑡 , 𝑦) = −(𝜅1 − 1)𝑞1(𝑡 , 𝑦) − 𝛽𝜆𝑞3(𝑡 , 𝑦) + 𝑒𝛾𝑞1(𝑡 ,𝑦)+𝛿2𝑞1(𝑡 ,𝑦)2/2 𝜁

𝜁−𝑞3(𝑡 ,𝑦) − 1, 𝑞3(0, 𝑦) = 𝑦3

where 𝑡 ∈ [0, 𝑇] and

𝑝 : 𝑡 ↦→ 𝑝(𝑡 , 𝑦) ∈ R, 𝑞1 : 𝑡 ↦→ 𝑞1(𝑡 , 𝑦) ∈ R, 𝑞2 : 𝑡 ↦→ 𝑞2(𝑡 , 𝑦) ∈ R, 𝑞3 : 𝑡 ↦→ 𝑞3(𝑡 , 𝑦) ∈ (−∞, 𝜁)

are 𝒞1-functions.

Proof. Fixed 𝑦 ∈ 𝒴 and 𝑇 ≥ 0, in Keller-Ressel and Mayerhofer (2015, Definition 2.10) it is
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stated that the extended Riccati system is given by⎧⎪⎪⎨⎪⎪⎩
𝜕𝑝
𝜕𝑡 (𝑡 , 𝑦) = 𝐹(𝑞(𝑡 , 𝑦)), 𝑝(0, 𝑦) = 0
𝜕𝑞𝑖
𝜕𝑡 (𝑡 , 𝑦) = 𝑅𝑖(𝑞(𝑡 , 𝑦)), 𝑞𝑖(0, 𝑦) = 𝑦𝑖 ,

for 𝑖 = 1, 2, 3, where 𝐹, 𝑅𝑖 : 𝒴 → R are functions whose shape depends on the affine
structure of 𝑍, see Keller-Ressel and Mayerhofer (2015, Proposition 2.8). In our specific
case, recalling that the characteristics of 𝑍 are given by (1.10), (1.11), (1.12), we have

𝐹(𝑦) = 𝛽𝑣𝛼𝑣𝑦2 + 𝛽𝜆𝛼𝜆𝑦3 (1.22)

𝑅1(𝑦) = 0 (1.23)

𝑅2(𝑦) =
1
2 𝑦

2
1 + 𝜌𝜎𝑣𝑦1𝑦2 +

1
2𝜎

2
𝑣𝑦

2
2 −

1
2 𝑦1 − 𝛽𝑣𝑦2 (1.24)

𝑅3(𝑦) = −(𝜅1 − 1)𝑦1 +
∫
R
ℎ(𝑥)𝜃𝑋(d𝑥)𝑦1 − 𝛽𝜆𝑦3 +

∫
R+
ℎ(𝑥)𝜃𝜆(d𝑥)𝑦3

+
∫
R3\{0}

(𝑒𝑦⊤𝑥 − 1 − ℎ(𝑥)⊤𝑦)𝜃𝑋(d𝑥1)𝛿0(d𝑥2)𝜃𝜆(d𝑥3). (1.25)

Writing explicitly the scalar product, formula (1.25) becomes∫
R3\{0}

(𝑒𝑥1𝑦1𝑒𝑥2𝑦2𝑒𝑥3𝑦3 − 1 − ℎ(𝑥1)𝑦1 − ℎ(𝑥2)𝑦2 − ℎ(𝑥3)𝑦3)𝜃𝑋(d𝑥1)𝛿0(d𝑥2)𝜃𝜆(d𝑥3).

To rewrite the integral of the sum as the sum of the integrals we need to verify that the
integral of every addendum converges:

• Since 𝑦 ∈ 𝒴, 𝑦3 < 𝜁. It follows that∫
R3\{0}

𝑒𝑥1𝑦1𝑒𝑥2𝑦2𝑒𝑥3𝑦3𝜃𝑋(d𝑥1)𝛿0(d𝑥2)𝜃𝜆(d𝑥3)

=

∫
R
𝑒𝑥1𝑦1𝜃𝑋(d𝑥1) ·

∫
R
𝑒𝑥2𝑦2𝛿0(d𝑥2) ·

∫
R
𝑒𝑥3𝑦3𝜃𝜆(d𝑥3) = 𝑒𝛾𝑦1+𝛿2𝑦2

1/2 𝜁
𝜁 − 𝑦3

< ∞

from the properties of Gaussian and Exponential probability random variables.

• Clearly
∫
R3\{0} 1 · 𝜃𝑋(d𝑥1)𝛿0(d𝑥2)𝜃𝜆(d𝑥3) = 1 < ∞.

• We also have that, for every 𝑗 = 1, 2, 3,∫
R3\{0}

ℎ(𝑥 𝑗)𝑦 𝑗𝜃𝑋(d𝑥1)𝛿0(d𝑥2)𝜃𝜆(d𝑥3) = 𝑦 𝑗

∫
R3\{0}

1|𝑥 𝑗 |≤1𝑥 𝑗𝜃
𝑋(d𝑥1)𝛿0(d𝑥2)𝜃𝜆(d𝑥3) < ∞.
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Then, we get

𝑅3(𝑦) = −(𝜅1 − 1)𝑦1 − 𝛽𝜆𝑦3 + 𝑒𝛾𝑦1+𝛿2𝑦2
1/2 𝜁

𝜁 − 𝑦3
− 1. (1.26)

Replacing 𝑞𝑖 to 𝑦𝑖 for 𝑖 = 1, 2, 3 in equations (1.22), (1.23), (1.24), (1.26), one obtains exactly
the system in the statement. □

Proposition 1.14 (Complex Riccati system). Let 𝑇 ≥ 0 and 𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ 𝒮(𝒴◦). The
complex Riccati system associated to 𝑍 is (1.17).

Proof. In Keller-Ressel and Mayerhofer (2015, Definition 2.22), the complex Riccati system
is given by ⎧⎪⎪⎨⎪⎪⎩

𝜕Φ
𝜕𝑡 (𝑡 , 𝑢) = 𝐹̄(Ψ(𝑡 , 𝑢)), Φ(0, 𝑢) = 0
𝜕Ψ𝑖

𝜕𝑡 (𝑡 , 𝑢) = 𝑅̄𝑖(Ψ(𝑡 , 𝑢)), Ψ(0, 𝑢) = 𝑢,

where 𝐹̄, 𝑅̄𝑖 : 𝒮(𝒴◦) → C are the analytic extensions of 𝐹, 𝑅𝑖 , see equations (1.22), (1.23),
(1.24), (1.26), to 𝒮(𝒴◦). Note that, the analytic extensions of 𝐹, 𝑅𝑖 have exactly the same
analytical form of 𝐹, 𝑅𝑖 . The complex Riccati is then given, for 𝑢 ∈ 𝒮(𝒴◦), by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕Φ
𝜕𝑡 (𝑡 , 𝑢) = 𝛼𝑣𝛽𝑣Ψ2(𝑡 , 𝑢) + 𝛼𝜆𝛽𝜆Ψ3(𝑡 , 𝑢), Φ(0, 𝑢) = 0,
𝜕Ψ1
𝜕𝑡 (𝑡 , 𝑢) = 0, Ψ1(0, 𝑢) = 𝑢1 ,

𝜕Ψ2
𝜕𝑡 (𝑡 , 𝑢) = −1

2Ψ1(𝑡 , 𝑢) + 1
2Ψ1(𝑡 , 𝑢)2 − 𝛽𝑣Ψ2(𝑡 , 𝑢) + 𝜌𝜎𝑣𝑦1Ψ2(𝑡 , 𝑢) + 1

2𝜎
2
𝑣Ψ2(𝑡 , 𝑢)2 , Ψ2(0, 𝑢) = 𝑢2 ,

𝜕Ψ3
𝜕𝑡 (𝑡 , 𝑢) = −(𝜅1 − 1)Ψ1(𝑡 , 𝑢) − 𝛽𝜆Ψ3(𝑡 , 𝑢) + 𝑒𝛾Ψ1(𝑡 ,𝑢)+𝛿2Ψ1(𝑡 ,𝑢)2/2 𝜁

𝜁−Ψ3(𝑡 ,𝑢) − 1, Ψ3(0, 𝑢) = 𝑢3 ,

where 𝑡 ∈ [0, 𝑇] and

Φ : 𝑡 ↦→ Φ(𝑡 , 𝑢) ∈ C, Ψ1,2 : 𝑡 ↦→ Ψ1,2(𝑡 , 𝑦) ∈ C, Ψ3 : 𝑡 ↦→ Ψ3(𝑡 , 𝑦) ∈ {𝑢 ∈ C : ℜ𝔢(𝑢) < 𝜁}

are 𝒞1-functions. To see that it corresponds to (1.17) it is enough to notice that the solution
to the ODE

𝜕Ψ1
𝜕𝑡

(𝑡 , 𝑢) = 0, Ψ1(0, 𝑢) = 𝑢1

is Ψ1 ≡ 𝑢1 and to rename Φ = 𝜙,Ψ2 = 𝜓,Ψ3 = 𝜒. □

Step 5) Conclusion. Let us sum up all the previous steps to obtain E[exp(𝑢⊤𝑍𝑇)] for
𝑢 ∈ 𝒮(𝒟ℒ(𝑍𝑇 )). If we take 𝑢 ∈ 𝒮(𝒟ℒ(𝑍𝑇 )) ⊂ 𝒮(𝒴), then by definition ℜ𝔢(𝑢) ∈ 𝒟ℒ(𝑍𝑇 ) ⊆ 𝒴.
By Step 2 we know that the extended Riccati system having as starting point ℜ𝔢(𝑢) ∈ 𝒟𝑇

has solution (𝑝, 𝑞1, 𝑞2, 𝑞3). By Step 3 we ensure that 𝑞(𝑡 ,ℜ𝔢(𝑢)) ∈ 𝒴◦. Applying Keller-
Ressel and Mayerhofer (2015, Theorem 2.26), we get that also the complex Riccati system
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(1.17), see Step 4, has unique solution (𝜙,𝜓, 𝜒)(𝑡 , 𝑢) up to time 0 ≤ 𝑇 < 𝑇∗, then

E[exp(𝑢⊤𝑍𝑇)] = exp
(︁
𝜙(𝑇, 𝑢) + 𝑢1𝑋0 + 𝜓(𝑇, 𝑢)𝑉0 + 𝜒(𝑇, 𝑢)𝜆0

)︁
.

1.5 The hedging problem

Notation Let us introduce here some useful notation.

• For 𝑢 ∈ C𝑛 , we denote by 𝑢̄ its complex conjugate.

• 𝐿2(P) is the set of random variables with finite second order moment under P.

• ℋ 2
C (resp. ℋ 2) is the Hilbert space of càdlàg complex-valued (resp. real-valued) F-adapted

square-integrable martingales.

• If 𝑋,𝑌 ∈ ℋ2, then ⟨𝑋,𝑌⟩ denotes the predictable covariation of 𝑋 and 𝑌. Notice
that 𝑋 and 𝑌 are orthogonal if and only if 𝑋0𝑌0 = 0 and ⟨𝑋,𝑌⟩ = 0.

• For 𝑍 𝑗 = 𝑋 𝑗 + 𝑖𝑌 𝑗 ∈ ℋ2
C, 𝑗 = 1, 2

⟨𝑍1, 𝑍2⟩ = (⟨𝑋1, 𝑋2⟩ − ⟨𝑌1, 𝑌2⟩) + 𝑖(⟨𝑋1, 𝑌2⟩ + ⟨𝑌1, 𝑋2⟩).

• For 𝑋 ∈ ℋ2
C (resp., 𝑋 ∈ ℋ 2) we define the space of complex-valued (resp. real-valued)

integrands for 𝑋 as

𝐿2
C(𝑋) :=

{︃
𝜗 predictable and complex-valued: E

[︃∫ 𝑇

0
|𝜗𝑠 |2 𝑑⟨𝑋, 𝑋̄⟩𝑠

]︃
< ∞

}︃
(resp., 𝐿2(𝑋)).

1.5.1 Semi-static hedging variance-optimal strategies

Recall that 𝑆models the price process of a tradable asset. Consider a given claim𝜂0 ∈ 𝐿2(P),
which we want to hedge, and a fixed basket of contingent claims 𝜂𝜂𝜂 := (𝜂1, . . . , 𝜂𝑑)⊤,
𝜂 𝑗 ∈ 𝐿2(P) for 𝑗 = 1, . . . , 𝑑, that we want to use, together with 𝑆, to hedge 𝜂0. Our aim
is finding a semi-static variance-optimal hedging strategy in order to hedge 𝜂0. Before
introducing the actual optimization problem, let us give a brief explanation of what a
semi-static variance-optimal strategy is.

In Föllmer and Sondermann (1986), the authors introduce variance-optimal hedging
for the first time as a method to hedge contingent claims in incomplete markets. The
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underlying idea is to find a self-financing strategy, for a given claim 𝜂0, which minimizes
the risk-neutral variance of the residual hedging error at a terminal time 𝑇 > 0. Always in
Föllmer and Sondermann (1986), they show that the solution of this optimization problem
is given by the Galtchouk-Kunita-Watanabe (GKW) decomposition of 𝜂0 with respect to
the price 𝑆, see Kunita and Watanabe (1967) for further details. This decomposition will
be a key tool also in the more general case of semi-static variance-optimal hedging, as we
will see later in this section.

We also require for a semi-static strategy, meaning that we aim at combining a dynamic
(i.e., continuously rebalanced) position in 𝑆 and a static (i.e., buy-and-hold) position in
the other assets 𝜂𝜂𝜂. Being a generalization of fully dynamic strategies, semi-static variance-
optimal strategies typically allow for a reduction of the quadratic hedging error. Moreover,
no rebalancing costs or liquidity risks are associated with the static part of the strategy,
allowing the use of assets with limited liquidity as static hedging instruments. Semi-static
strategies have appeared in mathematical finance in different contexts, see e.g. Carr (2011),
Beiglböck et al. (2013). Since the ultimate goal of this work is the hedge of a variance swap,
we bring attention to Neuberger (1994) and Carr and Madan (2001), where they show the
semi-static replication of variance swaps by Neuberger’s formula.

Definition 1.15. A semi-static strategy is a pair (𝜗, 𝜈𝜈𝜈) ∈ 𝐿2(𝑆) × R𝑑. Together with an
initial wealth 𝑐 ∈ R it is called variance-optimal hedging strategy for the square-integrable
contingent claim 𝜂0 if it is a solution to the semi-static variance-optimal hedging problem

𝜀2 = min
𝜈𝜈𝜈∈R𝑑 ,𝜗∈𝐿2(𝑆),𝑐∈R

E

[︄(︃
𝑐 − E[𝜈𝜈𝜈⊤𝜂𝜂𝜂] +

∫ 𝑇

0
𝜗𝑠 d𝑆𝑠 − (𝜂0 − 𝜈𝜈𝜈⊤𝜂𝜂𝜂)

)︃2]︄
.

A semi-static strategy is a strategy which has both a dynamic position in 𝑆, denoted by
𝜗, and a static position in the fixed basket 𝜂𝜂𝜂 = (𝜂1, . . . , 𝜂𝑑)⊤, which is denoted by 𝜈𝜈𝜈.

In Di Tella et al. (2019), Di Tella et al. (2020), they show that the semi-static hedging
problem can be split into an inner and an outer optimization problem, respectively

𝜀2(𝜈𝜈𝜈) = min
𝜗∈𝐿2(𝑆),𝑐∈R

E

[︄(︃
𝑐 − E[𝜈𝜈𝜈⊤𝜂𝜂𝜂] +

∫ 𝑇

0
𝜗𝑠 d𝑆𝑠 − (𝜂0 − 𝜈𝜈𝜈⊤𝜂𝜂𝜂)

)︃2]︄
(1.27)

𝜀2 = min
𝜈𝜈𝜈∈R𝑑

𝜀2(𝜈𝜈𝜈). (1.28)

The two problems can be solved separately. The inner problem, equation (1.27), is a
classic variance-optimal hedging problem, see Föllmer and Sondermann (1986). As we
have mentioned before, the solution of the problem is linked to the GKW decomposition.
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Thus, before writing the solution of equation (1.27), let us introduce this key technical
tool, referring to Kunita and Watanabe (1967).

Definition 1.16 (GKW decomposition). Let 𝑋,𝑌 ∈ ℋ 2
C. Then there exist a unique 𝜗 ∈

𝐿2
C(𝑋) and a unique 𝐿 ∈ ℋ2

C, 𝐿0 = 0, such that ⟨𝑋, 𝐿̄⟩ = 0 and the following decomposition
holds:

𝑌· = 𝑌0 +
∫ ·

0
𝜗𝑠 d𝑋𝑠 + 𝐿·.

The couple (𝐿, 𝜗) is called the GKW decomposition of 𝑌 with respect to 𝑋. From a financial
point of view, the decomposition is made of: an initial capital 𝑌0, an investment strategy
𝜗 which helps dealing with the hedgeable risk and the residual risk 𝐿, the orthogonal
component. Notice that 𝜗 = d⟨𝑌, 𝑋̄⟩/d⟨𝑋, 𝑋̄⟩.

The optimal solution of equation (1.27) is given, for a fixed 𝜈𝜈𝜈 = (𝜈1, 𝜈2, . . . , 𝜈𝑑)⊤, by
(𝜗𝜈𝜈𝜈,∗, 𝑐∗) defined as

𝜗𝜈𝜈𝜈,∗ = 𝜗0 −
𝑑∑︂
𝑗=1

𝜈𝑗𝜗
𝑗 , 𝑐∗ = E[𝜂0],

where (𝜗 𝑗 , 𝐿𝑗) are the GKW decomposition of 𝜂 𝑗 with respect to 𝑆 for 𝑗 = 0, . . . , 𝑑.
The outer problem in equation (1.28) is a finite-dimensional quadratic optimization

problem. In the proof of Di Tella et al. (2020, Theorem 2.3) they show that 𝜀2(𝜈𝜈𝜈) can be
written in the following form

𝜀2(𝜈𝜈𝜈) = 𝐴 − 2𝜈𝜈𝜈⊤𝐵 + 𝜈𝜈𝜈⊤𝐶𝜈𝜈𝜈, (1.29)

where the coefficients 𝐴, 𝐵, and 𝐶 are given by

𝐴 := E[⟨𝐿0, 𝐿0⟩𝑇], 𝐵 𝑗 := E[⟨𝐿0, 𝐿𝑗⟩𝑇], 𝐶 𝑖 𝑗 := E[⟨𝐿𝑖 , 𝐿𝑗⟩𝑇], 𝑖 , 𝑗 = 1, . . . , 𝑑. (1.30)

Again in Di Tella et al. (2020, Theorem 2.3), they show that if 𝐶 is invertible, then the
optimal strategy (𝜗∗, 𝜈𝜈𝜈∗, 𝑐∗) for the semi-static variance-optimal hedging problem (2.1) is
then given by

𝜈𝜈𝜈∗ = 𝐶−1𝐵, 𝜗∗ = 𝜗0 −
𝑑∑︂
𝑗=1

𝜈∗𝑗𝜗
𝑗 , 𝑐∗ = E[𝜂0] (1.31)

and the minimal squared hedging error is given by

𝜀2(𝜈𝜈𝜈∗) = 𝐴 − 𝐵𝑇𝐶−1𝐵. (1.32)

33



1.5. THE HEDGING PROBLEM

Remark 1.17. Note that if 𝐶 is non-invertible, then any 𝜈 ∈ R𝑑 which is solution of the
linear system 𝐶𝜈 = 𝐵, together with 𝑐 = E[𝜂0

𝑇
] and 𝜗𝜈 = 𝜗0 −∑︁𝑑

𝑗=1 𝜈𝑗𝜗
𝑗 , is a solution of the

semistatic hedging problem. The solution that minimizes the Euclidian norm of 𝜈 can be
obtained by setting 𝜈 = 𝐶∗𝐵, where 𝐶∗ denotes the Moore–Penrose pseudo-inverse of 𝐶.

Thus, to solve the semi-static variance-optimal hedging problem, it is necessary to:

a) calculate the predictable covariations of the residuals 𝐿 𝑗 in the GKW decomposition
of 𝜂 𝑗 with respect to 𝑆 for 𝑗 = 0, ..., 𝑑;

b) take the expectations of these predictable covariations to obtain 𝐴, 𝐵, 𝐶 as by equa-
tion (1.30).

On this regard, we recall in Appendix 1.A the key Corollary 3.1 from Di Tella et al. (2019),
which provides the GKW and the predictable covariations in the case where the claims
are functions of semimartingales with affine characteristics. In what follows we will see
how the Fourier representation of the claims is a key tool to compute the three quantities
above and how it can be combined with Corollary 3.1 from Di Tella et al. (2019).

1.5.2 Solving the semi-static hedging problem via Fourier representa-
tion

Variance-optimal hedging has been historically combined with Fourier methods and we
refer the reader to Di Tella et al. (2019), where this idea is exploited in a very general factor
model, and when dealing with semi-static hedging.

Consider a general model Z = (Z1, . . . ,Z𝑛). We should be cautious not to confuse 𝑍,
our model specified in Section 1.2, with Z, a general model taking values in R𝑛 . Assume
Z1 to be the log-price process of the underlying stock, i.e., 𝑆 = 𝑒Z1 . Consider a European
option with payoff 𝜂 = ℎ(Z1

𝑇
), 𝜂 ∈ 𝐿2(P), for some real-valued function ℎ with domain in

R. Assume the two-sided Laplace transform of ℎ, denoted ˆ︁ℎ, exists in 𝑅 ∈ R and that
it is integrable on the strip 𝒮(𝑅) := {𝑢 ∈ C𝑛 : ℜ𝔢(𝑢) = 𝑅}. Then, ℎ has the following
representation:

ℎ(𝑧) = 1
2𝜋𝑖

∫ 𝑅+𝑖∞

𝑅−𝑖∞
exp(𝑢⊤𝑧)ˆ︁ℎ(𝑢)d𝑢 =

∫
𝒮(𝑅)

exp(𝑢⊤𝑧)𝜁(d𝑢), (1.33)

where 𝜁 is the finite complex-valued absolutely continuous measure on 𝒮(𝑅) defined by

𝜁(d𝑢) := 1
2𝜋𝑖

ˆ︁ℎ(𝑢)d𝑢. (1.34)
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If the integrability condition E[𝑒𝑅Z1
𝑇 ] < ∞ holds, then the risk-neutral price of the claim 𝜂

at time 𝑡 ∈ [0, 𝑇] can be recovered by the Fourier-type integral

𝜂𝑡 =

∫
𝒮(𝑅)

𝜂𝑡(𝑢)𝜁(d𝑢) (1.35)

where
𝜂𝑡(𝑢) = E[𝑒𝑢Z1

𝑇 |ℱ𝑡].

Remark 1.18. In the case where 𝜂 is an European Call (resp. Put), i.e., for a fixed a strike
𝐾 > 0, ℎ(𝑧) = (𝑒𝑧 − 𝐾)+ (resp. ℎ(𝑧) = (𝐾 − 𝑒𝑧)+), we have that

ˆ︁ℎ(𝑢) = 𝐾1−𝑢

𝑢(𝑢 − 1) , (1.36)

for 𝑅 > 1 (resp. 𝑅 < 0). See Hubalek et al. (2006, Section 4) for further details.

Now that we have highlighted how the Fourier method is applied for the pricing of
European options, we can explain its application to the semi-static hedging case. Recall
that the solution of a general semi-static hedging optimization problem, given by equation
(1.31), is characterized by the GKW representation of the claims. The core idea is that the
Fourier representation of the claim in equation (1.35) and the GKW decomposition of the
claim with respect to 𝑆 can be interchanged.

Similarly to before, consider a factor process Z = (Z1, . . . ,Z𝑛), such that the underlying
stock 𝑆 = 𝑒Z1 ∈ ℋ2. Let 𝑅 𝑗 ∈ R be such that E[𝑒2𝑅 𝑗Z1

𝑇 ] < ∞ and define 𝒮 𝑗 := {𝑢 ∈ C :
ℜ𝔢(𝑢) = 𝑅 𝑗} , 𝑗 = 1, . . . , 𝑑, and the strip 𝒮 :=

⋃︁𝑑
𝑗=1 𝒮 𝑗 . Assume to be working with a family

of real-valued square-integrable payoffs of European options 𝜂 𝑗 = ℎ 𝑗(Z1
𝑇
), 𝑗 = 1, . . . , 𝑑,

where ℎ 𝑗 admits a Fourier representation, as in equations (1.33), (1.34), on 𝒮𝑗 and w.r.t.
the measures 𝜁 𝑗 .

In Di Tella et al. (2019, Theorem 4.1, Theorem 4.2), they show how to write the GKW
representation of the claims 𝜂 𝑗 in terms of the GKW representation of a more general
object

𝜂𝑡(𝑢) = E[𝑒𝑢Z1
𝑇 |ℱ𝑡], 𝑡 ∈ [0, 𝑇], 𝑢 ∈ 𝒮. (1.37)

We denote by (𝜗 𝑗 , 𝐿𝑗) the GKW decomposition of𝜂 𝑗 with respect to𝑆 and by (𝜗(𝑢), 𝐿(𝑢)), 𝑢 ∈
𝒮, those of 𝜂𝑡(𝑢) (introduced in equation (1.37)) with respect to 𝑆, for 𝑢 ∈ 𝒮. The following
formulas hold:
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• From Di Tella et al. (2019, Theorem 4.1, equation (4.10)) we get the hedging strategy

𝜗 𝑗 =

∫
𝒮 𝑗

𝜗(𝑢) 𝜁 𝑗(d𝑢).

• From Di Tella et al. (2019, Theorem 4.2, equation (4.12)) we have, for 𝑖 , 𝑗 = 1, . . . , 𝑑,

⟨𝐿𝑖 , 𝐿𝑗⟩𝑇 =

∫ 𝑇

0

∫
𝒮 𝑖

∫
𝒮 𝑗

d⟨𝐿(𝑢𝑖), 𝐿(𝑢𝑗)⟩𝑡𝜁 𝑗(d𝑢𝑗)𝜁𝑖(d𝑢𝑖).

Proposition 1.19. Consider a factor process Z = (Z1, . . . ,Z𝑛), such that the underlying stock
𝑆 = 𝑒Z1 ∈ ℋ2. Let 𝑅 𝑗 ∈ R be such that E[𝑒2𝑅 𝑗Z1

𝑇 ] < ∞ and define 𝒮 𝑗 := {𝑢 ∈ C : ℜ𝔢(𝑢) =
𝑅 𝑗} , 𝑗 = 1, . . . , 𝑑 and the strip 𝒮 :=

⋃︁𝑑
𝑗=1 𝒮 𝑗 . Consider some real-valued square-integrable

European options 𝜂 𝑗 = ℎ 𝑗(Z1
𝑇
), 𝑗 = 1, . . . , 𝑑 where ℎ 𝑗 has a Fourier representation as in equations

(1.33), (1.34) on 𝒮𝑗 w.r.t. measures 𝜁 𝑗 . Then 𝐴, 𝐵, 𝐶 in equations (1.30) are obtained via
integration as follows

𝐴 =

∫ 𝑇

0
E

[︃
d⟨𝐿0, 𝐿0⟩𝑡

d𝑡

]︃
d𝑡 ,

𝐵 𝑗 =

∫ 𝑇

0

∫
𝒮 𝑗

E

[︄
d⟨𝐿0, 𝐿(𝑢𝑗)⟩𝑡

d𝑡

]︄
𝜁 𝑗(d𝑢𝑗)d𝑡 ,

𝐶 𝑖 , 𝑗 =

∫ 𝑇

0

∫
𝒮 𝑖

∫
𝒮 𝑗

E
[︃d⟨𝐿(𝑢𝑖), 𝐿(𝑢𝑗)⟩𝑡

d𝑡

]︃
𝜁 𝑗(d𝑢𝑗)𝜁𝑖(d𝑢𝑖)d𝑡 ,

for 𝑖 , 𝑗 = 1, . . . , 𝑑.

Proof. Refer to Di Tella et al. (2019, Theorem 4.1, Theorem 4.2). □

Remark 1.20. Exploiting the Fourier transform of the payoff of the contingent claims 𝜂 𝑗 to
compute the semi-static hedging strategies has numerous advantages:

• Instead of computing the GKW decomposition for each claim 𝜂 𝑗 , it is enough to
compute it once for 𝜂𝑡(𝑢) and then to obtain 𝐴, 𝐵, 𝐶 by integration as in Proposition
1.19.

• To compute the GKW decomposition for each claim 𝜂 𝑗 in the case of an affine model,
one might exploit Di Tella et al. (2019, Corollary 3.1), recalled in Appendix 1.A.
However, to apply the Corollary, one needs the payoff ℎ 𝑗 to be at least two times
differentiable, which is not true for example in the case of European Calls and Puts.
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On the other hand, for many affine models the Laplace transform 𝜂𝑡(𝑢) is a smooth
function.

• Note that 𝜂𝑡(𝑢) in equation (1.37) is the complex, conditional Laplace transform of
Z1. This quantity is available in closed form in many models (such as affine models).

1.6 Application: hedging variance swaps

We now would like to solve the semi-static hedging problem introduced in Section 1.5 in
the case where 𝜂0 is a variance swap written on the stock 𝑆 = 𝑒𝑋 , where 𝑋 is the log-price
defined in equation (1.7a). More precisely, the payoff at maturity 𝑇 > 0 of the variance
swap is defined as

𝜂0
𝑇 = [𝑋, 𝑋]𝑇 − 𝑘, (1.38)

where 𝑘 is the so-called swap rate, i.e., 𝑘 = E[[𝑋, 𝑋]𝑇] so that E[𝜂0
𝑇
] = 0 and the contract

is zero at inception. The set of contingent claims used to hedge is a basket (𝜂1, . . . , 𝜂𝑑) of
European options written on 𝑆.

As we stated in Section 1.5, the hedging error uniquely depends on the quantities
𝐴, 𝐵, 𝐶 in equation (1.30). In the next proposition, these key three quantities will be
characterized for this specific derivative.

Theorem 1.21. Let 𝑍 = (𝑋,𝑉,𝜆) be given by the model in equations (1.7) and let the claim 𝜂0

be a variance swap on 𝑆 = 𝑒𝑋 and the contingent claims 𝜂𝜂𝜂 = (𝜂1 . . . , 𝜂𝑑)⊤ be European puts and
calls with payoffs ℎ 𝑗(𝑆𝑇), 𝑗 = 1, . . . , 𝑑. We denote by ˆ︁ℎ 𝑗 the two-sided Laplace transforms of ℎ 𝑗 as
in equation (1.36), which are integrable along strips 𝒮 𝑗 , where 𝒮 𝑗 = {𝑧 ∈ C : ℜ𝔢(𝑧) = 𝑅 𝑗}, such
that E[𝑒2𝑅 𝑗𝑋𝑇 ] < ∞. Fix 0 < 𝑇 < 𝑇∗ where 𝑇∗ is the explosion time in the Heston model. Then the
dynamic hedging strategies 𝜗0 and 𝜗 𝑗 , 𝑗 = 1, . . . , 𝑑 and the coefficients 𝐴, 𝐵, 𝐶 are given by

𝜗0
𝑡 =

1
𝑆𝑡−(𝑉𝑡 + 𝜆𝑡𝜅̄)

(︁
Θ0

1(𝑡)𝑉𝑡 + Θ0
2(𝑡)𝜆𝑡−

)︁
,

𝜗
𝑗

𝑡 =
1

𝑆𝑡−(𝑉𝑡 + 𝜆𝑡−𝜅̄)

∫
𝒮 𝑗

(︂
Θ
𝑗

1(𝑡 , 𝑢𝑗) 𝑓𝑡−(𝑢𝑗)𝑉𝑡 + Θ
𝑗

2(𝑡 , 𝑢𝑗) 𝑓𝑡−(𝑢𝑗)𝜆𝑡−
)︂
𝜁 𝑗(d𝑢𝑗),

𝐴 =

∫ 𝑇

0
𝐴1(𝑡)E

[︄
𝑉2
𝑡

𝑉𝑡 + 𝜆𝑡−𝜅̄

]︄
+ 𝐴2(𝑡)E

[︃
𝜆𝑡𝑉𝑡

𝑉𝑡 + 𝜆𝑡−𝜅̄

]︃
+ 𝐴3(𝑡)E

[︄
𝜆2
𝑡

𝑉𝑡 + 𝜆𝑡−𝜅̄

]︄
d𝑡 ,

𝐵 𝑗 =

∫ 𝑇

0

∫
𝒮 𝑗

𝐵1(𝑡 , 𝑢𝑗)E
[︄
𝑓𝑡−(𝑢𝑗)𝑉2

𝑡

𝑉𝑡 + 𝜆𝑡−𝜅̄

]︄
+ 𝐵2(𝑡 , 𝑢𝑗)E

[︃
𝑓𝑡−(𝑢𝑗)𝜆𝑡𝑉𝑡
𝑉𝑡 + 𝜆𝑡−𝜅̄

]︃
+ 𝐵3(𝑡 , 𝑢𝑗)E

[︄
𝑓𝑡−(𝑢𝑗)𝜆2

𝑡

𝑉𝑡 + 𝜆𝑡−𝜅̄

]︄
𝜁 𝑗(d𝑢𝑗)d𝑡 ,
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𝐶 𝑖 , 𝑗 =

∫ 𝑇

0

∫
𝒮 𝑖

∫
𝒮 𝑗

𝐶1(𝑡 , 𝑢𝑖 , 𝑢𝑗)E
[︄
𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝑉2

𝑡

𝑉𝑡 + 𝜆𝑡−𝜅̄

]︄
+ 𝐶2(𝑡 , 𝑢𝑖 , 𝑢𝑗)E

[︃
𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝜆𝑡𝑉𝑡

𝑉𝑡 + 𝜆𝑡−𝜅̄

]︃
+ 𝐶3(𝑡 , 𝑢𝑖 , 𝑢𝑗)E

[︄
𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝜆2

𝑡

𝑉𝑡 + 𝜆𝑡−𝜅̄

]︄
𝜁𝑖(d𝑢𝑖)𝜁 𝑗(d𝑢𝑗)d𝑡 ,

where 𝜅̄ = (𝑒2(𝛾+𝛿2) − 2𝑒𝛾+𝛿2/2 + 1) and

𝑓𝑡−(𝑢𝑗) = exp(𝜙𝑇−𝑡(𝑢𝑗) + 𝑢𝑗𝑋𝑡− + 𝜓𝑇−𝑡(𝑢𝑗)𝑉𝑡− + 𝜒𝑇−𝑡(𝑢𝑗)𝜆𝑡−) (1.39)

with Θ0
𝑘
,Θ

𝑗

𝑘
, 𝐴𝑘 , 𝐵𝑘 , 𝐶𝑘 deterministic functions of 𝑡 , 𝑢𝑖 , 𝑢𝑗 , which are made precise in the proof

and 𝑔𝑡(𝑢𝑗) = 𝑔(𝑡 , 𝑢𝑗 , 0, 0), for 𝑔 = 𝜙,𝜓, 𝜒 as defined as in Theorem 1.8.

Proof. The proof is provided in Appendix 1.C. □

1.7 Numerical results

In this section, we focus on the computation of 𝐴, 𝐵, 𝐶 and of the hedging error 𝜀2(𝜈𝜈𝜈∗) for a
variance swap hedged by a set of European Call options. In particular, we want to perform
some parameter-sensitivity tests. We executed the code via the cluster of the Department
of Mathematics of University of Padova, using a configuration of 10 cores and 32GB of
RAM. We report that the average time for computing 𝐴, 𝐵, 𝐶 for 𝑑 = 21 options was about
40 minutes.

The computations involved in this task are far from being numerically trivial, in that
they involve:

• The computation of the solutions 𝜙,𝜓, 𝜒 to the generalized Riccati system in (1.17),
useful to obtain 𝑓𝑡−(𝑢𝑗)as in equation (1.39) and the deterministic coefficients𝐴𝑘 , 𝐵𝑘 , 𝐶𝑘
(see Section 1.C),

• The expectations in 𝐴, 𝐵, 𝐶 in Theorem 1.21,

• Multiple integrals over the complex strips 𝒮 𝑗 := {𝑢 ∈ C : ℜ𝔢(𝑢) = 𝑅 𝑗} , 𝑗 = 1, . . . , 𝑑,
where 𝑑 is the number of vanilla options used to hedge.

We highlight that 𝜓 is computed in closed form, recall Remark 1.9. On the other
hand, 𝜙 and 𝜒 must be computed numerically and for this we used the built-in Python
ODE solver, scipy.integrate.solve_ivp. The explicit Runge-Kutta method of order
5(4) (RK45)—the default method—was employed, along with the default tolerances: a
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relative tolerance (rtol) of 1e-3 and an absolute tolerance (atol) of 1e-6. The expectations
appearing in 𝐴, 𝐵, 𝐶 in Theorem 1.21 are computed via Monte-Carlo with a relatively
small number of trajectories, equal to 𝑀 = 104 (we observed no significant improvement
when increasing to 𝑀 = 105, so we chose 𝑀 = 104 in order to reduce the computational
effort). We choose 𝑇 = 1, taking 𝑁 = 100 equispaced timesteps.

Remark 1.22. Despite the availability of closed formulas for the moments, obtained in
Section 1.D, we decided to use Monte Carlo for the sake of computational time. Indeed,
closed formulas, yet requiring integration of partial derivatives of 𝜙,𝜓, 𝜒, produce results
close to the benchmark, obtained with Monte Carlo with 𝑀 = 105, but with higher
computational time.

To simulate the trajectories of𝜆, 𝑉 and then𝑋, we use the following algorithm, partially
inspired by Brignone et al. (2024):

• For a given𝜆0, simulate trajectories of𝜆𝑡 and 𝐽𝜆𝑡 , as in Dassios and Zhao (2013). From

(1.3), compute
∫ 𝑡

0 𝜆𝑠d𝑠 = −𝜆𝑡−𝜆0−𝛽𝜆𝛼𝜆−𝐽𝜆𝑇
𝛽𝜆

.

• Being 𝑉 a CIR process, for 𝑡 ∈ [0, 𝑇] and 𝑢 ∈ [0, 𝑡], 𝑉𝑢 is given and so 𝑉𝑡 =
𝜎2
𝑣(1−𝑒−𝛽𝑣 (𝑡−𝑢))

4𝛽𝑣 𝜒
′2
𝑑
(𝑘) where 𝜒

′2
𝑑
(𝑘) is a non-central chi-squared distribution with 𝑑 :=

4𝛼𝑣𝛽𝑣/𝜎2
𝑣 degrees of freedom and non-centrality parameter 𝑘 := 4𝛽𝑣 𝑒−𝛽𝑣 (𝑡−𝑢)𝑉𝑢

𝜎2
𝑣(1−𝑒−𝛽𝑣 (𝑡−𝑢))

.

• Simulate 𝑋 using a Euler scheme.

Observe that in 𝐵 and 𝐶 we are interested in calculating the expected value of quantities
depending on 𝑢𝑗 and (𝑢𝑖 , 𝑢𝑗), respectively, where 𝑢𝑗 ∈ 𝒮 𝑗 = {𝑧 ∈ C : ℜ𝔢(𝑧) = 𝑅 𝑗}, as
defined in Theorem 1.21. Since 𝒮 𝑗 is an unbounded domain, it must be approximated
by a bounded one, that we will denote with 𝑅 𝑗 + 𝑖𝑆𝑁 𝑗 . Since we are dealing with Call
options only, we can consider only one strip 𝒮𝐶 . We choose 𝑅𝐶 = 2, see Remark 1.18 and
choose as 𝑆𝑁𝐶 the interval [−30, 30] partitioned via 𝑁𝐶 = 40 equispaced points. We also
tested the algorithm using various subintervals and different levels of grid’s refinement
to approximate 𝒮𝐶 and the choice of 𝑆𝑁𝐶 indicated above ultimately provided the best
trade-off between precision and computation effort. Notice that one has to compute:

• 3 · 𝑁𝐶 · 𝑁 expectations for 𝐴.

• 3 · 𝑁𝐶 · 𝑁 expectations for 𝐵.

• 3 · 𝑁𝐶 · 𝑁𝐶 · 𝑁 expectations for 𝐶.
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Then one integrates over the appropriate domain with respect to the measure 𝜁𝐶(d𝑢) =
1

2𝜋𝑖
𝐾1−𝑢
𝑢(𝑢−1)d𝑢, in particular we observe that the measure changes if we consider options

having different strikes. To compute the integrals, we used the trapezoidal rule via
numpy.trapz.

We refer to the parameters in Table 1.2 as the standard set of parameters:

𝑋0 𝛾 𝛿 𝜌 𝑉0 𝛼𝑣 𝛽𝑣 𝜎𝑣 𝜆0 𝛼𝜆 𝛽𝜆 𝜁
4.605 0.06 0.02 -0.7165 0.0174 0.0354 1.3253 0.3877 3 2 1 2.5

Table 1.2: Standard set of parameters.

This corresponds to a model where the log-spot price jumps with intensity 𝜆 and the
jumps’ sizes are 𝜂𝑋1 ∼ 𝒩(0.06, 0.0004). The intensity is itself stochastic, starting at 𝜆0 = 3,
with jumps of size 𝜂𝜆1 ∼ 𝐸𝑥𝑝(2.5), and shot-noise decay.

The assumptions in Table 1.1 are satisfied, together with the additional condition
required in Theorem 1.21, E[𝑒2𝑅𝐶𝑋𝑇 ] < ∞, with 𝑅𝐶 = 2. We notice, in the light of
Proposition 1.7, that the latter condition corresponds to verifying:{︄

0 < 𝜁 − 𝑇E(𝑒2𝑅𝐶 |𝜂𝑋1 |)
2𝑅𝐶(𝜅1 − 1) + 1 > 0.

The parameters of 𝑉 are chosen consistently with those proposed for the Heston model
in Gatheral (2006) and, for comparison, they are also consistent with those in Di Tella
et al. (2020). In Figure 1.1, we compare trajectories of the asset 𝑆 depicted in our model
(right) and in the Heston one (left). We observe a clear presence of positive jumps in the
right-hand-side picture. Moreover, compared to the left panel, the trajectories on the right
span a wider range of values, reflecting the impact of self-exciting jumps.

Then, we compute the error 𝜀2(𝜈𝜈𝜈∗), as defined in equation (1.32). We select a set of
European call options as contingent claims, with 21 strikes evenly spaced between 𝐾 = 100
and 𝐾 = 200. The dimension 𝑑 of the basket of contingent claims is varied: specifically,
for 𝑑 = 1, the basket includes only the call option with strike 100; for 𝑑 = 2, the call with
strike 105 is added; and so on, progressively including options with higher strikes as 𝑑
increases. We compare the hedging error in four different scenarios:

1. The standard set of parameters in Table 1.2,

2. 𝛽𝜆 = 8, and the other parameters as in Table 1.2,

3. 𝜁 = 1000, and the other parameters as in Table 1.2. With this choice, we want to study
the case where the intensity is close to the deterministic function 𝛼𝜆 + (𝜆0 − 𝛼𝜆)𝑒−𝛽𝜆𝑡 .
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Figure 1.1: Trajectories in the Heston model (left) and in our model (right), equation (1.7).

4. A proxy of Heston model: 𝛾, 𝛿 ≈ 0, and the other parameters as in Table 1.2.

Notice that for every analyzed scenario, the assumptions in Table 1.1 are satisfied. First,
we compute the quantity 𝐴 (recall (1.29)), which corresponds to the hedging error when
the strategy is fully dynamic (no static hedging with contingent claims, 𝜈𝜈𝜈 = 0). We report
the results in Table 1.3.

A 1 2 3 4 - Heston
𝜀2(0) 4.486 · 10−4 3.946 · 10−4 4.069 · 10−4 2.278 · 10−4

Table 1.3: Hedging error when 𝜈𝜈𝜈 = 0 in the four scenarios.

We notice that the smallest error 𝜀2(0) occurs in the Heston’s case (case 4): as expected,
introducing jumps of Hawkes type, hence more randomness, leads to a larger hedging
error. We observe that the largest 𝜀2(0) error appears in case 1, when we consider a
stochastic intensity 𝜆 which starts at 𝜆0 = 3, decays with 𝛽𝜆 = 1 and whose jumps have
size with law 𝐸𝑥𝑝(2.5), hence, roughly speaking, when the intensity is bigger. This
is reasonable as we expect that an asset with an unstable behavior is harder to hedge.
Comparing cases 1 and 2, we observe that considering a larger decaying factor results in a
smaller error. As the intensity decays more rapidly, the impact of jumps decreases quickly,
reducing the overall error. The same observations holds for case 3: here the intensity’s
jumps sizes are smaller, hence the hedging error is smaller . We notice that the errors in
case 2 and 3 are really close.

We then compute the hedging error 𝜀(𝜈𝜈𝜈∗)2 with European Calls, switching on the
static hedging, hence in a semi-static setting. We highlight that in all the four cases, the
symmetric matrix 𝐶 was ill-conditioned. The same issue was spotted in Di Tella et al.
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(2020). Instead of inverting the matrix directly, we use its Moore-Penrose pseudo-inverse
(via numpy.linalg.pinv in Python). The error is graphically depicted in Figure 1.2, as
a function of 𝑑 ∈ {1, 2, . . . , 21}. We also consider a relative gain |𝜀(𝜈𝜈𝜈∗)2 − 𝐴|/𝐴, which
represents the relative improvement we have with respect to the fully dynamic error 𝐴.
In all scenarios, we observe a general decreasing behavior of the absolute error 𝜀2(𝜈𝜈𝜈∗) as
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Figure 1.2: The absolute error (left) and relative gain (right), respectively.

a function of 𝑑, the number of contingent claims in the hedging basket, while the relat-
ive gain increases as 𝑑 increases. The error for the Heston’s case is the lowest: this is
reasonable since we have perfect semi-static hedging of the variance swap in the Heston
model, see Neuberger (1994). Consistently with Table 1.3, the other scenarios incorporate
self-exciting jumps, which introduce additional risk and, consequently, higher hedging
errors. We highlight that considering a static component in the hedging strategy reduces
the error also in the presence of jumps, as it is visible in Figure 1.2 (left). Remarkably, see
Figure 1.2 (right), incorporating just one option in the basket leads to an improvement of
approximately 85%. As more options are included, the error continues to decrease and
stabilizes after 𝑑 ≥ 10. In both the standard Heston case and Heston with self-exciting
jumps, we achieve the same order of magnitude for the hedging error. These results con-
firm that effective semi-static hedging remains achievable even when self-exciting jumps
are present. This strategy provides significant error reduction and improved hedging
performance with potentially only a small number of additional contingent claims.

1.8 Conclusions

We investigated the affine structure of the model proposed, which exhibits several features
including stochastic volatility (of Heston type) and self-exciting jumps (of Hawkes type

42



CHAPTER 1. SEMI-STATIC VARIANCE-OPTIMAL HEDGING WITH SELF-EXCITING JUMPS

with exponential memory kernel), by computing the conditional Laplace transform and
providing conditions granting the existence of finite moments. Starting from these results,
we computed a semistatic hedging strategy for a variance swap, minimizing the variance
of the replication error at maturity, with a portfolio of European Call options. The explicit
computation of the strategy, which is in close form, requires a non-trivial numerical
approach. We therefore provided some numerical results on a specific example.

Although in the example provided we chose, for simplicity of illustration, to use a
portfolio composed only by European Call options, we aim at investigating a similar nu-
merical procedure using both Call and Put options. Interesting next research directions
could be: the computation of hedging strategies for derivatives with different and more
general payoffs; dealing with different maturities and more general model settings, even-
tually including non-Markovian features. A deep learning approach will certainly allow
to overcome the non-trivial numerical issues raising in these more general settings.

1.A A key result
We recall below the crucial result Di Tella et al. (2019, Corollary 3.1).

Corollary 1.A.1. Consider Z = (Z1, . . . ,Z𝑛)⊤ a quasi-left continuous locally square-integrable
semimartingale with state space (R𝑛 ,ℬ(R𝑛)) and denote by (b, c,K) its predictable differential
characteristics. Define 𝑆 := 𝑒Z1 and assume 𝑆 ∈ ℋ 2. Then, if 𝑌 𝑖 ∈ ℋ 2

loc, for 𝑖 = 1, 2, is such that
𝑌 𝑖𝑡 = 𝑓 𝑖(𝑡 ,Z𝑡) for functions 𝑓 𝑖 ∈ 𝐶1,2(R+ ×R𝑛), the GKW decomposition (𝜗𝑖 , 𝐿𝑖) of 𝑌 𝑖 w.r.t. 𝑆 is
given by 𝐿𝑖 = 𝑌 𝑖 − 𝑌 𝑖0 −

∫ ·
0 𝜗𝑖𝑠 d𝑆𝑠 . Setting

𝜉𝑡 := c11
𝑡 +

∫
R𝑛
(𝑒𝑥1 − 1)2K𝑡(d𝑥), 𝑡 ∈ [0, 𝑇], (1.40)

we get, Lebesgue-a.e.,

𝜗𝑖𝑡 =
1

𝑆𝑡−𝜉𝑡

(︂ 𝑛∑︂
𝑗=1

𝜕𝑥 𝑗 𝑓
𝑖(𝑡 ,Z𝑡−)c1𝑗

𝑡 +
∫
R𝑛
(𝑒𝑥1 − 1)𝑊 𝑖(𝑡 , 𝑥)K𝑡(d𝑥)

)︂
, 𝑖 = 1, 2

and

d⟨𝐿1, 𝐿2⟩𝑡
d𝑡 =

𝑛∑︂
𝑗=1

𝑛∑︂
𝑘=1

𝜕𝑥 𝑗 𝑓
1(𝑡 ,Z𝑡−)𝜕𝑥𝑘 𝑓 2(𝑡 ,Z𝑡−)

(︂
c𝑗𝑘𝑡 −

c1𝑗
𝑡

𝜉𝑡
c1𝑘
𝑡

)︂
− 1

𝜉𝑡

𝑛∑︂
𝑗=1

𝜕𝑥 𝑗 𝑓
1(𝑡 ,Z𝑡−)c𝑗1𝑡

∫
R𝑛
(𝑒𝑥1 − 1)𝑊2(𝑡 , 𝑥)K𝑡(d𝑥)
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− 1
𝜉𝑡

𝑛∑︂
𝑗=1

𝜕𝑥 𝑗 𝑓
2(𝑡 ,Z𝑡−)c𝑗1𝑡

∫
R𝑛
(𝑒𝑥1 − 1)𝑊1(𝑡 , 𝑥)K𝑡(d𝑥) +

∫
R𝑛
𝑊1(𝑡 , 𝑥)𝑊2(𝑡 , 𝑥)K𝑡(d𝑥)

− 1
𝜉𝑡

(︂ ∫
R𝑛
(𝑒𝑥1 − 1)𝑊1(𝑡 , 𝑥)K𝑡(d𝑥)

)︂ (︂ ∫
R𝑛
(𝑒𝑥1 − 1)𝑊2(𝑡 , 𝑥)K𝑡(d𝑥)

)︂
where

𝑊 𝑖(𝑡 , 𝑥) := 𝑓 𝑖(𝑡 , 𝑥 + Z𝑡−) − 𝑓 𝑖(𝑡 ,Z𝑡−), 𝑖 = 1, 2.

1.B A useful lemma
We start with a general result on the exponential moment of the integral of a Poisson

process.

Lemma 1.B.1. On a given filtered probability space (Ω,ℱ , F, P), where F = (ℱ𝑡)𝑡∈[0,𝑇] satisfies
the usual hypotheses, consider a Poisson process 𝑁 with F-intensity 𝜆 > 0 and a non-negative and
F-predictable stochastic process (𝑏𝑡)𝑡∈[0,𝑇]. We have

E
[︂
𝑒
∫ 𝑇

0 𝑏𝑡𝑑𝑁𝑡
]︂
= E

[︂
𝑒
∫ 𝑇

0 (𝑒𝑏𝑡−1)𝜆d𝑡
]︂
. (1.41)

The identity holds also for generalF-predictable stochastic process (𝑏𝑡)𝑡∈[0,𝑇], provided thatE
[︂
𝑒
∫ 𝑇

0 𝑒 |𝑏𝑡 |d𝑡
]︂
<

∞.

Proof. If 𝑏 is bounded and F-predictable process, it is enough to prove the result for any
arbitrary process 𝑏𝑡 = 1(𝑡1 ,𝑡2](𝑡)1𝐴 , 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑇, 𝐴 ∈ ℱ𝑡1 . So, consider 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑇

and 𝐴 ∈ ℱ𝑡1 and denote by 𝐴𝑐 the complementary set of 𝐴. We have:

E
[︂
𝑒
∫ 𝑇

0 𝑏𝑡 𝑑𝑁𝑡
]︂
= E

[︃
𝑒

∫ 𝑡2
𝑡1
1𝐴 𝑑𝑁𝑡

]︃
= E

[︁
𝑒1𝐴(𝑁𝑡2−𝑁𝑡1 )(1𝐴 + 1𝐴𝐶 )

]︁
= E

[︁
E[𝑒(𝑁𝑡2−𝑁𝑡1 ) | ℱ𝑡1]1𝐴 + 1𝐴𝐶

]︁
= E

[︁
E[𝑒(𝑁𝑡2−𝑁𝑡1 )]1𝐴 + 1𝐴𝐶

]︁
= E

[︁
𝑒(𝑒−1)𝜆(𝑡2−𝑡1)1𝐴 + 1𝐴𝐶

]︁
= E

[︁
𝑒(𝑒−1)𝜆(𝑡2−𝑡1)1𝐴

]︁
.

On the other hand, we notice that, almost surely,

𝑒𝑏𝑡 − 1 = 𝑒1(𝑡1 ,𝑡2](𝑡)1𝐴 − 1 = 𝑒 · 1(𝑡1 ,𝑡2](𝑡)1𝐴 − 1(𝑡1 ,𝑡2](𝑡)1𝐴 = (𝑒 − 1)1(𝑡1 ,𝑡2](𝑡)1𝐴

and so
E

[︂
𝑒
∫ 𝑇

0 (𝑒𝑏𝑡−1)𝜆d𝑡
]︂
= E

[︂
𝑒
∫ 𝑇

0 (𝑒−1)1(𝑡1 ,𝑡2](𝑡)1𝐴𝜆d𝑡
]︂
= E

[︁
𝑒(𝑒−1)𝜆(𝑡2−𝑡1)1𝐴

]︁
,

which proves the statement for any bounded F-predictable process.

• In case when 𝑏 is non-negative and F-predictable but unbounded, let us define, for
𝑛 ≥ 0, the bounded sequence 𝑏𝑛𝑡 = 𝑏𝑡 ∧ 𝑛. We clearly have that 𝑏𝑛𝑡 ≤ 𝑏𝑛+1

𝑡 a.s. and
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when 𝑛 goes to +∞, 𝑏𝑛𝑡 → 𝑏𝑡 a.s. for every 𝑡 ∈ [0, 𝑇]. Now define the sequences of
random variables

𝑋𝑛 = 𝑒
∫ 𝑇

0 𝑏𝑛𝑡 d𝑁𝑡 , 𝑌𝑛 = 𝑒
∫ 𝑇

0 (𝑒𝑏
𝑛
𝑡 −1)𝜆d𝑡 , 𝑛 ≥ 0.

We have 𝑋𝑛 ≤ 𝑋𝑛+1 a.s. and 𝑋𝑛 → 𝑋 = 𝑒
∫ 𝑇

0 𝑏𝑡d𝑁𝑡 a.s. and 𝑌𝑛 ≤ 𝑌𝑛+1 a.s.
and 𝑌𝑛 → 𝑌 = 𝑒

∫ 𝑇

0 (𝑒𝑏𝑡−1)𝜆d𝑡 a.s. Moreover, since 𝑏𝑛𝑡 is bounded for every 𝑡 ∈
[0, 𝑇] and for every 𝑛 ≥ 0, we have, by applying the statement in the bounded
case, E[𝑒

∫ 𝑇

0 𝑏𝑛𝑡 d𝑁𝑡 ] = E[𝑒
∫ 𝑇

0 (𝑒𝑏
𝑛
𝑡 −1)𝜆d𝑡] and by monotone convergence it follows that

E[𝑒
∫ 𝑇

0 𝑏𝑡d𝑁𝑡 ] = E[𝑒
∫ 𝑇

0 (𝑒𝑏𝑡−1)𝜆d𝑡].

• For a general, F-predictable 𝑏, we define for 𝑛 ≥ 0, the bounded sequence 𝑏𝑛𝑡 =

𝑏𝑡1|𝑏𝑡≤𝑛| . We observe that |𝑏𝑛𝑡 | ≤ |𝑏𝑡 | for every 𝑛. Similarly to the positive case, 𝑋𝑛 =

𝑒
∫ 𝑇

0 𝑏𝑛𝑡 d𝑁𝑡 , 𝑌𝑛 = 𝑒
∫ 𝑇

0 (𝑒𝑏
𝑛
𝑡 −1)𝜆d𝑡 for 𝑛 ≥ 0, and we can state E[𝑒

∫ 𝑇

0 𝑏𝑛𝑡 d𝑁𝑡 ] = E[𝑒
∫ 𝑇

0 (𝑒𝑏
𝑛
𝑡 −1)𝜆d𝑡].

Notice that 𝑋𝑛 = 𝑒
∫ 𝑇

0 𝑏𝑛𝑡 d𝑁𝑡 → 𝑋 = 𝑒
∫ 𝑇

0 𝑏𝑡d𝑁𝑡 almost surely. Moreover,

|𝑒
∫ 𝑇

0 𝑏𝑛𝑡 d𝑁𝑡 | ≤ 𝑒
∫ 𝑇

0 |𝑏𝑛𝑡 |d𝑁𝑡 ≤ 𝑒
∫ 𝑇

0 |𝑏𝑡 |d𝑁𝑡 .

The latter quantity is integrable because |𝑏𝑡 | is non-negative, and we haveE[𝑒
∫ 𝑇

0 |𝑏𝑡 |d𝑁𝑡 ] =
E[𝑒

∫ 𝑇

0 (𝑒 |𝑏𝑡 |−1)𝜆d𝑡], which is finite by assumption. It holds 𝑌𝑛 = 𝑒
∫ 𝑇

0 (𝑒𝑏
𝑛
𝑡 −1)𝜆d𝑡 → 𝑌 =

𝑒
∫ 𝑇

0 (𝑒𝑏𝑡−1)𝜆d𝑡 almost surely and |𝑒
∫ 𝑇

0 (𝑒𝑏𝑡−1)𝜆d𝑡 | ≤ 𝑒
∫ 𝑇

0 (𝑒 |𝑏𝑡 |−1)𝜆d𝑡 , for every 𝑛, where the
latter quantity is integrable by hypothesis. The lemma’s statement follows by dom-
inated convergence.

□

Remark 1.B.2. As a generalization of the previous result, if 𝜇 is a Poisson random measure
on R × R+ with compensator 𝐹(d𝑥, d𝑦)d𝑡 and 𝐻 is a positive F-predictable function, then
if
𝐻 ∗ 𝜇𝑇 =

∫ 𝑇

0

∫
R×R+

𝐻(𝑡 , 𝑥, 𝑦)𝜇(d𝑡 , d𝑥, d𝑦), we have

E[𝑒𝐻 ∗ 𝜇𝑇 ] = E[𝑒
∫ 𝑇

0

∫
R×R+(𝑒𝐻(𝑡 ,𝑥,𝑦)−1)𝐹(d𝑥,d𝑦)d𝑡]. (1.42)

1.C Proving Theorem 1.21
Notation. From now on, for simplicity, we will occasionally denote 𝑔(𝑡 , 𝑢𝑗 , 0, 0) by

𝑔𝑡(𝑢𝑗), for 𝑔 = 𝜙,𝜓, 𝜒, as defined in Theorem 1.8.
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The proof of Theorem 1.21 is mainly based on the application of Proposition 1.19 and
Corollary 1.A.1. The calculation of 𝐴, 𝐵, and 𝐶 proceeds through the following steps:

• Identify a suitable factor process Z and determine its Laplace transform.

• Check that Z and the claims 𝜂0
𝑡 = E[𝜂0

𝑇
|ℱ𝑡], 𝜂𝑡(𝑢𝑗) = E[𝑒𝑢𝑗𝑋𝑇 |ℱ𝑡] satisfy the assump-

tions of Corollary 1.A.1.

• Express 𝜂0
𝑡 and 𝜂𝑡(𝑢𝑗) as functions of Z.

• Use Corollary 1.A.1 to compute the predictable covariations between the GKW
residuals of 𝜂0 and 𝜂(𝑢𝑗).

• Compute their expectations and integrate to obtain the final result.

The choice of the factor process and of the functionals for the claims are closely linked:
Z depends on the structure of the claims 𝜂0 and 𝜂(𝑢𝑗). In the case of a variance swap,
see equation (1.38), it is natural to choose as Z the model (𝑋,𝑉,𝜆) augmented with the
quadratic variation of 𝑋. This preserves an affine structure and simplifies the functional
representation. We highlight that further details on the expectations of the covariations
will be given later in Proposition 1.D.4.

Before starting with the actual proof, let us recall some properties of 𝑍.

Remark 1.C.1 (On the moments of 𝑍). In the light of Proposition 1.7 and Assumptions 𝑖), 𝑖𝑖)
in Table 1.1, we observe that the Laplace transform of 𝑍 exists in a open neighborhood
of (0, 0, 0). This ensures the existence of all the moments of (𝑋𝑡 , 𝑉𝑡 ,𝜆𝑡), for 𝑡 ∈ [0, 𝑇].
We can make a similar observation for

∫ 𝑡

0 𝜆𝑠d𝑠, whose Laplace transform was studied in
Proposition 1.3. Moreover, referring to Drimus (2012, Proposition 2.1), we can state that
the integral process

∫ 𝑡

0 𝑉𝑠d𝑠 admits all moments, whenever we are working before the
Heston explosion time 𝑇∗. We can conclude that the vector (𝑋𝑡 , 𝑉𝑡 ,𝜆𝑡 ,

∫ 𝑡

0 𝑉𝑠d𝑠,
∫ 𝑡

0 𝜆𝑠d𝑠)
admits moments of all orders.

Proposition 1.C.2. Let 𝜈 be the dual predictable projection of the jump measure 𝜇, see equation
(1.5), then ∫ 𝑡

0

∫
R2
𝑥21R(𝑦)𝜈(d𝑠, d𝑥, d𝑦) = (𝛿2 + 𝛾2)

∫ 𝑡

0
𝜆𝑠−d𝑠.

As a consequence, the stochastic process
(︂∫ 𝑡

0

∫
R2 𝑥

21R(𝑦)𝜈(d𝑠, d𝑥, d𝑦)
)︂
𝑡∈[0,𝑇]

is integrable.

Proof. Writing explicitly 𝜈 as in equation (1.5), we have∫ 𝑡

0

∫
R2
𝑥21R(𝑦)𝜈(d𝑠, d𝑥, d𝑦) =

∫ 𝑡

0

∫
R2
𝑥21R(𝑦)𝜃𝑋(d𝑥)𝜃𝜆(d𝑦)𝜆𝑠−d𝑠

46



CHAPTER 1. SEMI-STATIC VARIANCE-OPTIMAL HEDGING WITH SELF-EXCITING JUMPS

=

∫
R
𝑥2𝜃𝑋(d𝑥)

∫ 𝑡

0
𝜆𝑠−d𝑠 = (𝛿2 + 𝛾2)

∫ 𝑡

0
𝜆𝑠−d𝑠,

where the last quality follows from the fact that 𝜃𝑋(d𝑥) is the probability density of a
Normal with parameters (𝛾, 𝛿2). The stochastic process

(︂∫ 𝑡

0

∫
R2 𝑥

21R(𝑦)𝜈(d𝑠, d𝑥, d𝑦)
)︂
𝑡∈[0,𝑇]

admits expectation as
∫ 𝑡

0 𝜆𝑠d𝑠 does, as explained in Remark 1.C.1. □

We can now start with the proof. In Step 1 we will introduce an auxiliary semimartin-
gale Z and in Step 2 we will verify that all the needed assumptions to apply Corollary
1.A.1 hold. In Step 3 we will compute some key common quantities to 𝐴, 𝐵, 𝐶 and finally
in Step 4 we will proceed with the computation of the predictable covariations.

Step 1) The factor process Z Both in Proposition 1.19 and Corollary 1.A.1, the statement
depends on the choice of a factor process Z. In our case we take Z = (𝑋,𝑉,𝜆, [𝑋, 𝑋]), i.e.,
the vector formed by the three model components together with the quadratic variation
of 𝑋. Recalling that 𝑋 is defined via equation (1.7a), its quadratic variation is given by

[𝑋, 𝑋]𝑡 =
∫ 𝑡

0
𝑉𝑠d𝑠 + [𝐽𝑋 , 𝐽𝑋]𝑡 =

∫ 𝑡

0
𝑉𝑠d𝑠 +

∑︂
𝑠<𝑡

(Δ𝐽𝑋𝑠 )2

=

∫ 𝑡

0
𝑉𝑠d𝑠 +

∫ 𝑡

0

∫
R2
𝑥21R(𝑦)𝜇(d𝑠, d𝑥, d𝑦). (1.43)

We now verify that Z = (𝑋,𝑉,𝜆, [𝑋, 𝑋]) satisfies all the hypotheses required in Proposition
1.19 and Corollary 1.A.1.

• Z = (𝑋,𝑉,𝜆, [𝑋, 𝑋]) is a quasi-left continuous locally square-integrable semimartin-
gale. Quasi-left continuity follows from the fact that we are working in a jump-
diffusion setting. The square-integrability of (𝑋,𝑉,𝜆) has been noticed in Remark
1.C.1. Focusing on [𝑋, 𝑋], we have that

∫ 𝑡

0 𝑉𝑠d𝑠 is square-integrable due to Remark
1.C.1, as 𝐿2 is closed w.r.t. summation. It is then enough to prove that

∑︁
𝑠<𝑡(Δ𝐽𝑋𝑠 )2 is

square-integrable. We have:

E

⎡⎢⎢⎢⎢⎣
(︄∑︂
𝑠<𝑡

(Δ𝐽𝑋𝑠 )2
)︄2⎤⎥⎥⎥⎥⎦ = E

[︄(︃∫ 𝑡

0

∫
R2
𝑥21R(𝑦)𝜇(d𝑠, d𝑥, d𝑦)

)︃2]︄
≤ 2E

[︄(︃∫ 𝑡

0

∫
R2
𝑥21R(𝑦)(𝜇 − 𝜈)(d𝑠, d𝑥, d𝑦)

)︃2]︄
+ 2E

[︄(︃∫ 𝑡

0

∫
R2
𝑥21R(𝑦)𝜈(d𝑠, d𝑥, d𝑦)

)︃2]︄
47



1.8. CONCLUSIONS

= 2E
[︃∫ 𝑡

0

∫
R2
𝑥41R(𝑦)𝜈(d𝑠, d𝑥, d𝑦)

]︃
+ 2E

[︄(︃
(𝛿2 + 𝛾2)

∫ 𝑡

0
𝜆𝑠d𝑠

)︃2]︄
= 2

∫
R
𝑥4𝜃𝑋(d𝑥)E

[︃∫ 𝑡

0
𝜆𝑠d𝑠

]︃
+ 2(𝛿2 + 𝛾2)2E

[︄(︃∫ 𝑡

0
𝜆𝑠d𝑠

)︃2]︄
The first inequality follows from the standard inequality 𝑎2 = (𝑎−𝑏+𝑏)2 ≤ 2(𝑎−𝑏)2+
2𝑏2. The next-to-last passage is a consequence of Ito’s isometry and of Proposition
1.C.2. The last one is just a matter of computations. We conclude recalling that∫ 𝑡

0 𝜆𝑠d𝑠 admits all the moments as explained in Remark 1.C.1 and that Gaussian
random variables admit fourth order moment.

• As stated in Eberlein and Kallsen (2019, Proposition 6.18), Z = (𝑋,𝑉,𝜆, [𝑋, 𝑋]) is
affine (the quadratic variation of components of an affine process retains the affine
structure) and has differential characteristics, for 𝐺 ∈ ℬ(R4):

b𝑡 =

⎛⎜⎜⎜⎜⎜⎝
−1

2𝑉𝑡 − (𝜅1 − 1)𝜆𝑡− +
∫
R ℎ(𝑥)𝜃

𝑋(d𝑥)𝜆𝑡−
𝛽𝑣(𝛼𝑣 −𝑉𝑡)

𝛽𝜆(𝛼𝜆 − 𝜆𝑡−) +
∫
R ℎ(𝑥)𝜃

𝜆(d𝑥)𝜆𝑡−
𝑉𝑡 +

∫
R ℎ(𝑥

2)𝜃𝑋(d𝑥)𝜆𝑡−

⎞⎟⎟⎟⎟⎟⎠
,

c𝑡 =

⎛⎜⎜⎜⎜⎜⎝
𝑉𝑡 𝜌𝜎𝑣𝑉𝑡 0 0

𝜌𝜎𝑣𝑉𝑡 𝜎2
𝑣𝑉𝑡 0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
, (1.44)

K𝑡(𝐺) =
∫
R3
1𝐺(𝑥1, 𝑥2, 𝑥3, 𝑥

2
1)𝜃𝑋(d𝑥1)𝛿0(d𝑥2)𝜃𝜆(d𝑥3)𝜆𝑡−. (1.45)

Step 2) Assumptions for the GKW decomposition and consequences Referring to Sec-
tion 1.5 and in particular to Section 1.5.2, we recall that computing the semi-static variance-
optimal strategy means computing the GKW decomposition of the following two objects
𝜂0
𝑡 = E[𝜂0

𝑇
|ℱ𝑡] and 𝜂𝑡(𝑢𝑗) = E[𝑒𝑢𝑗𝑋𝑇 |ℱ𝑡] for 𝑢𝑗 ∈ 𝒮 𝑗 . In order for the decomposition to exist,

we must verify that 𝜂0
𝑡 ∈ ℋ2 and 𝜂𝑡(𝑢𝑗) ∈ ℋ2

C. The two objects are martingale by definition,
hence one only needs to investigate their square-integrability.

• In order to verify the square-integrability of 𝜂0
𝑡 , it is enough to show that it can be

written as an affine function of Z; in particular, as all the components of Z are be
square-integrable, also 𝜂0

𝑡 is.
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Proposition 1.C.3. 𝜂0
𝑡 = 𝑓 0(𝑡 ,Z) where 𝑓 0(𝑡 , 𝑥1, 𝑥2, 𝑥3, 𝑥4) = ˜︁𝛼(𝑡) + ˜︁𝛾(𝑡) + 𝛼(𝑡)𝑥2 +

𝛾(𝑡)𝑥3 + 𝑥4 − 𝑘, with

* ˜︁𝛼(𝑡) = 𝛼𝑣𝛽−1
𝑣 (𝛽𝑣(𝑇 − 𝑡) − 1 + 𝑒−𝛽𝑣(𝑇−𝑡)),

* 𝛼(𝑡) = 𝛽−1
𝑣 (1 − 𝑒−𝛽𝑣(𝑇−𝑡)),

* 𝛾(𝑡) = −𝛾2+𝛿2

𝛽𝜆− 1
𝜁

(︂
𝑒
−
(︂
𝛽𝜆− 1

𝜁

)︂
(𝑇−𝑡)

− 1
)︂
,

* ˜︁𝛾(𝑡) = (𝛾2 + 𝛿2) 𝛼𝜆𝛽𝜆
𝛽𝜆− 1

𝜁

(︂
(𝑇 − 𝑡) + 1

𝛽𝜆− 1
𝜁

(︂
𝑒
−
(︂
𝛽𝜆− 1

𝜁

)︂
(𝑇−𝑡)

− 1
)︂)︂

.

Moreover, note that: 𝜕𝑥1 𝑓
0 = 0, 𝜕𝑥2 𝑓

0 = 𝛼(𝑡), 𝜕𝑥3 𝑓
0 = 𝛾(𝑡), 𝜕𝑥4 𝑓

0 = 1.

Proof. Recalling the quadratic variation of 𝑋 in equation (1.43) and the definition of
𝜂0
𝑇

in equation (1.38), we have that

𝜂0
𝑡 = E[[𝑋, 𝑋]𝑇 − 𝑘|ℱ𝑡] = [𝑋, 𝑋]𝑡 + E [[𝑋, 𝑋]𝑇 − [𝑋, 𝑋]𝑡 |ℱ𝑡] − 𝑘

= [𝑋, 𝑋]𝑡 + E
[︃∫ 𝑇

𝑡

𝑉𝑠 d𝑠
|︁|︁|︁ℱ𝑡]︃ + E

[︄ ∑︂
𝑡≤𝑠≤𝑇

(Δ𝐽𝑋𝑠 )2
|︁|︁|︁ℱ𝑡]︄ − 𝑘. (1.46)

The conditional expectation of
∫ 𝑇

𝑡
𝑉𝑠d𝑠 has already been computed in Di Tella et al.

(2019, Section 5, Proposition 5.1)

E
[︃∫ 𝑇

𝑡

𝑉𝑠 d𝑠
|︁|︁|︁ℱ𝑡]︃ = ˜︁𝛼(𝑡) + 𝛼(𝑡)𝑉𝑡 ,

where 𝛼̃(𝑡), 𝛼(𝑡) are those in the statement. Focusing now on the second conditional
expectation in equation (1.46), we use 𝜇(d𝑠, d𝑥) = (𝜇(d𝑠, d𝑥) − 𝜈(d𝑠, d𝑥)) + 𝜈(d𝑠, d𝑥)
and proceed as in the proof of Proposition 1.C.2,

E

[︄ ∑︂
𝑡≤𝑠≤𝑇

(Δ𝐽𝑋𝑠 )2
|︁|︁|︁ℱ𝑡]︄ = E

[︃∫ 𝑇

𝑡

∫
R2
𝑥21R(𝑦)𝜇(d𝑠, d𝑥, d𝑦)

|︁|︁|︁ℱ𝑡]︃
= (𝛾2 + 𝛿2)E

[︃∫ 𝑇

𝑡

𝜆𝑠 d𝑠
|︁|︁|︁ℱ𝑡]︃ = (𝛾2 + 𝛿2)E

[︃∫ 𝑇

𝑡

𝜆𝑠 d𝑠
|︁|︁|︁ℱ𝑡]︃

= (𝛾2 + 𝛿2)
∫ 𝑇

𝑡

E[𝜆𝑠 |ℱ𝑡]d𝑠.

Since 𝜆 is the intensity of an exponential Hawkes process, it is Markov and time-
homogeneous. From Dassios and Zhao (2011, Theorem 3.6, equation (3.16)), it
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follows that, for 𝑠 ≥ 𝑡

E[𝜆𝑠 |ℱ𝑡] =
𝛼𝜆𝛽𝜆

𝛽𝜆 − 1
𝜁

+ 𝑒
−
(︂
𝛽𝜆− 1

𝜁

)︂
(𝑠−𝑡) (︂

𝜆𝑡 −
𝛼𝜆𝛽𝜆

𝛽𝜆 − 1
𝜁

)︂
and so the integral between 𝑡 and 𝑇 of E[𝜆𝑠 |ℱ𝑡] is given by∫ 𝑇

𝑡

E[𝜆𝑠 |ℱ𝑡]d𝑠 =
𝛼𝜆𝛽𝜆

𝛽𝜆 − 1
𝜁

(𝑇 − 𝑡) − 1
𝛽𝜆 − 1

𝜁

(︂
𝜆𝑡 −

𝛼𝜆𝛽𝜆

𝛽𝜆 − 1
𝜁

)︂ (︂
𝑒
−
(︂
𝛽𝜆− 1

𝜁

)︂
(𝑇−𝑡)

− 1
)︂

= − 1
𝛽𝜆 − 1

𝜁

(︂
𝑒
−
(︂
𝛽𝜆− 1

𝜁

)︂
(𝑇−𝑡)

− 1
)︂
𝜆𝑡 +

𝛼𝜆𝛽𝜆

𝛽𝜆 − 1
𝜁

(︂
(𝑇 − 𝑡) + 1

𝛽𝜆 − 1
𝜁

(︂
𝑒
−
(︂
𝛽𝜆− 1

𝜁

)︂
(𝑇−𝑡)

− 1
)︂)︂

=
1

𝛾2 + 𝛿2

(︂
𝛾(𝑡)𝜆𝑡 + ˜︁𝛾(𝑡))︂ .

We can conclude that 𝜂0
𝑡 = ˜︁𝛼(𝑡) + ˜︁𝛾(𝑡) + 𝛼(𝑡)𝑉𝑡 + 𝛾(𝑡)𝜆𝑡 + [𝑋, 𝑋]𝑡 − 𝑘. □

• For the moment, we assume that 𝜂𝑡(𝑢𝑗) = E[𝑒𝑢𝑗𝑋𝑇 |ℱ𝑡] is square-integrable. It will
be clear in Proposition 1.D.4, why this condition is implied by the hypothesis
E[𝑒2𝑅 𝑗𝑋𝑇 ] < ∞. In this section we investigate the consequences of the square-
integrability condition has on the image of 𝜒, where the latter has been introduced
in Theorem 1.8.

Proposition 1.C.4. Consider 𝑢𝑗 ∈ 𝒮 𝑗 := {𝑢 ∈ C : ℜ𝔢(𝑢) = 𝑅 𝑗}. Under the assumptions
that the stochastic process 𝜂𝑡(𝑢𝑗) = E[𝑒𝑢𝑗𝑋𝑇 |ℱ𝑡], 𝑡 ∈ [0, 𝑇], belongs to ℋ 2

C, we get that
ℜ𝔢(𝜒𝑇−𝑡(𝑢𝑗)) < 𝜁/2. In particular, taking 𝑢𝑖 ∈ 𝒮 𝑖 , 𝑢𝑗 ∈ 𝒮 𝑗 , 𝜂𝑡(𝑢𝑖), 𝜂𝑡(𝑢𝑗) ∈ ℋ 2

C, we have
that ℜ𝔢(𝜒𝑇−𝑡(𝑢𝑗) + 𝜒𝑇−𝑡(𝑢𝑖)) < 𝜁.

Proof. The stochastic process 𝜂(𝑢𝑗) is by definition a (P, F)-martingale. Exploiting
Theorem 1.8 with 𝑢 = (𝑢𝑗 , 0, 0), we obtain that 𝜂𝑡(𝑢𝑗) = exp(𝜙𝑇−𝑡(𝑢𝑗) + 𝑢𝑗𝑋𝑡 +
𝜓𝑇−𝑡(𝑢𝑗)𝑉𝑡 + 𝜒𝑇−𝑡(𝑢𝑗)𝜆𝑡). The square-integrability assumption reads

E[|𝜂𝑡(𝑢𝑗)|2] = E[𝑒ℜ𝔢(2𝜙𝑇−𝑡(𝑢𝑗))+ℜ𝔢(2𝑢𝑗)𝑋𝑡+ℜ𝔢(2𝜓𝑇−𝑡(𝑢𝑗))𝑉𝑡+ℜ𝔢(2𝜒𝑇−𝑡(𝑢𝑗))𝜆𝑡 ] < ∞.

and since ℜ𝔢(2𝜙𝑇−𝑡(𝑢𝑗)) is deterministic, the latter inequality is equivalent to

E[𝑒ℜ𝔢(2𝑢𝑗)𝑋𝑡+ℜ𝔢(2𝜓𝑇−𝑡(𝑢𝑗))𝑉𝑡+ℜ𝔢(2𝜒𝑇−𝑡(𝑢𝑗))𝜆𝑡 ] < ∞. (1.47)

Equation (1.47) can be seen asE[𝑒𝑦⊤𝑍𝑡 ] < ∞with 𝑦 = (ℜ𝔢(2𝑢𝑗),ℜ𝔢(2𝜓𝑇−𝑡(𝑢𝑗)),ℜ𝔢(2𝜒𝑇−𝑡(𝑢𝑗)),
𝑍𝑡 = (𝑋𝑡 , 𝑉𝑡 ,𝜆𝑡). From Keller-Ressel and Mayerhofer (2015, Theorem 2.14(a)), we
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have that if E[𝑒𝑦⊤𝑍𝑡 ] < ∞, then 𝑦 ∈ 𝒴 = R × R × (−∞, 𝜁), as in Proposition 1.11. In
particular 2ℜ𝔢(𝜒𝑇−𝑡(𝑢𝑗)) < 𝜁. The second inequality in the statement follows. □

We now show that 𝜂𝑡(𝑢𝑗) can be written as a function of Z𝑡 = (𝑋𝑡 , 𝑉𝑡 ,𝜆𝑡 , [𝑋, 𝑋]𝑡).
This result will be key in Step 4.

Proposition 1.C.5. The random variable 𝜂𝑡(𝑢𝑗) = E[𝑒𝑢𝑗𝑋𝑇 |ℱ𝑡] can be written as 𝜂𝑡(𝑢𝑗) =
𝑓 (𝑡 ,Z𝑡 , 𝑢𝑗)where 𝑓 (𝑡 , 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑢𝑗) = exp(𝜙𝑇−𝑡(𝑢𝑗)+𝑢𝑗𝑥1+𝜓𝑇−𝑡(𝑢𝑗)𝑥2+𝜒𝑇−𝑡(𝑢𝑗)𝑥3),
𝜙,𝜓, 𝜒 are the solutions of the ODEs system (1.17). Note that

𝜕 𝑓𝑡(𝑢𝑗)
𝜕𝑥1

= 𝑢𝑗 𝑓𝑡(𝑢𝑗),
𝜕 𝑓𝑡(𝑢𝑗)
𝜕𝑥2

= 𝜓𝑇−𝑡(𝑢𝑗) 𝑓𝑡(𝑢𝑗),
𝜕 𝑓𝑡(𝑢𝑗)
𝜕𝑥3

= 𝜒𝑇−𝑡(𝑢𝑗) 𝑓𝑡(𝑢𝑗),
𝜕 𝑓𝑡(𝑢𝑗)
𝜕𝑥4

= 0,

where for simplicity 𝑓𝑡(𝑢𝑗) = 𝑓 (𝑡 , 𝑋𝑡 , 𝑉𝑡 ,𝜆𝑡 , [𝑋, 𝑋]𝑡 , 𝑢𝑗).

Proof. Notice that [𝑋, 𝑋] has no role in the dynamics of 𝑋, given by equation (1.7a).
Thus, one can compute the conditional Laplace transform of𝑋𝑇 without considering
the impact of its quadratic variation [𝑋, 𝑋]: that corresponds to applying Theorem
1.8. □

Step 3) Computation of common quantities In Corollary 1.A.1 there appear some quant-
ities which only depend on the factor process Z = (𝑋,𝑉,𝜆, [𝑋, 𝑋]). In particular, we refer

to the differential characteristics c,K and to
(︂
c𝑗𝑘𝑡 − c1𝑗

𝑡

𝜉𝑡
c1𝑘
𝑡

)︂
𝑗 ,𝑘=1,...,4

, that we recall in Table

1.4. Another key quantity is 𝜉, see equation (1.40), that we compute below, recalling c and
K in equation (1.44), (1.45):

𝜉𝑡 := 𝑉𝑡 +
∫
R4
(𝑒𝑥1 − 1)2K𝑡(d𝑥) = 𝑉𝑡 + 𝜆𝑡(𝑒2(𝛾+𝛿2) − 2𝑒𝛾+𝛿2/2 + 1) = 𝑉𝑡 + 𝜆𝑡−𝜅̄. (1.48)

where (1.48) follows from the properties of the Gaussian distribution and we define
𝜅̄ := 𝑒2(𝛾+𝛿2) − 2𝑒𝛾+𝛿2/2 + 1.

Step 4) Predictable covariations We need to specify all the needed mathematical objects
to apply Corollary 1.A.1. For the affine model, we refer to Z = (𝑋,𝑉,𝜆, [𝑋, 𝑋]), whose
main characteristics are summarized in Table 1.4. We report all the key quantities in Tables
1.5 and 1.6.
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Matrix c
⎛⎜⎜⎜⎝
𝑉𝑡 𝜌𝜎𝑣𝑉𝑡 0 0

𝜌𝜎𝑣𝑉𝑡 𝜎2
𝑣𝑉𝑡 0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠
Matrix

(︂
c𝑗𝑘𝑡 − c1𝑗

𝑡

𝜉𝑡
c1𝑘
𝑡

)︂
𝑗 ,𝑘=1,...,4

⎛⎜⎜⎜⎜⎝
𝜆𝑡−𝑉𝑡 𝜅̄
𝑉𝑡+𝜆𝑡−𝜅̄

𝜌𝜎𝑣𝜆𝑡−𝑉𝑡 𝜅̄
𝑉𝑡+𝜆𝑡−𝜅̄ 0 0

𝜌𝜎𝑣𝜆𝑡−𝑉𝑡 𝜅̄
𝑉𝑡+𝜆𝑡−𝜅̄

(1−𝜌2)𝜎2
𝑣𝑉

2
𝑡 +𝜎2

𝑣𝜆𝑡−𝑉𝑡 𝜅̄
𝑉𝑡+𝜆𝑡−𝜅̄ 0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎠
Compensator K𝑡 K𝑡(𝐺) =

∫
R3 1𝐺(𝑥1, 𝑥2, 𝑥3, 𝑥

2
1)𝜃𝑋(d𝑥1)𝛿0(d𝑥2)𝜃𝜆(d𝑥3)𝜆𝑡−,

𝐺 ∈ ℬ(R4)

𝜉𝑡 𝑉𝑡 + 𝜆𝑡−𝜅̄

Table 1.4: Key quantities for the application of Corollary 1.A.1, associated to the process
Z.

⟨𝐿0, 𝐿0⟩𝑡 ⟨𝐿0, 𝐿(𝑢𝑗)⟩𝑡 ⟨𝐿(𝑢𝑖), 𝐿(𝑢𝑗)⟩𝑡
𝑌1
𝑡 𝜂0

𝑡 𝜂0
𝑡 𝜂𝑡(𝑢𝑖)

𝑌2
𝑡 𝜂0

𝑡 𝜂𝑡(𝑢𝑗) 𝜂𝑡(𝑢𝑗)
𝑓 1 𝑓 0(𝑡 ,Z𝑡) 𝑓 0(𝑡 ,Z𝑡) 𝑓 (𝑡 ,Z𝑡 , 𝑢𝑖)
𝑓 2 𝑓 0(𝑡 ,Z𝑡) 𝑓 (𝑡 ,Z𝑡 , 𝑢𝑗) 𝑓 (𝑡 ,Z𝑡 , 𝑢𝑗)
𝑊1 𝑓 0(𝑡 , 𝑥 + Z𝑡−) − 𝑓 0(𝑡 ,Z𝑡−) 𝑓 0(𝑡 , 𝑥 + Z𝑡−) − 𝑓 0(𝑡 ,Z𝑡−) 𝑓 (𝑡 , 𝑥 + Z𝑡−, 𝑢𝑖) − 𝑓 (𝑡 ,Z𝑡−, 𝑢𝑖)
𝑊2 𝑓 0(𝑡 , 𝑥 + Z𝑡−) − 𝑓 0(𝑡 ,Z𝑡−) 𝑓 (𝑡 , 𝑥 + Z𝑡−, 𝑢𝑗) − 𝑓 (𝑡 ,Z𝑡−, 𝑢𝑗) 𝑓 (𝑡 , 𝑥 + Z𝑡−, 𝑢𝑗) − 𝑓 (𝑡 ,Z𝑡−, 𝑢𝑗)

where:
• 𝑓 0(𝑡 , 𝑥) = ˜︁𝛼(𝑡) + ˜︁𝛾(𝑡) + 𝛼(𝑡)𝑥2 + 𝛾(𝑡)𝑥3 + 𝑥4 − 𝑘, as determined in Proposition 1.C.3,
• 𝑓 (𝑡 , 𝑥, 𝑢𝑗) = exp(𝜙𝑇−𝑡(𝑢𝑗) + 𝑢𝑗𝑥1 + 𝜓𝑇−𝑡(𝑢𝑗)𝑥2 + 𝜒𝑇−𝑡(𝑢𝑗)𝑥3), as determined in Proposition 1.C.5,
• 𝑓 0(𝑡 , 𝑥 + Z𝑡−) − 𝑓 0(𝑡 ,Z𝑡−) = 𝛼(𝑡)𝑥2 + 𝛾(𝑡)𝑥3 + 𝑥4,
• 𝑓 (𝑡 , 𝑥 + Z𝑡−, 𝑢𝑗) − 𝑓 (𝑡 ,Z𝑡−, 𝑢𝑗) = 𝑓𝑡−(𝑢𝑗)[exp(𝑥1𝑢𝑗 + 𝑥2𝜓𝑇−𝑡(𝑢𝑗) + 𝑥3𝜒𝑇−𝑡(𝑢𝑗)) − 1],
with 𝑓𝑡−(𝑢𝑗) = exp(𝜙𝑇−𝑡(𝑢𝑗) + 𝑢𝑗𝑋𝑡− + 𝜓𝑇−𝑡(𝑢𝑗)𝑉𝑡− + 𝜒𝑇−𝑡(𝑢𝑗)𝜆𝑡−).

Table 1.5: Claims 𝑌1
𝑡 , 𝑌2

𝑡 , and corresponding functions.

𝜕𝑥1 𝜕𝑥2 𝜕𝑥3 𝜕𝑥4

𝑓 0(𝑡 ,Z𝑡) 0 𝛼(𝑡) 𝛾(𝑡) 1
𝑓 (𝑡 ,Z𝑡 , 𝑢𝑗) 𝑢𝑗 𝑓𝑡(𝑢𝑗) 𝜓𝑇−𝑡(𝑢𝑗) 𝑓𝑡(𝑢𝑗) 𝜒𝑇−𝑡(𝑢𝑗) 𝑓𝑡(𝑢𝑗) 0

Table 1.6: Key derivatives of 𝑓 0, 𝑓 as defined in Propositions 1.C.3 and 1.C.5, respectively.

I) Compute ⟨𝐿0, 𝐿0⟩𝑡 . We refer to Corollary 1.A.1, to the first column of Table 1.5 and
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on the first row of Table 1.6. We observe that𝑊1 =𝑊2, thus:∫
R4
(𝑒𝑥1 − 1)𝑊1(𝑡 , 𝑥)K𝑡(d𝑥) =

∫
R4
(𝑒𝑥1 − 1)(𝛼(𝑡)𝑥2 + 𝛾(𝑡)𝑥3 + 𝑥4)K𝑡(d𝑥)

= 𝜆𝑡−

(︃
𝛾(𝑡)

∫
R
(𝑒𝑥1 − 1)𝜃𝑋(d𝑥1) ·

∫
R
𝑥3𝜃

𝜆(d𝑥3) +
∫
R
(𝑒𝑥1 − 1)𝑥2

1𝜃
𝑋(d𝑥1)

)︃
= 𝜆𝑡−

(︃
𝛾(𝑡)
𝜁

(𝑒𝛾+𝛿2/2 − 1) + (𝛿2 + (𝛾 + 𝛿2)2)𝑒𝛾+𝛿2/2 − 𝛾2 − 𝛿2
)︃
. (1.49)

The, we compute:∫
R4

(𝑊1(𝑡 , 𝑥))2K𝑡(d𝑥) =
∫
R4
(𝛼(𝑡)𝑥2 + 𝛾(𝑡)𝑥3 + 𝑥4)2K𝑡(d𝑥)

= 𝜆𝑡−

(︃
𝛾(𝑡)2

∫
R
𝑥2

3𝜃
𝜆(d𝑥3) + 2𝛾(𝑡)

∫
R
𝑥3𝜃

𝜆(d𝑥3) ·
∫
R
𝑥2

1𝜃
𝑋(d𝑥1) +

∫
R
𝑥4

1𝜃
𝑋(d𝑥1)

)︃
= 𝜆𝑡−

(︃
𝛾(𝑡)2 2

𝜁2 + 2𝛾(𝑡)𝛾
2 + 𝛿2

𝜁
+ 𝛾4 + 6𝛾2𝛿2 + 3𝛿4

)︃
. (1.50)

The identities above mainly rely on the properties of Gaussian and exponential
random variables. Finally, we can write the predictable covariation as:

𝑑⟨𝐿0, 𝐿0⟩𝑡
d𝑡 = 𝛼(𝑡)2

(1 − 𝜌2)𝜎2
𝑣𝑉

2
𝑡 + 𝜎2

𝑣𝜆𝑡−𝑉𝑡𝜅̄

𝑉𝑡 + 𝜆𝑡−𝜅̄

− 𝛼(𝑡)2𝜌𝜎𝑣𝜆𝑡−𝑉𝑡
𝑉𝑡 + 𝜆𝑡−𝜅̄

(︃
𝛾(𝑡)
𝜁

(𝑒𝛾+𝛿2/2 − 1) + (𝛿2 + (𝛾 + 𝛿2)2)𝑒𝛾+𝛿2/2 − 𝛾2 − 𝛿2
)︃

+ 𝜆𝑡−

(︃
𝛾(𝑡)2 2

𝜁2 + 2𝛾(𝑡)𝛾
2 + 𝛿2

𝜁
+ 𝛾4 + 6𝛾2𝛿2 + 3𝛿4

)︃
−

𝜆2
𝑡−

𝑉𝑡 + 𝜆𝑡−𝜅̄

(︃
𝛾(𝑡)
𝜁

(𝑒𝛾+𝛿2/2 − 1) + (𝛿2 + (𝛾 + 𝛿2)2)𝑒𝛾+𝛿2/2 − 𝛾2 − 𝛿2
)︃2

·

= 𝐴1(𝑡)
𝑉2
𝑡

𝑉𝑡 + 𝜆𝑡−𝜅̄
+ 𝐴2(𝑡)

𝜆𝑡−𝑉𝑡
𝑉𝑡 + 𝜆𝑡−𝜅̄

+ 𝐴3(𝑡)
𝜆2
𝑡−

𝑉𝑡 + 𝜆𝑡−𝜅̄

where

𝐴1(𝑡) = 𝛼(𝑡)2(1 − 𝜌2)𝜎2
𝑣 ,

𝐴2(𝑡) = 𝛼(𝑡)2𝜎2
𝑣𝜅̄ − 2𝛼(𝑡)𝜌𝜎𝑣

(︃
𝛾(𝑡)
𝜁

(𝑒𝛾+𝛿2/2 − 1) + (𝛿2 + (𝛾 + 𝛿2)2)𝑒𝛾+𝛿2/2 − 𝛾2 − 𝛿2
)︃

+
(︃
𝛾(𝑡)2 2

𝜁2 + 2𝛾(𝑡)𝛾
2 + 𝛿2

𝜁
+ 𝛾4 + 6𝛾2𝛿2 + 3𝛿4

)︃
,
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𝐴3(𝑡) = 𝜅̄

(︃
𝛾(𝑡)2 2

𝜁2 + 2𝛾(𝑡)𝛾
2 + 𝛿2

𝜁
+ 𝛾4 + 6𝛾2𝛿2 + 3𝛿4

)︃
−

(︃
𝛾(𝑡)
𝜁

(𝑒𝛾+𝛿2/2 − 1) + (𝛿2 + (𝛾 + 𝛿2)2)𝑒𝛾+𝛿2/2 − 𝛾2 − 𝛿2
)︃2

and

𝜗0
𝑡 =

1
𝑆𝑡−(𝑉𝑡 + 𝜅̄𝜆𝑡−)

(︁
Θ0

1(𝑡)𝑉𝑡 + Θ0
2(𝑡)𝜆𝑡−

)︁
,

Θ0
1(𝑡) = 𝛼(𝑡)𝜌𝜎𝑣 ,

Θ0
2(𝑡) =

𝛾(𝑡)
𝜁

(𝑒𝛾+𝛿2/2 − 1) + (𝛿2 + (𝛾 + 𝛿2)2)𝑒𝛾+𝛿2/2 − 𝛾2 − 𝛿2.

II) Compute ⟨𝐿0, 𝐿(𝑢𝑗)⟩𝑡 . We refer to Corollary 1.A.1, to the second column of Table 1.5
and both the rows of Table 1.6. We observe that the main quantities related to 𝑊1

has already been computed on equations (1.49), (1.50). We mainly focus on the term
related to𝑊2 and to the mixed terms, thus:

∫
R4
(𝑒𝑥1 − 1)𝑊2(𝑡 , 𝑥)K𝑡(d𝑥) =

∫
R4
(𝑒𝑥1 − 1) 𝑓𝑡−(𝑢𝑗)[𝑒𝑥1𝑢𝑗+𝑥2𝜓𝑇−𝑡(𝑢𝑗)+𝑥3𝜒𝑇−𝑡(𝑢𝑗) − 1]K𝑡(d𝑥)

= 𝑓𝑡−(𝑢𝑗)𝜆𝑡−
(︂ ∫

R
𝑒𝑢𝑗𝑥1(𝑒𝑥1 − 1)𝜃𝑋(d𝑥1)

∫
R
𝑒𝑥3𝜒𝑇−𝑡(𝑢𝑗)𝜃𝜆(d𝑥3) −

∫
R
(𝑒𝑥1 − 1)𝜃𝑋(d𝑥1)

)︂
= 𝑓𝑡−(𝑢𝑗)𝜆𝑡−

(︂(︂
𝑒𝛾(𝑢𝑗+1)+𝛿2(𝑢𝑗+1)2/2 − 𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2
)︂ 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
− 𝑒𝛾+𝛿2/2 + 1

)︂
.

(1.51)

The equation above is obtained exploiting the properties of Exponential and Gaus-
sian random variables. With similar techniques we compute:∫

R4
𝑊1(𝑡 , 𝑥)𝑊2(𝑡 , 𝑥)K𝑡(d𝑥)

=

∫
R4
(𝛼(𝑡)𝑥2 + 𝛾(𝑡)𝑥3 + 𝑥4) · ( 𝑓𝑡−(𝑢𝑗)[𝑒(𝑥1𝑢𝑗+𝑥2𝜓𝑇−𝑡(𝑢𝑗)+𝑥3𝜒𝑇−𝑡(𝑢𝑗) − 1])K𝑡(d𝑥)

=

∫
R

∫
R
𝛾(𝑡)𝑥3 𝑓𝑡−(𝑢𝑗)[𝑒𝑥1𝑢𝑗+𝑥3𝜒𝑇−𝑡(𝑢𝑗) − 1]𝜃𝑋(d𝑥1)𝜃𝜆(d𝑥3)𝜆𝑡−

+
∫
R

∫
R
𝑥2

1 𝑓𝑡−(𝑢𝑗)[𝑒𝑥1𝑢𝑗+𝑥3𝜒𝑇−𝑡(𝑢𝑗) − 1]𝜃𝑋(d𝑥1)𝜃𝜆(d𝑥3)𝜆𝑡−

= 𝑓𝑡−(𝑢𝑗)𝜆𝑡−𝛾(𝑡)
(︂ ∫

R
𝑒𝑥1𝑢𝑗𝜃𝑋(d𝑥1)

∫
R
𝑥3𝑒

𝑥3𝜒𝑇−𝑡(𝑢𝑗)𝜃𝜆(d𝑥3) −
∫
R
𝑥3𝜃

𝜆(d𝑥3)
)︂
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+ 𝑓𝑡−(𝑢𝑗)𝜆𝑡−
(︂ ∫

R
𝑥2

1𝑒
𝑥1𝑢𝑗𝜃𝑋(d𝑥1)

∫
R
𝑒𝑥3𝜒𝑇−𝑡(𝑢𝑗)𝜃𝜆(d𝑥3) −

∫
R
𝑥2

1𝜃
𝑋(d𝑥1)

)︂
= 𝑓𝑡−(𝑢𝑗)𝜆𝑡−

(︂
𝛾(𝑡)

(︂
𝑒
𝛾𝑢𝑗+𝛿2𝑢2

𝑗
/2 𝜁

(𝜁 − 𝜒𝑇−𝑡(𝑢𝑗))2
− 1

𝜁

)︂
+ (𝛿2 + (𝛾 + 𝛿2𝑢𝑗)2)𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
− (𝛾2 + 𝛿2)

)︂
.

The predictable covariation is given by:

𝑑⟨𝐿0, 𝐿(𝑢𝑗)⟩
d𝑡 = 𝛼(𝑡)𝑢𝑗 𝑓𝑡−(𝑢𝑗)

𝜌𝜎𝑣𝜆𝑡−𝑉𝑡𝜅̄

𝑉𝑡 + 𝜆𝑡−𝜅̄
+ 𝛼(𝑡)𝜓𝑇−𝑡(𝑢𝑗) 𝑓𝑡−(𝑢𝑗)

(1 − 𝜌2)𝜎2
𝑣𝑉

2
𝑡 + 𝜎2

𝑣𝜆𝑡−𝑉𝑡𝜅̄

𝑉𝑡 + 𝜆𝑡−𝜅̄

− 1
𝑉𝑡 + 𝜆𝑡−𝜅̄

𝛼(𝑡)𝜌𝜎𝑣𝑉𝑡 𝑓𝑡−(𝑢𝑗)𝜆𝑡−

·
(︂(︂
𝑒𝛾(𝑢𝑗+1)+𝛿2(𝑢𝑗+1)2/2 − 𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2
)︂ 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
− 𝑒𝛾+𝛿2/2 + 1

)︂
− 1
𝑉𝑡 + 𝜆𝑡−𝜅̄

(︂
𝑢𝑗 𝑓𝑡−(𝑢𝑗)𝑉𝑡 + 𝜓𝑇−𝑡(𝑢𝑗) 𝑓𝑡−(𝑢𝑗)𝜌𝜎𝑣𝑉𝑡

)︂
𝜆𝑡−·(︃

𝛾(𝑡)
𝜁

(𝑒𝛾+𝛿2/2 − 1) + (𝛿2 + (𝛾 + 𝛿2)2)𝑒𝛾+𝛿2/2 − 𝛾2 − 𝛿2
)︃

+ 𝑓𝑡−(𝑢𝑗)𝜆𝑡−
(︂
𝛾(𝑡)

(︂
𝑒
𝛾𝑢𝑗+𝛿2𝑢2

𝑗
/2 𝜁

(𝜁 − 𝜒𝑇−𝑡(𝑢𝑗))2
− 1

𝜁

)︂
+ (𝛿2 + (𝛾 + 𝛿2𝑢𝑗)2)𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
− (𝛾2 + 𝛿2)

)︂
− 1
𝑉𝑡 + 𝜆𝑡−𝜅̄

𝜆𝑡−

(︃
𝛾(𝑡)
𝜁

(𝑒𝛾+𝛿2/2 − 1) + (𝛿2 + (𝛾 + 𝛿2)2)𝑒𝛾+𝛿2/2 − 𝛾2 − 𝛿2
)︃

· 𝑓𝑡−(𝑢𝑗)𝜆𝑡−
(︂(︂
𝑒𝛾(𝑢𝑗+1)+𝛿2(𝑢𝑗+1)2/2 − 𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2
)︂ 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
− 𝑒𝛾+𝛿2/2 + 1

)︂
= 𝐵1(𝑡 , 𝑢𝑗)

𝑓𝑡−(𝑢𝑗)𝑉2
𝑡

𝑉𝑡 + 𝜆𝑡−𝜅̄
+ 𝐵2(𝑡 , 𝑢𝑗)

𝑓𝑡−(𝑢𝑗)𝜆𝑡−𝑉𝑡
𝑉𝑡 + 𝜆𝑡−𝑡𝜅̄

+ 𝐵3(𝑡 , 𝑢𝑗)
𝑓𝑡−(𝑢𝑗)𝜆2

𝑡−
𝑉𝑡 + 𝜆𝑡−𝜅̄

where

𝐵1(𝑡 , 𝑢𝑗) = 𝛼(𝑡)𝜓𝑇−𝑡(𝑢𝑗)(1 − 𝜌2)𝜎2
𝑣

𝐵2(𝑡 , 𝑢𝑗) = 𝛼(𝑡)𝑢𝑗𝜌𝜎𝑣𝜅̄ + 𝛼(𝑡)𝜓𝑇−𝑡(𝑢𝑗)𝜎2
𝑣𝜅̄

− 𝛼(𝑡)𝜌𝜎𝑣
(︂(︂
𝑒𝛾(𝑢𝑗+1)+𝛿2(𝑢𝑗+1)2/2 − 𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2
)︂ 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
− 𝑒𝛾+𝛿2/2 + 1

)︂
− (𝑢𝑗 + 𝜓𝑇−𝑡(𝑢𝑗)𝜌𝜎𝑣)

(︃
𝛾(𝑡)
𝜁

(𝑒𝛾+𝛿2/2 − 1) + (𝛿2 + (𝛾 + 𝛿2)2)𝑒𝛾+𝛿2/2 − 𝛾2 − 𝛿2
)︃
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+
(︂
𝛾(𝑡)

(︂
𝑒
𝛾𝑢𝑗+𝛿2𝑢2

𝑗
/2 𝜁

(𝜁 − 𝜒𝑇−𝑡(𝑢𝑗))2
− 1

𝜁

)︂
+ (𝛿2 + (𝛾 + 𝛿2𝑢𝑗)2)𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
− (𝛾2 + 𝛿2)

)︂
𝐵3(𝑡 , 𝑢𝑗) = 𝜅̄

(︂
𝛾(𝑡)

(︂
𝑒
𝛾𝑢𝑗+𝛿2𝑢2

𝑗
/2 𝜁

(𝜁 − 𝜒𝑇−𝑡(𝑢𝑗))2
− 1

𝜁

)︂
+ (𝛿2 + (𝛾 + 𝛿2𝑢𝑗)2)𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
− (𝛾2 + 𝛿2)

)︂
−

(︃
𝛾(𝑡)
𝜁

(𝑒𝛾+𝛿2/2 − 1) + (𝛿2 + (𝛾 + 𝛿2)2)𝑒𝛾+𝛿2/2 − 𝛾2 − 𝛿2
)︃

·
(︂(︂
𝑒𝛾(𝑢𝑗+1)+𝛿2(𝑢𝑗+1)2/2 − 𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2
)︂ 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
− 𝑒𝛾+𝛿2/2 + 1

)︂
.

and

𝜗
𝑗

𝑡 =
1

𝑆𝑡−(𝑉𝑡 + 𝜅̄𝜆𝑡−)

∫
𝒮 𝑗

(Θ 𝑗

1(𝑡 , 𝑢𝑗) 𝑓𝑡−(𝑢𝑗)𝑉𝑡 + Θ
𝑗

2(𝑡 , 𝑢𝑗) 𝑓𝑡−(𝑢𝑗)𝜆𝑡)𝜁
𝑗(d𝑢𝑗),

Θ
𝑗

1(𝑡 , 𝑢𝑗) = 𝑢𝑗 + 𝜓𝑇−𝑡(𝑢𝑗)𝜌𝜎𝑣 ,

Θ
𝑗

2(𝑡 , 𝑢𝑗) =
(︂
𝑒𝛾(𝑢𝑗+1)+𝛿2(𝑢𝑗+1)2/2 − 𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2
)︂ 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
− 𝑒𝛾+𝛿2/2 + 1.

III) Compute ⟨𝐿(𝑢𝑖), 𝐿(𝑢𝑗)⟩𝑡 . We refer to Corollary 1.A.1, to the third column of Table
1.5 and the second row of Table 1.6. We observe that one of the main quantities has
already been computed in equation (1.51), thus we only focus on the remaining one:

∫
R4
𝑊1(𝑡 , 𝑥)𝑊2(𝑡 , 𝑥)K𝑡(d𝑥)

=

∫
R4
( 𝑓𝑡−(𝑢𝑖)(𝑒𝑥1𝑢𝑖+𝑥2𝜓𝑇−𝑡(𝑢𝑖)+𝑥3𝜒𝑇−𝑡(𝑢𝑖)) − 1) · ( 𝑓𝑡−(𝑢𝑗)(𝑒𝑥1𝑢𝑗+𝑥2𝜓𝑇−𝑡(𝑢𝑗)+𝑥3𝜒𝑇−𝑡(𝑢𝑗)) − 1)K𝑡(d𝑥)

= 𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝜆𝑡−
∫
R

∫
R
(𝑒𝑥1𝑢𝑖+𝑥3𝜒𝑇−𝑡(𝑢𝑖) − 1)(𝑒𝑥1𝑢𝑗+𝑥3𝜒𝑇−𝑡(𝑢𝑗) − 1)𝜃𝑋(d𝑥1)𝜃𝜆(d𝑥3)

= 𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝜆𝑡−
(︂ ∫

R

∫
R
𝑒𝑥1(𝑢𝑖+𝑢𝑗)+𝑥3(𝜒𝑇−𝑡(𝑢𝑖)+𝜒𝑇−𝑡(𝑢𝑗)) − 𝑒𝑥1𝑢𝑖+𝑥3𝜒𝑇−𝑡(𝑢𝑖)

− 𝑒𝑥1𝑢𝑗+𝑥3𝜒𝑇−𝑡(𝑢𝑗) + 1
)︂
𝜃𝑋(d𝑥1)𝜃𝜆(d𝑥3)

= 𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝜆𝑡−
(︂ ∫

R
𝑒𝑥1(𝑢𝑖+𝑢𝑗)𝜃𝑋(d𝑥1)

∫
R
𝑒𝑥3(𝜒𝑇−𝑡(𝑢𝑖)+𝜒𝑇−𝑡(𝑢𝑗))𝜃𝜆(d𝑥3)

−
∫
R
𝑒𝑥1𝑢𝑖𝜃𝑋(d𝑥1)

∫
R
𝑒𝑥3𝜒𝑇−𝑡(𝑢𝑖)𝜃𝜆(d𝑥3) −

∫
R
𝑒𝑥1𝑢𝑗𝜃𝑋(d𝑥1)

∫
R
𝑒𝑥3𝜒𝑇−𝑡(𝑢𝑗)𝜃𝜆(d𝑥3) + 1

)︂
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= 𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝜆𝑡−
(︂
𝑒𝛾(𝑢𝑖+𝑢𝑗)+𝛿

2(𝑢𝑖+𝑢𝑗)2/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑖) − 𝜒𝑇−𝑡(𝑢𝑗)
− 𝑒𝛾𝑢𝑖+𝛿2𝑢2

𝑖
/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑖)

− 𝑒𝛾𝑢𝑗+𝛿
2𝑢2

𝑗
/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
+ 1

)︂
.

The predictable covariation is given by:

𝑑⟨𝐿(𝑢𝑖), 𝐿(𝑢𝑗)⟩
d𝑡 = 𝑢𝑖𝑢𝑗 𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)

𝜆𝑡−𝑉𝑡𝜅̄
𝑉𝑡 + 𝜆𝑡−𝜅̄

+ 𝜌𝜎𝑣𝜆𝑡−𝑉𝑡𝜅̄

𝑉𝑡 + 𝜆𝑡−𝜅̄
𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)(𝑢𝑖𝜓𝑇−𝑡(𝑢𝑗) + 𝑢𝑗𝜓𝑇−𝑡(𝑢𝑖))+

+ 𝜓𝑇−𝑡(𝑢𝑖)𝜓𝑇−𝑡(𝑢𝑗) 𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)
(1 − 𝜌2)𝜎2

𝑣𝑉
2
𝑡 + 𝜎2

𝑣𝜆𝑡−𝑉𝑡𝜅̄

𝑉𝑡 + 𝜆𝑡−𝜅̄

− 1
𝑉𝑡 + 𝜆𝑡−𝜅̄

𝑓𝑡−(𝑢𝑖)
(︂
𝑢𝑗𝑉𝑡 + 𝜓𝑇−𝑡(𝑢𝑗)𝜌𝜎𝑣𝑉𝑡

)︂
𝑓𝑡−(𝑢𝑗)

· 𝜆𝑡−
(︂(︂
𝑒𝛾(𝑢𝑖+1)+𝛿2(𝑢𝑖+1)2/2 − 𝑒𝛾𝑢𝑖+𝛿2𝑢2

𝑖
/2
)︂ 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑖)
− 𝑒𝛾+𝛿2/2 + 1

)︂
− 1
𝑉𝑡 + 𝜆𝑡−𝜅̄

𝑓𝑡−(𝑢𝑗)
(︂
𝑢𝑖𝑉𝑡 + 𝜓𝑇−𝑡(𝑢𝑖)𝜌𝜎𝑣𝑉𝑡

)︂
𝑓𝑡−(𝑢𝑖)

· 𝜆𝑡−
(︂(︂
𝑒𝛾(𝑢𝑗+1)+𝛿2(𝑢𝑗+1)2/2 − 𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2
)︂ 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
− 𝑒𝛾+𝛿2/2 + 1

)︂
+ 𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝜆𝑡−

(︂
𝑒𝛾(𝑢𝑖+𝑢𝑗)+𝛿

2(𝑢𝑖+𝑢𝑗)2/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑖) − 𝜒𝑇−𝑡(𝑢𝑗)
− 𝑒𝛾𝑢𝑖+𝛿2𝑢2

𝑖
/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑖)

− 𝑒𝛾𝑢𝑗+𝛿
2𝑢2

𝑗
/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
+ 1

)︂
− 1
𝑉𝑡 + 𝜆𝑡−𝜅̄

𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝜆2
𝑡

(︂(︂
𝑒𝛾(𝑢𝑖+1)+𝛿2(𝑢𝑖+1)2/2 − 𝑒𝛾𝑢𝑖+𝛿2𝑢2

𝑖
/2
)︂ 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑖)
− 𝑒𝛾+𝛿2/2 + 1

)︂
·
(︂(︂
𝑒𝛾(𝑢𝑗+1)+𝛿2(𝑢𝑗+1)2/2 − 𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2
)︂ 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
− 𝑒𝛾+𝛿2/2 + 1

)︂
= 𝐶1(𝑡 , 𝑢𝑖 , 𝑢𝑗)

𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝑉2
𝑡

𝑉𝑡 + 𝜆𝑡−𝜅̄
+ 𝐶2(𝑡 , 𝑢𝑖 , 𝑢𝑗)

𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝜆𝑡−𝑉𝑡
𝑉𝑡 + 𝜆𝑡−𝜅̄

+ 𝐶3(𝑡 , 𝑢𝑖 , 𝑢𝑗)
𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝜆2

𝑡−
𝑉𝑡 + 𝜆𝑡−𝜅̄

where

𝐶1(𝑡 , 𝑢𝑖 , 𝑢𝑗) = 𝜓𝑇−𝑡(𝑢𝑖)𝜓𝑇−𝑡(𝑢𝑗)(1 − 𝜌2)𝜎2
𝑣

𝐶2(𝑡 , 𝑢𝑖 , 𝑢𝑗) = 𝑢𝑖𝑢𝑗𝜅̄ + 𝜌𝜎𝑣𝜅̄(𝑢𝑖𝜓𝑇−𝑡(𝑢𝑗) + 𝑢𝑗𝜓𝑇−𝑡(𝑢𝑖)) + 𝜓𝑇−𝑡(𝑢𝑖)𝜓𝑇−𝑡(𝑢𝑗)𝜎2
𝑣𝜅̄
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− (𝑢𝑖 + 𝜓𝑇−𝑡(𝑢𝑖)𝜌𝜎𝑣)
(︂(︂
𝑒𝛾(𝑢𝑗+1)+𝛿2(𝑢𝑗+1)2/2 − 𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2
)︂ 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
− 𝑒𝛾+𝛿2/2 + 1

)︂
− (𝑢𝑗 + 𝜓𝑇−𝑡(𝑢𝑗)𝜌𝜎𝑣)

(︂(︂
𝑒𝛾(𝑢𝑖+1)+𝛿2(𝑢𝑖+1)2/2 − 𝑒𝛾𝑢𝑖+𝛿2𝑢2

𝑖
/2
)︂ 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑖)
− 𝑒𝛾+𝛿2/2 + 1

)︂
+

(︂
𝑒𝛾(𝑢𝑖+𝑢𝑗)+𝛿

2(𝑢𝑖+𝑢𝑗)2/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑖) − 𝜒𝑇−𝑡(𝑢𝑗)

− 𝑒𝛾𝑢𝑖+𝛿2𝑢2
𝑖
/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑖)
− 𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
+ 1

)︂
𝐶3(𝑡 , 𝑢𝑖 , 𝑢𝑗) = 𝜅̄

(︂
𝑒𝛾(𝑢𝑖+𝑢𝑗)+𝛿

2(𝑢𝑖+𝑢𝑗)2/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑖) − 𝜒𝑇−𝑡(𝑢𝑗)

− 𝑒𝛾𝑢𝑖+𝛿2𝑢2
𝑖
/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑖)
− 𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
+ 1

)︂
−

(︂(︂
𝑒𝛾(𝑢𝑖+1)+𝛿2(𝑢𝑖+1)2/2 − 𝑒𝛾𝑢𝑖+𝛿2𝑢2

𝑖
/2
)︂ 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑖)
− 𝑒𝛾+𝛿2/2 + 1

)︂
·
(︂(︂
𝑒𝛾(𝑢𝑗+1)+𝛿2(𝑢𝑗+1)2/2 − 𝑒𝛾𝑢𝑗+𝛿

2𝑢2
𝑗
/2
)︂ 𝜁

𝜁 − 𝜒𝑇−𝑡(𝑢𝑗)
− 𝑒𝛾+𝛿2/2 + 1

)︂
.

1.D Existence and computations of moments

Lemma 1.D.1. Let 𝒟ℒ(𝑍𝑇 ) = {𝑢 ∈ R3 : E[exp(𝑢⊤𝑍𝑇)] < ∞} and 𝒮(𝒟ℒ(𝑍𝑇 )) := {𝑢 ∈ R3 :
ℜ𝔢(𝑢) ∈ 𝒟ℒ(𝑍𝑇 )}, where 𝑍 = (𝑋,𝑉,𝜆). Let the functions 𝜒,𝜓, 𝜒 be defined as in Theorem 1.8.
Then the following properties hold:

a) The set 𝒟ℒ(𝑍𝑇 ) is open.

b) The set 𝒟ℒ(𝑍𝑇 ) is convex.

c) If (𝑢1, 𝑢2, 𝑢3) ∈ 𝒮(𝒟ℒ(𝑍𝑇 )), then (𝑢1,𝜓(𝑇−𝑡 , 𝑢1, 𝑢2, 𝑢3), 𝜒(𝑇−𝑡 , 𝑢1, 𝑢2, 𝑢3)) ∈ 𝒮(𝒟ℒ(𝑍𝑡)).

d) The functions 𝜙(𝑡 , 𝑢1, 𝑢2, 𝑢3),𝜓(𝑡 , 𝑢1, 𝑢2, 𝑢3), 𝜒(𝑡 , 𝑢1, 𝑢2, 𝑢3) are analytic on 𝒮(𝒟ℒ(𝑍𝑡)).

e) If (𝑎, 𝑏, 𝑐) ∈ 𝒮(𝒟ℒ(𝑍𝑇 )) , then (𝑎, 𝑏′, 𝑐′) ∈ 𝒮(𝒟ℒ(𝑍𝑇 )) for all 𝑏′ ≤ 𝑏, 𝑐′ ≤ 𝑐.

f) ℜ𝔢𝜓(𝑡 , 𝑢1, 𝑢2, 𝑢3) ≤ 𝜓(𝑡 ,ℜ𝔢𝑢1,ℜ𝔢𝑢2,ℜ𝔢𝑢3),ℜ𝔢𝜒(𝑡 , 𝑢1, 𝑢2, 𝑢3) ≤ 𝜒(𝑡 ,ℜ𝔢𝑢1,ℜ𝔢𝑢2,ℜ𝔢𝑢3)
for all (𝑢1, 𝑢2, 𝑢3) ∈ 𝒮(𝒟ℒ(𝑍𝑡)).

Proof. a) In the spirit of Filipovic and Mayerhofer (2009, Lemma 2.3), we can prove the
first point referring to Amann (2011, Theorem 7.6, Theorem 8.3).

b) Let (𝑢1, 𝑢2, 𝑢3), (𝑤1, 𝑤2, 𝑤3) ∈ 𝒟ℒ(𝑍𝑇 ), and ℎ ∈ (0, 1). Then by Hölder inequality

E[exp(ℎ(𝑢1𝑋𝑇 + 𝑢2𝑉𝑇 + 𝑢3𝜆𝑇) + (1 − ℎ)(𝑤1𝑋𝑇 + 𝑤2𝑉𝑇 + 𝑤3𝜆𝑇))]
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= E[exp(ℎ(𝑢1𝑋𝑇 + 𝑢2𝑉𝑇 + 𝑢3𝜆𝑇)) · exp((1 − ℎ)(𝑤1𝑋𝑇 + 𝑤2𝑉𝑇 + 𝑤3𝜆𝑇))]
≤ E[exp(𝑢1𝑋𝑇 + 𝑢2𝑉𝑇 + 𝑢3𝜆𝑇)]ℎ · E[exp(𝑤1𝑋𝑇 + 𝑤2𝑉𝑇 + 𝑤3𝜆𝑇)]1−ℎ < ∞.

It follows that ℎ(𝑢1, 𝑢2, 𝑢3) + (1 − ℎ)(𝑤1, 𝑤2, 𝑤3) ∈ 𝒟ℒ(𝑍𝑇 ).

c) Let (𝑢1, 𝑢2, 𝑢3) ∈ 𝒟ℒ(𝑍𝑇 ). Then, exploiting Theorem 1.8, we can state that all the
following quantities are finite

E[𝑒𝑢1𝑋𝑇+𝑢2𝑉𝑇+𝑢3𝜆𝑇 ] = E[E[𝑒𝑢1𝑋𝑇+𝑢2𝑉𝑇+𝑢3𝜆𝑇 |ℱ𝑡]]
= E[𝑒𝜙(𝑇−𝑡 ,𝑢1 ,𝑢2 ,𝑢3)+𝑢1𝑋𝑡+𝜓(𝑇−𝑡 ,𝑢1 ,𝑢2 ,𝑢3)𝑉𝑡+𝜒(𝑇−𝑡 ,𝑢1 ,𝑢2 ,𝑢3)𝜆𝑡 ].

d) In the spirit of Filipovic and Mayerhofer (2009, Lemma 2.3), the regularity of 𝜙,𝜓, 𝜒
follows by Dieudonné (1960, Theorem 10.8.2).

e), f) The last two points can be proved analogously to Di Tella et al. (2020, Lemma A.1).
□

Lemma 1.D.2. Let (𝑢1, 𝑢2, 𝑢3) ∈ 𝒮(𝒟ℒ(𝑍𝑡)) and denote

ℎ(𝑡 , 𝑢1, 𝑢2, 𝑢3, 𝑉0,𝜆0) := 𝜙(𝑡 , 𝑢1, 𝑢2, 𝑢3) + 𝜓(𝑡 , 𝑢1, 𝑢2, 𝑢3)𝑉0 + 𝜒(𝑡 , 𝑢1, 𝑢2, 𝑢3)𝜆0.

The following identities hold

E[𝑒𝑢1𝑋𝑡+𝑢2𝑉𝑡+𝑢3𝜆𝑡𝑉𝑡] = 𝑒𝑢1𝑋0𝑒 ℎ(𝑡 ,𝑢1 ,𝑢2 ,𝑢3 ,𝑉0 ,𝜆0)𝜕𝑢2ℎ(𝑡 , 𝑢1, 𝑢2, 𝑢3, 𝑉0,𝜆0),
E[𝑒𝑢1𝑋𝑡+𝑢2𝑉𝑡+𝑢3𝜆𝑡𝜆𝑡] = 𝑒𝑢1𝑋0𝑒 ℎ(𝑡 ,𝑢1 ,𝑢2 ,𝑢3 ,𝑉0 ,𝜆0)𝜕𝑢3ℎ(𝑡 , 𝑢1, 𝑢2, 𝑢3, 𝑉0,𝜆0),
E[𝑒𝑢1𝑋𝑡+𝑢2𝑉𝑡+𝑢3𝜆𝑡𝑉2

𝑡 ] = 𝑒𝑢1𝑋0𝑒 ℎ(𝑡 ,𝑢1 ,𝑢2 ,𝑢3 ,𝑉0 ,𝜆0)((𝜕𝑢2ℎ(𝑡 , 𝑢1, 𝑢2, 𝑢3, 𝑉0,𝜆0))2 + 𝜕2
𝑢2ℎ(𝑡 , 𝑢1, 𝑢2, 𝑢3, 𝑉0,𝜆0)),

E[𝑒𝑢1𝑋𝑡+𝑢2𝑉𝑡+𝑢3𝜆𝑡𝜆2
𝑡 ] = 𝑒𝑢1𝑋0𝑒 ℎ(𝑡 ,𝑢1 ,𝑢2 ,𝑢3 ,𝑉0 ,𝜆0)((𝜕𝑢3ℎ(𝑡 , 𝑢1, 𝑢2, 𝑢3, 𝑉0,𝜆0))2 + 𝜕2

𝑢3ℎ(𝑡 , 𝑢1, 𝑢2, 𝑢3, 𝑉0,𝜆0)),
E[𝑒𝑢1𝑋𝑡+𝑢2𝑉𝑡+𝑢3𝜆𝑡𝜆𝑡𝑉𝑡] = 𝑒𝑢1𝑋0𝑒 ℎ(𝑡 ,𝑢1 ,𝑢2 ,𝑢3 ,𝑉0 ,𝜆0)(𝜕𝑢2ℎ(𝑡 , 𝑢1, 𝑢2, 𝑢3, 𝑉0,𝜆0) · 𝜕𝑢3ℎ(𝑡 , 𝑢1, 𝑢2, 𝑢3, 𝑉0,𝜆0)

+ 𝜕𝑢2𝜕𝑢3ℎ(𝑡 , 𝑢1, 𝑢2, 𝑢3, 𝑉0,𝜆0)).

In particular, all the expectations above are finite.

Proof. The proof is a modification of the one in Di Tella et al. (2020, Lemma A.2). Fix
(𝑥1, 𝑥2, 𝑥3) ∈ 𝒟ℒ(𝑍𝑡) and consider (𝑢1, 𝑢2, 𝑢3) ∈ 𝒮(𝒟ℒ(𝑍𝑡)) of the form 𝑢𝑗 = 𝑥 𝑗 + 𝑖𝑦 𝑗 , for
𝑗 = 1, 2, 3. By assumption 𝐾 = E[𝑒𝑥1𝑋𝑡+𝑥2𝑉𝑡+𝑥3𝜆𝑡 ] exists and belongs to (0,+∞). Define a
probability measure M on (Ω,ℱ𝑡) by M

P

|︁|︁
ℱ𝑡 = exp(𝑥1𝑋𝑡 + 𝑥2𝑉𝑡 + 𝑥3𝜆𝑡)/𝐾, i.e., by exponential

tilting of P. The characteristic function of (𝑋𝑡 , 𝑉𝑡 ,𝜆𝑡) under M is given by

𝐾EM[𝑒 𝑖𝑦1𝑋𝑡+𝑖𝑦2𝑉𝑡+𝑖𝑦3𝜆𝑡 ] = E[𝑒𝑢1𝑋𝑡+𝑢2𝑉𝑡+𝑢3𝜆𝑡 ]
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= exp
(︁
𝜙(𝑡 , 𝑢1, 𝑢2, 𝑢3) + 𝑢1𝑋0 + 𝜓(𝑡 , 𝑢1, 𝑢2, 𝑢3)𝑉0 + 𝜒(𝑡 , 𝑢1, 𝑢2, 𝑢3)𝜆0

)︁
.

Due to the analyticity properties of𝜙(𝑡 , 𝑢1, 𝑢2, 𝑢3),𝜓(𝑡 , 𝑢1, 𝑢2, 𝑢3) and𝜒(𝑡 , 𝑢1, 𝑢2, 𝑢3)proved
in 1.D.1, c), all partial derivatives of the left hand side with respect to (𝑦1, 𝑦2, 𝑦3) exist.
Applying some standard results on differentiability of characteristic functions (see e.g.,
Lukacs (1970, Section 2.3)) we obtain

𝐾EM[𝑒 𝑖𝑦1𝑋𝑡+𝑖𝑦2𝑉𝑡+𝑖𝑦3𝜆𝑡𝑉𝑡] = −𝑖 d
d𝑥2

𝐾EM[𝑒 𝑖𝑦1𝑋𝑡+𝑖𝑦2𝑉𝑡+𝑖𝑦3𝜆𝑡 ]

=
d

d𝑢2
exp

(︁
𝜙(𝑡 , 𝑢1, 𝑢2, 𝑢3) + 𝑢1𝑋0 + 𝜓(𝑡 , 𝑢1, 𝑢2, 𝑢3)𝑉0 + 𝜒(𝑡 , 𝑢1, 𝑢2, 𝑢3)𝜆0

)︁
.

Transforming the left hand side back to measure P yields the desired result. The other
formulas are obtained analogously. □

Proposition 1.D.3. Let 𝜙|R+×R3 ,𝜓|R+×R3 , 𝜒|R+×R3 be the restriction of the functions 𝜙,𝜓, 𝜒 to
the real domain. Then 𝜙|R+×R3 ,𝜓|R+×R3 , 𝜒|R+×R3 : (𝑡 , 𝑥1, 𝑥2, 𝑥3) ↦→ R are convex functions in 𝑥.

Proof. The convexity property follows from a modification of Sarychev (1996, Theorem
2). □

Proposition 1.D.4. Under the assumptions of Theorem 1.21, in particular E[𝑒2𝑅 𝑗𝑋𝑇 ] < ∞, all the
expected values appearing in Theorem are finite and can be computed explicitly. Let

ℎ(𝑡 , 𝑢1, 𝑢2, 𝑢3, 𝑉0,𝜆0) := 𝜙(𝑡 , 𝑢1, 𝑢2, 𝑢3) + 𝜓(𝑡 , 𝑢1, 𝑢2, 𝑢3)𝑉0 + 𝜒(𝑡 , 𝑢1, 𝑢2, 𝑢3)𝜆0,

𝑓𝑡−(𝑢𝑗) = exp(𝜙𝑇−𝑡(𝑢𝑗) + 𝑢𝑗𝑋𝑡− + 𝜓𝑇−𝑡(𝑢𝑗)𝑉𝑡− + 𝜒𝑇−𝑡(𝑢𝑗)𝜆𝑡−),

with 𝑔(𝑡 , 𝑢1, 0, 0) = 𝑔𝑡(𝑢1), for 𝑔 = 𝜙,𝜓, 𝜒, we have

I) E

[︄
𝑉2
𝑡

𝑉𝑡 + 𝜆𝑡 𝜅̄

]︄
=

∫ 0

−∞
𝑒 ℎ(𝑡 ,0,𝑠 ,𝑠𝜅̄,𝑉0 ,𝜆0)((𝜕𝑢2 ℎ(𝑡 , 0, 𝑠 , 𝑠𝜅̄, 𝑉0 ,𝜆0))2 + 𝜕2

𝑢2 ℎ(𝑡 , 0, 𝑠 , 𝑠𝜅̄, 𝑉0 ,𝜆0))d𝑠,

E

[︄
𝜆2
𝑡

𝑉𝑡 + 𝜆𝑡 𝜅̄

]︄
=

∫ 0

−∞
𝑒 ℎ(𝑡 ,0,𝑠 ,𝑠𝜅̄,𝑉0 ,𝜆0)((𝜕𝑢3 ℎ(𝑡 , 0, 𝑠 , 𝑠𝜅̄, 𝑉0 ,𝜆0))2 + 𝜕2

𝑢3 ℎ(𝑡 , 0, 𝑠 , 𝑠𝜅̄, 𝑉0 ,𝜆0))d𝑠,

E
[︃

𝜆𝑡𝑉𝑡
𝑉𝑡 + 𝜆𝑡 𝜅̄

]︃
=

∫ 0

−∞
𝑒 ℎ(𝑡 ,0,𝑠 ,𝑠𝜅̄,𝑉0 ,𝜆0)(𝜕𝑢2 ℎ(𝑡 , 0, 𝑠 , 𝑠𝜅̄, 𝑉0 ,𝜆0)𝜕𝑢3 ℎ(𝑡 , 0, 𝑠 , 𝑠𝜅̄, 𝑉0 ,𝜆0)

+ 𝜕𝑢2𝜕𝑢3 ℎ(𝑡 , 0, 𝑠 , 𝑠𝜅̄, 𝑉0 ,𝜆0))d𝑠,

II) Moreover, for 𝑢̄ 𝑗𝑠 ,𝑡 = (𝑢𝑗 ,𝜓𝑇−𝑡(𝑢𝑗) + 𝑠, 𝜒𝑇−𝑡(𝑢𝑗) + 𝑠𝜅̄), 𝑢𝑗 ∈ 𝒮 𝑗 = {𝑧 ∈ C : ℜ𝔢(𝑧) = 𝑅 𝑗}

E

[︄
𝑓𝑡−(𝑢𝑗)𝑉2

𝑡

𝑉𝑡 + 𝜆𝑡𝜅̄

]︄
=

∫ 0

−∞
𝑒𝑢𝑗𝑋0𝑒 ℎ(𝑢̄

𝑗

𝑠 ,𝑡 ,𝑉0 ,𝜆0)((𝜕𝑢2ℎ(𝑢̄
𝑗

𝑠 ,𝑡 , 𝑉0,𝜆0))2 + 𝜕2
𝑢2ℎ(𝑢̄

𝑗

𝑠 ,𝑡 , 𝑉0,𝜆0))d𝑠,
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E

[︄
𝑓𝑡−(𝑢𝑗)𝜆2

𝑡

𝑉𝑡 + 𝜆𝑡𝜅̄

]︄
=

∫ 0

−∞
𝑒𝑢𝑗𝑋0𝑒 ℎ(𝑢̄

𝑗

𝑠 ,𝑡 ,𝑉0 ,𝜆0)((𝜕𝑢3ℎ(𝑢̄
𝑗

𝑠 ,𝑡 , 𝑉0,𝜆0))2 + 𝜕2
𝑢3ℎ(𝑢̄

𝑗

𝑠 ,𝑡 , 𝑉0,𝜆0))d𝑠,

E
[︃
𝑓𝑡−(𝑢𝑗)𝜆𝑡𝑉𝑡
𝑉𝑡 + 𝜆𝑡𝜅̄

]︃
=

∫ 0

−∞
𝑒𝑢𝑗𝑋0𝑒 ℎ(𝑢̄

𝑗

𝑠 ,𝑡 ,𝑉0 ,𝜆0)(𝜕𝑢2ℎ(𝑢̄
𝑗

𝑠 ,𝑡 , 𝑉0,𝜆0)𝜕𝑢3ℎ(𝑢̄
𝑗

𝑠 ,𝑡 , 𝑉0,𝜆0)+

𝜕𝑢2𝜕𝑢3ℎ(𝑢̄
𝑗

𝑠 ,𝑡 , 𝑉0,𝜆0))d𝑠.

III) For 𝑢̄ 𝑖 , 𝑗𝑠 ,𝑡 = (𝑢𝑖 + 𝑢𝑗 ,𝜓𝑇−𝑡(𝑢𝑖) + 𝜓𝑇−𝑡(𝑢𝑗) + 𝑠, 𝜒𝑇−𝑡(𝑢𝑖) + 𝜒𝑇−𝑡(𝑢𝑗) + 𝑠𝜅̄), 𝑢𝑘 ∈ 𝒮𝑘 = {𝑧 ∈
C : ℜ𝔢(𝑧) = 𝑅𝑘} , 𝑘 = 𝑖 , 𝑗

E

[︄
𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝑉2

𝑡

𝑉𝑡 + 𝜆𝑡𝜅̄

]︄
=

∫ 0

−∞
𝑒(𝑢𝑖+𝑢𝑗)𝑋0𝑒 ℎ(𝑢̄

𝑖 , 𝑗

𝑠 ,𝑡 ,𝑉0 ,𝜆0)((𝜕𝑢2ℎ(𝑢̄
𝑖 , 𝑗

𝑠 ,𝑡 , 𝑉0,𝜆0))2 + 𝜕2
𝑢2ℎ(𝑢̄

𝑖 , 𝑗

𝑠 ,𝑡 , 𝑉0,𝜆0))d𝑠,

E

[︄
𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝜆2

𝑡

𝑉𝑡 + 𝜆𝑡𝜅̄

]︄
=

∫ 0

−∞
𝑒(𝑢𝑖+𝑢𝑗)𝑋0𝑒 ℎ(𝑢̄

𝑖 , 𝑗

𝑠 ,𝑡 ,𝑉0 ,𝜆0)((𝜕𝑢3ℎ(𝑢̄
𝑖 , 𝑗

𝑠 ,𝑡 , 𝑉0,𝜆0))2 + 𝜕2
𝑢3ℎ(𝑢̄

𝑖 , 𝑗

𝑠 ,𝑡 , 𝑉0,𝜆0))d𝑠,

E
[︃
𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝜆𝑡𝑉𝑡

𝑉𝑡 + 𝜆𝑡𝜅̄

]︃
=

∫ 0

−∞
𝑒(𝑢𝑖+𝑢𝑗)𝑋0𝑒 ℎ(𝑢̄

𝑖 , 𝑗

𝑠 ,𝑡 ,𝑉0 ,𝜆0)(𝜕𝑢2ℎ(𝑢̄
𝑖 , 𝑗

𝑠 ,𝑡 , 𝑉0,𝜆0)𝜕𝑢3ℎ(𝑢̄
𝑖 , 𝑗

𝑠 ,𝑡 , 𝑉0,𝜆0)

+ 𝜕𝑢2𝜕𝑢3ℎ(𝑢̄
𝑖 , 𝑗

𝑠 ,𝑡 , 𝑉0,𝜆0))d𝑠.

Furthermore, we can show that if E[𝑒2𝑅 𝑗𝑋𝑇 ] < ∞, then 𝜂𝑡(𝑢𝑗) = E[𝑒𝑢𝑗𝑋𝑇 |ℱ𝑡] is square-integrable,
for 𝑢𝑗 ∈ 𝒮 𝑗 .

Proof. First of all, we prove that the absolute values of the random variables above admit
finite expectations. Then, the explicit computation of the expectations follows by the
application of Fubini’s theorem.

I) The random variables satisfy the following inequalities:

𝑉2
𝑡

𝑉𝑡 + 𝜆𝑡𝜅̄
= 𝑉𝑡 ·

𝑉𝑡

𝑉𝑡 + 𝜆𝑡𝜅̄
< 𝑉𝑡 ,

𝜆𝑡𝑉𝑡
𝑉𝑡 + 𝜆𝑡𝜅̄

< 𝜆𝑡 ,
𝜆2
𝑡

𝑉𝑡 + 𝜆𝑡𝜅̄
=

𝜆𝑡
𝜅̄

𝜅̄𝜆𝑡
𝑉𝑡 + 𝜆𝑡𝜅̄

<
𝜆𝑡
𝜅̄
,

being 𝑉𝑡 ,𝜆𝑡 , 𝜅̄ all positive quantities. Thus all the above quantities are integrable
since all the moments of 𝑉𝑡 and 𝜆𝑡 exist, as explained in Remark 1.C.1.

II) Since we have
𝑉𝑡

𝑉𝑡 + 𝜆𝑡𝜅̄
< 1, 𝜆𝑡

𝑉𝑡 + 𝜆𝑡𝜅̄
<

1
𝜅̄

(1.52)

to verify that all the random variables in group II) admit finite expectation, it is
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enough to verify that | 𝑓𝑡−(𝑢𝑗)𝑉𝑡 | , | 𝑓𝑡−(𝑢𝑗)𝜆𝑡 | do. It means we need to prove that

E[𝑒ℜ𝔢𝜙𝑇−𝑡(𝑢𝑗)+ℜ𝔢𝑢𝑗𝑋𝑡−+ℜ𝔢𝜓𝑇−𝑡(𝑢𝑗)𝑉𝑡−+ℜ𝔢𝜒𝑇−𝑡(𝑢𝑗)𝜆𝑡−𝑉𝑡] < ∞ (1.53)

E[𝑒ℜ𝔢𝜙𝑇−𝑡(𝑢𝑗)+ℜ𝔢𝑢𝑗𝑋𝑡−+ℜ𝔢𝜓𝑇−𝑡(𝑢𝑗)𝑉𝑡−+ℜ𝔢𝜒𝑇−𝑡(𝑢𝑗)𝜆𝑡−𝜆𝑡] < ∞. (1.54)

By the assumptionE[𝑒2𝑅 𝑗𝑋𝑇 ] < ∞ and 𝑢𝑗 ∈ 𝒮 𝑗 , we have thatℜ𝔢𝑢𝑗 = 𝑅 𝑗 and (𝑅 𝑗 , 0, 0) ∈
𝒟ℒ(𝑍𝑇 ) by Jensen’s inequality. Thus, by Lemma 1.D.1 c), (𝑅 𝑗 ,𝜓𝑇−𝑡(𝑅 𝑗), 𝜒𝑇−𝑡(𝑅 𝑗)) ∈
𝒟ℒ(𝑍𝑡). Combining Lemma 1.D.1 e, f), we get that

(ℜ𝔢𝑢𝑗 ,ℜ𝔢𝜓𝑇−𝑡(𝑢𝑗),ℜ𝔢𝜒𝑇−𝑡(𝑢𝑗)) ∈ 𝒟ℒ(𝑍𝑡).

Applying Lemma 1.D.2, we prove the finiteness of the expected value in (1.53), (1.54).

III) Using the same estimates as in (1.52), we claim that the random variables in group
III) admit expectation if the following processes do

| 𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝑉𝑡 | , | 𝑓𝑡−(𝑢𝑖) 𝑓𝑡−(𝑢𝑗)𝜆𝑡 |

i.e.,

E[𝑒ℜ𝔢𝜙𝑇−𝑡(𝑢𝑖)+ℜ𝔢𝜙𝑇−𝑡(𝑢𝑗)+(ℜ𝔢𝑢𝑖+ℜ𝔢𝑢𝑗)𝑋𝑡−+(ℜ𝔢𝜓𝑇−𝑡(𝑢𝑖)+ℜ𝔢𝜓𝑇−𝑡(𝑢𝑗))𝑉𝑡−+(ℜ𝔢𝜒𝑇−𝑡(𝑢𝑖)+ℜ𝔢𝜒𝑇−𝑡(𝑢𝑗))𝜆𝑡−𝑉𝑡] < ∞,

E[𝑒ℜ𝔢𝜙𝑇−𝑡(𝑢𝑖)+ℜ𝔢𝜙𝑇−𝑡(𝑢𝑗)+(ℜ𝔢𝑢𝑖+ℜ𝔢𝑢𝑗)𝑋𝑡−+(ℜ𝔢𝜓𝑇−𝑡(𝑢𝑖)+ℜ𝔢𝜓𝑇−𝑡(𝑢𝑗))𝑉𝑡−+(ℜ𝔢𝜒𝑇−𝑡(𝑢𝑖)+ℜ𝔢𝜒𝑇−𝑡(𝑢𝑗))𝜆𝑡−𝜆𝑡] < ∞.

By assumptions E[𝑒2𝑅𝑘𝑋𝑇 ] < ∞, 𝑢𝑘 ∈ 𝒮𝑘 , we have that ℜ𝔢(𝑢𝑘) = 𝑅𝑘 and (2𝑅𝑘 , 0, 0) ∈
𝒟ℒ(𝑍𝑇 ), for 𝑘 = 𝑖 , 𝑗. Applying the same techniques as in point II), one can prove that
(2𝑅𝑘 ,𝜓𝑇−𝑡(2𝑅𝑘), 𝜒𝑇−𝑡(2𝑅𝑘)) ∈ 𝒟ℒ(𝑍𝑡). By convexity of the set 𝒟ℒ(𝑍𝑡), see Lemma
1.D.1, we have that

(𝑅𝑖 + 𝑅 𝑗 ,
1
2(𝜓𝑇−𝑡(2𝑅𝑖) + 𝜓𝑇−𝑡(2𝑅 𝑗)),

1
2(𝜒𝑇−𝑡(2𝑅𝑖) + 𝜒𝑇−𝑡(2𝑅 𝑗))) ∈ 𝒟ℒ(𝑍𝑡).

Moreover, by convexity of 𝜓 and 𝜒, see Proposition 1.D.3, we have that

(𝑅𝑖 + 𝑅 𝑗 ,𝜓𝑇−𝑡(𝑅𝑖) + 𝜓𝑇−𝑡(𝑅 𝑗), 𝜒𝑇−𝑡(𝑅𝑖) + 𝜒𝑇−𝑡(𝑅 𝑗)) ∈ 𝒟ℒ(𝑍𝑡).

Combining Lemma 1.D.1 e, f), we get that (ℜ𝔢𝑢𝑖+ℜ𝔢𝑢𝑗 ,ℜ𝔢𝜓𝑇−𝑡(𝑢𝑖)+ℜ𝔢𝜓𝑇−𝑡(𝑢𝑗),ℜ𝔢𝜒𝑇−𝑡(𝑢𝑖)+
ℜ𝔢𝜒𝑇−𝑡(𝑢𝑗)) ∈ 𝒟ℒ(𝑍𝑡). Applying Lemma 1.D.2, we prove the finiteness of the required
expected values.

To compute explicitly the expectations, one should exploit the following integral rep-
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resentation, as in Kallsen and Pauwels (2010, Lemma 5.5). Since for Lemma 1.D.1 e),
(0, 𝑠 , 𝑠𝜅̄) ∈ 𝒮(𝒟ℒ(𝑍𝑡)) when 𝑠 < 0, we can exploit Lemma 1.D.2 and write

E

[︄
𝑉2
𝑡

𝑉𝑡 + 𝜆𝑡𝜅̄

]︄
=

∫ 0

−∞
E[𝑒 𝑠(𝑉𝑡+𝜅̄𝜆𝑡)𝑉2

𝑡 ]d𝑠

=

∫ 0

−∞
𝑒 ℎ(𝑡 ,0,𝑠 ,𝑠𝜅̄,𝑉0 ,𝜆0)((𝜕𝑢2ℎ(𝑡 , 0, 𝑠 , 𝑠𝜅̄, 𝑉0,𝜆0))2 + 𝜕2

𝑢2ℎ(𝑡 , 0, 𝑠 , 𝑠𝜅̄, 𝑉0,𝜆0))d𝑠.

Analogous computations hold for the other processes appearing in Proposition 1.D.4.
We conclude the statement noticing that by repeating the same machinery in point III)

for 𝑅 𝑗 = 𝑅𝑖 , we can conclude that

(2ℜ𝔢𝑢𝑗 , 2ℜ𝔢𝜓𝑇−𝑡(𝑢𝑗), 2ℜ𝔢𝜒𝑇−𝑡(𝑢𝑗)) ∈ 𝒟ℒ(𝑍𝑡),

meaning that

E[|𝜂𝑡(𝑢𝑗)|2] = E[𝑒2ℜ𝔢𝜙𝑇−𝑡(𝑢𝑗)+2ℜ𝔢𝑢𝑗𝑋𝑡+2ℜ𝔢𝜓𝑇−𝑡(𝑢𝑗)𝑉𝑡+2ℜ𝔢𝜒𝑇−𝑡(𝑢𝑗)𝜆𝑡 ] < ∞.

□

1.E Convexity properties
This appendix provides a rigorous proof of Proposition 1.D.3. We begin by stating and

proving the one-dimensional version of Sarychev (1996, Proposition 3.1). In particular,
we emphasize that the one-dimensional case holds under weaker assumptions than the
multi-dimensional setting. This is because, as noted in Cuchiero (2011, Remark 2.3.6),
every function in a one-dimensional vector space is automatically quasi-monotone. This
observation explains why, in Proposition 1.E.1, we do not impose quasi-monotonicity on
the function 𝑔.

Proposition 1.E.1. Let a function 𝑔(𝑡 , 𝑥) : 𝐷 ⊆ R2 → R be continuous in an open domain
𝐺 ⊂ R+ × R together with its first partial derivatives 𝜕𝑔

𝜕𝑥 for any fixed 𝑡 ∈ [0, 𝑇]. For two 𝐶1-
smooth functions 𝑦(𝑡), 𝑧(𝑡) defined on [0, 𝑇] assume that (𝑡 , 𝑦(𝑡)), (𝑡 , 𝑧(𝑡)) ∈ 𝐺 for 𝑡 ∈ [0, 𝑇]. If
𝑦(𝑡), 𝑧(𝑡) satisfy

𝑦′(𝑡) = 𝑔(𝑡 , 𝑦(𝑡)), 𝑦(0) = 𝜉0 = 𝑧(0),
𝑧′(𝑡) ≥ 𝑔(𝑡 , 𝑧(𝑡)),

then 𝑦(𝑡) ≤ 𝑧(𝑡) on [0, 𝑇].
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Proof. The proof is analogous to Sarychev (1996, Proposition 3.1). Consider for 𝜀 > 0,
𝑦′𝜀(𝑡) = 𝑔(𝑡 , 𝑦𝜀(𝑡)) − 𝜀, 𝑦𝜀(0) = 𝜉0 − 𝜀. It is enough to prove 𝑦𝜀(𝑡) < 𝑧(𝑡) and then make
𝜀 → 0+. We assume that the inequality fails for a certain 𝑡0 leading to 𝑦𝜀(𝑡) < 𝑧(𝑡) for
𝑡 < 𝑡0 and 𝑦𝜀(𝑡0) = 𝑧(𝑡0). Then, we derive

lim
𝑡→𝑡0−

(𝑧(𝑡) − 𝑦𝜀(𝑡)) − (𝑧(𝑡0) − 𝑦𝜀(𝑡0))
𝑡 − 𝑡0

≤ 0,

i.e. 𝑧′(𝑡0) ≤ 𝑦′𝜀(𝑡0). It follows that

𝑦′𝜀(𝑡0) ≥ 𝑧′(𝑡0) ≥ 𝑔(𝑡0, 𝑧(𝑡0)) = 𝑔(𝑡0, 𝑦𝜀(𝑡0)) > 𝑔(𝑡0, 𝑦𝜀(𝑡0)) − 𝜀 = 𝑦′𝜀(𝑡0).

This is a contradiction. □

We also rewrite a modification for the one dimensional parameter case of Sarychev
(1996, Theorem 2). The main difference between Theorem 1.E.2 and the one in Sarychev
(1996, Theorem 2) is that they consider 𝑓 to be continuous for all 𝑥, while we only ask
continuity and differentiability in a subdomain. In Keller-Ressel, Mayerhofer and Smirnov
(2010), the authors address the more general case where 𝑓 is regular only on a subdomain;
however, they do not explicitly consider the parameter case directly.

Theorem 1.E.2. Consider the following parametric ODE

𝑥′(𝑡) = 𝑓 (𝑡 , 𝑥, 𝜇), 𝑥(0) = 𝜉,

and we denote its solution at time 𝑡 by 𝑥𝑡(𝜉, 𝜇). We assume that:

1. 𝑈 = Ω ×Λ ⊂ R × R is an open domain and 𝑓 (𝑡 , 𝑥, 𝜇) : [0, 𝑇] ×𝑈 → R.

2. 𝑓 (𝑡 , 𝑥, 𝜇) is continuous in 𝑥, 𝜇 in𝑈 together with its partial derivatives in 𝑥 and 𝜇.

3. 𝑓 (𝑡 , 𝑥, 𝜇) is convex in (𝑥, 𝜇).

4. Let be 𝐷𝜇 ⊂ 𝑈 a convex domain for which, for every (𝜉, 𝜇) ∈ 𝐷𝜇, the solution of the ODE
with initial data 𝜉 and parameter 𝜇 exists on [0, 𝑇] and 𝑥𝑡(𝜉, 𝜇) ∈ Ω for every 𝑡 ∈ [0, 𝑇].

Then, 𝑥𝑇(𝜉, 𝜇) is convex in (𝜉, 𝜇) ∈ 𝐷𝜇.

Proof. The proof is a modification for the one dimensional parameter case of Sarychev
(1996, Theorem 2). Consider (𝜉̂, 𝜇̂), (𝜉̂ + 𝛿𝜉, 𝜇̂ + 𝛿𝜇) ∈ 𝐷𝜇 and define

Δ𝑥(𝑡; 𝛿𝜉, 𝛿𝜇) = 𝑥(𝑡; 𝜉̂ + 𝛿𝜉, 𝜇̂ + 𝛿𝜇) − 𝑥(𝑡; 𝜉̂, 𝜇̂),
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where we denote 𝑥̂(𝑡) := 𝑥(𝑡; 𝜉̂, 𝜇̂), 𝑥̂𝛿(𝑡) := 𝑥(𝑡; 𝜉̂ + 𝛿𝜉, 𝜇̂ + 𝛿𝜇),Δ𝑥(𝑡; 𝛿𝜉, 𝛿𝜇) := Δ𝑥(𝑡). We
notice that Δ𝑥 satisfies

Δ𝑥′(𝑡) = 𝑓 (𝑡 , 𝑥̂(𝑡) + Δ𝑥, 𝜇̂ + 𝛿𝜇) − 𝑓 (𝑡 , 𝑥̂(𝑡), 𝜇̂), Δ𝑥(0) = 𝛿𝜉.

By convexity and regularity of the function 𝑓 ,

Δ𝑥′(𝑡) ≥ 𝑓𝑥(𝑡 , 𝑥̂(𝑡), 𝜇̂)Δ𝑥 + 𝑓𝜇(𝑡 , 𝑥̂(𝑡), 𝜇̂)𝛿𝜇.

We consider the following ODE

𝛿𝑥′(𝑡) = 𝑓𝑥(𝑡 , 𝑥̂(𝑡), 𝜇̂)𝛿𝑥 + 𝑓𝜇(𝑡 , 𝑥̂(𝑡), 𝜇̂)𝛿𝜇, 𝛿𝑥(0) = 𝛿𝜉.

Notice that 𝛿𝑥 is homogeneous in the initial value. Due to Proposition 1.E.1, we get that
Δ𝑥𝑇 ≥ 𝛿𝑥𝑇 , thus

𝑥𝑇(𝜉̂ + 𝛿𝜉, 𝜇̂ + 𝛿𝜇) ≥ 𝑥𝑇(𝜉̂, 𝜇̂) + 𝛿𝑥𝑇(𝛿𝜉, 𝛿𝜇).

In particular, take 𝛼 ∈ (0, 1), (𝜉, 𝜇), (𝜂, 𝜈) ∈ 𝐷𝜇 and 𝜉𝛼 = 𝛼𝜉 + (1 − 𝛼)𝜂, 𝜇𝛼 = 𝛼𝜇+ (1 − 𝛼)𝜈.

• 𝑥𝑇(𝜉, 𝜇) ≥ 𝑥𝑇(𝜉𝛼 , 𝜇𝛼) + (1 − 𝛼)𝛿𝑥𝑇(𝜉 − 𝜈, 𝜇 − 𝜈);

• 𝑥𝑇(𝜂, 𝜈) ≥ 𝑥𝑇(𝜉𝛼 , 𝜇𝛼) − 𝛼𝛿𝑥𝑇(𝜉 − 𝜈, 𝜇 − 𝜈).

Multiplying the first for 𝛼, and the latter for 1 − 𝛼, we prove the convexity of 𝑥𝑇 . □

Finally, we employ the previous propositions to prove rigorously Proposition 1.D.3.

Proof. From now on, whenever we write 𝜙,𝜓, 𝜒, we refer to their restriction to the real
domain. We observe that if we prove that 𝜓 and 𝜒 are convex in 𝑥, then also 𝜙 is. Indeed
by the Riccati system in Proposition 4.2 we observe that

𝜙(𝑡 , 𝑥1, 𝑥2, 𝑥3) =
∫ 𝑡

0
𝛼𝑣𝛽𝑣𝜓(𝑠, 𝑥1, 𝑥2, 𝑥3) + 𝛼𝜆𝛽𝜆𝜒(𝑠, 𝑥1, 𝑥2, 𝑥3)d𝑠,

for 𝛼𝑣 , 𝛽𝑣 , 𝛼𝜆 , 𝛽𝜆 > 0.
The convexity of 𝜓 follows by Theorem 1.E.2. In particular, we recall that by the system

in Proposition 4.2 that 𝜓 solves

d𝜓(𝑡 , 𝑥1)
d𝑡 = 𝑓𝜓(𝜓, 𝑥1), 𝜓(0, 𝑥1) = 𝑥2,

where
𝑓𝜓(𝑦, 𝑥1) = −1

2𝑥1 +
1
2𝑥

2
1 − 𝛽𝑣𝑦 + 𝜌𝜎𝑣𝑥1𝑦 +

1
2𝜎

2
𝑣𝑦

2.
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We have to interpret 𝑥1 as a parameter. 𝑓𝜓(𝑦, 𝑥1) is continuous and differentiable for every
(𝑦, 𝑥1) ∈ R2. Moreover, the Hessian of 𝑓𝜓 is given by(︄

𝜎2
𝑣 𝜌𝜎𝑣

𝜌𝜎𝑣 1

)︄
,

thus 𝑓𝜓 is convex in (𝑦, 𝑥1) since 𝜌 ∈ [−1, 1]. The convexity of 𝜓(𝑡 , 𝑥1, 𝑥2, 𝑥3) follows by
applying Theorem 1.E.2.

As for 𝜒, we observe that it solves

d𝜒(𝑡 , 𝑥1)
d𝑡 = 𝑓𝜒(𝜒, 𝑥1), 𝜒(0, 𝑥1) = 𝑥3,

where
𝑓𝜒(𝑦, 𝑥1) = −𝛽𝜆𝑦 − (𝜅1 − 1)𝑥1 + 𝑒𝛾𝑥1+𝛿2𝑥2

1/2 𝜁
𝜁 − 𝑦 − 1.

Referring to the notations of Theorem 1.E.2, let𝑈 = Ω×Λ, where Ω = (−∞, 𝜁),Λ = R. We
observe that 𝑓𝜒 is continuous and differentiable in𝑈 . The Hessian 𝑓𝜒 is given by(︄

𝑒𝛾𝑥1+𝛿2𝑥2
1/22 𝜁

(𝜁−𝑦)3 𝑒𝛾𝑥1+𝛿2𝑥2
1/2(𝛾 + 𝛿2𝑥1) 𝜁

(𝜁−𝑦)2

𝑒𝛾𝑥1+𝛿2𝑥2
1/2(𝛾 + 𝛿2𝑥1) 𝜁

(𝜁−𝑦)2 𝑒𝛾𝑥1+𝛿2𝑥2
1/2((𝛾 + 𝛿2𝑥1)2 + 𝛿2) 𝜁

(𝜁−𝑦)

)︄
.

The elements in the diagonal are positive and the determinant is given by

𝑒2𝛾𝑥1+𝛿2𝑥2
1

𝜁2

(𝜁 − 𝑦)4 ((𝛾 + 𝛿2𝑥1)2 + 2𝛿2) > 0,

thus the Hessian is positive semi-definite and the function 𝑓𝜒 is convex in𝑈 . 𝐷𝑥1 (as𝐷𝜇 in
Theorem 1.E.2) can be obtained by Proposition 4.1 and it is given by (𝑥3, 𝑥1) which satisfy

𝑥3 < 𝜁 − 𝑇E(𝑒𝑥1|𝜂𝑋1 |) (1.55)

𝑥1(𝜅1 − 1) + 1 > 0. (1.56)

The domain 𝐷𝑥1 is convex since first we choose an half line for 𝑥1 using equation (1.56),
and then 𝑥3 is the under-graph of a concave function in 𝑥1, see equation (1.55) Moreover,
by the definition of 𝐷𝑥1 (see Proposition 4.1), we have that for every (𝑥3, 𝑥1) ∈ 𝐷𝑥1 ,
E[𝑒𝑥1𝑋𝑇+𝑥3𝜆𝑇 ] < ∞. It follows by Keller-Ressel and Mayerhofer (2015, Theorem 2.14, a)),
𝜒(𝑡 , 𝑥1, 0, 𝑥3) < 𝜁 for every 𝑡 ∈ [0, 𝑇], thus 𝜒𝑡(𝑥1, 𝑥3) ∈ Ω for every 𝑡. The convexity of 𝜒
follows by applying Theorem 1.E.2. □
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CHAPTER 2

A stochastic Gordon-Loeb model for optimal
cybersecurity investment under clustered attacks

This is a joint work with Prof. Giorgia Callegaro, Prof. Claudio Fontana and Prof. Caroline
Hillairet. The corresponding paper was submitted in May 2025 and is available on arxiv.

We develop a continuous-time stochastic model for optimal cybersecurity investment
under the threat of cyberattacks. The arrival of attacks is modeled using a Hawkes pro-
cess, capturing the empirically relevant feature of clustering in cyberattacks. Extending
the Gordon-Loeb model, each attack may result in a breach, with breach probability de-
pending on the system’s vulnerability. We aim at determining the optimal cybersecurity
investment to reduce vulnerability. The problem is cast as a two-dimensional Markovian
stochastic optimal control problem and solved using dynamic programming methods.
Numerical results illustrate how accounting for attack clustering leads to more respons-
ive and effective investment policies, offering significant improvements over static and
Poisson-based benchmark strategies. Our findings underscore the value of incorporating
realistic threat dynamics into cybersecurity risk management.
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2.1. INTRODUCTION

2.1 Introduction

Cyber-risk is nowadays widely acknowledged as one of the major sources of operational
risk for organizations worldwide. The 2024 ENISA Threat Landscape Report (see ENISA
(2024)) documents “a notable escalation in cybersecurity attacks, setting new benchmarks
in both the variety and number of incidents, as well as their consequences”. According to
the AON 9th Global Risk Management Survey1, cyberattacks and data breaches represent
the foremost source of global risk faced by organizations, with the second biggest risk
being business interruption, which is itself often a consequence of cyber-incidents. A
recent poll on Risk.net confirms information security and IT disruption as the top two
sources of operational risk for 2025.2 According to IBM, the global average cost of a data
breach has reached nearly 5M USD in 2024, an increase of more than 10% over the previous
year.3

The rapid and widespread emergence of cyber-risk as a key source of operational
risk has led to a significant increase in cybersecurity spending. In the 2025 ICS/OT
cybersecurity budget survey of the SANS Institute (see SANS Institute (2025)) 55% of
the respondents reported a substantial rise in cybersecurity budgets over the previous
two years. This trend underscores the importance of adopting effective cybersecurity
investment policies that balance risk mitigation with cost efficiency.

The problem of optimal cybersecurity investment has been first addressed in the sem-
inal work of Gordon and Loeb (2002). In their model, reviewed in Section 2.2.1 below, the
decision maker can reduce the vulnerability to cyberattacks by investing in cybersecurity.
The optimal expenditure in cybersecurity is determined by maximizing the expected net
benefit of reducing the breach probability. The Gordon-Loeb model laid the foundations
for a rigorous quantitative analysis of cybersecurity investments and has been the subject
of numerous extensions and generalizations: we mention here only some studies that are
closely related to our context, referring to Fedele and Roner (2022) for a comprehensive
overview. The key ingredient of the Gordon-Loeb model is represented by the security
breach probability function (see Section 2.2.1), which has been further analyzed in Huang
and Behara (2013) and Mazzoccoli and Naldi (2022). The risk-neutral assumption of Gor-
don and Loeb (2002) has been relaxed to accommodate risk-averse preferences in Miaoui
and Boudriga (2019).

The original Gordon-Loeb model is a static model and, therefore, does not allow to

1Source: https://www.aon.com/en/insights/reports/global-risk-management-survey.
2Source: https://www.risk.net/risk-management/7961268/top-10-operational-risks-for-2025.
3Source: https://www.ibm.com/reports/data-breach.
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address the crucial issue of the optimal timing of investment decisions. Adopting a real-
options approach, Gordon, Loeb and Lucyshyn (2003) and Tatsumi and Goto (2010) have
proposed dynamic versions of the model that allow analyzing the optimal timing and level
of cybersecurity investment. Closer to our setup, a dynamic extension of the Gordon-Loeb
model has been developed in Krutilla et al. (2021), considering the problem of optimal
cybersecurity investment over an infinite time horizon and assuming that cybersecurity
assets are subject to depreciation over time, while future net benefits of cybersecurity
investment are discounted.

An effective cybersecurity investment policy must be adaptive and evolve in response
to changing threat environments. As noted by Zeller and Scherer (2022), a key feature of
cyber-risk is its dynamic nature, due to the rapid technological transformation and the
evolution of threat actors. Similarly, Balzano and Marzi (2025) emphasize the need for
adaptable and responsive cybersecurity policies in order to face the challenge of dynamic
cyberattacks. The framework of Krutilla et al. (2021) is based on a deterministic model and,
therefore, cannot capture the dynamic behavior of cyber-risk. Addressing this need, the
main contribution of this work consists in proposing a modeling framework for optimal
cybersecurity investment in a dynamic stochastic setup, allowing for investment policies
which respond in real time to randomly occurring cyberattacks. Our work therefore
contributes both to cyber-risk modeling and to cyber-risk management, as categorized in
the recent survey by He et al. (2024). Moreover, our stochastic modeling framework takes
into account the empirically relevant feature of temporally clustered cyberattacks.

A distinctive feature of our modeling framework, which will be described in Section
2.2.2, is indeed the use of a Hawkes process to model the arrival of cyberattacks. First
introduced by Alan G. Hawkes in Hawkes (1971), these stochastic processes are used to
model event arrivals over time and are particularly suited to situations where the occur-
rence of one event increases the likelihood of subsequent events (self-excitation), thereby
generating temporally clustered events. This modeling choice is particularly relevant in
the context of cyber-risk. Cyberattacks frequently occur in bursts, for instance following
the discovery of a vulnerability or due to the propagation of malware across interconnec-
ted systems (see Nguyen et al. (2024)). Such clustered patterns are not adequately captured
by memoryless models, such as those based on Poisson processes. Empirical evidence
supports the appropriateness of the Hawkes framework for modeling cyber-risk. A con-
tagious behavior in cyberattacks has been documented in Baldwin et al. (2017), analyzing
the threats to key internet services using data from the SANS Institute. Using data from
from the Privacy Rights Clearinghouse, it has been empirically demonstrated in Bessy-
Roland et al. (2021) that Hawkes-based models provide a more realistic representation
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of the interdependence of data breaches compared to Poisson-based models. The re-
cent work Boumezoued et al. (2023) reinforces this perspective by calibrating a two-phase
Hawkes model to cyberattack data taking into account publication of cyber-vulnerabilities.
These studies provide strong support for modeling cyberattacks via Hawkes processes,
as described in more detail in Section 2.2.2.

In this work, we address the challenge of optimal cybersecurity investment under
temporally clustered cyberattacks, in line with the empirical evidence reported above. In
particular, we aim at studying the adaptive investment policy that best responds in real
time to the random arrival of cyberattacks, within a framework that balances realism with
analytical tractability. To this end, we develop a continuous-time stochastic extension of
the classical Gordon-Loeb model, describing attack arrivals with a Hawkes process. The
model incorporates key operational features such as technological obsolescence and the
decreasing marginal effectiveness of large investments. The resulting optimization prob-
lem is cast as a stochastic optimal control problem and solved via dynamic programming
methods. We develop efficient numerical schemes to compute the optimal policy and we
quantify the benefits of dynamic investment strategies under clustered attacks. By integ-
rating risk dynamics into the cybersecurity investment problem, our framework provides
new insights into how organizations can better allocate resources to mitigate cyber-risk.

The chapter is organized as follows: In Section 2.2, we recall the original Gordon-Loeb
model and introduce our continuous-time stochastic extension. In Section 2.3, we formu-
late the cybersecurity investment problem and characterize the optimal policy, proving
some regularity properties of the value function, and a verification theorem. Section 2.4
details the model parameters and the numerical methods used in our analysis. Section 2.5
presents the results of our numerical analysis and discusses their practical implications
for cyber-risk management. Section 2.6 concludes.

2.2 The model

We study the decision problem faced by an entity (a public administration or a large
corporation) that is threatened by a massive number of randomly occurring cyberattacks
with a temporally clustered pattern. As in the Gordon-Loeb model (reviewed in Section
2.2.1), not all cyberattacks result in successful breaches of the entity’s system. The success
rate of each attack depends on the system’s vulnerability, which the entity can mitigate by
investing in cybersecurity.
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2.2.1 The Gordon-Loeb model

The Gordon-Loeb model, introduced in 2002 in the seminal work Gordon and Loeb (2002),
provides a static framework for determining the optimal investment in cybersecurity to
protect a given information set under the threat of cyberattacks. In our context, the
information set corresponds to the entity’s IT infrastructure. In the Gordon-Loeb model,
the information set is characterized by three key parameters, all assumed to be constant:

• 𝑝 ∈ [0, 1]: the probability that a cyberattack occurs;

• 𝑣 ∈ [0, 1]: the probability that a cyberattack successfully breaches the information
set (vulnerability);

• ℓ ≥ 0: the loss incurred when a breach occurs.

Without any cybersecurity investment, the expected loss is 𝑣𝑝ℓ . To mitigate its vul-
nerability, the entity may invest an amount 𝑧 ≥ 0 in cybersecurity. The effectiveness
of this investment is measured by a security breach probability function 𝑆(𝑧, 𝑣), which
represents the probability that an attack successfully breaches the information set, given
investment level 𝑧 and initial vulnerability 𝑣. The resulting expected loss is thus 𝑆(𝑧, 𝑣)𝑝ℓ .
Gordon and Loeb require the function 𝑆 to satisfy the properties listed in the following
assumption.

Assumption A.

(A1) 𝑆(𝑧, 0) = 0, for all 𝑧 ≥ 0, i.e., an invulnerable information set always remains invul-
nerable;

(A2) 𝑆(0, 𝑣) = 𝑣, i.e., in the absence of any investment, the information set retains its
baseline vulnerability;

(A3) 𝑆 is decreasing and convex in 𝑧, so that 𝑆𝑧(𝑧, 𝑣) < 0 and 𝑆𝑧𝑧(𝑧, 𝑣) > 0, for all 𝑧 ≥ 0,
i.e., cybersecurity investment reduces breach probability with diminishing marginal
effectiveness.

Gordon and Loeb consider two classes of security breach probability functions, which
satisfy Assumption A:

𝑆𝐼(𝑧, 𝑣) =
𝑣

(𝑎𝑧 + 1)𝑏 and 𝑆𝐼𝐼(𝑧, 𝑣) = 𝑣𝑎𝑧+1, (2.1)

for some parameters 𝑎, 𝑏 > 0.
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In Gordon and Loeb (2002), the optimal investment in cybersecurity is determined
by maximizing the Expected Net Benefit of Investment in information Security (ENBIS),
defined as follows:

ENBIS(𝑧) :=
(︁
𝑣 − 𝑆(𝑧, 𝑣)

)︁
𝑝ℓ − 𝑧. (2.2)

The ENBIS function quantifies the net trade-off between the benefit (captured by the
reduction in the expected loss due to the investment in cybersecurity) and the direct cost
of investing. Under Assumption A, the optimal investment level 𝑧∗ is determined by the
following first-order condition:

−𝑆𝑧(𝑧∗, 𝑣)𝑝ℓ − 1 = 0.

Remark 2.1. For both classes of security breach functions in (2.1), Gordon and Loeb show
that the optimal cybersecurity investment never exceeds 1/𝑒 ≈ 37% of the expected loss:

𝑧∗ <
𝑣𝑝ℓ

𝑒
.

2.2.2 A continuous-time model driven by a Hawkes process

We now introduce a continuous-time model for randomly occurring cyberattacks. We
want to capture the empirically relevant feature of clustering of cyberattacks, while re-
taining the key elements of the original Gordon-Loeb model reviewed in Section 2.2.1.

The arrival of cyberattacks is described by a Hawkes process 𝑁 = (𝑁𝑡)𝑡≥0, defined on
a probability space (Ω,ℱ , P), with 𝑁𝑡 representing the number of cyberattacks up to time
𝑡, for all 𝑡 ≥ 0. The process 𝑁 is characterized by a self-exciting stochastic intensity (𝜆𝑡)𝑡≥0

solving the following stochastic differential equation:

d𝜆𝑡 = 𝛽(𝛼 − 𝜆𝑡)d𝑡 + 𝜉d𝑁𝑡 , 𝜆0 > 0, (2.3)

where

• 𝛼 > 0 is the long-term mean intensity;

• 𝜆0 > 0 is the intensity at the initial time 𝑡 = 0;

• 𝛽 > 0 is the exponential decay rate;

• 𝜉 > 0 determines the magnitude of self-excitation;

• (𝑇𝑖)𝑖∈N∗ are the random times at which attacks occur.
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The intensity explicit solution is given by

𝜆𝑡 = 𝛼 + (𝜆0 − 𝛼)𝑒−𝛽𝑡 + 𝜉
𝑁𝑡∑︂
𝑖=1

𝑒−𝛽(𝑡−𝑇𝑖).

Figure 2.1 shows a simulated trajectory of 𝑁 and 𝜆, showing the clustering behavior
induced by the self-exciting mechanism described above. General presentations of the
theory and the applications of Hawkes processes can be found in Laub et al. (2021) and
Lima (2023).
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Figure 2.1: One simulated trajectory of 𝑁 (top) and 𝜆 (bottom), for 𝛼 = 27, 𝜆0 = 27, 𝛽 = 15,
𝜉 = 9.

We assume throughout the chapter that 𝜉 < 𝛽. The latter condition ensures that the
𝐿1-norm of the self-excitation kernel of the Hawkes process is strictly less than one. This
guarantees that the process is non-explosive, meaning that it generates almost surely a
finite number of events over any finite time interval. The same condition also corresponds
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to the stationarity condition, widely adopted in the theory of Hawkes processes since the
seminal work of Hawkes and Oakes (1974).

In the next proposition (adapted from Dassios and Zhao (2013)), we compute the
expectation of some basic quantities which will be used later.

Proposition 2.2. Let (𝑁𝑡)𝑡≥0 be a Hawkes process with intensity (𝜆𝑡)𝑡≥0 given in (2.3).Then, for
all 𝑡 ≥ 0,

E[𝜆𝑡] =
𝛼𝛽

𝛽 − 𝜉
+ 𝑒−(𝛽−𝜉)𝑡

(︃
𝜆0 −

𝛼𝛽

𝛽 − 𝜉

)︃
,

E[𝑁𝑡] =
∫ 𝑡

0
E[𝜆𝑠]d𝑠 =

𝛼𝛽

𝛽 − 𝜉
𝑡 − 1

𝛽 − 𝜉

(︃
𝜆0 −

𝛼𝛽

𝛽 − 𝜉

)︃ (︂
𝑒−(𝛽−𝜉)𝑡 − 1

)︂
.

We denote by (𝑇𝑖)𝑖∈N∗ the random jump times of the process 𝑁 , representing the arrival
times of cyberattacks. For each 𝑡 ≥ 0, we denote by ℱ𝑡 := 𝜎(𝑁𝑠 ; 𝑠 ≤ 𝑡) the natural
filtration generated by the Hawkes process 𝑁 , representing the information generated by
the history of the attack timings up to time 𝑡. The natural filtration of𝑁 is right-continuous,
see Brémaud (1981, Theorem III.T1).

In the absence of cybersecurity investment, each attack is assumed to breach the entity’s
IT system with fixed probability 𝑣 (vulnerability). For each 𝑖 ∈ N∗, we introduce a Bernoulli
random variable 𝐵𝑣

𝑖
of parameter 𝑣, where the event {𝐵𝑣

𝑖
= 1} corresponds to a successful

breach caused by the 𝑖-th attack. In the event of a breach, the entity incurs a random
monetary loss 𝜂𝑖 , realized at the attack time 𝑇𝑖 . Otherwise, if 𝐵𝑣

𝑖
= 0, the attack is blocked

and no loss occurs at time 𝑇𝑖 .
The families of random variables (𝐵𝑣

𝑖
)𝑖∈N∗ and (𝜂𝑖)𝑖∈N∗ are assumed to satisfy the fol-

lowing standing assumption.

Assumption B. The family (𝜂𝑖)𝑖∈N∗ is composed by i.i.d. positive random variables in
𝐿1(P). The families (𝜂𝑖)𝑖∈N∗ and (𝐵𝑣

𝑖
)𝑖∈N∗ are mutually independent and independent of 𝑁 .

The cumulative loss incurred over a planning horizon [0, 𝑇], in the absence of any
cybersecurity investment, is given by:

𝐿0
𝑇 :=

𝑁𝑇∑︂
𝑖=1

𝜂𝑖𝐵
𝑣
𝑖 . (2.4)

In our dynamic model, the entity can react to the evolving threat environment by
investing in cybersecurity, in order to mitigate its vulnerability to cyberattacks. Investment
occurs continuously throughout the planning horizon [0, 𝑇] and is described by a non-
negative investment rate process (𝑧𝑡)𝑡∈[0,𝑇]. For each 𝑡 < 𝑇, the quantity 𝑧𝑡 represents the

74



CHAPTER 2. A STOCHASTIC GORDON-LOEB MODEL FOR OPTIMAL CYBERSECURITY INVESTMENT
UNDER CLUSTERED ATTACKS

increase in the level of cybersecurity over the infinitesimal time interval [𝑡 , 𝑡 + d𝑡]. We
require that the control process (𝑧𝑡)𝑡∈[0,𝑇] be predictable with respect to the filtration (ℱ𝑡)𝑡≥0

generated by 𝑁 . We point out that, in our setup, the outcomes of previous attacks (i.e.,
whether breaches have occurred or not) do not carry any relevant informational content
for decision making, as they do not affect the dynamics of future attack arrivals.

Investment in cybersecurity is subject to rapid technological obsolescence (see, e.g.,
Hayes and Bodhani (2013)). In line with Krutilla et al. (2021), we take into account this
significant aspect in our model by introducing a depreciation rate 𝜌 > 0. The cybersecurity
level reached at time 𝑡 is then defined as follows, for all 𝑡 ∈ [0, 𝑇]:

𝐻𝑡 = 𝐻0𝑒
−𝜌𝑡 +

∫ 𝑡

0
𝑒−𝜌(𝑡−𝑠)𝑧𝑠d𝑠, (2.5)

which equivalently, in differential form, reads as follows:

d𝐻𝑡 = (𝑧𝑡 − 𝜌𝐻𝑡)d𝑡 , 𝐻0 ≥ 0.

As in Krutilla et al. (2021), we interpret the cybersecurity level as an aggregated asset,
which can be thought of as a combination of technological infrastructures, software, and
human expertise.

In our continuous-time framework, we let the breach probability evolve dynamically
with the current cybersecurity level. More specifically, suppose that the decision maker
adopts an investment policy 𝑧 = (𝑧𝑡)𝑡∈[0,𝑇]. At each attack time 𝑇𝑖 , a breach is assumed to
occur with probability

𝑆(𝐻𝑇𝑖 , 𝑣), (2.6)

where𝐻𝑇𝑖 is given by (2.5) evaluated at 𝑡 = 𝑇𝑖 and 𝑆 is a security breach probability function
satisfying Assumption A, as in the original Gordon-Loeb model. Hence, the probability
that the 𝑖-th attack successfully breaches the IT system depends on the cybersecurity level
𝐻𝑇𝑖 reached at the attack’s time 𝑇𝑖 . In turn, 𝐻𝑇𝑖 is determined by the investment realized
over the time period [0, 𝑇𝑖], taking into account technological obsolescence. If the 𝑖-th
attack breaches the IT system, then the entity incurs into a loss of 𝜂𝑖 , otherwise the attack
is blocked and the entity does not suffer any loss at time 𝑇𝑖 .

Remark 2.3. The proposed model allows for adaptive real-time cybersecurity investment.
More specifically, the arrival of an attack triggers an increased likelihood of further attacks
within a short timeframe, due to the form (2.3) of the intensity. The decision maker can
respond in real-time by increasing cybersecurity investment, which in turn reduces future
breach probabilities through the function 𝑆 in (2.6). The optimal investment policy will
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be determined in Section 2.3, while the practical importance of allowing for an adaptive
real-time investment strategy - rather than a static policy as in the original Gordon-Loeb
model - will be empirically analyzed in Section 2.5.3.

Analogously to the case without investment in cybersecurity, we can write as follows
the cumulative losses 𝐿𝑧

𝑇
incurred on the time interval [0, 𝑇] when investing in cyberse-

curity according to a generic rate 𝑧 = (𝑧𝑡)𝑡∈[0,𝑇]:

𝐿𝑧𝑇 :=
𝑁𝑇∑︂
𝑖=1

𝜂𝑖𝐵
𝑆(𝐻𝑇𝑖 ,𝑣)
𝑖

, (2.7)

where (𝐵𝑆(𝐻𝑇𝑖 ,𝑣)
𝑖

)𝑖∈N∗ is a family of random variables taking values in {0, 1} and satisfying
the following assumption.

Assumption C. For any process (𝑧𝑡)𝑡∈[0,𝑇], it holds that

P
(︂
𝐵
𝑆(𝐻𝑇𝑖 ,𝑣)
𝑖

= 1
|︁|︁|︁ℱ𝑇)︂ = 𝑆(𝐻𝑇𝑖 , 𝑣), for all 𝑖 ∈ N∗,

where (𝐻𝑡)𝑡∈[0,𝑇] is determined by (𝑧𝑡)𝑡∈[0,𝑇] as in (2.5). Moreover, for each 𝑖 ∈ N∗, the
random variables 𝐵𝑆(𝐻𝑇𝑖 ,𝑣)

𝑖
and 𝜂𝑖 are conditionally independent given ℱ𝑇 .

Remark 2.4. The cumulative loss process (𝐿𝑧𝑡 )𝑡∈[0,𝑇] defined as in (2.7) constitutes a marked
Hawkes process, in the terminology of point processes (see Brémaud (1981)). In our mod-
eling framework, the marks (losses) are endogenous and depend on the dynamically
evolving cybersecurity level (𝐻𝑡)𝑡∈[0,𝑇].

For strategic decision making, a key quantity is represented by the expected losses due
to cyberattacks over the time interval [0, 𝑇] when adopting a suitable cybersecurity policy.
This is the content of the following proposition, which will be fundamental for addressing
the optimal investment problem in Section 2.3. We denote by 𝜂̄ := E[𝜂𝑖] the expected loss
resulting from a successful breach, for all 𝑖 ∈ N∗.

Proposition 2.5. Under Assumptions B and C, it holds that

E[𝐿0
𝑇] = 𝜂̄ 𝑣 E

[︃∫ 𝑇

0
𝜆𝑡d𝑡

]︃
,

E[𝐿𝑧𝑇] = 𝜂̄E
[︃∫ 𝑇

0
𝑆(𝐻𝑡 , 𝑣)𝜆𝑡d𝑡

]︃
.
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Therefore, the expected net benefit of investment is

E[𝐿0
𝑇 − 𝐿𝑧𝑇] = 𝜂̄E

[︃∫ 𝑇

0

(︁
𝑣 − 𝑆(𝐻𝑡 , 𝑣)

)︁
𝜆𝑡d𝑡

]︃
.

Proof. Let 𝑧 = (𝑧𝑡)𝑡∈[0,𝑇] be an arbitrary cybersecurity investment rate process. Applying
the tower property of conditional expectation and making use of Assumptions B and C,
we can compute

E[𝐿𝑧𝑇] = E

[︄
𝑁𝑇∑︂
𝑖=1

𝜂𝑖𝐵
𝑆(𝐻𝑇𝑖 ,𝑣)
𝑖

]︄
= E

[︄
𝑁𝑇∑︂
𝑖=1

E
[︂
𝜂𝑖𝐵

𝑆(𝐻𝑇𝑖 ,𝑣)
𝑖

|︁|︁|︁ℱ𝑇 ]︂ ]︄ = 𝜂̄E

[︄
𝑁𝑇∑︂
𝑖=1

𝑆(𝐻𝑇𝑖 , 𝑣)
]︄

= 𝜂̄E
[︃∫ 𝑇

0
𝑆(𝐻𝑡 , 𝑣)d𝑁𝑡

]︃
= 𝜂̄E

[︃∫ 𝑇

0
𝑆(𝐻𝑡 , 𝑣)𝜆𝑡d𝑡

]︃
,

where the last step follows by definition of intensity (see, e.g., Brémaud (1981, Definition
II.D7)), together with the continuity of the process 𝐻. The first equation in the statement
of the proposition follows as a special case by taking 𝑧 ≡ 0. □

2.3 Optimal cybersecurity investment

In this section, we determine the optimal cybersecurity investment policy, in the model
setup introduced in Section 2.2.2. In the spirit of the original Gordon-Loeb model, we
aim at characterizing the investment rate process 𝑧∗ = (𝑧∗𝑡)𝑡∈[0,𝑇] which maximizes the
net trade-off between the benefits and the costs of cybersecurity over a planning horizon
[0, 𝑇].

To ensure the well-posedness of the optimization problem, we constrain the admissible
investment policies to a suitably defined admissible set 𝒵.

Definition 2.6. The admissible set𝒵 is defined as the set of all non-negative,ℱ𝑡-predictable
processes (𝑧𝑡)𝑡∈[0,𝑇] such that E[

∫ 𝑇

0 𝑧2
𝑡d𝑡] < ∞.

Remark 2.7. We point out that, as a direct consequence of the Cauchy-Schwarz inequality,
the integral in (2.5) is always well-defined for every process 𝑧 ∈ 𝒵.

We now formulate the central optimization problem, which generalizes the benefit-cost
trade-off function in (2.2) to a dynamic stochastic setting. The objective is to maximize the
expected net benefit of cybersecurity investments:

sup
𝑧∈𝒵

E
[︃
𝐿0
𝑇 − 𝐿𝑧𝑇 −

∫ 𝑇

0

(︂
𝛿𝑧𝑡 +

𝛾

2 𝑧
2
𝑡

)︂
d𝑡 +𝑈(𝐻𝑇)

]︃
, (2.8)
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where 𝐿0
𝑇

and 𝐿𝑧
𝑇

are defined in (2.4) and (2.7), respectively, and the state variables 𝜆 and
𝐻 satisfy the dynamics

d𝜆𝑡 = 𝛽(𝛼 − 𝜆𝑡)d𝑡 + 𝜉d𝑁𝑡 , (2.9)

d𝐻𝑡 = (𝑧𝑡 − 𝜌𝐻𝑡)d𝑡. (2.10)

In the objective functional (2.8), the termE[𝐿0
𝑇
−𝐿𝑧

𝑇
] represents the reduction in the expected

losses due to the investment in cybersecurity. Differently from (2.2), we consider in (2.8)
a non-linear cost function 𝑧 ↦→ 𝛿𝑧 + 𝛾𝑧2/2, for 𝛿, 𝛾 > 0. The non-linearity penalizes
irregular or highly concentrated investment strategies, reflecting real-world constraints
and incentivizing smoother, more sustained cybersecurity efforts (e.g., continuous IT
updates versus abrupt large-scale interventions). The term𝑈(𝐻𝑇) accounts for the residual
utility of the cybersecurity level reached at the end of the planning horizon. This accounts
for the fact that cybersecurity investment carries a long-term benefit, since the entity does
not cease to exist after the planning horizon. The function 𝑈 : R+ → R+ is assumed to be
a non-negative, increasing and concave utility function.

Up to a rescaling of the model parameters, there is no loss of generality in taking
𝛿 = 1. Hence, making use of Proposition 2.5, we can equivalently rewrite problem (2.8) as
follows:

sup
𝑧∈𝒵

E
[︃∫ 𝑇

0

(︂
𝜂̄
(︁
𝑣 − 𝑆(𝐻𝑡 , 𝑣)

)︁
𝜆𝑡 − 𝑧𝑡 −

𝛾

2 𝑧
2
𝑡

)︂
d𝑡 +𝑈(𝐻𝑇)

]︃
. (2.11)

Problem (2.11) is a bi-dimensional stochastic optimal control problem, where the
stochastic intensity process (𝜆𝑡)𝑡∈[0,𝑇] acts as an additional state variable beyond the
controlled process (𝐻𝑡)𝑡∈[0,𝑇]. Due to the Markovian structure of the system, dynamic
programming techniques can be applied for the solution of (2.11). To this end, we first
introduce the following notation, for any (𝑡 ,𝜆, ℎ) ∈ [0, 𝑇] × (0,∞) × R+:

• 𝐻𝑡 ,ℎ,𝑧
𝑠 := ℎ𝑒−𝜌(𝑠−𝑡) +

∫ 𝑠

𝑡

𝑒−𝜌(𝑠−𝑣)𝑧𝑣d𝑣, (2.12)

for all 𝑠 ∈ [𝑡 , 𝑇], representing the cybersecurity level reached at time 𝑠 when starting
from level 𝐻𝑡 = ℎ at time 𝑡 and investing according to a process 𝑧 ∈ 𝒵;

• 𝜆𝑡 ,𝜆𝑠 := 𝛼 + (𝜆 − 𝛼)𝑒−𝛽(𝑠−𝑡) + 𝜉
𝑁𝑠∑︂

𝑖=𝑁𝑡+1
𝑒−𝛽(𝑠−𝑇𝑖), (2.13)

for all 𝑠 ∈ [𝑡 , 𝑇], representing the stochastic intensity at time 𝑠 when starting from
value 𝜆𝑡 = 𝜆 at time 𝑡.
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For any stopping time 𝜏 taking values in [0, 𝑇], we denote by 𝒵𝜏 the set of all processes
(𝑧𝑡)𝑡∈[0,𝑇] such that (𝑧𝜏∨𝑡 − 𝑧𝜏)𝑡∈[0,𝑇] ∈ 𝒵.

We define as follows the benefit-cost trade-off functional 𝐽 associated to a given invest-
ment rate process 𝑧:

𝐽(𝑡 ,𝜆, ℎ; 𝑧) := E
[︃∫ 𝑇

𝑡

𝜂̄
(︁
𝑣 − 𝑆(𝐻𝑡 ,ℎ,𝑧

𝑠 , 𝑣)
)︁
𝜆𝑡 ,𝜆𝑠 d𝑠 −

∫ 𝑇

𝑡

(︂
𝑧𝑠 +

𝛾

2 𝑧
2
𝑠

)︂
d𝑠 +𝑈(𝐻𝑡 ,ℎ,𝑧

𝑇
)
]︃
.

Consequently, the value function associated to the stochastic optimal control problem
(2.11) is given by

𝑉(𝑡 ,𝜆, ℎ) := sup
𝑧∈𝒵𝑡

𝐽(𝑡 ,𝜆, ℎ; 𝑧). (2.14)

In our dynamic model, the value function 𝑉(𝑡 ,𝜆, ℎ) encodes the benefit-cost trade-off of
cybersecurity investment over the residual planning horizon [𝑡 , 𝑇], when considered at
time 𝑡 with current cybersecurity level ℎ and intensity 𝜆. In the next propositions, we
examine some properties of the function 𝑉 .

Proposition 2.8. For (𝑡 ,𝜆, ℎ) ∈ [0, 𝑇) × (0,∞) × R+, 𝑉(𝑡 ,𝜆, ℎ) is non-negative and has linear
growth, i.e.

𝑉(𝑡 ,𝜆, ℎ) ≤ 𝐶(1 + 𝜆 + ℎ),

for some positive constant 𝐶.

Proof. By definition, 𝑉(𝑡 ,𝜆, ℎ) ≥ 𝐽(𝑡 ,𝜆, ℎ; 0) = E
[︂∫ 𝑇

𝑡
𝜂̄(𝑣 − 𝑆(ℎ, 𝑣))𝜆𝑡 ,𝜆𝑠 d𝑠 +𝑈(ℎ)

]︂
≥ 0.

To prove the linear growth, we recall that 𝑣 − 𝑆(·, 𝑣) is bounded, so we can write

𝑉(𝑡 ,𝜆, ℎ) ≤ sup
𝑧∈𝒵𝑡

E
[︃∫ 𝑇

𝑡

2𝑣𝜂̄𝜆𝑡 ,𝜆𝑠 d𝑠 −
∫ 𝑇

𝑡

(︂
𝑧𝑠 +

𝛾

2 𝑧
2
𝑠

)︂
d𝑠 +𝑈(𝐻𝑡 ,ℎ,𝑧

𝑇
)
]︃

≤ 2𝑣𝜂̄
(︃

𝜆
𝛽 − 𝜉

(︂
1 − 𝑒−(𝛽−𝜉)(𝑇−𝑡)

)︂
+ 𝛼𝛽

𝛽 − 𝜉

(︃
(𝑇 − 𝑡) − 1

𝛽 − 𝜉

(︂
1 − 𝑒−(𝛽−𝜉)(𝑇−𝑡)

)︂)︃)︃
+ sup
𝑧∈𝒵𝑡

E
[︃
−

∫ 𝑇

𝑡

(︂
𝑧𝑠 +

𝛾

2 𝑧
2
𝑠

)︂
d𝑠 +𝑈(𝐻𝑡 ,ℎ,𝑧

𝑇
)
]︃

≤ 𝐶(1 + 𝜆) + sup
𝑧∈𝒵𝑡

E
[︃
−

∫ 𝑇

𝑡

(︂
𝑧𝑠 +

𝛾

2 𝑧
2
𝑠

)︂
d𝑠 +𝑈(𝐻𝑡 ,ℎ,𝑧

𝑇
)
]︃
,

The inequality uses the expectation of 𝑁 in Proposition 2.2, and the positivity and
monotonicity properties of 𝑥 ∈ [0,∞) ↦→ 𝑥 − 1

𝛽−𝜉 (1 − 𝑒−(𝛽−𝜉)𝑥). Since 𝑈 is a one vari-
able concave function, it exists 𝑥0 > 0 such that the derivative 𝑈′(𝑥0) is finite and
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𝑈(𝑥) ≤ 𝑈(𝑥0) +𝑈′(𝑥0)(𝑥 − 𝑥0), hence

𝑈(𝐻𝑡 ,ℎ,𝑧
𝑇

) ≤ 𝑈(𝑥0) +𝑈′(𝑥0)(𝐻𝑡 ,ℎ,𝑧
𝑇

− 𝑥0) ≤ 𝑈(𝑥0) +𝑈′(𝑥0)
(︃
ℎ +

∫ 𝑇

𝑡

𝑧𝑠d𝑠 − 𝑥0

)︃
≤ 𝑈(𝑥0) +𝑈′(𝑥0)

(︃
ℎ +

∫ 𝑇

𝑡

𝑧𝑠d𝑠
)︃
−𝑈′(𝑥0)𝑥0 ≤ 𝐶

(︃
1 + ℎ +

∫ 𝑇

𝑡

𝑧𝑠d𝑠
)︃
,

where we exploit the integral expression of 𝐻 in equation (2.12), and the fact that 𝑈 is
non-negative and increasing. We can assume 𝐶 is a positive constant. It follows that

𝑉(𝑡 ,𝜆, ℎ) ≤ 𝐶(1 + 𝜆 + ℎ) + sup
𝑧∈𝒵𝑡

E
[︃
−

∫ 𝑇

𝑡

(︂
𝐶̃𝑧𝑠 +

𝛾

2 𝑧
2
𝑠

)︂
d𝑠

]︃
≤ 𝐶(1 + 𝜆 + ℎ) + max(0,−𝐶̃)2

2𝛾 𝑇 ≤ 𝐶(1 + 𝜆 + ℎ).

where 𝐶̃ is a real number which depends on the previous estimates, and 𝐶 > 0 denotes a
positive constant whose value may change from one occurrence to the next. □

Proposition 2.9. i) For every (𝑡 , ℎ) ∈ [0, 𝑇)×R+, the map 𝜆 ↦→ 𝑉(𝑡 ,𝜆, ℎ) is strictly increas-
ing and globally Lipschitz.

ii) For every (𝑡 ,𝜆) ∈ [0, 𝑇] × (0,+∞), the map ℎ ↦→ 𝑉(𝑡 ,𝜆, ℎ) is strictly increasing and
concave. Moreover, uder the assumption that𝑈 and 𝑆(·, 𝑣) are uniformly Lipschitz in ℎ, the
map is Lipschitz on R+, with a Lipschitz constant depending linearly on 𝜆.

Proof. i) Let 𝜆1 < 𝜆2. For 𝑠 > 𝑡, 𝜆𝑡 ,𝜆2
𝑠 −𝜆𝑡 ,𝜆1

𝑠 is a strictly positive process, see Gaïgi et al.
(2025, Proposition 3.1). It follows that 𝜆𝑡 ,𝜆2

𝑠 > 𝜆𝑡 ,𝜆1
𝑠 almost everywhere. For every

fixed 𝑧, ℎ ≥ 0, the quantity (𝑣 − 𝑆(𝐻𝑡 ,ℎ,𝑧
𝑠 , 𝑣))𝜂̄ is non-negative, thus

𝐽(𝑡 ,𝜆1, ℎ; 𝑧) = E
[︃∫ 𝑇

𝑡

[︂
(𝑣 − 𝑆(𝐻𝑡 ,ℎ,𝑧

𝑠 , 𝑣))𝜂̄𝜆𝑡 ,𝜆1
𝑠 − 𝑧𝑠 −

𝛾

2 𝑧
2
𝑠

]︂
d𝑠 +𝑈(𝐻𝑡 ,ℎ,𝑧

𝑇
)
]︃

< E
[︃∫ 𝑇

𝑡

[︂
(𝑣 − 𝑆(𝐻𝑡 ,ℎ,𝑧

𝑠 , 𝑣))𝜂̄𝜆𝑡 ,𝜆2
𝑠 − 𝑧𝑠 −

𝛾

2 𝑧
2
𝑠

]︂
d𝑠 +𝑈(𝐻𝑡 ,ℎ,𝑧

𝑇
)
]︃
≤ 𝑉(𝑡 ,𝜆2, ℎ).

Taking 𝑧 as the optimal control for the initial values (𝑡 ,𝜆1, ℎ), we get that 𝑉 is
increasing in 𝜆.

To prove the Lipschitz property, we fix 𝑡 and 𝑧, admissible control, and write for two
general initial conditions 𝜆1,𝜆2 > 0

| 𝐽(𝑡 ,𝜆1, ℎ; 𝑧) − 𝐽(𝑡 ,𝜆2, ℎ; 𝑧)|
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=

|︁|︁|︁|︁E [︃∫ 𝑇

𝑡

[︂
(𝑣 − 𝑆(𝐻𝑡 ,ℎ,𝑧

𝑠 , 𝑣))𝜂̄𝜆𝑡 ,𝜆1
𝑠 − (𝑣 − 𝑆(𝐻𝑡 ,ℎ,𝑧

𝑠 , 𝑣))𝜂̄𝜆𝑡 ,𝜆2
𝑠

]︂
d𝑠

+𝑈(𝐻𝑡 ,ℎ,𝑧
𝑇

) −𝑈(𝐻𝑡 ,ℎ,𝑧
𝑇

)
]︂ |︁|︁|︁

≤ E
[︃∫ 𝑇

𝑡

|𝑣 − 𝑆(𝐻𝑡 ,ℎ,𝑧
𝑠 )| |𝜆𝑡 ,𝜆1

𝑠 − 𝜆𝑡 ,𝜆2
𝑠 |d𝑠

]︃
≤ 𝐶E

[︃∫ 𝑇

𝑡

|𝜆𝑡 ,𝜆1
𝑠 − 𝜆𝑡 ,𝜆2

𝑠 |d𝑠
]︃
,

where we exploit that 𝑣 − 𝑆(·, 𝑣) is non-negative and bounded. Assume 𝜆2 > 𝜆1,
which leads to 𝜆𝑡 ,𝜆2

𝑠 > 𝜆𝑡 ,𝜆1
𝑠 . Then, applying the formula for the expectation of 𝑁 in

Proposition 2.2, we get

E
[︃∫ 𝑇

𝑡

𝜆𝑡 ,𝜆2
𝑠 − 𝜆𝑡 ,𝜆1

𝑠 d𝑠
]︃
=

1
𝛽 − 𝜉

(𝜆2 − 𝜆1)
(︂
1 − 𝑒−(𝛽−𝜉)(𝑇−𝑡)

)︂
≤ 𝐶|𝜆2 − 𝜆1| .

The same estimate holds choosing 𝜆1 > 𝜆2. Thus it follows

| 𝐽(𝑡 ,𝜆1, ℎ; 𝑧) − 𝐽(𝑡 ,𝜆2, ℎ; 𝑧)| ≤ 𝐶E
[︃∫ 𝑇

𝑡

|𝜆𝑡 ,𝜆1
𝑠 − 𝜆𝑡 ,𝜆2

𝑠 |d𝑠
]︃
≤ 𝐶|𝜆1 − 𝜆2| .

Now consider 𝑉(𝑡 ,𝜆1, ℎ), for any 𝜀 > 0, there exists 𝑧∗1 such that

𝐽(𝑡 ,𝜆1, ℎ; 𝑧∗1) > 𝑉(𝑡 ,𝜆1, ℎ) − 𝜀.

We can then write

𝑉(𝑡 ,𝜆1, ℎ) −𝑉(𝑡 ,𝜆2, ℎ) < 𝐽(𝑡 ,𝜆1, ℎ; 𝑧∗1) − 𝐽(𝑡 ,𝜆2, ℎ; 𝑧∗1) + 𝜀

≤ | 𝐽(𝑡 ,𝜆1, ℎ; 𝑧∗1) − 𝐽(𝑡 ,𝜆, ℎ2; 𝑧∗1)| + 𝜀

≤ 𝐶|𝜆1 − 𝜆2| + 𝜀.

We repeat the same reasoning swapping (𝜆1, ℎ), (𝜆2, ℎ) and since 𝜀 is arbitrary, we
conclude that 𝜆 ↦→ 𝑉(𝑡 ,𝜆, ℎ) is Lipschitz.

ii) Let ℎ1 < ℎ2, then for every fixed control 𝑧, for every time 𝑠 > 𝑡, 𝐻𝑡 ,ℎ1 ,𝑧
𝑠 < 𝐻

𝑡 ,ℎ2 ,𝑧
𝑠

almost everywhere. Since 𝑆(ℎ, 𝑣) is decreasing in ℎ, see Assumption (A3), −𝑆(ℎ, 𝑣)
is increasing in ℎ. The function𝑈 is increasing in ℎ by hypothesis, thus it follows:

𝐽(𝑡 ,𝜆, ℎ1; 𝑧) = E
[︃∫ 𝑇

𝑡

(︂
𝑣 − 𝑆(𝐻𝑡 ,ℎ1 ,𝑧

𝑠 , 𝑣))𝜂̄𝜆𝑡 ,𝜆𝑠 − 𝑧𝑠 −
𝛾

2 𝑧
2
𝑠

)︂
d𝑠 +𝑈(𝐻𝑡 ,ℎ1 ,𝑧

𝑇
)
]︃

< E
[︃∫ 𝑇

𝑡

(︂
(𝑣 − 𝑆(𝐻𝑡 ,ℎ2 ,𝑧

𝑠 , 𝑣))𝜂̄𝜆𝑡 ,𝜆𝑠 − 𝑧𝑠 −
𝛾

2 𝑧
2
𝑠

)︂
d𝑠 +𝑈(𝐻𝑡 ,ℎ2 ,𝑧

𝑇
)
]︃
≤ 𝑉(𝑡 ,𝜆, ℎ2).

81



2.3. OPTIMAL CYBERSECURITY INVESTMENT

In particular, taking 𝑧 as the optimal control for the initial values (𝜆, ℎ1) at time 𝑡, we
get the result. To prove the concavity, we consider ℓ ∈ (0, 1) and two general ℎ1, ℎ2.
For fixed 𝑧1, 𝑧2, recalling the integral expression of 𝐻 in equation (2.12), we write

𝐻
𝑡 ,ℓ ℎ1+(1−ℓ )ℎ2 ,ℓ 𝑧1+(1−ℓ )𝑧2
𝑠 := (ℓ ℎ1 + (1 − ℓ )ℎ2)𝑒−𝜌(𝑠−𝑡) +

∫ 𝑠

𝑡

𝑒−𝜌(𝑠−𝑣)(ℓ 𝑧1,𝑣 + (1 − ℓ )𝑧2,𝑣)d𝑣

= ℓ𝐻
𝑡 ,ℎ1 ,𝑧1
𝑠 + (1 − ℓ )𝐻𝑡 ,ℎ2 ,𝑧2

𝑠 .

By assumption, −𝑆(ℎ, 𝑣) and 𝑈 are concave in ℎ, and the quadratic cost is concave
in 𝑧 thus it follows

𝐽(𝑡 ,𝜆, ℓ ℎ1 + (1 − ℓ )ℎ2; ℓ 𝑧1 + (1 − ℓ )𝑧2) ≥ ℓ 𝐽(𝑡 ,𝜆, ℎ1; 𝑧1) + (1 − ℓ )𝐽(𝑡 ,𝜆, ℎ2; 𝑧2).

To prove the concavity of 𝑉 , we recall that by definition of 𝑉 for any 𝜀 > 0, there
exists 𝑧∗1, 𝑧

∗
2 such that

𝐽(𝑡 ,𝜆, ℎ1; 𝑧∗1) > 𝑉(𝑡 ,𝜆, ℎ1) − 𝜀,

𝐽(𝑡 ,𝜆, ℎ2; 𝑧∗2) > 𝑉(𝑡 ,𝜆, ℎ2) − 𝜀.

By choosing 𝑧1 = 𝑧∗1 and 𝑧2 = 𝑧∗2, we get

𝑉(𝑡 ,𝜆, ℓ ℎ1 + (1 − ℓ )ℎ2) ≥ 𝐽(𝑡 ,𝜆, ℓ ℎ1 + (1 − ℓ )ℎ2; ℓ 𝑧∗1 + (1 − ℓ )𝑧∗2)
> ℓ 𝐽(𝜆, ℎ1; 𝑧∗1) + (1 − ℓ )𝐽(𝜆, ℎ2; 𝑧∗2)
> ℓ𝑉(𝑡 ,𝜆, ℎ1) + (1 − ℓ )𝑉(𝑡 ,𝜆, ℎ2) − 2𝜀.

We now focus on the Lipschitz property. Recall the integral formula of𝐻 in equation
(2.12) and observe that for 𝑧 fixed, 𝑠 > 𝑡:

|𝐻𝑡 ,ℎ1 ,𝑧
𝑠 − 𝐻𝑡 ,ℎ2 ,𝑧

𝑠 | = |(ℎ1 − ℎ2)𝑒−𝜌(𝑠−𝑡)| ≤ |ℎ1 − ℎ2| .

We write

| 𝐽(𝑡 ,𝜆, ℎ1; 𝑧) − 𝐽(𝑡 ,𝜆, ℎ2; 𝑧)|

=

|︁|︁|︁|︁E [︃∫ 𝑇

𝑡

(︂
(𝑣 − 𝑆(𝐻𝑡 ,ℎ1 ,𝑧

𝑠 , 𝑣))𝜂̄𝜆𝑡 ,𝜆𝑠 − (𝑣 − 𝑆(𝐻𝑡 ,ℎ2 ,𝑧
𝑠 , 𝑣))𝜂̄𝜆𝑡 ,𝜆𝑠

)︂
d𝑠

+𝑈(𝐻𝑡 ,ℎ1 ,𝑧
𝑇

) −𝑈(𝐻𝑡 ,ℎ2 ,𝑧
𝑇

)
]︂ |︁|︁|︁
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≤ E
[︃∫ 𝑇

𝑡

(︂
|(𝑣 − 𝑆(𝐻𝑡 ,ℎ1 ,𝑧

𝑠 , 𝑣))𝜂̄𝜆𝑡 ,𝜆𝑠 − (𝑣 − 𝑆(𝐻𝑡 ,ℎ2 ,𝑧
𝑠 , 𝑣))|𝜂̄𝜆𝑡 ,𝜆𝑠

)︂
d𝑠

+|𝑈(𝐻𝑡 ,ℎ1 ,𝑧
𝑇

) −𝑈(𝐻𝑡 ,ℎ2 ,𝑧
𝑇

)|
]︂

= E
[︃∫ 𝑇

𝑡

|𝑆(𝐻𝑡 ,ℎ2 ,𝑧
𝑠 , 𝑣) − 𝑆(𝐻𝑡 ,ℎ1 ,𝑧

𝑠 , 𝑣)|𝜂̄𝜆𝑡 ,𝜆𝑠 d𝑠 + 𝐶|𝐻𝑡 ,ℎ1 ,𝑧
𝑇

− 𝐻𝑡 ,ℎ2 ,𝑧
𝑇

|
]︃

= E
[︃∫ 𝑇

𝑡

𝐶̃|𝐻𝑡 ,ℎ2 ,𝑧
𝑠 − 𝐻𝑡 ,ℎ1 ,𝑧

𝑠 |𝜆𝑡 ,𝜆𝑠 d𝑠 + 𝐶|𝐻𝑡 ,ℎ1 ,𝑧
𝑇

− 𝐻𝑡 ,ℎ2 ,𝑧
𝑇

|
]︃

≤ |ℎ1 − ℎ2|
(︃
𝐶̃E

[︃∫ 𝑇

𝑡

𝜆𝑡 ,𝜆𝑠 d𝑠
]︃
+ 𝐶

)︃
≤ |ℎ1 − ℎ2|

(︃
𝐶̃

𝛼𝛽

𝛽 − 𝜉
(𝑇 − 𝑡) − 1

𝛽 − 𝜉

(︃
𝜆 − 𝛼𝛽

𝛽 − 𝜉

)︃ (︂
𝑒−(𝛽−𝜉)(𝑇−𝑡) − 1

)︂
+ 𝐶

)︃
≤ |ℎ1 − ℎ2|(𝐶̃𝜆 + 𝐶).

With analogous techniques as before, we can prove that also ℎ ↦→ 𝑉(𝑡 ,𝜆, ℎ) is
Lipschitz with constant linearly dependent on 𝜆.

□

Remark 2.10. The fact that 𝑉 is increasing in 𝜆 indicates that the benefit of cybersecurity
investment is greater in the presence of a greater risk of cyberattacks. Its increasing and
concave dependence on the current cybersecurity level ℎ shows that raising ℎ always
improves the expected future benefit, but the marginal value of additional protection
decreases as the cybersecurity level ℎ grows.

Remark 2.11. 𝑆𝐼 and 𝑆𝐼𝐼 as in equation (2.1) are uniformly Lipschitz in the investment
variable.

Proposition 2.12. For every (𝑡 ,𝜆, ℎ) ∈ [0, 𝑇] × (0,∞) × R+, it holds that

𝑉(𝑡 ,𝜆, ℎ) ≥ 𝐽(𝑡 ,𝜆, ℎ; 𝜌ℎ), (2.15)

where

𝐽(𝑡 ,𝜆, ℎ; 𝜌ℎ) = 𝑈(ℎ) − 𝜌ℎ
(︂
1 + 𝛾

2 𝜌ℎ
)︂
(𝑇 − 𝑡)

+ 𝜂̄
(︁
𝑣 − 𝑆(ℎ, 𝑣)

)︁ (︃
𝛼𝛽

𝛽 − 𝜉
(𝑇 − 𝑡) − 1

𝛽 − 𝜉

(︂
𝜆 − 𝛼𝛽

𝛽 − 𝜉

)︂ (︂
𝑒−(𝛽−𝜉)(𝑇−𝑡) − 1

)︂)︃
.

Proof. By definition of the value function (2.14), it holds that 𝑉(𝑡 ,𝜆, ℎ) ≥ 𝐽(𝑡 ,𝜆, ℎ, 𝑧), for
any given 𝑧 ∈ 𝒵𝑡 . In particular, the constant process 𝑧̄ ≡ 𝜌ℎ belongs to 𝒵𝑡 and, therefore,
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inequality (2.15) holds. In view of equation (2.12), we have that

𝐻
𝑡 ,ℎ,𝜌ℎ
𝑠 = ℎ𝑒−𝜌(𝑠−𝑡) +

∫ 𝑠

𝑡

𝑒−𝜌(𝑠−𝑣)𝜌ℎd𝑣 = ℎ,

for all 𝑠 ∈ [𝑡 , 𝑇]. Therefore, we obtain that

𝐽(𝑡 ,𝜆, ℎ; 𝜌ℎ) = 𝜂̄
(︁
𝑣 − 𝑆(ℎ, 𝑣)

)︁
E

[︃∫ 𝑇

𝑡

𝜆𝑡 ,𝜆𝑠 d𝑠
]︃
− 𝜌ℎ

(︂
1 + 𝛾

2 𝜌ℎ
)︂
(𝑇 − 𝑡) +𝑈(ℎ).

The expectation E[
∫ 𝑇

𝑡
𝜆𝑡 ,𝜆𝑠 d𝑠] can be computed by a straightforward adaptation of Pro-

position 2.2 (compare also with Dassios and Zhao (2011, Theorem 3.6)), thus completing
the proof. □

Remark 2.13. The lower bound obtained in Proposition 2.12 is associated to a fixed in-
vestment rate which offsets technological obsolescence by maintaining the cybersecurity
level constant over time (this follows directly from equation (2.10)). In Section 2.5.3, we
numerically show that the optimal dynamic investment policy characterized in Theorem
2.14 consistently outperforms any constant investment strategy, highlighting the value of
real-time adaptability in cybersecurity investment.

We now proceed to characterize the value function 𝑉 as the solution to a Hamilton-
Jacobi-Bellman (HJB) partial integro-differential equation (PIDE). To this end, we intro-
duce the following standard assumption.

Assumption D. The dynamic programming principle holds: for all (𝑡 ,𝜆, ℎ) in [0, 𝑇) ×
(0,∞) × R+ and for every stopping time 𝜏 taking values in [𝑡 , 𝑇], it holds that

𝑉(𝑡 ,𝜆, ℎ) = sup
𝑧∈𝒵𝑡

E
[︃∫ 𝜏

𝑡

𝜂̄
(︁
𝑣 − 𝑆(𝐻𝑡 ,ℎ,𝑧

𝑠 , 𝑣)
)︁
𝜆𝑡 ,𝜆𝑠 d𝑠 −

∫ 𝜏

𝑡

(︂
𝑧𝑠 +

𝛾

2 𝑧
2
𝑠

)︂
d𝑠 +𝑉(𝜏,𝜆𝑡 ,𝜆𝜏 , 𝐻𝑡 ,ℎ,𝑧

𝜏 )
]︃
.

Theorem 2.14. For brevity of notation, in the statement and in the proof of this theorem, we omit to
denote explicitly the dependence of𝑉 on its arguments (𝑡 ,𝜆, ℎ). Suppose that Assumption D holds.
Assume furthermore that the value function𝑉 defined in (2.14) is of class 𝒞1,1,1 (i.e., continuously
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differentiable in all its arguments). Then, the function 𝑉 solves the following HJB-PIDE:

𝜕𝑉

𝜕𝑡
+ 𝛽(𝛼 − 𝜆)𝜕𝑉

𝜕𝜆
− 𝜌ℎ

𝜕𝑉

𝜕ℎ
+ 𝜆(𝑉(𝑡 ,𝜆 + 𝜉, ℎ) −𝑉(𝑡 ,𝜆, ℎ))

+ 𝜂̄(𝑣 − 𝑆(ℎ, 𝑣))𝜆 +

(︂(︂
𝜕𝑉
𝜕ℎ − 1

)︂+)︂2

2𝛾 = 0,

𝑉(𝑇,𝜆, ℎ) = 𝑈(ℎ).

(2.16)

In addition, the optimal investment rate process 𝑧∗ is given by

𝑧∗ =

(︂
𝜕𝑉
𝜕ℎ − 1

)︂+
𝛾

. (2.17)

Proof. In view of Assumption D and the assumption that 𝑉 is of class 𝒞1,1,1, standard
arguments based on Itô’s formula together with (2.9) and (2.10) imply that 𝑉 satisfies the
following HJB equation (see, e.g., Bensoussan and Chevalier-Roignant (2024, Section 5.2)):

0 = sup
𝑧≥0

(︃
𝜕𝑉

𝜕𝑡
+ 𝛽(𝛼 − 𝜆)𝜕𝑉

𝜕𝜆
− 𝜌ℎ

𝜕𝑉

𝜕ℎ
+ 𝑧 𝜕𝑉

𝜕ℎ
+ 𝜆

(︁
𝑉(𝑡 ,𝜆 + 𝜉, ℎ) −𝑉(𝑡 ,𝜆, ℎ)

)︁
+𝜂̄(𝑣 − 𝑆(ℎ, 𝑣))𝜆 − 𝑧 − 𝛾

2 𝑧
2
)︂

=
𝜕𝑉

𝜕𝑡
+ 𝛽(𝛼 − 𝜆)𝜕𝑉

𝜕𝜆
− 𝜌ℎ

𝜕𝑉

𝜕ℎ
+ 𝜆

(︁
𝑉(𝑡 ,𝜆 + 𝜉, ℎ) −𝑉(𝑡 ,𝜆, ℎ)

)︁
+ 𝜂̄(𝑣 − 𝑆(ℎ, 𝑣))𝜆

+ sup
𝑧≥0

(︃
𝑧
𝜕𝑉

𝜕ℎ
− 𝑧 − 𝛾

2 𝑧
2
)︃
.

The supremum in the last line is given by

sup
𝑧≥0

(︃
𝑧
𝜕𝑉

𝜕ℎ
− 𝑧 − 𝛾

2 𝑧
2
)︃
=

⎧⎪⎪⎨⎪⎪⎩
0, if 𝜕𝑉

𝜕ℎ ≤ 1,
1

2𝛾

(︂
𝜕𝑉
𝜕ℎ − 1

)︂2
, otherwise,

and is reached by the optimal control given in equation (2.17). If𝑈 and 𝑆(·, 𝑣) are Lipschitz,
then the optimal control is admissible. Indeed, by Proposition 2.9, it follows that

𝑧∗𝑡 =

(︂
𝜕𝑉(𝑡 ,𝜆𝑡 ,𝐻𝑡)

𝜕ℎ − 1
)︂+

𝛾
<

1
𝛾

|︁|︁|︁|︁𝜕𝑉(𝑡 ,𝜆𝑡 , 𝐻𝑡)
𝜕ℎ

|︁|︁|︁|︁ + 1
𝛾
≤ 1

𝛾

(︁
𝐶̃𝜆𝑡 + 𝐶

)︁
,

thus the optimal control is admissible due to the integrability property of the intensity 𝜆,
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see Dassios and Zhao (2013, Proposition 2.3). □

A numerical method for the solution of the PIDE (2.16) will be presented in Section 2.4
and then applied in Section 2.5.

The optimal investment rate 𝑧∗𝑡 in equation (2.17) depends on current time 𝑡, on the
current level 𝜆𝑡 of the stochastic intensity and on the current cybersecurity level 𝐻𝑡 .
In particular, the dependence on 𝜆𝑡 makes 𝑧∗𝑡 adaptive, meaning that it reacts to the
random arrival of cyberattacks. Since the arrival of an attack increases the likelihood of
further attacks, due to the self-exciting behavior of the Hawkes process, this enables the
decision maker to strategically increase the cybersecurity investment in order to raise the
cybersecurity level as a defense for the incoming attacks. This important feature will be
numerically illustrated in Section 2.5.4.

Remark 2.15. The optimal policy described in equation (2.17) admits a clear economic
interpretation: it is worth investing in cybersecurity whenever the marginal benefit of the
investment is greater than its marginal cost. This insight aligns with the earlier results of
Krutilla et al. (2021) in a dynamic but deterministic setup.

We conclude this section by proving a verification theorem, under additional regularity
assumptions on the value function.

Theorem 2.16 (Verification theorem). Let 𝑤 be a non-negative function in 𝒞1,1,1([0, 𝑇) ×
(0,+∞) × R+) and 𝒞0([0, 𝑇] × (0,+∞) × R+). Moreover, assume 𝑤 has linear growth

𝑤(𝑡 ,𝜆, ℎ) ≤ 𝐶(1 + 𝜆 + ℎ).

i) Suppose that for (𝑡 ,𝜆, ℎ) ∈ [0, 𝑇) × (0,+∞) × R+,

0 ≥ 𝜕𝑤

𝜕𝑡
+ 𝛽(𝛼 − 𝜆)𝜕𝑤

𝜕𝜆
− 𝜌ℎ

𝜕𝑤

𝜕ℎ
+ 𝜆

(︁
𝑤(𝑡 ,𝜆 + 𝜉, ℎ) − 𝑤(𝑡 ,𝜆, ℎ)

)︁
+ 𝜂̄(𝑣 − 𝑆(ℎ, 𝑣))𝜆 + sup

𝑧∈𝒵

(︃
𝑧
𝜕𝑤

𝜕ℎ
− 𝑧 − 𝛾

2 𝑧
2
)︃

𝑤(𝑇,𝜆, ℎ) ≥ 𝑈(ℎ).

Then 𝑤 ≥ 𝑉 on [0, 𝑇] × (0,+∞) × R+.

ii) Suppose that 𝑤(𝑇,𝜆, ℎ) = 𝑈(ℎ), and there exists a measurable non-negative function
𝑧∗(𝑡 ,𝜆, ℎ), (𝑡 ,𝜆, ℎ) ∈ [0, 𝑇) × (0,+∞) × R+ such that

0 =
𝜕𝑤

𝜕𝑡
+ 𝛽(𝛼 − 𝜆)𝜕𝑤

𝜕𝜆
− 𝜌ℎ

𝜕𝑤

𝜕ℎ
+ 𝜆

(︁
𝑤(𝑡 ,𝜆 + 𝜉, ℎ) − 𝑤(𝑡 ,𝜆, ℎ)

)︁
86



CHAPTER 2. A STOCHASTIC GORDON-LOEB MODEL FOR OPTIMAL CYBERSECURITY INVESTMENT
UNDER CLUSTERED ATTACKS

+ 𝜂̄(𝑣 − 𝑆(ℎ, 𝑣))𝜆 + sup
𝑧∈𝒵

(︃
𝑧
𝜕𝑤

𝜕ℎ
− 𝑧 − 𝛾

2 𝑧
2
)︃

=
𝜕𝑤

𝜕𝑡
+ 𝛽(𝛼 − 𝜆)𝜕𝑤

𝜕𝜆
− 𝜌ℎ

𝜕𝑤

𝜕ℎ
+ 𝜆

(︁
𝑤(𝑡 ,𝜆 + 𝜉, ℎ) − 𝑤(𝑡 ,𝜆, ℎ)

)︁
+ 𝜂̄(𝑣 − 𝑆(ℎ, 𝑣))𝜆 + 𝑧∗ 𝜕𝑤

𝜕ℎ
− 𝑧∗ − 𝛾

2 (𝑧
∗)2,

the SDE (2.10) evaluated in 𝑧 = 𝑧∗ admits a unique solution and it is denoted by 𝐻∗, the
process {𝑧∗(𝑡 ,𝜆𝑡 ,𝜆𝑠 , 𝐻∗𝑡 ,ℎ

𝑠 ), 𝑡 ≤ 𝑠 ≤ 𝑇} lies in 𝒵𝑡 . Then 𝑤 = 𝑉 on [0, 𝑇] × (0,+∞) × R+,
and 𝑧∗ is an optimal Markovian control.

Proof. i) Suppose 𝑤 ∈ 𝒞1,1,1, 𝑡 < 𝑇, 𝑧 ∈ 𝒵𝑡 and 𝑠 ∈ [𝑡 , 𝑇). Let 𝜏 be a stopping time
valued in [𝑡 , 𝑇). We apply Ito’s formula to 𝑤(𝑠 ∧ 𝜏,𝜆𝑡 ,𝜆𝑠∧𝜏 , 𝐻

𝑡 ,ℎ
𝑠∧𝜏). For simplicity, we

write 𝑤 and 𝜆𝑡 , 𝐻𝑡 , 𝑧𝑡 , omitting the dependence on the initial state (𝑡 ,𝜆, ℎ)

𝑤(𝑠 ∧ 𝜏,𝜆𝑠∧𝜏 , 𝐻𝑠∧𝜏)

= 𝑤(𝑡 ,𝜆, ℎ) +
∫ 𝑠∧𝜏

𝑡

(︃
𝜕𝑤

𝜕𝑡
+ 𝜕𝑤

𝜕𝜆
𝛽(𝛼 − 𝜆𝑢) +

𝜕𝑤

𝜕ℎ
(𝑧𝑢 − 𝜌𝐻𝑢)

)︃
d𝑢

+
∫ 𝑠∧𝜏

𝑡

(𝑤(· + 𝜉) − 𝑤)d𝑁𝑢

= 𝑤(𝑡 ,𝜆, ℎ) +
∫ 𝑠∧𝜏

𝑡

(︃
𝜕𝑤

𝜕𝑡
+ 𝜕𝑤

𝜕𝜆
𝛽(𝛼 − 𝜆𝑢) +

𝜕𝑤

𝜕ℎ
(𝑧𝑢 − 𝜌𝐻𝑢) + (𝑤(· + 𝜉) − 𝑤)𝜆𝑢

)︃
d𝑢

+
∫ 𝑠∧𝜏

𝑡

(𝑤(· + 𝜉) − 𝑤)d𝑀𝑢 ,

where 𝑀𝑡 = 𝑁𝑡 −
∫ 𝑡

0 𝜆𝑢d𝑢, i.e. the compensated jump measure. We then take a
localizing sequence (𝜏𝑛)𝑛 , 𝜏𝑛 = inf{𝑠 ≥ 0 : |𝐻𝑠 | ∨ |𝜆𝑠 | ≥ 𝑛} ∧ 𝑛 and we write:

E[𝑤(𝑠 ∧ 𝜏𝑛 ,𝜆𝑠∧𝜏𝑛 , 𝐻𝑠∧𝜏𝑛 )]

= 𝑤(𝑡 ,𝜆, ℎ) + E
[︃∫ 𝑠∧𝜏𝑛

𝑡

(︃
𝜕𝑤

𝜕𝑡
+ 𝜕𝑤

𝜕𝜆
𝛽(𝛼 − 𝜆𝑢) − 𝜌

𝜕𝑤

𝜕ℎ
𝐻𝑢 + (𝑤(· + 𝜉) − 𝑤)𝜆𝑢

)︃
d𝑢

]︃
+ E

[︃∫ 𝑠∧𝜏𝑛

𝑡

𝜕𝑤

𝜕ℎ
𝑧𝑢d𝑢

]︃
≤ 𝑤(𝑡 ,𝜆, ℎ) + E

[︃∫ 𝑠∧𝜏𝑛

𝑡

(︂
−𝜂̄(𝑣 − 𝑆(𝐻𝑢 , 𝑣))𝜆𝑢 + 𝑧𝑢 +

𝛾

2 (𝑧𝑢)
2
)︂

d𝑢
]︃

where the latter inequality follows by the assumption on 𝑤. We now take the limit
𝑛 → +∞: note that 𝑣 − 𝑆(𝐻𝑢 , 𝑣) ≤ 𝑣 and E

[︂∫ 𝑇

0 𝜆𝑢d𝑢
]︂
< ∞. If 𝑧 ∈ 𝒵𝑡 , we can apply

dominated convergence and take the limit inside the expectation. For the left-hand
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side, we use the linear growth of 𝑤

𝑤(𝑠 ∧ 𝜏𝑛 ,𝜆𝑠∧𝜏𝑛 , 𝐻𝑠∧𝜏𝑛 ) ≤ 𝐶(1 + 𝜆𝑠∧𝜏𝑛 + 𝐻𝑠∧𝜏𝑛 ) ≤ 𝐶(1 + sup
𝑠∈[𝑡 ,𝑇]

(𝜆𝑠∧𝜏𝑛 + 𝐻𝑠∧𝜏𝑛 )).

By the integral expression of 𝜆 in equation (2.13), we can estimate

sup
𝑠∈[𝑡 ,𝑇]

𝜆𝑠∧𝜏𝑛 ≤ 𝛼 + 𝜉 sup
𝑠∈[𝑡 ,𝑇]

𝑁𝑡 ≤ 𝛼 + 𝜉𝑁𝑇 ,

since 𝑁 is a counting process. By the properties of 𝑁 , see Proposition 2.2, we can
conclude

E
[︂

sup
𝑠∈[𝑡 ,𝑇]

𝜆𝑠∧𝜏𝑛

]︂
≤ 𝐶(1 + E[𝑁𝑇]) < +∞.

Similarly, for 𝐻, we can write sup𝑠∈[𝑡 ,𝑇]𝐻𝑠∧𝜏𝑛 ≤ ℎ +
∫ 𝑇

0 𝑧𝑣d𝑣. It follows that

E
[︂
sup𝑠∈[𝑡 ,𝑇]𝐻𝑠∧𝜏𝑛

]︂
< +∞ since E

[︂∫ 𝑇

0 𝑧𝑣d𝑣
]︂
< +∞ by the admissible hypothesis

on 𝒵𝑡 . We can apply dominated convergence and obtain

lim
𝑛→∞

E[𝑤(𝑠 ∧ 𝜏𝑛 ,𝜆𝑠∧𝜏𝑛 , 𝐻𝑠∧𝜏𝑛 )] = E[𝑤(𝑠,𝜆𝑠 , 𝐻𝑠)].

Since 𝑤 is continuous on its domain, by sending 𝑠 to 𝑇 and by the hypothesis
𝑤(𝑇,𝜆, ℎ) ≥ 𝑈(ℎ), we obtain

𝑤(𝑡 ,𝜆, ℎ) ≥ E
[︃∫ 𝑇

𝑡

(︂
𝜂̄(𝑣 − 𝑆(𝐻𝑢 , 𝑣)𝜆𝑢 − 𝑧𝑢 −

𝛾

2 (𝑧𝑢)
2
)︂

d𝑢
]︃
+ E[𝑈(𝐻𝑇)].

For the arbitrariness of 𝑧, we deduce that 𝑤(𝑡 ,𝜆, ℎ) ≥ 𝑉(𝑡 ,𝜆, ℎ) for all (𝑡 ,𝜆, ℎ) ∈
[0, 𝑇] × (0,+∞) × R+.

ii) We repeat the same reasoning as before, taking 𝑧∗ ∈ 𝒵. By applying Ito’s formula,
we can write for 𝑠 ∈ [𝑡 , 𝑇) and for 𝜏 stopping time valued in [𝑡 , 𝑇):

𝑤(𝑠 ∧ 𝜏,𝜆𝑠∧𝜏 , 𝐻
∗
𝑠∧𝜏)

= 𝑤(𝑡 ,𝜆, ℎ) +
∫ 𝑠∧𝜏

𝑡

(︃
𝜕𝑤

𝜕𝑡
+ 𝜕𝑤

𝜕𝜆
𝛽(𝛼 − 𝜆𝑢) +

𝜕𝑤

𝜕ℎ
(𝑧∗𝑢 − 𝜌𝐻∗

𝑢) + (𝑤(· + 𝜉) − 𝑤)𝜆𝑢
)︃

d𝑢

+
∫ 𝑠∧𝜏

𝑡

(𝑤(· + 𝜉) − 𝑤)d𝑀𝑢 .

We then take a localizing sequence (𝜏𝑛)𝑛 , 𝜏𝑛 = inf{𝑠 ≥ 0 : |𝐻∗
𝑠 | ∨ |𝜆𝑠 | ≥ 𝑛} ∧ 𝑛 and
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we exploit the fact that 𝑤 solves the PIDE. This leads to

E[𝑤(𝑠 ∧ 𝜏𝑛 ,𝜆𝑠∧𝜏𝑛 , 𝐻
∗
𝑠∧𝜏𝑛 )]

= 𝑤(𝑡 , ℎ,𝜆) + E
[︃∫ 𝑠∧𝜏𝑛

𝑡

(︂
−𝜂̄(𝑣 − 𝑆(𝐻∗

𝑢 , 𝑣)𝜆𝑢 + 𝑧∗𝑢 +
𝛾

2 (𝑧
∗
𝑢)2

)︂
d𝑢

]︃
.

Applying dominated convergence, analogously to before, and taking 𝑠 → 𝑇, we
write

𝑤(𝑇,𝜆, ℎ) = E
[︃∫ 𝑇

𝑡

(︂
𝜂̄ (𝑣 − 𝑆(𝐻∗

𝑢 , 𝑣))𝜆𝑢 − 𝑧∗𝑢 −
𝛾

2 (𝑧
∗
𝑢)2

)︂
d𝑢 + 𝑤(𝑇,𝜆𝑇 , 𝐻∗

𝑇)
]︃

= E
[︃∫ 𝑇

𝑡

(︂
𝜂̄ (𝑣 − 𝑆(𝐻∗

𝑢 , 𝑣))𝜆𝑢 − 𝑧∗𝑢 −
𝛾

2 (𝑧
∗
𝑢)2

)︂
d𝑢 +𝑈(𝐻∗

𝑇)
]︃
= 𝐽(𝑡 ,𝜆, ℎ; 𝑧∗),

where we use that 𝑤(𝑇,𝜆𝑇 , 𝐻∗
𝑇
) = 𝑈(𝐻∗

𝑡 ). This shows that𝑉(𝑡 ,𝜆, ℎ) ≥ 𝐽(𝑡 ,𝜆, ℎ; 𝑧∗) ≥
𝑤(𝑡 ,𝜆, ℎ) ≥ 𝑉(𝑡 ,𝜆, ℎ), i.e. 𝑤 = 𝑉 on [0, 𝑇] × (0,+∞) × R+, and that 𝑧∗ is an optimal
Markovian control.

□

2.4 Numerical methods

In this section, we describe the parameters’ choice and the numerical methods adopted
for the solution of the optimization problem introduced in Section 2.3.

Specification of the model parameters We report in Tables 2.1, 2.2, 2.3 the standard set
of the model parameters. Unless mentioned otherwise, the numerical analysis will be
performed using the standard set of parameters.

function type 𝑣 𝑎 𝑏

𝑆𝐼 0.65 10−1 1

Table 2.1: Specification of the security breach function.

𝛼 𝛽 𝜉 𝜆0
27 15 9 27

Table 2.2: Parameters of the stochastic intensity.
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𝛿 𝛾 𝜂̄(k$) 𝑈(ℎ) 𝜌 𝑇

1 0.05 10
√
ℎ 0.2 1

Table 2.3: Parameters of the optimization problem.

We employ a security breach probability function 𝑆 of class I, as defined in equation
(2.1). The parameters values in Table 2.1 are consistent with those in Skeoch (2022), and
also in line with previous works (see Gordon and Loeb (2002) and Mazzoccoli and Naldi
(2020)). Taking 𝑣, 𝑎, 𝑏 as in Table 2.1, a plot of the function ℎ ↦→ 𝑆𝐼(ℎ, 𝑣) is shown in Figure
2.2.

The parameters of the stochastic intensity of the Hawkes process (see Table 2.2) are
chosen to generate on average approximately 60 cyberattacks per year. We believe that this
is a reasonable figure, in the absence of reliable estimates of the number of cyberattacks
targeting a single entity.4

Remark 2.17. For the standard set of parameters, we have 𝜆0 = 𝛼 and so the stochastic
intensity 𝜆𝑡 can be expressed as follows:

𝜆𝑡 = 𝜆0 + 𝜉
𝑁𝑡∑︂
𝑖=1

𝑒−𝛽(𝑡−𝑇𝑖). (2.18)

We consider a one-year planning horizon (𝑇 = 1) and set an average loss of 10k$
for each successful breach, resulting in a total expected annual loss of approximately
390k$ without cybersecurity investments, which is in the same order of magnitude of
Skeoch (2022). The depreciation rate is set at 𝜌 = 0.2, consistently with the technological
depreciation rates considered in Krutilla et al. (2021). The parameter 𝛾 is set at a rather
low value, in order to avoid an excessive penalization of large investment rates. Finally, we
choose𝑈(ℎ) =

√
ℎ, representing a strictly increasing and concave CRRA utility function.

Numerical solution of the HJB-PIDE As shown in Section 2.3, determining the optimal
cybersecurity investment requires the solution of the non-linear PIDE (2.16). Due to the
complexity of the problem, one cannot expect to find explicitly an analytical solution
and, hence, numerical methods are required. We opt for the method of lines, as described
in Yuan (1999). This technique consists in discretizing the PIDE in the spatial domain
(𝜆, ℎ) ∈ (0,∞) × R+ but not in time, and then in integrating the semi-discrete problem
as a system of ODEs. In our setting, we discretize the (𝜆, ℎ) dimensions with a central

4Empirical estimates of the intensity of cyberattacks can be found in the recent works Bessy-Roland et
al. (2021), Boumezoued et al. (2023), Li and Mamon (2023)). However, these estimates are not suitable for
our purposes, since they are based on the number of attacks at a worldwide scale, while our model takes
the viewpoint of a single entity.
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Figure 2.2: Security breach function (parameters as in Table 2.1).
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difference and then numerically solve the resulting ODE system. Similarly to the case
of PIDEs arising in Lévy models (see, e.g., Cont and Voltchkova (2005)), the unbounded
space domain (0,∞) × R+ is localized into a bounded domain [𝜆min,𝜆max] × [ℎmin, ℎmax].
We refer to Algorithm 1 for a precise description of the implementation of this method.

In our implementation, we specify as follows the algorithm’s meta-parameters:

𝜆min 𝜆max Δ𝜆 ℎmin ℎmax Δℎ

27 216 1 0 50 0.5

Table 2.4: Meta-parameters for Algorithm 1.

The value ℎmin = 0 corresponds to the absence of cybersecurity investment, while
ℎmax = 50 represents an upper bound which is rarely achieved in our setup under the
standard parameter set. We choose 𝜆min = 𝜆0, which coincides with the lower bound of
the stochastic intensity 𝜆𝑡 , see equation (2.18). We set 𝜆max = E[𝜆𝑇] + 7

√︁
Var[𝜆𝑇] ≈ 216,

in order to ensure that the truncation of the intensity domain does not have any material
impact on our numerical results. The value function𝑉 is extrapolated beyond [𝜆min,𝜆max]
by setting

𝑉(𝑡 ,𝜆, ℎ) = 𝑉(𝑡 ,𝜆max, ℎ), for all 𝜆 > 𝜆max,

analogously to the scheme implemented in Gaïgi et al. (2025, Section 5.1). When plotting
the function 𝑉 in Section 2.5, we shall consider a subinterval of [𝜆min,𝜆max]: intensity
values close to 𝜆max are rarely achieved and might lead to numerical instabilities.

We have implemented Algorithm 1 in Python, using the built-in ODE solver
scipy.integrate.solve\_ivp. We make use of an implicit Runge-Kutta method of the
Radau IIA family of order 5 (see Hairer et al. (1993) for further details).

Optimal cybersecurity investment rate Besides determining the optimal net benefit
of cybersecurity investments, we aim at computing the real-time adaptive strategy that
best responds to the arrival of cyberattacks. To this end, after solving the PIDE (2.16)
via Algorithm 1, we compute numerically the optimal investment rate given in equation
(2.17) along a simulated sequence of cyberattacks. This entails simulating a trajectory of
the stochastic intensity (𝜆𝑡(𝜔))𝑡∈[𝑡init ,𝑇], starting from an initial cybersecurity level 𝐻init at
time 𝑡init. Our numerical method for the computation of the optimal investment rate is
described in Algorithm 2 and will be numerically implemented in Sections 2.5.4 and 2.5.4.

92



CHAPTER 2. A STOCHASTIC GORDON-LOEB MODEL FOR OPTIMAL CYBERSECURITY INVESTMENT
UNDER CLUSTERED ATTACKS

Algorithm 1 Numerical solution of the PIDE (2.16)
1: Set 𝜆min,𝜆max, ℎmin, ℎmax.
2: Discretize [𝜆min,𝜆max], with 𝜆0 = 𝜆min,𝜆𝑁 = 𝜆max and 𝜆𝑛 − 𝜆𝑛−1 = Δ𝜆, for 𝑛 =

1, . . . , 𝑁 .
3: Discretize [ℎmin, ℎmax], with ℎ0 = ℎmin, ℎ𝑀 = ℎmax and ℎ𝑚 − ℎ𝑚−1 = Δℎ, for 𝑚 =

1, . . . , 𝑀.
4: Set 𝑉𝑛,𝑚(𝑡) := 𝑉(𝑡 ,𝜆𝑛 , ℎ𝑚), for all 𝑛 and 𝑚.
5: Approximate the partial derivatives w.r.t. 𝜆:

𝜕𝑉

𝜕𝜆
(𝑡 ,𝜆𝑛 , ℎ𝑚) ≈

𝑉𝑛+1,𝑚(𝑡) −𝑉𝑛−1,𝑚(𝑡)
2Δ𝜆 ,

𝜕𝑉

𝜕𝜆
(𝑡 ,𝜆0, ℎ𝑚) ≈

𝑉1,𝑚(𝑡) −𝑉0,𝑚(𝑡)
Δ𝜆

,

𝜕𝑉

𝜕𝜆
(𝑡 ,𝜆𝑁 , ℎ𝑚) ≈

𝑉𝑁,𝑚(𝑡) −𝑉𝑁−1,𝑚(𝑡)
Δ𝜆

.

6: Approximate the partial derivatives w.r.t. ℎ:

𝜕𝑉

𝜕ℎ
(𝑡 ,𝜆𝑛 , ℎ𝑚) ≈

𝑉𝑛,𝑚+1(𝑡) −𝑉𝑛,𝑚−1(𝑡)
2Δℎ ,

𝜕𝑉

𝜕ℎ
(𝑡 ,𝜆𝑛 , ℎ0) ≈

𝑉𝑛,1(𝑡) −𝑉𝑛,0(𝑡)
Δℎ

,

𝜕𝑉

𝜕ℎ
(𝑡 ,𝜆𝑛 , ℎ𝑀) ≈ 𝑉𝑛,𝑀(𝑡) −𝑉𝑛,𝑀−1(𝑡)

Δℎ
.

7: Let 𝑛̃ =
⌊𝜉⌋
Δ𝜆 and set

𝑉(𝑡 ,𝜆𝑛 + 𝜉, ℎ𝑚) ≈ 𝑉(𝑛+𝑛̃)∧𝑁,𝑚(𝑡).
8: Solve the ODE system given for all 𝑛, 𝑚 by

𝑉 ′
𝑛,𝑚(𝑡) = 𝛽(𝜆𝑛 − 𝛼)𝑉𝑛+1,𝑚(𝑡) −𝑉𝑛−1,𝑚(𝑡)

2Δ𝜆 + 𝜌ℎ
𝑉𝑛,𝑚+1(𝑡) −𝑉𝑛,𝑚−1(𝑡)

2Δℎ

− 𝜆𝑛(𝑉𝑛+𝑛̃∧𝑁,𝑚(𝑡) −𝑉𝑛,𝑚(𝑡)) − 𝜂̄(𝑣 − 𝑆(ℎ𝑚 , 𝑣))𝜆𝑛 −

(︂(︂
𝑉𝑛,𝑚+1(𝑡)−𝑉𝑛,𝑚−1(𝑡)

2Δℎ − 1
)︂+)︂2

2𝛾 ,

𝑉𝑛,𝑚(𝑇) = 𝑈(ℎ𝑚).
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Algorithm 2 Numerical computation of the optimal control
1: Set 𝑡min, 𝑡max, 𝜆min,𝜆max, ℎmin, ℎmax.
2: Discretize [𝑡min, 𝑡max], with 𝑡0 = 𝑡min, 𝑡𝐼 = 𝑡max and 𝑡𝑖 − 𝑡𝑖−1 = Δ𝑡, for 𝑖 = 1, . . . , 𝐼.
3: Discretize [𝜆min,𝜆max], with 𝜆0 = 𝜆min,𝜆𝑁 = 𝜆max and 𝜆𝑛 − 𝜆𝑛−1 = Δ𝜆, for 𝑛 =

1, . . . , 𝑁 .
4: Discretize [ℎmin, ℎmax], with ℎ0 = ℎmin, ℎ𝑀 = ℎmax and ℎ𝑚 − ℎ𝑚−1 = Δℎ, for 𝑚 =

1, . . . , 𝑀.
5: Compute 𝑉(𝑡𝑖 ,𝜆𝑛 , ℎ𝑚) and 𝑧∗(𝑡𝑖 ,𝜆𝑛 , ℎ𝑚), for 𝑖 = 0, . . . , 𝐼, 𝑛 = 0, . . . 𝑁 , 𝑚 = 0, . . . , 𝑀.
6: Simulate a trajectory 𝜆𝑡𝑖 (𝜔), 𝑖 = 0, . . . , 𝐼.
7: For the initial time 𝑡init ≥ 𝑡min, set 𝑖̄ := argmin𝑖{|𝑡𝑖 − 𝑡init|}.
8: Consider the initial state 𝐻𝑡 𝑖̄ = 𝐻init:
9: for 𝑖 in 𝑖̄ , . . . , 𝐼, do

10: set 𝑘 := argminℓ{|𝜆ℓ − 𝜆𝑡𝑖 (𝜔)|};
11: set 𝑗 := argmin𝑚{|ℎ𝑚 − 𝐻𝑡𝑖 |};
12: let 𝑧∗𝑡𝑖 = 𝑧∗(𝑡𝑖 ,𝜆𝑘 , ℎ 𝑗);
13: 𝐻𝑧∗

𝑡𝑖+1
:= 𝐻𝑧∗

𝑡𝑖
− 𝜌𝐻𝑧∗

𝑡𝑖
Δ𝑡 + 𝑧∗𝑡𝑖Δ𝑡.

14: end for

2.5 Results and discussion

In this section, we report some numerical results that illustrate the key properties and
implications of the model. In particular, we are interested in assessing the benefit of
adopting the optimal dynamic cybersecurity investment policy.

2.5.1 Value function and optimal cybersecurity policy

Figure 2.3 displays the value function𝑉 and the optimal cybersecurity investment rate 𝑧∗.
In panels 2.3a and 2.3b we plot, respectively, 𝑉 and 𝑧∗ for fixed intensity 𝜆 = 27, varying 𝑡
and ℎ. Coherently with Remark 2.10, we observe that the value function is increasing in ℎ,
while the optimal investment rate is decreasing. This behavior reflects the fact that higher
cybersecurity levels yield greater benefits and reduce the need for further cybersecurity
investments. In panels 2.3c and 2.3d we plot, respectively, 𝑉 and 𝑧∗ for fixed ℎ = 0,
varying 𝑡 and 𝜆. Coherently with Remark 2.10, we observe that both the value function
and the optimal investment rate are increasing in 𝜆. This is explained by the fact that,
in the presence of a higher risk of cyberattacks, investing in cybersecurity becomes more
valuable due to the larger potential of mitigating expected losses. As can be seen from
panels 2.3e and 2.3f, both the value function and the optimal investment rate decrease
over time. This is due to the fact that, under the standard parameter configuration (see
Section 2.4), the residual utility 𝑈(𝐻𝑇) of cybersecurity plays a relatively minor role and,
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therefore, the value of additional cybersecurity investment declines as the end of the
planning horizon [0, 𝑇] approaches.

2.5.2 Parameter sensitivity

In the proposed model, the parameter 𝛽determines the clustering behavior of cyberattacks.
Specifically, higher values of 𝛽 correspond to a more rapid decay of the intensity following
each attack, thereby reducing the likelihood of temporally clustered attacks. To evaluate
the impact of clustered cyberattacks, we compare in Figure 2.4 the value function and
the optimal investment rate under two scenarios: 𝛽 = 15 (more clustered attacks) and
𝛽 = 50 (less clustered attacks). We observe that both the value function and the optimal
investment rate are substantially greater in the case 𝛽 = 15: if cyberattacks occur in
clustered patterns, it is optimal to invest more in cybersecurity in order to mitigate the risk
of large cumulative losses arising from rapid attack sequences. This finding underscores
the critical importance of accounting for clustering dynamics in the optimal management
of cyber-risk.

We also analyze the role of obsolescence in cybersecurity investment decisions, motiv-
ated by the analysis in Krutilla et al. (2021), which highlights its significance in a dynamic
setup. Figure 2.5 displays the value function and the optimal investment rate under two
contrasting depreciation scenarios: 𝜌 = 0 (no obsolescence) and 𝜌 = 1 (high obsoles-
cence).5 We observe that 𝜌 = 1 leads to smaller values for 𝑉 and 𝑧∗, in line with the
findings of Krutilla et al. (2021) in a deterministic setup. Our results confirm that a rapid
depreciation of cybersecurity effectiveness reduces both the expected net benefit and the
incentive to invest.

2.5.3 Comparison with a static investment strategy

The optimal investment rate 𝑧∗ characterized in Theorem 2.14 represents the real-time
adaptive cybersecurity policy that best responds to the arrival of cyberattacks. In order to
assess whether the adoption of an adaptive dynamic strategy provides a tangible benefit,
we compare it against the best constant investment strategy, i.e., the strategy 𝑧𝑡 = 𝑧̄, for all
𝑡 ∈ [0, 𝑇], that maximizes the benefit-cost trade-off functional 𝐽. When investing according

5In practical terms, a depreciation rate of 𝜌 = 1 implies that a given initial cybersecurity level 𝐻0
depreciates by over 73% over a one-year period.
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(b) Optimal control 𝑧∗𝑡(𝜆, ℎ) for 𝜆 = 27.
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(d) Optimal control 𝑧∗𝑡(𝜆, ℎ) for ℎ = 0.
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Figure 2.3: Value function and optimal investment rate computed under the standard
parameters set.
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Figure 2.4: Value function and optimal investment rate for 𝛽 = 15 and 𝛽 = 50, for fixed ℎ

and 𝜆.
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Figure 2.5: Value function and optimal investment rate for 𝜌 = 0 and 𝜌 = 1, for fixed ℎ and
𝜆.
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to a costant rate 𝑧̄, the benefit-cost trade-off functional 𝐽 takes the following form:

𝐽(𝑡 ,𝜆, ℎ; 𝑧̄) =
∫ 𝑇

𝑡

𝜂̄
(︁
𝑣 − 𝑆(𝐻𝑡 ,ℎ,𝑧̄

𝑠 , 𝑣)
)︁
E[𝜆𝑡 ,𝜆𝑠 ]d𝑠 − (𝑇 − 𝑡)(𝑧̄ + 𝛾

2 𝑧̄
2) +𝑈(𝐻𝑡 ,ℎ,𝑧̄

𝑇
), (2.19)

where the cybersecurity level 𝐻𝑡 ,ℎ,𝑧̄ is given by

𝐻𝑡 ,ℎ,𝑧̄
𝑠 = ℎ𝑒−𝜌(𝑠−𝑡) + 𝑧̄

𝜌
(1 − 𝑒−𝜌(𝑠−𝑡)).

The optimal constant investment rate 𝑧̄∗ solves the problem

𝐽(𝑡 ,𝜆, ℎ; 𝑧̄∗) := sup
𝑧̄∈R+

𝐽(𝑡 ,𝜆, ℎ; 𝑧̄). (2.20)

In view of Proposition 2.2, the expectation E[𝜆𝑡 ,𝜆𝑠 ] in (2.19) can be computed in closed
form. Therefore, the optimization problem (2.20) reduces to a deterministic maximization
with respect to a scalar variable, which can be easily solved numerically. To this effect, we
adopt the built-in global scalar optimizer scipy.optimize.differential_evolution in Python.

We quantify the relative gain obtained by investing according to the optimal dynamic
policy 𝑧∗ versus the constant policy 𝑧̄∗ by computing the following quantity:

%gain(𝑡 ,𝜆, ℎ) := 100 × 𝑉(𝑡 ,𝜆, ℎ) − 𝐽(𝑡 ,𝜆, ℎ; 𝑧̄∗)
𝐽(𝑡 ,𝜆, ℎ; 𝑧̄∗) . (2.21)

Figure 2.6 displays the relative gain over time for varying cybersecurity levels ℎ, for
𝜆 = 27 fixed. At the initial time 𝑡 = 0, the gain reaches 15% for ℎ = 0.5, 14% for
ℎ = 1, 12% for ℎ = 2, while it is 9.04% for ℎ = 5, 5.7% for ℎ = 10 and 2.6% for ℎ =

20. These results show that the optimal dynamic investment strategy 𝑧∗ consistently
outperforms the best constant strategy 𝑧̄∗, underscoring the importance of adaptive and
responsive cybersecurity investments. The fact that the gain is rather small for large
initial cybersecurity levels is coherent with the findings in Section 2.5.1: when the initial
cybersecurity level is already high, the benefit of further investments diminishes, thereby
reducing the relative advantage of the optimal policy. Moreover, a further analysis shows
that the gain increases monotonically with respect to 𝜆, indicating that the advantage
of adopting the dynamic optimal policy (2.17) becomes more pronounced in high-risk
scenarios.
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Figure 2.6: Relative gain with respect to the optimal constant investment rate.

2.5.4 Comparison with a standard Poisson model

To further assess the impact of clustered cyberattacks, we compare our model, which
features a self-exciting Hawkes process, with a simplified version based on a standard
Poisson process. A Poisson process 𝑃 = (𝑃𝑡)𝑡∈[0,𝑇] is characterized by a constant intensity
𝜆𝑃 and does not capture any temporal dependence in the arrival of attacks. Indeed,
conditionally on 𝑃𝑇 = 𝑛, the attack times are distributed as the order statistics of 𝑛 i.i.d.
random variables uniformly distributed on [0, 𝑇], for every 𝑛 ∈ N. This setup can be
recovered as a special case of the model introduced in Section 2.2.2 by setting 𝜉 = 0 and
𝛼 = 𝜆0 in the intensity dynamics (2.3).

We consider the same optimization problem as in Section 2.3 and we replace the
Hawkes process 𝑁 with a Poisson process 𝑃 of constant intensity 𝜆𝑃 and denote the
resulting optimal investment rate by 𝑧𝑃∗. A key observation is that, in this case, problem
(2.11) reduces to a deterministic optimal control problem. The associated value function,
𝑉𝑃(𝑡 , ℎ), solves the following PDE:

𝜕𝑉𝑃

𝜕𝑡
− 𝜌ℎ

𝜕𝑉𝑃

𝜕ℎ
+ 𝜆𝑃𝜂̄ (𝑣 − 𝑆(ℎ, 𝑣)) +

(︁
(𝜕𝑉𝑃

𝜕ℎ − 1)+
)︁2

𝛾
= 0,

𝑉𝑃(𝑇, ℎ) = 𝑈(ℎ). (2.22)
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This PDE can be numerically solved using a scheme similar to Algorithm 1. Analogously
to Theorem 2.14, the optimal investment rate 𝑧𝑃∗ in the Poisson model is given by

𝑧𝑃∗ =

(︂
𝜕𝑉𝑃

𝜕ℎ − 1
)︂+

𝛾
.

Remark 2.18. The optimal policy 𝑧𝑃∗ is deterministic. This is due to the fact that, in the
Poisson model, the occurrence of a cyberattack does not carry any informational content.

We compare the Hawkes-based model with two Poisson-based benchmarks:

(i) a Poisson model with intensity 𝜆𝑃
𝑏

chosen as

𝜆𝑃
𝑏
= 𝜆0 = 27; (2.23)

(ii) a Poisson model with intensity 𝜆𝑃𝑒 chosen as

𝜆𝑃𝑒 =
𝜆0𝛽

𝛽 − 𝜉
+ 1 − 𝑒−𝛽𝑇
𝑇(𝛽 − 𝜉)

(︃
𝜆0 −

𝜆0𝛽

𝛽 − 𝜉

)︃
≈ 61. (2.24)

The first case corresponds to a Poisson process with the same baseline intensity of the
Hawkes process. This scenario can be thought of as the situation where the entity un-
derestimates the likelihood of cyberattacks (possibly due to relying on a limited or un-
representative dataset) and considers it to be constant over time. In the second case, in
view of Proposition 2.5, the value 𝜆𝑃𝑒 is chosen so that E[𝑃𝑇] = E[𝑁𝑇], ensuring that the
Hawkes-based model and the Poisson model with intensity𝜆𝑃𝑒 generate the same expected
number of cyberattacks over the planning horizon [0, 𝑇]. This reflects a case where the
average attack frequency is estimated correctly, but the clustering dynamics are ignored.

We shall make use of the following notation:

• 𝑉𝑃
𝑏
(𝑡 , ℎ) is the value function associated to the PDE (2.22) for the Poisson model with

intensity 𝜆𝑃
𝑏

specified in (2.23) and 𝑧𝑃∗,𝑏𝑡 (ℎ) is the associated optimal control;

• 𝑉𝑃
𝑒 (𝑡 , ℎ) is the value function associated to the PDE (2.22) for the Poisson model with

intensity 𝜆𝑃𝑒 specified in (2.24) and 𝑧𝑃∗,𝑒𝑡 (ℎ) is the associated optimal control;

• 𝑉(𝑡 ,𝜆, ℎ) is the value function associated to the PIDE (2.16) and 𝑧∗𝑡(𝜆, ℎ) is the
associated optimal control.
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Value functions and optimal cybersecurity policies Figure 2.7 displays the results of
the comparison with the Poisson model (i) with intensity 𝜆𝑃

𝑏
. We observe that both the

value function and the optimal cybersecurity investment rate under the Hawkes-based
model consistently dominate their counterparts in the Poisson model (i) across the entire
planning horizon. This is a direct consequence of the fact that 𝜆𝑡 ≥ 𝜆𝑃

𝑏
, for all 𝑡 ∈ [0, 𝑇].

In other words, the Poisson model (i) not only disregards the temporal clustering of
cyberattacks, but also systematically underestimates their frequency. As a result, the
perceived benefit of cybersecurity investment is lower, leading in turn to a suboptimal
investment strategy.

Figure 2.8 reports the comparison with the Poisson model (ii) with intensity 𝜆𝑃𝑒 . Panels
2.8a and 2.8b show that the benefit of cybersecurity investment and the optimal invest-
ment rate are slightly greater in the presence of clustered attacks (Hawkes-based model).
This finding is confirmed in Panels 2.8e and 2.8f, which compare the value functions and
optimal investment rates for fixed values 𝜆 = 𝜆𝑃𝑒 and ℎ = 0. Further insight is provided
by panels 2.8c and 2.8d, which display respectively the value functions and the optimal
investment rates at the initial time 𝑡 = 0, across varying intensity levels. We can observe
that the difference between the Hawkes and the Poisson models is negligible for small
values of 𝜆, while it becomes increasingly pronounced at higher values of 𝜆. Interest-
ingly, panel 2.8d shows that the optimal investment rate under the Hawkes model may be
either higher or lower than that in the Poisson model, depending on whether the current
intensity 𝜆 exceeds 𝜆𝑃𝑒 or not. This feature will be analyzed in more detail in Section 2.5.4
below. Overall, these findings indicate that even when the average attack intensity is cor-
rectly estimated, neglecting the temporal clustering of cyberattacks can lead to suboptimal
cybersecurity investment decisions.

Relative gain Proceeding similarly to Section 2.5.3, we now evaluate the additional
benefit derived from implementing the optimal adaptive policy 𝑧∗, as defined in (2.17),
relative to the dynamic but deterministic policy 𝑧𝑃∗ derived in a Poisson-based model.
We assume that the underlying model is the one introduced in Section 2.2.2 and compute
the value function 𝑉 given in (2.14) via Algorithm 1, using the standard parameter set
described in Section 2.4. When employing the deterministic strategy 𝑧𝑃∗, the expected net
benefit from cybersecurity investment is quantified as follows:

𝐽(𝑡 ,𝜆, ℎ; 𝑧𝑃∗) =
∫ 𝑇

𝑡

(︂
𝜂̄(𝑣 − 𝑆(𝐻𝑡 ,ℎ,𝑧𝑃∗

𝑠 , 𝑣))E[𝜆𝑡 ,𝜆𝑠 ]
)︂

d𝑠

−
∫ 𝑇

𝑡

(︂
𝑧𝑃∗𝑠 + 𝛾

2 (𝑧
𝑃∗
𝑠 )2

)︂
d𝑠 +𝑈

(︁
𝐻𝑡 ,ℎ,𝑧𝑃∗

𝑇

)︁
,
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where 𝐻𝑡 ,ℎ,𝑧𝑃∗
𝑠 is defined as in (2.12) with 𝑧 = 𝑧𝑃∗ and E[𝜆𝑡 ,𝜆𝑠 ] can be computed explicitly

by Proposition 2.2. Once the PDE (2.22) is numerically solved, 𝑧𝑃∗ can be computed
via Algorithm 2 taking 𝜆 constant. Our numerical implementation of the Poisson-based
model adopts the following specification:

ℎmin ℎmax Δℎ 𝜆min 𝜆max Δ𝜆 𝑡init 𝐻init 𝜆𝑡(𝜔)
0 50 0.5 27 216 1 𝑡 ℎ 𝜆𝑃

Table 2.5: Meta-parameters for Algorithm 2.

The gain of the optimal investment policy 𝑧∗ with respect to 𝑧𝑃∗ is computed as follows,
in analogy to (2.21):

%gain𝑃(𝑡 ,𝜆, ℎ) := 100 × 𝑉(𝑡 ,𝜆, ℎ) − 𝐽(𝑡 ,𝜆, ℎ; 𝑧𝑃∗)
𝐽(𝑡 ,𝜆, ℎ; 𝑧𝑃∗) . (2.25)

Figure 2.9 reports the quantity %gain𝑃(𝑡 ,𝜆, ℎ) comparing the Hawkes-based model against
two Poisson-based benchmarks with intensities𝜆𝑃

𝑏
and𝜆𝑃𝑒 , as considered above. For ℎ = 0,

the gain increases with 𝜆, ranging between 7.6% and 11.4% for 𝜆𝑃
𝑏
, and between 0.04%

and 0.6% for 𝜆𝑃𝑒 . For ℎ = 20, the gain becomes nearly constant in 𝜆. The fact that the gain
for 𝜆𝑃𝑒 is limited can be explained by the fact that the objective functional (2.8) is linear
with respect to the losses and 𝜆𝑃𝑒 is chosen in such a way that the Poisson-based model
generates the same expected losses of our Hawkes-based model.

Adaptive dynamics of the optimal investment policy Finally, we illustrate the adaptive
behavior of the optimal investment policy given in equation (2.17). While the overall
improvement over a Poisson-based strategy may appear limited in terms of overall gain
(see Figure 2.9), the key strength of our approach lies in its capacity to dynamically adjust
the cybersecurity investment in response to the arrival of cyberattacks. To this effect,
panels 2.10a and 2.11a display two simulated paths of the Hawkes intensity (𝜆𝑡)𝑡∈[0,𝑇],
alongside the constant intensities 𝜆𝑃

𝑏
and 𝜆𝑃𝑒 defined in Section 2.5.4. The corresponding

optimal investment policies are shown in panels 2.10b and 2.11b. Consistent with the
analysis in Section 2.5.4, the optimal investment rate 𝑧∗𝑡 is always larger than the Poisson-
based benchmark 𝑧𝑃∗

𝑏
, due to the fact that 𝜆𝑡 ≥ 𝜆𝑃

𝑏
, for all 𝑡 ∈ [0, 𝑇]. In contrast, the

comparison with the benchmark strategy 𝑧𝑃∗𝑒 is more nuanced. We highlight in cyan
the time intervals during which 𝜆𝑡 > 𝜆𝑃𝑒 . Our simulations reveal that when 𝜆𝑡 ≤ 𝜆𝑃𝑒 ,
the adaptive strategy 𝑧∗𝑡 closely aligns with 𝑧𝑃∗𝑒 . However, when 𝜆𝑡 > 𝜆𝑃𝑒 , especially
during extended periods resulting from clusters of cyberattacks, the investment rate 𝑧∗𝑡
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Figure 2.9: Relative gain with respect to the Poisson deterministic strategy, as defined in
(2.25).

increases markedly, exceeding the corresponding deterministic strategy. This shows that
the optimal cybersecurity investment policy 𝑧∗𝑡 can react in real-time to rapid sequences
of cyberattacks. Finally, under the standard parameter set, the investment rate naturally
declines toward the end of the planning horizon [0, 𝑇], as the accumulated cybersecurity
level suffices to mitigate future risk.

2.6 Conclusions

In this work, we introduce a dynamic and stochastic extension of the Gordon–Loeb model
Gordon and Loeb (2002) for optimal cybersecurity investment, incorporating temporally
clustered cyberattacks via a Hawkes process. Our modeling framework captures the em-
pirically observed phenomenon of attack bursts, thus offering a more realistic represent-
ation of the current cyber-risk environment. We formulate the cybersecurity investment
decision problem as a two-dimensional stochastic optimal control problem, maximizing
the expected net benefit of cybersecurity investments. We allow for adaptive investment
policies that respond in real-time to the arrival of cyberattacks.

Our numerical results demonstrate that the optimal cybersecurity investment policy
consistently outperforms both static benchmarks and Poisson-based models that ignore
clustering. In particular, even when Poisson models are calibrated to match the expected
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attack frequency, they fail to capture the implications of attack clustering on investment
timing and magnitude, thus leading to suboptimal investment decisions. Our findings
indicate that the optimal dynamic strategy is able to react promptly to attack clusters,
offering substantial improvements in expected net benefit in high-risk scenarios. Overall,
our results underscore the importance of accounting for dynamic and stochastic threat
patterns in cybersecurity planning. The proposed framework supports risk managers and
policymakers in designing responsive cybersecurity investment strategies tailored to the
evolving cyber-risk landscape.

Future research directions include a rigorous theoretical investigation of the control
problem. In this work, most results have been derived under the assumption of sufficient
regularity of the value function. Nevertheless, such regularity is not guaranteed in general.
A natural next step is to study the viscosity solutions of the associated PIDE. In the case
of control with Hawkes processes, only partial results on viscosity solutions are available,
see Bensoussan and Chevalier-Roignant (2024), Houssard et al. (2025) and Gaïgi et al.
(2025), and, to the best of our knowledge, none of them is directly applicable in our
case. Advancing this line of research could provide a more solid theoretical foundation
for control problems with self-exciting jumps and rigorously justify the assumptions
employed in this work. On the more applicative side, further developments might regard
the empirical calibration to sector-specific cyber incident data, the consideration of risk-
aversion with respect to losses resulting from cyberattacks, and the integration of cyber-
insurance as a complementary tool for risk mitigation (see Awiszus et al. (2023), Dou
et al. (2020), Mazzoccoli and Naldi (2020), Miaoui and Boudriga (2019), Öğüt et al. (2011)
and Skeoch (2022) for some recent studies in this direction). Our framework can also be
applied from the viewpoint of an insurance firm which provides insurance against losses
due to cyberattacks, thus laying the foundations for the development of Cramér-Lundberg-
type models (see, e.g., Mikosch (2009)) for cyber-insurance. Finally, our modeling setup
can also be extended to multivariate Hawkes processes (as considered in Embrechts et
al. (2011), or in the more general versions of Bielecki et al. (2022) and Bielecki et al.
(2023)) to differentiate among multiple types of cyberattacks (see Bentley et al. (2020) for
a multivariate generalization of the static Gordon-Loeb model).
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Figure 2.10: Simulated intensity path and optimal strategy (trajectory 1).
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Figure 2.11: Simulated intensity path and optimal strategy (trajectory 2).
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CHAPTER 3

Stable measure transformations for affine
jump-diffusions

The work is an ongoing research project with Prof. Claudio Fontana.
Affine processes are Markov processes whose characteristic functions admit an expo-

nentially affine dependence on the initial state. This structural property underlies their
widespread use in applications, as it ensures a balance between model flexibility and ana-
lytical tractability. This naturally raises the question of whether the affine property can be
preserved under equivalent changes of probability measures. In this work, we provide a
full characterization of the class of locally equivalent probability measures that preserve
the affine structure in a general jump–diffusion setting. We generalize existing results in
the literature by providing necessary and sufficient conditions for admissible transform-
ations, yielding an explicit and verifiable criterion that enhances the applicability of our
work across multiple areas.
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3.1 Introduction

Affine processes are a class of Markov processes whose characteristic function has expo-
nentially affine dependence on the initial state. While special cases of affine processes
had been studied earlier in the literature, a general definition was first formalized in
Duffie, Filipović et al. (2003). Due to their analytical tractability and modeling flexibil-
ity, affine processes were largely employed in mathematical finance and probability, see
e.g. Cuchiero et al. (2011), Duffie, Pan et al. (2000), Filipovic and Mayerhofer (2009),
Keller-Ressel (2008) and Keller-Ressel and Mayerhofer (2015). Their key feature is that
their characteristic function can be expressed in terms of a system of generalized Riccati
differential equations, which allows for semi-closed form solutions. This mathematical
structure makes affine processes a powerful tool across various fields. They have been
extensively used interest rates modeling, with classical examples including the models in
Vasicek (1977), J. C. Cox et al. (1985) and Dai and Singleton multivariate extension, Dai and
Singleton (2000). In credit risk, they underlie intensity-based models, see Duffie (2005).
In asset pricing, many widely used models are affine, such as the Black–Scholes model,
exponential Lévy models, Cont and Tankov (2003), Heston (1993), and Bates (1996). They
have also found applications in insurance, particularly in longevity and mortality risk
modeling, see Biffis (2005), Schrager (2006) and Luciano and Vigna (2008).

The aforementioned mathematical structure enables efficient calculations, and it is
therefore desirable to be maintained when performing changes of measure. In many
financial and actuarial applications, it is necessary to move from the real-world measure
P to a risk-neutral measure Q. Usually, statistical estimation and risk management is
performed under the real-world measure, while pricing is carried under the the risk-
neutral probability. In the context of credit risk, the survival probabilities are computed
under P, while the arbitrage-free valuation of financial derivatives is performed under
Q. Similarly, in interest rates modeling, statistical estimation is performed under the
physical measure, and financial products are evaluated under the risk-neutral one. In life
insurance, models are estimated using demographic data under the real-world measure,
whereas the valuation of insurance products or longevity-related securities are performed
under Q. In arbitrage theory, the change of measure from P to an equivalent martingale
measure Q is fundamental to ensure the absence of arbitrage opportunities and to express
discounted asset prices as Q-martingales. Beyond finance and insurance, the preservation
of the affine structures under changes of measure is also highly desirable in other fields,
such as stochastic control. We refer, for instance, to risk-sensitive control problems, see
Fleming and Soner (2006, Section VI.2), where changing measure allows to solve a more
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tractable control problem. Preservation of the affine structure under measure changes is
therefore highly desirable, both for tractability and practical implementation.

The aim of this chapter is to characterize the family of all locally equivalent probability
measures under which the affine structure is preserved. The task is not trivial and a
complete characterization is not found in the literature, although several papers address
related issues. In Palmowski and Rolski 2002, the authors discuss absolute continuity
for general classes of Markov processes. They employ an exponential martingale as the
density process and show that, under mild assumptions, the process remains Markov
under the new equivalent measure. In Cheridito, Filipović and Yor (2005), the authors
study the sufficient conditions for two processes to be absolutely continuous. The problem
is analyzed in a general framework where the considered processes are defined as solu-
tions to martingale problems, without imposing semimartingale assumptions. This work
provides a general and useful result, nevertheless we suppose that weaker and more ex-
plicit conditions can be found when considering an affine structure, and most importantly,
necessary conditions can be derived. A first contribution is this direction is provided by
Cheridito, Filipović and Kimmel (2007), where they characterize the equivalent measure
changes that preserve affine structure for affine diffusive processes. Their argumentation,
particularly Theorem 1, refines and contextualizes the results of Cheridito, Filipović and
Yor (2005, Theorem 2.4) in a more structured context. We aim at establishing an analogous
result in general jump-diffusion setting.

A similar problem is tackled in Fontana (2012), where the author studies an analogous
characterization in the context of credit risk. In particular, the work considers an intensity-
based model in which the default intensity is a linear function of an affine diffusion
process and studies which changes of measures maintains the affine structure. Also
the preservation of the immersion property under a change of measure is addressed.
The work represents an initial example of structure-preserving measure changes for affine
jump processes, and the approach can be generalized to a broader class of affine processes.

In a general affine semimartingale setting, sufficient conditions for the preservation
of the affine structure under a change of measure have been obtain in Kallsen and
Muhle-Karbe (2010, Section 4). The authors show that, under certain conditions, the
stochastic exponential of an affine process can serve as the Radon–Nikodym derivative
for a structure-preserving change of measure. While this approach identifies some valid
changes of measure, it does not provide a full characterization of all such transformations.

To give a broader point of view on the topic, we recall that this structure-preserving
change of measure characterization is connected to the question of whether a positive
exponential local martingale is a true martingale and, hence, can be used as the density
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process for an equivalent change of measure. This problem has been central in stochastic
calculus, with foundational contributions by Novikov (1973) and Kazamaki (1977), and
generalizations to semimartingales with jumps made by Lépingle and Mémin (1978),
Mémin and Shiryaev (1979) and Mémin (2006). Comprehensive treatments on the topic
are provided in Protter (2005, Section III.8), Revuz and Yor (2013, Chapter VIII). The
problem has also been largely studied in the context of mathematical finance, see e.g.
Kallsen and Shiryaev (2002), Cheridito, Filipović and Yor (2005), Protter and Shimbo
(2008), Blei and Engelbert (2009), Kallsen and Muhle-Karbe (2010), Mĳatović and Urusov
(2012) and Mayerhofer et al. (2011).

Our contribution lies in characterizing all stable measure transformations in a multi-
dimensional affine setting, assuming some boundary non-attainment condition on the
process. The chapter is structured as follows: In Section 3.2, we introduce the main no-
tions connected to affine processes and discuss some sufficient boundary non-attainment
conditions. In Section 3.3, we state and prove the main theorems, which characterize all
the structure-preserving measure transformations. In Section 3.4, we discuss how our
results relate the existing literature. In Section 3.5, we apply of our main findings to key
jump-diffusion models.

3.1.1 Notation

Throughout the chapter, we use the following notation, consistent with Jacod and Shiryaev
(2013).

• 𝐿2
loc(𝑊) is the set of all predictable processes 𝐻 such that the process 𝐻 · ⟨𝑊,𝑊⟩ is

locally integrable, where𝑊 is a 𝑑-dimensional Brownian motion.

• ℳ(P) is the set of uniformly integrable martingales with respect to a probability
measure P. ℳloc(P) denotes the class of local martingales, obtained by localizing
ℳ(P).

• 𝒜loc(P) is the set of adapted processes with locally integrable variation with respect
to a probability measure P.

• 𝐺loc(𝜇) denotes the set of predictable functions locally integrable with respect to
the compensated random measure 𝜇 − 𝜈 in the sense of Jacod and Shiryaev (2013,
Definition II.1.27).
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3.2 Affine processes and boundary non-attainment condi-
tions

Let (Ω,ℱ , P) be a probability space. Let 𝑊P be a 𝑑-dimensional Brownian motion and 𝜇

a random measure supported on the probability space. We call an affine jump-diffusion a
solution to the SDE having the following structure

d𝑋𝑡 = (𝑏 + 𝐴𝑋𝑡)d𝑡 + 𝜎(𝑋𝑡)d𝑊P
𝑡 +

∫
𝐸

𝜉𝜇(d𝑡 , d𝜉), 𝑋0 ∈ 𝐸 (3.1)

where 𝐸 ⊆ R𝑑 is the state space of the process, 𝑏 ∈ R𝑑 , 𝐴 ∈ R𝑑×𝑑, the covariation is given
by

𝜎(𝑥)𝜎(𝑥)⊤ = Σ0 +
𝑑∑︂
𝑖=1

Σ𝑗𝑥 𝑗 ,

for Σ𝑗 ∈ R𝑑×𝑑, 𝑗 ∈ 0, . . . , 𝑑, and the random measure 𝜇 is associated to the following
compensating measure

𝜈P(d𝑡 , d𝜉) = 𝜃0(d𝜉) +
𝑑∑︂
𝑗=1

𝜃𝑗(d𝜉)𝑋𝑡−, (3.2)

for some measures 𝜃𝑗(d𝜉) on E. Equation (3.1) does not admit strong solution in general,
nor is uniqueness guaranteed. Moreover, not every subset 𝐸 of R𝑑 is an admissible state
space. In Duffie, Filipović et al. (2003), the authors study a set of admissibility conditions,
i.e. they provide some conditions on the parameters in order for the problem to admit
strong solution and uniqueness in law. In this work, we focus only on the solutions
of affine SDEs having values in 𝐸 = R𝑚++ × R𝑑−𝑚 , for a certain 𝑚 ∈ {1, . . . , 𝑑}, where
R𝑚++ := {𝑥 ∈ R𝑚 : 𝑋 𝑖 > 0, ∀𝑖 = 1, . . . , 𝑚}. In particular, we highlight in Assumption A the
sufficient conditions for the non-negative components of the 𝑋 process to never reach the
boundary.

Assumption A. Consider:

(A1) A set of 𝑑 + 1 matrices Σ𝑗 ∈ R𝑑×𝑑 , 𝑗 = 0, . . . , 𝑑 such that:

(a) Σ𝑗 for 𝑗 = 0, . . . , 𝑚 are symmetric positive semi-definite, withΣ𝑗 positive definite
for at least one 𝑗.

(b) Σ𝑗 = 0 if 𝑗 ≥ 𝑚 + 1.
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(A2) 𝜎(𝑥)𝜎(𝑥)𝑇 = Σ0 +
∑︁𝑚
𝑗=1 Σ𝑗𝑥 𝑗 , 𝜎𝑖 𝑗(𝑥) = 𝛿𝑖 𝑗

√︂
Σ𝑖𝑖
𝑖
𝑥𝑖 for 𝑖 ∈ {1, . . . , 𝑚} and 𝑗 ∈ {1, . . . , 𝑑},

where 𝛿𝑖 𝑗 = 1 if 𝑖 = 𝑗 and 0 otherwise.

(A3) A 𝑑-dimensional vector 𝑏 such that 𝑏𝑖 ≥ 1
2Σ

𝑖𝑖
𝑖
, for 𝑖 ∈ {1, . . . , 𝑚}.

(A4) A matrix 𝐴 such that 𝐴𝑖 𝑗 = 0, for 𝑖 ∈ {1, . . . , 𝑚} and 𝑗 ∈ {𝑚 + 1, . . . , 𝑑}, and 𝐴𝑖 𝑗 ≥ 0
for 𝑖 , 𝑗 ∈ {1, . . . , 𝑚} with 𝑖 ≠ 𝑗.

(A5) A Borel measure 𝑚 on 𝐸 and 𝑑 + 1 non-negative measurable functions 𝑚 𝑗 : 𝐸 → R+,
𝑗 = 0, . . . 𝑚 such that:

(a) (𝑚0(𝜉), . . . , 𝑚𝑚(𝜉)) ∈ R𝑚+ \ {(0, . . . , 0)}∀𝜉 ∈ 𝐸.

(b) 𝑚 𝑗(𝜉) ≡ 0 for 𝑗 ≥ 𝑚 + 1.

(c) Let 𝐾(𝑥, d𝜉) =
(︂
𝑚0(𝜉) +

∑︁𝑚
𝑗=1 𝑚 𝑗(𝜉)𝑥 𝑗

)︂
𝑚(d𝜉),∫

𝐸

(1 ∧ ||𝜉| |)𝐾(𝑥, d𝜉) < ∞ ∀𝑥 ∈ 𝐸. (3.3)

Remark 3.1. In Assumption (A2), we require 𝜎 to have a diagonal structure. This allows
to consider simpler Feller conditions, see Assumption (A3). In Assumption (A5)(c), we
ask for the compensating measure to be absolutely continuous with respect to a Borel
measure 𝑚, which satisfies appropriate integrability conditions. This structure can be
obtained starting from equation (3.2), defining 𝑚 :=

∑︁𝑚
𝑗=0 𝜃𝑗(d𝜉). By construction, 𝜃𝑗 ,

𝑗 = 0, . . . , 𝑚, are absolutely continuous with respect to 𝑚. We also highlight condition
(3.3), which allows us to consider no truncation function, see Sato (1999, Remark 8.4).

Consider a tuple

⎛⎜⎝𝑏 + 𝐴𝑥,Σ0 +
𝑚∑︂
𝑗=1

Σ𝑗𝑥 𝑗 ,
⎛⎜⎝𝑚0(𝜉) +

𝑚∑︂
𝑗=1

𝑚 𝑗(𝜉)𝑥 𝑗⎞⎟⎠𝑚(d𝜉)⎞⎟⎠
which satisfies Assumption A. Exploiting the key result provided in Duffie, Filipović et al.
(2003, Theorem 2.7), we conclude that the SDE (3.1) associated with this set of parameters
admits a strong solution on the given probability space, provided that the jump measure
𝜇 has compensator

𝜈P(d𝑡 , d𝜉) = ⎛⎜⎝𝑚0(𝜉) +
𝑚∑︂
𝑗=1

𝑚 𝑗(𝜉)𝑥 𝑗⎞⎟⎠𝑚(d𝜉)d𝑡.
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The same theorem also guarantees uniqueness in law for the process 𝑋 under P. We
can also establish that, under Assumption A, 𝑋 is strictly positive process. Consider the
Cox–Ingersoll–Ross process 𝑌 given by

𝑌𝑡 = 𝑋0 +
∫ 𝑡

0
(𝑏 + 𝐴𝑌𝑠)d𝑠 +

∫ 𝑡

0
𝜎(𝑌𝑠)d𝑊P

𝑠 .

By Assumption (A3), it follows from J. C. Cox et al. (1985, Section 3) that 𝑌 𝑖𝑡 > 0 for all
𝑡 ≥ 0, 𝑖 ∈ {1, . . . , 𝑚}. Since the jump measure𝜇 introduces only non-negative jumps due to
Assumption (A5), 𝑋 𝑖

𝑡 ≥ 𝑌 𝑖𝑡 > 0 for all 𝑡 ≥ 0, 𝑖 ∈ {1, . . . , 𝑚}. We observe that Assumptions
(A3) and (A5) are sufficient boundary non-attainment conditions and guarantee that the
first 𝑚 components of 𝑋 are always strictly positive.

3.3 Stable measure transformation

Notation. Whenever we refer to two sets of parameters, we mean two tuples

⎛⎜⎝𝑏P + 𝐴P𝑥,Σ0 +
𝑚∑︂
𝑗=1

Σ𝑗𝑥 𝑗 ,
⎛⎜⎝𝑚P

0 (𝜉) +
𝑚∑︂
𝑗=1

𝑚P
𝑗 (𝜉)𝑥 𝑗

⎞⎟⎠𝑚(d𝜉)⎞⎟⎠ ,
⎛⎜⎝𝑏Q + 𝐴Q𝑥,Σ0 +

𝑚∑︂
𝑗=1

Σ𝑗𝑥 𝑗 ,
⎛⎜⎝𝑚Q

0 (𝜉) +
𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑥 𝑗⎞⎟⎠𝑚(d𝜉)⎞⎟⎠ .

The first one is associated to a probability measure P, while the second to a measure Q.
We will not indicate the probability measure for covariation terms, since these remain
unchanged under an equivalent measure change.

Consider a finite horizon 𝑇 > 0. Let (𝑋𝑡)𝑡∈[0,𝑇] denote the affine process given as the
unique strong solution on [0, 𝑇] of the SDE (3.1) for the set of parameters(︂
𝑏P + 𝐴P𝑥,Σ0 +

∑︁𝑚
𝑗=1 Σ𝑗𝑥 𝑗 ,

(︂
𝑚P

0 (𝜉) +
∑︁𝑚
𝑗=1 𝑚

P
𝑗
(𝜉)𝑥 𝑗

)︂
𝑚(d𝜉)

)︂
which satisfies Assumption A.

We aim to characterize all the locally equivalent probability measures Q ∼loc P, under
which 𝑋 preserves its affine structure in the sense of Definition 3.2. We show that 𝑋
maintains its affine structure under such a measure Q if and only if the associated density
process 𝑍 satisfies Property B, precisely stated below.

Definition 3.2. Let Q be a probability measure on (Ω,ℱ ). We say that the process 𝑋 has
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an affine structure with respect to Q if it satisfies on (Ω,ℱ ,Q) an affine SDE of the type

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
(𝑏Q + 𝐴Q𝑋𝑠)d𝑠 +

∫ 𝑡

0
𝜎(𝑋𝑠)d𝑊Q

𝑠 +
∫ 𝑡

0

∫
𝐸

𝜉𝜇(d𝑠, d𝜉), 𝑡 ∈ [0, 𝑇], (3.4)

where
(︂
𝑏Q + 𝐴Q𝑥,Σ0 +

∑︁𝑚
𝑗=1 Σ𝑗𝑥 𝑗 ,

(︂
𝑚

Q
0 (𝜉) +

∑︁𝑚
𝑗=1 𝑚

Q
𝑗
(𝜉)𝑥 𝑗

)︂
𝑚(d𝜉)

)︂
are some parameters

satisfying Assumption A, 𝑊Q is a Q-Brownian motion, 𝜇 a random measure having
compensator 𝜈Q(d𝑡 , d𝜉) =

(︂
𝑚

Q
0 (𝜉) +

∑︁𝑚
𝑗=1 𝑚

Q
𝑗
(𝜉)𝑥 𝑗

)︂
𝑚(d𝜉)d𝑡.

Property B. Consider two sets of parameters which satisfy Assumption A. We consider a
density process

𝑍𝑡 = ℰ
(︃∫ 𝑡

0
𝜙(𝑋𝑠−)⊤d𝑊P

𝑠 +
∫ 𝑡

0

∫
𝐸

𝜓(𝑋𝑠−, 𝜉) · (𝜇(d𝑠, d𝜉) − 𝜈P(d𝑠, d𝜉))
)︃
, (3.5)

where the R𝑑-valued function 𝜙 : 𝐸 → R𝑑 has the following form

𝜙(𝑋𝑠−) = 𝜎(𝑋𝑠−)−1(𝑏Q − 𝑏P + (𝐴Q − 𝐴P)𝑋𝑠−), (3.6)

while the function 𝜓 : 𝐸 × 𝐸 → (−1,+∞) must be of the following kind

𝜓(𝑋𝑠−, 𝜉) =
𝑚

Q
0 (𝜉) +

∑︁𝑚
𝑗=1 𝑚

Q
𝑗
(𝜉)𝑋 𝑗

𝑠−

𝑚P
0 (𝜉) +

∑︁𝑚
𝑗=1 𝑚

P
𝑗
(𝜉)𝑋 𝑗

𝑠−
− 1. (3.7)

The functions 𝜙 and 𝜓 are well-defined thanks to Assumption A.

In Theorem 3.3 we prove that, when the density process 𝑍 is constructed to satisfy
Property B, the resulting probability measure Q is locally equivalent to P and preserves
the affine structure of 𝑋.

Theorem 3.3. Consider two sets of parameters which satisfy Assumption A. Let 𝑋 be the strong
unique solution of the SDE (3.1) under the measure P, with the corresponding parameters, and 𝑍
a process which satisfies Property B. Assume that the following condition holds:

∫
𝐸

⎛⎜⎝
⌜⃓⎷
𝑚

Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑥 𝑗 −

⌜⃓⎷
𝑚P

0 (𝜉) +
𝑚∑︂
𝑗=1

𝑚P
𝑗
(𝜉)𝑥 𝑗⎞⎟⎠

2

𝑚(d𝜉) < ∞ (3.8)

for every 𝑥 ∈ 𝐸. Then, 𝑍 is the density process with respect to P of a locally equivalent probability
measure Q and 𝑋 satisfies the SDE (3.4) under Q.
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Proof. We consider the process 𝑍 as defined in equation (3.5) and assume that it satisfies
Property B. If we show that 𝑍 is a P-martingale, then the measure Q := 𝑍𝑇 · P defines
a probability measure equivalent to P. Consequently, it follows by Jacod and Shiryaev
(2013, Theorem III.3.24) that:

• The process

𝑊
Q
𝑡 =𝑊P

𝑡 −
∫ 𝑡

0
𝜙(𝑋𝑠)d𝑠 =𝑊P

𝑡 −
∫ 𝑡

0
𝜎(𝑋𝑠)−1(𝑏Q − 𝑏P + (𝐴Q − 𝐴P)𝑋𝑠)d𝑠

is a Brownian motion under Q.

• The compensator of the jump measure under Q is given by

𝜈Q(d𝑠, d𝜉) = (𝜓(𝑋𝑠−, 𝜉) + 1) · 𝜈P(d𝑠, d𝜉) = ⎛⎜⎝𝑚Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑋 𝑗

𝑠−
⎞⎟⎠𝑚(d𝜉)d𝑠.

• Under Q, 𝑋 solves equation (3.4) for every 𝑡 ∈ [0, 𝑇].

We consider the auxiliary process 𝑋̃ under the probability measure P.

𝑋̃ 𝑡 = 𝑋0 +
∫ 𝑡

0
(𝑏Q + 𝐴Q𝑋̃ 𝑠)d𝑠 +

∫ 𝑡

0
𝜎(𝑋̃ 𝑠)d𝑊P

𝑠 +
∫ 𝑡

0

∫
𝐸

𝜉𝜇̃(d𝑠, d𝜉),

where 𝜇̃ is a jump measure having compensator 𝜈Q under P. Exploiting the existence
and uniqueness result of Duffie, Filipović et al. (2003, Theorem 2.7), presented in Section
3.2, we can state that the distribution of 𝑋̃ is unique under P and that 𝑋̃ 𝑗 for 𝑗 ∈ {1, . . . , 𝑚}
is strictly positive. For each 𝑛 ≥ 1, we define

𝑈𝑛 :=
(︃

1
𝑛
, 𝑛

)︃𝑚
× (−𝑛, 𝑛)𝑑−𝑚

and two families of stopping times as

𝜏𝑛 = inf{𝑡 > 0 : 𝑋𝑡 ∉ 𝑈𝑛 or 𝑋𝑡− ∉ 𝑈𝑛} ∧ 𝑛 ∧ 𝑇, (3.9)

𝜏̃𝑛 = inf{𝑡 > 0 : 𝑋̃ 𝑡 ∉ 𝑈𝑛 or 𝑋̃ 𝑡− ∉ 𝑈𝑛} ∧ 𝑛 ∧ 𝑇.

The stopping times satisfy

lim
𝑛→∞

P(𝜏𝑛 = 𝑇) = lim
𝑛→∞

P(𝜏̃𝑛 = 𝑇) = 1. (3.10)
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We observe that the function 𝜙 as defined in equation (3.6), is continuous in 𝑈𝑛 thus
bounded in the set. We can state that for all 𝑛 > 0, it exists 𝐾𝑛 ∈ R+ such that

𝜙(𝑥)⊤𝜙(𝑥) < 𝐾𝑛

for all 𝑥 ∈ 𝑈𝑛 . Therefore, by Jacod and Shiryaev (2013, Theorem I.4.40 b)), the stochastic
integral

∫ ·
0 𝜙(𝑋𝑡−)⊤d𝑊P

𝑡 is well-defined as a local martingale under P. We can also state
that for every 𝑥 ∈ 𝑈𝑛 , it exists 𝑀𝑛 > 0 such that

∫
𝐸

⎛⎜⎝
⌜⃓⎷
𝑚

Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑥 𝑗 −

⌜⃓⎷
𝑚P

0 (𝜉) +
𝑚∑︂
𝑗=1

𝑚P
𝑗
(𝜉)𝑥 𝑗⎞⎟⎠

2

𝑚(d𝜉) < 𝑀𝑛 .

The latter property will be proved in Lemma 3.4. This inequality implies that∫ 𝑇∧𝜏𝑛

0

∫
𝐸

(1 −
√︁
𝜓(𝑋𝑡−, 𝜉) + 1)2𝜈P(d𝑡 , d𝜉)

=

∫ 𝑇∧𝜏𝑛

0

∫
𝐸

⎛⎜⎝
⌜⃓⎷
𝑚

Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑥 𝑗 −

⌜⃓⎷
𝑚P

0 (𝜉) +
𝑚∑︂
𝑗=1

𝑚P
𝑗
(𝜉)𝑥 𝑗⎞⎟⎠

2

𝑚(d𝜉)d𝑡 ≤ 𝑀𝑛𝑇

(3.11)

for all 𝑛. Applying Jacod and Shiryaev (2013, Theorem II.1.33, d)), this implies that
𝜓(𝑋𝑡−, 𝜉) ∈ 𝐺loc(𝜇) under P and therefore the stochastic integral∫ ·

0

∫
𝐸

𝜓(𝑋𝑡−, 𝜉)(𝜇(d𝑡 , d𝜉) − 𝜈P(d𝑡 , d𝜉))

is well-defined as a local martingale under P. Exploiting Jacod and Shiryaev (2013,
Theorem I.4.61), we can conclude that 𝑍 as defined in equation (3.5), is a well-defined,
strictly positive local martingale under P, hence a supermartingale. To prove that 𝑍 is a
true martingale, it suffices to verify that EP[𝑍𝑇] = 1. We define the process

𝑍𝑛𝑡 = ℰ
(︄ ∫ 𝑡

0
𝜙(𝑋𝑠−)⊤1{𝑠≤𝜏𝑛} d𝑊P

𝑠

+
∫ 𝑡

0

∫
𝐸

𝜓(𝑋𝑠−, 𝜉)1{𝑠≤𝜏𝑛} · (𝜇(d𝑠, d𝜉) − 𝜈P(d𝑠, d𝜉))
)︄
. (3.12)

It can be proved that 𝑍𝑛
𝑇

is a P-martingale, see Lemma 3.5, and that Q𝑛 = 𝑍𝑛
𝑇
· P is a
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probability measure equivalent to P. Under Q𝑛 :

• 𝑊𝑛
𝑡 =𝑊P

𝑡 −
∫ 𝑡

0 𝜙(𝑋𝑠−)1{𝑠≤𝜏𝑛}d𝑠 is a Brownian motion.

• The compensating measure is given by 𝜈𝑛(d𝑡 , d𝜉) = (𝜓(𝑋𝑡−, 𝜉)1{𝑡≤𝜏𝑛} + 1)𝜈P(d𝑡 , d𝜉).

We can write the process 𝑋 under the measure Q𝑛 , stopped at time 𝜏𝑛 as

𝑋𝑡∧𝜏𝑛 = 𝑋0 +
∫ 𝑡∧𝜏𝑛

0
(𝑏Q + 𝐴Q𝑋𝑠)d𝑠 +

∫ 𝑡∧𝜏𝑛

0
𝜎(𝑋𝑠)d𝑊𝑛

𝑠 +
∫ 𝑡∧𝜏𝑛

0

∫
𝐸

𝜉𝜇′(d𝑠, d𝜉),

where 𝜇′ is a jump measure having compensating measure given by 𝜈𝑛(d𝑡 , d𝜉). Due to
Assumption A, the distribution of 𝑋̃ under P is unique, as application of Duffie, Filipović
et al. (2003, Theorem 2.7). In particular, the martingale problem associated to 𝑋̃ under P
is well-posed and has unique solution. It follows by Jacod and Shiryaev (2013, Theorem
III.2.40) that there exists a unique solution to the stopped martingale problem associated
to the characteristics of 𝑋̃ under P. We conclude that the distribution of 𝑋̃ ·∧𝜏𝑛 under P is
unique. We observe that the process 𝑋·∧𝜏𝑛 under Q𝑛 has the same martingale character-
istics of 𝑋̃, thus under Q𝑛 , the stopped process (𝑋𝑡∧𝜏𝑛 )𝑡≥0 has the same distribution as the
stopped process (𝑋̃ 𝑡∧𝜏̃𝑛 )𝑡≥0 under P. Therefore

EP[𝑍𝑇] = lim
𝑛

EP[𝑍𝑛𝑇1{𝜏𝑛=𝑇}] = lim
𝑛

Q𝑛(𝜏𝑛 = 𝑇) = lim
𝑛

P(𝜏̃𝑛 = 𝑇) = 1.

The first equality follows from monotone convergence, while the second follows by apply-
ing the definition of measure Q𝑛 . The third step follows from the fact that the distribution
of (𝑋𝑡∧𝜏𝑛 )𝑡≥0 under Q is the same distribution of (𝑋̃ 𝑡∧𝜏̃𝑛 )𝑡≥0 under P. The last equality
follows from equation (3.10). □

Lemma 3.4. Consider two sets of parameters which satisfy Assumption A and assume that
inequality (3.8) holds for every 𝑥 ∈ R𝑚++. Then

∫
𝐸

⎛⎜⎝
⌜⃓⎷
𝑚

Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑥 𝑗 −

⌜⃓⎷
𝑚P

0 (𝜉) +
𝑚∑︂
𝑗=1

𝑚P
𝑗
(𝜉)𝑥 𝑗⎞⎟⎠

2

𝑚(d𝜉) < 𝑀𝑛

for every 𝑥 ∈ ∏︁𝑚 (︁ 1
𝑛 , 𝑛

)︁
.

Proof. For every 𝑥 ∈ R𝑚++, we define the function 𝐺(𝑥) as

𝑥 ↦→ 𝐺(𝑥) :=
∫
𝐸

⎛⎜⎝
⌜⃓⎷
𝑚

Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑥 𝑗 −

⌜⃓⎷
𝑚P

0 (𝜉) +
𝑚∑︂
𝑗=1

𝑚P
𝑗
(𝜉)𝑥 𝑗⎞⎟⎠

2

𝑚(d𝜉) < ∞.
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By hypothesis, 𝐺(𝑥) < ∞ for every 𝑥 ∈ R𝑚++, we aim to prove that it exists 𝑀𝑛 > 0 such
that 𝐺(𝑥) < 𝑀𝑛 when 𝑥 ∈ ∏︁𝑚 (︁ 1

𝑛 , 𝑛
)︁
. We define 𝜅(𝑢, 𝑣) := 𝑢 + 𝑣 − 2

√
𝑢𝑣, for 𝑢, 𝑣 > 0. We

observe that 𝜅 is convex, since its Hessian its given by

⎛⎜⎝
√
𝑣

2𝑢3/2 − 1
2
√
𝑢𝑣

− 1
2
√
𝑢𝑣

√
𝑢

2𝑣3/2

⎞⎟⎠ ,
which is a positive semi-definite matrix. It follows that also

𝑥 ↦→ 𝜅
⎛⎜⎝𝑚P

0 (𝜉) +
𝑚∑︂
𝑗=1

𝑚P
𝑗 (𝜉)𝑥 𝑗 , 𝑚

Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑥 𝑗⎞⎟⎠

is convex in 𝑥 for very 𝜉, since convexity is invariant under affine maps. We have

𝐺(𝑥) =
∫
𝐸

𝜅(𝑚P
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚P
𝑗 (𝜉)𝑥 𝑗 , 𝑚

Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑥 𝑗)𝑚(d𝜉).

Due to the convexity of 𝜅 in 𝑥, we can conclude that also 𝐺 is convex, thus continuous
in its thus continuous in the interior of its effective domain R𝑚++, i.e. R𝑚++ itself, see
Mordukhovich and Nam (2022, Corollary 2.153). Then being

∏︁𝑚 (︁ 1
𝑛 , 𝑛

)︁
a bounded set,

we can write 𝐺(𝑥) ≤ 𝑀𝑛 for 𝑥 ∈ ∏︁𝑚 (︁ 1
𝑛 , 𝑛

)︁
. □

The following lemma plays a crucial role in the proof of Theorem 3.3. It establishes
that the stopped process associated with our density 𝑍 is a true martingale under P, which
is a key step to conclude that the original density 𝑍 itself is a true martingale under P.

Lemma 3.5. In the setting of Theorem 3.3, let 𝑍𝑛 be defined as in equation (3.12), where 𝜙 and
𝜓 are given by equations (3.6), (3.7) respectively and the stopping times (𝜏𝑛)𝑛 are defined as in
equation (3.9). Then, 𝑍𝑛 is a true martingale under P.

Proof. Consider

𝑁 =

∫ ·

0
𝜙(𝑋𝑡−)⊤d𝑊P

𝑡 +
∫ ·

0

∫
𝐸

𝜓(𝑋𝑡−, 𝜉)(𝜇(d𝑡 , d𝜉) − 𝜈P(d𝑡 , d𝜉))

and recall that 𝑍 as defined in equation (3.5) is the Doléans-Dade exponential of 𝑁 , i.e.
𝑍 = ℰ(𝑁). We define the process

𝑁1 :=
∫ ·

0
𝜙(𝑋𝑡−)⊤d𝑊P

𝑡 +
∫ ·

0

∫
𝐸

𝜓(𝑋𝑡−, 𝜉)1{|𝜓(𝑋𝑡− ,𝜉)|≤1}(𝜇(d𝑡 , d𝜉) − 𝜈P(d𝑡 , d𝜉))
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and
𝑁2 := 𝑁 − 𝑁1 =

∫ ·

0

∫
𝐸

𝜓(𝑋𝑡−, 𝜉)1{|𝜓(𝑋𝑡− ,𝜉)|>1}(𝜇(d𝑡 , d𝜉) − 𝜈P(d𝑡 , d𝜉)).

By definition, 𝑁1 and 𝑁2 do not have common jumps and 𝑁2 is a pure jump local
martingale, hence 𝑍 = ℰ(𝑁1 + 𝑁2) = ℰ(𝑁1)ℰ(𝑁2), see Protter (2005, Theorem II.8.38).
Our aim is to prove that 𝑍·∧𝜏𝑛 is a P-martingale. The proof proceeds in the following steps:

• First we show that ℰ(𝑁1)·∧𝜏𝑛 is a uniformly integrable martingale under P.

• We introduce a new probability measure P𝑛 via dP𝑛
dP = ℰ(𝑁1)𝜏𝑛 .

• We prove that ℰ(𝑁2)·∧𝜏𝑛 is a uniformly integrable martingale under P𝑛 . As a con-
sequence, 𝑍·∧𝜏𝑛 is a uniformly integrable martingale under P.

Let us first focus on 𝑁1. By Ito’s formula, we compute the square of ℰ(𝑁1)

ℰ(𝑁1)2𝑡 = 1 + 2
∫ 𝑡

0
ℰ(𝑁1)2𝑠−d𝑁1

𝑠 +
∫ 𝑡

0
ℰ(𝑁1)2𝑠−𝜙(𝑋𝑠−)⊤𝜙(𝑋𝑠−)d𝑠

+
∫ 𝑡

0

∫
𝐸

ℰ(𝑁1)2𝑠−𝜓2(𝑋𝑠−)1{|𝜓(𝑋𝑡− ,𝜉)|≤1}𝜇(d𝑠, d𝜉).

Exploiting an analogous inequality to Jacod and Shiryaev (2013, Theorem II.1.33 d)), we
note that 𝑥21|𝑥|≤1 + |𝑥|1|𝑥|>1 ≤ 𝑐(1 −

√
1 + 𝑥)2. Therefore, since inequality (3.11) holds, we

have that ∫ 𝜏𝑛∧𝑇

0

∫
𝐸

𝜓2(𝑋𝑠−, 𝜉)1{|𝜓(𝑋𝑠− ,1)|≤1}𝜇
P(d𝑠, d𝜉) ≤ 𝐶𝑛 . (3.13)

We now rewrite ℰ(𝑁1)2 in terms of the compensating measure 𝜈P, i.e.

ℰ(𝑁1)2𝑡 = 1 + 2
∫ 𝑡

0
ℰ(𝑁1)2𝑠−d𝑁1

𝑠 +
∫ 𝑡

0
ℰ(𝑁1)2𝑠−𝜙(𝑋𝑠−)⊤𝜙(𝑋𝑠−)d𝑠

+
∫ 𝑡

0

∫
𝐸

ℰ(𝑁1)2𝑠−𝜓2(𝑋𝑠−)1{|𝜓(𝑋𝑡− ,𝜉)|≤1}(𝜇(d𝑠, d𝜉) − 𝜈P(d𝑠, d𝜉))

+
∫ 𝑡

0

∫
𝐸

ℰ(𝑁1)2𝑠−𝜓2(𝑋𝑠−)1{|𝜓(𝑋𝑡− ,𝜉)|≤1}𝜈
P(d𝑠, d𝜉).

Since the compensating measure 𝜈P(d𝑠, d𝜉) does not jump, we state

ℰ(𝑁1)2𝑡∧𝜏𝑛 = ℰ
(︃
2𝑁1 +

∫ 𝑡∧𝜏𝑛

0

∫
𝐸

𝜓2(𝑋𝑠−, 𝜉)1{|𝜓(𝑋𝑠− ,𝜉)|≤1}(𝜇(d𝑠, d𝜉) − 𝜈P(d𝑠, d𝜉))
)︃
𝑡∧𝜏𝑛

· exp
(︃∫ 𝑡∧𝜏𝑛

0
𝜙(𝑋𝑠−)⊤𝜙(𝑋𝑠−)d𝑠 +

∫ 𝑡∧𝜏𝑛

0

∫
𝐸

𝜓2(𝑋𝑠−, 𝜉)1{|𝜓(𝑋𝑠− ,𝜉)|≤1}𝜈
P(d𝑠, d𝜉)

)︃
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≤ 𝑒𝐶𝑛ℰ
(︃
2𝑁1 +

∫ 𝑡∧𝜏𝑛

0

∫
𝐸

𝜓2(𝑋𝑠−, 𝜉)1{|𝜓(𝑋𝑠− ,𝜉)|≤1}(𝜇(d𝑠, d𝜉) − 𝜈P(d𝑠, d𝜉))
)︃
𝑡∧𝜏𝑛

,

(3.14)

where the latter inequality follows by the definition of 𝜏𝑛 , the continuity of 𝜙 and
equation (3.13). Consider the stochastic exponential appearing in the last line of equation
(3.14). It is a positive local martingale, where positivity follows by 2Δ𝑁1 + 𝜓21{|𝜓|≤1} =

(2𝜓 + 𝜓2)1{|𝜓|≤1} > −1 since 𝜓 > −1, see Jacod and Shiryaev (2013, Theorem I.4.61). It
hence follows that it is a supermartingale and

E[ℰ(𝑁1)2𝑡∧𝜏𝑛 ] ≤ 𝑒𝐶𝑛 .

We have thus proved that ℰ(𝑁1)·∧𝜏𝑛 is a square-integrable martingale hence uniformly
integrable.

For each 𝑛, we can hence define the probability P𝑛 by dP𝑛
dP = ℰ(𝑁1)𝜏𝑛 . Let E𝑛 the

expectation under P𝑛 . In Theorem 3.3, we have proved that ℰ(𝑁1)ℰ(𝑁2) = 𝑍 is a local
martingale under P and by definition of P𝑛 this implies ℰ(𝑁2)·∧𝜏𝑛 is a local martingale
under P𝑛 for all 𝑛. It is then enough to prove that ℰ(𝑁2)·∧𝜏𝑛 is a uniformly integrable
martingale under P𝑛 , i.e. E𝑛[ℰ(𝑁2)𝑇∧𝜏𝑛 ] = 1, this would imply that also 𝑍·∧𝜏𝑛 is a is a
uniformly integrable martingale under P.

Note that ℰ(𝑁2)·∧𝜏𝑛 is of finite variation and in ℳloc(P𝑛), therefore also in 𝒜loc(P𝑛) by
Jacod and Shiryaev (2013, Lemma I.3.11). Let (𝜎𝑚)𝑚 be a localizing sequence of stopping
times such that E𝑛[∑︁𝑠≤𝜎𝑚 Δℰ(𝑁2)𝑠∧𝜏𝑛 ] < ∞, for all 𝑚. We can compute:

E𝑛
[︄ ∑︂
𝑠≤𝜎𝑚

Δℰ(𝑁2)𝑠∧𝜏𝑛

]︄
= E𝑛

[︃∫ 𝜏𝑛∧𝜎𝑚

0
ℰ(𝑁2)𝑠−

∫
𝐸

𝜓(𝑋𝑠−, 𝜉)1{|𝜓(𝑋𝑠− ,𝜉)|>1}𝜇(d𝑠, d𝜉)
]︃

= E𝑛
[︃∫ 𝜏𝑛∧𝜎𝑚

0
ℰ(𝑁2)𝑠−

∫
𝐸

𝜓(𝑋𝑠−, 𝜉)1{|𝜓(𝑋𝑠− ,𝜉)|>1}𝜈
P(d𝑠, d𝜉)

]︃
= E𝑛

[︃
ℰ(𝑁2)𝜏𝑛∧𝜎𝑚

∫ 𝜏𝑛∧𝜎𝑚

0

∫
𝐸

𝜓(𝑋𝑠−, 𝜉)1{|𝜓(𝑋𝑠− ,𝜉)|>1}𝜈
P(d𝑠, d𝜉)

]︃
≤ E𝑛[ℰ(𝑁2)𝜏𝑛∧𝜎𝑚 ]𝐶𝑛 = 𝐶𝑛 .

The third equality follows by the application of Jacod and Shiryaev (2013, Lemma I.3.12).
We conclude using that∫ 𝜏𝑛∧𝜎𝑚

0

∫
𝐸
𝜓(𝑋𝑠−, 𝜉)1{|𝜓(𝑋𝑠− ,𝜉)|>1}𝜈P(d𝑠, d𝜉) ≤

∫ 𝜏𝑛
0

∫
𝐸
(1 −

√︁
1 + 𝜓(𝑋𝑠−, 𝜉))2𝜈P(d𝑠, d𝜉) ≤ 𝐶𝑛 ,
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by Lemma 3.4. The last equality uses the fact that ℰ(𝑁2)·∧𝜏𝑛∧𝜎𝑚 ∈ ℳ(P𝑛). Consequently,

E𝑛
[︄∑︂
𝑠>0

Δℰ(𝑁2)𝑠∧𝜏𝑛

]︄
= lim
𝑚→+∞

E𝑛
[︄ ∑︂
𝑠≤𝜎𝑚

Δℰ(𝑁2)𝑠∧𝜏𝑛

]︄
≤ 𝐶𝑛 < ∞.

By Jacod and Shiryaev (2013, Theorem I.4.56 b)), this implies thatℰ(𝑁2)·∧𝜏𝑛 is of integrable
variation under P𝑛 and, as a consequence, ℰ(𝑁2)·∧𝜏𝑛 is a uniformly integrable martingale
under P𝑛 . □

Remark 3.6. The example presented in Cheridito, Filipović and Yor (2005, Section 6) can
be seen as a special case of Theorem 3.3. In the example the authors consider a one-
dimensional setting (𝑑 = 1), in which under the measure P, the jump component follows
a compound Poisson process with 𝑚P

0 (𝜉) = 𝜆 and 𝑚P
1 (𝜉) = 0.

Remark 3.7. Observe that, in the statement of Theorem 3.3, we require the compensating
measures under P and Q to be absolutely continuous with respect to a certain Borel
measure 𝑚. Similarly to Remark 3.1, given

𝜈P(d𝑡 , d𝜉) = 𝜃P
0 (d𝜉) +

𝑚∑︂
𝑗=1

𝜃P
𝑗 (d𝜉)𝑋

𝑗

𝑡−d𝑡 , 𝜈Q(d𝑡 , d𝜉) = 𝜃Q
0 (d𝜉) +

𝑚∑︂
𝑗=1

𝜃Q
𝑗
(d𝜉)𝑋 𝑗

𝑡−d𝑡

it is enough to take 𝑚(d𝜉) :=
∑︁𝑚
𝑗=0 𝜃

P
𝑗
+∑︁𝑚

𝑗=0 𝜃
Q
𝑗
, to obtain the required structure. Clearly,

this does not imply that for arbitrary compensators 𝜈P and 𝜈Q, one can construct an
equivalent change of measure. A simple counterexample arises when the jump measures
have different supports. For instance, consider 𝜈P(d𝑡 , d𝜉) = 𝛿1(d𝜉) and 𝜈Q(d𝑡 , d𝜉) =

𝑒−𝜉1{𝜉>0} d𝜉. Define the reference measure as

𝑚(d𝜉) := 𝛿1(d𝜉) + 1{𝜉>0} d𝜉.

Then, the compensators can be expressed with respect to 𝑚 as

𝜈P(d𝑡 , d𝜉) = 1{1}(𝜉)𝑚(d𝜉)d𝑡 ,
𝜈Q(d𝑡 , d𝜉) = 𝑒−𝜉 1{𝜉>0} 𝑚(d𝜉)d𝑡.

Function 1{1}(𝜉) does not satisfy the assumptions of the theorem, in particular the require-
ment (𝑚P

0 (𝜉), 𝑚P
1 (𝜉)) ∈ R2

+ \ {(0, 0)}.

Remark 3.8. Let us note a few properties and implications of condition (3.8):
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a) Condition (3.8) is equivalent to∫
𝐸

(1 −
√︁
𝜓(𝑥, 𝜉) + 1)2 ⎛⎜⎝𝑚P

0 (𝜉) +
𝑚∑︂
𝑗=1

𝑚P
𝑗 (𝜉)𝑥 𝑗

⎞⎟⎠𝑚(d𝜉) < ∞

for 𝜓 as in equation (3.7).

b) We observe that for all 𝑥 > 0

(1 −
√
𝑥)2 ≤ 𝑥 log(𝑥) − 𝑥 + 1.

This inequality implies that the integrability condition for the jump component of
the change of measure required in Cheridito, Filipović and Yor (2005, Remark 2.5) is
stronger and hence implies our condition.

c) Assume that for every 𝑥 > 0∫
𝐸

⎛⎜⎝𝑚P
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚P
𝑗 (𝜉)𝑥 𝑗

⎞⎟⎠𝑚(d𝜉) < ∞ and
∫
𝐸

⎛⎜⎝𝑚Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑥 𝑗⎞⎟⎠𝑚(d𝜉) < ∞,

which is clearly satisfied whenever for 𝑗 = 0, . . . , 𝑚∫
𝐸

𝑚P
𝑗 (𝜉)𝑚(d𝜉) < ∞ and

∫
𝐸

𝑚
Q
𝑗
(𝜉)𝑚(d𝜉) < ∞.

The integrability assumptions above imply Condition (3.8). Indeed, by Cauchy-
Schwarz inequality

∫
𝐸

⎛⎜⎝
⌜⃓⎷
𝑚

Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑥 𝑗 −

⌜⃓⎷
𝑚P

0 (𝜉) +
𝑚∑︂
𝑗=1

𝑚P
𝑗
(𝜉)𝑥 𝑗⎞⎟⎠

2

𝑚(d𝜉)

=

∫
𝐸

⎛⎜⎝𝑚Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑥 𝑗 + 𝑚P

0 (𝜉) +
𝑚∑︂
𝑗=1

𝑚P
𝑗 (𝜉)𝑥 𝑗

⎞⎟⎠𝑚(d𝜉)

− 2
∫
𝐸

⎛⎜⎝
⌜⃓⎷
𝑚P

0 (𝜉) +
𝑚∑︂
𝑗=1

𝑚P
𝑗
(𝜉)𝑥 𝑗

⌜⃓⎷
𝑚P

0 (𝜉) +
𝑚∑︂
𝑗=1

𝑚P
𝑗
(𝜉)𝑥 𝑗⎞⎟⎠𝑚(d𝜉)

≤
∫
𝐸

⎛⎜⎝𝑚Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑥 𝑗⎞⎟⎠𝑚(d𝜉) +

∫
𝐸

⎛⎜⎝𝑚P
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚P
𝑗 (𝜉)𝑥 𝑗

⎞⎟⎠𝑚(d𝜉)

124



CHAPTER 3. STABLE MEASURE TRANSFORMATIONS FOR AFFINE JUMP-DIFFUSIONS

+ 2 ⎛⎜⎝
∫
𝐸

⎛⎜⎝𝑚Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑥 𝑗⎞⎟⎠𝑚(d𝜉)⎞⎟⎠

1
2 ⎛⎜⎝

∫
𝐸

⎛⎜⎝𝑚P
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚P
𝑗 (𝜉)𝑥 𝑗

⎞⎟⎠𝑚(d𝜉)⎞⎟⎠
1
2

< ∞.

We now state and prove the following theorem, which shows that if a locally equival-
ent measure Q maintains the affine structure, then its associated density 𝑍 must satisfy
Property B up to an orthogonal component. This theorem can be interpreted as a converse
result, providing the necessary conditions for 𝑍.

Theorem 3.9. Let 𝑋 be the process as defined in equation (3.1) on the probability space (Ω,ℱ , P).
Let Q be a probability measure on (Ω,ℱ ) with Q ∼loc P. If Q preserves the affine structure of 𝑋
in the sense of Definition 3.2 then its density process 𝑍 with respect to P can be represented as

𝑍𝑡 = ℰ
(︃∫ 𝑡

0
𝜙(𝑋𝑠−)⊤d𝑊P

𝑠 +
∫ 𝑡

0

∫
𝐸

𝜓(𝑋𝑠−, 𝜉) · (𝜇(d𝑠, d𝜉) − 𝜈P(d𝑠, d𝜉)) + 𝑁 ′
)︃

where 𝜙 and 𝜓 satisfy respectively equations (3.6), (3.7) for some parameters(︂
𝑏Q + 𝐴Q𝑥,Σ0 +

∑︁𝑚
𝑗=1 Σ𝑗𝑥 𝑗 ,

(︂
𝑚

Q
0 (𝜉) +

∑︁𝑚
𝑗=1 𝑚

Q
𝑗
(𝜉)𝑥 𝑗

)︂
𝑚(d𝜉)

)︂
which satisfy Assumption A, 𝑁 ′

is a P-local martingale with 𝑁 ′
0 = 0, ⟨𝑁 ′,𝑊P⟩ = 0 and Δ𝑁 ′ orthogonal with respect to 𝜇 in the

sense of Jacod and Shiryaev (2013, Lemma III.4.24). In particular, up to an orthogonal component,
𝑍 must satisfy Property B. Moreover, the following condition holds

∫
𝐸

⎛⎜⎝
⌜⃓⎷
𝑚

Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑋 𝑗

𝑡− −

⌜⃓⎷
𝑚P

0 (𝜉) +
𝑚∑︂
𝑗=1

𝑚P
𝑗
(𝜉)𝑋 𝑗

𝑡−
⎞⎟⎠

2

𝑚(d𝜉) < ∞

for almost every 𝑡 ∈ [0, 𝑇] and P-almost surely.

Proof. Let P and Q be two locally equivalent probability measures such that Q preserves
the affine structure of 𝑋. Since the measures are locally equivalent, the density process

𝑍𝑡 := dQ
dP

|︁|︁|︁
ℱ𝑡

is a strictly positive P-martingale, see Jacod and Shiryaev (2013, Proposition III.3.5 a)). Due
to Jacod and Shiryaev (2013, Theorem II.8.3), the stochastic integral 𝐿𝑡 =

∫ 𝑡

0 (𝑍𝑠−)−1d𝑍𝑠 is
well-defined as a local martingale with 𝐿0 = 0. Applying the martingale representation
theorem, see Jacod and Shiryaev (2013, Lemma III.4.24), 𝐿 can be written as a stochastic
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integral of the type

𝐿𝑡 =

∫ 𝑡

0
Φ⊤
𝑠 d𝑊P

𝑠 +
∫ 𝑡

0

∫
𝐸

Ψ𝑠(𝜉) · (𝜇(d𝑠, d𝜉) − 𝜈P(d𝑠, d𝜉))+𝑁 ′,

for a predictable process Φ𝑠 ∈ 𝐿2
loc(𝑊

P) and a predictable function Φ𝑠(𝜉) ∈ 𝐺loc(𝜇). Since
𝑍𝑡 = 1 +

∫ 𝑡

0 𝑍𝑠−d𝐿𝑠 , the process 𝑍𝑡 can be represented as 𝑍𝑡 = ℰ(𝐿𝑡). Due to Girsanov’s
theorem, the process𝑊Q defined as:

𝑊
Q
𝑡 :=𝑊P

𝑡 −
∫ 𝑡

0

1
𝑍𝑠−

d⟨𝑍,𝑊P⟩𝑠 =𝑊P
𝑡 −

∫ 𝑡

0
Φ𝑠d𝑠

is a Q-Brownian motion. Moreover, the characteristics of 𝑋 under Q are given by, see
Jacod and Shiryaev (2013, Theorem III.3.24):

𝑏Q + 𝐴Q𝑋𝑡− = 𝑏P + 𝐴P𝑋𝑡− + 𝜎(𝑋𝑡−)Φ𝑡− (3.15)

(𝑚Q
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚
Q
𝑗
(𝜉)𝑋 𝑗

𝑡−) = (Ψ𝑡−(𝜉) + 1)(𝑚P
0 (𝜉) +

𝑚∑︂
𝑗=1

𝑚P
𝑗 (𝜉)𝑋

𝑗

𝑡−). (3.16)

The only functions Φ,Ψ which satisfies equations (3.15), (3.16) are Φ𝑡− = 𝜙(𝑋𝑡−),Ψ𝑡−(𝜉) =
𝜓(𝑋𝑡−, 𝜉) where 𝜙,𝜓 are those in equations (3.6), (3.7). The following integrability condi-
tion must be satisfied ∫ 𝑇

0

∫
𝐸

(︂
1 −

√︁
1 + 𝜓(𝑋𝑡−, 𝜉)

)︂2
𝜈P(d𝑡 , d𝜉) < ∞

almost surely since it is necessary and sufficient condition for the well-posedness of the
stochastic integral with respect to the compensated jump measure, see Jacod and Shiryaev
(2013, Theorem II.1.33, d)). Due to the preservation of the affine structure, it reads as the
condition in the statement. □

Theorem 3.3 shows that, given an affine SDE 𝑋 satisfying certain boundary non-
attainment conditions under a reference probability measure P, one can construct a locally
equivalent measure Q through a density 𝑍 which satisfies Property B. Under Q, 𝑋 is
affine. Conversely, Theorem 3.9 establishes that any locally equivalent measure under
which 𝑋 maintains its affine structure is associated to a density 𝑍 which necessarily
satisfies Property B. In this sense, we fully characterize all structure-preserving measure
transformations for affine jump-diffusions.

Remark 3.10. We highlight that condition (3.8) as stated in Theorem 3.3 do not follows as

126



CHAPTER 3. STABLE MEASURE TRANSFORMATIONS FOR AFFINE JUMP-DIFFUSIONS

a direct consequence of Theorem 3.9. The latter theorem only implies a weaker version of
the condition. The two corresponds when 𝑚P,Q

𝑗
≡ 0, for 𝑗 ≥ 1 or when 𝑋 has full support

on its state space.

3.4 Comparison with the literature

In this section, we discuss the relation of our results with the existing literature.
In Palmowski and Rolski 2002, the authors develop a general framework for exponential

changes of measure for Markov processes. Their construction relies on assuming that the
associated density process is defined so as to be a martingale. This allows to introduce a
new probability measure under which the process remains Markov, under mild regularity
conditions. By contrast, in our work, the martingale property of the density process is
proved directly for the specific class of measure changes considered (see Lemma 3.5),
rather than being assumed. Moreover, our analysis is conducted within a particular
subclass of Markov processes, namely affine processes.

A key result in the literature is provided in Cheridito, Filipović and Yor (2005, Theorem
2.4), where the authors study two jump-diffusion processes, which are generally not
semimartingales, and provide sufficient conditions for their distributions to be equivalent
or absolutely continuous. The problem is formulated in a general setting, whereas we focus
specifically on processes with an affine structure. In particular, in Cheridito, Filipović and
Yor (2005, Remark 2.5), they ask for the compensating measure 𝜈 and the density process
𝜓 to satisfy a condition of the following kind∫

𝐸

(𝜓(𝑥, 𝜉) log(𝜓(𝑥, 𝜉)) − 𝜓(𝑥, 𝜉) + 1)𝜈P(𝑥, d𝜉) < 𝑀𝑛 ,

for 𝑥 in a certain finite set of the state space. In Remark 3.8 b), our condition on the
compensating measure, inequality (3.8), is in fact a weaker integrability conditions than
the one in Cheridito, Filipović and Yor (2005). Moreover, we believe that our inequality is
easier to verify in models with sufficient structure, see for example Remark 3.8 c).

As noted in the introduction, an initial result on structure-preserving transformations
for affine processes is provided in Cheridito, Filipović and Kimmel (2007). In particular,
in Cheridito, Filipović and Kimmel (2007, Theorem 1), the authors study stable measure
transformations of a class of affine diffusion processes which do not attain the boundary.
Their result coincides with Theorem 3.3 in the specific case of an affine diffuse process.
Their main contribution lies in analyzing a class of market prices of risk that are in-
versely proportional to the square root of the state variable. Theorem 3.3 employs similar
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techniques to those in Cheridito, Filipović and Kimmel (2007, Theorem 1).

A closely related work to ours is Fontana (2012, Chapter 2), where the author studies
an intensity-based model involving an affine diffusion process 𝑋 and a random default
time whose intensity depends affinely on 𝑋. The work characterizes the class of all locally
equivalent probability measures that preserve the affine structure of a reduced-form credit
risk model. More precisely, necessary and sufficient conditions on the density process
are provided to ensure that the default time remains a doubly stochastic random time
under both measures, and that the diffusion driving the default intensity maintains its
affine structure under both. This represents an initial extension of Cheridito, Filipović
and Kimmel (2007) to models with jumps, although intensity-based models can be seen as
simplified cases of general affine jump-diffusion frameworks. In Fontana (2012, Chapter
2), the author also investigates some immersion properties, which are of particular interest
in the case of credit risk.

Finally, we mention Kallsen and Muhle-Karbe (2010), where the authors investigate
the conditions under which the stochastic exponential of a multivariate affine process is a
martingale. This problem is closely related to ours, as such stochastic exponentials can be
used to define changes of measure. In fact, in Kallsen and Muhle-Karbe (2010, Theorem
4.1), they examine when two parameter sets of affine processes correspond to the same
process under equivalent probability measures. This problem is strongly connected to
ours, and is formulated in a general affine jump-diffusion setting. The authors also allows
for time-inhomogeneous coefficients and the presence of truncation functions. In Kallsen
and Muhle-Karbe (2010, Corollary 4.2), they focus on the time-homogeneous case and
derive integrability conditions on the compensator that are analogous to inequality (3.8).
It is crucial to point out that, the transformations identified by Kallsen and Muhle-Karbe
(2010), are not all the admissible ones. For affine processes that may reach the boundary,
the only admissible transformations are those given by stochastic exponentials of affine
processes. In contrast, under our assumption of boundary non-attainment, Assumption
A, we can also consider changes of measure involving the inverse of the volatility or the
presence of the state process in the denominator. With Theorem 3.9, we indeed prove that
all the admissible stable transformations are those identified by Property B.
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3.5 Examples and applications

Example 3.11 (One-dimensional case). As a first example, we consider the one-dimensional
non-negative affine case, where under a certain measure P,

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
(𝑏P + 𝑎P𝑋𝑠)d𝑠 +

∫ 𝑡

0
𝜎
√︁
𝑋𝑠 d𝑊P

𝑠 +
∫ 𝑡

0

∫ ∞

0
𝜉 𝜇(d𝑠, d𝜉), 𝑡 ≥ 0,

with compensating measure

𝜈P(d𝑡 , d𝜉) = (𝑚P
0 (𝜉) + 𝑚P

1 (𝜉)𝑋𝑡−)𝑚(d𝜉)d𝑡.

In the one-dimensional non-negative case Assumption A reads: 𝜎 > 0, 𝑏P ≥ 1
2𝜎

2, (𝑚0(𝜉), 𝑚1(𝜉)) ∈
R2
+ \ {(0, 0)}∀𝜉 and for all 𝑥 > 0∫ ∞

0
(1 ∧ |𝜉|)(𝑚0(𝜉) + 𝑚1(𝜉)𝑥)𝑚(d𝜉) < ∞.

In the light of Theorem 3.3 and Theorem 3.9, all the stable transformations which maintain
the affine structure in the sense of Definition 3.2 are given by

dQ
dP

|︁|︁|︁
ℱ𝑡

= 𝑍𝑡 = ℰ
(︃∫ 𝑡

0
𝜙(𝑋𝑠−)d𝑊P

𝑠 +
∫ 𝑡

0

∫ ∞

0
𝜓(𝑋𝑠−, 𝜉) · (𝜇(d𝑠, d𝜉) − 𝜈P(d𝑠, d𝜉))

)︃
where

𝜙(𝑋𝑠−) =
𝑏Q − 𝑏P + (𝑎Q − 𝑎P)𝑋𝑠−

𝜎
√
𝑋𝑠−

𝜓(𝑋𝑠−, 𝜉) =
𝑚

Q
0 (𝜉) + 𝑚

Q
1 (𝜉)𝑋𝑠−

𝑚P
0 (𝜉) + 𝑚P

1 (𝜉)𝑋𝑠−
− 1,

given that for all 𝑥 > 0,∫ ∞

0

(︃√︂
𝑚

Q
0 (𝜉) + 𝑚

Q
1 (𝜉)𝑥 −

√︂
𝑚P

0 (𝜉) + 𝑚P
1 (𝜉)𝑥

)︃2
𝑚(d𝜉) < ∞.

On the other hand, if we consider a general affine process which can take values in all
R, the only possible structure is the following

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
(𝑏P + 𝑎P𝑋𝑠)d𝑠 +

∫ 𝑡

0
𝜎d𝑊P

𝑠 +
∫ 𝑡

0

∫ ∞

0
𝜉 𝜇(d𝑠, d𝜉), 𝑡 ≥ 0,
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with compensating measure given by 𝜈P(d𝑡 , d𝜉) = 𝑚P
0 (𝜉)𝑚(d𝜉)d𝑡. Indeed, being 𝑋

potentially negative it cannot have a role in the volatility nor intensity dynamics. In this
case the only admissible transformations are those given by

dQ
dP

|︁|︁|︁
ℱ𝑡

= 𝑍𝑡 = ℰ
(︃∫ 𝑡

0
𝜙(𝑋𝑠−)d𝑊P

𝑠 +
∫ 𝑡

0

∫ ∞

0
𝜓(𝑋𝑠−, 𝜉) · (𝜇(d𝑠, d𝜉) − 𝜈P(d𝑠, d𝜉))

)︃
where

𝜙(𝑋𝑠−) =
𝑏Q − 𝑏P + (𝑎Q − 𝑎P)𝑋𝑠−

𝜎
, 𝜓(𝑋𝑠−, 𝜉) =

𝑚
Q
0 (𝜉)

𝑚P
0 (𝜉)

− 1,

given that, ∫ ∞

0

(︃√︂
𝑚

Q
0 (𝜉) −

√︂
𝑚P

0 (𝜉)
)︃2
𝑚(d𝜉) < ∞.

Example 3.12 (Hawkes intensity). A direct application of the one dimensional case is the
Hawkes intensity. Let𝜆 be the intensity of a marked Hawkes process𝑁 under the measure
P

d𝜆𝑡 = (𝑏P + 𝑎P𝜆𝑡)d𝑡 +
𝑁𝑡∑︂
𝑖

𝜂𝑖 ,

for 𝑏P > 0, 𝑎P < 0 and where (𝜂𝑖)𝑖 i.i.d. positive random variable, 𝜂𝑖 ∼ 𝑚P
1 (𝜉)𝑚(d𝜉), where

𝑚 is a measure on R++ and 𝑚P
1 (𝜉) > 0. We ask for the usual integrability conditions of

Assumption (A5)(c). The intensity 𝜆 is an affine process since its drift is affine and its
compensator is given by

𝜈P(d𝑡 , d𝜉) = 𝜆𝑡−𝑚
P
1 (𝜉)𝑚(d𝜉)d𝑡.

Exploiting Theorem 3.3, we can prove that it exists an equivalent probability measure Q

under which 𝜆 is a jump process having the same drift and compensator

𝜈Q(d𝑡 , d𝜉) = (𝑚Q
0 (𝜉) + 𝑚

Q
1 (𝜉)𝜆𝑡−)𝑚(d𝜉),

whenever condition (3.8) is satisfied for every 𝑥 > 0∫ ∞

0

(︃√︂
𝑚

Q
0 (𝜉) + 𝑚

Q
1 (𝜉)𝑥 −

√︂
𝑚P

1 (𝜉)𝑥
)︃2
𝑚(d𝜉) < ∞.

and the parameters for Q satisfy Assumption A. The measure Q is constructed through
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the following density process

dQ
dP

|︁|︁|︁
ℱ𝑡

= 𝑍𝑡 = ℰ
(︃∫ 𝑡

0

∫ ∞

0
𝜓(𝜆𝑠−, 𝜉) · (𝜇(d𝑠, d𝜉) − 𝜈P(d𝑠, d𝜉))

)︃
,

𝜓(𝑋𝑠−, 𝜉) =
𝑚

Q
0 (𝜉) + 𝑚

Q
1 (𝜉)𝜆𝑠−

𝑚P
1 (𝜉)𝜆𝑠−

− 1.

In particular, Remark 3.8 implies that one can transform a Hawkes intensity with a given
mark distribution into another Hawkes intensity with a different mark distribution (with
𝑚

Q
0 ≡ 0), provided both are 𝑚P

1 , 𝑚
Q
1 are probability density functions and share the same

support. Similarly, taking 𝑚Q
1 ≡ 0, we can transform an Hawkes intensity to a compound

Poisson with drift. Notice that no admissible change of measure can modify the drift.

Example 3.13 (Jump-diffusion). We consider a simplified version of our affine model, i.e.
a jump-diffusion model as the one introduced in Duffie, Pan et al. (2000). The authors
focus on SDE of the following kind

d𝑋𝑡 = (𝑏P + 𝐴P𝑋𝑡)d + 𝜎(𝑋𝑡)d𝑊P
𝑡 + d𝐽𝑡 ,

where 𝐽 is a pure jump process whose jumps have a fixed distribution 𝑚 on R𝑛 and arrive
with intensity 𝜆(𝑋𝑡) = 𝛾P + ΓP

⊤
𝑋𝑡 , for (𝛾P, ΓP) ∈ R × R𝑛 . We can write

𝐽𝑡 =

∫ 𝑡

0

∫
R𝑑

𝜉𝜇(d𝑡 , d𝜉),

with 𝜇 random measure having compensator 𝜈P(d𝑡 , d𝜉) = (𝛾P + ΓP
⊤
𝑋𝑡−)𝑚(d𝜉)d𝑡. We are

in the case where 𝑚P
0 (𝜉) = 𝛾P, 𝑚P

𝑗
(𝜉) = ΓP

𝑗
for every 𝑗 ∈ {1, . . . , 𝑚}. Assuming that 𝑋 takes

values in𝐸 = R𝑚++×R𝑑−𝑚 , Assumptions (A1)-(A4) read as usual, while we ask that 𝛾P ∈ R+,
ΓP
𝑗
∈ R+ for 𝑗 ∈ {0, . . . , 𝑚} and ΓP

𝑗
≡ 0 for 𝑗 ∈ {𝑚 + 1, . . . , 𝑑}. Moreover, 𝛾P + ∑︁𝑚

𝑗=1 Γ
P
𝑗
> 0.

We ask for 𝑚 to be a Radon measure on 𝐸 such that∫
𝐸

(1 ∧ ||𝜉| |)𝑚(d𝜉) < ∞. (3.17)

The changes of measure which maintain the affine structure inside the class of jump-
diffusion processes are those given by

dQ
dP

|︁|︁|︁
ℱ𝑡

= 𝑍𝑡 = ℰ
(︃∫ 𝑡

0
𝜙(𝑋𝑠−)⊤d𝑊P

𝑠 +
∫ 𝑡

0

∫
𝐸

𝜓(𝑋𝑠−, 𝜉) · (𝜇(d𝑠, d𝜉) − 𝜈P(d𝑠, d𝜉))
)︃
,

𝜙(𝑋𝑠−) = 𝜎(𝑋𝑠−)−1(𝑏Q − 𝑏P + (𝐴Q − 𝐴P)𝑋𝑠−),
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𝜓(𝑋𝑠−, 𝜉) =
𝛾Q +∑︁𝑚

𝑗=1 Γ
Q
𝑗
𝑋
𝑗
𝑠−

𝛾P +∑︁𝑚
𝑗=1 Γ

P
𝑗
𝑋
𝑗
𝑠−

− 1,

where

𝜈Q(d𝑡 , d𝜉) = ⎛⎜⎝𝛾Q +
𝑚∑︂
𝑗=1

Γ
Q
𝑗
𝑥 𝑗

⎞⎟⎠𝑚(d𝜉),

and Assumption A are satisfied also for the set of parameters under Q. In this case
condition (3.8) reads as∫

𝐸

(︃√︂
(𝛾Q + ΓQ

⊤
𝑥) −

√︂
(𝛾P + ΓP

⊤
𝑥)

)︃2
𝑚(d𝜉) < ∞,

which is clearly finite whenever
∫
𝐸
𝑚(d𝜉) < ∞, in the light of Remark 3.8. Notice that if

the measure 𝑚 is finite, then also inequality (3.17) holds.

Example 3.14 (Hawkes processes construction). We introduce a change of measure tech-
nique used to construct Hawkes processes from a Poisson process, see e.g. Bernis and
Scotti (2020). This transformation can also be interpreted as a particular case of Example
3.13.

Let 𝑁 be a compound Poisson process with constant intensity 𝛾 under the probability
measure P, and let 𝜆 be a process that shares the same jump times as 𝑁 . The marks of the
two processes follow a joint distribution 𝑚. The two dimensional process (𝑁,𝜆) is affine
and can be written as

d𝑁𝑡 =

∫
R2
++

𝜉1𝜇(d𝑡 , d𝜉),

d𝜆𝑡 = (𝑏P + 𝑎P𝜆𝑡)d𝑡 +
∫
R2
++

𝜉2𝜇(d𝑡 , d𝜉)

where𝜇 is a jump measure and the associated compensating measure is given by 𝜈P(d𝑡 , d𝜉) =
𝑚(d𝜉)𝛾d𝑡.

Our aim is to characterize a locally equivalent measure Q under which the couple
(𝑁,𝜆) has the distribution of a Hawkes process along with its corresponding intensity,
meaning 𝜈Q(d𝑡 , d𝜉) = 𝑚(d𝜉)𝜆𝑡−d𝑡. Condition (3.8) reads as∫

R2
++

(︁√
𝑥2 −

√
𝛾
)︁2
𝑚(d𝜉) =

∫
R2
++

(𝑥2 + 𝛾 − 2
√
𝑥2
√
𝛾)𝑚(d𝜉) < ∞,
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and holds if the measure𝑚 is finite, i.e.
∫
R2
++
𝑚(d𝜉) < ∞. This implies that also Assumption

(A5)(c) holds. The corresponding change of measure is given by

dQ
dP

|︁|︁|︁
ℱ𝑡

= 𝑍𝑡 = ℰ
(︃∫ 𝑡

0

∫
R2
++

(︃
𝜆𝑠−
𝛾

− 1
)︃
· (𝜇(d𝑠, d𝜉) − 𝛾𝑚(d𝜉)d𝑠)

)︃
= exp

(︃∫ 𝑡

0

∫
R2
++

−
(︃
𝜆𝑠−
𝛾

− 1
)︃
· 𝛾𝑚(d𝜉)d𝑠 +

∫ 𝑡

0

∫
R2
++

log
(︃
𝜆𝑠−
𝛾

)︃
𝜇(d𝑠, d𝜉)

)︃
= exp

(︃∫ 𝑡

0

∫
R2
++

− (𝜆𝑠− − 𝛾) · 𝑚(d𝜉)d𝑠
)︃

exp
(︃∫ 𝑡

0

∫
R2
++

log
(︃
𝜆𝑠−
𝛾

)︃
𝜇(d𝑠, d𝜉)

)︃
= exp

(︃
−

∫ 𝑡

0
(𝜆𝑠− − 𝛾)d𝑠 ·

∫
R2
++

𝑚(d𝜉)
)︃
·
∏︂
𝑇𝑖<𝑡

𝜆𝑇𝑖−
𝛾
.

This transformation is equivalent to the one presented in Bernis and Scotti (2020, Theorem
3.6).

Example 3.15 (Intensity-based models). Intensity-based models are a key applications of
affine models in credit risk. We consider an example of stable transformation in this
context, referring to Fontana (2012, Chapter 2). Let 𝑋 be a 𝑑-dimensional diffusive process
in 𝐸 = R𝑚++ × R𝑑−𝑚 , which satisfies Assumption A. Let 𝜏 be a random default time and
assume it is a doubly stochastic random time, having intensity 𝜆P which depends on 𝑋

𝜆P
𝑡 = 𝛾P + ΓP

⊤
𝑋𝑡 ,

for 𝛾P ∈ R, ΓP ∈ R𝑑. We denote by 𝐻 the default indicator process 𝐻𝑡 := 1{𝜏≤𝑡} for 𝑡 ≥ 0.
The pair (𝑋, 𝐻) has affine structure, in particular 𝜏 is a pure jump component, and the
couple has compensating measure given by

𝜈P(d𝑡 , d𝜉) = (𝛾P +
𝑚∑︂
𝑗=1

ΓP𝑗 𝑋
𝑗

𝑡−)𝛿(0,...,0,1)(d𝜉1, . . . , d𝜉𝑑 , d𝜉𝑑+1).

In this case, Assumption A reads as those in Fontana (2012, Definition 2.2.5, (ii)), in
particular we ask for 𝛾P ∈ R+, ΓP ∈ R𝑑+, with ΓP

𝑗
= 0 for 𝑗 ≥ 𝑚 + 1 and 𝛾P + ∑︁𝑚

𝑗=1 Γ
P
𝑗
> 0.

We observe that the following integrability condition always holds∫
𝐸×R++

𝛿(0,...,0,1)(d𝜉1, . . . , d𝜉𝑑 , d𝜉𝑑+1) < ∞,
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thus also condition (3.8) is always satisfied∫
𝐸×R++

(︃√︂
(𝛾Q + ΓQ

⊤
𝑥) −

√︂
(𝛾P + ΓP

⊤
𝑥)

)︃2
𝛿(0,...,0,1)(d𝜉1, . . . , d𝜉𝑑 , d𝜉𝑑+1) < ∞.

Stable measures transformations are those identified by Fontana (2012, Theorem
2.3.12), i.e.

dQ
dP

|︁|︁|︁
ℱ𝑡

= 𝑍𝑡 = ℰ
(︃∫ 𝑡

0
𝜙(𝑋𝑠−)⊤d𝑊P

𝑠 +
∫ 𝑡

0
𝜓(𝑋𝑠−) · d𝑀P

𝑠

)︃
,

𝜙(𝑋𝑠−) = 𝜎(𝑋𝑠−)−1(𝑏Q − 𝑏P + (𝐴Q − 𝐴P)𝑋𝑠−),

𝜓(𝑋𝑠−) =
𝛾Q +∑︁𝑚

𝑗=1 Γ
Q
𝑗
𝑋
𝑗
𝑠−

𝛾P +∑︁𝑚
𝑗=1 Γ

P
𝑗
𝑋
𝑗
𝑠−

− 1,

where 𝑀P
𝑡 := 𝐻𝑡 −

∫ 𝑡∧𝜏
0 𝜆P

𝑢d𝑢.

Example 3.16 (𝛼-stable subordinator). We now investigate an equivalent change of meas-
ure presented in Chen and Filipović (2005). The authors consider a multi-dimensional
process whose compensating measure is given by

𝜈P(d𝑡 , d𝜉) = 𝑚P
0 (d𝜉)d𝑡 =

𝜃

Γ(1 − 𝜃)
1

𝜉1+𝜃 d𝜉d𝑡 ,

where 𝜃 ∈ (0, 1). We observe that 𝑚P
0 satisfies condition (3.3), indeed∫ ∞

0
(1 ∧ 𝜉) 𝜃

Γ(1 − 𝜃)
1

𝜉1+𝜃 d𝜉 =

∫ 1

0

𝜃

Γ(1 − 𝜃)
𝜉

𝜉1+𝜃 d𝜉 +
∫ ∞

1

𝜃

Γ(1 − 𝜃)
1

𝜉1+𝜃 d𝜉 < ∞.

The authors of the paper explore whether it is possible to modify the parameter 𝜃 of the
jump distribution via an equivalent change of measure. They conjecture that this is not
possible, since the proposed integrand fails to satisfy the integrability conditions required
by the main theorem of Cheridito, Filipović and Yor (2005). We prove that their conjecture
is indeed correct: condition (3.8) is not satisfied in this case, and in light of Theorem 3.9,
this shows that such a change of measure is impossible. Let

𝑚
Q
0 (d𝜉) =

𝜃̃

Γ(1 − 𝜃)
1

𝜉1+𝜃̃
d𝜉,
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where 𝜃̃ ∈ (0, 1). Assume without loss of generality that 𝜃̃ > 𝜃.∫ ∞

0

(︃√︂
𝑚

Q
0 (𝜉) −

√︂
𝑚P

0 (𝜉)
)︃2

d𝜉 =

∫ ∞

0

(︂
𝐶̃𝜉−

1
2− 𝜃̃

2 − 𝐶𝜉− 1
2− 𝜃

2

)︂2
d𝜉

=

∫ ∞

0

(︃
𝐶̃𝜉−

1
2− 𝜃̃

2

(︃
1 − 𝐶

𝐶̃
𝜉

𝜃̃
2 − 𝜃

2

)︃)︃2
d𝜉 =

∫ ∞

0
𝐶̃

2
𝜉−1−𝜃̃

(︃
1 − 𝐶

𝐶̃
𝜉

𝜃̃
2 − 𝜃

2

)︃2
d𝜉.

Near zero, the integrand behaves like 1
𝜉1+𝜃̃ , which is not integrable, thereby causing the

integral to diverge.

3.6 Conclusions

In this work, we establish a criterion to characterize all structure-preserving measure
changes within the class of affine processes. In Theorem 3.3, we show that our criterion
ensures that the measure transformation preserves the affine structure, while in Theorem
3.9, we demonstrate that any transformation that maintains the affine structure must satisfy
our conditions. Condition (3.8) plays a central role in establishing the sufficient conditions,
while Theorem 3.9 shows that an analogous, though weaker, condition is also necessary.
Compared with the existing literature, our findings offer a more comprehensive view
on stable measure transformations in general affine jump-diffusion models, providing a
complete characterization not fully established in prior works. Moreover, we illustrate the
practical relevance of our approach through various examples, allowing the exploitation of
structure-preserving transformations in various applications. Future research directions
include an extension of the considered affine setting to allow for infinite-activity jumps,
thereby relaxing some integrability conditions of the random measure in Assumption A.
Furthermore, it would be meaningful to develop a similar stable measure characterization
to include jumps occurring at predictable or predetermined times, as in the case of affine
semimartingales as considered by Keller-Ressel, Schmidt et al. (2019).
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