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Abstract

This thesis deals with arithmetic and representation theoretic properties
of certain semisimple Hopf algebras. It consists of two parts.
The first one is devoted to the study of Hopf orders. The initial goal of this
part is to prove that for any finite non-abelian simple group G there is a twist
Ω for CG, arising from a 2-cocycle on an abelian subgroup of G, such that
(CG)Ω does not admit a Hopf order over any number ring. For showing this
we prove the non-existence result for a key family of simple groups G and
combine it with two theorems of Thompson and Barry and Ward on minimal
simple groups.
In addition, we prove the non-existence of Hopf orders for twists of group
algebras of direct products of Frobenius groups, subject to some technical
conditions.

The second part of the thesis takes place in the finite W -algebras framework.
A finite W -algebra Hℓ is an algebra constructed from a reductive Lie algebra
g and a nilpotent element e ∈ g. We interpret Goodwin’s translation functors
as an action of a subcategory of U(g)-representations on the category of
finitely generated Hℓ-modules. This action is obtained by transporting the
tensor product of U(g)-modules through Skryabin’s equivalence.
Recently, Genra and Juillard studied sufficient conditions to apply the Hamil-
tonian reduction by stages to finite W -algebras, getting a Skryabin equivalence
by stages. We show that the latter is an equivalence of U(g)-module categories.
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Riassunto

Questa tesi tratta di proprietà aritmetiche e proprietà concernenti la teoria
delle rappresentazioni di alcune algebre di Hopf semisemplici. Si compone di
due parti.
La prima è dedicata allo studio degli ordini di Hopf.
L’obiettivo iniziale di questa parte è dimostrare che per qualsiasi gruppo finito
semplice e non abeliano G esiste un twist Ω per CG, derivante da un 2-cociclo
su un sottogruppo abeliano di G, tale che (CG)Ω non ammette un ordine di
Hopf su nessun anello di numeri. Per dimostrare ciò, proviamo il risultato di
non-esistenza per una famiglia chiave di gruppi semplici G e lo combiniamo
con due teoremi di Thompson e Barry e Ward riguardanti i gruppi semplici
minimali.
Inoltre, dimostriamo la non-esistenza di ordini di Hopf per twists di algebre di
gruppo di prodotti diretti di gruppi di Frobenius, soggetti ad alcune condizioni
tecniche.

La seconda parte della tesi è contestualizzata nella teoria delle W -algebre
finite. Una W -algebra finita Hℓ è un’algebra costruita a partire da un’algebra
di Lie riduttiva g e da un elemento nilpotente e ∈ g. Interpretiamo i
funtori di traslazione di Goodwin come un’azione di una sottocategoria delle
rappresentazioni di U(g) sulla categoria di Hℓ-moduli finitamente generati.
Quest’azione è ottenuta trasportando il prodotto tensore di moduli di U(g)
attraverso l’equivalenza di Skryabin.
Recentemente, Genra e Juillard hanno studiato condizioni sufficienti per
applicare la riduzione hamiltoniana per fasi alle W -algebre finite, otte-
nendo un’equivalenza di Skryabin per fasi. Mostriamo che quest’ultima è
un’equivalenza di U(g)-modulo categorie.
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Introduction

This thesis consists of two independent parts with Hopf algebras serving as
common thread. The first part of the thesis deals with arithmetic properties
of certain deformation of group algebras, namely the existence of Hopf orders.
The second part involves the Hopf algebra U(g), for g a semisimple Lie algebra.
In particular, we are interested in properties of the action of a subcategory of
U(g)-mod on the category of finitely generated Hℓ-modules, where Hℓ is a
finite W -algebra.

1. Hopf orders

Hopf algebras are a variation of an algebraic structure on the cohomolgy
rings of certain topological spaces introduced by Heinz Hopf in 1941 ([31]).
They provided algebraic tools to understand topological properties of these
spaces.
Nowadays, Hopf algebras are defined as algebras with a compatible coalgebra
structure and an inverse-like operation called the antipode. Over the years,
they have become a topic of great interest in their own right, finding applica-
tions in different fields, e.g. condensed-matter physics, quantum field theory,
string theory and LHC phenomenology ([1]).
In the late 20th century, the study of Hopf algebras was prompted by the in-
troduction of quantum groups, which are important examples of such algebras
and have significant applications in theoretical physics.

A crucial goal in understanding Hopf algebras is their complete classifica-
tion, which is currently a wide open problem. A natural approach to this issue
is to divide them into families, according to their properties. An example of
these families consists in Hopf algebras which are semisimple as algebras; the
latter can be subdivided by means of invariants and further properties.
One of these properties is the existence of Hopf orders (with the definition
to follow below); for this reason we are interested in understanding which
semisimple Hopf algebras have this additional structure.

In particular, in this part of the thesis we deal with semisimple Hopf al-
gebras that are obtained by deforming certain group algebras KG -where K
is a number field and G a finite group- exploiting a specific twist as devised
by Movshev in [54]. The ingredients for the construction of this twist are an
abelian subgroup of central type M of G and a non-degenerate 2-cocycle on
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2 INTRODUCTION

the character group M̂ (see Subsections 3.2 and 3.3). This procedure alters
the comultiplication and the antipode operation, leaving unchanged the other
structures, namely multiplication, unit and counit.
Let H be a Hopf algebra over K and let R be a subring of K. A Hopf order,
roughly speaking, is a Hopf algebra over R, such that the extension by scalars
is isomorphic to H. There is a well-established theory of Hopf orders for co-
commutative Hopf algebras; the theory is less developed for non-commutative
and non-cocommutative ones. Hopf orders apart from the Hopf algebra frame-
work have applications in number theory, for instance in Galois module theory
(for further details see [12] and [13]).
Our goal is to prove that for some key examples of G and M such deformed
group algebras do not admit Hopf orders over the ring of integer of K.
Understanding the (non-)existence of Hopf orders was initially motivated by
Kaplansky’s sixth conjecture.

1.1. Kaplansky’s sixth conjecture. In 1975 Kaplansky, after giving a
course on bialgebra in Chicago ([40]), proposed to his students 10 open ques-
tions, which are now known as Kaplansky conjectures and have been the focus
of a great deal of research. Such problems took inspiration from group theory.
Indeed, since finite group algebras are finite-dimensional semisimple Hopf al-
gebras, Kaplansky wondered whether the latter could have similar properties
to those of finite groups.
The answer to some of these 10 questions is still unknown; among these the
sixth one remains a partially open problem (further details could be found in
[61]). The above-mentioned conjecture is a generalization of Frobenius theo-
rem in the framework of representation theory of Hopf algebras. Explicitly, it
states that given a finite-dimensional semisimple Hopf algebra H, the dimen-
sion of every irreducible representation of H divides the dimension of H.
As already said, Kaplansky sixth conjecture motivated the study of Hopf or-
ders. Specifically, Larson proved in [47] that if a Hopf algebra admits a Hopf
order over a number ring then the conjecture holds. The way of proving Lar-
son’s result was mimicking the proof of Frobenius theorem. Indeed, the latter
is rooted on the fact that -speaking in modern terms- the finite group algebra
CG admits the Hopf order ZG.
At this stage, the problem was to understand if complex semisimple Hopf al-
gebras behave as group algebras, in particular if they admit Hopf orders over
a number ring.
In this regard, Cuadra and Meir studied the existence of Hopf orders for sev-
eral families of semisimple Hopf algebras in [14] and [15]. The Hopf algebras
considered are constructed as Drinfeld twists of group algebras through the
already mentioned Movshev’ strategy.

In this case the validity of Kaplansky’s conjecture is given for free. Indeed
by definition the representations of a Hopf algebra are the representations of
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its underlying algebra; then Frobenius theorem can be applied.
Cuadra and Meir proved that for certain families of groups such deformations
of group algebras do not admit Hopf orders over a number ring. This
highlighted an important difference between finite semisimple Hopf algebras
and finite group algebras, showing that the conjecture can be proven even if
the method adopted in the proof of Frobenius theorem for groups fails.

The strategy employed for proving the non-existence of Hopf orders for
these families of semisimple Hopf algebras considered by Cuadra and Meir is
a sort of verification method; the deep reason for this result to hold is still
unclear.
In [15, Section 5] the authors hypothesized a relationship between the
simplicity of the twisted group algebras and the non-existence of Hopf orders.
In particular, they asked the following:

Question. Let G be a finite non-abelian group. Let Ω be a non-trivial
twist for CG, constructed via Movshev strategy. Suppose that (CG)Ω is simple.
Can (CG)Ω admit a Hopf order over a number ring?

In [10] Giovanna Carnovale, Juan Cuadra and myself gave a partial
negative answer to this question when restricting ourselves to finite non-
abelian simple groups. Indeed, when G is simple, (CG)Ω is always simple
independently of the twist (Corollary 1.3.5).
This part of the thesis recollects the main results obtained in the above paper.
In addition, we deal with other simple groups and with several non-simple
groups which are direct products of certain Frobenius groups. Frobenius
groups are an important family of groups firstly introduced by Frobenius in
1901 ([23]). They have many applications in number theory, representation
theory, geometry and physics. A Frobenius group G can be viewed as a
semidirect product D ⋊ϕ M , where ϕ : M → Aut(D) is subject to specific
conditions (see Lemma 3.1.3). In this part of the thesis, we restrict ourselves
to the case in which M is an abelian p-group. A basic example of Frobenius
groups consists of groups of the form Cq ⋊ Cp, where p and q are primes such
that p|q − 1 (see Remark 1.3.6 for the definition). If we consider the family
of groups (Cq ⋊ Cp) × (Cr ⋊ Cp), for p, q and r prime such that p|q − 1 and
p|r− 1 and a twist arising from M = Cp ×Cp, it is known that the associated
twisted group algebras are simple ([24, Theorem 4.5]). On the other hand,
for a general product of Frobenius groups

∏l
i=1 Di ⋊ϕi

Mi, for Mi an abelian
p-group for every i ∈ {1, . . . , l} and M =

∏l
i=1 Mi of central type, it is not yet

clear if the associated twisted group algebras are simple or not.

There are also positive results on the existence of Hopf orders in the litera-
ture: Cuadra and Meir gave in [16] some conditions for twisted group algebras
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to admit a Hopf order over a number ring. In particular, the latter exists if
there is a normal abelian subgroup which contains a Lagrangian of M , where
M is the abelian subgroup giving rise to the twist ([16, Theorem 4.2]). In
addition, under more restrictive assumptions, they also proved the uniqueness
of the Hopf order ([16, Theorem 5.1]).

1.2. Organization. We provide a brief overview of the organization of
this part of the thesis.

Chapter 1 is devoted to the preliminaries. We give a proof of Frobe-
nius Theorem and we show how this proof can be carried out to prove
Larson’s theorem. Moreover, we recall the definition and the constructions we
need: Drinfeld twist, Movshev strategy, Hopf orders. In addition, we expound
the strategy we will use to prove the non-existence of Hopf orders and how
this can be applied to finite groups of Lie type.

Chapter 2 aims at proving the non-existence result for deformations of group
algebras of simple groups, specifically for SL2(q),PSL2(q),SL3(q),PSL3(q),
the Suzuki groups and the Janko groups. Here the twists arise from either
p-subgroups of central type or subgroups isomorphic to the Klein four group.
For this purpose, we describe the abelian subgroups of central type of the
groups we are considering.
Finally, in light of some remarkable classification theorems in group theory
([66, Corollary 1, page 388] and [3, Theorem 1]), we deduce a general
non-existence result for simple groups.

In Chapter 3, we prove the non existence result for group algebras as-
sociated to direct products of some Frobenius groups, namely the ones whose
Frobenius complement is an abelian p-group.

Finally in the appendix, we recollect some technical results we need in
Chapter 2.

2. W -algebras and U(g)-mod

A finite W -algebra Hℓ is an algebra constructed from a reductive Lie
algebra g and a nilpotent element e ∈ g.
The first definition of such an algebra dates back to 1978, when Kostant
constructed in [45] the algebra Hℓ starting from a regular nilpotent element
ereg and showed that Hℓ ≃ Z(U(g)).
In [58], Premet gave a general definition of a finite W -algebra, i.e. he
generalized Konstant’s construction to the case of a general nilpotent element.
In particular, when e = 0, then Hℓ ≃ U(g), and when e is regular, then
Hℓ ≃ Z(U(g)). The work in [58] was motivated by the study of representations
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of semisimple Lie algebras in positive characteristic.
Roughly speaking, a finite W -algebra is a subquotient of U(g) which lies
between Z(U(g)) and U(g), although in general it is not a subalgebra of U(g).
Further contributions to the comprehension of this construction are due to
Gan, Ginzburg, Brundan and Goodwin ([7], [8], [25]).

Finite W -algebras captured the attention of mathematicians, but also
of physicists. The latter were interested in their connection with affine
W -algebras, which are vertex algebras modeling the so called W -Symmetry
from conformal field theory (see for instance [5]).
Mathematicians are interested in the representation theory of finite W -
algebras, because important information about U(g)-modules and primitive
ideals of U(g) are encoded in the representation theory of Hℓ ([48]). An
important connection was illustrated by Skryabin in the appendix of [58],
where he established an equivalence between finitely-generated Hℓ-modules
and a specific subcategory of U(g)-modules. By means of this equivalence,
Premet in [59] proved that every finite W -algebra possesses finite dimensional
irreducible representations.

In representation theory of Lie algebras, a crucial role is played by the
Bernstein-Gelfand-Gelfand category O. This category contains a lot of
important modules: e.g. finite-dimensional modules, highest-weight modules,
Verma modules.
The category O is the direct sum of the subcategories Oχ, called blocks, where
χ runs through the set of central characters of U(g). These blocks are related
to each other by means of translation functors; these functors allow us to
deduce equivalences between blocks and to understand how representations
behave when they are translated from a block to another one in the BGG
category O.

In [28], Goodwin introduced an analogous functor for Hℓ-modules. In
particular, he defined the translation of a finitely generated Hℓ-module by
a finite dimensional U(g)-module by transporting the tensor product of
U(g)-modules through Skryabin’s equivalence. Additionally, he studied the
relationship between the translation functors and the category O(e), which is
the analogue of the BGG category in W -algebras setting (for the definition
see [8, Subsection 4.4]).
In this part of the thesis, after spelling out the transport of structure proce-
dure for general actions of monoidal categories, we interpret this translation
functor as an action of a specific subcategory of U(g) representations on the
category of finitely generated Hℓ-modules.
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2.1. Reduction by stages. By Poincaré-Birkhoff-Witt theorem, the
universal enveloping algebra U(g) is a quantization of the symmetric algebra
S(g). Also, in [58], Premet showed that Hℓ is a quantization of the Slodowy
slice Se associated to a nilpotent element e ∈ g. For constructing Se we
need a nilpotent element e ∈ g, which, by Jacobson-Morozov Theorem, can
be embedded in an sl2-triple {e, h, f}, i.e. h, f are such that [h, e] = 2e,
[h, f ] = −2f and [e, f ] = h. Then the Slodowy slice is defined as Se = e+ gf ,
where gf stands for the centralizer of f in g. Since g∗ is a Poisson variety, the
Slodowy slice inherits its Poisson structure through Hamiltonian reduction.
Hence, the finite W -algebra can be seen as a quantum Hamiltonian reduction
of U(g).

Since U(g) ≃ Hℓ when e = 0, one might ask whether a W -algebra
Hℓ(2)

can be expressed as a quantum Hamiltonian reduction of another
W -algebra Hℓ(1)

in such a way that the following diagram commutes.

U(g) Hℓ(2)

Hℓ(1)

Q.H.R.

Q.H.R. ′Q.H.R′

The theory of Hamiltonian reduction by stages is a well-developed branch of
symplectic geometry. The problem is to find a quantum version of Hamiltonian
reduction by stages.
Firstly Morgan in [53], and then Genra and Julliard in [26] worked on this
topic. In particular, the latter were interested in this reduction by stages for
affine W -algebras and for finite W -algebras; for the first one they made some
conjectures, while for the finite ones they found some conditions for which a
quantum version of Hamiltonian reduction by stages can be performed.
As a consequence of this construction, they obtained a variant of Skryabin
equivalence.
This part of the thesis aims at showing that the above equivalence is compatible
with the category action by translation functors.

2.2. Organization. We briefly outline how this part of the thesis is
organized.

In the fourth chapter, we recall some notions about category theory. In
particular, we recall the definition of a monoidal category, of a left C-module
category and of a C-module functor. Then, we spell out how we can construct
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new C-module categories by means of an equivalence and transport of
structure.

In Chapter 5, we recall the definition of a finite W -algebra and of the
classical version of Skryabin equivalence.

The goal of Chapter 6 is to spell out how the translation functors in-
troduced by Goodwin are an instance of transport of structure of a natural
categorical action. To this aim, we show that the category of Whittaker
modules is a (Ce,Ce)-bimodule category, where Ce is a subcategory of the
category of U(g)-modules, depending on e. Then, by means of Skryabin
equivalence, we endow the category of Hℓ-modules with a (Ce,Ce)-bimodule
structure.

In Chapter 7, we briefly recall from [26] how reduction by stages for fi-
nite W -algebras can be performed. Then, we will present the variant of
Skryabin equivalence in order to show that the latter is invariant under the
action of Ce.

Finally, Chapter 8 aims at showing the exactness of the translation
functor for Hℓ-modules.





CHAPTER 1

Preliminaries

In this Chapter we recollect some definitions and results that will be needed
for proving the main results of this part of the thesis.

1. Motivation

As we mentioned in the Introduction, the problem of the non-existence of
Hopf orders was motivated by Kaplansky’s sixth conjecture, which generalizes
Frobenius theorem in the setting of Hopf algebras. For this reason, we start
stating and proving this fundamental theorem in the representation theory of
finite groups.

Theorem 1.1.1. Let G be a finite group. Then, the degree of any complex
irreducible representation of G divides the order of G.

Proof. Let {V1, . . . , Vl} be a set of representatives of the isomorphism
classes of the irreducible representations of G. For i ∈ {1, . . . , l}, let ni =
dim(Vi), let φi be the character of Vi and let eφi

be the central primitive
idempotent orthogonal element of CG associated with φi, i.e.

|G|
ni
eφi

=
∑

g∈G

φi(g)g
−1. (1.1.1)

It is well known that for every i ∈ {1, . . . l}, the value φi(g) lies in Z[ξ], where ξ
is a primitive |G|-th root of unit ([36] Corollary 3.6). For simplicity, we denote
Z[ξ] by R.
Consider the finitely generated R-module RG. Since R is Noetherian, every
R-submodule of a finitely generated R-module is again finitely generated. In
particular, taking x ∈ RG, the submodule:

R[x] := R〈1, x, x2, . . . 〉
is finitely generated, where R〈1, x, x2, . . . 〉 is the R-submodule spanned by
all powers of x. This implies that x is a root of a monic polynomial with
coefficients in R . Since R is finitely generated as a Z-module and R[x] is
finitely generated as an R-module, then R[x] is finitely generated as a Z-
module. Given that Z is Noetherian, then Z[x] is a finitely generated Z-module.
Notice that |G|

ni
eφi

=
∑
g∈G φi(g)g

−1 ∈ RG and by the above considerations it
is the root of a monic polynomial with coefficients in Z. Especially, for every

9



10 1. PRELIMINARIES

i ∈ {1, . . . , l} there exist mi > 0 and ai,j ∈ Z, for j ∈ {0, . . . ,mi − 1} such
that:

(
|G|
ni
eφi

)mi

+ ai,mi−1

(
|G|
ni
eφi

)mi−1

+ · · · + ai,1
|G|
ni
eφi

+ ai,0 = 0.

Multiplying the latter by eφi
and using the fact that eφi

is idempotent, we
obtain that for every i ∈ {1, . . . , l}:



(

|G|
ni

)mi

+ ai,mi−1

(
|G|
ni

)mi−1

+ · · · + ai,1
|G|
ni

+ ai,0


 eφi

= 0,

i.e. (
|G|
ni

)mi

+ ai,mi−1

(
|G|
ni

)mi−1

+ · · · + ai,1
|G|
ni

+ ai,0 = 0.

Since |G|
ni

∈ Q and it is the root of a monic polynomial with coefficients in Z,

then |G|
ni

∈ Z, for every i ∈ {1, . . . , l}. �

The generalization of the above theorem in the framework of Hopf algebras
can be read as:

Conjecture 1. Let H be a complex finite-dimensional semisimple Hopf
algebra. Then, the dimension of every irreducible representation of H divides
dim(H).

Before analyzing the conjecture, we need to recollect some notions, con-
structions and results in Hopf algebra’s theory.

2. Hopf algebras

In this section, we fix notations for Hopf algebras and we recall some
important notions.
Our main references for the general theory of Hopf algebras are [52] and [60].

We will work over a ground field K. Vector spaces, linear maps, and
unindexed tensor products are over K, unless otherwise specified. Through-
out, H is a finite-dimensional Hopf algebra over K. We denote by 1H its
identity element; and by ∆, ε, and S its coproduct, counit, and antipode,
respectively. The dual Hopf algebra of H is denoted by H∗.
We recall that an element t ∈ H is called a left (resp. right) integral if it
is invariant under left (resp. right) multiplication, i.e. ht = ε(h)t (resp.
th = ε(h)t) for every h ∈ H.

Example 1.2.1. Let G be a finite group. Consider the algebra KG en-
dowed with the usual Hopf algebra structure, i.e. ∆(g) = g ⊗ g, S(g) = g−1

and ε(g) = 1, for every g ∈ G.
The space of left and of right integrals is generated by

∑
g∈G g.
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We say that a Hopf algebra H is semisimple if it is semisimple as an
algebra.
Semisimplicity is related to left and right integrals; explicitly, a finite-
dimensional Hopf algebra is semisimple if and only if ε(t) 6= 0, for every left
(and consequently right) integral t.

Remark 1.2.1. We stress that the antipode of a finite dimensional semisim-
ple Hopf algebra satisfies S2 = id by [60, Theorem 16.1.2].

Symmetrically, we say that a Hopf algebra H is cosemisimple if it is a direct
sum of simple coalgebras, i.e. coalgebras with no proper subcoalgebras.

Example 1.2.2. Let G be a finite group. Call t =
∑
g∈G g the generator

of left and right integrals. By definition of the counit, ε(t) = |G|. Then KG
is semisimple if and only if the characteristic of the field does not divide the
order of G. Moreover, KG is cosemisimple since KG =

⊕
g∈GKg and Kg is a

simple subcoalgebra.

For the notion of a simple Hopf algebra H, we need to define a left action
of H on itself, called the left adjoint action. Especially:

x.h :=
∑

h(1)xS(h(2)),

for x, h ∈ H.
We say that a Hopf subalgebra is simple if there are no normal Hopf subalge-
bras of H, i.e. Hopf subalgebras which are stable under the adjoint action.

Example 1.2.3. Consider the group algebra KG for G a finite non abelian
simple group. On the base elements, the left adjoint action defined above is
just the conjugation, since by definition ∆(g) = g ⊗ g and S(g) = g−1, for
every g ∈ G. Since Hopf subalgebras of KG are of the form KN , with N a
subgroup of G ([60, Exercise 7.1.3]), then normal Hopf subalgebras of KG are
in bijection with normal subgroups of G. Hence, the simplicity of the group G
implies the simplicity of KG as a Hopf algebra.

3. Deformation of Hopf algebras

In this section we provide a technique for deforming Hopf algebras. We
specify this procedure for group algebras, explaining the so called Movshev’s
strategy. For this purpose, we briefly present the construction of the second
cohomology group of a group G over K and some results about it. Throughout
this section K has characteristic zero.

3.1. Drinfeld twist. We succinctly recall here the basics of Drinfeld’s
deformation procedure of a Hopf algebra. An invertible element
Ω :=

∑
Ω(1) ⊗ Ω(2) ∈ H ⊗H is called a twist for H provided that:

(1H ⊗ Ω)(id⊗ ∆)(Ω) = (Ω ⊗ 1H)(∆ ⊗ id)(Ω), and
(ε⊗ id)(Ω) = (id⊗ ε)(Ω) = 1H .
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The Drinfeld twist of H is the new Hopf algebra HΩ constructed as follows:
HΩ = H as an algebra, the counit is that of H, and the coproduct and antipode
differ from those in H in the following way:

∆Ω(h) = Ω∆(h)Ω−1 and SΩ(h) = QΩS(h)Q−1
Ω ∀h ∈ H.

Here, QΩ :=
∑

Ω(1)S(Ω(2)) and Q−1
Ω =

∑
S(Ω−(1))Ω−(2), where Ω−(1) and Ω−(2)

are defined by Ω−1 =
∑

Ω−(1) ⊗ Ω−(2).

With the following corollary, we stress that cosemisimplicity is preserved
under twisting.

Corollary 1.3.1 (Corollary 3.6 [2]). If H is a cosemisimple Hopf algebra
and J ∈ H ⊗H is a twist for H, then HJ is again cosemisimple.

3.2. Cocycles. In order to present Movshev strategy, we need to recall
the construction of the second cohomology group together with some of its
properties.

Let G be a group. We call Z2(G,K×) the set of all functions ω : G×G → K×

such that for every x, y, z ∈ G, the following identities are satisfied

ω(x, 1G) = ω(1G, x) = 1 (1.3.1)

ω(x, y)ω(xy, z) = ω(y, z)ω(x, yz). (1.3.2)

The elements of Z2(G,K×) are called 2-cocycles.
The set Z2(G,K×) turns out to be an abelian group with the following oper-
ation

(ωω′)(x, y) := ω(x, y)ω′(x, y) (1.3.3)

for every ω, ω′ ∈ Z2(G,K×) and x, y ∈ G.

Consider a map ω′ : G → K× with the property that ω′(1G) = 1. We
define a map δω′ : G×G → K× in the following way

(δω′)(x, y) = ω′(x)ω′(y)ω′(xy)−1, (1.3.4)

for all x, y ∈ G. Such a map δω′ is called a coboundary. The collection of all
coboundaries is denoted by B2(G,K×) and it is a subgroup of Z2(G,K×).
We define the second cohomology group of G over K as

H2(G,K×) := Z2(G,K×)�B2(G,K×). (1.3.5)

We say that two elements of Z2(G,K×) are cohomologous if they belong
to the same cohomology class, i.e. if they represent the same element in
H2(G,K×). In particular, for ω ∈ Z2(G,K×), we write [ω] to denote its
equivalence class.
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From now on in this section, we assume that G is abelian. After re-
calling the above construction, we need to recollect some properties of
H2(G,K×).
For this purpose, consider K̄ the algebraic closure of K and denote by Pas

the set of all anti-symmetric pairings of G into K̄×, i.e. the set of all maps
β : G×G → K̄× satisfying the following properties

β(gh, g′) = β(g, g′)β(h, g′),

β(g, hg′) = β(g, h)β(g, g′),

β(g, h)−1 = β(h, g),

for every g, h, g′ ∈ G.
We associate to a 2-cocycle ω the anti symmetric bilinear form

βω(g, g′) := ω(g, g′)/ω(g′, g),

for every g, g′ ∈ G. Observe that the bilinear form βω associated to ω ∈
Z2(G, K̄×) depends only on the cohomology class of ω .
The following theorem makes this correspondence more precise.

Theorem 1.3.2. [42, Theorem 3.6] Let G be a finite abelian group and
let K̄ be the algebraic closure of K. The assignment ω 7→ βω induces an
isomorphism between the second cohomology group H2(G, K̄×) and the group
of Pas(G, K̄

×) consisting of all anti-symmetric pairings of G into K̄×.

This correspondence allows us to shift concepts on bilinear forms to con-
cepts on 2-cocycles and cohomology classes.
For instance for ω ∈ H2(G, K̄×), we define the radical of ω as

Rad(ω) := {g ∈ G : ω(g, g′) = ω(g′, g) ∀g′ ∈ G},
that is the radical of its associated anti symmetric bilinear form βω. Likewise,
we say that a 2-cocycle ω is non-degenerate if Rad(ω) = {1G}, that is βω is
non-degenerate.
An important result we will rely on is the following:

Lemma 1.3.3. For any 2-cocycle ω′ on G there exists, up to coboundary, a
unique non-degenerate 2-cocycle ω on G/Rad(ω′), such that [ω′] = [ω ◦ (p×p)],
where p stands for the projection p : G → G/Rad(ω′), and such that ω(g, g′)
lies in a cyclotomic field extension of K for any g, g′ ∈ G/Rad(ω′) .

Proof. Firstly, we prove that for any 2-cocycle ω′ on G there exists, up
to coboundary, a unique non-degenerate 2-cocycle ω on G/Rad(ω′), such that
[ω′] = [ω ◦ (p× p)].
Let ω′ be a degenerate 2-cocycle, i.e. a 2-cocycle such that Rad(ω′) 6= {1G}.
Thus, it makes sense to consider the quotient G/Rad(ω′) and in consequence
the projection p : G → G/Rad(ω′). In addition, there exists a bilinear form β
on G/Rad(ω′), such that the following diagram commutes
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G×G K̄×

G�Rad(ω′) ×G�Rad(ω′).

βω′

p×p β

The anti-symmetric bilinear form β is non-degenerate by construction. In
light of Theorem 1.3.2 there exists a non-degenerate 2-cocycle ω on G/Rad(ω)
with values on K̄× such that β = βω. By the commutativity of the above
diagram, we get that βω′ = βω ◦ (p × p). In addition, Theorem 1.3.2 implies
that the cohomology class of ω′ is related to the one of ω through the equality
[ω′] = [ω ◦ (p× p)]. This concludes this verification.

Finally, by [41, Proposition 2.1.1, p. 14] for any 2-cocycle ω′ on G
with values in K̄×, there exists a 2-cocycle ω ∈ [ω′] with values in the ring of
integers of a cyclotomic extension of K. �

We conclude this subsection, presenting the condition on a group M for
admitting a non-degenerate 2-cocycle.
Recall from [43, page 366] that M is said to be of symmetric type if M ≃ E×E
for some group E. By [43, Theorems 1.9, 2.8, and 2.11], a group M admits a
non-degenerate 2-cocycle if and only if M is of symmetric type. We will use
the terminology central type instead, which is the standard one nowadays in
this setting and applies to arbitrary groups, not necessarily abelian. See, for
instance, the introductions of [4] and [27].

3.3. Movshev’s strategy. We next describe Movshev’s method [54, Sec-
tion 1] of constructing a twist for the group algebra of a finite group G from a
2-cocycle on an abelian subgroup M < G. Actually, Movshev studied and clas-
sified all possible twists for a group algebra, but for our purposes, we restrict
ourselves to the abelian case.

The group algebra KM is a Hopf subalgebra of KG. Suppose that charK
is coprime with |G| and that K is large enough for KM to split. (Here and
below, we use the term split in the sense of [17, Definition 7.12]: every irre-
ducible representation -corepresentation when dealing with coalgebras- is ab-
solutely irreducible.) Consider the character group M̂ of M . The Wedderburn
decomposition of KM is provided by the complete set of orthogonal primitive
idempotents {eφ}φ∈M̂

. If ω : M̂ × M̂ → K× is a 2-cocycle, then

ΩM,ω :=
∑

φ,ψ∈M̂

ω(φ, ψ)eφ ⊗ eψ (1.3.6)
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is a twist for KM , and, consequently, for KG. In particular, cohomologous
2-cocycles gives rise to isomorphic twisted group algebras, in virtue of [54,
Proposition 3].
Later, we will need to know how a twist of this type is carried under an
automorphism f : G → G (in particular, under conjugation). We can carry
φ to a character φf of f(M) and ω to a normalized 2-cocycle ωf on f̂(M) in
the natural way: φf = φ ◦ (f |M)−1 and ωf = ω ◦ (f̂ |M × f̂ |M), respectively.
For the isomorphism f : KG 7→ KG, g 7→ f(g), we have f(eφ) = eφf and
(f ⊗ f)(ΩM,ω) = Ωf(M),ωf . Then:

Remark 1.3.4. The map f : KG 7→ KG establishes a Hopf algebra iso-
morphism between (KG)ΩM,ω

and (KG)Ω
f(M),ωf

. Similarly, cohomologous 2-
cocycles give rise to isomorphic Hopf algebras ([54, Proposition 3]).

We also recall the following proposition, which explains the relationship
between the simplicity of the group G and the simplicity of the twisted group
algebra (KG)ΩM,ω

.

Corollary 1.3.5. [55, Corollary 4.3] Let G be a finite simple group and
let Ω be any twist for KG. Then (KG)Ω is simple as a Hopf algebra.

Remark 1.3.6. We stress that the converse of Corollary 1.3.5 does not
hold. For instance, let G be the symmetric group Sn for n ≥ 5 and let M =
〈(12), (34)〉. Moreover, consider the unique non-degenerate cocycle ω on M̂ ,
up to coboundary. Then, by [24, Theorem 3.5], the Hopf algebra (KSn)ΩM,ω

is simple, even if the symmetric group Sn is not.
We focus on another interesting example. Let p, q, r be prime numbers such
that p divides q − 1 and r − 1. Then, there exists an element s ∈ F×

q and an
element t ∈ F×

r of order p. In consequence, we can define the following action
of Cp on Cq

xyx−1 = ys,

for x and y fixed generators of Cp and Cq, respectively. Likewise, the cyclic
group Cp acts on Cr in the following way:

zwz−1 = wt,

for z and w fixed generators of Cp and Cr, respectively. We can then consider
the family of groups G = (Cq ⋊ Cp) × (Cr ⋊ Cp). Let J be the twist arising
from M = Cp ×Cp and let ω ∈ H2(M̂,K×) be any 2-cocycle on M̂ . Then, the
twisted group algebra (KG)ΩM,ω

is simple by [24, Theorem 4.5].

Notice that (KG)ΩM,ω
is cosemisimple by Corollary 1.3.1. The Wedderburn

decomposition of (KG)ΩM,ω
as a coalgebra was described by Etingof and Gelaki

in [21, Section 3]. We summarize [21, Propositions 3.1, 4.1, and 4.2] and
[15, Propositions 2.1 and 2.2] in the following result.
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Proposition 1.3.7. Let {τℓ}nℓ=1 be a set of representatives of the double
cosets of M in G and let ω be a 2-cocycle on M̂ . Then:

(i) As a coalgebra, (KG)ΩM,ω
decomposes as the direct sum of subcoalge-

bras

(KG)ΩM,ω
=

n⊕

ℓ=1

K(MτℓM).

(ii) Suppose that K is large enough so that (KG)ΩM,ω
splits as a coalgebra.

If M ∩ (τℓMτ−1
ℓ ) = {1} and ω is non-degenerate, then K(MτℓM) is

isomorphic to a matrix coalgebra of size |M |. Moreover, the irreducible
cocharacter of (KG)ΩM,ω

attached to K(MτℓM) is

cτℓ
:= |M |eετℓeε. (1.3.7)

The following proposition will be crucial in the proof of our main results:

Proposition 1.3.8. Keep hypotheses and notation as in Proposition
1.3.7(ii). Set τ = τℓ for short. Let χ : KG → K be the linear extension of a
character of G. Then:

(χ⊗ id)∆Ω(cτ ) =
1

|M |
∑

g∈MτM

χ(g)g.

Proof. The proof is a variation of that of [15, Proposition 3.1(iii)]. We
compute:

(χ⊗ id)∆Ω(cτ )
①
= |M |

∑

λ,ρ∈M̂

ω(λ, λ−1)ω−1(ρ, ρ−1)χ(eλτeρ)eλ−1τeρ−1

②
= |M |

∑

λ,ρ∈M̂

ω(λ, λ−1)ω−1(ρ, ρ−1)χ(τeρeλ)eλ−1τeρ−1

③
= |M |

∑

λ∈M̂

ω(λ, λ−1)ω−1(λ, λ−1)χ(τeλ)eλ−1τeλ−1

③
= |M |

∑

λ,ρ∈M̂

χ(τeρeλ)eλ−1τeρ−1

②
= |M |

∑

λ,ρ∈M̂

χ(eλτeρ)eλ−1τeρ−1

④
= (χ⊗ id)∆(|M |eετeε)

=
|M |
|M |2

∑

u,v∈M

χ(uτv)uτv

⑤
=

1

|M |
∑

g∈MτM

χ(g)g.

Here, we used:
① Definition of ∆Ω and Equation 2.2 in [15, page 141].
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② That χ is a character: χ(ab) = χ(ba) for all a, b ∈ KG.
③ That {eφ}φ∈M̂

is a complete set of orthogonal idempotents in KM .
④ That ∆(eφ) =

∑
λ∈M̂

eλ ⊗ eλ−1φ.
⑤ That uτv runs one-to-one all elements of MτM since |MτM | = |M |2.

�

4. Hopf orders

This section aims at defining Hopf orders and at presenting those results
that will play a crucial role on proving our main result.

Let W be a finite-dimensional vector space over K. Let R be a sub-
ring of K. A lattice of W over R is a finitely generated and projective
R-submodule X of W such that the natural map X ⊗R K → W is an
isomorphism. The submodule X corresponds to the image of X ⊗R R.

A Hopf order of H over a subring R of K is a lattice X of H that is closed
under the Hopf algebra operations; namely,

1H ∈ X, XX ⊆ X, ∆(X) ⊆ X ⊗R X, ε(X) ⊆ R, S(X) ⊆ X.

For the coproduct, X ⊗R X is naturally identified with an R-submodule of
H ⊗ H. This is equivalent to the requirement that X is a: Hopf algebra over
R; finitely generated and projective as an R-module and such thatX⊗RK ≃ H
as Hopf algebras over K.

Example 1.4.4. Let G be a finite group and consider the group algebra
QG. Then, ZG is a Hopf order of QG. A Hopf order in a Hopf algebra is not
unique in general. Indeed, take for example G = C2 × C2 and let {g, g′} be a
set of generators of such a group. The Z-module generated by

{
1−g

2
, 1+g

2
, g′
}

is a Hopf order of QG strictly containing ZG.

It is natural to expect that also Hopf orders can be dualized maintaining
the property of being isomorphic to their double dual. Firstly, we need to
understand the dual of a Hopf order.
Let X be a lattice of H over a subring R of K. We define the dual of X as
X⋆ := {φ ∈ H∗ : φ(X) ⊆ R}.

Then X∗ is an R-module via the action (r.φ)(x) = φ(r.x), for every
r ∈ R, x ∈ X and φ ∈ X⋆.

Recall that a representation of a Hopf algebra H is a representation of
its underlying algebra, i.e. a vector space V together with a morphism
φ : H → End(V ). The character χφ of a representation φ of H is defined as

χφ(h) := Tr(φ(h)),
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for every h ∈ H, in line with the group algebra case.
In the following three propositions, K is a number field and R ⊂ K is a
Dedekind domain containing OK , the ring of algebraic integers of K. Under
these hypotheses, K is the field of fractions of R. Hopf order means Hopf order
over R.

Proposition 1.4.1. [14, Lemma 1.1] Let X be a Hopf order of H.

(i) The dual lattice X⋆ := {ϕ ∈ H∗ : ϕ(X) ⊆ R} is a Hopf order of H∗.
(ii) The natural isomorphism H ≃ H∗∗ induces an isomorphism X ≃ X⋆⋆

of Hopf orders.

The proofs of our main results are rooted in the following:

Proposition 1.4.2. [14, Proposition 1.2] Let X be a Hopf order of H.
Then:

(i) Every character of H belongs to X⋆.
(ii) Every character of H∗ (cocharacter of H) belongs to X.

The following technical result often eases our task:

Proposition 1.4.3. [14, Proposition 1.9] Let X be a Hopf order of H.

(i) If A is a Hopf subalgebra of H, then X ∩ A is a Hopf order of A.
(ii) If π : H → B is a surjective Hopf algebra map, then π(X) is a Hopf

order of B.

5. Larson Theorem

The goal of this section is to prove Larson theorem, generalizing the proof
of Frobenius theorem.
For this purpose, we need a formula for the central primitive idempotent ele-
ments in a semisimple Hopf algebra.
Let H be a finite-dimensional semisimple Hopf algebra and suppose that K
is large enough so that H splits as an algebra and a coalgebra. Applying
Wedderburn’s theorem, H is isomorphic as an algebra to a product of matrix
algebras of finite degree with coefficient in K. Especially,

H ≃
l∏

i=1

Mni
(K).

Moreover, we set Vi to be the natural representation of Mni
(K) and ni to be

its dimension, in particular Vi is irreducible for all i ∈ {1, . . . , l}.
Denoting the identity matrix of size nj by 1nj

, we call ǫj the element
(0, . . . ,1nj

, . . . , 0) in
∏l
i=1 Mni

(K) , where 1nj
is in the j-th position.
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By definition,

ǫiǫj = (0, . . . , 0) if i 6= j,

ǫ2
i = ǫi for every i ∈ {1, . . . , l},
ǫ1 + · · · + ǫl = (1n1 ,1n2 , . . . ,1nl

).

We denote by ei the image of ǫi through the isomorphism
∏l
i=1 Mni

(K) ≃ H.
Then

eiej = 0 if i 6= j, e2
i = ei, for every i ∈ {1, . . . , l}, and e1 + · · · + el = 1.

Equivalently, the elements {ei}li=1 form a set of orthogonal idempotents in H
and they are such that H =

⊕l
i=1 Hei, with Hei ≃ Mni

(K), for i ∈ {1, . . . , l}.

Let λ ∈ H∗ be a left integral, rescaled to ensure that 〈λ, 1H〉 = 1 and
let Λ ∈ H be a right integral. Without loss of generality by the semisimplicity
of H, we can choose Λ in such a way that 〈λ,Λ〉 = 1. The following proposition
provides a formula for the central primitive idempotent elements.

Proposition 1.5.1. Let H, Λ and Vi for i ∈ {1, . . . , l} be as above. Let φi
be the character of Vi. Then:

dim(H)

dim(Vi)
ei =

∑
Λ(1)〈φi, S(Λ(2))〉. (1.5.1)

We are now in a position to state Larson’s theorem.

Theorem 1.5.2. Let H be a finite-dimensional semisimple Hopf algebra
and suppose that K is large enough so that H splits as an algebra and a coal-
gebra. Suppose that H admits a Hopf order X over a number ring OK. Then,
the dimension of every irreducible representation of H divides dim(H).

Proof. By [60, Theorem 16.1.2] the integral Λ is the character of the reg-
ular representation; hence, by Proposition 1.4.2, the element Λ lies in X. By
the definitions of a Hopf order and of the dual Hopf order and by Proposition
8.0.1, also

∑
Λ(1)〈φi, S(Λ(2))〉 belongs to X, for every i ∈ {1, . . . , l}. Conse-

quently, dim(H)
dim(Vi)

ei ∈ X for every i ∈ {1, . . . l}. Since X is finitely generated as
an OK-module, arguing as we did in the proof of Frobenius theorem, we obtain
that there exist mi > 0 and ri,j ∈ Z such that:
(

dimH

dim Vi
ei

)mi

+ ri,mi−1

(
dimH

dim Vi
ei

)mi−1

+ · · · + ri,1

(
dimH

dim Vi
ei

)
+ ri,0 = 0,

for every i ∈ {1, . . . , l}. Multiplying by ei we obtain
(

dimH

dim Vi

)mi

+ ri,mi−1

(
dimH

dim Vi

)mi−1

+ · · · + ri,1

(
dimH

dim Vi

)
+ ri,0 = 0.
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We conclude that dimH
dimVi

is the root of a monic polynomial in Z. Hence
dimH
dimVi

∈ Z, for every i ∈ {1, . . . , l}, i.e. the dimension of Vi divides dimH, for
every i ∈ {1, . . . , l}. �

6. Strategy of proof and framework of application

As we mentioned in the introduction, we want to prove the following:

Theorem. [10, Corollary 6.4] Let G be a finite non-abelian simple group.
Then, there is a twist Ω for CG, as in Subsection 3.3, such that (CG)Ω does
not admit a Hopf order over any number ring.

Apart from the twisted group algebras needed for proving the above result,
we will also present other examples of twisted group algebras which do not
admit Hopf orders; some of them arise from simple groups and others from
the direct product of certain Frobenius groups.

We expound here in general terms the strategy that we will use to prove
the non-existence of integral Hopf orders for a twist of several group algebras.
This strategy suitably modifies that employed in [15, Section 3] for the
alternating groups.

Here K is a number field and R is a Dedekind domain such that
OK ⊆ R ⊂ K. Consider the Hopf algebra (KG)ΩM,ω

as in Subsection
(3.3), for some abelian subgroup M and some 2-cocycle ω on M̂ . Suppose
that (KG)ΩM,ω

admits a Hopf order X over R. The aim will be to prove that
for our choice of groups and twists the fraction 1

|M |
belongs to R. Notice that

if 1
|M |

∈ R, then the group ring RG is closed under ∆Ω, εΩ and SΩ and RG

is a Hopf order of (KG)ΩM,ω
over R. Our result will tell that the condition

1
|M |

∈ R is also necessary for (KG)ΩM,ω
to admit a Hopf order over R. This

implies, in particular, that Hopf orders of (KG)ΩM,ω
over R do not exist when

R = OK .
For our aim, by Lemma 1.3.3 and by Remark 1.3.4 we can assume first,

without loss of generality, that ω is non-degenerate.
We can assume secondly that K is large enough so that (KG)ΩM,ω

splits as
an algebra and as a coalgebra. The reason for this is the following. The
Hopf algebra (KG)ΩM,ω

splits as an algebra and as a coalgebra over a finite
field extension L/K. Let R̄ denote the integral closure of R in L. Then,
R̄ is a Dedekind domain, which contains OL, and if X is a Hopf order of
(KG)ΩM,ω

over R then X ⊗R R̄ is a Hopf order of (LG)ΩM,ω
over R̄. Hence,

the non-existence of Hopf orders over R̄ implies the non-existence of Hopf
orders over R.
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We will choose τ, τ ′ ∈ G such that M ∩ (τMτ−1) = {1} and
M ∩ (τ ′Mτ ′−1) = {1}. We will consider the irreducible cocharacters cτ
and cτ ′ of (KG)ΩM,ω

attached to K(MτM) and K(Mτ ′M) as in (1.3.7) re-
spectively. Assume that X is a Hopf order over R. By Proposition 1.4.2(ii), cτ
and cτ ′ belong to X. Using that X is closed under the coproduct, Proposition
1.4.2(i) and Proposition 1.3.8, we obtain that the following elements yχ,τ and
yχ′,τ ′ belong to X:

yχ,τ := (χ⊗ id)∆Ω(cτ ) =
1

|M |
∑

g∈MτM

χ(g)g, (1.6.1)

yχ′,τ ′ := (χ′ ⊗ id)∆Ω(cτ ′) =
1

|M |
∑

g∈Mτ ′M

χ′(g)g, (1.6.2)

for χ and χ′ two characters of G. Then, yχ,τ yχ′,τ ′ lies in X as well. Proposition
1.4.2(i) yields that χ′′(yχ,τ yχ′,τ ′) ∈ R, for any character χ′′ of G. We will choose
τ, τ ′, χ, χ′ and χ′′ in such a way that the fraction 1

|M |
will appear as a factor

of χ′′(yχ,τ yχ′,τ ′) so that we could derive that 1
|M |

∈ R by applying Bezout’s
identity.

6.1. Strategy for p-groups. In our setting, M will be often a p-group
and there will be a Sylow p-subgroup U of G set in advance. Remark 1.3.4
will allow us to assume that M is a subgroup of U . In this case, we will
use the strategy presented above with χ = χ′ = χ′′ := IndGU(1U), where
IndGU(1U) stands for the induced character of the trivial representation of U .
Set P =

⋃
g∈G gUg

−1 the set of p-elements in G together with the identity. By
construction, χ vanishes outside P . Its values on the identity and on u ∈ U
are:

χ(1) =
|G|
|U | ,

χ(u) =
1

|U |
∑

g∈G
gug−1∈U

1U(gug−1) =
1

|U | · #{g ∈ G : gug−1 ∈ U}.
(1.6.3)

Next we choose τ = τ ′ ∈ G such that M ∩ (τMτ−1) = {1}. From now on,
we will write yχ instead of yχ,τ to simplify the notation.
The element y2

χ reads as:

y2
χ =

1

|M |2
∑

u,u′,v,v′∈M

χ(τu′u)χ(τv′v)uτu′vτv′. (1.6.4)
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Evaluating χ at this element, we get:

χ(y2
χ) =

1

|M |2
∑

u,u′,v,v′∈M

χ(τu′u)χ(τv′v)χ(τu′vτv′u). (1.6.5)

Let Iχ be the set of fibers of χ of non-zero values; that is,

Iχ = {χ−1(γ) : γ ∈ Im(χ) and γ 6= 0}.
For C ∈ Iχ we write χ(C) for the value that χ takes at any element in C and
we set MC = {v ∈ M : τv ∈ C}. Notice that C ⊆ P , for every C ∈ Iχ.

We now rearrange the subscripts in the sums in (1.6.4) and (1.6.5) as
follows. Firstly, we make the substitutions u′u = x ∈ MC and v′v = x′ ∈ MC′

and eliminate u′ and v. Secondly, we replace v′ by v−1. Thirdly, we rename
u−1v as v in (1.6.5). Thus, we arrive at the following formulas for y2

χ and χ(y2
χ):

y2
χ =

1

|M |2
∑

C,C′∈Iχ

χ(C)χ(C ′)
∑

u,v∈M
x∈MC , x

′∈MC′

uτxx′u−1vτv−1, (1.6.6)

χ(y2
χ) =

1

|M |
∑

C,C′∈Iχ

χ(C)χ(C ′)
∑

v∈M
x∈MC , x

′∈MC′

χ(τxx′vτv−1). (1.6.7)

Then, the calculation of χ(y2
χ) reduces to the following procedure:

(1) Find out (τM) ∩ P and MC for every fiber C 6= {1} in Iχ.
(2) Detect for which v ∈ M,x ∈ MC , and x′ ∈ MC′ , the element

τxx′vτv−1 belongs to P .
(3) For those elements obtained in step (2), calculate χ(τxx′vτv−1).
(4) Estimate the sum in (1.6.5) to show that χ(y2

χ) ∈ Z
|M |

\Z.

6.2. Application to finite groups of Lie type. We now explain how
to apply the previous strategy to a finite group of Lie type G with defining
characteristic p and a twist arising from an abelian p-subgroup M of G of
central type. All unexplained notation, notions, properties, and results recalled
here can be found in the monograph [49].

Let G be a simply connected simple algebraic group defined over Fp and
F a Steinberg endomorphism; i.e., an endomorphism of the abstract group
G such that the fixed points subgroup GF is finite. We will take G to be
either the group GF or its central quotient GF/Z(GF ). With a few exceptions,
GF/Z(GF ) is always simple. All simple groups of Lie type arise in this form,
except for the Tits group, and only in very few cases the defining characteristic
p is not uniquely determined, see [69, page 3]. For our purpose, any possible
realization in this form would work. We denote by π : GF → GF/Z(GF ) the
natural projection. Recall that gcd(p, |Z(GF )|) = 1.

In the cases we consider, all elements in G have finite order. An element
in G is semisimple if and only if its order is coprime with p, while an element
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of G is unipotent if its order is a power of p (p-element). Moreover, central
elements are semisimple. A maximal torus T is a subgroup containing only
semisimple elements and maximal for this property.
The group G contains an F -stable maximal torus T and two opposite F -
stable unipotent subgroups U and U− which are normalized by T and satisfy
U∩U− = {1}. The subgroups UF and (U−)F are Sylow p-subgroups of GF . We
denote them by U and U− respectively. The quotient π(U), which is isomorphic
to U , is in turn a Sylow p-subgroup of GF/Z(GF ). The same holds for U−.
The groups B := 〈T,U〉 ≃ T ⋉ U and B− := 〈T,U−〉 ≃ T ⋉ U− are opposite
Borel subgroups of G, i.e. maximal solvable connected subgroups of G. We
set B = BF ≃ TF ⋉ U and B− = (B−)F ≃ TF ⋉ U−. Then, B ∩ B− = TF .
Finally, recall that there is an element ẇ0 ∈ NGF (T) such that ẇ0Uẇ

−1
0 = U−,

so ẇ0Uẇ
−1
0 = U−. For any σ ∈ ẇ0T

F we have σUσ−1 = U−. The coset ẇ0T
F

is an involution in NGF (T)/TF . Hence, σ−1 ∈ σTF .
Assume that U (or equivalently, π(U)) contains an abelian subgroup V of

central type. Observe that V ∩ (σV σ−1) = {1} for any σ ∈ ẇ0T
F , similarly

for π(σ), because that is a subset of U ∩ U−. The double cosets V σV and V
are disjoint. Then, vσv′ 6= 1 for all v, v′ ∈ V . Similarly, π(vσv′) 6= 1, since,
otherwise, we would have σ ∈ UZ(GF ), which is impossible because UZ(GF )
normalizes U .

The next chapter deals mainly with families of groups in the following two
scenarios:

(1) The group GF , the subgroup M = V , the element τ = σ, and the
induced character χ = IndGF

U (1U).
(2) The group GF/Z(GF ), the subgroup M = π(V ), the element τ =

π(σ), and the induced character χ = IndGπ(U)(1π(U)).
The following remark identifies when an element in P of the form τu′vτv′u

is the identity element. This is necessary in practice for the evaluation of χ,
see Equation 1.6.5:

Remark 1.6.1. In the above scenarios, observe that τu′vτv′u = 1 if and
only if u′v = 1, v′u = 1, and τ = τ−1. For, suppose that τu′vτv′u = 1. Then,
τu′vτ = (v′u)−1 belongs to M ∩ (τMτ). In the first scenario, when dealing
with GF , we have the inclusions

M ∩ (τMτ) ⊆ M ∩ (τM(τ−1TF )) ⊆ U ∩ (U−TF ) = {1}.
Hence, τu′vτ = 1 and v′u = 1. This implies in turn that τ 2 ∈ M ∩ (τMτ).
Consequently, τ 2 = 1 and u′v = 1. For the proof in the second scenario,
when dealing with GF/Z(GF ), use in addition that Z(GF ) ⊆ TF and then
(UZ(GF )) ∩ (U−TF ) = Z(GF ) ∩ TF = Z(GF ).





CHAPTER 2

Non-existence of integral Hopf orders for twists of

several simple groups of Lie type

In this chapter, we apply the strategy expounded in Section 6 to several
groups, which are either of the form GF or GF/Z(GF ), for G a matrix group.

1. Statement

The aim of this chapter is to establish the following results:

Theorem 2.1.1. Let K be a number field and R ⊂ K a Dedekind domain
such that OK ⊆ R. Let

p be a prime number and q = pm with m ≥ 1.
G be one of the following finite quasisimple groups: SL2(q),PSL2(q),
SL3(q), PSL3(q) and the Suzuki group 2B2(q) (here, p = 2 and m is
odd).
M be any abelian p-subgroup of central type of G.
ω : M̂ × M̂ → K× be any non-degenerate cocycle.

If (KG)ΩM,ω
admits a Hopf order over R, then 1

|M |
∈ R. Hence, (KG)ΩM,ω

does not admit a Hopf order over OK.

Proof. The proof will be carried out in Section 3. �

Theorem 2.1.2. Let K be a number field and R ⊂ K a Dedekind domain
such that OK ⊆ R. Let

p be a prime number and q = pm with m ≥ 1.
G be one of the following finite simple groups: PSL2(q) or the Janko
group
M be any subgroup isomorphic to the Klein four group.
ω : M̂ × M̂ → K× be any non-degenerate cocycle.

If (KG)ΩM,ω
admits a Hopf order over R, then 1

|M |
∈ R. Hence, (KG)ΩM,ω

does not admit a Hopf order over OK.

Proof. The proof will be carried out in Section 4. �

Theorem 2.1.3. Let K be a number field and R ⊂ K a Dedekind domain
such that OK ⊆ R. Let

25
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p be a prime number and q = pm with m ≥ 1.
G be one of the following finite simple groups: PSL2(q), the Janko
group and the Suzuki group 2B2(q) (here, p = 2 and m is odd).
M be any abelian subgroup of central type of G.
ω : M̂ × M̂ → K× be any non-degenerate cocycle.

If the twisted Hopf algebra (KG)ΩM,ω
admits a Hopf order over R, then 1

|M |
∈ R.

Hence (KG)ΩM,ω
does not admit a Hopf order over any number ring contained

in K.

Proof. The proof will be carried out in Section 5. �

In light of Remark 1.3.4, we need to classify all abelian p-subgroups of
central type up to an automorphism of G for proving Theorem 2.1.1. Similarly,
for Theorem 2.1.2 we need to classify all the subgroups of G isomorphic to the
Klein four groups C2 × C2 up to automorphisms of G. Finally, for Theorem
2.1.3, we need a classification of all abelian subgroups of central type, up to
automorphisms of G.

Before tackling the proofs of Theorem 2.1.1, Theorem 2.1.2 and Theorem
2.1.3 we record the following consequence. Its proof is similar to that of [14,
Corollary 2.4]. One only has to add the fact that, up to coboundaries, ω can
be chosen in such a way that its image is contained in a cyclotomic number
field, as we have seen in Subsection 3.2.

Corollary 2.1.4. Let (G,M,ω) be as Theorem 2.1.1 or as in Theorem
2.1.2. Then, the complex semisimple Hopf algebra (CG)ΩM,ω

does not admit a
Hopf order over any number ring.

2. Classification of abelian subgroups of central type

The aim of this section is to classify:

• the abelian p-subgroups of central type the groups listed in Theorem
2.1.1, up to automorphisms;

• the subgroups isomorphic to the Klein four group of the groups listed
in Theorem 2.1.2, up to automorphisms;

• all abelian subgroups of central type of the groups listed in Theorem
2.1.3, up to automorphisms.

Throughout these sections, the centralizer of an element g in a group G is
denoted by C(g) or by CG(g), when we need to specify the group we are
considering. In the same way, we write C(L) for referring to the centralizer of
a subgroup L of G.
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2.1. Projective special linear group PSL(2, q). Let q = pm, with p
prime and m ≥ 1. We denote by π : SL2(q) → PSL2(q) the natural projection.
The classification of all subgroups of PSL2(q), which dates from the beginning
of last century, can be consulted in [64, Theorem 6.25] or [44, Theorem 2.1].
These theorems bring to light that the only abelian subgroups of central type
of PSL2(q) are: p-groups of square order or Klein four-groups. In this section
we give a self-contained proof of this and we find the relation between these
subgroups via conjugation or automorphisms.

We start by recalling some facts about SL2(q) that we will draw heavily on
in the sequel. We used as references [6, pages 3-9], for q odd, and [37, pages
324-326 and 336], for q even.

We have that
U := {( 1 a

0 1 ) : a ∈ Fq}
is a Sylow p-subgroup of SL2(q), which is elementary abelian. For t ∈ F×

q we
denote by d(t) the diagonal matrix diag(t, t−1), so that

T :=
{
d(t) : t ∈ F×

q

}
.

We next fix a non-split torus T ′ of SL2(q). It is constructed by realizing the
elements of norm 1 of the field extension Fq2/Fq as matrices of size 2 in the
following way:

Case q odd. Let ǫ ∈ Fq be a non-square element. Take ζ ∈ Fq2 such that
ζ2 = ǫ. Every element of Fq2 is of the form a+bζ, with a, b ∈ Fq. The following
map is an algebra morphism:

d′ : Fq2 → M2(Fq), a+ bζ 7→ ( a b
ǫb a ) .

We set:
T ′ = {d′(a+ bζ) : (a+ bǫ)(a− bǫ) = 1} .

Case q even. Take now ζ ∈ Fq2 \Fq. Then, ζ + ζq and ζ1+q belong to Fq
and the following map is an algebra morphism:

d′ : Fq2 → M2(Fq), a+ bζ 7→
(

a b

bζ1+q a+b(ζ+ζq)

)
.

We set:
T ′ := {d′(a+ bζ) : (a+ bζ)(a+ bζq) = 1} .

We will use the following facts in the proof of the next proposition:
(1) The split and non-split torus T and T ′ are cyclic groups of orders q−1

and q + 1 respectively.
(2) Every non-central element of SL2(q) is conjugate to either ±u, with

u ∈ U , an element in T or in T ′.
(3) Let g ∈ SL2(q) be non-central. Then, C(g) = {±1}U if g ∈ {±1}U ,

if g ∈ T then C(g) = T and C(g) = T ′ if g ∈ T ′.
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(4) Every element of order coprime with p (i.e., semisimple) is conjugate
to an element of T ∪ T ′.

To describe the action of Aut(PSL2(q)) on the set of subgroups of central
type of PSL2(q), we view PSL2(q) inside PGL2(q) as the image of SL2(q)
through the canonical projection GL2(q) ։ PGL2(q). Under this identifica-
tion, PSL2(q) = PGL2(q) if q is even, and, if q is odd, PSL2(q) is the unique
proper normal subgroup of PGL2(q), see [63, Section 1]. The action by conju-
gation of PGL2(q) on PSL2(q) gives rise to an injective group homomorphism
PGL2(q) → Aut(PSL2(q)).

Proposition 2.2.1. Let M be a non-trivial abelian subgroup of central type
of PSL2(q). Then, M is one of the following subgroups:

(i) A subgroup of π(U) of square order, up to conjugation.
(ii) A subgroup isomorphic to the Klein four group. Moreover, when q is

odd, there is a single orbit for the action of PGL2(q) (and thus of
Aut(PSL2(q))) on the set consisting of such subgroups.

Proof. The proof is divided into two parts. In the first part we describe
the form of an abelian subgroup of central type. In the second part we deal
with the statement about the orbit for the action on the set of subgroups
isomorphic to the Klein four group.

1. Description of M . We first show that M must be either a p-group or a
2-group. The justification of this assertion will cover item (i).

Since M is abelian of central type, we know that M ≃ E × E for some
subgroup E. Let r be a prime divisor of |E|. We will see that r = 2 or r = p.
Let ḡ, h̄ be elements of M , one in each copy of E, such that ord(ḡ) = ord(h̄) =
r. Then, ḡ and h̄ commute and h̄ /∈ 〈ḡ〉. Put ḡ = π(g) and h̄ = π(h) for some
g, h ∈ SL2(q).

We distinguish two cases:

I. Case q even. Every element of SL2(q) is conjugate to an element of U, T
or T ′. Suppose that g were conjugate to an element of T . We would have that
C(g) = T and that g and h generate a non-cyclic subgroup of C(g). This is not
possible because T is cyclic. The same argument applies if g were conjugate to
an element of T ′. Assume that g is conjugate to an element u of U . Then, M
is conjugate to a subgroup of C(u). The latter equals U . Hence, r = 2 and M
is conjugate to a 2-group of square order. This establishes item (i) for q even.

II. Case q odd. Every element of SL2(q) is conjugate to an element of the
following form: ±u, with u ∈ U , d(t) or d′(a + bζ ). The elements g and h2

commute and g is non-central. Proceed as before with these two elements and
the subgroup generated by them. Take into account that C(u) is now {±1}U
for u ∈ U with u 6= 1. We obtain that h2 = 1 or h4p = 1. Hence, r = 2 or
r = p.

Suppose that p divides |E|. We take ḡ and h̄ of order p. Then, g is
conjugate to u or −u, for some u ∈ U , and M is conjugate to a subgroup of
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π(C(u)). As the latter equals π(U), item (i) follows for q odd. On the other
hand, if p does not divide |E|, then, according to the previous paragraph, the
only prime divisor of |E| is 2, and every non-trivial element of M has order 2.
That is, M is an elementary abelian 2-group.

For the rest of the proof, we assume that p is odd and M is an elementary
abelian 2-group. We know that every element of PSL2(q) of order 2 is conju-
gate to an element in π(T ∪ T ′). By reason of orders, π(T ∪ T ′) has a unique
element of order 2. Up to conjugation, we can assume that M contains such
an element which we denote again by h̄. We now distinguish two cases for q:

A. Case q ≡4 1. In this case, Fq has a primitive fourth root of unity, say
η. Suppose that h̄ = π(d(η)) = π

(
η 0
0 η−1

)
. One can check that the centralizer

of h̄ is π(T ∪ ρT ), where ρ = ( 0 1
−1 0 ). Then, ḡ = π

(
0 α

−α−1 0

)
, for some α ∈ F×

q .

We have that M is contained in the centralizer C(〈ḡ, h̄〉) of 〈ḡ, h̄〉. A direct
calculation shows the equality C(〈ḡ, h̄〉) = 〈ḡ, h̄〉, so M = 〈ḡ, h̄〉 and M is a
Klein four group.

B. Case q ≡4 −1. In this case, −1 is not a square in Fq. We define the
non-split torus T ′ by ζ ∈ Fq2 such that ζ2 = −1. The only element of order 2

in π(T ∪ T ′) is now h̄ = π(d′(ζ)) = π( 0 1
−1 0 ). Consider the following subset of

SL2(q):

S :=
{
(
x y
y −x ) : x, y ∈ Fq and x2 + y2 = −1

}
.

Notice that |S| = q + 1. One can verify that the centralizer of h̄ equals
π(T ′ ∪ S). Then, ḡ = π(

x y
y −x ), for some x, y ∈ Fq as above. The equality

C(〈ḡ, h̄〉) = 〈ḡ, h̄〉 holds in this case as well. It implies that M = 〈ḡ, h̄〉 and M
is a Klein four group.

2. Transitivity of the actions on the Klein four-groups. Let M denote the
set consisting of subgroups of PSL2(q) that are isomorphic to the Klein four
group. Bear in mind our identification of PSL2(q) with a normal subgroup of
PGL2(q). We will prove that the action by conjugation of PGL2(q) on M is
transitive. This will imply that the action of Aut(PSL2(q)) is as well. It will
suffice to check that the following inequality holds for M ∈ M:

|M| ≤ |PGL2(q)|
|Stab(M)| =

|PGL2(q)|
|NPGL2(q)(M)| .

This will be actually an equality as there will be only one orbit for the action.
The cardinality of M is |PSL2(q)|

12
, see [64, Exercise 5(c), page 417]. With the

information available in this proof, this can be deduced from the fact that the
centralizer of h̄ is isomorphic to a dihedral group of order q − 1 when q ≡4 1
and of order q + 1 when q ≡4 −1. Hence, we will need to verify that

q(q2 − 1)

24
|NPGL2(q)(M)| ≤ q(q2 − 1),
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i.e., that |NPGL2(q)(M)| ≤ 24. This inequality can be attained in the following
way. The action of NPGL2(q)(M) on the set {ḡ, h̄, ḡh̄} of non-trivial elements
in M induces a group homomorphism NPGL2(q)(M) → S3 whose kernel is the
centralizer CPGL2(q)(M) of M in PGL2(q). A direct calculation shows that
CPGL2(q)(M) = M . Therefore, |NPGL2(q)(M)| ≤ 4|S3| = 24. This establishes
the second part of the statement of (ii) and finishes the proof. �

Remark 2.2.2. The number of conjugacy classes in PSL2(q) of subgroups
isomorphic to the Klein four group is one if q ≡8 ±3 and two if q ≡8 ±1; see
[44, Theorem 2.1, items (j) and (k)] or [64, Exercise 5(d), page 417].

Remark 2.2.3. The group of diagonal matrices in GL2(q) acts by conju-
gation on SL2(q), on U , and on the set of subgroups of U of central type. The
orbit of any non-trivial such subgroup has a representative containing the ma-
trix ( 1 1

0 1 ). Let M be one of these representatives. Then, M = {( 1 a
0 1 ) : a ∈ E},

where E is an additive subgroup of Fq isomorphic to C2n
p for some n > 0. Our

choice of M ensures that Fp ⊂ E.
In addition, since U ≃ π(U), an abelian p-subgroup of central type of PSL2(q)
contained in π(U) arises from an abelian p-subgroup of central type of U in
SL2(q). Hence, we can assume that π(M) = {π ( 1 a

0 1 ) : a ∈ E}, where E is an
additive subgroup of Fq isomorphic to C2n

p for some n > 0.

2.2. Special linear group SL3(q) and projective special linear

group PSL3(q). Let q = pm, with p prime and m ≥ 1. Consider the group
SL3(q). A Sylow p-subgroup of SL3(q) is given by

U =
{(

1 a b
0 1 c
0 0 1

)
: a, b, c ∈ Fq

}
.

We consider the following subgroups of U :

M1 =
{(

1 a b
0 1 0
0 0 1

)
: a, b ∈ Fq

}
, M2 =

{(
1 a b
0 1 a
0 0 1

)
: a, b ∈ Fq

}
.

The subgroups M1 and M2 are maximal abelian p-subgroups of U , since
C(M1) = M1 and C(M2) = M2. In addition, if p is odd then M1 and M2

are elementary abelian; if p is even the subgroup M1 is elementary abelian,
while M2 ≃ Cm

4 . The latter isomorphism is obtained by counting the number
of elements in M2 of order 2 and 4.
Moreover, let J be the monomial matrix with 1’s on the antidiagonal and
consider the automorphism

Ψ: SL3(q) → SL3(q), A 7→ J t(A−1)J−1, (2.2.1)

where t denotes the tranpose matrix.
Recall that the conjugation through an element in GL3(q) induces an auto-
morphism of the group SL3(q).
We are in a position to prove the following:
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Proposition 2.2.4. Let M̃ be an abelian p-subgroup of central type of
SL3(q). Then M̃ is isomorphic through an automorphism of SL3(q) to a sub-
group of central type of M1 or M2.

Proof. In virtue of Sylow’s theorem, we can assume that M̃ ≤ U .

Let
(

1 x y
0 1 z
0 0 1

)
∈ M̃ , for x, y, z ∈ Fq.

i) If xz 6= 0, we can conjugate the above element to
(

1 z zyx−1

0 1 z
0 0 1

)
, using the

matrix

g =
(
z 0 0
0 x 0
0 0 x

)
∈ NG(U)

in GL3(q). Thus we may assume z = x. Moreover, since the centralizer of(
1 z zyx−1

0 1 z
0 0 1

)
is M2, then M̃ ≤ M2.

ii) If z = 0 and xy 6= 0, then the centralizer of
(

1 x y
0 1 0
0 0 1

)
is M1 and hence

M̃ ≤ M1. If x = 0 and yz 6= 0 then the centralizer of the element
(

1 0 y
0 1 z
0 0 1

)
is

M̃1 =
{(

1 0 b
0 1 a
0 0 1

)
, a, b ∈ Fq

}
, which is mapped to M1 through the automorphism

Ψ of SL3(q) defined in (2.2.1).

iii) If each element in M̃ is of the form
(

1 0 y
0 1 0
0 0 1

)
, then M̃ ≤ M1 ∩ M2 and we

are done.
If each element in M̃ is of the form

(
1 x 0
0 1 0
0 0 1

)
, then M̃ ≤ M1.

Finally, if each element in M̃ is of the form
(

1 0 0
0 1 y
0 0 1

)
, then Ψ(M̃) ≤ M1. �

Remark 2.2.5. If q = 2m, then M2 is of central type if and only if m is
even, i.e. if and only if 2m ≡3 1.

Denote by π the projection π : SL3(q) → PSL3(q). Recall that the kernel
of π is trivial if 3 does not divide q and it is isomorphic to C3 if q ≡3 1. In
particular, if kerπ 6= {1} then Fq contains a third root of unit θ that we fix
once and for all.

Corollary 2.2.6. Let M̃ be an abelian p-subgroup of central type of
PSL3(q). Then M̃ is isomorphic through an automorphism of PSL3(q) to a
subgroup of central type of π(M1) or π(M2).

Proof. Since U ≃ π(U), then every abelian p-subgroup of central type in
PSL3(q) is of the form π(N), for N an abelian p-subgroup of central type of
SL3(q). The result follows from Proposition 2.2.4. �

Remark 2.2.7. Let M̃ ≤ M1 and assume
(

1 a b
0 1 0
0 0 1

)
∈ M̃ , with ab 6= 0.

Then, there is an automorphism of SL3(q) mapping M̃ to a subgroup M of
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M1 containing the element
( 1 −1 1

0 1 0
0 0 1

)
, namely conjugation by g =

(
1 0 0
0 −a 0
0 0 b

)
∈

GL3(q)

Remark 2.2.8. Let M̃ ≤ M2. Assume that p 6= 2, 3 and that
(

1 a b
0 1 a
0 0 1

)
∈ M̃ ,

for some a 6= 0. Then, we can conjugate it to the element
(

1 −3/2 3
0 1 −3/2
0 0 1

)
by the

element

(
−2a

3
−2a+ b

a
0

0 1 1
0 0 −3

2a

)
∈ SL3(q). The automorphism given by conjugation

through g preserves U and M2.

Observe that if p = 3 then the element
(

1 −3/2 3
0 1 −3/2
0 0 1

)
is the identity and hence

it belongs to M̃ .

2.3. The Suzuki group 2B2(q). Before collecting all the necessary infor-
mation on all abelian subgroups of central type for the Suzuki group 2B2(q),
we recall its construction from [62, Section 13]. In this case, q = 22n+1 with
n ≥ 1. Consider the Frobenius automorphism Fr2 of Fq. Set ϑ = Frn+1

2 . Then,
ϑ2 = Fr2 and the fixed field (Fq)

ϑ equals F2. The following remark is useful to
work with Equation (2.2.2) below:

Remark 2.2.9. Observe that:
(1) If a ∈ Fq satisfies aϑ(a) = 1, then 1 = ϑ(a)a2. Hence, a = a2 and,

consequently, a ∈ F2.
(2) The map Φ : F×

q → F×
q given by a 7→ aϑ(a), is an isomorphism.

The group 2B2(q) was defined in [62] as a subgroup of SL4(Fq) generated
by matrices of a certain type. The first family of such matrices is the following:

u(a, b) :=




1 0 0 0
a 1 0 0

aϑ(a) + b ϑ(a) 1 0
a2ϑ(a) + ab+ ϑ(b) b a 1


 , a, b ∈ Fq.

These matrices satisfy the multiplication rule:

u(a, b)u(a′, b′) = u(a+ a′, aϑ(a′) + b+ b′).

Let U denote the subgroup of SL4(Fq) that they generate. We have that
|U | = q2. Moreover, U enjoys the following properties, see [62, Lemma 1]:

(1) U has exponent 4.
(2) The center of U is generated by the elements u(0, b), with b ∈ Fq. It

is an elementary abelian 2-group of order q.
(3) An element of U is an involution if and only if it belongs to Z(U).

The second family of matrices is parameterized by κ ∈ F×
q . They are:

tκ := diag(a1, a2, a
−1
2 , a−1

1 ), with ϑ(a1) = κϑ(κ) and ϑ(a2) = κ.
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They form a subgroup T of SL4(Fq), which is isomorphic to F×
q . The following

formula holds:
t−1
κ u(a, b)tκ = u(aκ, bκϑ(κ)). (2.2.2)

In particular, T normalizes U . The subgroup TU is isomorphic to the semidi-
rect product T ⋉ U . Finally, let τ be the monomial matrix with 1’s on the
antidiagonal. The Suzuki group 2B2(q) is the subgroup of SL4(Fq) generated
by U, T, and τ . We have ([62, Theorem 7]):

∣∣∣2B2(q)
∣∣∣ = q2(q − 1)(q2 + 1).

The subgroup U is a Sylow 2-subgroup of 2B2(q) by [62, Theorem 7]. There-
fore, all non-trivial involutions are conjugate to some u(0, b). By Remark
2.2.9(2) and (2.2.2), all non-trivial involutions are conjugate to u(0, 1). By
[62, Propositions 1, 2, and 3], the centralizer of a non-trivial element u(a, b) is
contained in U .

It can be checked that every element of 2B2(q) leaves invariant the bilinear
form defined by τ . This permits to regard 2B2(q) as a subgroup of the sym-
plectic group Sp4(Fq). The description of the Steinberg endomorphism giving
rise to 2B2(q) can be found in [56, 57] and [11, Section 12.3].

In this subsection, the data for our setting are: G = 2B2(q), and U and τ
as above. The following lemma and Remark 1.3.4 will allow us to take M as
a subgroup of Z(U):

Lemma 2.2.10. Let M be an abelian 2-subgroup of 2B2(q) of central type.
Then, M is conjugate to a subgroup of Z(U). In particular, M is generated by
involutions.

Proof. By Sylow’s theorem, M is conjugate to a subgroup of U . Bear
in mind that U has exponent 4. Since M is of central type, M ≃ E × E for
some group E. We next see that E does not have an element of order 4. If it
were so, U would contain a subgroup isomorphic to C4 × C4. Pick u(a, b) and
u(a′, b′) two generators of such a subgroup. They have order 4, so necessarily
aa′ 6= 0. Furthermore, they commute. This means:

u(a′ + a, a′ϑ(a) + b′ + b) = u(a+ a′, aϑ(a′) + b+ b′).

This gives a′ϑ(a) = aϑ(a′). Then, a′a−1 = ϑ(a′a−1). Thus, a′a−1 ∈ F2,
which implies a′ = a. But, then a + a′ = 0 and the element u(a, b)u(a′, b′) =
u(0, aϑ(a) + b + b′) has order 2 and not 4, a contradiction. Therefore, M
has exponent 2. By the properties of U recalled before, M is conjugate to a
subgroup of Z(U). �

The next result shows that there are no other abelian subgroups of central
type:

Proposition 2.2.11. Every non-trivial abelian subgroup of central type M
of 2B2(q) is a 2-group.
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Proof. This follows from the knowledge of the structure of the Sylow
subgroups of 2B2(q). By [35, Theorem 3.9, page 189], for p odd, every Sylow
p-subgroup of 2B2(q) is cyclic. Now, write M ≃ E × E for some subgroup E.
Let r be a prime divisor of |E|. Two elements of order r, one in each copy of
E, generate a non-cyclic subgroup of order r2. This is not possible if r is odd,
as such a subgroup must be contained in a Sylow r-subgroup of 2B2(q), that is
cyclic. �

2.4. The Janko group. We firstly recall the definition of the Janko group
from [39] .
Let G be the subgroup of GL7(11) generated by the following matrices:

A =




0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0


 B =




−3 2 −1 −1 −3 −1 −3
−2 1 1 3 1 3 3
−1 −1 −3 −1 −3 −3 2
−1 −3 −1 −3 −3 2 −1
−3 −1 −3 −3 2 −1 −1
1 3 3 −2 1 1 3
3 3 −2 1 1 3 1


 .

The group G is called the Janko group. We recollect the following properties
of G (see [38] and [39]) :

i) G is a simple group;
ii) G has order 11(113 − 1)(11 + 1) = 23 · 3 · 5 · 7 · 11 · 19;
iii) G contains an involution t such that CG(t) = 〈t〉 × F , where F ≃ A5;
iv) All the involutions of G are conjugate;
v) Any Sylow 2-subgroup of G is elementary abelian of order 8;
vi) For p odd, the p-Sylow subgroups are cyclic;
vii) G has no subgroup of index 2.

In the following proposition, we describe the abelian subgroups of central type
of the Janko group.

Proposition 2.2.12. Let M be a non trivial subgroup of central type of G.
Then M is isomorphic to the Klein four group. Moreover, all the subgroups of
G isomorphic to the Klein four group form a single orbit for the action of G
by conjugation.

Proof. By properties v) and vi), we deduce that the only abelian sub-
groups of central type are the Klein four groups. We need to verify that such
subgroups are all conjugate.
Let x, y be two involutions such that x 6= y and xy = yx. Consider, the sub-
group M1 = 〈x, y〉. It is enough to prove that M1 is conjugate to a subgroup
M2 = 〈t, s〉, with t the involution such that CG(t) = 〈t〉 × F and s ∈ F .
Notice that the latter involution t exists by Property iii). Since all involu-
tions are conjugate in G, there exists g ∈ G such that gxg−1 = t. Hence
gM1g

−1 = 〈t, gyg−1〉. Now, gyg−1 ∈ CG(t), that is gyg−1 = taf , for some
f ∈ F and for a ∈ {0, 1}. Therefore, gM1g

−1 = 〈t, tf〉 = 〈t, f〉. Since
in F ≃ A5 all the involutions are conjugate, there exists f1 ∈ F such that
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f1ff
−1
1 = s. Thus, f1gM1g

−1f−1
1 = 〈f1tf

−1
1 , f1ff

−1
1 〉 = 〈t, s〉. This concludes

the proof. �

3. Proof of Theorem 2.1.1

The goal of this section is to prove Theorem 2.1.1.
Each subsection aims at proving the conclusion of Theorem 2.1.1 for each group
listed in there.

3.1. Special linear group SL2(q). Retain notation from Subsection 2.1
and let G = SL2(q). In light of Remark 2.2.3, we can assume that an abelian
subgroup of central type in U is of the form

M = {( 1 a
0 1 ) : a ∈ E} ,

where E is an additive subgroup of Fq isomorphic to C2n
p , containing Fp.

Recall that T =
{(

t 0
0 t−1

)
: t ∈ F×

q

}
and B = 〈T, U〉 ≃ T ⋉ U . Furthermore,

we pick the element τ = σ = ( 0 −1
1 0 ) in NG(T ). Using Equation (1.6.3), one

can check that the non-zero values of χ = IndGU (1U) are:

χ(1) = q2 − 1 and χ( 1 a
0 1 ) = q − 1, for a 6= 0.

In this case, the sets P and Iχ particularize to

P = {A ∈ SL2(q) : Tr(A) = 2}, and Iχ = {{1}, P \{1}}.
Let P • = P \ {1}. A direct calculation shows that MP • = {1} if p = 2 and
MP • = {( 1 2

0 1 )} otherwise. We stress that ( 1 2
0 1 ) ∈ M thanks to our choice of

M . Equation (1.6.7) takes the following concrete form:

χ(y2
χ) =

χ(P •)2

|M |
∑

v∈M

χ
(
τ ( 1 2

0 1 )2vτv−1
)

=
(q − 1)2

p2n

∑

a∈E

χ
(

( 0 −1
1 0 )( 1 4

0 1 )( 1 a
0 1 )( 0 −1

1 0 )( 1 −a
0 1 )

)

=
(q − 1)2

p2n

∑

a∈E

χ
(

−1 a
4+a −1−4a−a2

)
.

Observe that
(

−1 a
4+a −1−4a−a2

)
∈ P if and only if a = −2. Then, the only non-

zero term in this sum corresponds to a = −2. Its value is q2 − 1 if p = 2 and
q − 1 otherwise. Hence:

χ(y2
χ) =

(q − 1)3(q + 1)

p2n
if p = 2 and χ(y2

χ) =
(q − 1)3

p2n
if p 6= 2.

In both cases, χ(y2
χ) is an irreducible fraction. Propositions 1.4.2 and 1.3.7,

together with Bezout’s identity, yield 1
p2n = 1

|M |
∈ R.

This finishes the proof of Theorem 2.1.1 for SL2(q). �
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3.2. Projective special linear group PSL2(q). We assume that p is
odd, since otherwise PSL2(q) = SL2(q) and this case was just treated.
We denote PSL2(q) by G. By Let M be an abelian p-subgroup of G of central
type. By Remark 2.2.3, we can assume that an abelian p-subgroup of central
type M of G is of the form {π( 1 a

0 1 ) : a ∈ E}, with E an additive subgroup of
Fq isomorphic to C2n

p and containing Fp.

Our element τ is now π( 0 −1
1 0 ) . We take χ = IndGπ(U)(1π(U)). One can check

that the non-zero values of χ are:

χ(1) =
q2 − 1

2
and χ(π( 1 a

0 1 )) =
q − 1

2
, for a 6= 0.

One can also verify that, in this case, P = {π(A) ∈ PSL2(q) : Tr(A) =

±2}. Then, Iχ = {{1}, P \ {1}}. Set, as before, P • = P \ {1}. A direct
calculation shows that MP • = {π( 1 ±2

0 1 )}. Equation (1.6.7) now reads as:

χ(y2
χ) =

(q − 1)2

4|M |

(
2
∑

v∈M

χ
(
π
(
τvτv−1

))
+
∑

v∈M

χ
(
π
(
τ ( 1 4

0 1 )vτv−1
))

+
∑

v∈M

χ
(
π
(
τ ( 1 −4

0 1 )vτv−1
)))

.

(2.3.1)
We compute the value of the three summands between parentheses:

Firstly, an element of the form

π
(
( 0 −1

1 0 )( 1 a
0 1 )( 0 −1

1 0 )( 1 a
0 1 )

−1
)

= π
(

−1 a
a −1−a2

)

belongs to P if and only if a = 0 (i.e., it is the identity element) or a2 = −4.
The latter occurs if and only if E contains a square root of −4. In such a case,
both roots are in E and the corresponding elements of G are non-trivial and
distinct. Hence, the value of the first summand is 2χ(1) = q2 − 1 if

√
−4 /∈ E

and 2
(
χ(1) + 2χ(π( 1 1

0 1 ))
)

= q2 + 2q − 3 otherwise.
Secondly, an element of the form

π
(
( 0 −1

1 0 )( 1 4
0 1 )( 1 a

0 1 )( 0 −1
1 0 )( 1 a

0 1 )
−1
)

= π
(

−1 a
4+a −1−4a−a2

)

belongs to P if and only if a ∈ {0,−2,−4}. The three elements of G obtained
with these values of a are all non-trivial and distinct. Hence, the second
summand equals 3(q−1)

2
.

Finally, and in a similar fashion, an element of the form

π
(
( 0 −1

1 0 )( 1 −4
0 1 )( 1 a

0 1 )( 0 −1
1 0 )( 1 a

0 1 )
−1
)

= π
(

−1 a
−4+a −1+4a−a2

)

belongs to P if and only if a ∈ {0, 2, 4}. The elements of G obtained with
these three values of a are all non-trivial and distinct. The third summand
equals 3(q−1)

2
as well.
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In total, the value of the sum in (2.3.1) is q2 + 3q − 4 if
√

−4 /∈ E and
q2 + 5q − 6 otherwise. Therefore, we have:

χ(y2
χ) =

(q − 1)3

4p2n
(q+4) if

√
−4 /∈ E and χ(y2

χ) =
(q − 1)3

4p2n
(q+6) if

√
−4 ∈ E.

In both cases, χ(y2
χ) belongs to Q \Z. It follows from this and Propositions

1.4.2 and 1.3.7 that 1
p2n = 1

|M |
∈ R.

This finishes the proof of Theorem 2.1.1 for PSL2(q).

Remark 2.3.1. For an abelian p-subgroup M of SL2(q) of central type,
π|M : M → π(M) is an isomorphism. For ω a 2-cocycle on M̂ , the natu-
ral projection induces a surjective Hopf algebra map π : (KSL2(q))ΩM,ω

→
(KPSL2(q))Ωπ(M),ωπ . When q is odd, the statement for SL2(q) follows from
that for PSL2(q) in virtue of Proposition 1.4.3(ii). We preferred to carry out
the calculation for SL2(q) because it leads the way to the PSL2(q) case.

3.3. Special linear group SL3(q). Let p be a prime number and q = pm,
with m ≥ 1. Let G = SL3(q). Retain notations from Subsection 2.2. Consider
the maximal split torus

T :=
{(

s 0 0
0 t 0
0 0 t−1s−1

)
: s, t ∈ F×

q

}
.

Bear in mind that NG(U) = B = 〈T, U〉 ≃ T ⋉ U .
We first calculate the values at U of the character χ = IndGU (1U). Every

element in U has a Jordan canonical form. There are two possible non-trivial
canonical forms:

(
1 1 0
0 1 0
0 0 1

)
(Jordan type (2, 1)) and

(
1 1 0
0 1 1
0 0 1

)
(Jordan type (3)).

Lemma 2.3.2. For u ∈ U we have:

χ(u) =





(q3 − 1)(q2 − 1) if u = 1,
(2q + 1)(q − 1)2 if u is of Jordan type (2, 1),
(q − 1)2 if u is of Jordan type (3).

Proof. The value at the identity element is straightforward. The proof
for the other two values is divided into three steps:

Step 1. Let u, u′ ∈ U be such that u′ = kuk−1 for some k ∈ GL3(q). We
show that χ(u′) = χ(u). We write k = ekdk, with ek ∈ G and dk ∈ GL3(q)
diagonal. Notice that conjugation by a diagonal matrix in GL3(q) stabilizes
U . Since χ is a character of G, we get:

χ(u′) = χ(ekdkud
−1
k e−1

k ) = χ(dkud
−1
k ).
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We now compute χ(u′) and χ(u) by using Equation (1.6.3):

χ(u′) = #{g ∈ G : g(dkud
−1
k )g−1 ∈ U} · |U |−1

= #{g ∈ G : d−1
k gdkud

−1
k g−1dk ∈ U} · |U |−1 (Put h = d−1

k gdk)

= #{h ∈ G : huh−1 ∈ U} · |U |−1

= χ(u).

In view of the preceding statement, χ(u) = χ(u
JF

), where u
JF

is the Jordan
canonical form of u. In the next steps we calculate the value of χ at the two
possible Jordan canonical forms.

Step 2. Set u =
(

1 1 0
0 1 0
0 0 1

)
. We claim that χ(u) = (2q+ 1)(q− 1)2. Let Cl(u)

denote the conjugacy class of u in G. Consider the orbit map f : G/C(u) →
Cl(u), which sends gC(u) to gug−1. Taking the inverse image of Cl(u) ∩ U
under f , we obtain the following equality:

#{g ∈ G : gug−1 ∈ U} = |C(u)||Cl(u) ∩ U |.

One can check in a direct way, by computing explicitly C(u), that |C(u)| =
(q− 1)q3. On the other hand, the Jordan type of a non-trivial element w in U
can be detected by calculating the rank of w − 1: rank 1 corresponds to type
(2, 1) and rank 2 to type (3). The set Cl(u) ∩ U consists of elements w ∈ U
that are conjugate to u. It can be shown that these are precisely the elements
w ∈ U such that rk(w − 1) = 1. There are (2q + 1)(q − 1) matrices fulfilling
this condition. Equation (1.6.3) now applies.

Step 3. Finally, set u =
(

1 1 0
0 1 1
0 0 1

)
. We claim that χ(u) = (q − 1)2. For, one

first establishes the equality {g ∈ G : gug−1 ∈ U} = B by direct manipulation

with matrices and then applies Equation (1.6.3). �

We can rephrase P as the set consisting of those matrices in G whose
characteristic polynomial equals (1 − z)3. We already know that χ vanishes
outside P . The value of χ at an element g ∈ P is obtained by determining its
Jordan type through the calculation of rk(g − 1) and then applying Lemma
2.3.2. In this case, the set Iχ equals to {C(1), C(2,1), C(3)}, where C(1) = {1},
and C(2,1) and C(3) are the subsets of P consisting of matrices of type (2, 1)
and of type (3) respectively.

In virtue of Proposition 2.2.4, up to automorphisms of G the abelian p-
subgroups of central type of G are subgroups of M1 or M2. Then, for proving
Theorem 2.1.1 for G, it is enough to show the non-existence of a Hopf order
for cocycles of subgroups M of the following form:

i) M ≤ M1 and containing
( 1 −1 1

0 1 1
0 0 1

)
by Remark 2.2.7;
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ii) M =
{(

1 0 b
0 1 0
0 0 1

)
: b ∈ E

}
, where E is an additive subgroup of Fq iso-

morphic to C2n
p ;

iii) M ≤ M2, and containing
(

1 −3/2 3
0 1 −3/2
0 0 1

)
if q is odd by Remark 2.2.8.

We start then with the following:

Proposition 2.3.3. Let M be an abelian p-subgroup of central type of M1

containing
( 1 −1 1

0 1 0
0 0 1

)
and let ω : M̂ × M̂ → K× be a non-degenerate cocycle. If

(KG)ΩM,ω
admits a Hopf order over R, then 1

|M |
∈ R. Hence, (KG)ΩM,ω

does
not admit a Hopf order over OK.

Proof. We take the element τ =
(

0 1 0
0 0 1
1 0 0

)
in NG(T ). It can be verified

that M ∩
(
τMτ−1

)
⊆ M1 ∩ (τM1τ

−1) = {1}. We have to detect the elements
v ∈ M such that the characteristic polynomial of τv is (1 − z)3. This occurs if
and only if v ∈

{( 1 −3 3
0 1 0
0 0 1

)}
. In addition, the Jordan type of τv is (3). Hence

MC(3)
⊆
{( 1 −3 3

0 1 0
0 0 1

)}
,

and MC(2,1)
= ∅. Since by assumption

( 1 −1 1
0 1 0
0 0 1

)
∈ M , then also its third power

belongs to M . Explicitly,
( 1 −3 3

0 1 0
0 0 1

)
∈ M , so MC(3)

=
{( 1 −3 3

0 1 0
0 0 1

)}
. Notice that

MC(3)
= {1} if p = 3.

For simplicity, we write (a, b) ∈ M to mean that
(

1 a b
0 1 0
0 0 1

)
∈ M . Then

χ(y2
χ) =

χ(C(3))
2

|M |
∑

v∈M
x∈MC(3)

χ
(
τx2vτv−1

)

=
(q − 1)4

|M |
∑

(a,b)∈M

χ

((
0 1 0
0 0 1
1 0 0

)(
1 −3 3
0 1 0
0 0 1

)2( 1 a b
0 1 0
0 0 1

)(
0 1 0
0 0 1
1 0 0

)(
1 −a −b
0 1 0
0 0 1

))

=
(q − 1)4

|M |
∑

(a,b)∈M

χ

(
0 0 1
1 −a −b
b+6 1−ab−6a a−b2−6−6b

)
.

The latter element belongs to P if and only if the characteristic polynomial
of the above matrix equals (1 − z)3 , i.e. the pair (a, b) is a solution of the
following system of equations

−b2 − 6b− 6 = 3
a2 − 6a+ 6 = −3,

and
(

1 a b
0 1 0
0 0 1

)
∈ M .

The unique solution of the above system is (a, b) = (3,−3) and
( 1 3 −3

0 1 0
0 0 1

)
∈ M

by assumption. We now divide the treatment into two cases: q odd and q
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even.
q odd. Substituting a = −b = 3 in the last matrix appearing in χ(y2

χ), we
obtain a matrix of Jordan type (3). This yields to:

χ(y2
χ) =

(q − 1)6

|M | .

Since gcd(q − 1, |M |) = 1, we have 1
|M |

∈ R.

q even. In this case, the last matrix appearing in χ(y2
χ) is of Jordan

type (2, 1), for (a, b) = (3,−3). We can then conclude that:

χ(y2
χ) =

(q − 1)6(2q + 1)

27|M | .

Since q − 1 and 2q + 1 are odd, we have 1
|M |

∈ R. �

Proposition 2.3.4. Let

M =
{(

1 0 b
0 1 0
0 0 1

)
: b ∈ E

}
,

where E is an additive subgroup of Fq isomorphic to C2k
p for some k > 0. Let

ω : M̂ × M̂ → K× be a non-degenerate cocycle. If (KG)ΩM,ω
admits a Hopf

order over R, then 1
|M |

∈ R. Hence, (KG)ΩM,ω
does not admit a Hopf order

over OK.

Proof. We consider the element τ =
(

1 0 0
1 1 0
1 1 1

)
. One can check that τMτ−1∩

M = {1}. We must find the elements v ∈ M such that τv is a p-element, i.e.
its characteristic polynomial equals to (1 − z)3. This happens if and only if
v is the identity. Moreover, the Jordan type of τ is (3) and this implies that
MC(3)

= {1}. Then,

χ(y2
χ) =

χ(C(3))
2

|M |
∑

v∈M

χ
(
τvτv−1

)

=
(q − 1)4

|M |
∑

b∈E

χ
((

1 0 0
1 1 0
1 1 1

) (
1 0 b
0 1 0
0 0 1

) (
1 0 0
1 1 0
1 1 1

) (
1 0 −b
0 1 0
0 0 1

))

=
(q − 1)4

|M |
∑

b∈E

χ
(

1+b b −b2

2+b 1+b −b2−b
3+b 2+b −2b−b2+1

)
.

Computing the characteristic polynomial of the above matrix and forcing it to
be equal to (1 − z)3, we get that b must solve the following equation

−b2 + 3 = 3.

In particular, the unique solution is b = 0, corresponding to v = 1. We now
proceed dividing the cases according to the parity of q.
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q odd. In this case the Jordan type of τvτv−1 = τ 2 is (3). Hence;

χ(y2
χ) =

(q − 1)6

|M | .

Since q − 1 and |M | are coprime, then 1
|M |

∈ R.
q even. In this case the Jordan type of τ 2 is (2, 1). Hence

χ(y2
χ) =

(q − 1)6(2q + 1)

|M | .

Since (q − 1) and (2q + 1) are odd, we have 1
|M |

∈ R. �

Proposition 2.3.5. Let q be odd and let M be an abelian p-subgroup of

central type of M2, containing
(

1 −3/2 3
0 1 −3/2
0 0 1

)
. Consider ω : M̂ × M̂ → K×

a non-degenerate cocycle. If (KG)ΩM,ω
admits a Hopf order over R, then

1
|M |

∈ R. Hence, (KG)ΩM,ω
does not admit a Hopf order over OK.

Proof. We take the element τ =
(

0 1 0
0 0 1
1 0 0

)
. We can verify that

M2 ∩ τM2τ
−1 = {1} and hence M ∩ τMτ−1 = {1}. We have to find those

elements v ∈ M2 such that τv is a p-element, i.e. its characteristic polynomial
is (1 − z)3. A direct computation shows that this happens if and only if

v =
(

1 −3/2 3
0 1 −3/2
0 0 1

)
and that the Jordan type of τv is (3). This implies that:

MC(3)
⊆
{(

1 −3/2 3
0 1 −3/2
0 0 1

)}

and MC(2,1)
= ∅. Since

(
1 −3/2 3
0 1 −3/2
0 0 1

)
∈ M , by assumption, then

MC(3)
=
{(

1 (−3/2) 3
0 1 (−3/2)
0 0 1

)}
.

Also in this case, we say that (a, b) ∈ M if
(

1 a b
0 1 a
0 0 1

)
∈ M . Then

χ(y2
χ) =

χ(C(3))
2

|M |
∑

v∈M
x∈MC(3)

χ
(
τx2vτv−1

)

=
(q − 1)4

|M |
∑

(a,b)∈M

χ

((
0 1 0
0 0 1
1 0 0

)( 1 −3/2 3
0 1 −3/2
0 0 1

)2(
1 a b
0 1 a
0 0 1

)(
0 1 0
0 0 1
1 0 0

)(
1 −a a2−b
0 1 −a
0 0 1

))

=
(q − 1)4

|M |
∑

(a,b)∈M

χ

(
a−3 3a−a2 a(a2−b)−3(a2−b)+1

1 −a a2−b
b−3a+ 33

4
3a2−ab− 33

4
a+1 −3+(a2−b)(b+ 33

4
−3a)

)
.
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With the usual criterium of the characteristic polynomial, the above element
lies in P if and only if (a, b) is a solution of the following system of equations

a2 − 3a− 3
4

= −3
−6 + (a2 − b)(b+ 33

4
− 3a) = 3,

and (a, b) ∈ M .
The unique solution to the system is (a, b) = (3/2,−3/4) and

(
1 3/2 −3/4
0 1 3/2
0 0 1

)
=
(

1 −3/2 3
0 1 −3/2
0 0 1

)−1

,

which belongs to M by assumption. In addition, the Jordan type of τx2vτv−1

is (3). Then,

χ(y2
χ) =

(q − 1)6

|M | .

The latter is an irreducible fraction, implying that 1
|M |

∈ R. �

Proposition 2.3.6. Let q be even and let M be an abelian p-subgroup of
central type of M2. Consider ω : M̂ × M̂ → K× a non-degenerate cocycle. If
(KG)ΩM,ω

admits a Hopf order over R, then 1
|M |

∈ R. Hence, (KG)ΩM,ω
does

not admit a Hopf order over OK.

Proof. In this case we pick the element τ =
(

0 0 1
0 1 0
1 0 0

)
. A direct computation

shows that (τM2τ
−1) ∩M2 = {1} and hence (τMτ−1) ∩M = {1}. An element

v ∈ M is such that τv has characteristic polynomial (1 − z)3 if and only if
v = 1. In particular,

MC(2,1)
= {1}

while MC(3)
= ∅. Then;

χ(y2
χ) =

χ(C(2,1))
2

|M |
∑

v∈M

χ(τvτv−1)

=
(q − 1)4(2q + 1)2

|M |
∑

(a,b)∈M

χ
((

0 0 1
0 1 0
1 0 0

)(
1 a b
0 1 a
0 0 1

)(
0 0 1
0 1 0
1 0 0

)(
1 a b
0 1 a
0 0 1

))

=
(q − 1)4(2q + 1)2

|M |
∑

(a,b)∈M

χ
(

1 a a2+b
a a2+1 a+a3+ab
b a+ab 1+a2+a2b+b2

)
,

where (a, b) ∈ M means that
(

1 a b
0 1 a
0 0 1

)
∈ M . Computing the characteristic

polynomial of the above matrix and forcing it to be equal to (1 − z)3, we
obtain that (a, b) ∈ M is a 2-element if and only if the pair (a, b) is a solution
of the following equation

1 + a2b+ b2 = 1. (2.3.2)
The solutions of the above equation are (a, 0) for every a ∈ Fq and (a, a2) for
every a ∈ F×

q .
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If (a, b) = (0, 0), the corresponding matrix showing up in the expression of
χ(y2

χ) is the identity.
If (a, b) = (a, 0) or (a, b) = (a, a2), then the corresponding matrix under con-
sideration is of Jordan type (3) for a ∈ F×

q .
We want to show that the number of solutions (a, b) of system (2.3.2) such
that (a, b) ∈ M is even if a 6= 0.
Suppose that

(
1 a 0
0 1 a
0 0 1

)
∈ M , for a 6= 0. Then, also its third power lies in M ,

explicitly
(

1 a 0
0 1 a
0 0 1

)3
=
(

1 a a2

0 1 a
0 0 1

)
,

i.e. (a, a2) ∈ M .
Call N the number of pairs (a, b) 6= (0, 0) solving the equation (2.3.2) and such
that (a, b) ∈ M . By the previous consideration we obtain

N = 2 · #{(a, 0) ∈ M : a ∈ F×
q }.

For simplicity, denote by Na the number #{(a, 0) ∈ M : a ∈ F×
q }. Hence;

χ(y2
χ) =

(q − 1)6(2q + 1)2

|M |
(
2Na + (q + 1)(q2 + q + 1)

)
.

Since (q + 1)(q2 + q + 1) is odd, then the number between brackets is odd.
Hence, 1

|M |
∈ R. �

This concludes the proof of Theorem 2.1.1 for SL3(q).

3.4. Projective special linear group PSL3(q). Let q = pm, for m ≥ 1.
In this section we assume that q ≡3 1, since otherwise PSL3(q) = SL3(q) and
this case was just treated. The map π : SL3(q) → PSL3(q) represents the
natural projection and G stands for PSL3(q). Furthermore, recall that θ is a
primitive third root of unit in Fq, which exists since q ≡3 1.
We retain notation from Subsection 3.3.
In particular, the Sylow p-subgroup we consider is

π(U) :=
{
π
(

1 a b
0 1 c
0 0 1

)
: a, b, c ∈ Fq

}

while the maximal split torus is

π(T ) :=
{
π
(
s 0 0
0 t 0
0 0 t−1s−1

)
: s, t ∈ F×

q

}
.

Moreover, we have that NG(π(U)) = π(B) ≃ π(T ) ⋉ π(U).
Firstly, we compute the values of the character χ = IndGπ(U)(1π(U)) at π(U).
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Lemma 2.3.7. For π(u) ∈ π(U) we have:

χ(π(u)) =





(q3−1)(q2−1)
3

if u = 1,
(2q+1)(q−1)2

3
if u is of Jordan type (2, 1),

(q−1)2

3
if u is of Jordan type (3).

Proof. The value at the identity element follows from the definition of χ.
By [71, Proposition 1.2], for u ∈ U the following formula holds

Ind
PSL3(q)
π(U) (1π(U))(π(u)) =

|CPSL3(q)(π(u))| · |Cl(π(u)) ∩ π(U)|
|π(U)| .

In addition,

Ind
SL3(q)
U (1U)(u) =

|CSL3(q)(u)| · |Cl(u) ∩ U |
|U | .

We start proving the following:
(1) |Cl(u)| = |Cl(π(u))|;
(2) |Cl(u) ∩ U | = |Cl(π(u)) ∩ π(U)|,

for every u ∈ U .
(1) We first prove that |Cl(u)| = |π(Cl(u))|, for every u ∈ U . This follows
from the fact that the projection π restricted to Cl(u) is injective. In fact if
for u ∈ U and x, y ∈ SL3(q) the conjugates xux−1 and yuy−1 have the same
image via π we must have xux−1 = yuy−1θi, for i ∈ {0, 1, 2}. Since the left
hand side of the equation has order p, it follows that i = 0. We conclude by
observing that π(Cl(u)) = Cl(π(u)) for every u ∈ U , since π is surjective.
(2) For showing this equality, it is enough to prove that

|π(Cl(u) ∩ U)| = |π(Cl(u)) ∩ π(U)|,
for every u ∈ U . Indeed, if this is the case we would have

|Cl(u) ∩ U | = |π(Cl(u) ∩ U)| = |π(Cl(u)) ∩ π(U)| = |Cl(π(u)) ∩ π(U)|,
where the first equality follows from the injectivity of π|Cl(u) and the latter one
from the fact that π(Cl(u)) = Cl(π(u)).
The inclusion π(Cl(u) ∩U) ⊆ π(Cl(u)) ∩π(U) is trivial, for every u ∈ U . Now
let π(z) ∈ π(Cl(u)) ∩ π(U), for z ∈ SL3(q). We have π(z) = π(u′) for some
u′ ∈ U and π(z) = π(tut−1), for some u ∈ U and t ∈ SL3(q). This implies
that tut−1 and u′ have the same projection along π. So we have tut−1 = u′θj,
but again the left hand side has order p, and this forces j = 0. So indeed
π(z) = π(u′) ∈ π(Cl(u) ∩ U), and we obtain the other inclusion.
The equalities just proven imply that for every u ∈ U

|CPSL3(q)(π(u))| =
|PSL3(q)|
|Cl(π(u))| =

1

3
· |SL3(q)|

|Cl(u)| =
1

3
· |CSL3(q)(u)|,

and also that
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Ind
PSL3(q)
π(U) (1π(U))(π(u)) =

1

3
· IndGU (1U)(u).

Finally, by Lemma 2.3.2 we get the desired result. �

In this case, we can view P as the collection of the elements π(g), such
that the characteristic polynomial of g is (θi − z)3, for some i ∈ {0, 1, 2}.
By definition, the value of the character χ at an element which does not belong
to P is equal to zero. If, instead π(g) is a p-element in virtue of Lemma 2.3.7
the value of χ depends on the Jordan type of g, which is obtained computing
rk(g − θi · 1), for i ∈ {0, 1, 2}. In particular, we get

C(1) = {π(1)},
C(2,1) = {π(g) ∈ P : g has Jordan type (2, 1)},
C(3) = {π(g) ∈ P : g has Jordan type (3)}.

In consequence Iχ = {C(1), C(2,1), C(3)}.

Remark 2.3.8. Abusing notation, we say that an element π(g) ∈ G is
of Jordan type (2, 1), respectively (3), if g has 3 equal eigenvalues and is of
Jordan type (2, 1), respectively (3).

For simplicity, call M1 and M2 the subgroups π(M1) and π(M2).
The aim of this section is to prove Theorem 2.1.1 for G. For this purpose, in
light of Corollary 2.2.6 and Remarks 2.2.7 and 2.2.8, it is enough to prove the
theorem for cocycles associated with subgroups M of the following form:

i) M ≤ M1, containing π
( 1 −1 1

0 1 1
0 0 1

)
;

ii) M =
{
π
(

1 0 b
0 1 0
0 0 1

)
: b ∈ E

}
, where E is an additive subgroup of Fq iso-

morphic to C2n
p ;

iii) M ≤ M2 containing π
(

1 −3/2 3
0 1 −3/2
0 0 1

)
, if q is odd.

Hence, the first step is to prove the following:

Proposition 2.3.9. Let M be an abelian p-subgroup of central type of M1

containing π
( 1 −1 1

0 1 0
0 0 1

)
and let ω : M̂ × M̂ → K× be a non-degenerate cocycle.

If (KG)ΩM,ω
admits a Hopf order over R, then 1

|M |
∈ R. Hence, (KG)ΩM,ω

does not admit a Hopf order over OK.

Proof. We consider the element τ = π
(

0 1 0
0 0 1
1 0 0

)
in NG(π(T )). One can

verify that M ∩
(
τMτ−1

)
⊆ M1 ∩ (τM1τ

−1) = {π(1)}. We must find those
elements v ∈ M such that the characteristic polynomial of a lifting of τv is
(θi − z)3, for some i ∈ {0, 1, 2}.

This happens if and only if v ∈
{
π
(

1 −3θ2i 3θi

0 1 0
0 0 1

)
: i ∈ {0, 1, 2}

}
. Furthermore,
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the element τv has Jordan type (3), for every v ∈
{
π
(

1 −3θ2i 3θi

0 1 0
0 0 1

)
: i ∈ {0, 1, 2}

}
.

Hence

MC(3)
⊆
{
π
(

1 −3θ2i 3θi

0 1 0
0 0 1

)
: i ∈ {0, 1, 2}

}
,

and MC(2,1)
= ∅. In addition, π

( 1 −3 3
0 1 0
0 0 1

)
= π

( 1 −1 1
0 1 0
0 0 1

)3
∈ M by assumption.

This implies that MC(3)
6= ∅.

We now divide the proof according to the size of MC(3)
.

1) Suppose that |MC(3)
| = 1. Then MC(3)

=
{( 1 −3 3

0 1 0
0 0 1

)}
.

For enhancing the readability of some formulas, we write (a, b) ∈ M to
indicate that

(
1 a b
0 1 0
0 0 1

)
∈ M .

Hence,

χ(y2
χ) =

χ(C(3))
2

|M |
∑

v∈M
x∈MC(3)

χ
(
τx2vτv−1

)

=
(q − 1)4

9|M |
∑

(a,b)∈M

χ

(
π
(

0 1 0
0 0 1
1 0 0

)(
1 −3 3
0 1 0
0 0 1

)2( 1 a b
0 1 0
0 0 1

)(
0 1 0
0 0 1
1 0 0

)(
1 −a −b
0 1 0
0 0 1

))

=
(q − 1)4

9|M |
∑

(a,b)∈M

χ

(
π

(
0 0 1
1 −a −b
b+6 1−ab−6a a−b2−6−6b

))
.

(2.3.3)

The latter summands are nonzero if and only if the characteristic polynomial
of the corresponding matrix equals (z − θk)3 for some k ∈ {0, 1, 2}, i.e. if and
only if (a, b) ∈ F2

q is a solution of the following system of equations

−b2 − 6b− 6 = 3θk

a2 − 6a+ 6 = −3θ2k,
(2.3.4)

and π
(

1 a b
0 1 0
0 0 1

)
∈ M .

For k = 0, 1, 2, call Nk the number of solutions of system (2.3.4) satisfying
π
(

1 a b
0 1 0
0 0 1

)
∈ M .

For k = 0 the system (2.3.4) has one solution, namely (a, b) = (3,−3).
The corresponding element π

( 1 −3 3
0 1 0
0 0 1

)
lies in M , so N0 ≥ 1. Moreover,

for each k ∈ {1, 2}, the system has at most four solutions, implying that
1 ≤ N0 + N1 + N2 ≤ 9. We proceed treating separately the case q odd and q
even.

q odd. The last matrix appearing in the expression of χ(y2
χ) is the ma-

trix in Equation (A.1.2) in the Appendix, with i = j = 0; in light of Lemma



3. PROOF OF THEOREM 2.1 47

A.1.2 it has Jordan type (3). This yields:

χ(y2
χ) =

(q − 1)6

27|M | · (N0 +N1 +N2).

If |M | divides N0 +N1 +N2, then |M | ≤ 9. Since q is odd and satisfies q ≡3 1
and since |M | is a square, we obtain that χ(y2

χ) is an irreducible fraction, so
1

|M |
∈ R.

q even. We consider the matrices appearing in the expression of χ(y2
χ)

in (2.3.3). Lemma A.2.1 for i = j = 0 states that the latter matrices are
of Jordan type (2, 1) if and only if (a, b) = (θk, θ2k) for k ∈ {0, 1, 2}. The

assumption that π
(

1 θ2i θi

0 1 0
0 0 1

)
/∈ M for i 6= 0, implies that the only solution

(a, b) of system (2.3.4) satisfying π
(

1 a b
0 1 0
0 0 1

)
∈ M is (a, b) = (1, 1). We can then

conclude that:

χ(y2
χ) =

(q − 1)6(2q + 1)

27|M | .

Since q − 1 and 2q + 1 are odd, we get 1
|M |

∈ R.

2) Suppose now that |MC(3)
| > 1 and q ≡3 1 is arbitrary with this

property.
Firstly, we show that |MC(3)

| 6= 2. Indeed, fix i ∈ {1, 2} and suppose that

the element π
(

1 −3θi 3θ2i

0 1 0
0 0 1

)
∈ M. The latter together with the assumption

π
( 1 −3 3

0 1 0
0 0 1

)
∈ M yields that π

(
1 −3θ2i 3θi

0 1 0
0 0 1

)
∈ M since

π
((

1 −3θi 3θ2i

0 1 0
0 0 1

) ( 1 −3 3
0 1 0
0 0 1

))
= π

(
1 −3θ2i 3θi

0 1 0
0 0 1

)−1

.

Therefore

MC(3)
=
{
π
(

1 −3θ2i 3θi

0 1 0
0 0 1

)
: i ∈ {0, 1, 2}

}
,

and so |〈MC3〉| = p2. Then,

χ(y2
χ) =

χ(C(3))
2

|M |

∑

v∈M
x,x′∈MC(3)

χ
(
τxx

′
vτv

−1
)

=
(q − 1)4

9|M |

∑

(a,b)∈M
i,j∈{0,1,2}

χ

(
π

(
0 1 0
0 0 1
1 0 0

)(
1 −3θ2i 3θi

0 1 0
0 0 1

)(
1 −3θ2j 3θj

0 1 0
0 0 1

)(
1 a b
0 1 0
0 0 1

)(
0 1 0
0 0 1
1 0 0

)(
1 −a −b
0 1 0
0 0 1

))

=
(q − 1)4

9|M |

∑

(a,b)∈M
i,j∈{0,1,2}

χ

(
π

( 0 0 1
1 −a −b

b+3(θi+θj ) 1−ab−3a(θi+θj ) a−b2−3(θ2i+θ2j )−3b(θi+θj )

))
.

(2.3.5)
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The latter summands are nonzero if and only if the characteristic polynomial
of the corresponding matrix equals (θk − z)3, for some k ∈ {0, 1, 2}. A com-
putation shows that this holds if and only if the pair (a, b) ∈ F2

q is a solution
of the following system of equations:

−b2 − 3b(θi + θj) − 3(θ2i + θ2j) = 3θk

a2 − 3a(θ2i + θ2j) + 3(θi + θ2j) = −3θ2k,
(2.3.6)

for some k ∈ {0, 1, 2} and a, b such that π
(

1 a b
0 1 0
0 0 1

)
∈ M.

Let Nk be the number of solutions of the previous system for k ∈ {0, 1, 2}. In
this case, as well, we carry out our estimates according to the parity of q.
q odd. For every triple (i, j, k), with i, j, k ∈ {0, 1, 2} the system (2.3.6) admits
at most 4 solutions and so N0 + N1 + N2 ≤ 108. As in the case |MC(3)

| =
1, we have at least one solution, i.e. N0 + N1 + N2 ≥ 1. Since the last
matrix appearing in the expression of χ(y2

χ) in Equation (2.3.5) is the matrix
in Equation (A.1.2) in the Appendix, Lemma A.1.2 implies that

χ(y2
χ) =

(q − 1)6

27|M | (N0 +N1 +N2).

A necessary condition for χ(yχ)2 to be an integer is that |M | ≤ 108. Given
that |M | = p2l, for some l ∈ N and that p 6= 2, 3, this could occur only if
|M | = 49 or |M | = 25.
Let |M | = 49. As we have noticed before, |〈MC(3)

〉| = 49; this forces M to be
equal to 〈MC(3)

〉. In this case, the third root of unity θ lies in F7 and one can

verify that M =
{
π
(

1 a b
0 1 0
0 0 1

)
: a, b ∈ F7

}
. Lemma A.1.1 together with Lemma

A.1.2 imply that

χ(y2
χ) =

75(q − 1)6

27 · 49
∈ Q \ Z,

leading to 1
|M |

∈ R.
If |M | = 25, then with the same argument we used for p = 7, we obtain that
M = 〈MC(3)

〉. Lemma A.1.3 and Lemma A.1.2 yield that

χ(y2
χ) =

15(q − 1)6

27 · 25
∈ Q\Z,

implying 1
|M |

∈ R.

q even. We denote by N(3) the number of 2-elements in the expression
of χ(y2

χ) in Equation (2.3.5) which have Jordan type (3), while N(2,1) stands
for the number of 2-elements of Jordan type (2, 1) in the expression of χ(y2

χ).
We recall that we are looking for the pairs (a, b) ∈ Fq × Fq which solve the
following system:

b2 + b(θi + θj) + (θ2i + θ2j + θk) = 0
a2 + a(θ2i + θ2j) + (θi + θ2j + θ2k) = 0,

(2.3.7)
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and satisfy π
(

1 a b
0 1 0
0 0 1

)
∈ M for some i, j, k running in {0, 1, 2}.

If i = j, then the solutions of the system are (a, b) = (θk, θ2k), for k ∈ {0, 1, 2}.

In the case we are considering, the element π
(

1 θk θ2k

0 1 0
0 0 1

)
∈ M for each k ∈

{0, 1, 2}. Moreover for i = j, Lemma A.2.1 guarantees that the Jordan type
of the corresponding element in the expression of χ(y2

χ) in Equation (2.3.5)
is (2, 1) and that the only elements of Jordan type (2, 1) are those for which
i = j. Hence, for every i = j ∈ {0, 1, 2}, there are 3 solutions (a, b) ∈ Fq × Fq
of system (2.3.7); explicitly (a, b) ∈ {(1, 1), (θ, θ2), (θ2, θ)}. Hence, N(2,1) = 9.
Let i 6= j. The solutions of the system (2.3.7) for the pair (i, j) are the same
as for the pair (j, i). Thus, N(3) = 2N(i,j,k), where N(i,j,k) are the solutions of
the system (2.3.7) for the triple (i, j, k), with i < j. Hence,

χ(y2
χ) =

(q − 1)6

27|M |
(
N(3) + (2q + 1)N(2,1)

)
=

(q − 1)6

27|M |
(
18q + 9 + 2N(i,j,k)

)
.

Since the number into brackets is odd, we get that 1
|M |

∈ R. �

We now proceed with the following result.

Proposition 2.3.10. Let

M =
{
π
(

1 0 b
0 1 0
0 0 1

)
: b ∈ E

}
,

where E is an additive subgroup of Fq isomorphic to C2k
p for some k > 0. Let

ω : M̂ × M̂ → K× be a non-degenerate cocycle. If (KG)ΩM,ω
admits a Hopf

order over R, then 1
|M |

∈ R. Hence, (KG)ΩM,ω
does not admit a Hopf order

over OK.

Proof. We take τ = π
(

1 0 0
1 1 0
1 1 1

)
. One can verify that τMτ−1 ∩M = {π(1)}.

We must detect for which elements v ∈ M the characteristic polynomial of a
lifting of τv equals (θi − z)3 for some i ∈ {0, 1, 2}. The only element v ∈ M
satisfying this condition is the identity, which clearly belongs to M . Moreover,
the Jordan type of τ is (3) and this implies that MC(3)

= π(1). Then,

χ(y2
χ) =

χ(C(3))
2

|M |
∑

v∈M

χ
(
τvτv−1

)

=
(q − 1)4

9|M |
∑

b∈E

χ
(
π
(

1 0 0
1 1 0
1 1 1

) (
1 0 b
0 1 0
0 0 1

) (
1 0 0
1 1 0
1 1 1

) (
1 0 −b
0 1 0
0 0 1

))

=
(q − 1)4

9|M |
∑

b∈E

χ
(
π
(

1+b b −b2

2+b 1+b −b2−b
3+b 2+b −2b−b2+1

))
.

(2.3.8)

Computing the characteristic polynomial of the matrix in the expression of
χ(y2

χ) in Equation 2.3.8 and forcing it to be equal to (θk − z)3 for k ∈ {0, 1, 2}
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we get that b ∈ E must satisfy the following system of equations

−3 = −3θ2k

−b2 + 3 = 3θk.

In particular, the system admits a solution if and only if k = 0, and in this
case b = 0 is the only solution. We now proceed according to the parity of q.
q odd. In this case the Jordan type of τvτv−1 = τ 2 is (3). Hence;

χ(y2
χ) =

(q − 1)6

27 · |M | .

Since gcd(q − 1, |E|) = 1, we conclude that 1
|M |

∈ R.
q even. In this case the Jordan type of τ 2 is (2, 1). Hence

χ(y2
χ) =

(q − 1)6(2q + 1)

27 · |M | ,

which belongs to Q \Z since (q− 1) and (2q+ 1) are odd. Thus, 1
|M |

∈ R. �

Proposition 2.3.11. Let q be odd and let M be an abelian p-subgroup of

central type of M2, containing π
(

1 −3/2 3
0 1 −3/2
0 0 1

)
. Consider ω : M̂ × M̂ → K×

a non-degenerate cocycle. If (KG)ΩM,ω
admits a Hopf order over R, then

1
|M |

∈ R. Hence, (KG)ΩM,ω
does not admit a Hopf order over OK.

Proof. We pick τ = π
(

0 1 0
0 0 1
1 0 0

)
. We can verify that M2 ∩ τM2τ

−1 = {π(1)}
and hence M ∩ τMτ−1 = {π(1)}. We seek those elements v ∈ M2 such that
τv is a p-element, i.e. such that the characteristic polynomial of a lift of it is
(θi − z)3, for some i ∈ {0, 1, 2}. A direct computation shows that this occurs

if and only if v ∈
{
π
(

1 (−3/2)θ2i 3θi

0 1 (−3/2)θ2i

0 0 1

)
: i ∈ 0, 1, 2

}
and that in this case

the Jordan type of τv is (3). This implies that

MC(3)
⊆
{
π
(

1 (−3/2)θ2i 3θi

0 1 (−3/2)θ2i

0 0 1

)
: i ∈ 0, 1, 2

}

and MC(2,1)
= ∅. Bear in mind that π

(
1 (−3/2) 3
0 1 (−3/2)
0 0 1

)
∈ M , by assumption.

We divide the analysis into two cases, according to the size of MC(3)
.

1) Suppose that |MC(3)
| = 1. Then MC(3)

=
{
π
(

1 (−3/2) 3
0 1 (−3/2)
0 0 1

)}
and

thus M is a proper subgroup of M2. We write (a, b) ∈ M to indicate that
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π
(

1 a b
0 1 a
0 0 1

)
∈ M and compute

χ(y2
χ) =

χ(C(3))
2

|M |
∑

v∈M
x∈MC(3)

χ
(
τx2vτv−1

)

=
(q − 1)4

9|M |
∑

(a,b)∈M

χ

(
π
(

0 1 0
0 0 1
1 0 0

)( 1 −3/2 3
0 1 −3/2
0 0 1

)2(
1 a b
0 1 a
0 0 1

)(
0 1 0
0 0 1
1 0 0

)(
1 −a a2−b
0 1 −a
0 0 1

))

=
(q − 1)4

9|M |
∑

(a,b)∈M

χ

(
a−3 3a−a2 a(a2−b)−3(a2−b)+1

1 −a a2−b
b−3a+ 33

4
3a2−ab− 33

4
a+1 −3+(a2−b)(b+ 33

4
−3a)

)
.

(2.3.9)

With the usual characteristic polynomial criterium, the summands in the ex-
pression of χ(y2

χ) in (2.3.9) are nonzero if and only if (a, b) ∈ M satisfies the
following system of equations

a2 − 3a− 3
4

= −3θ2k

−6 + (a2 − b)(b+ 33
4

− 3a) = 3θk,
(2.3.10)

for some k ∈ {0, 1, 2}.
For k ∈ {0, 1, 2}, we call Nk the number of solutions (a, b) such that (a, b) ∈ M .
For k = 0, there is only one solution to the system, namely (a, b) = (3/2,−3/4).

Moreover
(

1 3/2 −3/4
0 1 3/2
0 0 1

)
∈ M , since

(
1 3/2 −3/4
0 1 3/2
0 0 1

)−1

=
(

1 −3/2 3
0 1 −3/2
0 0 1

)
∈ M

by assumption. Hence N0 = 1. Furthermore, N1, N2 ≤ 4, yielding that 1 ≤
N0 +N1 +N2 ≤ 9.
Observe that the matrix appearing in the expression of χ(y2

χ) in (2.3.9) is the
matrix in Equation (A.1.3), for r = w = −3/2 and s = y = 3.
If p 6= 7, 19, Lemma A.1.4 implies that

χ(y2
χ) =

(q − 1)6

27|M | · (N0 +N1 +N2).

The above number is an integer if and only if |M | divides N0 +N1 +N2. Since
N0 +N1 +N2 ≤ 9 this cannot occur, since the only prime squares less or equal
to 9 are 4 and 9, that are discarded because p is odd and q ≡3 1. Thus, we
have 1

|M |
∈ R.

Let now N be the number of solutions (a, b) ∈ Fq × Fq of system (2.3.14).
Then N = N(3) + N(2,1), where N(3) and N(2,1) stands for the number of
solutions (a, b) of system (2.3.14) which are such that the corresponding
element in the expression of χ(yχ)2 in Equation (2.3.9) is a p-element of
Jordan type (3) and Jordan type (2, 1) respectively.
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Let p = 7. Since i = j = 0, by Lemma A.1.4 the element showing up in the
expression of χ(y2

χ) in Equation (2.3.9) is a 7-element of Jordan type (2, 1) if
k = 2. Then, N(2,1) ≤ 4 and N = N(2,1) +N(3) ≤ 9. Thus

χ(y2
χ) =

(q − 1)6

27|M |
(
2qN(2,1) +N(3) +N(2,1)

)
.

Since M < M2 and |M | = 72l, for some l ≥ 1, then 7l is a proper divisor of 7m.
Hence, 7l+1 divides q. In conclusion, if |M | divides (2qN(2,1) + N(3) + N(2,1))
then 7l+1 must divide N(2,1) +N(3) ≤ 9 for some l ≥ 1, a contradiction.
Let p = 19. Lemma A.1.4 implies that N(2,1) = 0 because we are assuming
|MC(3)

| = 1 and so i = j = 0 in Equation (A.1.3).
Hence;

χ(y2
χ) =

(q − 1)6

27|M | N(3),

where N(3) ≤ 9; we deduce that 1
|M |

∈ R.

2) Assume now that |MC(3)
| > 1 and that π

(
1 −3/2θ2 3θ

0 1 −3/2θ2

0 0 1

)
∈ M . Since

(
1 −3/2 3
0 1 −3/2
0 0 1

)
∈ M , also

(
1 −3/2θ 3θ2

0 1 −3/2θ
0 0 1

)
∈ M . In consequence, |MC(3)

| = 3,

i.e.

MC(3)
=
{
π
(

1 (−3/2)θ2i 3θi

0 1 (−3/2)θ2i

0 0 1

)
: i ∈ {0, 1, 2}

}
.

Therefore,

χ(y2
χ) =

χ(C(3))
2

|M |

∑

v∈M
x,x′∈MC(3)

χ
(
τxx

′
vτv

−1
)

=
(q − 1)4

9q2

∑

(a,b)∈M
i,j∈{0,1,2}

χ

(
π

(
0 1 0
0 0 1
1 0 0

)(
1 (−3/2)θ2i 3θi

0 1 (−3/2)θ2i

0 0 1

)(
1 (−3/2)θ2j 3θj

0 1 (−3/2)θ2j

0 0 1

)(
1 a b
0 1 a
0 0 1

)(
0 1 0
0 0 1
1 0 0

)(
1 −a a2−b
0 1 −a
0 0 1

))

For simplicity, set y = 3θi, s = 3θj, w = (−3/2)θ2i, r = (−3/2)θ2j. Then χ(y2
χ)

equals to :

(q − 1)4

9q2

∑

(a,b)∈M

i,j∈{0,1,2}

χ

(
π

(
a+r+w −a(a+r+w) 1+(a2−b)(a+r+w)

1 −a a2−b

b+s+rw+a(r+w)+y 1−a(b+s+rw+a(r+w)+y) r+w+(a2−b)(b+s+rw+a(r+w)+y)

))
.

(2.3.11)

The matrix appearing in Equation (2.3.11) is indeed the matrix C in Equation
(A.1.3) in the Appendix.
Computing the characteristic polynomial of C and forcing it to be equal to
(θk − z)3, for some k ∈ {0, 1, 2}, we get that C is a p-element if and only if
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(a, b) ∈ F2
q is a solution of the following system of equations:

a2 + a(r + w) + s+ y − rw − r2 − w2 = −3θ2k

2(r + w) + (a2 − b)(b+ s+ rw + y + a(r + w)) = 3θk,
(2.3.12)

for some k ∈ {0, 1, 2} and π
(

1 a b
0 1 a
0 0 1

)
∈ M .

For each choice of the triple (i, j, k) there are at most 4 pairs (a, b) satisfying
the previuos equations. Moreover, for i = j = k = 0, the calculations in case
1) imply that (a, b) = (3/2,−3/4) is a solution.
Call N the number of p-elements in the sum. By the previous considerations,
we have 1 ≤ N ≤ 27 × 4 = 108.
We now need to establish the Jordan type of the p-elements arising from the
solutions of system (2.3.12), for some choice of i, j, k ∈ {0, 1, 2}. Let us divide
this analysis into three cases, according to the value of p and |M |.
i) Let p 6= 7, 19. By Lemma A.1.4, the p-elements arising from the solutions
of the systems (2.3.12) are all of Jordan type (3). Then,

χ(y2
χ) =

(q − 1)6

27|M | N.

Since q is odd, q ≡3 1 and p 6= 7, 19 , then |M | could divide N only if |M | = 25.
In the other cases we conclude that 1

|M |
∈ R. If |M | = 25, by order reasons we

get M = 〈MC(3)
〉. In light of Lemma A.1.8, we obtain

χ(y2
χ) =

(q − 1)615

27 · 25
.

Since 25 does not divide 15 we conclude that χ(y2
χ) ∈ Q \ Z and in particular

that 1
|M |

∈ R.
ii) Assume now p = 7. Then

χ(y2
χ) =

(q − 1)6

27|M | (2qN(2,1) +N(2,1) +N(3)),

where N(2,1) and N(3) are defined as in case 1). If M < M2 and |M | = 72l, then
7l+1 divides q and |M |. If χ(y2

χ) ∈ Z then 7l+1 would divide N = N(2,1) +N(3).
This could occur only for l = 1, i.e. |M | = 49. In this case M = 〈MC(3)

〉 and
one can verify that

〈MC(3)
〉 =

{
π
(

1 a b
0 1 a
0 0 1

)
: a, b ∈ F7

}
.

By Lemma A.1.6, we have that N(2,1) = 6 and N(2,1) +N(3) = 33. Hence,

χ(y2
χ) =

(q − 1)6(12q + 33)

27 · 49
.

Since 7 divides q but it does not divide 33, the number χ(y2
χ) ∈ Q \Z. Thus

in the case p = 7 and M < M2, we conclude that 1
|M |

∈ R.
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Assume now M = M2. Then |M | = q2. Moreover, Lemma A.1.5 guarantees
that N(2,1) ≤ 12 and as before N = N(3) +N(2,1) ≤ 108. If χ(y2

χ) ∈ Z, then

q2 ≤ 2qN(2,1) + (N(2,1) +N(3)) ≤ 24q + 108,

i.e. 7 ≤ q ≤ 28. This forces q = 7. In this case, Lemma A.1.6 gives that
N(2,1) = 6 and N(3) = 27. In consequence;

χ(y2
χ) =

66

27 · 72
(6(14 + 1) + 27) =

66

27 · 72
(117).

Since 117 and 7 are coprime, χ(y2
χ) ∈ Q \ Z. Hence, if M = M2 and p = 7 we

obtain 1
|M |

∈ R.
iii) Finally, assume p = 19, Then

χ(y2
χ) =

(q − 1)6

27|M | (2qN(2,1) +N(2,1) +N(3)),

where N(2,1) ≤ 24 by Lemma A.1.5.
Let |M | = p2l, for some l ≥ 1. If M < M2, then χ(y2

χ) is an integer if pl+1

divides N = N(2,1) +N(3) ≤ 108 for some l ≥ 1, a contradiction.
If instead M = M2, then |M | = q2. A necessary condition for χ(y2

χ) to be an
integer is that q2 ≤ 48q+ 108, forcing q = 19. If this is the case, Lemma A.1.7
implies that

χ(y2
χ) =

186

27 · 192
(2 · 19 · 12 + 51) =

186 · 507

27 · 192
∈ Q\Z.

Also in the case p = 19, we conclude that 1
|M |

∈ R. �

From now on, let q be even. The last step is proving the following Propo-
sition.

Proposition 2.3.12. Let q be even and let M be an abelian p-subgroup of
central type of M2. Consider a non-degenerate cocycle ω : M̂ × M̂ → K×. If
(KG)ΩM,ω

admits a Hopf order over R, then 1
|M |

∈ R. Hence, (KG)ΩM,ω
does

not admit a Hopf order over OK.

Proof. In this case we take τ = π
(

0 0 1
0 1 0
1 0 0

)
. A direct computation shows

that (τM2τ
−1)∩M2 = {π(1)} and hence (τMτ−1)∩M = {π(1)}. The elements

v ∈ M such that the characteristic polynomial of a lifting of τv is (θi − z)3 for

some i ∈ {0, 1, 2} are v = π(1) and v = π
(

1 1 θ2l

0 1 1
0 0 1

)
for l ∈ {1, 2}. In particular,

MC(2,1)
= π(1),

while

MC(3)
⊆
{
π
(

1 1 θ2l

0 1 1
0 0 1

)
: l = 1, 2

}
.
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We divide the proof into cases, according to the size of MC(3)
.

Case 1) Suppose that MC(3)
= ∅. We write (a, b) ∈ M to indicate that

π
(

1 a b
0 1 a
0 0 1

)
∈ M . Then

χ(y2
χ) =

χ(C(2,1))
2

|M |
∑

v∈M

χ(τvτv−1)

=
(q − 1)4(2q + 1)2

9|M |
∑

(a,b)∈M

χ
(
π
(

0 0 1
0 1 0
1 0 0

)(
1 a b
0 1 a
0 0 1

)(
0 0 1
0 1 0
1 0 0

)(
1 a b
0 1 a
0 0 1

))

=
(q − 1)4(2q + 1)2

9|M |
∑

(a,b)∈M

χ
(
π
(

1 a a2+b
a a2+1 a+a3+ab
b a+ab 1+a2+a2b+b2

))
.

(2.3.13)

Computing the characteristic polynomial of the matrix in the expression of
χ(y2

χ) in (2.3.13) and forcing it to be equal to (θk − z)3 for some k ∈ {0, 1, 2},
we obtain that (a, b) ∈ F2

q must solve the following system of equations

1 + a2b+ b2 = θk

1 + a2b+ b2 = θ2k.
(2.3.14)

This system has solutions only for k = 0. In this case, the solutions are (a, 0)
for every a ∈ Fq and (a, a2), for every a ∈ F×

q .
If a = 0 and b = 0, the corresponding matrix showing up in χ(y2

χ) is the
identity.
If a 6= 0, then by Lemma A.2.2, the corresponding matrix is of Jordan type
(3). We want to show that the number of pairs (a, b) ∈ {(a, 0), (a, a2) : a 6= 0}
such that

(
1 a b
0 1 a
0 0 1

)
∈ M , is even.

Suppose that π
(

1 a 0
0 1 a
0 0 1

)
∈ M . Then,

(
1 a 0
0 1 a
0 0 1

)3
=
(

1 a a2

0 1 a
0 0 1

)
∈ M,

and so Na := #{a ∈ F×
q : (a, 0) ∈ M} = #{a ∈ F×

q : (a, a2) ∈ M}.
Hence

χ(y2
χ) =

(q − 1)6(2q + 1)2

27|M |
(
2Na + (q + 1)(q2 + q + 1)

)
∈ Q\Z.

So in the case MC(3)
= ∅, we conclude that 1

|M |
∈ R.

Case 2) Suppose that |MC(3)
| 6= 0 . Observe that π

(
1 1 θ
0 1 1
0 0 1

)
∈ M if and

only if π
(

1 1 θ2

0 1 1
0 0 1

)
∈ M , since

π
(

1 1 θ
0 1 1
0 0 1

)3
= π

(
1 1 θ2

0 1 1
0 0 1

)
.
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Therefore |MC(3)
| 6= 0 implies

MC(3)
=
{
π
(

1 1 θ2l

0 1 1
0 0 1

)
: l = 1, 2

}
.

Hence,

χ(y2
χ) =

1

|M |

[
χ(C(2,1))

2
∑

v∈M

χ
(
τvτv

−1
)

+ 2χ(C(2,1))χ(C(3))
∑

v∈M
x∈MC(3)

χ
(
τxvτv

−1
)

+

+ χ(C(3))
2

∑

v∈M
x,x′∈MC(3)

χ
(
τxx

′
vτv

−1
) ]

.

We aim at showing that the sum between brackets is an odd integer. The first
summand was already analyzed in the previous case, while the second one is
clearly even. Thus, we are left to study

∑

(a,b)∈M
x,x′∈MC(3)

χ

(
π
(

0 0 1
0 1 0
1 0 0

)(
1 1 θi

0 1 1
0 0 1

)(
1 1 θj

0 1 1
0 0 1

)(
1 a b
0 1 a
0 0 1

)(
0 0 1
0 1 0
1 0 0

)(
1 −a a2−b
0 1 −a
0 0 1

))

=
∑

(a,b)∈M

χ

(
π

(
1 a a2+b
a a2+1 a(a2+b+1)

b+θ2i+θ2j+1 a(b+θ2i+θ2j) (a2+b)(b+θ2i+θ2j)+b+1

))
.

(2.3.15)

By Lemma A.2.3, the matrix appearing in equation (2.3.15) is in P if and only
if (a, b) ∈ {(0, 0), (0, 1), (a, 0), (a, a2), (1, θl)}, for l running in {1, 2}.
Observe that since π

(
1 1 θ
0 1 1
0 0 1

)
∈ M , then its square π

(
1 0 1
0 1 0
0 0 1

)
belongs to M . This

implies that (0, 0), (0, 1), (1, θ), (1, θ2) lie in M .
For i, j ∈ {1, 2} such that i 6= j and k = 0, by Lemma A.2.3 the matrix
appearing in the expression (2.3.15) is in P if and only if (a, b) = (0, 0) and in
particular in this case it is the identity thanks to Lemma A.2.4. Then, there
are precisely 2 occurrences of the identity in the sum in expression (2.3.15) of
χ(y2

χ).
Moreover, for i = j and k = 0, in virtue of Lemma A.2.3 the matrix appearing
in the expression (2.3.15) is in P if and only if

(a, b) ∈ {(0, 0), (0, 1), (a, 0), (a, a2) : a ∈ F×
q }

and in the cases in which (a, b) ∈ {(0, 0), (0, 1)} the Jordan type of the corre-
sponding matrix in the expression of χ(y2

χ) in (2.3.15) is (2, 1), by Lemma A.2.4.
On the other hand, in light of Lemma A.2.4, if (a, b) ∈ {(a, 0), (a, a2) : a ∈ F×

q }
the Jordan type of the corresponding matrix in the expression of χ(y2

χ) in
(2.3.15) is (3). Arguing as in Case 1, we have that Na = #{a ∈ F×

q : (a, 0) ∈
M} = #{a ∈ F×

q : (a, a2) ∈ M}. Hence, for i = j and k = 0, in the sum in
expression (2.3.15), there are four 2-elements of Jordan type (2, 1) and 2Na

elements of Jordan type (3).
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Finally, for i = j and k ∈ {1, 2}, in light of Lemma A.2.3 the summand appear-
ing in the expression (2.3.15) is nonzero if and only if (a, b) ∈ {(1, θ), (1, θ2)}
and the Jordan type of the corresponding matrix is (2, 1) thanks to Lemma
A.2.4. In consequence, there are eight occurrences of 2-elements of Jordan
type (2, 1) in the sum in expression (2.3.15).
Thus, χ(y2

χ) equals

1

|M |

[
χ(C(2,1))

2 (q − 1)2

3

(
2Na + (q + 1)(q2 + q + 1)

)
+ 2χ(C(2,1))χ(C(3))

∑

v∈M
x∈MC(3)

χ
(
τxvτv

−1
)

+

+ χ(C(3))
2 (q − 1)2

3

(
2(q2 + q + 1)(q − 1) + 12(2q + 1) + 2Na

) ]
.

Since the second and the third summands are even, while the first is odd, we
have χ(y2

χ) ∈ Q \ Z and so 1
|M |

∈ R. �

This concludes the proof of Theorem 2.1.1 for PSL3(q).

3.5. The Suzuki group 2B2(q). We retain notations from Subsection 2.3.
Here q = 22n+1, where n ≥ 1. We consider the induced character χ = IndGU(1U)
and the set P =

⋃
g∈G gUg

−1. We know that χ vanishes outside P . We compute
its values at U .We start with a non-trivial involution u(0, b). It is conjugate
to u(0, 1) by a certain tκ ∈ T in view of (2.2.2). Note that gu(0, 1)g−1 ∈ U
implies gu(0, 1)g−1 ∈ Z(U). Using (2.2.2) and that CG(u(0, 1)) = U , one can
check the equality {g ∈ G : gu(0, 1)g−1 ∈ U} = TU. As a consequence of
this, and (2.2.2) again, the same equality holds for u(0, b). Now, an arbitrary
u(a, b), which is not an involution, has order 4. Then, we have the following
chain of inclusions:

TU ⊆ {g ∈ G : gu(a, b)g−1 ∈ U} ⊆ {g ∈ G : gu(a, b)2g−1 ∈ U} = TU.

Hence:

χ(1) =
|G|
|U | = (q − 1)(q2 + 1),

χ(v) =
|TU |
|U | = q − 1, for v ∈ U \{1}.

In this case, the set Iχ particularizes to Iχ = {{1}, P \ {1}}. Let P • =
P \ {1}. Clearly, M{1} = ∅. The next step is to find MP • . We analyze when
the following product is a 2-element:

τu(0, b) =

(
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)(
1 0 0 0
0 1 0 0
b 0 1 0
θ(b) b 0 1

)
=

(
θ(b) b 0 1
b 0 1 0
0 1 0 0
1 0 0 0

)
.

One can see, by looking at the (4, 3)-entry, that (τu(0, b))4 = 1 if and only if
b = 0. Then:

MP • = {v ∈ M : τv ∈ P •} = {1}.



58 2. NON-EXISTENCE OF INTEGRAL HOPF ORDERS

Equation (1.6.7) now takes the following form. Notice that, in view of
the preceding discussion, (τv)2 ∈ P if and only if v = 1. Hence, the only
contribution in the second sum occurs when v = 1:

χ(y2
χ) =

χ(P •)2

|M |
∑

v∈M
x,x′∈MP •

χ
(
τxx′vτv−1

)

=
χ(P •)2

|M |
∑

v∈M

χ
(
(τv)2

)

=
(q − 1)3(q2 + 1)

|M | .

This is an irreducible fraction because |M | is a power of 2. As in the previous
cases, we can derive from this that 1

|M |
∈ R.

This finishes the proof of Theorem 2.1.1. �

4. Proof of Theorem 2.1.2

This section aims at proving Theorem 2.1.2. As in Section 3, we devote
each subsection to the proof of the conclusion of Theorem 2.1.2 for the groups
listed in there.

4.1. Projective special linear group PSL2(q). We will use several
characters of PSL2(q) in the proof. Composition with the projection π :
SL2(q) → PSL2(q) induces a one-to-one correspondence between characters of
PSL2(q) and characters of SL2(q) with kernel containing {±1}; see [36, Lemma
2.22]. In particular, if ϕ is a character of SL2(q) such that ϕ(1) = ϕ(−1), then
ϕ̃ : PSL2(q) → C, π(g) 7→ ϕ(g) is a well-defined character of PSL2(q).

For convenience, we will work directly with the character table of SL2(q).
We will use [6, Table 5.4, page 58]. We entirely adopt the notation fixed there,
overlooking the clash with our R, which is easily resolved from the context.
The necessary information to work with this table can be found in the following
parts of [6]. For the conjugacy classes, see: Equation 1.1.9 in page 5, Theorem
1.3.3 in page 8, Table 1.1 in page 9, and Exercise 1.4(d) in page 12. For the
irreducible characters, see: Subsection 3.2.3 in page 32, Summary 3.2.5 in page
34, Remark in page 35, Section 4.3 in page 45, Exercise 4.1(c) in page 48, and
Proposition 5.3.1 in page 57.

The original description of the character table of SL2(q) given by Schur
can be found in [19, Theorem 38.1]. The character table of PSL2(q) appears,
for instance, in [43, Theorems 8.9 and 8.11, pages 280-282]. We stress that its
size is q+5

2
when q is odd.

Fix a pair (x, y) ∈ Fp × Fp such that x2 + y2 = −1. By Remark 1.3.4
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and Proposition 2.2.1(ii) we can assume that M is the subgroup of PSL2(q)
generated by r = π( 0 1

−1 0 ) and s = π(
x y
y −x ). We will use two different

characters in the proof according to the following distinction:
A. Case q ≡4 −1. This case follows the same strategy as that of Subsection

3.2. We take the induced character χ = Ind
PSL2(q)
π(U) (1π(U)) from the Sylow

p-subgroup π(U) of PSL2(q). We know that its non-zero values are:

χ(1) =
q2 − 1

2
and χ(π( 1 c

0 1 )) =
q − 1

2
, for c 6= 0.

B. Case q ≡4 1. Set Θ = {θ ∈ µq+1 : R′(θ)(1) = R′(θ)(−1)}. Here,
µq+1 denotes the set parametrizing the family of irreducible characters R′(θ)
of SL2(q), see [6, page 45]. We consider the character

ϕ = 1G − St − 2
∑

θ∈Θ

R′(θ).

Observe that ϕ(1) = ϕ(−1), so we can view ϕ̃ as a character of PSL2(q). Its
values are given in the following table:

Character
Conj. classes

π(1) π(u+) π(u−) π(d(a)) π(d′(ξ))

ϕ̃ 1−q2

2
q+1

2
q+1

2
0 0

The elements π(u+) and π(u−) have order p, whereas the elements of the form
π(d(a)) and π(d′(ξ)) are semisimple.

As in Subsection 3.2, we write P for the set of elements of order p together
with the identity element. Recall that P = {π(A) ∈ PSL2(q) : Tr(A) = ±2}.
Define ψ = ϕ̃ if q ≡4 1 and ψ = χ if q ≡4 −1. Observe that ψ vanishes outside
P . Define also nq = q+1

2
if q ≡4 1 and nq = q−1

2
if q ≡4 −1.

We need to treat separately the first three values of p:
1. Case p = 3. Here we assume that m > 1 since PSL2(3) is not simple.

We consider the group associated with the pair (x, y) = (1, 1). Fix λ ∈ Fq \F3

and take τ = π( 1 0
λ 1 ). This choice of λ ensures that M ∩ (τMτ−1) = {1}. We

compute the element yψ as in (1.6.1):

yψ =
1

|M |
∑

v,v′∈M

ψ(vτv′)vτv′ =
1

|M |
∑

v,v′∈M

ψ(τv′v)vτv′

=
1

|M |
∑

v,v′∈M

ψ(τv′)vτv′v =
nq
4

∑

v∈M ′

vτv.
(2.4.1)
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In the last step we used that ψ(τv′) = 0 for v′ 6= 1 and ψ(τ) = nq. For this,
note that the trace of the matrices involved is λ, which is different from ±2.
We now compute ψ(y2

ψ):

ψ(y2
ψ) =

n2
q

16

∑

v,v′∈M

ψ(vτvv′τv′) =
n2
q

16

∑

v,v′∈M

ψ(τvv′τvv′)

=
n2
q

4

∑

v∈M

ψ
(
(τv)2

)
=
n3
q

4
.

(2.4.2)

We used in the final equality that ψ((τv)2) = 0 for v 6= 1 and ψ(τ) = nq.
Again note that the trace of the matrices involved is different from ±2 because
λ /∈ F3.

In light of Propositions 1.4.2 and 1.3.7, we have that n3
q

4
∈ R. Since

gcd(nq, 4) = 1, we obtain that 1
4

∈ R. This establishes the statement for
p = 3.

To deal with the other values of p, observe that PSL2(p) is a subgroup of
PSL2(q). Recall that we constructed the group M from a pair (x, y) in Fp×Fp.
Since M is contained in PSL2(p), by Proposition 1.4.3(i), it is sufficient to
handle PSL2(p).

2. Case p = 5. This case was discussed in [15, Theorem 3.3] as PSL2(5) ≃
A5. Nevertheless, we provide a proof in this context for completeness. We con-
sider the pair (x, y) = (2, 0). Take τ = π( 1 0

1 1 ). The condition M ∩ (τMτ−1) =
{1} holds and τ has order 5. Pick a primitive 6th root of unity ν in C. Con-
sider a generator a of F×

5 and a generator ξ of F×
25, so T = 〈d(a)〉 ≃ C4 and

T ′ = 〈d′(ξ)〉 ≃ C6. Let α : T → C∗ be the group homomorphism mapping
d(a) to −1 and let θ : T ′ → C∗ be the group homomorphism mapping d′(ξ)
to ν2. Then R(α) and R′(θ) are the characters constructed as in [6, Chap-
ter 3.2.1] and [6, Chapter 4.2.1] respectively. We work with the character
φ = St +R(α) +R′(θ). Note that φ(1) = φ(−1), so φ descends to a character
φ̃ of PSL2(5). Its values are given in the following table:

Conjugacy class π(1) π(u+) π(u−) π(d(a)) π(d′(ξ))

Order of representatives 1 5 5 2 3

φ̃ 15 0 0 −1 0

One can see that τs has order 2, the element τr has order 3, and τ and τrs
have order 5. Then, φ̃(τ) = φ̃(τr) = φ̃(τrs) = 0 and φ̃(τs) = −1. We calculate
yφ̃ as in (2.4.1):

yφ̃ =
1

|M |
∑

v,v′∈M

φ̃(τv′)vτv′v = −1

4

∑

v∈M

v(τs)v.
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We now compute φ̃(y2
φ̃
) as in (2.4.2). We get:

φ̃(y2
φ̃
) =

1

16

∑

v,v′∈M

φ̃
(
v(τsv′)2v

)
=

1

16

∑

v,v′∈M

φ̃
(
(τsv′)2v2

)

=
1

4

∑

v∈M

φ̃
(
(τsv)2

)
=

15

4
.

By Propositions 1.4.2 and 1.3.7, we have that 1
4

∈ R.

3. Case p = 7. The proof of this case follows the lines of the preceding one.
We work with the group M associated with the pair (x, y) = (2, 3). As before,
we take τ = π( 1 0

1 1 ), which satisfies M ∩ (τMτ−1) = {1} and has order 7. Pick
a primitive 6th root of unity η and a primitive 8th root of unity ν in C. Let
a be a generator of F×

7 and let ξ be a generator of F×
49, so T = 〈d(a)〉 ≃ C6

and T ′ = 〈d′(ξ)〉 ≃ C8. Consider the group homomorphisms α : T → C∗,
mapping d(a) to ν2 and θ : T ′ → C∗ mapping d′(ξ) to η2. Then R(α) and
R′(θ) are the characters constructed as in [6, Chapter 3.2.1] and [6, Chapter
4.2.1] respectively. The character φ = R(α) + R′(θ) of SL2(7) descends to a
character φ̃ of PSL2(7) because φ(1) = φ(−1). Its values are given in the
following table:

Conjugacy class π(1) π(u+) π(u−) π(d(a)) π(d′(ξ)) π(d′(ξ2))

Order of representatives 1 7 7 3 4 2

φ̃ 14 0 0 −1 0 2

One can check that τr has order 3, the element τs has order 4, and τ and τrs
have order 7. Then, φ̃(τ) = φ̃(τs) = φ̃(τrs) = 0 and φ̃(τr) = −1. We compute
yφ̃ as in (2.4.1):

yφ̃ =
1

|M |
∑

v,v′∈M

φ̃(τv′)vτv′v = −1

4

∑

v∈M

v(τr)v.

We now compute φ̃(y2
φ̃
) as in (2.4.2). We get:

φ̃(y2
φ̃) =

1

16

∑

v,v′∈M

φ̃
(
(τrv′)2v2

)
=

1

4

∑

v∈M

φ̃
(
(τrv)2

)
=

1

4
.

By Propositions 1.4.2 and 1.3.7, we have that 1
4

∈ R. This establishes the
statement of Theorem 2.1.2 for p = 7.

4. Case p > 7. We need the following lemma, which will be useful in
detecting that certain elements do not belong to P :

Lemma 2.4.1. Let (x, y) ∈ Fp ×Fp be such that x2 + y2 = −1. Then, there
is λ ∈ F×

p such that λ, λx, and λy are all different from ±2.
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Proof. Note that at least one among x and y is different from ±2. Oth-
erwise, we would have 22 + 22 = −1, which holds only for p = 3.

If x 6= ±2 and y 6= ±2, then we can take λ = 1 and we are done. Suppose
that x = ±2 and y 6= ±2. Then, −1 = x2 + y2 = 4 + y2. This implies y2 = −5,
and thus (λy)2 = −5λ2. From the latter, we deduce that λy 6= ±2 if and only
if λ2 6= −5−1 · 4. We also want λ2 6= 4. So, we must choose λ such that
λ2 /∈ {1, 4,−5−1 · 4}. The number of squares in F×

p is p−1
2

, and p−1
2

> 3 if
p > 7. This guarantees a choice of λ with the required properties. The same
argument can be applied for x 6= ±2 and y = ±2. �

We pick λ ∈ F×
p satisfying the conclusion of Lemma 2.4.1. Take τ = π( 1 0

λ 1 ),
so |τ | = p. One can verify that our choice of λ ensures thatM∩(τMτ−1) = {1}.
The cardinality of the set {(x, y) ∈ Fp ×Fp : x2 + y2 = −1

}
is p+ 1 if p ≡4 −1

and p−1 if p ≡4 1. For our purpose, we can assume that the pair (x, y) chosen
to define the element s in M satisfies xy 6= 0.

Recall that ψ = ϕ̃ if q ≡4 1 and ψ = Ind
PSL2(q)
π(U) (1π(U)) if q ≡4 −1.

Computation of (2.4.1) and (2.4.2) gives:

yψ =
np
4

∑

v∈M

vτv and ψ(y2
ψ) =

n3
p

4
,

where np = p+1
2

if p ≡4 1 and np = p−1
2

otherwise.
For the first equality we used that ψ(τ) = np and ψ(τv) = 0 for v 6= 1. The
latter holds because the traces of the matrices involved is λ, λx, and λy, which
are different from ±2 by our choice of λ. In the second equality, we used:

(1) That τ 2, (τr)2, (τs)2, and (τrs)2 are different from 1. Note that
(τs)2 = 1 implies y = 0. Similarly, (τrs)2 = 1 implies x = 0. This
would contradict our choice of (x, y).

(2) That ψ vanishes on (τr)2, (τs)2, and (τrs)2. For this, we argue as
follows. If ψ did not vanish on (τr)2, then (τr)2 would have order
p. This would give that τr would have order p. But the trace of the
matrix

( 1 0
λ 1 )( 0 1

−1 0 ) = ( 0 1
−1 λ )

is different from ±2 by our choice of λ. The same applies to (τs)2 and
(τrs)2 as:

( 1 0
λ 1 )(

x y
y −x ) =

(
x y

λx+y λy−x

)
and ( 1 0

λ 1 )(−y x
x y ) =

(
−y x

−λy+x λx+y

)
.

By Propositions 1.4.2 and 1.3.7, we have that ψ(y2
ψ) ∈ R. Since

gcd(np, 4) = 1, we obtain that 1
4

∈ R. This finishes the proof of Theorem
2.1.2 for PSL2(q). �

Remark 2.4.2. When p ≡4 −1 any solution of x2 + y2 = −1 in Fp × Fp
satisfies xy 6= 0. When p ≡4 1, there are solutions such that xy = 0. We can
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deal directly with this situation by modifying our argument in the following
way. At most one of (τs)2 and (τrs)2 is 1. Then:

ψ(y2
ψ) =

(
p+ 1

4

)2 ∑

v∈M

ψ
(
(τv)2

)
=
(
p+ 1

4

)2(
γ +

p+ 1

2

)
,

where γ ∈
{
0, 1−p2

2

}
. We obtain:

ψ(y2
ψ) =





(
p+ 1

4

)3

if γ = 0,

(p+ 1)3(2 − p)

32
if γ =

1 − p2

2
.

Since p ≡4 1, it follows that 1
4

∈ R.

This concludes the proof of Theorem 2.1.2 for PSL2(q).

4.2. The Janko group. We keep notations from Subsection 2.4.
By Proposition 2.2.12, the Klein four groups are all conjugate. Moreover, let
t be the involution such that CG(t) ≃ 〈t〉 × F . Since F ≃ A5 ≃ PSL2(5),
then F contains a subgroup isomorphic to the Klein four group. Therefore, we
can choose a subgroup M ≃ C2 × C2 in F as a representative. Remark 1.3.4
and Theorem 2.1.2 for PSL2(5) imply that Theorem 2.1.1 holds for the Janko
group.

�

5. Proof of Theorem 2.1.3

We are left to prove Theorem 2.1.3; this turns out to be a consequence of
Theorem 2.1.1 and/or Theorem 2.1.2 and the description of abelian subgroups
of central type.

5.1. Projective special linear group PSL2(q). By Proposition 2.2.1,
the only abelian subgroups of central type of PSL2(q) up to automorphisms
are Klein four groups and p-subgroups. Hence, Theorem 2.1.1 and Theorem
2.1.2 for PSL2(q) imply that Theorem 2.1.3 holds for PSL2(q). �

As was the case with Corollary 2.1.4, Theorem 2.1.3 implies the following:

Corollary 2.5.1. Let Ω be a non-trivial twist of CPSL2(q) arising from
a 2-cocycle on an abelian subgroup of PSL2(q). Then, the complex semisimple
Hopf algebra (CPSL2(q))Ω does not admit a Hopf order over any number ring.

5.2. The Janko group. Proposition 2.2.12 guarantees that the abelian
subgroups of central type for the Janko group are all conjugate and isomorphic
to the Klein four group. Hence, Theorem 2.1.3 is equivalent to Theorem 2.1.2
for the Janko group. �

Also in this case, we deduce the following:
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Corollary 2.5.2. Let G be the Janko group. Let Ω be a non-trivial twist
of CG arising from a 2-cocycle on an abelian subgroup of G. Then, the complex
semisimple Hopf algebra (CG)Ω does not admit a Hopf order over any number
ring.

5.3. The Suzuki group 2B2(q). Proposition 2.2.11 implies that the
abelian subgroups of central type of the Suzuki groups are all 2-groups.
Hence, Theorem 2.1.3 is equivalent to Theorem 2.1.2 for 2B2(q), concluding
the proof.

Corollary 2.5.3. Let Ω be a non-trivial twist of 2B2(q) arising from a 2-
cocycle on an abelian subgroup of 2B2(q). Then, the complex semisimple Hopf
algebra (C2B2(q))Ω does not admit a Hopf order over any number ring.

6. Twists of finite non-abelian simple groups

Let G be a finite non-abelian simple group and Ω a non-trivial twist for
CG arising from a 2-cocycle on an abelian subgroup of G. In [15, Question
5.1] it was asked whether (CG)Ω can admit a Hopf order over a number ring.
We can partially answer this question in the negative building on Theorems
2.1.1 and 2.1.2 and two results on the subgroups structure of finite non-abelian
simple groups.

Recall from [66, Section 2] that a minimal simple group is a non-abelian
simple group all of whose proper subgroups are solvable. The following re-
markable classification was established in [66, Corollary 1, page 388]:

Theorem 2.6.1 (Thompson). Every minimal simple group is isomorphic
to one of the following groups:

(i) PSL2(2
p), with p a prime.

(ii) PSL2(3
p), with p an odd prime.

(iii) PSL2(p), with p > 3 prime such that 5 divides p2 + 1.
(iv) 2B2(2

p), with p an odd prime.
(v) PSL3(3) ≃ SL3(3).

Relying on this and the classification of the finite simple groups, the fol-
lowing result was proved in [3, Theorem 1]:

Theorem 2.6.2 (Barry-Ward). Every finite non-abelian simple group con-
tains a minimal simple group as a subgroup.

Theorems 2.1.1 and 2.1.2 and Proposition 1.4.3(i), reinforced with the pre-
vious two results, give as a consequence:

Theorem 2.6.3. Let K be a number field and G a finite non-abelian simple
group. Then, there is a twist Ω for KG, arising from a 2-cocycle on an abelian
subgroup of G, such that (KG)Ω does not admit a Hopf order over OK.

The statement for the complexified group algebra now follows as in Corol-
lary 2.1.4:
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Corollary 2.6.4. Let G be a finite non-abelian simple group. Then, there
is a twist Ω for CG, arising from a 2-cocycle on an abelian subgroup of G, such
that (CG)Ω does not admit a Hopf order over any number ring.

For the sporadic groups or the Tits group, Theorem 2.6.3 and Corollary
2.6.4 can be deduced from [15, Theorem 3.3, Remark 3.4, and Corollary 3.5]
in view of the following remark:

Remark 2.6.5. Let G be a sporadic group or the Tits group 2F4(2)′. Then,
G has a subgroup isomorphic to A5.

This remark can be verified by inspection of the tables of maximal sub-
groups for the sporadic groups in [70, Section 4] and that for the Tits group in
[68, Theorem 1] and [67]. A close look reveals the inclusions as listed below:

Group Contains Group Contains Group Contains
M11 S5 M12 S5 M22 A7M23 A8 M24 A8

J1 A5 J2 A5 J3 A5J4 M22

Co1 A9 Co2 M23 Co3 S5

Fi22 S10 Fi23 S12 Fi′24 A5

HS S8 McL A7 He S4(4)
Ru A6 Suz A7 O′N A7

HN A12 Ly M11 Th S5

B S5 M A5
2F4(2)′ PSL2(5

2)

For the Tits group, note that PSL2(5
2) contains PSL2(5), which is isomorphic

to A5; see [64, Theorem 6.26(iv), page 414] for a more general statement.

Remark 2.6.6. One may relax the hypothesis on G being simple in Theo-
rem 2.6.3 and Corollary 2.6.4 provided G contains a non-abelian simple group
in light of Proposition 1.4.3(i). Among the groups satisfying this condition
we find almost simple groups and some families of primitive groups, see [18,
Section 4.8] for more details.

In our way to Corollary 2.6.4 we showed that the complex group algebra of
any finite non-abelian simple group can be twisted to produce a simple non-
commutative and non-cocommutative Hopf algebra. This was first proved by
Hoffman in [30] following a different strategy that does not use minimal simple
groups.





CHAPTER 3

Non-existence of Hopf orders for products of certain

Frobenius groups

The aim of this Chapter is to prove the non existence of Hopf orders for
twisted group algebras of some non-simple groups. The groups we consider are
of the form G =

∏l
i=1 Di ⋊ϕi

Mi, where each Di ⋊ϕi
Mi is a Frobenius group

and Mi is subject to specific conditions.
We firstly introduce Frobenius groups and we recollect some results on them.

1. Frobenius groups and semi-direct products

A Frobenius group is a type of permutation group studied firstly in ([23]).
The original formal definition of such a group is the following:

Definition 3.1.1. A Frobenius group G is a transitive permutation group
on a finite set X, such that no non-trivial element of G fixes more than one
element in X and some non-trivial element of G fixes an element in X.
A subgroup H of G fixing an element of X is called a Frobenius complement.

Let G be a Frobenius group and H a Frobenius complement. In [23, V],
Frobenius proved that the set of elements that are not conjugate to an ele-
ment in H together with the identity is a normal subgroup of G . This result
is known as Frobenius Theorem. Such normal subgroup is called the Frobenius
kernel of G.
These groups captured the attention of many mathematicians, leading to
equivalent definitions. For exhibiting the ones we need, we recall the following
definition.

Definition 3.1.2. An automorphism ϕ of a group G is fixed-point-free if
ϕ fixes only the identity of G. A subgroup L of Aut(G) is said to be fixed-
point-free on G if every element ϕ in L\{idG} is fixed-point-free.

With the Lemma below, we recollect the most common alternative defini-
tions of a Frobenius group.

Lemma 3.1.3. [34, Sätze 8.2 and 8.5] Let G be a group. The following are
equivalent:

i) G is a Frobenius group;
ii) G has a non-trivial subgroup M such that gMg−1 ∩M = {1} for every

g ∈ G\M ;

67
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iii) G = D ⋊ϕM , where ϕ is injective and Imϕ is fixed-point-free.

We briefly explain the implication ii) ⇒ iii). The subgroup D in iii) is
obtained by ii) as D = G\⋃g∈G g(M \ {1})g−1, which is normal by Frobenius
theorem.
In this Chapter, we will mainly use condition iii) of Lemma 3.1.3. The stan-
dard terminology is inherited from this equivalent definition, so M is called a
Frobenius complement, while D is called the Frobenius kernel.
A property we need is the relation between the orders of the Frobenius kernel
and of a Frobenius complement.

Proposition 3.1.4. [34, Satz 8.3] Let G = D⋊ϕM be a Frobenius group.
Then |M | is a divisor of |D| − 1.

In particular, the latter implies that the order of the Frobenius complement
M is coprime with the order of the Frobenius kernel D.

Example 3.1.1. A simple example of a Frobenius group is the symmetric
group S3 = C3 ⋊ϕ C2, with

ϕ : C2 → Aut(C3), x 7→ ϕ(x)

where x is the non-trivial element in C2 and ϕ(x)(g) = g2, for every g ∈ C3.
Then ϕ is injective and Imϕ is fixed point free.

Example 3.1.2. This example generalizes Example 3.1.1.
Let p, q be prime numbers with q odd and q 6= p. Suppose that pd divides q−1
for some d ∈ N. Consider the cyclic group Cqn of order qn, for some n ∈ N.
It is well-known that Aut(Cqn) ≃ Cqn−1(q−1), if q is odd (see for example [46,
Section 2.2.5 and 2.2.6 ]). Then, for every k dividing qn−1(q − 1), there exists
a unique subgroup M ≤ Aut(Cqn) of order k and it is cyclic. Moreover, by [50,
Proposition 4.1] if k|q − 1 such subgroup is fixed-point-free. Thus, the group
G = Cqn ⋊ϕ Cpd , with ϕ an embedding

ϕ : Cpd → Aut(Cqn)

is a Frobenius group.

Example 3.1.3. This example exhibits a family of Frobenius groups, whose
Frobenius complement is non-abelian. We recall it from [51].
Let q = pn with p prime and n ∈ N. Consider the group

U :=
{(

1 a c
0 1 b
0 0 1

)
: a, b, c ∈ Fq

}
.

The group U is non-abelian and it has order p3n. Let k ∈ F×
q and let ϕk : U → U

be the conjugation by
(
k2 0 0
0 k 0
0 0 1

)
mapping

(
1 a c
0 1 b
0 0 1

)
to
(

1 ka k2c
0 1 kb
0 0 1

)
, which is fixed-

point-free for every k 6= ±1.
Let E be a subgroup of F×

q of odd order r and consider

ϕ : E → Aut(U), k 7→ ϕk.
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Then ϕ is injective and Imϕ is a cyclic fixed-point-free group of automorphisms.
Then G := U ⋊ϕ E is a Frobenius group, with non-abelian Frobenius kernel.

We now recollect some properties on semidirect products and Frobenius
groups.

Lemma 3.1.5. Let G = D ⋊ϕM . Then the following holds:

(1) if M is abelian, then ClG(m) ⊆ Dm.

Assume in addition that G is Frobenius, then:

(2) CG(m) ≤ M , for m ∈ M \{1};
(3) if M abelian then CG(m) = M for any m ∈ M \{1}.

Proof. (1) For m ∈ M an element in ClG(m) is of the form dm′mm′−1d−1,
for some d ∈ D and m′ ∈ M . Then

dm′mm′−1d−1 = dmd−1 = dϕ(m)(d−1)m ∈ Dm,

i.e. ClG(m) ⊆ Dm.
(2) Let m ∈ M \ {1}. For d ∈ D and m′ ∈ M the element dm′ centralizes m
if and only if dm′mm′−1d−1 = m ∈ M . Then dm′mm′−1d−1 ∈ M ∩ dMd−1

which is trivial by Lemma 3.1.3 ii) if d 6= 1. This implies that CG(m) ≤ M .
(3) This statement follows easily from the previous one. �

In the following lemma we summarize some properties of the conjugacy
classes of elements of M .

Lemma 3.1.6. Let G = D ⋊ϕ M be a Frobenius group with M abelian.
Then for m ∈ M :

i) ClG(m) ∩M = {m};
ii) If m 6= 1, then

|ClG(m)| = |D|;
iii)

|
⋃

m∈M\{1}

ClG(m)| = |M \{1}| · |D|.

Proof. i) The first statement follows from Lemma 3.1.5 (1).
ii) We know that

|ClG(m)| =
|M ||D|
|CG(m)| .

Lemma 3.1.5 (3) guarantees that CG(m) = M hence |ClG(m)| = |D|.
iii) Let m,m′ ∈ M , with m 6= m′. Then Lemma 3.1.5 (1) gives that

ClG(m) ∩ ClG(m′) ⊆ Dm ∩Dm′ = ∅.
This together with ii) implies that

|
⋃

m∈M\{1}

ClG(m)| =
∑

m∈M\{1}

|ClG(m)| = |M \{1}| · |D|.

�
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2. Aim of the chapter

We now focus on direct products of Frobenius groups with an abelian p-
group as Frobenius complement, i.e. groups of the form G =

∏l
i=1 Di ⋊ϕi

Mi,
where Di ⋊ϕi

Mi is a Frobenius group and Mi is an abelian p-group for every
i ∈ {1, . . . , l}.
Moreover, we require that M =

∏l
i=1 Mi is of central type.

Throughout this chapter we say that an element g ∈ G is a p-element if its
order is a positive power of p.
The aim of this chapter is to establish the following result.

Theorem 3.2.1. Let K be a number field and R ⊂ K a Dedekind domain
such that OK ⊆ R. Let

l ≥ 1.
p be a prime number.
Gi = Di⋊ϕi

Mi a Frobenius group, where Mi is an abelian p-group for
every i ∈ {1, . . . , l}.
G =

∏l
i=1 Gi.

M =
∏l
i=1 Mi and assume it is of central type.

ω : M̂ × M̂ → K× be any non-degenerate cocycle.

If (KG)ΩM,ω
admits a Hopf order over R, then 1

|M |
∈ R. Hence, (KG)ΩM,ω

does not admit a Hopf order over OK.

For proving this theorem, we firstly need to establish some properties of
the groups just described. To simplify the notations, for every i ∈ {1, . . . , l}
we write mi.di instead of ϕ(mi)(di) for mi ∈ Mi and di ∈ Di. Bear in
mind that mi.di ∈ Di for every di ∈ Di, for every mi ∈ Mi and for every
i ∈ {1, . . . , l}.
Furthermore, for an element x ∈ KG, for i ∈ {1, . . . , l} we write xi to indicate
the i-th component in KGi.

We start describing the form of the p-elements in Gi and G.

Lemma 3.2.2. With the above assumptions, an element gi ∈ Gi is a p-
element if and only if gi = dimi, for di ∈ di and mi ∈ Mi, with mi 6= 1, i.e.
gi ∈ Gi \Di.

Proof. Since gcd(|Di|, |Mi|) = 1, the subgroup Mi is a p-Sylow subgroup.
Hence, every p-element is conjugate to some element in Mi. We denote by P •

i

the set of p-elements in Gi. Then

|P •
i | = |

⋃

mi∈Mi\{1}

ClG(mi)|.
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In particular, by Lemma 3.1.6 iv)

|P •
i | = |

⋃

mi∈Mi\{1}

ClG(mi)| = (|Mi| − 1)|Di|.

This implies that |Gi| = |P •
i | + |Di|. Therefore every element gi /∈ Di is in P •

i ,
i.e. gi is a p-element. We conclude that every p-element of Gi is of the form
dimi, with mi ∈ Mi \{1} and di ∈ Di. �

As a consequence, we obtain the following:

Corollary 3.2.3. With the above assumptions, let G =
∏l
i=1 Gi. Then

every p-element in G is an l-tuple (d1m1, d2m2, . . . , dlml) 6= (1, 1, . . . , 1), such
that dimi is a p-element or the identity for every i ∈ {1, . . . , l}.

Recall that M =
∏l
i=1 Mi which is a Sylow p-subgroup of G and let D =∏l

i=1 Di.
We will use χ := IndGM(1M) and proceed as explained in Section 6. For this
purpose we compute χi := IndGi

Mi
(1Mi

), for every i ∈ {1, . . . , l}, since for gi ∈ Gi

and for i ∈ {1, . . . , l} there holds

χ(g1g2 . . . gl−1gl) =
l∏

i=1

χi(gi).

Lemma 3.2.4. Let i ∈ {1, . . . , l}. For gi ∈ Gi we have:

χi(mi) =





|Di| if gi = 1,
0 if gi ∈ Di \{1},
1 if gi ∈ Gi \Di.

Proof. The value at the identity is straightforward. The value on Di\{1}
follows from Lemma 3.2.2.
Every element in P •

i = Gi \Di is conjugate to some element in Mi \ {1}. Let
mi ∈ Mi, then;

χi(mi) =
|CG(mi)||ClG(mi) ∩Mi|

|Mi|
=

|Mi| · 1

|Mi|
= 1,

since ClG(mi) ∩Mi = {m1} by Lemma 3.1.6 i).
�

3. Proof of Theorem 3.2.1

For i ∈ {1, . . . , l}, we fix τi ∈ Di \{1} and τ =
∏l
i=1 τi.

The intersections M ∩ (τMτ−1) and M ∩ (τ−1Mτ) are trivial by Lemma 3.1.3
ii). We consider

yχ,τ =
1

|M |
∑

σ∈MτM

χ(σ)σ and yχ,τ−1 =
1

|M |
∑

σ∈Mτ−1M

χ(σ)σ.
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Since τi 6= 1 for every i ∈ {1, . . . , l}, by Corollary 3.2.3, the element τm is a
p-element if and only if mi 6= 1 for every i ∈ {1, . . . , l}. If this is the case,
χ(τm) = χ1(τ1m1) · · · · · χl(τlml) = 1. Hence;

yχ,τ =
1

|M |
∑

m,m̄∈M
mi 6=1, i∈{1,...,l}

m̄(τm)m̄−1 =
1

|M |
∑

m,m̄∈M
mi 6=1, i∈{1,...,l}

(m̄.τ)m.

By the same argument we get

yχ,τ−1 =
1

|M |
∑

n,n̄∈M
ni 6=1, i∈{1,...,l}

n̄(τ−1n)n̄−1 =
1

|M |
∑

n,n̄∈M
ni 6=1, i∈{1,...,l}

(n̄.τ−1)n.

Multiplying yχ,τ by yχ,τ−1 we get

yχ,τyχ,τ−1 =
1

|M |2




∑

m,m̄∈M
mi 6=1,i∈{1,...,l}

(m̄.τ)m







∑

n,n̄∈M
ni 6=1,i∈{1,...,l}

(n̄.τ−1)n




=
1

|M |2
∑

m,m̄,n,n̄∈M
mi 6=1,ni 6=1
i∈{1,...,l}

(m̄.τ)m(n̄.τ−1)n

=
1

|M |2
∑

m,m̄,n,n̄∈M
mi 6=1,ni 6=1
i∈{1,...,l}

(m̄.τ)((mn̄).τ−1)mn.

We evaluate χ on yχ,τyχ,τ−1 . To this purpose, we spell out which summands
in the expression of yχ,τyχ,τ−1 are either the identity or a p-element and then
we count the number of occurences of them in the sum.
Fix i ∈ {1, . . . , l}. The element (m̄i.τi)((min̄i).τ

−1
i )mini ∈ DiMi is the identity

if and only if mini = 1 and (m̄i.τi)((min̄i).τ
−1
i ) = 1. This is equivalent to

ni = m−1
i and (m̄−1

i min̄i).τ
−1
i = τ−1

i . The latter, by definition of Frobenius
group, implies that m̄−1

i min̄i = 1. In summary, the conditions we found are

ni = m−1
i , m̄−1

i min̄i = 1,

for mi, ni ∈ Mi \ {1}. Hence for every mi, m̄i ∈ Mi \ {1}, the elements
ni and n̄i are uniquely determined, so the number of occurrences of
the identity on the i-th component is (|Mi| − 1)|Mi|. This implies that
the number of occurrences of the identity in the expression of yχ,τyχ,τ−1

is
∏l
i=1|Mi|(|Mi| − 1) = |M |∏l

i=1(|Mi| − 1) and so the contribution to
χ(yχ,τyχ,τ−1) is |D|

|M |

∏l
i=1(|Mi| − 1).

We now investigate the number of occurrences of a p-element of the
form (m̄i.τi)((min̄i).τ

−1
i )mini, for i ∈ {1, . . . , l}. In this case, the only

condition is that mini 6= 1. This implies that for every mi ∈ Mi \ {1}, the



3. PROOF OF THEOREM 3.1 73

element ni ∈ Mi \ {1,m−1
i }. On the other hand, the elements m̄i and n̄i

can run freely in Mi. Hence the number of occurrences of a p-element in
the i-th component of the expression of (yχ,τyχ,τ−1)i is |Mi|2(|Mi|−1)(|Mi|−2).

Finally, we spell out when (m̄.τ)((mn̄).τ−1)mn is a p-element. This
happens if and only if there exists a subset L 6= ∅ of {1, . . . , l}
such that ((m̄.τ)((mn̄).τ−1)mn)j is a p-element for every j ∈ L and
((m̄.τ)((mn̄).τ−1)mn)k = 1 for every k ∈ {1, . . . , l} \L. The character value
of each of these elements is an integer depending only on L. Therefore, for
every L ⊆ {1, . . . , l} the contribution to χ(yχ,τyχ,τ−1) of the corresponding set
of p-elements lies in 1

|M |2
p|M |Z, because each |Mi| factor occurs at least once

and at least one factor |Mi| occurs as a square. Therefore

χ(yχ,τyχ,τ−1) ∈ 1

|M | (|D| + pZ) .

Since gcd(|D|, p) = 1 we have the statement. �

Remark 3.3.1. Notice that if G = D ⋊ϕM is a Frobenius group with M
a p-group, then M can not be of central type. Indeed, the Sylow subgroups
of a Frobenius complement are either cyclic or generalised quaternion groups
([34, Satz 8.15]). Then for applying Theorem 3.2.1 we need l > 1 and, more
precisely, even.

Remark 3.3.2. Let i ∈ {1, . . . , l} and p, qi be prime numbers with qi odd
and qi 6= p for every i. Suppose that for every i ∈ {1, . . . , l} the power pdi

divides qi − 1 for some di ∈ N. Consider G =
∏l
i=1 Cqni

i
⋊ϕi

Cpdi , where
Cqni

i
⋊ϕi

Cpdi are as in Example 3.1.2. Hence, Theorem 3.2.1 holds for G when
∏l
i=1 Cpdi is of central type. This family of examples contains the family of

groups G = (Cq⋊Cp) × (Cq⋊Cp), described in Remark 1.3.6. For the twisted
group algebras associated to such groups the non existence of Hopf orders
was already established by Cuadra and Meir in [15] with a different approach.
Observe that, as we have seen in Remark 1.3.6, in the case under consideration,
the associated twisted Hopf algebra is simple.
For the other families of groups studied in this chapter it is not yet clear if
the twisted Hopf algebra is simple or not. This question could be taken into
account for future work.





CHAPTER 4

Preliminaries on monoidal categories

In this chapter we recollect some definitions and results on monoidal cate-
gories and bi-module categories. Secondly, we spell out transport of structure
through an equivalence.

1. Monoidal categories and C-module categories

We start with the definition of a monoidal category that, as the name
suggests, is the categorification of the notion of a monoid.

Definition 4.1.1. [22, Definition 2.1] A monoidal category is a sextuple
(C,⊗C, a, 1, l, r), where C is a category and ⊗C : C×C → C is a bifunctor called
the tensor product bifunctor, a : (− ⊗C −) ⊗C − → − ⊗C (− ⊗C −) is a natural
isomorphism:

aX,Y,Z : (X ⊗C Y ) ⊗C Z ≃ X ⊗C (Y ⊗C Z) for all X, Y, Z ∈ C,

called the associativity constraint, 1 ∈ C is an object of C, l, r : C → C are two
natural isomorphisms

lX : 1 ⊗C X → X,

rX : X ⊗C 1 → X for all X ∈ C,

subject to the following axioms.
1. The pentagon axiom. The diagram

((X ⊗C Y ) ⊗C Z) ⊗C W

(X ⊗C (Y ⊗C Z)) ⊗C W (X ⊗C Y ) ⊗C (Z ⊗C W )

X ⊗C ((Y ⊗C Z) ⊗C W ) X ⊗C (Y ⊗C (Z ⊗C W ))

aX⊗CY,Z⊗CidW aX⊗CY,Z,W

aX,Y ⊗CZ,W

idX⊗CaY,Z,M

aX,Y,Z⊗W

(4.1.1)

is commutative for all objects X, Y, Z,W ∈ C.
2. The unit axiom. The diagram

75
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(X ⊗C 1) ⊗C Y X ⊗C (1 ⊗C Y )

X ⊗C Y

aX,1,Y

rX⊗CidY idX⊗ClY

(4.1.2)

commutes for all X, Y ∈ C.

Definition 4.1.2. Let (C,⊗C, a, 1, l, r) be a monoidal category. The
monoidal category (Cop,⊗op

C
, aop, 1, lop, rop) opposite to C is defined as follows.

As a category Cop = C, its tensor product is given by X ⊗op
C
Y := Y ⊗CX, the

associativity constraint of Cop is aop
X,Y,Z := a−1

Z,Y,X and lop = r, rop = l.

Definition 4.1.3. Let (C,⊗C, a, 1, l, r) be a monoidal category. Then, C is
called strict if (X ⊗C Y ) ⊗CZ = X ⊗C (Y ⊗CZ), and X ⊗C 1 = X = 1 ⊗CX for
all X, Y, Z ∈ C and the associativity and the unit constraints are the identity
maps.

Example 4.1.1. Let K be a field and consider the category Vec of all
vector spaces over K. This category is a monoidal category, where the product
is the usual tensor product over K, the associativity constraint is the change
of brackets, the unit object is K and l and r are respectively the left and right
multiplication by scalars.

Example 4.1.2. Let H be a Hopf algebra over K. Then, the category
of H-modules is a monoidal category. By the previous example, its underly-
ing category of vector spaces is a monoidal category. Furthermore, the tensor
product of H-modules becomes an H-module by composition with the comul-
tiplication, the unit object K becomes a H-module by means of the counit.
Moreover, the compatibility of the associative constraint with the action of H
follows from the coassociativity of the comultiplication.

Remark 4.1.4. Abusing notation, we will consider the above category as
a strict monoidal category, thanks to Mac Lane’s theorem [22, Theorem 2.8.5].

In the following definitions, we suppress the unit constraint l and r unless
necessary.

Definition 4.1.5. [22, Definition 2.10.1] Let (C,⊗C, a, 1) be a monoidal
category. An object X∗ in C is said to be a left dual of X if there exist
morphisms evX : X∗ ⊗CX → 1 and coevX : 1 → X⊗CX

∗, called the evaluation
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and coevaluation, such that the compositions

X
coevX⊗CidX−−−−−−−→ (X ⊗C X

∗) ⊗C X
aX,X∗,X−−−−−→ X ⊗C (X∗ ⊗C X)

idX⊗CevX−−−−−−→ X

X∗ idX∗ ⊗CcoevX−−−−−−−−→ X∗ ⊗C (X ⊗C X
∗)

a−1
X∗,X,X∗−−−−−→ (X∗ ⊗C X) ⊗C X

∗ evX⊗CidX∗−−−−−−→ X∗

are the identity morphisms.

Definition 4.1.6. [22, Definition 2.10.2] Let (C,⊗C, a, 1) be a monoidal
category. An object ∗X in C is said to be a right dual of X if there exist
morphisms ev′

X : X ⊗C
∗X → 1 and coev′

X : 1 → ∗X ⊗C X, such that the
compositions

X
idX⊗Ccoev′

X−−−−−−−→ X ⊗C ( ∗X ⊗C X)
a−1

X, ∗X,X−−−−−→ (X ⊗C
∗X) ⊗C X

ev′
X⊗CidX−−−−−−→ X

∗X
coev′

X⊗Cid ∗X−−−−−−−−→ ( ∗X ⊗C X) ⊗C
∗X

a ∗X,X, ∗X−−−−−−→ ∗X ⊗C (X ⊗C
∗X)

id ∗X⊗Cev′
X−−−−−−−→ X∗

are the identity morphisms.

Definition 4.1.7. [22, Definition 2.10.11] A monoidal category
(C,⊗C, a, 1) is called rigid if every object of C has left and right duals.

Example 4.1.3. Let g be a Lie algebra over C and let U(g) be its associated
universal enveloping algebra. Let U(g)-mod be the category of U(g)-modules.
We recall that U(g) is a Hopf algebra; explicitly the comultiplication, the
antipode and the counit are defined on the generating elements x ∈ g in the
following way:

∆(x) = 1 ⊗ x+ x⊗ 1

S(x) = −x
ε(x) = 0.

As a consequence, U(g)-mod is a monoidal category with the structure de-
scribed in Example 4.1.2. Consider the subcategory U(g)-modfin of finite di-
mensional U(g)-modules. This subcategory is closed under the tensor product
and hence it is a monoidal category. Moreover, the latter is rigid. Indeed, for a
finite dimensional representation V , the dual representation is the usual dual
vector space V ∗, where U(g) acts on it in the following way:

(x.φ)(y) = φ(S(x).y)

for every x ∈ U(g), y ∈ V and φ ∈ V ∗.

Once we have defined monoidal categories and rigid monoidal categories,
we categorify the notion of morphisms between monoids.

Definition 4.1.8. [22, Definition 2.4.1] Let (C,⊗C, a, 1) and (D,⊗D, ã, 1̃)
be two monoidal categories. A monoidal functor from C to D is a pair (F, J),
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where F : C → D is a functor and J : F (−) ⊗D F (−) → F (− ⊗C −) a natural
isomorphism:

JX,Y : F (X) ⊗D F (Y ) → F (X ⊗C Y ), for all X, Y ∈ C, (4.1.3)

such that 1̃ ≃ F (1) and the diagram

(F (X) ⊗D F (Y )) ⊗D F (Z) F (X) ⊗D (F (Y ) ⊗D F (Z))

F (X ⊗C Y ) ⊗D F (Z) F (X) ⊗D F (Y ⊗C Z)

F ((X ⊗C Y ) ⊗C Z) F (X ⊗C (Y ⊗C Z))

ãF (X),F (Y ),F (Z)

JX,Y ⊗DidF (Z)

JX⊗CY,Z

F (aX,Y,Z)

idF (X)⊗DJY,Z

JX,Y ⊗CZ

is commutative for all X, Y, Z ∈ C.

As monoids act on sets, monoidal categories act on other categories. The
categorification of a left action leads to the definition of a left C-module cate-
gory.

Definition 4.1.9. [22, Definition 7.1.1] Let (C,⊗C, a, 1) be a monoidal
category. A left module category over C is a category M equipped with an
action bifunctor ⊗M : C × M → M and a natural isomorphism

mX,Y,M : (X⊗CY )⊗MM
∼−→ X⊗M (Y ⊗MM), X, Y ∈ C, M ∈ M, (4.1.4)

called module associativity constraint such that the functor 1 ⊗M − : M → M,
given by 1 ⊗M M 7→ M is an autoequivalence, and the pentagon diagram:

((X ⊗C Y ) ⊗C Z) ⊗M M

(X ⊗C (Y ⊗C Z)) ⊗M M (X ⊗C Y ) ⊗M (Z ⊗M M)

X ⊗M ((Y ⊗C Z) ⊗M M) X ⊗M (Y ⊗M (Z ⊗M M))

aX,Y,Z⊗MidM mX⊗CY,Z,M

mX,Y ⊗CZ,M

idX⊗MmY,Z,M

mX,Y,Z⊗MM

is commutative for any X, Y, Z ∈ C and M ∈ M.

Example 4.1.4. Let K be any field and let C = Vec, the category of all
K-vector spaces.
Let G be a finite group and consider M the category of all G-modules. For
V ∈ C and W ∈ M, we define an action of G on V ⊗C W as follows

g.(v ⊗C w) = v ⊗C g.w,
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for every g ∈ G, v ∈ V and w ∈ W . In this way, V ⊗CW becomes an object in
M and the category M endowed with ⊗C and m the change of brackets results
to be a left C-module category.

In a similar way one can define a right C-module category (M,⊗M,mr).
Namely, a right C module category is the same thing as a left Cop-module
category, where Cop denotes the opposite category (Definition 4.1.2).
We now introduce the notion of a bimodule category over a pair of monoidal
categories.

Definition 4.1.10. [22, Definition 7.1.7] Let (C,⊗C, a, 1) and (D,⊗D, ã, 1̃)
be monoidal categories. A (C,D)-bimodule category is a category M which
is a left C-module category (M,⊗M,m) and a right D-module category
(M,⊗M,mr) with module associativity constraints for X, Y ∈ C, M ∈ M and
W,Z ∈ D

mX,Y,M : (X ⊗C Y ) ⊗M M
∼→ X ⊗M (Y ⊗M M)

and
mr
M,W,Z : M ⊗M (W ⊗D Z)

∼→ (M ⊗M W ) ⊗M Z

respectively, compatible by a collection of natural isomorphisms for X ∈ C,
M ∈ M and Z ∈ D

bX,M,Z : (X ⊗M M) ⊗M Z
∼→ X ⊗M (M ⊗M Z)

called middle associativity constraints such that the diagrams

((X ⊗C Y ) ⊗M M) ⊗M Z

(X ⊗M (Y ⊗M M)) ⊗M Z (X ⊗C Y ) ⊗M (M ⊗M Z)

X ⊗M ((Y ⊗M M) ⊗M Z) X ⊗M (Y ⊗M (M ⊗M Z))

mX,Y,M ⊗MidZ bX⊗CY,M,Z

bX,Y ⊗MM,Z

idX⊗MbY,M,Z

m
X,Y,M⊗MZ

(4.1.5)

and

X ⊗M (M ⊗M (W ⊗D Z))

X ⊗M ((M ⊗M W ) ⊗M Z) (X ⊗M M) ⊗M (W ⊗D Z)

(X ⊗M (M ⊗M W )) ⊗M Z ((X ⊗M M) ⊗M W ) ⊗M Z

idX⊗Mm
r
M,W,Z bX,M,W ⊗DZ

b
X,M⊗MW,Z

bX,M,W ⊗MidZ

mr
X⊗MM,W,Z

(4.1.6)
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commute for all X, Y ∈ C, Z,W ∈ D and M ∈ M.

Example 4.1.5. Let C and M be the categories considered in Example
4.1.4 and let D = C. We can define a right action of C on M, via the tensor
product over C. In particular, given V ∈ C and W ∈ M, the tensor product
W ⊗C V becomes a G-module, via the action

g.(w ⊗C v) = g.w ⊗C v,

for every v ∈ V,w ∈ W, g ∈ G. In this way, M results to be a (C,C)-bimodule
category, where b is the change of brackets.

An important notion we need to categorify is the notion of equivariant
morphisms. This leads to the following definition.

Definition 4.1.11. [22, Definition 7.2.1] Let (M,⊗M,m) and (N,⊗N, n) be
two module categories over a monoidal category (C,⊗C, a, 1) with associativity
constraints m and n, respectively. A C-module functor from M to N consists
of a functor F : M → N and a natural isomorphism

sX,M : F (X ⊗M M) → X ⊗N F (M), X ∈ C, M ∈ M (4.1.7)

such that the following diagrams

F ((X ⊗C Y ) ⊗M M)

F (X ⊗M (Y ⊗M M) (X ⊗C Y ) ⊗N F (M)

X ⊗N F (Y ⊗M M) X ⊗N (Y ⊗N F (M))

F (mX,Y,M ) sX⊗CY,M

sX,Y ⊗MM

idX⊗NsY,M

nX,Y,F (M)

(4.1.8)

and

F (1 ⊗M M) 1 ⊗N F (M)

F (M)

s1,M

F (LM ) L̃F (M)

(4.1.9)

commute for all X,Y ∈ C and M ∈ M.

Definition 4.1.12. Let (M,⊗M,m) and (N,⊗N, n) be two module cate-
gories over a monoidal category (C,⊗C, a, 1) with associativity constraints m
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and n, respectively. We say that a C-module functor (F : M → N, s) is an
equivalence of C-module categories if F is an equivalence.

The above definitions have a specular counterpart for right-module cate-
gories.

Example 4.1.6. Let C and M be the categories considered in Example
4.1.4. Let H be a subgroup of G and let N be the category of H-modules.
Then, the restriction functor ResGH : M → N is a C-module functor, where
s = id.

For the definition of a bimodule functor, we also need a compatibility con-
dition. In particular, [29, Definition 2.10] together with [29, Remark 2.14] gives
us the following:

Definition 4.1.13. Let (C,⊗C, a, 1) and (D,⊗D, ã, 1̃) be two monoidal cat-
egories and let (M,⊗M,⊗M,m,mr, b) and (N,⊗N,⊗N, n, nr, p) be two (C,D)-
bimodule categories. A (C,D)-bimodule functor from M to N consists of a
triple (F, s, sr), where F is a functor from M to N, (F, s) is a left C-module
functor and (F, sr) is a right C-module functor, such that the following diagram
commutes

F ((X ⊗M M) ⊗M Y ) F (X ⊗M (M ⊗M Y ))

F (X ⊗M M) ⊗N Y X ⊗N F (M ⊗M Y )

(X ⊗N F (M)) ⊗N Y X ⊗N (F (M) ⊗N Y )

F (bX,M,Y )

sr
X⊗MM,Y

sX,M ⊗NidY

pX,F (M),Y

s
X,M⊗MY

idX⊗Ns
r
M,Y

(4.1.10)

for every M ∈ M, X ∈ C and Y ∈ D.

We conclude this section with a property about C-module functors.

Lemma 4.1.14. Let (M,⊗M,m), (N,⊗N, n) and (P,⊗P, p) be module cate-
gories over a monoidal category (C,⊗C, a, 1). Let (F : M → N, s) and (G : N →
P, t) be two C-module functors. Then (G◦F, u := t−,F (−) ◦G(s)) is a C-module
functor.

Proof. Firstly, observe that u has the required source and target, in fact
for every X ∈ C, M ∈ M

uX,M : GF (X ⊗M M)
G(sX,M )−−−−−→ G(X ⊗N F (M))

tX,F (M)−−−−→ X ⊗P GF (M).
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Furthermore, u is a natural isomorphism, since G(s) is a natural isomorphism
and u is defined as the composition of natural isomorphisms.
We are left to verify that the following diagrams are commutative

GF ((X ⊗C Y ) ⊗M M)

GF (X ⊗M (Y ⊗M M)) (X ⊗C Y ) ⊗P GF (M)

X ⊗P GF (Y ⊗M M) X ⊗P (Y ⊗P GF (M))

GF (mX,Y,M ) uX⊗CY,M

uX,Y ⊗MM

idX⊗NuY,M

pX,Y,GF (M)

(4.1.11)

and

GF (1 ⊗M M) 1 ⊗P GF (M)

F (M)

u1,M

F (LM ) L̃F (M)

for all X,Y ∈ C and M ∈ M.
We prove the commutativity of the first diagram. Applying the definition of the
natural isomorphism u, the considered diagram is the outer rectangle of the following
diagram
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G
F

(X
⊗

M
(Y

⊗
M
M

))
G
F

((
X

⊗
C
Y

)
⊗

M
M

)
G

((
X

⊗
C
Y

)
⊗

N
F

(M
))

G
(X

⊗
N
F

(Y
⊗

M
M

))
G

(X
⊗

N
(Y

⊗
N
F

(M
))

)
(X

⊗
C
Y

)
⊗

P
G
F

(M
)

X
⊗

P
G
F

(Y
⊗

M
M

)
X

⊗
P
G

(Y
⊗

N
F

(M
))

X
⊗

P
(Y

⊗
P
G
F

(M
))

G
F

(m
X

,Y
,M

) A

G
(s

X
⊗
C

Y
,M

)

B

G
(s

X
,Y

⊗
M

M
)

G
(i

d
X

⊗
N
s Y

,M
)

G
(n

X
,Y

,F
(M

)
)

t X
⊗
C

Y
,F

(M
)

C
t X

,F
(Y

⊗
M

M
)

id
⊗

P
G

(s
Y

,M
)

t X
,Y

⊗
N

F
(M

)
p

X
,Y

,G
F

(M
)

id
X

⊗
P
t Y

,F
(M

)

for all X,Y ∈ C,M ∈ M.

Diagrams A and C are commutative since (F, s) and (G, t) are C-module functors.
Moreover, the naturality of t implies the commutativity of B. This implies that the
outer rectangle is commutative, i.e. that diagram (4.1.11) commutes.
In a similar way, one can prove that diagram (4.1.9) is commutative. �
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2. Transport of structure

In the second part of this chapter, we show how we can construct new
module categories by means of equivalences and transport of structure.

Let (C,⊗C, a, 1) be a monoidal category. Let M be a left C-module
category, via the action bifunctor ⊗M : C × M → M and with module asso-
ciativity constraint mX,Y,M . Let F : M → N be an equivalence of categories.
Then, there exists a quasi-inverse G : N → M, i.e. a functor and natural
isomorphisms η and ε such that G ◦ F ε≈ idM and F ◦G η≈ idN.
We can define in a natural way the bifunctor :

⊗N : C × N → N

(−,∼) 7→ F (− ⊗M G(∼)).
(4.2.1)

In an analogous way, for every X, Y ∈ C, N ∈ N, we can define the maps

nX,Y,N : (X ⊗C Y ) ⊗N N → X ⊗N (Y ⊗N N)

as follows:

nX,Y,N := F
(
(idX ⊗M ε−1

Y⊗MG(N)) ◦mX,Y,G(N)

)
. (4.2.2)

Remark 4.2.1. The morphism n : (− ⊗C −) ⊗N − → − ⊗N (− ⊗N −) is
a natural isomorphism, because n is the image of a composition of natural
isomorphisms through an equivalence.

We are now in a position to prove the following lemma:

Lemma 4.2.2. Let (C,⊗C, a, 1) be a monoidal category and let (M,⊗M,m)
be a left C-module category. Let F : M → N be an equivalence of categories,

with quasi-inverse G : N → M such that G ◦ F ε≈ idM and F ◦ G η≈ idN. The
category N endowed with ⊗N as in Equation (4.2.1), and morphisms nX,Y,N
for all X, Y ∈ C, N ∈ N as in Equation (4.2.2) is a left C-module category.

Proof. By definition, ⊗N is a bifunctor. By Remark 4.2.1 the maps nX,Y,N
for X, Y ∈ C, N ∈ N combine to give natural isomorphisms.
Moreover, the functor

1 ⊗N − : N → N

N 7→ 1 ⊗N N = F (1 ⊗M G(N))

is an autoequivalence, since it is the composition of equivalences.
It remains to verify that the pentagon rule holds, i.e. that the following dia-
gram commutes
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((X ⊗C Y ) ⊗C Z) ⊗N N

(X ⊗C (Y ⊗C Z)) ⊗N N (X ⊗C Y ) ⊗N (Z ⊗N N)

X ⊗N ((Y ⊗C Z) ⊗N N) X ⊗N (Y ⊗N (Z ⊗N N))

aX,Y,Z⊗NidN nX⊗CY,Z,N

nX,Y ⊗CZ,N

idX⊗NnY,Z,N

nX,Y,Z⊗NN

(4.2.3)

for every X, Y, Z ∈ C and N ∈ N. Using Equation (4.2.1) and Equation
(4.2.2), this is equivalent to prove that:

F
(
(idX ⊗M GF ((idY ⊗M ε−1

Z⊗MG(N)) ◦mY,Z,G(N))) ◦ (idX ⊗M ε−1
(Y⊗CZ)⊗MG(N))

)◦
◦ F (mX,Y⊗CZ,G(N) ◦ (aX,Y,Z ⊗M idG(N))

)
=

F
(
(idX ⊗M ε−1

Y⊗M(GF (Z⊗MG(N))))◦mX,Y,GF (Z⊗MG(N))◦(idX ⊗C idY ⊗M ε−1
Z⊗MG(N))

)◦
◦ F (mX⊗CY,Z,G(N)).

(4.2.4)

In order to verify that the previous equation holds, we need some commutative
diagrams. In particular, by the naturality of ε, the diagrams

GF ((Y ⊗C Z) ⊗M G(N)) GF (Y ⊗M (Z ⊗M G(N)))

(Y ⊗C Z) ⊗M G(N) Y ⊗M (Z ⊗M G(N))

GF (mY,Z,G(N))

ε(Y ⊗CZ)⊗MG(N)

mY,Z,G(N)

εY ⊗M(Z⊗MG(N))

(4.2.5)

and

GF (Y ⊗M (Z ⊗M G(N))) Y ⊗M (Z ⊗M G(N))

GF (Y ⊗M GF (Z ⊗M G(N))) Y ⊗M GF (Z ⊗M G(N))

εY ⊗M(Z⊗MG(N))

GF (idY ⊗Mε
−1
Z⊗MG(N)

)

εY ⊗MGF (Z⊗MG(N))

idY ⊗Mε
−1
Z⊗MG(N)

(4.2.6)

commute, for every Y,Z ∈ C and N ∈ N.
Furthermore, by the naturality of m with respect to the functors (− ⊗C −) ⊗M −
and − ⊗M (− ⊗M −), the diagram:
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(X ⊗C Y ) ⊗M GF (Z ⊗M G(N)) (X ⊗C Y ) ⊗M (Z ⊗M G(N))

X ⊗M (Y ⊗M GF (Z ⊗M G(N))) X ⊗M (Y ⊗M (Z ⊗M G(N)))

idX⊗CY ⊗MεZ⊗MG(N)

mX,Y,GF (Z⊗MG(N))

idX⊗M(idY ⊗MεZ⊗MG(N))

mX,Y,Z⊗MG(N)

(4.2.7)

is commutative for every X,Y, Z ∈ C and N ∈ N.
Let us consider the left hand-side of equation (4.2.4). The commutativity of diagram
(4.2.5) gives:

F
(
(idX ⊗M GF ((idY ⊗M ε−1

Z⊗MG(N)) ◦mY,Z,G(N))) ◦ (idX ⊗M ε−1
(Y⊗Z)⊗MG(N))

)◦
◦ F (mX,Y⊗CZ,G(N) ◦ (aX,Y,Z ⊗M idG(N))

)

= F
(
(idX ⊗M GF (idY ⊗M ε−1

Z⊗MG(N)) ◦ ε−1
Y⊗M(Z⊗MG(N)))) ◦ (idX ⊗M mY,Z,G(N))

)◦
◦ F (mX,Y⊗CZ,G(N) ◦ (aX,Y,Z ⊗M idG(N))

)
.

Finally by the commutativity of diagram (4.2.6), the above term reads as:

F
(
(idX ⊗M (ε−1

Y⊗M(GF (Z⊗MG(N))) ◦ (idY ⊗M ε−1
Z⊗MG(N)))) ◦ (idX ⊗M mY,Z,G(N))

)◦
◦ F (mX,Y⊗CZ,G(N) ◦ (aX,Y,Z ⊗M idG(N))

)
.

(4.2.8)

Consider now the right hand-side of equation (4.2.4). By the commutativity of
diagram (A.1.3), the right hand-side becomes:

F
(
(idX ⊗M (ε−1

Y⊗MGF ((Z⊗MG(N))) ◦ (idY ⊗M ε−1
Z⊗MG(N)))) ◦mX,Y,Z⊗MG(N))

)◦
◦ F (mX⊗CY,Z,G(N)).

(4.2.9)

Since F
(
(idX ⊗M (ε−1

Y⊗M(GF (Z⊗MG(N))) ◦ (idY ⊗M ε−1
Z⊗MG(N)))) is an isomorphism,

expression (4.2.8) and expression (4.2.9) are equal if and only if

F ((idX ⊗M mY,Z,G(N)) ◦mX,Y⊗CZ,G(N) ◦ (aX,Y,Z ⊗M idG(N))) =

F (mX,Y,Z⊗MG(N) ◦mX⊗CY,Z,G(N)).

This equation holds, since M is a left C-module category. �

Moreover, we can prove that the functors F and G as above are C-module
functors (Definition 4.1.11).

Lemma 4.2.3. Let (C,⊗C, a, 1) be a monoidal category and let (M,⊗M,m)
be a left C-module category. Let F : M → N be an equivalence, with quasi-

inverse G : N → M such that G ◦ F ε≈ idM and F ◦ G η≈ idN and consider the
category N endowed with ⊗N as in Equation (4.2.1), with the morphism nX,Y,N
as in Equation (4.2.2).
Let sX,M := F (idX ⊗M ε−1

M ) and tX,N := εX⊗MG(N), for every X ∈ C,M ∈ M
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and N ∈ N. Then the pairs (F, s) and (G, t) are C-module functors, so M and
N are equivalent as C-module categories.

Proof. We prove this result for F , for G the proof will be analogous.
Firstly, the morphism s has the required source and target, in fact for all X ∈ C

and M ∈ M:

sX,M : F (X ⊗M M)
F (idX⊗Mε

−1
M )−−−−−−−−→ F (X ⊗M GF (M)) = X ⊗N F (M).

Furthermore, the morphism s is a natural isomorphism, since it is the com-
position of a natural isomorphism and an equivalence. We have now to check
that Diagrams (4.1.8) and (4.1.9) are commutative.
In particular, Diagram (4.1.8) reduces to

F ((X ⊗C Y ) ⊗M M)

F (X ⊗M (Y ⊗M M)) F ((X ⊗C Y ) ⊗M GF (M))

F (X ⊗M GF (Y ⊗M M)) F (X ⊗M GF (Y ⊗M GF (M)))

F (mX,Y,M ) sX⊗CY,M

sX,Y ⊗MM

idX⊗NsY,M

nX,Y,F (M)

for all X, Y ∈ C and M ∈ M. Using the definition of n and s, the previous
diagram becomes the outer diagram of the following

F ((X ⊗C Y ) ⊗M M) F ((X ⊗C Y ) ⊗M GF (M))

F (X ⊗M (Y ⊗M M)) F (X ⊗M (Y ⊗M GF (M)))

F (X ⊗M GF (Y ⊗M M)) F (X ⊗M GF (Y ⊗M GF (M)))

F (idX⊗CY ⊗Mε
−1
M )

F (mX,Y,M )

F (idX⊗Mε
−1
Y ⊗MM )

F (idX⊗MGF (idY ⊗Mε
−1
M ))

F (idX⊗M(idY ⊗Mε
−1
M ))

F (mX,Y,GF (M))

F (idX⊗Mε
−1
Y ⊗MGF (M)

)

for all X,Y ∈ C and M ∈ M. By naturality of m, the upper rectangle commutes,
while the naturality of ε makes the lower rectangle commutative. As a consequence,
we get the commutativity of the outer rectangle.
We are left to prove that Diagram (4.1.9) is commutative, that is the following
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F (1 ⊗M M) F (1 ⊗M GF (M))

F (M) FGF (M)

F (id1⊗Mε
−1
M )

ε−1
M

is commutative for any M ∈ M. This follows from the naturality of ε. �

We can dualize the above construction for a right C-module category.

Let C be a monoidal category and let M be a right C-module category,
via the action bifunctor ⊗M : M × C → M and with module associativity
constraint mr

X,Y,M . Consider as before, an equivalence F : M → N with

quasi-inverse G and natural isomorphisms η and ε, such that G ◦ F ε≈ idM

and F ◦ G η≈ idN. Then, we have the right-handed version of the definitions
given above. We define the bifunctor

⊗N : N × C → N

(−,∼) 7→ F (G(−)⊗M ∼)
(4.2.10)

and the maps

nrN,X,Y : (N ⊗N X) ⊗N Y → N ⊗N (X ⊗ Y )

as

nrN,X,Y := F (mr
G(N),X,Y ◦ (εG(N)⊗MX ⊗M idY )). (4.2.11)

for every X, Y ∈ C and N ∈ N.
In the same way as for the left C-module category, we can prove the right-
handed version of Lemma 4.2.2 and Lemma 4.2.3.

Lemma 4.2.4. Let (C,⊗C, a, 1) be a monoidal category and let
(M,⊗M,mr) be a right C-module category. Let F : M → N be an equivalence
of categories, with quasi-inverse G : N → M and natural isomorphisms η and

ε such that G ◦ F ε≈ idM and F ◦ G η≈ idN. The category N endowed with ⊗N

as in Equation (4.2.10), with the morphism nrN,X,Y as in Equation (4.2.11) is
a right C-module category.
Moreover, let srX,M := F (ε−1

M ⊗M idX) and let trX,N := εG(N)⊗MX , for all X ∈
C,M ∈ M and N ∈ N. Then, the pairs (F, sr) and (G, tr) are right C-module
functors.
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It is now natural to expect that the transported structure of a (C,D)-
bimodule category by means of an equivalence is again a (C,D)-bimodule cat-
egory.
Let (C,⊗C, a, 1) and (D,⊗D, ã, 1̃) be two monoidal categories and let
(M,m,mr, b) be a (C,D)-bimodule category. Consider F : M → N an equiv-
alence, with quasi-inverse G, and natural isomorphisms η and ε such that
G ◦ F ε≈ idM and F ◦ G η≈ idN. Using the above notation we define for every
X ∈ C, Z ∈ D and N ∈ N, the maps

pX,N,Z : (X ⊗N N) ⊗N Z → X ⊗N (N ⊗N Z)

as

pX,N,Z := F
(
(idX ⊗M ε−1

G(N)⊗MZ) ◦ bX,G(N),Z ◦ (εX⊗MG(N) ⊗M idZ)
)
. (4.2.12)

Remark 4.2.5. Since p is defined as the image of a composition of natural
isomorphisms through an equivalence, then it is a natural isomorphism.

We are now in a position to prove the following result.

Lemma 4.2.6. Let (C,⊗C, a, 1) and (D,⊗D, ã, 1̃) be monoidal categories and
let (M,⊗M,⊗M,m,mr, b) be a (C,D)-bimodule category. Consider F : M → N

an equivalence, with quasi-inverse G, and natural isomorphisms η and ε such

that G ◦ F ε≈ idM and F ◦G η≈ idN. The category N endowed with ⊗N, ⊗N as
in Equation (4.2.1) and Equation (4.2.10), the morphisms nX,Y,N , nrN,X,Y and
pX,N,Z for any X, Y, Z ∈ C and N ∈ N as in Equation (4.2.2), (4.2.11) and in
Equation (4.2.12), respectively, is a (C,D)-bimodule category.
Furthermore, the functors (F, s, sr) and (G, t, tr) with s and t as in Lemma
4.2.3 and sr, tr as in Lemma 4.2.4 are (C,D)-bimodule functors.

Proof. We first prove that (N,⊗N,⊗N, n, nr, p) is a (C,D)-bimodule cat-
egory.
By Lemma 4.2.2, Lemma 4.2.4 and Remark 4.2.5, we only need to prove that
diagrams (4.1.5) and (4.1.6) commute.
Consider the first diagram. We want to show that the diagram

((X ⊗C Y ) ⊗N N) ⊗N Z

(X ⊗N (Y ⊗N N)) ⊗N Z (X ⊗C Y ) ⊗N (N ⊗N Z)

X ⊗N ((Y ⊗N N) ⊗N Z) X ⊗N (Y ⊗N (N ⊗N Z))

nX,Y,N ⊗NidZ pX⊗CY,N,Z

pX,Y ⊗NN,Z

idX⊗NpY,N,Z

n
X,Y,N⊗NZ
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is commutative for every X, Y ∈ C, Z ∈ D and N ∈ N. By Equations (4.2.2)
and (4.2.12), this is equivalent to verify that

F (idX ⊗M GF ((idY ⊗M ε−1
G(N)⊗MZ

) ◦ bY,G(N),Z ◦ (εY⊗MG(N) ⊗M idZ)))◦
F ((idX ⊗M ε−1

GF (Y⊗MG(N))⊗MidZ
)◦bX,GF (Y⊗MG(N)),Z◦(εX⊗MGF (Y⊗MG(N)) ⊗M idZ))◦

F (GF ((idX ⊗M ε−1
Y⊗MG(N)) ◦mX,Y,G(N)) ⊗M idZ) =

F ((idX ⊗M ε−1
Y⊗MGF (G(N)⊗MZ)

) ◦mX,Y,GF (G(N)⊗MZ) ◦ (idX⊗CY ⊗M ε−1
G(N)⊗MZ

))◦
F (bX⊗CY,G(N),Z ◦ (ε(X⊗CY )⊗MG(N) ⊗M idZ)).

(4.2.13)

We will make use of a series of commutative diagrams. By naturality of ε, the
following five diagrams

GF (X ⊗M (Y ⊗M G(N))) X ⊗M (Y ⊗M G(N))

GF ((X ⊗C Y ) ⊗M G(N))) (X ⊗C Y ) ⊗M G(N)),

εX⊗M(Y ⊗MG(N))

GF (mX,Y,G(N))

ε(X⊗CY )⊗MG(N)

mX,Y,G(N)

(4.2.14)

GF (X ⊗M GF (Y ⊗M G(N))) X ⊗M GF (Y ⊗M G(N))

GF (X ⊗M (Y ⊗M G(N))) X ⊗M (Y ⊗M G(N)),

εX⊗MGF (Y ⊗MG(N))

GF (idX⊗MεY ⊗MG(N))

εX⊗M(Y ⊗MG(N))

idX⊗MεY ⊗MG(N)

(4.2.15)

GF ((Y ⊗M G(N)) ⊗M Z) (Y ⊗M G(N)) ⊗M Z

GF (Y ⊗M (G(N) ⊗M Z)) Y ⊗M (G(N) ⊗M Z),

ε
(Y ⊗MG(N))⊗MZ

GF (bY,G(N),Z)

ε
Y ⊗M(G(N)⊗MZ)

bY,G(N),Z

(4.2.16)

GF (GF (Y ⊗M G(N)) ⊗M Z) GF (Y ⊗M G(N)) ⊗M Z

GF ((Y ⊗M G(N)) ⊗M Z) (Y ⊗M G(N)) ⊗M Z,

ε
GF (Y ⊗MG(N))⊗MZ

GF (εY ⊗MG(N)⊗MidZ)

ε
(Y ⊗MG(N))⊗MZ

εY ⊗MG(N)⊗MidZ

(4.2.17)
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and

GF (Y ⊗M (G(N) ⊗M Z)) Y ⊗M (G(N) ⊗M Z)

GF (Y ⊗M GF (G(N) ⊗M Z)) Y ⊗M GF (G(N) ⊗M Z)

ε
Y ⊗M(G(N)⊗MZ)

GF (idY ⊗Mε
−1

G(N)⊗MZ
)

ε
Y ⊗MGF (G(N)⊗MZ)

idY ⊗Mε
−1

G(N)⊗MZ

(4.2.18)

commute for every N ∈ N, X,Y ∈ C and Z ∈ D.
Moreover, by the naturality of m the following diagram:

(X ⊗C Y ) ⊗M GF (G(N) ⊗M Z) X ⊗M (Y ⊗M GF (G(N) ⊗M Z))

(X ⊗C Y ) ⊗M (G(N) ⊗M Z) X ⊗M (Y ⊗M (G(N) ⊗M Z))

m
X,Y,GF (G(N)⊗MZ)

idX⊗CY ⊗MεG(N)⊗MZ

m
X,Y,G(N)⊗MZ

idX⊗M(idY ⊗MεG(N)⊗MZ
)

(4.2.19)

commutes for every X,Y ∈ C, Z ∈ D and N ∈ N.
Furthermore, by naturality of b the diagram

(X ⊗M GF (Y ⊗M G(N))) ⊗M Z X ⊗M (GF (Y ⊗M G(N)) ⊗M Z)

(X ⊗M (Y ⊗M G(N))) ⊗M Z X ⊗M ((Y ⊗M G(N)) ⊗M Z)

bX,GF (Y ⊗MG(N)),Z

(idX⊗MεY ⊗MG(N))⊗MidZ

bX,Y ⊗MG(N),Z

idX⊗M(εY ⊗MG(N)⊗MidZ)

(4.2.20)

is commutative for every X,Y ∈ C, Z ∈ D and N ∈ N.
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Consider the left-hand side of equation (4.2.13). By commutativity of diagram
(4.2.14), we get:

F (idX ⊗M GF ((idY ⊗M ε−1
G(N)⊗MZ

) ◦ bY,G(N),Z ◦ (εY⊗MG(N) ⊗M idZ)))◦
F ((idX ⊗M ε−1

GF (Y⊗MG(N))⊗MidZ
) ◦ bX,GF (Y⊗MG(N)),Z ◦ (εX⊗MGF (Y⊗MG(N)) ⊗M idZ))◦

F (GF ((idX ⊗M ε−1
Y⊗MG(N)) ◦mX,Y,G(N)) ⊗M idZ) =

F (idX ⊗M GF ((idY ⊗M ε−1
G(N)⊗MZ

) ◦ bY,G(N),Z ◦ (εY⊗MG(N) ⊗M idZ)))◦
F ((idX ⊗M ε−1

GF (Y⊗MG(N))⊗MidZ
) ◦ bX,GF (Y⊗MG(N)),Z ◦ (εX⊗MGF (Y⊗MG(N)) ⊗M idZ))◦

F ((GF (idX ⊗M ε−1
Y⊗MG(N)) ⊗M idZ) ◦ ((ε−1

X⊗M(Y⊗MG(N)) ◦mX,Y,G(N)) ⊗M idZ)◦
F (ε(X⊗CY )⊗MG(N) ⊗M idZ)).

The commutativity of diagram (4.2.15) gives:

F (idX ⊗M GF ((idY ⊗M ε−1
G(N)⊗MZ

) ◦ bY,G(N),Z ◦ (εY⊗MG(N) ⊗M idZ)))◦
F ((idX ⊗M ε−1

GF (Y⊗MG(N))⊗MidZ
) ◦ bX,GF (Y⊗MG(N)),Z ◦ (εX⊗MGF (Y⊗MG(N)) ⊗M idZ))◦

F ((ε−1
X⊗MGF (Y⊗MG(N)) ◦ (idX ⊗M ε−1

Y⊗MG(N)) ◦mX,Y,G(N) ◦ ε(X⊗CY )⊗MG(N)) ⊗M idZ) =

F (idX ⊗M GF ((idY ⊗M ε−1
G(N)⊗MZ

) ◦ bY,G(N),Z ◦ (εY⊗MG(N) ⊗M idZ)))◦
F ((idX ⊗M ε−1

GF (Y⊗MG(N))⊗MidZ
) ◦ bX,GF (Y⊗MG(N)),Z)◦

F (((idX ⊗M ε−1
Y⊗MG(N)) ◦mX,Y,G(N) ◦ ε(X⊗CY )⊗MG(N)) ⊗M idZ)

By commutativity of (4.2.20), the previous term becomes:

F (idX ⊗M GF ((idY ⊗M ε−1
G(N)⊗MZ

) ◦ bY,G(N),Z ◦ (εY⊗MG(N) ⊗M idZ)))◦
F ((idX ⊗M ε−1

GF (Y⊗MG(N))⊗MidZ
) ◦ (idX ⊗M (ε−1

Y⊗MG(N) ⊗M idZ)) ◦ bX,Y⊗MG(N),Z)◦
F ((mX,Y,G(N) ◦ ε(X⊗CY )⊗MG(N)) ⊗M idZ)

By virtue of commutativity of diagram (4.2.16), the above reads as:

F (idX ⊗M (GF (idY ⊗M ε−1
G(N)⊗MZ

) ◦ (ε−1
Y⊗M(G(N)⊗MZ)

◦ bY,G(N),Z ◦ ε(Y⊗MG(N))⊗MZ)))◦
F (GF (εY⊗MG(N) ⊗M idZ) ◦ (idX ⊗M ε−1

GF (Y⊗MG(N))⊗MidZ
))◦

F ((idX ⊗M (ε−1
Y⊗MG(N) ⊗M idZ)) ◦ bX,Y⊗MG(N),Z)◦

F ((mX,Y,G(N) ◦ ε(X⊗CY )⊗MG(N)) ⊗M idZ).

By commutativity of diagram (4.2.17) the previous term becomes:

F (idX ⊗M (GF (idY ⊗M ε−1
G(N)⊗MZ

) ◦ (ε−1
Y⊗M(G(N)⊗MZ)

◦ bY,G(N),Z)))◦
F (bX,Y⊗MG(N),Z ◦ ((mX,Y,G(N) ◦ ε(X⊗CY )⊗MG(N)) ⊗M idZ)).

Finally, by commutativity of diagram (4.2.18) the above equals

F (idX ⊗M (ε−1
Y⊗MGF (G(N)⊗MZ)

◦ (idY ⊗M ε−1
G(N)⊗MZ

) ◦ bY,G(N),Z))◦
F (bX,Y⊗MG(N),Z ◦ ((mX,Y,G(N) ◦ ε(X⊗CY )⊗MG(N)) ⊗M idZ)).

(4.2.21)
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Consider now the right hand-side of equation (4.2.13). By commutativity of diagram
(4.2.19), it equals

F ((idX ⊗M ε−1
Y⊗MGF (G(N)⊗MZ)

) ◦ (idX ⊗M (idY ⊗M ε−1
G(N)⊗MZ

)) ◦mX,Y,G(N)⊗MZ)◦
F (bX⊗CY,G(N),Z ◦ (ε(X⊗CY )⊗MG(N) ⊗M idZ)).

(4.2.22)

Since F ((idX ⊗M ε−1
Y⊗MGF (G(N)⊗MZ)

) ◦ (idX ⊗M (idY ⊗M ε−1
G(N)⊗MZ

))) and

(ε(X⊗CY )⊗MG(N)⊗MidZ) are natural isomorphisms, then equation (4.2.13) is satisfied
if and only if :

F ((idX ⊗M bY,G(N),Z) ◦ bX,Y⊗MG(N),Z ◦ (mX,Y,G(N) ⊗M idZ)) =

F (mX,Y,G(N)⊗MZ ◦ bX⊗CY,G(N),Z).

This equation holds, since M is a (C,D)-bimodule category.
The other diagram is completely analogous to prove.

We now show that (F, s, sr) is a (C,D)-bimodule functor. By Lemma 4.2.3
and Lemma 4.2.4 the pairs (F, s) and (F, sr) are respectively a left C-module
functor and a right D-module functor. We are left to prove the commutativity of
Diagram (4.1.10). By the definition of s, sr and p this is equivalent to verify that
the following diagram commutes

F ((X ⊗M M) ⊗M Y ) F (X ⊗M (M ⊗M Y ))

F (GF (X ⊗M M) ⊗M Y ) F (X ⊗M GF (M ⊗M Y ))

F (GF (X ⊗M GF (M)) ⊗M Y ) F (X ⊗M GF (GF (M) ⊗M Y ))

F ((X ⊗M GF (M)) ⊗M Y ) F (X ⊗M (GF (M) ⊗M Y ))

F (bX,M,Y )

F (ε−1
X⊗MM ⊗MidY )

F (GF (idX ⊗Mε
−1
M )⊗MidY )

F (εX⊗MGF (M)⊗MidY )

F (bX,GF (M),Y )

F (idX ⊗Mε
−1

M⊗MY
)

F (idX ⊗MGF (ε−1
M ⊗MidY ))

F (idX ⊗Mε
−1

GF (M)⊗MY
)

(4.2.23)
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for every X ∈ C, Y ∈ D and M ∈ M.
For this purpose, we will use the following diagrams

F ((X ⊗M M) ⊗M Y ) F ((X ⊗M GF (M)) ⊗M Y )

F (GF (X ⊗M M) ⊗M Y ) F (GF (X ⊗M GF (M)) ⊗M Y )

F ((idX ⊗Mε
−1
M )⊗MidY )

F (ε−1
X⊗MM ⊗MidY )

F (GF (idX ⊗Mε
−1
M )⊗MidY )

F (ε−1
X⊗MGF (M)

⊗MY )

(4.2.24)
and

F (X ⊗M (M ⊗M Y )) F (X ⊗M GF (M ⊗M Y ))

F (X ⊗M (GF (M) ⊗M Y )) F (X ⊗M GF (GF (M) ⊗M Y ))

F (idX ⊗Mε
−1

M⊗MY
)

F (idX ⊗M(ε−1
M ⊗MidY ))

F (idX ⊗Mε
−1

GF (M)⊗MY
)

F (idX ⊗MGF (ε−1
M ⊗MidY ))

(4.2.25)
which commute for every X ∈ C, M ∈ M and Y ∈ D in virtue of the naturality of
ε. Thus diagram (4.2.23) reads as

F ((X ⊗M M) ⊗M Y ) F (X ⊗M (M ⊗M Y ))

F ((X ⊗M GF (M)) ⊗M Y ) F (X ⊗M (GF (M) ⊗M Y ))

F (bX,M,Y )

F ((idX ⊗Mε
−1
M )⊗MidY )

F (bX,GF (M),Y )

F (idX ⊗M(ε−1
M ⊗MidY ))

for every X ∈ C, M ∈ M and Y ∈ D and it is commutative by the naturality of b.
The proof for (G, t, tr) is analogous. �



CHAPTER 5

Preliminaries on W -algebras

In this chapter we recall the construction of a finite-dimensional W -
algebra. Moreover, we state an important equivalence between categories of
modules due to Skryabin.

Let g be a finite-dimensional reductive Lie algebra over C and let e ∈ g be
nilpotent. Throughout the next chapters, by a grading on a Lie algebra g we
mean a Lie algebra grading, i.e. a grading of the vector space g =

⊕
j∈Z g(j)

such that [g(i), g(j)] ⊆ g(i+ j), for every i, j ∈ Z.

A Z-grading
g =

⊕

j∈Z

g(j)

of g is called a good grading for e if
(1) e ∈ g(2);
(2) ge ⊆ ⊕

j≥0 g(j), where ge stands for the centralizer of e in g;
(3) z(g) ⊆ g(0), where z(g) denotes the centre of g.

A classification of such gradings can be found in [20].

Example 5.0.1. Let e be a nilpotent element in g. By Jacobson-Morozov
Theorem, there is an sl2-triple (e, h, f), associated to e.
The standard good grading is the one induced by the adjoint action of h, called
the Dynkin grading, that is

g(i) = {x ∈ g | [h, x] = ix}.
Remark 5.0.1. Every grading of g satisfying z(g) ⊆ g(0) is induced by

the adjoint action of a semisimple element. Indeed, let s be a semisimple Lie
algebra and let s =

⊕
j∈Z s(j) be a grading for s. We define δ : s → s as

δ(x) = jx for x ∈ s(j). One can verify that it is a derivation and since all
derivations in s are inner ([65, Proposition 20.1.5]), there exists a semisimple
element q ∈ s, such that δ = [q,−].
The result follows also for a reductive Lie algebra, since it is the direct sum of
a semisimple Lie algebra with an abelian one.

Throughout this chapter, we fix a Z-good grading.
Consider (·|·) a non-degenerate symmetric invariant bilinear form on g. Define

95
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χ ∈ g∗ in the following way:

χ : g → C, x 7→ (e|x).

By definition of good grading, e ∈ g(2) and χ(x) = (e|x) = 0 for every
x ∈ g(j), unless j = −2.
Let 〈·|·〉 be the non-degenerate alternating bilinear form on g(−1) defined by

〈x|y〉 := χ([y, x]).

Fix ℓ an isotropic subspace of g(−1) with respect to 〈·|·〉.
Let ℓ⊥ = {x ∈ g(−1) | 〈x, y〉 = 0 for all y ∈ ℓ}, so ℓ ⊆ ℓ⊥. We define the
following subalgebras:

mℓ = ℓ⊕
⊕

j<−1

g(j), nℓ = ℓ⊥ ⊕
⊕

j<−1

g(j),

so mℓ ⊆ nℓ. The algebras nℓ and mℓ are nilpotent, because they are subalgebras
of the nilpotent algebra

⊕
j<0 g(j). Moreover, mℓ is a Lie ideal of nℓ. Indeed,

[mℓ, nℓ] ⊆ ⊕
j<−1 g(j) ⊆ mℓ.

In order to construct the finite W -algebra Hℓ, we need to recollect the
following facts.

i) The map χ restricts to a character of mℓ.
This means that χ([x, y]) = ([x, y]|e) = 0, for every x, y ∈ mℓ. We
show that. Since (z|e) = 0, for every z ∈ g(j), with j 6= −2, then for
every x ∈ ⊕i≤−2 g(i) and y ∈ mℓ, χ([x, y]) = 0. It remains to verify
that for x, y ∈ ℓ, χ([y, x]) = 0. This is a consequence of the isotropy
of ℓ.

ii) We can then define

Qℓ := U(g) ⊗U(mℓ) Cχ,

where Cχ is the 1-dimensional left U(mℓ)-module obtained from the
character χ. In particular, Qℓ ≃ U(g)/Iℓ, where Iℓ is the left ideal
generated by x− χ(x) for every x ∈ mℓ.

iii) The left multiplication in U(g) induces an action on Qℓ. In particular,

x.(y + Iℓ) = xy + Iℓ,

for every x, y ∈ U(g).
iv) There is an induced ad(nℓ)-action on Qℓ, since the ideal Iℓ is stable

under the action of nℓ. We show this fact.
We need to verify that [z, Iℓ] ⊆ Iℓ, for every z ∈ nℓ. This means that

[z, y(x− χ(x))] = [z, y](x− χ(x)) + y[z, x]

lies in Iℓ for every x ∈ mℓ, z ∈ nℓ and y ∈ U(g). Since [z, x] ∈ mℓ and
χ([z, x]) = 0, we get the desired inclusion.
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Hence, it makes sense to define

Hℓ := Qad nℓ
ℓ ,

that is the subspace of all x+ Iℓ, with x ∈ U(g) such that

yx− xy ∈ Iℓ for all y ∈ nℓ. (♣)

We can define an algebra structure on Hℓ via

(x+ Iℓ)(y + Iℓ) = xy + Iℓ,

for x+ Iℓ, y + Iℓ ∈ Hℓ. We verify that this multiplication is well defined.
Firstly, for any w ∈ mℓ and y + Iℓ ∈ Hℓ we have [w, y] ⊂ [mℓ, y] ⊂ [nℓ, y] ⊂ Iℓ.
Then, for every w ∈ mℓ and y + Iℓ ∈ Hℓ, we get that (w − χ(w))y ∈ Iℓ, since
(w − χ(w))y = yw − yχ(w) + [w, y] ∈ y(w − χ(w)) + Iℓ ⊂ Iℓ. It follows that

Iℓ · y ⊂ Iℓ, (5.0.1)

for all y + Iℓ ∈ Hℓ.
Furthermore, the algebra Hℓ is closed under multiplication because if z ∈ nℓ
and x+Iℓ, y+Iℓ ∈ Hℓ, then zxy−xyz = (zx−xz)y+x(zy−yz) ∈ Iℓy+xIℓ ⊆ Iℓ,
by Equation (5.0.1).

The algebra Hℓ is called the finite W-algebra associated with e.

Remark 5.0.2. We stress the fact that the finite W -algebra Hℓ does not
depend on the choice of the good grading ([7, Theorem 1]) and neither from
the Lagrangian ([25, Theorem 4.1]), but it depends only on the adjoint orbit
of e (see [65, Chapter 34] for the definition of the action).

Remark 5.0.3. Notice that Qℓ is a U(g)-Hℓ -bimodule. We mentioned
above (iii) that U(g) acts on Qℓ by left multiplication.
The right action of Hℓ on Qℓ is induced by right multiplication. We show that
this is indeed an action. Let y ∈ U(g) satisfying (♣) and x ∈ U(g). We show
that

(x+ Iℓ)(y + Iℓ) ∈ Qℓ.

Since Iℓ is a left U(g)-module

(x+ Iℓ)(y + Iℓ) = xy + xIℓ + Iℓy + Iℓ = xy + Iℓy + Iℓ.

By Equation (5.0.1), we get

xy + Iℓy + Iℓ = xy + Iℓ,

because y satisfies (♣).
Hence, (x+ Iℓ)(y + Iℓ) ∈ Qℓ for every x, y ∈ U(g), such that yz − zy ∈ Iℓ, for
any z ∈ mℓ.
It is straightforward to show that the left action of U(g) and the right action
of Hℓ are compatible.
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Remark 5.0.4. Notice that

(x− χ(x))y = [x, y] + y(x− χ(x)) = [x, y] + Iℓ, (♠)

for every x ∈ mℓ and y ∈ U(g).

In the following we require that ℓ is a Lagrangian subspace of g(−1), that
is ℓ = ℓ⊥ so that nℓ = mℓ.
Let e, nℓ = mℓ and χ be as above.

From now on M will denote the category of U(g)-modules on which
x − χ(x) acts locally nilpotently for each x ∈ mℓ. It is called the category of
Whittaker modules.
Also, from now on N will denote the category of finitely-generated Hℓ-modules.
When the good grading for g is as in Example 5.0.1, an equivalence between
M and N was described by Skryabin in [58, Appendix, Theorem 1]. Moreover,
under the same assumption, Gan and Ginzburg gave an alternative proof of
Skryabin equivalence in [25, Theorem 6.1].
Goodwin in [28, Theorem 3.14] showed that the same equivalence holds also
when the grading of g is a general good grading. Before exhibiting this
equivalence, we put for M ∈ M

Wh(M) := {v ∈ M |x.v = χ(x)v for allx ∈ mℓ}.
Remark 5.0.5. For M ∈ M, the subspace Wh(M) is an Hℓ-module via

the action:
(x+ Iℓ).m = x.m,

for every m ∈ Wh(M), x ∈ U(g) satisfying (♣).
We show that this is an action. We have to verify that x.m ∈ Wh(M), that
is z.(x.m) = χ(z)x.m, for every m ∈ Wh(M), z ∈ mℓ and x as above. We can
express z.(x.m) in the following way

z.(x.m) = (zx).m = [z, x].m+ x.(z.m)

for every m ∈ Wh(M), z ∈ mℓ and x ∈ U(g) satisfying (♣).
Since [z, x] ∈ Iℓ, there exists u ∈ U(g) and w ∈ mℓ such that
[z, x] = u(w − χ(w)), for every z ∈ mℓ and x ∈ U(g) satisfying (♣). Then

[z, x].m = (u(w − χ(w))).m = u.(χ(w)m− χ(w)m) = 0,

for every m ∈ Wh(M), z ∈ mℓ and x ∈ U(g) as above. Moreover, since
m ∈ Wh(M), then z.m = χ(z)m, for every z ∈ mℓ. We can conclude that

z.(x.m) = [z, x].m+ x.(z.m) = 0 + x.χ(z)m,

and in particular that x.m ∈ Wh(M), for any m ∈ Wh(M) and any x ∈ U(g)
satisfying (♣).
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Then, with the usual restriction of morphisms, Wh defines a functor from
the category of Whittaker modules M to the category of finitely generated
Hℓ -modules.
By Remark 5.0.3, we also have a functor

Qℓ ⊗Hℓ
− : N → U(g)-mod.

Remark 5.0.6. We show that Qℓ ⊗Hℓ
N with U(g)-action by left multipli-

cation is a Whittaker module for every N ∈ N. Explicitly, we verify that for
all x ∈ mℓ there exists k ∈ N such that

(x− χ(x))k.((y + Iℓ) ⊗Hℓ
n) = 0,

for all n ∈ N and y ∈ U(g). For simplicity, set g(< j) :=
⊕

i<j g(i).
We divide this verification into three steps.
Step 1. We first prove the claim for y + Iℓ ∈ Qℓ, with y ∈ g(j) for j ∈ N. For
every x ∈ mℓ, by (♠) we get

(x− χ(x))((y + Iℓ) ⊗Hℓ
N) ⊆ (g(< j) + Iℓ) ⊗Hℓ

N.

Since g is finite-dimensional, then for k >> 0,
(x− χ(x))k.((g(j) + Iℓ) ⊗Hℓ

N) = 0.

Step 2. We consider now an element y + Iℓ ∈ Qℓ, where y = y1 . . . yl, with
yi ∈ g(ji) for ji ∈ N and for i ∈ {1, . . . l}. Then for every x ∈ mℓ we have

(x− χ(x))(y1 . . . yl + Iℓ) = [x, y1]y2 . . . yl + y1(x− χ(x))y2 . . . yl + Iℓ

=
l∑

i=1

y1 . . . [x, yi]yi+1 . . . yl + Iℓ.

So for every x ∈ mℓ

(x − χ(x))

((
l∏

i=1

g(ji) + Iℓ

)
⊗Hℓ

N

)
⊆

l∑

i=1

(
l∏

i=1

g(j1) . . . g(< ji) . . . g(jl) + Iℓ

)
⊗Hℓ

N,

where the product in U(g) is taken in increasing order.
Since g is finite dimensional, then there exists k ∈ N such that

(x− χ(x))k
((

l∏

i=1

g(ji) + Iℓ

)
⊗Hℓ

N

)
= 0.

Step 3. We finally consider an element y + Iℓ ∈ Qℓ, for y ∈ U(g). Then, y is a
finite sum of elements in

∏lh
i=1 g(ji), for lh, ji, h ∈ N. By the previous step, for

each summand there exists kh ∈ N such that

(x− χ(x))kh




lh∏

i=1

g(ji) + Iℓ


⊗Hℓ

N = 0

. Then, taking the maximum among the kh’s we conclude the verification.

We are now in a position to state the following theorem.
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Theorem 5.0.7. [28, Theorem 3.14] Let M ∈ M and N ∈ N. The functors
M 7→ Wh(M) and N 7→ Qℓ ⊗Hℓ

N are quasi inverse equivalences between the
category of Whittaker modules M and the category of finitely-generated Hℓ-
modules N.

Remark 5.0.8. The natural isomorphism ε : Qℓ ⊗Hℓ
Wh → id is given by

εM : Qℓ ⊗Hℓ
Wh(M) → M

(u+ Iℓ) ⊗m 7→ u.m
(5.0.2)

for M ∈ M ([28, Theorem 3.14]).



CHAPTER 6

Whittaker modules and Hℓ-modules as bimodule

categories

We retain notation from Chapter 5 and we assume that ℓ is Lagrangian.
This chapter aims at endowing the category of Hℓ-modules with a bimodule
structure over a category containing U(g)-modfin. For this purpose, we firstly
endow the category of Whittaker modules with a bimodule structure. Then,
by means of Skryabin equivalence we will transport this structure to the
category of Hℓ-modules.

Since U(g) is a Hopf algebra, the category U(g)-mod of U(g)-modules
is a monoidal category by Example 4.1.2.
We denote by Ce the subcategory of U(g)-mod on which mℓ acts locally
nilpotently.

Remark 6.0.1. We show that Ce contains the category U(g)-modfin.
Firstly, consider a good grading g =

⊕
i∈Z g(i) for e ∈ g. By Remark 5.0.1, it

is induced by the adjoint action of a semisimple element q.
Let V be a finite-dimensional U(g)-module. In light of [32, Theorem 6.4], the
module V decomposes as

V =
⊕

j∈J

Vj,

where Vj := {v ∈ V | q.v = jv} and J ⊆ Z is such that |J | < ∞.
We need to understand how mℓ acts on each block Vj. Pick an homogeneous
element x in ∈ mℓ, say x ∈ g(i) for i ≤ −1 and let v ∈ Vj for some j. Then:

q.(x.v) = (qx).v = [q, x].v + xq.v = ix.v + jx.v = (i+ j)x.v,

i.e. x.v ∈ Vi+j. Since i ≤ −1 and |J | < ∞, there exists nv ∈ N such that
xnv .v = 0 for every v ∈ V and any homogeneous element x in mℓ. Extending
the above argument by linearity, the same conclusion holds for every x ∈ mℓ

and thus mℓ acts locally nilpotently on V .

We will firstly show that Ce is a monoidal category. For this purpose, we
need the following result.
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Lemma 6.0.2. Let ψ : g → C be a linear form. Let X,Z be in U(g)-mod.
Then,

(y − ψ(y))k.
( I∑

i=1

J∑

j=1

αi,jxi ⊗ zj
)

=
I∑

i=1

J∑

j=1

k∑

u=0

αi,j(y − ψ(y))u.xi ⊗ yk−u.zj , (6.0.1)

for every y ∈ mℓ, xi ∈ X, zj ∈ Z, k ∈ N and αi,j ∈ C.

Proof. First of all, we prove that the equation

(y − ψ(y))k.(x⊗ z) =
k∑

j=0

(
k

j

)
(y − ψ(y))j.x⊗ yk−j.z, (6.0.2)

holds for every y ∈ mℓ, x ∈ X and z ∈ Z. We proceed by induction on k.
If k = 1, the above equation is clearly satisfied.
Suppose that for some k ≥ 2,

(y − ψ(y))k.(x⊗ y) =
k∑

j=0

(
k

j

)
(y − ψ(y))j.x⊗ yk−j.z.

By definition of the action:

(y − ψ(y))k+1.(x⊗ z) = (y − ψ(y)).
(
(y − ψ(y))k.(x⊗ z)

)
=

= (y − ψ(y)).
( k∑

j=0

(
k

j

)
(y − ψ(y))j.x⊗ yk−j.z

)
=

=
k∑

j=0

(
k

j

)
(y − ψ(y))j+1.x⊗ yk−j.z+

+
k∑

j=0

(
k

j

)
(y − ψ(y))j.x⊗ yk+1−j.z.

Reordering the sum and rescaling the indices the above term equals

(y − ψ(y))k+1.x⊗ z +
k∑

j=1

(
k

j − 1

)
(y − ψ(y))j .x⊗ yk+1−j .z+

+
k∑

j=1

(
k

j

)
(y − ψ(y))j .x⊗ yk+1−j .z + x⊗ yk+1.z

= (y − ψ(y))k+1.x⊗ z + x⊗ yk+1.z +
k∑

j=1

(
k + 1

j

)
(y − ψ(y))j .x⊗ yk+1−j .z =

k+1∑

j=0

(
k + 1

j

)
(y − ψ(y))j .x⊗ yk+1−j .z.

Hence, Equation (6.0.2) holds for every y ∈ mℓ, x ∈ X and z ∈ Z.
Finally, the linearity of the action gives Equation (6.0.1). �
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We are now in a position to prove the following.

Lemma 6.0.3. The category Ce endowed with the usual tensor product of
modules is a monoidal category.

Proof. Since U(g)-mod is monoidal, it is enough to verify that Ce is closed
under the tensor product, i.e. for X,Z ∈ Ce, we have to show that mℓ acts
locally nilpotently on X ⊗C Z. A generic element of X ⊗ Z is of the form

I∑

i=1

J∑

j=1

αi,jxi ⊗ zj,

for some αi,j ∈ C, xi ∈ X and zj ∈ Z. Let y ∈ mℓ. Substituting ψ = 0 in
Equation (6.0.1), we have

yk.
( I∑

i=1

J∑

j=1

αi,jxi ⊗ zj
)

=
I∑

i=1

J∑

j=1

k∑

u=0

αi,jy
u.xi ⊗ yk−u.zj.

Since mℓ acts locally nilpotently on X and Z, there exists a sufficient large
k ∈ N, such that one between yu.xi and yk−u.zj vanishes for any u ∈ {0, . . . , k}
and any i, j, concluding the proof. �

Recall that M stands for the category of Whittaker modules, that is the
subcategory of U(g)-mod on which x − χ(x) acts locally nilpotently for each
x ∈ mℓ.

Remark 6.0.4. The category M does not contain finite-dimensional U(g)-
modules if e 6= 0. Indeed, let V be a finite-dimensional U(g)-module and
suppose that (x − χ(x)) acts locally nilpotently on V for every x ∈ mℓ. This
assumption together with Remark 6.0.1 and with the fact that the elements x
and x−χ(x) commute for every x ∈ mℓ imply that x− (x−χ(x)) = χ(x) acts
locally nilpotently on V . This condition holds if and only if χ(x) = 0 for every
x ∈ mℓ; this would contradict that (·|·) is non degenerate and g(−2) ⊆ mℓ.

We now define natural left and right actions of Ce on U(g)-mod by means
of the tensor product of modules ⊗C in U(g)-mod. We set:

⊗M := ⊗C : Ce × M → U(g) − mod

(−,∼) 7→ −⊗C ∼, (6.0.3)

and

⊗M := ⊗C : M × Ce → U(g) − mod

(−,∼) 7→ −⊗C ∼ .
(6.0.4)

From now on, we will write simply ⊗ to denote ⊗C.
We have the following result:
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Lemma 6.0.5. The category M is a (Ce,Ce)-bimodule category, via the ten-
sor product of U(g)-modules, where mX,Y,Z ,m

r
X,Y,Z and bX,M,Y are the shift of

parentheses.

Proof. Firstly, we verify that that M⊗X is a Whittaker module for every
Whittaker module M and for every U(g)-module X on which mℓ acts locally
nilpotently, that is we have to show that y − χ(y) acts locally nilpotently on
M ⊗ X, for every M ∈ M, X ∈ Ce and y ∈ mℓ. This is equivalent to show
that for every z ∈ M ⊗X, there exists kz ∈ N such that (y−χ(y))kz .z = 0 for
every y ∈ mℓ. A generic element z in M ⊗X is of the form

I∑

i=1

J∑

j=1

αi,jmi ⊗ xj,

for some αi,j ∈ C, xj ∈ X and mi ∈ M . Then, our goal is to show that there
exists kz ∈ N such that

(y − χ(y))kz .
( I∑

i=1

J∑

j=1

αi,jmi ⊗ xj
)

= 0,

for every y ∈ mℓ and for αi,j,mi and xj as above.
Applying Equation (6.0.1), we get:

(y − χ(y))k.z =
I∑

i=1

J∑

j=1

k∑

u=0

αi,j(y − χ(y))u.mi ⊗ yk−u.xj

for mi ∈ M,xj ∈ X and αi,j ∈ C as above and for every y ∈ mℓ. Since M is
a Whittaker module and X is a U(g)-module on which mℓ acts locally nilpo-
tently, there exists a sufficient large Kz, such that one between (y−χ(y))u.mi

and yKz−u.xj vanishes for any u ∈ {0, . . . , Kz} and any i, j.
The proof for the right action is analogous.

Secondly, we have to verify that M is both a left and a right Ce-module
category. Since m = mr and the associativity constraint of the monoidal
category Ce is identified with the identity as it happens for U(g)-mod (Lemma
6.0.3), the pentagon diagrams reduce to the trivial ones.
For similar reasons, diagrams (4.1.5) and (4.1.6), become the trivial ones.
Hence, we conclude that M is a (Ce,Ce)-bimodule category. �

Now, our aim is to transpose the (Ce,Ce)-bimodule structure of M to N by
means of Skryabin equivalence, following the construction of Chapter 4.
We define the right translation functor and the left translation functor as those
given in Definition 4.2.1 and Definition 4.2.10, specializing F to Wh and G to
Qℓ⊗Hℓ

.
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More precisely, the definition of the right translation functor becomes:

⊗N := ⊛
r : N × Ce → N

(−,∼) 7→ Wh((Qℓ ⊗Hℓ
−)⊗ ∼),

(6.0.5)

while the left translation functor reads as
⊗N := ⊛ : Ce × N → N

(−,∼) 7→ Wh(− ⊗ (Qℓ⊗Hℓ
∼)).

(6.0.6)

Moreover, substituting m = mr = id and F = Wh(−), G = Qℓ ⊗Hℓ
− in equa-

tions (4.2.2) and (4.2.11), we get, respectively, the left and the right module
associativity constraints nX,Y,N and nrX,Y,N , for all X, Y ∈ Ce and N ∈ N.
In particular, for X, Y ∈ Ce and M ∈ M, the module associativity constraint

nrX,Y,N : Wh((Qℓ⊗Hℓ
(Wh((Qℓ⊗Hℓ

M)⊗X))⊗Y ) → Wh((Qℓ⊗Hℓ
M)⊗(X⊗Y ))

is the restriction of the following map
ϕ : (Qℓ ⊗Hℓ

(Wh((Qℓ ⊗Hℓ
M) ⊗X)) ⊗ Y → (Qℓ ⊗Hℓ

M) ⊗ (X ⊗ Y )

((u+ Iℓ)(((u
′ + Iℓ) ⊗m) ⊗ x)) ⊗ y 7→ u(((u′ + Iℓ) ⊗m) ⊗ x) ⊗ y.

(6.0.7)

Remark 6.0.6. Let U(g)-modfin be the category of finite-dimensional U(g)-
modules. Then, U(g)-modfin is a subcategory of Ce, which is closed under the
tensor product. Hence, U(g)-modfin is a monoidal category.
If we restrict the definitions of the right translations functor (6.0.5) and of the
module associativity constraint nr to U(g)-modfin, we get the definition for the
translation functors given in [28] and [9].

Furthermore, let pX,N,Z be the compatibility isomorphisms defined as in
(4.2.12).
By Lemma 4.2.6, we deduce the following:

Theorem 6.0.7. The category N endowed with ⊛, nX,Y,N , ⊛r, nrX,Y,N and
pX,N,Z defined above, is a (Ce,Ce)-bimodule category.

Moreover, by Lemma 4.2.3 we obtain the following.

Lemma 6.0.8. Let ε be the natural isomorphism (5.0.2), let sX,M :=
Wh(idX ⊗ ε−1

M ) and tX,N := εX⊗(Qℓ⊗Hℓ
N), for all X ∈ Ce,M ∈ M and N ∈ N.

Then, the pairs (Wh, s) and (Qℓ⊗Hℓ
, t) are Ce-module functors.





CHAPTER 7

C-equivariant functors for reduction in stages

In this chapter, we recall the functors Wh0 and Q0⊗H0 introduced in [26]
and we show that they are equivariant under an action of a subcategory of
U(g)-mod.

Let g be a finite-dimensional simple Lie algebra over C.
For i = 1, 2, let ei ∈ g be nilpotent elements and let χi be the associated
linear forms constructed as in Chapter 5. For i = 1, 2, we denote by (ei, fi, hi)
an sl2-triple in which ei is embedded.
We adopt notations from Chapter 5 adding a subscript (i) for referring to the
construction related to ei.
For i = 1, 2, let g =

⊕
j∈Z g(j)(i) be a good grading for ei. By Remark 5.0.1

the good grading (i) is induced by the adjoint action of a semisimple element
qi. Without loss of generality, we can assume that q1 and q2 belong to the
same Cartan algebra h. This follows from the fact that all Cartan subalgebras
are conjugate under inner automorphisms of the algebra U(g) and that Hℓ(i)

depends only on the orbit of ei for the action of inner automorphisms of U(g).
Throughout this chapter, we will make the following assumptions:

(1) there is a direct sum decomposition mℓ(2)
= mℓ(1)

⊕ m0, where m0 is a
h-stable Lie subalgebra of mℓ(2)

and mℓ(1)
is a Lie ideal of mℓ(2)

,
(2) the element e0 := e2 − e1 is nilpotent and e0 and the Lie algebra m0

are contained in g(0)(1) ,
(3) the semisimple element q0 := q2 − q1 commutes with e1.

For simplicity, we denote the above assumptions with (♦).

Remark 7.0.1. Consider the simple Lie algebra

so5 := {x ∈ sl5 |xTK +Kx = 0}, for K :=

( 0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

)
,

where xT denotes the transpose of x. We take the symmetric set

I5 := {−2,−1, 0, 1, 2}
as indexation for the canonical basis of C5, with the following order

v−2 = (1, 0, 0, 0, 0), v−1 = (0, 1, 0, 0, 0), . . . , v2 = (0, 0, 0, 0, 1).
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We change the numbering of the elementary matrices ei,j to have i, j ∈ I5 and
to respect the order we have chosen for the basis.
Take the regular nilpotent element

e2 := e1,0 + e2,1 − e0,−1 − e−1,−2 =




0 0 0 0 0
−1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0


 .

We can embed e2 in a sl2-triple {e2, f2, h2}, where h2 := diag(−4,−2, 0, 2, 4)

and f2 =




0 −4 0 0 0
0 0 −6 0 0
0 0 0 6 0
0 0 0 0 4
0 0 0 0 0


. We consider the Dynkin grading, i.e. the grading

induced by h2.
Take now

e1 := e1,0 − e0,−1 =

( 0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 0 0

)
.

We embed it in a sl2 triple {e1, f1, h1}, where h1 = diag(0,−2, 0, 2, 0) and

f1 =

( 0 0 0 0 0
0 0 −2 0 0
0 0 0 2 0
0 0 0 0 0
0 0 0 0 0

)
. Also in this case, we consider the grading induced by the

semisimple element h1. We show that this choice of the gradings does not
satisfy the assumptions (♦). By definition,

e0 = e2 − e1 =

( 0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

)
.

Now, h1 acts on e0 by means of the adjoint action, in particular

[h1, e0] =

( 0 0 0 0 0
2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −2 0

)
= 2e0.

This means that e0 /∈ g(0)(1) and hence assumption 2) of (♦) is not satisfied.
If we consider the good grading induced by q1 = diag(−2,−2, 0, 2, 2) instead
of the Dynkin one, the assumptions are satisfied (see [26, Subsection 4.2]). In
this case,

mℓ(2)
= Span{ei,j | i < j} ∩ so5 mℓ(1)

= Span{ei,j | i < j and i < 1 , j > −1} ∩ so5

and in consequence one may take

m0 = Span{e−2,1, e1,2} ∩ so5.

This example justifies the fact that we are considering general good gradings
and not only the Dynkin ones.

We stress that throughout this chapter the assumptions (♦) are satisfied.

We now recall the functors Wh0 and Q0 ⊗H0 − from [26]. For this pur-
pose, we recollect some results contained therein.
By [26, Lemma 3.2.1], there is an embedding of m0 in Hℓ(1)

, which sends
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y ∈ m0 to y + Iℓ(1)
. In consequence, we can define I0 as the left Hℓ(1)

-ideal
spanned by (y − χ2(y)) + Iℓ(1)

, y ∈ m0.
Let Q0 := Hℓ(1)

/I0. The adjoint action of m0 on Hℓ(1)
descends to Q0. Then,

it makes sense to consider the subspace of invariants H0 := Q
ad(m0)
0 . This

vector space turns out to be an algebra (see [26, Lemma 3.2.2]), where the
multiplication is induced by the one in Hℓ(1)

.
Moreover, in virtue of [26, Theorem 3.2.3], H0 is isomorphic to Hℓ(2)

.

For i = 1, 2, let Ci be the category of U(g)-modules on which mℓ(i)
acts

locally nilpotently. The category C2 is a subcategory of C1 because by as-
sumptions mℓ(1)

⊆ mℓ(2)
.

For i = 1, 2, we denote with Mi the category of Whittaker modules with re-
spect to ei; with Ni the category of Hℓ(i)

-modules; with ⊛(i) the translation
functor and with Whi the functor Wh from Chapter 5 defined on Mi.

Remark 7.0.2. As shown in Chapter 6, the category Mi is a (Ci,Ci)-
bimodule category. Since C2 ⊆ C1, the category M1 is also a (C2,C2)-bimodule
category. In addition, M2 is a (C2,C2)-bimodule subcategory of M1.

Finally, by the embedding of m0 in Hℓ(1)
, we can define the category M0,

that is the category of finitely generated Hℓ(1)
-modules on which y−χ2(y) acts

locally nilpotently, for all y ∈ m0. For M ∈ M0, we set

Wh0(M) := {m ∈ M | y.m = χ2(y)m for all y ∈ m0}.

Before stating the main result of this chapter, we need to recall some facts.
i) By [26, Lemma 5.2.1], for every M ∈ M0, the subspace Wh0(M) is a

left H0-module with action given by

(x+ I0).m = x.m,

for every x+ I0 ∈ H0 and m ∈ Wh0(M). As we recalled before,
H0 ≃ Hℓ(2)

and hence Wh0(M) is a left Hℓ(2)
-module, for every M ∈

M0. This implies that, together with restriction on morphisms, Wh0

gives a functor from the category M0 to the category N2.
ii) By [26, Lemma 5.2.2], we have that Q0 is a Hℓ(1)

-H0-bimodule, where
Hℓ(1)

acts on Q0 via left multiplication, while H0 acts on Q0 via right
multiplication. In consequence, for N ∈ N2 the Hℓ(1)

-module Q0⊗H0N
is well defined. The action is given by:

(x).((y + I0) ⊗H0 n) = (xy + I0) ⊗H0 n,

for every n ∈ N and x, y ∈ Hℓ(1)
. Furthermore, in virtue of [26,

Lemma 5.2.2], the tensor product Q0 ⊗H0 N lies in M0 for all N ∈ N2.
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We are now in a position to state the following.

Theorem 7.0.3. [26, Theorem 5.2.3] Let M ∈ M0, N ∈ N2. Then the
functors M 7→ Wh0(M) and N 7→ Q0 ⊗H0 N are quasi inverse equivalences.
Moreover, Wh1(−) and Qℓ(1)

⊗Hℓ(1)
(−) induce an equivalence of categories

M1 ≃ M0 by restriction and we have Wh2 = Wh0 ◦ Wh1. In particular, Wh0

and Q0⊗H0 are exact functors.

Remark 7.0.4. By [26, Proposition 5.3.1], the natural isomorphism

Wh0(Q0⊗H0)
ε0≃ id

is given by

(ε
(0)
M )−1 : M → Wh0(Q0 ⊗H0 M)

m 7→ 1 ⊗m,
(7.0.1)

for any M ∈ M0 .

Our final goal is to show that the equivalence just introduced is invariant
under the action of the category C2 and thus also of U(g)-modfin. To this aim,
we firstly need to understand the C2-module structure of M0.

Lemma 7.0.5. The category M0 is a (C2,C2)-bimodule category, where the
left action bifunctor ⊗M0 is ⊛(1) |M0

, while the right one is ⊛(1)
r
|M0

.

Proof. Firstly, recall that M2 is a (C2,C2)-bimodule category as we ob-
served in Remark 7.0.2.
By Theorem 7.0.3, the functor Wh1 establishes an equivalence between the
categories M2 and M0. Hence, by transport of structure, we can endow M0

with a C2-module structure following the construction of Chapter 6. In partic-
ular, this implies that the left action bifunctor is the restriction to M0 of ⊛(1),
while the right one is the restriction to M0 of ⊛r

(1). �

The previous lemma together with Lemma 4.2.3 gives the following corol-
lary.

Corollary 7.0.6. The functor Wh1|M2 paired with the natural isomor-
phism Wh1|M2(id ⊗ε(1)−1

) is a C2-module functor, where ε(1) is the natural iso-
morphism defined in Equation (5.0.2).

Now, we define the following natural isomorphisms

uX,N2 : Wh1 ◦ (Qℓ(2)
⊗Hℓ(2)

(X ⊛(2) N2)) → X ⊛(1) Wh1 ◦ (Qℓ(2)
⊗Hℓ(2)

N2)

as
uX,N2 := Wh1

(
(idX ⊗ ε

(1)−1

Qℓ(2)
⊗Hℓ(2)

N2
) ◦ ε(2)

X⊗(Qℓ(2)
⊗Hℓ(2)

N2)

)
(7.0.2)

and

vX,M0 : Wh2 ◦ (Qℓ(1)
⊗Hℓ(1)

(X ⊛(1) M0)) → X ⊛(2) Wh2 ◦ (Qℓ(1)
⊗Hℓ(1)

M0)
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as
vX,M0 := Wh2

(
(idX ⊗ ε

(2)−1

Qℓ(1)
⊗Hℓ(1)

M0
) ◦ ε(1)

X⊗(Qℓ(1)
⊗Hℓ(1)

M0)

)
. (7.0.3)

for every X ∈ C2, N2 ∈ N2 and M0 ∈ M0 and for ε the natural isomorphism
defined in Remark 5.0.2.
We are now in a position to prove the main result.

Theorem 7.0.7. Let u and v be the natural isomorphisms defined respec-
tively in (7.0.2) and (7.0.3). Then, the pairs (Q0⊗H0 , u) and (Wh0, v) are
mutually inverse C2-module equivalences.

Proof. We prove the Theorem for the functor Q0⊗H0 .
Theorem 7.0.3 implies that the following diagram is commutative

M2 N2

M0.

Qℓ(2)
⊗Hℓ(2)

Wh1|M2

Q0⊗H0

Moreover, by Lemma 6.0.8 the functors Wh1 andQℓ(2)
⊗Hℓ(2)

paired respectively

with the natural isomorphisms Wh1(id− ⊗ ε
(1)−1

− ) and ε(2)
−⊗(Qℓ(2)

⊗Hℓ(2)
−), are C2-

module functors.
Finally, sinceQ0⊗H0 = Qℓ(2)

⊗Hℓ(2)
◦Wh1, we can apply Lemma 4.1.14 obtaining

that (Q0⊗H0 , u) is a C2-module functor.
The proof for the functor Wh0 is analogous. �





CHAPTER 8

Exactness of the tensor product

In this chapter, we study the exactness of the categorical action functor.
We start recalling the following general result.

Proposition 8.0.1. [22, Proposition 7.1.6]. Let (C,⊗C, a, 1) be a rigid
monoidal category and let (M,⊗M,m) be a left C-module category. There is a
canonical isomorphism

HomM(X∗ ⊗M M,M1) → HomM(M,X ⊗M M1) (8.0.1)

natural in X ∈ C and M,M1 ∈ M.

This proposition implies the following.

Corollary 8.0.2. Let (C,⊗C, a, 1) be a rigid monoidal category and let
(M,⊗M,m) be a left C-module category. Then, the endofunctor X ⊗M − is
exact for every X ∈ C.

Proof. Proposition 8.0.1 implies thatX⊗M− is a right adjoint of X∗⊗M−
and hence it is left exact. Moreover, thanks to Proposition 8.0.1, the endo-
functor X ⊗M − is a left adjoint of ∗X ⊗M − , and hence it is right exact. �

Consider U(g)-modfin the category of finite-dimensional U(g)-modules,
which is a rigid monoidal category by Example 4.1.3.
From now on, keep notations as in Chapter 5, 6 and 7. By Corollary 8.0.2,
for i = 1, 2 the endofunctors

X ⊗ − : Mi → Mi

and
X ⊛(i) − : Ni → Ni

are exact functors, for every X ∈ U(g)-modfin.
This implies that X ⊛(1) − : M0 → M0 is an exact endofunctor.
The above result has a symmetric counterpart for the right action of U(g)-
modfin on M and on N.
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CHAPTER A

Appendix

In this appendix we discuss the systems of equations that emerged in Sub-
section 3.4 when analyzing the number of p-elements occurring in the expres-
sion of χ(y2

χ). We collect here the results that were needed to conclude that
χ(y2

χ) ∈ Q\Z.

A.1. Case PSL3(q), q odd

We retain notation from Subsection 3.4, in particular recall that θ is a
primitive third root of unity. Moreover, throughout this Section q will be odd.
We recall that in Subsection 3.4 we had to estimate the number of pairs (a, b),
with a, b ∈ Fq, which satisfy the following system

−b2 − 3b(θi + θj) − 3(θ2i + θ2j) = 3θk

a2 − 3a(θ2i + θ2j) + 3(θi + θj) = −3θ2k,
(A.1.1)

where i, j, k ∈ {0, 1, 2}. We denote System (A.1.1) by E(i, j, k), where i, j, k ∈
{0, 1, 2}.

Lemma A.1.1. Let q = 7 and M = M1. Then, the total number of solutions
(a, b) ∈ F2

7 of each system E(i, j, k) for i, j, k ∈ {0, 1, 2} is 75.

Proof. Computing the discriminant of the above equations in b and a
respectively, for fixed i, j, k we obtain

∆1(i, j, k) = −3(θ2i + θ2j + θi+j + 4θk)
∆2(i, j, k) = −3(θi + θj + θ2(i+j) + 4θ2k).

Notice that ∆1(i, j, k) = ∆2(2i, 2j, 2k) and ∆2(i, j, k) = ∆1(2i, 2j, 2k).
Set θ = 2. Then, for each triple (i, j, k) for i, j, k ∈ {0, 1, 2}, the values of the
discriminants are collected in the following tables:

i j k ∆1 ∆2

0 0 0 0 0
0 0 1 2 6
0 0 2 6 2
1 0 0 2 2
1 0 1 4 1
1 0 2 1 4
2 0 0 2 2
2 0 1 4 1
2 0 2 1 4

i j k ∆1 ∆2

0 1 0 2 2
0 1 1 4 1
0 1 2 1 4
0 2 0 2 2
0 2 1 4 1
0 2 2 1 4
1 1 0 1 5
1 1 1 3 4
1 1 2 0 0

i j k ∆1 ∆2

2 1 0 2 2
2 1 1 4 1
2 1 2 1 4
2 2 0 5 1
2 2 1 0 0
2 2 2 4 3
1 2 0 2 2
1 2 1 4 1
1 2 2 1 4
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Bearing in mind that the non-zero squares in F7 are 1, 2 and 4, we underlined
in green the rows which give rise to four pairs (a, b) solving the system, and in
yellow the rows which provide just one solution. Counting them, we get that
the total number of solutions of the systems when i, j, k run through {1, 2, 3}
is 75. �

For simplicity, we call A the matrix
(

0 0 1
1 −a −b

b+3(θi+θj) 1−ab−3a(θi+θj) a−b2−3(θ2i+θ2j)−3b(θi+θj)

)
. (A.1.2)

Lemma A.1.2. Let q be odd. Let (a, b) ∈ F2
q be any solution of the system

E(i, j, k) for i, j, k ∈ {0, 1, 2}. Then, the rank of A− θk · 1 is 2.

Proof. Suppose that A is of Jordan type (2,1), i.e. that the rank of

A− θk · 1 =

(
−θk 0 1

1 −a−θk −b
b+3(θi+θj) 1−ab−3a(θi+θj) a−b2−3(θ2i+θ2j)−3b(θi+θj)−θk

)

is one. Then the second column of A − θk · 1 must be trivial and the third
column must be a multiple of the first one. These conditions lead to the
following system of equations:

a = −θk
b = θ2k

3(θi + θj) = −2θ2k

3(θ2i + θ2j) = −2θk.

.

We analyze the above system, proving that there are no solutions.
1) If i = j, then the last two equations of the above system become
3θi = −θ2k and 3θ2i = −θk. Multiplying the latter two equations, we get
9 = 1, a contradiction since p is odd.
2) If i 6= j, then there exists j̄ ∈ {0, 1, 2}, such that θi + θj + θj̄ = 0. Then,
the last two equations of the system read as −3θj̄ = −2θ2k and −3θ2̄j = −2θk

respectively. Multiplying them, we obtain 9 = 4, which is satisfied if and only
if p = 5. If this is the case, the third equation of the initial system becomes
θj̄ = −θ2k, which implies that 1 = −1, a contradiction. �

Lemma A.1.3. Let p = 5 and let M =
〈
π
(

1 −3θ2i 3θi

0 1 0
0 0 1

)
for i ∈ {0, 1, 2}

〉
.

Then, the number of pairs (a, b) ∈ F2
q for which π

(
1 a b
0 1 0
0 0 1

)
∈ M and

π
(

0 0 1
1 −a −b

b+3(θi+θj) 1−ab−3a(θi+θj) a−b2−3(θ2i+θ2j)−3b(θi+θj)

)

is a 5-element for some i, j ∈ {0, 1, 2} is 15.

Proof. We use the following GAP code to count the number of p-elements.
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#we call z the zero of F_25, u the unit of F_25 and theta a third root of unit;

z:=Z(25)*0;;

u:=Z(25)^0;;

theta:=Z(25)^8;;

#y denotes the generator of the group of invertible elements in F_25;

y:=Z(25);;

#t stands for \tau

t:=[[z,u,z],[z,z,u],[u,z,z]];;

centre:=[[theta,z,z],[z,theta,z],[z,z,theta]];;

M:=[];;

F25:=[z];;

#we construct F25

for i in [1..24] do

c:=y^i;

Append(F25,[c]);

od;

#we construct M_{C_{(3)}} as a list and we call it L

L:=[];

for l in [1,2,3] do

c:=[[u,-3*theta^l,3*theta^(2*l)],[z,u,z],[z,z,u]];

Append(L,[c]);

od;

#we construct the subgroup M

for j in [1..5] do

for i in [1..5] do

c:=L[1]^i*L[2]^j;

Append(M,[c]);

od;

od;

#we create a list P containing the elements in t*[[u,(y^12)*3*(x^(2*i)),3*(x^i)],[z,u,z],[z,z,u]]*

#[[u,(y^12)*3*(x^(2*j)),3*(x^j)],[z,u,z],[z,z,u]]*m*t*m^(-1) which are 5-elements for m in M

P:=[];;

for i in [1..3] do

for j in [1..3] do

for m in M do

c:=t*[[u,(y^12)*3*(x^(2*i)),3*(x^i)],[z,u,z],[z,z,u]]*

[[u,(y^12)*3*(x^(2*j)),3*(x^j)],[z,u,z],[z,z,u]]*m*t*m^(-1);

if c^5=theta or c^5=theta^2 or c^5=theta^3 then

Append(P,[c]);

fi;

od;

od;

od;

#the length of P gives us the number of 5-elements
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Length(P);

15

�

Let C be the matrix
(

a+r+w −a(a+r+w) 1+(a2−b)(a+r+w)

1 −a a2−b
b+s+rw+a(r+w)+y 1−a(b+s+rw+a(r+w)+y) r+w+(a2−b)(b+s+rw+a(r+w)+y)

)
, (A.1.3)

for y = 3θi, s = 3θj, w = (−3/2)θ2i, r = (−3/2)θ2j and i, j ∈ {0, 1, 2}.

Lemma A.1.4. Let p 6= 7 and p 6= 19. If the characteristic polynomial of C
is (θk − z)3, for some k ∈ {0, 1, 2}, then the rank of C − θk · 1 is 2. Moreover,

• If p = 7, the rank of C − θk · 1 is 1 if and only if

(i, j, k) ∈ {(0, 0, 2), (1, 1, 1), (2, 2, 0)};

• If p = 19, the rank of C − θk · 1 is 1 if and only if

(i, j, k) ∈ {(0, 1, 0), (0, 2, 1), (1, 0, 0), (1, 2, 2), (2, 0, 1), (2, 1, 2)}.
Proof. First of all, observe that for every k ∈ {0, 1, 2} the (2, 1) entry of

C − θk · 1 is equal to one. This implies that C 6= θk · 1.
Assume that rk(C − θk · 1) = 1. Then

det
(
a+r+w−θk −a(a+r+w)

1 −a−θk

)
= 0.

This yields that r+w = θk, i.e. −3(θ2i+θ2j) = 2θk. We compute the following
table for k ∈ {0, 1, 2}, which shows when the above equation admits solutions.

i j −3(θ2i + θ2j) = 2θk (−3(θ2i + θ2j))3 = 8 Solution if

0 0 −3 = θk −27 ≡p 1 p = 2, 7
0 1 3θ = 2θk 27 ≡p 8 p = 19
0 2 3θ2 = 2θk 27 ≡p 8 p = 19
1 0 3θ = 2θk 27 ≡p 8 p = 19
1 1 −3θ2 = θk −27 ≡p 1 p = 2, 7
1 2 3 = 2θk 27 ≡p 8 p = 19
2 0 3θ2 = 2θk 27 ≡p 8 p = 19
2 1 3 = 2θk 27 ≡p 8 p = 19
2 2 −3θ = θk −27 ≡p 1 p = 2, 7

(A.1.4)

So for q odd and p 6= 7, 19, the equation −3(θ2i + θ2j) = 2θk is never satisfied.
Let p = 7 and set θ = 2. By Table A.1.4, the equation −3(θ2i + θ2j) = 2θk

admits solutions only if i = j. It is easy to verify that for each i ∈ {0, 1, 2} there
exists a unique k ∈ {0, 1, 2} such that the equation is satisfied. In particular,
the triples (i, j, k) which solve the equation are (0, 0, 2), (1, 1, 1), (2, 2, 0).
For p = 19 the argument is analogous, with θ = 7. �
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We recall that for proving Proposition 2.3.11, we needed to estimate the
number of pairs (a, b) which solve the following system:

a2 + a(r + w) + s+ y − rw − r2 − w2 = −3θ2k

2(r + w) + (a2 − b)(b+ s+ rw + y + a(r + w)) = 3θk.
(A.1.5)

for some r, s, y, w and some k ∈ {0, 1, 2}.

Lemma A.1.5. The total number of solutions (a, b) ∈ Fq × Fq of system
(A.1.5) for which the rank of C − θk · 1 is equal to 1 are at most

i) 12 if p = 7;
ii) 24 if p = 19.

Proof. i) Let p = 7. By Lemma A.1.4, the triples (i, j, k) which satisfy
the equation −3(θ2i + θ2j) = 2θk are (0, 0, 2), (1, 1, 1), (2, 2, 0).
For each (i, j, k) ∈ {(0, 0, 2), (1, 1, 1), (2, 2, 0)}, the first equation of system
A.1.5 gives at most two solutions for a and for each a the second equation
provides at most two solutions for b. Hence, there at most 4 · 3 pairs (a, b)
solving system A.1.5 and giving rise to 7-elements of Jordan type (2, 1) .
ii) Let p = 19. In virtue of Lemma A.1.4, the triples (i, j, k) satisfying the
equation −3(θ2i + θ2j) = 2θk are (0, 1, 0), (0, 2, 1), (1, 0, 0), (1, 2, 2), (2, 0, 1) and
(2, 1, 2). Hence, by the same argument we used for the previous case, the
solutions of A.1.5 are at most 4 · 6. �

Lemma A.1.6. Let q = 7. Then, the number of pairs (a, b) ∈ F7 × F7 sat-
isfying system (A.1.5) is 33. In addition, in exactly 6 cases the corresponding
matrix C has Jordan type (2,1).

Proof. We use the following GAP code for proving the lemma.
#for simplicity, we call z the zero of F_7 and u the unity of F_7

z:=Z(7)*0;;

u:=Z(7)^0;;

theta:=Z(7)^2;;

#y stands for the generator of the group of the invertible elements in F_7

y:=Z(7);;

#t stands for \tau

t:=[[z,u,z],[z,z,u],[u,z,z]];;

centre:=[[theta,z,z],[z,theta,z],[z,z,theta]];;

M:=[];

F7:=[z];

#we construct F_7

for i in [1..6] do

c:=y^i;

Append(F7,[c]);

od;

#we construct M_2 and for simplicity we call it M

for a in F7 do

for b in F7 do

c:=[[u,a,b],[z,u,a],[z,z,u]];



120 A. APPENDIX

Append(M,[c]);

od;

od;

P:=[];;

#we create a list with all 7-elements in y_chi^2

for i in [1..3] do

for j in [1..3] do

for m in M do

c:=t*[[u,(-3*2^(-1))*(theta^(2*i)),3*(theta^i)],[z,u,(-3*2^(-1))*(theta^(2*i))],[z,z,u]]*

[[u,(-3*2^(-1))*(theta^(2*j)),3*(theta^j)],[z,u,(-3*2^(-1))*(theta^(2*j))],[z,z,u]]*m*t*m^(-1);

if c<> centre^3 and (c^7=centre or c^7=centre^2 or c^7=centre^3) then

Append(P,[c]);

fi;

od;

od;

od;

#we count the number of 7-elements of Jordan type (2,1)

n:=0;;

for p in P do

c:=p-centre;

d:=p-centre^2;

e:=p-centre^3;

if RankMatrix(c)=1 or RankMatrix(d)=1 or RankMatrix(e)=1 then

n:=n+1;

fi;

od;

#the number of 7-elements is the length of P

Length(P);

33

#n gives the number of 7-elements of Jordan type (2,1)

n;

6

�

Lemma A.1.7. Let q = 19. Then, the number of pairs (a, b) ∈ F19 × F19

satisfying system A.1.5 is 51. Moreover, in exactly 12 cases the corresponding
matrix C has Jordan type (2,1).

Proof. The following GAP code proves the Lemma.
#for simplicity, we call z the zero of F_19 and u the unity of F_19

z:=Z(19)*0;;

u:=Z(19)^0;;

theta:=Z(19)^6;;

#y stands for the generator of the group of the invertible elements in F_19

y:=Z(19);;

#t stands for \tau

t:=[[z,u,z],[z,z,u],[u,z,z]];;

centre:=[[theta,z,z],[z,theta,z],[z,z,theta]];;
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M:=[];

F19:=[z];

#we construct F_19

for i in [1..18] do

c:=y^i;

Append(F19,[c]);

od;

#we construct M_2 and for simplicity we call it M

for a in F19 do

for b in F19 do

c:=[[u,a,b],[z,u,a],[z,z,u]];

Append(M,[c]);

od;

od;

P:=[];;

#we create a list will all 19-elements in y_chi^2

for i in [1..3] do

for j in [1..3] do

for m in M do

c:=t*[[u,(-3*2^(-1))*(theta^(2*i)),3*(theta^i)],[z,u,(-3*2^(-1))*(theta^(2*i))],[z,z,u]]*

[[u,(-3*2^(-1))*(theta^(2*j)),3*(theta^j)],[z,u,(-3*2^(-1))*(theta^(2*j))],[z,z,u]]*m*t*m^(-1);

if c<> centre^3 and (c^19=centre or c^19=centre^2 or c^19=centre^3) then

Append(P,[c]);

fi;

od;

od;

od;

#we count the number of 19-elements of Jordan type (2,1)

n:=0;;

for p in P do

c:=p-centre;

d:=p-centre^2;

e:=p-centre^3;

if RankMatrix(c)=1 or RankMatrix(d)=1 or RankMatrix(e)=1 then

n:=n+1;

fi;

od;

#the number of 19-elements is the length of P

Length(P);

51

#n gives the number of 19-elements of Jordan type (2,1)

n;

12

�

Lemma A.1.8. Let p = 5 and let

M =
〈
π
(

1 (−3/2)θ2l 3θl

0 1 (−3/2)θ2l

0 0 1

)
: l ∈ {0, 1, 2}

〉
.
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The total number of solutions (a, b) ∈ Fq × Fq of system (A.1.5) such that(
1 a b
0 1 a
0 0 1

)
∈ M is 15.

Proof. The proof is given by the following code.

#as in the previous codes, we rename the zero, the unit, the third root of unit

z:=Z(25)*0;;

u:=Z(25)^0;;

theta:=Z(25)^8;;

#t stands for tau

t:=[[z,u,z],[z,z,u],[u,z,z]];;

centre:=[[theta,z,z],[z,theta,z],[z,z,theta]];;

#we create a list where we insert two elements from M_{C_{(3)}}

L:=[];;

for i in [1..2] do

c:=[[u,-3*(2^(-1))*theta^i,3*theta^(2*i)],[z,u,-3*(2^(-1))*theta^i],[z,z,u]];

Append(L,[c]);

od;

# the elements in L generates M, so we construct M in the following way

M:=[];;

for i in [1..5] do

for j in [1..5] do

c:=(L[1]^i)*(L[2]^j);

Append(M,[c]);

od;

od;

#we count the number of 5 elements in M

P:=[];;

for i in [1..3] do

for j in [1..3] do

for m in M do

c:=t*[[u,-3*(2^(-1))*(theta^(2*i)),3*(theta^i)],[z,u,-3*(2^(-1))*(theta^(2*i))],[z,z,u]]*

[[u,-3*(2^(-1))*(theta^(2*j)),3*(theta^j)],[z,u,-3*(2^(-1))*(theta^(2*j))],[z,z,u]]*m*t*m^(-1);

if c<> centre^3 and (c^5=centre or c^5=centre^2 or c^5=centre^3) then

Append(P,[c]);

fi;

od;

od;

od;

#the length of P will give us the number of 5-elements

Length(P);

15

�
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A.2. Case PSL3(q), q even

Here q is even. We retain notation from Section 3.4.
We need to solve the system (2.3.6), which reads as

b2 + b(θi + θj) + (θ2i + θ2j + θk) = 0
a2 + a(θ2i + θ2j) + (θi + θ2j + θ2k) = 0.

(A.2.1)

We call E ′(i, j, k) the system (A.2.1).
For computing χ(y2

χ), we need to investigate the Jordan type of the p-elements
provided by system (A.2.1).

Lemma A.2.1. Let q be even. Let (a, b) ∈ Fq × Fq be a solution of system
E ′(i, j, k), for some i, j, k ∈ {0, 1, 2}. Then, the rank of

(
0 0 1
1 −a −b

b+3(θi+θj) 1−ab−3a(θi+θj) a−b2−3(θ2i+θ2j)−3b(θi+θj)

)
− θk

(
1 0 0
0 1 0
0 0 1

)
(A.2.2)

is 1 if and only if i = j and (a, b) = (θk, θ2k).

Proof. Consider the matrix(
−θk 0 1

1 −a−θk −b
b+3(θi+θj) 1−ab−3a(θi+θj) a−b2−3(θ2i+θ2j)−3b(θi+θj)−θk

)
,

for some i, j, k ∈ {0, 1, 2} and a, b ∈ Fq.
By a direct calculation one sees that the rank of the above matrix is 1 if and
only if 




a = −θk
b = θ2k

θi + θj = 0
θ2i + θ2j = 0.

This system is satisfied if and only if i = j and (a, b) = (θk, θ2k). �

Lemma A.2.2. Let v = π
(

1 a b
0 1 a
0 0 1

)
for some a, b ∈ Fq and let τ = π

(
0 0 1
0 1 0
1 0 0

)
.

Assume a 6= 0. If b = 0 or b = a2, then the rank of τvτv−1 − 1 is 2.

Proof. For a, b ∈ Fq, we have to study the rank of the matrix
(

0 a a2+b
a a2 a+a3+ab
b a+ba a2+ba2+b2

)
.

Subtracting a-times the second column to the third one, we obtain
(

0 a b
a a2 a+ab
b a+ba b2

)
. (A.2.3)

If b = 0 then the above matrix has rank 2, since a 6= 0 by assumption.
If b = a2 the same Gaussian reduction made before leads to the following
matrix: (

0 a 0
a a2 a
a2 a+a3 a2

)
,
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whose rank is 2, since a 6= 0 by assumption.
�

Lemma A.2.3. Let (a, b) ∈ Fq×Fq and let i, j ∈ {0, 1, 2}. The characteristic
polynomial of

(
1 a a2+b
a a2+1 a(a2+b+1)

b+θ2i+θ2j+1 a(b+θ2i+θ2j) (a2+b)(b+θ2i+θ2j)+b+1

)

is (θk − z)3 for some k ∈ {0, 1, 2} if and only if

(a, b) ∈ {(0, 0), (0, 1), (a, 0), (a, a2), (1, θ2l)},
for any a 6= 0 and for any l ∈ {1, 2}.
Furthermore, the following table shows for which (i, j, k) ∈ {0, 1, 2}3 the pair
(a, b) is a solution of E ′(i, j, k).

(i,j,k) Solution (a,b)
(i, j, 0), i 6= j (0, 0)
(i, j, 0), i 6= j (a, 0), a 6= 0
(i, j, 0), i 6= j (a, a2), a 6= 0

(i, i, 0) (0, 0)
(i, i, 0) (0, 1)

(i, i, k), k 6= 0 (1, θ)
(i, i, k), k 6= 0 (1, θ2)

(A.2.4)

Proof. For x, x′ ∈ M2C(3)
and v = π

(
1 a b
0 1 a
0 0 1

)
, we have

τxx′vτv−1 = π
((

0 0 1
0 1 0
1 0 0

) (
1 1 θ2i

0 1 1
0 0 1

)(
1 1 θ2j

0 1 1
0 0 1

) (
1 a b
0 1 a
0 0 1

) (
0 0 1
0 1 0
1 0 0

))

= π

(
1 a a2+b
a a2+1 a(a2+b+1)

b+θ2j+θ2i+1 a(b+θ2j+θ2i) (a2+b)(b+θ2j+θ2i)+b+1

)
,

for i, j ∈ {1, 2} and a, b ∈ Fq.
Computing the characteristic polynomial of the matrix

(
1 a a2+b
a a2+1 a(a2+b+1)

b+θ2j+θ2i+1 a(b+θ2j+θ2i) (a2+b)(b+θ2j+θ2i)+b+1

)

and forcing it to be equal to (θj−z)3, we get the following system of equalities:

1 + b(1 + a2 + θ2j + θ2i) + b2 = θ2k

1 + b(1 + a2 + θ2j + θ2i) + b2 + a2(1 + θ2j + θ2i) = θk.
.

Summing the equations, we obtain a2(1 + θ2j + θ2i) = θk + θ2k. We divide the
treatment into cases.
1) Suppose that i 6= j, then the equation a2(1 + θ2j + θ2i) = θk + θ2k reduces
to 0 = θk + θ2k, i.e. k = 0. Substituting k = 0 in the first equation we obtain
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a2b+ b2 = 0; in particular, the solutions are (a, 0) and (a, a2) for a ∈ Fq.
2) Suppose that i = j then the initial system becomes

a2 = θk + θ2k

1 + b(1 + a2 + θk + θ2k) + b2 = θ2k.

2a) If k = 0, then a = 0 and b + b2 = 0, i.e. the solutions are (a, b) = (0, 0)
and (a, b) = (0, 1).
2b) If k 6= 0 then the solution is (a, b) = (1, θ2k).

�

Lemma A.2.4. Let (i, j, k) ∈ {1, 2}2 × {0, 1, 2} and (a, b) ∈ F2
q be such that

the characteristic polynomial of the matrix
(

1 a a2+b
a a2+1 a(a2+b+1)

b+θ2i+θ2j+1 a(b+θ2i+θ2j) (a2+b)(b+θ2i+θ2j)+b+1

)

is (θk−z)3. In the following table we list the Jordan type of the above matrices
corresponding to each pair (a, b) together with the matching triple (i, j, k) ∈
{1, 2}2 × {0, 1, 2} as in Table (A.2.4).

(i,j,k) Solution (a,b) Jordan type
(i, j, 0), i 6= j (0, 0) (1, 1, 1)
(i, j, 0), i 6= j (a, 0), a 6= 0 (3)
(i, j, 0), i 6= j (a, a2), a 6= 0 (3)

(i, i, 0) (0, 0) (2, 1)
(i, i, 0) (0, 1) (2, 1)

(i, i, k), k 6= 0 (1, θ) (2, 1)
(i, i, k), k 6= 0 (1, θ2) (2, 1)

(A.2.5)

Proof. We compute the Jordan type of the matrices corresponding to the
terms in table (A.2.4).
1) If k = 0 and (a, b) = (0, 0), we see that the rank of the matrix

(
0 0 0
0 0 0

1+θ2j+θ2i 0 0

)

is 1 if and only if i 6= j and 0 otherwise.
If k = 0 and (a, b) = (0, 1 + θ2j + θ2i), then we compute the rank of the matrix

(
0 0 1+θ2j+θ2i

0 0 0
0 0 0

)
,

and proceed as above.
Let k = 0 and let (a, b) = (a, 0) or (a, a2). Then we evaluate the rank of

(
0 a a2+b
a a2 a(a2+b+1)

b a(b+1) (a2+b+1)(b+1)

)
.

If a = 0, then it is 0. If a 6= 0, then the first two columns are linearly
independent and in consequence the rank of the above matrix is 2.
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2) If k 6= 0 and i = j, then (a, b) = (1, θ2k). Hence, we have to determine the
rank of the following matrix

(
θ2k 0 θk

1 θk θ2k

θk θ2k 1

)
,

which is clearly 2. �
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