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Abstract

This thesis deals with arithmetic and representation theoretic properties
of certain semisimple Hopf algebras. It consists of two parts.
The first one is devoted to the study of Hopf orders. The initial goal of this
part is to prove that for any finite non-abelian simple group G there is a twist
Q) for CG, arising from a 2-cocycle on an abelian subgroup of G, such that
(CG)gq does not admit a Hopf order over any number ring. For showing this
we prove the non-existence result for a key family of simple groups G and
combine it with two theorems of Thompson and Barry and Ward on minimal
simple groups.
In addition, we prove the non-existence of Hopf orders for twists of group
algebras of direct products of Frobenius groups, subject to some technical
conditions.

The second part of the thesis takes place in the finite W-algebras framework.
A finite W-algebra H, is an algebra constructed from a reductive Lie algebra
g and a nilpotent element e € g. We interpret Goodwin’s translation functors
as an action of a subcategory of U(g)-representations on the category of
finitely generated H,-modules. This action is obtained by transporting the
tensor product of U(g)-modules through Skryabin’s equivalence.

Recently, Genra and Juillard studied sufficient conditions to apply the Hamil-
tonian reduction by stages to finite W-algebras, getting a Skryabin equivalence
by stages. We show that the latter is an equivalence of U(g)-module categories.






Riassunto

Questa tesi tratta di proprieta aritmetiche e proprieta concernenti la teoria
delle rappresentazioni di alcune algebre di Hopf semisemplici. Si compone di
due parti.

La prima ¢ dedicata allo studio degli ordini di Hopf.

L’obiettivo iniziale di questa parte ¢ dimostrare che per qualsiasi gruppo finito
semplice e non abeliano G esiste un twist €2 per CG, derivante da un 2-cociclo
su un sottogruppo abeliano di G, tale che (CG)q non ammette un ordine di
Hopf su nessun anello di numeri. Per dimostrare cio, proviamo il risultato di
non-esistenza per una famiglia chiave di gruppi semplici G e lo combiniamo
con due teoremi di Thompson e Barry e Ward riguardanti i gruppi semplici
minimali.

Inoltre, dimostriamo la non-esistenza di ordini di Hopf per twists di algebre di
gruppo di prodotti diretti di gruppi di Frobenius, soggetti ad alcune condizioni
tecniche.

La seconda parte della tesi ¢ contestualizzata nella teoria delle WW-algebre
finite. Una W-algebra finita H, € un’algebra costruita a partire da un’algebra
di Lie riduttiva g e da un elemento nilpotente e € g. Interpretiamo i
funtori di traslazione di Goodwin come un’azione di una sottocategoria delle
rappresentazioni di U(g) sulla categoria di H,-moduli finitamente generati.
Quest’azione ¢ ottenuta trasportando il prodotto tensore di moduli di U(g)
attraverso ’equivalenza di Skryabin.

Recentemente, Genra e Juillard hanno studiato condizioni sufficienti per
applicare la riduzione hamiltoniana per fasi alle W-algebre finite, otte-
nendo un’equivalenza di Skryabin per fasi. Mostriamo che quest’ultima e
un’equivalenza di U(g)-modulo categorie.
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Introduction

This thesis consists of two independent parts with Hopf algebras serving as
common thread. The first part of the thesis deals with arithmetic properties
of certain deformation of group algebras, namely the existence of Hopf orders.
The second part involves the Hopf algebra U(g), for g a semisimple Lie algebra.
In particular, we are interested in properties of the action of a subcategory of
U(g)-mod on the category of finitely generated H,-modules, where H, is a
finite W-algebra.

1. Hopf orders

Hopf algebras are a variation of an algebraic structure on the cohomolgy
rings of certain topological spaces introduced by Heinz Hopf in 1941 ([31]).
They provided algebraic tools to understand topological properties of these
spaces.

Nowadays, Hopf algebras are defined as algebras with a compatible coalgebra
structure and an inverse-like operation called the antipode. Over the years,
they have become a topic of great interest in their own right, finding applica-
tions in different fields, e.g. condensed-matter physics, quantum field theory,
string theory and LHC phenomenology ([1]).

In the late 20th century, the study of Hopf algebras was prompted by the in-
troduction of quantum groups, which are important examples of such algebras
and have significant applications in theoretical physics.

A crucial goal in understanding Hopf algebras is their complete classifica-
tion, which is currently a wide open problem. A natural approach to this issue
is to divide them into families, according to their properties. An example of
these families consists in Hopf algebras which are semisimple as algebras; the
latter can be subdivided by means of invariants and further properties.

One of these properties is the existence of Hopf orders (with the definition
to follow below); for this reason we are interested in understanding which
semisimple Hopf algebras have this additional structure.

In particular, in this part of the thesis we deal with semisimple Hopf al-
gebras that are obtained by deforming certain group algebras KG -where K
is a number field and G a finite group- exploiting a specific twist as devised
by Movshev in [54]. The ingredients for the construction of this twist are an
abelian subgroup of central type M of G and a non-degenerate 2-cocycle on
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2 INTRODUCTION

the character group M (see Subsections 3.2 and 3.3). This procedure alters
the comultiplication and the antipode operation, leaving unchanged the other
structures, namely multiplication, unit and counit.

Let H be a Hopf algebra over K and let R be a subring of K. A Hopf order,
roughly speaking, is a Hopf algebra over R, such that the extension by scalars
is isomorphic to H. There is a well-established theory of Hopf orders for co-
commutative Hopf algebras; the theory is less developed for non-commutative
and non-cocommutative ones. Hopf orders apart from the Hopf algebra frame-
work have applications in number theory, for instance in Galois module theory
(for further details see [12] and [13]).

Our goal is to prove that for some key examples of G and M such deformed
group algebras do not admit Hopf orders over the ring of integer of K.
Understanding the (non-)existence of Hopf orders was initially motivated by
Kaplansky’s sixth conjecture.

1.1. Kaplansky’s sixth conjecture. In 1975 Kaplansky, after giving a
course on bialgebra in Chicago ([40]), proposed to his students 10 open ques-
tions, which are now known as Kaplansky conjectures and have been the focus
of a great deal of research. Such problems took inspiration from group theory.
Indeed, since finite group algebras are finite-dimensional semisimple Hopf al-
gebras, Kaplansky wondered whether the latter could have similar properties
to those of finite groups.

The answer to some of these 10 questions is still unknown; among these the
sixth one remains a partially open problem (further details could be found in
[61]). The above-mentioned conjecture is a generalization of Frobenius theo-
rem in the framework of representation theory of Hopf algebras. Explicitly, it
states that given a finite-dimensional semisimple Hopf algebra H, the dimen-
sion of every irreducible representation of H divides the dimension of H.

As already said, Kaplansky sixth conjecture motivated the study of Hopf or-
ders. Specifically, Larson proved in [47] that if a Hopf algebra admits a Hopf
order over a number ring then the conjecture holds. The way of proving Lar-
son’s result was mimicking the proof of Frobenius theorem. Indeed, the latter
is rooted on the fact that -speaking in modern terms- the finite group algebra
CG admits the Hopf order ZG.

At this stage, the problem was to understand if complex semisimple Hopf al-
gebras behave as group algebras, in particular if they admit Hopf orders over
a number ring.

In this regard, Cuadra and Meir studied the existence of Hopf orders for sev-
eral families of semisimple Hopf algebras in [14] and [15]. The Hopf algebras
considered are constructed as Drinfeld twists of group algebras through the
already mentioned Movshev’ strategy.

In this case the validity of Kaplansky’s conjecture is given for free. Indeed
by definition the representations of a Hopf algebra are the representations of
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its underlying algebra; then Frobenius theorem can be applied.

Cuadra and Meir proved that for certain families of groups such deformations
of group algebras do not admit Hopf orders over a number ring. This
highlighted an important difference between finite semisimple Hopf algebras
and finite group algebras, showing that the conjecture can be proven even if
the method adopted in the proof of Frobenius theorem for groups fails.

The strategy employed for proving the non-existence of Hopf orders for
these families of semisimple Hopf algebras considered by Cuadra and Meir is
a sort of verification method; the deep reason for this result to hold is still
unclear.

In [15, Section 5] the authors hypothesized a relationship between the
simplicity of the twisted group algebras and the non-existence of Hopf orders.
In particular, they asked the following:

QUESTION. Let G be a finite non-abelian group. Let ) be a non-trivial
twist for CG, constructed via Movshev strategy. Suppose that (CG)gq is simple.
Can (CG)q admit a Hopf order over a number ring?

In [10] Giovanna Carnovale, Juan Cuadra and myself gave a partial

negative answer to this question when restricting ourselves to finite non-
abelian simple groups. Indeed, when G is simple, (CG)gq is always simple
independently of the twist (Corollary 1.3.5).
This part of the thesis recollects the main results obtained in the above paper.
In addition, we deal with other simple groups and with several non-simple
groups which are direct products of certain Frobenius groups. Frobenius
groups are an important family of groups firstly introduced by Frobenius in
1901 ([23]). They have many applications in number theory, representation
theory, geometry and physics. A Frobenius group G can be viewed as a
semidirect product D x, M, where ¢: M — Aut(D) is subject to specific
conditions (see Lemma 3.1.3). In this part of the thesis, we restrict ourselves
to the case in which M is an abelian p-group. A basic example of Frobenius
groups consists of groups of the form C, x C,, where p and ¢ are primes such
that p|g — 1 (see Remark 1.3.6 for the definition). If we consider the family
of groups (C, x C,) x (C, x C,), for p,q and r prime such that p|¢ — 1 and
p|lr — 1 and a twist arising from M = C, x C,, it is known that the associated
twisted group algebras are simple ([24, Theorem 4.5]). On the other hand,
for a general product of Frobenius groups Hi‘:1 D; %, M;, for M; an abelian
p-group for every i € {1,...,1} and M = [['_, M; of central type, it is not yet
clear if the associated twisted group algebras are simple or not.

There are also positive results on the existence of Hopf orders in the litera-
ture: Cuadra and Meir gave in [16] some conditions for twisted group algebras
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to admit a Hopf order over a number ring. In particular, the latter exists if
there is a normal abelian subgroup which contains a Lagrangian of M, where
M is the abelian subgroup giving rise to the twist ([16, Theorem 4.2]). In
addition, under more restrictive assumptions, they also proved the uniqueness
of the Hopf order ([16, Theorem 5.1]).

1.2. Organization. We provide a brief overview of the organization of
this part of the thesis.

Chapter 1 is devoted to the preliminaries. We give a proof of Frobe-
nius Theorem and we show how this proof can be carried out to prove
Larson’s theorem. Moreover, we recall the definition and the constructions we
need: Drinfeld twist, Movshev strategy, Hopf orders. In addition, we expound
the strategy we will use to prove the non-existence of Hopf orders and how
this can be applied to finite groups of Lie type.

Chapter 2 aims at proving the non-existence result for deformations of group
algebras of simple groups, specifically for SLy(q), PSLa(q), SL3(q), PSL3(q),
the Suzuki groups and the Janko groups. Here the twists arise from either
p-subgroups of central type or subgroups isomorphic to the Klein four group.
For this purpose, we describe the abelian subgroups of central type of the
groups we are considering.

Finally, in light of some remarkable classification theorems in group theory
([66, Corollary 1, page 388] and [3, Theorem 1]), we deduce a general
non-existence result for simple groups.

In Chapter 3, we prove the non existence result for group algebras as-
sociated to direct products of some Frobenius groups, namely the ones whose
Frobenius complement is an abelian p-group.

Finally in the appendix, we recollect some technical results we need in
Chapter 2.

2. W-algebras and U(g)-mod

A finite W-algebra H, is an algebra constructed from a reductive Lie
algebra g and a nilpotent element e € g.
The first definition of such an algebra dates back to 1978, when Kostant
constructed in [45] the algebra H, starting from a regular nilpotent element
ereg and showed that H, ~ Z(U(g)).
In [58], Premet gave a general definition of a finite W-algebra, i.e. he
generalized Konstant’s construction to the case of a general nilpotent element.
In particular, when e = 0, then H, ~ U(g), and when e is regular, then
Hy~ Z(U(g)). The work in [58] was motivated by the study of representations
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of semisimple Lie algebras in positive characteristic.

Roughly speaking, a finite W-algebra is a subquotient of U(g) which lies
between Z(U(g)) and U(g), although in general it is not a subalgebra of U(g).
Further contributions to the comprehension of this construction are due to
Gan, Ginzburg, Brundan and Goodwin ([7], [8], [25]).

Finite W-algebras captured the attention of mathematicians, but also

of physicists. The latter were interested in their connection with affine
W-algebras, which are vertex algebras modeling the so called W-Symmetry
from conformal field theory (see for instance [5]).
Mathematicians are interested in the representation theory of finite W-
algebras, because important information about U(g)-modules and primitive
ideals of U(g) are encoded in the representation theory of H, ([48]). An
important connection was illustrated by Skryabin in the appendix of [58],
where he established an equivalence between finitely-generated H,-modules
and a specific subcategory of U(g)-modules. By means of this equivalence,
Premet in [59] proved that every finite W-algebra possesses finite dimensional
irreducible representations.

In representation theory of Lie algebras, a crucial role is played by the

Bernstein-Gelfand-Gelfand category O. This category contains a lot of
important modules: e.g. finite-dimensional modules, highest-weight modules,
Verma modules.
The category O is the direct sum of the subcategories O,, called blocks, where
x runs through the set of central characters of U(g). These blocks are related
to each other by means of translation functors; these functors allow us to
deduce equivalences between blocks and to understand how representations
behave when they are translated from a block to another one in the BGG
category O.

In [28], Goodwin introduced an analogous functor for H,-modules. In
particular, he defined the translation of a finitely generated H,-module by
a finite dimensional U(g)-module by transporting the tensor product of
U(g)-modules through Skryabin’s equivalence. Additionally, he studied the
relationship between the translation functors and the category O(e), which is
the analogue of the BGG category in W-algebras setting (for the definition
see [8, Subsection 4.4]).

In this part of the thesis, after spelling out the transport of structure proce-
dure for general actions of monoidal categories, we interpret this translation
functor as an action of a specific subcategory of U(g) representations on the
category of finitely generated H,-modules.
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2.1. Reduction by stages. By Poincaré-Birkhoff-Witt theorem, the
universal enveloping algebra U(g) is a quantization of the symmetric algebra
S(g). Also, in [58], Premet showed that H, is a quantization of the Slodowy
slice ., associated to a nilpotent element e € g. For constructing .7, we
need a nilpotent element e € g, which, by Jacobson-Morozov Theorem, can
be embedded in an sly-triple {e, h, f}, i.e. h,f are such that [h,e] = 2e,
[h, f] = —2f and [e, f] = h. Then the Slodowy slice is defined as .7, = e + g/,
where g/ stands for the centralizer of f in g. Since g* is a Poisson variety, the
Slodowy slice inherits its Poisson structure through Hamiltonian reduction.
Hence, the finite W-algebra can be seen as a quantum Hamiltonian reduction

of U(g).

Since U(g) ~ H, when e = 0, one might ask whether a W-algebra
Hy, can be expressed as a quantum Hamiltonian reduction of another
W-algebra Hy,, in such a way that the following diagram commutes.

Hfu)

The theory of Hamiltonian reduction by stages is a well-developed branch of
symplectic geometry. The problem is to find a quantum version of Hamiltonian
reduction by stages.

Firstly Morgan in [53], and then Genra and Julliard in [26] worked on this
topic. In particular, the latter were interested in this reduction by stages for
affine W-algebras and for finite W-algebras; for the first one they made some
conjectures, while for the finite ones they found some conditions for which a
quantum version of Hamiltonian reduction by stages can be performed.

As a consequence of this construction, they obtained a variant of Skryabin
equivalence.

This part of the thesis aims at showing that the above equivalence is compatible
with the category action by translation functors.

2.2. Organization. We briefly outline how this part of the thesis is
organized.

In the fourth chapter, we recall some notions about category theory. In
particular, we recall the definition of a monoidal category, of a left C-module
category and of a C-module functor. Then, we spell out how we can construct
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new C-module categories by means of an equivalence and transport of
structure.

In Chapter 5, we recall the definition of a finite W-algebra and of the
classical version of Skryabin equivalence.

The goal of Chapter 6 is to spell out how the translation functors in-
troduced by Goodwin are an instance of transport of structure of a natural
categorical action. To this aim, we show that the category of Whittaker
modules is a (C., C.)-bimodule category, where C. is a subcategory of the
category of U(g)-modules, depending on e. Then, by means of Skryabin
equivalence, we endow the category of H,-modules with a (C,, C.)-bimodule
structure.

In Chapter 7, we briefly recall from [26] how reduction by stages for fi-
nite W-algebras can be performed. Then, we will present the variant of
Skryabin equivalence in order to show that the latter is invariant under the
action of C,.

Finally, Chapter 8 aims at showing the exactness of the translation
functor for H,-modules.






CHAPTER 1

Preliminaries

In this Chapter we recollect some definitions and results that will be needed
for proving the main results of this part of the thesis.

1. Motivation

As we mentioned in the Introduction, the problem of the non-existence of
Hopf orders was motivated by Kaplansky’s sixth conjecture, which generalizes
Frobenius theorem in the setting of Hopf algebras. For this reason, we start
stating and proving this fundamental theorem in the representation theory of
finite groups.

THEOREM 1.1.1. Let G be a finite group. Then, the degree of any complex
irreducible representation of G divides the order of G.

PROOF. Let {Vi,...,V;} be a set of representatives of the isomorphism
classes of the irreducible representations of G. For ¢ € {1,...,l}, let n; =
dim(V;), let ¢; be the character of V; and let ey, be the central primitive
idempotent orthogonal element of CG associated with ¢;, i.e.
|S|€¢i = ¢ilg)g™" (1.1.1)

¢ geG
It is well known that for every i € {1,...1}, the value ¢;(g) lies in Z[¢], where &
is a primitive |G|-th root of unit ([36] Corollary 3.6). For simplicity, we denote
Z[£] by R.
Consider the finitely generated R-module RG. Since R is Noetherian, every
R-submodule of a finitely generated R-module is again finitely generated. In
particular, taking € RG, the submodule:

R[z] .= R(1,2,27,...)

is finitely generated, where R{1,z,z?% ...) is the R-submodule spanned by
all powers of x. This implies that x is a root of a monic polynomial with
coefficients in R . Since R is finitely generated as a Z-module and R[z] is
finitely generated as an R-module, then R[z| is finitely generated as a Z-
module. Given that Z is Noetherian, then Z[z] is a finitely generated Z-module.
Notice that |n£_|€¢i =Y ,cq 9i(9)g~" € RG and by the above considerations it
is the root of a monic polynomial with coefficients in Z. Especially, for every

9



10 1. PRELIMINARIES

i € {1,...,1} there exist m; > 0 and a;; € Z, for j € {0,...,m; — 1} such

that:
m; m;—1
G | G s -
€¢; + Qim—1 n Co; +oota n €p; T Ai0 = 0.

n;

7

Multiplying the latter by ey, and using the fact that ey, is idempotent, we
obtain that for every i € {1,...,[}:

m; m;—1
Gl | Gl Gl _
+ az,mifl + -+ az,l + a'L,O edn - 07

m; m;—1
|Gl | |Gl I
+ @i m;—1 +ee @;,1 + a0 = 0.

Since % € Q and it is the root of a monic polynomial with coefficients in Z,
then LLQ € Z, for every i € {1,...,1}. O

i.e.

The generalization of the above theorem in the framework of Hopf algebras
can be read as:

CONJECTURE 1. Let H be a complex finite-dimensional semisimple Hopf
algebra. Then, the dimension of every irreducible representation of H divides

dim(H).

Before analyzing the conjecture, we need to recollect some notions, con-
structions and results in Hopf algebra’s theory.

2. Hopf algebras

In this section, we fix notations for Hopf algebras and we recall some
important notions.
Our main references for the general theory of Hopf algebras are [52] and [60].

We will work over a ground field K. Vector spaces, linear maps, and
unindexed tensor products are over K, unless otherwise specified. Through-
out, H is a finite-dimensional Hopf algebra over K. We denote by 1p its
identity element; and by A,e, and S its coproduct, counit, and antipode,
respectively. The dual Hopf algebra of H is denoted by H*.

We recall that an element ¢ € H is called a left (resp. right) integral if it
is invariant under left (resp. right) multiplication, i.e. ht = e(h)t (resp.
th = e(h)t) for every h € H.

EXAMPLE 1.2.1. Let G be a finite group. Consider the algebra KG en-
dowed with the usual Hopf algebra structure, i.e. A(g) = g® g, S(g) = g+
and €(g) = 1, for every g € G.

The space of left and of right integrals is generated by > cq g.
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We say that a Hopf algebra H is semisimple if it is semisimple as an
algebra.
Semisimplicity is related to left and right integrals; explicitly, a finite-
dimensional Hopf algebra is semisimple if and only if £(t) # 0, for every left
(and consequently right) integral t.

REMARK 1.2.1. We stress that the antipode of a finite dimensional semisim-
ple Hopf algebra satisfies S? = id by [60, Theorem 16.1.2].

Symmetrically, we say that a Hopf algebra H is cosemisimple if it is a direct
sum of simple coalgebras, i.e. coalgebras with no proper subcoalgebras.

EXAMPLE 1.2.2. Let G be a finite group. Call ¢ = 37 ., g the generator
of left and right integrals. By definition of the counit, £(t) = |G|. Then KG
is semisimple if and only if the characteristic of the field does not divide the
order of G. Moreover, KG is cosemisimple since KG = @ e Kg and Kg is a
simple subcoalgebra.

For the notion of a simple Hopf algebra H, we need to define a left action
of H on itself, called the left adjoint action. Especially:

z.h=Y hWzS(h®),

for x,h € H.
We say that a Hopf subalgebra is simple if there are no normal Hopf subalge-
bras of H, i.e. Hopf subalgebras which are stable under the adjoint action.

ExaMPLE 1.2.3. Consider the group algebra K G for GG a finite non abelian
simple group. On the base elements, the left adjoint action defined above is
just the conjugation, since by definition A(g) = g ® g and S(g) = ¢!, for
every g € (. Since Hopf subalgebras of KG are of the form KN, with N a
subgroup of G ([60, Exercise 7.1.3]), then normal Hopf subalgebras of KG are
in bijection with normal subgroups of GG. Hence, the simplicity of the group G
implies the simplicity of KG as a Hopf algebra.

3. Deformation of Hopf algebras

In this section we provide a technique for deforming Hopf algebras. We
specify this procedure for group algebras, explaining the so called Movshev’s
strategy. For this purpose, we briefly present the construction of the second
cohomology group of a group G over K and some results about it. Throughout
this section K has characteristic zero.

3.1. Drinfeld twist. We succinctly recall here the basics of Drinfeld’s
deformation procedure of a Hopf algebra. An invertible element
Q=00 ®0% c H® H is called a twist for H provided that:

(1n ® Q)(id ® A)(Q) = (2@ 15)(A ©id)(Q), and
(e ®id)(Q) = (id @ £)(Q) = 1.
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The Drinfeld twist of H is the new Hopf algebra Hq constructed as follows:
Hq = H as an algebra, the counit is that of H, and the coproduct and antipode
differ from those in H in the following way:

Aa(h) =QAMR)Q™  and  So(h) = QaS(h)Qgy'  Vhe H.

Here, Qq := > QWS (Q?) and Qq' = 3 S(Q-M)Q~@ | where Q=) and Q=)
are defined by Q1 =300 @ Q-3

With the following corollary, we stress that cosemisimplicity is preserved
under twisting.

COROLLARY 1.3.1 (Corollary 3.6 [2]). If H is a cosemisimple Hopf algebra
and J € H® H is a twist for H, then Hjy is again cosemisimple.

3.2. Cocycles. In order to present Movshev strategy, we need to recall
the construction of the second cohomology group together with some of its
properties.

Let G be a group. We call Z2(G, K*) the set of all functions w: G x G — K*
such that for every x,y, z € GG, the following identities are satisfied

w(z,lg) =w(lg,z) =1 (1.3.1)

w(z, y)w(zy, 2) = Wy, 2)w (2, y2). (1.3.2)
The elements of Z%(G, K*) are called 2-cocycles.
The set Z%(G, K*) turns out to be an abelian group with the following oper-
ation

(W) (z,y) == w(z, y)'(z,y) (1.3.3)
for every w,w’ € Z*(G, K*) and z,y € G.

Consider a map w': G — K* with the property that «'(1g) = 1. We
define a map 0w': G x G — K* in the following way

(0w') (2, y) = o' (2)w' (y)w' (zy) ", (1.3.4)
for all z,y € G. Such a map dw’ is called a coboundary. The collection of all

coboundaries is denoted by B*(G, K*) and it is a subgroup of Z?(G, K*).
We define the second cohomology group of G over K as

H2(G, K%)= Zz(GKX)/BQ(G’KX). (1.3.5)

We say that two elements of Z2(G, K*) are cohomologous if they belong
to the same cohomology class, i.e. if they represent the same element in
H?*(G,K*). In particular, for w € Z*(G, K*), we write [w] to denote its
equivalence class.
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From now on in this section, we assume that G is abelian. After re-
calling the above construction, we need to recollect some properties of
H?(G,K>).

For this purpose, consider K the algebraic closure of K and denote by P
the set of all anti-symmetric pairings of G into K, i.e. the set of all maps
B: G x G — K* satisfying the following properties

B(gh,g') = B(g,9)B(h,q),
B(g,hg') = B(g,h)B(g,9),
B(g.h)~" = B(h, g),

for every g,h, g € G.
We associate to a 2-cocycle w the anti symmetric bilinear form

Bu(9.9') == wl(g.9)/w(d, 9),
for every g,g € G. Observe that the bilinear form [, associated to w €

Z?(G, K*) depends only on the cohomology class of w .
The following theorem makes this correspondence more precise.

THEOREM 1.3.2. [/2, Theorem 3.6] Let G be a finite abelian group and
let K be the algebraic closure of K. The assignment w — [, induces an
isomorphism between the second cohomology group H*(G, K*) and the group
of Pos(G, K*) consisting of all anti-symmetric pairings of G into K*.

This correspondence allows us to shift concepts on bilinear forms to con-
cepts on 2-cocycles and cohomology classes.
For instance for w € H*(G, K*), we define the radical of w as

Rad(w) :={g€ G : w(g,g') =w(d.g) Vg € G},

that is the radical of its associated anti symmetric bilinear form (.. Likewise,
we say that a 2-cocycle w is non-degenerate if Rad(w) = {1¢}, that is 3, is
non-degenerate.

An important result we will rely on is the following:

LEMMA 1.3.3. For any 2-cocycle w' on G there exists, up to coboundary, a
unique non-degenerate 2-cocycle w on G/ Rad(w'), such that [W'] = [wo (p X p)],
where p stands for the projection p: G — G/Rad(w'), and such that w(g,q')
lies in a cyclotomic field extension of K for any g,q € G/Rad(W') .

PRrROOF. Firstly, we prove that for any 2-cocycle w’ on G there exists, up

to coboundary, a unique non-degenerate 2-cocycle w on G/Rad(w’), such that
W] = [wo (pxp)].
Let w’ be a degenerate 2-cocycle, i.e. a 2-cocycle such that Rad(w') # {1¢}.
Thus, it makes sense to consider the quotient G/Rad(w’) and in consequence
the projection p: G — G/Rad(w’). In addition, there exists a bilinear form
on G/Rad(w’), such that the following diagram commutes
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GxG K~

G/Rad(w’) x G/Rad(w’)'

The anti-symmetric bilinear form [ is non-degenerate by construction. In
light of Theorem 1.3.2 there exists a non-degenerate 2-cocycle w on G/Rad(w)
with values on K* such that 8 = B,. By the commutativity of the above
diagram, we get that 5, = [, o (p X p). In addition, Theorem 1.3.2 implies
that the cohomology class of w’ is related to the one of w through the equality
[W'] = [wo (p x p)]. This concludes this verification.

Finally, by [41, Proposition 2.1.1, p. 14] for any 2-cocycle w' on G
with values in K*, there exists a 2-cocycle w € [w'] with values in the ring of
integers of a cyclotomic extension of K. 0

We conclude this subsection, presenting the condition on a group M for
admitting a non-degenerate 2-cocycle.
Recall from [43, page 366] that M is said to be of symmetric type if M ~ Ex E
for some group E. By [43, Theorems 1.9, 2.8, and 2.11], a group M admits a
non-degenerate 2-cocycle if and only if M is of symmetric type. We will use
the terminology central type instead, which is the standard one nowadays in
this setting and applies to arbitrary groups, not necessarily abelian. See, for
instance, the introductions of [4] and [27].

3.3. Movshev’s strategy. We next describe Movshev’s method [54, Sec-
tion 1] of constructing a twist for the group algebra of a finite group G from a
2-cocycle on an abelian subgroup M < G. Actually, Movshev studied and clas-
sified all possible twists for a group algebra, but for our purposes, we restrict
ourselves to the abelian case.

The group algebra KM is a Hopf subalgebra of KG. Suppose that char K
is coprime with |G| and that K is large enough for KM to split. (Here and

below, we use the term split in the sense of [17, Definition 7.12]: every irre-
ducible representation -corepresentation when dealing with coalgebras- is ab-

solutely irreducible.) Consider the character group M of M. The Wedderburn
decomposition of KM is provided by the complete set of orthogonal primitive
idempotents {eg}, 5. If w: M x M — K* is a 2-cocycle, then

QM,w = Z w(gb, w>€¢ X €y (136)

ppeM
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is a twist for KM, and, consequently, for KG. In particular, cohomologous
2-cocycles gives rise to isomorphic twisted group algebras, in virtue of [54,
Proposition 3].

Later, we will need to know how a twist of this type is carried under an
automorphism f : G — G (in particular, under conjugation). We can_carry
¢ to a character ¢/ of f(M) and w to a normalized 2-cocycle w/ on f(M) in
the natural way: ¢/ = ¢ o (f|y) ! and w/ = w o (f|x X flu), respectively.
For the isomorphism f : KG — KG,g — f(g), we have f(ey) = eyr and

(f® HQwuw) = Qf(M),wf. Then:

REMARK 1.3.4. The map f : KG — KG establishes a Hopf algebra iso-
morphism between (KG) and (KG)Qf(M) _;- Similarly, cohomologous 2-

cocycles give rise to isomorphic Hopf algebras ([54, Proposition 3]).

Qarw

We also recall the following proposition, which explains the relationship
between the simplicity of the group G and the simplicity of the twisted group
algebra (KG)

Qe

COROLLARY 1.3.5. [55, Corollary 4.5] Let G be a finite simple group and
let Q be any twist for KG. Then (KG)q is simple as a Hopf algebra.

REMARK 1.3.6. We stress that the converse of Corollary 1.3.5 does not
hold. For instance, let G be the symmetric group .5, for n > 5 and let M =
((12),(34)). Moreover, consider the unique non-degenerate cocycle w on M,
up to coboundary. Then, by [24, Theorem 3.5], the Hopf algebra (KS,)
is simple, even if the symmetric group S,, is not.

We focus on another interesting example. Let p,q,r be prime numbers such
that p divides ¢ — 1 and 7 — 1. Then, there exists an element s € F and an
element ¢t € F* of order p. In consequence, we can define the following action

of C}, on C,

QM,w

ryr "t =y,

for x and y fixed generators of C, and C,, respectively. Likewise, the cyclic
group C,, acts on C, in the following way:

for z and w fixed generators of C), and C,, respectively. We can then consider
the family of groups G = (C, x C,) x (C; x C,). Let J be the twist arising

from M = C, x C, and let w € H*(M, K*) be any 2-cocycle on M. Then, the
twisted group algebra (KG)q,, , is simple by [24, Theorem 4.5].

Notice that (KG)q,,, is cosemisimple by Corollary 1.3.1. The Wedderburn
decomposition of (KG)q,,, as a coalgebra was described by Etingof and Gelaki
in [21, Section 3]. We summarize [21, Propositions 3.1, 4.1, and 4.2] and
[15, Propositions 2.1 and 2.2] in the following result.
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PROPOSITION 1.3.7. Let {7y}}_, be a set of representatives of the double
cosets of M in G and let w be a 2-cocycle on M. Then:
(i) As a coalgebra, (KG)q,,, decomposes as the direct sum of subcoalge-
bras

(KG QM @KMT@M)
=1
(ii) Suppose that K is large enough so that (KG)q,,, splits as a coalgebra.
If M N (7M7Y = {1} and w is non-degenerate, then K(Mt,M) is
isomorphic to a matriz coalgebra of size |M|. Moreover, the irreducible
cocharacter of (KG)q,,., attached to K(MTt,M) is

Cqrp 1= | M|ecTie.. (1.3.7)
The following proposition will be crucial in the proof of our main results:

ProproSITION 1.3.8. Keep hypotheses and mnotation as in Proposition
1.3.7(i7). Set T = 14 for short. Let x : KG — K be the linear extension of a
character of G. Then:

(X ® Zd)AQ | Z X

QGMTM

PRrROOF. The proof is a variation of that of [15, Proposition 3.1(iii)]. We
compute:

(x ®id)Aq(c,) g | M| Z w(/\,Afl)wfl(p,pfl)x(e)ﬂ'ep)e,\-ﬁep-l

A,pel\/j

M| > w Ao e, p x(Tepen)er-1me,-
)xpG]\//\[

| M| Z “Ho ' A D x(Ter)ea1Ten
XeM

| M| Z x(Tepen)ex-17e, 1
)\,pe]\//\[

M| > x(eate,)er-1me,
)\,pEJ\//\[

(x ® id)A(|M |ecTe:)

| M|

= > x(urv)urv
|M‘2 u,vEM

i 2 X

geMTM

e

lle

lle

e

lle

Here, we used:
@ Definition of Ag and Equation 2.2 in [15, page 141].
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@ That x is a character: x(ab) = x(ba) for all a,b € KG.

® That {e4} 57 is a complete set of orthogonal idempotents in KM.

@ That Aey) = Yeii 6 ® ex-1g.

® That urv runs one-to-one all elements of M7M since |M7TM| = |M|?.
0

4. Hopf orders

This section aims at defining Hopf orders and at presenting those results
that will play a crucial role on proving our main result.

Let W be a finite-dimensional vector space over K. Let R be a sub-
ring of K. A lattice of W over R is a finitely generated and projective
R-submodule X of W such that the natural map X ®g K — W is an
isomorphism. The submodule X corresponds to the image of X ®g R.

A Hopf order of H over a subring R of K is a lattice X of H that is closed
under the Hopf algebra operations; namely,

lyeX, XXCX, AX)CX®rX, e(X)CR, S(X)CX.

For the coproduct, X ®z X is naturally identified with an R-submodule of
H @ H. This is equivalent to the requirement that X is a: Hopf algebra over
R; finitely generated and projective as an R-module and such that X@r K ~ H
as Hopf algebras over K.

ExaAMPLE 1.4.4. Let G be a finite group and consider the group algebra
QG. Then, ZG is a Hopf order of QG. A Hopf order in a Hopf algebra is not
unique in general. Indeed, take for example G = Cy x Cy and let {g,¢'} be a

set of generators of such a group. The Z-module generated by {1_79, HTQ, g }
is a Hopf order of QG strictly containing ZG'.

It is natural to expect that also Hopf orders can be dualized maintaining
the property of being isomorphic to their double dual. Firstly, we need to
understand the dual of a Hopf order.

Let X be a lattice of H over a subring R of K. We define the dual of X as
X*:={p€ H : ¢(X) C R}.

Then X* is an R-module via the action (r.¢)(x) = ¢(r.z), for every

re R, ze X and ¢ € X*.

Recall that a representation of a Hopf algebra H is a representation of
its underlying algebra, i.e. a vector space V together with a morphism
¢: H — End(V). The character x, of a representation ¢ of H is defined as

Xo(h) := Tr(¢(h)),
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for every h € H, in line with the group algebra case.

In the following three propositions, K is a number field and R C K is a
Dedekind domain containing Ok, the ring of algebraic integers of K. Under
these hypotheses, K is the field of fractions of R. Hopf order means Hopf order
over R.

PRrROPOSITION 1.4.1. [14, Lemma 1.1] Let X be a Hopf order of H.
(i) The dual lattice X* := {p € H* : p(X) C R} is a Hopf order of H*.
(ii) The natural isomorphism H ~ H** induces an isomorphism X ~ X**
of Hopf orders.

The proofs of our main results are rooted in the following:

PROPOSITION 1.4.2. [14, Proposition 1.2] Let X be a Hopf order of H.
Then:

(i) Every character of H belongs to X*.
(ii) Every character of H* (cocharacter of H) belongs to X.

The following technical result often eases our task:

PROPOSITION 1.4.3. [14, Proposition 1.9] Let X be a Hopf order of H.

(i) If A is a Hopf subalgebra of H, then X N A is a Hopf order of A.
(i) If m: H — B is a surjective Hopf algebra map, then w(X) is a Hopf
order of B.

5. Larson Theorem

The goal of this section is to prove Larson theorem, generalizing the proof
of Frobenius theorem.
For this purpose, we need a formula for the central primitive idempotent ele-
ments in a semisimple Hopf algebra.
Let H be a finite-dimensional semisimple Hopf algebra and suppose that K
is large enough so that H splits as an algebra and a coalgebra. Applying
Wedderburn’s theorem, H is isomorphic as an algebra to a product of matrix
algebras of finite degree with coefficient in K. Especially,

!
H~ [ M, (K).
i=1
Moreover, we set V; to be the natural representation of M, (K) and n; to be
its dimension, in particular V; is irreducible for all i € {1,...,l}.
Denoting the identity matrix of size n; by 1,,, we call ¢; the element
(0,...,Lp,,...,0) in [Tiey My, (K) , where 1,,, is in the j-th position.
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By definition,
EZ'Gj:(O,...,O) 1f7,7éj,

2

P =

e+ F+e=1,,1,,...,1,).

e; = ¢ for every 1€ {1,...,1},

We denote by e; the image of ¢; through the isomorphism [T'_; M,, (K) ~ H.
Then

eie; =01if i # j, el =e;, forevery i € {1,...,1}, and e; +---+ ¢ = L.

Equivalently, the elements {e;}!_, form a set of orthogonal idempotents in H

and they are such that H = @!_, He;, with He; ~ M,,(K), for i € {1,...,1}.

Let A € H* be a left integral, rescaled to ensure that (A, 1y) = 1 and
let A € H be a right integral. Without loss of generality by the semisimplicity
of H, we can choose A in such a way that (A, A) = 1. The following proposition
provides a formula for the central primitive idempotent elements.

PROPOSITION 1.5.1. Let H, A and V; fori € {1,...,l} be as above. Let ¢;
be the character of V;. Then:

dim(H)
dim(V;)

e =2 Aw(di, S(Aw))- (1.5.1)

We are now in a position to state Larson’s theorem.

THEOREM 1.5.2. Let H be a finite-dimensional semisimple Hopf algebra
and suppose that K is large enough so that H splits as an algebra and a coal-
gebra. Suppose that H admits a Hopf order X over a number ring Ok . Then,
the dimension of every irreducible representation of H divides dim(H).

PROOF. By [60, Theorem 16.1.2] the integral A is the character of the reg-
ular representation; hence, by Proposition 1.4.2, the element A lies in X. By
the definitions of a Hopf order and of the dual Hopf order and by Proposition
8.0.1, also > Ay (¢, S(A))) belongs to X, for every i € {1,...,[}. Conse-
quently;, gﬁgg; e; € X for every i € {1,...1}. Since X is finitely generated as
an Ox-module, arguing as we did in the proof of Frobenius theorem, we obtain

that there exist m; > 0 and r; ; € Z such that:
(dimH >mi+ (dimH >mz'—1+ n (dimH >+ _0
dim V; €; Tim;—1 dim ‘/; €; i1 dim V; €; Tio =Y,
for every i € {1,...,l}. Multiplying by e; we obtain

(dimH)mi+ (dimH)mi1+ N <dimH>+ _0
dim V; Timi—1 dim V; i dim V; o = T
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We conclude that 4mH i the root of a monic polynomial in Z. Hence

dim V;
gﬁg € Z, for every i € {1,...,1}, i.e. the dimension of V; divides dim H, for
every i € {1,...,1}. O

6. Strategy of proof and framework of application

As we mentioned in the introduction, we want to prove the following:

THEOREM. [10, Corollary 6.4] Let G be a finite non-abelian simple group.
Then, there is a twist Q) for CG, as in Subsection 3.3, such that (CG)q does
not admit a Hopf order over any number ring.

Apart from the twisted group algebras needed for proving the above result,
we will also present other examples of twisted group algebras which do not
admit Hopf orders; some of them arise from simple groups and others from
the direct product of certain Frobenius groups.

We expound here in general terms the strategy that we will use to prove
the non-existence of integral Hopf orders for a twist of several group algebras.
This strategy suitably modifies that employed in [15, Section 3] for the
alternating groups.

Here K is a number field and R is a Dedekind domain such that
Ox € R C K. Consider the Hopf algebra (KG) as in Subsection

(3.3), for some abelian subgroup M and some 2-cocycle w on M. Suppose

that (KG)q,,,, admits a Hopf order X over R. The aim will be to prove that
1

for our choice of groups and twists the fraction T belongs to R. Notice that
if ﬁ € R, then the group ring RG is closed under Aq,cq and S and RG
Oy, Over R. Our result will tell that the condition

is a Hopf order of (KG)
€ R is also necessary for (KG) to admit a Hopf order over R. This

Qnr,w

1

[M] Qs
implies, in particular, that Hopf orders of (KG)q,, ., over R do not exist when
R = Ok.

For our aim, by Lemma 1.3.3 and by Remark 1.3.4 we can assume first,
without loss of generality, that w is non-degenerate.
We can assume secondly that K is large enough so that (KG)q,,  splits as
an algebra and as a coalgebra. The reason for this is the following. The
Hopf algebra (KG)q,,,, splits as an algebra and as a coalgebra over a finite
field extension L/K. Let R denote the integral closure of R in L. Then,
R is a Dedekind domain, which contains Oy, and if X is a Hopf order of
(KG)q,,,, over R then X ®p R is a Hopf order of (LG)q,,, over R. Hence,
the non-existence of Hopf orders over R implies the non-existence of Hopf
orders over R.
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We will choose 7,77 € G such that M N (M77') = {1} and
M N (M7~ = {1}. We will consider the irreducible cocharacters c,
and ¢, of (KG)q,,, attached to K(M7M) and K(M7'M) as in (1.3.7) re-
spectively. Assume that X is a Hopf order over R. By Proposition 1.4.2(ii), ¢,
and ¢, belong to X. Using that X is closed under the coproduct, Proposition
1.4.2(i) and Proposition 1.3.8, we obtain that the following elements y, , and
Yy~ belong to X:

Yor = (x ®id)Ag(c,) > xlg (1.6.1)
‘M| geEMTM
/ . 1 /
Yy 7 = (X X Zd)AQ<CT’) = W Z X (g)ga (162)
geMT' M

for x and x’ two characters of G. Then, y, , )/, lies in X as well. Proposition
1.4.2(i) yields that x"(yy.r Yy .~) € R, for any character x” of G. We will choose
7.7, x, X and x” in such a way that the fraction |T14| will appear as a factor
of X" (Yy.r Yy'.7) s0 that we could derive that mr € R by applying Bezout’s

identity.

M

6.1. Strategy for p-groups. In our setting, M will be often a p-group
and there will be a Sylow p-subgroup U of G set in advance. Remark 1.3.4
will allow us to assume that M is a subgroup of U. In this case, we will
use the strategy presented above with x = y' = x” := Ind§(1y), where
Ind{ (1) stands for the induced character of the trivial representation of U.
Set P = Uyeq gUg™! the set of p-elements in G together with the identity. By
construction, x vanishes outside P. Its values on the identity and on v € U
are:

G|
X 1 1T
1 1.6.3
X(u) = o= Z 1y(gug™) = — -#{g€ G : gug ' € U}.
|U| geG ’U|
qug—leU

Next we choose 7 = 7' € G such that M N (rM7~!) = {1}. From now on,
we will write y, instead of y, ; to simplify the notation.
The element 32 reads as:

5 1
yx_|M|2

> x(ru'u)x(rv'v)uru vy’ (1.6.4)

uu/ v’ €M
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Evaluating x at this element, we get:

1
X(yy) = Wi > Mx(Tu/u)x(Tv/v)X(Tu/vTv/u). (1.6.5)
w,u’ v’ €

Let I, be the set of fibers of x of non-zero values; that is,

I, ={x"'(7) : v € Im(x) and ~ # 0}.
For C' € I, we write x(C) for the value that y takes at any element in C' and
we set Mo = {v € M :7v e C}. Notice that C C P, for every C € I,.

We now rearrange the subscripts in the sums in (1.6.4) and (1.6.5) as
follows. Firstly, we make the substitutions v'u =z € Mgy and v'v =2’ € M
and eliminate v’ and v. Secondly, we replace v by v~!. Thirdly, we rename

u~'v as v in (1.6.5). Thus, we arrive at the following formulas for 2 and x (y3):

1
vi= 2 xX(Ox(@) Y wrzd'utere! (1.6.6)
| M] C,Crely wweM
€M,z €Mqr
1 —
X(yy) = [M] xX(O)x(C) x(tzz'vro™h). (1.6.7)
C,C/GIX veM

I'EMc,:EIEMC/
Then, the calculation of X(yi) reduces to the following procedure:
(1) Find out (tM)N P and M¢ for every fiber C' # {1} in I,.
(2) Detect for which v € M,z € Mg, and 2/ € Me, the element
rxz'vrv~! belongs to P.

(3) For those elements obtained in step (2), calculate x(rzz'vrv™1).
(4) Estimate the sum in (1.6.5) to show that x(y3) € %\Z.

6.2. Application to finite groups of Lie type. We now explain how
to apply the previous strategy to a finite group of Lie type G with defining
characteristic p and a twist arising from an abelian p-subgroup M of G of
central type. All unexplained notation, notions, properties, and results recalled
here can be found in the monograph [49].

Let G be a simply connected simple algebraic group defined over F, and
F a Steinberg endomorphism; i.e., an endomorphism of the abstract group
G such that the fixed points subgroup G* is finite. We will take G to be
either the group G or its central quotient G /Z(G*). With a few exceptions,
GY/Z(GY) is always simple. All simple groups of Lie type arise in this form,
except for the Tits group, and only in very few cases the defining characteristic
p is not uniquely determined, see [69, page 3]. For our purpose, any possible
realization in this form would work. We denote by 7: G — G /Z(G¥) the
natural projection. Recall that ged(p, |Z(G")|) = 1.

In the cases we consider, all elements in G have finite order. An element
in G is semisimple if and only if its order is coprime with p, while an element
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of G is unipotent if its order is a power of p (p-element). Moreover, central
elements are semisimple. A maximal torus T is a subgroup containing only
semisimple elements and maximal for this property.

The group G contains an F-stable maximal torus T and two opposite F-
stable unipotent subgroups U and U~ which are normalized by T and satisfy
UNU~ = {1}. The subgroups U and (U~)" are Sylow p-subgroups of G*". We
denote them by U and U~ respectively. The quotient (U ), which is isomorphic
to U, is in turn a Sylow p-subgroup of G /Z(G*). The same holds for U~.
The groups B := (T,U) ~ T x U and B~ := (T,U~) ~ T x U~ are opposite
Borel subgroups of G, i.e. maximal solvable connected subgroups of G. We
set B=B" ~TI'x U and B~ = (B")" ~ T x U~. Then, BN B~ = TF.
Finally, recall that there is an element 1y € Ngr(T) such that woUiy ' = U,
SO wOUwo—l = U~. For any o € wTF we have cUoc~! = U~. The coset 1iyT"
is an involution in Ngr(T)/T¥. Hence, 0~ € oT¥.

Assume that U (or equivalently, 7(U)) contains an abelian subgroup V' of
central type. Observe that V N (cVo™!) = {1} for any o € yT", similarly
for w(0), because that is a subset of U N U~. The double cosets VoV and V'
are disjoint. Then, vov’ # 1 for all v, v € V. Similarly, 7(vov') # 1, since,
otherwise, we would have o € UZ(G"), which is impossible because UZ(G")
normalizes U.

The next chapter deals mainly with families of groups in the following two
scenarios:

(1) The group G¥, the subgroup M = V, the element 7 = o, and the
induced character y = Ind%F(]lU).
(2) The group G¥/Z(G*), the subgroup M = 7(V), the element 7 =
7(0), and the induced character y = Indf(U)(]l,r(U)).
The following remark identifies when an element in P of the form Tu/vrv'u

is the identity element. This is necessary in practice for the evaluation of y,
see Equation 1.6.5:

REMARK 1.6.1. In the above scenarios, observe that 7v/vrv'u = 1 if and
only if w'v = 1, v'u = 1, and 7 = 7. For, suppose that 7u/vrv'u = 1. Then,
Tu'vt = (v'u)~! belongs to M N (7M7). In the first scenario, when dealing
with G, we have the inclusions

MM (rtM7)C MN(tM(r'T")) CUN (U T") = {1}.

Hence, 7v/vr = 1 and v'u = 1. This implies in turn that 72 € M N (TM7).
Consequently, 72 = 1 and v'v = 1. For the proof in the second scenario,
when dealing with G''/Z(G"), use in addition that Z(G") C T and then
(UZ(GF))n(U-TF) = Z(GF)NnTF = Z(GF).






CHAPTER 2

Non-existence of integral Hopf orders for twists of
several simple groups of Lie type

In this chapter, we apply the strategy expounded in Section 6 to several
groups, which are either of the form G or G¥'/Z(GY), for G a matrix group

1. Statement
The aim of this chapter is to establish the following results:

THEOREM 2.1.1. Let K be a number field and R C K a Dedekind domain
such that O C R. Let

= p be a prime number and g = p™ with m > 1.

» GG be one of the following finite quasisimple groups: SLs(q), PSLa(q),
SLs(q), PSL3(q) and the Suzuki group *Bs(q) (here, p =2 and m is
odd).

= M be any abelian p-subgroup of central type of G.

s w: M x M— K* be any non-degenerate cocycle.

If (KG)q,,,, admits a Hopf order over R, then \Tlﬂ € R. Hence, (KG)
does not admit a Hopf order over Q.

Qs

PRrROOF. The proof will be carried out in Section 3. O

THEOREM 2.1.2. Let K be a number field and R C K a Dedekind domain
such that O C R. Let

» p be a prime number and q = p™ with m > 1.

» G be one of the following finite simple groups: PSLy(q) or the Janko
group

» M be any s subgroup isomorphic to the Klein four group.

s w: M x M— KX be any non-degenerate cocycle.

If (KG)q,,., admits a Hopf order over R, then \Tlﬂ € R. Hence, (KG)
does not admit a Hopf order over Og.

Qi w

PROOF. The proof will be carried out in Section 4. 0

THEOREM 2.1.3. Let K be a number field and R C K a Dedekind domain
such that O C R. Let

25
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» p be a prime number and q = p™ with m > 1.

» G be one of the following finite simple groups: PSLy(q), the Janko
group and the Suzuki group *Bs(q) (here, p =2 and m is odd).

» M be any abelian subgroup of central type of G.
sw: M x M — K* be any non-degenerate cocycle.

If the twisted Hopf algebra (KQ)

Hence (KG)
mn K.

admits a Hopf order over R, then ﬁ €R.

does not admit a Hopf order over any number ring contained

QM,w

QM,w

PROOF. The proof will be carried out in Section 5. 0]

In light of Remark 1.3.4, we need to classify all abelian p-subgroups of
central type up to an automorphism of G for proving Theorem 2.1.1. Similarly,
for Theorem 2.1.2 we need to classify all the subgroups of G isomorphic to the
Klein four groups Cy x C5 up to automorphisms of G. Finally, for Theorem
2.1.3, we need a classification of all abelian subgroups of central type, up to
automorphisms of G.

Before tackling the proofs of Theorem 2.1.1, Theorem 2.1.2 and Theorem
2.1.3 we record the following consequence. Its proof is similar to that of [14,
Corollary 2.4]. One only has to add the fact that, up to coboundaries, w can
be chosen in such a way that its image is contained in a cyclotomic number
field, as we have seen in Subsection 3.2.

COROLLARY 2.1.4. Let (G, M,w) be as Theorem 2.1.1 or as in Theorem
2.1.2. Then, the complex semisimple Hopf algebra (CG)q,,,, does not admit a
Hopf order over any number ring.

2. Classification of abelian subgroups of central type
The aim of this section is to classify:

e the abelian p-subgroups of central type the groups listed in Theorem
2.1.1, up to automorphisms;

e the subgroups isomorphic to the Klein four group of the groups listed
in Theorem 2.1.2, up to automorphisms;

e all abelian subgroups of central type of the groups listed in Theorem
2.1.3, up to automorphisms.

Throughout these sections, the centralizer of an element ¢ in a group G is
denoted by C(g) or by Cg(g), when we need to specify the group we are
considering. In the same way, we write C'(L) for referring to the centralizer of
a subgroup L of G.
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2.1. Projective special linear group PSL(2,q). Let ¢ = p™, with p
prime and m > 1. We denote by 7 : SLy(q) — PSLs(q) the natural projection.
The classification of all subgroups of PSLy(¢q), which dates from the beginning
of last century, can be consulted in [64, Theorem 6.25] or [44, Theorem 2.1].
These theorems bring to light that the only abelian subgroups of central type
of PSLy(q) are: p-groups of square order or Klein four-groups. In this section
we give a self-contained proof of this and we find the relation between these
subgroups via conjugation or automorphisms.

We start by recalling some facts about SLa(¢) that we will draw heavily on
in the sequel. We used as references [6, pages 3-9], for ¢ odd, and [37, pages
324-326 and 336], for g even.

We have that

U:={(51):ael}
is a Sylow p-subgroup of SLy(q), which is elementary abelian. For t € [y we
denote by d(t) the diagonal matrix diag(t,t™1), so that

To={d(t): teFy}.

We next fix a non-split torus 7" of SLy(q). It is constructed by realizing the
elements of norm 1 of the field extension Fp/F, as matrices of size 2 in the
following way:

Case q odd. Let € € I, be a non-square element. Take ¢ € Fj2 such that
(? = e. Every element of F 2 is of the form a+b¢, with a,b € F,. The following
map is an algebra morphism:

d :Fpe— My(F,), a+b(— (80).

We set:
T ={d'(a+bC) : (a+be)(a — be) = 1}.

Case ¢ even. Take now ¢ € F 2 \F,. Then, ¢ + (7 and ¢'*? belong to F,
and the following map is an algebra morphism:

a b
d/ . ]Fq2 — MQ(Fq), a + bC — (bcH-q a+b(<+<¢1)) :

We set:
T = {d(a+bC): (a+b¢)(a+b") =1}.

We will use the following facts in the proof of the next proposition:
(1) The split and non-split torus 7" and 7" are cyclic groups of orders ¢—1
and ¢ + 1 respectively.
(2) Every non-central element of SLy(q) is conjugate to either +u, with
u € U, an element in T or in T".
(3) Let g € SLy(q) be non-central. Then, C'(g) = {£1}U if g € {£1}U,
if ge T then C(g) =T and C(g)=T"if g€ T".
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(4) Every element of order coprime with p (i.e., semisimple) is conjugate
to an element of T U T".

To describe the action of Aut(PSLy(q)) on the set of subgroups of central
type of PSLy(q), we view PSLy(¢) inside PGL2(q) as the image of SLy(q)
through the canonical projection GL2(q) - PGL2(q). Under this identifica-
tion, PSLs(q) = PGL2(q) if ¢ is even, and, if ¢ is odd, PSLy(q) is the unique
proper normal subgroup of PGLy(q), see [63, Section 1]. The action by conju-
gation of PGLy(q) on PSLy(q) gives rise to an injective group homomorphism
PGL;y(q) — Aut(PSLy(q)).

PROPOSITION 2.2.1. Let M be a non-trivial abelian subgroup of central type
of PSLa(q). Then, M is one of the following subgroups:

(i) A subgroup of m(U) of square order, up to conjugation.
(i) A subgroup isomorphic to the Klein four group. Moreover, when q is

odd, there is a single orbit for the action of PGLy(q) (and thus of
Aut(PSLs(q))) on the set consisting of such subgroups.

PROOF. The proof is divided into two parts. In the first part we describe
the form of an abelian subgroup of central type. In the second part we deal
with the statement about the orbit for the action on the set of subgroups
isomorphic to the Klein four group.

1. Description of M. We first show that M must be either a p-group or a
2-group. The justification of this assertion will cover item (i).

Since M is abelian of central type, we know that M ~ FE x E for some
subgroup E. Let r be a prime divisor of |E|. We will see that r = 2 or r = p.
Let g, h be elements of M, one in each copy of E, such that ord(g) = ord(h) =
r. Then, g and h commute and h ¢ (g). Put g = n(g) and h = w(h) for some
g,h € SLy(q).

We distinguish two cases:

[. Case q even. Every element of SLy(q) is conjugate to an element of U, T
or T". Suppose that g were conjugate to an element of 7. We would have that
C(g) = T and that g and h generate a non-cyclic subgroup of C(g). This is not
possible because T is cyclic. The same argument applies if g were conjugate to
an element of 7”. Assume that g is conjugate to an element u of U. Then, M
is conjugate to a subgroup of C'(u). The latter equals U. Hence, r = 2 and M
is conjugate to a 2-group of square order. This establishes item (i) for g even.

II. Case ¢ odd. Every element of SLy(g) is conjugate to an element of the
following form: +u, with w € U, d(t) or d'(a + b(). The elements g and h?
commute and ¢ is non-central. Proceed as before with these two elements and
the subgroup generated by them. Take into account that C'(u) is now {£1}U
for uw € U with u # 1. We obtain that h?> = 1 or h*” = 1. Hence, r = 2 or
r=np.

Suppose that p divides |E|. We take g and h of order p. Then, g is
conjugate to u or —u, for some u € U, and M is conjugate to a subgroup of
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m(C(u)). As the latter equals 7(U), item (i) follows for ¢ odd. On the other
hand, if p does not divide |E|, then, according to the previous paragraph, the
only prime divisor of |E| is 2, and every non-trivial element of M has order 2.
That is, M is an elementary abelian 2-group.

For the rest of the proof, we assume that p is odd and M is an elementary
abelian 2-group. We know that every element of PSLy(q) of order 2 is conju-
gate to an element in 7(7°UT"). By reason of orders, 7(7"UT") has a unique
element of order 2. Up to conjugation, we can assume that M contains such
an element which we denote again by h. We now distinguish two cases for g¢:

A. Case ¢ =4 1. In this case, F, has a primitive fourth root of unity, say

n. Suppose that h = 7(d(n)) = W(g 7791 ) One can check that the centralizer

of h is m(T U pT'), where p = ( % §). Then, g = W(ff_l ’6‘), for some a € Fy\.
We have that M is contained in the centralizer C'((g, h)) of (g, h). A direct

calculation shows the equality C'({g,h)) = (g, h), so M = (g,h) and M is a
Klein four group.

B. Case ¢ =4 —1. In this case, —1 is not a square in F,. We define the
non-split torus 7" by ¢ € F,2 such that ¢ = —1. The only element of order 2
in m(TUT) is now h = 7(d'(¢)) = n( % §). Consider the following subset of
SL2(q):

S = {(g V) zy €F,and 2 +y? = —1}.

Notice that |S| = ¢ + 1. One can verify that the centralizer of h equals
(1" U S). Then, g = n(, %), for some z,y € F, as above. The equality

C({(g, h)) = (g, h) holds in this case as well. Tt implies that M = (g, h) and M
is a Klein four group.

2. Transitivity of the actions on the Klein four-groups. Let M denote the
set consisting of subgroups of PSLy(q) that are isomorphic to the Klein four
group. Bear in mind our identification of PSLy(g) with a normal subgroup of
PGL;(q). We will prove that the action by conjugation of PGLy(q) on M is
transitive. This will imply that the action of Aut(PSLy(q)) is as well. It will
suffice to check that the following inequality holds for M € M:

[PGL:(q)| _  [PGL(q)|
[Stab(M)|  [NpgrLy(q) (M)

This will be actually an equality as there will be only one orbit for the action.
The cardinality of M is %, see [64, Exercise 5(c), page 417]. With the
information available in this proof, this can be deduced from the fact that the
centralizer of h is isomorphic to a dihedral group of order ¢ — 1 when ¢ =4 1

and of order ¢ + 1 when ¢ =4 —1. Hence, we will need to verify that

q(¢* — 1)
24

M| <

INpGLy(q)(M)] < q(¢* — 1),
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i.e., that |Npgr,(q) (M)| < 24. This inequality can be attained in the following

way. The action of Npgr,(q)(M) on the set {g, h,gh} of non-trivial elements
in M induces a group homomorphism Npgr,q) (M) — Sg whose kernel is the
centralizer Cpgur,(g)(M) of M in PGLy(q). A direct calculation shows that
CpaL,(q)(M) = M. Therefore, |[Npgr, ) (M)| < 4|Ss| = 24. This establishes
the second part of the statement of (ii) and finishes the proof. O

REMARK 2.2.2. The number of conjugacy classes in PSLy(q) of subgroups
isomorphic to the Klein four group is one if ¢ =g +3 and two if ¢ =5 £1; see
[44, Theorem 2.1, items (j) and (k)] or [64, Exercise 5(d), page 417].

REMARK 2.2.3. The group of diagonal matrices in GLy(q) acts by conju-

gation on SLy(g), on U, and on the set of subgroups of U of central type. The
orbit of any non-trivial such subgroup has a representative containing the ma-
trix (3 1). Let M be one of these representatives. Then, M = {(} %) :a € E},
where E is an additive subgroup of F, isomorphic to C’If” for some n > 0. Our
choice of M ensures that I, C E.
In addition, since U ~ 7(U), an abelian p-subgroup of central type of PSLy(q)
contained in 7(U) arises from an abelian p-subgroup of central type of U in
SL5(q). Hence, we can assume that 7(M) = {7 (}¢) : a € E}, where E is an
additive subgroup of F, isomorphic to C’g” for some n > 0.

2.2. Special linear group SL;3(¢q) and projective special linear
group PSL;(q). Let ¢ = p™, with p prime and m > 1. Consider the group
SL3(q). A Sylow p-subgroup of SL3(q) is given by

U = {(é%‘é) ta,bc€F,}.

001

We consider the following subgroups of U:
M= {(f1) e em). = ((F14) mb e

The subgroups M; and M, are maximal abelian p-subgroups of U, since
C(M;) = M, and C(Ms) = M,. In addition, if p is odd then M; and M,
are elementary abelian; if p is even the subgroup M; is elementary abelian,
while My ~ CJ*. The latter isomorphism is obtained by counting the number
of elements in M, of order 2 and 4.

Moreover, let J be the monomial matrix with 1’s on the antidiagonal and
consider the automorphism

U: SLy(q) — SLs(q), A— JH(A™J, (2.2.1)

where! denotes the tranpose matrix.

Recall that the conjugation through an element in GLj3(¢) induces an auto-
morphism of the group SL3(q).

We are in a position to prove the following:
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PROPOSITION 2.2.4. Let M be an abelian p-subgroup of central type of
SL3(q). Then M is isomorphic through an automorphism of SLs(q) to a sub-
group of central type of My or Ms.

PROOF. In virtue of Sylow’s theorem, we can assume that M < U.

1 ~
Let <89(1§Z%> €M, for z,y,z € F,.
zy

z~1 .
i) If zz # 0, we can conjugate the above element to ( 2 ), using the
1

OO =

z
1
0

matrix

in GL3(¢). Thus we may assume

—1 ~
(é 1 ) is My, then M < M.
00 1

ii) If z = 0 and 2y # 0, then the centralizer of ( %f) is M; and hence

1
0
0
f

= o8

M < M. If z = 0 and yz # 0 then the centralizer of the element <é ((1; fl%) is

M, = {(é g fli) ,a,b € Fq}, which is mapped to M; through the automorphism
U of SL3(q) defined in (2.2.1).
iii) If each element in M is of the form (é g ?), then M < M; N M, and we
0
0
1

are done. . )
If each element in M is of the form (83(1; , then M < M;.

Finally, if each element in M is of the form <§ g %), then W(M) < M;. O

REMARK 2.2.5. If ¢ = 2™, then M, is of central type if and only if m is
even, i.e. if and only if 2™ =3 1.

Denote by 7 the projection 7: SL3(q) — PSL3(g). Recall that the kernel
of 7 is trivial if 3 does not divide ¢ and it is isomorphic to C5 if ¢ =3 1. In
particular, if kerm # {1} then [, contains a third root of unit 6 that we fix
once and for all.

COROLLARY 2.2.6. Let M be an abelian p-subgroup of central type of
PSL3(q). Then M is isomorphic through an automorphism of PSLs(q) to a
subgroup of central type of m(My) or w(Ms).

PROOF. Since U ~ 7(U), then every abelian p-subgroup of central type in
PSL;(q) is of the form 7(NN), for N an abelian p-subgroup of central type of
SL3(q). The result follows from Proposition 2.2.4. O

REMARK 2.2.7. Let M < M; and assume (ég§> € M, with ab # 0.

Then, there is an automorphism of SL3(¢) mapping M to a subgroup M of
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0
—a
0

OO
OO

)

M, containing the element (é _(1)1 %)), namely conjugation by g = <
GL3(q)

REMARK 2.2.8. Let M < M,. Assume that p # 2,3 and that é % clli e M,
1-3/2 3
for some a # 0. Then, we can conjugate it to the element ( 3/2) by the
1
== —2(1—&-5 0
element (3) 1 13) € SL3(q). The automorphism given by conjugation
o o0 32

through g preserves U and M,.
1-3/2 3
Observe that if p = 3 then the element ( 1/ —3/2) is the identity and hence

0 0 1
it belongs to M.

2.3. The Suzuki group ?By(q). Before collecting all the necessary infor-
mation on all abelian subgroups of central type for the Suzuki group *Bs(q),
we recall its construction from [62, Section 13]. In this case, ¢ = 2*"*! with
n > 1. Consider the Frobenius automorphism Fry of F,. Set 9 = Fri™. Then,
¥? = Fry and the fixed field (F,)” equals Fy. The following remark is useful to
work with Equation (2.2.2) below:

REMARK 2.2.9. Observe that:
(1) If a € F, satisfies a¥(a) = 1, then 1 = 9¥(a)a®. Hence, a = a* and,
consequently, a € F,.
(2) The map @ : F* — F given by a +— av(a), is an isomorphism.
The group ?Bs(q) was defined in [62] as a subgroup of SL4(F,) generated
by matrices of a certain type. The first family of such matrices is the following:

1 0 0 0

a 1 0 0

av(a) +b Ya) 1 0
a*d(a) +ab+3I(b) b a 1

These matrices satisfy the multiplication rule:
u(a,b)u(a’, b)) =ula+d,ad(a") +b+1).

Let U denote the subgroup of SL4(F,) that they generate. We have that
|U| = ¢*. Moreover, U enjoys the following properties, see [62, Lemma 1]:

u(a, b) := , abel,

(1) U has exponent 4.

(2) The center of U is generated by the elements u(0,b), with b € F,. It
is an elementary abelian 2-group of order q.

(3) An element of U is an involution if and only if it belongs to Z(U).

The second family of matrices is parameterized by x € F. They are:

t,. := diag(a1, az,a;",a;"), with 9(a;) = k9(k) and J(ay) = k.
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They form a subgroup T' of SLy(F,), which is isomorphic to F;. The following
formula holds:

ttu(a,b)t, = u(ar, brd(k)). (2.2.2)
In particular, T" normalizes U. The subgroup T'U is isomorphic to the semidi-
rect product 7" x U. Finally, let 7 be the monomial matrix with 1’s on the
antidiagonal. The Suzuki group ?By(q) is the subgroup of SLy(F,) generated
by U, T, and 7. We have ([62, Theorem 7]):

%Ba(q)] = ¢*(a — 1)(g* + 1).

The subgroup U is a Sylow 2-subgroup of ?By(q) by [62, Theorem 7). There-
fore, all non-trivial involutions are conjugate to some u(0,b). By Remark
2.2.9(2) and (2.2.2), all non-trivial involutions are conjugate to u(0,1). By
[62, Propositions 1, 2, and 3], the centralizer of a non-trivial element u(a,b) is
contained in U.

It can be checked that every element of ?By(q) leaves invariant the bilinear
form defined by 7. This permits to regard ?By(q) as a subgroup of the sym-
plectic group Sp,(F,). The description of the Steinberg endomorphism giving
rise to ?By(q) can be found in [56, 57] and [11, Section 12.3].

In this subsection, the data for our setting are: G = ?By(q), and U and 7
as above. The following lemma and Remark 1.3.4 will allow us to take M as
a subgroup of Z(U):

LEMMA 2.2.10. Let M be an abelian 2-subgroup of *Bx(q) of central type.
Then, M is conjugate to a subgroup of Z(U). In particular, M is generated by
involutions.

PrOOF. By Sylow’s theorem, M is conjugate to a subgroup of U. Bear
in mind that U has exponent 4. Since M is of central type, M ~ E x E for
some group E. We next see that E' does not have an element of order 4. If it
were so, U would contain a subgroup isomorphic to Cy x Cy. Pick u(a,b) and
u(a’,b") two generators of such a subgroup. They have order 4, so necessarily
aa’ # 0. Furthermore, they commute. This means:

u(a' + a,a"¥(a) + b+ b) =ula+d,ad(a’) + b+ V).

This gives a’¥(a) = ad(a’). Then, d'a™' = Y¥(d’a). Thus, da™' € Ty,
which implies ¢’ = a. But, then a + ¢’ = 0 and the element u(a,b)u(a’,b’) =
u(0,a¥(a) + b + V') has order 2 and not 4, a contradiction. Therefore, M
has exponent 2. By the properties of U recalled before, M is conjugate to a
subgroup of Z(U). O

The next result shows that there are no other abelian subgroups of central
type:

PROPOSITION 2.2.11. Every non-trivial abelian subgroup of central type M
of ?By(q) is a 2-group.
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Proor. This follows from the knowledge of the structure of the Sylow
subgroups of ?By(q). By [35, Theorem 3.9, page 189], for p odd, every Sylow
p-subgroup of ?By(q) is cyclic. Now, write M ~ E x E for some subgroup E.
Let r be a prime divisor of |E|. Two elements of order r, one in each copy of
E, generate a non-cyclic subgroup of order r2. This is not possible if r is odd,
as such a subgroup must be contained in a Sylow r-subgroup of ?By(q), that is
cyclic. 0

2.4. The Janko group. We firstly recall the definition of the Janko group
from [39] .
Let G be the subgroup of GL7(11) generated by the following matrices:

s120088 E RN
0001000 -1-1-3-1-3-3 2
A=10000100 B=|-1-3-1-3-32 -1
0000010 —3-1-3-3 2 —1-1
0000001 13 3 -21 1 3
1000000 3 3 -21 1 3 1
The group G is called the Janko group. We recollect the following properties

of G (see [38] and [39)]) :
i) G is a simple group;
ii) G has order 11(11* = 1)(11+1)=2%-3-5-7-11-19;
iii) G contains an involution ¢ such that Cg(t) = (t) x F, where F' ~ As;
iv) All the involutions of G are conjugate;
v) Any Sylow 2-subgroup of G is elementary abelian of order 8;
vi) For p odd, the p-Sylow subgroups are cyclic;
vii) G has no subgroup of index 2.

In the following proposition, we describe the abelian subgroups of central type
of the Janko group.

PROPOSITION 2.2.12. Let M be a non trivial subgroup of central type of G.
Then M is isomorphic to the Klein four group. Moreover, all the subgroups of
G isomorphic to the Klein four group form a single orbit for the action of G
by conjugation.

PROOF. By properties v) and vi), we deduce that the only abelian sub-
groups of central type are the Klein four groups. We need to verify that such
subgroups are all conjugate.

Let x,y be two involutions such that z # y and xy = yz. Consider, the sub-
group M; = (x,y). It is enough to prove that M; is conjugate to a subgroup
M, = (t,s), with t the involution such that Cg(t) = (t) x F and s € F.
Notice that the latter involution ¢ exists by Property iii). Since all involu-
tions are conjugate in G, there exists ¢ € G such that gzg~! = t. Hence
gMig™' = (t,gyg™'). Now, gyg~! € Cq(t), that is gyg~! = tof, for some
f € F and for a € {0,1}. Therefore, gM,g~' = (t,tf) = (¢, f). Since
in F' ~ Aj all the involutions are conjugate, there exists f; € F' such that
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fiffit =s. Thus, figMig= ' fit = (fitfi ', fif fi') = (¢, s). This concludes
the proof. O

3. Proof of Theorem 2.1.1

The goal of this section is to prove Theorem 2.1.1.
Each subsection aims at proving the conclusion of Theorem 2.1.1 for each group
listed in there.

3.1. Special linear group SLy(¢). Retain notation from Subsection 2.1
and let G = SLa(g). In light of Remark 2.2.3, we can assume that an abelian
subgroup of central type in U is of the form

M={(s1):acE},
where E is an additive subgroup of [, isomorphic to C’g”, containing F,,.
Recall that 7" = {(0 1 ) te FX} and B = (T,U) ~ T x U. Furthermore,
we pick the element 7 = o = (9 ') in Ng(T). Using Equation (1.6.3), one
can check that the non-zero values of y = Ind%(1y) are:
x(1)=¢* =1 and x(}%)=¢q—1, fora##0.
In this case, the sets P and I, particularize to
P ={AeSLy(q) : Tr(A) =2}, and I, = {{1}, P\ {1}}.

Let P* = P\ {1}. A direct calculation shows that Mps = {1} if p = 2 and
Mpe = {(}2)} otherwise. We stress that (%) € M thanks to our choice of
M. Equation (1.6. 7) takes the following concrete form:

Z X( UTU_l)

veM

- S (G HGDE DG )

ack
(q B 1) -1 a
= on Z X(4+a —1—4a—a? ) :
p ack
Observe that (4+a I—Za—a2) € P if and only if a = —2. Then, the only non-
zero term in this sum corresponds to a = —2. Its value is ¢> — 1 if p = 2 and
q — 1 otherwise. Hence:
q—17°@q+1) . q—1)° .
X(yy) = ( ;ﬁ )ﬂp=2 and X@@Z(Zm) if p # 2.

In both cases, X(?Ji) is an irreducible fraction Propositions 1.4.2 and 1.3.7,
together with Bezout’s identity, yield — 2 = T M‘ € R.

This finishes the proof of Theorem 2.1.1 for SLy(q). O
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3.2. Projective special linear group PSLs(q). We assume that p is
odd, since otherwise PSLy(¢q) = SLy(q) and this case was just treated.
We denote PSLy(q) by G. By Let M be an abelian p-subgroup of G of central
type. By Remark 2.2.3, we can assume that an abelian p-subgroup of central
type M of G is of the form {n({¢): a € E}, with E an additive subgroup of
F, isomorphic to C2" and containing F,,.

Our element 7 is now «({ '). We take x = Indf(U)(]lﬂ(U)). One can check
that the non-zero values of y are:

2

g —1
1:

x(1) 5

One can also verify that, in this case, P = {m(A) € PSLs(q) : Tr(A) =
+2}. Then, I, = {{1}, P\ {1}}. Set, as before, P* = P\ {1}. A direct
calculation shows that Mpe = {7(} %?)}. Equation (1.6.7) now reads as:

X(yg) = (q4’_Ml| ( ; x( (va‘l)> + Z x( (r(6 v 1))
+ZX( ( “Horu” 1)))

veM

—1
and X(ﬂ(é‘f)):qT, for a # 0.

(2.3.1)
We compute the value of the three summands between parentheses:

Firstly, an element of the form
— a — a\—1 - a
W((? o) ()61 ) = 7T( al 717(12)
belongs to P if and only if a = 0 (i.e., it is the identity element) or a? = —4.
The latter occurs if and only if E contains a square root of —4. In such a case,

both roots are in E and the corresponding elements of G are non-trivial and
distinct. Hence, the value of the first summand is 2y (1) = ¢* — 1if /-4 ¢ E

and 2 (X(l) + 2x (m(§ %))) = ¢*> + 2q — 3 otherwise.
Secondly, an element of the form

(EHEHEHEED ™) =7(4h Siee)
belongs to P if and only if @ € {0, —2, —4}. The three elements of G obtained
with these Values of a are all non-trivial and distinct. Hence, the second
summand equals > q 3a=b),
Finally, and in a smnlar fashion, an element of the form

- - ay(0— o -1 - a
(O HDEHEDODED ™) =7( e —1sdea)
belongs to P if and only if a € {0,2,4}. The elements of G obtained with

these three values of a are all non-trivial and distinet. The third summand
equals @ as well.
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In total, the value of the sum in (2.3.1) is ¢*> + 3¢ — 4 if /—4 ¢ E and
q*> + 5¢ — 6 otherwise. Therefore, we have:

x(w3) = i 1)3((1+4) if V=4¢E and x(yi)= Ui 1)3(q+6) if /—4 € E.

X 4p2n 4p2n

In both cases, x(y3) belongs to Q\ Z. It follows from this and Propositions
1.4.2 and 1.3.7 that 3z = iy € R.

This finishes the proof of Theorem 2.1.1 for PSLy(q).

REMARK 2.3.1. For an abelian p-subgroup M of SLs(q) of central type,
7wy : M — m(M) is an isomorphism. For w a 2-cocycle on M, the natu-
ral projection induces a surjective Hopf algebra map 7 : (KSLy(q))a,,. —
(KPSLa(q))e, .- When ¢ is odd, the statement for SLy(g) follows from
that for PSLy(g) in virtue of Proposition 1.4.3(ii). We preferred to carry out
the calculation for SLy(q) because it leads the way to the PSLy(q) case.

3.3. Special linear group SL3(q). Let p be a prime number and ¢ = p™,
with m > 1. Let G = SL3(q). Retain notations from Subsection 2.2. Consider
the maximal split torus

s 0 0
T := {(8 Sthsl) :S,te]F;}.

Bear in mind that Ng(U) =B =(TU) ~T x U.
We first calculate the values at U of the character x = Ind{(1y). Every
element in U has a Jordan canonical form. There are two possible non-trivial
0

. 110 11
canonical forms: (8 ] (1)) (Jordan type (2,1)) and (8 ] %) (Jordan type (3)).

LEMMA 2.3.2. For u € U we have:

(@ =1 —=1) ifu=1,
x(u) =13 (2¢+1)(q—1)? ifu is of Jordan type (2,1),
(g —1)? ifu is of Jordan type (3).

PRrROOF. The value at the identity element is straightforward. The proof
for the other two values is divided into three steps:

Step 1. Let u,u’ € U be such that v’ = kuk™! for some k € GL3(q). We
show that x(u') = x(u). We write k = edy, with e, € G and di € GL3(q)
diagonal. Notice that conjugation by a diagonal matrix in GL3(q) stabilizes
U. Since y is a character of G, we get:

() = x(erpdrud; e ') = x(dpudy ).
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We now compute x(u') and x(u) by using Equation (1.6.3):

X(w) =#{g € G: g(dpud,")g ' € U} - U™
=#{g € G d  gdyud, g dy € UY- U™ (Put h = d,"gd})
=#{heG:huh™t €U} U™
= x(u).

In view of the preceding statement, x(u) = x(u,, ), where u,,. is the Jordan
canonical form of u. In the next steps we calculate the value of y at the two
possible Jordan canonical forms.

Step 2. Set u = (é é §>. We claim that y(u) = (2¢ + 1)(q¢ — 1). Let Cl(u)
denote the conjugacy class of u in G. Consider the orbit map f : G/C(u) —
Cl(u), which sends gC(u) to gug™t. Taking the inverse image of Cl(u) N U
under f, we obtain the following equality:

#{g€ G gug™ € U =|C(u)]|Cl(u) NU.

One can check in a direct way, by computing explicitly C(u), that |C(u)| =
(¢ —1)g®. On the other hand, the Jordan type of a non-trivial element w in U
can be detected by calculating the rank of w — 1: rank 1 corresponds to type
(2,1) and rank 2 to type (3). The set Cl(u) N U consists of elements w € U
that are conjugate to u. It can be shown that these are precisely the elements
w € U such that rk(w — 1) = 1. There are (2¢ + 1)(¢ — 1) matrices fulfilling
this condition. Equation (1.6.3) now applies.

Step 3. Finally, set u = (é % ?) We claim that y(u) = (¢ — 1)%. For, one
first establishes the equality {g € G : gug™' € U} = B by direct manipulation
with matrices and then applies Equation (1.6.3). O

We can rephrase P as the set consisting of those matrices in G whose
characteristic polynomial equals (1 — z)3. We already know that y vanishes
outside P. The value of x at an element g € P is obtained by determining its
Jordan type through the calculation of rk(g — 1) and then applying Lemma
2.3.2. In this case, the set I, equals to {Cny, Cra1y, C(s)}, where Cyy = {1},
and C(y,1) and C(3) are the subsets of P consisting of matrices of type (2,1)
and of type (3) respectively.

In virtue of Proposition 2.2.4, up to automorphisms of GG the abelian p-
subgroups of central type of G are subgroups of M; or Ms. Then, for proving
Theorem 2.1.1 for G, it is enough to show the non-existence of a Hopf order
for cocycles of subgroups M of the following form:

i) M < M, and containing (é _[1)1 D by Remark 2.2.7;
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i) M = {(é g 1(13) be E}, where E is an additive subgroup of F, iso-

morphic to Cj 2n,

1-3/2 3
iii) M < Ms, and containing ( 1/ 3/2) if ¢ is odd by Remark 2.2.8.
o0 1

We start then with the following;:

PROPOSITION 2.3.3. Let M be an abelian p-subgroup of central type of M,
containing ((1) _(1)1 (1)) and let w: M x M — K* be a non-degenerate cocycle. If

(KG)qy,,, admits a Hopf order over R, then ‘M| € R. Hence, (KG)q,,, does
not admit a Hopf order over Ok.
PROOF. We take the element 7 = (§ é g) in Ng(T). It can be verified

that M N (TMT*) C My N (tMyr~') = {1}. We have to detect the elements
v € M such that the characteristic polynomial of 7v is (1 — z)®. This occurs if

and only if v € {<8 _63 (1))} In addition, the Jordan type of Tv is (3). Hence

Moy, <{(g730)}
_(1)1 (1)) € M, then also its third power

belongs to M. Explicitly, (0 (1)3 0) € M, so Mc¢,, = {(0 7 3)} Notice that

00 1
Mg, = {1} ifp=3.
For simplicity, we write (a,b) € M to mean that (é ;1; (i;) € M. Then

2
X(yi) = X(C) Z X(szvTU_l)

and Mc, ,, = = (). Since by assumption (é

|M| veEM
:EGMC<3>
—1)4 1-33)\2 1 —a —b
S S (BEDG T IENGEE))
| M| (aB)eM 100/\0 0 1/ \001/\100/\0 0 1
— (q_1)4 Z X( (1) Pa jb )
| M| (abyen  \b+6 1-ab—6a a—b2—6—6b

The latter element belongs to P if and only if the characteristic polynomial
of the above matrix equals (1 — 2)3 | i.e. the pair (a,b) is a solution of the
following system of equations

—b?—6b—6=3
a? —6a + 6 = —3,
and ((1)%8) e M.
001
§)eu
dd and ¢

The unique solution of the above system is (a,b) = (3, —3) and (

OO
o o~w

by assumption. We now divide the treatment into two cases:

LS
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even.
q odd. Substituting a = —b = 3 in the last matrix appearing in X(yi), we
obtain a matrix of Jordan type (3). This yields to:

(¢—1)°
M|

Since ged(q — 1, |M]) = 1, we have |M| € R.

X(2) =

q even. In this case, the last matrix appearing in X(yf() is of Jordan
type (2,1), for (a,b) = (3, —3). We can then conclude that:

(¢—1)°(2¢+1)
27\M|

Since ¢ — 1 and 2¢g + 1 are odd, we have |M| € R. O

X(2) =

PROPOSITION 2.3.4. Let
M= {(434) s veg),

where E is an additive subgroup of Fy isomorphic to C’gk for some k > 0. Let
w: M x M — K* be a non-degenerate cocycle. If (KG)q,,, admits a Hopf
order over R, then ‘M| € R. Hence, (KG)q,,, does not admit a Hopf order
over Og.

ProoOF. We consider the element 7 = ( % (%) %). One can check that TM 771N

M = {1}. We must find the elements v € M such that 7v is a p-element, i.e.
its characteristic polynomial equals to (1 — 2)3. This happens if and only if
v is the identity. Moreover, the Jordan type of 7 is (3) and this implies that
MC(g) = {1} Then,

ww2) = XL 5 (rom)

veM
S (GHIGHIGDIGEY)

—1)! 1+b —p2
q| ZX<2+b 146 —b%—b )

beR 3+b 24+b —2b—b7+1

Computing the characteristic polynomial of the above matrix and forcing it to
be equal to (1 — 2)3, we get that b must solve the following equation

—b*+3=3.

In particular, the unique solution is b = 0, corresponding to v = 1. We now
proceed dividing the cases according to the parity of ¢.
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q odd. In this case the Jordan type of Torv™! = 72 is (3). Hence;

oy (g—1)°

Since ¢ — 1 and | M| are coprime, then ‘Tl/[' € R.
q even. In this case the Jordan type of 72 is (2,1). Hence

2y (a—=1)°(2¢ +1)

Since (¢ — 1) and (2¢ + 1) are odd, we have |—]\14| €R. O

PROPOSITION 2.3.5. Let q be odd and let M be an abelian p-subgroup of
central type of My, containing é_?i/z §/2> . Consider w: M x M — K*
a non-degenerate cocycle. If (KOG)g;)MM 1admits a Hopf order over R, then
ﬁ € R. Hence, (KG)q,,,, does not admit a Hopf order over Of.

Proor. We take the element 7 = (E)l) é g). We can verify that

My N 7Myr=! = {1} and hence M N7M7~ ' = {1}. We have to find those
elements v € My such that 7v is a p-element, i.e. its characteristic polynomial
is (1 — 2)3. A direct computation shows that this happens if and only if

1-3/2 3
v = (0 1/ —3/2) and that the Jordan type of 7v is (3). This implies that:

00 1
1-3/2 3

ng) - {(0 1 —3/2)}
00 1

1-3/2 3
and Mc,,,, = (). Since (8 (1) _?i/2> € M, by assumption, then

1(=3/2) 3
Mew = {371 9 ) |-

Also in this case, we say that (a,b) € M if (é g %) € M. Then

2
X(?Ji) = X(E\ST) Z X<T$2UTU_1)

veEM
:EGMC<3>
(q—1)* 010\/1-3/2 3 \2/1ab\/010\[(1—aa’b
E X 001) 0 1 -3/2 (Ola)(OOI) 01 -a
| M| (aB)eM 100/\g o 1 001/\100/\0 0 1

_1)4 a—3 3a—a? a(a?—b)—3(a?—b)+1
33 )
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With the usual criterium of the characteristic polynomial, the above element
lies in P if and only if (a,b) is a solution of the following system of equations
a’*—3a—3 =-3
—6+ (a®> = b)(b+ 2 — 3a) = 3,
and (a,b) € M.
The unique solution to the system is (a,b) = (3/2,—3/4) and
13/2 —3/4 1-3/2 3 \°!
<0 1 3/2 > = (0 1 —3/2) )
00 1 00 1

which belongs to M by assumption. In addition, the Jordan type of Tz?vrv™
s (3). Then,

1

(¢—1)°
X(yi) = W
The latter is an irreducible fraction, implying that ] M‘ € R. 0

PROPOSITION 2.3.6. Let g be even and let M be an abelian p-subgroup of
central type of Ms. Consider w: M x M — KX a non-degenerate cocycle. If
(KG)qy,,, admits a Hopf order over R, then i € R. Hence, (KQ) does

not admit a Hopf order over Ok.

\M Qnr,w

PROOF. In this case we pick the element 7 = (% g é). A direct computation

shows that (TMar1)N My = {1} and hence (tM7~')NM = {1}. An element
v € M is such that 7v has characteristic polynomial (1 — 2)® if and only if
v = 1. In particular,

MC<2,1) = {1}
while M¢,, = (. Then;
X(yy) = ZX (ToTv™
* |M| veEM
(g D'2q+1)? 001\ /1aby\ 001\ /lab
BT (abi)ng((%g)(gé%)(%8)(85%))
— D429+ 1)? 1 a a2+b
— (q ) ( q ) Z X(aa+l a+a3+ab ),
|M| (a,b)eM b atab 1+a2+a2b+b2

where (a,b) € M means that (ég%) € M. Computing the characteristic

polynomial of the above matrix and forcing it to be equal to (1 — 2)3, we
obtain that (a,b) € M is a 2-element if and only if the pair (a,b) is a solution
of the following equation

1+ a2+ b2 = 1. (2.3.2)
The solutions of the above equation are (a,0) for every a € F, and (a,a?) for
every a € /.
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If (a,b) = (0,0), the corresponding matrix showing up in the expression of
x(y3) is the identity.

If (a,b) = (a,0) or (a,b) = (a,a?), then the corresponding matrix under con-
sideration is of Jordan type (3) for a € F.

We want to show that the number of solutions (a,b) of system (2.3.2) such
that (a,b) € M is even if a # 0.

Suppose that (é 1 2) € M, for a # 0. Then, also its third power lies in M,

001
)3_ a2>
_< 7).
ie. (a,a*) € M.

Call N the number of pairs (a, b) # (0,0) solving the equation (2.3.2) and such
that (a,b) € M. By the previous consideration we obtain

explicitly

—
oo
o—Q
—Q o
OO
o—Q

N =2 -#{(a,0) €M : a €F;}.
For simplicity, denote by N, the number #{(a,0) € M : a € F)}. Hence;

(g —1)%2q +1)?

X(2) = 7 (2N + (g + (@ +q+1)).
Since (¢ + 1)(¢*> + g + 1) is odd, then the number between brackets is odd.
Hence, ﬁ € R. O]

This concludes the proof of Theorem 2.1.1 for SL3(q).

3.4. Projective special linear group PSL3(q). Let ¢ = p™, for m > 1.
In this section we assume that ¢ =3 1, since otherwise PSL3(q) = SL3(¢) and
this case was just treated. The map 7: SLj(q) — PSL3(q) represents the
natural projection and G stands for PSL3(q). Furthermore, recall that 6 is a
primitive third root of unit in [F,, which exists since ¢ =3 1.
We retain notation from Subsection 3.3.
In particular, the Sylow p-subgroup we consider is

m(U) := {7T (égg) ta,b,c e ]Fq}
while the maximal split torus is

s 0 0 %
w(T) := {7?(8 : tl(;1> :s,tEIFq}.

Moreover, we have that Ng(7w(U)) = n(B) ~ «(T) x w(U).
Firstly, we compute the values of the character y = Indf(U)(]lw(U)) at m(U).
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LEMMA 2.3.7. For w(u) € m(U) we have:

% ifu=1,

x(m(u)) = W if w is of Jordan type (2,1),

% if u is of Jordan type (3).

PRrROOF. The value at the identity element follows from the definition of x.
By [71, Proposition 1.2], for u € U the following formula holds

_ |Crsiyq(n(w))] - [Clla(u) N7 (U)]

dPSLS(Q)
7 (U)]

IndZ ;) (Lrqr) (m(u))

In addition,
_ Oy ()] - [Cl(u) NU|
U] '

IndP™ @ (1) (u)

We start proving the following:

(1) |Clw)| = |CU(m(u))};

(2) |Clu) NU| = [Cl(m(u)) Nm(U)],
for every u € U.
(1) We first prove that |Cl(u)| = |7(Cl(u))|, for every w € U. This follows
from the fact that the projection 7 restricted to Cl(u) is injective. In fact if
for w € U and z,y € SL3(q) the conjugates zruxr~" and yuy~' have the same
image via m we must have zur™' = yuy='6", for i € {0,1,2}. Since the left
hand side of the equation has order p, it follows that ¢ = 0. We conclude by
observing that 7(Cl(u)) = Cl(mw(u)) for every u € U, since 7 is surjective.
(2) For showing this equality, it is enough to prove that

7(Cl(u) NU)| = |7 (Cl(u)) N (U)],
for every u € U. Indeed, if this is the case we would have
|Cl(u) NU| = [x(Cl(u) NU)| = [x(Cl(w)) Nw(U)| = [Cl(x(u) Nx(U)],

where the first equality follows from the injectivity of 7|cy(,) and the latter one
from the fact that 7(Cl(u)) = Cl(m(u)).

The inclusion 7(Cl(u) NU) C w(Cl(u)) N7 (U) is trivial, for every u € U. Now
let 7(2) € w(Cl(u)) Nw(U), for z € SL3(¢q). We have 7(z) = w(u’) for some
W € U and 7w(z) = w(tut™'), for some u € U and ¢t € SL3(¢q). This implies
that tut~! and ' have the same projection along 7. So we have tut~! = v'67,
but again the left hand side has order p, and this forces ;7 = 0. So indeed
m(z) = n(v') € 7(Cl(u) NU), and we obtain the other inclusion.

The equalities just proven imply that for every u € U

_ |PSLs(g)] _ 1 |SLs(g)| _ 1
|CPSL3(q)(7T(U))’ = m — 3 1C1(u)] 3 |CSL3(q)(U)’a

and also that
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1

PSL

Ind} o9 (e (m(u)) = 5 Indg (L) (u).

Finally, by Lemma 2.3.2 we get the desired result. 0

In this case, we can view P as the collection of the elements 7 (g), such
that the characteristic polynomial of g is (6* — 2)3, for some i € {0, 1,2}.
By definition, the value of the character x at an element which does not belong
to P is equal to zero. If, instead 7(g) is a p-element in virtue of Lemma 2.3.7
the value of y depends on the Jordan type of g, which is obtained computing
rk(g — 6" - 1), for i € {0,1,2}. In particular, we get

C(l = {,/T< )}7
C21) = {m(g) € P : g has Jordan type (2,1)},
C) = {m(g) € P : g has Jordan type (3)}.

In consequence I, = {Cn), Cia,1), C(3) }-

REMARK 2.3.8. Abusing notation, we say that an element 7(g) € G is
of Jordan type (2, 1), respectively (3), if g has 3 equal eigenvalues and is of
Jordan type (2, 1), respectively (3).

For simplicity, call M; and M the subgroups 7(M;) and 7(Ms).
The aim of this section is to prove Theorem 2.1.1 for G. For this purpose, in
light of Corollary 2.2.6 and Remarks 2.2.7 and 2.2.8, it is enough to prove the
theorem for cocycles associated with subgroups M of the following form:

. . 1-11
i) M < M, contammgw(g ! %),

i) M = { (8 g 0) be IE} where E is an additive subgroup of F, iso-

morphic to C>";

1-3/2 3
iii) M < M, containing 7 ( 1 —3/2), if ¢ is odd.
00 1

Hence, the first step is to prove the following:

PROPOSITION 2.3.9. Let M be an abelian p-subgroup of central type of M
containing m (é :1)1 (1)) and let w: M x M — K* be a non-degenerate cocycle.

If (KG)aq,,., admits a Hopf order over R, then ﬁ € R. Hence, (KG)a,,.,

does not admit a Hopf order over Q.

PROOF. We consider the element 7 = 7 @ é g) in Ng(m(T)). One can

verify that M N (TMT_l) C My N (rMy71) = {x(1)}. We must find those
elements v € M such that the characteristic polynomial of a lifting of 7v is
(6" — 2)3, for some i € {0,1,2}.

1 —302%¢ 3¢

This happens if and only if v € { <0 Lo > ci1e€{0,1, 2}} Furthermore,
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0 1

Moy < {n (374) sie 01,23},

0 0

the element 7v has Jordan type (3), for every v € {7r (é Ed ggi) 1€ {0,1, 2}}

Hence

and Mg, , = (. In addition, 7 (é
This implies that Mc, # 0.

-33 1-11\3 )
1 0) = 7r(0 1 0) € M by assumption.
01 001

We now divide the proof according to the size of Mc,

1-33
1) Suppose that [Mc, | = 1. Then Mc, = {<8 ! (1))}

For enhancing the readability of some formulas, we write (a,b) € M to
indicate that (0 1 0) eM.

Hence,
X(Cr3))? _
X(yi) = ‘]\(4_‘) E X(T.’Ijz’l}’r?} 1)
veEM
xGMC(3)

- qg,‘Mﬂ 2 (DG TD IR

(q - 1) < ( 0 0 1 )>
9| M| Z AT b+6 —ab—ta a—t?—6-65) )"

(a,b)eM

a ?b)> (2.3.3)

The latter summands are nonzero if and only if the characteristic polynomial
of the corresponding matrix equals (z — 6%)3 for some k € {0, 1,2}, i.e. if and
only if (a,b) € IFZ is a solution of the following system of equations

—b2 —6b—6=30%

a2 — 6a + 6 = —30%, (2:3.4)
and 7 (é ((1; (113) eM
For k = 0,1,2, call Ny the number of solutions of system (2.3.4) satisfying
(1) <
For £k = 0 the system (2.3.4) has one solution, namely (a,b) = (3,—3).

1-33\ .. .
The corresponding element 7(8 ! (1)) lies in M, so Ny > 1. Moreover,

for each k € {1,2}, the system has at most four solutions, implying that
1 < Ng+ Ny + Ny <9. We proceed treating separately the case ¢ odd and ¢
even.

g odd. The last matrix appearing in the expression of X(yi) is the ma-
trix in Equation (A.1.2) in the Appendix, with i = 7 = 0; in light of Lemma
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A.1.2 it has Jordan type (3). This yields:
(g—1)°
27 M|

If |M| divides Ny + N; + N, then |[M| < 9. Since ¢ is odd and satisfies ¢ =3 1
and since |M]| is a square, we obtain that X(?/i) is an irreducible fraction, so
il M| € R.

x(w3) = - (No + N1+ Na).

q even. We consider the matrices appearing in the expression of X(yi)
n (2.3.3). Lemma A.2.1 for i = j = 0 states that the latter matrices are
of Jordan type (2,1) if and only if (a,b) = (0%,6%*) for k € {0,1,2}. The

assumption that w ((1) 9(1) 0) ¢ M for i # 0, implies that the only solution

(a,b) of system (2.3.4) satisfying = (é ((1; (?) € M is (a,b) = (1,1). We can then
conclude that:
(¢—1)°2¢+1)
27\M|
Since ¢ — 1 and 2q + 1 are odd, we get |M| € R.

X(2) =

2) Suppose now that [Mc,| > 1 and ¢ =3 1 is arbitrary with this

property.
Firstly, we show that |Mc, | # 2. Indeed, fix i € {1,2} and suppose that

_2pt 21
the element 7 <[1) ?(1’)9 3?1) ) € M. The latter together with the assumption

1-33 2i 390
7T(O 1 o)EMyleldsthatW((l) i 39)6]\4smce
001 0 0 1

1 —36¢ 392 1-33 1 302 300\ !
™ 01 0 (0 1 0) =mT|lo0o 1 0 .
0 0 1 001 0 0 1

Therefore

and so [(Mc,)| = p*. Then,

o) = XL S (rartor)

veM
!
m,mEMc(3)
q—l 010\/1 362 30°\/ 1 —3027 309 \(1ab\/010\/1—a b
= EX 001 )fo 1 o0 0 1 0 o10J)foo1]){o 1 o
9| M| 100/Xo o 1 0 o0 1 oo1/\100/\o0 0 1
(a,b)eM
4,5€{0,1,2}

_ (g—1)* Z X(W( 0 o 2 ))
9| M| e b+3(0°4+67) 1—ab—3a(074+69) a—b2—3(0%1+620)—3b(0%+07) ) ) "
a,b)e
i,j€{0,1,2}

(2.3.5)
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The latter summands are nonzero if and only if the characteristic polynomial
of the corresponding matrix equals (#* — 2)3, for some k € {0,1,2}. A com-
putation shows that this holds if and only if the pair (a,b) € F; is a solution
of the following system of equations:

—b? — 3b(0° + 67) — 3(6% + 6%) = 30*

a? — 3a(0% + 0%) + 3(0" + 0%) = —30%F,

for some k € {0, 1,2} and a, b such that = (églo;) e M.

Let N, be the number of solutions of the previous system for k € {0,1,2}. In
this case, as well, we carry out our estimates according to the parity of ¢.

q odd. For every triple (¢, 7, k), with 4, j, k € {0, 1,2} the system (2.3.6) admits
at most 4 solutions and so Ny + N; + Ny < 108. As in the case |MC(3)| =
1, we have at least one solution, i.e. Ny + N; + Ny > 1. Since the last
matrix appearing in the expression of X(yi) in Equation (2.3.5) is the matrix
in Equation (A.1.2) in the Appendix, Lemma A.1.2 implies that

(2.3.6)

X6 =9 g+ v ).
X 27| M|
A necessary condition for x(y,)? to be an integer is that |[M| < 108. Given
that |[M| = p?, for some [ € N and that p # 2,3, this could occur only if
|M| =49 or |M| = 25.
Let [M| = 49. As we have noticed before, [(Mc,, )| = 49; this forces M to be
equal to (MC(3)>. In this case, the third root of unity # lies in F7; and one can

verify that M = {7? (é ?1; 6;) sa,be IF7}. Lemma A.1.1 together with Lemma
A.1.2 imply that
75(q —1)°
2
S\ S Z
)= ea\z

leading to \Tl4| € R.
If |M| = 25, then with the same argument we used for p = 7, we obtain that

M = (Mc,,,). Lemma A.1.3 and Lemma A.1.2 yield that

15(q — 1)8
X(?Ji) = 2(725) € Q\Z,
implying |—]\14| € R.

q even. We denote by N the number of 2-elements in the expression
of x(y3) in Equation (2.3.5) which have Jordan type (3), while Nz 1 stands
for the number of 2-elements of Jordan type (2, 1) in the expression of X(yi).
We recall that we are looking for the pairs (a,b) € F, x F, which solve the
following system:

b2+ b(0" + 07) + (6% + 0% + 6%) =0

a2 + a(0% + 6%) + (0" 4 0% 4 6%%) = 0, (2.3.7)



3. PROOF OF THEOREM 2.1 49

and satisfy 7 (é g 8) € M for some i, j, k running in {0, 1,2}.

If i = j, then the solutions of the system are (a, b) = (6%, 6%), for k € {0, 1,2}.
In the case we are considering, the element 7 (é 0{1: 9§k € M for each k €
{0,1,2}. Moreover for ¢ = j, Lemma A.2.1 guarantees that the Jordan type
of the corresponding element in the expression of x(y?) in Equation (2.3.5)
is (2,1) and that the only elements of Jordan type (2, 1) are those for which
i = j. Hence, for every i = j € {0, 1,2}, there are 3 solutions (a,b) € F, x F,
of system (2.3.7); explicitly (a,b) € {(1,1), (0, 6%),(6%,6)}. Hence, N(Q,l) =09.
Let i # j. The solutions of the system (2.3.7) for the pair (7, j) are the same
as for the pair (j,4). Thus, N3y = 2N ;x), where N i) are the solutions of
the system (2.3.7) for the triple (7, j, k), with i < j. Hence,

_(g—1)S (q—1)°

X(yy) = 7M. (N(3) +(2¢+ 1)N(2,1)) = 7|

(18¢+ 9+ 2Nii )

Since the number into brackets is odd, we get that Il M| € R. 0

We now proceed with the following result.

PROPOSITION 2.3.10. Let

e}

where E is an additive subgroup of F, isomorphic to C’z’“ for some k > 0. Let
w: M x M — K* be a non-degenerate cocycle. If (KG)q,,, admits a Hopf
order over R, then W € R. Hence, (KG) does not admit a Hopf order
over O.

oo

(ii) : bEE},

QM,w

PrROOF. We take 7 =7 @ (%) %). One can verify that TM7'NM = {x(1)}.
We must detect for which elements v € M the characteristic polynomial of a
lifting of Tv equals (6" — 2)3 for some i € {0,1,2}. The only element v € M

satisfying this condition is the identity, which clearly belongs to M. Moreover,
the Jordan type of 7 is (3) and this implies that Mc, = m(1). Then,

veEM
_(q—1)4 100\ /10bY /100Y (10 b
= omT] ,,E%X(W(m)(m)(m)(gg9)) (2.3.8)

q—l < (H—b b —b? ))
24+b 1+b  —b%-b .
9| M| ,%I:EX 34b 24b —2b—b241
Computing the characteristic polynomial of the matrix in the expression of
x(y2) in Equation 2.3.8 and forcing it to be equal to (8" — z)* for k € {0, 1,2}
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we get that b € E must satisfy the following system of equations

—3 = —30%
—b% + 3 = 36*.

In particular, the system admits a solution if and only if £ = 0, and in this
case b = 0 is the only solution. We now proceed according to the parity of q.
q odd. In this case the Jordan type of Torv™! = 72 is (3). Hence;

2\ _ (q — 1)6
X(?JX) = W

Since ged(q — 1, |E|) = 1, we conclude that |T14| € R.

q even. In this case the Jordan type of 72 is (2,1). Hence

oy _ (a—1)°(2¢ +1)
X(y3) = IR

which belongs to Q \ Z since (¢ — 1) and (2¢ + 1) are odd. Thus, ﬁ eR O

PROPOSITION 2.3.11. Let q be odd and let M be an abelian p-subgroup of
1-3/2 3 o
central type of My, containing w <o 1/ —3/2 ). Consider w: M x M — K*

Q0 0 1
a non-degenerate cocycle. If (KG)q,,, admits a Hopf order over R, then

ﬁ € R. Hence, (KG)q,,,, does not admit a Hopf order over Of.

PROOF. We pick 7 =7 (§ é g). We can verify that MyNTMor™t = {7 (1)}

and hence M N 7M1~ ! = {m(1)}. We seek those elements v € M, such that

TV is a p-element, i.e. such that the characteristic polynomial of a lift of it is

(0" — 2)3, for some i € {0,1,2}. A direct computation shows that this occurs
1(=3/2)0* 36"

if and only if v € {77 (0( /1) (_3/2)9%) 1 €0, 1,2} and that in this case
0 0 1

the Jordan type of 7v is (3). This implies that

1 (—3/2)0%  36° )
MC(s) C {W (8 é (—3/12)92i> 1 €0, 1,2}

1(-3/2) 3
and Mc, , = 0. Bear in mind that 7 (8 (1)/ (_3/2)> € M, by assumption.

We divide the analysis into two cases, according to the size of Mc,, .
1(-3/2) 3
1) Suppose that [Mc,| = 1. Then M¢g, = {7T (o 1 (=3/2) )} and

0 0 1
thus M is a proper subgroup of My. We write (a,b) € M to indicate that
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b
ﬂ((l)(lla) € M and compute
001

X(Cz))? _
X(yi) = 7’]\5") Z X(T%Q’UT"U 1)
veM
CBEMC(S)

q—l 010/ 1-3/2 3 \2/1ab\,010\/1—aa’b
5 ZX((%%)(O P NG Ee)

(q _ 1) a—3 3a—a? a(asz)723(a27b)+1
= —a a®—b .
it oo st

b)eM b—3a+32 3a2—ab—32a+1 —3+(a?—b)(b+22 —3a)

(2.3.9)
With the usual characteristic polynomial criterium, the summands in the ex-
pression of x(y2) in (2.3.9) are nonzero if and only if (a,b) € M satisfies the
following system of equations

a? —3a — 3 = —30%*
—6+ (a®> = b)(b+ 2 — 3a) = 30",
for some k € {0, 1, 2}.

For k € {0, 1,2}, we call Ny the number of solutions (a, b) such that (a,b) € M.

For k = 0, there is only one solution to the system, namely (a, b) = (3/2, —3/4).
13/2 —3/4
Moreover <0 { 3//2 > € M, since

00 1
13/2 —3/4\ 1 1-3/2 3

(01 3/2) —(o 1 —3/2)€M
1

00 1 0 0

(2.3.10)

by assumption. Hence Ny = 1. Furthermore, Ny, No < 4, yielding that 1 <

N(] + Ny + Ny, <9.

Observe that the matrix appearing in the expression of x(y?) in (2.3.9) is the

matrix in Equation (A.1.3), for r =w = —3/2 and s =y = 3.

If p# 7,19, Lemma A.1.4 implies that
2\ (q - 1)6

The above number is an integer if and only if | M| divides Ny + Ny + N,. Since

Ny + N1+ Ny <9 this cannot occur, since the only prime squares less or equal

to 9 are 4 and 9, that are discarded because p is odd and ¢ =3 1. Thus, we
have m € R.

- (No + Ny + Na).

M \

Let now N be the number of solutions (a,b) € F, x F, of system (2.3.14).
Then N = Ny + N1y, where Ny and Ny ;) stands for the number of
solutions (a,b) of system (2.3.14) which are such that the corresponding
element in the expression of x(y,)?* in Equation (2.3.9) is a p-element of
Jordan type (3) and Jordan type (2, 1) respectively.
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Let p = 7. Since i = j = 0, by Lemma A.1.4 the element showing up in the
expression of x(y2) in Equation (2.3.9) is a 7-element of Jordan type (2,1) if
k = 2. Then, N(g}l) <4 and N = N(2’1) + N(g) < 9. Thus

—1)6
X(y3) = (g7|M)] <2qN(2,1) + N@i) + N(2,1)) :
Since M < My and |M| = 7%, for some [ > 1, then 7! is a proper divisor of 7™.
Hence, 7! divides ¢. In conclusion, if |M| divides (2¢N(2,1) + N3y + Nezy)
then 7! must divide N1y + Ny <9 for some [ > 1, a contradiction.
Let p = 19. Lemma A.1.4 implies that N1y = 0 because we are assuming
|Mc,| =1 and so i = j = 0 in Equation (A.1.3).

Hence;
2 (g—1)°
where N3y < 9; we deduce that |T14| € R.

1-3/202 30
2) Assume now that |Mc, | > 1 and that (0 1 _3/292> € M. Since

0 0 1
1-3/2 3 1 -3/20 362
0 1 -32) € M,also (0 1 -320 ) € M. In consequence, [Mc, | = 3,
No o 1 0 0 1
ie.
1(=3/2)0% 3¢ )
Mc(3) = {71' (0 1 (3/2)921> 1€ {0, 1,2}}
0 0 1
Therefore,
x(Ci3)? _
W) =S 2 (v
veEM
z,zlel\/fc(S)
(q—1)* ((om)(l(—s/m“ 30' )(1(—3/2)9” 307 )(1ab)<010)<1a a2b)>
= X|\m{ o001l o 1 —3/2)6% 0 1 —3/2)6%7 | 0la J OO1 ) 0 1 -—a
9¢? (a%;M 1oo0/\ g 0 ( /1) o o ( /1) o0o01/\N100/N\o o 1
i,j€{0,1,2}

For simplicity, set y = 36", s = 367, w = (=3/2)6%,r = (=3/2)0%. Then x(y3)
equals to :

—1)4 a+r+w —a(a+r+w) 1+(a?—b)(a+r+w)
(q9 2) Zx(ﬂ'< 1 —a a®—b )) .
q (a.b)eM b+s+rwta(r+w)+y 1—a(b+s+rw+ta(r+w)+y) r+w+(a®—b) (b+s+rwta(r+w)+y)
i,j€{0,1,2}
(2.3.11)

The matrix appearing in Equation (2.3.11) is indeed the matrix C' in Equation
(A.1.3) in the Appendix.

Computing the characteristic polynomial of C' and forcing it to be equal to
(6% — 2)3, for some k € {0,1,2}, we get that C' is a p-element if and only if
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(a,b) € Iﬁ‘g is a solution of the following system of equations:

a?+a(r+w)+s+y—rw—r>—w?=-30%*

2r +w) + (a® = b)(b+ s+ rw +y + a(r + w)) = 36", (2.3.12)

for some k € {0,1,2} andw(gla) e M.

For each choice of the triple (i, j, k) there are at most 4 pairs (a, b) satisfying
the previuos equations. Moreover, for i = 7 = k = 0, the calculations in case
1) imply that (a,b) = (3/2,—3/4) is a solution.

Call N the number of p-elements in the sum. By the previous considerations,
we have 1 < N <27 x 4 = 108.

We now need to establish the Jordan type of the p-elements arising from the
solutions of system (2.3.12), for some choice of i, j, k € {0, 1,2}. Let us divide
this analysis into three cases, according to the value of p and |M].

i) Let p # 7,19. By Lemma A.1.4, the p-elements arising from the solutions
of the systems (2.3.12) are all of Jordan type (3). Then,

(q—=1)°
27| M |
Since ¢ isodd, ¢ =3 1 and p # 7,19 then | M| could divide N only if |M| = 25.
In the other cases we conclude that il M‘ € R. If |M| = 25, by order reasons we
get M = (Mg, ). In light of Lemma A.1.8, we obtain
2y _ (g — 1)°15

Since 25 does not divide 15 we conclude that x(y2) € Q \ Z and in particular
that \Ml € R.
ii) Assume now p = 7. Then

2y _ (a— 1)°
where N(2,1) and N(3) are defined as in case 1). If M < M, and |M| = 7%, then
7 divides g and |M]|. If x(y2) € Z then 7" would divide N = N1y + N).

This could occur only for I = 1, i.e. [M|=49. In this case M = (Mc,, ) and
one can verify that

x(2) =

(2¢N2,1) + Ngay + Nezy),

lab
(Mc,,) = {ﬂ' (8 ! 111) ta,be F7} :
By Lemma A.1.6, we have that N(3;) = 6 and N31) + N3y = 33. Hence,
oy (g —1)°(12¢ +33)
Xl = 27 - 49 '

Since 7 divides ¢ but it does not divide 33, the number X(yi) € Q\Z. Thus
in the case p =7 and M < M, we conclude that € R.
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Assume now M = M,. Then |M| = ¢*. Moreover, Lemma A.1.5 guarantees
that N1y <12 and as before N = N3) + N1y < 108. If X(yi) € 7Z, then

¢ < 2qNpq1) + (N1 + Nig)) < 24¢ + 108,
ie. 7 < q < 28. This forces ¢ = 7. In this case, Lemma A.1.6 gives that
N1y = 6 and N3y = 27. In consequence;

6 6
14+1)+27
27 - 72(6( +1)+27) = 2772

Since 117 and 7 are coprime, X(yi) € Q\ Z. Hence, it M = My and p = 7 we
obtain IMI € R.
iii) Finally, assume p = 19, Then

X(yy) = 57z (117).

X(y) = S 1)6(2qu @1 + Ney + Na),

27| M |
where N1y < 24 by Lemma A.1.5.
Let |[M| = p*, for some [ > 1. If M < My, then x(y3) is an integer if p'*!
divides N = N3 1) + N3y < 108 for some [ > 1, a contradiction.
If instead M = M, then |M| = ¢*. A necessary condition for X(yi) to be an
integer is that ¢ < 48¢ + 108, forcing ¢ = 19. If this is the case, Lemma A.1.7
implies that

186 185 . 507
2-19-12451) = —— 7.
Also in the case p = 19, we conclude that ] M| € R. O

From now on, let ¢ be even. The last step is proving the following Propo-
sition.
PROPOSITION 2.3.12. Let g be even and let M be an abelian p-subgroup of

central type of Ms. Consider a non- degenemte cocycle w: M x M — K*. If
(KG)q,,., admits a Hopf order over R, then \Ml € R. Hence, (KG)q,,,, does

not admit a Hopf order over Og.

PROOF. In this case we take 7 = 7 (% g é). A direct computation shows

that (tMar=')NMy = {m(1)} and hence (M7~ )NM = {x(1)}. The elements
v € M such that the characteristic polynomial of a lifting of Tv is (6" — 2)3 for

somei € {0,1,2} arev =7(1)andv =7 (8 1 ) for I € {1,2}. In particular,

MC(QJ) = 7'('(1),

21
1) :l:1,2}.
1

while
0

(=)l

1
1
0

MC(B) Q {W(
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We divide the proof into cases, according to the size of Mc,, .
Case 1) Suppose that Mg, = 0. We write (a,b) € M to indicate that

ﬂ(é%g) € M. Then

01
X(C2a )2 _
x(y2) = # > x(rorvt)
‘ ’ veEM
(gD 2q+1)? 001\ /1ab\ 001\ /1ab
= oo 2 EED G () (8) @3a9)
—1 4 2 1 2 1 a aZ+b
— (q ) ( q+ ) Z X(?T(a a?+1 a+a’+ab >)
9|M| (a,b)eM b atab 1+a?+a2b+b2

Computing the characteristic polynomial of the matrix in the expression of
x(y2) in (2.3.13) and forcing it to be equal to (6* — z)* for some k € {0,1,2},
we obtain that (a,b) € Fg must solve the following system of equations

1+ a’b+b> =06

L+ B g (2.3.14)

This system has solutions only for £ = 0. In this case, the solutions are (a,0)
for every a € Fy and (a, a®), for every a € F.

If a =0 and b = 0, the corresponding matrix showing up in X(yi) is the
identity:.

If a # 0, then by Lemma A.2.2, the corresponding matrix is of Jordan type
(3). We want to show that the number of pairs (a,b) € {(a,0), (a,a?) : a # 0}

such that (é g 51;) € M, is even.

Suppose that 7T( ) € M. Then,

and so N, := #{a € F : (a,0) € M} =#{a € F} : (a,a®) € M}.
Hence

(q—1)°(2¢ +1)?

X(y2) = STl (2Na+ (g 4+ 1)(¢* + ¢+ 1)) € Q\Z
So in the case Mc,,, = (), we conclude that ﬁ € R.
Case 2) Suppose that [Mc, | # 0 . Observe that m (é é ?) € M if and

. 1162 .
only 1f7r(8(1) %> € M, since
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Therefore [Mc,, | # 0 implies

o =

O
»—A»—\Q[i;'
N————
~
Il
\.l—‘
[\
—

Hence,
1 _ _
x02) = o [x(Can)® 3 x(roro ™) + 2x(Can)x(Ce) 3 x (ravro ™)+
| | veEM veEM
xek{c(3>

+ X(C(g))2 Z X (me/UTv_l) } .

veEM
’
T,x GMC(3)

We aim at showing that the sum between brackets is an odd integer. The first
summand was already analyzed in the previous case, while the second one is
clearly even. Thus, we are left to study

001\/116°\/1167\/1ab\001\/1—-aa?-b
> XT&'(OIO) 011 ) o011 (01a)(010>01 —a

100001 /N\oo1Noo1ATooNg o T
a

1 a a’+b
= Z x| a a’+1 a(a?+b+1) .

(ab)eM b+021 4627 +1 a(b+0%146%7) (a?+b)(b+0%+6%7)+b+1

(2.3.15)

By Lemma A.2.3, the matrix appearing in equation (2.3.15) is in P if and only
if (a,b) € {(0,0),(0,1), (a,0), (a,a?), (1,64}, for [ running in {1,2}.

Observe that since 7 (é é i) € M, then its square 7 (é g (1)) belongs to M. This

implies that (0,0), (0,1), (1,0), (1,6%) lie in M.

For 7,5 € {1,2} such that i # j and k = 0, by Lemma A.2.3 the matrix
appearing in the expression (2.3.15) is in P if and only if (a,b) = (0,0) and in
particular in this case it is the identity thanks to Lemma A.2.4. Then, there
are precisely 2 occurrences of the identity in the sum in expression (2.3.15) of
X(v3)-

Moreover, for ¢ = j and k = 0, in virtue of Lemma A.2.3 the matrix appearing
in the expression (2.3.15) is in P if and only if

(a,b) € {(0,0),(0,1),(a,0),(a,a®) : a € Fr}

and in the cases in which (a,b) € {(0,0),(0,1)} the Jordan type of the corre-
sponding matrix in the expression of x(y2) in (2.3.15) is (2, 1), by Lemma A.2.4.
On the other hand, in light of Lemma A.2.4, if (a,b) € {(a,0), (a,a”) : a € F}}
the Jordan type of the corresponding matrix in the expression of X(?Ji) in
(2.3.15) is (3). Arguing as in Case 1, we have that N, = #{a € F) : (a,0) €
M} = #{a € F} : (a,a®) € M}. Hence, for i = j and k = 0, in the sum in
expression (2.3.15), there are four 2-elements of Jordan type (2,1) and 2N,
elements of Jordan type (3).
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Finally, for i = j and k € {1, 2}, in light of Lemma A.2.3 the summand appear-
ing in the expression (2.3.15) is nonzero if and only if (a,b) € {(1,0), (1,6%)}
and the Jordan type of the corresponding matrix is (2,1) thanks to Lemma
A.2.4. In consequence, there are eight occurrences of 2-elements of Jordan
type (2,1) in the sum in expression (2.3.15).

Thus, x(y3) equals

D) (2Na + (¢ + 1)(q2 +q+ 1)) +2x(C(2,1))x(Cs)) Z X (7‘va1}71> +

veEM
mEMc(S)

it [x(Can*

+ x(@af% (26" +a+1)(g—1) +12(2g + 1) + 2N,) } :

Since the second and the third summands are even, while the first is odd, we

have x(y2) € Q\ Z and so Wl| € R. O

This concludes the proof of Theorem 2.1.1 for PSL3(q).

3.5. The Suzuki group *B,(q). We retain notations from Subsection 2.3.
Here ¢ = 22"+ where n > 1. We consider the induced character y = Ind§ (1)
and the set P = U,eq gUg™t. We know that y vanishes outside P. We compute
its values at U.We start with a non-trivial involution u(0,b). It is conjugate
to u(0,1) by a certain ¢, € T in view of (2.2.2). Note that gu(0,1)g~! € U
implies gu(0,1)g~" € Z(U). Using (2.2.2) and that Ce(u(0,1)) = U, one can
check the equality {g € G : gu(0,1)g~' € U} = TU. As a consequence of
this, and (2.2.2) again, the same equality holds for u(0,b). Now, an arbitrary
u(a, b), which is not an involution, has order 4. Then, we have the following
chain of inclusions:

TU C{g€G:gula,bygtcU}C{geqG:gu(a,b)?gtecU}=TU.

Hence:
X0 = {5 = g = 1+ 1)
_ru)
X(v)—m—q—l, for v e U\ {1}.

In this case, the set I, particularizes to I, = {{1}, P\ {1}}. Let P* =
P\ {1}. Clearly, M1y = 0. The next step is to find Mp.. We analyze when
the following product is a 2-element:

0010
_ 1
T“(Oab)— 0100

1000

= (. Then:
Mpe ={ve M:1ve P} ={1}.
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Equation (1.6.7) now takes the following form. Notice that, in view of
the preceding discussion, (7v)? € P if and only if v = 1. Hence, the only
contribution in the second sum occurs when v = 1:

X(y3) = XTZR > X(Tm:’vﬂfl>

_ XTZR v;/[X((TUV)
_ (=1 +1)
| M| '

This is an irreducible fraction because |M| is a power of 2. As in the previous

cases, we can derive from this that |—]\14| € R.

This finishes the proof of Theorem 2.1.1. O

4. Proof of Theorem 2.1.2

This section aims at proving Theorem 2.1.2. As in Section 3, we devote
each subsection to the proof of the conclusion of Theorem 2.1.2 for the groups
listed in there.

4.1. Projective special linear group PSLy(q). We will use several
characters of PSLy(q) in the proof. Composition with the projection 7 :
SL2(q) — PSLs(q) induces a one-to-one correspondence between characters of
PSLs(q) and characters of SLy(g) with kernel containing {41}; see [36, Lemma
2.22]. In particular, if ¢ is a character of SLy(g) such that ¢(1) = ¢(—1), then
¢ : PSLa(q) — C,7(g) — ©(g) is a well-defined character of PSLy(q).

For convenience, we will work directly with the character table of SLy(q).
We will use [6, Table 5.4, page 58]. We entirely adopt the notation fixed there,
overlooking the clash with our R, which is easily resolved from the context.
The necessary information to work with this table can be found in the following
parts of [6]. For the conjugacy classes, see: Equation 1.1.9 in page 5, Theorem
1.3.3 in page 8, Table 1.1 in page 9, and Exercise 1.4(d) in page 12. For the
irreducible characters, see: Subsection 3.2.3 in page 32, Summary 3.2.5 in page
34, Remark in page 35, Section 4.3 in page 45, Exercise 4.1(c) in page 48, and
Proposition 5.3.1 in page 57.

The original description of the character table of SLy(q) given by Schur
can be found in [19, Theorem 38.1]. The character table of PSLy(q) appears,
for instance, in [43, Theorems 8.9 and 8.11, pages 280-282]. We stress that its
size is % when ¢ is odd.

Fix a pair (z,y) € F, x F, such that 2? + y* = —1. By Remark 1.3.4
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and Proposition 2.2.1(ii) we can assume that M is the subgroup of PSLy(q)
generated by r = 7( % §) and s = 7(y; %). We will use two different
characters in the proof according to the following distinction:

A. Case ¢ =4 —1. This case follows the same strategy as that of Subsection
3.2. We take the induced character x = Indf(SUIf(q)(]l,,(U)) from the Sylow
p-subgroup 7(U) of PSLy(q). We know that its non-zero values are:

¢ —1 —1
=L and x(@(9) =L, foreto

B. Case ¢ =4 1. Set © = {0 € ;7 : R(6)(1) = R'(0)(—1)}. Here,
Tig+1 denotes the set parametrizing the family of irreducible characters R'(¢)
of SLy(q), see [6, page 45]. We consider the character

@Zﬂg—St—QZR/(Q).
4SS

q

Observe that ¢(1) = ¢(—1), so we can view @ as a character of PSLy(q). Its
values are given in the following table:

Conj. classes )
Character J (1) w(uy) w(u-) w(d(a)) n(d'(S))
¢ . 0

The elements 7(uy) and m(u_) have order p, whereas the elements of the form
7(d(a)) and 7(d'(§)) are semisimple.

As in Subsection 3.2, we write P for the set of elements of order p together
with the identity element. Recall that P = {7(A) € PSLy(q) : Tr(A) = +2}.
Define v = ¢ if ¢ =4 1 and ¢ = x if ¢ =4 —1. Observe that 1 vanishes outside
P. Define also n, = 4! = 21

—Tlqu4landnq—Tlqu4—].

We need to treat separately the first three values of p:

1. Case p = 3. Here we assume that m > 1 since PSLy(3) is not simple.
We consider the group associated with the pair (z,y) = (1,1). Fix A € F,\F3
and take 7 = 7(}9). This choice of X ensures that M N (rM7~') = {1}. We
compute the element y, as in (1.6.1):

1 1
Yp = Yot or' = — Y(rv'v)ory’
i, 22, o, 22,

) (2.4.1)

= > p(r)orv'v = % > vt

v EM vEM’
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In the last step we used that ¢ (7v") = 0 for v" # 1 and (1) = n,. For this,
note that the trace of the matrices involved is A, which is different from +2.
We now compute w(yi,):

2
7,0(3/3) Z Y(vTvv'To') = ] Z W(Tvv'Tov')
16vv€M 16vv’€M
3 (2.4.2)
= q > w( TV ) = Zq.
veEM

We used in the final equality that ¢ ((7v)?) = 0 for v # 1 and ¥(7) = n,.
Again note that the trace of the matrices involved is different from 42 because
A ¢ Fs.

In light of Propositions 1.4.2 and 1.3.7, we have that %2 € R. Since
ged(ng,4) = 1, we obtain that 1 € R. This establishes the statement for
p=3.

To deal with the other values of p, observe that PSLy(p) is a subgroup of
PSL,(q). Recall that we constructed the group M from a pair (z,y) in F, xF,.
Since M is contained in PSLy(p), by Proposition 1.4.3(i), it is sufficient to
handle PSLy(p).

2. Case p = 5. This case was discussed in [15, Theorem 3.3] as PSLy(5) ~
As. Nevertheless, we provide a proof in this context for completeness. We con-
sider the pair (z,y) = (2,0). Take 7 = 7(1 ). The condition M N (TM771) =
{1} holds and 7 has order 5. Pick a primitive 6th root of unity v in C. Con-
sider a generator a of FZ and a generator £ of FJ;, so T = (d(a)) ~ C, and
T = (d(&)) ~ Cs. Let a: T — C* be the group homomorphism mapping
d(a) to —1 and let #: 7" — C* be the group homomorphism mapping d'(&)
to 2. Then R(a) and R/() are the characters constructed as in [6, Chap-
ter 3.2.1] and [6, Chapter 4.2.1] respectively. We work with the character
¢ =St + R(a) + R'(#). Note that ¢(1) = ¢(—1), so ¢ descends to a character

¢ of PSLy(5). Its values are given in the following table:

Conjugacy class 7(1) w(uy) w(uo) w(d(a)) =(d'(£))
Order of representatives 1 5 5 2 3
) 15 0 0 -1 0

One can see that 7s has order 2, the element 77 has order 3, and 7 and 77s
have order 5. Then, ¢(7) = ¢(7r) = ¢(7rs) = 0 and ¢(7s) = —1. We calculate
Yz as in (2.4.1):

Ys = |M| Z gbﬂ) UTUU——*Z

vv'eM vGM
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We now compute gg(y;) as in (2.4.2). We get:

oy ¢ 16 > qb( Tsv') ) 16 Ze (TSU )

w'eM

*Z¢(’7’S’U ):145

veM
By Propositions 1.4.2 and 1.3.7, we have that i € R.

3. Case p = 7. The proof of this case follows the lines of the preceding one.
We work with the group M associated with the pair (x,y) = (2,3). As before,
we take 7 = (1), which satisfies M N (7M7) = {1} and has order 7. Pick
a primitive 6th root of unity n and a primitive 8th root of unity v in C. Let
a be a generator of F7 and let £ be a generator of Fyg, so T" = (d(a)) ~ Cg
and T" = (d'(§)) ~ Cs. Consider the group homomorphisms «: T — C*,
mapping d(a) to v* and : T — C* mapping d'(¢) to n?>. Then R(«) and
R'(#) are the characters constructed as in [6, Chapter 3.2.1] and [6, Chapter
4.2.1] respectively. The character ¢ = R(«a) + R/'(0) of SLo(7) descends to a
character ¢ of PSLy(7) because ¢(1) = ¢(—1). Its values are given in the
following table:

Conjugacy class (1) w(uy) wu ) w(d(a)) w(d'(€)) =n(d(E?))
Order of representatives 1 7 7 3 4 2
é 14 0 0 -1 0 2

One can check that 7r has order 3, the element 7s has order 4, and 7 and 77rs
have order 7. Then, ¢(7) = ¢(7s) = ¢(7rs) = 0 and ¢(7r) = —1. We compute
Yy as in (2.4.1):

:‘ Z¢7'U vrvv——fz

vv'eM veM
We now compute g?)(yz) as in (2.4.2). We get:
~ 1
)20?) = i
¢(y¢~) 76 U§M¢< 7rv’) ) U§4¢( Trv ) =7

By Propositions 1.4.2 and 1.3.7, we have that 1 7 € R. This establishes the
statement of Theorem 2.1.2 for p = 7.

4. Case p > 7. We need the following lemma, which will be useful in
detecting that certain elements do not belong to P:

LEMMA 2.4.1. Let (z,y) € F, x F,, be such that 2* + y* = —1. Then, there
is A € F such that A\, Az, and Ay are all different from £2.
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PrOOF. Note that at least one among x and y is different from +2. Oth-
erwise, we would have 22 + 22 = —1, which holds only for p = 3.

If x # 42 and y # +2, then we can take A = 1 and we are done. Suppose
that x = £2 and y # 42. Then, —1 = 2? +y? = 4 +y?. This implies y? = —5,
and thus (A\y)? = —5\2. From the latter, we deduce that Ay # 42 if and only
if A2 #£ —571.4. We also want \? # 4. So, we must choose A such that
A2 ¢ {1,4,—571 -4}, The number of squares in F) is p;21’ and % > 3 if
p > 7. This guarantees a choice of A with the required properties. The same
argument can be applied for z # +2 and y = +2. O

We pick A € F satisfying the conclusion of Lemma 2.4.1. Take 7 = 7 (3 ?),

so |7| = p. One can verify that our choice of A ensures that MN(TM7~1) = {1}.
The cardinality of the set {(z,y) € F, X F, : 22 +y* = —1} isp+1lifp=,—1
and p—1if p =4 1. For our purpose, we can assume that the pair (z,y) chosen
to define the element s in M satisfies zy # 0.

Recall that ¥ = 3 if g =, 1 and ¢ = IndZSe@ (1) if g =, —1.
Computation of (2.4.1) and (2.4.2) gives:

n, ,
po="2Y vro and Y(3) = "2,
veM
where n, = % itp=41andn, = %1 otherwise.

For the first equality we used that ¢(7) = n, and ¥ (7v) = 0 for v # 1. The
latter holds because the traces of the matrices involved is A\, Az, and Ay, which
are different from 42 by our choice of A. In the second equality, we used:
(1) That 72, (7r)2,(75)?, and (7rs)? are different from 1. Note that
(15)*> = 1 implies y = 0. Similarly, (7rs)? = 1 implies z = 0. This
would contradict our choice of (z,y).
(2) That v vanishes on (77)?, (75)?, and (7rs)® For this, we argue as
follows. If 1 did not vanish on (77)2, then (77)? would have order
p. This would give that 77 would have order p. But the trace of the

matrix

(/1\(1)>(—01 6) = (91 /1\)
is different from 42 by our choice of A\. The same applies to (7s)? and
(1rs)? as:

By Propositions 1.4.2 and 1.3.7, we have that (y;) € R. Since

ged(ny,4) = 1, we obtain that i € R. This finishes the proof of Theorem
2.1.2 for PSLy(q). O

REMARK 2.4.2. When p =4 —1 any solution of 2*> + y* = =1 in F, x F,
satisfies xy # 0. When p =4 1, there are solutions such that zy = 0. We can
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deal directly with this situation by modifying our argument in the following
way. At most one of (7s)? and (7rs)? is 1. Then:

1= () 5 ol - (2 (+242)

veM
where v € {0, %} We obtain:
1\ 3
) e
U(yy) =
v p+1°2-p) . _1-p
if v= .
32 2

Since p =4 1, it follows that % € R.

This concludes the proof of Theorem 2.1.2 for PSLy(q).

4.2. The Janko group. We keep notations from Subsection 2.4.

By Proposition 2.2.12, the Klein four groups are all conjugate. Moreover, let
t be the involution such that Cg(t) ~ (t) x F. Since F ~ As ~ PSLy(5),
then F' contains a subgroup isomorphic to the Klein four group. Therefore, we
can choose a subgroup M ~ (5 x (5 in F' as a representative. Remark 1.3.4
and Theorem 2.1.2 for PSLy(5) imply that Theorem 2.1.1 holds for the Janko
group.

O

5. Proof of Theorem 2.1.3

We are left to prove Theorem 2.1.3; this turns out to be a consequence of
Theorem 2.1.1 and/or Theorem 2.1.2 and the description of abelian subgroups
of central type.

5.1. Projective special linear group PSL;(q). By Proposition 2.2.1,
the only abelian subgroups of central type of PSLy(g) up to automorphisms
are Klein four groups and p-subgroups. Hence, Theorem 2.1.1 and Theorem
2.1.2 for PSLy(q) imply that Theorem 2.1.3 holds for PSLy(q). O]
As was the case with Corollary 2.1.4, Theorem 2.1.3 implies the following;:

COROLLARY 2.5.1. Let Q be a non-trivial twist of CPSLy(q) arising from
a 2-cocycle on an abelian subgroup of PSLy(q). Then, the complex semisimple
Hopf algebra (CPSLy(q))q does not admit a Hopf order over any number ring.

5.2. The Janko group. Proposition 2.2.12 guarantees that the abelian
subgroups of central type for the Janko group are all conjugate and isomorphic
to the Klein four group. Hence, Theorem 2.1.3 is equivalent to Theorem 2.1.2
for the Janko group. O
Also in this case, we deduce the following:
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COROLLARY 2.5.2. Let G be the Janko group. Let €2 be a non-trivial twist
of CG arising from a 2-cocycle on an abelian subgroup of G. Then, the complex
semisimple Hopf algebra (CG)q does not admit a Hopf order over any number
Ting.

5.3. The Suzuki group 2B(q). Proposition 2.2.11 implies that the
abelian subgroups of central type of the Suzuki groups are all 2-groups.
Hence, Theorem 2.1.3 is equivalent to Theorem 2.1.2 for ?By(q), concluding
the proof.

COROLLARY 2.5.3. Let Q be a non-trivial twist of By(q) arising from a 2-
cocycle on an abelian subgroup of By(q). Then, the complex semisimple Hopf
algebra (C?Bsy(q))q does not admit a Hopf order over any number ring.

6. Twists of finite non-abelian simple groups

Let G be a finite non-abelian simple group and €2 a non-trivial twist for
CG arising from a 2-cocycle on an abelian subgroup of G. In [15, Question
5.1] it was asked whether (CG)gq can admit a Hopf order over a number ring.
We can partially answer this question in the negative building on Theorems
2.1.1 and 2.1.2 and two results on the subgroups structure of finite non-abelian
simple groups.

Recall from [66, Section 2| that a minimal simple group is a non-abelian
simple group all of whose proper subgroups are solvable. The following re-
markable classification was established in [66, Corollary 1, page 388|:

THEOREM 2.6.1 (Thompson). Every minimal simple group is isomorphic
to one of the following groups:
(i) PSLy(2P), with p a prime.
(7i) PSLy(3P), with p an odd prime.
(iii) PSLy(p), with p > 3 prime such that 5 divides p* + 1.
(iv) 2Bo(2P), with p an odd prime.
(v) PSL3(3) ~ SL3(3).
Relying on this and the classification of the finite simple groups, the fol-
lowing result was proved in [3, Theorem 1]:

THEOREM 2.6.2 (Barry-Ward). FEvery finite non-abelian simple group con-
tains a minimal simple group as a subgroup.

Theorems 2.1.1 and 2.1.2 and Proposition 1.4.3(i), reinforced with the pre-
vious two results, give as a consequence:

THEOREM 2.6.3. Let K be a number field and G a finite non-abelian simple
group. Then, there is a twist ) for KG, arising from a 2-cocycle on an abelian
subgroup of G, such that (KG)q does not admit a Hopf order over Of.

The statement for the complexified group algebra now follows as in Corol-
lary 2.1.4:



6. TWISTS OF FINITE NON-ABELIAN SIMPLE GROUPS 65

COROLLARY 2.6.4. Let G be a finite non-abelian simple group. Then, there
1s a twist ) for CG, arising from a 2-cocycle on an abelian subgroup of G, such
that (CQG)gq does not admit a Hopf order over any number ring.

For the sporadic groups or the Tits group, Theorem 2.6.3 and Corollary
2.6.4 can be deduced from [15, Theorem 3.3, Remark 3.4, and Corollary 3.5]
in view of the following remark:

REMARK 2.6.5. Let G be a sporadic group or the Tits group 2F}(2)’. Then,
GG has a subgroup isomorphic to As.

This remark can be verified by inspection of the tables of maximal sub-
groups for the sporadic groups in [70, Section 4] and that for the Tits group in
[68, Theorem 1] and [67]. A close look reveals the inclusions as listed below:

Group | Contains Group | Contains Group | Contains

My, S M, S
Moy Ag Moy Ag M A

J1 As

J. A J: A

J4 M22 2 5 3 5
001 Ag 002 M23 003 S5
Figy S1o Fias Sia Fi, As
HS Sg McL A7 He S4 (4)
Ru A6 Suz A7 O/N A7
HN Alg Ly Ml 1 Th 55

B Ss M As 2Fy(2) | PSLy(5?)

For the Tits group, note that PSLy(5%) contains PSLy(5), which is isomorphic
to As; see [64, Theorem 6.26(iv), page 414] for a more general statement.

REMARK 2.6.6. One may relax the hypothesis on G being simple in Theo-
rem 2.6.3 and Corollary 2.6.4 provided G contains a non-abelian simple group
in light of Proposition 1.4.3(i). Among the groups satisfying this condition
we find almost simple groups and some families of primitive groups, see [18,
Section 4.8] for more details.

In our way to Corollary 2.6.4 we showed that the complex group algebra of
any finite non-abelian simple group can be twisted to produce a simple non-
commutative and non-cocommutative Hopf algebra. This was first proved by
Hoffman in [30] following a different strategy that does not use minimal simple
groups.






CHAPTER 3

Non-existence of Hopf orders for products of certain
Frobenius groups

The aim of this Chapter is to prove the non existence of Hopf orders for
twisted group algebras of some non-simple groups. The groups we consider are
of the form G = [I._, D; x,, M;, where each D; %, M; is a Frobenius group
and M; is subject to specific conditions.

We firstly introduce Frobenius groups and we recollect some results on them.

1. Frobenius groups and semi-direct products

A Frobenius group is a type of permutation group studied firstly in ([23]).
The original formal definition of such a group is the following:

DEFINITION 3.1.1. A Frobenius group G is a transitive permutation group
on a finite set X, such that no non-trivial element of GG fixes more than one
element in X and some non-trivial element of G fixes an element in X.

A subgroup H of G fixing an element of X is called a Frobenius complement.

Let G be a Frobenius group and H a Frobenius complement. In [23, V],
Frobenius proved that the set of elements that are not conjugate to an ele-
ment in H together with the identity is a normal subgroup of G . This result
is known as Frobenius Theorem. Such normal subgroup is called the Frobenius
kernel of G.

These groups captured the attention of many mathematicians, leading to
equivalent definitions. For exhibiting the ones we need, we recall the following
definition.

DEFINITION 3.1.2. An automorphism ¢ of a group G is fixed-point-free if
¢ fixes only the identity of G. A subgroup L of Aut(G) is said to be fixed-
point-free on G if every element ¢ in L\ {idg} is fixed-point-free.

With the Lemma below, we recollect the most common alternative defini-
tions of a Frobenius group.

LEMMA 3.1.3. [34, Sdtze 8.2 and 8.5] Let G be a group. The following are
equivalent:

i) G is a Frobenius group;
ii) G has a non-trivial subgroup M such that gMg—*NM = {1} for every
geG\M;

67
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i) G =D x, M, where ¢ is injective and Imeyp is fized-point-free.

We briefly explain the implication i) = 4iz). The subgroup D in iii) is
obtained by ii) as D = G\ Uyeq 9(M \ {1})g~", which is normal by Frobenius
theorem.

In this Chapter, we will mainly use condition iii) of Lemma 3.1.3. The stan-
dard terminology is inherited from this equivalent definition, so M is called a
Frobenius complement, while D is called the Frobenius kernel.

A property we need is the relation between the orders of the Frobenius kernel
and of a Frobenius complement.

PROPOSITION 3.1.4. [34, Satz 8.3] Let G = D x, M be a Frobenius group.
Then |M| is a divisor of |D| — 1.

In particular, the latter implies that the order of the Frobenius complement
M is coprime with the order of the Frobenius kernel D.

ExXAMPLE 3.1.1. A simple example of a Frobenius group is the symmetric
group Sz = C3 X, Cy, with

p: Cy — Aut(C3), x+— p(x)

where x is the non-trivial element in Cy and op(x)(g) = g¢?, for every g € Cs.
Then ¢ is injective and Ime is fixed point free.

ExXAMPLE 3.1.2. This example generalizes Example 3.1.1.

Let p, ¢ be prime numbers with ¢ odd and ¢ # p. Suppose that p¢ divides ¢ — 1
for some d € N. Consider the cyclic group Cyn of order ¢", for some n € N.
It is well-known that Aut(Cyn) =~ Cyn-1(4_1), if ¢ is odd (see for example [46,
Section 2.2.5 and 2.2.6 ]). Then, for every k dividing ¢"~'(q — 1), there exists
a unique subgroup M < Aut(Cyn) of order k and it is cyclic. Moreover, by [50,
Proposition 4.1] if k|g — 1 such subgroup is fixed-point-free. Thus, the group
G = Cgn X, Cpa, with ¢ an embedding

@©: Cpa — Aut(Cyn)
is a Frobenius group.

ExXAMPLE 3.1.3. This example exhibits a family of Frobenius groups, whose
Frobenius complement is non-abelian. We recall it from [51].
Let ¢ = p™ with p prime and n € N. Consider the group

lac
U := {(8(1)11)) : a,b,cE]Fq}.
The group U is non-abelian and it has order p3". Let k € Fyandlet r: U = U

. . k200 . lac 1 ka k2c L1
be the conjugation by ( 0 18(1)) mapping (8 ! llz) to (8 1 kb ), which is fixed-

point-free for every k # +1.
Let E be a subgroup of F; of odd order r and consider

o: E— Aut(U), k — ¢y.
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Then ¢ is injective and Imep is a cyclic fixed-point-free group of automorphisms.
Then G := U %, E is a Frobenius group, with non-abelian Frobenius kernel.

We now recollect some properties on semidirect products and Frobenius
groups.
LEMMA 3.1.5. Let G = D x, M. Then the following holds:
(1) if M is abelian, then Clg(m) C Dm.
Assume in addition that G is Frobenius, then:
(2) Ca(m) < M, form e M\{1};
(3) if M abelian then Cg(m) = M for any m € M\ {1}.
PROOF. (1) For m € M an element in Clg(m) is of the form dm'mm’~1d™",
for some d € D and m’ € M. Then
dm'mm/~rd™t = dmd ™ = dp(m)(d"')m € Dm,

i.e. Clg(m) C Dm.

(2) Let m € M\ {1}. For d € D and m' € M the element dm’ centralizes m
if and only if dm'mm/~'d=' = m € M. Then dm/mm/~'d~' € M NdMd*
which is trivial by Lemma 3.1.3 ii) if d # 1. This implies that Cg(m) < M.
(3) This statement follows easily from the previous one. O

In the following lemma we summarize some properties of the conjugacy
classes of elements of M.

LEMMA 3.1.6. Let G = D %, M be a Frobenius group with M abelian.
Then for m € M:
i) Clg(m)N M = {m};
it) If m # 1, then
|Cla(m)| = [DI;
iii)
| U Clem)| = [M\{1}]-|D].
meM\{1}
PROOF. i) The first statement follows from Lemma 3.1.5 (1).
ii) We know that
M
[Ca(m)|
Lemma 3.1.5 (3) guarantees that Cg(m) = M hence |Clg(m)| = |D].
iii) Let m,m’ € M, with m # m/. Then Lemma 3.1.5 (1) gives that
Clg(m) N Clg(m') € Dm N Dm/ = .
This together with ii) implies that

| U Clem)l= > [Clg(m)| = |M\{1}|-|D|.
meM\{1} meM\{1}

|Clg(m)]
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2. Aim of the chapter

We now focus on direct products of Frobenius groups with an abelian p-
group as Frobenius complement, i.e. groups of the form G = Hﬁzl D; x, M;,
where D; %, M; is a Frobenius group and M; is an abelian p-group for every
ie{l,...,1}.

Moreover, we require that M = Hﬁzl M; is of central type.

Throughout this chapter we say that an element g € G is a p-element if its
order is a positive power of p.

The aim of this chapter is to establish the following result.

THEOREM 3.2.1. Let K be a number field and R C K a Dedekind domain
such that O C R. Let

[ >1.

= p be a prime number.

» G, = D; x,, M; a Frobenius group, where M, is an abelian p-group for
every i € {1,...,1}.

- G=11,G,.

« M = Hézl M; and assume it is of central type.

s w: M x M — KX be any non-degenerate cocycle.

If (KG)q,,., admits a Hopf order over R, then IT\lJI € R. Hence, (KG)q,,,
does not admit a Hopf order over Q.

For proving this theorem, we firstly need to establish some properties of
the groups just described. To simplify the notations, for every ¢ € {1,...,l}
we write m;.d; instead of p(m;)(d;) for m; € M; and d; € D;. Bear in
mind that m;.d; € D; for every d; € D;, for every m; € M; and for every
ie{l,...,1}.

Furthermore, for an element € KG, for ¢ € {1,...,1} we write z; to indicate
the ¢-th component in KG;.

We start describing the form of the p-elements in G; and G.

LEMMA 3.2.2. With the above assumptions, an element g; € G; is a p-
element if and only if g; = d;m;, for d; € d; and m; € M;, with m; # 1, i.e.
g; € Gl\Dl

PRrROOF. Since ged(|D;|, |M;|) = 1, the subgroup M; is a p-Sylow subgroup.
Hence, every p-element is conjugate to some element in ;. We denote by P?
the set of p-elements in GG;. Then

=1 U Clalmi)l.

m;eM;\{1}
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In particular, by Lemma 3.1.6 iv)
1Pl=1 U Clelm)| = (M| - 1)|Dyl.
m;eM;\{1}
This implies that |G;| = |P?| + | D;|. Therefore every element g; ¢ D; is in P,

i.e. g; is a p-element. We conclude that every p-element of G; is of the form

As a consequence, we obtain the following:

COROLLARY 3.2.3. With the above assumptions, let G = [._, G;. Then
every p-element in G is an [-tuple (dymy, dama, ..., dymy) # (1,1,...,1), such
that d;m; is a p-element or the identity for every i € {1,...,1}.

Recall that M = [['_, M; which is a Sylow p-subgroup of G and let D =

l

1 D;.

=1 2
We will use x := Ind$,(1,,) and proceed as explained in Section 6. For this
purpose we compute y; := Indcﬁi(]lMi), foreveryi € {1,...,1}, since for g; € G;
and for i € {1,...,1} there holds

l
X(9192 - i) = ][ xilg0)-

i=1
LEMMA 3.2.4. Let 1 € {1,...,l}. For g; € G; we have:
Dl if gi =1,
xi(mi) =q 0 ifgi € D;\{1},

PRrROOF. The value at the identity is straightforward. The value on D;\{1}
follows from Lemma 3.2.2.
Every element in P = G;\ D; is conjugate to some element in M;\ {1}. Let
m; € M;, then;
_ [Ca(m)l|Cla(my) N M| _ [Mi| -1
) i p "
since Clg(m;) N M; = {m;} by Lemma 3.1.6 i).

3. Proof of Theorem 3.2.1

Foriec {1,...,1}, we fix , € D;\{1} and 7 = [[\_, 7;.
The intersections M N (tM77') and M N (7M7) are trivial by Lemma 3.1.3
ii). We consider
1 1
Yyr = m Z X(U)O_ and Yyr—1 = W Z X(U)U'

oceMTM ceMT—1M
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Since 7; # 1 for every i € {1,...,l}, by Corollary 3.2.3, the element 7m is a
p-element if and only if m; # 1 for every i € {1,...,{}. If this is the case,

x(tm) = x1(mmyq) - -« - - xi(mmy) = 1. Hence;
Yy = T m(rm)m”= = —— (m.T)m.
I L2, M2
m;#1,1€{1,...,l} m;#1,1€{1,...,l}
By the same argument we get
1 1 N1 1 ——
Yyl = T n(r—n)n" " = (n.17 " )n.
S L2, M2,
n;#1,1€{1,...,l} n;#1,1€{1,...,l}
Multiplying v, - by v, .1 we get
1 _ S
Yn,r Yy i1 = W Z (m.T)m Z (R )n
m,meM n,neM
mﬁél,ie{l,...,l} nﬁél,ie{l,...,l}
1

- S
m,m,n,neM
m;#1n;#1
1e{1,...,l}

Z (m.7)((mn). 7~ Hmn.
m,m,n,neM
m;#Ln;#1
1e{1,...,l}

1
- MP?

We evaluate x on v, ,y, 1. To this purpose, we spell out which summands

in the expression of y, ,v, .1 are either the identity or a p-element and then

we count the number of occurences of them in the sum.

Fixi € {1,...,1}. The element (m;.7;)((m;n;).7; ")m;n; € D;M; is the identity

if and only if mn; = 1 and (m;.7;)((msn;).7; ') = 1. This is equivalent to

n; = m; " and (m;'mn;).7; 1 = 7,1, The latter, by definition of Frobenius

group, implies that m; 'm;n; = 1. In summary, the conditions we found are

n;, = mi_l, fnz_lmzﬁ, = 1,

for m;,n; € M; \ {1}. Hence for every m;,m; € M;\ {1}, the elements

n; and n; are uniquely determined, so the number of occurrences of

the identity on the i-th component is (|M;| — 1)|M;|. This implies that

the number of occurrences of the identity in the expression of y, ;y, 1

is TI_ M| (|M;| — 1) = |M|TI._,(|M;] — 1) and so the contribution to
. D 1

X(Ux Y1) 1 ﬁ [Ti (| = 1).

We now investigate the number of occurrences of a p-element of the

form (mg.7;)((m;n;).7; )mng, for i € {1,...,1}. In this case, the only
condition is that m;n; # 1. This implies that for every m; € M;\ {1}, the
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element n; € M;\ {1,m;'}. On the other hand, the elements m; and n;
can run freely in M;. Hence the number of occurrences of a p-element in
the i-th component of the expression of (yy -y --1); is | M;]* (| M;|— 1) (| M;]| —2).

Finally, we spell out when (m.7)((mn).7"Y)mn is a p-element.  This
happens if and only if there exists a subset £ # 0 of {1,...,l}
such that ((m.7)((mn).7~')mn); is a p-element for every j € £ and
((m.7)((mn).7~Y)ymn), = 1 for every k € {1,...,1}\ £. The character value
of each of these elements is an integer depending only on £. Therefore, for
every £ C {1,...,(} the contribution to x(y,ryy,—1) of the corresponding set
of p-elements lies in ﬁpﬂ\/f |Z, because each |M;| factor occurs at least once

and at least one factor |M;| occurs as a square. Therefore

1
X (Y7 Yy,r—1) € = (|D] 4 pZ) .
X X |M|

Since ged(| D], p) = 1 we have the statement. O

REMARK 3.3.1. Notice that if G = D x, M is a Frobenius group with M
a p-group, then M can not be of central type. Indeed, the Sylow subgroups
of a Frobenius complement are either cyclic or generalised quaternion groups
([34, Satz 8.15]). Then for applying Theorem 3.2.1 we need [ > 1 and, more
precisely, even.

REMARK 3.3.2. Let i € {1,...,1} and p, ¢; be prime numbers with ¢; odd
and ¢; # p for every i. Suppose that for every i € {1,...,l} the power p
divides ¢; — 1 for some d; € N. Consider G = [[._, Cri Xy, Cpa;, where
qum- X, Cpe; are as in Example 3.1.2. Hence, Theorem 3.2.1 holds for G when

L C,4; is of central type. This family of examples contains the family of
groups G = (C, x C,,) x (Cy; x C,), described in Remark 1.3.6. For the twisted
group algebras associated to such groups the non existence of Hopf orders
was already established by Cuadra and Meir in [15] with a different approach.
Observe that, as we have seen in Remark 1.3.6, in the case under consideration,
the associated twisted Hopf algebra is simple.

For the other families of groups studied in this chapter it is not yet clear if
the twisted Hopf algebra is simple or not. This question could be taken into
account for future work.






CHAPTER 4

Preliminaries on monoidal categories

In this chapter we recollect some definitions and results on monoidal cate-
gories and bi-module categories. Secondly, we spell out transport of structure
through an equivalence.

1. Monoidal categories and C-module categories

We start with the definition of a monoidal category that, as the name
suggests, is the categorification of the notion of a monoid.

DEFINITION 4.1.1. [22, Definition 2.1] A monoidal category is a sextuple
(C, ®e¢,a,1,l,7), where € is a category and ®¢: € x € — € is a bifunctor called
the tensor product bifunctor, a: (— ®e —) ®e — = — Qe (— Qe —) is a natural
isomorphism:

axy,z: (X Xe Y) Re Z ~X Re (Y Xe Z) for all X, Y,Z € G,

called the associativity constraint, 1 € € is an object of €, [,7: € — C are two
natural isomorphisms

lX:1®@X%X7
rxy: X ®el—=>X for all X € C,

subject to the following axioms.
1. The pentagon axiom. The diagram

(X ®eY)®e Z) @ W

(X @¢ (Y ®¢ Z)) @e W (X ®eY)®e (Z®@cW)

aX,Y@gZ,Wl Jax,y,zguw

idx®cay,z,m

X @¢ (Y ®¢ Z) @ W) X @e¢ (Y @¢ (Z @e W))

(4.1.1)

is commutative for all objects X,Y, Z, W € C.
2. The unit axiom. The diagram

75
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ax1,y

(X ®el)®eY

X ®e (1 Qe Y)
rx®eidy idx®ely

X ®eY
(4.1.2)

commutes for all X, Y € C.

DEFINITION 4.1.2. Let (C,®e,a,1,l,7) be a monoidal category. The
monoidal category (C°P, ®¢", a®®, 1,1°P, r°P) opposite to € is defined as follows.
As a category C°P = C, its tensor product is given by X @¢" Y :=Y ®¢e X, the
associativity constraint of C° is ay , := ag}x x and [P =17, rP = [

DEFINITION 4.1.3. Let (€, ®¢, a, 1,1,7) be a monoidal category. Then, € is
called strict 1f (X ®e Y) ®@Z = X@e (Y ®@ Z), and X@e 1= X = 1®GX fOI‘
all X,Y,Z € € and the associativity and the unit constraints are the identity
maps.

ExAMPLE 4.1.1. Let K be a field and consider the category Vec of all
vector spaces over K. This category is a monoidal category, where the product
is the usual tensor product over K, the associativity constraint is the change
of brackets, the unit object is K and [ and r are respectively the left and right
multiplication by scalars.

ExaMPLE 4.1.2. Let H be a Hopf algebra over K. Then, the category
of H-modules is a monoidal category. By the previous example, its underly-
ing category of vector spaces is a monoidal category. Furthermore, the tensor
product of H-modules becomes an H-module by composition with the comul-
tiplication, the unit object K becomes a H-module by means of the counit.
Moreover, the compatibility of the associative constraint with the action of H
follows from the coassociativity of the comultiplication.

REMARK 4.1.4. Abusing notation, we will consider the above category as
a strict monoidal category, thanks to Mac Lane’s theorem [22, Theorem 2.8.5].

In the following definitions, we suppress the unit constraint [ and r unless
necessary.

DEFINITION 4.1.5. [22, Definition 2.10.1] Let (C, ®e,a, 1) be a monoidal
category. An object X* in C is said to be a left dual of X if there exist
morphisms evy: X*®eX — 1 and coevy: 1 — X ®e X*, called the evaluation
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and coevaluation, such that the compositions

ax x* X

X COQVX®@idX (X ®e X*) ®6X X®€ (X* ®€ X) idx®eeVX X

1
Ax* x,x*

X+ id x* ®ecoevx X+ e (X Re X*) (X* e X) e X+ evx ®eidx* X*
are the identity morphisms.

DEFINITION 4.1.6. [22, Definition 2.10.2] Let (€, ®¢,a,1) be a monoidal
category. An object *X in C is said to be a right dual of X if there exist
morphisms evy: X ®e¢ *X — 1 and coevly: 1 — *X ®e¢ X, such that the
compositions

—1

id coev’, Ay«
X XN X @ (*X @6 X) = (X e *X) ®¢ X

ev’X Reidx

X

’ .
coev’y ®cid * x

X (*X @e X) @e *X T X 00 (X @ *X) LXITX,

are the identity morphisms.

DEFINITION 4.1.7. [22, Definition 2.10.11] A monoidal category
(C, ®e, a, 1) is called rigid if every object of € has left and right duals.

EXAMPLE 4.1.3. Let g be a Lie algebra over C and let U(g) be its associated
universal enveloping algebra. Let U(g)-mod be the category of U(g)-modules.
We recall that U(g) is a Hopf algebra; explicitly the comultiplication, the
antipode and the counit are defined on the generating elements x € g in the
following way:

Alz)=1®z+z®1
(x) = —x

(x) =0.

%)

M

As a consequence, U(g)-mod is a monoidal category with the structure de-
scribed in Example 4.1.2. Consider the subcategory U(g)-modg, of finite di-
mensional U(g)-modules. This subcategory is closed under the tensor product
and hence it is a monoidal category. Moreover, the latter is rigid. Indeed, for a
finite dimensional representation V', the dual representation is the usual dual
vector space V*, where U(g) acts on it in the following way:

(z.9)(y) = ¢(S(2).y)
for every x € U(g), y € V and ¢ € V*.

Once we have defined monoidal categories and rigid monoidal categories,
we categorify the notion of morphisms between monoids.

DEFINITION 4.1.8. [22, Definition 2.4.1] Let (€, ®¢,a, 1) and (D, ®qp, d, 1)
be two monoidal categories. A monoidal functor from € to D is a pair (F,J),
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where F': € — D is a functor and J: F(—) ®p F(—) — F(— ®¢ —) a natural
isomorphism:

Jxy: F(X)®p F(Y) = F(X®Y), forall X,Y €€  (4.1.3)
such that 1 ~ F(1) and the diagram

Ap(Xx),F(Y).F(Z)

(F(X) @p F(Y)) ®@p F(Z) F(X) @p (F(Y) ®p F(Z))
JX,Y@’DidF(Z)l lidF(x)@)’DJY,Z
F(X®eY)®p F(Z) F(X)®p F(Y ®¢ Z)
JX®GY,Zl lJX,Y®@Z
F(X ®cY)®e 2) PP F(X ®¢ (Y ®¢ Z))

is commutative for all X,Y, Z € C.

As monoids act on sets, monoidal categories act on other categories. The
categorification of a left action leads to the definition of a left C-module cate-
gory.

DEFINITION 4.1.9. [22, Definition 7.1.1] Let (C,®e,a,1) be a monoidal

category. A left module category over € is a category M equipped with an
action bifunctor ®y¢: € x M — M and a natural isomorphism

mxy,m: (X@@Y)@MM l) X®M(Y®MM), X,Y € (‘3, M e M, (414)

called module associativity constraint such that the functor 1 ®y —: M — M,
given by 1 ®y M — M is an autoequivalence, and the pentagon diagram:

(X ®eY)®e Z) @ M

ax,y,z®@xnidys m

(X ®e (Y ®¢ Z)) @n M (X ®eY) @ (Z @ M)
mx,y®cz,Ml lmX,Y,Z®:M:1W
idx®nmy,z,Mm
X @ (Y ®e Z) @ M) X @ (Y @n (Z @y M))

is commutative for any XY, Z € € and M € M.

EXAMPLE 4.1.4. Let K be any field and let € = Vec, the category of all
K-vector spaces.
Let G be a finite group and consider M the category of all G-modules. For
Ve Cand W € M, we define an action of G on V ®c W as follows

g.(v®cw) =v Q¢ g.w,
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forevery g € G, v € V and w € W. In this way, V ®c W becomes an object in
M and the category M endowed with ®c and m the change of brackets results
to be a left C-module category.

In a similar way one can define a right G-module category (M, @™, m").
Namely, a right € module category is the same thing as a left C°P-module
category, where C°P denotes the opposite category (Definition 4.1.2).

We now introduce the notion of a bimodule category over a pair of monoidal
categories.

DEFINITION 4.1.10. [22, Definition 7.1.7] Let (C, ®¢, a, 1) and (D, ®qp, @, 1)
be monoidal categories. A (C,D)-bimodule category is a category M which
is a left C-module category (M, ®y, m) and a right D-module category
(M, @™, m") with module associativity constraints for X,Y € €, M € M and
W,Z €D

mxym: (X ®eY)@n M = X @y (Y @n M)
and

Mz M (W ®p Z) S (M W)™ Z
respectively, compatible by a collection of natural isomorphisms for X € €,
MeMand Z €D

bxarz: (X @y M) @M Z 5 X @y (M @M Z)

called middle associativity constraints such that the diagrams

(X ®eY) @y M)a™MZ

(X @t (Y @3 M) @M Z (X ®eY) @y (M @M 2)

bX,Y®M-M,Zl lmX,Y,J\I®MZ

idx ®wmby,m,z

X @y (Y @y M) @M Z) X @ (Y @v (M @™ Z))

(4.1.5)
and

X @y (M @™ (W ®p Z))

X @y (M @MW) @M 2) (X @y M) (W ®@p Z)

) mr
bX,M®MW.,ZT l’”xggMu,w,z
M
bx, m,w@Midz

(X @ (M MW)) M2 (X @ M) @MW) @M Z

(4.1.6)
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commute for all XY € €, Z, W € D and M € M.

ExaMPLE 4.1.5. Let € and M be the categories considered in Example
4.1.4 and let D = €. We can define a right action of € on M, via the tensor
product over C. In particular, given V' € € and W € M, the tensor product
W ®&c V becomes a G-module, via the action

g.(w ®¢c v) = g.w Q¢ v,
for every v € V,w € W, g € G. In this way, M results to be a (€, €)-bimodule
category, where b is the change of brackets.

An important notion we need to categorify is the notion of equivariant
morphisms. This leads to the following definition.

DEFINITION 4.1.11. [22, Definition 7.2.1] Let (M, @y, m) and (N, ®x, n) be
two module categories over a monoidal category (C, ®¢, a, 1) with associativity
constraints m and n, respectively. A C-module functor from M to N consists
of a functor F': M — N and a natural isomorphism

sxar: F(X @ M) = X@xF(M), XeC MeM (4.1.7)

such that the following diagrams

F(X ®eY) @ M)

Flmxy, T

F(X @ (Y ®@n M) (X ®eY) @n F(M)
3X,Y®3%Ml lnX,Y,F(J\/I)
idx @nsy,m
X @n F(Y @y M) X @x (Y @y F(M))
(4.1.8)
and
1 &M M 1 QN F

S

commute for all X,Y € € and M € M.

(4.1.9)

DEFINITION 4.1.12. Let (M, ®y,m) and (N, @y, n) be two module cate-
gories over a monoidal category (€, ®e,a, 1) with associativity constraints m
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and n, respectively. We say that a C-module functor (F: M — N, s) is an
equivalence of C-module categories if F' is an equivalence.

The above definitions have a specular counterpart for right-module cate-
gories.

ExXAMPLE 4.1.6. Let € and M be the categories considered in Example
4.1.4. Let H be a subgroup of G and let N be the category of H-modules.
Then, the restriction functor Resg: M — N is a C-module functor, where

s =id.
For the definition of a bimodule functor, we also need a compatibility con-

dition. In particular, [29, Definition 2.10] together with [29, Remark 2.14] gives
us the following:

DEFINITION 4.1.13. Let (€, ®¢, a, 1) and (D, ®y, @, 1) be two monoidal cat-
egories and let (M, ®y¢, @, m, m", b) and (N, @y, @, n,n",p) be two (€, D)-
bimodule categories. A (€, D)-bimodule functor from M to N consists of a
triple (£ s,s"), where F' is a functor from M to N, (F)s) is a left C-module
functor and (F) s") is a right C-module functor, such that the following diagram
commutes

M F(bx,m,y) A
F(X @ M)aMY) F(X @y (M e"Y))
SS(®MIM,Y Sx, MMy
F(X @n M) ™Y X @x F(M &"Y)
sx, m®@Vidy idx Qnsyry
Px,F(M),Y

(X @ F(M)) VY X @ (F(M)NY)

(4.1.10)
forevery M e M, X € Cand Y € D.
We conclude this section with a property about C-module functors.

LEMMA 4.1.14. Let (M, @y, m), (N, ®@n,n) and (P, @9, p) be module cate-
gories over a monoidal category (C, ®e, a,1). Let (F: M — N,s) and (G: N —
P, t) be two C-module functors. Then (GoF,u :=t_pyoG(s)) is a C-module
functor.

PRrROOF. Firstly, observe that u has the required source and target, in fact
for every X €e €, M e M

wxar: GF(X @y M) S99 (X @y F(M)) 259 X @y GF(M).
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Furthermore, u is a natural isomorphism, since G(s) is a natural isomorphism

and u is defined as the composition of natural isomorphisms.
We are left to verify that the following diagrams are commutative

GF(X®eY) @y M)

GF(mx,y,m) m

GF(X @ (Y @y M)) (X ®eY)®p GF(M)

UX,Y®MIM[ PX.y,GF(M)
idx® ;

X @9 GF(Y @y M) e X @9 (Y ®p GF(M))

(4.1.11)

and

U1, M

GF(1 @y M) 1®p GF(M)

for all X, Y € Cand M € M.

We prove the commutativity of the first diagram. Applying the definition of the
natural isomorphism wu, the considered diagram is the outer rectangle of the following
diagram
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= £ = : =
& ® U > Q}
& s 5 £ e
9 = ®
) D~ P~
& . © \g
=\ 3 2 ®
& g - ~
>
_ £ S
S O Q =
o) >
® &
5 ®
- >
© T
- = S =
p S T
® Lm ® M~
—~ Z ;{ &
S ® - &
<)
& = >
X 5 2
oy > ®
@) <E: 5 P
= = 3
> Iy 5
i &
: I
S 2 <
5 g
= = =
= = =
& ® ®
> > >
= < K S K
® g = g O
b ® ® ® &
- > > ®
5, o E
O 1 O B

forall X, Y € C, M € M.

Diagrams A and C are commutative since (F, s) and (G, t) are C-module functors.
Moreover, the naturality of ¢ implies the commutativity of B. This implies that the
outer rectangle is commutative, i.e. that diagram (4.1.11) commutes.

In a similar way, one can prove that diagram (4.1.9) is commutative. O
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2. Transport of structure

In the second part of this chapter, we show how we can construct new
module categories by means of equivalences and transport of structure.

Let (C,®e,a,1) be a monoidal category. Let M be a left C-module
category, via the action bifunctor ®y¢: € x M — M and with module asso-
ciativity constraint mx y . Let F': M — N be an equivalence of categories.
Then, there exists a quasi-inverse G: N — M, i.e. a functor and natural

isomorphisms 7 and e such that G o F' ~ idy and F o G L idy.
We can define in a natural way the bifunctor :
Axn: CxXN—=>N

(=, ~) = F(— @y G(~)). (4.2.1)

In an analogous way, for every X,Y € €, N € N, we can define the maps
nxyn: (X ®eY)xN — X @y (Y @y N)

as follows:

nxynN ‘= F((idx M 6;729%{@(]\/)) o mx,Y,G(N))- (4.2.2)

REMARK 4.2.1. The morphism n: (— ®e —) @y — = — ®@x (— @n —) is
a natural isomorphism, because n is the image of a composition of natural
isomorphisms through an equivalence.

We are now in a position to prove the following lemma:

LEMMA 4.2.2. Let (C,®e,a,1) be a monoidal category and let (M, ¢, m)
be a left C-module category. Let F: M — N be an equivalence of categories,
with quasi-inverse G: N — M such that G o F ~ idy and F o G 2 idx. The
category N endowed with @ as in Equation (4.2.1), and morphisms nxyn
forall X, Y € €, N € N as in Equation (4.2.2) is a left C-module category.

PROOF. By definition, ®y is a bifunctor. By Remark 4.2.1 the maps nx yn
for X,Y € €, N € N combine to give natural isomorphisms.
Moreover, the functor

1 RN —: N—-N
N—=13xN=F(1®yG(N))
is an autoequivalence, since it is the composition of equivalences.

It remains to verify that the pentagon rule holds, i.e. that the following dia-
gram commutes
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(X ®eY)®eZ)@x N

iiﬁﬂ/// \\qﬁfi\

(X ®e (Y ®e Z)) @ N (X ®cY) ®~ (Z ®x N)

nx,mgez,Nl lnx,y,Z®NN

idx ®@nny,z,N

X @x (Y @ Z) @x N) X ax (Y @ (Z@xN))

(4.2.3)

for every X,Y,Z € € and N € N. Using Equation (4.2.1) and Equation
(4.2.2), this is equivalent to prove that:

F((idX An GF((idY M €E%MG(N)) o my7Z7g(N))) o (idX An 8(_Y1®@Z)®MG(N)))O
o F(mx ygezan) © (axy,z ©xidgny)) =
F(idx @ ey gy (ar(zaac ) Xy, aFZoxG) ° lidx @ idy @acezg, gn))°

o F(mX®eY,Z,G(N))-
(4.2.4)

In order to verify that the previous equation holds, we need some commutative
diagrams. In particular, by the naturality of ¢, the diagrams

GF(m Z, )
GF((Y ®¢ Z) @y G(N)) — 20

GF(Y @ (Z @y G(N)))

E(Y®e2)®pC () EY @ (Z®( G(N))

My, 7 ,G(N)

(Y ®e Z) @y G(N) Y @n (Z @n G(N))

(4.2.5)

and

EY @ (Z®9G(N))

GF(Y @y (Z @y G(N))) Y @ (Z @ G(N))

. 1 . 1
GF(IdY@MEZ@MG(N))l lldY®M€Z®MG(N>

EY QN GF(ZQpG(N))

GF(Y @y GF(Z @y G(N))) — Y @0 GF(Z @y G(N))
(4.2.6)

commute, for every Y, Z € € and N € N.
Furthermore, by the naturality of m with respect to the functors (— ®¢ —) ®y¢ —
and — ®y (— ®y —), the diagram:
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ldx ey OMEZ@G(N

(X ®¢ Y) @ GF(Z @y G(N)) (X @6 Y) @y (Z @3 G(N))

MX,Y,GF(Z®3;G(N)) MX,Y,ZQ G(N)

idx ®@n(idy ®meze,

X e (Y @op GE(Z 90 G R lent (Y @ (Z 03 GV)))

(4.2.7)

is commutative for every X,Y,Z € Cand N € N.

Let us consider the left hand-side of equation (4.2.4). The commutativity of diagram
(4.2.5) gives:

F((idx @ym GF((idy ®x egéMg(N)) omy, zan))) © (idx @ 6(Y1®Z)®MG(N))>O
o F(mxygezam) © (axy,z @ idgm)))
= F((idx ®x GF(idy ®x EEQMG(N)) o E;QM(Ze@MG(N)))) o (idx ®x my,z,a(N)))°
o F(mxygezam) © (axyz @ ida)))-
Finally by the commutativity of diagram (4.2.6), the above term reads as:
F((idx @ (ey gy (arzenam) © 14y @, aov)) @ (idx @xcmy z(v))e

o F(mX,Y®@Z,G(N) o (aX,Y,Z O idG(N)))-
(4.2.8)

Consider now the right hand-side of equation (4.2.4). By the commutativity of
diagram (A.1.3), the right hand-side becomes:

F((idX Q@M (E;éMGF((Z(@MG(N))) © (idY @M 52;@%@(1\[)))) © mX,Y,Z@MG(N)))O
o F(mxg.v,z,6(N))-
(4.2.9)

Since F((idx @ (g;é@M(GF(Ze@MG(N))) o (idy ®n 5§;§MG(N)))) is an isomorphism,
expression (4.2.8) and expression (4.2.9) are equal if and only if
F((idx ®vmy,z,a(v)) ©Mx yeezaw) © (ax,y,z O idg))) =
F(mx.y, 22, G(N) © MX@eY,Z,G(N))-
This equation holds, since M is a left C-module category. g

Moreover, we can prove that the functors F' and G as above are C-module
functors (Definition 4.1.11).

LEMMA 4.2.3. Let (C,®g,a,1) be a monoidal category and let (M, Qxy, m)
be a left C-module category. Let F: M — N be an equivalence, with quasi-
inverse G: N — M such that G o F ~ idye and F'o G 2 idy and consider the
category N endowed with @y as in Equation (4.2.1), with the morphism nx y n
as in Equation (4.2.2).

Let sx = F(idxy @ ey) and tx,N = Exgya), for every X € €M e M
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and N € N. Then the pairs (F, s) and (G,t) are C-module functors, so M and
N are equivalent as C-module categories.

ProoF. We prove this result for F', for G the proof will be analogous.
Firstly, the morphism s has the required source and target, in fact for all X € C
and M € M:

F(idx®ney,)

sxm: F(X @y M) F(X @y GF(M)) =X @y F(M).

Furthermore, the morphism s is a natural isomorphism, since it is the com-
position of a natural isomorphism and an equivalence. We have now to check
that Diagrams (4.1.8) and (4.1.9) are commutative.

In particular, Diagram (4.1.8) reduces to

F((X ®eY) @ M)

F(X @ (Y @y M)) F(X ®eY) @n GF(M))
SX,Y®MMl JnX,Y,F(IM)
idx @nsy,m
F(X @p GF(Y @p M)) F(X @ GF(Y @y GF(M)))

for all X,Y € € and M € M. Using the definition of n and s, the previous
diagram becomes the outer diagram of the following

F(idxgey ®ney,)

F((X ®cY) @y M) F((X ®eY) @y GF(M))

F(mx,y,m) F(mx y,gr(m))

F(idx @ (idy ®nce )
F(X @y (Y @ M)) FOY VT L R(X @y (Y @y GF(M)))

F(idX®M€;<lg>MA{) F(idX@Jv{g;}@MGF(M))

F(idx @y GF(idy @ner))
F(X @ GF(Y @y M)) M X e GF(Y @y GF(M)))

for all X,Y € € and M € M. By naturality of m, the upper rectangle commutes,
while the naturality of ¢ makes the lower rectangle commutative. As a consequence,
we get the commutativity of the outer rectangle.

We are left to prove that Diagram (4.1.9) is commutative, that is the following
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F(idi®nert)
F(l ®M M) 1d19ME pf

F(1®y GF(M))

€m

F(M) FGF(M)

is commutative for any M € M. This follows from the naturality of ¢. 0

We can dualize the above construction for a right C-module category.

Let € be a monoidal category and let M be a right C-module category,
via the action bifunctor ®': M x € — M and with module associativity

constraint m'yy-,,. Consider as before, an equivalence F: M — N with

quasi-inverse G and natural isomorphisms 7 and ¢, such that G o F’ ~ idy

and FoG & idy. Then, we have the right-handed version of the definitions
given above. We define the bifunctor

QN NxC—-N

(4.2.10)
(= ~) = F(G(—)@ ~)
and the maps
nyxy: (N X)@ Y - N (X®Y)
as
ny xy = F(mgm xy © (Eamerx @Midy)). (4.2.11)

for every X, Y € Cand N € N.
In the same way as for the left C-module category, we can prove the right-
handed version of Lemma 4.2.2 and Lemma 4.2.3.

LEMMA 4.2.4. Let (C,®e,a,1) be a monoidal category and let
(M, @™, m") be a right C-module category. Let F: M — N be an equivalence
of categories, with quasi-inverse G: N — M and natural isomorphisms n and

e such that Go F = idy and F o G 2 idy. The category N endowed with @Y
as in Equation (4.2.10), with the morphism nly xy as in Equation (4.2.11) is
a right C-module category.

Moreover, let s = F(ey) @ idx) and let t% y = egvyomx. for all X €
C,M €M and N € N. Then, the pairs (F,s") and (G,t") are right C-module
functors.



2. TRANSPORT OF STRUCTURE 89

It is now natural to expect that the transported structure of a (C,D)-
bimodule category by means of an equivalence is again a (€, D)-bimodule cat-

egory.
Let (€, ®¢,a,1) and (D, ®p,a, 1) be two monoidal categories and let

(M, m,m",b) be a (€, D)-bimodule category. Consider F': M — N an equiv-
alence, with quasi-inverse G, and natural isomorphisms 7 and ¢ such that

GoF ~ idy and FFo G 2L idy. Using the above notation we define for every
X e, ZeDand N € N, the maps

px.nz: (X @xN) N7 = X Qx (N®NZ)

as
PX N,z ‘= F((ldx ®M 6(_}(1N)®MZ) o) bX,G(N),Z o) (5X®MG(N) ®M ldz)) (4212)

REMARK 4.2.5. Since p is defined as the image of a composition of natural
isomorphisms through an equivalence, then it is a natural isomorphism.

We are now in a position to prove the following result.

LEMMA 4.2.6. Let (G, ®¢,a,1) and (D, ®qp, d, 1) be monoidal categories and
let (M, @x¢, @, m, m",b) be a (€, D)-bimodule category. Consider F': M — N
an equivalence, with quasi-inverse G, and natural isomorphisms 1 and € such
that G o F ~ idy and F o G 2 idy. The category N endowed with @y, @ as
in Equation (4.2.1) and Equation (4.2.10), the morphisms nxyn, nly xy and
px.nz forany X,Y,Z € C and N € N as in Equation (4.2.2), (4.2.11) and in
Equation (4.2.12), respectively, is a (C,D)-bimodule category.
Furthermore, the functors (F,s,s") and (G,t,t") with s and t as in Lemma
4.2.3 and s", 1" as in Lemma 4.2.4 are (C,D)-bimodule functors.

PROOF. We first prove that (N, @y, @, n,n", p) is a (€, D)-bimodule cat-
egory.
By Lemma 4.2.2, Lemma 4.2.4 and Remark 4.2.5, we only need to prove that
diagrams (4.1.5) and (4.1.6) commute.
Consider the first diagram. We want to show that the diagram

(X ®eY)@x N)oNZ
(X an (Y oxN)) N Z (X ®eY)N (NN 2)
PX,Y@NN,Zl l"x,y,N@Nz

X @x (Y ox N) @ Z) X @n (Y ox (N eV 2))

idx ®@Npy, N,z
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is commutative for every X,Y € €, Z € D and N € N. By Equations (4.2.2)
and (4.2.12), this is equivalent to verify that

F(idx @n GF((idy @ 57%N)®Mz) 0 by.c(\),2 © (Eyanay) @ idz)))o

F((idx ®x EGF(Y®Mg( D@t ) VX, GF(YenG(N)),2° (EX@nGP(Y @y G(N)) ®@™idy))o
F(GF((idx ®nm EY® G(N)) X Y,G(N)) ® @Midy) =

(
(

F((idx ®x 5Y®MGF(G(N)®MZ)) °mx y.arG(N)ez) © (idxeey On EaéN)(X)MZ))O
(

’11

bxwev.G(N).2Z © (E(xoey)ona(v) @ 1dz)).
(4.2.13)

We will make use of a series of commutative diagrams. By naturality of e, the
following five diagrams

EX®p (YRpG(N))

GF(X @y (Y @y G(N)))

X @ (Y @y G(N))

GF(mx y,c(n)) [ MX,y,G(N)

E(X®eY)®pG(N)

GF((X ®cY) @y G(N)))

(X ®eY) @m G(N)), (42.14)

EXQNGF(Y®p G(N

GF(X @y GF(Y @y G(N))) "X @n GF(Y @y G(N))

GF(idx®MEy®Mg(N)) idX®J\/[€Y®J‘/[G(N)

EX @\ (Y®G(N))

GF(X @ (Y @n G(N))) : X oy (Y @n G(N)),
(4.2.15)
S(venGv)eMz
GF((Y ®y G(N)) @™ 2) — 2222y e GIN)) @M Z
GF(bY,G(N),Z)[ [by,c(zv),z
Cy @ (G(N)@M Z)
GF(Y @n (GIN) @M 2)) — 2 2y e (GIN) @M 2), -

EGF(Y @y G(N))oMzZ
_—

GF(GF(Y @y G(N)) @M 2) GF(Y @y G(N)) @M Z

GF(5Y®MG(N)®MidZ)l l‘fY@MG(N)@MidZ

Ey@pa(N)eMz

GF((Y @y G(N)) @™ 2) (Y @y G(N)) @M Z,

(4.2.17)
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and

Ey @y (G(N)@M2)

GF(Y @y (G(N) @™ 2)) Y @y (G(N) @™ Z)

. 1 . —1
GF(IdY@MEG(N)®MZ)l lldy@msc(m@MZ

o SY @y GF(G(N)@M2) M
GF(Y ©x GF(G(N) &M Z)) —————— Y @y GF(G(N) " 2) (4.2.18)

commute for every N e N, XY € €Cand Z € D.
Moreover, by the naturality of m the following diagram:

Mx v,GF(G(N)@Mz)
o 3

(X ®eY) @y GF(G(N) @M 2) X @y (Y @y GF(G(N) @™ 7))

idX®€Y®M5(;(N)®MZJ lidx@%t(idy(@mag(m@mz)

Mxy.e)eMz

(X ®eY) ®x (G(N) @ Z) X @ (Y @ (GIN) @ Z))

(4.2.19)

commutes for every X,Y € €, Z € D and N € N.
Furthermore, by naturality of b the diagram

bx,GF(Y@NG(N)),Z

(X @y GF(Y @y G(N))) @M Z ——— X @y (GF(Y @y G(N)) @™ Z)

(idx @iy @y c(n))®id 2 l | idx ®nm(ey @pan)@idz)

bx,y @\ G(N),Z

(X @n (Y @y G(N))) @™ Z X @ (Y @x G(N)) @™ Z)

(4.2.20)

is commutative for every X, Y € €, Z € D and N € N.
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Consider the left-hand side of equation (4.2.13). By commutativity of diagram
(4.2.14), we get:
F(idx @y GF((idy @t gy gnz) © bram z © (Evayam) © idz)))o
F((idx ®x 6GF(Y®MG(N))®M1dZ) bx,GF(YonG(N).2 © (EXenGF(yexan) @ idz))o
F(GF((idx ®x 6y® G(N)) © TXY,G(N)) @ @Midy) =
F(idx @y GF((idy ® 5G(N)®MZ) 0 by,(n),z © (EvanG(N) @™Midy)))o

(
(
(
(
F((idx ®x EGF(Y®MG(N))®M1(1 ) 0 bxGE(YenGN).Z © (EX@yGF(YanG() @ idz))e
F((GF(idx @ EY®Mg(N)) Midy) o ((Ei}gm(Ye@MG(N)) o mx.y.a(n)) @ idz)o

F(e(xaey)omav) @ idz)).
The commutativity of diagram (4.2.15) gives:

F(idx @ GF((idy @t gg(yp7) © br.aiv,z © (Eveyan) @ idz)))o

F((idx ®n EGF(Y(X)Mg(N))@MIdZ) bx,GF(YonG(N).2 © (ExenGF(yexan) @ idz))o

F(idx @x GF((idy @ ggpemz) © bram),z © (Evena) ®@™Midy)))o
F
F(

(

F((€X®MGF (Yana(v)) © (dx @ 5;& G(N)) © MXY,G(N) © E(XeY)@nG(N)) @Midy) =
(
(

(idx @ 5GF(Y®MG(N))®M1dZ) bX,GF(YoNG(N)).Z)°

((idx @ €y g, a(n)) © MXY.GW) © E(xeYIonc()) @ idz)

By commutativity of (4.2.20), the previous term becomes:

F(idx @y GF((idy @ 55§N)®Mz) 0 by.g(n),2 © (Eyanay) @ idz)))o

F((idx @ &gy gy avoia,) © (dx @ (Eyg, ooy @ 142)) 0 bx yenav).2)°
F((mxy.a(v) © E(Xpey)ona()) @ idz)

By virtue of commutativity of diagram (4.2.16), the above reads as:
-1

F(idx ®y (GF (idy ® 55%N)®MZ) (e Ey o (GN)@MZ) © by,ca(n),z © 5(Y®MG(N))®MZ)))O
F(GF (eyayav) @ idz) o (idx @M ey gya(vy@iay)°
F((idx ®x (s;gmg(m @™Midy)) o bX. Y@y G(N),2)°

F((mx,y,6(n) © €(xaer)onav) @ idz).

By commutativity of diagram (4.2.17) the previous term becomes:
F(idx @y (GF(idy ®n 8(_;2N)®MZ) o (@gm(g(m@mz) o by,c(n),z)))o
F(bx,yancmv).z © (Mx,y,a(n) © E(xsey)enamy) @ idz)).

Finally, by commutativity of diagram (4.2.18) the above equals

Flidx @ (eyy, aramenz) © 14y ®x g(vemz) © bram),2))o (4.2.21)

F(bxyanav),z © (Mx,y,a(v) © E(xeev)anan)) @ idz)).
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Consider now the right hand-side of equation (4.2.13). By commutativity of diagram
(4.2.19), it equals

F((idx ®x 5;/(18MGF(G(N)®M2)) o (idx @ (idy @ 582]\7)@3%2)) O MY y,G(N)@MZ)O

F(bxoey.a(N).z © (E(xsey)ona(v) @1 idz)).
(4.2.22)

(E(X@eY)2nG(N) ®@Midy) are natural isomorphisms, then equation (4.2.13) is satisfied
if and only if :

F((idx @ by.a(v).z) © bx yonan).z © (mxyam @ idz)) =

F(mX,Y,G(N)®Mz 0 bX®@Y,G(N),Z)-

This equation holds, since M is a (€, D)-bimodule category.
The other diagram is completely analogous to prove.

We now show that (F,s,s") is a (C,D)-bimodule functor. By Lemma 4.2.3
and Lemma 4.2.4 the pairs (F,s) and (F,s") are respectively a left C-module
functor and a right D-module functor. We are left to prove the commutativity of
Diagram (4.1.10). By the definition of s, s" and p this is equivalent to verify that
the following diagram commutes

F((X @y M) @M Y) FOxary) F(X @z (M @M Y))
Flext, p®idy) F(idx ®M5;41®My)
F(GF(X @y M) @™MY) F(X @y GF(M @MY))
F(GF(idx ®yeq)@Midy) F(idx @nGF (e, @Midy))
F(GF(X @y GF(M)) @M Y) F(X @y GF(GF(M) @MY))
Flexeyaron@idy) Flidx ®M€Z};(M)®MY)

F(bx,gr(m),y)

F((X @ GF(M)) @MY) F(X @y (GF(M) @™ Y))

(4.2.23)
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for every X € €, Y € D and M € M.
For this purpose, we will use the following diagrams

F((idx ®wep)@Midy) .
F((X @y M) ™MY) F((X @y GF(M)) @™MY)

1 . —1 M
F(Exm[M@MldY)l JF(5X®MGF<M)® Y)

F(GF(idx ®ney ) @Midy)
F(GF(X @y M) @MY) F(GF(X @y GF(M)) @MY)

(4.2.24)
and

. -1
F(idx ®J\'{€]\/I®MY)

F(X @y (M @MY)) F(X @y GF(M @™MY))

F(idx ®M(€1_M]®Midy))l lF(idx @MGF () @idy))

. —1
F(idx ®MEGF(M)®MY)

F(X @y (GF(M) @MY)) F(X @y GF(GF(M) @™MY))

(4.2.25)
which commute for every X € €, M € M and Y € D in virtue of the naturality of
e. Thus diagram (4.2.23) reads as

» F(bx,m,y) M
F((X @y M) MY) F(X @y (M @"Y))

F((idx ®MEA11)®MidY)l V[F(idx ®n (5;11®Midy))

F(bx,arm),y)

F((X @y GF(M)) @MY) —————— F(X @y (GF(M) @M Y))

for every X € ¢, M € M and Y € D and it is commutative by the naturality of b.
The proof for (G,t,t") is analogous. O



CHAPTER 5

Preliminaries on W/ -algebras

In this chapter we recall the construction of a finite-dimensional W-
algebra. Moreover, we state an important equivalence between categories of
modules due to Skryabin.

Let g be a finite-dimensional reductive Lie algebra over C and let e € g be
nilpotent. Throughout the next chapters, by a grading on a Lie algebra g we
mean a Lie algebra grading, i.e. a grading of the vector space g = @,cz 9(J)
such that [g(i),9(j)] C g(i + j), for every i,j € Z.

A Z-grading
g=@Da0)
jez
of g is called a good grading for e if
(1) e € g(2);
(2) 9° € D,>09(j), where g° stands for the centralizer of e in g;
(3) 3(g) € g(0), where 3(g) denotes the centre of g.

A classification of such gradings can be found in [20].

EXAMPLE 5.0.1. Let e be a nilpotent element in g. By Jacobson-Morozov
Theorem, there is an sly-triple (e, h, f), associated to e.
The standard good grading is the one induced by the adjoint action of A, called
the Dynkin grading, that is

g(i) = {x € g|[h, 2] = ix}.

REMARK 5.0.1. Every grading of g satisfying 3(g) C g(0) is induced by
the adjoint action of a semisimple element. Indeed, let s be a semisimple Lie
algebra and let s = @;c;5(j) be a grading for s. We define 0: 5 — s as
d(x) = jx for x € s(j). One can verify that it is a derivation and since all
derivations in s are inner ([65, Proposition 20.1.5]), there exists a semisimple
element ¢ € s, such that § = [¢, —].

The result follows also for a reductive Lie algebra, since it is the direct sum of
a semisimple Lie algebra with an abelian one.

Throughout this chapter, we fix a Z-good grading.
Consider (-|-) a non-degenerate symmetric invariant bilinear form on g. Define
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X € ¢g* in the following way:
x:9—C, x — (e|z).

By definition of good grading, e € g(2) and x(z) = (eJx) = 0 for every
x € g(j), unless j = —2.
Let (:|-) be the non-degenerate alternating bilinear form on g(—1) defined by

(zly) == x(ly, z]).

Fix ¢ an isotropic subspace of g(—1) with respect to (-|-).
Let ¢+ = {x € g(—=1)|(z,y) = 0forall y € ¢}, so £ C ¢+. We define the
following subalgebras:

me=(® P olj), w=0o D o)
j<—1 Jj<—-1
so my C ny. The algebras ny, and my are nilpotent, because they are subalgebras
of the nilpotent algebra @, g(j). Moreover, my is a Lie ideal of n,. Indeed,

[me,ne] € Djc_19(5) € me

In order to construct the finite W-algebra H,, we need to recollect the
following facts.

i) The map x restricts to a character of m,.
This means that x([z,y]) = ([z,y]le) = 0, for every z,y € m,. We
show that. Since (z|e) = 0, for every z € g(j), with j # —2, then for
every ¢ € ®;<_29(¢) and y € my, x([z,y]) = 0. It remains to verify
that for z,y € ¢, x([y,z]) = 0. This is a consequence of the isotropy
of /.

ii) We can then define

Q= U(Q) QU (my) va

where C, is the 1-dimensional left U(m;)-module obtained from the
character x. In particular, Q, ~ U(g)/I;, where I, is the left ideal
generated by x — x(x) for every x € my.

iii) The left multiplication in U(g) induces an action on @),. In particular,

v.(y+ 1) = vy + I,

for every x,y € U(g).

iv) There is an induced ad(n,)-action on @y, since the ideal I, is stable
under the action of n,. We show this fact.
We need to verify that [z, I,] C I, for every z € n,. This means that

[z, y(z = x(2))] = [2,y)(x — x(2)) +y[z, 2]

lies in I, for every z € my, z € ny and y € U(g). Since [z, x] € m,; and
X([z,z]) = 0, we get the desired inclusion.
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Hence, it makes sense to define
H, = ?dng’
that is the subspace of all x + I, with z € U(g) such that
yr —xy € I, for all Yy € ny. ()
We can define an algebra structure on H, via
(+ L)y + L) = 2y + I,

for v + I,y + I, € H,. We verify that this multiplication is well defined.
Firstly, for any w € my and y + I, € H, we have [w,y] C [my, y] C [ng,y] C I,
Then, for every w € my and y + I, € Hy, we get that (w — x(w))y € I, since
(w—x(w))y =yw — yx(w) + [w,y] € y(w — x(w)) + I, C I,. It follows that

I -y C I, (5.0.1)

for all y + I, € H,.

Furthermore, the algebra H, is closed under multiplication because if z € ny,
and x+ 1y, y+1, € Hy, then zay—xyz = (zo—xz)y+z(zy—yz) € Ly+zl, C I,
by Equation (5.0.1).

The algebra H, is called the finite W-algebra associated with e.

REMARK 5.0.2. We stress the fact that the finite W-algebra H, does not
depend on the choice of the good grading ([7, Theorem 1]) and neither from
the Lagrangian ([25, Theorem 4.1]), but it depends only on the adjoint orbit
of e (see [65, Chapter 34| for the definition of the action).

REMARK 5.0.3. Notice that @ is a U(g)-H, -bimodule. We mentioned
above (iii) that U(g) acts on @y by left multiplication.
The right action of Hy on @)y is induced by right multiplication. We show that
this is indeed an action. Let y € U(g) satisfying (&) and = € U(g). We show
that
(z+1)(y + 1) € Qe

Since I, is a left U(g)-module
(x+1L)y+L)=zy+aly+ Ly+ 1, =xy+ Ly+ I
By Equation (5.0.1), we get
vy + Iy + 1p = vy + I,

because y satisfies ().

Hence, (z + I;)(y + I;) € Q, for every z,y € U(g), such that yz — zy € I,, for
any z € my.

It is straightforward to show that the left action of U(g) and the right action
of H, are compatible.
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REMARK 5.0.4. Notice that

(z = x(@))y = [z, 9] + y(z = x(2)) = [z,y] + L, (®)
for every x € my and y € U(g).

In the following we require that ¢ is a Lagrangian subspace of g(—1), that
isfl = gj_ so that ny = my.
Let e, n, = my and x be as above.

From now on M will denote the category of U(g)-modules on which
x — x(x) acts locally nilpotently for each x € m,. It is called the category of
Whittaker modules.

Also, from now on N will denote the category of finitely-generated Hy,-modules.
When the good grading for g is as in Example 5.0.1, an equivalence between
M and N was described by Skryabin in [58, Appendix, Theorem 1]. Moreover,
under the same assumption, Gan and Ginzburg gave an alternative proof of
Skryabin equivalence in [25, Theorem 6.1].

Goodwin in [28, Theorem 3.14] showed that the same equivalence holds also
when the grading of g is a general good grading. Before exhibiting this
equivalence, we put for M € M

Wh(M) :={ve M|zv=x(z)v for allz € m,}.
REMARK 5.0.5. For M € M, the subspace Wh(M) is an Hy,-module via
the action:
(x + I;).m = z.m,

for every m € Wh(M), x € U(g) satisfying ().

We show that this is an action. We have to verify that z.m € Wh(M), that
is z.(x.m) = x(2)x.m, for every m € Wh(M), z € my and x as above. We can
express z.(z.m) in the following way

z.(x.m) = (zz).m = [z, z].m + x.(2.m)

for every m € Wh(M), z € my and = € U(g) satisfying (é).

Since [z, z] € I, there exists u € U(g) and w € my such that

[z, 2] = u(w — x(w)), for every z € my and x € U(g) satisfying (é). Then
[2, 2].m = (u(w = x(w))).m = u.(x(w)m — x(w)m) = 0,

for every m € Wh(M), z € my; and = € U(g) as above. Moreover, since
m € Wh(M), then z.m = x(z)m, for every z € m,. We can conclude that

z.(z.m) = [z,x].m + x.(z.m) = 0+ x.x(2)m,

and in particular that z.m € Wh(M), for any m € Wh(M) and any = € U(g)
satisfying (é).
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Then, with the usual restriction of morphisms, Wh defines a functor from
the category of Whittaker modules M to the category of finitely generated
H, -modules.

By Remark 5.0.3, we also have a functor

Qi ®u, —: N — U(g)-mod.

REMARK 5.0.6. We show that @, ®py, N with U(g)-action by left multipli-
cation is a Whittaker module for every N € N. Explicitly, we verify that for
all x € my there exists k£ € N such that

(@ = x(@)"((y + L) @m, n) = 0,

for all n € N and y € U(g). For simplicity, set g(< j) := @,; g(7).
We divide this verification into three steps.
Step 1. We first prove the claim for y + I, € Q,, with y € g(j) for j € N. For
every x € my, by (#) we get

(x = x(2)((y + Ir) @u, N) € (9(< j) + 1) @u, N.
Since g is finite-dimensional, then for k£ >> 0,
(v — x(@)*((@) + 1) @, N) = 0.

Step 2. We consider now an element y + I, € @)y, where y = y;...y;, with
y; € g(j;) for j; € N and for ¢ € {1,...1}. Then for every z € m, we have

(@ —=x@) - g+ 1) =[x, mlye .y (e — x(@)y2 .oy + 1

I
= Zyl...[x,yi]yi+1...yl+]g.
i=1

So for every x € my

(- x(x)) ((Hg(ﬁ) +If> ®n, N> c Z (Hg(ﬁ) ceg(<di) e + Ie) ®m, N,

i=1
where the product in U(g) is taken in increasing order.
Since g is finite dimensional, then there exists k£ € N such that

(z — x(x))" ((ﬁ 9(ji) + Ie) ®u, N> = 0.

i=1
Step 3. We finally consider an element y + I, € Q, for y € U(g). Then, y is a

finite sum of elements in [T, 9(J:), for Iy, j;, h € N. By the previous step, for
each summand there exists k, € N such that

I

(x — X(:E))kh (H o(ji) + [e) ®u, N =0

i=1
. Then, taking the maximum among the k;,’s we conclude the verification.

We are now in a position to state the following theorem.
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THEOREM 5.0.7. [28, Theorem 3.14] Let M € M and N € N. The functors
M — Wh(M) and N — Q¢ ®@p, N are quasi inverse equivalences between the
category of Whittaker modules M and the category of finitely-generated H,-
modules N.
REMARK 5.0.8. The natural isomorphism ¢: @y ®, Wh — id is given by
EM: Qg ®H4 Wh(M) — M
(u+ 1) @ m— um

for M € M ([28, Theorem 3.14]).

(5.0.2)



CHAPTER 6

Whittaker modules and H/,-modules as bimodule
categories

We retain notation from Chapter 5 and we assume that ¢ is Lagrangian.
This chapter aims at endowing the category of Hy-modules with a bimodule
structure over a category containing U(g)-modg,. For this purpose, we firstly
endow the category of Whittaker modules with a bimodule structure. Then,
by means of Skryabin equivalence we will transport this structure to the
category of Hy,-modules.

Since U(g) is a Hopf algebra, the category U(g)-mod of U(g)-modules
is a monoidal category by Example 4.1.2.

We denote by C. the subcategory of U(g)-mod on which m, acts locally
nilpotently.

REMARK 6.0.1. We show that C. contains the category U(g)-modsy.
Firstly, consider a good grading g = @,z ¢(¢) for e € g. By Remark 5.0.1, it
is induced by the adjoint action of a semisimple element g¢.

Let V' be a finite-dimensional U(g)-module. In light of [32, Theorem 6.4], the
module V' decomposes as

V=V,
jed
where V; :={v € V |qv = jv} and J C Z is such that |J| < oo.
We need to understand how m, acts on each block V;. Pick an homogeneous
element = in € my, say x € g(i) for i < —1 and let v € V; for some j. Then:

q.(x.v) = (qr).v = [q,z].v + zqv = iz.v + jr.v = (i + j)x.v,

ie. z.v € Vi Since i < —1 and |J| < oo, there exists n, € N such that
x"™.v = 0 for every v € V and any homogeneous element z in m,. Extending
the above argument by linearity, the same conclusion holds for every x € my
and thus m, acts locally nilpotently on V.

We will firstly show that C. is a monoidal category. For this purpose, we
need the following result.
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LEMMA 6.0.2. Let ¢: g — C be a linear form. Let X, Z be in U(g)-mod.
Then,

I J

I J k
)k(z Z ;2 ® 2j) = Z Z Z i j(y —(y) " ai @y .z, (6.0.1)

i=1 j=1 i=1 j=1u=0
for everyy e my,x; € X,z; € Z, k€ N and o j € C.
PRrROOF. First of all, we prove that the equation
k
k . »
(y—v@)(r@z) =) <j> (y =¥ zoy* .z (6.0.2)
j=0

holds for every y € my,z € X and z € Z. We proceed by induction on k.
If k£ =1, the above equation is clearly satisfied.
Suppose that for some k& > 2,

k
(y—v®).(zxy) ZZ( ) (1)) .z @ y* 2.
By definition of the action:

(=@ (z@2) =y —vw).(y— W) (z©2) =
~ = (3 () - vy o) -

2

@yy—wwvw®w“ﬁx

Reordering the sum and rescaling the indices the above term equals

(v = p)™ $®Z+Z< ) 1) (y— (Y)Y .z @yt 4
7j=1
k

+> (j) Y=y eyt zteey

J=1

J

k
=y taestreytlar ) (k’ " 1) (y =) zoy .=

kt1
(0 41) ot
j=o\ 7

Hence, Equation (6.0.2) holds for every y € my,z € X and z € Z.
Finally, the linearity of the action gives Equation (6.0.1). O
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We are now in a position to prove the following.

LEMMA 6.0.3. The category C. endowed with the usual tensor product of
modules is a monoidal category.

PROOF. Since U(g)-mod is monoidal, it is enough to verify that C. is closed
under the tensor product, i.e. for X, Z € C., we have to show that m, acts
locally nilpotently on X ®¢ Z. A generic element of X ® Z is of the form

I J
Z Z Q; ;T & 2,
i=1j=1

for some a;; € C, x; € X and z; € Z. Let y € m,. Substituting ¢y = 0 in
Equation (6.0.1), we have

yk. (XI: XJ: Q; 55 ® Zj) =
i=1j=1

Since m, acts locally nilpotently on X and Z, there exists a sufficient large
k € N, such that one between y*.z; and y*~".z; vanishes for any u € {0,...,k}
and any 1, j, concluding the proof. O

k
u k—u
Z ai,jy X X Yy 'Zj-
1 j=1u=0

1
1=

Recall that M stands for the category of Whittaker modules, that is the
subcategory of U(g)-mod on which x — x(x) acts locally nilpotently for each
T € my.

REMARK 6.0.4. The category M does not contain finite-dimensional U (g)-
modules if e # 0. Indeed, let V be a finite-dimensional U(g)-module and
suppose that (x — x(z)) acts locally nilpotently on V' for every € m,. This
assumption together with Remark 6.0.1 and with the fact that the elements x
and x — x(z) commute for every x € my imply that x — (x — x(z)) = x(z) acts
locally nilpotently on V. This condition holds if and only if x(z) = 0 for every
x € my; this would contradict that (-|-) is non degenerate and g(—2) C my.

We now define natural left and right actions of €. on U(g)-mod by means
of the tensor product of modules ®¢ in U(g)-mod. We set:
R = Rc: Co x M — U(g) — mod
M C (9) (6.0.3)
(_7 N) = —Qc ~,
and
®M::®:MXG€%U — mod
. (©) (6.0.4)
(=~) = —®c ~.

From now on, we will write simply ® to denote ®¢.
We have the following result:
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LEMMA 6.0.5. The category M is a (C, C.)-bimodule category, via the ten-
sor product of U(g)-modules, where mx y,z, M’y 7 and bx ny are the shift of
parentheses.

PrOOF. Firstly, we verify that that M ® X is a Whittaker module for every
Whittaker module M and for every U(g)-module X on which m, acts locally
nilpotently, that is we have to show that y — x(y) acts locally nilpotently on
M ® X, for every M € M, X € C. and y € m,. This is equivalent to show
that for every z € M ® X, there exists k, € N such that (y — x(y))*.2 = 0 for
every y € my. A generic element z in M ® X is of the form

I J
Z Z Oél:.]mz ® xj’
i=1j5=1

for some «; ; € C, ; € X and m; € M. Then, our goal is to show that there
exists k, € N such that

(v — X(y))'“z-(; X_; o jm; ® ;) = 0,

for every y € my and for «; j, m; and z; as above.
Applying Equation (6.0.1), we get:

(y—x()rz= Z Z_: Z aij(y — x(y)"m; @ y* .

for m; € M,z; € X and «;; € C as above and for every y € m,. Since M is
a Whittaker module and X is a U(g)-module on which m, acts locally nilpo-
tently, there exists a sufficient large K, such that one between (y — x(y))".m;
and y*=~".z; vanishes for any u € {0,..., K.} and any i, j.

The proof for the right action is analogous.

Secondly, we have to verify that M is both a left and a right €.-module
category. Since m = m'” and the associativity constraint of the monoidal
category C. is identified with the identity as it happens for U(g)-mod (Lemma
6.0.3), the pentagon diagrams reduce to the trivial ones.

For similar reasons, diagrams (4.1.5) and (4.1.6), become the trivial ones.
Hence, we conclude that M is a (€., C.)-bimodule category. O

Now, our aim is to transpose the (C., C.)-bimodule structure of M to N by
means of Skryabin equivalence, following the construction of Chapter 4.
We define the right translation functor and the left translation functor as those
given in Definition 4.2.1 and Definition 4.2.10, specializing F' to Wh and G to

Qi®m,.
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More precisely, the definition of the right translation functor becomes:
N=® : NxC — N

(6.0.5)
(_7 N) = Wh((@e ®He _)® N)v
while the left translation functor reads as
Qn =®: C.xN—=N
(6.0.6)

(= ~) = Wh(= & (Qe®m, ~)).

Moreover, substituting m = m” = id and F' = Wh(—),G = Q; ®pg, — in equa-
tions (4.2.2) and (4.2.11), we get, respectively, the left and the right module
associativity constraints nxy,nx and n'y v, forall X,Y € C, and N € N.

In particular, for X,Y € G, and M € M, the module associativity constraint

nxyn: Wh(Qe®u, (Wh((Qr®u, M)©X))©Y) = Wh((Qi®@m, M)®(XQY))
is the restriction of the following map
p: (Q @m, (Wh((Qr ®u, M) @ X)) ®Y = (Qr @, M) © (X ®Y)

(u+I)((W' + L) @m) @) @y = u(((v' + 1) @m) ®x) ®Y.
(6.0.7)

REMARK 6.0.6. Let U(g)-modg, be the category of finite-dimensional U (g)-
modules. Then, U(g)-modg, is a subcategory of €., which is closed under the
tensor product. Hence, U(g)-modg, is a monoidal category.

If we restrict the definitions of the right translations functor (6.0.5) and of the
module associativity constraint n” to U(g)-modg,, we get the definition for the
translation functors given in [28] and [9].

Furthermore, let px n 7 be the compatibility isomorphisms defined as in
(4.2.12).
By Lemma 4.2.6, we deduce the following:

THEOREM 6.0.7. The category N endowed with ®, nxy,n, ®", n’yy y and
px.n,z defined above, is a (C., C.)-bimodule category.

Moreover, by Lemma 4.2.3 we obtain the following.

LEMMA 6.0.8. Let ¢ be the natural isomorphism (5.0.2), let sx . :=
Wh(idx ® eyf) and tx y := EX®(Qe®m,N)» forall X € C,,M € M and N € N.
Then, the pairs (Wh, s) and (Q¢®mn,,t) are C.-module functors.






CHAPTER 7

C-equivariant functors for reduction in stages

In this chapter, we recall the functors Why and Qy®p, introduced in [26]
and we show that they are equivariant under an action of a subcategory of
U(g)-mod.

Let g be a finite-dimensional simple Lie algebra over C.

For i = 1,2, let e; € g be nilpotent elements and let y; be the associated
linear forms constructed as in Chapter 5. For ¢ = 1,2, we denote by (e;, f;i, h;)
an slo-triple in which e; is embedded.

We adopt notations from Chapter 5 adding a subscript (;) for referring to the
construction related to e;.

For i = 1,2, let g = @,cz8(j)@) be a good grading for ;. By Remark 5.0.1
the good grading ;) is induced by the adjoint action of a semisimple element
q;- Without loss of generality, we can assume that ¢; and ¢ belong to the
same Cartan algebra h. This follows from the fact that all Cartan subalgebras
are conjugate under inner automorphisms of the algebra U(g) and that Hy,
depends only on the orbit of e; for the action of inner automorphisms of U(g).
Throughout this chapter, we will make the following assumptions:

(1) there is a direct sum decomposition my, =my, & mg, where mg is a
h-stable Lie subalgebra of my, and my, is a Lie ideal of My,

(2) the element ey := ey — e is nilpotent and ey and the Lie algebra my
are contained in g(0)q) ,

(3) the semisimple element gy := g — ¢1 commutes with e;.

For simplicity, we denote the above assumptions with ().

REMARK 7.0.1. Consider the simple Lie algebra
00010
505 := {z € 5ls | 2" K + Kz =0}, for K := <8[1)(1)88>’
10000

where 2T denotes the transpose of . We take the symmetric set
Is:={-2,-1,0,1,2}
as indexation for the canonical basis of C®, with the following order

v_s = (1,0,0,0,0), v_y = (0,1,0,0,0), ... ,u2 = (0,0,0,0,1).
107
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We change the numbering of the elementary matrices e; ; to have ¢, j € I5 and
to respect the order we have chosen for the basis.

Take the regular nilpotent element

We can embed e; in a sly-triple {es, fo, ho}, where hy := diag(—4, —2,0,2,4)
0-4 0
00 —6

nd 2 = (8 § g

00 0

0

[aay

00
00
—-10
01
00

—HOOOO
[elelelele)

€2 i=€10+T €21 — €1 —€_1-2= ( 0
0

We consider the Dynkin grading, i.e. the grading

[l ool

0
0
6
0
0

induced by hs.
Take now

00000
€1 =e1g—eo_1=|01000
1= €10 —€o—1 = | 01000 ).
00000
We embed it in a sly triple {ei, f1, h1}, where hy = diag(0,—-2,0,2,0) and
00 0
00—
- <§§ :
semisimple element h;. We show that this choice of the gradings does not
satisfy the assumptions (). By definition,

[\

). Also in this case, we consider the grading induced by the

OON OO
[=]elefels)

This means that eq ¢ g(0)(1) and hence assumption 2) of (<) is not satisfied.
If we consider the good grading induced by ¢; = diag(—2, —2,0,2,2) instead
of the Dynkin one, the assumptions are satisfied (see [26, Subsection 4.2]). In
this case,

my, = Span{e; ;|i < j} Nsos my,, = Span{e;;|i < jandi <1, j > —1} Nsos
and in consequence one may take
my = Span{e,m, 6172} M s05.

This example justifies the fact that we are considering general good gradings
and not only the Dynkin ones.

We stress that throughout this chapter the assumptions () are satisfied.
We now recall the functors Why and @y ®p, — from [26]. For this pur-

pose, we recollect some results contained therein.
By [26, Lemma 3.2.1], there is an embedding of my in Hy,,, which sends
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Yy € my to y + Ig<1). In consequence, we can define I as the left Hg(l)-ideal
spanned by (y — x2(y)) + Iz, y € mo.

Let Qo := Hg(l)/_[[). The adjoint action of my on Hg(l) descends to )g. Then,
it makes sense to consider the subspace of invariants H, := di(mO). This
vector space turns out to be an algebra (see [26, Lemma 3.2.2]), where the
multiplication is induced by the one in Hy,.

Moreover, in virtue of [26, Theorem 3.2.3|, Hy is isomorphic to H 0y

For i = 1,2, let €; be the category of U(g)-modules on which my acts
locally nilpotently. The category C, is a subcategory of C; because by as-
sumptions my,, C my, .

For ¢ = 1,2, we denote with M; the category of Whittaker modules with re-
spect to e;; with N; the category of Hgm—modules; with ®;) the translation
functor and with Wh; the functor Wh from Chapter 5 defined on M.

REMARK 7.0.2. As shown in Chapter 6, the category M; is a (C;, C;)-
bimodule category. Since Gy C €y, the category M; is also a (Cy, C3)-bimodule
category. In addition, My is a (Cg, C2)-bimodule subcategory of M.

Finally, by the embedding of mg in Hy, , we can define the category Mo,
that is the category of finitely generated Hy, -modules on which y — X2(y) acts
locally nilpotently, for all y € my. For M € M, we set

Who(M) :={m € M |y.m = x2(y)m for all y € my}.

Before stating the main result of this chapter, we need to recall some facts.

i) By [26, Lemma 5.2.1], for every M € M, the subspace Why(M) is a
left Hyp-module with action given by

(x + Iy).m = xz.m,

for every x + Iy € Hy and m € Whq(M). As we recalled before,

Hy ~ Hy,, and hence Who(M) is a left Hy, -module, for every M €
My. This implies that, together with restriction on morphisms, Why
gives a functor from the category My to the category Ns.

ii) By [26, Lemma 5.2.2], we have that Qo is a Hy, -Hp-bimodule, where
Hy,, acts on Qo via left multiplication, while Hy acts on Qg via right
multiplication. In consequence, for N € Ny the Hy, -module Qo® g, N
is well defined. The action is given by:

(2).((y + Lo) ®my n) = (vy + Io) @, 0,

for every n € N and z,y € Hy, . Furthermore, in virtue of [26,
Lemma 5.2.2], the tensor product Qo ®p, N lies in M, for all N € No.
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We are now in a position to state the following.

THEOREM 7.0.3. [26, Theorem 5.2.3] Let M € My, N € Ny. Then the
functors M +— Who(M) and N — Qo @u, N are quasi inverse equivalences.
Moreover, Why(—) and Qe ®H[(1) (=) induce an equivalence of categories
My >~ My by restriction and we have Why = Why o Why. In particular, Why

and Qy®p, are exact functors.

REMARK 7.0.4. By [26, Proposition 5.3.1], the natural isomorphism
Who(Qo®p,) ~ id
is given by
(D) M — Why(Qo @, M)

(7.0.1)
m—1Q®m,

for any M € M .

Our final goal is to show that the equivalence just introduced is invariant
under the action of the category Cs and thus also of U(g)-modg,. To this aim,
we firstly need to understand the Cs-module structure of M.

LEMMA 7.0.5. The category My is a (Cq, Cq)-bimodule category, where the
left action bifunctor @y, is ®(1) while the right one is ® )|

‘M()’ |M0 ’

PROOF. Firstly, recall that M, is a (Cy, C3)-bimodule category as we ob-
served in Remark 7.0.2.
By Theorem 7.0.3, the functor Wh; establishes an equivalence between the
categories My and My. Hence, by transport of structure, we can endow Mg
with a Co-module structure following the construction of Chapter 6. In partic-
ular, this implies that the left action bifunctor is the restriction to My of ®y),
while the right one is the restriction to My of ®F. O

The previous lemma together with Lemma 4.2.3 gives the following corol-
lary.

COROLLARY 7.0.6. The functor Why|y, paired with the natural isomor-
phism Why |y, (id ®5(1)_1) is a Cy-module functor, where eV is the natural iso-
morphism defined in Equation (5.0.2).

Now, we define the following natural isomorphisms
ux,n,: Why o (Q%) ®He(2> (X ®@2) N2)) = X ®1) Why o (Qz<2) ®H€<2) Ns)

as
._ : (-t (2)
U/X7N2 .— Whl ((1dX ® 8Q3(2>®H4(2) N2> @) €X®(Qg(2) ®H[(2) NZ)) (702)
and

vx,M - Why o (Qe(l) ®H@(1) (X ®q) My)) = X &) Why o (Qz(l) ®H4(1) M)
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as
— W : 2! (1)
UX,My = h2 ((ldx ® EQZ(1)®HZ<1) Mo) o €X®(QZ(1)®HZ(1) Mo))' (703)

for every X € @Gy, Ny € Ny and My € My and for ¢ the natural isomorphism
defined in Remark 5.0.2.

We are now in a position to prove the main result.

THEOREM 7.0.7. Let u and v be the natural isomorphisms defined respec-
tively in (7.0.2) and (7.0.3). Then, the pairs (Qo®mu,,u) and (Who,v) are
mutually inverse Co-module equivalences.

PRrROOF. We prove the Theorem for the functor Qy®p,.
Theorem 7.0.3 implies that the following diagram is commutative

Qe ®H[(2)
Mg N2
Qo®H,
Whi |,
Mo.

Moreover, by Lemma 6.0.8 the functors Wh and Qy,, ® Hyy) paired respectively

. . . . (1)t (2)
with the natural isomorphisms Wh; (id_ ® e’ ) and 5_®(Q£(2)®H2(2> B

s are Co-
module functors.

Finally, since Qy®p, = Qg(z) ®Hz(2) oWhy, we can apply Lemma 4.1.14 obtaining
that (Qo®p,,u) is a Cy-module functor.

The proof for the functor Why is analogous. OJ






CHAPTER 8

Exactness of the tensor product

In this chapter, we study the exactness of the categorical action functor.
We start recalling the following general result.

PROPOSITION 8.0.1. [22, Proposition 7.1.6]. Let (C,®e¢,a,1) be a rigid
monoidal category and let (M, @y, m) be a left C-module category. There is a
canonical isomorphism

HomM(X* Qv M, Ml) — HomM(M,X A Ml) (801)
natural in X € € and M, M; € M.
This proposition implies the following.

COROLLARY 8.0.2. Let (€, ®e,a, 1) be a rigid monoidal category and let
(M, ®@ni,m) be a left C-module category. Then, the endofunctor X Ry — is
exact for every X € C.

PROOF. Proposition 8.0.1 implies that X ®)(— is a right adjoint of X*®;—
and hence it is left exact. Moreover, thanks to Proposition 8.0.1, the endo-
functor X ®q¢ — is a left adjoint of *X ®5 — , and hence it is right exact. [

Consider U(g)-modsg, the category of finite-dimensional U(g)-modules,
which is a rigid monoidal category by Example 4.1.3.
From now on, keep notations as in Chapter 5, 6 and 7. By Corollary 8.0.2,
for + = 1,2 the endofunctors

and
are exact functors, for every X € U(g)-modsy,.
This implies that X &) —: My — M is an exact endofunctor.

The above result has a symmetric counterpart for the right action of U(g)-
modg, on M and on N.
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CHAPTER A
Appendix

In this appendix we discuss the systems of equations that emerged in Sub-
section 3.4 when analyzing the number of p-elements occurring in the expres-
sion of X(yi). We collect here the results that were needed to conclude that

X(yy) € Q\Z.
A.1. Case PSL;(q), ¢ odd

We retain notation from Subsection 3.4, in particular recall that 6 is a
primitive third root of unity. Moreover, throughout this Section ¢ will be odd.
We recall that in Subsection 3.4 we had to estimate the number of pairs (a, b),
with a, b € F,, which satisfy the following system

—b% — 3b(0 + 67) — 3(6% + %) = 30"

a? — 3a(6% + 6%7) + 3(6" + 67) = —36°,
where i, j, k € {0,1,2}. We denote System (A.1.1) by E(i, j, k), where ¢, j, k €
{0,1,2}.

LEMMA A.1.1. Let g =7 and M = M,. Then, the total number of solutions
(a,b) € F2 of each system E(i,j, k) fori,j k€ {0,1,2} is 75.

ProOOF. Computing the discriminant of the above equations in b and a
respectively, for fixed 7, 7, k we obtain
Ay (i, j, k) = =3(6% + 0% + 077 + 46%)
Ag(i, 5, k) = —3(07 + 67 + 020F7) 4 467F),
Notice that Aq(i, j, k) = A2(2i,27,2k) and As(i, j, k) = Aq1(2i, 27, 2k).
Set § = 2. Then, for each triple (i, j, k) for i, j, k € {0, 1,2}, the values of the
discriminants are collected in the following tables:

(A.1.1)

1 j k Al A2 i j k Al A2 i j k Al AQ
0/0/0 0] 0 0110 2| 2 21110 2| 2
0j0|1) 2|6 Oj1)1] 4|1 20111 4|1
0]0[2) 6| 2 0112 1] 4 21112 1| 4
11010 2 | 2 012(0) 2| 2 21210 5 |1
11011} 4|1 02|14 |1 2121100
11012 1] 4 0122 1] 4 21212 4] 3
2/0(0) 2 | 2 1y1j0) 1|5 1120 2| 2
2101 4|1 {11 3| 4 112(1) 4|1
21012 1| 4 1{1]2| 0] 0O 1122 1] 4
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Bearing in mind that the non-zero squares in F; are 1,2 and 4, we underlined
in green the rows which give rise to four pairs (a,b) solving the system, and in
yellow the rows which provide just one solution. Counting them, we get that
the total number of solutions of the systems when i, 7, k run through {1, 2, 3}
is 75. 0

For simplicity, we call A the matrix

0 0 1
( 1 S o ) (A.1.2)
b+3(0°+67) 1—ab—3a(0'4+67) a—b>—3(0%+6%7)—3b(0*+67)

LEMMA A.1.2. Let q be odd. Let (a,b) € Fg be any solution of the system
E(i,j, k) fori,j,k € {0,1,2}. Then, the rank of A — 0% -1 is 2.

PROOF. Suppose that A is of Jordan type (2,1), i.e. that the rank of

_pk 0 1
A—ek]_: ( 1 —a—06% —b )

b+3(0°+67) 1—ab—3a(0*4+67) a—b>—3(0%'+627)—3b(0*+67)—6*

is one. Then the second column of A — #* - 1 must be trivial and the third
column must be a multiple of the first one. These conditions lead to the
following system of equations:

a=—0F

b= 0%

3(0° + 07) = —20%
3(0% + 6%7) = —206*.

We analyze the above system, proving that there are no solutions.

1) If i = j, then the last two equations of the above system become

30" = —0% and 30% = —@*. Multiplying the latter two equations, we get
9 = 1, a contradiction since p is odd. i

2) If i # j, then there exists j € {0, 1,2}, such that §° 4+ 67 + 7 = 0. Then,
the last two equations of the system read as —367 = —20?% and —30% = —20F
respectively. Multiplying them, we obtain 9 = 4, which is satisfied if and only
if p = 5. If this is the case, the third equation of the initial system becomes
07 = —#?* which implies that 1 = —1, a contradiction. O

LEMMA A.1.3. Let p =5 and let M = <7r <é _3(1)9% 3(?) fori € {0, 1,2}>.

Then, the number of pairs (a,b) € ]Fg for which ™ ( gfé) € M and

= OOr

0 0
1 —a —b
( b+3(0°4-67) 1—ab—3a(0*+67) a—b>—3(0%+6%7)—3b(0*+67) )
is a 5-element for some i,j € {0,1,2} is 15.

PRrROOF. We use the following GAP code to count the number of p-elements.
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#we call z the zero of F_ 25, u the unit of F_ 25 and theta a third root of unit;
z:=7Z(25)*0;;

u:=2Z(25)"0;;

theta:=Z(25)78;;

#y denotes the generator of the group of invertible elements in F_ 25;
y:=Z(25);;

#t stands for \tau

t:=[[z,u,zl,[z,z,u],[u,z,z]];;

centre:=|[[theta,z,z],[z,theta,z],[z,z,theta]];;

M:=[];;

F25:=[z];;

#we construct F25

for i in [1..24] do

c:=y~i;

Append(F25,[cD;

od;

#we construct M__ {C_ {(3)}} as a list and we call it L
L:=[;

for 11in [1,2,3] do
c:=[[u,-3*theta”1,3*theta”~(2*1)],[z,u,z],[z,z,ull;
Append(L,[cD;

od;

#we construct the subgroup M
for j in [1..5] do

for i in [1..5] do
c:=L[1]"i+L[2]j;
Append(M,[cD;

od;

od;

#we create a list P containing the elements in t*[[u,(y~12)*3*(x~(2%i)),3*(x"1)],[z,u,z],[z,z,ul]*
#[[u,(y712)*3*x(x~(2%j)),3*x(x"j)],[z,u,z],[z,z,ul]*m*t*m~(-1) which are 5-elements for m in M
P:=[];;

for i in [1..3] do

for j in [1..3] do

for m in M do
c:=t*[[u,(y~12)*3*(x~(2*1)),3*(x"1],[z,u,2],[z,z,ul]*
[[u,(y~12)*3*(x~(2%j)),3*(x"j],[z,u,2],[z,z,ull*m*t*m~(-1);
if c"5=theta or c"5=theta”2 or c"5=theta”3 then
Append(P,[cD);

fi;

od;

od;

od;

#the length of P gives us the number of 5-elements
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Length(P);
15
g
Let C be the matrix
at+r+w —a(a+r+w) 1+(a?—b)(a+r+w)
( 1 —a 2-b ) s (A]_?))
b+s+rwta(r+w)ty 1—a(b+s+rwta(r+w)+y) r+w-(a?—b)(b+s+rwta(r+w)+y)

for y = 30", s = 307, w = (—=3/2)0*,r = (=3/2)0% and i,j € {0,1,2}.
LEMMA A.1.4. Letp # 7 and p # 19. If the characteristic polynomial of C'
is (0% — 2)3, for some k € {0,1,2}, then the rank of C — 0% - 1 is 2. Moreover,
o [fp="1, the rank of C — 0% - 1 is 1 if and only if
(¢, 5, k) € {(0,0,2),(1,1,1),(2,2,0)};
o Ifp =19, the rank of C — 6% -1 is 1 if and only if
(,7,k) € {(0,1,0),(0,2,1),(1,0,0),(1,2,2),(2,0,1),(2,1,2)}.
PRrROOF. First of all, observe that for every k € {0, 1,2} the (2,1) entry of

C — 0% -1 is equal to one. This implies that C' # 6% - 1.
Assume that rk(C' — 6% - 1) = 1. Then

det (w0t melatrin)) g,

This yields that r+w = 6%, i.e. —3(6%+6%) = 20%. We compute the following
table for k € {0, 1,2}, which shows when the above equation admits solutions.

ilj]—=3(0%+0%)=20"](-3(6% +0%))* = 8| Solution if

0[0 —3=06F —27=,1 p=27

01 30 = 26F 27=,8 p=19

02 3607 = 20F 27=,8 p=19

110 30 = 26F 27=,8 p=19

1)1 —3602 = 6F —27=,1 p=27 (A-1.4)
12 3 = 26F 27=,8 p=19

210 362 = 26F 27=,8 p=19

21 3 =20F 27=,8 p=19

212 —30=0F —27=,1 p=27

So for q odd and p # 7,19, the equation —3(6% + 6%) = 20 is never satisfied.
Let p = 7 and set § = 2. By Table A.1.4, the equation —3(0%* + %) = 26"
admits solutions only if i = j. It is easy to verify that for each i € {0, 1,2} there
exists a unique k € {0, 1,2} such that the equation is satisfied. In particular,
the triples (i, j, k) which solve the equation are (0,0,2),(1,1,1),(2,2,0).

For p = 19 the argument is analogous, with 6 = 7. U
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We recall that for proving Proposition 2.3.11, we needed to estimate the
number of pairs (a,b) which solve the following system:

a?+a(r+w)+s+y—rw—r>—w?=-30%*
2(r +w) + (a®> = b)(b+ s+ 1w +y + alr + w)) = 36",

for some 7, s,y,w and some k € {0,1,2}.

(A.15)

LEMMA A.1.5. The total number of solutions (a,b) € F, x F, of system
(A.1.5) for which the rank of C — 6% - 1 is equal to 1 are at most

i) 124fp=1;
i) 24 if p = 19.
PROOF. i) Let p = 7. By Lemma A.1.4, the triples (4,7, k) which satisfy

the equation —3(6% + 6%) = 20* are (0,0,2), (1,1,1),(2,2,0).
For each (i,j,k) € {(0,0,2),(1,1,1),(2,2,0)}, the first equation of system
A.1.5 gives at most two solutions for a and for each a the second equation
provides at most two solutions for b. Hence, there at most 4 - 3 pairs (a,b)
solving system A.1.5 and giving rise to 7-elements of Jordan type (2,1) .
ii) Let p = 19. In virtue of Lemma A.1.4, the triples (i, j, k) satisfying the
equation —3(6% 4 0%) = 20% are (0,1,0), (0,2,1),(1,0,0),(1,2,2),(2,0,1) and
(2,1,2). Hence, by the same argument we used for the previous case, the
solutions of A.1.5 are at most 4 - 6. O

LEMMA A.1.6. Let ¢ = 7. Then, the number of pairs (a,b) € F; x F; sat-
isfying system (A.1.5) is 33. In addition, in exactly 6 cases the corresponding
matriz C' has Jordan type (2,1).

Proor. We use the following GAP code for proving the lemma.

#for simplicity, we call z the zero of F_7 and u the unity of F_7
z:=Z(7)*0;;

w=2Z(7)"0;;

theta:=Z(7)"2;;

#7y stands for the generator of the group of the invertible elements in F_7
y:=2(7);;

#t stands for \tau

t:=llz,u,z],[z,z,ul,[u,z,z]];;
centre:=[[theta,z,z],[z,theta,z],[z,z,theta]l;;

M:=[];

F7:=[z];

#we construct F_7

for i in [1..6] do

c:=y"i;

Append(F7,[cD);

od;

#we construct M__2 and for simplicity we call it M

for a in F7 do

for b in F7 do

c:=[[u,a,bl,[z,u,al,[z,z,ull;
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Append(M,[c]);
od;
od;

P:=[l;;
#we create a list with all 7-elements in y_ chi™2
for iin [1..3] do
for j in [1..3] do
for m in M do
c:=t*[[u,(-3%2"(-1))*(theta~(2%i)),3*(theta~i)],[z,u,(-3*¥2~(-1)) *(theta~ (2%*i))],[z,z,ul]*
[[u,(-3%27(-1))*(theta™(2%j)),3*(theta™j)],[z,u,(-3*27(-1))*(theta™ (2*%j))],[z,z,ull *m*t*m~(-1);
if c<> centre™3 and (c~7=centre or ¢~ 7=centre”2 or c~7=centre”3) then
Append(P,[cD);
fi;
od;
od;
od;
#we count the number of 7-elements of Jordan type (2,1)
n:=0;;
for p in P do
c:=p-centre;
d:=p-centre”2;
e:=p-centre”3;
if RankMatrix(c)=1 or RankMatrix(d)=1 or RankMatrix(e)=1 then
n:=n-+1;
fi;
od;
#the number of 7-elements is the length of P
Length(P);
33
#n gives the number of 7-elements of Jordan type (2,1)
n;

6
0

LEMMA A.1.7. Let ¢ = 19. Then, the number of pairs (a,b) € Fig9 x Fqg
satisfying system A.1.5 is 51. Moreover, in exactly 12 cases the corresponding
matriz C' has Jordan type (2,1).

PRrROOF. The following GAP code proves the Lemma.

#for simplicity, we call z the zero of F__19 and u the unity of F__19
z:=7(19)*0;;

u:=2(19)"0;;

theta:=Z(19)76;;

#7y stands for the generator of the group of the invertible elements in F__19
y:=2Z(19);;

#t stands for \tau

t:=llz,u,z],[z,z,ul,[u,z,z]];;

centre:=[[theta,z,z],[z,theta,z],[z,z,theta]l;;
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M:=[];

F19:=[z];

#we construct F__ 19

for i in [1..18] do

c:=y"i;

Append(F19,[cD;

od;

#we construct M__2 and for simplicity we call it M
for a in F19 do

for b in F19 do
c:=[[u,a,bl,[z,u,al,[z,z,ull;
Append(M,[c]);

od;

od;

P:=(l;;

#we create a list will all 19-elements in y_ chi™2
for i in [1..3] do

for j in [1..3] do

for m in M do

ci=t*[[u,(-3%27(-1))*(theta~(2*i)),3*(theta~1)],[z,u,(-3%2~(-1))*(theta~(2*i))],[z,z,ul] *
[[u,(-3%27(-1))*(theta™(2%j)),3*(theta™j)],[z,u,(-3*27(-1))*(theta™ (2*%j )], [z,z,ull*m*t*m~(-1);
if c<> centre”™3 and (c~19=centre or c~19=centre~2 or c~19=centre~3) then

Append(P,[cD);
fi;

od;

od;

od;

#we count the number of 19-elements of Jordan type (2,1)

n:=0;;

for p in P do
c:=p-centre;
d:=p-centre”2;
e:=p-centre”3;

if RankMatrix(c)=1 or RankMatrix(d)=1 or RankMatrix(e)=1 then

n:=n-+1;
fi;
od;

#the number of 19-elements is the length of P
Length(P);

51

#n gives the number of 19-elements of Jordan type (2,1)

n;
12

LEMMA A.1.8. Let p=>5 and let

1(=3/2)6% 3¢
M = <7r <o 1 (—3/2)62
0 1

0

: 16{0,1,2}>.
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The total number of solutions (a,b) € F, x F, of system (A.1.5) such that
lab .
(Ola) € M is 15.

001

PRrOOF. The proof is given by the following code.

#as in the previous codes, we rename the zero, the unit, the third root of unit
z:=Z(25)*0;;

u:=2Z(25)"0;;

theta:=Z(25)78;;

#t stands for tau

t:=[lz,u,z],[z,z,ul,[u,z,2]];;

centre:=[[theta,z,z],[z,theta,z],[z,z,theta]l;;

#we create a list where we insert two elements from M_ {C_ {(3)}}
L:=[l;;

for i in [1..2] do
c:=[[u,-3*(27(-1))*theta”i,3*theta~(2x*i)],[z,u,-3*(2"(-1))*theta~i],[z,z,ull;
Append(L,[cD;

od;

# the elements in L generates M, so we construct M in the following way
M:=l[l;;

for i in [1..5] do

for j in [1..5] do

c:=(L[1]"D*(L[2]7));

Append(M,[cD);

od;

od;

#we count the number of 5 elements in M

P:=[l;;

for i in [1..3] do

for j in [1..3] do

for m in M do
c:=t*[[u,-3%(27(-1))*(theta~(2%i)),3*(theta~i)],[z,u,-3* (27 (-1)) *(theta™ (2%*i))],[z,z,ul] *
[[u,-3%(27(-1))*(theta”(2%j)),3*(theta~j)],[z,u,-3% (27 (-1)) *(theta™ (2*j))],[z,z,ull*m*t*m~(-1);
if c<> centre™3 and (c"5=centre or c"5=centre”~2 or ¢~5=centre~3) then
Append(P,[cD);

fi;

od;

od;

od;

#the length of P will give us the number of 5-elements

Length(P);

15
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A.2. Case PSL;(q), ¢ even

Here ¢ is even. We retain notation from Section 3.4.
We need to solve the system (2.3.6), which reads as

b2+ b0+ 607) + (6% + 6% + 6%) =0
a? + a(0% + 6%) + (0" + 6% + 6°%) = 0.
We call E'(i, j, k) the system (A.2.1).

For computing X(yi), we need to investigate the Jordan type of the p-elements
provided by system (A.2.1).

(A2.1)

LEMMA A.2.1. Let g be even. Let (a,b) € F, x F, be a solution of system
E'(i,5,k), for some i,j,k € {0,1,2}. Then, the rank of

(13 Ba jb k (1 0 0)
o o - b ) = 010
b+3(0°+67) 1—ab—3a(0*+67) a—b%—3(6%'+627)—3b(6*+67) 001

is 1 if and only if i = j and (a,b) = (6%, 6%%).

(A2.2)

PRroor. Consider the matrix

—ok 0 1
1 —a—0* —b ,
b+3(0°+67) 1—ab—3a(0°+67) a—b>—3(6%"+6%7)—3b(0*4-67)—0F
for some 7,7,k € {0,1,2} and a,b € F,.
By a direct calculation one sees that the rank of the above matrix is 1 if and
only if

a=—0"

b= 0%

0" +67 =0

6% + 6% = 0.
This system is satisfied if and only if i = j and (a, b) = (6%, 6%). O

LEMMA A22. Letv=m7 ((1] 1 2) for some a,b € Fy and let T =7 (8 1 (1))
001 100

Assume a # 0. If b= 10 or b = a?, then the rank of TvTv™! — 1 is 2.

PRroOOF. For a,b € F,, we have to study the rank of the matrix
0 a a’+b
(a a?  a+a’4ab ) .
b a+ba a’+ba?+b?
Subtracting a-times the second column to the third one, we obtain
0 a b
<a a? a+ab> . (A23)
b a+ba b>

If b = 0 then the above matrix has rank 2, since a # 0 by assumption.
If b = a® the same Gaussian reduction made before leads to the following
matrix:
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whose rank is 2, since a # 0 by assumption.
O

LEMMA A.2.3. Let (a,b) € F,xF, andleti,j € {0,1,2}. The characteristic
polynomial of

1 24p
a a*+1 (a2+b+1)
b4+-0%14-6%7 +1 a(b+60%14+6%7) (a?+b)(b+0%14-627)+b+1
is (0% — 2)3 for some k € {0, 1,2} if and only if

(a,b) € {(0,0),(0,1), (a,0), (a,a*), (1,6*)},

for any a # 0 and for any | € {1,2}.
Furthermore, the following table shows for which (i,7,k) € {0,1,2} the pair
(a,b) is a solution of E'(i,j, k).

(i,4,k) Solution (a,b)

(4,5,0), i #J (0,0)

Ei,j, 0;, 7 Zij ((a, 02)), a 7;0

1,7,0), 1 # J a,a’), a#0
(i.4.0) 0,0) (A-24)
(1,1,0) (0,1)

(i,0,k), k #0 (1,0)

(i,i,k), k£ 0 (1,67)

PROOF. For z, 2’ € MQC( N and v = (

1

0

0
’ _1 001 11 6% 116%
TXXVTUV - =T (010 01 1 01 1
100 00 1 00 1

=T a a +1 a(a? +b+1)
b+6027 4021 +1 a(b+0%7+0%%) (a+b)(b+60% +62%)+b+1

for i,j € {1,2} and a,b € F,.
Computing the characteristic polynomial of the matrix

1 a“+b
a a?+1 (a?+b+1)
b+627 40241 a(b+0%7+60%%) (a?+b)(b+0% +62%)+b+1

3

and forcing it to be equal to (67 — 2)3, we get the following system of equalities:

1+b(1+a?+ 0% +6%) + b? = 9%
L+ b(1+a®+ 0% +60%) +0° + a*(1 4+ 6% 4+ 6%) = 0~

Summing the equations, we obtain a*(1 4 6% + 6%') = 6% + 6**. We divide the
treatment into cases.

1) Suppose that i # j, then the equation a?(1 + 6% + %) = 6% + 6?* reduces
to 0 = 0% + 0% ie. k = 0. Substituting k¥ = 0 in the first equation we obtain
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a’b+ b* = 0; in particular, the solutions are (a,0) and (a, a?) for a € F,.
2) Suppose that i = j then the initial system becomes

a’ = 0% + 6%

1+b(1+ a?+ 6% + 62%) + % = 62+,
2a) If k = 0, then a = 0 and b + b? = 0, i.e. the solutions are (a,b) = (0,0)
and (a,b) = (0,1).
2b) If k # 0 then the solution is (a, b) = (1, 0%).

]

LEMMA A.2.4. Let (i,7,k) € {1,2}* x {0,1,2} and (a,b) € F. be such that
the characteristic polynomial of the matrix

1 a a?+b
a a’+1 a(a?+b+1)
b+0%1 4627 +1 a(b+60%+627) (a?+Db)(b+0%+627)+b+1

is (0% — 2)%. In the following table we list the Jordan type of the above matrices
corresponding to each pair (a,b) together with the matching triple (i, j, k) €
{1,2}? x {0,1,2} as in Table (A.2.4).

(i,4,k) Solution (a,b) | Jordan type

(,3.0), i 27 (0,0) L1,1)

(FANE SR N A )

i,7,0), 1 # § a,a?), a #0 3
(4,1,0) (0,0) (2,1) (A.2.5)
(14,0 0,1) 2.1)

(1,i,k), k #0 (1,0) (2,1)

(1,9, k), k £ 0 (1,6%) (2,1)

Proor. We compute the Jordan type of the matrices corresponding to the
terms in table (A.2.4).
1) If £ =0 and (a,b) = (0,0), we see that the rank of the matrix

0 00
0 00
1+6%146% 0 0

is 1 if and only if ¢ # j and 0 otherwise.
If k =0 and (a,b) = (0,14 6% +6"), then we compute the rank of the matrix

00 146%+62%
00 0 ,
00 0

and proceed as above.

Let k =0 and let (a,b) = (a,0) or (a,a?). Then we evaluate the rank of
(0 a a+b >
a a? a(a?+b+1) .
b a(b+1) (a?+b+1)(b+1)

If a = 0, then it is 0. If a # 0, then the first two columns are linearly
independent and in consequence the rank of the above matrix is 2.
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2) If k # 0 and i = j, then (a,b) = (1,6?%). Hence, we have to determine the
rank of the following matrix
92k o @k
( 1 6k 9%) )
ok 6%k 1

which is clearly 2. O
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