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Riassunto

I giochi a campo medio rappresentano modelli limite per giochi dinamici, simmetrici ed a
somma non zero, quando il numeroN di giocatori tende all’infinito. In questa tesi consideriamo
giochi a campo medio e ad N giocatori in cui la posizione di ogni giocatore appartiene ad un
insieme degli stati finito. Il tempo è continuo e l’orizzonte temporale è finito. A differenza
dei precedenti lavori sull’argomento, utilizziamo una rappresentazione probabilistica delle
dinamiche in termini di equazioni differenziali stocastiche rispetto a misure aleatorie di
Poisson. Per prima cosa dimostriamo l’esistenza di soluzioni del gioco a campo medio
con controlli rilassati, sia open-loop che feedback, in ipotesi piuttosto generali. Basandoci
sulla rappresentazione probabilistica e su un argomento di accoppiamento, mostriamo che le
soluzioni del gioco a campo medio forniscono εN equilibri di Nash per il gioco ad N giocatori,
in strategie sia open-loop che feedback (non rilassate), con εN ≤ costante√

N
. In ipotesi più

forti troviamo anche soluzioni del gioco a campo medio con controlli feedback ordinari e
dimostriamo l’unicità se l’orizzonte temporale è abbastanza piccolo oppure sotto ipotesi di
monotonia.

Poi, assumendo che i giocatori controllino solamente il proprio tasso di transizione da stato
a stato, mostriamo la convergenza, per N che tende all’infinito, del gioco ad N giocatori alla
dinamica limite data dal sistema del gioco a campo medio costituito da due ODE accoppiate,
una in avanti e l’altra all’indietro. Sfruttiamo la cosiddetta master equation che nel presente
contesto finito dimensionale è una PDE del primo ordine nel simplesso delle misure di
probabilità. Se la master equation possiede una soluzione classica, allora tale solutione può
essere usata per provare la convergenza delle funzioni valore degli N giocatori e degli equilibri
di Nash feedback, ed anche la proprietà di propagazine del chaos per le traiettorie ottimali
associate. Una condizione sufficiente per la regolarità richiesta per la master equation è data
dalle ipotesi di monotonia. Inoltre impieghiamo il risultato di convergenza per stabilire un
Teorema Limite Centrale ed un Principio delle Grandi Deviazioni per l’evoluzione delle misure
empiriche ottimali.

Infine analizziamo un’esempio in cui lo spazio degli stati è {−1, 1} ed il costo è an-
timonotono, e mostriamo che il gioco a campo medio possiede esattamente tre soluzioni.
L’equilibrio di Nash è sempre unico e proviamo che il gioco ad N giocatori ammette sempre
un limite: seleziona una singola soluzione del gioco a campo medio, tranne in un caso critico,
pertanto c’è propagazione del chaos. Anche le funzioni valore convergono ed il limite è dato
dalla soluzione di entropia della master equation, la quale in questo caso può essere scritta
come una legge di conservazione scalare. Inoltre, vedendo il sistema del gioco a campo
medio come le condizioni necessarie di ottimalità di un problema di controllo deterministico,
mostriamo che il gioco ad N giocatori seleziona esattamente l’ottimo di questo problema
quando è unico.
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Abstract

Mean field games represent limit models for symmetric non-zero sum dynamic games when
the number N of players tends to infinity. In this thesis, we study mean field games and
corresponding N -player games in continuous time over a finite time horizon where the position
of each agent belongs to a finite state space. As opposed to previous works on finite state
mean field games, we use a probabilistic representation of the system dynamics in terms of
stochastic differential equations driven by Poisson random measures. Firstly, under mild
assumptions, we prove existence of solutions to the mean field game in relaxed open-loop as
well as relaxed feedback controls. Relying on the probabilistic representation and a coupling
argument, we show that mean field game solutions provide symmetric εN -Nash equilibria
for the N -player game, both in open-loop and in feedback strategies (not relaxed), with
εN ≤ constant√

N
. Under stronger assumptions, we also find solutions of the mean field game in

ordinary feedback controls and prove uniqueness either in case of a small time horizon or
under monotonicity.

Then, assuming that players control just their transition rates from state to state, we
show the convergence, as N tends to infinity, of the N -player game to a limiting dynamics
given by a finite state mean field game system made of two coupled forward-backward ODEs.
We exploit the so-called master equation, which in this finite-dimensional framework is a
first order PDE in the simplex of probability measures. If the master equation possesses
a unique regular solution, then such solution can be used to prove the convergence of the
value functions of the N players and of the feedback Nash equilibria, and a propagation of
chaos property for the associated optimal trajectories. A sufficient condition for the required
regularity of the master equation is given by the monotonicity assumptions. Further, we
employ the convergence results to establish a Central Limit Theorem and a Large Deviation
Principle for the evolution of the N -player optimal empirical measures.

Finally, we analyze an example with {−1, 1} as state space and anti-monotonous cost,
and show that the mean field game has exactly three solutions. The Nash equilibrium is
always unique and we prove that the N -player game always admits a limit: it selects one
mean field game solution, except in one critical case, so there is propagation of chaos. The
value functions also converge and the limit is the entropy solution to the master equation,
which for two state models can be written as a scalar conservation law. Moreover, viewing
the mean field game system as the necessary conditions for optimality of a deterministic
control problem, we show that the N -player game selects the optimum of this problem when
it is unique.
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Introduction

Mean field games (MFG), as independently introduced by [67] and by [54], represent limit
models for symmetric non-zero-sum non-cooperative N -player dynamic games when the
number N of players tends to infinity. In games with a large number of players it is very hard
to find the Nash equilibria, even numerically, because of the curse of dimensionality. Letting
the number of players be infinite, rather than very large, has provided great advantages in
the tractability of such games. This passage to the limit, which in the original works was
only heuristic, is possible assuming that the players are indistinguishable and the interaction
among them is of mean field type, in the sense that the evolution of a single agent only
depends on his position and on the average behaviour of all the others. The limit model
thus describes the statistical distribution of a single representative player, in analogy with
mean field models in statistical mechanics. As opposed to these classical models, in mean
field games agents are rational, in the sense that they aim at minimizing a cost.

For an introduction to mean field games see [12], [47], [20] and [7]; the latter two works
also deal with optimal control problems of McKean-Vlasov type. We refer to the recent
books [18, 19] for a thorough treatment of the probabilistic side of the theory. Mean field
games have seen a wide variety of applications, including models of oil production, volatility
formation, population dynamics and economic growth; see [52, 63, 68] for some examples.
There is by now a wealth of works dealing with different classes of mean field games; for a
partial overview see [47] and the references therein. In this thesis, we restrict attention to a
class of finite time horizon problems with continuous time dynamics and fully symmetric cost
structure, where the position of each agent belongs to a finite state space.

The relation between the limit model (the mean field game) and the corresponding prelimit
models (the N -player games) can be understood in two opposite directions: approximation
and convergence. By approximation we mean that a solution of the mean field game allows
to construct approximate Nash equilibria for the N -player games, where the approximation
error is arbitrarily small for N big enough. By convergence we mean that Nash equilibria for
the N -player games may be expected to converge to a solution of the mean field game as N
tends to infinity.

Results in the approximation direction are more common and usually provide the justi-
fication for the definition of the mean field game. When the underlying dynamics is of Itô
type without jumps, such results were established by [54] and, more recently, by for instance
[17], [22] and [8]. When the dynamics is driven by generators of Lévy type, but with the
control appearing only in the drift, an approximation result is found in [60]. Rigorous results
on convergence to the mean field game limit in the non stationary case (finite time horizon)
are even more recent. While the limits of N -player Nash equilibria in stochastic open-loop
strategies can be completely characterized (see [65] and [42] for general systems of Itô type),
the convergence problem is more difficult for Nash equilibria in Markov feedback strategies

vii
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with global state information. A result in this direction is given by [46] in our finite state
setting, via the infinitesimal generator, but only if the time horizon is small.

A breakthrough was achieved by Cardaliaguet, Delarue, Lasry and Lions in [14]. Their
proof of convergence relies on having a regular solution to the so-called master equation.
This is a kind of transport equation on the space of probability measures associated with the
mean field game; its solution yields a solution to the mean field game for any initial time
and initial distribution. If the mean field game is such that its master equation possesses a
unique regular solution, then that solution can be used to prove convergence of the value
functions of the N -player game to the solution to the master equation, as well as a form
of convergence for the associated optimal feedback strategies and a propagation of chaos
result for the corresponding optimal trajectories. An important ingredient in the proof is a
coupling argument similar to the one employed in deriving the propagation of chaos property
for uncontrolled mean field systems (c.f. [75]). This kind of coupling argument, in which
independent copies of the limit process are compared to their prelimit counterparts, is useful
also for obtaining approximation results; cf. for instance the above cited works by [54] and
[17].

In this thesis, we focus on games where the position of each agent belongs to a given finite
state space Σ = {1, . . . , d}. In this setting, mean field games were first analyzed in discrete
time by [45], and then in continuous time by [46] and [51], the latter with an application on
graphs, and also by [4]. The approach of these works is based on PDE / ODE methods and
the infinitesimal generator (Q matrix) of the system dynamics. Here, we adopt a different
approach based on a probabilistic representation. We employ this formulation to prove, first,
the existence of limiting solutions and the approximation result, under general assumptions.
Then, under stronger assumptions for which the master equation possesses a classical solution,
we show the convergence of the feedback Nash equilibria and a propagation of chaos property
for the associated optimal trajectories. Moreover, we analyze a two state model for which the
master equation has no smooth solution and show that the convergence results still hold.

We write the dynamics of the N -player game as a system of stochastic differential equations
driven by independent stationary Poisson random measures with the same intensity measure
ν, weakly coupled through the empirical measure of the system states:

Xi(t) = ξi +

∫ t

0

∫

Θ
γ(s,Xi(s

−), θ, πi(s),mN (s−))Ni(ds, dθ), i = 1, . . . , N, (0.1)

where πi is the control of player i (here in open loop form) with values in a compact set A
and mN (s−) is the empirical measure of the system immediately before time s. The dynamics
for the one representative player of the mean field limit is analogously written as

X(t) = ξ +

∫ t

0

∫

Θ
γ(s,X(s−), θ, π(s),m(s))N (ds, dθ), (0.2)

where π is the control and m : [0, T ] → P(Σ) a deterministic flow of probability measures,
which takes the place of mN .

The function γ appearing in (0.1) and (0.2) can be chosen so that the corresponding state
processes XN

i , X have prescribed transition rates when the control and measure variable are
held constant. Following an idea of [50], we choose Θ ⊂ R

d, let the intensity measure ν be
given by d copies of Lebesgue measure on the line (cf. (1.9) below), and set

γ(t, x, θ, a,m) :=
∑

y∈Σ

(y − x)✶]0,Γx,y(t,a,m)[(θy). (0.3)
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With this γ we have, as h ↓ 0,

P [X(t+ h) = y|X(t) = x] = Γx,y(t, a,m) · h+ o(h)

if y 6= x, for any constant control a and probability measure m. Thus, Γx,y(t, a,m) is the
transition rate from state x to state y.

Each player wants to optimize his cost functional over a finite time horizon T . The
coefficients representing running and terminal costs may depend on the measure variable and
are the same for all players, in light of the mean field structure of the problem. The solution
of the mean field game can be seen as a fixed point. For a given flow of measures m(·), find a
strategy πm that is optimal and let Xπm,m be the corresponding solution of Eq. (0.2). Now
find m such that Law(X(t)) = m(t) for all t ∈ [0, T ].

Existence and approximation

The results on existence and approximation were presented in [25]. We will consider several
types of controls: open-loop, feedback, relaxed open-loop and relaxed feedback. We first
study the mean field game and show that it admits a solution in relaxed controls. Under mild
hypotheses, we prove existence of solutions in relaxed open-loop controls using the Ky Fan
fixed point theorem for point-to-set maps. This is analogous to the existence result obtained
by [64] for general dynamics driven by Wiener processes. As there, we will characterize
solutions to Eq. (0.2) through the associated controlled martingale problem. In order to write
the dynamics when using a relaxed control, we need to work with relaxed Poisson measures
in the sense of [62]; also see Appendix A below. The same assumptions that give existence
in relaxed open-loop controls also yield existence of solutions in relaxed feedback controls.
Relaxed controls are used only for the limit model.

Then we show that those relaxed mean field game solutions provide εN -Nash equilibria
for the N -player game both in ordinary open-loop and ordinary feedback strategies. To this
end, we approximate a limiting optimal relaxed control by an ordinary one, using a version
of the chattering lemma that also works for feedback controls, at least in our finite setting.
The approximating control is then shown to provide a symmetric εN -Nash equilibrium, with
εN ≤ constant√

N
, decentralized when considering feedback strategies. As explained above, our

proof relies on the probabilistic representation of the system and a coupling argument.
We also study the problem of finding solutions of the mean field game in ordinary feedback

controls. There, we need stronger assumptions in order to guarantee the uniqueness of an
optimal feedback control for any fixed m (existence always holds). Moreover, we prove that
the feedback mean field game solution is unique either if the time horizon T is small enough
or if the cost coefficients satisfy the monotonicity conditions of Lasry and Lions.

Roughly speaking, we need to assume only the continuity of the rates Γ in order to have
relaxed or relaxed feedback mean field game solutions and to obtain εN -Nash equilibria
for the N -player game, both open-loop and feedback. Under stronger assumptions, namely
affine dependence of Γ on the control and strict convexity of the cost, we have uniqueness
of the optimal feedback control for any m through the uniqueness of the minimizer of the
associated Hamiltonian. Under assumptions similar to these latter, [4] study the problem in
the framework of non-linear Markov processes and find 1

N -Nash equilibria for the N -player
game. That work considers ordinary feedback controls only, hence feedback solutions of the
mean field game.

Let us mention several recent preprints which address the problems of existence and
approximation in the finite state space scenario. In [36], continuous time mean field games
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with finite state space and finite action space are studied. The authors prove existence of
solutions to the mean field game, corresponding to what we call solutions in relaxed feedback
controls. Their prelimit models (the N -player games) are different and difficult to compare
to ours since they are set in discrete time. In [23], finite state mean field games with major
and minor players are considered. The authors provide a characterization of the mean field
game in terms of viscosity solutions to a coupled system of integro-differential equations
and establish existence of solutions. The connection with the underlying N+1-player game
is made through the construction of approximate Nash equilibria. As opposed to the fully
symmetric case considered here, in the presence of a major player, solutions to the limit
system in open-loop and in feedback strategies are in general not equivalent. The third work
we mention is [6]. There, the authors study a class of mean field games with jump diffusion
dynamics. An existence result for the mean field game in the spirit of [64] is given. The
authors also obtain a convergence result in a special situation where Nash equilibria for the
N -player games can be found explicitly. In their model, the jump heights are directly (and
linearly) controlled, not the jump intensities.

Convergence via the master equation

In order to establish the convergence results, which we presented in [27], we need to make
stronger assumptions on the dynamics and on the cost. In the remaining part of this
introduction, we consider only feedback Nash equilibria and so feedback mean field game
solutions. Assume hence that the dynamics is given by (0.3) and that the transition rates Γ
coincide with the control, in analogy with the original works of Lasry and Lions. More precisely,
the control space is [0,+∞[d and Γx,y = ay, so that the feedback control αi

y(t, xi,x
N,i
t )

represents the rate at which player i decides to go from state xi to state y, when xi 6= y,
x

N,i
t being the states of the other N−1 players at time t; c.f. (1.38) below. Player i aims at

minimizing the cost

Ji(α) = E

[∫ T

0

(
L(Xi(t), α

i(t,Xt)) + FN,i(Xt)
)
dt+GN,i(XT )

]
,

where Xt := (X1(t), . . . , XN (t)) is the vector of the N processes and α = (α1, . . . , αN ) is the
vector of the feedback controls; for the moment, let FN,i and GN,i depend on i.

We follow the approach of [14], showing the convergence of the value functions of the N -
player game to the (unique) classical solution of the master equation. The argument provides
also the convergence of the feedback Nash equilibria and a propagation of chaos property for
the associated optimal trajectories. The coupling technique necessary for the proof was the
main motivation for writing the dynamics of the N players as stochastic differential equations
driven by Poisson Random measures. Let us remark that, while Cardaliaguet et al. study
the convergence problem also in the presence of a noise (Brownian motion) common to all
the players, which makes things even more difficult, we do not consider here any common
noise. In the discrete setting, this would result in considering dynamics with simultaneous
jumps, which can be realized by adding another Poisson measure in (0.1), common to all the
players; see for instance [2]. For a different treatment of the common noise in finite state
mean field games, see [9].

In our framework, we show that there exists a unique feedback Nash equilibrium for
the N -player game. It is provided by the Nash system of NdN coupled ODE’s, indexed by



xi

x = (x1, . . . , xN ) ∈ ΣN ,





−∂v
∂t

N,i
(t,x) −∑N

j=1, j 6=i a
∗(xj ,∆

jvN,j) · ∆jvN,i +H(xi,∆
ivN,i) = FN,i(x),

vN,i(T,x) = GN,i(x).

In the above equation, H is the Hamiltonian corresponding to L and a∗ its unique maximizer,
and

∆jg(x) = (g(x1, . . . , y, . . . , xN ) − g(x1, . . . , xj , . . . , xN ))y=1,...,d ∈ R
d

denotes the finite difference of a function g(x) = g(x1, . . . , xN ) with respect to its j-th entry.
The study of convergence consists in finding a limit for the Nash system as N tends to

infinity. To this end, the symmetry properties of the game we described above are required.
Namely, the costs FN,i and GN,i must satisfy the mean field assumptions: there exist two
functions F and G such that FN,i(x) = F (xi,m

N,i
x ) and GN,i(x) = G(xi,m

N,i
x ), where mN,i

x

denotes the empirical measure of all the players except for the i-th, which belongs to P(Σ).
Thanks to these mean field assumptions, we shall say that the solution vN,i of the Nash
system can be found in the form vN,i(t,x) = V N (t, xi,m

N,i
x ), for a suitable function V N of

time, space and measure; this makes the convergence problem more tractable. At a formal
level, we can introduce the limiting equation assuming the existence of a function U such that
V N (t, xi,m

N,i
x ) ∼ U(t, xi,m

N,i
x ) for large N . Then, let us analyze the different components

of the Nash system and which should be their corresponding limits in terms of U . First, the
i-th difference of vN,i should converge to

∆ivN,i(t,x) =
(
vN,i

(
t, y,mN,i

x

)
− vN,i

(
t, xi,m

N,i
x

))
y=1,...,d

→ (U(t, y,m) − U(t, xi,m))y=1,...,d = ∆xU(t, xi,m).

For j 6= i we should instead get

∆jvN,i(t,x) =


vN,i


t, xi,

1

N − 1

∑

k 6=j,i

δxk
+

1

N − 1
δy


− vN,i


t, xi,

1

N − 1

∑

k 6=i

δxk






y=1,...,d

∼ 1

N − 1
DmU(t, xi,m

N,i
x , xj),

modulo terms of order O(1/N2), where a precise definition of DmU , the derivative with
respect to a probability measure, will be given in 1.1.3. Then, H(xi,∆

ivN,i) → H(xi,∆
xU),

and we should obtain

N∑

j=1,j 6=i

a∗(xj ,∆
jvN,j) · ∆jvN,i ∼ 1

N − 1

N∑

j=1,j 6=i

a∗(xj ,∆
xU(t, xj ,m

N,i
x )) ·DmU(t, xi,m

N,i
x , xj)

∼
∫

Σ
a∗(y,∆yU(t, y,mN,i

x )) ·DmU(t, xi,m
N,i
x , y)dmN,i

x (y)

→
∫

Σ
DmU(t, x,m, y) · a∗(y,∆yU(t, y,m))dm(y).

Thus, we are able to introduce the master equation, that is the equation to which we would
like to prove convergence

{
−∂U

∂t +H(x,∆xU) − ∫
ΣD

mU(t, x,m, y) · a∗(y,∆yU(t, y,m))dm(y) = F (x,m),

U(T, x,m) = G(x,m), (x,m) ∈ Σ × P(Σ), t ∈ [0, T ].
(0.4)
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It is a first order PDE in P(Σ), the simplex of probability measures in R
d. We solve it

using the strategy developed in [14], which relies on the method of characteristics. Under the
present assumptions, the fixed point argument yielding a solution to the mean field game, as
described above, is captured by the so-called mean field game system which, in our finite space
setting, consists of two coupled ODEs: a backward Hamilton-Jacobi-Bellman equation giving
the value function of the limiting control problem and a forward Kolmogorov-Fokker-Planck
equation describing the evolution of the limiting deterministic flow of probability measures.
Indeed, the mean field game system can be seen as the characteristic curves of (0.4). We
solve the mean field game system for any initial time and initial distribution: this defines
a candidate solution to (0.4) and, in order to prove that it is differentiable with respect to
the initial condition, we introduce and analyze a linearized mean field game system. To
prove the well posedness of (0.4) for any time horizon, the sufficient hypotheses we make
are the monotonicity assumptions of Lasry and Lions. However, we stress again that these
assumptions play no role in the convergence argument, as it requires only the existence of a
regular solution to (0.4).

Let us mention that the limit equations, in the finite state scenario, have been studied by
several authors in the last years. An equation similar to the master equation (0.4), but holding
in the whole space R

d, was studied in [70], proving the well-posedness and regularity under
stronger assumptions. The well posedness of the mean field game system was discussed in [45],
in the discrete time framework, and then in [46] and [51], under monotonicity assumptions.
The works [41] and [46] deal also with the problem of convergence, as T tends to infinity, to
the stationary mean field game. The master equation was discussed, but only at a formal
level, in [48], [49] and again in [46], in the first two with a particular focus on the two state
problem.

Here, we also study the empirical measure process of the N -player optimal trajectories.
Indeed, the convergence obtained allows to get a Central Limit Theorem and a Large Deviation
Principle for the asymptotic behavior, as N tends to infinity, of such process. These results
were the first of this type in mean field game theory and allow to better understand the
convergence of the empirical distribution of the players to the limit measure. Both Central
Limit Theorems and Large Deviation Principles have been investigated for classical finite
state mean field interacting particle systems, i.e. where the prelimit jump rates are the same
for any individual. The fluctuations are derived e.g. in [28], via the martingale problem, and
in [30], by analyzing the infinitesimal generator. The large deviation properties are found e.g.
in [69], [74], [73], and, more recently, in [39].

The key point for proving these results is to compare the prelimit optimal trajectories
with the ones in which each player chooses the control induced by the master equation. The
fluctuations are then found by analyzing the associated infinitesimal generator, while the
Large Deviation properties are derived using a result in [39]. It is worth saying that the limit
processes involve the solution to the master equation. Let us mention that such properties,
enriched by a concentration of measure result, are now established in the diffusion case, via
the master equation approach, by Delarue, Lacker and Ramanan in [33, 34].

We also mention the recent preprint [5], which appeared some days after submission of
[27]. In that work, independently, the authors again use the master equation approach to find
the same convergence results we prove here. They still rely on the idea developed in [14], but
consider a probabilistic representation of the dynamics different from ours. Moreover, they
also obtain a Central Limit Theorem for the fluctuations of the empirical measure processes.
However, they prove it in a different way, that is, via a martingale Central Limit Theorem.
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A two state model

We explained above that if there is uniqueness of mean field game solutions, which holds under
monotonicity assumptions, then the master equation possesses a smooth solution which can
be used to prove the convergence of the value functions of the N players and a propagation of
chaos property for the associated optimal trajectories. In the last part of the thesis, we study
the convergence problem in feedback strategies for an example exhibiting non-uniqueness of
mean field game solutions, presented in [24]. The particular model we examine has dynamics
in continuous time with players’ states taking values in {−1, 1} and players’ feedback controls
determining the rate of flipping their own state. Running costs only depend on the control
actions, while terminal costs are anti-monotonous with respect to the state and measure
variable. More precisely, the setup is the same as for the convergence argument described
above, choosing for any x = ±1 and m ∈ P({−1, 1})

L(x, a) =
|a−x|2

2
, F (x,m) ≡ 0, G(x,m) = −x(m1 −m−1).

A similar example was first analyzed in [48, 49], where numerical evidence on the conver-
gence behavior was presented. It should also be compared to analogous examples considered
in the diffusion setting in Section 3.3 of [65] and in Section 3.3 of [3]. In the infinite time
horizon and two state case, an example of non-uniqueness is studied in [31], via numerical
simulations, where periodic orbits emerge as solutions to the mean field game.

For this two state example, the mean field game possesses exactly three solutions, given
any initial distribution, as soon as the time horizon is large enough. Consequently, there is
no regular solution to the master equation, while multiple weak (in the sense of distributions)
solutions exist. For the N -player game, on the other hand, there is a unique symmetric Nash
equilibrium in feedback strategies for each N , determined by the Nash system.

We show that the value functions associated with these Nash equilibria converge, as
N → ∞, to a particular solution of the master equation. In our case, the master equation
can be written as a scalar conservation law in one space variable. The (weak) solution that is
selected by the N -player Nash equilibria can then be characterized as the unique entropy
solution of the conservation law. The entropy solution presents a discontinuity in the measure
variable (at the distribution that assigns equal mass to both states). Convergence of the
value functions is uniform outside any neighborhood of the discontinuity. We also prove
propagation of chaos for the N -player state processes provided that their averaged initial
distributions do not converge to the discontinuity. The proofs of convergence adapt the
coupling arguments described above, based on the fact that the entropy solution is smooth
away from its discontinuity, as well as a qualitative property of the N -player Nash equilibria,
which prevents crossing of the discontinuity.

We also observe that the mean field game system of the two state example can be viewed
as the necessary conditions for optimality, given by the Pontryagin maximum principle,
of a deterministic control problem. Such characterization is shown to hold for general
Σ = {1, . . . , d}, provided the costs admit a potential structure. This potential, or variational,
formulation has been studied in several works in the continuous state setting, starting from
[13, 15] in the deterministic case and then in [16] for degenerate diffusions. For our two
state example, we prove that the mean field game solution which is selected by the limit of
the N -player optimal trajectories, when propagation of chaos holds, is exactly the unique
minimum of this deterministic control problem. In fact, neither the characterization of the
right solution to the master equation as the entropy admissible one nor the potential structure
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of the problem are needed for the convergence proofs, but only the qualitative property of
the Nash equilibrium: these two characterizations may permit to extend the convergence
results to more general models.

Let us mention some works recently appeared as preprints that are related to our results.
In [71], Nutz, San Martin, and Tan address the convergence problem for a class of mean field
games of optimal stopping. The limit model there possesses multiple solutions, which are
grouped into three classes according to a qualitative criterion characterizing the proportion
of players that have stopped at any given time. Solutions in one of the three classes will
always arise as limit points of N -player Nash equilibria, solutions in the second class may be
selected in the limit, while solutions in the third class cannot be reached through N -player
Nash equilibria. In [66], Lacker attacks the convergence problem in feedback strategies by
probabilistic methods. For a class of games with non-degenerate Brownian dynamics that may
exhibit non-uniqueness, the author shows that all limit points of the N -player feedback Nash
equilibria are concentrated, as in the open-loop case, on weak solutions of the mean field game.
These solutions are more general than randomizations of ordinary (“strong”) solutions of the
mean field game; their flows of measures, in particular, are allowed to be stochastic containing
additional randomness. Still, uniqueness in ordinary solutions implies uniqueness in weak
solutions, which permits to partially recover the results in [14]. The question of which weak
solutions can appear as limits of feedback Nash equilibria in a situation of non-uniqueness
seems to be mainly open. In this thesis, we give the definition of weak mean field game
solutions for finite state mean field games, and then also find weak (feedback) solutions for
the two state example that are or not supported on strong mean field game solutions.

In [32], Delarue and Foguen Tchuendom study a class of linear-quadratic mean field
games with multiple solutions in the diffusion setting. They prove that by adding a common
noise to the limit dynamics uniqueness of solutions is re-established. As a converse to this
regularization by noise result, they identify the mean field game solutions that are selected
when the common noise tends to zero as those induced by the (unique weak) entropy solution
of the master equation of the original problem. The interpretation of the master equation as
a scalar conservation law works in their case thanks to a one-dimensional parametrization
of an a priori infinite dimensional problem. Limit points of N -player Nash equlibria are
also considered in [32], but in stochastic open-loop strategies. Again, the mean field game
solutions that are selected are those induced by the entropy solution of the master equation.
Interestingly, they are not minimal cost solutions; the cost functionals of the game in fact
select a different mean field game solution. In [32], the N -player limit and the vanishing
common noise limit both select two solutions of the original mean field game with equal
probability. This is due to the fact that in [32] the initial distribution for the state trajectories
is chosen to sit at the discontinuity of the unique entropy solution of the master equation. In
our case, we expect to see the same behavior if we started at the discontinuity.

It is worth mentioning that the opposite situation, with respect to the one treated here,
is considered in the examples presented in [36] and in Section 7.2.5 of [18]. Namely, in those
examples there is uniqueness of mean field game solutions, but there are multiple feedback
Nash equilibria for the N -player game, for any N . This is due to the fact that in both cases
the authors consider a finite action set (while for us it is continuous), so that in particular
the Nash system is not well-posed. Thus they prove that there is a sequence of (feedback)
Nash equilibria which converges to the mean field game limit, but also a sequence that does
not converge.
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Outline of the thesis

The rest of the thesis is organized as follows.

In Chapter 1, we state the definitions which will be used throughout the thesis. In Section
1.1, we first introduce the basic notation, the natural shape of γ in (0.3), and the definition
of derivatives in the simplex. We present the various sets of assumptions to be used in
the sequel. Then we verify all the assumptions for natural shapes of the dynamics and of
the costs. In Section 1.2, we describe the N -player game and state the definition of Nash
equilibrium both in open-loop and in feedback strategies. We introduce the Nash system in
1.2.1 and prove a Verification Theorem and a useful property of the equilibrium. Then, in
Section 1.3, we describe the limiting dynamics and the definition of mean field game solution.
Relaxed controls (open-loop and feedback) are introduced in 1.3.1, while a proper definition
of relaxed Poisson measures is given in Appendix A. The mean field game system and the
master equation are presented in 1.3.2. We conclude the chapter with Section 1.4 which
states, for general finite state mean field games, the variational formulation as well as the
definition of weak mean field game solutions.

In Chapter 2, we present the existence and approximation results. In Section 2.1, we
establish existence of solutions to the mean field game in relaxed open-loop (Theorem 2.4) as
well as relaxed feedback controls (Theorem 2.5). In Section 2.2, we find, under additional
assumptions, mean field game solutions in non-relaxed feedback controls (Theorem 2.8), by
proving the uniqueness of the optimal control for any flow of measures. In Section 2.3, we first
establish a version of the chattering lemma that works also for feedback controls. Then we
turn to the construction of approximate Nash equilibria coming from a solution of the mean
field game, and derive the error bound mentioned above for feedback as well as open-loop
strategies (Theorems 2.16 and 2.18).

In Chapter 3, we present the results, in particular about convergence, which hold when
there is uniqueness of mean field game solutions. Section 3.1 contains the convergence results
and their proofs: convergence of the value functions is in Theorem 3.1, while the propagation
of chaos is in Theorem 3.2. In Section 3.2, we employ the convergence argument to derive the
asymptotic behaviour of the empirical measure processes, that is, the Central Limit Theorem
(Theorem 3.7) and the Large Deviation Principle (Theorem 3.8). Section 3.3 analyzes the
well-posedness and regularity of the solution to the master equation. In Section 3.4, we collect
the results about uniqueness: in Theorems 3.17 and 3.18 we prove uniqueness of feedback
mean field game solutions, respectively for T small enough and under monotonicity, while
in Theorem 3.19 we show that the strategy vector given by the Nash system is the unique
feedback Nash equilibrium.

Finally, in Chapter 4, we deal with the two state example. Section 4.1 presents the model,
starting from the limit, analyzed first in terms of the mean field game system (Subsection 4.1.1),
then in terms of its master equation (Subsection 4.1.2), while (basic) general facts concerning
scalar conservation laws are summarized in Appendix B. In Section 4.2, we show that the
N -player Nash equilibria converge to the unique entropy solution of the master equation; cf.
Theorems 4.6 and 4.7 for convergence of value functions and propagation of chaos, respectively.
The property of the Nash equilibria used in the proofs of convergence is in Subsection 4.2.1.
We show the numerical simulations in Subsection 4.2.4. In Section 4.3, we provide three
possible extensions of this model. Subsection 4.3.1 gives an alternative characterization of the
solution that is selected by the Nash equilibria in terms of a variational problem derived from
the potential game structure of the two state example (Theorem 4.14), while Subsection 4.3.2
deals with weak mean field game solutions in this framework. We conclude with Subsection
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4.3.3, by examining a modified example in which the transition rates are bounded below away
from zero.



CHAPTER 1

N-player and mean field games

In this chapter, we firstly introduce the notation and the assumptions we will make use
of in the sequel. Then we describe the N -player game and the mean field game, with the
relative definitions of optimality, in the various setups which will be used in the next chapters.
Finally, we state the variational formulation as well as the definition of weak mean field game
solution.

1.1 Notation and assumptions

1.1.1 Basic notation

Here we clarify the notations used throughout the thesis. In Chapter 4 we make use of some
other notation, which will be introduced there. We fix Σ = {1, . . . , d} to be the finite state
space of any player. Let T be the finite time horizon and (A, dA) be a compact metric space,
the space of control values. Let Θ be a compact set in R

d and let ν be a Radon measure on
Θ. Let

P(Σ) := {m ∈ R
d : mx ≥ 0, x = 1, . . . , d; m1 + . . .+md = 1}

be the space of probability measures on Σ, which is the probability simplex in R
d. Let

γ : [0, T ] × Σ × Θ ×A× P(Σ) −→ {−d, . . . , d} be a measurable function (the one appearing
in the dynamics (0.2) and (0.1)) such that γ(t, x, θ, a,m) ∈ {1 − x, . . . , d − x}. Let c :
[0, T ] × Σ ×A× P(Σ) −→ R, G : Σ × P(Σ) −→ R be measurable functions, representing the
running and the terminal costs, respectively, which will be the same for all players, in light of
the mean field assumptions.

We will denote by N any stationary Poisson random measure on [0, T ] × Θ with intensity
measure ν on Θ, and by N = (N1, . . . ,NN ) a vector of N i.i.d. stationary Poisson random
measures, each with the same law as N . Also, denote by M = M([0, T ] × Θ ×A) the set of
finite positive measures on [0, T ] × Θ ×A endowed with the topology of weak convergence.

The initial datum of the N -player game is represented by N i.i.d. random variables
ξ1, . . . , ξN with values in Σ and distributed as m0 ∈ P(Σ). The vector ξ = (ξ1, . . . , ξN )
is in particular exchangeable, in the sense that the joint distribution is invariant under
permutations, and is assumed to be independent of the noise. Similarly, the initial point of
the limiting system will be represented by a random variable ξ with law m0.

The state of player i at time t is denoted by Xi(t), with Xt := (X1(t), . . . , XN (t)). The
trajectories of each Xi are in D := D([0, T ],Σ), the space of càdlàg functions from [0, T ] to

1
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Σ endowed with the Skorokhod metric. For x = (x1, . . . , xN ) ∈ ΣN , denote the empirical
measures

mN
x :=

1

N

N∑

j=1

δxj
mN,i

x :=
1

N − 1

N∑

j=1,j 6=i

δxj
.

Thus, mN
X(t) := mN

Xt
is the empirical measure of the N players and mN,i

X (t) := mN,i
Xt

is the
empirical measure of all the players except the i-th. Clearly, they are P(Σ)-valued stochastic
processes. In the limiting dynamics, the empirical measure is replaced by a deterministic flow
of probability measures m : [0, T ] → P(Σ).

The space of measures P(Σ) can be equipped with any norm in R
d, as they are all

equivalent, so we choose the Euclidean norm | · |; when needed, we will use the 1-Wasserstein
distance, denoted by d1, and the sup-norm |m|∞ := maxx∈Σ |mx|. We observe that P(Σ)
is a compact and convex subset of Rd. Denote by C([0, T ],P(Σ)) the space of continuous
functions from [0, T ] to P(Σ), endowed with the uniform norm. For future use, let us also
recall the inequalities

∣∣∣mN
x −mN

y

∣∣∣ ≤ Cdd1(mN
x ,m

N
y ) ≤ Cd

N

N∑

i=1

|xi − yi| (1.1)

for every x,y ∈ ΣN , where the first inequality comes from the equivalence of all the metrics
in P(Σ) and the second is well-known for the Wasserstein distance.

We restrict our attention to a subset of the space of flows of probability measures on P(Σ),
denoted by E ⊂ C([0, T ],P(Σ)). We will show in Lemma 1.15 that all the flows considered
belong to

E := {m : [0, T ] −→ P(Σ) : |m(t) −m(s)| ≤ K0|t− s|, m(0) = m0}

where the constant is given by K0 := 2ν(Θ)
√
d.

We will study several types of controls. Pathwise existence and uniqueness of solutions
to the controlled dynamics (0.2), with trajectories that remain in Σ, is guaranteed by the
following Lipschitz condition:

∫

Θ
|γ(t, x, θ, a,m) − γ(t, y, θ, a,m)|ν(dθ) ≤ K1|x− y| (1.2)

for every x, y ∈ Σ, s ∈ [0, T ], a ∈ A and m ∈ P(Σ), where K1 is a constant. The above
condition is always satisfied in our model since |x − y| ≥ 1 for each x 6= y ∈ Σ and∫

Θ |γ(s, x, θ, a,m)|ν(dθ) ≤ ν(Θ)d; thus we may take K1 = 2ν(Θ)d.
We identify the set of functions g : Σ −→ R with R

d and observe that any g is bounded
and Lipschitz. For any x ∈ Σ, 0 ≤ t ≤ T , a ∈ A, m ∈ P(Σ) and g ∈ R

d define the generator

Λa,m
t g(x) :=

∫

Θ
[g(x+ γ(t, x, θ, a,m)) − g(x)]ν(dθ) (1.3)

and the pre-Hamiltonian

f(t, x, a,m, g) := Λa,m
t g(x) + c(t, x, a,m). (1.4)

The Hamiltonian of the problem, in this general setting, is defined by

H(t, x,m, g) := inf
a∈A

f(t, x, a,m, g). (1.5)
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Given a function g : Σ → R we denote its first finite difference ∆g(x) ∈ R
d by

∆g(x) :=




g(1) − g(x)
. . .
. . .

g(d) − g(x)


 .

When we have a function g : ΣN → R, we denote with ∆jg(x) ∈ R
d the first finite difference

with respect to the j-th coordinate, namely

∆jg(x) :=




g(x1, . . . , xj−1, 1, xj+1, . . . , xN ) − g(x)
. . .
. . .

g(x1, . . . , xj−1, d, xj+1, . . . , xN ) − g(x)


 .

For future use, let us observe that, for g : Σ → R,

|∆g(x)| ≤
√
dmax

y
|∆g(x)|y ≤ 2

√
d|g|∞ ≤ 2

√
d|g|. (1.6)

For a function u : [t0, T ] × Σ −→ R, we denote

||u|| := sup
t∈[t0,T ]

max
x∈Σ

|u(t, x)|. (1.7)

We also use the notation u(t) := (u1(t), . . . , ud(t)) = (u(t, 1), . . . , u(t, d)). When considering
a function u with values in R

d, its norm is defined as in (1.7), but where | · | denotes the
euclidean norm in R

d; while if the domain is ΣN instead of Σ then the maximum in (1.7) is
set in ΣN .

1.1.2 Explicit rates

If not otherwise stated, the spaces A and Θ are, respectively, a generic compact metric space
and a compact subset of Rd, as described above. Here we shall consider a natural shape of
the function γ, as well as particular structures for A and Θ, for which the transition rates of
the Markov chain X solution of the dynamics (1.46) appear explicitly.

Consider then γ defined by

γ(t, x, θ, a,m) :=
∑

y∈Σ

(y − x)✶]0,Γx,y(t,a,m)[(θy). (1.8)

with Γx,y ≥ 0. The intensity measure ν on Θ is defined by

ν(E) :=
d∑

y=1

ℓ(E ∩ Θy), (1.9)

for any E in the Borel subsets B(Θ), where Θy := {θ ∈ Θ : θz = 0 ∀z 6= y}, which is viewed
as a subset of R, and ℓ is the Lebesgue measure on R.

Thus we will consider the following structural assumption:

(H1) The function γ is defined by (1.8), the set Θ is [0,K]d if Γ is bounded by K, otherwise
it is [0,+∞[d, and ν is given by (1.9).
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The function Γ appearing in (1.8) yields the transition rates of the Markov chain X solution
to (0.2); see (1.49) below. Note that here we allow Θ to be also unbounded. Again, if (H1)
does not hold, then the γ, Θ and ν are generic.

Moreover, the measure ν defined in (1.9) has the property that

∫

Θ
ϕ(θ1, . . . , θd)ν(dθ) =

d∑

y=1

∫

Θy

ϕ(0, . . . , θy, . . . , 0)dθy (1.10)

for any bounded and measurable ϕ : Rd −→ R. In particular,

∫

Θ

d∑

y=1

ϕy(θy)ν(dθ) =
d∑

y=1

∫

Θy

ϕy(θy)dθy (1.11)

for any function ϕy : R −→ R such that ϕy(0) = 0, y ∈ Σ. A proof of (1.10) can be found in
[76], where the example (1.8) was treated.

These properties give the following easy, but important, consequence. Let Γ(x) denote
the row vector of Γ, so that Γy(x) = Γx,y, and · denote the scalar product between vectors.

Lemma 1.1. If (H1) holds then

∫

Θ
|γ(t, x, θ, a,m) − γ(s, x, θ, ã, m̃)|ν(dθ) ≤ 2d

∑

y 6=x

|Γx,y(t, a,m) − Γx,y(s, ã, m̃)|, (1.12)

Λa,m
t g(x) =

d∑

y=1

Γx,y(t, a,m) [g(y) − g(x)] = Γ(x) · ∆g(x), (1.13)

for any t, s ∈ [0, T ], a, ã ∈ A, m, m̃ ∈ P(Σ), g ∈ R
d and x ∈ Σ.

Proof. We have

∫

Θ
|γ(t, x, θ, a,m) − γ(s, x, θ, ã, m̃)|ν(dθ)

=

∫

Θ

∣∣∣∣∣∣

∑

y∈Σ

(y − x)
[
✶]0,Γx,y(t,a,m)[(θy) − ✶]0,Γx,y(s,̃a,m̃)[(θy)

]
∣∣∣∣∣∣
ν(dθ)

≤
∫

Θ

∑

y 6=x

|y − x|
∣∣∣✶]0,Γx,y(t,a,m)[(θy) − ✶]0,Γx,y(s,̃a,m̃)[(θy)

∣∣∣ ν(dθ)

≤ 2d

∫

Θ

∑

y 6=x

∣∣∣✶]0,Γx,y(t,a,m)[(θy) − ✶]0,Γx,y(s,̃a,m̃)[(θy)
∣∣∣ ν(dθ).

Applying (1.11), the latter expression is equal to

2d
∑

y 6=x

∫

Θy

∣∣∣✶]0,Γx,y(t,a,m)[(θy) − ✶]0,Γx,y(s,̃a,m̃)[(θy)
∣∣∣ dθy

= 2d
∑

y 6=x

|Γx,y(t, a,m) − Γx,y(s, ã, m̃)|,

which gives (1.12).



1.1 Notation and assumptions 5

Applying formula (1.10) we obtain

Λa,m
t g(x) =

∫

Θ


g


x+

∑

y∈Σ

(y − x)✶]0,Γx,y(t,a,m)[(θy)


− g(x)


 ν(dθ).

=
d∑

y=1

∫

Θy

[
g(x+ (y − x)✶]0,Γx,y(t,a,m)[(θy)) − g(x)

]
dθy

=
d∑

y=1

Γx,y(t, a,m) [g(y) − g(x)] .

We will also consider the following assumption, for which the controls are exactly the
transition rates:

(H2) Assumption (H1) holds, the control space is A = [0,+∞[d and the transition rate is
Γx,y(t, x, a,m) = ay.

Occasionally, we will need the following, which ensures that the processes are ergodic:

(Erg) Assumption (H2) holds, but the control space is A = [κ,+∞[d, with κ > 0.

It is analogous to the uniform ellipticity assumption on the volatility, in the diffusion setting.

1.1.3 Derivatives in the simplex

We now introduce the concept of variation with respect to a probability measure m of a
function U : P(Σ) → R. Let us remark that the usual notion of gradient in R

d cannot be
defined for such a function: since the domain is P(Σ) we are not allowed to define e.g. the
directional derivative ∂

∂m1
, as we would have to extend the definition of U outside the simplex;

such a stronger differentiability in R
d will be assumed in Subsection 1.4.1 only.

Definition 1.2. We say that a function U : P(Σ) → R is differentiable if there exists a
function DmU : P(Σ) × Σ → R

d given by

[DmU(m, y)]z := lim
h↓0

U(m+ h(δz − δy)) − U(m)

h
. (1.14)

for z = 1, . . . , d. Moreover, we say that U is C1 if the function DmU is continuous in m.

Morally, we can think of [DmU(m, y)]z as the (right) directional derivative of U with
respect to m along the direction δz − δy. Observe that m+ h(δz − δy) might be outside the
probability simplex when m is at the boundary, thus (1.14) is meaningful in the interionr
only. However, for our purposes, this is not really a problem: in the limit m(t) will be the
distribution of the reference player and, as it will be clear in Chapter 3, we will evaluate
the derivative (see (1.16) below for the precise definition) just against vectors of the form
m(t+ s) −m(t), so that m(t) + h(m(t+ s) −m(t)) belongs to the symplex.

Let us state an identity which will come useful in the following:

[DmU(m, y)]z = [DmU(m,x)]z + [DmU(m, y)]x, (1.15)
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for any x, y, z ∈ Σ. Its derivation is an immediate consequence of the linearity of the
directional derivative. We can easily extend the above definition to the case of derivative
with respect to a direction µ ∈ P0(Σ), with

P0(Σ) :=
{
µ ∈ R

d : µ1 + · · · + µd = 0
}
.

Indeed, an element µ = (µ1, . . . , µd) =
∑

z∈Σ µz ∈ P0(Σ) can be rewritten as a linear
combination of δz − δy as follows

µ =
∑

z 6=y

µz(δz − δy),

for each y ∈ Σ, since
∑

z 6=y µz(δz − δy) =
∑

z 6=y µzδz −
(∑

z 6=y µz

)
δy, and

∑
z 6=y µz = −µy.

This remark allows us to define the derivative of U(m) along the direction µ ∈ P0(Σ) as
a map ∂

∂µU : P(Σ) × Σ → R, defined for each y ∈ Σ by

∂

∂µ
U(m, y) :=

d∑

z 6=y

µz [DmU(m, y)]z = µ ·DmU(m, y), (1.16)

where the last equality comes from the fact that [DmU(m, y)]y = 0. We also note that the
definition of ∂

∂µU(m, y) does not actually depend on y, i.e.

∂

∂µ
U(m, y) =

∂

∂µ
U(m, 1) (1.17)

for every y ∈ Σ and for this reason we will fix y = 1 when needed in the equations. Indeed,
by means of identity (1.15) and the fact that µ ∈ P0(Σ), for each y ∈ Σ

∂

∂µ
U(m, 1) =

d∑

z=1

µz [DmU(m, 1)]z = [identity (1.15)] =
d∑

z=1

([DmU(m, y)]z + [DmU(m, 1)]y)µz

=
d∑

z=1

[DmU(m, y)]zµz + [DmU(m, 1)]y

d∑

z=1

µz =
d∑

z=1

[DmU(m, y)]zµz =
∂

∂µ
U(m, y).

Let us remark that we could give another definition of derivative in the simplex: by
fixing the origin in a vertex, we could consider the gradient in R

d−1, as P(Σ) might be
viewed as a subset of R

d−1. Such definition is different from ours since the basis vectors
(δy − δx)y∈Σ we consider are not orthogonal if embedded in R

d−1; thus the gradient in R
d−1

would give a multiplicative factor compared to Definition 1.2. Another important motivation
for considering the derivative in the simplex as in Definition 1.2 is that it comes directly from
the heuristic derivation of the master equation we showed in the Introduction.

For a function U : Σ × P(Σ) → R we denote the variation with respect to the first
coordinate in a point (x,m) ∈ Σ × P(Σ) by ∆xU(x,m). Also, denote by Γ† the transpose of
a matrix Γ.

1.1.4 Assumptions

Let us summarize here the various sets of assumptions we will make use of:
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(A) The function γ̂ : [0, T ]×Σ×A×P(Σ) −→ L1(ν) defined by γ̂(t, x, a,m) := γ(t, x, ·, a,m)
is continuous in t, a,m (uniformly, and is bounded), that is, there exists a function wγ

such that limh↓0wγ(h) = 0 and

∫

Θ
|γ(t, x, θ, a,m) − γ(s, x, θ, ã, m̃)|ν(dθ) ≤ wγ(|t− s| + dA(a, ã) + |m− m̃|) (1.18)

for every t, s ∈ [0, T ], x ∈ Σ, a, ã ∈ A, m, m̃ ∈ P(Σ);

(A’) Assumption (A) holds and γ̂ is Lipschitz in m ∈ P(Σ):

∫

Θ
|γ(t, x, θ, a,m) − γ(t, y, θ, ã, m̃)|ν(dθ) ≤ K1(|x− y| + |m− m̃|); (1.19)

(A”) Assumption (A’) holds and γ̂ is Lipschitz also in a ∈ A:

∫

Θ
|γ(t, x, θ, a,m) − γ(t, y, θ, ã, m̃)|ν(dθ) ≤ K1(|x− y| + dA(a, ã) + |m− m̃|); (1.20)

(B) The running cost c is continuous (and bounded) in t, x, a,m and the terminal cost is
continuous (and bounded) in x,m;

(B’) Assumption (B) holds and the costs c and G are Lipschitz in m:

|c(t, x, a,m) − c(t, y, a, m̃)| + |G(x,m) −G(y, m̃)| ≤ K2(|x− y| + |m− m̃|); (1.21)

(B”) Assumption (B’) holds and the running cost c is Lipschitz also in a:

|c(t, x, a,m) − c(t, y, ã, m̃)| + |G(x,m) −G(y, m̃)| ≤ K2[|x− y| + dA(a, ã) + |m− m̃|].
(1.22)

The above assumptions will be used in Sections 2.1 and 2.3 to find solutions of the mean
field game and then approximate Nash equilibria for the N -player game, both in open-loop
and in feedback form.

The next assumption will be more implicit. In order to obtain existence and uniqueness
of feedback mean field game solutions we will make the additional hypothesis:

(C) For any t, x, m and g there exists a unique a∗ = a∗(t, x,m, g) minimizer of f(t, x, a,m, g)
in A;

We observe that for any fixed m and g the function a∗(t, x) is measurable, thanks to Theorem
D.5 in [53]. We remark also that the limiting dynamics (0.2) always admits a pathwise unique
solution thanks to (1.2).

For the convergence argument in Chapter 3 we need stronger structural assumptions.

(H3) The running cost splits as c(t, x, a,m) = L(x, a) + F (x,m);

(H4) Assumption (H2), (H3) hold and the Lagrangian L is C1 and uniformly convex in
a ∈ A = [0,+∞[d, and F and G are Lipschitz continuous in m.
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Under assumption (H2) and (H3), thanks to (1.13), the pre-Hamiltonian (1.4) and the
Hamiltonian (1.5) can be written as

f(t, x, a,m, g) = −f(x, a,∆g(x)) + F (x,m), (1.23)

H(t, x,m, g) = −H(x,∆g(x)) + F (x,m), (1.24)

where

f(x, a, p) = −a · p− L(x, a), (1.25)

H(x, p) = sup
a∈A

{−a · p− L(x, a)} , (1.26)

for p ∈ R
d and x ∈ Σ.

Moreover, if (H4) holds, then the uniform convexity assumption implies that there exists
a unique maximizer a∗(x, p) of f , for every (x, p):

a∗(x, p) := arg min
a∈A

{a · p+ L(x, a)} = arg max
a∈A

{−a · p− L(x, a)} . (1.27)

In particular assumption (C) holds, with a∗(t, x,m, g) = a∗(x,∆g(x)).

We choose to work under assumption (H4) because it is common in mean field game
theory, even if it is a bit stronger than what is needed; the extension to a time dependent
cost c which does not split as L+ F is however straightforward. If (H4) holds, the optimum
a∗ is globally Lipschitz in p, and whenever H is differentiable it can be explicitly expressed
as a∗(x, p) = −DpH(x, p); see Proposition 1 in [46] for the proof.

For the convergence argument we make assumptions on H, which are more implicit. We
will work with two sets of assumptions on H. We first observe that it is enough to give
hypotheses for H(x, ·) on a sufficiently big compact subset of R

d, i.e. for |p| ≤ K. Here
the control set is not a priori compact; nevertheless, we will show that the optimal control
belongs to a compact set, see next section for details (Lemma 1.7). This is true both for
the N -player and the mean field game and it is a great advantage provided by the finiteness
of the state space. Hence, when considering only the optimal controls for the convergence
argument, we are allowed to set Θ = [0,K]d.

In what follows, the constant K is fixed:

(LipH) Assumption (H2) and (H3) hold and there exists a unique maximizex a∗(x, p) of f .
Moreover H and a∗ are Lipschitz continuous in p, for |p| ≤ K.

We stress the fact that the above assumptions, together with the existence of a regular
solution to (M), are alone sufficient for proving the convergence of the N -player game to the
limiting mean field game dynamics. As observed above, Assumption (H4), which is more
explicit, is a sufficient condition for (LipH). We also remark that (H4) implies (A”), (B”) and
(C), except for the compactness of the control space.

In order to establish the well-posedness and the needed regularity for the master equation
we make use of the following additional assumptions:

(RegH) Assumptions (H2) and (H3) hold. If |p| ≤ K, H is C2 with respect to p; H, DpH and
D2

ppH are Lipschitz in p and the second derivative is bounded away from 0, i.e. there
exists a constant CH such that

D2
ppH(x, p) ≥ C−1

H ; (1.28)
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(Mon) Assumption (H3) holds and the cost functions F and G are monotone in m in the
Lasry-Lions sense, i.e., for every m, m̃ ∈ P(Σ),

∑

x∈Σ

(F (x,m) − F (x, m̃))(m(x) − m̃(x)) ≥ 0, (1.29)

and the same holds for G;

(RegFG) Assumption (H3) holds and the cost functions F and G are C1 with respect to m, with
DmF and DmG bounded and Lipschitz continuous. In this case (1.29) is equivalent to
say that ∑

x

µx[DmF (x,m, 1) · µ] ≥ 0 (1.30)

for any m ∈ P(Σ) and µ ∈ P0(Σ).

Observe that the assumptions on H allow for quadratic Hamiltonian; and clearly (RegH)
implies (LipH). As we will see, the above assumptions imply both the boundedness and
Lipschitz continuity of ∆xU and DmU with respect to m.

1.1.5 Examples

We conclude the section with some natural example for which the above assumptions are
satisfied. As a general example for which Assumption (A) is satisfied, which is implicit, we
can consider a dynamics where (H1) holds and the transition rates Γx,y possess the desired
regularity, in light of (1.12). Namely,

• if the rate Γ appearing in (1.8) is continuous in t, a and m, then (A) holds;

• if in addition Γ is Lipschitz in m, then (A’) holds;

• if in addition Γ is Lipschitz also in a, then (A”) holds.

Note in particular that, under (H1), we allow the transition rate to depend on the control
and also on m, which represents the distribution of the other players.

For assumption (C) to hold, it is enough to consider (H1) valid, with the rate Γ affine
in a (e.g. if (H2) holds) and the cost c strictly convex in a, thanks to (1.13). Again, if (H4)
holds, then (LipH) is satisfied, as well as (A”), (B”) and (C), except for the compactness of
A. As an example of a suitable uniformly convex Lagrangian, we can take

L(a) =
1

λ
|a|λ, 1 < λ ≤ 2, (1.31)

so that the corresponding Hamiltonian is

H(p) =
1

λ′ |p
−|λ′

, p ∈ R
d, (1.32)

where λ′ ≥ 2 is the conjugate exponent to λ, i.e. 1
λ + 1

λ′ = 1, and p−
x = −px if px ≤ 0, and 0

otherwise, for each x ∈ Σ.
As far as the monotonicity assumption is concerned, the easiest example for the costs F

and G is F (x,m) = G(x,m) = m(x). Slightly more in general, one can consider F (x,m) =
∇ϕ(m)(x), ϕ being a real convex function on R

d. Another important example is

F (x,m) = xMean(m) := x
∑

y∈Σ

ymy,
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so that
∑

x∈Σ(F (x,m) −F (x, m̃))(m(x) − m̃(x)) = [Mean(m− m̃)]2: this kind of cost induces
players to spread. Let us remark that in Chapter 4 we consider the opposite case, i.e.
F (x,m) = −xMean(m), so that players prefer to aggregate.

For the choice of a Lagrangian L for which (RegH) is satisfied, a bit of work is needed in
order to recover the C2 regularity for H, since the maximization of f in (1.25) is performed only
in the subset A = [0,+∞[d of Rd. Indeed, the standard Lagrangian in (1.31) is not suitable
because the corresponding Hamiltoniam in (1.32) is C1 but not C2, in any neighborhood of 0.

Consider then F and G bounded respectively by KF and KG and the Lagrangian, not
depending on x, defined by

L(a) :=

∣∣∣∣a− K

2
(1, . . . , 1)†

∣∣∣∣
2

, (1.33)

with K = 2(TKF +KG). The computations of a∗ and H for such choice of L give

H(p) =
|p|2
4

− K

2
p · (1, . . . , 1)†, a∗(p) = −p

2
+
K

2
(1, . . . , 1)† (1.34)

for p ∈ R
d with any component px ≤ K; while H has at least one linear component outside

this interval.
It is trivial to verify that H is in C1(Rd), and thus (LipH) is satisfied, while H is not in

C2(Rd) because of the linear components. Nevertheless, (1.28) is satisfied whenever |p|∞ ≤ K.
It is easy to verify that the value functions are bounded by TKF + KG, and thus their
gradients (the p argument) are bounded by K in the sup-norm, thanks to (1.6); see also
Lemma 1.7 below. Then (1.34) implies that |a∗|∞ ≤ K if |p|∞ ≤ K. Moreover, the Lipschitz
continuity of DpH and D2

ppH is trivially holding because of expression (1.34) for |p|∞ ≤ K,
thus (RegH) follows.

1.2 N-player game

In the prelimit, we consider a system of N symmetric players governed by the dynamics

Xi(t) = ξi +

∫ t

0

∫

Θ
γ(s,Xi(s

−), θ, πi(s),mN (s−))Ni(ds, dθ) i = 1, . . . , N, (1.35)

where X = (X1, . . . , XN ) and mN (t) := 1
N

∑N
i=1 δXi(t). Here, the controls πi are in open-loop

form. Let us specify the controls to be used in the N -player game.

Definition 1.3. Define the set of strategy vectors as

SN := {((Ω,F , P ;F),π, ξ,N )}

where (Ω,F , P ;F) is a filtered probability space, ξ := (ξ1, . . . , ξN ) is a vector of N i.i.d. F0-
measurable random variables with law m0, the initial points, N = (N1, . . . ,NN ) is a vector
of N i.i.d. stationary Poisson random measures with respect to the filtration F = (Ft)t∈[0,T ]

with intensity measure ν on Θ, FT = F , and π = (π1, . . . , πN ) is a vector of A-valued
F-predictable processes πi. We will often write π ∈ SN to indicate the process π.

Define the set of feedback strategy vectors as

AN := {((Ω,F , P ;F),α, ξ,N )}

where α = (α1, . . . , αN ) : [0, T ] × ΣN → AN is measurable and the filtered probability space
and the ξ and N are as above. We will often write α ∈ AN to indicate the function α.
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We observe that the above definition of feedback strategy vector is not standard, as it is
given together with the probability space and the noise. We give such a definition because in
this way any strategy gives a unique pathwise solution to dynamics (1.35). Indeed, provided
that γ̂ is Lipschitz in m, we have pathwise existence and uniqueness of solutions to the system
(1.35), for any π = (π1, . . . , πN ) ∈ SN .

Given a feedback strategy vector α = (α1, . . . , αN ) ∈ AN , equation (1.35) is written as

Xi(t) = ξi +

∫ t

0

∫

Θ
γ(s,Xi(s

−), θ, αi(s,X(s−)),mN (s−))Ni(ds, dθ) (1.36)

for each i = 1, . . . , N . The same assumption as above provides existence and uniqueness of
solutions Xi to this equation, so we can define the related open-loop control πα by

πi
α(t) := αi(t,X(t−)).

In view of Definition 1.3, the open-loop control πα has to be given together with a filtered
probability space, a vector of initial conditions and a vector of Poisson random measures,
which we impose to be the same as those given with the feedback control α.

Next, we define the object of the minimization. Let π = (π1, . . . , πN ) ∈ SN be a strategy
vector and X = (Xi, . . . , XN ) be the solution to dynamics (1.35). For i = 1, . . . , N set

Ji(π) := E

[∫ T

0
c(t,Xi(t), π

i(t),mN (t))dt+G(Xi(T ),mN (T ))

]
. (1.37)

Define also Ji(α) := Ji(πα) for any α ∈ AN .
We look for approximate Nash equilibria for the N -player game. So let us define what are

the perturbed strategy vectors we consider.

Notation 1.4. Let π̃ be an A-valued F-predictable process. For a strategy vector π =
(π1, . . . , πN ) in SN denote by [π−i; π̃] the strategy vector such that

[π−i; π̃]j =

{
πj j 6= i

π̃ j = i.

For a feedback strategy vector α = (α1, . . . , αN ) ∈ AN , let X̃ be the solution to





X̃i(t) = ξi +
∫ t

0

∫
Θ γ(s, X̃i(s

−), θ, π̃(s), m̃N (s−))Ni(ds, dθ)

X̃j(t) = ξj +
∫ t

0

∫
Θ γ(s, X̃j(s−), θ, αj(s, X̃(s−)), m̃N (s−))Nj(ds, dθ)

if j 6= i.

Denote then by [α−i; π̃] ∈ SN the strategy vector such that

[α−i; π̃]j(t) =

{
αj(t, X̃(t−)) j 6= i

π̃(t) j = i.

Definition 1.5. Let ε > 0. A strategy vector π is said to be an ε-Nash equilibrium if for
each i = 1, . . . , N

Ji(π) ≤ Ji([π
−i; π̃]j) + ε

for every π̃ such that [π−i; π̃] is a strategy vector.
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A vector α ∈ AN is called a feedback ε-Nash equilibrium if

Ji(α) ≤ Ji([α
−i; π̃]) + ε

for every π̃ such that [α−i; π̃] is a strategy vector.
A strategy vector is called a Nash equilibrium if ε = 0.

We remark that the above definition of feedback ε-Nash equilibrium is not standard.
Indeed, the perturbed strategy vector [α−i; π̃] is usually required to be in feedback form. In
our definition, a slightly more restrictive (or stronger) condition is used since the perturbing
strategy π̃ is allowed to be in open-loop form. As a consequence, the approximation result of
Section 2.3 will be slightly stronger than with the standard definition.

1.2.1 Nash system

In this section, we specialize the above setting assuming (H4); in particular we have that
players control exactly their transition rate. Consider then a feedback strategy vector α

and the dynamics (1.36), where γ and ν are given respectively by (1.8) and (1.9). Assuming
(H2), we can suppose that the probability space is given and the filtration F is the natural
filtration provided by the Poisson random measures. Thus for any α ∈ A there exists a
pathwise unique solution X to (1.36), which is such that

P
[
Xi(t+ h) = y

∣∣Xt = x
]

= αi
y(t,x)h+ o(h) (1.38)

as h ↓ 0, for each y 6= xi and x ∈ ΣN . A proof of (1.38) can be found in [76]. Since α is the
vector of the transition rates of the Markov chain, we set αi

x(x) := −∑y 6=x α
i
y(x).

If (H3) holds, the cost (1.37) is written as

Ji(α) := E

[∫ T

0

(
L(Xi(t), α

i(t,Xt)) + F (Xi(t),m
N,i
X (t))

)
dt+G(Xi(T ),mN

X(T ))

]
, (1.39)

for any α ∈ A, whereas X is the corresponding solution to (1.36). For technical reasons, in
this cost we write mN,i instead of mN , which does not really make a difference when N is
large. Let us now introduce the functional

Ji(t,x,α) :=E

[∫ T

t
[L(Xt,x

i (s), αi(s,Xt,x
s ))+F (Xt,x

i (s),mN,i
Xt,x(s))]ds+G(Xt,x

i (T ),mN,i
Xt,x(T ))

]

(1.40)
where

Xt,x
i (s) = xi +

∫ s

t

∫

Θ
γ(Xt,x

i (r−), θ, αi(r,Xt,x
r− ))Ni(dr, dθ) s ∈ [t, T ].

We work under hypotheses that guarantee the existence of a unique maximizer a∗(x, p) defined
in (1.27). With this notation, the Nash system associated to the above differential game is
given by the system presented in the Introduction:

{
− d

dtv
N,i −∑N

j=1, j 6=i a
∗(xj ,∆

jvN,j) · ∆jvN,i +H(xi,∆
ivN,i) = F (xi,m

N,i
x ),

vN,i(T,x) = G(xi,m
N,i
x ).

(Nash)

This is a system of NdN coupled ODEs, whose well-posedness for all T > 0 can be proved
through standard ODEs techniques, because of the Lipschitz continuity of the vector fields
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involved in the equations (Assumption (LipH)): there exists a unique solution in the set of
bounded and continuous functions.

We are now able to relate system (Nash) to the Nash equilibria for the N -player game
through the following

Proposition 1.6 (Verification Theorem). Assume (LipH) and let vN,i, i = 1, . . . , N be a
classical solution to system (Nash). Then the feedback strategy vector α=(α1, . . . , αN ) defined
by

αi(t,x) := a∗(xi,∆
ivN,i(t,x)) i = 1, . . . , N, (1.41)

is the unique Nash equilibrium for the N -player game and the vN,i’s are the value functions
of the game, i.e.

vN,i(t,x) = Ji(t,x,α) = inf
π∈S

Ji(t,x, [α
−i;π]). (1.42)

Proof. Let π ∈ S be any open-loop control, so that π(t) ∈ [0,+∞[d for any t thanks to (H2),
and let Xt,x be the dynamics related to the strategy vector [α−i;π]; denote for simplicity
X = Xt,x. Fixing i ∈ {1, . . . , N}, because of the uniqueness of the maximizer in (1.27), we
have

∂v

∂t

N,i

+
∑

j 6=i

d∑

y=1

a∗
y(xj ,∆

jvN,j)[∆jvN,i(t,x)]y + π(t) ·∆ivN,i(t,x) + L(xi, π(t)) +F (xi,m
N,i
x )≥0

for any t,x, ω. Applying first Itô formula (Theorem II.5.1 in [55], p. 66) and then (1.13) and
the above inequality, we obtain

vN,i(t,x) = E

[
vN,i(T,XT ) −

∫ T

t

∂v

∂t

N,i

(s,Xs)ds

]

−
N∑

j=1

E

[∫ T

t

∫

Θ

[
vN,i(X1(s), . . . , Xj(s) + γ(Xj(s), θ, [α−i;π](s,Xs)), . . . , XN (s)

)

−vN,i(Xs)
]
ν(dθ)ds

]

= E

[
vN,i(T,XT )

−
∫ T

t


∂v
∂t

N,i

(s,Xs) +
∑

j 6=i

αj,∗(s,Xs) · ∆jvN,i(s,Xs) + π(t) · ∆ivN,i(t,Xs)


 ds




≤ E

[
G(Xi(T ),mN,i

X (T )) +

∫ T

t

(
L(Xi(s), π(s)) + F (Xi(s),m

N,i
X (s))

)
ds

]

=: Ji(t,x, [α
−i;π]).

Replacing π by αi the inequalities become equalities.

The next result shows that the value functions, as well as their gradients, are always
bounded. Although the proof, which employs the form of the cost (1.39), is very simple,
it is very important. In particular, the uniform bound on the gradients, and thus on the
Nash equilibrium, is a particular feature of the finite state space models, which usually does
not hold for diffusion-based models. Note that this also implies the uniform boundedness
of the Nash equilibria (1.41). We will also show that the Nash equilibrium is unique in
this class in Theorem 3.19. It is for this reason that the only local regularity (assumptions
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(LipH) and (RegH)) for H(x, p) with respect to p is enough for getting the convergence
and the well-posedness results. Further, the following result allows to set Θ = [0,K]d when
considering only the optimal controls.

Lemma 1.7. If (H4) holds then there exists a constant K for which the classical solution to
(Nash) is such that, for any N, i, j,

max
t∈[0,T ],x∈ΣN

|vN,i(t,x)| ≤ K (1.43)

max
t∈[0,T ],x∈ΣN

|∆jvN,i(t,x)| ≤ K. (1.44)

Proof. Under (H4), the costs F and G are bounded: denote by KF and KG their bounds.
Moreover, the uniform convexity of L(x, ·) implies that it has a unique minimum a0(x), for
any x; set L(x, a0(x)) = L0(x). Therefore, for any N, i,x and α

Ji(t,x,α) ≥ T

(
min
x∈Σ

L0(x) −KF

)
−KG.

For the converse inequality, let αi,0(t,x) = a0(xi) for any t and fix the controls α−i of the
other players.

inf
π∈S

Ji(t,x, [α
−i;π]) ≤ Ji(t,x, [α

−i;αi,0]) ≤ T

(
max
x∈Σ

L0(x) +KF

)
+KG.

Comparing these two inequalities we get (1.43), and so (1.6) yields (1.44).

We are interested in studying the limit of the (Nash) system as N → ∞. An easy but
crucial consequence of the mean field assumptions on the costs and the uniqueness of solution
to system (Nash) is that the solution vN,i of such system enjoys symmetric properties.

Lemma 1.8. There exists vN : [0, T ] × ΣN → R
d such that the solutions vN,i to system

(Nash) satisfy, for i = 1, . . . , N ,

vN,i(t,x) = vN (t, xi, (x1, . . . , xi−1, xi+1, . . . , xN )), (1.45)

for any (t, x) ∈ [0, T ] × Σ, and the function

ΣN−1 ∋ (y1, . . . , yN−1) → vN (t, x, (y1, . . . , yN−1))

is invariant under permutations of (y1, . . . , yN−1).

Proof. Let x̃ be defined from x after exchanging xk with xj , for j 6= k 6= i. Because of the
mean field assumptions, we have

FN,i(x) := F (xi,m
N,i
x ) = F (xi,m

N,i

x̃
) =: FN,i(x̃)

and the same for G. Thus, by the uniqueness of solution to (Nash), we conclude that
vN,i(t,x) = vN,i(t, x̃).

The above proposition motivates the study of a possible convergence of system (Nash) to
a limiting system, by analyzing directly the limit of the functions vN .
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1.3 Mean field game

The mean field limiting system consists of a single player whose state evolves according to
the dynamics

X(t) = ξ +

∫ t

0

∫

Θ
γ(s,X(s−), θ, π(s),m(s))N (ds, dθ), t ∈ [0, T ]. (1.46)

Here the empirical measure appearing in (1.35) is replaced by a deterministic flow of probability
measures m : [0, T ] −→ P(Σ).

Definition 1.9. The set of open-loop controls is the set

S := {((Ω,F , P ;F), π, ξ,N )}

where (Ω,F , P ;F) is a filtered probability space, ξ is an F0-measurable random variable with
law m0, the initial condition, N is a stationary Poisson random measure with respect to
the filtration F = (Ft)t∈[0,T ] with intensity measure ν on Θ, FT = F , and π is an A-valued
F-predictable process. We will often write π ∈ S to indicate the process π.

Define the set of feedback controls as

A := {((Ω,F , P ;F), α, ξ,N )}

where α : [0, T ] × Σ → A is measurable and the filtered probability space, the initial condition
and the Poisson random measure N are as above. We will often write α ∈ A to indicate the
function α.

We remark that the feedback control is given with the probability space and the noise, in
analogy with Definition 1.3 for the prelimit system.

Thanks to the Lipschitz condition (1.2), the limiting dynamics is well defined. More
precisely, given any open-loop control ((Ω,F , P ;F), π, ξ,N ) ∈ S and flow of measures m ∈ E ,
there exists a pathwise unique solution X of Eq. (1.46), which we will denote by Xπ,m.
Similarly, given any feedback control ((Ω,F , P ;F), α, ξ,N ) ∈ A and flow of measures m ∈ E ,
there exists a pathwise unique process X = Xα,m solving

X(t) = ξ +

∫ t

0

∫

Θ
γ(s,X(s−), θ, α(s,X(s−)),m(s))N (ds, dθ), t ∈ [0, T ]. (1.47)

The corresponding open-loop control is then defined as

πα(t) := α(t,Xα,m(t−)). (1.48)

In view of Definition 1.9, the open-loop control πα has to be given together with a filtered
probability space, an initial condition and a Poisson random measure, which we impose to be
the same as those given with the feedback control α.

If Assumption (H1) holds then the transition rates of the Markov chain solution to (1.46)
are explicit. In fact, for each y 6= x, as h ↓ 0, we have

P [X(t+ h) = y|X(t) = x] = Et,x[Γx,y(t, π(t),m(t))] · h+ o(h), (1.49)

where X = Xπ,m is the solution of (1.46) under the control π ∈ S and flow of measures m ∈ E
and Et,x denotes expectation with respect to the conditional probability P [·|X(t) = x]. In
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particular, if π corresponds to a feedback control α, i.e. (1.48) holds, then the transition rate
becomes Γx,y(t, α(t, x),m(t)). For a proof of (1.49), see again [76].

We define the object of the minimization for the mean field game. For any π ∈ S and
m ∈ E set

J(π,m) := E

[∫ T

0
c(s,Xπ,m(s), π(s),m(s))ds+G(Xπ,m(T ),m(T ))

]
. (1.50)

Define also J(α,m) := J(πα,m) for any α ∈ A.
The notion of solution for the limiting mean field game is the following.

Definition 1.10. An open-loop solution of the mean field game is a triple

(((Ω,F , P ;F), π, ξ,N ) ,m,X)

such that

1. ((Ω,F , P ;F), π, ξ,N ) ∈ S, m ∈ E, (X(t))t∈[0,T ] is adapted to the filtration F and
X = Xπ,m;

2. Optimality: J(π,m) ≤ J(π̃,m) for every π̃ ∈ S;

3. Mean Field Condition: Law(X(t)) = m(t) for every t ∈ [0, T ].

We say that (((Ω,F , P ;F), α, ξ,N ) ,m,X) is a feedback solution of the mean field game
if α ∈ A and (((Ω,F , P ;F), πα, ξ,N ) ,m,X) is an open-loop solution of the mean field game,
where πα is defined in (1.48).

In our writing, we will often drop the filtered probability space and the Poisson random
measure from the notation.

In condition (3) of the above definition, Law(X(t)) := P ◦X(t)−1 as usual. Let us denote
by Flow(X) : [0, T ] −→ P(Σ) the flow of the process X, that is, Flow(X).t := Law(X(t)).
Then the mean field condition can be written as Flow(X) = m.

1.3.1 Relaxed controls

The space S is not itself compact. In order to always have convergence along subsequences,
we need to enlarge the space of controls, considering relaxed controls and related relaxed
Poisson measures. They are used only for the limiting system.

Definition 1.11. A deterministic relaxed control is a measure ρ on the Borel sets B([0, T ]×A)
such that

ρ([0, t[×A) = ρ([0, t] ×A) = t ∀t ∈ [0, T ]. (1.51)

The space of deterministic relaxed controls will be denoted by Q.

Given ρ ∈ Q, the time derivative exists for Lebesgue-almost every t ∈ (0, T ]; it is the
probability measure ρt on A given by

ρt(E) := lim
h→0

ρ([t− h, t] × E)

h
, E ∈ B(A). (1.52)

As a consequence, ρ can be factorized according to

ρ(dt, da) = ρt(da)dt. (1.53)
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The space Q is endowed with the topology of weak convergence of measures, i.e. ρn → ρ
if and only if ∫ T

0

∫

A
ϕ(s, a)ρn(ds, da) −→

∫ T

0

∫

A
ϕ(s, a)ρ(ds, da) (1.54)

for every continuous ϕ on [0, T ]×A. Moreover there exists a metric which makes Q a compact
metric space (for instance, [62]).

Definition 1.12. The space of (stochastic) relaxed controls is

R = {((Ω,F , P ;F), ρ, ξ,N )}

where (Ω,F , P ;F) is a filtered probability space, ρ is a Q-valued random variable such that
ρ([0, ·] ×E) is F-adapted for every E ∈ B(A), and N is a stationary Poisson random measure
with respect to the filtration F with intensity measure ν on Θ. We will often write ρ ∈ R to
denote the process ρ.

The space of relaxed feedback controls is the set

Y := {((Ω,F , P ;F),Υ, ξ,N )}

where Υ : [0, T ] × Σ −→ P(A) is measurable, P(A) is endowed with the topology of weak
convergence, and the filtered probability space, the initial condition and the Poisson random
measure are as above. We will often write Υ ∈ Y to denote the process Υ.

The relaxed feedback control is given with the probability space and the noise, in analogy
with Definition 1.9. Because of (1.52), the derivative (ρt(E))0≤t≤T is an F-predictable process
for any E ∈ B(A). An ordinary open-loop control π ∈ S can be viewed as a relaxed control
ρπ ∈ R in which the derivative in time is a Dirac measure:

ρπ([0, t] × E) =

∫ t

0
ρπ

s (E)ds =

∫ t

0
δπ(s)(E)ds.

We also have to introduce the corresponding relaxed Poisson measure in order to have
well-defined dynamics. This will be done properly in Appendix A. Given any ρ ∈ R, Borel
sets Θ0 ⊆ Θ, A0 ⊆ A, the relaxed Poisson measure Nρ related to the relaxed control ρ has
the property that the processes

Nρ(t,Θ0, A0) − ν(Θ0)ρ([0, t] ×A0) (1.55)

are F-martingales, and are orthogonal for disjoint Θ0 ×A0. This martingale property and the
fact that Nρ is a counting measure valued process define the distribution of Nρ and the joint
law of (Nρ, ρ, ξ,N ) uniquely (see Appendix A). The martingale property (1.55) also implies
that the process

∫ t

0

∫

Θ

∫

A
ϕ(s, θ, a)Nρ(ds, dθ, da) −

∫ t

0

∫

Θ

∫

A
ϕ(s, θ, a)ν(dθ)ρs(da)ds (1.56)

is an F-martingale, for any bounded and measurable ϕ. For an ordinary control π ∈ S (or the
relaxed control it induces), the corresponding relaxed Poisson measure is explicitly given by

Nπ(t,Θ0, A0) :=

∫ t

0

∫

Θ0

✶A0(π(s))N (ds, dθ). (1.57)
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The stochastic differential equation (1.46) in this more general framework with a relaxed
Poisson measure is written as

X(t) = ξ +

∫ t

0

∫

Θ

∫

A
γ(s,X(s−), θ, a,m(s))Nρ(ds, dθ, da) (1.58)

for any relaxed control ρ ∈ R and m ∈ E .
Given a relaxed feedback control Υ ∈ Y and a process X, define the corresponding relaxed

open-loop control through

ρΥ,X(dt, da) := [Υ(t,X(t−))](da)dt. (1.59)

Let NρΥ,X be the relaxed Poisson measure corresponding to ρΥ,X . Equation (1.58) then
becomes

X(t) = ξ +

∫ t

0

∫

Θ

∫

A
γ(s,X(s−), θ, a,m(s))NρΥ,X (ds, dθ, da), (1.60)

where the solution process X appears also in the relaxed Poisson measure.
The proof of the following lemma is given in Appendix A.1.

Lemma 1.13. For any m ∈ E and ρ ∈ R, respectively Υ ∈ Y, there exists a pathwise unique
solution to the stochastic differential equation (1.58), respectively (1.60).

The solutions to (1.58) and (1.60) will be denoted by Xρ,m and XΥ,m respectively. For
Υ ∈ Y, let ρΥ denote the corresponding relaxed control defined by (1.59), that is, ρΥ is the
relaxed open-loop control such that

ρΥ
t (da) := [Υ(t,XΥ,m(t−))](da). (1.61)

In view of Definition 1.12, the relaxed open-loop control ρΥ has to be given together with
a filtered probability space, an initial condition and a Poisson random measure, which we
impose to be the same as those coming with the relaxed feedback control Υ.

Let ρ ∈ R and m ∈ E . Let X = Xρ,m. Thanks to the martingale property (1.56), we
obtain that the process

MX
g (t) = g(X(t)) − g(X(0)) (1.62)

−
∫ t

0

∫

Θ

∫

A
[g(X(s) + γ(s,X(s), θ, a,m(s))) − g(X(s))] ν(dθ)ρs(da)ds

is an F-martingale, for any g ∈ R
d. This yields the Dynkin formula

E[g(X(t))] − E[g(ξ)] (1.63)

= E

∫ t

0

∫

Θ

∫

A
[g(X(s) + γ(s,X(s), θ, a,m(s))) − g(X(s))] ν(dθ)ρs(da)ds.

The cost to be minimized is

J(ρ,m) := E

[∫ T

0

∫

A
c(s,Xρ,m(s), a,m(s))ρs(da)ds+G(Xρ,m(T ),m(T ))

]
. (1.64)

Define also J(Υ,m) := J(ρΥ,m) for Υ ∈ Y. The definitions of relaxed solution of the mean
field game (1.58) and relaxed feedback solution are analogous to Definition 1.10, where ordinary
controls are replaced by relaxed controls.
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Definition 1.14. A relaxed solution of the mean field game is a triple

(((Ω,F , P ;F), ρ, ξ,N ) ,m,X)

such that

1. ((Ω,F , P ;F), ρ, ξ,N ) ∈ R, m ∈ E, (X(t))t∈[0,T ] is adapted to the filtration F and
X = Xρ,m;

2. Optimality: J(ρ,m) ≤ J(σ,m) for every σ ∈ R;

3. Mean Field Condition: Law(X(t)) = m(t) for every t ∈ [0, T ].

We say that (((Ω,F , P ;F),Υ, ξ,N ) ,m,X) is a relaxed feedback solution of the mean

field game if Υ ∈ Y and
((

(Ω,F , P ;F), ρΥ, ξ,N
)
,m,X

)
is a relaxed solution of the mean

field game, where ρΥ is defined in (1.61).
In our writing, we will often drop the filtered probability space and the Poisson random

measure from the notation.

In Section 2.1 we will show both the existence of relaxed MFG solutions, via a fixed point
argument, and the existence of relaxed feedback MFG solutions. In order to apply a fixed
point theorem, we want to find a suitable space where all the flows of probability measures
lie. As before, set K0 := 2ν(Θ)

√
d and denote by

E := {m : [0, T ] −→ P(Σ) : |m(t) −m(s)| ≤ K|t− s|, m(0) = m0} (1.65)

the space of Lipschitz continuous flows of probability measures, with the same Lipschitz
constant K0 and initial point m0. This space is easily seen to be convex and compact with
respect to the uniform norm, thanks to the Ascoli-Arzelà theorem. The following lemma
allows to restrict attention to flows of probability measures in E .

Lemma 1.15. Let π ∈ S, or ρ ∈ R, and let m : [0, T ] −→ P(Σ) be any measurable
deterministic flow of probability measures. Then the flow of the solution process Flow(Xπ,m),
or Flow(Xρ,m), is in E.

Proof. We prove the claim for relaxed controls, so the conclusion follows also when considering
the subset of ordinary controls. Let g : Σ −→ R be a function, which is then Lipschitz and
bounded and can be viewed as a vector in R

d. Let ρ ∈ R and m be fixed, and set X = Xρ,m.
The function m : [0, T ] → P(Σ) has a priori no regularity, except for being measurable. By
the Dynkin formula (1.63) we have, for any 0 ≤ s ≤ t ≤ T ,

E[g(X(t))] − E[g(X(s))]

=

∫ t

s

∫

Θ

∫

A
E[g(X(r) + γ(r,X(r), θ, a,m(r))) − g(X(r))]ρr(da)ν(dθ)dr.

Hence

|E[g(X(t))] − E[g(X(s))]|

≤
∫ t

s

∫

Θ

∫

A
E|g(X(r) + γ(r,X(r), θ, a,m(r))) − g(X(r))|ρr(da)ν(dθ)dr

≤
∫ t

s

∫

Θ

∫

A
2|g|∞ρr(da)ν(dθ)dr = 2ν(Θ)|g|∞(t− s)
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thanks to the fact that ρr is a probability measure on A for any r. Clearly, E[g(X(t))] =
g · Law(X(t)). Thus, for any t and s,

| Law(X(t)) − Law(X(s))| =

√√√√
d∑

x=1

[ex · (Law(X(t)) − Law(X(s)))]2

≤

√√√√
d∑

x=1

|t− s|24|ex|2∞ν(Θ)2 = 2ν(Θ)
√
d|t− s|,

which gives the claim.

We will use the characterization of solutions to (1.58) via the controlled martingale
problem. The proof of the following lemma is omitted; it can be derived by mimicking the
one of Theorem 2.8.1 in [61, p. 42].

Lemma 1.16. Let ((Ω′,F ′, P ′;F′), ρ, ξ,N ) ∈ R and m ∈ E. Then X solves equation (1.58)
in distribution if and only if the process MX

g (t) defined in (1.62) is an F
′-martingale for any

g ∈ R
d. The underlying filtered probability space can always be assumed to be D([0, T ],Σ) × Ω,

where Ω is the canonical space for (Nρ, ρ, ξ,N ) defined in Appendix A, F the canonical
filtration, and X is the canonical process.

The martingale property holds if and only if

E

[
ψ(X(ti); i ≤ j)(MX

g (t+ s) −MX
g (t))

]
= 0 (1.66)

for every ψ : Σj → R and every choice of j, t, s, ti, i = 1, . . . , j such that 0 ≤ ti ≤ t ≤ t+ s.

1.3.2 Mean field game system and master equation

The solution of the mean field game can be seen as a fixed point: for a given flow of measures
m, find a strategy ρm that is optimal and let Xπm,m be the corresponding solution to (1.58),
then find m such that Flow(X) = m. If Assumption (C) holds, we will show that the optimal
control is unique (even over relaxed controls), for any fixed m, and so there exists a feedback
MFG solution (not relaxed); see Theorem 2.8. Moreover, feedback solutions are shown in
Section 3.4 to be unique either if the time horizon is small or if the Lasry-Lions monotonicity
assumptions apply.

This fixed point argument is the basis for the analytic formulation of mean field games.
In order to study the convergence of the Nash system, let us assume here (LipH), so that in
particular (H2) holds and hence the limiting dynamics simplifies: we have, for any y 6= x, as
h ↓ 0,

P [Xα(t+ h) = y|Xα(t) = x] = αy(t, x)h+ o(h), (1.67)

where X = Xα is the solution to (1.47) under the feedback control α (there is no dependence
on m in the dynamics). The cost (1.50) in this setting becomes

J(α,m) := E

[∫ T

0
(L(Xα(t), α(t,Xα(t))) + F (Xα(t),m(t))) dt+G(Xα(T ),m(T ))

]
. (1.68)

Given m, the optimal control is unique and provided by the value function Vm of the
problem, which satisfies the backward Hamilton-Jacobi-Bellman (HJB) equation that clearly
depends on m. The unique optimal control is then given by

αm(t, x) := a∗(x,∆xVm(t, x)); (1.69)
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see Section 2.2 for the details under the weaker Assumption (C) and Section 3.4 for the proper
definition of uniqueness. Then we impose that the flow of the corresponding optimal process is
exactly the m we started with, which thus has to solve a forward Kolmogorov-Fokker-Planck
(KFP) equation. The coupling between these two equations yields the celebrated mean field
game system, whose unknowns are two functions (u,m) : [0, T ] × Σ → R:





− d
dtu(t, x) +H(x,∆xu(t, x)) = F (x,m(t)),

d
dtmx(t) =

∑
y my(t)a∗

x(y,∆yu(t, y)),

u(T, x) = G(x,m(T )),

mx(t0) = mx,0.

(MFG)

In our discrete space setting, it is a strongly coupled forward-backward system of ODEs,
labeled by x ∈ Σ. Again, existence of solutions follows from the fixed point argument
(Theorem 2.8), while uniqueness does not hold in general, due to the forward-backward
structure. Solutions are unique either if the time horizon is small, so that the fixed point
becomes a contraction, or under monotonicity assumptions; see 3.4.1 and 3.4.2 below. In
particular, a solution (u,m) of the MFG system yields a feedback MFG solution (in the
sense of Definition 1.10), by means of (1.69) whereas Vm = u. The limiting optimal control
(1.69) is bounded independently of m, by mimicking the proof of Lemma 1.7, and thus we
are allowed to consider controls in a compact set only and let Θ = [0,K]d when dealing with
the optimal control and the Nash equilibria.

As already mentioned, recently in [14] a new technique involving the use of the so-called
master equation was introduced to get the exact relation between symmetric N -player games
and mean field games. Moreover, in the Introduction we already motivated heuristically the
convergence result of system (Nash) to the master equation. As it will be clear from the
convergence argument, all that is needed is the existence of a regular solution to the master
equation. To be specific on the needed regularity, we give the following

Definition 1.17. A function U : [0, T ] × Σ × P(Σ) → R is said to be a classical solution
to (M) if it is continuous in all its arguments, C1 in t and C1 in m and, for any (t, x,m) ∈
[0, T ] × Σ × P(Σ) we have

{
−∂U

∂t +H(x,∆xU) − ∫
ΣD

mU(t, x,m, y) · a∗(y,∆yU(t, y,m))dm(y) = F (x,m),

U(T, x,m) = G(x,m), (x,m) ∈ Σ × P(Σ).
(M)

In particular then ∆xU(t, x, ·) : P(Σ) → R
d is bounded and Lipschitz continuous and

DmU(t, x, ·) : P(Σ) → R
d×d is bounded.

Moreover, we say that U is a regular solution to (M) if it is a classical solution and
DmU(t, x, ·) is also Lipschitz continuous in m, uniformly in (t, x).

Let us observe that in the master equation, thanks to property (1.15) of the derivative,
we could replace DmU(t, x,m, y) by DmU(t, x,m, 1). Under sufficient conditions, we will
prove in Section 3.3 the existence and uniqueness of a regular solution to (M). Generally
speaking, the master equation summarizes all the information needed to get solutions to the
mean field game: namely, the system (MFG) provides the characteristic curves for (M).

Remark 1.18. If U is a classical solution to (M) then

{
d
dtmx(t) =

∑
y my(t)a∗

x(y,∆yU(t, y,m(t)))

m(t0) = m0

(1.70)
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admits a unique solution m, since U is Lipschitz in m and thus also the HJB equation has a
unique solution u, given by

u(t, x) = U(t, x,m(t)). (1.71)

Therefore U induces a unique solution (u,m) of the mean field game system, and a unique
optimal control, given by

α(t, x) := a∗(x,∆xU(t, x,m(t))). (1.72)

In order to show the existence of a regular solution to (M), in Theorem 3.9, we have to
show the opposite, that is, a solution to the MFG system, when it is unique, provides a unique
regular solution to the master equation. We will apply the method of characteristics, which
consists in showing that the function defined by U(t0, x,m0) = u(t0, x) solves the master
equation, where (u,m) is the solution to the mean field game system starting at time t0 up
to time T , with m(t0) = m0; see Section 3.3. Note in particular that uniqueness of MFG
solution is required in order to define a regular solution to (M).

1.4 Extensions

In this section we provide other two approaches to the limit model, the mean field game.
These may allow in the future to prove the convergence results of Chapters 3 and 4 for more
general models. The first approach deals with a particular, but large, class of mean field
games, which are called potential since the costs are potentials of a functional of the measure.
The goal is to show that the MFG system can be viewed as the necessary conditions for
optimality of a deterministic control problem. While the second analysis deals with weak
mean field game solutions, which are called weak as the flow of measures m might be random,
as opposed to the definitions given above in which m is always deterministic. Both approaches
will be treated more in details in Section 4.3 for the two state model considered there.

1.4.1 Potential mean field games

We show that the mean field game system, in some case, can be viewed as the necessary
condition for optimality, given by the Pontryagin maximum principle of a deterministic
optimal control problem in R

d. This analysis can be conducted only for potential mean field
games, that is, if the costs have a potential structure: in this case the mean field game system
(MFG) is indeed an Hamiltonian system. Thus we assume here (H4) and that there exist
functions F ,G : P(Σ) → R such that

∇mF(m) = F (x,m), ∇mG(m) = G(x,m), (1.73)

for any m ∈ P(Σ) and x ∈ Σ, where ∇m is the standard gradient in R
d. Note that here F

and G are C1 in the classical sense, as we will always consider in this section.
Let us now specify the control problem. The action set is the set of matrices A :=

[0,+∞[d×d; for Γ ∈ A, denote by Γ(x) ∈ A = [0,+∞[d the row vectors of Γ, for any x ∈ Σ,
i.e. Γy(x) = Γx,y. The set of controls, denoted by A , is then the set of measurable functions
Γ : [0, T ] → A; let us remark that the admissible controls considered here are deterministic
and open-loop. The controlled dynamics is given by the Kolmogorov-Fokker-Planck ODE

ṁx =
∑

y 6=x

(myΓx(t, y) −mxΓy(t, x)) ; (1.74)
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namely, the control Γ ∈ A represents the transition rates of a Markov chain and the state
variable of the problem is its law. Note that the diagonal arguments Γx,x are never considered
and that the dynamics remains in P(Σ) for any time, so we do not need to impose any state
constraint.

The cost to be minimized, for Γ ∈ A , is

J (Γ) :=

∫ T

0
(L(m(t),Γ(t)) + F(m(t))) dt+ G(m(T )), (1.75)

where the Lagrangian L : [0, T ] × A → R is given by

L(m,Γ) :=
∑

x

mxL(x,Γ(x)). (1.76)

The pre-Hamiltonian and Hamiltonian of the problem are respectively

H (m, g,Γ) := −b(m,Γ) · g − L(m,Γ) − F(m), (1.77)

H(m, g) := sup
Γ∈A

H (m, g,Γ), (1.78)

for any g ∈ R
d, where bx : [0, T ] × A → R given by

bx(m,Γ) :=
∑

y 6=x

(myΓx(y) −mxΓy(x)) (1.79)

is the vector field of the dynamics (1.74). A straightforward computation leads to

H(m, g) =
∑

x∈Σ

mxH(x,∆g(x)) − F(m) (1.80)

and the unique argmax of H is given by

Γ∗(x, g) = a∗(x,∆g(x)). (1.81)

Moreover we obtain

∂H
∂mx

(m, g) = H(x,∆g(x)) − F (x,m) (1.82)

∂H
∂gx

(m, g) = −bx(m,Γ∗(·, g)) (1.83)

Therefore the corresponding Hamiltonian system, arising form the Pontryagin maximum
principle, reads 




u̇ = ∂H
∂m(m,u), t ∈ [0, T ]

ṁ = −∂H
∂u (m,u),

m(0) = m0, u(T ) = ∇mG(m(T )),

(1.84)

which is exactly the mean field game system (MFG), setting a∗
x(x) := −∑y 6=x a

∗
y(x). Further,

the Hamilton-Jacobi-Bellman equation of the problem is given by

{
−∂U

∂t + H(m,∇mU) = 0,

U(T,m) = G(m),
(1.85)

for a function U : [0, T ] × P(Σ) → R.
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Lemma 1.19. Under (H4) and (1.73),

1. There exists an optimum of the control problem (1.74)-(1.75);

2. The MFG system (1.84) represents the necessary conditions for optimality, given by
the Pontryagin maximum principle;

3. The value function of the problem is the unique viscosity solution to Equation (1.85);

4. If (Mon) also holds then the value function is in C1(P(Σ)) and the optimal control is
unique and given by the feedback

Γ(t, x,m) = Γ∗(x,∇mU(t,m)) = a∗(x,∆x∇mU(t,m)). (1.86)

Proof. The first claim is given by Theorem 5.2.1 p. 94 in [10], which can be applied since
the dynamics is linear in Γ and the running cost is convex in Γ. Conclusions (2) and (3) are
standard. For (4), if the costs are monotone then F and G are convex and thus the claims
follow.

Next, we show shat, at least at a heuristic level, the derivative of Equation (1.85)
turns out to be exactly the master equation (M). Indeed, assuming that the solution U
to the master equation is differentiable in the classical sense with respect to m, so that
[DmU(t, x,m, y)]z = ∂U

∂mz
− ∂U

∂my
, we have (omitting t,m)

∫

Σ
DmU(x,m, y) · a∗(y,∆U(y))m(dy) =

∑

y

∑

z 6=y

(
∂U(x)

∂mz
− ∂U(x)

∂my

)
a∗

z(y)my

=
∑

y

∑

z 6=y

∂U(x)

∂mz

(
a∗

z(y,∆U(y))my − a∗
y(z,∆U(z))mz

)
= ∇mU(x) · b(m,Γ∗),

where Γ∗(y) = a∗(y,∆U(y)) and b is the vector field given by (1.79). Thus Equation (M)
becomes

− ∂Ux

∂t
+H(x,∆xU) − b(m,Γ∗) · ∇mU = F (x,m). (1.87)

Let now U be a classical solution to (1.85) and set U(t,m) = ∇mU(t,m). Assuming

U ∈ C2, we have ∂Ux

∂my
=

∂Uy

∂mx
. This fact, together with (1.73) and (1.84) allows to conclude

that U solves (1.87): indeed, deriving (1.85) by mx we obtain

0 = −∂Ux

∂t
+
∂H
∂mx

(m,U)+
∂H
∂u

(m,U)· ∂U
∂mx

= −∂Ux

∂t
+H(x,∆xU)−F (x,m)−b(m,Γ∗)·∇mU

(1.88)
and the terminal condition is clearly satisfied.

Therefore we have showed that (at least formally) the master equation, if the costs are
potential, can be written as

{
−∂U

∂t + ∂
∂m [H(m,U)] , t ∈ [0, T [, m ∈ P(Σ)

U(T, x,m) = G(x,m)
(1.89)

which reads as a system of d conservation laws in space dimension d. Such system of PDEs is
known to be ill-posed in general, while the theory of entropy solutions is developed for d = 1,
providing well-posedness of the equation; we will examine this notion for the two state model
of Chapter 4. Notably, the Hamiltonian H is space-dependent and the equation is set in the
symplex, which is a bounded subset of Rd. Nevertheless, boundary conditions are not needed
since the domain is invariant under the action of the characteristics.



1.4 Extensions 25

1.4.2 Weak mean field game solutions

The notion of weak MFG solution has to be introduced in order to handle the case of a
random flow of measures, which may arise as the limit of the empirical measures of the
N -players, when (strong) MFG are not unique. This notion, in the diffusion setting, was
first examined in [21] to study mean field games with a common noise, in which the limiting
measure is actually a conditional law, thus always random, even when solutions are unique.
Then this concept was specialized for mean field games without common noise in [65], where
also examples were treated. We give now the definition for finite state mean field games.

Let M be the set of integer valued random measures on [0, T ] × Θ with the topology of
weak convergence, and recall D = D([0, T ],Σ). For µ ∈ P(D) let µ(t) ∈ P(Σ) denote the
image measure under the map x 7→ x(t). Let

Z := M × Q × D (1.90)

and FZ
t denotes its canonical filtration. For η ∈ P(Z) let ηx := η(M × A × ·) denote the D

marginal. Given any η ∈ P(Z), dynamics (1.58) is still well-posed, whereas m = ηx: denote
its pathwise unique solution by Xρ,ηx . The cost (1.64) is still well-defined, with m = ηx.

Definition 1.20. A weak relaxed mean field game solution is a triple

(((Ω,F , P ;F), ρ, ξ,N ) , η,X)

such that

1. ((Ω,F , P ;F), ρ, ξ,N ) ∈ R, η is a random element of P(Z) such that η(E) is Ft-
measurable for each E ∈ FZ

t and t ∈ [0, T ], X is F-adapted and X = Xρ,ηx;

2. ξ, N and η are independent, m0 = Law(ξ) and η(0) = δ0 ⊗ δ0 ⊗m0 is deterministic;

3. Compatibility condition: σ(ρs : s ≤ t) is conditionally independent of Fξ,N ,η
T given

Fξ,N ,η
t , for every t ∈ [0, T ], where

Fξ,N ,η
t := σ(ξ,Ns, η(E) : s ≤ t, E ∈ FZ

t );

4. Optimality: J(ρ, ηx) ≤ J(ρ̃, ηx) for any ρ̃ ∈ R;

5. Consistency condition: η is a version of the conditional law of (N , ρ,X) given η, i.e.

η(E) = P [(N , ρ,X) ∈ E|η] ∀E ∈ B(Z), a.s. (1.91)

Moreover (omitting the filtered probability space, the initial condition and the Poisson
random measure) in the notation, we say that a triple (π, η,X) is a weak open-loop MFG
solution if π ∈ S and (ρπ, η,X) is a weak relaxed MFG solution, with ρπ

t = δπ(t). For a
measurable function β : [0, T ] × Σ × P(Σ), we say that (β, η,X) is a weak feedback MFG
solution if (πβ, η,X) is a weak open-loop MFG solution, where

πβ(t) = β(t,X(t−), ηx(t)) ℓ⊗ P - a.e. (t, ω). (1.92)

Since the flow of measures is random, its joint distribution with the control (which includes
the noise and the initial condition) has to be specified: for this reason η is defined as a
random measure on P(Z). If η is deterministic then we recover the notions of MFG solutions
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given above, which might be called strong MFG solutions. Let us observe that, indeed,
when η is deterministic, the consistency condition given here implies a stronger mean field
condition than in the previous definitions, as it considers the law of the processes in the space
of trajectories and not just their marginals laws (or flows). This is due to the fact that here
we need to handle also the law of the (open-loop) control, whose filtration might be larger
that the one of η. Very recently, a slightly different notion of weak feedback MFG solution
has been given in [66]. We remark that (1.92) defines feedback controls which differ from the
ones considered before (Definition 1.9), since β also depends on the measure, while before the
dependence on m was included in the time argument of α, as m was deterministic. Note also
that the value of the control in the initial time is meaningless, as it always appears inside the
integral in time, hence we could impose condition (2) above.

Weak MFG solutions exist under (A) and (B), thanks to Theorem 2.4, as strong MFG
solutions are also weak MFG solutions. Moreover, if (Mon) holds, then weak MFG solutions
are unique (as strong solutions are), since the proof of Theorem 3.18 still works in this case.
When strong MFG solutions are not unique, a weak MFG solution is for instance a random
measure supported in the set of strong MFG solutions. However there might be weak MFG
solutions that are not supported on strong MFG solutions; see 4.3.2 for an example in the
two state model.

Appendix A: Relaxed Poisson measures

In order to state the definition of the relaxed Poisson random measure we first need to define
the canonical space of integer valued random measures on a metric space E. Following [57],
the setting is:

• Ω is the set of sequences (tn, yn) ⊂ [0,+∞]×E such that (tn) is increasing and tn < tn+1

if tn < +∞; set t0 := 0 and t∞ := limn tn;

• if ω = (tn, yn)n∈N write Tn(ω) := tn and Yn(ω) := yn;

• the canonical random measure is

N (ω,B) :=
∑

n∈N

✶{Tn(ω)<∞}δ(Tn(ω),Yn(ω)(B)

for any B ∈ B([0,+∞[×E);

• Gt := σ
(
N (·, B) : B ∈ B([0, t] × E)

)
, F0 is given, F t = F0 ∨

(
∩s<tGs

)
, F = F∞ and

F = (F t)t≥0.

The filtered space (Ω,F ,F) is then the canonical space of integer valued random measures
on E. A probability measure on it is the law of an integer valued random measure on E,
given an initial condition on F0. Note that the canonical measure N is not the identity: for
this reason we can work with M = M([0,+∞[×E) as the state space of a random measure.
Moreover, the set of integer valued random measures is vaguely closed in M: see Theorem
15.7.4 in [58] and the references therein.

Let now Ξ be any integer valued random measure defined on a filtered probability space
(Ω,F ,F, P ). It is determined by a sequence of stopping times Tn and random variables Xn

which are FTn-measurable. To any Ξ is associated its compensator, that is, a positive random
measure η on E such that
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1. η([0, t] ×B)t≥0 is predictable for any B ∈ B(E);

2. (Ξ([0, t ∧ Tn] ×B) − η([0, t ∧ Tn] ×B))t≥0 is an F-martingale for each n and B;

3. η({t} × E) ≤ 1 for each t and η([T∞,∞[×E) = 0.

The compensator exists and is unique (up to a modification on a P -null set) for any Θ.
The proof can be found in [56], where the author also shows that a process with the above
properties uniquely determines an integer valued random measure.

Consider then an arbitrary measurable space (Ω′,F ′) and define Ω := Ω × Ω′. Set

F0 :=
{
∅,Ω

}
and F0 := F0 ⊗ F ′. The canonical random measure N on Ω is extended to Ω

via (Tn, Yn)(ω, ω′) := (Tn, Yn)(ω). Set Ft := F t ∨ F0.

Theorem 1.21 ([56]). Let P0 be a probability measure on (Ω,F0) and η a predictable random
measure satisfying (1) and (3). Then there exists a unique probability measure P on (Ω,F∞)
whose restriction to F0 is P0 and for which η is the compensator of N .

By means of this theorem, we are able to define properly a relaxed Poisson measure.
Consider a relaxed control ((Ω′′,F ′′, P ′′;F′′), ρ, ξ,N ) ∈ R and let Ω′ = Q × Σ × Ω be the state
space of the process ρ, the initial distribution ξ and the Poisson random measure N . The
σ-algebra F ′ is generated by the processes and P0 is the joint law of (ρ, ξ,N ). So a relaxed
Poisson measure Nρ, related to the relaxed control ρ, is an integer valued random measure
on [0, T ] × Θ × A whose compensator η, calculated on [0, t], Θ0, A0, is ν(Θ0)ρ([0, t] × A0).
Its law is uniquely determined on Ω and thus has the martingale properties (1.55) and (1.56).
Moreover, the joint law of (Nρ, ρ, ξ,N ) is uniquely determined.

We could also give an explicit construction of Nρ. Let ρ ∈ R and (πn) be a sequence
in S which tends to ρ in the sense of Lemma 2.12, the chattering lemma. Denote by ρπn

the relaxed control representation of πn and construct Nπn as in (1.57): Nπn(t,Θ0, A0) :=∫ t
0

∫
Θ0
✶A0(πn(s))N (ds, dθ). Then, by Theorem 2.1, the sequence (Xπn , ρ

πn ,Nπn) is tight and
any subsequence converges in distribution to (Xρ, ρ,Nρ). The marginals are uniquely defined
in this way, while to show that the joint law of (ρ,Nρ) is unique we need to invoke the above
Theorem 1.21.

A.1: Proof of Lemma 1.13

Let m ∈ E be fixed, which we shall omit. Let X be the space of stochastic processes with

paths in D and equip it with the norm ||X||X = E

[
sup0≤t≤T |X(t)|

]
. Let ρ ∈ R and define

the map Ψ : X −→ X by

Ψt(X) := ξ +

∫ t

0

∫

Θ

∫

A
γ(s,X(s−), θ, a)Nρ(ds, dθ, da)

for any X ∈ X . If we prove that this map is a contraction in the norm || · ||X , then pathwise
existence and uniqueness of solutions to equation (1.58) follow. We have, for any X,Y ∈ X ,

|Ψt(X) − Ψt(Y )| ≤
∫ t

0

∫

Θ

∫

A
|γ(s,X(s−), θ, a) − γ(s, Y (s−), θ, a)|Nρ(ds, dθ, da),
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hence

E

[
sup

0≤t≤T
|Ψt(X) − Ψt(Y )|

]

≤ E

∫ T

0

∫

Θ

∫

A
|γ(s,X(s), θ, a) − γ(s, Y (s), θ, a)|ρs(da)ν(dθ)ds

≤ K1E

∫ T

0

∫

A
|X(s) − Y (s)|ρs(da)ds ≤ K1TE

[
sup

0≤t≤T
|X(s) − Y (s)|

]

thanks to (1.2) and the fact that ρs is a probability measure. Therefore Ψ is a contraction
if T < 1

K1
, and so uniqueness is proved for small time horizon; but then iterating the same

argument, we have uniqueness for any T .
Consider now Υ ∈ Y and define Ψ̂ : X −→ X by

Ψ̂t(X) := ξ +

∫ t

0

∫

Θ

∫

A
γ(s,X(s−), θ, a)NρΥ,X (ds, dθ, da)

for any process X ∈ X . Then for any X and Y we have ||Ψ̂(X) − Ψ̂(Y )||X ≤ ||Z1||X + ||Z2||X
where

Z1(t) :=

∫ t

0

∫

Θ

∫

A
|γ(s,X(s−), θ, a) − γ(s, Y (s−), θ, a)|NρΥ,Y (ds, dθ, da)

and

Z2(t) :=

∫ t

0

∫

Θ

∫

A
|γ(s,X(s−), θ, a)|

∣∣∣NρΥ,X − NρΥ,Y

∣∣∣ (ds, dθ, da),

where |Ξ| denotes the total variation of the signed measure Ξ defined for any B ∈ B([0, T ]×Θ×
A) by |Ξ|(B) := supE⊆B |Ξ(E)|; while the total variation norm is ||Ξ||T V = |Ξ|([0, T ]×Θ×A).
The first term Z1 is bounded as above yielding ||Z1||X ≤ K1T ||X − Y ||X . For the second
term, we use |γ| ≤ d to obtain

sup
0≤t≤T

Z2(t) ≤ d||NρΥ,X − NρΥ,Y ||T V = d sup
E⊂[0,T ]×Θ×A

∣∣∣NρΥ,X (E) − NρΥ,Y (E)
∣∣∣ .

Thanks to (1.55) and (1.51), we have E||NρΥ,X − NρΥ,Y ||T V ≤ 2Tν(Θ), saying that the
right-hand side above is finite P -a.s. Since the measure NρΥ,X − NρΥ,Y is integer valued, we
can assume that the above supremum is attained on a set B(ω) for P -a.e. ω, giving thus a
random set B. Moreover, we may assume that on such a set the random measure considered
is positive. The martingale property (1.56) now gives

||Z2||X ≤ dE
[
NρΥ,X (B) − NρΥ,Y (B)

]

= d

∣∣∣∣∣E
∫ T

0

∫

Θ

∫

A
✶B(t, θ, a)[Υ(t,X(t)) − Υ(t, Y (t))](da)ν(dθ)dt

∣∣∣∣∣

≤ dE

∫ T

0
|Υ(t,X(t)) − Υ(t, Y (t))|(A)ν(Θ)dt

≤ 2ν(Θ)dE

∫ T

0
|X(t) − Y (t)|dt ≤ K1T ||X − Y ||X ,

where in the last line above we have used the fact that Υ is a probability measure and
|x − y| ≥ 1 for each x 6= y ∈ Σ. Therefore, for T < 1

2K1
, the map Ψ̂ is a contraction; the

claim follows iterating the above procedure.



CHAPTER 2

Existence and approximation

In this chapter, we state the existence and approximation results, presented in [25]. Firstly,
we prove existence of solutions to the mean field game in relaxed open-loop as well as relaxed
feedback controls. Then we find, under additional assumptions, mean field game solutions in
non-relaxed feedback controls. In the last section, we first establish a version of the chattering
lemma that works also for feedback controls. Then we turn to the construction of approximate
Nash equilibria coming from a solution of the mean field game, and derive the error bound
for feedback as well as open-loop strategies.

2.1 Relaxed mean field game solutions

2.1.1 Tightness and continuity for m fixed

Consider a sequence of random variables

(Xn, ρn,Nρn) (2.1)

where ρn is a relaxed control, Nρn is the related relaxed Poisson measure and Xn = Xρn,m,
m ∈ E is fixed. The state space of these random variables is D([0, T ],Σ) × Q × M, where
M = M([0, T ] × Θ ×A) denotes the set of finite positive measures on [0, T ] × Θ ×A endowed
with the topology of weak convergence.

The following is of fundamental importance, and is similar to Theorem 13.2.1 in [62,
p. 363].

Theorem 2.1. Assume (A) and (B). Then

1. any sequence of the form (2.1) is tight;

2. the limit in distribution (X, ρ, Ñ ) of any converging subsequence is such that Ñ is the
relaxed Poisson measure related to the relaxed control ρ and X = Xρ,m in distribution;

3. J(ρ,m) is continuous in ρ.

Proof. (1) The sequence of relaxed controls is tight as Q is compact. For any ε > 0, the set

Kε :=

{
Ξ ∈ M : Ξ([0, T ] × Θ ×A) ≤ Tν(Θ)

ε

}

29
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is compact in M, since [0, T ] × Θ ×A is compact. From (1.51) and the martingale property
(1.55), it follows that Nρn(t,Θ, A) − tν(Θ) is a martingale for any n and so E[Nρn(T,Θ, A)] =
Tν(Θ). Therefore, by Chebychev’s inequality,

P (Nρn /∈ Kε) = P

(
Nρn(T,Θ, A) >

Tν(Θ)

ε

)
≤ E[Nρn(T,Θ, A)] · ε

Tν(Θ)
= ε

for any n, saying that the sequence of relaxed Poisson measures is tight. The properties of
the stochastic integral give

E

[
|Xn(τ + h) −Xn(τ)|2

∣∣∣Fτ

]
= O(h)

for any F-stopping time τ , uniformly in n, which yields the tightness of the processes in
D([0, T ],Σ) by Aldous’s criterion [1].

(2) By abuse of notations, denote by (Xn, ρn,Nρn) the subsequence which converges in

distribution to (X, ρ, Ñ ). From the martingale property (1.55), it follows that Ñ (t,Θ0, A0) −
ν(Θ0)ρ(t, A0) is a martingale for any Borel sets A0 ⊂ A and Θ0 ⊂ Θ, where the limiting
measure is defined on the canonical space and the filtration is the canonical filtration (both
defined in Appendix A). The limit random measure Ñ is integer valued (Theorem 15.7.4 in
[58]), so the uniqueness property says that Ñ = Nρ in distribution. The claim X = Xρ,m in
distribution will be shown also in the proof of Theorem 2.4, where m is not fixed, using the
controlled martingale problem, so we do not repeat the argument here.

(3) limn→∞ J(ρn,m) = J(ρ,m) since c and G are bounded and continuous by assumption
(B).

By the chattering lemma, which we will present later as Lemma 2.12, we have

min
ρ∈R

J(ρ,m) = inf
π∈S

J(π,m).

The minimum on the left hand side exists by the above Theorem 2.1. The infimum on the
right hand side is actually a minimum, too; see Theorem 2.6 below, where the existence of
optimal feedback controls will be shown. However, there might exist more optima among
relaxed open-loop controls than among ordinary feedback controls.

2.1.2 Fixed point argument

Let 2E be the set of subsets of E and define the point-to-set map Φ : E −→ 2E by

Φ(m) := {Flow(Xρ,m) : J(ρ,m) ≤ J(σ,m) ∀σ ∈ R} , m ∈ E . (2.2)

A flow m ∈ E is called a fixed point of this point-to-set map if m ∈ Φ(m). We need this map
since the optimal control is not necessarily unique.

By construction, Φ has a fixed point if and only if there exists a relaxed solution to the
mean field game, in the sense of Definition 1.14. In order to prove the existence of a fixed
point, we are going to apply Theorem 1 in [40], which requires the following definition.

Definition 2.2. Let E be a metric space. A map Φ : E −→ 2E is said to have closed graph if
mn ∈ E, yn ∈ E, yn ∈ Φ(mn) for any n ∈ N and mn → m, yn → y in E implies y ∈ Φ(m).

Proposition 2.3 (Ky Fan). Let E be a non empty, compact and convex subset of a locally
convex metric topological vector space. Let Φ : E −→ 2E have closed graph and assume that
Φ(m) is non empty and convex for any m ∈ E. Then the set of fixed points of Φ is non empty
and compact.
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By means of this proposition we are now able to state and prove the following main
theorem concerning existence of relaxed solutions, while uniqueness is not guaranteed.

Theorem 2.4. Under assumptions (A) and (B) there exists at least one relaxed solution of
the mean field game.

Proof. We want to show the existence of a fixed point for the map Φ : E −→ 2E defined in
(2.2), applying Proposition 2.3. Recall that any element of Φ(m) is in E by Lemma 1.15, and
the set E defined in (1.65) is a compact and convex subset of C([0, T ],P(Σ)) endowed with
the uniform norm. By Theorem 2.1, Φ(m) is non empty for any m. It remains to prove that
Φ(m) is convex and Φ has closed graph.

Φ(m) is convex. Let m be fixed and let ρ1, ρ2 ∈ R be such that Flow(Xρ1,m) and
Flow(Xρ2,m) belong to Φ(m), i.e. ρ1 and ρ2 are optimal controls for m, and take λ ∈ [0, 1].
Let χ be a Bernoulli random variable with parameter λ, F0 measurable and independent of
ρ1 and ρ2. Define ρ3 ∈ R by

ρ3([0, t[×E) := ρ1([0, t[×E)✶{χ=1} + ρ2([0, t[×E)✶{χ=0}

for any E ∈ B(A) and t ∈ [0, T ]. We have

E[ϕ(Xρ3,m)] = E [ϕ(Xρ3,m)|χ = 1]P (χ = 1) + E [ϕ(Xρ3,m)|χ = 0]P (χ = 0)

= λE[ϕ(Xρ1,m)] + (1 − λ)E[ϕ(Xρ2,m)]

for every ϕ ∈ Cb(D([0, T ],Σ),R). This implies that

Law(Xρ3,m) = λLaw(Xρ1,m) + (1 − λ) Law(Xρ2,m) (2.3)

and then in particular

Flow(Xρ3,m) = λFlow(Xρ1,m) + (1 − λ) Flow(Xρ2,m). (2.4)

Since ρ1 and ρ2 are optimal for m we have, thanks to (2.3),

J(ρ3,m) = J(ρ1,m)P (χ = 1) + J(ρ2,m)P (χ = 0)

≤ λJ(σ,m) + (1 − λ)J(σ,m) = J(σ,m)

for any σ ∈ R, which means that also ρ3 is optimal for m and hence (2.4) says that Φ(m) is
convex.

Φ has closed graph. Let mn, yn,m, y ∈ E be such that mn → m, yn → y in E and
yn ∈ Φ(mn) for every n ∈ N. We have to prove that y ∈ Φ(m). Let ρn ∈ R be optimal for
mn and such that yn = Flow(Xρn,mn). Set Xn := Xρn,mn and let Nn := Nρn be the relaxed
Poisson measure related to ρn.

The tightness of the sequence (Xn, ρn,Nn) is proved as in Theorem 2.1. Let (Xnk
, ρnk

,Nnk
)

be a subsequence which converges in distribution to (X, ρ, Ñ ). We have Ñ = Nρ in distribu-
tion, i.e. it is the relaxed Poisson measure related to ρ. In order to prove that X = Xρ,m in
distribution, we use the controlled martingale problem formulation stated in Lemma 1.16,
and hence let us assume that the processes are defined in the canonical space.

Property (1.66) holds for Xnk
, ρnk

and mnk
, any k ∈ N. Let Mnk

g denote the process
defined by

Mnk
g (t) = g(Xnk

(t)) − g(Xnk
(0))

−
∫ t

0

∫

Θ

∫

A
[g(Xnk

(s) + γ(s,Xnk
(s), θ, a,mnk

(s))) − g(Xnk
(s))] ν(dθ)ρnk

s (da)ds,



32 Existence and approximation

for any g ∈ R
d. Property (1.66) and the convergence in distribution of the sequence

(Xnk
, ρnk

,Nnk
) imply that

0 = lim
k→∞

E

[
ψ(Xnk

(ti); i ≤ j)(Mnk
g (t+ s) −Mnk

g (t))
]

= E [ψ(X(ti); i ≤ j)(Mg(t+ s) −Mg(t))]

thanks to continuity assumption (A), uniform convergence of mn and (1.54). Therefore we
have proved that X = Xρ,m in distribution.

Thus we obtain

lim
k→∞

Law(Xnk
) = Law(Xρ,m),

which implies the convergence

lim
k→∞

sup
t∈[0,T ]

| Law(Xk(t)) − Law(X(t))| = 0,

that is, Flow(Xnk
) → Flow(X) uniformly. The convergence is then proved along a sub-

sequence, but by hypothesis the limit Flow(Xn) → y exists in E , hence y = Flow(X) =
Flow(Xρ,m).

It remains to prove that ρ is optimal for m. Again the convergence in distribution of
the sequence (Xnk

, ρnk
,Nnk

) implies that limk J(ρnk
,mnk

) = J(ρ,m) thanks to continuity
assumption (B), uniform convergence of mn and (1.54). Then from the optimality of ρn

for mn, i.e. J(ρnk
,mnk

) ≤ J(σ,mnk
) for every σ ∈ R, taking the limit as k → ∞ we

get J(ρ,m) ≤ J(σ,m) for every σ ∈ R, which means that ρ is optimal for m and thus
y = Flow(Xρ,m) ∈ Φ(m) as required.

2.1.3 Relaxed feedback mean field game solutions

Theorem 2.4 provides a relaxed (open-loop) solution of the mean field game. Under the same
assumptions we obtain here a relaxed feedback mean field game solution which has the same
cost and flow of the open-loop one. This result is similar to Theorem 3.7 in [64] and will
provide approximate feedback Nash equilibria for the N -player game.

Theorem 2.5. Assume (A) and (B) and let (((Ω,F , P ;F), ρ, ξ,N ),m,Xρ,m) be a relaxed
mean field game solution. Then there exists a relaxed feedback control Υ ∈ Y such that the
tuple (((Ω,F , P ;F),Υ, ξ,N ),m,XΥ,m) is a relaxed feedback mean field game solution; namely

Flow(XΥ,m) = Flow(Xρ,m) = m, (2.5)

J(Υ,m) = J(ρ,m). (2.6)

Proof. The flow m ∈ E is fixed and set X = Xρ,m. We claim that there exists a measurable
function Υ : [0, T ] × Σ −→ P(A) such that

Υ(t,X(t)) = E[ρt|X(t)] ℓ⊗ P -almost every (t, ω) ∈ [0, T ] × Ω.

This holds if and only if

∫

A
ϕ(t,X(t), a)[Υ(t,X(t))](da) = E

[∫

A
ϕ(t,X(t), a)ρt(da)

∣∣∣∣X(t)

]
(2.7)
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for any bounded and measurable ϕ : [0, T ] × Σ × A −→ R. In order to construct Υ, define
the probability measure R on [0, T ] × Σ ×A by

R(B) :=
1

T
E

[∫ T

0

∫

A
✶B(t,X(t), a)ρt(da)dt

]
, B ∈ B([0, T ] × Σ ×A).

Then build Υ by disintegration of R:

R(dt, ds, da) = R1(dt, dx)[Υ(t, x)](da)

where R1 denotes the [0, T ] × Σ marginal of R and Υ : [0, T ] × Σ −→ P(A) is measurable.
Following [64], we show that such Υ satisfies (2.7): for every bounded and measurable
ψ : [0, T ] × Σ −→ R we get

E

[∫ T

0
ψ(t,X(t))

∫

A
ϕ(t,X(t), a)[Υ(t,X(t))](da)dt

]

= T

∫

[0,T ]×Σ
ψ(t, x)

∫

A
ϕ(t, x, a)[Υ(t, x)](da)R1(dt, dx)

= T

∫

[0,T ]×Σ×A
ψ(t, x)ϕ(t, x, a)R(dt, dx, da)

= E

[∫ T

0
ψ(t,X(t))

∫

A
ϕ(t,X(t), a)ρt(da)dt

]
,

which provides (2.7) thanks to Lemma 5.2 in [11]. Having Υ, (2.7) yields
∫

Θ

∫

A
γ(t,X(t), θ, a,m(t))[Υ(t,X(t))](da)ν(dθ)

= E

[∫

Θ

∫

A
γ(t,X(t), θ, a,m(t))ρt(da)ν(dθ)

∣∣∣∣X(t)

]

ℓ⊗ P -almost everywhere.
Then we solve equation (1.60) in the same probability space of X, under the relaxed

feedback control Υ, and denote by Y = XΥ,m its solution. By the Dynkin formula (1.63), we
have for any g ∈ R

d,

E [g(X(t))] = E [g(ξ)] + E

[∫ t

0

∫

A
Λa

sg(X(s))ρs(da)ds

]

= E [g(ξ)] + E

[
E

[∫ t

0

∫

A
Λa

sg(X(s))ρs(da)

∣∣∣∣X(s)

]
ds

]

and then thanks to (2.7)

E [g(X(t))] = E [g(ξ)] + E

[∫ t

0

∫

A
Λa

sg(X(s))[Υ(s,X(s))](da)ds

]
, (2.8)

while Dynkin’s formula for Y yields

E [g(Y (t))] = E [g(ξ)] + E

[∫ t

0

∫

A
Λa

sg(Y (s))[Υ(s, Y (s))](da)ds

]
. (2.9)

Comparing (2.8) and (2.9) we obtain that Law(X(t)) and Law(Y (t)), which are vectors in
P(Σ) ⊂ R

d, satisfy the same ODE in integral form, namely

g · ζ(t) = g · Law(ξ) +

∫ t

0

∫

Σ

∫

A
Λa

sg(x)[Υ(s, x)](da)[ζ(t)](dx)ds, t ∈ [0, T ],
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for any g ∈ R
d, the unknown being denoted by ζ : [0, T ] → P(Σ). Taking g = ej , j = 1, . . . , d,

the corresponding system of ODEs, which is clearly linear in π, has a unique absolutely
continuous solution ζ ∈ E , hence (2.5) is proved.

Similarly, (2.7) gives

J(ρ,m) = E

[∫ T

0

∫

A
c(t,X(t), a,m(t))ρt(da)dt+G(X(T ),m(T ))

]

= E

[∫ T

0

∫

A
c(t,X(t), a,m(t))[Υ(s,X(s))](da)dt+G(X(T ),m(T ))

]

and then we use (2.5) to conclude that

J(ρ,m) = E

[∫ T

0

∫

A
c(t, Y (t), a,m(t))[Υ(s, Y (s))](da)dt+G(Y (T ),m(T ))

]

= J(Υ,m).

2.2 Feedback mean field game solutions

2.2.1 Feedback optimal control for m fixed

We show the existence of an optimal non-relaxed feedback control αm for J(π,m) for any m,
using the verification theorem for the related Hamilton-Jacobi-Bellman equation. Let m ∈ E
be fixed.

For any t ∈ [0, T ], x ∈ Σ and π ∈ S let Xt,x
π be the solution to

Xt,x
π (s) = x+

∫ s

t

∫

Θ
γ(r−, Xt,x

π (r−), θ, π(r),m(r))N (dr, dθ) (2.10)

and set

J(t, x, π,m) := E

[∫ T

t
c(s,Xt,x

π (s), π(s),m(s))ds+G(Xt,x
π (T ),m(T ))

]
.

Next, define the value function by

Vm(t, x) := inf
π∈S

J(t, x, π,m). (2.11)

Recall that the generator was defined in (1.3) by

Λa,m
t g(x) :=

∫

Θ
[g(x+ γ(t, x, θ, a,m)) − g(x)]ν(dθ)

for any t, x, a,m and g ∈ R
d. For a function v = v(t, x) the generator will be applied to the

space variable, i.e. denote Λa,m
t v(t, x) = Λa,m

t v(t, ·)(x).
Thanks to Theorem D.5 in [53] on measurable selectors, there exists a feedback control

αm ∈ A (i.e. measurable) such that

αm(t, x) ∈ argmina∈A

{
Λ

a,m(t)
t Vm(t, x) + c(t, x, a,m(t))

}
, (2.12)

where Vm is the value function (2.11). Let us remark that the above minimum exists for any
t and x if (A) and (B) hold, as the right hand side turns out to be a continuous function of
the variable a, since the value function is trivially Lipschitz continuous in x.
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Theorem 2.6. Assume (A) and (B). Let m ∈ E. Then any feedback control αm defined by
(2.12) is optimal, that is, J(αm,m) ≤ J(π,m) for any π ∈ S.

In order to prove Theorem 2.6, we use the Hamilton-Jacobi-Bellman equation of the
problem (see, for instance, Chapter 3 in [43]):





∂v
∂t (t, x) + infa∈A

{
Λ

a,m(t)
t v(t, x) + c(t, x, a,m(t))

}
= 0 in [0, T [×Σ

v(T, x) = G(x,m(T )) in Σ
(2.13)

for a function v : [0, T ] × Σ → R. Using the definition of the Hamiltonian H in (1.5), (2.13)
can be written as {

d
dtv(t, x) + H(t, x, v(t)) = 0, in [0, T [×Σ

v(T, x) = G(x), in Σ
(2.14)

which is in fact an ODE indexed by x ∈ Σ, where v(t) denotes the vector (v(t, 1), . . . , v(t, d)).
Define a classical solution to (2.14) as an absolutely continuous function v from [0, T ] to

R
d such that, in vector form, v(t) = G+

∫ T
t H(s, v(s))ds for every t ∈ [0, T ]. We apply to our

problem the following verification theorem, which is a version of Theorem 3.8.1 in [43, p. 135]:

Proposition 2.7 (Verification). Let v be a classical solution to (2.14), and let αm be any
feedback control such that (2.12) holds for Lebesgue almost every t. Then

v(t, x) = J(t, x, αm,m) = Vm(t, x)

for any t ∈ [0, T ] and x ∈ Σ, where Vm is the value function (2.11).

We are now in the position to prove Theorem 2.6.

Proof of Theorem 2.6. In view of Proposition 2.7, we have just to show that there exists a
classical solution to (2.14). Hence it is enough to prove that H = H(t, g) is globally Lipschitz
continuous in g ∈ R

d, uniformly in t ∈ [0, T ]. So let t be fixed and take g, g̃ ∈ R
d and x ∈ Σ.

Recall that

H(t, x, g) := min
a∈A

{∫

Θ
[g(x+ γ(t, x, θ, a,m(t))) − g(x)]ν(dθ) + c(t, x, a,m(t))

}
,

and let ã be a minimizer for H(t, x, g̃). Then

H(t, x, g) − H(t, x, g̃) = min
a∈A

{∫

Θ
[g(x+ γ(t, x, θ, a,m(t))) − g(x)]ν(dθ) + c(t, x, a,m(t))

}

−
∫

Θ
[g̃(x+ γ(t, x, θ, ã,m(t))) − g̃(x)]ν(dθ) − c(t, x, ã,m(t))

≤
∫

Θ
[g(x+ γ(t, x, θ, ã,m(t))) − g(x)]ν(dθ) −

∫

Θ
[g̃(x+ γ(t, x, θ, ã,m(t))) − g̃(x)]ν(dθ)

≤
∫

Θ
|g(x+ γ(t, x, θ, ã,m(t))) − g(x) − g̃(x+ γ(t, x, θ, ã,m(t))) + g̃(x)| ν(dθ)

=

∫

Θ
|(g − g̃)(x+ γ(t, x, θ, ã,m(t))) − (g − g̃)(x)| ν(dθ) ≤ 2ν(Θ) max

y∈Σ
|(g − g̃)y| .

Changing the role of g and g̃ we obtain the converse, hence

|H(t, x, g) − H(t, x, g̃)| ≤ 2ν(Θ) max
y∈Σ

|g(y) − g̃(y)|
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for any x, which implies

max
x∈Σ

|H(t, x, g) − H(t, x, g̃)| ≤ 2ν(Θ) max
y∈Σ

|g(y) − g̃(y)| .

Therefore H is Lipschitz continuous in g in the norm | · |∞, which is equivalent to the Euclidean
norm in R

d.

2.2.2 Uniqueness of the feedback control for m fixed

Consider the pre-Hamiltonian, as defined in (1.4),

f(t, x, a,m, g) :=

∫

Θ
[g(x+ γ(t, x, θ, a,m)) − g(x)] ν(dθ) + c(t, x, a,m)

for (t, x, a,m) ∈ [0, T ] × Σ ×A× P(Σ) and g ∈ R
d. We make the additional assumption (C);

so let us recall that a∗(t, x,m, g) is the unique minimizer of f(t, x, a,m, g) in a ∈ A. Define
for m ∈ E the feedback control

αm(t, x) := a∗(t, x,m(t), Vm(t, ·)) (2.15)

where Vm is the value function (2.11).

Theorem 2.8. Assume (A), (B) and (C). Given m ∈ E, let σ ∈ R be any optimal relaxed
control for m and let Xσ,m be the corresponding solution to (1.58). Then σt = δαm(t,Xσ,m(t))

for ℓ⊗ P -almost every (t, ω), that is, σ corresponds to the feedback control αm.

This result and the proof of Theorem 2.4 imply that any relaxed solution of the mean
field game must correspond to a feedback solution:

Corollary 2.9. Assume (A), (B) and (C). Then there exists a feedback solution (α,m,X)
of the mean field game, and any solution is such that its control coincides with αm.

Let Q ∈ P(A), and define

f̂(t, x,Q,m, g) :=

∫

A
f(t, x, a,m, g)Q(da).

Lemma 2.10. If f is continuous in a, then

min
Q∈P(A)

f̂(t, x,Q,m, g) = min
a∈A

f(t, x, a,m, g) (2.16)

for any t, x,m and g. Moreover, if (C) holds, then there exists a unique Q∗ ∈ P(A) such that

f̂(t, x,Q∗,m, g) = min
Q∈P(A)

f̂(t, x,Q,m, g) = min
a∈A

f(t, x, a,m, g) = f(t, x, a∗,m, g)

and Q∗ = δa∗, where a∗ = a∗(t, x,m, g).

Proof. If f is continuous in a, then f̂ is continuous in Q ∈ P(A) in the weak topology. Since
P(A) is compact, there exists a minimum: let Q∗ be a minimizer. For fixed t, x,m and g we
have

min
Q∈P(A)

f̂(t, x,Q,m, g) ≤ min
Q=δa,a∈A

∫

A
f(t, x, a,m, g)Q(da) = min

a∈A
f(t, x, a,m, g)
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and

min
Q∈P(A)

∫

A
f(t, x, a,m, g)Q(da) ≥ min

Q∈P(A)

∫

A
f(t, x, a∗,m, g)Q(da) = f(t, x, a∗,m, g),

which means that f̂(t, x,Q∗,m, g) = f(t, x, a∗,m, g).
Consider f(t, x, a,m, g) − f(t, x, a∗,m, g) as a function of a: it is non-negative and, if (C)

holds, it equals zero if and only if a = a∗. Therefore,

0 = f̂(t, x,Q∗,m, g) − f(t, x, a∗,m, g) =

∫

A
[f(t, x, a,m, g) − f(t, x, a∗,m, g)]Q∗(da),

which implies the claim, namely that Q∗({a∗}) = 1.

Remark 2.11. Note that if (C) does not hold, then Q∗ is supported on the set of all
minimizers of f. Thus it might not be a Dirac measure. This implies that there may exist an
optimal relaxed control which is not an ordinary control (not even open-loop).

Proof of Theorem 2.8. Fix m ∈ E . Let σ ∈ R be an optimal relaxed control and denote by
Xσ = Xσ,m the corresponding optimal trajectory. By the chattering lemma, which we will
state later as Lemma 2.121,

E [V (0, Xσ(0))] = min
ρ∈R

J(ρ,m) = J(σ,m)

= E

[∫ T

0

∫

A
c(t,Xσ(t), a,m(t))σt(da)dt+G(Xσ(T ),m(T ))

]
,

where V = Vm is the value function defined in (2.11). Thanks to (2.13), the Hamilton-Jacobi-
Bellman equation, and (2.16), we have

∂

∂t
V (t, x) + f̂(t, x, σt, V (t, ·)) ≥ 0 for all t, x, ω. (2.17)

By the Dynkin formula (1.63) and the terminal condition for V ,

E [V (0, Xσ(0))] = E [V (T,Xσ(T ))]

− E

[∫ T

0

(
∂

∂t
V (t,Xσ(t)) +

∫

A
Λ

a,m(t)
t V (t,Xσ(t))σt(da)

)
dt

]

= E

[∫ T

0

∫

A
c(t,Xσ(t), a,m(t))σt(da)dt+G(Xσ(T ),m(T ))

]

− E

[∫ T

0

∂

∂t
V (t,Xσ(t)) + f̂(t,Xσ(t), σt, V (t, ·))dt

]
.

It follows that

E

[∫ T

0

∂

∂t
V (t,Xσ(t)) + f̂(t,Xσ(t), σt, V (t, ·))dt

]
= 0,

hence, in view of (2.17),

∂

∂t
V (t,Xσ(t)) + f̂(t,Xσ(t), σt, V (t, ·)) = 0

1Here only the open-loop part of the chattering lemma is needed, which is well known, and so we postpone

the proof of the lemma to Section 5, where we also give the feedback part.
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for ℓ⊗ P -almost every (t, ω), which means that

σt ∈ argminQ∈P(A) f̂(t,Xσ,m(t), σt, V (t, ·))

for ℓ⊗ P -almost every (t, ω). If (C) holds, then, by Lemma 2.10, the unique minimizer of
Q 7→ f̂(t, x,Q,m(t), V (t, ·)) is the measure Q∗ = δa∗ ∈ P(A) with a∗ = a∗(t, x,m(t), V (t, ·)).
It follows that σt = δαm(t,Xσ(t)) for ℓ⊗ P -almost every (t, ω).

2.3 Approximation of N-player game

2.3.1 Approximation of relaxed controls

In order to get an ε-Nash equilibrium for the N -player game in open-loop strategies, respec-
tively in feedback strategies, we have first to find an approximation of the optimal relaxed
control, respectively relaxed feedback control, for the mean field game. To this end, we will
make use of the following version of the chattering lemma.

Lemma 2.12 (Chattering). For any relaxed control ρ ∈ R, there exists a sequence of
stochastic open-loop controls πn ∈ S such that, denoting by ρπn(dt, da) = δπn(t)(da)dt their
relaxed control representation,

lim
n→∞ ρπn = ρ P -a.s.,

where the limit is in the weak topology in M([0, T ] ×A). Moreover, any πn takes values in a
finite subset of A.

For any relaxed feedback control Υ ∈ Y, there exists a sequence of feedback controls αn ∈ A
such that

lim
n→∞ δαn(t,x)(da)dt = [Υ(t, x)](da)dt (2.18)

uniformly in x ∈ Σ and

lim
n→∞ ραn = ρΥ in distribution, (2.19)

where ραn denotes the relaxed control representation of the open-loop control παn corresponding
to αn, as in (1.48), and ρΥ is defined in (1.61); i.e. ραn

t (da) = δαn(t,Xαn (t−))(da) and

ρΥ
t (da) = [Υ(t,XΥ(t−))](da).

Proof. The first part is proved as Theorem 3.5.2 in [61, p. 59], and the construction of the
approximating sequence in the proof gives the αn for the second part; let us show how to
build them. Let Υ ∈ Y, cover A by Mr disjoint sets Cr

i which contain a point ar
i and set

Ar := {ar
i : i ≤ Mr}, a finite subset of A. For any ∆ > 0 and i, j define the function

τ∆r
ij (x) :=

∫ (i+1)∆

i∆
[Υ(s, x)](Cr

j )ds.

Divide any interval [(i + 1)∆, (i + 2)∆[ into M r subintervals I∆r
ij (x) of length τ∆r

ij (x) and

define the feedback control α∆r, which is piecewise constant, by

α∆r(t, x) :=

{
a0 t ∈ [0,∆[

ar
j t ∈ I∆r

ij (x)
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where a0 is an arbitrary value in A. The proof in [61] shows that

lim
r→0
∆→0

δα∆r(t,x)(da)dt = [Υ(t, x)](da)dt

weakly, for any x ∈ Σ. Since Σ is finite we obtain that there exists a sequence of ordinary
feedback controls (αn) such that (2.18) holds uniformly in x. Let m ∈ E be fixed and Xn

be the solution to (1.47) corresponding to the feedback control αn. By Theorem 2.1, the
sequence Xn is tight and there are a subsequence, which we still denote as (Xn), and a process
X such that limn→∞Xn = X in distribution. Possibly applying the Skorokhod representation
(Theorem 4.30 in [59], p.79), we may assume that this convergence is with probability one in
the space of càdlàg functions D([0, T ],Σ) equipped with the Skorokhod metric. This implies
in particular that

P
(

lim
n→∞Xn(t) = X(t) for any t /∈ E

)
= 1, (2.20)

where E is the finite random set of discontinuity points (the jumps) of X.
Let now ϕ ∈ C([0, T ] × A) be any continuous function, which is also bounded as A is

compact. We have to show the convergence to zero, almost surely, of

∫ T

0

∫

A
ϕ(t, a)[δαn(t,Xn(t−)) − Υ(t,X(t−))](da)dt = Yn + Zn,

where

Yn =

∫ T

0

[
ϕ(t, αn(t,Xn(t−))) − ϕ(t, αn(t,X(t−)))

]
dt

Zn =

∫ T

0

∫

A
ϕ(t, a)[δαn(t,X(t−)) − Υ(t,X(t−))](da)dt.

Any feedback control is Lipschitz in x, i.e. dA(αn(t, x), αn(t, y)) ≤ Diam(A)|x− y|, and so
Yn tends to zero thanks to (2.20), the continuity of ϕ and dominated convergence. As to Zn,
write Zn =

∑
x∈Σ Z

x
n where

Zx
n :=

∫ T

0

∫

A
✶Bx(t)ϕ(t, a)[δαn(t,x) − Υ(t, x)](da)dt

and Bx is the random set in [0, T ] where X(t) = x. For each x, the random set Dx of
discontinuity points of the function ✶Bx(t)ϕ(t, a) is a subset of Ex ×A for some finite random
set Ex ⊂ [0, T ]. Thus Dx has null measure with respect to the limiting control Υ(t, x)(da)dt
with probability one, for each x, thanks to Definition 1.11. Hence by (2.18) we get that Zx

n

tends to zero for each x and so does Zn since Σ is finite.
Let πn(t) = αn(t,Xn(t−)) be the open-loop control corresponding to αn and ρn its relaxed

control representation. We have just proved that limn→∞ ρn = [Υ(t,X(t−))](da)dt P -almost
surely and thus Theorem 2.1 says that X must have the same law as the solution to (1.60)
under the relaxed feedback control Υ. That solution is unique by Lemma 1.13, meaning that
X = XΥ in distribution. Therefore (2.19) follows since ρΥ

t = Υ(t,XΥ(t−)) by (1.61).

Remark 2.13. In the above proof we strongly used the finiteness of Σ to get the approximation
in feedback controls. While the result in the open-loop setting holds for general state space Σ,
when considering feedback controls it is not clear whether the above lemma can be generalized
to uncountably infinite state spaces.

We are now able to state the approximation result:
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Proposition 2.14. Let m ∈ E, ρ ∈ R and Υ ∈ Y. Then for every ε > 0 there exist π ∈ S
and α ∈ A such that

E

[
sup
t≥0

|Xπ,m(t) −Xρ,m(t)|
]

≤ ε (2.21)

E

[
sup
t≥0

|Xα,m(t) −XΥ,m(t)|
]

≤ ε (2.22)

|J(π,m) − J(ρ,m)| ≤ ε. (2.23)

|J(α,m) − J(Υ,m)| ≤ ε. (2.24)

Proof. Let (πn) be a sequence in S that approximates ρ as in Lemma 2.12. Then we apply
Theorem 2.1 to the sequence (Xπn,m, πn,m): it is tight, a subsequence (Xπnk

,m, πnk
,m)

converges in distribution to (Xρ,m, ρ,m) and limk→∞ J(πnk
,m) = J(ρ,m). Thus there exist

πnk
=: π for which (2.21) and (2.23) hold. In a similar way, one proves (2.22) and (2.24) for

feedback controls.

2.3.2 εN -Nash equilibria

We can now define the approximate Nash equilibrium for the N -player game, first in open-loop
form.

Notation 2.15. Let (((Ω,F , P ;F), π, ξ,N ) ,m,Xρ,m) be a relaxed solution of the mean field
game, which exists assuming (A) and (B) by Theorem 2.4. Fix N ∈ N and let π ∈ S be as in
Proposition 2.14, satisfying (2.21) and (2.23) with ε = 1√

N
. Then ((Ω′,F ′, P ′;F′),π, ξ,N )

denotes the strategy vector where π = (π1, . . . , πN ), ξ = (ξ1, . . . , ξN ), N = (N1, . . . ,NN ),
such that

Law
(
(π1, ξ1,N1), . . . , (πN , ξN ,NN )

)
= (Law(π, ξ,N ))⊗N . (2.25)

Such a control exists by considering, for instance, Ω′ and P ′ to be the product space and the
product measure, respectively, with (πi, ξi,Ni)(ω

′) := (π, ξ,N )(ωi) for ω′ = (ω1, . . . , ωN ).

Equation (2.25) says that this control is symmetric. The following is our main result,
whose proof is carried out in the next subsection. In addition to (A) and (B), we make the
Lipschitz assumptions (A’) and (B’).

Theorem 2.16. Assume (A’) and (B’). Then the strategy vector defined in Notation 2.15
is an εN -Nash equilibrium for the N-player game for any N where εN ≤ C√

N
and C =

C(T, d, ν(Θ),K1,K2) is a constant.

An analogous result holds when considering feedback strategies, but we state it separately.

Notation 2.17. Let (((Ω,F , P ;F),Υ, ξ,N ) ,m,XΥ,m) be a relaxed feedback solution of the
mean field game, which exists assuming (A) and (B) by Theorem 2.5. Fix N ∈ N and
let α ∈ A be as in Proposition 2.14, satisfying (2.22) and (2.24) with ε = 1√

N
. Then the

tuple ((Ω′,F ′, P ′;F′),α, ξ,N ) denotes the feedback strategy vector where ξ = (ξ1, . . . , ξN ),
N = (N1, . . . ,NN ), α = (α1, . . . , αN ) such that

αi(t, xN ) := α(t, xi) (2.26)

for any t, i and x = (x1, . . . , xN ) ∈ ΣN , and the (ξi,Ni) are N i.i.d copies of (ξ,N ).
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Equation (2.26) says that this feedback strategy vector is symmetric and decentralized.
In order to obtain feedback ε-Nash equilibria from a mean field game solution, we need the
Lipschitz assumptions (A”) and (B”).

Theorem 2.18. Assume (A”), (B”). Then the feedback strategy vector defined in Nota-
tion 2.17 is a feedback εN -Nash equilibrium for the N -player game for any N where εN ≤ C√

N

and C = C(T, d, ν(Θ),K1,K2) is a constant.

2.3.3 Proofs of Theorems 2.16 and 2.18

In the following C will denote any constant which depends on T , d, ν(Θ) and the Lipschitz
constants K1 and K2, but not on N , and is allowed to change from line to line. We focus
first on open-loop controls. Fix N ∈ N and let the strategy vector π be as in Notation 2.15.
We play this strategy in the N -player game:

Xi(t) = ξi +

∫ t

0

∫

Θ
γ(s,Xi(s

−), θ, πi(s),mN (s−))Ni(ds, dθ) i = 1, . . . , N. (2.27)

This will be coupled with Y defined by

Yi(t) = ξi +

∫ t

0

∫

Θ
γ(s, Yi(s

−), θ, πi(s),m(s))Ni(ds, dθ) i = 1, . . . , N. (2.28)

Let mN (t) := 1
N

∑N
i=1 δXi(t) be the empirical measure of the system (2.27) and mN be

the empirical measure of (2.28). Denote m(t) := Law(Xπ,m(t)). By (2.21) we have

|m(t) −m(t)| ≤ 1√
N

(2.29)

for any t ≥ 0, since Flow(Xρ,m) = m. From (2.25) it follows that

Law(Yi, π
i, ξi,Ni) = Law(Xπ,m, π, ξ,N ), i ∈ {1, . . . , N}.

This implies, thanks to Theorem 1 in [44], that

E|mN (t) −m(t)| ≤ C√
N

(2.30)

for any t ∈ [0, T ] and N ∈ N, where C is a constant. This upper bound in N− 1
2 cannot be

improved, since for these discrete measures a lower bound still in N− 1
2 can be found, see

again [44].

Lemma 2.19. Under assumption (A’), for every t ≥ 0 and i = 1, . . . , N

E|mN (t) −m(t)| ≤ C√
N

(2.31)

E|Xi(t) − Yi(t)| ≤ C√
N
. (2.32)

Proof. From (2.29) and (2.30) it follows that

E|mN (t) −m(t)| ≤ C√
N
. (2.33)
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We estimate |mN (t) −mN (t)| using the (1.1), which follows from the 1-Wasserstein metric,
(2.27), (2.28) and the Lipschitz assumption (1.19):

E|mN (t) −mN (t)| ≤ C

N

N∑

i=1

E|Xi(t) − Yi(t)|

≤ C

N

N∑

i=1

E|Xi(0) − Yi(0)| +
C

N

N∑

i=1

∫ t

0

∫

Θ
E|γ(s,Xi(s), θ, π

i(s),mN (s−))

− γ(s, Yi(s), θ, π
i(s),m(s))|ν(dθ)ds

≤ C

N

N∑

i=1

K1

∫ t

0

[
E|Xi(s) − Yi(s)| + E|mN (s) −m(s)|

]
ds.

Hence applying (2.33)

E|mN (t) −m(t)| +
C

N

N∑

i=1

E|Xi(t) − Yi(t)|

≤ E|mN (t) −m(t)| +
2C

N

N∑

i=1

E|Xi(t) − Yi(t)|

≤ C√
N

+ 2K1
1

N

N∑

i=1

∫ t

0

[
E|Xi(s) − Yi(s)| + E|mN (s) −m(s)|

]
ds.

Then we obtain, by Gronwall’s lemma,

E|mN (t) −m(t)| +
C

N

N∑

i=1

E|Xi(t) − Yi(t)| ≤ C√
N

+ 2K1

∫ t

0
e2K(t−s) C√

N
ds ≤ C√

N
.

Similarly we show (2.32): using (2.27), (2.28) and (2.31) we get, for any i,

E|Xi(t) − Yi(t)|

≤
∫ t

0

∫

Θ
E

∣∣∣γ(s,Xi(s), θ, π
i(s),mN (s)) − γ(s, Yi(s), θ, π

i(s),m(s))
∣∣∣ ν(dθ)ds

≤ K1

∫ t

0

[
E|Xi(s) − Yi(s)| + E|mN (s) −m(s)|

]
ds

≤ K1

∫ t

0

[
E|Xi(s) − Yi(s)| +

C√
N

]
ds

and hence E|Xi(t) − Yi(t)| ≤ C√
N

by Gronwall’s lemma.

We are now in the position to state the result about the costs. Because of the symmetry
of the problem, for the prelimit we shall consider only player one (i = 1).

Lemma 2.20. Under assumptions (A’) and (B’)

|J1(π) − J(ρ,m)| ≤ C√
N
. (2.34)
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Proof. Inequality (2.23), together with notation 2.15, yields

|J(π,m) − J(ρ,m)| ≤ C√
N
. (2.35)

While from (1.21), (2.31) and (2.32) we have

|J1(π) − J(π,m)| ≤ E|G(X1(T ),mN (T )) −G(Y1(T ),m(T ))|

+ E

∫ T

0
|c(t,X1(t), π1(t),mN (t)) − c(t, Y1(t), π1(t),m(t))|dt

≤ K2

∫ T

0

[
E|X1(t) − Y1(t)| + E|mN (t) −m(t)|

]
dt

+K2

[
E|X1(T ) − Y1(T )| + E|mN (T ) −m(T )|

]

≤ K2T
C√
N

+K2
C√
N

≤ C√
N
,

which, combined with (2.35), gives the claim.

We consider then any π̃ ∈ S and the perturbed strategy vector [πN,−1, π̃]. We denote by
X̃ the solution to

X̃i(t) = ξi +

∫ t

0

∫

Θ
γ(s, X̃i(s

−), θ, [πN,−1, π̃]i(s), m̃
N (s−))Ni(ds, dθ) (2.36)

for each i = 1, . . . , N . Set also Ỹ1 := Xπ̃,m and m̃N (t) := 1
N

∑N
i=1 δX̃i(t)

.

Lemma 2.21. Under assumption (A’), for any t ≥ 0 and π̃ ∈ S

E|mN (t) − m̃N (t)| ≤ C

N
(2.37)

E|m̃N (t) −m(t)| ≤ C√
N

(2.38)

E|X̃1(t) − Ỹ1(t)| ≤ C√
N
. (2.39)

Proof. We make the rough estimate

E|mN (t) − m̃N (t)| ≤ 1

N
E|X1(t) − X̃1(t)| +

1

N

N∑

i=2

E|Xi(t) − X̃i(t)|

≤ d

N
+

1

N

N∑

i=2

∫ t

0

∫

Θ
E|γ(s,Xi(s), θ, π

i(s),mN (s))

− γ(s, X̃i(s), θ, π
i(s), m̃N (s))|ν(dθ)ds

≤ d

N
+

1

N

N∑

i=2

K1

∫ t

0

[
E|Xi(s) − X̃i(s)| + E|mN (s) − m̃N (s)|

]
ds.

Hence

E|mN (t) − m̃N (t)| +
1

N

N∑

i=2

E|Xi(t) − X̃i(t)|

≤ d

N
+ 2K1

1

N

N∑

i=2

∫ t

0

[
E|Xi(s) − X̃i(s)| + E|mN (s) − m̃N (s)|

]
ds
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and then, by Gronwall’s lemma,

E|mN (t) − m̃N (t)| +
1

N

N∑

i=2

E|Xi(t) − X̃i(t)| ≤ d

N
e2K1T ≤ C

N
.

Therefore (2.37) is proved. Estimate (2.38) follows from (2.37) and (2.31) and the fact that
1
N ≤ 1√

N
for any N ∈ N. While (2.39) is a consequence of (2.38):

E|X̃1(t) − Ỹ1(t)|

≤
∫ t

0

∫

Θ
E

∣∣∣γ(s, X̃1(s), θ, π̃(s), m̃N (s)) − γ(s, Ỹ1(s), θ, π̃(s),m(s))
∣∣∣ ν(dθ)ds

≤ K1

∫ t

0

[
E|X̃1(s) − Ỹ1(s)| + E|mN (s) −m(s)|

]
ds

≤ K1

∫ t

0

[
E|X̃1(s) − Ỹ1(s)| +

C√
N

]
ds

and we conclude by Gronwall’s lemma.

Lemma 2.22. Under assumptions (A’) and (B’)

|J1([π−1, π̃]) − J(π̃,m)| ≤ C√
N
. (2.40)

Proof. Inequalities (1.21), (2.38) and (2.39) give

|J1([π−1,π̃]) − J(π̃,m)| ≤ E|G(X̃1(T ), m̃N (T )) −G(Ỹ1(T ),m(T ))|

+ E

∫ T

0
|c(t, X̃1(t), π̃(t), m̃N (t)) − c(t, Ỹ1(t), π̃(t),m(t))|dt

≤K2

∫ T

0

[
E|X̃1(t) − Ỹ1(t)| + E|m̃N (t) −m(t)|

]
dt

+K2

[
E|X̃1(T ) − Ỹ1(T )| + E|m̃N (T ) −m(T )|

]

≤K2T
C√
N

+K2
C√
N

≤ C√
N
.

Theorem 2.16 is now a consequence of Lemmata 2.20 and 2.22:

Proof of Theorem 2.16. Inequalities (2.34), (2.40), and the optimality of ρ yield

J1(π) ≤ J(ρ,m) +
C√
N

≤ J(π̃,m) +
C√
N

≤ J1([π−1, π̃]) +
C√
N
.

Remark 2.23. We observe that π is still an εN -Nash equilibrium if we assume only (B)
instead of (B’), but without the estimate of the order of convergence εN ≤ C√

N
. Namely, there

exists a sequence (εN ) such that limN→∞ εN = 0.
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Proof of Theorem 2.18. The argument is the same as in the proof of Theorem 2.16. The
difference is that equations (2.27), (2.28) and (2.36) become respectively, for each i = 1, . . . , N ,

Xi(t) = ξi +

∫ t

0

∫

Θ
γ(s,Xi(s

−), θ, α(s,Xi(s
−)),mN (s−))Ni(ds, dθ),

Yi(t) = ξi +

∫ t

0

∫

Θ
γ(s, Yi(s

−), θ, α(s, Yi(s
−)),m(s))Ni(ds, dθ)

and

X̃i(t) = ξi +

∫ t

0

∫

Θ
γ(s, X̃i(s

−), θ, [α−1, π̃]i(s), m̃
N (s−))Ni(ds, dθ),

where the latter means that

X̃1(t) = ξ1 +

∫ t

0

∫

Θ
γ(s, X̃1(s−), θ, π̃(s), m̃N (s−))N1(ds, dθ)

and

X̃i(t) = ξi +

∫ t

0

∫

Θ
γ(s, X̃i(s

−), θ, α(s, X̃i(s
−)), m̃N (s−))Ni(ds, dθ)

for i = 2, . . . , N , thanks to Notation 1.4. The estimates we need to apply Gronwall’s lemma,
in particular in the proof of Lemma 2.21, are found using also (1.20) and the fact that
dA(α(s, x), α(s, y)) ≤ Diam(A)|x− y| for every s and each x and y in the finite Σ.
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CHAPTER 3

Convergence under uniqueness: the master

equation

We present here the results which hold when there is uniqueness of mean field game solutions.
We begin by showing the convergence of the value functions and the propagation of chaos
property for the optimal trajectories. Then we employ the convergence argument to derive the
asymptotic behaviour of the empirical measure processes, that is, the Central Limit Theorem
and the Large Deviation Principle. After that, we analyze the well-posedness and regularity
of the solution to the master equation, which is required for the above results. These results
were presented in [27], but under the more restrictive condition that the transition rates are
bounded below away from zero (Assumption (Erg)). Here we manage to prove, in particular,
the convergence results without requiring this assumption. In the last section, we prove
uniqueness of feedback mean field game solutions under slightly more general assumptions,
either for T small enough or under monotonicity, and show that the strategy vector given by
the Nash system is the unique feedback Nash equilibrium.

3.1 The convergence argument

In this section we take for granted the well-posedness of the master equation (M) and focus
on the study of the convergence. As we consider only the feedback Nash equilibrium and
the optimal processes, we can fix here and in the rest of the chapter the filtered probability
space and the Poisson random measures. We give the precise statement of the convergence in
terms of two theorems: the first one describes the convergence of the value functions, while
the second one is a propagation of chaos for the optimal trajectories.

For any i ∈ {1, . . . , N} and x ∈ Σ, set

wN,i(t0, x,m0) :=
d∑

x1=1

· · ·
d∑

xi−1=1

d∑

xi+1=1

· · ·
d∑

xN =1

vN,i(t0,x)
∏

j 6=i

m0(xj),

where x = (x1, . . . , xN ), and

||wN,i(t0, ·,m0) − U(t0, ·,m0)||L1(m0) :=
d∑

x=1

|wN,i(t0, x,m0) − U(t0, x,m0)|m0(x).

The main result is given by the following

47



48 Convergence under uniqueness: the master equation

Theorem 3.1. Assume (LipH) and that (M) admits a unique regular solution U in the sense
of Definition 1.17. Fix N ≥ 1, (t0,m0) ∈ [0, T ] × P(Σ), x ∈ ΣN and let (vN,i) be the solution
to (Nash). Then for any i ∈ {1, . . . , N}

|vN,i(t,x) − U(t, xi,m
N
x )| ≤ C

N
(3.1)

|∆ivN,i(t,x) − ∆iU(t, xi,m
N
x )| ≤ C

N
(3.2)

||wN,i(t, ·,m0) − U(t, ·,m0)||L1(m0) ≤ C√
N
. (3.3)

In (3.1) and (3.3), the constant C does not depend on i, t, m0, x nor N .

As stated above, the convergence can be studied also in terms of the optimal trajectories.
Consider the optimal process Yt = (Y1(t), . . . , YN (t))t∈[0,T ] for the N -player game,

Yi(t) = ξi +

∫ t

0

∫

Θ

∑

y∈Σ

(y − Yi(s
−))✶]0,αi

y(s,Y
s− )[(θy)Ni(ds, dθ), t ∈ [0, T ] (3.4)

where αi
y(t,x) is the optimal feedback, i.e. αi

y(t,x) := [a∗(xi,∆
ivN,i(t,x))]y: it solves (1.36)

with γ given by (1.8). Moreover, let X̃t = (X̃1(t), . . . , X̃N (t))t∈[0,T ] be the i.i.d. process
solution to

X̃i,t = ξi +

∫ t

0

∫

Θ

∑

y∈Σ

(y − X̃i(s
−))✶

]0,α̃i
y(s,X̃

s− )[
(θy)Ni(ds, dθ), t ∈ [0, T ] (3.5)

with α̃i
y(t,x) := [a∗ (xi,∆

xU(t, xi,m(t)))]y, m being the unique solution to the mean field

game, which is induced by U ; see Remark 1.18. It follows that Law(X̃i(t)) = m(t).

Theorem 3.2. Under the same assumptions of Theorem 3.1, for any N ≥ 1 and any
i ∈ {1, . . . , N}, we have

E

[
sup

t∈[0,T ]

∣∣∣Yi(t) − X̃i(t)
∣∣∣
]

≤ C√
N

(3.6)

for some constant C > 0 independent of m0 and N . In particular we obtain the Law of Large
Numbers

E

[
sup

t∈[0,T ]

∣∣∣mN
Y (t) −m(t)

∣∣∣
]

≤ CN− 1
9 . (3.7)

Notice that the supremum is taken inside the mean, giving the convergence in the space of
trajectories. For this reason, we have a slow convergence of order N−1/9 in (3.7), coming from
a result in [72] about the convergence of the empirical measures of a decoupled system (c.f.
Lemma 3.6 below). Instead, if the supremum were taken outside the mean, the convergence
would be of order N−1/2 as in (3.6), thanks to the result in [44] we recalled also in (2.30).

3.1.1 Convergence of the value functions

The first step in the proof of Theorem 3.1 is to show that the projection of U onto empirical
measures

uN,i(t,x) := U(t, xi,m
N,i
x ) (3.8)
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satisfies the system (Nash) up to a term of order O
(

1
N

)
. We recall that the value functions,

as well as their discrete gradients and the Nash equilibria, are bounded uniformly in N thanks
to Lemma 1.7; the uN,i-s are also bounded uniformly in N because of the regularity of U .

The following proposition makes rigorous the intuition we already used in the heuristic
derivation of the master equation (M). In what follows, C will denote any constant independent
of i,N,m0,x, which is allowed to change from line to line.

Proposition 3.3. Let U be a regular solution to the master equation and uN,i(t,x) be defined
as in (3.8). Then, for j 6= i,

∆juN,i(t,x) =
1

N − 1
DmU(t, xi,m

N,i
x , xj) + τN,i,j(t,x), (3.9)

where τN,i,j ∈ C([0, T ] × ΣN ;Rd), ||τN,i,j || ≤ C
(N−1)2 .

Proof. Observe first that [∆juN,i(t,x)]xj
= 0 = [DmU(t, xi,m

N,i
x , xj)]xj

by definition, so we
set [τN,i,j(t,x)]xj

:= 0. Consider then y 6= xj : [∆juN,i(t,x)]y = U(t, xi,
1

N−1

∑
k 6=i,j δxk

+
1

N−1δy) − U(t, xi,m
N,i
x ) by definition. By standard computations we get

U


t, xi,

1

N − 1

∑

k 6=i,j

δxk
+

1

N − 1
δy


− U(t, xi,m

N,i
x )

= U

(
t, xi,m

N,i
x +

1

N − 1
(δy − δxj

)

)
− U(t, xi,m

N,i
x )

=

∫ 1
N−1

0

[
DmU(mN,i

x + s(δy − δxj
), xj)

]
y
ds

=

∫ 1
N−1

0

([
DmU(mN,i

x + s(δy − δxj
), xj)

]
y

+
[
DmU(mN,i

x , xj)
]

y
−
[
DmU(mN,i

x , xj)
]

y

)
ds

=
1

N − 1

[
DmU(mN,i

x , xj)
]

y
+

∫ 1
N−1

0

([
DmU(mN,i

x +s(δy − δxj
), xj)

]
y
−
[
DmU(mN,i

x , xj)
]

y

)
ds

=
1

N − 1

[
DmU(t, xi,m

N,i
x , xj)

]
y

+O

(
1

(N − 1)2

)
,

where the last equality is derived by exploiting the Lipschitz continuity in m of DmU
∣∣∣∣∣

∫ 1
N−1

0

([
DmU(mN,i

x + s(δy − δxj
), xj)

]
y

−
[
DmU(mN,i

x , xj)
]

y

)
ds

∣∣∣∣∣

≤ C

∫ 1
N−1

0

∣∣∣s(δy − δxj
)
∣∣∣ ds = O

(
1

(N − 1)2

)
.

For every component y of DmU we have found the thesis, and thus the same holds for the
whole vector.

In the next proposition we show that the uN,i-s almost solve the system (Nash):

Proposition 3.4. Under the assumptions of Theorem 3.1, the functions (uN,i)i=1,...,N solve

{
−∂uN,i

∂t (t,x)−∑N
j=1, j 6=ia

∗(xj ,∆
juN,j) · ∆juN,i+H(xi,∆

iuN,i) = F (xi,m
N,i
x )+rN,i(t,x)

uN,i(T,x) = G(xi,m
N,i
x ),

(3.10)
with rN,i ∈ C([0, T ] × ΣN ), ||rN,i|| ≤ C

N .
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Proof. We know that U solves

−∂tU +H(x,∆xU) −
∫

Σ
DmU(t, x,m, y) · a∗(y,∆yU(t, y,m))dm(y) = F (x,m),

and U(T, x,m) = G(x,m).
Computing the equation in (t, xi,m

N,i
x ) we get

−∂tU(t, xi,m
N,i
x ) +H(xi,∆

xU(t, xi,m
N,i
x ))

−
∫

Σ
DmU(t, xi,m

N,i
x , y) · a∗(y,∆xU(t, y,mN,i

x ))dmN,i
x (y) = F (xi,m

N,i
x ),

with the correct final condition uN,i(t,x) = U(T, xi,m
N,i
x ) = G(xi,m

N,i
x ). By definition of

empirical measure we can rewrite

−∂tU(t, xi,m
N,i
x ) +H(xi,∆

xU(t, xi,m
N,i
x ))

− 1

N − 1

N∑

j=1,j 6=i

DmU(t, xi,m
N,i
x , xj) · a∗(xj ,∆

xU(t, xj ,m
N,i
x )) = F (xi,m

N,i
x ).

Thanks to Proposition 3.3, we have

1

N − 1

N∑

j=1,j 6=i

DmU(t, xi,m
N,i
x , xj) · a∗(xj ,∆

xU(t, xj ,m
N,i
x ))

=
N∑

j=1,j 6=i

∆juN,i(t,x) · a∗(xj ,∆
xU(t, xj ,m

N,i
x ))

−
N∑

j=1,j 6=i

τN,i,j(t,x) · a∗(xj ,∆
xU(t, xj ,m

N,i
x ))

=: 1) + 2).

For the first term we add and subtract the quantity a∗(xj ,∆
xU(t, xj ,m

N,j
x )):

1) =
∑

j 6=i

∆juN,i(t,x) · a∗(xj ,∆
xU(t, xj ,m

N,i
x )) − a∗(xj ,∆

xU(t, xj ,m
N,j
x ))

+
∑

j 6=i

∆juN,i(t,x) · a∗(xj ,∆
xU(t, xj ,m

N,j
x ))

= (A) + (B).

For (A) we have, using first the Lipschitz continuity of a∗ with respect to the second variable
and then the Lipschitz continuity of ∆xU with respect to m:

(A) ≤
∑

j 6=i

∆juN,i(t,x) · (∆xU(t, xj ,m
N,i
x ) − ∆xU(t, xj ,m

N,j
x ))

≤ C
∑

j 6=i

||∆juN,i|| · |mN,i
x −mN,j

x |

≤ C

N − 1

∑

j 6=i

||∆juN,i|| ≤ C

N
,

where the last inequality is a consequence of (3.9) and the uniform bound on ||DmU || for the
solution to (M). Part (B) of 1) is instead what we want to obtain in the equation for uN,i, so
we leave it as it is. For the term 2), we simply note that U is bounded from above, and thus

the whole term 2) is also of order O
(

1
N

)
.
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We are now in the position to prove the convergence of the value functions to the regular
solution to the master equation.

Proof of Theorem 3.1. In order to prove (3.1), we apply Itô Formula to the function Ψ(t,Yt) =
(uN,i(t,Yt) − vN,i(t,Yt))

2,

dΨ(t,Yt) =
∂Ψ(t,Yt)

∂t
+

N∑

j=1

∫

Θ
[Ψ(t, Ỹ j

t−) − Ψ(t,Yt−)]Nj(dt, dθ),

Ỹ
j

t =


Y1,t, . . . , Yj−1,t, Yj,t +

∑

y∈Σ

(y − Yj,t)✶]0,αj
y [

(θy), Yj+1,t, . . . , YN,t


 ,

and, as above,

αj
y(t,Yt) =

[
a∗(Yj,t,∆

jvN,j(t,Yt))
]

y
.

It follows that

dΨ(t,Yt) = 2(uN,i(t,Yt) − vN,i(t,Yt))(∂tu
N,i − ∂tv

N,i)

+
N∑

j=1

∫

Θ
[(uN,i(t, Ỹ j

t−) − vN,i(t, Ỹ j
t−))2 − (uN,i(t,Yt−) − vN,i(t,Yt−))2]Nj(dt, dθ).

Now, let us fix a deterministic initial condition Yt = ξ. Integrating on the time interval [t, T ],
we get

[uN,i(T,YT ) − vN,i(T,YT )]2 =

= [uN,i(t,Yt) − vN,i(t,Yt)]
2 + 2

∫ T

t
(uN,i(s,Ys) − vN,i(s,Ys))(∂tu

N,i(s,Ys) − ∂tv
N,i(s,Ys))ds

+
N∑

j=1

∫ T

t

∫

Θ
[(uN,i(s, Ỹ j

s−) − vN,i(s, Ỹ j
s−))2 − (uN,i(s,Ys−) − vN,i(s,Ys−))2]Nj(ds, dθ).

For brevity, in the remaining part of the proof we set ui
s := uN,i(s,Ys), v

i
s := vN,i(s,Ys),

αj
s := αj(s,Ys) and αj

s := αj(s,Ys). Next, taking the expectation and applying (1.13), we
obtain

E[(ui
T − vi

T )2] = E[(ui
t − vi

t)
2] + 2E

[∫ T

t
(ui

s − vi
s)(∂tu

i
s − ∂tv

i
s)ds

]

+
N∑

j=1

E

[∫ T

t
αj(s,Ys) · ∆j [(ui

s − vi
s)2]ds

]
.

Let us first study the term E

[∫ T
t (ui

s − vi
s)(∂tu

i
s − ∂tv

i
s)ds

]
. Applying equations (3.10) and

(Nash) we get

E

[∫ T

t
(ui

s − vi
s)(∂tu

i
s − ∂tv

i
s)ds

]

= E

[ ∫ T

t
(ui

s − vi
s)

{
N∑

j=1,j 6=i

(
−αj

s · ∆jui
s + αj

s · ∆jvi
s + αj

s · ∆jui
s − αj

s · ∆jui
s

)

−H(Yi,s,∆
ivi

s) +H(Yi,s,∆
iui

s) − rN,i(s,Ys)

}
ds

]
.
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Note that we also added and subtracted αj · ∆jui
s in the last line so that we can use the

Lipschitz properties of H, a∗ and the bound on rN,i to get the correct estimates. Specifically,
we can rewrite

E

[∫ T

t
(ui

s − vi
s)(∂tu

i
s − ∂tv

i
s)ds

]

= E

[ ∫ T

t
(ui

s − vi
s)

{
N∑

j=1,j 6=i

(
(αj

s − αj
s) · ∆jui

s − αj
s · (∆jui

s − ∆jvi
s)
)

−H(Yi,s,∆
ivi

s) +H(Yi,s,∆
iui

s) − rN,i(s,Ys)

}
ds

]
.

Putting things together,

E[(ui
T − vi

T )2]

= E[(ui
t − vi

t)
2]+ 2E

[∫ T

t
(ui

s − vi
s)(∂tu

i
s − ∂tv

i
s)ds

]
+

N∑

j=1

E

[∫ T

t
αj

s ·∆j [(ui
s − vi

s)2]ds

]

= E[(ui
t − vi

t)
2] + 2E

[ ∫ T

t
(ui

s − vi
s)

{
N∑

j 6=i

(
(αj

s − αj
s) · ∆jui

s − αj
s · (∆jui

s − ∆jvi
s)
)

−H(Yi,s,∆
ivi

s) +H(Yi,s,∆
iui

s) − rN,i(s,Ys)

}
ds

]
+ E

[∫ T

t
αi

s · ∆i[(ui
s − vi

s)2]ds

]

+
N∑

j 6=i

E

[∫ T

t
αj

s · ∆j [(ui
s − vi

s)2]ds

]

= E[(ui
t − vi

t)
2] + 2E



∫ T

t
(ui

s − vi
s)





N∑

j 6=i

(
(αj

s − αj
s) · ∆jui

s − αj
s · (∆jui

s − ∆jvi
s)
)


 ds

+

∫ T

t

N∑

j 6=i

1

2
αj

s · ∆j [(ui
s − vi

s)2]ds+

∫ T

t
(ui

s − vi
s)(−H(Yi,s,∆

ivi
s) +H(Yi,s,∆

iui
s) − rN,i(s,Ys))ds




+ E

[∫ T

t
αi

s · ∆i[(ui
s − vi

s)2]ds

]
.

On the other hand, observing that ∆j [(ui − vi)2] = ∆j(ui − vi) × (∆j(ui − vi) + 2(1(ui − vi))),
× being the element by element product between vectors and 1 = (1, . . . , 1)†, the expression

E



∫ T

t
(ui

s − vi
s)





N∑

j=1,j 6=i

(
−2αj

s · (∆jui
s − ∆jvi

s)
)


 ds+

∫ T

t

N∑

j=1,j 6=i

(
αj

s · ∆j [(ui
s − vi

s)2]
)
ds




can be simplified as follows

E



∫ T

t
(ui

s − vi
s)





N∑

j=1,j 6=i

(
−2αj

s · (∆jui
s − ∆jvi

s)
)
)



 ds+

∫ T

t

N∑

j=1,j 6=i

(
αj

s · ∆j [(ui
s − vi

s)2]
)
ds




=
N∑

j=1,j 6=i

E

[ ∫ T

t

{
−2αj

s · (ui
s − vi

s)(∆jui
s − ∆jvi

s)
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+αj
s · (∆j(ui

s − vi
s) × (∆j(ui

s − vi
s) + 2(1(ui

s − vi
s)))

}
ds

]

=
N∑

j=1,j 6=i

E

[∫ T

t
αj

s · (∆j(ui
s − vi

s))2ds

]
.

Thus, we have found

0 =E[(ui
T − vi

T )2]

= E[(ui
t − vi

t)
2] + 2E

[ ∫ T

t
(ui

s − vi
s)

{
N∑

j=1,j 6=i

(
(αj

s − αj
s) · ∆jui

s

)

−H(Yi,s,∆
ivi

s) +H(Yi,s,∆
iui

s) − rN,i(s,Ys)

}
ds

]
+ E

[∫ T

t
αi

s · ∆i[(ui
s − vi

s)2]ds

]

+
N∑

j=1,j 6=i

E

[∫ T

t
αj

s · (∆j(ui
s − vi

s))2ds

]
.

Now, using again the expression for ∆i((ui
s − vi

s)2),

E

[∫ T

t
αi

s · ∆i[(ui
s − vi

s)2]ds

]

= E

[∫ T

t
αi

s · (∆i(ui
s − vi

s))2ds

]
+ E

[∫ T

t
αi

s · (∆i(ui
s − vi

s) × 2(1(ui
s − vi

s)ds

]
,

so that we can rewrite the previous as

E[(ui
t − ui

t)
2] +

N∑

j=1

E

[∫ T

t
αj

s · (∆j(ui
s − vi

s))2ds

]
(3.11)

= −2E



∫ T

t
(ui

s − vi
s)





N∑

j=1,j 6=i

(
(αj

s − αj
s) · ∆jui

s

)
−H(Yi,s,∆

ivi
s)+H(Yi,s,∆

iui
s)−rN,i(s,Ys)



 ds




− E

[∫ T

t
αi

s · (∆i(ui
s − vi

s) × 2(1(ui
s − vi

s)))ds

]
.

Recalling that αj
s ≥ 0 (since it is a vector of transition rates), we can estimate, erasing the

sum in the left hand side,

E[(ui
t − vi

t)
2]

≤ 2E



∫ T

t

∣∣∣ui
s−vi

s

∣∣∣





N∑

j 6=i

∣∣∣(αj
s − αj

s) · ∆jui
s

∣∣∣+
∣∣∣H(Yi,s,∆

ivi
s)−H(Yi,s,∆

iui
s)
∣∣∣+
∣∣∣rN,i(s,Ys)

∣∣∣



 ds




+ 2E

[∫ T

t

∣∣∣ui
s − vi

s

∣∣∣
∣∣∣αi

s · ∆i(ui
s − vi

s)
∣∣∣ ds

]
.

We now use the Lipschitz continuity of H and a∗ (assumption (LipH), the bound on α and
the bounds on ||rN,i|| ≤ C

N and ||∆jui|| ≤ 1
N ||DmU || ≤ C

N proved in Propositions 3.3 and 3.4
to obtain

E[(ui
t − vi

t)
2]
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≤ 2E



∫ T

t

∣∣∣ui
s − vi

s

∣∣∣




C

N

N∑

j=1,j 6=i

∣∣∣∆juj
s − ∆jvj

s

∣∣∣+ C
∣∣∣∆i(vi

s − ui
s)
∣∣∣+

C

N



 ds




+ 2CE

[∫ T

t

∣∣∣ui
s − vi

s

∣∣∣
∣∣∣∆i(ui

s − vi
s)
∣∣∣ ds

]

≤ C

N
E

[∫ T

t
|ui

s−vi
s|ds

]
+
C

N

∑

j 6=i

E

[∫ T

t
|ui

s−vi
s|
∣∣∣∆j(uj

s−vj
s)
∣∣∣ ds

]

+CE

[∫ T

t
|ui

s−vi
s|
∣∣∣∆i(ui

s−vi
s)
∣∣∣ ds

]
.

By the convexity inequality AB ≤ εA2 + B2

4ε we can further estimate the right hand side
to get

E[(ui
t − vi

t)
2] ≤ C

N2
+ CE

[∫ T

t
|ui

s − vi
s|2ds

]
+
C

N

N∑

j=1

E

[∫ T

t

∣∣∣∆j(uj
s − vj

s)
∣∣∣
2
ds

]
. (3.12)

Since all the functions are evaluated on the optimal trajectories, we can use the bounds

|uN,i(s,Ys) − vN,i(s,Ys)| ≤ max
x∈ΣN

|uN,i(s,x) − vN,i(s,x)|

|∆iuN,i(s,Ys) − ∆ivN,i(s,Ys)| ≤ C max
x∈ΣN

|uN,i(s,x) − vN,i(s,x)|

for any s ∈ [t, T ], where the latter is a consequence of (1.6). Recalling that the initial
condition is deterministic, (3.12) gives

|uN,i(t, ξ) − vN,i(t, ξ)| ≤ C

N2
+
C

N

N∑

j=1

∫ T

t
max
x∈ΣN

|uN,i(s,x) − vN,i(s,x)|2ds (3.13)

for any ξ ∈ ΣN . Hence we can take the max in ΣN and then average
(

1
N

∑N
i=1

)
to obtain

1

N

N∑

i=1

max
x∈ΣN

|uN,i(s,x) − vN,i(s,x)|2 ≤ C

N2
+ C

∫ T

t

1

N

N∑

i=1

max
x∈ΣN

|uN,i(s,x) − vN,i(s,x)|2ds.

Therefore Gronwall’s Lemma applied to the quantity 1
N

∑N
i=1 maxx∈ΣN |uN,i(s,x)−vN,i(s,x)|2

yields

1

N

N∑

i=1

max
x∈ΣN

|uN,i(t,x) − vN,i(t,x)|2 ≤ C

N2

which, by the arbitrary of t, holds for any t ∈ [0, T ]. Thus this inequality, applied to the right
hand side of (3.13), gives

max
x∈ΣN

|uN,i(t,x) − vN,i(t,x)|2 ≤ C

N2

for any i, which immediately implies (3.1). Inequality (3.2) is a consequence of (3.1) and
(1.6).

For (3.3), consider now the initial data ξ := (ξ1 . . . , ξN ), the ξi’s are i.i.d. and m0-
distributed: we have

||wN,i(t0, ·,m0) − U(t0, ·,m0)||L1(m0) =
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=
d∑

xi=1

|wN,i(t0, xi,m0) − U(t0, xi,m0)|m0(xi)

=
d∑

xi=1

∣∣∣∣∣∣

d∑

x1,...,xi−1,xi+1,...,xN =1

vN,i(t,x)
∏

j 6=i

m0(xj) − U(t, xi,m0)

∣∣∣∣∣∣
m0(xi)

=
d∑

xi=1

∣∣∣∣∣∣

d∑

x1,...,xi−1,xi+1,...,xN =1



v

N,i(t,x)
∏

j 6=i

m0(xj) − uN,i(t,x)
∏

j 6=i

m0(xj)

+uN,i(t,x)
∏

j 6=i

m0(xj)



− U(t, xi,m0)

∣∣∣∣∣∣
m0(xi)

≤ E|vN,i(t, ξ) − uN,i(t, ξ)| +
d∑

x1,...,xN =1

|uN,i(t,x) − U(t, xi,m0)|
N∏

j=1

m0(xj), (3.14)

By (3.1), the first term in (3.14) is of order 1/N . For the second term we further estimate,
using again the Lipschitz continuity of U with respect to m,

d∑

x1,...,xN =1

|uN,i(t,x) − U(t, xi,m0)|
N∏

j=1

m0(xj)

=
d∑

x1,...,xN =1

|U(t, xi,m
N,i
x ) − U(t, xi,m0)|

N∏

j=1

m0(xj)

≤ CE
[
d1(mN,i

ξ ,m0)
]

≤ C√
N
,

where in the last inequality we used that E

[
d1(mN

ξ ,m0)
]

≤ C√
N

, thanks to Theorem 1 of

[44], where d1 is the 1-Wasserstein distance and mN
ξ is the corresponding empirical measure.

Overall, we have bounded (3.14) by a term of order 1/
√
N , and thus (3.3) is also proved.

3.1.2 Propagation of chaos

The central part of the proof of the propagation of chaos is based on comparing the optimal
trajectories associated to vN,i with the ones associated to uN,i. Hence, consider the processes

Xi(t) = ξi +

∫ t

0

∫

Θ

∑

y∈Σ

(y −Xi(s
−))1]0,αi

y(s,X
s− )[(θy)Ni(ds, dθ), t ∈ [0, T ] (3.15)

where αi
y(t,x) := [a∗(xi,∆

iuN,i(t,x))]y. Observe that the processes X and Y are exchange-
able, and that both the Nash equilibrium α and α are uniformly bounded.

Theorem 3.5. With the notation introduced above, under the assumptions of Theorem 3.1,
we have

E

[
sup

t∈[0,T ]
|Yi(t) −Xi(t)|

]
≤ C

N
, (3.16)

E

[
sup

t∈[0,T ]
|mN

Y (t) −mN
X(t)|

]
≤ C

N
, (3.17)
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Proof. We first exploit the representation (3.15) and (3.4) of the dynamics to get, for any t,

sup
s∈[0,t]

|Xi,s − Yi,s|

≤
∫ t

0

∣∣∣γ(Xi,s− , θ, a∗(Xi,s− ,∆iuN,i(Xs−))) − γ(Yi,s− , θ, a∗(Yi,s− ,∆ivN,i(Ys−)))
∣∣∣Ni(ds, dθ).

Then, taking the expectation and using (1.12) and the Lipschitz continuity of a∗, we obtain

ϕ(t) := E

[
sup

s∈[0,t]
|Xi,s − Yi,s|

]

≤CE
[∫ t

0

∣∣∣a∗(Xi,s,∆
iuN,i(Xs))−a∗(Yi,s,∆

ivN,i(Ys))
∣∣∣ ds

]
+CE

[∫ t

0
|Xi,s−Yi,s| ds

]

≤ CE

[∫ t

0
|Xi,s − Yi,s|ds

]
+ CE

[∫ T

0

∣∣∣∆iuN,i(Ys) − ∆ivN,i(Ys)
∣∣∣ ds

]

+ CE

[∫ t

0

∣∣∣∆xU
(
s,Xi,s,m

N,i
Xs

)
− ∆xU

(
s, Yi,s,m

N,i
Ys

)∣∣∣ ds
]

≤ C

N
+ CE

[∫ t

0
sup

r∈[0,s]
|Xi,r − Yi,r|ds

]
+ CE

[∫ t

0
sup

r∈[0,s]

∣∣∣mN,i
Xr

−mN,i
Yr

∣∣∣ ds
]
, (3.18)

where we applied (3.2) and the Lipschitz continuity in m of ∆xU in the last inequality. Hence
inequality (1.1) and the exchangeability of (X,Y ) yield

ϕ(t) ≤ C

N
+ C

∫ t

0


E

[
sup

r∈[0,s]
|Xi,r − Yi,r|

]
+

1

N − 1

∑

j 6=i

E

[
sup

r∈[0,s]
|Xj,r − Yj,r|

]
 ds

≤ C

N
+ C

∫ t

0
ϕ(s)ds

and by Gronwall’s inequality we get (3.16). Finally (3.16), applying again (1.1), gives
(3.17).

Finally, we get to the proof of the propagation of chaos (Theorem 3.2). Recall that the
Yi,t’s are the optimal processes, i.e. the solutions to system (3.4), the Xi,t’s are the processes
associated to the functions uN,i, i.e. they solve system (3.15), while the X̃i,t’s - to which we
would like to prove convergence - are the decoupled limit processes (they solve system (3.5)).
First, we need the following lemma

Lemma 3.6. Let X̃t = (X̃i,t)i∈1,...,N be N i.i.d. processes with values in R, with Law(X̃i,t) =
m(t). Then

E

∣∣∣mN,i

X̃t

−mt

∣∣∣ ≤ C√
N

∀t ∈ [0, T ] (3.19)

E

[
sup

t∈[0,T ]

∣∣∣mN,i

X̃t

−mt

∣∣∣
]

≤ CN−1/9, (3.20)

where C does not depend on t nor N .

Inequality (3.19) follows again from Theorem 1 in [44], while a proof of (3.20) can be
found for example in [72].
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Proof of Theorem 3.2. The assertion of the theorem is proved if we show that

E

[
sup

t∈[0,T ]
|Xi,t − X̃i,t|

]
≤ C√

N
. (3.21)

Indeed, by the triangle inequality and (3.16) in Theorem 3.5 we can estimate

E

[
sup

t∈[0,T ]
|Yi,t − X̃i,t|

]
≤ E

[
sup

t∈[0,T ]
|Yi,t −Xi,t|

]
+ E

[
sup

t∈[0,T ]
|Xi,t − X̃i,t|

]

≤ C

(
1

N
+

1√
N

)
.

We are then left to prove (3.21). As in the proof of (3.16), we have

ϕ(t) := E

[
sup

s∈[0,t]
|Xi,s − X̃i,s|

]

≤ E

[∫ t

0

∣∣∣a∗(Xi,s,∆
iuN,i(Xs)) − a∗(X̃i,s,∆

xU(s, X̃i,s,m(s)))
∣∣∣ ds+

∫ t

0

∣∣∣Xi,s − X̃i,s

∣∣∣ ds
]

≤ E

[∫ t

0

∣∣∣a∗(Xi,s,∆
xU(r,Xi,s,m

N,i
Xs

)) − a∗(Xi,s,∆
xU(s, X̃i,s,m

N,i

X̃s

))
∣∣∣ ds+

∫ t

0

∣∣∣Xi,s − X̃i,s

∣∣∣ ds

+

∫ t

0

∣∣∣a∗(Xi,s,∆
xU(s, X̃i,s,m

N,i

X̃s

)) − a∗(X̃i,s,∆
xU(s, X̃i,s,m(s)))

∣∣∣ ds
]
.

By the Lipschitz continuity of the optimal controls, and of ∆xU , we can write

ϕ(t) ≤ C

∫ t

0
E

[
|Xi,s − X̃i,s| +

∣∣∣mN,i

X̃s

−mN,i
Xs

∣∣∣+
∣∣∣mN,i

X̃s

−m(s)
∣∣∣
]
ds

≤ C

∫ t

0
E


|Xi,s − X̃i,s| +

1

N − 1

∑

j 6=i

|Xj,s − X̃j,s| +
∣∣∣mN,i

X̃s

−m(s)
∣∣∣


 ds.

Using (3.19) of Lemma 3.6 and the exchangeability of the processes, we obtain

ϕ(t) ≤ C

∫ t

0


E

[
sup

r∈[0,s]
|Xi,r − X̃i,r|

]
+

1

N − 1

∑

j 6=i

E

[
sup

r∈[0,s]
|Xj,r − X̃j,r|

]
 ds+ T

C√
N

≤ C

∫ t

0
ϕ(s)ds+

C√
N
,

which, by Gronwall’s Lemma, concludes the proof of (3.6). Finally (3.7) follows from (3.6)
and (3.20), using also (1.1).

3.2 Fluctuations and large deviations

The convergence results, Theorem 3.1 and 3.2, allow to derive a Central Limit Theorem
and a Large Deviation Principle for the asymptotic behaviour of the empirical measure
process of the N -player game optimal trajectories. First of all, we recall from Proposition
1.8 that, for any i, the value function vN,i of player i in the N -player game is invariant
under permutations of (x1, . . . , xi−1, xi+1, . . . , xN ). This is equivalent to say that the value
functions can be viewed as functions of the empirical measure of the system, i.e. there exists
a map V N : [0, T ] × Σ × P(Σ) such that

vN,i(t,x) = V N (t, xi,m
N,i
x ) (3.22)

for any i = 1, . . . , N , t ∈ [0, T ] and x ∈ ΣN .
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3.2.1 Dynamics of the empirical measure process

We consider the empirical measure process of the optimal evolution Y - defined in (3.4) - of
the N -player game. If the system is in x at time t, then the rate at which player i goes from
xi to y is given, via the optimal control, by

a∗
y(xi,∆

iV N (t, xi,m
N,i
x )) =: ΓN

xi,y(t,mN
x ), (3.23)

i.e. by a function ΓN which depends only on the empirical measure mN
x and on the number

of players N .

Thus the empirical measure of the system (mN
t )t∈[0,T ], m

N
t := mN

Y (t) = 1
N

∑N
i=1 δYi,t

,

evolves as a (time-inhomogeneous) Markov process on [0, T ], with values in SN := P(Σ)∩ 1
N Z

d.
The number of players in state x, when the empirical measure is m, is Nmx. Hence the jump
rate of mN in the direction 1

N (δy − δx) at time t is NmxΓN
x,y(t,m). Therefore the generator

of the time-inhomogeneous Markov process mN is given, at time t, by

LN
t g(m) := N

∑

x,y∈Σ

mxΓN
x,y(t,m)

[
g

(
m+

1

N
(δy − δx)

)
− g(m)

]
, (3.24)

for any g : SN −→ R.

Theorem 3.2 implies that the empirical measures converge in L1 - on the space of
trajectories D([0, T ],P(Σ)) - to the deterministic flow of measures m which is the unique
solution of the mean field game system, whose dynamics is given by the KFP ODE

{
d
dtm(t) = Γ(t,m(t))†m(t)

m(0) = m0,
(3.25)

where Γ is the matrix defined by

Γx,y(t,m) := a∗
y(x,∆xU(t, x,m)) (3.26)

and U is the solution to the master equation. Viewing m(t) as a Markov process - and so we
will write mt in this section -, its infinitesimal generator is given, at time t, by

Ltg(m) :=
∑

x,y∈Σ

mxΓx,y(t,m)[Dmg(m,x)]y (3.27)

for any g : P(Σ) −→ R. Thanks to (1.15), the generator can be equivalently written as

Ltg(m) :=
∑

x,y∈Σ

mxΓx,y(t,m)[Dmg(m, 1)]y = m†Γ(t,m)Dmg(m, 1). (3.28)

In order to prove the asymptotic results, we will also consider the empirical measure of the
process X defined in (3.15), in which each player chooses the same control Γx,y independent of
N . We denote by mN

t := 1
N

∑N
i=1 δXi(t) the empirical measure process of X, whose generator

is given, for any g : P(Σ) −→ R, by

L
N
t g(m) := N

∑

x,y∈Σ

mxΓx,y(t,m)

[
g

(
m+

1

N
(δy − δx)

)
− g(m)

]
. (3.29)
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3.2.2 Central Limit Theorem

A natural refinement of the Law of Large Numbers (3.7) consists in studying the fluctuations
around the limit, that is the asymptotic distribution of mN

t −mt.
This can be done through a functional Central Limit Theorem: we define the fluctuation

flow
ηN

t :=
√
N(mN

t −mt) t ∈ [0, T ] (3.30)

and study its asymptotic behavior as N tends to infinity. We follow a classical weak
convergence approach based on uniform convergence of the generator of the fluctuation flow
(3.30) to a limiting generator of a diffusion process to be determined; see e.g. [30] for reference.
Before stating the theorem we observe that the process (3.30) has values in P0(Σ), which in
the following we treat as a subset of Rd.

Theorem 3.7 (Central Limit Theorem). Let U be a regular solution to the master equation
and assume (LipH). Then the fluctuation flow ηN

t in (3.30) converges, as N → ∞, in the
sense of weak convergence of stochastic processes, to a limiting Gaussian process ηt which is
the solution of the linear SDE




dηt =

(
Γ(t,mt)

†ηt + b(t,mt, ηt)
)
dt+ σ(t,mt)dBt,

η0 = η̄,
(3.31)

where η̄ is the limit of ηN
0 in distribution, B is a standard d-dimensional Brownian motion, Γ

is the transition rate matrix in (3.26), b ∈ R
d is linear in µ and defined, for any y ∈ Σ and

µ ∈ P0(Σ), by
b(t,m, µ)y :=

∑

x∈Σ

mx [DmΓx,y(t,m, 1) · µ] , (3.32)

and σ ∈ R
d×d is given by the relations

(σ2)x,y(t,m) = −(mxΓx,y(t,m) +myΓy,x(t,m)), for x 6= y, (3.33)

(σ2)x,x(t,m) =
∑

y 6=x

(myΓy,x(t,m) +mxΓx,y(t,m)). (3.34)

In particular the matrix σ2 is the opposite of the generator of a Markov chain, is symmetric
and positive semidefinite with one null eigenvalue, and the same properties hold for σ, meaning
that ηt ∈ P0(Σ) for any t.

Proof. The key observation is that we can reduce ourselves to study the asymptotics of the
fluctuation flow

µN
t :=

√
N(mN

t −mt), (3.35)

which is more standard since mN
t , whose generator L is defined in (3.29), is the empirical

measure of an uncontrolled system of N mean-field interacting particles. Indeed, by (3.17)
we have that

√
N(mN −mN ) tends to 0 almost surely as N goes to infinity.

Thus, it remains to prove the convergence in law of (3.35) to the solution to (3.31). The
convergence of µN

0 (and ηN
0 ) to the initial condition η̄ follows from the Central Limit Theorem

for the i.i.d. sequence of initial conditions ξi in systems (22) and (28). Then, we compute
the generator of (3.35) for t ≥ 0. We note that µN

t is obtained from mN
t through a time

dependent, linear invertible transformation Φt : SN → P0(Σ) ⊂ R
d, defined by

Φt(m) :=
√
N(m−mt),
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with inverse Φ−1
t (µ) := mt + µ√

N
. Thus, the generator MN

t of (3.35) can be written as

MN
t g(µ) = L

N
t [g ◦ Φt](Φ

−1
t (µ)) +

∂

∂t
[g ◦ Φt](Φ

−1
t (µ)), (3.36)

for any g : P0(Σ) → R regular and with compact support (we can extend the definition of g
to be a smooth function in the whole space R

d, so that the usual derivatives are well defined).
We have

∂

∂t
[g ◦ Φt](Φ

−1
t (µ)) = −

√
N∇µg(µ) · d

dt
mt = −

√
N∇µg(µ) ·

(
Γ (t,mt)

†mt

)

= −
√
N

∑

x,y∈Σ

∂

∂µy
g(µ)Γx,y(t,mt)(mt)x.

where the second equality follows from the KFP equation for mt. For the remaining part in
(3.36), we have

L
N
t [g ◦ Φt](Φ

−1
t (µ)) = N

∑

x,y∈Σ

(
mt +

µ√
N

)

x

Γx,y

(
t,mt +

µ√
N

)
×

×
{

[g ◦ Φt]

(
mt +

µ√
N

+
1

N
(δy − δx)

)
− [g ◦ Φt]

(
mt +

µ√
N

)}

= N
∑

x,y∈Σ

(
mt+

µ√
N

)

x

Γx,y

(
t,mt+

µ√
N

){
g

(
µ+

1√
N

(δy −δx)

)
−g(µ)

}
.

Thus, we have found

MN
t g(µ) = N

∑

x,y∈Σ

(
mt +

µ√
N

)

x

Γx,y

(
t,mt +

µ√
N

){
g

(
µ+

1√
N

(δy − δx)

)
− g(µ)

}

−
√
N

∑

x,y∈Σ

∂

∂µy
g(µ)Γx,y(t,mt)(mt)x.

In order to perform a Taylor expansion of the generator, we first develop the term

g

(
µ+

1√
N

(δy − δx)

)
− g(µ)

=
1√
N

∇µg(µ) · (δy − δx) +
1

2N
(δy − δx)†D2

µµg(µ)(δy − δx) +O

(
1

N3/2

)
.

Substituting, we get

MN
t g(µ) =

√
N

∑

x,y∈Σ

(
mt +

µ√
N

)

x

Γx,y

(
t,mt +

µ√
N

)
∇µg(µ) · (δy − δx)

+
1

2

∑

x,y∈Σ

(
mt +

µ√
N

)

x

Γx,y

(
t,mt +

µ√
N

)
(δy − δx)†D2

µµg(µ)(δy − δx)

−
√
N

∑

x,y∈Σ

∂

∂µy
g(µ)Γx,y(t,mt)(mt)x +O

(
1√
N

)
.

Now, we note that

∑

x,y∈Σ

(
mt +

µ√
N

)

x

Γx,y

(
t,mt +

µ√
N

)
∇µg(µ) · (δy − δx)

=
∑

x,y∈Σ

(
mt +

µ√
N

)

x

Γx,y

(
t,mt +

µ√
N

)
∂

∂µy
g(µ),
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since
∑

y Γx,y = 0. This property allows us to rewrite

MN
t g(µ) =

∑

x,y∈Σ

µxΓx,y

(
t,mt +

µ√
N

)
∂

∂µy
g(µ)

+
√
N

∑

x,y∈Σ

(mt)x
∂

∂µy
g(µ)

[
Γx,y

(
t,mt +

µ√
N

)
− Γx,y(t,mt)

]

+
1

2

∑

x,y∈Σ

(
mt +

µ√
N

)

x

Γx,y

(
t,mt +

µ√
N

)
(δy − δx)†D2

µµg(µ)(δy − δx) +O

(
1√
N

)
.

Then, using the Lipschitz continuity of Γ as we did in Proposition 3, we linearize the term

Γx,y

(
t,mt +

µ√
N

)
− Γx,y(t,mt) =

1√
N
DmΓx,y(t,mt, 1) · µ+O

(
1

N

)
.

We thus deduce that

lim
N→∞

sup
t∈[0,T ]

sup
µ∈P0(Σ)

|MN
t g(µ) − Mtg(µ)| = 0

for any g, the convergence being of order 1√
N

, where

Mtg(µ) :=
∑

x,y∈Σ

µxΓx,y (t,mt)
∂

∂µy
g(µ) +

∑

x,y∈Σ

(mt)x [DmΓx,y(t,mt, 1) · µ]
∂

∂µy
g(µ) (3.37)

+
1

2

∑

x,y∈Σ

(mt)x Γx,y (t,mt) (δy − δx)†D2
µµg(µ)(δy − δx).

The proof is then completed if we show that the generator (3.37) is associated to the SDE
(3.31).

The drift component can be immediately identified, since

∑

x,y∈Σ

µxΓx,y (t,mt)
∂

∂µy
g(µ) =

(
Γ(t,mt)

†µ
)

· ∇µg(µ),

and ∑

x,y∈Σ

(mt)x [DmΓx,y(t,mt, 1) · µ]
∂

∂µy
g(µ) = b(t, µ) · ∇µg(µ).

For the diffusion component, we first note that, for each x, y ∈ Σ,

(δy − δx)†D2
µµg(µ)(δy − δx) =

∂2

∂µyµy
g(µ) +

∂2

∂µxµx
g(µ) − ∂2

∂µxµy
g(µ) − ∂2

∂µyµx
g(µ),

so that

1

2

∑

x,y∈Σ

(δy − δx)†D2
µµg(µ)(δy − δx)(mt)xΓx,y(t,mt)

=
1

2

∑

x,y∈Σ

[
∂2

∂µyµy
g(µ) +

∂2

∂µxµx
g(µ) − ∂2

∂µxµy
g(µ) − ∂2

∂µyµx
g(µ)

]
(mt)xΓx,y(t,mt),

which is equal to

1

2
Tr(σ2(t,mt)D

2
µµg(µ)) =

1

2

∑

x,y∈Σ

(σ2(t,mt))x,y
∂2

∂µxµy
g(µ),
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if we define (σ2)x,y∈Σ by the relations (3.33) and (3.34).
Finally, we observe that the limiting process ηt defined in (3.31) takes values in P0(Σ), as

required. Indeed, by diagonalizing σ2 - which is symmetric and such that its rows sum to 0 -
we get that all the eigenvectors, besides the constant one relative to the null eigenvalue, have
components which sum to 0 (by orthogonality). The same properties hold for the square root
matrix σ, so that equation (3.31) preserves the space P0(Σ).

3.2.3 Large Deviation Principle

We state the large deviation result, which is a sample path Large Deviation Principle on
D([0, T ]; P(Σ)). To define the rate function, we first introduce the local rate function
χ : R −→ [0,+∞],

χ(r) :=





r log r − r + 1 r > 0,

1 r = 0,

+∞ r < 0.

(3.38)

For t ∈ [0, T ], m ∈ P(Σ) and µ ∈ P0(Σ), define

Λ(t,m, µ) := inf




∑

x,y∈Σ

mxΓx,y(t,m)χ

(
qx,y

Γx,y(t,m)

)
: qx,y ≥ 0,

∑

x,y∈Σ

qx,y(δy − δx) = µ ∀x, y




(3.39)
and set, for λ : [0, T ] −→ P(Σ),

I(λ) :=

{∫ T
0 Λ(t, λ(t), λ̇(t))dt if λ is absolutely continuous and λ(0) = m0

+∞ otherwise.
(3.40)

We need the additional property, common in large deviations theory, that the processes
are ergodic, which is guaranteed for instance Assumption (Erg). We are now able to state
the Large Deviation Principle. We equip D([0, T ]; P(Σ)) with the Skorokhod J1-topology
and denote by B(D([0, T ]; P(Σ))) the associated Borel σ-algebra.

Theorem 3.8 (Large Deviation Principle). Let U be a regular solution to the master equation
and assume (LipH) and (Erg). Also, assume that the initial conditions (mN

0 )N∈N are deter-
ministic and limN mN

0 = m0. Then the sequence of empirical measure processes (mN )N∈N

satisfies the sample path Large Deviation Principle on D([0, T ]; P(Σ)) with the (good) rate
function I. Specifically,

(i) if E ∈ B(D([0, T ]; P(Σ))) is closed then

lim sup
N

1

N
logP (mN ∈ E) ≤ − inf

λ∈E
{I(λ)} (3.41)

(ii) if E ∈ B(D([0, T ]; P(Σ))) is open then

lim inf
N

1

N
logP (mN ∈ E) ≥ − inf

λ∈E
{I(λ)} (3.42)

(iii) For any M < +∞ the set

{λ ∈ D([0, T ]; P(Σ)) : I(λ) ≤ M} (3.43)

is compact.
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We remark that the initial conditions are assumed to be deterministic only for simplicity,
otherwise there would be another term in the rate function I. Before proving Theorem 3.8,
let us give another characterization of I. For m ∈ P(Σ) and p ∈ R

d, define

Ψ(t,m, p) :=
∑

x,y

mxΓx,y(t,m)
[
ep·(δy−δx) − 1

]
(3.44)

and let Λ0 be the Legendre transform of Ψ:

Λ0(t,m, µ) = sup
p∈Rd

[p · µ− Ψ(t,m, p)] . (3.45)

Define I0 as in (3.40) but with Λ replaced by Λ0. Via a standard result in convex analysis,
Proposition 6.2 in [39] shows that Λ = Λ0 and then I = I0.

Several authors studied large deviation properties of mean field interacting processes
similar to ours. However, most of them deal with the case in which the prelimit jump rates,
mN

x ΓN , are constant and equal to the limiting rates mxΓ; see e.g. [69], [74] and [73]. We
mention that in this latter paper, as in many others, it is also assumed that the jump rates
of the prelimit process are bounded from below and away from 0; this does not apply to our
case, since the number of agents in a state x could be zero, implying that mN

x ΓN
x,y might also

be zero.
To prove the claim, we apply the results in [39]: to our knowledge, it is the first paper

which proves a Large Deviation Principle considering the jump rates of any player depending
on N (and deals also with systems with simultaneous jumps). Theorem 3.4.1 in [77] shows,
however, the exponential equivalence of the processes mN and the processes mN given by
(3.29) in which the jump rates of the prelimit system mN

x ΓN are replaced by mxΓ, which
does not depend on N ; the proof uses a coupling of the two Markov chains. The results in
[39] and [77] are derived assuming the following properties:

1. the dynamics of any agent is ergodic and the jump rates are uniformly bounded;

2. for each x, y ∈ Σ, the limiting jump rates Γx,y are Lipschitz continuous in m;

3. for each x, y ∈ Σ, given any sequence mN ∈ SN such that limN mN = m,

lim
N

sup
0≤t≤T

|ΓN
x,y(t,mN ) − Γx,y(t,m)| = 0. (3.46)

We are now in the position to prove the large deviations result.

Proof of Theorem 3.8. The fact that I is a good rate function, i.e condition (iii), is proved
for instance in Theorem 1.1 of [38]. Due to Theorem 3.9 in [39], in order to prove the claims
(i) and (ii), it is enough to show the three properties above. Actually [39] studies time
homogeneous Markov processes, but their results still apply in the non-homogeneous case if
one proves the uniform in time convergence given by (3.46).

Property (1) holds in our model since the jump rates of any player are bounded below
away from 0 by Assumption (Erg), and are bounded above by Lemma 1.7. Property (2)
is true because of the regularity of the solution U to the master equation. Let x, y ∈ Σ,
mN = mN

x ∈ SN , x = (x1, . . . , xN ) ∈ ΣN and mN
x → m. Then

∣∣ΓN
x,y(t,mN

x ) − Γx,y(t,m)
∣∣ ≤

∣∣ΓN
x,y(t,mN

x ) − Γx,y(t,mN
x )
∣∣

+
∣∣[Γx,y(t,mN

x ) − Γx,y(t,m)
∣∣ =: A+B.

The first term goes to zero, uniformly over time, thanks to (3.1) and the Lipschitz continuity
of a∗. While B converges to 0, uniformly over t, for the regularity of U .
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3.3 The master equation: well-posedness and regularity

In this section we study the well-posedness of Equation (M) under the assumptions of
monotonicity and regularity for F,G,H we already introduced (Mon), (RegFG), (RegH). A
preliminary remark is that, thanks to Proposition 1 in [46], if H is differentiable (and this is
indeed the case of our assumptions) then

a∗
x(y, p) = − ∂

∂px
H(y, p). (3.47)

For this reason, we will in the following use a∗ interchangeably with −DpH.

Theorem 3.9. Assume (Mon), (RegFG) and (RegH). Then there exists a unique classical
solution to (M) in the sense of Definition 1.17. Moreover it is regular.

The proof exploits the renowned method of characteristics, which consists in proving that

U(t0, x,m0) := u(t0, x) (3.48)

solves (M), u being the solution of the mean field game system (MFG) with initial time t0 and
initial distribution m0. In order to perform the computations, we have to prove the regularity
in m of the function U(t0, x,m) defined above. In particular, we have to show that DmU
exists and is bounded. For this, we follow the strategy shown in [14] - which is developed
in infinite dimension - adapting it to our discrete setting. The idea consists in studying the
well-posedness and regularity properties of the linearized version of the system (MFG), whose
solution will end up coinciding with DmU · µ0, for all possible directions µ0 ∈ P0(Σ). In the
remaining part of this section, C will denote any constant which does not depend on t0, m0,
and is allowed to change from line to line.

3.3.1 Estimates on the mean field game system

We start by proving the well-posedness of the system (MFG)





− d
dtu(t, x) +H(x,∆xu(t, x)) = F (x,m(t)),

d
dtmx(t) =

∑
y my(t)a∗

x(y,∆yu(t, y)),

u(T, x) = G(x,m(T )),

mx(t0) = mx,0,

and a useful a priori estimate on its solution (u,m). The existence of solutions follows from
Theorem 2.8; see also Proposition 4 of [46]. On the other hand the uniqueness of solution,
under our assumptions, is a consequence of the following a priori estimates. Before stating
the proposition, we recall the notation ||u|| := supt∈[t0,T ] maxx∈Σ |u(t, x)|.

Proposition 3.10. Assume (Mon), (RegFG) and (RegH). Let (u1,m1) and (u2,m2) be two
solutions to (MFG) with initial conditions m1(t0) = m1

0 and m2(t0) = m2
0. Then

||u1 − u2|| ≤ C|m1
0 −m2

0|, (3.49)

||m1 −m2|| ≤ C|m1
0 −m2

0|. (3.50)
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Proof. Without loss of generality, let us set t0 = 0. Let u := u1 − u2 and m := m1 −m2. The
proof is carried out in three steps.

Step 1. Use of Monotonicity. The couple (u,m) solves




− d
dtu(t, x) +H(x,∆xu1(t, x)) −H(x,∆xu2(t, x)) = F (x,m1(t)) − F (x,m2(t))

d
dtm(t, x) =

∑
y [m1(t, y)a∗

x(y,∆yu1(t, y)) −m2(t, y)a∗
x(y,∆yu2(t, y))]

u(T, x) = G(x,m1(T )) −G(x,m2(T ))

m(0, x) = m1
0 −m2

0.

(3.51)

Since d
dt

∑
xm(x)u(x) =

∑
xm(x)du

dt (x) +
∑

x
dm
dt (x)u(x), integrating over [0, T ] we have

∑

x

[m(T, x)u(T, x) −m(0, x)u(0, x)]

=

∫ T

0

∑

x

[H(x,∆xu1) −H(x,∆xu2) − F (x,m1) + F (x,m2)] (m1(x) −m2(x))dt

+

∫ T

0

∑

x

∑

y

[m1(y)a∗
x(y,∆yu1) −m2(y)a∗

x(y,∆yu2)] (u1(x) − u2(x))dt.

Using the fact that
∑

x a
∗
x(y) = 0 and the initial-final data, we can rewrite

∑

x

[G(x,m1) −G(x,m2)](m1(x) −m2(x)) +

∫ T

0

∑

x

[F (x,m1) − F (x,m2)] (m1(x) −m2(x))dt

=
∑

x

(m1
0(x) −m2

0(x))(u1(0, x) − u2(0, x))

+

∫ T

0

∑

x

{[H(x,∆xu1) −H(x,∆xu2)](m1(x) −m2(x))

+∆xu · [m1(x)a∗(x,∆xu1) −m2(x)a∗(x,∆xu2)]} dt.

We now apply the monotonicity of F and G in the first line and the uniform convexity of H
in the last two lines. In fact, recalling that a∗

y(x, p) = − ∂
∂py

H(x, p), by (RegH) we have that,
for each x,

H(x,∆xu1) −H(x,∆xu2) − ∆xu · ∂
∂p
H(x,∆xu1) ≤ −C−1|∆xu|2

H(x,∆xu2) −H(x,∆xu1) + ∆xu · ∂
∂p
H(x,∆xu2) ≤ −C−1|∆xu|2.

Hence we obtain
∫ T

0

∑

x

|∆xu(x)|2(m1(x) +m2(x))dt ≤ C(m1
0 −m2

0) · (u1(0) − u2(0)) (3.52)

Step 2. Estimate on Kolmogorov-Fokker-Planck equation. Integrating the second equation
in (3.51) over [0, t], we get

m(t, x) = m(0, x) +

∫ t

0

∑

y

[m1(s, y)a∗
x(y,∆yu1(s, y)) −m2(s, y)a∗

x(y,∆yu2(s, y))] ds.

The boundedness and Lipschitz continuity of the rates give

max
x

|m(t, x)| ≤ C|m1
0 −m2

0| + C

∫ t

0
max

x
|m(s, x)|ds+ C

∫ t

0

∑

x

|∆xu(s, x)|m1(s, x)ds
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and hence, by Gronwall’s Lemma,

||m|| ≤ C|m1
0 −m2

0| + C

∫ T

0

√∑

x

|∆xu(t, x)|2m1(x)dt. (3.53)

This, together with inequality (3.52), yields

||m|| ≤ C(|m1
0 −m2

0| + |m1
0 −m2

0|1/2||u||1/2). (3.54)

Step 3. Estimate on Hamilton-Jacobi-Bellman equation. Integrating the first equation in
(3.51) over [t, T ], we get

u(t, x) = G(x,m1(T ))−G(x,m2(T ))+

∫ T

t
[F (x,m1) − F (x,m2) +H(x,∆xu2) −H(x,∆xu1)] ds.

Using the Lipschitz continuity of F,G,H and the bound maxx |∆xu(x)| ≤ C maxx |u(x)| we
obtain

max
x

|u(t, x)| ≤ C|m1(T ) −m2(T )| + C

∫ T

t
|m1(s) −m2(s)|ds+ C

∫ T

t
max

x
|u(s, x)|ds

and then Gronwall’s Lemma gives
||u|| ≤ C||m||. (3.55)

This bound (3.55) and estimate (3.54) yield claim (3.50), using the convexity inequality
AB ≤ εA2 + 1

4εB
2 for A,B > 0. Again (3.55) finally proves claim (3.49).

3.3.2 Linearized mean field game system

For proving Theorem 3.9, we introduce the linearized version of system (MFG) around its
solutions and then prove that it provides the derivative of u(t0, x) with respect to the initial
condition m0.

As a preliminary step, we study a related linear system of ODE’s, which will come useful
several times.





− d
dtw(t, x) − a∗(x,∆xu) · ∆xw(t, x) = DmF (x,m(t), 1) · η(t) + b(t, x)

d
dtη(t, x) =

∑
y ηya

∗
x(y,∆yu) +

∑
y my(t)Dpa

∗
x(y,∆xu) · ∆yw + c(t, x)

w(T, x) = DmG(x,m(T ), 1) · η(T ) + wT (x)

η(t0, ·) = η0,

(3.56)

The unknowns are w and η, while b, c, wT , η0 are given measurable functions, with c(t) ∈ P0(Σ),
and (u,m) is the solution to (MFG). We state an immediate but useful estimate regarding
the first of the two equations in (3.56).

Lemma 3.11. If (RegFG) holds then the equation

{
− d

dtw(t, x) − a∗(x,∆xu) · ∆xw(t, x) = DmF (x,m(t), 1) · η(t) + b(t, x)

w(T, x) = DmG(x,m(T ), 1) · η(T ) + wT (x)
(3.57)

has a unique solution for each final condition wT (x) and satisfies

||w|| ≤ C
[
max

x
|wT (x)| + ||η|| + ||b||

]
. (3.58)
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Proof. The well-posedness of the equation is immediate from classical ODE’s theory. Inte-
grating over the time interval [t, T ] and using that

a∗(x,∆xu) · ∆xw(t, x) =
∑

y

a∗
y(x,∆xu)wy(t),

we find

w(t, x) − w(T, x) −
∫ T

t

∑

y

a∗
y(x,∆xu)wy(s)ds =

∫ T

t
DmF · η(s)ds+

∫ T

t
b(s, x)ds.

Substituting the expression for w(T, x), and using the bound on the control and on the
derivatives of F and G we can estimate

max
x

|w(t, x)| ≤ max
x

|wT (x)| + C max
x

|η(T, x)|

+ C

∫ T

t
max

x
|w(s, x)|ds+ C

∫ T

t
max

x
|η(s, x)|ds+

∫ T

t
max

x
|b(s, x)|ds

and thus, applying Gronwall’s Lemma and taking the supremum on t, we get (3.58).

In the next result we prove the well-posedness of system (3.56) together with useful a
priori estimates on its solution.

Proposition 3.12. Assume (RegH), (Mon) and (RegFG). Then for any (measurable) b, c, wT ,
the linear system (3.56) has a unique solution (w, η) ∈ C1([0, T ];Rd × P0(Σ)). Moreover it
satisfies

||w|| ≤ C(|wT | + ||b|| + ||c|| + |η0|) (3.59)

||η|| ≤ C(|wT | + ||b|| + ||c|| + |η0|). (3.60)

Proof. Without loss of generality we assume t0 = 0. We use a fixed-point argument to prove
the existence of a solution to (3.56). Uniqueness will be then implied by estimates (3.59) and
(3.60), thanks to the linearity of the system.

We define the map Φ : C ([0, T ]; P0(Σ)) → C ([0, T ]; P0(Σ)) as follows: for a fixed η ∈
C ([0, T ]; P0(Σ)) we consider the solution w = w(η) to equation (3.57), and define Φ(η) to be
the solution of the second equation in (3.56) with w = w(η). In order to prove the existence of
a fixed point of Φ, which is clearly a solution to (3.56), we apply Leray-Schauder Fixed Point
Theorem. We remark the fact that more standard fixed point theorems are not applicable to
this situation since we cannot assume that η belongs to a compact subspace of C ([0, T ]; P0(Σ)),
since P0(Σ) is not compact. First of all, we note that C ([0, T ]; P0(Σ)) is convex and that the
map Φ is trivially continuous, because of the linearity of the system. Moreover, using the
equation for η in system (3.56), it is easy to see that Φ is a compact map, i.e. it sends bounded
sets of C ([0, T ]; P0(Σ)) into bounded sets of C1 ([0, T ]; P0(Σ)). Thus, to apply Leray-Schauder
Theorem it remains to prove that the set {η : η = λΦ(η) for some λ ∈ [0, 1]} is bounded in
C ([0, T ]; P0(Σ)).

Let us fix a η such that η = λΦ(η). Then the couple (w, η) solves




− d
dtw(t, x) − a∗(x,∆xu) · ∆xw(t, x) = λ (DmF (x,m(t), 1) · η(t) + b(t, x))

d
dtη(t, x) =

∑
y ηya

∗
x(y,∆yu) + λ

(∑
y my(t)Dpa

∗
x(y,∆xu) · ∆yw + c(t, x)

)

w(T, x) = λ (DmG(x,m(T ), 1) · η(T ) + wT (x))

η(t0, ·) = λη0.
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First, we note that we can restrict to λ > 0, since otherwise η = 0. Therefore, we can use the
equations (for brevity we omit the dependence of a∗ on the second variable) to get

d

dt

∑

x

w(t, x)ηx(t) = − λ
∑

x

η(t, x)[DmF (x,m(t), 1) · η(t) + b(t, x)]

−
∑

x,y

ηx(t)a∗
y(x)[w(t, y) − w(t, x)] +

∑

x,y

ηy(t)a∗
x(y)w(t, x)

+ λ
∑

x,y

myw(t, x)Dpα
∗
x(y) · ∆yw + λ

∑

x

c(t, x)w(t, x).

The second line is 0, using the fact that
∑

x ηx(t) = 0 and changing x and y in the second
double sum. Integrating over [0, T ] and using the expression for w(T, x) we obtain

λ
∑

x

ηx(T ) [DmG(x,m(T ), 1) · η(T ) + wT (x)] − λw(0) · η0

= − λ

∫ T

0

∑

x

ηx(t)[DmF (x,m(t), 1) · η(t) + b(t, x)]dt

+ λ

∫ T

0

∑

x,y

myDpα
∗
x(y) · ∆yw(w(t, x) − w(t, y))dt

+ λ

∫ T

0

∑

x

c(t, x)w(t, x)dt− λ

∫ T

0
η(t, x)DmG(x,m(T ), 1) · η(T )dt,

where in the second term of the sum we have also used that
∑

x,y[myDpa
∗
x(y) ·∆yw]w(t, y) = 0.

Dividing by λ > 0 and bringing the terms with F and G on the left hand side, together
with the term in m and Dpa

∗, we can rewrite

−
∫ T

0

∑

x,y

my∆ywDpa
∗
x(y) · ∆ywdt+

∫ T

0

∑

x

η(t, x)[DmF (x,m(t), 1) · η(t)]dt

+
∑

x

η(T, x)DmG(x,m(T ), 1) · η(T )

= −
∑

x

wT (x)η(T, x) +
∑

x

w(0, x)η0(x) −
∫ T

0

∑

x

η(t, x)b(t, x)dt+

∫ T

0

∑

x

c(t, x)w(t, x)dt.

We observe that, by (Mon) and (RegFG), we have
∑

x

η(t, x)[DmF (x,m(t), 1) · η(t)] ≥ 0, (3.61)

∑

x

η(T, x)[DmG(x,m(T ), 1) · η(T )] ≥ 0. (3.62)

Furthermore assumption (1.28) yields

−
∫ T

0

∑

x,y

my∆ywDpa
∗
x(y) · ∆ywdt ≥ C−1

∫ T

0

∑

x

mx|∆xw|2dt,

so that we can estimate the previous equality by

C−1
∫ T

0

∑

x

mx|∆xw|2dt ≤ |wT · η(T )| + |w(0) · η0| +

∫ T

0
|c(t) · w(t)| dt+

∫ T

0
|η(t) · b(t)| dt

≤ |wT ||η(T )| + |w(0)||η0| +

∫ T

0
|c(t)||w(t)|dt+

∫ T

0
|η(t)||b(t)|dt (3.63)
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On the other hand, by the equation for η we have

η(t, x) = η0(x) +

∫ t

0

∑

y

η(s, y)α∗
x(y)ds+

∫ t

0

[
∑

y

myDpa
∗
x(y) · ∆yw + c(x)

]
ds,

and thus

|η(t, x)| ≤ |η0(x)| +M

∫ t

0

∑

y

|ηy|ds+ C

∫ t

0

[
∑

y

my|∆yw| + |c(x)|
]
ds,

so that, by Gronwall’s Lemma and taking the sum for x ∈ Σ and the sup over t ∈ [0, T ],

||η|| ≤ C|η0| + C

∫ T

0

∑

x

√
mx

√
mx|∆xw|dt+ C||c||

≤ C|η0| + C

∫ T

0

√∑

x

(
√
mx)2

√∑

x

mx|∆xw|2dt+ C||c||

= C|η0| + C

∫ T

0

√∑

x

mx|∆xw|2dt+ C||c||

≤ C|η0| + C

√√√√
∫ T

0

∑

x

mx|∆xw|2dt+ C||c||.

Now, we use estimate (3.63) on
∫ T

0

∑
xmx|∆xw|2 that we found above to get

||η|| ≤ C||c|| + C|η0| + C

(
|η0||w(0)| + |wT ||η(T )| +

∫ T

0
|c(t)||w(t)| +

∫ T

0
|η(t)||b(t)|

) 1
2

≤ C||c|| + C|η0| + C
(
|w(0)|1/2|η0|1/2 + |wT |1/2|η(T )|1/2| + ||c||1/2||w||1/2 + ||η||1/2||b||1/2

)
.

We further estimate the right hand side using bound (3.58):

||η|| ≤ C(||c|| + |η0|)
+ C

[
|wT |1/2|η(T )|1/2 + (||c||1/2 + |η0|1/2)(|wT |1/2 + ||η||1/2 + ||b||1/2) + ||η||1/2||b||1/2

]
.

Using the inequality AB ≤ εA2 + 1
4εB

2 for A,B > 0, we obtain

||η|| ≤ C(||c|| + |wT | + ||b|| + |η0|) +
1

2
||η||,

which implies (3.60). Then (3.59) follows from (3.58).

Given the solution (u,m) to system (MFG), with initial condition m0 for m and final
condition G for u, we introduce the linearized system:





− d
dtv(t, x) − a∗(x,∆xu(t, x)) · ∆xv(t, x) = DmF (x,m(t), 1) · µ(t)

d
dtµx(t) =

∑
y µy(t)a∗

x(y,∆yu(t, y)) +
∑

y myDpa
∗
x(y,∆yu) · ∆yv(t, x)

v(T, x) = DmG(x,m(T ), 1) · µ(T )

µ(t0) = µ0 ∈ P0(Σ).

(LIN)
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Note that in the right hand side of the first equation DmF (x,m(t), 1)·µ(t) = DmF (x,m(t), y)·
µ(t) for every y ∈ Σ, using identity (1.15) and the fact that µ(t) ∈ P0(Σ) for every t
(i.e. identity (1.17)). For this reason we just fixed the choice to DmF (x,m(t), 1) and
DmG(x,m(T ), 1) in system (LIN).

The existence and uniqueness of a solution (v, µ) ∈ C1([0, T ];Rd × P0(Σ)) is ensured by
Proposition 3.12. The aim is to show that the solution (v, µ) to system (LIN) satisfies

v(t0, x) = DmU(t0, x,m0, 1) · µ0. (3.64)

This proves that the solution U defined via (3.48) is differentiable with respect to m0 in any
direction µ0, with derivative given by (3.64), and also that DmU is continuous in m. Equality
(3.64) is implied by the following

Theorem 3.13. Assume (RegH), (Mon) and (RegFG). Let (u,m) and (ũ, m̃) be the solutions
to (MFG) respectively starting from (t0,m0) and (t0, m̃0). Let (v, µ) be the solution to (LIN)
starting from (t0, µ0), with µ0 := m̃0 −m0. Then

||ũ− u− v|| + ||m̃−m− µ|| ≤ C|m0 − m̃0|2. (3.65)

Proof. Set w := ũ− u− v and η := m̃−m− µ, they solve (3.56)





− d
dtw(t, x) − a∗(x,∆xu) · ∆xw(t, x) = DmF (x,m(t), 1) · η(t) + b(t, x)

d
dtη(t, x) =

∑
y ηya

∗
x(y,∆yu) +

∑
y my(t)Dpa

∗
x(y,∆xu) · ∆yw + c(t, x)

w(T, x) = DmG(x,m(T ), 1) · η(T ) + wT (x)

η(t0, ·) = 0,

with

b(t, x) := A(t, x) +B(t, x)

A(t, x) := −
∫ 1

0
[DpH(x,∆xu+ s(∆xũ− ∆xu)) −DpH(x,∆xu)] · (∆xũ− ∆xu)ds

B(t, x) :=

∫ 1

0
[DmF (x,m+ s(m̃−m), 1) −DmF (x,m, 1)] · (m̃−m)ds

c(t, x) :=
∑

y

(m̃y −my)Dpa
∗
x(y,∆yu) · (∆yũ− ∆yu)

+
∑

y

m̃y

∫ 1

0
[Dpa

∗
x(y,∆xu+ s(∆xũ− ∆xu)) −Dpa

∗
x(y,∆yu)] · (∆yũ− ∆yu)ds

wT (x) :=

∫ 1

0
[DmG(x,m(T ) + s(m̃(T ) −m(T )), 1) −DmG(x,m(t), 1)] · (m̃(T ) −m(T ))ds.

Using the assumptions, namely the Lipschitz continuity of DpH, D
2
ppH, D

mF and DmG,
and the bound maxx |∆xu| ≤ C|u|, we estimate

||b|| ≤ ||A|| + ||B||
||A|| ≤ C||ũ− u||2

||B|| ≤ C||m̃−m||2

|wT | ≤ C|m̃(T ) −m(T )|2

||c|| ≤ C||m̃−m|| · ||ũ− u|| + C||ũ− u||2.
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Applying (3.59) and (3.60) to the above system and then (3.49) and (3.50), we obtain

||w|| + ||η|| ≤ C(|wT | + ||b|| + ||c||)
≤ C

(
||ũ− u||2 + ||m̃−m||2 + ||m̃−m|| · ||ũ− u||

)

≤ C|m0 − m̃0|2.

3.3.3 Proof of Theorem 3.9

We are finally in the position to prove the main theorem of this section.

3.3.3.1 Existence

Let U be the function defined by (3.48), i.e. U(t0, x,m0) := u(t0,m0). We have shown in the
above Theorem 3.13 that U is C1 in m, while the fact that it is C1 in t is clear. We compute
the limit, as h tends to 0, of

U(t0 + h, x,m0) − U(t0, x,m0)

h

=
U(t0 + h, x,m0) − U(t0 + h, x,m(t0 + h))

h
+
U(t0 + h, x,m(t0 + h)) − U(t0, x,m0)

h
.

(3.66)

For the first term, we have, for any y ∈ Σ,

U(t0 + h, x,m(t0 + h)) − U(t0 + h, x,m(t0))

= [ms := m(t0) + s(m(t0 + h) −m(t0))]

=

∫ 1

0

∂

∂(m(t0 + h) −m(t0))
U(t0 + h, x,ms, y)ds

=

∫ 1

0
DmU(t0 + h, x,ms, y) · (m(t0 + h) −m(t0))ds

=

∫ 1

0
ds

∫ t0+h

t0

DmU(t0 + h, x,ms, y) ·
(

d∑

k=1

mk(t)a∗(k,∆ku(t))

)
dt

=

∫ 1

0
ds

∫ t0+h

t0

d∑

z=1

d∑

k=1

mk(t) [DmU(t0 + h, x,ms, y)]z a
∗
z(k,∆ku(t))dt.

Using identity (1.15), we obtain

U(t0 + h, x,m(t0 + h)) − U(t0 + h, x,m(t0))

=

∫ 1

0
ds

∫ t0+h

t0

d∑

z=1

d∑

k=1

mk(t) [DmU(t0 + h, x,ms, k)]z a
∗
z(k,∆ku(t))dt

+

∫ 1

0
ds

∫ t0+h

t0

d∑

z=1

d∑

k=1

mk(t) [DmU(t0 + h, x,ms, y)]k a
∗
z(k,∆ku(t))dt

=

∫ 1

0
ds

∫ t0+h

t0

d∑

z=1

d∑

k=1

mk(t) [DmU(t0 + h, x,ms, k)]z a
∗
z(k,∆ku(t))dt,



72 Convergence under uniqueness: the master equation

where the last equality follows from

d∑

z=1

d∑

k=1

mk(t) [DmU(t0 + h, x,ms, y)]k a
∗
z(k,∆ku(t))

=
d∑

k=1

mk(t) [DmU(t0 + h, x,ms, y)]k

d∑

z=1

a∗
z(k,∆ku(t)) = 0,

since
∑d

z=1 a
∗
z = 0, as a∗

k(k) = −∑z 6=k a
∗
z(k).

Summarizing, we have found that,

U(t0 + h, x,m(t0 + h)) − U(t0 + h, x,m(t0))

=

∫ 1

0
ds

∫ t0+h

t0

dt

∫

Σ
DmU(t0 + h, x,ms, y) · a∗(y,∆yu(t))m(t)(dy).

Dividing by h and letting h ↓ 0, we get

lim
h→0

U(t0 + h, x,m(t0 + h)) − U(t0 + h, x,m(t0))

h

=

∫

Σ
DmU(t0, x,m0, y) · a∗(y,∆yu(t0))dm0(y)

=

∫

Σ
DmU(t0, x,m0, y) · a∗(y,∆xU(t0, y,m0))dm0(y),

using the continuity of DmU in time and dominate convergence to take the limit inside the
integral in ds.

The second term in (3.66), for h > 0, is instead

U(t0 + h, x,m(t0 + h)) − U(t0, x,m0) = ux(t0 + h) − ux(t0) = h
d

dt
ux(t0) + o(h),

and thus

lim
h↓0

U(t0 + h, x,m(t0 + h)) − U(t0, x,m0)

h
=

d

dt
ux(t0).

Finally, we can rewrite (3.66), after taking the limit h ↓ 0, to obtain

∂tU(t0, x,m0) = −
∫

Σ
DmU(t0, x,m0, y) · a∗(y,∆xU(t0, y,m0))dm0(y)

+
d

dt
ux(t0) = [using the equation for u]

= −
∫

Σ
DmU(t0, x,m0, y) · a∗(y,∆xU(t0, y,m0))dm0(y)

+H(x,∆xU(t0, x,m0)) − F (x,m0),

and thus

−∂tU(t0, x,m0)+H(x,∆xU(t0, x,m0))−
∫

Σ
DmU(t0, x,m0, y)·a∗(y,∆yU)dm0(y) = F (x,m0),

which is exactly (M) computed in (t0,m0).
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3.3.3.2 Uniqueness

Let us consider another solution V of (M). Since ||DmV || ≤ C, we know that V is Lipschitz
with respect to m, and so is ∆xV . From this remark and the Lipschitz continuity of a∗ with
respect to p , it follows that the equation

{
d
dtm̃(t) =

∑
y m̃y(t)a∗(y,∆yV (t, y, m̃(t)))

m̃(t0) = m0

admits a unique solution in [t0, T ].

If we now set ũ(t, x) := V (t, x, m̃(t)), we can compute (using for e.g. DmV (·, ·, ·, 1))

d

dt
ũ(t, x) = ∂tV (t, x, m̃(t)) +DmV (t, x, m̃(t), 1) · d

dt
m̃(t)

= [using the equation for m̃]

= ∂tV (t, x, m̃(t)) +DmV (t, x, m̃(t), 1) ·
(
∑

y

m̃y(t)a∗(y,∆yV (t, y, m̃(t)))

)

= [using identity (1.15) on DmV (·, ·, ·, 1)]

= ∂tV (t, x, m̃(t)) +

∫

Σ
DmV (t, x, m̃(t), y) · a∗(y,∆yV (t, y, m̃(t)))m̃(t)(dy)

= [using the equation for V ]

= H(x,∆xV (t, x, m̃(t))) − F (x, m̃) = H(x,∆xũ(t, x)) − F (x, m̃(t)),

and thus the pair (ũ(t), m̃(t)) satisfies





− d
dt ũ(t, x) +H(x,∆xũ(t, x)) = F (x, m̃(t)),

d
dtm̃x(t) =

∑
j m̃y(t)a∗

x(y,∆yũ(t, y)),

ũ(T, x) = V (T, x, m̃(T )) = G(x, m̃(T )),

m̃(t0) = m0.

Namely, (ũ, m̃) solves the system (MFG), whose solution is unique thanks to Proposition
3.10, so that we can conclude V (t0, x,m0) = U(t0, x,m0) for each (t0, x,m0), and thus the
uniqueness of solutions to (M) follows.

3.3.3.3 Regularity

It remains to prove that the unique classical solution defined via (3.48) is regular, in the sense
of Definition 1.17, i.e. that DmU is Lipschitz continuous with respect to m, uniformly in t, x.

So let (u1,m1) and (u2,m2) be two solution to (MFG) with initial conditions m1(t0) = m1
0

and m2(t0) = m2
0, respectively. Let also (v1, µ1) and (v2, µ2) be the associated solu-

tions to (LIN) with µ1(t0) = µ2(t0) = µ0. Recall from equation (3.64) that v1(t0, x) =
DmU(t0, x,m

1
0, 1) · µ0 and v2(t0, x) = DmU(t0, x,m

2
0, 1) · µ0, thus we have to estimate the

norm ||v1 − v2||.
Set w := v1 − v2 and η := µ1 − µ2. They solve the linear system (3.56) with η0 = 0 and

b(t, x) := [DmF (x,m1, 1) −DmF (x,m2, 1)] · µ2 + [a∗(x,∆xu1) − a∗(x,∆xu2)] · ∆xv2

c(t, x) :=
∑

y

µ2,y [a∗
x(y,∆yu1) − a∗

x(y,∆yu2)]
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+
∑

y

[m1,yDpa
∗
x(y,∆yu1) −m2,yDpa

∗
x(y,∆yu2)] · ∆xv2

wT (x) := [DmG(x,m1(T ), 1) −DmG(x,m2(t), 1)] · µ2.

Using the Lipschitz continuity of DpH, D2
ppH, DmF and DmG, applying the bounds (3.59)

to v2 and (3.60) to µ2 and also (3.49) and (3.50), we estimate

||b|| ≤ C||m1 −m2|| · ||µ2|| + C||u1 − u2|| · ||v2|| ≤ C|m1
0 −m2

0| · |µ0|
||c|| ≤ C||u1 − u2|| · ||µ2|| + C||m1 −m2|| · ||v2|| + C||u1 − u2|| · ||v2|| ≤ C|m1

0 −m2
0| · |µ0|

|wT | ≤ C||m1 −m2|| · ||µ2|| ≤ C|m1
0 −m2

0| · |µ0|.

Then (3.59) gives

||w|| ≤ C(||b|| + ||c|| + |wT |) ≤ C|m1
0 −m2

0| · |µ0|,

which, since w(t0, x) =
(
DmU(t0, x,m

1
0, 1) −DmU(t0, x,m

2
0, 1)

) · µ0, yields

max
x

|DmU(t0,x,m
1
0, 1) −DmU(t0, x,m

2
0, 1)|

≤ C max
x

sup
µ0∈P0(Σ)

∣∣(DmU(t0, x,m
1
0, 1) −DmU(t0, x,m

2
0, 1)

) · µ0

∣∣
|µ0|

≤ C|m1
0 −m2

0|.

3.4 Uniqueness results

We conclude this chapter by giving the results about uniqueness of both the feedback MFG
solution and the Nash equilibrium, and we try to provide minimal assumptions. We start by
giving the proper definition of uniqueness for the mean field game. When considering only
feedback controls, we can assume that the stochastic basis, the noise and the initial condition
are fixed.

Definition 3.14. Two feedback mean field game solutions (α,m,X) and (α̃, m̃, X̃) are called
equivalent if m(t) = m̃(t) for any t. We say that (α,m,X) is the unique feedback MFG
solution (for m0 given) if there are no non-equivalent MFG solutions and any other solution
(α̃,m, X̃) is such that

α(t,X(t−)) = α̃(t, X̃(t−)) ℓ⊗ P - a.e. (t, ω); (3.67)

or equivalently
α(t, x) = α̃(t, x) ℓ - a.e. t, m(t) - every x. (3.68)

We remark that the above definition does not imply that the feedback functions α and α̃
of two equivalent MFG solutions, when uniqueness holds, are equal for any t and x: they are
equal when evaluated on the optimal process, which is in fact uniquely determined almost
surely. However note that this possible non-uniqueness of the feedback controls is not really
a problem, as the controls might be different in stated that are not visited by the optimal
process. Instead, we will see below that the Nash equilibrium is uniquely determined for any
t and x. Concerning MFG solutions, we can conclude that such α and α̃ are equal (for each x,
ℓ-a.e. x) if the optimal process visits any state at any time with a positive probability. This
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holds for instance either if assumption (Erg) holds or if the initial distribution m0, which is
part of the solution, is supported everywhere and the transition rates given by the optimal
control are bounded. So we provide sufficient conditions for which this latter fact is a priori
true, which can be of interest itself.

Lemma 3.15. If assumption (H4) holds then any open-loop MFG solution (π,m,X) is such
that there exists K > 0 for which |π(t, ω)| ≤ K for ℓ⊗ P -a.e. (t, ω).

Proof. By contradiction, suppose π is such that [ℓ⊗ P ](|π(t)| ≥ K) > 0 for any K, and let
X = Xπ,m. We show that π can not be optimal. Let BK be he set of (t, ω) where |π(t)| ≥ K
and let πK be the truncated (bounded) control

πK(t) =

{
π(t) in BC

K

a0(X(t)) in BK ,

where a0(x) is the unique minimizer in a of L(x, a), whose value is L(x, a0(x)) = L0(x).
Denoting by XK the process corresponding to πK , we get that there exists a constant C such
that

E

[
sup

t∈[0,T ]
|X(t) −XK(t)|

]
≤ CE

[∫ T

0
|π(t) − πK(t)|dt

]
,

thanks to (1.12), by proceeding as in the proof of Theorem 3.5. By using also the Lipschitz
continuity of L,F and G in x, we find (by possibly changing C)

J(π,m) − J(πK ,m)

≥ E

[∫ T

0
(L(X(t), π(t)) − L(XK(t), a0(X(t))))✶BK

dt

]
− CE

[
sup

t∈[0,T ]
|X(t) −XK(t)|

]

≥ CE

[∫ T

0
(L(X(t), π(t)) −L(X(t), a0(X(t))))✶BK

dt

]
−CE

[∫ T

0
|π(t) − a0(X(t))|✶BK

dt

]
.

The uniform convexity of L implies that there exists a constant c0 such that

L(x, a) − L(x, a0(x)) ≥ c0|a− a0(x)|2

for any a. Therefore, for K > |a0|∞, we obtain

J(π,m) − J(πK ,m)

≥ c0CE

[∫ T

0
|π(t) − a0(X(t))|2✶BK

dt

]
− CE

[∫ T

0
|π(t) − a0(X(t))|✶BK

dt

]

≥ C(c0(K − |a0|∞) − 1)E

[∫ T

0
|π(t) − a0(X(t))|✶BK

dt

]

≥ C(c0(K − |a0|∞) − 1)(K − |a0|∞)[ℓ⊗ P ](|π(t)| ≥ K)

which is positive if K is large enough, implying that π is not optimal.

We observe that, by Theorem 2.8, if e.g. (H4) holds, then the feedback mean field game
solution is unique, in the sense of Definition 3.14, if and only if there are no non-equivalent
MFG solutions. In order to have uniqueness, we must require the feedback control to be
unique for m fixed, which holds e.g. under (H4), and so it can be uniquely determined via
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(1.69), even if it is not determined for any t, x, but only in the sense of (3.68). Hence we
now look for solutions only in the form (αm,m), where αm has to be uniquely defined and
given by (1.69). In fact, we look for uniqueness of solutions of the mean field game system
(MFG). Note that the optimal process can be omitted in the notation and that, in order
to have uniqueness when αm is well defined, we have just to show that there are no MFG
solutions with different m, i.e. non-equivalent.

3.4.1 Uniqueness of the mean field game solution for small time

In this subsection, we consider a slightly more general setting: namely, the cost does not split
into c = L+ F (Assumption H3) and the transition rate is not exactly the control. Moreover,
we provide quantitative estimates for the maximal time for which there is uniqueness of
feedback MFG solutions.

We assume (H1), that is, we focus only on the dynamics for γ in (1.8), and ν defined in
(1.9) with Θ := [0,K]d. Moreover, we assume that A = Θ (see Lemma 1.7) and, for x 6= y,

Γx,y(t, a,m) = ay + ζ(m),

where ζ : P(Σ) → R is some Lipschitz continuous function with Lipschitz constant Kζ . Since
Γ determines the transition rates, we set Γx,x(t, a,m) := −∑y 6=x Γx,y(t, a,m), x ∈ Σ. We
assume that the cost c in the variable a is in C1(A), ∇ac is Lipschitz continuous in the variable
m with Lipschitz constant Ka and c is uniformly convex, that is, there exists c0 > 0 such that

c(t, x, ã,m) − c(t, x, a,m) ≥ ∇ac(t, x, a,m) · (ã− a) + c0|ã− a|2

for all t, x, a, ã,m.

This setup is analogous to the one considered in [46], except for the additional ζ in the
rate, and to our Assumption (H4), except for ζ again and for the fact that c does not split.
For any g ∈ R

d there exist a unique minimizer a∗(t, x,m, g) of f(t, x, a,m, g), which in this
setting becomes

f(t, x, a,m, g) =
d∑

y=1

Γx,y(t, a,m)[g(y) − g(x)] + c(t, x, a,m) (3.69)

=
d∑

y=1

(ay + ζ(m))[g(y) − g(x)] + c(t, x, a,m).

We need a∗ to be Lipschitz continuous in m and g; this fact is proved in Proposition 1 in [46].
We state the result in the following

Lemma 3.16. Under the above assumptions (in this subsection), the function a∗ is Lipschitz
continuous in m and g:

|a∗(t, x,m, g) − a∗(t, x, m̃, g)| ≤ Ka

c0
|m− m̃| (3.70)

|a∗(t, x,m, g) − a∗(t, x,m, g̃)| ≤ 1

c0
|g − g̃| (3.71)

for any t, x,m, m̃, g, g̃.
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Define αm(t, x) = a∗(t, x,m(t), Vm(t, ·)) as in (2.15): it is the unique feedback control for
given flow of measures m ∈ E , where Vm(t, x) is the value function defined in (2.11) with
respect to m. The cost functions c and G are uniformly bounded and so is the value function:
let us denote by KV the maximum of its absolute value. Denote by Kζ the maximum of ζ
and fix the constants

C1 := 2Kd2 + 2d
√
dKd,

C2 := 2d
√
d
Ka

c0
+ 2d2Kζ ,

C3 :=
2d2

c0
,

C4 := K2 + 2dKV Kζ + 2
√
dKV

Ka

c0
+K2

Ka

c0
,

C5 := 2KV

√
d

c0
+
K2

c0
+

√
d(Kζ +K).

Let T ∗ > 0 be such that

2T ∗√
deT ∗C1

[
C2 + C3(K2 + T ∗C4)eT ∗C5

]
= 1. (3.72)

Theorem 3.17. Under the assumptions of this subsection, for any 0 < T < T ∗ there exists
a unique feedback MFG solution (αm,m) of the mean field game.

Proof. In the notation of Theorem 2.4, the map Φ : E → E is defined by Φ(m) =
{Flow(Xαm,m)}, a singleton. If we prove that this map is a contraction for small time
horizon T , then the assertion follows by the Banach-Cacciopoli Theorem. So let m, m̃ ∈ E
and set X := Xαm,m and X̃ := Xα

m̃
,m̃.

First we prove that the value function Vm is Lipschitz continuous with respect to m.
Thanks to the HJB equation (2.13) we have

Vm(t, x) = Vm(T, x) +

∫ T

t
f(s, x, a∗(s, x,m(s), Vm(s, ·)),m(s), Vm(s, ·))ds.

The pre-Hamiltonian f is Lipschitz in (a,m, g); in fact, by (1.22) and (3.69) we have

|f(t, x, a,m, g) − f(t, x, ã, m̃, g̃)|
≤ 2|g|∞

(√
d|a− ã| + dKζ |m− m̃|

)
+K2(|a− ã| + |m− m̃|) +

√
d(Kζ +K)|g − g̃|.

Then using (3.70) and (3.71) we obtain

|Vm(t, x) − Vm̃(t, x)|

≤ K2|m(T ) − m̃(T )| +

∫ T

t

[
C4|m(s) − m̃(s)| + C5|Vm(s) − Vm̃(s)|] ds

≤ K2|m(T ) − m̃(T )| + C4(T − t)||m− m̃||∞ +

∫ T

t
C5|Vm(s) − Vm̃(s)|ds

for any x, hence Gronwall’s lemma implies that

|Vm(t) − Vm̃(t)| ≤
√
d(K2 + TC4)eT C5 ||m− m̃||∞

for any 0 ≤ t ≤ T .
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Therefore, by applying again (3.70) and (3.71), we obtain

E|X(t) − X̃(t)|

≤
∫ t

0

∫

Θ
E|γ(s,X(s), θ, α(s,X(s),m(s), Vm(t, ·)),m(s))

− γ(s, X̃(s), θ, α(s, X̃(s), m̃(s), Vm̃(t, ·)), m̃(s))|ν(dθ)ds

≤
∫ t

0

[
C1E|X(s) − X̃(s)| + C2|m(s) − m̃(s)| +

2d
√
d

c0
|Vm(t, ·) − Vm̃(t, ·)|

]
ds

≤
∫ t

0

[
C1E|X(s) − X̃(s)| + C2|m(s) − m̃(s)| + C3(K2 + C4T )eT C5 ||m− m̃||∞

]
ds

and thus, again by Gronwall’s lemma,

E|X(t) − X̃(t)| ≤ T ∗eT ∗C1

[
C2 + C3(K2 + T ∗C4)eT ∗C5

]
||m− m̃||∞

for any 0 ≤ t ≤ T . Since | Law(X(t)) − Law(X̃(t))| ≤ 2
√
dE|X(t) − X̃(t)| we have

sup
0≤t≤T

| Law(X(t)) − Law(X̃(t))| =: || Flow(X) − Flow(X̃)||∞

≤ 2T ∗√
deT ∗C1

[
C2 + C3(K2 + T ∗C4)eT ∗C5

]
||m− m̃||∞,

and then the claim holds for T ∗ satisfying (3.72).

3.4.2 Uniqueness of the mean field game solution under monotonicity

Uniqueness of mean field game solutions was shown in Theorem 2 in [47] for arbitrary time
horizon under the Lasry-Lions monotonicity assumptions. Here, we give a different proof of
this result, which relies on the probabilistic representation of the mean field game, and allows
for less restrictive assumptions on the data. This idea of this proof was first developed in
[21] in the diffusion setting. Specifically, we assume (Mon) and that the function γ in the
dynamics (1.46) does not depend on m ∈ P(Σ); we do not need to assume (H2), i.e. that the
control is exactly the rate.

Theorem 3.18. Suppose that (A), (B), (C) and (Mon) hold and that γ does not depend on
m. Then there exists a unique feedback MFG solution (α,m,X) of the mean field game.

Proof. Let (αm,m,X) and (α̃, m̃, X̃) be two different feedback mean field game solutions.
Since the dynamics does not depend on m ∈ P(Σ), we have X = Xα = Xα,m = Xα,m̃ and

X̃ = Xα̃ = Xα̃,m = Xα̃,m̃. As the solutions are different, they are non-equivalet: there exists
t∗ such that m(t∗) 6= m̃(t∗). Thus m 6= m̃ in a neighborhood of t∗, as they are continuous.
Recalling that we have α = αm and α̃ = αm̃, we obtain α(t,X(t)) 6= α̃(t,X(t)) in a set of
positive measure, implying that α̃ is not optimal for m, in lights of Theorem 2.8.

Therefore the optimality of α yields J(α,m) < J(α̃,m), and similarly J(α̃, m̃) < J(α, m̃),
hence

0 < J(α̃,m) − J(α,m) = E

[
G(X̃(T ),m(T )) −G(X(T ),m(T ))

]

+ E

[∫ T

0
[L(X̃(t), α̃(t, X̃(t))) + F (X̃(t),m(t))

−L(X(t), α(t,X(t))) − F (X(t),m(t))]dt] ,
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0 ≤ J(α, m̃) − J(α̃, m̃) = E

[
G(X(T ), m̃(T )) −G(X̃(T ), m̃(T ))

]

+ E

[∫ T

0
[L(X(t), α(t,X(t))) + F (X(t), m̃(t))

−L(X̃(t), α̃(t, X̃(t))) − F (X̃(t), m̃(t))]dt
]
.

Summing these two inequalities and using the fact that Law(X(t)) = m(t) for any t, we
obtain

0 < E

[
G(X̃(T ),m(T )) −G(X(T ),m(T )) +G(X(T ), m̃(T )) −G(X̃(T ), m̃(T ))

]

+ E

[∫ T

0
[F (X̃(t),m(t)) − F (X(t),m(t))

+F (X(t), m̃(t)) − F (X̃(t), m̃(t))]dt
]

=
∑

x∈Σ

(G(x,m(T )) −G(x, m̃(T )))(m̃x(T ) −mx(T ))

+

∫ T

0


∑

x∈Σ

(F (x,m(t)) − F (x, m̃(t)))(m̃x(t) −mx(t))


 dt. ≤ 0,

where in the latter we used (1.29); a contradiction.

3.4.3 Uniqueness of the Nash equilibrium

Let the number of players N be fixed, as well as the stochastic basis and the Poisson random
measures. We say that the feedback Nash equilibrium α = (α1, · · · , αN ) : [0, T ] × ΣN → AN

is unique in a class BN of feedback strategies if, given another feedback Nash equilibrium
α∗ ∈ BN , we have αi(t,x) = α∗,i(t,x) for each i and x ∈ ΣN and ℓ-almost every t ∈ [0, T ].
Note that this definition involves only the strategies, as functions of time and space: in
particular the initial condition is not considered. The uniqueness of Nash equilibria, in the
diffusion setting, is proved in Proposition 6.27 of [19].

Theorem 3.19. Under (LipH), the Nash equilibrium α provided by the (Nash) system, i.e.

αi(t,x) := a∗(xi,∆
ivN,i(t,x)) i = 1, . . . , N,

is the unique feedback Nash equilibrium in the class of bounded feedback strategy vectors.

Proof. We remark that the vN,i-s, as well as their gradients, are uniformly bounded thanks
to Lemma (1.7). Let α∗ be any Nash equilibrium. We consider the best response problem
for player i: having fixed the α∗,j for j 6= i, it consists in finding the optimal control for the
functional

Ji(π
i) := E

[∫ T

0

(
L(Xi(t), π

i(t)) + F (Xi(t),m
N,i
X (t))

)
dt+G(Xi(t),m

N,i
X (t))

]
,

over open-loop controls πi, where X solves

{
Xi(t) = ξi +

∫ t
0

∫
Θ γ(Xi(s

−), θ, πi(s))Ni(ds, dθ)

Xj(t) = ξj +
∫ t

0

∫
Θ γ(Xj(s−), θ, α∗,j(s,X(s−)))Nj(ds, dθ) if j 6= i.
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The HJB equation related to this problem reads





−∂w
∂t

N,i
(t,x) −∑N

j=1, j 6=i α
∗,j(t,x) · ∆jwN,i +H(xi,∆

iwN,i) = F (xi,m
N,i
x ),

wN,i(T,x) = G(xi,m
N,i
x ).

(3.73)

There exists a unique bounded and continuous solution (wN,i)i since the α∗,j-s are bounded
and (LipH) holds.

Let X∗ be the optimal process related to the Nash equilibrium α∗ and let π∗,i(t) =
α∗,i(t,X∗

t−), for ℓ⊗ P -almost every (t, ω), be the corresponding open-loop control for player
i. By the definition of Nash equilibrium, the feedback strategy α∗,i is optimal for the best
response problem, and so is its open-loop counterpart π∗,i. By mimicking the proof of
Theorem 2.8, we find that any optimal control π∗,i, with corresponding optimal process X∗,
is such that π∗,i(t) = a∗(X∗

i (t−),∆wN,i(t,X∗
t−)) for ℓ⊗ P -almost every (t, ω). Therefore

α∗,i(t,X∗
t−) = a∗(X∗

i (t−),∆iwN,i(t,X∗
t−)) ℓ⊗ P - a.e. (t, ω) (3.74)

where X∗ is the optimal process. Since the time horizon is finite and the transition rates,
given by the Nash equilibrium α∗, of the Markov chain X∗ are bounded, we obtain that
P (X∗

t = x) > 0 for ℓ-a.e. t and any x, if we take an initial distribution which is supported
everywhere. Hence (3.74) implies that

α∗,i(t,x) = a∗(xi,∆
iwN,i(t,x)) ℓ - a.e. t, ∀x.

By inserting the above identity into (3.73) we find that the wN,i solve exactly the Nash
system, thus wN,i = vN,i by uniqueness of solutions to (Nash), which implies that α∗ = α

for almost every t and each x.



CHAPTER 4

Convergence without uniqueness: a two state

model

We examine here the model, presented in [24], in which the position of each agent belongs to
{−1, 1}. We saw in Chapter 3 that, if there is uniqueness of mean field game solutions, which
holds under monotonicity assumptions on the costs, then the master equation possesses a
smooth solution which can be used to prove the convergence of the value functions of the
N players and a propagation of chaos property for the associated optimal trajectories. In
the example considered here the terminal cost is anti-monotonous, so that we show that the
mean field game admits exactly three solutions. We prove that the N -player game always
admits a limit: it selects one mean field game solution, except in one critical case, so there is
propagation of chaos. The value functions also converge and the limit is the entropy solution
to the master equation, which can be written as a scalar conservation law. Moreover, viewing
the mean field game system as the necessary conditions for optimality of a deterministic
control problem as in 1.4.1, we show that the N -player game selects the optimum of this
problem when it is unique.

4.1 The two state model

We let Σ = {−1, 1} be the state space. An element m ∈ P(Σ) can be determined by its
mean, denoted µ = m(1) −m(−1) ∈ [−1, 1]; compared to the notations used before, we have
(µ,−µ) ∈ P0(Σ). We assume (H2), (H3) and choose

L(x, a) :=
a2

−x

2
, F (x, µ) ≡ 0, G(x, µ) := −xµ.

The final cost favors alignment with the majority, while the running cost is a simple quadratic
cost which forces players to not choose a high transition rate. Compared to condition (1.29),
note that the final cost is anti-monotonous, as

∑

x∈Σ

(G(x,m) −G(x, m̃))(m(x) − m̃(x)) = −(µ− µ̃)2 ≤ 0.

We write αi(t,x) ∈ [0,+∞[ for αi
−xi

(t,x), i.e. the rate at which player i flips its state
from xi to −xi, and also α for α−x, p for p−x and identify ∆xu(x) with its non-zero component

81
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u(−x) − u(x). The limiting cost reads

J(α,m) = E

[∫ T

0

|α(t,X(t))|2
2

dt−X(T )m(T )

]
(4.1)

The associated Hamiltonian is given, for p ∈ R, by

H(x, p) =
∑

a≥0

{
ap− a2

2

}
=

(p−)2

2
,

with a∗(x, p) = p−
x = p− = −H ′(p), where p− denotes here the negative part of p. Note that

this Hamiltonian is in C1, with Lipschitz derivative, but not in C2. Moreover, we denote by ζ

the first marginal of m, so that m = (m1,m−1) =
(

1+µ
2 , 1−µ

2

)
= (ζ, 1 − ζ).

4.1.1 The mean field game system

The first equation in (MFG), i.e the HJB equation for the value function u(t, x), reads

− d

dt
u(t, x) +

[
(∆xu(t, x))−]2 = 0.

Setting z(t) := u(t,−1) − u(t, 1), we have that z(t) solves

{
ż = z|z|

2

z(T ) = 2µ(T ).
(4.2)

and the corresponding optimal control is given by α(1) = z−, which is the transition rate
from 1 to -1, and α(−1) = z+. This equation must be coupled with the forward Kolmogorov
equation for the mean, which reads µ̇ = −µ|z| + z. The mean field game system takes
therefore the form 




ż = z|z|
2

µ̇ = −µ|z| + z

z(T ) = 2µ(T )

µ(0) = µ0.

(4.3)

Proposition 4.1. Let T (µ0) be the unique solution in
[

1
2 , 2
]

of the equation:

|µ0| =
(2T − 1)2(T + 4)

27T
. (4.4)

Then, for every µ0 ∈ [−1, 1] (4.3) admits

(i) a unique solution for T < T (µ0);

(ii) two distinct solutions for T = T (µ0), if µ0 6= 0;

(iii) three distinct solutions for T > T (µ0).

Proof. Note that (4.2) can be solved as a final value problem, giving

z(t) =
2µ(T )

|µ(T )|(T − t) + 1
. (4.5)
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This can then be inserted in the forward Kolmogorov equation, giving

µ(t) = (µ0 − sgn(µ(T )))

( |µ(T )|(T − t) + 1

|µ(T )|T + 1

)2

+ sgn(µ(T )). (4.6)

These are actually solutions of (4.3) if and only if the consistency relation obtained by setting
t = T in (4.6) holds, i.e. µ(T ) = M solves

T 2M3 + T (2 − T )M |M | + (1 − 2T )M − µ0 = 0. (4.7)

Moreover, distinct solutions of (4.7) correspond to distinct solutions of (4.3). We first look
for nonnegative solutions of (4.7). Set

f(M) := T 2M3 + T (2 − T )M2 + (1 − 2T )M − µ0.

Note that

f ′(M) < 0 ⇐⇒ M ∈
]
− 1

T
,
2T − 1

3T

[
.

If T ≤ 1
2 then f is strictly increasing in (0,+∞), so the equation f(M) = 0 admits a unique

nonnegative solution if µ0 ≥ 0, otherwise there is no nonnegative solution. If T > 1
2 , then f

restricted to (0,+∞) has a global minimum at M∗ = 2T −1
3T . If µ0 > 0 then there is still a

unique nonnegative solution, while for µ0 = 0 there are two nonnegative solutions, one of
which is zero. If, instead, µ0 < 0, so that f(0) > 0, the equation f(M) = 0 has zero, one
or two nonnegative solutions, depending on whether f(M∗) > 0, f(M∗) = 0 or f(M∗) < 0
respectively. Observing that

f(M∗) = −µ0 − (2T − 1)2(T + 4)

27T
,

we see that those three alternatives occur if T < T (µ0), T = T (µ0) and T > T (µ0) respectively.
The case M ≤ 0 is treated similarly.

Note that T (0) = 1
2 and T (±1) = 2. It will be useful to characterize the behaviour when

µ0 = 0.

Corollary 4.2. If µ0 = 0 then (4.3) admits

(i) a unique solution for T ≤ 1
2 , which is z ≡ µ ≡ 0;

(ii) three distinct solutions for T > 1
2 : the solution constantly 0 and other two solutions

(z+, µ+) and (z−, µ−) such that

z+(t) = −z−(t) > 0, µ+(t) = −µ−(t) > 0, ∀t ∈]0, T ] (4.8)

µ+(T ) = µ−(T ) =
T (T − 2) +

√
T 3(T + 4)

2T 2
. (4.9)
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4.1.1.1 Uniqueness under monotonicity

The non-uniqueness for large T derives from the terminal cost which we take anti-monotonous.
We known from the previous chapter that there is uniqueness of MFG solutions if the coupling
is monotonous. Let us verify it for this model, i.e. let us briefly examine here the opposite
case, where the terminal condition in (4.2) is u(T, x) = xµ(T ).

So the MFG system (4.3) becomes





ż = z|z|
2

µ̇ = −µ|z| + z

z(T ) = −2µ(T )

µ(0) = µ0

(4.10)

Given µ(T ) = M , the solution is then

z(t) = − 2M

|M |(T − t) + 1

µ(t) = (µ0 + sgn(M))

( |M |(T − t) + 1

|M |T + 1

)2

− sgn(M).

Hence there is a solution of the mean field game if and only M solves

T 2M3 + T (T + 2)M |M | + (1 + 2T )M − µ0 = 0. (4.11)

Thanks to Descartes’s rule of signs, we see that there is a unique solution M > 0 if and
only if µ0 > 0, otherwise there are no solutions. Viceversa, there is a unique solution M < 0
if and only if µ0 < 0, otherwise there are no solutions. While if µ0 = 0 there is the unique
solution M = 0. This holds for any time horizon T .

4.1.2 The master equation

For this model the master equation (M) takes the form

−∂U

∂t
(t, x,m) +

1

2

[
(∆xU(t, x,m))−

]2
(x,m) ∈ {−1, 1} × P({−1, 1})

−m1
∂U

∂(m−1 −m1)
(t, x,m) (∆xU(t, 1,m))−

−m−1
∂U

∂(m1 −m−1)
(t, x,m) (∆xU(t,−1,m))− = 0,

U(T, x,m) = −x(m−1 −m1), .

(4.12)

As for the MFG system, we can rewrite the above as an equation for the difference U(−1)−U(1)
in the variable µ = m−1 −m1: setting

Z(t, µ) := U

(
t,−1,

1 + µ

2
,
1 − µ

2

)
− U

(
t, 1,

1 + µ

2
,
1 − µ

2

)
,

we easily derive a closed equation for Z, now written as a forward equation,




∂Z
∂t + ∂

∂µ

(
µZ|Z|

2 − Z2

2

)
= 0, µ ∈ [−1, 1]

Z(0, µ) = 2µ.
(4.13)
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We observe that this equation has the form of a scalar conservation law with space-
dependent flow g(µ, z) := µ z|z|

2 − z2

2 . Again, system (4.3) represents the characteristic curves
to Equation (4.13). This equation is not standard since the flow g is space-dependent and
the equation is stated in the bounded domain [−1, 1]; note that g is C1 and concave in z, for
µ ∈ [−1, 1]. Basic facts concerning conservation laws will be summarized in the Appendix B
below. These equations typically posses unique smooth solutions for small time, but develop
singularities in finite time: weak solutions exist but uniqueness may fail. If the initial datum
were decreasing, then there would exist a classical solution for any time horizon, since the
flow is concave. This is exactly the case discussed above in which monotonicity holds, which
is the opposite to the one considered here. To recover uniqueness (for any T ) the notion of
entropy solution is introduced. The complete definition of entropy solution, as well as its
specialization to piecewise smooth functions, is postponed to the Appendix B.

For equation (4.13), the entropy solution can be explicitly found. Let

f(M, t, µ) := t2M3 + t(2 − t)M |M | + (1 − 2t)M − µ (4.14)

and M∗(t, µ) denote the unique solution to f(M, t, µ) = 0 with the same sign of µ, if µ 6= 0;
M∗ is defined for any time and let M∗(t, 0) ≡ 0. Define

Z∗(t, µ) :=
2M∗(t, µ)

t|M∗(t, µ)| + 1
. (4.15)

Theorem 4.3. The function Z∗ defined in (4.15) is the unique entropy admissible weak
solution to (4.13).

Proof. The function Z∗ is piecewise C1 with the discontinuity in µ = 0, for any t > 1/2. So
it is enough to check whether the conditions of Proposition 4.22 are satisfied. The master
equation holds in the classical sense for any µ 6= 0. We have g(0, z) = − z2

2 , hence condition
(RH) becomes |Z∗

l (t)| = |Z∗
r (t)|, while the (Lax) condition in this case reads Z∗

l (t) ≤ Z∗
r (t).

These properties hold by Corollary 4.2. Uniqueness is given by Theorem 4.23. We remark that
the conservation law is set in the domain [−1, 1] without any boundary condition, but this is
not a problem as we have invariance of the domain under the action of the characteristics.

Remark 4.4. We observe that to this entropy solution of (4.13), inverting the time, there
corresponds a unique solution of (4.12). Indeed, once Z is known, (4.12) becomes linear and
it is well posed.

We know from Remark 1.18, if there were a regular solution to the master equation (4.13),
i.e. Lipschitz in µ, then this solutions provides a unique solution to the mean field game
system (4.3), since the KPF equation would be well posed for any initial condition, when
using the control z(t) = Z(T − t, µ(t)) induced by the solution to the master equation:

{
µ̇ = −µ|Z(T − t, µ)| + Z(T − t, µ)

µ(0) = µ0.
(4.16)

In our example there are no regular solutions to the master equation; however the entropy
solution still induces a unique mean field game solution, if µ0 6= 0.

Proposition 4.5. Let Z∗ be the entropy solution defined in (4.15). Then (4.16) admits a
unique solution µ∗, if µ0 6= 0: it is the unique solution which does not change sign, for any
time.
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Proof. If µ0 > 0 then Z∗(T − t, µ) remains positive if t and |µ− µ0| are small. So we have
a unique solution, for small time, and it is such that µ(t) > 0 and the induced control is
positive. We iterate this procedure starting from µ(t0) > 0, and noting that µ(t) > µ0 for
any t. Therefore we end up with the required solution, which is positive and such that
µ(t) > µ0. This solution is unique since Z∗(t, µ) is Lipschitz for µ ∈ [µ0, 1]. In fact the other
two solutions described in Proposition 4.1 would require the optimal control to be negative
for any time, and this is not possible when considering the entropy solution Z∗. The same
argument gives the claim when µ0 < 0.

4.1.3 The N +1-player game

First of all, we want to write the (Nash) system in a simpler way, as it is done in [46], in
order to reduce the number of equations which is now N2N . This will also allow to perform
numerical simulations. It is convenient to consider now the game played by N+1 players,
labeled by the integers {0, 1, . . . , N}. In what follows, we use N rather than N+1 as apex in
all objects related to the N+1-player game. We make the ansatz that there exists a function
V N : [0, T ] × Σ × P(Σ) such that the value functions of the game can be written as

vN,i(t,x) = V N (t, xi,m
N,i
x ), i = 0, . . . , N. (4.17)

Under this condition, the (Nash) system is equivalent to the following equation for VN :

− d

dt
V N (x,m) +

[(∆xV N (x,m))−]2

2
(4.18)

=Nm1

[
V N

(
−1,m+

δx−δ1

N

)
− V N

(
1,m+

δx−δ1

N

)]−[
V N

(
x,m+

δ−1−δ1

N

)
− V N(x,m)

]

+Nm−1

[
V N

(
1,m+

δx−δ−1

N

)
−V N

(
−1,m+

δx−δ−1

N

)]−[
V N

(
x,m+

δ1−δ−1

N

)
−V N(x,m)

]

which admits a unique bounded solution, for any N .
Heuristically, the above Equation converges to the master equation (4.12). Indeed, if

mN → m deterministic, as N → ∞, then

lim
N

[
V N

(
−1,m+

δx − δ1

N

)
− V N

(
1,m+

δx − δ1

N

)]−
= [∆xU(1,m)]−

lim
N

[
V N

(
x,m+ δ−1−δ1

N

)
− V N (x,m)

]

1
N

=
∂U(x,m)

∂(m−1 −m1)

and similarly for the other terms. In fact, system (4.18) is a particular space discretization of
(4.12).

Any measure m ∈ P(Σ) is determined by its first component ζ ≡ m1. Let

ζN,i
x :=

1

N

N∑

j=0,j 6=i

δ{xj=1} ∈
{

0,
1

N
,

2

N
, . . . ,

N − 1

N
, 1

}
=: SN

be the fraction of the “other” players having state 1, and ζN
x = 1

N+1

∑N
i=0 ✶{Yi(t)=1}. Com-

paring with the notations used before, note that ζN,i
x = 1+µN+1,i

x

2 . Thus we now view V N as a
function of ζ and note that, by symmetry of system (4.18) and of the terminal condition, we
have

V N (t, 1, ζ) = V N (t,−1, 1 − ζ). (4.19)
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We can therefore redefine V N (t, ζ) := V N (t, 1, ζ) and then derive the following closed equation
for V N :

− d

dt
V N (t, ζ) +H(V N (1 − ζ) − V N (ζ))

= Nζ
[
V N (1 − ζ) − V N (ζ)

]− [
V N

(
ζ − 1

N

)
− V N (ζ)

]

+N(1 − ζ)

[
V N

(
ζ +

1

N

)
− V N

(
1 − ζ − 1

N

)]− [
V N

(
ζ +

1

N

)
− V N (ζ)

]

V N (T, ζ) = −(2ζ − 1)

(4.20)

with H(p) = (p−)2

2 . Clearly, if ζ = 0 (resp. ζ = 1) then there is only the second term (resp.
the first) in the right hand side of the equation. This is a system of N+1 ODEs indexed
by ζ ∈ SN whose well posedness is ensured by the Lipschitz continuity of the Hamiltoniam
and its argmax p− = −H ′(p): indeed, the right hand side is easily seen to be Lipschitz with
respect to V N for fixed N , but the Lipschitz constant is proportional to N .

The solution to system (4.20) gives the unique Nash equilibrium of the N+1-player game:
by symmetry, each player chooses the same feedback control, i.e. the same function, denoted
by βN , of his private state and the fraction of the other player in state 1; the Nash equilibrium
α is given by

αi(t,x) = βN (t, x, ζN,i
x ) := [V N (t,−x, ζN,i

x ) − V N (t, x, ζN,i
x )]−. (4.21)

We recall that such control represents the transition rate for any player to go from x to −x
at time t, when the fraction of the other players in state 1 is ζN,i. Setting

ZN (t, ζ) := V N (t, 1 − ζ) − V N (t, ζ),

we have
βN (t, 1, ζ) = ZN (t, ζ)−, βN (t,−1, ζ) = ZN (t, ζ)+. (4.22)

We observe that system (4.20) can not be closed as an equation for ZN , while this is
possible for the macroscopic limit, i.e. the master equation. Let us also point out some trivial,
but useful, estimates which can be seen as consequences of Lemma 1.7:

∣∣∣V N (t, ζ)
∣∣∣ ≤ 1,

∣∣∣ZN (t, ζ)
∣∣∣ ≤ 2 (4.23)

for any N , t ∈ [0, T ] and ζ ∈ SN .

4.1.3.1 Best response map

We observe here that Equation (4.18) can be also derived in a more game-theoretic framework,
by proceeding as in Section 3 in [46], i.e examining the best response map for the N+1 player
problem. The difference from what we did in Section 1.2 is that here we assume a priori the
symmetry of all the feedback strategies. We introduce here some notation which will not be
used in the following sections, as here we just make a remark.

We consider a reference player, labeled by 0, and assume that the other N players are
symmetric and use the same feedback strategy β(t, x,mN ), which is a deterministic function
of time, state of the player and empirical measure of the other N players, included the
reference player:

P (Xi(t+ h) = −x|Xi(t) = x,mN,i(t) = m) = β(t, x,m)h+ o(h)
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for i = 0, . . . , N , where mN,i(t) denotes the empirical measures of the N players without
player i and included the reference player. The reference player chooses his control β̂ at time
t, i.e.

P (X0(t+ h) = −x|X0(t) = x,mN,0(t) = m) = β̂(t, x,m)h+ o(h),

in order to minimize

J(t, x,m, β, β̂) := E
t,y,m

[∫ T

t

|β̂(s)|2
2

ds−X0(T )µN,0(T )

]
, (4.24)

where the apex means that we are conditioning on X0(t) = x and mN (t) = m ∈ SN , and
µN,0(T ) = Mean[mN,0(T )] = 1

N

∑N
i=0Xi(T ) is the empirical mean of the N symmetric player

at the terminal time.
There exists a unique optimal control β̂ =: Φ̂(β), which depends on β, and is called

the best response. It follows that β is a Nash equilibrium if Φ̂(β) = β. The value function
V N (t, y,m) of the game is then the minimum in (4.24) and, by Theorem 6 in [46], it solves
system (4.18).

4.2 Convergence results

We state the main convergence results. The first deals with the convergence of the value
function V N , the unique solution solutions to system (4.20), and study its limit as N → +∞.
We show that its limit corresponds to the entropy solution of the master equation (4.12).
More precisely, let U be the solution of (4.12) corresponding to the entropy solution Z of
(4.13). Define, for ζ ∈ [0, 1]

U∗(t, ζ) := U (t, 1, 2ζ − 1) .

Note that, for T−t > 1
2 , if T > 1

2 , U∗(t, ·) is discontinuous at ζ = 1
2 , but it is smooth elsewhere.

The next result establishes that V N converges to U∗ uniformly outside any neighborhood of
ζ = 1

2 .

Theorem 4.6 (Convergence of the value functions). For any N ≥ 1, ε > 0, t ∈ [0, T ] and

ζ ∈ SN \
]

1
2 − ε, 1

2 + ε
[
, we have

|V N (t, ζ) − U∗(t, ζ)| ≤ Cε

N
, (4.25)

where Cε does not depend on N nor on t, ζ, but limε↓0Cε = +∞.

It immediately follows that the convergence is pointwise and thus also in Lp, for any
p ≥ 1; however it can not be uniform. The result clearly holds also for V N (t,−1, ζ) because
of (4.19).

The second result gives the propagation of chaos property for the optimal trajectories.
Let us recall that by propagation of chaos it is meant that the limit of the empirical measures
is deterministic, or equivalently that the limit of their laws is a Dirac’s delta. Consider
then the initial datum ξ i.i.d with P (ξi = 1) = ζ0 and E[ξi] = µ0 = 2ζ0 − 1, and denote by
Yt = (Y0(t), . . . , YN (t)) the optimal trajectories of the N+1-player game, i.e. when agents
play the Nash equilibrium given by (4.21). Also, denote by X̃ the i.i.d process in which
players choose the local control α̃i(t,±1) := [Z∗(t, µ∗(t))]∓, where Z∗ is the entropy solution
to (4.13) and µ∗ is the unique mean field game solution induced by Z∗, if µ0 6= 0 (ζ0 6= 1

2),

that is the one which does not change sign (and ζ∗ = 1+µ∗

2 ); in fact, thanks to Proposition

4.5, we also have E[X̃i(t)] = µ∗(t).
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Theorem 4.7 (Propagation of chaos). If ζ0 6= 1
2 then, for any N and i = 0, . . . , N ,

E

[
sup

t∈[0,T ]
|Yi(t) − X̃i(t)|

]
≤ Cζ0√

N
, (4.26)

E

[
sup

t∈[0,T ]
|ζN

Y (t) − ζ∗(t)|
]

≤ Cζ0

N
1
9

, (4.27)

where Cζ0 does not depend on N , and limζ0→ 1
2
Cζ0 = +∞.

Let us give the idea of the proof of both the results. We do not use the characterization of
the solution to the master equation as the entropy admissible one, because it is very hard to
obtain compactness estimates on system (4.20), even in the space of functions with bounded
variation. An approach in this direction was instead followed in [46], where the authors
proved compactness estimates on the Nash system, but only if T is small enough. This lack
of estimates was in fact the main reason for considering the master equation approach we
developed in Section 3.1 for finite state models. The entropy solution Z∗ we consider here is
regular outside the discontinuity: if we show that the optimal trajectories of the N+1-player
game do non cross the discontinuity then we are allowed to use the master equation approach
in order to prove the convergence results. The key point for proving the convergence in
then to show a qualitative property of the Nash equilibrium, i.e. that it does not cross the
discontinuity.

Remark 4.8. Theorem 4.7 states that the N-player game selects one MFG solution, if
µ0 6= 0. We recall that the other two solution always have a physical meaning: indeed,
thanks to Theorem 2.18, the decentralized feedback strategy vector α = (α0, . . . , αN ) given by
αi(t,x) = α(t, xi), where α(t,±1) = z(t)∓ is the limiting control induced by any MFG solution
(z,m), is a 1√

N
-Nash equilibrium; however they induce a completely different behaviour in the

N players.

Actually in Theorem 2.18 the controls were a priori assumed to belong to a compact set,
but the result can be still applied in this model since the any MFG solution z is bounded by 2.

What is left to prove for this model is a propagation of chaos result when µ0 = 0. Let µ+,
resp. µ−, be the mean field game solution always positive, resp. always negative, in light of
Corollary (4.2). What is evident from the simulations (see Section 4.2.4) is the following

Conjecture 4.9. Let µ0 6= 0 and µN be the empirical mean related to the optimal trajectories
of the N -player game, viewed as a random variable in D([0, T ], [−1, 1]). Then

lim
N

Law(µN ) =
1

2
δµ+ +

1

2
δµ− . (4.28)

The limit of the empirical measures is not deterministic: in this sense there is no
propagation of chaos when µ0 = 0, i.e. the initial point is exactly in the discontinuity.
Unfortunately we did not manage to prove this result for our model, since it is difficult to
tract the Nash system in a neighborhood of the discontinuity. We remark that a similar
result, but when dealing with open-loop controls, was very recently obtained in [32] for a
linear quadratic mean field game in dimension 1.
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4.2.1 Characterization of the Nash equilibrium

Recall that the Nash equilibrium is given by (4.21): βN (t, 1, ζ) = ZN (t, ζ)− and βN (t,−1, ζ) =
ZN (t, ζ)+, where ZN (t, ζ) := V N (t, 1 − ζ) − V N (t, ζ). We show that if a player agrees with
the majority, i.e. xi = 1 and ζN,i

x ≥ 1
2 , or xi = −1 and ζN

x ≤ 1
2 , then he keeps his state by

applying the control zero.

Theorem 4.10. For any N and ζ ∈ SN =
{

0, 1
N , . . . , 1

}
, we have

ZN (t, ζ) ≥ 0 (βN (t, 1, ζ) = 0) if ζ ≥ 1

2
, (4.29)

ZN (t, ζ) ≤ 0 (βN (t,−1, ζ) = 0) if ζ ≤ 1

2
. (4.30)

Proof. The proof is done via time discretization. Fix N and consider the explicit backward
Euler scheme for Equation (4.20):

V N
h (t− h, ζ) = V N

h (t, ζ) − h

[(
V N

h (t, 1 − ζ) − V N
h (t, ζ)

)−]2

2

+ hNζ
(
V N

h (t, 1 − ζ) − V N
h (t, ζ)

)− (
V N

h

(
t, ζ − 1

N

)
− V N

h (t, ζ)

)

+ hN(1− ζ)

(
V N

h

(
t, ζ +

1

N

)
− V N

h

(
t, 1 − ζ − 1

N

))−(
V N

h

(
t, ζ +

1

N

)
− V N

h (t, ζ)

)

for ζ ∈ SN , where h is the time step and t ∈ Th = {0, h, . . . , T − h, T}, with final condition
V (T, ζ) = −(2ζ − 1). Since the Euler scheme converges, i.e. limh→0 V

N
h (t, ζ) = V N (t, ζ),

claim (4.29) is proved if we show that, for h small,

ZN
h (t, ζ) ≥ 0 t ∈ Th, ζ ≥ 1

2
, (4.31)

as we have ZN (t, ζ) = −ZN (t, 1 − ζ) by (4.19). We will prove more, i.e. also that for h small

V N
h (t, ζ) − V N

h

(
t, ζ +

1

N

)
≥ 0 t ∈ Th, ζ ≥ 1

2
, (4.32)

meaning that the value function (of a player in state 1) is decreasing on the right of the
discontinuity.

We prove (4.31) and (4.32) by backward induction on t; as N and h are fixed, let us now
set V N

h = V . The claims are clearly true in T , and assuming they are true in t, we have

Z (t− h, ζ) = Z (t, ζ) − h
1

2
Z (t, ζ)2

+ hN (1 − ζ)Z (t, ζ)

(
V

(
t, 1 − ζ − 1

N

)
− V (t, 1 − ζ)

)

− hN (1 − ζ)Z

(
t, ζ +

1

N

)(
V

(
t, ζ +

1

N

)
− V (t, ζ)

)

= Z (t, ζ)

[
1 − h

(
1

2
Z (t, ζ) +N (1 − ζ)

(
V (t, 1 − ζ) − V

(
t, 1 − ζ − 1

N

)))]

+ hN (1 − ζ)Z

(
t, ζ +

1

N

)(
V (t, ζ) − V

(
t, ζ +

1

N

))
,
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which is non-negative by the induction hypothesis and by (4.23), if h ≤ 1
N+1 . Concerning

(4.32), it holds

V (t− h, ζ) − V

(
t− h, ζ +

1

N

)

= V (t, ζ) − V

(
t, ζ +

1

N

)

+ hN(1 − ζ)Z

(
t, ζ +

1

N

)(
V

(
t, ζ +

1

N

)
− V (t, ζ)

)

− hN

(
1 − ζ − 1

N

)
Z

(
t, ζ +

2

N

)(
V

(
t, ζ +

2

N

)
− V

(
t, ζ +

1

N

))

and the latter term is non-negative by induction hypothesis, so that

V (t−h, ζ)−V

(
t− h, ζ +

1

N

)
≥
(
V (t, ζ) −V

(
t, ζ +

1

N

))[
1 −h

(
N(1 − ζ)Z

(
t, ζ +

1

N

))]

which is non-negative if h ≤ 1
N . We have proved claim (4.29), indeed, for ζ 6= 0, 1

2 , but the
proof can be easily adapted to these extreme points. Then (4.30) follows from (4.29) and
(4.19).

4.2.2 Convergence of the value functions

We exploit the convergence argument developed in Section 3.1. It is necessary to reintroduce
the notation

vN,i(t,x) = V N (t, xi, ζ
N,i
x ), uN,i(t,x) = U∗(t, xi, ζ

N,i
x )

for i = 0, . . . , N , where ζN,i = 1
N

∑N
j=0j 6=i δ{xi=1} is the fraction of the other players in 1.

Denote also Sε
N := SN \ (1

2 − ε, 1
2 + ε) and ζN (t) = 1

N+1

∑N
i=0 ✶{Yi(t)=1}. The following is the

adaptation to the present model of Propositions 3.3 and 3.4.

Proposition 4.11. For any t ∈ [0, T ], ε > 0 and any x such that ζN,i
x ∈ Sε

N , if N ≥ ε
2 , we

have

∆juN,i(t,x) = − 1

N + 1

∂

∂ζ
U∗(t, x, ζ) + τN,i,j(t,x), (4.33)

for any j 6= i, with |τN,i,j(t,x)| ≤ Cε

N2 , and the function U∗(t, ζ) solves

− d

dt
U∗(t, ζ) +H(U∗(1 − ζ) − U∗(ζ)) (4.34)

= Nζ [U∗(1 − ζ) − U∗(ζ)]−
[
U∗
(
ζ − 1

N

)
− U∗(ζ)

]
+ rN (t, ζ)

+N(1 − ζ) +

[
U∗
(
ζ +

1

N

)
− U∗

(
1 − ζ − 1

N

)]− [
U∗
(
ζ +

1

N

)
− U∗(ζ)

]
,

with |rN (t, ζ)| ≤ Cε

N . The constant Cε is proportional to the Lipschitz constant of the master

equation outside the discontinuity, which behaves like ε− 2
3 .

Thanks to the characterization of the Nash equilibrium (Theorem 4.10), if the initial
condition Yt0 is deterministic and such that

ζN (t0) ≥ εN :=
N

N + 1

(
1

2
+ ε

)
+

1

N + 1
, (4.35)
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then ζN (t) ≥ εN for any t ≥ t0, almost surely. This implies that if Yi(t) = 1 then the fraction
of the other players in state 1 is ζN,i(t) = 1

N

∑
j 6=i ✶{Yj(t)=1} ≥ 1

2 + ε for any t, and the same

clearly holds if Yi(t) = −1. We can argue symmetrically if ζN (t0) ≤ 1 − εN ; so we define

ΣN
ε =

{
x ∈ {−1, 1}N+1 : ζN

x ≥ εN or ζN
x ≤ 1 − εN

}
. (4.36)

Therefore, computing V N (or U∗) in the optimal trajectories Yt when starting from
Yt0 ∈ ΣN

ε , we have

vN,i(t,Yt) = V N (t, Yi, ζ
N,i(t)) =

{
V N (t, 1, ζN,i(t)) Yi(t) = 1

V N (t, 1, 1 − ζN,i(t)) Yi(t) = −1
(4.37)

using the identity V N (t,−1, ζ) = V N (t, 1, 1 − ζ). Thus we are either or the right or on the
left of the strip centered in the discontinuity and so

vN,i(t,Yt) ≤ max
ζN ∈Sε

N

V N (t, ζN ); (4.38)

hence

|vN,i(t,Yt) − uN,i(t,Yt)| ≤ max
ζN ∈Sε

N

|V N (t, ζN ) − U∗(t, ζN )| (4.39)

for any t, almost surely. We observe also that

max
x∈ΣN

ε

|vN,i(t,x) − uN,i(t,x)| = max
ζN ∈Sε

N

|V N (t, ζN ) − U∗(t, ζN )| (4.40)

and further

|∆ivN,i(t,Yt) − ∆ivN,i(t,Yt)|
= |V N (t,−Yi(t), ζ

N,i(t)) − U∗(t,−Yi(t), ζ
N,i(t))

− V N (t, Yi(t), ζ
N,i(t)) + U∗(t, Yi(t), ζ

N,i(t))|
≤ 2 max

ζN ∈Sε
N

|V N (t, ζN ) − U∗(t, ζN )|. (4.41)

Proof of Theorem 4.6. We choose a deterministic initial condition Yt ∈ ΣN
ε ; proceeding as in

the proof of Theorem 3.1, we find

E[(uN,i
t − vN,i

t )2] +
N∑

j=0

E

[ ∫ T

t
αj(s,Ys)

(
∆j [uN,i

s − vN,i
s ]

)2
ds

]
(4.42)

= −2E

[ ∫ T

t
(uN,i

s − vN,i
s )

{
− rN(s,Ys) +H(∆iuN,i

s ) −H(∆ivN,i
s )

+
N∑

j=0,j 6=i

(αj
s − αj

s)∆juN,i
s + αi

s(∆iuN,i
s − ∆ivN,i

s )

}
ds

]
,

which is the analogous to (3.11), where αi
s is the Nash equilibrium played by player i,

αi
s = [U∗(s,−Yi(s), ζ

N,i
Y (s)]− is the control induced by U∗ and all the functions are evaluated

on the optimal trajectories, e.g. vN,i
s := vN,i(s,Ys). We raise all the positive sum on the lhs
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and estimate the rhs using the Lipschitz properties of H, the bounds on rN,i and ∆jui given
by Proposition 4.11, and the bound on αj given by (4.23), to get, if N ≥ 2

ε ,

E[(uN,i
t − vN,i

t )2]

≤ C

N
E

[ ∫ T

t
|uN,i

s − vN,i
s |ds

]
+ CE

[ ∫ T

t
|uN,i

s − vN,i
s ||∆iuN,i

s − ∆ivN,i
s |ds

]

+
C

N

N∑

j=0,j 6=i

E

[ ∫ T

t
|uN,i

s − vN,i
s ||∆juN,j

s − ∆jvN,j
s |ds

]
,

which can be further estimated via the convexity inequality ab ≤ 1
2a

2 + 1
2b

2 yielding

E[(uN,i
t − vN,i

t )2] ≤ C

N2
+ CE

[ ∫ T

t

∣∣∣uN,i
s − vN,i

s

∣∣∣
2
ds

]
+ CE

[ ∫ T

t

∣∣∣∆iuN,i
s − ∆ivN,i

s

∣∣∣
2
ds

]

+
C

(N + 1)

N∑

j=0

E

[ ∫ T

t
|∆juN,j

s − ∆jvN,j
s |2ds

]
.

Here C denotes any constant which may depend on ε. Since all the functions are evaluated
on the optimal trajectories, we apply (4.39) and (4.41) to obtain

|uN,i(t,Yt) − vN,i(t,Yt)|2 ≤ C

N2
+ C

∫ T

t
max
ζ∈Sε

N

|U∗(s, ζ) − V N (s, ζ)|2ds

for any deterministic initial condition Yt ∈ ΣN
ε . Therefore (4.40) gives

max
ζ∈Sε

N

|U∗(t, ζ) − V N (t, ζ)|2 ≤ C

N2
+ C

∫ T

t
max
ζ∈Sε

N

|U∗(s, ζ) − V N (s, ζ)|2ds (4.43)

and thus Gronwall’s lemma applied to the quantity maxζ∈Sε
N

|U∗(s, ζ) − V N (s, ζ)|2 allows to
conclude that

max
ζ∈Sε

N

|U∗(t, ζ) − V N (t, ζ)|2 ≤ C

N2
eC(T −t) ≤ C

N2
, (4.44)

which immediately implies (4.25), but only if N ≥ ε
2 . By changing the value of C = Cε, the

thesis follows for any N .

4.2.3 Propagation of chaos

Here we deal with the proof of Theorem 4.7. Denote by Xi(t) the dynamics of the i-th player
when choosing the control

ᾱi(t,x) = [∆iU∗(t, xi, ζ
N,i
x )]− (4.45)

induced by the master equation.

Theorem 4.12. If ζ0 6= 1
2 then, for any N and i = 0, . . . , N ,

E

[
sup

t∈[0,T ]
|Yi(t) −Xi(t)|

]
≤ Cζ0

N
, (4.46)

where C does not depend on N , and limζ0→ 1
2
Cζ0 = +∞.
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Proof. Let ζ0 = 1
2 + 2ε and consider the set Aε where both Xt and Yt belong to ΣN

ε , for any
time. We have

E

[
sup

s∈[0,t]
|Xi(s) − Yi(s)|

]
≤ CE

[∫ t

0
|Xi(s) − Yi(s)| + |∆iuN,i(s,Xs) − ∆ivN,i(s,Ys)|ds

]

≤ CE

[∫ t

0
|Xi(s) − Yi(s)|ds

]
+ CE

[
✶Aε

∫ t

0
|∆iuN,i(s,Ys) − ∆ivN,i(s,Ys)|ds

]

+ CE

[
✶Aε

∫ t

0
|∆iuN,i(s,Xs) − ∆iuN,i(s,Ys)|ds

]
+ CP (AC

ε )

and now we apply (4.25), the Lipschitz continuity of U∗ in ΣN
ε and the exchangeability of

the processes to get, if N ≥ 2
ε ,

E

[
sup

s∈[0,t]
|Xi(s) − Yi(s)|

]
≤ C

N
+ C

∫ t

0
E|Xi(s) − Yi(s)|ds+ CP (AC

ε )

+ CE
[
✶Aε

∫ t

0
|U∗(s,Xi(s), ζ

N,i
X (s)) − U∗(s,Xi(s), ζ

N,i
Y (s))|

+ |U∗(s,−Xi(s), ζ
N,i
X (s)) − U∗(s,−Xi(s), ζ

N,i
Y (s))|ds

]

≤ C

N
+ C

∫ t

0
E|Xi(s) − Yi(s)|ds+ CP (AC

ε ) + CE


✶Aε

∫ t

0

1

N

∑

j 6=i

|Xj(s) − Yj(s)|ds



≤ C

N
+ C

∫ t

0
E|Xi(s) − Yi(s)|ds+ CP (AC

ε ). (4.47)

We can bound the probability of AC
ε considering the process in which the rates are equal

to 0, for any time, i.e. the constant process equal to the initial condition. Thanks to the shape
of the Nash equilibrium and of the control induced by the solution to the master equation,
we have

P (AC
ε ) = P (∃t : either ζN

X (t) or ζN
Y (t) /∈ ΣN

ε ) ≤ 2P (ζN
ξ /∈ ΣN

ε ). (4.48)

Observe that (N + 1)ζN
ξ ∼ Bin(N + 1, 1

2 + 2ε); by standard Markov inequality, we bound

P
(
ζN

ξ < εN

)
≤ P

(∣∣∣∣ζ
N
ξ − 1

2
− 2ε

∣∣∣∣ >
1

2
+ 2ε− εN

)
≤

Var
[
ζN

ξ

]

(
1
2 + 2ε− εN

)2

=
1

N + 1

(
1
2 + 2ε

) (
1
2 − 2ε

)

(
1
2 + 2ε− N

N+1

(
1
2 + ε

)
− 1

N+1

)2 ≤ C

Nε
(4.49)

if N ≥ 2
ε , so that 1

2 + 2ε − εN ≥ ε
4 . Putting this latter estimate (4.49) into (4.47), and

denoting ϕ(t) := E

[
sups∈[0,t] |Xi(s) − Yi(s)|

]
, we obtain

ϕ(t) ≤ C

Nε
+ C

∫ t

0
ϕ(s)ds (4.50)

which, by Gronwall’s lemma, gives (4.46), but only if N ≥ 2
ε . By changing the value of C,

the claim follows for any N .

We are now in the position to prove Theorem 4.7.
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where G(m1,m−1) := − (m1−m−1)2

2 is such that

∂

∂m1
G(m) = −(m1 −m−1) =: G(1,m)

∂

∂m−1
G(m) = m1 −m−1 =: G(−1,m),

meaning that the mean field game is potential, as ∇mG(m) = G(·,m).
The Hamiltonian of this problem, for g ∈ R

2, is

H(m, g)= sup
Γ∈A

{
−b(m,Γ) · g −m1

Γ2
1

2
−m−1

Γ2
−1

2

}
= m1

[(g−1 − g1)−]2

2
+m−1

[(g1 − g−1)−]2

2
,

where bx(m,Γ) = m−xa−x −mxax, for x = ±1, is the vector field in (4.52), and the argmax
of the Hamiltonian is

Γ∗
1(g) = (g−1 − g1)−

Γ∗
−1(g) = (g1 − g−1)−.

Thus the HJB equation of the control problem reads

{
−∂U

∂t + H(m,∇mU) = 0 m ∈ P({−1, 1})

U(T,m) = G(m)
(4.54)

and its characteristics curves are given by the MFG system





−u̇1 + [(u−1−u1)−]2

2 = 0

−u̇−1 + [(u1−u−1)−]2

2 = 0

ṁ1 = m−1Γ−1 −m1Γ1

ṁ−1 = m1Γ1 −m−1Γ−1

u±1(T ) = G(±1,m(T )), m(0) = m0.

(4.55)

The conclusions of Lemma 1.19 hold in this model; moreover, (4.54) can be reduce to
dimension 1, as it is stated in P(Σ), and thus the derivative of the value function is known
to be the unique entropy solution to (4.12), which can also be reduced to dimension 1. We
observed in 1.4.1 that the potential structure is equivalent to the formulation of the master
equation as a system of conservation laws, in any dimension. If d = 2 the master equation
can always be reduced to dimension 1, thus it always admits a potential formulation; see also
[48]. However the reduced master equation (4.13) can not be interpreted as the derivative of
a HJB equation of a control problem, since its flow is not convex.

We know that, if T is large enough, there are three solutions to the MFG system. The
control problem (4.52)-(4.53) has a minimum, so we wonder which of these solutions is indeed
an optimum.

Firstly, we need to investigate some properties of the roots of (4.7). Let T > 1
2 be

fixed. Let M1(µ0) < M2(µ0) < M3(µ0) be the three solutions to (4.7). If µ0 = 0 denote
M− = M1(0) < 0, M+ = M3(0) > 0; we have M2(0) = 0 and M+ = −M−. If µ0 > 0 then,
by Proposition 4.1, M3(µ0) > 0 and M1(µ0),M2(µ0) < 0; if µ0 < 0 then M3(µ0) < 0 and
M1(µ0),M2(µ0) > 0.

Lemma 4.13. Let µ0 > 0 and T > T (µ0) be fixed. Then
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1. The function [0, µ0] ∋ µ 7→ M3(µ) ∈ [0, 1] is increasing, M2(µ) is decreasing and M1(µ)
is increasing. In particular for any µ ∈ [0, µ0]

M3(µ) > M+ = |M−| > |M1(µ)| > |M2(µ)| > M2(0) = 0 (4.56)

2. We have M1(µ) < −2T −1
3T < M2(µ) < 0 and for any µ ∈ [0, µ0]

∣∣∣∣M2(µ) +
2T − 1

3T

∣∣∣∣ >
∣∣∣∣M1(µ) +

2T − 1

3T

∣∣∣∣ . (4.57)

The case µ0 < 0 is symmetric.

Proof. Claim (1) derives from the proof of Proposition 4.1. For claim (2), M1(µ) and M2(µ)
are the two negative roots of f(M) = T 2M3 −T (2−T )M2 +(1−2T )M −µ = 0. The roots of
f ′(M) are q := −2T −1

3T and 1
T . Hence M1 < q < M2 < 0, f(q) > 0 and we have, by Taylor’s

formula (which here is actually a change of variable),

f(q + ε) = f(q) + f ′(q)ε+
f ′′(q)

2
ε2 +

f ′′′(q)
6

ε3 = f(q) +
f ′′(q)

2
ε2 + T 2ε3

f(q − ε) = f(q) − f ′(q)ε+
f ′′(q)

2
ε2 − f ′′′(q)

6
ε3 = f(q) +

f ′′(q)
2

ε2 − T 2ε3

for any ε > 0. Thus f(q + ε) − f(q − ε) = 2T 2ε3 > 0 for any ε > 0, which implies (4.57).

For i = 1, 2, 3, denote by mi, ui the solution to the MFG system (4.55) corresponding to
Mi, and let also Γi := Γ∗(ui) be the optimal control.

Theorem 4.14. Let µ0 > 0 and T > T (µ0) be fixed. Then for any µ ∈ [0, µ0] and i = 1, 2, 3
we have J (Γi) = ϕ(Mi(µ)), where ϕ : [−1, 1] → [−1, 1],

ϕ(M) := M2
(
T − 1

2
− T |M |

)
. (4.58)

Moreover for any µ ∈]0, µ0]

ϕ(M+) = ϕ(M−) < ϕ(0) = 0, (4.59)

ϕ(M3(µ)) < ϕ(M+) < ϕ(M1(µ)), (4.60)

ϕ(M1(µ)) < ϕ(M2(µ)) > 0, . (4.61)

Proof. The first claim and (4.58) follow directly from (4.53) and (4.6).
We start proving (4.60). The roots of ϕ′ are 0 and ±q, with q := −2T −1

3T . The function ϕ
is then increasing if either M < q or 0 < M < −q. Thus (4.60) follows from (4.56) and the
fact that ϕ(M+) = ϕ(M−), as ϕ(M) only depends on |M |.

Next, we show that ϕ(M+) < 0 = ϕ(0). Since M+ solves T 2M2 +T (2−T )M+1−2T = 0,
we obtain for M = M+

ϕ(M) =
M2

2
(2T − 1 − 2TM) =

M2

2
(T 2M2 − T 2M) =

T 2M3

2
(M − 1) < 0

because M+ < 1.
To prove (4.61), we first note that we have just showed that it holds in µ = 0: ϕ(M1(0)) =

ϕ(M−) = ϕ(M+) < 0 = ϕ(0) = ϕ(M2(0)). We also know that ϕ(M1(µ)) > ϕ(M1(0)) and
ϕ(M2(µ)) > ϕ(M2(0)), thanks to the monotonicity behavior of ϕ and Lemma 4.13. Hence
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suppose by contradiction that there exists µ ∈]0, µ0] such that ϕ(M1(µ)) = ϕ(M2(µ)) = c,
for some c > 0. This implies that both M1(µ) and M2(µ) are negative roots of ϕ(M) − c.
Thus they are also negative roots of

ψ(M) := Tϕ(M) − Tc− f(M) =
3

2
TM2 − (1 − 2T )M + µ− Tc = 0

and ψ′(q) = 0, where q = −2T −1
3T as above. Since ψ has degree 2, it follows that |M2(µ) − q| =

|M1(µ) − q|, but this contradicts (4.57). Therefore there is no µ for which ϕ(M1(µ)) =
ϕ(M2(µ)), and then if (4.61) holds for µ = 0 (which is (4.59)) then it is true for any
µ ∈ [0, µ0].

We have thus proved that the N -player game selects the optimum of this deterministic
control problem, when it is unique, i.e. m0 6= 0. Denoting, as before, by (µ∗, z∗) the unique
MFG solution with sgn(µ∗(T )) = sgn(µ∗(0)), and by Γ∗ the corresponding optimal control,
we have for µ0 > 0

J (Γ∗) < J (Γ1) < J (Γ2). (4.62)

Instead, if µ0 = 0 then Γ+ and Γ− are both optimal, while Γ ≡ 0 is not a minimum. This
could explain why the limit of the optimal empirical means is random and supported in µ+

and µ− with probability 1
2 ; see Conjecture 4.9.

4.3.2 Weak mean field game solutions

Here we examine the weak mean field game solutions, as defined in Subsection 1.4.2, of our
two state model. We show that they can be a simple randomization of the strong MFG
solutions, but there are also weak (open-loop) MFG solutions that are not supported in the
set of strong MFG solutions. This holds also for weak feedback MFG solution, in analogy
with the “illuninating example” of [65] and [66].

For a (random) measure m ∈ P({−1, 1}), we denote its mean by m̄ := m(1)−m(−1); and
similarly for η ∈ P(Z) we write η̄x(t) := ηx(t, 1) − ηx(t,−1). Hence we have G(x,m) = −xm̄.
To fix the ideas, let T = 2, so that there always exist 3 strong MFG solutions, in light of
Proposition 4.1; and let also µ0 = 0 Let us firs study the optimization problem arising in
the definition of weak MFG solution. So suppose (π, η,X) ∈ S × P(Z) × D satisfies (1-3) of
Definition 1.20; π is an open-loop control. Since X(t) is a measurable function of π and N
we have (as E[X0] = 0),

J(π, ηx) = E

[∫ 2

0

|π(t)|2
2

dt−X(2)η̄x(2)

]

=

∫ 2

0
E

[
|π(t)|2

2
−
(∫

Θ
γ(X(t−), π(t), θ)ν(dθ)

)
η̄x(2)

]
dt

=

∫ 2

0
E

[
|π(t)|2

2
−
(∫

Θ
γ(X(t−), π(t), θ)ν(dθ)

)
E

[
η̄x(2)|Fπ,N

t

]]
dt

Now we use that Fπ
t is conditionally independent of FX0,N ,η

T given FX0,N ,η
t and the indepen-

dence of X0,N and η to obtain

E[η̄x(2)|Fπ,N
t ] = E[η̄x(2)|Fπ

t ] = E[η̄x(2)|FX0,N ,η
t ] = E[η̄x(2)|Fη

t ],
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where Fη
t := σ(η(E) : E ∈ FZ

t ). Thus

J(π, ηx) = E

[∫ 2

0

|π(t)|2
2

−
(∫

Θ
γ(X(t−), π(t), θ)ν(dθ)

)
E[η̄x(2)|Fη

t ]dt

]
(4.63)

If M = η̄x(2) was deterministic, the optimal (feedback) control was given by z(t) =
2M

|M |(2−t)+1 . Therefore if M is replaced by E[η̄x(2)|Fη
t ] in (4.63), a feedback control β̂(t, x, ηx)

is optimal for η if β̂(t, 1, ηx) = Z−(t, ηx) and β̂(t,−1, ηx) = Z+(t, ηx) for ℓ ⊗ P -a.e. (t, ω),
with

Z(t, ηx) =
2E[η̄x(2)|Fη

t ]

|E[η̄x(2)|Fη
t ]|(2 − t) + 1

. (4.64)

Note that, a priori, the function Z, and so also β̂, depend on the whole trajectory of ηx, not
only on ηx(t): it is not immediately a weak feedback MFG solution.

If m0 = 0 and T = 2 there are three strong MFG solutions, in light of Corollary 4.2,
corresponding to M = µ(2) ∈ {0,

√
3/2,−

√
3/2}. The optimal controls are respectively

provided by z0 ≡ 0 and

z±(t) = ±
√

3
√

3
2 (2 − t) + 1

We now exhibit two different weak feedback MFG solutions: in the first the terminal average

η̄x(2) is supported on S =
{

0,
√

3/2,−
√

3/2
}

, while in the second η̄x(2) ∈
{√

5−1
2 ,−

√
5−1
2

}
,

so that P (η̄x(2) ∈ S) = 0.

Lemma 4.15. Any randomization of strong MFG solutions is a weak feedback MFG solution
(β, η,X), with P (ηx(2) ∈ S) = 1.

Proof. Let χ be a random variable valued on {0,−1, 1}, independent of X0 and N . Let

Z(t) := z+(t)✶{χ=1} + z−(t)✶{χ=−1}, (4.65)

i.e. we choose one of the three controls at t = 0 depending on the value of χ. Let XZ be the
corresponding dynamics and define

η := P
[
(N ,Z, XZ) ∈ ·|χ

]
. (4.66)

Of course η is χ-measurable and, on the other hand,

η̄x
2 = E[XZ(2)|χ] =

√
3

2
χ ∈ S. (4.67)

Then χ is η measurable, and hence we obtain that η := P
[
(N ,Z, XZ) ∈ ·|η

]
, that is, condition

(1.91) holds.
So it remains to check that (4.64) is satisfied. Clearly Fη

t = σ(χ) for any t and so

E[η̄x(2)|Fη
t ] = E[η̄x(2)|χ] = η̄x(2) =

√
3

2
χ.

Therefore for any t > 0 (recall that the value of the control at t = 0 is meaningless) and ω

Z(t) =

√
3χ

√
3

2 (2 − t) + 1
=

2E[η̄x(2)|Fη
t ]

|E[η̄x(2)|Fη
t ]|(2 − t) + 1

,
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which means that the control Z defined in (4.65) is optimal, as it satisfies (4.64).

Moreover ηx(t) is χ-measurable for any t and then Fη
t = σ(ηx(t)). This implies that

E[η̄x(2)|Fη
t ] = E[η̄x(2)|ηx(t)] =

√
3

2
χ

and thus there exist a function Z : [0, 2] × [−1, 1] → [−2, 2] such that the optimal control is
Z(t, η) = Z(t) = Z(t, ηx(t)). This means that we found a weak feedback MFG solution, with
feedback control β given by β(t,±1, µ) = Z(t, µ)∓. More precisely, Z is given by

Z(t, µ) =





√
3 sgn(µ)

√
3

2
(2−t)+1

if µ 6= 0

0 if µ = 0,

which in particular says that Z is measurable.

Lemma 4.16. There exists a weak feedback mean field game solution (β, η,X) such that
P (ηx(2) ∈ S) = 0.

Proof. Let χ be a random variable valued on {−1, 1} with E[χ] = 0, independent of X0 and
N and let

Z(t) :=
χ(

√
5 − 1)

√
5−1
2 (2 − t)

✶]1,2](t), (4.68)

i.e. we choose the control zero until time t = 1 and then one of the other two controls z±,
depending on the value of χ. Note that the constant MT = µ(T ) given by (4.9) is precisely√

5−1
2 for T = 1. In fact we go from t = 1 to t = 2 choosing one of the controls different from

0, starting from 0 at t = 1, which is the same as going from t = 0 to t = 1 starting from 0,
and thus the constant we have to use in the definition (4.68) is MT .

As above, let XZ be the corresponding dynamics and define η := P
[
(N ,Z, XZ) ∈ ·|χ

]
.

Of course η is χ-measurable and, on the other hand,

η̄x
2 = E[XZ(2)|χ] =

√
5 − 1

2
χ /∈ S. (4.69)

Then χ is η measurable, and hence we obtain that η := P
[
(N ,Z, XZ) ∈ ·|η

]
, that is, condition

(1.91) holds. So it remains to check that (4.64) is satisfied. Now

Fη
t =

{
{∅,Ω} t ≤ 1

σ(χ) 1 < t ≤ 2

and so

E[η̄x(2)|Fη
t ] =

{√
5−1
2 E[χ] = 0 t ≤ 1√
5−1
2 χ 1 < t ≤ 2.

Therefore for any t and ω it holds

Z(t) =
2E[η̄x(2)|Fη

t ]

|E[η̄x(2)|Fη
t ]|(2 − t) + 1

,
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which means that the control Z defined in (4.68) is optimal, as it satisfies (4.64). Moreover,
as before, ηx(t) is χ-measurable for any t and then Fη

t = σ(ηx(t)). This implies that
E[η̄x(2)|Fη

t ] = E[η̄x(2)|ηx(t)] and thus, defining Z : [0, 2] × [−1, 1] → [−2, 2] by

Z(t, µ) =





0 if 0 < t ≤ 1, ∀µ
(
√

5−1) sgn(µ)
√

5−1
2

(2−t)+1
if 1 < t ≤ 2, µ 6= 0,

we have Z(t, η) = Z(t, ηx(t)) for ℓ ⊗ P - a.e. (t, ω). In particular Z is measurable and the
induced open-loop control is predictable: we found a weak feedback MFG solution. Note that
the value of Z in µ = 0 does not need to be defined, as ηx(t) = 0 with null probability, if
1 < t ≤ 2.

Remark 4.17. We choose T = 2 and m0 = 0 just for simplicity: with different horizon and
initial condition the solutions are similar, but in the second example we would have to take χ
with E[χ] = −m0.

In the above proof the time t = 1 can be replaced by any t0 ∈]0, 3/2[, choosing the constant
MT −t0 given by (4.9) instead of M1.

Among the large set of weak (feedback) MFG solutions, the N -player game selects only one
of them in the limit: either one strong solution, if µ0 6= 0 (Theorem 4.7), or a randomization
of two strong solutions if µ0 = 0 (Conjecture 4.9). Therefore in this example we can conclude
that the set of weak (feedback) MFG solutions, as defined in 1.20, is too wide to capture the
limits of the feedback Nash equilibria of the N -player game. Recently in [66] in the diffusion
setting, limit points of closed-loop Nash equilibria are characterized to be weak feedback
MFG solutions, but it is not clear whether they are just randomization of strong solutions or
not. This is true, instead, when dealing with open loop controls: in [65] it is shown in an
example that there exists a sequence of open-loop Nash equilibria converging to a weak MFG
solution which is not a randomization of strong solutions.

4.3.3 A modified example

Here we consider a modified framework allowing only controls bounded from below (Assump-
tion (Erg)), i.e. α(t, x) ≥ κ > 0. Most of the results are analogous to the previous setting,
so we just sketch them, but the convergence proof is different: it involves a large deviation
principle, and so it could be of interest itself. It still relies on a characterization of the Nash
equilibrium as in Theorem 4.10, but unfortunately we have not managed to prove it.

Consider the Lagrangian Lκ(a) = |a−κ|2
2 , so that the running cost is still zero if a player

chooses the control equal to the minimum; the final cost is te same, anti-monotonous. The
Hamiltonian of the problem is

Hκ(p) := sup
a≥κ

{
−ap− (a− κ)2

2

}
= −κp+

(p−)2

2
, (4.70)

whose argmax is given by a∗
κ(p) := κ+ p−. The mean field game system becomes





ż = z
( |z|

2 + 2κ
)

µ̇ = −µ(|z| + 2κ) + z

z(T ) = 2µ(T )

µ(0) = µ0.

(4.71)
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In order to solve system (4.71), we again suppose µ(T ) = M is given so that we can find z(t).
As one can check via computation,

z(t) :=
4κM

(2κ+ |M |)e(T −t)2κ − |M | (4.72)

and substituting this expression in the KFP equation, we find

µ(t)=
e2κt(|M |−e2κ(T−t)(2κ+|M |))2

(
µ0+ (−1+e2κt)M(2e2κT (1+e2κt)κ+(−2e2κt+e2κT+e2κ(t+T ))|M |

(e2κt|M |−e2κT (2κ+|M |))2

)

(|M | −e2κT (2κ+|M |))2
.

(4.73)
By imposing the mean field condition µ(T ) = M we can characterize the MFG solutions via
the solutions M to

−M +
4e2κTκ2

[
µ0 + (−1+e2κT )M(2e2κT (1+e2κT )κ+(−e2κT +e4κT )|M |)

(e2κT |M |−e2κT (2κ+|M |))2

]

(|M | − e2κT (2κ+ |M |))2
= 0. (4.74)

Note that this is a generalization of the case κ = 0: indeed, for κ → 0 we recover the previous
mean field condition, given by (4.7). The above Equation can be rewritten as

M3(e2κT − 1)2 −M |M |(e2κT − 1)[(1 − 4κ)e2κT − 1] + 2κM [e4κT (2κ− 1) + 1] − 4e2κTκ2µ0 = 0.
(4.75)

We can now state the analogous of Proposition 4.1.

Proposition 4.18. If κ ≥ 1
2 the MFG solution is unique for any T and µ0; while if κ > 1

2

and T ≤ Tκ := − log(1−2κ)
4κ the MFG solution is unique for any µ0. Let Tκ(µ0) be the unique

solution in [Tκ,+∞[ of

|µ0| =
1

4e2κTκ2

{
1

3(−1 + e2κT )2
2κ
(
1 +e4κT (−1 + 2κ)

) [
−1 +e2κT (2 − 4κ) + e4κT (−1 +4κ)

(4.76)

−
√

(−1 + e2κT )2(1 − 6κ+ e2κT (−2 + 8κ) + e4κT (1 − 2κ+ 4κ2)

]

+
1

9(−1 + e2κT )3
(1 + e2κT (−1 + 4κ))

[
1 + e4κT (1 − 4κ) + e2κT (−2 + 4κ)

+
√

(−1 + e2κT )2(1 − 6κ+ e2κT (−2 + 8κ) + e4κT (1 − 2κ+ 4κ2)

]2

+
1

27(−1 + e2κT )4

[
1 + e4κT (1 − 4κ) + e2κT (−2 + 4κ)

+
√

(−1 + e2κT )2(1 − 6κ+ e2κT (−2 + 8κ) + e4κT (1 − 2κ+ 4κ2))

]3
}
.

Then for any µ0 ∈ [−1, 1], the MFG system (4.71) admits

(i) a unique solution for T < Tκ(µ0);

(ii) two solutions if T = Tκ(µ0);

(iii) three distinct solutions for T > Tκ(µ0).
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Note that limκ↓0 Tκ = 1
2 , as in Corollary 4.2, and limκ↑ 1

2
Tκ = +∞. In fact, the intro-

duction of a lower bound κ increases the time for which there is uniqueness of solutions.
Moreover the three distinct solutions, when they exist, possess the same properties as for
κ = 0. Namely, there is a unique solution, denoted by (z∗

κ, µ
∗
κ), which does not change sign,

if µ0 6= 0, and is the one that exists for any T . While if µ0 = 0 the three solutions are the
constant 0, the one always positive and the one always negative, if T > Tκ.

The master equation and the Nash system have the same shape as in (4.12) and (4.20),
where the Hamiltonian is replaced by Hκ and p− by a∗

κ. The master equation can still be
written as a scalar conservation law, whose entropy solution, denoted by Z∗

κ(t, µ), has the
same properties as before: is has a shock at µ = 0, for t > Tk, and is smooth elsewhere. If we
show that the solution to the Nash system enjoys the same properties, then we are able to
prove the convergence of the value functions as well as a propagation of chaos for µ0 6= 0.
Further, the claim of Conjecture 4.9 should remain true, due to the numerical simulations
which show the same behaviour as in 4.2.4.

Thus we now consider 0 < κ < 1/2 and T > Tκ. Denote V N
κ (t, ζ) = V N

κ (t, 1, µ) and
ZN

κ (t, ζ) = V N
κ (t, 1 − ζ) − V N

κ (t, ζ), so that the Nash equilibrium is given by

βN
κ (t,±1, ζ) = κ+ ZN

κ (t, ζ)∓.

Let Uκ(t, x, µ) be the solution to the master equation corresponding to the the entropy
solution Z∗

κ(t, µ) and define U∗
κ(t, ζ) = Uκ(t, 1, 2ζ − 1). Let also Y κ, Xκ and X̃κ be as in

Section 4.2.

Theorem 4.19. Fix N ≥ 1 and 0 < κ < 1
2 . Assume that for any ζ ∈ SN =

{
0, 1

N , . . . , 1
}

ZN
κ (t, ζ) ≥ 0 if ζ ≥ 1

2
, (4.77)

ZN
κ (t, ζ) ≤ 0 if ζ ≤ 1

2
. (4.78)

Then for any t ∈ [0, T ], ε > 0 and ζ ∈ SN \
]

1
2 − ε, 1

2 + ε
[
, we have

|V N
κ (t, ζ) − U∗

κ(t, ζ)| ≤ Cε,κ

N
, (4.79)

where Cε,κ does not depend on N nor on t, ζ. Moreover if ζ0 6= 1
2

E

[
sup

t∈[0,T ]
|Y κ

i (t) − X̃κ
i (t)|

]
≤ Cζ0,κ√

N
, (4.80)

E

[
sup

t∈[0,T ]
|Y κ

i (t) −Xκ
i (t)|

]
≤ Cζ0,κ

N
. (4.81)

Proof. We start by proving (4.79), and omit the κ from the notation. Let ε > 0 be fixed and
consider a deterministic initial condition ξ = Yt at time t such that ζN

ξ ∈ ΣN
ε , where ΣN

ε is

defined by (4.36) and εN by (4.35). Let ε̄ = ε̄(T, κ, ε) := ε
2e

−2κT , fix N ≥ 2
ε and consider the

set
Aε :=

{
Ys ∈ ΣN

ε̄ ∀s ∈ [t, T ]
}
.

Firstly, we bound the probability of AC
ε . So consider the process Ỹ in which the transition

rates of each Ỹi are all constant and equal to the minimum κ, with the same initial condition Yt.
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Thanks to the properties of the Nash equilibrium (4.77) and (4.78), we have P (AC
ε ) ≤ P (ÃC

ε ),
where Ãε is the set where Ỹs ∈ ΣN

ε̄ for any s ∈ [t, T ]. The fraction or players in state 1,
denoted by ζ̃N (s) for t ≤ s ≤ T , of this process has a non-zero probability of crossing the
discontinuity, due to κ > 0, thus we can not argue as for κ = 0.

We are allowed to consider a sequence of deterministic initial conditions such that

lim
N→∞

ζN
ξ =: ζ∗

t ∈ [0, 1] \ ]1/2 − ε, 1/2 + ε
[

=: Sε; (4.82)

in particular the limit exists. We have that the Ỹi-s are independent processes (even if not

identically distributed), and the sequence of processes
(
ζ̃N (s)

)
s∈[t,T ]

satisfies a sample path

large deviation principle on D([0, T ], [0, 1]), thanks to a version of Sanov’s Theorem; see e.g.
[35] and [37]. We actually need only the upper bound:

lim sup
N→∞

1

N
logP (ÃC

ε,N ) ≤ −IT,κ,ε, (4.83)

where I is a good rate functional, IT,κ,ε = infλ∈ BT,κ,ε
I(λ) and

BT,κ,ε :=

{
λ ∈ D([0, T ], [0, 1]) : λ(s) /∈

]
1

2
− ε̄,

1

2
− ε̄

[
∀s ∈ [t, T ]

}
.

Thanks to (4.82), the sequence of processes
(
ζ̃N (s)

)
s∈[t,T ]

satisfies a propagation of

chaos property with the limit given by ζ∗(s) = 1
2 +

(
ζ∗

t − 1
2

)
e−2κ(s−t) for t ≤ s ≤ T : it is

provided by the solution to the KFP equation when z = 0. It is well known that the rate
functional is always positive and, if the propagation of chaos holds, I(λ) = 0 if and only
if λ = ζ∗. Therefore we can conclude that IT,κ,ε > 0, because of the choice of ε̄: we have
|ζ∗(s) − 1/2| ≥ 2ε̄ for all s ∈ [t, T ] and for any choice of t and ζ∗

t ∈ Sε, thus ζ∗ does not
belong to the closure of BT,κ,ε. This implies that

P (AC
ε ) ∼ e−NIT,κ,ε . (4.84)

Moreover, the solution U∗ to the master equation is smooth outside [1/2 − ε, 1/2 + ε]
and so the conclusions of Proposition 4.11 follow in the same way for N ≥ 2/ε̄. We obtain
Equation (4.42) as above:

E[(uN,i
t − vN,i

t )2] +
N∑

j=0

E

[ ∫ T

t
αj(s,Ys)

(
∆j [uN,i

s − vN,i
s ]

)2
ds

]

= −2E

[ ∫ T

t
(uN,i

s − vN,i
s )

{
− rN(s,Ys) +H(∆iuN,i

s ) −H(∆ivN,i
s )

+
N∑

j=0,j 6=i

(αj
s − αj

s)∆juN,i
s + αi

s(∆iuN,i
s − ∆ivN,i

s )

}
ds

]

with the same notation. Now we split the mean in E[✶Aε . . . ] + E[✶AC
ε
. . . ]. The second term

is bounded by

E[✶AC
ε
. . . ] ≤ CNP (AC

ε ) ∼ CNe−CN ≤ C

N2
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for N ≥ Nε large enough. While in the event Aε we can use Lipschitz properties of Hκ and
a∗

κ and the bounds on rN,i and ∆juN,i. On the left hand side, we raise the positive sum
∑

j 6=i

and estimate αi ≥ κ, to get

E[(uN,i
t − vN,i

t )2] + κE

[
✶Aε

∫ T

t

∣∣∣∆iuN,i
s − ∆ivN,i

s

∣∣∣
2
ds

]
≤

≤ C

N
E

[
✶Aε

∫ T

t
|uN,i

s − vN,i
s |ds

]
+ CE

[
✶Aε

∫ T

t
|uN,i

s − vN,i
s ||∆iuN,i

s − ∆ivN,i
s |ds

]

+
C

N + 1

N∑

j=0,j 6=i

E

[
✶Aε

∫ T

t
|uN,i

s − vN,i
s ||∆juN,j

s − ∆jvN,j
s |ds

]
+ CNP

(
AC

ε

)
.

The right hand side can be further bounded using the inequality ab ≤ δa2 + b2

4δ , so that we
can write

E[(uN,i
t − vN,i

t )2] + κE

[
✶Aε

∫ T

t

∣∣∣∆iuN,i
s − ∆ivN,i

s

∣∣∣
2
ds

]

≤ C

N2
+ CE

[
✶Aε

∫ T

t

∣∣∣uN,i
s − vN,i

s

∣∣∣
2
ds

]
+

κ

2(N + 1)

N∑

j=0

E

[
✶Aε

∫ T

t
|∆juN,j

s − ∆jvN,j
s |2ds

]

≤ C

N2
+ CE

[ ∫ T

t

∣∣∣uN,i
s − vN,i

s

∣∣∣
2
ds

]
+

κ

2(N + 1)

N∑

j=0

E

[
✶Aε

∫ T

t
|∆juN,j

s − ∆jvN,j
s |2ds

]
.

(4.85)

Averaging ( 1
N+1

∑N
i=0) we obtain

1

N + 1

N∑

i=0

E[(uN,i
t − vN,i

t )2] +
κ

2(N + 1)

N∑

j=0

E

[
✶Aε

∫ T

t
|∆juN,j

s − ∆jvN,j
s |2ds

]

≤ C

N2
+ C

∫ T

t

1

N + 1

N∑

i=0

E

[
|uN,i

s − vN,i
s |2

]
ds

and thus Gronwall’s Lemma, applied to the quantity 1
N+1

∑N
i=0 E

[
|uN,i

s − vN,i
s |2

]
yields,

raising the positive term of the lhs,

sup
t≤s≤T

{
1

N + 1

N∑

i=0

E

[∣∣∣uN,i(s,Ys) − vN,i(s,Ys)
∣∣∣
2
]}

≤ C

N2
,

which also implies

κ

2(N + 1)

N∑

j=0

E

[
✶Aε

∫ T

t
|∆juN,j

s − ∆jvN,j
s |2ds

]
≤ C

N2
. (4.86)

Applying (4.86) to the rhs of (4.85) and using Gronwall’s Lemma again, we have

|uN,i(t, ξ) − vN,i(t, ξ)|2 ≤ C

N2
(4.87)

for any deterministic ξ ∈ ΣN
ε , which immediately gives (4.79), in light of (4.40).
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To prove (4.80), we first observe that (4.86) can be derived in the same way for more
general non-deterministic initial condition. Indeed, assuming now that the initial time is 0
and the initial condition ξ is i.i.d with P (ξi = 1) = 1

2 + 2ε, the same argument we used above
yields P (AC

ε ) ≤ CN−2 and thus, by summing on both sides of (4.86) the same quantity
appearing on the lhs, but with Aε replaced by AC

ε , and then using the exchangeability of the
process Y , we deduce

E

[ ∫ T

0

∣∣∣∆ivN,i(s,Ys) − ∆iuN,i(s,Ys)
∣∣∣ds
]

≤ C

N
. (4.88)

Consider now the set Eε where both Xt and Yt belong to ΣN
ε̄ , for any time. We can bound

P (EC
ε ) = P

(
∃t : either ζN

X (t) or ζN
Y (t) /∈ ΣN

ε̄

)
≤ 2P

(
∃t : ζN

Ỹ
(t) /∈ ΣN

ε̄

)
≤ 2P (ÃC

ε ) ≤ C

N
.

Proceeding as in the proof of (4.46), applying (4.88), the Lipschitz continuity of U∗ in Eε

and the exchangeability of the processes, we find

E

[
sup

s∈[0,t]
|Xi(s) − Yi(s)|

]
≤ CE

[∫ t

0
|Xi(s) − Yi(s)| + |∆iuN,i(s,Xs) − ∆ivN,i(s,Ys)|ds

]

≤ CE

[∫ t

0
|Xi(s) − Yi(s)|ds

]
+ CE

[
✶Eε

∫ t

0
|∆iuN,i(s,Ys) − ∆ivN,i(s,Ys)|ds

]

+ CE

[
✶Eε

∫ t

0
|∆iuN,i(s,Xs) − ∆iuN,i(s,Ys)|ds

]
+ CP (EC

ε )

≤ C

∫ t

0
E|Xi(s) − Yi(s)|ds+

C

N
+ CE


✶Eε

∫ t

0

1

N

∑

j 6=i

|Xj(s) − Yj(s)|ds

+

C

N

≤ C

N
+ C

∫ t

0
E

[
sup

0≤r≤s
|Xi(r) − Yi(r)|

]
ds

and thus Gronwall’s inequality gives (4.80).
Finally, (4.81) derives from (4.80) as in Theorem 4.7. Indeed, we obtained the claims

only for N large enough, but changing the value of C = Cε the thesis follows for any N .

Appendix B: Entropy solutions to scalar conservation laws

We recall here some fact about entropy solutions to scalar conservation laws. A standard
reference for the followinf results is [29]. We consider the Cauchy problem, for µ ∈ R, t ∈ [0, T ]

{
∂tz + ∂µ[g(µ, z)] = 0,

z(0, µ) = z0(µ).
(4.89)

The function g, called the flow, is not standard as it is space-dependent. We always assume
that g ∈ C1(R2).

Definition 4.20. A function z ∈ L1
loc([0, T ] × R) ∩ C([0, T [, L1

loc(R)) is called an entropy
solution to (4.89) if

lim
t↓0

z(t) = z0 in L1
loc(R) (4.90)

and one of the following two equivalent conditions holds:
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1. for any entropy-entropy flux pair (η, q), that is, for any η ∈ C2(R) convex and q = q(µ, z)
such that ∂zq(µ, z) = ∂zg(µ, z)η′(z),

∂tη(z) + ∂µ[q(µ, z)] + η′(z)gµ(µ, z) − qµ(µ, z) ≤ 0, (4.91)

in distribution, i.e for any ϕ ∈ C∞
C (]0, T [×R), ϕ ≥ 0,

∫ T

0

∫

R

{
η(z)ϕt + q(µ, z)ϕµ + [qµ(µ, z) − η′(z)gµ(µ, z)]ϕ

}
dµdt ≥ 0; (4.92)

2. for any c ∈ R

∂t|z − c| + ∂µ[sgn(z − c)(g(µ, z) − g(µ, c))] + sgn(z − c)gµ(µ, c) ≤ 0, (4.93)

in distribution, that is, for any ϕ ∈ C∞
C (]0, T [×R), ϕ ≥ 0,

∫ T

0

∫

R

{|z − c|ϕt + sgn(z − c)(g(µ, z) − g(µ, c))ϕµ − sgn(z − c)gµ(µ, c)ϕ} dµdt ≥ 0.

(4.94)

Lemma 4.21. The two conditions in the above definition are equivalent and imply that z is
a weak solution to (4.89) in the sense of distributions.

The entropy condition can be specialized when z is a piecewise smooth function.

Proposition 4.22. Let z be a function piecewice C1 whose discontinuity points belong to the
smooth curve µ = λ(t). Then z is an entropy solution to (4.89) if and only if

1. z solves (4.89) in the classical sense where it is smooth;

2. the initial condition z(0, µ) = z0(µ) holds in the classical sense;

3. denoting the limits zr(t) := limµ↓λ(t) z(t, µ), zl(t) := limµ↑λ(t) z(t, µ), the Rankine-
Hugoniot condition holds: for ℓ-a.e. t

λ̇(t) =
g(λ(t), zr(t)) − g(λ(t), zl(t))

zr(t) − zl(t)
; (RH)

4. the Lax stability condition holds:

g(λ(t), c) − g(λ(t), zr(t))

c− zr(t)
< λ̇(t) <

g(λ(t), c) − g(λ(t), zl(t))

c− zl(t)
(Lax)

for ℓ-a.e. t and any c strictly between zl and zr.

The Rankine-Hugoniot condition is equivalent to state that z is a weak solution to the
scalar conservation law. The Lax condition can be reformulated saying that the graph of
g(λ(t), ·) stays above the chord joining zr and zl, if zr < zl, while the graph stays below the
chord when zl < zr.

The main result about the theory of conservation laws is the following

Theorem 4.23. If z0 ∈ L1(R) ∩ L∞(R) then there exists a unique entropy admissible weak
solution z ∈ C([0, T ], L1(R) ∩ L∞(R)) to (4.89).
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