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Preface

This document offers a large overview of the eight months’ schedule of Seminario Dottorato
2016/17. Our “Seminario Dottorato” (Graduate Seminar) is a double-aimed activity. At
one hand, the speakers (usually Ph.D. students or post-docs, but sometimes also senior
researchers) are invited to think how to communicate their researches to a public of math-
ematically well-educated but not specialist people, by preserving both understandability
and the flavour of a research report. At the same time, people in the audience enjoy a
rare opportunity to get an accessible but also precise idea of what’s going on in some
mathematical research area that they might not know very well.
Let us take this opportunity to warmly thank the speakers once again, in particular for
their nice agreement to write down these notes to leave a concrete footstep of their par-
ticipation. We are also grateful to the collegues who helped us, through their advices and
suggestions, in building an interesting and culturally complete program.

Padova, June 27th, 2017

Corrado Marastoni, Tiziano Vargiolu
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Abstracts (from Seminario Dottorato’s web page)

Wednesday 5 October 2016

Integer Linear Programming to solve Large-Scale problems

Veronica DAL SASSO (Padova, Dip. Mat.)

Integer linear programming is widely used to find optimal solutions to problems that arouse in the

real world and are related to logistics, planning, management, biology and so on. However, if from

a theoretical point of view it is easy to give a formulation for these problems, from a computational

point of view their implementation can be impractical due to the high number of constraints and

variables involved.

During this seminar I will present classical results for dealing with large-scale integer linear pro-

grams and their application to a particular bioinformatic problem, related to the study of the

human genome, that helps recovering information useful to study diseases and populations’ be-

haviours.

Wednesday 16 November 2016

Products of elementary and idempotent matrices and non-Euclidean PID’s

Laura COSSU (Padova, Dip. Mat.)

It is well known that Gauss Elimination produces a factorization into elementary matrices of any

invertible matrix over a field. Is it possible to characterize integral domains different from fields

that satisfy the same property? As a partial answer, in 1993, Ruitenburg proved that in the class

of Bézout domains, any invertible matrix can be written as a product of elementary matrices if

and only if any singular matrix can be written as a product of idempotents.

In this seminar we present some classical results on these factorization properties and we focus,

in particular, on their connection with the notion of weak-Euclidean algorithm. We then conclude

with a conjecture on non-Euclidean principal ideal domains, rare and interesting objects in com-

mutative algebra, and some related results.

In order to make the talk understandable to a general audience, we will recall basic definitions of

Commutative Ring theory and provide easy examples of the objects involved.
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Wednesday 30 November 2016

Biologically inspired deduction of Optimal Transport Problems

Enrico FACCA (Padova, Dip. Mat.)

In this talk, after a brief introduction on the Optimal Transport Problems and some PDEs based

formulation, we will present a recently developed approach, based on an extension of a model

proposed by Tero et al (2007), for the simulation of the dynamics of Physarum Polycephalum,

a unicellular slime mold showing surprising optimization ability, like finding the shortest path

connecting two food sources in a maze. We conjecture that this model is an original formulation

of the PDE-based OT problems. We show some theoretical and numerical evidences supporting

our thesis.

Wednesday 14 December 2016

Extension fields, and classes in the genus of a lattice

Frances ODUMODU (Université de Bordeaux, France)

In this talk, which will be accessible to a large audience, a first part will be devoted to a basic

reminder on extension fields with examples, and a second part to the more specific framework

of number fields, i.e. finite degree extensions of rational numbers. Concerning the latter part,

the Hasse-Minkowski local-global theorem for quadratic forms fails in general at the integral level,

hence there are two levels of classification, the genus (local) and the integral class (global): we

shall focus on some results concerning the classes in the genus of a lattice and in particular the

trace form.

Wednesday 18 January 2017

Secure And Scalable Management of Internet of Things Deployments

Moreno AMBROSIN (Padova, Dip. Mat.)

In recent years, the advent of Internet of Things (IoT) is populating the world with billions of low

cost heterogeneous interconnected devices. IoT devices are quickly penetrating in many aspects

of our daily lives, and enabling new innovative services, ranging from fitness tracking, to factory

automation. Unfortunately, their wide use, as well as their low-cost nature, makes IoT devices

also an attractive target for cyber attackers, which may exploit them to perform various type of

attacks, such as Denial of Service (DoS) attacks or privacy violation of end users. Furthermore,

the potentially very large scale of IoT systems and deployments, makes the use of existing security

solutions practically unfeasible.

In this talk I will give an overview of the problem of secure management, and present our research

Università di Padova – Dipartimento di Matematica 4



Seminario Dottorato 2016/17

effort in defining secure and scalable solutions for managing large IoT deployments. Moreover, I

will focus in particular on two important parts of the device management process: (1) software

updates distribution; and (2) device’s software integrity check.

Wednesday 1 February 2017

Zeta functions associated to profinite groups

Leone CIMETTA (Padova, Dip. Mat.)

In this seminar we will discuss the properties of some Dirichlet series associated to a group G

satisfying specific topological properties. These series deal with two important problems arisen in

the last century, which both had a great development over the last decades.

The first problem (the subgroup growth of a profinite group G) involves the behaviour of the

function an(G), that is the number of subgroups of G of index n.

The second problem consists in determining the probability that, randomly choosing n elements

of a group, we get a generating set for the whole group.

The second problem, in particular, arises from a famous work by P. Hall, which solved it in 1936

in the finite case.

After recalling some basic definitions, we will present the motivations for the problems; then,

starting from some examples and classical results for finite groups, we will give some ideas to

develop both problems in the profinite case and show some relations between the series involved.

Wednesday 15 February 2017

Collective periodic behavior in interacting particle systems

Daniele TOVAZZI (Padova, Dip. Mat.)

Interacting particle systems constitute a wide class of models, originally motivated by Statistical

Mechanics, which in the last decades have become more and more popular, extending their applica-

tions to various fields of research such as Biology and Social Sciences. These models are important

tools that may be used to study macroscopic behaviors observed in complex systems. Among these

phenomena, a very interesting one is collective periodic behavior, in which the system exhibits the

emergence of macroscopic rhythmic oscillations even though single components have no natural

tendency to behave periodically.

This talk aims to introduce to a general audience some basic tools in the theory of interacting

particle systems and some of the mechanisms which can enhance the appearance of self-sustained

macroscopic rhythm. After recalling some notions of Probability, we present the classical Curie-

Weiss model, which doesn’t exhibit periodic behavior, and we show how we can modify it in order

to create macroscopic oscillations. This is also the starting point for some recent developments

that will be sketched in the last part of the talk.
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Wednesday 1 March 2017

Topology, analysis and the Riemann-Hilbert correspondence

Christopher LAZDA (Padova, INdAM Marie Curie Fellow)

The Riemann-Hilbert correspondence gives a way of passing back and forth between topology and

differential geometry, describing the behaviour of differential equations in terms of the monodromy

of their local solutions. Starting with the example of the logarithm, I will give an introduction

to the ideas behind this correspondence in a concrete and down to earth manner, concentrating

on the case of Riemann surfaces. If there is time I will also explain how this gives a completely

algebraic way to study topological invariants.

Wednesday 15 March 2017

Quantized option pricing in Mathematical Finance

Lucio FIORIN (Padova, Dip. Mat.)

Quantization is a widely used tool in Signal Processing and Numerical Probability, and it has

been recently applied to Mathematical Finance. The quantization of a continuous random variable

consists in finding the “best” discrete version of it, i.e. minimizing the L2 distance. It is possible,

using this technique, to create new algorithms for the pricing of European options under different

models of the underlying asset.

In this seminar we introduce the basic tools used in mathematical finance and we will present

the most common results in the theory of option pricing. After a brief discussion on the existing

models of the price of a financial asset, we will give the audience some ideas on how quantization

can be a powerful tool able to overcome existing problems.

Wednesday 29 March 2017

An introduction to domain perturbation theory for elliptic eigenvalue problems

Francesco FERRARESSO (Padova, Dip. Mat.)

How does the sound of a drum depend on its shape? This weak variant of the classical question

“Can one hear the shape of a drum?”can be considered in the framework of domain perturbation

theory for elliptic differential operators. Starting with easy examples we will see that the answer

to this apparently harmless question is rather different in the case of regular perturbations and in

the case of singular perturbations. We will focus on the singular case, where the geometry of the
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problem is deeply mixed with the differential structure, in particular with the boundary conditions.

Finally, we will give an account of recent advances in the study of a specific singular perturbation

(the dumbbell domain) for the Laplace operator and for the biharmonic operator.

The seminar is intended for a general audience and it aims to introduce basic concepts from spectral

theory as well as more advanced research results.

Wednesday 3 May 2017

Variational Approaches in Shape Partitioning

Martin HUSKA (Padova, Dip. Mat.)

The rapid development of 3D scanning technology has incredibly increased the availability of

digital models exploited for a wide range of applications varying from computer graphics and

medical imaging up to industrial production. One fundamental procedure that processes the raw

acquired data for further manipulation, e.g. in product design, animation, deformation and reverse

engineering, is the shape partitioning. This process consists in the decomposition of an object into

non-overlapping salient sub-parts determined by a shape attribute.

In this seminar, we will introduce the concept of Shape Partitioning together with the wide range

of partitioning methods. Next, we will observe a few partitioning/segmentation models in the

field providing some results. At last, if the time allows, we will introduce the concept of Convex-

Nonconvex segmentation over surfaces.

The seminar will be held at introductory level, thus, general audience is welcome to participate.

Wednesday 31 May 2017

The influence of network structure in neuronal information transmission

Giacomo BAGGIO (Padova, DEI)

Understanding how neurons communicate is one of the most challenging open problems in neuro-

science. In this talk, I will present some recent results aiming at formulating this problem from

a mathematical and information-theoretic viewpoint. After an overview on neuronal network dy-

namical models, I will introduce a digital communication framework for studying the information

transmission problem in a neuronal network driven by linear dynamics. Within this framework,

a novel metric for measuring the information capacity of a neuronal network based on Shannon?s

capacity and the notion of inter-symbol interference will be discussed. Finally, I will illustrate how

the structure of the network matrix and, in particular, its departure from normality, affects the

information capacity of a network.

The talk will be introductory in nature and it is intended for a general audience.
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Wednesday 14 June 2017

Biodiversity: Mathematical Modelling and Statistics

Anna TOVO (Padova, Dip. Mat.)

Ecological systems are characterized by the emergence of universal patterns that are deemed to

be insensitive to the details of the system. Such universality motivates the understanding of

ecological patterns through mathematical models able to grasp basic mechanisms at work. With

this talk, we will try to describe and analyze the elements that underlie these patterns as well

as the patterns themselves from a mathematical point of view. In particular we will focus on

biodiversity. Identifying and understanding the relationships between all the life on Earth are

some of the greatest challenges in science. After a brief introduction aiming to define the basic

concepts of biodiversity and its related patterns, we will see different models developed to predict

and measure them. We will then tackle the problem of upscaling biodiversity through spatial scales

and we will discuss some still open problems that interest the scientific community.

The seminar is intended for a general audience and it will thus be held at an introductory level.
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Integer Linear Programming

to solve Large-Scale problems

Veronica Dal Sasso (∗)

Abstract. Integer linear programming is widely used to find optimal solutions to problems that
arise in the real world and are related to logistics, planning, management, biology and so on.
However, if from a theoretical point of view it is easy to give a formulation for these problems,
from a computational point of view their implementation can be impractical due to the high number
of constraints and variables involved.
In this note I will present classical results for dealing with large-scale integer linear programs and
their application to a particular bioinformatic problem, related to the study of the human genome,
that helps recovering information useful to study diseases and populations’ behaviours.

1 Introduction

Operations research is a branch of Mathematics that deals with a wide range of problems,
arising in different contexts such as logistics, supply chain management, vehicle routing,
facility location, scheduling, biology. In particular, it deals with those problems that can
be formulated as the minimization or maximization of a function (the objective function)
subject to some constraints. Moreover, if both the objective function and the constraints
are linear on the variables involved, these problems can be formulated by means of linear
or mixed integer linear programs.

Different procedures, shown in Section 2, are used to exactly solve these programs.
However, for some applications it can happen that we need to deal with a large amount of
data, thus finding the optimal solution can be impractical as the standard approaches do
not provide a good performance. It is necessary to combine them with extra procedures
that allow us to deal with large amount of data. This will be shown in Section 3. In
Section 4 we will then present how these procedures to find a solution of large-scale prob-
lems can be applied to a computational biology problem, called the Haplotype Inference
by Pure Parsimony problem.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on October 5th, 2016.
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2 Solving Linear and Mixed-Integer Linear programs

Given vectors b ∈ Rm, c ∈ Rn and a matrix A ∈ Rm×n, we introduce a set of continuous
variables xi, i ∈ N = {1, . . . ,m}. A linear program takes the following form:

max cx(1)

s.t. Ax ≤ b(2)

x ≥ 0(3)

where the set identified by P := {x ≥ 0 |Ax ≤ b} describes the polyhedron of all possible
solutions, called the feasible region.

There are different algorithms that are used to solve a linear program, as can be seen
for example in [4, 9]. Among these, the Simplex Method is widely used. It is a systematic
algorithm that proceeds by moving from a vertex to another one of the feasible region,
improving the value of the current solution, until it reaches optimality.

If some variables xi, i ∈ I ⊆ N are also required to be integer, we have the following
mixed-integer linear program:

max cx(4)

s.t. Ax ≤ b(5)

x ≥ 0(6)

xi ∈ Z ∀ i ∈ I(7)

that becomes a pure integer program when I = N . We define Q := {x ≥ 0 |Ax ≤ b, xi ∈
Z∀ i ∈ I}.

In the presence of integer variables, the simplex method can still be applied to the
linear relaxation of the problem, which results in having P as feasible region. However,
the solution we get can be infeasible for the original problem, as there is no guarantee
that xi is integer for each i ∈ I. This is due to the fact that the simplex method gives
as solution the optimal vertex of P , that is not guaranteed to be in Q, as can be seen in
Figure 1(a).

(a) Linear relaxation (b) Convex hull

Figure 1. Linear relaxation and convex hull.
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There are particular cases in which the integer optimal solution can be obtained as
solution of a linear program: when the feasible region has integer vertices. Thus, the
integer optimal solution can be found as a vertex of a different polyhedron, let us say
P̃ := {x ≥ 0 | Ãx ≤ b̃}, as seen in Figure 1(b), that is in fact the set of points obtained as
convex combination of two any feasible points of Q.

Definition 1 (Convex hull) This polyhedron P̃ is called the convex hull (conv(Q)) of the
feasible points.

Notice that P̃ has all vertices in Q. However, the convex hull is not always easy to be
identified and for these reasons, alternative approaches are needed.

In order to tighten the feasible region of the program’s linear relaxation, we can add
cutting planes to the linear relaxation P . We want to find a hyperplane cx ≤ d that is able
to divide the optimal solution x̃ given by the simplex method from the feasible region Q
and hence from conv(Q). In this way, we can update the feasible region P to P ∩{cx ≤ d}
and the simplex method will give back a solution closer to the integer optimal one, as seen
in Figure 2.

Figure 2. Example of a cutting plane.

As it is not always easy to reach the integer optimal solution adding cutting planes, the
optimal solution is seeked applying a branching scheme, that is based on the following idea:
suppose xi should be an integer variable that takes a fractional value α in the solution
of the linear relaxation. As this means that the solution is infeasible for our original
problem, we can force xi to take either a value less or equal to bαc or greater or equal to
bαc+ 1. In this way we are splitting the feasible region into two polyhedra, whose union
contains the optimal integer solution but leaves out the solution of the linear relaxation.
At this point, we reoptimize over the two different polyhedra. Note that while the solution
found is integer-infeasible, we keep on branching on different variables. An example of this
procedure, called branch-and-bound, is shown in Figure 3. This recursive method can be
represented using a tree structure, where each node branches into two child nodes, each
of which is associated with a portion of the feasible region of the parent node. In Figure 4
we represent the branching tree associated to the branching procedure shown in Figure 3.
Branching at a node is prevented if one of the following scenario happens: the solution is
integer feasible, or the problem at the node is infeasible, or the best possible solution in
the subtree is worse than a feasible solution already found.

Università di Padova – Dipartimento di Matematica 11
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(a) Original feasible region (b) First branching (c) Second branching

Figure 3. Example of branching scheme

x1 ≤ 1 x1 ≥ 2

x2 ≤ 3 x2 ≥ 4 x2 ≤ 4 x2 ≥ 5

int. feas. infeas. int. feas. infeas.

Figure 4

3 Methods for Large-Scale optimization problems

The methods presented so far are effective when the total data to be considered is limited.
When dealing with a large-scale problem, instead, extra strategies are necessary to identify
only a subset of variables and constraints that are sufficient to determine the optimal
solution.

3.1 Linear programs

Consider the case in which a linear program has a large number of constraints. As seen in
Figure 5, the optimal solution can be found by optimizing over a different feasible region,
where only a subset of the original constraints is taken into account: given the direction
in which the objective function improves, we see in Figure 5(b) how, by leaving out of the
description of the feasible region two halfspaces, we do not affect the final solution of the
problem.
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(a) Original feasible region. (b) Alternative feasible region.

Figure 5. Row generation procedure.

The row generation procedure, that allows us to identify a subset of constraints suf-
ficient to find the optimal solution, works as follows. We define a subset of constraints
A′x ≤ b′ , where A′ is a subset of rows of A and b′ is a vector made of the entries of b
corresponding to the rows in A′. Then, we solve the reduced model and get the solution
x̃. We check if this solution is feasible for the original formulation or if there is a violated
constraint. In the first case, we can say that x̃ is optimal and stop the algorithm, other-
wise we add the found constraint and solve again the resulting linear program. The core
point of this method is the detection of a procedure that gives back a violated constraint,
that strongly depends on the structure of the program and on the meaning underlying the
involved constraints.

If, instead, the original program has a huge number of variables, we start with a
reduced set of variables xi, i ∈ S ⊆ N that form the Restricted Master Problem RMP and
we proceed with a column generation procedure. This procedure needs to consider the
dual problem associated to the original (also called primal) problem, that in particular
accociates a dual value to each constraint of the primal program. We optimize the RMP
and get the solution z̃ and the dual values π̃. If π̃ is feasible for the dual problem, then
the solution found is optimal and we stop the procedure. Otherwise, we need to solve
a subproblem, called pricing problem, in order to find a dual constraint violated by π̃,
that identifies a suitable variable to be added to the RMP. It can be easily seen that the
column generation procedure has been translated in a row generation procedure for the
dual program.

3.2 Mixed integer linear programs

The same procedures for large-scale problems seen for the linear case can be embedded
into the procedures used to solved mixed integer linear programs. In particular, if we need
to deal with a large amount of constraints we apply a branch-and-cut procedure: the root
node is solved as seen for the linear programs, then, each time we branch and explore a
new node, we have at first to look for violated constraints that, due to the partitioning of
the feasible region, can now be necessary.

When dealing with a large number of variables, instead, we apply a branch-and-price
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procedure. Given a node of the branching tree, its feasible region is given by the feasible
region of the parent node intersected with the branching constraint. Thus, we do not know
if the set of variables considered so far is enough to ensure we get the optimal solution
and we need to look for variables that can improve the current objective value.

4 Application to the Haplotype Inference by Pure Parsimony problem

The methods shown so far are now applied to find the optimal solution to a problem
arising in computational biology.

One of the most important achievements of the latest years in biology has been the
human genome sequencing, completed in 2001, that has shown how all humans share the
99% of the information contained in the DNA, while all the significant differences are con-
tained in the remaining information. Each site of this 1% portion of the human genome,
that presents a significant variability among the individuals, is called a Single Nucleotide
Polymorphism (SNP).
Humans are diploid organisms, meaning that the DNA is organized in pairs of chromo-
somes, each copy coming from one of the two parents. Every single chain in the DNA is
made of a sequence of nucleotides, each of which is made of a phosfate group, a five-sided
sugar and a nitrogenous base. The nucleotide is fully characterized by the base, that can
be chosen among the four: Adenine (A), Thymine (T), Cytosine (C), Guanine (G). It is
known that, regarding human beings, the DNA sites and so also the SNP sites are almost
always biallelic, meaning that at each site only two of the four nucleotides can be found.
Thus, we can possibly encode the information for each SNP using only two symbols, 0 and
1. If the nucleotide is equal for both chains, then the SNP is homozygous, otherwise it is
heterozygous. We give the following definitions.

Definition 2 (Haplotype) A haplotype is a sequence of values 0 and 1 that represents the
single chain of SNP values for a specific portion of a chromosome copy.

Definition 3 (Genotype) A genotype is the chain providing information regarding the
union of the two chromosome copies, that tells us if each SNP in the chain is homozygous,
if it takes value within the alphabet {0, 1}, or heterozygous, that is thus denoted with a
value 2.

Moreover, we say that two haplotypes resolve a certain genotype if, when paired, the
information regarding homozygous and heterozygous sites they give is the same provided
by that genotype. In particular:

Definition 4 (Resolving haplotypes) Two haplotypes h1 and h2 resolve a genotype g if,
for every position p such that gp = 2, we have h1

p 6= h2
p and h1

p = h2
p otherwise.

Haplotypes have an important role in medical and pharmacologic studies, for example
to detect diseases or to study the different behaviour of various individuals to the same
therapy. Sequencing them is not practical, as it is very expensive and time consuming,
while it is easier to experimentally obtain the information stored in genotypes. We are
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then facing the haplotyping problem, that consists in determining the two haplotypes
that resolve a given genotype. Several approaches have been used in order to solve this
problem, its difficulty consisting in the fact that, once we have k heterozygous SNPs in
the same genotype, we have 2k−1 possible pairs of haplotypes that can represent it and
we need some criteria to choose the right pair. A classical approach is to apply the Pure
Parsimony criterion, according to which, given a set of genotypes obtained by a family of
individuals, we want to select the minimum number of haplotypes that can resolve all the
genotypes.

Thus, we define the problem as follows:

Definition 5 (Haplotype Inference by Pure Parsimony) The Haplotype Inference by Pure
Parsimony (HIPP) problem cosists in, given a set of genotypes G, finding a set of haplo-
types H such that each genotype in G is resolved by a pair of its haplotypes and H has
minimum cardinality.

HIPP is well known to be NP-hard [7] and different mathematical programming ap-
proaches have been investigated. Among the others, we cite [1, 2, 8]. We present here
a new formulation [6] that involves an exponential number of variables and a polynomial
number of constraints. Our goal is to show how this problem can be solved in a competitive
way, compared to another state-of-the-art polynomial formulation [3].

Let G be a set of m genotypes of length n, K ⊆ G the subset of genotypes with at
least one heterozygous site. We define a set of objects Q whose elements are q = (hq, Gq),
that we call Q-pairs and are made of a haplotype hq and a subset of genotypes of K
that are compatible with hq. Notice that a solution to the HIPP problem can be seen as
a collection of Q-pairs, where if a Q-pair q is used it means that the solution uses that
particular haplotype hq to partially solve each genotype in Gq. We introduce a binary
variable λq for each of these Q-pairs, that will take value 1 if q is used in the solution, 0
otherwise. The HIPP problem can be formulated as follows:

(HI) min
∑
q∈Q

cqλq + (m− |K|)(8)

s.t.
∑

q:gk∈Gq
λq = 2 ∀ k = 1, . . . , |K|(9)

∑
q:gk∈Gq
hqp=1

λq = 1 ∀ k = 1, . . . , |K|, p = 1, . . . , n : gkp = 2(10)

λq ∈ {0, 1} ∀ q ∈ Q(11)

where constraints (9) ensure that each genotype is contained in exactly two selected Q-
pairs, while constraints (10) say that, among the two haplotypes chosen for each genotype,
only one has value 1 at each heterozygous position p (the other has necessarily value 0).

As this formulation has a polynomial number of constraints but an exponential number
of variables, column generation and branch-and-price procedures are required to solve it
more efficiently.

Starting from a reduced subset of variables, we need to solve the pricing subproblem
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to see if there exists another variable that can possibly improve the value of the current
solution. In our case, the subproblem takes the following shape:

(PP) z = min cq −
m′∑
k=1

π̄kχk +
m′∑
k=1

∑
p=1,...,n:gkp=2

µ̄kp ζpχ
k(12)

s.t. ζp ≤ 1− χk ∀ k = 1, . . . , |K̃|, p = 1, . . . , n : gkp = 0(13)

ζp ≥ χk ∀ k = 1, . . . , |K̃|, p = 1, . . . , n : gkp = 1(14)

χk, ζp,∈ {0, 1} ∀ k = 1, . . . , |K̃|, p = 1, . . . , n(15)

where a solution (ζ, χ) represents a Q-pair, in the sense that the entries of ζ determine a
haplotype hq and χ is the characteristic vector of a subset Gq of genotypes. Constraints
(14) and (15) ensure compatibility between the selected haplotype and the subset of geno-
types. The found Q-pair leads to add a new variable to the RMP if the optimal value z is
negative. Notice that the objective function is not linear, as there is a quadratic term. In
order to apply the methods seen for integer linear programs, we substitute the quadratic
terms with a new set of variables wkp and linearize the pricing problem as follows:

(LPP) z = min cq −
m′∑
k=1

π̄kχk +
m′∑
k=1

∑
p=1,...,n:gkp=2

µ̄kp w
k
p(16)

s.t. ζp ≤ 1− χk ∀ k = 1, . . . , |K̃|, p = 1, . . . , n : gkp = 0(17)

ζp ≥ χk ∀ k = 1, . . . , |K̃|, p = 1, . . . , n : gkp = 1(18)

wkp ≤ ζp ∀ k = 1, . . . , |K̃|, p = 1, . . . , n : gkp = 2(19)

wkp ≤ χk ∀ k = 1, . . . , |K̃|, p = 1, . . . , n : gkp = 2(20)

wkp ≥ χk + ζp − 1 ∀ k = 1, . . . , |K̃|, p = 1, . . . , n : gkp = 2(21)

χk, ζp,∈ {0, 1} ∀ k = 1, . . . , |K̃|, p = 1, . . . , n(22)

This program can be solved using a standard branch-and-bound approach, but it can
possibly have a great number of variables and constraints, thus finding the optimal solution
in this way can be computationally expensive. In [5] we propose a Smart Enumeration
approach, i.e. an alternative way of solving (LPP) that exploits the structure of the
involved variables. The main idea underlying this approach is the observation that, given
a genotype g1 ∈ K, the solution (hq, Gq) of the pricing problem either will include g1, or
not. For compatibility reasons, if g1 ∈ Gq we can derive extra information on the shape of
the solution, such as the values of some components of hq, and already exclude from Gq

those genotypes that are not compatible with g1. In this way, the size of (LPP) can be
significantly reduced, provided we suppose g1 belongs to the optimal solution. We then
need to look also to what happens when g1 is not in the solution. Consider Figure 6,
where the circle represents all the possible solutions (hq, Gq) of the pricing problem. All
the solutions in which g1 ∈ Gq are colored in blue in Figure 6(a). In Figure 6(b), we
can see how the solutions not involving g1 are divided into solutions in which g2 ∈ Gq

(in purple) and those in which g2 /∈ Gq, that are again divided into solutions such that
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g3 ∈ Gq (in orange in Figure 6(c)) or not. Thus, exploring recursively all the genotypes
in K and solving the associated pricing problems with additional information, we are able
to recover the optimal solution of the original pricing problem.

Proposition 1 The Smart Enumeration procedure exactly solve (LPP).

g1
��g

1

(a) g1 ∈ Gq

g2

��g
2

(b) g1 /∈ Gq ,g2 ∈ Gq

g3

��g
3

. . .

(c) g1 /∈ Gq ,g2 /∈ Gq , g3 ∈ Gq

Figure 6. Idea of how Smart Enumeration proceeds.

In this way, we end up solving |K| easy pricing problems per iteration of the column
generation procedure. We can possibly further speed up the process if, instead of solving
exactly (LPP), we stop as soon as we find a Q-pair such that the objective value of (LPP)
is negative. In the worst case, this Early terminated Smart Enumeration needs to solve
all the |K| subproblems in order to find a variable to be added to the RMP or to be able
to say that no such a variable exists.

Once we have a more efficient way of solving the linear relaxation of (HI), we proceed
by applying a branching procedure to obtain the optimal integer solution. The easiest way
of applying a branching scheme for our problem consists in selecting a variable that takes
a fractional value α ∈]0, 1[ and forcing it to be either less than or equal to 0 or greater than
or equal to 1, as briefly explained in the previous section. In our case, however, having
a large number of variables this scheme is sure to give back a highly unbalanced tree, as
fixing a variable to 1 highly affects the structure of the solution, while the same does not
happen fixing a variable to 0. We then apply another, more general, branching strategy
that consists in finding a hyperplane y = ηx with integer coefficients η that, associated to
the current linear solution, takes a fractional value δ. We then force this hyperplane to
take either value less than or equal to bδc or greater than or equal to bδc+ 1. The scheme
we present is based on the structure of a family of constraints of (HI) (23) and a family
of redundant constraints (24):∑

q∈Q:gk∈Gq
hq=1

λq = 1 ∀ k = 1, . . . , |K|, p = 1, . . . , n : gkp = 2(23)

∑
q∈Q:gk∈Gq

hq=0

λq = 1 ∀ k = 1, . . . , |K|, p = 1, . . . , n : gkp = 2(24)

Notice that, given two constraints of set (23) or (24) related to the same position p and two
different genotypes gs and gt, for each feasible integer solution either the constraints are
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fulfilled by the same variable, i.e. there is only one variable λq involved in both constraints
that takes value 1, or by different ones. Starting from these considerations, we define a
branching scheme based on the following conditions:∑

q∈Q: gs,gt∈Gq
hqp=1

λq ∈ {0, 1} ∀ k = 1, . . . , |K|, p = 1, . . . , n : gsp = 2(25)

∑
q∈Q: gs,gt∈Gq

hqp=0

λq ∈ {0, 1} ∀ k = 1, . . . , |K|, p = 1, . . . , n : gsp = 2(26)

We branch identifying any violated condition of the kind (25) or (26) and forcing the
associated sum to take either value 0 or 1. We distinguish the branching strategy according
to whether we also have gtp equal to 2 or if gtp ∈ {0, 1}. In fact, if gtp = β with β ∈ {0, 1},
for compatibility reasons only one of the sets {q ∈ Q : gs, gt ∈ Gq ∧ hqp = 1} and
{q ∈ Q : gs, gt ∈ Gq ∧ hqp = 0} is not empty, thus it makes sense to check only one
between conditions (25) and (26). In this case, the branching at the node produces two
child nodes. We enumerate here the types of child nodes created and the corresponding
inequalities that has to be added to the feasible region of the parent node.

DIFFER gs and gt do not belong to the same Q-pair:∑
q: gs,gt∈Gq
hqp=β

λq ≤ 0

SAME gs and gt belong to the same Q-pair:∑
q: gs,gt∈Gq
hqp=β

λq ≥ 1

If gtp = 2, both genotypes can be contained in a Q-pair q having hqp = 0 or hqp = 1, so that a
single child node is not enough to describe correctly the case in which both genotypes are
resolved by a common haplotype. Thus, we need to generate three different child nodes
to properly give a partition of the feasible region:

BI-DIFFER gs and gt do not belong to the same Q-pair:∑
q: gs,gt∈Gq

hqp=1

λq ≤ 0 ∧
∑

q: gs,gt∈Gq
hqp=0

λq ≤ 0

SAME0 gs and gt belong to the same Q-pair and the associated haplotype has value 0
in position p: ∑

q: gs,gt∈Gq
hqp=0

λq ≥ 1 ∧
∑

q: gs,gt∈Gq
hqp=1

λq ≤ 0
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SAME1 gs and gt belong to the same Q-pair and the associated haplotype has value 1
in position p: ∑

q: gs,gt∈Gq
hqp=0

λq ≤ 0 ∧
∑

q: gs,gt∈Gq
hqp=1

λq ≥ 1

Proposition 2 The proposed branching scheme is feasible, that is it cuts off the optimal
solution of the parent node, it partitions the feasible region and it ensures integrality of the
solution at the end of the procedure.

The application of these procedures, the Smart Enumeration for solving the pricing
problem and the branching strategy just presented, together with other refinements that
reduce computational issues due to numerical instability, make the solution process of
(HI) competitive compared with a state-of-the-art polynomial-sized model. Some results
on this fact are presented in Table 1, for which we tested 100 instances made of a number
of genotypes equal to 80, 90, 100, 110 or 120 and 20 or 30 SNPs.

%solved %faster time #nodes #vars

PIP 97.00 - 2448.53 5.24 30509.68

SM 93.00 88.00 816.17 5.08 1956.32
ESM 100.00 100.00 119.50 4.42 2092.53

Table 1

In this table we compare the performance of the model presented in [3], denoted by
PIP, with our branch-and-price approach, where we solve the pricing problem either with
the Smart Enumeration (SM) or with the Early terminated Smart Enumeration (ESM)
procedures. It is easily seen that the computational times are greatly reduced.
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Products of elementary and idempotent

matrices and non-Euclidean PID’s

Laura Cossu (∗)

Abstract. It is well known that Gauss Elimination produces a factorization into elementary ma-
trices of any invertible matrix over a field. Is it possible to characterize integral domains different
from fields that satisfy the same property? As a partial answer, in 1993, Ruitenburg proved that
in the class of Bézout domains, any invertible matrix can be written as a product of elementary
matrices if and only if any singular matrix can be written as a product of idempotents. In this
article we give an overview of the classical results on these two factorization properties and we
focus, in particular, on their connection with the notion of weak-Euclidean algorithm. We conclude
presenting an open conjecture on non-Euclidean principal ideal domains, rare and interesting ob-
jects in commutative algebra, and some related results. The dissertation has been thought for a
general reading audience, so we will recall basic definitions of commutative ring theory and provide
easy examples of the objects involved.

1 Notation and basic definitions

The aim of this section is to fix the notation and to recall some basic definitions and results
useful for the sequel. For further details we refer to Kaplansky’s book [10].

In what follows R will always denote an integral domain, i.e. a nonzero commutative ring
with no nonzero zero divisors, and U(R) its multiplicative group of units.

Definition 1.1 An ideal I of R is an additive subgroup of R such that rI ⊆ I for every
r ∈ R.
An ideal I of R is said to be finitely generated if there exist a1, . . . , an ∈ R such that
I = {r1a1 + · · · + rnan | r1, . . . , rn ∈ R} =

∑n
i=1 aiR. We will denote the ideal generated

by a1, . . . , an ∈ R as 〈a1, . . . , an〉.
An ideal I is said to be principal if it is generated by a single element a ∈ R. In this case
we will write I = aR.
A proper ideal P of R is said to be prime if it satisfies the following property: if a and b
are two elements of R such that ab ∈ P , then a ∈ P or b ∈ P .

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on November 16th, 2016.
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A maximal ideal M of R is an ideal of R such that, if I ⊆ R is an ideal of R that contains
M, then I = R or I = M. Every maximal ideal is a prime ideal.

Definition 1.2 An integral domain R is said to be a principal ideal domain (PID for
short) if every ideal of R is principal. An integral domain R such that every finitely
generated ideal of R is principal is called a Bézout domain.

Clearly, every principal ideal domain is also a Bézout domain.

Example 1.3 Any field K, the ring of integers Z, the ring K[X] of the polynomials over
a field K in one indeterminate X, are examples of PID’s. The ring R = Z + XQ[X] is
an example of Bézout domain that is not a PID. In fact, the ideal XQ[X] is not finitely
generated.

We will need also the following

Definition 1.4 An integral domain R is said to be local if it has a unique maximal ideal
M. A valuation domain is an integral domain R such that, for every a, b ∈ R, either a|b
or b|a. Every valuation domain is a local domain.

It is well known that a local domain is a Bézout domain if and only if it is also a valuation
domain.

As usual, Mn(R) denotes the R-algebra of the n×n matrices with entries in R. A matrix
M ∈Mn(R) is said to be invertible if det(M) ∈ U(R); singular if det(M) = 0.
We will be particularly interested in elementary and idempotent matrices, a special kind
of invertible and singular matrices respectively.

Definition 1.5 An idempotent matrix is a square matrix M such that M2 = M.

It can be checked by a direct computation that every 2×2 non-identity idempotent matrix
over R has the following standard form:(

a b
c 1− a

)
, with a(1− a) = bc.

Definition 1.6 An elementary matrix of dimension n is a square matrix obtained by
applying elementary transformations to the identity matrix In. There exist three differ-
ent types of elementary matrices, corresponding respectively to three different types of
elementary transformations:

- transpositions Pij , with i 6= j, obtained from the identity matrix In by exchanging row
i and row j;

- dilations Di(u), obtained from In by multiplying row i by the unit u ∈ U(R);

- transvections Tij(r), with i 6= j and r ∈ R, obtained from In by adding to row i, r
times row j. It turns out that Tij(r) is nothing but the identity matrix with r in the ij
position.
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Example 1.7 The following matrices are respectively an example of transposition, dila-
tion and transvection:

P12 =

0 1 0
1 0 0
0 0 1

 , D1(u) =

u 0 0
0 1 0
0 0 1

 , T23(r) =

1 0 0
0 1 r
0 0 1

 ,

where u ∈ U(R) and r ∈ R.

2 Introduction and motivations

2.1 Factorization properties (GEn) and (IDn)

Our discussion starts from two major properties concerning the factorization of square
matrices over an integral domain R.
We say that an integral domain R satisfies the property

- (GEn) if any invertible n× n matrix over R is a product of elementary matrices;

- (IDn) if any singular n× n matrix over R is a product of idempotent matrices.

The problem of characterizing integral domains satisfying properties (GEn) and (IDn), for
all n > 0, has been considered since the middle of the 1960’s.

The main impulse to investigate the property (GEn) comes from the fundamental 1966
paper by Cohn, On the structure of the GL2 of a ring, [6]. Cohn observed that the study
of the general linear group GLn(R) of a ring R is related to the study of the property
(GEn) on R, and he called the rings satisfying (GEn), for all n > 0, generalized-Euclidean
(GE-rings for short). In fact Euclidean domains are the second instance, after the fields,
of integral domains in which every invertible matrix is product of elementary matrices.
In 1967, J.A. Erdos initiated in [8] the study of integral domains satisfying property (IDn)
for all n > 0. Generalizing a 1966 Howie’s result, every transformation of a finite set that
is not a permutation can be written as a product of idempotents, Erdos proved that fields
satisfy property (IDn) for any n > 0.

2.2 Classical results

In this section we give an overview of the first and main results on the study of the
properties (GEn) and (IDn) over an integral domain R, starting from the easiest cases.
When R is a field, it is well known from Gauss Elimination algorithm, that R satisfies
property (GEn), for every n > 0. Moreover, as we said in the previous section, Erdos
proved that R also satisfies property (IDn) for all n > 0.
The same is true for Euclidean domains (we refer to Section 3 for a precise definition). In
fact, when R is Euclidean, it was proved by van der Waerden in 1937 that every invertible
matrix over R is a product of elementary matrices; while Laffey , in 1983, proved that R
satisfies also property (IDn) for all n > 0, i.e. every singular matrix over an Euclidean
domain can be written as a product of idempotents.
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The situation is different when R is a PID. Principal ideal domains do not satisfy in general
the property (GEn) for any n. We can find in [6] and [2] some examples of PID’s that
are not generalized Euclidean. Since every Euclidean domain satisfies property (GEn) for
all n > 0, these particular principal ideal domains can not be Euclidean. The property
(IDn) has been studied in the class of PID’s by Fountain in 1991 (cf. [9]). He found some
properties equivalent to (IDn) in this environment and, using these new characterizations,
he proved that discrete valuation rings (i.e. local PID’s that are not fields) and Z satisfy
(IDn) for all n > 0.

When Laffey proved that Euclidean domains satisfy property (IDn) for all n > 0, a crucial
part of his proof was a reduction argument from any dimension n > 0 to dimension 2:

when R is an Euclidean domain, all singular matrices are products of idempotent
matrices if and only if all 2× 2 singular matrices are products of idempotent matrices.

Laffey’s reduction argument was extended by Bhaskara Rao (cf. [3]) to principal ideal
domains, and by Salce and Zanardo (cf. [15]) to Bézout domains. Therefore,

if R is a Bézout domain, R satisfies property (ID2) if and only if it satisfies property
(IDn), far all n > 0.

A sort of reduction argument holds also for the property (GEn) in the class of Bézout
domains. In fact, a celebrated result by Kaplansky, Theorem 7.1 in [11], says that

if R is a Bézout domain, all invertible matrices are products of elementary matrices if
and only if all 2× 2 invertible matrices are products of elementary matrices.

Summing up the above results, it follows that a Bézout domain satisfies property (ID2) if
and only if it satisfies (IDn) for all n > 0, and it satisfies (GE2) if and only if it satisfies
(GEn) for all n > 0. Hence, to study the factorization of square matrices with entries in a
Bézout domain into elementary or idempotent matrices, it is enough to consider the 2× 2
case.

A natural question that arises at this point is: are properties (GEn) and (IDn) related to
each other? The answer is yes, at least for Bézout domains.
The main result in Ruitenburg’s 1993 paper [14], given in a simplified version according
to our purposes, says that:

Theorem 2.1 (Ruitenburg - 1993) For a Bézout domain R the following conditions are
equivalent:

(1) (IDn) holds for every integer n > 0;

(2) (GEn) holds for every integer n > 0.

By reduction arguments, if R is a Bézout domain R satisfies (ID2) if and only if it satisfies
(IDn) for all n > 0, if and only if it satisfies (GEn) for all n > 0, if and only if it satisfies
(GE2).
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It is worth noting that the equivalence of the properties (GEn) and (IDn) in Ruitenburg’s
theorem is not valid outside Bézout domains. In fact, Cohn proved in [6] that local
domains always satisfy property (GE2), but Salce and Zanardo proved (cf. [15]) that a
local domain satisfies property (ID2) if and only if it is also a valuation domain. Therefore,
local domains that are not valuation domains (equivalently that are not Bézout domains)
satisfy (GE2) but not (ID2).

Example 2.2 R = kJX,Y K is a local domain (M = 〈X,Y 〉) but it is not a valuation
domain (both X/Y and Y/X are not in R); thus R satisfies property (GE2) but not
property (ID2).

3 Weak Euclidean algorithm and the factorization properties

The aim of this section is to present the relation between the notion of weak Euclidean
algorithm and our factorization properties (GEn) and (IDn). Let us start recalling the
definition of Euclidean algorithm.

Definition 3.1 (Euclidean algorithm) An integral domain R admits an Euclidean algo-
rithm if there exists a map

ϕ : R→W,

called algorithm, with W a well-ordered set, such that for any pair of elements a, b ∈ R
with b 6= 0, there exists a finite sequence of relations

ri = qi+1ri+1 + ri+2, ri, qi ∈ R, −1 ≤ i ≤ n− 2,

such that a = r−1, b = r0, rn−1 6= 0, rn = 0 and ϕ(ri+1) > ϕ(ri+2) for every i.
If R admits an Euclidean algorithm it is said to be an Euclidean domain.

It is well known and it can be easily proved that Euclidean domains are principal ideal
domains.

Now, we are ready to give the following

Definition 3.2 (Weak Euclidean algorithm) An integral domain R admits a weak (Eu-
clidean) algorithm if, for any pair of elements a, b ∈ R, there exists a finite sequence of
relations

ri = qi+1ri+1 + ri+2, ri, qi ∈ R, −1 ≤ i ≤ n− 2,

such that a = r−1, b = r0, rn−1 6= 0 and rn = 0. If R admits a weak algorithm it is said
to be a weakly Euclidean domain.

The difference between a weak algorithm and an Euclidean algorithm is that, in the weak
case, we don’t have any order relation between the elements of R, so we can not assume
a condition on the rests ri analogous to the condition ϕ(ri+1) > ϕ(ri+2) of the Euclidean
algorithm. Clearly, an Euclidean domain is also weakly Euclidean.

It follows from the definition that, if R is weakly Euclidean, then 〈a, b〉 = rn−1R and R is
also a Bézout domain.
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Example 3.3 Valuation domains admit a weak algorithm. In fact, if:

− a|b, say b = ca with c 6= 0, then

a = b+ (a− b)
b = −(a− b) + a

(a− b) = a− ca = a(1− c)

− b|a, then a = bd with c 6= 0.

The link between the notion of weak Euclidean algorithm and the properties (GEn) and
(IDn) comes from the following nice result by O’Meara.

Theorem 3.4 (O’Meara [13], Theorem 14.3) Let R be a Bézout domain. Then TFAE:

(i) R admits a weak Euclidean algorithm;

(ii) R satisfies property (GE2).

Using Kaplansky’s reduction argument and Ruitenburg’s theorem, we can state the pre-
vious theorem in a more general form.

Theorem 3.5 (O’Meara generalized) Let R be a Bézout domain. Then TFAE:

(i) R admits a weak Euclidean algorithm;

(ii) R satisfies property (GEn) for all n > 0;

(iii) R satisfies property (IDn) for all n > 0.

4 A conjecture on non-Euclidean PID’s

In this section we present a conjecture, proposed by Salce and Zanardo in [15], that con-
cerns non-Euclidean PID’s. We introduce this particular kind of principal ideal domains
starting from Samuel’s characterization of Euclidean domains (Proposition 9 of [16]).

4.1 Samuel’s characterization for Euclidean domains

In Samuel’s 1970 paper [16] it is shown that, among all Euclidean algorithms on a given
domain R, there exists a unique smallest algorithm θ : R → W that associates to any
element of R the smallest value it can take among the values associated to the same
element by each Euclidean algorithm of R. Therefore θ is called ”smallest“ because it
is point-wise the minimum of all Euclidean algorithms. The smallest algorithm θ can be
constructed by transfinite induction.
The transfinite construction of the smallest algorithm can be applied to any domain R and
it is the following: let R be a domain and W an ordinal such that card(R) < card(W ), set
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- R0 = {0} and,

- for α > 0, set R′α =
⋃
β<αRβ and

Rα = {0} ∪
{
b ∈ R |R′α → R/bR is surjective

}
.

The sequence (Rα)α∈W is clearly increasing and we have that R is Euclidean if and only
if R =

⋃
α∈W Rα. In this case the smallest algorithm θ is defined as:

θ(x) = α ∈W ⇔ x ∈ Rα \R′α

Note that at any rate we have:

- R0 = {0};

- R1 \R0 = R1 \R′1 = U(R);

- R2 \ R1 = R2 \ R′2 = {b ∈ R |R/bR admits a system of representatives made of 0 and
units }.

It follows that if R2\R1 = ∅, then R is not Euclidean unless it is a field, and this condition
gives an easy criterion to understand if a domain fails to be Euclidean.

4.2 The conjecture

We already said that every Euclidean domain is a PID. However there exist principal ideal
domains that are not Euclidean.

The classical examples of non-Euclidean PID’s are the ring of integers in Q
√
−d, with

d = 19, 43, 67, 163 and a Bass’technical example constructed with algebraic K-theory tools
(cf. [6], [2]).
These examples were exhibited by Cohn and Bass in order to show that not every PID
satisfies property (GE2), so, in view of O’Meara’s result, they don’t even admit a weak
algorithm. Somehow surprisingly, an example of non-Euclidean PID satisfying (GE2) was
not found up to now.
This fact suggested the following conjecture

(C) If a principal ideal domain R is not Euclidean, then R does not satisfy (GEn), for
some n > 0.

By the results of O’Meara [13] and Ruitenburg [14] it follows that (C) is equivalent to the
following

(C1) If a principal ideal domain R is not Euclidean, then R does not satisfy (GE2).

(C2) If a principal ideal domain R is not Euclidean, then R does not satisfy (ID2).

(C3) If a principal ideal domain R satisfies (IDn) for every n > 0, then R is Euclidean.

(C4) If a principal ideal domain R admits a weak algorithm, then R is Euclidean.
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In the last part of this note we summarize some new results that support the validity of
the conjecture. For more details we refer to [7].
We proved that the conjecture is valid when R is either an Anderson’s PID or the coordi-
nate ring of a special algebraic curve.

4.3 Anderson’s PIDs

In this section D will denote an assigned UFD (unique factorization domain) and f any
prime element of D. We set Df := D[1/f ].
The following theorem, due to Anderson, is a slightly less general statement of the theorem
on page 1222 of [1], and it provides an easy way to construct principal ideal domains that
are not Euclidean.

Theorem 4.1 (Anderson - 1988) Let D be a two-dimensional UFD, and let f be a prime
element contained in the Jacobson radical J(D). Then Df = D[1/f ] is always a PID,
and it is Euclidean if and only if D/Df is Euclidean. Moreover, if Df is Euclidean,
then D is regular and f /∈ M2 for any maximal ideal M of D. Otherwise, Df is a non-
Euclidean PID.

Definition 4.2 A non-Euclidean PID of the form Df = D[1/f ] as in the theorem above,
is called Anderson’s PID.

It is important to remark that, in the above theorem, the case when Df is non-Euclidean
was solved using Samuel’s characterization (see Section 4.1), which does not exclude the
possible existence of weak algorithms.

Example 4.3 Let K be a field, X,Y two indeterminates, and let D = KJX,Y K. The
domain D is a two-dimensional regular local ring with maximal ideal M = 〈X,Y 〉. Take
any principal prime element f of D that lies in M2 (for instance, we can take f = X2+Y 3)
and define Df = D[1/f ]. Then Df is an Anderson’s PID.

We proved the following

Theorem 4.4 Any Anderson’s PID does not satisfy property (ID2).

Therefore we proved the validity of (C2), equivalent to (C), for the class of Anderson’s
PID’s.

4.4 Special coordinate rings

Dealing with coordinate rings of algebraic curves that are non-Euclidean PID’s, we will
distinguish two cases: the case of elliptic curves having the point at infinity as unique
rational point, and the case of conics without rational points.

Let k be a perfect field, k̄ its algebraic closure, and f ∈ k[x] a cubic polynomial without
multiple factors.
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The equation y2 = f(x) defines an affine smooth curve E0 over k. Its projective completion
in P2 has a unique (smooth) point at infinity O = (0, 1, 0) and thus, it defines an elliptic
curve E.
We consider the coordinate ring (over k) of our affine curve E0,

R :=
k[x, y]

(y2 − f(x))
= k[x, y] = k[E0].

Then we have the following theorem, whose proof is due to U. Zannier:

Theorem 4.5 The ring R is a PID if and only if O = (0, 1, 0) is the unique k-rational
point of E. The ring is never Euclidean.

We remark that, also in this theorem, the last statement was proved using Samuel’s
characterization for Euclidean domains.

Example 4.6 There are several known examples of elliptic curves over Q having a unique
rational point. For instance, in the book by Cassels [5], Lemma 2, page 86, one may find
the example of the affine curve E0 with equation

y2 = x3 − 283552.

The proof that E has no rational points other than O = (0, 1, 0) is far from being easy.

Example 4.7 An easy example of elliptic curve defined over the field of rational functions
C(t), having a unique rational point is

C ≡ y2 = x3 − t.

An easy computation shows that the point at infinity O = (0, 1, 0) is the unique rational
point of C.

Our aim was to prove that the non-Euclidean PID R := k[x, y] = k[E0] as in Theorem 4.5
does not satisfy property (ID2), thus verifying the conjecture (C).
Actually, we proved a more general result:

Theorem 4.8 If C ⊆ Pn is a smooth curve of genus ≥ 1, with a unique point at infinity,
whenever the coordinate ring R = k[C0] of the affine curve C0 = C ∩ An is a PID, then R
does not satisfy property (ID2).

Therefore we get as a corollary that

Corollary 4.9 In the above notation, if R = k[C0] is a PID, then it doesn’t satisfy property
(GE2), it doesn’t admit a weak algorithm and, in particular, it is never Euclidean.

The above corollary shows that, in the case of the affine elliptic curve E0 without rational
points, the PID k[E0] cannot be Euclidean. So the last part of the proof of Theorem 4.5
should not be necessary, a priori. Moreover, the coordinate rings R = k[C0] as in Theorem
4.8 are non-Euclidean PID’s verifying the conjecture.
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Remark 1 In Brown’s paper [4], statement of Theorem 1.1, one finds a list of four
principal ideal domains that are not Euclidean, namely

R1 = F2[X,Y ]/(Y 2 + Y +X3 +X + 1) ; R2 = F3[X,Y ]/(Y 2 −X3 +X + 1);

R3 = F4[X,Y ]/(Y 2 + Y +X3 + η) ; R4 = F2[X,Y ]/(Y 2 + Y +X5 +X3 + 1),

where η is a generator of F∗4. Since R1–R3 are the rings of smooth curves with genus 1
and a unique point at infinity, they do not satisfy property (ID2), by Theorem 4.8. On
the other hand, the curve C4 of equation y2 + y + x5 + x3 + 1 = 0 on F2 has a singular
point at infinity, so we cannot directly apply the above arguments to the coordinate ring
R4. However, a slight generalization of the techniques used to prove Theorem 4.8, allowed
us to show that also R4 does not satisfy property (ID2). It follows that Ri satisfies (C2),
and then (C), for i = 1, . . . , 4.

The bodies of the proofs of Theorem 4.4 and of Theorem 4.8 are basically the same: in both
cases we assume by contradiction that (ID2) holds and fix a minimal length factorization

into idempotents for the matrix

(
η ξ
0 0

)
, where η and ξ satisfy some technical properties.

It follows that (
η ξ
0 0

)
=

(
η′ ξ′

0 0

)(
a b
c 1− a

)
,

and we reach the absurd by proving that η′ and ξ′ satisfy the same properties of η and ξ,
contradicting the minimality of the length of the factorization.
However, it is important to remark the two theorems are based on very different lemmas,
concerning the technical properties of η and ξ mentioned above; in particular, the case of
an Anderson’s PID is harder to establish than the case of the coordinate rings.

We conclude with the case of the coordinate rings of conics without rational points.
From Samuel’s Proposition 19 in [16], we get the following Corollary:

Corollary 4.10 Let C ⊆ P2 be a plane smooth curve of genus zero over k, C0 = C∩A2 the
affine part of C, and R = k[C0] the affine coordinate ring of C0. Then R is a non-Euclidean
PID if and only if C has no rational points.

Example 4.11 The coordinate ring of the conic over R with equation x2 +y2 +1 = 0 is a
non-Euclidean PID. The coordinate ring of the conic over Q with equation x2−3y2 +1 = 0
is a non-Euclidean PID over Q but not over R.

Using a Cohn’s result on what he calls k-rings with a degree-function (cf. Proposition 7.3
of [6]), we proved the following theorem.

Theorem 4.12 Let C ⊆ P2 be a plane smooth curve of genus zero over k, such that its co-
ordinate ring R = k[C0] is a non-Euclidean PID. Then R does not satisfy property (GE2).

Therefore, the conjecture (C) is verified also for this family of non-Euclidean PID’s.
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We point out that the classical examples of non-Euclidean PID’s in number fields, Bass’e-
xample and the two classes of PID’s mentioned above, namely Anderson’s PID’s and the
particular coordinate rings, seem to be the only examples of non-Euclidean principal ideal
domains that may be found in the literature. Thus, with our results we proved that the
conjecture (C) is verified for all non-Euclidean PID’s appeared in the literature up to now.
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Biologically inspired deduction

of Optimal Transport Problems

Enrico Facca (∗)

In this report we report a mathematical model that we introduced in [7], which is a
generalization of a model born to describe the behavior of slime mold dynamics called
Physarum Polycephalum (PP). Recent experimental evidence [10] shows that PP grows
following the most efficient path between food sources. This evidence is exemplified in the
picture shown in Figure 1 that shows the experimental setup developed by [10] suggesting
that PP, after colonizing the entire maze paths, concentrates growing along the network
shortest path connecting the two food sources.

Figure 1. Physarum Polycephalum solving a

maze (photo from [10])

This behavior has been used for the exper-
imental analysis of transportation networks,
with many researchers suggesting that this
slime mold is capable of identifying the opti-
mal many-site connecting transportation net-
work, such as railroad systems of Tokyo and
Spain [13, 1]. Many further surprising prop-
erties of Physarum Polycephalum have been
experimentally identified, but in this work we
are interesting in studying and possibly ex-
tending mathematical models that mimic the
slime mold behavior.
Physarum Polycephalum is a slime mold
that grows on humid and cool environments.
They are typically multi-nuclei unicellular or-
ganisms containing “a network of tubes by
means of which nutrients and chemical sig-
nals circulate throughout the organism” [12].

It is perhaps this peculiar tubular structure that allows this slime mold to explore the
entire space and identify the optimal paths. Little is known about the biological mecha-
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. Seminar held on November 30th, 2016.
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nisms governing these processes. On the other hand, the observation that optimal paths
are singled out suggests that there must exists a global functional that drives the mold
in its exploration. Recently, [12] have proposed a general mathematical model for the
description of PP behavior. By numerical experimentations the authors have shown that,
depending on the chosen model configuration, the simulated mold density correctly iden-
tifies optimal (shortest) paths in a network graph. The proposed model was subsequently
applied successfully in a number of network optimization problems, such as the railway
transportation problem mentioned above [13, 1].

The model proposed in [12] considers a connected planar graph on which an equation
describing the behavior of the mold density is defined. This equation is a typical con-
servation law coupled to a nonlinear dynamic equation for the flow conductivity defined
on each graph edge. The mathematical model reads as follows. Consider a simple graph
G = (V,E), with V being the set of n vertices and E the set of m edges. The flux on
each edge e = (u, v) ∈ E connecting nodes u ∈ V and v ∈ V is denoted by Qe. Given a
function p defined on the nodes of G the flux is given by:

(1) Qe =
De

Le
(pu − pv),

where De is the conductivity (inverse of the resistance to flow) and Le is the length of
edge e. Note that this equation can be interpreted from the physical point of view as
the Poiseuille equation governing laminar flow of a fluid in a pipe if we let De = πr4

e/8ρ,
where re is the radius of the pipe and ρ is the dynamic viscosity of the fluid. For all nodes
except the source v0 and the sink v1 nodes, mass conservation is imposed (i.e., the total
flux leaving the node must equal the total flux entering the node), while on the source
and sink nodes unit inflow (+1) and outflow (-1) is assumed. In summary, the following
equations are imposed on each vertex v ∈ V :

(2)
∑
e∈σ(v)

Qe = f(v) :=


0 v 6= v0, v1,
1 v = v0,
−1 v = v1,

where σ(v) is the set of edges having v as one of the vertices. Finally, the conductivity De

of each edge e varies in time according to:

(3)
d

dt
De(t) = g(|Qe(t)|)−De(t)

where g is an increasing function from R+ into itself with g(0) = 0. In [12] numerical
solutions of the above model under different configurations have shown that, for particular
forms of the function g, the conductivity degenerates (tends to zero) in every edge except
the edges forming the shortest path along connecting the graph vertices v0 and v1, and,
obviously, the mass density of the slime mold p accumulates on these paths.

More recently, [3] have proved that this model naturally identifies the shortest paths
of a simple undirected planar graph, in the sense that the dynamics of De reaches an
equilibrium state characterized by conductivities achieving nonzero values only on the
edges of the shortest paths of G connecting the source and sink vertices. The authors
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showed that a the same model can be applied to solve a generalization of the problem
that considers general forcing terms f(v) satisfying

∑
v∈V f(v) = 0. They show that

the system (D(t), Q(t) = (De(t), Qe(t))e∈E(G) converges to a steady state configuration
(D∗, Q∗) = (D∗e , Q

∗
e)e∈E(G) with Q∗ solving the following transportation problem on a

graph: find Q that solves

min
∑
e

QeLe∑
e∈δ(v)

Qe = fv ∀v ∈ V

In [12] we extend the model considering a general continuum (dense) domain Ω ⊂ Rn.
A straight forward generalization of the above model to such a continuous domain yields
the following nonlinear system of equations, with (µ, u) : ([0,+∞)× Ω) 7→ (R+,R) solving

−∇· (µ(t, x)∇u(t, x)) = f(x) = f+(x)− f−(x)(4a)

µ′(t, x) = µ(t, x)(|∇u(t, x)| − 1)(4b)

µ(0, x) = µ0(x)(4c)

completed with zero Neumann boundary condition and having f forcing term with zero
mean. Hence the gradient and the divergence are computed with respect to the spatial
variable x, while ′ indicates the time-derivative. We can try to justify the heuristics that is
behind the idea that the above model is a natural extension of the model proposed by [12].
Assuming the existence of a solution of system (4), we will try to determine if the pair
(µ(t, x), u(t, x)) has asymptotic convergence toward an ”equilibrium” configuration, i.e.

(5)
(µ′(t, x), u′(t, x))

t→+∞−→ (0, 0)

(µ(t, x), u(t, x))
t→+∞−→ (µ∗, u∗)

This assumptions allows us to look at the system of equations “solved” by the pair (µ∗, u∗)
and given by:

(6)

{
−∇·(µ∗(x)∇u∗(x)) = f(x)
0 = µ∗(|∇u∗(x)| − 1)

This system can be rewritten as:

(7)


−∇·(µ∗(x) ∇u∗(x)) = f(x),
|∇u∗(x)| = 1 where µ∗(x) > 0,
no assumption on (|∇u∗(x)| − 1) where µ∗(x) = 0.

These equations resemble the so called the Monge-Kantorovich equations [4]:

(8)


−∇·(a(x)∇u∗(x)) = f(x) = f+(x)− f−(x)
|∇u(x)| ≤ 1 on Ω
|∇u(x)| = 1 on {a(x) > 0}
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These equation, introduced in [6], are a PDE formulation of the Optimal Transport Problem
(OTP), first proposed by Gaspard Monge in 1791 and reformulated in 1942 by Leonid
Kantorovich, which studies the optimal way to move f+ into f−. We refer the reader
to [14] for a complete treatment of this problem and its variants. The similarity between
equations (7) and (8) gave as the heuristic justification to suppose that, if the system (4)
tends to an equilibrium state, then the pair (µ∗, u∗) is the solution (a, u∗) of the Monge-
Kantorovich equation. In order to study the long time behavior of system (4), we first
need to prove existence and uniqueness in time. We obtained local existence under the
assumption that µ0 ∈ D :=

{
µ > 0 ∈ CδΩ

}
and f ∈ L∞(Ω).

Under such hypothesis we can introduced two operators U defined as

U : D 7→ C1,δ(Ω)

µ̄ 7→ U(µ̄) := ū solution of∫
Ω
µ̄∇ū∇ϕdx =

∫
Ω
fϕ dx ∀ϕ ∈ H1(Ω)

With the above definitions we can recast the problem (4) in ODE-form:

(9)

{
µ′(t) = µ(t)|U(µ(t))| − µ(t)

µ(0) = µ0 ∈ D

In [7] we use well known tools of the regularity theory of elliptic equation (see [9]), properly
adapted to our problem, to prove a local Lipschitz continuity of the right hand side of
ODE (9), which provides sufficient condition for existence and uniqueness, at least in a
small time interval [0, τ(µ0)[ which depends on the initial data µ0. Besides this partial
result we prove in [8] that the functional

(10) S(µ) :=
1

2

∫
Ω
µ(x)|∇U(µ(x))|2 dx+

1

2

∫
Ω
µ(x) dx

is strictly decreasing in time. In fact, its Lie derivative along the µ(t)-trajectory is

(11)
d

dt
S(µ(t)) = −1

2

∫
Ω
µ(t, x) (|∇U(µ(t, x))| − 1)2 (|∇U(µ(t, x))|+ 1) dx

which is strictly negative ∀t ≥ 0 and is equal to zero only if |∇U(µ)| = 1 within the
support of µ. This is one of the constraint of the MK-equations , while the uniform bound
on the whole domain can not be deduced yet.

In order to obtain more evidence supporting the convergence of system (4) toward
the solution of the MK-equations, we have developed a numerical algorithm based on the
separation of the time and spatial variable. Starting from a triangulation Th(Ω) ( where h
is the typical length of the triangulation ) we approximate the function µ and u as follows

µh(t, x) =

M∑
r=1

µr(t)χr(x) χr(x) =

{
1 if x ∈ Tr
0 if x /∈ Tr

Tr ∈ Th(Ω)

uh(t, x) =
N∑
i=1

ui(t)ϕi(x) ϕi ∈ Vh = P1(Th/2)

uih
µkh
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where Th/2 indicates the mesh generated uniformly refining the triangulation Th. On the
figure on the right we show the relation between the mesh used for the discretization of
µ and u on one triangle. The projection into the finite-dimensional system leads to the
following set of equations:

∫
Ω µh∇uh · ∇ϕi = (f, ϕi) =

∫
Ω fϕi ∀ϕi ∈ Vh∫

Ω µ
′
hχr =

∫
Ω µh(|∇uh| − 1)χr ∀χr ∈Wh

µh(0, x) = µ0
h(x) > 0 ∈Wh

which represents a Differential Algebraic Equation (DAE) that can be rewritten in a more
compact form:

(12)


A(µ(t)) u(t) = b
µ′(t) = B(u(t)) µ(t)
µ(0) = µ0 > 0

where µ(t),u(t) represents the vector describing the time evolution of the projected sys-
tem, A is the stiffness matrix, b is right hand side of the linear system defined by the
forcing term f and B is a diagonal matrix.

In order to solve the DAE (12) we operate a discretization in time using either a forward
or a backward Euler scheme. Denoting with ∆tk the time-step size so that tk+1 = tk+∆tk
we obtain an approximating sequence (uk,µk) = (u(tk),µ(tk)). Using the explicit Euler
Scheme the approximation sequence is described by the following equation

EE


A[µk] · uk = b

µk+1 = (I + ∆tkB[uk]) · µk

µ0 = µ0

Using the Implicit Euler Scheme (uk,µk) solves

EI

{
µk+1 = µk + ∆tk(B[uk+1] · µk+1)

µ0 = µ0

where the non-linear equation is solved by Picard iterations method, which reads as:

PIC


A[µm,k] · um,k = b

µm+1,k+1 =
(
I −∆tkB[um,k]

)−1
· µk

µ0,k = µk

until
‖µm+1,k+1
h −µm,k+1

h ‖L2(Ω)

‖µm,k+1
h ‖L2(Ω)

< 10−11. The results obtained with the procedure described

above show that (µh, uh) converges towards an equilibrium state as time progresses, and
the flux constraint is satisfied. Moreover equilibrium configurations does not depend on
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the initial data µ0. We show in Figure 2 the results obtained with our numerical implemen-
tation for µ∗h, which compares well with published numerical solutions of [2]. Moreover
we compare the solution obtained with our approach with exacts solution of the MK-
equations (see [5]) obtaining an experimental convergence of when the mesh is align with
the support of the optimal solution and when the mesh is not aligned. This suggests that
our method can be used to solve efficiently the MK-equations.

Figure 2. Spatial distribution of the numerical

approximation of µ∗h obtained using a triangula-

tion Th/2 with 49421 nodes. The circle and the el-

lipse indicate respectively the supports of the pos-

itive and negative part of the forcing term f .

Figure 3. Equilibrium distribution of Physa-

rum Polycephalum mass on the maze. The red

squares indicates the support of f+ and f− rep-

resenting the food sources. The brown areas in-

dicates where k(x) = 1000, corresponding to the

walls of the maze. The blue path is the equilib-

rium µ∗ of equation (13).

To address the dynamics of PP in the maze, we need to reconcile the model with
the fact that some portions of the domain (the maze barriers in this case) may hinder
through-flow. This can be obtained by imposing the gradient to be large where the flux
must be small, thus forcing the conductivity µ to become small. Thus, equation (4b) is
replaced by:

−∇· (µ(t, x)∇u(t, x)) = f(x)

µ′(t, x) = µ(t, x)
(
|∇u(t, x)| − k(x)

)
(13)

µ(0, x) = µ0(x)

where k(x) is a positive function describing the spatial pattern of the resistance to flow,
whereby large values of k imply large energy losses and hence large gradients of the po-
tential u. As shown in Figure 3 the equilibrium configuration of the solution of (13) with
k(x) and f adapted by the maze problem, shows that the PP mass concentrates along the
the shortest path between the food sources.

A further modification of dynamic part of the model, inspired by the original model
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on the graph, is to consider

−∇· (µ(t, x)∇u(t, x)) = f(x)

µ′(t, x) = (µ(t, x)|∇u(t, x)|)β − µ(t, x)(14)

µ(0, x) = µ0(x)

with β > 1. Unlike the case β = 1 there is no candidate equation describing the steady
state, thus we use the numeric scheme described before to study the behavior of the system
in (14). Also in this case the above system presents a steady state configuration, result
confirmed by considering different forcing terms f and powers β. As shown in Figure 4
the equilibrium configuration µ∗ obtained with different exponent β and with two forcing
terms, one piecewise constant, and the other atomic. The path described by the support
of µ∗ resembles a network structure, which through the flux going from f+ to f− tends
first to concentrate and then to split. This effect increases with the power β.

We note that, for β > 1, the asymptotic state µ∗ of equation (14) depends on the
initial data µ0. We report in Figure 5 the comparison between two equilibrium µ∗ starting
from two different initial data. The results obtained using β > 1 in equation (14) strongly
suggest a relation between our model and the, so called, Branched Transport Problem
(BTP) (see [11] for a complete overview). This sub-area of OTP studies the problem of
reallocating f+ into f− favoring mass concentration, which is a more realist description of
real-life transport problem. One formulation of the BTP can be given as follows: consider
a =

∑n
i=1 aiδxi , b =

∑m
j=1 bjδyj (δp indicates the Dirac function located at p ∈ RN ) and

satisfying
∑n

i=1 ai =
∑m

j=1 bj . Find a graph G = (V,E) and a weight function defined on

the graph edges q : E(G) 7→ R+ such that

∑
e∈δ(v)

qe =


ai if v = xi for some i

−bj if v = yj for some j

0 otherwise

min Eα(G, q) :=
∑
e∈E

q(e)αLe 0 ≤ α ≤ 1

The spatial distributions of µ∗ on the right panels of Figure 4 resemble the solutions of
the BTP using a = f+ and b = f− (f+, f− are forcing terms described in Figure 4), for
different values of 0 < α ≤ 1, even if it is no clear yet the relation between the exponent
β in our model and the exponent α of the BTP.
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Figure 4. Spatial distribution of µ∗ obtained with two different forcing terms. On the left column f

is a piecewise constant forcing term f , where the black rectangles indices the supports of f+ (left) and

f− (right). On the right column f+ is the sum of 30 Dirac sources randomly distributed in the square

[0.1, 0.9] × [0.1, 0.9], and f− is the concentrated in the point (0.05, 0.05). The powers β used in (14) are

from top to bottom 1.0 (which corresponds to the MK equations), 1.05, 1.4 and 3.0.
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Figure 5. Spatial distribution of µ∗ obtained with a piecewise constant forcing term f , where the black

rectangles denote the supports of f+ (left) and f− (right). The upper panels show the initial data µ0 and

the lower panels the correspondence equilibrium µ∗.
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Università di Padova – Dipartimento di Matematica 41



Seminario Dottorato 2016/17

Extension fields, and classes

in the genus of a lattice

Frances Odumodu (∗)

1 Introduction

To classify objects in a certain collection, one needs to determine when two objects in
that collection are equivalent and give a complete set of invariants that determine an
equivalence class. Thus, one can give a non-redundant enumeration of the objects by
placing each object in exactly one class.

At the level of fields one has the Hasse-Minkowski local-global theorem which gives the
classification of quadratic forms. This fails in general at the integral level, hence there are
two levels of classification, the genus (local) and the integral class (global). The idea then
is to study the classes in a given genus.

This talk which will be accessible to a large audience, will focus on some existing results
concerning the classes in the genus of a lattice in a quadratic space, and in particular the
trace form. We will start by recalling several facts on extension of fields which we will
need for the talk.

Let E and F be fields such that F ⊆ E. Then, E is called an extension field of F and F
a subfield of E. Example. The field of complex numbers C is an extension of the reals R.

We may view E as a vector space over F ; the elements of E are vectors and F is the field
of scalars. Then the degree of the extension is dimF E. If this dimension is finite, then
E/F is a finite extension.

Let α ∈ E. The field F (α) is the subfield of E generated by F and α. It is the smallest
(intersection) of all such fields. It is called the field obtained from F by adjoining α.

A polynomial f(x) ∈ F [x] is irreducible if it cannot be expressed as a product g(x)h(x)
of polynomials both of degree less than f(x). Let p(x) ∈ F [x] be the unique polynomial
such that
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• p(x) is irreducible over F .

• p(x) is monic. That is, the leading coefficient is 1.

• p(α) = 0 for some α.

Then, p(x) is called the minimum polynomial of α over F . Moreover, we have

F (α) = F [x]/(p(x)).

where (p(x)) is the ideal generated by the irreducible polynomial p(x). Also, degF (α) =
deg p(x) = degα over F . Example. C = R(i) = R[x]/(x2 + 1).

Let E/F be a finite extension of fields and α ∈ E. Then, α is algebraic over F if there
is a nonconstant polynomial f(x) ∈ F [x] such that f(α) = 0. Algebraic numbers form a
subfield of C. Every finite extension of fields is algebraic.

2 Algebraic Number Fields

A special finite extension of fields in which we are interested is the number field. An
algebraic number field K is a finite extension field of the field of rationals Q. It is a
subfield of C. Examples include:

(a) The smallest and most basic example is Q itself.

(b) The quadratic number field. Let d be a square free integer, different from 1. Then
K = Q(

√
d) = {a+ b

√
d : a, b ∈ Q} is a number field of degree 2 over Q.

(c) The real numbers R and the complex numbers C are not algebraic number fields
since they have infinite dimension over Q.

Let K be a number field. By the primitive element theorem, there is an element α ∈ K
such that K = Q(α). Let f(x) ∈ Q(x) be the minimum polynomial of α over Q. The roots
of f in C are α = α1, α2, . . . , αn and are conjugates of α. They give rise to n Q-linear
embeddings of K in C:

τi : α 7→ αi.

The images Ki = Q(αi) in C of K under the above map are called the conjugate fields of
K. They are isomorphic to K.

The signature of a number fieldK is given by (r1, r2). Here, r1 is the number of embeddings
of K whose image lie in R and 2r2 is the number of non-real complex embeddings such
that r1 + 2r2 = n. These come in pairs. Also, r1( resp. 2r2) is the number of real (resp.
complex) roots of f(x) in C. Now, if r2 = 0, then K is said to be totally real, if r1 = 0
then K is totally complex, otherwise it is nontotally real, that is, 1 ≤ r1, r2 < n.

Let K = Q( 3
√

2) be the number field obtained by adjoining the real cube root of 2 to Q.
The minimum polynomial of 3

√
2 over Q is x3 − 2. It has roots 3

√
2, ω 3
√

2, ω2 3
√

2 in C with

ω = −1+i
√

3
2 , a cube root of unity. The embeddings of K into C are given by the mappings

3
√

2 7→ 3
√

2;
3
√

2 7→ ω
3
√

2;
3
√

2 7→ ω
3
√

2
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Thus the signature of K is (1, 1).

The trace map. Let x ∈ K. We have the Q-linear transformation given by multiplication
by x:

mx : K → K; y 7→ xy.

By a choice of basis, we have a matrix A(x) = (aij(x)). The trace of x relative to K/Q is
then given by TK(x) = trace mx = trace A(x).

Example Quadratic field. Let K = Q(
√
d). A Q-basis of K is {1,

√
d}. If x = a+ b

√
d ∈

K, then letting x act on the basis elements we have

x · 1 = a+ b
√
d

x ·
√
d = bd+ a

√
d

Thus A(x) =

(
a bd
b a

)
. Hence TK(x) = trace A(x) = 2a.

The trace map on K defines a nondegenerate symmetric bilinear form on K.

tK : K ×K → Q; (x, y) 7→ TK(xy).

This is called the trace form on K. Thus, (K, tK) is a quadratic space. The ring of integers
OK of K is a Z-lattice in this quadratic space. That is, a finitely generated free abelian
group.

Besides the degree, the most important invariant of a number field K is its discriminant.
It is defined as follows. Let {ω1, . . . , ωn} be a Q-basis of K. Then, the discriminant is
given by

dK = det(tK(ωiωj)i,j) ∈ Q×/(Q×)2.

Example Let K = Q(
√
d) a quadratic number field. Then its discriminant is given by

dK =

{
d if d ≡ 1 mod 4

4d if d ≡ 2, 3 mod 4

If d ≡ 2, 3 mod 4, then K has Z-basis {1,
√
d}. Since, Trace of a + b

√
d is 2a, the

discriminant of K is

dK = det

((
T (1) T (

√
d)

T (
√
d) T (d)

))
= det

((
2 0
0 2d

))
= 4d.
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3 Classification

From the definition of the discriminant, we have for a quadratic number field a one-one
correspondence

d square free ↔ Q(
√
d).

Thus, quadratic number fields are characterised by their discriminant. This is not true in
general for number fields of higher degree. In fact, we have the following result of Hermite.

Theorem 3.1 (Hermite) There are only finitely many (up to isomorphism) number fields
of fixed (bounded) degree.

Is there a more refined invariant than the discriminant? Let’s look at the form that defines
the discriminant - the trace form. For arithmetic purposes we consider the integral trace
form. This is the trace form restricted to the ring of integers OK of K. View OK as a
Z-lattice in the quadratic space (K,TK).

What can one say? Are number fields classified by their forms?

Now, Given two quadratic forms, one can classify them up to some equivalence relation.
The isometries are isomorphisms of the underlying vector space which preserve the form.
These form a group, the orthogonal group of the vector space.

We first classify the underlying space (K,TK). According to the Hasse-Minkowski local-
global theorem, a complete set of invariants is

(a) Its rank which is dimQK.

(b) Its discriminant which is the discriminant of K up to squares.

(c) Its signature which is the signature of the number field.

(d) The Hasse-Witt invariant which assigns ±1 to the form at each prime p of K.

Before proceeding to the classification at the integral level, we recall a few things we need
from p-adic valuation. Let p ∈ Z be a prime number and x ∈ Z, then

x = pka with (a, p) = 1 and k ∈ Z.

Define
vp(x) = k and |x|p = p−k

Example

|3|3 =
1

3
; |1097|3 = 1; |54|3 =

1

27

If x ∈ Q, then x = a
b with a, b ∈ Z and b 6= 0 and vp(x) = vp(a) − vp(b). The field

of p-adic numbers is the field obtained on completing the rationals Q with respect to the
p-adic absolute value. Its ring of integers is called the p-adic integers, denoted by Zp.
Now at the integral level, the Hasse-Minkowski theorem fails in general and hence we have
two levels of classification:
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• Global case: The class is isometry, that is equivalence over Z. The isometries are
given by matrices with entries in Z.

• Local case: The genus is local isometry at all p, that is, equivalence over Zp for all
p prime. The local isometries at each p are given by matrices with entries in Zp.

The obstruction is given by the number of classes in the genus. This is finite.

4 Classes in a genus

Conjugate number fields are isomorphic and have isometric integral trace forms. The
question to ask is:

Does isometry of integral trace forms imply conjugation? NO!

Example 4.1 [1] There exists two nonconjugated number fields of degree 7 with isometric
integral trace forms.

In fact, the number fields have defining polynomials

p1 = x7 − 3x6 + 4x4 + x3 − 4x2 − x+ 1

p2 = x7 − 3x6 + 2x5 + 4x4 − 3x3 − 2x2 − x− 1

In example (4.1), the two fields considered are arithmetically equivalent. That is, they have
the same Dedekind zeta functions. Now, arithmetically equivalent fields have the same

• rank

• discriminant

• signature

• genus

• . . .

The question becomes

Arithmetical equivalence
?⇐⇒ Isometric trace forms

To answer this we study classes in a genus. Now, there is an intermediate classification –
the spinor genus. It is obtained by studying in more details elements the orthogonal group
of the underlying vector space. The spinor genus breaks down the problem of finding
classes in a genus in two. One then studies

• spinor genera in a genus

• classes in a spinor genus
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The importance of this intermediate classification stems from the following result of Eich-
ler.

Theorem 4.1 (Eichler) For an indefinite form of rank at least 3, the spinor genus and
the class coincide.

It happens that for integral trace forms, the genus and spinor genus coincide.

Theorem 4.2 [2] For a nonquadratic number field, the genus of the integral trace form
contains only one proper spinor genus.

Thus for an indefinite trace form (nontotally real number field), the local-global theorem
holds. Hence, one can check isometry classes by looking locally. Now, the question about
arithmetical equivalence and isometry of trace form is resolved by the following theorem
of Mantilla-Soler.

Example 4.2 [3] Let K, L be two non-totally real, tamely ramified, arithmetically
equivalent number fields. Then the integral trace forms are isometric.

Now, let F/K/Q be a finite extension of number fields. One of the things I am working
on is the generalisation of the theorem of Mantilla-Soler to the relative case.
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Secure And Scalable Management

of Internet of Things Deployments

Moreno Ambrosin (∗)

Abstract. Recent years have seen the advent of Internet of Things (IoT), which is populating
the world with billions of low cost heterogeneous interconnected devices. IoT devices are quickly
penetrating in many aspects of our daily lives, and enabling new innovative services, ranging from
fitness tracking, to factory automation. Unfortunately, their wide use, as well as their low-cost
nature, makes IoT devices also an attractive target for cyber attackers, which may exploit them
to perform various type of attacks, such as Denial of Service (DoS) attacks or privacy violation of
end users. Furthermore, the potentially very large scale of IoT systems and deployments, makes
the use of existing security solutions practically unfeasible.
This document gives an overview of the problem of secure management, and presents our research
effort in defining secure and scalable solutions for managing large IoT deployments. We focus
in particular on two important parts of the device management process: (1) software updates
distribution; and (2) device integrity check.

1 Context

Recent years have seen a growing trend in the diffusion of “smart”, interconnected, and
low-cost devices. Such trend gave the rise to a new paradigm known as the Internet of
Things (IoT) [18], which is defined by the International Telecommunication Union as [13]:

“. . . a global infrastructure for the information society, enabling advanced ser-
vices by interconnecting (physical and virtual) things based on existing and
evolving interoperable information and communication technologies (ICT).”

The term “Internet of Things” was coined in 1999 by Kevin Ashton executive director
of the Auto-ID Center at the Massachusetts Institute of Technology (MIT), in the domain
of RFID, and has later evolved and is commonly used in press, books and scientific lit-
erature [24]. IoT is a broad term. It is not the result of a single technology, but rather
synthesizes a set of emerging technologies that try to “fill the gap” between the physical
and the digital world.
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The IoT is expected to populate the world with billions of interconnected smart objects,
according to forecasts of authoritative companies and research centers. For example, Cisco
estimates 24 billion Internet-connected objects by 2019 [21], while Huawei forecasts 100
billion IoT connections by 2025 [14]. Smart devices are used for various purposes, ranging
from simple sensing and data collection (e.g., temperature, energy, pollution measurement)
to automation. Moreover, IoT devices have very heterogeneous characteristics, such as
physical equipment, e.g., network card, CPU, memory, sensors, supported communication
technologies and protocols (e.g., ZigBee [11] or Bluetooth Low Energy [4]), and firmware.

There are several envisioned IoT use cases, and, consequently, deployment and commu-
nication models (Device-to-Device, Device-to-Cloud, or Device-to-Gateway [26, 30] and ar-
chitectures. Examples are small and medium scale scenarios, e.g., home automation [9], or
large and massive scale deployments, e.g., industrial automation (or smart factories [31]),
smart health infrastructures [19], buildings automation [23], or energy management (e.g.,
smart metering systems [12]. This plethora of objects generates massive amount of data, is
naturally distributed and often organized in heterogeneous subsystems, and has different
requirements, e.g., latency or processing time [20].

2 Problem Statement

The pervasiveness of IoT devices and systems, makes them a potential source of security
and privacy “headaches”. Indeed, on one hand, many safety critical systems rely on the
correct operative state and the security of IoT devices, e.g., sensors and actuators in a
smart car. Ensuring the correct operation of these devices, and quickly react to attacks
is fundamental, as vulnerabilities may be a threat for the life of the end users [5]. On the
other hand, IoT devices constantly collect large amount of data from the environment, or
directly from end users, and often communicate them to cloud services, either directly or
through gateways. This represents a potential threat users’ privacy, as indicated by several
studies [22, 25]. Additionally, low cost popular IoT devices, such as fitness trackers, have
been shown to be easily attackable by hackers, interested in violating users’ privacy or in
manipulating the tracked data to fraudulently gain financial benefits or even influence a
court trial [3].

3 Research Contributions

Our research work looked at the IoT from a security and privacy perspective. Our research
analyzes specific emerging security requirements in various IoT scenarios, mainly targeting
medium and large scale deployments, and providing novel practical solutions to solve
them. In particular, this document describes our research contribution in designing Secure
solutions for scalable management of IoT devices, targeting large scale deployments.

Secure and efficient management of IoT deployments is an important aspect considered
in recent years in industrial environments [1, 6], and an open research field [26, 29]. At a
high-level, management of IoT deployments must take into account two key aspects that
have a direct impact on the design of secure management solutions. First, IoT devices are
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often low cost, and have low computing power, and small size. As a consequence, IoT de-
vices are easier to be violated by attackers, often unable to perform complex cryptographic
operations, and have scarce storage resources. Second, every management solution must
be scalable: IoT deployments, such as smart metering or healthcare infrastructures, have
potentially billions of interconnected devices.

In our research work, we considered the system model in Figure 1, where a (trusted)
management entity is in charge of carrying out management activities (e.g., software up-
dates distribution, or deployment integrity verification) on a potentially large deployment
of heterogeneous IoT devices. These operations are typically facilitated by a third-party
distribution network, which provides (at least) two main features: data caching (to speed-
up one-to-many data distribution), and data aggregation (for many-to-one data collec-
tion). Examples are Content Delivery Networks (CDN) such as Akamai [2], or generic
cache-enabled network such as Named-Data Networking (NDN) [7]. We consider this net-
work as untrusted, meaning that it cannot be trusted for data confidentiality or integrity
preservation.

Management entity

Proprietary or third-party 
distribution network

● Provides Data Caching & 

Aggregation

Deployed devices 

Figure 1. System Model.

Our work provided contributions on two main building blocks of a secure management
service: Secure and timely delivery of software updates patches (Section 3.1), and device
software integrity verification (Section 3.2).

3.1 Scalable and Secure Software Updates Delivery

Software or patch updates delivery is of paramount importance to guarantee both security
and correct operation of smart devices.
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From a pure security perspective, most of the new software vulnerabilities can be
resolved by applying software updates; additionally, the Open Web Application Secu-
rity Project (OWASP) has recently indicated insecure software update delivery as one
of the top 10 security concerns in IoT [8]. Hence, fast and secure delivery of software
updates plays a key role in securing software systems. In particular, once a vulnerabil-
ity is published, the system becomes exposed to a large base of potential adversaries. A
fast update is therefore fundamental (e.g., see the case of the recent SSL “Heartbleed”
vulnerability [28]). Additionally, there are many cases in which software updates are
required to be confidential. Examples include protection of embedded software against
reverse-engineering, or the distribution of valuable map updates in automotive systems
and portable devices. However, most of the existing remote update protocols focus on en-
suring integrity and authenticity of the transmitted updates, i.e., they guarantee that only
untampered updates from a legitimate source will be installed on the device. Furthermore,
the use of end-to-end encryption between the software updates distributor and each de-
vice, e.g., using SSL [27], is hard to scale, or requires undesirable trust in the intermediate
distribution networks, which should cache and replicate unencrypted contents.

To overcome the above issues, we designed Updaticator [15], a protocol for the dis-
tribution of confidential software updates that does not require the management entity
to trust the third-party untrusted intermediate distribution infrastructure. Updatica-
tor adopts a data-centric communication model between the end devices and the up-
date distribution service, and guarantees confidentiality for the distributed software using
Ciphertext-Policy Attribute-Based Encryption (CP-ABE), a novel cryptographic tool that
allows to cryptographically enforce high-level access control policies on data. We tested
Updaticator through simulation, proving its scalability, and discussing its resiliency
against attacks on data confidentiality and integrity that may be carried out by the un-
trusted distribution network.

3.2 Scalable Collective Attestation

Unlike traditional computing devices, smart devices that are deployed in massive numbers
are often limited in cost, computing power, and size. As a consequence, they often lack the
security capabilities of general purpose computers: a skilled adversary can easily attack
such devices, and compromise both their privacy and safety. One common attack is to
modify or replace a device’s firmware, as part of a larger attack scenario [5, 10]. In
order to react to such attacks and ensure the safe and secure operation of a device, it is
important to guarantee its software integrity, e.g., via remote software attestation. Typical
remote software attestation protocols involve a prover, which needs to prove its software
integrity to a remote verifier, i.e., that its firmware is in a known “good” state. However,
while remote attestation is a well established research area, existing schemes are meant
for one-to-one attestation, and are thus hard to scale to large IoT deployments. The
existing state-of-the-art for scalable smart device attestation is represented by SEDA [17],
which allows hop-by-hop aggregation of attestation responses along an attestation tree.
Unfortunately, SEDA presents important limitations, and in particular: (1) it requires all
the devices to be equipped with a trusted execution environment, and to participate in
the attestation process; and (2) it considers a software only adversary.
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We took a step forward from SEDA [17], and designed SANA [16] a collective at-
testation protocol that works in more realistic IoT settings. SANA’s output is publicly
verifiable, meaning that any third party can verify the outcome of the attestation process;
furthermore, it does not require trust in the intermediate aggregation network, which is
in charge of collecting and aggregating the attestation proofs from devices: the nodes of
this network are not required to take part to the remote attestation process. SANA makes
use of a novel signature scheme that we called Optimistic Aggregate Signature (OAS), to
securely collect and aggregate attestation response from provers. Our protocol is proved
to be both secure and scalable.

4 Conclusions

The ever increasing demand of connectivity and services that rely on distributed sensing
is populating the world with millions of tiny devices, expected to reach 100 billions by
2025. This phenomenon is commonly referred to as the Internet of Things (IoT), and is
constantly creating new marketing opportunities, and new services for users. However,
despite its clear advantages, the IoT can be source of new security and privacy threats.
Indeed, the penetration of IoT devices in many different scenarios, ranging from home
automation, to safety critical environments, and their limited power and simple nature,
makes them particularly attractive targets for attackers. For this reason, there is a growing
effort both in research and industry in designing novel, efficient and effective security and
privacy solutions.

This document briefly summarized our contributions in the research area of secure
and scalable device management for large IoT deployments. Our work assumed a realistic
scenario where devices are managed by a management entity, via an untrusted interme-
diate network, that provides data aggregation and caching. We proposed two protocols:
Updaticator [15] and SANA [16]. Updaticator is an updates distribution protocol,
that guarantees both confidentiality and integrity of the updates, while maintaining their
distribution efficient; SANA is a scalable protocol for collective devices integrity verifi-
cation (a.k.a., attestation), which overcomes several limitations of previous works in this
area, e.g., the lack of flexibility and vulnerability to hardware-attacks.
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Zeta functions associated to profinite groups

Leone Cimetta (∗)

1 Some preliminaries

Group theory is a quite recent branch of mathematics: we can consider its origin in the
late 18th century, with some work of Lagrange and Ruffini, while (as it is well known)
the first explicit mention of groups as an algebraic structure relies in the 1830s, with the
work of Galois. Now the applications of group theory involve many branches of science,
such as analysis, geometry, physics, chemistry. One of the main issues with groups is that,
although they have a very simple definition, there are many pathological cases, expecially
in the infinite case. In order to work with infinite groups it is often useful to be able to
define a topological structure on them, with basic properties.

Definition 1 A profinite group is a Hausdorff, compact, and totally disconnected topo-
logical group.

We recall that:

Recall 2 A topological space is:

• Hausdorff if any two distinct points admit disjoint neighbourhoods;

• compact if each of its open covers has a finite subcover;

• totally disconnected if points are its only connected components.

An equivalent definition, from a categorical point of view, is the following:

Definition 3 A profinite group is the inverse limit of an inverse system of finite discrete
groups.

Example 4 Finite groups are profinite.
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Example 5 p-adic integers (for any prime p) are profinite.

Profinite groups represent a large class of groups with some useful properties:

Proposition 6 Products of (arbitrarily many) profinite groups are profinite.

Proposition 7 Closed subgroups and quotients of profinite groups are profinite.

Proposition 8 Given a profinite group G, it is possible to define a finite, non-trivial,
left-translation-invariant measure on its open subsets (Haar’s Theorem).
It is always possible to normalize it, so that ν(G) = 1, thus providing a way to compute
the probability of certain events.

We recall now some basic definitions and properties of groups:

Recall 9 If H ≤ G, then the index of H in G (|G : H|) is the number of cosets of H in
G. Intuitively, it measures ”‘how many copies of H”’ are required to fill G. If G is finite,
then |G : H| = |G|/|H|.

Recall 10 H ≤ G is normal in G (H E G) if ghg−1 ∈ H for any h ∈ H, g ∈ G.
Let S ⊂ G, then S generates G (〈S〉 = G) if the smallest subgroup of G containing S is G
itself.
Let S ⊂ G, then S normally generates G if the smallest normal subgroup of G containing
S is G itself.
G is called finitely generated if it has a finite generating subset.

Finally, we state one last property of profinite groups.

Proposition 11 A subgroup of a profinite group is open if and only if it is closed and
has finite index.
A subgroup of a finitely generated profinite group is open if and only if it has finite index.

2 Two problems on profinite groups

We will deal with the following problems, which has many computational implications:

Problem 12 Given a group G, is there an easy way to compute the probability that k
randomly chosen elements of G generate the whole group?

This problem, which was solved by P. Hall in 1936 in the finite case, has unexpected
relations with the problem of the subgroup growth.

Problem 13 Given a group G, for any positive integer n consider the number an(G) of
subgroups of G of index n. Whats is the behaviour of an(G) as a function in the variable
n (it is called subgroup growth)?
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In order to face these questions, let us consider the lattice L of all subgroups of G:
then we can define a Möbius function on it in the following way.

Definition 14 µ(G,G) = 1;

µ(H,G) = −
∑

H<K≤G
µ(K,G) for H < G.

Using µ(·, G) we are able to define new coefficients and hence two Dirichlet series associated
to G:

Definition 15 bn(G) =
∑

|G:H|=n
µ(H,G)

Definition 16 Let G be a finite group, then consider the Dirichlet polynomials associated

to the coefficients an(G) and bn(G): ζG(s) :=
∑
n

an(G)

ns

is the subgroup zeta function associated to G; pG(s) :=
∑
n

bn(G)

ns

is the inverse of the probabilistic zeta function associated to G.

In the finite case, the second Dirichlet series solves the problem of generation we stated:

Proposition 17 (Hall, 1936) Let G be a finite group and t ∈ N: then pG(t) is the proba-
bility that t randomly chosen elements of G generate G.

Problem 18 How does pG(x) behave, for a finite G, as a function on real numbers?

Proposition 19 Let M be the largest positive integer such that bM (G) 6= 0. Then

lim
x→+∞

pG(x) = 1 + lim
x→+∞

(
M∑
n=2

bn(G)

nx

)
= 1,

lim
x→−∞

pG(x) = lim
x→−∞

(
M∑
n=1

bn(G)

nx

)
= sgn(bM (G))∞.

If d(G) = 1, then pG(x) is strictly increasing; if d(G) > 1, it can be shown that there exist
a minimal x+ ∈ R, x+ > d(G) − 2 and a maximal x− ∈ R such that pG(x) is monotone
on ]−∞, x−] and monotone increasing on [x+,+∞[.
[Shareshian]If G is a non-abelian simple group, p′G(1) = 0.

It seems natural to ask if there is an easy way to extend Hall’s result to the infinite case.

(a) We need a notion of probability, thus we need to focus on profinite groups.

(b) In order to use an(G), bn(G), we need to ask that G has a finite number of subgroups
of order n for any n ∈ N: it is possible to prove that finite generation implies this
property.
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(c) We need to give conditions to ensure the absolute convergence of ζG(s), pG(s).

Let G be a finitely generated profinite group with a normalized Haar measure ν. Let
ΦG(t) be the set of all ordered t-uples generating G, then ΦG(t) is the complement in Gt

of
⋃

H<OG

Ht, which is open. In particular, ΦG(t) is closed and hence measurable, thus we

can define
Prob
G

(t) := ν(ΦG(t)).

We can now define the two series

ζG(s) =
∑
n

an(G)

ns

and

pG(s) =
∑
n

bn(G)

ns
.

It is reasonable to ask about the convergence of these serie:

Proposition 20 (Mann, 2005) The series pG(s) is absolutely convergent in a right half-
plane of the complex plane if and only if there exist c1, c2 ∈ N such that:

(a) |µ(H,G)| ≤ nc1 for any H ≤O G such that |G : H| = n;

(b) the number of open subgroups of G of index n with non-zero Möbius function is
bounded by nc2.

However, it is impotant to notice that there are properties of G encoded in the coef-
ficients of pG(s) which do not depend on its convergence. One can ask now if there is a
relation between pG(s) and ζG(s). A first look to some easy examples gives us evidence
that there can be such a relation.

Example 21 Consider the (profinite complexion of the) group Z.Then

ζẐ(s) =
∑
n

1

ns
= ζ(s),

pẐ(s) =
∑
n

µ(n)

ns

and it is easy to prove that
ζẐ(s)pẐ(s) = 1.

In order to find out if this behaviour is common to a wider class of groups, Damian
and Lucchini introduced the following definition.
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Definition 22 A finitely generated profinite group G is ζ-reversible if ζG(s)pG(s) = 1.

Example 23 Ẑ and Zp for any prime p are ζ-reversible.

Notice that ζ-reversibility is a condition on the coefficients an(G), bn(G) and can
be introduced and studied independently of the convergence of ζG(s), pG(s). Hence ζ-

reversible only means that
∑
rs=n

ar(G)bs(G) = 0 for any n > 0.

The interest in ζ-reversible groups is motivated by computational difficulties in the finding
the coefficients an(G) for most groups. In fact, while the series pG(s) apparently has a
more complicated definition than ζG(s), several progresses have been achieved in the last
decades in its factorization and thus in its computation. In particular, Detomi and Lucchini
showed in 2006 an explicit factorization of pG(s) using the notion of crowns.

Proposition 24 (Damian and Lucchini, 2014) Let G be a finitely generated profinite
group. Then G is ζ-reversible if and only if

∑
m|n

 ∑
|G:H|=m

bn/m(G)− bn/m(H)

 = 0

for all n ∈ N.

Corollary 25 (Damian and Lucchini, 2014) If pG(s) = pH(s) for all H ≤O G, then G is
ζ-reversible.

As it is apparent from these results, ζ-reversibility is a strong property: a ζ-reversible
group must have a sort of uniform subgroup structure, in the sense that the open subgroups
must have a comparable structure. Motivated by many results, in particular for some
classes of pro-p groups, they conjectured that the converse of the corollary holds:

Conjecture 26 (Damian and Lucchini, 2014) A profinite group G is ζ-reversible if and
only if pG(s) = pH(s) for all H ≤O G.

3 A normal generalization of the two problems

As the coefficients of both Dirichlet series are defined from the lattice of all open subgroups
of G, it is reasonable to ask what is the result if we consider a sublattice. In response
to this question, in 2007 Detomi and Lucchini introduced some generalizations of the
subgroup and the probabilistic zeta functions. Let L/ be the lattice of normal subgroups
of G. Then it is possible to define:

• a Möbius function µ/(·, G);

• coefficients a/n(G) (the number of open normal subgroups of G of index n);

• coefficients b/n(G) =
∑

H/G,|G:H|=n
µ/(H,G);
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• two Dirichlet series ζ/G(s), p/G(s) associated to a/n(G), b/n(G) respectively.

It is not difficult to prove that the probabilistic meaning still holds in the finite case (i.e.,
p/G(t) is the probability that t randomly chosen elements of G normally generate G).
Moreover, Detomi and Lucchini found in 2007 a factorization of p/G(s) for a finite group
G. We recall once again some results on finite groups:

Definition 27 A group S is simple if it has no non-trivial normal subgroups.

Lemma 28 Let G be a finite group and N (G) the intersection of all maximal normal
subgroups of G. Then G/N (G) is a direct product of finite simple groups.

Proposition 29 (Detomi and Lucchini, 2007) Let G be a finite group and let

G/N (G) ∼=
m∏
i=1

Snii

where Si are non-isomorphic simple groups. Then

p/G(t) =
m∏
i=1

p/
S
ni
i

(t).

Moreover, for a simple group S,

p/Sn(t) =

{
(1− 1/|S|t)n if S is not abelian;∏n
j=1(1− pj−1/pt) if S is abelian of order p.

In the profinite case, we can define Prob/G(t) = ν(Φ/
G(t)). It is also possible, with some

tecnical instruments, to extend the factorization we have presented in the finite case.

Definition 30 Let G be a profinite group and S a finite simple group. Then γG(S) is
the maximum t ∈ N ∪ {∞} such that SγG(S) is a continuous epimorphic image of G.

Definition 31 A profinite group G is positively finitely normally generated (PFNG) if
there exists t ∈ N such that Prob/G(t) > 0.

Remark 32 Clearly, PFNG implies normally finitely generated. The converse does not
hold.

Proposition 33 (Detomi and Lucchini, 2007) Let G be a PFNG profinite group. Then
γG(S) is finite for any simple group S, the infinite products

A(G, s) =
∏
p∈P

γG(Cp)∏
i=1

(
1− pi−1

ps

)

Università di Padova – Dipartimento di Matematica 60



Seminario Dottorato 2016/17

B(G, s) =
∏
S∈Σ

(
1− 1

|S|s

)γG(S)

(where P is the set of all prime numbers and Σ the sets of all non-abelian finite simple
groups) are absolutely convergent in a right half-plane of the complex plane. Moreover,
p/G(s) = A(G, s)B(G, s) in the same half-plane and

/
Prob
G

(t) = p/G(t)

for t large enough.

It can be proved that the condition for G to be PFNG is crucial for the convergence
of p/G(s) and can be verified looking at G/N (G).

Proposition 34 (Cimetta and Lucchini, 2016) Let G be a profinite group. Then the
following are equivalent:

(1) The infinite sum
∑
HEOG

µ/(H,G)

|G : H|s
absolutely converges in a right half-plane of the

complex plane;

(2) G is PFNG;

(3) G/N (G) is finitely generated.

As it is apparent, we are able (also in this generalization) to provide a factorization for
the series p/G(s), while it is general very difficult to compute ζ/G(s); furthermore, groups

like Ẑ, Zp satisfy the property ζ/G(s)p/G(s) = 1, so it is reasonable to define normally
ζ-reversible groups.

Definition 35 A profinite group G is normally ζ-reversible if ζ/G(s)p/G(s) = 1.

Normal ζ-reversibility seems to be a very rare property, that only few groups satisfy:
it is possible to extend to the normal case some results in the non-normal case. Our main
conjecture is the following:

Conjecture 36 A profinite group G is normally ζ-reversible if and only if it is abelian
and torsion-free (i.e., gn 6= 1 for any g ∈ G, n ∈ N).

Some partial results supporting this conjecture have been proved.
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Collective periodic behavior

in interacting particle systems

Daniele Tovazzi (∗)

Abstract. Interacting particle systems constitute a wide class of models, originally motivated by
Statistical Mechanics, which in the last decades have become more and more popular, extending
their applications to various fields of research such as Biology and Social Sciences. These models
are important tools that may be used to study macroscopic behaviors observed in complex systems.
Among these phenomena, a very interesting one is collective periodic behavior, in which the system
exhibits the emergence of macroscopic rhythmic oscillations even though single components have
no natural tendency to behave periodically.
This talk aims to introduce to a general audience some basic tools in the theory of interacting
particle systems and some of the mechanisms which can enhance the appearance of self-sustained
macroscopic rhythm. After recalling some notions of Probability, we present the classical Curie-
Weiss model, which doesn’t exhibit periodic behavior, and we show how we can modify it in order
to create macroscopic oscillations. This is also the starting point for some recent developments
that will be sketched in the last part of the talk.

1 Introduction

Living systems are characterized by the emergence of self-organized collective behaviors
in large communities of interacting components: prey-predator equilibria, flocks of birds,
fireflies glowing in a synchronized manner constitute very examples. A fundamental prob-
lem in complex systems is to understand how many interacting individuals organize to
produce such coherent behaviors at a macroscopic level. A phenomenon whose enhancing
mechanisms are not well-understood yet consists in the emergence of macroscopic stable
periodic oscillation in systems whose units have no natural tendency to evolve periodi-
cally: real examples in this sense come from Biology, Ecology and Socio-Economics [1,
7, 11, 12]. The attempt of modeling such complex systems leads naturally to consider
large families of N microscopical identical units and then, following a typical approach of
Statisical Mechanics, to study the infinite volume limit dynamics of the system by letting
N ↑ +∞.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
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When working with this type of models, it is often assumed to have a mean-field interac-
tion between particles: this means that each single agent interacts with all the others in
the same way, and the strength of interaction is of order O( 1

N ). This implies that there is
no spatial geometry in the system and the graph describing interactions between particles
is the complete graph with N nodes. Mean-field interaction dramatically simplifies the
analysis of the system and its macroscopic limit and, even though is a very strong assump-
tion, it is somehow justified for modelling systems where there exists a large number of
connections (e.g. neuronal networks) or where information is is shared by all the agents
(e.g. financial markets).
Several papers in literature deals with the mechanisms enhancing self-sustained periodic
behavior in mean-field models (see [2-6, 8-10]) but little is known whether those mecha-
nisms induce collective periodic behavior in system where the interaction in local (i.e. not
of mean-field type).
In this notes, we firstly introduce the Curie-Weiss model, a classical toy model which
explains polarization in a ferromagnetic system. Then, we briefly sketch a modification
of this model analysed in [4]: by adding a dissipative term in the interaction energy the
macroscopic dynamics will present a stable limit cycle at sufficiently low temperature.
Finally, we will present some recent results (due to a joint work with Raphael Cerf, Paolo
Dai Pra and Marco Formentin) concerning an Ising model with dissipation, which show
that the dissipation mechanism enhances the appearance of collective oscillation even if
the model is not of mean-field type.

2 Preliminary notions

Definition 1 A probability space is a triple (Ω,F , P ) where Ω is a sample space, F is
a σ-algebra of events and P is probability measure on (Ω,F).
Given a measurable space (E, E), a random variable is a measurable function X : Ω→
E.

A random variable X induces a probability measure µX on (E, E), usually called the
law of X, defined by

µX(A) = P (X ∈ A), ∀A ∈ E .

Definition 2 A stochastic process is an object

X = (Ω,F , (Ft)t∈T , (Xt)t∈T , P )

where

• (Ω,F , P ) is a probability space;

• T ⊆ R+ is the time set;

• (Ft)t∈T is a filtration, i.e. an increasing family of sub-σ-algebras of F : for any
s, t ∈ T with s ≤ t

Fs ⊆ Ft ⊆ F ;
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• (Xt)t∈T is a family of random variables on (Ω,F) taking values in a measurable
space (E, E) and such that it is adapted to the filtration (Ft)t∈T , i.e.

Xt is Ft-measurable ∀ t ∈ T .

Definition 3 Let (E, E) be a metric space provided with the Borel σ-algebra, S ⊂ R.
The Skorohod space, indicated by D(S;E), is the set of functions f : S → E which
in any point are right-continuous and have finite limit from the left (often called cadlag).
This space can be endowed with the Skorohod topology, which provides a metric and
a Borel σ-algebra B.

Note that if (Xt)t∈T is a stochastic process with values in E and cadlag trajectories,
then it can be interpreted as a random variable X taking values in D(T ;E):

X : (Ω,F , P ) −→ (D(T ;E),B)
ω 7−→ [t 7→ Xt(ω)].

In particular, being a random variable, X = (Xt)t∈T induces a probability measure µX
on (D(T ;E),B).

Definition 4 A sequence of random variables (Xn)n∈N with values in (E, E) is said to
weakly converge to a random variable X with values in (E, E) if, for every continuous
and bounded f : E → R, ∫

E
f(x)µXn(dx) −→

n→+∞

∫
E
f(x)µX(dx).

Then, the concept of weak convergence for stochastic processes with cadlag trajectories
is obtained by interpreting it as weak convergence of random variables on the Skorohod
space:

(Xn
t )t∈T

w−→
n→+∞

(Xt)t∈T

m∫
D(T ;E)

f(x)µXn(dx) −→
n→+∞

∫
D(T ;E)

f(x)µX(dx) ∀ f ∈ Cb(D(T ;E))

where µXn is law of (Xn
t )t∈T on D(T ;E) and µX is law of (Xt)t∈T on D(T ;E).

3 The classical Curie-Weiss Model

We consider N sites and we associate with each of them a spin value, which is a ran-
dom variable taking values in the set {−1,+1}. We call a configuration of the system
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the collection of the spin values σ = (σj)
N
j=1 ∈ {−1,+1}N . Given a configuration, the

corresponding magnetization is the quantity

mN =
1

N

N∑
j=1

σj .

At time t = 0, we construct a configuration σ(0) = (σj(0))Nj=1 ∈ {−1,+1}N , choosing N
independent and identically distributed spins, with common law µ. Our aim is to define a
stochastic process (σ(t))t∈[0,T ] with values in {−1,+1}N in which the spins interact with
each other by trying to align/cooperate: this means that we have to assign a flipping rate
for each spin. We can interpret flipping rates in the following way: at time t ∈ [0, T ], if
the j-th spin has flipping rate λj(t), then for h > 0,

P (σj flips in ]t, t+ h[) = λj(t)h+ o(h),

hence the higher the flipping rate of a spin at time t, the higher the probability to observe
it flip on the interval ]t, t+ h[, for any h > 0. The classical Curie-Weiss model is obtained
by choosing the rates of transitions in the following form:

σj −→ −σj at rate e−βσjmN ,

where β, positive parameter, measure the strength of interaction (it actually the inverse
of the temperature of the system). At this point, it is worth to stress some aspects:

• the interaction depends entirely on the value of the magnetization of the system
mN (t): in particular, this interaction is of mean-field type;

• we obtained a cooperative type of interaction, in the following sense: if mN (t) > 0
(so there is a majority of positive spins in the configuration σ(t)), then positive
spins have flipping rates less than 1 and negative spins have flipping rates grater
than one (and vice versa with mN (t) < 0), meaning that spins are trying to align
with each other. Note also that the strength of this alignment mechanism depend
on the parameter β.

Actually, one can take a step further: thanks to the mean-field hypothesis, the magneti-
zation mN (t) encodes all the information of the state of the system (how many spins are
positive and how many are negative) and also on the flipping rates of the system. Hence,
the stochastic process (mN (t))t∈[0,T ] is an order parameter of the system, i.e. it is a
sufficient statistic to describe the dynamics of the N -particle process. The magnetization
process takes values in {−1,−N−2

N , . . . , N−2
N ,+1} and it jumps with amplitude + 2

N when
a negative spin flips to positive and with amplitude − 2

N when a positive spin flips to
negative. Hence, it is easy to see that, at time t ∈ [0, T ], the process jumps ”up” with a
rate given by the flipping rate of a single negative spin at time t multiplied by the total
number of negative spins present in the configuration σ(t), namely

N(1−mN (t))

2
eβmN (t).
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Analogously, it jumps ”down” with a rate given by the flipping rate of a single positive
spin at time t multiplied by the total number of positive spins present in the configuration
σ(t), namely

N(1 +mN (t))

2
e−βmN (t).

Hence, for any t ∈ [0, T ] and h > 0,

P

(
mN (t+ h) = mN (t) +

2

N

)
= h

N(1−mN (t))

2
eβmN (t) + o(h);

P

(
mN (t+ h) = mN (t)− 2

N

)
= h

N(1 +mN (t))

2
e−βmN (t) + o(h).

Now we are interested in describing the dynamics of the system (hence, of the process
mN (t)t∈[0,T ]), in the limit as N ↑ +∞.

Theorem 1 For t ∈ [0, T ], T fixed, in the limit as N ↑ +∞, the magnetization pro-
cess (mN (t))t∈[0,T ] converges, in sense of weak convergence of stochastic processes, to
(m(t))t∈[0,T ], which is the solution of the following ordinary differential equation

(1)

{
ṁ(t) = −2m(t) cosh(βm(t)) + 2 sinh(βm(t)),

m(0) = m0

where m0 ∈ [−1, 1] is such that
mN (0)

w−→
N↑+∞

m0.

Notice that the macroscopic dynamics is deterministic: the equation (1) drives the
behavior of the classical Curie-Weiss model in the infinite volume limit. Now we want to
study the long-time behavior of the macroscopic system.

Lemma 1 Any equilibrium solution of ṁ(t) = −2m(t) cosh(βm(t)) + 2 sinh(βm(t)) is of
the form m∗ = tanh(βm∗).

0

1

-1

(a) Case β < 1

0

1

-1

m*
σ

-m*
σ

(b) Case β > 1

Figure 1. Solution(s) of m∗ = tanh(βm∗).
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Theorem 2 Consider the equation (1):

• for β ≤ 1, it has 0 as a unique equilibrium solution and it is globally asymptotically
stable, i.e. for every initial condition m0 ∈ [−1, 1]

lim
t→+∞

m(t) = 0;

• for β > 1, the point 0 is still an equilibrium and two further equilibria arise:

m∗β and −m∗β ,

where m∗β is the unique positive solution of x = tanh(βx). In this case, the phase
space [−1, 1] is bi-partitioned by the origin in two domains of attraction: given an
initial condition m0,

lim
t→+∞

m(t) =


m∗β ifm0 ∈ (0, 1]

−m∗β ifm0 ∈ [−1, 0)

0 ifm0 = 0 .

So, the macroscopic system exhibits a phase transition, which is the appearance of
multiple stable equilibria, at a critical value βc = 1, so its behavior is deeply influenced
by the choice of β. If β ≤ βc, the interaction is not strong enough to maintain any
form of self-organization and, regardless of any initial condition, we will only observe
disorder (i.e. magnetization close to zero) in the long-time behavior. On the other hand,
if β > βc the interaction is sufficiently strong to allow a polarization phenomenon, where
the magnetization converges to a value m∗(β) or−m∗(β) depending on the initial condition
(with the exception of m0 = 0).

4 A Curie-Weiss model with dissipation

In the previous section, we have seen that the classical Curie-Weiss model is toy model
which explains self-organized polarization. Since our goal is to study the emergence of
macroscopic periodic behavior, we may ask whether it is possible to modify the classical
CW model in order to obtain a dynamics which is still simple to analyse but that will
exhibit collective periodic behavior. An answer to this question is given by the Curie-Weiss
model with dissipation introduced in [4] that will be presented in this section.

We consider again the same framework: we haveN sites and at time t = 0, we construct
a configuration σ(0) = (σj(0))Nj=1 ∈ {−1,+1}N , choosing N independent and identically
distributed spins, with common law µ. The only change lies in flipping rates: now we
consider them in the form

σj −→ −σj at rate e−σj(t)λN (t),
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where (λN (t))t∈[0,T ] is a stochastic process that evolves according to

dλN (t) = −αλN (t)dt+ βdmN (t),

with α > 0, λ(0) = λ0 ∈ R. The term λN (t) describes interaction energy : it jumps
with amplitude ±2β

N whenever the magnetization mN (t) jumps with amplitude ± 2
N and,

between two consecutive jumps, it decays exponentially to 0. In this sense, dissipation
dumps the influence of interaction when no spin-flip occurs for a long time. Note that:

• if α = 0 we recover the classical CW model;

• we are still dealing with a mean-field interaction.

In this case we need a two-dimensional process to completely describe the system: mN (t)
contains the information on the configuration at time t ∈ [0, T ] while λN (t) is needed to
describe the jump rates at time t ∈ [0, T ]. In this sense, (mN (t), λN (t))t∈[0,T ] is an order
parameter for the system, hence we want to study its infinite volume dynamics.

Theorem 3 In the limit as N ↑ +∞, the process (mN (t), λN (t))t∈[0,T ] converges, in sense
of weak convergence of stochastic processes, to (m(t), λ(t))t∈[0,T ], solution of the ordinary
differential equation

(2)


ṁ(t) = −2m(t) cosh(λ(t)) + 2 sinh(λ(t)),

λ̇(t) = −αλ(t) + βṁ(t),

m(0) = m0, λ(0) = λ0

where m0 ∈ [−1, 1], λ0 ∈ R are such that

(mN (0), λN (0))
w−→

N↑+∞
(m0, λ0).

Lemma 2 Fix α > 0 and consider (2). Then,

• for any β > 0, (0, 0) is the only stationary solution;

• for β = 1 + α
2 a Hopf bifurcation is present.

Recall that, roughly speaking, a Hopf bifurcation occurs when an equilibrium point
looses stability and a periodic solution arises. This type of bifurcation can be detected by
studying the eigenvalues of the Jacobian matrix in the equilibrium point: there must exist
a pair of conjugate eigenvalues crossing the imaginary axis with positive velocity.

Theorem 4 Fix α > 0 and consider (2).

• for β ≤ 1 + α
2 , (0, 0) is globally asymptotically stable, i.e. for every initial condition

(m0, λ0) ∈ [−1, 1]× R,
lim

t→+∞
(m(t), λ(t)) = (0, 0); .
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• for β > 1 + α
2 , the system has a unique periodic orbit which attracts all other trajec-

tories except the one starting at the equilibrium point, i.e. (m0, λ0) = (0, 0).

So, in this case, the macroscopic system exhibits a phase transition, which is the
appearance of a stable limit cycle, at a critical value βc = 1 + α

2 , so its behavior is deeply
influenced by the choice of β. If β ≤ βc, the interaction is not strong enough to maintain
any form of self-organization and, regardless of any initial condition, we will only observe
disorder in the long-time behavior. On the other hand, if β > βc the interaction is
sufficiently strong to allow for a collective phenomenon, which is no longer polarization as
in the classical model but rather a stable oscillation between magnetized states.

5 Some recent developments: an Ising model with dissipation

Now we want to analyse a spin-flip model where the mean-field hypothesis no longer
holds, and we want to check if the dissipation mechanism described above is still capable
to produce macroscopic rhythmic oscillation. To do so, we start with the classical 1-
dimensional Ising model.

In the classical 1-dimensional Ising model with periodic boundary conditions we have
N site lying on a 1-dimensional torus. At any site, we associate a spin value σi ∈ {−1,+1},
for i = 1, . . . , N . Moreover, for any site, we introduce a local magnetization

mi,N =
∑
j∼i

σj = σi−1 + σi+1, i = 1, . . . , N,

which only depends on the spins located in the first neighbours of site i. The flipping rate
now is given by

σi −→ −σi at rate e−σi(t)mi,N (t).

Notice that interaction is no longer of mean-field type since the flipping rate is site-
dependent. This also means that the total magnetization mN (t) = 1

N

∑N
j=1 σj(t) is far

from being an order parameter for the system, so there is no hope to reduce the model to
a 1-dimensional process as in the Curie-Weiss framework.

We modify the classical 1-dimensional Ising model by introducing a dissipation, fol-
lowing the idea of the Curie-Weiss model with dissipation: we get that the flipping rates
in the form

σi −→ −σi at rate e−σi(t)λi(t)

where, for any i = 1, . . . , N , the process (λi(t))t∈[0,T ] evolves according to

dλi(t) = −αλi(t)dt+ βdmi,N (t),

with α, β > 0.
Our aim is to show that in a suitable large volume - low temperature limit, the total
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magnetization has a periodic behavior after a suitable time scaling. We assume the dy-
namics starts with all spins equal to −1. The analysis of the evolution is divided into
two parts. We begin by studying the occurrence time of the first spin flip. After the first
spin-flip occurs, the change in the local field and the low temperature favors the growth
of a “droplet” (just a segment in the one-dimensionale case) of +1, which invades the
whole state space. At this point we are back the situation of all equal spins. By assigning
the initial local fields λi(0) in a suitable way, the local fields at the time the droplet has
invaded the space is essentially opposite to the initial one, producing the iteration of the
same phenomenon. To guarantee the growth of the droplet to occur with overwhelming
probability, we will assume β,N ↑ ∞ in such a way that β � logN .
In this regime, the waiting time for the first spin flip is large, but has very small fluctua-
tions. These fluctuations, however, have impact on the growth time of the droplet (which
is very short). For this reason, while the waiting time of the first spin flip, rescaled by
its mean, has a deterministic limit, the rescaled growth time of the droplet keeps some
randomness in the limit.

Let λi(0) = −γ < 0 and σi(0) = −1 for all i = 1, . . . , N , denote with T1 the time at
which the first spin flip is observed, namely

T1 = inf{t ∈ [0, T ] | σj(t) = +1 for some j ∈ {1, . . . , N}};

denote also with Tc the time take by the positive droplet to expand and cover all the sites,
i.e.

Tc = inf{t ∈ [0, T ] | σi(T1 + t) = +1 for all i = 1, . . . , N}.

Then, the following results hold:

Proposition 1 Suppose N, γ ↑ +∞ with the condition N
γ e
−γ → 0. Then

α logN
(
T1 − t(γ,N)

)
d−→

γ,N↑+∞
X,

where X is a random variable distributed according to

P (X > x) = exp (−ex) , ∀ x ∈ R

and

t(γ,N) :=
1

α
log

γ

L−1
(
L(γ) + α

N

)
where, for x > 0,

L(x) =

∫ +∞

x

e−y

y
dy.

Proposition 2 Let γ, β,N ↑ +∞ with the condition

lim
β,N↑+∞

logN

β
= 0 lim inf

β,γ↑+∞
γ

β
> 0.
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Then
Tc

N2

2α logN e
−2β

d−→
γ,β,N↑+∞

Z,

where 1/Z is an exponential random variable with mean 1 and XN := α logN
(
T1 −

t(γ,N)
)

.

Remark 1 As stated before, in order to see a repetition of this phenomenon (long waiting
for the first flip and fast covering by the droplet) one has to choose γ in such a way the
local fields at the time the droplet has invaded the space is essentially opposite to the
initial one, i.e. λi(0) ≈ −λi(T1 + Tc). One can check that the correct choice to produce
the phenomenon is γ = 4β. Actually, after time T1 the local fields will no longer be
homogeneous, but will have small differences due to the dissipation and the fact that the
droplet takes some time to cover all the spins. Anyway, these fluctuations are so small that
they don’t have any effect in the limit: in the end, we will choose the initial conditions

λi(0) = −4β + εi(β,N), i = 1, . . . , N

where εi(β,N) are allowed to be random perturbation such that

lim
β,N↑+∞

logN

β
max
i
|εi(β,N)| = 0

in probability. One can prove that with this choice, Proposition 1 and Proposition 2 are
still true and, at time T1 +Tc, we recover a condition comparable to the initial one, which
allows repetition of the phenomenon hence, in the limit, macroscopic oscillations.

Notice that t(4β,N) is a diverging quantity as β,N ↑ +∞, while N2

2α logN e
−2β converges

to 0 as β,N ↑ +∞, assuming to work in the regime β−1 logN → 0. Therefore, in order to
state a convergence theorem for the total magnetization process (mN (t))t∈[0,T ] we have to
consider a time rescaled version of it. Define (m̃N (t))t∈[0,T ] in the following way:

m̃N (t) = mN (θN (t)), t ∈ [0, T ]

where

θN (t) =

∫ t

0

(
t(4β,N)1{|mN (s)|=1} +

N2e−2β

2α logN
1{|mN (s)|<1}

)
ds, t ∈ [0, T ].

Now, let (Zi){i∈N} be a sequence of i.i.d. random variables such that 1
Z1

is distributed as
an exponential r.v. of mean 1. Then, define the sets

A = [0, 1 ∧ T ] ∪

(
+∞⋃
k=1

[(
2k∑
i=1

Zi + 2k

)
∧ T,

(
2k∑
i=1

Zi + 2k + 1

)
∧ T

])
,

B =
+∞⋃
k=1

[(
2k−1∑
i=1

Zi + 2k − 1

)
∧ T,

(
2k−1∑
i=1

Zi + 2k

)
∧ T

]
,
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C = ]1 ∧ T, (1 + Z1) ∧ T [ ,

and, for any integer k ≥ 1,

Uk =

](
2k∑
i=1

Zi + 2k + 1

)
∧ T,

(
2k+1∑
i=1

Zi + 2k + 1

)
∧ T

[
,

Vk =

](
2k−1∑
i=1

Zi + 2k

)
∧ T,

(
2k∑
i=1

Zi + 2k

)
∧ T

[
.

Note that

[0, T ] = A ∪B ∪ C ∪

(
+∞⋃
k=1

Uk ∪ Vk

)
,

then define the process (m̃(t))t∈[0,T ] in the following way:

m̃(t) =



−1 if t ∈ A,
+1 if t ∈ B,
2t−2
Z1
− 1 if t ∈ C,

2t−2
∑2k
i=1 Zi+4k+2
Z2k+1

− 1 if t ∈ Uk for some k ≥ 1,

−2t+2
∑2k
i=1 Zi+4k
Z2k

− 1 if t ∈ Vk for some k ≥ 1.

Theorem 5 As β,N ↑ +∞, the process (m̃N (t))t∈[0,T ] converges, in sense of weak con-
vergence of stochastic processes, to the process (m̃(t))t∈[0,T ].

The behavior of the process (m̃(t))t∈[0,T ] is intuitively illustrated in Figure 2: it presents
oscillations between the full-magnetized states -1 and +1. In this case, some randomness
is still present and in particular it appears each time the magnetization moves from -1 to
+1 (or vice-versa) influencing the time taken to perform this shift. Nevertheless, Theo-
rem 5 shows that a self-sustained oscillating behavior can be induced by the mechanism
of dissipation even if the interactions are not of mean-field type.

Figure 2. Limit process (m̃(t))t∈[0,T ].
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Quantized option pricing

in Mathematical Finance

Lucio Fiorin (∗)

1 Introduction on Financial Markets

What is Mathematical Finance? We take the definition from Wikipedia:

Mathematical finance, also known as quantitative finance, is a field of applied mathematics,
concerned with financial markets. Generally, mathematical finance will derive and extend
the mathematical or numerical models without necessarily establishing a link to financial
theory, taking observed market prices as input. Mathematical consistency is required, not
compatibility with economic theory.

The main issues in Mathematical Finance are the following:

• How and why does the price of an asset change?

• Is it possible to make money using mathematical tools?

• Can we understand something about Mathematical Finance without knowing any-
thing about Finance (and / or Mathematics)?

A perfect example of how markets work, and how Mathematics can deal with financial
markets, is the movie Trading Places. Trading Places is a 1983 American comedy film,
broadcast on the Italian TV every Christmas eve. It tells the story of an upper-class
commodities broker and a homeless street hustler, and the end of the movie explains how
financial markets work, or at least in a toy model. The scene tells the story of how the
Duke brothers, the bad people in the movie, and Valentine and Winthorpe, the main
characters, behave on the trading floor.

• The Duke brothers buy information on the harvest of oranges (insider trading: it is
a crime!)

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on March 15th, 2017.
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• Valentine and Winthorpe replace the report with fake information. In the fake report
the harvest is bad, while in reality it is good.

• Trading floor scene: Market of Orange Juice futures. The opening is before the
announcement of the minister.

• The Duke brothers buy at lowest possible price (the opening) and sell at the highest
possible price (after the annuncement): they buy something they do not own and
they sell something the just bought.

• Valentine and Winthorpe sell at the highest possible price (before the announcement)
and buy at the lowest possible price (after the announcement): they sell something
they do not own and then buy what they just sold.

• At the end nobody has bought any Orange Juice, they just made a profit (Valentine
and Winthorpe) or a loss ( The Duke brothers ).

• They are both committing a crime!

We can learn different things from this scene of the movie. The first one is the presence
in the market of Futures (3 months in the movie): the buyer and the seller agree now on
the price to pay in 3 months for a given quantity of OJ. Then we see the dynamic of the
formation of the price: when people buy, the price raises, while when people sell, the price
falls. Before the announcement the price is fluctuating, due to the expectations of the
traders, a phenomenon called high volatility. After the announcement the price is falling,
since the harvest has been good, so there will be a lot of OJ in the market. Futures are
used in the markets for different reasons, but mainly for speculation and hedging purposes.
Speculation is exactly the one seen in the movie, as people are betting on the price in the
future in order to have a profit. Hedging is a technique used to reduce the risk of price
changes in the future. For example, if we are a juice producer company, we prefer to fix
now the price for Orange Juice in 3 months, instead of buying/selling it at the spot price
in 3 months.
In terms of risk management, futures are not really useful in covering risk: we can face
great losses (as well as great profits). This is why there has been the introduction in
financial markets of European Put/Call option. At time t = 0 I pay an amount of money
so I have the opportunity to buy at time t = 3 months OJ at a fixed price. We give here
an example of a European Call option:

• The OJ price now is 100. We buy a Call option (paying an amount C) so we have
the right, but not the obligation, to buy OJ in 3 months at 100.

• If at maturity the price of OJ is below 100, we do not exercise the option: we lose C.

• If at maturity the price of OJ is above 100, we exercise, so we buy OJ at 100.

• The profit is less than with Futures (we subtract the cost of C) but the loss is
bounded by C.
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2 Mathematical modeling

In this section we introduce some of the mathematical tools that are needed to understand
the basic aspects of Mathematical Finance. The price of a stock has (usually) the following
behavior:

Figure 1. Stock price of the FTSE MIB from June 2015 to March 2017. Data from Yahoo! Finance.

It is impossible to model something like this with deterministic functions, so we need to
use stochastic processes!
We assume then that the increment of the price process from time t to time t+ dt is not
given only by the position in t but also by a source of randomness. We can then write
what is called a Stochastic Differential Equation (SDE):

(1) dXt = a(Xt, t)dt+ b(Xt, t)dWt, X0 = x,

where dWt ∼ N (0, dt), i.e. dWt is a Gaussian random variable with zero mean and vari-
ance equal to dt. This is a generalization of the most celebrated Brownian motion, which
can be obtained taking the coefficients a = 0 and b = 1.
Usual assumptions in Mathematical Finance are that the price process St follows a Ge-
ometric Brownian motion: we consider dSt = µStdt + σStdWt, where the drift term µ
and the volatility component σ are considered to be constant. This is called the Black -
Scholes dynamic for the asset price.
Another important tool is the Ito’s Lemma, which permits to write the dynamics of a
function of a stochastic process. It is a stochastic generalization of the chain rule for
derivation.
Let Xt satisfy the SDE dXt = a(Xt, t)dt+ b(Xt, t)dWt and let f ∈ C2,1. Then

(2) df(Xt, t) = ft(Xt, t)dt+ fx(Xt, t)dXt +
1

2
fxx(Xt, t)(b(Xt, t))

2dt.
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Using this formula, it is possible after trivial computations to write the log price process
of an asset, that we will call Xt:

(3) dXt = d log(St) =

(
µ− 1

2
σ2

)
dt+ σdWt, X0 = x = log(x).

This characterization of the log price is very useful because it gives us the possibility to
write the solution of the SDE in a closed form, and to analyze separately the deterministic
and the stochastic part. In fact we have that

log(ST ) = XT ∼ N
((

µ− 1

2
σ2

)
T, σ2T

)
This means that under our assumptions, the price is lognormally distributed. with a closed
form expression for the mean and the variance.
The lognormal assumption is a nice feature, but empirical evidence shows that we are
far from this (really nice) formulation, so both academia and financial industries have
introduced more complicated models to deal with peculiar behaviors of asset prices and
of their derivatives.
Another very important tool is the theory of self financing portfolios. We create a portfolio
Vt with (a convex combination of) two assets: our risky asset St and a risk-free asset Bt,
i.e. Bt = B0e

rt. The risk-free asset is a mathematical idealization. In fact there is no
possibility to have zero risk, but the usual assumption is to consider American Treasury
bonds as the safest in the world. The portfolio is composed as

Vt = δSt + (1− δ)Bt.

We introduce the concept of self financing: the purchase of a new asset must be financed
by the sale of an old one. Assuming that we can buy and sell at every instant of time, we
get the (stochastic) differential equation for the portfolio:

dVt = δdSt + (1− δ)rBtdt.

If we collect the two conditions we have the SDE satisfied by a self financing portfolio with
one risky asset:

(4) dVt = δdSt + (Vt − δSt) rdt.

Self financing portfolios have been created to mimic the price of a Call option, in order
to give correct prices. This is due to the non Arbitrage theory, which tells then if two
portfolios (the self financing and the Call option) have the same value at maturity, then
the must have the same value at the time when the contract is signed. Since a Call option
is a function of the price of the asset, it can be considered as a portfolio, but self financing
portfolios are easier to price.
In fact, using together the Ito’s lemma and the self financing portfolio dynamic, we get
that, considering Vt = f(St, t):

• Ito’s Lemma ⇒ dVt = ftdt+ fsdSt + 1
2fssσ

2Stdt.
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• Self financing portfolio ⇒ dVt = δdSt + (Vt − δSt) rdt.

Putting them together we have that δ = fs and

(5) ft +
1

2
fssσ

2s2 + fsrs = rf,

with final condition: f(s, T ) = max(s −K, 0), because we exercise the option only if the
price is above a fixed threshold K.
This equation is the most celebrated Black Scholes equation, and gives the opportunity
to compute the price of a Call option using PDE techniques. The important result is not
only the way to compute the price, but also the fact that we have an explicit formula for
the δ part. In fact, if we want to cover the risk of a call option, we know exactly how to
construct the self financing portfolio able to mimic the behavior of the call price.

3 Option pricing and Numerical Probability

Another important tool in Mathematical Finance is the Feynman - Kac formula. This
formula establishes a link between parabolic partial differential equations and stochas-
tic processes. It offers a method of solving certain PDEs using probability approaches.
Consider the PDE with terminal condition

ft +
1

2
fssσ

2s2 + fsrs = rf, f(s, T ) = max(s−K, 0),

then we can write f as an expected value:

(6) f(s, t) = E
[
e−r(T−t) max(ST −K, 0)

∣∣St = s
]
,

where the stochastic process St has the following dynamic:

dSt = rStdt+ σStdWt.

This result is an incredibly powerful tool, since it gives the opportunity to compute the
prize of an option with two completely different approaches. Sometimes the pricing via
the PDE is easier, while sometimes the expected value is easier to solve and / or compute.

Remember the definition expected value E [g(X)] =

∫
g(z)P(X ∈ dz), where P(X ∈ dz)

is the density of X, which can be a random variable or a stochastic process at a given
time.
The Feynman - Kac formula gives also some really interesting results. First of all the drift
term in the price process must be r if we want to price using probabilistic tools. This
also means that, after some really basic computations, the discounted price process, i.e.
the process e−rtSt is a martingale, i.e. E[e−rtSt] = S0 ∀t ≥ 0. Furthermore, the price
at time t of a Call option can be seen as the discounted expectation of the final payoff at
maturity.
A first attempt to tackle the issue of computing the expected value in (6) using Numerical
Probability is with Monte Carlo methods. In Monte Carlo algorithms, the expectation is
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approximated using an empirical mean. In the case of a Geometric Brownian motion, we
need to be able to simulate a standard Gaussian random variable W . In fact, using Ito’s
Lemma

ST = S0e
(r− 1

2
σ2)T+σ

√
TW =: g(W ),

then, having N simulation of W , that we call Wi,

E [max(ST −K, 0)] ≈ 1

N

N∑
i=1

max (g(Wi)−K, 0)

The Law of Large Numbers tells us that the empirical mean converges towards the ex-
pectation when N → ∞, while the Central Limit theorem gives the rate of convergence,
which is 1√

N
. An alternative to Monte Carlo methods is given by quantization techniques.

3.1 Brief overview on quantization

We first provide some more technical details on vector quantization of a random variable.
Consider an Rd-valued random variable X defined on a probability space (Ω,A,P) with
finite r-th moment and probability distribution PX . Quantization can be considered as a
discretization of the probability space by at most N values, providing in some sense the
best approximation to the original distribution. In other words, N -quantizing the random
variable X, taking infinitely many values, boils down to approximating it by a discrete
random variable X̂ valued in a set of cardinality N , Γ = {x1, · · · , xN}. As a consequence,
in view of our application to quantitative finance, integrals of the form E [h(X)] (for a
given Borel function h : Rd → R) can be approximated by the finite sum below

E [h(X)]
∼
= E

[
h(X̂)

]
=

N∑
i=1

h(xi) P(X̂ = xi)

Clearly it still remains to clarify how to get the optimal or at least a “good” grid Γ and
the associated weights P(X̂ = xi), i = 1, . . . , N and to estimate the error. More rigorously,
quantizing X on a given grid Γ = {x1, · · · , xN} consists in projecting X on the grid Γ
following the closest neighbor rule. An N -quantizer is a Borel function fN : Rd → Γ ⊂ Rd
projecting X on Γ. The induced mean Lr-error (for r > 0) is called Lr-mean quantization
error and is given by

‖X − fN (X)‖r = ‖ min
1≤i≤N

|X − xi|‖r

where ||X||r := [E(|X|r)]1/r is the usual norm in Lr. The projection of X on Γ, fN (X), is
called the quantization of X (in the sequel, we will alternatively use fN (X) or ProjΓ(X)
to indicate the quantization of X). As a function of the grid Γ, the Lr-mean quantization
error is continuous and reaches a minimum over all the grids with size at most N . A grid
Γ? minimizing the Lr-mean quantization error over all the grids with size at most N is
called an Lr-optimal quantizer.
An optimal quantizer is then associated to an optimal grid of points Γ? and to an optimal
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Borel partition of the space Rd, (Ci(Γ
?))1≤i≤N , and viceversa, so that the quantizer is

defined as follows

fN (X) =
N∑
i=1

xi11Ci(Γ?)(X)

where the above partition {Ci(Γ?)}i=1,...,N , with Ci(Γ
?) ⊂ {ξ ∈ Rd : ||ξ−xi|| = min1≤j≤N ||ξ−

xj ||}, is called the Voronoi partition, or tessellation induced by Γ?. Moreover, the Lr-
mean quantization error vanishes as the grid size N → +∞ and the convergence rate has
been obtained in the celebrated Zador theorem (see [5]):

min
Γ, |Γ|=N

‖X − ProjΓ(X)‖r = Qr(PX)N−1/d + o
(
N−1/d

)
where Qr(PX) is a nonnegative constant (r = 2 of course will be of particular interest, with
the corresponding quadratic optimal quantizer). From a numerical point of view, finding
an optimal quantizer may be a very challenging task. This motivates the introduction of
sub-optimal criteria, mostly because one is typically interested in quantizations which are
close to X in distribution.
An N -quantizer ΓN = {x1, · · · , xN} inducing the quantization fN of X is said to be
stationary if

E[X|fN (X)] = fN (X)

In particular, if we introduce the distortion function associated with ΓN

(7) D(ΓN ) :=
N∑
i=1

∫
Ci(ΓN )

|z − xi|2dPX(z)

then it turns out that stationary quantizers are critical points of the distortion function
(that is, a stationary quantizer ΓN satisfies ∇D(ΓN ) = 0). Computing quadratic optimal
quantizers, or Lr-optimal (or stationary) quantizers in general, together with finding the
associated weights and Lr-mean quantization errors, are important issues. Several algo-
rithms are used in practice. In the one dimensional framework, the Lr-optimal quantizers
are unique up to the grid size as soon as the density of X is strictly log-concave. In this
case the Newton algorithm is commonly used to carry out the Lr-optimal quantizers when
closed or semi-closed formulas are available for the gradient (and the Hessian matrix).
From a numerical point of view, stationary quantizers are interesting insofar they can
be found through zero search recursive procedures like Newton’s algorithm that can be
efficiently performed.

The reason why quantization is getting more interest in both academia ad the financial
industry is because of the following reason:
If f is Lipschitz continuous with Lipschitz constant [f ]Lip, then∣∣E[f(X)]− E[f(ProjΓ(X))]

∣∣ ≤ [f ]Lip||X − ProjΓ(X)||2.

||X − ProjΓ(X)||2 → 0 with linear convergence, due to the Zador theorem.
So if we whink of X as an underlying at maturity, and f as the payoff of a derivative,
we are approximating an option price with rate of convergence much better than the one
obtained using Monte Carlo methods.
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4 Latest developments

The case of Geometric Brownian Motion (the Black - Scholes model) is too simple to be
consistent with the market, so lots of different models have been studied in the literature:

• Local volatility: consider σ as a function of St

• Addition of jumps: in case of shocks, the prices can not be continuous

• Stochastic volatility: σ is not constant, but a stochastic process

When we add complexity to the models, we lose their analytical tractability, and as a
result the distribution of the stock price can become impossible to determine in closed
form. This is an issue in Numerical Probability because the knowledge of the distribution
of a process is fundamental in the computation of expected values. Also, the possibility
to compute optimal quantizers for this types of models has been, and still is, an open
research problem.
One possible way to tackle the problem is using a a Euler discretization of the SDE of
the price process. The most simple case, the local volatility models, have been studied
for the CEV model dSt = rStdt + σSαt dWt in [6] and for the QNV model dSt = rStdt +
(σ1S

2
t +σ2St +σ3)dWt in [1]. In the case where the volatility is itself a stochastic process,

there has been studies on the SABR model, which is a CEV model where σ is a Geometric
Brownian Motion, see [2] and on the Heston model, which is a lognormal model where σ
has mean reversion, see [4]

4.1 A new approach to quantization

We introduce here a new development that can deal with more complicated models and
also with the presence of jumps. This technique has been developed in [3].
The characteristic function of a process Xt is defined as

φxt,T (u) := E
[
eiuXT

∣∣Xt = x
]
.

In the case of a price processes, it is useful to write the characteristic function of the
log process, including the dependence on the initial value of the process, which is usually
known:

(8) φx0,T (u) = E
[
eiu log(ST )

∣∣ log(S0) = x
]
.

The characteristic function can also be seen as a Fourier transform (omitting the depen-
dence on the initial value):

φx0,T (u) =

∫ +∞

−∞
eiu log(z)P(ST ∈ dz).

Indeed, using the Fourier inversion theorem, it is possible to get the density of the
price process directly from the characteristic function:

P(ST ∈ dz) =
1

π

1

z

∫ +∞

0
Re
(
e−iu log(z)φx0,T (u)

)
du
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In practice, it is much easier to determine in closed form the characteristic function of a
price process rather than the density. In addition, the characteristic function is known in
closed form for different kind of models, like

• Local volatility

• Stochastic volatility

• Jump processes

The knowledge of the density of the price process is fundamental, because we can write the
distortion function (7), and we can directly compute the minima, which are the stationary
quantizers. In Figure 2 and 3 we present the results of this new type of quantization for
respectively, the asset price and the volatility dynamics in a stochastic volatility model.
It can be seen how the more we go through time, the more quantization is able to catch
the randomness of the processes.
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Figure 2. Quantization of the price process in the Heston model. N = 30.
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Figure 3. Quantization of the volatility process in the CIR model. N = 20.
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An introduction to domain perturbation

theory for elliptic eigenvalue problems

Francesco Ferraresso (∗)

Abstract. How does the sound of a drum depend on its shape? This weak variant of the classical
question “Can one hear the shape of a drum?” can be considered in the framework of domain per-
turbation theory for elliptic differential operators. The answer to this apparently harmless question
is rather different in the case of regular perturbations and in the case of singular perturbations.
We consider mainly the singular case, where the geometry of the problem is deeply interlaced with
the differential structure, in particular with the boundary conditions. Finally, we give a survey of
the main results in the study of the dumbbell domain perturbation for the Laplace operator and
for the biharmonic operator.

1 Introduction

The relation between the eigenvalues and eigenfunctions of elliptic operators and the dy-
namics of vibrating objects is a classical topic (see e.g. [14], [20]), and it is nowadays
understood in terms of spectral theory, (we refer to [15] for a general introduction to spec-
tral theory with applications to PDEs). Let us introduce an example to fix ideas.
Let u(x, t) be the vertical displacement of a point on the surface Ω of a drum. For small
oscillations, its motion is described by the wave equation{

utt(x, t) = ∆xu(x, t) =
∑N

i=1 ∂
2
xixiu(x, t), in Ω× (0,+∞)

u(x, t) = 0, on ∂Ω× (0,+∞).

which can be solved by separation of variables. Namely we claim the existence of a solution
u(x, t) such that u(x, t) = ϕ(t)v(x) for almost all (x, t) ∈ Ω× (0,+∞). Then it must be

ϕ′′(t)v(x) = ϕ(t)∆v(x)

which implies in turn
ϕ′′(t)
ϕ(t)

=
∆v(x)

v(x)
= −λ ∈ R.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on March 29th, 2017.
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It is easy then to deduce that

ϕn(t) = A cos(
√
λnt) +B sin(

√
λnt),

where λn is the n-th eigenvalue of the Helmholtz equation{
−∆v(x) = λv(x), in Ω

v(x) = 0, on ∂Ω.

If Ω has finite measure, then there exists a sequence of isolated eigenvalues of finite
multiplicity

0 < λ1[Ω] ≤ λ2[Ω] ≤ · · · ≤ λn[Ω] ≤ . . .

If Ω represents a drum, then λn is what in music is usually called n-th harmonic of the
instrument. Hence the eigenfunctions of the Laplace operator are exactly the principal
modes of vibration of the drum corresponding to the harmonic frequencies, see Figures 1-2.

Figure 1. First mode of vibration of a circular drum. Figure 2. Second mode of vibration of a circular drum

2 Laplacian and bilaplacian.

We introduce here some notation and the main mathematical objects we will need in the
sequel. Given a bounded open set Ω ⊂ RN we introduce the Dirichlet eigenvalue problem
for the Laplace operator, which is defined by

(2.1)

{
−∆u = λu, in Ω,

u = 0, on ∂Ω.

and if ∂Ω is sufficiently regular (for example Lipschitz continuous) then we can define the
Neumann eigenvalue problem for the Laplace operator, which is defined by

(2.2)

{
−∆u = λu, in Ω,
∂u
∂n = 0, on ∂Ω.

where we have denoted by n the unit outer normal to Ω.
From an operator-theoretical point of view, the set of eigenvalues (λn)n is the spectrum of
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the Friedrichs self-adjoint extension of the operator −∆ in the Hilbert space L2(Ω). The
domain of this extension is a suitable Sobolev space on Ω. Let us recall some terminology.

Definition 1 A function f ∈ L2(Ω) has a weak derivative g ∈ L2(Ω) with respect to xi if∫
Ω
f
∂ϕ

∂xi
dx = −

∫
Ω
gϕ dx

for all ϕ ∈ C∞c (Ω).

Definition 2 The Sobolev space Hk(Ω) is the set of functions f ∈ L2(Ω) such that the
weak derivative ∂αf

∂xα exists in L2(Ω) for all multiindexes α = (α1, . . . , αN ) ∈ NN of length
k. It is a Hilbert space with norm

‖f‖Hk(Ω) =
(
‖f‖2L2(Ω) +

∑
|α|=k
‖∂αf‖2L2(Ω)

)1/2
.

Moreover we define by Hk
0 (Ω) the closure of C∞c (Ω) with respect to the norm ‖·‖Hk(Ω).

We recall that C∞(Ω)∩Hk(Ω) is dense in Hk(Ω) with respect to ‖·‖Hk , whereas C∞c (Ω)
is dense in Hk

0 (Ω) with respect to ‖·‖Hk . Recall moreover that C∞(Ω) is dense in Hk(Ω)
whenever the boundary of Ω is sufficiently regular.

In order to comprehend the relation between the eigenvalue problems (2.1), (2.2) and
the Sobolev spaces we need to switch to the weak formulation. For simplicity let us
assume Ω to be a bounded open set of RN of class C2. Recall that by standard regularity
arguments the eigenfunctions solving problems (2.1), (2.2) are at least H2(Ω), see e.g. [18].
We consider first the case of Neumann boundary conditions. We multiply equation (2.2)
by a test function ϕ ∈ C∞(Ω) and we integrate over Ω in order to obtain

−
∫

Ω
∆uϕ =

∫
Ω
∇u∇ϕ−

∫
∂Ω
ϕ
∂u

∂n
= λ

∫
Ω
uϕ

for all ϕ ∈ C∞(Ω). Then the boundary integral vanishes because of the boundary condi-
tions. Hence we deduce that ∫

Ω
∇u∇ϕ = λ

∫
Ω
uϕ

for all ϕ ∈ C∞(Ω), hence for all ϕ ∈ H1(Ω).

In the case of Dirichlet boundary conditions instead we note that it is sufficient to take
ϕ ∈ C∞c (Ω) to obtain that

(2.3)

∫
Ω
∇u∇ϕ = λ

∫
Ω
uϕ

for all ϕ ∈ C∞c (Ω), hence for all ϕ ∈ H1
0 (Ω).
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Assume now that u is a classical function. Then (2.3) and (2.1) turn out to be formu-
lations equivalent to (2.1) and (2.2) respectively, since if∫

Ω
(−∆u− λu)ϕdx = 0

for all ϕ ∈ C∞(Ω), then by the Fundamental Lemma of Calculus of Variations −∆u−λu =
0.

We now consider the biharmonic operator ∆2 which is the composition of −∆ with
itself, or more explicitly

∆2u =

N∑
i,j=1

∂4u

∂x2
i ∂x

2
j

=

N∑
i=1

∂4u

∂x4
i

+ 2
∑
i<j

∂4u

∂x2
i ∂x

2
j

In applications, the biharmonic operator usually models the vibration of a three-dimensional
elastic plate whose thickness is very small if compared with the other dimensions. We re-
mark here that in the last years polyharmonic operators have received attention from
diverse authors and from different points of view. We refer to [17] as a general reference
for polyharmonic theory. Let us mention [9], [11], [12], [13], [21], [6] where the authors
have considered differential problems for higher order elliptic operators. Here we consider
the eigenvalue problem for ∆2 with either Dirichlet boundary conditions defined by

(2.4)


∆2u = λu, in Ω,

u = 0, on ∂Ω,
∂u
∂n = 0, on ∂Ω,

or with Neumann boundary conditions, given by

(2.5)


∆2u = λu, in Ω,

σ∆u+ (1− σ)∂
2u
∂n2 = 0, on ∂Ω,

(1− σ)div∂Ω(D2u · n)∂Ω + ∂∆u
∂n = 0, on ∂Ω,

where σ is the Poisson coefficient of the material (− 1
N−1 < σ < 1), D2u : D2ϕ is the

Frobenius product of the Hessian matrixes, div∂Ω is the tangential divergence operator,
and (v)∂Ω denotes the projection of the function v on the tangent space. We proceed to
find the weak formulation of these problems. We first consider (2.4). Let ϕ ∈ C∞c (Ω).
Multiply equation (2.4) by ϕ, integrate over Ω and then integrate twice by parts in order
to obtain ∫

Ω
∆2uϕ =

∫
Ω

∆u∆ϕ+

∫
∂Ω

∂∆u

∂n
ϕ−

∫
∂Ω

∆u
∂ϕ

∂n
= λ

∫
Ω
u2

and the boundary integrals vanish since ϕ has compact support. We deduce the weak
formulation: ∫

Ω
∆u∆ϕ = λ

∫
Ω
uϕ

for all ϕ ∈ C∞c (Ω), hence for all ϕ ∈ H2
0 (Ω).
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We now consider (2.5). In order to find the weak formulation we need to use the
following biharmonic Green formula (see [9, Lemma 8.56]):∫

Ω
∆2uϕ =

∫
Ω
D2u : D2ϕ−

∫
∂Ω

∂2u

∂n2

∂ϕ

∂n
+

∫
∂Ω

(
div∂Ω((D2u · n))∂Ω +

∂∆u

∂n

)
ϕ.

Let ϕ ∈ C∞(Ω). Write

∆2uϕ = (1− σ)∆2uϕ+ σ∆2uϕ = λuϕ

and integrate over Ω. Then

(1− σ)

∫
Ω

∆2uϕ = (1− σ)

∫
Ω
D2u : D2ϕ− (1− σ)

∫
∂Ω

∂2u

∂n2

∂ϕ

∂n

+ (1− σ)

∫
∂Ω

(
div∂Ω((D2u · n))∂Ω +

∂∆u

∂n

)
ϕ = (1− σ)λ

∫
Ω
uϕ

(2.6)

and

(2.7) σ

∫
Ω

∆2uϕ = σ

∫
Ω

∆u∆ϕ− σ
∫
∂Ω

∂∆u

∂n
ϕ+ σ

∫
∂Ω

∆u
∂ϕ

∂n
= σλ

∫
Ω
uϕ

and by summing up (2.6) and (2.7) we find that

(2.8)

∫
Ω

(1− σ)D2u : D2ϕ+ σ∆u∆ϕ−
∫
∂Ω

(
(1− σ)

∂2u

∂n2
+ σ∆u

)∂ϕ
∂n

+ (1− σ)

∫
∂Ω

(
div∂Ω((D2u · n))∂Ω +

∂∆u

∂n

)
ϕ+ σ

∫
∂Ω

∂∆u

∂n
ϕ = λ

∫
Ω
uϕ

Keeping into account the boundary conditions in (2.5) we see that the boundary integrals
vanish. Hence, ∫

Ω
(1− σ)D2u : D2ϕ+ σ∆u∆ϕ = λ

∫
Ω
uϕ

for all ϕ ∈ C∞(Ω), hence for all ϕ ∈ H2(Ω).

3 Domain perturbation theory

With domain perturbation theory we refer to the analysis of the dependence of the solu-
tions and of the spectrum of a given elliptic differential problem on the properties of the
underlying domain Ω. More precisely, let Ω be a bounded open set in RN . We consider
elliptic operators of the type

(3.1) Hu = (−1)m
∑

|α|=|β|=m
Dα
(
Aαβ(x)Dβu

)
, x ∈ Ω,

subject to homogeneous boundary conditions. Under suitable assumptions, the spectrum
is discrete

λ1[Ω] ≤ λ2[Ω] ≤ · · · ≤ λn[Ω] ≤ . . .
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The main question in domain perturbation theory is to understand under which hypothesis
the maps

Ω 7→ λn[Ω], Ω→ un[Ω]

are continuous (or differentiable). Of course the answer to this question strongly relies
on the choice of the topology on the class of open sets of RN . Let us remark that this
is closely related to the stability (with respect to domain perturbations) of the Poisson
problem

Hu = f, in Ω,

for given f ∈ L2(Ω). In applications these stability problems are related to the following
question:

Do drums/plates with “similar” shapes produce “similar” sounds?

In general it is known that the answer to this question is negative, since there exists
examples of small perturbations (for example, in the sense of Lebesgue measure) of a
given smooth domain producing strong instability (see Figure 3).
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Figure 3. Dramatic change in the shape of the first eigenfunction caused by a slit in the drum.

Definition 3 We say that a domain perturbation Ω 7→ Ωε is spectrally stable if

(i) λn[Ωε]→ λn[Ω] for all n ∈ N

(ii) The spectral projections PΩε
a converge to PΩ

a in L2, i.e., for fixed a ∈ R+\{λj [Ω]}∞j=0,

λn[Ω] < a < λn+1[Ω] we define the projections PΩε
a from L2(RN ) into L2(Ωε) by

PΩε
a (ψ) =

n∑
i=1

(ui[Ωε], ψ)L2(Ωε)ui[Ωε]

and we ask that

sup{‖PΩε
a (ψ)− PΩ

a (ψ)‖L2(Ω) + ‖PΩε
a (ψ)‖L2(Ωε\Ω) : ψ ∈ L2(RN ), ‖ψ‖L2(RN ) = 1} → 0,

as ε→ 0.
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We address now the problem of characterizing the domain perturbations that are
spectrally stable. For example, we may think about perturbations of the following types:

(i) Exterior perturbations: Ω ⊂ Ωε for all ε > 0 and |Ωε \ Ω| → 0;

(ii) Interior perturbations: Ωε ⊂ Ω for all ε > 0 and |Ω \ Ωε| → 0;

(iii) Ωε → Ω in the complementary Hausdorff topology, i.e.,

max{ sup
x∈ΩCε

dist(x,ΩC); sup
y∈ΩC

dist(y,ΩC
ε )} → 0)

(note that this condition is equivalent to the vanishing as ε→ 0 of the L∞-distance
between d∂Ω and d∂Ωε , where d is the distance function);

(iv) Ωε is diffeomorphic to Ω via Φε and ‖Φε − I‖C1(RN ) → 0

We remark here that in general perturbations satisfying condition (i) (or (ii) or even
(iii)) may be quite irregular. For example, if we consider domains Ωε, Ω which are locally
the hypograph of smooth functions gε, g, then it may happen that ‖gε − g‖L∞ tends to
zero as ε→ 0, but ‖gε − g‖C1 is not bounded as ε→ 0 (see Figure 4).

Figure 4. Examples of exterior perturbations.

3.1 Regular perturbations

We show here that the perturbations of type (iv) above are spectrally stable. Let us
suppose Ω ⊂ RN is a fixed smooth bounded domain. Let (Φε)ε>0 be diffeomorphisms of
class Cm mapping Ω to Ωε := Φε(Ω) such that ‖I−Φε‖Cm(RN ,RN ) → 0 as ε→ 0. Let HBC

Ω

be the differential operator HΩ defined in (3.1) subject to some homogeneous boundary
conditions. Then it is classical to prove the following

Theorem 1 The perturbation Ω 7→ Ωε is spectrally stable. In particular λn[Ωε] converges
to λn[Ω] as ε→ 0, for any n ∈ N.

Note that the spectral stability of the perturbation does not depend on the choice of
boundary conditions.
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3.2 Less regular perturbations

We consider now less restrictive domain perturbations, which may give singular spectral
behavior in the limit. Indeed, in general Ωε and Ω may be non-diffeomorphic or the
diffeomorphism Φε mapping Ω to Ωε may fail to satisfy the condition

‖I− Φε‖C1(RN ,RN ) → 0, as ε→ 0.

Another possible problem in low regularity domain perturbations is given by the following
example. Consider a smooth domain Ω and a monotonic decreasing exterior perturba-
tion (Ωε)ε>0 (i.e., Ω ⊂ Ωε ⊂ Ωε′ for all ε < ε′). Then the candidate “limiting domain”
Ω0 :=

⋂
ε>0 Ωε in general is not an open set, in particular it does not coincide with Ω, and

it may be different from Ω as well.
Finally, in all these cases oscillation/concentrations issues may appear: roughly speaking,
the eigenfunctions un[Ωε] may converge weakly to un[Ω] but ‖un[Ωε] − un[Ω]‖ 9 0 since
either ‖un[Ωε] − un[Ω]‖ is oscillating wildly around zero or ‖un[Ωε]‖L2(Rε)

→ 1, where

Rε ⊂ Ωε such that |Rε| → 0 (we say in this case that the L2-mass of the eigenfunction un
is concentrating on a lower dimensional manifold).
Importantly, for less regular perturbations spectral stability strongly depends on boundary
conditions. It is widely known that Dirichlet boundary conditions allow a wider choice of
stable perturbations.

Example: the Dirichlet Laplacian.
Consider here the problem of identifying the most general perturbations Ωε of Ω such
that the spectrum associated with (2.1) is continuous with respect to the perturbation
Ω 7→ Ωε. This problem has been widely investigated in the literature (see e.g. [10]), giving
the following results:

• Let Ωε′ ⊂ Ωε ⊂ Ω for all 0 < ε < ε′ and
⋃
ε>0 Ωε = Ω. Then Ω 7→ Ωε is a spectrally

stable perturbation.

• Assume that the perturbation Ωε is made of monotonic decreasing sequences of sets

“compact converging” to Ω, i.e., for every compact K ⊂ Ω∪Ω
C

there exists εK > 0

such that for all ε < εK , K ⊂ Ωε∪Ωε
C

(this is called Keyldish’s convergence). Then
if Ω is sufficiently regular (roughly speaking, it does not have cracks), then Ω 7→ Ωε

is a spectrally stable perturbation.

• Assume that Ωε is converging in the Hausdorff complementary topology to Ω. In
general, this is not enough to assure the spectral stability. However, if we impose
a uniform geometric constraint on Ωε and Ω (for example, all these domains have
Lipschitz boundaries, or satisfy a uniform exterior cone condition) then the pertur-
bation is spectrally stable. In R2 an important result by Šverák (see [22]) states
that the uniform geometric constraint can be replaced by a topological assumption
on Ωε and Ω: namely ΩC

ε must have an uniform bound on the number of connected
components.
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Note that convergence in measure of Ωε to Ω, |Ωε ∆ Ω| → 0 is not enough to assure
the spectral stability.

Non-Dirichlet boundary conditions. Generally speaking, non-Dirichlet boundary
conditions may have a much more unstable behaviour with respect to boundary perturba-
tions. Indeed, since we have non-zero boundary condition, the eigenfunctions are allowed
to have quite wild behaviour near the boundary, resulting in oscillation/concentration
issues combined with regularity issues. Moreover, there are examples in the literature
of quite regular perturbations giving singular spectral behavior. The classical example -
which can be found in [14] - is the following:

Example. Consider the eigenvalue problem for the Neumann Laplacian on Ωε (see Figure 5
below) {

−∆uε = λ(Ωε)uε, in Ωε

∂uε
∂n = 0, on ∂Ωε.

where Ω ⊂ R2 is the unit square [−1/2, 1/2]2, and Ωε is as in the picture. Here η is
much smaller than ε, take for example η = ε4. Since we are considering a Neumann
problem, it is known that λ1(Ωε) = λ1(Ω) = 0 and the corresponding eigenfunctions are
constant. Moreover by explicit calculations one can prove that λ2(Ω) = π2 > 0. However,
λ2(Ωε)→ 0 as ε→ 0.

ε
ε

η
Ω

S Rε

1

Figure 5. The “mushroom” perturbation Ωε.

To show that λ2(Ωε)→ 0 one can argue as follows. Recall that

λ2(Ωε) ≤
∫

Ωε
|∇u|2∫

Ωε
|u|2

for all u ∈ H1(Ωε), u 6= 0, such that
∫

Ωε
udx = 0. Let ϕ ∈ H1(Ωε) be defined by

ϕ =


−1/ε, in Rε

c(ε), in Ω

linear, in S
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and we choose c(ε) in such a way that
∫

Ωε
ϕ = 0. Then∫

S
|∇ϕ|2dx ≤ Cη/ε3, but

∫
Ωε

|ϕ|2dx→ 1.

3.3 Dumbbell-type perturbations.

The dumbbell domains Ωε ⊂ R2 are perturbations of a fixed bounded open set Ω with two
(or more) connected components. More precisely, let Ω := ΩL∪ΩR, where ΩL and ΩR are
the two connected components of Ω, and let the dumbbell Ωε be defined by Ωε := Ω∪Rε,
where Rε is a thin channel connecting ΩL to ΩR defined by

Rε = {(x, y) ∈ R2 : 0 < x < 1, 0 < y < εg(x)},

where g is a positive C2 function. A general dumbbell domain is as in the following picture:

Ω

Ω
Rε

1

Figure 6. General dumbbell domain Ωε.

On the dumbbell Ωε ⊂ R2 we consider the problem{
−∆u+ u = λn(Ωε)u, in Ωε,
∂u
∂n = 0, on ∂Ωε,

where u ∈ H1(Ωε). The weak formulation for this problem is: find u ∈ H1(Ωε) such that
for all ψ ∈ H1(Ωε) the following equality holds true:∫

Ωε

∇u∇ψ + uψdx = λ(Ωε)

∫
Ωε

uψ dx

Note that Rε is collapsing to a lower dimensional manifold as ε→ 0 (Rε is a thin domain).

This problem was first considered by Jimbo (see e.g. [19]) and then by Arrieta and
collaborators (see [1], [2], [3], [5], [8]). An important result contained in [4] relates the
spectral instability of the Neumann Laplacian to the concentration phenomenon, that we
are now going to define.
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Definition 4 We say that a sequence of functions uε ∈ H1(Ωε) such that ‖uε‖L2(Ωε)
=

c > 0 for all ε > 0 is concentrating in Rε ⊂ Ωε if there exists a constant C not depending
on ε such that

‖uε‖H1(Ωε)
≤ C, ‖uε‖L2(Rε)

→ c

as ε→ 0.

The existence of a sequence of functions (uε)ε as in Definition 4 turns out to be equiv-
alent to the uniform boundedness of the sequence (τε)ε defined by

(3.2) τε := inf
φε ∈H1(Ωε)
φε=0 in Ω

∫
Ωε
|∇φε|2dx

‖φε‖2L2(Rε)

.

By using the characterization of the spectral instability via τε as defined in (3.2) it
is easy to show that the continuity of the eigenvalues and of the eigenfunctions with
respect to ε cannot hold in a wide class of dumbbell perturbations. Indeed, under suitable
assumptions on the shape of Rε it is possible to prove that there will be a contribution to
the limit spectrum from the thin channel Rε.
The suitable assumptions on Rε are rather technical and we do not introduce them here.
We only mention that they involve the eigenvalues of some auxiliary differential problems
in small rectangles around the junctions of Rε to Ω, see the Definition of (H)-Condition
in [8], [3] and in [7] for more general operators. An easier condition on Rε which implies
the (H)-Condition is the following monotonicity property

(MP): there exists 1 >> δ > 0 (not depending on ε) such that for any x ∈ (0, δ), g(x) is
decreasing, and for any x ∈ (1− δ, 1), g(x) is increasing.

Note that we are not imposing geometrical condition of the shape of the channel Rε
far from the junction, since we are only interested in the behaviour of the channel near
the junctions (the red parts of the channel in Figure 7).

x

y

0 1

εg(0) εg(1)

1

x

y

0 1

εg(0) εg(1)

1

x

y

0 1

εg(0) εg(1)

1

Figure 7. Examples of channels Rε satisfying the (H)-Condition.

Under this assumption on the junctions one can prove that τε defined in (3.2) is converging
to τ as ε→ 0, where τ is the first eigenvalue of{

−1
g (gvx)x + v = τv, in (0, 1),

v(0) = v(1) = 0.
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Remark 1 The boundedness of the sequence τε is rather unusual in thin domain problems
since whenever a Poincar inequality holds in Rε one can prove that τε → ∞ (the first
Dirichlet eigenvalue on a thin domain always diverges, see e.g. [16]).

Denote now by (λn(Ωε))n the eigenvalues of

(3.3)

{
−∆u+ u = λn(Ωε)u, in Ωε,
∂u
∂n = 0, on ∂Ωε.

and by (ωi)i and (τi) the eigenvalues of{
−∆w + w = ω w, in Ω,
∂w
∂n = 0, on ∂Ω.

{
−1
g (gvx)x + v = τv, in (0, 1),

v(0) = v(1) = 0.

We order them in a unique sequence (λi)i = (ωk)k∪(τj)j , where it is understood that each
eigenvalue is repeated according to its multiplicity, keeping in account possible ‘resonance
cases’ when ωk = τj for some k, j. Then it is possible to prove that

λn(Ωε)→ λn for all n ∈ N

and moreover the spectral projections PΩε
a converge to PΩ

a in H1, i.e., if the projections
PΩε
a from L2(RN ) into H1(Ωε) are defined by

PΩε
a (ψ) =

n∑
i=1

(ui[Ωε], ψ)L2(Ωε)ui[Ωε],

then

sup{‖PΩε
a (ψ)− PΩ

a (ψ)‖H1(Ω) + ‖PΩε
a (ψ)‖H1(Ωε\Ω) : ψ ∈ L2(RN ), ‖ψ‖L2(RN ) = 1} → 0,

as ε→ 0. Hence the spectrum of problem (3.3) has a dichotomic behavior in the limit, as
shown in Figure 8.

λε1
λε2

ω1 = ω2

λ1 = λ2

λε3

τ1

λ3

λε4

τ2

λ4

λε5

λε6

ω3 = τ3

λ5 = λ6

λε7

ω4

λ7

ε

1

Figure 8. Convergence of the eigenvalues in the dumbbell to two different families of limit eigenvalues.
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3.4 Free plate

On the dumbbell Ωε ⊂ R2 we consider the problem
∆2u− τ∆u+ u = λn(Ωε)u, in Ωε,

(1− σ)∂
2u
∂n2 + σ∆u = 0, on ∂Ωε,

τ ∂u∂n − (1− σ) div∂Ωε(D
2u · n)∂Ωε −

∂(∆u)
∂n = 0, on ∂Ωε.

where σ ∈ (−1, 1), τ ≥ 0, and u ∈ H2(Ωε). The weak formulation is: find u ∈ H2(Ωε)
such that for any ψ ∈ H2(Ωε)∫

Ωε

(1− σ)D2u : D2ψ + σ∆u∆ψ + τ∇u · ∇ψ + uψ dx = λ(Ωε)

∫
Ωε

uψ dx

We denote by (ϕεn, λn(Ωε)) the eigenpairs ∀n ∈ N. We introduce the eigenpairs (ϕΩ
k , ωk)

of 
∆2w − τ∆w + w = ωk w, in Ω,

(1− σ)∂
2w
∂n2 + σ∆w = 0, on ∂Ω,

τ ∂w∂n − (1− σ)div∂Ω(D2w · n)∂Ω − ∂(∆w)
∂n = 0, on ∂Ω,

and the eigenpairs (hi, θi) of{
1−σ2

g (gv′′)′′ − τ
g (gv′)′ + v = θv, in (0, 1),

v(0) = v(1) = 0, v′(0) = v′(1) = 0

Let (λn)n = (ωk)k ∪ (θi)i, where the eigenvalues are arranged in increasing order and
repeated according to the multiplicity. Under suitable assumptions on Rε (stricter than
in the Laplacian case), one can prove that

λn(Ωε)→ λn, as ε→ 0,

with convergence of the spectral projections. We refer to [7] for the proofs of these facts.
We remark that the main difference with the Laplacian case is the presence of σ in the
limit problem {

1−σ2

g (gv′′)′′ − τ
g (gv′)′ + v = θv, in (0, 1),

v(0) = v(1) = 0, v′(0) = v′(1) = 0

which causes several technical difficulties in the passage to the limit. In order to pass
successfully to the limit a mixed approach is needed. The main ingredients of this approach
are:

• rescaling/homogenization techniques,

• abstract compact convergence results for the operators (∆2
Ωε

)−1
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Define the extension operator Eε : L2((0, 1); g(x)dx)→ L2(Rε) by Eεϕ(x, y) = ϕ(x) for
all (x, y) ∈ Rε. Moreover let N(x) be the counting function defined by

N(x) = #{λi : i ∈ N, λi ≤ x}.

Finally one can prove the following

Theorem 2 Let Ωε ⊂ R2 be a dumbbell domain satisfying the (H)-condition. The
eigenvalues λn(Ωε) converge either to ωk or to θl. Moreover, if λn(Ωε) → ωk for some
k ∈ N, then ‖ϕεn|Ω‖L2(Ω) → 1, and∥∥∥∥∥∥ϕεn|Ω −

N(ωk)∑
i=1

(ϕεn, ϕ
Ω
i )L2(Ω)ϕ

Ω
i

∥∥∥∥∥∥
H2(Ω)

→ 0

as ε→ 0. Otherwise, if λn(Ωε)→ θl for some l ∈ N, then ϕεn|Ω → 0 in L2(Ω) and∥∥∥∥∥∥ϕεn −
N(θl)∑
i=1

(ϕεn, ε
−1/2Eεhi)L2(Rε)ε

−1/2Eεhi

∥∥∥∥∥∥
L2(Rε)

→ 0

as ε→ 0.
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Variational Approaches

in Shape Partitioning

Martin Huska (∗)

Abstract. The rapid development of 3D scanning technology has incredibly increased the availabil-
ity of digital models exploited for a wide range of applications varying from computer graphics and
medical imaging up to industrial production. One fundamental procedure that processes the raw
acquired data for further manipulation, e.g. in product design, animation, deformation and reverse
engineering, is the shape partitioning. This process consists in the decomposition of an object into
non-overlapping salient sub-parts determined by a shape attribute. In this seminar, we will in-
troduce the concept of Shape Partitioning together with the wide range of partitioning methods.
Next, we will observe a few partitioning/segmentation models in the field providing some results.
At last, if the time allows, we will introduce the concept of Convex-Nonconvex segmentation over
surfaces.

1 Introduction

The digital models of 3D physical objects simply obtained by 3D scanning are represented
by a set of 3D points on the surface of the object, that we call cloud of points. These raw
3D data can be by default connected by the scanner into spatial triangulations, calling
3D meshes. However, triangulated meshes provide only local information on the structure
of the surface. A high level insight of the raw 3D data is required to make the digital
model useful for further processing required in a variety of applications including surface
processing, CAD, CAM and CAE.

Mesh segmentation is fundamental for many computer graphics and animation tech-
niques such as modeling, rigging, shape-retrieval, and deformation. Given an object with
arbitrary topology and a discrete manifold representing the object’s boundary, this pro-
cess consists in the decomposition of an object in K-disjoint salient sub-parts and it relies
mostly on surface geometric attributes of the object’s boundary. This process provides
the first step to high level representation of the raw data.

Specific criteria dictate which elements belong to the same partition and these crite-
ria are built upon the segmentation objective which in turn depends on the application.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on May 3rd, 2017.
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Convexity/Concavity and thickness are popular shape criteria used in mesh decomposi-
tion. The convexity-driven segmentation of a shape finds a very intuitive match with the
decomposition of an object made by the human vision system. This is due to the fact
that an approximate convex decomposition can more accurately represent the important
structural features of the model by ignoring insignificant features, such as wrinkles and
other surface texture. Unlike, the thickness of parts of a shape is a less intuitive detec-
tion strategy for a human eye. Nevertheless, this geometry feature represents a strategic
quantity in shape analysis in the context of industrial design and production.

In addition to the criteria that dictate the rules of the division into parts, the seg-
mentation methods can be grouped into a few categories according to their computational
methodology: (i) Region growing; (ii) Watershed-based; (iii) Reeb graphs; (iv) Model-
based; (v) Skeleton-based; (vi) Clustering; (vii) Spectral analysis; (viii) Explicit Boundary
Extraction; (ix) Critical points-based; (x) Multiscale Shape Descriptors; (xi) Markov Ran-
dom Fields and (xii) Variational segmentation. A detailed analysis of the aforementioned
categories is given in [1] and exhaustive surveys are provided in [2, 7]. The presented works
falls into the latter category, which commonly shares the concept of iteratively seeking a
partition that minimizes a given error metric.

2 Segmentation features

Let us consider a triangle mesh Ω := (V, T ) which discretizes manifold M embedded in
R3, where V = {Xi}ni=1 ∈ Rn×3 is the set of vertices, and T ∈ NnT×3 is the connectivity
matrix. Each vertex Xi has thus an immediate neighbours Xj , j ∈ N(Xi) connected by an
edge eij that create set of edges E. Naturally, N(Xi) = Ni defines the first ring neighbours
to vertex Xi, and N4(Xi) denotes the neighbouring triangles τj containing Xi. By A(τj)
we denote the area of τj .

Regarding the convexity, mesh associated affinity matrix should encode its structural
information which reflects how vertices are grouped in accordance with human perception.
Taking into account the curvature as shape information, we want to determine a perceptual
partition of Ω such that the edges between different parts have very low weights (vertices
in different clusters are dissimilar from each other), and the edges belonging to the same
part have high weights (vertices within the same cluster are similar to each other). At
this aim we define the affinity matrix L ∈ Rn×n:

(1) Li,j =


−wij , i 6= j and eij ∈ E∑

j∈N(Xi)
wij , i = j

0 otherwise

with the following similarity non-negative weights:

(2) wij :=
|N4(Xj)|
#N(Xi)

e−‖H(Xi)−H(Xj)‖22/(2σ2),

where the parameter σ ∈ (0, 1] in (2) controls the width of the local neighborhoods. The
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mean curvature field H in (2) is obtained by exploiting the well-known relation

(3) ∆LBX = −2H N,

between the vector field H N and the Laplace-Beltrami differential operator ∆LB, applied
to the coordinate functions X of a surface. Discretization of the Laplace-Beltrami operator
(3) reads as

(4)
L(Xi) =

1

2|N4(Xi)|
∑

j∈N(Xi)

ωij (Xj −Xi) ,

ωij = 1
2(cot γj + cot δj) ,

where γj , δj are the opposite angles to the edge ei,j in the triangles tuple connected by
the edge.

The spectral decomposition of L, defined in the following, provides a set of (n−1) non
trivial, smooth, shape intrinsic isometric-invariant maps.

The matrix L ∈ Rn×n defined in (1) associated to a connected mesh Ω of n vertices,
satisfies the following properties:

1) L is symmetric and positive semi-definite;

2) L = U ΛUT , Λ = diag(λi), 0 = λ0 < λ1 < . . . < λn;

3) λi, ∀i are real eigenvalues, UT U = In with In the identity matrix of order n, U =
{v0, v1, . . . , vn} form an orthogonal basis of Rn;

4) If f =
∑n

i=1 〈f, vi〉 vi, the k-term approximation of f is given by

fk =
k∑
i=1

〈f, vi〉 vi.

The first k eigenvectors associating to the smallest nonzero eigenvalues, correspond
to smooth and slowly varying functions, while the last one show more rapid oscillations.
Property 4) defines the truncated spectral approximation of the L matrix, that considers
the contribution of the first k eigenpairs related to the smallest eigenvalues which hold
for identifying the main shape features at different scale forming a signature for shape
characterization.

In case of eigen-decomposition-based segmentation, a vector function f is simply the
truncated spectral coordinates of a vertex Xi, denoted by

(5) f(Xi) = (v1(Xi), v2(Xi), . . . , vd(Xi) ), d ≤ k,

where each vj is normalized in the range [−1, 1].
In Fig. 1 the first k = 6 eigenvectors of the affinity matrix (1) corresponding to the

first six nonzero eigenvalues are illustrated for the horse mesh, visualized in false colors
in the range [blue,red].
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Figure 1. The smallest k = 6 eigenfunctions of the horse mesh.

On the opposite, as a measure of thickness that recovers volumetric information from
the surface boundaries, thus providing a natural link between the object’s volume and its
boundary, the Shape Diameter Function (SDF) was introduced in [8]. The SDF is a scalar
function which maps for every point on the surface its distance to the opposite inner part
of the object. We can understand it as a shape diameter in selected points. Moreover,
there is also a noticeable connection between SDF and Medial Axis, since distance from a
point to Medial Axis is approximately half of the SDF value in the point.

In the original proposal in [8] the basic operation in the SDF computation is a ray-
mesh intersection. Given a point on a mesh, several rays inside a cone centered around the
inward-normal direction are sent towards the opposite side of the mesh. The intersected
points are filtered to remove false intersections and finally their ray-lengths are summed
as weighted contributions to the final SDF value of that point.

Alternatively, a simple particle flow can replace the ray-tracing procedure, as was
successfully shown in [3]. The proposed method, which can be used also in case of clouds
of points, evolve the object’s vertices Xi, i = 1, . . . , n in the inward normal direction given
by −Ni as particles xi(t). At each time step tk, the particles are placed in the voxelized
envelope and a simple collision test is performed:

Two evolving particles xi and xj collide if their trajectories intersect and they have the
same, but opposite, velocity direction under a certain tolerance α, that is:

(6) ] (Ni,−Nj) ≤ α.

The angle value α allows for a cone of admissible directions that, relaxing the ideal
case where Ni = −Nj , better fits the spatial discretization of the surface.

-Ni

-N j

x j

xi

Ni -N j

α

Figure 2. Collision test (6) for two particles xi and xj .

The evolution of a particle is stopped by the successful collision test, illustrated in
Fig. 2. When the particle xi (and xj) stops its flow, a scalar function value fSDF (·),
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fSDF : V → R+, is computed as the distance between Xi and Xj , with Xi, Xj ∈ V , and
associated both to the particle Xi and Xj .

In Figure 3 we plot the fSDF function over mesh vertices with false colours in [blue,red]
assigned to the SDF values.

Figure 3. Examples of the scalar SDF function computed by [3].

3 Variational Shape Partitioning – SMCMR

Sparsity-inducing Multi-Channel Multiple Region algorithm [5] presents an object parti-
tioning framework which consists of the two following steps:

Step 1 is based on a variational formulation with a sparsity-forcing penalty, providing
single- or a multi-channel partitioning function;

Step 2 uses the partitioning function to split the object into K parts. To that aim,
simple K-means-based algorithms are sufficient.
This formulation makes the algorithm efficient since the first, computationally costly step
does not depend on the number of partitions required.

The strategy for the partitioning of meshes in Step 1 is based on a new variant of the
regularized Mumford-Shah models where we adopt an Lp-norm approximation of the total
length of the boundaries.

Let f = (f1, . . . , fd) be a given vector-valued function with channels fi : Ω → R, i =
1, .., d, and u = (u1, . . . , ud) be a vector function on Ω, eventually nonsmooth, named
the partition function. Unlike for the color image segmentation process where all image
channels participate jointly in driving the segmentation process, here we apply the variants
of the Mumford-Shah models to each channel ui of u, for i = 1, . . . , d. In particular, in the
first step, each channel ui is separately computed by solving the following optimization
problem:

(7) u∗ ← arg min
ui
{Js(ui)}
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(8) Js(ui):=
1

2

∫
Ω
|fi − ui|2dΩ+

α

p

∫
Ω
φ (‖∇ui‖) dΩ +

β

2

∫
Ω
|∇ui|2dΩ,

where φ(t) := |t|p, is the penalty function with p ∈ (0, 2], sparsity-inducing for p < 1,
α is a trade-off parameter and β := β(x), β : Ω → [0, 1] is an adaptive function which
approaches to zero at the high curvature points of Ω.

In (8), the first term is called fidelity and penalizes ’fitness’ of the partition function
ui to input fi. The second term penalizes the partition boundary lengths and the last
term penalizes non-smoothness of the inner regions, thus we can call Js piecewise-smooth
functional. In case β = 0, we obtain as a special case the piecewise-constant functional
which we use in case of the single-channel fSDF input function.

(a) SDF partitioning (b) p = 0.2 (c) p = 0.8 (d) p = 1.0
ground truth

Figure 4. Effect of the `p regularizer wrt the `1 regularizer for the SDF partitioning of the blocks mesh.

The benefit of using p < 1 is illustrated in Fig. 4 for the segmentation of a mesh
composed of variable size boxes (Fig. 4(a) top). Since the thickness property is used as
criteria for partitioning, from the top view, the expected results are four boxes which
are shown in Fig. 4(a) bottom. The true thicknesses (heights) were used as thresholds.
The top row of Fig. 4(b-c-d), shows the results obtained from the proposed variational
model for different p, which are used in Step 2 to produce the simple partitions, according
to the given thresholds, which represent the true heights. In the bottom row, we plot
the partition boundaries, obtained as iso-contours of u∗ in the top row, according to the
thresholds. For the choice p < 1 in (8) our model preserves the sharp boundary shape, as
illustrated in Fig. 4(b-c), while for p = 1, recovering L1 norm, the boundaries shrink and
the small features disappear as illustrated in Fig. 4(d). In particular for p approaching to
zero the boundary shape improves and the original intensities are preserved.
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(a) (b) (c)

Figure 5. Effect of the parameter p on the Ştep 1 in Algorithm SMCMR. (a) p = 2, (b) p = 1, (c) p = 0.8.

Another benefit of Lp norm regularization, the sparser solutions, is shown in Fig. 5.
In particular, we compared the results recovering L2 norm, for p = 2, the L1 norm, for
p = 1, and the Lp norm for p = 0.8. While the L2 norm regularization behaves as diffusion,
Fig. 5(a), the partitioning function u∗ obtained with p = 1, Fig. 5(b), is accompanied with
varying gradient seen especially on the ant mesh legs. However, decreasing p, Fig. 5(c),
the partitioning function resembles already a result of the partitioning thanks to the very
few jumps in the gradient magnitude of u∗.

The discretized variational problem was solved by an iterative Proximal Forward-
Backward-based scheme where we take use of lagged diffusivity fixed point algorithm for
gradient linearization.

Figure 6. Examples of SMCMR Partitioning in K parts. Left, using eigenvectors of L in (1). Right,

using Shape Diameter Function fSDF .

In Fig. 6 we show some examples obtained by SMCMR framework. On the left side,
we used the eigen-decomposition-based segmentation mimicking the human-vision percep-
tion. The right side represents thickness-based segmentation via fSDF function. In this
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example, one can appreciate the difference between human- and thickness-based segmen-
tation, especially in case of the octopus meshes in the bottom row. While a person sees
head and eight legs, from the thickness point of view, all the legs are of similar thickness,
thus, one part.

4 Lp Compressed Modes

In the shape partitioning context, rather than a multiresolution representation of the
shape, which is the peculiarity of the MHB on manifolds, the focus is on identifying the
observable features of the manifold which represent for example protrusions, ridges, details
in general localized in small regions.

Hence, in the partitioning context, a more suitable alternative to the MHB is repre-
sented by the Compressed Manifold Basis (CMB), introduced in [6], which is character-
ized by compact support quasi-eigenfunctions of the Laplace-Beltrami Operator (LBO)
obtained by imposing sparsity constraints.

Motivated by the advantages in terms of control on the compact support obtained
by using the L1 norm to force the sparsity of the solution, we devised to replace the L1

norm by a more effective sparsity-inducing Lp norm term, with 0 < p ≤ 1, which stronger

enforces the locality of the resulting basis functions. The set of functions Ψ = {ψk}Nk=1,
that we will call Lp Compressed Modes (LpCMs) [4], is computed by solving the following
variational model

(9) min
Ψ

N∑
k=1

(
1

µ

∫
Ω
|ψk|p dx−

1

2

∫
Ω
ψk∆ψkdx

)
s.t.

∫
Ω
ψj ψk dx = δjk,

where we denoted the Lp norm of a function by ‖f‖p =
(∫

Ω |f |
pdx
)1/p

; δjk is the Kro-
necker delta, and µ > 0 is a penalty parameter. They form an orthonormal basis for
the L2(Ω) space, where Ω is the domain in consideration, and they represent a set of
quasi-eigenfunctions of the Laplace-Beltrami operator.

The second term in the objective function of (9) is the fidelity term which represents
the accuracy of the shape approximation provided by the set of functions Ψ, while the
first term, so-called penalty term, forces the sparsity in the functions Ψ thus imposing
spatially sparse solutions.

The penalty parameter µ controls the compromise between the two aspects. It is well
known that the sparsity is better induced by the Lp norm for 0 < p < 1, rather than
the L1 norm. For p = 1 model (9) reduces to the proposal in [6], where the sparsity is
forced only by acting on the µ value to increase the contribution of the penalty term, thus
decreasing the shape approximation guaranteed by the fidelity term.

The parameter p plays a crucial role since it allows for forcing the sparsity while
maintaining the approximation accuracy without excessively stressing the penalty via the
µ value. The accuracy is fundamental to localize the support of the functions in specific
local features of the shape such as protrusions and ridges.
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(a) Supports of LpCM Basis, p=1, µ = 100;

(b) Supports of LpCM Basis, p = 0.8, µ = 1000;

Figure 7. Partitioning of the 2-manifold hand using L1CM basis (a) and LpCM basis (b).

Some evidence of the benefit obtained by the sparsity-inducing proposal, is shown in
Fig. 7 where we try to answer the following question: Can we identify the most salient
parts of the manifold hand using only six compressed modes? Fig. 7 compares the supports
of the compressed modes determined as solution of the variational problem (9) with p = 1
(Fig. 7(a)) and p = 0.8 (Fig. 7(b)) where the µ parameter has been selected to provide the
best results. The supports of the six quasi-eigenfunctions are colored in red and we can
observe that using p < 1 strengthens the sparsity, while if p = 1 no µ value has allowed to
correctly identify all the fingers.

In Fig. 8 we present the role of parameter µ described above. It is easily noticeable
that increasing µ, we decrease the sparsity-inducing effect of the regularization parameter
in (9), thus, increasing the support of the basis function.

Figure 8. LpCM localizing protrusion – head in a horse mesh. From left to right: enlarging of the support

obtained by increasing the parameter µ.

An efficient solution of the orthogonality constrained problem (9) represents a chal-
lenging task due to the nonlinear, non-convex orthogonality constraints combined with the
non-smooth and non-convex objective function, which may lead to many different local
minimizers as solutions. Non-trivial iterative approaches are commonly used to solve this
kind of optimization problems. We propose a variant of the basic Alternating Direction
Method of Multipliers (ADMM) approach where the non-convex orthogonality constraints
defined for the Lp Compressed Modes Ψ in (9) are preserved by means of a SVD matrix
factorization, and a suitable proximal operator is devised to deal with the non-convex
penalty.

Having the LpCM basis, the partitioning is rather straightforward and can be realized
by a simple region-growing algorithm driven by the compressed modes.
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4.1 Discretization of the model

We first recall the popular discretization of the Laplace-Beltrami operator for a triangle
mesh, which may be realized by D−1L, where L ∈ Rn×n is a symmetric, positive semi-
definite, sparse matrix (weight matrix) defined as

(10) L(i, j) :=


ωij = 1

2(cot γj + cot δj) j ∈ N(Xi)
−
∑

k∈N(Xi)
ωik i = j

0 otherwise

where γj , δj are the opposite angles to the edge ei,j in the triangles tuple connected by
the edge; D is a lumped mass matrix defined as

D = diag{|N4(X1)|, · · · , |N4(Xn)|}

which relates to the area/volume around the vertices of the discretized manifold.
By applying the discretization D−1L for the LBO on given mesh, and arranging the

discretized LpCMs in columns of a matrix Ψ = [ψ1, . . . , ψN ], with Ψ ∈ Rn×N , the con-
strained minimization problem (9) reads as follows

(11) Ψ∗ = arg min
Ψ

1

µ
‖Ψ‖pp + Tr

(
ΨTLΨ

)
s.t. ΨTDΨ = I,

where Tr(·) denotes the trace operator, and ‖Ψ‖pp =
∑

i,j |Ψi,j |p. The orthogonality con-
straints in problem (11) are bounded above by quadratic functions.

The Lagrangian function of (11) is defined as

(12) J (Ψ,Λ) =
1

µ
‖Ψ‖pp + Tr

(
ΨTLΨ

)
− Tr

(
Λ(ΨTDΨ− I)

)
,

where Λ is the matrix of Lagrangian multipliers. The function (12) is proper, lower semi-
continuous, bounded from below and coercive.

4.2 Applying ADMM to the model

We illustrate the ADMM-based iterative algorithm used to numerically solve the proposed
model (11).

First, we replace the orthogonality constraint in (11) using an indicator function

ι(Ψ) =

{
0 if ΨTDΨ = I
∞ otherwise.

Then problem (11) can be rewritten as:

(13) Ψ∗ = arg min
Ψ

1

µ
‖Ψ‖pp + Tr(ΨTLΨ) + ι(Ψ).

We can resort to the variable splitting technique for the orthogonality constraint and
introduce two new auxiliary matrices, E,S ∈ Rn×N , the problem (13) is then rewritten
as:

(14) min
Ψ,S,E

1

µ
‖S‖pp + Tr(ETLE) + ι(Ψ) s.t. Ψ = S, Ψ = E.
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To solve problem (14), we define the augmented Lagrangian functional

L(Ψ, S, E;UE , US ;µ) =
1

µ
‖S‖pp + Tr(ETLE) + ι(Ψ)

− 〈US ,Ψ− S 〉 +
ρ

2
‖Ψ− S‖2F

− 〈UE ,Ψ− E 〉 +
ρ

2
‖Ψ− E‖2F ,(15)

where ρ > 0 is scalar penalty parameter and US ∈ Rn×N , UE ∈ Rn×N are the matrices
of Lagrange multipliers associated with the linear constraints Ψ = S and Ψ = E in (14),
respectively.

We then consider the following saddle-point problem:

Find (Ψ∗, S∗, E∗;U∗S , U
∗
E) ∈ Rn×N× Rn×N× Rn×N× Rn×N× Rn×N

s.t. L (Ψ∗, S∗, E∗;UE , US ;µ) ≤ L (Ψ∗, S∗, E∗;U∗E , U
∗
S ;µ) ≤ L (Ψ, S, E;U∗E , U

∗
S ;µ)

∀ (Ψ, S, E;UE , US) ∈ Rn×N× Rn×N× Rn×N× Rn×N× Rn×N ,(16)

with the augmented Lagrangian functional L defined in (15).

Given the previously computed (or initialized for k = 0) matrices S(k), E(k), U
(k)
S and

U
(k)
E , the k-th iteration of the proposed ADMM-based iterative scheme applied to the

solution of the saddle-point problem (15)–(16) reads as follows:

Ψ(k+1) ← arg min
Ψ∈Rn×N

L(Ψ, S(k), E(k);U
(k)
S , U

(k)
E )(17)

S(k+1) ← arg min
S∈Rn×N

L(Ψ(k+1), S, E(k);U
(k)
S , U

(k)
E )(18)

E(k+1) ← arg min
E∈Rn×N

L(Ψ(k+1), S(k+1), E;U
(k)
S , U

(k)
E )(19)

U
(k+1)
S ← U

(k)
S − ρ

(
Ψ(k+1) − S(k+1)

)
(20)

U
(k+1)
E ← U

(k)
E − ρ

(
Ψ(k+1) − E(k+1)

)
(21)

Let us have a look at the subproblems (17)–(19) since the updates in (20) and (21)
have a closed-form solutions.

The subproblem for Ψ also have a closed-form solution

(22) Ψ(k+1) = Y V Σ−1/2V T ,

where Y = 1
2(S+ 1

ρUs +E+ 1
ρUE), V ∈ RN×N is a orthogonal matrix and Σ is a diagonal

matrix satisfying the SVD factorization Y TDY = V ΣV T .
The minimization sub-problem for S in (18) can be rewritten as follows:

(23) S(k+1)← arg min
S

1

µ
‖S‖pp +

ρ

2
‖Ψ− (S +

1

ρ
US)‖2F
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We can use the Generalized Iterated Shrinkage (GISA) strategy for Non-convex Sparse
Coding proposed in [9], where the authors extended the popular soft-thresholding operator
to lp-norm. Rewriting component-wise Eq. (23), the minimization problem is equivalent
to the following n×N independent scalar problems:

(24) s
(k+1)
i,j ← arg min

si,j∈R

{
f(si,j) =

1

ρµ
|si,j |p +

1

2
(si,j − qi,j)2

}
,

i = 1, . . . , n ,
j = 1, . . . , N

where qi,j = ψi,j− 1
ρ(US)i,j . Following Theorem 1 in [9] each of the optimization problems

(24) has a unique minimum given by

(25) proxρµf (qi,j) =

{
0 if |qi,j | ≤ ŝ

sign(qi,j) s
∗ if |qi,j | > ŝ ,

where the thresholding value is ŝ = ( 2
ρµ(1− p))1/(2−p) + p

ρµ( 2
ρµ(1− p))(p−1)/(2−p) and s∗ is

the unique solution of the following nonlinear equation:

(26) si,j − qi,j +
p

ρµ
(si,j)

p−1 = 0

that can be easily solved by a few iterations of an iterative zero-finding algorithm.
The minimization problem of the augmented Lagrangian functional in (15) with respect

to E in (19) reduces to the solution of N linear systems for E in the following form

(27) (ρI − 2L)E = ρ

(
Ψ− 1

ρ
UE

)
.

In Fig. 9 we show some examples obtained by the region-growing algorithm driven
by computed Lp Compressed Modes basis Ψ. At the bottom right corner the number of
partitions is identified which correspond to the number of basis vectors N in Ψ.

Figure 9. Mesh partitioning into salient parts obtained by LpCMs [4].
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The influence of network structure

in neuronal information transmission

Giacomo Baggio (∗)

Abstract. Understanding how neurons communicate is one of the most challenging open problems
in neuroscience. In this note, we present some recent results aiming at formulating this problem
from a mathematical and information-theoretic viewpoint. After an overview on neuronal network
dynamical models, we introduce a digital communication framework for studying how “informa-
tion” propagates in a neuronal network driven by linear dynamics. Within this framework, a novel
metric for measuring the information capacity of a neuronal network based on Shannon’s informa-
tion capacity and the notion of inter-symbol interference is discussed. Finally, we investigate how
the structure of the network matrix and, in particular, its departure from normality, affects the
information capacity of a network.

1 Introduction

Human brain contains approximately 100 billion neurons, each of which has up to 105

synapses, i.e. anatomical connections between neurons through which “information” flows
from one neuron to another. Individually, neurons are noisy and synaptic transmission is,
in general, unreliable. However, groups of neurons that are arranged in specialized modules
can collectively perform complex information processing tasks in a robust and efficient way.
A classical example is given by the information processed within the motor cortex region
for the execution and control of voluntary movements [4, 7]. Understanding what are the
mechanisms that support complex yet reliable information routing and processing in the
brain has been a topic of intense interest in the computational neuroscience community.
As a matter of fact, many works have addressed this problem under different perspectives,
assumptions, and constraints, see e.g. [2, 11, 13, 17] to cite just a few contributions.

In this note, we investigate the problem of information transmission in a neuronal
network via a system and information-theoretic approach. More specifically, we consider
a neuronal network driven by linear firing rate dynamics and we introduce a digital com-
munication framework to examine information transmission in such a network. In this
framework, Shannon’s information capacity provides a measure of how much information

(∗)Università di Padova, D.E.I., via Giovanni Gradenigo 6, I-35131 Padova, Italy; E-mail:
. Seminar held on May 31st, 2017.
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can be reliably propagated through a communication system. By taking into account the
phenomenon of inter-symbol interference and by considering the Gaussian noise case, we
derive an analytic expression for the Shannon’s information capacity of a neuronal network.
In the last part of the note, we illustrate how the structure of the synaptic connectivity
matrix affects the information capacity of the network. In particular, we compare the
classes of normal and non-normal connectivity matrices in terms of information capacity
and optimal information transmission sampling time.

In order to make the note introductory in nature and as self-contained as possible, a
substantial part of the present note will be devoted to review notions and results from
neuronal modelling and information theory.

Notation. Given a matrix A ∈ RN×N , we denote by A> its transpose. A is said to
be normal if AA> = A>A. Otherwise, A is said to be non-normal. Examples of normal
matrices include symmetric, orthogonal, and skew-symmetric matrices. We denote by
σ(A), tr(A), det(A), and ‖A‖F the spectrum, trace, determinant, and Frobenius norm of
A, respectively. It is well-known that a normal matrix can be unitarily diagonalized, i.e.,
there exists a unitary matrix U ∈ CN×N , s.t. U∗AU = D, where D is a diagonal matrix
with the eigenvalues of A in its diagonal and U∗ denotes the conjugate transpose of D.

If A is non-normal then it is possible to reduce it to a lower triangular form via
unitary transformations, i.e., there exists a unitary matrix U ∈ CN×N s.t. U∗AU = T
with T ∈ CN×N being a lower triangular matrix with the eigenvalues of A on its diagonal.
This form is known as the Schur form of A. Finally, A is said to be (Hurwitz) stable if
Reλ < 0 for every λ ∈ σ(A).

2 Neuronal network dynamics

In this section, we describe the dynamical network model that we will consider in the
communication framework presented in the next section. We start by reviewing a simplified
single neuron dynamical model and then we move to network models. The material of
this section is mainly taken from [9, Ch. 14], [5, Ch. 5,7], [6].

2.1 Single neuron leaky integrate-and-fire model

The leaky integrate-and-fire (LIF) model is a simplified model describing the dynamics of
the membrane potential of a neuron, that is, the difference in electrical potential between
the interior of a neuron and the surrounding extracellular medium. In its basic form this
model was proposed by Lapique at the beginning of the 1900s [10].

We denote by V (t) the momentary value of the membrane potential of the neuron,
by Vrest the resting potential of the neuron (which is approximately equal to −70 mV),
by Iin(t) the synaptic input current provided by other neurons, and by Iout(t) the output
current generated by the neuron. The LIF model behaves like an electrical circuit con-
sisting of a resistor R and a capacitor C in parallel (see Fig. 1). In this model, whenever
the integrated membrane potential crosses a prefixed threshold, denoted by Vth, a spike is
generated in the output current and V (t) is reset to a fixed value Vreset. The dynamics of
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the membrane potential is given by

(1)

{
τmV̇ (t) = −(V (t)− Vrest) +RIin(t), if V (t) < Vth,

V (t) = Vreset, if V (t) ≥ Vth,

where τm := RC is called the membrane time constant of the neuron.

Vrest Vreset

C R
+

−

V (t)

voltage threshold
triggers pulseIin(t) Iout(t)

Figure 1. Electrical circuit describing the LIF model.

The output current is modelled as a spike train signal

Iout(t) =
∑
i

δ(t− ti),

where δ(·) denotes the Dirac’s delta function and the ti’s are the time instants corre-
sponding to membrane potential resets. Another quantity of interest arising from the LIF
model is the so-called firing rate signal, which is defined as the trial and temporal averaged
number of spikes within the time window [t−∆T, t], ∆T > 0, namely

(2) r(t) :=
1

n

n∑
j=1

1

∆T

∫ t

t−∆T
Ij,out(τ) dτ,

where the sum in j is executed over n identical output current trials {Ij,out}nj=1.
In case of a constant input current Iin(t) = I0 = const., the interspike interval Tth,

which is defined as the time it takes for the membrane potential to reach the fixed threshold
Vth, can be analytically computed as a function of I0 via (1),{

Tth = τm ln
(
RI0+Vrest−Vreset
RI0+Vrest−Vth

)
, if RI0 > Vth − Vrest,

Tth = 0, otherwise.

Using the latter equation and considering the approximation r ≈ 1/Tth obtained by choos-
ing in (2) a time window ∆T large enough, the firing rate behavior is described by the
expression

(3) r =

(
τm ln

(
RI0 + Vrest − Vreset

RI0 + Vrest − Vth

))−1

=: f(I0).
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This expression is valid if RI0 > Vth − Vrest, otherwise r(t) = 0. The function f(·)
introduced above is called activation function and relates the synaptic input current to
the firing rate of the neuron in the steady-state regime. It is worth noticing that for
sufficiently large values of I0, f(I0) can be approximated by the linear function(1)

(4) f(I0) ≈ α+ βI0,

with α := Vrest−Vth
τm(Vth−Vreset)

and β := R
τm(Vth−Vreset)

.

In case of a time-varying input current Iin(t), the firing rate evolution is often modelled
as a “low-pass” filtered version of the steady-state firing rate via the dynamical equation

(5) τrṙ(t) = −r(t) + f(Iin(t)),

where τr is a suitable parameter related to properties of the neuronal spike train (see [1]
for further details).

2.2 Network firing rate model

Consider a network of N neurons, whose firing rates obey the dynamics in (5). Let us
define the vector of firing rates by r(t) := [r1(t), r2(t), . . . , rN (t)]>, the vector of input
currents by I in(t) := [Iin,1(t), Iin,2(t), . . . , Iin,N (t)]> and f(·) as the function f(·) in (3)
acting element-wise on a given vector. The input current vector I in(t) is made of the sum
of two contributions, namely

I in(t) = WIout(t) + Iext(t),

where W ∈ RN×N denotes the synaptic connectivity matrix of the network, Iout(t) :=
[Iout,1(t), Iout,2(t), . . . , Iout,N (t)]> is the vector of output currents generated by the neurons
of the network, while Iext(t) is vector containing the currents provided by neurons external
to the network.

The collective firing rate dynamics can be described in matrix form as

τrṙ(t) = −r(t) + f(I in(t))

= −r(t) + f(WIout(t) + Iext(t)).

By considering a network composed by a large number of neurons featuring slow synaptic
or membrane dynamics, one can replace, under certain assumptions on the trial-to-trial
variability in the spike sequences, the signal Iout(t) by its trial and temporal average, that
is, r(t) ≈ Iout(t) (see [5, Chap. 7.2] for further details). Using this approximation, we end
up with the following network firing rate model

τrṙ(t) = −r(t) + f(Wr(t) + Iext(t)).(6)

Now, consider an equilibrium point (r̄, Īext) of equation (6). Assuming that the entries
of Wr̄ + Īext are sufficiently large, we can exploit the linear approximation (4) of f(·).

(1)Here we used the approximation of the logarithm ln(1 + z) ≈ z for small z.
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Hence, by defining r̃(t) := r(t) − r̄ and Ĩext(t) := Iext(t) − Īext, the linearization of (6)
around the equilibrium point (r̄, Īext) yields

(7) τr ˙̃r(t) = −r̃(t) + βWr̃(t) + βĨext(t).

For later convenience, we rename r̃(t), β
τr
Ĩext(t) to x(t), u(t), respectively, and we define

A := 1
τr

(βW − I), being I the N ×N identity matrix. In this way, Equation (7) becomes

(8) ẋ(t) = Ax(t) + u(t).

3 Modelling and measuring information transmission in neuronal networks

In this section, we present a digital communication framework for information transmission
in neuronal networks driven by the linearized firing rate dynamics (8). Before doing so, we
review some notions of information and communication theory. The review part is mainly
based on [3, Chap. 7–9].

3.1 Communication channel and information capacity

A digital communication system can be schematically represented as in Fig. 2.

Encoder channel Decoder

original

message

a ∈ A

encoded

message

x ∈ X

received

message

y ∈ Y

estimated

original

message

â ∈ A

Figure 2. Schematic representation of a digital communication system.

In this scheme, a to-be-transmitted message a belonging to a finite cardinality alphabet
A is first encoded by an encoder into a message x ∈ X and then transmitted via a physical
communication channel. At the receiving end, the received message y ∈ Y is first decoded
in the decoder, and then the transmitted message is recovered as an estimate â ∈ A.

Mathematically, the communication channel is defined by the transition probability
p(y|x), that expresses the probability of observing the output symbol y given that we send
the symbol x. The channel is said to be memoryless if the probability distribution of
the output depends only on the input at that time and is conditionally independent of
previous channel inputs or outputs.

Definition 1 The information capacity of a memoryless communication channel is defined
as

C = max
p(x)
I(X;Y )
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where I(X;Y ) denotes the mutual information(2) between random variables X, Y , and
the maximum is taken over over all possible input distributions p(x).

The notion of information capacity was introduced by Shannon in the late 1940s [14].
Remarkably, Shannon showed that the notion of channel capacity introduced in Defini-
tion 1 coincides with the highest rate in bits per channel use at which information can be
sent with arbitrarily low probability of error.

One of the most important and used memoryless communication channels is the Addi-
tive White Gaussian Noise (AWGN) channel. In the scalar case, at a given transmission
time t ∈ Z, this channel is described by an output y(t) which is generated by adding
a noise term n(t) drawn from a zero-mean Gaussian distribution with variance σ2

n, i.e.
n(t) ∼ N (0, σ2

n), to the input x(t). Further, the sequence of noise terms is independent
and identically distributed in time, i.e. E[n(t)n(s)] = σ2

nδ(t− s), and n(t) is assumed to
be uncorrelated with x(t) at each time t ∈ Z.

The capacity of the AWGN channel is infinite unless we add a “power” constraint on
the input variance, i.e., we require that E[x(t)2] ≤ P , P > 0. Under this constraint, the
information capacity of the scalar AWGN channel can be analytically computed and has
the form

C =
1

2
log2

(
1 +

P

σ2
n

)
,

where the ratio P/σ2
n is usually known as the signal-to-noise ratio (SNR). In the vector

zero-mean Gaussian case, it can be shown that the capacity of the AWGN channel with
power constraint trE[x(t)x>(t)] ≤ P , P > 0, is given by

C =
1

2
max

tr Σx≤P
log2

det(Σx + Σn)

det Σn
,(9)

where we defined Σx := E[x(t)x>(t)] and Σn := E[n(t)n>(t)].

3.2 Transmitting information via linear dynamical networks

We describe here a digital communication framework for analyzing and measuring the
amount of “information” that can be reliably propagated in a neuronal network driven by
the linear firing-rate dynamics derived in (8). The framework we are going to present has

(2)For discrete random variables X, Y the mutual information is defined as

I(X;Y ) :=
∑
y∈Y

∑
x∈X

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
,

where p(x, y) is the joint probability distribution function of X and Y , and p(x) and p(y) are the marginal
probability distribution functions of X and Y , respectively. For continuous random variables X, Y the
mutual information is defined as

I(X;Y ) :=

∫
Y

∫
X

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
dx dy,

where p(x, y) is now the joint probability density function of X and Y , and p(x) and p(y) are the marginal
probability density functions of X and Y , respectively.
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been inspired by the recent work [7] and is schematically reported in the block diagram of
Fig. 3.

Encoder +

Modulator
+

y(t) ⊥ n(t)

Demodulator

+ Decoder

a ∈ A y(t)

n(t)

ỹ(t) â ∈ A

Enc Mod
x0 ∈ RN

y(t) = CeAtx0 ∈ Lp2[0, T ]
A = 1

τr
(W − I)

Figure 3. Block diagram of the digital communication protocol.

We assume that a symbol a belonging to a finite cardinality alphabet A is transmitted
at the source. The information contained in this symbol is then encoded in a vector of firing
rates x0 ∈ RN , which is assumed to be drawn from a zero-mean Gaussian distribution
with covariance matrix Σ, i.e., x0 ∼ N (0,Σ).

This vector is thought of as the initial condition for the evolution of the linear system
(8) with no input term and output matrix C ∈ Rp×N , namely{

ẋ(t) = Ax(t),

y(t) = Cx(t),
x0 ∈ RN , t ≥ 0.

This step represents the modulation stage of the communication protocol. A modulator
is a function mapping a discrete symbol to a continuous-time trajectory. In our case,
assuming that each transmission is performed within a time interval [0, T ], T > 0, this
mapping is given by

Mod: RN → Lp2[0, T ]

x0 7→ CeAtx0, t ∈ [0, T ],

where Lp2[0, T ] denotes the Hilbert space of p-dimensional square integrable signals in

the time interval [0, T ] equipped with the inner product 〈f , g〉L2 :=
∫ T

0 f
>(t)g(t) dt, for

f , g ∈ Lp2[0, T ].
After this stage, the modulated signal y(t) goes through a vector AWGN channel,

which gives the corrupted output ỹ(t). Eventually, a demodulation and decoding stage
produces an estimate of the original transmitted symbol â ∈ A.

Now, we assume that at time t = kT , with k ∈ Z, a new transmission is done by
generating the signal

yk(t) = CeA(t−kT )x(kT )1(t− kT ),
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which is non-zero only for t ≥ kT .(3) We consider, without loss of generality, the case
k = 0. In this case, the total information signal will be the superposition of the yk(t),
namely

∑
k∈Z yk(t), while the signal that contains the “useful” information is given by

y0(t). The covariance of y0(t) is

Σy0 := E[y0(t)y>0 (t)] = FΣF>,(10)

where F ∈ RN×N is such that F>F =
∫ T

0 eA
>tC>CeAtdt =: O. The noise n(t) is

modelled as the sum of two terms, namely

n(t) = r(t) + i(t),

where

i) r(t) represents a zero-mean background white noise term that satisfies E[r(t)r>(s)] =
σ2
rIδ(t− s), for all t, s ∈ R, and

ii) i(t) :=
∑∞

k=1Ce
A(t+kT )x(−kT ), this term is made of the sum of contributions due

to previous transmissions at time −kT , k ∈ Z, k > 1. In communication theory, this
term is known under the name of inter-symbol interference.

Supposing that E[x(k1T )x>(k2T )] = Σ δ(k1 − k2), for all k1, k2 ∈ Z, that is the input
code statistics is identically distributed at every transmission and independent of past and
future transmissions, it can be shown that

Σi := E[i(t)i>(t)] = F (W −Σ)F>,

where we have defined W :=
∑∞

k=0 e
AkTΣeA

>kT . Finally, by assuming that, for every
k ∈ Z and t ∈ R, x(kT ) and r(t) are independent random variables, the overall noise
covariance takes the form

Σn := E[n(t)n>(t)] = Σi + σ2
rI.(11)

By taking into account the expression of the channel capacity for vector AWGN channel
(9) and the covariance of the useful signal (10) and noise (11), we arrive at the following
result.

Proposition 1 The information capacity of the above introduced channel under power
constraint tr Σ ≤ P , P > 0, is given by

CT =
1

2
max

tr Σ≤P
log2

det(OW + σ2
rI)

det(O(W −Σ) + σ2
rI)

.(12)

Notice that we added a subscript T to the capacity in (12) in order to stress its
dependence on the time T . The latter corresponds to the data transmission sampling

(3)Here 1(t) denotes the step function, i.e., 1(t) = 0 for t < 0 and 1(t) = 1 for t ≥ 1.
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time of the communication system. Moreover, in the jargon of linear system theory, O is
called finite-horizon continuous-time observability Gramian of the pair (A,C) while W
infinite-horizon discrete-time controllability Gramian of the pair (eAT ,Σ1/2). The first
one is related to the amount of energy generated in the output response of an autonomous
linear system in the time [0, T ], while the second one quantifies the energy needed by a
linear system to steer the initial state to a final target one (see e.g. [8]).

To conclude this section, we observe that information capacity is measured in bits per
channel use. In order to express the capacity w.r.t. a time unit of measure, we introduce
the following information transmission metric

RT :=
1

T
CT =

1

2T
max

tr Σ≤P
log2

det(OW + σ2
rI)

det(O(W −Σ) + σ2
rI)

.(13)

We call this metric information transmission rate. If T is measured in seconds, RT mea-
sures the highest information rate in bits per second at which information can be reliably
(i.e., with arbitrarily low error probability) sent through the channel within the time
interval [0, T ].

4 The role of connectivity structure in information transmission

In this section, we investigate how the structure of the connectivity matrix A affects the
information capacity and rate (12)–(13). We will start by analyzing the information capac-
ity and rate of a single neuron, for which the network architecture does not matter. Next,
we study the behavior of information capacity and rate for the classes of normal matrices.
Finally, we numerically compute the optimal connectivity structure w.r.t. information
rate, for different values of the sampling time T .

4.1 Single neuron information capacity and rate

The information capacity and rate derived in the previous section in Equations (12)–(13)
can be computed in closed-form for the case of a single neuron, i.e., for A = −a, a ∈ R,
a > 0. These have the form

CT =
1

2
log2

(
SNR + 2a

SNR e−2aT + 2a

)
,(14)

RT =
1

2T
log2

(
SNR + 2a

SNR e−2aT + 2a

)
,(15)

where we defined the signal-to-noise ratio SNR := P/σ2
r .

Fig. 4 shows some plots of these CT and RT as functions of T ≥ 0, for different values
of a and SNR. From expressions (14)–(15) and the plots in Fig. 4, it is interesting to note
that:

i) CT is an increasing function of T ≥ 0, starting from zero and tending to a constant
value as T → ∞. Further, the larger SNR and/or the smaller a, the larger the
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steady-state capacity

C∞ = lim
T→∞

1

2
log2

(
SNR + 2a

SNR e−2aT + 2a

)
=

1

2
log2

(
1 +

SNR

2a

)
.

ii) RT is a decreasing function of T ≥ 0, which tends to zero asymptotically. Hence, RT
attains its maximum value at T = 0; the latter is given by

R0 = lim
T→0

1

2T
log2

(
SNR + 2a

SNR e−2aT + 2a

)
=

1

ln 2

aSNR

SNR + 2a
.
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Figure 4. Information capacity (14) and rate (15) for single neuron as a function of the sampling time T .

In the top plots: SNR = 10. In the bottom plots: a = 2.

4.2 Information capacity and rate of normal networks

If A is stable and normal and C = I (i.e., information is transmitted to all neurons of the
network), then it is possible to show that the optimal Σ which maximizes (12)–(13) can
be always taken to be diagonal. This fact yields the following result.

Proposition 2 If C = I and A ∈ RN×N is a normal and stable matrix with eigenvalues
{λi}Ni=1, then

CT = max
{Pi}Ni=1 s.t.

Pi≥0,
∑N
i=1 Pi≤P

N∑
i=1

CT,i,(16)
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where

CT,i :=
1

2
log2

SNRi − 2Reλi
SNRi e2TReλi − 2Reλi

, i = 1, 2, . . . , N,(17)

with SNRi := Pi/σ
2
r . Similarly, under the previous assumptions,

RT = max
{Pi}Ni=1 s.t.

Pi≥0,
∑N
i=1 Pi≤P

N∑
i=1

RT,i,(18)

where

RT,i :=
1

2T
log2

SNRi − 2Reλi
SNRi e2TReλi − 2Reλi

, i = 1, 2, . . . , N.(19)

Proposition 2 shows that, in terms of information capacity and rate, an N ×N normal
communication network is equivalent to N independent scalar communication channels.
Indeed, the terms in Eqs. (17)–(19) correspond to the capacity and rate, respectively, of
a single neuron, as defined in Eqs. (14)–(15), for a = −2Reλi.

Moreover, since in the scalar case RT , is a decreasing function of T , the same holds in
the normal matrix case. Indeed, as shown in Eq. (18), in this case the rate is equal to the
sum, optimized over the scalar powers Pi’s, of N independent scalar channels. In light of
this fact, if we define the optimal sampling time as

T ? := arg max
T≥0
RT ,(20)

it follows that for normal networks we have T ? = 0. In practice, this means that in order
to maximize the information rate, a neuronal network driven by a normal connectivity
matrix must sample data very fast.

Fig. 5 shows the behavior, as a function of T ≥ 0, of the information rate for a chain
network of N nodes. In this case, A ∈ RN×N corresponds to a stable Toeplitz tridiagonal
matrix. In the top plots, A is taken to be symmetric (and, hence, normal) of the form

A =



γ α 0 . . . 0

α γ α
...

0
. . .

. . .
. . . 0

... α γ α

0 · · · 0 α γ


, α ≥ 0, γ ≤ 0.

From these plots, it can be noticed that RT is a decreasing function of T and the closer
the spectrum of A to zero, the better RT is (for sufficiently large T ’s). In the bottom

Università di Padova – Dipartimento di Matematica 123



Seminario Dottorato 2016/17

plots, we considered a non-normal Toeplitz chain network

A =



γ α/β 0 . . . 0

βα γ α/β
...

0
. . .

. . .
. . . 0

... βα γ α/β

0 · · · 0 βα γ


, α ≥ 0, β ≥ 1, γ ≤ 0.

where the parameter β quantifies, in a sense, the amount of “non-normality” of A. From
these plots, it can be seen that RT exhibits a peak. Furthermore, fixing the spectrum of
A, the larger β, the larger this peak is. This simple example reveals that, in principle, for
non-normal networks the optimal sampling time as defined in (20) can be different from
zero.
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Figure 5. Information capacity (14) and rate (15) as a function of the sampling time T for a Toeplitz

chain network of cardinality N = 10 and SNR = P/σ2
r = 1. In the small plots on the right, the spectrum

of A is plotted for the values of parameters α, β, γ shown in the corresponding left plots.

4.3 Network architectures maximizing information rate

To conclude this section, we investigate the problem of finding the network architecture
that maximizes the information rate (13) for a given sampling time T > 0 and C = I.
The latter problem can be formally stated as follows

A? := arg max
A∈A

RT (A),(21)
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where we denoted by A := {A ∈ RN×N : A stable} the set of stable connectivity matrices
and we made explicit the fact that RT depends on A using the notation RT (A). In what
follows, we will restrict the attention to the subset Ar ⊂ A consisting of stable matrices
A ∈ RN×N with real eigenvalues. The following lemma can be proved.

Lemma 1 Let C = I and A ∈ Ar. Let T ∈ RN×N be the lower triangular Schur form
of A. Then

RT (A) = RT (T ).

In view of Lemma 1, without loss of generality, we can consider the Schur form of
matrices in Ar, and, therefore, reduce problem (21) to an optimization problem over the
set of lower triangular connectivity matrices with negative diagonal entries. We denote
the latter set by AS,r. In view of this fact, the new “simplified” optimization problem
reads as

A? := arg max
A∈AS,r

RT (A)− ε‖A‖F ,(22)

where we added a regularization term ε‖A‖F , ε > 0, to the objective function RT (A)
in order to bound the entries of A. Recall that the computation of the information
rate RT requires to solve a constrained optimization problem over input covariances Σ’s.
Consequently, in order to numerically solve the optimization problem (22), we exploited a
coordinate gradient ascent strategy [12, Ch. 9] over trace-constrained covariance matrices
Σ ∈ RN×N , Σ > 0, tr Σ = P , and connectivity matrices belonging to AS,r. Numerical
solutions of the optimization problem (22) are shown in Fig. 6, for a network of N = 10
neurons and different values of T > 0. From these plots, it is worth noting that

i) for small values of T , the optimal structure A? is diagonal and, therefore, normal.

ii) as long as T increases, the strictly lower triangular terms in A? becomes different
from zero, yielding a non-normal optimal network structure. In particular, observe
that, for T large enough, the entries in the main subdiagonal of the optimal matrix
A? are much greater than the other strictly lower triangular entries of A?.

To summarize, numerical simulations suggest that non-normality of the connectivity
matrix A can be beneficial in terms of information rate RT , if the neuronal network can-
not sample data sufficiently fast. Intuitively, this seems in agreement with the fact that,
in contrast with the normal case, trajectories generated by a linear networked dynamical
system described by a stable non-normal network matrix can feature a transient amplifi-
cation and, at the same time, a quick decay to zero after a fixed time instant [16]. In the
communication framework presented in Sec. 3, such a behavior can be beneficial since a
large transient can help in increasing the signal-to-noise ratio of the channel, while a quick
decay to zero can help in reducing the contribution of inter-symbol interference after a
fixed positive time.
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Figure 6. Optimal network architecture A? obtained by solving problem (22) for N = 10, SNR = P/σ2
r =

1, ε = 0.001. The solution of problem (22) has been computed via unconstrained coordinate gradient ascent

over unit-trace positive definite Σ and lower triangular A ∈ AS,r. The simulations have been carried out

in Python using Theano library [15].

5 Concluding remarks

In this note, we addressed the problem of information transmission in a neuronal network
driven by linear dynamics. First, we briefly reviewed a linearized firing rate dynamical
model of a neuronal network. Then, we introduced a digital communication framework for
the propagation of information in such a linear dynamical neuronal network. Further, we
discussed a novel metric for measuring the amount of information that a neuronal network
can reliably transmit. Finally, we analyzed the relation between network structure and
optimal information transmission rate. In particular, from our analysis, it turns out that
a non-normal network architecture should be preferred if the sampling time of neurons in
the network is not short enough.

Interesting directions for future work include the analysis of the role of the background
noise on the optimal network structure and the extension to the case in which only some
neurons of the network can read out transmitted information, i.e., the case C 6= I.
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Biodiversity: Mathematical

Modelling and Statistics

Anna Tovo (∗)

Life on Earth is diverse at many levels, beginning with genes and extending to the
wealth and complexity of species, life forms, and functional roles.
Identifying and understanding the relationships between all the life on Earth are some of
the greatest challenges in science.
Most people recognize biodiversity by species, which are group of living organisms that
can interbreed. But actually, biodiversity is more than that.
It is straightforward that ecological systems are characterized by the recurrent emergency
of patterns. This suggests that the mechanisms that structure them are insensitive to
the details of the system. Such universality motivates the development of mathematical
models able to grasp the basic ecological mechanisms at work and to faithfully reproduce
the empirical data.
This fascinating intellectual challenge fits perfectly into the world of complex system the-
ory, which teaches us that from interactions among small particles can emerge universal
collective interesting behaviours.
When studying an ecological community, a first intuitive biodiversity indicator could be
the total number of species S∗ we observe in our sample. However, this is clearly a poor
indicator.
Much more informative is the so-called Species-Abundance Distribution (or SAD), which
tells us how rarity and commonness are distributed among species. More precisely, de-
noting with φn the number of species having exactly n individuals in our community, a
typical representation of the SAD is the so-called Preston Plot, an histogram where the
first column accounts for half of the singletons (species with only one individuals), φ1/2,
the second column accounts for φ1/2 + φ2/2, i.e. the other half of the singletons and half
of the doubletons, the third column for φ2/2 + φ3 + φ4/2 and so on. Generally, in the
nth column will fall half of the species with 2n−2 individuals, half of those having 2n−1

individuals and all the other species having abundance comprised between 2n−2 + 1 and
2n−1−1. In the first panel of Figure 1 we see the SAD of a 50ha sample of Barro Colorado
Island rainforest, which is located in the middle of Panama Canal. Global patterns of em-

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on June 14th, 2017.
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pirical abundance distributions show that tropical forests vary in their absolute number of
species but display surprising similarities in the distribution of populations across species.
Indeed, different functional forms have been proposed in literature to describe the SAD
of an ecosystem, but most of them have been introduced only to provide a good fit of
empirical data.
A second pattern is the Species-Area Relationships (or SAR), which looks at how biodi-
versity changes with the sampled area. In particular, given a sub-area A of our ecosystem,
SAR(A) gives the expected number of species which will fall within A (see Figure 1, mid-
dle panel). There is empirical evidence that such curve shows a tri-phasic behaviour when
plotted in a log-log scale. An intuitive explanation is the following. When looking at very
small scales, it is likely that increasing even a little the surveyed area will lead to the
observation of lots of new species, which are the most abundance ones occupying the vast
majority of the ecosystem area. At contrast, when the sample size is big enough, all those
species will be already have been accounted, while rare species are the only one missing
from the count. The curve then saturates to the total number of species S∗ present in our
community. In the middle panel of Figure 1 we can see these two phases. If one could go
to greater scales, the SAR would start growing up again because of species turnover.

Figure 1. Universal patterns of ecological systems. From left to right: Species-Abundance Dis-

tribution, Species-Area Relationship and Similarity Index for a 50ha sample of Barro Colorado Island, in

Panama.

Still connected with space, another important ecological pattern is the Similarity Index,
which gives us information about how similar two sub-samples are in function of their
distance. More precisely, given two disjoint sub-regions B1 and B2 of the same area A, let
us denote with S(B1, B2) the number of species which fall both in B1 and B2 and with
S(Bi), i ∈ {1, 2}, the number of species residing in Bi, both shared and not. The classic
Sørensen index (Chao et al., 2005) is defined as the ratio

σ(B1, B2) =
S(B1, B2)

1
2(S(B1) + S(B2))

.

We will later see how to reformulate this notion in the context of point processes theory,
where it will be useful to define a function χ(r) = σ(B1, B2)/A of the distance r between
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the two samples and which we will simply call Similarity Index (see Figure 1, third panel).
The behaviour of all these patterns is surprisingly similar for different ecosystems, meaning
that there are universal mechanisms at work. We wish now to link and explain them
through mathematical models.
It is instructive to start with an extremely simple model, which was firstly developed by
Coleman in 1981 (Coleman, 1981). Let us consider a collection of individuals belonging to
S∗ different species, each having abundance ns, s ∈ {1, . . . , S∗} and residing in a spatial
region of area A∗. Coleman’s model hypothesis is the following: whether or not the
location of other individuals has been specified, the probability that a given individual
resides in a given subregion of area A within A∗ is equal to its relative area A/A∗.
This hypothesis is clearly very strong, since it is reasonable only when the interactions
between individuals, whether intra-specific or inter-specific can be neglected and when the
surveyed landscape does not present hard inhomogeneities.
In this framework, where no underlying ecological mechanism is driving our system, but
only randomness, the probability that at least one individual of the sth species falls within
the sub-area A is given by

ps = 1−
(

1− A

A∗

)ns
.

Then one can compute the expected number of species residing within the sub-area A by
summing up the presence probability of each species:

SAR(A) =

S∗∑
s=1

ps = S∗ −
S∗∑
s=1

(
1− A

A∗

)ns
We thus have an analytical formula for the Species-Area Relationship.
We tested Coleman’s model in reproducing the SAR of the Barro Colorado Island (BCI)
rainforest database. We found that, at any spatial scale, the species predicted by the
model overestimates the empirical average.
The failure of the random placement model to capture the SAR is a clear indication that
ecological patterns are driven by non-trivial mechanisms that still need to be appropri-
ately identified. In particular, we have to model in a more realistic way the location of
individuals in our surveyed sample.
Spatial point processes are particularly useful for this goal and they have been widely used
in theoretical ecology to describe spatial patterns such as the location of trees or birds.
An immediate description of such kind of databases can be given by defining, for every
subregion B of the working space, which for our purposes will always be R2, the counting
variable N (B) which gives the number of points falling within it.
Then the collection of such counting variables {N (B)} contains all information about a
point process’s realisation, since the locations of its points are uniquely determined by
the set of x ∈ R2 such that N ({x}) > 0. We will call a point process the collection of
all random variables N (B) indexed by subsets B of the 2−dimensional real space and we
will denote it with X. The starting point of exploratory analysis of point patterns is to
characterise their first and second moments.
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Definition 1 Given B ⊆ R2, the intensity measure νX of X evaluated in B is

νX(B) = E[N (B)].

Moreover, if there exists a function λX such that

νX(B) =

∫
B
λX(x)dx,

then we call λX the intensity function of X.

A local interpretation of the intensity function λX is the following. Let us consider a
ball B(x, rx) in R2 centred in x, having radius rx and infinitesimally small size dx. Then
λXdx approximates the probability that one point of the process will fall within B(x, rx):

λX(x)dx ∼ P(NX(B(x, rx)) > 0).

As for the second moments, we firstly remark that if X is a point process defined on R2,
then X×X is a point process defined on R2×R2 whose points are all ordered pairs (x1, x2)
with xi ∈ X for i = 1, 2. Thus the product NX(B1) × NX(B2), with B1, B2 ∈ R2 is a
random variable counting the number of ordered pairs (x1, x2) with x1 ∈ B1 and x2 ∈ B2.
We can then introduce the following definitions.

Definition 2 Given B1, B2 ⊆ R2,the second factorial moment measure νN ,[2] of X is:

νX,[2](B1 ×B2) = E[N (B1)N (B2)]− E[N (B1) ∩N (B2)].

Moreover, if there exists a function ρX such that

νX,[2](B1 ×B2) =

∫
B1

∫
B2

ρX(x, y)dxdy,

then we call ρX the second moment density of X.

Again, a formal interpretation is possible. Denoting with B(x, rx) and B(y, ry) two
infinitesimally small balls centred in x and y respectively, the quantity ρX(x, y)dxdy gives
an approximation of the joint probability that one point of the point process will occur
within B(x, rx) and a second point within B(y, ry) :

ρX(x, y)dxdy ∼ P(NX(B(x, rx)) > 0,NX(B(y, ry)) > 0).

We remark that in the special case where no correlations occur between points, then the
second moment density of X splits into ρX(x, y) = λX(x)λX(y), since the joint probability
P(NX(B(x, rx)) > 0,NX(B(y, ry)) > 0) = P(NX(B(x, rx)) > 0)P(NX(B(y, ry)) > 0). The
notion of the second moment density leads to another object, fundamental when studying
the spatial relation between points of a process X, which is the pair correlation function:

Definition 3 Let X be a point process with intensity function λX and second moment
density ρX. The pair correlation function gX of X is the ratio

gX(x, y) =
ρX(x, y)

(λX(x)λX(y))
.
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It follows that for randomly located points, the pair correlation function is constantly
equal to 1. In what follows, we will focus on isotropic and homogeneous point processes.
This implies that λX is constant and that second moments only depend on distance be-
tween points, not on their exact locations. We will therefore write ρX(x, y) = ρX(r) and
gX(x, y) = gX(r) with r being the Euclidean distance between x and y.
A first basic example of a point process is the homogeneous Poisson process, which is
sometimes called the zero or completely random process after its property that each point
is stochastically independent from all the others.
Therefore, in ecological theory, it represents the special case where there are no intra-
specific spatial interactions between individuals. Of course, in applications, this complete
randomness hypothesis mostly comes to fail due both to environmental variables and to
seed dispersal mechanisms. Anyway, in exploratory analysis, the first step to analyse a
database is to compare it with the zero-process.
We say that spatial point process X defined in R2 is an homogeneous Poisson process of
intensity λX if it satisfies the following properties:

• for every bounded closed set B ∈ R2 having Lebesgue measure µ(B), the number of
points falling in B has a Poisson distribution with mean λN · µ(B) :

NX(B) = e−λXµ(B) (λXµ(B))n

n

• Given two disjoint closed bounded subsets B1 and B2 of R2, NX(B1) and NX(B2)
are independent.

In particular, as already noticed, if X is a Poisson process, then its pair correlation func-
tion is constantly equal to one: gX(r) ≡ 1, ∀r ∈ (0,∞). Nevertheless, when looking at the
empirical pair correlation functions of Barro Colorado Island species, they do not show
such constant behaviour. At contrast, they present a monotonic decreasing behaviour
reaching the asymptotic value of 1 only at distance big enough so that correlations be-
tween points become actually negligible. This is a common characteristic which shows the
inadequacy of the Poisson model. Indeed, the complete spatial randomness hypothesis in
real species mostly comes to fail due to several reasons: on one side, changing environmen-
tal conditions, such as physical heterogeneity of the landscape or chemical composition of
the soil, may lead to inhomogeneous patterns. On the other side, different seed dispersal
mechanisms may favour the formation of clumping structures as well as dispersed ones.
A much more interesting example of point process are the Neyman-Scott processes (NS),
which have found large applications in ecological theory due to their ability to model the
clumping mechanism of plants’ species in which daughter seeds are spread around a parent
tree’s location (Tovo et al., 2016a). They are the result of a three steps procedure:

• We distribute parent points according to a homogeneous Poisson process with fixed
intensity ρ.

• To each parent, a random number of offspring is assigned, drawn from a Poisson
distribution of intensity µ.
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• The offspring are identically and independently scattered around their parents ac-
cording to a fixed radial probability density dγ(r), called dispersal kernel, which
depends on some parameters γ.

• The resulting process is formed only by the offspring’s locations.

We remark that, as for the homogeneous Poisson process, also NS processes are both
homogeneous and isotropic. Moreover, independently of the offspring’s distribution, the
intensity function of the process is given by the product λX = µρ, while its pair correlation
function is given by gX(r) = 1+fγ(r)/ρ, where fγ(r) is the convolution of the 2-dimensional
probability density dγ(r). The three Neyman-Scott processes I most apply in my research
are the modified Thomas, the exponential and the Cauchy point processes, whose dispersal
kernel and pair correlation functions are shown in Table 1.

Neyman-Scott process Dispersal kernel Pair Correlation function

Modified Thomas dσ(r) =
1

2πσ2
e−

r2

2σ2 1 +
1

ρ

1

4πσ2
e−

r2

4σ2

Exponential dβ(r) =
β2

2π
e−βr 1 +

1

ρ

β4r2

16π
K2(βr)

Cauchy db(r) =
1

2πb2
(
1 + r2

b2

)3/2 1 +
1

ρ

b2

π
(

4 +
r2

b2

) 3
2

Table 1. Examples of Neyman-Scott processes.

In order to model BCI species through these models, the first step, for each species
s, is to estimate the set of parameters (ρXs , µXs , γXs) which best describe its pattern,
where Xs denotes the point process with which we decided to model the species. To get
the parameters a standard method is the one of minimum contrast, which relies on the
minimisation of the following integral:∫ dmax

0
(ĝXs(r)

1/4 − gXs(r)
1/4)2dr,

where ĝXs(·) is the empirical pair correlation function of species s, gXs(·) is the analytical
formulation depending on the parameters and dmax is the maximum considered distance.
Thanks to the cluster parameters one obtains from the fit, it is then possible to predict
the macro-ecological patterns of interest. However, since each species may contribute
differently to them, we firstly need to introduce the concept of the superposition process
X, which is the collection of all random variables NX(B) giving the total number of points,
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regardless of the species, falling within each subset B ∈ R2. One can then compute
the first and second moments of the superposition process as function of those of its
component processes. In particular, if we denote with X1, . . . ,Xs these latter, we have
that λX =

∑S∗

s=1 λXs and that

gX(r) =
1

λ2
X

(
S∗∑
s,t=1
s 6=1

ρXs(r) + 2
S∗∑
s=1

λXsλXt

)
.

From all these ingredients, one can search for analytical formulas of macro-pattern in
function of the superposition process’s moments. Let us see, for example, how to obtain
the Sørensen index of similarity.
Let Bx = B(x, rx) and By = B(y, ry) two infinitesimally small balls centred in x and y.
Then, in the context of point process, one can give the following interpretation:

χ(Bx,By) =
1

dx

E[S(Bx,By)]
1
2E[S(Bx) + (By)]

,

where dx is the infinitesimal area of both Bx and By, S(Bx,By) are the species shared by
the two balls and S(Bx) is the total number of species falling in Bx and analogously for
S(By).
One can find (Tovo et al., Soon on arXiv) that the following approximation holds for
isotropic and homogeneous processes as the NS ones:

χ(r) = λX(gX(r)− 1) + χ∞,

with χ∞ is a constant depending solely on the species’ abundances and representing the
similarity at a scale where the clustering of individuals has no effect, so that no correla-
tions occur between points.

Up to now we have only worked in our relatively small surveyed sample of rainforest.
But what can we say of the rest of it? Is there a way to extrapolate information on big-
ger scales? The problem of inferring total biodiversity when only scattered samples are
observed is a long-story problem.
In the early 1940s, the English naturalist Corbet spent two years trapping butterflies in
Malaya, noting down, for any species he observed, the number of times he trapped it.
At the end of that time, he returned to England and asked R. A. Fisher, how many new
species he would have seen if he had returned to Malaya for another two years. The father
of statistics was only the first mathematician to tackle a problem which seems impossible
to solve at sight.
Today, the quantification of tropical tree biodiversity worldwide remains an open and chal-
lenging problem. In fact, more than two-fifths of the number of worldwide trees can be
found either in tropical or sub-tropical forests, but only 0.000067% of species identities
are known.
For practical reasons, biodiversity is typically measured or monitored at fine spatial scales.
However, important drivers of ecological change tend to act at large scales. An example
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are conservation issues which apply to diversity at global, national or regional scales.
Extrapolating species richness from the local to the global scale is not straightforward.
Indeed, a vast number of different biodiversity estimators have been developed under differ-
ent statistical sampling frameworks, but most of them have been designed for local/regional-
scale extrapolations, and they tend to be sensitive, for example, to the spatial distribution
of trees or sampling methods.
As we said before, a common statistical tool used to describe the commonness and rarity
of species in an ecological community is the SAD, which is measured at local scales, where
the identities of the individuals living in the area are known. The sampled SAD can be
fit to a given functional form at that scale. However, in general, that form changes at
different spatial scales, thus hindering analytical treatment.
We developed an analytical framework that provides robust and accurate estimates of
species richness and abundances in biodiversity-rich ecosystems, when only a sample of
them have been observed (Tovo et al., 2016b).
Let us assume that our ecological community consists of S species and let Pn,s be the
probability that species s has exactly n individuals at time t. We also make the following
assumptions:

• All species are independent one another, so that no inter-specific interactions occur;

• All species are compound of demographically equivalent individuals, in the sense
that each of them has the same probability of giving birth, dying, speciating or
migrating (neutrality hypothesis, see Hubbell (2001), Volkov et al. (2003)).

We then model each species according to a stochastic birth and death process ruled by
the following Master Equation:

∂

∂n
Pn(t) = Pn−1(t)bn−1 + Pn+1(t)dn+1 − Pn(t) · (bn + dn)

Setting b−1 = d0 = 0, one get the following steady-state solution:

Pn = P0

n−1∏
i=0

bi
di+1

,

where P0 is the normalization condition and where we have dropped the index of the
species because of the neutrality hypothesis. We will refer to Pn as the Relative-Species
Abundance (RSA) of the community. Let us now consider two cases.
If one assumes that the population dynamics in the community are governed by ecological
drift and random speciation, then we have:

bn = bn+ δn,0ν, dn = dn,

where the birth rate accounts for reproduction and speciation, this latter through the
parameter ν ensuring that the system is always populated whenever species go extinct.
Then we find the following stationary solution

Pn = P0
ν

b

xn

n
,
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which is known amongst ecologists as Fisher log-series, since it was first discovered exper-
imentally in 1943 by the great statistician while studying Corbet’s problem.
One can also find the SAD:

SAD(n) = E[Sn] =
S∑
s=1

Pn = θ
xn

n
,

where x = b/d and where θ = SP0ν/b is called the biodiversity parameter. This SAD has
no internal mode and therefore it predicts that singleton species, those with one individual
only, are always the most frequent. This is not always the case, as many communities have
species’ abundances that are more frequent than singletons.
Let us thus consider a second case. If our community is not closed, but it is surrounded
by a meta-community, it is more reliable that speciation phenomenon has a much smaller
affect with respect to random migration. Let us then modify the birth and death rates of
our process as follows:

bn,k = b(n+ r), dn,k = dn,

where the r parameter now incorporates migration from the meta-community into our
community.
Then the new stationary solution is a Negative Binomial of parameters r and ξ = b

d :

Pn =

(
n+ r − 1

n

)
ξn
(
1− ξ

)r
.

In particular, we have the following key result for these two distributions.

Proposition 4 Let Pn be the RSA at the global scale and Pp(k|n) be the sampling probabil-
ity at a sub-scale p ∈ (0, 1), i.e. the conditional probability that a species has k individuals
in the sub-sample given that it has abundance n at the global scale.
If Pp(k|n) is binomially distributed, then we have the following:

• If Pn ∼ NB(r, ξ), with r ≥ 1, 0 ≤ ξ ≤ 1, then the RSA at the sub-scale p is given
by:

PSk (r, ξ) ∼ NB(r, ξ(p)), with ξ(p) =
pξ

1− ξ(1− p)

• If Pn ∼ LS(x), with 0 ≤ x ≤ 1, then the RSA at the sub-scale p is given by:

PSk (x) ∼ LS(x(p)), with x(p) =
px

1− x(1− p)
.

We say that both the distributions satisfy the self-similarity property.
Let us see how to apply such result to extrapolate informations from samples to bigger
areas.
We observe a fraction p∗ of a forest and we observe S∗ species within it. Our goal is to
infer the number of species S which are present at the global scale. Given the abundances
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of the S∗ species at the local scale, we can construct the RSA of our sample and fit it with
a negative binomial to get the parameters r and ξ(p∗) which best describe the empirical
data. Clearly, one could do the same with a Log-Series distribution and get the x(p∗)

parameters.
One can then analytically extract the values of the RSA parameters at the global scale
and the corresponding total biodiversity S through the following equations (Tovo et al.,
2016b):

ξ =
ξ(p∗)

p∗ + ξ(p∗)(1− p∗)

S = S∗
1− (1− ξ)r

1− (1− ξ(p∗))r

A great advantage of using a negative binomial instead of the Log-Series relies on its ver-
satility. Indeed, it can display both monotonic log series-like behaviour and a unimodal
shape, depending on its parameters. This is an important property, since we already un-
derlined that empirical SADs, especially at large scales or with increasing sampling effort,
often change shape and start displaying an interior mode that cannot be captured by the
Log-Series distribution but that can now be explained and well described by the negative
binomial.
Another important aspect of negative binomials comes from the fact that also linear com-
binations of negative binomials of the same scaling parameter ξ and different parameters ri
satisfy the self-similarity property, thus allowing to apply our method also when complex-
behavioured SADs are encountered, case for which using one single negative binomial may
provide a very poor fit of the data whereas using linear combinations of negative binomials
can faithfully reproduce them.
We tested our framework both to synthetic and real data and it resulted to better perform
with respect to previously proposed methods in the literature (Chao and Chiu, 2016, Slik
et al., 2015), both in predicting biodiversity and macro-patterns as the SAR.
There are many directions one may take from here and on which we are now working on.
First of all we would like to obtain a spatial-explicit model which may link and predict
the profile of the various macro-ecological patterns cited above. Indeed, although various
models have been proposed in literature to explain and capture some recurrent patterns,
there still misses a unifying model able to explain all of them at the same time.
Lastly, we also wish to apply our framework to the very different scale of genetic diversity.
In particular, we have a collection of all bacteria proteomes, which are the set of all pro-
teins expressed by a genome. We would like to test our method’s reliability in predicting
the total number of proteomes present in a meta-genome, when only a fraction of them is
observed. This would have clearly important application in medicine for example.
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