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Seminario Dottorato 2012/13

Preface

This document offers a large overview of the nine months’ schedule of Seminario Dottorato
2012/13. Our “Seminario Dottorato” (Graduate Seminar) is a double-aimed activity. At
one hand, the speakers (usually Ph.D. students or post-docs, but sometimes also senior
researchers) are invited to think how to communicate their own researches to a public of
mathematically well-educated but not specialist people, by preserving both understand-
ability and the flavour of a research report. At the same time, people in the audience
enjoy a rare opportunity to get an accessible but also precise idea of what’s going on in
some mathematical research area that they might not know very well.
Let us take this opportunity to warmly thank the speakers once again, in particular for
their nice agreement to write down these notes to leave a concrete footstep of their par-
ticipation. We are also grateful to the collegues who helped us, through their advices and
suggestions, in building an interesting and culturally complete program.

Padova, June 21st, 2013

Corrado Marastoni, Tiziano Vargiolu
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Abstracts (from Seminario Dottorato’s web page)

24 October 2012

Recollements from tilting modules

Alice PAVARIN (Padova, Dip. Mat., dott.)

In this talk I will expose some special and computable examples of recollements and tilting theory.

I will start by presenting the concept of modules over a ring, complexes of modules and derived

category of a ring. Then I will give examples of finitely generated tilting modules over a path

algebra, that is, over a finite dimensional algebra generated by the paths of a finite, acyclic quiver.

In the final part I will provide a glimpse over the general theory of recollements through the

example of the endomorphism ring of the finitely generated tilting module Q+(Q/Z) over the ring

of integers Z.

7 November 2012

FX derivatives and jump models

Giulio MIGLIETTA (Padova, Dip. Mat., dott.)

After a quick overview of the needed probabilistic concepts, I present the building blocks of modern

mathematical finance with some emphasis on the foreign-exchange (FX) market. The anomalies

recently experienced by the EURCHF (Euro - Swiss Franc) currency pair furnish the motivation

for some simple extensions of the mainstream models used in the industry, namely models in which

asset prices can exhibit discontinuities. I then analyze the effect of model choice (including jump

models) on some contracts which are very liquid in the FX world, namely one-touch options and

variance swaps.

21 November 2012

An Introduction to the Minimal Model Program

Gloria DELLA NOCE (Pavia, Dip. Mat., dott.)

The problem of reaching a birational classification of (smooth) complex projective varieties is

classical in algebraic geometry. In dimension one, the problem comes out to be trivial and, in

dimension 2, it was completely solved at the beginning of the XX century. We have to wait until

the 1980’s for an approach, due to S. Mori, to the 3-dimensional case, which is far more complicated

and requires new tools. This is the beginning of the Minimal Model Program, which is nowadays
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one of the most active areas of algebraic geometry. In this talk, after recalling some basic notions of

algebraic geometry, I will introduce some of the tools of the Minimal Model Program, illustrating

them through many examples.

5 December 2012

Geometric Surface Processing for Computer Graphics

Marco RUCCI (Padova, Dip. Mat., dott.)

The application of mathematical models based on Partial Differential Equations to image pro-

cessing and computer graphics problems has been extremely successful over the past 20 years. A

popular method to approach geometric processing and evolving surfaces has consisted of a La-

grangian setup where a surface is explicitly represented as a piecewise-linear mesh. In particular,

geometric surface flows have been extensively used in mesh processing. In this talk we investi-

gate curvature-driven surface evolutions and propose differential models and numerical solutions

to Computer Graphics problems such as smoothing, remeshing, reconstruction, multiresolution

surface representation and deformation.

19 December 2012

Geometric Quantization and Coherent States: a link between classical and quantum
mechanics

Daniele FONTANARI (Padova, Dip. Mat., dott.)

A physical system can be mathematically described either in the quantum or in the classical

framework, the latter being an accurate approximation only when the magnitude of the physical

quantities that characterize the system is large compared to the value of the Planck constant h.

It is usually accepted that the ”right” classical description of a system should emerge from the

quantum one as a ”limit for h close to 0”. The inverse problem is also of great interest: given a

classical description of a system, is it possible to find a suitable quantum one? Such a procedure,

when properly defined, is called quantization. In this talk I will give an introduction of the basic

concepts and interpretations of (non-relativistic) Hamiltonian and quantum mechanics, then I will

proceed with an overview of the apparatus of geometrical quantization. Finally, if time allows,

I will show that coherent states naturally arise in the framework of geometric quantization and

can be interpreted as quantum states that best approximate the classical ones. The talk will be

self-contained and no prior knowledge on classical mechanics, quantum mechanics or geometric

quantization is required.
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16 January 2013

Power laws, possible explanations for their ubiquity

Alberto LOVISON (Padova, Dip. Mat.)

One of the emerging and most studied features of complex systems is the frequent occurrence of

power law statistics, also referred to as scaling, or scale free statistics. Power laws have been firstly

detected by Vilfredo Pareto in 1897 in the distribution of wealth among the italian population,

whose key feature is the famous 80/20 law. Afterwards, power laws have been discovered in

countless situations for diverse natural and artificial phenomena. Although during the two last

decades several scientists strived for finding a universal and physically convincing explanation for

the origin of power laws, this is still considered an open problem. In this talk we will give a brief

survey on this topic and describe why multiplicative processes with a reflecting barrier could be a

plausible explanation.

30 January 2013

Probabilistic Zeta function

Dung DUONG (Padova, Dip. Mat., dott.)

In this talk, I will introduce about the area of the probabilistic zeta function of finitely generated

groups. I will start with some basic definitions, some examples, some basic properties and end up

with some open problems.

6 February 2013

Zhanar TASPAGANBETOVA

Zhanar TASPAGANBETOVA (Padova, Dip. Mat. and Astana)

Weighted Hardy type inequalities restricted to the cones of monotone functions and sequences

have been extensively studied in the last decades, especially in view of their applications in the

estimation of maximal functions, in the theory of interpolation of operators and in the embedding

theory of function spaces. In this talk, we introduce a Hardy type inequality on the cone of non-

negative and non-increasing sequences. We give the statement and motivation of the problem. We

describe the development and current status of the theory of Hardy type inequalities on the cones

of monotone functions and sequences. Moreover, we also present some open problems.
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13 February 2013

Portfolio optimization in defaultable markets under incomplete information

Giorgia CALLEGARO (Padova, Dip. Mat.)

We consider the problem of maximization of expected utility from terminal wealth in a market

model that is driven by a possibly not fully observable factor process and that takes explicitly

into account the possibility of default for the individual assets, as well as contagion (direct and

information induced) among them. It is a multinomial model in discrete time that allows for an

explicit solution. We discuss the solution within our defaultable and partial information setup,

in particular we study its robustness. Numerical results are derived in the case of a log-utility

function, and they can be analogously obtained for a power utility function.

27 February 2013

Ideas in finite group theory

Martino GARONZI (Padova, Dip. Mat., dott.)

In this talk I will present the basic ideas of finite group theory, which was invented by Evariste

Galois to study polynomials. I will show how finite groups and polynomials interact. I will

talk about the properties of the Symmetric group, which is one of the foundamental objects of

the theory. I will illustrate the main elementary results of finite group theory (the theorems of

Lagrange, Cauchy, Cayley and Sylow) with many examples and I will outline how problems are

usually dealt with. I will introduce abelian, nilpotent, solvable and non-solvable groups with many

examples. Then, I will present the specific problem I dealt with in my Ph.D thesis, the covering

problem. Many examples will be given. If there is time, I will use not more than ten minutes to

state some results I obtained in my thesis.

20 March 2013

Regularization techniques for linear inverse ill-posed problem

Silvia GAZZOLA (Padova, Dip. Mat., dott.)

Inverse problems are ubiquitous in many areas of science and engineering: they are typically

modeled by Fredholm integral equations of the first kind and the available data are commonly

affected by errors. Once discretized they give rise to ill-conditioned linear systems, often of huge

dimensions: regularization consists in replacing the original system by a nearby problem with

better numerical properties, in order to find a meaningful approximation of the exact solution.

During this talk we will focus on problems regarding the restoration of images corrupted by blur

and noise. We will review some standard regularization methods, both direct and iterative, and
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we will introduce the most recent class of the Arnoldi-Tikhonov methods. The results of many

numerical experiments will be shown, so to compare the different approaches and to contribute

validating the newly-proposed strategies.

10 April 2013

Interpolation properties of Morrey-type spaces and their application

Diana DARBAYEVA K. (Padova, Dip. Mat. and Astana)

It is well known that in the theory of partial differential equations, alongside with weighted

Lebesque spaces, Morrey-type spaces and their generalizations also play an important role. Our

purpose is the introduction of some generalized Morrey-type spaces, which include classical Morrey

spaces, and study their properties. We give examples. Moreover, in this talk we describe the inter-

polation theory of linear operators and consider some applications. We present a Marcinkiewicz-

type interpolation theorem for generalized Morrey-type spaces. This theorem is then applied to

obtain a Young-O’Neil-type inequality for the convolution operator in the generalized Morrey-type

spaces, in particular in Morrey spaces. Moreover, we also present some open problems.

24 April 2013

Almost integrable Hamiltonian systems and the approach of the Perturbation Theory

Gabriella SCHIRINZI (Padova, Dip. Mat., dott.)

A Hamiltonian dynamical system is a system whose dynamic can be described by the Hamilton’s

equations. When we study such a system we try to find an explicit expression for the solutions of the

equations, but this is not always possible, that is a Hamiltonian system is not always ”integrable”.

Many of the most important physical systems are not integrable but their dynamic can be described

by a Hamiltonian which is a small perturbation of an integrable one. This kind of functions,

called ”almost integrable Hamiltonians”, are studied by the Hamiltonian Perturbation Theory.

After recalling basic notions about Lagrangian and Hamiltonian mechanics, I will introduce almost

integrable systems and give an introduction to the approach of the Perturbation Theory, stating

the main results.

22 May 2013

A class of derivative-free nonmonotone algorithms for unconstrained optimization

Francesco RINALDI (Padova, Dip. Mat.)
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Derivative-free methods represent a widely-used tool for solving problems where first order in-

formation is unavailable, unreliable, or impractical to obtain (for instance when the objective

function is expensive to evaluate or somewhat noisy). In this talk, we first provide some basics

on derivative-free optimization. Then, we present a class of derivative-free unconstrained mini-

mization algorithms employing nonmonotone inexact linesearch techniques along a set of suitable

search directions. In particular, we define globally convergent nonmonotone versions of some well-

known derivative-free methods and we describe an algorithm combining coordinate rotations with

approximate simplex gradients.

29 May 2013

Elliptic curves, an introduction and beyond

René SCHEIDER (Regensburg)

The talk provides a very elementary introduction to elliptic curves and their geometry, with the

final aim of understanding the analytic geometry of the universal family with level N structure.

As a broad audience shall be addressed, only few and basic prerequisites are required. In more

detail, the plan is to cover the following topics: We explain how elliptic curves over a general field

are defined and introduce their group law as well as the Weil Pairing. We then outline how these

algebraic data express analytically if we work over the field of complex numbers. After this we are

prepared to construct the universal elliptic curve with level N structure as a complex manifold.

19 June 2013

An introduction to Ramification Theory for Number Fields

Sophie MARQUES (Padova, Dip. Mat., and Bordeaux)

The question of prime decomposition in a finite extension of fields motivates classical ramification

theory for field extensions. We propose to give a very little introduction to this deep subject which

can also be extended to arithmetic geometry. After recalling some basic facts around finite field

extensions, we will explain how to do arithmetic in number fields. This will permit us to define

the ramification for number field and to give some criteria permitting to decide which primes are

ramified or not. Finally, we will study the particular case of quadratic extensions in order to see

how we can apply this theory.
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Recollements from infinitely

generated tilting modules

Alice Pavarin (∗)

Abstract. The main aim of this talk is to introduce titling theory and in particular the equivalences
induced by tilting modules at the level of derived categories of rings. This equivalences can be
expressed by diagrams of functors between categories called recollements.

1 Introduction

Tilting theory owes its origin to Bernstein, Gelfand and Ponomarev (see [8]) who in-
vented reflection functors (reformulated, some years later, by Auslander, Platzeck and
Reiten in [2]). Tilting theory was born in the same philosophy as ”Morita theory of
equivalence”, to simplify the study of the module category of an algebra A, by replac-
ing A with another simpler algebra B. Indeed, if P is a projective generator of A-Mod,
then A-Mod ' EndA(P )-Mod. Tilting modules can be viewed as the generalization of
progenerators (finitely generated projective modules in the category of finitely generated
modules A-mod). The difference between tilting theory and Morita theory is that, given
a tilting module T over a finite dimensional algebra A and indicated with B its endo-
morphism algebra, the functors HomA(T,−) and T ⊗B − do not provide and equivalence
between A-mod and B-mod, but just between two pairs of subcategories (the torsion pairs
(Ker(HomA(AT,−),Ker(Ext1

A(AT,−)) and (Ker(T ⊗B −),Ker(TorB1 (TB,−))). The main
aim of this seminar is to present “short exact sequences” of categories induced by infinitely
generated tilting modules. The study of infinitely generated tilting modules started for
different reasons. In particular they simplify the study of some classes of finitely generated
modules and they are involved also in some homological conjecture.
In the 80’s works by several authors showed that a natural setting to interpret equivalences
induced by classical tilting modules was that of derived categories. The first result in this
direction was proved by Happel: if T is an n-tilting module over A, with endomorphism

ring B, the pair (G,H) := (T
L
⊗B −,RHomA(AT,−)) is no more an equivalence. Bazzoni,

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on October 24th, 2012.
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Mantese e Tonolo proved that H induces an equivalence with the quotient between D(A)
and D(B) modulo the kernel of G. The equivalence proved in [6] can be expressed by
a diagram of functors called recollement. A recollement of triangulated categories is a
diagram

T ′
i∗ // T
i!

cc

i∗

{{ j∗ // T ′′

j∗

cc

j!
{{

where the six functors involved are the derived version of Grothendieck’s functors. In
particular, they are paired in two adjoint triples, i∗ is fully faithful and T ′′ is equivalent
to a Verdier quotient of T via j∗ so that the straight arrows can be interpreted as an
exact sequence of triangulated categories. The notion of recollements was introduced by
Beilinson-Bernstein-Deligne [7] in a geometric context, where stratifications of varieties
induce recollements of derived categories of constructible sheaves.

In this survey we will give some preliminary notions about categories, functors and
module categories. We will present a simple example of a tilting module over finite dimen-
sional path-algebra and we will briefly expose the construction of the derived category of
a ring. Here we will show explicitly the result of [6] and an example of infinitely generated
tilting module will be given.

2 Preliminaries

Definition 2.1 A category C consists of the following:

(a) a class of objects indicated by Ob(C).

(b) For each pair of objects X and Y , a set denoted by HomC(X,Y ) whose elements
will be called morphisms or maps from X to Y.

(c) For every triple A,B,C of objects, an associative composition law

HomC(A,B)×HomC(B,C) −→ HomC(A,C);

the composite of the pair (f, g) will be denoted by gf .

(d) For every object A, a morphisms IdA ∈ HomC(A,A), called the identity on A,
such that, for each object B and for every morphisms f ∈ HomC(A,B) and g ∈
HomC(B,A), we have

fIdA = f and IdAg = g.

Given a category C and a morphism in it f : M → N , f is called isomorphism if there
exists a morphism g : N →M in C, such that fg = IdN and gf = IdM .

Example 1 It easy to verify that the following are examples of categories.

Università di Padova – Dipartimento di Matematica 10
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• Let us denote by Set the category where the objects are sets, and for each set X and
Y , HomSet(X,Y ) is the class of all maps between X and Y .

• Let us fix a camp k and denote with Veck the category where the objects are k-
vector spaces and, for all X and Y in Ob(Veck), HomVeck(X,Y ) is the class of all
the k-linear maps between X and Y .

• Let us indicate with Top the category where the objects are topological spaces and
morphisms are continuous maps.

• Let denote with Ab the category of abelian groups, where morphisms are group
homomorphisms.

Given two categories C and D, it is possible to define a “homomorphism” between
them. We will call it “functor” between C and D.

Definition 2.2 A functor F from a category C to a category D consists of the following:

(a) a map between Ob(C) −→ Ob(D). The image of A in Ob(C) via F is written F (A).

(b) for every pair of objects M,N in C, a map

HomC(M,N) −→ HomD(F (M), F (N))

such that F (gf) = F (g)F (f) for each composable morphisms f and g, and F (IdA) =
IdF (A) for every object A in C.

Let us present now two important examples of functors, that will be useful later on.

Example 2 Let V be a vector space over a field k.

(a) Let us define the tensor functor

V ⊗k − : Veck −→ Veck

such that, for each vector space W and for each k-linear morphism f : W → U ,

W 7→ V ⊗k W, f 7→ V ⊗k f.

(b) Let us define the Hom functor as Homk(V,−) : Veck −→ Ab such that, for each
vector space M and for each k-linear morphism g : M → N

M 7→ Homk(M,V ), g 7→ Homk(M, g).

Definition 2.3 A functor F : C→ D is an equivalence if:

(a) for each object M in D there exists an object N ∈ C such that F (N) is isomorphic
to M .

Università di Padova – Dipartimento di Matematica 11
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(b) for each A,B ∈ C, HomC(A,B) ' HomD(F (A), F (B)).

Let us note that if F : C→ D is an equivalence, there exists a functor G : D → C such
that FG(D) ' D, for all D ∈ D, and GF (C) ' C for all C ∈ C. Moreover, let us suppose
that C and D are additive categories (that is the the Hom spaces are abelian groups) then,
F (M) = 0 if and only if M = 0, that is Ker(F ) = {0}.

3 The module category and tilting modules

Let us now introduce one of the most studied categories in algebra: the module category
over a ring. Given a ring R, a module over R is a generalization of a vector space over a
field.

Definition 3.1 Let R be a ring. A left R-module M is an abelian group such that there
is a map, called action:

R×M −→M : (r,m) 7→ r ·m

such that:

(a) for all m,n ∈Mnr ∈ R, r · (m+ n) = r ·m+ r · n.

(b) For all r, s ∈ R,m ∈M , (rs) ·m = r · (s ·m).

(c) For all m ∈M , 1R ·m = m.

In the same way we can define the right R-modules and the R-bimodules, where the
structure of left and right R-modules must be compatible.
To introduce the category of modules, we need to define what is a morphism between
modules.

Definition 3.2 Let R be a ring and M and N be left R-modules. A morphism f : M → N
is said to be R-linear if it is a morphism of abelian groups and, for all r ∈ R,m ∈ M ,
f(r ·m) = r · f(m).

Definition 3.3 Let R be a ring. We denote by R-Mod the category of left R-modules,
where objects are the left R-modules and the morphisms are the R-linear morphisms. In
the same way it can be defined the category of right R-module Mod-R.

Let us now introduce some “particular kinds” of modules that will be involved in the
results presented in this survey.

Definition 3.4 A projective left module over a ring R, is a left module P , such that,
for every surjection f : M → N in R-Mod and for every map g : P → N , there is a map
h : P →M , such that fh = g.

Let us point out that a projective module P is direct summand of R(I) for some set I.
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Definition 3.5 A short exact sequence in R-Mod, is a sequence of morphisms

0 −→M
f−→ N

g−→ V −→ 0

with M,N, V, f, g ∈ R-Mod such that Ker(g) = Im(f) and g is surjective and f is injective.
We can regard M as a submodule of N and V as the quotient N/M . A long exact sequence
is a sequence of B-modules and of morphisms of B-modules

0→M1
f1→M2

f2→ ....
fn→Mn → 0

such that, for all 0 ≤ i ≤ n, there is a short exact sequence

Im(fi) = Ker(fi+1).

Let us now introduce tilting modules.

Definition 3.6 Let R be a ring and n > 1 an integer. An n-tilting module is a finitely
generated R-module T such that:

• thre is a long exact sequence

0→ Pn → Pn−1 → ...→ P0 → T

with Pn, ..., P0 finitely generated projective B-modules. The sequence above is called
the projective resolution of TB.

• There is a long exact sequence

(1) 0→ HomB(T, T )→ HomB(P0, T )→ ...→ HomB(Pn−1, T )→ 0

(that can be expressed saying that Exti(T, T ) = 0 for all i > 0). Usually the sequence
above is given replacing T with T (I) for some set I, but this condition can be seen
as a consequence of (1), since T is finitely generated.

• There exist modules T0, T1, ..., Tn that are direct summands of copies of T and a
long exact sequence:

0→ R→ T0 → · · · → Tn → 0.

Some of the simplest examples of tilting modules come from algebras of finite representation-
type. In the following we will show an example of tilting module of projective dimension
one. For the concept of path algebra and representations over it we refer to [3].

Example 3 Let us set B the path algebra of the quiver: ◦
1

a←− ◦
2

b←− ◦
3
. Let us consider

the module TB = 111⊕ 100⊕ 001. Let us verify that TB is a tilting module. Indeed, there
is a short exact sequence

0→ 011→ 111⊕ 100⊕ 111→ 001⊕ 100⊕ 111→ 0

Università di Padova – Dipartimento di Matematica 13
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that is exactly the projective resolution of TB. Moreover the sequence

0→ HomB(001⊕ 100⊕ 111, 010⊕ 011)→

HomB(011, 001⊕ 100⊕ 111)→ HomB(111⊕ 100⊕ 111, 001⊕ 100⊕ 111)→ 0

is exact. Finally, there is a short exact sequence

0→ 100⊕ 110⊕ 111→ 100⊕ 111⊕ 111→ 001→ 0,

where 100⊕ 111⊕ 111 and 001 are direct summands of copies of TB.

4 The derived category

As said in the introduction, the natural setting to study equivalences induced by tilting
modules is the derived category. We will show briefly the main steps for the construction
of the derived category and we will give just the idea of what a derived functor is.

Definition 4.1 A complex of left R-modules is an infinite sequence of left R-modules

M := ...→Mn
dMn→ Mn+1

dMn+1→ Mn+2 → ....

such that the maps dMn are R-linear morphisms for each n and dn+1dn = 0 for all integer
n ∈ Z.
We define the nth homology of M as the quotient

Hn(M) := Ker(dMn )/Im(dMn−1).

To introduce the category C(R) of complexes over R we need to define morphisms
between complexes.

Definition 4.2 Let M,N two complexes of R-modules with differentials dM := (dMn )n∈Z
and dN := (dNn )n∈Z respectively. A morphism of R-complexes or a chain map between
M and N is a family of R-linear morphisms f := (fn)n∈Z, with fn : Mn → Nn such that
fnd

M
n−1 = dNn−1fn−1.

The category of complexes of R-modules C(R) is the category whose objects are the
complexes over R and the morphisms are the chain maps.
Let us note that, for each integer n, the nth-homology of M is still an R-module. Then
every chain map induces a morphism between the sequences of the homologies (f :=
(fn)n∈Z, with fn : Hn(M)→ Hn(N)). In particular we say that a chain map f : M → N
is a quasi-isomorphism if f is an isomorphism. A complex P such that Hn(P ) = 0 for
every integer n is called acyclic. In particular an acyclic module is quasi isomorphic to
the zero complex.

Definition 4.3 Let us consider the following equivalence relation in the sets of chain
maps: we say that two chain maps f, g between the complexes M and N are homotopically
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equivalent if there exists a family of R-linear maps (hn)n∈Z with hn : Mn → Nn−1 such
that gn − fn = dNn−1hn − hn+1d

M
n for every integer n.

To introduce the derived category we need an intermediate step, that is the homotopic
category.

Definition 4.4 The homotopic category of the module category over a ring R, H(R), is
the category where objects are complexes of R modules and morphisms are equivalence
classes of chain maps via the homotopically equivalence. In particular a morphism in
H(R) is zero if it is homotopic to the zero map. An object in H(R) is zero if its identity
map is zero in H(R).

It is important to note that the class Σ of quasi-isomorphisms in H(B) is closed under
composition and it has other “good properties” that made Σ a so-called multiplicative set.
Then it is possible to consider the “localization” of H(B) at Σ. The byproduct of this
localization is a “Verdier quotient” of H(B) and it is the so called derived category of B.

Definition 4.5 The derived category of a ring R, D(R), is the Verdier quotient of the
homotopic category category H(R) via the class of quasi isomorphism Σ. In particular, in
D(R) quasi isomorphism become invertible, and acyclic objects are isomorphic to zero.

Remark 1 Let us point out that if a functor F : A-Mod −→ B-Mod (with A and B
rings) has some “good properties”, then it can be lift to a derived functor between derived
categories. An example of such a functors are the tensor functor and the Hom functor.

5 Equivalences and recollements of derived categories

Let A be a ring. If M is a left A-module, then it is a right EndA(M)-module. In particular
the functors

HomA(M,−) : A-Mod→ EndA(M)-Mod and M ⊗EndA(M) − : EndA(M)-Mod→ A-Mod

are well define and it is possible to construct the respectively derived functors: RHomA(AM,−)

and M
L
⊗

EndA(M)
−.

Theorem 5.1 Let A be a finite dimensional algebra and AT a finitely generated tilting
module over A. Set B := EndA(AT ), then there is an equivalence:

(0.1) D(A)
RHomA(AT,−) // D(B)

TB
L
⊗
B
−

zz
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Remark 2 If we consider an infinitely generated titling module over a ring A wit endo-
morphism ring B, then

Y := Ker(TB
L
⊗B −) 6= 0.

In particular Y is a subcategory of D(B) and there is an equivalence

D(B)/Y ' D(A).

This result was proved by Bazzoni, Mantese and Tonolo in [6]. We can express this
equivalence via a recollement, that is a diagram:

Y i∗ // D(B)

i!

cc

i∗

{{ T
L
⊗B− // D(B)/Y ' D(A)

RHomA(T,−)

ff

j!

xx

Recollements, as said in the introduction, can be seen as short exact sequences of
categories, so we can see the first term as a subcategory of the central term and the third
term as a quotient of the first two.

Example 4 A typical example of infinitely generated tilting module over the ring Z is
given by

ZT = Q⊕Q/Z.

Its endomorphism ring is the matrix

B =

(
EndZ(Q/Z) 0

HomZ(Q,Q/Z) Q

)
Then there is a recollement

Y i∗ // D(B)

i!

cc

i∗

{{ T
L
⊗B− // D(B)/Y ' D(Z)

RHomA(T,−)

ff

j!

xx
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Jump processes and FX derivatives

Giulio Miglietta (∗)

Abstract. We will give a brief non-specialized introduction to Levy processes and how to construct
them in a simple case starting from a Poisson random measure. Then we informally introduce
some concepts in mathematical finance such as contingent claims and lognormal implied volatility
and hint at the simple models in continuous-time (both with continuous and discontinuous sample
paths). We conclude by an analysis of one-touch option prices under different underlying stochastic
processes.

1 Levy Processes

1.1 Definition and some examples

A probability space (Ω,H ,P) is simply a measure space where the measure P is normalized
to have total mass of one. If (E,E ) is a measurable space, an E-valued random variable
is a measurable mapping from (Ω,H ) to (E,E ). A stochastic process is a collection of
random variables indexed by some arbitrary set, say (Xt)t∈T. Even if this is by no means
the only case, in the following we will just be interested in real valued stochastic processes
and the index set T will always be R+ which we will think of as the time.

Being a collection of random variables a (real) stochastic process can be thought as
a (real) function of the two variables (ω, t). Almost inevitably when defining classes of
processes we end up making requirements about X·(ω) (the so-called sample path) which
have to hold for every ω and requirements about Xt(·) which have to hold for every t.

An notable class of processes is that of Levy processes, where we make a topological
requirement on the sample paths and some independence and stationarity requirements
on the increments. More specifically we have the following:

Definition 1 A Levy process is a stochastic process (Xt)t>0 taking values in R with the
following properties:

• X0 = 0 and X· is right-continuous with finite left-limit a.s.

• ∀t and h > 0, Xt+h −Xt is independent of FXt and has the same law as Xh.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on November 7th, 2012.
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We now give some crucial examples of Levy processes by specifying the law of the
increments and making some additional requirement on the topological properties of the
sample paths. The first example is the fundamental Wiener process, which we define as
follows:

Definition 2 A Wiener process is a Levy process X such that:

• X· is continuous a.s.

• ∀t, Xt has the Gaussian distribution with zero mean and variance t.

The second fundamental example is the Poisson process:

Definition 3 A Poisson process with rate λ ∈ R+ is a Levy process X such that:

• X· is counting function a.s.

• ∀t, Xt has the Poisson distribution with intensity λt.

It turns out that both the above definitions contains some redundancies. Roughly
speaking, the conditions on the sample paths we imposed leave no choice for the law of
the increments and vice-versa, but we will not dig any deeper into this topic.

In the following we will develop the machinery of Poisson random measures and then
we will see how to use it to build (all kinds of) Levy processes.

1.2 Poisson Random Measures

In probability we can ”randomize” any kind of object we want. In particular a real-valued
random variable is the ”randomization” of a real number. The ”randomization” of a
measure is the follwing:

Definition 4 Given a probability space (Ω,H ,P) and an arbitrary measurable space
(E,E ), we say M : Ω× E −→ [0,∞] is a random measure on (E,E ) if

• M(ω, ·) is a measure ∀ω ∈ Ω

• M(·, A) is E -measurable ∀A ∈ E

It is easy to show that if M is a random measure on (E,E ), then µ : A 7−→ E(M(A))
is a measure on E which is called the mean measure of M (under P).

Also, to every f ∈ E+ we can associate a function Mf : Ω 7−→ R+ defined as

(1) Mf : ω 7−→
∫
E
M(ω, dx)f(x)

which is readily seen to be H -measurable. If we think of M as a collection of random
variables (M(·, A))A∈E indexed by E we can define in a natural way the concept of law of
a random measure. An extremely useful concept is that of Laplace functionals:
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Definition 5 Let M be a random measure on (E,E ). We define the Laplace functional
of M as the map f 7−→ E(e−Mf ) from E+ into R+.

All familiar concepts for positive measures (finite, σ-finite, Σ-finite, diffuse i.e. with no
atoms, purely atomic) get extended naturally to random measures if they hold P-as. A
key role in the sequel will be played by the following class of random measures:

Definition 6 Let M be a random measure on (E,E ). It is said to be additive if
M(A1),M(A2), . . . ,M(An) are independent for every choice of disjoint sets A1, A2, . . . , An
in E .

Definition 7 Let µ be a measure on (E,E ). An additive random measure M is said to
be Poisson with intensity µ if M(A) ∼ Poiµ(A) for every A ∈ E .

It can be readily seen that is M is Poisson on (E,E ) with intensity µ, then

(2) E(e−Mf ) = exp

(∫
E
µ(dx)(e−f(x) − 1)

)
and the converse holds as well. The existence of Poisson random measures with finite
intensity, µ, is handled in the following constructive way:

Theorem 1 Let K be a Poisson random variable with intensity µ(E) <∞ and, indepen-

dent of it, let (Xn)n∈N be an iid collection of random variables on (E,E ) with law µ(·)
µ(E) .

Then

(3) M :=
K∑
n=0

δXn

is a Poisson measure with intensity µ

For a construction for an arbitrary Σ-finite intensity it is enough to repeat the previous
exercise for every finite measure constituting the intensity. A crucial result for the following
is a characterization of the finiteness of Mf in terms of the intensity.

Theorem 2 Let M be a Poisson random measure on (E,E ), with intensity µ and let
f ∈ E+. Then Mf is finite P-as if and only if

∫
E µ(dx) min(|f(x)|, 1) <∞

By exploiting the construction used to prove the existence of Poisson random mea-
sures, we could show that a Poisson measure with Σ-finite intensity is a counting measure
if and only if its intensity is diffuse. Thus we could think of Poisson measures with dif-
fuse intensity as random countable sets on (E,E ), which are often referred to as ”point
processes”.

1.3 Levy Processes from Poisson random measures

Pure drifts (i.e. Xt = bt for some real b) are obviously Levy processes and the same is true
for Wiener processes as well. Since linear combinations of independent Levy processes is
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easily shown to stay Levy, we now show how to build purely discontinuous Levy processes
using Poisson random measures. Once we will have that, we will be able to build a
large class of Levy processes just by summing up processes of these three fundamental
examples. At the very end of this subsection we will hint at the fundamental result (Levy-
Ito decomposition) that guarantees that every Levy process is the ”limit” of processes of
this kind.

Our goal here is to construct some stochastic processes with discontinuous sample
paths from Poisson random measures, but since this will be carried out almost exclusively
in a pathwise manner, we present first some deterministic results. In the following we will
make use of the standard relationships between bounded variation functions on [0, T ] and
real measures on B([0, T ]), with the following definitions.

Definition 8 Let X : [0, T ] −→ R have bounded variation and be right-continuous.
Denote by dX the real measure it induces on B([0, T ])

• we say it is a pure-jump function if dX is purely atomic;

• if, in addition, Ato(dX) is finite, we say it is a step-function;

• if, furthermore, dX{t} = 1 for every t ∈ Ato(dX), we say it is a counting function.

Now, given a counting measure on [0, T ]× R, call it J , with the following properties

• Ato(J)
⋂

({0} × R) = ∅

• Ato(J)
⋂

([0, T ]× {0}) = ∅

• ∀(t1, x1), (t2, x2) ∈ Ato(J), we have that t1 6= t2

• ∀t, the map (u, x) 7→ I[0,t](u)x ∈ L1(J)

then we can construct a pure-jump function, X, as follows

(4) X : t 7→
∫

[0,t]×R
J(du, dx)x =

∑
i∈I

I[0,t](ti)xi

where we indexed the atoms of J by I 3 i 7→ (ti, xi). It is clear that X has a jump of
size xi at ti, but there is not necessarily a way to order the ti’s increasingly. Also, note
that J([t0, t1] × B) is the number of jumps of size in B that occur between t0 and t1.
This reasoning can be also turned around, so that we can construct a counting measure
on [0, T ]× R starting from a pure jump function, X, in the following way:

(5) Ato(J) = {(t, x) ∈ [0, T ]× R : t ∈ disc(X) and x = ∆Xt}

So far everything was analytic and deterministic. Now we turn in into stochastic by
allowing the measure J to be a random measure. It is quite natural to take it Poisson, in
order to have a certain degree of tractability of the resulting process.

It can be verified that if J is a Poisson random measure on [0, T ] × R with intensity
Leb×λ, where λ satisfies

∫
R λ(dx) min(|x|, 1) <∞ and λ{0} = 0 then X can be defined as
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above. The most crucial requirement is the last integrability condition which guarantees
that Xt is finite a.s. for every t thanks to the results on Poisson measures we gave in the
previous subsection.

In this stochastic setting, the number of jumps of size in B ⊂ R which occur between t0
and t1 is J([t0, t1]×B) which has law Poi(t1−t0)λ(B). In particular, if λ(B) is infinite, that

random variable is infinite a.s.(†). Thus a fundamental distinction has to be made between
the cases of a finite or infinite measure λ. Infinite measures give rise to processes that
exhibit an infinite number of jumps on bounded interval, which are often called infinite
activity processes. Finite measures give rise to much simpler processes whose sample paths
are step-functions which are called finite activity processes.

By exploiting the results on the Laplace functional of Poisson random measure, we can
compute the characteristic function of Xt+h −Xt as follows:

(6) E(eiu(Xt+h−Xt)) = exp

(
h

∫
λ(dx)(eiux − 1)

)
This shows that the increments of X are stationary, whereas additivity of J shows their
independence: we thus showed that X is indeed a Levy process.

The crucial assumption that
∫
R λ(dx) min(|x|, 1) < ∞ had to be made to ensure that

the function (u, x) 7−→ I[0,t](u)x is J integrable ∀t almost surely. If this hypothesis is not
met, the process might even be not well defined. It turns out, though, that if we replace
min(|x|, 1) with min(|x|2, 1) we can still somehow define the process X. This construction
is quite technical and we will not deal with it in detail, suffices it to say that X is defined
as the limit (in some appropriate sense) for ε→ 0 of the sequence (Xε)ε, where Xε is the
process associated to the trace of J on [0,∞)× (−ε, ε)c (which can be shown to be Poisson
with finite intensity).

Just for completeness, we close the picture by citing the deep theorem of Levy and
Ito which asserts that every Levy process can be written as the sum of a pure drift, a
Wiener process (multiplied by some constant) and a pure jump process of the same form
as processes dealt with in this section.

1.4 Martingales

We briefly recall the notion of a martingale.

Definition 9 A real valued stochastic process X is said to be a martingale if Xt is
integrable ∀t and

(7) Xt = E[Xs||FXt ]

for every t < s.

There is a very direct and simple connection between Levy processes and martingales.
Namely, if a Levy process X is integrable, then it is very easy to note that (Xt−E[Xt])t is
a martingale. Thus in particular, a Wiener process is a martingale and if X is a Poisson

(†)By convention a Poisson distribution with infinite intensity is a Dirac measure sitting at ∞
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process with intensity λ then (Xt − λt)t (the so called compensated Poisson process) is a
martingale.

2 Basic concepts in mathematical finance

We now consider a financial market where a single asset is traded(‡). We could think of
this asset as a stock or an FX (foreign-exchange) rate, i.e. the price of a unit of some
foreign currency. Given the fact that the evolution of the price process is random, it is
natural to model it as a (continuous-time) stochastic process, call is (St)t.

One of the main subjects of investigation in mathematical finance is the pricing of
derivatives. A derivative (also known as a contingent claim) with maturity T on an asset
is a contract which guarantees its holder to be paid some random amount of money at
time T depending in some way (possibly quite complicated) upon the price fluctuations
up to time T . Mathematically a derivative can be represented an FST -measurable random
variable.

For example a contract that gives its holder the right but not the obligation to buy
(resp., sell) the asset at time T at the pre-specified price K is called a call (resp., put)
option with strike K. The associated random variable is of course max(ST −K, 0) (resp.,
max(K − ST , 0)).

Any derivative can have some ”barriers” embedded in it. Barriers are of two types,
knock-in or knock-out. A derivative, call it X, with a knock-in (resp., knock-out) barrier at
level B pays out only if the price process breaches (resp., never breaches) the level B before
expiration. Mathematically the associated random variable is XI{τB<T} (resp., XI{τB>T}).
Here τB is the first hitting time of B by the price process S, i.e. τB = inf{t > 0 : St ≤ B}
or inf{t > 0 : St ≥ B} if the initial price was above the barrier B.

A one-touch (OT) option struck at level B, particularly common in the FX market, is
a knock-in barrier option where the underlying claim X is equal to 1. In other words, a
OT option pays 1 if and only if the price underlying asset ever touches the level B.

A fundamental concept in a financial market is that of admissible strategy. Its defini-
tion hinges upon the concept of stochastic integral with respect to whatever kind of class
of processes S belongs to and this is beyond the scope of this note, so we just give an
informal definition. A portfolio strategy is basically a stochastic process adapted to the
filtration FS which represents at each time how many stocks we are holding. We say that
a strategy is admissible if all the changes in its value are due to fluctuations in the stock
price and not to injections or withdrawal of money.

An arbitrage in a financial market is an admissible trading strategy such that its time
0 value is 0 whereas its time T value is non-negative and strictly positive with positive
probability. Intuitively, an arbitrage opportunity is the possibility of making money out
of nothing and it is natural that the guiding economic principle of model-building is to
avoid the existence of such an opportunity. It is the so called first fundamental theorem of
mathematical finance that gives sharp necessary and sufficient conditions for the absence

(‡)here and in the following, we are implicitly assuming the existence of a second asset whose price never
fluctuates, think of it as a bank deposit where we can put all the money we do not invest in the other asset
but that pays no interest rate.
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of arbitrage opportunities, namely (under mild conditions on the process S) the existence
of a probability measure Q equivalent(§) to the original one such that S is a Q-martingale.

A claim with maturity T is said to be attainable if there exists an admissible trading
strategy that replicates it, i.e. has a time T value equal to that of the claim. A financial
market is said to be complete if every claim is attainable. The so-called second fundamental
theorem states that an arbitrage-free market is complete if and only if the martingale
measure is unique.

In the case of a arbitrage-free complete market, the price process of a claim X can be
defined naturally as

(8) Πt(X) = EQ[X||Ft]

This definition is very natural since the resulting process Π(X) is a martingale which
is equal to X at time T.

Thus, at least ideally, the specification of any financial model should in theory start
from an arbitrary economically justifiable model and then an accurate no arbitrage analysis
should be carried out, possibly by using the fundamental theorem given above. Actually
it is often the case that a model assumes a fortiori the absence of arbitrage and makes the
additional assumption that S is a martingale. The latter practice, widely used especially
in term-structure modeling, is known as martingale modeling.

Let us conclude this section with some examples of possible models for an asset price.
A Wiener (normal model) or compensated Poisson processes of course would do, be-

cause of the relation between Levy processes and martingales we saw in the first section.
An important drawback of these processes, though, is that they do not stay positive.
This can be overcome by taking their exponential. In particular the single parameter
(lognormal) model

(9) St = eσWt− 1
2
σ2t

(where W is a Wiener process) is commonly referred to as the Black-Scholes model. The
analogous version for a purely discontinuous (two-parameter) approach(¶) is

(10) St = eln(1+J)Nt−λJt

where N is a Poisson process with intensity λ.
Both the above processes happen to be solutions of some stochastic differential equa-

tions. In particular the latter is the solution of

(11) dSt = StJ(dNt − λdt)
(§)Two measures P and Q are said to be equivalent if P(A) = 0 iff Q(A) = 0 for every A in the underlying

σ-algebra.
(¶)These two examples could be seen as particular cases of an ”exp-Levy” model by using the characteristic

exponent of the underlying Levy processes. This approach would shed some light on the intuitive meaning
of the parameters.
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so J can be seen as the percentage return on the stock when the process N jumps. The
former lognormal model, on the other hand, can be seen as the solution of

(12) dSt = StσdWt

but here the dWt integral cannot be defined as an ordinary Lebesgue-Stieltjes integral
because it can be shown that W has infinite variation. One way to circumvent this
problem has been found by Ito in the 40’s and it is referred to as the Ito integral, with
which we will not deal though. Natural generalizations of the above model have been
proposed, namely letting the σ to be stochastic. In the so-called ”local volatility” models
σ depends on St only through a deterministic function, whereas in ”stochastic volatility”
models it is allowed to be a process on its own right.

Actually the purely lognormal (constant σ) model is so common that it is used as
a benchmark in the following simple way. First note that if the underlying follows a
lognormal model with volatility σ, the price of a call option (for fixed maturity T and
strike K) is given by

(13) cBS(T,K;σ) := E[max(ST −K, 0)]

and this expression can be evaluated as a simple closed-form formula (the well-known
Black-Scholes formula). At this point, for every model M for S we could define the
lognormal implied volatility function σimpM implicitly as the unique function such that

(14) cM (T,K) = cBS(T,K;σimpM (T,K))

where of course cM (T,K) is the call price in the model M , which depends upon all the
parameters used in M itself. It is straightforward to note that if M is a lognormal model
with volatility σ∗ then we would have a flat implied volatility function σimpM (T,K) = σ∗

for every K and T .

3 Barrier and one-touch Options

One-touch (OT) options are path-dependent claims whose price depends in a non-trivial
way upon the choice of the model.

The first fact behind the effect of different models on OT prices is the following: say
model Mneg and model Mpos produce the same implied volatility at strike K, but implied
volatility is downward sloping in Mneg and upward sloping in Mpos. Then a binary put
with strike K will have a lower price in Mneg than in Mpos. The best way to see it is to
think of the binary put as a limit of put spreads, i.e.

(15) BinPut(K) ≈ Put(K + ε)− Put(K − ε)
2ε

and notice that Mneg gives a cheaper Put(K + ε) and a more expensive Put(K − ε).
The second thing to notice is that a OT down can be ”approximately” replicated with

two binary puts with the same strike. This is exactly true if the spot follows a normal
process as:

(16) dSt = σdWt
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The reasoning is simple. Buy two binaries and wait until the barrier is hit: if that never
happens everything will expire worthless, otherwise at the hitting time the two binaries
will be worth 1

2 each, enough to handle the OT. In a lognormal model as

(17) dSt = StσdWt

an at-the-money (ATM) binary will not be worth exactly 1
2 so we need a little adjustment

which can be computed for example by using the symmetry formula

(18) E[f(ST )||{S0 = x}] = E

[(
ST
x

)
f

(
x2

ST

)
||{S0 = x}

]
Now it becomes clear that the key feature of the model that determines the price of OT
options is the evolution of prices of ATM binaries, but in the light of what we saw before
that is linked in a one-to-one fashion to the evolution of ATM volatility skew. A pure
local volatility model, in which the smile tends to go in the opposite direction of the spot,
will produce higher prices for OT than an stochastic volatility model, in which the smile
typically tends to fluctuate with the spot.
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Geometric Surface Processing

for Computer Graphics

Marco Rucci (∗)

1 Introduction

The application of mathematical models based on Partial Differential Equations (PDE) to
image processing and computer graphics problems has been extremely successful over the
past 20 years. In particular, geometric surface flows have been extensively used in mesh
processing. While a large part of the image processing community solve the PDE models
using an Eulerian methodology (typically, with level sets), Lagrangian representations
of surfaces based on triangle meshes are most common in graphics. In this Lagrangian
setting, discretization of continuous flows is usually achieved through the use of discrete
differential operators or using finite element techniques.

We consider both discrete geometric flows, i.e., flows based on discrete analogous of
continuous differential geometry quantities, and variational methods. Different approaches
are based on the classical discretization of continuous models by finite volume and finite
elements schemes.

Let M0 = Image(X0) := {X0(u), u ∈ [0, 1] × [0, 1]} be a compact, closed immersed
orientable surface in R3 and X0 be the corresponding parameter map. A geometric surface
evolution consists of finding a family M(t) = Image(X(·, t)), t ∈ [0, T ), T > 0 of smooth,
closed, immersed orientable surfaces in R3 which evolve according to the flow equation
(geometric flow)

∂X

∂t
= −β

−→
N + α

−→
T ,

where
−→
N is the unit normal vector to the surface, β is a velocity applied along the normal

direction and α is the velocity in the tangent direction
−→
T .

The family of manifolds M(t) ∈ R4 moves along the normal direction driven by a
normal velocity β which may be a function, for example, of the curvature and spatial
position. The normal motion controls the geometry of the surface while the role of the

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on December 5th, 2012.
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tangential velocity is a sort of redistribution of the nodes which improves the accuracy of
the surface representation.

In order to numerically approximate the PDEs on the evolving surfaceM(t), we define
a discrete setting. The spatial approximation of M(t) is an evolving interpolated polyhe-
dral mesh consisting of a union of faces whose vertices X(t) lie on M(t), and X(t) repre-
sents the parameterization of the surface itself. We can define, discretize and approximate
differential evolutive PDE models based on local operators such as the Laplace-Beltrami,
the intrinsic gradient and divergence.

2 Smoothing

We propose a solution to the fairing or smoothness problem. Such problem is formulated
in terms of variational or energy based models in order to derive a nonlocal approach that
performs smoothing by evolving the surface according to a fourth order Non Local Surface
Diffusion Flow (NL-SDF) on M. Results are summarized in [5].

2.1 The nonlocal variational fairing

For a surface parameterization X ofM on a domain Ω, and a given vector field f ∈ RNv×3,
we consider the minimization of the following functional

(1) min
X

∫
Ω
|∇wMX|2 +

λ

2
(X − f)2dω,

where λ > 0 is a regularization parameter and ∇wM is a weighted gradient operator. The
corresponding Euler-Lagrange descent flow can be written as

(2)
∂X

∂t
=

∫
Ω

(X(y)−X(x))W (x, y)dω + λ(f −X),

with x, y ∈ Ω, (see [1] for a similar definition). Here W (x, y) is the weight function, which
satisfies W (x, y) ≥ 0, and is symmetric W (x, y) = W (y, x). The spatial discretization of
(2) on the mesh M , is

(3)
∂Xi

∂t
=
∑
j∈N(i)

Wij(Xj −Xi) + λ(fi −Xi),

where Xi denotes the value of X at the ith vertex, i = 1, . . . , Nv, and N(i) is the set of
1-ring neighbor vertices of the ith vertex.

Let f(x) := (f1, f2, f3)(x) be a vector field on M, W (x, y) is the same for all vector
components. Let X(x) := (X1, X2, X3)(x) be the coordinate function vector on M , where
X1 is the scalar function that defines the first coordinate of point x ∈M, and analogously
for the second and the third coordinate scalar functions. Then the regularizing formulation
(3) for each vector component Xk, k = 1, 2, 3, is

(4)
∂Xk

i

∂t
=
∑
j∈N(i)

Wij(X
k
j −Xk

i ) + λ(fki −Xk
i ),
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by initializing each component k of X as Xk|t=0 = fk.
If we let Wij = wij , with wij defined by cotangent weight [2] then the regularized PDEs

(4) can be interpreted as the spatial discretization on M of the well know mean curvature
flow (MCF)

(5)
∂X

∂t
= 4MX + λ(X0 −X), X|t=0 = X0,

with initial surface X0. The first term in (5) is the regularization term, while the second
one is the fidelity term.

We propose the following nonlocal weighted Laplace-Beltrami operator on M ,

(6) LwXi =
∑
j∈N(i)

(Xj −Xi)Wijwij ,

where wij are the laplacian discretization weights, while Wij depends on a similarity
measure between ith and jth vertex.

By initializing X|t=0 = X0 and using the nonlocal operator (6), then (3) can be
rewritten as

(7)
∂Xi

∂t
= LwXi + λ(X0i −Xi).

Replacing X with the mean curvature normal vector
−→
H in (4), and considering a

uniform discretization of the time interval [0, T ], T > 0, with a temporal time step τ , then
(7) can be fully discretized using, for example, an implicit scheme:

(8) (I − τLw)
−→
Hn+1
i =

−→
Hn
i ,
−→
H |t=0 =

−→
H 0,

where Lw is computed as given in (6), with initial condition
−→
H 0 determined from X0.

The two-step strategy first smooths the normal vectors allowing the mean curvature
normals to diffuse on M , then the second step refits the parameterization X according to
a given mean curvature distribution. The mean curvature smoothing (8) is ”nonlocal”.
By this we mean that a ”nonlocal” operator is used which includes weights that penalize
the similarity between patches.

3 Remeshing

Remeshing refers to the redistribution of the sampling and connectivity of the geometry in
order to satisfy mesh property requirements while maintaining surface features. We present
an adaptive remeshing method that uses the mean curvature as an intrinsic measure of
regularity. Results are reported in [3].

3.1 Adaptive Mesh Regularization

The AR method alternates equalization of edge lengths and vertex valence, which generate
a new connectivity, with adaptive mesh regularization, which modifies the distribution of
the vertices on the surface.
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The mesh regularization method consists of a two-step PDE model. In the first
step, the vertex area distribution function A(X) defined on the mesh M with vertex
set X = {Xi}nvi=1, is diffused over the mesh, constrained by the mean curvature map. In
the second step, the vertex position is tangentially relocated to obtain edges on element
stars approximately of the same size, and all the vertex areas proportional to the surface
features.

Let A0 be the initial vertex area distribution function computed as the Voronoi area
at each vertex on the mesh M , with vertex set X0. Then in STEP 1, the vertex area
distribution function A(X) is diffused on M by solving

(9)
∂A

∂t
= 4wH

M A(X), A(0) = A0.

In (9) the operator 4wH
M is the weighted Laplace-Beltrami operator discretized on the mesh

M by the matrix LwH with elements

(10) LijwH =
1∑

j∈N(i)wij


−
∑

j∈N(i)wijWij i = j

+wijWij i 6= j, j ∈ N(i)
0 otherwise

The weights Wij prevent the area diffusion in high curvature regions. They depend on
a similarity measure between the ith and the jth vertex, and are defined in terms of mean
curvature values H on the mesh M . Increasing the number of time steps, the diffusion of
(9) without weights converges to a constant area all over the entire mesh.

In STEP 2 of the AR algorithm the vertex position X is updated, taking into ac-
count the resulting A(X) area distribution obtained in STEP 1, by solving the following
constrained curvature diffusion equation

(11)
∂X

∂t
= ∇wAM · (g(|H(X)|)∇wAMX), X(0) = X0,

where the function g(·), referred to as the diffusivity, is defined as

(12) g(s) :=
1

(1 + sα)
,

where α > 0 is a small positive constant value. The geometric evolution driven by (11)
with high mean curvature values, that is, belonging to sharp creases and corners.

At each vertex Xi, linearizing (11) by evaluating g(|H(Xi)|) with Xi from the previous
time-step, the right-hand side of (11) reduces to

(13) g(|H(Xold
i )|)4wA

MXnew
i .

Finally, the displacement of the vertex Xi is in the tangent plane if we replace (11)
with

(14)
∂Xi

∂t
= (I −

−→
N i
−→
N T
i )g(|H(Xi)|)4wA

MXi, X(0) = X0,

where
−→
N i is the unit normal to the surface at Xi.
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4 Reconstruction

We introduce a novel simple surface construction procedure based on functional optimiza-
tion, which, for a given 3D curve network, automatically constructs a smooth surface
preserving sharp features defined by the user. Results are summarized in [4].

The approach we follow for surface construction is based on the surface diffusion flow

(15) 4MH = 0.

Equation (15) can be derived from minimizing the total curvature functional which leads to
a minimal energy surface. The resulting surface has to satisfy both geometric constraints,
given by a set X0 of points on the 3D curve network, and sharpness constraints associated
at each given curve, while preserving the topology defined by the polyline-mesh.

Let X0 be an initial surface which interpolates the set X0 of points on the 3D given
curves and preserves the topology defined on the base-mesh, then we solve a global op-
timization problem by applying directly to the coordinate maps X the following fourth
order flow

(16)
∂X

∂t
= 4M

−→
H + λ(X −X0), X(0) = X0,

where λ is a positive parameter which controls the effect of the data fidelity term that
places positional constraints on all vertices of the 3D curves.

The construction method is based on a preliminary step where we construct a suf-
ficiently Refined Mesh X0, which includes X0, by tessellating each polygon in the Base
Mesh following the same splitting rules of the generalized Catmull-Clark subdivision and
iterating so that each n-sided face is subdivided into 16n quads. The newly introduced
vertices move according to (16) towards a minimal energy surface which satisfies the given
geometry and feature constraints.
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Geometric quantization and

coherent states: a link between

classical and quantum mechanics

Daniele Fontanari (∗)

Abstract. A physical system can be mathematically described either in the quantum or in the
classical framework, the latter being an accurate approximation only when the magnitude of the
physical quantities that characterize the system is large compared to the value of the Planck
constant ~. It is usually accepted that the “right” classical description of a system should emerge
from the quantum one as a limit (in some sense) for ~ close to 0 (semi classical limit). The inverse
problem is also of great interest: given a classical description of a system is it possible to find a
suitable quantum one? Such a procedure, when properly defined, is called quantization. When
the classical system is described in the Hamiltonian formalism there are some natural postulates,
the Dirac quantum conditions, that should hold for the quantized system. A procedure, among
many others, that give an explicit solution is known as “geometric quantization”. The importance
of this method is because of the strong connection it maintains with the geometric structure of the
underlying classical system.
I will give a review/introduction of the basic concepts and interpretations of (non-relativistic)
Hamiltonian and quantum mechanics, in particular I will try to highlight the similarities between
the the two descriptions with examples drawn from concrete systems. Then I will proceed with an
overview of the apparatus of geometrical quantization, trying to analyze some fundamental results
and drawbacks of this procedure. Finally I will show that coherent states naturally arise in the
framework of geometric quantization (in the case of Kähler manifolds) and can be interpreted as
quantum states that best approximate the classical ones and provide a means to uncover some
aspects of the behaviour of the classical dynamics of a system in its quantum counterpart.

A physical system(†) can be described by a mathematical model which can be either
described using two different formalisms: the classical or the quantum one.

Classical mechanics gives an accurate description of the system only when the Planck
constant ~ ∼ 1.05 · 10−34Js is negligible compared to the characteristic dynamical quan-
tities of the system (such as energies or timescales).

While the classical and the quantum descriptions of a physical system are completely
different, it is usually assumed that it should be possible to recover classical mechanics

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on December 19th, 2012.

(†)In the following we will deal exclusively with non-relativistic systems.
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from quantum mechanics in the so called semi classical limit (i.e. ~ → 0). It is thus
of fundamental importance the problem of associating a classical system to the “right”
quantum one or the converse of finding a suitable quantum system given its classical
analogue. The latter goes under the name of quantization.

1 Mathematical foundations of classical mechanics

To understand the quantization procedure we must take into account the analogies and
the differences between classical and quantum mechanics. We start by analyzing a simple
classical system (a standard reference for classical mechanics is [1], while the theory of
symplectic geometry is presented in [7], the motion of a massive particle immersed in a
conservative force field. If m > 0 denotes the mass of the particle, x ∈ R3 its position and
V ∈ C∞(R3) the force potential we have that the equation of motion for the particle are

(1) mẍ = −∇V (x)

where ∇ denotes the gradient in R3 and ẍ the second derivative of x with respect to time.
It is possible to rewrite equation (1) to obtain a first order equation defined in the variables
(x, p) ∈ R6 (the phase space of the system):

(2)
ẋ =

p

m
ṗ = −∇V (x)

Defining the total energy of the system as a function (the Hamiltonian of the system)
defined on the phase space:

H(x, p) =
p2

2m
+ V (x)

we can rewrite (2) as

(3)
ẋ =

∂H(x, p)

∂p

ṗ = −∂H(x, p)

∂x
.

To generalize this situation we give the following:

Definition A symplectic manifold is a 2n-dimensional C∞ manifold M equipped with a
differential 2-form ω, the symplectic form, such that

• ω is closed (i.e. dω = 0).

• ω is non-degenerate (i.e. for p ∈ M, X ∈ TpM then ιY ιXω(p) = 0 for every
Y ∈ TpM iff X = 0).

to every function H ∈ C∞(M) it is possible to associate its Hamiltonian vector field XH

defined by:
ιXHω + dH = 0.
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XH exists and it is uniquely defined by H thanks to the non degeneracy of ω.

In this context a physical system is described by the choice of a symplectic manifold
(M, ω) and a distinguished function, the Hamiltonian, H ∈ C∞(M) such that the flow
t 7→ Φt

H of XH defines the dynamics of the system. In particular to every function
f ∈ C∞(M) it is possible to associate(‡) its evolution at time t ∈ R ft ∈ C∞(M) = f ◦Φt

H .
From the definition of XH we have that

(4)
dft
dt

= ιXHdft = ιXft ιXHω = {ft, H}

where we introduced the Poisson bracket that to every pair of functions f, g ∈ C∞(M)
associates a function {f, g} := ιXf ιXgω ∈ C∞(M).

2 Classical mechanics: Examples

The standard example of a symplectic manifold if given by M = R2n for some n with
coordinates (x1, . . . , xn, p1, . . . , p2) and ω =

∑n
i=1 dpi ∧ dxi. In this case

{f, g} =
n∑
i=1

∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi
.

In particular when n = 3 we recover (3).

A less trivial example of symplectic manifold is given by S2 equipped with its natural
oriented area form as its symplectic form. In this case, if we identify S2 by the set of
points in R3 of unitary norm then

{f, g}(x) = x · (∇f ×∇g)

We can however consider local coordinates on S2, for instance defining (XS , YS) ∈ R2

using stereographic coordinates by (here (x1, x2, x3) is a point of unitary norm in R3):

XS =
x1

1− x3

YS =
x2

1− x3

we have a local chart that cover S2 except for the north pole, while defining

XN =
x1

1 + x3

YN = − x2

1 + x3

we cover S2 but the south pole. Locally we have that

ω =
4

(1 +X2
S + Y 2

S )2
dXS ∧ dYS =

4

(1 +X2
N + Y 2

N )2
dXN ∧ dYN .

(‡)for simplicity it is assumed that the flow of XH is complete
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It is also possible to consider Cn equipped with the symplectic structure inherited by
the identification of Cn with R2n (i.e the element (z1, . . . , zn) of Cn, with zi = xi + ıpi, is
identified with (x1, . . . , xn, p1, . . . , pn)). Explicitly we have:

ω =
ı

2

n∑
i=1

dzi ∧ dz̄i.

Similarly, for S2, we can define complex coordinates zS , zN ∈ C by

zS = XS + ıYS

zN = XN + ıYN

we have that

ω =
2ı

(1 + zS z̄S)2
dzS ∧ dz̄S =

2ı

(1 + zN z̄N )2
dzN ∧ dz̄N .

Moreover we see that the transition functions between the local charts are holomorphic,
since zS = z−1

N , and so S2 is also a complex manifold (like, trivially, Cn). This will play a
central role in the following.

3 Mathematical foundations of quantum mechanics

In quantum mechanics (see for instance [2, 9] for a complete reference on the subject. Here
the theory will be only outlined) even the complete knowledge of the state of the system,
unlike the classical case, does not allow the knowledge of the outcome of the measure of
an observable (like the position or the velocity of a particle). We have instead that the
possible outcomes are driven by a probability distribution.

In this case the system is defined by a (possibly infinite dimensional) separable com-
plex Hilbert space H. Every non zero element of H represents a state of the system
(in the classical case states are represented by points of M). Observables of the system
(i.e. quantities that can be measured, their classical counterpart would be represented by
functions on M) are represented by self-adjoint operators on H. If an observable A has
discrete spectrum(§) then there exists a numerable orthonormal basis for H, (ψi)i∈I⊆N,
such that every ψi is an eigenvector of A: i.e. Aψi = λiψi for some λi ∈ R. If a generic
state ψ ∈ H is expressed as:

ψ =
∑
i∈I

ψ(λi)ψi

for ψ(λi) ∈ C ∀i ∈ I, then ‖ψ‖−2|ψ(λi)|2 is interpreted as the probability of obtaining λi
as the outcome of a measure of the observable A when the system is in the state defined
by ψ. An observable of particular importance is given by the Hamiltonian H. It measures
the energy of the system and determines the time evolution by the Schrödinger equation.

(§)this is not always the case, however for simplicity we will not consider the case of observables with
continuous or mixed spectrum.
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If ψ ∈ H is a state, we define its evolution at the time t ∈ R by:

U(t) := e
H
ı~ t

ψt = U(t)ψ

or equivalently:

ψ0 = ψ

ı~
dψt
dt

= Hψt.

It is possible to give an equivalent characterization of the dynamics where the states are
fixed and the observables are evolving (Heisenberg picture): if A is an observable, its
evolution At is defined as:

At = U(t)−1AU(t)

or equivalently:

(5)
A0 = A

dAt
dt

=
1

ı~
[At, H]

where [A,B] := AB −BA is the commutator between operators.

4 Quantum mechanics: Examples

The quantum system modelling a particle of mass m > 0, in some potential V : R3 → R,
is given by H = L2(R3) on which observables X1, X2, X3, P1, P2, P3, H are defined as

Xiφ(x) = xiφ(x)

Piφ(x) = −ı~∂φ(x)

∂xi

Hψ(x) = (
P 2

2m
+ V (X))ψ(x) = − ~2

2m
∆ψ(x) + V (x)ψ(x)

If we take H as the Hamiltonian of the system, the Heisenberg equations (5) can be
rewritten as

(6)

dXi

dt
=
Pi
m

dPi
dt

= −∂V
∂xi

(X).

While neither the spectra of Xi or Pi are discrete, it is possible to identify the probability
density relative to the (simultaneous) measurement of X = (X1, X2, X3) in the state ψ
with the function x 7→ |ψ(x)|2. On the other hand if we define

ψ̂(p) := (2π~)−
3
2

∫
ψ(x) exp

(
−ı~−1p · x

)
dx
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or, equivalently,

ψ(x) := (2π~)−
3
2

∫
ψ̂(p) exp

(
ı~−1p · x

)
dp

we have that
P̂iψ(p) = piψ̂(p).

It is known that this amounts in identifying the probability density relative to the (simul-
taneous) measurement of P = (P1, P2, P3) in the state ψ with the function p 7→ |ψ̂(p)|2.
We see however that ψ̂ is basically the Fourier transform of ψ. It is well known that if we
try to define a function ψ which is concentrated around a point x ∈ R3, then its Fourier
transform ψ̂ is spread on R3. If we identify X as the position of the particle and P as its
linear momentum this means that it is not possible to determine with arbitrary accuracy
both the position and the velocity of a particle (i.e. it is not possible to localize a state
on the phase space). This is a consequence of the more general Heisenberg indeterminacy
principle.

Another example is given by H = Cn. The Hermitian structure on H is in this case
the standard one given by

v · w =
n∑
i=1

v̄iwi v, w ∈ Cn.

It is possible to define three observables L1, L2, L3 satisfying

(7) [Li, Lj ] = ı~εijkLk

It is possible to prove that (7) alone completely determines L1, L2, L3 for any n. In concrete
system we have that H appears as the quantum space (or at least the quantum space is
a tensor product of Hilbert spaces and H appears as a factor) when we are dealing with
internal rotational degrees of freedom. It is possible to see that L2

1+L2
2+L2

3 is proportional
to the identity. Thus we can interpret L = (L1, L2, L3) as point in R3 constrained on a
sphere. Also in this case it is possible to see that, if ψ is an eigenstate of L3 (i.e. the
measure of L3 on the state is deterministic), then there is a indeterminacy in the measure
of L1 and L2. Again this can be interpreted as the impossibility to localize a state in the
phase space.

5 Quantization

It is immediate to notice the similarity between (2) and (6), and between (4) and (5) (when
{·, ·} is replaced by (ı~)−1[·, ·] and the quantum observables by their “corresponding”
classical ones). Motivated by this we investigate the possibility to extend this analogy for
generic symplectic manifolds for appropriate quantum Hilbert spaces. To do this we resort
to the so-called geometric quantization (good references for the geometric quantization
procedure are [6, 10, 14]).
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5.1 Prequantization

The first step in obtaining a quantum system from a classical one is the prequantization
procedure. The 2n-dimensional symplectic manifoldM is equipped with a natural measure
(Liouville measure) given by the 2n-form ωn. Let E be a complex vector fiber bundle over
M with 1 dimensional fibers equipped with a Hermitian scalar product (such a E is usually
called, in this context, a line bundle). If ψ1 and ψ2 are sections of E it is possible to define
the function over M (ψ1, ψ2) by taking the inner product of ψ1 and ψ2 fiber wise. It is
then possible to define 〈ψ1, ψ2〉 ∈ C as the integral of (ψ1, ψ2) overM under the Liouville
measure. If now we define H′ as the space of the sections ψ of E for which 〈ψ,ψ〉 is finite,
we have that (H′, 〈·, ·〉) is an Hilbert space.

The fiber bundle E might also be equipped with a covariant derivative ∇ compatible
with the Hermitian structure on the fibers of E. Given a vector field X tangent toM and
a section ψ of E we have that ∇Xψ is a section of E. It is a known fact that there exists
a 2-form Ω (curvature form), such that for any pair of vector fields X,Y and any section
ψ we have

ı

2
(∇X∇Y ψ −∇Y∇Xψ −∇[X,Y ]ψ) = ιXιY Ωψ.

Definition We say that a symplectic manifold (M, ω) is quantizable if there exists a
fiber bundle E equipped with a covariant derivative ∇ such that ~Ω = ω. In this case H′,
as defined above, is called the prequantum Hilbert space associated to (E,∇).

In this case, given a smooth R-valued function f on M, we can define the self-adjoint
operator Q(f) on H′ as:

Q(f)ψ(p) = −ı~∇Xfψ(p) + f(p)ψ(p).

The map Q : f 7→ Q(f) is called the quatization map.

Thanks to its definition, and to the condition on Ω, the quantization map satisfies the
following properties:

• Q is linear: Q(µf+νg) = µQ(f)+νQ(g) for every f, g functions onM and µ, ν ∈ R.

• If 1M is the function onM constantly equal to 1 and IH′ is the identity operator on
H′, Q(1M) = IH′ .

• For any pair of function f, g on M, Q({f, g}) = (ı~)−1[Q(f),Q(g)].

These properties suggest that H′ is the right space representing the quantum analogue of
M, and Q(f) the observable associated to f .

Not every symplectic manifold however admits a prequantum Hilbert space and a
quantization map, and even if they are defined they might not be unique. However we
have that

Proposition 1 [14] If the Weil integrality condition forM holds, i.e. for every oriented
2-surface Σ ⊆M we have that

1

2π~

∫
Σ
ω ∈ Z,
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then there exists at least a prequantization of M.

Moreover we have that

Proposition 2 If M is simply connected, then M does not admit more than one pre-
quantization.

This for instance implies that R2n (equipped with its natural symplectic structure)
admits a unique prequantization procedure (R2n is simply connected and it can be shown
that when ω is exact then the Weil integrality condition automatically holds). In this case
it is possible to take E as the trivial bundle over R2n, its sections can be identified with
complex valued functions on R2n and H′ = L2(R2n;ωn). In this case we have that:

Q(f)ψ(x, p) = −ı~{ψ, f}(x, p) +

(
f(x, p)−

∑
i

pi
∂f(x, p)

∂pi

)
ψ(x, p).

It is also possible to see that S2 admits a (unique) prequantization procedure if and only if
the radius of S2 is proportional to ~/2. We will see later that this leads to the well known
quantization of spin.

5.2 Geometric quantization: the real case

In general the problem of prequantization is that H′ is, in some sense, too large. In
particular it is possible to define states which are indefinitely localized in the phase space,
which contradicts Heisenberg uncertainty principle. To solve this problem we should
discard the localized states. To solve this problem we need to introduce the concept of
polarization of a symplectic manifold.

Definition LetM be a symplectic manifold. A distribution F of TM is a real polariza-
tion if

• F is integrable.

• The leaves of the foliation defined by F are n-dimensional manifold.

• For every x ∈ M and for every v, w ∈ Fx = F ∩ TxM then ιwιvω(x) = 0 (i.e. the
leaves of F are Lagrangian submanifolds of M).

We say that a smooth section ψ of the line bundle E overM is polarized (with respect
to the polarization F) if, for every x ∈ M and X ∈ Fx, ∇Xψ = 0. Obviously the
polarized sections defines a vector space. Chosen a polarization F ofM, with line bundle
E admitting a prequantum space H′, we consider, as our quantum Hilbert space H, the
subset of H′ defined by polarized square-integrable sections. For example, whenM = R2n

a standard choice is the polarization spanned by ∂
∂p1

, . . . , ∂
∂pn

. In this case a polarized
section is a function ψ depending on the x coordinates alone and

Q(f)ψ(x) = −ı~
∑
i

∂ψ(x)

∂xi

∂f(x, p)

∂pi
+

(
f(x, p)−

∑
i

pi
∂f(x, p)

∂pi

)
ψ(x).
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in particular we have that, if f is a function of the x variables alone,

Q(f)ψ(x) = f(x)ψ(x)

Q(pi)ψ(x) = −ı~∂ψ(x)

∂xi

as expected.

5.3 Geometric quantization: the Kähler case

The previous construction is still unsatisfactory. For instance it is easy to see that not
every symplectic manifoldM admits a real polarization, for example the sphere does not.
Moreover H as defined above may be empty: if we consider the case of M = R2n it
is immediate to check that non-zero functions depending only on the x variable are not
integrable. To overcome these problem we introduce the concept of complex polarization:

Definition LetM be a symplectic manifold. A complex polarization F is a distribution
on the complexified tangent space of M, TMC = TM⊗ C, such that

• F is integrable.

• At every point of M, F has (complex) dimension n.

• For every x ∈ M and for every v, w ∈ Fx then ιwιvω(x) = 0 (where the domain of
ω is trivially extended by linearity to TCM).

We say that a smooth section ψ of the line bundle E overM is polarized (with respect
to the polarization F) if, for every x ∈ M and X ∈ Fx, ∇Xψ = 0 (here ∇ is trivially
extended by linearity to TCM). An interesting situation arises when M is a Kähler
manifold:

Definition A symplectic manifoldM is a Kähler manifold if it admits a complex structure
compatible with the symplectic one:

ω(ıv, ıw) = ω(v, w).

In this case we have that

Proposition 3 IfM is a Kähler manifold then the distribution spanned by the vector fields
∂
∂z̄i

defining the antiholomorpic tangent space of M is a complex distribution. Polarized
sections are the ones whose local representatives are holomorphic functions.

For instance both Cn and the sphere are Kähler manifolds. In all the practical cases H
is non-trivial (i.e. there exist non-zero holomorphic sections which are square-integrable),
for example in the case of the sphere of radius ~n

2 , H can be identified with the space of
polynomials of degree not greater that n, which is isomorphic to Cn. In this case we have
that if x ∈ R3 with ‖x‖ = ~n

2 parametrizes the sphere, then Q(xi) = Li as defined before.
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5.4 BKS Quantization

Even in the Kähler case there is still a problem. Namely, if ψ is a polarized state and
f is a function on M, then Q(f)ψ might be not polarized. We should then restrict the
analysis only to polarized observables (i.e. Q(f)ψ is polarized as long as ψ is polarized).
It is known (from the celebrated Grönewold-van Hove theorem and its variants, see [4, 5,
13]) that there are not many observables that are polarized. To overcome this difficulty it
is possible to modify the quantization procedure. Since H is (in the Kähler case) a closed
subspace of H′ it is possible to define the orthogonal projection π of H′ onto H. If we
define

QBKS(f) = π ◦ Q(f)

or equivalently
〈ψ′,QBKS(f)ψ〉 = 〈ψ′,Q(f)ψ〉

for every pair of polarized sections ψ,ψ′, we have that QBKS(f)ψ is polarized for every ψ
and QBKS(f) = Q(f) when f is a polarized observable. The drawback of this method is
that now we have the weaker condition on QBKS:

QBKS({f, g}) = (ı~)−1[QBKS(f),QBKS(g)] +O(~)

however it can be shown that for any reasonable quantization procedure this is unavoidable.

6 Coherent states

Even if now we are able to associate to a classical system a quantum one, we still would
like to be able to compare in a more direct way the dynamics in the two framework, in
particular we would like to find the “right” quantum state ψp ∈ H which is the most
localized in the point p ∈ M (clearly with respect to the limitations imposed by the
Heisenberg uncertainty relations). We have that the linear map H 3 ψ 7→ ψ(p) ∈ C is
continuous. Thanks to the Riesz representation theorem this means that there exists a
state ψp ∈ H, the coherent state centered in p (more on coherent states, whose presence is
ubiquitous in physics, can be found in [3, 8], an interesting study on the relation between
BKS-quantization and coherent states can be found in [11, 12], such that 〈ψp, ψ〉 = ψ(p). It
is also possible to see ψp as the projection on H, through π, of the Dirac delta distribution
centered in p (it is possible to extend the domain of π to the space of distributions) and
so ψp can be rightfully thought as the most localized state in p. It results also that ψp is,
among the elements of H of the same norm, the state which attains the maximum absolute
value in p.

Given a state ψ we can thus interpret Hψ(p) := |ψ(p)|2 = |〈ψp, ψ〉|2, the Husimi
distribution of ψ, as the probability to find ψ localized in p and so, if we are interested in
analyze the classical orbit of a point p0 ∈M from a quantum perspective, then we should
study Hψp0 (t)(p).

While the theory that compares the quantum evolution of coherent states with its
classical counterpart is largely to be developed, there are hints that suggest that there
exists a strong link between the two behaviours. In particular from numerical simulations
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it seems that localized chaotic structures on the phase space, typical of perturbed super-
integrable systems, emerge in the quantum analogue. A result that help to understand
the connection between the classical and quantum framework is the following:

Proposition 4 Let h ∈ C∞(M) a classical Hamiltonian function and ψ ∈ H a quantum
state. If we denote by Hψt the Husimi distribution of the state ψt, the evolution of ψ at
the time t under the quantum Hamiltonian QBKS(h), and by Hψ(t) the evolution of Hψ at
the time t under the classical flow of h, we have that:

d

dt
(Hψ(t)−Hψt)|t=0

= O(~)

This proposition implies that the wave function of a coherent state relative to a point p
in M should evolve (at least for short timescales and when ~ can be ignored) along the
classical orbit of p.
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Bull. Cl. Sci. 37 (1951), 610–620.

[14] Woodhouse, N.M.J., “Geometric Quantization”. 2nd edn., Clarendon Press, Oxford, 1994.
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The Probabilistic Zeta Function

Duong Hoang Dung (∗)

Let G be a finite group and choose randomly k elements in G. One could ask whether
those elements generate the group G, and what the probability P (G, k) for this event is.
The answer is easy and dates back to P. Hall in 1936 as the following:

Theorem 1 [9] Let G be a finite group. The probability that k randomly chosen elements
generate the group G is calculated by the following formula

P (G, k) =
∑
H≤G

µG(H)

|G : H|k

where µG(H) is the Möbius function defined over the subgroup lattice of G recursively by
µG(G) = 1 and µG(H) = −

∑
H<K≤G µG(K) if H < G.

Examples 2

• Let G = Cp be the cyclic group of prime order p. Then

P (G, t) = 1− 1

pt

• Let G = Sym(3) be the group of permutations on 3 letters. The subgroup lattice of
G is described as the following:

Sym(3) 1

3

VVVVVVVVVVVVVVVVVVVVV

〈(123)〉 −1

2
ppppppppppp

NNNNNNNNNNN
〈(12)〉 −1

3

〈(13)〉 −1

ppppppppppp

3

NNNNNNNNNNN

〈(23)〉 −1

〈1〉 3

hhhhhhhhhhhhhhhhhhhhhhhh

a1 = µG(Sym(3)) = 1
a2 = µG(〈(123)〉) = −1

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on January 30th, 2013.
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a3 = µG(〈(12)〉) + µG(〈(13)〉) + µG(〈(23)〉) = −3
a6 = µG(〈1〉) = 3

P (Sym(3), t) = 1− 1

2t
− 3

3t
+

3

6t
=

(
1− 1

2t

)(
1− 3

3t

)
• G = Cn, the cyclic group of order n.

P (G, t) =
∏
p|n

p prime

(
1− 1

pt

)

• Let G = Ckp be the direct product of k copies of Cp, then

P (G, t) =
k−1∏
i=0

(
1− pi

pt

)

• Let G = Alt(4) be the alternating group of degree 4, then

P (G, t) =

(
1− 2

2t

)(
1 +

2

2t

)(
1− 1

3t

)

Proof. Let Φ(G, t) be the set of ordered t-tuples (g1, · · · , gt) such that 〈g1, · · · , gt〉 = G.
Since every t-tuple generates a subgroup, we have∑

H≤G
Φ(H, t) = |G|t

By Möbius inversion formula, we obtain

Φ(G, t) =
∑
H≤G

µG(H)|H|t

Dividing by |G|t in both sides gives us

P (G, t) =
Φ(G, t)

|G|t
=
∑
H≤G

µG(H)|H|t

|G|t
=
∑
H≤G

µG(H)

|G : H|t

We next would like to ask whether we have some analogue interpretations via subgroups
and quotients. The following result dues to Gaschütz in [8]:

Theorem 3 Let N E G be a normal subgroup of G. Then

P (G, t) = P (G/N, t)P (G,N, t)
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where P (G,N, t) is the conditional probability that k randomly chosen elements generated
G given that they together with N generate G.

One could expect that P (G,N, t) = P (N, t). However, it is sometimes true in some cases.

Example 4 Let G = Sym(5) and N = Alt(5), then by [1], we have that

P (Sym(5), t) = P (C2, t)P (Alt(5), t)

and so P (Sym(5),Alt(5), t) = P (Alt(5), t). However, if G = Sym(3) and N = Alt(3) = C3,
we have that

P (Sym(3),Alt(3), t) =

(
1− 3

3t

)
6= P (C3, t) = 1− 1

3t

Remark 5 As we have seen above, notice that if P (G, t) is irreducible, then it is easy to
see that G is a simple group. However, the converse does not hold. The following example
is also due to [1]:

P (PSL(2, 7), t) =

(
1− 2

2t

)(
1 +

2

2t
+

4

4t
− 14

7t
− 28

14t
+

21

21t
− 28

28t
+

42

42t

)

A question arises naturally is whether there exist examples of groups G such that PG(s)
has a non-trivial factorization which does not come from normal subgroups, in particular,
whether PG(s) is irreducible when G is a simple group. The answer is positive for all
abelian simple groups, being PZ/pZ(s) = 1 − 1/ps. For nonabelian simple groups, some
results were obtained my Damian, Lucchini and Morini in [4] as follows:

Theorem 6

(1) For any prime p ≥ 5, the polynomial PAlt(p)(s) is irreducible.

(2) If p = 2t − 1 and t ≡ 3 mod 4 then PPSL(2,p)(s) is reducible.

These were extended by recent results of Patassini appeared in [13] and [15] in the following

Theorem 7

(1) Assume that k ≥ 5. If k ≤ 4.2 · 1016 or k ≥ (ee
15

+ 2)3, then PAlt(k)(s) is irreducible.
If we assume the Riemann Hypothesis, then PAlt(k)(s) is always irreducible.

(2) Let S be a simple group of Lie type. Then PS(s) is reducible if and only if S ∼= A1(p)
for some Mersenne prime p such that log2(p+ 1) ≡ 3 mod 4.

One then may ask which extra relationships between the combinatorial properties of
P (G, s) and the structural properties of G itself. There are many beautiful results have
been being obtained. The following is about solvable groups:

Theorem 8 Let G be a finite group. The following are equivalent:
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• G is (pro)solvable.

• P (G, s) can be written as the product of (1 − ci/qsi ) where ci ≥ 0 and qi is a prime
power.

• The sequence {an(G)}, where an(G) =
∑
|G:H|=n µG(H), is multiplicative, i.e., am.n(G) =

an(G)am(G) whenever m and n are coprime.

Remark 9 Notice that if G is solvable, then 1/P (G, s) is a Dirichlet series with positive
coefficients. It does not hold in general for non-solvable group.

Example 10 Let G = Alt(5) then

P (G, s) = 1− 5

5s
− 6

6s
− 10

10s
+

20

20s
+

60

30s
− 60

60s

while

1/P (G, s) = 1 +
5

5s
+

6

6s
+

10

10s
− 20

20s
+ · · ·

Conjecture 11 Let G be a finite group. Then G is solvable if and only if 1/P (G, s) is a
Dirichlet series with positive coefficients.

Another interesting connected problem is about the order complex associated to finite
groups, as described as follows. Let C(G) be the poset consisting of proper right cosets
Hx in the finite group G, ordered by inclusion Hx < Ky if and only if H ≤ K and
Kx = Ky. The simplicial complex is denoted by ∆(G) whose faces are the finite chains
H1g1 < H2g2 < · · · < Hkgk of elements of C(G). The reduced Euler characteristic of C(G)
is defined by χ(∆(C(G))) :=

∑
n(−1)nan = −1 + a0− a1 + · · · , where an is the number of

chains in C(G) of length n. Brown noticed in [2] that

Theorem 12 Let G be a finite group, then

χ̃(∆(C(G))) = −P (G,−1)

As known that if χ̃(∆(C(G))) 6= 0 then the simplicial complex ∆(C(G)) is not contractible.
Brown then conjectured that

Conjecture 13 Let G be a finite group. Then P (G,−1) 6= 0. That means the simplicial
complexes of finite groups are non-contractible.

He showed in [2] that the conjecture holds for solvable groups. Recently, Patassini showed
that the conjecture holds for classical groups, PSL(2, q), Suzuki and Ree groups (see [14,
16]). Other cases are still open. Notice that the conjecture can be verified for sporadic
simple groups in GAP.
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As we know, for finite groups, probability just means quotient. However, it is not the
same for infinite groups. We need measures on groups. Luckily, they exist on compact
groups, known there as Haar measure. More precisely, we will be considering profinite
groups, i.e., inverse limits of finite groups. Let us first introduce about profinite groups
and Haar measures on them.

A topological group is a group G which is also a topological space, such that the maps
g 7→ g−1 : G → G and (g, h) 7→ gh : G × G → G are both continuous. An easy example
of topological groups are finite groups endowed with discrete topology. A profinite group
is a compact Hausdorff topological group whose open subgroups forms a base for the
neighborhoods of the identity. For such a group G, a subgroup is open if and only if it
is closed and has finite index. And so the family of all open subgroups of G intersects in
{1}. Moreover, a subset of G is open if and only if it is a union of cosets of open normal
subgroups.

A second definition of profinite groups is based on the concept of an inverse limit. We
recall briefly what it is. A directed set is a non-empty partially ordered set (I,≤) with the
property that for every i, j ∈ I, there exists k ∈ I such that k ≥ i and k ≥ j. An inverse
system of sets (or groups, rings or topological spaces) over I is a family of sets (or groups,
etc.) (Gi)i∈I with maps (respectively homomorphisms, continous maps) φij : Gi → Gj
whenever i ≥ j, satisfying ϕii = IdGi and ϕjk ◦ϕij = ϕik whenever i ≥ j ≥ k, where ”f ◦g
means do g first, then f”. The inverse limit

lim←−Gi = lim←−(Gi)i∈I .

is the subset (or subgroup, etc.) of the Cartesian product
∏
i∈I Gi consisting of all (gi)

such that ϕij(gi) = gj whenever i ≥ j. Hence, if for each i, let πi be the projection from
lim←−Gi to Gi, then for i ≥ j, we have that ϕij ◦πi = πj . The inverse limit must be universal
in the sense that if there is an object Y together with projections λi : Y → Gi satisfying
ϕij ◦ λi = λj then there is a unique morphism φ : Y → lim←−Gi such that πi ◦ φ = λi for
each i ∈ I.

If each Gi is a finite group endowed with discrete topology and
∏
i∈I Gi is given the product

topology, then lim←−Gi becomes a topological group, and this topological group is profinite.

If I is a family of normal subgroups of a given group G which is closed under taking
intersection, we may order I by reverse inclusion, i.e., N ≥ M whenever N ⊆ M , and
obtain an inverse system (G/N)N∈I . And so the maps ϕN,M are the natural epimorphisms
G/N → G/M for N ⊆M . We now come to the identicality of two definitions of profinite
groups

Proposition 14 If G is a profinite group then G is (topologically) isomorphic to lim←−N/oG(G/N).

Conversely, the inverse limit of any inverse system of finite groups is a profinite group.

Note that lim←−(G/N), where N ranges over all normal subgroups of G of finite index,

is called the profinite completion of G, denoted by Ĝ. If G is residually finite, i.e., the
intersection of all above N ’s is trivial, then G is embedded into its profinite completion.
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Equivalently, a profinite group is an inverse limit of finite groups (see [6, Proposition 1.3,
p. 17]).

A typical example for a profinite group is Zp, the group of p-adic integers, where p is
a fixed prime. We can express the expansion of elements in Zp as

Zp = lim←−
n

Z/pnZ =

(xn)n≥0 ∈
∏
n≥0

Z/pnZ : for all n, xn+1 ≡ xn mod pn

 .

We also define the ring Ẑ to be the profinite completion of Z. That is

Ẑ = lim←−
n

Z/nZ =

{
(xn)n≥1 ∈

∞∏
n=1

Z/nZ : for all n|m, am ≡ an mod n

}
.

It is also true that
Ẑ ∼=

∏
p

Zp.

Profinite groups take attentions of many number theorists since they in fact arise in
number theory as Galois groups of (finite or infinite) Galois extensions of fields, with
appropriate topology. Historically, this is the original motivation for the study of profinite
groups, and Galois theory remains the main area of applications of results in profinite
groups (see [17, Chapter 3]).

When talking about generators of a profinite group, we mean generators as a topo-
logical group, i.e., X generates G means that G is the smallest closed subgroup of G
containing X. The closure of arbitrary subset X is X =

⋂
XN , with N ranging over all

open normal subgroups of G. If follows that X generates G if and only if each finite factor
G/N is generated by XN/N . Thus G is generated, by d elements, say, if and only if each
finite factor group G/N can be generated by d elements. So now, let G be a profinite
group and µ the normalized Haar measure on G or on some direct power Gk. Now fix k
and write

X(G, k) = {(x1, · · · , xk) ∈ Gk|〈x1, · · · , xk〉 = G}

to denote the set of all k-tuples topologically generating the group G. We may therefore
define

P (G, k) = µ(X(G, k))

to be the probability that a random k-tuple generates G. Thus 0 ≤ P (G, k) ≤ 1, and if
P (G, k) > 0 then d(G) ≤ k, where d(G) is the minimal number of generators of G.

Definition 15 A group G is called positively finitely generated (PFG) if P (G, k) > 0 for
some choice of k ∈ N.

Hence a PFG group is finitely generated. However, for a d-generated group G, it does
not always hold that P (G, d) > 0. Kantor and Lubotzky showed in [10] that the group
G =

∏
n≥n0

Alt(n)n!/8 is 2-generated but P (G, t) = 0 for all t > 0.
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Mann conjectured in [11] that for a PFG group G, the values P (G, k) can be interpo-
lated to an analytic function defined in some right half-plane of the complex plane. He
then conjecture in [12] that if G is a PFG group, then the following series

PG(s) :=
∑
H≤0G

µG(H)

|G : H|s

converges absolutely in some right half-complex plane. Moreover, he noticed that, if the
later conjecture holds, then PG(k) = P (G, k) for every k ≥ 1.

So now we consider, generally, G to be a finitely generated profinite group. For each
n ∈ N, let

an :=
∑

|G:H|=n

µG(H)

and rewrite the series PG(s) as the following

PG(s) =
∞∑
n=1

an
ns

Example 16 Let G = Ẑ be the profinite completion of Z. Then

PẐ(k) =

{
1/ζ(k) , k > 1
0 , k = 1

We do not know whether the series PG(s) converges, however, the inverse of PG(s) is called
the probabilistic zeta function of G (Boston, Mann).

Hall noticed in [9] that if µG(H) 6= 0 then H is an intersection of maximal subgroups.
In this case, H contains the Frattini subgroup Frat(G) which is the intersection of all
(closed) maximal subgroups of G. It implies in particular that PG(s) = PG/Frat(G)(s).

Example 17 Let G be a finitely generated pro-p-group. Then G/Fratt(G) ∼= C
d(G)
p , and

so

PG(s) =

d(G)−1∏
i=0

(
1− pi

ps

)

Conjecture 18 Let G be a finitely generated profinite group. Then PG(s) is rational if
and only if G/Frat(G) is a finite group.

It was also shown in [5] by Detomi and Lucchini that the conjecture holds for prosolvable
groups. For non-prosolvable groups, several results have been obtained in [5] and [7].
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To a finitely generated profinite group G, we associated another Dirichlet series as the
following:

ζG(s) =
∞∑
n=1

bn
ns

where, for each positive integer n, bn := bn(G) is the number of open subgroups of index
n in G. The series ζG(s) is called the subgroup zeta function of G.

Example 19 Let G = Ẑ, then
ζG(s) = ζ(s)

the Riemann zeta function.

So, in this case, PẐ(s)ζẐ(s) = 1. We say that a group G is ζ-reversible if PG(s)ζG(s) = 1.

One could ask the characterization of ζ-reversible groups. Notice that PG(s)ζG(s) = 1 is
equivalent to the following:...

Corollary 20 If PH(s) = PG(s) for any open subgroup H of G then G is ζ-reversible.

Conjecture 21 Let G be a profinite group. Then G is ζ-reversible if and only if PG(s) =
PH(s) for every open subgroup H of G.

If G is a finitely generated pro-p-group, then G/Frat(G) ∼= C
d(G)
p and so PG(s) =

P
C
d(G)
p

(s). Hence, the Conjecture 21 is equivalent to the following

Conjecture 22 Let G be a finitely generated pro-p-group. Then G is ζ-reversible if and
only if d(G) = d(H) for every open subgroup of G.

The conjecture is still open. Some partial results have been obtained by Damian in Luc-
chini (see [3]).
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Hardy type inequalities on the cone

of monotone sequences

Zhanar Taspaganbetova (∗)

Abstract. Weighted Hardy type inequalities restricted to the cones of monotone functions and
sequences have been extensively studied in the last decades, especially in view of their applications
in the estimation of maximal functions, in the theory of interpolation of operators and in the
embedding theory of function spaces. In this talk, we introduce a Hardy type inequality on the
cone of non-negative and non-increasing sequences. We give the statement and motivation of the
problem. We describe the development and current status of the theory of Hardy type inequalities
on the cones of monotone functions and sequences. Moreover, we also present some open problems.

1 Historical notes on the problem

The properties of the cone of monotone sequences of real numbers, of the cone of mono-
tone functions, and several related extremum problems have an important significance in
functional analysis, in the problems of the mathematical economics, of the theory of proba-
bility and statistics. The approximation numbers of operators, quantitative characteristics
of the best approximations of functions, moment sequences of function are monotone se-
quences of numbers, which carry certain information. Many qualitative properties of this
type can be expressed by functional relations of monotone sequences.

It is known that the properties of a class of functions or of a class of sequences of
numbers can be obtained from the functional relations of their non-increasing rearrange-
ments, which are monotone functions and monotone sequences, respectively. Therefore,
the problem of establishing the various functional relationships on the cone of monotone
sequences of numbers is an actual direction of mathematical analysis.

Hardy type inequalities on the cone of monotone functions and sequences have some
applications in the investigation of boundedness of operators in Lorentz spaces and in the
embedding theory in Lorentz spaces.

Hardy type inequalities on the cone of monotone functions and sequences have been
intensively studied during the last two decades. In 1990 M. Ariño and B. Muckenhoupt

(∗)The L. N. Gumilyov Eurasian National University, Munaitpasov st., 5, 010008, Astana, Kazakhstan;
E-mail: . Seminar held on February 6th, 2013.
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[1] obtained a necessary and sufficient condition for the validity of the following inequality

(1.1)

 ∞∫
0

1

t

t∫
0

f(s)ds

q

u(t)dt


1
q

≤ C

 ∞∫
0

fp(t)v(t)dt

 1
p

on the cone of non-negative and non-increasing functions f in the case 1 ≤ p = q < ∞
and u(t) = v(t). Previously, such problems were studied by D.W. Boyd [2] in 1967 and by
S.G. Krein, Yu.I. Petunin, E.M. Semenov [3].

E. Sawyer [4] has extended the result of M. Ariño and B. Muckenhoupt to the case of
different weights v and u and 1 < p, q < ∞. Nowadays this result of E. Sawyer is known
as the Sawyer duality principle. Moreover, E. Sawyer [4] has used this duality result to
obtain necessary and sufficient conditions for which (1.1) holds for all non-negative and
non-increasing functions f in the case 1 < p, q <∞. This result of E. Sawyer was extended
by V.D. Stepanov [5] to the cases 0 < q < 1 < p <∞ and 0 < p ≤ q <∞, 0 < p < 1. M.L.
Goldman [6], G. Bennett and K.-G. Grosse-Erdmann [7] have characterized the weights u
and v, for which inequality (1.1) holds for all non-negative and non-increasing functions f
in the case 0 < q < p < 1. The duality principle for the case 0 < p ≤ 1 has been proved in
[5], [8] and [9]. A simpler proof of the Sawyer duality principle has been obtained by V.D.
Stepanov [5], M.J. Carro and J. Soria [8]. Some generalizations of Sawer duality formula
were proved by D.E. Edmunds, R. Kerman, L. Pick [10] and A. Kamińska, M. Mastylo
[11].

At the same time the investigation and generalization of the discrete Hardy inequality

(1.2)

 ∞∑
i=1

ui

1

i

i∑
j=1

fj

q
1
q

≤ C

( ∞∑
i=1

vifi
p

) 1
p

on the cone of monotone sequences f ≥ 0 was developed. Results on weighted Hardy
inequalities on the cone of monotone sequences have been obtained by K.F. Andersen,
H.P. Heinig [12], H.P. Heinig [13], L. Leindler [14], M.Sh. Braverman, V.D. Stepanov [15],
J. Nemeth [16], F.P. Cass, W. Kratz [17], P.D. Johnson, R.N. Mohapatra, David Ross
[18], R. Oinarov, S.Kh. Shalgynbaeva [19], G. Bennett, K.-G. Grosse-Erdmann [7], M.L.
Goldman [6], [20], [21], S.Kh. Shalgynbaeva [22] and others.

In 1998 R. Oinarov, S.Kh. Shalgynbaeva [19] obtained an analogue of the Sawyer
duality principle for the discrete case if 1 < p, q < ∞. This result of R. Oinarov, S.Kh.
Shalgynbaeva allows to reduce a Hardy type inequality on the cone of monotone sequences
to a corresponding inequality on the cone of non-negative sequences from lp,v. Moreover,
R. Oinarov, S.Kh. Shalgynbaeva [19] have obtained criteria for the validity of inequality
(1.2) for some other values of the parameters p and q.

In 2006 G. Bennett and K.-G. Grosse-Erdmann [7] obtained a complete characteriza-
tion of the weights for which the Hardy inequality (1.2) holds on the cone of monotone
sequences of different nature of the conditions of S.Kh. Shalgynbaeva.

M.L. Goldman in his papers has studied inequalities of the type (1.2) on the cone of
monotone sequences and has applied the corresponding results to establish Hardy inequal-
ities on the cone of quasi-monotone sequences, see e.g. [6], [20], [21].

Università di Padova – Dipartimento di Matematica 53



Seminario Dottorato 2012/13

Nowadays inequalities on the cone of monotone functions and sequences are still being
intensively developed. This fact is confirmed by a great number of recent publications.
For a history of Hardy type inequalities on the cones of monotone functions and sequences
and for references to related results we refer to the book of A. Kufner, L. Maligranda and
L.-E. Persson [23, Chapter 1], and to the PhD thesis of O. Popova [24].

2 Introduction

Let 1 < p, q < ∞, 1
p + 1

p′ = 1 and u = {ui}∞i=1, v = {vi}∞i=1 be positive sequences of real
numbers. Let lp,v be the space of sequences f = {fi}∞i=1 of real numbers such that

‖f‖p,v :=

( ∞∑
i=1

|vifi|p
) 1

p

<∞, 1 < p <∞.

We consider an inequality of the following form

(2.1)

 ∞∑
i=1

uqi

 i∑
j=1

ai,jfj

q
1
q

≤ C

( ∞∑
i=1

vpi fi
p

) 1
p

on the cone of non-negative and non-increasing sequences f = {fi}∞i=1 of lp,v, where C is
a positive constant independent of f and (ai,j) is a non-negative triangular matrix with
entries ai,j ≥ 0 for i ≥ j ≥ 1 and ai,j = 0 for i < j.

In [22] S.Kh. Shalgynbaeva has obtained necessary and sufficient conditions for the
validity of (2.1) on the cone of monotone sequences for 1 < p ≤ q < ∞ under the
assumption that there exists d ≥ 1 such that the inequalities

(2.2)
1

d
(ai,k + ak,j) ≤ ai,j ≤ d(ai,k + ak,j), i ≥ k ≥ j ≥ 1

hold.

Notation: If M and K are real valued functionals of sequences, then we understand that
the symbol M � K means that there exists c > 0 such that M ≤ cK, where c is a constant
which may depend only on parameters such as p, q and rn, but not on the sequences in
the arguments of M and K. If M � K �M , then we write M ≈ K.

3 Preliminaries and notation

In [25], the classes O+
n and O−n of matrices (ai,j) were defined for n ≥ 1. Now we will give

equivalent definitions of such classes.

We denote the elements of O+
n or of O−n by the symbol (a

(n)
i,j ).

We define the classes O+
n , n ≥ 0 by induction. Let (ai,j) be a matrix which is non-

negative and non-decreasing in the first index for all i ≥ j ≥ 1. The class O+
0 consists of
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the matrices of the type a
(0)
i,j = αj , i ≥ j ≥ 1. Let the classes O+

γ , γ = 0, 1, . . . , n−1, n ≥ 1

be defined. By definition, the matrix (ai,j) ≡ (a
(n)
i,j ) belongs to the class O+

n if and only

if there exist matrices (a
(γ)
i,j ) ∈ O+

γ , γ = 0, 1, . . . , n− 1 and matrices (bn,γi,k ), γ = 0, 1, . . . , n
such that

(3.1) a
(n)
i,j ≈

n∑
γ=0

bn,γi,k a
(γ)
k,j

for all i ≥ k ≥ j ≥ 1, where bn,ni,k ≡ 1.

As above, we introduce the classes O−m, m ≥ 0. Let (ai,j) be a matrix which is non-
negative and non-increasing in the second index for all i ≥ j ≥ 1. By definition a matrix

(ai,j) = (a
(0)
i,j ) belongs to the class O−0 if and only if it has the form a

(0)
i,j = βi for all

i ≥ j ≥ 1. Let the classes O−γ , γ = 0, 1, . . . ,m − 1, m ≥ 1 be defined. A matrix

(ai,j) = (a
(m)
i,j ) belongs to the class O−m if and only if there exist matrices (a

(γ)
i,j ) ∈ O−γ ,

γ = 0, 1, . . . ,m− 1 and matrices (dγ,mk,j ), γ = 0, 1, . . . ,m such that

(3.2) a
(m)
i,j ≈

m∑
γ=0

a
(γ)
i,k d

γ,m
k,j

for all i ≥ k ≥ j ≥ 1, where dm,mk,j ≡ 1.

It is obvious that the classes O±1 include the matrices, whose entries satisfy conditions
(2.2). This implies that the classes O+

n , n ≥ 1 and O−m, m ≥ 1 are wider than the classes
of matrices which have been used in this connection before.

Such classes of operators include a lot of well-known classical operators such as the
operator of multiple summation, Hölder’s operator, Cesàro operator and others.

A continuous analogue of the classes O+
n and O−n , n ≥ 0 has been studied by R. Oinarov

in [26].

4 Main result

We define

Vk =

k∑
i=1

vpi , Aik =

k∑
j=1

ai,j , E1 = sup
s≥1

V
− 1
p

s

(
s∑
i=1

Aqiiu
q
i

) 1
q

,

E2 = sup
s≥1

 s∑
k=1

(
V
− p
′
p

k − V
− p
′
p

k+1

)( ∞∑
i=s

Aqiku
q
i

) p′
q


1
p′

,

E3 = sup
s≥1

 ∞∑
k=s

uqk

(
s∑
i=1

Ap
′

ki

(
V
− p
′
p

i − V
− p
′
p

i+1

)) q
p′
 1

q

.

Università di Padova – Dipartimento di Matematica 55



Seminario Dottorato 2012/13

Theorem 4.1 Let 1 < p ≤ q < ∞. Let the matrix (ai,j) in (2.1) belong to the class
O+
m∪O−m, m ≥ 0. Then the inequality (2.1) on the cone of non-negative and non-increasing

sequences f ∈ lp,v holds if and only if at least one of the conditions E12 = max{E1, E2} <
∞ and E13 = max{E1, E3} < ∞ holds. Moreover, E12 ≈ E13 ≈ C, where C is the best
constant in (2.1).
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[24] O. Popova, “Weighted Hardy-type inequalities on the cones of monotone and quasi-concave
functions”. PhD thesis, Lule̊a University of Technology, SE-971 87 Lule̊a, Sweden and Peoples’
Friendship University of Russia, Moscow 117198, Russia, 2012.

[25] R. Oinarov, Zh. Taspaganbetova, Criteria of boundedness and compactness of a class of matrix
operators. Journal of Inequalities and Applications 2012:53 (2012), 1–18.

[26] R. Oinarov, Boundedness and compactness of integral operators of Volterra type. Sibirskii
Matematicheskii Zhurnal 48/5 (2007), 1100-1115.
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Ideas in finite group theory

Martino Garonzi (∗)

Abstract. In this note I present some of the main ideas of finite group theory, starting with
examples of non-abelian groups (groups of matrices and groups of permutations), going to Galois
theory, i.e. the way polynomials and groups interact, and finally simple groups, solvable groups
and their role in understanding when the roots of a polynomial can be expressed by starting with
the coefficients and performing sums, differences, products, divisions and root extractions. After
that I will present my research topic with examples and some results.

When dealing with operations there are two possible notations, the additive notation
and the multiplicative notation. In the additive notation the operation between two group
elements a, b is denoted a+ b and the identity element is denoted 0. In the multiplicative
notation the operation between two group elements a, b is denoted a · b or simply ab and
the identity element is denoted 1. Usually the additive notation is reserved for the abelian
case. I will mostly use the multiplicative notation. I will assume the reader to be familiar
with the basic properties of groups and fields. The notation H ≤ G means that H is a
subgroup of G, and the notation H �G means that H is a normal subgroup of G.

The given bibliography provides good reference books for the theory of (finite) groups.

I will start by recalling the isomorphism theorem.

Theorem 1 (Isomorphism Theorem) Let ϕ : G→ H be a group homomorphism and let
N := ker(ϕ) be the kernel of ϕ, i.e. the set of elements g ∈ G such that ϕ(g) = 1. Then
G/N ∼= ϕ(G) via the canonical isomorphism gN 7→ ϕ(g).

1 Some examples of groups

Usually abelian groups (commutative groups), i.e. groups in which any two elements a, b
verify ab = ba (“commute”), are familiar to every mathematician. Let us start with some
examples of non-abelian groups.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on February 27th, 2013.

Università di Padova – Dipartimento di Matematica 58



Seminario Dottorato 2012/13

1.1 Matrices

Invertible matrices form a group. Let F be any field (for example Q, R, C, Z/pZ). I denote
by GL(n, F ) the set of n × n invertible matrices with entries in the field F . The usual
row-column multiplication gives GL(n, F ) the structure of a group, which is non-abelian
if n ≥ 2. It is usually called the “General Linear Group”. It is non-abelian because, as
it is well-known, the row-column multiplication is not a commutative operation. The set
F − {0} = F ∗ is a group with respect to multiplication, and it is abelian, isomorphic to
GL(1, F ). Taking the determinant provides a (surjective!) group homomorphism

GL(n, F )→ F ∗, A 7→ det(A)

(indeed det(AB) = det(A) det(B) by Binet’s theorem) whose kernel, SL(n, F ) := {A ∈
GL(n, F ) : det(A) = 1}, is called the “Special Linear Group”. It is a normal subgroup
of GL(n, F ) (being the kernel of a homomorphism) and using the isomorphism theorem
we see that the quotient GL(n, F )/SL(n, F ) is isomorphic to F ∗.

1.2 Permutations

I will denote by Sym(X) the set of bijections X → X (also called the permutations of X).
The operation of usual composition of functions gives Sym(X) the structure of group. It
is called the “Symmetric Group” of X. It is an easy exercise to show that if X,Y are
equipotent sets then Sym(X) and Sym(Y ) are isomorphic groups. If X = {1, . . . , n} I
shall denote Sym(X) by Sym(n) or Sn. It is called the symmetric group of degree n. This
group is non-abelian if and only if n ≥ 3. An element of Sym(n) is called permutation of
{1, . . . , n}. The order of Sym(n) (its size as a set) is n! = 1 ·2 · · ·n. I will use the standard
cycle notation, which is best explained by means of examples:

(123)(4567) : 1 7→ 2 7→ 3 7→ 1, 4 7→ 5 7→ 6 7→ 7 7→ 4.

(123 · · · k) : 1 7→ 2 7→ 3 7→ · · · 7→ k 7→ 1 k-cycle.

Composition goes as follows:

(12)(234)(13) = (234), (143)(1352)(4312) = (13)(45).

Note that disjoint cycles always commute. The following calculation shows that Sym(n)
is non-abelian for n ≥ 3:

(12)(123) = (13), (123)(12) = (23).

Remark 1 Every permutation can be written uniquely (up to reordering) as product
of disjoint cycles.

2-cycles are also called “transpositions”. A permutation is called “even” (or “of sign
1”) if it can be written as the product of an even number of transpositions, and “odd” (or
“of sign −1”) otherwise. For example (12)(25)(13)(35) is even, (13)(26)(43) is odd. The
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identity of Sym(n) (the identity function {1, . . . , n} → {1, . . . , n}) is considered to be the
product of zero transpositions, hence an even permutation.

Remark 2 A product of disjoint cycles is an even permutation if and only if the number
of cycles of even length is even.

For example (123)(4567), (12)(3456)(78) are odd, (123)(45)(67), (123)(4567)(89) are
even.

Definition 1 The “cycle structure” of a permutation is the increasing sequence of the
cycle lengths in the representation as a product of disjoint cycles. Cycles of length 1 are
usually omitted.

So for example (123)(4567), (12)(3456)(78), (123)(45)(67), (123)(4567)(89) have cycle
structure respectively (3, 4), (2, 2, 4), (2, 2, 3), (2, 3, 4). Remark 2 implies that the cycle
structure of a permutation determines its sign. Hence all elements of cycle structure (3, 4),
(2, 2, 4) are odd, and all elements of cycle structure (2, 2, 3), (2, 3, 4) are even.

Let us denote by C2 the set {−1, 1} with the operation given by multiplication: 1 ·1 =
(−1) · (−1) = 1 and 1 · (−1) = (−1) · 1 = −1. Then C2 is a commutative group, it is a
cyclic group (a group generated by one element) of order 2 (generated by −1), and it is
isomorphic to Sym(2) = {1, (12)}. Consider the map

sgn : Sym(n)→ {−1, 1} = C2, σ 7→ sgn(σ)

which sends any permutation to its sign (1 if it is even, −1 if it is odd). Then sgn is
a (surjective!) group homomorphism whose kernel, Alt(n) = An := {σ ∈ Sym(n) :
sgn(σ) = 1} is called the “Alternating Group” of degree n. It is a normal subgroup of
Sym(n) (being the kernel of a homomorphism) and using the isomorphism theorem we see
that the quotient Sym(n)/Alt(n) is isomorphic to C2, in particular |Alt(n)| = n!/2.

For example

Alt(4) = {1, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (234), (243), (134), (143)}.

2 Galois Theory

2.1 The Galois group of a polynomial

Let us talk about the reason why groups were invented.
To each polynomial f(X) ∈ Q[X] without multiple roots can be attached a finite group

Gf , called the Galois group of the polynomial (named after Evariste Galois, 1811 -
1832). It is the group defined as follows: if a1, . . . , an ∈ C denote the distinct roots of
f(X) then

Gf = Aut(Q(a1, . . . , an))

where Q(a1, . . . , an) denotes the field generated by a1, . . . , an, i.e. the intersection of the
subfields of C containing a1, . . . , an. That is, Gf is the group of field isomorphisms

Q(a1, . . . , an)→ Q(a1, . . . , an),
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that is, the group of such maps which are bijective and respect identity elements, sums, and
products. It goes without saying that the operation in Gf is again the usual composition
of functions. Suppose that a is a root of f(X) ∈ Q[X] (i.e. f(a) = 0) and g ∈ Gf . We can
consider the element g(a) ∈ C. Since g is a ring homomorphism, it fixes every element of
Q (this is easy to show starting from the identity g(n) = g(1+ · · ·+1) = g(1)+ · · ·+g(1) =
1 + · · · + 1 = n for n ∈ N) and also g(a) is a root of f , indeed writing f(X) =

∑
i ciX

i

with ci elements of Q we have

f(g(a)) =
∑
i

cig(a)i =
∑
i

g(ci)g(ai) =
∑
i

g(cia
i) =

= g(
∑
i

cia
i) = g(f(a)) = g(0) = 0.

This implies that the group Gf permutes the roots of f . In other words, Gf can
be described (or better, “represented”) as a subgroup of Sym(n). Indeed, the function

Gf → Sym({a1, . . . , an})

which sends g ∈ Gf to the permutation given by ai 7→ g(ai) (which, as we saw above, is
well-defined) is an injective (!) group homomorphism. Injectivity follows from the fact
that the only element of Gf which fixes all the roots is the identity.

For example the Galois group of X2−2 is the automorphism group of the field Q(
√

2),
so it consists of two elements: the identity and the (unique!) field homomorphism τ :
Q(
√

2) → Q(
√

2) which sends
√

2 to −
√

2. The Galois group of X2 − 2 is cyclic of order
2. Gf ∼= Sym(2) ∼= C2.

2.2 Factorizations modulo prime numbers

I now want to show how polynomials and groups interact. The usual “reduction modulo
n” that we have for integers can be performed also in polynomial rings. It is an interesting
fact that a polynomial might be irreducible over Z but reducible modulo some prime p.
For example X2 − 2 is irreducible over Z (its roots are not integers) but

X2 − 2 ≡ X2 mod 2, X2 − 2 ≡ (X − 3)(X − 4) mod 7.

Still there are some primes for which the given polynomial might remain irreducible, for
example X2 − 2 is irreducible modulo 3.

For the following theorem see [6], Lemmas 1 and 2.

Theorem 2 (Frobenius-Dedekind) Let f(X) be an irreducible polynomial of Z[X] of
degree n. The following assertions are equivalent.

• There exists a prime p for which f(X) mod p does not admit multiple irreducible
factors (such prime is usually called “unramified”) and the factorization pattern of
f(X) mod p is (n1, . . . , nt) (meaning that there are t irreducible factors of degrees
n1, . . . , nt).
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• The Galois group of f(X), seen as a (transitive) subgroup of Sym(n), contains an
element of cycle structure (n1, . . . , nt).

This implies, for example, that an irreducible polynomial of degree n remains irre-
ducible modulo some prime if and only if its Galois group, viewed as a subgroup of Sym(n),
contains an n-cycle. Moreover, since every group contains the identity element, which has
cycle structure (1, . . . , 1), we deduce that given an irreducible polynomial there always
exist primes p such that P (X) splits into distinct linear factors modulo p (!). Such primes
are infinitely many by Chebotarev’s density theorem (cf. below).

There is a notion of “discriminant” valid for every polynomial. It is defined as
∏n
i,j(ai−

aj) where a1, . . . , an are the roots of the polynomial. It is possible to show that the
discriminant of a polynomial with integer coefficients is an integer. For small degrees it is
reasonable to find a formula for the discriminant. For example,

• the discriminant of aX2 + bX + c is b2 − 4ac,

• the discriminant of X3 + pX + q is −4p3 − 27q2.

A very useful property of the discriminant (which follows directly from its definition)
is the following: given a polynomial P (X), a prime number is ramified (i.e. P (X) has
multiple roots modulo that prime) if and only if it divides the discriminant of P (X). In
particular, there are only finitely many ramified primes.

In the case of cubics (polynomials of degree 3) the discriminant determines the Galois
group: it is possible to show that an irreducible polynomial of degree 3 over Q has Galois
group Sym(3) if its discriminant is a square in Q, it has Galois group Alt(3) otherwise.

Let us consider the following examples:

• X3 +X2 +X + 3 (discriminant −204 = −22 · 3 · 17);

• X3 − 3X + 1 (discriminant 81 = 34).

The following tables contain the reductions of these polynomials modulo various prime
numbers. Note that the factorization pattern (1, 2) shows up in the first table but does
not in the second. This is explained by Frobenius theorem: Sym(3) (the Galois group of
X3 +X2 +X+3) contains permutations of cycle structure (1, 2) (2-cycles) but Alt(3) (the
Galois group of X3 − 3X + 1) does not! Indeed

Sym(3) = {1, (12), (13), (23), (123), (132)}, Alt(3) = {1, (123), (132)}.

Moreover, by a result known as “Chebotarev density theorem”, the proportion of primes
yielding a given factorization pattern equals the proportion of elements of the Galois group
with the associated cycle structure. This is why, for example, the proportion of primes for
which the second polynomial remains irreducible is about 2 : 1: because in Alt(3) there
are twice more 3-cycles than (1, 1, 1)-cycles.
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p X3 +X2 +X + 3 p X3 +X2 +X + 3

2 (X + 1)3 53 (X + 43)(X2 + 11X + 5)

3 X(X + 2)2 59 (X + 12)(X2 + 48X + 15)

5 X3 +X2 +X + 3 61 (X + 6)(X2 + 56X + 31)

7 (X + 4)(X2 + 4X + 6) 67 (X + 23)(X + 52)(X + 60)

11 X3 +X2 +X + 3 71 (X + 38)(X + 52)(X + 53)

13 X3 +X2 +X + 3 73 (X + 34)(X2 + 40X + 28)

17 (X + 5)(X + 15)2 79 (X + 74)(X2 + 6X + 31)

19 X3 +X2 +X + 3 83 (X + 45)(X2 + 39X + 72)

23 X3 +X2 +X + 3 89 (X + 32)(X2 + 58X + 14)

29 (X + 11)(X + 23)(X + 25) 97 (X + 59)(X2 + 39X + 28)

31 (X + 15)(X2 + 17X + 25) 101 (X + 75)(X2 + 27X + 97)

37 (X + 25)(X2 + 13X + 9) 103 X3 +X2 +X + 3

41 X3 +X2 +X + 3 107 X3 +X2 +X + 3

43 X3 +X2 +X + 3 113 X3 +X2 +X + 3

47 (X + 31)(X2 + 17X + 38) 127 X3 +X2 +X + 3

p X3 − 3X + 1 p X3 − 3X + 1

2 X3 +X + 1 53 (X + 18)(X + 39)(X + 49)

3 (X + 1)3 59 X3 + 56X + 1

5 X3 + 2X + 1 61 X3 + 58X + 1

7 X3 + 4X + 1 67 X3 + 64X + 1

11 X3 + 8X + 1 71 (X + 16)(X + 25)(X + 30)

13 X3 + 10X + 1 73 (X + 14)(X + 25)(X + 34)

17 (X + 3)(X + 4)(X + 10) 79 X3 + 76X + 1

19 (X + 10)(X + 12)(X + 16) 83 X3 + 80X + 1

23 X3 + 20X + 1 89 (X + 12)(X + 36)(X + 41)

29 X3 + 26X + 1 97 X3 + 94X + 1

31 X3 + 28X + 1 101 X3 + 98X + 1

37 (X + 14)(X + 28)(X + 32) 103 X3 + 100X + 1

41 X3 + 38X + 1 107 (X + 7)(X + 40)(X + 60)

43 X3 + 40X + 1 113 X3 + 110X + 1

47 X3 + 44X + 1 127 (X + 53)(X + 87)(X + 114)
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2.3 The Inverse Galois Problem

The most famous open problem in group theory is probably the Inverse Galois Problem.

Is it true that for any finite group G there exists a polynomial f(X) ∈ Q[X] with
Gf ∼= G ?

This problem has been solved for abelian groups (even solvable groups, cf. below for
the definition), but the answer in general is not known.

3 Cauchy, Lagrange, Sylow, Cayley

Let us list the important results of “elementary” finite group theory. Given a subset X of a
group G I will denote by 〈X〉 the subgroup generated by X in G, i.e. the intersection of
the subgroups of G containing X. I will rather write 〈x1, . . . , xn〉 instead of 〈{x1, . . . , xn}〉.

• the “order” of an element g ∈ G, denoted o(g), is the smallest positive integer n
such that the product of g with itself n times, gn = g · · · g (n times), equals 1;

• the “order” of a subgroup H ≤ G, denoted |H|, is its size.

• It turns out that |〈g〉| = o(g).

Theorem 3 (Lagrange (1736 - 1813)) Let G be a finite group, and let H ≤ G. Then |H|
divides |G|. The integer |G|/|H| = |G : H| is called the “index” of H in G.

Not every divisor of |G| necessarily equals the size of a subgroup of G (cf. the example
below), but...

Theorem 4 (Cauchy (1789 - 1857)) Let G be a finite group, and let p be a prime dividing
|G|. Then there exists g ∈ G of order p.

Consider the following example: the alternating group of degree 4. A4 = 〈a, b〉 where
a = (123) and b = (12)(34). |A4| = 4!/2 = 12 = 22 · 3. Here is its subgroup lattice (the
labelling numbers denote the indeces):

A4

3jjjjjjjjjjjjjjjjjjj

4 4
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22

22
22

22
22

22
22

4

DD
DD

DD
DD
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DD

DD
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2
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2
2
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〈b〉
2

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW 〈a2ba〉
2

TTTTTTTTTTTTTTTTTTT 〈aba2〉
2

FFFFFFFF
〈a〉

3

〈ab〉

3{{
{{

{{
{{

〈ba〉

3
mmmmmmmmmmmmmmmm 〈aba〉

3
hhhhhhhhhhhhhhhhhhhhhhhhhh

{1}

Università di Padova – Dipartimento di Matematica 64



Seminario Dottorato 2012/13

A4 = {1, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (234), (243), (134), (143)}.
Note that although 6 divides 12, A4 has no subgroups of order 6.
Although it is not true that there exist subgroups of G of order any given divisor of |G|,

Cauchy’s theorem implies that they exist if the given divisor is a prime. The next natural
step is to ask what happens with prime-powers. Suppose |G| is divisible by a prime-power
pk. Can we always find a subgroup H ≤ G with |H| = pk? The answer is yes.

Theorem 5 (Sylow (1832 - 1918)) Let G be a finite group and write |G| = mpn where
p is a prime and m is not divisible by p.

• G contains a subgroup P of order pn. P is called “Sylow p-subgroup” of G.

• G contains a subgroup of order pk for every 0 ≤ k ≤ n.

• If P,Q are two Sylow p-subgroups of G then they are conjugated: there exists g ∈ G
such that g−1Pg = Q.

• The number of Sylow p-subgroups of G is congruent to 1 mod p.

• If H is a subgroup of G such that |H| is a power of p then there exists a Sylow
p-subgroup P of G such that H ≤ P .

Consider the following example. Let F = Z/5Z and let

G := {
(
a 0
b c

)
: a, b, c ∈ F, a, c 6= 0},

H := {
(
a 0
b c

)
∈ G : b = 0},

K := {
(
a 0
b c

)
∈ G : a = c = 1}.

• G is a group (with respect to multiplication) of order 42 · 5 = 24 · 5,

• |H| = 42 = 24 ⇒ H is a Sylow 2-subgroup of G and

• |K| = 5 ⇒ K is a Sylow 5-subgroup of G.

Finally, Cayley theorem says that every finite group can be found inside some sym-
metric group.

Theorem 6 (Cayley (1821 - 1895)) Let G be a group. Then the map

G→ Sym(G), g 7→ (x 7→ gx)

is an injective homomorphism.
In particular, G is isomorphic with a subgroup of Sym(G).
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Corollary 1 Let G be a finite group. There exists a positive integer n such that G is
isomorphic with a subgroup of Sym(n).

Cayley’s theorem says that we may choose n = |G|. But sometimes we can choose a
smaller n (cf. [7]).

For example, if Gf is the Galois group of the polynomial f(X) ∈ Q[X] with n distinct
roots, then the permutation action of Gf on the n roots gives an injective homomorphism
Gf → Sym(n).

4 Simple groups, solvable groups

A group G is said to be “simple” if the only normal subgroups of G are {1} and G. Since
every subgroup of an abelian group is normal, it is easy to show that

Remark 3 (Abelian simple groups) Abelian simple groups are the cyclic groups of prime
order,

Cp = {g, g2, . . . , gp−1, gp = 1} ∼= (Z/pZ,+) = {1, 2, . . . , p− 1, p = 0}.

The following results provide infinite families of non-abelian simple groups.

Theorem 7 (Alternating Groups) If n ≥ 5 is an integer, Alt(n) is a non-abelian simple
group.

Theorem 8 (Projective Linear Groups) Let F be a field, and let GL(n, F ) be the
group of invertible matrices over F . Let SL(n, F ) be the subgroup of GL(n, F ) consisting
of matrices of determinant 1. Let Z be the subgroup of GL(n, F ) consisting of scalar
matrices. If n ≥ 2 and |F | ≥ 4, the quotient

PSL(n, F ) := SL(n, F )/Z ∩ SL(n, F )

(projective linear group) is a non-abelian simple group.

Given a finite group G, we can costruct longest possible chains of subgroups of the
form

{1} = G0 �G1 �G2 � · · ·�Gk = G.

Maximality of k implies that the factor groups Gi/Gi−1 are all simple groups. Such chain is
called “composition series” and its factors Gi/Gi−1 are called “composition factors”.

Theorem 9 (Jordan-Holder) Any two composition series of a given finite group have
the same length and the same composition factors (up to reordering and isomorphism).

For example the composition factors of the cyclic group Cn correspond to the prime
divisors of n, counted with multiplicity. If n = 60 = 22 · 3 · 5,

1 � 〈g30〉(∼= C2) � 〈g15〉(∼= C4) � 〈g5〉(∼= C12) � 〈g〉 = C60.
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Definition 2 (Solvable groups) If the composition factors of the finite group G are all
abelian (hence cyclic of prime order) then G is said to be solvable.

Evariste Galois proved that the zeros of a polynomial f(X) ∈ Q[X] can be expressed
by starting from the elements of Q and performing sums, differences, products, divisions,
and root extractions if and only if the Galois group Gf is solvable. In this case f(X) is
said to be “solvable by radicals”. Let us give some examples.

The Galois group of f(X) = X4−4X+2 ∈ Z[X] is S4, so f(X) is solvable by radicals.
Indeed, S4 is solvable:

{1} C2// 〈(12)(34)〉 C2 // O2(S4)
C3 // A4

C2 // S4

Arrows are inclusions. O2(S4) denotes the intersection of the Sylow 2-subgroups of S4:
it is a normal subgroup of S4 of order 4 isomorphic to the Klein group C2 × C2. The
composition factors of S4 are C2 (three times) and C3. |S4| = 24 = 23 · 3. More generally,
all polynomials of degree 2, 3, 4 are solvable by radicals. Indeed, all subgroups of Sym(4)
are solvable. On the other hand, the symmetric group Sn is not solvable when n ≥ 5:

{1} An // An
C2 // Sn

The composition factors of Sn are An (not abelian) and C2.

Let a, b, c be indeterminates over Q. The roots of the polynomial P (X) = aX2 +bX+c
are given by the well-known formula

x1,2 =
−b±

√
b2 − 4ac

2a
.

It follows that P (X) is solvable by radicals over Q(a, b, c). I want to consider now degrees
larger than 2.

For the following discussion we refer the reader to [14, Theorem 4.15]. Let a0, . . . , an−1

be indeterminates over Q. It is interesting to ask when the generic polynomial of degree n

P (X) = Xn + an−1X
n−1 + · · ·+ a1X + a0

is solvable by radicals over the field generated by its coefficients, Q(a0, . . . , an−1). In other
words, we ask when the roots of P (X) can be expressed by starting from the coefficients
a0, . . . , an−1 and performing sums, differences, products, divisions and root extractions. It
turns out that P (X) is irreducible in Q(a0, . . . , an−1)[X], it has distinct roots (as does any
irreducible polynomial in characteristic zero) and its Galois group over Q(a0, . . . , an−1) is
Sym(n). Since, as we have seen, Sym(n) is not a solvable group if n ≥ 5, it follows that
P (X) is solvable by radicals if and only if n ≤ 4.

As you might have noticed, above I used the expression “over the field generated by its
coefficients”. Let us clarify this. If F/K (to be read “F over K”) is any field extension
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(meaning that F and K are fields and F contains K) then the Galois group of F/K,
denoted G(F/K), is defined to be the set of all field automorphisms g of F such that (*)
g(a) = a for every a ∈ K. Note that if K = Q then condition (*) is automathic. The
inclusion K ⊆ F gives F a canonical structure of K-vector space. The extension F/K is
said to be “finite” if F has finite dimension as K-vector space. The “degree” of the finite
field extension F/K, usually denoted [F : K], is the dimension dimK(F ). So for example
C/R is a finite field extension of degree 2 with Galois group C2 (its two elements are the
identity and the complex conjugation a+ ib 7→ a− ib). A finite extension F/K is said to
be a Galois extension if

{a ∈ F : g(a) = a ∀g ∈ G(F/K)} = K.

It turns out that an extension F/K is a Galois extension if and only if [F : K] = |G(F/K)|,
that is, the degree equals the size of the Galois group. For example, whenever f(X) is a
polynomial in Q[X], with roots a1, . . . , an ∈ C, the extension Q(a1, . . . , an)/Q is a Galois
extension. For example consider f(X) = X2 + 1 ∈ R[X]: since C = R(i) = R(i,−i), the
extension C/R is Galois.

Here is an example of an extension that is not Galois: F/K = Q( 3
√

2)/Q. Indeed,
the only K-automorphism of F is the identity, idF : F → F ( 3

√
2 is the only root of X3−2

that belongs to F !), so |G(F/K)| = 1, while the degree [F : K] is 3: a K-basis is given
by 1, 3

√
2, 3
√

4. However, F is contained in a Galois extension of K: Q(a, b, c)/Q, where
a, b, c are the three roots of X3 − 2 in C. It is an extension of degree 6 with Galois group
isomorphic to Sym(3).

Here comes the main property of Galois extensions, which makes them very nice. If
F/K is a finite Galois extension then the correspondences

H 7→ {a ∈ F : h(a) = a ∀h ∈ H}

L 7→ {g ∈ G(F/K) : g(a) = a ∀a ∈ L}

provide inclusion-reversing bijections, inverses of each other, between the family of sub-
groups of G(F/K) and the family of fields L such that K ⊆ L ⊆ F (intermediate fields of
F/K). So, if you want to see how the intermediate field lattice of a Galois extension looks
like just take the subgroup lattice of its Galois group and turn it upside-down (remember
that inclusions are reversed).

I now spend some words on the classification of the finite simple groups. The starting
point for the classification was the following beautiful result, which is known as the “odd
order theorem”. The proof is very long. Recently (September 2012) it was checked by
the computer program Coq, essentially proving algorithmically that the proof is correct.
This was achieved by a team led by Georges Gonthier (cf. http://ssr2.msr-inria.inria.fr/
∼ jenkins/current/progress.html).

Theorem 10 (Feit, Thompson, 1962-1963) Any finite group of odd order is solvable.
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It is easy to show that this is equivalent to say that every finite non-abelian sim-
ple group has even order (just look at a composition series). In particular, by Cauchy
Theorem, any finite non-abelian simple group contains involutions (elements of order
2). Finite simple groups have been classified using the centralizers of the involutions.
The centralizer of an element x ∈ G is the set of elements which commute with x,
CG(x) := {g ∈ G : gx = xg}.

Proposition 1 ([1], (45.4)) Let G be a finite simple group and let t be an involution in
G, n := |CG(t)|. Then |G| ≤ (2n2)!.

An immediate corollary is:

Theorem 11 (Brauer-Fowler) Let H be a finite group. Then there exists at most a finite
number of finite simple groups G with an involution t such that CG(t) ∼= H.

This should clarify why the Feit-Thompson theorem is considered to be the starting
point of the classification. The classification theorem is too long to be fully stated here,
so I will give a short version of it. Groups of “Lie type” are particular groups of matrices
over finite fields, as in the case of the projective special linear group PSL(n, F ).

Theorem 12 (Classification of the Finite Simple Groups) Let S be a finite simple group.
Then one of the following holds.

• S ∼= Cp for some prime p.

• S ∼= Alt(n) for some integer n ≥ 5.

• S is a group of Lie type.

• S is one of 26 sporadic groups.

5 Some more beautiful results

The following result is one of the few results which guarantee the existence of subgroups
of some order.

Theorem 13 (Schur-Zassenhaus) Let G be a finite group and let N be a normal subgroup
of G. If |N | and |G : N | are coprime then G admits a subgroup of size |G : N |.

The following result is a generalization of Sylow’s Theorem in the case of solvable
groups. If π is a set of prime numbers, a “Hall π-subgroup” of G is a subgroup H of G
such that |H| and |G : H| are coprime and all prime divisors of |H| belong to π.

Theorem 14 [Hall] Let G be a finite solvable group, and let π a set of prime numbers.
Then G admits Hall π-subgroups, and any two Hall π-subgroups of G are conjugated.

Classically this is proved using the Schur-Zassenhaus theorem.
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6 Covering finite groups

Now I will say something about my own research. From now on all considered groups will
be assumed to be finite.

6.1 Sigma

A “cover” of a group G is a family H of proper subgroups of G such that
⋃
H∈HH = G.

It is easy to see that a group admits covers if and only if it is noncyclic. This follows
from the equality

⋃
g∈G〈g〉 = G and the fact that a proper subgroup cannot contain the

elements g such that 〈g〉 = G.
Define σ(G), the “covering number” of G, to be the smallest size of a cover of G.

This notion was introduced in [8]. A cover of G of size σ(G) will be called “minimal cover”.
If G is cyclic, set σ(G) = ∞ with the convention that n < ∞ for every integer n. It is
obvious, but worth remarking, that if H is any cover of G then σ(G) ≤ |H|. The following
basic result shows that if N �G then

σ(G) ≤ σ(G/N).

Theorem 15 (Correspondence theorem) Let G be a group and let N � G. The corre-
spondences

ϕ : H/N 7→ {g ∈ G : gN ∈ H/N}, ψ : K 7→ KN/N

provide canonical bijections, inverses of each other, between the family of subgroups of
G/N and the family of subgroups of G containing N . Moreover, they both send normal
subgroups to normal subgroups.

Indeed, if H is a cover of G/N then {ϕ(H) : H ∈ H} is a cover of G of size |H|.
For example, if n 6= 9 is an odd integer larger than 1 then σ(Sym(n)) = 2n−1. A

minimal cover of G is given by the following family:

(∗∗){Alt(n)} ∪ {Sym(a)× Sym(b) : 1 ≤ a, b ≤ n− 1, a+ b = n}.

The subgroups of Sym(n) isomorphic to Sym(a)× Sym(b), for a+ b = n, are obtained by
considering partitions {1, . . . , n} = A ∪ B with A ∩ B = ∅, |A| = a and |B| = b. Indeed,
for such a partition, it turns out that

{g ∈ Sym(n) : g(x) ∈ A ∀x ∈ A} ∼= Sym(a)× Sym(b).

Such subgroups of Sym(n) are called “maximal intransitive”. The reason why family (**)
is a cover of Sym(n) is that n being odd, the n-cycles are even permutations, hence they
belong to Alt(n), and all the other permutations belong to some maximal intransitive
subgroup (they have nontrivial orbits - just look at the cycle structure and group the
cycles in two blocks). Family (**) is a cover also for n = 9 but it is still not known
whether it is minimal or not in this case.

It is easy to show that a group cannot be written as the union of two proper subgroups.
Therefore σ(G) ≥ 3 always. What can be said about the groups G with σ(G) = 3?
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Theorem 16 (Scorza, 1926) Let G be a group. Then σ(G) = 3 if and only if G admits
a normal subgroup N such that G/N ∼= C2 × C2.

Note that the implication ⇐ is easy: if G/N ∼= C2 × C2 then σ(G) ≤ σ(G/N) =
σ(C2 × C2) = 3. On the other hand σ(G) ≥ 3 (this is always true), so σ(G) = 3. The
reason why σ(C2 × C2) = 3 is that C2 × C2 has only three nontrivial proper subgroups,
and they have size 2. In general if p is any prime number then Cp × Cp has precisely
p + 1 proper nontrivial subgroups, and they are all cyclic of order p (so they are both
minimal and maximal subgroups). It follows that σ(Cp × Cp) = p + 1. Indeed, any
nontrivial element of Cp ×Cp determines the proper subgroup in which it is contained: it
is the subgroup which it generates. So in this case in order to cover the group all proper
nontrivial subgroups have to be considered.

I now argue that whenever G is a noncyclic group and |G| is a power of a prime p (i.e.
G is a “p-group”) we have σ(G) = p+ 1.

Lemma 1 (The Minimal Index Lower Bound) Let G be a non-cyclic group, and write
G = H1 ∪ · · · ∪Hn as union of n = σ(G) proper subgroups. Let βi := |G : Hi| := |G|/|Hi|
for i = 1, . . . , n. Then min{β1, . . . , βn} < σ(G).

Proof. We may assume that β1 ≤ · · · ≤ βn. Since 1 ∈ H1∩ . . .∩Hn the union H1∪ . . .∪Hn

is not disjoint and hence

|G| <
n∑
i=1

|Hi| = |G|
n∑
i=1

1

βi
≤ |G|n

β1
.

Therefore β1 < n.

Let us apply this to the case |G| = pn. The index of any subgroup of G is a divisor
of |G| (Lagrange Theorem) so if a subgroup of G is proper then its index is at least p. It
follows that p < σ(G) so p + 1 ≤ σ(G). We are left to prove that σ(G) ≤ p + 1, and for
this it is enough to find a normal subgroup N of G such that G/N ∼= Cp × Cp (indeed
σ(G) ≤ σ(G/N) and σ(Cp × Cp) = p + 1). This follows from the following fact, which
I will state without proof (the proof is a bit technical). Recall that a subgroup H of G
is called “maximal” if it is not properly contained in a subgroup of G, and the “Frattini
subgroup” of a group G is the intersection of the maximal subgroups of G, denoted Φ(G).
It is a normal subgroup of G. Moreover, denote by d(G) the least integer d such that there
exist d elements x1, . . . , xd ∈ G with 〈x1, · · · , xd〉 = G.

Proposition 2 Let G be a p-group and let d = d(G). Then G/Φ(G) ∼= Cp
d.

Now if the p-group G is not cyclic, i.e. if d > 1, then Cp
d clearly admits a quotient

isomorphic to Cp×Cp = Cp
2, therefore σ(G) ≤ σ(G/Φ(G)) = σ(Cp

d) ≤ σ(Cp×Cp) = p+1.
Using this we can deduce the value of σ(G) whenever G is an abelian group. We first

need a lemma.

Lemma 2 If A,B are two groups of coprime order then σ(A×B) = min{σ(A), σ(B)}.
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Proof. Since |A| and |B| are coprime, the subgroups of A × B are of the form H × K
with H ≤ A and K ≤ B. With this in mind, the proof becomes technical. I will omit the
details.

Indeed, by the structure theorem of finite abelian groups (and the Chinese Remainder
Theorem), any finite abelian group is a direct product of cyclic groups of prime power
order, so

Proposition 3 Let G be a noncyclic abelian group, and write G =
∏k
i=1Cpnii

. Then

σ(G) = p + 1 where p is the smallest prime number such that there exist two distinct
i, j ∈ {1, . . . , k} with pi = pj = p.

6.2 Direct products

Lemma 2 deals with direct products of groups A,B of coprime order. Let us give an
example in which A = B. I will compute σ(S × S) when S is a nonabelian simple group.
I will prove that σ(S × S) = σ(S). This will give me the opportunity to discuss more
general facts.

Lemma 3 (Intersection argument) Let K be a maximal subgroup of a group G and let
H be a minimal cover of G. If σ(G) < σ(K) then K ∈ H. Equivalently, if K 6∈ H then
σ(K) ≤ σ(G).

Proof. We have
K = K ∩G = K ∩

⋃
H∈H

H =
⋃
H∈H

(K ∩H)

therefore, if σ(G) < σ(K), this union cannot consist of proper subgroups of K, thus there
exists H ∈ H such that K ∩ H = K, i.e. K ⊆ H. Since K is maximal it follows that
K = H ∈ H.

Corollary 2 Let M be a maximal subgroup of G, not normal, such that σ(G) < σ(M).
Then |G : M | < σ(G).

Proof. Using standard arguments of group actions, it is possible to prove that the number
of conjugates of H ≤ G equals the index in G of the “normalizer” NG(H) := {g ∈ G :
g−1Hg = H} of H in G. We always have H ⊆ NG(H) and NG(H) = G if and only if
H is normal in G. Now, M being maximal and not normal in G, NG(M) = M therefore
M has |G : M | conjugates in G. Since σ(G) < σ(M), they all belong to every minimal
cover of G by the intersection argument. In particular σ(G) ≥ |G : M |. Now, the |G : M |
conjugates of M cover less than |G| = |M | · |G : M | group elements (they all contain the
identity element), so we get the strict inequality σ(G) > |G : M |.

This is actually the main argument used in [9] and in my Ph.D thesis. Let me be more
precise about this. Recall that if A,B are two subgroups of a group G then the product
AB is defined as AB := {ab : a ∈ A, b ∈ B}. It turns out that |AB| = |A| · |B|/|A ∩B|
(nice exercise). A supplement of the normal subgroup N �G is a subgroup H ≤ G such
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that HN = G. A complement of N is a supplement H of N such that H ∩ N = {1}.
In this case we also say that H complements N in G. If H complements N then |G| =
|HN | = |H| · |N |, so |G : N | = |H|. The above corollary implies the following.

Proposition 4 (The Maximal Complement Argument) Let N be a nonsolvable normal
subgroup of the group G and suppose that there exists a maximal subgroup M of G that
complements N . Then σ(G) = σ(G/N).

This is the argument that allows to produce results about the structure of σ-elementary
groups (cf. the following subsection). The proof is a bit technical but I hope that by
writing it down I will give some ideas about of the kind of arguments needed in this kind
of analysis.

Proof. Thanks to nonsolvability of N we may assume that N does not contain nontrivial
central elements of G (i.e. elements g lying in the center of G). Indeed if g ∈ N and
g ∈ Z(G) we may consider the quotient G/〈g〉 and proceed by induction on |G|. As a
consequence of the classification of finite simple groups, N does not have fixed-point-free
automorphisms (recall that an automorphism ϕ of N , i.e. a group isomorphism N → N ,
is said to be fixed-point-free if ϕ(x) 6= x whenever x ∈ N and x 6= 1). It follows that
the family {CG(x) : 1 6= x ∈ N} covers G, where CG(x) = {g ∈ G : gx = xg}.
Indeed, if g ∈ G then the map N → N , x 7→ g−1xg is an automorphism of N . Since N
does not contain nontrivial central elements, CG(x) 6= G for every 1 6= x ∈ N . Therefore
{CG(x) : 1 6= x ∈ N} is a cover of G of size |N | − 1, so σ(G) ≤ |N | − 1.

Now, M is not normal in G, otherwise G ∼= N ×M and maximality of M would imply
that |N | = |G : M | = p is a prime, contradicting the nonsolvability of N . Therefore
Corollary 2 implies that |N | = |G : M | < σ(G). This contradicts the fact that σ(G) ≤
|N | − 1.

Let us show how this implies that σ(S×S) = σ(S) whenever S is a nonabelian simple
group. The following is a standard fact and a nice exercise.

Proposition 5 Let G be a group. Then G is simple if and only if

∆G := {(g, g) : g ∈ G} < G×G

is a maximal subgroup of G×G.

It follows that ∆S is a maximal subgroup of S × S that complements S × {1}, and
we may apply the Maximal Complement Argument. Actually in this case much less is
needed: since S × S → S, (x, y) 7→ x is a surjective homomorphism with kernel {1} × S,
by the Isomorphism Theorem (Theorem 1) and the fact that S being noncyclic, it admits
as a cover the family of its nontrivial cyclic subgroups, it follows that

σ(S × S) ≤ σ(S) ≤ |S| − 1,

and now since |S × S : ∆S | = |S| Corollary 2 yields a contradiction.
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A result I obtained in a joint work with A. Lucchini is a generalization of this fact to
all direct products:

Theorem 17 (Lucchini A., G 2010 [11]) Let M be a minimal cover of a direct product
G = H1 ×H2 of two finite groups. Then one of the following holds:

(a) M = {X × H2 | X ∈ X} where X is a minimal cover of H1. In this case σ(G) =
σ(H1).

(b) M = {H1 × X | X ∈ X} where X is a minimal cover of H2. In this case σ(G) =
σ(H2).

(c) There exist N1 E H1, N2 E H2 with H1/N1
∼= H2/N2

∼= Cp and M consists of the
maximal subgroups of H1 ×H2 containing N1 ×N2. In this case σ(G) = p+ 1.

6.3 σ-elementary groups

Suppose we want to compute σ(G) for a given group G. If there exists N �G such that
σ(G) = σ(G/N) then we may consider the group G/N instead of G. This gives a sort of
reduction and leads to the following definition.

Definition 3 (σ-elementary groups) A group G is called σ-elementary if σ(G) < σ(G/N)
whenever {1} 6= N �G. G is called n-elementary if G is σ-elementary and σ(G) = n.

This notion was introduced in [8] and thoroughly studied in [9] (there these groups are
called σ-primitive).

For example:

• If G is any group then there exists a normal subgroup N of G such that G/N is
σ-elementary and σ(G) = σ(G/N) (just choose a proper normal subgroup N of G
such that σ(G) = σ(G/N) and proceed by induction on |G|).

• If p is any prime number, Cp × Cp is (p + 1)-elementary (the nontrivial proper
quotients are all cyclic of size p).

• The only 3-elementary group is C2 × C2 (Scorza’s Theorem).

• 6.2 implies that if S is a nonabelian simple group then S × · · · × S = Sm is σ-
elementary if and only if m = 1.

• If n ≥ 3 is an integer and n 6= 4 then Sym(n) is σ-elementary: its only nontrivial
proper quotient is C2. Sym(4) is not σ-elementary: it admits Sym(3) as homomor-
phic image (quotient) and σ(Sym(4)) = σ(Sym(3)) = 4.

• If G/N is cyclic whenever {1} 6= N � G then G is σ-elementary. The converse
is true for solvable groups but false in general. An example is I o Alt(p) where
I = {(x1, . . . , xp) ∈ Fp2 :

∑p
i=1 xi = 0} and p is a prime not of the form qn−1

q−1 with q
a prime power, the action is the usual one on the p coordinates.
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Let us list the known facts concerning σ-elementary groups. Recall that Φ(G), the
Frattini subgroup of G, is the intersection of the maximal subgroups of G, Z(G), the
center of G, is the subgroup {g ∈ G : xg = gx ∀x ∈ G}, and G′, the derived subgroup of
G, is the intersection of the normal subgroups N of G such that G/N is abelian.

Proposition 6 Let G be a σ-elementary group.

• Φ(G) = {1}.

• If G is non-abelian then it has trivial center: Z(G) = {1}.

• If G is abelian then G ∼= Cp × Cp for some prime p.

• Scorza’s theorem: if σ(G) = 3 then G ∼= C2 × C2.

• Scorza’s theorem revisited: if σ(G) = p+ 1 with p the smallest prime divisor of |G|
then G ∼= Cp × Cp.

• Let n be a positive integer. There are only finitely many σ-elementary groups G with
σ(G) = n.

• If H1 × H2, a direct product of two non-trivial groups, is σ-elementary then H1
∼=

H2
∼= Cp for some prime p (this follows from Theorem 17).

• If G is σ-elementary, {1} 6= N � G and G/N is solvable then G/N is cyclic. In
particular G/G′ is cyclic.

A result I obtained is the determination of all n-elementary groups with n ≤ 25.

Theorem 18 (G 2009 [10]) All σ-elementary groups G with σ(G) ≤ 25 are known.

σ(G) G

3 C2 × C2

4 C3 × C3,Sym(3)

5 Alt(4)

6 C5 × C5, D10, AGL(1, 5)

7 ∅
8 C7 × C7, D14, 7 : 3, AGL(1, 7)

9 AGL(1, 8)

10 32 : 4, AGL(1, 9),Alt(5)

11 ∅
12 C11 × C11, 11 : 5,

D22, AGL(1, 11)

13 Sym(6)

14 C13 × C13, D26, 13 : 3,
13 : 4, 13 : 6, AGL(1, 13)

σ(G) G

15 SL(3, 2)

16 Sym(5),Alt(6)

17 24 : 5, AGL(1, 16)

18 C17 × C17, D34, 17 : 4,
17 : 8, AGL(1, 17)

19 ∅
20 C19 × C19, AGL(1, 19),

D38, 19 : 3, 19 : 6, 19 : 9

21 ∅
22 ∅
23 M11

24 C23 × C23, D46,
23 : 11, AGL(1, 23)

25 ∅
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Scorza’s Theorem can be read off from the top left line of the above table. Also, we
see that there are some numbers n such that σ(G) 6= n for every group G (7, 11, 19, 21,
22, 25). The following is an open question: are there infinitely many such n?

6.4 A conjecture

Definition 4 (Minimal normal subgroups) A minimal normal subgroup of a group G
is a non-trivial normal subgroup N of G which does not contain any non-trivial normal
subgroup of G different from N .

Let us give some examples.

• If p is a prime, Cp × Cp has p+ 1 minimal normal subgroups.

• If S is a simple group, it is its unique minimal normal subgroup.

• If n ≥ 3 is an integer and n 6= 4 then the unique minimal normal subgroup of Sym(n)
is Alt(n).

• The unique minimal normal subgroup of Sym(4) is

V = {1, (12)(34), (13)(24), (14)(23)}.

• If k ≥ 1 is an integer and S is a non-abelian simple group then the minimal normal
subgroups of S× · · · ×S = Sk are its k direct factors, S×{1}× · · · × {1}, . . . , {1}×
· · · × {1} × S.

• If F is a field with at least 4 elements and n ≥ 2, the unique minimal normal
subgroup of PGL(n, F ) is PSL(n, F ).

Given a finite group G denote by mn(G) the number of minimal normal sub-
groups of G.

The known examples of σ-elementary groups either are abelian isomorphic to Cp×Cp
or admit only one minimal normal subgroup. The main problem I dealt with in my Ph.D
thesis is the following conjecture, still open.

Conjecture 1 (A. Lucchini, E. Detomi) Let G be a non-abelian σ-elementary group.
Then mn(G) = 1.

If mn(G) = 1 we usually say that G is monolithic.
Here is what I can say when the covering number is “small”. In the following result

the wreath product Alt(5) o C2 is the semidirect product (Alt(5) × Alt(5)) o C2 where
the action is given by the exchange of the two coordinates.

Theorem 19 Let G be a non-abelian σ-elementary group such that σ(G) ≤ 56. Then
G is monolithic. Moreover, its minimal normal subgroup is either simple or abelian.
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Moreover σ(Alt(5) o C2) = 57, Alt(5) o C2 is monolithic and its minimal normal subgroup
is Alt(5)×Alt(5), not simple and not abelian.

A subgroup H of a group G is said to be subnormal if there exists a chain H �H2 �

· · · �Hn = G. Subnormal subgroups are not necessarily normal, for example in Sym(4),
〈(12)(34)〉�V and V �Sym(4) but 〈(12)(34)〉 is not normal in Sym(4). A minimal sub-
normal subgroup is a subnormal subgroup which does not properly contain nontrivial
subnormal subgroups of G. Note that minimal subnormal subgroups are always simple
groups. Here is another result I proved in my Ph.D thesis.

Theorem 20 Let G be a non-abelian σ-elementary group, and suppose that every minimal
subnormal subgroup of G is isomorphic to an alternating group Alt(n) with n large enough
and even. Then G is monolithic.
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Regularization by means of

Generalized Arnoldi-Tikhonov methods

Silvia Gazzola (∗)

Abstract. Inverse problems are ubiquitous in many areas of science and engineering: they are
typically modeled by Fredholm integral equations of the first kind with compact kernel and the
available data are commonly affected by errors. Once discretized they give rise to ill-conditioned
linear systems, often of huge dimensions: regularization consists in replacing the original system
by a nearby problem with better numerical properties, in order to to find a meaningful approxi-
mation of the exact solution. We will review some standard regularization methods, both direct
and iterative, and we will introduce the most recent class of the Arnoldi-Tikhonov methods; our
focus will be on problems regarding the restoration of images corrupted by blur and noise. Some
numerical experiments will be shown, so to compare the different approaches and to contribute
validating the newly-proposed strategies.

1 Introduction

The concept of ill-posed problems goes back to J. Hadamard (1865-1963), who essentially
defined a problem as ill-posed if the solution is not unique or if it is not a continuous
function of the data. Ill-posed problems arise in the form of inverse problems in many
areas of science and engineering, that is every time that one is interested in determining
the initial structure of a physical system from its measured behavior. We are interested in
the broad class of inverse problems that, in a continuous setting, can be mathematically
formulated as Fredholm integral equations of the first kind with a square integrable kernel.
They all can be written in generic form as

(1)

∫ 1

0
K(s, t) f(t)dt = g(s), 0 ≤ s ≤ 1,

where the right-hand side function g and the kernel K are known, while f is unknown.
If we consider the singular value expansion of the kernel K, we notice that the singular
values decay to zero (the smoother the kernel the faster the decay) and the corresponding
singular functions show increasing oscillations. Discretizing the problem (1) leads to the

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on March 20th, 2013.
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linear system

(2) Ax = b.

Let us examine the singular value decomposition (SVD) of the matrix
A ∈ Rn×n (for the sake of simplicity we are just considering square matrices), defined
as

(3) A = UΣV T ,

where U ∈ Rn×n, V ∈ Rn×n are orthogonal matrices (i.e. UTU = UUT = In and V TV =
V V T = In, where In is the identity matrix of order n), and Σ = diag(σ1, σ2, . . . , σn),
σ1 ≥ σ2 ≥ · · · ≥ σn > 0. We typically observe that the singular values (the diagonal
elements of Σ) rapidly decrease and cluster at zero, with no evident gap between them (cf.
Figure 1, frame (a)), while the corresponding singular vectors (the columns of the matrices
U and V ) exhibit increasing oscillations. This implies that the 2-norm condition number
of the matrix A, defined as the ratio σ1/σn, is very high; indeed, the bad conditioning of
the matrix A reproduces the ill-posedness of the continuous problem. One more feature to
be considered is that the available right-hand-side b is affected by error: of course there is
always some perturbation introduced during the discretization process, but often even the
model (1) is corrupted by unavoidable measurements errors. Therefore, we could better
specify (2) as

(4) Axex + e = bex + e = b,

where e is an unknown error (or noise). Concerning the last formulation, our task is to
recover an approximation of the solution xex starting from the available corrupted vector
b.

A “simple”inversion of the matrix A, besides being often computationally unfeasible or
extremely expensive, cannot give meaningful solutions because of the errors in b and the
huge conditioning of A. Indeed, let us theoretically consider the expression of the solution
with respect to the singular value decomposition (3)

(5) x = A−1b =
n∑
i=1

uTi bex
σi

vi +
n∑
i=1

uTi e

σi
vi.

If the right-hand-side only consists of the term bex (an extremely rare circumstance), the
approximate solution can be straightforwardly recovered thanks to the so-called Discrete
Picard Condition, which states that the Fourier coefficients uTi bex decay as the singular
values σi, on average (cf. Figure 1, frame (b)). Therefore, as far as only the first term in
(5) is concerned, the solution x is well-behaved. However, as we consider the contributions
given by the so-called inverted noise (the second term in (5)), the Fourier coefficients uTi b
level off after some index ī (cf. Figure 1, frame (c)), hence the ratio uTi b/σi is huge for
i > ī and the solution is dominated by highly-oscillating components (that is, by noise).
We cite [4] as an excellent introduction to the solution of ill-posed problems and as a
general reference for regularization methods.
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The main application we are considering is image deblurring. We assume to know the
operator K defining the blur and the available image g that is affected by blur and noise;
K is often given as a PSF (Point Spread Function) that, depending on the circumstances,
can be recovered experimentally or defined by a mathematical function (for instance by a
Gaussian). The goal is to obtain a meaningful approximation of the exact and unknown
image f . Mathematically, a grayscale image X is represented as a 2D array, whose integer
entries define the intensity to be assigned to each pixel. In order to write a linear system
like (2) we have to rearrange the involved images into 1D arrays (vectors) and we do this
by stacking the columns of the 2D arrays; the matrix A is defined starting from the PSF
and the so-called boundary conditions, i.e. the supposed behavior of the image outside
the recorded scene. The ideally exact image we are employing to perform the tests in
the following sections is shown in Figure 2, frame (a): the size of this image is 215× 215
pixels and the dimension of the associated blurring matrix A is 46225. The dimensions
of the systems associated to image restoration problems are always huge. We corrupt
the exact image applying a mild Gaussian blur and adding some white noise such that
the ratio ‖e‖/‖b‖ (noise level) is 10−2. When we deal with medical and astronomical
images, finding good reconstructions of the corrupted images in a quick and reliable way
is particularly important. We refer to [5] for a clear and complete introduction to image
deblurring.
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Figure 1: (a) Decay of the singular values σi; (b) Discrete Picard Condition, only bex is involved; (c)

Discrete Picard Condition, b affected by noise.

2 Regularization Methods

As said in the Introduction, if we wish to approximate the exact solution of the discrete ill-
posed problem (2) by just inverting the matrix A, we actually obtain a vector dominated
by noise. Therefore, in order to reconstruct a solution that resembles the behavior of the
exact one, we have to replace the original system (2) by a nearby problem with better
numerical properties. This process is called regularization. In the following we give a brief
summary of the most well-known regularization techniques, introducing the class of the
direct, iterative and hybrid methods. As we will see, every regularization method is not
complete without specifying a rule for choosing the regularization parameter (that can be a
different quantity, depending on the class of methods we are treating). A lot of techniques
have been developed in order to set the regularization parameter; they can be applied,
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with minor changes, to all the regularization methods described below. In Section 3.2
we are going to describe a sort of revisited discrepancy principle, that is a well-known
parameter choice method that can be applied only if a fairly good approximation of the
norm of the error e in (4) is known. Of course there are also methods that do not rely
on this hypothesis, for example the L-curve criterion and the GCV method. We refer to
[7] for an accurate description of these parameter choice strategies, along with some more
recent ones.

2.1 Regularization by Direct Methods

The class of direct methods collects all the strategies that are essentially based on the
SVD decomposition of the matrix A. Referring to expression (5), the regularized solution
computed by a direct method can be written in this way

(6) xreg =
n∑
i=1

φi
uTi b

σi
vi,

i.e. the expression of the solution in the singular vectors basis is modified premultiplying
each coefficient by a scalar φi, called filter factor. For this reason, direct methods are
also referred to as spectral filtering methods; different filter factors define different direct
methods. We consider the following ones:

• Truncated Singular Value Decomposition (TSVD): the regularized solution
is defined by just taking the first k̄ components in (5)

(7) xTSV D =

k̄∑
i=1

uTi b

σi
vi (k̄ < n), φi =

{
1 if i ≤ k̄
0 if i > k̄

.

In this setting, the scalar k̄ acts as a regularization parameter. If we choose k̄ too
small, i.e. if we take too few components in (5), the solution is over-regularized, i.e.
we filter out too much and the solution appear to be too “smooth”(cf. Figure 2,
frame (c)). On the contrary, if we choose k̄ too big, i.e. if we take too many
components in (5), the solution is under-regularized, i.e. we do not filter out enough
and the solution is still dominated by noise (cf. Figure 2, frame (c)).

(a) (b) (c)

Figure 2: (a) exact image, (b) over-regularized solution by TSVD method, (c) under-regularized

solution by TSVD method.
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• Tikhonov Regularization (Standard Form) consists in substituting the system
(2) with the following penalized minimization problem

(8) xT ikh = min
x∈Rn
{‖b−Ax‖2 + λ‖x‖2}, xT ikh =

n∑
i=1

φi︷ ︸︸ ︷
σ2
i

σ2
i + λ

uTi b

σi
vi.

The objective function in (8) is the sum of two terms. The first one is a fit-to-
data term: the smaller this contribution, the closer the regularized solution to the
unregularized one; the second one is a regularization term: the smaller this norm,
the smoother the regularized solution. The weight to be assigned to the second
term is specified by the regularization parameter λ > 0: the smaller the λ, the more
under-regularized the solution (cf. Figure 3, frame (b)), the larger the λ the more
over-regularized the solution (cf. Figure 3, frame (c)). This can be understood
also looking at the expressions for the filters factor φi and at the plot in Figure 3,
frame (a).
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Figure 3: (a): behavior of the Tikhonov filter factors versus the singular values of the matrix A,

both in logarithmic scale, for the case λ = 10−6 (blue line) and λ = 5 ·10−2 (red line); (b): solution

corresponding to the case λ = 10−6 (under-regularization); (c): solution corresponding to the case

λ = 5 · 10−2 (over-regularization).

Problem (8) is equivalent to the Least-Squares problem

(9) min
x∈Rn

∥∥∥∥( A√
λI

)
x−

(
b
0

)∥∥∥∥2

and to the associated normal equations

(10) (ATA+ λI)x = AT b.

As said at the beginning of this section, the SVD of the matrix A should be available in
order to efficiently implement direct methods. This requirement can be computationally
satisfied only by small to middle dimensional linear systems. When dealing with the huge
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dimensional systems associated to image deblurring, we can only hope to compute the
SVD of matrices A with special structures (we refer to [5] for a full justification of this
statement).

2.2 Regularization by Iterative Methods

The class of iterative regularization methods can be successfully applied to huge dimen-
sional systems because, basically, just matrix-times-vector products or inversions of small-
size auxiliary matrices are required at each iteration. Many different iterative methods
have been applied with the aim of computing a regularized solution. Regularization is
achieved by early termination of the iterations; the regularization properties of some iter-
ative methods (like Landweber and CG methods, cf. [4]) have been studied theoretically.
We are going to focus on iterative methods that compute, at each step, a solution belong-
ing to a Krylov subspace. Starting from a matrix Ā ∈ Rn×n and a vector b̄ ∈ Rn, Krylov
subspaces are vectorial spaces of increasing dimension h defined as:

(11) Kh(Ā, b̄) = span{b̄, Āb̄, . . . , Āh−1b̄}, h� n.

Krylov subspace methods differ in the way the matrix Ā and the vector b̄ are chosen in (11)
and in the constraints imposed on the solution. For instance, let us consider the CGLS
method: at step m the solution belongs to the space Km(ATA,AT b) and is determined so
to minimize ‖r − rk‖22, where r = b − Ax̂ (x̂ = A†b is the pseudo-inverse solution of (2))
and rk = b−Axk is the residual at the kth iteration (cf. [1]).

The main problem when performing regularization by means of an iterative method is
semiconvergence, i.e. at the beginning of the process the relative error keeps to decrease
but, after some iterations, it starts to rise again (Figure 4, frame (a)). Therefore deter-
mining when exactly to stop the iterations is a very important issue in order to give a
meaningful reconstruction, before the computed solution is dominated by noise. When
considering iterative methods, the number of performed iterations is the regularization
parameter: if we stop too early we have over-regularization, if we stop too late we have
under-regularization.

0 50 100 150 200 250 300
10

−1

10
0

(a) (b)

Figure 4: (a): history of the relative errors associated to the CGLS method applied to the considered test

problem, (b): reconstructed solution at the 70th iteration.
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2.3 Regularization by Hybrid Method

Hybrid methods incorporate an iterative and a direct approach to regularization: more
precisely, a direct regularization method is applied to a system of increasingly bigger di-
mension. This approach has been originally introduced in [6], where the authors propose
to perform a step of the Lanczos bidiagonalization algorithm at each iteration and regu-
larize the projected system by Tikhonov method. Basically, the so-called Lanczos-hybrid
method aims at regularizing a projection. The Arnoldi-Tikhonov method has been more
recently introduced in [2], where the authors suggest to solve the Problem (8) by project-
ing it into the Krylov subspaces Kh(A, b), generated by performing a step of the Arnoldi
algorithm at each iteration. Basically this method aims at projecting the regularization.
Although in this section we are not exploring the details of hybrid methods, in the fol-
lowing we are going to focus exclusively on the Arnoldi-Tikhonov method, describing a
generalization of it. With respect to the purely iterative approach, the semiconvergent be-
havior of the regularized solution is overcome. The main disadvantage of hybrid methods
is that we have to set a new regularization parameter at each step and choose when to
stop the iterations (i.e. the dimension of the Krylov subspace in which we want to find
the regularized solution): however a meaningful solution can be typically computed after
just a few iterations and so the computational cost of this methods is very low.

3 The Generalized Arnoldi-Tikhonov Method

Here we introduce a generalization of the Arnoldi-Tikhonov method that can be applied
to the following generalized Tikhonov regularization method:

(12) min
x∈Rn

{
‖b−Ax‖2 + λ‖L(x− x0)‖2

}
.

With respect to (8), the above formulation allows to force proximity to an initial guess x0

(if no initial guess is available we simply take x0 = 0) and additional smoothness (if we
take as L a finite-difference approximation of a derivative operator) into the regularized
solution . This new strategy is called Generalized Arnoldi-Tikhonov (GAT) method; the
ideas summarized in this section are fully explained in [3].

3.1 Formulation

Let us first consider the Krylov subspace Km(A, r0), defined as in (11). A basis for this
Krylov subspace can be built using the Arnoldi algorithm [8], which leads to the associated
decomposition

(13) AVm = Vm+1H̄m,

where Vm+1 = [v1, ..., vm+1] ∈ Rn×(m+1) has orthonormal columns that span the Krylov
subspace Km+1(A, r0), and v1 is defined as r0/ ‖r0‖2. The matrix H̄m ∈ R(m+1)×m is
an upper Hessenberg matrix. The GAT method searches for approximations xm of the
solution of Problem (12) belonging to x0 +Km(A, r0). Therefore, replacing x = x0 + Vmy
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(y ∈ Rm) into (12), and using the properties of the matrices generated by the Arnoldi
algorithm (13) yields the reduced minimization problem

(14) ym = min
y∈Rm

{∥∥H̄my − ‖r0‖2e1

∥∥2

2
+ λ ‖LVmy‖22

}
.

Similarly to what we did in Section 2.1, we consider the equivalent formulations

(15) ym = min
y∈Rm

∥∥∥∥( H̄m√
λLVm

)
y −

(
‖r0‖2 e1

0

)∥∥∥∥2

2

and

(16) (H̄T
mH̄m + λV T

mL
TLVm)ym = H̄T

mc .

At each step of the Arnoldi algorithm we solve the reduced-dimension least squares for-
mulation (15), with a newly defined regularization parameter λ.

3.2 Parameter Choice Strategy

Assuming that the quantity ε = ‖e‖2 is known, a successful strategy to define λ as well
as a stopping criterion (i.e. the dimension m of the Krylov subspace) is the discrepancy
principle adapted to the iterative setting of the GAT method. Specifically, at each iteration
we can define the discrepancy function

(17) φm(λ) = ‖Axm − b‖2 = ‖H̄mym − c‖2

where c = ‖r0‖2e1 ∈ Rm+1. We say that the discrepancy principle is satisfied as soon as

(18) φm(λ) ≤ ηε, where η ' 1 .

φ
m

(λ)

ηε

α
m

λ
m−1

λ
m
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10
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(a) (b)

Figure 5: (a): The discrepancy function φm(λ) along with its linear approximation and the horizontal

line corresponding to ‖e‖; (b): values of λ versus the number of performed iterations, for different λ0 ∈
[10−2, 102].

At each iteration we approximate the discrepancy function (17) by

(19) φm(λ) ' αm + λβm,

that is a linear function with respect to λ (cf. Figure 5, frame (a)), where
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• αm ∈ R is simply obtained taking λ = 0; employing the formulation (16) we get

(20) αm = φm(0) =
∥∥H̄m(H̄T

mH̄m)−1H̄T
mc− c

∥∥
2
.

• βm ∈ R is defined by the ratio

(21) βm =
φm(λm−1)− αm

λm−1
,

where φm(λm−1) is obtained by solving the m-dimensional Problem (15) using the
parameter λm−1, which is defined at the previous step; λ0 must be set by the user,
the default value is λ0 = 1 (the GAT method is very robust with respect to the
choice of λ0, cf. Figure 5, frame (b)).

To select λm for the next step of the generalized Arnoldi-Tikhonov algorithm we impose

(22) φm(λm) = ηε

and we again force the approximation

(23) φm(λm) = αm + λmβm .

Substituting in (23) and using the condition (22), we obtain

(24) λm =

∣∣∣∣ ηε− αm
φm(λm−1)− αm

∣∣∣∣λm−1 .

The absolute value has been considered in order to avoid the negativity of the first values
of λm. Numerically, formula (24) is very stable, in the sense that after the discrepancy
principle is satisfied, λm is almost constant for growing values of m.

4 Numerical Experiments

We show the behavior of the Generalized Arnoldi-Tikhonov method when applied to the
test problem we have been considering so far. We employ the regularization matrix L
defined as

L =

(
D1 ⊗ I
I ⊗D1

)
, where D1 =

 1 −1
. . .

. . .

1 −1

 .

The matrix D1 written above is a scaled finite difference approximation of the one-
dimensional first derivative.

For this example, the GAT method can deliver a solution after just four iterations of
the Arnoldi algorithm, i.e. the solution belongs to the space K4(A, b). Anyway, in order to
assess the behavior of the method after the stopping criterion has been satisfied, we decide
to proceed till the 20th step. In Figure 6 we show some meaningful quantities associated
to the GAT method: we can appreciate that the values of relative errors, the discrepancy
and the regularization parameter are very stable with respect to the number of iterations.
The GAT scheme is computationally very efficient, since all the computations (including
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the ones required to set the regularization parameter λm) are performed using projected
quantities and therefore just involve small-dimensional matrices and vectors.
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(c) (d)

Figure 6: (a): image restored employing the GAT method, (b): history of the relative errors, (c): values

of the discrepancy function φm(λm−1) versus the number of iterations, (d): values of the regularization

parameter λm.
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Interpolation properties of

Morrey-type spaces and their application

Diana Darbayeva (∗)

Abstract. It is well known that in the theory of partial differential equations, alongside with
weighted Lebesque spaces, Morrey spaces and their generalizations also play an important role.
Our purpose is the introduction of some generalized Morrey-type spaces, which include classical
Morrey spaces, and study their properties. Moreover, we discuss the interpolation theory of linear
operators and consider some applications. We prove a Marcinkiewicz-type interpolation theorem
for generalized Morrey-type spaces. This theorem is then applied to obtain a Young-O’Neil-type
inequality for the convolution operator in generalized Morrey-type spaces, in particular, in Morrey
spaces.

1 Introduction

Fundamental interpolation theorems such as the Riesz’s convexity theorem (1926), Thorin’s
complex version of Riesz’s theorem (1939) and Marcinkiewicz’s interpolation theorem
(1939) are the basic models of the real interpolation method of Peetre and the complex
interpolation method of Calderón. Both have found widespread application in functional
analysis, approximation theory, PDE, calculus of variation, harmonic analysis. More de-
tails can be found in the books of Bergh-Löfström [1], Brudnyi-Krein-Semenov [2] and
Triebel [19].

This is a note about interpolation properties of Morrey-type spaces. Classical Morrey
spaces Mλ

p were studied as a consequence of the regular solutions to nonlinear elliptic

equations and systems. For the properties and applications of Mλ
p we refer to [11, 15]. In-

terpolation properties of classical Morrey spaces and their generalizations were considered
in many papers. Some results for classical Morrey spaces were obtained in Stampacchia
[17], Campanato and Murthy [8], Peetre [15]. In particular, in [15] it is proved that

(Mλ0
p ,Mλ1

p )θ,∞ ⊂Mλ
p ,

where λ = (1− θ)λ0 + θλ1. In Ruiz and Vega [16], Blasco, Ruiz and Vega [3] it is proved

(∗)The L. N. Gumilyov Eurasian National University, Munaitpasov st., 5, 010008, Astana, Kazakhstan;
E-mail: . Seminar held on April 10th, 2013.
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that such inclusion is strict, i.e.

(Mλ0
p ,Mλ1

p )θ,∞ 6= Mλ
p .

The case of local Morrey-type spaces was considered in Burenkov and Nursultanov
[7], where it was proved, that the interpolation spaces are again local Morrey-type spaces
with the same integrability parameter. Further generalization of interpolation properties
for general local Morrey-type spaces over a given measurable spaces has been discussed in
[6].

However there is still interesting interpolation theorem involved with generalized Mor-
rey-type spaces including classical Morrey spaces. Our goal is the introduction of some
generalized class of Morrey spaces Mα

p,q, which allow to prove a Marcinkiewicz-type inter-
polation theorem (Theorem 4 in Section 4).

The next step was to study the convolution operator

(Tf)(x) = (K ∗ f)(x) =

∫
Rn

K(x− y)f(y)dy

in the spaces Mα
p,q, where K(·) is a locally integrable function on Rn.

For the convolution operator the generalizations of Young-O’Neil’s inequality were
obtained in Blozinski [4], Kerman [9], Kostyuchenko and Nursultanov [10], Stepanov [18],
Nursultanov and Tikhonov [12, 13], and others. We also continue the study Young-O-Neil’s
inequality in the case of Morrey spaces. In particular, by applying the Marcinkiewicz-type
interpolation theorem, we prove boundedness of the convolution operator for classical
Morrey spaces (Theorem 6 in Section 5). There are many possibilities for application,
because many problems in PDE are using boundedness property of that or other operator
in Morrey spaces and their generalizations.

2 Classical interpolation theorems and applications

Let Ω ⊂ Rn and let (Ω, µ) be a space with a positive measure µ. By Lp(Ω, dµ) (or Lp) we
denote the Lebesque space of all functions f µ-measurable on Ω for which

||f ||Lp(Ω,dµ) =

(∫
Ω

|f(x)|pdµ
) 1
p

.

Here 1 ≤ p ≤ ∞ and
||f ||L∞(Ω,dµ) = ess sup x∈Ω|f(x)|

if p =∞.
Let T be a linear operator acting from Lp into Lq, i.e. T (αf + βg) = αT (f) + βT (g).

If also T is a bounded operator or if the quantity

M = sup
f 6=0

‖Tf‖Lq
‖f‖Lp
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is finite, then we shall write
T : Lp → Lq.

The number M is called the norm of the operator T .

The following classical interpolations theorems are well known.

Theorem 1 (Riesz-Thorin’s interpolation theorem [1]) Suppose that p0 6= p1, q0 6= q1,
and

T : Lp0(U, dµ)→ Lq0(V, dν) with the norm M0,

T : Lp1(U, dµ)→ Lq1(V, dν) with the norm M1.

Then
T : Lp(U, dµ)→ Lq(V, dν)

with the norm M ≤M1−θ
0 M θ

1 , where θ ∈ (0, 1), and

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
.

This interpolation theorem shows that weak conditions at the extreme points ( 1
p0
, 1
q0

)

and ( 1
p1
, 1
q1

) still guarantee the boundedness of the operator for intermediate values.

The following theorem applies to the case of the Lorentz spaces. Let us recall the
definition of the Lorentz space. Let f∗ denote the non-increasing rearrangement of a
function f . By Lp,q we denote the Lorentz space of all functions f µ-measurable on Ω for
which

||f ||Lp,q =

( ∞∫
0

(
t
1
p f∗(t)

)q dt
t

) 1
q

, 1 ≤ p <∞, 1 ≤ q ≤ ∞

(with the usual supremum interpretation when q =∞).

Theorem 2 (General Marcinkiewicz’s interpolation theorem [1]) Suppose that

T : Lp0,τ0(U, dµ)→ Lq0,s0(V, dν) with the norm M0

and
T : Lp1,τ1(U, dµ)→ Lq1,s1(V, dν) with the norm M1,

where p0 < p1, q0 < q1. Let 1
p = 1−θ

p0
+ θ

p1
, 1

q = 1−θ
q0

+ θ
q1
. Then

T : Lp,τ (U, dµ)→ Lq,τ (V, dν), 0 < τ ≤ ∞

with the norm M ≤ cM1−θ
0 M θ

1 , where θ ∈ (0, 1). In particular, if p ≤ q, then

T : Lp(U, dµ)→ Lq(V, dν).

Università di Padova – Dipartimento di Matematica 90



Seminario Dottorato 2012/13

This interpolation result was appeared in the note of Marcinkiewicz in 1939, how-
ever the proof of Marcinkiewicz’s theorem was published by Zigmund in 1956. Further
many mathematicians investigated the generalizations of Marcinkiewicz’s theorem for the
abstract spaces. Now we consider simple application of such interpolation results.

Example 1 (Young’s inequality) Let U = V = Rn and dµ = dx (Lebesque measure).
Consider the convolution operator

K ∗ f =

∫
Rn

K(x− y)f(y)dy,

where K ∈ Lr(Rn), 1 ≤ r ≤ ∞. Then by Hölder’s inequality we have

‖K ∗ f‖L∞ ≤ ‖K‖Lr‖f‖Lr′ ,

where 1
r + 1

r′ = 1, and by generalized Minkowski’s inequality

‖K ∗ f‖Lr ≤ ‖K‖Lr‖f‖L1 .

So, we have boundedness

K ∗ f : Lr × Lr′ → L∞ with the norm M0 ≤ ‖K‖Lr ,

K ∗ f : Lr × L1 → Lr with the norm M1 ≤ ‖K‖Lr .

By using complex interpolation (Theorem 1) we obtain boundedness

K ∗ f : Lr × Lp → Lq,

where 1
p = 1−θ

r′ + θ
1 ,

1
q = 1−θ

∞ + θ
r , which gives 1 + 1

q = 1
p + 1

r , with the norm M ≤ ‖K‖Lr .
Equivalently, we can formulate the Young’s inequality: if 1 ≤ p, q, r ≤ ∞ and 1+ 1

q = 1
p+ 1

r ,
then

‖K ∗ f‖Lq ≤ ‖K‖Lr‖f‖Lp .

By using real interpolation (Theorem 2) we obtain

‖K ∗ f‖Lq,τ ≤ c‖K‖Lr‖f‖Lp,τ ,

where 1 < p, q, r <∞ and 1 + 1
q = 1

p + 1
r .

Remark 1 If in the last inequality we only assume that K ∈ Lr,∞(Rn), then this stronger
result is due to O’Neil [14]. Most of the other classical inequalities were proved by using
such interpolation results and were useful for numerous applications, fractional differential,
embedding theorems etc.
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3 Morrey-type spaces. Properties and examples.

We shall start from the definition of classical Morrey spaces.

Definition 1 (C. Morrey, 1938) Let 0 < p ≤ ∞, 0 ≤ λ ≤ n
p . We say that a function f

belongs to the Morrey space Mλ
p (Rn) if f ∈ Llocp (Rn), and the following expression is finite

||f ||Mλ
p
≡ ||f ||Mλ

p (Rn) = sup
x∈Rn

sup
r>0

r−λ||f ||Lp(B(x,r)).

Here B(x, r) is the open ball of radius r > 0 with center at point x ∈ Rn.

Here, compared with the original definition in [11], we write r−λ instead of r
−λ
p and

change the restriction on the parameter λ respectively. And also in [11] p ∈ [1,∞], but
there is no problem if we extend it to (0,∞]. Note also that the space Mλ

p is a Banach
space for 1 ≤ p ≤ ∞ and a quasi-Banach space for 0 < p < 1.

Now we consider the example, which shows relation with the Lebesgue space.

Example 2

1) If λ = 0, 0 < p ≤ ∞, then Mλ
p (Rn) = Lp(Rn).

2) If λ = n
p , 0 < p <∞, then M

n
p
p (Rn) = L∞(Rn).

3) If λ < 0 or λ > n
p , then Mλ

p = Θ, where Θ is the set of all functions equivalent to 0
on Rn.

Remark 2 Note that the space Mλ
p does not coincide with a Lebesque space if and only

if 0 < p <∞ and 0 < λ < n
p . Moreover, L∞ ∩ Lp ⊂Mλ

p .

Next we introduce some generalized Morrey-type spaces.

Definition 2 Let 0 < p < ∞, 0 < q ≤ ∞ and 0 ≤ α ≤ n
p . For any f ∈ Llocp (Rn) we set

for q <∞,

(1) ||f ||Mα
p,q

=

 ∞∫
0

(
t−α sup

x∈Rn
‖f‖Lp(B(x,t))

)q dt
t

1/q

,

and for q =∞,
||f ||Mα

p,∞ = sup
x∈Rn

sup
t>0

t−α‖f‖Lp(B(x,t)).

We define the space Mα
p,q as the set of all functions f ∈ Llocp (Rn) such that

||f ||Mα
p,q

< ∞. Taking this fact into account, we shall always assume that 0 < α < n
p

for q <∞ and 0 ≤ α ≤ n
p for q =∞ when considering the spaces Mα

p,q. Note that if α < 0
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or α = 0 or α ≥ n
p for q < ∞ and if α > n

p for q = ∞, then Mα
p,q = Θ. Note also that if

q =∞, then the space Mα
p,q coincides with the classical Morrey space, i.e.

Mα
p,∞ = Mλ

p .

We also need a local variant of (1), which was defined in [5] as follows:

Definition 3 Let 0 < p < ∞, 0 < q ≤ ∞ and 0 ≤ α ≤ n
p . The local Morrey-type

spaces are defined as the space of all functions f Lebesque measurable on Rn with finite
quasi-norm

||f ||LMα
p,q

=

 ∞∫
0

(
t−α‖f‖Lp(B(0,t))

)q dt
t

1/q

if 0 < q <∞, and with the usual supremum interpretation when q =∞.

Next we consider embedding properties of Morrey-type spaces.

Lemma 1

(i) If 1 ≤ p0 < p1 <∞, then
Mα1
p1,q ↪→Mα0

p0,q,

where α0 = α1 − n(p0−p1)
p0p1

;

(ii) If 0 < q0 < q1 ≤ ∞, then
Mα
p,q0 ↪→Mα

p,q1 .

Remark 3 Lemma 1 also holds for local Morrey-type spaces, because the proof follows
the same scheme.

Lemma 2 (Hölder’s inequality for Mα
p,q) Let p, p0, p1 ∈ [1,∞), q, q0, q1 ∈ [1,∞],

1
p = 1

p0
+ 1

p1
, 1
q = 1

q0
+ 1

q1
, α = α0 + α1, then fg ∈Mα

p,q, and

||fg||Mα
p,q
≤ ||f ||Mα0

p0,q0
||g||Mα1

p1,q1

for all functions f ∈Mα0
p0,q0 and g ∈Mα1

p1,q1.

Consider the following examples for local Morrey-type spaces.

Example 3 Let β ∈ R, 0 < p < ∞, 0 < q ≤ ∞, 0 < α < n
p if q < ∞, and

0 ≤ α ≤ n
p if q = ∞. If q < ∞, then |x|β /∈ LMα

p,q for all β ∈ R. If q = ∞, then

|x|β ∈ LMα
p,∞ ⇔ β = α− n

p .

Example 4 Let β ∈ R, 0 < p <∞, 0 < q ≤ ∞, 0 < α < n
p if q <∞, and 0 ≤ α ≤ n

p if

q =∞. Then |x|βχ
B(0,1)

(x) ∈ LMα
p,q ⇔ β > α− n

p if q <∞ and β ≥ α− n
p if q =∞.
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Example 5 Let β ∈ R, 0 < p < ∞, 0 < q ≤ ∞, 0 < α < n
p if q < ∞, and

0 ≤ α ≤ n
p if q = ∞. Then |x|β(1 + | ln |x||)γχ

B(0,1)
(x) ∈ LMα

p,q ⇔ β > α − n
p , γ ∈ R or

β = α − n
p , γ < −

1
q for q < ∞ and γ ≤ 0 for q = ∞. (Here χ

B(0,1)
– the characteristic

function of the ball B(0, 1).)

4 Interpolation properties of Morrey-type spaces

We shall now investigate the interpolation behavior of Morrey-type spaces, which was
considered in many works in the 60-s. We start with

Theorem 3 (Stampacchia [17], Campanato-Murthy [8]) Let T be a linear operator such
that

T : LP0 →Mλ0
p0 ,

T : LP1 →Mλ1
p1 .

Then
T : LP →Mλ

p ,

where 1
P = 1−θ

P0
+ θ

P1
, 1
p = 1−θ

p0
+ θ

p1
and λ = (1− θ)λ0 + θλ1, 0 ≤ θ ≤ 1.

Actually one can replace LP0 , and LP1 by abstract space A0 and A1, and LP by an
abstract interpolation space A = (A0, A1)θ,∞. In particular, in [15] it is proved that

(Mλ0
p ,Mλ1

p )θ,∞ ⊂Mλ
p ,

where λ = (1− θ)λ0 + θλ1. In Ruiz and Vega [16], Blasco, Ruiz and Vega [3] it is proved
that such inclusion is strict, i.e.

(Mλ0
p ,Mλ1

p )θ,∞ 6= Mλ
p .

However there is still interesting interpolation theorem involved with generalized Morrey-
type spaces including classical Morrey spaces. We state our main result – the analog of
Marcinkiewicz’s interpolation theorem for Mα

p,q.

Theorem 4 Let 0 < α0 < α1 <
n
p , 0 < β0 < β1 <

n
q , 0 < p, q <∞, and let T be a linear

operator. Suppose that the following inequalities hold for all z ∈ Rn

||Tf ||LMαi
p,∞,z

≤Mi||f ||LMβi
q,1,z

, i = 0, 1.

Then
||Tf ||Mα

p,τ
≤ cM1−θ

0 M θ
1 ||f ||Mβ

q,τ
,

in particular, if τ =∞, then

||Tf ||Mλ
p
≤ cM1−θ

0 M θ
1 ||f ||Mν

q
,

where α = (1 − θ)α0 + θα1, β = (1 − θ)β0 + θβ1, 0 < τ ≤ ∞, 0 < θ < 1, and c depends
only on the parameters p, β0, β1, θ.
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Remark 4 Here we denote by LMα
p,q,z the usual local Morrey-type spaces for a fixed

z ∈ Rn, in which case the behavior of the quasi-norm ‖f‖Lp(B(z,t)) is important only in a
neighborhood of the point z. However, if f belongs to the generalized Morrey-type spaces
Mα
p,q, then the uniform in z ∈ Rn behavior of the quasi-norm ‖f‖Lp(B(z,t)) is assumed.

Application of Theorem 4 allows us to obtain different statements for the singular operators
in Morrey spaces and their generalizations.

5 Some applications

• Interpolation technique is the instrument in the studying of integral operator in the
space of integrable functions.

We present our result – Young-O’Neil-type inequality for generalized Morrey-type
spaces. First of all we have proved boundedness of the convolution operator for local
Morrey-type spaces.

Theorem 5 Let 1 < p, q < ∞ and 0 < ν < n
p 0 < λ < n

q . Let 1 + 1
q = 1

p + 1
r + λ−ν

n .

If f ∈ LMν
p,∞,z and K ∈ Lr,∞(Rn), then the convolution operator K ∗ f ∈ LMλ

q,∞,z.
Moreover, the following estimate holds for all z ∈ Rn

||K ∗ f ||LMλ
q,∞,z

≤ c||K||Lr,∞(Rn)||f ||LMν
p,∞,z ,

where c independent of function K.

So, by applying Theorem 4 and Theorem 5, we prove Young-O’Neil-type inequality for
the generalized Morrey-type spaces, in particular, for classical Morrey spaces.

Theorem 6 Let 1 < p, q < ∞, 0 < τ ≤ ∞, 0 < ν < n
p , 0 < λ < n

q , and 1 + 1
q =

1
p + 1

r + λ−ν
n . If f ∈Mν

p,τ and K ∈ Lr,∞(Rn), then the convolution operator K ∗ f ∈Mλ
q,τ ,

and the following estimate holds

||K ∗ f ||Mν
p,τ→Mλ

q,τ
≤ c||K||Lr,∞(Rn),

in particular, if τ =∞, then

||K ∗ f ||Mν
p→Mλ

q
≤ c||K||Lr,∞(Rn),

where c independent of function K.

• Interpolation technique can also be used to obtain various limiting cases of the
well-known ”regularity theorems” of boundary value problems: Let u be a fundamental
solution of an elliptic partial differential operator of Au = f , where f ∈ L∞, then all
partial derivatives Dmu of order m are locally in Mλ

p . (See [15].)
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Open problems

• Extend the boundedness of the convolution operator up to obtaining the low estimates
of the convolution in generalized Morrey-type spaces.
• The author intends to consider in the future the Fourier transform in Morrey-type
spaces, namely to study relations between summability of Fourier coefficients and inte-
grability of functions, which belong to the Morrey-type spaces. It is also useful to obtain
some estimates and various integral operators on these spaces.
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[1] J. Bergh, J. Löfström, “Interpolation spaces. An introduction”. Springer-Verlag, Berlin-
Heidelberg-New York, 1976.

[2] Yu.A. Brudnyi, S.G. Krein, E.M. Semenov, Interpolation of linear operators. Itogi Nauki i
Tekhn. Ser. Mat. Anal. 24 (1986), 3–163.

[3] O. Blasco, A. Ruiz, L. Vega, Non interpolation in Morrey-Campanato and block spaces. Ann.
Scuola Norm. Super. Pisa 28/1 (1999), 31–40.

[4] A.P. Blozinski, On a convolution theorem for Lp,q spaces. Trans. Amer. Math. Soc. 164 (1972),
255–265.

[5] V.I. Burenkov, H.V. Guliyev, V.S. Guliyev, Necessary and sufficient conditions for bounded-
ness of the fractional maximal operator in the local Morrey-type spaces. Doklady Ross. Akad.
Nauk. Matematika 409 (2006), 443–447.

[6] V.I. Burenkov, D.K. Darbayeva, E.D. Nursultanov, Description of interpolation spaces for
general local Morrey-type spaces. Eurasian Mathematical Journal 4/1 (2013), 46–53.

[7] V.I. Burenkov, E.D. Nursultanov, Description of interpolation spaces for local Morrey-type
spaces. Trudy Math. Inst. Steklov 269 (2010), 46–56.

[8] A. Campanato, M.K.V. Murthy, Una generalizzazione del teorema di Riesz-Thorin (Italian).
Ann. Scuola Norm. Super. Pisa 19 (1965), 87–100.

[9] R.A. Kerman, Convolution theorems with weights. Trans. Amer. Math. Soc. 280/1 (1983),
207–219.

[10] A.G. Kostyuchenko, E.D. Nursultanov, On integral operators in Lp-spaces. Fundam. Prikl.
Mat. 5/2 (1999), 475–491.

[11] C.B. Morrey, On the solution of quasi-linear elliptic partial differential equations. Trans.
Amer. Math. Soc. 43 (1938), 126–166.
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Almost integrable Hamiltonian

systems and the approach

of the Perturbation theory

Gabriella Schirinzi (∗)

1 Introduction

Almost integrable Hamiltonian systems are dynamical systems which can be described
by the Hamiltonian formulation and are not integrable according to Liouville-Arnol’d
theorem. Nevertheless, their Hamiltonian can be written as a small perturbation of an
integrable one. One may easily conclude that since the Hamiltonian is very close to an
integrable one, then the same holds also for the dynamics of such kind of systems. But
unfortunately this is not true, hence it’s necessary to find suitable techniques to study
the behaviour of almost integrable systems. This is what the Hamiltonian Perturbation
Theory does: it studies almost integrable systems with the purpose of controlling their
evolution in time comparing the dynamics to the one of the correspondent integrable sys-
tems.
I will shortly recall some basical notions about Lagrangian and Hamiltonian formulations
of dynamical systems; in particular for Hamiltonian systems I will state the celebrated
Liouville- Arnold’s theorem about integrable systems. Then I will introduce almost inte-
grable systems and the main difficulties in studying their dynamics. Finally I will introduce
the two main theorems of the Hamiltonian Perturbation theory, which can overcome such
difficulties and prove some stability properties for almost integrable systems.

2 The Lagrangian formulation

In what follows we will denote by a dot the partial derivative with respect to the time.
Let us consider a system of particles with n degrees of freedom. Suppose all forces involved
are conservative, and possible constraints are holonomic and time independent. As well

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on April 24th, 2013.
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known, the motion of such a system is described by the Newton’s second law as well as
by the Lagrangian formulation:

(1)



d
dt

(
∂L
∂q̇1

)
= ∂L

∂q1

d
dt

(
∂L
∂q̇2

)
= ∂L

∂q2

...
d
dt

(
∂L
∂q̇n

)
= ∂L

∂qn

This formulation consists of n differential equations of the second order in the n indepen-
dent variables q1, . . . , qn, which are called generalized variables. The function L(q, q̇) (†) is
the Lagrangian function and is given by the difference between the total kinetic energy of
the system T (q, q̇) and the total potential energy V (q): L(q, q̇) = T (q, q̇)− V (q).

Let us recall some useful definitions:

Definition 2.1 (Configuration space) the n-dimensional space of the values of the
generalized coordinates (q1, . . . , qn)

Definition 2.2 (Phase space) the 2n-dimensional space of the values of the generalized
coordinates and their velocities (q1, . . . , qn, q̇1, . . . , q̇n)

Definition 2.3 (Trajectories of the motion) the solutions (q1(t), q2(t), . . . , qn(t)) of
system (1) (which are curves in the configuration space)

When we have a dynamical system (1) and we are able to write explicitly the solutions,
then we know everything about its dynamics: given an initial state of the system at a cer-
tain time, we can predict the behaviour of the motion at any moment. But unfortunately,
not always we can calculate the solutions of (1). Nevertheless, there can exist some first
integrals of the motion, which may help us simplify the equations in (1) and deduce useful
informations about the dynamics. Let us recall what a first integral is:

Definition 2.4 (First integral of the motion) a function which has constant value
along any trajectories of the motion (is conserved), that is of the form:

f(q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t)) = constant

Example 1 In conservative systems, the total energy E = T +V is a first integral of the
motion.

From a geometrical point of view, a first integral describes a surface in the phase space
with the following property: if the motion starts on such a surface, then it is bound to

(†)For short we denote by q the whole set of variables (q1, q2, . . . , qn), and we do analogously for any
other set of variables
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move on it for all times. Forcing motions to stay on invariant surfaces, first integrals reduce
the number of degrees of freedom of the system, hence they simplify the equations of the
motion. In particular, when there is a sufficient number of first integrals, the equations of
the motion become integrable. In fact, given a generic differential system (not necessarily
a Lagrangian system) with 2n−dimensional phase space, if it admits 2n− 1 independent
first integrals, then it can be solved by quadratures.
There exists an alternative formulation of the motion of a dynamical system, still consisting
in a differential system, for which it has been proved an integrability result based on a
lower number of first integrals of the motion (but satisfying suitable conditions). This is
the so called Hamiltonian formulation of the motion.

3 The Hamiltonian formulation

The Hamiltonian formulation of the motion of a dynamical system can be derived from
the Lagrangian one, and consists of the following system of 2n differential equations of the
first order:

(2)


q̇i(t) = ∂H

∂pi

ṗi(t) = −∂H
∂qi

i = 1, . . . , n

The equations depend on 2n independent variables q1, . . . , qn, p1, . . . , pn called canonical
variables, where the first n are the generalized variables, and the last n are the correspon-
dent conjugate momenta, given by:

(3) pi :=
∂L

∂q̇i

The function H(q, p) is the Hamiltonian function and can be obtained from the Lagrangian
L(q, q̇) by a change of coordinates, from the old coordinates (q, q̇) to the new ones (q, p).
Such a transformation is known under the name of Legendre transformation, and can be
summarized as follows:

(a) suppose we can invert (3) with respect to q̇i: q̇i = φi(q, p)

(b) define the generalized energy :

(4) H̃(q, q̇) :=
n∑
i=1

∂L

∂q̇i
q̇i − L

(c) substitute (3) in (4) and we get the Hamiltonian:

H(q, p) = H̃(q, φ(q, p)) =

n∑
i=1

piφi(q, p)− L(q, φ(q, p))
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We underline that under our hypothesis, the Langrangian function doesn’t depend explic-
itly on time and, consequently, the same holds for the Hamiltonian. It is possible to prove
that when the Hamiltonian doesn’t depend explicitly on time, it is a first integral of its
motion.
The Hamiltonian formulation turns out to be very useful when there are cyclic variables.
Let us recall the definition of cyclic variable:

Definition 3.1 (Cyclic variable) a variable which doesn’t appear explicitly in the
Hamiltonian

When there is a cyclic variable, there is also a first integral of the motion, and the
Hamilton’s equations appear simpler. To understand why, let us consider an example.

Example 2 Suppose we have a Hamiltonian function such that all the variables qi,
i = 1, . . . , n, are cyclic: H(q, p) = H(p). Then, from Hamilton’s equations (2) we conclude
that all the variables pi, i = 1, . . . , n, are first integrals of the motion, in fact:

ṗi(t) = −∂H
∂qi
≡ 0 =⇒ pi = αi ∀i (constants)

Consequently, Hamilton’s equations are simply:
q̇i(t) = ∂H

∂pi
=: ωi(αi)

ṗi(t) = 0

=⇒


qi(t) = ωi(αi)t+ βi

pi(t) = αi i = 1, . . . , n

( βi and αi depend on initial conditions). In this case the equations of the motion can
be easily integrated, and the trajectories of the system are linear motions lying on the
invariant surfaces described by the first integrals pi = αi, i = 1, . . . , n.

Now, one may wonder if a Hamiltonian system with 2n-dimensional phase space, having n
first integrals of the motion, does always admit a choice of canonical variables such that n
of them are cyclic. This turns out to be true only under suitable conditions, as it is stated
in the celebrated Liouville-Arnol’d Theorem, which characterizes integrable Hamiltonian
systems. Before stating the theorem, let us recall a useful definition:

Definition 3.2 (Poisson Brackets) Given the functions u(q, p) and v(q, p), their
Poisson Bracket is defined as follows:

{u, v} =
n∑
i=1

( ∂u
∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

)
Moreover u and v are said to be in mutual involution if

{u, v} = 0

Theorem 3.3 (Liouville-Arnol’d Theorem) Suppose:
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• we have a Hamiltonian H(q, p) : M → R and n first integrals of the motion fi(q, p) :
M → R, i = 1, . . . , n, where M ⊆ R2n is a symplectic manifold

• f1, . . . , fn are all in mutual involution each other

• f1, . . . , fn are functionally independent on a level set Nc = {(q, p) ∈ M :
fi(q, p) = ci, i = 1, . . . , n}, c = (c1, . . . , cn), and assume Nc is compact and con-
nected

=⇒ then in a neighbourhood of Nc we can introduce the so called action-angle variables (I, ϕ)
and in the new variables the Hamiltonian depends only on the actions:

(5) H ′(I, ϕ) = H ′(I)

The Hamiltonian (5) has the same form as the Hamiltonian in Example 2, hence the
Hamilton’s equations are: 

İ(t) = 0

ϕ̇(t) = ω(I), with ω(I) := ∂H′

∂I

with trivial solutions I(t) = I(0) and ϕ(t) = ω(I(0))t + ϕ(0). In particular, Liouville-
Arnol’d theorem states that the neighbourhood of Nc is diffeomorphic to the n-dimensional
torus Tn, hence any motion of a system satisfying the hypotheses of the theorem, is linear
on the invariant torus I = I(0), with constant velocity ω(I(0)).

Examples 3 Here are some examples of systems which are integrable according to
Liouville-Arnol’d theorem:

• all Hamiltonian systems with one degree of freedom

• the 2-body problem

• some special systems (Euler rigid body, Lagrange spinning top...)

Then, thanks to Liouville-Arnol’d theorem, we have a complete characterization of the
motions of those systems which are integrable according to this theorem. Nevertheless,
most of the real physical systems are not integrable. In fact, the existence of a sufficient
number of functionally independent first integrals and their mutual involution, are very
restrictive hypotheses, which rarely are satisfied.

Example 4 The n-body problem is not integrable.
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3.1 Almost integrable Hamiltonian systems

Even if they are not integrable according to Liouville-Arnol’d theorem, many of the real
physical systems can be put in a form which is called almost integrable. It means they
can be described by a Hamiltonian which appears as a small perturbation of an integrable
one:

(6) H(I, ϕ) = h(I) + εf(I, ϕ)

The function h(I) is an integrable Hamiltonian, in fact it depends only on the action
variables; ε is a small parameter (|ε| � 1) which measures the intensity of the perturbation
f(I, ϕ), which is not integrable. The associated Hamiltonian system is

(7)


ϕ̇(t) = ∂H

∂I = ω(I) + ε ∂f∂I

İ(t) = −∂H
∂ϕ = −ε ∂f∂ϕ

where ω(I) := ∂h
∂I is the frequency vector of the integrable Hamiltonian h(I).

The fact that an almost integrable Hamiltonian function is close to an integrable one,
doesn’t mean that the same holds for the dynamics. In fact, orbits of an almost integrable
system can get very far from the ones of the correspondent integrable system, and can be
also very irregular. The Hamiltonian Perturbation Theory studies the behaviour of
almost integrable Hamiltonian systems: in particular, it searches the longest possible time-
scale on which action variables remain close to the ones of the correspondent integrable
system (stability).

4 Hamiltonian Perturbation Theory

It is given an almost integrable Hamiltonian (6): we want to control the variation of the
action variables such that they remain close to the ones of the integrable system (which are
I(0)) for the longest possible time. First we observe from Hamilton’s equations it follows
a first, trivial, estimate for the actions. In fact, if we assume the perturbation f(I, ϕ) is
bound in norm by A, then from (7) we have the so called a priori estimate:

(8) |I(t)− I(0)| ≤ εA|t| =
√
εA
√
ε|t|

Estimate (8) implies that up to times of the order of 1/
√
ε the variation of the actions

remains
√
ε-limited.

We would like to improve such an estimate, that is to extend the stability time as much
as possible. But to do that we need to reduce the perturbation, increasing its order. In
fact, suppose the order of the perturbation is ε2; then, from Hamilton’s equations (7) it
follows:

|I(t)− I(0)| ≤ ε2A|t| =
√
εA (ε

√
ε|t|)
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In this case the variation of the actions remains
√
ε-limited up to times of the order of

1/ε
√
ε, which is a time longer than the one in the a priori estimate.

If we want to reduce the perturbation, we need to find a suitable change of variables, and
if we are able to do it, it means we can perform a so called perturbative step.

4.1 The fundamental equation of the perturbation theory

There are two methods for changing variables in a Hamiltonian system:

• the generating function method

• the Lie series method

When we try to perform a perturbative step, both methods lead to the same differential
equation in the unknown function χ(I, ϕ):

(9) ω(I) · ∂χ
∂ϕ

(I, ϕ) = f(I, ϕ)

This is the fundamental equation of the perturbation theory.

A perturbative step consists in searching a solution to equation (9). Suppose f(I, ϕ) and
χ(I, ϕ) can be expressed in Fourier series:

f(I, ϕ) =
∑
k∈Zn

fk(I)eik·ϕ χ(I, ϕ) =
∑
k∈Zn

χk(I)eik·ϕ

then equation (9) implies:

(10) χ(I, ϕ) = −i
∑

k∈Zn/{0}

fk(I)

ω(I) · k
eik·ϕ

The function χ(I, ϕ) is well defined only for those actions in the phase space such that:

ω(I) · k 6= 0 ∀ k ∈ Zn/{0}

that is actions corresponding to non-resonant motions (I correspond to a resonant motion
if ω(I)·k = 0 for some k ∈ Zn/{0}). Actually, we should keep sufficiently far from resonant
motions, hence actions should satisfy the stronger condition, for some positive constants
γ, β ∈ R:

(11) |ω(I) · k| ≥ γ

|k|β
∀ k ∈ Zn/{0}

known under the name of diophantine condition.
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4.2 The Poincaré’s difficulty (small denominators)

Poincaré proved that in general actions satisfying the diophantine condition (11) form in
the phase space a dense set. In particular, this happens when the following two conditions
hold at the same time:

(a) the components of ω(I) are functionally independent :

det
∣∣∣∂ω
∂I

∣∣∣ = det
∣∣∣∂2h

∂I2

∣∣∣ 6= 0

(b) the perturbation f(I, ϕ) is generic, that means for each k ∈ Zn there exists k′ parallel
to k such that fk′(I) 6= 0.

Since the actions satisfying the diophantine condition form a dense set, we cannot ensure
convergence for the series defining χ (10) in any open subset of the phase space, and
consequently we cannot perform a perturbative step.

4.3 KAM Theorem and Nekhoroshev Theorem

There have been found some ways to overcome the Poincaré’s difficulty, in particular two
theorems, which are the most important in the Hamiltonian perturbation theory, can
perform perturbative steps and then extend the stability time for the motions of almost
integrable Hamiltonian systems with suitable small ε. Such theorems are the KAM
Theorem (‡)[1954] and the Nekhoroshev Theorem [1977]. They make some regularity
assumptions on the Hamiltonian function, especially on its integrable part, and prove
different stability properties for all, or almost all, initial data in the phase space.

• KAM Theorem proves perpetual stability for only non-resonant motions. That
is for almost all initial data in the phase space, except a set with small Lebesgue
measure O(

√
ε), orbits of an almost integrable system remain close to the ones of

the correspondent integrable system forever.

Application. This theorem has been used to prove stability in the circular restricted
three body problem in the planar case.

• Nekhoroshev Theorem proves an exponentially long stability for all motions of
an almost integrable system. The stability time is given by:

T = t0e
(
ε0
ε

)b

with t0, ε0, b positive constants.

Application. This theorem has been used to prove stability of some equilibrium
points in the circular restricted three body problem in the spatial case.

(‡)after Kolmogorov, Arnol’d and Moser.
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A class of derivative-free nonmonotone

algorithms for unconstrained optimization

Francesco Rinaldi (∗)

Abstract. We first present some basic concepts related to derivative-free optimization. Then, we
describe a class of algorithms that makes use of nonmonotone inexact linesearches along a set of
search directions satisfying appropriate conditions.

Keywords. Derivative-free Methods, Nonmonotone Techniques, Unconstrained Optimization.

1 Introduction

Extensive useful information is contained in the derivatives of any function one wishes
to minimize. Anyway, in many instances (at least some) derivatives are unavailable or
unreliable. This situation frequently arises in real-world problems and requires the use
of suitably developed approaches i.e. derivative-free approaches. In [1], a comprehen-
sive study of derivative-free methods is given. ¿From now on, we focus on the following
problem:

min
x∈Rn

f(x),

and we assume that:

• f : Rn → R is a continuously differentiable function;

• first order information is not available.

In derivative-free monotone linesearch methods the key idea is that of finding a new point
along a search direction that guarantees

• a sufficient decrease of the objective function;

• a sufficiently large movement along a given direction.

(∗)Università di Padova, Dipartimento di Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on May 22nd, 2013.
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The basic ingredients of such algorithms are: a suitably chosen set of search directions
and an Armijo-type linesearch. Here, we first give some details about classic linesearch
methods, then we briefly describe a class of algorithms that make use of nonmonotone
linesearches [2].

2 Search directions

Without first order information, we cannot guarantee to have a descent direction. In other
words, we cannot use a single search direction at each iteration (like e.g. in gradient-based
methods). In practice, a suitably chosen set of search directions is considered. We give
here some basic definitions:

Definition 1 A positive span of a set of vectors {v1, . . . , vr} is the cone

{y ∈ Rn : y =
r∑
i=1

γivi, γi ≥ 0, i = 1, . . . , r}.

Definition 2 A positive spanning set in Rn is a set of vectors whose positive span is Rn.

We report a classic result related to positive spanning sets (see e.g. [1]):

Proposition 3 If {v1, . . . , vr} is a positive spanning set, then for every nonzero vector
w ∈ Rn there exists an index i ∈ {1, . . . , r} for which wT vi > 0.

So if w = −∇f(x) 6= 0, there exists a vi :

−∇f(x)T vi > 0

and vi is a descent direction.
A set {v1, . . . , vr} is said to be positively dependent if one of its vectors is a positive
combination of the others; otherwise, the set is positively independent.

Definition 4 A positive basis in Rn is a positively independent set whose positive span
is Rn.

Two examples of positive basis for Rn are:

- the coordinate directions and their negative counterparts, that is

{s1, . . . , s2n} = {e1, . . . , en,−e1, . . . ,−en};

- the coordinate directions and the negative of their sum, that is

{s1, . . . , sn+1} = {e1, . . . , en,−
n∑
i=1

ei}.
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3 Derivative-Free Linesearches and Global Convergence

In derivate-free methods an Armijo Backtracking Rule is usually considered. Given a
search direction dk, the goal is finding an αk such that

f(xk + αkdk) ≤ f(xk)− γ(αk‖dk‖)2

with γ > 0. The algorithm starts with a given stepsize ∆k > 0 and stops after a finite
number of iterations with a stepsize αk. At the end of the procedure we can have:

• αk 6= 0: we get a new point along the search direction that guarantees sufficient
decrease;

• αk = 0 : we have a failure.

An expansion step is usually included in the Linesearch to guarantee that the chosen
stepsize is sufficiently large (this enables to give an arbitrary value to ∆k). The expansion
starts every time ∆k is accepted and Goldstein Conditions:

f(xk + αkdk) ≤ f(xk)− γ1(αk‖dk‖)2

f(xk + αkdk) ≥ f(xk)− γ2(αk‖dk‖)2

with γ1 < γ2, are not satisfied.

Nonmonotone linesearches can be very useful when dealing with an objective function that
is noisy or with steep sided valleys. In this cases, the monotone reduction of the function
corresponds to very small movement along the search direction. Nonmonotone acceptance
rules can improve robustness and efficiency by imposing sufficient reduction with respect
to a reference value Wk that satisfies the condition

(1) f(xk) ≤Wk ≤ max
0≤j≤min(k,M)

[f(xk−j)],

for a given integer M ≥ 0. Thus, we can define a Nonmonotone Armijo Backtracking Rule
(see [3] for further details). In practice, given a search direction dk, the goal is finding an
αk:

f(xk + αkdk) ≤Wk − γ(αk‖dk‖)2

with γ > 0. In the Armijo Search, the stepsize is reduced until either the condition
of sufficient decrease is satisfied, and hence the sign of αk is fixed, or the length of the
tentative step α‖dk‖ becomes smaller than an adjustable bound ρk. In the latter case,
the value αk determined by the algorithm is set equal to zero and the last value of α
is indicated by ηk > 0. We report below a scheme of the Nonmonotone Derivative-Free
LineSearch (NDFLS) Algorithm.
The following result can be proved for the NDFLS Algorithm [3]:

Proposition 5 Let f : Rn → R be continuously differentiable and assume that the level
set L0 = {x ∈ Rn : f(x) ≤ f(x0)} is compact.
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(i) Algorithm NDFLS determines, in a finite number of steps, a scalar αk such that

(2) f(xk + αkdk) ≤Wk − γ(αk)
2‖dk‖2.

(ii) Let {xk} be a the sequence of points in Rn and let K be an infinite index set such
that

xk+1 = xk + αkdk, for all k ∈ K

where dk ∈ Rn, dk 6= 0 and αk ∈ R is determined by means of Algorithm NDFLS.
Assume that ρk → 0 for every infinite subsequence of {xk}K such that αk = 0. Then,
we have:

lim
k→∞,k∈K

∇f(xk)
Tdk

‖dk‖
= 0. 2

Search direction dk, Starting Stepsize ∆k

Nonmonotone Armijo Linesearch along dk

α < |∆k| Expansion Step

set αk = α

yes

no

Figure 1: NDFLS Algorithm.

In order to guarantee the global convergence of a derivative free methods, we need
to impose conditions on the search directions. In particular, the following assumption [2]
needs to be satisfied:

Assumption 6 Let {dk} be the sequence of search directions used in the algorithm.
There exists a value N > 0 and n integers j(k, i), for i = 1, . . . , n, such that

k ≤ j(k, 1) ≤ j(k, 2) ≤ · · · ≤ j(k, n) ≤ k +N
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and the n sequences {pik}, defined by

pik =
dj(k,i)

‖dj(k,i)‖
, i = 1, . . . , n,

have the property that every limit point (p̄1, p̄2, . . . p̄n) of {(p1
k, p

2
k, . . . p

n
k)} positively span

Rn. 2

In [2], we extend to nonmonotone methods (that use the NDFLS Algorithm and a set
of direction satisfying Assumption 6) global convergence conditions already established
for derivative-free monotone linesearch-based methods.

4 A conceptual scheme of the algorithms

In this section, we give an informal outline of the class of methods proposed in [2]. All
the algorithms generate an infinite sequence

(3) xk+1 = xk + αkdk,

where dk ∈ Rn is a search direction, αk ∈ R is a stepsize along dk and x0 ∈ Rn is a given
point.

Each major step of the algorithms can be divided into three different phases:

(a) Basic search. Starting from the current point xk, we choose a finite set of search
directions and we perform a nonmonotone linesearch along each of them. During this
phase, when needed, we can further store a set of tentative points yj ∈ Rn computed
along the directions and the corresponding function values f(yj), for j = 0, 1, . . . , q.

(b) Acceleration step. Given the available information gathered during phase (a), that is
yj , f(yj) for j = 0, 1, . . . , q, we determine a new search direction on the basis of some
local model of f and perform a nonmonotone linesearch along this direction. The
attempt is that of improving substantially the results of phase (a) by computing,
for instance, an approximation to the steepest descent direction or by determining
a suitable pattern on the basis of the previous steps.

(c) Rotation of the search directions. We perform a rotation (according to some given
criterion) of the directions.

By using the results considered in the previous section it is possible to prove the global
convergence of this class of derivative-free algorithms (see [2] for further details).
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An introduction to Ramification

theory for number fields

Sophie Marques (∗)

Abstract. The question of prime decomposition in a finite extension of fields motivates classical
ramification theory for field extensions. We propose to give a very little introduction in this deep
subject which can be also extend to arithmetic geometry.
After recalling some basic facts around finite field extensions, we will explain how to do arithmetic
in number fields. This will permit us to define the ramification for number field and to give
some criterions permitting to decide which primes are ramified or not. Finally, we will study the
particular case of quadratic extensions in order to see how we can apply this theory.

In mathematics, ramification is a geometric term used for ’branching out’, in the way
that the square root function, for complex numbers, can be seen to have two branches
differing in sign. It is also used from the opposite perspective (branches coming together)
as when a covering map degenerates at a point of a space, with some collapsing together
of the fibers of the mapping. In algebraic number theory, roughly speaking, ramification
means prime numbers factoring into some repeated prime factors. The purpose of this
talk is to understand the meaning of ramification for number fields though very simple
examples. The reader who is interested in this topic can find more details in [Sam67],
[Lan94] and [Neu99].

1 Overview of finite extensions of fields

Suppose that L/K is a field extension (which means that L is a field and K is a subfield
of L).

We call L/K to be finite if as a vector space over K, L is of finite dimension; the
degree of L/K, denoted by [L : K], is defined to be the vector space dimension of L
over K. Given α1, ..., αn ∈ L, we denote by K(α1, ..., αn) (resp. K[α1, ..., αn]) the smallest
subfield (resp. subring) of L containing K and the elements α1, ..., αn.

(∗)Algant, Université de Bordeaux, IMB, UMR 5251, F-33400 Talence, France and Università
degli studi di Padova, Dipartimento di Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:

. Seminar held on June 19th, 2013.
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If L′/K is another extension, then a homomorphism σ : L → L′ such that σ(c) = c
for all c ∈ K is called a K-homomorphism of L → L′. Note that a K-homomorphism is
always injective and if [L : K] = [L′ : K], then it is surjective. Thus if L = L′, then such
maps are called K-automorphisms of L. The set of all K-automorphisms of L is clearly
a group where the group operation defined by composition of maps. This is called the
Galois group of L/K and is denoted by Gal(L/K).

An element α ∈ L is said to be algebraic over K if it satisfies a nonzero polyno-
mial with coefficients in K. Suppose that α ∈ L is algebraic over K. Then a nonzero
polynomial of least possible degree satisfied by α is clearly irreducible and, moreover, it
is unique if we require it to be monic; this monic irreducible polynomial will be denoted
by Irr(α,K), and called the minimal polynomial of α over K. The extension L/K is
said to be algebraic if every α ∈ L is algebraic over K. If L/K is algebraic, then we call it
separable if Irr(α,K) has distinct roots (in some extension of K) for every α ∈ L, and
we call it normal if Irr(α,K) has all its roots in L for every α ∈ L. It may be noted
that if L/K is algebraic, then it is normal if and only if any K-homomorphism of L into
some extension L′ of L maps L onto itself. We call L/K to be a Galois extension if it
is finite, separable and normal.

We call the trace map, denoted by TrL/K (respectively norm, denoted by NL/K)
is a K-linear map of L → K sending a ∈ L to TrL/K(a), the trace of the K-linear
transformation L → L mapping x ∈ L to ax (respectively the determinant of this linear
transformation). We recall that the trace of a linear transformation of some finite dimen-
sional vector space is equal to the trace of the matrix associated to this linear application,
for some fixed basis and only depends on the vector space. If L/K is Galois, for any a ∈ L,

TrL/K(a) =
∑

σ∈Gal(L/K)

σ(a) and NL/K(a) =
∏

σ∈Gal(L/K)

σ(a).

If K = Q and L is a subfield of C such that [L : Q] = 2, then it is called a quadratic
field. In general, a subfield of C which is of finite degree over Q is known as an algebraic
number field or simply, a number field. An algebraic element such that Irr(α,Q)
belongs to Z[X] is called an integer. The set of the algebraic integers of K form a ring
called the ring of integers of K, denoted by OK . Moreover, for any a ∈ OK , we can
prove NL/K(a) and TrL/K(a) are in Z.

2 How to do arithmetic in a number field?

Arithmetic (from the Greek word arithmos ”number”) is the oldest and most elemen-
tary branch of mathematics. It involves the study of quantity, especially as the result of
operations that combine numbers. In common usage, it refers to the simpler properties
when using the traditional operations of addition, subtraction, multiplication and division
with smaller values of numbers.
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In order to do arithmetic over a number field K, we need a equivalent of Z. This
equivalent could be given by the ring of integers OK . Indeed, the ring Z is the simplest
possible ring of integers, we have OQ = Z.

Nevertheless, one essential property of Z is missing when we take the ring of integers of
a number field: the unicity of the decomposition in irreducible factors. That is, that each
element in Z can be decomposed uniquely as a product of prime numbers (which play the
role of irreducible factors in Z). For instance, forK = Q(

√
−5), we haveOK = Z[

√
−5] and

in this ring, (1 +
√
−5)(1−

√
−5) = 2× 3. But, the algebraic integers have respectively as

norm over Q 6, 6, 4 and 9, then irreducible since Z[
√
−5] has no elements with norm 2 or 3.

In order to have a good divisibility theory in K, we have to consider not the integers
but objects which extend the divisibility of the algebraic integers and for which we have
so the unicity of the decomposition as prime factors. One of the founder results of the
algebraic number theory, anticipated by Kummer and proved by Dedekind, is that the ide-
als can play this role. In particular, the good equivalents are (non-zero) prime ideals ofOK .

One natural question is then to know how the arithmetic of Q can pass to the one of
the number field K. The question make sense, since Q is then a subring of OK and to
every integer p of Z is then naturally associated the ideal pOK of OK . By unicity of the
decomposition of ideals in prime factors, it is enough to look the prime ideal decomposition
of the ideal pOK in K when p is a prime integer. This leads to the notion of ramification.

3 Ramification of prime integers in number fields

Let K/Q be a number field of degree n.

3.1 Definitions

Let p be a non-zero prime integer of Z. By unicity of the decomposition in prime ideal
factors, we can write uniquely:

pOK = Pe1
1 ...P

er
r

where the Pi are distinct non-zero prime ideals of OK and the ei are integers ≥ 1 called
the ramification index.

We say that prime integer p is ramified in K if the ramification index ei > 1 for
some i moreover if ei - p then p is said tamely ramified. Otherwise, we say that p is
unramified in K. The extension K/Q is said to be unramified if every nonzero prime
integer of Z is unramified in K.

We denote moreover fi, for any i, the degree of the field extension k(Pi)/Fp, where
k(Pi) = OK/Pi denotes the residual field of the ideal Pi and Fp denotes the finite field
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Z/pZ. We have then the classical property:

r∑
i=1

eifi = [K : Q] = n

In particular, r can take the values from 1 to n. When r = 1, we say that p is not
decomposed and when r = n, we say that p is totally decomposed. Moreover, when
the extension K/Q is Galois then the ramification index ei and the degree of the residue
extensions fi are all the same and the formula is of the form ref = n.

3.2 Discriminant

We call integral basis of the number field K a basis {α1, ..., αn} of K as vector space
over Q such that αi ∈ OK for 1 ≤ i ≤ n. The absolute discriminant, denoted by dK ,
depending only of the field K is defined to be the determinant of the n× n matrix

(TrK/Q(αiαj))1≤i,j≤n

where {α1, ..., αn} is an integral basis of K.

We can prove that dK is an element of Z and that the prime integers of Z ramified in
K are exactly the ones dividing the discriminant.

3.3 Kummer’s Theorem

Kummer’s Theorem shows how the decomposition of extended prime ideals can be
”read off” from the factorization of a polynomial, for a certain class of rings. It may be
observed that the hypothesis of this theorem is satisfied in the case of quadratic. More
precisely,

Theorem 3.1 Let K/Q be a number field. Suppose that OK = Z[α] for some α ∈ OK
and f(X) = Irr(α,Q). Suppose

f̄(X) =
r∏
i=1

p̄i(X)ei

is the factorization of f̄(X) (the reduction of f(X) modulo p) into powers of distinct
monic irreducible polynomials in Fp[X]. Let pi(X) be the monic polynomial in Z[X] whose
reduction mod p is p̄i(X). Then the prime in OK lying over p are precisely P1, ...,Pg,
where Pi = pOK + pi(α)OK . Moreover,

pOK =

r∏
i=1

Pei
i

is the factorization of pOK into powers of distinct primes in OK , the ramification index
of Pi over p is the above exponent ei, and the residue degree fi of Pi over p is the degree
of the irreducible factor p̄i(X).
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4 Example: study of quadratic Fields.

Let us illustrate the above definitions and results with the study of a particular case. Let
K/Q be a quadratic extension.

4.1 Description of K

Suppose α ∈ K is any element such that α /∈ Q. Then [Q(α) : Q] must be > 1 and it
must divide [K : Q] = 2. Therefore K = Q(α) and α satisfies an irreducible quadratic,
say P (X) = X2 + bX + c, with coefficients in Q. Using the well known formula for roots
of quadratic polynomial, we can replace α by

√
m so that K = Q(

√
m), where m is some

squarefree element of Q and
√
m denotes an element of K whose square is m in particular

an element of OK . With this, we can write K = {r+s
√
m : r, s ∈ Q}. The other root, say

β, of P (X) must satisfy α + β = −b, and hence it is also in K. So K/Q is normal. Also
clearly β 6= α and so K/Q is separable as well. Thus a quadratic extension is always a
Galois extension. The Galois group Gal(K/Q) is a group of order 2, and the non-identity
element in it is the automorphism of K which maps α to β and Gal(K/Q) = {Id, σ},
where Id denotes the identity automorphism of K and σ is the Q-automorphism defined
by σ(r + s

√
m) = r − s

√
m.

4.2 Description of the ring of integers OK
Let K be a quadratic field and OK be its ring of integers. As noted before, we have
K = Q(

√
m), where m is a squarefree integer. We now attempt to give a more concrete

description of OK . First, note that Z[
√
m] = {r + s

√
m : r, s ∈ Z} ⊂ OK . Let x =

a + b
√
m ∈ OK for some a, b ∈ Q. Then Tr(x) = 2a ∈ Z and NK/Q(x) = a2 −mb2 ∈ Z.

Since m is squarefree and a2 −mb2 ∈ Z, we see that a ∈ Z if and only if b ∈ Z. Thus if
a /∈ Z, then we can find an odd integer a1 such that 2a = a1, and relatively prime integers
b1 and c1 with c1 > 1 such that b = b1/c1. Now

(a1 = 2a ∈ Z and a2 −mb2 ∈ Z)⇒ (4|c2
1a

2
1 and c2

1|4mb21)⇒ c1 = 2

Hence b1 is odd and a2
1 −mb21 ≡ 0(mod 4). Also a1 is odd, and therefore, m ≡ 1(mod 4).

It follows that if m 6≡ 1(mod4), then a, b ∈ Z, and so in this case,

OK = {a+ b
√
m : a, b ∈ Z}

and {1,
√
m} is an integral basis.

In the case m ≡ 1(mod 4), the preceding observations imply that

OK ⊂
{a1 + b1

√
m

2
: a1, b1 are integers having the same parity, i.e., a1 ≡ b1(mod 2)

}
and, moreover, (1 +

√
m)/2 ∈ OK since it is a root of X2 − X − (m − 1)/4; therefore

OK = Z[(1 +
√
m)/2] and {1, (1 +

√
m)/2} is an integral basis.
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4.3 Ramification of prime integers in quadratic fields

Let p be a rational prime. We are interested in the decomposition of the extended ideal
pOK . The formula

∑r
i=1 eifi = n shows that r as well as ei, fi can only be 1 or 2, and

that the situation has to be one of the following.

(a) r = 2, e1 = f1 = e2 = f2 = 1 so that pOK = P1P2 for some distinct primes P1,P2

of OK with OK/Pi = Z/pZ. In this case, we say that p is a decomposed (or
split) prime, or that p decomposes (or splits) in OK .

(b) r = 1, e1 = 2, f1 = 1 so that pOK = P2 for some prime P of OK with OK/P =
Z/pZ. In this case p is a ramified prime.

(c) r = 1, e1 = 1, f1 = 2 so that pOK = P for some prime P of OK with [OK/P :
Z/pZ] = 2. In this case, we say that p is an inertial prime.

4.3.1 Ramification of prime integers in K = Q(i).

Consider now the quadratic field K = Q(i), where i denotes a square root of −1. We know
now that OK is the ring Z[i] of Gaussian integers. This ring of integers is principal and
the decomposition in prime factors is unique. So, the study of ramification in this field is
not so hard. Indeed, let p be a prime integer if

(a) p ≡ 1(mod 4), then we know (by a classical result of Fermat) that p can be written as
a sum of two squares. Thus there exist a, b ∈ Z such that p = a2+b2 = (a+bi)(a−bi).
It can be seen that (a + bi) and (a − bi) are distinct prime ideals in OK . Thus for
the prime ideal pZ, we have r = 2, e1 = e2 = 1 and (since

∑
eifi = 2) f1 = f2 = 1.

Then p is decomposed.

(b) p ≡ 3(mod 4), it is not difficult to see that p generates a prime ideal in Z[i] and so
for such a prime, we have r = 1 = e1 and f1 = 2. Then p is inertial.

(c) if p = 2, we have 2 = (1 + i)(1 − i). But (1 + i) and (1 − i) differ only by a unit
(namely, −i) and thus they generate the same prime ideal. So 2 is a ramified prime
and for it, we have g = 1 = f1 and e1 = 2. Then 2 is ramified

4.3.2 Ramification of prime integers in a general quadratic field.

Now let’s figure out which primes precisely are ramified, inert or decomposed for a general
quadratic field. As noted earlier, we have K = Q(

√
m), for some uniquely determined

squarefree integer m (with m 6= 0, 1). Let OK be the ring of integers of K. We have also
seen that

OK =

{
Z[
√
m] if m ≡ 2, 3(mod 4)

Z[1 +
√
m)/2] if m ≡ 1(mod 4)

First we consider :
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(a) Case 1: m 6≡ 1(mod 4), i.e., m ≡ 2, 3(mod 4).

In this case, OK = Z[
√
m] and f(X) = X2 −m is the minimal polynomial of

√
m

over Q. By Kummer’s Theorem, the factorization of pOK is determined by the
factorization of f̄(X), the reduction of f(X) modulo p.

If p|m respectively p = 2, then f̄(X) = X2 respectively (X − 1)2, and hence pOK =
P2, with P = (p,

√
m) respectively P = (p, 1−

√
m), and p is ramified.

If p - m and p 6= 2, then f̄(X) is either irreducible in (Z/pZ)[X] or has two distinct
roots in Z/pZ. The latter is the case if and only if m is a square mod p, i.e.,
m ≡ x2(mod p) for some integer x. So we know which primes are decomposed and
which are inertial. The result can be conveniently expressed using the Legendre
symbol, which is defined thus.

(m
p

)
=


1 if p - m and m is a square mod p
−1 if p - m and m is not a square mod p

0 if p|m.

What we have shown so far is that if m ≡ 2, 3(mod 4), then

p is


decomposed if p 6= 2 and

(
m
p

)
= 1

ramified if p = 2 or
(
m
p

)
= 0

inertial if p 6= 2 and
(
m
p

)
= −1.

(b) Case 2: m ≡ 1(mod 4).

In this case, OK = Z[(1 +
√
m)/2] and f(X) = X2 −X − (m− 1)/4 is the minimal

polynomial of (1 +
√
m)/2 over Q.

If p = 2, then f̄(X) has a root mod p if and only if (m − 1)/4 ≡ 0(mod 2), i.e.,
m ≡ 1(mod 8) (because x2 − x = x(x − 1) ≡ 0(mod 2) for any x ∈ Z), and in this
case, each of the two distinct elements in Z/2Z is a root of f̄(X), which implies that
2 is a decomposed prime.

If p = 2 and m 6= 1(mod 8), then f̄(X) has to be irreducible in (Z/2Z)[X], and so 2
is an inertial prime.

Now assume that p 6= 2. Then the ”roots” (1±
√
m)/2 of X2 −X − (m− 1)/4 will

exist in Z/pZ if and only if
√
m exists in Z/pZ, or equivalently, m is a square mod p.

Moreover, f̄(X) has multiple roots in Z/pZ if and only if p|m. Thus, by Kummer’s
Theorem, we find that p is ramified if and only if p|m, and if p 6= 2 and p - m, then
p is decomposed or inertial according as m is or is not a square mod p.

So if m ≡ 1(mod 4), then

p is


decomposed if p ≡ 2 and m ≡ 1(mod 8) or if p 6= 2 and

(
m
p

)
= 1

ramified if p|m, i.e.,
(
m
p

)
= 0

inertial if p = 2 and m 6≡ 1(mod 8) or if p 6= 2 and
(
m
p

)
= −1
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4.4 Computing the discriminant dK

We can now compute the discriminant of K as follows.

dK =


Det

(
2 0
0 2m

)
= 4m if m ≡ 2, 3(mod 4)

Det

(
2 1
1 (1 +m)/2

)
= m if m ≡ 1(mod 4)

It may be remarked that the integer dK determines the quadratic field K completely. This
prove that in this particular following case, the result mentioned before saying that p is a
ramified prime in K if and only if p|dK .
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