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Seminario Dottorato 2011/12

Preface

This document offers a large overview of the nine months’ schedule of Seminario Dottorato
2011/12. Our “Seminario Dottorato” (Graduate Seminar) is a double-aimed activity. At
one hand, the speakers (usually Ph.D. students or post-docs, but sometimes also senior
researchers) are invited to think how to communicate their own researches to a public of
mathematically well-educated but not specialist people, by preserving both understand-
ability and the flavour of a research report. At the same time, people in the audience
enjoy a rare opportunity to get an accessible but also precise idea of what’s going on in
some mathematical research area that they might not know very well.
Let us take this opportunity to warmly thank the speakers once again, in particular for
their nice agreement to write down these notes to leave a concrete footstep of their par-
ticipation. We are also grateful to the collegues who helped us, through their advices and
suggestions, in building an interesting and culturally complete program.

Padova, 25 June 2012

Corrado Marastoni, Tiziano Vargiolu
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Abstracts (from Seminario Dottorato’s web page)

Wednesday 19 October 2011

Hopf Algebras. An introduction

Agust́ın GARCÍA IGLESIAS (Univ. Cordoba - Argentina)

In this introductory talk we will motivate and present the definition of a Hopf algebra and we

will review some of its main properties. The talk will be illustrated with several examples. The

concept of a Hopf algebra, in a slightly different version as we know it today, was introduced in

the 50’s and got its final shape towards the late 60’s. They became popular in the 80’s, with the

appearance of quantum groups and their relation with phenomena of algebraic groups in positive

characteristic. Soon after that, they spread over various fields of mathematics and mathematical

physics.

Wednesday 2 November 2011

The explicit Laplace transform for the Wishart process

Alessandro GNOATTO (Padova, Dip. Mat.)

The first part of the talk will provide an introduction to mathematical finance. We start with a

brief historical and philosophical perspective on the field and briefly review the main problems one

tries to solve. We concentrate on the valuation of simple derivatives and review the famous Black-

Scholes formula. After that we recall how the weaknesses of this standard approach motivated

the introduction of more advanced models, in particular stochastic volatility (SV) models. In the

context of SV models we review the role played by characteristic functions and the fast Fourier

transform. This last point will serve as an introduction to the results of the paper, where we

derive the explicit formula for the joint Laplace transform of the Wishart process and its time

integral which extends the original approach of Bru (1991). We compare our methodology with

the alternative results given by the variation of constants method, the linearization of the Matrix

Riccati ODE’s and the Runge-Kutta algorithm. The new formula turns out to be fast, accurate

and very useful for applications when dealing with stochastic volatility and stochastic correlation

modelling.

Wednesday 16 November 2011

L2 theory and global regularity for ∂ on pseudoconvex domains of Cn

Stefano PINTON (Padova, Dip. Mat.)
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This seminar is divided into two parts. The first one is an introduction to the first order partial

differential operator ∂ in a smooth bounded pseudoconvex domain D of Cn. Only preliminary

definitions are given and the basic estimate, due to Morrey, Kohn and Hormander, is established.

It yields the existence of the d-bar Neumann operator, that is, the inverse to the complex Laplacian

and the construction of the canonical solution to the equation ∂u = f , for f ∈ ker ∂, that is the

solution orthogonal to the kernel of ∂. The second part is an introduction to the problem of the

global regularity up to the boundary for the canonical solution of the ∂ equation with data regular

up to the boundary. In particular it is shown how compactness estimates are sufficient for global

regularity as well as the existence of ”good defining functions”.

Wednesday 23 November 2011

Boundedness and compactness of matrix operators in weighted spaces of sequences

Zhanar TASPAGANBETOVA (University of Astana and Dip. Mat. Padova)

One of the main problems in the theory of matrices is to find necessary and sufficient conditions for

the elements of a matrix so that the corresponding matrix operator maps continuously one normed

space of sequences into another space of sequences. Thus it is very important to find the norm of

a matrix operator, or at least, an upper or lower bound for the norm. However, in several spaces,

which are very important both theoretically and in the applications, such problems have not been

solved yet in full generality for operators corresponding to arbitrary matrices. Therefore, in such

spaces researchers have considered some specific classes of matrix operators and have established

criteria of boundedness and compactness for operators of such classes.

We prove a new discrete Hardy type inequality involving a kernel which has a more general form

than those known in the literature. We obtain necessary and sufficient conditions for the bound-

edness and compactness of a matrix operator from the weighted lp,v space into the weighted lq,u

space defined by (Af)j :=
∞∑
i=j

ai,jfi, for all f = {fi}∞i=1 ∈ lp,v in case 1 < p ≤ q <∞ and ai,j ≥ 0.

Then we deduce a corresponding dual statement.

Wednesday 30 November 2011

What does ”Inverse Problems” mean ?

Giulia DEOLMI (Padova, Dip. Mat.)

Inverse Problems (IP) are described as situations where ”the answer is known, but not the question,

or where the results, or consequences are known, but not the cause” (Isakov, 2006). To better

understand what this means, after an introductory overview, the talk will focus on two particular

IP. The first one consists in the estimation of the quantity of pollutant released in a river, while

the second one is about the estimation of the corrosion of an unobservable face of a metal slab.

Both of them will be solved in a discrete context, using an adaptive parametrization.
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Wednesday 14 December 2011

Regular biproduct decompositions of objects

Nicola GIRARDI (Padova, Dip. Mat.)

Every vector space over a field K is the direct sum of a number of copies of the one-dimensional

K-vector space K. Allowing scalars to be elements of a ring R instead of a field, we obtain a

more general object called right (or left, depending on which side we write the scalars) R-module.

Contrary to the trivial case of K-vector spaces, modules over R may or may not decompose into

indecomposable submodules, and when they do, it is interesting to know whether their decom-

positions are unique in some sense or at least satisfy some sort of constraint. Beginning with

the basics and with the classical results of the field we will end up giving some examples where

modules have decompositions that satisfy a nice combinatorial condition. As a last step, we hint

to a generalisation to the setting of biproduct decompositions in preadditive categories.

Wednesday 18 January 2012

Understanding Defaults

Juan Miguel A. MONTES (Padova, Dip. Mat.)

The possibility that a debtor may default poses a big risk to investors. Such a risk, called credit

risk, is one of the risks present in financial markets. It is traditionally modelled in isolation from

other kinds of risk such as the risk due to volatility, known as equity risk. In fact equity risk is

observed to be connected to credit risk. In this talk, we provide a discussion of the basic credit risk

models and the pricing of credit risky derivatives. We also discuss the Fourier Transform approach

to pricing, developed by Carr and Madan. Using the Fourier Transform approach, we can price

options under a model of risky assets proposed by Fontana, that treats credit risk and equity risk

jointly. Finally with time permitting we discuss the application of this approach to a defaultable

Heston model.

Wednesday 1 February 2012

The Fermi Pasta Ulam Paradox: An Introduction to the problem and its recent devel-
opments

Heleni CHRISTODOULIDI (Padova, Dip. Mat.)

In 1950’s Fermi, motivated by fundamental questions of statistical mechanics and by ergodic prop-

erties of nonlinear dynamical systems, started a numerical experiment on a nonlinear toy model,
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in collaboration with Pasta and Ulam. The system was chosen to be a one dimensional chain of N

nonlinear coupled oscillators, described by a quadratic potential of nearby particle interactions plus

a cubic perturbation. Fermi’s ergodic hypothesis states that a system under an arbitrarily small

perturbing force becomes generically ergodic. Giving initial conditions to the so called FPU system

on the longest wavelength normal modes, the system showed a contradicting and integrable-like be-

haviour. Many pioneer works followed for the explanation of this paradox, more prominent of them

being the approximation of FPU dynamics in the thermodynamic limit by the integrable partial

differential equation Korteweg-de Vries by Zabusky and Kruskal (1965), and the work of Ferguson

et al. (1982), where the authors observed the vicinity of the integrable one dimensional Toda chain

with the FPU model. Recent developments show a more complete picture of the problem and its

explanation.

Wednesday 8 February 2012

Interpolation theorems for weighted spaces of smooth functions

Ademi OSPANOVA (University of Astana and Dip. Mat. Padova)

This talk is devoted to the description of the Petre interpolation spaces for pairs of multiweighted

Sobolev spaces. Interpolation spaces for pairs of weighted Sobolev spaces are well known. This

talk concerns interpolation spaces for pairs of Sobolev spaces with a more general class of weights.

The problem of description of interpolation spaces for a pair function spaces is very important

in the embedding and approximating theory. Descriptions of the above-mentioned interpolation

spaces can be used in the research of multipliers for weighted spaces of differentiable functions and

in the problems of description of traces, which are important in the analysis of boundary value

problems of mathematical physics.

Wednesday 15 February 2012

Modeling and valuing make-up clauses in gas swing contracts

Enrico EDOLI (Padova, Dip. Mat.)

Europe is among the largest consumers of natural gas in the world, but has a very limited domestic

production compared to its consumption. The excess demand is covered by massive natural gas

imports from foreign producer countries like Russia and Algeria. Swing contracts, also known as

take-or-pay, are long term supply contracts with a quite standard structure which, basically, permits

flexibility of delivery. In the last 10 years, thanks to the worldwide energy liberalization process,

the birth of competitive gas markets and the recent financial crisis, those kind of traditional long

term swing contracts in Europe have been supplemented in a significant way by make-up clauses

which allow postponing the withdrawal of gas to future years when it could be more profitable.

This introduces more complexity in the pricing and optimal management of swing contracts.
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This talk is devoted both to an introduction on swing contracts and to a proper quantitative

modelization of make-up clause. More in detail, we succeed in building an algorithm, based on

dynamic programming, to price and optimally manage a swing contract with make-up clause. After

having described the dynamic programming equation for problem, we prove that this problem has

a quadratic complexity with respect to the number of years. Then, as an example, we show the

algorithm at work on a 3-year contract and we present a sensitivity analysis of the price and of

the make-up policy with respect to various parameters relative both to the price dynamics and to

the swing contract.

Wednesday 22 February 2012

Singular limits of reaction-diffusion equations and propagation of interfaces

Cecilia DE ZAN (Padova, Dip. Mat.)

Interfacial phenomena are commonplace in physics, chemistry, biology. They occur, for example,

whenever a continuum that can exists in at least two different chemical or physical ”states” is

present, and there is some mechanism that generates or enforces a spatial separation between

these states. The separation boundary is called an interface. In mathematics, interfaces appear in

the study of the asymptotic limits of evolving systems, like reaction-diffusion equations. After a

simple introduction about the connections between reaction-diffusion equations and the wavefronts

they generates, we present some mathematical approaches to the study of evolving interfaces.

We present the classical level set-approach and a geometrical approach introduced by Barles and

Souganidis in 1998. Then we show how this second approach can be applied in the study of

the asymptotic limits of reaction-diffusion equations. Finally we show a simple generalization we

obtained for nonlinear and possibly degenerate diffusions.

Wednesday 7 March 2012

Smooth Asymptotics for a DIC option in a Binomial Tree Model

Jose Maria ESCANER IV (University of the Philippines Diliman)

The talk aims to compute for the smooth asymptotic expansion for a down-and-in call (DIC)

barrier option that was modeled using the Cox-Ross-Rubenstein (CRR) binomial tree. For pricing

option contracts, the most well-known model used both by practitioners and in the academe is

the Black- Scholes continuous time model. Though less accurate, a simpler and easier understood

way to model financial derivatives though would be to use discrete time models. Among the

many different discrete time models, a simple and widely-used model is the CRR binomial tree

model. It is well-known that the price of the Black-Scholes continuous time model is close to the

price obtained with the CRR binomial tree model when the number of time steps is large, as the

Black-Scholes price is the limit of the tree model price. As such, it is of interest to measure the
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convergence of the CRR model using asymptotic expansion. We follow the framework used by

Diener and Diener in measuring the asymptotic expansion for the convergence of barrier options.

For the purpose of finding the asymptotics, we make use of Andres symmetry principle in order to

find the exact pricing formula of the DIC barrier option. By the guidelines set by Joshi, we specify

the parameters and define our CRR binomial tree in such a way as to make the pricing formula

symmetric. This would allow us to formulate a complete and smooth asymptotic expansion for our

DIC barrier option.

Wednesday 21 March 2012

Isoperimetric Inequality: an invitation

Francescopaolo MONTEFALCONE (Padova, Dip. Mat.)

In this talk, I will survey some classical topics concerning isoperimetric inequalities in the Euclidean

space. In particular, I will discuss the main ideas behind an isoperimetric inequality for the case of

compact smooth hypersurfaces, proved in the Seventies by Michael and Simon. Finally, in the last

part of the talk I will quickly state a recent generalization of this inequality to the sub-Riemannian

setting of Carnot groups.

Thursday 5 April 2012

Moment Problems and Spin Correlation Matrices

Neeraja SAHASRABUDHE (Padova, Dip. Mat.)

Moment problems are about realizability of a given pair correlation function or covariances (or

higher moments), namely whether a probability distribution is determined by its moments. That

is, given m0,m1, ... ∈ R, one wants to find a probability measure µ such that
∫ +∞
−∞ xkdµ(x) = mk

for k = 0, 1, .... If the probability measure is determined uniquely by the given set of moments

the problem is called a determinate moment problem. Generalized moment problems of this kind

have been widely studied, mainly in the theoretical Engineering community, for continuous random

variables (particularly in case of point processes).

?In this talk, I’ll discuss moment problems in general, giving examples of some determinate and

indeterminate moment problems. We will also look at some specific moment problems and the

necessary and sufficient conditions for realizability. I’ll also talk about my work which is about

a moment problem on a system of spin random variables. I will discuss about the necessary

and sufficient conditions for a correlation matrix of order n ≥ 2 to be the correlation matrix of

spin variables in the classical sense and finally try to give an algorithm to explicitly compute the

probability measure that realizes the given correlations.
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Wednesday 18 April 2012

A glimpse of categorical algebra

Isar GOYVAERTS (Vrije Universiteit Brussel)

Category theory occupies a central position in contemporary mathematics and theoretical computer

science, and occurs as well in other areas such as mathematical physics and linguistics. Roughly

speaking, it provides a general abstract theory of structures and of systems of structures. The

study of categories is an attempt to axiomatically capture what is commonly found in various

classes of related mathematical structures. A way of thinking about category theory is that it is a

refinement (or ”categorification”) of ordinary algebra.

In this talk, we will focus on the notion of a monoidal category, i.e. the categorification of the

notion of a monoid. Monoidal categories have numerous applications outside of category theory

itself and provide a tool to connect a priori quite remote branches of mathematics. We start the

talk with some basic notions and definitions and provide some examples. Next, we try to sketch

the idea of doing ”categorical algebra” by considering a concrete example in more detail. We finish

the talk with mentioning some recent results and some of the type of problems we are interested

in. No specific knowledge of category theory is required. The only prerequisites is some notion

of the basic definitions in the theory of certain algebraic structures (such as monoids, groups and

vector spaces).

Wednesday 2 May 2012

Numerical Solution of Richards’ Equation

Mohammad Sayful ISLAM (Padova, Dip. Mat.)

As hydrological models become increasingly sophisticated (e.g., coupling with various meteoro-

logical, ecological, or biogeochemical components) and are applied in ever more computationally

demanding contexts (e.g., the many realizations that are typically generated in parameter estima-

tion, uncertainty analysis, data assimilation, or scenario studies), the need for robust, accurate, and

efficient codes is greater than ever. The Richards equation for subsurface flow is highly nonlinear

and requires iterative schemes for its solution. These schemes have been the subject of much re-

search over the past two decades, but an effective all-purpose algorithm has thus far proven elusive.

Ideally, rapid (quadratic as opposed to linear) and global (insensitive to initial guess) convergence

is sought, in addition to applicability over a range of conditions (dry soils, storm-interstorm sim-

ulations, geological heterogeneity, 3D domains with complex boundary conditions, etc). Richards’

equation can be mathematically formulated and numerically discretized in a variety of manners,

and the specific form and scheme chosen will affect the mass balance behavior of the model. Using

a mass conservative mixed formulation of Richards equation we implemented and tested a nested

Newton-type algorithm (originally developed by Casulli and Zanolli, 2010) for solving Richards

equation. Experimental results include a variable boundary condition 1D test case and a few mul-

tidimensional heterogeneous problems. The results show that judicious choice of the initial guess

together with time-step adaptation ensure quadratic convergence for all tested flow regimes. We
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will discuss future challenges and implications in the context of modern hydrological simulators

for real world applications.

Wednesday 16 May 2012

Harmonic functions in a domain with a small hole

Paolo MUSOLINO (Padova, Dip. Mat. and IRMAR, Rennes)

The asymptotic behaviour of the solutions of boundary value problems in domains with small

holes has been largely investigated by many authors with different approaches. In this seminar,

we consider a Dirichlet problem for the Laplace operator in a bounded domain Ωo of Rn (n ≥ 3)

containing the origin, where we remove a small set whose size is determined by a parameter ε and

which collapses to 0 for ε = 0. Then for ε 6= 0 we denote the solution to such a problem by uε. If

p ∈ Ωo and p 6= 0, then it makes sense to consider for ε 6= 0 and ‘small’ the value of the solution uε
at the point p. It is natural to ask what can be said on the map which takes ε small and positive to

uε(p) around the degenerate value ε = 0. One can try to answer to this question in several ways.

By the approach proposed by Lanza de Cristoforis, one can show that there exist εp > 0 and a

real analytic function Up from ] − εp, εp[ to R such that uε(p) = Up[ε] for all ε ∈]0, εp[. Such an

equality holds for ε positive, and thus one can ask what happens to it when ε is negative. After an

introductory part, we answer to this question and we show that the answer depends on the parity

of the dimension n. (Based on joint work with M. Dalla Riva, Universidade de Aveiro.)

Wednesday 23 May 2012

PAINT: PAreto front INTerpolation for solving wastewater treatment problems

Markus HARTIKAINEN (Jyvaskyla University, Finland)

In many real life problems, one seeks for an optimal solution in accordance with several criteria,

which can be conflicting (for example, you want a fast car but you don’t want to spend too much).

These situations are approached mathematically by the theory of multiobjective optimization. In

the solution of multiobjective optimization problems, interactive methods have been proven effec-

tive. In such methods, an iterative procedure is used to improve the solutions available to satisfy

the preferences of a decision maker. Because of the lack of closed form equations for many real-life

quantities to be optimized, simulation may have to be used to compute the values of objectives for

various values of the decision variables. As a consequence, multiobjective optimization problems

may be computationally expensive. We have developed a method called PAINT, which constructs

an interpolation between a set of given Pareto optimal solutions. In this talk, we demonstrate how

the PAINT method works and can be applied to a multiobjective wastewater treatment planning

problem.
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Wednesday 20 June 2012

Coherent states approximation and the semiclassical limit

Simone VAZZOLER (Padova, Dip. Mat.)

The problem of understanding the relation between Classical and Quantum Mechanics has a long

history which dates back to Schrödinger in 1926. In this talk, after an introductory part on

Classical and Quantum Mechanics, we start giving the definition of Coherent State and consider

the problem of approximating the exact solution to the Schrodinger equation using this particular

class of wave functions. In the last part we discuss about the error term of this approximation and

introduce the so called “Ehrenfest time”.
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A short introduction to Hopf algebras

Agust́ın Garćıa Iglesias (∗)

Abstract. We present the definition of Hopf algebras, together with several examples. We give
some of the main properties of these objects, as well as a list of classification results.

1 Introduction

Hopf algebras, introduced in the 50’s, have been studied in the first place in their re-
lationship with algebraic groups, where they haven been particularly useful to describe
phenomena in the case of positive characteristic. Soon after that, they began to be studied
because of their intrinsic interest, see for example [25], and have attracted the interest of
mathematicians from many areas since the introduction of Quantum Groups in 1986 by
Drinfeld.

In particular, a great interest is in the classification of Hopf algebras. A special class
of these objects, namely the class of pointed Hopf algebras, has been intensively studied
with this aim.

In this short note, we give the definition of Hopf algebras, together with many examples.
We present some of their most remarkable properties and comment on the state of the
classification problem, in several of its directions.

2 Preliminaries

We fix k a field. If X is a set, we denote by k{x /x ∈ X} the k-vector space with a basis
indexed by the elements of X. We denote by k〈X〉 the free algebra with the elements of X
as generators. If f1, . . . , fm ∈ k〈X〉, m ∈ N, we denote by 〈f1, . . . , fm〉 the ideal generated
by the fi’s and by k〈X|f1, . . . , fm〉 the quotient algebra k〈X〉/〈f1, . . . , fm〉. All unadorned
tensor products are assumed to be over the field k.

We refer the reader to [25], [22], [26] for more information about Hopf algebras. Also
see the rest of the bibliography at the end of the notes and the references therein.

(∗)FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Univer-
sitaria, 5000 Córdoba, República Argentina. E-mail: . Seminar held on
October 19th, 2011.
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3 Definition and examples

The definition of a Hopf algebra involves the notion of several algebraic structures that
we gradually introduce next.

3.1 Algebras

We start by recalling, in a particular and convenient way, the definition of a k-algebra.

Definition 3.1 An associative algebra with unit is a vector space A with a bi-linear
multiplication m : A × A → A, m(a, b) := ab, a, b ∈ A, and a distinguished element
1 = 1A, such that

a(bc) = (ab)c and 1a = a = a1 a, b, c ∈ A.

These axioms can be encoded in the commutativity of the following diagrams:

A⊗A⊗A m⊗id //

id⊗m

��

A⊗A

m

��
A⊗A m

// A

A⊗A

m

��

k⊗A

u⊗id
99ttttttttt

%%JJJJJJJJJJ A⊗ k

id⊗u
eeJJJJJJJJJ

yytttttttttt

A

Associativity Unit

where u : k → A is a ring homomorphism whose image is in the center of A. In this way,
we get 1A = u(1k).

From now on we will always consider associative algebras with 1, and we will just refer
to this structures as algebras.

Example 3.2 Let Γ be a group, e its unit element. Let A be the vector space with basis
{fg, g ∈ Γ}. Then A is an algebra with multiplication fgfh = fgh and unit 1A = fe (notice
that it is enough to define the multiplication on a basis, since it is a linear map). We
denote this algebra by kΓ.

3.2 Coalgebras

Dualizing the notion of an algebra, we arrive to the definition of a (coassociative, counital)
coalgebra.

Definition 3.3 A coalgebra C over k is a k-vector space together with linear morphisms
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∆ : C → C ⊗ C and ε : C → k such that the following diagrams commute:

C
∆ //

∆

��

C ⊗ C

∆⊗id

��
C ⊗ C

id⊗∆
// C ⊗ C ⊗ C

C

∆

��

'
yytttttttttt

'
%%KKKKKKKKKK

k ⊗ C C ⊗ k

C ⊗ C
ε⊗id

eeJJJJJJJJJ id⊗ε

99ttttttttt

Coassociativity Counit

The map ∆ is called the comultiplication and ε is called the counit. The axioms read as
follows

(∆⊗ id)∆ = (id⊗∆)∆(1)

(ε⊗ id)∆ = (id⊗ε)∆ = id .(2)

Example 3.4 Let X be a set and consider the vector space kX = k{fx, x ∈ X}. Let
∆ : kX → kX ⊗ kX, ε : kX → k be the linear extensions of the maps fx 7→ fx ⊗ fx
and fx 7→ 1. Then kX is a coalgebra with comultiplication ∆ and counit ε. In fact, it is
straightforward (and enough) to check the axioms in the basis:

(∆⊗ id)∆(fx) = ∆(fx)⊗ fx = fx ⊗ fx ⊗ fx = fx ⊗∆(fx) = (id⊗∆)∆(fx),

(ε⊗ id)∆(fx) = ε(fx)fx = fx = fxε(fx) = (id⊗ε)∆(fx),

for every x ∈ X.

Example 3.5 Let A be a finite dimensional algebra with multiplication m and unit map u.
Then, identifying the spaces (A⊗A)∗ and A∗⊗A∗ the dual morphisms m∗ : A∗ → A∗⊗A∗
and u∗ : A∗ → k, given by m∗(f)(a ⊗ b) = f(ab) and u∗(f) = f(1) give a structure of
coalgebra to the vector space A∗. This follows from the fact that the axioms defining a
coalgebra are precisely the dualization of the corresponding ones defining an algebra. In
fact,

(m∗ ⊗ id)m∗ = (m(m⊗ id))∗ = (m(id⊗m))∗ = (id⊗m∗)m∗
(u∗ ⊗ id)m∗ = (m(u⊗ id))∗ = id = (m(id⊗u))∗ = (id⊗u∗)m∗.

Example 3.6 In the context of the example above, let Γ be a finite group and consider
the algebra A = kΓ, presented in Example 3.2. Then A∗ is identified with the function
algebra kΓ = {f : Γ→ k}, which has a basis {δg}g∈Γ given by δg(fh) = δg,h, g, h ∈ Γ. The
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multiplication on this basis is δgδh = δg,hδg and the unit is 1 =
∑

g∈Γ δg. Let ∆, ε be the
duals of the multiplication and the unit map. Then

∆(δg(fh ⊗ ft)) = δg(fht) = δg,ht, g, h, t ∈ Γ,

ε(δg) = δg(fe) = δg,e, g ∈ Γ.

In particular, we can write in this case an explicit formula for ∆:

∆(δg) =
∑

h∈Γ

δg ⊗ δg−1h.

Definition 3.7 A coalgebra C is said to be cocommutative if ∆ = τ ◦ ∆, where τ :
C ⊗ C → C ⊗ C is the flip map: x⊗ y 7→ y ⊗ x.

Example 3.8 The coalgebra kX from Example 3.4 is cocommutative, while the function
coalgebra kΓ from Example 3.6 is not, whenever Γ is not commutative.

3.3 Bialgebras

We combine the concepts of algebra and coalgebra to reach to the definition of a bialgebra.

Definition 3.9 A bialgebra B is a k-vector space with structures of algebra (B,m, u)
and coalgebra (B,∆, ε) such that ∆ : B → B ⊗B and ε : B → k are algebra maps. Here,
we consider B ⊗B as an algebra with multiplication component-wise and the underlying
algebra structure of the field k.

Remark 3.10 It is equivalent to require m : B ⊗B → B and u : k → B to be coalgebra
maps.

Example 3.11 Let B be the group algebra kΓ from Example 3.2 and consider the
coalgebra structure on the vector space k{fg, g ∈ Γ} as in Example 3.4. Then B is a
bialgebra. In fact,

∆(fgfh) = ∆(fgh) = fgh ⊗ fgh = (fg ⊗ fg)(fh ⊗ fh) = ∆(fg)∆(fh)

ε(fgfh) = ε(fgh) = 1 = ε(fg)ε(fh).

The function algebra kΓ is an algebra with pointwise multiplication, that is δgδh = δg,hδg,
as seen in Example 3.4. This multiplication, together with the coalgebra structure intro-
duced in that example, makes kΓ a bialgebra.

Remark 3.12 If B is a bialgebra with multiplication m, unit u, comultiplication ∆ and
counit ε, then the vector space A = Homk(B,B) becomes an algebra, with product given
by the convolution ∗ and unit uε. That is, if f, g ∈ Homk(B,B), then f ∗ g ∈ Homk(B,B)
via (f ∗ g)(a) = m(f ⊗ g)∆(a).
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3.4 Hopf algebras

Now we have all the elements needed to introduce the definition of a Hopf algebra.

Definition 3.13 A Hopf algebra is a k-vector space H together with a linear map S :
H → H such that

m(S ⊗ id)∆ = uε = m(id⊗S)∆.(3)

The map S is referred to as the antipode.

Remark 3.14 The map S : H → H is an anti-algebra map, i.e. S(ab) = S(b)S(a) for
every a, b ∈ H, see [22, Proposition 1.5.10].

Lemma 3.15 Let H be a Hopf algebra with antipode S and consider the algebra A =
Endk(H,H), with the convolution product. Then S is the inverse of the identity map id.
In particular, it is unique.

Proof. Recall the the unit of the algebra A is given by the map uε. Then the lemma
follows from (3).

Example 3.16 The group algebra kΓ is a Hopf algebra, with S(fg) = fg−1 . Also, the
function algebra kΓ is a Hopf algebra, with S(δg) = δg−1 .

Example 3.17 Let H be a finite-dimensional Hopf algebra, with algebra structure given
by a multiplication m and a unit u, coalgebra structure given by maps ∆ and ε and
antipode S. Then H∗ is a Hopf algebra, with multiplication ∆∗, unit ε∗, comultiplication
m∗, counit u∗ and antipode given by S∗.

Example 3.18 Let q be an Nth root of unity, N ≥ 2. Then the algebra Tq = k〈x, g|xN =
0, gN = 1, gx = q xg〉 is a Hopf algebra, with comultiplication

∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + g ⊗ x

and antipode S(g) = g−1 and S(x) = −xg−1. This is the Taft algebra, introduced by Taft
in 1971.

Example 3.19 Let g be a Lie algebra and let U(g) be the universal enveloping algebra
of g. Then U(g) is a Hopf algebra with comultiplication and antipode defined on the set
of generators g by ∆(x) = x⊗ 1 + 1⊗ x and S(x) = −x, x ∈ g.

Example 3.20 Let g be a Lie algebra and let Γ be a group acting by Lie algebra
automorphisms on g. Then it is possible to consider the semidirect product U(g)#kΓ.
This a Hopf algebra, with

∆(fg) = fg ⊗ fg, ∆(x) = x⊗ 1 + 1⊗ x,

Università di Padova – Dipartimento di Matematica 16



Seminario Dottorato 2011/12

for every g ∈ Γ, x ∈ g.

4 Invariants

When dealing with classification problems, it is important to determine invariants of the
objects of study, that is to say properties or structures that are not altered by isomor-
phisms. A first invariant like this is of course the dimension. Two more refined invariants
are defined as follows.

Definition 4.1 Let H be a Hopf algebra. Then the space of group-like elements of H is
the set

G(H) = {h ∈ H : ∆(h) = h⊗ h and ε(h) 6= 0}.
The space of primitive elements of H is the set

P(H) = {h ∈ H : ∆(h) = h⊗ 1 + 1⊗ h}.

More generally, given g, k ∈ G(H), the space of (g, k)-skew primitive elements is given by

Pg,k(H) = {h ∈ H : ∆(h) = h⊗ g + k ⊗ h}.

In particular, P(H) = P1,1(H).

Proposition 4.2 G(H) is a group, with product given by the multiplication in H. On
the other hand, the bracket given by the commutator in H makes P(H) a Lie algebra.
Also, G(H) acts on P(H) by conjugation in H. Moreover, this action is a Lie algebra
automorphism.

Proof. It is clear that if g, h ∈ G(H) then gh ∈ G(H) and that 1 ∈ G(H). Finally notice
that, if g ∈ G(H), we have that ε(g) = 1 by (2) and S(g) = g−1 by (3).

On the other hand, it is straightforward to check that if x, y ∈ P(H), then [x, y] =
xy − yx ∈ P(H). Also, if g ∈ G(H) and z ∈ P(H), then g · z := gzg−1 ∈ P(H) and
g · [x, y] = [g · x, g · y] for every x, y ∈ P(H).

Examples 4.3 Let Γ be a group, g a Lie algebra. We have G(kΓ) = Γ, P(kΓ) = {0},
G(U(g)) = {1}, P(U(g)) = g. Let N ∈ N, q an Nth root of unity. Then G(Tq) = 〈g〉 ∼=
Z/NZ, k{x} = P1,g.

5 Some important theorems

Theorem 5.1 [24] Let H be a finite-dimensional Hopf algebra, and let R ⊆ H be a Hopf
subalgebra. Then H is a free R-module.

As a consequence of the above theorem, we have the following “Lagrange’s Theorem
for Hopf algebras”.
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Corollary 5.2 If R ⊆ H are finite-dimensional Hopf algebras, then the dimension of R
divides the dimension of H.

Definition 5.3 A Hopf algebra is said to be semisimple if it is semisimple as an algebra.
It is said to be cosemisimple if H∗ is semisimple.

There is a rather direct way to check the (co)semisimplicity of a Hopf algebra. The
following theorem is due to Larson and Radford, see [25] for a complete proof.

Theorem 5.4 Assume that the characteristic of k is zero and let H be a finite-dimensional
Hopf algebra over k. Then H is semisimple if and only if H∗ is semisimple if and only if
S2 = id.

Remark 5.5 Let Γ be a group, k a field of characteristic zero. Then kΓ and kΓ are
semisimple Hopf algebras. On the other hand, the Taft algebra Tq from Example 3.18 is
not semisimple, in fact

S2(x) = −S(xg−1) = gxg−1 = qx.

6 Classification results

6.1 By dimension

Assume k is an algebraically closed field of characteristic zero.

Theorem 6.1 [28] Let H be a Hopf algebra over k of prime dimension p. Then H is
isomorphic to the Hopf group algebra of the cyclic group Z/pZ.

Theorem 6.2 [7, 21, 23] Let H be a Hopf algebra over k of dimension p2, p a prime
number. Then H is isomorphic to one and only one of the following: the groups algebras
kZ/p2Z or k(Z/pZ× Z/pZ) or the Taft algebras Tq, with qp = 1, q 6= ±1.

Remark 6.3 For dimH = p3 there are complete results for p = 2 [27] and p = 3 [14].
For dimH = p4 the list is complete only for p = 2 in [19]. There are also classification
results for dimensions pq, pq2, pqr, for p, q, r different primes. There are not many further
results. In fact, the classification is not known even for dimension equal to 20.

6.2 Cocommutive & commutative Hopf algebras

Definition 6.4 A Hopf algebra H is said to be cocommutative if the underlying coalgebra
is. Analogously, H is commutative if it is commutative as an algebra.

Cocommutive Hopf algebras are completely determined by the next theorem, due to
Cartier and Kostant.
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Theorem 6.5 Let H be a cocommutative Hopf algebra over a field of characteristic zero
k. Then there exists a Lie algebra g and a group Γ, acting by Lie automorphisms in g,
such that H ∼= U(g)#kΓ as Hopf algebras. Moreover, g = P(H) and Γ = G(H).

Corollary 6.6 Let H be a finite-dimensional cocommutative Hopf algebra over k. Then
H ∼= kΓ, for some group Γ.

Proof. U(g) is infinite-dimensional, for g such that dim g > 1 and U(k) = k.

Corollary 6.7 Let H be a finite-dimensional commutative Hopf algebra over k. Then
H ∼= kΓ, for some group Γ.

Proof. H∗ is cocommutative.

6.3 Other classes: Pointed and Copointed Hopf algebras

Definition 6.8 Let H be a Hopf algebra. The coradical H0 of H is the largest cosemisim-
ple subcoalgebra of H. That is, H0 =

∑
C∈S C, for S the set {C ⊂ H simple coalgebra}.

There are many classification results for non-semisimple Hopf algebras according to
the structure of H0, particularly when H0 is a Hopf subalgebra of H.

Remark 6.9 The group algebra kΓ, for Γ = G(H) is always contained in H0 since it is
a cosemisimple subcoalgebra of H.

6.3.1 Pointed Hopf algebras

Definition 6.10 A Hopf algebra is called pointed if H0 coincides with the group algebra
kG(H).

Example 6.11 The Hopf algebras kΓ, U(g)#kΓ, Tq are pointed Hopf algebras.

Remark 6.12 Set k = C. Let H be a finite dimensional Hopf algebra, Γ = G(H). A
complete classification has been achieved in [8] in the case in which Γ is abelian and its
order is coprime with 210 (i.e. not divisible by small primes). Important related results
from [11, 12, 13] have prepared the ground for a complete classification [9].

When Γ is not abelian, a complete classification is known for the symmetric groups S3

and S4 [6], [18], respectively and the dihedral groups D4m, m ∈ N [16].
The classification is also finished for the alternating groups Am, m ≥ 6 [1] and some

sporadic simple groups [17]. These families share the property that the only pointed Hopf
algebra over Γ is just the group algebra kΓ. This seems to be the case for many simple
groups, see [2] and [3], also [15].
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6.3.2 Copointed Hopf algebras

Definition 6.13 A Hopf algebra is called copointed if its coradical is isomorphic to the
function algebra over a group Γ.

Remark 6.14 A complete classification for the copointed case has been achieved in
[10] for the symmetric group S3. The case of the group S4, together with some other
non-abelian groups, is being developed in [20].
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[20] Garćıa Iglesias, A. and Vay, C., Liftings of finite-dimensional Nichols algebras over non-abelian
groups and their duals. Work in progress.

[21] Masuoka, A., The pn theorem for semisimple Hopf algebra. Proc. Amer. Math. Soc. 124,
no. 3 (1996), 735–737.

[22] Montgomery, S., “Hopf algebras and their action on rings”. CBMS Lecture Notes 82, Ameri-
can Math Society, Providence, RI, 1993.

[23] Ng, S.-H., Non-semisimple Hopf algebras of dimension p2. J. Algebra 255, no. 1 (2002),
182–197.

[24] Nichols, W.D. and Zoeller, M. B., A Hopf algebra freeness theorem. American Journal of Math
111 (1989), no. 1, 381–385.

[25] Schneider, H.-J., “Lectures on Hopf algebras”. Universidad de Córdoba Trabajos de Matemática,
Serie “B”, No. 31/95, Córdoba, Argentina, 1995.

[26] Sweedler, M., “Hopf algebras”. Benjamin, New York, 1969.

[27] Williams, R.e, “Finite dimensional Hopf algebras”. Ph. D. Thesis, Florida State University.

[28] Zhu, Y., Hopf algebras of prime dimensio. Internat. Math. Res. Notices 1 (1994), 53–59.
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The Explicit Laplace Transform

for the Wishart process

Alessandro Gnoatto (∗)

This paper is based on joint work with Martino Grasselli(†)

Abstract. We derive the explicit formula for the joint Laplace transform of the Wishart process
and its time integral which extends the original approach of [Bru, 1]. We compare our methodology
with the alternative results given by the variation of constants method, the linearization of the
Matrix Riccati ODE’s and the Runge-Kutta algorithm. The new formula turns out to be fast,
accurate and very useful for applications when dealing with stochastic volatility and stochastic
correlation modelling.

1 Introduction

Before we introduce the results of the paper, we provide a short introduction to Mathe-
matical finance, which is a branch of mathematics trying to solve problems like:

• Pricing and hedging of financial instruments,

• Computation of optimal investment strategies,

• Risk management.

From an historical point of view, contributions coming from different fields have deter-
mined the evolution of Mathematical Finance.

• Mathematics (Probability, Stochastic Calculus, Complex Analysis, Geometry)

• Physics (Many PDE analogies)

• Financial economics (No arbitrage, completeness)
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• Econometrics/Statistics

This emphasizes the fact that Mathematical Finance is a subject where different paradigms
coexist. Physics in particular has played an important role in the early age, around the
seventies/eighties. The universally recognized birth of Mathematical Finance coincides
with the appearence of the PhD thesis of L. Bachelier, in 1900. In his PhD Thesis Bachelier
proposed the first financial model, where the complexity of financial markets is captured
by a stochastic process (Brownian motion). Unfortunately, the importance of his work was
not recognized for many years. It was around the sixties that P. Samuelson redescovered
the work of Bachelier and started to use it as a basis for financial modelling. Samuelson
introduced a new kind of stochastic process, called Geometric Brownian Motion, which
constitutes the standard example for a process describing asset prices. In the mean time,
another important stream of research, focused on the search for optimal allocations among
risky investment opportunities, was introduced by H. Markowitz in his PhD thesis. Finally,
in 1973, F. Black and M. Scholes published their famous paper on option pricing which
was given full recognition in 1997 with the Nobel prize.

2 Motivating example

2.1 Introduction to Option pricing

We will introduce Mathematical Finance by illustrating one of the most important prob-
lems in financial engineering: the pricing of derivatives securities.

Let S = (St)0≤t≤T be the price of a stock, say Unicredit. Suppose you bought at time
t = 0 a Unicredit stock at a price S0 = 0.80. The payoff, i.e. what you earn or lose at a
future time is simply given by:

p&lT = ST − S0(2.1)

which is a trivial linear function of ST .

• Of course, the value of ST is unknown at time t = 0.

• We model this lack of knowledge with randomness, so ST is a random variable.

• Is it possible to annihilate the risk arising from the fluctuations of S?

Let us write K = S0. The profit and loss may be decomposed as:

ST −K = max {ST −K, 0} −max {K − ST , 0}(2.2)

What we have introduced are European options. More precisely:

• A call option gives to its holder the right, but not the obligation, to buy a stock at
T at a fixed price (exercise or strike price) K which is determined at t.

• A put option gives to its holder the right, but not the obligation, to sell a stock at
T at a fixed price (exercise or strike price) K which is determined at t.

Università di Padova – Dipartimento di Matematica 23



Seminario Dottorato 2011/12

These are the simplest examples of derivatives. We would like to compute the fair price
at time 0 of these products.

If you asked an economist about the price of such an instrument, he/she may tell you
that prices are determined by demand and supply. However, financial markets are driven
by many factors, which are not easy to describe theoretically and estimate empirically.
The perspective of Mathematical Finance is different. The stock price is assumed to follow
a path, which is similar to that of a particle of pollen, when it is hit by many moleculae of
water. This kind of wild trajectories are described mathematically by a stochastic process
which is known as Brownian Motion.

2.2 The Black-Scholes model

The assumptions behind the model that we will employ to price the derivative are the
following.

• A filtered probability space (Ω,F ,Ft,P).

• Ft satisfies the usual assumptions.

• we consider two processes modeling two different financial assets

• a money-market account driven by the deterministic ODE

dBt = rBtdt B0 = 1(2.3)

• an SDE for the stock price

dSt
St

= µdt+ σdW P
t S0 = s0(2.4)

which admits a solution which is pathwise unique

ST = S0 exp

{(
µ− σ2

2

)
T + σWT

}
(2.5)

Under these assumptions, the evolution of a derivative will be a function of time and of
the price of the stock. Given the SDE (2.4) we know how to compute the dynamics of
f(t, St) thanks to Ito’s lemma:

df(t, St) =
∂f

∂t
dt+

∂f

∂St
dSt +

∂2f

∂S2
t

d 〈St〉(2.6)

the idea of Black Scholes is to construct a portfolio using the money-market account B
and the stock S such that the random term that we have above vanishes. In this way we
obtain a pricing PDE of the form:

∂f

∂t
+
∂f

∂S
rS +

1

2
σ2S2 ∂

2f

∂S2
− rf = 0(2.7)

f(T, ST ) = max {ST −K, 0}(2.8)
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We can solve the previous PDE (this was the approach in Black Scholes) or we can ap-
ply Feynman-Kac theorem, which tells us that the PDE is equivalent to an expectation
computed w.r.t. an artificial probability measure, which is called Risk-neutral measure.
Hence we write:

f(t, St) = e−r(T−t)EQ [max {ST −K, 0} |Ft](2.9)

In the case of this simple model it is not difficult to show that the solution is:

f(t, St) = StN(d1)−Ke−r(T−t)N(d2)(2.10)

N(x) =

∫ x

−∞

1√
2π
e−

z2

2 dz(2.11)

d1 =
log
(
St
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t(2.12)

d2 = d1 − σ
√
T − t(2.13)

We can proceed to make some observations.

• Notice that the terms N(di) are probabilities, in particular N(d2) = Q (ST > K)

• From (2.5) we realize that ST is a lognormal random variable.

• Hence the distribution of the log-asset price Xt := logSt is Gaussian

• So in this context we can easily write the conditional probability density of the
log-asset price as

1√
2πv

e−
1
2
x−h
v2 dx(2.14)

where:

h = logSt +

(
r − σ2

2

)
(T − t)(2.15)

v = σ2(T − t)(2.16)

Unfortunately, the Black and Scholes model is not realistic.

• The distribution of XT = logST is not Gaussian and features asymmetry and fat
tails

• If we observe a surface of prices for different values of K and the maturity T and
then try to find the value for σ such that the Black Scholes price is equal to the
market price then we do not observe a flat surface.

• Smiles and term structures of volatilities.

• Volatility is itself a stochastic process.
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2.3 Characteristic Functions and more general models

Before we talk about more complex models, we would like to recall some well-known results
which will be useful in the sequel. Let X be a random variable (X will be the log-price).
Then its characteristic function is defined as:

ϕ(θ) = E
[
eiθX

]
(2.17)

Levy’s inversion theorem gives a relationship between the characteristic function and the
probability density of a random variable. If we know the characteristic function of a
random variable, then we can recover its density:

Theorem 1 [Levy’s inversion Theorem] If
∫
R |ϕ(θ)|dθ < ∞ then X has a continuous

probability density function f , and

f(x) =
1

2π

∫

R
e−iθxϕ(θ)dθ(2.18)

The CF for a Gaussian random variable with mean h and variance v2 is given by:

E
[
eiθX

]
= eiθh−

1
2
θ2v2

(2.19)

Using the relation between the CF and the density, we can rewrite the probabilities in the
B&S formula, e.g.:

N(d2) = Q(ST > K) =
1

2
+

1

π

∫ ∞

0
Re

[
e−iθ log(K)ϕ(θ)

iθ

]
dθ(2.20)

this means that if we know the characteristic function of XT = log(ST ), then we can
compute option prices, even for models which are more complicated w.r.t the standard
Black Scholes case.

2.3.1 [Heston, 3]

dSt
St

= rdt+ σ
√
VtdWt(2.21)

dVt = κ(θ − Vt) + η
√
VtdZt(2.22)

2.3.2 [Da Fonseca et al., 2]

dSt
St

= rdt+ Tr
[√

XtdWt

]
(2.23)

dXt =
(

ΩΩ> +MXt +XtM
>
)
dt+

√
XtdZtQ+Q>dZ>t

√
Xt(2.24)

The last model motivates the need for an explicit solution for the Laplace/Fourier
transform of the process X, which is called Wishart process.
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3 Our results on the Wishart process

We start from the following probabilistic setup.

• Filtered probability space (Ω,F ,Ft,P)+usual assumptions.

• B matrix Brownian motion

• S+
d the cone of symmetric d × d matrices with scalar product given by the trace

operator

• A Wishart process is governed by the following SDE

dSt =
√
StdBtQ+Q>dB>t

√
St +

(
MSt + StM

> + αQ>Q
)
dt

S0 ∈ S+
d , t ≥ 0(3.1)

• Q ∈ GLd
• M ∈Md, λ(M) < 0∀λ ∈ σ(M)

• α > d− 1

• √St square root in matrix sense

Bru proved many interesting properties, like non collision of the eigenvalues. Most impor-
tantly, she characterized the conditional probability densities of St.

• calculation of the Laplace transform of the process

• first approach when Q = Id, M = 0: → Kolmogorov type PDE

• second approach → matrix analogues of results from the theory of Bessel processes.

In particular, Bru successfully computed the quantity:

(3.2) EP
s0

[
exp

{
−Tr

[
wSt +

∫ t

0
vSsds

]}]
,

where w, v ∈ S+
d . The formula above is called, using Bru’s terminology Matrix Cameron-

Martin Formula. This formula is very useful for applications, unfortunately, Bru as-
sumed that the matrices M and Q commute. We want to prove a more general version of
the Cameron-Martin formula where we relax this commutativity assumption.

Our main result is the following:

Theorem 2 Let S ∈WISd(S0, α,M,Q) be the Wishart process solving (3.1), assume

M>
(
Q>Q

)−1
=
(
Q>Q

)−1
M,(3.3)
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let α ≥ d+ 1 and define the set of convergence of the Laplace transform

Dt =

{
w, v ∈ Sd : EP

S0

[
exp

{
−Tr

[
wSt +

∫ t

0
vSsds

]}]
< +∞

}
.

Then the joint moment generating function of the process and its integral is given by:

EP
S0

[
exp

{
−Tr

[
wSt +

∫ t

0
vSsds

]}]

= det
(
e−Mt

(
cosh(

√
v̄t) + sinh(

√
v̄t)k

))α
2

× exp

{
Tr

[(
Q−1
√
v̄kQ>

−1

2
−
(
Q>Q

)−1
M

2

)
S0

]}
,

where the matrices k, v̄, w̄ are given by:

k = −
(√

v̄ cosh(
√
v̄t) + w̄ sinh(

√
v̄t)
)−1 (√

v̄ sinh(
√
v̄t) + w̄ cosh(

√
v̄t)
)
,

v̄ = Q
(

2v +M>Q−1Q>
−1
M
)
Q>,(3.4)

w̄ = Q

(
2w −

(
Q>Q

)−1
M

)
Q>.

The proof of the result above proceeds along the following steps:

• Recall a matrix generalization of a result from the theory of Bessel processes,

• add the volatility matrix Q by means of an invariance result,

• add the drift matrix M by means of a measure change.
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L2 theory and global regularity for ∂̄

on pseudoconvex domains of Cn

Stefano Pinton (∗)

Abstract. This seminar is divided into two parts. The first one is an introduction to the first
order partial differential operator ∂̄ in a smooth bounded pseudoconvex domain D of Cn. Only
preliminary definitions are given and the basic estimate, due to Morrey, Kohn and Hormander, is
established. It yields the existence of the ∂̄ Neumann operator, that is, the inverse to the complex
Laplacian and the construction of the canonical solution to the equation ∂̄u = f , for f ∈ ker(∂̄),
that is the solution orthogonal to the kernel of ∂̄. The second part is an introduction to the problem
of the global regularity up to the boundary for the canonical solution of the ∂̄ equation with data
regular up to the boundary. In particular it is shown how compactness estimates are sufficient for
global regularity as well as the existence of ”good defining functions”.

1 L2 theory for ∂̄ on pseudoconvex domains

In the first part of the seminar we will discuss the existence of the L2 canonical solution
for the equation ∂̄u = f .

1.1 Preliminaries

Let Cn, n ≥ 2, be the euclidean complex n−dimensional space and z ∈ Cn, z = (z1, . . . , zn),
zj = xj + iyj be the complex coordinates. We define holomorphic and antiholomorphic
derivatives by:

∂z̄j =
1

2
(∂xj + i∂yj ) and ∂zj =

1

2
(∂xj − i∂yj ).

Symmetrically we define the holomorphic and antiholomorphic forms by:

dz̄j = dxj − idyj and dzj = dxj + idyj .

Let Ω be a compact subset of Cn with smooth boundary i.e. there exists a smooth real
valued function r : Cn → R with dr 6= 0 such that Ω := {z ∈ Cn : r(z) < 0}.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on November 16th, 2011.
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Definition 1 A complex valued function f ∈ C1(Ω) is said to be holomorphic when f
satisfies the differential system ∂z̄jf = 0, for j = 1, . . . , n.

The space L2(Ω)k of k−forms with L2 coefficients is composed by f =
∑
|I|=k fIdz̄I

where fI ∈ L2(Ω) and

I = (i1, . . . , ik),

dz̄I = dz̄i1 ∧ · · · ∧ dz̄ik ,
fσ(I) = sign(σ)fI (σ a permutation),

Usually L2(Ω)k is endowed with the scalar product

(f, g)L2(Ω)k =
∑

|I|=k

∫

Ω
fI ḡI dV.

We can consider also: C l(Ω̄)k, C∞(Ω̄)k, C∞(Ω)k, C∞c (Ω)k and Hs(Ω)k.

1.2 ∂̄ operator

Let ∂̄ : C∞(Ω̄)k → C∞(Ω̄)k+1 for k = 0, . . . , n − 1 be the first order differential operator
defined by:

f =
∑

|I|=k
fIdz̄I → ∂̄f =

∑

|I|=k

n∑

i=1

∂z̄ifI dz̄i ∧ dz̄I .

By the previous definition we have the following easy remarks:

Remark 2

• ∂̄∂̄f = 0 (Schwartz Lemma);

• If k = 0, ∂̄f =
∑n

i=1 ∂z̄if dz̄i.

Definition 3 The Levi form of a C2 real valued function r is

Lr(z)(t) =
∑

i,j

(∂zi∂z̄jr(z)) tit̄j

for any z ∈ Ω and t ∈ Cn. If the Lr ≥ 0 then r is said plurisubharmonic.

Let ϑ : C∞(Ω̄)k+1 → C∞(Ω̄)k for k = 1, . . . , n be the formal adjoint of ∂̄ i.e. ϑ is
defined by:

(1) (ϑf, ϕ) = (f, ∂̄ϕ) for any ϕ ∈ C∞c (Ω)k.

For any f =
∑
|I|=k+1 fIdz̄I ∈ C∞(Ω̄)k+1 integration by parts yields:

ϑf = −
∑

|J |=k

n∑

j=1

∂zjfjJdz̄J .
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By the previous definitions we have the following easy remarks:

Remark 4

• if k = 1 then ϑ(
∑

j fjdz̄j) = −∑j ∂zjfj ;

• we can think of both ∂̄ and ϑ as (densily defined) operators on L2−forms.

1.3 ∂̄∗ operator and ∂̄-Neumann condition

We denote by ∂̄∗ the L2−adjoint of ∂̄ and again we have that ∂̄∗∂̄∗f = 0. We observe that
any f ∈ C∞(Ω̄)k belongs to Dom(∂̄) but not to Dom(∂̄∗); for this to hold the equality (1)
must be satisfied ∀ψ ∈ C∞(Ω̄)k−1, not yet C∞c (Ω)k−1:

(2) (∂̄∗f, ψ) = (f, ∂̄ψ) ∀ψ ∈ C∞(Ω̄)k−1.

But a form ∂̄∗f satisfying (2) exists in L2 iff:

|(f, ∂̄ψ)| ≤ C‖ψ‖ ∀ψ ∈ Dom(∂̄) (Riesz),

that is iff f satisfies Neumann condition:

(f · ∂r)|bΩ = 0 (integration by parts)

here Re(∂r) = dr. When f ∈ Dom(∂̄∗) then ∂̄∗f = ϑf . In the case of 1−forms, i.e.
f =

∑n
j fjdz̄j , we have f ∈ Dom(∂̄∗) iff (

∑n
j=1 ∂zjr fj)|bΩ = 0. For a general form of

degree k, the Neumann condition consists in:

∀|J | = k − 1
( n∑

j=1

∂zjr fjJ
)
|bΩ = 0.

1.4 Basic estimate

When f ∈ Dom(∂̄) ∩Dom(∂̄∗) then

‖∂̄f‖2 = −
∑

i,j,|L|=k−1

∫

Ω
∂z̄ifjL∂z̄jfiL dV +

∑

i,|J |=k

∫

Ω
|∂z̄ifJ |2 dV

‖∂̄∗f‖2 =
∑

i,j,|L|=k−1

∫

Ω
∂zifiL∂zjfjL dV.

Integration by parts and the ∂̄−Neumann conditions imply:

−
∑

i,j,L

∫

Ω
∂z̄ifjL∂zj f̄iL dV +

∑

i,j,L

∫

Ω
∂zifiL∂z̄j f̄jL dV =

∑

i,j,L

∫

bΩ
∂zi∂z̄jr fiLf̄jL dS

This yields:

‖∂̄f‖2 + ‖∂̄∗f‖2 =
∑

i,J

‖∂z̄ifJ‖2 +
∑

i,j,L

∫

bΩ
∂zi∂z̄jr fiLf̄jL dS.
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Now if we consider a weighted scalar product:

(f, g)ϕ =
∑

|J |=k

∫

Ω
e−ϕfJ ḡJ dV

we obtain:

‖∂̄f‖2 + ‖∂̄∗f‖2 &
∑

i,J

‖∂z̄ifJ‖2 +
∑

i,j,L

∫

bΩ
∂zi∂z̄jr fiLf̄jL dS

+
∑

i,j,L

∫

Ω
∂zi∂z̄jϕfiLf̄jL dV.(3)

Good weights, with big Levi form, always exist e.g. ϕ = t|z|2, t >> 1; but excellent
weights are those which have, in addition, a uniform bound in Ω near bΩ:

(4)

{
∂zi∂z̄jϕt ≥ t
|ϕt| ≤ 1 near bΩ

When the bΩ is ”‘flat”’ these weights do not exist. Now we introduce some domains for
which the boundary integral in (3) is positive. They are called pseudoconvex domains.

Definition 5 Let Ω be bounded domain of Cn with smooth defining function r (i.e.
Ω = {z ∈ Cn : r(z) < 0 }, dr 6= 0). Ω is pseudoconvex iff

(5) Lr(z)(t) =
∑

i,j

(∂zi∂z̄jr (z)) tit̄j ≥ 0

for any z ∈ bΩ and for any t ∈ Cn \ {0} such that 〈∂r(z), t〉 = 0. When strict inequality
holds in (5), Ω is said strictly pseudoconvex.

Thus for pseudoconvex domains we obtain the Basic Estimates:

(6) ‖∂̄f‖+ ‖∂̄∗f‖ &
∑

i,J

‖∂z̄ifJ‖2 +

∫

Ω
∂zi∂z̄jϕfiK f̄jK dV (basic estimate)

for any f ∈ Dom(∂̄)∩Dom(∂̄∗) (for a complete derivation of the basic estimates we suggest
[6, Chapter 4] or [5, Chapter 1.9]).

Here some examples of pseudoconvex domains:

• All convex domains are pseudoconvex. The ball B = {z ∈ Cn : |z|2 < 1 } is strictly
pseudoconvex.

• Let f1, . . . , fn be holomorphic functions of one variable. Then {z ∈ Cn : |f1(z1)|2 +
· · ·+ |fn(zn)|2 ≤ C } is pseudoconvex. In fact for r = |f1(z1)|2 + · · ·+ |fn(zn)|2 −C,
we have, for any t ∈ Cn, that:

Lr(z)(t) =
∑

j

|∂zjfj(zj)|2 |t|2j ≥ 0

.
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1.5 Complex laplacian 2 and Neumann operator N

Let 2 = ∂̄∂̄∗ + ∂̄∗∂̄ : L2(Ω)k → L2(Ω)k for k = 1, . . . , n − 1, be a second order dif-
ferential operator. This is called the complex laplacian. 2f should exist, then 2f =
−1

4

∑
|J |=k ∆fJ dz̄J . If Ω is pseudoconvex, by the basic estimate (6), putting ϕ = |z|2 and

using the adjunction properties, we have:

‖f‖2 . ‖∂̄f‖2 + ‖∂̄∗f‖2 = (2f, f) ≤ ‖2f‖‖f‖ ∀f ∈ Dom(2)

where the last inequality is a Cauchy-Schwartz inequality. Thus

‖f‖ . ‖2f‖.

The last inequality tells us that 2 is injective and it has closed range. Its inverse N := 2−1

is the Neumann operator:

N : L2(Ω)k → Dom(2)k for k = 1, . . . , n− 1.

It is a linear, selfadjoint and bounded operator.
We have the orthogonal decomposition:

L2(Ω)k = Range(∂̄∂̄∗N)⊕ Range(∂̄∗∂̄N)

= ker(∂̄)⊕ ker(∂̄∗) for any k = 1, . . . , n− 1.(7)

Thus we obtain the principal results of the first part.

Theorem 6 [L2 canonical solution of ∂̄ equation] Let Ω ⊂ Cn be a smooth bounded
pseudoconvex domain and consider the equation ∂̄u = f , where f ∈ L2(Ω)k, for k =
1, . . . , n and ∂̄f = 0. Then u = ∂̄∗Nf is a solution orthogonal to ker(∂̄) (unique by (7)).

Proof. Since ∂̄f = 0 and ∂̄N = N∂̄ we have: ∂̄u = ∂̄∂̄∗Nf = ∂̄∂̄∗Nf + ∂̄∗N∂̄f =
(∂̄∂̄∗ + ∂̄∗∂̄)Nf = 2Nf = f.

2 Regularity of the solution of ∂̄ for pseudoconvex domains

In the second part of the seminar we will discuss the regularity up to the boundary of the
canonical solution.

2.1 At the interior

Not all solutions are regular. For this we have to add ∂̄∗ and consider the system (∂̄, ∂̄∗).
Then we use the ”‘other half”’ of the basic estimate:

(8) ‖α‖—— +
∑

J

∑

j

‖∂z̄jαJ‖ . ‖∂̄α‖+ ‖∂̄∗α‖.

In particular, if α ∈ C∞c (Ω)k converting each 1
2‖∂z̄jαJ‖ into 1

2‖∂zjαJ‖ by integration by
parts yields:

(9)
1

2
‖α‖1 . ‖∂̄α‖+ ‖∂̄∗α‖ (elliptic estimate in the interior).
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In particular if f ∈ C∞(Ω)k ∩ L2(Ω)k then the canonical solution ∂̄∗Nf ∈ C∞(Ω)k−1. In
other words, the system ∂z̄j j = 1, . . . , n is elliptic; to have its action over all coefficients
αJ , the full action of (∂̄, ∂̄∗) over α is needed.

2.2 At the boundary

First, if f ∈ C∞(Ω̄) there is a C∞(Ω̄) solution [4]. Again, not all solutions are C∞(Ω̄)
but, differently from the interior, solutions of (∂̄, ∂̄∗) do not always inherit regularity
from the data. In particular, for C∞(Ω̄), ∂̄∗Nf may happen not to be regular! At the
boundary (α ∈ C∞(Ω̄) in (9) is needed instead of α ∈ C∞c (Ω)) the elliptic estimate
always fails: the best that can be expected is a 1

2−subelliptic estimate ( this is the case
of strongly pseudoconvex domains, with ‖α‖1 replaced by ‖α‖ 1

2
, α ∈ C∞(Ω̄)k); otherwise

more general ‖ · ‖δ−norms with δ ≤ 1
2 or even weaker norms can be expected in the

estimate:
‖α‖δ ≤ ‖∂̄α‖+ ‖∂̄∗α‖ α ∈ C∞(Ω̄)k ∩Dom(∂̄∗)k

to obtain regularity up to the boundary for the canonical solutions.
The ultimate level of estimates for regularity at the boundary for the canonical solution

are compactness estimates. They hold if ∀ε > 0 and for suitable Cε > 0:

(10)
1

ε
‖α‖ ≤ ‖∂̄α‖+ ‖∂̄∗α‖+ Cε‖α‖−1 ∀α ∈ Dom(∂̄) ∩Dom(∂̄∗)

Sketch of the proof that (10) implies regularity.

(11)
1

ε
‖α‖s . ‖∂̄α‖s + ‖∂̄∗α‖s + s‖α‖s + cε‖α‖0

where sDs ∼ [Ds, ∂̄], [Ds, ∂̄∗] and reduction from ‖α‖s−1 to ‖α‖0 is obtained by iteration.
By choosing 1

ε & s one gets an estimate for Hs regularity: letting s ↗ +∞ we are done
(again, since (∂̄(∂̄∗Nf) = f, ∂̄∗(∂̄∗Nf) = 0), (11) yield the Ω̄−regularity of ∂̄∗Nf when f
is Ω̄−regular).

Condition for compactness: a family of bounded weights with arbitrarly large Levi-
form, as in (4),suffices for the compactness estimate [7]. In fact by the weighted basic,
(4) yields (10) ∀ε = 1

t . (10) is not necessary for Ω̄−regularity of (∂̄, ∂̄∗). Existence of
defining functions which are fully plurisubharmonic (not only when restricted to vectors
orthogonal to ∂r) is sufficient.

2.3 My contribution

I obtained some results in this field. Here I recall them briefly:

Compactness estimates for the tangential (∂̄, ∂̄∗)−system on an abstract pseudocon-
vex CR -manifold (not embedded nor orientable) [1].

Regularity in absence of compactness for a more general r than plurisubharmonic.
It is classical that if Ω is pseudoconvex, then there exists r and 0 < η ≤ 1 such

Università di Padova – Dipartimento di Matematica 34



Seminario Dottorato 2011/12

that −(−r)η is plurisubharmonic in Ω. In my research the index s of regularity is
related to (the inverse) of (1 − η). This was done by Kohn for functions [3] and is
now generalized to any degree of forms [2].
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Boundedness and compactness of matrix

operators in weighted spaces of sequences

Zhanar Taspaganbetova (∗)

The present paper is based on joint work with Professor Ryskul Oinarov

Abstract. One of the main problems in the theory of matrices is to find necessary and sufficient
conditions for the elements of a matrix so that the corresponding matrix operator maps contin-
uously one normed space of sequences into another normed space of sequences. Thus it is very
important to find the norm of a matrix operator, or at least, an upper or lower bound for the
norm. However, in several spaces, which are very important both theoretically and in the appli-
cations, such problems have not been solved yet in full generality for operators corresponding to
arbitrary matrices. Therefore, in such spaces researchers have considered some specific classes of
matrix operators and have established criteria of boundedness and compactness for operators of
such classes.
We prove a new discrete Hardy type inequality involving a kernel which has a more general form
than those known in the literature. We obtain necessary and sufficient conditions for the bound-
edness and compactness of a matrix operator from the weighted lp,v space into the weighted lq,u

space defined by (A+f)i :=
i∑

j=1

ai,jfj , for all f = {fi}∞i=1 ∈ lp,v in case 1 < p ≤ q <∞ and ai,j ≥ 0.

Then we deduce a corresponding dual statement.

1 Historical notes on the problem

In the second half of the last century reseachers singled out a class of integral operators,
which is called the class of Hardy type operators, which is related to the work [4] of G.
Hardy. In 1925 Hardy has established the boundedness of the operator H in Lp(0,∞) for
1 < p <∞ defined by

(Hf)(x) =
1

x

x∫

0

f(s)ds ∀f ∈ Lp(0,∞),

and has proved that ‖H‖p→p = p
p−1 .

(∗)The L. N. Gumilyov Eurasian National University, Munaitpasov st., 5, 010008, Astana, Kazakhstan;
E-mail: . Seminar held on November 23rd, 2011.
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However, in several applications in function theory, harmonic analysis and differential
equations, one needs to consider weighted forms of Hardy operators. Namely, one needs to
consider non-negative weights u(x) and v(x) in Lebesque spaces and operators K0 of the

form (K0f)(x) = u(x)
x∫
0

v(s)f(s)ds. The problem was not easy. Only in 1969 the Italian

mathematicians G. Talenti [5] and G. Tomaselli [6] have established, independently of each
other, criteria of boundedness of the operator K0 in Lp(0,∞). During the next 11 years B.
Muckenhoupt [7], J.S. Bradley [8], V.M. Kokilashvili [9], V.G. Maz’ja [10] have obtained
criteria of boundedness for the operator K0 from Lp(0,∞) to Lq(0,∞) with 1 ≤ p, q ≤ ∞.
The initial results of G. Talenti, G. Tomaselli, B. Muckenhoupt gave a new impetus in the
analysis of weighted embedding theorems and spectral problems for singular differential
operators. Thus for example M. Otelbaev and his school have obtained important results
in the 1970’s concerning such topics (see e.g. [11], [12], [13]).

The next step was to study the operator

(Kf)(x) =

x∫

0

K(x, s)f(s)ds

with non-negative kernel K(·, ·). Such type of operators are called Hardy type operators.
However, even in the space L2(0,∞) finding a criterion of boundedness for such general
form of operators in terms of the kernel K(·, ·) is very difficult and is still an unsolved
problem. Therefore, many researchers have identified several classes of kernels, which
satisfy some specific conditions and have proved boundedness criteria for the corresponding
integral operators from Lp(0,∞) to Lq(0,∞), 1 < p, q <∞.

The first impulse in this direction was given by the works of F. Martin-Reyes, E.
Sawyer [14], and V.D. Stepanov [15]-[18]. They have obtained criteria of boundedness of
the Riemann-Liouville fractional integration operator from Lp,v to Lq,u, 1 < p, q < ∞,
which has several applications in various fields of science. In [19] V.D. Stepanov has
investigated the operator K with kernel K(x, s) = k(x − s), where k(·) is nondecreasing
and for which there exists d ≥ 1 such that k(x + s) ≤ d(k(x) + k(s)), x, s ∈ (0,∞). In
1989-1990 R. Oinarov [20] and independently the American mathematicians S. Bloom and
R. Kerman [21] in 1991 have studied the operator K, when its kernel satisfies the following
condition

1

d
(K(x, t) +K(t, s)) ≤ K(x, s) ≤ d(K(x, t) +K(t, s)),

x ≥ t ≥ s > 0, d ≥ 1. One of the important feature of this class of operators is that it
includes almost all known operators of fractional integration. Nowadays, this condition
imposed on the kernel K(·, ·) of the operator K is called the ”Oinarov condition” in
the mathematical literature. Operators K satisfying the Oinarov condition have been
investigated by many authors (see e.g. [2], [22]).

In the twenties of the last century G. Hardy has considered the discrete analogue of

the operator H in the form (Hdf)i = 1
i

i∑
j=1

fj and has proved the boundedness of Hd in

the space of sequences lp and a formula for the norm ‖Hd‖p→p =
p

p− 1
, 1 < p < ∞. As
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in the continuous case, this result of Hardy had various applications in many problems.

The discrete analogue (Kd
0f)i = ui

i∑
j=1

vjfj of the operator K0 has been studied by many

authors and the main results have been obtained in [23]-[28] only in 1987-1994 by K.F.
Anderson, H.P. Heinig, G. Bennett, M.Sh. Braveman and V.D. Stepanov. Such delay of
decades is related with the discrete changes of sequences {fj} and {(Kd

0f)i}, which do
not allow to transfer methods of the continuous case based on the continuity of (K0f)(·).
The results which were obtained for the operator Kd

0 have been successfully applied by
mathematicians of different countries. For example in Kazakhstan M. Otelbaev [13], E.S.
Smailov [29]-[31], A. Stikharnyi [32], R. Oinarov, A. Stikharnyi [33] and other authors
have proved several applications in various problems of analysis.

An attempt to investigate more general matrix operator of Hardy type (Af)i =

ui
i∑

j=1
ai,jvjfj , ai,j ≥ 0 has been done by K.F Andersen and H.P. Heinig [23], who have

proved sufficient conditions for the boundedness of the operator A in the space lp under
some conditions on the matrix (ai,j).

R. Oinarov, S.Kh. Shalgynbaeva [34] and R. Oinarov, C.A.Okpoti, L-E. Persson [35]
have proved criteria of boundedness and compactness for the operator A from lp to lq,
when the entries of the matrix (ai,j) satisfy a discrete analogue of the ”Oinarov condition”.

The next problem was the following.
How to obtain criteria of boundedness and compactness for a wider class of matrix

operators, or, in other words, how to prove a weaker condition on the matrix (ai,j).
So we introduce the expanding classes of matrices, which are wider than the previously

studied classes of matrices. When the matrices of operators (A+f)i :=
i∑

j=1
ai,jfj , i ≥ 1 and

(A−f)j :=
∞∑
i=j

ai,jfi, j ≥ 1 belong to such classes, we obtain necessary and sufficient con-

ditions for the boundedness and compactness of corresponding matrix operators from the
weighted lp,v space into the weighted lq,u space f = {fi}∞i=1 ∈ lp,v in case 1 < p ≤ q < ∞
and ai,j ≥ 0. Such operators have their own self interest and they are also a discrete
analogue of integral operators, which play a very important role in functional analysis (see
[2], [3]).

2 Introduction

Let 1 < p, q < ∞, 1
p + 1

p′ = 1 and u = {ui}∞i=1, v = {vi}∞i=1 be positive sequences of real
numbers. Let lp,v be the space of sequences f = {fi}∞i=1 of real numbers such that

‖f‖p,v :=

( ∞∑

i=1

|vifi|p
) 1

p

<∞, 1 < p <∞.

We consider the problem of boundedness from the weighted lp,v space into the weighted
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lq,u space of the matrix operators

(
A+f

)
i

:=
i∑

j=1

ai,jfj , i ≥ 1,(2.1)

(
A−f

)
j

:=
∞∑

i=j

ai,jfi, j ≥ 1,(2.2)

which is equivalent to the validity of the following inequality

‖A±f‖q,u ≤ C‖f‖p,v ∀f ∈ lp,v,(2.3)

where C is a positive finite constant independent of f and (ai,j) is a non-negative triangular
matrix with entries ai,j ≥ 0 for i ≥ j ≥ 1 and ai,j = 0 for i < j.

For ai,j = 1, i ≥ j ≥ 1, the operators (2.1), (2.2) coincide with the discrete Hardy

operators of the forms
(
A+

0 f
)
i

:=
i∑

j=1
fj ,
(
A−0 f

)
j

:=
∞∑
i=j

fi, respectively. References about

generalizations of the original forms of the discrete and continuous Hardy inequalities can
be found in different books, see e.g. [4].

When one of parameters p or q is equal to 1 or ∞, necessary and sufficient conditions
of the validity of (2.3) with the exact value of the best constant C > 0 have been obtained
in [1]. In case 1 < p, q <∞ inequalities as (2.3) have not been established yet for arbitrary
matrices (ai,j). Instead inequality (2.3) has been established with certain restrictions on
the matrix (ai,j).

In [34], [35] necessary and sufficient conditions for the validity of (2.3) have been
obtained for 1 < p, q < ∞ under the assumption that there exists d ≥ 1 such that the
inequalities

1

d
(ai,k + ak,j) ≤ ai,j ≤ d(ai,k + ak,j), i ≥ k ≥ j ≥ 1(2.4)

hold.
A sequence {ai}∞i=1 is called almost non-decreasing (non-increasing), if there exists

c > 0 such that cai ≥ ak (ak ≤ caj) for all i ≥ k ≥ j ≥ 1.
In [36] estimate (2.3) has been studied under the assumption that there exist d ≥ 1

and a sequence of positive numbers {ωk}∞k=1, and a non-negative matrix (bi,j), where bi,j
is almost non-decreasing in i and almost non-increasing in j, such that the inequalities

1

d
(bi,kωj + ak,j) ≤ ai,j ≤ d(bi,kωj + ak,j)(2.5)

hold for all i ≥ k ≥ j ≥ 1.

In [37], [38] the authors have considered inequality (2.3) under the assumption that
there exist d ≥ 1, a sequence of positive numbers {ωk}∞k=1, and a non-negative matrix
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(bi,j), whose entries bi,j are almost non-decreasing in i and almost non-increasing in j such
that the inequalities

1

d
(ai,k + bk,jωi) ≤ ai,j ≤ d(ai,k + bk,jωi)(2.6)

hold for all i ≥ k ≥ j ≥ 1.
Conditions (2.5) and (2.6) include conditions (2.4), and complement each other.

Notation: If M and K are real valued functionals of sequences, then we understand that
the symbol M � K means that there exists c > 0 such that M ≤ cK, where c is a constant
which may depend only on parameters such as p, q and rn, but not on the sequences in
the arguments of M and K. If M � K �M , then we write M ≈ K.

3 Preliminaries and notation

We now introduce the classes O+
n and O−n of matrices (ai,j) for n ≥ 1. We assume that

ai,j ≡ a(n)
i,j if (ai,j) ∈ O+

n or (ai,j) ∈ O−n .
We define the classes O+

n for n ≥ 0 by induction. Let (ai,j) be non-negative and non-
decreasing in the first index matrix for all i ≥ j ≥ 1. By definition matrices of the type

a
(0)
i,j = αj , ∀i ≥ j ≥ 1 belong to the class O+

0 . Let the classes O+
γ , γ = 0, 1, ..., n− 1, n ≥ 1

be defined. By definition, the matrix (ai,j) ≡ (a
(n)
i,j ) belongs to the class O+

n if and only if

there exist matrices (a
(γ)
i,j ) ∈ O+

γ , γ = 0, 1, ..., n− 1 and a number rn > 0 such that

a
(n)
i,j ≤ rn

n∑

γ=0

bn,γi,k a
(γ)
k,j(3.1)

for all i ≥ k ≥ j ≥ 1, where bn,ni,k ≡ 1 and

bn,γi,k = inf
1≤j≤k

a
(n)
i,j

a
(γ)
k,j

, γ = 0, 1, ..., n− 1.(3.2)

From (3.2) the following inequality follows

a
(n)
i,j ≥ b

n,γ
i,k a

(γ)
k,j(3.3)

i ≥ k ≥ j ≥ 1, γ = 0, 1, ..., n, n = 0, 1, ...

Then for (a
(n)
i,j ) ∈ O+

n we have

a
(n)
i,j ≈

n∑

γ=0

bn,γi,k a
(γ)
k,j , n ≥ 0(3.4)
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for all i ≥ k ≥ j ≥ 1.

Remark 1 It is easy to show that if for the matrix (a
(n)
i,j ), n ≥ 0 there exist matrices

(a
(γ)
i,j ) ∈ O+

γ , γ = 0, 1, ..., n−1, and matrices (̃bn,γi,k ), γ = 0, 1, ..., n such that the equivalence

(3.4) is valid for all i ≥ k ≥ j ≥ 1, then (a
(n)
i,j ) ∈ O+

n and b̃n,γi,k ≈ bn,γi,k . Hence, we may

assume that the matrices (bn,γi,k ) are arbitrary non-negative matrices which satisfy (3.4).

As above, we introduce the classes O−m, m ≥ 0. Let (ai,j) be a non-negative matrix.
Let (ai,j) be non-increasing in the second index for all i ≥ j ≥ 1. By definition, a

matrix (ai,j) = (a
(0)
i,j ) belongs to the class O−0 if and only if it has the form a

(0)
i,j = βi

for all i ≥ j ≥ 1. Let the classes O−γ , γ = 0, 1, ...,m − 1, m ≥ 1 be defined. A matrix

(ai,j) = (a
(m)
i,j ) belongs to the class O−m if and only if there exist matrices (a

(γ)
i,j ) ∈ O−γ ,

γ = 0, 1, ...,m− 1 and matrices (dγ,mk,j ), γ = 0, 1, ...,m− 1, m = 0, 1, ..., such that

a
(m)
i,j ≈

m∑

γ=0

a
(γ)
i,k d

γ,m
k,j ,(3.5)

for all i ≥ k ≥ j ≥ 1.

Remark 2 By the definitions of the classes O±n , n ≥ 0 we have O±0 ⊂ O±1 ⊂ ... ⊂ O±n ⊂ ....

It is easy to see that the class O+
1 includes the matrices, whose entries satisfy conditions

(2.4) and (2.5). Also it should be noted that the matrices satisfying conditions (2.4) and
(2.6) belong to the class O−1 . Hence, the classes O+

n , n ≥ 1 and O−m, m ≥ 1 are wider than
the classes of matrices which have been studied before in the literature.

A continuous analogue of the classes O+
n and O−n , n ≥ 0 has been considered by R.

Oinarov in [39].
Next, we show properties of the classes of matrices O+

n and O−n for n ≥ 0.

We set

wi,k =
i∑

j=k

ai,jσj,k.

Then we have the following

Lemma 3.1 Let (ai,j) ∈ O+
n , (σj,k) ∈ O+

m. Then (wi,k) ∈ O+
m+n+1.

Now we set

ϕk,j =

k∑

i=j

σk,iai,j .

Then we have the following lemma.

Lemma 3.2 Let (ai,j) ∈ O−n , (σk,i) ∈ O−m. Then (ϕk,j) ∈ O−m+n+1.
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4 Main results

We define

(
B+
p,q

)
k

=




k∑

j=1

v−p
′

j

( ∞∑

i=k

aqi,ju
q
i

) p′
q




1
p′

,

(
B−p,q

)
k

=



∞∑

i=k

uqi




k∑

j=1

ap
′
i,jv
−p′
j




q
p′



1
q

,

(
A+
p,q

)
k

=




k∑

j=1

uqj

( ∞∑

i=k

ap
′
i,jv
−p′
i

) q
p′



1
q

,

(
A−p,q

)
k

=



∞∑

i=k

v−p
′

i




k∑

j=1

aqi,ju
q
j




p′
q




1
p′

.

We set B+ = sup
k≥1

(
B+
p,q

)
k
, B− = sup

k≥1

(
B−p,q

)
k
, A+ = sup

k≥1

(
A+
p,q

)
k

and A− = sup
k≥1

(
A−p,q

)
k
.

Theorem 4.1 Suppose that 1 < p ≤ q < ∞. Let the matrix (ai,j) in (2.1) belong to
the class O+

m ∪ O−m, m ≥ 0. Let A+ be the operator defined in (2.1). Then the following
statements hold.

(i) A+ is bounded from lp,v into lq,u if and only if at least one of the conditions B+ <∞
and B− <∞ holds. Moreover B+ ≈ B− ≈ C, where C is the best constant in (2.3).

(ii) A+ is compact from lp,v into lq,u if and only if at least one of the conditions
lim
k→∞

(
B+
p,q

)
k

= 0 and lim
k→∞

(
B−p,q

)
k

= 0 holds.

Theorem 4.2 Suppose that 1 < p ≤ q < ∞. Let the matrix (ai,j) in (2.2) belong to
the class O+

m ∪ O−m, m ≥ 0. Let A− be the operator defined in (2.2). Then the following
statements hold.

(j) A− is bounded from lp,v into lq,u if and only if at least one of the conditions A+ <∞
and A− <∞ holds. Moreover A+ ≈ A− ≈ C, where C is the best constant in (2.3).

(jj) A− is compact from lp,v into lq,u if and only if at least one of the conditions
lim
k→∞

(
A+
p,q

)
k

= 0 and lim
k→∞

(
A−p,q

)
k

= 0 holds.
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Remark 3 If we consider operator defined by (2.1) and operator of the following form

(
Σ+g

)
i

=

i∑

j=1

σi,jgj , i ≥ 1.

Then
(
A+ ◦ Σ+

)
(g)i ≡

(
A+
(
Σ+g

))
i

=
i∑

j=1

ai,j

j∑

k=1

σj,kgk

=

i∑

k=1




i∑

j=k

ai,jσj,k


 gk =

i∑

k=1

wi,kgk.

Therefore if (ai,j) ∈ O+
n , (σj,k) ∈ O+

m, then according to lemma 3.1 the matrix (wi,k) of
the operator A+ ◦ Σ+ belongs to the class O+

m+n+1.

In general case, if matrices (aki,j) of operators
(
A+
k f
)
j

=
i∑

j=1
aki,jfj belong to the classes

O+
mk
, k = 1, ..., n, then the matrix of operator A+

n ≡ A+
1 ◦ A+

2 ◦ ... ◦ A+
n belongs to the

class O+
m, where m =

n∑
k=1

mk + n − 1. So according to Theorem 4.1 we obtain criteria of

boundedness and compactness of the matrix operator A+
n from the weighted lp,v space into

the weighted lq,u space, 1 < p ≤ q <∞.
Similarly, if matrices (aki,j) of operators

(
A−k g

)
j

=
∞∑
i=j

aki,jgi belong to the classes

O−mk , k = 1, ..., n, then based on lemma 3.2, Theorem 4.2 gives necessary and suffi-
cient conditions for boundedness and compactness of operator A−n = A−1 ◦ A−2 ◦ ... ◦ A−n
from lp,v into lq,u, 1 < p ≤ q <∞.
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What does ”Inverse Problems” mean?

Giulia Deolmi (∗)

Abstract. Inverse Problems (IP) are described as situations where the answer is known, but not
the question, or where the results, or consequences are known, but not the cause (Isakov, 2006). To
better understand what this means, after an introductory overview, we will focus on two particular
IP’s. The first one consists in the estimation of the corrosion of an unobservable face of a metal
slab, while the second one is about the estimation of the quantity of pollutant released in a river.

1 Introduction

As presented in [7], inverse problems are largely used in applications, for solving, among the
others, medical (e.g. in tomographical methods), industrial (e.g. monitoring oil pipelines),
image analysis and mine detection problems (e.g. ground penetration radar and elec-
tromagnetic induction). The first issue consists in understanding what inverse problem
means. Following [8], to characterize them mathematically, we present some examples.

Example 1.1 Find a polynomial p of degree n with given zeros x1, . . . , xn. Inverse
problem’s solution is simply p(x) = c(x−x1) . . . (x−xn), c ∈ R. The corresponding direct
problem reads: find the zeros x1, . . . , xn of a given polynomial p.

Example 1.2 [Inverse scattering problem] Find the shape of a scattering object, given
the intensity (and phase) of sound or electromagnetic waves scattered by this object. The
corresponding direct problem is that of calculating the scattered wave for a given object.
The rigorous mathematical description could be found in [8].

Example 1.3 [Backward heat equation] Consider the one-dimensional heat equation

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2

with boundary conditions
u(0, t) = u(π, t) = 0, t ≥ 0

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on November 30th, 2011.
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and initial condition
u(x, 0) = u0(x), 0 ≤ x ≤ π.

In the inverse problem one measures the final temperature distribution u(·, T ) and tries
to determine the initial temperature u(·, 0).

Example 1.4 [Diffusion in an inhomogeneous medium] The equation of diffusion
in an inhomogeneous medium is

∂u(x, t)

∂t
=

1

c
div(k∇u(x, t)), x ∈ D, t > 0,

where c is a constant and k = k(x) is a parameter describing the medium. In the inverse
problem one measures u and the flux ∂u

∂n on the boundary ∂D and tries to determine the
unknown function k in D.

As noted in [8], given two normed spaces X and Y , an operator K : X → Y and
a measurement y, in all of these examples we can formulate the inverse problem as the
solution of the equation

(1) K(x) = y.

In order to formulate an inverse problem, the definition of the operator K, including its
domain and range, has to be given. In general the evaluation of K(x) means solving a
boundary value problem for a differential equation or evaluating an integral.

Definition 1.1 Let X and Y be normed spaces, K : X → Y a (linear or nonlinear)
mapping. The equation K(x) = y is called properly posed or well-posed if the following
holds:

(a) Existence: for every y ∈ Y there is at least one x ∈ X s.t. K(x) = y.

(b) Uniqueness: for every y ∈ Y there is at most one x ∈ X with K(x) = y.

(c) Stability: the solution x depends continuously on y, i.e. for every sequence (xn) with
K(xn)→ K(x) as n→∞, it follows that xn → x.

Equations for which at least one of these properties does not hold are called improperly
posed or ill-posed.

Usually inverse problems are ill-posed or improperly posed in the sense of Hadamard
[5]: to compensate the loss of information we use some additional a priori knowledge about
the problem, i.e. we adopt a regularization method.

To solve an inverse problem two different approaches can be adopted:

(a) first optimize than discretize strategy: given (1), first an optimization problem is
defined, and then it is discretized;
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(b) first discretize than optimize strategy: first (1) is discretized and then a discrete
optimization problem is solved.

1.1 First optimize then discretize strategy

Following [7], we denote the measured perturbed data by y(δ) and assume that these noisy
data satisfy ∥∥∥y(δ) − y

∥∥∥ ≤ δ,
δ > 0.

The most well-known method for solving ill-posed problems is Tikhonov regularization:

it consists in approximating a solution of (1) by a minimizer x
(δ)
α of

(2) J(x) := ‖K(x)− y‖2 + α ‖x− x0‖2 ,

where x0 ∈ X typically unifies all available a priori information on the solution and α > 0
is the regularization parameter.

An alternative consists in using Iterative regularization methods [7]:

x
(δ)
k+1 = x

(δ)
k +Gk(x

(δ)
k , y(δ)), k ∈ N,

for various choices of Gk.

1.2 First discretize then optimize strategy

This methodology will be adopted in the following paragraphs.
First of all, we assume that the unknown x ∈ X, solution of (1), can be described

by a vector ϑ ∈ Rnθ of non negative parameters. The way this assumption is imposed is
problem dependent: we are going to see how this can be done in the following sections.

Thus we can restate the continuous problem (1) as a discrete one: given the operator
K̃ : Rnθ → RNny and a measurement y ∈ RNny , find ϑ ∈ Rnθ such that

(3) K̃(ϑ) = y.

1.2.1 Least-squares approach

To solve (3), we minimize the following functional

(4) J̃(ϑ) :=
1

N
‖eθ‖22 ,

where the residual or prediction error eθ : Rnθ → RNny , eθ := K̃(ϑ)−y. This methodology
is called least squares.

Observe that in this context regularization is done using an adaptive parametrization,
as mentioned in the following sections. More details can be found in [2, 3, 4].

To solve the least-squares minimization problem, in the sequel we will adopt a line
search method: starting from ϑ0, we compute a sequence

ϑk+1 = ϑk + αksk.
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The search direction sk is computed solving the Gauss Newton equation

(5) ψTϑkψϑksk = −ψTϑkeϑk ,

where the sensitivity matrix is defined as

ψϑ :=

(
∂eθ(j)

∂ϑi

)

j=1,...,Nny ; i=1,...,nθ

.

In the following sections it will be explained how this solution strategy has been applied
to solve two inverse problems coming from applications.

2 An inverse problem of corrosion estimation

Figure 1: 3D problem: corroded piece of material (red), absorbs the heat flux q (left); 2D reduction,

dealing with its section over z = 0 (right).

Suppose to deal with a metal slab, D
(0)
c , whose thickness and thermo physical properties

are known, and to interact only with one face S, which is provided with ny temperature
sensors. A nondestructive test is used, consisting of an infrared thermographic inspection:
in the time interval [0, tf ], tf > 0, S is heated with a thermal flash q(t) and experimental
temperatures are collected. Suppose that the material surface, excluding S, is adiabatic:
there is no heat exchange with the outside environment.

Consider the real corroded domain D
(ϑ)
c (cfr. the dashed domain in Figure 1), described

by a scalar function ϑ ∈ L2(S). The corresponding PDE over D
(ϑ)
c is the following

(6)





ρC ∂
∂tT

(ϑ) = k ∆T (ϑ), in D
(ϑ)
c × [0, tf ]

k ∇T (ϑ) · nS = q(t), on S × [0, tf ]

k ∇T (ϑ) · n = 0, on δD
(ϑ)
c /S × [0, tf ]

T (ϑ)(0, ·) = T0(·), in D
(ϑ)
c .
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ρC is the heat capacity of the material, k is its thermal conductivity, and nS and n are

respectively the outward normal to S and δD
(0)
c /S. Suppose to know ρC, k and the heat

flux q(t) = −q(t)nS , which is assumed to be approximately a Dirac impulse in time,
centered in t = 0, and constant over S. Consider a temporal discretization of [0, tf ],
{t0, . . . , tN−1}, t0 = 0, tN−1 = tf . The experimental data of the corroded model are
denoted by T sc ∈ Rny×N , such that (T sc )ij represents the temperature in the i-th sensor at
time tj−1, i = 1, . . . , ny, j = 1, . . . , N .

In the following, we assume that the corrosion does not vary along the z-axis, such

that (6) can be restated as a 2D problem, considering S = [0, 1] and D
(0)
c = [0, 1]× [0, L]

(Figure 1 right). Thus we can describe analytically the corroded region in the following
way:

D(ϑ)
c := {(x, y) s.t. x ∈ [0, 1], 0 ≤ y ≤ L− ϑ(x)} ,

where ϑ(x) : [0, 1] → [0, L] is a suitable smooth non negative function, such that ϑ(0) =
0 = ϑ(1), which represents the corrosion profile.

First of all a particular approximation of the real corrosion profile ϑ(x) is introduced,
choosing a piecewise constant function. This approach characterize the inverse problem
from a geometrical point of view and it can be seen as additional a priori information
about the problem. As explained below, under this hypothesis, instead of estimating a
continuous unknown ϑ(x), we hand up with a vectorial parameter estimation problem,
and thus with a discrete inverse problem.

To understand how this can be done, consider a subdivision of [0, 1], coincident with a
subset of the ny temperature sensors’ locations, with distinct spatial nodes {xi}i=1,...,nθ

,
nθ ≤ ny, x0 = 0, xnθ = 1, and a uniform subdivision of [0, L], with step hy, {yi}i=0,...,nL

,
y0 = 0, ynL = L. Define

θj :=
1

hc(j)

∫ xj+1

xj

ϑ(x)dx ≈ L− yk,

for a suitable k ∈ {0, . . . , nL}, hc(j) := |xj+1 − xj | , j = 1, . . . , nθ − 1.
Consider now the set of functions

P =



ϑ̃ s.t. ϑ̃ : [0, 1] −→ [0, L], ϑ̃(x) =

nθ−1∑

j=1

θjχ[xi,xi+1)(x)



 ,

where χ[xi−xi+1)(x) =

{
1, x ∈ [xi − xi+1)
0, elsewhere

is the characteristic function of [xi, xi+1).

The approximated corroded domain is defined as follows

D(θ̃)
c := D(0)

c \
∫ 1

0
ϑ̃(x)dx.

Thus D
(θ̃)
c is identified by the vector of parameters θ ∈ Rnθ−1.

Define now the matrix of prediction errors Eθ := T sc − T (θ)
h ∈ Rny×N where T

(θ)
h ∈

Rny×N denotes the Finite Element solution at every time discretization point in S’ ny

nodes, solving (6) on the approximated corroded domain D
(θ̃)
c .
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Consider the real valued function J̃ : Rnθ−1 → R,

(7) J̃(θ) :=
1

N

N∑

n=1

‖Eθ(·, n)‖22 =
1

N

nyN∑

k=1

(eθ(k))2,

where the prediction error eθ ∈ RNny is such that eθ((n − 1)ny + 1 : nny) = Eθ(·, n),
n = 1, . . . , N , i.e. the matrix Eθ is reshaped as a vector eθ.

It corresponds to find the optimal ϑ̃∗ ∈ P, or equivalently the optimal parameters θ∗j ,
j = 1, . . . , nθ − 1 such that

(8) θ∗ = arg min
θ∈Rnθ−1

J̃(θ).

This least squares problem, equivalent to (4), is solved using the Gauss Newton ap-
proach. To deal with the intrinsic ill-posedness of the inverse problem of corrosion de-
tection, an adaptive formulation is adopted, to reduce the computational cost. The idea
is to determine the adaptive parametrization starting from an initial coarse subdivision.
According to a suitable a posteriori indicator, the algorithm decides where eventually to
refine locally the subdivision of the corrosion profile. The refinement operation corre-
sponds to a bisection of the indicated segments, with a consequent increase in the number
of segments and, therefore, of parameters of the model. More details can be found in [3, 2].

3 An inverse problem of pollution rate estimation

Let [0, tf ) ⊂ R and Ω be an open, limited and Lipschitz continuous boundary subset
Ω ⊂ R2, sufficiently regular. We denote with ∂Ω the boundary of Ω. Let c : [0, tf )×Ω→ R,
c = c(t,x) be the solution of the following (direct) parabolic convection-diffusion-reaction
equation:

(9)





∂c
∂t − µ∆c+∇ · (uc) + σc = 0, in (0, tf )× Ω

c = c0, on {0} × Ω
c = cin, on (0, tf )× Γin
c = cup, on (0, tf )× Γup

µ ∂c∂n = 0, on (0, tf )× Γdown
c = 0, on (0, tf )× Γr

where Γin, Γup, Γdown and Γr are given disjoint sets such that ∂Ω = Γin∪Γup∪Γdown∪Γr.

Suppose that cin ∈ H
1
2 (Γin), cup ∈ H

1
2 (Γup), the initial condition c0 ∈ L2(Ω) and the

coefficients are independent on time, moreover µ ∈ L∞(Ω), µ(x) ≥ µ0 > 0 for all x ∈ Ω,
σ ∈ L∞(Ω), σ(x) ≥ 0 a.e. in Ω, u ∈ [L∞(Ω)]2, div(u) ∈ L2(Ω) are known. The direct
problem consists in finding the concentration c over Ω at time tf .

We assume that the physical properties of the fluid are constant and that the trans-
ported contaminant is considered as a passive scalar, which means that it does not affect
the velocity field. Thus we suppose to know u.

An example of the 2D domain Ω is illustrated in Figure 2.
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Figure 2: Example of problem’s domain Ω.

Consider the set of time instants

(10) {tj}, j = 0, . . . , N − 1.

In the first discretize than optimize context, we assume that cs(t,x) is known only in the
ny nodes of Γdown, for every discrete time tj . Let Cs(tj) ∈ Rny be the vector of measured
concentration at t = tj . For simplicity we suppose that

Γin =

nθ⋃

l=1

Γ
(l)
in ,

being Γ
(l)
in disjoint sets, such that cin is constant on each Γ

(l)
in , for all l = 1, . . . , nθ. Thus

we have to estimate a vector ϑ of nθ non negative parameters: equivalently we assume
that the function cin ∈ H

1
2 (Γin) is a piecewise constant function such that

cin(x) = ϑ(l), x ∈ Γ
(l)
in .

In this context the nodal vector solution is C(tj) = C(ϑ; tj), where we have made explicit
its dependence on ϑ.

Let cdown(cin; t,x) := c(cin; t,x) |Γdown , be the predicted concentration on Γdown, ob-
tained by solving (9) imposing cin on Γin, and Cdown(ϑ; tj) the corresponding nodal
vector, computed at time t = tj . The discrete inverse problem consists in finding

(11) ϑ̂ = arg min
ϑ∈Rnθ+

J̃(ϑ),

where the discrete cost function is defined as

(12) J̃(ϑ) :=
1

N

N∑

j=1

‖Cdown(ϑ; tj)−Cs(tj)‖22 =
1

N

nyN∑

k=1

(eθ(k))2,

where the prediction error eθ ∈ RNny is such that eθ(jny+1 : (j+1)ny) = Cdown(ϑ; tj)−
Cs(tj), j = 0, . . . , N − 1. Observe that this is a least squares problem (cfr. Section 1.2.1).
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If source location Γin is known then the problem can be solved applying the Gauss
Newton method; whereas if Γin is unknown, also an adaptive parametrization must be
adopted [4, 2].
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Regular biproduct decompositions of objects

Nicola Girardi (∗)

Abstract. Every vector space over a field K is the direct sum of a number of copies of the one-
dimensional K-vector space K. Allowing scalars to be elements of a ring R instead of a field, we
obtain a more general object called right (or left, depending on which side we write the scalars)
R-module. Contrary to the trivial case of K-vector spaces, modules over R may or may not
decompose into indecomposable submodules, and when they do, it is interesting to know whether
their decompositions are unique in some sense or at least satisfy some sort of constraint. Beginning
with the basics and with the classical results of the field we will end up giving some examples where
modules have decompositions that satisfy a nice combinatorial condition. As a last step, we hint
to a generalisation to the setting of biproduct decompositions in preadditive categories.

1 Introduction—The very basics

Every mathematical discourse begins with a few definitions. First let us recall the notion
of a right module M over a ring R. This is an (additive) abelian group M with a mapping
M×R→M satisfying a number of properties. The image of (m, r) being denoted by m.r,
we require that (1) m.(r+ r′) = m.r+m.r′, the former sum being in the ring R, the latter
in the abelian group M , (2) m.(rr′) = (m.r).r′, (3) m.1 = m, (4) (m+m′).r = m.r+m′.r,
where both sums are in the abelian group, for all m,m′ ∈ M and r, r′ ∈ R. These rules
probably ring a bell, in that this looks exactly like the definition of a vector space over
a field K, which is certainly familiar to all readers, except for the fact that here the
scalars form a ring instead of a field.(1) We recall that a ring has the same operations a
field has—in fact, a field is a type of ring—but its properties are much less strict. For
instance, elements of a ring need not be invertible (in the ring of integers Z, only 1 and
−1 are invertible), and there can be non-zero elements that multiply to zero (in the ring
of integers modulo 6, the product of 2̄ and 3̄ is zero). Also, in a ring, the product of two
elements generally depends on the order, that is, a · b and b · a may not yield the same
result in a ring.

As it is common, after defining a mathematical structure, a notion of substructure

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on December 14th, 2011.

(1)Left modules are defined similarly; unless otherwise stated, all modules considered here are right
modules; that is, scalars are applied on the right side of elements of the module in question.
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naturally ensues.(2) Indeed, a submodule N of a module M is an abelian subgroup (that
is, a non-empty subset of M closed by addition) which is closed by scalar multiples, that
is, m.r ∈ N for every m ∈ N and every r in the ring.

Another common definition is that of “product structure.” More generally, the prod-
uct of finitely many structures is usually defined. In the case of a finite number of
right R-modules M1, . . . ,Mn, there is a right R-module M1 ⊕ · · · ⊕ Mn, called the di-
rect sum of M1, . . . ,Mn, which is the cartesian product M1 × · · · ×Mn, endowed with
pointwise operations, that is, (m1, . . . ,mn) + (m′1, . . . ,m

′
n) = (m1 + m′1, . . . ,mn + m′n),

and (m1, . . . ,mn).r = (m1.r, . . . ,mn.r), where universal quantifiers are understood.
Morphisms of right R-modules are “structure-preserving mappings,” as is generally the

case. Precisely, in the case of modules, a mapping g : M → N is a morphism (of modules)
if g(m + m′) = g(m) + g(m′) and g(m).r = g(m.r), where, again, universal quantifiers
are understood. Of paramount importance, among all morphisms, are isomorphisms, as
they are the mathematician’s way of saying two objects are, essentially, the same. A
morphism g : M → N is an isomorphism if there is another morphism f : N → M such
that g(f(n)) = n and f(g(m)) = m for all m ∈ M and n ∈ N . That is, g ◦ f and f ◦ g
are the identity mappings of N and M respectively. In this situation we say that M and
N are isomorphic modules.

2 Decompositions—The Krull-Schmidt Theorem

All of the above is quite standard in mathematics. Something which is quite standard
all over the place in science is studying an entity through the study of its smaller parts,
the possibly simpler parts that make up the bigger object. The study of modules is no
exception to the rule. We say that M decomposes—but think of “separation” rather than
“putrefaction”!—as the direct sum of the modules M1, . . . ,Mn if M and M1⊕· · ·⊕Mn are
isomorphic modules. M is said to be indecomposable if whenever M ∼= M1 ⊕M2, either
M1 or M2 is a singleton, that is, a zero module. Among the decompositions of a module
M most important are those into indecomposable modules, that is, those where each Mi

is indecomposable.
We may think of M as a molecule and view M1, . . . ,Mn as its atoms. Although, in

general, modules do not break down into indecomposable modules as molecules break
down into atoms. On the one hand we have the already mentioned vector spaces. A
finite-dimensional vector space V over a field K is always of the form Kn. If we think of
molecules, it’s as if the entire universe were made of, say, hydrogen!

So we see that the situation for vector spaces is very simple. Modules, on the other
hand, have a generally more complex behaviour. It may very well happen that, say,
H2 ⊕ O ∼= M ⊕N , where H,M,N,O are pairwise non-isomorphic. It’s as if water could
also be made of atoms other than two hydrogen and one oxygen atoms, which would result
in a rather puzzling universe! In some cases though, modules can really be compared to
molecules and atoms. The most common of such cases is that of modules of finite length.
These are the modules M where all chains of submodules (read, families of submodules

(2)Here the term structure can in fact be intended in the technical sense of model theory.
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of M totally ordered by set inclusion) are finite. For instance, the cyclic groups Z/nZ
(n > 0) are Z-modules of finite length. A module of finite length has a decomposition
into indecomposables (necessarily of finite length) and such decomposition is essentially
unique. Precisely,

Theorem 2.1 [Krull-Schmidt, I] Let M be a module of finite length. Then there is a
decomposition M ∼= M1 ⊕ · · · ⊕Mn where each Mi is an indecomposable module (of finite
length), and if M ∼= N1 ⊕ · · · ⊕ Nm, where each Ni is indecomposable, then m = n and
Mi
∼= Nσ(i) for a suitable permutation σ.

So, to follow up on our metaphor, we have a periodic table consisting of the indecom-
posable modules of finite length, and every module of finite length (the molecule) uniquely
determines its atoms M1, . . . ,Mn, of which it is the direct sum.

The above result has been generalised in many ways. For instance, Theorem 2.1 holds
if we replace every Mi and every Ni with modules whose endomorphism rings are local. A
local ring S is one where for every s ∈ S, either s or 1− s is invertible. Thus a local ring
is not far from being a division ring. The set of endomorphisms of a module is canonically
a ring; addition is carried out pointwise and multiplication is given by composition. For
instance, consider the Prüfer group Z(p∞), which is the additive subgroup of Q/Z con-
sisting of those elements x̄ such that pnx̄ = 0 for some n ≥ 0. The Z-module Z(p∞) has a
local ring of endomorphisms (in fact, isomorphic to the ring of p-adic integers Zp).

The last conclusion of Theorem 2.1 can be restated as follows: There is a permutation
σ and a family of isomorphisms gi : Mi → Nσ(i) indexed by i = 1, . . . , n. Recall that
every morphism M1 ⊕ · · · ⊕Mn → N1 ⊕ · · · ⊕Nm can be seen as a matrix of morphisms
gi,j : Mj → Ni, much in the same way that we write morphisms between finite K-vector
spaces as K-valued matrices. Precisely,

g(x1, . . . , xn) =




n∑

j=1

gi,j(xj)



i=1,...,m

.

It is natural to ask whether, given an isomorphism g : M1⊕· · ·⊕Mn → N1⊕· · ·⊕Nm where
all Mi and all Ni have a local ring of endomorphisms, it is possible to find the isomorphisms
gi : Mi → Nσ(i) of Theorem 2.1 in the “matrix” (gi,j)i,j=1,...,n. This is indeed the case [10].
In the following statement, the reader unfamiliar with additive categories can safely think
of modules:

Theorem 2.2 [Krull-Schmidt, II] Let M1, . . . ,Mn and N1, . . . , Nm be objects with local
endomorphism ring of an additive category, and let g : M1 ⊕ · · · ⊕Mn → N1 ⊕ · · · ⊕ Nm

be a module isomorphism. Then n = m and there exists a permutation σ such that every
gσ(i),i : Mi → Nσ(i) is an isomorphism.

Apart from some technical steps to embed the problem in a nice setting (an additive
category where idempotents split), the proof goes by contradiction and employs Hall’s
Theorem from combinatorics. The details can be found in [10, Theorem 2.2]. The above
result is the basis for other results that will follow on these pages.
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3 Weak Krull-Schmidt Theorem

A class of modules for which there certainly is a decomposition into indecomposables
is that of artinian modules. These are the modules whose strictly descending chains
of submodules are finite. (The Prüfer group Z(p∞) is also an example of an Artinian
module! In fact, the lattice of submodules of Z(p∞) is isomorphic to the natural numbers,
in particular there are no infinite descending chains artinian.)

A module M is artinian if and only if every non-empty family of submodules of M has
a minimal element. Using this property, the proof of the existence of a decomposition into
indecomposables is rather easy: consider the family of submodules of M that do not have
a decomposition into indecomposables; if the collection is not empty, it has a minimal
element N ; since N is not indecomposable, there is a decomposition N = N1 ⊕N2 where
each Ni 6= 0. By minimality, each Ni has a decomposition into indecomposables, hence so
does N , contradiction.

While proving the existence of a decomposition into indecomposables was easy, proving
its uniqueness is impossible, because uniqueness doesn’t actually hold in this case [7].

A module M is uniserial if for every pair of submodules X,Y of M , either X ⊆ Y
or Y ⊆ X. In other words, the submodules of M form a chain. (See again the Prüfer
group for an example!) A uniserial module is, in particular, indecomposable. Finite direct
sums of uniserial modules arise as the decompositions into indecomposables of “finitely
presented modules over a serial ring” [11]. In the mentioned paper, Warfield asked whether
such decomposition is unique as in Theorem 2.1, and in 1996 Facchini proved that that’s
not the case. Nevertheless, finite direct sums of uniserial modules enjoy an interesting
property. First, suppose that M and N are uniserial modules; when there are surjective
morphisms M → N and N →M we say that M and N have the same epigeny class, and
write [M ]e = [N ]e. If there are injective morphisms M → N and N → M , on the other
hand, we say that M and N have the same monogeny class, and write [M ]m = [N ]m. It
turns out that M and N are isomorphic if and only if they have the same epigeny class
and the same monogeny class [3]. And here’s the remarkable fact:

Theorem 3.1 [Weak Krull-Schmidt, I, [3] ] Let M1, . . . ,Mn and N1, . . . , Nm be uniserial
modules. Then M1 ⊕ · · · ⊕Mn

∼= N1 ⊕ · · · ⊕Nm if and only if n = m and [Mi]e = [Nσ(i)]e
and [Mi]m = [Nτ(i)]m for suitable permutations σ and τ .

So, for uniserial modules, “being isomorphic” breaks down into a conjunction of “hav-
ing the same monogeny class” and “having the same epigeny class,” and two direct sums
are isomorphic if and only if the lists of monogeny classes and epigeny classes are the same
up to order for both direct sums.

There are other classes of modules for which similar results hold, discovered relatively
recently (years 2008–2010). One of these classes is that couniformly presented modules
[6]. A module M is couniformly presented if there is a short exact sequence

0 // C
f // P

g // M // 0

where P is a couniform projective module and C is a couniform module. Exactness of the
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sequence means that g is surjective, f is injective, and g(y) = 0 if and only if y = f(x) for
some x ∈ C. A module C is couniform if the sum of two proper submodules is a proper
submodules.(3) We won’t say here what projective modules are in general, but let’s just
say that the fact that P is projective allows us to find, for any given morphism h : M →M ′

between two couniformly presented modules M and M ′, a commutative diagram

0 // C
f //

h1

��

P
g //

h0

��

M //

h
��

0

0 // C ′
f ′

// P ′
g′

// M ′ // 0

where it is understood that the bottom row is a couniform presentation ofM ′. (“Commuta-
tive diagram” here means that hg = g′h0 and h0f = f ′h1.) Then one defines [M ]` = [M ′]`
if there are morphisms α : M → M ′ and β : M ′ → M such that α1 and β1 are surjec-
tive. When this happens, we say that M and M ′ have the same lower part, and write
[M ]` = [M ′]`. We’ve made a lot of choices here: we’ve chosen the two short exact se-
quences, and we’ve chosen all the morphisms α0, α1 and β0, β1, but it’s not too hard to
prove that the notion of lower-part is in fact well-defined. Then we have:

Theorem 3.2 [Weak Krull-Schmidt, II, [6] ] Let M1, . . . ,Mn and N1, . . . , Nm be couni-
formly presented modules. Then M1⊕ · · ·⊕Mn

∼= N1⊕ · · ·⊕Nm if and only if n = m and
[Mi]e = [Nσ(i)]e and [Mi]` = [Nτ(i)]` for suitable permutations σ and τ .

In particular, of course, two couniformly presented modules are isomorphic if and only
if have the same lower part and the same epigeny class.

Other classes of modules for which a result like Theorem 3.2 holds are biuniform
modules, cyclically presented modules over a local ring, kernels of morphisms between
indecomposable injective modules, for which we refer to [4], [1], and [5] respectively. All
these classes of modules are related by categorical dualities and by the Auslander-Bridger
transpose; for details see [6].

4 More invariants—The n-Krull-Schmidt Theorem

Let us now try to sketch how one can find a generalisation of the Weak Krull-Schmidt
Theorem. Suppose to each module M that belongs to a specific class C we could associate
a list of other modules T1(M), . . . , Tn(M), and to each morphisms g : M → N between
two modules in C a list of morphisms (Ti(g) : Ti(M) → Ti(N))i=1,...,n in a coherent way,
that is,

(a) Ti(g ◦ f) = Ti(g) ◦ Ti(f),

(b) Ti(g + f) = Ti(g) + Ti(f), and

(c) Ti(identity of M) =identity of Ti(M),

(3)Implicitly we’re saying that submodules can be summed. If A and B are submodules of M , then A+B
is defined as the set { a+ b : a ∈ A, b ∈ B } and is the smallest submodule of M containing both A and B.
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for all i and all g, f . (In other words, suppose we have a functor from a full subcategory of
modules over a certain ring to a product of n full subcategories of modules over suitable
rings.) Then whenever we have an isomorphism g : M1 ⊕ · · · ⊕Ms → N1 ⊕ · · · ⊕ Nt we
obtain isomorphisms Ti(g) : Ti(M1)⊕· · ·⊕Ti(Ms)→ Ti(N1)⊕· · ·⊕Ti(Nt). If the modules
Ti(Mν) and Ti(Nν) are nice enough, more precisely, if we assume that

(4) Ti(M) has local endomorphism ring for all i and all M ,

we can apply the Krull-Schmidt Theorem 2.1 and deduce that s = t and there are permu-
tations (σi)i=1,...,n such that Ti(Mν) ∼= Ti(Nσi(ν)). We actually know more: If we apply
the refined version instead (Theorem 2.2), we draw a stronger conclusion: the permuta-
tions (σi)i=1,...,n can be chosen in such a way that Ti(gσi(ν),ν) : Ti(Mν)→ Ti(Nσi(ν)) is an
isomorphism, for all i and all ν.

After seeing pairs of equivalence relations like epigeny and monogeny, or epigeny and
lower part, it is natural to come up with suitable invariants for this setting. Define
equivalence relations {≡i}i<n among the modules of C as follows: M ≡i N if there are
morphisms g : M → N and f : N →M such that Ti(g) : Mi → Ni and Ti(f) : Ni →Mi are
isomorphisms. It is not hard to deduce from the above that, if M1, . . . ,Ms and N1, . . . , Nt

are modules in the class C, and M1 ⊕ · · · ⊕Ms
∼= N1 ⊕ · · · ⊕ Nt, then s = t and there

are n permutations σi such that Mν ≡i Nσi(ν) (for all i, for all ν). In other words, if the
two direct sums are isomorphic, the multiset (set with multiplicities) of invariants of the
modules M1, . . . ,Ms is the same as the multiset of invariants of N1, . . . , Nt.

The converse is also true:

Theorem 4.1 [n-Krull-Schmidt, [10] ] Suppose C is a class of modules satisfying the
four conditions above. For modules X1, . . . , Xs and Y1, . . . , Yt in C, the following are
equivalent:

(a) X1 ⊕ · · · ⊕Xs
∼= Y1 ⊕ · · · ⊕ Yt

(b) s = t and there are permutations (σi)i=1,...,n such that Xν ≡i Yσi(ν), for all i and ν.

To prove the remaining implication some results by Facchini, Př́ıhoda, and Perone are
used [8, 9]. One of the ideas used in those papers can be extrapolated and it could be
dubbed the “Chinese Remainder Theorem for preadditive categories,” whose statement
we include for those readers with enough background and for the most curious:

Theorem 4.2 Let C be a preadditive category and {Ii}i<κ a family of pairwise comax-
imal ideals of C, and suppose that for every object X of C the set supp(X) = {i < κ :
Ii(X) is proper } is finite. Then the canonical faithful additive functor

F : C/
⋂

i<κ

Ii →
∏

i<κ

C/Ii

is also full. As a consequence, F reflects isomorphisms and retracts.

We close illustrating the n-Krull-Schmidt Theorem 4.1 with an example. We mentioned
there is no uniqueness theorem for the decomposition into indecomposables of an artinian
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module. Nevertheless, the n-Krull-Schmidt theorem holds for certain subclasses of artinian
modules.

Let S1, . . . , Sn be pairwise non-isomorphic simple modules (= with no proper non-zero
submodule) and C the category of artinian modules M such that Soc(M) ∼=

⊕n
i=1 Si (the

socle Soc(M) is defined for every module, and it is characterised as the largest submodule
which is a direct sum of simple modules). For A,B ∈ C let A ≡i B (for i = 1, . . . , n) if
there are morphisms f : A→ B and g : B → A such that SocSi(f) : SocSi(A)→ SocSi(B)
and SocSi(g) : SocSi(B) → SocSi(A) are isomorphisms—in this case we might say that A
and B are Si-isomorphic. (The submodule SocSi(M) is also defined for every module M ,
and it is characterised as the largest submodule of M which is a direct sum of copies of
Si. These are just particular cases of the “trace” of a class of modules in a certain module
M , cf. [2].)

Theorem 4.3 For modules X1, . . . , Xs and Y1, . . . , Yt in C, the following are equivalent:

(a) X1 ⊕ · · · ⊕Xs
∼= Y1 ⊕ · · · ⊕ Yt

(b) s = t and there are permutations (σi)i=1,...,n such that the modules Xν and Yσi(ν) are
Si-isomorphic.
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Abstract. The possibility that a debtor may default poses a big risk to investors. Such a risk, called
credit risk, is one of the risks present in financial markets. It is traditionally modelled in isolation
from other kinds of risk such as the risk due to volatility, known as equity risk. In fact equity risk is
observed to be connected to credit risk. In this talk, we provide a discussion of the basic credit risk
models and the pricing of credit risky derivatives. We also discuss the Fourier Transform approach
to pricing, developed by Carr and Madan. Using the Fourier Transform approach, we can price
options under a model of risky assets proposed by Fontana, that treats credit risk and equity risk
jointly. Finally we discuss the application of this approach to a defaultable Heston model. This
joint work is based on [11]. (Keywords : Credit Risk Models, Stochastic Volatility, Hybrid Equity-
Credit Risk Models, Heston Model with Jump-to-Default, Multi-factor Affine Models, FFT-based
Option pricing.

1 Introduction

The last few years have witnessed an increasing popularity of hybrid equity/credit risk
models. One of the most appealing features of such models is represented by their capabil-
ity to link the stochastic behavior of the stock price (and of its volatility) with the random
occurrence of the default event and, as a consequence, with the level of credit spreads. The
relation between equity and credit risk is supported by strong empirical evidence (see the
introductory sections of [3] and [6] for an overview of the related literature) and several
studies document significant relationships between stock price volatility and credit spreads
of corporate bonds and spreads of Credit Default Swaps.
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In this paper we first provide a brief overview of a widely used framework for mod-
elling Credit Risk, which is the framework of Reduced Form Models with an affine default
intensity. We then propose a general framework for the joint modelling of equity and
credit risk which is an extension of the basic reduced form model and which allows for a
flexible correlation structure between stock price, stochastic volatility and default inten-
sity. The proposed framework is fully analytically tractable, since it relies on the powerful
technology of affine processes, and nests several stochastic volatility models which have
been proposed in the literature, thereby extending their scope to a defaultable setting.
Furthermore, unlike the models proposed in [3], [5] and [6], we jointly consider both the
historical and the risk-neutral probability measures and, by relying on the results of [10],
we explicitly solve risk-management as well as pricing problems.

2 Overview of Reduced Form Models with an Affine Intensity Process

Let (Ω,F , (Ft)0≤t≤T̄ , P ) be a filtered probability space over the time period [0, T̄ ], under
the physical measure P . The filtration F = (Ft)0≤t≤T̄ shall be interpreted as the investor

filtration representing the information available to investors(4). We define Πrf (t, T ) as the
price at time t of a zero-coupon bond with unit payoff at maturity T that is risk-free (for
example a bond issued by government that cannot default on its obligations). Under a
certain P -equivalent, risk-neutral probability measure Q under which no-arbitrage prices
are computed as Q-conditional expectations of future payoffs, we have that the general
formula for Πrf (t, T ) is given by

Πrf (t, T ) = EQ
[
e−

∫ T
t rsds | Ft

]

where rt represents the instantaneous risk-free interest rate, also called the short rate. In
a model for default risk, we shall assume that the random variable τ : Ω→ R+ represents
the random time of the default event, G = (Gt)0≤t≤T̄ is an enlarged, global filtration with
Gt = Ft ∨ Ht where H = σ({τ < u} : u ≤ t). We then have that Πdf (t, T ), the price at
time t of a zero-coupon corporate (defaultable) bond with unit payoff at maturity T (for
example a bond issued by a company that can possibly fail to pay its obligations at T if
a default event occurs at τ ≤ T ) is given by

Πdf (t, T ) = 1{τ>t}E
Q
[
e−

∫ T
t rsds1{τ>T} | Gt

]

To evaluate the above conditional expectation, one must provide further assumptions
on how the default time τ is specified. The literature in credit risk is generally distinguised
among two main approaches for specifying the default: Structural models and Reduced -
form (or Intensity-based) models. An excellent overview of the various Credit Risk Models
is found in the notes [1], the book [2] and Chapter 12 of the book [9]. In this note we shall
be concerned only with reduced-form model specification of defaults. Unlike structural
models, which attempt to model the default-event of a firm as the first passage time of the
value process of a firm’s assets with respect to a determenistic or stochastic barrier level,

(4)Typically in the literature, F = F∞ = ∨0≤t≤T̄Ft
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reduced-form models instead provide a probabilistic meaning to the default time itself,
which is seen as a stopping time under the global filtration G but that in general is not
a stopping time under the sub-filtration F ⊂ G = F ∨ H(5) representing the information
available to investors. While the two modelling frameworks were originally treated as
separate models in the literature, in reality they can be seen as the same model but
having different assumptions about the information available to the modeller and the
investor (this updated point of view , now generally accepted in the literature, was first
expounded in detail in [14]).

Let the default intensity λt be defined as

(1) lim
h↓0

Q [t < τ ≤ t+ h | Ft]
h

.

A basic result used in reduced-form models is the following: if we assume that λt exists
and that the process Mt := 1{τ<t} −

∫ t∧τ
0 λudu is a (Q,G)-martingale (i.e. it is a (Q,G)-

intensity), then (see [2]) we have that

(2) EQ [1τ > TZ | Gt] = 1{τ>t}E
Q
[
Ze−

∫ T
t λudu | Ft

]

for every random variable Z. Hence

Πdf (t, T ) =1{τ>t}E
Q
[
e−

∫ T
t rsds1{τ>T} | Gt

]

(by (2)) =1{τ>t}E
Q
[
e−

∫ T
t (rs+λs)ds | Ft

]
.

The conditional expectation on the RHS of the last equation above can further be evaluated
if we restrict ourself to the class of affine models for the intensity, that is, if λt = λ̄+Λ>Xt

for λ̄ ∈ R+, and Λ ∈ Rm+ and Xt an m-dimensional affine diffusion process of the same class
as in [8] whose drift and diffusion parameters satisfy certain non-degeneracy conditions as
in [7] (see also Chapter 10 of [9]). In such a case, scaled conditional characteristic functions

of the type f(t, T, u,Xt) = E
[
e−

∫ T
t λsdseu

>Xt | Ft
]

are given in the form

(3) f(t, T, u,Xt) = eA(t,T )+B(t,T )>Xt

where A(t, T ) and B(t, T ) are deterministic functions (in R and Rm respectively) that are
solutions of certain ODE’s of Riccati type.

An important quantity observed in financial markets that is often considered as a
reference quantity for understanding the credit risk present in markets is the so-called
Credit Spread CS(t, T ) associated to a default-free and defaultable bond pair Πrf (t, T ),
Πdf (t, T ) which is defined as

CS(t, T ) = − 1

T − t log
Πrf (t, T )

Πrf (t, T )
.

Thus an affine intensity-based model provides us with a probabilistic model for the credit
spread where, as it can be easily seen, CS(t, T ) is given explicitly up to the evaluation of

(5)H represents the information due to the history of the defaults.
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scaled characteristic function of the type (3). Such an approach is followed for example in
[12] with applications to filtering under incomplete information and the inverse problem
of model parameter estimation based on data observed on the financial markets.

3 Proposed Joint Modelling framework

Let
(
Ω,G, (Ft)0≤t≤T , P

)
be a given filtered probability space, where P denotes the physical

(or historical) probability measure and (Ft)0≤t≤T is the filtration generated by an Rd-
valued Brownian motion (Wt)0≤t≤T . Let τ : Ω → [0, T ]∪{∞} be a random time which
represents the default time of a given firm. We assume that τ is a doubly stochastic
random time (in the sense of [9], Sect. 12.3.1) with stochastic P -intensity

(
λPt
)

0≤t≤T .

Let the filtration (Gt)0≤t≤T be the progressive enlargement of (Ft)0≤t≤T with respect to τ
and let G= GT . Intuitively, the filtration (Ft)0≤t≤T contains only the default-free market
information, while the enlarged filtration (Gt)0≤t≤T contains the full market information.

Let us denote by St the price at time t∈ [0, T ] of one share issued by the defaultable firm
and let S̃t be the corresponding pre-default value, i.e. St = 1{τ>t}S̃t, for all t∈ [0, T ]. This
corresponds to assuming that the stock price process jumps to zero as soon as the default
event occurs and remains thereafter frozen at zero. Let (vt)0≤t≤T denote the stochastic

volatility of the stock and let (Xt)0≤t≤T be an Rd−2-valued stochastic factor process which

describes the evolution of the economy. Let also Lt := log S̃t and Vt := (vt, Xt, Lt). We
model the Rd-valued process (Vt)0≤t≤T as the solution to the following SDE:

(4) dVt = (AVt + b) dt+ Σ
√
Rt dWt V0 = (v0, X0, logS0)

with parameters (A, b,Σ)∈Rd×d×Rd×Rd×d and where Rt is a diagonal (d×d)-matrix with
elements given by Ri,it =αi+β

>
i Vt. Under suitable assumptions (see e.g. [9], Chpt. 10),

there exists a unique strong solution to (4) on Rm++×Rd−m, for some m ∈ {1, . . . , d− 1}.
Furthermore, it can be easily shown that:

(5) dSt=St−

(
s̄+µ1logSt−+µ2vt+

d−2∑

i=1

γiX
i
t

)
dt+ St−

d∑

i=1

Σd,i

√
Ri,it dW

i
t − St−d1{τ≤t}

for suitable parameters s̄, µ1, µ2 and γ, thus giving rich and flexible dynamics to the
defaultable stock price process. For simplicity, we suppose that the risk-free interest rate
is deterministic and equal to r > 0. The P -intensity

(
λPt
)

0≤t≤T of the default time τ is
modeled as follows:

(6) λPt = λ̄P +
(
ΛP
)>
Vt for all t ∈ [0, T ]

with λ̄P∈R+ and ΛP∈Rm+×{0}d−m. Observe that the specification (4)-(6) allows for both
direct and indirect interactions between the stock price process, its stochastic volatility
and the default intensity. Note also that so far everything has been specified with respect
to the original (historical) probability measure P .
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4 Risk-management applications

By relying on the affine structure of the general framework outlined in Section 3, we
derive some simple results which can be of interest for risk-management purposes. As a
preliminary, let us recall that for all t≤T ′≤T and u∈Cd (up to some technical conditions,
see e.g. [9], Thm. 10.4):

(7) EP
[
e−

∫ T ′
t λPs ds eu

>VT ′
∣∣∣Ft
]

= eΦP (T ′−t,u)+ΨP (T ′−t,u)>Vt

where the functions ΦP : [0, T ]×Cd → R and ΨP : [0, T ]×Cd → Rd are given as solu-
tions of a system of Riccati ODEs. As a first application, we can explicitly compute
the Gt-conditional probability of surviving until T ′ ∈ [t, T ] by noting that P (τ >T ′|Gt) =

1{τ>t}EP
[
exp
(
−
∫ T ′
t λ

P
s ds

)∣∣Ft
]

and letting u=0 in (7).

We show that many quantities of interest in view of risk-management applications can
be computed explicitly after changing the measure from P to P T

′
, where P T

′
denotes the

T ′-survival measure, defined as follows:

(8) dP T
′
/dP := e−

∫ T ′
0 λPsds

(
EP
[
e−

∫ T ′
0 λPsds

])−1

for T ′≤T

Note that, for t≤T ′≤T , the Ft-conditional characteristic function of VT ′ under the mea-
sure P T

′
can be easily obtained from (7). In particular, by relying on Fourier inversion

techniques, we derive an explicit expression for the quantiles of the Gt-conditional distri-
bution (under the historical probability P ) of the defaultable stock price at a given future
date T ′ ≤ T in terms of the Ft-conditional characteristic function of VT ′ under the T ′-
survival measure P T

′
. This result will be important for the computation of Value-at-Risk

and other risk measures.

5 Valuation of default-sensitive derivatives

Aiming at the valuation of default-sensitive financial derivatives, we need to shift our
model from P to some Equivalent Local Martingale Measure (ELMM) Q. It can be shown
that all densities dQ/dP admit the following representation:

(9)
dQ

dP
= exp

(
d∑

i=1

∫ T

0
θitdW

i
t −

1

2

d∑

i=1

∫ T

0

(
θit
)2
dt−

∫ τ∧T

0
γtλ

P
t dt

)(
1 + 1{τ≤t}γτ

)

where, due to (5), the risk-premia processes (θt)0≤t≤T and (γt)0≤t≤T satisfy P -a.s. the
following condition, for all t∈ [0, T∧τ ]:

(10) s̄+ µ1 logSt− + µ2 vt +

d−2∑

i=1

γiX
i
t +

d∑

i=1

Σd,i

√
Ri,it θ

i
t − λPt (1 + γt) = r

Note that the process (γt)0≤t≤T represents the risk-premium associated to the default
event and accounts for the non-difersifiability of default risk, see e.g. [13].
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By relying on [10], we provide a full characterisation of all ELMMs which preserve
the affine structure (in the sense that the specification (4)-(6) holds after the change of
measure) by giving necessary and sufficient conditions on the processes (θt)0≤t≤T and
(γt)0≤t≤T satisfying (9)-(10). Working under an affine preserving ELMM will ensure
analytical tractability under both the physical and the risk-neutral probability measures.
Then, similarly as in Section 4, we show that many pricing problems can be simplified by
shifting the model to the T ′-survival risk-neutral measure QT

′
, with:

(11) dQT
′
/dQ := e−

∫ T ′
0 λPs (1+ γs)ds

(
EQ
[
e−

∫ T ′
0 λPs (1+ γs)ds

])−1

for T ′≤T

Let us consider an European defaultable derivative with maturity T ′≤T and payoff F (VT ′)
in the case of survival. Then we have the following pricing formula:

(12)
EQ
[
e−r(T

′−t)F (VT ′) 1{τ>T ′}
∣∣Gt
]

= 1{τ>t}e
−r(T ′−t)+ΦQ(T ′−t,0)+ΨQ(T ′−t,0)>Vt ××EQT

′
[F (VT ′) |Ft]

where the functions ΦQ: [0, T ]×Cd→R and ΨQ: [0, T ]×Cd→Rd are given as solutions of a
system of Riccati ODEs. Since the Ft-conditional characteristic function of VT ′ under the

measure QT
′

can be obtained explicitly, the quantity EQ
T ′

[F (VT ′) |Ft] can be computed
in semi-closed form by relying on Fourier inversion techniques. In particular, we derive
explicit expressions for the prices of corporate defaultable bonds and Call and Put options
written on a defaultable stock together with a defaultable version of the classical Put-Call
parity relation.

6 An example: the Heston with jump-to-default model

We illustrate the essential features of our general framework in the context of a simple ex-
ample, which corresponds to a jump-to-default extension of the classical Heston stochastic
volatility model. More specifically, with d = 3, we consider the following specification of
(4):

A =



−k 0 0
0 −k0 0
−1/2 0 0


 b =



kv̄
k0 x
µ


 Σ =



σ̄ 0 0
0 σ0 0

ρ 0
√

1−ρ2


 Rt =



vt 0 0
0 Xt 0
0 0 vt




with kv̄≥ σ̄2/2, k0x≥σ2
0/2 and ρ∈ [−1, 1]. The default P -intensity

(
λPt
)

0≤t≤T is specified

as in (6). This specification extends the Heston jump-to-default model considered in [5]
by allowing the default intensity to be a function of vt and of an additional stochastic
factor Xt.

By specialising the general results of Sections 4-5, we are able numerically investigate
the following issues:

(i) the impact of stochastic volatility and default risk on the Gt-conditional distribution
of the defaultable stock price;
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(ii) the impact of default risk and of different specifications of the default intensity on
the implied volatility surface of European vanilla options written on the defaultable
stock.

To this end, we computed Call prices written on the defaultable stock price St of this
example, where the option is issued by the defaultable firm itself. We recall that such
a Call price in our setting is given by a formula computed by a standard Fourier inver-
sion technique. This was implemented in MATLAB, computing also the related Implied
Volatility surfaces. The results were then compared to those of a Call option on an un-
derlying stock with the same Heston-type dynamics but which is default-free, and issued
by a default-free agent. The surface plots of the Call prices and the Implied Volatilites
are shown in Figure 1 and Figure 2 respectively. Figure 3 shows the relative difference
between the Call price on a defaultable underlying and the Call price on a default-free
underlying.

Figure 1: Call price surfaces under a Standard Heston Model (solid surface) and under a defaultable Heston

Model (mesh surface). The fixed paramaters are: k = 0.06, x = 1, σ̄ = 0.2, k0 = 0.04, v̄ = 0.3, σ0 = 0.1,

ρ = −0.6, µ̄ = 0, r̄ = 0.01, Θ1,1 = Θ2,2 = θ̂ = 0; For the defaultable underlying, ΛQ1 = 0.01, ΛQ2 = 0.01,

λ̄Q = 0.01, while for the default-free underlying ΛQ1 = 0, ΛQ2 = 0, λ̄Q = 0.
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Figure 2: Implied Volatility surfaces corresponding, respectively, to the Call Prices under a standard

Heston model (solid surface) and under a defaultable Heston model (mesh surface) from Figure 1. For the

computation of the Implied Volatility, we used blsimpv, a program that is part of the Financial Toolbox

package of MATLAB.

Figure 3: The surface plot of the relative differences C̃(K,T )−C(K,T ), where C̃(K,T ) are the Call Prices

under a defaultable Heston model (mesh surface in Figure 1) and C(K,T ) are the Call Prices under a

standard Heston model (solid surface in Figure 1) for each value K and T of strikes and maturities.
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Based on Figures 1 - 3, we see that our model framework captures the expected behavior
of a Call price when the underlying is made to be defaultable: the Call prices and the
implied volatilities become higher than the analogous Call prices for options on default-free
stocks.

An important future work is to establish, by means of a simple example, that our model
is particularly well-suited to the analysis of problems which involve simultaneously both the
historical and the risk-neutral probability measures. In particular, possible applications
to the valuation of mortality-linked insurance products and credit rating trigger swaps are
of interest.
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The Fermi Pasta Ulam Paradox:

An Introduction to the problem

and its recent developments

Heleni Christodoulidi (∗)

Abstract. In 1950’s Fermi, motivated by fundamental questions of statistical mechanics and by
ergodic properties of nonlinear dynamical systems, started a numerical experiment on a nonlinear
toy model, in collaboration with Pasta and Ulam. The system was chosen to be a one dimensional
chain of N nonlinear coupled oscillators, described by a quadratic potential of nearby particle
interactions plus a cubic perturbation. Fermi’s ergodic hypothesis states that a system under an
arbitrarily small perturbing force becomes generically ergodic. Giving initial conditions to the so
called FPU system on the longest wavelength normal modes, the system showed a contradicting
and integrable-like behaviour. Many pioneer works followed for the explanation of this paradox,
more prominent of them being the approximation of FPU dynamics in the thermodynamic limit
by the integrable partial differential equation Korteweg-de Vries by Zabusky and Kruskal (1965),
and the work of Ferguson et al. (1982), where the authors observed the vicinity of the integrable
one dimensional Toda chain with the FPU model. Recent developments show a more complete
picture of the problem and its explanation.

1 Introduction

In 1954 Fermi, Pasta and Ulam [1] made a numerical experiment on a dynamical system
that consists of N coupled oscillators in order to test the ‘ergodic hypothesis’. Assuming
that an arbitrary nonlinear system behaves as ergodic, especially for systems with many
degrees of freedom, as statistical mechanics indicate, they chose a one dimensional chain
of N nonlinear coupled oscillators, described by a quadratic potential of nearby particle
interactions plus a cubic perturbation. Despite the ergodic expectations, the numerical
integration of the system’s dynamics showed an integrable behaviour, resulting to the
famous Fermi – Pasta – Ulam (FPU) paradox.

(∗)Università di Padova, Dipartimento di Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on February 1st, 2012.
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In particular, the system that Fermi, Pasta and Ulam considered was the one dimensional
lattice of N moving particles with fixed boundary conditions, described by the Hamiltonian

(1) H =
1

2

N∑

k=1

y2
k +

1

2

N∑

k=0

(xk+1 − xk)2 +
α

3

N∑

k=0

(xk+1 − xk)3 ,

where xk is the k–th particle’s position with respect to equilibrium and yk its canonically
conjugate momentum and it is called the FPU–α model. Fixed boundary conditions are
defined by setting x0 = xN+1 = 0.

Figure 1: Initial conditions for xk that correspond to the excitation of the first (orange), second (green)

and third (purple) normal modes, when yk = 0, k = 1, ..., N .

Before explaining the FPU experiment in detail, let us discuss the integrable system of
N linearly coupled oscillators, given by Eq. (1) for α = 0. The normal mode canonical
variables (Qq, Pq), q = 1, . . . , N are introduced by the linear canonical transformations

xk =

√
2

N + 1

N∑

q=1

Qq sin

(
qkπ

N + 1

)
,

yk =

√
2

N + 1

N∑

q=1

Pq sin

(
qkπ

N + 1

)
, k = 1, . . . , N(2)
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that uncouple the system into N independent harmonic oscillators

Q̈q = −Ω2
qQq, q = 1, . . . , N

where q is an integer identifying the q–th normal mode and Ωq are the harmonic frequencies
of the system

(3) Ωq = 2 sin
qπ

2(N + 1)
, q = 1, . . . , N .

The constants of motion for Eq. (1) with α = 0 are the harmonic energies Eq = (P 2
q +

Ω2
qQ

2
q)/2 of each normal mode q. Let us point out here that excitation of the q–th mode

can be obtained by any initial condition of the form xk = A sin
(
qkπ
N+1

)
, yk = B sin

(
qkπ
N+1

)
,

k = 1, . . . , N and corresponds to a simple periodic orbit of the linear system α = 0. In
Fig. 1 are given 3 examples of mode excitations, for the modes q = 1 (orange), 2 (green)
and 3 (purple).

‘Switching on’ the α parameter in the FPU system, the harmonic energies Eq for each
normal mode q are not anymore constants of motion. If a system is ergodic, then any
scalar function with domain the phase space of the system has an average over time, as
t→∞, which is equal to its space average. If the FPU system is not integrable, the same
property should hold for the modal energies Eq(t), i.e.

(4) Eq = E∗q ⇔ lim
T→∞

1

T

∫ T

0
Eq(t)dt = E/N, q = 1, . . . , N .

where Eq is the time average of the harmonic energy function Eq(t), E
∗
q is the space

average and ε = E/N the specific energy.
In the classical experiment, the authors started with the initial condition on the first

normal mode, as shown in Fig. 1 for q = 1, and expected to observe thermalization of the
medium, i.e. that the energy of each normal mode q will tend to the value of the specific
energy ε = E/N of the system (relation (4)). This means that the energy of the first mode
E1(0) = E is expected to diffuse to the rest ones, leading to equipartition of energy between
all the normal modes of the system. Plotting the evolution of Eq(t), q = 1, . . . , N , as in
Fig. 2, the experiment’s results were very surprising. The first mode looses energy, which
flows to only a few nearby ones and this evolution is reversed shortly after, with the energy
flowing backwards to the first normal mode, yielding the famous FPU recurrences of the
modal energies, a phenomenon that is periodically repeated until the available numerical
integration time. This contradicting integrable–like behaviour consists the so–called FPU
paradox, that although has been extensively studied, remains an open problem.

2 One problem, many approaches

In this section we are going to briefly outline the progress made in explaining the FPU
paradox. Most approaches to the problem concern a comparison of the FPU model with a
corresponding integrable one, that is achieved either numerically or by applying techniques
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of perturbation theory. This comparison can be classified into three main categories: FPU
can be regarded as (i) a perturbed system of harmonic coupled oscillators, (ii) a perturbed
Toda system and (iii) a system that in the thermodynamic limit E → ∞, N → ∞
with ε = E/N = const. is approximated by the integrable partial differential equation
Korteweg–de Vries (KdV).

Figure 2: The evolution of the harmonic energies Eq(t)/E, q = 1, . . . , N for the 32–particle FPU chain,

with E = 0.07 and α = 0.33.

2.1 FPU as a perturbed linear system

This is the same case with the original one of Fermi, Pasta and Ulam, described extensively
in the Introduction, where the Hamiltonian of the system is expressed by the Hamiltonian
of the linear system plus a cubic perturbation, given by Eq. (1).

A very promising and challenging study was the implementation of KAM theorem,
which apparently was discovered almost the same time with the FPU experiment. The
most important work towards this direction was [3] by B. Rink and F. Verhulst, who
prove the existence of KAM tori in the phase space of the FPU system, but for an energy
extremely close to the ground state and with an N–dependence, implying that the range
of existence of these tori tends to zero, as N → ∞. Contrariwise, these results do not
agree with numerical findings, as for example in [7], which indicate that the system, even
towards the thermodynamic limit, depends on the specific energy ε and not on the energy
E. Furthermore, new results [19] concerning the time Teq the system needs to reach
equipartition(6) show again a dependence of Teq on ε.

Numerical integration of FPU dynamics indicates that when the energy is given initially
to a low–frequency mode, the flow of energy from this mode to the unexcited ones may
appear ‘freezed’ for quite long times, as observed in Fig. 3, resulting to the so–called

(6)The question of energy equipartition is one of the most fundamental in the FPU problem, therefore
we suggest the reader to study [19], as well as the references therein.
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“metastable state” [4], [5], [8], [9], in which the system exhibits important deviations from
energy equipartition. Furthermore, by observing the averaged in time energy spectrum of
the system is understood that it is exponentially localized in modal space, characterized
by the energy concentration in one (the initially excited one) or more modes, accompanied
by a tail of the remaining modes that is exponentially localized in normal mode space.

This metastable state, when concerns the excitation of a single low–frequency mode,
can take qualitatively two different forms, depending on the system’s parameters µ =
α1/2ε1/4 and N : µN < 1 and µN > 1.

In the first case, which refers to lower energy values for an N–dimensional system,
important studies [12]–[16] show that orbits rising by the excitation of one mode lie close
to simple periodic orbits, named q–breathers, obtained by the continuation of the q–th
mode excitation of the linear system. The spectra of both orbits are almost identical,
with the energy of the system concentrated on the q–th mode, leaving the rest modes
exponentially localized in normal mode space with a slope that depends logarithmically on
µN . It immediately derives that this ‘q–breather regime’ vanishes in the thermodynamic
limit. An example of a q–breather profile is shown in Fig. 3 (a) by the blue spheres, taken
by the excitation of the first mode, for the system with N = 32, E = 0.00017 and α = 0.33.
The line in Fig. 3 (a) corresponds to the q–breather profile given in [12] with slope equal
to 4 log(µN/π).

The main feature of the second case is the appearance of an approximate ‘plateau’ in
the lower–frequency part of the energy spectrum, named as natural packet of modes [10],
[11], leaving the rest ones exponentially localized, but for a slope that depends linearly on
µ, i.e. that is independent of N . The percentage of modes entering the natural packet is
approximately equal to µ. Fig. 2, which shows the FPU recurrences, belongs in this case
and has an averaged ‘freezed’ profile that appears in Fig. 3 (a) by the orange triangles.

Another concept related to q–breathers is the concept of q–tori, introduced in [17],
[18] as the low–dimensional tori, that rise from the continuation of a percentage of modes
s/N of the linear system. Main feature of q–tori is the concentration of energy on these s
modes, accompanied by an exponential tail which has a slope that depends logarithmically
on µN/s = α1/2ε1/4N/s. Eventhough the existence of these tori is not formally proved,
numerical results show that consist a prominent direction. New expectations, in explaining
system’s behaviour in the thermodynamic limit, rise under the framework of q–tori, since
the slope is invariant as long as the specific energy ε and the percentage s/N are kept
fixed. Thus, it appears that this ‘q–tori regime’ is µN/s << 1, which is independent of
N , but implies that these results hold true for rather small specific energies of the system.

2.2 FPU as a perturbed Toda system

Ferguson et al. [6] in 1982 consider the Toda Hamiltonian

(5) HT =

N∑

k=1

y2
k +

1

4α2

N∑

k=0

e2α(xk+1−xk) − N + 1

4α2
,
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which can be regarded as an approximation of the FPU–α Hamiltonian of order α2, since

(6) HT = HFPU −
N∑

k=1

∞∑

n=4

2n−2αn−2

n!
(xk+1 − xk)n .

Figure 3: Normalized and averaged in time energy spectra versus q/N . (a) Excitation of the first mode

for µN = 0.86 with blue spheres and for µN = 3.38 with orange triangles of the 32–particle system. The

continuous line corresponds to the q–breather law Eq+1/E = (µN/π)4qq2. (b) 4 examples with ε = E/N

and percentage of modes initially excited s/N fixed, while E, s and N increase to double in each forward

panel. The continuous line corresponds to the q–tori law Ek+1/E = (µN/πs)2kk2, k = q/s.

Numerical integration of the Toda system, when given same initial conditions with the
FPU system, exhibits an impressively similar to the FPU behaviour. Such an example is
shown in Fig. 4 (a), which is a repetition of the example in Fig. 2, but for the integrable
Toda system. Both systems for the same initial conditions exhibit the same recurrences.
Furthermore, the two systems have almost equal energy localization profiles, as can be
seen from Fig. 4 (b), characterized by a natural packet of length µ = 3.38/N (3 to 4
modes share almost all the energy) and a tail with slope that depends linearly on µ.

2.3 Under KdV framework

Maybe the most pioneer work on the FPU paradox was the one by Zabusky and Kruskal
[2] in 1965, in which a connection between the integrable KdV equation and FPU–α model
for long wavelength excitations was for the first time observed. The authors point out that
such kind of initial conditions lead eventually to the decomposition of the solution into
a sequence of solitons, where under a Fourier transformation interpret the famous FPU
recurrences. In particular, the authors in [2] state: ‘solitons pass through one another
without losing their identity’.
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The partial differential equation Kortewegde Vries with dispersion is given by the equation

(7) ut + uux + δ2uxxx = 0, x ∈ [0, 2]

where δ is the dispersion parameter. In the small dispersion limit δ → 0, Eq. (7) tends to
Hopf equation ut + uux = 0, which is also integrable and faces a shock in finite time.

Figure 4: (a) The evolution of the harmonic energies Eq(t)/E, q = 1, . . . , N for the 32–particle Toda chain,

with E = 0.07 and α = 0.33, (b) Normalized and averaged in time energy spectra versus q/N for FPU

with orange triangles and for Toda with green squares, that rise by the initial conditions of panel (a).

Only after 40 years, the KdV–direction in solving the FPU problem was revived by A.
Ponno and D. Bambusi in [8], [9], where the two models are compared and connected
through perturbation theory’s techniques. By using a resonant normal form, that consists
of two uncoupled KdV equations, provide a first order approximation of the FPU–α dy-
namics. Going back to the metastable scenario, which we described in the Introduction,
the authors get rigorous estimates, explaining the natural packet’s width and the localiza-
tion law of the tail modes Ek = cke

−ck, where k represents the Fourier mode number.
In a recent work [20], we study numerically more general type of initial conditions for

KdV

(8) u(x, 0) =
1√
m

m∑

k=1

cos(πkx+ ϕk), x ∈ [0, 2] ,

i.e. an initial excitation of m Fourier modes with random phases ϕk, k = 1, ...,m. By
systematically measuring the slope σ of the KdV solution’s Fourier profile, we find that
there are two slope–regimes, depending on the dispersive parameter δ and on the number
of modes excited m. In particular for m > 1, when δ → 0, so in the small dispersion limit,
σ depends linearly on δ, while for larger δ values, where the linear term uxxx of KdV in
Eq. (7) is the dominant one, the slope σ depends logarithmically on δ.
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Conclusions We can classify the approaches to the FPU–problem, when regarded as a
perturbation of an integrable system, into three major cases: when the integrable system
is i) the coupled harmonic oscillators (linear), ii) the Toda and iii) the KdV equation. It
is evident that the FPU Hamiltonian expressed as a perturbation of the Toda system is a
more prominent approach to the problem compared to linear–approach one, since in (ii) is
regarded as a perturbation of higher order with respect to α, compared to (i). However, the
implementation of perturbation techniques using Toda is still an open problem. Finally,
the KdV approach completes both (i) and (ii) cases, where when more Fourier modes
are excited, the slope of the energy spectra depends either logarithmically or linearly on
system parameters, depending on the value of δ.
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Interpolation theorems for

weighted spaces of smooth functions

Ademi Ospanova (∗)

Introduction

Interpolation theory of function spaces is a new branch of functional analysis, which finds
application in wide areas of theory of functions, as well as in other areas of mathematics.
The most important fields of application of interpolation theory are: the theory of function
spaces and differential operators, the theory of partial differential equations, the theory
of Fourier series, approximation theory in Banach spaces, integral inequalities, singular
integrals, theory of multipliers.

The problem of interpolation of Sobolev spaces with the weights of nonpowered char-
acter was considered for the first time by L. Kussainova [3, 4]. The work I present here is
devoted to the problem of interpolation for Sobolev spaces with weights of more general
form.

Now we will describe the purpose of interpolation theory in Banach spaces. Let A
be a linear topological Hausdorff space. We say that a pair {A0, A1} of Banach spaces
is an interpolation pair in A provided that A0 and A1 are Banach spaces continuously
embedded into A. Let B be an other linear topological Hausdorff space. Let {B0, B1} be
an interpolation pair in B. An interpolation theory aim at associating to each interpolation
pair {A0, A1} a Banach space A such that A0∩A1 ⊆ A ⊆ A0+A1 and to each pair {B0, B1}
a Banach space B such that B0 ∩ B1 ⊆ B ⊆ B0 + B1 in such a way that if T is a linear
operator from A to B such that the restriction of T to Ai induces a linear and continuous
map from Ai into Bi, (i = 0, 1) that T induces necessarily a linear and continuous operator
from A into B. The spaces A and B are called interpolation spaces with respect to the
pairs {A0, A1} and {B0, B1}. The main aim of interpolation is to obtain a construction of
interpolation spaces in explicit form.

There are two interpolation methods of construction of interpolation spaces: the real
method and the complex method. Interpolation spaces built by the real method are called
the Peetre spaces. This method has many applications in function theory.

(∗)The L. N. Gumilyov Eurasian National University, Munaitpasov st., 5, 010008, Astana, Kazakhstan;
E-mail: . Seminar held on February 8th, 2012.
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We will give the description of Peetre interpolation spaces of weighted Sobolev spaces
defined on a domain G in a case, when G = R and in a case, when G is any domain in Rn.

Interpolation theorems for pair of weighted Sobolev spaces

Let (A0, A1) be an interpolation pair. The real interpolation space or space Peetre is
defined as follows. Let 0 < θ < 1 and 1 ≤ q <∞. By definition

(A0, A1)θ,q =

{
a : a ∈ A0 +A1, ‖u‖(A0,A1)θ,q =

(∫ ∞

0
(t−θK(t, a))q

dt

t

)1/q

<∞
}
,

where
A0 +A1 = {a : a = a0 + a1, a0 ∈ A0, a1 ∈ A1},

K(t, a) = inf
a=a0+a1

(‖a0‖A0
+ t ‖a1‖A1

), a ∈ A0 +A1 (0 < t <∞).

Example Let 0 < p0< p1≤ ∞. Let θ ∈ (0, 1) such that 1/p = (1− θ)/p0 + θ/p1, and
q = p. Then one can prove that (Lp0

, Lp1
)θ,p= Lp.

We consider the problem of the description of the Peetre interpolation space for pairs
of weighted Sobolev spaces

(Wm
p0

(υ), Lp1), (Wm
p0

(υ0), Lp1(υ1)),

(Wm0
p0

(υ0),Wm1
p1

(υ1)), (Wm0
p0

(ρ0, υ0),Wm1
p1

(ρ1, υ1)).

Now we introduce some notation. Let Qd(x) be an open n-dimensional cube centered at x:

Q = Qd = Qd(x) ≡ {y ∈ Rn : |yi − xi| < 1
2d, i = 1, . . . , n} =

(
xi − 1

2dixi + 1
2di
)n
.

In the one-dimensional case we have the open interval of length d.

Definition 1 We say that d is function of length of edge for a cube in G ⊂ Rn if d is a
positive bounded function from G to (0,+∞) which satisfies conditions:

(a) immersion:
∀x ∈ G Q(x) = Qd(x)(x) ⊂ G ;

(b) slow oscillation:

(1) ∃ η ∈ (0, 1) : η <
d(y)

d(x)
< η−1, if y ∈ (1− ε)Q(x) and x ∈ G ;

ε is some fixed number of (0, 1).

In a case, when G = R, we have only condition b) and ε = 1.
Now we introduce some examples of weights satisfying the condition (1).

Examples The following functions satisfy the condition (1):
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(a) d(x) ≡ 1 on G = Rn, n ≥ 1.

(b) d(x) = min{x− a, b− x} on G = (a, b).

(c) d(x) = (1 + |x|µ)−1 on G = Rn, n ≥ 1.

(d) d(x) = min{1, dist(x, ∂G)} on G ⊂ Rn, where dist(x, ∂G)
def
= sup

h>0
{h : Qh(x) ⊂ G} –

distance from x ∈ G to the boundary ∂G of bounded domain G.

Let ρ(x), υ(x) be the weight functions given on the entire line R = (−∞, ∞). Let
m ≥ 1 be an integer, 1 < p <∞. We define the Sobolev space Wm

p (ρ; υ) as follows:

Wm
p (ρ; υ) = {u ∈ L(loc) :

∥∥u; Wm
p (ρ, υ)

∥∥ =
∥∥∥u(m); Lp(ρ)

∥∥∥+ ‖u; Lp(υ)‖(2)

=



∞∫

−∞

|u(m)(x)|pρ(x)dx




1/p

+



∞∫

−∞

|u(x)|pυ(x)dx




1/p

<∞}.

Let Wm
p (ρ; υ) be a two-weighted Sobolev space defined as completion of the space

C∞Wm
p (ρ; υ) = C∞∩Wm

p (ρ; υ) with respect to the norm
∥∥ · ;Wm

p (ρ, υ)
∥∥ of (2). In par-

ticular, Wm
p (1; υ) will also be denoted by Wm

p (υ).

Class (Πm,p). We say that a weight υ on R satisfies condition (Πm,p) with respect to the
function d, and write υ ∈ (Πm,p), if there are numbers 0 < δ, γ < 1 such that

(3) d(x)mp−1inf
e

∫

Q\e
υ(y)dy ≥ γ ∀Q = Q(x) for almost all x ∈ R.

In (3) the inf is taken on all measurable subset e of Q such that |e| ≤ δ |Q|.

Now we introduce some examples of weights satisfying the condition (Πm,p).

(E1) The weight υ = 1 satisfies condition (Πm,p) with respect to d(x) = 1. Indeed,

d(x)mp−1inf
e
υ (Q(x)\e) ≥ 1− δ = γ > 0, for all δ ∈ (0, 1).

(E2) Let ε ∈ (0, 1]. Let υ(x) = |x − x0|µ, 0 < µ < 1, if |x − x0| < 1 and υ(x) = ε if
|x− x0| ≥ 1. Weight υ satisfies condition (Πm,p) with respect to the function

d(x) =

{
(x− x0)γ |x− x0| < 1,

1 |x− x0| ≥ 1,

where γ = µ/mp.
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(E3) Let G be a domain with nonempty boundary,

d(x) =

{
1/(2
√
n), if σ(x) ≥ 1,

σ(x)/(2
√
n), if σ(x) < 1.

The function υ(x) ≡ e1/σ(x) (σ(x) = dist(x, ∂G)) satisfies condition (Πm,p) with
respect to the function d(x).

Let 0 < s <∞, 1 ≤ p <∞. We define a two-weighted space of Besov as follows:

Bs
p(ρ, υ) ≡

{
u ∈ L(loc) :

∥∥u;Bs
p(ρ, υ)

∥∥ <∞
}
,

where

(4)
∥∥u;Bs

p(ρ, υ)
∥∥ =





∞∫

0

h−(s−k)p−1

∫

R

∣∣∣∣∣
mi

(h)u(k)(x)

∣∣∣∣∣

p

ρ(x)dxdh





1/p

+ ‖u;Lp(υ)‖ .

Here m, k – two integer non-negative numbers, satisfying the condition m + k > s > k.
Let ∆m(h) be the difference operator of order m (m = 1, 2...) with step h defined as

∆m(h)f(x) =
m∑

r=0

(−1)m−r
m!

r!(m− r)!f(x+ rh).

One can prove that the above definition is independent of our specific choice of m and k
as long as the above conditions are satisfied. We denote by Bs

p(υ) the space Bs
p(1, υ).

Theorem 1 Let 0 < m1 < m0 be integers, 1 < p0 ≤ p1 < ∞, 0 < θ < 1, s =
(1− θ)m0 + θm1, 1/p = (1− θ)/p0 + θ/p1. Let υi(x) (i = 0, 1) be weights on R, satisfying
the following conditions:

1. υi ∈ Πmi,pi with respect to the function d(x).

2. Ki = sup
x∈R

d(x)mi−1/pi (υi (Q(x)))1/pi <∞.

Then (
Wm0
p0

(υ0), Wm1
p1

(υ1)
)
θ,p

= Bs
p(d(·)−sp).

Let 1≤ p <∞. Let υ be a weight on R. Let us assume that

(5) υ∗(x) = sup
d>0

{
d > 0 : dmp−1υ((Qd(x)) 6 1

}
,

(6) Q∗(x) ≡ Qd(x), where d = υ∗(x).
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Note that the set in (5) is nonempty and

(7) for almost all x ∈ R 0 < υ∗(x) ≤ C <∞ (mp > 1).

Example For the weight υ(x) = e|x| we have υ∗(x) ≡ e−x/mp.

Remark 1 Let mp > 1. if weight υ satisfies condition (7) that υ ∈ Πm,p with respect to
function d(x) = υ∗(x).

Theorem 2 Let 0 < m1 < m0 be integers, 1 < p0 6 p1 < ∞, 0 < θ < 1, s =
(1− θ)m0 + θm1, 1/p = (1− θ)/p0 + θ/p1. Let υi be weights on R satisfying the following
conditions:

1. There exists H > 0 such that υi(Qd(x)) ≥ 1 if |x| > H, d > H.

2. There exist δ ∈ (0, 1) and Γ > 1 such that ∀Q = Qd, υi(Q) ≤ Γυi(Q\e) if e ⊂ Q,
|e| < δ |Q|.

Then

(
Wm0
p0

(υ0), Wm1
p1

(υ1)
)
θ,p

=




u ∈ L(loc) :

∥∥u; bsp
∥∥+




∫

{υ∗0≥υ∗1}
|u(y)|p υ∗−sp0 (y)dy




1/p

+




∫

{υ∗1>υ∗0}
|u(y)|p υ∗−sp1 (y)dy




1/p

<∞





= Bs
p(ω),

where ω(x) = min{(υ∗0(x))−sp, (υ∗1(x))−sp}.

Example 1 Let υ0(x) = e|x|, υ1(x) = 1. Then from the above-mentioned example follows
that υ∗0(x) = e−x/(mp). For υ1(x) we have υ∗1(x) = 1. Hence,

(8) ω(x) = min{υ∗0(x)−sp, υ∗1(x)−sp} ≡ min{e−
|x|
mp
·(−sp)

, 1} = 1.

Now from Theorem 2 we obtain the equality
(
Wm0
p0

(e|x|),Wm1
p1

(R)
)
θ,p

= Bs
p(ω) = Bs

p(R).

Theorem 3 Let 0 < m1 < m0 be integers, 1 < p0 ≤ p1 < ∞, 0 < θ < 1. Let
υi = ρid(·)−mipi (i = 0, 1), ρi be weights on R satisfying the following conditions: there
exist constants K > 0, bi > 0 (i = 0, 1) such that:
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1. b−1
i ≤ ρi(y)/ρi(x) ≤ bi if y ∈ Q(x) for all x ∈R (bounded oscillation condition)

2. d(x)m0−m1ρ1(Q(x))1/p1 ≤ Kρ0(Q(x))1/p0 for all x ∈ R.

Then the following equality holds:

(
Wm0
p0

(ρ0, υ0), Wm1
p1

(ρ1, υ1)
)
θ,p

= Bs
p(ρθ, υθ)

where ρ
1/p
θ = ρ

(1−θ)/p0

0 ρ
θ/p1

1 , υθ = ρθd(·)−sp, s = (1−θ)m0 +θm1, 1/p = (1−θ)/p0 +θ/p1.

We will present some examples.

Example 2 From Theorems 1 and 3, in the case υ0(x) = 1 = υ1(x) and ρ0(x) = 1 = ρ1(x),
then we obtain the description of the spaces

(
Wm0
p0

(R),Wm1
p1

(R)
)
θ,p

.

Example 3 If in Theorem 3 we assume that the weights are ρi(x) = (1 + |x|)µi , i = 0, 1,
and that d(x) ≡ 1, then we obtain a one-dimensional result of H. Triebel [2].

Example 4 If in the Example 3 we choose µ0 = µ1 = 0 then we obtain the known
interpolation equality:

(
Wm0
p0

(R), Wm1
p1

(R)
)
θ,p

=
(
Wm0
p0,0

,Wm1
p1,0

)
θ,p

= Bs
p(R).

Let Wm
p,µ(υ) = Wm

p (υµ, υµ−mp), Bs
p,ν(υ) = Bs

p(υ
ν , υν−sp), −∞ < µ, ν <∞, s > 0.

Theorem 4 Let 1 < p0 ≤ p1 <∞, −∞ < µ0, µ1 <∞, ℵ = m0−m1− 1+|µ0|
p0

+ 1+|µ1|
p1
≥ 0,

let υ be a weight satisfying the condition (7). Then

(9)
(
Wm0
p0,µ0

(υ∗),Wm1
p1,µ1

(υ∗)
)
θ,p

= Bsp,ν(υ∗),

where 0 < θ < 1, s = (1−θ)m0 +θm1, 1/p = (1−θ)/p0 +θ/p1, ν = (1−θ)µ0/p0 +θµ1/p1.

The collection of intervals I =
⋃
x∈R

Ix, where Ix = {Q = Qd : Qd 3 x}, is called differential

basis. Let us denote by Mf the maximal operator of Peetre

Mf(x) = sup
(a,b)3x

1

|b− a|

b∫

a

|f(y)|dy f ∈ L(loc).

Definition 2 Weight ω on R satisfies condition (A1) (ω ∈ A1) (with respect to basis I)
if there exists a constant P0 > 1 such that

(10)
1

|Q|

∫

Q

ω(y)dy ≤ P0vrai inf
x∈Q

ω(x) for all Q ∈ I.
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Definition 3 Weight ω on R satisfies condition (A∗) (record ω ∈ A∗) (with respect to I)
if there exist constants P1 > 1 and τ ∈ (0, 1) such that

(11) sup
Q

M(ωχQ) ≤ P1 sup
Q\e

M(ωχQ), as e ⊂ Q, |e| ≤ τ |Q| for all Q ∈ I.

Example If the weight υ ”slowly oscillates” then υ ∈ A1 and υ ∈ A∗.

Theorem 5 Let 0 < m1 < m0 be integers, 0 < θ < 1, s = (1−θ)m0+θm1, r = 1−m1/m0,
1 < p < ∞. Let υ be a continuous weight from class A1 ∩ A∗, satisfying condition
υ(x) ≥ c0 > 0. Then

(
Wm0
p (υ),Wm1

p (υ−r, υ)
)
θ,p

= Bs
p(υ
−θr, υ).

Let G be an arbitrary domain of Rn, let ρ = ρ(x), υ = υ(x) be non-negative locally
summable functions (weights) in G.

We obtain embedding theorems and descriptions of real interpolation spaces for in-
terpolation pairs of two-weighted Sobolev spaces with the different indexes of smoothness
and summability.

Let m > 0 be an integer, mp > n, 1 ≤ p < ∞. We define the two-weighted Sobolev
space Wm

p (G; ρ, υ) as completion of the space C∞Wm
p (G; ρ, υ) = C∞(G) ∩ Wm

p (G; ρ, υ)
with respect to the norm

(12)
∥∥u;Wm

p (G; ρ, υ)
∥∥ =

n∑

i=1

‖Dm
i u‖Lp(G;ρ) + ‖u‖Lp(G;υ) .

If ρ = υ = 1 then the space Wm
p (G; ρ, υ) is well-known Sobolev space Wm

p (G) with the
corresponding norm.

Theorem 6 Let 0 < m1 < m0 be integers, s = (1 − θ)m0 + θm1, 0 < θ < 1, 1 < p0 ≤
p1 <∞, 1/p = (1−θ)/p0 +θ/p1. Let weights υi(x) = ρi(x)di(x)−mipi (i = 0, 1), mipi > n,
and weights ρi on G satisfy conditions (with respect to the d):

1. there exist constants bi > 0 (i = 0, 1) such that

b−1
i ≤

ρi(y)

ρi(x)
≤ bi if y ∈ Q(ε)(x);

2. there exists a constant K > 0 such that for almost all x ∈ G

d(x)m0−m1

(∫

Q(ε)(x)
ρ1(y)dy

)1/p1

≤ K
(∫

Q(ε)(x)
ρ0(y)dy

)1/p0

.
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Then ∥∥u;Wm1
p1

(G; ρ1, υ1)
∥∥ ≤ cK

∥∥u;Wm0
p0

(G; ρ0, υ0)
∥∥ , u ∈Wm0

p0
(G; ρ0, υ0).

Now the interpolation theorem for pair of spaces
(
Wm0
p0

(G; ρ0, υ0),Wm1
p1

(G; ρ1, υ1)
)
.

Let 1 6 p 6∞, s > 0. We define a two-weighted Besov space as follows:

Bs
p(G; ρ, υ) ≡

{
u ∈ L(G; loc) :

∥∥u;Bs
p(G; ρ, υ)

∥∥<∞
}
,

where

(13)
∥∥u;Bsp(G; ρ, υ)

∥∥ = ‖u;Lp(G; υ)‖+

n∑

i=1

{∫ h0

0

h−(s−k)p−1
∥∥∆m

i (h)f(x)Dk
i u(ξ)ρ(ξ)

∥∥p
p
dh

}1/p

.

Here h > 0, h0∈(0, 1], [x, x+mhei] ⊂ {x : x+ [−h, h]n⊂ G}; m > 0, k ≥ 0 are integer
numbers such that m+ k > s > k,

∆m
i (h)f(x) =

m∑

r=0

(−1)m−r
m!

r!(m− r)!f(x+ rhei) (m = 1, 2...).

Theorem 7 Let 0 < m1 < m0 be integers, mipi > n, 1 < p0 ≤ p1 < ∞, 1/p =
(1− θ)/p0 + θ/p1, s = (1− θ)m0 + θm1, 0 < θ < 1. Let weights ρi on G satisfy conditions
1 and 2 of Theorem 6; let υi(x) = ρi(x)di(x)−mipi (i = 0, 1). Then interpolation equality

(
Wm0
p0

(G; ρ0, υ0),Wm1
p1

(G; ρ1, υ1)
)
θ,p

= Bs
p(G; ρθ, υθ),

where ρ
1/p
θ = ρ

(1−θ)/p0

0 ρ
θ/p1

1 , υθ = ρθd(·)−sp, holds.

In these results the basic condition imposed on the weights is a bounded oscillation condi-
tion. This condition can be a consequence of any properties of behaviour of the gradient
if the weight ρ is differentiable. But it is not such a rigid condition. Considering for
simplicity the one-dimensional case, we can obtain such a bounded oscillation condition
from the condition max

Q(x)
|ρ′| ≤ K ρ(x)

d(x) , which comes up in the analysis of weighted spaces.

Example 5 If in the above theorems we assume that d(x) = (1+ |x|ν)−1, ρ(x) = 1+ |x|ν ,
−∞ < ν <∞, then we would obtain the interpolation theorem for two-weighted Sobolev
spaces with the weights of power form given by H. Triebel [2].

Example 6 Let ω(x) be a weight of R. If in Theorem 7 we assume that ρ(x) = ω∗(x)λ, υ =
ρ(x)(ω∗(x))−mp, λ < mp, then our theorems allow to obtain the interpolation theorems
for two-weighted Sobolev spaces given by L. Kussainova. Here the weight ω∗(x) is defined
by Definition (5).

Furthermore, if m0 = m1 = m in the above statement then s = m and one can see
that the corresponding interpolation of Sobolev spaces with different weights yields the
same space Bs

p(G; d(·)−mp), G ⊆ Rn.
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Modeling and valuing make-up

clauses in gas swing contracts

Enrico Edoli (∗)

This presentation is based on the article [11].

Abstract. In the last ten years, thanks to the worldwile energy liberalization process, the birth of
competitive gas markets and the recent financial crisis, traditional long term swing contracts in
Europe have been supplemented in a significant way by make-up clauses which allow to postpone
the withdrawal of gas to future years when it could be more profitable. This introduces more
complexity in the pricing and optimal management of swing contracts. This paper is devoted to
a proper quantitative modelization of a kind of make-up clause in a gas swing contract. More
in detail, we succeed in building an algorithm to price and optimally manage the make-up gas
allocation among the years and the gas taking in the swing subperiods within the years: we prove
that this problem has a quadratic complexity with respect to the number of years. The algorithm
can be adapted to different instances of make-up clauses as well as to some forms of carry-forward
clauses. Then, as an example, we show the algorithm at work on a 3-year contract and we present
a sensitivity analysis of the price and of the make-up policy with respect to various parameters
relative both to the price dynamics as well as to the swing contract. To the authors’ knowledge,
this is the first time that such a quantitative treatment of make-up clauses appears in literature.

1 Introduction to long term supply contracts in European gas market

Europe is among the largest consumer of natural gas in the world, mainly used for heating
and power generation. During the last thirty years natural gas has gradually replaced
almost everywhere fuel oil for heating purposes and is actually competing with coal as main
fuel source for electric power generation. Hence, long term trend of natural gas demand
has been historically upward sloping. The economic crisis of 2008 has strongly impacted
this tendency: global gas demand fell sharply by 3% between 2008 and 2009; however, the
International Energy Agency (IEA) forecasts that OECD(7) gas demand would recover

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on February 15th, 2012.

(7)Current membership of OECD: Australia, Austria, Belgium, Canada, Chile, Czech Republic, Den-
mark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea,
Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia,
Spain, Sweden, Switzerland, Turkey, United Kingdom, United States.
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slowly with consumption returning to the 2008 levels by 2012 or 2013, depending on the
region. In addition, recent events concerning nuclear power generation, post Fukushima’s
accident, are expected to provide new strength to the long term up-growing tendency of
natural gas global demand. In fact, in the medium to long term, many countries are
expected to reduce their nuclear ambitions and the fuel of choice to compensate for lower
nuclear will reasonably be natural gas. Despite its significant consumption, Europe, meant
either as OECD or European Union (EU), has only a limited inner production compared
to its consumption and the excess demand is covered by massive natural gas imports from
producer countries like Russia, Norway, Algeria

Natural gas imports are physically delivered via pipelines or via LNG (Liquified Natural
Gas) cargoes and were traditionally based on long term oil-linked swing contracts (10-30
years duration) in order to guarantee the security of supply of such an important energy
commodity. In the last ten years, thanks to the worldwide energy liberalization process
and the birth of competitive gas markets, in almost all European countries these long term
contracts have been supplemented by spot transactions (short term transactions) even if
long term deals still represent the pillar of European gas system (see [21]).

The structure of long term gas agreements is pretty standardized in Europe. As already
said, these long term contracts are swing (also known as take-or-pay, see [20] for details) in
nature, with the peculiarity that the strike price typically depends upon a basket of crude
and refined oil products, which is averaged through time in order to smooth undesired
volatility effects; for more details we refer the interested reader to [1, Section 3.1].
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Figure 1: CAL10 and CAL11 (calendar forward) of TTF and GR07 (ENI Gas Release 2007, gas price

formula) contracts. [2]

These long term contract structure and oil indexation have their origins in the early
European gas market of the 1970s. Since that time sources of gas have increased, making
gas markets and infrastructure much denser and open to competion. From 2008 onwards
this traditional market framework has significantly changed especially for what concern
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the oil-to-gas price relationship. Actually, the demand drop following the financial crisis
with the subsequent economic recession associated to the significant increase in LNG (Liq-
uefied Natural Gas) and unconventional gas supply sources flowing to Europe generated a
consistent and pretty persistent oil decoupling of European gas market prices: since 2008,
European gas markets are pricing systematically and significantly below indexes usually
used for the strike price I above (see Figure 1), so the spread P − I has became negative.

Obviously, this market phenomenon has determined a panic situation for all the owners
of classical long term gas supply contracts. Significant losses have been faced at present by
pipeline importers due to this kind of oil-to-gas price decoupling; moreover, the structural
market change determined an increased sense of uncertainty about European gas market
future development. Interested readers may refer to [21] for a detailed and updated analysis
of oil-to-gas decoupling.

This new market scenario has induced many long term importers to engage a rene-
gotiation process with their suppliers together with a more focused attention towards
optimization and hedging possibilities which are naturally embedded in the current con-
tracts. In fact, traditionally long term forward gas contracts are often equipped with some
volumetric flexibilities in order to intertemporally manage gas demand fluctuations year
by year. Among those, in this market situation a new and particular importance arose
for the so-called make-up and carry forward clauses, which flank traditional constraints
as minimum and maximum withdrawal quantity established for every contract year and
every contract sub-period (day or month). Basically, these clauses allow the buyer of the
contract to delay or anticipate respectively the withdrawal of gas from one year to another
within the full respect of sub-period capacity constraints. In particular, the introduction
of make-up clauses has become very important for European long term contracts holders:
in fact, in the recent oil-to-gas price decoupling situation, contracts holders were induced
to delay as much as possible the gas delivery for the sake of loss minimization. With a
make-up clause contract holders can effectively postpone the delivery of gas when it is too
expensive with respect to market prices, hoping that future gas prices will rise up and the
exercise of the contract rights becomes again profitable.

The optimization/valuation problem of standard swing contracts is not a trivial prob-
lem per se, as sub-period decisions typically impact the possibility of exercising the option
in the future due to annual volume constraints. Thus, in the recent years swing options
received vast treatment in the literature (see for instance [5, 20] and references therein for
what concerns gas markets, and references in [3, 4, 6, 14] for swing options in more general
markets). The presence of make-up clauses further complicate things and introduces more
complexity. Surprisingly, the quantitative literature appears scarce: in the authors’ opin-
ion, this is due to the fact that a make-up clause is worth more in a market where price
decoupling is high, and the need to study such markets arose only in the last years. At
a qualitative level, for instance, the make-up clause is described in [22, 24]. An algorithm
to evaluate a swing contract with the carry-forward clause using the least square Monte
Carlo approach is presented in [14], where the authors claim that the make-up can be
evaluated similarly: this is true only for make-up clauses with a single final installment,
i.e. when the make-up gas is to be paid only when it is called back (which corresponds
to letting α = 0 in Rule 4 of Section 2.3). However, typical make-up clauses have a
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double-installment mechanism, i.e. the make-up gas has to be paid when nominated with
a price proportion α > 0 and when called back with a price proportion 1 − α (as an
example, [22] report α ∈ (0.85, 1] as typical proportions). To the authors’ knowledge, an
algorithm to properly price (and find out optimal policy) a swing contract with such a
general double-installment make-up clause and where both the market and strike price are
stochastic variables has never been presented so far. The aim of this paper is exactly to
fill this literature gap. In particular, we will describe, frame and solve the optimization
issues related to the presence of make-up clauses in long term swing contracts. Finally, we
use the algorithm in order to explore the value of the contract with respect to the peculiar
constraints introduced by the make-up.

2 The structure of swing contracts and make-up clause

2.1 Time structure and admissible strategies

Ordinary swing contract schemes are normally defined dividing each one of the D yearly
delivery periods {[Tj−1, Tj)}j=1,...,D, into N sub-periods {[tj,i−1, tj,i)}j=1,...,D

i=1,...,N obtaining the
sequence {tj,i} such that

0 = T0 = t1,0 < t1,2 < . . . < t1,N = T1 = t2,0 < t2,1 < . . .

. . . < tj,i < . . . < tj,N = Tj = tj+1,0 < . . . < tD,N = TD

In particular, in every year [Tj−1, Tj ] we have the N + 1 points (tj,i)i=0,...,N such that
tj,0 = Tj and tj,N = Tj+1.

We are also assuming that N is also the number of exercise swing rights the holder
has in every year, which can be exercised exactly at the points tj,i, for i = 0, . . . , N − 1
i.e. at the beginning of every sub-period. For example if the decisions are taken month
by month, at the beginning of evey month, N = 12, if day by day N = 365.

Denote by uj,i the quantity of gas the holder decides to buy in the sub-period [tj,i, tj,i+1),
i = 0, . . . , N − 1, and by zj,j the cumulated gas quantity at time tj,i. In particular we set
zj,0 = 0 for all j = 1, . . . , D and

(1) zj,i+1 =

i∑

k=0

uj,k = zj,i + uj,i ∀i ∈ {0, . . . , N − 1}

Over each one of the N sub-periods, minimum (mDQ) and maximum (MDQ) delivery
quantities are established in the contract, which usually reflect physical effective trans-
portation capacity limitations: thus, the quantities uj,i are constrained by

(2) mDQ 6 uj,i 6 MDQ ∀i = 0, . . . , (N − 1), ∀j = 1, . . . , D

For every contractual year, minimum and maximum quantities are also established, called
respectively minimum annual quantity (mAQ) and annual contract quantity (ACQ). The
difference between the maximum gas that the holder could physically take and his contract
right is thus given by

(3) M := N ·MDQ− ACQ
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while the difference between the minimum gas that the holder must take by contract and
the minimum which he could physically take is given by

(4) M := mAQ−mDQ ·N

Often we have non-trivial volume constraints, in the sense that

(5) M > 0, M > 0

Thus, in the light of the discussion above, without any additional clauses and with non-
trivial constraints we have

N ·mDQ < mAQ 6 zj,N 6 ACQ < N ·MDQ ∀j = 1, . . . , D

Penalty payments can be imposed if the volume constraints are exceeded in order to
stimulate the buyer to respect the volumetric limits imposed (see for example [5]), but in
this paper we do not take into account these penalties.

The difference between swing contracts with trivial and non-trivial volume constraints
is extremely important in the pricing and hedging of the contract itself. In fact, with
non-trivial volume constraints the holder must take into account, at time tj,i, not only the
quantity uj,i which would be optimal for that period, but also the effects of this quantity
on the future decisions that he will be allowed to take after. This brings to model the
so-called space of controls, i.e. the set where uj,i is allowed to take values, in the following
way. For a given year j = 1, . . . , D, assume that we have a final constraint zj,N ∈ [z, z] for
some 0 6 z < z. ([z, z] = [mAQ,ACQ] in the absence of make-up or other clauses). Then,
for a given time tj,i, the space of controls A (tj,i, zj,i, [z, z]) will in general depend on time
tj,i, cumulated quantity zj,i and [z, z].

By the constraints (2) and construction of zj,i, at time tj,i we can restrict our attention
to the case when zj,i satisfies the constraints

mDQ · i 6 zj,i 6 MDQ · i ∀i = 0, . . . , N

and
N ·mDQ 6 z 6 z 6 N ·MDQ

The problem of determining the set Aj,i is non-trivial when Eq. (5) holds, which translates
in

N ·mDQ < z 6 z < N ·MDQ

(otherwise we can always reach the values in [N ·mDQ, N ·MDQ]). In this non trivial
case, we are not allowed to take uj,i = mDQ for all i = 0, . . . , N − 1: in fact, there exists a
time τ1 such that, if we have always took this minimum for t 6 τ1, then for t > τ1 we have
to switch to uj,i = MDQ in order to reach z. This point τ1 is the common point between
the two lines z = mDQ(t − tj,0) and z = MDQ (t− tj,N ) + z, ∀t ∈ [tj,0, tj,N ]. A simple
calculation leads to

zj,i > rmin(tj,i, z) = max {mDQ (tj,i − tj,0) ,MDQ (tj,i − tj,N ) + z}
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Similarly, we are not allowed to take always uj,i = MDQ either: in fact, there exists a time
τ2 such that, if we have always took this maximum for t 6 τ2, then for t > τ2 we have to
switch to uj,i = mDQ in order to reach, and not exceed, z. The boundary for zj,i in this
case is

zj,i 6 rmax(tj,i, z) = min {MDQ (tj,i − tj,0) ,mDQ (tj,i − tj,N ) + z}
Figure 2 shows an example of the admissible area.

Tj−1
τ1 tj,N = Tj = tj+1,0

N ·mDQ

N ·MDQ

z

τ2

zj,i ∈
[
max{mDQ(tj,i − tj,0),MDQ(tj,i − tj,N ) + z}, min{MDQ(tj,i − tj,0),mDQ(tj,i − tj,N ) + z}

]

z

tj,1 tj,i

z

z

ttj,i+1

z + MDQ

z + mDQ

Figure 2: Typical admissible area for one year. Here z < z, leaving some optionality for the total intake

zj,N . If z = z (typical of years when some make-up gas is nominated or called back), we have the constraint

zj,N = z = z and the admissible region is like those in Figure 4.

In conclusion, the correct form of the space of controls A(tj,i, z, [z, z]) at time tj,i, given
the constraint zj,N ∈ [z, z] and the cumulated quantity zj,i = z, is given by

(6) A(tj,i, z, [z, z]) := {uj,i ∈ [mDQ,MDQ] | z + uj,i ∈ [rmin(tj,i+1, z), rmax(tj,i+1, z)]}

which appears implicitly in [3, Equation 7] and is also a discretized version of the one in
[6].

2.2 The price of a standard swing contract

We now present a standard procedure to price a swing option without the presence of
additional clauses (such as make-up).
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Let Pj,i and Ij,i be respectively the prices of gas and index in year j = 1, . . . , D, sub-
period [tj,i, tj,i+1), i = 0, . . . , N − 1: the contract holder has to buy the gas at the price
Ij,i and can sell it at the price Pj,i: of course with this notation we have (Pj,N , Ij,N ) =
(Pj+1,0, Ij+1,0) for each year j = 1, . . . , D−1. Even if I = (Ij,i)j=1,...,D,i=0,...,N is a time av-
erage on several subperiod and thus has relevant memory effects, as mentioned in the Intro-
duction, in the following we make the simplifying assumption that (Pj,i, Ij,i)j=1,...,D,i=0,...,N ,
evolve as a two-dimensional Markov process under a pricing measure P, which is used in
all the mathematical expectations that follow, while the numerical implementation that
we use for the analysis of the next section will make use of the particular specification
that we describe in Appendix A of [11]. We also assume that E[e−rtj,iPj,i] = FPj,i < +∞
and E[e−rtj,iIj,i] = F Ij,i < +∞, where FPj,i, F

I
j,i represent the forward prices of P and of I,

respectively, for the delivery time tj,i.
The objective of contract’s holder is to maximize the discounted global margin of the

contract (i.e. minimize the total loss), i.e., (s)he wants to calculate the value of

V (0, p1,0, ι1,0, 0) = sup
u∈A

E

[
D∑

j=1

N−1∑

i=0

e−rtj,iuj,i (Pj,i − Ij,i)
]

=
D∑

j=1

sup
u∈A

E

[
N−1∑

i=0

e−rtj,iuj,i (Pj,i − Ij,i)
]

(7)

where the set A of admissible controls is defined by

A := {(uj,i)j,i adapted to (Pj,i, Ij,i)j,i and s.t. uj,i ∈ A(tj,i, zj,i, [mAQ,ACQ])}

in the absence of a make-up clause, and r > 0 is the risk-free annual interest rate. Equation
(7) follows from the fact that zj,0 = 0 for all j = 1, . . . , D, i.e. in the absence of a make-up
clause the swing contract can be valued independently year by year.

It is a standard result (see e.g. [3, 5, 20]), and it will also follow as a particular case of
our results in Section 2.4, that this maximisation problem can be solved by the use of the
Dynamic Programming: for each year j = 1, . . . , D, define the deterministic functions

Vj(N, p, ι, z) := 0,(8)

Vj(i, p, ι, z) := max
u∈A(tj,i,z,[mAQ,ACQ])

Ep,ιj,i
[
e−rtj,iu (p− ι) +

+Vj(i+ 1, Pj,i+1, Ij,i+1, z + u)] ∀i < N(9)

where Ep,ιj,i indicates the expectation conditional to Pj,i = p and Ij,i = ι (recall that, as
these are Markov processes, these values are a sufficient statistics for the whole information
up to subperiod i of year j). Then the original problem in Equation (7) is brought back
to calculating

V (0, p1,0, ι1,0, 0) = E




D∑

j=1

Vj(0, Pj,0, Ij,0, 0)



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2.3 Modeling the make-up clause

This subsection is devoted to the analytical representation of the make-up clause and its
constraints. While long term contracts may have a length of 10-30 years, make-up clauses
are typically written on a limited period of the contract life, often from 3 to 5 years.
Given the fact that, as explained in Section 2.2, a contract without make-up clause can
be evaluated as the sum of some yearly contract one independent from the other, we can
split a contract with make-up written only on a subperiod of the whole contract life in
two parts: the first part is a swing contract with a make-up clause with length equal to
the original make-up clause, while the other part covers all the years when the make-up
is not written. Thus, without loss of generality we can assume that the make-up clause is
written on the whole contract’s length, D years.

For each year j = 1, . . . , D, call Mj the make-up gas nominated and Uj the make-up
gas called back in year j. With this notation, we assume that the precise structure of the
make-up clause follows these rules.

(a) For each year j = 1, . . . , D − 1, the contract holder is allowed to take zj,N < mAQ,
provided uj,i > mDQ for all i = 0, . . . , N − 1.

Thus, the make-up gas nominated in year j is

(10) Mj := (mAQ− zj,N )+ and must satisfy Mj ∈ [0,M]

where x+ := max(x, 0) and M, defined in Equation (4), is also the maximum quantity of
make-up gas that can be physically nominated in a given year.

(b) The make-up Mj nominated in year j can be called back in one or more subsequent
years (the quantity Mj can be splitted and called back in more than one year). This
is possible only if the ACQ quantity has been reached in that year, and of course in
that year we still have to satisfy uj,i 6 MDQ for all i = 1, . . . , N .

Thus, the make-up gas called back in year j = 2, . . . , D is

(11) Uj := (zj,N − ACQ)+ and is such that Uj ∈ [0,M]

whereM, defined in Equation (3), is also the maximum quantity of make-up gas that can
physically called back in a given year.

(c) It is not possible to call back make-up gas before having nominated it, and at year D
all the nominated make-up gas must have been called back.

Thus, if we define the cumulated gas debt at year j, i.e. the make-up gas not yet called
back, as

(12) M j =

j∑

k=1

Mk −
j∑

k=2

Uk =

j∑

k=1

(Mk − Uk),
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then U1 = MD = 0, M j > 0 for all j = 1, . . . , D − 1 and MD = 0. Moreover,

M j+1 = M j +Mj − Uj = M j + (mAQ− zj,N )+ − (zj,N − ACQ)+

Notice that conditions 2. and 3. imply, for example, that if at the beginning of the
last contract year of the make-up clause we have some make-up gas not called back, i.e.
MD−1 > 0, in year d we necessarily have to reach the quantity ACQ +MD−1.

Remark 1 More in general, for all years j = 1, . . . , D, the definition of M j implies that
M j 6 j · M and M j 6 (D − j) · M. By combining these two constraints, the maximum
gas debt is possible at year

(13) j :=
DM
M+M

if j is integer, and at one of the two nearest years if j is not integer. In particular, the
gas debt M j can increase without constraints for j < j̄ and must possibly be decreased
for j > j̄.

(d) The price of the make-up quantity nominated in year j and called back in year k,
subperiod i, is defined as the weighted sum of two components respectively paid at
two different times:

a) at time tj,N (i.e. at the end of year j when Mj becomes known) the buyer pays the
make-up gas at the price αΓj for some α ∈ (0, 1) defined in the contract, where
Γj is the average index price observed in year j;

b) at time of withdrawal tk,i, the price paid is (1− α)Ik,i.

The price of make-up gas, as defined above, is associated to the gas volume uk,i phys-
ically delivered at time tk,i. This means that the part αΓj in (a) of the price needs to be
capitalized from time Tj = tj,N up to time tk,i: thus, the price Ij,k,i at time tk,i of the
make-up gas nominated in year j and called back in year k, subperiod i is

(14) Ij,k,i = αΓje
r(tk,i−tj,N) + (1− α)Ik,i

By discounting at time T0 = 0 the price of make-up gas called back at time tk,i, we have

e−rtk,iIj,k,i = αΓje
−rtj,N + (1− α)Ik,ie

−rtk,i

It follows that, in a year j = 1, . . . , D where the make-up clause is exercised to nominate
or call back gas, the residual value of the swing contract at subperiod i = 0, . . . , N − 1 for
that year with the control policy uj := (uj,i)i=0,...,N−1 is given by

(15) Jj(i, p, ι, zj,i;uj) := Ep,ιj,i

[
N−1∑

k=i

e−rtj,kuj,k (Pj,k −Aα(uj,k, zj,k)Ij,k)− e−rtj,NαΓjMj

]
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where

Aα(u, z) := 1− α
(

1− ACQ− z
u

)+

1{ACQ−MDQ<z6ACQ} − α1{z>ACQ}

is a pricing coefficient in the interval [1 − α, 1] for Ij,k to accomodate the gas quality
(ordinary below ACQ, called back from previous years above). Here, the main apparent
difference with respect to the case when no make-up is exercised is that we can end up
a year with a non-null position in the make-up gas, i.e. with Mj − Uj 6= 0 (notice that
this notation is not ambiguous as Mj and Uj cannot be both different from zero), where
the quantity Mj − Uj is by definition a deterministic function of zj,N , thus of uj . Notice
that this generalizes the payoff to be maximised in Equation (7), which is reobtained for
zj,N ∈ [mAQ,ACQ], i.e. Mj = Uj = 0, and setting zj,0 = 0.

As a result, the total value of the swing option with the make-up clause described
above is given by

(16) sup
u∈A

E

[
D∑

j=1

Jj(0, pj,0, ιj,0, 0;uj)

]

where u = (uj,i)j=1,...,D,i=0,...,N−1 must now belong to the set

A :=

{
(uj,i)j,i adapted to (Pj,i, Ij,i)j,i | uj,i ∈ [mDQ,MDQ],

U1 = MD = 0,M j > 0 ∀j = 1, . . . , D,MD = 0

}

and the functions Jj are given by Equation (15). Here, the constraints on U and M induce
constraints on (uj,i)j,i, which will be treated in detail in the next subsection.

2.4 The price of swing contracts with make-up clauses

We just saw that the set of admissible strategies for (uji)ji for a given year j = 1, . . . , D
now depend on the gas debt M j−1 arriving from the previous years. For this reason, this
quantity has to be explicitly taken into account in the evaluation of the swing contract for
that year. More in detail, now we define the value function as

(17) Vj(i, p, ι, z,M j−1) := sup
u∈A

Ep,ιj,i

[
Jj(i, p, ι, z;uj) +

D∑

k=j+1

Jk(0, Pk,0, Ik,0, 0;uk)

]

We now build a Dynamic Programming algorithm as in [5, 20]: for each year j = 1, . . . , D,
define the deterministic functions:

• if j = D, then MD = 0 and UD = MD−1 (recall that MD ≡ 0), so we let

(18) z := mAQ1{MD−1=0} + (ACQ +MD−1)1{MD−1>0}, z := ACQ +MD−1
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and define

Vj(N, p, ι, z,M j−1) := 0,(19)

Vj(i, p, ι, z,M j−1) := max
u∈A(tj,i,z,[z,z])

Ep,ιj,i

[
e−rtj,iu (p−Aα(u, z)ι) +

+Vj(i+ 1, Pj,i+1, Ij,i+1, z + u,M j−1)

]
(20)

Notice that the functions Vj depend on M j−1 through [z, z].

• for j = 1, . . . , D − 1 the key quantity is M j−1 which is known at the beginning of
the year. Assume that M j−1 6 (D − j + 1)M. For the lower bound we have two
cases.

– If M j−1 is admissible also for year j, i.e. if M j−1 6 (D − j)M, then we can
nominate some other make-up gas Mj as long as

M j = M j−1 +Mj 6 (D − j)M⇒Mj 6 (D − j)M−M j−1

Taking into account the mDQ constraints, the lower bound for zj,N is:

(21) z := mAQ−min
{

(D − j)M−M j−1,M
}

– If M j−1 is not admissible for year j, i.e. if M j−1 > (D − j)M, then we must
call back some make-up gas in order to obtain a final cumulated quantity M j

admissible for year j, i.e.

M j = M j−1 − Uj 6 (D − j)M⇒ Uj >M j−1 − (D − j)M

So the lower bound for zj,N is now

(22) z := ACQ +M j−1 − (D − j)M

For the upper bound z, we do not need to distinguish between the two previous cases
and let

(23) z := ACQ + min
{
M j−1,M

}

Finally, define

Vj(N, p, ι, z,M j−1) := Vj+1(0, p, ι, 0,M j−1 + (mAQ− z)+ − (z − ACQ)+)+

+e−rtj,NαΓj(mAQ− z)+,(24)

and for i = N − 1, . . . , 0 define Vj(i, ·, ·, ·, ·) exactly as in Equation (20).
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Theorem 2.1

1. The deterministic functions Vj(·, ·, ·, ·, ·), defined by the dynamic programming equa-
tions (19), (20) and (24) are such that V1(0, P1,0, I1,0, 0, 0) coincides with the value
of the swing option with the make-up clause in Equation (16).

2. There exists an optimal Markovian consumption u∗j,i = u(tj,i, Pj,i, Ij,i, zj,i,M j−1),
where u(·, ·, ·, ·, ·) is given by the maximum argument in the dynamic programming
equation (20).

3. If the quantities

(25) K :=
M

MDQ−mDQ
and K :=

M
MDQ−mDQ

,

are integer, then there exists an optimal bang-bang Markovian consumption u∗j,i, i.e.
u∗j,i = mDQ or u∗j,i = MDQ for all j = 1, . . . , D, i = 0, . . . , N − 1. Moreover, M j

turns out to be an integer multiple of MDQ−mDQ for all j = 1, . . . , d.

Proof. We proceed in analogy with [5] and [4].

(a) As 0 6 tj,i 6 T , 0 6 z 6 N · MDQ, M 6 D · M and E[Pj,i] = FPj,i < +∞,

E[Ij,i] = F Ij,i < +∞, then the assumptions (F+, F−) in [7, Proposition 8.5] are
satistied, so the argument follows.

(b) The right-hand side of Equation (20) is continuous in u and A(tj,i, z, [z, z]) is a
compact set contained in [mDQ,MDQ], thus the maximum is attained for u ∈
A(tj,i, z, [z, z]) again by applying [7, Proposition 8.5].

(c) As in [4], it can be proved that the functions Vj(i, ·, ·, ·, ·), j = 1, . . . , D, i = 0, . . . , N−
1 are continuous and concave on z and piecewise affine on the intervals

(26) [k ·mDQ + (i− k) ·MDQ, (k + 1) ·mDQ + (i− k − 1) ·MDQ], k = 1, . . . , i.

We now prove the claim by induction on j = 1, . . . , D. If j = 1, then M0 = 0 by
definition. For a given year j = 1, . . . , D, assume for now that M j−1 is an integer
multiple of MDQ−mDQ. Then this, together with the condition K,K ∈ N ensures
that [rmin(tj,i, z), rmax(tj,i, z̄)] is exactly the union of suitable intervals of the kind of
Equation (26). Thus, if z = k ·mDQ + (i− k) ·MDQ for some k = 0, . . . , i, then the
function to be maximised in Equation (20) is affine on u, thus its maximum point is
u∗j,i = mDQ or u∗j,i = MDQ. It can then be proved by induction that, since zj,0 = 0,
the optimal u∗j,i is such that zj,i = k · mDQ + (i − k) ·MDQ for some k = 0, . . . , i:
this also implies that M j will be also an integer multiple of MDQ−mDQ, and the
conclusion follows.
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Remark 2 Part 3. of the theorem above is essentially a consequence of the linear structure
of the payoff function in Equations (15)-(16): the result is that in every year j, subperiod
i, the optimal quantity uj,i can be safely chosen to be either the maximum (MDQ) or the
minimum (mDQ) admissible for that substep. This kind of control is called of bang-bang
type, and it was already found in [5] with smoother payoffs, and studied in deep detail
in [4]. Qualitatively, this is due to the fact that, if the withdrawal is profitable in the
subperiod, then the better choice is the maximum quantity we can take; conversely, if the
withdrawal is not profitable, then the better choice is to take the minimum quantity we
can.

2.5 Computational cost

As we have seen, the pricing problem for a swing option with make-up clause boils down
to maximize the problem in Equation (17). Unfortunately, this maximization cannot be
carried out by analytic means, as a closed form for Vj is not known even in the simplest
case of a standard swing option without make-up clause. Thus, this maximization must
be carried out via numerical methods.

The most efficient way to do this is to assume that the quantities K and K in Equation
(25) are integer, so that the results of Theorem 2.1 hold. This induces a quantization
in the candidate optimal make-up gas debt (M j)j=1,...,D: in fact, since this process at
optimality has values which are multiple integers of MDQ − mDQ, we obtain that the
resulting candidate optimal quantities for M j , j = 1, . . . , D, are a finite number. More in
detail, the sequence (M j)j=1,...,D is bound to have a finite number of nonnegative values
in each year j = 1, . . . , D−1, with −M 6M j−M j−1 6M, i.e. the increments can have
at most K +K + 1 distinct values, corresponding respectively to the cases when Mj > 0,
Uj > 0 and Mj = Uj = 0.

With this in mind, we can calculate the computational cost needed to price a D-year
swing option with make-up clause, and we do this by the same backward recursion used in
the Dynamic Programming algorithm used in Section 2.4. In the D-th year, we can start
with MD−1 taking at most K + 1 different values, each one of this leading to a different
optimization problem: since also the values of (zj,i)j,i are quantized via the bang-bang
optimal process (uj,i)j,i, for each one of this optimization problem we have a total of O(N2)
states which can be assumed by (zj,i)j,i at optimality(8). Having solved the K+1 problems
for the last year, we can attach the value functions thus obtained to the terminal nodes of
year D−1: notice that also in this case, as now MD−2 can assume at most 2K+1 distinct
values, we will have to model and solve at most 2K + 1 distinct optimization problem,
each one having as terminal condition the values of the K + 1 problems of year D. These
numbers do not multiply, because once that we obtain the values for the K + 1 problems
of year D for each possible starting state (PD−1,N , ID−1,N ) = (PD,0, ID,0), we can take
these values as terminal values to use in the computation for year D − 1.

With this spirit, we are now ready for a result on the computational cost of the pricing
of a swing option with make-up clause.

(8)precisely 6 N(N+1)
2

, which is the number of nodes of a complete recombining binomial tree.
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Theorem 2.2 If the quantities K and K, defined in Equation (25), are integer, then the
order of distinct subproblems to be solved is O(N2D2).

Proof. First of all consider the 2-dimensional process (j,M j)j=1,...,D: then the distinct
states that this process can assume, at optimality, is in 1-1 correspondence with the
integer solutions (x, y) of the system

(27)





x > 0,

x 6 K(D − y).
x ≤ Ky,

In fact, if (x, y) is such a solution, then Mx = (MDQ − mDQ)y is a possible value, at
time x, of an optimal path for M by Theorem 2.1. Conversely, by the same theorem, if K
and K are integer then Mx is a integer multiple of MDQ−mDQ. Since for each of these
possible states we must solve a separate optimization problem for the corresponding year,
the number of optimization subproblems for all the values of (zj,i)j,i are of order O(N2),
and their total number is the sum of these, the proof boils down to find the total number
N of integer solutions of the system (27). By recalling the definition of j̄ in Equation (13)
and the discussion below, first of all we rewrite j̄ as

j̄ =
DK

K +K

Now, the region of the solutions of the system (27) is the union of the two triangular regions
{(x, y) ∈ N2 | x > 0, x 6 Ky, y 6 j̄} and {(x, y) ∈ N2 | x > 0, x 6 K(D − y), y > j̄}. It is
then easy to see that

N =

[j̄]∑

`=0

(1 +K`) +
D∑

`=[j̄]+1

(1 +K(D − `)) = D + 1 +K

[j̄]∑

`=1

`+K
D−1∑

`=[j̄]+1

(D − `) =

= D + 1 +K
[j̄] · [j̄ + 1]

2
+K

[D − j̄ − 1] · [D − j̄]
2

where [x] denotes the integer part of x. By noticing that for all x > 0 we have D[x] 6 [Dx]
and that

K · j̄ =
DKK

K +K
= K(D − j̄)

then we have

N 6 D + 1 +
1

2

[
DKK

K +K

]
([j̄ + 1] + [D − j̄ − 1]) 6

1

2

KK

K +K
D2 +D + 1

i.e. N = O(D2). By multiplying this for O(N2) (the number of subproblems for given
year j = 1, . . . , D and state of make-up debt M j , we obtain that the computational cost
is of order O(N2D2), as desired.
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We show in Figure 3 an illustration of these numbers for D = 2, 3, 4, by making the
simplifying assumption that K = K =: K.

K

T0 T1 T2
t

# of states

(a) D = 2

K

T0 T1 T2 T3
t

# of states

(b) D = 3

K

2K

T0 T1 T2 T3 T4
t

# of states

(c) D = 4

Figure 3: In subfigure (a), we can only obtain M1(= M1 = U2) among K + 1 distinct values, and the

corresponding value function is then used in the final values of the optimization problem of year 1, so the

total number of optimization problems to be solved is K + 1. In subfigure (b) we can obtain M2(= U3)

amongK+1 distinct values and then M1(= M1) amongK+1 distinct values, so the number of optimization

problems to be solved in sequence is 2K + 2. In subfigure (c) we can obtain M3(= U4) among K + 1

different values, M2 among 2K + 1 different values, and finally M1(= M1) among K + 1 distinct values:

so the number of optimization problems to be solved in sequence is now 4K + 3.

We also present a numerical test which validates our result of a quadratic cost in the
number of years. By taking the same parameters as in Section 5, we implemented the
method on a Intel i7 workstation at 3.4GHz with 8GB RAM, with the following execution
times.

Duration D of the make-up clause (years) 1 2 3 5 10 15

time (seconds) 0.06 0.12 0.31 1.25 7.60 23.65

Table 1: Execution times, in seconds, on a Intel i7 workstation at 3.4GHz with 8GB RAM. Notice that

with 1 year there is no possibility de facto to exercise the make-up clause.
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3 Sensitivity analysis of a three years contract

A swing contract is a derivative product whose value depends on two main classes of
factor, namely market and volumetric. As previously explained in this paper, this kind of
derivative shows an optionality value linked to the market price dynamics of the underlying
commodity (exercise or not) and an optionality value linked to the volumetric structure
of the product itself (how much to allocate with the make-up clause among the years and
how much to withdraw in each subperiod). After having explained how to price a swing
product on gas and how to determine the optimal exercise policy, it is now interesting to
use the algorithm in order to explore and map the value of the contract with respect to
some peculiar parameters of the contract and to market factors.

More in detail, we specify a trinomial dynamics for both the price P and the index I
which approximates a geometric mean-reverting Ornstein-Uhlenbeck process as described
in Appendix A of [11], and calibrate these models following [8], using historical data on
TTF prices for the gas price P and the ENIGR07 formula(9) for the index price I. For
ease of implementation, the average index price Γj of year j which appears in Equation
(24) is substituted with the average of forward prices for that year. When not variable,
the parameters used in this section are the ones in Table 2.

Parameter Value Parameter Value

ACQ = 7.00 · 106 σP = 0.6
mAQ = 6.00 · 106 aP = 2.95
MDQ = 8.75 · 105 σI = 0.1
mDQ = 3.75 · 105 aI = 19.04

α = 0.75 S = 0
r = 0.05 ρ = 0

Table 2: Values of the parameters used for the analysis (when not variable).

We here present three analyses: the first one with respect to the volatility level σP of
gas price, to the MDQ contract parameter, and to the level of market price decoupling. The
second one is done with respect to the level of decoupling of the price term structure and
to interest rates level. Finally, the third one is done with respect to correlation between
P and I and level of decoupling.

The choice of these analyses have been done considering the aim of what we are pur-
suing, that is to analyse the flexibility given by the make-up clause in a decoupled market
scenario. In view of this, we decided to change the parameters we believe to be more im-
pactive on the value of the make-up clause. The volatility σP is representative of market
uncertainty: in fact, σP is often much greater than σI , as the index I is calculated as
a time average of a basket; as mentioned in the Introduction, this averaging is used to

(9)The ENIGR07 (ENI Gas Release 2007) index is a 9-months time average of a basket of three oil-related
indexes, computed as in [1, Equation (1)] or in [14, Equation (1)]
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reduce the volatility of the index and leads also to a pretty stable value for σI , so changes
in σP are likely to influence the price more than ones in σI . The choice of MDQ is ex-
plained by the fact that this quantity is strictly linked with the maximum make-upM the
owner of the contract can call back in every year. In fact, the bigger MDQ is, the bigger
M becomes, and higher the possibility of the owner becomes to posticipate the calling
back of the nominated make-up gas. This flexibility should increase the contract value, in
particular when price decoupling is strong. We have decided not to move the minimum
quantities. On one hand we set the minimum annual quantity and the minimum period
quantity in such a way that the possible make-up one can nominate every year is very
high (1.5 · 106), so the stronger constraints are on M. On the other hand, we imposed
the values of K,K to be integer and we used values for MDQ in Table 3. The underlying
idea is that any possible increase in the callable make-up quantity M = mAQ−N ·mDQ
is worthless if the upper bound of gas withdrawal per year M is not enough to call back
the nominated make-up quantity. Thus, we map the contract value for MDQ in the range
between ACQ

N = 7·106

12 ' 5.83 · 105, which reduces to the case of a standard contract with-

out make-up clause(10), and a value big enough to ensure the withdrawal in the third
year of the possible make-up gas nominated in the first and second year, i.e. bigger than
ACQ+2(mAQ−N ·mDQ)

N ' 8.3 · 105 and such that K,K are integers.

MDQ M M Description

5.83 · 105 0 1.5 · 106 No make up
6.25 · 105 5 · 105 1.5 · 106 Low flexibility
8.75 · 105 3.5 · 106 1.5 · 106 High flexibility

Table 3: Values of MDQ used in the analysis. All the other parameters, when not variable, are set as in

Table 2.

The choice of changing MDQ and not other parameters is also a consequence of the
practice: we think that the minimum annual quantity and the minimum period quantity
are less negotiated than the maximum ones: the seller of the contract will never be willing
to sell too much flexibility at the expense of its profits (he want to sell the physical gas),
and the buyer will not pay too much for some flexibility he will probably not use in the
future (he need the physical gas).

The second and third analyses mainly focus on market factors. As already stated, the
make-up clause becomes profitable for the buyer of the contract only if the spread between
market and index price Pt − It is expected to be lower in the future than in the present.
On the other hand, the make-up gas is paid in two different times and its price is affected
by the interest rate, as seen in Eq. (14). Consequently, the benefits of the decoupling
could be affected by high levels of interest rates, which potentially may vanish the power

(10)in fact, if if MDQ = ACQ
N

then, being not possible to call back any make-up gas before having reached
ACQ, we are never able to call back any make-up gas, thus it is also impossible to nominate some.
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of make-up clause. This is the focus of the second analysis. Also the correlation could
potentially affect the benefits given by the decoupling: in principle, the decoupling should
be enforced by negative correlation and weakened by positive one. This is the subject of
the third analysis.

First Analysis. The first analysis studies how the contract value depends on the volatil-
ity level σP , on the MDQ contract parameter and on the level of decoupling. The latter
is obtained by varying the initial forward prices used to calibrate the tree prices (see Ap-
pendix A of [11]), subtracting a level S from the forward prices FP for the first year and
adding the same quantity to the forward prices for the third year, as shown in Subfigure
6(b). Then we let S be a parameter and see how the swing price depends on it.

We expect the swing contract value to be increasing in σP , with a higher dependence
when there is no flexibility given either by the absence of a make-up clause or by small
values of MDQ. Figure 4 shows exactly these qualitative intuitions. The contract value
is increasing with respect to σP also for high values of MDQ, but the range in y axes in
the figure is so large that we may not appreciate the monotonicity of the curves. This
also evidences the fact that the rights given by make-up reduce the risk given by market
uncertainty.
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MDQ=8.75e+005 no MU

Figure 4: Sensitivity with respect to σP for three values of MDQ.

The dependence between contract value and decoupling parameter S is presented in
Figure 5: make-up rights are useful when market decoupling is high. In these situations,
we can nominate make-up gas at the beginning of the contract life and call it back in the
future, when a positive market scenario shows up.
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Figure 5: Sensitivity with respect to the decoupling S and three values of MDQ, from no make-up rights

to very large flexibility. As expected, decoupling enforces make-up value.
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(d) Low decoupling, swing option at the money in
all the 3 years.

0 5 10 15 20 25 30 35 40
5

10

15

20

25

30

35

40

45

50
Prices

t

P
t a

nd
 I t

 

 

Gas
Index

(e) High decoupling, swing option out of the money
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Figure 6: Scenarios for the term structure of gas and index prices for two levels of decoupling. In subfigure

(a) make-up rights are typically not exercised, and prices are not decoupled, while in subfigure (b) typically

make-up gas is declared in the first year and called back in the third year thanks to the decoupling.
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Second Analysis. The second analysis is performed by mapping the swing value with
respect to the decoupling parameter S and the interest rate r and reporting the corre-
sponding prices in Figure 7.

The spirit of this analysis is that the make-up clause is exercised when a negative
market scenario (typically, contractual price I higher than spot gas price P ) is expected
to change or disappear in the following years through a change in the slope of the index
and the gas price forward term structure. On the other hand, as we saw in Subsection
2.3, the make-up gas nominated is paid partly immediately, and partly when the gas is
withdrawn; this temporal mismatch implies a cash flow effects whose impact obviously
depends also on the interest rate level: for higher interest rate levels, the benefit of the
make-up clause is absorbed by the capitalization of the cost substained from the end
of make-up nomination’s year up to the withdrawal period. Conversely, in a standard
contract without make-up clause, a higher interest rate in a market scenario with a low
level of decoupling may lead to a higher contract value: in fact, if the decoupling is low,
the present value of the contract in the long term, where the swing option is at or out of
the money, is lower than the value in the short term, where the option is in the money.
Figure 7 shows how any positive change in S is negatively compensated by an increase in
the interest rates level.
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Figure 7: Sensitivities with respect to r and level of decoupling S in the forward prices of P . The first

three cases on the top are with make-up, the last three in the bottom without.
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Third Analysis. The third analysis maps the contract value with respect to the corre-
lation ρ between the two prices P and I, and the level of decoupling S. In Figure 8(a) we
see that decoupling knocks out correlation: in fact, the swing price’s dependence on S is
much greater than that on ρ, enforcing once again a strong dependence of the swing price
on decoupling levels. Only a deeper analisys, performed for fixed values of decoupling,
allows a better understanding of the impact of correlation: negative values of ρ leads to
higher values of the contract. This is not a surprise: when ρ is negative the decoupling
between prices is expected to be stronger (if P rises up then I falls down thanks to ρ < 0)
and this increases the value of the contract. However, the changes due to correlation are
still smaller than the changes due to decoupling, even for small values of S.
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Figure 8: Contract value with respect to correlation ρ and level of decoupling. In Figure (a) the shift S

vanquishes the effect of the correlation: in fact by varying ρ we obtain almost indistinguishable curves,

both with or without make-up. In order to see the differences betwen curves, in Figure (b) the shift S is

fixed and here we can see how correlation affecs contract value with make-up: negative values of ρ lead to

higher contract values (negative ρ supports decoupling), but the stronger influence of the decoupling S is

always evident.
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Singular limits of reaction-diffusion equations

and propagation of interfaces

Cecilia De Zan (∗)

Abstract. Interfacial phenomena are commonplace in physics, chemistry, biology. They occur,
for example, whenever a continuum that can exists in at least two different chemical or physical
”states” is present. The separation boundary is called an interface. In mathematics, interfaces
appear in the study of the asymptotic limits of evolving systems, like reaction-diffusion equations.
After a simple introduction about the connections between reaction-diffusion equations and the
wavefronts they generates, we present some mathematical approaches to the study of evolving
interfaces. We present the classical level set-approach and a geometrical approach introduced by
Barles and Souganidis in 1998. Then we show how this second approach can be applied in the study
of the asymptotic limits of reaction-diffusion equations. Finally we briefly show a generalization
we obtained in the framework of Carnot Group for nonlinear and possibly degenerate diffusions.

Interfacial phenomena

Interfacial phenomena are commonplace in physics, chemistry, biology. They occur when-
ever a continuum is present that can exists in at least two different chemical or physical
”states”, and there is some mechanism that generates or enforces a spatial separation
between these states.

The separation boundary is what we call an interface.
Some examples of physical processes where we can observe the generation of an inter-

face are:

• the so-called phase transition that occurs whenever there is a double-well potential
that drives a substance into one of two possible phases, such as solid or liquid;

• the electrophoresis phenomenum that is the motion of ions relatives to a fluid
under the influence of an electric fields;

• in the combustion phenomena two different temperatures establish two different
zones in the flame profile: the preheat zone, where the temperature is low enough so

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on February 22nd, 2012.
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that no chemical reaction has yet occurred and the burned zone where the gas has
attained its final state.

From a mathematical point of view interfaces appear in the study of the asymptotic
limits of evolving systems, like reaction-diffusion equations. To fix the ideas assume
we have a smooth state variable u, a function of space and time depending also on a small
parameter ε > 0,

uε(x, t) = u(x, t; ε), x ∈ Rn, t ∈ [0,+∞).

Tipically uε is the solution of a semilinear reaction-diffusion equation

uεt + Lε(uε, x) = 0

satisfying an initial condition
uε(x, 0) = g(x),

where g is a continuous bounded function. If such a solution uε exists for any ε > 0 one
can try to look at the behavior of the family (uε)ε as ε→ 0+.

The Allen Cahn equation

A famous example of semilinear reaction-diffusion equation is the so called Allen Cahn
equation

uεt (x, t)−∆uε(x, t) +
f(uε(x, t))

ε2
= 0, (x, t) ∈ Rn × (0,+∞) ,

where the reaction term f is the derivative of a double well potential W , f = W ′.
In particular the function f : Rn → R has to satisfy the following assumptions,

f ∈ C2(R) has exactly three zeroes m− < m0 < m+;
f(q) < 0, ∀q ∈ (−∞,m−) ∪ (m0,m+) and f(q) > 0, ∀q ∈ (m−,m0) ∪ (m+,+∞);
f ′(m−) > 0, f ′(m+) > 0, f ′(m0) < 0.

A tipical example for f is f(q) = 2q(q2 − 1).
Since the classical theory of elliptic equation assure us that, for any ε > 0 there exists

a unique smooth solution of the Cauchy problem

(1)

{
uεt (x, t)−∆uε(x, t) + f(uε(x,t))

ε2
= 0, (x, t) ∈ Rn × (0,+∞) ,

uε(x, 0) = g(x),

it is reasonable to study the asymptotic behavior of the uε’s as ε → 0+. Numerical
computations show that for any t > 0 there exists an interface Γt that separates two
different regions D−t and D+

t such that

D−t = {x : limε→0+ uε(x, t) = m−}
D+
t = {x : limε→0+ uε(x, t) = m+}.
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Figure 1: The limiting behavior of the uε’s at time t.

Example For example, in the phase transition models uε is an order parameter such that
a particular material is in the solid phase when uε is near m− and it is in the liquid phase
when it is near m+. Therefore the interface Γt will be the boundary at time t of the solid
region D−t from the liquid region D+

t .

In general, the asymptotic behavior of the solutions uε of the Cauchy problem for a
reaction-diffusion equations

(2)

{
uεt + L(uε, x) = 0
uε(x, 0) = g(x)

is described by moving interfaces t 7−→ Γt. Therefore to study the asymptotic behavior
of the solutions of a reaction-diffusion equation one can study the evolution of the front
they generates.

Propagation of fronts

Let Ωt be an open subset of Rn, we define the front Γt as

Γt = ∂Ωt.

We assume that for any x ∈ Γt it is possible to consider the exterior normal vector at Ωt

in x, ~n(x), and that x evolves with normal velocity

v(D~n,~n, x, t).

An interesting problem to solve is the following. Let Ω0 be an open subset of Rn,
study the evolution of the interfaces t 7−→ Γt moving with normal velocity

(3) V = v(D~n(x), ~n(x), x, t)

and starting at time t = 0 from Γ0 = ∂Ω0. Two approaches are now possible,
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• the so-called level set approach,

• the generalized flows approach.

The level set approach

The level set approach to front propagation can be summarize in the following three steps.
1. Let Γ0 = ∂Ω0 be the front at time t = 0, we choose a real function u0 ∈ C(Rn) such

that
Γ0 = {x ∈ Rn : u0(x) = 0}, Ω0 = {x ∈ Rn : u0(x) > 0}

(and therefore also Ω0
c

= {x ∈ Rn : u0(x) < 0});
2. We call u the viscosity solution of the Cauchy problem

(Cp)

{
ut + F (D2u,Du, x, t) = 0, (x, t) ∈ Rn × (0, T ),
u(x, 0) = u0(x),

where the function F : Sn × (Rn\{0}) × Rn × (0,+∞) → R is related to the normal
velocity v in the following way

F (X, p, x, t) = −|p|v(− 1

|p|
(
I − p⊗ p

|p|2
)
X,− p

|p| , x, t),

for any X ∈ Sn, p ∈ Rn\{0}, (x, t) ∈ Rn × (0,+∞), Sn being the set of real symmetric
n× n matrices.

3. Finally we define, for each t > 0, the triple (Γt,Ω
+
t ,Ω

−
t ) as

Ω+
t = {x ∈ Rn : u(x, t) > 0},

Ω−t = {x ∈ Rn : u(x, t) < 0},
Γt = {x ∈ Rn : u(x, t) = 0}.

The idea of the level set approach is to look at (0, T ) 3 t 7−→
(
Γt,Ω

+
t ,Ω

−
t ) to get the

evolution of our interface Γ0.
The main issues associated with this approach are the well-posedness of the Cauchy

problem (Cp) and the well-posedness of the family (Γt,Ω
+
t ,Ω

−
t )t∈(0,T ). In other words one

has to prove that there exists a unique viscosity solution of (Cp) an that the fronts Γt,
t > 0, defined above depend only on Γ0 and Ω0 and not on the particular choice of u0.

Among all the assumptions on F we want to point out the following basic assumptions:

(A1) F is a real-valued, locally bounded function on Sn×Rn×Rn× (0,+∞), continuous
on Sn × Rn\{0} × Rn × (0,+∞) and satisfies the ellipticity condition

F (X, p, x, t) ≤ F (Y, p, x, t) whenever X ≥ Y,

for any x ∈ Rn, t ∈ (0,+∞), p ∈ Rn\{0} and X,Y ∈ Sn,

(A2) for any λ > 0, µ ∈ R and (X, p, x, t) ∈ Sn × Rn\{0} × Rn × (0,+∞),

F (λX + µp⊗ p, p, x, t) = λF (X, p, x, t).
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Generalized flows

In the study of the time evolution of the front Γ0 by means of generalized flows one has to
consider the evolution of the open subsets of Rn, Ωt and Ω

c
t , instead of the hypersurfaces

Γt, t > 0. The main idea of this approach is to make a local monotonicity test against
particular families of smooth open subsets of Rn.

Let (Ωt)t∈(0,T ) be a family of open subsets of Rn. We call (Ωt)t∈(0,T ) a generalized

flow (11) with normal velocity −F if and only if

• (Ωt)t∈(0,T ) is a generalized superflow with normal velocity −F , i.e.

– for any B(x0, r]× [t, t+ h]

– for any family of smooth open subsets (At)t∈(0,T ) of Rn, such that

∗ (At)t∈(0,T ) evolves with normal velocity smaller than −F ,

∗ At ∩B(x0, r] ⊂ Ωt,

∗ As ∩ ∂B(x0, r] ⊂ Ωs, for any s ∈ [t, t+ h],

then
As ∩B(x0, r] ⊂ Ωs, for any s ∈ [t, t+ h).

• the family of closed subsets (Ωt)t∈(0,T ) is a generalized superflow with normal velocity
−F , i.e.

– for any B(x0, r]× [t, t+ h]

– for any family of smooth open subsets (Bt)t∈(0,T ) of Rn, such that

∗ (Bt)t∈(0,T ) evolves with normal velocity greater than −F ,

∗ Bt ∩B(x0, r] ⊂ Ω
c
t ,

∗ Bs ∩ ∂B(x0, r] ⊂ Ω
c
s, for any s ∈ [t, t+ h],

then
Bs ∩B(x0, r] ⊂ Ω

c
s, for any s ∈ [t, t+ h).

The level set approach and generalized flows

The level set approach and the approximation of an evolving interface Γt by means of
generalized flows turn out to be equivalent, as the next theorem states.

Theorem 1 Assume that (A1) and (A2) hold. We consider

• two families of open subsets of Rn, (Ω1
t )t∈[0,T ) and (Ω2

t )t∈[0,T ), such that

– (Ω1
t )t∈[0,T ) is a generalized superflow with normal velocity −F ,

– ((Ω2
t )
c)t∈[0,T ) is a generalized subflow with normal velocity −F ,

– ∪t∈(0,T )Ω
1
t × {t}, ∪t∈(0,T )Ω

2
t × {t} are open and disjoint,

(11)For the precise definition we refer to [1].
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• an open set Ω0 such that Ω0 ⊆ Ω1
0 and Ω

c
0 ⊆ Ω2

0.

• the level set evolution of (∂Ω0,Ω0,Ω
c
0), (Γt,Ω

+
t ,Ω

−
t )t∈(0,T ).

Then, for all t ∈ [0, T ),

Ω+
t ⊂ Ω1

t ⊂ Ω+
t ∪ Γt, Ω−t ⊂ Ω2

t ⊂ Ω−t ∪ Γt.

Moreover, if Int Γt = ∅ for any t ∈ [0, T ), then

Ω+
t = Ω1

t , Ω−t = Ω2
t , for any t ∈ [0, T ).

Application to reaction-diffusion equations

Generalized flows are very useful in the study of the asymptotics of solutions of reaction-
diffusion equations. To this aim Theorem 1 is a crucial point. Barles and Souganidis in [3]
and then Barles and Da Lio in [1] apply this theory to the study of the limiting behavior,
as ε→ 0+, of the solution of the Cauchy problem for the Allen Cahn equation (1). They
prove the following theorem.

Theorem 2 Let uε be the solution of the Cauchy problem

{
uεt (x, t)−∆uε(x, t) + f(uε(x,t))

ε2
= 0, (x, t) ∈ Rn × (0,+∞),

uε(x, 0) = g(x).

We define the interface at time t = 0 in the following way

Γ0 = {x : g(x) = m0}.

If d0 is the signed distance from Γ0 so that

d0 =

{
> 0 in {x : g(x) > m0},
< 0 in {x : g(x) < m0},

and u is the unique viscosity solution of

{
ut − tr [(I − Du

|Du| ⊗ Du
|Du|)D

2u] = 0, (x, t) ∈ Rn × (0, T ),

u(x, 0) = d0(x), x ∈ Rn,

then

uε(x, t) −→
ε→0+





m+ {u > 0}
locally uniformly in

m− {u < 0}.
Moreover, if

Int {x : u(x, t) = 0} = ∅ for any t ∈ [0, T ),
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then

uε(x, t) −→
ε→0+





m+ {u > 0}
locally uniformly in

m− {u > 0}c.

In the proof of this Theorem becomes clear the importance of generalized sub- and
superflow. Indeed to prove Theorem 2 one has to follow these three steps.

(a) Consider, for any t ∈ (0, T )

Γt = {u(·, t) = 0},
Ω+
t = {u(·, t) > 0},

Ω−t = {u(·, t) < 0},

(Γt,Ω
+
t ,Ω

−
t )t∈(0,T ) is the level set evolution of (Γ0,Ω

+
0 ,Ω

−
0 ).

(b) Construct (Ω1
t )t∈(0,T ), (Ω2

t )t∈(0,T ) such that

• (Ω1
t )t is a generalized superflow with normal velocity −F ,

• ((Ω2
t )
c)t is a generalized subflow with normal velocity −F ,

•
{
uε(x, t)→ m+ if (x, t) ∈ Ω1 :=

⋃
t∈(0,T ) Ω1

t × {t},
uε(x, t)→ m− if (x, t) ∈ Ω2 :=

⋃
t∈(0,T ) Ω2

t × {t}.

(c) Determine the traces Ω1
0 and Ω2

0 of Ω1 and Ω2 for t = 0 such that Ω+
0 ⊆ Ω1

0 and
Ω−0 ⊆ Ω2

0.

(d) Use Theorem 1 to get the conclusion.

In [3] [1] the authors consider several types of reaction-diffusion equations. For example
they study the limiting behavior, as ε → 0+, of the solution of the following nonlinear
equation with x−dependent diffusion terms

(4)

{
uεt (x, t)− tr (A(x)D2uε(x, t)) + f(uε(x,t))

ε2
= 0, t > 0,

uε(x, 0) = g(x), x ∈ Rn,

where f is a cubic function and A = (aij)ij ∈ C2(Rn,Sn)∩W 2,∞(Rn,Sn) is a matrix map
such that the matrix A(x) is positive definite for any x ∈ Rn, i.e. there exists a constant
ν > 0 so that,

A(x)q · q ≥ ν|q|2, for any x ∈ Rn.

From this last condition it follows the existence of a matrix map σ = (σij)ij ∈ C2(Rn,Sn)∩
W 2,∞(Rn,Sn) such that

A ≡ σσt
rank (σ(x)) = n, for any x ∈ Rn.
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We denote with σ(1), . . . , σ(n) the columns of the matrix σ and we consider, for any regular
function h, the derivatives of h in the directions of the vector fields σ(1), . . . , σ(n), i.e. we
define the σ-gradient of h,

Dσh(x) := σt(x)Dh(x) =




σ(1) ·Dh(x)
...

σ(n) ·Dh(x)




and the σ-Hessian matrix of h,

D2
σh(x) := σt(x)D2h(x)σ(x).

With these notations the reaction-diffusion equation (4) can be rewritten in the following
way {

uεt (x, t)− tr (D2
σu

ε(x, t)) + f(uε(x,t))
ε2

= 0, t > 0,
uε(x, 0) = g(x), x ∈ Rn .

It is now clear the analogy with the Allen Cahn equation in (1). In fact in the Allen Cahn
equation the diffusion term is the Laplacian of uε, that is the trace of the Hessian matrix
of uε. Here as diffusion term we have the trace of the σ-Hessian matrix of uε, D2

σu
ε.

The equation that describes the evolution of the interface Γt is therefore the usual mean
curvature equation with the standard euclidean gradient and Hessian matrix Du and D2u
replaced by the σ-gradient and the σ-Hessian matrix Dσu and D2

σu, i.e.

(5)

{
ut − tr [(I − Dσu

|Dσu| ⊗
Dσu
|Dσu|)D

2
σu] = 0, (x, t) ∈ Rn × (0, T )

u(x, 0) = d0(x), x ∈ Rn.

In our phd thesis we consider several reaction-diffusion equations. For example we look
for the right reaction-diffusion equation that gives rise to a front evolving according to
the Cauchy problem (5) when the matrix map σ(·) takes values in the space of the m× n
matrices with m < n. Our first idea was to study again (4). The problem is that now A
can be degenerate, i.e the constant ν can be zero

ν ≥ 0 ,

and therefore it is possible that a solution of (4) does not exist. This induces us to
introduce a Riemannian approximation of A defined in the following way. For any ε > 0
we define

σε(·) = [σ(·)|εkIn] ∈ Rn×(m+n),

where k > 0 is a suitable fixed constant and In is the n × n identity matrix. Thus, if we
put

Aε(·) = σε(·)σtε(·) = A(·) + ε2kIn,

we have that Aε satisfies

Aε(x)q · q = A(x)q · q + ε2k|q|2 ≥ (ν + ε2k)︸ ︷︷ ︸
>0

|q|2.
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Thus, by the classical theory of elliptic equation, for any ε > 0 there exists uε, smooth
solution of

(6)

{
uεt (x, t)− tr (Aε(x)D2uε(x, t)) + f(uε(x,t))

ε2
= 0, t > 0 ,

uε(x, 0) = g(x), x ∈ Rn.

Following the notation above, if we define for any h ∈ C2(Rn,R), the ε-gradient and the
ε-Hessian matrix, Dεh and D2

εh as

Dεh(x) = σtε(x)Dh(x) =

(
Dσh(x)
εkDh(x)

)
,

D2
εh(x) = σtε(x)D2h(x)σε(x),

we obtain that the equation (6) can be rewritten as

{
uεt (x, t)− tr (D2

εu
ε(x, t)) + f(uε(x,t))

ε2
= 0, t > 0

uε(x, 0) = g(x), x ∈ Rn.

In our phd thesis we use the ideas of Barles, Souganidis and Da Lio to prove that, when the
vector fields σ(1) · ∇, . . . , σ(m) · ∇ generates a Carnot group of step two(12), then the front
that describes the asymptotic behavior of the solution of (6) is governed by the geometric
pde (5) where, we recall, σ is a matrix map that takes value into the space of the m× n
matrices with m < n.
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Smooth Asymptotics for a DIC option

in a Binomial Tree Model

Jose Maria L. Escaner IV (∗)

Abstract. The talk aims to compute for the smooth asymptotic expansion for a down-and-in
call (DIC) barrier option that was modeled using the Cox-Ross-Rubenstein (CRR) binomial tree.
For pricing option contracts, the most well-known model used both by practitioners and in the
academe is the Black- Scholes continuous time model. Though less accurate, a simpler and easier
understood way to model financial derivatives though would be to use discrete time models. Among
the many different discrete time models, a simple and widely-used model is the CRR binomial tree
model. It is well-known that the price of the Black-Scholes continuous time model is close to the
price obtained with the CRR binomial tree model when the number of time steps is large, as the
Black-Scholes price is the limit of the tree model price. As such, it is of interest to measure the
convergence of the CRR model using asymptotic expansion. We follow the framework used by
Diener and Diener in measuring the asymptotic expansion for the convergence of barrier options.
For the purpose of finding the asymptotics, we make use of Andres symmetry principle in order to
find the exact pricing formula of the DIC barrier option. By the guidelines set by Joshi, we specify
the parameters and define our CRR binomial tree in such a way as to make the pricing formula
symmetric. This would allow us to formulate a complete and smooth asymptotic expansion for our
DIC barrier option.

1 Introduction

For the last three decades, the world of finance and banking has undergone radical changes.
The shift started with the creation and introduction of derivatives. The most famous and
probably most used derivative instrument is the option. An vanilla option is an agreement
in which the buyer (holder) has the right, but not the obligation, to exercise by buying
(call) or selling (put) an underlying asset at a set price (strike price) on (european style
option) or before (american style option) a future date (the exercise date or expiration).

Barrier options, on the other hand, are exotic options where the payoff depends on
whether the price of the underlying asset reaches (or does not reach) a certain level (the
barrier) before exercise date. Barrier options are attractive to many investors because
they are generally less expensive than vanilla options.

(∗)University of the Philippines Diliman; E-mail: . Seminar held on March 7th,
2012.
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In pricing option contracts, the Black-Scholes formula for a vanilla option with no
dividends has been the benchmark for all other types of options. This is given by

C(S, t) = N(d1)S −N(d2)Ke−r(T−t)

where S is the price of the stock at time t, K is the strike price, T is the exercise time, r
is the risk-free interest rate and

d1 =
ln
(
S
K

)
+
(
r + σ2

2 (T − t)
)

σ
√
T − t and d2 = d1 − σ

√
T − t.

Though less accurate, a simpler formula uses discrete-time tree models such as the Cox-
Ross-Rubenstein (CRR) binomial tree model given by

C0 = e−rTE((ST −K)+) = e−rT
n∑

j=0

(
n

j

)
pj(1− p)n−j max(ST −K, 0)

= S0

n∑

j=k

(
n

j

)
qj(1− q)n−j −Ke−rT

n∑

j=k

(
n

j

)
pj(1− p)n−j ,(1)

where p =
er

T
n − d
u− d and q = pue−r

T
n = u−e−r Tn

u−d .

It is known that the price obtained under the CRR model converges to that under the
Black-Scholes continuous-time model as the number of time steps in the tree model be-
comes infinitely large. It is of interest then to measure the rate of convergence of tree
models (in particular, the CRR model) as this helps in the numerics. Here, we use asymp-
totic expansion as our main tool in measuring the rate.

Researches pertaining to asymptotic expansions of tree models have been done previ-
ously. Diener and Diener [1, 2] have already started work on computing this asymptotic
expansion. In particular, a general method was conceived for finding the asymptotic ex-
pansion of the vanilla european option and of barrier options in general. Joshi [3] have
expanded on the works of Diener and Diener in finding the asymptotics of vanilla european
options and have introduced a more refined and smooth asymptotic expansion.

2 Asymptotic Expansions for u, d, p and q

Definition 1 The formal series ∞∑

n=0

angn(x)

not necessarily convergent, is said to be an asymptotic expansion of f(x) in the Poincare
sense, with respect to the asymptotic sequence {gn(x)}, if and only if, for every value of
m,

f(x)−
m∑

n=0

angn(x) = o(gm(x)) as x→ x0.
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The partial sum

m−1∑

n=0

angn(x) is an approximation of f(x) with an error term of

O(gm(x)) as x→ x0. If such an asymptotic expansion exists, it is unique, and we say that

f(x) ∼
∞∑

n=0

angn(x).

In computing for the asymptotics of the movements u and d of the price of the stocks, we
need to assume the following condition:

(2) d < er
T
n < u,

where d and u are the down and up factors, respectively, and T
n represents one time step

in the binomial tree. The assumption is needed in order to ensure absence of arbitrage, as
pointed out by Cox, Ross, and Rubenstein in their original paper (see [4]).

Letting the votality of of stock prices be equal to σ, we can compute for the asymptotics
of u and d using a simple Taylor formula expansion:

(3) u = eσ
√
δt = 1 + σ

√
T

n
+
σ2

2

T

n
+
σ3

6

(
T

n

) 3
2

+
σ4

24

(
T

n

)2

+O

((
1

n

) 5
2

)
,

(4) d = e−σ
√
δt = 1− σ

√
T

n
+
σ2

2

T

n
− σ3

6

(
T

n

) 3
2

+
σ4

24

(
T

n

)2

+O

((
1

n

) 5
2

)
.

Next, we compute for the asymptotics for risk-neutral probabilities p and q. Algebraic
manupulations give us the following expansions:

p =
1

2
+

(
r − σ2

2

)

2σ

√
T

n
+O

(
1

n

) 3
2

,(5)

q =
1

2
+

(
r + σ2

2

)

2σ

√
T

n
+O

(
1

n

) 3
2

.(6)

Now that we have computed for the asymptotics of u, d, p, and q, we can proceed to the
main task of computing for a smooth asymptotic expansion of the pricing formula for the
down and in call (DIC )barrier option. A DIC barrier option is a contract which gives the
right to buy the underlying asset at a certain price at a predefned date if and only if the
asset price has dropped down at least to the pre-setbarrier level before the expiry date of
the contract.

3 Incomplete Binomial Form of the DIC option

The first step towards finding a smooth asymptotic expansion for the price of barrier
options involves the exact pricing formula of the DIC barrier option. Since the DIC
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barrier option needs the whole trajectory of the stock St between t = 0 and t = T in order
to determine if the path crossed the barrier L, we introduce the stopping time τL(ω) where

τL(ω) :=

{
min {t ∈ T, St(ω) ≤ L} if {t ∈ T, St(ω) ≤ L} 6= φ
T + 1(or +∞) else .

so that
DICT = (ST −K)+IτL≤T .

To be able to get an incomplete binomial sum form of the DICT , a technique by
Diener and Diener [1] is used. In their paper, they used the Andre’s Symmetry/Reflection
Principle. This allows us to determine the number of trajectories that have crossed the
barrier level in our binomial tree after having having crossed that barrier level.

We define the barrier line L as the line located either on one of the horizontal lines
or between two succeeding horizontal lines of the nodes in the binomial tree. The line of
L-points, on the other hand is either the horizontal line in line with the barrier line or
the one directly below the barrier line. Since the line of L-points represents the largest
horizontal line of nodes that is equal or below L, any trajectory that would cross L would
cross the line of L-points as well.

The y-intercept of the line of L-points is S0u
ldn−l = S0u

2l−n if the end point of the L-
points has abscissa nδt; otherwise it is S0u

ld(n−1)−l = S0u
2l−n+1 if end point has abscissa

(n− 1)δt. Here, l is the largest integer such that S0u
2l−n ≤ L or S0u

2l−n+1 ≤ L. That is,

(7) l =





[
n
2 +

ln L
S0

2 lnu

]
= n

2 +
ln L
S0

2 lnu − {l} if the abscissa is nδt
[
n−1

2 +
ln L
S0

2 lnu

]
= n−1

2 +
ln L
S0

2 lnu − {l} if the abscissa is (n− 1)δt.

where {l} is the fractional component of l. Furthermore, if we define J such that

l =

{
J/2 if end point has abscissa nδt
(J − 1)/2 if end point has abscissa (n− 1)δt.

then we get

J :=

[
n+

ln L
S0

lnu

]
= n+

ln L
S0

lnu
− {J}.

We do a similar computation for the line of K points:

k =





n
2 +

ln K
S0

2 lnu + 1− {k} if the end point of the line of K-points has abscissa(n)δt

n−1
2 +

ln K
S0

2 lnu + 1− {k} if the end point of the line of K-points has abscissa(n− 1)δt.

Lemma 1 [Diener and Diener] Let n and j be positive integers, with 0 ≤ J ≤ n. The
number A(j, J) of trajectories of the binary random walk (St)t∈T such that (ST =)Snδt =
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S0u
2j−n (i.e. such that at time t = T they reach the level j) after having reached the node

line with y-intercept S0u
J−n at some time between t = 0 and t = nδt is equal to:

A(j, J) =





0 if J < j ≤ n(
n
J−j
)

if J/2 ≤ j ≤ J(
n
j

)
if 0 ≤ j ≤ J/2.

Theorem 1 [Diener and Diener] The initial price of a down-and-in-call (DIC) option
with exercise price K, expiry time T , and barrier L < S0, written on a asset modeled by
a random walk (St) is given by:

For L ≤ K:

DIC0 = e−rT
J∑

j=k

(
n

J − j

)
pj(1− p)n−j(S0u

2j−n −K),

For K ≤ L:

DIC0 = e−rT
l∑

j=k

(
n
j

)
pj(1− p)n−j(S0u

2j−n −K)

+e−rT
J∑

j=l+1

(
n

J − j

)
pj(1− p)n−j(S0u

2j−n −K).

If we denote Φ to be the incomplete binomial sum

Φ(n, k, p) :=
n∑

j=k

(
n

j

)
pj(1− p)n−j .

then for L ≤ K,

DIC0 = S0

(
q

1− q

)J−n
Φ(n, k + n− J, q)−Ke−rT

(
p

1− p

)J−n
Φ(n, k + n− J, p),

and for K ≤ L,

DIC0 = S0

(
q

1− q

)J−n
Φ(n, 1 + n+ l − J, q)

−Ke−rT
(

p

1− p

)J−n
Φ(n, 1 + n+ l − J, p) + S0Φ(n, k, q)

−Ke−rTΦ(n, k, p)− S0Φ(n, l + 1, q) +Ke−rTΦ(n, l + 1, p).
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4 Transformation into Integrals

We now transform the incomplete binomial sums into integrals. The integral form allows
us to write the formula into asymptotic expansions. We make use of the following general
lemma, which can easily be shown by integration of parts of the right term by (n − k)
times.

Lemma 2 For any n ∈ N and any k, 0 < k ≤ n, one has:

n∑

j=k

(
n
j

)
pj (1− p)n−j = k

(
n
k

)∫ p

0
yk−1 (1− y)n−k dy.

Using this formula, the price DIC0 can be written, for L ≤ K, in the following integral
form:

DIC0 = (k + n− J)

(
n

k + n− J

)(
S0

(
q

1− q

)J−n ∫ q

0
yk+n−J−1 (1− y)J−k dy

−Ke−rT
(

p

1− p

)J−n ∫ p

0
yk+n−J−1 (1− y)J−k dy

)
.(8)

In the case K ≤ L, the expression of DIC0 in terms of integrals can be obtained in a
similar way, but this introduces four more integrals.

DIC0 = (1 + n+ l − J)

(
n

1 + n+ l − J

)(
S0

(
q

1− q

)J−n ∫ q

0
yn+l−J (1− y)J−l−1 dy

−Ke−rT
(

p

1− p

)J−n ∫ p

0
yn+l−J (1− y)J−l−1 dy

)

+ (k)

(
n

k

)(
S0

(
q

1− q

)J−n ∫ q

0
yk−1 (1− y)n−k dy

−Ke−rT
(

p

1− p

)J−n ∫ p

0
yk−1 (1− y)n−k dy

)

− (l + 1)

(
n

l + 1

)(
S0

(
q

1− q

)J−n ∫ q

0
yl (1− y)n−l−1 dy

−Ke−rT
(

p

1− p

)J−n ∫ p

0
yl (1− y)n−l−1 dy

)
.(9)

5 Choosing the Parameters

Diener and Diener (see [2]) have done extensive work in finding the asymptotic expansion
for barrier options in a CRR tree. In their paper, Diener and Diener discovered that
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the asymptotics for the pricing of barrier options in general does not allow for a normal
smooth (or infinitely differentiable) expansion because of oscillations in its convergence.

The fractional components of J , l, and k in Section 3 cannot be expanded into asymptotics
in the usual smooth sense. This is because these fractional components do not have limits
as the number of time steps n goes to infinity. This leads to the inability of the variables
containing these fractional components to be written as an analytic function. Therefore,
the variables (and in effect, the pricing formula for the DIC barrier option) do not have
an asymptotic expansion in the usual sense. Instead the convergence of the expansion of
the variables (and the pricing formula) oscillates in value as n becomes larger.

It is for this reason that Diener and Diener have to introduce the concept of asymptotic
expansions with bounded coefficients in order to accomodate the fractional components of
these variables which would allow the variables to be transformed into a normal asymptotic
expansion. We aim to improve on the results of Diener and Diener by finding a smooth
asymptotic expansion for our DIC barrier options without resorting to their technique.
Instead, we redefine the parameters J , l, and k and specify our binomial tree in such a
way as to remove these fractional components of these variables. This would allow for a
smooth asymptotic expansion.

The key step towards finding specific definitions for the paramters of our binomial tree
involves transforming the integrals of the exact pricing formula for barrier options (found
in equations (8) and (9) into one that will be symmetric around the half-way point. Doing
this ensures that a smooth asymptotic expansion would occur using the parameters J , l,
and k that were found. This is the general method used by Joshi that enabled him to find
a smooth asymptotic expansion for vanilla european options (see [3]).

Specifically, in order to have a clean expansion, we want to equate the exponentials of
y and 1− y inside the integral of equations (8) and (9). Equating all the exponentials, we
would have:

For equation (8):

(10) k + n− J − 1 = J − k =⇒ n = 2(J − k) + 1.

For equation (9):

n+ l − J = J − l − 1 =⇒ n = 2(J − l)− 1,(11)

k − 1 = n− k =⇒ n = 2k − 1,(12)

l = n− l − 1 =⇒ n = 2l + 1.(13)

Depending on the abscissa of the end point of the line of L-points, either J = 2l or
J = 2l + 1 . If J = 2l, then this assumption contradicts equation (13). As it turns out,
choosing J = 2l + 1 makes equation (11) equivalent to equation (13). With this as our
only choice for J , letting l be equal to some integer N , we have the following redefinitions:

l = N(14)

k = N + 1(15)

n = J = 2N + 1.(16)
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By these redefinitions of n, J, k, and l, all the exponents of y and 1 − y in equations (8)
and (9) will become equivalent to N . Furthermore, solving for the position of the barrier
level L,

J := n+
ln L

S0

lnu
=⇒ L = S0.

We see here that the barrier level L is in line with the origin point and is centered in the
middle of the tree.

Doing a similar process for finding the position of K, it is not difficult to show that
K = S0.

6 Results

We state at this point our results.

Proposition 1 By letting the variables l, k, and J , and the number of time steps n be
equivalent to the following:

l = N, k = N + 1, J = n = 2N + 1,

where N is a natural number, we have the following results regarding our down and in call
(DIC) barrier option as modeled in a Cox, Ross, and Rubenstein (CRR) binomial tree:

(a) The barrier level L will be located in the same position as the strike price K in the
binomial tree. Both will be centered in the middle of the tree, in line with the origin
point S0. In other words, L = K = S0.

(b) The pricing formula of the DIC barrier option will be equivalent to the pricing for-
mula of a vanilla european call option. The integral version of the pricing formula
is given as follows:

DIC0 = (N + 1)

(
2N + 1
N + 1

)(
S0

∫ q

0
yN (1− y)N dy −Ke−rT

∫ p

0
yN (1− y)N dy

)
.

(c) A smooth asymptotic expansion for a DIC barrier option when using the method of
symmetry of Joshi is given as follows:

DIC0 =
S0 −Ke−rT

2
+

2(S0 −Ke−rT )√
πe

(
2N + 1

2N

)2N+ 3
2
∫ g̃( 1

N )

0
e−w

2
α (0) dw

+

(
1

N

) 1
2 2(S0 −Ke−rT )√

πe

(
2N + 1

2N

)2N+ 3
2
∫ f̃( 1

N )

0
e−w

2 dα

dw
(0)wdw +O

(
1

N

)
,

where the functions g̃ and f̃ are smooth, the function α is analytic and smooth, and

the variable w is a function of 1
N .
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The proofs of the first two have been discussed in Sections 2 and 3. The last item in
the theorem stems from Theorem 2 of Joshi [3]:

Theorem 2 Each of φq(N) = Φ(2N + 1, N + 1, q2N+1) and φp(N) = Φ(2N + 1, N +
1, p2N+1) has an asymptotic expansion in powers of N−1, and in particular, there exist
constants C0 and C1 such that

φ(N) = C0 +
1

N
C1 +O(N−2).
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An invitation to the study

of Isoperimetric Inequalities

Francescopaolo Montefalcone (∗)

Abstract. This is a very short introduction to Isoperimetric Inequalities. In particular, we shall dis-
cuss the so-called Michael-Simon Inequality (MSI) for compact hypersurfaces of class C2 immersed
in the Euclidean space Rn. In the last section, we give a generalization to (the non-Euclidean set-
ting of) hypersurfaces immersed in sub-Riemannian Carnot groups.

1 Introduction: from Queen Dido to... J. Steiner

Problem 1 Find the plane figure bounded by a line which has the maximum area for a
given perimeter.

It is well-known that the solution is a semicircle. Actually, this problem is based on a
passage from Virgil’s Aeneid. Closely related to this problem...

Theorem 1 (Isoperimetric Inequality in the Euclidean plane) Let Ω ( R2 be a bounded
domain (i.e. open, connected) and assume that its boundary ∂Ω is rectifiable (i.e. covered,
up to a negligible set, by a countable union of smooth curves; see Federer, [6]). Then

(1) 4πArea(Ω) ≤ Lenght2(∂Ω).

Under suitable assumptions, one has equality, if and only if, Ω is a disc.

Remark 2 (Curiosity: quick proof for n = 2; see Chavel, [3]) Let Ω ⊂ R2 be a compact
domain having C1-smooth boundary consisting of 1 component. Set z := x+ iy to denote
a point in R2 ∼= C and z := x− iy. Then, the area element is given by

dx ∧ dy =
i

2
dz ∧ dz.

(∗)Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on March 21st, 2012.
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One computes

4πArea(Ω) =

∫∫

Ω
2πidz ∧ dz

=

∫∫

Ω
dz ∧ dz

∫

∂Ω

dζ

ζ − z

=

∫

∂Ω
dζ

∫∫

Ω

dz ∧ dz
ζ − z

=

∫

∂Ω
dζ

∫

∂Ω

ζ − z
ζ − z dz

≤ Lenght2(∂Ω),

where we have used Cauchy formula together with the fact that the winding number of
∂Ω is 1, Fubini’s Theorem and Green’s formula.

The first attempt to give a rigorous proof of (1) was made by the Swiss geometer J.
Steiner whose important contribution was the Steiner symmetrization method; see [2], [3],
[5], [6]. It can be described as follows:

Remark 3 (The method in Rn) Let Ω ⊂ Rn. Fix V ∈ Rn and let V ⊥ be the (n − 1)-
dimensional hyperplane passing from 0 ∈ Rn and orthogonal to V ; furthermore, let γVp be

the V -line starting from p ∈ ProjV (Ω). Denote by lp := H1(γVp ∩ Ω) the 1-dimensional

Hausdorff measure of γVp ∩Ω. Now let us define another set ΩV by taking the segment with

midpoint at p and length lp ∀ p ∈ ProjV (Ω). The set ΩV is called the Steiner symmetrized
of Ω w.r.t. the hyperplane V ⊥. In particular, the following hold:

• Fubini’s Theorem ⇒ Vol(Ω) = Vol(ΩV );

• Hn−1(∂ΩV ) ≤ Hn−1(∂Ω).

The power of Steiner’s idea was exploited by De Giorgi in 1958 (see [4]) in the (most
general) setting of finite perimeter sets in the Euclidean space Rn; see [2], [3], [5].

Let A ⊆ Rn be open and let Ω ⊂ Rn. The perimeter |∂Ω|(A) of Ω in A is given by

|∂Ω|(A) := sup

{∫

A∩Ω
div (ψ) dx : ψ ∈ C1

0 (Ω,Rn), |ψ| ≤ 1

}

The perimeter is a Radon measure that plays the role of measure of the boundary.

Theorem 4 (Isoperimetric Inequality; see [4]) Let Ω ⊂ Rn be a set of finite perimeter.
Then

(2) min {Vol(Ω),Vol(Rn \ Ω)} ≤ CIsop|∂Ω|(Rn),

where CIsop := 1

n
n
n−1
× 1

ω
1

n−1
n

and ωn := Vol(B1(0)) denotes the n-volume of the unit ball

B1(0) ⊂ Rn. Equality holds, if and only if, Ω is L1-equivalent to a ball.
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Apart from its “beauty”, the Isoperimetric Inequality is a fundamental property of the
Euclidean space and, for instance, it turns out to be equivalent to a Sobolev Inequality.
This was shown in 1960 by Federer-Fleming, [7], and, independently, by Mazja, [10]. More
precisely, (2) is equivalent to the inequality:

(3) ‖ϕ‖
L

n
n−1 (Rn)

≤ CIsop‖grad ϕ‖L1(Rn) ∀ ϕ ∈ C∞0 (Rn).

Note that the proof of the equivalence of (2) and (3) is based on a careful use of the
so-called Fleming-Rishel Formula:

(4)

∫

Ω
|grad φ(x)| dx =

∫

R
|∂Ωt|(Rn) dt,

where Ωt = {x ∈ Ω : φ > t} and φ is a smooth function. This formula generalizes to the
space BV of bounded variation functions; see [5], [16].

Some very general isoperimetric theorems for currents can be found in Federer’s trea-
tise [6].

Later on we shall discuss an important generalization of the Isoperimetric Inequality
proven in the Seventies by Michael and Simon; see [11]. A similar result was independently
proved by Allard for varifolds; see [1].

2 The Micheal-Simon Inequality (MSI)

Let S ⊂ Rn (n > 2) be a compact C2-smooth hypersurface with C1-smooth boundary.

Theorem 5 (see [11]) Under the previous assumptions, the following holds:

(
σn−1

R (S)
)n−2
n−1 ≤ CIsop

(∫

S
|HR |σn−1

R + σn−2
R (∂S)

)

where CIsop > 0 is a dimensional constant, HR is the mean curvature of S and σkR is the
k-dimensional Riemannian measure.

The constant CIsop in Theorem 5 is not the sharp one.
A more general presentation of these results can be found in the book [2].

2.1 Some preliminaries about hypersurfaces and measures

In this section we will collect some preliminaries concerning geometry of hypersurfaces,
measures and differential forms for which we refer the reader to [3], [9] and [16].

Fix an o.n. frame X = {X1, ..., Xn} in Rn. By duality w.r.t. the (Euclidean) metric
we define a co-frame ω = {ω1, ..., ωn} by setting ωi(Xj) = 〈Xi, Xj〉 = δji , where δji is the
Kronecker delta.

In the sequel, we shall denote by ∇ the Levi-Civita connection on Rn, which is flat,
i.e. ∇XiXj = 0 for all i, j = 1, ..., n, compatible with the Euclidean metric 〈·, ·〉, i.e.

X〈Y, Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉 ∀X,Y, Z ∈ X(Rn) := C∞(Rn,Rn),
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and torsion-free, i.e. ∇XY −∇YX = [X,Y ] ∀X,Y, Z ∈ X(Rn); see [3].

The volume form of Rn is given by σnR :=
n∧
i=1

ωi ∈
∧n(T ∗Rn). By integration of σnR ,

one obtains the Lebesgue measure Ln on Rn.
Let S ⊂ Rn be a Cr-smooth hypersurface, r ≥ 1, and let ν be the unit normal vector

to S. By definition, we have
σn−1

R := (ν σnR )|S ,
where is the contraction operator; see [9]. We recall that :

∧k(T ∗Rn)→ ∧k−1(T ∗Rn)
is defined, for X ∈ TRn and α ∈ ∧k(T ∗Rn), by

(X α)(Y1, ..., Yk−1) := α(X,Y1, ..., Yk−1).

Example 6 (see [9]) Let X1 = e1 = (1, 0, 0), X2 = e2 = (0, 1, 0), X3 = e3 = (0, 0, 1). In
other words, let {e1, e2, e3} be the standard basis of R3. Then ωi = dxi for any i = 1, 2, 3
and it follows that σ3

R = dx1 ∧ dx2 ∧ dx3. Now let S be a C1-smooth surface and let
ν = (ν1, ν2, ν3) be its unit normal. Then

σ2
R := ν σ3

R

= ν1dx2 ∧ dx3 − ν2dx1 ∧ dx3 + ν3dx1 ∧ dx2.

Let ∂S be C1-smooth and let η ∈ X(TS) be its unit normal vector. As above, the
Riemannian measure on ∂S can be defined by setting

σn−2
R := (η σn−1

R )|∂S .

Furthermore, let ∇TS be the induced connection from ∇ on TS. Later on, the TS-
gradient and the TS-divergence operators will be denoted by grad TS and div TS , respec-
tively.

Proposition 7 (Coarea formula for the TS-gradient) Let S ⊂ Rn be a C2-smooth hyper-
surface and let φ ∈ C1(S). Then

∫

S
|grad TSφ|σn−1

R =

∫

R
σn−2

R

{
φ−1[s] ∩ S

}
ds.

Remark 8 It is important to recall that the 2nd fundamental form of a C∞-smooth
hypersurface S is the C∞-smooth symmetric bilinear map

BR (X,Y ) :=
〈
∇TS

X Y, ν
〉

∀ X, Y ∈ X(TS) := C∞(S,TS).

The mean curvature HR is defined as HR := TrBR = −div TS ν.

Definition 9 A variation ϑ : (−ε, ε) × S −→ Rn of S is a smooth map such that
ϑt := ϑ(t, ·) : S −→ Rn is an immersion for every t ∈ (−ε, ε) and ϑ0 = ıS . The variation
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vector of ϑt is defined as X := ∂ϑ
∂t

∣∣
t=0

. Setting Γ(t) := ϑ∗tσ
n−1
R , the 1st variation of σn−1

R

is given by

IS(X,σn−1
R ) :=

d

dt

(∫

S
Γ(t)

) ∣∣∣∣∣
t=0

.

Theorem 10 (1st variation for compact hypersurfaces) Let S ⊂ Rn be a compact C2-
smooth hypersurface with C1-smooth boundary. Under the previous notation, we have

(5) IS(X,σn−1
R ) = −

∫

S
HR 〈X, ν〉 σn−1

R +

∫

∂S
〈X, η〉σn−2

R

Remark 11 When div TS acts on non-tangential vector fields, it is possible to reformulate
(5) as an “integration by parts formula”, i.e.

∫

S
(div TSX +HR 〈X, ν〉) σn−1

R =

∫

∂S
〈X, η〉σn−2

R .

2.2 Sketch of Proof of MSI

First, we make a “suitable” choice of X ∈ X(Rn) into the last formula

∫

S
(div TSX +HR 〈X, ν〉) σn−1

R =

∫

∂S
〈X, η〉σn−2

R .

So let us fix x ∈ Rn and choose X(y) = y − x. Using Cauchy-Schwarz yields

(6) (n− 1)σn−1
R (S) ≤ r

(∫

S
|HR |σn−1

R + σn−2
R (∂S)

)
,

where r is the radius of a Euclidean ball Br(x) containing S. The inequality (6) is some-
times called Linear Isoperimetric Inequality. Using jointly (6) and Coarea formula, yields
the next key-property:

Lemma 12 (Monotonicity Inequality) The following inequality holds:

− d

dt

(
σn−1

R (St)

tn−1

)
≤ 1

tn−1
(A(t) + B(t))

for L1-a.e. t > 0, where St := S ∩Bt(x) and we have set

A(t) :=

∫

St

|HR |σn−1
R , B(t) := σn−2

R (∂S ∩Bt(x)).
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Remark 13 If S is minimal and ∂S = ∅, we have the (simpler) formula:

d

dt

(
σn−1

R (St)

tn−1

)
≥ 0

for L1-a.e. t > 0. Moreover, we stress that σn−2
R (∂St) = B(t) + B1(t), where B1(t) :=

σn−2
R (∂Bt(x) ∩ S). The proof of Lemma 12 is based on the inequality:

(7) B1(t) ≤ d

dt
σn−1

R (St)

for L1-a.e. t > 0. Note that, in turn, (7) follows from the well-known eikonal inequality:

|grad TS dEu| ≤ 1.

Using this estimate and the linear inequality for St = S ∩B(x, t) yields:

(n− 1)σn−1
R (St) ≤ t

(
A(t) + B(t) +

d

dt
σn−1

R (St)

)
,

which is equivalent to the monotonicity inequality.

Lemma 14 (Vitali-type Covering theorem) Let (X, %) be a compact metric space and
A ⊂ X. Let C be a covering of A by closed d-balls with centers in A. We also assume
that each point x of A is the center of (at least) one closed %-ball belonging to C and that
the radii of the balls of the covering are uniformly bounded by some positive constant.
Then, for every λ > 2 there exists a no more than countable subset C′ ( C of pairwise
non-intersecting closed balls Brk(xk) such that

A ⊂
⋃

k

Bλ rk(xk).

Monotonicity implies an estimate modelled on the previous covering lemma.

Lemma 15 (Calculus Lemma) Let x ∈ Int(S) and set

r0 = 2

(
σn−1

R (S)

ωn−1

)1/n−1

.

Then, for every λ ≥ 2 there exists r ∈]0, r0[ such that

σn−1
R (Sλr) ≤ λQ−1r0 (A(r) + B(r)) .

More precisely, the previous lemma follows from a contradiction argument based on
the Monotonicity formula. Putting all together, the proof of MSI easily follows.
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Remark 16 (Asymptotic) Monotonicity is equivalent to an exponential estimate:

σn−1
R (St) ≥ ωn−1 t

n−1e−H0t

as long as t→ 0+, where |HR | ≤ H0. For minimal hypersurfaces the estimate becomes

σn−1
R (St) ≥ ωn−1 t

n−1 as t→ 0+.

Finally, a classical argument due to Federer-Fleming and Maz’ja, implies the following:

Corollary 17 (Sobolev-type Inequality) Let S ⊂ Rn be a C2-smooth closed hypersurface
(without boundary). Then

(∫

S
|ψ|

n−1
n−2σn−1

R

)n−2
n−1

≤ CIsop
∫

S
(|HR ||ψ|+ |grad TSψ|)σn−1

R .

for every ψ ∈ C∞0 (S).

3 An extension of MSI to Carnot groups

Before stating our theorem, which generalizes MSI to hypersurfaces immersed in sub-
Riemannian Carnot groups, we need some preliminaries; see [8], [12, 13], [14], [15].

A k-step Carnot group (G, •) is a connected, simply connected, nilpotent and stratified
Lie group. The Lie algebra g ∼= Rn satisfies:

g = H ⊕H2...⊕Hk, [H1,Hi−1] = Hi ∀ i = 2, ..., k, Hk+1 = {0}.

We also set V := H⊥. Notice that H and V are smooth subbundles of TG called
horizontal and vertical. Hereafter, we shall use the abbreviation L.I.= left invariant. Let
XH := {X1, ..., Xh} be a L.I. frame for H . XH can be completed to a global L.I. frame
X := {X1, ..., Xn} for TG. We have Xi(x) = L∗ei, where {ei : i = 1, ..., n} is a Euclidean
basis of g = Rn. We shall use exponential coordinates of the 1st kind, so that G identifies
to g, via the exponential map exp .

Furthermore, let us fix a metric g = 〈·, ·〉 on g = T0G for which {Xi : i = 1, ..., n} is
an o.n. basis. Therefore, (G, g) is a Riemannian manifold, which has a (unique) L.I. Levi
Civita connection ∇.

A sub-Riemannian metric gH is a symmetric positive bilinear form on H . The CC-
distance dcc(x, y) between x, y ∈ G is

dcc(x, y) := inf

∫ √
gH (γ̇, γ̇)dt,

where the infimum is taken over all smooth horizontal curves γ joining the points. We
shall fix gH := g|H .
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Carnot groups are homogeneous groups, i.e. they admit a 1-parameter group of dila-
tions δt : G −→ G (t ≥ 0) given by

δtx := exp


∑

j,ij

tj xijeij


 ,

where x = exp
(∑

j,ij
xijeij

)
∈ G. The homogeneous dimension of G is Q :=

∑k
i=1 i hi,

where hi = dim Hi. We stress that the integer Q turns out to be the Hausdorff dimension
of (G, dcc) as a metric space; see [8], [14], [15].

Example 18 (The 1st Heisenberg group H1) Let (R3, •) endowed with the L.I. frame
{X,Y, T},

X = e1 −
y

2
e3, Y = e2 +

x

2
e3, T = e3,

where • is a polynomial operation defined by

(x, y, t) • (ξ, η, τ) =

(
x+ ξ, y + η, t+ τ +

1

2
(xη − yξ)

)
.

Obviously, we have H = spanR{X,Y }, V = spanR T and Q = 4.

Remark 19 (A motivation) We recall that Pansu in his PhD Thesis (1982) proved that for
every smooth compact domain Ω ⊂ H1 one has the following non-Euclidean Isoperimetric
Inequality:

(Vol(Ω))
3
4 ≤ CArea(∂Ω)

for some dimensional constant C > 0, where Area is the intrinsic 3-dimensional Haus-
dorff measure w.r.t. the CC-distance dcc. This was the first example of a non-Euclidean
isoperimetric inequality on (sub-Riemannian) Lie Groups; see also [15].

The L.I. volume of G is given by σnR :=
n∧
i=1

ωi ∈
∧n(T ∗G). Note that σnR is a Haar

measure and equals (up constants) the Lebesgue measure Ln on Rn.
Let S ⊂ G be a C1-smooth hypersurface. We say that x ∈ S is a characteristic point if

dim Hx = dim(Hx ∩ TxS).

We also set CS := {x ∈ S : dim Hx = dim(Hx ∩ TxS)} to denote the characteristic set of
S. Equivalently, x ∈ S is non-characteristic if, and only if, H intersects transversally S,
i.e. H t S at x. We stress that SQ−1

% (CS) = 0, where Sk% denotes, more generally, the
intrinsic k-dimensional spherical Hausdorff measure (w.r.t. the CC-distance dcc).

Let ν be the unit normal vector to S. Then, as in the Euclidean setting, we set

σn−1
R := (ν σnR )|S .

At this point, let us define the unit H -normal as νH := ProjH ν
|ProjH ν| . Accordingly, we define

the H -perimeter σn−1
H ∈ ∧n−1(T ∗S) by setting

σn−1
H := (νH σnR )|S .
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The following hold:

• σn−1
H = |ProjH ν|σn−1

R ,

• CS = {x ∈ S||ProjH ν| = 0},

• σn−1
H is equivalent to SQ−1

% up to a bounded density called metric factor.

Furthermore, the unit HS-normal along ∂S is given by ηHS := ProjHS η
|ProjHS η| and we set

σn−2
H :=

(
ηHS σn−1

H

) ∣∣
∂S
∈
∧n−2

(T ∗∂S).

Also in this case we have the representation formula:

σn−2
H = |ProjH ν| |ProjHS η|σn−2

R .

It is important to remark that σn−2
H is equivalent to SQ−2

% , up to a bounded density
function, which is called metric factor.

The horizontal tangent bundle HS ⊂ TS and the horizontal normal bundle νH S satisfy
the splitting H = νH ⊕HS.

From now on, let S ⊂ G be a C2-smooth hypersurface and let ∇TS be the induced
connection from ∇ on TS. The tangential connection ∇TS induces a partial connection
∇HS on HS as follows:

∇HS
XY := ProjHS

(
∇TS

X Y
)

∀X,Y ∈ X1(HS) := C1(S,HS).

Finally, the 2nd horizontal fundamental form is the map

BH (X,Y ) := 〈∇H
XY, νH 〉 X, Y ∈ X1(HS).

The trace of BH is the H -mean curvature HH , i.e. HH := TrBH = −div H νH . We remark
that, in general, BH is not symmetric: this is a big difference from the Riemannian case.

At this point, our main result can be stated as follows:

Theorem 20 (MS type inequality; see [13]) Let S ⊂ G be a compact hypersurface of class
C2 with piecewise C2-smooth boundary ∂S. Then

(
σn−1

H (S)
)Q−2
Q−1 ≤ CIsop

(∫

S
|HH |σn−1

H + σn−2
H (∂S)

)
.

where CIsop is a constant independent of S.

As in the Euclidean case, we can deduce asymptotic estimates for σn−1
H (but, in this

case, of local type) and Sobolev-type inequalities involving HS-derivatives only.
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[8] M. Gromov, Carnot-Carathéodory spaces seen from within. In “Subriemannian Geometry”,
Progress in Mathematics 144, ed. by A. Bellaiche and J. Risler, Birkhauser.

[9] J. M. Lee, “Introduction to smooth manifolds”. Graduate Texts in Mathematics, Springer.

[10] V. G. Maz’ya, Classes of domains and embedding theorem for functional spaces. Dokl. Acad.
Nauk SSSR, 133 (1960) no. 3, 527-530 (in Russian). Engl. transl. Soviet Math. Dokl., 1
(1961), 882–885.

[11] J. H. Michael, L. M. Simon, Sobolev and Mean-value Inequalities on Generalized Submanifolds
of Rn. Comm. on Pure and Applied Math., Vol. XXVI (1973), 361-379.

[12] F. Montefalcone, Hypersurfaces and variational formulas in sub-Riemannian Carnot groups.
Jour. Math. Pures et Appliquées 87 (2007), 453-494.

[13] , Isoperimetric and Sobolev inequalities on hypersurfaces in sub-Riemannian Carnot
groups. Preprint ArXiv (2010), 50 pages.

[14] R. Montgomery, “A Tour of Subriemannian Geometries, Their Geodesics and Applications”.
AMS, Math. Surveys and Monographs 91, 2002.

[15] P. Pansu, Submanifolds and differential forms in Carnot manifolds, after M. Gromov et M.
Rumin. Preprint (2005), 41 pages.

[16] L. M. Simon, “Lectures on geometric measure theory”. Proceedings of the Centre for Mathe-
matical Analysis, Austr. Nat. Univ. 1983.
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Moment Problems and

Spin Correlation Matrices

Neeraja Sahasrabudhe (∗)

Abstract. Moment problems (or more specifically, covariance realization problems) are about
realizability of a given pair correlation function or covariances (or higher moments), namely whether
a probability distribution is determined by its moments. That is, given m0,m1, . . . ∈ R, one wants
to find a probability measure µ such that

∫∞
−∞ xkdµ(x) = mk for k = 0, 1, . . .

Generalized moment problems of this kind have been widely studied, mainly in the theoretical
Engineering community, for continuous random variables.
We look at the specific case of covariance realization problem for spin systems and discuss the
necessary and sufficient conditions for a correlation matrix of order n ≥ 2 to be the correlation
matrix of spin variables in the classical sense and finally try to give an algorithm to explicitly
compute the probability measure that realizes the given correlations.

1 Introduction

1.1 Moment Problem

The moment problem is essentially the question of existence of a probability distribution
that realizes the given set of moments. That is, given m0,m1, . . . ∈ R, one wants to find
a probability measure µ such that

(1)

∫ ∞

−∞
xkdµ(x) = mk

for k = 0, 1, . . ..

If the probability measure that realizes the given moments is unique then the moment
problem is called determinate, if not we call it indeterminate.

It was Thomas Jan Stieltjes who in 1894-1895 formulated the moment problem on
positive real axis and used it as a means of studying the analytic behavior of continued
fractions, in which connection he invented the important Stieltjes integral. Later, in

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on April 5th, 2012.
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1920, Hamburger extended the ”Stieltjes moment problem,” which was only defined on
the positive real axis, to the ”Hamburger moment problem,” which is defined on the
whole real axis. Hamburger also introduced the modern definition of determinateness and
indeterminateness, which does not depend on the corresponding continued fractions.

This was the first profound and complete treatment of the moment problem. From be-
ing primarily a tool for the determination of convergence/divergence of continued fractions
it now became established as an independent problem.

The moment problems are just a special case of what are known as the Generalized
moment Problems. The Generalized moment Problems are of particular interest in
linear optimization and can be stated as follows:

Let (E, E) be a measurable space and F be a set of measurable functions

(2) f : E −→ C

Given, cf ∈ C, find a measure µ such that

(3)

∫

E
f(t)dµ(t) = cf

Remark 1 It is obvious that the moment problems are a special case of the generalized
moment problem defined above for f(x) = xk.

1.2 Covariance Realization Problem

Covariance realizations are also a special case of Generalized Moment Problem and can
be stated as follows:

Given a matrix C = ((cij)), find random variables X1, X2, . . . , Xn such that

(4) cij = Cov[Xi, Xj ].

The idea is to find a joint distribution of (X1, X2, . . . , Xn) which realizes the given covari-
ance matrix. The main objective of this note is to discuss a covariance realization problem
for spin systems.

2 Covariance Matrices

2.1 What are Covariance Matrices?

Consider a vector of random variables X = {X1, X2, . . . , Xn} with µ being a joint proba-
biliti distribution of X. We call C = ((cij))n×n where cij = Cov[Xi, Xj ] as the covariance
matrix of X. We define the Correlations matrix as

(5) corrij =
Cov[Xi, Xj ]√

Var(Xi) Var(Xj)
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Covariance matrices are necessarily symmetric and positive semi-definite.

Fact: Every symmetric positive semi-definite matrix is a covariance matrix.

Proof. Let M be a n × n symmetric, positive semi-definite matrix then, by the spectral
theorem we know that there exists a matrix M1/2 whose square is M . Now consider a
vector of mutually independent random variables X = (X1, X2, . . . , Xn) such that the
covariance matrix of X is an identity matrix. Then, the covariance matrix of M1/2X is
given by M .

So, being symmetric and positive semi-definite is necessary and sufficient for a matrix
to be a covariance matrix.

Remark 2 Every symmetric positive semi-definite matrix with 1’s on the diagonal is a
correlation matrix and vice versa. So to understand the geometry of the set of correlation
matrices is equivalent to understanding the geometry of the set of covariance matrices.

Denote by Cn the set of all such nth order correlation matrices. Cn is a convex set in
the n(n− 1)-dimensional Euclidean space of all symmetric matrices of order n with 1 on
the diagonal.

We already have a description of this space in terms of hyperplanes. (the condition of
positive semi-definiteness).

2.2 Extremal Correlations

Let En ⊂ Cn be the subset of extremals of the set of correlation matrices of order n. What
are the elements of En?

A lot of work was done over the years to understand the geometry of this convex space
and to find the extremals significantly by Christensen and Vesterstrom (1979), Grone
(1990) and Loewy (1980), Grone (1990) and it was shown that the convex set of all nth
order correlation matrices contains an extreme point of rank k if and only if k(k+ 1) ≤ n.

In 1998, K. R. Parthasarthy gave a complete description of the set of all extreme points
of this convex set and obtaining the above result as a corollary.

Theorem 1 (K. R. Parthasarathy) Let R be an nth order correlation matrix of rank k.
Then R ∈ En if and only if it admits the representation

(6)

(
Σ ΣA

A′Σ A′ΣA

)
P−1

where P is a permutation matrix of order n, Σ is a nonsingular correlation matrix of
order k and A is a k × (n − k) matrix of the form A = (a1,a2, . . . ,an−k), where ai; (i =
1, 2, . . . , (n− k)) are column vectors of order k satisfying the following:

1. ai
′
Σai = 1 for every i.

2. the rank of the set
{
ai � ai = 1, i = 1, 2, . . . , (n− k)

}
is
(
a
b

)
where � is defined as

(7) a� a = (a1a2, a1a3, . . . , a1ak, a2, a3, . . . , ak−1ak)
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3 Spin Systems and Spin Correlation Matrices

3.1 Spin System

Let Ωn = {−1, 1}n be the space of n-length sequences denoted by σ = (σ1, σ2, . . . , σn),
where σi = ±1. Each of σi is called a spin (or a spin random variable) and we will refer
to this set as a spin system.

Suppose we are (possibly partially) given the spin-spin correlations cij := E(σiσj) of
the above spin system (we assume E(σi) ≡ 0). Under what conditions a distribution with
those correlations exists, and how to determine it?

Let’s try to understand how the spin correlation matrices look like.

3.2 Spin Correlations

What are the necessary and sufficient conditions for a correlation matrix of order n ≥ 2
to be the correlation matrix of spin variables in the classical sense?

Bell’s inequalities: The well-known Bell’s inequalities are:

(8) 1 + εiεjcij + εjεkcjk + εkεicki ≥ 0 ∀ i < j < k ≤ n

where εj ε {−1, 1}.
It is known that the Bells inequalities are necessary and sufficient for a correlation matrix
of order ≤ 4 to be the correlation matrix of spin random variables in the classical sense.
(Balasubramanian, Gupta and Parthasarathy, 1998)

Convex Polyhedra: Every convex polyhedron has two representations, one as the
intersection of finite half-spaces and the other as Minkowski sum of the convex hull of fi-
nite points and the nonnegative hull of finite directions. These are called H-representation
and V-representation, respectively.

We will now see that a complete V-representation description for the space of covariance
matrices of spin systems is known.

Theorem 2 (J. C. Gupta, 1999) The class of realizable correlation matrices is given by

(9) Cn = ConvexHull {ΣT : T ∈ T }

where ΣT and T are defined as follows:

(10) T = {T ⊂ {1, 2, . . . , n} : 1 ∈ T}

and

(11) ΣT = ((cTij))

where cTii = 1 for all i and cTij = (−1)|T∩{i,j}| for i 6= j
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Proof. On Ωn, for T ⊂ {1, 2, . . . , n} denote by σT the sequence/configuration σ for which
σi = −1 for all i ∈ T and σj = 1 for all j ∈ T ′. Define a probability as follows:

(12) P T
({

σT
})

= P T
({

σT
′
})

=
1

2

Then, αTΣT (where αT ≥ 0 and
∑
αT = 1) is the correlation matrix of the random

variables σi with probability P =
∑
αTΣT .

Conversely, if ∆ is a correlation matrix of n spins ξi on (Ω,F , Q), we can define a
probability P on Ωn in terms of Q such that P =

∑
T αTP

T and under P , σi are spin

variable with correlation matrix ∆ such that ∆ =
∑
αTΣT ∈ Cn with αT = P

({
σT
}

+
{
σT
′
})

.

An example: Lets take n = 3. Then,

(13) T = {{1} , {1, 2} {1, 3} {1, 2, 3}}

the corresponding correlation matrices that are the extremals of the space of spin correla-
tion matrices of order n are

(14)




1 −1 −1
−1 1 1
−1 1 1


 ,




1 1 −1
1 1 −1
−1 −1 1


 ,




1 −1 1
−1 1 −1
1 −1 1




(15)




1 1 1
1 1 1
1 1 1




The corresponding Bell’s inequalities are

(16) 1 + c12 + c23 + c13 ≥ 0

(17) 1− c12 − c23 + c13 ≥ 0

(18) 1− c12 + c23 − c13 ≥ 0

(19) 1 + c12 − c23 − c13 ≥ 0

Since we know that the Bell’s inequalities are necessary and sufficient in this case, we
have both H and V representation of the space of correlation matrices of order 3.

How do we find a complete set of inequalities that are necessary and sufficient for a
correlation matrix to be a correlation matrix of a spin system? In other words, what is
the H-representation of the space of correlation matrices of spin systems? We try to find
this complete set of inequalities by solving the covariance realization problem using the
maximum entropy method.
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3.3 Maximum Entropy Solution for Spin Systems

We want to find a density function for the spin random variables such that it maximizes
the entropy where the entropy is defined as:

(20) S(P(σ)) = −
∑

σ

P(σ) lnP(σ)

We have the following constraints:

(21)
∑

σ

σhσkP(σ) = chk and
∑

σ

P(σ) = 1

Maximum Entropy Solution:
We use the method of Lagrange multipliers to solve the given optimization problem.

As expected, we get a probability measure of the exponential family.

(22) P∗(σ) =
1

Z
exp




∑

h,k

λhkσhσk





where Z is the normalization constant (it depends on λ where λ denotes the matrix ((λij)))
and λhk are the Lagrange Multipliers.

Dual Problem:
The dual functional has the form:

(23) J (λ) = −
∑

h,k

λhkchk + ln


∑

σ

exp




∑

h,k

λhkσhσk








Note that, ∇J = 0 implies P∗(σ) satisfies the constraints. A critical point exists if J is
proper, which means,

(24) lim
|λ|→∞

J (λ) = +∞

It is clear that the following set of inequalities ensure the properness of J :

(25)
∑

{i,j}
cijλij ≤ max




∑

{i,j}∈E
λijσiσj : σ ∈ Ω



 for every λ

We denote this set of inequalities by ∆n. We have the following theorem:

Theorem 3 For E as above and λ ∈ RE, define

(26) M(λ) := max




∑

{i,j}∈E
λijσiσj : σ ∈ Ω




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and

(27) ∆n :=



C = ((cij)) :

∑

{i,j}
cijλij ≤M(λ) for every λ





Then,

(28) ∆n = Covn

We are not giving the proof of this theorem here but let us look a little closely at these
inequalities. Given the closed form as above, it is not clear how these inequalities actually
look. We are going to show here that for a suitable choice of λij , these inequalities yield
the inequalities that we are already familiar with.

(a) Positivity: Let x ∈ Rn. Set λij = −xixj . Then,

(29)
∑

ij

λijσiσj = −1

2

[∑

i

xiσi

]2
≤ 0

for every σ ∈ Ω. So, for C ∈ ∆n, −∑ij xixjcij ≤ 0 which implies positivity.

(b) Bell’s inequalities: For A ⊂ {1, 2, . . . , n} such that |A| = 3 Let λij = −εiεj for
i, j ∈ A, i 6= j (0 otherwise). If A = {u, v, w}, then by re-writing

∑
ij λijσiσj we get

that
∑

ij λijσiσj ≤ 1. This means, M(λ) ≤ 1 and so for C ∈ ∆n we get,

(30) −εuεvcuv − εvεwcvw − εuεwcuw ≤ 1

which are precisely the Bell’s inequalities.

∆n is the complete set of inequalities that guarantee feasibility of existence of the
maximum entropy measure. One would like to obtain a minimal set of inequalities that
guarantee necessity and sufficiency. For that, we make special choice for λij to get some
interesting inequalities that we call the generalized Bell’s inequalities.

(31)
|T | − 1

2
+
∑

i 6=j∈T
εiεjcij ≥ 0

where T ⊂ {1, 2, . . . , n} such that |T | is odd.
These generalized Bell’s inequalities are necessary and sufficient for n = 5. There are some
generalizations of Bell’s inequalities that turn out to be necessary and sufficient for the
case n = 6, 7 as well.

Università di Padova – Dipartimento di Matematica 144



Seminario Dottorato 2011/12

4 Explicit Calculations

4.1 Setting

Given a vector of moments (spin covariances in this case), how does one find probability
measure or equivalently the vector of parameters λ (Lagrange multipliers) that realizes
the given covariances (if at all)?

As before, Ωn is the set {−1, 1}n. Let σ ∈ Ωn, we call σ = (σ1, . . . , σn) a configuration.
Note that |Ωn| = 2n.

Denote by C the space of real-valued (scalar) functions on Ωn. We denote by G a
(N + 1)-dimensional subspace of C generated by a set of basis functions (g0, g1, . . . , gN )
(where g0 ≡ 1). Define,

(32) G =
{
G(σ) = [g0(σ), g1(σ), . . . , gN (σ)]T : σ ∈ Ωn

}
∈ RN+1

and

(33) R(G) = {R : R =
∑

Ωn

G(σ)µ(σ) where µ is a probability measure on Ωn}

4.2 Main Theorem

Theorem 4 Consider R1 ∈ RN . The differential equation -

(34)
dλ(t)

dt
= −M(λ)−1

(
R1 −

∑

Ωn

G(σ)
1

Z(λ)
e−〈λ,G(σ)〉

)

where,

(35) M(λ) =
∑

Ωn

G(σ)
1

Z(λ)
e−〈λ,G(σ)〉G(σ)T

and λ(0) = λ0. Note that G(σ)T denotes the transpose of the column vector G(σ). If R1 ∈
int (R(G)), then as t −→ ∞ the solution λ(t) of the differential equation tends to a limit
λ1 that satisfies

(36) R1 =
∑

Ωn

G(σ)
1

Z(λ)
e−〈λ1,G(σ)〉

Conversely, if R1 /∈ int(R(G)), then ‖λ(t)‖ −→ ∞.

Remark 3 In the case of covariance realization problem for spins G is a (n(n−1)
2 + 1) -

dimensional subspace with basis functions g0, g1,2, g1,3, . . . g2,3, g2,4, . . . gn−1,n defined as:

(37) gi,j(σ) = σiσj
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The idea is to solve the differential equation

(38)
dλ(t)

dt
= −M(λ)−1

(
R1 −

∑

Ωn

G(σ)
1

Z(λ)
e−〈λ,G(σ)〉

)
;

the solution λ1 gives the required probability measure. We look at the corresponding Euler
scheme to solve the above differential equation:

(39) λn+1 = λn −M(λn)−1

(
R1 −

∑

Ωn

G(σ)
1

Z(λn)
e−〈λn,G(σ)〉

)
.

Thus, one can explicitly construct the maximum entropy measure for the given covariance
problem.
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Harmonic functions in a domain

with a small hole

Paolo Musolino (∗)

Abstract. The asymptotic behaviour of the solutions of boundary value problems in domains with
small holes has been largely investigated by many authors with different approaches. In this note,
we consider a Dirichlet problem for the Laplace operator in a bounded domain of Rn where we
make a small perforation, and we see what happens to the solutions when the hole collapses to
a point. (Keywords : Singularly perturbed perforated domains; harmonic functions; real analytic
continuation in Banach space. 2000 MSC : 31B05; 31B10; 35B25; 35C20; 35J25.)

1 Introduction

In this note, we investigate the asymptotic behaviour of the solutions of a Dirichlet problem
for the Laplace operator in a bounded domain with a small hole. Some of the results
presented here have been proved by Lanza de Cristoforis [14]. Others, instead, can be
deduced by a general result by Dalla Riva and the author [7], concerning certain real
analytic families of harmonic functions in a domain with a small hole. In this note, such
a family will consist of the solutions of a Dirichlet problem in a perforated domain with a
hole whose size depends on a parameter ε.

We fix once for all
n ∈ N \ {0, 1, 2} , α ∈]0, 1[ .

Then we fix two sets Ωi and Ωo in the n-dimensional Euclidean space Rn. We assume
that Ωi and Ωo satisfy the following condition.

Ωi and Ωo are open bounded connected subsets of Rn of

class C1,α such that Rn \ cl Ωi and Rn \ cl Ωo are connected,

and such that the origin 0 of Rn belongs both to Ωi and Ωo.

(1.1)

Here cl Ω denotes the closure of Ω for all Ω ⊆ Rn. For the definition of functions and
sets of the usual Schauder classes C0,α and C1,α, we refer for example to Gilbarg and
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Trudinger [10, §6.2]. The set Ωo will represent the unperturbed domain where we shall
make a hole. The set Ωi, instead, will represent, in a sense, the shape of the perforation.
Here, the letter ‘i’ stands for ‘inner domain’ and the letter ‘o’ stands for ‘outer domain’.

We note that condition (1.1) implies that Ωi and Ωo have no holes and that there exists
a real number ε0 such that

ε0 > 0 and εcl Ωi ⊆ Ωo for all ε ∈]− ε0, ε0[.

We can now introduce the perforated domain Ω(ε) by setting

Ω(ε) ≡ Ωo \ (εcl Ωi) ∀ε ∈]− ε0, ε0[ .

In other words, the set Ω(ε) is obtained by removing from Ωo the closure of the set εΩi,
which can be seen as a hole.

A simple topological argument shows that Ω(ε) is an open bounded connected subset
of Rn of class C1,α for all ε ∈] − ε0, ε0[\{0}. Moreover, the boundary ∂Ω(ε) of Ω(ε) has
exactly the two connected components ∂Ωo and ε∂Ωi, for all ε ∈] − ε0, ε0[. In particular,
∂Ωo is the ‘outer boundary’ of Ω(ε), whereas ε∂Ωi is the ‘inner boundary’. We also note
that Ω(0) = Ωo \ {0}.

For each ε ∈] − ε0, ε0[\{0} we want to consider a Dirichlet problem for the Laplace
operator ∆ ≡ ∑n

j=1 ∂
2
xj in the perforated domain Ω(ε). In order to do so, we need

to introduce a suitable Dirichlet datum defined on ∂Ω(ε). So let f i ∈ C1,α(∂Ωi) and
fo ∈ C1,α(∂Ωo). We note that if ε ∈] − ε0, ε0[\{0}, then the function fε from ∂Ω(ε) to R
defined by

fε(x) ≡
{
f i(x/ε) if x ∈ ε∂Ωi ,

fo(x) if x ∈ ∂Ωo ,

is in C1,α(∂Ω(ε)).
Then for each ε ∈]− ε0, ε0[\{0}, we consider the following boundary value problem

(1.2)





∆u = 0 in Ω(ε) ,
u(x) = f i(x/ε) for x ∈ ε∂Ωi ,
u(x) = fo(x) for x ∈ ∂Ωo .

As is well known, the problem in (1.2) has a unique solution in C1,α(cl Ω(ε)), and we denote
such a solution by uε. Here, we recall that a function defined on cl Ω(ε) is in C1,α(cl Ω(ε))
if its derivatives of order less or equal to 1 can be extended with continuity to cl Ω(ε) and
its derivatives of order 1 are Hölder continuous with exponent α. Our aim is to investigate
the behaviour of the solution uε of (1.2) as ε tends to 0. We observe that problem (1.2) is
clearly singular when ε = 0. Indeed, the domain Ω(ε) is degenerate for ε = 0 and also the
second condition in (1.2) does not make sense for ε = 0.

Therefore, in order to study the behaviour of uε, we can fix a point which belongs to
Ω(ε) for all ε that are close to 0, and see what happens to the value of the solution uε at
this fixed point, as ε approaches 0. Also, we can choose to approach to the degenerate
value ε = 0, for example, from positive values of ε. So assume that

(1.3) p ∈ Ωo \ {0} ,
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and that

(1.4) εp ∈]0, ε0[ is such that p ∈ Ω(ε) for all ε ∈]0, εp[.

We note that (1.4) implies that the point p belongs to the domain of the function uε for
all ε ∈]0, εp[, and therefore it makes sense to consider uε(p) for ε ∈]0, εp[. Thus we can ask
the following question.

What can be said of the map from ]0, εp[ to R
which takes ε to uε(p) when ε is close to 0?

(1.5)

Questions of this type are not new and have long been investigated for example with
the methods of Asymptotic Analysis.

Thus, one could resort to Asymptotic Analysis and may succeed to write out an asymp-
totic expansion of uε(p) in terms of the parameter ε. In this sense, we mention, e.g., the
work of Ammari and Kang [1, Ch. 5], Ammari, Kang, and Lee [2, Ch. 3], Dauge, Tordeux,
and Vial [8], Kozlov, Maz’ya, and Movchan [11], Maz’ya, Nazarov, and Plamenewskij [17],
Ozawa [20], Ward and Keller [21].

Here instead we wish to characterize the behaviour of uε at ε = 0 by a different
approach. Thus for example, if we consider a certain function relative to the solution
(such as, for example, the value of uε at the point p, as in question (1.5)), we would try
to represent it for ε > 0 in terms of real analytic functions of the variable ε defined on a
whole neighbourhood of 0, and of possibly singular at ε = 0 but explicitly known functions
of ε (such as log ε, ε−1, etc.).

We observe that our approach does have certain advantages. Indeed, if we knew, for
example, that uε(p) equals for positive values of ε a real analytic function of the variable
ε defined on a whole neighbourhood of 0, then there would exist ε′ ∈]0, εp[ and a sequence
{cj}∞j=0 of real numbers such that

uε(p) =
∞∑

j=0

cjε
j ∀ε ∈]0, ε′[ ,

where the series in the right hand side converges absolutely on ]− ε′, ε′[.
Such a project has been carried out by Lanza de Cristoforis in several papers for linear

and nonlinear problems for the Laplace operator in a bounded domain with a small hole
(cf., e.g., Lanza [12, 13, 14, 15]). Later, it has been extended to singular perturbation
problems for the Lamé equations (see Dalla Riva and Lanza [4, 5, 6]) and for the Stokes
system (see Dalla Riva [3]). More recently, also singularly perturbed boundary value
problems in an infinite periodically perforated domain have been considered (cf., e.g., [18,
19] and Lanza and the author [16]).

2 What happens when ε is positive and close to 0?

In the following theorem, we answer question (1.5) on the behaviour of uε(p) as ε → 0+,
by exploiting the functional analytic approach proposed by Lanza de Cristoforis.
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Theorem 2.1 [Lanza de Cristoforis [14]] Let p be as in (1.3). Then there exist εp as in
(1.4) and a real analytic function Up from ]− εp, εp[ to R such that

uε(p) = Up(ε) ,

for all ε ∈]0, εp[.

By Theorem 2.1, the function which takes ε ∈]0, εp[ to uε(p) can be continued real ana-
lytically for negative values of ε, and accordingly uε(p) can be represented for ε small and
positive in terms of a power series which converges absolutely on a whole neighbourhood
of 0. We also note that for the validity of Theorem 2.1 the assumption n ≥ 3 is crucial.
Indeed, if we considered problem (1.2) in the two-dimensional case, then we would have

(2.2) uε(p) = U#,1
p (ε) +

U#,2
p (ε)

U#,3
p (ε) + U#,4

p (ε) log ε

for ε small and positive, where U#,1
p , U#,2

p , U#,3
p , U#,4

p are real analytic functions defined
on a whole neighbourhood of 0 (cf. Lanza [14, Theorem 5.3]). As a consequence, due to
the presence of the logarithmic term in the right hand side of (2.2), the left hand side of
(2.2), in general, cannot be continued real analytically around ε = 0.

Actually, we can go deeper into the analysis of the behaviour of uε. Namely, instead of
considering the behaviour of the value of uε at a fixed point, as done in Theorem 2.1, we
can consider the behaviour of the restriction of uε to the closure of a suitable open subset
of Ωo \ {0}, and we can prove the following result.

Theorem 2.3 [Lanza de Cristoforis [14]] Assume that

(2.4) Ω̃ is a bounded open subset of Rn such that cl Ω̃ ⊆ Ωo \ {0} .

Then there exist εΩ̃ such that

(2.5) εΩ̃ ∈]0, ε0[ and cl Ω̃ ⊆ Ω(ε) for all ε ∈]− εΩ̃, εΩ̃[ ,

and a real analytic operator UΩ̃ from ]− εΩ̃, εΩ̃[ to C0(cl Ω̃) such that

(2.6) uε(x) = UΩ̃[ε](x) ∀x ∈ cl Ω̃ ,

for all ε ∈]0, εΩ̃[.

We note that in Theorem 2.3 UΩ̃ is a real analytic operator from an open neighbourhood

of 0 in R to the Banach space C0(cl Ω̃) of continuous functions on cl Ω̃, endowed, as usual,
with the ‘supremum’ norm. Here we just recall that if X , Y are (real) Banach spaces, and
if F is an operator from an open subset W of X to Y, then F is real analytic in W if
for every x0 ∈ W there exist r > 0 and continuous symmetric j-linear operators Aj from
X j to Y such that

∑
j≥1 ‖Aj‖rj < ∞ and F (x0 + h) = F (x0) +

∑
j≥1Aj(h, . . . , h) for

‖h‖X ≤ r (cf., e.g., Deimling [9, p. 150]).
We note that Theorem 2.3 can also be deduced by some more recent results of Dalla

Riva and the author [7], concerning real analytic families of harmonic functions (cf. [7,
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Proposition 4.1]). Moreover, in Lanza [14, Theorem 5.3] also real analyticity properties of
the solution upon perturbations of Ωo and Ωi have been proved.

It is worth noting that Theorem 2.1 can be deduced by Theorem 2.3. Indeed, if p ∈ cl Ω̃,
since the map which takes a function u ∈ C0(cl Ω̃) to u(p) is linear and continuous (and
thus real analytic) and since the composition of real analytic operators is real analytic, we
deduce that the function from ]− εΩ̃, εΩ̃[ to R which takes ε to UΩ̃[ε](p) is real analytic. As
a consequence, Theorem 2.1 holds with εp ≡ εΩ̃ and Up(ε) ≡ UΩ̃[ε](p) for all ε ∈]− εΩ̃, εΩ̃[.

3 What happens for ε negative?

We now observe that both uε and UΩ̃[ε] in equality (2.6) are defined also for negative
values of ε. However, by Theorem 2.3, we just know that the equality in (2.6) holds when
ε is small and positive. As a consequence, it is natural to ask the following question.

(3.1) Does the equality in (2.6) hold also for ε negative?

In Dalla Riva and the author [7], it has been shown that the answer to the question
in (3.1) depends on the parity of the dimension n.

The following theorem says that if the dimension n is even (n = 4, 6, 8, . . . ), then the
equality in (2.6) holds also for ε < 0 (cf. Dalla Riva and the author [7, Theorem 3.1 and
Proposition 4.1]). Moreover, we can introduce a function u0 in such a way that equality
(2.6) holds in a whole neighbourhood of 0, and in particolar also for ε = 0.

Theorem 3.2 [Dalla Riva and M. [7]] Let n be even (and n ≥ 3). Let Ω̃, εΩ̃ be as in (2.4),
(2.5), respectively. Let u0 be the unique solution in C1,α(cl Ωo) of the following Dirichlet
problem {

∆u = 0 in Ωo ,
u(x) = fo(x) for x ∈ ∂Ωo .

Then there exists a real analytic operator UΩ̃ from ]− εΩ̃, εΩ̃[ to C0(cl Ω̃) such that

uε(x) = UΩ̃[ε](x) ∀x ∈ cl Ω̃ ,

for all ε ∈]− εΩ̃, εΩ̃[.

We now turn to consider case n odd. As we shall see, if n is odd (n = 3, 5, 7, . . . ),
then the validity of the equality in (2.6) also for ε < 0 has to be considered as a very
exceptional situation. Indeed, we have the following theorem (cf. Dalla Riva and the
author [7, Proposition 4.3]).

Theorem 3.3 [Dalla Riva and M. [7]] Let n be odd (and n ≥ 3). Then the following
statements are equivalent.

(i) There exist Ω̃, εΩ̃ as in (2.4), (2.5), respectively, and a real analytic operator UΩ̃

from ]− εΩ̃, εΩ̃[ to C0(cl Ω̃) such that

uε(x) = UΩ̃[ε](x) ∀x ∈ cl Ω̃ ,
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for all ε ∈]− εΩ̃, εΩ̃[\{0}.

(ii) There exists c ∈ R such that

f i(x) = c ∀x ∈ ∂Ωi , fo(x) = c ∀x ∈ ∂Ωo

(so that uε(x) = c for all x ∈ cl Ω(ε) and ε ∈]− ε0, ε0[\{0}).

Clearly, if statement (ii) of Theorem 3.3 holds and Ω̃, εΩ̃ are as in (2.4), (2.5), respec-

tively, then the operator UΩ̃ from ]− εΩ̃, εΩ̃[ to C0(cl Ω̃) defined by

UΩ̃[ε](x) = c ∀x ∈ cl Ω̃ , ∀ε ∈]− εΩ̃, εΩ̃[ ,

is such that the equality in (2.6) holds for ε ∈] − εΩ̃, εΩ̃[\{0}, and therefore we deduce
the validity of statement (i). On the other hand, Theorem 3.3 says in particular that if
there exists at least one open subset Ω̃ as in (2.4) for which we can find a small positive
number εΩ̃ as in (2.5) and a real analytic operator UΩ̃ from ] − εΩ̃, εΩ̃[ to C0(cl Ω) such
that the equality in (2.6) holds for ε ∈]− εΩ̃, εΩ̃[\{0}, then we are in the very exceptional
situation that f i and fo are equal to the same constant c ∈ R (and that accordingly uε = c
on cl Ω(ε) for all ε ∈] − ε0, ε0[\{0}). Hence, if n is odd the validity of equality (2.6) also
for ε negative has to be considered as a very special situation which happens only in the
very trivial case in which the functions uε for ε ∈] − ε0, ε0[\{0} are all equal to the same
constant.
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Coherent states approximation

and semiclassical limit

Simone Vazzoler (∗)

Abstract. The problem of understanding the relation between Classical and Quantum Mechanics
has a long history which dates back to Schrödinger in 1926. After an introductory part on Classical
and Quantum Mechanics, we start giving the definition of Coherent State and consider the problem
of approximating the exact solution to the Schrodinger equation using this particular class of wave
functions. In the last part we discuss about the error term of this approximation and introduce
the so called Ehrenfest time.

1 Classical and Quantum Mechanics

Classical Mechanics originated in 1687 with Isaac Newton’s laws of motion in Principia
Mathematica. It models real world objects as point particles, that is objects whose size is
negligible. The state of the point particle P is then described as a point (q, p) moving in
the phase space T ∗M (the cotangent space of M). Here and in the following q ∈ M will
represent the position of P while p ∈ T ∗qM will be the momentum of the particle. To keep
things simple we will consider M = Rn and, consequently, T ∗M = R2n.The time evolution
of the particle is then described by the Hamiltonian function h(q, p) and by Hamilton’s
equations

(1.1)





q̇(t) = ∂ph(q, p)

q(0) = q

ṗ(t) = −∂qh(q, p)

p(0) = p

a first order system of ODE in R2n. We define the flow of the Hamiltonian vector field

as ϕth(q, p)
def
= (q(t), p(t)) (i.e. the solution of (1.1)) and for sake of simplicity we will

always consider h(q, p) = |p|2
2 + V (q). In Physics a system observable is a property of the

state that can be determined by some sequence of physical operations (the observations

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on June 20th, 2012.
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or measurements). In Classical Mechanics an observable is simply a function

a : T ∗M → R
(q, p) 7→ a(q, p)

and if we define at(q, p)
def
= a(ϕth(q, p)) then the time evolution of a is given by

(1.2) ȧt =
d

dt
at(q, p) = −{a, h}

where {·, ·} are the Poisson brackets

(1.3) {f, g} def
=

n∑

i=1

∂pf∂qg − ∂qf∂pg

We want to point out that it is equivalent describing Hamiltonian Mechanics using equation
(1.2) or (1.1).

The set of states in Quantum Mechanics is described by an Hilbert space H. In the
following we will always consider H = L2(Rn) but generally it is possible to take different
spaces. Note that the wave functions (that are the elements of H) are complex-valued
functions, so that we identify L2(Rn) = L2(Rn,C). We will denote the elements of L2(Rn)
with ψ(x). To be more precise

L2(Rn) =

{
ψ : Rn → C :

∫

Rn
ψ∗(x)ψ(x)dx < +∞

}

where ψ∗ is the complex conjugation. We will always consider only the pure states, that
means the states ψ such that ‖ψ‖L2 = 1. In this case |ψ(x)|2 is the probability distribution
of the particle.

The time evolution of the quantum states is described by Schrödinger equation

(1.4)

{
iε∂tψ(t, x) = Hψ(t, x)

ψ(0, x) = ψ0(x)

where H = − ε2

2 ∆+V (x) is the operator acting on the state ψ(t, x) representing the energy
of the system. When H is not time dependent, a (formal) solution can be obtained as

(1.5) ψ(t, x)
def
= UH(t)ψ0(x) = e−

i
ε
tHψ0(x)

An observable in QM is represented by a self-adjoint operator A acting on the Hilbert

space L2(Rn). If we define A(t)
def
= UH(−t)AUH(t) then its time evolution satifies

(1.6) Ȧ =
d

dt
A(t) = − i

ε
[A(t), H]

where [A,B] = AB − BA is the commutator. The two (most important) observables in
Quantum Mechanics are the position X and the momentum P , where

Xiψ(x) = xiψ(x)

Piψ(x) = −iε∂xiψ(x)
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In 1927 Heisenberg postulated the so called uncertainty principle:

〈∆Xi〉ψ〈∆Pi〉ψ ≥
ε

2

where
〈∆A〉ψ =

√
〈ψ|A2ψ〉 − 〈ψ|Aψ〉2

is the error of the measurement of A (its standard deviation). In Quantum Mechanics, the
uncertainty principle asserts a fundamental lower bound on the precision with which the
position x and the momentum p, can be simultaneously known. The uncertainty principle
is a particular case of Robertson-Schrödinger inequality that states that if A and B are
two operators then the following inequality holds true:

〈∆A〉2ψ〈∆B〉2ψ ≥
1

2
(〈{A,B}〉ψ − 〈A〉ψ〈B〉ψ)2 +

(
1

2i
〈[A,B]〉

)2

where {A,B} = AB + BA is the anti-commutator. To sum up we present in Table 1 the
correspondence between Classical and Quantum Mechanics. As one can see there is no
“classical version” of uncertainty principle. Only very recently in [4] the author proved that
Robertson-Schrödinger inequality appears in Classical Mechanics starting from Gromov’s
symplectic non-squeezing theorem (also called “the Principle of the Symplectic Camel”)
and introducing “quantum blobs”. The aim of semiclassical analysis and in particular of
the semiclassical limit is to understand how the classical dynamics determine the behaviour
of the solutions of Schrödinger equation as ε→ 0

iε∂tψ(t, x) = −ε
2

2
∆ψ(t, x) + V (x)ψ(t, x)

Classical Mechanics Quantum Mechanics

States (q, p) ∈ R2n ψ(t, x) ∈ L2(Rn)

Time evolution (q(t), p(t)) = ϕth(q, p) ψ(t, x) = UH(t)ψ(x)

Observables a : R2n → R A : L2(Rn)→ L2(Rn)

Time evolution ȧ = −{a, h} Ȧ = − i
ε [A,H]

Uncertainty principle ? 〈∆X〉ψ〈∆P 〉ψ ≥ ε
2

Table 1: The Classical-Quantum correspondence

2 Coherent States

We start searching for the “most classical” states in QM. These are the states ψ that
minimizes Heisenberg inequality

(2.1) 〈∆Xi〉ψ〈∆Pi〉ψ =
ε

2

We call such states coherent states. In literature these states are also called MUST (Min-
imum Uncertainty STates, e.g. [1]).
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Proposition 2.1 Let (q, p) ∈ R2n. A coherent state ψ(q,p)(x) has the following form

(2.2) ψ(q,p)(x) =

(
1

πε

)n/4
e

i
ε
S(q,p)(x)

n∏

i=1

e−
(xi−qi)2

2ε

where S(q,p)(x) satisfies

(2.3) [(∂xiS(q,p))
2 ∗ G](q) = [(∂xiS(q,p)) ∗ G]2(q)

with G(x) =
(

1
πε

)n/2∏n
i=1 e

−x
2
i
ε

It is easy to see that the simplest function S(q,p) that satisfies equation (2.3) is S(q,p)(x) =
〈p|x− q〉. For this reason in the following a coherent state will be

(2.4) ψ(q,p)(x) =

(
1

πε

)n/4
e

i
ε
〈p|x−q〉

n∏

i=1

e−
(xi−qi)2

2ε

and we will rewrite it as

(2.5) ψ(q,p)(x) =

(
1

πε

)n/4
e

i
ε(

1
2
〈x−q|Z(x−q)〉+〈p|x−q〉)

with Z = iI.
Since in the following our coherent state will evolve in time and will change its shape, we
generalize the concept of coherent state with the following definition.

Definition 2.2 Let a ∈ R>0, (q, p) ∈ R2n, Θ ∈ R and Z be a complex n× n matrix. We
define a generalized coherent state centered in (q, p) as the following wave function

(2.6) ψa,Z,Θ(q,p) (x) = ae
i
ε(

1
2
〈x−q|Z(x−q)〉+〈p|x−q〉+Θ)

where ‖ae− 1
2ε
〈x−q|=Z(x−q)〉‖L2 = 1.

Some remarks on the last definition:

(i) a generalized coherent state does not satisfy equation (2.1);

(ii) we will have (q, p) = (q(t), p(t)), Z = Z(t), a = a(t),Θ = Θ(t);

(iii) if Z = iI, Θ = 0 and a =
(

1
πε

)n/4
then

ψa,Z,Θ(q,p) (x) =

(
1

πε

)n/4
e

i
ε(

1
2
〈x−q|Z(x−q)〉+〈p|x−q〉) = ψ(q,p)(x)

as in equation (2.5).
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3 The main theorem

We consider a coherent state

φ(q,p)(x) =

(
1

πε

)n/4
e

i
ε(−

1
2
〈x−q|Z(x−q)〉+〈p|x−q〉)

where Z = iI. We want to construct an approximate solution of the following Cauchy
problem

(3.1)

{
iε∂tφ(t, x) = − ε2

2 ∆φ(t, x) + V (x)φ(t, x)

φ(0, x) = φ(q,p)(x)

The exact solution will be given by φ(t, x) = e−
i
ε
tHφ(q,p)(x). Now we present the main

theorem of these notes (the statement of this theorem can be found in [5] or in [6]).

Theorem 3.1 There exist a generalized coherent state ψ
a(t),Z(t),Θ(t)
(q(t),p(t)) such that

(3.2)
∥∥∥φ(t, x)− ψa(t),Z(t),Θ(t)

(q(t),p(t)) (x)
∥∥∥
L2
≤ Cε1/2t|=Z(t)|−3/2

uniformly in x, where (q(t), p(t)) is the classical flow ϕth(q, p), Z(t) is a complex n × n
matrix, a(t) is a real function and the phase factor Θ(t) is given by

(3.3) Θ(t) =

∫ t

0

[
p(s)q̇(s)− h(q(s), p(s))

]
ds

Proof. We will give only the sketch of the proof.

(1) put ψ
a(t),Z(t),Θ(t)
(q(t),p(t)) in the equation and use Taylor expansion of the potential V (x) in

powers of (x − q): from imposing that order 0, 1 and 2 are all equal to 0 one gets
three equation for the parameters

iε
ȧ

a
− Θ̇− 〈p, q̇〉 = − iε

2
trZ +

|p|2
2

+ V (q)(3.4)

−ṗ+ Zq̇ = Zp+ V ′x(q)(3.5)

−Ż = Z2 + V ′′x,x(q)(3.6)

(2) eq. (3.5) is easily solved by (q(t), p(t)) = ϕth(q, p). The real part of eq. (3.4) is solved

by Θ(t) =
∫ t

0

[
p(s)q̇(s)− h(q(s), p(s))

]
ds

(3) Solve eq. (3.6): the solution is given by Z(t) = S(t)∗Z := (S21+S22Z)(S11+S12Z)−1

where S(t) solves

(3.7)




Ṡ = (JH ′′h)S =

(
O I

−V ′′x,x(q(t)) O

)
S

S(0) = I
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and now one can also find a solution for the imaginary part of eq. (3.4), that is

a(t) = (det=Z)1/4e−
1
2

∫ t
0 tr [Z(s)]ds

The theorem asserts that we can approximate the Quantum evolution using purely Clas-
sical objects. In a certain sense Classical Mechanics “emerges” from Quantum Mechanics.

4 Ehrenfest times

The error term is

Cε
1
2 t|=Z(t)|−

3
2∞

and as one can see it depends on the sup-norm of the imaginary part of the matrix Z(t)
that is the solution of

−Ż = Z2 + V ′′x,x(q)

and it is given by Z(t) = S(t)∗Z(0) where S(t) is the linearized flow. In the next sections
we will show that it depends on the properties of the classical flow.

4.1 Stable/unstable case

Here we will consider Coherent States centered on equilibrium points and we will try to
estimate the error.

Example (part 1): the stable equilibrium

We consider

(4.1) H = −ε
2

2
∆ + cosx− 1

and the “correspondent” classical Hamiltonian h(q, p) = p2

2 + cos q − 1. The flow of h has
a stable equilibrium point in Ps = (π, 0) (i.e. ϕth(π, 0) = (π, 0) for all t ∈ R). We have to
solve the following linearized system around Ps

(4.2)




Ṡ =

(
Ṡ11 Ṡ12

Ṡ21 Ṡ22

)
=

(
0 1

cosπ 0

)
S =

(
S21 S22

−S11 −S12

)

S(0) = I

It is easy to see that the solution is

(4.3) S(t) =

(
cos t − sin t
sin t cos t

)
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and consequently the function Z(t) will be

Z(t) = (S21 + iS22)(S11 + iS12)−1

= (sin t+ i cos t)(cos t− i sin t)−1

= (sin t+ i cos t)(cos t+ i sin t) = i

since Z0 = i. We have |=Z(t)|∞ = 1 that means that in this case the sup-norm of the
matrix is less than a constant. This is true in general, as the theorem below shows.

Theorem 4.1 If (qs, ps) is a stable equilibrium point and we consider the Cauchy problem

with initial datum ψ(qs,ps)(x), then |=Z(t)|−3/2
∞ ≤ C where C ∈ R is a constant. In this

case the approximation of the main theorem is valid up to times of order t ∼ 1/
√
ε.

It is important to notice that the approximation (even in the case of a stable equilib-
rium) is good only up to times of order t ∼ 1√

ε
.

Example (part 2): the unstable equilibrium

We consider the same example as before but we choose Pu = (0, 0) (the unstable equilib-
rium point). Then the matrix S(t) is

(4.4) S(t) =

(
cosh t sinh t
sinh t cosh t

)

and

(4.5) Z(t) = tanh 2t+ i
1

sinh2 t+ cosh2 t

We get the following upper bound for the sup-norm of Z(t):

(4.6) |=Z(t)|−3/2 = (sinh2 t+ cosh2 t)3/2 = (cosh 2t)3/2 ≤ e3t

Again this is true in the general case as stated in the following theorem.

Theorem 4.2 If (qu, pu) is an unstable equilibrium point and we consider the Cauchy
problem with initial datum ψ(qu,pu)(x), then |=Z(t)|−3/2 ≤ e3λt where λ > 0 is a constant.

In this case the approximation of the theorem is valid up to times of order t ∼ 1
6λ ln 1

ε .

This theorem gives us a different time scale for the validity of our approximation: in
the unstable case the limit is 1

6λ ln 1
ε . These time scales are called Ehrenfest times.

5 Conclusions

We want to know if there are classical properties that “come” from Quantum world. As we
have alredy see semiclassical approximation is good only for times smaller than Ehrenfest
times but some of these properties (for example ergodicity) appear only when t → ∞.
The (open) problem is: is it possible to go beyond Ehrenfest times?
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