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Seminario Dottorato 2010/11

Preface

This document offers a large overview of the nine months’ schedule of Seminario Dottorato
2010/11. Our “Seminario Dottorato” (Graduate Seminar) is a double-aimed activity. At
one hand, the speakers (usually Ph.D. students or post-docs, but sometimes also senior
researchers) are invited to think how to communicate their own researches to a public of
mathematically well-educated but not specialist people, by preserving both understand-
ability and the flavour of a research report. At the same time, people in the audience
enjoy a rare opportunity to get an accessible but also precise idea of what’s going on in
some mathematical research area that they might not know very well.
Let us take this opportunity to warmly thank the speakers once again, in particular for
their nice agreement to write down these notes to leave a concrete footstep of their par-
ticipation. We are also grateful to the collegues who helped us, through their advices and
suggestions, in building an interesting and culturally complete program.

Padova, 26 June 2011

Corrado Marastoni, Tiziano Vargiolu
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Abstracts (from Seminario Dottorato’s web page)

Wednesday 20 October 2010

The order complex of the coset poset of a finite group

Massimiliano PATASSINI (Univ. Padova, Dip. Mat.)

In this seminar we want to speak about a topological aspect of some objects in finite group theory.

Let G be a finite group and let C(G) be the coset poset of G, i.e. C(G) = {Hg : H < G, g ∈ G}. In

order to give a topological interpretation to this object, we introduce the concept of order complex

of C(G). The order complex was studied by Kennet Brown, who pointed out a connection between

the Dirichlet polynomial of G and the reduced Euler characteristic of the order complex of C(G).

In our talk, we first give an overview of the concepts of coset poset, order complex and Möbius

function. Next we introduce the work of Kennet Brown concerning the order complex of the coset

poset of a soluble group. Last we give an idea of our result about the non-contractibility of the

order complex of the coset poset of a classical group.

Wednesday 3 November 2010

The concept of supermodularity in aggregation functions and copulas

Maddalena MANZI (Univ. Padova, Dip. Mat.)

In many domains we are faced with the problem of aggregating a collection of numerical readings

to obtain a typical value, not only in mathematics or physics, but also in majority of engineering,

economical, social and other sciences. So, aggregation functions are used to obtain a global score

for each alternative taking into account the given criteria, even if the problems of aggregation are

very broad and heterogeneous. For example, there is a lot of contributions about the aggregation

of finite or infinite number of real inputs, topics treating of inputs from ordinal scales, or also the

problem of aggregating complex inputs (such as probability distributions, fuzzy sets). In this talk

I will discuss the way to construct, in particular, supermodular aggregation functions, which can

be analyzed under various aspects: algebraic, analytical, probabilistic. So, in the first part I will

introduce the general concept of supermodularity, which comes from lattice theory, and we will see

several basic examples. Then, we will be able to apply this theory to aggregation functions and,

in particular, to a subclass of aggregation functions, i.e. the family of copulas. In the last part,

we will see some results obtained with a particular intersection with fuzzy set theory. So, a basic

background will be given also in this direction. The talk will be based on some joint works with

M. Cardin, M. Kalina, E. P. Klement and R. Mesiar.
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Wednesday 17 November 2010

Semiconcave type results of the minimum time function

NGUYEN Khai Tien (Univ. Padova, Dip. Mat.)

We will give an overview of “semiconcave type” results of the minimum time function in the case of

nonlinear control systems under general controllability assumptions. Moreover, in this connection

we will show some regularity results of a function whose hypograph satisfies an exterior sphere

condition.

Wednesday 1 December 2010

A simple model for Financial Indexes with some application

Alessandro ANDREOLI (Univ. Padova, Dip. Mat.)

Mathematical finance is applied mathematics concerned with financial markets. Two of its major

subjects are: 1. Mathematically modeling the prices of assets and indexes; 2. Option Pricing. We

first recall the Black & Scholes model for asset prices, then present an easy model that overcomes

some weak points of Black & Scholes and other models (in particular the absence of multiscaling

effects and of volatility autocorrelation decay). Finally, we give an overview of the option-pricing

problem.

Wednesday 15 December 2010

An introduction to Coxeter group theory

Mario MARIETTI (Univ. Padova, Dip. Mat.)

Coxeter groups arise in many parts of algebra, combinatorics and geometry, providing connections

between different areas of mathematics. The purpose of this talk is to give an overview to Coxeter

group theory from algebraic, combinatorial and geometrical viewpoints. Some classical and more

recent results will be presented.

Wednesday 19 January 2011

The maximum matching problem and one of its generalizations

Yuri FAENZA (Univ. Padova, Dip. Mat.)

Given a graph G(V,E), a matching M is a subset of E such that each vertex in V appears as

the endpoint of at most one edge from M . The maximum matching problem and its weighted
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counterpart are among the most important and studied problems in combinatorial optimization.

In this talk, we survey a number of classical results on the topic and present more recent results

for a non-trivial generalization of the maximum weighted matching problem. The talk will be

accessible to a general audience.

Monday 31 January 2011

Factorization in categories of modules

Marco PERONE (Univ. Padova, Dip. Mat.)

We study the regularity of the behaviour of the direct sum decomposition in categories of modules.

It is well known that in some easy categories the direct sum decomposition is essentially unique.

In the last 15 years some interesting examples were found of categories where the decomposition

is not essentially unique but there still is an outstanding regularity. With this seminar we want to

present in an elementary way these examples, introducing step by step all the necessary ingredients

from monoid theory and module theory.

Wednesday 16 February 2011

Numerical simulation of the electrical behavior of Carbon Nanotubes

Vittorio RISPOLI (Univ. Padova, Dip. Mat.)

We introduce in an elementary way the physical setting used to model the electrical behavior of

metallic Carbon Nanotubes (CNTs); our aim is to compute the current induced in a CNT by an

external electrical field. In the proposed setting, the temporal evolution of electrons and phonons

(the last ones needed to take into account quantum mechanics effects) is described by a system

of Boltzmann Equations, a system of hyperbolic equations with collision terms. We will give an

overview of the general theory on the numerical treatment of such type of equations and present

two schemes with some details.

Wednesday 23 February 2011

From Shafarevich’s conjecture to finite flat group schemes

Hendrik VERHOEK (Univ. Roma 2)

I will give an introduction to, and overview of, the work of Fontaine, Abrashkin, Schoof, Brumer-

Kramer and Calegari that came forth from Shafarevich’s conjecture or question about the nonex-

istence of non-zero abelian varieties over Q with everywhere good reduction. First I briefly discuss

what this conjecture is about. Then we will see the work of the pioneers Fontaine and Abrashkin
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passing by: they independently proved there does not exist such an abelian variety. After that

we will consider the work of Schoof, Brumer and Kramer and Calegari related to abelian varieties

over Q with so called semi-stable reduction at some places. Finally I will say something about

generalizations and open problems.

Wednesday 9 March 2011

Mean-variance Optimization Problems in Financial Mathematics

Claudio FONTANA (Univ. Padova, Dip. Mat.)

Quadratic optimization criteria are ubiquitous in applied mathematics. In particular, they have

been successfully exploited in financial mathematics in the context of hedging and portfolio se-

lection problems, beginning with the Nobel prize-winning work of Markowitz (1952). In this

introductory talk, we will survey the main aspects of mean-variance optimization problems, both

from a mathematical and a financial point of view. Furthermore, we shall present an abstract and

unifying approach for the solution of mean-variance problems, together with the related issue of

mean-variance indifference valuation.

Wednesday 23 March 2011

Approximating Goldbach conjecture

Valentina SETTIMI (Univ. Padova, Dip. Mat.)

The Goldbach conjecture is one of the oldest unsolved problems in the entire mathematics and,

since its appearance in 1742 to nowadays, a lot of mathematicians dealt with it. In my talk I

will give an introduction to the origin of the Goldbach conjecture and then I will describe the

most important developments in some problems related to it. In particular I will talk about the

ternary Goldbach conjecture, the exceptional set in Goldbach’s problem and the Goldbach-Linnik

problem. Finally, I will give a short overview of our results which can be seen as approximations

to the Goldbach-Linnik problem.

Wednesday 6 April 2011

Robustness for path-dependent volatility models

Mauro ROSESTOLATO (S.N.S. Pisa)

In this introductory talk, we present a 2-dimensional market model in which only one component

(say S) is observable in the market, while the other one (say P ) is not observable, thus the choice

of the starting point (S(0), P (0)) is a-priori subject to an error. This is the reason why we are
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interested firstly in investigating the dependence of the (S, P )-dynamics with respect to the initial

condition, secondly in choosing an initial condition which minimizes the error. The first issue is

classical even in the deterministic case. The most intuitive and general approach is to recur to

estimates based on Gromwall lemma, while if one instead uses the differentiability with respect to

the initial conditions such estimates can be significantly improved. We will review this in the case

of ordinary differential equations and see how the results generalize to the current case and how

this improvement makes the model applicable in reality. The second issue is treated by techniques

based on invariant measures and the clever use of past observations: we will show that, by using

the estimates based on the differentiability with respect to the initial conditions, the width of the

past window required is linear with respect to the future time horizon. Finally, we present some

numerical results..

Wednesday 20 April 2011

The Liouville Theorem for conformal maps: old and new

Alessandro OTTAZZI (Univ. Milano-Bicocca)

In this seminar we discuss a classical result of Liouville for conformal maps in euclidean spaces of

dimension at least three. Most of the time will be devoted to present a proof which is not present

in this form in the classical literature. This proof works in more generality and in fact we (A.

Ottazzi and B. Warhurst) can prove a Liouville theorem for all nilpotent and stratified Lie groups

endowed with a sub-Riemannian distance. In the last part of the seminar we shall describe the

setting of such groups, and possibly discuss some open problems.

Wednesday 4 May 2011

Large Deviations in Probability Theory

Markus FISCHER (Univ. Padova, Dip. Mat.)

In probability theory, the term large deviations refers to an asymptotic property of the laws of

families of random variables depending on a large deviations parameter. A classical example is

derived from coin flipping. For each number n, consider the random experiment of tossing n coins.

Let S(n) denote the number of coins that land heads up. The quantities S(n) and S(n)/n are

random variables, S(n)/n being the empirical mean, here equal to the empirical probability of

getting heads. If the coins are fair and tossed independently, then by the law of large numbers

S(n)/n will converge to 1/2 as n tends to infinity. Consequently, given any strictly positive c, the

probability that S(n)/n is greater than 1/2+c (or less than 1/2−c) goes to zero as n tends to infinity.

But one can say more about the convergence of those probabilities of deviation from the law of large

numbers limit. Indeed, the decay to zero is exponentially fast (in the large deviations parameter

n) with rates that can be determined exactly. The exponential decay of deviation probabilities is

a common property of families of random objects arising in many different contexts.
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Wednesday 18 May 2011

A Viscosity approach to Monge-Ampere type PDEs

Marco CIRANT (Univ. Padova, Dip. Mat.)

In this introductory talk we present some results of existence and uniqueness of solutions to the

Dirichlet problem for the prescribed gaussian curvature equation, a Monge-Ampere type equation

arising in differential geometry. We implement the modern tools of viscosity theory, combined with

new ideas of Harvey and Lawson; our point of view is also based upon Krylov’s language of elliptic

branches. Our case study will be the homogeneous equation, i.e. when the curvature is identically

zero, for which we outline the proof of existence and uniqueness of a convex solution (in a weak

sense). Then, we sketch how to generalize these kind of results to the non-homogeneous equation

and show some open problems related to curvature equations of more general form.

Wednesday 8 June 2011

Identification of Reciprocal Processes and related Matrix Extension Problem

Francesca Paola CARLI (Univ. Padova, D.E.I.)

Stationary reciprocal processes defined on a finite interval of the integer line can be seen as a special

class of Markov random fields restricted to one dimension. This kind of processes are potentially

useful for describing signals which naturally live in a finite region of the time (or space) line. Non-

stationary reciprocal processes have been extensively studied in the past especially by Jamison,

Krener, Levy and co-workers. The specialization of the non-stationary theory to the stationary

case, however, does not seem to have been pursued in sufficient depth in the literature. Moreover,

estimation and identification of reciprocal stochastic models starting from observed data seems

still to be an open problem.

This talk addresses these problems showing that maximum likelihood identification of stationary

reciprocal processes on the discrete circle leads to a covariance extension problem for block-circulant

covariance matrices. This generalizes the famous covariance band extension problem for stationary

processes on the integer line. We show that the maximum entropy principle leads to a complete

solution of the problem. An efficient algorithm for the computation of the maximum likelihood

estimates is also provided.

Wednesday 15 June 2011

On the essential dimension of groups

Dajano TOSSICI (Univ. Milano-Bicocca)
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At the end of the nineteenth century many authors (Klein, Hermite, Hilbert for instance) studied

the problem of reducing the number of parameters of a generic polynomial of fixed degree. This

problem was motivated by the problem of finding a formula, in terms of the usual algebraic op-

erations and of radicals, for the roots of polynomial equations. It is very well known that, later,

Galois proved that for polynomial equations of degree greater than 5 this formula does not exists.

In 1997 Buhler and Reichstein rewrote and generalized this problem in a more modern context.

They introduced the notion of essential dimension of a finite group G, which, very roughly speak-

ing, computes the number of parameters needed to describe all Galois extensions with Galois group

G. If we consider the symmetric group Sn then one obtains the number of parameters needed to

write a generic polynomial of degree n.

In the talk, after recalling the classical problem described above and the precise definition of essen-

tial dimension of a group, we illustrate several examples and open problems. At the very end of the

talk, if time is left, we quickly give an overview of results we obtained in collaboration with Angelo

Vistoli about essential dimension of a group scheme, which is a generalization of the concept of

group in the context of algebraic geometry.
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The order complex

of the coset poset of a finite group

Massimiliano Patassini (∗)

Abstract. Let G be a finite group. Let C(G) be the coset poset of G, i.e. C(G) = {Hg : H <
G, g ∈ G}. This object was studied by Kennet Brown, who pointed out a connection between

the Dirichlet polynomial of G, PG(s) =
∑
H≤G

µG(H)
|G:H|s (where µG is the Möbius function of the

subgroup lattice of G) and the reduced Euler characteristic χ̃(∆) of the order complex ∆ of C(G).
Indeed, we have: χ̃(∆) = −PG(−1). In this seminar we first give an overwiev of the concepts of
coset poset, order complex and Möbius function. Next we introduce the work of Kennet Brown
concerning the order complex of the coset poset of a soluble group. Last we give an idea of our
result about the non-contractibility of the order complex of the coset poset of a classical group.

Consider a polyhedron in the three-dimensional Euclidean space. The Euler characteristic
of the polyhedron is given by

χ = V − E + F

where V is the number of vertices, E is the number of edges, and F is the number of faces
of the polyhedron. The number χ describes the shape of the polyhedron as a topological
space.

How to extend this concept? Starting from a poset, we construct a suitable topology,
we define an Euler characteristic and we study how they are related.

The theory of poset topology evolved from the seminal 1964 paper of Gian-Carlo Rota
on the Möbius function of a partially ordered set (poset). This theory provides a deep and
fundamental link between combinatorics and other branches of mathematics. In particular,
we are interested in the connection with group theory, developed in the work of Kennet
Brown (see [2]).

So, what is poset topology? By the topology of a poset we mean the topology of a
certain simplicial complex associated with the poset, called the order complex of the poset.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on 20 October 2010.
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1 The Coset poset and the Dirichlet polynomial of a finite group

1.1 The coset poset of a group

Let G be a finite group. We denote by C(G) the set of proper right cosets of G, i.e.

C(G) = {Hg : H < G, g ∈ G}.

This is called the coset poset of G. Indeed, C(G) is a poset ordered by inclusion. In
particular, note that if H1g1 ⊆ H2g2 then H2g2 = H2g1 and H1 ≤ H2.

Example. Let G = 〈x, y : x2 = y2 = 1, (xy)2 = 1〉 ∼= C2 × C2. The proper subgroups of
G are 1, 〈x〉 = {1, x}, 〈y〉 = {1, y}, 〈xy〉 = {1, xy}. So, the coset poset is:

C(G) = {{1}, {x}, {y}, {xy}, {1, x}, {y, xy}, {1, y}, {x, xy}, {1, xy}, {x, y}}.

A poset is said to be bounded if it has a maximum element (called top element) and a
minimum element (called bottom element). The coset poset is not bounded, but we can
obtain a bounded poset adding the elements G and ∅ to C(G). So we obtain the poset
C̃(G) = C(G) ∪ {G,∅}, which is called the bounded extension of C(G).

1.2 Möbius functions and Dirichlet polynomials

An useful tool to investigate some properties of a poset P is the Möbius function. Let P
be a bounded poset with top element 1̂. The Möbius function on P is defined by

µP (x) =

{
1 if x = 1̂,

−
∑

x<y≤1̂ µP (y) if x < 1̂,

for x ∈ P . In Figure 1 there is an example of the values of the Möbius function for a
bounded poset. Note that if x is a maximal element of a poset P (i.e. an element x ∈ P
such that if y > x, then y = 1̂), then µP (x) = −1. Moreover, if x is not intersection of
maximal element of a poset P , then µP (x) = 0 (see [3]).

Figure 1: Möbius function for a bounded poset.

Now, let S(G) be the poset of subgroups of G. Note that S(G) is a bounded poset with
top element G and bottom element {1}. Denote by µG the Möbius function µS(G). We can

define two Dirichlet finite series associated to the posets S(G) and C̃(G), in the following
way:

PG(s) =
∑
H≤G

µG(H)

|G : H|s

Università di Padova – Dipartimento di Matematica 11
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and

PC̃(G)(s) =
∑

x∈C̃(G)−{∅}

µC̃(G)(x)

(|G| : |x|)s
,

where |x| denotes the size of x and |G : H| is the index of H in G. In particular, the
first is called the Dirichlet polynomial of G and its multiplicative inverse is called the
Probabilistic zeta function of G (see [1] and [5]).

By definition of Möbius function, we have that

µC̃(G)(∅) = −
∑

x∈C̃(G)−{∅}

µC̃(G)(x) = −PC̃(G)(0).

In [2, §9], Brown noted that

PG(s) = PC̃(G)(s+ 1),

hence, in particular,
PG(−1) = PC̃(G)(0) = −µC̃(G)(∅). (†)

In the next sections we want to show that the number µC̃(G)(∅) has an important
topological meaning. In particular, we need to give a topological structure to a poset.
This can be done associating a simplicial complex to C(G).

2 Simplicial and order complexes

2.1 Simplicial complexes

An abstract simplicial complex ∆ on finite vertex set V is a nonempty collection of subsets
of V such that

• {v} ∈ ∆ for all v ∈ V ,

• if G ∈ ∆ and F ⊆ G, then F ∈ ∆.

The elements of ∆ are called faces (or simplices) of ∆. We say that a face F has dimension
d and write dimF = d if d = |F | − 1. In particular, by definition ∅ ∈ ∆ and we have
dim(∅) = −1. The dimension dim ∆ of ∆ is the maximum of the dimensions of the faces.

Now we want to give a topological structure to the simplicial complex. We need some
definitions.

Let P0, ..., Pm be points of the Euclidean space Rn. The convex hull 〈P0, ..., Pm〉 of
P0, ..., Pm is the set of points of the form

m∑
i=0

λiPi

where
∑m

i=0 λi = 1 and λi ≥ 0 for all i ∈ {0, ...,m}. The points P0, ..., Pm are affinely
independent if P1 − P0, ..., Pm − P0 are linearly independent vectors of Rn.

Università di Padova – Dipartimento di Matematica 12



Seminario Dottorato 2010/11

Topological structure of a simplicial complex. Let ∆ be a simplicial complex
with vertex set V = {v0, ..., vk}. Let E0, ..., Ek be affinely independent points in Rk. Let
Γ : ∆ − {∅} → Rk be the map such that Γ(F ) = 〈Evi1 , ..., Evil 〉 for each F ∈ ∆ − {∅},
where F = {vi1 , ..., vil}.

A geometric realization |∆| of V is a topological space homeomorphic to
⋃
F∈∆ Γ(F ).

This gives a topological structure to the simplicial complex ∆. When we say that ∆ has
a certain topological property (such as contractibility, homotopy,...) we mean that its
geometric realization |∆| has this property.

In Figure 2 we give a geometric realization of the simplicial complexes with three
vertices.

Figure 2: Geometric realization of the simplicial complexes with three vertices.

2.2 The order complex

Let P be a poset. In order to have a topology for P , we construct a simplicial complex
∆(P ) associated to P , called the order complex of P . The vertices of ∆(P ) are the elements
of P and the faces of ∆(P ) are the chains (i.e. totally ordered subsets) of P .

Example. Let G = 〈x, y : x2 = y2 = (xy)2 = 1〉 ∼= C2 × C2. The geometric realization of
the order complex ∆(C(G)) is given in Figure 3, where z = xy.

Example. Let G = 〈x : x8 = 1〉 ∼= C8. Let A = 〈x4〉 and B = 〈x2〉. The coset poset of
C8 is:

C(C8) = {{1}, {x}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}, A,Ax,Ax2, Ax3, B,Bx}.
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The geometric realization of the order complex ∆(C(G)) is given in Figure 4.

Figure 3: Geometric realization of the order complex ∆(C(C2 × C2)).

Figure 4: Geometric realization of the order complex ∆(C(C8)).

2.3 Contractibility and Euler characteristic

An important concept in topology is the homotopy.
Let X and Y be two topological spaces. Two continuous function f, g : X → Y are

said to be homotopic if there exists a continuous function H : X × [0, 1] → Y such that,
if x ∈ X then H(x, 0) = f(x) and H(x, 1) = g(x).

Two topological spaces X and Y are homotopy equivalent or of the same homotopy
type if there exist continuous maps f : X → Y and g : Y → X such that f ◦g is homotopic
to idY and g ◦ f is homotopic to idX .

A topological space X is said to be contractible if the identity map idX is homotopic
to a constant function. Roughly speaking, a topological space is contractible if it can be
continuosly shrunk to a point.

Example. The order complex ∆(C(C2 × C2)) is homotopy equivalent to a bouquet of
three circles and the order complex ∆(C(C8)) is homotopy equivalent to two points.
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Now we introduce an useful tool which aid us to see if a simplicial complex is con-
tractible. Let ∆ be a simplicial complex. The reduced Euler characteristic of ∆ is

χ̃(∆) =
dim ∆∑
d=−1

(−1)dαd,

where αd is the number of simplices of dimension d.
It turns out that if ∆ is contractible, then χ̃(∆) = 0.

Example. The reduced Euler characteristic of ∆(C(C2 × C2)) is χ̃(∆(C(C2 × C2))) =
−1 + 10− 12 = −3. As well, χ̃(∆(C(C8))) = −1 + 14− 20 + 8 = 1.

2.4 Euler characteristic and Dirichlet polynomials

By a result of Philip Hall, we have that if P is a poset, then

χ̃(∆(P )) = µP̂ (0̂),

where P̂ is the poset obtained from P adding a bottom element 0̂ and a top element 1̂
(even when P has already a top and a bottom element).

This result, together with (†), shows that for a finite group G we have:

PG(−1) = PC̃(G)(0) = −µC̃(G)(∅) = −χ̃(∆(C(G))))

Example. Let G = 〈x, y : x2 = y2 = (xy)2 = 1〉 ∼= C2 × C2. We know, by the previous
example, that χ̃(∆(C(C2×C2))) = −3. We want to compute PG(−1). The subgroups of G
are G, 〈x〉, 〈y〉, 〈xy〉, 1. It is straightforward to show that µG(G) = 1, µG(〈x〉) = µG(〈y〉) =
µG(〈xy〉) = −1 and µG(1) = −

∑
1<H≤G µG(H) = −(−1− 1− 1 + 1) = 2. Hence we get

PG(s) = 1− 3

2s
+

2

4s
,

so PG(−1) = 3 as we wanted.

3 The work of Kennet Brown

Note that the knowledge of the value PG(−1) gives us information about the contractibility
of the order complex of the coset poset C(G). Indeed, if PG(−1) 6= 0, then ∆(C(G)) is not
contractible.

In [2], Kennet Brown studied the order complex of the coset poset for the soluble
groups and he proved the following.

Proposition 1 [2, Proposition 8] Let G be a finite soluble group and let d be the number
of non-Frattini chief factors of G. If G is a cyclic group of prime power order, then
∆(C(G)) has the homotopy type of p points (where p is the prime divisor of |G|), otherwise
∆(C(G)) has the homotopy type of a bouquet of (d− 1)-spheres and the number of spheres
is |χ̃(∆(C(G)))| = |PG(−1)|.
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Example. G = 〈x, y : x2 = y2 = (xy)2 = 1〉 ∼= C2 × C2 is a soluble group. A chief
series for G is 1 ≤ 〈x〉 ≤ G. Clearly 〈x〉 is non-Frattini since it is complemented by 〈y〉.
Hence G has 2 non-Frattini chief factors. Since |PG(−1)| = 3, by Proposition 1, the order
complex ∆(C(G)) has the homotopy type of a bouquet of three 1-spheres (i.e. circles), as
we proved above.

The non-soluble case is more difficult. Indeed, the coset poset becomes very huge and
complicated. Supported by some computational evidences, Brown propoused the following
conjecture.

Conjecture 2 Let G be a finite group. Then PG(−1) does not vanish. Hence the order
complex of the coset poset of G is not contractible.

4 The order complex of the coset poset of a classical group

In the first part of our PhD thesis we prove the following result.

Theorem 3 Let G be a classical group and assume that G does not contain non-trivial
graph automorphisms. Then PG(−1) does not vanish, hence the order complex associated
to the coset poset of G is not contractible.

The main idea of the proof is the following. It is quite easy to reduce to the case
when G is a simple group of characteristic p. In particular, a vector space V over a field
of characteristic p and a form κ (which is zero, unitary, symplectic or orthogonal) are
associated to G.

Write

PG(s) =
∑
k≥1

ak(G)

ks
where ak(G) =

∑
H≤G,|G:H|=k

µG(H).

Clearly we have:

PG(s) = P
(p)
G (s) +R

(p)
G (s),

where

P
(p)
G (s) =

∑
p-k

ak(G)

ks
and R

(p)
G (s) =

∑
p|k

ak(G)

ks
.

In order to prove our claim, we show that |P (p)
G (−1)|p < |R(p)

G (−1)|p, where |k|p is the
greatest power of p dividing the integer k (we set |0|p = 0).

By definition of ak(G), we have that if ak(G) 6= 0, then there exists a subgroup H of
G such that

• |G : H| = k and

• µG(H) 6= 0, hence H is an intersection of maximal subgroups of G.

In this case we say that the subgroup H is contributing for ak(G).
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4.1 The p-part of P
(p)
G (−1)

Let k be an integer such that ak(G) 6= 0 and p does not divide k. By definition, if H is a
contributing subgroup for ak(G), then

• |G : H| = k, hence |G : H|p = 1, so H contains a Sylow p-subgroup of G;

• H is an intersection of maximal subgroups of G.

These conditions imply that H is a parabolic subgroup of G. The structure of the parabolic
subgroups is well known and we can gather enough information in order to find the p-part

of P
(p)
G (−1). For example, if G = PSLn(q), then we have that |P (p)

G (−1)|p = qn−1|2|p.
The proof of this fact requires a certain amount of combinatorics and some results on

root systems.

4.2 The p-part of R
(p)
G (−1)

Let k be an integer such that ak(G) 6= 0 and p divides k. By definition, if H is a
contributing subgroup for ak(G), then

• |G : H| = k, hence |G : H|p > 1;

• H is an intersection of maximal subgroups of G.

We consider two cases:

(A) H is contained in a maximal subgroup M of G such that |G : M |p > 1.

(B) if a maximal subgroup M of G contains H, then |G : M |p = 1, i.e. M is a maximal
parabolic subgroup of G.

Suppose that case (A) holds. Using the results on the maximal subgroups of the
classical groups we can prove the following.

Proposition 4 Let G be a classical simple group defined over a field of characteristic p.

If M is a maximal subgroup of G such that |G : M |p > 1, then |G : M |2p > |P
(p)
G (−1)|p.

Thus, if ak(G) 6= 0 and p divides k, then |k|2p > |P
(p)
G (−1)|p.

Assume that case (B) holds. There exists a 1-1 correspondence between the set of non-
trivial totally singular proper subspaces of V (when we say that a vector subspace W of
V is totally singular, we mean that the restriction κW of the form κ is the zero form) and
the parabolic maximal subgroups of G, given by W 7→ StabG(W ) = {g ∈ G : g(W ) = W}.

We denote by LH the set of non-trivial totally singular proper subspaces W of V such
that StabG(W ) ≥ H. In particular, the image of the restriction of StabG to LH is the set
of parabolic maximal subgroups of G containing H.

We say that LH fulfills the property P if there exists W ∈ LH such that for each
U ∈ LH , we have W ≤ U or W ≥ U .

Theorem 5 Assume that case (B) holds.
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• If LH fulfills the property P, then µG(H) = 0.

• If LH does not fulfill the property P, then |G : H|2p > |P
(p)
G (−1)|p.

Example. Let G = PSL4(q), q odd, let V = 〈e1, ..., e4〉. Let W1 = 〈e1〉 and W2 = 〈e2〉.
Assume that H = M1 ∩M2, Mi = StabG(Wi) for i = 1, 2.

Then case (B) holds. Note that |G : H|p = q and |P (p)
G (−1)|p = q3, so |G : H|2p ≯

|P (p)
G (−1)|p. But LH = {W1,W2,W1 +W2} and LH fulfills the property P.

Let M3 = StabG(W1 +W2). The lattice generated by the maximal subgroups over H
and the values of the Möbius function are in Figure 5. So we have that µG(H) = 0.

Figure 5: Lattice and Möbius numbers over H.

In general, the idea is: find a redundant element W in LH , i.e. for each M ⊆ LH such
that W ∈M , ⋂

U∈M
StabG(U) = H ⇒

⋂
U∈M−{W}

StabG(U) = H.

If LH has the property P, then there exists a redundant element.
In the previous example, the subspace W1 +W2 is redundant.

4.3 The last argument

We have shown that if p divides k and ak(G) 6= 0, then |k|2p > |P
(p)
G (−1)|p. Now we apply

a result on the coefficient of the Dirichlet polynomial of G.

Lemma 6 (See [4]) Let G be a perfect group and let k be a positive integer. Then k
divides ak(G).

Since a simple group is perfect, we obtain that

|R(p)
G (−1)|p =

∣∣∣∣∣∣
∑
p|k

ak(G)k

∣∣∣∣∣∣
p

≥ min{|ak(G)k|p : p|k} ≥ min{|k|2p : p|k} > |P (p)
G (−1)|p.

This completes the proof of our main theorem.
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The concept of supermodularity

in aggregation functions and copulas

Maddalena Manzi (∗)

Abstract. The mathematical concept of supermodularity is known in the literature for functions
on a general lattice, but in this paper we define supermodularity for aggregation functions. In
particular supermodularity is the main axiom for bivariate copulas, which are a subclass of su-
permodular aggregation functions. A simple way to generalize the axiom of supermodularity for
bivariate copulas is given by the concept of ultramodularity. So, we characterize Archimedean
ultramodular copulas and we develop some connections with Choquet integral.
(Keywords: Copula, supermodularity, ultramodularity, aggregation function, Choquet integral.)

1 Introduction

Supermodular functions are extensively investigated in different research areas, both pure
and applied. The supermodular property also goes by a variety of names such as L-
superadditive (where L is mnemonic for lattice), superadditive and quasimonotone. Our
aim is to apply this concept to aggregation functions, but, first of all, we recall the basic
definitions and properties both for aggregation functions and copulas. Moreover, we will
focus our attention to the main problem that we have when we want to deal with multi-
variate copulas as aggregation functions.
Aggregation operators (also referred to as means or mean operators) correspond to par-
ticular mathematical functions used for information fusion, the broad area that studies
methods to combine data or information supplied by multiple sources. Generally, we con-
sider mathematical functions that combine a finite number of inputs, called arguments,
into a single output. So, aggregation has for purpose the simultaneous use of different
pieces of information provided by several sources, in order to come to a conclusion or
a decision. They are applied in many different domains and in particular aggregation
functions play important role in different approaches to decision making, where values to
be aggregated are typically preference or satisfaction degrees and thus belong to the unit
interval [0, 1]. For more details, see [7].

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on 3 November 2010.
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As it has been shown in [13], we can define an aggregation operator as a function

A :
⋃
n∈N

[0, 1]n → [0, 1]

that satisfies:

• (Idempotency) A(x) = x ∀x ∈ [0, 1];

• (Boundary conditions) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1;

• (Monotonicity) A(x1, . . . , xn) ≤ A(y1, . . . , yn) if (x1, . . . , xn) ≤ (y1, . . . , yn).

Idempotency and monotonicity imply that aggregation operators are functions that yield
a value between the minimum and the maximum of the input values. Formally, they are
operations that satisfy internality:

min
i
xi ≤ A(x1, . . . , xn) ≤ max

i
xi.

The paper is organized as follows. In the following section, modular, supermodular and
ultramodular aggregation functions are introduced and some basic results are recalled.
The last section deals with some special ultramodular aggregation functions, especially
with ultramodular copulas and some connections with Choquet integral are proposed.

2 Modular, supermodular, and ultramodular aggregation functions

The concept of modularity and supermodularity was introduced for functions from a lattice
L into R.

Definition 2.1 Let (L,∧,∨) be a lattice.

(i) A function f : L→ R is called modular if, for all x, y ∈ L,

(1) f(x ∨ y) + f(x ∧ y) = f(x) + f(y).

(ii) A function f : L→ R is called supermodular if, for all x, y ∈ L,

(2) f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y).

In the context of aggregation functions, the following characterization of modularity
is easily obtained [9]:

Proposition 2.2 An n-ary aggregation function A : [0, 1]n → [0, 1] is modular if and
only if there are non-decreasing functions f1, f2, . . . , fn : [0, 1] → [0, 1] with fi(0) = 0 and∑n

i=1 fi(1) = 1 such that, for all (x1, . . . , xn) ∈ [0, 1]n,

A(x1, . . . , xn) =
n∑
i=1

fi(xi).
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The following characterization of supermodular functions f : [0, 1]n → [0, 1] is due to [1]:

Proposition 2.3 An n-ary function f : [0, 1]n → [0, 1] is supermodular if and only if
each of its two-dimensional sections is supermodular, i.e., for each x ∈ [0, 1]n and all
i, j ∈ {1, 2, . . . , n} with i 6= j, the function fx,i,j : [0, 1]2 → [0, 1] given by fx,i,j(u, v) = f(y),
where yi = u, yj = v and yk = xk for k ∈ {1, 2, . . . , n} \ {i, j}, is supermodular.

Well-known examples of supermodular n-dimensional aggregation functions (with n ≥
2) are modular aggregation functions as characterized in Proposition 2.2 and copulas as
introduced in [16] (see also [8, 15]).

In the case n = 2, the supermodularity is even used as an axiom for copulas:

Definition 2.4 An aggregation function C : [0, 1]2 → [0, 1] is called a 2-copula (or, briefly,
a copula) if it is supermodular and has 1 as neutral element, i.e., if C(x, 1) = C(1, x) = x
for all x ∈ [0, 1].

Copulas play an important role in the representation of supermodular binary aggrega-
tion functions. The following result is taken from [6]:

Proposition 2.5 An aggregation function A : [0, 1]2 → [0, 1] is supermodular if and
only if there are non-decreasing functions g1, g2, g3, g4 : [0, 1] → [0, 1] with gi(1) = 1 for
i ∈ {1, 2, 3, 4} and g1(0) = g2(0) = 0, a copula C : [0, 1]2 → [0, 1] with C(g3(0), g4(0)) = 0,
and numbers a, b, c ∈ [0, 1] with a+ b+ c = 1 such that, for all (x, y) ∈ [0, 1]2,

(3) A(x, y) = a · g1(x) + b · g2(y) + c · C(g3(x), g4(y)).

If 0 is an annihilator of the aggregation function A : [0, 1]2 → [0, 1], i.e., if A(x, 0) =
A(0, x) = 0 for all x ∈ [0, 1], then (3) reduces to

(4) A(x, y) = C(f(x), g(y)),

where f, g : [0, 1] → [0, 1] are non-decreasing functions with f(1) = g(1) = 1 and C
satisfies C(f(0), g(0)) = 0. Note that then we have f(x) = A(x, 1) and g(x) = A(1, x) for
all x ∈ [0, 1].

Definition 2.6 An n-ary aggregation function A : [0, 1]n → [0, 1] is called ultramodular
if, for all x,y, z ∈ [0, 1]n with x + y + z ∈ [0, 1]n,

(5) A(x + y + z)−A(x + y) ≥ A(x + z)−A(x).

Ultramodularity implies supermodularity of aggregation functions. To see this, for
arbitrary x,y ∈ [0, 1]n put first u = y − x ∧ y and v = x− x ∧ y. Then we get

x ∨ y = x + y − x ∧ y = x ∧ y + u + v
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and, because of (5),

A(x ∨ y) +A(x ∧ y) = A(x ∧ y + u + v) +A(x ∧ y)

≥ A(x ∧ y + v) +A(x ∧ y + u)

= A(x) +A(y).

In the case of one-dimensional aggregation functions, ultramodularity (5) is just stan-
dard convexity. Therefore, ultramodularity can also be seen as an extension of one-
dimensional convexity. The following result (Corollary 4.1 of [11]) states the exact re-
lationship between ultramodular and supermodular functions f : [0, 1]n → [0, 1]:

Proposition 2.7 A function f : [0, 1]n → [0, 1] is ultramodular if and only if f is super-
modular and each of its one-dimensional sections is convex, i.e., for each x ∈ [0, 1]n and
each i ∈ {1, . . . , n} the function fx,i : [0, 1] → [0, 1] given by fx,i(u) = f(y), where yi = u
and yj = xj whenever j 6= i, is convex.

Remark 2.8 Because of Propositions 2.3 and 2.7, for an n-ary aggregation function
A : [0, 1]n → [0, 1] the following are equivalent:

(a) A is ultramodular;

(b) each two-dimensional section of A is ultramodular;

(c) each two-dimensional section of A is supermodular and each one-dimensional section
of A is convex.
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Figure 1: Modularity (left), supermodularity (center), and ultramodularity of a function f : [0, 1]2 → [0, 1].

The class of ultramodular aggregation functions is closed under composition (see Theorem
3.2 and Corollary 3.3 in [9]).
A generalization of Proposition 2.5 is the following result (see [9]):

Corollary 2.9 If A is a bivariate ultramodular aggregation function, then we have

(6) A = λ ·A1 + (1− λ) ·A2,

where A1 is a modular element, A2 is a supermodular binary aggregation function with
annihilator 0, and λ = 1−A(1, 0)−A(0, 1) ∈ [0, 1].
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3 Special constructions

If an ultramodular binary aggregation function with annihilator 0 has also neutral element
1 then it necessarily is an ultramodular copula, i.e., a copula with convex sections. In
statistics, where a copula C describes the dependence structure of a random vector (X,Y ),
the ultramodularity of C is equivalent to X being stochastically decreasing with respect
to Y (and Y being stochastically decreasing with respect to X). Clearly, the set Cu of all
ultramodular binary copulas is convex. The greatest element of Cu is the product Π, and
the smallest element of Cu is the lower Fréchet-Hoeffding bound W .

3.1 Archimedean copulas

A binary aggregation function C : [0, 1]2 → [0, 1] is an Archimedean copula if and only if
there is a continuous, strictly decreasing convex function t : [0, 1] → [0,∞] with t(1) = 0
such that for all (x, y) ∈ [0, 1] (see [14])

(7) C(x, y) = t−1(min(t(x) + t(y), t(0))).

The function t is called an additive generator of C, and it is unique up to a positive
multiplicative constant.

If we want to see whether an Archimedean copula is ultramodular, i.e., has convex
horizontal and vertical sections, its symmetry (as a consequence of (7) and boundary con-
ditions tell us that it suffices to check the convexity of all horizontal sections for a ∈ ]0, 1[.
The following results are construction methods of Archimedean ultramodular copulas [9].

Theorem 3.1 Let C : [0, 1]2 → [0, 1] be an Archimedean copula with a two times differ-
entiable additive generator t : [0, 1]→ [0,∞]. Then C is ultramodular if and only if 1

t′ is a
convex function.

Theorem 3.2 Let C be an Archimedean copula with additive generator t, let t′ be the left
derivative of t on ]0, 1] and t′(0) = t′(0+). Then all the one-dimensional sections of C are
concave if and only if t′(0) =∞, t′ is finite on ]0, 1], and 1

t′ is concave.

For other examples see Section 5 in [9].

3.2 Connections with Choquet integral

When constructing ultramodular aggregation functions, we can focus on special types of
aggregation functions. However, in some cases the ultramodularity can be a contradictory
or rather restrictive requirement. For instance, disjunctive aggregation functions (such as
triangular conorms [10]) cannot be ultramodular. As an example of the second type we
recall the Choquet integral [2, 3] and present the necessary details.

If n ∈ N and X = {1, . . . , n} then, for a capacity m on X, i.e., a non-decreasing
function m : 2X → [0, 1] with m(∅) = 0 and m(X) = 1, and x ∈ [0, 1]n the Choquet
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integral [2] is given by

Ch(m,x) =

∫ 1

0
m({xi ≥ u}) du

=

n∑
i=1

xπ(i)

(
m({π(i), . . . , π(n)})−m({π(i+ 1), . . . , π(n)})

)
,

where π : X → X is a permutation of X with xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n) and, by
convention, {π(n+ 1), π(n)} = ∅.

For a fixed capacity m, the function Chm : [0, 1]n → [0, 1] given by Chm(x) = Ch(m,x)
is an aggregation function, a so-called Choquet integral-based aggregation function.

Proposition 3.3 Let Chm : [0, 1]n → [0, 1] be a Choquet integral-based aggregation func-
tion based on a capacity m on X = {1, . . . , n}. Then we have:

(i) Chm is superadditive, i.e., for all x,y ∈ [0, 1]n with x + y ∈ [0, 1]n we have

Chm(x + y) ≥ Chm(x) + Chm(y),

if and only if the capacity m is supermodular.

(ii) Chm is ultramodular if and only if the capacity m is modular, i.e., Chm is a weighted
arithmetic mean.

4 Concluding remarks

We have discussed ultramodular aggregation functions, by noting that bivariate copulas
are closely linked to the convexity of one-dimensional functions (e.g., additive generators
of Archimedean copulas are convex). Supermodularity and ultramodularity are also con-
nected to measure theory. For example it is known that a Choquet integral operator based
on a fuzzy measure m is superadditive if, and only if, the fuzzy measure m is supermod-
ular. In particular connections between fuzzy measures and supermodular aggregation
functions are important for constructing supermodular aggregation functions in the mul-
tivariate case, which allows to extend several properties of copulas as well. In fact, in the
multivariate case there are a lot of unsolved problems, in particular with regard to the
multivariate decomposition of aggregation functions in a sum of copulas.
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Semiconcavity type results

of the minimum time function

Khai Tien Nguyen (∗)

The minimum time problem is classical in control theory. Given a nonempty closed
target S and a control system

(1)


ẏ(t) = f(t, y(t), u(t)) a.e.
u(t) ∈ U a.e.
y(0) = x,

where the function f : R × RN × U → RN is smooth enough and the control set U is
a compact nonempty subset of RM , for each admissible control u(·) ∈ Uad, i.e. u(·) is
measurable and takes value in U , there exists a unique solution yx,u(·) of (1) which is the
trajectory starting from x under the control u(·). The minimum time needed to steer x
to S, regarded as a function of x, is called the minimum time function and is denoted by

TS(x) := inf {θS(x, u) | u(·) ∈ Uad},

where θS(x, u) := inf {t ≥ 0 | yx,u(t) ∈ S}. In general, TS ∈ [0,∞]. The controllable set
R consists of all points x ∈ RN such that TS(x) is finite. The regularity of the minimum
time function is related on one hand to the controllability properties of system (1), on
the other one to the regularity of the target and of the dynamics, together with suitable
relations between them.

Such topics were studied by several authors (see, e.g., [1, 2, 5, 6, 7, 8, 9, 15, 26] and
reference therein) under different viewpoints. In particular, it is well known that in general
the minimum time function T is not everywhere differentiable. It is also well known that
suitable controllability conditions imply the Hölder continuity of T (see, e.g., [1, Chapter
IV] and references therein). However, the latter fact does not provide information on
differentiability. In a 1995 paper (see [7] and also Chapter 8 in the book [8]), Cannarsa
and Sinestrari found a connection between the control system and the target which actu-
ally implies the semiconcavity (or the semiconvexity) of T . Semiconcave functions are –
essentially – C2-perturbations of concave functions and therefore inherit several regularity
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properties from convexity. Several features of semiconcavity were thoroughly studied (see
Chapters 3, 4, 5 in [8] and references therein), thus providing a rich set of information on
the structure of the minimum time function and suggesting semiconcavity/semiconvexity
as a good regularity class for such value functions. The main result in [7] shows that if
the target satisfies a uniform internal ball condition and the control system is smooth
enough, then T is semiconcave, provided a strong controllability assumption, called Petrov
condition, holds. A partially symmetric result, contained in [7], states that if the target is
convex and the control system is linear, then T is semiconvex, provided, again, Petrov con-
dition holds. The latter requires that the minimized Hamiltonian at all boundary points
of S, computed along unit normal vectors, be bounded away from zero locally uniformly,
i.e., for all R > 0 there exists µ > 0 such that for all x ∈ ∂S ∩B(0, R),

(2) min
u∈U
〈f(x, u), ζ〉 < −µ, for all ζ ∈ NS(x), ‖ζ‖ = 1.

In an entirely different setting, a class of sets which includes both convex and C2-sets
was studied independently by several authors (including Federer [18], Canino [4], Clarke,
Stern and Wolenski [12], Poliquin, Rockafellar and Thibault [25]) under different names,
for example sets with positive reach [18], ϕ-convex sets [4], proximally smooth sets [12],
and prox-regular sets [25]. Such sets, which in this thesis will be called sets with positive
reach, are characterized by a strong external sphere condition every normal vector must be
realized by a locally uniform ball. By observing that a convex set satisfies the same type
of external sphere condition with an arbitrarily large radius, it is natural to expect that
sets with positive reach enjoy locally several properties that convex sets enjoy globally. In
particular, this holds for the metric projection, which is unique in a neighborhood of a set
with positive reach K. This fact is used in proving all the regularity properties which are
satisfied by sets with positive reach (see, e.g., [18, Section 4]). Semiconcave functions and
sets with positive reach, through the hypograph, are linked together (see, e.g., Theorem
5.2 in [12], where semiconvex functions are called lower–C2): a locally Lipschitz function
is semiconcave if and only if its hypograph has positive reach. Of course an entirely
symmetric characterization for semiconvex functions can be expressed using the epigraph.
Trying to generalize to functions whose hypo/epigraph has positive reach some regularity
properties enjoyed by semiconcave/convexity functions was therefore a natural challenge.
Some results on this line were obtained in [13, 14], including the a.e. twice differentiability
together some results on the structure of singularities.

In several control problems, controllability assumptions weaker than Petrov condition
hold, and therefore the minimum time function is not locally Lipschitz. A natural question
therefore is trying to understand whether the structure of the minimum time function
remains unchanged if in the above setting the controllability assumptions are weakened.
In other words it is natural to investigate whether the hypograph/epigraph of T has
positive reach if T is supposed to be only continuous.

We first assume that the nonlinear control system is (essentially) C2, the target S
satisfies an internal sphere condition, and T is continuous, and study the hypograph of
T in the complement of S. Since the internal sphere property is closed with respect to
the union operator, one can see intuitively that the reachable set Rt, which is the set of
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points reachable from S in time less than t, inherits such property from S. By combining
this fact and the Hamiltonian function, a regularity result on the hypograph of T can be
obtained. The corresponding theorem is as follows:

Theorem 1 Under the above assumptions, the hypograph of T satisfies an external sphere
condition.

From this theorem, we obtain that if T is Lipschitz then T is semiconcave (see [23]).
However, here the situation is more complicated than in the Lipschitz case: the main
results depend on the pointedness of the normal cone to the hypograph. Indeed, from a
representation of generalized supergradient of T , we prove that

Theorem 2 Together with the above assumptions, if the normal cone to the hypograph is
pointed in the complement of S, then the hypograph of T has positive reach.

Several counterexamples (see e.g, [22]), though, show that the external sphere condition is
in general weaker than positive reach. In particular, in Example 2 in [17], we constructed
a minimum time function with a constant dynamics and a C1,1 target such that its hy-
pograph satisfies an external sphere condition but has not positive reach everywhere. On
the other hand, the pointedness assumption for the normal cone to the hypograph of a
continuous function is hard to verify since it is related to the representation formula for
its generalized supergradient (this problem is studied in [16]). Therefore, the problem of
understanding whether some concavity features are preserved under the external sphere
condition appears natural. Our main result reads -essentially- as follows:

Theorem 3 Let Ω ⊂ RN be open and let f : Ω −→ R be continuous. Assume that the
hypograph of f satisfies the weak external sphere condition. Then there exists a closed set
Γ with zero Lebesgue measure such that the hypograph of the restricted function fΩ\Γ has
positive reach.

Consequently, a function satisfying the assumption of the above theorem enjoys several
regularity properties inherited by functions whose hypograph has positive reach. There-
fore, using Theorem 1 and Theorem 3 the pointedness assumption of the hypograph of T
in Theorem 2 is removed and the a.e. twice differentiability of T for a class of nonlinear
control system is also obtained.

References

[1] M. Bardi, I. Capuzzo-Dolcetta, “Optimal Control and Viscosity Solutions of Hamilton-Jacobi-
Bellman Equations”. Birkhäuser, Boston, 1997.
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A Simple Model for Financial Indexes

with some Applications

Alessandro Andreoli (∗)

Abstract. Two major subjects of Mathematical finance are: mathematically modeling the prices
of assets and indices, and option pricing. We propose a simple stochastic model for time series
which is analytically tractable, easy to simulate and which captures some relevant stylized facts
of financial indexes, including scaling properties. We show that the model fits the Dow Jones
Industrial Average time series in the period 1935-2009 with a remarkable accuracy.
Despite its simplicity, the model has several interesting features. The volatility is not constant and
displays high peaks. The empirical distribution of the log-returns (increments of the logarithm
of the index) is non-Gaussian and may exhibit heavy tails. Log-returns corresponding to disjoint
time intervals are uncorrelated but not independent: the correlation of their absolute values decays
exponentially fast in the distance between the time intervals for large distances, while it has a slower
decay for moderate distances. Moreover, the distribution of the log-returns obeys scaling relations
that are detected on real time series, but are not satisfied by most available models.
Finally, we give a short overview about traditional option pricing.

1 Modeling Financial Indexes

In this section we give a short overview on modeling prices of indices.
The first partially successful mathematical attempt to model stocks and indices is due

to Paul Samuelson, in 1965, who proposed to represent their prices with a Geometric
Brownian motion. In this way, the Brownian Motion models the logarithm of the prices
(log-prices).

A slight modification of this idea is the Black & Scholes model: the prices St of a stock
price (or index) follows the dynamics:

(1.1) dSt = St(rdt+ σdWt),

where σ (the volatility) and r (the interest rate) are constant, and (Wt)t≥0 is a standard
Brownian motion.
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Black & Scholes model met an incredible success, both because on a first approssima-
tion has a good agreement with empirical data, and both because it is reall easy do deal
with it, theoretically and numerically.

Despite its success, Black & Scholes is not constistent with a number of other stylized
facts, that are empirically detected in many real time series. Some of these facts are the
following:

• the volatility is not constant: in particular, it may have high peaks, that may be
interpreted as shocks in the market;

• the empirical distribution of the increments Xt+h −Xt of the logarithm of the price
(the log-returns) has tails heavier than Gaussian;

• log-returns corresponding to disjoint time-interval are uncorrelated, but not indepen-
dent: in fact, the correlation between the absolute values |Xt+h−Xt| and |Xs+h−Xs|
has a slow decay in |t − s|, up to moderate values for |t − s|. This phenomenon is
known as clustering of volatility.

In order to have a better fit with real data, many different models have been proposed to
describe the volatility and the price process. In discrete-time, autoregressive models such
as ARCH, GARCH and generalizations [12, 7, 3, 8] have been widely used. In continuous
time, the basic model (1.1) has been modified by letting σ = σt be a stochastic process,
often the solution of a stochastic differential equation driven by a general Lévy process.
A systematic account of these stochastic volatility models can be found in [4]. Continuous
time versions of GARCH include the generalized Ornstein-Uhlenbeck processes and the
COGARCH (GARCH in continuous time) [17, 18].

Other models, whose effectiveness to model real data is the subject of current research,
include jumps in the prices and leverage; these models involve several parameters, whose
estimation raises a number of interesting statistical issues (see e.g. [9, 2, 15, 10]).

More recently (see [11, 6, 22]), other stylized facts of financial indexes have been
pointed out, concerning the scaling properties of the empirical distribution of the log-
returns. Consider the time series of an index (si)1≤i≤T over a period of T � 1 days and
denote by ph the empirical distribution of the (detrended) log-returns corresponding to an
interval of h days:

(1.2) ph(·) :=
1

T − h

T−h∑
i=1

δxi+h−xi(·) , xi := log(si)− di ,

where di is the local rate of linear growth of log(si) and δx(·) denotes the Dirac measure
at x ∈ R. The statistical analysis of various indexes, such as the Dow Jones Industrial
Average (DJIA) or the Nikkei 225, shows that, for h within a suitable time scale, ph obeys
approximately a diffusive scaling relation (cf. Figure 1(A)):

(1.3) ph(dr) ' 1√
h
g

(
r√
h

)
dr,
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where g is a probability density with tails heavier than Gaussian. If one considers the q-th
empirical moment mq(h), defined by

(1.4) mq(h) :=
1

T − h

T−h∑
i=1

|xi+h − xi|q =

∫
|r|q ph(dr) ,

from relation (1.3) it is natural to guess that mq(h) should scale as hq/2. This is indeed
what one observes for moments of small order q ≤ q̄ (with q̄ ' 3 for the DJIA). However,
for moments of higher order q > q̄, the different scaling relation hA(q), with A(q) < q/2,
takes place, cf. Figure 1(B) (see also [11]). This is the so-called multiscaling of moments.
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(A) Diffusive scaling of log-returns. (B) Multiscaling of moments.

Figure 1. Scaling properties of the DJIA time series (opening prices 1935-2009).

(A) The empirical densities of the log-returns over 1, 2, 5, 10, 25 days show a remarkable overlap
under diffusive scaling.

(B) The scaling exponent A(q) as a function of q, defined by the relation mq(h) ≈ hA(q) (cf.
(1.4)), bends down from the Gaussian behavior q/2 (red line) for q ≥ q ' 3. The quantity
A(q) is evaluated empirically through a linear interpolation of (logmq(h)) versus (log h) for
h ∈ {1, . . . , 5}.

In the next section we will define a simple continuous-time stochastic model which
agrees with all mentioned stylized facts. This is a non-trivial point, despite of the variety
of models that can be found in the literature. For example, the celebrated and widely used
GARCH [3] exhibits non-constant volatility and non-Gaussian distribution of log-returns;
the correlation of the absolute values of the log-return is positive and decays exponentially
fast, in contrast with empirical evidences indicating a somewhat slower decay; finally,
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multiscaling of moments is not present, at least for the range of values of the parameters
that most often occur in practice.

Also models very recently proposed, as the one in [9], however extremely accurate to fit
the statistics of the empirical volatility and with the multiscaling of moments feature, fail
on some other aspects (for example, the one proposed in [9] exhibits a decay of correlations
of absolute log-returns that is purely exponential).

2 The Model & The Main Results

In this section we present the model and the main theoretical results we managed to
obtained about.

Definition 1 A point process τ (on R) is a mapping from a probability space (Ω,F , P )
to the locally finite subsets of R.

Given two real numbers D ∈ (0, 1/2], λ ∈ (0,∞) and a probability ν on (0,∞) (these
may be viewed as our parameters), our model is defined upon the following three sources
of alea:

• a standard Brownian motion W = (Wt)t≥0;

• a Poisson point process T = (τ\)\∈Z on R with intensity λ;

• a sequence Σ = (σn)n≥0 of independent and identically distributed positive random
variables. The marginal law of the sequence will be denoted by ν (so that σn ∼ ν
for all n) and for conciseness we denote by σ a variable with the same law ν.

It is worth stressing from now that the first two moments of the law ν, i.e. E(σ) and
E(σ2), are enough to determine the features of our model that are relevant for real-world
times series We assume that W, T ,± are defined on some probability space (Ω,F ,P) and

that they are independent. By convention, we label the points of T so that τ0 < 0 < τ1.
We will actually need only the points of T ∩ [τ0,∞), that is the variables (τn)n≥0. We
recall that the random variables −τ0, τ1, (τn+1 − τn)n≥1 are independent and identically
distributed Exp(λ), so that 1/λ is the mean distance between the points in T . Although
some of our results would hold for more general distributions of T , we stick for simplicity
to the (rather natural) choice of a Poisson process.

We are now ready to define our model X = (Xt)t≥0. For t ∈ [0, τ1] we set

(2.1) Xt := σ0

(
W(t−τ0)2D −W(−τ0)2D

)
,

while for t ∈ [τn, τn+1] (with n ≥ 1) we set

(2.2) Xt := Xτn + σn

(
W(t−τn)2D+

∑n
k=1(τk−τk−1)2D −W∑n

k=1(τk−τk−1)2D

)
.

In words: at the epochs τn the time inhomogeneity t 7→ t2D is “refreshed” and the volatility
is randomly updated: σn−1 ; σn. A possible financial interpretation of this mechanism is
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that jumps in the volatility correspond to shocks in the market. The reaction of the market
is not homogeneous in time: if D < 1/2, the dynamics is fast immediately after the shock,
and tends to slow down later, until a new jump occurs. For D = 1/2 our model reduces
to a simple random volatility model dXt = σt dWt, where σt :=

∑∞
k=0 σk 1[τk,τk+1)(t) is a

(random) piecewise constant process.

Using the scale invariance of Brownian motion, we now give an alternative definition of
our model X, that is equivalent in law with (2.2) but more convenient for the theoretical
tractability of the process. For t ≥ 0, define

(2.3) i(t) := sup{n ≥ 0 : τn ≤ t} = #{T ∩ (0, t]} ,

so that τi(t) is the location of the last point in T before t. Now we introduce the process
I = (It)t≥0 by

(2.4) It := σ2
i(t)

(
t− τi(t)

)2D
+

i(t)∑
k=1

σ2
k−1 (τk − τk−1)2D − σ2

0 (−τ0)2D ,

with the agreement that the sum in the right hand side is zero if i(t) = 0. We can then
redefine our basic process X = (Xt)t≥0 by setting

(2.5) Xt := WIt .

Note that I is a strictly increasing process with absolutely continuous paths, and it is
independent of the Brownian motionW . Thus this model may be viewed as an independent
random time change of a Brownian motion.

We now state our main results concerning the process X. They correspond to the
basic stylized facts that we have mentioned in the previous section: diffusive scaling of the
distributions of log-returns (Theorem 2 below); multiscaling of moments (Theorem 3 and
Corollary 4); clustering of volatility (Theorem 5 and Corollary 6).

The first result states that for small h the increments (Xt+h−Xt) have an approximate
diffusive scaling, in agreement with (1.3).

Theorem 2 As h ↓ 0 we have the convergence in distribution

(Xt+h −Xt)√
h

d−−−→
h↓0

f(x) dx ,(2.6)

where f is a mixture of centered Gaussian densities, namely

(2.7) f(x) =

∫ ∞
0

ν(dσ)

∫ ∞
0

dt λe−λt
t1/2−D

σ
√

4Dπ
exp

(
− t

1−2Dx2

4Dσ2

)
.

We stress that the function f appearing in (2.6)–(2.7), which describes the asymptotic
rescaled law of the increment (Xt+h−Xt) in the limit of small h, has a different tail behavior
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from the density of (Xt+h −Xt) for fixed h. For instance, when σ has finite moments of
all orders, it follows that the same holds for (Xt+h −Xt). However,independently of the
law ν of σ, the density f has always polynomial tails:

∫
R |x|

qf(x) dx =∞ for q ≥ q∗.
This feature of f has striking consequences on the scaling behavior of the moments of

the increments our model. If we set for q ∈ (0,∞)

(2.8) mq(h) := E(|Xt+h −Xt|q) ,

from the convergence result (2.6) it would be natural to guess that mq(h) ≈ hq/2 as
h ↓ 0, in analogy with the Brownian motion case. However, this turns out to be true
only for q < q∗. For q ≥ q∗, the faster scaling mq(h) ≈ hDq+1 holds instead, the reason
being precisely the fact that the q-moment of f is infinite for q ≥ q∗. This transition
in the scaling behavior of mq(h) goes under the name of multiscaling of moments and is
discussed in detail, e.g., in [11]. Let us now state our result.

Theorem 3 [Multiscaling of moments] Let q > 0, and assume E (σq) < +∞. Then the
quantity mq(h) := E(|Xt+h −Xt|q) = E(|Xh|q) is finite and has the following asymptotic
behavior as h ↓ 0:

mq(h) ∼


Cq h

q
2 if q < q∗

Cq h
q
2 log( 1

h) if q = q∗

Cq h
Dq+1 if q > q∗

, where q∗ :=
1

(1
2 −D)

.

The constant Cq ∈ (0,∞) is given by

(2.9) Cq :=


E(|W1|q)E(σq)λq/q

∗
(2D)q/2 Γ(1− q/q∗) if q < q∗

E(|W1|q)E(σq)λ (2D)q/2 if q = q∗

E(|W1|q)E(σq)λ
[ ∫∞

0 ((1 + x)2D − x2D)
q
2 dx + 1

Dq+1

]
if q > q∗

,

where Γ(α) :=
∫∞

0 xα−1e−xdx denotes Euler’s Gamma function.

Corollary 4 The following relation holds true:

(2.10) A(q) := lim
h↓0

logmq(h)

log h
=


q

2
if q ≤ q∗

Dq + 1 if q ≥ q∗
.

Our last theoretical result concerns the correlations of the absolute value of two incre-
ments, a quantity which is usually called volatility autocorrelation. We start determining
the behavior of the covariance.

Theorem 5 Assume that E(σ2) < ∞. The following relation holds as h ↓ 0, for all
s, t > 0:

(2.11) Cov(|Xs+h −Xs|, |Xt+h −Xt|) =
4D

π
λ1−2D e−λ|t−s|

(
φ(λ|t− s|)h + o(h)

)
,
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where

(2.12) φ(x) := Cov
(
σ SD−1/2 , σ

(
S + x

)D−1/2)
and S ∼ Exp(1) is independent of σ.

We recall that ρ(Y,Z) := Cov(Y,Z)/
√
V ar(Y )V ar(Z) is the correlation coefficient of two

random variables Y,Z. As Theorem 3 yields

lim
h↓0

1

h
V ar(|Xt+h −Xt|) = (2D)λ1−2D V ar(σ |W1|SD−1/2) ,

where S ∼ Exp(1) is independent of σ,W1, we easily obtain the following result.

Corollary 6 [Volatility autocorrelation] Assume that E(σ2) <∞. The correlation of the
increments of the process X has the following asymptotic behavior as h ↓ 0:

(2.13) lim
h↓0

ρ(|Xs+h−Xs|, |Xt+h−Xt|) = ρ(t− s) :=
2

π V ar(σ |W1|SD−1/2)
e−λ|t−s| φ(λ|t− s|) ,

where φ(·) is defined in (2.12) and S ∼ Exp(1) is independent of σ and W1.

This shows that the volatility autocorrelation of our process decays exponentially fast
for time scales greater than the mean distance 1/λ between the epochs τk. For shorter
time scales, a relevant contribution is given by the function φ(·), that decays faster than
polynomial but slower than exponential.

So, we have found a model that has the following features:

• it’s quite easy to describe.

• it’s theoretically and numerically tractable.

• takes into account many features that are charateristic of real time series.

3 Arbitrage Theory & Option Pricing

In this section we present some classical theory on option pricing.
The general assumptions for the market M we consider are:

• Short positions and any fractional (real) holdings, are allowed,

• No bid-ask spread, i.e. the selling price is equal to the buying price of all assets,

• There are no transaction costs of trading,

• The market is completely liquid, i.e. it is always possible to buy and sell unlimited
quantities on the market. In particular it is possible to borrow unlimited amounts
from the bank (by selling bonds short),
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• there is a risk-free asset, i.e. an asset with deterministic evolution, dBt = r(t)Btdt.

Under our assumptions, the market is then made of N − 1 riskly assets (stochastic
processes) and one risk-free asset (deterministic process).

Definition 7 A Portfolio is any linear combination of the N assets. A Self-Financing
Portfolio is a portfolio with no exogenous infusion or withdrawal of money; in other words,
the purchase of a new portfolio must be financed solely by selling assets already in the
portfolio.

Definition 8 An Arbitrage possibility on a financial market is a self-financed portfolio
such that:

• Its initial value is zero.

• Its value at time T is greater or equal zero almost surely.

• Its value at time T has strictly positive probability of being strictly greater than
zero.

We say that the market is arbitrage-free if there are no arbitrage possibilities.

Definition 9 A Simple claim with date of maturity T on the underlying asset S is any
random variable φ(ST ) with φ measurable. The function φ is called the contract function.

Example: A (European) Call Option with strike price K and maturity time T on the
underlying S is a contract of this form:

φ(ST ) = (ST −K)+.

The aim of option pricing is to give to the options X = φ(ST ) reasonable prices Πt(X),
at any time t. If the market (without these options) is arbitrage-free, there are two main
approachs to do this:

• to price the options in such a way that the market remains arbitrage-free once that
we add these new prices: in other words we want Bt, S

1
t , ..., S

N−1
t ,Πt(X) to be

arbitrage-free.

• if at time t there exist a self-financing portfolio whose value at time T is identically
equal to the value of X, then Πt(X) should be the value of this portfolio at time t
(We call Hedging portfolio for X a portfolio with this property).

The mathematical problems linked to the two approaches are:

• Characterization for a market to be arbitrage-free.

• Existence and uniqueness of the price.

Università di Padova – Dipartimento di Matematica 38



Seminario Dottorato 2010/11

In the following we will see two theorems that completely solve the option pricing
problem, at least for very special markets (namely, for the complete markets).

Definition 10 A process (Zt)t∈T is an (Ft)−martingale if

• (Zt)t∈T is (Ft)−adapted

• E[|Zt|] <∞ for all t

• Zs = E[Zt|Fs] for all s ≤ t

Definition 11 Two measures P and Q on the same space (X,F) are equivalent if the
following condition holds:

P (A) = 0⇔ Q(A) = 0, A ∈ F

Definition 12 if P is the ”real world” measure of the market model, we say that Q is
an equivalent martingale measure (EMM) if:

• P and Q are equivalent

• the discounted price processes St
Bt

of the N − 1 assets are martingales under the
measure Q.

We now presents a theorem that gives a way for pricing the options according to the
first approach we proposed:

Theorem 13 [The First Foundamental Theorem of Finance] The market model (with ”real
world” probability P ) is arbitrage-free if and only if there exists (at least) an equivalent
martingale measure Q.

As a consequence of the First Foundamentak Theorem, we have the following. If

M =
{
Bt, S

1
t , ..., S

N−1
t

}
is an arbitrage-free market, then ther exists at least one Equivalent Martingale Measure
Q; if we set

Πt(X) = BtE
Q

[
X

BT
|F
]
,

by definition the discounted price of X is a martingale under Q, and then

M′ =
{
Bt, S

1
t , ..., S

N−1
t ,Πt(X)

}
is an arbitrage-free market too, again by the First Foundamental Thoerem.

Remark 14 The First foundamental theorem assures that at least one EMM exists, but
there could be more than one, and then many possible prices for X.
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Theorem 13 gives then a partial answer to the problem of otpion pricing: we know
what prices we can give to X consistently with the market, but we have to many of them!
Let us now try using the second approach.

First of all, note that if there exists an hedging portfolio for X, his value should be
the price of X (otherwise there would be an arbitrage.); but, for the same reason, all
the hedging portfolios for X should have the same value. Then, if X is hedgeable, all
the E.M.M should give the same price for it, so X has an unique price. This leads to
the definition of completeness for markets and to the Second Foundamental Theorem of
Finance:

Definition 15 A market-model is complete if every option X is headgeable.

Theorem 16 [The Second Fundamental Theorem of Finance] Assuming absence of ar-
bitrage, a market model is complete if and only if the martingale measure Q is unique.

Remark 17 From the First and the Second Fundamental Theorems, it follows imme-
diately that for a market-model arbitrage-free and complete there exists an unique non-
arbitrage price for all options.

Then, the problem of Option Pricing in complete (and arbitrage free) markets is the-
oretically solved. What about the incomplete ones?

Many solutions have been proposed in literature:

• SuperHedging,

• to choose the EMM that best suits the prices already present on the market,

• other

But this is still an open problem.
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Lévy process: stationarity and second order behaviour. J. Appl. Probab. 41 (2004) 601–622.

[18] C. Kluppelberg, A. Lindner, R. A. Maller, Continuous time volatility modelling: COGARCH
versus Ornstein-Uhlenbeck models. In From Stochastic Calculus to Mathematical Finance, Yu.
Kabanov, R. Lipster and J. Stoyanov (Eds.), Springer (2007).

[19] Wolfram Research, Inc., Mathematica. Version 7.0, Champaign, IL, 2008.

[20] B. Øksendal, “Stochastic Differential Equations”. Springer-Verlag, 2003.

[21] R Development Core Team (2009), “R: A language and environment for statistical computing”.
R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.
URL: http://www.R-project.org.

[22] A. L. Stella, F. Baldovin, Role of scaling in the statistical modeling of finance. Pramana 71
(2008), 341–352.

[23] L. Weiss, The Stochastic Convergence of a Function of Sample Successive Differences. Ann.
Math. Statist. 26 (1955), 532–536.
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An introduction to Coxeter group theory

Mario Marietti (∗)

Abstract. Coxeter groups arise in many parts of algebra, combinatorics and geometry, providing
connections between different areas of mathematics. The purpose of this talk is to give an elemen-
tary overview to Coxeter group theory from algebraic, combinatorial and geometrical viewpoints.
Some classical and more recent results will be presented.

1 Overview

Coxeter group theory derives much of its appeal from its interactions with several areas
of mathematics such as algebra, combinatorics, and geometry. In Coxeter group theory,
a crucial role is played by Bruhat order. It arises not only in the Bruhat decomposition
(this motivates the terminology although it would be more appropriate to call it Chevalley
order), but also in many other contexts such as in connection with inclusions among
Schubert varieties, with the Verma modules of a complex semisimple Lie algebra, and in
Kazhdan–Lusztig theory.

These notes mirror the content and the spirit of the talk. First, I give an elementary
introduction to the subject that can be accessible to a public of non specialist people,
referring who is interested to the classical references [2], [3], [8], [10]. Then, I present
some more recent research results, preserving understandability. More precisely, after
giving some motivating examples, I give the definition and the basic properties of Coxeter
systems and Bruhat order. Then I consider special matchings and some of the results in
the theory that flows from these recently introduced combinatorial objects, which have
several applications (see [4], [5], [12]). In particular, I give a combinatorial characterization
of Coxeter groups (partially ordered by Bruhat order) among all posets.

2 Motivating examples

We begin by briefly giving some motivating basic examples, which should be kept in mind
during the talk.

(∗)Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on 15 December 2010.
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2.1 Dihedral groups

Let V be the euclidean plane, Pm be a regular m-sided polygon centered at the origin,
and I2(m) be the group of orthogonal transformations preserving Pm. The group I2(m),
which is called dihedral, has order 2m and, more precisely, contains:

• m rotations (through multiples of 2π/m),

• m reflections.

The dihedral group I2(m) is generated by two adjacent reflections s1 and s2 whose products
s1s2 and s2s1 have order m. For example, I2(6) is generated by s1 and s2, the reflections
through the lines in Figure 1, and the products s1s2 and s2s1 are rotations through 2π/6
and therefore have order 6.

r2

s
s2
1

Figure 1: I2(6) is generated by s1 and s2.

2.2 Reflection Groups

Let V be a (real) euclidean space with a positive definite symmetric bilinear form< −,− >.
An orthogonal reflection sα is a linear trasformation sending a vector α 6= 0 to its negative
and fixing pointwise the hyperplane orthogonal to α. It has the following expression:

sα(v) = v − 2 < v, α >

< α,α >
α

and it is immediate to verify that it is an orthogonal transformation.
A group generated by orthogonal reflections is called a reflection group. Hence a finite

reflection group is obtained by a set Φ of nonzero vectors in an euclidean space V whose
associated reflections generate a finite group. For example, we obtain a finite reflection
group taking as Φ any root system (in the sense of Lie theory).

2.3 Weyl groups

Let

• G be a reductive algebraic group (for example, GLn, the group of n × n invertible
matrices),
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• B be a Borel subgroup of G (for example, the subgroup of upper triangular matrices
of GLn),

• T be a maximal torus of B (for example, the subgroup of diagonal matrices of B),

• N(T ) be the normalizer of T in G.

Definition 2.1 The Weyl group of G is the group W = N(T )/T .

The Weyl group of G is generated by involutions (elements of order 2).

3 Coxeter groups

3.1 Coxeter systems

As a matter of fact, it is a popular abuse of language to use the term Coxeter group instead
of the more appropriate Coxeter system: the subject of study is not merely a group but
a group with attached a distinguished set of generators which play a fundamental role in
the theory. A Coxeter system is a pair (W,S) where

• S = {s1, . . . , sn} is a finite set,

• W is the group generated by S with relations only of the form (sisj)
mij = id, with

mii = 1 and mij = mji ∈ N≥2 ∪ {∞} if i 6= j.

We make the convention that no relation occurs for the pair (si, sj) if mij = ∞. The
matrix (mij) and the cardinality of S are, respectively, the Coxeter matrix and the rank
of the Coxeter system (W,S). Since, for all i = 1, . . . , n, mii = 1, we have that every
generator is an involution.

All pieces of information are encoded in the Coxeter graph of the Coxeter system
(W,S). This is the labeled graph having S as the set of vertices and where {si, sj} is an
edge labeled mij if and only if mij > 2 (labels 3 are omitted). Notice that the generators
si and sj commute if mij = 2. For example, if (W,S) is the Coxeter system with Coxeter
matrix 

1 6 3 2
6 1 4 2
3 4 1 9
2 2 9 1


the Coxeter graph of (W,S) is the one depicted in Figure 2.

1

2

3

4

S

9

6 4

S

S

S

Figure 2: The Coxeter graph of (W,S).
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Coxeter groups with connected Coxeter graphs are called irreducible. A non irreducible
Coxeter group is the direct product of the Coxeter groups associated to its connected
components and hence we may often reduce to the case of irreducible Coxeter systems.

3.2 Word problem

By definition, W = F/N , where F is the free group generated by S and N is the normal
subgroup of F generated by the relations. Thus elements in W are equivalence classes
of words in the alphabet S (the inverses of the generators are not needed since s−1 = s,
for all s ∈ S). The problem of telling when two words represent the same element or not
has been uniformly solved, for all Coxeter systems, by Tits (see [14]). The answer is the
simplest one may expect: one can always transform an arbitrary word to an equivalent
one by making only the most obvious types of modifications (the modifications given by
the defining relations).

Theorem 3.1 [Tits’ word Theorem] Two words represent the same element if and only
if they are linked by a sequence of moves of the following types:

• deleting a pair sisi ( nil move),

• inserting a pair sisi,

• replacing sisjsi...︸ ︷︷ ︸
mij letters

by sjsisj ...︸ ︷︷ ︸
mij letters

( braid move).

Example 3.2 Let (W,S) be the Coxeter system whose Coxeter graph is given in Figure 2.
Consider the two expressions s3s1s3s4s1 and s1s3s4. They represent the same element since

s3s1s3︸ ︷︷ ︸ s4s1
braid mv

= s1s3s1 s4s1︸︷︷︸ braid mv
= s1s3 s1s1︸︷︷︸ s4

nil mv
= s1s3s4

3.3 Properties of Coxeter groups

Let (W,S) be a Coxeter system. Given an element w ∈W , let

`(w) = min{k : w is a product of k generators}

be the length of w. Any word that represents w with exactly `(w) geneators is a reduced
expression of w. Other statistics on W are the right and left descens, which are defined
as follows:

• DR(w) = {s ∈ S : `(ws) < `(w)} right descents of w

• DL(w) = {s ∈ S : `(sw) < `(w)} left descents of w
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The main reason why Coxeter groups have remarkable combinatorial properties is the
fact that they satisfy the Exhange Property and, as a consequence, the Deletion Property.

Exchange Property Suppose w = s1s2 · · · sk , sj ∈ S, and s ∈ S. If `(ws) < `(w)
then ws = s1 · · · si−1 ŝi si+1 · · · sk for some i.

Deletion Property Suppose w = s1s2 · · · sk , si ∈ S. If `(w) < k then it holds
w = s1 · · · si−1 ŝi si+1 · · · sj−1 ŝj sj+1 · · · sk for some i, j.

4 Geometric representation

We cannot expect a faithful representation of an arbitrary Coxeter group W as a group
generated by orthogonal reflections. We can do it if we consider (not necessarily orthog-
onal) reflections. A reflection sα of a vector space V is a linear trasformation sending a
vector α 6= 0 to its negative and fixing pointwise a hyperplane.

Given a Coxeter system (W,S) (where S = {s1, . . . , sn}), we can construction a faithful
representation of W as a group generated by reflections in the following way. Let V = R|S|
with a basis αs1 , . . . , αsn which is in bijection with S, and consider the following reflections:

σ(si)(x) := x− 2(x, αsi)αsi

where (−,−) is the symmetric bilinear form defined by

(αsi , αsj ) =

{
− cos( π

mij
), if mij <∞
−1, if mij =∞.

Then the group W is isomorphic to the discrete subgroup of GL(V ) generated by the
σ(s). It is a quick calculation to verify that it preserves (−,−).

From standards facts about group representations, it follows the following result.

Theorem 4.1 Let (W,S) be a Coxeter system and (−,−) be is the symmetric bilinear
form defined above. Then the following conditions are equivalent:

(a) W is finite,

(b) W is a finite reflection group,

(c) (−,−) is positive definite.

By the previous theorem, finite Coxeter groups are precisely the finite reflection groups,
which are classified. The finite irreducible Coxeter systems can be divided into four infinite
classes, those of type An, Bn, Dn, I2(m), and six sporadic groups, those of type E6, E7,
E8, F4, H3, H4 (the subscript is the rank). See, for example, [2] or [10] for the definitions.
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5 Presentation of Coxeter systems of type A: the symmetric groups

As we have seen, the geometric representation is an important tool in the theory. However,
it is often useful to have a more concrete presentation. We now discuss such presentations
for the Coxeter systems of type A: Coxeter systems of type B and D have analogous
presentations.

Let (W,S) be the Coxeter system of type An, hence S = {s1, . . . , sn} and the Coxeter

matrix is given by mij =


1, if i = j;
3, if i = j ± 1;
2, else.

The group W is isomorphic to the symmetric

group Sn+1 through the map si 7−→ (i, i+1), where (i, i+1) denotes the simple transposi-
tion switching i and i+ 1 and fixing all the other j. By abuse of language, it is customary
to refer to W as the symmetric group Sn+1 (having always in mind the distinguished set
of generators and the map). With this presentation, the statistics we introduced read as
follows. If π ∈ Sn, then

• `(π) = inv(π) := |{(i, j) : i < j, π(i) > π(j)}| length= # inversions

• DR(π) = {i : π(i) > π(i+ 1)} right descents

• DL(π) = {i : π−1(i) > π−1(i+ 1)} left descents

Example 5.1 π = 31265487 ∈ S8

• `(π) = inv(π) = |{(1, 2), (1, 3), (4, 5), (4, 6), (5, 6), (7, 8)}| = 6

• DR(π) = {1, 4, 5, 7}

• DL(π) = {2, 4, 5, 7}

6 Bruhat order

6.1 Properties of Bruhat order

In Coxeter group theory, a crucial role is played by Bruhat order. The remarkable aspects
of Bruhat order make the theory appealing for combinatorialists.

Let (W,S) be a Coxeter system and T = ∪w∈WwSw−1 be its set of reflections. There
are several equivalent definitions of the Bruhat order. For example, the Bruhat order can
be defined as the transitive closure of the covering relation �:

u� v ⇔
{
v = tu, t ∈ T
`(v) = `(u) + 1

A Coxeter group W partially ordered by Bruhat order has a rich combinatorial struc-
ture. We now list a few of its properties:

(a) W is ranked with the length ` as rank function,
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(b) W has a bottom element, which is always the identity,

(c) if it is finite, W has a maximum, which is usually denoted by w0,

(d) W is Eulerian, meaning that, for all u ≤ v, its Möbius function µ satisfies µ(u, v) =
(−1)`(v)−`(u) or, equivalently, |{z ∈ [u, v] : `(z) is even}| = |{z ∈ [u, v] : `(z) is odd}|,

(e) W admits BGG-labelings (see [12] for the definition).

213

312

123

132

321

231

Figure 3: The symmetric group S3.

6.2 An occurance of the Bruhat order

The Bruhat order has an algebraic-geometric origin. Let G = GLn(C), B the subgroup
of invertible upper triangular matrices, T the subgroup of invertible diagonal matrices,
W the Weyl group of G, which is isomorphic to the symmetric group Sn (recall that
the Weyl group is the group N(T )/T , where N(T ) is the normalizer of T in G). The
quotient G/B is an irreducible projective variety, the flag variety : it is in bijection with
the set {V0 ⊂ V1 ⊂ · · · ⊂ Vn : Vi subspace of Cn with dimVi = i} whose points are called
flags. By the Bruhat decomposition G = tw∈WBwB, we have an induced decomposition
G/B = tw∈WΩw, where Ωw := BwB/B are affine spaces indexed by the elements w ∈W
which are called Schubert cells. The Schubert cell Ωw has dimension `(w). The Zariski
closure Xw := Ωw of the Schubert cell indexed by w is the Schubert variety indexed by w.
Since Ωw is B-invariant, also Xw is B-invariant, and hence it is a union of Schubert cells.
The Bruhat order determines which are these cells.

Theorem 6.1 The Bruhat order determines the inclusions of Schubert varieties:

Xu ⊆ Xv ⇔ u ≤ v.

Equivalently,
Xw = tu≤wΩu = ∪u≤wXu

(the first one is a disjoint union).
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6.3 Bruhat order for the symmetric group: tableau criterion

For the symmetric group Sn, the Bruhat order reads as follows. Let σ = σ1σ2 · · ·σn and
π = π1π2 · · ·πn be two permutations. Fix i and take the increasing rearrangements of the
first i numbers of σ and π. Then σ ≤ π in the Bruhat order if and only if the sequence
associated to σ is component-wise smaller than the sequence associated to π, for all i.

Example 6.2 Let σ = 21453 and π = 53412. We have σ ≤ π since

σ :

1 2 3 4 5
1 2 4 5
1 2 4
1 2
2 ≤ π :

1 2 3 4 5
1 3 4 5
3 4 5
3 5
5

Handy presentations are usuful also for Bruhat order.

7 Special matchings

7.1 Special matchings

Recall that a matching of a graph G = (V,E) is an involution M : V → V such that
{M(v), v} ∈ E, for all v ∈ V . Let P be a partially ordered set. A matching M of the
Hasse diagram of P is a special matching of P if

u� v =⇒M(u) ≤M(v),

for all u, v ∈ P such that M(u) 6= v.
Figure 4 gives two matchings of the Boolean algebra of rank 3, the first of which is

special while the second is not.

not specialspecial

Figure 4: Two matchings.

Applications of special matchings are also in Kazhdan–Lusztig theory (see the works of
Brenti, Caselli, Delanoy, Du Cloux, M,).
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7.2 Zircons

The following definition was given in [11]-[12] (see [9] for an equivalent definition).

Definition 7.1 A locally finite ranked poset Z with bottom element 0̂ is a zircon if,
∀z ∈ Z \ {0̂}, the interval [0̂, z] admits a special matching.

Example 7.2 S3 is a zircon.

All Coxeter groups partially ordered by Bruhat order are connected zircons. In fact,
let (W,S) be any Coxeter system. Then W is a locally finite ranked poset with the
length function as rank function. Fix w ∈ W \ {e} and s ∈ DR(w). Then the involution
ρs : [e, w] → [e, w] defined by ρs(u) = us for all u ∈ [e, w] is a special matching of w.
Similarly, if s ∈ DL(w), the involution λs : [e, w] → [e, w] defined by λs(u) = su for all
u ∈ [e, w] is a special matching of w. Hence, for every element w in W with `(w) > 1,
there exist at least 2 special matchings of [id, w].

id

r t s

rts

rt rs ts

On the other hand, there are “many” zircons that are not Coxeter groups. For example,
the zircon in Figure 5 cannot be an interval of the type [e, w] in a Coxeter group since it
admits only one special matching.
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Figure 5: A zircon with only one special matching.

7.3 Properties of zircons

Zircons behave like Coxeter groups: many of the properties of the Coxeter groups extend to
zircons. It is often the case that the proofs for zircons are simpler than the corresponding
proofs for Coxeter groups: in particular, the proof of part a. of the following result, as
far as we know, is the shortest among the many different arguments which prove the
Eulerianity of Coxeter groups and part b., which generalizes the fact that Coxeter groups
admit BGG labelings, has an elementary proof using special matchings (see [12]).

Theorem 7.3 [M] Let Z be a zircon. Then

(a) Z is Eulerian: the Möbius function of Z is

µ(u, v) = (−1)ρ(v)−ρ(u)

for all u ≤ v ∈ Z.

(b) BGG-labelings of Z are in bijection with the subsets of Z \ 0̂.

Eulerianity for Coxeter groups was first conjectured [15] and later proved [16] by Verma.
Other arguments come from the shellability (Björner-Wachs), Kazhdan-Lusztig theory
(Kazhdan-Lusztig), equalities in the 0-Hecke algebra (Stembridge). Bernstein-Gelfand-
Gelfand [1] proved that every finite Coxeter group admits a BGG-labeling.

8 Characterizations

The problem of characterizing Coxeter groups among the groups generated by involutions
and the problem of characterizing the Bruhat order among the partial orders on a fixed
Coxeter group have been solved by Matsumoto [13] and Deodhar [6]-[7], respectively.

Theorem 8.1 [Matsumoto] Let W be a group and S be a set of generators of order 2.
Then the following are equivalent.
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(a) (W,S) is a Coxeter system.

(b) (W,S) has the Exchange Property.

(c) (W,S) has the Deletion Property.

Theorem 8.2 [Deodhar’s Subword Property] Let (W,S) be a Coxeter system and ≤ be
a partial order on W . Then the following are equivalent.

(a) The order ≤ is the Bruhat order.

(b) We have u ≤ v if and only if some reduced expression for v has a subword which is
a reduced expression for u.

(c) We have u ≤ v if and only if every reduced expression for v has a subword which is
a reduced expression for u.

We now give a characterization of Coxeter groups partially ordered by Bruhat order
among all posets. In other words, we give a necessary and sufficient condition for an
abstract poset to be isomorphic to a Coxeter group partially ordered by Bruhat order.
This result is proved by studying the combinatorics of words in the alphabet of special
matchings and, in particular, giving a combinatorial version of Tits’ Word Theorem. As
a matter of fact, the special matchings of a zircon play the role that Coxeter generators
play in Coxeter group theory (see [12]).

Theorem 8.3 [M] Let Z be a ranked poset with a bottom element 0̂. The following are
equivalent.

(a) There exists a Coxeter group which, under Bruhat order, is isomorphic to Z.

(b) Z is a zircon having a set R of special matchings such that:

– for all z ∈ Z \ {0̂}, there exists M ∈ R such that M(z) � z,

– given M,M ′ ∈ R, all orbits under the action of the group generated by M and
M ′ have the same cardinality (possibly ∞).

If all orbits under the action of the group generated by two special matchings M and
M ′ have the same cardinality, we denote this cardinality by 2 m(M,M ′). As a matter of
fact, the proof of the previous result is constructive. If the two equivalent conditions of
Theorem 8.3 are satisfied, the Coxeter group W has R as set of Coxeter generators and
the integers m(M,M ′) as Coxeter matrix.

For example, the poset in Figure 6 is isomorphic to the symmetric group S4 (the
application of Theorem 8.3 is given by picture).
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{ , , M }M M

Figure 6: A zircon and three of its special matchings.

m(M , M )=3 m(M , M )=3 
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4It is isomorphic to S
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The maximum matching problem

and one of its generalizations

Yuri Faenza (∗)

Abstract. Given a graph G(V,E), a matching M is a subset of E such that each vertex in V
appears as the endpoint of at most one edge from M . The maximum matching problem is among
the most important and studied problems in combinatorial optimization. In this short note, we
survey a number of classical results on the topic and present more recent results for a non-trivial
generalization of the maximum weighted matching problem, i.e. the maximum weighted stable set
problem in claw-free graphs.

1 Introduction

Matching problems are among the oldest and most studied in combinatorial optimization
and polyhedral combinatorics. They have been the subject of a large number of important
studies, whose results and techniques often extended well beyond matching and turned
out to be of more general interest. The corpus of results on matching has now reached
significative size, deepness, and is often enriched by elegant proofs. Despite these fairly old
roots, the matching’s well has not run dry, and in recent years several important results
and intriguing open questions arose from matching problems or their generalizations.

In this short note, we present some results on the classical maximum matching problem
and some of its generalizations, ascending a hierarchy of increasing complexity, up to
the maximum weighted stable set problem in claw-free graphs. In particular, we focus on
“theoretically fast” algorithms for the problems above, i.e. whose running time is bounded
by a fixed polynomial of the size of the vertex and edge sets of the input graph. As we
shall see, a number of structural results on graphs and matchings will be of great help
for deriving those algorithms. For the amount of space is limited, we shall not deal with
the huge amount of results on matching that are not related to the problems mentioned
above, and even on those, we shall cover only a subset of the results from the literature:
an interested reader may refer, among others, to the classical text [14], to the more recent
book [21], or to the survey [9]. In order to formally state the problems we deal with, we
start with some definitions.

(∗)Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on 19 January 2011.
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2 Definitions

Let G(V,E) be a (undirected) graph, where V denotes the set of vertices of G and E is
a set of unordered pairs of vertices from V . The elements of E are called edges. For the
sake of shortness, we shall denote an edge {u, v} by uv. Two vertices u, v ∈ V such that
uv ∈ E are called adjacent (in G), and u, v are the endpoints of uv. The graphs we deal
with are simple (repetitions in E are not allowed), loopless (no vv edge belongs to E, for
any vertex v ∈ V ), finite (V is a finite set, and consequently so is E). A matching of G is
a set M ⊆ E such that each vertex of V appears in at most one edge from M . Given a
graph G and a matching M of G, a vertex v ∈ V is called M−covered if there exist u ∈ V
such that uv ∈M ; M−exposed otherwise. Given a graph, a number of different questions
(some of which arising from real-world settings) can be asked on the set of matchings of G.
For instance, one may ask if G has a perfect matching, i.e. a matching M such that each
vertex of V is M−covered, or to find a (inclusionwise) maximal matching that contains the
smallest possible number of edges. In this short note we deal with the maximum matching
problem, defined as follows:

The Maximum Matching problem (MM )
Given: a graph G(V,E);
Find: a matching M of G of maximum cardinality.

An immediate generalization of the latter problem can be obtained by assigning a
weight we ∈ R to each edge e ∈ E, and asking for a matching of maximum weight. (In
the following, given a set S and a function f : S → R, we define f(S) :=

∑
s∈S f(s)).

The Maximum Weighted Matching problem (MWM )
Given: a graph G(V,E) and a weight function w : E → R;
Find: a matching M of G such that w(M) = max{w(M ′) : M ′ is a matching of G}.

Given a graph G(V,E), its line graph L(G) is a graph whose vertex set is made of a
vertex ve for each edge e ∈ E, and given e, f ∈ E, two vertices ve, vf are adjacent in L(G)
if and only if e and f share an endpoint. A stable set of a graph G is a set S ⊆ V such
that no two vertices of S are adjacent in G. As one easily checks, M ⊆ E is a matching
in G if and only if the set L(M) obtained by replacing each edge e of M with the vertex
ve is a stable set of L(G) (See Figure 1 for an example).

Figure 1: A graph G (on the left) and its line graph L(G). An edge of G of a given color corresponds

to a vertex of L(G) of the same color, thus the matching {yellow, red} of G corresponds to the

stable set {yellow, red} of L(G).
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Hence, the following problem is a generalization of MWM :

The Maximum Weighted Stable Set problem (MWSS)
Given: a graph G(V,E) and a weight function w : V → R;
Find: a stable set S of G such that w(S) = max{w(S′) : S′ is a stable set of G}.

It is well-known [12] that MWSS in general graphs is NP-Hard, thus it is conjectured
(and strongly believed) that a polynomial time algorithm for solving this problem does
not exist. From what argued above, it follows that MWSS in line graphs (MWSSL) is
equivalent to MWM. We now introduce a tractable generalization of the latter. An induced
subgraph H(U,F ) of a given graph G(V,E) is a graph such that U ⊆ V and e ∈ F if and
only if a) e ∈ E and b) the endpoints of e belong to U . A claw is the graph depicted in
Figure 2. A graph is called claw-free if it has no induced subgraph that is isomorphic to a
claw. The following relation between line and claw-free graphs can be easily shown true.

Figure 2: A claw.

Lemma 1 Each line graph is a claw-free graph, while not every claw-free graph is a line
graph.

Thus, MWSS in claw-free graphs (MWSSC ) is a generalization of MWSSL and con-
sequently of MWM. Note that a similar argument holds for the cardinality or unweighted
case, i.e. when all weights are equal to 1: the maximum cardinality stable set problem
in claw-free graphs (MSSC ) is a generalization of the maximum cardinality stable set
problem in line graphs (MSSL), which in its turn is equivalent to MM.

3 The Maximum Matching problem

A path in a graph G(V,E) is a sequence v1, . . . , vk of distinct vertices from V such that
vivi+1 ∈ E for each i = 1, . . . , k − 1. Given a graph G(V,E) and a matching M on G, a
path P = v1, . . . , vk is called M−augmenting if k is even, vivi+1 ∈ M if and only if i is
even, and v1, vk are M−exposed. Hence, in particular, the edges v1v2 and vk−1vk belong
to E \M , and |P ∩M | = |P \M | − 1. It is easy to check that, given a matching M
and an M−augmenting path P , the set M4E(P ) is a matching of cardinality |M | + 1,
where we denoted by E(P ) the set of edges between consecutive vertices of P , and by
4 the symmetric difference operator. Thus, a necessary condition for a matching M in
a graph G to be of maximum cardinality is that there is no M−augmenting path in G.
This condition turns out to be also sufficient as shown by Petersen and independently by
Berge.
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Figure 3: An M−augmenting path: matching edges are red.

Theorem 2 [1, 19] Given a matching M in a graph G, M is a matching of maximum
cardinality if and only if there is no M−augmenting path in G.

The previous theorem immediately suggests a general scheme for solving MM in a graph.

Input : a graph G. Output : a matching of G of maximum cardinality.

Set M = ∅.
while there is an M−augmenting path P in G do

set M = M4P ;
end while
stop: M is a solution to MM.

As the size of the matching increases at each step by exactly one, the algorithm above
outputs after at most V

2 iterations a matching of maximum cardinality. In order to fully
define the procedure, we are left with specifying how to find an M−augmenting path, or
decide that such a path does not exist. In particular, it is not clear that a polynomial
time algorithm for this problem exists. We now provide such an algorithm, starting with
graphs with a special structure.

3.1 Finding M−augmenting paths

A graph G(V,E) is bipartite if there exists a bipartition U,W of V such that there is
no edge between any two vertices of U and no edge between any two vertices of W . It
turns out that M−augmenting paths in bipartite graphs can be found more easily than
in general graphs. In order to sketch an algorithm for this problem, we need to deal with
digraphs, which are graphs whose set E is composed of ordered pairs of vertices (thus, an
edge of a digraph is now denoted by (u, v)). A path P in a digraph D(V,E) is defined to
be a sequence v1, . . . , vk of distinct vertices from V such that, for each i = 1, . . . , k − 1,
(vi, vi+1) ∈ E. We also say that the path P above connects v1 to vk, and for each pair
S, T ⊆ V such that v1 ∈ S and vk ∈ T , that P connects S to T .

The Path Problem on Digraphs (PPD)
Given: a digraph D(V,E) and subsets S, T of V ;
Find: a path that connects S to T , or determine that no such a path exists.

PPD is a well-known problem in combinatorial optimization; in particular, there exists
an O(|E|) algorithm for solving it (see e.g. [21]). We now show that the problem of finding
an M−augmenting path in a bipartite graph with respect to a given matching M can be
reduced to PPD.

Let G(V,E) be a graph and M be a matching in G. Define D(V,E′) to be the digraph
with edge set
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E′ = {(u, v) : ∃z ∈ V with uz ∈ E, vz ∈M}.
It is not difficult to see that each path in D that connects the set S of M−exposed

nodes to the set T of vertices that are adjacent to some vertex of S, corresponds to some
M−augmenting path in G. More precisely, given a path P = v1, . . . , vk in D as above, we
can construct an M−augmenting path P ′ in G as follows:

(a) for i = 1, . . . , k − 1 replace vertex vi with vi, z where z is the vertex of V such that
viz ∈ E, vi+1z ∈ M (note that such a z exists by definition of E′, and it is unique
by definition of matching);

(b) as last vertex of the path, add a vertex s ∈ S that is adjacent to vk (such a vertex
exists since, by definition, vk ∈ T ),

and vice versa, by inverting the operations above, a path in D that connects S to T can
be constructed from an M−augmenting path in G. See Figure 4 for an example.

Figure 4: A bipartite graph G (on the left) with a matching (in red) and an augmenting path (in

bold); on the right, the corresponding digraph D and path connecting S to T (in bold). In both

graphs, vertices from S have a red circle around, while vertices from T are surrounded by a green

box.

As argued above, for a given instance one needs to find at most |V |2 augmenting paths.
Thus, the following result by Kuhn holds true.

Theorem 3 [13] The Maximum Matching problem in a bipartite graph G(V,E) can be
solved in time O(|V ||E|).

More recently, faster algorithms (e.g. [11]) for solving MM in bipartite graphs appeared
(see [21] for a complete list).

When considering general graphs, things can get nastier. In fact, the equivalence
above is not anymore true — it is a simple exercise to find a path that connects S to T
in D that does not correspond to an M−augmenting path in some non-bipartite graph
G. Thus, it requires some extra mathematical (and computational) work to come up with
a polynomial time algorithm for finding an augmenting path in the general case, but as
Edmonds showed the following holds true.

Theorem 4 [4] The Maximum Matching problem in a graph G(V,E) can be solved in
O(|V |2|E|)−time.
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The complexity of the algorithm from the theorem above can be lowered to O(|V |3)
[8], and even below (see [21] for a complete list).

4 The Maximum Weighted Matching problem

In the weighted case, a dichotomy similar to the one for the cardinality case holds true: in
bipartite graphs, MWM can be solved more easily than in general graphs. In particular,
combinatorial arguments are not sufficient for the latter, and the algorithms rely on primal-
dual methods for linear programming. We skip details, and only state theorems.

Theorem 5 (Edmonds and Karp [6], Tomizawa [23]) The Maximum Weighted Matching
problem in a bipartite graph G(V,E) can be solved in O(|V |(|E|+ |V | log |V |))−time.

Theorem 6 (Edmonds [5]) The Maximum Weighted Matching problem in a graph G(V,E)
can be solved in time O(|V |2|E|).

It has been shown that the algorithm from the latter theorem can be implemented as
to run in O(|V |3)−time, and below that (see [21]).

5 The Maximum Stable Set problem in Claw-free graphs

As mentioned in Section 2, MWSSC is a generalization of MWM. Thus, it is not clear a
priori that a polynomial time algorithm for MWSSC exists — recall that the stable set
problem in general graphs is NP-Hard. But, in fact, it does. Quite a number of studies
have been devoted to this subject: the first polynomial time algorithms trace back to the
early 1980s, and recent work on the subject used new techniques to improve the complexity
bound by a significant amount. We now outline the main results for this problem, starting
with the cardinality or unweighted case, i.e the case when all weights are equal to 1.

5.1 The cardinality case

A first stream of algorithms for MWSSC exploit the fact that Theorem 2 can be extended
to stable sets in claw-free graphs. Indeed, given a graph G(V,E) and a stable set S of G,
a path P = v1, . . . , vk is an S−augmenting path if k is odd, vi ∈ S if and only if i is even,
and (S \ {v2, v4, . . . , vk−1}) ∪ {v1, v3, . . . , vk} is a stable set of G. Note in particular, that
the latter is a stable set of cardinality |S|+ 1. Berge observed the following.

Theorem 7 [2] Given a stable set S in a claw-free graph G, S is a stable set of maximum
cardinality if and only if there is no S−augmenting path in G.

This immediately suggests that, similarly to the matching case, one could find a max-
imum stable set in a claw-free graph by iteratively searching for an S−augmenting path.
Again, it is not clear how to find such a path in a claw-free graph. Minty shows that the
latter problem can be reduced to the solution of a MWM in an auxiliary graph, which as
reported in Theorem 6 can be solved in polynomial time. Thus, we obtain the following.
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Theorem 8 [15] A stable set of maximum cardinality in a claw-free graph can be found
in polynomial time.

A similar result to the one above, again using techniques derived by matching, has been
obtained by Sbihi [20]. Minty gave no explicit bound on the complexity of his algorithm,
but it has been shown that it can be implemented as to run in time O(|V |5) [22], with V
being the set of vertices of the input graph.

A different algorithm is based on reduction techniques. Let G(V,E) be a claw-free
graph, R be an operator that maps G into a graph R(G) such that one can easily (e.g.
in polynomial time) obtain a stable set of maximum cardinality in G from a stable set of
maximum cardinality in R(G). Now suppose that one can show that after a polynomial
(in |V | and |E|) number of applications of the operator R, the graph obtained is a line
graph G′, and recall that the maximum stable set problem in a line graph is equivalent
to a maximum matching problem (see Section 2). As a maximum matching problem can
be solved in polynomial time by Theorem 4, one can solve MSS in G′ and deduce a MSS
for G in polynomial time. This is the key idea of the algorithm proposed by Lovász and
Plummer, who proved the following:

Theorem 9 [14] A stable set of maximum cardinality in a claw-free graph G(V,E) can
be found in O(|V |4)−time.

5.2 The weighted case: first algorithms

It is not obvious how to extend to the weighted case the algorithms presented in the previ-
ous section. Minty claimed that his procedure could indeed be generalized to the weighted
case, but his argument was buggy, and the algorithm may fail to return the optimal solu-
tion. This mistake was discovered by Nakamura and Tamura [16], who suitably modified
Minty’s procedure to turn it into a correct polynomial time algorithm for MWSSC. A
simpler modification of Minty’s algorithm, again leading to a polynomial time algorithm,
was proposed by Schrijver [21].

Theorem 10 [16, 21] A maximum weighted stable set in a claw-free graph can be found
in polynomial time.

Schrijver’s modification of Minty’s algorithm can be implemented as to run inO(|V |5 log |V |+
|V |4|E|)−time [22], with V (resp. E) being the vertex set (resp. edge set) of the input
graph.

Recently, other algorithms have been proposed for the problem. The one by Nobili and
Sassano [17] combines reduction techniques and detection of S−augmenting paths, and
can be implemented as to run in O(|V |4 log |V |)−time, with V being again the vertex set
of the input graph. The state of the art algorithm for MWSSC is based on a decomposition
technique introduced by Oriolo, Pietropaoli and Stauffer [18]. We are now presenting both
the technique and the algorithm, starting with some definitions.
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5.3 Intermezzo: solving MWSS via decomposition

A strip is a triple (G,A,B) where G is a graph, and A,B are (possibly empty) cliques of
G, where a clique of G is an induced subgraph H(U,F ) of G with the property that each
pair of vertices from U are adjacent. We call A,B the extremities of the strip, and remark
that A = B is possible. Let {Gi(Vi, Ei)}ki=1 be a family of vertex disjoint graphs, and
F = {(Gi, Ai, Bi)}ki=1 a family of strips. The composition of F with respect to a partition
P of the multi-set {Ai}ki=1 ∪ {Bi}ki=1, is the graph G(V,E) obtained as follows:

• V = ∪ki=1Vi;

• E = E′∪ki=1Ei, where uv ∈ E′ if and only if there exist (possibly coincident) indices
i, i′ ∈ {1, . . . , k} such that u belongs to an extremity of Gi, say A, and v belongs to
an extremity of Gi′ , say B, and A and B belong to the same set P from the partition
P.

Thus, the composition of strips is an operation that, from (usually simple) graphs,
constructs a new (usually more complex) one. On the other hand, a decomposition of
a graph G is a set of strip that can be composed as to obtain G. See Figure 5 for an
example of the composition of strips. The concept of composition and decomposition have
been introduced in structural graph theory, but turned out to have interesting algorithmic
property. In fact, the following theorem shows that, if one can solve in polynomial time
MWSS in graphs G1, . . . , Gk, then also MWSS in graphs obtained as the composition of
strips (G1, A1, B1), . . . , (Gk, Ak, Bk) can be solved in polynomial time.

Figure 5: On the left, a family of five strips: the extremities of each strip are surrounded by a dashed

ellipse, and extremities in the same set of the partition P are surrounded by ellipsis of the same color. On

the right: the graph obtained by the composition of the strips w.r.t. P.

Theorem 11 (Oriolo, Pietropaoli, and Stauffer [18]) Let G(V,E) be the composition of
strips (Gi, Ai, Bi), i = 1, . . . , k, with respect to some partition P. If, for each i = 1, . . . , k,
MWSS in Gi(Vi, Ei) can be computed in time O(pi(Vi)), then MWSS in G can be solved
in time O(

∑
i=1,...,k pi(Vi) +O(|V ||E|+ |V |2 log |V |)).
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5.4 A decomposition approach to MWSSC

In the previous paragraph, we argued that knowing a decomposition of a graph can be a
useful tool in solving MWSS. We now show that such a decomposition is actually at hand
for claw-free graphs. An important recent result in graph theory states the following.

Theorem 12 (Chudnovsky and Seymour [3]) Each claw-free graph:

• either belongs to the class of graphs G,

• or can be obtained as the composition of strips from the class H.

We call a result as the one above a decomposition theorem. Of course one cannot
understand its importance without defining the families G and H. Details on those family
are not important to us. What matters is that G is a family of well-known graphs with a
highly structured shape, while the strips fromH are “very easy” (e.g. they have a bounded
number of vertices, or can be obtained by a strip with a bounded number of vertices by
iteratively performing some transformation on the graph). Thus, in particular, a broad
class of claw-free graphs can be written as the composition of strips with a relatively simple
structure, and the remaining ones are, in a way, “well-known”. (We shall not say more on
the family G and H; the interested reader may refer to [3].)

Unfortunately, Theorem 12 does not immediately imply the existence of a polynomial
time procedure for recognizing whether an input claw-free graph G belongs to G and, in
case it does not, obtaining a decomposition of G into strips from H. (Such a polynomial
time algorithm has been very recently obtained by Hermelin, Mnich, Van Leeuwen, and
Woeginger [10] but it is not clear that using it will lead to a fast algorithm for MWSSC ).
Nevertheless, the “decomposition approach” seems promising, thus one could search for a
friendlier decomposition theorem for claw-free graphs. Oriolo, Pietropaoli and Stauffer’s
[18] proposed one such result for a subclass of claw-free graphs, and apply it together with
Theorem 11 in order to obtain an algorithm for MWSSC that run in time O(|V |6) (V
being again the vertex set of the input graph).

Even though the complexity of their algorithm does not improve over the state of the
art for MWSSC, it shows the potential of combining decomposition results (often available
in structural graph theory) with algorithms for “composing” solution to combinatorial
optimization problems (like Theorem 11). It is possible that this approach may turn out
to be efficient for problems other than stable set, or in classes of graphs other than claw-
free. However, already for MWSSC, their approach can be refined in order to obtain a more
efficient algorithm. Indeed, one can show that the following algorithmic decomposition
theorem for claw-free graphs with stability number at least 4 holds true (the stability
number of a graph G is the maximum size of a stable set of G):

Theorem 13 (Faenza, Oriolo, and Stauffer [7]) Each claw-free graph with stability number
at least 4:

• is either quasi-line, distance claw-free without articulation cliques,

• or can be obtained as the composition of strips from a class H′′.
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Moreover, one can distinguish between the two cases (and, if possible, obtain the strip
decomposition) in O(|V |3)−time.

(We omit details on the class of graphs mentioned above and on algorithms for solving
MWSS in such classes: the interested reader may refer to [7]). By exploiting the theorem
above, Faenza, Oriolo, and Stauffer [7] obtained the following O(|V |3)−time algorithm for
the maximum weighted stable set problem in a claw-free graph G(V,E), currently being
the theoretically fastest algorithm from the literature:

• Recognize in O(|V |3)−time if G has stability number α ≤ 3;

• If α ≤ 3, solve MWSS in G by enumerating in O(|V |3) all its stable sets, and picking
the one of maximum weight;

• Else α ≥ 4: use Theorem 13 to recognize in O(|V |3) that G is quasi-line, distance
claw-free without articulation cliques, or to obtain a decomposition of G into strips
from H′′;

• If G is quasi-line, distance claw-free without articulation cliques, compute MWSS in
G in O(|V |3)−time.

• Else solve MWSS in each strip from H′′ in O(|V |2)−time, and use Theorem 11 to
solve MWSS in the input graph in O(|V |3)−time.

6 Concluding remarks

As the results presented in this short note witness, when moving from algorithms for
MM to those for its generalizations MWM and MWSSC, one needs deeper knowledge of
graphs and more sophisticated algorithmic tools. This increasing complexity is mirrored
in the running time of the routines for solving those problems. Indeed, the state of the

art algorithms for MM, MWM, and MWSSC run respectively in O(
√
|V ||E| log|V |

|V |2
|E| ),

O(|V ||E| + |V |2 log |V |) (see [21]), and O(|V |3) (see [7]), where once again we considered
G(V,E) to be the input graph. One may ask whether those complexity bound are tight,
or there is room for an improvement. As the the complexity bound for MM and MWM
are due to algorithms that appeared more than 15 years ago, such an improvement for
those problem seems to be unlikely. On the other hand, the state of the art algorithm
for MWSSC appeared in the literature as late as this year, thus it is more likely that
its complexity bound can be improved. Since the root graph of a line graph G(V,E) has
O(|V |) edges and vertices, MWSS in line graphs can be solved in O(|V |2 log |V |). Can
MWSSC can be solved within this time bound ?
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Factorization in categories of modules

Marco Perone (∗)

1 Introduction

Given a ring R, the class of isomorphism classes of right R-modules forms a commutative
monoid VR under direct sum. This means that we can describe the behaviour of direct sum
decomposition of R-modules with the monoid VR. Similarly, if C is a class of R-modules
closed under isomorphism and direct sum, we can study the behaviour of the direct sum
decomposition in C by mean of the commutative monoid V (C) ⊆ VR of isomorphism classes
of modules in C.

In particular, studying the direct sum decomposition in a class C of R-modules is
equivalent to study the factorization of elements in the monoid V (C).

Definition 1.1 Let M be a monoid. An element a ∈ M is invertible, or a unit, if there
exists an element b ∈M such that a+ b = b+ a = e, where e denotes the identity element
of M .

An element a ∈ M is an atom if it is not invertible and a = b + c implies b invertible
or c invertible.

We say that a monoid M is atomic if every element of M can be written as a finite
sum of atoms.

To study the factorization in a monoid M means:

• identify the atoms of M ;

• determine when the sum of two finite families of atoms coincide;

• determine all the possible factorizations for every element of the monoid.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on 31 January 2011.
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2 Free commutative monoids and the Krull-Schmidt-Azumaya Theorem

The easiest case in which we can investigate factorization is the following.

Example 2.1 A monoid M is a free commutative monoid if it is isomorphic to the direct

sum N(X)
0 of copies of the monoid of non-negative integers. We can see the elements of M

as functions s : X → N0 such that s(x) 6= 0 only for finitely many x ∈ X. Then, given two
elements s1, s2 : X → N0 of M , we have

(s1 + s2)(x) = s1(x) + s2(x).

• An element s : X → N0 of M is an atom if an only if there exists x ∈ X such that
s(x) = 1 and s(y) = 0 for every x 6= y ∈ X.

• Given two families s1, . . . , sn and t1, . . . , tm of atoms of M , the equality s1+. . .+sn =
t1 + . . . + tm implies that m = n and there exists a permutation σ ∈ Sn such that
si = tσ(i) for every i = 1, . . . , n.

• Every element s ∈ M admits a decomposition as a sum of atoms, unique up to a
permutation of the summands.

It is clear that in free commutative monoids the factorization of every element is
essentially unique, because the only thing that can change between two factorization of
the same element is the order of the summands.

Let C be a class of R-modules closed under isomorphism and direct sum. If we want
to study the factorization in V (M), the first step is to identify the atoms.

Definition 2.2 A non-zero right R-module M is indecomposable if M = M1⊕M2 implies
M1 = 0 or M2 = 0.

Example 2.3 If R is a division ring, a right R-vector space V is indecomposable if and
only if it has dimension 1.

Example 2.4 A finitely generated abelian group is indecomposable if and only if it is
isomorphic to Z or to Z/pnZ for some prime number p and some positive integer n.

In fact in the two cases of the previous examples, it happens that the monoid V (C) is
a free commutative monoid. Hence the direct sum decomposition in these classes has an
extremely regular behaviour.

Example 2.5 If R is a division ring and C is the class of all finitely dimensional right
R-vector spaces, then the monoid V (C) is isomorphic to the free commutative monoid N0.

Example 2.6 Let G be a finitely generated abelian group. Then there exist prime
numbers p1, . . . , pn, an integer k ≥ 0 and positive integers k1, . . . , kn such that

G ∼= Zk ⊕ Z/pk11 Z⊕ . . .⊕ Z/p
kn
n Z.
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Moreover, the prime numbers p1, . . . , pn and the integers k, k1, . . . , kn are uniquely identi-
fied by G.

We can state the result of the last example saying that the monoid V (C), where C is
the class of finitely generated abelian groups, is a free commutative monoid.

Now we want to find more general classes C of modules that provide free commutative
monoids V (C). To do this we need to restrict to classes of modules having the appropriate
endomorphism rings.

Proposition 2.7 Let R be a ring and x an element of R. Then the following are
equivalent.

• x ∈MR for every maximal right ideal MR.

• x ∈ RM for every maximal left ideal RM .

• 1− xy is right invertible for any y ∈ R.

• 1− yx is left invertible for any y ∈ R.

• 1− yxz is two-sided invertible for any y, z ∈ R.

• Mx = 0 for any simple right R-module M .

The set of all the elements x ∈ R satisfying the conditions of the Proposition form an
ideal J(R), called the Jacobson radical of R.

Definition 2.8 A ring R is said to be local if it satisfies one of the following equivalent
conditions:

• R/J(R) is a division ring;

• R has a unique left ideal;

• R has a unique right ideal;

• the sum of two non-invertible elements of R is non-invertible.

The following theorem explains the key role played by local endomorphism rings in the
theory of factorization of modules.

Theorem 2.9 [Krull-Schmidt-Azumaya] Let Mi, i ∈ I, and Nj, j ∈ J , right R-modules
with local endomorphism ring. Then

⊕i∈IMi
∼= ⊕j∈JNj

if and only if there is a bijection σ : I → J such that Mi
∼= Nσ(i) for every i ∈ I.

The Theorem implies the following.
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Theorem 2.10 Let R be a ring and let C be the class of modules that are finite direct sums
of modules with local endomorphism ring. Then the monoid V (C) is a free commutative
monoid.

The examples that follow provide classes of modules with local endomorphism ring,
and therefore of classes C of modules such that the monoid V (C) is a free commutative
monoid.

Example 2.11 Any indecomposable module of finite length has local endomorphism
ring.

Example 2.12 The endomorphism ring of a simple module is a division ring.

Example 2.13 Every artinian module with simple socle has local endomorphism ring.

3 Krull monoids

To every commutative monoid M , we can associate a preorder ≤ defined as follows: for
elements a, b ∈ M , we have a ≤ b if and only if there exists an element c ∈ M such that
a+c = b. This is called the algebraic preorder of M . It is clear that the algebraic preorder
of a monoid keeps track of some properties of the factorization of the monoid, so it is
really interesting to understand this preorder for a given monoid M .

Example 3.1 It is clear that in a free commutative monoid M = N(X)
0 , two elements

a, b ∈ M satisfy a ≤ b if and only if every component of a is less or equal that the
corresponding component of b with respect to the usual order of N0.

We now introduce a class of monoids whose algebraic preorder is controlled by the
algebraic preorder of a free commutative monoid. This means that we can recover the
algebraic preorder of the monoid M looking at the algebraic preorder of a free commutative
monoid. This is provided by a divisor homomorphism, that is a morphism of monoids
f : M → N such that f(a) ≤ f(b) implies a ≤ b for every a, b ∈M .

Definition 3.2 A commutative monoid M is a Krull monoid if there is a divisor homo-
morphism ϕ : M → N(I)

0 into a free commutative monoid N(I)
0 .

In other words, M is a Krull monoid if and only if there exists a family of morphisms
of monoids fi : M → N0, i ∈ I, such that, for every a and b in M :

• fi(a) = 0 for almost all i ∈ I;

• a ≤ b if and only if fi(a) ≤ fi(b) for every i ∈ I.

If we restrict to monoids of the form V (C) for some class C of R-modules, we notice
that the zero module is the only invertible element of the monoid, i.e. V (C) is a reduced
monoid.
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We say that a monoid M is cancellative if, given elements a, b, c ∈ M , we have that
a+c = b+c implies a = b. It is the case that a reduced Krull monoid must be cancellative.
Therefore, if we want a monoid of the form V (C) to be a Krull monoid, we need to look
for classes C of R-modules that cancel from direct sum. To find these classes we need to
restrict to the appropriate type of endomorphism rings.

Definition 3.3 A ring R is semilocal if there exist positive integers k1, . . . , kn and division
rings D1, . . . , Dn such that

R/J(R) ∼= Mk1(D1)× . . .×Mkn(Dn).

If we restrict to semilocal endomorphism rings, our next theorem guarantees that
modules cancel from direct sum.

Theorem 3.4 Any R-module MR with semilocal endomorphism ring cancels from direct
sums.

It turns out that assuming the endomorphism rings to be semilocal is enough to obtain
Krull monoids.

Theorem 3.5 Let C be a class of modules closed under isomorphism and finite direct
sum, such that every module in C has semilocal endomorphism ring. Then the monoid
V (C) is a reduced Krull monoid.

Since the endomorphism ring of every artinian module and of every uniserial module
is semilocal, we immediately obtain the following examples.

Example 3.6 Given the class C of artinian modules over any ring R, the monoid V (C)
is a Krull monoid.

Example 3.7 Let C be the class of modules that are finite direct sums of uniserial modules
over any ring R. Then the monoid V (C) is a Krull monoid.

4 The 2-Krull-Schmidt Property

It is clear that in Krull monoids that are not free, one loses the uniqueness of the decom-
position up to one permutation. Anyhow, inside the family of Krull monoids we can find
classes of monoids with a very regular behaviour of the factorization. We are particularly
interested in the following property, since, as we will see, it appears in some important
categories of modules.

Definition 4.1 Let M be an atomic commutative monoid and let A be the set of atoms of
M . Given two equivalence relations ∼ and ≡ on A, we say that the 2-Krull-Schmidt Prop-
erty holds forM with respect to∼ and≡ if and only if, for atoms a1, . . . , an, b1, . . . , bm ∈ A,
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we have
n∑
i=1

ai =
m∑
j=1

bj

if and only if m = n and there exist two bijections σ, τ ∈ Sn such that ai ∼ bσ(i) and
ai ≡ bτ(i) for every i = 1, . . . , n.

To provide an example of monoids satisfying the 2-Krull-Schmidt Property, we asso-
ciate an atomic commutative monoid to every graph G = (V,E), where V is the set of
vertices and E the set of edges of G, in the following way. Consider the free commutative

monoid N(V )
0 having as free set of generators the set {δv | v ∈ V }. If e = {v, w} is an edge

of G, define δe = δv + δw. Define M(G) to be the submonoid of N(V )
0 generated by all the

elements δe ∈ N(V )
0 , where e ranges in E.

Example 4.2 If G is a bipartite graph, then the 2-Krull-Schmidt Property holds for
M(G).

In fact, the example above is in some sense universal for monoids satisfying the 2-
Krull-Schmidt Property. In fact, the following holds.

Theorem 4.3 The following are equivalent for an atomic commutative monoid M .

• The 2-Krull-Schmidt Property holds for M .

• There exist a complete bipartite graph G and an injective monoid homomorphism
ϕ : M →M(G) that sends atoms to atoms.

As we did above, to obtain a category of modules C such that the 2-Krull-Schmidt
holds for the monoid V (C) we need to restrict to the appropriate endomorphism rings. In
this case, the class of rings that we are looking for is the following.

Definition 4.4 A ring R is said to have type n if R/J(R) is isomorphic to the product
of n division rings.

We say that an R-module MR has type n if its endomorphism ring has type n.

A useful criterion to determine if a ring has finite type is the following.

Proposition 4.5 A ring is of finite type if and only if it has finitely many right ideals
and they are all two-sided.

We will be interested just in rings of type ≤ 2. We notice that rings of type 1 are
exactly local rings. Hence modules of type 1 are necessarily indecomposable. There are
also interesting examples of indecomposable modules of type 2.

Examples 4.6 The following holds.

• Every artinian module with heterogeneous socle of length 2 has type ≤ 2.

• Every uniserial module has type ≤ 2.
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• Every cyclically presented module over a local ring has type ≤ 2.

The next theorem explains why we consider modules of type ≤ 2 to realize the 2-
Krull-Schmidt Property. The weak (DSP) condition that we require in the hypotheses is
a technical condition that assures us that there are enough objects in the category.

Theorem 4.7 Let D be a class of indecomposable right R-modules of type ≤ 2 satisfying
weak (DSP) and C the class of modules that are finite direct sums of modules in D. Exactly
one of the two following conditions hold:

• Either there exist two right R-modules M1 and M2 in D of type 2 such that M1⊕M2

has three non-isomorphic direct sum decompositions.

• Or the 2-Krull-Schmidt Property holds for the monoid V (C).

Now we provide some concrete examples of categories of modules where the 2-Krull-
Schmidt Property is satisfied.

We say that two modules U and V are in the same monogeny class, and we write
[U ]m = [V ]m, if there exist a monomorphism U → V and a monomorphism V → U .
Similarly, U and V are in the same epigeny class, and we write [U ]e = [V ]e, if there exist
an epimorphism U → V and an epimorphism V → U . It is clear that monogeny and
epigeny class define two equivalence relations on the class Mod-R for every ring R.

Theorem 4.8 Let U1, . . . , Un, V1, . . . , Vm be non-zero uniserial R-modules. Then U1 ⊕
. . .⊕ Un ∼= V1 ⊕ . . .⊕ Vm if and only if m = n and there exist two permutations σ, τ ∈ Sn
such that [Ui]m = [Vσ(i)]m and [Ui]e = [Vτ(i)]e for every i = 1, . . . , n.

The 2-Krull-Schmidt Property holds also for the class of cyclically presented modules
over a local ring, with respect to the equivalence relations defined by epigeny class and
lower part. We say that two cyclically presented modules R/aR and R/bR over a local ring
R have the same lower part, and we write [R/aR]l = [R/bR]l, if there exist u, v ∈ U(R)
and r, s ∈ R such that au = rb and bv = sa.

Theorem 4.9 Let U1, . . . , Un, V1, . . . , Vm be non-zero cyclically presented modules over a
local ring R. Then U1⊕ . . .⊕Un ∼= V1⊕ . . .⊕ Vm if and only if m = n and there exist two
permutations σ, τ ∈ Sn such that [Ui]l = [Vσ(i)]l and [Ui]e = [Vτ(i)]e for every i = 1, . . . , n.

5 Infinite Krull-Schmidt Properties

Up to now, we were interested only in finite sums. However, if we go back to the Krull-
Schmidt-Azumaya Theorem, we notice how it concerns not only finite direct sums of
modules with local endomorphism ring, but also infinite ones. In the same fashion one
can ask if the regularity in the category of serial modules over any ring or in the category
of cyclically presented modules over a local ring continues to hold when we pass from
finite direct sums to infinite ones. More generally, one can try to search for a behaviour
analogous to the 2-Krull-Schmidt Property where also infinite sums are allowed. It is clear

Università di Padova – Dipartimento di Matematica 73



Seminario Dottorato 2010/11

that we can not do this in monoids, since in this setting we can not perform infinite sums.
Hence we need to define a new algebraic structure.

Definition 5.1 Let M be a class. If ℵ is a cardinal number, we can define the class
Mℵ = {f : ℵ →M | f is a function }. An ℵ-operation on M is a function pℵ : Mℵ →M .

We define a commutative infinitary monoid to be a class M together with an ℵ-
operation pℵ for every cardinal number ℵ such that:

• p1 : M1 → M is the canonical bijection that sends the map f : 1 → M , defined by
f(1) = m, to the element m ∈M ;

• if ℵi, i ∈ I, and ℵ are cardinal numbers, γi : ℵi → ℵ, i ∈ I, are injective maps such
that ℵ =

⋃̇
i∈Iγi(ℵi) and ℵI = |I|, then, for any f ∈ Mℵ, pℵ(f) = pℵI (Γ), where

Γ ∈M I is the function from I to M defined by Γ(i) = pℵi(fγi), for any i ∈ I.

The second axiom provides, in one instance, the existence of an identity element, the
commutativity and the associativity of M as a commutative infinitary monoid.

The easiest examples of commutative infinitary monoids are given by the class of
cardinal numbers with the sum of cardinals and by the classes V (C) of isomorphism classes
of a family of modules closed under isomorphism and infinite direct sum.

In this setting we can define the infinitary version of the 2-Krull-Schmidt Property.

Definition 5.2 The Infinite 2-Krull-Schmidt Property holds for an atomic commutative
infinitary monoid M if there exist two equivalence relations ∼ and ≡ on the class A of
atoms of M such that, given two families { ai | i ∈ I } and { bj | j ∈ J } of atoms of M ,
we have ∑

i∈I
ai =

∑
j∈J

bj

if and only if there exist two bijections σ, τ : I → J such that ai ∼ bσ(i) and ai ≡ bτ(i) for
every i ∈ I.

Similarly to the finite case, given a graph G, let M∞(G) be the submonoid of the free
commutative infinitary monoid with basis the class of vertices of G generated by the edges
of G. As in the finite case, the monoids of the form M∞(G), where G is a complete bipartite
graph, turn out to be universal with respect to the Infinite 2-Krull-Schmidt Property.

Proposition 5.3 Let M be an atomic commutative infinitary monoid. Then the following
are equivalent.

• The Infinite 2-Krull-Schmidt Property holds for M ;

• There exist a complete bipartite graph G and an injective morphism of commutative
infinitary monoids M →M∞(G) that sends atoms to atoms.

If we go back to the examples of classes of modules where the 2-Krull-Schmidt Property
holds that we presented above, we have that the Infinite 2-Krull-Schmidt Property holds
only in the second case.
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Theorem 5.4 Let {Ui | i ∈ I} and {Vj | j ∈ J} be two families of cyclically presented
modules over a local ring R. Then

⊕i∈IUi ∼= ⊕j∈JVj

if and only if there exist two bijections σ, τ : I → J such that [Ui]l = [Vσ(i)]l and [Ui]e =
[Vτ(i)]e for every i ∈ I.

In the case of uniserial modules, we have to restrict to a subclass to ensure that the
Infinite 2-Krull-Schmidt Property holds.

We say that an R-module U is quasi-small if, whenever U is isomorphic to a direct
summand of a direct sum ⊕λ∈ΛMλ of arbitrary modules Mλ, there is a finite subset F ⊆ Λ
such that U is isomorphic to a direct summand of ⊕λ∈FMλ.

Theorem 5.5 Let {Ui | i ∈ I} and {Vj | j ∈ J} be two families of non-zero quasi-small
uniserial modules over an arbitrary ring R. Then

⊕i∈IUi ∼= ⊕j∈JVj

if and only if there exist two bijections σ, τ : I → J such that [Ui]m = [Vσ(i)]m and [Ui]e =
[Vτ(i)]e for every i ∈ I.

Anyway, if we have a closer look at the class of serial modules over a ring R, we find
out that their behaviour with respect to direct sum decomposition is not far from the
Infinite 2-Krull-Schmidt Property. We just have to relax a bit our requirements.

Definition 5.6 Let M be an atomic commutative infinitary monoid and let A be the
class of atoms of M . Suppose we are given two subclasses A′ and A′′ of A such that
A′ ∪ A′′ = A, an equivalence relation ∼ on A′ and an equivalence relation ≡ on A′′. We
say that the Infinite Quasi 2-Krull-Schmidt Property holds for M with respect to the
equivalence relations ∼ and ≡ if for any couple of families { ai | i ∈ I } and { bj | j ∈ J }
of atoms of M , we have that ∑

i∈I
ai =

∑
j∈J

bj

if and only if there exist two bijections σ : I ′ = { i ∈ I | ai ∈ A′ } → J ′ = { j ∈ J | bj ∈ A′ }
and τ : I ′′ = { i ∈ I | ai ∈ A′′ } → J ′′ = { j ∈ J | bj ∈ A′′ } such that ai ∼ bσ(i) for every
i ∈ I ′ and ai ≡ bτ(i) for every i ∈ I ′′.

This is exactly the phenomenon that happens for serial modules. The following theorem
in fact states that the Infinite Quasi 2-Krull-Schmidt Property holds for the class of serial
modules over any ring with respect to the equivalence relations given by monogeny class
and epigeny class.

Theorem 5.7 Let {Ui | i ∈ I} and {Vj | j ∈ J} be non-empty families of non-zero unis-
erial modules. Let I ′ = {i ∈ I | Ui is quasi-small } and J ′ = {j ∈ J | Vj is quasi-small }.
Then

⊕i∈IUi ∼= ⊕j∈JVj
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if and only if there exist a bijection σ : I → J and a bijection τ : I ′ → J ′ such that
[Ui]m = [Vσ(i)]m for any i ∈ I and [Ui]e = [Vτ(i)]e for any i ∈ I ′.
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Università di Padova – Dipartimento di Matematica 76



Seminario Dottorato 2010/11
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Numerical solution of electrons and phonons

coupled dynamics in Carbon Nanotubes

Vittorio Rispoli (∗)

Abstract. A model for electrons transport properties in Carbon Nanotubes is introduced, including
also the effects of the coupling of electrons with optical phonons. The derived equations form a
system of bi-dimensional hyperbolic conservation laws with collision terms on the right hand side.
The system is solved by a method of line scheme, with WENO reconstruction and a TVD Runge-
Kutta scheme for time integration.
(MSC: 65M08, 65L99, 35L50. Keywords: Electrons transport, WENO, TVD Runge-Kutta.)

1 Introduction

Among all nanosized components for nanotechnological innovations, a major role is played
by Carbon NanoTubes (CNTs) because of their great physical properties; they are tubes
made of carbon atoms whose surface is only one carbon atom thick and formed by a lattice
of carbon atoms arranged in a hexagonal lattice [1].

Carbon Nanotubes remarkable electrical properties make them, in many cases, the best
candidates for innovative electronic applications. We will consider a very accurate model
for the study of SWCNTs electrical properties: we will be able to numerically simulate,
thanks to a deterministic solver, the dynamics of the electrons inside the tube generated
by an applied bias and, thus, to compute the current.

A SWCNT diameter d is usually a few nanometers while its length L can go from
a few hundreds nanometers up to some micron. For this reason (d � L) CNTs can be
considered as one-dimensional objects. Depending on how the hexagonal lattice of carbon
atoms is arranged around the tube, SWCNTs show different physical, say mechanical or
electrical, behaviors.

Thinking of a SWCNT as a rolled-up graphene sheet [1], its geometrical structure
can be easily described. From a crystallographic point of view, it is characterized by the
wrapping vector Ch (also called chirality vector); this is the vector determining the folding
of the graphene sheet. Chirality vector Ch connects two equivalent atoms (two atoms in

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on 16 February 2011.
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the graphene lattice that will coincide when the tube is rolled-up) and, given two lattice
vectors a1 and a2 as in Figure 1, it can be written as Ch = n a1 +m a2 ≡ (n,m).

Figure 1: Geometric characterization of a CNT on a graphene sheet.

Given the chiral vector, it is possible to characterize all the geometric and also symmetry
properties of a SWCNT [1].

Early theoretical calculations showed that the electronic properties of carbon nan-
otubes are very sensitive to their geometric structure [1]. Electronic properties can be
derived from those of graphene; although graphene is a semi-metal, theory has predicted
that carbon nanotubes can be metals or semiconductors with an energy gap that de-
pends on the tube diameter and helicity, i.e., on the indices (n,m). This can be simply
understood within a zone-folding picture by combining analytic results on the electronic
structure of graphene with the requirements that the wave functions in the tubes must
satisfy the proper boundary conditions around the tube circumference. This approach is
made relatively simple in nanotubes because of the special shape of the graphene Fermi
surface.

When forming a tube, owing to the periodic boundary conditions imposed in the
circumferential direction, only a certain set of momentum vectors in the graphene Bril-
louin Zone (BZ) are allowed; the allowed set depends on the diameter and helicity of the
tube. Within the zone-folding approximation, the general rules for the electronic behavior
(whether they are metallic or not) of single-wall carbon nanotubes are as follows: a nan-
otube defined by the (n,m) indices will be metallic if n−m ≡ 0 (mod 3) or semiconductor
if n−m 6≡ 0 (mod 3). Consequently, most carbon nanotubes are semiconductors and only
a fraction 1/3 are metallic or semi-metallic (i.e. zero-gap semi-conductors).

In the first studies regarding nanotubes electrical behavior, nanotubes were considered
as one-dimensional quantum wires with ballistic electron transport. However, when con-
sidering high-field transport measurements, current’s magnitude found in real experiments
had lower values than the predicted ones. The reason is that the scattering of electrons
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with optical phonons destroys the ballistic behavior [2] and the interaction of electrons
with phonons lowers current values significantly; indeed, the simulation of the generation
of optical phonons during high-field electron transport, which can be directly detected by
Raman scattering experiments, is essential to understand the reduction of the conductivity
at high fields.

In the past, the high-field transport in metallic SWCNTs was studied either at a
macroscopic level or by solving the semi-classical Boltzmann Equation (BE), as in [2].
In the latter case, the dynamics of electrons was treated in a kinetic way, while phonons
where kept in equilibrium at a fixed lattice temperature. In order to model the effect
of hot phonons on the distribution of electrons it was necessary to introduce a kinetic
model for both electrons and optical phonons and, thanks to this model, it was possible
to investigate the transient behavior of interacting electrons and phonons [3].

Our work find its placement in this context: starting from previous successful simu-
lations, we gave a deeper description of some of the parameters present in the physical
model. We considered a self consistent computation of electrons-phonons coupling factors
and found great agreement with experimental data.

2 Transport Model

We are interested in investigating metallic SWCNTs, in particular those for which n = m
usually called armchair nanotubes. Electrical properties of SWCNTs arise from the con-
finement of electrons, which allows motion in only two directions and from the requirements
for energy and momentum conservation. These constraints lead to a reduced phase space
for scattering processes.

The allowed electronic states are characterized by two equivalent points K and K ′ =
2K in the reciprocal space. In this case, the electronic energies are well approximated by
the linear dispersion relations:

εi(k) = ~vi k, i = 1, 2,

where v1 = +vF and v2 = −vF are the positive and negative Fermi velocities, ~ denotes
the reduced Plank constant and k stands for the electron momentum along the tube axis
[4].

Electrons in corresponding states according to K and K ′ can be considered as equiv-
alent in our transport model. For this reason and since electrons can move in only two
directions, it is sufficient to introduce only two distribution functions fi = fi(t, x, ε) for
right (i = 1) and left (i = 2) moving electrons; distributions fi depend on time t, position
x along the tube axis and electric energy density ε = εi(k). We assume the tube diameter
d is 1nm < d < 3nm; this is the validity range for diameter values and allows us to
neglect higher energy sub-bands for electrons with energies < 0.5 eV.

Boltzmann equations governing the evolution of the distribution functions fi are:

(1)
∂fi
∂t

+ vi
∂fi
∂x
− e0vFE

∂fi
∂ε

= Ci, i = 1, 2,

where E is the electric field along the axis and e0 is the electron charge (considering the
negative value).
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Collision operators for electrons are defined by:

(2) Ci = Caci +

3∑
η=1

Cηi ,

where
Caci =

vF
lac

(fj − fi), j 6= i,

models interactions of electrons with acoustic phonons and

Cηi = γη

{
gη(q

−
i )f−j (1− fi) +

[
gη(q

+
i ) + 1

]
f+
j (1− fi)

− gη(q+
i )fi(1− f+

j )−
[
gη(q

−
i ) + 1

]
fi(1− f+

j )
}

for η = 1, 2, 3 model back (η = 1, 2) and forward (η = 3) scattering with phonons. In
the above formula γη denotes electron-phonon coupling (EPC) constants. We used the
abbreviations fi = fi(t, x, ε) and f±i = fi(t, x, ε ± ~ωη), where f±i model the emission or
absorption of a phonon energy quantum ~ωη.

Modes η = 1, 2, 3 refer, respectively, to K-phonons, longitudinal optical Γ-phonons
and transverse optical Γ-phonons. Further, for η = 1, 2, q±i = ∓(2ε± ~ωη)/~vi, while for
η = 3, q+

i = q−i = qi = ω3/vi. Constant lac stands for the acoustic mean free path (MFP);
electron scattering at impurities can be taken into account by choosing the elastic MFP
le = (1/lac + 1/lim)−1 instead of lac.

The time evolution of phonons distribution functions gη(t, x, q) is governed by the BEs:

(3)
∂gη
∂t

+ νη
∂gη
∂x

= Dη, η = 1, 2, 3,

where q is the one-dimensional wave vector and νη represent phonons velocities.
Collision operators for phonons are:

(4) Dη = Depη +Dppη .

The first term takes into account electron-phonon interaction. For η = 1, 2 (back
scattering) it has the following form:

Depη = 2

2∑
i=1

γη{(gη + 1)fi(ε
+
i )(1− fj(ε−i ))

−gη fj(ε−i )(1− fi(ε+
i ))}, j 6= i,

where, fi(ε
±
i ) = fi(t, x, ε

±
i ), with ε±i = ~(viq ± ωη)/2.

For η = 3 (forward scattering), electron-phonon collision operator reads

Dep3 = γ3

2∑
i=1

Ji δq,qi

∫
R

{
(g3 + 1)fi(ε)

[
1− fi(ε−)

]
− g3fi(ε

−) [1− fi(ε)]
}
dε,
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with ε− = ε− ~ω3 and Ji = 4L/(hvF ) denoting the density of states for electrons of type
i with respect to the tube length L. The Kronecker δq,qi in the collision operator reflects
the fact that only phonons with the wave vectors qi = ω3/vi are emitted and absorbed by
forward scattering of electrons. Phonon-phonon interactions are modeled by

Dppη = − 1

τη

[
gη(t, x, q)− g0

η

]
,

where τη denotes the relaxation time and g0
η is the Bose-Einstein distribution at a fixed

temperature T ; kB is the Boltzmann constant.

The introduced BEs (1) and (3) represent a kinetic transport model which includes
both the dynamics of electrons and optical phonons. Together they form a system of
hyperbolic conservation laws with source terms at the right hand side (conservation laws
with source terms are usually called Balance Laws). Computing the general solution of
this system is a very hard task since most of the difficulties one could encounter in solving
this type of problems are present in this case: multidimensionality (excluding the time
variable, the phase-space is bi-dimensional), coupled equations and the presence of source
terms. We will present now the numerical setting in which we will solve the system and
the obtained results.

3 Numerical experiments

For the numerical approximation of our system, first we choose a fixed uniform discretiza-
tion for the phase-space variables x, ε and q. For a Lnm long SWCNT, we define
∆x = L/Nx, where Nx is the chosen number of grid points; in our computations, we
considered variable tube lengths: L = 150nm, L = 300nm and L = 600nm. For all
calculations, we assumed a tube’s diameter d = 2 nm.

For the ε variable it is necessary to make a different choice: the discretization length
∆ε of the energy variable is chosen so that the phonon energies ~ωη are integer multiples
of ∆ε for η = 1, 2, 3, which means:

~ωη = ση∆ε,

with ση ∈ N. The energy grid is then determined by the values εn = −ε̂ + n∆ε for
n = 0, . . . , Nε, where Nε is the number of energy grid points, with the maximal energy
given by

ε̂ = ∆ε
Nε

2
.

From these electrons energy grid points, we define the discretization for the wave vector
of the phonon modes η = 1, 2, 3 in the following way:

∆q =
2∆ε

~vF
,

which gives the grid points

qηm = −q̂η +m∆q, for m = 1, . . . , Nq,
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where Nq = Nε − ση and

q̂η = ∆q
Nq

2
= ∆q

Nε − ση
2

.

This choice for the discretization of the ε and q variables, ensures that the energy and
momentum relations

ε(k′) = ε(k)± ~ωη and k′ = k ± q

are satisfied at the discrete level in each individual back-scattering process. Hence, collision
operators Ci and Dη can be evaluated exactly in terms of the discretized distribution
functions fi(t, x, εn) and gη(t, x, q

η
m). This is a major advantage since no approximations

(for example, of extrapolation type) are needed to compute the collision operators. For
the values of all other parameters refer to [3].

The determination of electrons transport in a SWCNT, according to our model, is
a low dimensional problem, in contrast to, for example, classical semiconductor devices
simulations. Distribution functions fi(t, x, ε) and gη(t, x, q) depend both on two phase-
space variables, therefore the kinetic equations can be solved very efficiently by means of
a deterministic solver. For the solution of the BEs we proceed as follows.

We adopted a method of lines approach: when dealing with hyperbolic differential
equations, an efficient way to numerically solve them is to approximate first the derivatives
of the phase space variables (which are x and ε in this case) and then integrate in time
the resulting system of ODEs.

The idea of the method of lines is the following: given u = u(t, x) and a hyperbolic
conservation law ut + fx(u) = 0, if we approximate fx(u) ≈ L(u), then we obtain
ut = −L(u) and the time evolution can then be simulated by ODE solvers. In the case of
a BL ut + fx(u) = C(u), one of the possible strategies is to integrate in time the resulting
ODE with right hand side given by ut = −L(u) + C(u).

Both the approximation of the derivatives, which is usually called reconstruction, and
the integration in time have to be computed using numerical methods specifically designed
for hyperbolic laws.

The left hand side of equations (1) and (3) form a system of bi-dimensional hyperbolic
conservation laws:

(5)

{
∂tfi + vi ∂xfi + e0viE ∂εfi = 0, i = 1, 2
∂tgη + νη ∂xgη = 0, η = 1, 2, 3

and specific numerical methods available in literature can be used in order to solve the
general system. An efficient way to approximate derivatives with respect to x and ε is to
use a conservative high-order scheme, which could be a finite differences or a finite volumes
scheme. The derivative ∂ε fi, for instance, can be approximated by

(6) ∂εfi(t, x, εn) =
1

∆ε

[
f̂i,n+ 1

2
(t, x)− f̂i,n− 1

2
(t, x)

]
where f̂i,n+1/2 is the numerical flux function, which is needed to combine in the proper
way the reconstruction of the cell averages of the function. To obtain good accuracy and
to avoid unphysical solutions, it is advisable to use high-order methods such as, e.g., high-
order versions of Weighted Essentially Non Oscillatory (WENO) schemes [5]. WENO
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schemes are improved and more accurate versions of Essentially Non Oscillatory (ENO)
schemes.

Once the approximation of the derivatives is obtained, we can integrate in time the
obtained system of ODEs, where at the right side we have the sum of the reconstruction
term plus the collision operator. Such system of ODEs has to be solved by proper schemes,
suitable for Conservation Laws. A class of schemes usually adopted for the time integration
is that of Total Variation Diminishing (TVD) methods: they satisfy the requirement that
that the total variation of the numerical solution does not increase. This property is
fundamental to compute the solution of hyperbolic equations, because of the discontinuities
that (generically) arise, even from smooth initial data, during the time evolution. In our
computations we used the explicit, optimal, third-order version of a TVD Runge-Kutta
type scheme [6]. It is optimal in the sense that it is third-order accurate in the presence
of a discontinuity while it gain fifth-order accuracy where the function is smooth.

To compute the solution of the system, we have to impose initial conditions; since we
are dealing with a hyperbolic problem and the domain is limited in space, x ∈ [0, L], we also
need inflow and outflow boundary conditions; these are generally called Initial-Boundary
conditions or Initial-Values Problems (IVP).

Regarding boundary conditions, it is necessary to assign inflow conditions both at the
left contact for right moving particles and at the right contact for left traveling particles;
this means we impose:

f1(t, 0, ε) = t21 f0(ε) + (1− t21)f2(t, 0, ε)

f2(t, L, ε) = t22 f0(−ε) + (1− t22)f1(t, L,−ε)

for all time t > 0 for f1 and f2, where f0(ε) = 1/[1 + e(ε/(kBT ))] is the Fermi-Dirac
distribution. Regarding gη’s, we have

gη(t, 0, q) = g0
η, ∀t > 0,

for η such that νη > 0. Here g0
η = 1/[e~ωη/(kBT ) − 1] is the Bose-Einstein distribution

at a fixed lattice temperature T . Since ν3 = 0, for g3 we only need initial conditions.
On respective opposite boundaries, values are self-consistently determined by the time
evolution of the system.

The aim of our simulations is to compute the system response to the application of an
electric potential V , i.e. the value of the generated current I = I(V ).

We defined the (mean) current at time t as:

(7) I(t) =
1

Nx

Nx∑
i=1

J(t, xi),

where

(8) I(t, x) =
4e0

h

∫
R
f2(t, x, ε)− f1(t, x, ε) dε .
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We used the resulting computed current as stopping criteria for our simulations: |I(t +
∆t)− I(t)| < εI I(t). Computations stopped when the previous relation was satisfied for
εI = 10−3.

Until phonons are assumed in thermal equilibrium (thermalized) at room temperature,
which means nqη ≈ 0, the contribution of forward scattering has to be neglected (as was
the case, e.g., for the model considered in [2]. Thus, to compare with experiments, one
could only consider backscattering and obtain a simple scaling between scattering length
and diameter: l = 65 d.

Already in [7], authors have pointed out that the assumption of thermalized phonon
does not hold: only a significant phonon occupation n can explain the small value of the
measured scattering length l. With a high phonon occupation, both phonon emission and
absorption processes are equally relevant, so to take into account more complex scattering
processes a deeper models should be considered.

A better approximation was used in [4]; their model took into account the role of the
time evolution of one more phonon mode, related to forward scattering, and also considered
different values for scattering lengths. The quantities lη, for η = 1, 2, 3, determining
the electron-phonon coupling coefficients for the different phonon modes were taken as
constants having different values depending on phonon modes: for any phonon mode
η = 1, 2, 3, the following relations were considered: l1 = 92.0 d and l2 = l3 = 225.6 d.

What was proposed in [7], is that it is possible to estimate the scattering lengths
depending on phonon occupation n, assuming the latter is independent of q and η. The
scattering lengths are then obtained using a fixed phonon occupation n0:

(9) l =
65 d

(1 + n0)
,

with n0 in the 2.7 ∼ 5 range to reconcile the scattering lengths derived from the com-
puted and the measured EPCs. Results obtained with these parameters are consistent
with the observation that high-bias saturation currents in SWCNTs on a substrate are
significantly higher than those in suspended SWCNTs. Indeed, the effective temperature
of optical phonons in suspended SWCNTs is expected to be higher due to the absence of
a thermally conductive substrate for heat sinking, lowering current values significantly.

What we did was to consider non constant values for EPC values. We considered
a relation similar to (9) but assuming a varying phonon occupation n according to the
computed mean phonons distributions 〈gη〉: n = n(〈gη〉).

What we observed from the computed distributions was a low transverse optical
phonons population (the one given by g3) having, anyway, very high peaks near the
boundaries in the neighborhood of the scattering momenta q3

i . This led us to search
for another improvement, considering different values of scattering lengths for longitudi-
nal optical (η = 2) and transversal optical (η = 3) phonon modes and considering also
the dependence on q. This is also theoretically justified by the fact that distribution g3

takes very small values almost everywhere inside the tube but has very high picks in the
neighborhood of q3

i = ~ω3/~vF ; it makes sense, thus, to consider longer paths for longi-
tudinal phonons with respect to those for transverse phonons; we included, for transverse
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phonons, the dependence on q. In this context, we are still assuming n depends on η and q
but not on x. With these assumptions, we found great agreement between the computed
results and the experimental data; simulation results are shown in Figure 2, compared
with experimental data. In Figure 2 we show the obtained results for Current-Voltage
characteristics for the proposed model.

Figure 2: IV curves for computed and experimental data.

In the low-bias regime results are similar to those with ballistic transport, i.e. a linear
response is observed, but when the strong emission of optical phonons starts, calculation
based on equilibrium phonons significantly overestimate the current [3]. We observe that
the sudden drop of conductance at V = 0.2 V is accurately reproduced by the performed
transport calculations.

Our study concerns electronic properties of carbon nanotubes. To model the evolution
of electrons and phonons distributions during the current generation, a system of kinetic
Boltzmann equations is given. We present a more accurate description of the physical
model: we did not assume constant values for the lengths of the scattering between elec-
trons and phonons, as was in previous works, but compute them in a self consistent way.
Obtained results show great agreement with the available experimental data. In our ap-
proximation, lengths are functions of phonon distributions, depending in particular on
the momentum variable; more accurate characterization could be obtained depending, for
example, also on the space variable.

Attempts were made to simulate, also, electrical behavior of large diameter nanotubes
(i.e. d > 6nm) but results show a different model should be considered in this case.
Large diameter nanotubes are often used in practical applications so this will be a very
interesting subject for future work.
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From Shafarevich’s conjecture

to finite flat group schemes

Hendrik Verhoek (∗)

1 Introduction

The goal of the talk was to explain the theorem of Fontaine and Abrashkin, giving an
affirmative answer to Shafarevich’s conjecture posed at the ICM in 1962, that says that
there do not exist non-zero abelian varieties over Q that have good reduction everywhere.

Theorem 1.1 [Abrashkin, Fontaine] There do not exist non-zero abelian varieties over
Q, Q(i), Q(ζ3), Q(ζ5), Q(

√
±2) and Q(

√
7) that have good reduction everywhere.

In the first sections I will explain the statement of the theorem, what abelian varieties are
and what it means that abelian varieties have good reduction everywhere. Then I will give
an indication of the proof, though with some definitions skipped due to space limitations.

2 Abelian varieties

We start with the concept of an algebraic variety, which one can think of as a set of solutions
to some polynomial equations with coefficients in some fixed field k. Depending on these
polynomial equations, these varieties can have a very rich structure. Sometimes, besides
being a set of solutions to equations, the solutions form a group: one can add solutions,
substract them to get another solution and there is a trivial solution (the identity). A
variety that admits such a group structure is called a group variety.

One can also endow algebraic varieties with topologies. Often one endows it with the
so-called Zariski topology which reflects well the algebraic nature of the variety. With
such a topology it makes sense to talk about whether a variety is connected. It makes
sense to talk about the connected component of the identity when the variety is a group
variety. Also there is a notion of completeness for varieties whose definition goes beyond
what I want to say in this talk.

(∗)Università Roma 2, Rome, Italy. Web page of the author: http://www.mat.uniroma2.it/~verhoek/
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Università di Padova – Dipartimento di Matematica 88



Seminario Dottorato 2010/11

Definition 2.1 An abelian variety is a complete connected group variety over some field
k.

A very important property of abelian varieties is that they are non-singular. Remember
that a variety is a set of solutions of equations. If the number of variables occurring in
these equations is n, then we can embed the variety in n-dimensional space, where space
depends on the actual variety and the field k. A point on a variety is called singular if the
dimension of the tangent space at that point is larger than the codimension of the variety
embedded in this space. In the talk we saw a few examples of singular points for a curve,
namely cuspidal points and nodal points.

All points on an abelian variety are non-singular. An abelian variety of dimension 1 is
called an elliptic curve and it is for such an abelian variety that we will give an example,
since it is the set of solutions of only one equation.

Example 2.2 Let k = Q, the rational numbers. An equation of the form y2 = x3 +ax+b,
or better yet its projectivization zy2 = x3 + axz2 + bz3, defines a curve in the projective
plane P2. If −16(4a3 + 27b2) 6= 0 it is non-singular and the curve is an elliptic curve. It is
a group variety with identity point (x : y : z) = (0 : 1 : 0).

3 Good and bad reduction

What does it mean that an abelian variety over Q has good or bad reduction at a prime
number p? An abelian variety A over Q is a variety and hence corresponds to solutions
to some equations with coefficients in Q. By transforming these equations one can make
them have coefficients in the integers Z. Now for each prime p we can reduce mod p
and consider the solutions of these equations in Fp. These are varieties again, but not
necessarily abelian varieties. Such a family of varieties, ranging over all primes p, is a
model for A, often denoted by A. When we reduce the equation with coefficients in Z
modulo the prime p, we’re considering what is called the fiber of A at p. The variety A,
which remember is over Q, is called the generic fiber of A. There are special nice models
for A, for example a Néron model. A Néron model A has the nice properties that it is
non-singular in every fiber, and this model has a global group law, extending the one in
the generic fiber. We denote from now on by A the Néron model of A. Now we’re able to
define what good and bad reduction mean:

Definition 3.1 The abelian variety A over Q has good reduction at p when the fiber at
p of A is again an abelian variety. If this is not the case A is said to have bad reduction
at p.

Although the above definition is mathematically correct, a better way to think about
a prime p of bad reduction is that for all ’proper’ models of A, there are singular points
in the fiber at p. Proper is similar to the notion of completeness mentioned above, and
basically means that such a model has no points missing in the fiber at p, the obtained
variety in the fiber at p is connected. A Néron model over need not be proper.

Here’s an explicit example of good and bad reduction, again for the case of an elliptic
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curve:

Example 3.2 Take E : y2 = x3 + 2. This is an equation already having integral
coefficients. Hence we have a model of E over Z and it is ’proper’. The primes of bad
reduction are 2 and 3. It is easy to see that the fiber at 2 of this model has bad reduction:
it gives a singular variety over the field F2 since there is a singular point, a cusp. On the
other hand, this equation modulo the prime 5 has no singular solutions and is a prime of
good reduction.

It is always true that an abelian variety over whatever field has good reduction at
almost all primes, or in other words, there are only finitely many primes at which the
abelian variety has bad reduction. To ask that an abelian variety has good reduction at
all primes is a very strong condition. In fact, it is so strong that Shafarevich conjectured
they don’t exist over Q. Shafarevich’s conjecture has been proven independently by both
Abrashkin [1] and Fontaine [2] in the mid eighties.

Theorem 3.3 [Abrashkin, Fontaine] There do not exist non-zero abelian varieties over
Q, Q(i), Q(ζ3), Q(ζ5), Q(

√
±2) and Q(

√
7) that have good reduction everywhere.

4 Proving the Theorem

This section is more complicated than the previous sections. The previous sections suffice
to understand the statement of the Theorem. This one explains the proof.

In order to prove the Theorem 3.3, we introduced so called group schemes. They are
a generalization of groups and we’ll see them as representable functors from R-algebras
(where R is any ring) to groups. Due to space limitations this is not the right place to
give a full introduction of these objects. Therefore we restrict to mentioning that group
schemes are called commutative if the image of the functor are commutative groups. It
is finite flat if the algebra that represents the functor is finite and flat over R. In the
example below we will see two instances of group schemes: the constant group scheme and
the group scheme of the n-th roots of units. We briefly recall what they are.

To describe the constant group schemes, let Γ be any group in the regular, abstract
sense that we’re all used to. The constant group scheme CΓ over R is the functor that
associates to any connected R-algebra S the group Γ. The constant group scheme asso-
ciated to the cyclic group of order n is denoted by Z/nZ. The group scheme of the n-th
roots of units associates to any R-algebra S the group of n-th roots of units of S, that is,
{s ∈ S : sn = 1}. This group scheme is denoted by µn.

We indicate how to prove Theorem 3.3 in steps. Let K be a number field, a finite
extension of Q, with ring of integers OK . Let S be a finite set of prime ideals in OK .
Denote by OS the ring of S-integers of K. Let ` be a rational prime such that none of
the primes in S divides `. After each step we say what happens when K = Q to answer
Shafarevich’s conjecture.

Definition 4.1 Let C be a subcategory of the category of finite flat commutative group
schemes over OS of `-power order. We suppose that C is closed under taking products,
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subquotients and Cartier duality.

Example 4.2 Let K = Q, OK = Z and S = ∅. We take ` = 2 and we let C := category
of all finite flat commutative group schemes over Z of 2-power order.

Next we will find so-called simple objects in C. The generic fiber of a finite flat
commutative group scheme J over OS is a group scheme over K. The group scheme JK
is étale and just an abelian group J(K) together with the Galois action

ρJ : GK → Aut(J(K)).

The representation ρJ factors through a finite Galois extension K(J)/K. By considering
the generic fiber JK we get quite some information about the group scheme J . A group
scheme is called simple if it has no non-trivial closed flat subgroup schemes. A simple
object in C is a simple group scheme. One can show that the representation ρJ of a
simple group scheme J is irreducible and that simple objects are annihilated by `. We
find all simple objects by considering the maximal `-torsion extension of C which is the
compositum of fields K(J) where the J are in C and are annihilated by `. The extension
L/K need not be finite in general.

Example 4.3 Group schemes annihilated by 2 are for example µ2,Z/2Z and an extension
of Z/2Z by µ2:

0→ µ2 → G→ Z/2Z→ 0,

where G has an associated (Hopf) algebra

2∏
i=1

Z[Xi]/(X
2
i − (−1)i).

We leave out the description of the group law.

For suitable categories C one can prove that L is finite. Suitable means: small ` and
low ramification at the primes in S. If L is finite and small, then we can determine all
simple objects of C. For this we use the following result of Fontaine:

Theorem 4.4 [Fontaine] Let e be the absolute ramification index of F/Q at `, let J be a
finite flat commutative group scheme over OF (the ring of integers of F ) annihilated by `.

Let ∆ be the discriminant of the extension F (J)/F . Then ∆
1

[F (J):Q] < ∆
1

[F (J):Q]

F/Q `e(1+ 1
`−1

).

Example 4.5 In our case ` = 2, F = Q and e = 1. This means that the discriminant ∆
of L/Q satisfies:

∆1/[L:Q] < 4.

Using the tables of Odlyzko this implies : [L : Q] ≤ 4. We can prove that L = Q(i) and
then that all simple group schemes in C are isomorphic to either µ2 or Z/2Z.

Once we determined all simple objects using the maximal `-torsion extension, we want
to compute extensions between them. The goal is to prove that the category C satisfies
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the following two conditions, in which the notion étale occurs. We say that a group scheme
J ∈ C is étale if K(J)/K is unramified at `:

condition (1) : For all simple non-étale group schemes T in C and all simple étale group
schemes E in C, the group Ext1

C(T,E) is trivial.

condition (2) : The compositum F of all K(E), where E is a simple étale group scheme
in C, is finite and the maximal abelian extension R of F that is unramified outside
S and at most tamely ramified at primes over S, is a cyclic extension.

Example 4.6 In fact, condition 1 holds since any extension

0→ Z/2Z→ G→ µ2 → 0

splits. Condition 2 is verified since the class number of Q is one.

We omit the proof of the following theorem:

Theorem 4.7 Let A be an abelian variety such that A[`n] are objects in C for all n. If
conditions (1) and (2) hold for the category C, then A[`] cannot be filtered by étale group
schemes or group schemes of multiplicative type.

Example 4.8 We saw that both conditions hold for C. Since A is supposed to have good
reduction everywhere, the group scheme A[2n] is a finite flat commutative group scheme
over Z of 2-power order. Hence A[2n] is an object in C. But C has as only simple objects
the constant group scheme Z/2Z which is étale, and µ2 which is of multiplicative type.
Contradiction. There are no abelian varieties over Q with good reduction everywhere.
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Mean-variance optimisation problems

in financial mathematics

Claudio Fontana (∗)

Abstract. This short note surveys the main aspects of mean-variance portfolio optimisation, both
from a mathematical and a financial point of view, in the context of classical financial economics
and modern stochastic finance. We also present an abstract approach to mean-variance portfolio
problems, allowing us to obtain general characterisations of optimal portfolios in a simple and
model-independent way, under a minimal no-arbitrage condition.

1 Introduction

Many optimisation problems in applied mathematics are formulated in terms of quadratic
optimality criteria, mainly due to their analytical tractability. In particular, in the context
of portfolio optimisation, this has been successfully exploited, giving rise to an extensive
literature dealing with mean-variance portfolio optimisation, beginning with the seminal
work of Markowitz [10].

From a financial point of view, means and variances admit a natural interpretation
in terms of expected return and risk and mean-variance portfolio optimisation essentially
consists in maximising the expected return while minimising the risk. Clearly, in order
to make this approach work, one needs a sufficient understanding of the financial market
as well as proper mathematical tools to deal with the formulation and solution of mean-
variance optimisation problems. In the course of the last decades, this interaction between
mathematics and finance has not only led to the development of sound techniques for
investment and asset pricing, but also to significant advances in mathematics, especially
in stochastic analysis and related fields.

This short note aims at discussing some of the essential features of mean-variance
portfolio optimisation problems in the context of classical financial economics as well as
modern mathematical finance. Of course, we cannot properly survey the huge relevant
literature and, hence, we limit ourselves to some simple and fundamental facts. We also
briefly illustrate a general and unifying approach to mean-variance problems which has
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been recently proposed in [5]. In a nutshell, this approach relies on an abstract description
of the financial market and allows for general characterisations of mean-variance optimal
portfolios, under the minimal no-arbitrage condition of no approximate riskless profits in
L2. At the same time, such an abstract approach allows to show that many of the classical
properties of mean-variance optimal portfolios do not depend on the specific model under
consideration but are natural outcomes of the mean-variance criteria themselves.

This note is structured as follows. Section 2 briefly surveys classical mean-variance
portfolio selection theory. Section 3 moves to modern mathematical finance and deals with
general mean-variance hedging and portfolio optimisation problems. Finally, Section 4
studies mean-variance optimisation problems in an abstract setting, allowing for general
characterisations of optimal portfolios.

2 Classical mean-variance problems in financial economics

As mentioned in the introduction, mean-variance portfolio selection goes back to the sem-
inal work of Markowitz [10]. In the traditional and simplest formulation, one considers
a single-period model (i.e. t = 0 is today and t = 1 is tomorrow), where the returns
on n risky assets are described by an Rn-valued random vector R, with mean µ ∈ Rn
and covariance matrix Σ ∈ Rn×n. In this context, a portfolio is simply represented by
a deterministic vector w in Rn, with wi denoting the proportion of wealth invested in
the i-th asset. The classical Markowitz mean-variance portfolio selection problem is then
formulated as follows, for m ∈ R:

(1) w′Σw = min! over all w ∈ Rn s.t. µ′w = m and 1′w = 1

where 1 := (1, . . . , 1)′ ∈ Rn. Problem (1) consists in minimising the variance of the random
portfolio return R′w given a constraint on its expected value µ′w = m, for a fixed m ∈ R.
From a financial point of view, this amounts to minimising the risk given a constraint on
the required expected return. Problem (1) can be explicitly solved by elementary linear
algebra, leading to the following classical result (see e.g. [6, Chapter 3]).

Proposition 1 For any m ∈ R, the solution w∗ (m) ∈ Rn to Problem (1) is explicitly
given as follows:

w∗ (m) = p (m) ŵ +
(
1− p (m)

)
wmv

where ŵ := Σ−1µ
1′Σ−1µ

, wmv := Σ−11
1′Σ−11

and p (m) := m(µ′Σ−11)(1′Σ−11)−(µ′Σ−11)2

(µ′Σ−1µ)(1′Σ−11)−(µ′Σ−11)2
.

In particular, Proposition 1 shows that the solution w∗ (m) to Problem (1) is always
given by a linear combination of the two fixed elements ŵ and wmv and only the amounts
invested in them depend on the constraint m (two-fund separation). Furthermore, the
element wmv can be easily shown to be the minimum-variance strategy, i.e. the element
which minimises Var [R′w] = w′Σw over all w ∈ Rn. By relying on Proposition 1, we can
also compute (m,Var [R′w∗ (m)])m∈R, thus obtaining the so-called mean-variance efficient
frontier, which represents in the mean-variance plane the performance of all portfolios
which solve Problem (1) for different values of expected return.
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Classical mean-variance portfolio selection has also been extended in several directions.
For instance, we mention alternative formulations of Problem (1), with the variance being
replaced by more refined and asymmetric measures of risk, as in [3], or models taking into
account constraints or other restrictions on portfolio strategies, as in the book [11]. Also,
multi-period discrete-time settings have been studied via recursive techniques, as in [7]
and [16]. Mean-variance portfolio selection has also been applied to asset pricing, leading
to the celebrated CAPM model, see e.g. Chapter 7 of [8]. In the next section we shall
see how the basic mean-variance optimisation Problem (1) has evolved in the context of
modern mathematical finance.

3 Mean-variance problems in stochastic finance

In the last two decades, mean-variance portfolio optimisation problems have also drawn
the attention of researchers in the mathematical finance community. In a nutshell, modern
mathematical finance deals with the dynamic modeling of financial quantities via stochas-
tic processes, hence the name stochastic finance.

More formally, suppose that we are given a filtered probability space
(

Ω,F , (Ft)t≥0 , P
)

and an Rn-valued semimartingale S = (St)t≥0, representing the dynamic random evolu-
tion of the price of n risky assets. The activity of trading in the financial market is
described by the concept of trading strategy, here represented by an Rn-valued predictable
S-integrable process θ = (θt)t≥0 ∈ Θ, with Θ denoting the set of all admissible self-
financing trading strategies satisfying suitable technical conditions. The gains generated
by investing according to a strategy θ ∈ Θ are then given by the stochastic integral∫
θ dS =

(∫ t
0 θu dSu

)
t≥0

. Consequently, the value at a fixed time horizon T ∈ (0,∞) of
a portfolio starting from an initial capital x ∈ R and generated by the strategy θ ∈ Θ is
given by VT (x, θ) := x+

∫ T
0 θu dSu.

We can formulate the two following Problems, for some fixed x ∈ R, α ∈ (0,∞) and
H ∈ L2:

Problem (I) E [VT (x, θ)]− αVar [VT (x, θ)] = max! over all θ ∈ Θ

Problem (II) E
[∣∣H − VT (x, θ)

∣∣2] = min! over all θ ∈ Θ

Problem (I) corresponds to the portfolio optimisation problem faced by an agent with
mean-variance preferences and risk-aversion coefficient α. If we interpret H ∈ L2 as the
random value at time T of a contingent claim or derivative, Problem (II) consists in finding
the portfolio which best approximates H in the L2-norm. In the literature, Problem (II)
has been called the mean-variance hedging problem.

For reasons of space, we do not attempt an overview of the extensive relevant literature,
for which we refer to the survey papers [12], [14] and [15]. Mathematically, solving Problem
(II) amounts to projecting the random variable H in L2 onto the space of stochastic
integrals VT (x,Θ) := {VT (x, θ) : θ ∈ Θ}. Hence, the existence of a solution to Problem
(II) is equivalent to the closedness in L2 of the space VT (x,Θ). This question has been
dealt with and answered in [2] and [1], thus showing that financial problems can indeed
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motivate the development of deep and significant results in stochastic analysis. Clearly,
being able to obtain an explicit characterisation of the solution to Problem (II) depends
on the specific model under consideration and, in general, is rather difficult, requiring the
application of martingale methods and/or stochastic optimal control, see e.g. the recent
paper [9]. Furthermore, it is worth mentioning that Problem (I) can be solved by relying
on the solution to Problem (II). This relation between Problem (I) and Problem (II) will
also be exploited in the abstract approach outlined in next section.

4 A unifying and abstract approach to mean-variance problems

This section presents an abstract approach to mean-variance portfolio optimisation prob-
lems. Loosely speaking, the setting considered in this section lies on a middle ground
between the classical approach outlined in Section 2 and the more sophisticated semi-
martingale setting of Section 3. On the one hand, the framework we are going to in-
troduce is essentially a single-period model. On the other hand, we avoid any specific
description of the underlying financial market and we only work with an abstract sub-
space of L2 representing the set of all attainable final wealths. This allows us to obtain
general model-independent characterisations of mean-variance optimal portfolios, together
with their fundamental economic properties, and at the same time connect several seem-
ingly different mean-variance optimisation problems. This section is based on [5], to which
we refer the interested reader for full details. In a related context, see also [13] and [4,
Chapter 1].

Let (Ω,F , P ) be a given probability space and let L2 be the space of all real-valued
square-integrable random variables, endowed with the usual scalar product (X,Y ) :=
E [XY ]. Let G be a given non-empty subset of L2 and denote by G⊥ its orthogonal
complement in L2, i.e. G⊥ :=

{
X ∈ L2 : (X,Y ) = 0 for all Y ∈ G

}
. We also denote by

G the closure of G with respect to the L2-norm. Finally, let B be a real-valued random
variable in L2 such that B > 0 P -a.s. The financial interpretation of this abstract setup
is as follows. Fix a time horizon T ∈ (0,∞) and let t = 0 be the initial time. The set G
represents the set of all undiscounted cumulated gains from trade (evaluated at time T ),
generated by self-financing trading strategies starting from zero initial capital. The element
B represents the strictly positive value (at the final time T ) of a numeraire asset, which
can be interpreted as a savings account. The set A := RB + G = {cB + g : c ∈ R, g ∈ G}
represents the set of all attainable undiscounted final wealths.

Let us now introduce the following standing Assumption.

Assumption 1 The two following conditions hold:

(a) G is a linear subspace of L2;

(b) There are no approximate riskless profits in L2, meaning that G does not contain 1.

Part (a) of Assumption 1 amounts to considering a frictionless financial market without
restrictions on trading. The condition 1 /∈ G of no approximate riskless profits in L2
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represents an abstract and minimal no-arbitrage condition. Clearly, it can be equivalently
formulated as R ∩ G = {0}.

Let us now consider four major mean-variance portfolio optimisation problems, here
denoted as Problems (A)-(D) and formulated in the following abstract terms. We let
Y ∈ L2 represent the final undiscounted value of a generic financial position/liability,
α ∈ (0,∞) a given risk-aversion coefficient, µ ∈ R a target minimal expected value and
σ2 ∈ (0,∞) a target maximal variance.

Problem (A) E[g − Y ]− αVar[g − Y ] = max! over all g ∈ G

Problem (B) Var[g − Y ] = min! over all g ∈ G such that E[g − Y ] ≥ µ

Problem (C) E[g − Y ] = max! over all g ∈ G such that Var[g − Y ] ≤ σ2

Problem (D) E
[
|Y − g|2

]
= min! over all g ∈ G

Problem (A) corresponds to the portfolio optimisation problem faced by an agent
with mean-variance preferences and risk-aversion coefficient α. Problems (B) and (C)
correspond to abstract versions of the classical Markowitz mean-variance portfolio selection
problems, here extended with the inclusion of the random liability Y . Finally, Problem
(D) consists in finding the optimal mean-variance hedge for Y . It can be easily seen that
there is no loss of generality in introducing the following additional standing Assumption.

Assumption 2 1 /∈ G⊥, i.e. {g ∈ G : E [g] 6= 0} 6= ∅.

Denote by π the orthogonal projection in L2 onto G⊥ and note that
(
G⊥
)⊥

= G, since
G is a linear. This yields the direct sum decomposition L2 = G ⊕ G⊥, meaning that any
Y ∈ L2 can be uniquely decomposed as follows:

(2) Y = gY +NY = gY + π (Y ) with gY ∈ G and NY = π (Y ) ∈ G⊥

Remark The optimal values of Problems (A)-(D) do not depend on whether we optimise
over G or G. This can be easily checked due to the fact that gn → g in L2 as n → ∞
implies that E [gn − Y ] → E [g − Y ] and Var [gn − Y ] → Var [g − Y ] as n → ∞, for any
Y ∈ L2. In view of this Remark, we henceforth consider Problems (A)-(D) as optimisation
problems over the closed subspace G.

By relying on (2), we are already in a position to solve Problem (D). In fact, a simple
application of the projection theorem gives:

gY = argmin
g∈G

‖Y − g‖L2

The following variance-minimisation problem plays a crucial role in the solution of
Problems (A)-(C).

Problem (MV) Var[Y − g] = min! over all g ∈ G
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Proposition 2 For Y ∈ L2, Problem (MV) admits in G the unique solution

gYmv := argmin
g∈G

Var[Y − g] = gY − a∗Y
(
1− π (1)

)
, where a∗Y :=

E[NY ]

E[π (1)]
.

Let us now introduce the notation RYmv := gYmv − Y , where “R” stands for the final
“result” of an abstract financial position. Then, for any g ∈ G, we can write as follows:

g − Y = g − gYmv + gYmv − Y = RYmv + g − gYmv

Furthermore, due to the variance-optimality of gYmv ∈ G and the linearity of G, the element
RYmv enjoys the following fundamental zero-covariance property:

Cov
(
RYmv, g

)
= 0 for all g ∈ G

Since g − gYmv ∈ G, for any g ∈ G, this implies that we can write as follows:

Var [g − Y ] = Var
[
RYmv + g − gYmv

]
= Var

[
RYmv

]
+ Var

[
g − gYmv

]
This shows that in the analysis of Problems (A)-(C) we can isolate the minimum variance
element RYmv. Furthermore, since gYmv ∈ G and G is a linear space, the mapping g 7→ g′ :=
g − gYmv is a bijection of G to itself. These two observations suggest that we can reduce
the general versions of our abstract mean-variance problems to the particular case Y ≡ 0.
This fact allows us to easily derive the solution to Problem (A), denoted by gYopt,A(γ),

where γ := 1
α is the risk-tolerance coefficient corresponding to the risk-aversion coefficient

α.

Proposition 3 For Y ∈ L2 and γ ∈ [0,∞), Problem (A) has a unique solution gYopt,A(γ) ∈
G. It is explicitly given by

gYopt,A(γ) = argmin
g∈G

{
Var[g − Y ]− γE[g − Y ]

}
= gYmv + g0

opt,A(γ),

where g0
opt,A(γ) ∈ G is the solution to Problem (A) for Y ≡ 0, explicitly given by

g0
opt,A(γ) = argmin

g∈G

{
Var[g]− γE[g]

}
=
γ

2

1

E[π (1)]

(
1− π (1)

)
.

Furthermore, the condition of no approximate riskless profits in L2 is not only sufficient
for ensuring the existence of a solution to Problem (A), but it is also necessary for the
solvability of (A). The solutions to Problems (B) and (C) can be recovered from the general
solution to Problem (A) by choosing a suitable risk-aversion coefficient α, which will
depend on the constraints µ and σ. More precisely, we have the two following Propositions.

Proposition 4 Let Y ∈ L2 and µ ∈ R. If µ > E[RYmv], then Problem (B) admits a
unique solution gYopt,B(µ) ∈ G. It is explicitly given by

gYopt,B(µ) = gYmv + g0
opt,B

(
µ− E[RYmv]

)
,
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where g0
opt,B(m) is the solution to Problem (B) for Y ≡ 0 and constraint m, explicitly

given by

g0
opt,B(m) = g0

opt,A

(
2m

E [π (1)]

E [1− π (1)]

)
=

m

E[1− π (1)]

(
1− π (1)

)
.

If µ ≤ E[RYmv], then Problem (B) has gYmv as unique solution.

Proposition 5 Let Y ∈ L2 and σ2 ∈ [0,∞). If σ2 ≥ Var[RYmv], then Problem (C) admits
a unique solution gYopt,C(σ2) ∈ G. It is explicitly given by

gYopt,C(σ2) = gYmv + g0
opt,C

(
σ2 −Var[RYmv]

)
,

where g0
opt,C(v) is the solution to Problem (C) for Y ≡ 0 and constraint v, explicitly given

by

g0
opt,C(v) = g0

opt,A

(
2

√
vE [π (1)]√

Var [1− π (1)]

)
=

√
v

Var[1− π (1)]

(
1− π (1)

)
.

If σ2 < Var[RYmv], Problem (C) cannot be solved.

Referring the reader to [5] for a more detailed analysis, we make a few important
remarks on the results of Propositions 3-5.

Remarks 1. Note that the solutions to Problems (A)-(D) all share the same funda-
mental structure:

(3) gYopt,i = gYmv + cYopt,i

(
1− π (1)

)
for i ∈ {A,B,C,D}

for some cYopt,i ∈ R, i ∈ {A,B,C,D}, and where gYopt,D := gY . Property (3) represents
an abstract counterpart of the classical two-fund separation result already observed in
Section 2. This property allows us to easily obtain a model-independent description of
the mean-variance efficient frontier and an abstract counterpart of the traditional CAPM
formula.
2. The element 1 − π (1) can be characterised as the unique element of G in the Riesz
representation of the continuous linear functional E [·] on G. Furthermore, in our ab-
stract mean-variance theory, the element 1 − π (1) plays the role of a generalised mar-
ket portfolio, determining the slope of the mean-variance efficient frontier. The terms
cYopt,i in (3) also admit a representation as “beta factors”. In fact, it can be shown that

cYopt,i = Cov
(
gYopt,i − Y, 1− π (1)

)
/Var [1− π (1)], for i ∈ {A,B,C,D}.

3. Several investment situations can be represented by letting Y = −cB+(H − hB)−H0,
for c, h ∈ R and H,H0 ∈ L2. This describes the net financial balance (outflows minus
incomes) at the final time T faced by an agent who, at the starting time t = 0, has an
initial endowment c and sells for a compensation h the contingent claim H, to be paid at
T . In addition, the agent has a position H0 (evaluated at T ), which can be interpreted
as a random endowment. Furthermore, the compensation h for selling the claim H can
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be determined endogenously in the model, as an application of mean-variance indifference
valuation rules.
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Approximating the Goldbach Conjecture

Valentina Settimi (∗)

Abstract. The Goldbach conjecture is one of the oldest unsolved problems in the entire mathe-
matics and, since its appearance in 1742 to nowadays, a lot of mathematicians dealt with it. In my
talk I will give an introduction to the origin of the Goldbach conjecture and then I will describe the
most important developments in some problems related to it. In particular I will talk about the
ternary Goldbach conjecture, the exceptional set in Goldbach’s problem and the Goldbach-Linnik
problem. Finally, I will give a short overview of our results which can be seen as approximations
to the Goldbach-Linnik problem.

1 Origin of the Goldbach Conjecture

In a letter to Euler dated 7 June of 1742, Goldbach stated the following conjecture

if N is an integer such that N = p1 + p2, with p1 and p2 primes,
then, for every 2 ≤ k ≤ N , N = p1 + . . .+ pk, with p1, . . . , pk prime.

We have to keep in mind that in Goldbach’s time the number 1 was considered to be a
prime, in contrast with the modern definition. In the margin of the same letter, Goldbach
stated another conjecture

if N is a integer greater than 2,
then N = p1 + p2 + p3, with p1, p2 and p3 primes.

In his reply letter, dated 30 June of the same year, Euler wrote another conjecture which
is now ascribed to Goldbach

if N is a positive even integer, then N = p1 + p2, with p1 and p2 primes.

Today, these conjectures are known to be equivalent (see, e.g., Pintz [7]).

1.1 Modern versions

The conjectures above can be rewritten using the modern language of primes, that is
without considering 1 to be a prime number. The first conjecture is strictly connected to

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on 23 March 2011.
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the primality of 1 and therefore its modern version has no interest. On the contrary, the
modern version of the second conjecture is the so called ternary Goldbach conjecture

(TGC)
if N is an odd integer greater than 5,

then N = p1 + p2 + p3, with p1, p2 and p3 primes,

while the modern version of the third conjecture is the famous Goldbach conjecture

(GC)
if N is an even integer greater than 2,

then N = p1 + p2, with p1 and p2 primes.

Despite its very simple statement, GC is extremely hard to prove and nowadays, after
more than 250 years, it is still an open problem. Nevertheless, it can be approached in
two main ways:

(a) Numerical check: the record is up to 2× 1018, due to Oliveira e Silva [10] (2010).

(b) Approximations: the study of problems closely related to GC.

2 Some approximations to Goldbach conjecture

2.1 Ternary Goldbach conjecture

We remark that the modern conjectures above have more restrictive hypothesis than orig-
inal ones and so they are stronger. In particular the Goldbach conjecture and the ternary
Goldbach conjecture are not equivalent, but only

GC ⇒ TGC,

which is trivial, considering N − 3 = p1 + p2. For this reason TGC can be considered an
approximation to GC.

The first important result about TGC is due to Hardy-Littlewood [1] (1923), who
proved it for any sufficiently large odd integer and under Generalized Riemann Hypothesis
(GRH). The main tool they used is the circle method. We shortly recall here what the
GRH and the circle method are.

Generalized Riemann Hypothesis: We need the following definitions.

Definition Given q ∈ N \ {0}, χ is Dirichlet character (mod q) iff

(i) χ : Z→ C ;

(ii) χ(mn) = χ(m)χ(n) ∀m,n ∈ N ;

(iii) χ(n+ q) = χ(n) ∀n ∈ N ;

(iv) χ(n) = 0 ⇔ (n, q) > 1 .
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Definition For every s ∈ C such that <(s) > 1 and for every Dirichlet character
χ, we define the Dirichlet L-function as

L(s, χ) =
∑
n≥1

χ(n)

ns
,

which, by analytic continuation, can be extended to the whole C.

We remark that the Dirichlet L-functions are generalizations of the Riemann ζ-
function (which is defined as ζ(s) =

∑
n≥1

1
ns for every s ∈ C with <(s) > 1, and

than extended to C by analytic continuation). In fact, for every s ∈ C, we have that
L(s, χ0) = ζ(s), where χ0 is the Dirichlet character modulo 1.

Finally, let us call non-trivial zeros of ζ(s) or L(s, χ) those zeros having 0 < <(s) < 1.

Riemann Hypothesis (RH). The non-trivial zeros of ζ(s) lie on the critical line
<(s) = 1

2 .

Generalized Riemann Hypothesis (GRH). The non-trivial zeros of L(s, χ),
for all χ, lie on the critical line <(s) = 1

2 .

Circle Method: It is used to approach many additive problems and it can be roughly
summarized as follows:

(a) Turning an additive problem over integers (e.g., the ternary Goldbach problem)
into an analytic problem, by means of Fourier analysis.

(b) Dissecting the obtained integration inteval into major and minor arcs which
respectively give the expected main term and the expected error term.

To better explain how the method works, we shortly sketch here its application to
TGC: the weighted counting function for TGC is

r3(N) =
∑

p1+p2+p3=N

log(p1) log(p2) log(p3).

If we define the exponential sum S(α) =
∑

p≤N log(p)e2πipα, then, by the Fourier
coefficients formula, we obtain the following fundamental relation

r3(N) =

∫ 1

0
S(α)3e−2πiNαdα,

which allows us to change over our additive problem into an analytic one. The last
step is to dissect the integration interval [0, 1] into major arcs M and minor arcs
m in such a way that: M are around the peaks of S(α) and therefore they give the
main term in the asymptotic estimation of r3(N), while m give the error term, since
|S(α)| can be suitably bounded whenever α ∈ m.

Some year later, Vinogradov [12] (1937) succeeded in proving, for any sufficiently large
odd integer, TGC unconditionally, that is without assuming GRH. The key point in his
proof is a better estimation on minor arcs.
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2.2 Exceptional Set in Goldbach’s Problem

If we denote by P the set of all prime numbers, then the exceptional set for the Goldbach
conjecture is

E = {N ∈ N : 2|N ; @p1, p2 ∈ P s.t. N = p1 + p2},

which naturally leads to the following problem.

Problem Given X ∈ R, finding an upper bound for E(X) = |E ∩ [1, X]|.

It can be considered an approximation to the Goldbach conjecture, since

GC ⇔ E = {2} ⇔ E(X) = 1, ∀X ≥ 2.

The first important result regarding the size of the exceptional set is due to Hardy-
Littlewood [2] (1923), who proved that, under GRH

E(X)�ε X
1/2+ε ∀ε > 0.

As for the unconditional side, we recall the fundamental result by Montgomery-Vaughan
[6] (1975):

E(X)� X1−δ ∃δ > 0.

The key point in Montgomery-Vaughan’s proof is a careful analysis of the Siegel zero,
which, in plain words, is a potential counterexample to the GRH.

Recently, Pintz [8] (2009) announced that the Montgomery-Vaughan estimate holds
for δ = 1/3. The key point in his proof is a careful analysis of the generalized exceptional
zeros which are, roughly speaking, generalizations of the Siegel zero.

2.3 Goldbach-Linnik Problem

The Goldbach-Linnik (or just G.-Linnik) problem originates from the following theorem
by Linnik, proved in 1951 under GRH and two years later unconditionally.

Theorem If N is a sufficiently large even integer, then there exist p1, p2 ∈ P and
ν1, . . . , νs ∈ N such that

N = p1 + p2 + 2ν1 + . . .+ 2νs ,

where s is an unspecified absolute constant.

Goldbach-Linnik Problem. Finding the smallest allowed value of s.
It can be considered an approximation to the Goldbach conjecture, since

s = 0 ⇔ GC, for sufficiently large N.

To this day, the best upper bounds for s are s = 7 under GRH and s = 13 unconditionally,
obtained by Heath–Brown-Putcha [3] (2002).

Recently Languasco-Pintz-Zaccagnini [4] (2007) studied a variation of the G.-Linnik
problem: given s ≥ 1, finding an asymptotic formula for the number of representations of
a positive even integer (less than a large parameter X) as sum of two primes and k powers
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of 2, which holds for almost all positive even integers. The important point in this work
is that, for every s ≥ 1, the number of exceptional values for the asymptotic formula is
�k X

3/5(logX)10. In fact:

(a) as said in the previous section, by Pintz [8], the size of the exceptional set for the
Goldbach conjecture is � X2/3, and 3/5 < 2/3. It means that, just adding a single
power of 2, a better estimation can be obtained;

(b) the exponent 3/5 is the best possible level, according to the state of the art: to lower
it, we have to refine, in the exponents, the famous estimation in Theorem 3.1 of
Vaughan [11].

3 Our results

Our results can be considered as variations of G.-Linnik problem:

(a) Generalization of Languasco-Pintz-Zaccagnini [4] with g ≥ 3 instead of 2. That is
studying the formula

N = p1 + p2 + gν1 + . . .+ gνs .

(b) Diophantine approximation to G.-Linnik Problem, combined with Waring-Goldbach
Problem (i.e. the problem of representing an integer as sum of prime powers). That
is studying the formula

λ1p1 + λ2p
2
2 + λ3p

2
3 + µ12ν1 + . . .+ µs2

νs ,

where the coefficients λi, µi ∈ R \ {0} satisfy some suitable relations.

3.1 Generalization of Languasco-Pintz-Zaccagnini: study of N = p1+p2+g
ν1+. . .+gνs

We start by fixing the integer s ≥ 1 and g ≥ 3. Our N has to satisfy some (standard)
arithmetic conditions:

N even, if g even; N ≡ s (mod 2), if g odd.(AC)

We now fix a large real parameter X and we set N ∈ [1, X] and L = loggX. The
relevant counting function for our problem, which depends on s and g, is

r(N) = |{(p1, p2, ν1, . . . , νs) ∈ P2 × [1, L]s : N = p1 + p2 + gν1 + . . .+ gνs}|

=
∑

1≤p1,p2≤X

∑
1≤ν1,...,νs≤L

p1+p2+gν1+...+gνs=N

1.

So the associated weighted function, which still depends on s and g, is

R(N) =
∑

1≤m1,m2≤X

∑
1≤ν1,...,νs≤L

m1+m2+gν1+...+gνs=N

Λ(m1)Λ(m2),
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with Λ(n) the Von Mangoldt function: Λ(n) = log p, if there exists p ∈ P and k ∈ N \ {0}
such that n = pk, and Λ(n) = 0 otherwise. Using this notation, our theorem is the
following:

Theorem A Let η > 0 be an arbitrarily small constant, then there exists a positive
constant C = C(g, s,N) such that

|R(N)−CNLs| ≤ ηNLs,

for every N satisfying (AC), apart from at most Og
(
X3/5(logX)10

)
exceptions.

The relevant point is that Og
(
X3/5(logX)10

)
is optimal according to the state of the

art, as said before. Moreover C can be bounded from above with dependency only on
g. We finally remark that in the proof we use both the circle method and generalized
exceptional zeros mentioned before.

3.2 Diophantine approximation to the G-Linnik problem: study of λ1p1+λ2p
2
2+λ3p

2
3+

µ12
ν1 + . . .+ µs2

νs

The coefficients λi, µi have to satisfy the following (standard) relation:

λi, µi ∈ R \ {0} λ1 < 0 and λ2, λ3 > 0;(CR)

λ2/λ3 /∈ Q; λi/µi ∈ Q, for every 1 ≤ i ≤ 3.

Let ai/qi denote the reduced representation of λi/µi ∈ Q. Using this notation, our theorem
is the following.

Theorem B For every real number x and for every integer s ≥ s0, then

| λ1p1 + λ2p
2
2 + λ3p

2
3 + µ12ν1 + · · ·+ µs2

νs + x | < η

has infinitely many solutions in pi ∈ P and νi ∈ N \ {0}, where

(i) the coefficients λi, µi verify (CR);

(ii) η > 0 is a sufficiently small constant such that η < min
(∣∣λ1
a1

∣∣; λ2a2 ; λ3a3

)
;

(iii) s0 = s0(q1, q2, q3, λ1, λ2, λ3, η, ε) explicit constant, with ε > 0 arbitrarily small.

The key point here is to find an allowed value for s0 as smaller as possible. Under
this point of view, our result can be considered as a refinement of the analogous work by
Li-Wang [5] (2005), since we find a s0 which is smaller than their one by about 90%. With
respect to Li-Wang our main gain comes from use for the first time a standard tool for
exponential sums over primes, to deal with exponential sums over prime squares.
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Robustness for path-dependent volatility models

Mauro Rosestolato (∗)

Based on joint work with Tiziano Vargiolu (University of Padova)
and Giovanna Villani (La Caixa, Barcelona)

1 Introduction

The Black and Scholes model is based upon the assumption that the behaviour of the
logarithm of the asset price is well represented by a Gaussian process with stationary
independent increments. This assumption is mathematically given by imposing that the
drift and the volatility are deterministic functions. The important role played by the
volatility in the Black-Scholes formula and the fact that a constant volatility assumption
is not consistent with observations of actual financial markets are both well known, and
for these reasons several proposals have been made to introduce some sort of stochastic
dependency in the volatility parameter, either with a deterministic dependency on the
current stock price or with a dedicated dynamics driven by a new source of uncertainty.

One of the models which better fits to market data is the so-called Hobson-Rogers
model, introduced in [10] and studied with respects to various features in [1, 4, 5, 6, 7, 8,
13] which consists in the following. For a risky asset whose price is denoted by the process
S = (St)t∈R, define the discounted log-price process Zt at time t as Zt = log(Ste

−rt) where
r is the (constant) risk-free interest rate, and the offset function of order 1, denoted by
P = (Pt)t, by

(1) Pt =

∫ ∞
0

λe−λu(Z(t)− Z(t− u))du

the constant λ being a parameter of the model which describes the rate at which past
information is discounted. We assume that Z satisfies the SDE (stochastic differential
equation)

(2) dZt = −1

2
σ2(Pt)dt+ σ(Pt) dW (t)

where σ(·) is a strictly positive function and (Wt)t∈R is a so-called two-sided Brownian
motion [3] under a risk-neutral probability measure P (see [1, 2, 10] and the references
therein for details).

(∗)Scuola Normale Superiore, Pisa (Italy). E-mail: . Seminar held on 6
April 2011.
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This model can be seen as a “good” model because no new Brownian motions (or other
sources of uncertainty) have been introduced in the specification of the price process. This
means that the market is complete and any contingent claim is hedgeable in this way: if
we calculate the stochastic differential of P , we obtain

(3) dPt = dZ(t)− λPt dt

so (Z,P ), as well as (S, P ), is a 2-dimensional Markov process (see [10]), and we can easily
employ the Kolmogorov equation when pricing a contingent claim with final payoff h(ST ).
In fact, its price Vt = E[h(ST )|Ft] is of the form Vt = F (t, St, Pt), where F is the solution
of the Kolmogorov equation

(4)


Ft + rsFs − λpFp +

(
1

2
s2Fss + sFps +

1

2
Fpp −

1

2
Fp

)
σ2(p) = rF

F (p, s, T ) = h(s).

In conclusion this model allows to construct a process for the price, but we can see that
some difficulties arise. The problem of pricing a contingent claim with the Hobson-Rogers
model is equivalent to solve the PDE (4), once the initial conditions S(0) = s, P (0) = p
are specified. While the price S(0) is observed in the market, in order to calculate the
true value P (0) one would have to observe the asset in all its past, which is impossible.
A possible approach to circumvent this problem in the Hobson-Rogers model is to use
the model with a misspecification Σ̃0 := (P̃0, Z0) instead of the true initial values Σ0 :=
(P0, Z0): we thus obtain, as solution of Equations (2) and (3), a misspecified process Σ̃t :=
(P̃t, Z̃t) instead of the “true” process Σt := (Pt, Zt); we then search for an initial condition
P̃0 which minimizes the error of pricing the contingent claim h(ST ). This approach has
been carried out in detail in [2] via L2-estimates of the solutions of Equations (2) and (3)
with respects to the initial condition, and the result in that paper is that

E

[
sup

0≤u≤T
|Σu − Σ̃u|2

]
≤ KE[|P0 − P̃0|2]ecT

2+dT

where K, c and d are suitable constant depending on λ and the function σ. The L2-error
of P0 is then estimated by linking it to the L2-error of P−R, where R > 0 is assumed
to be an observation interval of the past price of the stock (St)t∈[−R,0], which we assume

to be available, and one has E[|P0 − P̃0|2] = e−λRE[|P−R − P̃−R|2]. This latter L2-error
is then assumed to be equal to the variance V of the invariant measure of P : in fact, if
the dynamics (3) of P is ergodic, then we have that E[|P−R − P̃−R|2] converges to V as
R→ +∞, so if R is big enough we can approximate E[|P−R − P̃−R|2] with V .

This entails that when pricing a European (possibly path-dependent) contingent claim
with maturity T and final payoff h(S(·)) we have

(5)
∣∣∣E[h(ST )]− E[h(S̃T )]

∣∣∣2 ≤ KJ2e−λRV ecT
2+dT

where J is the Lipschitz constant of the functional z(·)→ h(ez(·)). If one wants to obtain
prices with a given precision, the estimate (5) gives a quadratic dependence of R on the
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maturity T , which produces very long and unlikely observation times: in the examples in
[2], for a maturity of T = 3 months one has to observe R ' 4 years of the historical prices
of S, while for a maturity of T = 5 years this observation window becomes R ' 100 years
long. If h is a simple European claim, then an analogous estimate holds which has all the
previous drawbacks.

In this note, we present a L1-estimates (instead of the L2-estimates of [2]) of the form

(6) E

[
sup

0≤u≤T
|Σu − Σ̃u|

]
≤ K(T )E[|P0 − P̃0|]edT

where K is a function with subexponential growth. This is done by obtaining the differ-
ential ∂Σt of the sample paths of Σ with respects to the initial condition Σ0 and using

Lagrange’s theorem, which entails Σ
(p,z)
t −Σ

(p̃,z)
t =

∫ p
p̃ ∂1Σ

(ζ,z)
t dζ. Since for ∂1Σ

(ζ,z)
t we ob-

tain estimates of the kind E[‖∂1Σ
(ζ,z)
t ‖] ≤ Kedt, by integrating we get the desired estimate

(6), which is a great improvement of the result in [2].

2 Dependence with respect to the initial data

We obtain L1-estimates on Σ := (P,Z) by the use of differentiation of stochastic processes
and of Lagrange’s theorem. The use of this latter technique and the requirement for a
L1-estimate will allow us to obtain log-linear estimates of the kind of (6) instead of the
original log-quadratic ones present in [2].

The starting point is to see that the process Σ := (P,Z) is differentiable with respect
to the initial value, and the derivative process with respect to P0 satisfies the SDE in the
following theorem.

Theorem 1 Assume that σ and σ2 are differentiable, with locally Lipschitz derivatives
bounded respectively by L1 and L2, and call Σ = ΣP0,Z0 the solution to Equations (2) and
(3) with initial condition Σ0 := (P0, Z0) ∈ L2(Ω,F0,P;R2). If (P0, Z0) = (p, z) ∈ R2,
then Σp,z is differentiable with respect to the initial value, and the derivative process with
respect to P0 = p satisfies the SDE

(7)


d∂1Pt = −

(
1

2

(
σ2
)′

(Pt) + λ

)
∂1Pt dt+ σ′ (Pt) ∂1Pt dWt

d∂1Zt = −1

2

(
σ2
)′

(Pt) ∂1Pt dt+ σ′ (Pt) ∂1Pt dWt

with initial conditions ∂1P0 = 1, ∂1Z0 = 0, where for a generic process X = (P,Z) we
indicate ∂1Xt := ∂Xp,z

t /∂p.

Dealing with the 2-dimensional processess Σ and ∂1Σ, we will use the norm E[‖ · ‖1],
where ‖x‖1 := |x1|+ |x2| for all x ∈ R2.
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Theorem 2 Under the assumptions of Theorem 1, the following inequalities hold:

E
[

sup
0≤u≤t

‖∂1Σu‖1
]
≤ (5 + λt) e

(
L2
1
2

+
L2
2
−λ
)+

t

E [‖∂1Σt‖1] ≤ (3 + λt) e

(
L2
2
−λ
)+

t
.

Theorem 3 Under the assumptions of Theorem 1, for each initial conditions η, η̃ ∈
L2(Ω,F0,P) and z ∈ R, the following inequalities hold

E
[

sup
0≤u≤t

∥∥∥Σ(η,z)
u − Σ(η̃,z)

u

∥∥∥
1

]
≤ (5 + λt) e( 1

2
L2
1+ 1

2
L2−λ)+tE [|η − η̃|] ,

E
[∥∥∥Σ

(η,z)
t − Σ

(η̃,z)
t

∥∥∥
1

]
≤ (3 + λt) e( 1

2
L2−λ)+tE [|η − η̃|] .

We now apply the results of Theorem 3 to the pricing error of European derivative
assets h(S(·)), possibly path-dependent, which are Lipschitz with respect to the log-return,
i.e. such that the application C0([0, T ]) 3 f → h(ef(·)) ∈ R is globally Lipschitz. In the
case of a European claim which is a function of the final price, we require that R 3 x →
h(ex) ∈ R is globally Lipschitz. For some examples of such assets see [2].

Theorem 4 Suppose the assumptions of Theorem 1 hold.

1. Let h : C0[0, T ]→ R be the payoff of a claim such that the functional C0[0, T ]→ R :
f 7→ h(ef ) is globally Lipschitz (with respect to the sup-norm ‖ · ‖C0), with Lipschitz
constant J . Then

(8)
∣∣∣E [h (S(·))]− E[h(S̃(·))]

∣∣∣ ≤ J (5 + λT ) e

(
L2
1
2

+
L2
2
−λ
)+

T
E
[∣∣∣P (0)− P̃ (0)

∣∣∣]
2. Let h : R → R be the payoff of a European claim such that the function R → R :
x 7→ h(ex) is globally Lipschitz with constant J . Then

(9)
∣∣∣E [h (S(T ))]− E[h(S̃(T ))]

∣∣∣ ≤ J (3 + λT ) e

(
L2
2
−λ
)+

TE
[∣∣∣P (0)− P̃ (0)

∣∣∣]
The previous results only allow to obtain pricing errors of derivative assets which

are Lipschitz with respect to the log-return, condition which is rather non-natural in the
financial literature. As a simple example, notice that a plain vanilla call option h(S(T )) :=
(S(T )−K)+ does not satisfy the previous Lipschitz condition, while instead being globally
Lipschitz. Another example is the floating strike Asian option, with payoff h(S(·)) :=

(ST −
∫ T

0 St dt)
+. Nevertheless, our analysis can be extended to contingent claims which

are globally Lipschitz in the natural variable S.
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3 Using past information

The aim of the L1-estimates of the previous section is to choose P̃0 in order to minimise the
final error. As in [2], we assume to know all the past values of the price St for t ∈ [−R, 0],
where R > 0 is thus the width of the past observation window, while the process P remains
unobserved also in the past.

It turns out that we can make the uncertainty on P decay exponentially with respect to
the width R of the observation window. Again, we represent this uncertainty by defining
the process P̃ , starting from the misspecified condition P̃−R and following the dynamics

(10) dP̃t = −λP̃t dt+ dZt, t ∈ (−R, 0]

while the process P always follows the dynamics given by Equation (3). Notice that this
time, as we can observe Z in the interval [−R, 0], we have no uncertainty on this process.

Lemma 1 Suppose that P̃ and P have the dynamics (10) and (3), respectively, and that
at time −R their values are P̃−R and P−R, respectively. Then

P0 − P̃0 = e−λR
(
P−R − P̃−R

)
.

Now we are in the position of solving the following problem: for a given ε > 0 we want to
find a minimum observation time R0 such that the error when pricing a contingent claim
h is less than ε. We present a result on European claims, possibly path-dependent, which
are Lipschitz with respect to the log-return Z.

Corollary 1 Suppose that σ and σ2 admit locally Lipschitz first partial derivatives,
bounded by L1 and L2 respectively, and let V1 = E[|D−R − D̃−R|].

1. If h : C0[0, T ] → R is the payoff of a path-dependent claim such that the function
C0[0, T ]→ R : f 7→ h(ef ) is globally Lipschitz with constant J , and R > R0, where

(11) R0 :=

(
L2

1

2λ
+
L2

2λ
− 1

)+

T +
1

λ
log

J (5 + λT )V1

ε

then

(12)
∣∣∣E [h (S(·))]− E[h(S̃(·))]

∣∣∣ < ε .

2. If h : R → R is the payoff of a European claim such that the function R → R :
x 7→ h(ex) is globally Lipschitz with constant J , then in order for (12) to hold it is
sufficient that R > R0, where now

(13) R0 :=

(
L2

2λ
− 1

)+

T +
1

λ
log

J (3 + λT )V1

ε

We can prove similar results for h globally Lipschitz with respect to the natural variable S.
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We are now going to consider a determination of σ that satisfy our assumptions, thereby
calculating explicitly the density f and then the width R of the past window: this will be
done comparing the old robustness results from [2] with the ones presented in this note.

Suppose that

σ(P ) = min
{√

a+ bP 2, N
}
,

where a > 0, b > 0 and N > 0 are constants, with a < N2. We know from [2] that the
unique invariant measure for the process P has density given by the formula

f(x) =

 K1e−
λ(N2−a)
bN2 −N

2

4λ N
2λ
b e−x(a+ bx2)−

λ
b
−1 if |x| ≤

√
N2−a
b

K1
N2 e

− λ
N2

(
x+N2

2λ

)2
if |x| ≥

√
N2−a
b

where K1 is a convenient constant. As in [8] and [2], we take

a = 0.04, b = 0.2, λ = 1, N = 1

so we have

L1 = sup
x∈R

∣∣∣∣∂σ∂x
∣∣∣∣ =

√
b(N2 − a)

N
= 0.438178

and

L2 = sup
x∈R

∣∣∣∣∂σ2

∂x

∣∣∣∣ = 2
√
b(N2 − a) = 0.876356

and we obtain
V1 = E[|P −mP |] = 0.116144 .

We want to find R such that the pricing error is less than ε = 10−2, both for a path-
dependent contingent claim as well as for a European one, both with Lipschitz constant
J = 1. By taking different maturities, we find the results in Table 1: we indicate with
RHV the observation window obtained with the original estimates of [2] and with R the
observation window obtained with the estimates (11) and (13) of Corollary 1.

path-dependent European
T RHV R RHV R

0.25 3.971 4.110 3.611 3.631
0.5 5.157 4.157 4.438 3.705
1.0 8.943 4.244 7.504 3.839
2.0 22.167 4.398 19.288 4.062
3.0 42.927 4.532 38.608 4.244
4.0 71.223 4.649 65.464 4.398
5.0 107.055 4.755 99.856 4.532

Table 1: Time to wait (in years) for a precision ε = 0.01: with R the estimate with the current

method, with RHV with the one in [2].
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We can see a huge improvement of the new results presented here over those in [2],
which is evident especially for longer maturities: in fact, while in order to price a 5-years
contingent claim with an error of less than ε = 10−2 with the old estimates from [2] one
needed an observation window of more than a century, with the results of this note one
knows that the necessary time window is really less than 5 years long.
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The Liouville Theorem for

conformal maps: old and new

Alessandro Ottazzi (∗)

1 Introduction

This seminar is devoted to a classical theorem of Liouville, dated back to 1850. This
theorem deals with the problem of mapping domains onto given domains in a controlled
way. It is well known that in R2 every simply connected domain which is not the whole
plane can be deformed onto the disc in a conformal way (this is the statement of the
Riemann mapping theorem, dated back to 1851). The theorem of Liouville states that
in the euclidean spaces of dimension at least 3 it is not possible to prove the Riemann
mapping theorem, because there are only a few conformal maps.

Liouville proved the theorem for n = 3, with the extra assumption that the conformal
maps have C4 regularity. In 1960, Nevanlinna [7] proved the theorem for every n ≥ 3,
assuming the same regularity. In 1962, Gehring [2] gave a definition of conformal map
in a weak sense, assuming that the maps were homeomorphisms only. He proved that
these maps are in fact smooth, and therefore Liouville theorem follows with low regularity
assumption. Later on, other versions of the theorem were proved dropping the injectivity
assumption, see [3, 10].

In this seminar we sketch a proof of the Liouville theorem that holds under the hy-
pothesis that mappings are at least of class C2. The proof that we give is somehow a
consequence of [5, Theorem 1, p. 333]. In a work in collaboration with B. Warhurst [8],
we show that a Liouville type theorem holds in the context of Carnot groups. Our proof
is based on a generalization of the argument that we present here, by means of Tanaka
prolongation theory [11].

An extensive survey of the Liouville theorem in the setting of euclidean spaces and
Riemannian manifolds can be found in the book [3]. For generalizations concerning the
sub-Riemannian metric setting, see [1, 6, 9].

(∗)Università Milano-Bicocca, Milano (Italy). E-mail: . Seminar
held on 20 April 2011.
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2 The Liouville Theorem

The conformal transformations are defined as those diffeomorphisms that preserve angles
between the tangent vectors of any two intersecting curves in a domain. If the overlap-
ping direction of the two tangent vectors is also preserved, the conformal map is called
orientation preserving.

Definition 2.1 Let U be an open and connected subset of Rn. We say that a C1

homeomorphism f : U → Rn is a conformal map if for every x ∈ U we have

< Df(x)v,Df(x)w >= |λ(x)| < v,w >,

for every v, w ∈ Rn. Here Df(x) denotes the Jacobian matrix of f at x.

From the definition above, we easily see that

Df(x)trDf(x) = |λ(x)|I.

Note that detDf(x)trDf(x) = (detDf(x))2 = |λ(x)|n, whence |λ(x)| = |detDf(x)|2/n.
The condition of conformality becomes equivalent to the following:

(2.2) Df(x)trDf(x) = |detDf(x)|2/nI.

The equation above is usually referred to as Cauchy-Riemann system.

Exercise. If n = 2, show that condition (2.2) is equivalent to the Cauchy-Riemann equa-
tions for f , viewed as a complex valued function, and for the conjugate of f . In other
words, conformal maps on domains of R2 coincide with holomorphic and anti-holomorphic
homeomorphisms.

Note that (2.2) is equivalent to ask that for every x ∈ U , the matrix Df(x) lies in the
conformal group

CO(n) = {A ∈ GL(n,R) : AtrA = λI, for some λ > 0}.

Using chain rule one sees that if f and g are conformal maps and if the image of g is
contained in the domain of f , then f ◦ g is conformal.

The main purpose of this lecture is to demonstrate the following theorem, whose first
version dates back to 1850. There exist several proofs of this result, in a variety of
smoothness assumptions. Here we give a proof that it is not in the classical literature and
that holds for C2 conformal maps. This approach is of interest because it generalizes to
wide contexts, the nature of which we shall discuss later.

We shall divide the proof into two steps and we focus mostly on the first one.

Theorem 2.3 Let f be a twice differentiable conformal map from a domain U ⊂ Rn into
Rn, with n ≥ 3. Then f is the restriction to U of a Möbius transformation.

Remark 2.4 Recall that Möbius transformations form a Lie transformation group gen-
erated by the following maps.
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• Translations: x 7→ x+ y.

• Rotations: x 7→ Ax, with A ∈ O(n).

• Dilations: x 7→ ax, for some a > 0.

• Inversion on the sphere: x 7→ R2 x−x0
‖x−x0‖2 + x0, with x0 ∈ Rn and R > 0.

It is an instructive exercise to verify that all the maps listed above are conformal, namely
that they satisfy (2.2). In particular, the first three preserve orientation, whereas inversion
on the sphere is orientation reversing.

By means of Bruhat decomposition of semisimple Lie groups one can also show that
the maps above form the Lie group

O(1, n+ 1) = {A ∈ GL(n+ 2,R) : AtrJA = J},

where

J =

1

−In+1

 .
Proof. We divide the proof into two steps. In the first part we show that 1-parameter
groups of C∞ conformal maps are in one-to-one correspondence with the Lie algebra

so(1, n+ 1) = {A ∈ gl(n+ 2,R) : AtrJ + JA = 0}.

In the second part we prove that if f is any twice differentiable conformal map, then it
coincides with the action of an element in O(1, n+ 1).

First part. We start with a 1-parameter group of C∞ conformal maps fixing the identity.
This means that ft ◦ fs = ft+s, f0 = id, and (2.2) holds for every x in U and for a
neighborhood of 0 in the time variable.
Consider the vector field defined as U(x) = d

dtft(x)|t=0 and write U(x) =
∑n

i=1 ui∂i, with

∂i = ∂
∂xi

, for every i = 1, . . . , n. We call conformal such a vector field. We differentiate
the left hand side of (2.2) to obtain

d

dt
Dft(x)trDft(x)|t=0 =

d

dt
Dft(x)tr|t=0 +

d

dt
Dft(x)|t=0(2.5)

= S(U)(x)tr + S(U)(x),

where S(U)(x) = ∂jui(x) is the Ahlfors operator. The right hand side of (2.2) yields

(2.6)

d

dt
|detDft(x)|2/n|t=0I =

2

n
|detDft(x)|2/n−1|t=0 ·

detDft(x)

|detDft(x)|
|t=0 ·

d

dt
detDft(x)|t=0I

=
2

n
trace(S(U)(x))I.
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Exercise. Prove that d
dtdetDft(x)|t=0 = trace(S(U)(x)).

By putting equal (2.5) and (2.6) we finally obtain

S(U)(x)tr + S(U)(x) =
2

n
trace(S(U)(x))I,

for every x ∈ U . In particular, S(U)(x) ∈ co(n), where

co(n) = {A ∈ gl(n,R) : Atr +A = λI, for some λ ∈ R}

is the Lie algebra of CO(n). This condition characterizes conformal vector fields, in terms
of a system of differential equations, that explicitly are

∂iuj = −∂jui ∂iui = ∂juj ,

with i, j = 1, . . . , n and i 6= j. Note that since {∂iuj(x)}ij ∈ co(n) for every x ∈ U , then
the higher order derivatives still do. Namely, {∂kjj1...jk−1

ui(x)}ij ∈ co(n), for every fixed
j1 . . . jk−1. We formalize these observations by means of the following definition. Set

hk = {T : Rn × · · · × Rn → Rn multilinear and symmetric such that(2.7)

∀v1, . . . , vk ∈ Rn, the map v 7→ T (v, v1, . . . , vk) is in co(n)}.

Notice that the map
(xj1, . . . , xjk+1) 7→ ∂k+1

xj1,...,xjk+1
ui(x)

is in hk for every x ∈ U . Moreover, the definition of hk is inductive. Indeed, (v1, . . . , vk) 7→
T (v, v1, . . . , vk) lies in hk−1 for every v ∈ Rn. In particular, if hj = {0} then hj+l = {0}
for every l ≥ 0. The space hk is called the k − th Singer and Sternberg prolongation of
co(n) (note that h0 = co(n)). If the sequence {hk}k≥0 is finite, then the space g = ⊕k≥0h

k

is a Lie algebra, and it is isomorphic to the space of conformal vector fields. Namely, if
x̄ ∈ U , we write the formal Taylor series at x̄ for the coefficients of U :

ui ∼x̄ ui(x̄) +

∞∑
k=1

1

k!

n∑
j1,...,jk=1

aij1,...,jk(xj1 − x̄j1) · · · (xjk − x̄jk),

for every i = 1, . . . , n and where we denoted aij1,...,jk = ∂kj1,...,jkui(x̄). Therefore, if the
prolongation sequence is finite, we conclude that the expansion above is a polynomial
for every i, and so the conformal vector fields vary in a finite dimensional space, whose
structure is defined by g.
Some linear algebra shows that g = h0 + h1 [4, page 9], because h2 = {0}. Furthermore,
g = so(1, n+ 1).

Remark 2.8 If n = 2, the prolongation is infinite. This reflects the fact that in R2 the
Liouville theorem is false. In fact, in R2 the Riemann mapping theorem holds, and it
represents the counterpart of Liouville’s. Roughly speaking, there are so many conformal
maps in R2 that every proper simply connected subset of the plane can be conformally
deformed to the unit disc.
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Second part. In the first part we showed that every conformal vector field defined on
a domain in Rn with n ≥ 3 is the restriction of a globally defined polynomial vector
field. The space of C∞ globally defined conformal vector fields, say Conf(Rn), is finite
dimensional and isomorphic to so(1, n+1). Let now f be a C2 conformal map. Normalizing
with translations, we may assume that f(0) = 0. For a vector field U ∈ Conf(Rn), we
claim that the push-forward f∗U is again a conformal vector field. Indeed, by definition
(f∗U)(x) = Df(f−1(x))U(f−1(x)). If U(x) = d

dtht(x)|t=0, then

(f∗U)(x) =
d

dt
(f ◦ ht ◦ f−1)(x)|t=0.

Since the composition of conformal maps is still conformal, the composition f ◦ ht ◦ f−1

defines a flow of conformal maps. Thus f∗U is a C1 conformal vector field. A standard
argument of mollification shows that f∗U is in fact C∞ and therefore lies in Conf(Rn).
Call τ : so(1, n+ 1)→ Conf(Rn) the isomorphism whose existence was established in the
first part. Then U lies in the image of τ and so does f∗U . Hence α := τ−1 ◦Df ◦ τ is an
automorphism of so(1, n+ 1). So f is uniquely determined as the solution of the system{

Df = τ ◦ α ◦ τ−1

f(0) = 0.

We conclude that f is defined by an element in Aut(so(1, n+ 1)) = O(1, n+ 1).

3 Conformal maps on Carnot groups

Let G be a stratified nilpotent Lie group with identity e. This means that its Lie algebra
g admits an s-step stratification

g = V1 ⊕ · · · ⊕ Vs,

where [Vj , V1] = Vj+1, for 1 ≤ j ≤ s, and with Vs 6= {0} and Vs+1 = {0}. To avoid
degeneracies, we assume g to have at least dimension two, which is reasonable to our
purposes.

Given a point p ∈ G we denote by lp the left translation by p. An element X in the
Lie algebra g can be considered as a tangent vector at the identity. Such a vector induces
the left invariant vector field that at a point p ∈ G is given by (lp)∗|e(X). This vector field
will still be denoted by X, unless confusion might arise. The set of all left invariant vector
fields with the bracket operation is isomorphic to g and it inherits the stratification of g.
The sub-bundle H ⊆ TG where Hp = (lp)∗|e(V1) is called the horizontal distribution. A
scalar product 〈 , 〉 on V1 defines a left invariant scalar product on each Hp by setting

〈v, w〉p = 〈(lp−1)∗|p(v), (lp−1)∗|p(w)〉(3.1)

for all v, w ∈ Hp. The left invariant scalar product gives rise to a left invariant sub-
Riemannian metric d on G. The Carathéodory-Chow-Rashevsky Theorem shows that
the bracket generating property implies that any two points in G can be joined by a
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horizontal path, i.e., an absolutely continuous path whose tangents belong to the horizontal
distribution. The sub-Riemannian metric is then defined by setting

d(p, q) := inf

∫ 1

0

√
〈γ̇(t), γ̇(t)〉γ(t)dt,

where the infimum is taken along all horizontal curves γ : [0, 1] → G such that γ(0) = p
and γ(1) = q. We call (G, d) a Carnot group. Notice that euclidean spaces are in particular
(abelian) Carnot groups.

Let now f be a diffeomorphism from an open and connected subset U of G into G.
Define DGf(p) = (l−1

f(p) ◦ f ◦ lp)∗e. We say that f is conformal if DGf(p)|V1 ∈ CO(m),
where m denotes the dimension of V1. This definition of conformality agrees with the one
we gave in the previous section in the euclidean setting. In the noncommutative case this
notion expresses the fact that the angle preserving property is asked only for curves that
remain tangent to the horizontal distribution. The following theorem holds.

Theorem 3.2 (A. Ottazzi, B. Warhurst [8]) The conformal maps defined on a domain
of a Carnot group G 6= R2 form a finite dimensional space.

Example 3.3 Let h = span{X,Y, Z} be the Lie algebra with nonzero bracket [X,Y ] = Z.
The connected and simply connected nilpotent Lie group that has h as Lie algebra is the
three dimensional Heisenberg group that we denote by H. Global coordinates on the group
are (x, y, z) = exp(xX + yY + zZ), and the noncommutative product of two points is

(x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z + z′ +
1

2
xy′ − 1

2
x′y).

A choice of a scalar product on V1 = span{X,Y } leads to the definition of a sub-
Riemannian metric, that in turn it allows us to define the conformal maps. The group
of conformal maps in this case is given by U(1, 2), whereas those that are orientation
preserving lie in SU(1, 2) (see [6]). We recall that

U(1, 2) = {A ∈ GL(3,C) : A∗JA = A},

where A∗ denotes the conjugate transpose of A. The group SU(1, 2) is the subgroup of
members of U(1, 2) of determinant 1.
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Università di Padova – Dipartimento di Matematica 121



Seminario Dottorato 2010/11

Large Deviations in Probability Theory

Markus Fischer (∗)

Abstract. In probability theory, the term large deviations refers to an asymptotic property of the
laws of families of random variables depending on a large deviations parameter. The aim of these
notes is to give an idea of the theory of large deviations, illustrating it by elementary examples as
well as in the context of a class of mean field models.

1 Introduction

Consider the following family of random experiments: Given n ∈ N, toss n identical coins
and count the number of coins that land heads up. Denote that (random) number by Sn.
Then Sn/n is the empirical mean, here equal to the empirical probability of getting heads.
What can be said about Sn/n for n large?

In order to make that question precise (and find answers), let us specify a mathematical
model for the coin tossing experiments. Let X1, X2, . . . be {0, 1}-valued independent
and identically distributed (i.i.d.) random variables defined on some probability space
(Ω,F ,P). In particular, any Xi has Bernoulli distribution with common parameter p

.
=

P(X1 = 1). Interpret Xi(ω) = 1 as saying that coin i at realization ω ∈ Ω lands head up.
Then Sn =

∑n
i=1Xi.

A first answer to the above question is given by the law of large numbers, which applies
in its strong and thus also weak version, stating that

Sn
n

n→∞−→ p with probability one / in probability.

In particular, by the weak law of large numbers, for all ε > 0,

P {Sn/n− p ≥ ε}
n→∞−→ 0.

We can obtain more information about the asymptotic behavior of those deviation prob-
abilities.

First notice that Sn has binomial distribution with parameters n, p, that is,

P {Sn = k} = n!
k!(n−k)!p

k(1− p)n−k, k ∈ {0, . . . , n}.

(∗)Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on 4 May 2011.
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By Stirling’s formula, asymptotically for large n,

P {Sn = k} '
√

2πnnne−n√
2πk kke−k

√
2π(n−k)(n−k)n−ke−(n−k)

pk(1− p)n−k.

Proceeding formally, if k ' nx for some x ∈ (0, 1), then

log P {Sn = k} ' −1

2
(log(2π) + log(x) + log(1−x) + log(n))

− nx log(xp )− n(1−x) log(1−x
1−p ),

1

n
log P {Sn = k} ' −

(
x log(xp ) + (1−x) log(1−x

1−p )
)
.

The expression x log(xp ) + (1−x) log(1−x
1−p ) gives the relative entropy of the Bernoulli

distribution with parameter x w.r.t. the Bernoulli distribution with parameter p, which is
minimal and zero iff x = p. The asymptotic equivalence

1

n
log P {Sn = k} ' −

(
x log(xp ) + (1−x) log(1−x

1−p )
)
, k ' nx,

shows that the probabilities of the events {Sn/n − p ≥ ε} converge to zero exponentially
fast with rate (up to arbitrary small corrections)

−
(

(p+ε) log(p+εp ) + (1−p−ε) log(1−p−ε
1−p )

)
,

which corresponds to x = p+ ε, the rate of slowest convergence. To be a bit more precise,
with δ > 0 small, rewrite the event {Sn/n− p ≥ ε} as

{Sn/n− p ≥ ε} = ∪∞k=1{Sn/n− p ∈ [ε+ (k−1)δ, ε+ kδ)}.

The exponential rate of decay of the probabilities P(Sn/n− p ≥ ε) as n→∞ is governed
by the rate of decay of P(Sn/n − p ∈ [ε, ε + δ)), the probabilities of the sub-events that
converge most slowly.

Events like {Sn/n − p ≥ ε} describe large deviations from the law of large numbers
limit, in contrast to the fluctuations captured by the central limit theorem, which says
here that

√
n(Sn/n− p) is asymptotically normal.

In Section 2 we collect basic definitions and results of the theory of large deviations,
while Section 3 contains a sketch of two classical theorems, named after Cramér and
Sanov, respectively, which deal with empirical means and empirical measures of i.i.d.
random variables. In Section 4, we present a large deviation analysis for a class of weakly
interacting (or mean field) systems. Most of the material of the first three sections and a
number of other important results and examples can be found in the survey article [10].
The coin tossing example and related models are extensively treated in the book [7]. A
standard reference on large deviations is the book [5], another the text [8]. An alternative
approach, based on the Laplace principle, is developed in [6]. Section 4 is based on our
joint work [2].

Università di Padova – Dipartimento di Matematica 123



Seminario Dottorato 2010/11

2 Basic definitions and results

Let (ξn)n∈N be a family of random variables with values in a Polish space S (i.e., a
topological space that allows for a complete and separable metric). Let I : S → [0,∞] be
a function with compact sublevel sets (i.e., {x ∈ S : I(x) ≤ c} compact for all c ∈ R).
Such a function is lower semicontinuous and is called a (good) rate function.

Definition 1 The family (ξn)n∈N satisfies a large deviation principle with rate function
I iff for all G ∈ B(S),

− inf
x∈G◦

I(x) ≤ lim inf
n→∞

1

n
log P {ξn ∈ G}

≤ lim sup
n→∞

1

n
log P {ξn ∈ G} ≤ − inf

x∈cl(G)
I(x),

where G◦ denotes the open interior and cl(G) the closure of G.

If infx∈G◦ I(x) = infx∈cl(G) I(x), then G is called an I-continuity set and

lim
n→∞

1

n
log P {ξn ∈ G} = − inf

x∈G
I(x)

.
= −I(G).

Notice the analogy with the portmanteau theorem, which characterizes weak conver-
gence of probability measures.

A large deviation principle is a distributional property. Writing Pn for the law of ξn,
the family (ξn) satisfies a large deviation principle with rate function I iff for all G ∈ B(S),

− inf
x∈G◦

I(x) ≤ lim inf
n→∞

1

n
log Pn(G) ≤ lim sup

n→∞

1

n
log Pn(G) ≤ − inf

x∈cl(G)
I(x).

A large deviation principle gives a rough description of the asymptotic behavior of the
probabilities of rare events: for all continuity sets G,

Pn(G) = e−n(I(G)+o(1)).

When a large deviation principle holds, it is sometimes possible to obtain sharper asymp-
totics of the form Pn(G) = e−nI(G)+o(1).

The (good) rate function of a large deviation principle is uniquely determined. If I is
the rate function of a large deviation principle, then infx∈S I(x) = 0 and I(x∗) = 0 for
some x∗ ∈ S. If I has a unique minimizer, then the large deviation principle implies a
corresponding law of large numbers.

A large deviation principle is transferred under continuous mappings (“contraction
principle”): Let Y be a Polish space and ψ : S → Y be a continuous function. If (ξn)
satisfies a large deviation principle with rate function I, then (ψ(ξn)) satisfies a large
deviation principle with (good) rate function J(y)

.
= infx∈ψ−1(y) I(x).

Returning to the coin tossing example, we have that ξn
.
= Sn/n, n ∈ N, satisfies a

large deviation principle in S .
= R (or S .

= [0, 1]) with rate function

I(x) =

{
x log(xp ) + (1−x) log(1−x

1−p ) if x ∈ [0, 1],

∞ otherwise.
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The function I is finite and continuous on [0, 1], and convex on R.

An alternative (and under mild hypotheses equivalent) characterization of large devi-
ations is the following.

Definition 2 The family (ξn) satisfies a Laplace principle with rate function I iff for all
F ∈ Cb(S),

lim
n→∞

− 1

n
log E [exp (−n · F (ξn))] = inf

x∈S
{I(x) + F (x)} .

In Definition 2 it is equivalent to require that for all F ∈ Cb(S),

lim
n→∞

1

n
log

∫
S

exp (n · F (x)) Pn(dx) = sup
x∈S
{F (x)− I(x)} .

If S = Rd and we take F (x) = θ · x (although such F is not bounded), then on the
right-hand side above we have the Legendre transform of I at θ ∈ Rd.

The name “Laplace principle” derives from the analogy with Laplace’s method :
limn→∞

1
n log

∫ 1
0 e

nf(x)dx = maxx∈[0,1] f(x) for all f ∈ C([0, 1]).
Laplace principle and large deviation principle are equivalent in the sense that a large

deviation principle holds if and only if a Laplace principle holds, and the rate function is
the same for both principles.

In Section 4, we will prove a Laplace principle starting from a variational representation
of the Laplace functionals. Let µ ∈ P(S). Then for all g : S → R bounded and measurable,

− log

∫
S

exp (−g(x))µ(dx) = inf
ν∈P(S)

{
R(ν‖µ) +

∫
S
g(x)ν(dx)

}
,

where R(.‖.) is relative entropy, that is,

R(ν‖µ) =

{∫
S log

(
dν
dµ(x)

)
ν(dx) if ν � µ,

∞ else.

The infimum in the variational formula is attained at ν∗ ∈ P(S) given by

dν∗

dµ
(x) =

exp (−g(x))∫
S exp (−g(y))µ(dy)

, x ∈ S.

3 Empirical means and empirical measures of i.i.d. systems

Let X1, X2, . . . be R-valued i.i.d. random variables with E[X1] = c. As in the case of coin
flipping, set Sn

.
=
∑n

i=1Xi and consider the asymptotic behavior of Sn/n, the empirical

mean of X1, . . . , Xn, n ∈ N. By the law of large numbers, Sn/n
n→∞−→ c with probability

one. Let φ be the moment generating function of X1, X2, . . ., that is,

φ(t)
.
= E

[
etX1

]
, t ∈ R.
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Theorem (Cramér) Assume that φ(t) is finite for all t ∈ R. Then (Sn/n)n∈N satisfies a
large deviation principle with rate function I given by

I(x)
.
= sup

t∈R
{t · x− log(φ(t))} .

The rate function I is the Legendre transform of log φ, the cumulant generating function
of the common distribution. If the Xi are {0, 1}-Bernoulli with parameter p, then φ(t) =
1 − p + p et and I(x) = x log(xp ) + (1 − x) log(1−x

1−p ) for x ∈ [0, 1] (+∞ outside [0, 1]). If

the Xi have normal distribution with mean 0 and variance σ2, then φ(t) = eσ
2t2/2, while

I(x) = x2/(2σ2).
Cramér’s theorem expresses the rate function I as the convex dual of the cumulant

generating function log φ. Both functions are convex, log φ is strictly convex, I is finite,
strictly convex and infinitely differentiable on the interior of its support, while I(x) =∞
for x /∈ [essinf X1, esssupX1]. Moreover, I(c) = 0 (cf. law of large numbers) , I ′(c) = 0
and I ′′(c) = 1/ var(X1) (cf. central limit theorem).

Sketch of proof for Cramér’s theorem. Assume that E[X1] = 0 and consider, for x > 0,
the probabilities of the events {Sn/n ≥ x}. By Markov’s inequality, for any t > 0,

P {Sn ≥ nx} = P
{
et Sn ≥ et n x

}
≤ e−t n x E

[
et Sn

]
= e−t n x(φ(t))n.

Since this inequality holds for any t > 0 and log(.) is non-decreasing, we obtain the upper
bound

lim sup
n→∞

1

n
log P {Sn/n ≥ x} ≤ − sup

t>0
{t x− log(φ(t))} ,

Now optimize over t > 0 in the inequality above (this actually yields the lower bound):
the optimal t = tx is determined by x = (log φ)′(tx), that is,

x =
φ′(tx)

φ(tx)
=

E
[
X1e

txX1
]

E [etxX1 ]
.

The parameter tx corresponds to a change of measure with exponential density. Under
the new measure, the random variable X1 has expected value x instead of zero. The rare
event becomes typical!

Cramér’s theorem gives a large deviation principle for the empirical means of i.i.d.
real-valued random variables. A related classical result is Sanov’s theorem, which gives
a large deviation principle for the empirical measures. Let S be a Polish space, and let
Y1, Y2, . . . be S-valued i.i.d. random variables on a probability space (Ω,F ,P) with common
distribution µ ∈ P(S). For n ∈ N let µn be the empirical measure of Y1, . . . , Yn, that is,

µn(ω)
.
=

1

n

n∑
i=1

δYi(ω), ω ∈ Ω,

where δy denotes the Dirac measure concentrated in y ∈ S.
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Theorem (Sanov) The family (µn)n∈N of P(S)-valued random variables satisfies a large
deviation principle with rate function I : P(S)→ [0,∞] given in terms of relative entropy
by

I(θ) = R (θ‖µ) .

Consider the particular case where S = {s1, . . . , sk} is finite. Then any µ ∈ P(S)
corresponds to a probability vector (p1, . . . , pk). The empirical measure µn is determined
by the observed frequencies of s1, . . . , sk in n trials, which have multinomial distribution:

P(n; f1, . . . , fk) =
n!

f1! · · · fk!
pf11 · · · p

fk
k .

An application of Stirling’s formula with fi ' nxi yields

log P(n; f1, . . . , fk) = −n

(
k∑
i=1

xi log(xipi )

)
+ o(n).

This reasoning can be made into a proof of Sanov’s theorem.
Still assuming that S is finite, let f : S → R be a function. Define the mapping

Ψ: P(S)→ R by Ψ(ν)
.
= ν(f) =

∑
s∈S f(s)ν(s). Then Ψ is continuous. Let X1, X2, . . . be

S-valued i.i.d. random variables with common distribution µ. Then by Sanov’s theorem
and the contraction principle, ( 1

n

∑n
i=1 f(Xi))n∈N satisfies a large deviation principle with

rate function
J(s) = inf

ν∈P(S):ν(f)=s
R (ν‖µ) .

The expression for the rate function J can be seen as an instance of the maximum entropy
principle (also known as Jaynes’s principle). If S is finite, the contraction principle allows
to derive Cramér’s theorem from Sanov’s theorem.

4 Large deviations for a class of mean field systems

For N ∈ N we are given a system of N weakly interacting particles. The evolution of
the state of particle i ∈ {1, . . . , N} is described in terms of the Itô stochastic differential
equation (SDE)

(1) dXi,N (t) = b
(
Xi,N (t), µN (t)

)
dt+ σ

(
Xi,N (t), µN (t)

)
dW i(t),

where W 1,W 2, . . . are independent standard Wiener processes and weak interaction is
through µN (t), the empirical measure at time t ∈ [0, T ]:

µN (t)
.
=

1

N

N∑
i=1

δXi,N (t), t ∈ [0, T ], µN
.
=

1

N

N∑
i=1

δXi,N .
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Example (Gradient systems for Brownian particles)

dXi,N (t) = −∇U
(
Xi,N (t)

)
dt− 1

N

N∑
j=1

∇1V
(
Xi,N (t), Xj,N (t)

)
dt+ dW i(t),

where U environment potential, V symmetric interaction potential with V (x, x) = 0.

Example (Stabilization through monotone dependence)

dXi,N (t) = b̂
(
Xi,N (t)

)
dt+ b̃

 1

N

N∑
j=1

Xj,N (t)

 dt+ σ
(
Xi,N (t)

)
dW i(t),

b̃ : R→ (−∞, 0] decreasing (component-wise monotonicity in d dimensions).

Our aim is to describe the asymptotic behavior of the N -particle systems as the number
of particles N tends to infinity in terms of a Laplace principle for the family (µN )N∈N.

It is well-known [9, for instance] that the empirical measures (µN )N∈N satisfy a law of
large numbers, that is, µN converges to µ as N tends to infinity, where µ is the law of the
“nonlinear diffusion”

(2) dX(t) = b
(
X(t),Law(X(t))

)
dt+ σ

(
X(t),Law(X(t))

)
dW (t),

thus µ(t) = Law(X(t)). The forward equation for µ (or the law of X) is the nonlinear
McKean-Vlasov equation

d

dt
µ(t) = L(µ(t))∗µ(t),

where L(µ(t))∗ is the formal adjoint of the infinitesimal generator L(µ(t)),

L(ν)(f)(x)
.
=
〈
b
(
x, ν
)
,∇f(x)

〉
+

1

2

d∑
j,k=1

(σσT)jk
(
x, ν
) ∂2f

∂xj∂xk
(x).

In [4], large deviations from the McKean-Vlasov limit for weakly interacting processes
of the form

dXi,N (t) = b
(
Xi,N (t), µN (t)

)
dt+ σ

(
Xi,N (t)

)
dW i(t)

are derived under mild regularity and general growth conditions and the assumption that
σσT be non-degenerate. The techniques include exponential probability bounds, a large
deviation principle (LDP) for independent time-inhomogeneous diffusions (freezing of µN ),
time discretization and projective limits (LDP from LDP for approximating systems), and
a martingale problem.

Here we establish a Laplace principle, using weak convergence and ideas from stochastic
optimal control. In order to establish a Laplace principle, we have to show that for all
F ∈ Cb(S),

lim
N→∞

− 1

N
log E

[
exp

(
−N · F (µN )

)]
= inf

x∈S
{I(x) + F (x)} ,
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where S = P(X ), the space of probability measures on the path space X .
= C([0, T ],Rd).

Recall from Section 2 the variational formula

− log

∫
S

exp (−g(x))µ(dx) = inf
ν∈P(S)

{
R(ν‖µ) +

∫
S
g(x)ν(dx)

}
,

which holds for all g bounded and measurable. This formula takes a less abstract form
in the context of Itô processes [1]. Let UN be the space of all square-integrable (Ft)-
predictable processes u : [0, T ]× Ω→ Rd0 with d0 = N · d1. Assume strong existence and
uniqueness for solutions to (1). Then for all F ∈ Cb(P(X )),

(3) − 1

N
ln E

[
exp

(
−N · F (µN )

)]
= inf

u∈UN
E

[
1

2N

N∑
i=1

∫ T

0
|ui(t)|2dt+ F (µ̄N )

]
,

where µ̄N = µ̄N,u is the empirical measure of X̄N = (X̄1,N , . . . , X̄N,N ) = X̄N,u, the
solution to the system of controlled SDEs

dX̄i,N (t) = b
(
X̄i,N (t), µ̄N (t)

)
dt+ σ

(
X̄i,N (t), µ̄N (t)

)
ui(t)dt

+ σ
(
X̄i,N (t), µ̄N (t)

)
dW i(t).

(4)

Thus we have a stochastic optimal control problem for each N ∈ N. Establishing a
Laplace principle now corresponds to showing convergence of control problems (essentially
Γ-convergence of associated cost functionals). This can be done using weak convergence
methods.

The law of large numbers suggests that weak limit points of (µ̄N ) should correspond
to the laws of solutions to the controlled limit SDE

dX̄(t) = b
(
X̄(t),Law(X̄(t))

)
dt+ σ

(
X̄(t),Law(X̄(t))

)
u(t)dt

+ σ
(
X̄(t),Law(X̄(t))

)
dW (t),

(5)

where W is a d1-dimensional standard Wiener process on some stochastic basis, u some
square-integrable predictable Rd1-valued control process.

Only weak solutions of Eq. (5) are needed. Weak solutions correspond to probability
measures on a canonical space. The canonical space here has three components, one
for the solution process, one for the control process and one for the Wiener process. A
technical difficulty arises with the space of control processes, which should be Polish.
Define the canonical space as Z .

= X ×R1 ×W, where X , W are path spaces and R1 the
space of deterministic relaxed controls on Rd1 × [0, T ] with finite first moments. With the
maximum norm topology on X , W, the topology of weak convergence plus convergence of
first moments on R1, all three spaces are Polish.

Let (X̄, ρ,W ) be the coordinate process on Z. Let Θ ∈ P(Z). Define

νΘ(t)
.
= Θ({(φ, r, w) ∈ Z : φ(t) ∈ B}), B ∈ B(Rd), t ∈ [0, T ].
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Then Θ corresponds to a weak solution of Eq. (5) if and only if W is a standard Wiener
process under Θ and, Θ-almost surely,

X̄(t) = X̄(0) +

∫ t

0
b
(
X̄(s), νΘ(s)

)
ds+

∫
Rd1×[0,t]

σ
(
X̄(s), νΘ(s)

)
y ρ(dy×ds)

+

∫ t

0
σ
(
X̄(s), νΘ(s)

)
dW (s).

Assume that for some ν0 ∈ P(Rd), 1
N

∑N
i=1 δxi,N → ν0 as N →∞. Assume continuity

of the coefficients b, σ, strong existence and uniqueness for the prelimit systems, uniqueness
for the limit system, as well as a mild stability condition.

Let P∞ be the set of all Θ ∈ P(Z) such that

(a)
∫
R1

∫
Rd1×[0,T ]|y|

2 r(dy×dt)ΘR(dr) <∞,

(b) ΘX ({φ ∈ X : φ(0) ∈ B}) = ν0(B), B ∈ B(Rd),

(c) Θ corresponds to a weak solution of Eq. (5).

Theorem 1 The family of empirical measures (µN )N∈N satisfies a Laplace principle with
rate function

I(θ) = inf
Θ∈P∞:ΘX=θ

1

2

∫
R

∫
Rd1×[0,T ]

|y|2 r(dy×dt)ΘR(dr), θ ∈ P(X ),

with the convention that inf ∅ =∞.

Ignoring the question of relaxed controls, the rate function I of Theorem 1 can be
written in terms of processes; for θ ∈ P(X ) such that θ(0) = ν0,

I(θ) = inf
u∈U :Law(X̄u)=θ

E

[
1

2

∫ T

0
|u(t)|2dt

]
,

where X̄u is a solution to Eq. (5) under some control process u such that Law(X̄u) = θ.
Thus X̄u = X̄u,θ solves

dX̄u(t) = b
(
X̄u(t), θ(t)

)
dt+ σ

(
X̄u(t), θ(t)

)
u(t)dt+ σ

(
X̄u(t), θ(t)

)
dW (t).

Sanov’s theorem and work on mean field models (e.g. [3]) suggest the following con-
nection with relative entropy:

I(θ) = R(θ‖Law(Xθ)),

where Xθ = X̄0,θ is the solution to

dXθ(t) = b
(
Xθ(t), θ(t)

)
dt+ σ

(
Xθ(t), θ(t)

)
dW (t).
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Proof of Theorem 1. The proof consists of two steps, establishing a lower bound and an
optimality upper bound, in analogy with Γ-convergence. As to the lower bound, show
that for any sequence (uN )N∈N with uN ∈ UN ,

lim inf
N→∞

{
1

2
E

[
1

N

N∑
i=1

∫ T

0
|uNi (t)|2dt

]
+ E

[
F (µ̄N )

]}

≥ inf
Θ∈P∞

{
1

2

∫
R

∫
Rd1×[0,T ]

|y|2 r(dy×dt)ΘR(dr) + F (ΘX )

}
.

For the upper bound (the optimality step), show that for any Θ ∈ P∞ there is a
sequence (uN )N∈N with uN ∈ UN such that

lim sup
N→∞

{
1

2
E

[
1

N

N∑
i=1

∫ T

0
|uNi (t)|2dt

]
+ E

[
F (µ̄N )

]}

≤ 1

2

∫
R

∫
Rd1×[0,T ]

|y|2 r(dy×dt)ΘR(dr) + F (ΘX ).

Let uN ∈ UN , N ∈ N, be a sequence of control processes. A difficulty stems from
the fact that the space of control processes depends on N . Define P(Z)-valued random
variables by

QNω (B ×R×D)
.
=

1

N

N∑
i=1

δX̄i,N (.,ω)(B) · δ
ρi,Nω

(R) · δW i(.,ω)(D),

B ∈ B(X ), R ∈ B(R1), D ∈ B(W), ω ∈ Ω. The functional occupation measures QN are
related to the variational representation by

1

2
E

[
1

N

N∑
i=1

∫ T

0
|uNi (t)|2dt

]
+ E

[
F (µ̄N )

]
=

∫
Ω

[∫
R1

(
1

2

∫
Rd1×[0,T ]

|y|2 r(dy×dt)

)
QNω,R(dr) + F (QNω,X )

]
P(dω).

A key step is to show that any weak limit point of (QN ) corresponds to a weak solution
of Eq. (5) with probability one.

Lemma Suppose (Qn) is a weakly convergent subsequence of (QN ). Let Q be a P(P(Z))-
valued random variable defined on some probability space (Ω̃, F̃ , P̃) such that Qn → Q in
distribution. Then Qω corresponds to a weak solution of Eq. (5) for P̃-almost all ω ∈ Ω̃.

The proof of the lemma uses a local martingale problem to show the solution property.
In the proof of the lower bound, we may assume that uN ∈ UN , N ∈ N, are such that

sup
N∈N

E

[
1

N

N∑
i=1

∫ T

0
|uNi (t)|2dt

]
≤ 2‖F‖.
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Let QN , N ∈ N, be the corresponding functional occupation measures. Thanks to the
bound on the control costs, (QN )N∈N is tight (precompact) as a family of P(Z)-valued
random variables (or as subset of P(P(Z))). Thanks to the lemma, all limit points of
(QN )N∈N are elements of P∞ (essentially weak solutions of Eq. (5) with probability one.
The lower bound is now a consequence of (a version of) Fatou’s lemma, the continuity of
F and weak convergence.

To show the upper bound, let Θ ∈ P∞. Then the coordinate process (X̄, ρ,W ) on
the canonical space solves Eq. (5) under Θ. Find a family of control processes for the
prelimit systems such that the corresponding occupation measures converge to Θ. To this
end, take a sequence (ρi,∞,W i,∞), i ∈ N, of i.i.d. copies of (ρ,W ). For each N , solve the
system of prelimit equations under (ρi,∞,W i,∞), i ∈ {1, . . . , N}. Define the corresponding
functional occupation measures Q̃N . Apply the same argument as before: (Q̃N ) is tight;
any limit random variable Q̃ on (Ω̃, F̃ , P̃) takes values in P∞ and, by construction and
Varadarajan’s theorem, for P̃-almost all ω ∈ Ω̃,

Q̃ω|B(R1×W) = Θ ◦ (ρ,W )−1.

By weak uniqueness, it follows that Q̃ω = Θ ◦ (X̄, ρ,W )−1 = Θ for P̃-almost all ω ∈ Ω̃.

Theorem 1 and its proof can be easily extended to more general weakly interacting
processes, in particular to delay systems. The N -particle prelimit model is given by a
system of N stochastic delay (or functional) differential equations

(6) dXi,N (t) = b
(
t,Xi,N , µN (t)

)
dt+ σ

(
t,Xi,N , µN (t)

)
dW i(t),

where b, σ are progressive functionals on [0, T ] × X × P(Rd). The corresponding uncon-
trolled limit equation is

(7) dX(t) = b
(
t,X,Law(X(t))

)
dt+ σ

(
t,X,Law(X(t))

)
dW (t).

Let Θ ∈ P(Z). Then Θ corresponds to a weak solution of the controlled analogue of
Eq. (7) if and only if W is a standard Wiener process under Θ and, Θ-almost surely,

X̄(t) = X̄(0) +

∫ t

0
b
(
s, X̄, νΘ(s)

)
ds+

∫
Rd1×[0,t]

σ
(
s, X̄, νΘ(s)

)
y ρ(dy×ds)

+

∫ t

0
σ
(
s, X̄, νΘ(s)

)
dW (s).

The Laplace principle for the empirical measures (µN ) is now completely analogous to
that of Theorem 1.
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A Viscosity approach to

Monge-Ampère type PDEs

Marco Cirant (∗)

1 Monge-Ampère type equations

A Monge-Ampère equation is a second order partial differential equation of the form

detD2u(x) = g(x, u,Du),

where g : X ×R×Rn → R, X ⊆ Rn (we denote with Du the gradient of u and with D2u
its hessian matrix). It belongs to the wide class of fully non-linear equations, because it is
non-linear with respect to second order derivatives uij : detD2u is a n-degree polynomial
of uij .

Monge-Ampère equations arise in many fields of mathematics; for example, transporta-
tion problems (or Monge-Kantorovich problems, concerning optimal transportation and
allocation of resources) can be reduced to the resolution of equations of that type.

Differential geometry is also an interesting source of non-linear equations, in particular
within the study of curvatures of surfaces. An extensive study has been carried out for
many years on curvatures, tools that measure how a surface bends; we will define the
notion of principal curvature and how Monge-Ampère type equations spring from related
problems.

Suppose we are given a continuous function u : Ω→ R, where Ω is a bounded domain
of Rn (throughout these notes we will use this convention, with X denoting any subset of
Rn instead). The graph of the function u defines a surface in Rn+1, given by the points
{(x, u(x)) ∈ Rn+1 : x ∈ Ω}.

Suppose now u is twice differentiable at some point x ∈ Ω. In the differential geometry
jargon, principal curvatures at point x are the eigenvalues of the shape operator (an
operator that computes in x the degree of bending at different directions): they are n
real numbers that describe quantitatively the shape of the surface at that point. We are
interested in an analytical equivalent definition:

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on 18 May 2011.
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Definition 1.1 The principal curvatures ki of the surface {(·, u(·))} ⊂ Rn+1 at some
point x ∈ Ω are(1)

ki(x) = λi

((
I − Du(x)⊗Du(x)

1 + |Du(x)|2

)
D2u(x)√

1 + |Du(x)|2

)
,

i = 1, ..., n.

Now, the so-called Gaussian curvature collects the informations carried by principal
curvatures:

K =

n∏
i=1

ki.

The gaussian curvature is an important quantity associated to the surface (it is actually
a function K : Ω→ R) because of its intrinsic nature. It can be computed explicitly:

K(x) = det

((
I − Du⊗Du

1 + |Du|2

)
D2u√

1 + |Du|2

)
=

detD2u(x)

(1 + |Du(x)|2)
n+2
2

.

Now, given a map K : Ω→ R, is it possible to find a surface defined by the graph of a
function u whose gaussian curvature is K(x) at every x ∈ Ω? If u satisfies

(1) detD2u(x) = K(x)(1 + |Du(x)|2)
n+2
2 ,

it will be a solution to the problem, an answer to our question. (1) is called the prescribed
gaussian curvature equation and, as we see, it is of Monge-Ampère type.

In these notes we will present a result of existence and uniqueness of solutions for a
simpler class of equations:

(2) detD2u(x) = f(x),

with no explicit dependance of the right hand side upon Du and f ≥ 0. We will implement
modern viscosity techniques in order to solve the associated Dirichlet problem: we will
find a solution u to (2), which satisfy also a boundary condition u|∂Ω = ϕ, where ϕ is a
given datum. We will generalize the machinery presented in [1] by Harvey and Lawson;
they produce a clever and elegant reformulation of the “classical” viscosity theory for fully
non-linear equations (the interested reader may check the famous User’s Guide [2] on this
subject).

Measure theory has been widely used to study (2) and the book [3] contains many
informations on that. Another interesting reference is the inspiring paper [4]; completely
different topological methods are implemented, based upon a-priori estimates on the hes-
sian of solutions.

(1)λi(A) is the i-th eigenvalue of the symmetric matrix A.
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2 The Dirichlet problem

We are not going to study directly the Dirichlet problem for the equation F (x,D2u) =
detD2u − f(x) = 0, but we will focus on its elliptic branches. This kind of “geometric”
approach is based upon ideas of Krylov ([5]); the simple triggering observation is that if
at some point x

D2u(x) ∈ {F (x, ·) = 0},

then at that point F (x,D2u(x)) = 0.
Let now f : X → [0,+∞) be a given function, pick the family of sets of symmetric

matrices(2)

(3) Θ(x) = {A ∈ P : detA ≥ f(x)} ∀x ∈ X.

We see that
D2u(x) ∈ ∂Θ(x)⇒ detD2u = f(x),

so (smooth) functions u satisfying the expression

D2u(x) ∈ ∂Θ(x)

at some point x will be solutions of F = 0. Our aim will be to study this new equation,
that is strictly linked to the original Monge-Ampère equation, and owns a particular so-
called elliptic structure, because Θ(x) + P ⊂ Θ(x). To be more precise (denoting with
℘(A) the powerset of A),

Definition 2.1 Let Θ : X → ℘(Sym2(Rn)). We say that

D2u(x) ∈ ∂Θ(x) ∀x ∈ X

is an elliptic branch defined by Θ on X and associated to the equation

F (x,D2u) = 0

if

(i) consistency: ∂Θ(x) ⊂ {A : F (x,A) = 0} ∀x ∈ X

(ii) positivity: Θ(x) + P ⊂ Θ(x) ∀x ∈ X

As we saw, the Monge-Ampère equation has (at least) one elliptic branch; from now
on we will discuss on elliptic branches in general, without referring to the equations they
are associated to. We will come back eventually to Monge-Ampère and to other particular
equations we are able to solve through elliptic branches.

If u is at least twice differentiable, D2u is well-defined and the expression D2u(x) ∈
∂Θ(x) has a precise meaning, so it is clear when u is a solution of the elliptic branch. When

(2)We will denote with Sym2(Rn) is the space of n× n real symmetric matrices and with P its subspace
of non-negative matrices.
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the problem we are dealing with is nonlinear, it is convenient to have at our disposal a
notion of solution in a weak sense, when u is no more twice differentiable(3). Harvey and
Lawson, in the spirit of viscosity theory, formulated such a notion suiting very well the
setting of elliptic branches. Let’s start with the definition of subsolution in the classical
sense (when second order derivatives exist).

Definition 2.2 Let u ∈ C2(Ω). u will be said a subsolution of D2u(x) ∈ ∂Θ(x) if

D2u(x) ∈ Θ(x) ∀x ∈ Ω

The key step is to define a dual branch whose subsolutions work as test functions for
subsolutions in weak sense.

Definition 2.3 Let D2u ∈ ∂Θ(x) be an elliptic branch defined by Θ on X. Its dual
elliptic branch is defined as D2u(x) ∈ ∂Θ̃(x), where

Θ̃(x) = −(Int Θ(x))c ∀x ∈ X

Subaffine functions play a major role in our weak setting; they are functions that
satisfy a maximum principle with respect to affine functions, and it is easy to show that
they satisfy also the standard maximum principle (supK u ≤ sup∂K for K ⊂⊂ Ω).

Definition 2.4 A function u ∈ USC(X) will be said subaffine in x ∈ X if there exists a
neighborhood Y of x such that for every compact K ⊂ Y and every affine function a,

u ≤ a on ∂K ⇒ u ≤ a on K.

The dual family of sets Θ̃(x) defining the dual branch enables a simple characterization
of subsolutions of D2u ∈ ∂Θ(x):

D2u(x) ∈ Θ(x)⇔ D2u(x) +B has at least one non-negative eig. ∀B ∈ Θ̃(x),

and it is easily proved that regular functions whose hessian has at least one non-negative
eigenvalue are subaffine. It is motivated and well-posed the

Definition 2.5 u ∈ USC(Ω) is a weak subsolution(4) of D2u ∈ ∂Θ(x) in Ω if for all x ∈ Ω

u+ v is subaffine in x

for all v ∈ C2(Ω) such that D2v(x) ∈ Θ̃(x).

u ∈ C(Ω) is a weak solution of D2u ∈ ∂Θ(x) in Ω if

(3)For example, u(x, y) = [max{(x2−1/2)+, (y2−1/2)+}]2 is a solution to detD2u = 0 almost everywhere
in the unitary disk of R2, and it is not everywhere twice differentiable

(4)USC(Ω) is the space of upper semicontinuous functions on Ω.
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• u is a subsolution of D2u ∈ ∂Θ(x),

• −u is a subsolution of D2u ∈ ∂Θ̃(x).

Albeit this definition of weak solution is a bit technical, it turns out to be very reason-
able, since we will be able to find a unique solution in this sense to the Dirichlet problem
for many non-linear equations; it must be also mentioned that this is actually equivalent
to the notion of viscosity solution ([2]).

As we briefly introduced the idea of weak solution, we move to discuss about sufficient
conditions for the solvability of Dirichlet problems. Continuity of the map Θ : x 7→ Θ(x)
which defines the branch is an important one:

Definition 2.6 An elliptic branch D2u ∈ ∂Θ(x) will be said continuous in X if Θ : X →
℘(Sym2(Rn)) is continuous, provided ℘(Sym2(Rn)) with the Hausdorff distance.

It is not known how far the theory can be pushed and how much the structural hy-
photeses on the elliptic branch can be relaxed, but continuity proves to be a natural one,
because it guarantees three important features of subsolutions (in weak sense) that we are
going to use in our main result:

Proposition 2.7 If D2u ∈ ∂Θ(x) is an elliptic branch, continuous in X, the following
properties of viscosity subsolutions hold:

• MAX: If u, v are subsolutions in X, then max{u, v} is a subsolution in X.

• SUP: The upper envelope supu∈F u of a family F of subsolutions in X is a subsolution
in X.

• QUASI-TRANSL: Suppose u is a subsolution in X, ū be its extension to Rn (ū =
−∞ on Rn \ X); then, for all ε > 0 there exists η > 0 such that(5) ūy + ε|x|2 is a
subsolution in X for all |y| < η.

Under the continuity assumption follows the existence and uniqueness of solutions to
the Dirichlet problem for elliptic branches.

Theorem 2.8 Let Ω ⊂ Rn be a smooth, bounded, strictly convex domain, and D2u ∈
∂Θ(x) be a continuous elliptic branch on Ω. Then, for each ϕ ∈ C(∂Ω) there exists a
unique u ∈ C(Ω) which is a solution of the branch and equals ϕ on ∂Ω.

On the side of existence, the theorem is relies upon the Perron method, which consists
in taking as a solution the upper envelope (the pointwise supremum) of a family of subso-
lutions; convexity of the boundary ensures that this solution equals the datum ϕ on ∂Ω.
As for uniqueness, a comparison principle is proved making use of tools from convex anal-
ysis (maximum principle of Slodkowski [6]) and sup-convolution approximation. These
are the keywords of the proof; we follow the scheme of [1] in the more general situation of
x-dependent branches.

(5)fy(x) = f(x+ y).
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As a corollary we have the solvability of the Dirichlet problem for the Monge-Ampère
equation (2).

Corollary 2.9 Let Ω ⊂ Rn be a smooth, bounded, strictly convex domain, and f ∈
C(Ω, [0,+∞)). Then, for each ϕ ∈ C(∂Ω) there exists a unique u ∈ C(Ω) satisfying
(weakly) {

detD2u(x) = f(x) Ω
u = ϕ ∂Ω.

Indeed, if the right hand side of the equation is continuous, the associated elliptic
branch defined by (3) is continuous and Theorem 2.8 is applied.

We notice that the solution u is a-posteriori convex; a theorem of Aleksandrov asserts
that a convex function is almost everywhere twice differentiable, so u is a solution to the
equation in the classical sense (D2u is well-defined in the usual way!) in Ω, at least outside
a null-measure set.

3 More general equations

Theorem 2.8 is an abstract result, meaning that it states existence and uniqueness of weak
solutions of a branch satisfying the hypotheses of ellipticity and continuity; it is not strictly
related to branches associated to Monge-Ampère type equations, so we may ask whether
it is applicable to other kinds of problems.

Non-totally degenerate elliptic equations, with x and D2u separated, is a wide class
that falls in our “domain of solvability”:

(4) F (D2u) = f(x).

Proposition 3.1 Suppose that

1. F ∈ C(Ω) is non-totally degenerate elliptic: ∃η > 0 s.t.

F (A+ rI) ≥ F (A) + ηr, ∀r > 0

2. f ∈ C(Ω).

Then the branch
D2u(x) ∈ ∂ΘF,f (x) ∀x ∈ Ω

defined in Ω by
ΘF,f (x) = {A ∈ Sym2(Rn) : F (A) ≥ f(x)}

is a continuous elliptic branch associated to the equation (4).

By Theorem 2.8 and Proposition 3.1 we have a general result concerning the Dirichlet
problem for (4):
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Theorem 3.2 Let Ω ⊂ Rn be a smooth, bounded, strictly convex domain. Then, for each
ϕ ∈ C(∂Ω) there exists a unique u ∈ C(Ω) satisfying (weakly){

F (D2u(x)) = f(x) Ω
u = ϕ ∂Ω.
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Identification of Reciprocal Processes

and related Matrix Extension Problem

Francesca Paola Carli (∗)

Abstract. Stationary reciprocal processes defined on a finite interval of the integer line can be
seen as a special class of Markov random fields restricted to one dimension. This kind of processes
are potentially useful for describing signals which naturally live in a finite region of the time
(or space) line. Non–stationary reciprocal processes have been extensively studied in the past
especially by Jamison, Krener, Levy and co–workers. The specialization of the non–stationary
theory to the stationary case, however, does not seem to have been pursued in sufficient depth in
the literature. Moreover, estimation and identification of reciprocal stochastic models starting from
observed data seems still to be an open problem. This note addresses these problems showing that
maximum likelihood identification of stationary reciprocal processes on the discrete circle leads
to a covariance extension problem for block–circulant covariance matrices. Covariane extension
problems have gained considerable attention in the past (think for example to the covariance
extension problem for stationary processes on the integer line, i.e. for Toeplitz matrices and to
general matrix extension problems introduced by A. P. Dempster). Neverthless, the band extension
problem for block–circulant matrices does not seem to have been addressed before. We show that
the maximum entropy principle leads to a complete solution of the problem. An efficient algorithm
for the computation of the maximum likelihood estimates is also provided. This note sketches the
results in [3], [4] and [2].

1 Notation and Preliminaries

Throughout this note, we work in the wide-sense setting of zero-mean random variables
which have finite second moment. Random variables which have finite second moment
are commonly called second order random variables. The set of real or complex-valued
second-order random variables defined on the same probability space, say H, is obviously
a linear vector space under the usual operations of sum and multiplication by real (or

(∗)Department of Information Engineering (DEI), University of Padova, via Gradenigo 6/B, 35131
Padova, Italy – E-mail: . Seminar held on 8 June 2011. This seminar is based
on joint works with A. Ferrante, T. T. Georgiou, M. Pavon, and G. Picci.
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complex) numbers. This vector space comes naturally equipped with an inner product

(1) 〈ξ, η〉 = E ξη

where E [ · ] denotes the mathematical expectation (i.e. the inner product is just the cor-
relation of the two random variables). It is well–known that H is complete with respect
to the norm associated with the inner product (1) and is therefore an Hilbert space. The
correspondence between probabilistic concepts depending only on second–order moments
and geometric operations on certain subspaces of the Hilbert space of finite variance ran-
dom variables was established by Kolmogorov in the early 1940’s and will be assumed
henceforth.

Following this correspondence, we say that two random vectors x = [x1, . . . , xn] and
y = [y1, . . . , yn] are orthogonal, which we shall write x ⊥ y, if they are componentwise
uncorrelated, i.e. if 〈xi, yi〉 = Exiyi = 0 for all i = 1, . . . , n. The symbol Ê [ · | · ] will denote
orthogonal projection (conditional expectation in the Gaussian case) onto the subspace
spanned by a family of finite variance random variables listed in the second argument.

The concept of conditional orthogonality plays a fundamental role in the definition of
reciprocal process.

Definition 1.1 Let X, Y and Z be subspaces of zero–mean second–order random variables
in a certain common ambient Hilbert space H. X and Y are said to be conditionally
orthogonal given Z, which we shall write as

X ⊥ Y | Z

if

(2)
(
x− Ê [ x | Z ]

)
⊥
(
y − Ê [ y | Z ]

)
, ∀x ∈ X, ∀y ∈ Y ,

i.e., conditional orthogonality is orthogonality after subtracting the projections on Z.

Conditional orthogonality is the same as conditional uncorrelatedness (and hence condi-
tional independence) in the Gaussian case. The intuitive meaning of conditional orthogo-
nality is captured by the following Lemma (see, e.g., [11]).

Lemma 1.1 X ⊥ Y | Z if and only if one of the following equivalent conditions holds

(i) Ê [x | Y ∨ Z] = Ê (x | Z), x ∈ X

(ii) Ê [y | X ∨ Z] = Ê (y | Z), y ∈ Y

where X ∨ Z (Y ∨ Z) denotes the smallest closed vector space containing X (Y) and Z.

When X, Y, Z are generated by finite dimensional random vectors, condition (2) can
equivalently be rewritten in terms of the generating vectors, which we shall normally do
in the following.
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2 Reciprocal Processes on the Discrete Circle

In this section reciprocal processes on the discrete circle are introduced.
Let n be a natural number such that N > 2n. This inequality will be assumed to

hold throughout. We introduce the notation y[t−n, t ) for the nm-dimensional random
vector obtained by stacking y(t − n), . . . ,y(t − 1) in that order. Similarly, y(t,t+n ] is
the vector obtained by stacking y(t+ 1), . . . ,y(t+ n) in that order. Likewise, the vector
y[t−n, t ] is obtained by appending y(t) as last block to y[t−n, t ), etc.. The sums t− k and
t + k are to be understood modulo N . Consider a subinterval (t1, t2 ) ⊂ [1, N ] where
(t1, t2 ) := {t | t1 < t < t2} and (t1, t2)c denotes the complementary set in [1, N ]. The
following definition does not require stationarity.

Definition 2.1 (Reciprocal process of order n) A process {y(t)} on ZN is reciprocal
of order n if, for any interval (t1, t2 ) ⊆ ZN

y(t1, t2 ) ⊥ y(t1−n, t2+n)c

∣∣∣ {y(t1−n, t1 ] ∨ y[t2, t2+n )

}
.

Equivalently (see Lemma 1.1), it must hold that

(3) Ê [ y(t1, t2) | y(s), s ∈ (t1, t2)c ] = Ê [ y(t1, t2) | y(t1−n, t1 ] ∨ y[t2, t2+n ) ] ,

for t1, t2 ∈ ZN .

This definition slightly generalized the definition in the literature (see [1, 12, 9 ,10]). In
fact, it is given in terms of conditionally orthogonality (instead of conditionally indepen-
dence). This allows us to deal with not necessarily Gaussian processes, the definition in
the literature following as a particularization since, for Gaussian processes, conditional or-
thogonality is the same as conditional independence. Moreover, in the spirit of the “higher
order models” introduced by Frezza (see [6]), we consider general reciprocal processes of
order n, standard reciprocal processes in the literature following as a particularization for
n = 1.

Let y be a stationary reciprocal processes on the discrete circle with positive definite
covariance matrix (i.e. y is a nonsingular process). The following representation result
holds [3].

Theorem 2.1 (Modeling of stationary reciprocal processes of order n) A non-
singular stationary process y taking values in Rm is reciprocal of order n on ZN if and
only if it satisfies a linear, constant-coefficients difference equation of the type

(4)
n∑

k=−n
Mk y(t− k) = e(t) , t ∈ ZN

where the Mk’s are m×m matrices, M−k = M>k , k = 1, . . . , n, and e(t), besides satisfying
the orthogonality property

Ey e> = IN ,
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is a stationary locally correlated process with covariance matrix

Var {e} := MN =



M0 M>1 . . . M>n 0 . . . 0 Mn . . . M1

M1 M0 M>1
. . . M>n 0 0

. . .
...

...
. . .

. . .
. . .

. . . Mn

Mn . . . M1 M0 M>1 . . . M>n
. . . 0

0 Mn . . . M0 . . . M>n
. . .

...
...

. . .
. . .

. . .
. . . 0

0 M>n

M>n
. . .

...
...

. . .
. . .

. . .
. . .

. . . M>1
M>1 . . . M>n 0 . . . 0 Mn . . . M1 M0


i.e. MN is a symmetric block-circulant matrix banded of bandwidth n with the model
parameters {Mk} as block–entries.

An important characterization of stationary reciprocal processes on ZN is the following.

Theorem 2.2 (Characterization of Reciprocal Processes) The mN ×mN nonsin-
gular matrix ΣN is the covariance matrix of a m–dimensional reciprocal process of order
n on ZN if and only if Σ−1

N is a positive-definite symmetric block–circulant matrix banded
of bandwidth n.

3 Maximum likelihood Identification of Reciprocal Processes

Assume that T independent realizations of one period of the process y are available and
let us denote by

y :=
[
y(1) . . . y(T )

]
the collection of these T realizations. The problem we are interested in solving is the
following.

Problem 3.1 (Identification Problem) Given the observations y of a reciprocal process
y of (known)order n, estimate the parameters {Mk} of the underlying reciprocal model (4).

To solve this problem we set up the Gaussian log-likelihood (this does not require to
assume that y has a Gaussian distribution, see [8, p. 112])

L(M0, . . . ,Mn) = −T
2

log det M−1
N −

1

2
tr(MNy y

>)

where Σ̄N is the sample covariance Σ̄N = 1
T y y

>.
It can be shown [3] that Problem 3.1 is equivalent to the following matrix completion

problem, which, from now on, will be referred to as the block-circulant band extension
problem.
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Problem 3.2 (Block-Circulant Band Extension Problem) Given n+ 1 initial data
m×m matrices Σ0, . . . , Σn, arranged in a way consistent with a symmetric block circulant
structure, i.e. given the partially specified block–circulant matrix

Σ0 Σ>1 . . . Σ>n ? . . . ? Σn . . . Σ1

Σ1 Σ0 Σ>1
. . . Σ>n ? ?

. . .
...

...
. . .

. . .
. . .

. . . Σn

Σn . . . Σ1 Σ0 Σ>1 . . . Σ>n
. . . ?

? Σn . . . Σ0 . . . Σ>n
. . .

...
...

. . .
. . .

. . .
. . . ?

? Σ>n

Σ>n
. . .

...
...

. . .
. . .

. . .
. . .

. . . Σ>1
Σ>1 . . . Σ>n ? . . . ? Σn . . . Σ1 Σ0


complete it in such a way to form a positive definite symmetric block-circulant matrix ΣN

with a (block-circulant) banded inverse of bandwidth n.

This problem recalls the covariance selection problem introduced by A. P. Dempster
[5] and studied by many authors (see e.g. [7], [13] and references therein). It reads as
follows.

Problem 3.3 (Covariance Selection Problem - Dempster) Given a partially speci-
fied symmetric matrix, find a completion ΣN which agrees with the partially specified one
in the given positions, is symmetric positive definite and such that its inverse has zeros in
the complementary positions of those assigned.

At a first sight our problem seems to be a particular instance of the Dempster problem
where the given entries lie on the main diagonals and on the NE and SW corners. Notice,
however, that the linear constraint that forces the completed matrix to be circulant is not
present in the Dempster’s setting. Neverthless, a key observation in the Dempster’s work
is the following.

Proposition 3.1 (Dempster) Assume that Problem 3.3 is feasibile. Among all the
positive definite extensions, there exists a unique one whose inverse’s entries are zero in
all the positions complementary to those where the elements of the covariance are assigned.
This extension corresponds to the Gaussian distribution with maximum entropy.

Inspired by this maximum entropy principle, we switch to consider the following prob-
lem. Let UN denote the block-circulant “shift” matrix with N ×N blocks,

UN =


0 Im 0 . . . 0
0 0 Im . . . 0
...

...
. . .

...
0 0 0 . . . Im
Im 0 0 . . . 0

 .
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Clearly, U>NUN = UNU>N = ImN , i.e. UN is orthogonal. Recall that a matrix CN with
N ×N blocks is block-circulant if and only if it commutes with UN , namely if and only
if it satisfies

(5) U>NCNUN = CN .

Moreover, let SN denote the vector space of symmetric matrices with N×N square blocks
of dimension m×m and Tn ∈ Sn+1 the Toeplitz matrix of boundary data

(6) Tn =



Σ0 Σ>1 . . . . . . Σ>n

Σ1 Σ0 Σ>1
...

...
. . .

. . .
. . .

...
...

. . .
. . . Σ>1

Σn . . . . . . Σ1 Σ0


,

while En denotes the N × (n+ 1) block matrix

En =


Im 0 . . . 0
0 Im 0
...

. . .
...

0 . . . . . . Im
0 . . . 0

 .

Recall that the differential entropy H(p) of a probability distribution with density p on
Rn is defined by

(7) H(p) = −
∫
Rn

log(p(x))p(x)dx.

In the case of a zero-mean Gaussian distribution p with covariance matrix ΣN , we get

(8) H(p) =
1

2
log(det ΣN ) +

1

2
n (1 + log(2π)) .

The problem we are interested in is the following.

Problem 3.4 (Maximum entropy band extension problem for block-circulant
matrices (CMaxEnt))

max {log det ΣN | ΣN ∈ SN , ΣN > 0}(9.a)

subject to :

E>n ΣNEn = Tn,(9.b)

U>NΣNUN = ΣN .(9.c)
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Problem 3.4 amounts to finding the maximum entropy Gaussian distribution with a
block-circulant covariance whose first n+ 1 blocks are precisely Σ0, . . . ,Σn. Notice that in
this problem we are minimizing a strictly convex function on the intersection of a convex
cone (minus the zero matrix) with a linear manifold. Hence, we are dealing with a convex
optimization problem. Moreover, we are not imposing that the inverse of the solution ΣN

of Problem 3.4 should have a banded structure. We shall see that, whenever solutions
exist, this property will be automatically guaranteed, i.e. Problem 3.4 solves our original
Problem 3.1.

3.1 The Maximum Entropy Problem for Block–Circulant Covariance Matrices

The first question to be addressed is feasibility of Problem 3.4, namely the existence of a
positive definite, symmetric matrix ΣN satisfying (9.b)-(9.c). The following result can be
established. We refer the reader to [3] and [4] for the proofs, as well as for a discussion
and further details about the statements in this Section.

Theorem 3.1 (Feasibility) Given the sequence Σi ∈ Rm×m, i = 0, 1, . . . , n, such that

(10) Tn = T>n > 0,

1. there exists N̄ such that for N ≥ N̄ , the matrix Tn can be extended to an N × N
block-circulant, positive-definite symmetric matrix ΣN .

2. The set of all positive definite block-circulant completions of ΣN is delimited by the
intersection of the m-order surfaces defined by the positive semidefiniteness of the
matrices

c(e−j
2π
N
`) =

N−1∑
k=0

Σke
−j 2π

N
`k, for ` = 0, 1, . . . , N − 1.

Our main result is as follows.

Theorem 3.2 (Existence and Uniqueness – Bandedness property) Let ΣN be
a partially positive definite block–circulant matrix that admits a positive definite block–
circulant completion, then the CMaxEnt 3.4 admits a unique solution whose inverse is a
block-circulant matrix banded of bandwidth n.

This is the result we hoped for since it shows that the solution of the CMaxEnt in fact
solves our original maximum likelihood identification problem 3.1. Moreover, this result,
together with the uniqueness property of the solution of the Dempster problem, allows
us to conclude that the solution of the CMaxEnt and of the covariance selection problem
with circulant data (namely with data consistent with the circulant structure) coincide.
Indeed it can be shown [4] that this equivalence holds true in general, i.e for any number
of missing block-bands as well as arbitrary missing elements in a block-circulant structure.
This generalization is based on an alternative approach to the proof, which relies on the
observation that circulant and block-circulant matrices are stable points of a certain group.
We refer the reader to [4] for further details on this.
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Finally, we anticipate that the results of this Section lead to an efficient iterative al-
gorithm for the solution of the CMaxEnt which is guaranteed to converge to a unique
minimum (see [2]). The proposed algorithm compares very favorably with the best tech-
niques available so far. This solves the circulant band extension problem and hence the
maximum likelihood identification of reciprocal processes.
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On the essential dimension of groups

Dajano Tossici (∗)

1 Introduction

In these notes we give an introduction to some aspects of the theory of essential dimension
of groups. This notion, even if already known in particular cases already at the end
of the nineteenth century, has been introduced in 1997 by Buhler and Reichstein [2].
Roughly speaking the essential dimension of a finite group G over a field k is the number
of parameters to describe all the Galois extension E/F with Galois group G and containing
k. In the present paper we mainly concentrate to the case of finite groups but however this
notion can be generalized also to algebraic groups or more generally to group schemes: we
will say something about this in the last section. Moreover the essential dimension can
be used also in much more general contexts. We suggest [1] and [8] as an overview about
essential dimension. The present notes are not at all exhaustive but they want just to give
an idea of problems and results studied in the field of essential dimension of groups.

In the next section we give an historical motivation to study essential dimension. In
the Section §3 we explain the problem in a more modern language. In the Sections §4, 5,
6 we collect some main results and main problems in characteristic zero. In §7 we deal
with essential dimension of finite groups in positive characteristic. Finally, in the last
section, we report the main results of [9] on essential dimension of group schemes. There
will be a stylistic gap respect to the previous sections. Indeed in that section we will not
give the precise definitions, which would require much time, but we will just report some
statements of [9].

2 Classical problem

One of the main problems for mathematicians of the nineteenth century was the problem
of finding a formula for the roots of a polynomial of fixed degree, using only radicals and
the usual algebraic operations. Before the work of Galois, which gave a negative answer
to this problem when the degree is at least 5, one of the main strategies consisted in
simplifying the generic polynomial.

(∗)Università Milano-Bicocca, Milano (Italy). E-mail: . Seminar held on 15
June 2011.
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Let k be a field of characteristic 0 end let n be a positive integer. Let us consider the
generic polynomial of degree n

p(x) = xn + an−1x
n−1 + · · ·+ a0

where ai are variables. Using a (non-degenerate) transformation

y = αn−1x
n−1 + · · ·+ α0,

with αi ∈ k(a0, . . . , an−1) for i = 0, . . . , n, one obtains another polynomial

q(y) = yn + bn−1y
n−1 + · · ·+ b0.

with possibly less parameters algebraically independent over k.

Problem 2.1 Find the minimal number of parameters needed to define the generic poly-
nomial of degree n.

Example 2.2

(1) If n = 2, let us consider the transformation y = x + a1
2 , then we obtain q(y) =

y2 +
a21
4 + a0. If we set b0 :=

a21
4 + a0 then we have q(y) = y2 + b0. So we have reduced

the number of parameters in the general polynomial to one parameter.

(2) Using a transformation y = x + a2
3 one can reduce, as above, the general polynomial

to a polynomial of type q(y) = y3 + b1y + b0 with b0, b1 ∈ k(a0, a1, a2). With the

transformation z = b1
b0
y we obtain the polynomial r(z) = z3 +

b31
b20
z +

b31
b20

. So, if we set

c0 = c1 =
b31
b20

, we obtain z3 + c0z + c0. We have again one parameter.

(3) If n = 4, using a similar argument as above, one can reduce to a polynomial r(z) =
z4 + c2z

2 + c0z+ c0. This polynomial depends on two variables. We will see later that
in fact one can not do better.

We finish the section with the following definition

Example 2.3 We call dk(n) the minimal number of parameters required to define the
generic polynomial of degree n.

In the next section we will give the above definition in a more modern language. It
follows from the examples above that dk(2) = dk(3) = 1 and dk(4) ≤ 2.

3 Formalization of the classical problem

For the next sections, until it will not be specified, k is a field of characteristic 0. Let E/F
an extension field, containing k, of degree n. We say that E/F is defined over a field F0 if
F0 contains k and there exists an extension field E0/F0 of degree n such that E0F = E.
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It is well known that, since k is of characteristic 0 any extension field E/F (necessarily
separable) is obtained adjoining an element α ∈ F to E. So E = F [x]/(p(x)) where p(x) is
the minimal polynomial of α, i.e. the polynomial with minimal degree (hence irreducible)
which has as root α. So, to say that F is defined over F0, means that there exists an
element β ∈ F such that F = E(β) and the minimal polynomial of β has coefficients in
F0.

Definition 3.1 Let E/F be an extension fields as above. We call essential dimension of
E/F , and we denote it by edk(E/F ) the integer

min{trdegkF0 such that E/F is defined over F0}.

We recall that if k⊆F0 then trdegkF0, the transcendence degree of F0 over k, is the
maximal cardinality of a subset of F0 which consists by elements which do not satisfy any
non-trivial polynomial equation with coefficients in k.

Now let En = k(a1, . . . , an), p(x) the generic polynomial of degree n as in the previous
section and Fn the field En[x]/(p(x)). Then it follows, from what said before the definition
and in the previous section, that

dk(n) = edk(Fn/En).

Since any extension field of degree can be obtained by specialization by the generic
extension M/L one can easily prove that

dk(n) = max{edk(E/F ) such that the degree of E/F is n}

Now let G be a finite group. And let us suppose that E/F is a Galois extension with
Galois group G. One can prove that if E/F comes from an extension E0/F0 with F0

subfield of F then there exists a subfield F ′0 of F , with same trascendence degree of F0

over k, such that E/F comes from a Galois extension E′0/F
′
0 with Galois group G (see [2,

Lemma 2.2]).
So we arrive to the following definition.

Definition 3.2 Let G be a finite group. Then we define

edkG := sup{edkE/F such that E/F is Galois with Galois group G}.

One can in fact prove that above supremum is in fact a maximum.
The above definition is different from that one given in [2, Theorem 3.1 (b)]. The

equivalence is essentially proved in [2, Theorem 3.1 (c)].

Remark 3.3 We have that
edk(n) = edkSn,

Università di Padova – Dipartimento di Matematica 151



Seminario Dottorato 2010/11

where Sn is the symmetric group on a set of n elements. The idea to prove this is to consider
the Galois closure Gn of the extension En/Fn above. One proves that the extension Gn/Fn
has Galois group Sn and its essential dimension is the same of En/Fn and of Sn (see [2,
Corollary 4.2]).

So, for the rest of the notes we will study the essential dimension of groups.

4 Essential dimension of abelian groups over a field with enough root
of unity

We begin with the simplest nontrivial example. Let us suppose that the field k contains
a primitive n-th root of unity. And let us consider the cyclic group Z/nZ. If k⊆F , it is
well known, by Kummer Theory, that any extension field E/F is obtained adjoining the
n-th root of an element of f ∈ E which is not a n-th power in E, i.e. E = F [x]/(xn − f).
So E is defined over k(f). This means that edkZ/nZ ≤ 1. On the other hand considering
as F the field k(t) of rational funcrions in one variable and f = t we have that edkZ/nZ
is exactly 1.

In the above example it is crucial the hypothesis on the existence of the n-th root of
unity. We will see later what happens when this hypothesis is not satisfied. We now recall
the following results.

Lemma 4.1

(1) If k ∈ k′ then edkG ≤ edk′G

(2) If H is a subgroup of G then edkH ≤ edkG.

(3) If G = G1 ×G2 then edkG ≤ edkG1 + edkG2.

Proof. All the assertions are easy to prove. The first one is proved, in a more general
context, in [1, Proposition 1.5]. The last two are proved in [2, Lemma 4.1].

Example 4.2 It is easy to find examples where there is no equality in the third statement
of the above lemma. Let n,m two positive integer numbers coprime and let us suppose
that k contains a primitive mn-th root of unity. Then let us consider G = Z/nZ×Z/mZ.
Since m and n are coprime then G ' Z/mnZ. From what said at the beginning of the
section we have edkG = 1 which is smaller than edkZ/nZ+ edkZ/mZ = 2.

But there are some cases when one has the equality. For instance there is the following
result.

Theorem 4.3 Let p be a prime number and let us suppose that k contains a primitive
p-th of unity. Let G = H × Z/pZ and let us suppose that the center of H is a p-group.
Then

edkG = edkH + 1.
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Proof. See [2, Corollary 5.5].

Using this result one can, for instance, compute the essential dimension of abelian
groups if the base field contains enough roots of unity.

Corollary 4.4 Let G be an abelian group of order n and let us suppose that k contains
a primitive n-th root of unity. Then

edkG = r,

where r is the rank G and it is equal to minimal number of generator of G.

Proof. By definition of rank it follows immediately that G ' Z/m1Z × · · · × Z/mrZ.
Therefore from Lemma 4.1 (3) it follows that edkG ≤ r. On the other hand it follows
quite easily by the defintion of the rank of a group that there exist a prime number p
such that G contains a subgroup isomorphic to (Z/pZ)r. By Theorem 4.3 we have that
edk(Z/pZ)r = r. So by Lemma 4.1 (2) it follows edkG ≥ r and we are done.

5 Essential dimension of symmetric group Sn

In this section we come back to the initial question, i.e. to the computation of dk(n) which,
as we have seen, is equal to the essential dimension of the symmetric group on a set of
n elements. We begin to report some results due to Buhler and Reichstein [2]. Some of
them follows by the results recalled in the previous section.

Theorem 5.1 Let n be a positive integer. The following assertion are true.

(1) edkSn ≤ edk(Sn+1).

(2) edkSn + 1 ≤ edkSn+2.

(3) edkSn ≥ [n/2].

(4) If n ≥ 5 the edkSn ≤ n− 3.

Proof. (1) We observe that Sn+1 contains a subgroup isomorphic to Sn, i.e. the group
which fix the first element of the set with n elements. Then the assertion follows from
Lemma 4.1 (2).

(2) This follows, as above, from the fact that Sn+2 has a subgroup isomorphic to Sn×Z/2Z,
i.e. the direct product of the subgroup which fix the first two elements and the
subgroup generated by the transposition which permutes the first two elements and
fix all other elements.

(3) We proceed as above remarking that Sn contains a subgroup isomorphic to (Z/2Z)[n/2],
which has essential dimension [n/2] by Corollary 4.4. This subgroup is given by
the direct product of the subgroups generated by the transposition (2k−1 2k), for
k = 1, . . . , [n/2]. One could prove this result also reasoning by induction using the
part (2).
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(4) This is proved in [2, Theorem 6.5 (c)].

As an immediate corollary one obtains the computation of the essential dimension of
Sn for small n.

Corollary 5.2 We have

• edkS2 = edkS3 = 1;

• edkS4 = edkS5 = 2;

• edkS6 = 3.

We already proved the first assertion in the second section. The essential dimension
of S4 and S5 was already known (using different terminology) by Klein and Hermite.

From the above theorem follows that edkS7 is equal to 3 or to 4.

Theorem 5.3 The essential dimension of S7 is 4.

Proof. See [4].

6 Essential dimension of cyclic groups

In this section we recall some results about the essential dimension of cyclic groups in the
case the base field does not contain enough root of unity. The main result is the following.

Theorem 6.1 Let p be a prime number and let us suppose that k contains a primitive
root of unity. Then

edk(Z/pnZ) = [k(ζpn) : k]

where ζpn is a primitive pn-th root of unity.

Proof. The first proof of this result is due to Florence ([5, Theorem 4.1]). The above
result is also a particular case of a more general result of Karpenko and Merkurjev ([6,
Theorem 4.1]) in which they prove that the essential dimension of a p-group G is the
minimal dimension of a faithful representation of G. And in the case of G = Z/pnZ the
faithful representation with minimal dimension is given by the k-vector space k(ζpn) with
the natural action of Z/pnZ.

If one removes the hypothesis on the p-th root of unity the result is not known. However
by the result above and by Lemma 4.1 (1) it follows that, for any k, the essential dimension
of Z/pnZ over k is at least [k(ζpn) : k]. For instance there is the following open problem.

Problem 6.2 Compute the essential dimension of Z/pnZ over Q.

We remark that edQZ/2nZ = 2n−1. This follows from the above theorem, since the
2-nd root of unity is −1 which is always in k. Moreover also edQZ/3nZ is known and it is
equal to 3n−1 (see [5, Corollary 4.2]).
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7 Essential dimension in positive characteristic

We will now consider a field k of characteristic p > 0. The definition of essential dimension
of a finite groups given in the case of characteristic zero works in fact in general. And all
the results of the previous sections work if p do not divide the order of the group. In this
section we will consider the case of p-groups in positive characteristic.

The simplest case to compute is the essential dimension of Z/pZ. It is well known,
using Artin-Schreier Theory, that in positive characteristic if E/F is a Galois extension
with Galois group Z/pZ then

E = F [x]/(xp − x− f),

with f ∈ E and such that it is not of the form gp − g with g ∈ E. This implies that
edk(Z/pZ) = 1.

Using Artin-Schreier-Witt Theory one shows, more generally, that in positive charac-
teristic one can describe any Galois extension with Galois group Z/pnZ using at most n
parameters. This shows that edkZ/pnZ ≤ n. And one has the following conjecture due to
Ledet.

Conjecture 7.1 The essential dimension of Z/pnZ over k is n.

The above conjecture is true for n = 2 (see [7, p. 7]) but it is completely open for
n > 2.

The opposite case to study is the case of abelian elementary p-groups. If the cardinality
of k is at least pn then

edk(Z/pZ)n = 1.

Indeed one can shows, generalizing Artin-Schreier Theory, that, under the hypothesis on
the field, if E/F is a Galois extension with Galois group (Z/pZ)n then E = F [x]/(xp

n −
x− f) for some f ∈ F which is not of the form gp

n − g with g ∈ F .
More generally one can compute, conjecturally, the essential dimension of any abelian

p-group. Let G = (Z/pn1Z)r1 × · · · × (Z/pnkZ)rk with n1 > n2 > · · · > nk. By Lemma
4.1 (2) we have edkG ≥ edk(Z/pn1Z)r1 . Moreover G⊆(Z/pn1Z)r1+···+rk , therefore we
also have edkG ≤ edk(Z/pn1Z)r1+···+rk . But, generalizing the above argument, one can
prove that, if the cardinality of k is at least pn, then edk(Z/pr1Z)n = edk(Z/pr1Z). So
edkG = edk(Z/pr1Z), which conjecturally is r1.

So one can see that this result is completely orthogonal to the result for abelian groups
(with enough roots of unity on the base field) in characteristic zero, where the essential
dimension is the rank of the group.

8 Essential dimension of group schemes

In this last section we briefly recall some results obtained by the author in collaboration
with Vistoli [9]. We will consider in this section the essential dimension of affine group
schemes of finite type over a field. Such an object is the zero locus of polynomials in
some affine spaces over a field with some group structure. Important particular cases are
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algebraic groups, i.e. groups with a structure of algebraic variety. Group schemes are not
in general groups but they behave like them. It is known that in characteristic zero all
group schemes are smooth over k, while in positive characteristic one can have non-smooth
group schemes.

One can define the notion of essential dimension also for group schemes. Roughly
speaking, the essential dimension of a group schemes is the number of parameters needed
to define G-torsors. The notion of G-torsor is the equivalent, in algebraic geometry, of
what is called, in other contexts, principal homogenous space. And it also generalizes
the notion of Galois extensions of fields to inseparable extensions. We stress that this
definition works also for group schemes of positive dimension, so not necessarily finite. We
will not give here the precise definitions, which could be found in [9].

In the work with Vistoli we give two general bounds for essential dimension of group
schemes.

Theorem 8.1 Let G be an affine group scheme of finite type over a field k of characteristic
p ≥ 0. Then

edkG ≥ dimk LieG− dimG .

Proof. See [9, Theorem 1].

In fact it is not necessary that G is affine. In the above inequality, the term on the right
measures how much the group scheme G is non-smooth: indeed, by definition, it is zero if
and only if G is smooth. So the above bound is really interesting in positive characteristic
for non-smooth group schemes. And we also remark that there exist non-smooth group
schemes of dimension 0.

We also have a fairly general upper bound. Let us recall the definition of a trigonaliz-
able group scheme.

Definition 8.2 Let G be an affine group scheme of finite type over a field k. We say
that G is trigonalizable if it is a subgroup scheme of the group scheme of invertible upper
triangular n× n matrices over k, for some n.

We observe that any affine commutative group scheme fo finite type over an alge-
braically closed field is trigonalizable (see [3, IV, §3, 1.1]).

Theorem 8.3 Let G be a finite trigonalizable group scheme over a field of characteristic
p > 0, of order pn. Then edkG ≤ n.

The particular case of finite abstract p-groups (which are unipotent over a field of
positive characteristic) had already been proved by Ledet. We use in [9] these two results
to compute the essential dimension of several group schemes.

Università di Padova – Dipartimento di Matematica 156



Seminario Dottorato 2010/11

References

[1] Grégory Berhuy and Giordano Favi, Essential dimension: a functorial point of view (after A.
Merkurjev). Doc. Math. 8 (2003), 279–330 (electronic).

[2] Joe Buhler and Zinovy Reichstein, On the essential dimension of a finite group. Compositio
Math. 106/2 (1997), 159–179.

[3] Michel Demazure and Pierre Gabriel, “Groupes algéques. Tome I: Géométrie algébrique,
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