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Presentazione

Questo documento offre un resoconto dell’attività del Seminario Dottorato 2007/08. Giunto
al suo secondo anno di svolgimento regolare, il Seminario Dottorato fornisce un’opportunità
a dottorandi, assegnisti e borsisti (ma, a volte, anche a ricercatori affermati) in Matema-
tica Pura e Computazionale di comunicare le proprie ricerche in modo interessante per un
pubblico matematicamente ben istruito ma non specialista.
Un grazie va a tutti coloro che hanno contribuito alla riuscita dell’iniziativa, in primo
luogo naturalmente a chi ha accettato di svolgere i seminari e di stendere queste note.

Padova, 20 giugno 2008

Corrado Marastoni, Tiziano Vargiolu
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Sunti dei seminari (tratti dalla pagina web del Seminario Dottorato)

26 settembre 2007

Algebra and Topology
Dan Segal (professor at Oxford-All Souls College)

Actually the subject begins with number theory. In the 1930s Wolfgang Krull extended the Fun-

damental Theorem of Galois Theory from finite Galois extensions to infinite Galois extensions. In

order to obtain a bijective correspondence between intermediate fields and subgroups of the Galois

group, Krull realized that it is necessary to consider the latter as a topological group: each field

corresponds to a subgroup and conversely. The topology is defined by taking as neighbourhoods of

the identity the Galois groups of the big field over (larger and larger) finite sub-extensions of the

small field. In this way, the Galois group appears as the inverse limit of a system of finite (Galois)

groups. A group that is the inverse limit of an inverse system of finite groups is called a profinite

group. It is in a natural way a compact, totally disconnected topological group (inheriting these

properties from the finite groups considered as finite spaces). An infinite abstract group may have

many different structures as a profinite group (i.e. different topologies) (or of course none). But

it was discovered by J-P. Serre in the 1970s that for certain kinds of profinite group, the topology

is uniquely determined by the underlying group. These are the so-called finitely generated pro-p

groups. Serre wondered whether the same might be true for finitely generated profinite groups in

general; after about 30 years of partial results by several mathematicians, we have recently shown

that the answer is ”yes”. In fact, what the proof does is to show that many closed subgroups can

be constructed in a purely algebraic way. In the talk I will try to sketch some of the mathematics

involved in the proof, and mention other related results and open problems.

17 ottobre 2007

Formulazioni estese per problemi di programmazione intera mista
Marco Di Summa (dottorato in Matematica Computazionale)

In certi problemi di ottimizzazione, detti problemi di programmazione intera mista, è necessario

studiare regioni dello spazio definite da disequazioni lineari, con la condizione aggiuntiva che alcune

delle coordinate possono assumere solo valori interi. L’analisi di queste regioni nel loro spazio

naturale di definizione è resa complessa proprio dai vincoli di interezza. Tuttavia in certi casi

l’introduzione di variabili aggiuntive permette di descrivere in modo molto più semplice la regione

in esame. Tali formulazioni, date in uno spazio di dimensione superiore, sono dette ”formulazioni

estese” e sono di fondamentale importanza per la soluzione di problemi di questo tipo. In questo

seminario, dopo un’ampia panoramica introduttiva, illustrerò una tecnica che consente di ottenere

semplici formulazioni estese per una vasta classe di problemi. Metterò in evidenza potenzialità e

limiti di questo approccio. (Lavoro in collaborazione con M. Conforti, F. Eisenbrand e L. Wolsey)
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31 ottobre 2007

Metodi di viscosità per la riduzione dell’ordine di sistemi di controllo singolarmente
perturbati
Gabriele Terrone (dottorato in Matematica Pura)

Si considera un sistema di due equazioni differenziali ordinarie per la coppia di variabili (x(t), y(t)).

L’evoluzione di x(t) e y(t) avviene su due scale temporali differenti: la velocità delle variabili

”veloci” y(t) è proporzionale ad un parametro positivo (ε)−1. Si determina una dinamica ”limite”,

per le sole variabili ”lente” x(t), che rappresenta il comportamento del sistema originario quando ε

tende a zero. Si mostra anche che il sistema limite è in grado di fornire informazioni sulla stabilità

del sistema originario.

14 novembre 2007

Sistemi disordinati: vetri di spin e polimeri diretti
Agnese Cadel (dottorato in Matematica Computazionale)

Si parla di sistemi disordinati (o complessi) quando sono presenti eterogeneità a livello microscopico

e per questo manifestano una ricca varietà di comportamenti. Dopo una breve introduzione alla

meccanica statistica dei sistemi complessi, parleremo dei due più famosi esempi di questo tipo di

sistemi: i vetri di spin e i polimeri diretti.

28 novembre 2007

Sistemi dinamici e insiemi di Aubry-Mather
Olga Bernardi (assegnista in Matematica Pura)

Un sistema dinamico consiste di uno spazio delle fasi che descrive gli stati permessi ad un sistema e

di una legge che definisce l’evoluzione temporale di questi stati. L’evoluzione può essere continua,

come per le equazioni differenziali, o discreta, come per le mappe. Nello studio dei sistemi dinamici

un ruolo fondamentale è svolto dagli insiemi invarianti per la dinamica. Dopo una introduzione

per non-esperti ai sistemi dinamici, si definiscono gli insiemi invarianti di Aubry-Mather per una

classe di mappe quasi-integrabili in 2 dimensioni e si discute la loro localizzazione tramite tecniche

di regolarizzazione ispirate alle teorie di viscosità.

12 dicembre 2007

Un calcolo logico per la computazione quantistica
Paola Zizzi (dottorato in Matematica Pura)
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Il calcolo dei sequenti (LK), un sistema di deduzione logica introdotto da Gentzen inizialmente

per la logica Classica, e in seguito esteso alla logica Intuizionistica (LJ), esiste oggi anche per le

logiche sub-strutturali, come la logica Lineare di Girard, e la logica di Base di Sambin. In questo

seminario, dopo una prima parte introduttiva, ci proponiamo di introdurre un adeguato calcolo dei

sequenti per la computazione quantistica (finora descritta solo in termini di reti di cancelli logici

quantistici). Dai risultati finora ottenuti, sembra che il calcolo dei sequenti della logica di Base,

possa, con le opportune modifiche, servire a tale scopo.

16 gennaio 2008

Metodi di teoria del potenziale per l’analisi di problemi col dato al bordo singolarmente
perturbati
Matteo Dalla Riva (dottorato in Matematica Pura)

Si considererà un problema con dato al bordo definito su un aperto limitato dello spazio Euclideo

3-dimensionale. Tale aperto avrà un buco al suo interno. Il nostro scopo è di descrivere il com-

portamento della soluzione del problema con dato al bordo quando il buco collassa ad un punto.

Problemi di questo genere sono stati lungamente studiati tramite le tecniche dell’ ”analisi asintot-

ica” (si vedano ad esempio i lavori di Keller, Kozlov, Movchan, Maz’ya, Nazarov, Plamenewskii,

Ozawa e Ward). Illustreremo in un facile esempio quale tipo di risultato possiamo attenderci ap-

plicando tali tecniche. Poi mostreremo il risultato che si ottiene tramite l’approccio alternativo

proposto da Lanza de Cristoforis in alcuni lavori a partire dal 2001 e metteremo in luce le principali

differenze tra i due risultati.

30 gennaio 2008

Algorithms for the computation of the joint spectral radius
Cristina Vagnoni (dottorato in Matematica Computazionale)

The asymptotic behaviour of the solutions of a discrete linear dynamical system is related to the

spectral radius R of its associated family F; in particular, a system is stable if R ¡= 1 and there

exists an extremal norm for F. In the last decades some algorithms have been proposed in order

to find real extremal norms of polytope type in the case of finite families. However, recently

it has been observed that it is more useful to consider complex polytope norms. In this talk

we show an approach based on the notion of ”balanced complex polytopes”; due to the strong

increase in complexity of the geometry of such objects, the exposition will be confined to the

two-dimensional case. In particular, we give original theoretical results on the geometry of two-

dimensional balanced complex polytopes in order to present two efficient algorithms, one for the

geometric representation of a balanced complex polytope and the other the computation of the

corresponding complex polytope norm of a vector.
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13 febbraio 2008

Cluster Algebras: an overview
Giovanni Cerulli Irelli (dottorato in Matematica Pura)

Cluster algebras were introduced in 2001 by S. Fomin and A. Zelevinsky with the aim of studying

total positivity and canonical basis in semi-simple algebraic groups. After its introduction, the

theory has been developed in several unexpected fields of mathematics, e.g. quiver representa-

tions, Grassmannians and projective configurations, a new family of convex polytopes (generalized

associahedra) including as a special case Stasheff’s associahedron, Al. Zamolodchikov’s Y-systems

in thermodynamic Bethe Ansatz, discrete dynamical system, Teichmuller spaces and Poisson ge-

ometry,etc. . In this talk I will recall the definition of such algebraic structure and I will give some

motivating examples arising from algebraic geometry.

27 febbraio 2008

Computing VaR and CVaR for energy derivatives
Giorgia Callegaro (Matematica Computazionale, S.N.S. di Pisa)

The aim of the talk is to give an idea of the possible applications of mathematics to energy

derivatives markets, when computing the risk related to an investment in such a market. First of

all we will introduce the notion of derivative asset, starting with an analysis of the basic cases of

Call and Put options and arriving to the more complicated swing option case, that are all financial

products generally traded on option markets all over the world, with an “underlying” that can

be anything, from foreign currencies to stocks, oranges, gas or timber. We will explain how the

underlying price dynamics are modeled in energy markets, in basic cases and we will present the

problems of “pricing” a derivative and computing the risk related to an investment. In particular,

focusing on the gas market, we will explain how the fair price of swing options can be (numerically)

computed, by applying the Dynamic Programming Principle and the vectorial quantization. In the

same setting, we will also obtain numerical estimates, by means of stochastic recursive algorithms

of the Robbins-Monro type, for two different risk measures, namely the “Value at Risk” (VaR)

and the “Conditional Value at Risk” (CVaR). (Keywords: swing option, dynamic programming,

quantization, risk measure, Robbins-Monro algorithms.)

12 marzo 2008

Subanalytic sheaves and D-modules
Luca Prelli (assegnista in Matematica Pura)

This seminar is divided in two parts. We start with an introduction to sheaf theory and then

we define sheaves on the subanalytic site. Thanks to these objects we can describe functional

spaces which are not defined by local properties (as tempered distributions). In the second part

we introduce the notion of D-modules to apply the preceding constructions.
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2 aprile 2008

Numerical modeling for convection-dominated problems
Manolo Venturin (borsista in Matematica Computazionale)

During the last years, there has been a great interest in the development of sophisticated math-

ematical models for the simulation of real life applications which involves convection-dominated

phenomena. For example, these problems concern the solution of scalar advection-diffusion equa-

tions, the Navier-Stokes equations and the Shallow Water equations. The main goal of this seminar

is to review the most important difficulties that arise in the numerical approximation of this kind

of problems when convection dominates the transport process. Moreover, we present a method for

the treatment of this equations with the use of the finite element discretization on the domain.

16 aprile 2008

The Basic Picture on sets evaluated over an overlap algebra
Paola Toto (dottorato in Matematica Pura - Università del Salento)

In his forthcoming book, G. Sambin introduces a new topological theory, called ”The Basic Pic-

ture”. In this theory both the notion of topological space and its point-free version are generalized.

The concept of overlap algebra is also introduced in order to put in algebraic form the properties

needed to define the new topological structures. In this seminar we shall give a tutorial introduc-

tion to our work, whose ultimate goal is to generalize such topological notions in the context of

many-valued sets. In many-valued set theory sets are built by using propositions evaluated in an

algebraic structure. To reach our goal a key point is to check whether the original algebrization

of Sambin’s topological notions can be considered also as the algebrization of their many-valued

version. We prove that this is the case if and only if we take an overlap algebra as the underlying

structure of truth values.

29 aprile 2008

Quiver mutation and derived equivalence
Bernhard Keller (professor at Paris 7)

[The seminar will be divided in two parts of 40’ each, the first of which, of introductory type, will

be suitable for a large public] 1. In the first part, we will define and study quiver mutation. This

is an elementary operation on quivers (=oriented graphs) which was introduced by Fomin and

Zelevinsky in the definition of cluster algebras at the beginning of this decade. The combinatorics

behind quiver mutation are rich and varied. We will illustrate them on numerous examples using

computer animations. 2. In the second part of the talk, we will ”categorify” quiver mutation using

representation theory. More precisely, by combining recent work of Derksen-Weyman-Zelevinsky
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and Ginzburg, we will show how quiver mutations give rise to equivalences between derived cate-

gories of certain differential graded algebras. These derived categories are closely related to cluster

categories and thus to cluster algebras. This is joint work with Dong Yang.

30 aprile 2008

Chaotic phenomena described by stochastic equations
Luigi Manca (grant holder, Dip. Mat.)

It is well known that many natural phenomena such as population dynamics, stock exchange, dif-

fusion of particles, can be seen as ’chaotic’. To give a mathematical description of these ‘chaotic’

phenomena has been developed the theory of stochastic processes and of the related stochastic

differential equations. Starting by the fundamental concept of Brownian motion, I shall introduce

the main ideas and the basic tools in order to understand some easy models driven by stochas-

tic equations. Moreover, I shall describe how stochastic equations can be used to study some

deterministic model.

14 maggio 2008

Length of curves and surface measures
Roberto Monti (researcher, Dip. Mat.)

We discuss different definitions for the length of a curve and for the area of a hypersurface in the

Euclidean space and in more general metric spaces. The talk has an expository character and is

an introduction to Geometric Measure Theory.

28 maggio 2008

An Introduction to Stochastic Fluid Dynamic Models
David Barbato (researcher, Dip. Mat.)

The Navier-Stokes problem, still unsolved by more than 150 years, represents the starting point

for lots of mathematical research topics. The aim of the talk is to present selected fluidodynamic

models, in the deterministic and stochastic case, developed from Navier-Stokes equations. In

particular the GOY shell model, a Fourier system simplified with respect to the Navier-Stokes

one, will be described, and some recent rigorous results discussed. Finally open questions and

conjectures on turbolence flows will be presented.
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11 giugno 2008

An overview on low degree non-abelian cohomology
Pietro Polesello (researcher, Dip. Mat.)

In the first part of the seminar, which will be of introductory level, I will recall some basic facts

about the first cohomology set H1(X;G), for a given (not necessarily abelian) topological group

G, such as the classification of principal G-bundles, the Hurwitz formula and the classification of

G-coverings. The second part of the seminar will be devoted to the generalization of some of these

results to the ”second non abelian cohomology” of G.

Università di Padova – Dipartimento di Matematica Pura ed Applicata 9
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Extended formulations for some

mixed-integer sets

Marco Di Summa (∗)

Abstract. In a mixed-integer programming problem one is required to optimize a linear function
over a subset of Rn defined by a system of linear inequalities, with the additional restriction that
some variables must take an integer value. Since subsets of this type are usually very complicated
to describe, mixed-integer programming is a hard problem. The introduction of additional vari-
ables sometimes leads to a simpler description of the problem (extended formulation) in a higher
dimensional space. We present a technique to construct extended formulations for mixed-integer
programs with special structure.

Sunto. In programmazione intera mista si deve ottimizzare una funzione lineare su un sottoin-
sieme di Rn definito da un sistema di disequazioni lineari, con la condizione aggiuntiva che alcune
variabili devono assumere valore intero. A causa della complessità di tali sottoinsiemi di Rn, la
programmazione intera mista è un problema di difficile trattazione. A volte l’introduzione di nuove
variabili consente di ottenere una descrizione più semplice del problema (formulazione estesa). Il-
lustriamo qui una tecnica per costruire formulazioni estese per problemi di programmazione intera
mista aventi una struttura speciale.

1 Introduction

A mixed-integer (linear) program is an optimization problem where one is required to
minimize (or maximize) a linear function over a subset of Rn defined by a system of linear
inequalities, with the additional restriction that some of the variables must take an integer
value. Any mixed-integer program can then be formulated as

min c>x(1)

subject to Ax ≥ b,(2)

xi ∈ Z for i ∈ I,(3)

(∗)Ph.D. School in Applied Mathematics. Università di Padova, Dipartimento di Matematica Pura ed
Applicata, Via Trieste 63, 35121 Padova, Italy. E-mail: . Seminar held on 17
October 2007.
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where A is an m × n matrix, b ∈ Rm, c ∈ Rn and I is a nonempty subset of {1, . . . , n}.
In the above problem, c>x is the objective function, while the set defined by conditions
(2)–(3) is the feasible region. Variables xi for i ∈ I are called the integer variables, xi
for i /∈ I are the continuous variables. A subset of Rn that is the feasible region of a
mixed-integer program is called a mixed-integer set.

When I = {1, . . . , n}, problem (1)–(3) is a pure integer (linear) program (or simply in-
teger program). Thus we view integer programs as special types of mixed-integer programs.
A problem of the form (1)–(2), with no integrality restrictions, is a linear program.

Linear and mixed-integer programming are fundamental areas of operations research.
A large number of real-world problems can be formulated as linear or mixed-integer pro-
grams, such as problems arising in transportation, manufacturing, scheduling, production
planning and many other fields (see e.g. [8,13,14]).

While linear programming is a tractable problem, mixed-integer programming is diffi-
cult in general, as the region defined by conditions (2)–(3) is usually very complicated to
describe. In some special cases, the introduction of new variables in the problem allows
one to give a simpler description of a mixed-integer set. A description of this type, which
is given in a higher dimensional space, is called an extended formulation of the set (a more
precise definition is given in Section 2.1).

In this note we consider mixed-integer sets (2)–(3) whose constraint matrix A has
some special structure that we will specify later. We present a technique that allows one
to construct extended formulations for an arbitrary set having such a structure.

The rest of the note is organized as follows. In Section 2 we recall some basic results
linking mixed-integer programming to linear programming and we also introduce the con-
cept of extended formulation. In Section 3 we define the family of sets that is the object
of this study and present our technique to construct an extended formulation for any set
in this class. We conclude in Section 4 with some final comments.

2 Links between mixed-integer programming and linear programming

Recall that a polyhedron is the set of solutions to a linear system of the type Ax ≤ b for
some matrix A and some vector b. Thus the feasible region of any linear programming
problem is a polyhedron.

Consider now a mixed-integer program (1)–(3) and let X denote its feasible region,
i.e. X is the mixed-integer set defined by conditions (2)–(3). We denote by conv(X) the
convex hull of X, i.e. the set of points that are convex combinations of points in X.

It can be easily shown that problem (1)–(3) is equivalent to the optimization problem

(4) min
{
c>x : x ∈ conv(X)

}
.

The following result gives some useful information about the set conv(X).

Theorem 1 [10] If all entries of A and b are rational numbers,(∗) the convex hull of
(2)–(3) is a polyhedron.

(∗)The hypothesis of rationality is standard in optimization and complexity theory.
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Thus, under the assumption of rationality, (4) is the problem of optimizing a linear
function over a polyhedron. If the linear inequalities defining such a polyhedron are
explicitly known, problem (4) is a linear program and thus the original mixed-integer
programming problem (1)-(3) can be solved by means of linear programming algorithms.

Unfortunately the polyhedron conv(X) may be defined by a number of inequalities
which is exponential in the size of the original system (2), and it is usually very hard to
characterize them. Thus the approach described above does not result (in general) in an
algorithm for solving mixed-integer programming problems.

2.1 Extended formulations

The above discussion indicates that characterizing the convex hull of a mixed-integer
set by means of linear inequalities is a major task in mixed-integer programming. We
point out here how such a characterization can be given in a higher dimensional space by
using additional variables. To do this, we need the concepts of projection and extended
formulation.

Given a set Q in the space Rn+p (with variables x ∈ Rn and y ∈ Rp), the projection of
Q onto the space of the x-variables is the set of points x ∈ Rn that can be completed to
a vector (x, y) of Q:

projx(Q) := {x ∈ Rn : there exists y ∈ Rp such that (x, y) ∈ Q}.

The projection of a polyhedron is always a polyhedron (see e.g. [18]).
Given a polyhedron P in the space Rn (with variables x), an extended formulation of

P is a system of linear inequalities A′x + B′y ≤ d′ defining a polyhedron Q in a space
Rn+p (with variables x and y) such that P = projx(Q).

Extended formulations are useful because a polyhedron that is defined by a huge
number of inequalities in its original space may admit a smaller description in an extended
space.

We pointed out that given a mixed-integer set X defined by conditions (2)–(3), the
structure of the polyhedron conv(X) is usually very complicated to describe in its original
space. However the introduction of additional variables sometimes lead to a simpler de-
scription of conv(X) in an extended space. If such an extended formulation of conv(X) is
known and is compact (i.e. it uses a number of variables and inequalities that is polynomial
in the size of the original system Ax ≤ b), then the mixed-integer program (1)–(3) can be
solved in polynomial time by solving the equivalent linear program (4) in the extended
space.

Theorem 2 Let X be the mixed-integer set defined by (2)–(3). If a compact extended
formulation of conv(X) is known, the mixed-integer program (1)–(3) can be solved in
polynomial time by means of linear programming algorithms.

3 A technique to construct extended formulations

We define the family MIX2TU as the class of mixed-integer sets (2)–(3) such that the
matrix A satisfies the following conditions:

Università di Padova – Dipartimento di Matematica Pura ed Applicata 12
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• A is totally unimodular (TU), i.e. the determinant of every square submatrix of A
is 0, 1 or −1;

• each row of A contains at most two nonzero entries.

In this section we illustrate how to construct an extended formulation for the convex hull
of any set in this family.

Our interest in the former of the above two conditions comes form the fact that TU
matrices play an important role in pure integer programming. Specifically, in the pure
integer case, if A is TU and b has integer components, then the convex hull of the set is
obtained by just dropping the integrality requirements [9]. It is then natural to investigate
this class of matrices in the mixed-integer case.

Apart from the above theoretical motivation, sets of type MIX2TU are interesting
because they include several models appearing in practical problems such as production
planning problems [2, 3, 5, 7, 16].

Given any set X in the family MIX2TU , the construction of the extended formulation
is based on the enumeration of all the possible fractional parts that the continuous variables
take over the vertices of conv(X). Our approach is an abstraction of an idea used recently
by some authors to tackle some specific mixed-integer sets [11, 12, 15, 17]. The details of
the process sketched below can be found in [1] and [6].

We use the following notation: given a real number α, we denote by f(α) the fractional
part of α, i.e. f(α) := α − bαc. Define N := {1, . . . , n}. It can be shown that (possibly
after changing the sign of some variables) every set X of the type MIX2TU can be written
in this form:

xi − xj ≥ lij , (i, j) ∈ N e,(5)

xi ≥ li, i ∈ N l,(6)

xi ≤ ui, i ∈ Nu,(7)

xi ∈ Z, i ∈ I,(8)

where N e ⊆ N ×N and N l, Nu, I ⊆ N . The values lij , li, ui are arbitrary real numbers.
We remark that the above system may also include constraints of the type xi − xj ≤ uij ,
as this inequality is equivalent to xj − xi ≥ lij for lij := −uij .

Suppose we are given a list of decreasing fractional parts L = {f1, . . . , fk}, i.e. 1 >
f1 > · · · > fk ≥ 0, satisfying the following property:

(9) If x̄ is a vertex of conv(X), then f(x̄i) ∈ L for each i ∈ N \ I.

A list L satisfying the above property is called a complete list for X. (We will discuss in
Section 3.1 how such a list can be found.)

Let XL be the set of points x satisfying (5)–(8) along with the additional condition
that each continuous variable takes a fractional part in L:

XL := {x ∈ Rn : x satisfies (5)–(8), f(xi) ∈ L for i ∈ N \ I}.
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Define K := {1, . . . , k}. It is easy to see that, by introducing additional variables µi, δi`
for i ∈ N \ I and ` ∈ K, the set XL can be modeled by the following constraints:

xi = µi +
∑k

`=1 f`δ
i
`, i ∈ N \ I,(10) ∑k

`=1 δ
i
` = 1, δi` ≥ 0, i ∈ N, ` ∈ K,(11)

xi − xj ≥ lij , (i, j) ∈ N e,(12)

xi ≥ li, i ∈ N l,(13)

xi ≤ ui, i ∈ Nu,(14)

xi ∈ Z, i ∈ I,(15)

µi, δi` ∈ Z, i ∈ N \ I, ` ∈ K.(16)

In other words, XL is the projection of the mixed-integer set (10)–(16) onto the space of
the x-variables.

By using property (9), one shows that conv(X) = conv(XL). Thus a linear inequality
description of the convex hull of (10)–(16) is an extended formulation of conv(X). To find
such a linear inequality description, we rewrite constraints (12)–(14) as a linear system
with TU matrix involving only integer variables. We then use a standard result on total
unimodularity [9] to drop the integrality requirements.

Consider an inequality of type (13) for some i ∈ N l. If i ∈ I then the inequality can
be tightened to xi ≥ dlie, as xi is an integer variable. If i /∈ I, one can verify that under
conditions (10)-(11) and (16), inequality (13) is equivalent to the following:

µi +
∑

`:f`≥f(li)

δi` ≥ blic+ 1.

Consider now an inequality of type (12) with both i, j /∈ I. Define kij := max{` :
f`+f(lij) ≥ 1}. It can be proven that under conditions (10)–(11) and (16), inequality (12)
is equivalent to the following linear system:

µi +
∑

`:f`≥f(ft+f(lij))

δi` − µj −
∑

`:f`≥ft

δi` ≥ blijc+ 1, 1 ≤ t ≤ kij ,

µi +
∑

`:f`≥f(ft+f(lij))

δi` − µj −
∑

`:f`≥ft

δi` ≥ blijc, kij < t ≤ k.

The other inequalities of the system (12)–(14) can be modeled similarly.
Using these results, the mixed-integer set (10)–(16) can be equivalently rewritten in

the form

xi = µi +
∑k

`=1 f`δ
i
`, i ∈ N \ I,(17)

Cz ≥ d,(18)

z integral,(19)

where C is a TU matrix, d is an integral vector and z stands for the vector of variables µ, δ
and xi for i ∈ I. The system Cz ≥ d includes constraints (11) as well as the reformulation
of inequalities (12)-(14) described above.

Università di Padova – Dipartimento di Matematica Pura ed Applicata 14



Seminario Dottorato 2007/08

Except for equations (17), the above is a pure integer set. Since equations (17) just
define the value of variables xi for i ∈ N \ I (and these variable do not appear in the
remainder of the system), the well-known result of Hoffman and Kruskal [9] implies that
the convex hull of the above set is obtained by dropping the integrality restriction (19).
Thus (17)–(18) is an extended formulation of conv(MIX2TU ).

3.1 How to find a complete list

The construction of the extended formulation described above relies upon the knowledge
of a complete list of fractional parts for a set X of the type MIX2TU . We briefly discuss
how such a list can be computed.

Proposition 3 Let X := {x ∈ Rn : Ax ≥ b, xi ∈ Z for i ∈ I} be a mixed-integer set, where
A is an m× n TU matrix, b ∈ Rm and I ⊆ {1, . . . , n}. The following list is complete for
X:

(20) L :=
{
f
(∑m

j=1 σjbj

)
: σ1, . . . , σm ∈ {0,±1}

}
.

The above result provides a complete list for any set of the type MIX2TU , thus for-
mulation (17)–(18) can be always written explicitly, though the above list is (in general)
very long and originates a non-compact extended formulation. Note however that Propo-
sition 3 only exploits the total unimodularity of matrix A. By also using the information
that every row of A contains at most two nonzero entries, the above list can be refined.
This process is based on the construction of a graph associated with the set X and in many
interesting cases (e.g. in mixed-integer sets arising from production planning problems)
generates a complete list with only a polynomial number of elements. Thus in these cases
formulation (17)–(18) is compact and can be used to optimize in polynomial time.

4 Concluding remarks

The previous sections shows how a formulation of the convex hull of a set X of the type
MIX2TU can be given in an extended space. Nonetheless the formulation of conv(X) in
its original space of definition is important as well. Such a formulation can be computed
(in principle) by projecting our extended formulation onto the original space of the x-
variables. Though the calculation of the projection seems to be a prohibitive task in
general, the formulation in the original space was obtained for some specific (classes of)
sets of the type MIX2TU ([3,5,6,7,16]).

Finally, a natural question one could ask is whether the above technique can be ex-
tended to mixed-integer sets that do not belong to the class MIX2TU . Some results
addressing this problem can be found in [4].
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Viscosity methods for the order reduction

of singularly perturbed control systems

Gabriele Terrone (∗)

Abstract. In a singularly perturbed system the state variables evolves along two different time
scales: a positive parameter ε appears in front of the time derivative of the fast variables. We
define a limit dynamics, just for the slow states, describing the asymptotic behavior of a singularly
perturbed control system, as the parameter ε vanishes. Then, we show that it is possible to infer
the asymptotic stabilizability of the two-scale system from the one of the limit dynamics. More
precisely, using viscosity theoretical methods, we exhibit a Lyapunov function for the original
dynamics, obtained as an ε perturbation of a given Lyapunov function for the limit dynamics.

Sunto. In un sistema singolarmente perturbato le variabili di stato evolvono lungo due differenti
scale temporali: un parametro ε positivo appare davanti alla derivata temporale delle variabili
veloci. Si vuole determinare una dinamica limite, solo per le variabili lente, che descriva il compor-
tamento asintotico del sistema singolarmente perturbato quando il parametro ε svanisce. Quindi
si vuole mostrare che è possibile inferire la stabilizzabilità asintotica della dinamica singolarmente
perturbata da quella della dinamica limite. Più precisamente, usando metodi della teoria di vis-
cosità, si esibisce una funzione di Lyapunov per la dinamica originaria ottenuta come perturbazione
in ε di una funzione di Lyapunov della dinamica limite.

Let us consider the following singularly perturbed control system

(Sε)


ẋ(t) = f(x(t), y(t), a(t)), x(0) = x

εẏ(t) = g(x(t), y(t), a(t)), y(0) = y

where

– x ∈ RN and y belongs to the flat torus TM ' RM/ZM ;

– the functions a(·), the controls, are measurable functions from R+ to a compact
metric space A. The set of these functions is denoted by A. We will also write a to
denote the elements of A, when no ambiguities can arise;

(∗)Ph.D. School in Pure Mathematics. Università di Padova, Dipartimento di Matematica Pura ed
Applicata, Via Trieste 63, 35121 Padova, Italy. E-mail: . Seminar held on 31
October 2007.
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– the functions f and g are continuous from RN ×TM ×A to RN and TM respectively,
and Lipschitz–continuous in (x, y) uniformly with respect to a.

The role of the positive parameter ε in front of the time derivative of the y variables
is apparent: the state variables are divided in two groups, a group of N slow variables,
evolving on a macroscopic time scale, and a group of M fast variables, evolving along
a microscopic time scale. This is the reason why the study of multiscale problems is
motivated by many phenomena arising in engineering, chemistry and physics.

We shall try to reply to the following questions:

(Q1). Is it possible to find a dynamics (S̄) involving only the slow variables, and describing
the asymptotic behavior of (Sε) as ε→ 0?

(Q2). If yes, is it possible to use it to derive any qualitative information for (Sε)? In
particular, if we know that (S̄) is stable (in some sense) what can we say about the stability
of (Sε)?

Q1. At the beginning, the Levinson-Tikhonov method has been used to detect, under
suitable assumption, the limit dynamics of a singularly perturbed system. This approach
consists in considering, as the natural candidate for the limit, the system obtained by
setting ε = 0 in (Sε). The result is an ordinary differential equation combined with an
algebraic equation. This approach gives the appropriate limit when the stationary points
of the fast dynamics are attractive, a condition that may fail to be satisfied by systems
with more general asymptotic behavior of the fast variables. Other averaging approaches
have been proposed by Artstein in the context of invariant measure theory (see [3]), and
by Gaitsgory and Leizarowitz, using limit occupational measures (see [6]).

Our way to detect the limit system combines the theory of occupational measure and
the theory of homogenization of partial differential equations. It consists in considering
the fast subsystem associated to (Sε), that is the M–dimensional system

(1) ẏ(t) = g(x, y(t), a(t)), y(0) = y;

here x is frozen and considered as a parameter. We assume that the fast subsystem is
bounded time controllable, i.e. that there any pair of points on TM can be connected by
an admissible trajectory of (1) in a uniformly bounded time.

An occupational measure µs for (1) is a Radon probability measure on B(TM ×A) (the
Borel σ–algebra of TM ×A) defined by:

µs :=
1

s

∫ s

0
δ(y(t),a(t))dt

where δ(y(t),a(t)) is the Dirac mass concentrated on (y(t), a(t)). For any Borel set Q, µs(Q)
gives the proportion of time spent by the trajectory on Q, with respect to the time interval
[0, s]. We say that a measure µ on B(TM × A) is a limiting relaxed control if there exist
a control function a ∈ A and a diverging sequence tn such that the occupational measure
µtn of the corresponding solution of (1) converges weak star to µ. We will denote by M(x)
the set of all limiting relaxed measures obtained by solutions of (1). For any x the set
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M(x) constitutes a convex compact subset of the probability measures on B(TM ×A), and
the measures in M(x) are used to replace the dependence of the data by y and a with a
dependence by the relaxed control µ:

f̄(x, µ) :=

∫
f(x, y, a)µ(dy, da), µ ∈M(x)

The limit system is then detected as the differential inclusion

(S̄)

{
x(t) ∈ F (x(t))
x(0) = x

where
F (x) :=

{
f̄(x, µ)

∣∣∣µ ∈M(x)
}
.

Even if the way to obtain the limiting system proposed in [3] and in [6] is actually
close to the one described here, the arguments used are different: instead of techniques
connected to the theory of invariant measures and occupational measures we will exploit
only viscosity theoretical techniques. This is indeed one of the main peculiarity of our
contributions. The fact that (S̄) provides the correct approximation of (Sε) for small
ε, has been proved in [10] by studying the partial differential equations and the value
functions associated to these systems.

It is well known that the value function of (Sε), i.e. the function

uε(t, x, y) := inf

{∫ t

0
l(x(s), y(s), a(s))ds+ h(x(t), y(t))

}
,

where l and h are given functions and the inf is taken among all admissible trajectories of
(Sε), satisfies

∂tu
ε +H

(
x, y,Dxu

ε, 1
εDyu

ε
)

= 0

uε(0, x, y) = h(x, y)

where Dxu
ε and Dyu

ε stand for the gradient of uε with respect to the slow and fast
variables respectively, and

H(x, y, p, q) = max
a∈A
{−p · f(x, y, a)− q · g(x, y, a)− l(x, y, a)}.

To reply to question Q1, instead of passing to the limit in the dynamics, we pass to
the limit in the PDE, using the machinery of the homogenization theory. Under suitable
conditions, it is possible to define an effective Hamiltonian H̄(x, p), and an effective initial
data h̄(x) such that the uε converges locally uniformly, as ε→ 0 to a solution of

∂tu+ H̄(x,Dxu) = 0

u(0, x) = h̄(x)

The proof of the existence of such an operator, and the analysis of some property of it,
constitute a wide line of research, going back to the firsts pioneering works on homogeniza-
tion of PDEs, in particular to the famous unpublished preprint by Lions, Papanicolaou,
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and Varadhan. Recently, two crucial properties about the convergence of the uε have been
singled out by Alvarez and Bardi in [2]. The first is an ergodicity property of the operator,
and pertains with the definition of the effective Hamiltonian; the second property regards
the possibility to define an effective initial datum for the effective Cauchy problem. These
two properties also permit to establish the uniform convergence of uε to the solution of
the effective equation.

It turns out that the effective Hamiltonian is the partial differential operator associated
to the limit control problem (S̄), in fact it can be proved that, for any x, p

H̄(x, p) = max
µ∈M(x)

{
−p · f̄(x, µ)− l̄(x, µ)

}
.

Using this representation formula for H̄, has been proved that the value function of the
effective control problem, i.e. the function

ū(t, x) := inf

{∫ t

0
l̄(x(s), µ(s))ds+ h̄(x(t))

}
,

where the inf is taken among all admissible trajectories of (S̄), satisfies the effective Cauchy
problem. Moreover, under uniqueness of solutions for the effective Cauchy problem, ū
coincides with the limit of the value functions uε. Then we derive also an additional inter-
esting information: the local uniform limit of value function of optimal control problems
is a value function of another optimal control problem.

Q2. Now we want to establish if stability properties can be deducted for the singularly
perturbed system, assuming that the limit system is stable. In this direction few results
are available in the literature, essentially in the context of the Levinson-Tikhonov theory;
see [7] and [9]. One of the most relevant results has been established, for non-controlled
systems, by Artstein in [3]. The main result in [3] asserts that if the equilibrium is
asymptotically stable for the limit differential inclusion, then the slow part of the singularly
perturbed system is asymptotically stable near the origin.

We concentrate on asymptotic stabilizability, a condition implying the existence of at
least a trajectory of the the dynamics driving asymptotically the system to a certain tar-
get. It is the classical notion of asymptotic stability adapted to control systems. Stability
properties are studied by means of Lyapunov pairs, i.e. pairs constituted by a Lyapunov
function and another function estimating its infinitesimal decrease along integral trajec-
tories driving to a certain target, that we suppose for simplicity to be the origin. We
characterize such a monotonicity property with a suitable Hamilton–Jacobi differential
inequality, interpreted in viscosity sense. More precisely we say that (V (x),W (x)) is a
Control Lyapunov pair for (S̄) with respect to the target {x = 0} if V and W are proper
and positive definite, and satisfy

H̄(x,DxV ) ≥W (x);

analogously we say that (V ε(x, y),W ε(x, y)) is a Control Lyapunov pair for (Sε) with
respect to the target {0} × TM if

H

(
x, y,DxV

ε,
1

ε
DyV

ε

)
≥W ε.
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We want to construct a Lyapunov function V ε for the singularly perturbed system as a
first order perturbation in ε of a given Lyapunov function for the limiting system.

In order to explain our ideas in the simpler way, let us try a formal expansion. Suppose
to posses a Control Lyapunov pair (V,W ) for the effective dynamics, with V smooth, say
C1. For any fixed point x̄, let χ(y) be the solution(∗) of the equation

H(x̄, y,DV (x̄), Dχ) = H̄(x̄, DV (x̄))

and set
V ε(x, y) := V (x) + εχ(y).

This function should satisfy

H

(
x, y,DxV

ε,
1

ε
DyV

ε

)
= H(x, y,DV (x), Dyχ(y)) = H̄(x,DV (x)) ≥W (x)

at x = x̄... Such computation is evidently incorrect, because the function χ depends not
only on y but also on x! Therefore in the previous computation, in place of DxV

ε should
appear also a contribution of χ. Unfortunately, the dependence of χ on x is not clear, and
still remains an open question.

The problem is eliminated by considering an alternative corrector. For any fixed a
positive radius ρ, we obtain - as a (continuous) viscosity supersolution of a suitable auxil-
iary problem - a function χρ which is uniform in x in the complement of the ball B(0, ρ).
Consequently, the former expansion V ε(x, y) := V (x) + εχρ(y) can be used to prove rig-
orously the desired inequality outside the ball of radius ρ. Since the function V ε does not
satisfy the required monotonicity property in a whole neighborhood of the origin, but in
the complement of any arbitrarily small ball, no dynamical consequence can be directly
derived by Lyapunov theorems. Nevertheless, exploiting comparison and superoptimality
principles for viscosity supersolutions of Hamilton-Jacobi equations (see [8]) we are able
to establish the asymptotic stabilizability of the singularly pertutbed system.

Theorem. If the limiting differential inclusion (S̄) is asymptotically stable to the origin,
then the slow part of the singularly perturbed system (Sε) is asymptotically stable to the
same state, if ε is small enough.
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Università di Padova – Dipartimento di Matematica Pura ed Applicata 22



Seminario Dottorato 2007/08

Spin glasses and directed polymers

Agnese Cadel (∗)

1 Introduction: statistical mechanics

Statistical mechanics is a theory that attempts to explain the behaviour of systems that
are composed of many individual components, like gases, liquids or crystalline solids. Ac-
cording to this theory a system in equilibrium is described by an energy functional, the
Hamiltonian, which associates a macroscopic energy to each microscopic configuration of
the system. The principal aim of this theory is to obtain the general laws of thermody-
namics and the thermodynamic functions associates to the system.
In particular we are interested in the study of the free energy, that is the amount of
thermodynamic energy that can be converted into work at a constant temperature and
pressure. Two facts are known about free energy: in a system with constant temperature
and pressure the free energy does not increase, and in such a system the minimum of the
free energy represents the equilibrium.

One speaks of disordered (or complex) system when the dynamics, or the structures
that appears within the system, exhibits a rich variety of behaviours, while the micro-
scopic entities the system is made of, and the interactions among these entities, are a
priori simple.
In the last years a lot of examples of systems characterised by disordered molecular aggre-
gation have been found. Two typical examples are spin glasses, i.e. metals containing
random magnetic impurities, like the blue gold (an alloy of gold and iron), and polymers,
i.e. chemical compounds consisting of repeating units called monomers, like DNA or RNA.

Suppose that we want to study the blue gold (AuFe). We are in a lattice and some
sites will be occupied by the iron atoms, while others by the golden ones. If, for example,
we heat the system, the atoms will become mobile and will change places, but at low
temperatures this motion of the atoms is suppressed, and if we wait, even for a large time,
the macroscopic realization of the material will not change. In this case we say that the
positions of the atoms are ‘frozen’ and the system will not be in thermal equilibrium.

However, if we are interested in the magnetic properties of the system, we don’t have
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Applicata, Via Trieste 63, 35121 Padova, Italy. E-mail: . Seminar held on 14
November 2007.
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to look at the position of the atoms, but at their magnetic moments, to be more precise,
we have to look at the orientation of these moments. On the other hand we have to
remember that to make a good description of the system we can not forget the position
of the iron atoms because the interactions among them depend on their distance. The
problem is that it is very difficult to study all possible systems for all possible placements
of these atoms. Hence we have to suppose that only certain properties are important and
that the microscopic details of these arrangements are negligible, i.e. we want to model
the disordered system as a random model, by introducing a probability measure on the
space of the possible realizations of the positions of the iron atoms.

2 Spin glasses

The movement of the electrons around the nucleus generates a microscopic magnetic mo-
ment called spin. This spin can be seen has a vector in a 3-dimensional space and for it
only two directions are allowed: up or down. In ferromagnets each spin has a tendency
to align with the one in its proximity. At high temperature the motion of the spins is so
erratic that almost half of them are pointing up and the other half down, thus the net
macroscopic magnetization is zero (the microscopic magnetic field generated by each spin
cancel each other out). At low temperature, however, the spins become more sensible
to their mutual interaction because their erratic movement is reduced. The fundamental
feature of ferromagnets is that there exists a critical temperature Tc below which the spins
exhibit a collective behaviour in that a majority of them point in the same direction (up
or down). This is called spontaneous magnetization.
Let Λ be lattice, then at each site i we assign a variable σi (the spin) such that σi ∈ {−1, 1}
and we can define the Hamiltonian as

−HΛ(σ) =
∑
i,j∈Λ
i∼j

σiσj ,

where i ∼ j means that i and j are neighbouring sites. At a given temperature T the state
of the system is described by the Gibbs’ measure associated with the Hamiltonian

GΛ(σ) =
1

ZΛ
exp

(
−HΛ(σ)

κT

)
where k is the Boltzmann constant and ZΛ is the normalizing factor that makes GΛ a
probability measure: it is the probability to find the system at the given configuration σ.
At low temperature the Gibbs’ measure is peaked around the configuration of minimal
energy of the system (the so called ground states). In the case of ferromagnets these
configurations are those in which the spins have the same value.

In the case of spin glasses, instead, some pair of neighbouring spins want to be aligned,
but some others prefer to be anti-aligned. In the first case we’ll say that the interaction is
ferromagnetic, while for the latter we talk about anti-ferromagnetic interaction. For any
pair of spins the type of interaction is chosen randomly with the same probability. As a
consequence, in the Hamiltonian we can’t simply consider the interaction among pairs of
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spins (like we did for the pure ferromagnets) but we have to consider a random variable to
show the type of the interaction (ferromagnetic or anti-ferromagnetic) among them. Thus
the Hamiltonian becomes

(1) −HΛ(σ) =
∑
i,j∈Λ
i∼j

Ji,jσiσj

where Ji,j is a random variable that takes values 1 or −1 with the same probability. Besides
the presence of the randomness in the Hamiltonian, in order to have a spin glass we need
another feature: there must be frustration. We say that a system is frustrated when the
Hamiltonian cannot be written as the sum of many terms, all of which can be minimized
by a single ground state configuration.
To see this let us make an example: consider a group of N people and suppose that
each person knows each other. We also assume that any couple of individuals can be
either friends or enemies and that the friendship-enmity relations are assigned randomly
and independently for each couple. Now, one wants to divide the N individuals into
two parties, so as to minimize social discomfort, i.e. putting as much as possible friends
together and enemies apart. The system is obviously frustrated because if A is a friend of
B and B a friend of C, we can say nothing about the relationship between A and C. Thus
there are 2N possible ways the N people can be divided. Let us assign at each person the
variable

(2)


σi = 1 if i is in the first group

σi = −1 if i is in the second group

Furthermore, given a pair of people i and j set Ji,j = 1 if they are friends or Ji,j = −1 if
they are enemies. Thus the problem to find the optimal division of the group is equivalent
to find the minimum of the ‘cost function’

−HN (σ) =
∑

1≤i<j≤N
Ji,jσiσj ,

that is almost our Hamiltonian, except that in this case we consider the sum over all the
2N configurations. Notice that in this example the role of disorder is played by the random
choice of the relation, friendship or hostility.

The Hamiltonian (1) was introduced by Edwards and Anderson. The Edwards-Anderson
model is one of the most difficult models to analyze, from both the analytical and numer-
ical point of view. This is due to frustration: it is non-trivial to say something about its
ground states. The reason is that the couplings take both signs, favouring alignment or
non-alignment of the spins and it is clearly impossible to satisfy the demands of all cou-
plings. It seems quite natural, then, to use approximations. Mean fields theory is widely
used in such situations. In other words, we start from the study of a simplified model
maintaining the two fundamental features of disorder and frustration: the geometry of the
lattice is broken so that every magnetic moment interacts with all others (and not only
with the neighbouring ones, like in the previous example).
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The Edwards-Anderson model was modified using the mean field approximation by
Sherrington and Kirkpatrick. The Hamiltonian, that for sake of simplicity we consider
dependent also on the inverse of the temperature, is

−HN (σ) =
β√
N

∑
1≤i<j≤N

gi,jσiσj ,

where the gi,j are standard Gaussian random variables and β = (κT )−1. We can point
out that HN (σ) is a family of centered Gaussian random variables, characterized by the
covariance function

Cov(HN (σ1)HN (σ2)) =
1

N

∑
1≤i,j≤N

σ1
i σ

1
jσ

2
i σ

2
j .

In my thesis we studied a new version of the SK-model, where we considered an additional
ferromagnetic interaction. Then the Hamiltonian becomes

−HN (σ) =
β1

2N

∑
i≤N

σi

2

+
β2√
N

∑
1≤i<j≤N

gi,jσiσj + h
∑
i≤N

σi,

where we introduced the interaction of an external magnetic field h > 0 (that favours
the + spins over the - ones) and where β1 and β2 represent the inverse of two different
temperatures. We studied the behaviour of the system in the thermodynamical limit, i.e.
N → ∞, in particular we found a limit for the free energy, that in this model is defined
by

pN (β) =
1

N
E [logZN ] .

3 Polymers

A polymer is a chain of monomers linked by chemical bonds and these monomers can be
either single atoms or molecules. As we said, typical examples are DNA, RNA or lipids.
According to this definition, an important and natural example of a polymer model is
given by a d-dimensional random walk where the monomers are thought of as increments.
In order to simplify, we want to suppress entanglement and U-turns of the polymer, so we
would like to deal with self-avoiding walks. In the lattice case, by this we mean a random
walk that cannot visit again the sites it has already visited. The problem is that it is very
difficult to deal with this kind of walks. To avoid this, we impose a simpler constraint:
we work with directed walks, i.e. we force one of the coordinates to be strictly increasing.
Thus the polymer is supposed to live in (1+d)-dimensional lattice and to stretch in the
direction of the first coordinate.

In my thesis we focused on directed polymers in a random environment, which can be
thought of as paths of stochastic processes interacting with a quenched disorder, depending
on both time and space. Each path is weighted not only according to its length, but also
according to the random impurities (disorder) that it meets along its route.
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We first considered a Brownian polymer in a Gaussian environment: the polymer
itself is modeled by a Brownian motion b = {bt; t ≥ 0} and the random environment
is represented by a centered Gaussian random field W , defined on another independent
complete probability space. Once b and W are defined, the polymer measure itself can be
described as follows: for any t > 0, the energy of a given path (or configuration) b on [0, t]
is given by the Hamiltonian

−Ht(b) =

∫ t

0
W (ds, bs).

Based on this Hamiltonian, for any x ∈ Rd, and a given constant β (that is again the
inverse of the temperature of the system), we define our (random) polymer measure Gxt
as follows:

dGxt (b) =
e−βHt(b)

Zxt
dP xb (b), with Zxt = Exb

[
e−βHt(b)

]
.

The second model we considered is the continuous time random walk on Zd in a
white noise potential, which can be defined similarly to the Brownian polymer above: the
polymer is modeled by a continuous time random walk b̂ = {b̂t; t ≥ 0} on Zd, defined on
a complete filtered probability space and the random environment Ŵ will be defined as a
sequence {Ŵ (., z); z ∈ Zd} of Brownian motions, defined on another independent complete
probability space.

Also in the case of polymers we are interested in the free energy, that in our models
can be defined similarly as

p(β) = lim
t→∞

1

t
E [log(Zt)] , and p̂(β) = lim

t→∞

1

t
E
[
log(Ẑt)

]
.

The most important question in these models is:

how does the disorder affect the global shape of the polymer?

The answer for the random walk-type models can be find for example in [5] and it is

• If d ≥ 3 and β small enough, the impurities do not affect the global shape of the
polymer and we say that the polymer is in the weak disorder phase.

• If either
(i) d ≤ 2 and β 6= 0 or
(ii) d ≥ 3 and β large enough
then the impurities change drastically the global shape of the polymer and we say
that the polymer is in the strong disorder phase.

It is known that the free energy p(β) is bounded from above by Q(0)β2/2. It is then
possible to separate the regions of strong and weak disorder according to the value of
p(β): we will say that the polymer is in the weak disorder regime if p(β) = Q(0)β2/2
while the strong disorder phase is defined by p(β) < Q(0)β2/2. Besides it is expected
for any model of polymer in a random media that the strong disorder regime is attained
whenever β is large enough. In my thesis we obtain some sharp estimates on the free
energies p(β) and p̂(β) of the two systems described above, for large β.
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Sistemi dinamici e insiemi di Aubry-Mather

Olga Bernardi (∗)

Sunto. Dopo una breve introduzione per non-esperti ai sistemi dinamici, si definiscono gli insiemi
invarianti di Aubry-Mather per una classe di mappe quasi-integrabili in 2 dimensioni (mappa
standard) e si discute la loro localizzazione tramite tecniche di regolarizzazione ispirate alle teorie
di viscosità.

1 Introduzione

Un sistema dinamico consiste di uno spazio delle fasi che descrive gli stati permessi ad un
sistema e di una legge che definisce l’evoluzione temporale di questi stati. L’evoluzione
può essere continua, come per le equazioni differenziali, oppure discreta, e in tal caso è
fornita dall’iterazione di una mappa:

x0

xt

x0x1!f!x0"x2!f!f!x0""x3!...

In linea di principio, ogni modello fisico è un sistema dinamico; tuttavia, molti di essi sono
sistemi dinamici Hamiltoniani che forniscono mappe simplettiche.

Questioni fondamentali di interesse fisico nello studio di un sistema dinamico includono
la stabilità delle soluzioni (intesa come dipendenza dai dati iniziali), la stabilità strutturale
del sistema dinamico (ovvero, come e quanto cambiano le soluzioni per piccole variazioni
della legge che regola l’evoluzione temporale degli stati) e infine questioni riguardanti
l’esistenza e la determinazione di insiemi invarianti per la dinamica. Le precedenti ques-
tioni necessitano di risultati teorici, infatti le similazioni dirette di sistemi dinamici per
tempi molto lunghi non sono sempre possibili e –quando possibili– sono suscettibili di er-
rori numerici. Lo scopo di questa breve nota è capire la teoria e la struttura degli insiemi
invarianti per la mappa standard, che è un caso particolare di mappa twist.

(∗)Assegnista in Matematica Pura - Dipartimento di Matematica Pura ed Applicata, Via Belzoni 7 -
35131 Padova, Italy - - Seminario tenuto il 28 novembre 2007.
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2 Mappa twist

Restringiamo le nostre considerazioni a mappe 2-dimensionali e assumiamo che lo spazio
delle fasi (x, y) sia un cilindro, con x la coordinata angolo: tale spazio delle fasi si ottiene
in molti esempi in cui il momento y rappresenta la velocità, e quindi è illimitato, e la
configurazione x rappresenta la coordinata angolo (si pensi all’oscillatore armonico). Sia
ora

(1) S1 × R→ S1 × R, (x, y) 7→ (x̄, ȳ)

una mappa dal cilindro in sè. La condizione di twist è comune (e naturale) nelle ap-
plicazioni fisiche: traduce il fatto che per punti con velocità y più grande la variabile
configurazione x cresce più rapidamente.

Definizione 1 La mappa (1) è una mappa twist se esiste una costante K > 0 tale che:

dx̄

dy
|x ≥ K,

ovvero x̄ è funzione monotona crescente della y.

Un caso particolare è quello in cui la legge ha la seguente struttura (K = 1):{
x̄ = x+ y (mod 2π)

ȳ = ...

3 Mappa standard

Sia f una funzione analitica, periodica e a media nulla. La mappa standard φ è un caso
particolare di mappa twist e risulta cos̀ı definita:

(2) φ :

{
x̄ = x+ y (mod 2π)

ȳ = y + εf(x̄) = y + εf(x+ y)

La mappa standard si presenta in vari esempi di interesse fisico: descriveremo il ciclotrone
e il modello Frenkel-Kontorova.

3.1 Alcuni esempi

Il ciclotrone è un acceleratore di particelle consistente di un campo magnetico costante
B = B0ez e di un salto di potenziale dipendente dal tempo V sin(ωt):
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Supponiamo che ci sia un elettrone orbitante all’interno del ciclotrone. Il tempo per
l’elettrone di compiere un giro attorno al circuito è T = 2π E

eBc (dove E rappresenta
l’energia della particella), mentre la sua variazione di energia è ∆E = −eV sin(ωt). Con-
seguentemente, nel piano energia-tempo (E, t), la dinamica dell’elettrone è data da:{

Ē = E − eV sin(ωt)

t̄ = t+ 2π Ē
eBc

Un opportuno cambio di coordinate mostra che la mappa ottenuta è la mappa standard,
per una specifica scelta della funzione f .

Il modello Frenkel-Kontorova consiste invece di una catena 1-dimensionale di particelle
connesse da molle: per semplicità, prendiamo le costanti elastiche delle molle uguali a 1.
Supponiamo inoltre che la catena sia posta su una superficie di un cristallo, rappresentato
dal potenziale periodico V (x) = k

4π2 cos(2πx):

L’interazione tra il potenziale e le forze inter-atomiche risulta in equilibrio allorchè il
seguente bilancio tra forze è soddisfatto:

(xj+1 − xj)− (xj − xj−1) +
k

2π
sin(2πxj) = 0.

Definendo yj = xj−xj−1 e interpretando l’indice j della particella come tempo, si ottiene:{
xj = xj−1 + yj

yj = yj−1 + k
2π sin(2πxj−1)

Anche quest’ultima mappa è –a meno di un cambio di coordinate– la mappa standard.

3.2 Insiemi invarianti, frequenza

Indicheremo nel seguito con φ̃ e x̃ la mappa φ e la variabile angolo x pensate nei rivestimenti
di S1 × R e di S1 rispettivamente. Iniziamo con l’introdurre la nozione di frequenza.

Definizione 2 Un moto (xt, yt) = φt(x0, y0), t ∈ Z ha frequenza α se

lim
t→∞

x̃t
t

= α.

La mappa standard (2) dipende dal parametro perturbativo ε > 0: in particolare,
nel caso (imperturbato) in cui ε = 0, ogni insieme y = cost è invariante per φ e su di
esso φ è una traslazione di y: xt = x0 + ty0(mod 2π), yt = y0. Inoltre, sempre per
ε = 0: se α/2π è razionale, le orbite della mappa standard risultano periodiche, mentre se
α/2π è irrazionale, le orbite della mappa standard risultano quasi-periodiche, ovvero ogni
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xt (t ∈ Z) è denso in y = cost.
Conseguentemente, è naturale porsi i seguenti quesiti: al crescere del parametro perturba-
tivo ε > 0, persistono insiemi invarianti? E se si, di che tipo? Sono curve oppure insiemi
dalla topologia più raffinata? È quest’ultima una domanda tutt’altro che banale, alla
quale risponde –nel caso di frequenze diofantine e piccole perturbazioni– la teoria KAM.

3.3 Insiemi di Aubry-Mather

Un punto chiave della teoria di Aubry-Mather è quindi la ricerca di tali strutture invarianti
e il risultato che Aubry e Mather hanno indipendentemente dimostrato negli anni ’80 può
essere riassunto come segue.

Teorema 1 Per ogni ε > 0 e per ogni α/2π irrazionale, la mappa standard:

φ :

{
x̄ = x+ y (mod 2π)

ȳ = y + εf(x̄) = y + εf(x+ y)

ammette o una curva o un insieme di Cantor, che si proietta iniettivamente su y = 0, che
è invariante e che supporta solo moti con numero di rotazione α: è l’insieme di Aubry-
Mather Mα.

Tale problema –di natura dinamica– può essere tradotto in un problema di risoluzione
di un’equazione nel modo che segue. Si cerca una riparametrizzazione di Mα:

σα : ϑ→ (x̃ = u(ϑ), y = v(ϑ))

con le seguenti due proprietà:

(a) (u(ϑ+ 2π), v(ϑ+ 2π)) = (u(ϑ) + 2π, v(ϑ)),

(b) σα(ϑ+ α) = φ̃ ◦ σα(ϑ).

Le precedenti condizioni equivalgono a richiedere rispettivamente che:

(a) l’immagine di σα rappresenti un insieme invariante per φ̃,

(b) la mappa indotta su tale insieme da φ̃ sia una traslazione di α.

In maggior dettaglio, utilizzando la definizione della mappa standard, si ottiene che le
componenti della riparametrizzazione σα(ϑ) = (u(ϑ), v(ϑ)) devono soddisfare alle seguenti
equazioni:

(3)


u(ϑ)− u(ϑ+α)+u(ϑ−α)

2 + ε
2f ◦ u(ϑ) = 0

v(ϑ) = u(ϑ+ α)− u(ϑ)

e che l’insieme di Aubry-Mather Mα risulta:

Mα = {(x̃, y) : x̃ = u(ϑ), y = u(ϑ+ α)− u(ϑ), ϑ ∈ S1}.
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3.4 Risultati di esistenza, unicità e regolarizzazione

Il problema dell’esistenza per gli insiemi di Aubry-Mather è stato brillantemente risolto
da Mather [2] con una tecnica variazionale. Definita la funzione (generatrice) h(x̃0, x̃1) =
(x̃1−x̃0)2

2 + εF (x̃1), dove F
′

= f , egli ha dimostrato che il minimo del funzionale

Iα[u] =

∫ 1

0
h(u(ϑ), u(ϑ+ α))dϑ

nella classe {u : u(ϑ) ≤ u(ϑ
′
) per ϑ < ϑ

′
, u(ϑ + 2π) = u(ϑ) + 2π} risolve l’equazione

(3) per u(ϑ). Conseguentemente, essendo tale minimo una funzione non necessariamente
differenziabile, essa può avere al più un insieme numerabile di discontinuità e risulta unica
a meno di traslazioni e a meno dei valori alle discontinuità.

Un’ulteriore dimostrazione dell’esistenza e dell’unicità di tali insiemi invarianti Mα è
stata poi messa a punto da Moser ([3] e [4]): la sua dimostrazione risulta importante
perchè è supportata da metodi di viscosità. Egli ha dimostrato che, per ogni ν > 0, il
seguente funzionale regolarizzato:

Iνα[u] =

∫ 1

0

(
− ν log

∂u

∂ϑ
+ h(u(ϑ), u(ϑ+ α))

)
dθ

ammette un minimo uν(ϑ) di classe C2 e che le curve uν(ϑ) convergono puntualmente a
u(ϑ), soluzione per (3), ν → 0 in tutti i punti di continuità di u(ϑ). In maggior dettaglio,
le curve uν(ϑ), al variare di ν > 0, formano una foliazione di u(ϑ).

3.5 Tecnica di localizzazione

Se da un punto di vista teorico, come abbiamo visto nelle precedenti sezioni, gli insiemi
di Aubry-Mather sono stati ampiamente studiati e le fondamentali questioni riguardo
alla loro esistenza ed unicità risolte, tali strutture invarianti Mα non vengono rilevate da
tecniche numeriche standard: l’idea alla base dell’articolo [1] è infatti quella di proporre e
mettere in pratica una nuova tecnica per la loro localizzazione. Nel seguito trattegeremo
le linee di tale procedimento iterativo.
1. Poniamo u(ϑ) = ϑ+ U(ϑ), con U(ϑ) periodica in [0, 2π]:

U(ϑ) =
∑
k∈Z

uke
ikϑ.

L’equazione (3) per u(ϑ) si riscrive per U(ϑ) nel modo seguente:

F [U ](ϑ) := U(ϑ)− 1

2

(
U(ϑ+ α) + U(ϑ− α)− εf(ϑ+ U(ϑ))

)
= 0.

A partire a da un guess iniziale U1, si definisce una successione di soluzioni approssimate
Uk, k ≤ K:

Uk = Uk−1 + δUk,
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richiedendo che (qui U = Uk−1 e δU = δUk) per ν0 > 0 e ν1 > 0:

ν0δU−ν1δU
′′

+δU− δU(ϑ+ α) + δU(ϑ− α)

2
+U−U(ϑ+ α) + U(ϑ− α)

2
+
ε

2
f(ϑ+U) = 0.

Il seguente risultato analitico ci garantisce che il precedente procedimento definisce effetti-
vamente una successione di funzioni approssimante la vera soluzione U(ϑ) di F [U ](ϑ) = 0.

Proposizione 1 Sulla striscia di altezza σ denotiamo con | · |σ la sup-norma e con λ(σ)
la costante di Lipschitz di f . Allora:

(a)
|F [U + δU ]|σ−δ
|F [U ]|σ

≤
∑
n∈Z\0

ν0 + ν1n
2 + ε

2λ(σ)

ν0 + ν1n2 + 1− cosnα
e−|n|δ.

(b) Esistono ν∗0 > 0, ν∗1 > 0 tali che

|F [U + δU ]|σ−δ
|F [U ]|σ

< 1.

Poiché i parametri ν0, ν1 > 0 agiscono sulla differenza tra due approssimazioni suc-
cessive, ad ogni passo possono essere scelti ν∗0 > 0, ν∗1 > 0 in modo da garantire che
|F [U+δU ]|σ−δ
|F [U ]|σ < 1. Conseguentemente, non si lavora al limite per ν0, ν1 → 0 e in questa

costruzione ciò risulta fondamentale per ovviare alla presenza dei piccoli divisori.
2. Ricordiamo che u(ϑ) = ϑ+U(ϑ). Avendo usato tecniche di regolarizzazione, la soluzione
approssimata u(ϑ) è regolare e l’insieme di Aubry-Mather risulta localizzato vicino alla
curva:

M̃α = {
(
u(ϑ), u(ϑ+ α)− u(ϑ)

)
, ϑ ∈ S1}.

3. Come localizzare infine i gaps dell’insieme di Aubry-Mather sulle curve approssi-
manti M̃α? Abbiamo utilizzato una misura su S1 corrispondente alla densità dei punti
sull’insieme di Aubry-Mather.

Nella figura che segue, riportiamo in rilievo uno degli insieme di Aubry-Mather cośı
ottenuti.
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A functional analytic approach for the

analysis of singularly perturbed boundary

value problems

Matteo Dalla Riva (∗)

Abstract. We consider a boundary value problem defined on an open and bounded subset of the
3-dimensional Euclidean space. Such an open set presents a hole in its interior. Our aim is to
describe the behavior of the solution of the boundary value problem as the hole shrinks to a point.
This kind of problem is not new at all. Indeed it has been long investigated by the techniques
of the asymptotic analysis (see, e.g., the works of Keller, Kozlov, Movchan, Maz’ya, Nazarov,
Plamenewskii, Ozawa and Ward.) By a simple example, we illustrate the kind of result that we
can expect by the approach of the asymptotic analysis. Then, we show the result obtained by the
alternative approach proposed by Lanza de Cristoforis in some papers from 2001. We point out
the main differences between the two results.

Sunto. Si considererà un problema con dato al bordo definito su un aperto limitato dello spazio
Euclideo 3-dimensionale. Tale aperto avrà un buco al suo interno. Il nostro scopo è di descrivere il
comportamento della soluzione del problema con dato al bordo quando il buco collassa ad un punto.
Problemi di questo genere sono stati lungamente studiati tramite le tecniche dell’ analisi asintotica
(si vedano ad esempio i lavori di Keller, Kozlov, Movchan, Maz’ya, Nazarov, Plamenewskii, Ozawa
e Ward). Illustreremo in un facile esempio quale tipo di risultato possiamo attenderci applicando
tali tecniche. Poi mostreremo il risultato che si ottiene tramite l’approccio alternativo proposto da
Lanza de Cristoforis in alcuni lavori a partire dal 2001 e metteremo in luce le principali differenze
tra i due risultati.

1 Some notation

Let λ be a real number in the open interval ]0, 1[. Let m,n be natural numbers, m,n ≥
1. Let Ω be an open subset of the n-dimensional Euclidean space Rn. We denote by
C1,λ(clΩ,Rm) the set of the bounded continuous and differentiable functions f : clΩ→ Rm
whose partial derivatives of order one extend to a bounded continuous function of clΩ to
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Rn which is Hölder continuous with exponent λ. If m = 1 we write C1,λ(clΩ) instead of
C1,λ(clΩ,R). Moreover, we say that Ω is of class C1,λ if its boundary ∂Ω is a sub-manifold
of Rn of class C1,λ. If Ω is a bounded open subset of Rn of class C1,λ we define the space
C1,λ(∂Ω,Rm) by exploiting the local parametrizations.

2 The perforated domain Aε

We now fix two open bounded subsets A and B of the 3-dimensional Euclidean space R3,
A and B of class C1,λ. We assume that A and B are connected and that their exteriors,
R3 \ clA and R3 \ clB, are also connected (condition which means that A and B have
no holes.) We further assume that both A and B contains the origin 0 ≡ (0, 0, 0) of R3.
Then, one immediately verifies that there exists a real number ε0 > 0 such that the closure
cl(εB) of the set εB is contained in A for all ε ∈]0, ε0[. We denote by Aε the set A\ (cl εB),
for all ε ∈]0, ε0[. We will introduce in the following paragraph a boundary value problem
for the Laplace operator ∆ in the perforated domain domain Aε, with ε ∈]0, ε0[.

3 A boundary value problem in Aε

Let ε ∈]0, ε0[. Let f ∈ C1,λ(∂A) and g ∈ C1,λ(∂B). We consider the following boundary
value problem. Find u ∈ C1,λ(clAε) ∩ C2(Aε) such that

(1)


∆u(x) = 0 if x ∈ Aε,
u(x) = f(x) if x ∈ ∂A,
u(x) = g(x/ε) if x ∈ ∂(εB).

As it is well known, problem (1) admits a unique solution u ∈ C1,λ(clAε) ∩ C2(clAε).
We denote by uε such a solution. Our aim is to describe the behavior of uε as ε goes to 0.

To do so, we fix a point x0 of A. We assume that x0 is different from the origin
0. Then, it is easily verify that there exists a positive real number ε1, smaller than the
number ε0 introduced above, such that, the point x0 belongs to Aε for all ε ∈]0, ε1[. In
particular, the solution uε of problem (1) is defined on x0. Therefore, we can consider the
map of ]0, ε1[ to R which takes ε to uε(x0) and it makes sense to investigate the limit

lim
ε→0+

uε(x0).

4 Asymptotic analysis

The question introduced in the previous paragraph is not new at all. Indeed it has been
long investigated by the techniques of asymptotic analysis. It is perhaps difficult to pro-
vide a complete list of contributions. Here we mention the work of Kozlov, Maz’ya and
Movchan [2], Maz’ya, Nazarov and Plamenewskii [8,9], Ozawa [10], Ward and Keller [11].

The following Theorem 1 due to Maz’ya, Nazarov and Plamenewskii [8, Theorem 2.1.1]
explains the kind of results that we can expect by asymptotic analysis.
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Theorem 1 There exist functions vj ∈ C1,λ(clA) ∩ C2(A) and wj ∈ C1,λ(Rn \ B) ∩
C2(Rn \ clB), j ∈ N, with ∆vj = 0 in A and ∆wj = 0 in Rn \ clB, such that, the
asymptotic behavior of the solution uε as ε→ 0+ is delivered by the following equation,

(2) uε(x0) = v0(x0) +
N∑
j=1

εj (vj(x0) + wj(x0/ε)) +O(εN+1), as ε→ 0+,

for all x0 ∈ A \ {0} and all N ∈ N, where we understand the sum on the right hand side
is 0 if N = 0. In particular,

lim
ε→0+

uε(x0) = v0(x0), ∀ x0 ∈ A \ {0},

and v0 is the unique solution of {
∆v0 = 0 in A,
v0 = f on ∂A.

In the sequel we shall present a result which is obtained by an approach alternative
to that of the asymptotic analysis. Such approach exploits Potential Theoretic Methods
and methods of nonlinear functional analysis for real analytic functions (cf. Lanza de
Cristoforis [3,4,5,6,7] and [1].) The aim is in some sense different from the one of the
asymptotic analysis. Indeed we wish to express the dependence of uε upon ε in terms of
a real analytic function defined in a whole open neighborhood of ε = 0. In particular, we
want to get rid of the reminder term in expression (2). Moreover, we do not confine our
attention to the dependence of the solution uε upon ε. We consider also the dependence
upon perturbation of the point where the hole is situated, and of the shape of the hole,
and of the shape of the outer domain, and of the boundary data on the boundary of the
hole and on the outer boundary. To do so we introduce some more notation.

5 The perforated domain A[ω, ε, φA, φB]

Let A and B be the domains introduced above. We denote by A∂A the set of all
functions φA from ∂A to R3 which we retain as admissible. These are the functions
φA ∈ C1,λ(∂A,R3) which are injective and whose differential dφA(x) is injective for all
x ∈ ∂A.

The reason for which these functions are told admissible is the following. If φA ∈ A∂A,
then its image φA(∂A) separates R3 in two connected components, a bounded one, which
we denote by I[φA], and an unbounded one, which we denote by E[φA]. Thus, I[φA] is
an open bounded connected subset of R3 with no holes, whose boundary φA(∂A) is a
sub-manifold of R3 of class C1,λ parametrized by the function φA.

Similarly, we denote by A∂B the set of all functions φ ∈ C1,λ(∂B,R3) which are
injective and whose differential dφ(x) is injective for all x ∈ ∂B. We denote by I[φB] the
bounded open domain with boundary φB(∂B).
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Now, let φA ∈ A∂A and φB ∈ A∂B. Let ω be a point of I[φA]. Let ε ∈ R. Clearly, if ε
is small enough, the closure of the set ω + εI[φB] is contained in I[φA]. If this is the case,
ω + εI[φB] is our hole, and we obtain the perforated domain A[ω, ε, φA, φB] by removing
the closure of the hole ω + εI[φB] from the domain I[φA]. We note that A[ω, ε, φA, φB]
is a bounded open and connected subset of R3 with boundary made of two connected
components, ω + εφB(∂B) and φA(∂A).

We denote by E1,λ the set of all the admissible quadruples (ω, ε, φA, φB) which give
rise to a perforated domain A[ω, ε, φA, φB] and we point out that E1,λ is an open subset of
the Banach space R3 × R× C1,λ(∂A,R3)× C1,λ(∂B,R3). In particular, A[ω, 0, φA, φB] =
I[φA] \ {ω}.

6 A boundary value problem in A[ω, ε, φA, φB]

Let (ω, ε, φA, φB) belong to E1,λ. Let ε > 0. Let f belong to C1,λ(∂A) and g belong to
C1,λ(∂B). We consider the following boundary value problem in A[ω, ε, φA, φB]. Find
u ∈ C1,λ(clA[ω, ε, φA, φB]) ∩ C2(A[ω, ε, φA, φB]) such that

(3)


∆u = 0 in A[ω, ε, φA, φB],

u = f ◦ (φA)(−1) on φA(∂A),

u = g ◦ (ω + εφB)(−1) on ω + εφB(∂ΩB).

As it is well known, problem (3) admits a unique solution u for each given (ω, ε, φA, φB) ∈
E1,λ and (f, g) ∈ C1,λ(∂A) × C1,λ(∂B). So it makes sense to consider such a solution as
a function of the variables (ω, ε, φA, φB, f, g) and to write u[ω, ε, φA, φB, f, g] to denote it.
Our purpose is to investigate the dependence of u[ω, ε, φA, φB, f, g] upon (ω, ε, φA, φB, f, g)
in a neighborhood of a degenerate 7-tuple (ω0, 0, φ

A
0 , φ

B
0 , f0, g0).

7 A functional analytic approach

We show in the following Theorem 2 a real analytic continuation result in a neighborhood
of a degenerate 7-tuple (ω0, 0, φ

A
0 , φ

B
0 , f0, g0) for the function which takes (ω, ε, φA, φB, f, g)

to u[ω, ε, φA, φB, f, g]. We omit to present here a proof. We just remark that Theorem 2
is an immediate corollary of Theorem 5.7 in Lanza de Cristoforis [5].

Theorem 2 Let (ω0, 0, φ
A
0 , φ

B
0 , f0, g0) ∈ E1,λ × C1,λ(∂A) × C1,λ(∂B). Let Ω be an open

subset of R3 such that clΩ ⊂ I[φA0 ] \ {ω0}. Then there exist an open neighborhood U of
(ω0, 0, φ

A
0 , φ

B
0 , f0, g0) in E1,λ × C1,λ(∂A) × C1,λ(∂B) and a real analytic operator U [·] of

U to C(clΩ), endowed with the norm of the uniform convergence, such that the following
conditions hold.

(i) clΩ ⊂ A[ω, ε, φA, φB] for all (ω, ε, φA, φB, f, g) ∈ U .

(ii) We have

u[ω, ε, φA, φB, f, g](x) = U [ω, ε, φA, φB, f, g](x), ∀ x ∈ clΩ,

for all (ω, ε, φA, φB, f, g) ∈ U with ε > 0.
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(iii)
U [ω, 0, φA, φB, f, g](x) = v0[φA, f ](x)

for all x ∈ clΩ and for all (ω, 0, φA, φB, f, g) ∈ U , where v0[φA, f ] ∈ C1,λ(clI[φA]) ∩
C2(I[φA]) is the unique solution of{

∆v0[φA, f ] = 0 in I[φA],

v0[φA, f ] = f ◦ (φA)(−1) on φA(∂A).

We observe that the result stated in Theorem 2 is in accordance with the behavior
one would expect by looking at the asymptotic expansion (2). Actually, equation (2)
may suggest the validity of the above result, at least for fixed values of ω, φA, φB, f ,
g. Perhaps, one could also try to prove such result for fixed values of ω, φA, φB, f , g,
by showing that the series on the right hand side of (2) converge to the corresponding
function. Such approach however may be non trivial, and for its possible feasibility we
take no credit and refer to some expert in asymptotic analysis. We also mention that
one could think of proving Theorem 2 by considering a real analytic curve of sextuples
(ω, ε, φA, φB, f, g) through a degenerate sextuple (ω0, 0, φ

A
0 , φ

B
0 , f0, g0) depending on a real

parameter and then by showing the appropriate continuation properties of the solution of
(3) as a function of the parameter of the curve. Such method, also known as “parameter
method” at least since the thirties would anyway yield a weaker form of results. Indeed it
is well known that for an operator in a Banach space, even in the finite dimensional case,
real analyticity on all real analytic curves does not imply real analyticity.
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Construction of balanced complex

polytopes in C2

Cristina Vagnoni (∗)

Abstract. The asymptotic behaviour of the solutions of a discrete linear dynamical system may be
related to the spectral radius ρ of its associated family F ; in particular, a system is stable if ρ ≤ 1
and there exists an extremal norm for F . Since the extremal norms play an important role, in the
last decades some algorithms have been proposed in order to find real extremal norms of polytope
type in the case of finite families. However, recently it has been observed that it is more useful to
consider complex polytope norms. Such norms require the notion of balanced complex polytopes and
so it is interesting to analyze the geometric representation of such objects. However, due to the
strong increase in complexity of their geometry, the work will be confined to the two-dimensional
case. In particular, we give original theoretical results on the geometry of two-dimensional balanced
complex polytopes in order to present two efficient algorithms, one for the geometric representation
of a balanced complex polytope and the other for the computation of the corresponding complex
polytope norm of a vector.

Sunto. La stabilità di un sistema dinamico lineare discreto è un importante problema che può
essere affrontato mediante il calcolo del raggio spettrale ρ della famiglia di matrici F che definisce
il sistema stesso; in particolare, il sistema è stabile se ρ ≤ 1 ed esiste una norma estremale per la
famiglia F . Dato il ruolo importante rivestito dalle norme estremali nel presente problema, negli
ultimi anni sono stati proposti alcuni algoritmi per il calcolo di norme estremali di tipo politopico
reale. Tuttavia, è stato recentemente osservato che può essere necessario considerare norme di tipo
politopico complesso, le quali richiedono la nozione di politopo complesso bilanciato. Per questo
motivo, il lavoro si è incentrato sullo studio della geometria di politopi complessi e, vista la notevole
complessità della loro geometria, ci si è limitati al caso complesso bidimensionale. In particolare,
verrano presentati sia nuovi risultati teorici sulla geometria dei politopi complessi bilanciati in C2

sia i primi algoritmi efficienti che forniscono una completa caratterizzazione della loro geometria e
permettono di calcolare la corrispondente norma politopica complessa di un arbitrario vettore in
C2.
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Applicata, Via Trieste 63, 35121 Padova, Italy. E-mail: . Seminar held on 30
January 2008.
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1 Introduction

The knowledge of discrete linear dynamical systems of the kind

(1) x(i+1) = A(i)x(i), i = 0, 1, 2, . . .

where x(0) is given and A(i) ∈ Cn×n, i = 0, 1, 2, . . . , are given matrices, is of great im-
portance in many fields of applied mathematics, such as Engineering, Physics, Biology,
Chemistry, etc. We note that sometimes, it may be more convenient to perform the analy-
sis of continuous processes on the corresponding discretized ones which are, substantially,
of the form (1). A crucial aspect related to a discrete linear dynamical system is its sta-
bility properties, that is, the asymptotic behaviour of its solutions. For a given starting
point x(0), they are given by

x(i+1) = P (i)x(0) , P (i) = A(i) · · ·A(0).

Therefore, it is clear that the products of the matrices of the family F = {A(i)}i≥0 play
an essential role in the behaviour of the linear system. Indeed, by defining (see [7]) the
spectral radius of the family F as

ρ(F) = lim sup
k→+∞

ρk(F), ρk(F) = sup
P∈Σk(F)

ρ(P ),

where Σk(F) = {P ∈ Cn×n : P =
∏k
l=1A

(il)}, we have that the asymptotic stability is
guaranteed if ρ(F) < 1. So, we are naturally led to the computation of the spectral radius
of F . This is not an easy task at all, but it suggests an important way to approach the
stability question. The computation of ρ(F) may be simplified by introducing the concept
of extremal norm, which is a norm ‖ · ‖∗ satisfying the condition ‖F‖∗ = ρ(F), where the
norm of the family F is defined, for any induced matrix norm ‖·‖, as ‖F‖ = supi≥0 ‖A(i)‖.

In literature some algorithms have been proposed for the construction of extremal
norms of polytope type and, in particular, norms whose unit ball a symmetric real polytope
(see [1]).

However, how we can see in the next section, even if the dynamical system is real,
the real polytope norms may be unsatisfactory. Therefore, it may be useful to enlarge
the search of extremal norms to the class of the complex polytope norms (see [3], [4]
and [6]). To this end we recall, in the second section, some theoretical results on the
b.c.p. in order to give an algorithm for the computation of an extremal norm in the class
of the complex polytope norms. Then, in the third section we give our new theoretical
results on the geometry of a b.c.p. in C2, and present the first algorithm for the geometric
representation of a b.c.p. and the related algorithm for the computation of a complex
polytope norm. Finally, in the last section, we sketch some computational improvements
of the previous algorithms.

2 An algorithm for the computation of an extremal norm

In order to present an algorithm for the computation of an extremal norm in the class of
the complex polytope norms, we first need to define a balanced complex polytope (b.c.p.),
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to give a first characterization of its boundary and finally to introduce the concept of
complex polytope norm (see [5] and [4]).

Definition 2.1 A bounded set P ⊂ Cn is a balanced complex polytope if there exists a
finite set of vectors X = {x(i)}1≤i≤m such that span(X ) = Cn and

P = absco(X ) =

{
x ∈ Cn

∣∣∣ x =
m∑
i=1

λix
(i) with λi ∈ C,

m∑
i=1

|λi| ≤ 1

}
.

Moreover, if absco(X ′) ( absco(X ) for all X ′ ( X , then X is called an essential system
of vertices (e.s.v.) for P, whereas any vector ux(i) with u ∈ C, |u| = 1, is called a vertex
of P.

Note that, from a geometrical point of view, if we identify Cn with R2n, a b.c.p. P
and, in general, even the intersection P ∩Rn are not classical polytopes because they are
not bounded by hyperplanes. However, if the b.c.p. P admits an essential system of real
vertices, then P ∩ Rn is a classical polytope.

In order to give a first characterization of the boundary of a b.c.p. we introduce the
concept of b.c.p. of adjoint type as follow.

Definition 2.2 A bounded set P∗ ⊂ Cn is a b.c.p. of adjoint type if there exist a finite
set of vectors X = {x(i)}1≤i≤m such that span(X ) = Cn and

P∗ = adj(X ) =
{
y ∈ Cn

∣∣∣ |〈y, x(i)〉| ≤ 1, i = 1, . . . ,m
}
.

Moreover, if adj(X ′) ) adj(X ) for all X ′ ( X , then X is called an essential system of
facets for P∗, whereas any vector ux(i) with u ∈ C, |u| = 1, is called a facet of P∗.

A b.c.p. P and its adjoint P∗ may be related with the following theorem.

Theorem 2.1 Let P be a b.c.p. and let P∗ = adj(P). Then P = adj(P∗). Conversely,
let P∗ be a b.c.p. of adjoint type and P = adj(P∗). Then P∗ = adj(P).

The boundary of a b.c.p. may be characterized through its face and facets, which are
defined as follow.

Definition 2.3 Let P be a b.c.p., P∗ = adj(P) and y ∈ ∂P∗. Then the convex set

Fy =
{
x ∈ P

∣∣∣ 〈y, x〉 = 1
}

is called a (geometric) face of P, whereas y is called the functional associated to Fy.
Moreover, any vertex of P belonging to Fy is called a vertex of Fy and the dimension of
Fy is

dim(Fy) = dim(span(Fy))− 1.

In particular, if a face Fy has n linearly independent vertices (i.e. dim(Fy) = n− 1), then
it is called a (geometric) facet of P.
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Moreover, it can be proved that any face is the convex hull of its vertices Xy, that is,

Fy = co(Xy).

Finally, we can state the following theorem which characterize the boundary of a b.c.p.

Theorem 2.2
∂P =

⋃
y∈F ∗(P)

Fy,

where F ∗(P) is the set of all the facets of P. In other words, ∂P is the union of all the
(geometric) facets of P.

Now, the concept of polytope norm is extended to the complex case with the following
Lemma.

Lemma 2.1 Any b.c.p. P is the unit ball of a norm ‖ · ‖P on Cn such that, for any
z ∈ Cn,

‖z‖P = inf
{
ρ > 0

∣∣∣ z ∈ ρP} .
Definition 2.4 A complex polytope norm is any norm ‖ · ‖P whose unit ball is a b.c.p.

Moreover, denoting with X = {x(i)}1≤i≤m an essential system of vertices of P, it can
be proved that for any z ∈ Cn, it holds that

‖z‖P = min

{
m∑
i=1

|λi|
∣∣∣ z =

m∑
i=1

λix
(i)

}
.

We conclude this section giving a sketch of the algorithm for the computation of an
extremal norm for a bounded family F = {A(i)}i∈I of n× n-matrices.

Algorithm 2.1

1. Choose a suitable product Q ∈ Σk(F) (for some k).

2. Set ρ = ρ(Q)1/k and define the scaled family F∗ = {ρ−1A(i)}i∈I .

3. Compute a leading eigenvector v of Q and set x(1) = v.

4. Set s = 1, X (1) = {x(1)} and P(1) = absco(X (1)).

5. Compute the set of vectors V(s) = F∗(X (s)).

6. If V(s) ⊆ P(s) STOP (P(s) is the unit ball of an estremal norm).

7. Set P(s+1) = absco(V(s) ∪ X (s)) and compute an e.s.v. X (s+1) of P(s+1).

8. Set s = s+ 1 and go to 5.
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Note that, even if the family F is real, the eigenvector v may be complex, an this
giustify the search of an extremal norm in the class of the complex polytope norms.

So the geometric representation of a b.c.p. may be an important tool, but since we
have proved that the complexity of the boundary of a b.c.p. increase with the dimension
n (see [8]), in the next section we limit ourselves to analyze the two-dimensional complex
case.

3 The geometric representation of a b.c.p. in C2

In this section we give our original theoretical results on the geometry of a b.c.p. in C2,
in order to present the first algorithm for the geometric representation of a b.c.p. and
the related algorithm for the computation of a complex polytope norm. For a deeper
knowledge of the incoming results see [8] and [9].

3.1 Theoretical results

The construction of a b.c.p. is done in an iterative manner, starting from a two
vertex polytope and then by adding one of the remaining points at a time. Following
this idea, we assume, without loss of generality, that the first two points x(1), x(2) of
X are linearly independent and, starting from P(2) = absco({x(1), x(2)}), we construct
P(k) = absco(P(k−1)∪{x(k)}), for 3 ≤ k ≤ m, by adding x(k) to P(k−1). In this incremental
construction of the b.c.p. P, we distinguish the construction of a b.c.p. with two essential
vertices from the case of a b.c.p. with three essential vertices and the general case of a
b.c.p. with m ≥ 4 essential vertices, because these three cases are substantially different
from one another.

We begin by analyzing the boundary of a b.c.p. with two essential vertices, which is
P = absco({x(1), x(2)}) ⊆ C2, with x(1), x(2) linearly independent. In the light of Theorem
2.2 we have that ∂P is the union of all the facets of P, which are given by the segments
which joint all the possible pairs of non-proportional vertices, that are

Fy(θ1,θ2) = eiθ1x(1) •–• eiθ2x(2) = co({eiθ1x(1), eiθ2x(2)}), θ1, θ2 ∈ (−π, π].

Moreover, if we denote with ‖ · ‖P the corresponding polytope norm, it can be proved
that the boundary of P, that is ∂P = {x ∈ C2 : ‖x‖P = 1}, is a branch of a fourth order
surface in C2 (identified with R4) and so it is not a classical polytope.

Now we examine the addition of a third point x(3) to the already available two-vertex
b.c.p. P(2) = absco({x(1), x(2)}) ⊆ C2 in order to construct P(3) = absco({x(1), x(2), x(3)})
in the case that x(3) /∈ P(2) and does not delete none of the vertices of P(2).

This construction may be done, substantially, with the following three steps.

• Find the deleting interval D12 ⊆ (−π, π] representing all the facets (apart from scalar
factors of unitary modulus)

Fy12(θ) : x(1) •–• eiθx(2)
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of P12 to delete, that is (using Theorem 2.1), s.t.

|〈y12(θ), x(3)〉| > 1,

where y12(θ) = ([x(1), x(2)]∗)−1

[
1
eiθ

]
.

• Define the existence interval of surviving facets Fy12(θ) as E12 = (−π, π] \ D12.

• Compute the existence intervals E13, E23 ⊆ (−π, π] of the facets to add, which are
respectively

Fy13(θ) : x(1) •–• eiθx(3) for θ s.t. |〈y13(θ), x(2)〉| ≤ 1,

Fy23(θ) : x(2) •–• eiθx(3) for θ s.t. |〈y23(θ), x(1)〉| ≤ 1.

Before ending the characterization of a b.c.p. with three essential vertices, we first
need to classify the facets of a b.c.p. with three or more essential vertices as stated in the
following definitions.

Definition 3.1 A facet Fy of a b.c.p. P is called regular if it contains exactly two vertices.

Definition 3.2 A facet Fy of a b.c.p. P is called special if it contains three or more
vertices, that is if there exist x(i1), · · · , x(is) ∈ X , with 3 ≤ s ≤ m, such that the associated
functional y satisfies

〈y, eiθjx(ij)〉 = 1 for suitable θj , j = 1, · · · , s.

It is clear that, a special facet Fy is the union of all possible triangles of the type

eiθj1x(ij1 )Neiθj2x(ij2 )Neiθj3x(ij3 ) = co
({
eiθj1x(ij1 ), eiθj2x(ij2 ), eiθj3x(ij3 )

)}
, i.e.

Fy =
⋃

1≤j1<j2<j3≤s
eiθj1x(ij1 )Neiθj2x(ij2 )Neiθj3x(ij3 ).

Note that, unlike the real case, the dimension on R, thought as a part of an affine subspace
of R4, is equal to 2, whereas the dimension on R of a regular facet is obviously equal to 1.

Moreover, it can be proved that the intersection with R2 of the triangles contained in
special facets of P is given by two pairs of symmetric arcs of ellipsis, where one or even
both may degenerate into a pair of symmetric straight segments.

Definition 3.3 A segment x(i) •–• eiθjx(j) containing two vertices of a b.c.p. P is called
isolated facet if it is contained in a facet of P and if all the segments x(i) •–• ei(θ+θj)x(j)

are not facets of P for all θ ∈ (−θ0, θ0) \ {0} for some θ0 > 0.

We have proved the following Theorem related to isolated facets, which, as we can see
at the end of this section, will play an important role in our constructive algorithm of a
b.c.p.
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Theorem 3.1 None of the vertices of a b.c.p. P may belong only to isolated facets.

Now, we conclude the construction of a b.c.p. with three essential vertices with the
next Theorem. To this aim, we first note that its existence intervals are of the form:

E12 : [θ−12, θ
+
12] or (−π, θ+

12] ∪ [θ−12, π]

Ei3 : [θ−i3, θ
+
i3] or (−π, θ+

i3] ∪ [θ−i3, π], i = 1, 2.

Thus, we have

Theorem 3.2 Let P = absco({x(1), x(2), x(3)}), where x(1), x(2), x(3) ∈ C2 represent an
e.s.v. Then P has exactly two special facets with three vertices (modulo scalar factors of
unitary modulus) given by

x(1)Neiθ+12x(2)Neiθ−13x(3) and x(1)Neiθ−12x(2)Neiθ+13x(3),

where θ±12 and θ±13 satisfy

θ+
12 + θ+

23 = θ−13Mod2π and θ−12 + θ−23 = θ+
13Mod2π.

We conclude the analysis of a three vertex b.c.p. with the following Example which
shows its intersection with the real plane.

Example 3.1 Let P be b.c.p. with essential vertices x(1) = [1; i], x(2) = [1; 1 − i], x(3) =
[1; 1]. In order to compute ∂P ∩ R2, we first determine the intersection with R2 of each
of the three 2-vertex subpolytopes ∂Pij for i, j = 1, 2, 3 with i < j, which is reported on
the left of Figure 1 and then, the intersection of the two special facets which is reported
on the right of the same figure by the blue ellipse and by the pair of symmetric straight
green lines. So, we can conclude that ∂P ∩ R2 is given by the black curve on the right of
the figure.

Figure 1

Università di Padova – Dipartimento di Matematica Pura ed Applicata 48



Seminario Dottorato 2007/08

We conclude this subsection by examining the general case of a b.c.p. with m ≥ 4
essential vertices, starting with the generalization of the definition of existence interval
given for a 3-vertex b.c.p.

Definition 3.4 Let P = absco(X ), where X = {x(i)}1≤i≤m is an e.s.v. with m ≥ 4. The
existence pluri-interval of the facets Fyij(θ) = x(i) •–• eiθx(j) of P is the set Eij ⊆ (−π, π]

s.t. θ ∈ Eij if and only if the segment x(i) •–• eiθx(j) is a regular facet or included in a
special facet of P.

It can be proved that Eij is the union of pij disjoint intervals, 0 ≤ pij ≤ m− 1, that is,
for appropriate θ−ij,l, θ

+
ij,l ∈ [−π, π], Eij is of the form

Eij =

pij⋃
l=1

[θ−ij,l, θ
+
ij,l] \ {−π}.

We conclude the characterization of the boundary of a b.c.p. P with m ≥ 4 essential
vertices with the following Theorem which allow us to compute the (triangles contained
in) special facets of P, from the knowledge of its existence pluri-intervals.

Theorem 3.3 For each triplet (i, j, k) with 1 ≤ i < j < k ≤ m, there exist at most two
triangles of the type x(i)Neiθijx(j)Neiθikx(k) contained in special facets of P. Moreover, such
triangles, if any, are of the type

x(i)Neiθ+ij x(j)Neiθ−ikx(k) with θ+
ij + θ+

jk = θ−ik Mod2π

and/or

x(i)Neiθ−ij x(j)Neiθ+ikx(k) with θ−ij + θ−jk = θ+
ik Mod2π,

where [θ−rs, θ
+
rs] stays for one of the intervals of the existence pluri-interval Ers, r, s ∈

{i, j, k}.

3.2 Algorithms for the construction of a b.c.p. P and for the computation of ‖ · ‖P

We begin this subsection by presenting our algorithm for the construction of a b.c.p.
P = absco(V), where V = {x(i)}1≤i≤m is a set of vectors of C2 where we assume x(1) and
x(2) linearly independent.

The algorithm works in an iterative fashion starting from

P(2) = absco(X (2)), where X (2) = {x(1), x(2)}.

Then, from the already available b.c.p. P(k−1) = absco(X (k−1)), k ≥ 3, we construct
P(k) by adding x(k) to P(k−1). So, the k-th step of the constructive algorithm may be
summarized as follows.
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Algorithm 3.1 (k-th step)

• For 1 ≤ i < j ≤ k − 1, consider the 2-vertex subpolytopes Pij = absco({x(i), x(j)})
of P(k−1) and write x(k) = λ

(k)
ij x

(i) + µ
(k)
ij x

(j) with λ
(k)
ij , µ

(k)
ij ∈ C.

If ‖x(k)‖Pij = |λ(k)
ij |+ |µ

(k)
ij | ≤ 1 for some (i, j)

x(k) ∈ P(k−1) is deleted
else

• X (k) = X (k−1) ∪ {x(k)}
• Remove from X (k) all those vectors, if any, which are deleted by x(k) as

vertices of a 2-vertex subpolytope Pij and detect those facets of P(k)

which were already facets of P(k−1) and survive the addition of x(k)

• Add the new facets of P(k) whose second vertex is x(k)

• Remove from X (k) all those vectors which belong only to isolated
facets or to no facets at all (in the light of Theorem 3.1)

end

Once we have processed the last vector of V, we have found the existence pluri-intervals
of all the regular facets of P and an essential system of vertices X ⊆ V for P.

Finally, in the light of Theorem 3.3, the algorithm ends with the detection of all the
(triangles included in) special facets of P by analyzing its existence pluri-intervals. Remark
that any triangle x(i)Neiθx(j)Neiφx(k) included in the special facets of P is characterized
by its existence pair Sijk = {θ, φ}.

We conclude this subsection by giving our algorithm for the computation of the complex
polytope norm ‖z‖P , for any z ∈ C2.

We recall that the input of the algorithm is the b.c.p. P = absco(X ) characterized by:

• its essential system of vertices X = {x(1), x(2), . . . , x(m)},

• its regular facets, described by existence pluri-intervals Eij ,

• the triangles contained in special facets, described by existence pairs Sijk.

Algorithm 3.2 (computation of ‖z‖P)

If z is proportional to x(i)

‖z‖P = ‖z‖/‖x(i)‖
else

compute nrs = min1≤i<j≤m ‖z‖Pij = min1≤i<j≤m(|λij |+ |µij |), where
the indexes r, s reach the minimum and[

λij
µij

]
= [x(i) x(j)]−1z

if arg(λrs)− arg(µrs) ∈ Ers
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% z projects on eiarg(λrs)x(r) •–• eiarg(µrs)x(s)

‖z‖P = |λrs|+ |µrs|
else

% z projects on x(i)Neiθx(j)Neiφx(k)

find the existence pair Sijk = {θ, φ}, s. t. there exist
λi, λj , λk > 0 : z = λix

(i) + λje
iθx(j) + λke

iφx(k),
‖z‖P = λi + λj + λk

end
end

4 Computational aspects

From our numerical experiments, made using MATLAB, on the previous algorithms, we
have seen that they are computationally expensive. Indeed, the k-th step of Algorithm
3.1 consider all the facets of all the two-vertex subpolytopes Pij = absco({x(i), x(j)}) of
P(k−1), which may uselessly be too time consuming. For this reason, in this section, we
present an improvement, where, in general, only a subset of the regular facets of P(k−1)

is involved. This improvement is based on the extension to C2 of the limit cone idea used
in the Beneath-Beyond (B–B) method to construct of real polytopes (see [2]). In order to
show this idea we recall the k-th step of the method in R2, that is the addition of x(k) to
P(k−1), whose steps are also shown in Figure 2 in two different cases.

Algorithm 4.1 (k-ht step)

• Determine the facet x(i) •–• x(j) on which x(k) projects, which is the one intersected
by the line λx(k), λ > 0;

If if x(k) ∈ Pij = absco({x(i), x(j)})
delete x(k)

else
• delete the facets of P(k−1) which are seen by x(k), that is, the facets

inside the limit cone of apex x(k)

• add the facets whose second vertex is x(k), by only using the two vertices
belonging to the boundary of the limit cone

end
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Figure 2. The point x(k) projects on the facet Fi,j : x(i) •–• x(j). On the left, none of the existing

vertices have to be removed since the limit cone does not contain any of them (i.e. x(ccw) = x(i)

and x(cw) = x(j)). On the right, the two magenta vertices x(i) and x(j) have to be removed since

they lie inside the limit cone. These two vertices no longer belong to the set of vertices of P(k).

Our aim is to use the limit cone idea also in C2, so as to be allowed to check only a
minimal subset of the regular facets of P(k−1) .

The balanced limit cone in C2 of apex x(k), which is tangent to P(k−1), delimits the set
D of the regular facets of P(k−1) which are seen (and so deleted) by the circle generated
by x(k) /∈ P(k−1). Since P(k−1) is convex, D is connected and thus, in order to update the
regular facets of P(k−1) due to the addition of x(k), we can start from any seen facet and
then find, moving by connection, all the other regular facets which are seen by the circle
generated by x(k). Consequently, we have to add only the facets x(l) •–• eiθx(k), where x(l)

belongs to the set of the non-deleted vertices of seen facets.
To perform the search of a seen facet, if any, we propose a first criterion in order to

guess those regular facets of P that have the greatest chances to be seen by x(k). This
criterion is based on the reasonable assumption that, in most cases, a facet which is seen
by x(k) includes vertices that are among the closest, in the Euclidean distance, to

Rx(k) = {ρx(k) | ρ > 0}.

Therefore, ∀i = 1, . . . , k − 1, we compute the Euclidean distances

δi = min
−π<θ≤π, ρ>0

‖eiθx(i) − ρx(k)‖2 =
√
‖x(i)‖22 − |〈x(i), x(k)〉|2/‖x(k)‖22

of Rx(k) from the circle generated by x(i), and we reorder the indexes in non decreasing
order with respect to the distances δi. Subsequently, we define a total order relation “≺”
on the set of the index pairs (i, j) reordered in reversed lexicographical way, that is,

(i, j) ≺ (h, k) ⇐⇒ j < k o (j = k & i < h);
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next following this total order relation, we find, if any, the first seen facet and then moving
by connection, also all the other seen facets of P(k−1).

Also the algorithm for the computation of the polytope norm may unnecessarily involve
all the two-vertex subpolytopes Pij of P. So, we use the same criterion already used to
improve the procedure for the computation of ‖z‖P , z ∈ C2. First, we compute for
i = 1, . . . ,m the Euclidean distances δi of Rz = {ρz | ρ > 0} from the circle generated
by the m essential vertices of P; next, we reorder the indexes of these m vertices in non-
decreasing order with respect to the distances δi; then we define, as before, a total order
relation “≺” on the set of the index pairs (i, j), and we extend the total order relation
“≺” to the triplets (i, j, k), 1 ≤ i < j < k ≤ m, by inserting a triplet (r, s, t) soon after the
last of the three pairs (r, s), (r, t), (s, t). In this way, following this total order relation,
we can process, one after the other, pairs and triplet of indexes, until we find the facet,
regular or special, on which z projects.

The speed-up obtained by these improvements is confirmed by the numerical tests; for
more details see [8].

5 Conclusions

To summarise, in this work we have deepened the theoretical study of the geometry of
a b.c.p. in C2 presenting the first efficient algorithm for the construction of a balanced
complex polytope P in C2 which completely describes the geometry of P. Furthermore,
we have also presented the first efficient algorithm to compute the complex polytope norm
of a vector z ∈ C2 starting from the knowledge of the boundary of the corresponding unit
ball.
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Università di Padova – Dipartimento di Matematica Pura ed Applicata 54



Seminario Dottorato 2007/08

Cluster algebras: some motivating

examples for their introduction

Giovanni Cerulli Irelli (∗)

Abstract. In this note we give some of the ideas behind the introduction of the theory of cluster
algebras. This theory was first introduced in [CAI] by S. Fomin and A. Zelevinsky in 2001. From
their introduction, cluster algebras have found place in several different fields of mathematics.
After its introduction the theory by itself has been developed by now in three papers, [CAII],
[CAIII] and [CAIV]. We follow the very good survey of the subject given by [FZNotes].

Sunto. Questa nota illustra a grandi linee alcune delle motivazioni che hanno spinto S. Fomin e
A. Zelevinsky a far nascere e sviluppare la teoria delle algebre cluster. Questa teoria nasce nel
2001 allo scopo di creare una struttura algebrica nella quale studiare i concetti di positivitá totale e
base canonica in gruppi algebrici semi–semplici. Qui si richiamano brevemente alcuni dei risultati
preliminari alla teoria che sono molto ben descritti in [FZNotes] la quale rimane la principale
referenza di queste note.

1 Double–Bruhat cells and total positivity

Let G = SLn(C) = {X = (xij) ∈ Mn×n(C)| det(X) = 1} be the group of complex n × n
matrices with determinant 1. Let W = Symn be the symmetric group generated by the
n− 1 simple transpositions s1, · · · , sn−1 where si = (i, i+ 1) denotes the transposition of
i and i+ 1. We see W as a subgroup of G in the natural way.

Inside G we consider the (Borel) subgroups B and B− respectively of the upper and
lower–triangular matrices. A Bruhat cell in G is the double coset BwB or B−wB− for
w ∈ W . It is known that G is disjoint union of Bruhat cells: G =

⊔
w∈W BwB =⊔

w∈W B−wB−. A double Bruhat cell is the intersection of two Bruhat cells:

G(u,v) .
= BuB ∩B−vB−

for u, v ∈ W . In particular G = t(u,v)∈W×WG
(u,v). Let us describe a double Bruhat cell

geometrically. Recall that given an element w of the symmetric group W , the lenght of w,

(∗)Ph.D. School in Pure Mathematics. Università di Padova, Dipartimento di Matematica Pura ed
Applicata, Via Trieste 63, 35121 Padova, Italy. E-mail: . Seminar held on 13
February 2008.
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denoted by l(w), is the shortest lenght of a sequence of indices i = (i1, · · · , il) such that
w = si1 · · · sil . Such a sequence is called a reduced word for w.

Theorem 1.1 [1, Theorem 1.1] For every u, v ∈ W the double Bruhat cell G(u,v) is
isomorphic to a Zarisky open subset of an affine space of dimension n+ l(u) + l(v).

Roughly speaking G(u,v) is isomorphic as an algebraic variety to a subset of Cn+l(u)+l(v)

obtained by excluding common zeroes of a finite set of polynomials.
For two subsets I and J of [1, n]

.
= {1, · · · , n} of the same size, we denote by ∆I,J the

minor with row set I and column set J . We now give a description of a Bruhat cell BwB.
We use the notations: [1, i ]

.
= {1, · · · , i} and for w ∈W , w([1, i ])

.
= {w(1), · · · , w(i)}.

Proposition 1.2 [1, Proposition 4.1] Let x ∈ G, w ∈W . Then x ∈ BwB if and only if

(a) ∆w([1, i ]),[1, i ] 6= 0 for i = 1, 2, · · · , n− 1;

(b) ∆w([1, i−1 ]∪{ j }),[1, i ] = 0 for every 1 ≤ i < j ≤ n such that w(i) < w(j).

To illustrate the previous result let us consider the case in which n = 3 and w =
w0 = (13) is the longest element of Sym3. The first condition says that ∆3,1 6= 0 and
∆[2,3],[1,2] 6= 0; the second condition is not applied in this case (this is a general fact: if
w = w0 is the longest element of Symn then there are not i < j such that w0(i) < w0(j)).
We hence conclude that the Bruhat cell Bw0B is given by

Bw0B = {x ∈ SL3(C)|∆3,1(x) 6= 0; ∆[2,3],[1,2] 6= 0}
= {x ∈ SL3(C)|x31 6= 0; x21x32 − x22x31 6= 0}.

The transposition morphism x 7→ xt sends ∆I,J to ∆J,I and the Bruhat cell BwB onto the
Bruhat cell B−w

−1B−. One can hence use Proposition 1.2 in order to find the analogous
result for the Bruhat cell B−w

−1B−. In particular we get the following description of the
double Bruhat cell G(u,v).

Proposition 1.3 Let x ∈ G, u, v ∈W . Then x ∈ G(u,v) if and only if

(a) ∆u([1, i ]),[1, i ] 6= 0 for i = 1, 2, · · · , n− 1;

(b) ∆u([1, i−1 ]∪{ j }),[1, i ] = 0 for every 1 ≤ i < j ≤ n such that u(i) < u(j);

(c) ∆[1, i ], v−1([1, i ]) 6= 0 for i = 1, 2, · · · , n− 1;

(d) ∆[1, i ], v−1([1, i−1 ]∪{ j }) = 0 for every 1 ≤ i < j ≤ n such that v−1(i) < v−1(j).

To illustrate the previous Proposition we continue our running example n = 3, w =
w0 = (13): we get

G(w0,w0) = {x ∈ SL3(C)|∆3,1(x) 6= 0; ∆[2,3],[1,2] 6= 0, ∆1,3(x) 6= 0; ∆[1,2],[2,3] 6= 0}
(1.1) = {x ∈ SL3(C)|x31 6= 0; x21x32 − x22x31 6= 0, x13 6= 0; x12x23 − x22x13 6= 0}.
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This is a general result: if w0 is the longest element of G then G(w0,w0) is the open double
Bruhat cell

G(w0,w0) = {x ∈ G| ∆w0([1, i ]),[1, i ](x) 6= 0; ∆[1, i ],w0([1, i ])(x) 6= 0 , for all i ∈ [1, n]}.

We denote by G≥0 and G>0 respectively the varieties of totally nonnegative and totally
positive matrices, i.e. matrices whose minors are all non–negative (resp. positive) real

numbers. The totally positive part of a double Bruhat cell G(u,v) is G
(u,v)
>0

.
= G(u,v) ∩G≥0.

Proposition 1.4 [1] The totally positive part of the open double Bruhat cell G(w0,w0) is
the totally positive variety.

To illustrate the previous Proposition we study in detail our running example, n = 3,
w = w0: we consider the following regular functions on G:

(1.2)
f1 = ∆1,3 = x13, f2 = ∆12,23,

f3 = ∆1,2 = x12, f4 = ∆12,12, f5 = ∆1,1 = x11, f6 = ∆2,1 = x21,
f7 = ∆23,12, f8 = ∆3,1 = x31.

Let F = {fi| i = 1, · · · , 8} be the set of such minors. In particular the open double Bruhat
cell is given by:

(1.3) G(w0,w0) = {x ∈ G| fk(x) 6= 0 for every k ∈ {1, 2, 7, 8}}.

The following Lemma illustrate the previous Proposition.

Lemma 1.5 Given an element x of G = SL3(C), every minor of x is a Laurent polynomial
with non–negative integer coefficients in the variables f1, · · · , f8. If all minors of x ∈
SL3(C) are nonnegative and x is in the open double Bruhat cell, i.e. x ∈ G(w0,w0)

>0 , then x
is totally positive.

Dimostrazione. The proof is by direct check. We give the Laurent expansion in f1, · · · , f8

of every minor.

Minors of order 1

x11 = f5, x12 = f3, x13 = f1,

x21 = f6, x22 =
∆12,12+x21x12

x11
= f4+f6f3

f5
, x23 =

∆12,23+x13x22
x12

= f2f5+f1f4+f1f3f6
f3f5

,

x31 = f8, x32 =
∆23,12+x22x31

x21
= f5f7+f4f8+f3f6f8

f5f6
.

Since the determinant of x is 1 we have that

1 = x31∆12,23 − x32∆12,13 + x33∆12,12 = · · ·

= f8f2 −
(f5f7 + f4f8 + f3f6f8)(f2f5 + f1f4)

f3f5f6
+ x33f4

from which we get:

x33 =
f3f5f6 + (f5f7 + f4f8)(f2f5 + f1f4) + f1f3f4f6f8

f3f4f5f6
.
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Minors of order two By using minors of order one it is not difficult to get the following
equalities:

∆12,12 = f4,

∆12,13 = x11x23 − x13x21 =
f2f5 + f1f4

f3
,

∆12,23 = f2,

∆13,12 = x11x32 − x12x31 =
f5f7 + f4f8

f6
,

∆13,13 = x11x33 − x13x31 =
f3f5f6 + (f5f7 + f4f8)(f2f5 + f1f4)

f3f4f6
,

∆13,23 = x12x33 − x13x32 =
f3f6 + f2f5f7 + f2f4f8

f4f6
,

∆23,12 = f7,

∆23,13 = x21x33 − x23x31 =
f3f6 + f2f5f7 + f1f4f7

f3f4
,

∆23,23 = x22x33 − x23x32 =
1 + f3f6 + f2f5f7

f4f5

Suppose now that all the minors of a matrix x ∈ SL3(C) are nonnegative and fk(x) > 0 for
k = 1, 2, 7, 8; it then follows from the previous formulas that fk(x) > 0 also for k = 3, 4, 5, 6
and hence x is totally positive.

Definition 1.6 A Total Positive basis (TP–basis) for G(u,v) is a collection of regular
functions F = {f1, · · · , fm} ⊂ C[G(u,v)] such that

(a) f1, · · · , fm are algebraically independent and generate the field C(G(u,v)). In partic-
ular m = n+ l(u) + l(v);

(b) (f1, · · · , fm) : G(u,v) → Cm restricts to a bi–regular isomorphism U(F )→ Cm6=0 where

(1.4) U(F )
.
= {x ∈ G(u,v)| fk(x) 6= 0 ∀k = 1, · · · ,m};

(c) (f1, · · · , fm) : G(u,v) → Cm restricts to an isomorphism G
(u,v)
>0 → Rm>0.

The third condition in Definition 1.6 gives rise to a total positivity criterion in G(u,v):
a matrix x ∈ G(u,v) is totally nonnegative if and only if fk(x) > 0 for every k = 1, · · · ,m.

A reduced word for (u, v) ∈ W × W is a sequence i = (i1, · · · , il(u)+l(v)) of indices
ik ∈ [1, n]. Following the construction of [1], we add the indices 1, · · · , n at the beginning
of i and we highlight indices denoting u with the sign minus. The new sequence will
be again called a reduced word of (u, v), denoted with i but it becomes the sequence
(1, · · · , n, i1, · · · , il(u)+l(v)) of length m = n + l(u) + l(v) and ik ∈ −[1, n] ∪ [1, n]. For
example if u = s1s2s1 and v = s1s2, i = (1, 2,−1,−2,−1, 1, 2).
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Definition 1.7 Let i = (i1, · · · , im) = (1, · · · , n, in+1, · · · , im) be a reduced word for
(u, v) ∈ W ×W (in the previous sense). For k ∈ [1,m] we define the the multi–indices
γk and δk as γk = s−i1 · · · s−ik [1, |ik| ] and δk = sim · · · sik+1

[1, |ik| ] with the convention
s−i = 1 for i ∈ [1, n].

Theorem 1.8 Each reduced word i of (u, v) ∈W ×W gives rise to a TP–basis

Fi = {∆γk,δk : k ∈ [1,m]}

where the multi–indices γk and δk are given in Definition 1.7.

To illustrate the previous theorem, in G = SL3(C) we choose u = v = (1, 3) = s1s2s1

and i = (1, 2, 1, 2, 1,−1,−2,−1). Then

γ1
.
= 1 δ1 = s1s2s1s2[1] = 3

γ2
.
= [12] δ2 = s1s2s1[12] = [23]

γ3
.
= 1 δ3 = s1s2[1] = 2

γ4
.
= [12] δ4 = s1[12] = [12]

γ5
.
= 1 δ5 = 1

γ6
.
= s1[1] = 2 δ6 = 1

γ7
.
= s1s2[12] = [23] δ7 = [12]

γ8
.
= s1s2s3[1] = 3 δ8 = 1

and we get fk = ∆γk,δk , k = 1, · · · , 8, defined in (1.2).
In [1] they discovered that TP–bases can be ”mutated” one into another by a combi-

natorial mechanism. This is the main idea behind the theory of cluster algebras.

Definition 1.9 Let i = (i1, · · · , im) be a reduced word for (u, v) ∈ W ×W . We say that
an index k ∈ [1,m] is i–exchangeable if

(a) n < k ≤ m;

(b) |ip| = |ik| for some p > k.

We denote by exi the set of i–exchangeable indices.

In the previous example i = (1, 2, 1, 2, 1,−1,−2,−1) and hence exi = [3, 6].

Lemma 1.10 The subset c = {fk : k ∈ [1,m] \ exi} ⊂ Fi depends only on u and v, not
on the particular choice of a reduced word i. In particular the cardinality n of exi depends
only on u and v. Moreover each fk ∈ c vanishes nowhere in G(u,v).

In the previous example c = {f1, f2, f7, f8}. An immediate corollary of this result is
that the ring of Laurent polynomials C[c±1] in the elements of c is contained in C[G(u,v)].

Theorem 1.11 There exists an m× n integer matrix B̃(i) = (bij) such that
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• for every k ∈ exi the function

(1.5) f ′k =

∏
i:bik>0 f

bik
i +

∏
i:bik<0 f

−bik
i

fk

is regular on G(u,v) (i.e. f ′k ∈ C[G(u,v)]) and the collection

Fi,k
.
= Fi \ {fk} ∪ {f ′k} ⊂ C[G(u,v)]

is a TP–basis for G(u,v);

• C[G(u,v)] = C[U ] where U is the Zariski open subset

U = U(Fi)
⋃
k∈exi

U(Fi,k)

and U(Fi) is defined in (1.4).

Corollary 1.12 The subalgebra C[G(u,v)] of the field of rational functions C(G(u,v)) is the
intersection of n+ 1 Laurent polynomial rings:

C[G(u,v)] = C[F±1
i ] ∩

⋂
k∈ex

C[Fi,k]

This corollary says that C[G(u,v)] has a structure of upper cluster algebra. Every cluster
algebra is contained in an upper cluster algebra. Sometimes it happens that they coincide.
This is the case for example when u = v = c = si1 · · · sin is a Coxeter element of W , i.e.
the indices ik are all distinct.

The definition of the matrix B̃(i) is purely combinatorial. A particular importance for
our point of view has the submatrix B(i) of B̃(i) with rows and columns parameterized
by exi. The submatrix B(i) is called the exchange matrix of F (i). In our example:
u = v = (1, 3) and i = (1, 2, 1, 2, 1,−1,−2,−1) the two matrices are given by:

(1.6) B̃(i) =



1 0 0 0
−1 1 0 0
0 −1 1 0
1 0 −1 1
−1 1 0 −1
0 −1 1 0
0 1 0 −1
0 0 0 1


; B(i) =


0 −1 1 0
1 0 −1 1
−1 1 0 −1
0 −1 1 0

 .

Note that the matrix B(i) is skew–symmetric. In general B(i) has a weaker property:

Proposition 1.13 [CAIII, Proposition 2.6] The matrix B̃(i) has full rank n. The ex-
change matrix B(i) is skew–symmetrizable, i.e. dibij = −djbji for some positive integers
d1, · · · , dn.
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We conclude this section by saying that all the previous results hold in a semi–simple
complex, connected, simply–connected algebraic group G by substituting minors with
generalized minors, that are particular regular functions.

2 The algebra of diagonals

We consider two classical combinatorial problems:

(a) Counting the number of products (bracketings) of n+ 2 elements with respect to a
non–associative operation;

(b) counting the number of triangulations by non–crossing diagonals of a regular (n+3)–
agon.

There is a natural bijection between bracketings of n+ 2 elements a1, · · · , an+2 and trian-
gulations by (non–crossing) diagonals of the regular n+ 3–agon Pn: it consists in labeling
all the edges but one of Pn by a1, · · · , an+2 and in associating to a triangulation T of Pn
the bracketing in which ai and aj are in the same product if they label two edges of the
same triangle of T . In Figure 1 we enumerate the five triangulations of a pentagon by
T1, · · · , T5 and we show the bijection with the five possible bracketings of four elements.

Figure 1: Triangulations of a pentagon and bracketings of four elements

The solution of the two problems is given by the n + 1–th Catalan number (see e.g.
[FR] and its bibliography):

cn+1
.
=

1

n+ 2

(
2n+ 2

n+ 1

)
.

In the first problem n is the number of (couples of) parenthesis while in the second problem
n is the number of diagonals of every triangulation of Pn. We denote by m = n+(n+3) the
number of diagonals and edges of every triangulation of Pn. The flip mutation transforms
a triangulation T of the n+3–agon Pn into the triangulation T ′ that have all the diagonals
of T but one diagonal, say d, that is replaced by the unique diagonal d′ of Pn such that d
and d′ are diagonals of a quadrilateral of elements of T (or T ′).
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Figure 2: Diagonal Flip

We associate to Pn a graph called exchange graph whose vertices are triangulations
by non–crossing diagonals of Pn and whose edges are diagonal flips. Such graph is well
known in literature and it is proved that it is the 1–skeleton of a convex polytope called
n–dimensional associahedron or Stasheff’s polytope (see [FR] for a good survey on asso-
ciahedra and their connection with cluster algebras). Figure 3 shows the exchange graph
of a pentagon that coincide with the 2–dimensional associahedron.

Figure 3: Exchange graph of a pentagon and two dimensional associahedron

To every triangulation T of Pn we associate an m × n integer matrix B̃(T ) whose
columns are parameterized by edges and diagonals of T and whose rows only by diagonals
and whose entries are given by:

bij =


1 if i and j are sides in some triangle of T

and j follows i in the clockwise order
−1 if the same holds, in the counter–clockwise order
0 otherwise
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To illustrate: the matrix associated with the triangulation T1 of Figure 1 has the columns
parameterized by the diagonals d1 and d2 and the rows parameterized by both the diago-
nals d1 and d2 and by the edges a1, · · · , a4. It is the following

d1 d2

d1 0 1
d2 −1 0
a1 −1 0
a2 1 0
a3 0 −1
a4 0 1

Diagonal flips are hence translated into matrix mutations as follows: if a triangulation T ′

is obtained to the triangulation T by ”flipping” the diagonal d, the respective matrices
B̃(T ) = (bij) and B̃(T ′) = (b′ij) are related to each other by

(2.1) b′ij =

{
−bij if i = d or j = d
bij + sg(bid)[bidbdj ]+ otherwise

where [x]+
.
= max(x, 0) and sg(x) is the sign function with sg(0) = 0. In general given an

m× n matrix B, we denote by µk(B) the matrix obtained from B by a matrix mutation
(2.1) in direction k ∈ [1, n], i.e. where k plays the role of d.

To illustrate we mutate in direction 1 the matrix associated with the triangulation T1

of Figure 1. We get B̃(T2):

B̃(T1) =



0 1
−1 0
−1 0
1 0
0 −1
0 1


µ1←→



0 −1
1 0
1 0
−1 1
0 −1
0 1

 = B̃(T2)

We are now able to introduce the algebra of diagonals An of Pn: it has
(
n+3

2

)
generators

(associated to every diagonal and edge of Pn) with the following relations: if a diagonal d′

is obtained from a diagonal d by a diagonal flip shown in Figure 2 then the corresponding
variables xd and xd′ satisfy

(2.2) xdxd′ = xaxc + xbxd.

The
(
n+3

4

)
relations (2.2) are called Ptolemy relations since of the classical Ptolemy theo-

rem which asserts that the product of the lengths of two diagonals of an inscribed quadri-
lateral equals the sum of the product of the lengths of opposite sides.

A model for the algebra An is the coordinate ring C[Xn] of the variety Xn of all
decomposable bi–vectors in

∧2 Cn+3. An element x of Xn is written as x =
∑

i<j Pijei∧ej
and Pij are called the Plücker coordinates of x in the standard basis ei ∧ ej of

∧2 Cn+3.
To identify An with C[Xn] we associate to a chord [i, j] (i.e. either a diagonal or an edge
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between the distinct vertices i and j) of Pn the Plücker coordinate Pij . The Ptolemy
relations (2.2) translate into the Grassmann–Plücker relations PikPjl = PijPkl + PilPjk
for all 1 ≤ i < j < k < l ≤ n+ 3.

One can develop a total positivity theory in Xn completely parallel to that one in
Double–Bruhat cells mentioned in Section 1. We say that an element x of Xn is totally
positive if all its Plücker coordinates are positive real numbers. We then say that a
collection of elements of An = C[Xn] is a Total positive basis (TP–basis) for Xn, if it
satisfies hypothesis of Definition 1.6 where m = 2n+ 3.

Theorem 2.1 [CAII] Every triangulation T of Pn gives rise to a TP–basis x̃(T ) for Xn

which consists of the 2n+ 3 generators xa corresponding to the sides and diagonals of T .

If a triangulation T ′ of Pn is obtained from the triangulation T by the flip of a diagonal
d, then one can easily check that the Ptolemy relation (2.2) between the corresponding
variables xk

.
= xd and xk′

.
= xd′ is completely analogous to (1.5) i.e.

(2.3) x′k =

∏
i:bik>0 x

bik
i +

∏
i:bik<0 x

−bik
i

xk

where B̃(T ) = (bij) is the matrix associate with the triangulation T .
We saw in Section 1 that the TP–basis Fi can be mutated in n directions giving rise

to other TP–bases. Here we can also continue mutating. The first concept is related with
the concept of upper cluster algebra while the second one with that one of cluster algebra.

3 Definition of a cluster algebra

Let m ≥ n > 0 two positive integers. Let F be the field of rational functions in m
commuting variables. A seed in F is a couple Σ = (B̃, x̃) where

• the first element B̃ = (bij) is an m × n integer matrix whose principal part B =
(bij)i,j=1,··· ,n is skew–symmetrizable, i.e. dibij = −djbji for some positive integers
d1, · · · , dn. B is called the exchange matrix of Σ.

• The second element x̃ = (x1, · · · , xm) is an m–tuple of elements of F forming a free
generating system for F , i.e. F ' Q(x1, · · · , xm). The n–tuple x = (x1, · · · , xn) is
called the cluster of the seed Σ and its elements are the cluster variables of Σ. The
set c = {xn+1, · · · , xm} is called the set of coefficients.

In the previous sections we have seen that only some elements of a TP–basis need to be
mutated in order to get another TP–basis while the others can remain the same. “Mutat-
ing” elements correspond to cluster variables while the others correspond to coefficients
(which explains the notation), as we see in the following definition.

Definition 3.1 [Seed mutations] Let Σ = (B̃, x̃) be a seed in F and let k ∈ I = [1, n].
The seed mutation µk in direction k transforms the seed Σ into the seed µk(Σ) = (B̃′, x̃′)
defined as follows:
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• The entries of B̃′ = (b′ij) are given by (2.1);

• The set x̃′ = {x′1, · · · , x′m} is given by x′j = xj for j 6= k, while x′k ∈ F is determined
by the exchange relation (2.3).

It is easy to see that µk is involutive and hence mutations define an equivalence relation
in the class of seeds of F : two seeds Σ and Σ′ are equivalent if there exists a sequence
{µk1 , µk2 , · · · , µks} of mutations such that Σ′ = µks · · ·µk1Σ. We denote by O(Σ) the
equivalence class of Σ and with χ(Σ) the set of cluster variables in O(Σ), that is the set
of cluster variables of every seed in O(Σ).

The cluster algebra A = A(Σ) with initial seed Σ is the Z[c±1]-subalgebra of F gener-
ated by cluster variables in O(Σ), in symbols: A(Σ)

.
= Z[c±1][χ(Σ)].

A cluster algebra is called of finite type if it has finitely many clusters. In [CAII] the
authors show that cluster algebras of finite type are classified by Dynkin diagrams of finite
type, i.e. of type A,B, · · · , G. Some coordinate rings of classical algebraic varieties have
a structure of cluster algebras of finite type. This is a list of some of them:

cluster type

Q[Gr2;n+3] An

Q[Gr3;6] D4

Q[Gr3;7] E6

Q[Gr3;8] E8

Q[SL2] A1

Q[SL3] D4

where Grk;n denotes the Grassmannians of k–vector spaces in an n–dimensional one. On
the other hand in [CAII] and more recently in [2], authors give a geometric realization of
every cluster algebra of finite type. In [3] the authors study in details cluster algebras of
rank two, i.e. in which every cluster has cardinality two. In my phd thesis I have studied
cluster algebras of rank three.
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Computing VaR and CVaR for energy

derivatives

Giorgia Callegaro (∗)

1 Introduction

Due to the peculiarity of energy markets (think for example of the spot price seasonality
or of transport and storability problems in the case of electricity and gas) many “variable
volume” options have been introduced.
They are purchase or sale contracts which provide flexibility about the timing to delivery
and about the overall minimum and maximum take amounts, usually called “swing” of
“take or pay” options.

We focused our attention on the computation of risk measures related to this kind of
options, namely we considered the “Value at Risk” (VaR) and the “Conditional Value at
Risk” (CVaR) and we numerically computed them relatively to an investment in swing
options.

2 From the spot price model to swing options

We will be interested in Swing options referring to gas. Since the spot price of the gas
is not a traded quantity, usually one refers to prices of forward contracts with different
maturities, denoted (Fs,t)s∈[0,T ] (where t is the maturity), so that the spot price at time t
is equal to

St = Ft,t = lim
T→t

Ft,T .

For simplicity we will work on the following log-normal model for the forward curve Ft,T ,
known as the “one-factor model”, by L. Clewlow and C. Strickland (see [3]):

dFt,T
Ft,T

= σ(t, T )dWt = σe−θ(T−t)dWt, t ∈ [0, T ],
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where (Wt)0≤t≤T is a standard Brownian motion on a (completed) filtered probability
space (Ω,F , (Ft)0≤t≤T ,P). By using Itô’s Formula we find

(1) St = F0,t exp

{
Yt,t −

1

2
Σ2
t

}
,

where the initial conditions are given and specified by the forward curve F (0, t)0≤t≤T and

(2) Yt,T = σe−θT
∫ t

0
eθsdWs, Σ2

t =
σ2

2θ
(1− e−2θt).

Let us now describe a general Swing contract, following [2]. We fix a finite time horizon
T and some intermediate dates 0 = t0 < t1 < · · · < tN = T . We denote by qti the volume
of gas purchased at time ti by the buyer of the contract, which is subject to the constraints

(3) qmin < qti < qmax, i = 0, · · · , N − 1,

and, introducing the cumulative volume of gas bought up to time ti, Qti =
∑i−1

j=0 qtj , we
also want the following relation to be satisfied

Qmin < QT < Qmax.

Assuming that the purchase price is fixed and equal to K, the buyer of the contract at
time ti gets qti(Sti −K) and so, given the strategy q = (qti)0≤i<N we find that the value
at time 0 of such an option is given by

N−1∑
i=0

e−rtiqti(Sti −K) + e−rTPT (ST , QT ),

where r is the interest rate and PT (S,Q) is the penalty function at maturity T for the
case in which global purchase constraints are violated.
Its fair price at time 0 for a given q = (qti)0≤i<N , is

(4) P(0, q) = E

{
N−1∑
i=0

e−rtiqti(Sti −K) + e−rTPT (ST , QT )

}
,

where the expectation is taken under the risk neutral measure, and so to value such an
option we have to compute

(5) sup
q∈Adm

P(0, q).

We have obtained a stochastic control problem, that can be solved using the Dynamic
Programming (DP) Principle, under some additional hypotheses.
In [2] the evaluation problem is solved in a more general setting using the DP together
with the vectorial quantization method (for an introduction to the method see [9] and for
further results see [6] and [7]).

We will use the instruments developed in [2] to determine the optimal strategy q∗ to
compute risk measures associated to the random “investment”

(6) X =

N∑
i=0

q∗ti(Sti −K).
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3 Risk measures: VaR vs CVaR

If our gain is given by a real random variable X (as for example (6) and F is its distribution
function ( F : R→ [0, 1], F (x) = P(X ≤ x)) we have

Definition 3.1 Given α ∈]0, 1[, the “Value at Risk” of level α is the α−quantile of the X
distibution, which is the real value

(7) VaRα(X) = inf{x ∈ R : F (x) ≥ α}.

Since VaR is not able to quantify the amount of gains that are in the right tail of the
distribution, in recent years the attention has moved to new risk measures, such as the
“Conditional Value at Risk” (CVaR).

Definition 3.2 The CVaR is defined as

CVaRα(X) = E(X|X ≥ VaRα(X)).

It quantifies the gains (or losses) that might be encountered in the α−tail of the distribu-
tion.

The following result is the starting point of our work, it is due to R.T. Rockafellar and
S. Uryasev and it can be found in “Optimization of conditional value-at-risk”, Journal of
Risk 2 (2000), 21-41 (see also [8]).

Proposition 3.3 As a function of ξ ∈ R

(8) Fα(X, ξ) := ξ +
1

1− α
E [(X − ξ)+]

is finite and convex (hence continuous) and we have

(9) CVaRα(X) = min
ξ
Fα(X, ξ), VaRα(X) = ξ∗ ∈ argminξ Fα(X, ξ).

Remark 3.4 The minimization problem above can be transformed into a stochastic-root
finding one by writing the first order optimality conditions

min
ξ
Fα(X, ξ) = Fα(X, ξ∗) ⇐⇒ ∂Fα

∂ξ
(X, ξ∗) = 0.

The solution ξ∗ to the former problem can be asymptotically estimated using stochastic
algorithms, if no explicit formula is available.
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4 The Robbins-Monro algorithm(s)

In order to approximate the zero of a certain function h which is not known directly,
but can be estimated via noisy observations, Robbins and Monro, in 1951, proposed the
following general algorithm:

(10) ξ0 given, ξn+1 = ξn − πn+1h̄(ξn), n ≥ 0,

where

• (πn)n≥1 is an sequence of deterministic positive weights satisfying

πn → 0,
∑
n≥1

πn =∞,
∑
n≥1

π2
n <∞,

for example πn = C
n , ∀n ≥ 1.

• h̄(ξn) is a “noisy” estimate of the value h(ξn).

In order to solve problem (9) when X is given by (6), since in this case the distribution
of X is not easily determined (and so is Fα(X, ξ)), we can apply R-M stochastic recursive
algorithms. If we define (see Remark 3.4)

(11) H(ξ,X) := ξ +
1

1− α
(X − ξ)+,

∂H(ξ,X)

∂ξ
= 1− 1

1− α
I{X>ξ} < +∞ P−a.s.

in order to determine VaRα(X) = ξ∗ we have to find the zero of

(12) h(ξ) := E
[
∂H(ξ,X)

∂ξ

]
.

Adapting equation (10), the R-M algorithm consists in simulating a sequence (Xn)n≥0 of
copies i.i.d. of X, and then in applying the recursion

(13) ξn+1 = ξn − πn+1
∂H(ξn, Xn+1)

∂ξ
,

given the initial point ξ0.

Remark 4.1 [The choice of ξ0 and (πn)n] When trying to determine VaRα(X), we can
for example choose ξ0 = E(X) and πn = C

n ∀n ≥ 1. What about C? As we will see in
the examples, it has to be chosen depending on the problem and it has to depend on the
order of magnitude of the quantities we deal with.

Remark 4.2 [Convergence] In order to prove the convergence of algorithm (13) it suffices
to adapt more general theorems of convergence of stochastic recursive algorithms, such as
for example [4, Ths. 1.4.26 and 2.2.12] and [1, Ths. 5 and 6].
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5 Importance sampling as a variance reduction technique

The idea is to change the probability measure under which the paths (of X) are generated,
in order to obtain a representation that gives more weight to “interesting” outcomes. This
is possible thanks to Girsanov Theorem (for this we refer to any book treating stochastic
calculus).
If we denote by Zt,µ the Radon-Nikodym density process

(14) Zt,µ =
dQµ

dP |Ft
= exp

(∫ t

0
µsdWs −

1

2

∫ t

0
||µs||2ds

)
(where process µ has to satisfy some suitable integrability conditions) and by Eµ the
expectation under Qµ, if Girsanov Theorem’s hypotheses apply we can write

(15) E[X] = Eµ
[
X

dP
dQµ

]
=: Eµ [XLT,µ] .

This means that for each “admissible” process (µt), we can simulate i.i.d. copies of XLT,µ
under measure Qµ and obtain unbiased estimators of the original value.
The importance sampling paradigm requires to choose the process (µt) which retains the
initial expected value and minimizes the variance of the new estimator

Varµ

[
X

dP
dQµ

]
= Eµ

{
[XLT,µ]2

}
− Eµ [XLT,µ]2 = E

[
X2LT,µ

]
− E[X]2.

The optimal importance sampling estimator has then to solve

(16) min
µ∈Adm

E
[
X2LT,µ

]
⇐⇒ min

µ∈Adm
E
[
X2e−

∫ T
0 µsdWs+

1
2

∫ T
0 ||µs||

2ds
]
.

As for (9), also in this case the function to minimize with respect to µ is not always easily
accessible because of the form of X and we will resort to a second stochastic optimization
algorithm.

6 VaR and CVaR with IS: a “parallel” R-M

For simplicity we will restrict our attention to the following case:

(17) µt ≡ µ

and we will try to find an optimal “constant” version of µ∗, denoted µ̄∗.

Proposition 6.1 In the case of swing contracts (see (6)) or sequences of call options in
energy markets, with the spot derived in the one-factor model, problem (16) with µt ≡ µ
admits a unique solution and it is equivalent to the stochastic root finding one

(18)
∂

∂µ

{
E
[
X2e−µWT+ 1

2
µ2T
]}

= 0.

Università di Padova – Dipartimento di Matematica Pura ed Applicata 71



Seminario Dottorato 2007/08

To determine µ̄∗ that solves (18) our idea was to use a second R-M algorithm, made
parallel to the previous, to approximate it with a sequence (µn)n≥0. This is possible
introducing parameter µn in the first recursion.
The two optimization problems made parallel are (see (9), (11) and (16)

(19)


minξ∈R

{
ξ + 1

1−αEµ [(X − ξ)+LT,µ]
}
⇔ minξ∈R Eµ [H1(ξ,X, µ)]

minµ∈R E
[
X2e−µWT+ 1

2
µ2T
]

⇔ minµ∈R E [H2(µ,X,W )]

and the corresponding two R-M procedures, obtained as in Section 4 (see (13), are

(20)


(Qn) ξn+1 = ξn − π1

n+1

∂H1(ξn, Xn+1, µn)

∂ξ
, ξ0 given,

(P) µn+1 = µn − π2
n+1

∂H2(µn, Xn+1,Wn+1)

∂µ
, µ0 given,

where

∂H1(ξ,X, µ)

∂ξ
= 1− 1

1− α
LT,µ11{X>ξ},

∂H2(µ,X,W )

∂µ
= X2LT,µ(−W + µT )

and W denotes for simplicity WT . The initial values are given (for example we choose
µ0 = 0) and the weights areπ1

n = C1
n , π2

n = C2
n , ∀n ≥ 1, with constants C1 and C2 to

be chosen wisely.

Remark 6.2 [Convergence] Because of the presence, in the first recursion, of an expo-
nential of µ we numerically observe the explosion of the approximating sequence (µn)n
and so to achieve convergence we have to recur to projection methods. To show that the
projected version of our variance reduction algorithm (the second one in (19)) converges
it suffices to adapt the proof of Proposition 3.4.3 in [1].

7 An alternative: variance reduction as entropy minimization

As we have seen in Section 5, the optimal importance sampling process µ∗ is given by the
solution to problem (16), so that, since the minimum is attained at zero, we have

(21) Varµ∗

[
X

dP
dQµ∗

]
= 0 i.e.

dQµ∗

dP
=

X

E(X)
.

Problem (16) can be rewritten as

min
µ∈Adm

Varµ

[
X

dP
dQµ

]
= min

µ∈Adm
E
[
X2 dP

dQµ∗

dQµ∗

dQµ

]
,

so that we have transformed our original problem into the problem of determining µ that
minimizes the “distance” between Qµ∗ and Qµ. As a measure of this “distance” between
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two general probability distributions P and Q we used the relative entropy, which is defined
as

DKL(Q,P) =

 EQ

[
ln
(

dQ
dP

)]
= EP

[
dQ
dP ln

(
dQ
dP

)]
if Q << P,

+∞ otherwise.

After some manipulations, in the case when µt ≡ µ, the problem of minimizing the
Kullback-Leibler divergence between Qµ∗ and Qµ reduces to finding the

(22) min
µ∈R

E
[
X

(
−µWT +

1

2
µ2T

)]
and this last problem can be solved at the same time with the determination of the VaR
and CVaR (recall (19) in of Section 6, i.e. we will consider the two convex optimization
problems

(23)

 minξ∈R

{
ξ + 1

1−αEµ [(X − ξ)+LT,µ]
}
⇔ minξ∈R Eµ [H1(ξ,X, µ)]

minµ∈R E
[
X(−µWT + 1

2µ
2T )
]

⇔ minµ∈R E [H3(µ,X,W )]

The two corresponding R-M algorithms are then

(24)


(Qn) ξn+1 = ξn − π1

n+1

∂H1(ξn, Xn+1, µn)

∂ξ
, ξ0 given,

(P) µn+1 = µn − π3
n+1

∂H3(µn, Xn+1,Wn+1)

∂µ
, µ0 given,

where

∂H1(ξ,X, µ)

∂ξ
= 1− 1

1− α
LT,µ11{X>ξ},

∂H3(µ,X,W )

∂µ
= X(−W + µT ),

W denotes for simplicity WT , µ0 can be chosen equal to zero and π3
n is of the form

C3/n,∀n ≥ 1.

Remark 7.1 [Convergence] For the proof of the convergence of the sequence µn to µ̄∗ it
suffices to adapt the result of Theorem 4.4.2.1 in [1].

8 Numerical results

We tested our recursive algorithms in the following three cases:

(C) X = (ST −K)+ (call option),

(SC) X =
∑365

i=0 (Sti −K)+ (a sequence of call options),

(SW) X =
∑365

i=0 q
∗
ti(Sti −K) (swing contract),
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where process S satisfies equation (1), with the initial condition given by the forward curve
of [2] (i.e. the time horizon is one year and N = 365).
For the sake of brevity, we will comment on results in the first two cases and show the
most relevant ones in the swing option case. The common parameters are

σ = 0.36, θ = 0.21, r = 0.00, T = 1.00,K = 10.0, α = 0.95.

In all recursive procedures to obtain our simulations we used an Euler scheme with time-
step equal to ∆t/2 (instead of ∆t = 1/365, to have more precise values).

For what concerns the computation of VaR and CVaR, i.e. the application of recursion
(13), inspired by the definition of VaR and having in mind the gaussian case, we tested
the following cases (recall Remark 4.1)

ξ0 = pBS
0 (X) + l · σ(X), l ∈ {1, 2, 3}(25)

πn =
C

n
with C =

m · σ(X)
1

1−α − 1
, m ∈ {1, 2, 3}(26)

where pBS
0 is the Black-Scholes price at time zero and σ(X) denotes the standard deviation

of X. To indicate that we worked with a specific choice of l and m we used the notation
“(l,m)”.
Our “recipe” after n iterations is: simulate Xn+1 and

• if Xn+1 > ξn, then ξn+1 = ξn + m·σ(X)
n+1 (in this situation, with respect to our

estimate ξn, a rare event has happened and so ξn+1 will be on the right of ξn, shifted
by a quantity depending on n);

• else if Xn+1 < ξn, then ξn+1 = ξn − m·σ(X)
(n+1)· α

1−α
(in this case the new estimate

will be on the left of the previous one, since the simulation has not sampled in the
“critical” zone).

In the R-M procedures (20) and (24) we worked with the same ξ0 and with µ0 = 0.
Furthermore, we have made the following choices

(27) C1 = C, C2 = C4 =
1

pBS
0 (X)

2 , C3 =
1

pBS
0 (X)

,

in order for the three algorithms to be stable.
In the case of the standard variance reduction technique, we projected the sequence µn
on the compact set [−2, 2] ⊂ R, because some preliminary tests showed that µ̄∗ was very
close to zero.
All the numerical results are obtained using a computer with the following technical char-
acteristics:

OPERATING SYSTEM: Windows 2000,
PROCESSOR: Celeron,

CPU: 2.40 Ghz, RAM: 515568 KB.
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8.1 The call option

The interest in treating case (C) is the presence of closed formulas, namely

pBS
0 (X) var(X) σ(X) VaR95%(X)

14.46012068 66.62334369 8.162312398 29.60797250

First of all we observed that in all the cases, µ̄∗ ∈ [0.535, 0.545] already after 75000
Monte-Carlo simulations (nMC), meaning that the R-M procedure applied to determine
the optimal constant importance sampling parameter is early efficacious.
Furthermore, it was evident that the convergence to 29.60797250 was better achieved by
applying a variance reduction technique on X, as it should be, and that the best results
are obtained in the case (2, 2).
Encouraged by these facts, we tested the algorithms in the more interesting cases (SC) and
(SW), focusing our attention also to the CVaR, for which we do not have any reference
value.

8.2 The sequence of call options

Since in order to run the simulations we need good approximations for pBS
0 (X) and σ(X),

we made the following choices

pBS
0 (X) =

365∑
i=0

Call(0, S0; ti,K) = 6950.923384,(28)

σ(X)
∼
=

365∑
i=0

√
var[(Sti −K)+]

∼
= 2950,(29)

where the first one is the exact formula and the second one was tested to be a good ap-
proximation for the standard deviation.
For what concerns (20), as done with (C), we projected the sequence (µn)n on the set
K = [−2, 2].
First of all, the improvement given by the variance reduction was evident: the conver-
gence speeded up, since especially in the cases (2, 2) and (2, 3) and already after 100000
simulations the values of VaR and CVaR became stable around approximatively 11100
and 12500 respectively.
Furthermore for different choices of m we achieved convergence to the same two values
and in the case of CVaR the convergence is evident, especially under recursions (24).
Finally, µ̄∗ = 0.28 and effectively the standard deviation of XLT,µ̄∗ reduced from 2950 to
approximatively 1030 (this result is based on a sample of 10000 simulations).
As a conclusion we can say that the variance reduction techniques we have tested enable
a good convergence of (ξn)n to VaR and we find

VaR95%(X)
∼
= 11100, CVaR95%(X)

∼
= 12500.
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8.3 The swing option

In order to determine VaR and CVaR for the investment (SW) we based our work on the
results provided in [2] relative to pBS

0 (X) (recall equation (5)), computed by means of DP
and vectorial quantization (we can not enter here into details).
Since the computational cost increases rapidly with the number of Monte-Carlo simulations
when N = 365, we decided to test the case of a contract lasting three months.
Furthermore, to reduce further on the simulation costs, we decided to use an Euler scheme
with time step equal to ∆t instead of ∆t/2.
In all the cases pBS

0 (X) is computed as done in [2] with DP and quantization, while σ(X)
is estimated empirically from a sample of 10000 simulations.
The case we analyzed is the following

qmin = 3.00, qmax = 6.00, Qmin = 300, Qmax = 480,K = 20.0, T = 0.25

and we found
pBS

0 (X) = 945.538498 and σ(X)
∼
= 900.

After some preliminary tests on µ̄∗ we chose to project the sequence (µn)n in (20) on the
compact set K′ = [−3, 3].
In the following figures we present numerical results for the case (2, 2), that is the best one:
also in this case the convergence is evident already after 100000 Monte-Carlo iterations,
especially in the CVaR case.

Case (2,2)

0,95

1

1,05

1,1

1,15

1,2

1,25

1,3

1,35

1,4

0 50000 100000 150000 200000 250000

nMC

RM + rv
RM + RV (e)

Figure 1: µ̄∗ as a function of nMC, obtained using the different variance reduction techniques in
the case (2,2).
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VaR (2,2)
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Figure 2: ξ∗ as a function of nMC, obtained using different R-M procedures in the case (2, 2).

CVaR (2,2)
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Figure 3: Conditional Value at Risk obtained using different R-M procedures in the case (2, 2).

Remark 8.1 [Swing without constraints] A swing option without constraints (for example
if qmin = 0.00, qmax = 1.00, Qmin = 0.00, Qmax = 365,K = 10.0, T = 1.00) becomes a
sequence of Call options. For completeness we checked that in this case the results are
comparable to the ones obtained in Section 8.2. Unfortunately we cannot enter here into
details.

9 Conclusions

The most important result is that the three procedures we have used to determine VaR
and CVaR, especially the ones with variance reduction are efficient, i.e. the algorithms
tested converge and, furthermore, for different choices of l they converge to the same value.
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In the case of swing options, even if the computational costs are higher because of the
quantization method used to obtain the price simulations, the results seem to be precise,
especially for the CVaR.
In this case we also know that VaR can be directly computed at the same time with
the price, on the “Dynamic Programming quantized tree”, but there is no possibility to
compute the CVaR in the same way and so we did not concentrate on this possibility.

Since we know that VaR can be computed by means of a standard Monte-Carlo method,
the main question is: is the use of Robbins-Monro type algorithms really convenient?
I think it is, since in the cases we analyzed (especially when using variance reduction
techniques) convergence to our final estimate for the VaR starts with a number of Monte-
Carlo simulations equal to 120000, which is not so high. Furthermore, for what concerns
CVaR, which cannot be obtained by standard Monte-Carlo, we obtain estimates that
converge very quickly: our algorithms provide good approximations also of this quantity.

The difficult in implementing the three variance reduction methods is almost the same,
but the computational cost is not, for example because the sequence obtained when ap-
plying IS needs to be projected on a compact set, simulations are done under different
measures and quantization is heavier than Euler scheme.
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Sheaves on subanalytic sites and D-modules

Luca Prelli (∗)

Abstract. We start with an introduction to sheaf theory with some examples and then we define
sheaves on the subanalytic site. Thanks to these objects we can describe functional spaces which
are not defined by local properties (as tempered distributions). Then we introduce the notion of
D-module to apply the preceding constructions.

Sunto. Cominceremo con un’introduzione alla teoria dei fasci con alcuni esempi e poi definiremo i
fasci sul sito sottoanalitico. Grazie a questi oggetti è possibile descrivere spazi funzionali che non
sono definiti da proprietà locali (come, ad esempio, le distribuzioni temperate). Introdurremo poi
la nozione di D-modulo per dare un’applicazione alle costruzioni fatte in precedenza.

1 Introduction

Let X be a real analytic manifold and k a field. The spaces of functions which are not
defined by local properties, such as tempered distributions, tempered and Whitney C∞
functions, etc., are very useful in the study of systems of linear partial differential equations
(Laplace transform, tempered holomorphic solutions of D-modules etc.). Although these
spaces do not define sheaves on X, they define sheaves on a site associated to X, the
subanalytic site Xsa, where one just considers open subanalytic sets and locally finite
coverings.

In Section 2 we define sheaves on topological spaces and we give some examples
(continuous functions, locally constant functions, etc.). Then we show that if consider
“less open” subsets and “less coverings”, there are objects, which are not sheaves with the
usual topology, that become sheaves (as continuous bounded functions when we consider
only finite coverings). In order to do that we have to introduce the notion of topological
site (a site whose objects are open subsets).

In Section 3 we introduce the subanalytic site and we give a method to construct
subanalytic sheaves. Then we see that tempered distributions define a sheaf on the sub-
analytic site associated to a real analytic manifold.

In Section 4 we introduce the notion of D-module, characteristic variety and complex
of solutions of a D-module to apply the preceding constructions.

(∗)Grant holder in Pure Mathematics - Dipartimento di Matematica Pura ed Applicata, Via Belzoni 7 -
35131 Padova, Italy - - Seminar held on 12 March 2008.
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References are made to [1, 2, 4] for the classical sheaf theory and to [8] for sheaves
on Grothendieck topologies. The subanalytic site is defined in [5], and in [6] there is a
detailed study of sheaves on subanalytic sites with the construction of the six Grothendieck
operations. We refer to [3, 7] for an introduction to D-modules.

2 Sheaves

2.1 Sheaves on topological spaces

Let X be a topological space and let k be a field. Let Op(X) be the category of open
subsets of X, where the arrows are given by the inclusions (i.e. U → V means U ⊆ V ).

Definition 2.1.1 A presheaf of k-vector spaces is a contravariant functor from Op(X) to
the category of k-vector spaces.

In other words a presheaf associates:

(i) to each open subset U of X a k-vector space

Op(X) → k-vector spaces

U 7→ Γ(U ;F ) (or F (U)),

(ii) to each open inclusion V ⊆ U a k-linear map (the restriction morphism)

(V ⊂ U) 7→
(
F (U)→ F (V )

)
(restriction)

s 7→ s|V .

Definition 2.1.2 Given two presheaves F e G, a morphism of presheaves φ : F →
G consists of a family φ(U) : F (U) → G(U), (U open subset of X), commuting with
restrictions, i.e. if V ⊆ U the diagram

F (U)
φ(U) //

|V
��

G(U)

|V
��

F (V )
φ(V ) // G(V )

is commutative.

Definition 2.1.3 A sheaf F on X is a presheaf satisfying the following gluing conditions.
Let U be open and let {Uj}j∈J be a covering of U . We have the exact sequence

0→ F (U)→
∏
j∈J

F (Uj)→
∏
j,k∈J

F (Uj ∩ Uk).

It means that
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(i) if s ∈ Γ(U ;F ) and s|Uj = 0 for each j then s = 0,

(ii) if sj ∈ Γ(Uj ;F ) such that sj = sk on Uj ∩ Uk then they glue to s ∈ Γ(U ;F ) (i.e.
∃ s ∈ Γ(U ;F ) such that s|Uj = sj).

A morphism of sheaves is a morphism of the underlying presheaves.

Example 2.1.4 Let us consider

RX : Open sets of X → R-vector spaces

U 7→ Γ(U ;RX) = {constant functions on U}
(V ⊂ U) 7→

(
RX(U)→ RX(V )

)
(restriction)

s 7→ s|V .

• If s is zero on a covering of U then s = 0.

• For example, let X = R, U1 = (1, 2), U2 = (2, 3). We have U1 ∩ U2 = ∅. The
constant functions s1 = 0 on U1 and s2 = 1 on U2 do not glue on a constant function
on U1 ∪ U2.

Then the correspondence U 7→ Γ(U ;RX) = {constant functions on X} does not define a
sheaf on X. We obtain a sheaf if we consider locally constant functions.

Example 2.1.5 Let us consider

CX : Open sets of X → R-vector spaces

U 7→ {continuous real valued functions on U}

• If s is a continuous function and s is zero on a covering of U then s = 0.

• If {si} are continuous functions on a covering {Ui} of U , such that si = sj on Ui∩Uj ,
then there exists s continuous on U with s = si on each Ui.

Then the correspondence U 7→ Γ(U ; CX) = {continuous real valued functions on U} defines
a sheaf on X.

Example 2.1.6 Let us consider

CbX : Open sets of X → R-vector spaces

U 7→ {continuous bounded functions on U}

• For example, let X = R, Un = (−n, n), n ∈ N, and sn : Un → R, x 7→ x2. Then sn
is bounded on Un for each n ∈ N, but x 7→ x2 is not bounded on R.

Then the correspondence U 7→ Γ(U ; CbX) = {continuous bounded real valued functions on
U} does not define a sheaf on X.
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Other examples of sheaves are: holomorphic functions, C∞ functions , distributions.
Other examples of presheaves which are not sheaves are: L2 functions, tempered distribu-
tions. In fact they do not satisfy gluing conditions.

If we consider “less open subsets” and “less coverings” they may become sheaves. We need
the notion of site.

2.2 Sheaves on topological sites

Remark that the definition of sheaf depends only on

• open subsets

• coverings

One can generalize this notion by choosing a subfamily T of Op(X) and for each U ∈
Op(X) a subfamily Cov(U) of coverings of U satisfying the following hypothesis (defining
a site XT ).

(i) U ∈ Cov(U),

(ii) if S1 ∈ Cov(U) is a refinement of S2 ⊂ Op(U), then S2 ∈ Cov(U),

(iii) if S ∈ Cov(U), then for each V ⊆ U , V ∩ S ∈ Cov(V ),

(iv) if S1, S2 ⊂ Op(U), S1 ∈ Cov(U) and V ∩ S2 ∈ Cov(V ), then S2 ∈ Cov(U).

Here S ∩ V = {Uj ∩ V }j∈J if S = {Uj}j∈J .

Hence we can generalize the definitions of presheaf and sheaf to XT .

Definition 2.2.1 Following the notations of Definitions 2.1.1 and 2.1.3:

(i) a presheaf on XT is a contravariant functor from T to the category of k-vector
spaces,

(ii) a presheaf of k-vector spaces F is a sheaf on XT if for each U ∈ T and each
{Uj}j∈J ∈ Cov(U) we have the exact sequence

0→ F (U)→
∏
j∈J

F (Uj)→
∏
j,k∈J

F (Uj ∩ Uk).

The definitions of morphisms of presheaves (resp. sheaves) on XT are similar to those of
presheaves (resp. sheaves) on X.

Example 2.2.2 Let us consider the site XT where

• T =open subsets of X

• Cov(U) = {coverings of U admitting a finite subcovering}
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and consider the correspondence U 7→ Γ(U ; CbX) (continuous bounded functions).

• If {si} are bounded on a finite covering {Ui} of U , such that si = sj on Ui∩Uj , then
there exists s bounded on U with s = si on each Ui.

Then the correspondence U 7→ Γ(U ; CbX) defines a sheaf on XT .

3 Sheaves on subanalytic sites

3.1 The general case

Let X be a topological space and consider a family of open subsets T satisfying:
(i) U, V ∈ T ⇔ U ∩ V,U ∪ V ∈ T ,
(ii) U \ V has finite numbers of connected components ∀U, V ∈ T ,
(iii) T is a basis for the topology of X.

Definition 3.1.1 The site XT is defined by:

• open subsets: elements of T

• Cov(U) (coverings of U ∈ Op(XT )): coverings admitting a finite subcovering

Example 3.1.2 Exemples of families T satisfying (i)− (iii) are:

(i) T ={open semialgebraic subsets of Rn}

(ii) T = {open relatively compact subanalytic subsets of a real analytic manifold}, the
subanalytic site Xsa.

(iii) T ={open definable subsets of Nn}, given an O-minimal structure (N,<, . . .), the
site DTOP.

There is an easy method to verify if a presheaf on XT is a sheaf.

Proposition 3.1.3 Let F be a presheaf on XT . Assume that

(i) F (∅) = 0

(ii) ∀U, V ∈ T the sequence

0→ F (U ∪ V )→ F (U)⊕ F (V )→ F (U ∩ V )

is exact.

Then F is a sheaf on XT .
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3.2 Subanalytic sheaves

From now on we will consider the subanalytic site Xsa:

• open subsets: relatively compact subanalytic open subsets,

• Cov(U) (coverings of U ∈ Op(Xsa)): locally finite coverings of U .

Let us consider as an example the presheaf

U 7→ DbtX(U)

of tempered distribution over a real analytic manifold X. This is not a sheaf with the
usual topology.

• For example, if X = R, we can find tempered distributions sn on
{

1
n < x < 1

}
,

n ∈ N which do not glue to a tempered distribution s on {0 < x < 1}.

Anyway for U, V open subanalytic relatively compact subsets of X we have the exact
sequence

0→ DbtX(U ∪ V )→ DbtX(U)⊕DbtX(V )→ DbtX(U ∩ V )

This implies that U 7→ DbtX(U) is a sheaf on the subanalytic site Xsa.

One can also define the six Grothendieck operations for subanalytic sheaves. In fact we
have the following result of [6]

Theorem 3.2.1 Let f : X → Y be a morphism of real analytic manifolds. The six
Grothendieck operations Hom, ⊗, f∗, f

−1, f!!, f
! are well defined for subanalytic sheaves.

4 D-modules

4.1 The ring of differential operators

Let X be a complex analytic manifold. We denote by DX the sheaf of rings of differential
operators. Locally, a section of Γ(U ;DX) may be written as P =

∑
|α|≤m aα(z)∂αz with

aα(z) holomorphic on U . We denote by Mod(DX) the sheaf of DX -modules (i.e. a sheaf
F belongs to Mod(DX) if F (U) is a DX(U)-module for each U ∈ Op(X)).

Let T ∗X
π→ X be the cotangent bundle and let S ⊂ π−1DX

S(x,ξ) = {P ∈ π−1(Dx) ; σ−1(P )(x, ξ) 6= 0}

where σ(P ) is the principal symbol of P . Set EX = S−1(π−1DX). It means that in EX
every P with σ(P )(x, ξ) 6= 0 is (locally) invertible.

Definition 4.1.1 The characteristic variety Char(M) of a DX-module M is the support
of EX ⊗π−1DX π

−1M.
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Example 4.1.2 If P is a differential operator andM = DX/DXP (i.e. M = coker(DX
P→

DX)), Char(M) is the zero locus of the principal symbol σ(P ) of P . This is because if
σ(P ) 6= 0 then P (locally) has an inverse in EX .

Let f : X → Y be a morphism of complex analytic manifolds and let fπ : X×Y T ∗Y → T ∗Y
be the base change map.

Definition 4.1.3 f is non characteristic for M if

f−1
π (Char(M)) ∩ T ∗XY ⊆ X ×Y T ∗Y Y

Example 4.1.4 If Y = Cn, X = {z1 = 0} and f : X ↪→ Y , M = DX/DXP with
P =

∑
|α|≤m aα(z)∂αz then f is non characteristic if the coefficient of ∂mz1 is 6= 0 on X.

The sheaf OX of holomorphic functions has a structure of DX -module. Let M be a
coherent DX -module (i.e. there is an exact sequence DMX → DNX →M→ 0). We denote
by Sol(M) the sheaf RHomDX (M,OX).

Example 4.1.5 If U is convex and M = DX/DXP , then Sol(M) on U is the complex

Γ(U ;OX)
P→ Γ(U ;OX),

H0(U ;Sol(M)) = {s ∈ Γ(U ;OX), Ps = 0} = kerP,

H1(U ;Sol(M)) = Γ(U ;OX)/PΓ(U ;OX) = cokerP.

4.2 Cauchy-Kowaleskaya-Kashiwara Theorem

The following theorem is known as the Cauchy-Kowaleskaya-Kashiwara Theorem.

Theorem 4.2.1 LetM be a coherent DY -module and suppose that f is non characteristic
for M. Then f−1Sol(M) ' Sol(f−1M).

Suppose that U is a convex neighborhood of a point of X = {z1 = 0}, f is the embedding
and M = DX/DXP , with P =

∑
|α|≤m aα∂

α
z . In this case f−1M' DmX . We are reduced

to the isomorphism

Γ(U ; f−1Sol(M))
∼→ (Γ(U ;OX))m

s 7→ (s|X , ∂z1s|X , . . . , ∂m−1
z1 s|X)

i.e. to the existence and uniqueness of the solution of{
Ps = 0

∂ks|X = gk k = 0, . . . ,m− 1
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for any (gk)
m−1
k=0 ∈ (Γ(U ;OX))m. Moreover H1(U ;Sol(M)) = 0 means that P is surjective,

i.e. the existence of the solution of Ps = g for any g ∈ Γ(U ;OX).

Definition 4.2.2 One denotes by OtX the sheaf of tempered holomorphic functions defined
by the Dolbeault complex:

0→ DbtX
∂→ DbtX

(0,1) ∂→ · · · ∂→ DbtX
(0,n) → 0.

The sheaf of tempered holomorphic functions has a structure of ρ!DX -module. (Γ(U ; ρ!DX)
are differential operators

∑
|α|≤m aα∂

α
z with aα holomorphic in U).

Remark 4.2.3 One shall be aware that if the dimension of X is > 1 the Dolbeaut complex
is not concentrated in degree zero and OtX belongs to derived category of Mod(DX).

Denote Solt(M) = RHomρ!DX (ρ!M,OtX). Thanks to the theory of subanalytic sheaves
one can obtain a tempered version of the Cauchy-Kowaleskaya-Kashiwara Theorem.

Theorem 4.2.4 LetM be a coherent DY -module and suppose that f is non characteristic
for M. Then f−1Solt(M) ' Solt(f−1M).
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[6] L. Prelli, Sheaves on subanalytic sites. To appear, Rend. Sem. Mat. Univ. Padova, available
in arXiv: math.AG/0505498.

[7] J.-P. Schneiders, An introduction to D-modules. Bull. Soc. Royale des Sciences de Liège 63,
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Numerical modeling for convection–dominated

problems

Manolo Venturin (∗)

Abstract. During the last years, there has been a great interest in the development of sophisti-
cated mathematical models for the simulation of real life applications which involves convection–
dominated phenomena. For example, these problems concern the solution of scalar advection–
diffusion equations, the Navier–Stokes equations and the Shallow Water equations.
The main goal of this seminar is to review the most important difficulties that arise in the numer-
ical approximation of this kind of problems when convection dominates the transport process.
Moreover, we present a method for the treatment of this equations with the use of the finite element
discretization on the domain.

Sunto. Nel corso degli ultimi anni, vi è stato un grande interesse nello sviluppo di modelli matema-
tici sofisticati per la simulazione di problemi reali che coinvolgono fenomeni a convezione dominante.
Ad esempio, riguardano la soluzione di equazioni di convezione–diffusione scalari, le equazioni di
Navier–Stokes e le equazioni delle Acque Basse.
L’obiettivo principale di questo seminario è la revisione delle più importanti difficoltà che insor-
gono in ambito numerico per questo tipo di problemi quando la convezione domina il processo di
trasporto.
Inoltre, viene presentato il trattamento di queste equazioni mediante l’uso del metodo degli ele-
menti finiti.

A number of important phenomena encountered in coastal and environmental engineering,
are described by the nonlinear shallow water equations. Their interests is largely motivated
by environmental considerations, such as the study of tidal currents and water elevations
for flood control, and the need for prediction of man–made alterations to the environment
by the construction of harbours, barrages, etc.

In the above applications, it is increasingly important to be able to deal with complex
geometries with several physical parameters and different boundary conditions. It is also
desired to preserve accuracy of solutions in the computational steps and to save simulation
time. Hence, the development of sound and flexible numerical tools are important in the
investigations of such phenomena in order to have a “true” and “close” description of the
reality. Moreover, transport models, governed by advection–diffusion equations, can also

(∗)Grant holder in Applied Mathematics - Università di Padova, Dipartimento di Matematica Pura ed
Applicata, Via Trieste 63, 35121 Padova, Italy. E-mail: . Seminar held on 2
April 2008.
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be coupled to the shallow water hydrodynamic model making it possible to study pollutant
dispersion or temperature distribution.

During the last years, considerable effort has been focused towards the development
of two–dimensional models for the numerical approximation of the shallow water equa-
tions both in conservative and non–conservative forms, and many numerical schemes are
now available for that purpose. In the past, the most popular methods used for this
discretization are based on finite differences and finite volume methods. Recently, alterna-
tive approaches such as spectral element methods, and finite element schemes have been
proposed. For details see [1, 2].

In this work, advection–diffusion and shallow water problems are considered. In partic-
ular, for the shallow water problems, the following gorverning equations (hydrodynamical
model) are taken into account:

Continuity equation

∂h

∂t
=

1

c2

∂p

∂t
= −∂Ui

∂xi
in Ω× (0, T )

Momentum equations

∂Ui
∂t

= − ∂

∂xj
(Uiuj)−

∂p

∂xi
−Qi in Ω× (0, T )

where h or p and ui are the unknowns; see Chapter 2 for a detailed description of the
equations.

In the case of pollutant dispersion of a passive tracer (scalar variable) T (“passive”
meaning the distribution of the tracer does not affect the fluid flow), the following advection–
diffusion equations should be solve

Transport equation

∂(hT )

∂t
+

∂

∂xi
(huiT )− ∂

∂xi

(
hk

∂T

∂xi

)
+R = 0

in which T is the depth–averaged pollutant dispersion, k is the depth–averaged diffusion
coefficient, h and ui are the depth and fluid velocity previously computed, and R is a
depth–averaged source (R < 0) or sink (R > 0) term.

In the case of the advection–diffusion equations, the main difficulty is due to the
presence of non–symmetric convection operators that appear in formulations based on
kinematic description other than Lagrangian.

When convection dominates the transport processes, the best approximation property
in the energy norm of the Galerkin method — which is the basis of success in symmetric
cases — is lost, and solutions are corrupted by spurious node to node oscillations. These
can only be removed by mesh and time step refinements which destroy the practical utility
of the method, and, this has motivated, the development of the Galerkin formulations,
called stabilization techniques, which precludes oscillations without requiring mesh or time
step refinements.
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The stabilization methods that are the most known are the Streamline Upwinding
Petrov–Galerkin (SUPG) method, the Galerkin Least Square (GLS) method, Residual–
Free Bubble, Wavelet functions, the Taylor–Galerkin (TG) method and the Finite Incre-
mental Calculus (FIC) method.

The numerical difficulties, encountered in shallow water problem, in the use of the
standard Galerkin finite element method are mainly of three different kinds:

• the mixed type of the equations, which is due to the coupling of the momentum
equation with the incompressibility condition, and subsequently, the treatment of
the pressure or water elevation term;

• the advective–diffusive character of the equations, which have a viscous and a con-
vective term;

• and finally, the nonlinearity of the problem.

The first is related to the incompressibility of the fluid and exhibits itself when an
incorrect combination of element interpolation functions for the velocity and pressure or
water elevation is employed. It consists of a constraint on the velocity field which must
be divergence free. Then, the pressure has to be considered as a variable not related
to any constitutive equation. Its presence in the momentum equation has the purpose
of introducing an additional degree of freedom needed to satisfy the incompressibility
constraint. The role of the pressure variable is thus to adjust itself instantaneously in
order to satisfy the condition of divergence–free velocity. That is, the pressure is acting
as a Lagrangian multiplier of the incompressibility constraint and thus there is a coupling
between the velocity and the pressure unknowns.

Another source of numerical difficulty is due to the presence of nonlinear and non–
symmetric convective terms in the momentum equations. As it is well known, the stan-
dard Galerkin formulation typically lacks stability when convective effects dominate and
alternative spatial discretization procedure must be used to restore stability without com-
promising the accuracy.

As a starting point for the development of the finite element models for the shallow
water equations, we consider the CBS algorithm proposed by Zienkiewicz and co – workers
(a detailed description is available in [3]).

From its introduction the Characteristic Based Split (CBS) method has been used
by a certain number of researchers to solve fluid dynamics problems. Such method does
enjoy interesting stability and consistency properties and are nowadays widely used by
the finite element community for solving convection–dominated problems. Its basis is the
fractional step procedure introduced by Chorin and Temam for incompressible Navier–
Stokes equations in the finite difference context.

The main idea of the Chorin–Temam method consists in the decomposition of the time
advancement into a sequence of two or more steps that split the numerical treatment of
the equation operators into relatively easier subproblems. The principle of the projection
method is to compute the velocity and pressure fields separately through the computa-
tion of an intermediate velocity, which is then projected onto the subspace of solenoidal
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vector functions. Basic to the derivation of projection methods is a theorem of orthogo-
nal decomposition due to Ladyzhenskaya, which is based on the Helmholtz decomposition
principle.

Several implementations have been proposed to perform such splitting and therefore
a variety of fractional–step methods exists: fractional steps or splitting methods for evo-
lution equations, methods based on a projection onto a subspace of the solenoidal vector
functions; algebraic splitting methods and methods based on pressure or velocity correc-
tion. A detailed exposition of fractional–step methods can be found in [4] and references
therein.

The CBS scheme combines the Characteristic–Galerkin method to deal with convection
dominated flows with a splitting technique based on velocity correction. The velocity field
is computed into two stages with the Characteristic–Galerkin method. In the first step, the
pressure term (or elevations of the free surface) is retained from the momentum equations
and an intermediate velocity field is estimated. Then, the continuity equation is solved
using the intermediate vector field value and the pressure is carried out, by means of a
Laplacian–type equation, whose self–adjoint form makes the Galerkin space discretization
optimal. Finally, the velocity field is corrected using the new computed pressure term.

This leads to the following time–discretization formulae:

Intermediate momentum

∆U∗i = ∆t

[
− ∂

∂xj
(Uiuj)

n −Qni
]

+
∆t2

2
unk

∂

∂xk

(
∂

∂xj
(Uiuj)

n +Qni

)
Pressure equation(

1

c2

)n
∆p−∆t2θ1θ2

∂

∂xi

(
∂(∆p)

∂xi

)
= −∆t

∂

∂xi
(Uni + θ1∆U∗i ) + ∆t2θ1

∂

∂xi

(
∂pn

∂xi

)
Momentum correction

∆Ui = ∆U∗i −∆t
∂pn+θ2

∂xi
+

∆t2

2
unk

∂

∂xk

(
∂pn

∂xi

)
where higher order terms have been neglected.

The approximation of the scalar transport equation, that can be added to the hydrody-
namic model, is straightforward, and it requires only the application of the Characteristic–
Galerkin method. Hence, the characteristic time discretization gives

Transport equation

∆T = ∆t

[
− ∂

∂xj
(ujT )n +

∂

∂xj

(
k
∂T

∂xj

)n+θ3

−Rn
]

+
∆t2

2
unk

∂

∂xk

(
∂

∂xj
(ujT )n +Rn

)
where T is multiplied by h, ∆T = Tn+1 − Tn.

The procedure has some interesting and useful advantages. The first is that drop-
ping the pressure term, each momentum equation is similar to an advection–diffusion
equation and so the Characteristic–Galerkin procedure can be applied. The idea of the
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Characteristic–Galerkin scheme is to stabilize advection–diffusion equations using a finite
difference discretization of the total derivative along the characteristic. Then, if the dis-
cretization of the space is done, a consistent artificial diffusion, which stabilized convective
terms, appears. The splitting operation, being self–adjoint, can then be solved optimally
using the Galerkin procedure. The second advantage is that removing the pressure from
the momentum equations enhances the pressure stability and permits to avoid any restric-
tions on the nature of the interpolation functions for both velocity and pressure, i.e. the
Babuška–Brezzi condition is satisfied. Finally, in the semi–implicit form the algorithm
provides a critical time step dependent only on the current velocity instead of the wave
celerity.
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The Basic Picture on sets

evaluated over an overlap algebra

Paola Toto (∗)

Abstract. In his forthcoming book [4], G. Sambin introduces a new topological theory, called “The
Basic Picture”. In this theory both the notion of topological space and its point-free version are
generalized. The concept of overlap algebra is also introduced in order to put in algebraic form
the properties needed to define the new topological structures. The ultimate goal of our work
is to generalize such topological notions in the context of many-valued sets. In many-valued set
theory sets are built by using propositions evaluated in an algebraic structure. To reach our goal
a key point is to check whether the original algebrization of Sambin’s topological notions can be
considered also as the algebrization of their many-valued version. We prove that this is the case if
and only if we take an overlap algebra as the underlying structure of truth values. This is a joint
work with Maria Emilia Maietti and Giovanni Sambin.

Sunto. Nel suo libro [4] di prossima uscita, G. Sambin introduce una nuova teoria, detta “The
Basic Picture” in cui generalizza sia la nozione di spazio topologico sia la sua versione senza
punti. Inoltre, egli introduce il concetto di overlap algebra, al fine di tradurre in forma algebrica
le proprietà necessarie a definire queste nuove strutture topologiche. L’obiettivo finale del nostro
lavoro è di generalizzare queste nozioni topologiche nel contesto degli insiemi a più valori. Nella
teoria degli insiemi valutati, gli insiemi sono costruiti usando proposizioni valutate su una struttura
algebrica fissata. Per raggiungere l’obiettivo prefissato, un passo fondamentale è stato quello di
controllare quanto l’originaria algebrizzazione della nozione topologica di G. Sambin possa anche
essere come l’algebrizzazione della sua versione a più valori. In questo lavoro si è provato che
questo accade se e solo se si considera come sottostante struttura dei valori di verità un’overlap
algebra. Quanto viene di seguito presentato è estratto da un lavoro fatto in collaborazione con
Maria Emilia Maietti e Giovanni Sambin.

1 Preliminaries

All this work is developed in a predicative constructive set theory, using intuitionistic logic.
As starting point we will give a tutorial introduction of our work, explaining the meaning
of the previous words. Intuitionistic Logic can be succinctly described as Classical Logic

(∗)Dottorato in Matematica Pura, XX ciclo. Università del Salento. Advisors: Giovanni Sambin (Uni-
versità di Padova - Dipartimento di Matematica pura ed applicata), Cosimo Guido (Università del Salento
- Dipartimento di Matematica). E-mail: . Seminar held on 16 April 2008.
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without the Aristotelian law of excluded middle:

(LEM): (A ∨ ¬A)

The rejection of (LEM) has far-reaching consequences. On the one hand, intuitionistically,
Reductio ad absurdum can work only on negative statements, since ¬¬A → A does not
hold in general. Formalized intuitionistic logic is naturally motivated by the informal
Brouwer-Heyting-Kolmogorov (BHK, for short) explication of intuitionistic truth. The
constructive independence of the logical operations &,∨,→,¬,∀,∃ contrasts with the
classical situation, where e.g. (A ∨ B) is equivalent to ¬(¬A&¬B) and ∃xA(x) is
equivalent to ¬∀x¬A(x). In fact, in intuitionistic logic the following directions hold:

• (A ∨B) implies ¬(¬A&¬B);

• (¬A ∨B) implies (A→ B);

• ∃xA(x) implies ¬∀x¬A(x);

• A implies ¬¬A;

• ¬A is equivalent to ¬¬¬A;

• ¬(A ∨B) is equivalent to (¬A&¬B);

• ¬∃xA(x) is equivalent to ∀x¬A(x).

From the BHK viewpoint, a sentence of the form (A∨B) asserts that either a proof of
A, or a proof of B, has been constructed; while ¬(¬A&¬B) asserts that an algorithm has
been constructed which would effectively convert any pair of constructions proving ¬A
and ¬B respectively, into a proof of a known contradiction. Constructive mathematics is
distinguished from its traditional counterpart, classical mathematics, by the strict inter-
pretation of the phrase “there exists” as “we can construct” and the statement “(A∨B)”
is considered to be established only when one either can decide - that is, prove - that A or
decide (prove) that B, namely if a constructive process can be presented that terminates
with the indication that one of its components is true. In the intuitionistic propositional
logic, this yields two properties:

(DP) If (A∨B) is a theorem, then A is a theorem or B is a theorem [Disjunction Property].

(EP) If ∃xA(x) is a closed theorem, then for some closed term t, A(t) is a theorem [Exis-
tence Property].

The disjunction and existence properties are special cases of a general phenomenon peculiar
to nonclassical theories. In order to work constructively, we need to reinterpret not only the
existential quantifier but all the logical connectives and quantifiers as instructions on how
to construct a proof of the statement involving these logical expressions. Summarizing,
in constructive mathematics, something is true if one can exhibit a proof of it, while in
classical mathematics something is true if it is not contradictory. For example, when
we pass from our initial, natural interpretation of A ∨ B to the unrestricted use of the
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idealistic one, ¬(¬A&¬B), the resulting mathematics cannot enjoy the existence and the
disjunction properties. This point is illustrated by a well-known example,

Proposition 1.1 There exist irrational numbers a, b such that ab is rational.

A slick classical proof goes as follows. Either
√

2
√

2
is rational, in which case we take

a = b =
√

2, or else
√

2
√

2
is irrational, in which case we take a =

√
2
√

2
and b =

√
2.

But as it stands, this proof does not enable us to pinpoint which of the two choices of the
pair (a, b) has the required property. In order to determine the correct choice of (a, b), we

would need to decide whether
√

2
√

2
is rational or irrational, which is precisely to employ

our initial interpretation of disjunction with P the statement “
√

2
√

2
is rational”.

A slick constructive proof goes as follows. Let us consider a =
√

2 and b = log29. It is

well known that
√

2 6∈ Q. And log29 6∈ Q, too. In fact, let us assume that log29 ∈ Q. Then
log29 = m

n , for some m ∈ Z and n ∈ Z \ 0. Solving this equation, we get 9n = 2m and this

is false, since an odd number is never equal an even one. Thus, ab =
√

2
log29

= 3 ∈ Q.

It should, by now, be clear that a full-blooded computational development of math-
ematics disallows the idealistic interpretations of disjunction and existence upon which
most classical mathematics depends. In fact, in order to work constructively, we need to
return from the classical interpretations back to the natural, constructive ones, as follows.

Connectives (Name) Formulas Interpretation

∨ (or) P ∨Q to prove P ∨Q we must have either a proof of P or a proof of Q
& (and) P&Q to prove P&Q we must have a proof of P and a proof of Q
→ (implies) P → Q a proof of P → Q is an algorithm

that converts a proof of P into a proof of Q
¬ (not) ¬P to prove ¬P we must show that P implies false (e.g. 0 = 1)
∃ (there exists) ∃xP (x) to prove ∃xP (x) we must construct

an object x and prove that P (x) holds
∀ (for each/all) ∀xP (x) a proof of ∀xP (x) is an algorithm that,

applied to any object x, proves that P (x) holds

Why would we want to reinterpret logic in this way? First, there is the desire to
retain, as far as possible, computational interpretations of our mathematics. Ideally, we
are trying to develop mathematics in such a way that if a theorem asserts the existence
of an object x with a property P , then the proof of the theorem embodies algorithms for
constructing x and for demonstrating, by whatever calculations are necessary, that x has
the property P .

From the algebraic point of view, Heyting algebras are models of intuitionistic logic,
while Boolean algebras are models of classical logic. Heyting algebras are special partially
ordered sets that constitute a generalization of Boolean algebras. A Heyting algebra H
is a bounded lattice such that for all a, b ∈ H there is a greatest element x of H such
that a ∧ x ≤ b. This element is the relative pseudo-complement of a with respect to b,
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and is denoted a → b. We write 1 and 0 for the greatest and the smallest element of
H, respectively. In any Heyting algebra, one defines the pseudo-complement ¬x of any
element x by setting ¬x = (x → 0). By definition, a ∧ ¬a = 0, and ¬a is the greatest
element having this property. However, it is not in general true that a ∨ ¬a = 1, thus ¬
is only a pseudo-complement, not a true complement, as would be the case in a Boolean
algebra. A complete Heyting algebra is a Heyting algebra that is a complete lattice.
Thus a complete Heyting algebra H is a complete lattice (H,≤,∧,∨,

∨
,
∧
,→, 0, 1) such

that the following properties hold: a → a = 1; a ∧ (a → b) = a ∧ b; b ∧ (a → b) = b;
a→ (b ∧ c) = (a→ b) ∧ (a→ c), where a ∧ b ≤ c⇔ b ≤ a→ c, for any a, b, c ∈ H.

Every topology OX, of a topological space (X,OX), provides a complete Heyting
algebra in the form of its open set lattice. In this case, the element A → B is the
supremum of the collection {C ∈ OX|A∩C ⊆ B}. Not all complete Heyting algebras are
of this form.

2 Sambin’s Basic Picture

In topology an application of the constructive independence of the logical operation
&,∨,→,¬,∃,∀ is for example related to closed subsets of a topological space. In fact,
in constructive mathematics, the definition of a closed subset as a subset containing all
its limit points is not equivalent to say that a closed subset is the complement to an open
subset (as it happens in classical mathematics), since in intuitionistic logic, the existen-
tial quantifier ∃ is not equivalent to ¬∀¬. Thus, since from a constructive point of view,
closed subsets are not necessarily defined as complements of these open ones, this leads to
develop topology by considering open subsets and closed subsets primitively.

Moreover it often happens that the structure of open subsets can be given quite con-
structively, even when the corresponding points have an infinitary description. Typical is
the case of real numbers: points are infinite sequences, while open subsets can be given
starting from intervals with rational endpoints. Then the idea is that one can begin with-
out real numbers: one defines the topology by giving open subsets and their coverings
primitively, rather then quantifying on points.

Therefore Sambin’s Basic picture is a generalization of both Topological Space and
Point-free Topology. Topology begins when passing from one set to two sets linked by an
arbitrary relation, a minimal structure here called a basic pair. In fact, one can see that
the topological notions of interior and closure are the result of the dynamics between the
two sets. This discovery allows one to see a clear structure underlying topology: logical
duality between open and closed, symmetry between the traditional (pointwise) and the
pointfree approach. The notion of continuity also has a structural characterization, since
it turns out to be just a commutative square. The theory which follows from or which
extends such structures, symmetries and dualities, Sambin has called the basic picture. It
forms a structural basis for constructive topology and in the same time it generalizes both
pointfree and pointwise topology.

Typical of the Basic Picture is a systematic use of the notion of “overlap” between two
subsets (existence of a common element, which is intuitionistically different from nonempty
intersection), which is logically dual of that of inclusion. The algebraic structure tradition-
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ally associated with a topological space is that of its open subsets, which form a complete
lattice satisfying infinite distributivity (of arbitrary joins over binary meets), also called
frame or locale. Due to the topological interpretation of intuitionistic logic (propositions
as open subsets), the structure of locale is also the intuitionistic algebraic counterpart of
the structure of the power of a set; in this context, it is often called a complete Heyting
algebra, to stress the presence of implication (which is anyway impredicatively definable
in any locale). To be able to reflect into an algebraic definition also the presence of a prim-
itive notion of closed subsets, Sambin introduced a new algebraic structure, the overlap
algebra.

Definition 2.1 An overlap algebra is:

• a collection P, with objects p, q, · · · ∈ P;

• an order ≤ on P such that (P,≤, 0, 1) is a complete Heyting algebra;

• a symmetric binary relation >< on P such that:

– >< preserves infimum (if p >< q then p >< p ∧ q);

– >< splits supremum (p ><
∨
i∈I qi iff p >< qi for some i ∈ I);

– >< satisfies density (for any r : P, if p >< r implies q >< r, then p ≤ q).

A main example of overlap algebra is the power collection P(X) of a set X, with the
extra primitive G dual of that one of inclusion ⊆. In fact comparing the definitions, if X
is a set and P an overlap algebra, we get:

P P(X)
p ≤ q U ⊆ V ≡ ∀x(x ε U → x ε V )
p = q U = V ≡ ∀x(x ε U ↔ x ε V )
p >< q U G V ≡ ∃x(x ε U & x ε V )

Such structures can be organized into a category.

Definition 2.2 An overlap relation from an overlap algebra Q1 into an overlap algebra
Q2 is a quadruple of functions F =< f, f∗, f−, f−∗ >, where f, f−∗ : Q1 → Q2 and
f−, f∗ : Q2 → Q1, such that:

• f a f∗, that is fp ≤ q iff p ≤ f∗q;

• f− a f−∗, that is f−q ≤ p iff q ≤ f−∗p;

• f ·|· f−, that is fp >< q iff p >< f−q.

In this way the definition of the category OA of overlap algebras as objects and overlap
relations as arrows.

Now we show as a relation between two sets produce a morphism of overlap algebras.

Example 2.3 If we consider two sets X,Y , then every relation r between them, denoted
by r : X → Y , yields an overlap relation P(X)→ P(Y ), where, for any D ⊆ X and U ⊆ Y :
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Existential operators Universal operators
rD ≡ {a : ∃x ∈ X(xra&x ε D)} r−∗D ≡ {a : ∀x ∈ X(xra→ x ε D)}
r−U ≡ {x : ∃a ∈ Y (xra&a ε U)} r∗U ≡ {x : ∀a ∈ Y (xra→ a ε U)}

To express in the language of overlap algebras the properties of singleton subsets in
P(X), as the minimal inhabitated elements of the partially order collection P(X), we give
the following

Definition 2.4 In an overlap algebra P, p ∈ P is atom if and only if
p >< p;
for every q : P, if q >< p then q ≤ p.
Intuitively, an overlap algebra P is atomic if the atoms are sufficient to determine all
elements and their order, in the sense that for every p, q ∈ P:

p ≤ q if and only if m >< p implies m >< q for all atoms m.

Denoting with Rel the category of relations between sets, it is possible to define the
Power Functor P : Rel→ OA which is faithful, full and dense on atomic overlap algebras.
This result can be expressed in the commutativity of the following diagram:

Rel //

$$JJJJJJJJJ OA

a-OA
, �

::uuuuuuuuu

Our aim is to give a many-valued version of the previous diagram. In particular, to
define the many-valued version of the Power Functor P : Rel → OA, we have to define
in the many-valued structure of the power collection of a set X, P(X), in a suitable way.

3 Many-valued set theory

Many-valued set theory have been introduced by A. Zadeh as an extension of the classical
notion of set theory. In classical set theory, the membership of elements in a set is assessed
in binary terms according to a bivalent condition, an element either belongs or does not
belong to the set. By contrast, many-valued (or fuzzy) set theory permits the gradual
assessment of the membership of elements in a set; this is described with the aid of a
membership function valued in a lattice. Fuzzy sets generalize classical sets, since the
characteristic functions of classical sets are special cases of the membership functions of
fuzzy sets, if the latter only take values 0 or 1. In our case, we have:

Set Theory X a ∈ X a = b ∈ X C ⊆ X
↓ ↓ ↓ ↓ ↓

Set Theory(H) (X,EX) EX(a, a) ∈ H EX(a, b) ∈ H C : X → H
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And the idea is the following: since in the constructive set theory, a subset of a set
X is a proposition φ(x)[x ∈ X] then in a many-valued setting it will be replaced by
φ∗(x) ∈ H[x ∈ X], where (H,≤,∧,∨,→, 0, 1) is a complete Heyting algebra.

Definition 3.1 An H-valued model or an H-valuation is a mapping from prop, the set
of propositions of the Intuitionistic Set Theory, into a complete Heyting algebra H.

The following table summarize the process of a H-valuation:

formula H-valuation

⊥ 0
> 1
ϕ ϕ∗

ϕ ∨ ψ ϕ∗ ∨ ψ∗
ϕ&ψ ϕ∗ ∧ ψ∗
ϕ→ ψ ϕ∗ → ψ∗

¬ϕ (¬ϕ)∗ = ϕ∗ → 0
∀xϕ(x)

∧
x∈X ϕ

∗(x)
∃xϕ(x)

∨
x∈X ϕ

∗(x)

The H-valuation of the judgment “Γ is true implies that ϕ(x) is true”, is Γ∗ ≤ ϕ∗(x).
As corollary, the H-valuation of the judgment “ϕ(x) is true” is ϕ∗(x) = 1.

3.1 H-sets and H-relations

Now, we are able to give some definitions.

Definition 3.2 A H-set X ≡ (X,E) is a couple, where X is a set and EX : X ×X → H
is a map such that:

(E1) EX(x, y) = EX(y, x) (symmetry)

(E2) EX(x, y) ∧ EX(y, z) ≤ EX(x, z) (transitivity)

The mapping EX is the valuation in H of the equality of elements in X and it is called
H-equality on X and EX(x, y) is interpreted as the value how much x and y coincide. In
particular, EX(x, x) describes the domain or the extent of existence of x. It is easily seen
that the From (E2) and (E1) it follows the strictness axiom:

(STR) EX(x, y) ≤ EX(x, x) ∧ EX(y, y) (strictness).

We give some typical examples of H-sets.

Example 3.3

(a) Let X be a set. Then the crisp equality Ec on X determined by Ec(x, y) = ∨{1|x =
y}, for every x, y ∈ X, makes (X,Ec) a H-set.
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(b) If we consider the binary meet operation ∧ on the underlying Heyting algebra (H,≤
,∧,∨,→, 0, 1), then (H,∧) is a H-set.

(c) If we consider the bi-implication in (H,≤,∧,∨,→, 0, 1), that is p ↔ q = (p →
q) ∧ (q → p), for every p, q ∈ H, then (H,↔) is a H-set.

(d) For every topological space (X,OX), let H ≡ OX be the complete Heyting algebra
and let us consider the collection {f : X → R|f is a continuous function}. Defining,
for any continuous function f, g : X → R, EX(f, g) = int{x ∈ X|f(x) = g(x)}, then
(X,EX) is a H-set.

Definition 3.4 A H-relation r between two H-sets (X,EX) and (Y,EY ) is a map
r : X × Y → H such that, for all x, y ∈ X, a, b ∈ Y :
[Extensionality] r(x, a) ∧ EX(x, y) ∧ EY (a, b) ≤ r(y, b)
[Strictness] r(x, a) ≤ EX(x, x) ∧ EY (a, a)

Definition 3.5 Rel(H) is the category of H-sets and H-relations.

Definition 3.6 A H-subset D of a H-set X ≡ (X,EX) is a map D : X → H such that,
for every x, y ∈ X:
[Extensionality] D(x) ∧ EX(x, y) ≤ D(y);
[Strictness] D(x) ≤ EX(x, x).

Denoting with PH(X ) the power collection of all H-subsets of a H-set X ≡ (X,EX), we
can define pointwise all operation between H-subsets, ∪H , ∩H , →H ,

⋂
i∈I ,

⋃
i∈I and they

satisfy Extensionality and Strictness axioms. Applying a H-valuation to the definition on
⊆, = between subsets appearing in P(X), we get:

P(X) PH(X )

⊆ ∀x(x ε C → x ε D) ⇔
∧
x∈X(C(x)→ D(x)) = 1

= ∀x(x ε C ↔ x ε D) ⇔
∧
x∈X(C(x)↔ D(x)) = 1

and therefore we have the definitions of H-inclusion and H-equality between H-subsets as
follows:

Definition 3.7 For any C and D H-subset of X :

(a) C ⊆H D ≡ (∀x ∈ X)(C(x) ≤ D(x));

(b) C =H D ≡ (∀x ∈ X)(C(x) = D(x)).

Proposition 3.8 (PH(X ),⊆H ,∩H ,∪H , 1∅, 1X) is a complete Heyting algebra.

We want to equip it with a structure of overlap algebra. Therefore, we have to define
an overlap relation GH on PH(X ). Applying a H-valuation also to the definition of G in
P(X), we get:
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P(X) PH(X )

G ∃x(x ε C&x ε D) ⇔
∨
x∈X(C(x) ∧D(x)) = 1

and therefore we have the definition of H-overlap between H-subsets, called natural
as follows:

Definition 3.9 For any C and D H-subset of X :

(a) C GH,n D ≡
∨
x∈X(C(x) ∧D(x)) = 1

The binary relation GH,n on PH(X ) does not work, since, although it is symmetric
and it preserves infima ∩H :

• it does not satisfy density;

• it does not split suprema.

Remark 3.10 Thus, in this way, the power collection PH(X) of a H-valued set does
not in general enjoy all the algebraic properties of P(X) that Sambin expressed via the
notion of overlap algebra. In more precise terms, the power collection of a H-set is not in
general an overlap algebra, if we consider an overlap relation as exactly the many-valued
version of that defined in P(X). Since H itself, seen as P(1), does not come necessarily
equipped with a structure of an overlap algebra, we then conclude that H must be an
overlap algebra as a starting point.

4 Sets evaluated over an overlap algebra

The above remark led us to place our project in the context of sets evaluated on an overlap
algebra, that is the O-valued sets, where O ≡ (O,≤,∧,∨,

∧
,
∨
,→, ><, 0, 1) is an overlap

algebra. On the complete Heyting algebra (PO(X ),⊆O,∩O,∪O, 1∅, 1X), we define the
induced overlap GO,i as follows:

Definition 4.1 For any O-subset C and D of an O-set X ≡ (X,EX):

C GO,i D ≡ (∃x ∈ X)(C(x) >< D(x)).

And from now on we don’t write the subscript i. The above definition is obtained from
the following O-valuation of the definition of G done in P(X):

P(X) PO(X )

G ∃x(xεC & xεD)
∨
x∈X(C(x) ∧D(x)) >< 1 ⇔ ∃x ∈ X(C(x) ∧D(x)) >< 1 ⇔ ∃x ∈ X(C(x) >< D(x))

With this definition of overlap, we obtain the following result:

Theorem 4.2 If O is an overlap algebra, then PO(X ) is an overlap algebra with respect
to the overlap relation induced from O, that is

C GO D ≡ ∃x ∈ X(C(x) >< D(x)).
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Moreover, we are able to prove that every O-relation between O-sets yields an overlap
relation between the corresponding power collections of their O-subsets. In fact, if r :
(X,EX) → (Y,EY ) is an O-relation between two O-sets X ≡ (X,EX) and Y ≡ (Y,EY ),
then there exist four functions R,R−∗ : PO(X ) → PO(Y), R−, R∗ : PO(Y) → PO(X ),
defined as follows, for every D ⊆O X , U ⊆O Y, x ∈ X and a ∈ Y :

RD(a) ≡
∨
x∈X

(r (x, a) ∧D(x))

R−∗D(a) ≡ ES(a, a) ∧
∧
x∈X

(r (x, a)→ D(x))

R−U(x) ≡
∨
a∈Y

(r (x, a) ∧ U(a))

R∗U(x) ≡ EX(x, x) ∧
∧
a∈Y

(r (x, a)→ U(a)),

and < R,R−, R∗, R−∗ > is an overlap relation between the overlap algebras PO(X ) and
PO(Y).

In this way, we have completely defined the Power Functor P : Rel(O) → OA as
follows:

objects: P(X,EX) ≡ (PO(X ),⊆O,∩O,∪O,→O, GO, 1∅, 1X)

morphisms: P(r : (X,EX)→ (Y,EY )) ≡< R,R−, R∗, R−∗ >.

The Power Functor P : Rel(O)→ OA is:

(a) well defined;

(b) faithful;

(c) not full, in general.

To give a complete many-valued version of what it happens in P(X), we have to define:

• an O-valued overlap algebra, and then the category oA(O) of O-valued overlap
algebras;

• an atomic O-valued overlap algebra, and then the category a-oA(O) of O-valued
overlap algebras;

in order to see whether it is possible to do a many-valued version of the diagram appearing
at the end of Section 2. Since in particular, PO(X ) will be the main example of an O-
valued overlap algebra, then we will give an O-valuation of the definitions of inclusion,
equality and overlap between O-subsets of an O-set X , as follows:

Definition 4.3 For every O-subset C and D of an O-set X :
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• SPO(X )(C,D) ≡
∧
x∈X(C(x)→ D(x)) [subsethood degree];

• EPO(X )(C,D) ≡
∧
x∈X(C(x)↔ D(x)) [equality degree];

• OvPO(X )(C,D) ≡
∨
x∈X(C(x) ∧D(x)) [overlap degree].

Remark 4.4 Let us observe that we obtain the previous definitions, in the following way:

• SPO(X )(C,D) = 1⇔ C ⊆O D;

• EPO(X )(C,D) = 1⇔ C =O D;

• OvPO(X )(C,D) >< 1⇔ C GO D;

for any C,D ⊆O X .

In such a way, since we achieved all our purposes, denoting by P : Rel(O)→ oA(O),
the O-power functor, then we proved that P is well defined, faithful, full and dense on
O-valued atomic overlap algebras, and thus we obtain the commutativity of the following
diagram:

Rel(O) //

&&LLLLLLLLLL
oA(O)

a-oA(O)
+ �

99rrrrrrrrrr
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Chaotic phenomena described

by stochastic equations

Luigi Manca (∗)

Abstract. It is well known that many natural phenomena such as population dynamics, stock
exchange, diffusion of particles, can be seen as ’chaotic’. To give a mathematical description of these
‘chaotic’ phenomena the theory of stochastic processes and of the related stochastic differential
equations has been developed. Starting by the fundamental concept of Brownian motion, I shall
introduce the main ideas and the basic tools in order to understand some easy models driven by
stochastic equations. Moreover, I shall describe how stochastic equations can be used to study
some deterministic model.

Let us consider the ordinary differential equation

(ODE)

{
dx
dt (t) = b(x(t)), t > 0

x(0) = x0

where b : Rn → Rn is a given smooth vector field and x0 ∈ Rn. The solution is the
trajectory x(·) : [0,∞)→ Rn which looks like

In many application, however, the experimentally measured trajectories of systems models
by (ODE) behave as

(∗)Grant holder in Pure Mathematics - Dipartimento di Matematica Pura ed Applicata, Via Belzoni 7 -
35131 Padova, Italy - - Seminar held on 30 April 2008.
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Hence it seems reasonable to modify (ODE) in order to include random effects disturbing
the system. Formally we write

(1)

{
dX
dt (t) = b(X(t)) +B(X(t))ξ(t), t > 0
X(0) = x0

where B : Rn →Mn×m (the space of n×m matrices) and

ξ(·) := m-dimensional “white noise”.

So we need

• Define the “white noise” ξ(·) in a rigorous way;

• Define what it means for X(·) to solve (1).

Some heuristics

Let us study (1) in the case m = n, b ≡ 0 and B = I. The solution of (1) turns to be the
n-dimensional Wiener process, or Brownian motion, denoted by W (·). We write, formally,

dW

dt
(·) = ξ(·),

asserting that “white noise” is the time derivative of the Wiener process.
With these notations, equation (1) becomes

(SDE)

{
dX(t) = b(X(t))dt+B(X(t))dW (t)

X(0) = x0.

This expression is called a stochastic differential equation. Of course, we need to give
it a precise meaning of what we call a solution of (SDE). However, this is not the purpose
of these notes; so, the reader which wishes to go into this discussion can address to the
below references.

We now try to give an idea of what is the Wiener process or Brownian motion.

The Brownian motion

Robert Brown in 1826-27 observed the irregular motion of a pollen particles suspended in
water. He observed that

• the paht of a given particle is very irregular, having no tangent in any point;

• the motion of two distinct particles appear to be indipendent.
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In 1905, Albert Einstein in [1] studied the Brownian phenomena in order to describe
how an ink particle diffuses in water. He explained that the ink diffuses due to the collision
with the particles of water. Starting with a probabilistic approach, he derived that the
density f(x, t) of the ink particles at point x and time t evolves accordingly with the heat
equation (or diffusion equation)

ft =
D

2
fxx,

where D is a constant depending by the gas constant, the absolute temperature, the
friction coefficient and the Avogrado’s number.

As well known, the above equation has solution

f(x, t) =
1√

2πDt
e−

x2

2Dt .

This equation allowed J.Perrin to compute the Avogrado’s number an help to confirm the
atomic theory of matter.

The mathematical definition of Brownian motion: the Wiener process

Norbert Wiener in the 1920’s put the basis for the mathematical theory of the Brownian
motion.

Before giving the precise definition, we need some notation.

With (Ω,F ,P) we mean a probability space, where Ω is the space, F is the σ-algebra
of measurable sets and P is the probability measure over (Ω,F). An elements A ∈ F is
often called event.

We also recall that a real random variable is any measurable mapping X : Ω → R,
where R is equipped with the usual Borel sets B(R).

A stochastic process is a collection of random variable. We shall work with stochastic
process of the form {Xt}t∈I , where Xt : Ω → R is a real random variable for any t ∈ I,
where I ⊂ R is the interval I = [0,∞) or I = [0, T ].

With these notations, the trajectory of the stochastic process {Xt}t∈I at ω ∈ Ω is the
real valued function

I → R, t 7→ Xt(ω).

Given a real random variable X : Ω→ R the law of X is the probability measure LX
on the measurable space (R,B(R)) given by

LX(A) := P(X−1(A)) (= P{ω ∈ Ω : X(ω) ∈ A})

We recall that two events A,B ∈ F are indipendent if P(A ∩B) = P(A)P(B). Finally,
two random variables X,Y : Ω→ R are indipendent if P({X ∈ A} ∩ {Y ∈ B}) = P({X ∈
A})P({Y ∈ B}), for any Borel sets A,B ∈ B(R). Equivalently, the random variables X,Y
are indipendent if for any bounded Lebesgue measurable function f : R2 → R it holds

E[f(X,Y )] =

∫
Ω
f(X(ω), Y (ω))P(dω) =

∫
R2

f(x, y)LX × LY (dx, dy).
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Definition 1 [of Wiener process] A real valued stochastic process {B(t)}t≥0, defined on
a probability space (Ω,F ,P) is a Wiener process if:

• The law of B(0) is the Dirac measure at zero:

LB(0) = δ0, where δ0(A) =

{
= 0 if 0 /∈ A,
= 1 if 0 ∈ A

;

(the process “starts” at 0)

• for any 0 ≤ s < t the law of the random variable B(t) − B(s) is gaussian of zero
mean and variance t− s, that is

LB(t)−B(s)(A) =

∫
A

1√
2π(t− s)

e
− x2

2(t−s)dx, ∀A ∈ B(R);

• for any 0 ≤ t0 < t1 < . . . < tn the random variables B(t0), B(t1)−B(t0), . . . , B(tn)−
B(tn−1) are indipendent (indipendent increments);

• the set {ω ∈ Ω : the trajectory of ω is continuous} has measure 1 (the trajectory are
almost-surely continuous).

There are many methods to construct a Wiener process which are in most of the
cases quite technical. We refer to [2] for the Levy-Ciesielski construction and [3] for an
infinite-dimensional analysis approach.

Properties of trajectories

The trajectories of the Wiener process enjoy many interesting properties. It is well known
that they are nowhere differentiable and of infinite variation for each time interval. In
particular, the sample path t 7→ B(t, ω) is uniformly Hölder continuous for each exponent
γ < 1/2, and it is nowhere Hölder continuous for each exponent γ > 1/2.

Wiener process and partial differential equations

Example 1 Let U ⊂ Rn be a bounded open set, with smooth boundary ∂U . According
to stardard PDE theory, there exists a smooth solution u of the equation{

−1
2∆u = 1 in U

u = 0 on ∂U.

The solution u has a probabilistic representiation via the Wiener process.
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For any x ∈ U we consider the n-dimensional process X(·) = x+W (·), where W (·) is
a n-dimensional Wiener process. Define the random variable τx : Ω→ [0,∞] by

τx = inf
{
t ≥ 0 such that X(t, ω) /∈ U

}
.

It is possible to show that τx(ω) < ∞ for almost all ω ∈ Ω. This means that the Brow-
nian sample paths starting at x ∈ U will reach the boundary of U in a finite time with
probability 1.

Such a random variables are often called stopping time.
Notice that τx ≡ 0 if x ∈ ∂U .

Theorem 1 We have
u(x) = E[τx], for all x ∈ U.

Example 2 Let U ⊂ Rn be a smooth, bounded domain and g : ∂U → R a given
continuous function. It is known that there exists a function u ∈ C(U)∩C2(U) satisfying
the boundary value problem {

∆u = 0 in U

u = g on ∂U.

u is an armonic function.

Theorem 2 For any x ∈ U we have

u(x) = E[g(X(τx))],

where X(·) = x+W (·) is a Brownian motion starting at x.
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Lunghezza di curve e misure di superficie

Roberto Monti (∗)

1 Lunghezza di curve in Rn e in spazi metrici

1.1 Lunghezza di curve C1. La lunghezza di una curva γ : [0, 1] → Rn di classe C1 si
definisce come l’integrale della lunghezza (rispetto alla norma standard di Rn) della sua
derivata

(1.1) L(γ) =

∫ 1

0
|γ̇(t)|dt.

La definizione non dipende dalla parametrizzazione della curva ma solo dal supporto
γ([0, 1]). Infatti, se ϕ : [0, 1] → [0, 1] è un diffeomorfismo di classe C1, la riparametriz-
zazione κ = γ ◦ ϕ ha stessa lunghezza di γ. Se γ è iniettiva, L(γ) è la lunghezza del
supporto γ([0, 1]), in caso contrario può accadere che alcuni sottoinsiemi del supporto
siano misurati con molteplicità maggiore di 1.

1.2 Variazione totale. Se γ : [0, 1] → Rn è una curva continua è possibile definire la
sua variazione totale prendendo l’estremo superiore delle lunghezze delle curve poligonali
inscritte sulla curva:

(1.2) Var(γ) = sup
{ N∑
i=1

|γ(ti)− γ(ti−1)| : 0 = t0 < t1 < ... < tN = 1
}
.

L’estremo superiore è calcolato su tutte le scomposizioni dell’intervallo [0, 1]. Se Var(γ) <
+∞ la curva γ si dice rettificabile. Lunghezza e variazione coincidono:

Proposizione 1.1 Se γ : [0, 1]→ Rn è di classe C1 allora Var(γ) = L(γ).

1.3 Misura di Hausdorff. Sia K ⊂ Rn un insieme di cui vogliamo definire la “lunghezza”.
Fissato un parametro δ > 0, definiamo

(1.3) H1
δ(K) = inf

{ +∞∑
i=1

diam(Ei) : Ei ⊂ Rn, diam(Ei) ≤ δ, K ⊂
+∞⋃
i=1

Ei

}
.

(∗)Ricercatore presso il Dipartimento di Matematica Pura ed Applicata, Università di Padova, Via Trieste
63, I-35121 Padova, Italy. E-mail: . Seminario tenuto il 14 maggio 2008.
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La funzione δ 7→ H1
δ(K) è decrescente e quindi esiste (finito o infinito) il limite

(1.4) H1(K) = lim
δ→0+

H1
δ(K).

La misura di lunghezza H1 è stata introdotta da Carathéodory nel 1914 [6].
Una curva γ : [0, 1]→ Rn si dice Lipschitz se esiste L > 0 tale che |γ(t)−γ(s)| ≤ L|t−s|

per ogni s, t ∈ [0, 1]. Le curve Lipschitz sono derivabili in quasi ogni punto, essendo
ciascuna coordinata della curva la differenza di due funzioni monotone.

Proposizione 1.2 Sia γ : [0, 1]→ Rn una curva Lipschitz e iniettiva. Allora:

(1.5) H1(γ([0, 1])) = Var(γ) =

∫ 1

0
|γ̇(t)|dt.

La Proposizione 1.2 ha una naturale generalizzazione nel contesto degli spazi metrici.

1.4 Lunghezza di curve in spazi metrici. Sia (X, d) uno spazio metrico. Una curva
γ : [0, 1]→ X si dice Lipschitz se esiste L > 0 tale che

(1.6) d(γ(t), γ(s)) ≤ L|t− s|

per ogni s, t ∈ [0, 1]. La variazione totale di γ è

(1.7) Var(γ) = sup
{ N∑
i=1

d(γ(ti), γ(ti−1)) : 0 = t0 < t1 < ... < tN = 1
}
.

È chiaramente Var(γ) ≤ L.
Se K ⊂ X è un insieme, si definisce la “lunghezza di K”

(1.8) H1(K) = lim
δ→0

inf
{ +∞∑
i=1

diam(Ei) : Ei ⊂ X, diam(Ei) ≤ δ, K ⊂
+∞⋃
i=1

Ei

}
Ora il diametro degli insiemi è calcolato rispetto alla distanza d di X.

Teorema 1.3 Sia γ : [0, 1]→ (X, d) una curva Lipschitz. Allora:

(i) Il limite (“derivata metrica”)

(1.9) |γ̇|(t) := lim
δ→0

d(γ(t+ δ), γ(t))

|δ|

esiste per q.o. t ∈ [0, 1].

(ii) Se, inoltre, γ è iniettiva, allora

(1.10) H1(γ([0, 1])) = Var(γ) =

∫ 1

0
|γ̇|(t)dt.

Una prova del Teorema 1.3 si trova nel Capitolo 4 di [2].
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2 Area di ipersuperfici e perimetri di insiemi

2.1 Formula dell’area per 2-superfici in R3. Siano D ⊂ R2 un insieme aperto e
ϕ : D → R3 una funzione di classe C1 tale che le derivate parziali ϕx e ϕy siano lin-
earmente indipendenti. L’insieme ϕ(D) ⊂ R3 è una superficie di classe C1 che può avere
autointersezioni ma se ϕ è iniettiva non ci sono autointersezioni. In questo caso, si definisce
l’area di ϕ(D) come

(2.11) Area(ϕ(D)) =

∫
D
|ϕx × ϕy|dxdy.

Questa definizione, in effetti, non dipende dalla parametrizzazione ϕ dell’insieme ϕ(D).
L’espressione |ϕx×ϕy| indica la lunghezza in R3 del vettore ϕx×ϕy e coincide con l’area
del parallelogramma identificato dai vettori ϕx e ϕy.

2.2 Formula dell’area per grafici. Siano D ⊂ Rn−1 un insieme aperto e f : D → R una
funzione di classe C1. Il grafico della funzione f è l’insieme gr(f) = {(x, f(x)) ∈ Rn : x ∈
D} e la sua area è per definizione

(2.12) Area(gr(f)) =

∫
D

√
1 + |∇f(x)|2dx.

Se la funzione ϕ in (2.11) è una parametrizzazione di tipo Cartesiano le definizioni di area
(2.11) e (2.12) con n = 3 coincidono.

2.3 Misura di Hausdorff. Siano K ⊂ Rn un insieme e δ > 0. Definiamo
(2.13)

Hn−1
δ (K) = inf

{
ωn−1

+∞∑
i=1

(diam(Ei)

2

)n−1
: Ei ⊂ Rn, diam(Ei) ≤ δ, K ⊂

+∞⋃
i=1

Ei

}
,

dove ωn−1 indica la misura di Lebesgue della palla unitaria in Rn−1.
La funzione δ 7→ Hn−1

δ (K) è decrescente e quindi esiste (finito o infinito) il limite

(2.14) Hn−1(K) = lim
δ→0+

Hn−1
δ (K).

Analoghe misure Hs per ogni reale 0 ≤ s ≤ n sono state introdotte nel 1918 da Hausdorff
[12] che ha generalizzato la costruzione di Carathéodory.

Il legame fra misure di Hausdorff e area di grafici o immagini Lipschitziane è dato dalle
formule dell’area.

Teorema 2.1 (Formula dell’area) Siano D ⊂ Rn−1 un compatto ed f : D → R una
funzione Lipschitz. Allora

(2.15) Hn−1(gr(f)) =

∫
D

√
1 + |∇f(x)|2dx.

Università di Padova – Dipartimento di Matematica Pura ed Applicata 110



Seminario Dottorato 2007/08

Formule analoghe sono note per superfici parametriche Lipschitz in Rn di dimensione
1 ≤ m ≤ n− 1 (Cfr. [10, Sez. 3.2] oppure [9, Capitolo 3]).

2.4 Contenuto di Minkowski. L’intorno tubolare di raggio r > 0 di un insieme K ⊂ Rn
è l’insieme

(2.16) Kr =
{
x ∈ Rn : dist(x,K) < r

}
.

Il contenuto di Minkowski (n− 1)-dimensionale di K è - se il limite esiste -

(2.17) Mn−1(K) = lim
r↓0

Ln(Kr)

2r
,

dove Ln è la misura di Lebesgue in Rn. Il contenuto di Minkowski (n − s)-dimensionale
con 0 < s < n può essere definito in modo analogo, sostituendo ωsr

n−s al posto di 2r nella
(2.17).

Teorema 2.2 Siano D ⊂ Rn−1 un compatto, ϕ : D → Rn una funzione Lipschitz e
K = ϕ(D). Allora

(2.18) Mn−1(K) = Hn−1(K).

La dimostrazione del teorema è di Federer [11, Sez. 3.2.37] (Cfr. anche [3, Sez. 2.13]).

2.5 Idea di Caccioppoli. Si vuole definire il “perimetro di E” ovvero la misura del
“bordo di E” quando E ⊂ Rn è un insieme misurabile limitato. L’idea di Caccioppoli [5]
è di approssimare E con insiemi regolari. Se E,F ⊂ Rn sono due insiemi misurabili, la
funzione

(2.19) δ(E,F ) = Ln(E \ F ) + Ln(F \ E)

è una distanza. Si può allora definire:

(2.20) PC(E) = inf
{

lim inf
j→∞

P (Fj) : (Fj)j∈N poliedri tali che Fj → E in δ
}
.

Se F ⊂ Rn è un poliedro il suo perimetro P (F ) è la somma delle aree delle facce di F .
Al posto di poliedri è equivalente prendere insiemi con frontiera di classe C∞ e definire il
loro perimetro tramite una delle formule precedenti.

Il perimetro di Caccioppoli è l’inviluppo semicontinuo inferiore della misura di frontiere
orientate regolari rispetto alla topologia L1 di insiemi. La necessità di prendere l’estremo
inferiore è dovuta al fatto che l’area delle triangolazioni di superfici con converge, in
generale, all’area della superfice quando il diametro dei triangoli tende a zero (Schwarz
ma mostrato questo fenomeno nel caso di un cilindro).

2.6 Idea di De Giorgi. La funzione caratteristica di un insieme E ⊂ Rn è la funzione
χE tale che χE(x) = 1 se x ∈ E ed è 0 altrimenti. Dato un insieme misurabile e limitato
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E ⊂ Rn, sia u ∈ C∞(Rn × (0,+∞)) la soluzione del problema di Cauchy per l’equazione
del calore

(2.21)

{
ut = ∆u in Rn × (0,+∞)
u(·, 0) = χE ,

dove il dato iniziale è preso in L1(Rn). Usando le proprietà del semigruppo del calore, nel
1953 De Giorgi [8] ha osservato che la funzione della variabile t > 0

(2.22) I(t;E) =

∫
Rn
|∇xu(x, t)|dx

è monotona decrescente. Quindi esiste, finito o infinito, il limite

(2.23) PDG(E) = lim
t→0

I(t;E).

Nello stesso lavoro De Giorgi prova che questa definizione coincide con quella di Cacciop-
poli: PC(E) = PDG(E).

Dunque, il perimetro di un insieme può essere pensato come la norma L1 del gradiente
della funzione χE . Una combinazione delle idee di Caccioppoli e De Giorgi suggerisce di
definire il perimetro di E come

(2.24) inf
{

lim inf
j→∞

∫
Rn
|∇uj(x)|dx : uj ∈ Lip0(Rn), j ∈ N, tali che uj → χE in L1(Rn)

}
.

Questa definizione coincide con le precedenti e può essere generalizzata in spazi metrici
con misura ([1] e [14]). Le funzioni uj ∈ Lip0(Rn) sono nello spazio di Sobolev W 1,1(Rn),
ma per la non riflessività della norma L1 il loro limite esce da questo spazio.

2.7 Definizione variazionale. Sia E ⊂ Rn un aperto limitato di classe C2. Data
ϕ ∈ C1

0 (Rn), dal Teorema della divergenza segue che

(2.25)

∫
E

divϕdx =

∫
∂E
〈ϕ, ν〉 dHn−1,

dove ν è la normale esterna a ∂E. È possibile scegliere ϕ ∈ C1
0 (Rn) tale che ϕ = ν su ∂E.

In questo caso si ottiene

(2.26)

∫
E

divϕdx = Hn−1(∂E).

Altre scelte con il vincolo |ϕ| ≤ 1 forniscono un numero minore. Dunque, per un insieme
misurabile E si può definire:

(2.27) P (E) = sup
{∫

E
divϕdx : ϕ ∈ C1

0 (Rn), |ϕ| ≤ 1
}
.

Se P (E) < +∞ l’insieme E si dice di perimetro finito. Mario Miranda [13] ha osservato nel
1964 che per gli insiemi di perimetro finito le derivate parziali distribuzionali della funzione
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χE sono misure. Questa è la nozione di perimetro usata attualmente. Essa infatti produce
in modo naturale una nozione di “normale” e di “frontiera” di E (Cfr. [3]). Ovviamente,
questo perimetro coincide con quello di De Giorgi: P (E) = PDG(E).

2.8 Idea di Brezis. Una recente caratterizzazione del perimetro è stata suggerita dalla
teoria degli spazi di Sobolev (Cfr. [4] e [7]):

Teorema 2.3 Se E ⊂ Rn è un insieme limitato con perimetro finito, allora

(2.28) P (E) = lim
ε→0

1

ωnεn

∫
Rn

∫
|x−y|<ε

|χE(x)− χE(y)|
|x− y|

dy dx.

Questa definizione si può riformulare in modo naturale anche in uno spazio metrico con
misura. In tale contesto, tuttavia, non è chiaro il suo legame con altre nozioni di misura
di ipersuperfice che è possibile introdurre.
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An introduction to Stochastic

Fluid Dynamic Models

David Barbato (∗)

Abstract. The Navier-Stokes problem, still unsolved by more than 150 years, represents the starting
point for lots of mathematical research topics. The aim of the talk is to present selected fluidody-
namic models, in the deterministic and stochastic case, developed from Navier-Stokes equations.
In particular the GOY shell model, a Fourier system simplified with respect to the Navier-Stokes
one, will be described, and some recent rigorous results discussed.

Introduction

There are several difficult open issues in fluid dynamics related to energy cascade in Navier-
Stokes equations. Due to the difficulty of such questions, it may be of help to analyse GOY
model which captures some properties of the Navier-Stokes equations while simplifies
others. The paper is organised as follows: in the first paragraph Navier-Stokes equations
will be shown, in the second paragraph the Fourier Transform of Navier-Stokes equations
will be derived, whereas in the third paragraph the stochastic GOY model is introduced.

1 Navier-Stokes equations

We consider the Navier-Stokes equations of a viscous, constant density, Newtonian fluid
described by the system:

(1)


∂v
∂t + (v · ∇)v = −∇p+ µ∆v + f
div v = 0
v(0, x) = v0(x)

The unknows functions are v(x, t) = (v1(x, t), v2(x, t), . . . , vd(x, t)) and p(x, t) where x =
(x1, . . . , xd) and t ≥ 0.
v(x, t) is the velocity field of the moving gas or liquid, whereas p(x, t) is the pressure. µ

(∗)Researcher, Dipartimento di Matematica Pura ed Applicata, Università di Padova, Via Trieste 63,
I-35121 Padova, Italy. E-mail: . Seminar held on 28 May 2008.
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is the kinematic viscosity and f = (f1(x, t), f2(x, t), . . . , fd(x, t)) is a given force acting on
the body.
Usually three cases are considered: I) x ∈ Rd; II) x ∈ Td; III) x ∈ Q ⊆ Rd where Q is
compact, have a smooth boundary and u(x, t) = 0 for x ∈ ∂Q. In this lecture we deal with

the case II) and f = 0. About notations, recall that div v =
∑d

j=1
∂vj
∂xj

; we write (v · ∇)v

for the vector field
∑d

k=1 vk
∂v
∂xk

and the Laplacian ∆ is the differential operator
∑d

k=1
∂2

∂x2k
.

Meaning of the equations: the second equation of system (1) is the incompressibility con-
dition; the third is the initial condition; the first equation is the momentum conservation,
(v ·∇)v is the convective acceleration the only non-linear term, ∇p is the pressure gradient
and µ∆v is the viscosity term.

Energy balance

The basic property of the system (1) is the energy inequality. Let us suppose (v, p) be a
suffinciently regular solution of the Navier-Stokes equations in a domain D.

(2)
∂vi
∂t

+

d∑
k=1

vk
∂vi
∂xk

= − ∂p

∂xi
+ µ

d∑
k=1

∂2vi
∂x2

k

Let E(v) be the energy

E(v) =
1

2

∫
D
‖v(x, t)‖2 dx

dE

dt
=

∫
D

d∑
j=1

vj(x, t)
∂vj(x, t)

∂t
dx

=

∫
D
−

d∑
j=1

d∑
k=1

vj(x, t)
∂vj(x, t)

∂xk
vk(x, t)

−
d∑
j=1

vj(x, t)
∂p(x, t)

∂xj

+µ
d∑
j=1

vj(x, t)∆vj(x, t)dx

The integration by parts of the first two terms gives zero in view of incompressibility condi-
tion. Whereas the integration by parts of the third term gives −µ

∫
D

∑d
j=1 |∇vj(x, t)|

2 dx.
Thus

dE

dt
= −µ

∫
D

d∑
j=1

|∇vj(x, t)|2 dx ≤ 0

which is the main energy inequality.
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2 The Navier-Stokes equations in Fourier coordinates

We derive the Navier-Stokes equations in the domain Td = [0, 2π]d with periodic boundary
conditions, in the Fourier components. Consider the Fourier basis of L2([0, 2π]d)

ek(x) = ei〈k,x〉 ∀ k ∈ Zd , ∀x ∈ Ω

{ek,k ∈ Zd} is an orthogonal basis of the Hilbert space L2([0, 2π]d), so it is possible to
write v in Fourier components

v(x, t) =
∑
k∈Zd

Ck(t)ek(x) ∀ t ≥ 0 , ∀x ∈ Ω

with

Ck(t) =
1

(2π)d

∫
Td
v(x, t)ek(x)dx ∀ k ∈ Zd , ∀ t ≥ 0

The real condition and the divergence-free condition become:[
v ∈ Rd ⇐⇒ C−k = Ck ∀ k ∈ Zd
div v = 0 ⇐⇒ 〈Ck,k〉 = 0 ∀ k ∈ Zd

Where Ck denote the conjugate of Ck and the second equality follows by

∂ek
∂xj

= ikjek for all k = (k1, k2, . . . , kd)

The Navier-Stokes equation (2) becomes:∑
k∈Zd

∂

∂t
Ckek +

∑
k,k̃,h̃∈Zd
k̃+h̃=k

i〈C
h̃
,k〉
(
C
k̃
− k

|k|2
〈C

k̃
,k〉
)
ek = −µ

∑
k∈Zd

|k|2Ckek

(3)
∂

∂t
Ck = −µ|k|2Ck −

∑
k̃,h̃∈Zd
k̃+h̃=k

i〈C
h̃
,k〉
(
C
k̃
− k

|k|2
〈C

k̃
,k〉
)
∀k ∈ Zd

The projection onto the space of divergence-free vector fields is defined as

P(aek) =

(
a− 〈a,k〉

|k|2
k

)
ek

Whereas Pk denote projection on the k−th component Pk(a) = a − 〈a,k〉|k|2 k The equation

(3) becomes:

(4)
∂

∂t
Ck = −µ|k|2Ck − Pk

∑
k̃,h̃∈Zd
k̃+h̃=k

i〈C
h̃
,k〉C

k̃
∀k ∈ Zd
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Two elementary examples of flux in dimension d=2, showing the relationship between the
wavenumber and the vortex radius, are reported (Fig. 1)
The first example is defined by:

v1 = +e
(1,1)

+ e
(1,−1)

+ e
(−1,1)

+ e
(−1,−1)

v2 = −e
(1,1)

+ e
(1,−1)

+ e
(−1,1)

− e
(−1,−1)

Whereas the second example is defined by:

v1 = +e
(4,4)

+ e
(4,−4)

+ e
(−4,4)

+ e
(−4,−4)

v2 = −e
(4,4)

+ e
(4,−4)

+ e
(−4,4)

− e
(−4,−4)

Figure 1. Examples of flux in dimension 2: a) flux with wavenumber 1 and b) flux with wavenumber 4.

Energy balance in Fourier components

We denote the Energy in the Fourier components

E(t) =
1

2

∑
k∈Zd
‖Ck(t)‖2 =

1

2(2π)d

∫
Td
‖v(t)‖2 dx

By a simple calculation it is possible to derive the following energy balance.

(5)
dE

dt
= −µ

∑
k∈Zd
‖k‖2 ‖Ck(t)‖2

This equality shows that the bilinear term of the Navier-Stokes equation (4) does not cause
direct dissipation of energy. Whereas the linear term of (4) −µ‖k‖2Ck(t) cause dissipation
of energy with rate proportional to the square of the wavenumber k.
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3 Goy model

The GOY model, from E. B. Gledzer, K. Ohkitani, M. Yamada, is a simplified Fourier
system with respect to the Navier-Stokes one. It describes the dinamics of scalar velocity
field in complex Fourier components un. (un(t))n≥−1 are complex value functions with
u−1(t) = u0(t) = 0 for all t ≥ 0 and satisfing for n ≥ 1 the equation

(6)
d

dt
un = −νk2

nun + ikn

(
1

4
ūn−1ūn+1 − ūn+1ūn+2 +

1

8
ūn−2ūn−1

)
where ν ≥ 0 will be called viscosity, ūn denotes the complex conjugate, kn = k02n will be
the wavenumbers associated to un. Heuristically, in the GOY model, the variable u2

n will
correspond to the energy of the NavierStokes Fourier components of wavenumbers in a
shell, namely the interval (kn, kn+1). u2

n ∼
∑

kn<|k|<kn+1
‖Ck‖2. As in the Navier-Stokes

system the energy of GOY model is defined by

E(t) =
1

2

∑
n≥1

|un(t)|2

With easy calculation it is possible to obtain the following energy balance equation

dE

dt
= −ν

∑
n≥1

k2
n |un|

2

This equation justifies the analogy between the Navier-Stokes equations for Fourier com-
ponents and the GOY model: the two model have the same energy dissipation rate,
proportional to the wavenumber square.

Stochastic GOY model

The stochastic GOY model can be described by the following differential equation:

(7) dun = −νk2
nundt+ ikn

(
1

4
ūn−1ūn+1 − ūn+1ūn+2 +

1

8
ūn−2ūn−1

)
dt+ σndβn

where (βn)n≥1 is a sequence of independent complex-valued Brownian motions on a filtered
probability space (Ω,F , (Ft)t≥0, P ) and σn are different from zero only for a finite values
of n. The initial condition (un(0))n≥1 is imposed a F0 measurable random variable with∑

n≥1 |un(0)|2 < ∞. The stochastic goy model well posedness is proved in [1]. The
following theorem holds:

Theorem 3.1 Given an F0-measurable r.v. u0 : Ω→ H, there is a unique continuous in
H adapted process (u(t))t≥0 solution of Eq. (7).

Where H is the space

H =
{
u = (u1, . . . ) ∈ C∞ :

∞∑
n=1
|un|2 <∞

}
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with the norm given by |u|2H =
∑∞

n=1 |un|2.
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