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Introduction

The goal of this short course is to introduce some aspects of the calculus in the space of prob-
ability measures. These questions have attracted a lot of attention in the last two decades. A
first motivation has been the theory of optimal transport and the analysis of the gradient flows
in the space of measures [2] [35] [36, 37]. Another subject, the theory of mean field games (MFG),
see [9, [16], 29] B0, 31l 32], has shown the necessity to develop calculus and the analysis of partial
differential equations in the space of probability measures. Closely related to MFG, the mean
field type control problems are nothing but optimal control problem in this space. Let us also
note that stochastic control problems in which the cost (or the dynamics) depends on the entire
law of the process can be recasted in this framework.

In these short notes we will first briefly survey the various notions related to differentiability
in the space of probability measures and compare them. Then we will use these notions to present
several computations in this space: optimality conditions, [t6’s formulas. We finally discuss a
typical example of problem of calculus of variation in the space of probability measures.
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1 The Wasserstein space of probability measures

In this part, we briefly recall without proof classical topics on the space of probability measures
and on Wasserstein distance. Standard references on this part are, for instance, the monographs
12, 35, 136}, B7].

1.1 Basic definitions and properties

Given p = 1, we denote by Pp(Rd) the Wasserstein space of Borel probability measures which
satisfy the moment condition

/ ePm(dz) < +o0.
]R‘i

The Wasserstein space on R? is endowed with the distance

1/p
dp<m,m'>=( wt rx—y|p7r<dm,dy>> ,
R4 xR4

well(m,m’)

where II(m, m') is the set of couplings between m and m’, i.e., the Borel measurable measures
7 on R? x R? such that m(A x R?) = m(A) and 7n(R? x A) = m’(A) for any Borel set A = R%.
We will mostly work on P2(R?) with the distance ds.

It is known that the d, are distances on P,(R?) which (almost) metricizes the weak conver-
gence. Namely

Proposition 1.1. (see [Z]) Let (m,) a sequence in Pp(R?) and m € P,(RY). There is an
equivalence between:

(1) dp(my, m) — 0,

(i) (my) weakly converges to m and/ |z[Pm, (dx) —>/ |z[Pm(dz).
R4 Rd

(iii) (my) weakly converges tom and Rlim sup/ |z|Pm, (dz) = 0, where Bg = {x e R?, |2| <
—+00 pn B}c%
R}.
Proposition 1.2 (Existence of optimal plans). For any p > 1 and any m,m’ € P,(RY), there
exists at least one optimal plan w € I (m,m’), i.e., such that

aymm’) = [ fo - yPa(dn,dy)
R4 xR4

We denote by 11°P(m,m’) the set of optimal plans from m to m/'.

Proof. Let 7, € II(m,m') be a mininizing sequence. Let us check that it is tight. As R? is a
Polish space, the measures m and m/ are tight: for any € > 0, there exists a compact set K < R?
such m(RNK) < e and m/(RN\K) < e. Therefore, for any n,

Tn(R*N\K x K) < 1, (RNK) x RY) 4 7, (R x (RA\K)) < m(RAK) + m/(RA\K) < 2e.

So (my,) is tight and, by Prokhorov Theorem, it converges weakly (up to a subsequence denoted
in the same way) to a measure 7. One easily checks that 7 € II(m,m’). On the other hand, for



any R > 0,
/ (R A |z —ylP)r(de, dy) = lim/ (R A |z —y|P)mp(de, dy)
R2d n JRr2d
< limsup/ |z — y[Prn(da, dy) = db(m,m').
n R2d

Letting R — +00, we find that

/ & — y[Pr(d, dy) < d2(m, m),
RQd

which shows the optimality of 7. O
Given x = (21,...,zx) € (R)N, the empirical measure associated with x is the measure
L
md = = Z Oz
i=1

We often use the following result, which is intuitively obvious, but which is not so easy to prove:
Proposition 1.3. (see [2]) Let x = (z1,...,zx5) € (RON and = (y1,...,yn) € (RHN. Then

dz(ml, ml) —mf—Zm Yoo "

O’ESN

where Sy is the set of permutation over {1,...,N}.

1.2 Formulation in a probability space

Let (Q,F,P) be an atomless probability space. By an atomless probability space, we mean a space
such that, for any A € F such that P[A] > 0, there exists B € F such that 0 < P[B] < P[A]. Let
us recall that, for any Borel measure p on any Polish space F, there exists a EF—valued random
variable X with law p : £(X) = u (See Proposition 9.1.11 in Bogachev [11] or Proposition 9.1.2
and Theorem 13.1.1 in Dudley [20]).

Proposition 1.4. We have

d,(m,m’) = A inf )E [|X — X' |p]1/p

where the infimum is computed over the pairs of random wvariables (X, X') in R? such that
L(X)=m and L(X') =m/.

1.3 The Glivenko-Cantelli law of large numbers

Let (X,) be an i.i.d. sequence of random variable in L'(Q)) (where (Q,F,P) is a probability

space). Let
R
N ._
b PIL
n=1



be the associated sequence of empirical measures. Let m be the common law of the X,. If
m € P2(R?), the Glivenko-Cantelli law of large numbers states that the (m’) converges almost
surely to m:

IP’[ lim dy(m”,m) =0] =1

N—+w0
and one also easily checks that
E[ d%(mN,m)] = 0.
Under additional conditions this convergence can be quantified: let
My(m) = |z|9m(dz).
R4

Theorem 1.5 (see [I8]). If m € Py (R?) for some q > 4, there there exists a constant C =
C(d,q, Mq(m)) such that

N—1/2 if d <3
E[d3(m",m)] <{ N~'2In(N) ifd=3
N—2/d if d > 4.

2 Differentiability of maps on the Wasserstein space

In this section, we discuss different notions of derivatives in the space of probability measures
and explain how they are related. This part is, to a large extend, borrowed from [I§].
2.1 The flat derivative

Definition 2.1. Let U : Po(R?) — R. We say that U is of class C' if there exists a jointly
continuous and bounded map 5U Po(R?) x RY — R such that

U(m’ / /]Rd (5m h)ym + hm', y)(m’ —m)(dy)dh VYm, m' € Pa(RY).

Moreover we adopt the normalization convention

/]Rd g%(m,y)m(dy) =0 VYm € Pg(]Rd). (1)

Note that, if U is of class O, then the following equality holds for any m € Py(R?) and
y e R?

. 1
%(m,y) = hlirglJr 7 (U1 = h)m + héy) —U(m)).
Here is a kind of converse.

Proposition 2.2. Let U : Po(R?) — R and assume that the limit
1
V(m,y) := lim 7 (U1 = h)m+ héy) —U(m))

exists and is jointly continuous and bounded on Pa(R%) x RY. Then U is C' and g—%(m, y) =
Vi(m,y).



Proof. Although the result can be expected, the proof is a little involved and can be found in
7. O

Let us recall that, if ¢ : R? — R is a Borel measurable map and m is a Borel probability
measure on R%, the image of m by ¢ is the Borel probability measure ¢#m defined by

/ f(2)dtm(da) / Fé@)mdy)  Vf e CORY).

Proposition 2.3. Let U be C' and be such that Dy% exists and s jointly continuous and
bounded on Po(R%) x R%. Then, for any Borel measurable map ¢ : R — R with at most a
linear growth, the map s — U((idga + s¢)im) is differentiable at 0 and

o5 Ullidza + s0)m) = /R d Dy%(m,y) - S(y)midy).

Proof. Indeed
U((idga + s¢)tm) — / /R 5 (M y)((idga + s9)tm) —m)(dy)dh

/ / mh s Y+ S¢( )) g—U(m}%& y))m(dy)dh
Rd m

where

mp,s = (1 —h)m + h(idga + s¢)im
Dividing by s and letting s — 0" gives the desired result. O

Let us recall that, if m, m’ € Po(R?), the set II°P*(m, m’) denotes the set of optimal transport
plans between m and m’ (see Proposition [1.2)).

Proposition 2.4. Under the assumptions of the previous Proposition, let m,m’ € Pg(]Rd) and

7 e 11" (m,m’). Then

‘U(m’) - | Dy%(m 2) - (y — ) (dz, dy)’ < o(da(m, m')).

Remark 2.5. The same proof shows that, of 7 is a transport plan between m and m’ (not
necessarily optimal), then

\U<m’> ~Um) = [ D ma) -y~ )t dy)| < o (( /. |x—y|2w<dm,dy>)1/2> .

R2d Y om

Proof. Let ¢¢(x,y) = (1 — t)x + ty and my = ¢ffir. Then mg = m and m; = m’ and, for any
t € (0,1) and any s small we have

U(drysim) — U(utm) = / / M.y Y) (DT — dufim) (dy)dh
/ /Rad om (msp, (L=t =)z +(t+s)y) = %(ms,ha (1 —t)z + ty) m(dz, dy)dh

/ / o Dy—(msp, (1 =t —7s)x + (t +75)y) - (y — ) 7(dx, dy)dhdr,

5m



where mg, = (1 — h)ppysm + hém. So, dividing by s and letting s — 0 we find:
d
—U (Petim) = / Dy5 (e, (1 —t)x + ty) - (y — x) w(dzx, dy).
As Dyg—% is continuous and bounded by C, for any ¢, R > 0, there exists » > 0 such that, if

da(m,m') <r and |z|,|y| < R, then

oU oU
| Dy —(qﬁttm, (1—t)x +ty) — Dy%(m,x)\ < €e+201 ) 4z,

‘/ y5 gbtﬁw (1-t)z+ty) - (y—x) n(dx,dy) — /R% Dyg—:;(m,x) (y — z)m(dx, dy)

2C
< O0p+ / (e +2C1,_y5, )|y — z|m(dzx, dy) < O + eda(m,m’) + Td%(m, m').
(Br)?

where

oU oU
= | Dy 5= (@ntm, (1=t +ty) - (y — 2)| + D,z (m, ) - (y — )| (e, dy)
RQd\(BR)Q m m

<C ly — | (dz, dy) < Cda(m, m’)r" /2 (R*\(Bg)?) = da(m, m’)or(1).
R24\(BR)?

This proves the result. O

2.2 W —differentiability

Next we turn to a more geometric definition of derivative in the space of measure. For this, let
us introduce the notion of tangent space to Pa(R%).

Definition 2.6 (Tangent space). The tangent space Tan,,(P2(R%)) of P2(R?) at m € Po(RY) is
the closure in L2,(RY) of {D¢, ¢ € CF(R%)}.

Following [3] we define the super and the subdifferential of a map defined on Py (R?):

Definition 2.7. Let U : Po(R?) — R, m € Po(R?) and € € L2,(R4, RY). We say that ¢ belongs
to the superdifferential 0YU(m) to U at m if, for any m' € Po(RY) and any transport plan
from m to m/,

Um') <U(m)+ /RdXRd &(x) - (y — z)m(dz,dy) + o ((/de lz — y|2n(da, dy)) 1/2) :

We say that € belongs to the subdifferential d~U(m) to U at m if —& belongs to DT (=U)(m).
Finally, we say that the map U is W—differentiable at m if 07U (m) n 0~ U(m) is not empty.

One easily checks the following;:

Proposition 2.8. If U is W—differentiable at m, then 0YU(m) and 0~U(m) are equal and
reduce to a singleton, denoted {D,,U(m,-)}.

Remark 2.9. On can actually check that D,,U(m,-) belongs to Tan,, (P2 (R%)).



Proof. Let & € DYU(m) and & € D~U(m). We have, for any m’ € Po(R?%) and any transport
plan 7 from m to m/,

/Rded &(x) - (y — z)w(dz,dy) + o <</R% oy (e, dy)) 1/2)

Uy~ Um) < [ ) (- n)mldrdy) + o (( e y|2w<dx,dy>)1/2> .

In particular, if we choose m’ = (1 + h¢)tm and 7 = (Id, Id + h¢)tm for some ¢ € L2 (R, R%)
and h > 0 small, we obtain

N

h y &(x) - dlx)m(dx) +o(h) <U(m') —U(m) < h " &i(x) - ¢(z)m(dx) + o (h),

from which we easily infer that & = & in L2, (R%). O]

We have seen in Remark that if U is C! with D,6U/dm continuous and bounded, then
U is W-differentiable. In this case it is obvious that D,,U(m) belongs to Tan,,(Pz(R%)) by
definition.

2.3 Link with the L— derivative

Another possibility for the notion of derivative is to look at the set of Borel probability measures
as the law of random variables with values in R? and to use the fact that this set has a Hilbertian
structure.

Let (Q,F,P) an atomless probability space. Given a map U : Po(R?) — R, we consider its
extension U to the set of random variables L?(€2, R%):

U(X)=U(LX)) VX eL*Q,RY.

(recall that £(X) is the law of X, i.e., £(X) := X#P. Note that £(X) belongs to P2(R%) because
X € L?(Q)). The important point is that L?(2,F,P) is a Hilbert space, in which the notion of
Frechet differentiability makes sense.

For instance, if U is a map of the form

U(m) = y (x)m(dx) ¥Ym € Po(RY), (2)
where ¢ € C2(R?) is given, then
UX)=E[6(X)] VX eL*QR%.

Definition 2.10. The map U : Po(R?) — R is L—differentiable at m € Pa(R?) if there exists
X e L2(Q,RY) such that L(X) = m and the extension U of U is Frechet differentiable at X.

The following result says that the notion of L—differentiability coincides with that of W —dif-
ferentiability and is independent of the probability space and of the representative X. The first
statement in that direction goes back to Lions [32], the version given here is can be found in
[26] (see also [1], from which the sketch of proof of Lemma is largely inspired).



Theorem 2.11. The map U is W —differentiable at m € Pa(R?) if and only if U is L— differentiable
at some (or thus any) X € L*(Q,RY) with L(X) = m. In this case

VU(X) = D, U(m, X).

The result can be considered as a structure theorem for the L-derivative.
For instance, if U is as in for some map ¢ € C}(R?), then it is almost obvious that

VU(X) = D(X)

and thus
Dy U(m,z) = Do(x).

The proof of Theorem is difficult and we only sketch it briefly. Complete proofs can be
found in [26] or [I]. The first step is the fact that, if X and X’ have the same law, then so do
VU (X) and VU (X'):

Lemma 2.12. Let U : Po(R?) — R and U be its extension. Let X, X' be two random variables
in L2(,RY) with L(X) = L(X'). IfU is Frechet differentiable at X, then U is differentiable at
X' and (X,VU(X)) has the same law as (X', VU(X")).

(Sketch of ) proof. The idea behind this fact is that, if X and X’ have the same law, then one
can “almost” find a bi-measurable and measure-preserving transformation 7 : {2 — 2 such that
X' = X o7. Admitting this statement for a while, we have, for any H' € L? small,

U(X'+ H') = O((X'+ H)or) = U(X + H' o7) = U(X) +E[VU(X) - H 0| + o(|H o 7])

— U(X') +E[VO(X)or™ - H'| + o |H]2).

This shows that U is differentiable at X’ with differential given by VU (X)o7t Thus
(X', VU(X")) = (X,VU(X)) o 7%, which shows that (X, VU(X)) and (X', VU (X)) have the
same law.

In fact the existence of 7 does not hold in general. However, one can show that, for any € > 0,
there exists 7 : Q —  bi-measurable and measure preserving and such that | X' — X o7/, <.
A (slightly technical) adaptation of the proof above then gives the result (see [14] or [I8] for the
details). O

Next we show that VU (X) is a function of X:

Lemma 2.13. Assume that U is differentiable at X € L?(Q,RY). Then there exists a Borel
measurable map g : RY — R such that VU (X) = g(X) a.s..

(Sketch of) proof. To prove the claim, we just need to check that VU (X) is (X )—measurable
(see Theorem 20.1 in [I0]), which can be recasted into the fact that VU (X) = E [Vﬁ(X) \X] Let

p= L(X,VU(X)) and let p(de,dy) = (6, ® ve(dy))Px(dz) be its disintegration with respect
to its first marginal Py. Let A be the restriction of the Lebesgue measure to Qi := [0,1]%.
Then, as A has an L! density, the optimal transport from A to v, is unique and given by the
gradient of a convex map ¢, (-) (Brenier’s Theorem, see [37]). So we can findT|a measurable map
¥ : R x RY — R? such that, for Px—a.e. 2 € R%, ¥,(-)A = v,. Let Z be a random variable
with law A and independent of (X, VU (X)).

"Warning: here the proof is sloppy and the possibility of a measurable selection should be justified.



Note that = £(X,VU(X)) = L(X,9x(Z)) because, for any f € C)(R? x R?),
B2 = [ [ @ va@Ndalxldn) = [ [ )i dPy (o)
Re J Q4 R4 JRd

- / [, y))val(dy)Px(de) = | f(z,y)u(dz,dy).
Rd JRd R2d

So, for any e, . . )
UX +eVU(X)) =UX + evx(2)),

from which we infer, taking the derivative with respect to € at ¢ = 0:
- 2 -
E [’VU(X)( ] - E[VU(X) -qu(Z)].
Note that, as Z is independent of (X, VU(X)), we have
E|VO(X) vx(2)| = E|VO(X) E[a(D)],x]

where, for Px—a.e. x,

E[¢x(z)] = o wz(z))\(dz) :/

Q1

v Wt (dn) = [y valdy) =B [VOX)IX =a].
So, by the tower property of the condition expectation, we have
. 2 - - - 2
E UVU(X)‘ ] —E [VU(X) E [VU(X)\XH _E “]E [VU(X)]X” } .
Using again standard properties of the conditional expectation we infer the equality VU(X ) =
E [VU(X)]X], which shows the result. O
Proof of Theorem [2.11 Let us first assume that U is W —differentiable at some m € Py(RY).

Then there exists & := D,,,U(m,-) € L2,(R%) such that, for any m’ € Po(R?) and any transport
plan 7 between m and m’ we have

Uty =) = [ ) (- ot )| < o (( - y\%(dx,dy))m) .

Therefore, for any X € L? such that £(X) = m, for any H € L?, if we denote by m' the law of
X + H and by 7 the law of (X, X + H), we have

|00+ 1) = 000 ~ B[00 - H]| = | U(m') = O - [ €(0)- (0~ 2t

0 (( [l = vPatanan) 1/2))

—o(E[IX - Y]]"*).

N

This shows that U is L-differentiable.

10



Conversely, let us assume that U is L-differentiable at m. We know from Lemma [2.13] that,
for any X € L? such that £(X) = m, U is differentiable at X and VU(X) = £(X) for some
Borel measurable map ¢ : R* — R?. In view of Lemma the map £ does not depend on the
choice of X. So, for any € > 0, there exists r > 0 such that, for any X with £(X) = m and any
H e L? with |H|| < r, one has

U(X + H) —U(X) ~E[§(X) - H]| < e

Let now m' € Pg(Rd) and 7 be a transport plan between m and m’ such that fRQd |z —
y|?m(de,dy) < r?. Let (X,Y) with law 7. We set H = Y — X and note that |Hl|z < r.
So we have

UGn) = Um) = | &)y~ 2l y>] ~ | U(X + H) = U(X) ~E[§(x) - H]| <.

This proves the W-differentiability of U. O

2.4 Higher order derivatives

We say that U is partially C2 if U is C! and if Dy6U /om and D§y5U /dm exist and are continuous
and bounded on Py(RY) x R,
We say that U is C? if g—% is C! in m with a continuous and bounded derivative: namely

g% = %(g—g) : Po(R%) x R? x R? — R is continuous in all variables and bounded. We say that
U is twice L—differentiable if the map D,,U is L—differentiable with respect to m with a second
order derivative D2, .U = D2, U(m,y,y') which is continuous and bounded on Py(R%) x R? x R?
with values in R¥*¢. One can check that this second order derivative enjoys standard properties

of derivatives, such as the symmetry:
DTQnmU(mv Y, y/) = D?nmU<m7 y/7 y)

See [16].

2.5 To go further

For a general description of the notion of derivatives and the historical background, we refer to
[18], Chap V. The notion of flat derivative is very natural and has been introduced in several
contexts and under various assumptions. We follow here [16].

The initial definition of sub and super differential in the space P2(R?), introduced in [2], is
the following: ¢ belongs to 07U (m) if € € Tan,,(P2(R?)) and

Um') <U(m) + inf / &(x) - (y — o)m(dx, dy) + o(da(m,m’)).
welloPt (m,m’) JRd «Rd
It is proved in [26] that this definition coincides with the one introduced in Definition
The notion of L-derivative and the structure of this derivative has been first discussed by
Lions in [32] (see also [14] for a proof in which the function is supposed to be continuously
differentiable). The proof, without the extra continuity condition, of this structure property is
due to Gangbo and Tudorascu [20] (see also [I] for simpler arguments, revisited here in a loose

way).

11



3 Calculus on the Wasserstein space

In this part we collect several useful tools in relation with the calculus in Py(R%): optimality
conditions, projection over empirical measures and various It6’s formulas.

3.1 Optimality conditions

This part is borrowed from [17].

Proposition 3.1 (First order conditions). Assume that the map U : Py(R?) — R has a mazi-
mum at some measure m € Po(RY). If U has a linear derivative, then

%(m, y) <0VyeR? and %(m, y) = 0 for m—a.e. y e R% (3)

In particular, if U is partially C?, then
D, U(m,y) = 0 and D?D,,U(m,y) > 0 for m—a.e. y e R4 (4)
An example: Assume that U(m / é(y)dm(y) where ¢ : R — R is a smooth map

such that ¢(0) = 0, ¢ < 0 outside 0 and D?¢(0) < 0. Then U has a maximum at 7 = dy (the
Dirac mass at 0). As

2 (o) = oly) ~ | ol/)dm(y)
Rd
we have sU
5 (19) = &), DU (i, y) = Dé(y), DynU (12, y) = D*¢(y).

In particular, S YU (1, y) and D,,U (i, y) vanish only on the support of 1 = &y and D,,,U (o, )
is negative on the support of m.

Proof. For any 3o € R? and s € (0, 1], we have, by then optimality of m,

U((1 —s)m + s6y,) — / /]Rd 5m (1 = t)ym + tdy,,y)(dy, —m)(dy) < 0.

We divide by s and let s — 0%. By the continuity of U /dm we obtain

/R U (170,) (840 — 1) (dy) < 0

aom

which implies that, for any yo € R? and because of the convention in ,

oU

5m( 7y0) 0. (5)

If we integrate this inequality in yo against m, we find an equality (again because of the con-
vention in (1f)). So

oU

6m( m,yo) =0 for m—a.e. yo € R% (6)

Then and () imply that the map y — g—%(m, y) has a maximum at m—a.e. yo € R?, and

thus, using the standard optimality conditions for a map defined on R%, we obtain (4.

12



Proposition 3.2 (Second order condition). Assume that the map U : Po(R?) — R has a
mazimum at some measure m € Po(R%) and that U is fully C%. Then, for any bounded Borel
map ¢ : R* - R?, we have

[ Dhnm.. )6l - 6 m(dg)m(dy) < o )
R4 x R4
Proof. We fix a Borel measurable, bounded vector field ¢ : R — R? and note that, for any

s € R and by optimality of m,
U((id + sp)tm) < U(m).

Therefore p 2
5| U((id + s¢)tm) = 0 and pEi U((id + s¢)tm) <0
s=0
As p
Ui+ so)gm) = [ DuU((id + som,y) - s(u)m(dy)
we have
d? . _ 2 / g o
8% |s=0 R2d
where U and its derivatives are computed at m. This gives . O

3.2 Projection over finite dimensional spaces

It is often very convenient to translate results known on a map defined on the Wasserstein space
to its restriction to the set of empirical measures. The computations here come from [16].
Given U : P2(R%) — R and N € N be a large integer, we set

N
1
UN(x1,...,zn) = UmY), where x = (21,...,z5), mi NZ::

Note that UV : (RN — R.

Proposition 3.3. Assume that U : P2(R?) — R is L-continuous differentiable with bounded
derivative. Then UV is of class C* on (RN and

1
D, UN(x) = NDmU(mfy,x,;) Vie{l,...,N}.
If in addition U is fully C?, then
Dy, UN (x) = WDQ wU(m,xi,x;)  Vi#je{l,...,N}

and
1 1 .
Dy.o, UN (x) = ﬁDfnmU(m,xi,xi) + NDmeU(mff,xi) Vie{l,...,N}.
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Proof. We first assume that the (x;) are all distinct. Then, for any direction v = (v1,...,vn) €
(RN we can find a smooth map ¢ : RY — R? such that ¢(x;) = v; for any i. Note that

(Id + he)tm& = mZ, .,

for any h € R, so that, by Proposition we have, at h = 0,

d d
U ) = - U((Ta+ hoyamd) = [ DU ) - ol (a).
So
d 1Y N 1 &
%U (X+hV :N;DmU(mx, .’Ez :Ng )Ul

This shows that U” has continuous directional derivatives in the dense open set {x € (R)N, x; #
xj if i # j}. Therefore U N'is C' and the above formula holds. The second order differentiability
can be proved by the same arguments. O

3.3 Itd’s formula

Given a flow (m(t)) of probability measures satisfying a differential equation (typically a conti-
nuity equation, a Fokker-Planck equation, etc...) we consider the derivative of a map U along
this flow.

3.3.1 First order Ité’s formula

We start with a simple continuity equation:
oym + div(mb) = 0.

Here we assume that the continuous drift b : [0,7] x R? — R? is such that b(t,) is uniformly
(in t) Lipschitz continuous on R?. Then the Cauchy-Lipschitz Theorem states that there exists
a unique solution (X;°"°) to

2'(t) = b(t,x(t)), te[0,T], z(to) = xo.

We denote by X the solution to this equation.
Given an initial measure mg € Py(RY), the flow of measures m(t) := X;#myg is a solution in
the sense of distribution of

oym + div(mb) = 0 in (0,T) x RY, m(0) = mg in RY,

One can show (but we admit this fact here, see [2]) that (m(t)) is the unique solution to this
equation.

Proposition 3.4. Let mg € Po(R%) and m(t) = X[*'tmo. IfU is L — C*, then t — U(m(t)) is
of class C' and

SUGn() = [ DuUGm(),y) - blt. y)m(e)(dy).
R4
Proof. 1t is only a small variant of the proof of Proposition and we omit it. O
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3.3.2 It6’s formula for the law of SDEs (or the Fokker-Planck equation)
When U is partially C?, 1to’s formula holds for the law of a diffusion of the form

dX; = bydt + o0pdB;.
The following result is [I8, Theorem 5.98].

Theorem 3.5. Assume that where (b;) and (0}) are progressively measurable with values in R?
and R™*? respectively and satisfy, for some T > 0,

T
E [/ (|bs]? + 10514)@} < +o0.
0

Assume in addition that U is partially C? with

2
sup [ D, DUy utdy) <+ (8)
HePs (Re) JRd

Then, for any t € [0,T],

U(E(X) = £0X0) + | BIDWUEX),X) bl ds + 5 [ B[Tr(0.D,DaU(£(X). X)) ds.
)

where ag = o50%.
Remark: if by = b(s, Xs) and o5 = o(s,Xs), the above expression becomes, if we set
m(t) =: E(Xt),
t
Ulm(t) = Ulmo) + [ [ Dulm(s),0) - bs,wym(s. du)ds
0

Rd
+ ;/0 /]Rd Tr (G(S,y)DmeU(m(S),y))m(sjdy)ds.

Sketch of proof in a particular case. For simplicity, we do the proof only in the case a = v/21d
and b = b(s,x) is a smooth and globally Lipschitz continuous vector field. In this case it is
known that the law m(t) of X; has smooth density which satisfies

dym — Am + div(mb) = 0.

Therefore
%U(m(t)) = /Rd %(m(t),y)atm(t7 y)dy
= [ 38 ), ) At )+ im0, )y

— [ DD Um(t), y)mit, y)dy - / DU (mit), ) - b(t, yym(t, y)dy.
R4 R4
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An alternative proof is to use the law of large numbers as described in Section Let (X})
be i.i.d. copies of the process X and let miv be the associated empirical measure:

1 N

N

my :N26X£L
=1

We know that m}¥ converges to the law of X; in P2(R%) (Theorem . On the other hand, if
we consider the finite dimensional projection U™ of U:

UN(x) := Umd),vx = (z1,...,zn) € (R)Y,

then we can use Ito’s calculus and the expressions of the derivatives of U” in Proposition to
obtain the result: see [I8], Chap. 5 for the details.

3.3.3 1It6’s formula for the conditional law

A similar It6’s formula holds for the conditional law of an It6’s process of the form,
dX; = bydt + 0YdB; + o} dWy,

where B and W are independent d—dimensional Brownian motions living on different probability
spaces (0, F°,PY%) and (Q', F',P!) and where b, 0" and o! are progressively measurable with
respect to the filtration generated by W and B, with

T
E U (1bs? + |00 + \a;|4)ds] < to0.
0
We assume that U is globally C? with
2
swp [ IDuU ) ntda)+ [ 1DDpU )P uda)t [ D2V ) dn)p(dy) < 4.
uePs(RY) JRE R4 Rd xRd

Then, letting p:(w') = [X¢|W](w!), we have, P'—a.s.,
t t
Us) = Uloo) + [ B [DU(pes X2) bl ds + [ B [(01)" Dol X)) -, (10)
0 0
1t 1 [ oz ;
+5 [ O[T (@D, DU X)) ds + 5 [ BB [Tr (D20, Xe: K)ok (51)°) | s
0 0

where X and &' are independent copies of X and ¢! is defined on the space (QO x QY PO ®I@’1),
while as := (69(c9)* + ol(ol)*). See [18, Theorem 11.13].

s

4 Calculus of variation in the Wasserstein space

In this section we study the optimal control of the continuity equation, formally given by

T T
inf / / L(z, at, 2))m(t, dz)dt + / Flm(8))dt + G(m(T))
@ Jo JRd 0
where a = «(t, x) is a distributed control and m solves the continuity equation

&ym + div(ma) = 0in (0,T) x RY, m(0) = my.
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In the cost, T is a finite horizon, L : R? x R? — R is a continuous Lagrangian with a quadratic
growth:
Cytal* = Co < Lz, ) < Co(|af* +1)

and the maps F,G : Py(RY) — R are assumed to be (at least) continuous and bounded on
Po(R?). To simplify the discussion, we also assume that L is (at least) of class C'! with respect
to p, so that

L(z,a) = slgt)i Do L(z,b) - (o — b) + L(z,b) (11)

4.1 Existence of a solution

In order to find a minimum to the above problem, we need to relax a little the formulation. Let
W be the set of Borel vector measures on (0,7) x R? with values in R, We say that a pair
(m,w) is admissible if m € C°([0,T], P2(R%)), w € W, w is absolutely continuous with respect
to the measure dt ® m(t,dx) and the following equality holds in the sense of distributions:

dym + div(w) = 0in (0,7) x RE,  m(0) = my.

If (m,w) is admissible, we denote by dw/dm the Radon-Nykodim derivative.
We consider the functional

T dw T
J(m,w) := /0 /Rd L(x, %(t,x))m(t,daz)dt +/0 F(m(t))dt + G(m(T)) (12)

if (m,w) is admissible and J(m,w) = +o0 otherwise.

Theorem 4.1. We assume that F,G : Po_s(R?) — R are continuous for some § € (0,2). Then
there exists at least a pair (m,w) which minimizes J.

Remark: The above result extends to more general Lagrangians of the form L(z, o, m) with
a non-linear dependence with respect to m. If F and G are convex on Py(R?), the proof shows
also applies even if I and G are only continuous (or Isc) on Po(R?). The above result is a (small)
generalization of the famous Benamou-Brenier formulation of optimal transport [7].

Let us start with a remark on the regularity of the solution (m,w).

Lemma 4.2. Assume that (m,w) is admissible. Then

. ) 1/2
do(m(t), m(s)) < (t — s)"/2 ( /0 /R d mit, dx)dt)

Proof. Let & : R x R* — R be a smooth positive kernel on (—1,1) x R? vanishing outside
of this set and with integral 1. We set &(t,z) = e 97 1¢(t/e, x/e). We also extend (m,w) by
(m(t),w) = (mo,0) for t < 0 and (m(t),w) = (m(T),0) for t = T. Then (m,w) still satisfies the
continuity equation

dw

%(tv :E)

oym + div(w) = 0in R x R?

and therefore so does (m€, w€) = £° x (m,w) because the equation is linear. Note that m® > 0
on (0,T) x R? and we set a¢ := w/m¢. Then af is a smooth vector field: let us denote X;**

the associated flow, i.e., the solution to

{ X§787m = ae(t7X:75’x)7

€,8,T
X7 =x
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Let us fix e < s <t < T —e. Then m(t) = (x — X;"")gm(s), so that

(o). (s) < | o= yPre.a),
where 7 € TI(m(t), m(s)) is defined by 7 = (x — (Xf’s’x,x))ﬁme(s). Then
& (m(t), m(s)) < / X _ g2me (s, dz) < (— s / 0 (7, XE5R)2dr me (s, )

R2d Js

t—s/Te/RQd\a (1, 9)|*m* (7, x)dr.

By convexity of the map (z,7) — |2]2/(2r) on R? x (0, +00) (since it is equal to SUDyeRd Y * 2 —
r|y|?/2) and since £€ has a support in (—¢,¢) x R, we have

T—e ) T—e we
[ [ eebuoe = [ )
€ R2d € R2d m
[
< -
0 R2d

me (T, x)dr

2
m(1,dx)dr.

dm (7,2)

So we have proved that

T
d%(mg(t),mg(s)) < (t- S)/O /RZd df

2
I (t,2)| m(r,dx)dr.

Then we let ¢ — 0 and obtain the result. O

Proof of Theorem [/.1. Choosing w = 0 and m(t) = mg, we see that the infimum is not +oo.
Let (my,wy,) be a minimizing sequence. From our growth assumption on L and the fact that F
and G are bounded, we infer that

A

By Lemma [4.2| we have there that (m,,) is uniformly continuous in Py (R%). Note that this also
implies that

dwn

n Y < . 1
@ dm. my(t, dx)dt < C (13)

sup sup Mas(my(t)) < C.
neN te[0,T]

Hence we know that there exists a subsequence, still denoted by (m,,), such that (m,) converge
to some m € C°([0, T], P2(R%)) in CO([0, T], Po_s(R%)).
On the other hand, the total variation |w,,| of w,, is uniformly bounded because

([ o) ([ |

So, extracting a further subsequence, we can assume that (w,,) converges in distribution to some
vector measure w on [0,7] x R%. Tt remains to check that (m,w) is admissible and a minimizer.

dwn

dmn

1/2
(t, d:c)dt> < TV20M2,
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By we have that, for any test function ¢ € C*([0,7] x R4, R%),

T T
/O o o(t,x) - w(dt, dx) —/ /Rd %|¢(t,x)|2m(t,d:c)dt
—hm/ Rd¢tm ) - wy(dt, dx) — / /RdQ B(t, x)|*m, (¢, dz)dt

< lim Sup / /
Rd

This proves that w is absolutely continuous with respect to dt®dm. Moreover, one easily checks
that (m,w) satisfies the continuity equation. So (m,w) is admissible.

We finally prove that (m,w) is a minimizer. As F and G are continuous on Py_s(R?), we
have

dw,,

(t
At @ dm, (¢, )

mn(t, dx)dt < C.

hm/ (mn(£))dt + G(mn(T /F ))dt + G(m(T)).

For any a € C®(R?) and b € CP(R) such that a(z) - p+b(x) < L(z,p) for any z,p € R, we have

/OT/Rda( w(dt,dx) //Rd m(t,dx)dt
= lim/ /]Rd a(z) - wy(dt, dx) —l—/o /Rd b(x)my(t, dz)dt

hmsup/ /Rd dt@dmn ————(t,x))my(t, dx)dt.

Taking the supremum with respect to a,b in the above inequality (recall ) proves that

//Rd dt®d( a))m(t, dz)dt

hmsup/ /IRd dt@d (t,x))mn(t,d:v)dt.

This shows that
J(m,w) < limsup J(mp,w,) = inf J

n

and therefore that (m,w) is a minimum of the problem. O

4.2 Necessary conditions

In this section we write some necessary conditions for our optimal control problem. For this, in
addition to the assumptions of the previous part, we assume here that F' and G are of class C!
(with respect to m) and that the derivatives

Flem) = so(mw),  glem) = 5 (m,2)

and the Hamiltonian

H(z,p) = sup —a-p— L(z, q)

acRd
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are such that, for any m e C°([0, T], P(R?)), the solution u to the Hamilton-Jacobi

{ —0wu + H(x, Du) = f(xz,m(t)) in (0,7) x R?,
w(T,x) = g(x,m(T)) in R?.

is uniformly Lipschitz continuous and semi-concave. Several structure condition are known for
this to holds: the simplest one being that f(-,m) and g(-,m) are bounded in C? independently
of m and H(z,p) = |p|>. See also [12].

Theorem 4.3. Assume that (m, ) is a minimum of J defined by (12)). Letw: [0,T] xR —» R
be the viscosity solution to the (backward in time) Hamilton-Jacobi equation

{ —0yu + H(z, Du) = f(x,m(t)) in (0,7) x R?,

a(T,z) = g(xz,m(T))  inR% (14)

Then dt ® dm—a.e.,
dw .
7W(tax)) eD U(t,l')),

where DT u(t, x) is the superdifferential of @ at (t,x).

—D,L(x

In fact, it is known that @ is differentiable on the support of m, so that the above inclusion
can be rewritten as

dw
dt ® dm
dt ® dm—a.e. This shows that the pair (u,m) is a solution to the mean field game system

(t,x) = —DpH(x, Du(t, x))

—0i + H(x, Du) = f(z,m(t))  in (0,T) x RY,
oym — div(mD,H (xz, Du)) = 0 in (0,7) x R,
m(0) = mg, w(T,z) = g(x,m(T)) in R?,

The proof requires some intermediate steps. Let J! be the linearized energy defined by

(m,w) := / / t (t,z))m(t, dx) dt+/ fz,m(t))m(t,dz)dt
R4 Rd
/R gl m(T))m (T, dr) (15)

if (m,w) is admissible and J(m,w) = 400 otherwise. One easily checks that the following holds:
Lemma 4.4. (m,w) is a minimum of J'.

The main step of the proof is the lack of duality gap explained in Lemma below. This
statement relies on Von Neumann min-max Theorem that we recall now: Let A and B two
convex subsets of some vector spaces, B being compact and let £ : A x B — R be such that

(i) a — L(a,b) is concave for any b € B,

(i1) b — L(a,b) is convex and lsc for any a € A.

Then

Ibrélélilég)ﬁ(a ,b) = il;glgé%lﬁ(a ,b). (16)

We use below a version (see Theorem A.1 [33]) in which the compactness of B is replaced by a
coercivity of £ with respect to the b variable. More precisely, let us assume (i) and, instead of
B compact and (ii), that there exists a* € A and C* > 0 such that
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(ii") C* > supgea infrep L(a, b),
(ii”) the set B* :={be B, L(a*,b) < C*} is non-empty and L(a, ) is Isc on By for any a € A.
Then holds.

Lemma 4.5 (No duality gap). Under the assumption of Theorem and if J' is defined by

, we have
inf J'(m,w) = sup/ (0, x)mo(dx),

(m,w)
where the supremum in the right-hand side is taken over the maps ¢ € C1([0,T] x R% R) such
that
[0t¢]leo + [DPlloo < +00 (17)

and ¢ is a subsolution of the Hamilton-Jacobi equation

{ —01p + H(xz, Do) < f(x,m(t)) in (0,7) x R, (18)

&(T,x) < glz,m(T)) in R%.

Proof. We split the equality in two parts. First we check that given a finite Borell mesure mp
on R%,

(), iy g T2 12) = 5D [ (ot mn(D)) = (T a)ymr(do) + [ 60,apmolde), (19

where the infimum in the LHD is taken over all admissible pairs (m, w) satisfying the continuity
equation and the boundary constraints m(0) = mg and m(7") = my while the supremum in the
RHS is taken over all ¢ € C! such that holds and

—0i6 + H(z,D¢) < f(z,m(t))  in(0,T) x R

Then we relax the constraint on mp. Note that the LHS of [19] is +c0 if mp is not of mass 1
because in this case there is no admissible pair (m,w) with m(T) = my.

To prove , let us introduce some notations. Let A be the set of C! maps ¢ : [0, T] x R? —
R for which holds and let B be the set of pairs (m,w), m = m(t, dz)dt being a Borel mesure
on [0,7] x R? and w being a Borel vector measure on [0,7] x R? with values in R?, which is
absolutely continuous with respect to m. Note that a pair (m,w) is admissible in the LHS of
(19) if and only if, for any ¢ € A we have

T T
/ orpm +/ D¢ -w— / o(T, x)mp(dx) + (0, x)mo(dz) = 0.
0 JR4 0 JRd Rd Rd

Therefore the LHS of equals inf supL(¢,(m,w)), where £ : A x B — R is defined by

(mvw)EB PpeA

mw) = [ [ (o o)+ sommdnat s [ gt mm)ma )

Rd

T T
+ / Orpm + / D¢ -w— o(T, x)mp(dr) + #(0, x)mo(dx).
0 Jrd 0 Jrd R4

R4
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Note that £ is concave in ¢ and convex in (m,w). Let us set ¢*(t,z) = at(1 + bjz|?)'/? (for
a,b > 0) and note that the set B* := {(m,w) € B, L(¢*, (m,w)) < C*} is nonempty and
compact for any a, C* > 0 large enough and b small enough because

L(¢*, (m,w)) = Cy! /OT /Rd

T T
ta / / (1 + blz|2)2m(t, dz)dt — ab'2T / w|(dt, dz) — C(a, b).
0 R4 0 R4

2
m(t, dx)dt — CoT — | f|cm([0,T] x RY)

Moreover, L(¢,-) is Isc on By for any ¢ € B. By the min-max Theorem stated above, the LHS
of (19) equals sup inf L(¢,(m,w)). Note that, for any ¢ € A,
¢€A (m7w)EB

inf  L(¢, (m,w))

(m,w)eB

= mf/ /Rd dt®d —(t, ))—i—f(x,m(t)))m(t,dx)dt—i—/ g(xz,m(T))mr(dx)

R4

¥ / agm + / / Dé-w— /¢Tme<dm> [ 6(0.2)mo(cz)

mf/ /R H(z, Do) + f(x, m(t ))+6t¢)m(t,d:v)dt+/ o(@, m(T))my (da)

R4

— o(T, x)mp(dx) +/ (0, z)mg(dx)
R4 R4

/Rd (9(x, m(T)) — ¢(T, x))mp(dx) + /Rd #(0,z)mo(dz) if — H(x,D¢) + f(z,m(t)) + dp =0

—0 otherwise.

(Here we are a little sloppy: see [Chap. IX, Prop. 2.1][21] for details). We conclude that
holds.

Let us now relax the constraint on my. By we have

J(m,w) = inf sup /Rd(g(x, m(T)) — (T, z))mr(dx) + o (0, z)mo(dz).

MT peC1, ¢ subsolution

One can check again (using similar arguments) that the min-max Theorem applies and we obtain

J(m,w) = sup inf /Rd(g(x,m(T)) — (T, z))mrp(dz) + #(0, z)mo(dx)

¢eC1, ¢ subsolution ™7 Rd

= sup Rd
¢eC1, ¢ subsolution —0 otherwise.

This completes the proof. ]

Note that, by the comparison principle for Hamilton-Jacobi equation, if @ is the viscosity
solution to and if ¢ is as in Lemma (4.5]), then ¢ < 4. Hence

sgp /Rd (0, 2)mp(dz) < /]Rd a(0, x)mo(dx).
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Conversely, by the convexity of H = H(x,p) with respect to p, one can build by convoluting «
with a smooth kernel a sequence of maps ¢,, as in Lemma such that ¢, converges uniformly
to %. This shows the following;:

Lemma 4.6. There exists a sequence (¢,) as in Lemma such that ¢, converges uniformly
to u and

sup [ ¢(0,2)mo(dz) =lim [ ¢,(0,2)mo(dz) = / u(0, x)mo(dx).
1) R4 n Rd Rd

Proof of Theorem[].3. By the absence of duality gap (Lemma , we have
on(1) = 7'(m, w) - / Bumo

/ //Rd dt®d ————(t,x ))m(tjlx)dt—k/T g Fla,m(t))m(t, de)dt
9@, m(T))m(T, d Pno
R

Testing the continuity equation satisfied by (m,w) with ¢,,, we have

T T
/ Orpnm ~|—/ ngn- / O (T, x)m(T, dz) + dn (0, 2)mo(dx) = 0.
0 Jrd 0

R4

Using the (in)equality satisfied by ¢,,, this implies that

T dw
/0 /Rd(H(:v,ngn)—f( M+ e g Donm / o (T, z)m (T, dz)+ Rd¢n(0,x)mo(dx)<0

Therefore,

do
//Rd dt@d )+H(x’D¢n)+m)m(t,dx)dt

+ [ (alam(T) = 6,(T. 0T do).

We use the uniform convexity of H to infer that

T
1)>/ / ot
0 R4

As u is semi-concave, for any (¢,z) € [0,T] x R?,

_ 2
)+ Dé| m(t, dz)dt.

dw
L@ e dm

limsup Do, (¢, ) = DT u(t, z),
n

where the lim sup is understood in the Kuratowski sense. This shows that

dw

DLz, —2
@ e dm

)(t,z) € DYu(t, z)

for dt ® dm—a.e. (t,x). O

23



4.3 The mean field limit

Here we study the relation between the continuous model studied in the previous sections and
some finite dimensional models with a finite (but large) number of controlled particles. Let N
be the number of particles. Let X = (Z3,..., 7)) € (RY)Y be a given initial condition. The
problem of calculus of variation consists in minimizing the cost

N T T
1 o
IN(@d, .2l et e = ~ Z /0 L(zy, of)dt + /0 F(m,](\i)dt + G(m,]yT)
i=1
where o!, ..., o are the controls (in L2((0,7),R%)) and x; = (z},...,z}) is the solution to
il =al, te[0,T], xh = .

and where, as usual,

><

L
NZ zis x = (z,...,2"N).

Theorem 4.7. Assume that L, F' and G are as in Theorem . Let mg € P2(R?). There exists
a sequence of initial conditions (X2') with

m,—](\; — My in Py (Rd)
and, if (&%) is a minimum for JN (%), -) with associated trajectory %; = (Zf,--- ,ZY), and if we

denote by m™(t) := m,—(Nt the associated empirical measure, then the sequence (T?LN) is tight in
CO[0,T], Pa—c(RY)) (for any € € (0,2)) and, for any cluster point m € C°([0, T], Po(R%)), there
exists w such that (m,w) is admissible and minimizes the cost J defined in .

For the proof we need two intermediate results. The first one states that the discrete problem
is embedded into the continuous one. The second one provides the tightness property claimed
in the Theorem.

Lemma 4.8. Let a := (o) a family of controls and x := (x') be the associated solutions. Let

N
1 .
Nt) = N Z @y0,:. Then the pair (m&, w™) is admissible for the initial condition m% and

JN@, 2l et o) = JmY W),
Remark 4.9. The fact that the discrete problem is embedded into the continuous implies that

ianN(x(l),...,xév,al,...,aN) > inf J(m"Y,w),

o (m,w)
where the infimum in the right-hand side is taken over the pairs (m, w) which are admissible for
the initial condition mZ% . Let us warn the reader that there is no equality in general, since in
the continuous problem the mass can split.

Here is an example: Assume that d = 1, L(z,a) = |a|?/2, F = 0 and G : P2(R?) — R is

equal to 0 at the all the Dirac masses and is negative elsewhere. Then, for N = 1 and for the
terminal cost G = MG (where A > 0 is to be chosen below),

T
1
T (@, al) :/ Slad Pt + \Go(d,3) = 0,
0
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1

while choosing the admissible pair (m!, w!) given by m!(t) = (6_; +6¢)/2, w'(t) = (—6_ +0¢)/2,

one has
T 112
1|dw
J(m!, w! _/ e
(m*,w") 02'dm1

which is negative if A > T/|Go((d_7+97)/2)| (this choice being possible since Go((0_7+d7)/2) <
0).

dt + AGo((6—1 + 01)/2) = T + AGo((0—1 + 01)/2),

Proof. By definition, w' (t) is a.c. with respect to m®(t) and its density is given by

dw™ (t)
dm™ (t) t Zat =2}
So (m%,w") is admissible (for the initial condition m%.) and

T
/ /R ] dmN tw))mN(t,d:r)dH /O F(m™(#))dt + G(mN (T))
N

1 o T
= > L(x}, of)dt +/0 F(mY (@))dt + Gm™(T)) = TV (z}, ..., 28, at, ... ™).
i=1

O
We now state the tightness property:
Lemma 4.10. Assume that (X}') is a sequence of initial conditions with
mf—:; — My in Py(RY).
Let (a') be a minimum for JN (XY ,-) with associated trajectory %, = (%}, ,z)) and let

mN (t) := mL be the associated empirical measure. Then the sequence (m™N) is tight in CO([0, T], Pa—c(RY))
(for any € € (0 2)) and, for any cluster point m € C°([0,T], Po(R?)), there exists w such that
(m,w) is admissible and

J(m,w) < limsup J™ (x, New gy,

N

N
Proof. We already know by Lemma that, if we set w (t =y, Z d zis then

JN@, .2l at . ety = gy, o).
It is easily to check that JV (xq New ,@V) is bounded. Then arguing exactly as in the proof of the
existence result (Theorem (4.1} . the claim follows. O

Proof of Theorem[{.]. Let (m,w) be a minimum for J with initial condition (mg, wp). Arguing
as in the proof of Lemma we can mollify (m,w) in such a way that (m¢ w) is smooth,
admissible (for a possibly different initial condition m§), with m¢ > 0 and

m¢ — m in C°([0, T], P2(R%)), J(mS,w) < J(m,w) + e.
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Let us set af(t, x) := w(t,x)/mc(t, z). Note that, by the smoothness and the positive property
of m® and w¢, m(t) = X (t)im§, where X“*(t) is the solution of the differential equation

LX# (1) = at(t, X{)
Xyt ==

N Nyl Ne,N L " :
Let x3°¢ = (237, ...,25") € (RY)YN be a sequence of initial conditions for the discrete
e,N,i
€,24

system such that mfNﬁ — m§ in Py(RY). We define of™* = a(t, X;™ ) and note that the
0

N,i
. . . . VL. N . e,z . . .
associated solution with initial condition z, " is X,”° . The associated empirical measure

e,N,i
m™ (t) associated with the particles X,  is, by definition, given by

m (t) = XE"(t)timi[N,p

0

As miVNye converges to m§ in P2(R?), (m” (t)) converges to (m€(t)) in C°([0,T], P2(R%)). The
same aorgument shows that

1 N T Eme,N,i Ni T
Z/ LIXTar ’z)‘“:/ / L, o) (X5 (1), a(t, X (£)))tmy . dt
N = Jo 0 JRixRd *o

converges to

T T
/ / L(l‘,a)(Xe"(t),oz(t,XE"(t)))jjmo(dx)dt:/ / L(z,a(t, x))mg(dx)dt.
0 R4 0 Rd

This proves that '
lim IV (x5, (a5™)) = T (m*, ).

In particular,
lim sup lim sup inf JN(xéV’e, a) < J(m,w).

e>0 N-o4oo &

Let now ey — 0 be such that m”y y converges to mg in Py (RY) and
X0

lim sup inf JN(X[J)V’EN, a) < J(m,w).

N—+w @
Let also @V := (@) be a minimum for JN(x)"V,.). We denote by %, = (z},---,z), the
associated trajectory and by m!(t) := m,f_{i the associated empirical measure. We know for

Lemmammat the sequence (") is tight in C°([0, T, P2—(R%)) (for any € € (0,2)) and that,
if m e CO([0,T],P2(RY)) is a cluster point, then there exists w such that (m,w) is admissible
with
J(m,w) < limsup JN(xéV’EN,&N) < J(m,w).
N

As m(0) = mg, we conclude that (m,w) is a minimum of J. O
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4.4 The associated Hamilton-Jacobi equation

In this section we consider the value function

T
V(to, mo) = mf /t /Rd ,x))m(t, dz)dt + F(m(t))dt + G(m(T)),

to

where the infimum is taken over the admissible pairs (m,w) defined as previously on [tg,T'] x R4
instead in [0, 7] x R? and with initial condition m(tg) = my.

Proposition 4.11. Assume that F' and G are Lipschitz continuous and that
Do Lz, )] < C(1 + |af) (20)
The map V is locally Lipschitz continuous on [0,T] x Pa(R%).

Proof. In view of Theorem [4.7|we just need to prove the Lipschitz continuity of the value function
associated with JV and then pass to the limit. Let xo, yo € (RY)" and a be optimal for JV (xo, -)
(where J¥ is define in the previous section). Then

IV (yo, Z/ (47, o dt+/ (myjyt)dt+G(m§/VT)'
i=1

Note that v = y§ — xf + z%, so that by Proposition
. 1 ;
dz(m¥Y m)]yt) = inf N Z lys —a:f( = inf — Z |y — xo d2(mf(\g,mN).

xt) oeSy N + yo

On the other hand, using assumption ,

N T
NZ/ i, ad)d SN;A@MMHaHWM%wWﬁ

1 Yo 1 YT o 12 1 & -
< — Lz}, ap) + C | — / (1+ |og — T — Y
P ACRUREE] 6 W RS I COWE R

By the growth assumption on L, the quantity SN fOT |at|?dt remains bounded for bounded
(in P2(R?)) measures m& . Therefore

1/2

IV (yo, ) = TV (xg, @) + Cda(mL ,md),

xo> Myo
where C' depends on the bound of m% in Pa(R%). O

From standard arguments in optimal control, V satisfies the dynamic programming principle

t1 t1

V(tg, mp) = 1nf / / ,x))m(t, dz)dt + F(m(t))dt + V(t1,m(t1))

to

for any 0 < tp < t; < T. Let us give heuristic arguments explaining that, at least at a formal
level, one expects V to solve the following Hamilton-Jacobi equation:
—oV(t,m) —I—/ H(z, D, V(t,m,x))m(dx) = F(m) in (0,7) x Pa(RY)
Rd

(21)
V(T,m) = G(m)  inPy(R?),
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where
H(z,p) = sup —p- & — L(z, ).
aeRd
For this we suppose that V is of class C'. Then, by dynamic programming principle with
t1 = to + h (where h > 0 is small),

to+h
V(to,mp) = inf / / ,x))m(t, dz)dt + hF(mg) + o(h)

mw)

+ V(to,mo) + / o <8tV(t m(t)) + /R Yt mit ),x)@tm(t,dx)> dt

aom

- ot / o / \2))m(t, da)dt + hF(mo) + o(h)

toth dw
+ V(to, mo) + hdtV(to, mo) + / Ot | DpV(t,m(t),z) - —m(t,dx)dt
to Rd dm

=—h | H(z,DyV(to, mo, x)mo(dx) + hEF(mg) + o(h)
Rd
+ V(to,mo) + hdV(tg, mo).

Simplifying by V(to, mg), dividing by h and letting h — 0 gives (21).

The rigorous justification of the above computation requires the notion of viscosity solution
in P2 (RY). Although it is not too difficult to show that V solves, in the sense of viscosity solutions
against smooth test functions, equation , I do not know if this is enough to characterize the
value function V. See however [26] where this characterization is achieved in terms of sub- and
super-differential.

A way to overcome this issue is to write the equation in the space of random variables
L2(Q,RY). Let us recall that one lifts the solution V to V defined by V(t, X) = V(t, L(X)).
Then equation becomes

{ OVt X) +E [H(X vV, X)] F(L(X))  in(0,T) x L3(Q,RY)
V(T,X) =G(L(X)) inL*Q,R%).

Following Crandall-Lions [19] it is not specially difficult to check, under suitable assumption on
H, that the above equation has a unique viscosity solution (see also [22] for a monograph on HJ
in infinite dimension and [5] for a discussion of this approach in the framework of mean field
control).

4.5 Further reading

The problem described in this section is often called mean field-type control or mean-field opti-
mal control in the literature. This subject has known an impressive development in the recent
years and a general list of references is out of the scope of these short notes. We present below
a (somewhat arbitrary) selection of results, in the hope that they are a little representative of
the topic.

The existence of a solution described here is classical and it strongly related with the

Benamou-Brenier’s approach of optimal transport [7]. Note that in some works, a restriction
is made on the regularity in space of the distributed control « [24]. As explained above, this
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technical restriction does not seem necessary.

The optimality conditions as stated here are, again, familiar in the context of optimal trans-
port, where the solution u of the Hamilton-Jacobi equation is the so-called Kantorovich potential.
The generalization to the framework of this section is formally described in [31] in the context
of mean field games and then used to build solution for problems with local interactions (see for
instance, among many other references, [, [15], 33]).

The limit of the N —particle system has been recently studied by several authors and we refer
to the nice paper by Lacker [2§] for an extension to the stochastic control setting and further ref-
erences. The mean field limit is also studied in the context of first order mean fields games in [23].

Concerning the analysis of the value function, if there are by now many references on the
subject, the picture is not completely clear yet. Several works study the HJ in metric spaces
(see, e.g. among many others, [4, 25, 27] and the references therein). There the Hamiltonian
depends on the metric slope of the unknown, which, in the case of Py(R?), means that it depends
on [DpV| 2 and so that L(z,v) = I(|p|) for some [ : R — R. In that case the characterization
of the value function quite well understood and intrinsic, in the sense that it only depends on
the metric space. Another possibility is to embed the problem into the space L?(2,RY) of ran-
dom variables, as we explained in Section [2.3] There is a complete characterization of the value
function in terms of viscosity solutions in that setting: this approach has been first presented
by Lions in [32] and the reader can find a detailed analysis in [5]. Note however that the test
functions are C* (or C2) functions on L?(2,RY) and therefore cannot be expressed as test func-
tions on Py(RY). In [25], the authors discuss the equivalence between the viscosity solutions,
in terms of sub- and super-differential, in P(RY) and in L?(Q,R?%). Although this result is a
major step towards a better understand, it is not completely clear how it applies to equation
. In addition, it certainly does not apply to the more difficult problem with a diffusion. Let
us finally note a different and direct approach, for first order problems and bounded controls,
developped [34].

We have chosen in this chapter to describe problems in which the control o = a(t,z) is
distributed, which corresponds to the situation in which one controls the behavior of all the
particles. If this approach is well adapted for some models, it is not always realistic: indeed it is
not always possible to control in an optimal way all the particles. An alternative is to use sparse
controls, as discussed for instance in [I3]. On the other hand, if one considers the evolution of
the density m as an evolution of (small) controllers, the approach presented does not take into
account the possible rationality behavior of these controllers. The correct concept in this setting
is the notion of mean field games: see [29, B0, 31, [32] and the monographs [9, [18]. As already
pointed out, the optimization problem described in Section [4| can be used to build solution of
the so-called MFG system by variational methods: see for instance [8], 15 [33].
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