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CHAPTER 1

Vector fields and nilpotent Lie algebras

1. Vector fields, flows, exponentials

Let Ω be an open subset of Rn. A vector field X on Ω is a first-order differential operator on Ω without
0-th order term,

(1.1.1) X =

n∑
j=1

aj(x)∂xj .

For x ∈ Ω, we set

Xx =
(
a1(x), . . . , an(x)

)
,

the vector determining the directional derivative that the vector field computes at x.
We shall assume that the vector field is real and smooth, i.e. that the coefficients aj are real-valued

C∞-functions on Ω.
Given a point x0 ∈ Ω, the Cauchy problem

(1.1.2)

{
γ′(t) = Xγ(t)

γ(0) = x0 ,

admits a local solution γ : (−ε, ε)→ Ω for some ε > 0. The following result is well known.

Theorem 1.1.1. Let X be a smooth vector field on Ω. Then

(i) for every x0 ∈ Ω the problem (1.1.2) has a unique solution γx0
(t) defined on a maximal open interval

Ix0 containing 0;
(ii) given K ⊂ Ω compact, there is εK > 0 such that γx is defined for |t| < εK for every x ∈ K;
(iii) the map ΦX(x, t) = γx(t) is smooth on its domain D =

{
(x, t) : t ∈ Ix

}
;

(iv) more generally, if

Xy =

n∑
j=1

aj(x, y)∂xj

is a family of vector fields with coefficients depending smoothly on x and on a parameter y ∈ Rm, and
γy,x0

(t) is the solution of the Cauchy problem (1.1.2) relative to Xy, then the map (x, y, t) 7−→ γy,x(t)
is smooth in all variables.

Notice that (ii) is a consequence of (i) and (iii); it is stated for better clarity.
For fixed t ∈ R, let Ωt ⊆ Ω consist of the elements x such that t ∈ Ix, and let ϕX,t : Ωt → Ω be given by

ϕX,t(x) = γx(t) .

Then Ωt is open and ϕX,t is smooth. The following properties hold:

(i) ϕX,0 = Id ;
(ii) ϕX,t ◦ ϕX,t′ = ϕX,t+t′ , when defined;

(iii) in particular ϕX,t is invertible on Ωt and ϕ−1
X,t = ϕX,−t;

1



2 1. VECTOR FIELDS AND NILPOTENT LIE ALGEBRAS

The last identity is equivalent to saying that, if x′ = γx(t), then γx′(t) = γx(t+ t′), which follows from
uniqueness of solutions of Cauchy problems..

The maps ϕX,t form the flow of the vector field X on Ω.
When analyzing the flow of a vector field locally, that is on a compact subset K of Ω, it is sometimes

convenient to replace the vector field X by X ′ = ηX, with η ∈ D(Ω) and identically equal to 1 on a
neighborhood of K. Then the flow of X ′ coincides with that of X on K, but has the advantage that the
map (x, t) 7→ ϕX′,t(x) is defined for every x and every t. When this happens, we say that a vector field is
complete.

The uniqueness of the solution of Cauchy problems gives the following characterization of the flow.

Proposition 1.1.2. Let Ω be an open set and δ > 0. For each t ∈ (−δ, δ), let ϕt : Ωt → Ω be a smooth
map, with Ωt ⊆ Ω, and assume that

(i) Ω0 = Ω and ϕ0 = Id ;
(ii) for each compact subset K of Ω there is δ(K) > 0 such that

• K ⊂ Ωt for |t| < δ(K),
• the composition ϕt ◦ ϕt′ is defined on K for |t|+ |t′| < δ(K),
• for |t|+ |t′| < δ(K), ϕt ◦ ϕt′ = ϕt+t′ on K;

(iii) the map Φ(x, t) = ϕt(x) is smooth on its domain.

For every f ∈ C∞(Ω), let

(1.1.3) Xf =
d

dt |t=0

f ◦ ϕt .

Then X is a smooth vector field on Ω, and ϕt coincides with the flow of X restricted to Ωt.

Proof. Let K ⊂ Ω be compact and x ∈ K. For |t| < δ(K), let γx(t) = ϕt(x) and define Xx as the
tangent vector γ′x(0). The definition does not depend on the choice of K containing x. Formula (1.1.3)
follows from the chain rule.

To prove that the curves γx are integral curves of X, fix x0 ∈ K, |t| < δ(K) and let x = γx0(t) = ϕt(x0).
Then

γ′x0
(t) = lim

h→0

1

h

(
ϕt+h(x0)− ϕt(x0)

)
= lim
h→0

1

h

(
ϕh(x)− x

)
= lim
h→0

1

h

(
γx(h)− x

)
= Xx = Xγx0

(t) .

Since γx0
(0) = x0, γx0

is the (possibly non-maximal) solution of (1.1.2). �

We will use the following simple property, a direct consequence of the chain rule.

Lemma 1.1.3. Let X be a smooth vector field on Ω with flow {ϕX,t}. Then the flow of the constant
multiple sX of X is ϕsX,t(x) = ϕX,st(x).

Definition. We call exponential of tX the operator exp(tX) acting on a function f compactly supported
in Ω as

(1.1.4) exp(tX)f(x) = f
(
ϕX,t(x)

)
.

We also denote by D(K) the space of smooth function on Rn supported on K.

Lemma 1.1.4. Given K ⊂ Ω compact, exp(tX)f is defined for |t| < δK and f ∈ D(K). The exponential
of X satisfies the following properties:

(i) exp(0X)f = f ;
(ii) exp(−tX) = exp(tX)−1;
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(iii) exp
(
(t+ s)X

)
= exp(tX) exp(sX);

(iv) exp
(
t(sX)

)
= exp

(
(ts)X

)
;

(v) if f is C1, d
dt exp(tX)f = X exp(tX)f = exp(tX)Xf ;

(vi) if f ∈ D(K) and k ∈ N,

(1.1.5) exp(tX)f(x) =

k∑
j=0

tj

j!
Xjf(x) +O(tk+1) ,

where the remainder term, as an element of D(Ω), depends continuously on f and X.

Proof. By the remark following Theorem 1.1.1, we can assume that X is complete. Statements (i) and
(iii) follow directly from the corresponding identities for the flow of X. Then (ii) is a direct consequence.
(iv) follows from Lemma 1.1.3.

In order to prove (v), observe that for every function f and x in the domain of ϕX,t,

Xf(x) =
d

ds |s=0

f
(
ϕX,s(x)

)
.

Hence
d

dt
exp(tX)f(x) =

d

ds |s=0

exp
(
(s+ t)X

)
f(x)

=
d

ds |s=0

exp(sX) exp(tX)f(x)

= X
(

exp(tX)f
)
(x) ,

but also
d

dt
exp(tX)(x) =

d

ds |s=0

exp(tX) exp(sX)f(x)

= exp(tX)Xf(x) .

Finally (vi) follows easily from (v). �

We consider now two smooth vector fields

X =

n∑
j=1

aj(x)∂xj , Y =

n∑
j=1

bj(x)∂xj

on Ω and we want to understand the interactions between their exponentials.
Some key remarks come from the analysis of the composition

exp(sX) exp(tY ) exp(−sX) ,

i.e. the conjugation of exp(tY ) by exp(sX).
Observe that

exp(sX) exp(tY ) exp(−sX)f(x) = f
(
ϕX,−s ◦ ϕY,t ◦ ϕX,s(x)

)
,

and that for fixed s, the maps ϕt(x) = ϕX,−sϕY,tϕX,s(x) satisfy the hypotheses of Proposition 1.1.2 with Ω
replaced by some subdomain Ωs ⊆ Ω. Therefore there is a smooth vector field Ys on Ωs such that ϕt = ϕYs,t,
i.e.

(1.1.6) exp(sX) exp(tY ) exp(−sX) = exp(tYs) .

We call Ys the adjoint of Y by exp(sX) and write

Ys = Ad
(

exp(sX)
)
Y .

The expression of Ys is obtained by differentiating in t at t = 0:

Ys = exp(sX)Y exp(−sX) .
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Hence, for f smooth,

(1.1.7)

[
Ad
(

exp(sX)
)
Y
]
f(x) = exp(sX)Y exp(−sX)f(x)

=
(
Y (f ◦ ϕX,−s)

)(
ϕX,s(x)

)
.

Since the map (s, t, x) 7−→ ϕX,−sϕY,tϕX,s(x) is smooth, it follows that the map

(s, x) 7−→ Ad
(

exp(sX)
)
Y f(x)

is also smooth. We can therefore define a new vector field,

ad (X)Y =
d

ds |s=0

Ad
(

exp(sX)
)
Y .

Because the domains of exp(tY ) and exp(sX) invade Ω as s, t → 0, ad (X)Y is defined on all of Ω. By
(1.1.7) we obtain the following description.

Proposition 1.1.5. We have

ad (X)Y = XY − Y X def
= [X,Y ] .

Observe that, even though XY and Y X are separately second order differential operators, their difference
is only first order, more precisely a vector field:

[X,Y ] =

n∑
j=1

(
n∑
k=1

(
ak∂xkbj − bk∂xkaj

))
∂xj .

Proof. Let

h(u, v, x) = exp(uX)Y exp(vX)f(x) .

Since the right-hand side is smooth in u and v,

ad (X)Y f(x) =
d

ds |s=0

h(s,−s, 0) = (∂u − ∂v)h(0, 0, x) .

We have

∂uh(0, 0, x) =
d

du |u=0

exp(uX)Y f(x)

= X(Y f)(x) .

Moreover,

∂vh(0, 0, x) =
d

dv |v=0

Y exp(vX)f(x)

= Y
d

dv |v=0

exp(vX)f(x)

= Y (Xf)(x) ,

since for each v the coefficients of Y are evaluated at x. Hence,

ad (X)Y f(x) = (XY − Y X)f(x) . �

Proposition 1.1.6. The following are equivalent:

(i) exp(sX) exp(tY ) = exp(tY ) exp(sX) for |s|, |t| < δ for some δ > 0 (and hence every δ for which the
exp are defined);

(ii) Y exp(sX) = exp(sX)Y for every s (as above);
(iii) XY = Y X;
(iv) exp(sX) exp(tY ) = exp(sX + tY ) for every s and t (as above).
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Proof. If (i) holds,
exp(tYs) = exp(tY )

for every t. Differentiating at t = 0, we obtain that Ys = Y , which gives (ii).
From (ii), we obtain (iii) differentiating in s at s = 0.
Going backwards, if (iii) holds, differentiating in s at any s,

d

ds
Ad
(

exp(sX)
)
Y =

d

ds
exp(sX)Y exp(−sX)

= exp(sX)XY exp(−sX)− exp(sX)Y X exp(−sX)

= exp(sX)[X,Y ] exp(−sX)

= 0 .

Therefore Ad
(

exp(sX)
)
Y does not depend on s, hence it is constantly equal to Y , its values at s = 0.

This gives (ii).
Now, if (ii) holds, then Ad

(
exp(sX)

)
Y = Y , and (1.1.6) gives (i).

Suppose now that (iii) holds. Then [X,αY ] = [X,X + αY ] = [αY,X + αY ] = 0 for every α ∈ R. By
(i), the product T (s) = exp(−sX) exp

(
s(X + αY )

)
exp(−sαY ) does not depend of the order of the three

factors. Therefore,
T ′(s) = (X + αY −X − αY )T (s) = 0 .

Hence T (s) = Id , i.e.
exp

(
s(X + αY )

)
= exp(sX) exp(sαY ) ,

which gives (iv).
Conversely, if (iv) holds, T (s) is constant, so that

T ′(s) = − exp(−sX)X exp
(
s(X + αY )

)
exp(−sαY )

+ exp(−sX) exp
(
s(X + αY )

)
(X + αY ) exp(−sαY )

− α exp(−sX) exp
(
s(X + αY )

)
Y exp(−sαY )

= − exp(−sX)X exp
(
s(X + αY )

)
exp(−sαY )

+ exp(−sX) exp
(
s(X + αY )

)
X exp(−sαY )

= 0 .

Therefore, X exp
(
s(X +αY )

)
= exp

(
s(X +αY )

)
X, which implies that [X,X +αY ] = α[X,Y ] = 0 for

every α. This gives (iii). �

All the results of this Section remain valid if Ω is replaced by a smooth (i.e. C∞) manifold M and
a vector field X on M is defined as an operator which acts on smooth functions on M and which can be
expressed as in (1.1.1) in any set of local coordinates.

2. Lie algebras and the Baker-Campbell-Hausdorff formula

The space of smooth real vector fields on a manifold has a natural linear structure; in addition, the
operation

(1.2.1) [X,Y ] = XY − Y X ,

called the commutator of X and Y , is defined on this space.
We concentrate our attention on some algebraic notions connected with this operation.

Definition. A Lie algebra over R (resp. C)1 is a real (resp. complex) vector space g, endowed with a
bilinear map (called Lie bracket)

[ , ] : g× g→ g

1We shall mainly be interested in real Lie algebras.
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such that

(i) [x, y] = −[y, x] for every x, y ∈ g;
(ii) the Jacobi identity

(1.2.2)
[
[x, y], z

]
+
[
[y, z], x

]
+
[
[z, x], y

]
= 0

holds for every x, y, z ∈ g.

Since the commutator of vector fields satisfies the Jacobi identity, smooth vector fields on a given manifold
M form a real Lie algebra (similarly, complex vector fields on M form a complex Lie algebra). In general,
this is an infinite-dimensional Lie algebra. Here are a few examples of finite-dimensional Lie algebras.

Examples 1.

(a) On M = R2 consider the vector fields

X = ∂x , Y = x∂y , Z = ∂y .

Since [X,Y ] = Z and [X,Z] = [Y, Z] = 0, the 3-dimensional vector space that they generate is closed
under commutator, and therefore a Lie algebra.

(b) On M = R let
X = d/dx , Y = x d/dx .

Then [X,Y ] = X, so that X and Y span a 2-dimensional Lie algebra.
(c) On R3, let

X1 = x3∂x2 − x2∂x3 , X2 = x1∂x3 − x3∂x1 , X3 = x2∂x1 − x1∂x2 .

Their linear span is a Lie algebra.
(d) The notion of Lie algebra is abstract, and a Lie algebra need not consist necessarily of vector fields. For

instance, every associative algebra becomes a Lie algebra under the commutator [x, y] = xy − yx. In
particular, this is true for the algebra of n× n real (or complex) matrices.

Definition. A Lie algebra g is called abelian if [x, y] = 0 for every x, y ∈ g. It is called nilpotent if
there is a k such that every iterated Lie bracket

(1.2.3)
[
···
[
[x0, x1], x2

]
· · · , xk

]
.

is zero. If k is the smallest integer for which this happens, one says that g is nilpotent of step k.
A subalgebra of a Lie algebra g is a linear subspace which is closed under the Lie bracket. If S = {xi}i∈I

is a subset of g, the subalgebra generated by S is the smallest subalgebra of g containing S.

Clearly, the Lie subalgebra generated by S contains all iterated Lie brackets (1.2.3) with the xj ∈ S. It
also contains Lie brackets of Lie brackets, like[[

[x1, x2], x3

]
, [x4, x5]

]
,

or more complicated expressions of this kind. It is possible, however, to reduce such expressions to linear
combinations of iterated commutators.

Lemma 1.2.1. The subalgebra generated by S is the linear span of the iterated Lie brackets (1.2.3) of
elements of S.

Proof. By induction on the number of nested brackets, it is sufficient to verify that, by the Jacobi
identity, [

[a, b], [c, d]
]

=
[[

[a, b], c
]
, d
]
−
[[

[a, b], d
]
, c
]
. �

We go back to vector fields and their exponentials.
Let X and Y be two smooth vector fields on a manifold M . We have seen in Section 1 that the identity

exp(sX) exp(tY ) = exp(sX+tY ) does not hold in general, unless [X,Y ] = 0. It turns out that one can obtain
good approximations of the product exp(sX) exp(tY ) for small values of s and t by single exponentials. We
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shall not give proofs, but we try at least to motivate some formal identities. For a closer insight, see the
appendix.

Consider the formal power series

exp(tX) =

∞∑
k=0

tk

k!
Xk ,

derived from the Taylor expansion (1.1.5), and observe that the expansions of the two expressions (with
non-commuting variables)

exp(sX) exp(tY ) , exp
(
sX + tY +

st

2
[X,Y ]

)
coincide up to terms of degree 2.

A more concrete statement (whose proof we skip) is that

∂js∂
k
t

(
exp(sX) exp(tY )f(x)

)
|s=t=0

= ∂js∂
k
t

(
exp

(
sX + tY +

st

2
[X,Y ]

)
f(x)

)
|s=t=0

for j + k ≤ 2.
A longer computation shows that exp(sX) exp(tY ) and

exp

(
sX + tY +

st

2
[X,Y ] +

st2

12

[
[X,Y ], Y

]
− s2t

12

[
[X,Y ], X

])
have the same formal expansion up to terms of degree 3.

This formal procedure can be pushed to any degree. In this way one constructs a formal power series

(1.2.4) S(s, t;X,Y ) = sX + tY +
∑
j,k≥1

sjtkZj,k(X,Y ) ,

where each Zj,k(X,Y ) is a fixed linear combination of iterated commutators of X and Y , containing X j
times and Y k times. This power series satisfies the formal identity

(1.2.5) exp(sX) exp(tY ) = exp
(
S(s, t;X,Y )

)
.

This is the (formal) Baker-Campbell-Hausdorff formula.

Theorem 1.2.2. Let X and Y be smooth vector fields on a manifold M . For any integer N , let
SN (s, t;X,Y ) be the sum (1.2.4) truncated to j + k ≤ N . Then, given any compact subset K of M , there is
ε = ε(K,N) > 0 such that exp

(
SN (s, t;X,Y )

)
f(x) is well defined for x ∈ K and |s|, |t| < ε. Moreover

∂js∂
k
t

(
exp(sX) exp(tY )f(x)

)
|s=t=0

= ∂js∂
k
t

(
exp

(
SN (s, t;X,Y )

)
f(x)

)
|s=t=0

for j + k ≤ N , so that

exp(sX) exp(tY )f(x) = exp
(
SN (s, t;X,Y )

)
f(x) +O

(
|s||t|(|s|+ |t|)N−1

)
.

This statement is useful for many purposes, but it is very weak in terms of exact identities. For instance,
by itself, it does not even imply that exp(sX) exp(tY ) = exp(sX + tY ) when X and Y commute.

We state, without proof, an important sufficient condition. It involves the Lie algebra generated by the
two vector fields X and Y . This is of course the linear span of them and of their iterated commutators.

Theorem 1.2.3. Assume that X and Y generate a finite dimensional Lie algebra. For any relatively
compact open subset U of M there is ε = ε(U) > 0 such that, for x ∈ U and |s|, |t| < ε, the series of vector
fields

sX + tY +
∑
j,k≥1

sjtkZj,k(X,Y ) = S(s, t;X,Y )

is convergent on U and

exp(sX) exp(tY )f(x) = exp
(
S(s, t;X,Y )

)
f(x) .
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We mention for future reference that the associative law (eXeY )eZ = eX(eY eZ) is respected by the formal
power series (1.2.4). This means that, taking for simplicity s = t = 1 and setting S(X,Y ) = S(1, 1;X,Y ),

(1.2.6) S
(
S(X,Y ), Z

)
= S

(
X,S(Y, Z)

)
.

The situation described above becomes even simpler if the Lie algebra generated by X and Y is not
only finite dimensional, but also nilpotent. In this case, in fact, the series (1.2.4) contains only finitely many
terms.

Finally, other formal identities can be given a precise content, along the same lines of Theorems 1.2.2
and 1.2.3. Examples of these are

(1.2.7) exp(sX) exp(tY ) exp(−sX) = exp

(
tY + st[X,Y ]− s2t

2

[
[X,Y ], X

]
+ · · ·

)
,

(1.2.8) exp(sX) exp(tY ) exp(−sX) exp(−tY ) = exp

(
st[X,Y ]− s2t

2

[
[X,Y ], X

]
− st2

2

[
[X,Y ], Y

]
+ · · ·

)
.

3. Lie groups and Lie algebras

Finite-dimensional Lie algebras of vector fields on a manifold M naturally appear when the flows are
required to satisfy special properties, such as being isometries (if M has a Riemannian structure), or being
holomorphic (if M has a complex structure).

Another important case occurs when M has a group structure and the flows consist of group translations.
In fact there is a strict relation between the theory of finite-dimensional Lie algebra and the theory of Lie
groups.

Definition. A Lie group is a smooth manifold G, which is also a group and the map from G×G to G
that assign to the pair (x, y) the element xy−1 is smooth.

Proposition 1.3.1. The following transformations on a Lie group G are smooth:

(i) the inversion x 7→ x−1;
(ii) the left translations `a(x) = ax and the right translations ra(x) = xa−1, with a ∈ G.

Consequently, the following operators transform smooth functions into smooth functions:

(i) the “check” operation f 7→ f̌ , where f̌(x) = f(x−1);
(ii) the left and right translation operators Laf(x) = f(a−1x), Raf(x) = f(xa).

Observe that the definitions of `a, ra, La, Ra are given in such a way to respect in each case the multi-
plicative rule `ab = `a`b, rab = rarb, etc.

At this point we must recall the notion of tangent vector at a given point x on a manifold M . The idea
is that once a coordinate system near x has been chosen, each tangent vector corresponds to a directional
derivative at x.

In order to give an intrinsic definition (i.e. independent of the coordinates), one must define a tangent
vector at x as a real linear functional v defined on smooth real functions in a neighborhood of x, such that

(i) v(f) = v(g) if f and g coincide on a neighborhood of x;
(ii) v(fg) = v(f)g(x) + f(x)v(g) for every f and g.

Clearly tangent vectors at x form a vector space, denoted by TxM . We assume that n = dimM .

Proposition 1.3.2. Let ϕ : Ω → M , Ω ⊆ Rn, define a coordinate system near x, with x = ϕ(0). For
every v ∈ TxM there is a unique real n-tuple (a1, . . . , an) such that

v(f) =

n∑
j=1

aj∂j(f ◦ ϕ)(0) .
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In particular, the dimension of TxM is n.

(We omit the proof.)
If X is a smooth vector field on M and f is a smooth function, the value of Xf at a given point x defines

a tangent vector at x, that we call Xx.

We return now to Lie groups.

Definition. A vector field X on G is called left-invariant (resp. right-invariant) if

La(Xf) = X(Laf) , (resp. Ra(Xf) = X(Raf))

for every a ∈ G.

Proposition 1.3.3. Given any tangent vector v at the identity element e of G, there are a unique left-
invariant vector field X such that Xe = v, and a unique right-invariant vector field X ′ such that X ′e = v.
They are given by

(1.3.1) Xf(x) = v(Lx−1f) , X ′f(x) = v(Rxf) .

Proof. SinceXf(x) = Lx−1(Xf)(e), in order thatX be left-invariant, it must beXf(x) = X(Lx−1f)(e),
so that the first identity in (1.3.1) is forced. We must prove now that (1.3.1) actually defines a left-invariant
vector field. Given a ∈ G, we have

La(Xf)(x) = Xf(a−1x) = v(Lx−1af) = v(Lx−1Laf) = X(Laf)(x) .

The proof for X ′ is similar. �

The commutator of two left-invariant (resp.right-invariant) vector fields is also left-invariant (resp.right-
invariant).

Definition. The Lie algebra g of left-invariant vector fields on G is called the Lie algebra of G, also
denoted by Lie (G).

By Proposition 1.3.3, dim(Lie (G)) = dim(G).
Because of the identification between left-invariant vector fields and tangent vectors at e, it is customary

to take TeG as the underlying vector space for Lie (G). The computation of the Lie bracket [v, w] of two
tangent vectors at e then involves their extension to left-invariant vector fields and the computation of the
commutator of these. We must remark that if one extends v and w to right-invariant vector fields instead,
the result is different (even though the resulting Lie algebra on TeG is isomorphic to g).

Another consequence of Proposition 1.3.3 is that the left translations by x establishes a natural 1-1
correspondence between tangent vectors at e and tangent vectors at x, given by

(1.3.2) v ∈ TeG↔ v′ where v′(f) = v(Lx−1f) ∈ TxG .

We discuss now the flow on G generated by a left-invariant vector field X.

Definition. A one-parameter group in G is a smooth map γ : R→ G such that γ(s+ t) = γ(s)γ(t) for
every s, t ∈ R.

It can be proved that the weaker assumption that γ be continuous implies that γ is smooth.

Theorem 1.3.4. Let {ϕt} be the flow on G generated by a left-invariant vector field X. Then ϕt is
defined on all of G for every t ∈ R. Moreover γ(t) = ϕt(e) is a one-parameter group and

(1.3.3) ϕt(x) = xγ(t)

for every x ∈ G and t ∈ R.
Conversely, given any one-parameter group γ(t) in G, there is a left-invariant vector field X whose flow

is given by (1.3.3).
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Proof. By Theorem 1.1.1, γ(t) is defined at least on some interval (−δ, δ). For x ∈ G, consider

d

dt
f
(
xγ(t)

)
=

d

dt
(Lx−1f)

(
γ(t)

)
= X(Lx−1f)

(
γ(t)

)
= Lx−1(Xf)

(
γ(t)

)
= Xf

(
xγ(t)

)
.

Therefore
d

dt

(
exp(−tX)f

(
xγ(t)

))
= 0 ;

this implies that the expression in parenthesis is constantly equal to f(x), so that

exp(tX)f(x) = f
(
xγ(t)

)
.

This gives (1.3.3) for |t| < δ. In particular, for |t| < δ, ϕt is defined on all of G. The identity ϕs+t = ϕs◦ϕt
allows a unique extension of the definition of ϕt to t ∈ R such that this property is preserved. It follows
from Proposition 1.1.2 that this extension is the flow generated by X. Also,

γ(s+ t) = ϕs+t(e) = ϕs
(
ϕt(e)

)
= ϕs

(
γ(t)

)
= γ(t)γ(s) ,

i.e. γ is a one-parameter group.
To prove the converse, let γ be a one-parameter group. Then the maps ϕt(x) = xγ(t) satisfy the

assumptions of Proposition 1.1.2. Therefore they give the flow generated by a vector field X. We must show
that X is left-invariant. But

X(Laf)(x) =
d

dt |t=0

Laf
(
xγ(t)

)
=

d

dt |t=0

f
(
a−1xγ(t)

)
= Xf(a−1x) = La(Xf)(x) ,

for every a ∈ G. �

Corollary 1.3.5. There is a one-to-one correspondence between left-invariant vector fields on G and
one-parameter groups in G. It assigns to every one-parameter group γ(t) the vector field X generating the
flow ϕt(x) = xγ(t).

4. The group exponential

Let G be a Lie group, v a tangent vector at e, X the left-invariant vector field such that Xe = v, and
γv(t) the corresponding one-parameter group, according to Corollary 1.3.5. At this stage it is convenient to
use TeG as the underlying vector space of g = Lie (G).

Definition. The exponential map expG : g→ G is given by

expG(v) = γv(1) .

The connection with the exponential of a left-invariant vector field is given by the identities

exp(tX)f(x) = f
(
x expG(tv)

)
= RexpG(tv)f(x) ,

Xf(x) =
d

dt |t=0

f
(
x expG(tv)

)
.

Observe that

exp(sX) exp(tY )f(x) = RexpG(sXe)RexpG(tYe)f(x) = RexpG(sXe) expG(tYe)f(x) ,

so that the two exponential notations are consistent. As a matter of fact, since expG is defined on the
“abstract” Lie algebra, it is as well correct to write expG(X) instead of expG(Xe), once the Lie algebra is
thought of as consisting of left-invariant vector fields. It is also customary to drop the subscript in expG
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(unless more than one group is present). This makes the notation exp(X) ambiguous, but it works fine in
most cases.

Proposition 1.4.1. The group exponential is a smooth map, and it is a diffeomorphism from a neigh-
borhood of 0 in g onto a neighborhood of e in G.

Before giving the proof, we recall the notion of differential at t0 ∈ Rn of a smooth map ϕ from a
neighborhood Ω of t0 to a manifold M . It is the linear map dϕ(t0) : Rn → Tϕ(t0)M that assigns to u ∈ Rn
the tangent vector v defined by

v(f) = ∂u(f ◦ ϕ)(t0)

for f smooth on a neighborhood of ϕ(t0).
Of course, Rn can be replaced by any finite-dimensional vector space (g in the present instance).

Proof. In the notation of Theorem 1.1.1 (iv), the map

(x, v, t) 7−→ γv,x(t) = x expG(tv)

is smooth, because the left-invariant vector fields Xv depend linearly on v. Restricting this map to x = e
and t = 1, we obtain the first part of the statement.

By the inverse mapping theorem, the second part of the statement follows if we show that d expG(0) :
g→ TeG ∼ g is invertible. For u ∈ g and f smooth on G, we have(

d expG(0)u
)
(f) =

d

ds |s=0

f
(

expG(su)
)

= u(f) .

Hence d expG(0) = Id . �

It follows that the exponential mapping defines a system of local coordinates on G near e. These are
called canonical coordinates of the first kind. There are other ways to use the exponential mapping in order
to define coordinate systems near e.

The general canonical coordinates of the second kind are defined as follows. Decompose g as the direct
sums of linear subspaces,

g = h1 ⊕ h2 ⊕ · · · ⊕ hk ,

and define ϕ : g→ G as

ϕ(v1 + v2 + · · ·+ vk) = expG(v1) expG(v2) · · · expG(vk) ,

if vj ∈ hj for every j.
The previous proof shows that dϕ(0)u = u for u ∈ hj , so that again dϕ(0) = Id .

A basic fact in Lie theory is that every (abstract) finite dimensional real Lie algebra is isomorphic to
the Lie algebra of a Lie group. We shall not prove this fact in general, but only for nilpotent Lie algebras.

Let then g be a finite-dimensional nilpotent Lie algebra over R. For x, y ∈ g, let

S(x, y) = x+ y +
1

2
[x, y] +

1

12

[
[x, y], y

]
− 1

12

[
[x, y], x

]
+ ...

=
∑
j+k≥1

Zj,k(x, y)

be the formal expression in (1.2.4) for s = t = 1. Since g is nilpotent, the sum is finite, so that S is a
polynomial mapping from g × g to g. This means that if we introduce linear coordinates on g, and write
x = (x1, . . . , xn) etc., then

S(x, y) =
(
S1(x, y), . . . , Sn(x, y)

)
,

where each Sj is a polynomial in x and y.
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Theorem 1.4.2. Introduce on g the composition law

(1.4.1) x · y = S(x, y) .

This defines a Lie group structure having g as its underlying manifold. If we denote by G this Lie group,
then Lie (G) is isomorphic to g.

Proof. The composition law is associative by (1.2.6). Clearly, S(0, x) = S(x, 0) = 0, so that 0 is the
identity element. Since [x,−x] = 0, S(x,−x) = 0, so that x−1 = −x. Similarly, we obtain that

(sv) · (tv) = S(sv, tv) = (s+ t)v ,

showing that γ(tv) = tv is a one-parameter group. By Theorem 1.3.4, these are all the one-parameter groups
in G. Moreover expG(tv) = tv.

For v ∈ g, let Xv be the left-invariant vector field

Xvf(x) =
d

dt |t=0

f
(
x · (tv)

)
=

d

dt |t=0

f
(
x+ tv +

t

2
[x, v] +

t2

12

[
[x, v], v

]
− t

12

[
[x, v], x

]
+ ...

)
.

If ∂uf denotes the directional derivative of f in the direction u, we have

(1.4.2)

Xvf(x) = ∂vf(x) +
1

2
∂[x,v]f(x)− 1

12
∂[

[x,v],x
](x) + · · ·

= ∂vf(x) +

k∑
j=1

∂Zj,1(x,v)f(x) .

It must be understood that the first term involves a derivative in the same direction v independently of
x, whereas each term in the sum contains a derivative in a direction depending on x. For better clarity, let
us introduce linear coordinates on g, so that ∂uf(x) = 〈u,∇f(x)〉 and

(1.4.3) Xvf(x) = 〈v,∇f(x)〉+
1

2
〈[x, v],∇f(x)〉+

k∑
j=2

〈Zj,1(x, v),∇f(x)〉 .

Hence the first term is a constant coefficient operator, the second term has linear coefficients in x, and,
similarly, the j-th term in the sum has coefficients which are homogeneous polynomial of degree j.

In order to prove that the Lie algebra of G is isomorphic to g, we show that the map v 7−→ Xv is an
isomorphism. Clearly, this map is linear. It is also bijective, because Xv is the unique left-invariant vector
field such that (Xv)0 = ∂v. It remains to prove that [Xv, Xw] = X[v,w] for every v, w ∈ g. Equivalently, we
must prove that [Xv, Xw]f(0) = ∂[v,w]f(0).

Since Xug(0) = ∂ug(0) for every g, and keeping in mind that all terms involving second-order derivatives
must cancel with each other, we have

[Xv, Xw]f(0) = ∂vXwf(0)− ∂wXvf(0)

=
1

2
〈
(
∂v[x,w]

)
|x=0

,∇f(0)〉+

k∑
j=2

〈
(
∂vZj,1(x,w)

)
|x=0

,∇f(0)〉

− 1

2
〈
(
∂w[x, v]

)
|x=0

,∇f(0)〉 −
k∑
j=2

〈
(
∂wZj,1(x, v)

)
|x=0

,∇f(0)〉 .

Since [x,w] is linear in x, ∂v[x,w] = [v, w]. On the other hand, Zj,1(x,w) is an n-tuple of homogeneous
polynomials of degree j, so that ∂vZj,1(x,w) is an n-tuple of polynomials homogeneous of degree j − 1, and
they will vanish at the origin. Ultimately,

[Xv, Xw]f(0) =
1

2
〈[v, w],∇f(0)〉 − 1

2
〈[w, v],∇f(0)〉 = ∂[v,w]f(0) . �
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It can be shown that the group G so constructed is the “universal covering” of every connected Lie group
having a Lie algebra isomorphic to g, in the following sense.

Theorem 1.4.3. Let G′ be any connected Lie group whose Lie algebra is isomorphic to the nilpotent Lie
algebra g. Then G′ is isomorphic to a quotient of the group G of Theorem 1.4.2, modulo a central discrete
subgroup of G. If G′ is also simply connected, then it is isomorphic to G.

A Lie group is also called nilpotent if its Lie algebra is nilpotent.

Examples 2.

(a) If g is abelian, then S(v, w) = v + w, and G coincides with g itself with the abelian group structure
underlying its linear structure. Hence G ∼ Rn, and every other n-dimensional abelian, connected Lie
group is isomorphic to Rk × Tn−k for some k, 0 ≤ k ≤ n.

(b) The smallest non-commutative nilpotent Lie algebra is the three-dimensional Heisenberg algebra h1,
spanned by a basis e1, e2, e3 satisfying the following relations:

[e1, e2] = e3 , [e1, e3] = [e2, e3] = 0 .

If v = xe1 + ye2 + te3 and w = x′e1 + y′e2 + t′e3, then

S(v, w) = v + w +
1

2
[v, w] = (x+ x′)e1 + (y + y′)e2 +

(
t+ t′ +

1

2
(xy′ − x′y)

)
e3 .

The corresponding connected and simply connected Lie group H1, called the three-dimensional
Heisenberg group can then be regarded as R3 with product

(1.4.4) (x, y, t) · (x′, y′, t′) =
(
x+ x′, y + y′, t+ t′ +

1

2
(xy′ − x′y)

)
.

The basis of left-invariant vector fields X,Y, T on H1 such that X0 = ∂x, Y0 = ∂y, T0 = ∂t is

(1.4.5) X = ∂x −
y

2
∂t , Y = ∂y +

x

2
∂t , T = ∂t .

5. Generating systems of vector fields

Let M be an n-dimensional smooth manifold, and let X1, . . . Xk be smooth vector fields on M (with
no relation between k and n). Let also L(X1, . . . , Xk) be the Lie algebra of vector fields on M that they
generate. We also set

Lx(X1, . . . , Xk) =
{
Yx : Y ∈ L(X1, . . . , Xk)

}
⊆ TxM .

Definition. We say that the set {X1, . . . , Xk} is a generating system of vector fields on M (or that it
satisfies the Hörmander condition) if, for every x ∈M , Lx(X1, . . . , Xk) = TxM .

Examples 3.

(a) The vector fields X,Y in (1.4.5) form a generating system on R3.

(b) The vector fields X1 = ∂x and X2 = f(x)∂y form a generating system on R2 if and only if for every

x ∈ R there is a k such that f (k)(x) 6= 0.

The interest in generating systems comes from two different (but not completely unrelated) properties,
one being of geometric nature, the other more strictly analytic. Since both properties are local, we shall
restrict ourselves to M = Ω, an open connected subset of Rn.
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5.1. Sub-unitary curves and control distance.

If I = (i0, i1, i2, . . . , ij) ∈ {1, . . . , k}j+1, we denote by X [I] the j-th order commutator

X [I] =
[
···
[
[Xi0 , Xi1 ], Xi2

]
, · · · , Xij

]
.

We also set |I| = j and let Nj the number of distinct commutators X [I] with |I| ≤ j. If the Xj form a

generating system, for each x ∈ Ω there is m such that (X [I])x with |I| ≤ m span Rn.

Lemma 1.5.1. Let {X1, . . . , Xk} be a generating system of vector fields on Ω. Given x ∈ Ω, let m be
such that the commutators X [I] with |I| ≤ m generate Rn. Then the map

Φ(t1, . . . , tNm) = ϕX[I1],t1
◦ · · · ◦ ϕ

X[INm
],tNm

(x)

is, for δ > 0 small enough, a C∞ surjection from the ball |t| < δ in RNm onto a neighborhood of x in Ω.

Proof. Since Φ is smooth on a neighborhood of t = 0, it is sufficient to prove that DΦ(0) has rank n.
But this is immediate, since ∂tjΦ(0) = (X [Ij ])x. �

Lemma 1.5.2. Let X,Y be two vector fields in Ω and let x ∈ Ω. Then the curve

γ(t) = ϕY,
√
t ◦ ϕX,√t ◦ ϕY,−√t ◦ ϕX,−√t(x)

is C1 on some interval [0, δ) and γ′(0) = [X,Y ]x.

Proof. Clearly, γ is continuous and C∞ for t > 0. If f is a smooth function on Ω,

f
(
γ(t)

)
= exp(−

√
tX) exp(−

√
tY ) exp(

√
tX) exp(

√
tY )f(x) ,

hence
d

dt
f
(
γ(t)

)
=

1

2
√
t

(
− exp(−

√
tX)X exp(−

√
tY ) exp(

√
tX) exp(

√
tY )

− exp(−
√
tX) exp(−

√
tY )Y exp(

√
tX) exp(

√
tY )

+ exp(−
√
tX) exp(−

√
tY )X exp(

√
tX) exp(

√
tY )

+ exp(−
√
tX) exp(−

√
tY ) exp(

√
tX)Y exp(

√
tY )
)
f(x)

= exp(−
√
tX)

1

2
√
t

(
−X exp(−

√
tY ) + exp(−

√
tY )X

)
exp(
√
tX) exp(

√
tY )f(x)

+ exp(−
√
tX) exp(−

√
tY )

1

2
√
t

(
− Y exp(

√
tX) + exp(

√
tX)Y

)
exp(
√
tY )f(x) ,

for t > 0. Moreover

lim
t→0+

1

2
√
t

(
−X exp(−

√
tY ) + exp(−

√
tY )X

)
= lim
t→0+

1

2
√
t

(
− Y exp(

√
tX) + exp(

√
tX)Y

)
=

1

2
[X,Y ] ,

so that

lim
t→0+

d

dt
f
(
γ(t)

)
= [X,Y ]f(x) .

Therefore
d

dt |t=0

f
(
γ(t)

)
= [X,Y ]f(x) ,

and the derivative is continuous at t = 0.
For f(x) = xj , we then have

d

dt |t=0

(
γ(t) · ej

)
= [X,Y ]x · ej ,
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since ∇f = ej . �

Denote the curve γ above as γxX,Y (t). Then γxX,−Y (−t) is C1 on (−δ, 0] and its tangent vector at t = 0

is again [X,Y ]. Therefore we can extend γxX,Y to a C1 curve on (−δ, δ) as

γxX,Y (t) = γx(sgn t)X,Y (|t|) .

More generally, for fixed β ∈ (0, 1), define

γx,βX,Y (t) = ϕY,tβ ◦ ϕX,t1−β ◦ ϕY,−tβ ◦ ϕX,−t1−β (x)

for t ≥ 0 and γx,βX,Y (t) = γx,βX,−Y (−t) for t < 0. The same proof as above shows that γx,βX,Y is C1 on some

interval (−δ, δ) and its tangent vector at t = 0 is [X,Y ].
We omit the proof of the following fact.

Lemma 1.5.3. The function ψβX,Y (x, t) = γx,βX,Y (t) is C1 in both variables.

We now extend the above construction to higher order commutators of vector fields. For a third-order
commutator

[
[X,Y ], Z

]
, start with

γ
x,1/3
[X,Y ],Z(t) = ϕZ,t1/3 ◦ ϕ[X,Y ],t2/3 ◦ ϕZ,−t1/3 ◦ ϕ[X,Y ],−t2/3(x) (t ≥ 0) ,

(and similarly for t < 0).

Adopting the notation ψβX,Y ;t(x) = ψβX,Y (x, t) replace the factors ϕ[X,Y ],t2/3 by ψ
1/2

X,Y ;t2/3 to obtain a new
curve,

γxX,Y,Z(t) = ϕZ,t1/3 ◦ ψ1/2

X,Y ;t2/3 ◦ ϕZ,−t1/3 ◦ ψ1/2

X,Y ;−t2/3(x)

= ϕZ,t1/3 ◦ ϕY,t1/3 ◦ ϕX,t1/3 ◦ ϕY,−t1/3 ◦ ϕX,−t1/3
◦ ϕZ,−t1/3 ◦ ϕY,t1/3 ◦ ϕX,−t1/3 ◦ ϕY,−t1/3 ◦ ϕX,t1/3(x) .

An application of the Baker-Campbell-Hausdorff formula shows that this curve is C1 on some interval
[0, δ) and satisfies γ′(0) =

[
[X,Y ], Z

]
. It follows from Lemma 1.5.2 that

ψX,Y,Z(x, t) = γxX,Y,Z(t)

is C1 in both variables.
Let X1, . . . , Xk be a given set of vector fields. For any I = (i1, . . . , ip), we define inductively γxI (t) and

ψI(x, t) as follows2.
If |I| = 1, we set γxi (t) = ψi(x, t) = ϕXi(x, t). If p = |I| > 1, calling I ′ = (i1, . . . , ip−1), we set

γxI (t) = ψI(x, t) = ϕXip ,t1/p ◦ ψI′;t(p−1)/p ◦ ϕXip ,−t1/p ◦ ψI′;−t(p−1)/p(x)

for t ≥ 0, and

γxI (t) = ψI(x, t) = ϕ−Xip ,|t|1/p ◦ ψI′;|t|(p−1)/p ◦ ϕ−Xip ,−|t|1/p ◦ ψI′;−|t|(p−1)/p(x)

for t < 0.
One can also see inductively that the explicit expression of ψI(x, t) contains the composition of a number3

q = q(p) of factors ϕXi,±|t|1/p .

It remains true that ψI is C1 in both variables. We can then conclude as follows.

Proposition 1.5.4. Let {X1, . . . , Xk} be a generating system of vector fields on Ω, and let x ∈ Ω. Let
also I1, . . . , In, with |Ij | ≤ m for every j, be such that (XI1)x, . . . , (X

In)x form a basis of Rn. Then the map

(1.5.1) Ψx(t1, . . . , tn) = ψI1,t1 ◦ · · · ◦ ψIn,tn(x)

is, for δ > 0 small enough, a C1-diffeomorphism of the ball |t| < δ onto a neighborhood Ux of x in Ω.

2We keep the notation ψI;t(x) = ψI(x, t).
3Precisely, q(p) = 3 · 2p−1 − 2.
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Corollary 1.5.5. Let pj = |Ij |. Every element y = Ψx(t1, . . . , tn) ∈ Ux can be written as

(1.5.2) y = ϕ
Xis ,εs|tjs |

1/pjs
◦ · · · ◦ ϕ

Xi1 ,ε1|tj1 |
1/pj1

(x) ,

where s = q(p1) + · · ·+ q(pn), and for 1 ≤ ` ≤ s, 1 ≤ i` ≤ k, 1 ≤ j` ≤ n and ε` = ±1.

We have the tools now to present the control distance on Ω.

Definition. Let {X1, . . . , Xk} be a generating system of vector fields on Ω. A sub-unitary curve in Ω
is a piecewise smooth curve γ such that γ′(t), whenever defined, can be expressed as a linear combination

γ′(t) =

k∑
j=1

cj(t)(Xj)γ(t) ,

with
∑
c2j (t) ≤ 1.

Theorem 1.5.6. Assume that Ω is connected, and let {X1, . . . , Xk} be a generating system of vector
fields on Ω. Then every pair of points in Ω can be joined by a sub-unitary curve.

Proof. Consider first two points x, y with y = Ψx(t1, . . . , tn) ∈ Ux. From (1.5.2) we obtain a sub-
unitary curve γ : [0, T ]→ U joining x and y as follows.

Take T = |tj1 |1/p1 + · · ·+ |tjs |1/ps , and split [0, T ] into adjacent subintervals [τ`−1, τ`] with τ` − τ`−1 =

|t`|1/p` . Calling
y` = ϕ

Xi` ,ε`|tj` |
1/pj`

◦ · · · ◦ ϕ
Xi1 ,ε1|tj1 |

1/pj1
(x) ,

we set γ(0) = x, and, inductively,
γ(τ) = ϕε`Xi` ,τ−τ`−1

(y`−1) ,

for τ`−1 ≤ τ ≤ τ`. In other words, on the interval [τ`−1, τ`], γ follows the integral curve of ±Xi` joining y`−1

to y`. In particular, γ is sub-unitary.
So the subset of points in Ω that can be joined to a fixed point x0 is open and non-empty. But also its

complement is open. Since Ω is connected, every point can be joined to x0 by a sub-unitary curve. �

Definition. Let Γx,y be the family of all sub-unitary curves γ : [0, T ]→ Ω joining x and y. The control
distance d(x, y) on Ω, induced by the system {X1, . . . , Xk}, is the infimum of the lengths T of the domain
of all the γ ∈ Γx,y.

Definition. The control distance is a true distance, and it induces the euclidean topology on Ω. More
precisely, given x ∈ Ω, let m be such that the vectors (XI)x with |I| ≤ m span Rn. Then there are constants
c1, c2 such that, for y in a sufficiently small neighborhood of x,

c1|x− y| ≤ d(x, y) ≤ c2|x− y|
1
m .

Proof. Let B be a Euclidean closed ball centered at x and contained in Ω. By compactness, there is
M > 0 such that |(Xj)x′ | ≤ M for every j and every x′ ∈ B. It follows easily that, for every sub-unitary

curve γ, |γ′(t)| ≤
√
kM = M ′ whenever γ(t) ∈ B.

Let γ be a sub-unitary curve joining x and y, defined on the interval [0, T ]. If γ is entirely contained in
B, then the Euclidean length of γ is not larger than M ′T , so that

T ≥ |x− y|
M ′

.

Otherwise, let T0 be the smallest t such that γ(t) on the boundary of B. Then γ0 = γ|[0,T0]
is entirely

contained in B, so that, by the previous argument,

T > T0 ≥
r

M ′
,

if r is the radius of B. It follows that

d(x, y) ≥ min{|x− y|, r}
M ′

.
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This proves the first inequality. To prove the second inequality, suppose that y ∈ Ux = Ψx

(
B(0, δ)

)
,

with δ ≤ 1, and consider the curve γ introduced in the proof of Theorem 1.5.6. Then d(x, y) ≤ T =
|tj1 |1/p1 + · · ·+ |tjs |1/ps . Since |tj` | ≤ |t| =

∣∣(t1, . . . , tn)
∣∣ < 1 and p` ≤ m for every `, we have that

d(x, y) ≤ s|t|1/m .

On the other hand, since Ψx is bi-Lipschitz in x, |x− y| ∼ |t|. �

A small refinement of the argument given above shows that, given any compact K ⊂ Ω, an inequality
of the form c1|x− y| ≤ d(x, y) ≤ c2|x− y|

1
m holds for all x, y ∈ K, with m, c1, c2 depending on K.

Examples 4.

(a) Consider the control distance in R2 induced by the vector fields X1 = ∂x, X2 = x∂y. If a curve γ goes
through the point P = (x, y) with x 6= 0 and has a tangent vector vP = (v1, v2) at this point, then the
components of vP w.r. to (X1)P and (X2)P are v1 and v2

x respectively.
Suppose, for instance, we want to compute the distance between two points on the y-axis, e.g.

O = (0, 0) and A = (0, a). Any sub-unitary curve, defined on [0, T ] and joining O to A must have a
horizontal tangent vector at both these points. Let γ(t) =

(
γ1(t), γ2(t)

)
be such a curve. Then

γ′1(t)2 +
γ′2(t)2

γ1(t)2
≤ 1

for all but a finite number of values of t. In particular, |γ′1(t)| ≤ 1, so that |γ1(t)| ≤ |t| for every t. It

follows that |γ′2(t)| ≤ |γ1(t)| ≤ |t|, hence |γ2(t)| ≤ t2

2 for every t. So, in order to have γ2(T ) = a, we

must have T ≥
√

2a.
On the other hand, let γ be formed by three segments, the first joining O to (b, 0) with tangent

vector (1, 0) in time b, the second joining (b, 0) to (b, a) with tangent vector (0, b) in time a
b , and the

third joining (b, a) with tangent vector (−1, 0) in time b. This is a sub-unitary curve, and the total time

is T = 2b+ a
b , which is minimal for b =

√
a/2, with T =

√
8a. Therefore

√
2a ≤ d(O,A) ≤

√
8a .

5.2. Hypoelliptic operators.

The results that we state here are due to L. Hörmander4.

The Sobolev norm of order s ∈ R of a smooth function f on Rn with compact support is given by

(1.5.3) ‖f‖(s) =

(ˆ
Rn
|f̂(ξ)|2(1 + |ξ|2)s dξ

)1/2

.

The Sobolev space Hs(Rn) is the completion of D(Rn) w.r. to the Sobolev norm of order s. Clearly,

(1.5.4) Hs′(Rn) ⊆ Hs(Rn) ⊆ L2(Rn) ,

if 0 < s < s′. If k is an integer, the Plancherel formula shows that Hk consists of the L2-functions whose
distributional derivatives are L2 up to order k, and that

(1.5.5) ‖f‖(k) ∼
∑
|α|≤k

‖∂αf‖2 .

If X is a vector field on Ω ⊆ Rn, it is pretty obvious that for every compact K ⊂ Ω there is a constant
C(K) > 0 such that, for every smooth f supported on K,

‖Xf‖2 ≤ C(K)‖f‖(1) .

The next statement says that a generating system of vector fields is sufficient to control some Sobolev
norm.

4The proof can be found in L. Hörmander, Hypoelliptic second-order differential equations, Acta Math. vol.119 (1967),
p.147-171. See the Appendix for a proof.
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Theorem 1.5.7. Let {X1, . . . , Xk} be a generating system of vector fields on Ω. Let m be such that,
at every x ∈ Ω, the iterated commutators (XI)x with |I| ≤ m span Rn, and let s < 1/m. Then, for every
compact K ⊂ Ω, there is a constant C(K) > 0 such that, for every smooth f supported on K,

‖f‖(s) ≤ C(K)
(
‖f‖2 +

k∑
j=1

‖Xjf‖2
)
.

A closely related issue is hypoellipticity of differential operators obtained by composition of vector fields.

Definition. Let L be a linear differential operator on Ω with smooth coefficients. Then L is said to
be hypoelliptic if for any distribution u ∈ D′(Ω) and any Ω′ ⊆ Ω, the condition Lu ∈ C∞(Ω′) implies that
u ∈ C∞(Ω′).

For a distribution u ∈ D′(Ω), the singular support of u, denoted by sing suppu, is defined as the comple-
ment of the largest open set Ω′ where u is C∞. Then the hypoellipticity condition is equivalent to requiring
that

(1.5.6) sing suppu ⊆ sing supp (Lu) .

The terminology comes from the fact that elliptic linear operators with smooth coefficients satisfy (1.5.6).
However there are non-elliptic hypoelliptic operators, such as the heat operator ∂t−∆x on Rn+1 (with t ∈ R
and x ∈ Rn).

Theorem 1.5.8. Let {X1, . . . , Xk} be a generating system of vector fields on Ω. Then the operators

L1 =

k∑
j=1

X2
j , L2 = X1 −

k∑
j=2

X2
j

are hypoelliptic.

An operator of the form L1 is given different names: sub-Laplacian, Hörmander sum of squares, or
others. Among the operators of the form L2, particularly important are the heat operators ∂t − L1, defined
on Ω× R, L1 as above.

In Chapter 5 we will prove hypoellipticity of L1, following Hörmander’s original proof.



CHAPTER 2

Structure of nilpotent Lie algebras and homogeneous groups

1. Central series and filtrations

We call a Lie bracket of order k in a Lie algebra an expression of the form[
···
[
[x0, x1], x2

]
· · · , xk

]
.

Definition.

(i) A subalgebra h of a Lie algebra g is called an ideal if [x, y] ∈ h for every x ∈ g and y ∈ h.
(ii) If h is an ideal of g, the quotient Lie algebra is the quotient space g/h with bracket

(2.1.1) [x+ h, y + h] = [x, y] + h .

(iii) The center of a Lie algebra g consists of those elements x such that [x, y] = 0 for every y ∈ g.
(iv) A nilpotent Lie algebra g is called step k (or of length k) if k is the smallest integer for which all Lie

brackets of order k are zero.

The requirement that h be an ideal in the definition of a quotient Lie algebra is necessary, in order that
(2.1.1) be a good definition.

We define the descending central series of a Lie algebra g.
We use the following notation: if V,W are linear subspaces of a Lie algebra g, we denote by [V,W ] the

linear subspace of g spanned by the Lie brackets [v, w] with v ∈ V , w ∈ W . We also tend to reserve gothic
letters to subspaces that are also Lie subalgebras.

We define inductively

g1 = g , gj+1 = [g, gj ] ;

i.e. gj is the subspace spanned by the Lie brackets of order j − 1.
Clearly, gj+1 ⊆ gj . Hence each gj is an ideal of g. Moreover,

[gi, gj ] ⊆ gi+j .

The following statement is a direct consequence of the definitions.

Proposition 2.1.1. A Lie algebra g is nilpotent if and only if there is k such that gk = {0}. If this is
the case, the step of g is the largest m for which gm 6= {0}.

An example where the condition in Proposition 2.1.1 is not verified is the following. Let g be R3 with
the wedge product, i.e., [x, y] = x ∧ y. It is easily verified that [g, g] = g, hence gj = g for every j. A Lie
algebra satisfying the condition [g, g] = g is called semisimple.

The descending central series of a nilpotent Lie algebra is useful to identify natural generating systems
of g.

Proposition 2.1.2. Let g be a nilpotent Lie algebra and let W be a linear subspace of g complementary
to [g, g], i.e., g = W ⊕ [g, g], and let {e1, . . . , ek} be a basis of W . Then {e1, . . . , ek} generates g.

19
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Proof. By the direct sum decomposition in the statement, any element x ∈ g decomposes uniquely as
x = w + r2 with w ∈ W and r2 ∈ [g, g] = g2. Then r2 is a finite sum of terms of the form [y′j , y

′′
j ], with

y′j , y
′′
j ∈ g. Decompose, as above, y′j = w′j + z′j and y′′j = w′′j + z′′j with w′j , w

′′
j ∈W and z′j , z

′′
j ∈ g2. Then

[y′j , y
′′
j ] = [w′j , w

′′
j ] + terms in g3 ,

hence

x = w +
∑
j

[w′j , w
′′
j ] + r3 , with r3 ∈ g3 .

This procedure can be iterated obtaining, at each step, higher order Lie brackets involving elements of W
plus a remainder term rj ∈ gj . When we arrive at j = m + 1 the remainder term is zero. The last step is
the expansion of any element of W in terms of the basis {ei} and use of bilinearity of the Lie bracket. �

The descending central series is a notable example of a descending filtration (or simply a filtration) of a
Lie algebra g. By definition is a finite family {vj}1≤j≤m+1 of subspaces such that

(i) vj+1 ⊆ vj for 1 ≤ j ≤ m;
(ii) v1 = g, vm+1 = {0} (one then allows vk = {0} also for k > m+ 1);
(iii) for every i, j, [vi, vj ] ⊆ vi+j .

The definition implies that each vj is in fact an ideal of g. By induction,

(2.1.2) gj ⊆ vj ,

so that filtrations only exist in nilpotent Lie algebras and the length of a filtration cannot be smaller than
the step of the Lie algebra.

One also defines the ascending central series of a Lie algebra g as follows. We start with the center of g,

z(g) = {x ∈ g : [x, y] = 0 ∀ y ∈ g} ,

and define inductively

g1 = z(g) , gj+1 = {x ∈ g : [x, y] ∈ gj ∀ y ∈ g} .
Using the Jacobi identity, one proves by induction that each gj is an ideal of g and that gj ⊆ gj+1 for
every j. Introducing the quotient algebras hj = g/gj with canonical projection πj , it can easily be verified
that πj+1(gj) = z(hj+1) for every j.

Proposition 2.1.3. A Lie algebra g is nilpotent if and only if there is k such that gk = g. If this is the
case, the step of g is the smallest m for which gm = g.

Proof. Assume that g is nilpotent, and that all iterated k-fold brackets are zero. Then the center z(g)
contains all the Lie brackets of order k. It follows that g1 = g/z is nilpotent of step ≤ k − 1. The converse
is also true, as one can see immediately.

By induction, the fact that g is nilpotent of step ≤ k is equivalent to gk = {0}. The conclusion follows
easily. �

2. Dilations and homogeneous groups

Let G1, G2 be Lie groups and ψ : G1 → G2 be a smooth group homomorphism. If v is in the Lie algebra
g1 of G1, then ψ(expG1

tv) is a one-parameter group in G2. By Corollary 1.3.5 of Chapter 1, there is a
unique v′ = ψ∗(v) ∈ g2 such that ψ(expG1

tv) = expG2
(tv′).

Lemma 2.2.1. The map ψ∗ : g1 → g2 is a Lie algebra homomorphism, i.e. it is linear and

ψ∗
(
[u, v]

)
=
[
ψ∗(u), ψ∗(v)

]
.

If G1 is connected, ψ∗ uniquely determines ψ.
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Proof. The fact that ψ∗(sv) = sψ∗(v) for s ∈ R is obvious. Let X be the left-invariant vector field1 on
G1 such that Xe1 = v, and let Y be the left-invariant vector field on G2 such that Ye2 = v′ = ψ∗(v).

Since

X(f ◦ ψ)(x) =
d

dt |t=0

f ◦ ψ
(
x expG1

(tv)
)

=
d

dt |t=0

f
(
ψ(x)ψ

(
expG1

(tv)
))

=
d

dt |t=0

f
(
ψ(x) expG1

(tv′)
)

= Y f
(
ψ(x)

)
,

for every smooth function f on G2, the following identity holds:

(2.2.1) X(f ◦ ψ) = (Y f) ◦ ψ .

Moreover Y is the only left-invariant vector field on G2 for which this identity holds, because (2.2.1)
implies that

Y f(e2) =
d

dt |t=0

f ◦ ψ
(

expG1
(tv)

)
=

d

dt |t=0

f
(

expG1
(tv′)

)
= v′(f) .

It follows directly from (2.2.1) that if X ′ is another left-invariant vector field on G1 and Y ′ is the
corresponding vector field on G2, then X +X ′ corresponds to Y + Y ′ and [X,X ′] to [Y, Y ′].

Suppose now that G1 is connected, and ψ, η are smooth homomorphisms from G1 to G2 such that
ψ∗ = η∗. Then

ψ
(

expG1
(tv)

)
= expG2

(
tψ∗(v)

)
= η

(
expG1

(tv)
)
.

By Proposition 1.4.1 of Chapter 1, the image of the exponential map of G1 contains a full neighborhood
U of the unit element e1. Therefore ψ = η on U . It follows that ψ = η on the subgroup H of G1 generated
by U . If x ∈ H, then xU ⊂ H, so that H is open. But

G1 \H =
⋃
x 6∈H

xH ,

which is also open. Since G1 is connected, H = G1. �

One says that the Lie algebra homomorphism ψ∗ is induced by the group homomorphism ψ. Observe
that ψ∗ is nothing but the differential of ψ at the identity of G1.

It is not true in general that any homomorphism from g1 to g2 is induced by a group homomorphism
from G1 to G2. This statement becomes true if we assume that G1 is connected and simply connected. We
give the proof for nilpotent groups.

Proposition 2.2.2. Let G1, G2 be connected nilpotent Lie groups, with Lie algebras g1, g2, and let G1

be simply connected. If λ : g1 → g2 is a Lie algebra homomorphism, then there is a unique smooth group
homomorphism ψ from G1 to G2 such that ψ∗ = λ.

Proof. We assume first that also G2 is simply connected. We identify Gj with gj endowed with the
product (1.4.1) in Chapter 1, and define ψ = λ. It is clear that

Zj,k
(
λ(x), λ(y)

)
= λ

(
Zj,k(x, y)

)
,

because Zj,k is a linear combination of iterated Lie brackets. Therefore

S
(
λ(x), λ(y)

)
= λ

(
S(x, y)

)
,

which says that ψ is a group homomorphism. Smoothness is obvious and uniqueness follows from Lemma
2.2.1.

If Z is a central discrete subgroup of G2 and π is the canonical projection of G2 onto G2/Z, then π ◦ ψ
is a smooth homomorphism whose differential is λ. By Theorem 1.4.3 in Chapter 1, this covers the general
case. �

1Here we are implicitely identifying g with the tangent space TeG.
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Let V be a real vector space. A family {δt}t>0 of linear maps of V to itself is called a set of dilations on
V if there are real numbers λj > 0 and subspaces Wλj of V such that V is the direct sum of the Wλj and

(δt)|Wλj
= tλj Id

for every j.

Definition. Let g be a Lie algebra and {δt}t>0 be a set of dilations on its underlying vector space. If
each δt is an automorphism of g, then the pair

(
g, {δt}

)
is called a homogeneous Lie algebra.

A homogeneous Lie group is a connected Lie group G endowed with a family {Dt}t>0 of automorphisms
such that its Lie algebra g is homogeneous under the δt = (Dt)∗.

It must be observed that the same Lie algebra can have different homogeneous structures.

Examples 5.

(a) If g is abelian, any set of dilations on it makes it a homogeneous Lie algebra.
(b) Let hn be the (2n+1)-dimensional Heisenberg algebra, with basis e1, . . . , en, f1, . . . , fn, h and Lie brackets

(2.2.2) [ei, ej ] = [fi, fj ] = 0 , [ei, fj ] = δi,jh , [ei, h] = [fi, h] = 0 ,

for every i, j. Setting

δt(ej) = tαjej , δt(fj) = tβjfj , δt(h) = tγh ,

with αj , βj , γ > 0, the {δt} make hn a homogeneous algebra if and only if αj + βj = γ for every j.
(c) Let g be the Lie algebra consisting of the real upper triangular matrices

A =


0 a1,2 · · · a1,n

0 0 · · · a2,n

...
...

. . .
...

0 0 · · · 0

 ,

with Lie bracket [A,B] = AB −BA. Then

δt(A) = (tj−iai,j)

is a set of dilations on g.

Lemma 2.2.3. A homogeneous Lie algebra is nilpotent. A homogeneous Lie group is simply connected.

Proof. Let x ∈Wλj and y ∈Wλk . Then

δt[x, y] =
[
δt(x), δt(y)

]
= tλj+λk [x, y] ,

i.e. [x, y] ∈Wλj+λk . This implies that if m minλj > maxλj , any Lie bracket of order m in g is zero.

Assume now that G is homogeneous. By Theorem 1.4.3 in Chapter 1, we can assume that G = G̃/Z,

where G̃ has the same Lie algebra of G, it is connected and simply connected, and Z is a discrete normal
subgroup of G̃.

The dilations Dt on G induce dilations δt of g, and these in turn induce dilations D̃t on G̃, by Proposi-
tion 2.2.2. If π is the canonical projection of G̃ onto G, we claim that

(2.2.3) Dt ◦ π = π ◦ D̃t ,

for every t. This follows from Lemma 2.1, once we observe that π∗ is the identity map of g, so that
(Dt ◦ π)∗ = (π ◦ D̃t)∗.

But (2.2.3) implies that Dt(Z) ⊆ Z for every t. Since Z is discrete, it must be trivial. �



3. GRADED AND STRATIFIED ALGEBRAS 23

Let G be a homogeneous Lie group, and let X be a left-invariant vector field such that Xe = v ∈ Wλj .

The left-invariant vector field Y such that Ye = δtv = tλjv is clearly tλjX.
Therefore, by (2.2.1),

(2.2.4) X(f ◦Dt)(x) = tλj (Xf)(Dtx) ,

which generalizes the identity
d

dx
f(tx) = tf ′(tx)

for functions of one variable.

3. Graded and stratified algebras

Definition. A gradation on g is a decomposition of g as the direct sum of linear subspaces {Wj}1≤j≤m
such that [Wj ,Wk] ⊆ Wj+k (or [Wj ,Wk] = {0} if j + k > m). A Lie algebra endowed with a gradation
is called a graded Lie algebra, and the associated connected and simply connected Lie group a graded Lie
group.

From a gradation {Wj}, one constructs a filtration {vj} setting

(2.3.1) vj = Wj ⊕ · · · ⊕Wm .

However, not every filtration can be obtained from a gradation as in (2.3.1). An example is given by the
filtration v3 ⊂ v2 ⊂ v1 on the Heisenberg algebra h2, with

v1 = h2 , v2 = span {e2, h} , v3 = Rh .

The proof is left to the reader.

If {Wj} is a gradation of g, the dilations

δt(x) = tjx , if x ∈Wj

are automorphism, so that g canonically inherits a homogeneous structure.
Conversely, if the dilations δt on a homogeneous Lie algebra have eigenvalues tj (i.e. with integer

exponents), the eigenspaces Wj relative to the eigenvalues tj form a gradation of g.

A nilpotent Lie algebra may admit more than one gradation, but there are nilpotent Lie algebras that
cannot be graded. In fact, there are nilpotent Lie algebras that even do not admit any set of (automorphic)
dilations. As a curiosity, the lowest dimensional nilpotent Lie algebra without dilations is spanned by
elements e1, . . . , e7 with the following non-trivial Lie brackets among the basis elements2:

[e1, ej ] = ej+1 (2 ≤ j ≤ 6), [e2, e3] = e6 , [e2, e4] = [e5, e2] = [e3, e4] = e7 .

Definition. A stratified Lie algebra is a graded Lie algebra g such that W1 generates g.

If g is stratified, then

(2.3.2) Wj =
[
· · · [W1,W1],W1 · · ·

]︸ ︷︷ ︸
j times

.

Examples of stratified Lie algebras are:

• the Heisenberg algebra hn, with W1 = span {ej , fj}1≤j≤n;
• the algebra in Example 5(b) of Section 2, with W1 consisting of the matrices (ai,j) such that ai,j = 0

unless j = i+ 1.

2See R. Goodman, Nilpotent Lie groups: Structure and Applications to Analysis.
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4. Free Lie algebras

Given two integers m ≥ 1 and n ≥ 2, there is a canonical way to construct an m-step nilpotent Lie
algebra with k generators. This is called the free nilpotent Lie algebra fn,m and satisfies a universal property
that we will see below.

Given a set E = {e1, . . . , en} with n elements, let AE be the free associative algebra generated by E over
R. This may be viewed as the linear span of all the “monomials”

eI = ei1ei2 · · · eik ,

where n is an arbitrary integer, I = (i1, . . . , ik) is a k-tuple of indices, 1 ≤ ij ≤ n. The product is the natural
multiplication with non-commuting variables.

Observe that AE admits an infinite gradation: if Ak is the linear span of the monomials of degree k,
then AkAj ⊆ Ak+j .

As any associative algebra (see Example 1(d) in Chapter 1), AE is a Lie algebra with bracket [x, y] =
xy − yx. Clearly, [Ak,Aj ] ⊆ Ak+j .

Let gE be the Lie subalgebra of AE generated by E, i.e. the linear span of the iterated Lie brackets
of elements of E. Since E ⊂ A1, any k-fold iterated Lie bracket belongs to Ak. Therefore, if we set
Wk = gE ∩ Ak, we have that

gE =

∞⊕
k=1

Wk ,

and [Wj ,Wk] ⊆Wk+j .
Let hm be the sum of the Wk with k > m. Then hm is an ideal in gE , and the quotient Lie algebra

gE/hm is clearly finite dimensional and nilpotent of step m.

Definition. The Lie algebra fn,m = gE/hm is called the free nilpotent Lie algebra of step m with n
generators.

It follows from the construction that the projections W̃k of the Wk with k ≤ m in gE/hm give a
stratification of fn,m.

Computing the dimension of fn,m requires computing the dimension of each Wk. For k = 2 this equals
n(n − 1)/2, because a basis is given by the elements ei,j = eiej − ejei = [ei, ej ] for i < j. For k ≥ 3
the computation is harder, because one has to take into account the linear dependence relations among the
iterated Lie brackets produced by the Jacobi identity.

A better “model” for fn,2 is the direct sum V ⊕ Λ2V , where V = W1 is an n-dimensional vector space
and Λ2V = W2 is its exterior product, with Lie bracket

[v, v′] = v ∧ v′

from W1 ×W1 to W2.
Observe that f2,2 is isomorphic to the Heisenberg algebra h1.

We state without proof the following result3.

Lemma 2.4.1. Let ϕ be any function from the set E to a Lie algebra g′. Then ϕ extends uniquely to a
Lie algebra homomorphism from gE to g′.

From this we derive the following consequences.

Theorem 2.4.2. Let ϕ be any function from the set E to an m-step nilpotent Lie algebra g′. Then ϕ
extends uniquely to a Lie algebra homomorphism from fn,m to g′.

Every m-step nilpotent Lie algebra g′ with n generators is isomorphic to a quotient of fn,m.

3It can be found in N. Jacobson, Lie algebras.
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Proof. It follows from Lemma 2.4.1 that ϕ extends uniquely to a homomorphism ϕ̃ : gE → g′. Since
g′ is m-step nilpotent, ϕ̃(Wk) = {0} for k > m. Therefore ϕ̃ factors modulo hm.

If x1, . . . , xn generate g′, take ϕ : E → g′ as ϕ(ej) = xj . The induced homomorphism from fn,m to g′ is
clearly surjective. �

5. Homogeneous norms

Definition. Let G be a homogeneous group with dilations {Dt}. A homogeneous norm on G, relative
to the given dilations, is a continuous function | | : G→ [0,+∞) such that

(i) |x| = 0 if and only if x is the identity element;
(ii) |x−1| = |x| for every x;
(iii) |Dt(x)| = t|x| for every x ∈ G and t > 0.

The existence of homogeneous norms on any homogeneous group G can be shown by the following
argument.

We can assume that G has its Lie algebra g as underlying manifold, with the product xy = S(x, y). In
this setting, δt = (Dt)∗ = Dt. Let Wj be the eigenspaces of each δt, with eigenvalues tλj . If ‖ ‖j is any
vector space norm on Wj , and xj denotes the Wj-component of x ∈ g, we define

(2.5.1) |x| =
m∑
j=1

‖xj‖
1/λj
j .

The properties of a homogenous norm are easily checked.

Proposition 2.5.1. Every homogeneous group G admits a homogeneous norm that is smooth away from
the unit element.

Two homogeneous norms | | and | |′ on G are mutually equivalent, in the sense that there are constants
A,B > 0 such that

A|x| ≤ |x|′ ≤ B|x| ,
for every x in the group.

If | | is a homogeneous norm on G, there is a constant C > 0 such that

(2.5.2) |xy| ≤ C
(
|x|+ |y|

)
,

for every x, y ∈ G.

Proof. As before, we can restrict ourselves to the case of a homogenous Lie algebra g with product
xy = S(x, y).For every j choose a Euclidean norm ‖ ‖j on Wj and let

(2.5.3) ‖x‖ =

( m∑
j=1

‖xj‖2j
)1/2

,

and consider the function

F (t, x) = ‖Dt(x)‖2 =

m∑
j=1

t2λj‖xj‖2j .

For fixed x 6= 0, F (t, x) is continuous and strictly increasing in t, it tends zero for t→ 0 and to infinity
for t→∞. Therefore there is a unique t > 0 such that ‖Dtx‖ = 1. Define

(2.5.4) |x| = t−1 .

But F (t, x) is smooth from (0,+∞)×(g\{0}) to (0,+∞) and |x|−1 is the implicit function for F (t, x) = 1.
Since ∂tF (x, t) is always different from zero, the implicit function is smooth.

Setting |0| = 0, the properties of a homogeneous norm are satisfied, and this proves the first statement.
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For the second statement, it is sufficient to prove that any homogeneous norm is equivalent to (2.5.4).
Observe that the unit sphere Σ in the Euclidean norm (2.5.3) coincides with the set where |x| = 1 for the
homogeneous norm (2.5.4).

If | |′ is any other homogeneous norm, its restriction to Σ is never zero. By compactness, there are
constants A,B > 0 such that

A ≤ |x|′ ≤ B ,

for any x ∈ Σ. If y 6= 0, let t−1 = |y|, so that Dt(y) ∈ Σ. Then

A ≤ |Dt(y)|′ ≤ B ,

and the conclusion follows.
For the last statement, consider the closed unit ball B = {|x| ≤ 1}. It follows from the previous proof

that this is a compact set for any homogeneous norm. Because the product map xy = S(x, y) is continuous,
the set B2 = {xy : x, y ∈ B} is also compact. Therefore there is a constant C > 0 such that |xy| ≤ C for
every x, y ∈ B.

Let x, y ∈ g. If both of them are 0, there is nothing to prove. If not, let t−1 = |x|+ |y| > 0. Then Dt(x)
and Dt(y) are in B, so that

t|xy| = |Dt(xy)| = |Dt(x)Dt(y)| ≤ C ,

and this concludes the proof. �

Let | | be a homogeneous norm on G. Then

(2.5.5) d(x, y) = |x−1y|

satisfies the following properties:

(1) d(x, y) = d(y, x) for every x, y ∈ G;
(2) d(x, y) = 0 if and only if x = y;
(3) d(x, z) ≤ C

(
d(x, y) + d(y, z)

)
for every x, y, z ∈ G;

(4) d(zx, zy) = d(x, y) for every x, y, z ∈ G;
(5) d

(
Dt(x), Dt(y)

)
= t d(x, y) for every x, y ∈ G and t > 0.

Such a function d is the left-invariant homogeneous quasi-distance induced by the given norm. Clearly,
every left-invariant homogeneous quasi-distance on G is induced by a homogeneous norm through (2.5.5).

The function

d′(x, y) = |xy−1|
is obviously a right-invariant homogeneous quasi-distance.

It is natural to ask if a homogeneous group G admits a left-(or right-)invariant homogeneous distance,
i.e. satisfying the quasi-triangular inequality (3) with C = 1. This is equivalent to asking if G admits a
homogeneous norm such that |xy| ≤ |x|+ |y|.

As we are going to see, this is true for stratified groups and can be proved using control distances.
As a preliminary remark, observe that if γ(t) is a smooth curve, its tangent vector γ′(t0) is the element

of Tγ(t0)G such that

γ′(t0)(f) =
d

dt |t=t0
f
(
γ(t)

)
.

It will be convenient for us to identify the tangent vector with an element of the Lie algebra. We therefore
use (1.3.2)in Chapter 1 to “transport” γ′(t0) to TeG as

(2.5.6) γ̃′(t0)(f) =
d

dt |t=t0
f
(
γ(t0)−1γ(t)

)
∈ TeG .

This will allow us to apply any norm defined on the Lie algebra to tangent vectors at any point.

We assume now that the homogeneous structure on G derives from a stratification {Wj} of g.
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Theorem 2.5.2. Let {X1, . . . , Xk} be a basis of W1, and let d(x, y) be the induced control distance on
G. Then d is a left-invariant homogeneous distance.

Proof. We must only prove properties (4) and (5). As to (4), it is sufficient to prove that, if γ(s) is a
sub-unitary curve, then also γ1(s) = zγ(s) is sub-unitary for every z ∈ G. But, applying (2.5.6), we see that

γ̃′1(s) = γ̃′(s)

for any s, and the conclusion is immediate.
In order to prove (5), given a sub-unitary curve γ(s), we prove that γ2(s) = Dt

(
γ(s/t)

)
is also sub-unitary

for every t > 0. By (2.5.6) we have

γ̃′2(s0)(f) =
d

ds |s=s0
f
(
γ2(s0)−1γ2(s)

)
=

d

ds |s=s0
f ◦Dt

(
γ(s0/t)

−1γ(s/t)
)

=
1

t

d

du |u=s0/t

f ◦Dt

(
γ(s0/t)

−1γ(u)
)

=
1

t
γ̃′(s0/t)(f ◦Dt)

=
1

t
δt
(
γ̃′(s0/t)

)
(f) .

Hence, γ̃′2(s0) ∈ W1 and its norm is not larger than 1. This provides a 1-1 correspondence between the
sub-unitary curves joining x and y and those joining Dtx and Dty. The lengths of corresponding curves
coincide up to a factor t. �

6. Integration on nilpotent groups

As in Theorem 1.4.2 of Chapter 1, we parametrize the elements of a connected and simply connected
nilpotent Lie group G by the elements of its Lie algebra g with the product xy = S(x, y).

The first result we are going to prove is the fact that the Lebesgue measure on g is invariant under both
left and right translations of G. It is a well-known fact that every locally compact group (in particular any
Lie group) admits a positive, regular Borel measure that is invariant under left translations, called the left
Haar measure, which is unique up to scalar multiples; similarly such a group admits a unique, up to scalar
multiples, right Haar measure. For general groups, right and left Haar measures do not always coincide.

The existence of a Haar measure on G which is both left- and right-invariant is expressed by saying that
G is unimodular.

Let {vj}1≤j≤m+1 be any filtration on g. We construct a basis of g as follows.
For each j ≤ m, we fix a subspace Wj such that vj = vj+1 ⊕Wj , so that

g = W1 ⊕W2 ⊕ · · · ⊕Wm .

We write x ∈ g as x = x1 + · · ·+ xm with xj ∈Wj . Recalling that

(2.6.1) xy = S(x, y) = x+ y +
∑
`,k≥1

Z`,k(x, y) ,

and that each Z`,k(x, y) is a linear combination of iterated Lie brackets containing ` times x and k times y,
we see that

Z`,k(x, y) ∈ g`+k ⊆ v`+k ,

by (??). Therefore, if (xy)j and Zj`,k denote the Wj-components of the indicated objects, we see that Zj`,k = 0
if j < `+ k. In particular,

(xy)1 = x1 + y1 .
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The W2-component is

(xy)2 = x2 + y2 +
1

2
[x, y]2 = x2 + y2 +

1

2
[x1, y1] ,

because of the bilinearity of the Lie bracket and the fact that [xi, yj ] ∈ vi+j .
For the general component, we must observe that

Z`,k(x, y) = Z`,k(x1 + · · ·+ xm, y1 + · · ·+ ym) ,

being a combination of iterated Lie brackets, decomposes by multilinearity into a sum of terms, each of them
being an iterated Lie bracket containing ` times components of x and k times components of y. In order
that an individual term have a non-trivial component in Wj , it is necessary that the sum of the indices of
the various components be at most equal to j. This implies that, for `, k ≥ 1, only the i-th components with
i < j can appear. Therefore we can write

(2.6.2) (xy)j = xj + yj + Pj(x
1, . . . , xj−1, y1, . . . , yj−1) ,

where Pj is a polynomial function4 from W1 × · · · ×Wj−1 ×W1 × · · · ×Wj−1 to Wj .

Theorem 2.6.1. The Lebesgue measure dx on g satisfies the following property: if f is an integrable
function on G and a ∈ G, then ˆ

G

f(xa) dx =

ˆ
G

f(ax) dx =

ˆ
G

f(x) dx .

Proof. By (2.6.2),ˆ
G

f(xa) dx =

ˆ
g

f
(
x1 + a1, x2 + a2 + P2(x1, a1), x3 + a3 + P3(x1, x2, a1, a2), . . .

. . . , xm + am + Pm(x1, . . . , xm−1, a1, . . . , am−1)
)
dx1 · · · dxm .

The consecutive changes of variables

ym = xm + am + Pm(x1, . . . , xm−1, a1, . . . , am−1)

ym−1 = xm−1 + am−1 + Pm(x1, . . . , xm−2, a1, . . . , am−2)

etc.

show that ˆ
G

f(xa) dx =

ˆ
G

f(x) dx .

The other identity is proved in the same way. �

Remark. It is convenient to have a more abstract interpretation of this result. The notion of Haar
measure on a Lie group is intrinsic and does not depend on the choice of coordinates. From this point of
view, Theorem 2.6.1 is not an intrinsic statement, but relative to a particular choice of coordinates on a
connected and simply connected nilpotent Lie group G.

To be more precise, let g be the Lie algebra of G. The fact that

expG(x) expG(y) = expG
(
S(x, y)

)
,

means that the product (2.6.1) is the product on G expressed in the canonical coordinates of the first kind.
Therefore, the “intrinsic” formulation of Theorem 2.6.1 is that the Haar measure on a connected and simply
connected nilpotent Lie group is equal to the Lebesgue measure on its Lie algebra, once expressed in canonical
coordinates of the first kind.

It is not difficult to prove that, if we use instead the canonical coordinates of the second kind on G
relative to the decomposition of g in the subspaces Wj as above, the product on g takes a form similar
to (2.6.2), only with different polynomials. Therefore the proof of Theorem 2.6.1 applies, and the Haar
measure on G is again expressed by the Lebesgue measure on g.

4This means a map that is expressed by polynomials with respect to linear coordinates in the domain and in the codomain.
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An interesting example connected with this remark is the following. Consider the canonical coordinates
of the second kind on the Heisenberg group H1 induced by the decomposition of h1 into W1 = Re1, W2 =
span {e2, e3} (in the notation of Example (4.b) in Chapter 1). The product on R3 then becomes

(2.6.3) (x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′) .

If we represent (x, y, z) by the matrix 1 x z
0 1 y
0 0 1


then (2.6.3) is the ordinary matrix product. This given an alternative (and frequent) description of H1.
It is straightforward to verify that the Haar measure is represented by the Lebesgue measure also in these
coordinates.

Assume now that G is homogeneous, with dilations {Dt}, and let tλ1 , . . . , tλm be the eigenvalues of
δt = (Dt)∗, with eigenspaces W1, . . . ,Wm. For every Lebesgue-measurable set E ⊂ g,

(2.6.4) m
(
δt(E)

)
= tQm(E) ,

with

Q =

m∑
j=1

λjdimWj .

The number Q is called the homogeneous dimension of G with respect to the given dilations. It follows
from (2.6.4) that for any integrable function f on G,

(2.6.5)

ˆ
G

f
(
Dt(x)

)
dx = t−Q

ˆ
G

f(x) dx .

Proposition 2.6.2. Let | | be a homogeneous norm on G. The integralˆ
|x|<1

|x|−α dx

is convergent if and only if α < Q, and the integralˆ
|x|>1

|x|−α dx

is convergent if and only if α > Q.

Proof. Let c = m
(
{x : 1 < |x| < 2}

)
. Then c > 0 andˆ

2j<|x|<2j+1

|x|−α dx ∼ 2−jαm
(
{x : 2j < |x| < 2j+1}

)
= c2j(Q−α) ,

where ∼ denotes that the two sides bound each other up to a multiplicative constant.
The conclusion follows by summing over j < 0 in the first case and over j ≥ 0 in the second case. �





CHAPTER 3

Homogeneous hypoelliptic operators on homogeneous groups

1. General properties of hypoelliptic operators

Let K be a compact subset of Rn. We denote by Dk(K) the space of Ck functions on Rn supported on
K, with the Cknorm, and by

D(K) =
⋂
k∈N
Dk(K)

the space of C∞ functions on Rn supported on K. It is well-known that D(K) is a Fréchet space under the
family of Ck norms, for k ∈ N.

Lemma 3.1.1. For every C∞ function f supported on a ball of radius r and every k ∈ N,

‖f‖k ≤ 2r‖f‖k+1 .

Proof. We can assume that the support of f is contained in the cube Q = [−r, r]n. For any multi-index
α = (α1, . . . , αn) of length |α| ≤ k, let α′ = (α1 + 1, . . . , αn). If x ∈ Q,∣∣∂αf(x)

∣∣ =

∣∣∣∣ˆ x1

−r
∂α
′
f(t, x2, . . . , xn) dt

∣∣∣∣
≤ 2r‖∂α

′
f‖∞ ,

so that ‖f‖k ≤ 2r‖f‖k+1. �

Let now L be a linear differential operator with smooth coefficients on an open subset Ω of Rn. Denote
by tL, the transpose of L, the operator such that

(3.1.1)

ˆ
Ω

Lf(x)g(x) dx =

ˆ
Ω

f(x) tLg(x) dx ,

for every pair of test functions f, g. If

Lf(x) =
∑
|α|≤m

aα(x)∂αf(x) ,

then
tLf(x) =

∑
|α|≤m

∂α(aαf)(x) =
∑
|α|≤m

bα(x)∂αf(x) ,

where the bα are linear combinations of derivatives of the aα, in particular smooth functions.
For K a compact subset of Ω and ν ∈ N, define

V ν(K) =
{
f ∈ Dν(K) : Lf ∈ D(K)

}
.

Observe that if ν is smaller than the order m of L, Lf is defined as a distribution:

〈Lf, ϕ〉 =

ˆ
K

f(x) tLϕ(x) dx ,

31
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for ϕ ∈ D(Ω).
Consider the family of norms

(3.1.2) ‖f‖V ν ,k = ‖f‖ν + ‖Lf‖k
on V ν(K).

Lemma 3.1.2. V ν(K) is a Fréchet space. If L is hypoelliptic, V ν(K) = D(K).

Proof. Let {fj} be a Cauchy sequence with respect to each one of the norms (3.1.2). In particular, the
fj converge, in the Cν-norm, to a function f ∈ Dν(K), and, by the completeness of D(K), the Lfj converge
to g ∈ D(K) in every Ck-norm.

In order to prove the first statement, we must show that g = Lf as a distribution on Ω. If ϕ ∈ D(Ω),
then

〈Lf, ϕ〉 = 〈f, tLϕ〉

=

ˆ
K

f(x) tLϕ(x) dx

= lim
j→∞

ˆ
K

fj(x) tLϕ(x) dx

= lim
j→∞

ˆ
K

Lfj(x)ϕ(x) dx

= 〈g, ϕ〉 .
If L is hypoelliptic and f ∈ V ν(K), then f itself is C∞ on Ω. But it is supported on K, so that

f ∈ D(K). The inclusion D(K) ⊆ V ν(K) is obvious. �

Theorem 3.1.3. Let L be hypoelliptic in Ω. Given x ∈ Ω and k ∈ N, there are a compact neighborhood
Uk of x in Ω and k′ ∈ N such that, for every f ∈ D(Uk),

‖f‖k ≤ Ck‖Lf‖k′ .

Proof. We can assume that k ≥ 1. If K is a compact neighborhood of x, the identity map

i : D(K) −→ V k−1(K)

is obviously continuous and, by Lemma 3.1.2, is onto. By the open mapping theorem1 i is a homeomorphism.
It follows that the inclusion

j : V k−1(K) −→ Dk(K)

is continuous. Hence there are k′ ∈ N and C > 0 such that

‖f‖k ≤ Ck
(
‖f‖k−1 + ‖Lf‖k′

)
for every f ∈ D(K). Let Uk ⊂ K be a ball centered at x with radius r < 1/4Ck. By Lemma 3.1.1, if
f ∈ D(Uk),

Ck‖f‖k−1 <
1

2
‖f‖k ,

so that

‖f‖k ≤ 2Ck‖Lf‖k′ . �

Corollary 3.1.4. If L, x and Uk are as in Theorem 3.1.3, then L is injective on D(Uk).

As a direct consequence of Theorem 3.1.3, we prove a result concerning local solvability of tL.

Definition. Let L be a linear differential operator with smooth coefficients on Ω. We say that L is
locally solvable at x ∈ Ω if, for every k, x has an open neighborhood Vk such that, for every distribution
ψ ∈ D′k(Ω), there is a distribution u ∈ D′(V ) such that Lu = ψ on Vk.

1For the validity of the open mapping theorem for continuous linear maps between Fréchet spaces, see Trèves, Topological
Vector Spaces, Distributions and Kernels.
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Theorem 3.1.5. Let L be hypoelliptic in Ω. Then tL is locally solvable at every point of Ω.

Proof. Given x ∈ Ω, let U0 be a compact neighborhood of x. Given ψ ∈ D′(Ω), there are k ∈ N and
C > 0 such that ∣∣〈ψ, f〉∣∣ ≤ C‖f‖k
for every f ∈ D(U0). Let U = Uk be as in Theorem 1.3. We can assume that U ⊂ U0.

Let
X =

{
Lg : g ∈ D(U)

}
⊆ D(U) .

Define the linear functional λ : X → C as

λ(Lg) = 〈ψ, g〉 .
This is a good definition by Corollary 3.1.4. By Theorem 3.1.3,∣∣λ(Lg)

∣∣ ≤ C‖g‖k ≤ C ′‖Lg‖k′ .
By the Hahn-Banach theorem, λ extends to a continuous linear functional λ̃ on Dk′(U). If V =

◦→ U and

g ∈ D(V ), there is a distribution u on V , of order k′, such that λ̃(f) = 〈u, f〉 for f ∈ D(V ); in particular

〈u, Lg〉 = λ(Lg) = 〈ψ, g〉 ,
for every g ∈ D(V ). This means that tLu = ψ on V . �

2. Convolution on nilpotent groups

Let G be a connected and simply connected nilpotent Lie group.
We may regard G as its Lie algebra g with the product xy = S(x, y). Hence the spaces D(G) and S(G)

of test functions on G are well defined, as well as their dual spaces D′(G) and S ′(G) of distributions and
tempered distributions respectively.

We fix a Lebesgue measure dx on g, which also serves as a Haar measure on G. The spaces Lp(G) are
referred to this measure.

The convolution of two functions f, g on G is given by

(3.2.1) f ∗ g(x) =

ˆ
G

f(xy−1)g(y) dy =

ˆ
G

f(y)g(y−1x) dy .

In general, if G is non-commutative, f ∗ g 6= g ∗ f .
We state without proof some basic facts2.

Theorem 3.2.1. The integral (3.2.1) is absolutely convergent for almost every x if f ∈ Lp(G), g ∈ Lq(G),
and 1/p+ 1/q ≥ 1. If these conditions are satisfied, and

(3.2.2)
1

r
=

1

p
+

1

q
− 1 ,

then f ∗ g ∈ Lr(G) (and continuous if r =∞) and the Young inequality holds:

(3.2.3) ‖f ∗ g‖r ≤ ‖f‖p‖g‖q .
If p, q ∈ (1,∞) are such that 1/p+ 1/q > 1, f ∈ Lp(G), and g satisfies the weak-Lq condition

(3.2.4) sup
s>0

sqm
({
x : |g(x)| > s

})
= ‖g‖qw−q <∞ ,

then f ∗ g ∈ Lr(G) with r as in (3.2.2), and the generalized Young inequalities hold:

(3.2.5) ‖f ∗ g‖r ≤ ‖f‖p‖g‖w−q , ‖g ∗ f‖r ≤ ‖f‖p‖g‖w−q .

Concerning smoothness properties of convolutions, we give the following statement.

2The proofs are almost the same as in Rn. One can find them in any good textbook on distribution theory.
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Proposition 3.2.2. If f, g ∈ D(G), then f ∗ g ∈ D(G), and the map (f, g) 7−→ f ∗ g is continuous from
D(G)×D(G) to D(G). The same statement remains true if we replace D(G) by S(G).

If Φ ∈ D′(G) and f ∈ D(G), one defines3

(3.2.6)
Φ ∗ f(x) = 〈Φ, Lxf̌〉 ,
f ∗ Φ(x) = 〈Φ, Rx−1 f̌〉 .

The same definitions make sense for Φ ∈ S ′(G) and f ∈ S(G).

Theorem 3.2.3. If Φ ∈ D′(G) and f ∈ D(G), then Φ∗f and f ∗Φ are C∞ functions on G. If Φ ∈ S ′(G)
and f ∈ S(G), they are C∞ functions with polynomial growth, together with all their derivatives.

The rule
supp (f ∗ g) ⊆ (supp f)(supp g)

is respected also by convolution between a function and a distribution.
Relevant identities are:

(i) δa ∗ f = Laf , f ∗ δa = Ra−1f for every a ∈ G; in fact,

δa ∗ f(x) = 〈δa, Lxf̌〉 = Lxf̌(a) = f(a−1x) = Laf(x) ,

and similarly for the other identity.
(ii) f ∗ (∂uδ0) = Xuf , where u ∈ g(= T0G) and Xu is the corresponding left-invariant vector field. In fact,

f ∗ (∂uδ0)(x) = 〈∂uδ0, Rx−1 f̌〉 = −∂u(Rx−1 f̌)(0)

= −∂u(Lx−1f )̌(0) = ∂u(Lx−1f)(0)

= Xuf(x) .

The convolution of two distributions is not always defined. However, if Φ,Ψ ∈ D′(G) and one of them,
say Φ, has compact support, then one can set, for f ∈ D(G),

(3.2.7)
〈Φ ∗Ψ, f〉 = 〈Ψ, Φ̌ ∗ f〉 ,
〈Ψ ∗ Φ, f〉 = 〈Ψ, f ∗ Φ̌〉 ,

where Φ̌ is the distribution such that
〈Φ̌, f〉 = 〈Φ, f̌〉 .

Then Φ ∗ Ψ and Ψ ∗ Φ are in D′(G). If Ψ ∈ S ′(G), then they are also in S ′(G). If any two of the
distributions Φ,Ψ,Λ have compact support, then the associative property holds:

(Φ ∗Ψ) ∗ Λ = Φ ∗ (Ψ ∗ Λ) .

For Φ ∈ D′(G), define LaΦ, RaΦ by

〈LaΦ, f〉 = 〈Φ, La−1f〉 , 〈RaΦ, f〉 = 〈Φ, Ra−1f〉 .
This definition is motivated by the fact that, by the invariance properties of the Lebesgue measure, for

any pair of test functions,

〈Laf, g〉 =

ˆ
G

f(a−1x)g(x) dx =

ˆ
G

f(x)g(ax) dx = 〈f, La−1g〉 ,

and similarly for right translations.

Proposition 3.2.4. LaΦ = δa ∗ Φ, RaΦ = Φ ∗ δa−1 .
If X is a left-invariant vector field and u = X0, then XΦ = Φ ∗ (∂uδ0) and the following identities hold:

(3.2.8) 〈XΦ, f〉 = −〈Φ, Xf〉 ,

(3.2.9) X(Φ ∗Ψ) = Φ ∗ (XΨ) ,

whenever the convolution is defined.

3As in Proposition 1.3.1 in Chapter 1, we set f̌(x) = f(x−1).
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Proof. The first statement follows immediately from (i) above.
By invariance of the Lebesgue measure, if f, g ∈ D(G), the integralˆ

G

f(xa)g(xa) dx

does not depend on a. Taking a = expG(tu) and differentiating at t = 0, we obtain thatˆ
G

(
Xf(x)g(x) + f(x)Xg(x)

)
dx = 0 ,

so that

〈Xf, g〉 = −〈f,Xg〉 ,
i.e.

(3.2.10) tX = −X .

By definition,

〈XΦ, f〉 = 〈Φ, tXf〉 = −〈Φ, Xf〉 .
Hence, by (ii) and (3.2.7),

〈XΦ, f〉 = −〈Φ, f ∗ (∂uδ0)〉
= −〈Φ ∗ (∂uδ0)̌, f〉
= 〈Φ ∗ (∂uδ0), f〉 .

This also proves (3.2.8), and (3.2.9) follows easily. �

Consider a convolution operator of the form

Tf = f ∗K ,

where the kernel K is a tempered distribution and f ∈ S(G). This satisfies the identity

T (Laf) = La(Tf)

for every a ∈ G, i.e. it commutes with left translations, or, otherwise said, it is a left-invariant operator. In
fact,

T (Laf) = (δa ∗ f) ∗K = δa ∗ (f ∗K) = La(Tf) .

The following theorem, that we shall not prove, says that the converse is also true, under very mild
hypotheses.

Theorem 3.2.5. Let T : D(G) → D′(G) (resp. T : S(G) → S ′(G) ) be a left-invariant operator. Then
there is K ∈ D′(G) (resp. K ∈ S ′(G) ) such that Tf = f ∗K.

3. Homogeneous distributions on homogeneous groups

Let G be a homogeneous group with dilations {Dt}t>0, homogeneous dimension Q, and Haar measure
dx.

If Φ is a distribution on G, we define Φ ◦Dt as the distribution such that for every test function f

(3.3.1) 〈Φ ◦Dt, f〉 = 〈Φ, t−Qf ◦Dt−1〉 .
This definition is justified by the fact that, if Φ is a locally integrable function ϕ, i.e.

〈Φ, f〉 =

ˆ
G

ϕ(x)f(x) dx ,

then ˆ
G

ϕ(Dtx)f(x) dx = t−Q
ˆ
G

ϕ(x)f(Dt−1x) dx .
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Definition. A distribution Φ on G is homogeneous of degree α ∈ C if

Φ ◦Dt = tαΦ

for every t > 0.

Examples 6.

3.3.a If | | is a homogeneous norm and <α > −Q, then Φ(x) = |x|α is a locally integrable distribution,
homogeneous of degree α.

3.3.b Let tλ1 , . . . , tλm be the eigenvalues of the dilations δt = (Dt)∗ on g, and denote by Wλj be the
corresponding eigenspaces. We fix a basis {e1, . . . , en} of g such that each ei belongs to one of the
Wλj .

Let Si(x, y) be the components of xy = S(x, y) with respect to this basis. If ei ∈ Wλj , then Si,
as a function on g × g, is homogeneous of degree λj . Since Si is a polynomial, this means that each
monomial appearing in it must have degree λj .

3.3.c The Dirac delta δ0 at the unit element is homogeneous of degree −Q.
3.3.d Let u ∈ Wλj (i.e. δt(u) = tλju for every t > 0), and let Xu be the corresponding left-invariant vector

field. If a distribution Φ is homogeneous of degree α, then XuΦ is homogeneous of degree α − λj . In
fact, using (2.2.4) in Chapter 2,

〈(XuΦ) ◦Dt, f〉 = t−Q〈XuΦ, f ◦Dt〉 = −t−Q〈Φ, Xu(f ◦Dt−1)〉

= −t−Q−λj 〈Φ, (Xuf) ◦Dt−1〉 = −t−λj 〈Φ ◦Dt, Xuf〉

= −tα−λj 〈Φ, Xuf〉

= tα−λj 〈XuΦ, f〉 .

Theorem 3.3.1. Let Tf = f ∗K be a left-invariant operator, with f ∈ S(G). Then

(3.3.2) T (f ◦Dt) = t−α(Tf) ◦Dt

if and only if K is homogeneous of degree −Q+ α.

Proof. Assume that K is homogeneous of degree −Q+ α. Then

T (f ◦Dt)(x) = 〈K,Rx−1(f ◦Dt)̌〉 .
But Rx−1(f ◦Dt)̌(y) = R(Dtx)−1 f̌(Dty), so that

T (f ◦Dt)(x) = 〈K, (R(Dtx)−1 f̌) ◦Dt〉
= t−Q〈K ◦Dt−1 , R(Dtx)−1 f̌〉
= t−α〈K,R(Dtx)−1 f̌〉
= t−α(Tf)(Dtx) .

Conversely, if T satisfies (3.3.2), then

〈K, f ◦Dt〉 = T (f̌ ◦Dt)(0) = t−α(T f̌)(0) = t−α〈K, f〉 ,
which means that K is homogeneous of degree −Q+ α. �

4. Left-invariant differential operators

Let G be a connected and simply connected nilpotent Lie group. For simplicity, we assume that G is its
own Lie algebra g with the product xy = S(x, y).

If X1, . . . , Xk are left-invariant vector fields on G, then L = X1X2 · · ·Xk is a left-invariant differential
operator on G, and such is any linear combination of compositions of this kind. We shall prove the converse
statement.
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We fix a basis (e1, . . . , en) of g, and denote by Xj be the left-invariant vector field such that (Xj)0 = ∂ej .
If α = (α1, . . . , αn) ∈ Nn, we set

Xα = Xα1
1 Xα2

2 · · ·Xαn
n .

Theorem 3.4.1. (Poincaré-Birkhoff-Witt)4 Let L be a left-invariant differential operator on G. Then L
can be written in one and only one way as

(3.4.1) L =
∑
|α|≤m

cαX
α .

Proof. Let (x1, . . . , xn) be the coordinates on g induced by the fixed basis. Then

Lf(0) =
∑
|α|≤m

aα∂
αf(0) .

The proof goes by induction on m. If m = 0, then Lf(0) = af(0) and

Lf(x) = Lx−1(Lf)(0) = L(Lx−1f)(0) = aLx−1f(0) = af(x) .

If m = 1,

Lf(0) =

n∑
j=1

aj∂xjf(0) + a0f(0) .

If L′ = L−
∑n
j=1 ajXj , then L′f(0) = a0f(0). Since L′ is also left-invariant, it follows that

L =

n∑
j=1

ajXj + a0 .

Assume that the statement is true for m− 1. We set

L′ = L−
∑
|α|=m

aαX
α .

Observe that for each j,

Xj = ∂xj +

n∑
k=1

bj,k(x)∂xk ,

where every bj,k vanishes at the origin. Therefore

Xαf(x) = ∂αf(x) + · · ·

where the other terms either vanish at 0 or are lower-order terms. Hence Xαf(0) = ∂αf(0)+ lower-order
derivatives of f at 0.

It follows that L′f(0) is a combination of derivaties of f at 0 of order not exceeding m− 1, and we can
use the inductive assumption.

The proof shows that the coefficients cα in (3.4.1) coincide with aα if |α| = m. By induction, the
representation (3.4.1) is unique. �

The uniqueness part of Theorem (3.4.1) depends heavily on the fact that the vector fields Xj have been
ordered and that this ordering is respected when composing the monomials Xα. If this restriction is removed,
then the same operator L can have more than one representation as in (3.4.1). If, for instance, X3 = [X1, X2]
and L = X2X1, its correct expression according to (3.4.1) is

L = X1X2 −X3 .

4Theorem (3.4.1) is valid on any Lie group, and the proof is essentially the same. The only reason for restricting to
nilpotent groups is that we can take advantage of a global coordinate system.
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5. Fundamental solutions

Let G be a connected and simply connected Lie group.

Definition. Let L be a left-invariant differential operator on G. A distribution K on G is called a
(global) fundamental solution of L if LK = δe. A distribution K0 on a neighborhood V of 0 is called a local
fundamental solution of L if LK0 = δ0 on V .

Lemma 3.5.1. If L has a global fundamental solution K, then for every ψ ∈ D′(G) with compact support
the convolution

u = ψ ∗K

satisfies Lu = ψ on all of G.
L has a local fundamental solution if and only if it is locally solvable at any point of G.

Proof. As to the first statement, it is sufficient to observe that, by (3.2.9),

L(ψ ∗K) = ψ ∗ (LK) = ψ .

If L is locally solvable at 0, by definition, there are a neighborhood V of 0 and K0 ∈ D′(V ) such that
LK0 = δ0 on V .

Assume now that L has a local fundamental solution K0 ∈ D(V ).
Take η ∈ D(V ) such that η(x) = 1 on a neighborhood V ′ of 0, and set K ′ = ηK0. If ϕ ∈ D(V ′),

〈LK ′, ϕ〉 = 〈K0, η
tLϕ〉 = 〈K0,

tLϕ〉 ,

because η is identically 1 on the support of Lϕ. Therefore

〈LK ′, ϕ〉 = 〈LK0, ϕ〉 = ϕ(0) ,

so that LK ′ = δ0 on V ′.
Observe that K ′ can be regarded as a distribution on G with compact support, because, for ϕ ∈ D(G)

we can set

〈K ′, ϕ〉 def→= 〈K0, ηϕ〉 ,

which makes sense since ηϕ ∈ D(V ). Then LK ′ is defined on all of G, and

(3.5.1) LK ′ = δ0 + Φ ,

where Φ is a distribution whose support does not intersect V ′.
Let now W be a neighborhood of 0 such that W−1W ⊂ V ′, and let η̃ ∈ D(W ) be equal to 1 on a

neighborhood W ′ of 0.
If now ψ ∈ D′(G), the convolution u = (η̃ψ) ∗K ′ is well defined by (3.2.7). By (3.2.9) and (3.5.1),

Lu = (η̃ψ) ∗ LK ′ = η̃ψ + (η̃ψ) ∗ Φ .

The last term is supported on W (G\V ′), and this set does not intersect W by the assumption W−1W ⊂
V ′. Therefore Lu = η̃ψ on W , hence Lu = ψ on W ′. �

Proposition 3.5.2. Let L be a left-invariant hypoelliptic operator on G. Then tL is also left-invariant
and it has a local fundamental solution.

Proof. The first statement follows easily from the definition of tL, and the second from Theorem 3.1.5.
�
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6. Global fundamental solutions of homogeneous hypoelliptic operators

Assume now that G is a homogeneous group. We say that a left-invariant differential operator L is
homogeneous of order µ if it satisfies (3.3.2) with α = µ, i.e. if

(3.6.1) L(f ◦Dt) = tµ(Lf) ◦Dt .

It follows from (2.2.4) that if X is a left-invariant vector field with Xe in some eigenspace Wλ of the
dilations, then X is homogeneous of order λ.

Let {X1, . . . , Xn} be a basis of g consisting of homogeneous vector fields, with orders λ1, . . . , λn, not
necessarily all different.

The operator
Xα = Xα1

1 Xα2
2 · · ·Xαn

n

is homogeneous of order

(3.6.2) d(α) =

n∑
j=1

αjλj .

The following statement is a direct consequence of the Poincaré-Birkhoff-Witt Theorem.

Proposition 3.6.1. A left-invariant differential operator L is homogeneous of order µ if and only if

L =
∑

d(α)=µ

cαX
α .

Example 1.

3.6.a On the Heisenberg group H1, let X,Y, T be the vector fields in (1.4.5). The operators X2 +Y 2, XY +T
and T are all homogeneous of order 2 with respect to the dilations Ds(x, y, t) = (sx, sy, s2t). The last
two ones are homogeneous of order 3 with respect to the dilations Ds(x, y, t) = (sx, s2y, s3t). The
operator X2 + Y 2 + T 2 cannot be homogeneous under any set of (automorphic) dilations.

Theorem 3.6.2. Let L be a left-invariant differential operator on G, homogeneous of order µ < Q,
where Q is the homogeneous dimension of G. Assume that L and tL are hypoelliptic. Then L has a global
fundamental solution, which is smooth away from the origin and homogeneous of degree −Q+ µ.

Proof. By Proposition 3.5.2, L has a local fundamental solution H, defined on some neighborhood V
of 0. Since L is hypoelliptic and LH = 0 on V \ {0}, then H is C∞ away from 0. As in the proof of Lemma
3.5.1, we take η ∈ D(V ) which is identically 1 in a neighborhood of 0, and set K1 = ηH. Then K1 is defined
on all of G, is smooth away from 0 and, as in (3.5.1),

LK1 = δ0 + Φ ,

where the support of Φ is compact and does not contain 0. Because of the smoothness of K1, Φ ∈ D(G).
If | | is a homogeneous norm on G, there are a, b > 0 such that

supp Φ ⊂ {x : a < |x| < b} .
We set

Kt = tµ−QK1 ◦Dt−1 , Φt = t−QΦ ◦Dt−1 .

By (3.6.1),
LKt = t−Q(LK1) ◦Dt−1 = δ0 + Φt ,

because δ0 is homogeneous of degree −Q. Now

supp Φt = Dt(supp Φ) ⊂ {x : ta < |x| < tb} ,
so that Kt is also a local fundamental solution of L. Observe that

lim
t→∞

Φt = 0 ,
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in the sense of distributions, so that, if we prove that limt→∞Kt = K exists in the sense of distributions,
then K will be a global fundamental solution. Furthermore, we will have

sQ−µK ◦Ds = lim
t→∞

sQ−µKt ◦Ds = lim
t→∞

Kt/s = K ,

showing that K is homogeneous of degree −Q+ µ.
For t > 1, we want to write

(3.6.3) Kt = K1 +

ˆ t

1

dKs

ds
ds ,

but we must first discuss that the integrand is a well defined distribution.
We begin with the derivative K ′1 of Ks at s = 1. If ϕ ∈ D(G),

lim
s→1

1

s− 1
〈Ks −K1, ϕ〉 = lim

s→1

1

s− 1
〈K1, s

µϕ ◦Ds − ϕ〉

=

〈
K1,

d

ds |s=1

(sµϕ ◦Ds)

〉
.

Let (x1, . . . , xn) be coordinates on G such that Dsx = (sλ1x1, . . . , s
λnxn). Then

d

ds |s=1

ϕ(Dsx) =

n∑
j=1

λjxj∂xjϕ(x) = Eϕ(x) ,

a modified Euler operator. Hence

d

ds |s=1

〈Ks, ϕ〉 = 〈K1, µϕ+ Eϕ〉 ,

i.e.

K ′1 = µK1 + tEK1 = (µ−Q)K1 − EK1 .

We next show that K ′1 ∈ D(G). We have

LK ′1 =
d

ds |s=1

(LKs)

=
d

ds |s=1

(δ0 + Φs)

= −QΦ− EΦ ,

which is a smooth function.
Since L is hypoelliptic, this implies that K ′1 is smooth on G. Clearly, K ′1 has compact support.
At this point, at any s > 1,

dKs

ds
= s−1 d

du |u=1

Ksu

= s−1 d

du |u=1

sµ−QKu ◦Ds−1

= sµ−Q−1K ′1 ◦Ds−1 .

If ϕ ∈ D(G), ˆ t

1

〈sµ−Q−1K ′1 ◦Ds−1 , ϕ〉 ds =

ˆ t

1

sµ−Q−1

ˆ
G

K ′1(Ds−1x)ϕ(x) dx ds .

Since µ < Q, ˆ ∞
1

sµ−Q−1

ˆ
G

|K ′1(Ds−1x)||ϕ(x)| dx ds ≤ C‖ϕ‖1 ,

showing that the integral in (3.6.3) has a limit in the sense of distributions for t→∞.
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Finally, the smoothness of K away from 0 follows from the hypoellipticity of L, or otherwise, from the
fact that, for x 6= 0,

K(x) = K1(x) +

ˆ ∞
1

sµ−Q−1K ′1(Ds−1x) ds . �

Obviously, in the hypotheses of Theorem 3.6.2, also tL has a homogeneous global fundamental solution,
smooth away from the origin.

Corollary 3.6.3. The fundamental solution K of L constructed in the proof of Theorem 6.2 is its only
homogeneous fundamental solution.

Proof. Let H be a fundamental solution of L, homogeneous of degree α. For f ∈ D(G),

f ◦Dt =
(
L(f ∗H)

)
◦Dt

= t−µL
(
(f ∗H) ◦Dt

)
= tQ−µL

(
(f ◦Dt) ∗ tαH

)
= tQ−µ+αf ◦Dt ,

which implies that α = −Q+ µ.
Hence K − H is also homogeneous of degree −Q + µ < 0 and satisfies L(K − H) = 0. Since L is

hypoelliptic, K −H must be smooth also at the origin. Necessarily K −H = 0. �

7. Sub-Laplacians on stratified groups

The considerations developed in the last sections apply in particular to the case where G is a stratified
group and

(3.7.1) L =

k∑
j=1

X2
j ,

assuming that the Xj form a basis of the generating subspace W1 of g. The operator (3.7.1) is called a
sub-Laplacian on G.

Under the natural dilations on G as a stratified group, L is homogenous of order 2. By virtue of
Hörmander’s Theorem, L is hypoelliptic. By (3.2.10) tL = L, so that the assumptions of Theorem 3.6.2 are
satisfied.

If Q > 2, then L admits a unique fundamental solution K on G which is homogeneous of degree −Q+ 2.
In general, one does not have explicit formulas for K. A sporadic example of an explicit fundamental

solution on a non-abelian group can be given for the Heisenberg group. Before giving the construction, we
recall the abelian case, i.e. G = Rn.

The general sub-Laplacian is then an elliptic constant coefficient operator,

L =

k∑
j=1

∂2
vj =

∑
i,j

ai,j∂xi∂xj ,

where the vectors vj span Rn and hence the matrix (ai,j) is poditive definite. By a linear change of variables,
one reduces to the case where L = ∆ is the ordinary Laplacian. Since Q = n, we shall impose that n ≥ 3.

Lemma 3.7.1. The homogeneous fundamental solution of ∆ in dimension n ≥ 3 is

(3.7.2) K(x) =
c

|x|n−2
,

for some5 c < 0.

5The value of the constant can be computed explicitly, but we will not need it.
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Proof. The operator ∆ is invariant under rotations, i.e.

(∆f) ◦ ρ = ∆(f ◦ ρ)

for any orthogonal transformation ρ of Rn. This implies that if K is a fundamental solution of ∆, then also
K ◦ ρ is a fundamental solution. By Corollary 3.6.3, the unique homogeneous fundamental solution of ∆
must be a radial function, i.e.

K(x) =
c

|x|n−2
.

Clearly c 6= 0. Assume that c > 0 and let χ be the characteristic function of the unit ball. If u = χ ∗K,
it is clear that u assumes its maximum at x = 0. Since ∆u = χ, u is smooth for |x| 6= 1, and therefore
∂2
xju(0) ≤ 0 for every j. But this is in contradiction with the fact that ∆u(0) = χ(0) = 1. �

If n = 2, all the fundamental solutions of ∆ have the form

K(x) = c log |x|+ h(x) ,

where h is any harmonic function on R2 and c is a positive constant. This example shows that the hypothesis
that the order of the operator be smaller than Q in the statement of Theorem 3.6.2 cannot be removed.

Consider then the Heisenberg Lie algebra hn of Example 2.2.b and the corresponding connected and
simply connected Lie group Hn, i.e. R2n+1 with product

(x, y, t)(x′, y′, t′) =

(
x+ x′, y + y′, t+ t′ +

1

2
(x · y′ − x′ · y)

)
,

where x, y, x′, y′ ∈ Rn and · denotes the Euclidean inner product.
A basis of left-invariant vector fields is given by

Xj = ∂xj −
yj
2
∂t , Yj = ∂yj +

xj
2
∂t , T = ∂t ,

with 1 ≤ j ≤ n. The subspaces W1 = span {Xj , Yj : 1 ≤ j ≤ n} and W2 = RT give a stratification of hn and

L =

n∑
j=1

(X2
j + Y 2

j )

is a sub-Laplacian. Since the homogeneous dimension of Hn under the dilations associated to the given
stratification is Q = 2n+ 2, there is a fundamental solution of L homogeneous of degree −2n.

Theorem 3.7.2. Writing z = x+ iy ∈ Cn, the homogeneous fundamental solution of L is

K(z, t) = c
1(

|z|4 + 16t2
)n/2 ,

for some c < 0.

Proof. The explicit expression of L is

(3.7.3) L =

n∑
j=1

(
∂2
xj + ∂2

yj

)
+

n∑
j=1

(
xj∂yj − yj∂xj

)
∂t +

|x|2 + |y|2

4
∂2
t ,

where the terms xj∂yj − yj∂xj are the angular derivatives in the plane (xj , yj).
We shall exploit another invariance property of L, which is better expressed by introducing complex

coordinates zj = xj + iyj . The group law becomes

(z, t)(z′, t′) =
(
z + z′, t+ t′ − 1

2
=m(z|z′)

)
on Cn × R, where ( | ) is the Hermitian product

(z|z′) = z1z̄
′
1 + · · ·+ znz̄

′
n .
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If ρ is a unitary trasformation of Cn, i.e. a linear transformation preserving the Hermitian product, then
the map

ψρ(z, t) =
(
ρ(z), t

)
is a group automorphism.

In particular, this is true for
ψθ(z, t) = (eiθ1z1, . . . , e

iθnzn, t)

where θ = (θ1, . . . , θn) ∈ [0, 2π)n. Then

(Lf) ◦ ψθ = L(f ◦ ψθ) ,
just because each term in (3.7.3) satisfies the same identity.

Therefore, if K is the homogeneous fundamental solution, K ◦ ψθ = K for every θ. This implies that K
is radial in each variable zj , and the angular derivatives of K are zero. Hence, for (z, t) 6= (0, 0),

(3.7.4) LK = ∆zK +
|z|2

4
∂2
tK ,

where ∆z is the Laplacian in the x, y variables.
But then it is clear that

(LK) ◦ ψρ = L(K ◦ ψρ)
for every unitary transformation ρ.

Therefore, K ◦ ψρ = K for every ρ. This implies that K is radial in z, and we can write

(3.7.5) K(z, t) = H
( |z|2

4
, t
)
.

Then H(s, t) is a smooth function on the half-plane of R2 where s > 0, continuous for s ≥ 0 and
(s, t) 6= (0, 0), and homogeneous of degree −n with respect to the isotropic dilations δu(s, t) = (us, ut).

We want to express the condition LK(z, t) = 0 for (z, t) 6= (0, 0) in terms of H. By (3.7.4), we just have
to observe that

∆zH
( |z|2

4
, t
)

= 4

n∑
j=1

∂zj∂z̄jH
( |z|2

4
, t
)

=

n∑
j=1

∂zj

(
zj
∂H

∂s

( |z|2
4
, t
))

=
|z|2

4

∂2H

∂s2

( |z|2
4
, t
)

+ n
∂H

∂s

( |zj |2
4

, t
)
.

Hence

(3.7.6) s∂2
sH + n∂sH + s∂2

tH = 0 .

The first two terms correspond to the radial part of the Laplacian in n+ 1 dimensions. In fact, consider
on Rn+1 a radial function f(y) = g

(
|y|
)
, and set s = |y|. Then

∆f(y) = ∂2
sg
(
|y|
)

+
n

s
∂sg
(
|y|
)
.

This means that, if we define Ψ(y, t) = H
(
|y|, t

)
on Rn+2, then ∆Ψ = 0 for y 6= 0. Observe that Ψ is

continuous on Rn+2 \ {0}. By standard argument involving the mean value theorem, this implies that Ψ is
smooth on its whole domain and ∆Ψ = 0.

Since Ψ is homogeneous of degree −n, its Laplacian as a distribution is a homogeneous distribution of
degree −n − 2 supported at the origin. The only possibility is that ∆Ψ = αδ0. The constant α cannot be
zero, since otherwise Ψ would be smooth at the origin. By Lemma 3.7.1, there is a constant c such that

Ψ(y, t) =
c(

|y|2 + t2
)n/2 .

Hence H(s, t) = c(s2 + t2)−n/2, and K is as stated.



44 3. HOMOGENEOUS HYPOELLIPTIC OPERATORS ON HOMOGENEOUS GROUPS

As in the proof of Lemma 3.7.1, the fact that c < 0 can be proved by contradiction. Suppose c > 0, and
let χ be the characteristic function of the set B where |z|4 + 16t2 ≤ 1. Then u = χ ∗K is continuous on Hn

and smooth for |z|4 + 16t2 6= 1, since Lu = χ. �

8. The strong maximum principle

In this section we will present the strong maximum principle for an operator

L =

k∑
j=1

X2
j ,

where the Xj are smooth vector fields on a connected open set Ω ⊆ Rn forming a generating system6.
To begin with, we observe that the following weak form of the maximum principle holds.

Lemma 3.8.1. Let u be a function on Ω attaining a local maximum at a point x0. Then Lu(x0) ≤ 0.

Proof. If vj = Xj(x0), then

Xj = ∂vj +

n∑
k=1

aj,k(x)∂xk ,

with aj,k(x0) = 0. Therefore

(3.8.1) Lu(x0) =

k∑
j=1

∂2
vju(x0) + first-order terms =

k∑
j=1

∂2
vju(x0) ,

and this is non-positive because such are all pure second derivatives at a maximum point. �

The strong form we are interested in is the following.

Theorem 3.8.2. Assume that Lu ≥ 0 on Ω, and that u takes its maximum at a point x0 ∈ Ω. Then u
is constant.

The proof is based on a lemma, that we do not prove here, and whose statement requires a couple of
definitions.

Definition. Let F be a closed subset of Ω and let x0 ∈ F . We say that a vector v ∈ Rn is normal to
F at x0 if there is r > 0 such that the closed ball of radius r and center x0 + rv intersects F only at x0.

A vector w is said to be tangent to F at x0 it it is orthogonal to all normal vectors to F at x0.

Lemma 3.8.3. Let F be closed in Ω, and let X be a smooth vector field7. If X(x) is tangent to F for
every x ∈ F , then every integral curve of X intersecting F is entirely contained in F .

Proof of Theorem 3.8.2. Let F be the set where u attains its maximum. We claim that each of the
Xj is tangent to F at any of its points. If this is not true, there are x0 ∈ F and v be normal to F at x0,
such that Xj(x0) · v 6= 0. We set vj = Xj(x0).

Let y0 = x0 + rv and B = {x : |x− y0| ≤ r} be such that F ∩B = {x0}. The function

ϕ(x) = e−α|x−y0|2 − e−αr
2

6See, J.-M. Bony, Principe du maximum, inégalité de Harnack at unicité du problème de Cauchy pour les opérateurs
elliptiques dégénérés, Ann. Inst. Fourier Gren. 19 (1969), 277-304.

7Here it is sufficient that X be Lipschitz (see the reference above).
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is strictly positive on
◦→ B and negative outside. By (3.8.1),

Lϕ(x0) =

k∑
j=1

∂2
vjϕ(x0)

= e−αr
2

k∑
j=1

(
4α2

(
(x0 − y0) · vj

)2 − 2α|vj |2
)

= e−αr
2

(
4α2r2

k∑
j=1

(v · vj)2 − 2α

k∑
j=1

|vj |2
)
.

Since the coefficient of α2 is strictly positive, we can take α large enough so that Lϕ > 0 in a closed
neighborhood U of x0.

For λ > 0, consider the function ũ = u + λϕ on U . Then Lũ > 0. By a compactness argument,
we can find λ small enough so that ũ < u(x0) on the part of the boundary of U intersecting B. Clearly,
ũ < u ≤ u(x0) on the remaining part of the boundary of U . Hence ũ attains a maximum in the interior of
U , but this is in contradiction with Lemma 3.8.1.

By Lemma 3.8.3, the integral curves of the vector fields Xj intersecting F are all contained in F . It
follows from Proposition 1.5.4 that, if x ∈ F , then F contains a full neighborhood of x. Hence F is both
closed and open. �

This fact has a series of consequences for sub-Laplacians on stratified groups.

Corollary 3.8.4. Let L be a sub-Laplacian on a stratified group G, and let K be its homogeneous
fundamental solution. Then

(i) If f ∈ D(G), then (Lf) ∗K = f ;
(ii) K = Ǩ;
(iii) K(x) < 0 for every x 6= 0.

Proof. The function g = (Lf) ∗K tends to zero at infinity. In fact, assume that the support of f , and
hence of Lf , is contained on the set where |x| < r, w.r. to some homogeneous norm. Then

|g(x)| ≤
ˆ
|y|<r

∣∣K(y−1x)
∣∣ dy ≤ C ˆ

|y|<r
|y−1x|−Q+2 dy .

Let c > 0 be the constant in the triangular inequality for the norm. Then

|x| ≤ c
(
|y|+ |y−1x|

)
,

so that, if |x| > 2cr and |y| < r,

|y−1x| ≥ 1

c
|x| − |y| > 1

2c
|x| .

Hence, if |x| > 2cr, |g(x)| < Cr|x|−Q+2.
Consider the function h = f − g. It tends to zero at infinity and

Lh = Lf − (Lf) ∗ (LK) = 0 .

By Theorem 3.8.2 it must be zero. This proves (i).
In order to prove (ii), take f, g ∈ D(G). Then, using (i),

〈f, g〉 = 〈(Lf) ∗K, g〉
= 〈Lf, g ∗ Ǩ〉
= 〈f, L(g ∗ Ǩ)〉 .

This shows that L(g∗Ǩ) = g for every g ∈ D(G), i.e. LǨ = δ0. Hence Ǩ is a homogeneous fundamental
solution of L. By Corollary 3.6.3, Ǩ = K.
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To prove (iii), we first show that K(x) ≤ 0 for all x 6= 0. Suppose K(x0) > 0, and let U be a symmetric
neighborhood of the origin such that K(x) > 0 for every x ∈ Ux0. Let ϕ ≥ 0 be a non-trivial smooth
function supported in U . Then

ϕ ∗K(x0) =

ˆ
U

ϕ(y)K(y−1x0) dy > 0 .

Since ϕ∗K(x) tends to zero at infinity, it would attain a maximum at some point. But L(ϕ∗K) = ϕ ≥ 0
on all of G, so it would be constant, in fact identically equal to zero, and this is a contradiction.

If we had now K(x0) = 0 for some x0 6= 0, it would be a maximum of K on Ω = G \ {0}. Hence K
would be identically zero, which is again a contradiction. �



CHAPTER 4

Sub-elliptic estimates for homogeneous hypoelliptic operators
on homogeneous groups

1. Lp-norm inequalities for convolutions with homogeneous distributions

Let G be a nilpotent Lie group, K a distribution on G, and T the operator Tf = f ∗K. Initially, T is
defined only on D(G) and takes values into the space of C∞ functions on G.

Assume we know that, for every f ∈ D(G), Tf ∈ Lq(G) for some q ∈ [1,∞], and that there is p ∈ [1,∞)
such that

(4.1.1) ‖Tf‖q ≤ C‖f‖p
for some C > 0. Then T extends by continuity to a continuous operator from Lp(G) to Lq(G).

The next statement says that only the case p ≤ q is interesting.

Proposition 4.1.1. Assume that (4.1.1) holds for every f ∈ D(G), and that p > q. Then T = 0, i.e.
K = 0.

The proof is based on the following lemma.

Lemma 4.1.2. Let f ∈ Lp(G), with 1 ≤ p <∞. Then

lim
x→∞

‖f − Lxf‖p = 21/p‖f‖p .

Proof. Assume first that f is continuous with compact support, and let E be its support. For x ∈ G,
Lxf is supported on xE. Therefore, if x 6∈ EE−1, f and Lxf have disjoint supports, and

‖f − Lxf‖p =

(ˆ
E

|f(y)|p dy +

ˆ
xE

|f(x−1y)|p dy
)1/p

= 21/p‖f‖p .

Given now a generic f ∈ Lp(G) and ε > 0, there is fε, continuous with compact support Eε, such that
‖f − fε‖p < ε. For x 6∈ EεE−1

ε ,∣∣‖f − Lxf‖p − 21/p‖f‖p
∣∣ ≤ ∣∣‖f − Lxf‖p − 21/p‖fε‖p

∣∣+ 21/p
∣∣‖fε‖p − ‖f‖p∣∣

≤
∣∣‖f − Lxf‖p − ‖fε − Lxfε‖p∣∣+ 21/p‖fε − f‖p

≤ ‖f − Lxf − fε + Lxfε‖p + 21/pε

≤ ‖f − fε‖p + ‖Lxf − Lxfε‖p + 21/pε

≤ (2 + 21/p)ε . �

Proof. Proof of Proposition 4.1.1 Since T ◦ Lx = Lx ◦ T , it follows that

‖LxTf − Tf‖q = ‖T (Lxf − f)‖q ≤ ‖T‖‖Lxf − f‖p
47
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For every f ∈ D(G) and x ∈ G. In our hypotheses, both p and q are finite, so that, letting x go to
infinity on both sides, we obtain that

21/q‖Tf‖q ≤ ‖T‖21/p‖f‖p .
But then ‖T‖ ≤ 21/p−1/q‖T‖. But 21/p−1/q < 1, hence T = 0. �

Assume now that G is homogeneous, and K is homogeneous of degree −Q+α. We know from Theorem
4.1 that

(4.1.2) T (f ◦Dt) = t−α(Tf) ◦Dt ,

for f ∈ D(G).

Proposition 4.1.3. Assume that T satisfies (4.1.1) and (4.1.2) for every f ∈ D(G). Then

1

p
− 1

q
=
<eα

Q
.

Proof. This depends on the fact that

‖f ◦Dt‖p = t−
Q
p ‖f‖p .

If T = 0, there is nothing to prove. Assume therefore that T 6= 0. By (4.1.2),

t−
Q
q ‖Tf‖q ≤ t−<eα−Qp ‖T‖‖f‖p ,

hence
‖T‖ ≤ t−<eα−Qp +Q

q ‖T‖ ,
for every t. Since ‖T‖ > 0, this forces the exponent of t to be zero. �

We will be concerned only with real values of α.
Combining together Proposition 4.1.1 and Proposition 4.1.3, we see that it makes sense to restrict one’s

attention to the values of α with 0 ≤ α ≤ Q.
The case α = 0 is the most delicate and we leave it aside for the moment. We shall discuss instead the

case 0 < α < Q, assuming that K coincides with a continuous function away from the origin1.

Theorem 4.1.4. Let K be a distribution homogeneous of degree −Q+α, with 0 < α < Q and continuous
away from the origin. Then K is a locally integrable function, satisfying the inequality

(4.1.3) |K(x)| ≤ C

|x|Q−α

for some constant C > 0.
If 1 < p < q <∞, and (1/p)− (1/q) = α/n, then T is bounded from Lp(G) to Lq(G).

Proof. Let K0 be the function detrmined by K on G \ {0}. Then K0 is obviously homogeneous of
degree −Q+ α, and it follows easily that it satisfies (4.1.3). Hence it is locally integrable on G, and defines
a distribution on G.

Consider therefore K ′ = K −K0. This is a distribution supported at the origin, also homogeneous of
degree −Q+ α. Due to the compact support of K ′,

∣∣〈K ′, f〉∣∣ is controlled by some Ck norm of f on a fixed
small neighborhood of the origin. But, because of its homogeneity,

〈K ′, f〉 = tα〈K ′, f ◦Dt〉 .
Letting t tend to 0, the Ck norms of f ◦ Dt remain bounded, so that 〈K ′, f〉 = 0. This shows that

K = K0.
For the second part, in view of Theorem 3.2.1, it is sufficient to prove that K satisfies (4.2.4) there, with

q = Q
Q−α . But, if s > 0 and |K(x)| > s, then |x| < s−

1
Q−α , and the volume of the ball with this radius has

volume equal to a constant times s−
Q

Q−α . �

1If α = Q, (4.1.1) can only hold for p = 1 and q =∞. If K is continuous and homogeneous of degree 0, then it is bounded
and (4.1.1) is easily verified.
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Theorem 4.1.4 has interesting applications to homogeneous hypoelliptic operators. Hypoellipticity means
that regularity of Lf on some open set implies regularity of f on the same set. The definition involves C∞-
regularity, but one can measure different degrees of “regularity” considering different scales of function
spaces.

For instance, Sobolev spaces take into account the order of differentiability in L2, Lipschitz-Hölder spaces
describe the continuity properties, and Lp spaces the order of integrability.

We give results concerning Lebesgue spaces. This type of estimates are called sub-elliptic estimates.

Corollary 4.1.5. Suppose that L is a homogeneous operator of homogeneous order µ < Q, with both L
and tL hypoelliptic. Let {X1, . . . , Xn} be a basis of g consisting of homogeneous vector fields. In the notation
of Section 6 of Chapter 2, let

Xα = Xα1
1 · · ·Xαn

n

be homogeneous of order d(α), with 0 ≤ d(α) < µ.

If p < Q
µ−d(α) , and

1

p
− 1

q
=
µ− d(α)

Q
,

given f ∈ D′(G) with compact support,

Lf ∈ Lp(G) =⇒ Xαf ∈ Lq(G) .

If L =
∑
j X

2
j is a homogeneous sub-Laplacian on a stratified group, under the same conditions on p and

q, corresponding to µ = 2 and d(α) = 0, 1, we alos have the estimate

‖Xαf‖r ≤ C‖Lf‖p ,
for some C > 0 independent of f .

Proof. Let K be the homogeneous fundamental solution of L. The distribution XαK is then homoge-
neous of degree −Q+µ−d(α) and sommoth away from the origin. By Theorem 1.4, (Lf)∗ (XαK) ∈ Lq(G).

Take g = f − (Lf) ∗K. Since Lg = Lf − Lf = 0, g is a C∞ function. Hence

Xαf = Xαg + (Lf) ∗ (XαK)

is locally in Lq. But it has compact support, so it is in Lq(G).
If L is a sub-Laplacian, we can use Corollary 3.8.4 to say that f = (Lf) ∗K. Hence

Xαf = (Lf) ∗ (XαK) ,

and the conclusion follows again from Theorem 4.1.4. �

The second result is a refinement of the previous one, of a local nature.

Corollary 4.1.6. In the hypotheses of Corollary 4.1.5, assume that u ∈ D′(G) and Lu coincides with

an Lploc function on some open set Ω, with p < Q
µ−d(α) . Then Xαu ∈ Lqloc(Ω), with

1

p
− 1

q
=
µ− d(α)

Q
.

The proof requires a preliminary lemma.

Lemma 4.1.7. Let Φ be a distribution on G which coincides with a smooth function away from the origin,
and let Ψ be a distribution with compact support. Then Ψ ∗ Φ is smooth away from the support of Ψ.

Proof. The assumption on Φ is that there is a smooth function Φ(x) on G \ {0} such that

〈Φ, f〉 =

ˆ
Φ(x)f(x) dx

whenever f ∈ D(G) and 0 6∈ supp f .
Let now E be a compact set disjoint from F = supp Ψ. Since 0 6∈ F−1E, we can take η ∈ D(G) equal to

1 on a neighborhood U of F−1E and equal to 0 on a neighborhood of 0.
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If g ∈ D(E), then Ψ̌ ∗ g ∈ D(G) and its support is contained in F−1E. Hence

〈Ψ ∗ Φ, g〉 = 〈Φ, Ψ̌ ∗ g〉

=

ˆ
Φ(x)Ψ̌ ∗ g(x) dx

=

ˆ
Φ(x)η(x)Ψ̌ ∗ g(x) dx

= 〈Ψ ∗ (ηΦ), g〉 .

Therefore Ψ ∗ Φ and Ψ ∗ (ηΦ) coincide on
◦→ E. Since ηΦ ∈ D(G), also Ψ ∗ (ηΦ) ∈ D(G). Hence Ψ ∗ Φ

is C∞ on
◦→ E. �

Proof of Corollary 4.1.6. Fix x0 ∈ Ω, and let ϕ ∈ D(G) be supported in Ω and equal to 1 on
a neighborhood V of x0. If we prove that Xα(ϕu) ∈ Lq(W ) for some sub-neighborhood W of V , then
Xαu ∈ Lq(W ). Because Xα(ϕu) = L(ϕu) ∗ (XαK) plus a smooth function, it is sufficient to prove that
L(ϕu) ∗ (XαK) ∈ Lq(V ).

Applying Leibniz’s rule, one sees that L(ϕu) = ϕLu plus terms containing derivatives of ϕ. Therefore,
all these other terms are zero on V , so that

L(ϕu) = ϕLu+ Ψ ,

where Ψ is a distribution with compact support contained in G \ V .
Then

(4.1.4)
(
L(ϕu)

)
∗ (XαK) = (ϕLu) ∗ (XαK) + Ψ ∗ (XαK) ,

where K is the homogeneous fundamental solution of L. Since ϕLu ∈ Lp(G), it follows from Theorem 1.4
that (ϕLu) ∗ (XαK) ∈ Lq(G).

By Lemma 4.1.7, Ψ ∗ (XαK) is smooth on V . Hence, if W is a neighborhood of x0 with W̄ ⊂ V , we
conclude that L(ϕu) ∗ (XαK) ∈ Lq(W ). �

2. Principal value distributions

In Corollaries 4.1.5 and 4.1.6 we estimated Lr norms of “derivatives” Xαu in terms of Lp norms of Lu,
under the assumption that d(α) be smaller than µ, the homogeneous order of L. This was mainly a technical
restriction, beacuse we wanted the derivative XαK of the homogeneous fundamental solution of L to be
locally integrable.

It is possible, however, to extend the scope of Corollaries 4.1.5 and 4.1.6 so to include also the limiting
case d(α) = µ. In this case the distribution XαK is homogeneous of degree −Q and must be handled with
special attention. It is one of the situations where the notions of “function” and of “distribution” tend to
diverge and confusion between the two may lead to wrong or contradictory statements.

Consider a function K(x), smooth2 on G \ {0} and homogeneous of degree −Q . The question we pose

concerns the existence of a distribution on G, that we temporarily denote by K̃, such that

(4.2.1) 〈K̃, f〉 =

ˆ
K(x)f(x) dx ,

whenever 0 6∈ supp f and f ∈ D(G). An equivalent way of stating the question is the following. The function
K defines a distribution on G \ {0} (i.e. a linear functional on D(G \ {0}) ) by ordinary integration. Can
this functional be extended to D(G) as a homogeneous distribution?

One first remark is that, if such an extension exists, it is not unique. The reason is that the Dirac delta
δ0 at the origin is homogeneous of degree −Q, so that if K̃ is a distribution satisfying (4.2.1) when 0 is not

in the support of f , the same is true for K̃ + cδ0 for any constant c.

2Smoothness is not a necessary requirement. Local integrability away from the origin would be sufficient at this stage.
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The other remark is that the answer is negative in general. A simple example is given by the function
K(x) = 1/|x|Q, defined in terms of some fixed homogeneous norm on G. Assume that K̃ exists. Homogeneity
of degree −Q means that

〈K̃, f ◦Dt〉 = 〈K̃, f〉 ,

for every t > 0 and every f . Take f ∈ D(G), with 0 ≤ f(x) ≤ 1, identically equal to 1 on a neighborhood U
of the origin, and supported on D2U . Then f − f ◦D2 ≥ 0, is not identically zero, and it is supported on
D2U \D1/2U . Hence

〈K̃, f − f ◦D2〉 =

ˆ
f(x)− f(D2x)

|x|Q
dx > 0 ,

in contrast with the fact that

〈K̃, f − f ◦D2〉 = 〈K̃, f〉 − 〈K̃, f ◦D2〉 = 0 .

In order to specify the conditions under which the answer to our question is positive, we must first
present a “polar decomposition” of the Lebesgue measure”.

Lemma 4.2.1. Let | | be a homogeneous norm on G, and let S be the unit sphere. There is a positive
Borel measure σ on S such thatˆ

G

f(x) dx =

ˆ ∞
0

ˆ
S

f
(
Dt(x)

)
dσ(x) tQ−1 dt ,

for every integrable function f .

Proof. If E is a Borel subset of S, let

E] = {Dt(x) : x ∈ E , t ≤ 1} ,

and define

σ(E) = Qm(E]) .

For 0 < a < b, let

Ea,b = {Dt(x) : x ∈ E , a < t ≤ b} = Db(E
]) \Da(E]) .

Then

m(Ea,b) =
bQ − aQ

Q
σ(E) =

ˆ
E×[a,b]

tQ−1dt dσ .

Standard measure-theoretic arguments give the conclusion. �

If K(x) is a homogeneous function of degree −Q, locally integrable away from the origin, we can then
talk of its mean value on S. We show that its value does not depend on S (i.e. on the fixed homogeneous
norm).

Lemma 4.2.2. Let K(x) is a homogeneous function of degree −Q, locally integrable away from the origin.
The integral

(4.2.2)

ˆ
S

K(x) dσ(x) = µ(K)

does not depend on the homogeneous norm.

Proof. It follows from Lemma 4.2.1 that, if 0 < a < b,ˆ
a<|x|<b

K(x) dx = log(b/a)µ(K) .
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Let | |′ be another homogeneous norm. By Proposition 2.5.1, there is r > 0 such that the ball B′r
centered at the origin and with radius r in the norm | |′ is contained in the unit ball B1 in the norm | |.
Then ˆ

B2\B1

K(x) dx =

ˆ
B2\B′r

K(x) dx−
ˆ
B1\B′r

K(x) dx

=

ˆ
B2\B′2r

K(x) dx+

ˆ
B′2r\B′r

K(x) dx−
ˆ
B1\B′r

K(x) dx .

But, setting x = D2x
′, we see thatˆ

B2\B′2r
K(x) dx =

ˆ
B1\B′r

K(x) dx .

Hence ˆ
r<|x|′<2r

K(x) dx =

ˆ
1<|x|<2

K(x) dx ,

and this gives the conclusion. �

Proposition 4.2.3. Let K be a smooth homogeneous function of degree −Q on G \ {0}, and let | | be a
homogeneous norm on G. Then K extends to a homogeneous distribution on G if and only if µ(K) = 0.

The proof requires a preliminary lemma.

Lemma 4.2.4. Let | | be a homogeneous norm on G(= g), and ‖ ‖ a vector space norm on g. There is a
constant C > 0 such that

‖x‖ ≤ C|x|γ if |x| < 1 ,

where γ = minj λj.

Proof. Let Wλj be the eigenspaces of the dilations on g, with eigenvalues tλj . We can assume, without
loss of generality, that

|x| =
∑
j

‖xj‖1/λj ,

and that

‖x‖ =
∑
j

‖xj‖ ,

if xj denotes the component on x in Wλj . If |x| < 1, then ‖xj‖ < 1 for every j. Hence

‖x‖ <
∑
j

‖xj‖γ/λj ≤ C
(∑

j

‖xj‖1/λj
)γ

= |x|γ ,

as required. �

Proof of Proposition 4.2.3. If f ∈ D(G), we claim that the limit

lim
ε→0

ˆ
|x|>ε

K(x)f(x) dx

exists and is finite. We check the Cauchy condition for 0 < ε < ε′:∣∣∣∣ˆ
|x|>ε

K(x)f(x) dx−
ˆ
|x|>ε′

K(x)f(x) dx

∣∣∣∣ =

∣∣∣∣ ˆ
ε<|x|<ε′

K(x)f(x) dx

∣∣∣∣
=

∣∣∣∣ ˆ
ε<|x|<ε′

K(x)
(
f(x)− f(0)

)
dx

∣∣∣∣
≤
ˆ
ε<|x|<ε′

|K(x)|
∣∣f(x)− f(0)

∣∣ dx .
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The mean value theorem implies that∣∣f(x)− f(0)
∣∣ ≤ ‖∇f‖∞‖x‖ ,

which implies, for |x| < 1, that ∣∣f(x)− f(0)
∣∣ ≤ C‖∇f‖∞|x|γ .

Hence, if ε′ < 1,

(4.2.3)

∣∣∣∣ ˆ
|x|>ε

K(x)f(x) dx−
ˆ
|x|>ε′

K(x)f(x) dx

∣∣∣∣
≤ C‖∇f‖∞

ˆ
ε<|x|<ε′

|x|−Q+γ dx

≤ C‖∇f‖∞ε′
γ
.

This implies the Cauchy condition.
We can then define, for f ∈ D(G),

(4.2.4) 〈K̃, f〉 = lim
ε→0

ˆ
|x|>ε

K(x)f(x) dx .

This is clearly a linear functional. We must prove that it is continuous. Restricting to f ∈ D(E), with
E compact in G, we have, by (4.2.3),∣∣∣∣ˆ

|x|>ε
K(x)f(x) dx

∣∣∣∣ ≤ ∣∣∣∣ ˆ
ε<|x|<1

K(x)f(x) dx

∣∣∣∣+

∣∣∣∣ˆ
|x|>1

K(x)f(x) dx

∣∣∣∣
≤ C‖∇f‖∞ + C

ˆ
|x|>1 , x∈E

|f(x)| dx

≤ C(E)‖f‖C1 .

To prove the “only if” part, assume that a function K, with µ(K) 6= 0, extends to a homogeneous

distribution K̃. We can decompose K as

K(x) = K0(x) +
µ(K)

σ(S)
|x|−Q ,

where µ(K0) = 0. Since also K0 extends to a homogeneous distribution, the same would be true for |x|−Q,
in contradiction with our previous remark. �

Remark. Even though the condition µ(K) = 0 is independent of the homogeous norm, the distribution
defined in (4.2.4) depends on the particular norm. As an example, consider the function

K(reiθ) =
cos 4θ

r2

on R2(= C), the dilationDt being scalar multiplication by t. Take |x+iy| = (x2+y2)1/2 and |x+iy|′ = |x|+|y|.
Denoting by Bε and B′ε the balls of radius ε in the respective norms, we haveˆ

|x|′>ε
K(x)f(x) dx−

ˆ
|x|>ε

K(x)f(x) dx =

ˆ
Bε\B′ε

K(x)f(x) dx

=

ˆ
B1\B′1

K(x)f(εx) dx ,

which tends to

f(0)

ˆ
B1\B′1

K(x) dx .

Simple geometric considerations show that this integral is strictly negative. Therefore the two distrib-
utions defined by (4.2.4) in terms of the two norms differ by a non-zero multiple of δ0.
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The distribution (4.2.4) is called a principal value distribution, denoted by

p.v.K(x) .

Even though the notation is ambiguous unless a homogeneous norm is specified, this ambiguity is irrele-
vant for the purpose of discussing boundedness on Lp of the corresponding convolution operator. Observe in
fact that, by Proposition 4.1.3, we have to consider q = p. The Dirac delta produces the identity operator,
and its presence does not make any difference. The same harmless ambiguity is present in the following
statement.

Theorem 4.2.5. Let K be a distribution on G, homogeneous of degree −Q and smooth away from the
origin, and let K0 be the corresponding homogeneous function on G \ {0}. Then µ(K0) = 0 and

K = p.v.K0 + cδ0 .

Proof. By Proposition 4.2.3, µ(K0) = 0. Then H = K − p.v.K0 is also homogeneous of degree −Q
and supported at the origin. We adapt the proof of Theorem 4.1.4.

Take f ∈ D(G) with f(0) = 0. Due to the compact support of H,
∣∣〈H, f〉∣∣ is controlled by some Ck

norm of f on a fixed small neighborhood of the origin. But, because of its homogeneity,

〈H, f〉 = 〈H, f ◦Dt〉 .
If t tends to 0, the Ck norms of f ◦Dt tend to 0, so that 〈K, f〉 = 0.
Fix now ϕ ∈ D(G) with ϕ(0) = 1. If f is a general function in D(G),

〈H, f〉 = 〈H, f − f(0)ϕ〉+ f(0)〈H,ϕ〉 = f(0)〈H,ϕ〉 .
Hence H = 〈H,ϕ〉δ0. �

3. The almost orthogonality principle

For convolution operators by distributions homogeneous of degree −Q it makes sense to discuss bound-
edness from Lp(G) to itself. In this section and in the next one we will develop the tools that will allow
us to prove boundedness on L2 for principal value distributions that are smooth away from the origin and
homogeneous of degree −Q.

In this section we present the almost orthogonality principle for general linear operator on Hilbert spaces.

Let {Tk}k∈Z be a sequence of continuous linear operators from a Hilbert space H to itself, with

(4.3.1) ‖Tk‖ ≤ C ,

for every k. Let
Vk = (kerTk)⊥ , Wk = TkH ,

and assume that

(4.3.2) Vj ⊥ Vk , Wj ⊥Wk ,

for j 6= k.
Observe that the two conditions in (4.3.2) are respectively equivalent to

(4.3.3) T ∗j Tk = 0 , TjT
∗
k = 0 .

Let SN =
∑
|k|≤N Tk. For v ∈ H, calling Pk the orthogonal projection onto Vk, we have

‖SNv‖2 =

∥∥∥∥ ∑
|k|≤N

Tkv

∥∥∥∥2

=
∑
|k|≤N

‖Tkv‖2

=
∑
|k|≤N

‖TkPkv‖2 ≤ C
∑
|k|≤N

‖Pkv‖2

≤ C‖v‖2 ,
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because the Pkv are mutually orthogonal. Hence ‖SN‖ ≤ C, independently of the number of operators. The
same proof shows that {SNv} is a Cauchy sequence in H.

We then have proved the following “orthogonality principle”.

Proposition 4.3.1. Let {Tk} be a sequence of linear operators on H satisfying (4.3.1) and (4.3.2).
Then the series ∑

k∈Z
Tk

converges in the strong topology to an operator S satisfying ‖S‖ ≤ C.

Motivated by these considerations, we can formulate the almost orthogonality principle.

Theorem 4.3.2. Let {Tk}k∈Z be a sequence of bounded linear operators on H, and let a = {a(n)}n∈Z be
a summable sequence of positive numbers.

Assume that

(4.3.4) ‖T ∗j Tk‖1/2 ≤ a(j − k) , ‖TjT ∗k ‖1/2 ≤ a(j − k) ,

for every j, k. Then the series ∑
k∈Z

Tk

converges in the strong topology to an operator S satisfying ‖S‖ ≤ A = ‖a‖1.

Proof. We recall that, for any bounded linear operator T on H, ‖T ∗T‖ = ‖T‖2. The inequality

‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2

is obvious, and on the other hand, denoting the inner product in H by ( | ),

‖T ∗T‖ = sup
‖v‖≤1,‖w‖≤1

∣∣(T ∗Tv|w)
∣∣

= sup
‖v‖≤1,‖w‖≤1

∣∣(Tv|Tw)
∣∣

≥ sup
‖v‖≤1

(Tv|Tv)

= ‖T‖2 .

In particular,

‖Tk‖ = ‖T ∗kTk‖1/2 ≤ a(0) ≤ A .

Let U = S∗NSN . Since U = U∗, it follows that ‖U2‖ = ‖U‖2, and inductively, ‖U2m‖ = ‖U‖2m , i.e.

‖S∗NSN‖ =
∥∥(S∗NSN )2m

∥∥1/2m

.

Setting n = 2m, we have

(S∗NSN )n =
∑

−N≤i1,i2,...,i2n≤N

T ∗i1Ti2 · · ·T
∗
i2n−1

Ti2n .

Each summand can be majorized in two different ways:

‖T ∗i1Ti2 · · ·Ti2n‖ ≤ ‖T
∗
i1Ti2‖ · · · ‖T

∗
i2n−1

Ti2n‖
≤ a(i1 − i2)2a(i3 − i4)2 · · · a(i2n−1 − i2n)2

‖T ∗i1Ti2 · · ·Ti2n‖ ≤ ‖T
∗
i1‖‖Ti2T

∗
i3‖ · · · ‖Ti2n‖

≤ A2a(i2 − i3)2 · · · a(i2n−2 − i2n−1)2 .

Moltiplying side by side and extracting square roots, we obtain

‖T ∗i1Ti2 · · ·Ti2n‖ ≤ Aa(i1 − i2)a(i2 − i3) · · · a(i2n−1 − i2n) .
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Therefore, summing first over i1, then over i2, etc., we have

‖(S∗NSN )n‖ =
∑

−N≤i1,i2,...,i2n≤N

‖T ∗i1Ti2 · · ·Ti2n‖

≤ A
∑

−N≤i1,i2,...,i2n≤N

a(i1 − i2)a(i2 − i3) · · · a(i2n−1 − i2n)

≤ A2
∑

−N≤i2,...,i2n≤N

a(i2 − i3) · · · a(i2n−1 − i2n)

· · · · · ·

≤ A2n−1
∑

−N≤i2n−1,i2n≤N

a(i2n−1 − i2n)

≤ (2N + 1)A2n .

Hence
‖S∗NSN‖ ≤ (2N + 1)1/2mA2 .

Taking the limit for m→∞, we see that ‖S∗NSN‖ ≤ A2, i.e. ‖SN‖ ≤ A for every N .
We prove now that, for every v ∈ H, {SNv} is a Cauchy sequence. Assume first that v = T ∗j u for some

u ∈ H. If w ∈ H, and M < N ,∣∣((SN − SM )v|w
)∣∣ ≤ ∑

M+1≤|k|≤N

∣∣(TkT ∗j u|w)
∣∣

≤ ‖u‖‖w‖
∑

M+1≤|k|≤N

a(k − j)2

≤ A‖u‖‖w‖
∑

M+1≤|k|≤N

a(k − j) .

Hence, ∥∥(SN − SM )v
∥∥ ≤ A‖u‖ ∑

|k|≥M+1−|j|

a(k) ,

which can be made smaller than any ε > 0 by taking M large enough.
By linearity, {SNv} is a Cauchy sequence for every v ∈ H0 =

∑
j∈Z T

∗
j H. If we take now v ∈ H0, given

ε > 0 there is v′ ∈ H0 with ‖v − v′‖ < ε. Then∥∥(SN − SM )v
∥∥ ≤ ∥∥(SN − SM )v′

∥∥+ 2Aε ,

and this implies that {SNv} is again a Cauchy sequence.

Finally, every v ∈ H decomposes as v = v1 + v2, with v1 ∈ H0 and v2 ∈ H0
⊥

. But, for every j ∈ Z and
w ∈ H,

(Tjv2|w) = (v2|T ∗j w) = 0 ,

so that Tjv2 = 0. Hence SNv = SNv1 and the proof is complete. �

4. Convolution with principal value distributions

Let K be a distribution on G, homogeneous of degree −Q and smooth away from the origin. We are
interested in the convolution operator Tf = f ∗K.

We know from Section 2 that3 µ(K) = 0, and that, once we fix a homogeneous norm | | on G, the
distribution K equals

p.v.K(x) + cδ0

3With an abuse of notation, we use the same letter K to denote the distribution on G and the function on G \ {0}.
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for some constant c. We can then concentrate our attention on the first term, i.e. we will assume that
K = p.v.K(x).

Then, if f ∈ D(G),

Tf(x) = lim
ε→0

ˆ
|y|>ε

f(xy−1)K(y) dy .

If we set

Dk = {x : 2−k ≤ x ≤ 2−k+1} , Kk(x) = K(x)χDk(x) , Tkf = f ∗Kk ,

then

Tf =
∑
k∈Z

Tkf .

We shall show that the almost orthogonality principle applies to the Tk as operators on L2(G). But
before, we must establish a mean value theorem for homogeneous functions.

Even though this is not strictrly necessary, we assume that the homogeneous norm satisfies the triangular
inequality

|xy| ≤ |x|+ |y| .

Lemma 4.4.1. Let f be a C1 function on G \ {0}, homogenous of degree α ∈ R. There is a constant
A > 0 such that, if |y| < |x|/2, then ∣∣f(xy)− f(x)

∣∣ ≤ A|y|γ |x|α−γ ,
where γ = minj λj.

Proof. Take x with |x| = 1 and |y| < 1/2. The map y 7−→ f(xy) − f(x) is smooth, it vanishes for
y = 0, and depends smoothly on x. By the mean value theorem and compactness,∣∣f(xy)− f(x)

∣∣ ≤ C‖y‖ ,
where C is independent of x and ‖ ‖ is a vector space norm on g. By Lemma 4.2.4,∣∣f(xy)− f(x)

∣∣ ≤ A|y|γ .
For general x 6= 0, let t = |x| and x′ = Dt−1x. Then∣∣f(xy)− f(x)

∣∣ = tα
∣∣f(x′Dt−1y)− f(x′)

∣∣
≤ Atα|Dt−1y|γ

≤ A|x|α−γ |y|γ . �

Theorem 4.4.2. Let K be a distribution on G, homogeneous of degree −Q and smooth away from the
origin. Then the operator Tf = f ∗K is bounded on L2(G).

Proof. We prove that the Tk satisfy the hypotheses of Theorem 4.3.2. Since Kk ∈ L1(G) for every k,
each Tk is bounded on L2(G), and

(4.4.1)

‖Tk‖ ≤ ‖Kk‖1

=

ˆ
Dk

|K(x)| dx

=

ˆ
D0

|K(x)| dx

= ‖K0‖1 .

We shall now concentrate our attention on the first of the two conditions (4.3.4), the second admitting
an identical proof.
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In order to describe T ∗k , we consider that, for f, g ∈ D(G),

(T ∗k f |g) = (f |Tkg)

= 〈f, ḡ ∗ K̄k〉
= 〈f ∗ (K̄k )̌, ḡ〉 .

Hence, if

K∗k(x) = Kk(x−1) ,

we see that T ∗k f = f ∗K∗k . In order to prove the first condition (4.3.4), we observe that T ∗j Tkf = f ∗Kk ∗K∗j ,
so that

(4.4.2) ‖T ∗j Tk‖ ≤ ‖Kk ∗K∗j ‖1 ,

and we are led to estimate this L1 norm.
For |j − k| ≤ 1 we use Young’s inequality, i.e.

‖Kk ∗K∗j ‖1 ≤ ‖Kk‖1‖K∗j ‖1 = ‖K0‖21 ,
so that we can take a(0) = a(±1) = ‖K0‖1.

We consider now the case |j − k| ≥ 2. We show how to estimate ‖Kk ∗K∗j ‖1 when k − j ≥ 2, the other
estimates being quite similar. The proof is based on the following lemma. �

Lemma 4.4.3. Let ϕ,ψ be two integrable functions, and assume that

(i) suppϕ ⊂ B(0, r) and
´
G
ϕ(x) dx = 0;

(ii) there are constants C, δ > 0 such that, if |y| ≤ r,ˆ
G

∣∣ψ(y−1x)− ψ(x)
∣∣ dx ≤ C|y|δ .

Then ‖ϕ ∗ ψ‖1 ≤ Crδ‖ϕ‖1.

Proof. Since ϕ has integral zero,

ϕ ∗ ψ(x) =

ˆ
G

ϕ(y)ψ(y−1x) dy

=

ˆ
G

ϕ(y)
(
ψ(y−1x)− ψ(x)

)
dy .

Hence

‖ϕ ∗ ψ‖1 =

ˆ
G

∣∣∣∣ ˆ
G

ϕ(y)
(
ψ(y−1x)− ψ(x)

)
dy

∣∣∣∣ dx
≤
ˆ
|y|<r

|ϕ(y)|
ˆ
G

∣∣ψ(y−1x)− ψ(x)
∣∣ dx dy

≤ C
ˆ
|y|<r

|ϕ(y)||y|δ dy

≤ Crδ‖ϕ‖1 . �

�

We apply Lemma 4.4.3 to ϕ = Kk and ψ = K∗j . Condition (i) is satisfied with r = 2−k+1. In order to
verify (ii), we first take j = 0 and show that, for |y| < 1/2,

(4.4.3)

ˆ
G

∣∣K∗0 (y−1x)−K∗0 (x)
∣∣ dx ≤ B|y|δ ,

where δ = min{1, γ}, γ being as in Lemma 4.4.1.
We simplify the notation observing that, if we change x into x−1,ˆ

G

∣∣K∗0 (y−1x)−K∗0 (x)
∣∣ dx =

ˆ
G

∣∣K0(xy)−K0(x)
∣∣ dx .
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The integral is extended to D0 ∪ (D0y
−1), and we split it asˆ

D0∩(D0y−1)

∣∣K(xy)−K(x)
∣∣ dx+

ˆ
D0\(D0y−1)

∣∣K(x)
∣∣ dx

+

ˆ
(D0y−1)\D0

∣∣K(xy)| dx

=

ˆ
D0∩(D0y−1)

∣∣K(xy)−K(x)
∣∣ dx+ 2

ˆ
D0\(D0y−1)

∣∣K(x)
∣∣ dx .

For the first integral we apply Lemma 4.1 to obtainˆ
D0∩(D0y−1)

∣∣K(xy)−K(x)
∣∣ dx ≤ |y|γ ˆ

D0

|x|Q−γ dx

≤ C|y|γ .
For the second integral, observe that

D0 \ (D0y
−1) ⊆ {x : 1− |y| ≤ |x| ≤ 1} ,

so that ˆ
D0\(D0y−1)

∣∣K(x)
∣∣ dx ≤ C ˆ

1−|y|<|x|<1

|x|−Q dx

= C ′
ˆ 1

1−|y|

dt

t

≤ 2C ′|y| .
This proves (4.4.3). Going back to condition (ii), observe that, if y ∈ suppKk, then |D2jy| ≤ 2j−k+1 ≤

1/2. Then, changing variables and using the homogeneity of K,ˆ
G

∣∣K∗j (y−1x)−K∗j (x)
∣∣ dx =

ˆ
G

∣∣K∗0((D2jy)−1x
)
−K∗0 (x)

∣∣ dx
≤ B2jδ|y|δ .

Hence (ii) is verified with C = B2jδ. It follows from Lemma 4.4.3 that

‖Kk ∗K∗j ‖1 ≤ 2δB2−(k−j)δ‖Kk‖1 ≤ B′2−(k−j)δ .

Finally, taking a(n) = B′2−δ|n| if |n| ≥ 2, and the assumptions of Theorem 4.3.2 are satisfied.
We state without proof the following sharper result. Its proof requires an adaptation of the Calderón-

Zygmund theory of singular integrals, that we cannot present here4.

Theorem 4.4.4. Let K be a distribution on G, homogeneous of degree −Q and smooth away from the
origin. If 1 < p <∞, the operator Tf = f ∗K is bounded on Lp(G).

Using Theorem 4.4.4 instead of Theorem 4.1.4 in the proofs, we can then extend Corollaries 4.1.5 and
4.1.6.

Corollary 4.4.5. The conclusions in Corollaries 4.1.5 and 4.1.6 extend to d(α) = µ, r = p ∈ (1,∞).

4It can be found in E.M. Stein Harmonic Analysis.





CHAPTER 5

Proof of Hörmander’s theorem for sublaplacians

Ouraim is to prove Theorem 1.5.7 for sub-Laplacians (i.e., operators of the form L1). The proof is based
on a comparison between Sobolev and Lipschitz norms.

1. Lipschitz, Besov and Sobolev norms

Let 0 < α < 1. The p-Lipschitz norm of order α of a function f ∈ Lp(Rn) is defined as

(5.1.1) ‖f‖Λpα = ‖f‖p + sup
h 6=0
|h|−α‖τhf − f‖p ,

where we have set τhf(x) = f(x − h). The space Λpα(Rn) is defined as the subspace of those functions in
Lp(Rn) for which ‖f‖Λpα <∞.

Notice that, for every a > 0, one obtains an equivalent norm on Λpα(Rn) by replacing suph 6=0 with

sup0<|h|<a. This follows easily from the fact that, for |h| ≥ a, |h|−α‖τhf − f‖p ≤ 2a−α‖f‖p.

Proposition 5.1.1. The space Λ∞α consists of the bounded Hölder-continuous functions of order α.

Proof. It is quite clear that bounded Hölder-continuous functions of order α belong to Λ∞α (Rn). Sup-
pose therefore that f ∈ Λ∞α (Rn). If we prove that f is continuous, the rest follows easily.

Let ϕ be a continuous function supported on the unit ball and with
´
Rn ϕ = 1. The functions ϕε(x) =

ε−nϕ(ε−1x) form an approximate identity for ε→ 0. Since
´
Rn ϕε = 1,

f ∗ ϕε(x)− f(x) =

ˆ
Rn

(
f(x− y)− f(x)

)
ϕε(y) dy

=

ˆ
Rn

(
τyf(x)− f(x)

)
ϕε(y) dy ,

so that

‖f ∗ ϕε − f‖∞ ≤
ˆ
Rn
‖τyf − f‖∞|ϕε(y)| dy .

From the inequality

‖τyf − f‖∞ ≤ ‖f‖Λ∞α |y|
α ,

and the fact that ϕε is supported on the ball of radius ε, we obtain that

‖f ∗ ϕε − f‖∞ ≤ ‖f‖Λ∞α ε
α

ˆ
Rn
|ϕε(y)| dy = ‖f‖Λ∞α ε

α

ˆ
Rn
|ϕ(y)| dy .

This gives the uniform convergence of f ∗ ϕε to f . Since the ϕε are continuous, the same is true for
f . �

61
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Remark. We motivate the restriction 0 < α < 1. If the quantity in (5.1.1) is finite for some α > 1,
then f = 0. The exclusion of α = 1 is less simple to explain. An indication that some problems arise with
(5.1.1) is in Proposition 5.1.2 below, whose statement is false1 for α = 1.

A more general class of norms are the (p, q)-Besov norms of order α. For 1 ≤ q <∞, one sets2

(5.1.2) ‖f‖Λp,qα = ‖f‖p +

(ˆ
|h|<1

(
|h|−α‖τhf − f‖p

)q dh

|h|n

) 1
q

,

and the Besov space Λp,qα (Rn) is defined as the space of Lp-functions for which (5.1.2) is finite. For q =∞,
one sets Λp,∞α (Rn) = Λpα(Rn).

We shall be mainly interested in the case p = 2, with q = 2 or q =∞.

Proposition 5.1.2. For 0 < α < 1, Λ2,2
α (Rn) coincides with the Sobolev space Hα(Rn) and the two

norms are equivalent.

Proof. Observe that, denoting by

f̂(ξ) =

ˆ n

R
f(x)e−ix·ξ dx

the Fourier transform of f , then τ̂hf(ξ) = e−ih·ξ f̂(ξ). Hence, for f ∈ L2(Rn) and using Plancherel’s formula,

(5.1.3)

‖f‖2
Λ2,2
α
∼ ‖f‖22 +

ˆ
Rn
‖τhf − f‖22

dh

|h|n+2α

∼
ˆ
Rn
|f̂(ξ)|2 dξ +

ˆ
Rn

ˆ
Rn
|f̂(ξ)|2 |e

−ih·ξ − 1|2

|h|n+2α
dξ dh .

Interchanging the order of integration, we are led to consider first the integral

I(ξ) =

ˆ
Rn

|e−ih·ξ − 1|2

|h|n+2α
dh .

Using the inequalities |e−ih·ξ − 1| ≤ |h||ξ| for |h| small, and |e−ih·ξ − 1| ≤ 2 for |h| large, we see that the
integral is convergent for 0 < α < 1.

Obviously, I(0) = 0. If ξ 6= 0, decompose ξ in polar coordinates as ξ = |ξ|ω, with ω in the unit sphere.
Changing variable, |ξ|h = h′, we find that

I(ξ) = |ξ|2α
ˆ
Rn

|e−ih′·ω − 1|2

|h′|n+2α
dh′ = |ξ|2αI(ω) .

If A is an orthogonal transformation of Rn, the change of variable h′ = Ah′′ shows that I(ω) = I(Aω).
Hence I(ω) is constant, and its constant value is non-zero. Putting this in (5.1.3), we find that

‖f‖2
Λ2,2
α
∼
ˆ
Rn
|f̂(ξ)|2(1 + |ξ|2α) dξ ∼ ‖f‖(α) . �

Lemma 5.1.3. We have the following continuous inclusions3

Λ2,2
α (Rn) ⊂ Λ2,∞

α (Rn) ⊂ Λ2,2
β (Rn) ,

1For α = 1 it is more appropriate to replace the “first-order difference” τhf − f with the “second-order difference”

τ2hf − 2τhf + f . With this modification, Proposition 5.1.2 becomes true also for α = 1, and in fact it can be extended to all
α < 2. For larger values of α, one must use higher-order differences.

2As for Lipschitz norms, the restriction |h| < 1 in the domain of integration can be replaced by |h| < a for any a positive

or even infinite.
3More generally, one has the following continuous inclusions:

Λp,q1α (Rn) ⊂ Λp,q2α (Rn) ,

if q1 < q2, and

Λp,∞α (Rn) ⊂ Λp,1β (Rn) ,
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if 0 < β < α < 1.

Proof. Take f ∈ Λ2,2
α (Rn). From the inequality |eit − 1| ≤ Cα|t|α, we have

‖τhf − f‖22 ∼
ˆ
Rn
|f̂(ξ)|2|e−ih·ξ − 1|2 dξ

.
ˆ
Rn
|f̂(ξ)|2|h|2α|ξ|2α dξ

≤ |h|2α‖f‖2(α) .

This gives the first inclusion by Proposition 5.1.2.
Take now f ∈ Λ2,∞

α (Rn). Then

‖τhf − f‖2 ≤ ‖f‖Λ2,∞
α
|h|α .

Therefore, ˆ
|h|<1

|h|−2β‖τhf − f‖22
dh

|h|n
≤ ‖f‖2

Λ2,∞
α

ˆ
|h|<1

|h|2(α−β)−n dh

. ‖f‖2
Λ2,∞
α

.

Adding the L2-norm, one gets to the conclusion. �

Corollary 5.1.4. If s < α < 1, Λ2
α(Rn) ⊂ Hs(Rn), and the inclusion is continuous.

2. Lipschitz norms defined in terms of flows

Lipschitz and Besov norms are defined in terms of the translations τh. One can interpret translations in
Rn as generated by the flow of n very special vector fields.

If h = (h1, . . . , hn) = h1e1 + · · ·+ hnen, then τh = τh1e1 ◦ · · · ◦ τhnen ; setting Xj = −∂xj ,

τhjej = exp(hjXj) ,

and

τh = exp(h1X1) · · · exp(hnXn) .

We shall discuss how more general vector fields can be used to introduce adapted Lipschitz norms, and to
compare these among themselves and with the standard Lipschitz norms presented above. We shall restrict
ourselves to p = 2.

Let Ω be an open set, X a (smooth) vector field on Ω, and let K,K ′ be two compact subsets of Ω with

K ⊂ ◦→ K ′. We fix a = a(X,K,K ′) > 0 small enough so that

(i) the flow ϕX,t(x) is defined on K for |t| ≤ a;
(ii) for |t| ≤ a, ϕX,t maps K diffeomorphically into K ′.

For f ∈ L2(Ω) with supp f ⊂ K, we define the norm

(5.2.1) ‖f‖X,α = ‖f‖2 + sup
|t|≤a

|t|−α‖ exp(tX)f − f‖2 .

Lemma 5.2.1. Given K, the norm (5.2.1) does not depend, up to equivalence, on the choice of a, as long
as (i) and (ii) are satisfied, for some K ′, by both a and a′.

Proof. For the purpose of this proof, let us specify the value of a in (5.2.1) and write ‖f‖X,α,a.
Obviously, if a < b, ‖f‖X,α,a ≤ ‖f‖X,α,b.

if β < α. These are the relevant inclusions with p fixed. See E.M. Stein, Singular integrals and differentiability properties of
functions, Chap. V, Sect. 5.
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On the other hand, let Kb be a compact subset of Ω such that (ii) is satisfied for |t| < b. For a < |t| ≤ b,
we use the trivial majorization ‖ exp(tX)f − f‖2 ≤ ‖ exp(tX)f‖2 + ‖f‖2. Noticing that supp

(
exp(tX)f

)
=

ϕ−1
X,t(supp f) ⊂ Kb, we have

‖ exp(tX)f‖22 =

ˆ
Kb

∣∣f(ϕX,t(x)
)∣∣2 dx =

ˆ
K

|f(x)|2JϕX,−t(x) dx .

By compactness, JϕX,−t is bounded on K uniformly for |t| ≤ b. Therefore,

(5.2.2) ‖ exp(tX)f‖2 ≤ C‖f‖2 .

This easily gives the inequality ‖f‖X,α,b ≤ C ′‖f‖X,α,a. �

We shall not mention the choice of a in (5.2.2) unless it will be necessary.
Notice that, with Ω = Rn and Xj = −∂xj , the 2-Lipschitz norm ‖f‖Λ2

α
is equivalent to

∑n
j=1 ‖f‖Xj ,α.

The first comparison we make is between the Lipschitz norms associated with a vector field X and those
associated with a modified vector field X̃ = ηX, for some η ∈ D(Ω).

We expect that the trajectories γ̃x(t) of the flow generated by X̃ are contained in the trajectories γx(t)
of the flow generated by X, only travelling at a different speed. To be more precise, we expect that there is
a real-valued function τ(x, t) such that

(5.2.3) γ̃x(t) = γx
(
τ(x, t)

)
,

and τ(x, 0) = 0. Differentiating in t, we obtain the equation

X̃γ̃x(t) = ∂tτ(x, t)Xγ̃x(t) .

If Xγ̃x(t) 6= 0, this means

(5.2.4) η ◦ γx
(
τ(x, t)

)
= ∂tτ(x, t) ,

and surely (5.2.4) implies (5.2.3). For x ∈ Ω fixed, the function τ satisfies (5.2.4) if and only if τx(t) = τ(x, t)
is a solution of the one-dimensional Cauchy problem

(5.2.5)

{
d
dtτx = η ◦ γx(τx)

τx(0) = 0 .

By Theorem 1.1.1 (iii), γx(t) is smooth in both x and t. It follows from (iv) in the same theorem that
(5.2.5) has a unique solution which is smooth in both x and t.

It will be convenient soon to set the notation

ϕX(x, t) = ϕX,t(x) = γx(t) .

Proposition 5.2.2. Given K and η ∈ D(Ω), there is a constant C = C(K, η) such that, for every
α ∈ (0, 1) and f ∈ L2(Ω) supported on K,

‖f‖ηX,α ≤ C‖f‖X,α .

Proof. If s, t are small enough and |s| ≤ |t|,
‖ exp(tηX)f − f‖2 ≤ ‖ exp(tηX)f − exp(sX)f‖2 + ‖ exp(sX)f − f‖2

≤ ‖ exp(tηX)f − exp(sX)f‖2 + |t|α|f |X,α .

Hence

‖ exp(tηX)f − f‖2 ≤ |t|α|f |X,α + inf
|s|≤|t|

‖ exp(tηX)f − exp(sX)f‖2 .

We have reduced matters to proving that

(5.2.6) inf
|s|≤|t|

‖ exp(tηX)f − exp(sX)f‖2 . |t|α‖f‖X,α .
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We have

(5.2.7)

inf
|s|≤|t|

‖ exp(tηX)f − exp(sX)f‖22

= inf
|s|≤|t|

ˆ
Ω

∣∣f ◦ ϕX(x, τ(x, t)
)
− f ◦ ϕX(x, s)

∣∣2 dx
≤ 1

2|t|

ˆ
|s|≤|t|

ˆ
Ω

∣∣f ◦ ϕX(x, τ(x, t)
)
− f ◦ ϕX(x, s)

∣∣2 dx ds .
We fix a compact subset K ′ of Ω containing K in its interior, and we impose that |s|, |t| ≤ δ, with δ

small enough so that K ⊂
{
ϕX
(
x, τ(x, t)

)
: x ∈ K ′, |t| ≤ δ

}
and K ⊂

{
ϕX(x, s) : x ∈ K ′, |s| ≤ δ

}
For each t ∈ [−δ, δ], we want to make a change of variables (x, s) 7→ (y, u) in such a way that the

integrand becomes |f ◦ ϕX(y, u) − f(y)
∣∣2. We must then set y = ϕX(x, s). Observing that the identity

ϕX,u+s = ϕX,u ◦ ϕX,s can be written as

ϕX(x, u+ s) = ϕX
(
ϕX(x, s), u

)
= ϕX(y, u) ,

we must also set u = τ(x, t)− s. The change of variables is then

(y, u) = Φt(x, s) =
(
ϕX(x, s), τ(x, t)− s

)
,

which is a smooth function in all variables x, s, t.
The Jacobian matrix Jx,sΦt in the variables x, s is

Jx,sΦt(x, s) =

(
JxϕX(x, s) XϕX(x,s)

∇xτ(x, t) −1

)
.

At t = 0, τ(x, 0) = 0 for every x, therefore∇xτ(x, 0) = 0. At s = 0, ϕX(x, 0) = x, so that JxϕX(x, 0) = I.
Therefore

det Jx,sΦ0(x, 0) = −1 .

It follows that for |s|, |t| smaller than some δ′ > 0, the determinant of Jx,sΦt(x, s) is bounded from below
in absolute value, uniformly in x ∈ K ′. Hence, for each point x ∈ K ′ there is a neighborhood Ux× (−δx, δx),
with δx < δ′, on which every Φt with |t| < δx is invertible. By compactness, it is possible to cover K ′ with
a finite number Ux1

, . . . , Uxm of such neighborhoods.
If {ψj}mj=1 is a smooth partition of unity on K ′ subordinated to the Uxj , we set fj = fψj . We then

choose a final δ̄, smaller than δ′ and δxj for every j, such that supp fj ◦ ϕX,s ⊂ Uxj for |s| < δ̄. Notice that

δ̄ does not depend either on f or α, but only on K.
Also notice that, since τ(x, 0) = 0, there is a constant A such that |τ(x, t)| ≤ A|t| for |t| ≤ δ′ and x ∈ K ′.

Therefore |u| ≤ (A+ 1)|t|. Putting everything together, we have

1

2|t|

ˆ
|s|≤|t|

ˆ
Ω

∣∣fj ◦ ϕX(x, τ(x, t)
)
− fj ◦ ϕX(x, s)

∣∣2 dx ds
=

1

2|t|

ˆ
|u|≤(A+1)|t|

ˆ
Ω

∣∣fj ◦ ϕX(y, u)− fj(y)
∣∣2∣∣det Jx,sΦt|

Φ
−1
t (y,u)

∣∣−1
dy du

. sup
|u|≤(A+1)|t|

‖ exp(uX)fj − fj‖22

. |t|α‖fj‖X,α .

Summing over j and noticing that ‖f‖X,α ∼
∑
j ‖fj‖X,α, we obtain the same inequality for f . This and

(5.2.7) imply (5.2.6). �

We show next that, on compact sets, the norm (5.2.1) is controlled by the Λ2
α-norm. This will follow

from the following general lemma, that shall be used again later on.

Lemma 5.2.3. Let K ′ be a compact neighborhood of K in Ω, and let ϕ(x, t) be defined on K ′ × [0, δ] ⊂
Ω× R, with values in Ω, such that

(i) ϕ is C∞ in x, and all its derivatives are continuous in t;
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(ii) ϕ(x, t)− x = O(tµ) as t→ 0 uniformly in x, for some µ ∈ R+.

Then there is a constant C = C(K,K ′, ϕ) such that, for α ∈ (0, 1), t small enough and f ∈ L2(Ω)
supported on K, ˆ

Ω

|f ◦ ϕ(x, t)− f(x)|2 dx ≤ Ct2µα‖f‖2Λ2
α
.

Proof. In analogy with the previous proof, we first notice that, taking t small and h ∈ Rn with |h| ≤ tµ,ˆ
Ω

|f ◦ ϕ(x, t)− f(x)|2 dx .
ˆ

Ω

|f ◦ ϕ(x, t)− f(x− h)|2 dx+ ‖τhf − f‖22 ,

and therefore ˆ
Ω

|f ◦ ϕ(x, t)− f(x)|2 dx

. t−µn
ˆ
|h|<tµ

ˆ
Ω

|f ◦ ϕ(x, t)− f(x− h)|2 dx+ t2µα‖f‖2Λ2
α
.

For t fixed, we set x− h = y and ϕ(x, t) = y + u. If Φt(x, h) =
(
x− h, ϕ(x, t)− x+ h

)
, we have

Jx,hΦt(x, h) =

(
I −I

Jxϕ(x, t)− I I

)
.

Since ϕ(x, 0) = x, Jxϕ(x, 0) = I and therefore det Jx,hΦ0(x, h) = 1. The proof can be concluded as
before, once we observe that

|u| ≤ |ϕ(x, t)− x|+ |h| . tµ . �

�

Proposition 5.2.4. Given a smooth vector field X on Ω and K compact in Ω, there is a constant
C = C(X,K) such that, for every f ∈ L2(Ω) supported on K,

‖f‖X,α ≤ C‖f‖Λ2
α
.

Proof. Apply Lemma (5.2.3) with µ = 1 and ϕ = ϕX . �

3. Variations on the Baker-Campbell-Hausdorff formula

At this stage we introduce an algebraic formalism. We work with “abstract” non-commuting indetermi-
nates x1, dots, xk. We are allowed to construct formal power series in x1, . . . , xk, keeping track of the order
of factors in each monomial. We set [x, y] = xy − yx. Formal power series can be added amd multiplied
among themeselves, and multiplied by scalars4. We denote as R[[x1, . . . , xk]], or briefly as A, the algebra of
formal power series generated by x1, . . . , xk. For any a ∈ A, the exponential series

ea =
∑
n≥0

1

n!
an

is well defined and gives an invertible element of A, with (ea)−1 = e−a. The Baker-Campbell-Hausdorff
formula says that, for a, b ∈ A,

(5.3.1) eaeb = es(a,b) ,

where s is itself a formal power series, containing only commutators

(5.3.2)

s(a, b) =
∑
j,k≥1

zj,k(a, b)

= a+ b+
1

2
[a, b] +

1

12

[
[a, b], b

]
− 1

12

[
[a, b], a

]
+ · · · ,

4The scalar field can be R or C, but consider real scalars here.
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where each zj,k(a, b) denotes a fixed linear combination of iterated commutators of a and b, each containing a
j times and b k times. When (a, b) = (x, y), we shall usually drop the arguments (x, y), and write zj,k as well
as wj , rN etc. to denote expression involving commutators of x and y in fixed finite or infinite combinations.

A first instance of identity derived from (5.3.2) is the following conjugation formula:

(5.3.3) exeye−x = ey+[x,y]+
∑
n≥2 bn ,

where each bn is a linear combination of commutators of x and y of order n (see (1.2.7)).

We shall perform some manipulations of this formula aimed to obtain expressions of e[x,y] and ex+y as
products of exponentials, where each exponent contains either x or y alone, or, alternatively, commutators
of x and y of a sufficiently high order.

We first reduce the problem concerning the sum to a problem concerning commutators 5.

Lemma 5.3.1. There are two sequences of elements wj and rN of A such that

(i) each wj is a (finite) linear combination of commutators of x and y of order j;

(ii) rN =
∑∞
k=N+1 u

(N)
k , where each u

(N)
k is a linear combination of commutators of x and y of order k;

(iii) for every N ,

(5.3.4) ex+y = exeyew2 · · · ewN erN .

Proof. Calling zn =
∑
j+k=n zj,k, we have

exey = e
∑
n≥1 zn ,

and each zn is a linear combination of commutators of x and y of order n.
For N = 1, multiply both sides sides by e−x−y on the left. By the same formula,

e−x−yexey = e−x−yex+y+
∑
n≥2 zn

= e
∑
n≥2 z

′
n ,

where each z′n is again a linear combination of commutators of x and y of order n. Therefore

ex+y = exeye−
∑
n≥2 z

′
n .

This proves the case N = 1.

Inductively, suppose that (5.3.4) holds for a given N , with rN as in (ii). Then there are elements u
(N+1)
k

as in (ii) and such that

e−u
(N)
N+1erN = e−u

(N)
N+1e

∑
k≥N+1 u

(N)
k

= e
∑
k≥N+2 u

(N+1)
k .

This concludes the proof. �

For exponentials of commutators, we have the following initial result. We change the notation slightly,
writing x1, x2 in place of x, y.

Lemma 5.3.2. Let cp =
[
· · · [x1, x2], . . . , xp

]
, with p ≥ 2. Then

(5.3.5) ecp = e±xi1 e±xi2 · · · e±xiq e
∑
n≥p+1 v

(p)
n ,

where i1, . . . , iq ∈ {1, . . . , p}, q = 3 ·2p−1−2, and each v
(p)
n a linear combination of commutators of x1, . . . , xp

of order n.

5A simpler equivalent statement of Lemma 3.1 would consist in the following identity:

ex+y = exey
∞∏
j=2

ewj ,

with the wj as in (i). For our purposes it is preferable to focus on the properties of the remainders rN such thaterN =∏∞
j=N+1 e

wj .
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Proof. From (5.3.3) we obtain that

ex1ex2e−x1e−x2 = ex2+[x1,x2]+
∑
n≥3 bne−x2 = e[x1,x2]+

∑
n≥3 b

′
n ,

where the b′n have the same properties as the bn. Therefore,

e−[x1,x2]ex1ex2e−x1e−x2 = e
∑
n≥3 b

′′
n ,

which easily gives (5.3.5) with q = 4.

Inductively, assume that (5.3.5) holds up to some p. Here we explicitly write v
(p)
n (x1, x2) to emphasize

that each v
(p)
n is a fixed expression in x1, x2. Then cp+1 = [cp, xp+1]. We apply (5.3.5) with p = 2 to obtain

ecp+1 = ecpexp+1e−cpe−xp+1e
∑
n≥3 v

(1)
n (cp,x2) .

Since v
(1)
n (cp, x2) is a commutator of cp and xp+1 of order n, it follows from Lemma 1.2.1, that

v
(1)
n (cp, xp+1) is a linear combination of commutators of x1, . . . , xp+1 of order at least p+ n− 1. Hence

ecp+1 = ecpexp+1e−cpe−xp+1e
∑
k≥p+2 dk(x1,...,xp+1) .

We then insert the expansion (5.3.5) of ecp and e−cp . If each expansion contains q factors equal to e±xj

for some j, we obtain altogether 2q + 2 factors of this kind, plus two factors e±
∑
n≥p+1 v

(p)
n placed among

them.
We can then shift these extra terms to the far right using the conjugation formula

e−xjeap+1+
∑
n≥p+2 anexj = eap+1+

∑
n≥p+2 a

′
n ,

derived from (5.3.3) (notice that the leading term in the series remains unchanged). After doing so, we
obtain that

ecp+1 = e±xi1 e±xi2 · · · e±xi2q+2

× ev
(p)
p+1+

∑
n≥p+1 αne−v

(p)
p+1+

∑
n≥p+2 βne

∑
k≥p+2 dk

= e±xi1 e±xi2 · · · e±xi2q+2 e
∑
k≥p+2 d

′
k ,

with αn = αn(x1, . . . , xp+1) etc. This gives (5.3.5). �

Corollary 5.3.3. Let cp be as above, and let N ≥ p+ 1. Then there is q = q(p,N) such that

(5.3.6) ec = e±xi1 e±xi2 · · · e±xiq e
∑
n≥N vn ,

where i1, . . . , iq ∈ {1, . . . , p}, and each vn = v
(p,N)
n a linear combination of commutators of x1, . . . , xp of

order n.

Proof. We use induction on N . The case N = p+ 1 is Lemma 5.3.2. Suppose (5.3.6) holds for N . We
use the usual argument to extract the leading term vN from the last exponent:

e−vN e
∑
n≥N vn = e

∑
n≥N+1 v

′
n ,

so that
ecp = e±xi1 e±xi2 · · · e±xiq evN e

∑
n≥N+1 v

′
n .

We write vN =
∑r
j=1 λjcj , where the cj are commutators of x1, . . . , xp of order N , and the coefficients

λj do not depend on x1, . . . , xp. Making repeated use of (5.3.4) with N = 1, we obtain that

evN = eλ1c1 · · · eλrcre
∑
`≥2 u` ,

where each u` is a linear combination of commutators of c1, . . . , cr of order `, hence a linear combination of
commutators of x1, . . . , xp of order greater than or equal to 2N . Hence,

ecp = e±xi1 e±xi2 · · · e±xiq eλ1c1 · · · eλrcre
∑
n≥N+1 v

′′
n .

We next expand each factor eλjcj according to Lemma 5.3.2 to derive the conclusion. �

In the same way we prove the following improvement of Lemma 5.3.1.
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Corollary 5.3.4. For every N, p ≥ 2 there are an integer q = q(N, p) and a sequence {ω(N)
n }n≥N of

linear combinations of commutators of x1, . . . , xp of order n such that

ex1+···+xp = e±xi1 e±xi2 · · · e±xiq e
∑
n≥N ω(N)

n ,

with i1, . . . , iq ∈ {1, . . . , p}.

4. Operations on vector fields and Lipschitz norms

If X,Y are two commuting vector fields on Ω, it is quite easy to establish the inequality

‖f‖X+Y,α ≤ C(K)
(
‖f‖X,α + ‖f‖Y,α

)
when f is supported on a compact subset K. It is sufficient to observe that, by (5.2.2),∥∥ exp

(
t(X + Y )

)
f − f

∥∥
2

= ‖ exp(tX) exp(tY )f − f‖2
≤
∥∥ exp(tX)

(
exp(tY )f − f

)∥∥
2

+ ‖ exp(tX)f − f‖2
≤ C(K)‖ exp(tY )f − f‖2 + ‖ exp(tX)f − f‖2
≤ C(K)|t|α

(
‖f‖X,α + ‖f‖Y,α

)
.

The situation is much more complicated if X and Y do not commute. In this case we are also interested
in norms like ‖f‖[X,Y ],α and similar with higher-order commutators.

We shall use the formulas obtained in the previous section. When applied to exponentials of vector
fields, these formulas do not make sense as such, because they contain infinite series that do not converge in
general.

At each stage, we must replace infinite sums by truncations of sufficiently high order and introduce
remainder terms, in complete analogy with the use of Taylor expansions with non-analytic functions. The
starting point is the formulation of the Baker-Campbell-Hausdorff formula given in Theorem 2.2 in Chapter
I. We must also introduce a parameter t tending to zero to which compare the remainders. An indeterminate
x is then replaced by tX, with X a given vector field. Notice that a commutator of order p+1 is then replaced
by the same commutator of the involved vector fields, multiplied by tp+1.

We then obtain the following formulations of Corollaries 5.3.3 and 5.3.4.

Corollary 5.4.1. Let X1, . . . , Xp be smooth vector fields on Ω.

(i) If Cp =
[
· · · [X1, X2], . . . , Xp

]
and N ≥ p+ 1, let q, i1, . . . , iq ∈ {1, . . . , p} be as in Corollary 5.3.3. For

any compact K ⊂ Ω there is δ > 0 such that, for |t| < δ and f ∈ D(Ω) supported on K,

(5.4.1)
exp(tpW )f(x) = exp(±tXi1) exp(±tXi2) · · · exp(±tXiq )f(x)

+O(tN ) ,

uniformly in x.
(ii) Given N ≥ 2, let q, i1, . . . , iq ∈ {1, . . . , p} be as in 5.3.4. For any compact K ⊂ Ω there is δ > 0 such

that, for |t| < δ and f ∈ D(Ω) supported on K,

(5.4.2)
exp

(
t(X1 + · · ·+Xp)

)
f(x) = exp(±tXi1) exp(±tXi2) · · · exp(±tXiq )f(x)

+O(tN ) .

Before applying these formulas, we must add some considerations on the transformations of Ω induced
by the corresponding compositions of flows.

Let us consider (5.4.1) on a compact set K ′ ⊃ K in Ω. It can be rewritten as

(5.4.3) exp(∓tXiq ) · · · exp(∓tXi2) exp(∓tXi1) exp(tpCp)f(x) = f(x) +O(tN ) .

Composition of the flows in each factor gives rise to a function ϕ(x, t), smooth on K ′× (−δ, δ) and with
values in Ω, such that

(5.4.4) exp(∓tXiq ) · · · exp(∓tXi2) exp(∓tXi!) exp(tpW )f(x) = f
(
ϕ(x, t)

)
.
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Take f ∈ D(Ω), supported on K ′ and equal to a coordinate function xj on K. Plugging it into (5.4.3),
we see that the j-th component ϕj of ϕ satisfies

(5.4.5) ϕj(x, t) = xj +O(tN ) .

This shows that ϕ satisfies the hypotheses of Lemma 5.2.3.

Theorem 5.4.2. Let X1, X2 be smooth vector fields on Ω. Given σ ∈ (0, 1), we have the following
estimates, for every α < 1 and f ∈ L2(Ω) supported on K:

(i) if W is a commutator of X1, X2 of order p,

(5.4.6) ‖f‖W,αp ≤ Cp,σ
(
‖f‖X1,α + ‖f‖X2,α

)
+ C ′‖f‖Λ2

σ
;

(ii)

(5.4.7) ‖f‖X1+X2,α ≤ Cσ
(
‖f‖X1,α + ‖f‖X2,α

)
+ C ′‖f‖Λ2

σ
.

The constants Cp,σ in (5.4.6) and Cσ in (5.4.7) do not depend on α or on the specific vector fields
X1, X2.

Proof. We prove only (5.4.6) only. Take N such that Nσ ≥ 1, and let ϕ the function in (5.4.4); for |t|
small,

exp(tpW )f(x)− f(x)

= exp(±tXi1) · · · exp(±tXiq−1
) exp(±tXiq )f

(
ϕ(x, t)

)
− f(x)

= exp(±tXi1) · · · exp(±tXiq−1
) exp(±tXiq )

(
f
(
ϕ(x, t)

)
− f(x)

)
+ exp(±tXi1) · · · exp(±tXiq−1)

(
exp(±tXiq )f(x)− f(x)

)
+ · · ·
+ exp(±tXi1)f(x)− f(x) .

Choosing |t| < δ small enough and using (5.2.2), we obtain that

‖ exp(tpW )f − f‖2 ≤ 2q
(
‖f‖X1,α + ‖f‖X2,α

)
|t|α + CN‖f‖Λ2

σ
|t|Nσ ,

q = q(p,N) being as in Corollary 5.3.3. Since |t| is small, CN |t|Nσ ≤ |t|α. This shows that, for s > 0 and
small enough,

‖ exp(sW )f − f‖2 ≤ 2q
(
‖f‖X1,α + ‖f‖X2,α

)
s
α
p + ‖f‖Λ2

σ
s
α
p .

For s < 0, it is sufficient to notice that −W is also a commutator of X1, X2 of order p (just interchange
X1 and X2 in the innermost Lie bracket). �

We can proceed now to the proof the main result about Lipschitz norms, which will be preceded by a
lemma.

Lemma 5.4.3. Let 0 < β < α < 1. Given ε > 0, there is a constant Cε such that

‖f‖Λ2
β
≤ Cε‖f‖2 + ε‖f‖Λ2

α
.

Proof. Fix a > 0. If 0 < δ < a,

‖f‖Λ2
β
≤ ‖f‖2 + sup

δ≤|h|<a
|h|−β‖τhf − f‖2 + sup

|h|<δ
|h|−β‖τhf − f‖2

≤ (1 + 2δ−β)‖f‖2 + δα−β sup
|h|<δ

|h|−α‖τhf − f‖2

≤ (1 + 2δ−β)‖f‖2 + δα−β‖f‖Λ2
α
.

It is then sufficient to take δ = ε
1

α−β . �
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Theorem 5.4.4. Let K be a compact subset of Ω, and suppose that the smooth vector fields X1, . . . , Xk,
together with their iterated commutators XI with |I| ≤ m, span Rn at each point of K. Then, for every
α ∈ (0, 1), there is a constant Cα such that, for every f ∈ L2(Ω) with support contained in K,

(5.4.8) ‖f‖Λ2
α
m

≤ Cα
k∑
j=1

‖f‖Xj ,α .

Proof. Given x ∈ K, there are multi-indices I1, . . . , In, with |Ik| ≤ m for each k, such that the vectors

{XIk
x } form a basis of Rn. By continuity, the same holds for the vectors {XIk

x′ } for each x′ in a neighborhood
Ux of x. By the inverse function theorem, there are smooth functions ηj,k on Ux such that

∂xj =

n∑
k=1

ηj,k(x)XIk ,

on Ux, for j = 1, . . . , n.
Covering K with a finite number of such neighborhoods, and with the aid of a subordinated partition

of unity, we then conclude that there are smooth functions ηj,I on a neighborhood U of K such that

∂xj =
∑
|I|≤m

ηj,I(x)XI ,

on U , for j = 1, . . . , n. By restricting Ω if necessary, we can as well assume that U = Ω.
Denote by Ej the coordinate vector field ∂xj . Applying (5.4.7) and Proposition 5.2.2, we obtain that

‖f‖Ej , αm ≤ Cσ
∑
|I|≤m

‖f‖ηj,IXI , αm + C ′‖f‖Λ2
σ

≤ CX1,...,Xk,σ

∑
|I|≤m

‖f‖XI , αm + C ′‖f‖Λ2
σ
,

for every σ > 0. Since |I| ≤ m, we also have, by (5.4.6)

‖f‖XI , αm ≤ C‖f‖XI , α|I| ≤ Cm,σ
(
‖f‖X1,α + ‖f‖X2,α

)
+ C ′‖f‖Λ2

σ
.

Since

‖f‖Λ2
α
m

∼
n∑
j=1

‖f‖Ej , αm ,

we conclude that

‖f‖Λ2
α
m

≤ CX1,...,Xk,σ

(
‖f‖X1,α + ‖f‖X2,α

)
+ C ′‖f‖Λ2

σ
.

We finally fix σ < α
m and apply Lemma 4.3, with β = σ, α replaced by α

m and ε = 1
2C′ , to majorize the

last term. �

Theorem 1.5.7 is now an immediate consequence of this result, once we observe that

‖f‖Xj ,α ≤ C
(
‖f‖2 + ‖Xjf‖2

)
,

for any α < 1. This follows from the mean value theorem, because∣∣ exp(tXj)f(x)− f(x)
∣∣ ≤ ˆ t

0

∣∣ exp(sXj)Xjf(x)
∣∣ ds ,

so that, for |t| ≤ a, ∥∥ exp(tXj)f − f
∥∥

2
≤ Ca‖Xjf‖2 .

Given s < 1
m , choose α such that s < α

m < 1
m , and apply Corollary 5.1.4.
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5. Hypoellipticity of sub-Laplacians: preliminaries

We adopt the following notation. If D is a differential operator with smooth coefficients in Ω, denote by
D∗ the formal adjoint of D, i.e. the differential operator such thatˆ

Ω

D∗f(x)g(x) dx =

ˆ
Ω

f(x)Dg(x) dx ,

for f, g ∈ D(Ω).
Suppose that X = {X1, . . . Xk} is a generating system of vector fields on Ω. Let

L = −
k∑
j=1

X2
j .

Introduce the norm

|||f |||X =
(
‖f‖22 +

k∑
j=1

‖Xjf‖22
) 1

2

on D(Ω). For Ω′ open in Ω, we consider also the dual norm

|||u|||′X ,Ω′ = sup
f∈D(Ω′):|||f |||X≤1

∣∣〈u, f〉∣∣
on D′(Ω′). Clearly,

(5.5.1) |||f |||′X ,Ω′ ≤ ‖f‖2 ≤ |||f |||X ,

whenever applicable.
The reason for introducing these norms is the following.
First of all, notice that, by definition of hypoellipticity, L is hypoelliptic on Ω if and only if it is

hypoelliptic on every relatively compact subdomain. Let Ω′ be one such subdomain.
If

Xj =

n∑
`=1

aj,`(x)∂x` ,

then, for functions f, g ∈ D(Ω′),

ˆ
Ω′
Xjf(x)g(x) dx =

n∑
`=1

ˆ
Ω′
aj,`(x)∂x`f(x)g(x) dx

= −
n∑
`=1

ˆ
Ω′
f(x)∂x`

(
aj,`(x)g(x)

)
dx

= −
ˆ

Ω′
f(x)

(
Xj + bj(x)

)
g(x) dx ,

with bj =
∑n
`=1 ∂x`aj,`. In other words, X∗j = −Xj − bj . Notice that the functions aj,` and bj are real

valued.
Next, denote by 〈 , 〉 the inner product in L2(Ω′). For f ∈ D(Ω′),

〈Lf, f〉 =

k∑
j=1

〈Xjf, (Xj + bj)f〉

=

k∑
j=1

‖Xjf‖22 +

k∑
j=1

〈Xjf, bjf〉 .
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Hence,

<e〈Lf, f〉 =

k∑
j=1

‖Xjf‖22 +

k∑
j=1

<e〈Xjf, bjf〉 .

Now,

<e〈Xjf, bjf〉 =
1

2

(
〈Xjf, bjf〉+ 〈bjf,Xjf〉

)
=

1

2

(
〈Xjf, bjf〉 − 〈(Xj + bj)bjf, f〉

)
= −1

2
〈(Xjbj + b2j )f, f〉

= −1

2

ˆ
Ω′

(b2j +Xjbj)|f |2 dx .

It follows that

|||f |||2X = ‖f‖22 + <e〈Lf, f〉 −
k∑
j=1

<e〈Xjf, bjf〉

=
1

2

ˆ
Ω′

(2 + b2j +Xjbj)|f |2 dx+ <e〈Lf, f〉

≤ C‖f‖22 + |||Lf |||′X ,Ω′ |||f |||X .

Using the inequality ‖f‖22 ≤ ‖f‖2|||f |||X we can simplify by a factor |||f |||X , obtaining that

|||f |||X ≤ C‖f‖2 + |||Lf |||′X ,Ω′ .
Observe that the hypotheses of Theorem 5.4.4 are satisfied on all of Ω′ with the same m = m(Ω′) and

the same constants. By Theorem 1.5.7, it follows that, for f ∈ D(Ω′) and s < 1
m ,

(5.5.2) ‖f‖(s) ≤ Cs
(
‖f‖2 + |||Lf |||′X ,Ω′

)
.

The hardest part of the proof will be the extension of (5.5.2) to general L2-functions on Ω′ with compact
support. This will be done in Section 7. In Section 6 we introduce calculus and estimates with Bessel
potentials.

Once this is done, we shall prove a “bootstrapping” argument which extends this implication to Sobolev
norms of arbitrary orders. This will be done in Section 8, and it will easily lead us to the conclusion of the
proof.

6. Bessel potentials and pseudo-differential operators

For γ ∈ R, let Kγ be the distribution defined as the inverse Fourier transform of (1 + |ξ|2)γ , i.e. such
that

〈Kγ , ϕ〉 =
1

(2π)n

ˆ
Rn

(1 + |ξ|2)γϕ̂(ξ) dξ ,

for ϕ ∈ S(Rn). The convolution operator

(5.6.1) ϕ 7−→ Kγ ∗ ϕ = F−1
(
(1 + |ξ|2)γϕ̂(ξ)

)
maps S(Rn) continuously onto itself. By duality, it also maps S ′(Rn) onto itself continuously.

Notice that Kγ ∗Kγ′ ∗ ϕ = Kγ+γ′ϕ and that, for j ∈ N,

Kj ∗ ϕ = (1−∆)jϕ .

For this reason the operator (5.6.1) is denoted by (1−∆)γ for arbitrary6 γ. The identity(
(1−∆)γϕ

)̂
(ξ) = (1 + |ξ|2)γϕ̂(ξ)

6All we said is true also for complex exponents, but we shall not need them here.
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extends from integer to real values of γ.
The operator (1−∆)−

s
2 is called the Bessel potential of order s.

The following facts follow directly from the definition of Sobolev spaces and the Plancherel formula.

Lemma 5.6.1. The Sobolev space Hs(Rn) consists of those f ∈ S ′(Rn) such that (1 −∆)
s
2 f ∈ L2(Rn).

In other words,
Hs(Rn) = (1−∆)−

s
2

(
L2(Rn)

)
.

If f ∈ L2(Rn) and 0 ≤ |α| ≤ s,
(5.6.2)

∥∥(1−∆)−
s
2 ∂αf

∥∥
2
≤ ‖f‖2 .

In particular, (1−∆)−
s
2 is bounded on L2(Rn) for s ≥ 0.

The properties of Bessel potentials that we shall need can be better understood in the more general
context of pseudo-differential operators (“ψdo” in short). More precisely, we will consider “localized” versions
Mχ(1 − ∆)−

s
2 of the Bessel potential, where Mχ is the multiplication operator by a function χ ∈ D(Ω).

Localized Bessel potentials of order s are examples of pseudo-differential operators of order s. In order to
understand the definition of a ψdo, consider first a differential operator D =

∑
|α|≤m aα(x)∂α of order ≤ m

with coefficients aα ∈ S(Rn). Passing to the Fourier transform, we have, for f ∈ S(Rn),

D̂f(ξ) =
∑
|α|≤m

i|α|âα ∗ (ξαf̂)(ξ)

=

ˆ
Rn

∑
|α|≤m

i|α|âα(ξ − η)ηαf̂(η) dη .

Denote, as usual, by F the Fourier transform, and set

k(ξ, η) =
∑
|α|≤m

i|α|âα(ξ)ηα .

We have shown that D is the conjugation D = F−1TkF , where Tk is the integral operator with kernel
k(ξ − η, η). It is easy to verify that k satisfies the estimates

(5.6.3)
∣∣∂βη k(ξ, η)

∣∣ ≤ Cβ,N (1 + |ξ|)−N (1 + |η|)m−|β| ,
for every multi-index β and every N > 0.

Definition. We call special ψdo of order m ∈ R an operator if D = F−1TkF , where

(5.6.4) Tkf(ξ) =

ˆ
Rn
k(ξ − η, η)f(η) dη ,

and k is a smooth function on Rn × Rn satisfying (5.6.3) for every β and N .

This definition is ad hoc, in the sense that our hypotheses are stronger than in the general theory. 7 The
following remarks are rather obvious.

(1) Differential operators with coefficients in S(Rn) are special ψdo of the same order.
(2) For χ ∈ S(Rn) and γ ∈ R, Mχ(1−∆)γ is a special ψdo of order 2γ.

7One usually defines a ψdo as an operator of ther form

Df(x) = (2π)−n
ˆ
Rn

a(x, η)f̂(η)eiη·x dη ,

where the function a (called the symbol of D) satisfies the condition∣∣∂αx ∂βη a(x, η)
∣∣ ≤ Cα,β(1 + |η|)m−|β| ,

for every pair of multi-indices α, β. The kernel k appearing in our definition is

k(ξ, η) =

ˆ
Rn

a(x, η)e−ix·ξ dx .
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(3) As a particular case of the previous two, pointwise multiplication by a Schwartz function is a special
ψdo of order 0.

(4) If k satisfies (5.6.3) for some m, then ∂βη k satisfies (5.6.3) with m replaced by m− |β|.

Lemma 5.6.2. Let D be a special ψdo of order m. Then D maps S(Rn) into S ′(Rn) continuously, and
its adjoint D∗ : S(Rn)→ S ′(Rn), defined by the condition8

〈D∗f, g〉 = 〈f,Dg〉

for f, g ∈ S(Rn) is also a special ψdo of order m.

Proof. Let D = F−1TkF , with k as in (5.6.4), Because the Fourier transform is a homeomorphism of
S(Rn) and S ′(Rn), it is sufficient to prove that Tk is continuous from S(Rn) to S ′(Rn). But, for N > n,

|Tkf(ξ)| ≤ CN
ˆ
Rn

(1 + |ξ − η|)−N (1 + |η|)m|f(η)| dη

≤ CN sup
η∈Rn

(1 + |η|)m|f(η)|
ˆ
Rn

(1 + |τ |)−N dτ

≤ C ′N sup
η∈Rn

(1 + |η|)m|f(η)| ,

where the right-hand side is one of the norms defining the Schwartz topology. Therefore, Tk is continuous
from S(Rn) to L∞(Rn). Since the inclusion of L∞(Rn) into S ′(Rn) is also continuous, we have proved the
first statement.

Using the extended Parseval identity 〈Φ, f〉 = (2π)−n〈Φ̂, f̂〉 and setting

k∗(ξ, η) = k(−ξ, η + ξ) ,

we have

〈D′f, g〉 = (2π)−n〈Tkf̂ , ĝ〉

= (2π)−n
ˆ
Rn

ˆ
Rn
k(ξ − η, η)f̂(η) dη ĝ(ξ) dξ

= (2π)−n
ˆ
Rn
f̂(η)

ˆ
Rn
k(ξ − η, η)ĝ(ξ) dξ dη

= (2π)−n
ˆ
Rn
f̂(η)

ˆ
Rn
k∗(η − ξ, ξ)ĝ(ξ) dξ dη

= (2π)−n〈f̂ , Tk′F−1g〉
= 〈f,F−1Tk∗Fg〉 .

Then for every N ,

|∂βη k∗(ξ, η)| ≤ CN (1 + |ξ|)−N (1 + |η + ξ|)m−|β| .

If |ξ| ≤ |η|2 , then |η + ξ| ∼ |η|, and (1 + |η + ξ|)m ∼ (1 + |η|)m for m both positive and negative.

If |ξ| > |η|
2 and m− |β| ≥ 0,

(1 + |ξ|)−N (1 + |η + ξ|)m−|β| ≤ (1 + |ξ|)−N (1 + |η|+ |ξ|)m−|β|

≤ 3m−|β|(1 + |ξ|)−N+m−|β|

≤ 3m−|β|(1 + |ξ|)−N+m−|β|(1 + |η|)m−|β| .

8We use here the sesquilinear pairing 〈Φ, f〉 = 〈f,Φ〉 = Φ(f̄) between a distribution Φ and a function f .
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If |ξ| > |η|
2 and m− |β| < 0,

(1 + |ξ|)−N (1 + |η + ξ|)m−|β| ≤ (1 + |ξ|)−N

≤ (1 + |ξ|)−N−m+|β|
(

1 +
|η|
2

)m−|β|
≤ 2−m+|β|(1 + |ξ|)−N+m−|β|(1 + |η|)m−|β| .

Since N is arbitrary, k∗ satisfies (5.6.3). �

Corollary 5.6.3. If D is a special ψdo of order m, then D(1−∆)γ and (1−∆)γD are special ψdo of
order m+ 2γ.

Proof. If D = F−1TkF , then D(1 − ∆)γ = F−1Tk′F , with k′(ξ, η) = k(ξ, η)(1 + |η|2)γ , and the
verification of (5.6.3) with m replaced by m+ 2γ is fairly simple.

For the other operator, it is sufficient to consider its adjoint, equal to D∗(1−∆)γ , and we are therefore
in the previous situation. �

The composition of two ψdo’s D1 = F−1Tk1
F and D2 = F−1Tk2

F can be formally defined as D1D2 =
F−1Tk1Tk2F . It is not clear however that this formal definition corresponds to the actual composition of
the individual factors when applied to Schwartz functions. In order to settle this point, we show that special
ψdo’s can be continuously extended to Sobolev spaces of any order.

Theorem 5.6.4. A ψdo D of order m extends to a bounded operator from Hs(Rn) to Hs−m(Rn) for
every s ∈ R.

Proof. We first prove that a special ψdo of order 0 extends to a bounded operator on L2(Rn). By the
density of S(Rn) in L2(Rn) and the Plancherel formula, this is equivalent to proving that if k(ξ, η) satisfies
(5.6.3) with m = 0, then Tk is bounded on L2(Rn). If N > n,

|Tkf(ξ)| ≤ CN
ˆ
Rn

(1 + |ξ − η|)−N |f(η)| dη = CN (1 + | · |)−N ∗ |f |(ξ) .

Therefore,

‖Tkf‖2 ≤ CN‖f‖2
ˆ
Rn

(1 + |ξ|)−N dξ

≤ C ′N‖f‖2 .

For general m and s, we have to show that D0 = (1 − ∆)
s−m

2 D(1 − ∆)−
s
2 is bounded on L2(Rn). It

follows from Corollary 6.3 that D0 is a ψdo of order 0. �

Proposition 5.6.5. Let D1, D2 be special ψdo of order m1,m2 respectively, then D1D2 is a special ψdo
of order m1 +m2.

Proof. If k1, k2 are the kernels associated to D1, D2 respectively, we consider the composition Tk1Tk2 .
If f ∈ S(Rn),

Tk1
Tk2

f(ξ) =

ˆ
Rn
k1(ξ, τ)Tk2

f(τ) dτ

=

ˆ
Rn

ˆ
Rn
k1(ξ − τ, τ)k2(τ − η, η)f(η) dη dτ

=

ˆ
Rn

(ˆ
Rn
k1(ξ − τ, τ)k2(τ − η, η) dτ

)
f(η) dη

=

ˆ
Rn

(ˆ
Rn
k1(ξ − η − τ, τ + η)k2(τ, η) dτ

)
f(η) dη .

This shows that Tk1
Tk2

= Tk̃, with

(5.6.5) k̃(ξ, η) =

ˆ
Rn
k1(ξ − τ, τ + η)k2(τ, η) dτ .
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We have to show that k̃ satisfies (5.6.3) for m = m1 +m2. By (5.6.3) applied to k1, k2,

|k̃(ξ, η)| ≤ CN (1 + |η|)m2

ˆ
Rn

(1 + |ξ − τ |)−N (1 + |τ + η|)m1(1 + |τ |)−N dτ .

If |τ | < |η|
2 , then 1 + |τ + η| ∼ 1 + |η|, so thatˆ

|τ |< |η|2
(1 + |ξ − τ |)−N (1 + |τ + η|)m1(1 + |τ |)−N dτ

. (1 + |η|)m1

ˆ
|τ |< |η|2

(1 + |ξ − τ |)−N (1 + |τ |)−N dτ

≤ (1 + |η|)m1

ˆ
Rn

(1 + |ξ − τ |)−N (1 + |τ |)−N dτ .

If we split the last integral in two parts, according to whether |τ | is bigger or smaller than |ξ − τ |, and
make the change of variable τ ′ = ξ − τ in one of the two, we see thatˆ

Rn
(1 + |ξ − τ |)−N (1 + |τ |)−N dτ = 2

ˆ
|τ |<|ξ−τ |

(1 + |ξ − τ |)−N (1 + |τ |)−N dτ .

Since |ξ| ≤ |τ |+ |ξ − τ |, if |τ | < |ξ − τ | then |ξ − τ | > |ξ|
2 , and thereforeˆ

|τ |<|ξ−τ |
(1 + |ξ − τ |)−N (1 + |τ |)−N dτ ≤

(
1 +
|ξ|
2

)−N ˆ
Rn

(1 + |τ |)−N dτ

≤ CN (1 + |ξ|)−N .

We have so proved that, for any N ,

(5.6.6)

ˆ
|τ |< |η|2

(1 + |ξ − τ |)−N (1 + |τ + η|)m1(1 + |τ |)−N dτ

≤ CN (1 + |ξ|)−N (1 + |η|)m1 .

If |τ | > |η|
2 , we separate the case m1 ≥ 0 from the case m1 < 0. If m1 ≥ 0, we use the fact that

|τ + η| ≤ 3|τ |, so that ˆ
|τ |> |η|2

(1 + |ξ − τ |)−N (1 + |τ + η|)m1(1 + |τ |)−N dτ

.
ˆ
|τ |> |η|2

(1 + |ξ − τ |)−N (1 + |τ |)−N+m1 dτ

.
ˆ
Rn

(1 + |ξ − τ |)−N+m1(1 + |τ |)−N+m1 dτ

. (1 + |ξ|)−N+m1

≤ (1 + |ξ|)−N+m1(1 + |η|)m1 .

If m1 < 0, we use the fact that (1+ |τ+η|)m1 ≤ 1, together with the fact that (1+ |τ |)m1 ≤ (1+ |η|/2)m1 ,
to obtain the inequalityˆ

|τ |> |η|2
(1 + |ξ − τ |)−N (1 + |τ + η|)m1(1 + |τ |)−N dτ

. (1 + |η|)m1

ˆ
|τ |> |η|2

(1 + |ξ − τ |)−N (1 + |τ |)−N−m1 dτ

. (1 + |η|)m1

ˆ
|τ |> |η|2

(1 + |ξ − τ |)−N−m1(1 + |τ |)−N−m1 dτ

. (1 + |ξ|)−N−m1(1 + |η|)m1 .
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The two cases can be combined together to give the inequality

(5.6.7)

ˆ
|τ |> |η|2

(1 + |ξ − τ |)−N (1 + |τ + η|)m1(1 + |τ |)−N dτ

≤ CN (1 + |ξ|)−N+|m1|(1 + |η|)m1 .

Putting (5.6.6) and (5.6.7) together, we have that

|k̃(ξ, η)| ≤ CN (1 + |ξ|)−N+|m1|(1 + |η|)m1+m2 ,

for any N .
Consider now a derivative of k̃ in η,

∂βη k̃(ξ, η) =
∑
α≤β

cβ,α

ˆ
Rn
∂αη k1(ξ − τ, τ + η)∂β−αη k2(τ, η) dτ .

By remark (4) above, each term can be treated as before, with m1 replaced by m1−|α| and m2 replaced
by m2 − |β|+ |α|. �

Proposition 5.6.6. Let D1, D2 be special ψdo of order m1,m2 respectively. Then [D1, D2] is a special
ψdo of order m1 +m2 − 1.

Proof. Let k1, k2 be the kernels associated to D1, D2, and let k̃, k̃′ be such that Tk̃ = Tk1
Tk2

, Tk̃′ =

Tk2
Tk1

. Then k̃ is given by (5.6.5), and

k̃′(ξ, η) =

ˆ
Rn
k2(ξ − τ, τ + η)k1(τ, η) dτ

=

ˆ
Rn
k2(ξ − τ, τ + η)k1(τ, η) dτ

=

ˆ
Rn
k1(ξ − τ, η)k2(τ, ξ − τ + η) dτ .

Therefore,

k̃(ξ, η)− k̃′(ξ, η) =

ˆ
Rn
k1(ξ − τ, τ + η)k2(τ, η) dτ

−
ˆ
Rn
k1(ξ − τ, η)k2(τ, ξ − τ + η) dτ

=

ˆ
Rn

(
k1(ξ − τ, τ + η)− k1(ξ − τ, η)

)
k2(τ, η) dτ

+

ˆ
Rn
k1(ξ − τ, η)

(
k2(τ, η)− k2(τ, ξ − τ + η)

)
dτ

= h1(ξ, η) + h2(ξ, η) .

We prove that each of h1 and h2 satisfies (5.6.3) with m = m1 + m2 − 1. The proof requires some
modifications to that of Proposition 5.6.5.

For h1, we first integrate for |τ | < |η|
2 . Since |tτ + η| ∼ |η| for 0 < t < 1, by the mean value theorem∣∣k1(ξ − τ, τ + η)− k1(ξ − τ, η)

∣∣ ≤ |τ | sup
0<t<1

∣∣∇ηk1(ξ − τ, tτ + η)
∣∣

≤ CN |τ |(1 + |ξ − τ |)−N (1 + |η|)m1−1 .
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Therefore, ˆ
|τ |< |η|2

∣∣k1(ξ − τ, τ + η)− k1(ξ − τ, η)
∣∣∣∣k2(τ, η)

∣∣ dτ
≤ CN (1 + |η|)m1+m2−1

ˆ
|τ |< |η|2

(1 + |ξ − τ |)−N (1 + |τ |)−N+1 dτ

≤ CN (1 + |ξ|)−N+1(1 + |η|)m1+m2−1 .

Passing to the integral for |τ | > |η|
2 , we writeˆ

|τ |> |η|2

∣∣k1(ξ − τ, τ + η)− k1(ξ − τ, η)
∣∣∣∣k2(τ, η)

∣∣ dτ
≤
ˆ
|τ |> |η|2

|k1(ξ − τ, τ + η)||k2(τ, η)| dτ

+

ˆ
|τ |> |η|2

|k1(ξ − τ, η)||k2(τ, η)| dτ .,

and estimate the two terms separately, distinguishing between the cases m1 ≥ 0 and m1 < 0. The proof
goes as in Proposition 5.6.59. The derivatives of h1 are estimated in a similar way.

For h2, the integral must be split according to whether |ξ − τ | < |η|
2 or |ξ − τ | > |η|

2 , and there is no
substantial difference. �

Bessel potentials can be used to approximate L2-functions by Hs(Rn)-functions with s > 0.
For δ > 0, the operator (1− δ2∆)γ is naturally defined by(

(1− δ2∆)γϕ
)̂

(ξ) = (1 + δ2|ξ|2)γϕ̂(ξ) .

Lemma 5.6.7. Let s > 0. If f ∈ L2(Rn), then (1− δ2∆)−
s
2 f ∈ Hs(Rn) and

lim
δ→0

∥∥(1− δ2∆)−
s
2 f − f

∥∥
2

= 0 .

Proof. The first statement follows from the trivial estimate (1 + δ2|ξ|2)−
s
2 ≤ Cδ(1 + |ξ|2)−

s
2 . By

Plancherel’s formula,∥∥(1− δ2∆)−
s
2 f − f

∥∥2

2
= (2π)n

ˆ
Rn

∣∣∣ 1

(1 + δ2|ξ|2)
s
2
− 1
∣∣∣2|f̂(ξ)|2 dξ .

Since
∣∣∣ 1

(1+δ2|ξ|2)
s
2
− 1
∣∣∣ ≤ 2, δ → 0, the integral tends to 0 by dominated convergence. �

For δ < 1, the constant Cδ appearing in the proof above is of the order of δ−s. This means that, whereas
the L2-norms of (1− δ2∆)−

s
2 f remain bounded as δ → 0, the Hs-norms can blow up, at most like δ−s. In

the same way, one can see that intermediate Hr-norms (i.e. with 0 < r < s) of (1 − δ2∆)−
s
2 f can blow up

at most like δ−r. In particular, if |α| ≤ s,∥∥∂α(1− δ2∆)−
s
2 f
∥∥

2
≤ Cδ−|α| ,

for δ small.
The following statement is a generalization of this fact.

Proposition 5.6.8. Let D be a special ψdo of order m, 0 ≤ m ≤ s. For every f ∈ L2(Rn) and every
δ < 1,

(5.6.8)
∥∥D(1− δ2∆)−

s
2 f
∥∥

2
≤ Cδ−m‖f‖2 ,

∥∥(1− δ2∆)−
s
2Df

∥∥
2
≤ Cδ−m‖f‖2 .

9Notice that at this stage of the proof of Proposition 5.6.5, the factor (1 + |η|)m1 was introduced by brute force. The same
can be done here with the exponent m1 − 1.
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Proof. Since
(
(1 − δ2∆)−

s
2D
)∗

= D∗(1 − δ2∆)−
s
2 , it is sufficient to prove the first estimate. If D =

F−1TkF , then (1− δ2∆)−
s
2 = F−1Tk′FDF−1, with

k′(ξ, η) = k(ξ, η)(1 + δ2|η|2)−
s
2 .

Hence, for every N ,

|k′(ξ, η)| ≤ CN
(1 + |η|)m

(1 + |ξ|)N (1 + δ|η|)s

≤ CNδ−m
1

(1 + |ξ|)N (1 + δ|η|)s−m

≤ CNδ−m
1

(1 + |ξ|)N
.

Therefore,

|Tk′f(ξ)| ≤ CNδ−m
ˆ
Rn

1

(1 + |ξ − η|)N
|f(η)| dη .

Fixing N > n, this implies that

‖Tk′f‖2 ≤ Cδ−m‖f‖2 . �

Proposition 5.6.9. Let D be a differential operator on Rn of order 1 and with coefficients in D(Rn).
For every f ∈ L2(Rn) and every δ < 1,

(5.6.9)
∥∥[(1− δ2∆)−1, D

]
f
∥∥

2
≤ C‖f‖2 .

Proof. Let v = (1− δ2∆)−1f . Then

[(1− δ2∆)−1, D
]
f = (1− δ2∆)−1Df −D(1− δ2∆)−1f

= (1− δ2∆)−1
(
D(1− δ2∆)v − (1− δ2∆)Dv

)
= δ2(1− δ2∆)−1[∆, D]v .

As we have observed, [∆, D] is a differential operator of order at most 2. Applying Proposition 6.8 twice,
we obtain that ∥∥[(1− δ2∆)−1, D

]
f
∥∥

2
≤ C‖v‖2 = C

∥∥(1− δ2∆)−1f
∥∥

2
≤ C2‖f‖2 . �

7. Back to L

Recall from (5.5.2) that, for f ∈ D(Ω′) and s < 1
m ,

‖f‖(s) ≤ Cs
(
‖f‖2 + |||Lf |||′X ,Ω′

)
.

We first extend it to f ∈ H2(Rn) with supp f ⊂ Ω′.

Lemma 5.7.1. Suppose that f ∈ H2(Rn), with supp f ⊂ Ω′, and that |||Lf |||′X ,Ω′ <∞. Then (5.5.2) holds

for s < 1
m .

Proof. Let ϕ ∈ D(Rn) be supported on the unit ball and with
´
Rn ϕ(x) dx = 1. For ε > 0, let

ϕε(x) = ε−nϕ(ε−1x), and set fε = ϕε ∗ f .
If ε < d(supp f, ∂Ω′), fε ∈ D(Ω′) ⊂ H2(Rn). Moreover, for |α| ≤ 2,

(5.7.1) lim
ε→0
‖∂αf − ∂αfε‖2 = lim

ε→0
‖∂αf − ϕε ∗ ∂αf‖2 = 0 ,

since the ϕε form an approximate identity for ε → 0. We have so proved that fε → f in H2(Rn), hence in
Hs(Rn), since s < 2.

From (5.7.1) we also obtain that
lim
ε→0
‖Lf − Lfε‖2 = 0 ,
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just because L is a second-order operator with bounded coefficients on Ω′. By (5.5.1),

lim
ε→0
|||Lf − Lfε|||′X ,Ω′ = 0 .

We can then apply (5.5.2) to the fε and pass to the limit. �

Lemma 5.7.2. Let K be a compact subset of Ω′. If f ∈ L2(Rn), with supp f ⊆ K, and |||Lf |||′X ,Ω′ < ∞,

then, for s < 1
m , f ∈ Hs(Rn) and (5.5.2) holds with a constant Cs,K also depending on K.

Proof. We can assume that the vector fields Xj have compact support in Ω (if not multiply each of

them by a function in D(Ω) which is identically equal to 1 on a neighborhood of Ω′; since we will apply
the Xj and L only to functions compactly supported in Ω′, this modification will not affect our operations).
This modification allows us to extend the Xj and L to all of Rn (setting them identically equal to 0 outside
of Ω) and to regard them as special ψdo’s.

For δ > 0 define
fδ = (1− δ2∆)−1f .

The discussion at the beginning of Section 7 shows that fδ ∈ H2(Rn). If χ ∈ D(Ω′) is identically equal
to 1 on a neighborhood of K, then also χfδ ∈ H2(Rn). Applying Lemma 5.7.1 to χfδ, with K replaced by
K ′ = suppχ, we have that

(5.7.2) ‖χfδ‖(s) ≤ Cs
(
‖fδ‖2 + |||Lχfδ|||′X ,Ω′

)
.

We prove that the norms |||Lχfδ|||′X ,Ω′ are uniformly bounded for δ small. Since f = χf = χ(1− δ2∆)fδ,

Lf = Lχ(1− δ2∆)fδ

= (1− δ2∆)Lχfδ − δ2[Lχ,∆]fδ .

Applying (1− δ2∆)−1 to both sides, we obtain that

Lχfδ = (1− δ2∆)−1Lf + δ2(1− δ2∆)−1[Lχ,∆]fδ ,

so that

(5.7.3) |||Lχfδ|||′X ,Ω′ ≤
∣∣∣∣∣∣(1− δ2∆)−1Lf

∣∣∣∣∣∣′
X ,Ω′ + δ2

∣∣∣∣∣∣(1− δ2∆)−1[Lχ,∆]fδ
∣∣∣∣∣∣′
X ,Ω′ .

Now,
|||(1− δ2∆)−1Lf |||′X ,Ω′ = sup

ϕ∈D(Ω′):|||ϕ|||X≤1

∣∣〈(1− δ2∆)−1Lf, ϕ〉
∣∣

= sup
ϕ∈D(Ω′):|||ϕ|||X≤1

∣∣〈Lf, (1− δ2∆)−1ϕ〉
∣∣

= sup
ϕ∈D(Ω′):|||ϕ|||X≤1

∣∣〈Lf, χ(1− δ2∆)−1ϕ〉
∣∣

≤ |||Lf |||′X ,Ω′ sup
ϕ∈D(Ω′):|||ϕ|||X≤1

|||χ(1− δ2∆)−1ϕ|||X .

By (5.6.6),
‖χ(1− δ2∆)−1ϕ‖2 ≤ ‖ϕ‖2 .

Moreover, setting Djg = Xjχg, we can apply Proposition 5.6.9 and obtain that, for δ small,∥∥Xjχ(1− δ2∆)−1ϕ
)∥∥

2
= ‖Dj(1− δ2∆)−1ϕ‖2
≤ ‖(1− δ2∆)−1Djϕ‖2 +

∥∥[Dj , (1− δ2∆)−1]ϕ
∥∥

2

≤ CK
(
‖Djϕ‖2 + ‖ϕ‖2

)
≤ CK

(
‖(Xjχ)ϕ‖2 + ‖χXjϕ‖2 + ‖ϕ‖2

)
≤ CK |||ϕ|||X

(notice that the constant depends on the choice of χ, i.e. on K).
Therefore,

|||χ′(1− δ2∆)−1ϕ|||X ≤ CK |||ϕ|||X ,
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and hence

(5.7.4) |||(1− δ2∆)−1Lf |||′X ,Ω′ ≤ CK |||Lf |||′X ,Ω′ .

Consider now the last term in (5.7.3),

δ2
∣∣∣∣∣∣(1− δ2∆)−1[Lχ,∆]fδ

∣∣∣∣∣∣′
X ,Ω′ ≤ δ

2
k∑
j=1

∣∣∣∣∣∣(1− δ2∆)−1[X2
j χ,∆]fδ

∣∣∣∣∣∣′
X ,Ω′ .

Each summand in the right-hand side can be estimated as follows:

(5.7.5)

∣∣∣∣∣∣(1−δ2∆)−1[X2
j χ,∆]fδ

∣∣∣∣∣∣′
X ,Ω′

= sup
ϕ∈D(Ω′):|||ϕ|||X≤1

∣∣〈fδ, [∆, χ(X∗j )2](1− δ2∆)−1ϕ
〉∣∣

= sup
ϕ∈D(Ω′):|||ϕ|||X≤1

∣∣〈f, (1− δ2∆)−1[∆, χ(X∗j )2](1− δ2∆)−1ϕ
〉∣∣

≤ ‖f‖2 sup
ϕ∈D(Ω′):|||ϕ|||X≤1

∥∥(1− δ2∆)−1[∆, χ(X∗j )2](1− δ2∆)−1ϕ
∥∥

2
.

We have that
[∆, χ(X∗j )2] = ∆χ(X∗j )2 − χ(X∗j )2∆

= [∆, χ](X∗j )2 + χ
(
∆(X∗j )2 − (X∗j )2∆

)
= [∆, χ](X∗j )2 + χ

(
[∆, X∗j ]X∗j +X∗j [∆, X∗j ]

)
= [∆, χ](X∗j )2 + χ

(
2[∆, X∗j ]X∗j +

[
X∗j , [∆, X

∗
j ]
])

= D1X
∗
j +D2 ,

where D1, D2 are second-order operators with compact support in Ω′. Therefore∥∥(1− δ2∆)−1[∆, χ(X∗j )2](1− δ2∆)−1ϕ
∥∥

2

≤
∥∥(1− δ2∆)−1D1X

∗
j (1− δ2∆)−1ϕ

∥∥
2

+
∥∥(1− δ2∆)−1D2(1− δ2∆)−1ϕ‖2

≤
∥∥(1− δ2∆)−1D1(1− δ2∆)−1X∗j ϕ

∥∥
2

+
∥∥(1− δ2∆)−1D1[X∗j , (1− δ2∆)−1]ϕ

∥∥
2

+
∥∥(1− δ2∆)−1D2(1− δ2∆)−1ϕ‖2 .

Since Xj , D1 and D2 depend only on the choice of χ, i.e. on K, we have, by Proposition 5.6.8,∥∥(1− δ2∆)−1D1(1− δ2∆)−1X∗j ϕ
∥∥

2
≤
∥∥D1(1− δ2∆)−1X∗j ϕ

∥∥
2

≤ CKδ−2‖X∗j ϕ
∥∥

2

≤ CKδ−2
(
‖ϕ‖2 + ‖Xjϕ‖2

)
≤ CKδ−2

(
‖ϕ‖2 + ‖Xjϕ‖2

)
≤ CKδ−2|||ϕ|||X .

Similarly,

‖(1− δ2∆)−1D2(1− δ2∆)−1ϕ‖2 ≤ CKδ−2‖ϕ‖2 ≤ CKδ−2|||ϕ|||X .

Finally, by Propositions 5.6.8 and 5.6.9 together,∥∥(1− δ2∆)−1D1[X∗j , (1− δ2∆)−1]ϕ
∥∥

2
≤ CKδ−2‖[X∗j , (1− δ2∆)−1]ϕ

∥∥
2

≤ CKδ−2‖ϕ‖2
≤ CKδ−2|||ϕ|||X .
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Putting these various estimates into (5.7.5), we have

(5.7.6)
∣∣∣∣∣∣(1− δ2∆)−1[X2

j ,∆]fδ
∣∣∣∣∣∣′
X ,Ω′ ≤ CK‖f‖2 .

Then (5.7.4) and (5.7.6) give that

|||Lfδ|||′X ,Ω′ ≤ CK
(
|||Lf |||′X ,Ω′ + ‖f‖2

)
,

and from (5.7.2) we have

(5.7.7) ‖χfδ‖(s) ≤ Cs,K
(
‖f‖2 + |||Lf |||′X ,Ω′

)
.

It follows that the norms ‖χfδ‖(s) are bounded for δ small. Let {δj} be a sequence tending to 0 such
that χfδj have a weak limit g in Hs(Rn). The norm of the weak limit is not larger than the right-hand side

in (5.7.7). By compactness of the inclusion Hs(Rn) ⊂ L2(Rn), χfδj tend to g in L2(Rn). But, by Lemma

5.6.7, χfδj tend to f in L2(Rn). Hence f = g, so that f ∈ Hs(Rn) and satifies (5.5.2). �

8. Hypoellipticity of L

Recall that, for r ∈ R,

Hr(Rn) = (1−∆)−
r
2

(
L2(Rn)

)
.

The following statement has the effect of “translating” (5.5.2) from the level of H0(= L2)-functions to
the level of Hr-functions. The exponent r can be both positive or negative.

Lemma 5.8.1. Let K be a compact subset of Ω′, and let χ ∈ D(Ω′) be identically equal to 1 on a
neighborhood of K. If f ∈ Hr(Rn), with supp f ⊆ K and |||χ(1 − ∆)

r
2Lf |||′X ,Ω′ < ∞, then, for s < 1

m ,

f ∈ Hr+s(Rn) and

‖f‖(r+s) ≤ Cs,K
(
‖f‖(r) + |||χ(1−∆)

r
2Lf |||′X ,Ω′

)
.

Proof. The statement follows immediately if we show that Lemma 5.7.2 can be applied to to g =
χ(1−∆)

r
2 f , with K replaced by K ′ = suppχ ⊂ Ω′.

By assumption, g ∈ L2(Rn) and supp g ⊆ K ′. We have to show that

(5.8.1) |||Lg|||′X ,Ω′ <∞ .

Assuming, as in the proof of Lemma 5.7.2, that the Xj and L are compactly supported in Ω, in our
hypotheses, (5.8.1) is equivalent to ∣∣∣∣∣∣[χ(1−∆)

r
2 , L

]
f |||′X ,Ω′ <∞ .

As in the proof of 5.7.2,∣∣∣∣∣∣[χ(1−∆)
r
2 , L

]
f
∣∣∣∣∣∣′
X ,Ω′

= sup
ϕ∈D(Ω′):|||ϕ|||X≤1

∣∣〈f, [L∗, (1−∆)
r
2χ
]
ϕ
〉∣∣

= sup
ϕ∈D(Ω′):|||ϕ|||X≤1

∣∣〈(1−∆)
r
2 f, (1−∆)−

r
2

[
L∗, (1−∆)

r
2χ
]
ϕ
〉∣∣

≤ ‖f‖(r) sup
ϕ∈D(Ω′):|||ϕ|||X≤1

∥∥(1−∆)−
r
2

[
L∗, (1−∆)

r
2χ
]
ϕ
∥∥

2
.
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Now, [
L∗, (1−∆)

r
2χ
]

=

k∑
j=1

[
(1−∆)

r
2χ, (X∗j )2

]
=

k∑
j=1

[
(1−∆)

r
2χ,X∗j

]
X∗j +

k∑
j=1

X∗j
[
(1−∆)

r
2χ,X∗j

]
= 2

k∑
j=1

[
(1−∆)

r
2χ,X∗j

]
X∗j +

k∑
j=1

[
X∗j ,

[
(1−∆)

r
2χ,X∗j

]]
.

By Proposition 5.6.6,
[
(1 −∆)

r
2χ,X∗j

]
is a special ψdo of order r, and Corollary 5.6.3 implies that its

composition with (1−∆)−
r
2 is of order 0. Therefore, by Theorem 5.6.4,∥∥(1−∆)−

r
2

[
(1−∆)

r
2χ,X∗j

]
X∗j ϕ

∥∥
2
≤ C‖X∗j ϕ‖2 ≤ C|||ϕ|||X .

For the same reason, ∥∥∥(1−∆)−
r
2

[
X∗j ,

[
(1−∆)

r
2χ,X∗j

]]
ϕ
∥∥∥

2
≤ C‖ϕ‖2 .

Therefore, ∣∣∣∣∣∣[(1−∆)
r
2χ,L

]
f
∣∣∣∣∣∣′
X ,Ω′ ≤ C‖f‖(r) ,

and we are finished. �

We can now prove the final theorem.

Theorem 5.8.2. L is hypoelliptic in Ω.

Proof. Let u ∈ D′(Ω) be such that Lu coincides with a C∞-function on an open subset Ω′. We can
assume that Ω′ is relatively compact. Multiplying, if necessary, u by a function in D(Ω) that is identically
equal to 1 on a neighborhood of Ω′, we can also assume that u has compact support in Ω. We then extend
u to all of Rn, by imposing that it vanishes on Rn \ K. Since any distribution with compact support has
finite order, there is r ∈ R such that u ∈ Hr(Rn).

For a fixed ball B in Ω′, we choose two functions χ, χ′ ∈ D(Ω′) such that χ is identically equal to 1 on
a neighborhood of B̄, and χ′ is identically equal to 1 on a neighborhood of suppχ. In particular χχ′ = χ.

If we prove that |||χ′(1 − ∆)
r
2L(χu)|||′X ,Ω′ < ∞, it follows from Lemma 5.8.1 that χu ∈ Hr+s(Rn) for

s < 1
m . We can then reapply Lemma 5.8.1 repeatedly to conclude that χu ∈ HN (Rn) for every N . By the

Sobolev embedding theorem10, χu ∈ C∞(Rn), i.e. u ∈ C∞(B), and we are finished.
We consider separately each summand coming from application of Leibniz’s formula

L(χu) = χLu+ (Lχ)u− 2

k∑
j=1

(Xjχ)Xju .

For the first term, notice that χLu ∈ D(Rn) by hypothesis. Therefore, applying χ′(1 − ∆)
r
2 to it, we

obtain a function in every Sobolev space, i.e. a C∞-function, which also has compact support. Therefore

|||χ′(1−∆)
r
2 (χLu)|||′X ,Ω′ ≤

∥∥χ′(1−∆)
r
2 (χLu)

∥∥
2
<∞ .

For the second term, we observe that (Lχ)u ∈ Hr(Rn), i.e. (1 − ∆)
r
2

(
(Lχ)u

)
∈ L2(Rn), and we are

done.

10Directly, we have ˆ
Rn
|χ̂u(ξ)|2(1 + |ξ|)2N dξ <∞

for every N . Applying Schwartz’s inequality,

̂∂α(χu)(ξ) = (iξ)αχ̂u(ξ) ∈ L1(Rn) ,

for every multi-index α. Therefore ∂α(χu) is continuous.
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For each of the other terms, setting X̃j = (Xjχ)Xj , we must then prove that, for some constant C > 0
and every ϕ ∈ D(Ω′), ∣∣〈χ′(1−∆)

r
2 X̃ju, ϕ

〉∣∣ ≤ C|||ϕ|||X .

We have 〈
χ′(1−∆)

r
2 X̃ju, ϕ

〉
=
〈
X̃j

(
χ′(1−∆)

r
2 u
)
, ϕ
〉

+
〈[
χ′(1−∆)

r
2 , X̃j

]
u, ϕ

〉
=
〈
(1−∆)

r
2 u, χ′X̃∗j ϕ

〉
+
〈[
χ′(1−∆)

r
2 , X̃j

]
u, ϕ

〉
Then ∣∣〈(1−∆)

r
2 u, χ′X̃∗j ϕ

〉∣∣ ≤ ‖u‖Hr‖X̃∗j u‖2 ≤ C‖u‖Hr‖ϕ‖X .

Since
[
χ′(1−∆)

r
2 , X̃j

]
is a special ψdo of order r,∣∣〈[χ′(1−∆)

r
2 , X̃j

]
u, ϕ

〉∣∣ ≤ ∥∥[χ′(1−∆)
r
2 , X̃j

]
u
∥∥

2
‖ϕ‖2

C‖u‖Hr‖ϕ‖2 .
Putting everything together, we obtain the desired estimate. �
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