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Abstract

We consider the problem of removing a limited subset of nodes and /or edges from a graph G in
order to minimize the so-called pairwise connectivity of the residual graph, which is defined as
the total cost of the pairs of nodes still connected by a path. This is a well-studied version of
a family of problems known as critical node or edge detection problems. The main inspiration
and common interest behind these topics stems from their relevance in numerous domains,
including computational biology, transportation problems, the assessment of network security,

and many others.

In this thesis we study the case in which the graph G has a hierarchical organization, so
that G is a tree. We begin by considering some natural variants of the critical node detection
problem for special graph class such as paths and present an exact approach to solve the
problems. We continue by investigating the critical edge detection problem over trees in
different situations of edge weights. We provide polynomial algorithms for the problems when

all connections between pairs of nodes have unit cost.

Indeed, while most of the literature focuses on deleting nodes or edges separately, we allow
the simultaneous removal of nodes and edges. We consider both the case in which the nodes
and edges removed must satisfy a joint weight limit, and the case in which two separate weight
limits are given for nodes and edges. We also consider our problems to a more general setting,
in which the connection costs are called “square 0/1 connection costs”. We then explore our
problems with arbitrary 0/1 connection costs and nonnegative node/edge weights when the
number of leaves in the tree is fixed. We study the complexity of several problems of this type
when the given graph is a tree, providing NP-hardness results or polynomial-time algorithms
for the different cases that we analyze. In addition, we present mathematical models based
on integer linear programming which provides optimal solutions for critical node and/or edge
problems.

Finally we consider a generalization of the pairwise connectivity critical node/edge de-
tection problem, the so-called Distance-based Critical Node/Edge Detection Problem. We
investigate certain versions of our problems that fall into this category and propose poly-
nomial time algorithms. We also develop a mathematical framework for the distance-based

critical edge identification problem based on integer linear programming.

vil



viii

Keywords: Critical node detection, Critical edge detection, Combinatorial optimization,
Complexity, Dynamic programming, Integer linear programming, Network interdiction, Pair-

wise connectivity.



Sommario (Italian abstract)

In questo lavoro consideriamo il problema di rimuovere un sottoinsieme limitato di nodi e/o
archi da un grafo G cosi da minimizzare una misura della connettivita del grafo residuo,
definita come il costo totale delle coppie di nodi ancora connesse da un cammino. Questa é
una versione molto studiata di una famiglia di problemi noti come problemi di identificazione
di nodi o archi critici. La principale motivazione e l'interesse comune alla base di questi
argomenti nascono dalla loro rilevanza in numerosi campi, tra cui la biologia computazionale,
problemi di trasporto, la valutazione della sicurezza delle reti e molti altri.

In questa tesi studiamo il caso in cui il grafo G ha una struttura gerarchica, per cui G é un
albero. Cominceremo considerando alcune varianti naturali del problema di identificazione di
nodi critici per alcune classi particolari di grafi, come i cammini, e presentiamo un approccio
esatto per risolvere questi problemi. Continueremo studiando il problema di identificazione di
archi critici su alberi con diverse tipologie di pesi sugli archi. Otterremo algoritmi polinomiali
per questi problemi quando tutte le connessioni tra coppie di nodi hanno costo unitario.

Di fatto, mentre gran parte della letteratura é incentrata sulla rimozione di nodi o archi
separatamente, qui consentiamo la rimozione contemporanea di nodi e archi. Considereremo
sia il caso in cui i nodi e gli archi rimossi devono soddisfare un singolo vincolo cumulativo sul
loro peso, sia il caso in cui vengono assegnati due vincoli separati per il peso di nodi e archi
rimossi. Studieremo i nostri problemi anche in un contesto pitt generale, in cui le connessioni
hanno una struttura che chiameremo “costi 0/1 quadrati”. Esploreremo poi questi problemi
con costi di connessione 0/1 generali e pesi non-negativi su nodi e/o archi sotto l'ipotesi che
il numero di foglie dell’albero sia fissato. Studieremo anche la complessita di vari problemi
di questo tipo quando il grafo é un albero, fornendo risultati di NP-completezza o algoritmi
polinomiali a seconda del caso in esame. Inoltre, presenteremo modelli matematici basati sulla
programmazione lineare intera che forniscono soluzioni ottime per problemi di rimozione di
nodi e/o archi.

Infine considereremo una generalizzazione della misura della connettivitd considerata so-
pra, che da luogo a problemi di identificazione di nodi e archi critici basati sulla distanza.
Studieremo certe versioni dei nostri problemi che cadono in questa categoria e proporremo
algoritmi polinomiali. Svilupperemo anche una formulazione matematica per questi problemi

tramite programmazione lineare intera.

ix



Parole chiave: Identificazione di nodi critici, Identificazione di archi critici, Ottimiz-
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Chapter 1

Introduction

Critical node or edge detection problems are a family of optimization problems defined on
graphs, where one is required to remove a limited number of nodes and/or edges in order to
minimize some measure of the connectivity of the residual graph. This class of problems has
attracted the interest of many researchers in the last two decades, because of its relevance
in a number of practical applications. The applications involve situations where the aim is
to either protect the connectivity of nodes in a network by securing the most critical nodes
or attacking the most critical nodes in order to have minimum connections between all pairs
of nodes in the network. Some important applications of the critical node or edge detection
problems are presented below.

In a supply chain network, the connections between pairs of nodes is minimized after
removing the most critical nodes from the network. For example, a military supply chain
network [88] contains battalions and support battalions as nodes and the connections between
them as links. By attacking the most critical nodes in this network, the connectivity between
supply and demand nodes will be minimized. Therefore, the solution of the critical node
detection problem (CNDP) is important in military tactical attacks during wars.

By using the gathered intelligence from a covert network, the terrorist network can be
represented as a graph where terrorists are depicted as nodes and the social interactions
between them represent links. We can minimize the communications between terrorists by
attacking the most critical individuals in the networks [48].

People and contacts between them in a real society are represented as nodes and links
of a graph in order to study the effect of epidemics in real social network [56, 69]. In order
to prevent the spread of infectious diseases in real social networks, different strategies were
presented for targeted vaccinations since random mass vaccinations are expensive [56, 69].
However, the optimal vaccination strategy is to find the critical nodes and vaccinate them
to minimize the pairwise connectivity between people in a society [8], assuming that higher
pairwise connectivity cause faster outbreak.

Biological organisms, such as bacteria and viruses, are sets of interconnected proteins
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that interact with each other to form a protein-interaction network. These networks can be
represented by a graph where nodes are proteins and edges are interactions between them.
Protein structure and interactions are widely studied in biology [61, 63, 84, 87|. Identifying
critical nodes (proteins), which maintain connectivity between all proteins, can provide useful
information for many biological applications. For instance, in rational drug design [47, 53],
these critical proteins need to be targeted to destroy and neutralize the corresponding harmful
organism, resulting, from a pharmaceutical perspective, in a therapeutic benefit for the patient.
This is what V. Tomaino et al. [75] investigated with the purpose of destroying aggressive
cancer cells. To do so, they identified critical nodes in the human protein interaction network
using the CNDP variant. Likewise, V. Boginski et al. [14] explored the identification of such
proteins using the Cardinality Constrained-CNDP (CC-CNDP) variant. This work is a good
application of the concept of critical nodes in computational biology.

Telecommunication networks such as the Internet, telephone networks, and computer net-
works can be represented as graphs, where each node is a terminal and links show the commu-
nications between terminals. In telecommunication networks, we want to prevent the spread
of a virus or find some way to reduce as much as possible the communication within the
network [9, 22|. Also, in network immunization [49, 50|, where a graph representing contacts
between people is given, only a given maximum number of persons can be vaccinated, and we
aim at minimizing the propagation of the virus [21, 89].

The CNDP finds applications in the field of transportation engineering [33, 46]. Two
particular examples are as follows. In general, for transportation networks, it is important
to identify critical nodes in order to ensure they operate reliably for transporting people and
goods throughout the network. Further, in planning for emergency evacuations, identifying
the critical nodes of the transportation network is crucial. The reason is two-fold. First,
knowledge of the critical nodes will help in planning the allocation of resources during the
evacuation. Secondly, in the aftermath of a disaster they will help in re-establishing critical
traffic routes.

The problem can be seen as a multicommodity version of the interdiction problems pi-
oneered by Wollmer [85]. The problems deal with deleting arcs in order to minimize the
maximum amount of flow that can be shipped through a network, a finite resource budget
being allocated for arc deletion operations. The basic interdiction models deal with a sin-
gle commodity source-sink flow on a directed capacitated network. Wood [86] also considers
extensions to undirected graphs and multicommodity flows. Recently Smith and Lim [74]
specifically tackle multicommodity interdiction models.

Myung and Kim [57] tackle the problem of deleting a limited number of edges from an
undirected graph in order to minimize the weighted number of connections guaranteed in the
residual graph.

Applications of the CNDP are not limited to what has been mentioned above, and there

are many other applications in several other areas including the analysis of complex networks



[15, 34|, security /vulnerability issues in networks |29, 58, 72, 73, 82|, homeland security [16,
39, 44], energy [68], etc.

For problems based on the deletion of edges, a variety of variants have been defined and
studied in the literature, such as the graph partitioning problem [17, 35, 62], the minimum k-
cut problem [38, 41], the multicut problem [24, 37, 40|, the multiway cut problem [18, 19, 26|,
the multi-multiway cut problem [12], etc.

A class of the CNDP that take into account the actual pairwise distances between nodes
is so-called Distance-based Critical Node Detection Problem (D-CNDP) as introduced in [82].
The authors in [82] identify five different important classes of D-CNDP in which the objectives

are to:
(i) Minimize the number of node pairs connected by a path of length at most k;
(ii) Minimize the Harary index;
(iii) Minimize the sum of power functions of distances;
(iv) Maximize the generalized Wiener index;
(v) Maximize the distance between two given nodes.

They propose the recursive formulation which is generic enough to handle all of the D-CNDP
classes mentioned above. In [43], the authors propose a complementary mixed integer pro-
gramming formulation and a Benders approach for the distance-based connectivity objective
(iv) above. In [4] and [67], the authors propose new integer programming formulations as
well as a heuristic approach for the first distance-based connectivity objective (i). Complexity
analyses of the D-CNDP connectivity objectives (i), (ii) and (iv) above are presented in [7] for
graphs with special structures, such as trees, paths and series—parallel graphs. The authors
then proposed dynamic programming algorithms for polynomially and pseudo-polynomially

solvable cases.

Connectivity Measures

The choice of the connectivity measure is of course a central element in a critical node or edge
detection problem. Indeed, several different connectivity measures have been proposed in the
literature. These measures can be categorized into two classes depending on the context of
the problem that is being solved. The measures from the first class are mainly associated
with network flow problems, in particular shortest path problems, maximum flow problems,
or minimum cost flow problems. The logic behind these measures is that a network gets
disconnected when it starts losing its ability to send flow between a predefined set of node
pairs, or simply when traversing the network becomes too expensive |23, 85|. For these cases,

the critical elements are the ones whose deletion results in the maximum increase of the
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shortest paths or, consequently, the maximum decrease of the flow capacity between the
predefined node pairs. These kinds of measures are commonly used in the context of network
interdiction |20, 45, 55, 74|, and are generally designed to tackle arc interdiction problems

(detecting critical arcs).

On the other hand, the measures of the second class are mostly associated with topological
characteristics of the network. Among this class, the most common measures are: the total
number of pairwise connections (i.e., the total number of node pairs that are connected in the
network by at least one path!) [8, 27], the total weighted pairwise connectivity (i.e., a weighted
sum of the pairwise connections) [8, 27, the size of the largest connected? component (i.e., the
number of nodes that belong to the largest maximal connected subgraph of a graph G) [59, 70|,
the total number of connected components [3, 70|, average shortest path value [25], and the
diameter [3|. Figure 1.1 provides an example of the different optimal solutions that are found
depending on the measure that is chosen. For this example we assume that the goal is to
identify the most critical node among the network. Note that if the connectivity measure is
set to be the length of the shortest path between nodes 1 and 5, the critical node is node 3.
On the other hand, if the measure is the size of the largest component, the critical node is
node 4. And finally, if the measure is the total number of components, the critical node is
node 6.

Figure 1.1: A graph to illustrate optimal solutions for different connectivity measures.

In this dissertation we consider the pairwise connectivity between nodes, formalized in [8].
The pairwise connectivity of a graph G = (V, E) is defined as the number of pairs of nodes

belonging to the same connected component.

This can be naturally generalized to the total cost of the pairs of nodes that belong to the

same component, if connection costs are assigned for each pair of nodes.

LA path in a graph G = (V, E) is a sequence of nodes {v1,vs,...,vs} such that each pair (vi,vi11) is an
edge in F.
2A graph G is said to be connected if there is a path between any two distinct nodes. Otherwise, graph G

is disconnected.



Computational Complexity

From the complexity point of view, the decision version® of the CNDP has been proven to
be NP-complete on general graphs [8, 10, 29, 31, 54, 59, 71, 73| and often also remain NP-
complete even on some special classes of graphs [2, 13, 27, 51, 70, 71, 73]. The recognition
version of the CNDP with unit connection costs and node weights is proven to be NP-complete
on general graphs by Arulselvan et al. [8] through a polynomial reduction from the Maximum
Independent Set* problem, known to be NP-complete [36]. Polynomial algorithms are instead
available only for some particular cases, which are usually limited to graphs with bounded
treewidth, in particular trees and series-parallel graphs [2, 7, 13, 27, 51, 70]. Di Summa et
al. [27] proved that the CNDP is also NP-complete on trees for the total weighted pairwise
connectivity measures using a reduction from the multicut in trees problem [37]. They also
showed that when the pairwise connection costs are set to be one (i.e., when the connectivity
measure is replaced with the sum of the total number of pairwise connections), the problem
can be solved in polynomial time using a dynamic programming approach. Moreover, Shen
and Smith [25] proved that the CNDP is polynomially solvable in trees and series—parallel
graphs for the cases when the deletion costs of the nodes are set to be one and the objective
is either minimizing the size of the largest component or maximizing the number of residual
components. They also propose a dynamic programming scheme for solving the CNDP in
these cases. Most variants of D-CNDP are NP-hard [82]. However, some special cases of

D-CNDP admit polynomial-time algorithms [7].

Solution Methodologies

Despite the difficulty of the problem, many approaches have been explored in the litera-
ture to solve it, using: dynamic programming |2, 13, 27, 51, 70] and integer linear pro-
gramming [8, 10, 28, 30, 59, 71, 73|, to provide exact solutions. To provide approximated
solutions with performance guarantee, a variety of methods have been considered, including
heuristic algorithms [1, 5, 6, 8, 9, 58, 64, 65, 66, 78|, polynomial-time approximation algo-
rithms [11, 13], particularly rounding-based approximation approaches 32, 73, 79, 80, 81|,
stochastic search algorithms [10, 77|, fixed-parameter tractable algorithms [13, 54|, polyno-
mial pseudo-approximation algorithms [29]. Recently, solving frameworks considering different

connectivity metrics together have been developed. This is the case for [83], where the devel-

3Decision problems are the problems for which the answer is either “YES” or “NO”. We say that a decision
problem is NP-complete if: (i) it is in NP, i.e., it has a polynomial-time verification algorithm, and (ii) all
problems in NP are reducible to it in polynomial time. A decision problem X is polynomially reducible to a
decision problem Y if there exists a polynomial-time reduction A such that, for any instance I € X we have

A(I) € Y. If only the second condition holds, then X is said to be NP-hard.
“In a graph G = (V, E), an independent set is a set of vertices S C V such that there is no edge between

any two of them.
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oped unifying integer programming framework takes into account four connectivity metrics.
Similarly, authors in [5] presented an efficient evolutionary framework for solving different
variants of the CNDP. The framework is potentially adaptable to deal with different variants
of the CNDP considering different connectivity metrics. We refer the interested reader to the

survey [52| for a detailed overview.

1.1 The problems that we study

According to the pairwise connectivity measure mentioned above, the Critical Node Detection
Problem (CNDP) is formally stated as follows:

Problem 1 (CNDP). Given an undirected graph G = (V, E), a weight w, > 0 for every
v €V, a connection cost ¢y, > 0 for all u,v € V, and a weight limit W > 0, find S CV such
that the total weight of the nodes in S is at most W and the total cost of the pairs of nodes

that are connected in G — S is minimized.

Here G — S denotes the graph obtained after removing from G the nodes in 5, i.e., the
subgraph of G induced by V' \ S. Furthermore, in the above problem as well in all variants
considered below, the connection costs will be always implicitly assumed to be symmetric (i.e.,
Cup = Cyy for every u,v € V') and to satisfy ¢,, = 0 for every v € V.

For this and the other problems that we study, we are particularly interested in the case
in which G is a tree®. Already under this assumption, CNDP is NP-hard, even if w, = 1 for
every v € V and ¢y, € {0,1} for every u,v € V [27|. However, still assuming that G is a
tree, the problem admits a polynomial-time algorithm if the ¢,,’s are all equal to 1 (with no
restriction on the w,’s) [27].

In this work we further investigate the complexity of CNDP on a tree, and consider some
natural variants in which edges or both nodes and edges can be removed from the graph.
Indeed, most of the literature seems to focus on problems where only nodes or edges can
be deleted. (See, e.g., [83] for a discussion about this aspect.) Problems where both nodes
and edges can be removed subject to a joint weight limit have been also considered in [83],
where a general integer programming framework is presented for several types of connectivity
measures. A different version of this problem has been studied in [42].

In order to simplify the description of the problems that we analyze, it is worthwhile to
introduce some simple notation. Given an undirected graph G = (V, E) and a subset S C VUE
of nodes and/or edges of G, G — S will denote the graph obtained after removing from G the
elements in S. More formally, G — S = (V/,E') with V' =V \ S and E' = {uv € E\ S :
u,v € V'}. If connection costs ¢, are given for all u,v € V, we use the shorthand ¢(G — 5)

to denote the total cost of the pairs of nodes that are connected in G — S. When weights w,

A tree T(V, E) is a graph with no cycle, where any two nodes are connected by exactly one path. If a node

is designated as root, the tree is called a rooted tree.
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and/or w, are given for all nodes v € V and/or all edges e € E, w(S) will denote the total
weight of the elements in S. (Note that there is no confusion in denoting both node and edge
weights with a similar symbol, i.e., w, and w,, as the different nature of the subscript —a
node or an edge— removes any ambiguity. In other words, w can be viewed as a function of
the form w: VUE — Ry.)

The above notation allows us to restate CNDP slightly more compactly:

Problem 2 (CNDP, restated). Given an undirected graph G = (V, E), a weight w, > 0 for
every v € V., a connection cost ¢y, > 0 for all u,v € V', and a weight limit W >0, find S CV
such that w(S) < W and ¢(G — S) is minimized.

As already mentioned, we are interested in some variants of CNDP (mainly on trees) in
which edges or both nodes and edges can be removed. The variants that we analyze are the

following:

o the Critical Edge Detection Problem (CEDP), which is formulated as CNDP, except

that edges have to be removed instead of nodes;

e the Critical Node/Edge Detection Problem with a single weight limit (CNEDP-1),

where a cumulative weight limit for the removal of nodes and edges is given;

e the Critical Node/Edge Detection Problem with two weight limits (CNEDP-2), where

two separate weight limits are assigned for nodes and edges.
These problems are formalized below:

Problem 3 (CEDP). Given an undirected graph G = (V, E), a weight we > 0 for every
e € E, a connection cost ¢y, > 0 for all u,v € V', and a weight limit W > 0, find S C E such
that w(S) < W and ¢(G — S) is minimized.

Problem 4 (CNEDP-1). Given an undirected graph G = (V, E), a weight w, > 0 for every
v €V, a weight we > 0 for every e € E, a connection cost cyy > 0 for all u,v € V, and a
weight limit W >0, find S CV UE such that w(S) < W and ¢(G — S) is minimized.

Problem 5 (CNEDP-2). Given an undirected graph G = (V, E), a weight w, > 0 for every
v €V, a weight we > 0 for every e € E, a connection cost ¢y, > 0 for allu,v € V', and weight
limits Wy ,Wg > 0, find S C VUE such that w(SNV) < Wy, w(SNE) < Wg, and ¢(G—S)

18 minimized.

We remark that CNDP and CEDP are special cases of each of CNEDP-1 and CNEDP-2.
Indeed, an instance of CNDP (respectively, CEDP) can be reduced to an instance of CNEDP-
1 by giving weight W + 1 to all edges (respectively, nodes) in order to forbid their removal.
Furthermore, an instance of CNDP (respectively, CEDP) can be reduced to an instance of
CNEDP-2 by setting Wy = W and Wg = 0 (respectively, W = W and Wy = 0).



8 CHAPTER 1. INTRODUCTION
1.2 Outline of the thesis and our contributions

The outline of this thesis is organized as follows.

In Chapter 2, we look at the problem of identifying important nodes in a path graph
whose removal optimizes the connectedness of the given path. We analyze four variants of the
critical node detection problem on paths and present a closed-form solution for the objective
function’s optimality.

In Chapter 3, we address the problem of detecting critical edges of a graph whose deletion
optimally deteriorates the connectivity of the given graph. We present dynamic programming
algorithms for the case with unit costs and unit edge weights as well as the case with unit
costs and general edge weights and show that both algorithms can be executed in polynomial
time. Then we move to the problem of detecting critical nodes and edges simultaneously by
considering the case when a joint weight limit on the removal of nodes and edges is given and
also given two separate weight limits for nodes and edges. We will see that CNEDP-1 can
be solved in polynomial time when the underlying graph is a tree and the connection costs
are all unitary, while for CNEDP-2 we have a polynomial-time algorithm only if we further
assume that the node and edge weights are all equal to 1 (Proposition 3.5.2). On the contrary,
we show that if the connection costs are unitary but the node and edge weights are general
nonnegative numbers, CNEDP-2 is NP-hard to approximate within any factor, even when G
is a path (Proposition 3.5.1).

In Chapter 4, we present a different approach to solve the CEDP on a tree. The idea is
to subdivide the graph by inserting a new node in each edge and to remove only the newly
created nodes instead of edges and the same complexity (see Chapter 3) is obtained.

Chapter 5 describes the NP-hardness results for the CEDP, CNEDP-1, and CNEDP-2
under the assumptions that the node/edge weights are unitary and the connection costs are
0/1 (Observation 12). We also present polynomial time algorithms for the different cases that
we analyze, in which the connection costs are 0/1 and have the special structure: there exists
I C V such that ¢y, = 1 if u,v € I and u # v, and ¢y, = 0 otherwise. We call this special
structure as square 0/1 connection costs.

In Chapter 6, we study our problems when the number of leaves of the tree is a constant.
We first show that if the tree has exactly two leaves (i.e., a path) with arbitrary 0/1 connection
costs and general nonnegative node weights, the CNDP can be solved in polynomial time in this
situation. We then show more generally that CNDP, CEDP, and CNEDP-1 on a tree with
arbitrary 0/1 connection costs and general nonnegative node/edge weights can be solved in
polynomial time under this assumption (Proposition 14). The same result holds for CNEDP-
2, but only if the node and edge weights are assumed to be unitary (Proposition 15). Indeed,
we recall that without this further restriction CNEDP-2 is NP-hard already on a path (even
with unit connection costs), i.e., on a tree with exactly two leaves (Proposition 3.5.1).

In Chapter 7, we propose new mathematical formulations based on the linear integer
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programming (IP) model for finding exact solutions of the CNDP introduced by [8], which
we define restricted CNDP. After that we derive IP models for the CEDP, CNEDP-1, and
CNEDP-2 from the proposed restricted CNDP which provides optimal solutions.

We then focus on an extension of the critical node/edge detection problem in Chapter 8
where the distances between node pairs affect the objective function. We analyze some nat-
ural versions of Distance-based Critical Node/Edge Detection Problem and present dynamic
programming algorithms whose complexities are polynomial. For the distance-based critical
edge detection problem, we additionally propose an integer programming formulation.

Chapter 9 concludes this thesis with final observations. It also provides some open issues
that remain to be covered.

Note that the polynomial-time algorithms that we obtain in this thesis take inspiration
from the dynamic programming strategies proposed in [27] for CNDP on a tree with unit

connection costs and in 7] for some distance-based versions of CNDP on a tree.






Chapter 2

Critical Node Detection Problem over

a path

In this chapter we study the Critical Node Detection Problem (CNDP) on a path which can
be seen as a very special case of a tree. Given a path graph P = (V, E) with |V| = n nodes
and an integer K, the CNDP on a path seeks to find a set S C V of at most K < n nodes,
the deletion of which minimizes pairwise connectivity in the remaining path graph P(V \ S).
We will tackle the so-called Distance-based Critical Node Detection Problem (D-CNDP) over
paths as described in [7]. The NP-completeness of D-CNDP over paths for some specific
distance functions has been already established [7]. We look at some particular versions of
CNDP on paths that fall into the D-CNDP on paths and provide closed-form solution for
optimality of the objective function. We note that these versions of D-CNDP on general trees

will be studied in chapter 8. The variants that we analyze in this chapter are the following:

1. Minimizing the number of node-pairs connected by a path with upper bound of length

at most L.

2. Minimizing the number of node-pairs connected by a path with lower bound of length

at least L.
3. Minimizing the number of node-pairs connected by a path of length precisely L.

4. Minimizing the number of node-pairs connected by a path of length between L; and Lo

where L; and Lo are the lower and upper bound respectively.

It can be easily seen that the CNDP with L = 1 on a graph G = (V, E), which aims
to minimize the number of edges that survive after having removed at most K nodes, is
NP-complete through a reduction from VERTEX COVER. Indeed, deciding whether there is a
vertex cover of size at most K in a graph is equivalent to verifying whether the optimal value
of the CNDP with L =1 is zero.

11
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The term balanced solution is an important concept that we will utilize in the following
statements. We call the solution balanced if the difference between the length of the shortest
and longest components is either 0 or 1.

Before deriving the exact solution of the objective function for the four variants introduced
above, we first present the following result without any lower or upper bound on the length

of the connecting path.

Proposition 6. For the CNDP on a path without any lower or upper bound, the optimal

solutions are the balanced solutions.

Proof. Let P = (V, E) be a path graph with |V| = n nodes and let a be the average number
V|-K
K+1 -

Assume that we are given an optimal solution after removing K nodes. Suppose by

of nodes of the sub-paths obtain after removing K nodes, where o =

contradiction that in the given optimal solution, not all the sub-paths have length |« or
[a]. Since the solution is unbalanced, there are at least two sub-paths in this solution in
which one of the component has length at most [«] —1 and another component has length at
least [a] +1. Let [} and I3 be the number of nodes of the shortest and the longest components
respectively, i.e., Iy < |a] —1 and Iy > [a] + 1 (see Figure 2.1). Now we construct a new
solution by adding one node in the shortest component, i.e., [ +1 and by subtracting one node
in the longest component, i.e., s — 1 and the length of the other components are unchanged

(see Figure 2.2). We want to show that this new solution is better than the given solution.

LI T

1 2

Figure 2.1: Example of a solution after removing K = 2 nodes.

I R B
1 +1 lo—1

Figure 2.2: Modification of the solution of Figure 2.1.

So the claim is
1 +1 lo—1 l1 Iy
— 1l >
( 2 )+< 2 ><<2)+<2>’ where 2=l =2
< (ll + 1)l1 + (lg — 1)(l2 — 2) < ll(ll — 1) + lQ(lg — 1)

<:>l1(l1+1—l1+1)<(l2—1)(l2—l2+2)
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— 2 <2(l2—1)
< ly—1; >1

which is true by assumption because we are assuming lo — I; > 2, and we will continue this
perturbation until we have K + 1 components of size |«] and [«], and this shows that every
optimal solution is balanced. Observe that all balanced solutions have the same cost and hence
they are equivalent. Since all balanced solutions are equivalent, this proves that all balanced
solutions are optimal.

O

We now state the result when the graph is a path and the problem is to remove K nodes
in order to minimize the number of pairs that are connected by a path of length at most L,

for some given natural number L.

Proposition 7. For the CNDP on a path with upper bound L, any solution that removes
K nodes and creates K + 1 components with cardinality at least L is optimal. If no such a
solution exists, then any solution that removes K nodes and creates balanced components is

optimal.

Proof. First we prove the second part of the statement which means there is no way to make
all the components with cardinality at least L and in this case we want to prove that balanced
solutions are optimal.

Assume by contradiction that we are given an optimal solution which is not balanced.
Since we are assuming that there is no way to make all the components with cardinality at
least L, there is at least one sub-path with cardinality at most L — 1. Let A be the shortest
component and B be the longest component of the solution. With a slight abuse of notation
we will denote by A and B also the number of nodes in the component. Then A < L — 1 and
B — A > 2 because the solution is not balanced. Now we do the perturbation by adding one
node in the shortest component and by subtracting one node in the longest component and
by keeping the cardinality of all other components unchanged. Now if B > L and we subtract
a node from B, then we lose L connections, while if B < L and we subtract a node from B,
then we lose (B — 1) connections because we have to count only the paths of length < L.
Since A < L — 1, if we add an extra node to A, then we have A new connections. Thus we

have the following two cases when we do the perturbation.

Case 1: If B > L, then the improvement is < 0.

Case 2: If B < L, then the improvement is A — B + 1 which becomes < —1 because we are
assuming that B — A > 2.

So with the property A < L — 1, we have always a negative improvement (case 1 and

2), i.e., we reduce the objective function and this proves that any unbalanced solution is not
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optimal. Since all balanced solutions are equivalent, this proves that all balanced solutions
are optimal.

Now we prove the first part of the statement which means that it is possible to make all
the sub-paths with cardinality at least L. In this case still it is possible that in the solution
the shortest component is smaller than L — 1 and we know by the above argument that this
solution is not optimal.

In the following we prove that all the solutions that creates K+1 sub-paths with cardinality
at least L are equivalent.

When we remove K nodes from the path, we create K + 1 components. Suppose t; is the
number of edges of every sub-path. Now if we take a path with ¢; > L — 1 edges, then the
contribution is given by L(t; — L+1) + Z%(_:ll K, because in a component of (¢ + 1) nodes, we
have (t+1— L) nodes which gives a contribution of length L and the remaining L nodes gives
the contribution of (L —1), (L —2),...,1, respectively, which is given by Zf(_:ll K. In the last
component, the number of edges is given by tx41 =n—1— Zfi 1 ti — 2K, because we have
n — 1 edges initially, then we have to discard all the edges of the sub-paths which is given by
Zfi 1 ti and when we are removing K nodes, we are deleting 2K edges, since we are assuming
that we are creating K + 1 components that means we are not removing two adjacent nodes.
So the contribution of the (K 4 1)th component is given by L(n—1— Zfil ti—2K) —&—Ef(_:ll K.

Hence the total contribution is

K L—-1 K L-1 L—1
SLti—L+1)+ Y K+Ln-1-> t;-2K)+ Y K=2Y K+Ln-L-2K)
i=1 K=1 i=1 K=1 K=1

which is independent of ¢;’s, that means it does not matter what is the length of the sub-paths
as long as their cardinality is at least L.

Now we show that all the solutions that create all components with cardinality at least L
are optimal. Define S* as the set of solutions which have the property that all components have
at least L nodes. Since there is at least one solution with all the components with cardinality
at least L, the set S* is nonempty. Take a solution in S*. This solution has the property
that the total number of nodes in the surviving components is at least (L —1)(K + 1) as after
removing K nodes we have (K + 1) components and each of cardinality at least (L —1). Let’s
call again A and B be the shortest component and the longest component respectively in S*.
Take any solution which is not in S*, which means that it has at least one component whose
cardinality must be smaller than L —1, so that A < L —2. We claim that the cardinality of the
longest component is at least L, i.e., B > L. If this is not true, then B < L — 1. In this case
the total number of nodes in the surviving components is at most (L — 2) 4+ (L — 1)K, which
is at least one unit smaller than (L — 1)(K + 1) and this is a contradiction because we know
that the total number of nodes can not be changed as we always remove K nodes. So any
solution which is not in S* has the property that A < L — 2 and B > L and this means that

the solution is not balanced. Since the solution is not balanced, we apply the perturbation
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and by the previous arguments (case 1 and case 2) we know that when we do the perturbation
we always improve. After the perturbation either we find a solution which is in S* and we are
done, or we find a solution which has still the property that A < L —2 and B > L and we will
continue this perturbation until the solution is balanced. When we get a balanced solution,
we are in S* and this proves that the set S* is optimal.

O

We note that Proposition 6 is a special case of Proposition 7 because Proposition 7 coincides
with Proposition 6 when we put L = n.

The following result holds for the case when the graph is a path and the problem calls for
minimizing the number of node-pairs still connected by a path of length at least L, for some

given natural number L, surviving in a path after having removed at most K nodes..

Proposition 8. For the CNDP on a path with lower bound L, any solution that removes
K nodes and creates K + 1 components with cardinality at most L s optimal. If no such a
solution exists, then any solution that removes K nodes and creates balanced components is

optimal.

Proof. First consider that we can make all the components with cardinality at most L and in
this case all the solutions are equivalent and hence optimal, because the objective value is 0
and in this incident, it does not matter whether the solution is balanced or not as long as all
the components have cardinality at most L.

Now we prove the second part of the statement which means there is no way to make all
the components with cardinality at most L and in this case we want to prove that balanced
solutions are optimal.

Assume by contradiction that we are given an optimal solution which is not balanced.
Since we are assuming that there is no way to make all the components with cardinality at
most L, there is at least one sub-path with cardinality greater than L. Let A be the shortest
component and B be the longest component of the solution. With a slight abuse of notation
we will denote by A and B also the number of nodes in the component. Then B > L and
A < B — 2 because the solution is not balanced. Now we do the perturbation by adding one
node in the shortest component and by subtracting one node in the longest component and
by keeping the cardinality of all other components unchanged. Now if A > L — 1 and we add
an extra node to A, then we have A — L + 1 new connections while if A < L — 1 and we add
an extra node to A, in this case we create 0 connection, because we have to count only the
paths of length > L. Since B > L and we subtract a node from B, we lose B — L connections.

Thus we have two cases when we do the perturbation.

Case 1: If A > L — 1, then the improvement is A — B + 1 which becomes < —1 because we are
assuming that A < B — 2.

Case 2: If A < L — 1, then the improvement is L. — B which becomes < —1 because B > L.
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So when we have at least one sub-path with cardinality at least L, we always get a better
solution and this proves that any unbalanced solution is not optimal. Since all balanced
solutions are equivalent, this proves that all balanced solutions are optimal.

O

When the graph is a path, and we want to minimize the number of node-pairs still con-
nected by a path of precise length L, for some given natural number L, surviving in a path

after having removed at most K nodes, the following result holds.

Proposition 9. For the CNDP on a path of precise length L, any solution that removes K
nodes and creates K + 1 components with cardinality at least L is optimal. Otherwise, any
solution that creates K + 1 components with cardinality at most L is optimal. If no such a
solution exists, then any solution that removes K nodes and creates balanced components is

optimal.

Proof. Assume by contradiction that we are given an optimal solution which is not balanced.
We are assuming that there is no way to make all the components with cardinality at least L
or all the components with cardinality at most L. Then there is at least one sub-path with
cardinality less than L and at least one sub-path with cardinality greater than L. Let A be the
shortest component and B be the longest component of the solution. With a slight abuse of
notation we will denote by A and B also the number of nodes in the component. Then A < L,
B > L and A < B — 2 because the solution is not balanced. Now we do the perturbation
by adding one node in the shortest component and by subtracting one node in the longest
component and by keeping the cardinality of all other components unchanged. Since A < L,
when we add an extra node to A, we create 0 connection, because we have to count only the
paths of length precisely L. Again since B > L, when we subtract a node from B, we lose 1

connection. Thus we have the following case when we do the perturbation.
Case 1: If A< L and B > L, then the improvement is —1.

In the following we prove that all the solutions that creates K+1 sub-paths with cardinality
at least L are equivalent.

When we remove K nodes from the path, we create K 4+ 1 components. Suppose ¢; is
the number of edges of every sub-path. Now if we take a path with ¢; > L — 1 edges, then
the contribution is given by (¢; — L + 1), because in a component of (¢t + 1) nodes, we have
(t; + 1 — L) nodes which gives a contribution of length exactly L. In the last component, the
number of edges is given by tg41 =n—1— Zfil t; — 2K, because we have n—1 edges initially,
then we have to discard all the edges of the sub-paths which is given by Zfi 1 ti and when we
are removing K nodes, we are deleting 2K edges, since we are assuming that we are creating

K + 1 components that means we are not removing two adjacent nodes. So the contribution



17

of the (K + 1)th component is given by (n — 1 — Zfil t; — 2K). Hence the total contribution

1S

K K
Sti—L+1)+(n—1-Y t;—2K)=n—L 2K
=1 i=1

which is independent of ¢;’s, that means it does not matter what is the length of the sub-paths
as long as their cardinality is at least L and this proves that all the solutions that creates long
components are all equivalent.

Now we show that all the solutions that create all components with cardinality at least L
are optimal. Define S* as the set of solutions which have the property that all components have
at least L nodes. Since there is at least one solution with all the components with cardinality
at least L, the set S* is nonempty. Take a solution in S*. This solution has the property
that the total number of nodes in the surviving components is at least (L —1)(K + 1) as after
removing K nodes we have (K + 1) components and each of cardinality at least (L —1). Let’s
call again A and B be the shortest component and the longest component respectively in S*.
Take any solution which is not in S*, which means that it has at least one component whose
cardinality must be smaller than L —1, so that A < L —2. We claim that the cardinality of the
longest component is at least L, i.e., B > L. If this is not true, then B < L — 1. In this case
the total number of nodes in the surviving components is at most (L —2) 4+ (L — 1)K, which
is at least one unit smaller than (L — 1)(K + 1) and this is a contradiction because we know
that the total number of nodes can not be changed as we always remove K nodes. So any
solution which is not in S* has the property that A < L — 2 and B > L and this means that
the solution is not balanced. Since the solution is not balanced, we apply the perturbation
and by the previous arguments (case 1) we know that when we do the perturbation we always
improve. After the perturbation either we find a solution which is in S* and we are done, or
we find a solution which has still the property that A < L —2 and B > L and we will continue
this perturbation until the solution is balanced. When we get a balanced solution, we are in
S* and this proves that the set S* is optimal.

Similarly, if we can make component in such a way that the cardinality of all components is
shorter than L, then all the solutions are equivalent and hence optimal, because the objective
value is 0 and in this incident, it does not matter whether the solution is balanced or not as
long as all the components have cardinality at most L.

Otherwise, if we can not make solution in which all the components have cardinality at
least L or at most L, then obviously we are in case 1, because case 2 is not possible and
in this case we always have a negative improvement, i.e., we reduce the objective function
and this proves that any unbalanced solution is not optimal. Since all balanced solutions are
equivalent, this proves that all balanced solutions are optimal.

O

In the following we state the result when the graph is a path and the problem is to remove
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K nodes in order to minimize the number of pairs that are connected by a path of length at
least L1 and at most Ls.
Now we consider the case in which we have a lower bound L; and an upper bound Lo and

we consider the connections which are between L and Ls.

Proposition 10. For the CNDP on a path with lower bound Ly and upper bound Lo, any
solution that removes K nodes and creates K + 1 components with cardinality at least Lo is
optimal. Otherwise, any solution that creates K + 1 components with cardinality at most Ly
1s optimal. If no such a solution exists, then any solution that removes K nodes and creates

balanced components is optimal.

Proof. Assume by contradiction that we are given an optimal solution which is not balanced.
We are assuming that there is no way to make all the components with cardinality at least Lo
or all the components with cardinality at most Li. Let A be the shortest component and B
be the longest component of the solution. With a slight abuse of notation we will denote by
A and B also the number of nodes in the component. Then A < Lo, B > L1 and A< B —2
because the solution is not balanced. Now we do the perturbation by adding one node in the
shortest component and by subtracting one node in the longest component and by keeping the
cardinality of all other components unchanged. Since we want to count the paths of length
between Li and Lo, if A < L1 — 1 and we add an extra node to A, then we have 0 new
connection while if L1 — 1 < A < Lo and we add an extra node to A, in this case we create
A — Ly + 1 connections. Again if L1 < B < Lo and we subtract a node from B, then we lose
B — Ly connections while if B > Ly and we subtract a node from B, then we lose Lo — L

connections. Thus we have the following cases when we do the perturbation.

Case 1: If A< Ly —1and L1 < B < Ly, then the improvement is L1 — B which becomes < —1
because L1 < B.

Case 2: If A< L1 —1 and B > Lo, then the improvement is Ly — Ly which becomes < —1 since
Ly < Ls.

Case 3: If L1 —1 < A< Ly and L1 < B < Lo, then the improvement is A — B+ 1 which becomes

< —1 because we are assuming that A < B — 2.

Case 4: If L1 — 1 < A < Ly and B > Lo, then the improvement is A — Lo + 1 which becomes
< —1 because A < Lo.

If we can make all the components with cardinality at most Lq, then all the solutions are
equivalent and hence optimal, because the objective value is 0.

In the following first we prove that all the solutions that creates K + 1 sub-paths with
cardinality at least Lo are equivalent.

When we remove K nodes from the path, we create K + 1 components. Suppose t; is

the number of edges of every sub-path. Now if we take a path with ¢; > Lo — 1 edges, then
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the contribution is given by (Le — L1 + 1)(t; — Lo + 1) + Z L1 K| because in a component
of (t; + 1) nodes, we have (t; + 1 — La) nodes which gives a contrlbutlon of (Ly — L1 + 1)
and the remaining Lo — 1 nodes gives the contribution of (Ly — Ly), (L2 — L1 — 1),...,1,
respectively, which is given by ZLQ_Ll K. In the last component, the number of edges is
given by tg11 =n—1— ZZK 1 ti — 2K, because we have n — 1 edges initially, then we have to
discard all the edges of the sub-paths which is given by Zi:1 t; and when we are removing K
nodes, we are deleting 2K edges, since we are assuming that we are creating K +1 components
that means we are not removing two adjacent nodes. So the contribution of the (K + 1)th
component is given by (Ly — L; +1)(n — 1 — Zf(l - 2K) + Z% 1L1 K. Hence the total

contribution is

K Lo—Ly
Z(Lz—Ll—l-l)(ti—Ia—i-l ZK—i— L2—L1+1)(n—1—2t1—2K ZK
i=1 K=1 i=1
Lo—Ly
=2 Y K+ (Ly—Li+1)(n — Ly — 2K)
K=1

which is independent of ¢;’s, that means it does not matter what is the length of the sub-paths
as long as their cardinality is at least Lo and this proves that all the solutions that creates
long components are all equivalent.

Now we show that all the solutions that create all components with cardinality at least Lo
are optimal. Define S* is the set of solutions which has the property that all components have
at least Lo nodes. Since there is at least one solution with all the components with cardinality
at least Lo, the set S* is nonempty. Take a solution in S*. This solution has the property
that the total number of nodes in the surviving components is at least (Ly —1)(K +1) as after
removing K nodes we have (K +1) components and each of cardinality at least (La —1). Let’s
call again A and B be the shortest component and the longest component respectively in S*.
Take any solution which is not in S$*, which means that it has at least one component whose
cardinality must be smaller than Lo — 1, so that A < Ls — 2. We claim that the cardinality of
the longest component is at least Lo, i.e., B > Lo. If this is not true, then B < Lo — 1. In this
case the total number of nodes in the surviving components is at most (La — 2) 4+ (L2 — 1)K,
which is at least one unit smaller than (Ly — 1)(K + 1) and this is a contradiction because
we know that the total number of nodes can not be changed as we always remove K nodes.
So any solution which is not in S* has the property that A < Lo — 2 and B > Ly and this
means that the solution is not balanced. Since the solution is not balanced, we apply the
perturbation and by the previous arguments (case 2 and case 4) we know that when we do
the perturbation we always improve. After the perturbation either we find a solution which
is in S* and we are done, or we find a solution which has still the property that A < Lo — 2
and B > Lo and we will continue this perturbation until the solution is balanced. When we

get a balanced solution, we are in $* and this proves that the set S* is optimal.
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Otherwise, if we can not make solution in which all the components have cardinality at
least Lo or at most Li, then we are in one of the four cases and in every case we always
have a negative improvement, i.e., we reduce the objective function and this proves that any
unbalanced solution is not optimal. Since all balanced solutions are equivalent, this proves
that all balanced solutions are optimal.

O

We would like to mention that Propositions 7, 8, and 9 are all special instances of Propo-
sition 10. By placing L1 = 0 and Ls = L, Proposition 7 can be deduced from Proposition 10.
Similarly, we obtain the problem specified in Proposition 9 when we write L1 = Lo = L in
Proposition 10, and Proposition 10 corresponds with Proposition 8 when we put Ly = L and

Lo =n.



Chapter 3

Polynomial time algorithms of CEDP,
CNEDP-1, and CNEDP-2 on a tree

In this chapter, we look at the critical edge detection problem (CEDP), which is the task
of finding a set of K edges in a graph G whose removal reduces the number of connections
between pairs of nodes in the residual graph. We investigate the CEDP over trees, general-
izing the objective function and constraints to account for generic nonnegative costs of node
connections and weights for edges to be deleted. We also investigate the complexity of the
Critical Node/Edge Detection Problem with a single weight limit (CNEDP-1), where a cu-
mulative weight limit for the removal of nodes and edges is given and the Critical Node/Edge
Detection Problem with two weight limits (CNEDP-2), where two separate weight limits are
assigned for nodes and edges.

In Section 3.1.1 we present a dynamic programming approach for the case with unit costs
and unit edge weights whose complexity is polynomial. In Section 3.1.2 we deal with the
case with unit costs and general edge weights. In Section 3.2 and Section 3.3 we present the
case with unit costs and a weight limit for the removal of nodes and edges respectively. In
Section 3.4 we show that CNEDP-1 can be solved in polynomial time when the connection
costs are all unitary. In Section 3.5 we prove that CNEDP-2 with unit connection costs is
NP-complete even on a path, while CNEDP-2 admits a polynomial-time algorithm if the
node and edge weights are fixed to 1 as well as the connection costs which is presented in
Section 3.5.1.

3.1 Solving CEDP on a tree with unit connection costs

In this section we show how to solve CEDP on a tree in polynomial time when the connection
costs are all unitary. We note that structural parts of our algorithmic framework are similar
to those provided in [27, 51, 70|.

21
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Let G = (V, E) be a tree with |V| = n, and let the input data be denoted as in Problem

3 (see the introduction), where the connection costs ¢, are defined as follows:

1 if u,v are in the same component of G(E \ S)
Cup = (3.1)
0 otherwise.

Formally, CEDP’s goal is to discover S whose objective function yields the smallest value.

Throughout the thesis in our all dynamic programs, we denote by 7T, the subtree of the
given tree T'(V, E) rooted at node a € V. If a is not a leaf of T', we assume that an arbitrary
order of its children is specified. If a has s children aq,...,as, for every i € {1,...,s} we
define Ty, , as the subtree of T" induced by {a} UV (Ty,) U---UV(Ty,), where we denote by
V(H) the set of vertices of H for any given subtree H of T'. Figure 3.1 shows an example of
a tree T rooted at node a where subtree T,, contains nodes of the set {as,3,4,5,6,7}, while
subtree Tg,, contains nodes of the set {a,as,8,9,10,11,12,a4,13,14,15}. In our dynamic
programming approaches, all recursions are based on traversing the tree in postorder (that is,

from the leaves to the root) and from the right part of each tree level to the left part.

Figure 3.1: T, is an example of a subtree in which node a has four children (i.e. s =4).

In the next two subsections, we will look at unit weights and general nonnegative weights
for the edges separately, since even though the latter subsumes the former, unitary weights

have a faster running time.

3.1.1 The unit cost, unit weight case on trees

In this part, we show how to solve CEDP on trees when ¢, = 1 for all u,v and w, = 1 for
all v € E. In this scenario, the goal is to reduce the number of paths left in a tree T'(V, E)
after removing at most K edges.

To derive a dynamic programming algorithm, we will calculate recursively the following

values:
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e Fy(m,k) = minimum number of connections that still exists in the subtree T, when k
edges are removed from T, and m nodes (including a itself) of T, are still connected to

the root a.

e Gy, (m,k) = minimum number of connections that still exists in the subtree Tp, , =
a+Ty; +---+Ts, when k edges are removed from Ty, , and m nodes of the subtree are

still connected to a.

We remark that for both functions, the number of nodes connected to the root will never
be 0 (i.e. m > 0) because we never remove the root as the root is a node and we can not
remove a node in the edge deletion problem. Furthermore, whenever the conditions in one of
the above definitions cannot be satisfied, we set the value of the function to infinity.

The values of Fj, and G, are calculated in this order:
e we determine F, for every leaf a;

e for a non-leaf node a, assuming that the F, and Ga; have been already found for all
a € V(T,), we calculate Go,,Gq, ,,-..,Ga;, and then F,.

At the end of the recursion, we can return the optimal value of the problem, assuming that

the tree T is rooted at node 1, which is
OPT = min{Fy(m,K):m=1,...,n}.

As usual in dynamic programming, an optimal solution can be reconstructed by backtracking.
We now provide the explicit formulas and then a justification for each of them. For a

non-leaf node a € V', we have
Fy(m,k) = Gq,(m, k), (3.2)

while for every leaf a the formula is

0 ifm=1 k=0,
Fy(m,k) = (3.3)
oo otherwise.

For any non-leaf node a € V and i < s (non-rightmost subtrees) we use the formula
Gq,(m, k) =

min{Fy,, (p,0) + Ga,,(m —p,0) + p(m —p) :p=0,...,m} if k=0,

min{min{F,, (p,q) + Ga, ., (m,k—1—¢q) :p=0,...,|V(Ty,)|, (3.4)
q=0,...,k—1}, min{F,,(p,q) + Ga,., (m —p,k —q) +p(m —p) :

p=0,...,m,q=0,...,k}} if k> 0,




24CHAPTER 3. POLYNOMIAL TIME ALGORITHMS OF CEDP, CNEDP-1, AND CNEDP-2 ON A TREE

The initial conditions on each rightmost subtree 7, are calculated as follows::

00 ifm=1,k=0,
Ga,(m, k) = { min{F,, (p,k—1):p=0,...,|V(T.,)|} ifm=1 k>0, (3.5)
Fo,(m—1,k)+ (m—1) ifm>1k>0.

We now give a justification for the above formulas. Equation (3.2) follows because Tj, =

Ty, , for any non-leaf node a € V.

Equation (3.3) handles the case of a one-node tree. Since a € V' is a leaf, it is not possible
to remove any edge (k = 0) and only a is connected to itself (m = 1) and the number of paths

surviving in T, is 0.

Recursion (3.4) can be interpreted as follows:

The case k = 0 means that we are not removing any edge from Ty, , =T, + T, Since

it1,s"
we have to keep everything, we are not allowed to remove anything from the subtrees 7,,, and
T,

Qit1,s" If a; is connected to p nodes of T, then a is connected to m — p nodes in T,

i+1,s
and the paths passing through a are exactly p(m — p). Hence by definition of F' and G the
minimum number of paths that survive in 7,, , when we are not removing anything will be
Ga,(m,0) = miny{Fq,(p,0) + Ga; iy (m —p,0) + p(m —p)}.

The case k > 0 means that we have to remove at least one edge. When the value of
Ga,(m, k) is achieved from the expression Fy, (p,q) + Gq,,, (m, k —1—q), we remove the edge
e (which connects a to a;). Expression F,(p,q) gives the minimum number of paths that
survive in 7j,, when ¢ edges are removed from 7j, and p nodes of T, are still connected to
a;. Since ¢ edges have been removed from Tj,,, exactly kK — 1 — ¢ edges must be removed from

T

i1~ The minimum number of paths that survive in T,

i1 when k—1—q edges are removed

from Ty, , , is given by Gy, , (m, k—1—¢). Thus the expression Fy,(p, q) +Gq,,, (M, k—1—q)

gives the minimum number of paths that survive in Tg, , when g edges are removed from T,

(and the other k£ — 1 — ¢ edges are removed from Ty, ,) and p nodes of Ty, are still connected
to a;. By taking the minimum over p =0,...,|V(Tg,)| and ¢ =0, ...,k — 1, we find the value
of Gg;(m, k).

When the value of G, (m, k) is achieved from the expression Fy,(p,q) + Ga,, (m —p, k —
q) + p(m — p), we are not removing the edge e. As above, expression Fy,(p,q) gives the
minimum number of paths that survive in 7j, when ¢ edges are removed from T, and p
nodes of T}, are still connected to a;. Since ¢ edges have been removed from Tj,, exactly

k — q edges must be removed from T, and since p nodes of T}, are still connected to a;

i+1,s

and thus to a, exactly m — p nodes of T, must remain connected to a. The minimum

i+1,s

number of paths that survive in T, when k — ¢ edges are removed from T, and m —p

nodes of T,

Ai+1,s

+1,s i+1,s
are still connected to a is given by G, ,(m — p,k — q). Thus the expression

Fo,(p,q)+Ga,, (m—p, k—q) gives the minimum number of paths that survive in 75, or T,

i+1,s
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when ¢ edges are removed from T}, (and the other k — ¢ edges are removed from 7T, and

i+1,s>

p nodes of T}, are still connected to a;, while m — p nodes of T, are still connected to a.

i+1,s
Now we have to add the paths connecting nodes of Ty, to nodes of Ty, , , i.e. p(m — p) paths.
This gives expression Fy,(p, q) + Ga,,, (m —p, k —q) + p(m — p) of recursion (3.4). By taking
the minimum over p =0,...,m and ¢ =0, ..., k, we find the value of G4, (m, k).

More specifically, if £ = 0, we have only one choice so that we have to keep the edge e
(which connects a to a;) because we are not removing any edge. While in the case k > 0, we
have two possibilities that both are possible i.e., we can choose if we want to remove the edge

e or we want to keep it.

For a justification of (3.5), recall that T;,, , = a + Tg,. If m =1 and k > 0, then we have
to remove the edge between a and as and the other £ — 1 edges we have to be removed from
the subtree 75, and the number of connections that survive are those in the subtree T,,. On
the other hand if m > 1, then we can not remove the edge a to as and in this time we have
to remove all the k edges inside the subtree T,,. Since m nodes are connected to a including
a itself, in the subtree we will find the other m — 1 nodes connected to as. Then we have to
add all the connections of a to the nodes that are connected to ag in the subtree.

We obtain the following result.

Proposition 3.1.1. CEDP on a tree with unit connection costs and unit edge weights can be
solved by recursion (3.2)-(3.5) in O(n3K?) time.

Proof. For each node a € V there are at most n + 1 = O(n) values for m and K +1 = O(K)
values for k; this gives O(n?K) values of F and G to compute. The heaviest computation is
that of equation (3.4) that requires at most O(nK) steps. Hence in the worst case a number

of operations bounded by O(n3K?) are required. O

3.1.2 The case with unit costs and arbitrary edge weights

Let we > 0 be arbitrary weights assigned to the edges e € E. The CEDP problem in this
case amounts to finding a subset S of edges with total weight ) g we not exceeding a given
budget W such that the number of surviving paths after having removed the edge set S is
minimized.

A dynamic programming algorithm, constructed in the same spirit as the one described
in the preceding section, can be used to solve this case. The recursion uses two parameters,
m and k, which represent the number of nodes connected to the root of a subtree and the
number of paths that survive within that subtree, respectively.

The following functions are defined using the subtree notation described in the preceding

section.
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e Fy(m,k) is the minimum total weight of the edges to be removed from the subtree Tp,
in order to have node a connected to exactly m nodes (including a itself) and k paths

surviving in 7Tj,.

o Gg,(m, k) is the minimum total weight of the edges to be removed from the subtree
To;, =a+To + T4y +- -+ Ta, in order to have a connected to m nodes of T, , and

k paths surviving in T},

1,8 "

We compute the values for F' and G recursively for alla € V, m=1,...,n, k=0,...,n(n —
1)/2, as follows. Assume F,(m, k) = 0o, G4(m,k) = 0o if m <0 or k < 0.

Fo(m, k) = Gq,(m, k) for all non-leaf nodes a € V, (3.6)
G, (m, k) =min{we + min{F,, (p,q) + Ga,., (M, k—q) :p=0,... ,|V(Tai) ,q=0,...,k},
min{Fy,(p, q) + Go, (, [m —p,k—q—p(m—p)l:p=0,...,m, ¢=0,...,k}},

(3.7)

where e is the edge connecting a to a;. Equation (3.7) is written for all non-leaf nodes a; € V'
with ¢ < s (non-rightmost subtrees). For each rightmost subtree T,, we specify the initial

condition

we + min{ Fy (p, k) : p=0,...,

V(T,)|} ifm=1,
F,,(m—1,k—m+1) ifm>1,

Ga,(m, k) = (3.8)

where e is the edge connecting a to as, and for every leaf a:

0 ifm=1 k=0,
Foy(m, k) = (3.9)

oo in all other cases.

To explain equations (3.6)—(3.9), we apply the same reasoning as in the preceding section
for equations (3.2)-(3.5).
For equation (3.6), note that T, = T,, , for any non-leaf node a € V.

For equation (3.7) note that the edge e (which connects a to a;) is the connecting edge

between the subtrees T, and T}, . There are two cases to compute the value of G, (m, k)

i+1,s
based on the edge e, either we remove e or we have to keep it. If the value of G, (m, k) is

achieved from the expression w, +min{Fy, (p, q) +Ga, , (m, k—q)}, then besides removing the

optimal edges from Ty, and T, we should also remove the edge e and in this case a path

i+1,s

surviving in Ty, , = To, +T4, ., , either completely belongs to Ty, or to Tp, , s. According to the

definition of Gy, (m, k), m nodes are still connected to a and all nodes are inside the subtree

Ta;,1,s, whereas at most ‘V(Ta )! nodes can be connected to a;. If ¢ paths belong to Tj,; exactly

i

k — g paths belong to T, Hence by definition of F' and G the minimum total weight of the

+1,8°

edges removed from T;, . will be Gy, (m, k) = we + miny o { Fu, (p, q) + Ga, (M, k — q)} where

we corresponds to the weight of the edge e.
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On the other hand, if the edge e is not removed, then a is connected to m nodes of T, and
a path in Tp,  can be either completely contained in one of Ty, Ty, , ,, or partially contained
in both subtrees because it passes through the edge e. If a; is connected to p nodes of Ty, and
the paths passing through a are exactly p(m — p). If
+1.. and, by definition of F and
G, Gq;(m, k) = ming, ({Fy,(p, q) + Ga,p [m — p, k — g — p(m — p)]}.

The initial condition (3.8) takes into account that, if the edge e (which connects a to as)

a is connected to m — p nodes in Ty, , _,

q paths survive in T,,, k — g — p(m — p) paths survive in Tg,

is removed (m = 1), the k surviving paths of T,,, = a + T,, must belong entirely to Tj,,
hence the minimum possible weight for the edges removed from T, , will be G, (m, k) =
we + min,{Fy, (p, k)}. On the other hand if the edge e is not removed (m > 1), we must have
m — 1 nodes connected to as in Ty, and the number of surviving paths is £ — (m — 1). Thus
Ga,(m, k) = Fo,(m — 1,k —m + 1) follows.

The equation (3.9) says that since a € V is a leaf, the only possible condition is when
m = 1,k = 0 and all other combinations of m and k are infeasible and are considered to have
an infinite weight.

The optimal value, assuming the tree is rooted at node 1, is given by
OPT = min{k: Fi(m,k) <W,m=1,...,n, k=0,...,n(n—1)/2}. (3.10)
The optimal solution is recovered by backtracking.

Proposition 3.1.2. CEDP on a tree with unit connection costs and arbitrary edge weights

can be solved by recursion (3.6)—(3.9) in O(n") time.

Proof. For each node a € V' there are at most n+1 = O(n) values for m and n(n—1)/2+1 =
O(n?) values for k; this gives O(n*) values Fy(-,-) and Gg,(-,-) to compute. The heaviest
computation lies in equation (3.7), where O(n) values are possible for p and O(n?) for q.
Hence in the worst case a number of operations bounded by O(n) - O(n?)-O(n*) = O(n") are

required.
O

The results derived for the CEDP over trees are summarised in the following table.

Cuv Wy complexity
=1 =1 solvable in O(n3K?)
=1 >0 solvable in O(n")

Table 3.1: Complexity results for the CEDP over trees

We will see in Chapter 5 that if the connection costs are not unitary, CEDP on a tree is

NP-hard even with unit weights and general 0/1 connection costs.
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3.2 Solving CNDP on a tree when given a budget

Di Summa, Grosso, and Locatelli [27] solved the subclass of CNDP over trees in polynomial
time when all connections have unit cost with unit node weights and general node weights.
We now derive a dynamic programming algorithm for the CNDP over trees considering the
fact that we are given a weight limit for removing the nodes and the connection costs are all
unitary.

Let us consider the tree T'(V, E') with |V| = n nodes, a weight w, > 0 for every v € V, a
connection cost ¢, = 1 for all u,v € V and a weight limit W > 0. The problem in this case
amounts to finding a subset S of nodes with total weight » g w, not exceeding the budget
W and minimizing the number of paths surviving in the tree T'(V, E) after having removed at
most K nodes.

We use the same tree and subtree notation as in Section 3.1, and calculate recursively the

following values:

e Fy(m,k,h) = minimum total weight of the k£ nodes to be removed from the subtree Tj,
in order to have node a connected to exactly m nodes (including a itself) and h paths
surviving in 7T,. Condition m = 0 indicates that a is removed from T, and m > 0 if a is

not removed from T,.

o Gy, (m,k,h) = minimum total weight of the k nodes to be removed from the subtree
To,, =a+Ta +Tay, + -+ Tp, in order to have a connected to m nodes of Ty, , and

h paths surviving in Ty, .. As above, m = 0 indicates that a is removed from Tg, , .

We compute the values for F' and G recursively foralla € V., m =0,...,n,h=0,...,n(n—
1)/2, as follows. We let the function values be infinity whenever the conditions cannot be
satisfied. To simplify the recursive formulas below, it will be convenient to accept h < 0

in Fy(m,k,h) and Gq,(m,k,h); in this case, we assume again that the function values are

infinite.
Fo(m,k,h) = Gq,(m, k, h) for all non-leaf nodes a € V, (3.11)
min{Fy, (p, q,7) + Ga,yy (0,k — g, h — 1) :
G (k1) = p=0,....|V(T,)|,¢=0,....k—1,7r=0,...,h} ifm=0, (31

min{Fy,(p,q,7) + Ga,, [m —p,k —q,h —r — p(m —p)] :
p=0,....m—1,¢q=0,...,k,7r=0,...,h} if m > 0.

Equation (3.12) is written for all non-leaf nodes a; € V' with ¢ < s (non-rightmost subtrees).

For each rightmost subtree T, we specify the initial condition
o0 ifm=0,k=0,
Ga,(m,k,h) = § wg +min{F, (p,k —1,h): p=0,...,|V(T.,)|} ifm=0k>0, (3.13)
F,,(m—1,k,h—m+1) if m >0,
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and, for every leaf a:

w, ifm=0k=1,h=0,
Fo(m,k,h) =40 ifm=1k=0h=0, (3.14)

oo in all other cases.

We now give a justification for the above formulas. Formula (3.11) is immediate because

it follows from the fact that T, = Ty, , for every non-leaf node a € V.

In the formula for G, (m, k, h) (equation (3.12)), the separation is based on whether node

a is removed (m = 0) or not (m > 0). When m = 0, a path surviving in Ty, , = To, + Ta,,, ,

either completely belongs to T, or to T, Hence if r paths belong to T, exactly h —r

i+1,5*

belong to T, In this case if ¢ nodes have been removed from Tj,, exactly & — ¢ nodes

i+1,8"

(including a) must be removed from T, . Note that the number of nodes p in the subtree

@it1,s
T,, that are connected to a; is arbitrary, as this value does not affect the number of nodes
connected to a, as a is removed in this case and no node will be connected to a in the subtree
T4y, .- Hence by definition of F' and GG the minimum total weight of the nodes removed from
Ty, , will be Gg,(m, k, h) = miny, ¢ {Fo,(p, ¢, 7) + Ga; 1 (0,k — g, h —7)}. For the other case, if
m > 0 (i.e., a is not removed), a path in 7y, , can be either fully contained in one of Ty, Ty, .,
or partially contained in both subtrees because it passes through the node a. If a; is connected
to p nodes of Ty, when ¢ nodes have been removed from 7}, and a is connected to m —p nodes
in Ty, ,

are exactly p(m —p). If r paths survive in T,,, h —r —p(m —p) paths survive in T,

exactly when k — ¢ nodes to be removed from Ty, the paths passing through a

it1,s)

and, by

i+1,s

definition of F' and G, G, (m, k, h) = min, ¢ - {Fy,(p, ¢, 7) +Ga;y [Mm—p, k—q, h—r—p(m—p)]}.

Formula (3.13) is based on a similar argument. If m = 0 (i.e., a is removed) and k > 0, all
the h paths survive in T, and we have to add the weight of node a. On the other hand if node
a is not removed (m > 0), in T,, we must have m — 1 nodes connected to as and h — (m — 1)

surviving paths, since m — 1 paths connect a to m — 1 other nodes in Ty, , = a + Ty,.

Equation (3.14) reflects the fact that when the subtree consists of just a leaf, the decision
to make is whether to remove the leaf (m = 0, k = 1) or not (m = 1, k = 0), and in both

cases the number of paths surviving in 7y is 0.

The optimal value, assuming the tree is rooted at node 1, is given by
OPT = min{h: Fi(m,K,h) <W,m=0,...,n, h=0,...,n(n—1)/2}. (3.15)
The optimal solution is recovered by backtracking. We can state the following proposition.

Proposition 3.2.1. The proposed algorithm has complexity O(n” K?).
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Proof. The number of function values Fy(-) and G, (-) to compute for each value of m, k, h is
bounded by product (n + 1)(K + 1)[n(n — 1)/2 + 1] values. The heaviest computation lies in
equation (3.12), where O(n) values are possible for p, O(K) for ¢ and O(n?) for r. Considering
all n nodes, the running time is bounded by O(n"K?).

O

3.3 Solving CEDP on a tree when given a budget

In Section 3.1.1 we have solved the CEDP on trees when ¢y, = 1 for all u,v and w, = 1 for
all v € E and in Section 3.1.2 we have also solved the CEDP on trees when ¢,,, = 1 for all
u,v and w, > 0 for all v € E. We now propose a dynamic programming technique for the
CEDP over trees, taking into account the weight limit for removing edges and the fact that

all connection costs are unitary.

Let us consider the tree T'(V, E') with |V| = n nodes, a weight w, > 0 for every v € E, a
connection cost ¢, = 1 for all u,v € V and a weight limit W > 0. The problem in this case
amounts to finding a subset S of edges with total weight > _gw, not exceeding the budget
W and minimizing the number of paths surviving in a tree T(V, E) after having removed at

most K edges.

As in Section 3.1, we utilize the same tree and subtree notation. In order to solve the

problem by dynamic programming, we define the following functions.

e F,(m,k,h) = minimum total weight of the k edges to be removed from the subtree T,
in order to have node a connected to exactly m nodes (including a itself) and h paths
surviving in T,. Note that the number of nodes connected to the root will never be 0
because we never remove the root as the root is a node and we can not remove a node

in the edge deletion problem.

o Gy, (m,k,h) = minimum total weight of the k edges to be removed from the subtree
To;, =a+Ta +Tay, + -+ Tp, in order to have a connected to m nodes of Ty, , and

h paths surviving in Ty, .. As above, m > 0.

We compute the values for F' and G recursively foralla € V., m=1,...,n,h=0,... ,n(n—



3.3. SOLVING CEDP ON A TREE WHEN GIVEN A BUDGET 31

1)/2, as follows. Assume F,(m,k,h) = oo, Go(m,k,h) =00 if m < 0 or h < 0.

F,(m,k,h) = Gq,(m, k,h) for all non-leaf nodes a € V, (3.16)
(
min{Fy,(p,0,7) + Go,., [m — p,0,h — 1 — p(m — p)] :
p=0,....m,r=0,...,h} if k=0,
min{we + min{Fy, (p,q,7) + Ga;py (M k —q—1,h —7):

Ga;(m,k,h) =
p=0,...,\V(Ty,)|,¢g=0,....k =1, 7r=0,...,h},
min{Fy,(p, ¢,7) + Gapy [m — 0,k —q,h — 1 — p(m — p)] :
p=0,....m,q=0,....k, r=0,...,h}} if k>0,
(3.17)

where e is the edge connecting a to a;. Equation (3.17) is written for all non-leaf nodes a; € V
with ¢ < s (non-rightmost subtrees). For each rightmost subtree T,, we specify the initial

condition
00 ifm=1,k=0,

Ga,(m,k,h) = S we + min{F,, (p,k—1,h): p=0,...,|V(T,)|} ifm=1 k>0, (3.18)
Fo.(m—1,k,h—m+1) ifm>1,%k>0,

where e is the edge connecting a to as, and for every leaf a:

0 ifm=1k=0h=0,
F,(m, k,h) = (3.19)

oo in all other cases.

We will now explain why the formulas above are correct. Formula (3.16) is immediate

because it derives from the fact that T, = Ty, , for any non-leaf node a € V.

For equation (3.17) note that the edge e (which connects a to a;) is the connecting edge

between the subtrees T;, and Tj, . The first case k = 0 means that we are not allowed to

i+1,s

remove any edge from Ty, . =T, + T, hence if a; is connected to p nodes of Tj,, and a is

it1,s?
connected to m —p nodes in T, the paths passing through the edge e are exactly p(m—p).
i+1.. and, by definition of F" and
G, Gq;(m,0,h) = ming, . {Fy,(p,0,7) + Gq, . [m — p,0,h —r — p(m — p)]}. For the second case

in which k& > 0, we take the better of two possibilities, which correspond to the two arguments

i+1,s)

If r paths survive in T,,, h —r — p(m — p) paths survive in T,

of the outer minimum. The first possibility occurs only when we remove the connecting edge a
to a; and in this situation we take the sum of the optimal values that we can obtain in each of
the two subtrees T},, and T,
the edge e, a path is either fully contained in one of 7,,, T,

i11..- For the second possibility, which is when we are not removing

i+1..» OF partially contained in both

subtrees because it passes through the edge e. If a; is connected to p nodes of 15, when ¢

edges have been removed from T}, and a is connected to m — p nodes in T exactly when

i+1,s
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k — q edges have been removed from T}, the paths passing through the edge e are exactly

it1,s0

p(m — p). If r paths survive in Ty, then h — r — p(m — p) paths survive in Tj and, by

it1,s
definition of F' and G, G, (m, k, h) = min, ¢ -{Fo,(p, ¢,7) +Ga,, [m—p,k—q, h—r—p(m—p)]}.

The initial condition (3.18) takes into account that, if the edge e is removed (m = 1) and
k >0, the h surviving paths of T, , = a+T,, must belong entirely to T, hence the minimum
possible weight for the edges removed from T,, ; will be Gq, (m, k, h) = w, + min, {Fy, (p, k —
1,h)}. On the other hand if the edge e is not removed (m > 1), in T, we must have m — 1
nodes connected to ags and h — (m — 1) surviving paths, since m — 1 paths connect a to m — 1
other nodes in T, ; thus Go,(m, k,h) = F, (m — 1,k,h —m + 1) follows.

Equation (3.19) handles the case of a one-node tree. Since a € V is a leaf, it is not possible
to remove any edge (k = 0) and only a is connected to itself (m = 1) and the number of paths

h surviving in Ty is 0.

The optimal value, assuming the tree is rooted at node 1, is given by
OPT = min{h: Fi(m,K,h) <W,m=0,...,n, h=0,...,n(n—1)/2}. (3.20)
The optimal solution is recovered by backtracking. We can make the following proposition.
Proposition 3.3.1. The proposed algorithm has complexity O(n” K?).

Proof. The number of function values Fy(-) and G, (-) to compute for each value of m, k, h is
bounded by product (n+ 1)(K + 1)[n(n — 1)/2 + 1] values. The heaviest computation lies in
equation (3.17), where O(n) values are possible for p, O(K) for ¢ and O(n?) for r. Considering
all n nodes, the running time is bounded by O(n"K?).

O

3.4 Solving CNEDP-1 on a tree with unit connection costs

In this section we show CNEDP-1 can be solved in polynomial time when the underlying graph
is a tree and the connection costs are all unitary and node and edge weights are arbitrary. We
would like to mention that the case with unit costs and unit node and edge weights does not
make sense because it is always better to use the budget to remove nodes rather than edges.

Let wy, > 0 and we > 0 be arbitrary weights assigned to the nodes v € V' and edges e € E
respectively. The problem in this case amounts to finding subset S C V U E with total weight
Y vey Wo + Y _ecp We not exceeding a given W such that the number of surviving paths after
having removed nodes and edges is minimized.

This case can be solved by a dynamic programming algorithm formulated in the same

spirit of Section 3.1. The recursion uses two parameters m and k representing, respectively,
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the number of nodes connected to the root of a subtree and the number of paths surviving in
the same subtree.
Keeping the notation for subtrees introduced in Section 3.1, we define the following func-

tions.

e [Fy(m,k) is the minimum total weight of the nodes and edges to be removed from the
subtree Ty, in order to have node a connected to exactly m nodes (including a itself) and

k paths surviving in 7T},.

o Gg,(m,k) is the minimum total weight of the nodes and edges to be removed from the
subtree Ty, , = a + Ty, + Ty,

Ta;,, and k paths surviving in Ty, ,.

+---+1T,, in order to have a connected to m nodes of

We compute the values for F' and G recursively for alla € V, m=0,...,n, k=0,...,n(n —
1)/2, as follows. For both functions, condition m = 0 implies that node a is deleted from the
graph (a € S). Also, in case no feasible solution exists for functions Fj, or G,,, we will set
the corresponding entries to co. It is also convenient to set the above values to infinity when
k <O0.

We can state the following recursive relations:
F,(m,k) = Gq,(m, k) for all non-leaf nodes a € V, (3.21)

min{Fai (pa (]) + Ga¢+1 (Oa k — Q) :

p=0,...,|V(Ty,)|,q=0,...,k} if m=0,
min{we + min{ Fy, (p, q) + Gq,., (M, k —q) :
Ga,(m, k) = t {Faulp,g) il ? (3.22)
p:O,...,‘V(Tai),q:O,...,k‘},
min{F, (p, q) + Go;yy [m — p,k — g — p(m —p)] :
p=0,....,m,q=0,...,k}} if m > 0,

where e is the edge connecting a to a;. Equation (3.22) is written for all non-leaf nodes a; € V'

with ¢ < s (non-rightmost subtrees). For each rightmost subtree T,, we specify the initial

condition
We +min{Fy, (p,k): p=0,...,|V(Ta,)|} ifm=0,
Ga,(m, k) = S we + min{F,, (p, k) : p=0,...,|[V(T,)|} ifm=1, (3.23)
F,,(m—1,k—m+1) ifm>1,

where e is the edge connecting a to as, and for every leaf a:

w, ifm=0,k=0,
Fo(m,k) =<0 ifm=1k=0, (3.24)

oo in all other cases.
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We now give a justification for the above formulas.

For equation (3.21), note that T, = Ty, , for any non-leaf node a € V.

1,s
For equation (3.22), if m = 0 (i.e. a is removed), a path surviving in Ty, , = Ty, + Ty, 4,

either belongs entirely to Ty, or to 1§, hence if ¢ paths belong to T, exactly & — ¢ paths

i41,57

belong to Ty, , s and p nodes of Ty, can be connected to a;, whereas no node will be connected
to a. Hence by definition of F' and G the minimum total weight of the nodes and edges
removed from T, , will be Gy, (m, k) = miny {Fy, (P, q) + Ga,,1 (0,5 — )}

Now consider the case when a is not removed (m > 0). Note that the edge e (which
connects a to a;) is the connecting edge between the subtrees Tp,, and T, , ,. There are two
cases to compute the value of G, (m, k) based on the edge e, either we remove e or we have
to keep it. If the value of Gg,(m, k) is achieved from the expression wg q, + min{Fg,(p, q) +

Ga,..(m,k —q)}, then besides removing the optimal nodes and edges from 75, and T, we

i+1,s

should also remove the edge e and in this case a path surviving in T, , =T, + T, either

i+1,s
completely belongs to T, or to Ty, ., s. According to the definition of Gg,(m,k), m nodes
are still connected to a and all nodes are inside the subtree Ty, ,, s, whereas at most ‘V(Tai)}
nodes can be connected to a;. If ¢ paths belong to Ty, exactly k — ¢ paths belong to Ty, , s.
Hence by definition of F' and G the minimum total weight of the nodes and edges removed
from Ty, , will be Gy, (m, k) = we 4+ ming, o { Fo, (p, ¢) + Ga,, (m, k — q)} where w, corresponds

the weight of the edge e.

On the other hand if the edge e is not removed, then a is connected to m nodes of T, and

a path in Tj,, . can be either completely contained in one of Ty, T or partially contained

Ait+1,s?
in both subtrees because it passes through a. If a; is connected to p nodes of T}, and a is
the paths passing through a are exactly p(m — p). If ¢
i+1.. and, by definition of F' and G,

Glli <m7 k) = min]hq{Fai (p, Q) + G(li+1 [m - Db k— q— p(m - p)]}

connected to m — p nodes in Ty, , _,

paths survive in Tj,,, k — ¢ — p(m — p) paths survive in T,

The initial condition (3.23) takes into account that, if node a is removed (m = 0), the k
surviving paths of Ty, , = a + T,, must belong entirely to T,,, hence the minimum possible
weight for the nodes and edges removed from T, , will be Gg, (0, k) = min,{Fy, (p, k)} + wa.
When m = 1, i.e., the edge e (which connects a to as) is removed, then the k surviving paths
of Ty, , = a+T,, must belong entirely to T;,, and hence the minimum possible weight for the
nodes and edges removed from T, , will be G, (m, k) = we + miny{Fy, (p, k)}. On the other
hand if the edge e is not removed (m > 1), in T,, we must have m — 1 nodes connected to as
and k — (m — 1) surviving paths, since m — 1 paths connect a to m — 1 other nodes in T, _;
thus Go,(m,k) = F,,(m — 1,k —m+ 1) follows.

The equation (3.24) trivially handles the case of a one-node tree: remove the single node
a (case m = 0,k = 0), or keep it (m = 1,k = 0) and all other combinations of m and k are

infeasible and are considered to have an infinite weight.
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The optimal value, assuming the tree is rooted at node 1, is given by
OPT = min{k: Fi(m,k) <W,m=0,...,n,k=0,...,n(n—1)/2}. (3.25)
The optimal solution is recovered by backtracking.

Proposition 3.4.1. CNEDP-1 on a tree with unit connection costs and arbitrary node and

edge weights can be solved by recursion (3.21)—(3.24) in O(n") time.

Proof. For each node a € V there are at most n+1 = O(n) values for m and n(n—1)/2+1 =
O(n?) values for k; this gives O(n?) values Fy(-,-) and Gg,(-,-) to compute. The heaviest
computation lies in equation (3.22), where O(n) values are possible for p and O(n?) for q.
Hence in the worst case a number of operations bounded by (’)(n7) are required.

O

3.5 Complexity of CNEDP-2

Unlike CNEDP-1, CNEDP-2 with unit connection costs is NP-hard even on a path. We
actually show a stronger result: it is NP-hard to approximate this problem within any factor.
(We recall that given a@ > 1, an a-approximation algorithm for a minimization problem is

required to return a solution whose objective value is at most « times the optimal value; see,
e.g., [76].)

Proposition 3.5.1. Unless P = NP, CNEDP-2 on a path with unit connection costs cannot

be approximated within any factor.

Proof. We prove the result via a reduction from PARTITION, which is known to be NP-complete
(see [36]):

PARTITION: Given n € N and ay,...,a, € N, determine whether there exists
JCA{1,...,n} such that 3 ;. ;a; =3 0 ai.

Given an instance of PARTITION as above, we define A = """ | a;. We construct an
instance of CNEDP-2 on a path as follows:

e G = (V,FE) is a path with 2n + 1 vertices, denoted by w1, v1,u2,v2, ..., Uy, U, Upt+1 (in
the order they appear on the path);

e the node weights are w,, = a; for every ¢ € {1,...,n}, and w,, = A/2 + 1 for every
ie{l,...,n+1}

o the edge weights are wy,,, = a; and wy, =0 for every i € {1,...,n};

Ui+1

o the weight limits are Wy = Wg = A/2.
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We show that the given instance of PARTITION has a solution if and only if the optimal value
of the above instance of CNEDP-2 is zero. Since, by definition, an approximation algorithm
always recognizes the instances with optimal value equal to zero, this will prove the result.

Assume that the instance of PARTITION has a solution, i.e., there exists J C {1,...,n}
such that > ;e ;ai = > ;45 ai = A/2. Define S C V U E as follows:

S={v;:ieJtU{uw i ¢ J}U{vjuir1:i€{1,...,n}}.

This choice yields a feasible solution to the instance of CNEDP-2, as w(SNV) =w(SNE) =
A/2 = Wy = Wg. Furthermore, as G — S contains only isolated nodes, ¢(G — S) = 0. Thus
the optimal value of the instance of CNEDP-2 is zero.

For the converse, assume that the instance of CNEDP-2 has a solution with objective value
zero, i.e., there exists S C VUE such that w(SNV) < A/2, w(SNE) < A/2,and ¢(G—-S5) =0
(which means that there are only isolated nodes in G — S). Without loss of generality, we
can assume that v;u;4+1 € S for every i € {1,...,n}, as these edges have zero weight. In
other words, we can imagine that the original graph only contains the edges ujvy, ..., upv,.
Furthermore, u; ¢ S for every i, as otherwise the node weight limit would be exceeded. Then
the fact that G — S has only isolated nodes implies that, for every i € {1,...,n}, S contains
v; Or u;v;. AS Wy, = Wy, = a; for every i, we obtain w(S) > A. Since the weight limits are
Wy = Wg = A/2, we necessarily have w(SNV) = w(SNE) = A/2. Thus the instance of
PARTITION has the solution J =SNV. O

3.5.1 Solving CNEDP-2 on a tree with unit connection costs

Despite the above negative result, we now show that if the node and edge weights are fixed
to 1 (as well as the connection costs), CNEDP-2 admits a polynomial-time algorithm. The
objective in this case is for minimizing the number of paths surviving in the tree T'(V, E) after
having removed at most Ky nodes and Kg edges.

We use the same tree and subtree notation as in Section 3.1, and calculate recursively the

following functions:

e F,(m,ky,kgr) = minimum number of connections that still exists in the subtree T, after
ky nodes and kg edges have been removed from T, and m nodes of T, remains connected

to the root a. Condition m = 0 indicates that a is removed from T,,.

o Gy, (m, kv, kg) minimum number of connections that still exists in the subtree T, , =
a+Ty,+---+1T,, after ky nodes and kg edges have been removed from Ty, , and m nodes
of the subtree are still connected to a. As above, m = 0 indicates that a is removed

from Ty, ..
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We let the function values be infinity whenever the conditions cannot be satisfied. The values
for F' and G can be computed by traversing the tree in postorder (from leaves to root), by
means of the following relations:

For every leaf a we have

0 if(m=1Lky=kg=0)or(m=kg=0,ky=1),
Fo(m. ky, k) = it v =he =0)or (m=ke v=1 (3.26)

oo otherwise,

while the formula for a non-leaf node a is
Fa(m, kv,kE) = Ga1 (m,kv,kE). (3.27)

If a is a non-leaf node, we also have

Ga,(m, kv, ki) =

min{Fy,_ (p,ky — L,kg) : 0 < p < |[V(T,.,)|} itm=0,
min { Fy, (0, by k), min{ By, (kv kg — 1) 0 < p < [V(T, )Y} ifm=1, (3.29)
Fas(m—l,kv,kE)—i—m—l ifm>1,

while, for i < s,

G, (m,ky, kg) =
min{ Fy, (p, qv, qg) + G, (0, kv — qv, ke — qE)
0<p<|V(Te,)l, 0<qv <ky —1,0<qg < kgp} if m =0,
min { min{ Fy, (p, qv,qE) + Ga, o, (M by —qv, kg —qe — 1) :
0<p<|V(To,)|, 0<qv < kv, 0<qp <kp—1},
min{Fy, (p, qv, qg) + Gayyy (M — 0, kv — qv, kg — qg) +p(m — p) :
0<p<m,0<qy <ky,0<qp <kgp}} if m > 0.
(3.29)

The optimal value is calculated as follows if we denote by 1 the root node of the tree
OPT = min{Fy(m,Ky,Kg) :m=0,...,n}. (3.30)

Formulas (3.26) and (3.27) are immediate.

In (3.28) we assume that if a € S then aas ¢ S: This is without loss of generality, as if
aas € S, we obtain the same objective value by removing the elements in S\ {aas}. The case
m = 0 corresponds to a € S, which leads to the formula on the first line. The case m = 1
occurs when as € S (first argument of the outer minimum on the second line) or aas € S

(second argument of the outer minimum). Finally, m > 1 is the case in which a,aas ¢ S.
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Similar to (3.28), in (3.29) we assume that if a € S then aa; ¢ S. The first case (m = 0)
corresponds to having a € S. In this situation, we take the sum of the optimal values that

we can obtain in each of the two subtrees T,, and Tj For the second case (m > 0), in

it+1,s°
which a ¢ S, we take the better of two possibilities, which correspond to the two arguments
of the outer minimum. For the first possibility, which is when aa; € S, we take again the sum

of the optimal values in each of the two subtrees Tj, and Ty For the second possibility

i+1,s"
(aa; ¢ S), we have to add the connections between the two subtrees.

We obtain the following result.

Proposition 3.5.2. CNEDP-2 on a tree with unit connection costs and unit node/edge

weights can be solved in O(n*KLK%) time.

Proof. For each node a € V' there are at most n + 1 = O(n) values for m, Ky +1 = O(Ky)
values for ki and K + 1 = O(Kg) values for kg; this gives O(n?Ky Kg) values of F and
G to compute. The heaviest computation is that of equation (3.29) that requires at most
O(nKy Kg) steps. Hence in the worst case a number of operations bounded by O(n* K% K#%)

are required. O

The results derived for the CNEDP-2 over trees are summarised in the following table.

Cuv Wy  We complexity
=1 =1 =1 OMn’KIK3})
=1 >0 >0 NP-hard

Table 3.2: Complexity results for the CNEDP-2 over trees



Chapter 4

CEDP via subdivision

In Chapter 3 we have derived the dynamic programming algorithm to solve the CEDP on
a tree by removing the edges directly. In this chapter we propose a different approach to
solve the CEDP over trees by looking at the CNDP by subdividing the graph and the same
complexity (see Section 3.1.1 and 3.1.2) is obtained. In a graph G = (V, E), the subdivision
of an edge e = uwv € E(G) means the substitution of the edge e by a vertex w and the new

edges uw and wv (see Figure 4.1). This operation generates a new graph G’

G = (Vu{w}, (E\ {uw}) U {uw,wv}).

ll / N '
- / b —

. I,/J—--_-_-_‘- ‘-h\n
\'\ - f’ A
< i S/ - \ Fu?
i i U 7

Figure 4.1: Example of subdivision of an edge uv.

The technique that we follow in this chapter to solve the CEDP over trees is the following:
Let G = (V, E) be an undirected graph with a finite set V' of nodes and a finite set E C V xV
of edges. Define a restricted critical node detection problem (RCNDP) in which we are also
given a subset of vertices A C V and the problem is to disconnect the graph as much as
possible by removing K nodes from set A. Now we create the graph G’ = (V’, E’) in which all
the edges are subdivided and define A to be the set of newly created nodes where V' = V U A.
Then the problem of removing at most K edges from G is equivalent to a RCNDP on &, i.e.,
the problem of removing at most K nodes from the set A C V.

In the above example (Figure 4.1), removing the edge uv is the same as removing the
newly created node w in the subdivided graph because when we remove the node w, this

automatically remove the two new edges uw and wwv.

39
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4.1 The unit cost, unit weight case on trees

An approach for solving CEDP on trees when ¢, = 1 for all u,v and w, =1 for all v € V is
shown in this section.

Let us consider the tree T'(V, E) with |V| = n nodes. We have created the tree 77 = (V', E')
by subdividing every edge of T. Now we consider the RCNDP on T’ with the allowed set
A =V'\V, ie., the set of newly created vertices. In this case the problem calls for minimizing
the number of paths surviving in the tree 7"(V’, E’) after having removed at most K nodes
from the set A and we want to count the connections between the original vertices, i.e., ¢, = 1
for all u,v € V and 0 otherwise.

We use the same tree and subtree notation as in Section 3.1, and calculate recursively the

following values:

e F,(m,k) = minimum number of connections between pairs of nodes in V' that still exists
in the subtree T, after k£ nodes from A have been removed from T, and m original nodes

of T, remains connected to the root a (including a itself).

e G4, (m,k) = minimum number of connections between pairs of nodes in V' that still
exists in the subtree Ty, , = a +T,, + - - - + Tg, after k nodes from A have been removed

from Tj, , and m original nodes of the subtree are still connected to a.

We remark that for both functions, the number of the original nodes connected to the root
will never be 0 (i.e. m > 0) because we never remove the root as the root is an original node
and we can not remove an original node in the restricted problem. Furthermore, whenever the
conditions in one of the above definitions cannot be satisfied, we set the value of the function
to infinity.

The values for F' and G can be computed by traversing the tree in postorder (from leaves

to root), by means of the following relations:

F,(m,k) = Gy, (m, k) for any non-leaf node a € V; (4.1)
Gg,(m, k) =
.

min{Fy, (p,0) + G4, (m — p,0) +p(m —p) :p=0,...,m} if k=0,

min{min{F,, (p,q) + Ga, ., (m,k—1—¢q):p=0,... ,‘V(Tai)

,q=0,...,k—1},

min{Fy, (p,q) + Ga,y (m —p,k —q) + p(m —p) :

p=0,...,m,q=0,...,k}} if k>0,
(4.2)

for any non-leaf node a € V and ¢ < s.
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The initial conditions on each leaf a and on each rightmost subtree 7, are the following:

0 ifm=1k=0,
Fu(m, k) = n (4.3)

oo otherwise,

o0 ifm=1,k=0,
Ga,(m, k) = ¢ min{F,, (p,k = 1) :p=0,...,[V(T,)]} ifm=1k>0,  (44)
Fo.(m—1,k) 4+ (m—1) iftm>1 k>0,

Equation (4.1) follows because T, = T, , for any non-leaf node a € V.

1,s
Recursion (4.2) can be interpreted as follows:

The case k = 0 means that we are not removing any node from Ty, , = Tg, + T, Since

i+1,s"
we have to keep everything, we are not allowed to remove anything from the subtrees 75, and
Taipr .- If a; is connected to p original nodes of Ty, then a is connected to m — p original
nodes in Ty,,, , and the paths passing through a are exactly p(m — p). Hence by definition
of F' and G the minimum number of paths that survive in Tj, , when we are not removing
anything will be G, (m,0) = min{Fy,(p,0) + Gq,,,(m —p,0) +p(m —p)} where p=10,...,m.

The case k > 0 means that we have to remove at least one node from the allowed set A.
When the value of G, (m, k) is achieved from the expression Fy,(p, q) + Ga,,, (m, k —1 — q),
we remove the node corresponding to the edge e which connects a to a;. Expression Fy,(p, q)
gives the minimum number of paths that survive in 7,, when ¢ nodes from A are removed
from T, and p original nodes of T, are still connected to a;. Since ¢ nodes from A have been

removed from T,,, exactly k—1—g¢ nodes from A must be removed from T, and m original

i+1,s

nodes of Ty, , , are still connected to a. The minimum number of paths that survive in Tg,_, |

(m,k —1—gq). Thus

the expression Fy, (p, q) + Gq,,, (m, k —1—q) gives the minimum number of paths that survive

when k — 1 — g nodes from A are removed from Ty, , , is given by G, ,
in Ty, , when ¢ nodes from A are removed from Tg, (and the other £ — 1 — ¢ nodes from A
are removed from Ty, , ;) and p original nodes of T,, are still connected to a;. By taking the
minimum over p =0,...,|V(Tg,)| and ¢ =0,...,k — 1, we find the value of G4, (m, k).
When the value of Gy, (m, k) is achieved from the expression Fy,(p, q) + Ga,,,(m —p, k —
q) +p(m—p), we are not removing the node corresponding to the edge e. As above, expression
F,,(p,q) gives the minimum number of paths that survive in 7,, when ¢ nodes from A are
removed from 75, and p original nodes of T, are still connected to a;. Since ¢ nodes from A

have been removed from T, exactly kK — ¢ nodes from A must be removed from Tj, and

i+1,s
since p original nodes of T}, are still connected to a; and thus to a, exactly m —p original nodes

of T,

Ai+1,s

when k — ¢ nodes from A are removed from 75,

must remain connected to a. The minimum number of paths that survive in Ty, , |

and m — p original nodes of Ty, are still

+1,s +1,s

connected to a is given by G, , (m—p, k—q). Thus the expression F, (p, ¢)+Gq,,, (m—p,k—q)

gives the minimum number of paths that survive in 7}, or T, when ¢ nodes from A are

i+1,s
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removed from 7;, (and the other k — ¢ nodes from A are removed from Ty, , ;) and p original

nodes of Ty, are still connected to a;, while m —p original nodes of 75, are still connected to

+1,s
a. Now we have to add the paths connecting to the original nodes of T}, to the original nodes
of Ty,,, ,, i.e. p(m — p) paths. This gives expression Fy,(p,q) + Ga,,, (m —p,k—q) +p(m —p)
of recursion (4.2). By taking the minimum over p = 0,...,m and ¢ = 0,...,k, we find the

value of G, (m, k).

Equation (4.3) handles the case of a one-node tree. Since a € V is a leaf and it is not in
the allowed set A, it is not possible to remove the node (k = 0) and only a is connected to

itself (m = 1) and the number of paths survive in T}, is 0.

For a justification of (4.4), recall that Tj,, , = a + Tg,. If m =1 and k > 0, then we have
to remove the node corresponding to the edge between a and as and the other £ — 1 nodes
we have to remove from the subtree 7}, from A and the number of connections that survive
are those in T, between the original vertices. On the other hand if m > 1, then we can not
remove the node corresponding to the edge a to as and in this time we have to remove all
the k nodes from A inside the subtree T, . Since m original nodes connected to a including a
itself, we will find the other m — 1 original nodes connected to as. Then we have to add all

the connections of a to the original nodes that are connected to as in the subtree.

The optimal value for the problem, assuming that the tree T' is rooted at node 1, is given
by
OPT = min{Fi(m,K):m=1,...,n}, (4.5)

and the optimal solution is recovered by backtracking.

Proposition 4.1.1. CEDP on a tree with unit connection costs and unit edge weights can be
solved by recursion (4.1)—(4.4) in O(n3K?) time.

4.2 The case with unit costs and arbitrary edge weights

In this section, we look at the identical problem as in Section 4.1, but with arbitrary edge
weights rather than unit edge weights.

Let us consider the tree T'(V, E) with |V| = n nodes. We have created the tree 7" = (V', E')
in which all the edges are subdivided. Now we consider the restricted CNDP on T” with the
allowed set A =V’ \ V| i.e., the set of newly created vertices. Once the subdivision has been
made, all the vertices keep the same cost as the original vertices and the new vertices inherit
the cost of the edges from which they are subdividing because every vertex subdivides an edge.
Let w, > 0 be arbitrary weights assigned to the newly created nodes v € A. The problem in
this case amounts to finding a subset S of nodes from the set A with total weight > g w,

not exceeding a given W such that the number of surviving paths after having removed the
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set S is minimized and we want to count the connections between the original vertices, i.e.,
Ccyp = 1 for all u,v € V and 0 otherwise.

This case can be solved by a dynamic programming algorithm formulated in the same spirit
of the previous section. The recursion uses two parameters m and k representing, respectively,
the number of original nodes in V' connected to the root of a subtree and the number of paths
surviving in the same subtree.

Keeping the notation for subtrees introduced in Section 3.1, we define the following func-

tions.

e Fy(m,k) is the minimum total weight of the nodes from the set A to be removed from
the subtree Tj in order to have node a connected to exactly m original nodes (including

a itself) and k paths surviving in 7.

o G, (m, k) is the minimum total weight of the nodes from the set A to be removed from
the subtree Ty, , = a+ Ty, + Ty, +- -+ Tq, in order to have a connected to m original

nodes of Tg, , and k paths surviving in 7T, .

We compute the values for F' and G recursively for alla € V, m=1,...,n, k=0,...,n(n —
1)/2, as follows. Assume F,(m, k) = 0o, Go(m,k) = o0 if m < 0 or k < 0.

F,(m,k) = Gg, (m, k) for all non-leaf nodes a € V, (4.6)
Go;(m, k) =min{w. + min{Fy, (p,q) + Ga,yy (M, k—q) :p=0,...,|V(To,)|, ¢=0,...,k},
mln{Fal(p7q)+Gaz+1[m_p7k_q_p(m_p)] p:0)7m) QZO,ak}}a

(4.7)

where ¢ is the node connecting a to a;. Equation (4.7) is written for all non-leaf nodes a; € V'
with ¢ < s (non-rightmost subtrees).

For each rightmost subtree T, we specify the initial condition

we + min{Fy, (p, k) : p=0,...,|V(To,)|} ifm=1,
Fo,(m—1,k—m+1) if m>1,

Ga,(m, k) = (4.8)

where ¢ is the node connecting a to ag, and for every leaf a:

0 ifm=1,k=0,
Fa(ma k) = (49)
oo in all other cases.

We use the same logic to explain equations (4.6)—(4.9) as we did in the previous section
for equations (4.1)—(4.4).

For equation (4.6), note that T, = Ty, , for any non-leaf node a € V.

For equation (4.7) note that the node ¢ in A adjacent to a and a; is the connecting

node between the subtrees 7j, and 7, There are two cases to compute the value of

Qitl,s”
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Ga,(m, k) based on the node ¢, either we remove the node ¢ or we keep it. If the value of
G, (m, k) is achieved from the expression w. +min{Fy, (p, q) + Ga,, (m, k — q)}, then besides

removing the optimal nodes from 7T, and T, we should also remove the node ¢ and in

i+1,s
this case a path surviving in Ty, . = Ty, + Ty, , either completely belongs to Ty, or to
Ty;1,s- According to the definition of Gy, (m, k), m original nodes are still connected to a

and all nodes are inside the subtree Tj,,, s, whereas at most |V(Tai)‘ original nodes can be
connected to a;. If ¢ paths belong to Tj, exactly k — ¢ paths belong to Ty,,, s. Hence by
definition of F' and G the minimum total weight of the nodes from A removed from 7T, , will
be Gy, (m, k) = we + miny, ({Fy, (p, q) + Ga, ., (M, k — q)} where w, corresponds the weight of
the node ¢ which connects a to a;.

On the other hand if the node ¢ is not removed, then a is connected to m original nodes
of T, and a path in Ty, , can be either completely contained in one of T, Ty, , ,, or partially
contained in both subtrees because it passes through a. If a; is connected to p original nodes
of Ty, and a is connected to m — p original nodes in T, ,, the paths passing through a are
exactly p(m — p). If ¢ paths survive in Tg,, kK — ¢ — p(m — p) paths survive in T,y and, by
definition of F' and G, G, (m, k) = min, o {Fo,(p,q) + Ga;yy[m — 0,k — ¢ — p(m — p)]}.

The initial condition (4.8) takes into account that, if the node ¢ (which connects a to as)
is removed (m = 1), the k surviving paths of T,,, = a + T,, must belong entirely to Tj,,
hence the minimum possible weight for the nodes removed from 7, will be G, (m, k) =
we + miny{Fo (p, k)}. On the other hand if the node ¢ is not removed (m > 1), in Ty, we
must have m — 1 original nodes connected to as and k — (m — 1) surviving paths, since m — 1
paths connect a to m — 1 other nodes in T, ; thus Go, (m, k) = F,,(m — 1,k —m+ 1) follows.

The equation (4.9) says that since a € V is a leaf and it is not in the set A, the only
possible condition is when m = 1,k = 0 and all other combinations of m and k are infeasible
and are considered to have an infinite weight.

The optimal value, assuming the tree is rooted at node 1, is given by
OPT = min{k: Fi(m,k) <W,m=1,...,n, k=0,...,n(n—1)/2}. (4.10)
The optimal solution is recovered by backtracking.

Proposition 4.2.1. CEDP on a tree with unit connection costs and arbitrary edge weights
can be solved by recursion (4.6)—(4.9) in O(n") time.

One could solve the CNEDP-1 and CNEDP-2 on a tree with subdivision approach.



Chapter 5

CNDP, CEDP, CNEDP-1, and CNEDP-2

with 0/1 connection costs

We will see in this chapter that CEDP, CNEDP-1, and CNEDP-2 are all NP-hard even
under the assumptions that the node/edge weights are unitary and the connection costs are
0/1. We will also see that the polynomial-time algorithms that we presented in Chapter 3
actually apply to a more general case, in which the connection costs are 0/1 and have the

following special structure: there exists I C V such that

1 ifu,v el and u # v,
- 7 (5.1)

0 otherwise.

When the connection costs are of this form, we call them square 0/1 connection costs, because
if these ¢y, ’s are represented via a 0/1 matrix, the support of the matrix is, up to permutation
of rows and columns, a square (without one of its diagonals).

We mention that the case of square 0/1 connection costs has also some practical interest.
Indeed, the role of the subset I is easy to understand: The elements in I are the nodes that
we would really like to disconnect from each other, while the other nodes are part of the
graph and it may be important to remove some of them to reduce the connectivity as much

as possible, but they do not count in the evaluation of the objective function.

5.1 Hardness results for 0/1 connection costs

Di Summa, Grosso, and Locatelli [27] proved that CNDP on a tree is NP-hard even if the node
weights are all equal to 1 and the connection costs are 0/1. Their proof is via a reduction from
the decision version of (unweighted) MULTICUT IN TREES, which is known to be NP-complete
[37] and is recalled here.

45
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Problem 11 (MULTICUT IN TREES, decision version). Given a tree G = (V, E), a list of
pairs of nodes (u1,v1),..., (ug,vx), and a bound M, decide whether there exists S C E with
|S| < M such that u; and v; are disconnected in G — S for every i € {1,... k}.

It is immediate to see that MULTICUT IN TREES also reduces to each of CEDP, CNEDP-1,

and CNEDP-2 on trees, as we observe below.

Observation 12. CEDP, CNEDP-1, and CNEDP-2 are NP-hard even on a tree with unit

node/edge weights and 0/1 connection costs.

Proof. Given an instance of MULTICUT IN TREES with input as in Problem 11, we can reduce
it to an instance of CEDP on the same tree, where (using the notation of Problem 3) w, = 1
foralle € E, W = M, ¢y, = 1 for every i € {1,...,k}, and all other connection costs are
equal to zero. Clearly a subset S C F is feasible for the given instance of MULTICUT IN TREES
if and only if the optimal value of the corresponding instance of CEDP is zero. This shows
that CEDP is NP-hard even on a tree with unit node/edge weights and 0/1 connection costs.
Since, as observed in the introduction, each of CNEDP-1 and CNEDP-2 subsumes CNDP
and CEDP, we deduce the same result for CNEDP-1 and CNEDP-2. O

5.2 Solving CEDP and CNEDP-1 on a tree with 0/1 connection

costs

In order to prove that CEDP and CNEDP-1 can be solved in polynomial time when the
underlying graph is a tree with 0/1 connection costs, we begin by demonstrating a reduction
from subdivision, which was previously discussed in Chapter 4, and which can be applied to

any graph.

Lemma 5.2.1. CNEDP-1 on a general graph G with square 0/1 connection costs can be
polynomially reduced to CNDP with square 0/1 connection costs. Furthermore, when G is a

tree the reduced instance is also defined on a tree.

Proof. Let an instance of CNEDP-1 be given, with input as in Problem 4, where the con-
nection costs are as in (5.1) for some I C V. Let G’ = (V' E’) be the graph obtained by
subdividing every edge of G.

We construct an instance of CNDP on G’ with the following data. For u,v € V', the
connection cost is

1 ifu,vel and u # v,
0 otherwise.
Note that these are square 0/1 connection costs. The weights of the elements of V! =V U FE

are defined by setting w! = w, for v € V and w), = w, for e € E. The weight limit is the
same as in the given instance of CNEDP-1, i.e., W = W.
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Given any S C VU E = V', it is immediate to verify that ¢(G — S) = (G’ — S). Thus
the optimal solutions of the instance of CNDP with square 0/1 connection costs constructed
above are precisely the optimal solutions of the given instance of CNEDP-1. It is also clear

that G’ is a tree whenever G is a tree. O

Remark. It can be easily seen that the CNDP with general 0/1 connection costs on a complete
graph in which we want to minimize the number of edges that survive after having removed
at most K nodes is exactly equal to the CNDP with L = 1 on a general graph G in which
we want to minimize the number of short paths that survive after having removed at most K
nodes. Since the CNDP with L = 1 on a general graph G is NP-complete because of reduction
from VERTEX COVER as we stated in Chapter 2, hence the CNDP with general 0/1 connection
costs on a complete graph is also NP-complete. Furthermore, these two problems bridge the
gap between the problem with no lower or upper constraint on the length of the connecting
path and general nonnegative connection costs and the problem with unitary connection cost
and L = 1.

5.3 Solving CNDP on a tree with 0/1 connection costs

We now show how to solve CNDP on a tree with square 0/1 connection costs in polynomial
time, by means of a modification of the dynamic programming algorithm described in [27].
Because of the above lemma, this will also give a polynomial algorithm for CNEDP-1 on a

tree with square 0/1 connection costs.

5.3.1 The case with 0/1 costs and unit weights

In this section we provide a polynomial algorithm for solving CNDP on trees where the
connection costs ¢, are as in (5.1) for some important set of nodes I C V and w, = 1 for
all v € V. The nodes v € I are called important. In this scenario, the task requires reducing
the number of connections that remain in the tree T'(V, E') after removing at most K nodes.
Recall that in this problem we are interested in the number of connected pairs consisting of
nodes in [.

To derive a dynamic programming algorithm, we introduce the following recursive func-

tions:

e [,(m,k) = minimum number of connections surviving in 7; after k nodes have been
removed from T;, and m important nodes are still connected to a (including a itself).

Condition m = 0 indicates that no important node is connected with 7.

o Gy (m,k,t) = minimum number of connections surviving in the subtree T,, . = a +

Ta; + -+ + Ty, when k nodes are removed from Tg, , and m important nodes are still
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connected to a and ¢ € {0, 1}, i.e., condition ¢ = 0 indicates that a is removed from T,
and t = 1 if a is not removed from Ty, .. As above, m = 0 indicates that no important

node is connected with Tj, .

We let the function values be infinity whenever the conditions cannot be satisfied.
We can state the following recursive relations:

For any non-leaf node a € V we have

F,(m, k) = min{Gq, (m, k,0), Gq,(m, k,1)}. (5.2)
For any non-leaf node a € V and i < s (non-rightmost subtrees) we also have
Ga,(m, k,t) =

;

min{Fai(va_I)+Gai+1(07kiq)0) :p:Oa"'a

V(Ta,)

,q=0,....k—1} ifm=0,t=0,
min{Fy,(0,q) + Go,.,(0,k —¢q,1): ¢=0,...,k} ifm=0,t=1,

min{Fai (p7 Q) + Gai+1 (m - D k— q, 1) +p(m - p) :

p=0,...,m,q=0,...,k} ifm>0,t=1,
o0 ifm>0,t=0.
\
(5.3)

For each rightmost subtree Ty, the initial conditions are the following:
Ga,(m, k,t) =
00 if (m=0,k=0,t=0)or (m>0,t=0),

min{F, (p,k—1):p=0,...,|V(T,,)|} ifm=0,k>0,t=0,

Fo,(0,k) ifm=0,t=1, (5.4)
Fo (m, k) +m if m>0,t=1a¢l,

Fy,,(m—1,k)+ (m—1) itm>0,t=1,a€l,

\

and, for every leaf a:

0 if(m=0k=1a¢l —1,k=0,acl),
Fo(m. k) = if (m a¢l)or(m acl) (5.5)

oo otherwise.

Assuming that the tree T is rooted at node 1, the optimal value for the problem is given
by
OPT = min{Fy(m,k) :m=0,...,n, k=0,..., K}, (5.6)
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and an optimal solution can be reconstructed by backtracking.

Equation (5.2) is an immediate consequence of the observation that T, = Ty, , for every

non-leaf node a € V.

When a is a non-leaf node, in the formula for G, (m, k,t) (equation (5.3)) the case dis-
tinction is based on whether node a is removed (¢ = 0) or not (¢ = 1). In the former case,
m is necessarily equal to zero. Expression Fy,(p,q) gives the minimum number of paths that
survive in 7,, when ¢ nodes are removed from 7,, and p important nodes of T, are still
connected to a;. Since ¢ nodes have been removed from T, exactly & — g nodes (including

a) must be removed from T, when

ai+1..- Lhe minimum number of paths that survive in T,

1+1,s
k — q nodes (including a) are removed from T,,_, , is given by G,,,(0,k — ¢,0). Thus the
expression Fy, (p, q)+Ga,,, (0, k—q,0) gives the minimum number of paths that survive in Ty,

when ¢ nodes are removed from Tg, (and the other k —¢ nodes are removed from Tg, and p

i+1,s)
important nodes of T}, are still connected to a;. By taking the minimum over p = 0,. .., |Tg,]
and ¢ =0,...,k — 1, we find the value of G, (0, k,0).

For the other case, i.e., when a is not removed (¢t = 1), one needs to know whether m = 0
or not. When m = 0, no important node is connected to the root a and also no important
node is connected to the node a; of T}, because otherwise it would be connected to a. The
expression Fy,(0,q) + G,y (0,k — ¢,1) gives the minimum number of paths that survive in
T,,;, when g nodes are removed from 7;; and the other k — g nodes are removed from 75, ..
By taking the minimum over ¢ = 0,..., k&, we find the value of G, (0, k, 1).

When m > 0, expression Fy,(p,q) gives the minimum number of paths that survive in
T,; when ¢ nodes are removed from T}, and p important nodes of T}, are still connected to
a;. Since ¢ nodes have been removed from Ty, exactly k¥ — ¢ nodes must be removed from
T4;yr ,; and since p important nodes of Tj, are still connected to a; and thus to a, exactly
m — p important nodes of T, , , must remain connected to a. The minimum number of
and

paths that survive in T}, when k — ¢ nodes (without node a) are removed from T,

Ai41,s

are still connected to a is given by G, ,(m — p,k —q,1).

i+1,s

m — p important nodes of Toity,

Thus the expression Fy,(p,q) + Gq,,,(m — p,k — ¢,1) gives the minimum number of paths

that survive in 15, or Ty when ¢ nodes are removed from 7, and the other £ — ¢ nodes

i+1,s

are removed from T, and p important nodes of T}, are still connected to a;, while m —p

Ai41,s

important nodes of T, are still connected to a. Now we have to add the paths connecting

i+1,s
important nodes of Ty, to important nodes of Ty, , _, i.e. p(m—p) paths. This gives expression
Fo,(p,q) + Ga; .y (m — p, k — q,1) + p(m — p) of recursion (5.3). By taking the minimum over

p=0,....,mand ¢ =0,...,k, we find the value of G, (m, k,1).

For a justification of (5.4), recall that T,, , = a+T,,. There is a first distinction based on
whether node a is removed (¢ = 0) or not (¢t = 1).The condition m = 0, k > 0, t = 0 means
that we have to remove some nodes including the root a and hence the other £ —1 nodes must

be removed from the subtree Tj, and so no important node is connected to the root a. For
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the other case, i.e., when a is not removed (¢ = 1), one needs to know whether m = 0 or not.
When m = 0, all of the £ nodes are removed in T, , and no important node in 7;, can be
connected to as, as otherwise it would be connected to a. When m > 0 and a ¢ I, the value
of Gy, (m, k,t) is obtained by requiring m important nodes in T;, connected to as. Finally, if
m > 0 and a € I, only m — 1 important nodes in 7,, will be connected to as;. Then we have

to add all the connections of a to the nodes that are connected to as in the subtree.

Formula (5.5) reflects the fact that when the subtree consists of just a leaf, the decision
to make is whether to remove (k = 1) the leaf or not (k = 0), and in both cases the number
of path surviving in T, is zero. The value of m can be one only if the leaf belongs to I and is

not removed.

5.3.2 The case with 0/1 costs and arbitrary node weights

This section considers the same problem as Section 5.3.1, but with general node weights
instead of unit node weights.

Let T'(V, E) be a tree with |V| = n nodes and let W be the available budget with weights
w, on the set of critical nodes. Given an important set of nodes I C V with general 0/1
connection costs ¢y, for all u,v € I, the problem is to remove a subset S C V' of total weight
w(S) < W such that the number of connected pairs of nodes in T'[V'\ S] is as small as possible.
The nodes v € I are called important.

We will calculate recursively the following values:

e [,(m,k) is the minimum total weight of the nodes to be removed from the subtree Tj,
in order to have node a connected to exactly m important nodes (including a itself) and

k paths surviving in Tj,.

o Gy, (m,k,t) is the minimum total weight of the nodes to be removed from the subtree
To;, =a+Ta + T4, + -+ T, in order to have a connected to exactly m important
nodes of Ty, , and k paths surviving in 7, , and ¢t € {0, 1}, i.e., condition ¢ = 0 indicates

that a is removed from Tj, , and ¢ = 1 if a is not removed from 7, .

Furthermore, whenever the conditions in one of the above definitions cannot be satisfied, we
set the value of the function to infinity. To simplify the recursive formulas below, it will be
convenient to accept k < 0 in F,(m, k) and G4, (m,k,t); in this case, we assume again that
the function values are infinite.

At the end of the recursion, we can return the optimal value of the problem, assuming
that the tree T is rooted at node 1, which is

min{k : Fi(m,k) <W,0<m <n,0<k<n(n-1)/2}.

As usual in dynamic programming, an optimal solution can be reconstructed by backtracking.



5.3. SOLVING CNDP ON A TREE WITH 0/1 CONNECTION COSTS ol

We now provide the explicit formulas and then a justification for each of them. For every

leaf a, we have

we ifm=0k=0ac€l,
Fo(m,k) =<0 if(m=0,k=0,a¢I)or(m=1,k=0,acl), (5.7)

oo otherwise,

while for a non-leaf node a the formula is

Fo(m, k) = min{Gq, (m, k,0), Gq,(m,k,1)}. (5.8)
To calculate G, (m, k,t), where a is a non-leaf node, if i = s we use the formula
00 if m>0,t=0,

wq +min{F, (p, k) : 0 <p < |V(T,,)NI|} ifm=0,t=0,

Ga,(m, k,t) = Fo,(0,k) ifm=0,t=1, (5.9)
Fo (m, k) ifm>0,t=1,a¢]l,
F,,(m—1,k—m+1) ifm>0,t=1,a €1,

while for i < s the value of G, (m, k,t) is calculated recursively as follows:

Ga,(m, k,t) =
.

00 ifm>0,t=0,
min{Fy, (p,q) + Ga,y, (0,6 —q,0) :p=0,...,|V(T,,)NI|,q=0,...,k} ifm=0,t=0,
min{Fy,(0,q) + Ga,y, (0,6 —q,1) : ¢ =0,...,k} ifm=0,t=1,

min{Fy,, (p,q) + Ga,,,[m — p,k —q—p(m —p),1] :
p=0,...,m,q=0,...,k} ifm>0,t=1.
(5.10)

We now give a justification for the above formulas. We denote by S a subset of nodes
attaining the minimum value of F,(m, k) or Gg,(m, k,t) (depending on which formula we are
illustrating).

Formula (5.7) reflects the fact that when the subtree consists of just a leaf, the decision to
make is whether to remove the leaf or not, and in both cases k must be zero. The value of m

can be one only if the leaf belongs to I and is not removed.
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Equation (5.8) is an immediate consequence of the observation that T, = Ty, , for every

non-leaf node a € V.

When a is a non-leaf node, in the formula for G4, (m, k,t) (equation (5.9)) there is a first
distinction based on whether node a is remove (¢ = 0) or not (¢ = 1). In the former case, m
is necessarily equal to zero, and we are on the second line of the formula, where the weight
of node a is added to the minimum weight of a subset of nodes S’ that should be removed
from T,, to have k connected pairs consisting of nodes in I; note that p (the number of nodes
in V(T,, — S") N I that are connected to as) is arbitrary, as this value does not affect the
number of nodes connected to a, as a is removed in this case. For the other case, i.e., when a
is not removed (¢ = 1), one needs to know whether m = 0 or not. When m = 0, all of the k
connected pairs are contained in T,,, and no node in V(7T,, — S) NI can be connected to as,
as otherwise it would be connected to a, as well (third line of the formula). When, m > 0 and
a ¢ I, the value of G, (m, k,t) is obtained by requiring m nodes in V (T, — S) NI connected
to as (as these nodes will be in turn connected to a) and a total connection cost of k in T, — S,
as a ¢ I. Finally, if m > 0 and a € I, only m — 1 nodes in V(7T,, —S) NI will be connected to
as, as a is also counted as connected to itself. Since these m — 1 connections contribute to the

total connection cost k in Tp, , — S, the total connection cost in T, — S must be k —m + 1.

Formula (5.10) is based on a similar case distinction, except that one does not need to
know whether a € I or not. We only illustrate in detail the fourth case of the formula, i.e.,
t =1 (i.e., node a is not removed) and m > 0. The formula is based on the observation that
k must be the total cost of the connections surviving in each of the subtrees T,, and Ty, , ,,
plus the cost of the connections between the two subtrees. This last term is given by p(m —p),
where p is the number of nodes in V(7,, — S) NI connected to a; and, consequently, m — p is
the number of nodes in V(7y,,, , —5) NI connected to a. Consequently, if ¢ connected pairs
(For a correct interpretation of the formula,

survive in Tj,,, k — ¢ — p(m — p) survive in Taisr -

it is important to keep in mind that 7, is rooted at a;, while T, is rooted at a.)

Ai+1,s

We obtain the following result.

Proposition 13. CNDP, CEDP, and CNEDP-1 can be solved in polynomial time when the

underlying graph is a tree and 0/1 square connection costs are given.

Proof. By the above discussion, the proposed dynamic programming algorithm correctly solves
CNDP when the underlying graph is a tree and 0/1 square connection costs are given. The
polynomiality is immediate to check, as a, ¢, m, k and ¢ can take only polynomially-many
values, and the computation of each formula can be carried out in polynomial time.

Lemma 5.2.1 implies that CNEDP-1 can also be solved in polynomial time, under the
same assumptions. Finally, the observation that CEDP is a special case of CNEDP-1 (see
the introduction) proves the same result of CEDP. O
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One can verify that the result for CNEDP-2 we have obtained in Proposition 3.5.2 extends

to square 0/1 connection costs.






Chapter 6

Fixed number of leaves

In Chapter 2, we have seen that if the graph is a path, all the variants that we have considered
have a closed-form solution. In this chapter, we investigate the case when we have general
0/1 connection costs on a path. We show that CNDP on a path can be solved in polynomial
time, while Di Summa et al. [27] proved that CNDP on a tree is NP-hard even if the node
weights are all equal to 1 and the connection costs are 0/1. Therefore the complexity differs
between paths and trees in the case of nonnegative connection costs and unit node weights.
One characterization of a path is that a path is a tree with two leaves. We then extend the
number of leaves and show that CNDP, CEDP, and CNEDP-1 on a tree with arbitrary 0/1
connection costs and general nonnegative node/edge weights can be solved in polynomial time

when the number of leaves of the tree is a constant.

6.1 The case with 0/1 costs and unit node weights on paths

In this section we illustrate an algorithm for solving CNDP on paths when we are given general
0/1 connection costs ¢y, for all u,v with unit weights w, for all v € V. For each u,v € V, a
connection is considered important if ¢,,, = 1. In this case the problem calls for minimizing
the number of connections surviving in the path P(V, E) after having removed at most K
nodes.

Let P(V, E) be a path with |V| = n nodes and let the nodes are in order, i.e., 1,2,...,7,i+
1,...,n. We are assuming that we have solved the sub-path problem optimally from node i+ 1
to node n. In order to solve the problem by dynamic programming, we define the following

function:

e [j(k,t) = minimum number of connections surviving in the sub-path that begins at node
1 when k nodes are removed from the sub-path that starts at node 7 and ends at node
n, with the minimum node that is removed at position £ where ¢ <t < n+ 1. Note that

when no node is removed (k = 0) in the sub-path, then we define t = n + 1 to indicate
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that there is no minimum node. Furthermore, if it is not possible to satisfy the above

condition, then we define F;(k,t) = oc.

The values of F; are calculated by traversing the path in postorder (from node n to node

1), by means of the following relations:

)
Fi+1(0,n + 1) + E?:iJrl Cij if k=0,

Fi(k,t) = Smin{F 1 (k—1,7):r=4i+1,...,n+1} ifk>0,t=1, (6.1)
Fipa(k,t) + Y2 cij ifk>0,t>i.

The initial conditions for the last node are the following:

Fy(k.t) = 0 if(k=0,t=n+1)or(k=1, t=n), 6.2)
oo otherwise.

Recursion (6.1) can be interpreted as follows:

The case k = 0 means that we are not removing anything from the sub-path rooted at
node i, i.e., we do not remove node ¢ and we also don’t remove any other node after node i.
In this case we have to count all the important connections from node ¢ to node n. Hence
the number of paths that survive in the sub-path rooted at node ¢ when we are not removing
anything will be £5(0,0) = Fiy1(0,n + 1) + 377,14 cij.

If £ > 0, then we have two options based on the node ¢ has to be removed or not. The
case k > 0, ¢ = 7 means that the node ¢ has to be removed so that we are disconnecting all
the connections that start at node ¢ and therefore we have k — 1 nodes left to remove in the
sub-path. In this case we have to take Fjii(k — 1,7) for every possible first node r varying
from i+ 1,...,n 4+ 1. Otherwise, k£ > 0, t > i means that we are keeping the node 7 and ¢ is
the position of the minimum node that has to be removed and then we have to count all the

important connections that go from node ¢ to any node before node t.

Since n € V is the last node of the path, equation (6.2) says that either we remove the
node n (k = 1) or we keep it (k = 0) and in both cases the number of important connections

surviving is 0.

Assuming that the path P is rooted at node 1, the optimal value for the problem is given
by
OPT = min{F(K,t):t=1,...,n+ 1}. (6.3)

As usual in dynamic programming, an optimal solution can be recovered by backtracking.

Proposition 6.1.1. CNDP on a path with square 0/1 connection costs and unit node weights
can be solved by recursion (6.1)—(6.2) in O(n3K) time.
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Proof. For each of the n nodes there are at most O(n) values for ¢ and O(K) values for k;
this gives O(n?K) values of F to compute. The heaviest computation is that of equation (6.1)
that requires at most O(n) steps. Hence in the worst case a number of operations bounded
by O(n3K) are required. O

6.2 The case with 0/1 costs and arbitrary node weights on paths

This section addresses the same problem as the preceding one, but with general node weights
rather than unit node weights.

Given the path P = (V, E') with general 0/1 connection costs and a budget W with weights
w, on the vertices, the problem is to remove a subset S C V' of total weight w(S) < W such
that the number of connected pairs of nodes in P[V'\ 5] is as small as possible.

This case can be solved by a dynamic programming algorithm formulated in the same spirit
of the previous section. The recursion uses two parameters k and t representing, respectively,
the number of paths surviving in the sub-path and the position of the first node that is
removed.

Keeping the notation introduced in the previous section, we define the following function.

e Fi(k,t) is the minimum total weight of the nodes to be removed from the sub-path
rooted at i, and t is the position of the minimum node that is removed where ¢ < ¢t <
n + 1 and k important connections survive in the sub-path. Note that when no node is
removed in the sub-path, then we define ¢t = n + 1 to indicate that there is no minimum
node. Furthermore, if it is not possible to satisfy the above condition, then we define
Fl(k‘, t) = OQ.

We compute the values of F' recursively foralli € V, k=0,...,n(n—1)/2,i <t <n+1,

as follows.

w; + min{F1(k,r):r=i+1,...,n+1} ift=1,
Fip1(k — EEQH Cijat) if t > 1.

The initial conditions for the last node are the following:

w, ifk=0,t=n,
Fo(k,t) =40 ifk=0t=n+1, (6.5)
oo in all other cases.
Equation (6.4) can be interpreted as follows:

The case t = ¢ means that the minimum node which has to be removed is at position <.

Since we are removing node i, we have to look at the sub-path starting at the node i+ 1 to get
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k connections. Hence by definition of F' the minimum total weight of the nodes to be removed
from the sub-path rooted at ¢ when the root is removed will be F;(k,t) = w;+min,{F;11(k,r)}
where w; corresponds to the weight of the node i. On the other hand, if the root ¢ of the
sub-path is not removed, then all the nodes we have to remove is from the sub-path rooted
at node ¢ + 1 and the position of the first node that has to be removed is at position ¢. Since
we are keeping node i and the first node that is removed is at position ¢, the number of
connections starting from node ¢ to before node t is Z;;i 41 ¢Cij and the connections surviving
in the sub-path rooted at node ¢ will be (k — Z;QH ¢ij). Thus by definition of F', F(k,t) =
Fipa(k = Y5200 cijh b)-

Equation (6.5) says that we get a connectivity of 0 by removing the last node n of the

path as the first node. Otherwise, we get also a connectivity of 0 by removing nothing.

The optimal value, assuming the path is rooted at node 1, is given by
OPT = min{k: Fi(k,t) <W,k=0,...,n(n—1)/2,t=1,...,n+ 1}. (6.6)
The optimal solution is recovered by backtracking.

Proposition 6.2.1. CNDP on a path with square 0/1 connection costs and arbitrary node
weights can be solved by recursion (6.4)—(6.5) in O(n®) time.

Proof. For each node i € V there are at most O(n) values for t and n(n —1)/2 + 1 = O(n?)
values for k; this gives O(n?) values of F to compute. The heaviest computation lies in
equation (6.4), where O(n) values are possible for r. Hence in the worst case a number of

operations bounded by O(n®) are required.
O

The results derived for the CNDP on a path are summarised in the following table.

Cuv Wy complexity
=0/1 =1 solvable in O(n3K)
=0/1 >0 solvable in O(n®)

Table 6.1: Complexity results for the CNDP on a path.

6.3 The case with 0/1 costs and unit node weights on trees

In this section we show that if the graph is a tree with a fixed number of leaves and the
connection costs take general 0/1 values, each of CNDP, CEDP, and CNEDP-1 can be
solved in polynomial time. Note that, unless P = N P, this result cannot hold for CNEDP-2,
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as shown by Proposition 3.5.1. However, we will see that a polynomial-time algorithm can be

found for this problem if, in addition, the node and edge weights are assumed to be unitary.

Let us first focus on CNDP on a tree with 0/1 connection costs and unit node weights.
Let T = (V, E) be a tree with n nodes and /¢ leaves. Given u,v € V', we denote by [u,v] the
node set of the unique path joining u and v in 7. Given a € V and S C V, we define the
boundary of S with respect to a, and denote it by B,(.S), as follows:

B.(S)={veS:fa,v]NS={v}}.

Clearly, |B,(S)| < 2.

We will calculate the following values:

e F,(k,B) = minimum number of connections surviving in 7, when k nodes are removed
from T, and B is exactly the set of all first nodes on every path from the root to the

leaves that is removed.

o Gy,(k, B) = minimum number of connections surviving in the subtree T, , = a + T, +
-+ +Tg, when k nodes are removed from 7Ty, ; and B is exactly the set of all first nodes

on every path from the root to the leaves that is removed.

The above function values are assumed to be infinite whenever the conditions cannot be
satisfied. This happens, in particular, whenever B is not a set of the type B,(S) for any
S CV(T,) (or S € V(Ty,,)), for instance (but not only) when B is larger than the number
of leaves of the subtree. (Indeed, we could use the number of leaves of T, or Ty, as a bound

for |B|, but this would slightly complicate the description of the algorithm).

If a is a leaf, we have

mnp 10 (k=0,B=2)or (k=1, B ={a}), 6

oo otherwise,

while if a is a non-leaf node the formula is
F,(k,B) = Gq, (k, B). (6.8)
For a non-leaf node a we also have

min{F, (k,B'): B CV(T..), |B'| < ¢} if B={a},
Ga,(k,B) = F,,(k,B) + X {caw : v € V(T,.), [a,9) N B =@} ifa¢ B, (6.9)

o0 otherwise,
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and, for i < s,

Gq,(k,B) =
min{ Fy, (q, B) + Gayyy (k — g, {a}) : 0 < g < k—1, B'C V(T,,), |B| < ¢} if B = {a},
min{Faz‘ ((L Bn V(T&i)) + Gai+1(k —¢,BnN V(Tai+l,s> + Z{CUU :

uweV(To,), veV(Tay,) u,v]NB=@a}:0<q< k} ifa¢ B,

o0 otherwise,

(6.10)

If we denote by 1 the root node of the tree, the optimal value is given by
min{F}(K,B): BCV, |B| < /}.

The justification of (6.7) and (6.8) is immediate to check.

In formula (6.9), the first and third cases express the fact that if « € B and B is a set of
the form B,(S) for some S C V(Ty,), then necessarily B = S = {a}. In this case, a is removed
from T, and we are left with the subproblem on 7T,,. (In this subproblem the boundary set
B’ is arbitrary, as it does not affect the fact that B = {a}.) On the other hand, if a ¢ B
and B = By(S) for some S C V(T,), then S C V(T,,) and B = B, (S). We then obtain the
second case of the formula, where the term ) {cqy, : v € V(Ty,), [a,v] N B = @} counts the
number of nodes connected to a in 75, — S.

Formula (6.10) is based on a similar argument. We only remark some points. When
B = S = {a}, two subproblems on T, and T, ,
Ty, ,, the boundary set of the first subproblem is an arbitrary B’ (as this does not affect
the fact that B = {a}), while in the second subproblem the boundary set must be {a}
(as a is the root of Ty,,, ). When a ¢ B, we use the fact that if B = By(S) for some
S C V(Tq,,), then B,(SNV(Ty,)) = BNV (Ty,) and Bo(SNV(Ty,,,,) = BNV(Ta,,)
The term } {cyy 1 u € V(Ty,;), v € V(Tay,, ), [u,v] N B = I} count the number of surviving

connections between the two subtrees.

are created. Since a is removed from

6.4 The case with 0/1 costs and arbitrary node weights on trees

In this section we manage to derive a polynomial time algorithm when the number of leaves
{ is a constant also for the case with arbitrary weights w, assigned to the nodes v € V. The
problem is to remove a subset S C V of total weight w(S) < W such that the number of
connected pairs of nodes in T'[V'\ 5] is as small as possible.

Keeping the notation for subtrees introduced in the previous section, we introduce the

following functions.
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e Fy(k, B) is the minimum total weight of the nodes to be removed from the subtree Tp,
and B is exactly the set of all first nodes on every path from the root to the leaves that

is removed and k connections surviving in 7.

o G, (k,B) is the minimum total weight of the nodes to be removed from the subtree
To,, = a+ Ty +Toy +-+Ts, and B is exactly the set of all first nodes on every

path from the root to the leaves that is removed and k connections surviving in Tg, . .

We set the value Fy(k, B) = 0o or G, (k, B) = oo when no feasible solution exists. Also, it is
convenient to set the above values to infinity when k& < 0. Using similar recursive arguments
of the previous dynamic program, we state the following recursions:

If a is a leaf, we have

w, if k=0and B ={a},
Fy(k,B)=40 ifk=0and B=g, (6.11)

oo otherwise,

while if @ is a non-leaf node the formula is
F,(k,B) = Gq, (k, B). (6.12)
For a non-leaf node a we also have

wq + min{F,_ (k,B"): B' CV(T,.), |B'| < ¢} if B = {a},
Go,(k,B) = F,, (k=Y {caw : v € V(Ga,), [a,v] N B=2},B) ifa¢ B, (6.13)

o0 otherwise,

and, for ¢ < s,

G, (k,B) =
Win{F, (¢, B') + Gayy (k — 4, {a}) -0 < g < b, B' CV(T), |[B| < £} if B={a},
min{Fy, (¢, BNV (13,)) + Gaypy (b —q = > {cuww 1 u € V(Ty,),

veV(Ty,) [u,v]NB=2}, BNV (Ty,,,)):0<q< k} if a ¢ B,
00 otherwise.

(6.14)

If we denote by 1 the root node of the tree, the optimal value is given by

min{k : F1(k,B) <W,0<k<n(n-1)/2, BCV, |B|</{}.

We obtain the following result.
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Proposition 14. CNDP, CEDP, and CNEDP-1 can be solved in polynomial time when the

underlying graph is a tree with a constant number of leaves and the connection costs are 0/1.

Proof. For CNDP the polynomiality follows from the above algorithm, after observing that
the number of boundary sets B to consider is O(n’), which is polynomial when ¢ is constant.
To derive a polynomial-time dynamic programming algorithm for CNEDP-1, one can use
the subdivision approach described in the proof of Lemma 5.2.1. (We omit the details.) The
polynomiality of CEDP then follows because, as already observed, this problem is a special
case of CNEDP-1. O

For CNEDP-2, we need to restrict to unit weights.

Proposition 15. CNEDP-2 can be solved in polynomial time when the underlying graph
s a tree with a constant number of leaves, the node and edge weights are unitary, and the

connection costs are 0/1.

Proof. A polynomial-time dynamic programming algorithm can be obtained by combining the
approach described in this section with that developed in Section 3.5. The basic idea is to
define F,(ky, kg, B) as the minimum cardinality of a subset S C V(T3,) U E(1,) such that
ISNV| <ky, |SNE| < kg, and B,(S) = B, and similarly for G, (kv, kg, B). We omit the
details. O

The results derived for the CNDP on a tree with a fixed number of leaves are summarised

in the following table.

Cu Wy complexity
=0/1 =1 solvable in O(n3Kn’)
=0/1 >0 solvable in O(nn’)

Table 6.2: Complexity results for the CNDP on a tree with a fixed number of leaves.



Chapter 7

IP formulations of CNDP, CEDP,
CNEDP-1, and CNEDP-2

In this chapter we focus on exact integer programming solution methods to solve critical node
and /or edge detection problems on general graphs. The mathematical formulation introduced
in [8] is designed to tackle the CNDP for the case when the total number of pairwise connec-
tions is used as the connectivity measure and when the deletion costs are set equal to one.
The authors in [8] present an integer programming (IP) formulation of CNDP using triangle
inequalities that enforce transitive connectivity relationships between nodes in the graph, i.e.,
if node 7 is connected to node j and node j is connected to node k, then node i should also
be connected to node k. Note that this formulation can be easily adapted to use the weighted
pairwise connectivity or to include deletion costs different than one. In this chapter, we pro-
vide a modified mathematical formulation based on the linear integer programming model for
the CNDP described in [8], which we call restricted CNDP. We also derive IP models from
the proposed restricted CNDP which provides optimal solutions for the CEDP, CNEDP-1,
and CNEDP-2.

7.1 1IP formulations for the restricted CNDP

Let G = (V,E) be an undirected graph with a set of || = n nodes and a set of edges
E C V x V. Define a restricted critical node detection problem (RCNDP) in which we are
also given the set of allowed vertices A C V and the problem is to disconnect the graph
as much as possible by removing K nodes in the allowed set A. The RCNDP becomes the
standard CNDP when A = V. This restricted problem has been treated also in Chapter 4.

The optimal solution of the RCNDP can be determined by using an integer programming
(IP) formulation. The IP formulation of the RCNDP is described below.

Let the input data of the problem be a nonnegative connection cost ¢;; for each pair of
distinct nodes ¢, j € V, a weight w; > 0 for each ¢ € V and a bound W.

63
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For any node ¢ € V, the binary variable v; is defined as

1, if node ¢ is deleted from the graph
V; = (7.1)
0, otherwise.

Introduce a set of connectivity variables between pairs of nodes i,j € V,i # j:

iy = 1, ifi,j € V\ A,i# jand i,j are in the same component of G(V \ A) (7.2)
0, otherwise.
Before we continue, note that the set of u;; variables should necessarily satisfy the following
condition:
Ui = uji, 1,5 € V,1 #£ 7.

The restricted critical node detection problem can be formulated as:

(RCNDP) Minimize Z CijUij (7.3)
1,JEV, 1<j
subject to
Ujj +v; + vj >1, VZ] c E, (74)
uij +ujp —up <1, VieV, VijkeE, j<k, (7.5)
uik+ukj—ujl-§1,VieV,ijeE,j<k, (7.6)

ZU}Z"UZ' < VV, (7.7)

i€A
vi=0,VidA, (7.8)
U5 € {0, 1}, Vi,j €V, (79)
v e {01}, Vi eV, (7.10)

where the objective function (7.3) minimizes the weighted sum of pairwise connections. Con-
straint (7.4) means that if nodes ¢ and j are in different components and there is an edge
between them, then one of them should be deleted. As shown in [60], constraints (7.5) and
(7.6) altogether indicate that if 7 is connected to j and j is connected to k, then i must also
be connected with k. Constraint (7.7) sets the upper bound of the budget. Constraint (7.8)
says that only the allowed vertices can be removed. Finally, (7.9) and (7.10) define the proper

domains for the variables used.
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7.2 IP formulations for the CEDP

Let G = (V, E) be an undirected graph with |V| = n nodes. Now we apply the subdivision
process on G which has been described in Chapter 4 and we have created the graph G’ =
(V',E’) in which all the edges are subdivided. Now we consider the restricted CNDP on G’
with the allowed set A =V’'\ V| i.e., the set of newly created vertices and the connection cost
cij takes the value of 1 if 4,5 € V.4 # j and 0 otherwise, i.e., we only count the connections
between the original vertices in G. Then the problem of removing at most K edges from G
becomes the problem of removing at most K nodes from G’ but here we are allowed to remove
K nodes only from the set A of newly created nodes and the IP formulations for the CEDP
is the same as described in equations (7.3)—(7.10).

7.3 IP formulations for the CNEDP-2

Let G = (V,E) be an undirected graph and let Wy and Wg be the available budgets for
removing the cost of nodes and edges respectively from the graph G. Construct a graph
G’ = (V', E') with the subdivision as mentioned in Chapter 4 and we consider the restricted
CNDP on G’ with the allowed set A =V’ \ V| i.e., the set of newly created vertices. We have
now two kinds of nodes and we call them the set of original vertices which are in the set V'
and the set of newly created vertices which are in the set A. In the CNEDP-2, we are allowed
to remove nodes from both of them but they are counting in different budgets. Once the
subdivision has been made, the vertices in V' keep the same cost as the original vertices and
the new vertices in A inherit the cost of the edges from which they are subdividing because
every vertex subdivides an edge and therefore the edges in G’ has no cost anymore.

The mixed problem for two separate budgets can be defined as:

(CNEDP-2)  Minimize »  cjjui (7.11)
1,J€V, 1<j
subject to
uij +vi +v; > 1, Vij € F, (7.12)
wij +ujp —ug <1, VieV', VjkeE, j<k, (7.13)
Ui +ug; —uj; <1, Vie V/, vV jk € El, Jj <k, (7.14)
> wiv < Wy, (7.15)

2%
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Zwm < Wg, (7.16)
icA

Uij € {0, 1}, Vi, j € V,, (717)

v; € {0,1}, Vi e V'. (7.18)

Constraint (7.15) says that sum of the weights of the original nodes cannot exceed the budget
Wy and Constraint (7.16) says that sum of the weights of the newly created nodes is at most
Wg.

7.4 1P formulations for the CNEDP-1

The IP formulations for the CNEDP-1 is almost same as the case of the CNEDP-2. Instead
of equations (7.15) and (7.16), there will be a single constraint ). i w;v; < W which says
that sum of the weights of the original nodes and the newly created nodes that we remove

altogether cannot exceed the budget W.



Chapter 8

Distance-based Critical Node/Edge

Detection Problem

In this chapter, we study a special case of the Critical Node/Edge Detection Problem, the
so-called Distance-based Critical Node Detection Problem (D-CNDP) and the Distance-based
Critical Edge Detection Problem (D-CEDP) as introduced in [82], where the distances between
node pairs impact on the objective function. In this context we analysis the following different

classes of D-CNDP on trees in which the objectives are to:

1. Minimize the number of node pairs connected by a path of length < L;
2. Maximize the number of node pairs connected by a path of length > L;
3. Maximize the number of node pairs connected by a path of length < L;

4. Minimize the number of node pairs connected by a path of length > L.

In this chapter, for the sake of simplicity, we propose dynamic programming algorithms
for Class 1 and Class 2 mentioned above. We would like to mention that one can obtain
dynamic programming algorithm for Class 3 from Class 1 just putting maximization instead
of minimization and similarly, for Class 4 from Class 2 by changing minimization instead of
maximization. We note that we have developed the aforesaid dynamic programming algo-
rithms at the beginning of my PhD, and then after one year we found that the authors in [7]
proposed dynamic programming algorithms for some special cases of D-CNDP including the
particular variant of Class 1.

We also present a structural property of Class 2 D-CNDP on trees which says that we
recursively remove only leaves in an optimal solution. After that we move to D-CEDP over
trees and present dynamic programming algorithm and integer programming formulation for

the variant of Class 1.
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8.1 D-CNDP on trees for Class 1

In this context, the problem is to minimize the amount of node-pairs remaining connected by
a path of length at most L, for some natural integer L, that survive in a tree T'(V, E) after at
most K nodes have been removed.

Recall the notation for subtrees. Given the tree T'(V, E) with |V| = n, let Tj, be the subtree
of T rooted at a € V. If a is not a leaf of T') let T,,,,...,T,, be the subtrees of T, rooted at
the children nodes ay, ..., as respectively, where s depends on a. Let also|T},| be the number

of nodes in T,. The functions below are defined in order to solve the problem using dynamic

program.
e F,(mo,m1, -+ ,mr_1,k) = minimum number of paths of length < L surviving in T,
when k£ nodes are removed from T, and mg, m1, -+ ,my_q1 represents the number of
nodes surviving in 7}, having distance 0,1,2,--- , (L — 1) respectively from a. Note that

condition mg = 0 indicates that a is removed from T, and mg = 1 if a is not removed

from T,.

o Gy, (mo,mi,--- ,mr_1,k) = minimum number of paths of length < L surviving in
the subtree Ty, , = a + Ty, + -+ + Ty, when k nodes are removed from 7;, ; and
mg,my,- -+ ,mpg—1 represents the number of nodes surviving in 7, , having original
distance 0,1,2,---, (L — 1) respectively from a. As above, my = 0 indicates that a is

removed from Ty, _.

We let the function values be infinity whenever no feasible solution exists. The values for
F and G can be computed by traversing the tree in postorder (from leaves to root), by means

of the following relations:

F,(mo,m1, -+ ,mp_1,k) = Gg,(mo,m1,--- ,mp_1,k) for any non-leaf node a € V; (8.1)
Go;(mo,m1, -+ ,mr_1,k) =
min{Fai(m6’m/17 T 7m/L—17q) + Gai+1 (07m,1/7 T 7m/[//_17k - Q) :
mg € {0,1}, m; =0,...,|V(Tq, ;)| — 1, m] =m; —m]_,,
qg=0,....,k—1} if mg =0,
(8.2)
min{Fai(mE)amllv e 7m/L_17q) + Ga¢+1(17m/1,7 e 7m,[//_17k - Q)
L -1 .
+ 21k 20 m;‘mfl—l—j :mg € {0, 1},
L m;‘:O,...,V(Tai’j) —1,m;~,=mj—m;~_1,q:0,...,k} ifm():l,

for any non-leaf node a € V" where 7 < s and ’V(Tam)‘ denotes the number of nodes in 7}, at

distance j from a; for every j=1,...,L — 1.
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For each rightmost subtree T, we specify the following initial conditions:

Ga,(mo,m1, - ,mp_1,k) =
00 ifmg=k=0,
min{ Fy, (mg, m},---,my_,k—1):m{ e {0,1},
m;-:O,...,‘V(TaS’j) ~1) ifmg=0,k>1, (83)
min{ Fy,, (mg, m}, - ,my_, k) +mo+mj+---+m)_;:
mp € {0,1},m}; = 0,....|V(T,, )| - 1} if mo = 1,

while, for every leaf a € V we have that:

Fo(mo,ma, -+ ,mp_1,k) = (mo=1,my=---=mp_1=0k=0), (8.4)

oo otherwise.

We now give a justification for the above formulas. Formula (8.1) is immediate because it

follows from the fact that T, = Ty, , for every non-leaf node a € V.

In the formula for Gg,(.) (equation (8.2)), the separation is based on whether node a is
removed (mgp = 0) or not (mg = 1) from the tree. The first case (mp = 0) corresponds to
having @ € S. In this situation, we take the sum of the optimal values that we can obtain

in each of the two subtrees T}, and Ty For the second case (mg = 1), in which a ¢ S,

it1,s°

we take again the sum of the optimal values in each of the two subtrees T}, and T, and

i+1,s ’
since node a is surviving, a path in Tg,  is passing through a and in this case we have to add
the connections between the two subtrees which are connected by a path of length at most L

(which is given by the third term).
Formula (8.3) is based on a similar argument as T, , = a + Ty,

Equation (8.4) reflects the fact that when the subtree consists of just a leaf, the decision
to make is whether to remove the leaf (k = 1) or not (k = 0), and in both cases the number

of paths survive in T}, is 0.

Assuming that the tree T is rooted at node 1, the optimal value for the problem is given
by

L—-1
OPT = min{Fy(mo, -+ ,mr_1,K) :mg € {0,1}, my,-- ,mp1 >0, > m; <n}, (85)
j=1

and the optimal solution is recovered by backtracking. We get the following proposition.
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Proposition 8.1.1. D-CNDP on trees for Class 1 with unit costs and unit node weights can
be solved by recursion (8.1)~(8.4) in O(n*:—2K?) time.

Proof. For each node a € V there are at most O(n”) values for mg, m1,---,mz_; and O(K)
values for k; this gives O(n?/~1K) values of F and G to compute. The heaviest computation
is that of equation (8.2) that requires at most O(n’~!K) steps. Hence in the worst case a

number of operations bounded by O(n3~2K?) are required. ]

8.2 D-CNDP on trees for Class 2

The goal in this circumstance is to maximize the number of node-pairs still connected by a
path of length at least L, for some natural number L, that survive in a tree T'(V, E) after

removing at most K nodes.

For convenience we denote by D(T') the diameter of the tree T', by D(T, ) the length of
1.0 Dy D(T,,) the length of the longest
path from node a to a node in T,,. Let L' = D(T) — L where L’ is fixed. In order to solve

the problem by dynamic programming, we define the following functions.

the longest path from a node in 75, to a node in Tj,

e Fy,(mg,mq, -+ ,mp_1,k) = maximum number of paths of length > L’ surviving in T,
when k nodes are removed from T;, and for every j, m; is the number of nodes whose
distance from the root a is D(T,) — j (for instance, my is the number of nodes farthest

from the root, m; is the number of nodes on the level before and so on).

e Gy, (mo,mi,- -+ ,mp_1,k) = maximum number of paths of length > L surviving in the
subtree Ty, , = a+ Ty, +-- -+ T,, when k nodes are removed from 7, ; and for every j,

my is the number of nodes whose distance from the root a is D(T,, ,) — j.

We let the function values be infinity whenever the conditions cannot be satisfied. The
values for F' and G can be computed by traversing the tree in postorder (from leaves to root),

by means of the following relations:

Fy(mo,my,--- ,mp_1,k) = Go,(mo,mq,--- ,mp_1,k) for any non-leaf node a € V; (8.6)
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Go;(mo, -+ ,mp_1,k) =
'0 if D(T,,,)<D-1L,
max{Fy,(my, - ,mY, 1, q) + Ga;y (mf, - ml, |k —q)
3o S mmy g =0, ksmp, e ml, g > 0;
my, - ml,_ > 0imp 4 mh, ) <| Ty,
Toinao|b i D(To,,) = D — L'+t for some t = 0,---, L,
(8.7)

)

2 "
my+-+my, | <

for any non-leaf node a € V' and ¢ < s.

The initial conditions on each leaf a and on each rightmost subtree T, are the following:

0 if (mg=---=mp_1=0,k=1)or
Fa(mou'” 7mL’—17k) = (mO = 17m1 = =MmMp-_1= Oak = 0)7 (88)

—oo otherwise,

Ga,(mo, -+, mp—1, k) =
(
—00 ime:"':leflzk‘:O,

0 if D(T,,) <D —-L,
maX{Fas(mf),"- ,mlL/,lpk_ 1)7Fa5(m67'” 7m,[/71’k)
Y e ml_ > 0
m6+"'+m,L/_1 §|Tas’} ifD(TaS):D—L/—i—thI“ some t =0, - 7L/-
(8.9)

Formula (8.8) is immediate, while (8.6) follows from the fact that T, = T, , for every

non-leaf node a € V.

In equation (8.7), we have to find paths of length D — L', D — L' + 1,--- , D that are

surviving in T, or in Ty, sorin Ty, =Ty, + T, In order to compute the overall number

it+1,s"
of nodes connected to a at a minimum distance of D — L’ in Gy, (.), we have to consider the
maximum number of paths that survive in 7,, when ¢ nodes are removed from 7, plus the

maximum number of paths that survive in T, when k — ¢ nodes are removed from T,

i+1,s it1,s°

Also, the third term should be added if Tj, , contains a path of length at least D — L' that
intersects both 75, and T,

i+1,S*
The justification of formula (8.9) is similar to (8.7) and in this case one also need to know
the node ag is removed or not. Considering the removal of the node a4, we have to take the

better of two possibilities, which correspond to the two arguments of the outer maximum.
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If we denote by 1 the root node of the tree T', the optimal value for the problem is given
by
L'—1

OPT = max{Fi(mg,--- ,mp_1,K) :mo,my, -+ ,mp_1 >0, Z mj < n}, (8.10)
=0

and the optimal solution is recovered by backtracking. We obtain the following result.

Proposition 8.2.1. D-CNDP on trees for Class 2 with unit costs and unit node weights can
be solved by recursion (8.6)~(8.9) in O(n3F'+1K?) time.

Proof. The proposed dynamic program, the number of functions F,(.) and G4(.) can be
bounded by (’)(nQL/HK ) to compute for each node a € V. The heaviest computation is
that of equation (8.7) that requires at most O(n’ K) steps. The overall complexity is thus
O +H1K?). O

We also established the following result:

Theorem 8.2.2. For the problem of mazimizing the number of paths of length at least L, there
s an optimal solution which can be obtained by recursively removing a leaf from the residual

graph.

Proof. The problem calls for maximizing the number of paths of length > L surviving in a

tree T' = (V, E) after having removed at most K nodes. Let vy, va, -+ , v, be nodes removed
in some optimal solution. First we show that the graph induced by the nodes v1, v, -+ , v is
connected.

After removing vy, the remaining problem is to remove k—1 nodes in T\{v; }. By induction,
v is a leaf of T\{v;} and v9,vs3,- - , vy are connected (or there is an equivalent solution with
this property). Let us consider this other solution: vg,v1,vs, - ,vk. If vy is a leaf of T, then
we are done. If vy is not a leaf of T and by induction vy is a leaf of T'\{v1}, then v; and vy
are neighbors. With this same argument, we can say that vy, ve,--- , v, are connected.

Denote the set S = {v1,va, - ,v;}. If any node in S is a leaf, then we are done. Consider
every node in S is an interior node and let [; be the closest leaf to S. We show that for every
path P of length > L that disappears when l1,vs, - - - , v} removed, there is a path P’ of length
> L that disappears when v1, v, - - , v are removed and length (P') > L.

Let P be the path of length > L that disappears when [y is removed. Note that P starts
at [;. If P contains some nodes in S, then P’ = P. So assume P does not contain any node
in S = {vy,ve,--- , v}, but it is destroyed when removing Iy, vy, - , .

Let @ be the path from [ to S (see Figure 8.1). Let lo be the last node of P belonging to
@ and I3 be the last node of P (possibly I3 = l3). Let m be any leaf of T' that can be reached
starting from S without using any edge of Q. Let P’ be the path from m to I3. Clearly, P’
disappears if some node in S is removed. We show that P’ has length > L.
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Figure 8.1: Illustration of the proof of Theorem 8.2.2.

Let the distance from [; to I be a, Iy to S be b, S to m be ¢ and I3 to I3 be d (could be

zero). Since m is a leaf and [y is the closest leaf to S, so

dist(S,m) > dist(S,l1) = c¢>a+b

Now, length of P > c+b+d>a+b+b+d > L because b > 0 and a + d = length of
P > L. Clearly, P, # P = Pj # Pj because P; and P, have different final nodes. O

According to the preceding theorem, we must always remove a leaf from a tree at each step
in order to maximize the path of length at least L, but we do not know which leaf should be
eliminated. Furthermore, it is not true that at every stage iteration will choose the best leaf
in order to achieve the best result and we call a leaf is the best if it destroys less connection of
length at least L comparing to other leaves. Let us consider the tree depicted in Figure 8.2.
Assume that our goal in this example is to maximize the number of node pairs connected by
a path of length L > 7 that survive after removing at most K = 2 nodes with unit costs and
node weights from the given tree T. We will destroy 4 paths of length L > 7 if we remove
node 1, while we will destroy 3 paths of length L > 7 if we remove node 7. After deleting node
7, the best leaf to delete is node 6, because we would be destroying 2 paths of length L > 7.
So, in total, (3 4+ 2) = 5 paths of length L > 7 will be destroyed by deleting nodes 7 and 6,
respectively, where the best leaf will be removed at each step. However, removing node 1 and
subsequently node 2 will destroy, in total, (4 + 0) = 4 paths of length L > 7. As a result, we
will delete nodes 1 and 2 instead of nodes 7 and 6, despite the fact that node 1 was not the

ideal leaf to remove at first step.
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Figure 8.2: Solution for a D-CNDP of Class 2 when L = 7 and K = 2 with unit costs and

unit node weights.

8.3 D-CEDP on trees for Class 1

The goal is to reduce the number of node-pairs remaining connected by a path of length at
most L, for some natural number L, that survive in a tree T'(V, E) after at most K edges have

been eliminated.
In order to solve the problem by dynamic programming, we define the following functions.

e Fy(my,ma, - ,mp_1,k) = minimum number of paths of length < L surviving in Tj
when k edges are removed from T, and mi,me,--- ,my_1 represents the number of

nodes surviving in T, having distance 1,2,--- , (L — 1) respectively from a.

o Go,(my,ma, -+ ,mr_1,k) = minimum number of paths of length < L surviving in
the subtree T, , = a + Ty, + --- + T,, when k edges are removed from 7T, , and
mi,mg,- -+ ,mp_1 represents the number of nodes surviving in T, , having original

distance 1,2,---, (L — 1) respectively from a.

We let the function values be infinity whenever the conditions cannot be satisfied. The

values for F' and G can be computed by traversing the tree in postorder (from leaves to root),
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by means of the following relations:

Fy(my,--- ,mp_1,k) = Gq,(my,--- ,mp_1,k) for any non-leaf node a € V; (8.11)
Gai(mla“' 7mL717k) =

min{Fy, (m}, - ,m}_1,0) + Go,, (mf,--- ,mf_;,0)
+ 3 mymy_y
m&zO,...,‘V(Taiyj))—l, my =mj —m;_;} if k=0,

min{min{Fy, (m},---,m}_1,q) + Ga,. (M1, ;mp_1,k—1—¢q): (8.12)
m; =0,..,\V(Ts, ;)| — 1, q=0,....k—1},
min{ Fy, (my, - ,my_1,q) + Gy (M7, -+ ,m7_ 1k —q)
+ Zlel Zé‘_:%) m;-mfl_l_j : m; =0, | VI(Tay )| = 1,
m) =m;—m;_, q=0,...,k}} if k>0,

for any non-leaf node a € V where ¢ < s and ’V(Taiﬂ.)‘ denotes the number of nodes in 7}, at

distance j from a; for each j=1,..., L — 1.
The initial conditions on each leaf a and on each rightmost subtree 7, are the following:

0 ifm=---=mp_1=0k=0,
Fa(m1,~- ,mL_l,k) = ! L=t (8.13)
oo otherwise,

Gas<m17' o 7mL—17k) -
p
min{FaS(m’h..' 7m,L—1’k) +1 —|-m’1 _|_..._|_m/L_1 .

mj =mj+1,j=0,...,L =1} if k=0 or m; >0 for some j € {1,...,L — 1},

min{Fy, (m},--- ,my_;,k—1):

m;=0,...,|V(Ta, ;)| =1} if k>0and m; =0 forall j € {1,...,L -1},

00 otherwise.

(8.14)

Equation (8.11) follows because T, = Ty, , for any non-leaf node a € V.

Recursion (8.12) can be interpreted as follows:
The case k = 0 means that we are not removing any edge from T, , = Tq, + Ta,,, .-
Since we have to keep everything, we are not allowed to remove anything from F and G.

The expression Fg,(m},---,m’_;,0) gives the minimum number of paths in T,, of length
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1,...,L—1 with the condition that m; nodes are connected at distance j from the root a; and
Gy (MY, -+ ,mf_;,0) gives the minimum number of paths in Tg,,, , of length 1,...,L —1
under the condition that m;’ nodes are connected at distance j to the root a. Since we are not
removing any edge, we have to add the paths of length 1, ..., L—1 passing through the edge a to
a;, i.e., Zlel Eé-_:% m;-m;’flfj paths. Hence by definition of F' and G the minimum number of
paths that survive in T, , when we are not removing anything will be G, (m1,--- ,mp_1,0) =
min{Fo, (my, -+ ,mp_1,0) + Gap (M, -+ ,mly_4,0) + Zlel Z;_:}) m;-m;/_l_j}.

The case k > 0 means that we have to remove at least one edge. Note that the edge e
(which connects a to a;) is the connecting edge between the functions F' and G. There are two
cases to compute the value of G, (my,--- ,mr_1,k) based on the edge e, either we remove e
or we have to keep it. Consider first the case when the edge e is removed. In this case when ¢
i+1.s- Thus

the minimum number of paths of length 1,..., L —1 at the respective distance to the root that

edges have been removed from 7,,, exactly k£ —1— ¢ edges must be removed from T,

survive in Ty, , when ¢ edges are removed from T, (and the other k —1 — ¢ edges are removed

from Ty,,, ) is given by the formula ming{Fy, (m},--- ,m}_;,q) + Gy (M7, --- ,m7_ 1 k —
1—q)}.

Consider now the case when the edge e is not removed. Expression F,,(m},---,m}_,q)
gives the minimum number of paths of length 1,..., L — 1 and m/. nodes are connected to the

J
root a; at distance j that survive in 7}, when ¢ edges are removed from 7,,. Since ¢ edges

have been removed from Ty, , exactly k — ¢ edges must be removed from 7, The minimum

it1,s°

number of paths of length 1,...,L — 1 at distance j from the root a that survive in T, ,

when k£ — g edges are removed from 7, is given by Gg,,,(mY,--- ,m]_;,k —¢q). Thus the

+1,s
expression Fy, (m},---,m}_1,q) + Ga,py (MY, -+ ,mf_;, k — q) gives the minimum number of

paths of length 1,..., L — 1 that survive in T, or T when ¢ edges are removed from 7y,

i+1,s
(and the other k — ¢ edges are removed from T, , ). Since we are not removing the edge e,
we have to add the paths of length 1,..., L — 1 connecting nodes of Tj; to nodes of Ty, _,
ie., ZlL:1 Zé;% mjmj_,_; paths. By taking the minimum over ¢ =0, ...k, we find the value

of Gg,(my, -+ ,mp_1,k).

Equation (8.13) handles the case of a one-node tree. Since a € V' is a leaf, it is not possible
to remove any edge (k = 0) and only a is connected to itself (m; = --- =mr_; = 0) and the

number of paths surviving in T, is 0.

For a justification of (8.14), recall that T,, , = a + T,,. Here the distinction is based on
whether we keep the the edge a to as or not. We must keep the edge a to as exactly when
k = 0 or at least one of the parameters m;’s is positive. While if £ > 0 and all m;’s are zero,

then we are forced to remove the edge a to as.

Assuming that the tree T is rooted at node 1, the optimal value for the problem is given
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by

L-1
OPT = min{Fy(mq, -+ ,mp_1,k): Y _m; <n, k=0,-- K}, (8.15)
j=1
and the optimal solution is recovered by backtracking. We get the following proposition.

Proposition 8.3.1. D-CEDP on trees for Class 1 with unit costs and unit edge weights can
be solved by recursion (8.11)~(8.14) in O(n3r=2K?) time.

Proof. For each node a € V there are at most O(n*) values for mqg, my,---,mz_; and O(K)
values for k; this gives O(n?/~1K) values of F' and G to compute. The heaviest computation
is that of equation (8.12) that requires at most O(n’~1K) steps. Hence in the worst case a

number of operations bounded by O(n3¥~2K?) are required. O

We point out that the proposed dynamic program is more of a theoretical contribution to
the class of distance functions, as the algorithm becomes intractable even for modest values

of parameter L in practice.

8.4 1P formulations for D-CEDP

Let G(V, E) be an undirected graph with |V| = n nodes and let K > 0 be an integer which is
the maximum number of edges that can be removed. Now we create the graph G’ = (V', E')
by subdividing every edge of G as described in Chapter 4. Now we consider the restricted
CNDP on G’ with the allowed set A = V' \ V| i.e., the set of newly created vertices. Then
the problem of removing at most K edges on G becomes the problem of removing at most
K nodes on G’ but here we are allowed to remove K nodes only from the set A of newly
created nodes. Our objective is to minimize the number of node-pairs still connected by a
path of length < L, for some given natural number L, surviving in a graph G(V, E) after
having removed at most K nodes from A.

The optimal solution of the D-CEDP for minimizing the number of paths of length < L
can be determined by using an integer programming (IP) formulation. The IP formulation is
described below.

- and v; as follows:

Define the binary variables uﬁj

1, if 4,5 are connected by a path of length <

0, otherwise,

where i,5 € V' and | € {1,2,...,2L},

and

—_

, if node i is deleted from the graph
V; =
0, otherwise.
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Then the problem admits the following integer programming formulations:

(D-CEDP)  minimize Z u?jL (8.16)
i,jEVI\V, i<j
subject to
uj; +vi +v; > 1,Vij € E' (8.17)
ubi+ul —ultt <1, VieV, VjkeE, j<k Vie{l,2,..2L -1} (8.18)
ulp +up; —ut <1, VieV VijkeFE, j<k Vie{l,2,.,2L-1} (8.19)
up; <ult', i<, Vi,jeV, vie{l,2,..,2L -1} (8.20)

d wi<K (8.21)

€A
v; =0, Vi g A, (8.22)
ub; € {0,1}, Vi,j e V', V1€ {1,2,..,2L} (8.23)
v; € {0,1}, Vi e V'. (8.24)

The objective of this model is to find a set S of K nodes from the set A of length < L
whose removal cause minimum pairwise connectivity in the induced subgraph G(V'\ S). Since
we are working on G’ the graph has double length and the objective function (8.16) minimizes
the number of node-pairs still connected by a path of length < 2L surviving in a graph G’
after having removed at most K nodes from A. Constraint (8.17) means that if nodes ¢ and
j are in different components and there is an edge between them, then one of them should
be deleted. As shown in [60], constraints (8.18) and (8.19) altogether indicate that if node 4
is connected to node j by a path of length [ and node j is connected to node k by an edge,
then node ¢ must also be connected with node k by a path of length [ 4+ 1. Constraint (8.20)
implies that if nodes ¢ and j are connected by a path of length [, then they are also connected
by a path of length [+ 1. Constraint (8.21) guarantees that the number of nodes to be deleted
is at most K. Constraint (8.22) says that only the allowed vertices can be removed. Finally,
(8.23) and (8.24) define the proper domains for the variables used.



Chapter 9

Conclusion

This chapter summarizes the contribution of the thesis and discusses avenues for possible

future research.

9.1 Summary of contribution

In this thesis we focused our study on identifying critical nodes and/or edges from a graph,
whose deletion results in the minimum pairwise connectivity among the remaining nodes. We
first studied a particular case of the critical node detection problem, namely the Distance-
based Critical Node Detection Problem (D-CNDP) over paths. We considered four versions
of the D-CNDP on paths and provided closed-form solution to solve the problems.

We then investigated the critical edge detection problem over trees. We showed that the
cases with unit connection costs and unit or arbitrary edge weights are solvable in polynomial
time through dynamic programming approaches. We also showed that CNEDP-1 (i.e., a joint
weight limit for the removal of nodes and edges is given) can be solved in polynomial time when
the connection costs are all unitary and the node and edge weights are general nonnegative
numbers, while CNEDP-2 (i.e., two separate weight limits for the removal of nodes and edges
are given) can be solved in polynomial time when the connection costs are fixed to 1 as well as
the node and edge weights. We proved that CNEDP-2 with unit connection costs and general
nonnegative weights is NP-complete even on a path through a reduction from PARTITION.

The CNDP is known to be A"P-hard on general graphs [8]. In [27], it has been shown that
the pairwise connectivity CNDP on a tree is N'P-hard even if the node weights are all equal to
1 and the connection costs are 0/1. On the one hand we proved that CEDP, CNEDP-1, and
CNEDP-2 are all N’P-hard under the assumptions that the node/edge weights are unitary
and the connection costs are 0/1, and on the other hand we have provided polynomial time
algorithms when the connection costs are square 0/1 connection costs. The problem was then
analyzed when the number of leaves of the tree is a constant. We proposed dynamic program-
ming algorithms for CNDP, CEDP, and CNEDP-1 over trees (including the special case of
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a path) with arbitrary 0/1 connection costs and general nonnegative node/edge weights. We
also presented integer programming formulations which provide optimal solutions for CNDP,
CEDP, CNEDP-1, and CNEDP-2.

Finally we proposed dynamic programming algorithms for the Distance-based Critical
Node/Edge Detection Problem over trees. We have found that the D-CNDP based on Class
1 and Class 2 can be solved polynomially when its input parameter L is considered fixed. We
proved that to remove K nodes from a tree for maximizing the number of paths of length
at least L, there is an optimal solution by recursively removing a leaf. We also provided
polynomial time algorithms to solve the D-CEDP on trees of Class 1 when parameter L is

fixed. We presented integer programming formulations for the D-CEDP.

9.2 Directions for future work

We wrap up this dissertation by addressing some unresolved questions.

We have seen that all most all of the variants of the CNDP, CEDP, CNEDP-1, and
CNEDP-2 considered in this thesis can be solved in polynomial time on trees. In the future, it
would be interesting to see extensions of our results to more general graphs rather than trees.

We have seen in Chapter 6 that with a constant number of leaves our problems are poly-
nomial time solvable, but these problems are not fixed-parameter tractable. A problem is said
to be a fixed-parameter tractable (FPT) if it can be solved by algorithms that are exponential
only in the size of a fixed parameter, while polynomial in the size of the input. In this context
one natural question raises: Does FPT algorithm exist for the problems that we considered
or it is impossible to find it?

As shown in Chapter 8, since all the versions of the distance-based critical node/edge
problem over trees that we considered are polynomial time solvable when parameter L is
constant, it would be interesting to see what happens if the parameter L is not constant.

Finally, there are no computational experiments in this dissertation. This is also an aspect
that should be explored.
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