
Università degli Studi di Padova
Department of Mathematics “Tullio Levi-Civita”

Doctoral Program in Mathematical Sciences

Curriculum: Mathematics

Cycle XXXIII

Ph.D. Thesis

Variants of the Critical Node/Edge Detection
Problem on a tree

PhD Coordinator: Prof. Martino Bardi

Supervisor: Prof. Marco Di Summa

Candidate: Syed Md Omar Faruk

September, 2021

To my parents

Acknowledgements

All praise and gratitude to Allah, who has provided me with the energy and ability to

őnish my task effectively.

Throughout my PhD period, I am grateful to my supervisor, Professor Marco Di Summa,

for his constant right and excellent direction, inspiration, caring support, and helpful recom-

mendations. I feel extremely fortunate to have the opportunity to learn from and be supported

by such a mentor. He helps me become a better mathematician and guides me in the proper

route.

I would want to express my gratitude to Prof. Martino Bardi for his assistance from the

outset when I was having difficulty obtaining a visa and making critical decisions at various

points throughout these three years. Prof. Bardi also helped me choose my advisor by pointing

me in the appropriate way.

My sincere thanks to Mrs. Loretta Dalla Costa, the secretary of the Ph.D. course of the

Mathematics Department of the University of Padova for her valuable assistance in the various

administrative issues. Gratitude is due to the office staff of the Department of Mathematics,

UNIPD, for their all-out support and services.

I would also like to express my gratitude to all of the PhD students and researchers I

met throughout my time at UNIPD’s Mathematics department. Furthermore, I extend my

heartfelt gratitude to all of the people who have surrounded me during my time in Padova for

their unwavering support, inspiration, and assistance in focusing spontaneously to complete

my thesis work.

Finally, my heartfelt thanks go to my loving parents, two younger sisters, and lovely wife

for their love, prayers, and spiritual support in allowing me to pursue my aspirations. I would

want to express my gratitude to my wife Kamrun Nahar Jabin, who has cared for our kid

(Syed Usman Bin Faruk) alone since he was just 80 days old when I arrived in Italy to begin

my PhD. There are no words to adequately express my gratitude to my family for all of their

efforts on my behalf.

v

Abstract

We consider the problem of removing a limited subset of nodes and/or edges from a graph G in

order to minimize the so-called pairwise connectivity of the residual graph, which is deőned as

the total cost of the pairs of nodes still connected by a path. This is a well-studied version of

a family of problems known as critical node or edge detection problems. The main inspiration

and common interest behind these topics stems from their relevance in numerous domains,

including computational biology, transportation problems, the assessment of network security,

and many others.

In this thesis we study the case in which the graph G has a hierarchical organization, so

that G is a tree. We begin by considering some natural variants of the critical node detection

problem for special graph class such as paths and present an exact approach to solve the

problems. We continue by investigating the critical edge detection problem over trees in

different situations of edge weights. We provide polynomial algorithms for the problems when

all connections between pairs of nodes have unit cost.

Indeed, while most of the literature focuses on deleting nodes or edges separately, we allow

the simultaneous removal of nodes and edges. We consider both the case in which the nodes

and edges removed must satisfy a joint weight limit, and the case in which two separate weight

limits are given for nodes and edges. We also consider our problems to a more general setting,

in which the connection costs are called łsquare 0/1 connection costsž. We then explore our

problems with arbitrary 0/1 connection costs and nonnegative node/edge weights when the

number of leaves in the tree is őxed. We study the complexity of several problems of this type

when the given graph is a tree, providing NP-hardness results or polynomial-time algorithms

for the different cases that we analyze. In addition, we present mathematical models based

on integer linear programming which provides optimal solutions for critical node and/or edge

problems.

Finally we consider a generalization of the pairwise connectivity critical node/edge de-

tection problem, the so-called Distance-based Critical Node/Edge Detection Problem. We

investigate certain versions of our problems that fall into this category and propose poly-

nomial time algorithms. We also develop a mathematical framework for the distance-based

critical edge identiőcation problem based on integer linear programming.

vii

viii

Keywords: Critical node detection, Critical edge detection, Combinatorial optimization,

Complexity, Dynamic programming, Integer linear programming, Network interdiction, Pair-

wise connectivity.

Sommario (Italian abstract)

In questo lavoro consideriamo il problema di rimuovere un sottoinsieme limitato di nodi e/o

archi da un grafo G così da minimizzare una misura della connettività del grafo residuo,

deőnita come il costo totale delle coppie di nodi ancora connesse da un cammino. Questa è

una versione molto studiata di una famiglia di problemi noti come problemi di identiőcazione

di nodi o archi critici. La principale motivazione e l’interesse comune alla base di questi

argomenti nascono dalla loro rilevanza in numerosi campi, tra cui la biologia computazionale,

problemi di trasporto, la valutazione della sicurezza delle reti e molti altri.

In questa tesi studiamo il caso in cui il grafo G ha una struttura gerarchica, per cui G è un

albero. Cominceremo considerando alcune varianti naturali del problema di identiőcazione di

nodi critici per alcune classi particolari di graő, come i cammini, e presentiamo un approccio

esatto per risolvere questi problemi. Continueremo studiando il problema di identiőcazione di

archi critici su alberi con diverse tipologie di pesi sugli archi. Otterremo algoritmi polinomiali

per questi problemi quando tutte le connessioni tra coppie di nodi hanno costo unitario.

Di fatto, mentre gran parte della letteratura è incentrata sulla rimozione di nodi o archi

separatamente, qui consentiamo la rimozione contemporanea di nodi e archi. Considereremo

sia il caso in cui i nodi e gli archi rimossi devono soddisfare un singolo vincolo cumulativo sul

loro peso, sia il caso in cui vengono assegnati due vincoli separati per il peso di nodi e archi

rimossi. Studieremo i nostri problemi anche in un contesto più generale, in cui le connessioni

hanno una struttura che chiameremo łcosti 0/1 quadratiž. Esploreremo poi questi problemi

con costi di connessione 0/1 generali e pesi non-negativi su nodi e/o archi sotto l’ipotesi che

il numero di foglie dell’albero sia őssato. Studieremo anche la complessità di vari problemi

di questo tipo quando il grafo è un albero, fornendo risultati di NP-completezza o algoritmi

polinomiali a seconda del caso in esame. Inoltre, presenteremo modelli matematici basati sulla

programmazione lineare intera che forniscono soluzioni ottime per problemi di rimozione di

nodi e/o archi.

Inőne considereremo una generalizzazione della misura della connettività considerata so-

pra, che dà luogo a problemi di identiőcazione di nodi e archi critici basati sulla distanza.

Studieremo certe versioni dei nostri problemi che cadono in questa categoria e proporremo

algoritmi polinomiali. Svilupperemo anche una formulazione matematica per questi problemi

tramite programmazione lineare intera.

ix

x

Parole chiave: Identiőcazione di nodi critici, Identiőcazione di archi critici, Ottimiz-

zazione combinatoria, Complessità, Programmazione dinamica, Programmazione lineare in-

tera, Network interdiction, Connettività a coppie.

Contents

Acknowledgements v

Abstract viii

Sommario (Italian abstract) x

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 The problems that we study . 6

1.2 Outline of the thesis and our contributions . 8

2 Critical Node Detection Problem over a path 11

3 Polynomial time algorithms of CEDP, CNEDP-1, and CNEDP-2 on a tree 21

3.1 Solving CEDP on a tree with unit connection costs 21

3.1.1 The unit cost, unit weight case on trees 22

3.1.2 The case with unit costs and arbitrary edge weights 25

3.2 Solving CNDP on a tree when given a budget 28

3.3 Solving CEDP on a tree when given a budget 30

3.4 Solving CNEDP-1 on a tree with unit connection costs 32

3.5 Complexity of CNEDP-2 . 35

3.5.1 Solving CNEDP-2 on a tree with unit connection costs 36

4 CEDP via subdivision 39

4.1 The unit cost, unit weight case on trees . 40

4.2 The case with unit costs and arbitrary edge weights 42

5 CNDP, CEDP, CNEDP-1, and CNEDP-2 with 0/1 connection costs 45

5.1 Hardness results for 0/1 connection costs . 45

xi

xii CONTENTS

5.2 Solving CEDP and CNEDP-1 on a tree with 0/1 connection costs 46

5.3 Solving CNDP on a tree with 0/1 connection costs 47

5.3.1 The case with 0/1 costs and unit weights 47

5.3.2 The case with 0/1 costs and arbitrary node weights 50

6 Fixed number of leaves 55

6.1 The case with 0/1 costs and unit node weights on paths 55

6.2 The case with 0/1 costs and arbitrary node weights on paths 57

6.3 The case with 0/1 costs and unit node weights on trees 58

6.4 The case with 0/1 costs and arbitrary node weights on trees 60

7 IP formulations of CNDP, CEDP, CNEDP-1, and CNEDP-2 63

7.1 IP formulations for the restricted CNDP . 63

7.2 IP formulations for the CEDP . 65

7.3 IP formulations for the CNEDP-2 . 65

7.4 IP formulations for the CNEDP-1 . 66

8 Distance-based Critical Node/Edge Detection Problem 67

8.1 D-CNDP on trees for Class 1 . 68

8.2 D-CNDP on trees for Class 2 . 70

8.3 D-CEDP on trees for Class 1 . 74

8.4 IP formulations for D-CEDP . 77

9 Conclusion 79

9.1 Summary of contribution . 79

9.2 Directions for future work . 80

Bibliography 87

List of Figures

1.1 A graph to illustrate optimal solutions for different connectivity measures. . . . 4

2.1 Example of a solution after removing K = 2 nodes. 12

2.2 Modiőcation of the solution of Figure 2.1. 12

3.1 Ta is an example of a subtree in which node a has four children (i.e. s = 4). . . 22

4.1 Example of subdivision of an edge uv. 39

8.1 Illustration of the proof of Theorem 8.2.2. 73

8.2 Solution for a D-CNDP of Class 2 when L = 7 and K = 2 with unit costs and

unit node weights. 74

xiii

List of Tables

3.1 Complexity results for the CEDP over trees . 27

3.2 Complexity results for the CNEDP-2 over trees 38

6.1 Complexity results for the CNDP on a path. 58

6.2 Complexity results for the CNDP on a tree with a őxed number of leaves. . . . 62

xv

Chapter 1

Introduction

Critical node or edge detection problems are a family of optimization problems deőned on

graphs, where one is required to remove a limited number of nodes and/or edges in order to

minimize some measure of the connectivity of the residual graph. This class of problems has

attracted the interest of many researchers in the last two decades, because of its relevance

in a number of practical applications. The applications involve situations where the aim is

to either protect the connectivity of nodes in a network by securing the most critical nodes

or attacking the most critical nodes in order to have minimum connections between all pairs

of nodes in the network. Some important applications of the critical node or edge detection

problems are presented below.

In a supply chain network, the connections between pairs of nodes is minimized after

removing the most critical nodes from the network. For example, a military supply chain

network [88] contains battalions and support battalions as nodes and the connections between

them as links. By attacking the most critical nodes in this network, the connectivity between

supply and demand nodes will be minimized. Therefore, the solution of the critical node

detection problem (CNDP) is important in military tactical attacks during wars.

By using the gathered intelligence from a covert network, the terrorist network can be

represented as a graph where terrorists are depicted as nodes and the social interactions

between them represent links. We can minimize the communications between terrorists by

attacking the most critical individuals in the networks [48].

People and contacts between them in a real society are represented as nodes and links

of a graph in order to study the effect of epidemics in real social network [56, 69]. In order

to prevent the spread of infectious diseases in real social networks, different strategies were

presented for targeted vaccinations since random mass vaccinations are expensive [56, 69].

However, the optimal vaccination strategy is to őnd the critical nodes and vaccinate them

to minimize the pairwise connectivity between people in a society [8], assuming that higher

pairwise connectivity cause faster outbreak.

Biological organisms, such as bacteria and viruses, are sets of interconnected proteins

1

2 CHAPTER 1. INTRODUCTION

that interact with each other to form a protein-interaction network. These networks can be

represented by a graph where nodes are proteins and edges are interactions between them.

Protein structure and interactions are widely studied in biology [61, 63, 84, 87]. Identifying

critical nodes (proteins), which maintain connectivity between all proteins, can provide useful

information for many biological applications. For instance, in rational drug design [47, 53],

these critical proteins need to be targeted to destroy and neutralize the corresponding harmful

organism, resulting, from a pharmaceutical perspective, in a therapeutic beneőt for the patient.

This is what V. Tomaino et al. [75] investigated with the purpose of destroying aggressive

cancer cells. To do so, they identiőed critical nodes in the human protein interaction network

using the CNDP variant. Likewise, V. Boginski et al. [14] explored the identiőcation of such

proteins using the Cardinality Constrained-CNDP (CC-CNDP) variant. This work is a good

application of the concept of critical nodes in computational biology.

Telecommunication networks such as the Internet, telephone networks, and computer net-

works can be represented as graphs, where each node is a terminal and links show the commu-

nications between terminals. In telecommunication networks, we want to prevent the spread

of a virus or őnd some way to reduce as much as possible the communication within the

network [9, 22]. Also, in network immunization [49, 50], where a graph representing contacts

between people is given, only a given maximum number of persons can be vaccinated, and we

aim at minimizing the propagation of the virus [21, 89].

The CNDP őnds applications in the őeld of transportation engineering [33, 46]. Two

particular examples are as follows. In general, for transportation networks, it is important

to identify critical nodes in order to ensure they operate reliably for transporting people and

goods throughout the network. Further, in planning for emergency evacuations, identifying

the critical nodes of the transportation network is crucial. The reason is two-fold. First,

knowledge of the critical nodes will help in planning the allocation of resources during the

evacuation. Secondly, in the aftermath of a disaster they will help in re-establishing critical

traffic routes.

The problem can be seen as a multicommodity version of the interdiction problems pi-

oneered by Wollmer [85]. The problems deal with deleting arcs in order to minimize the

maximum amount of ŕow that can be shipped through a network, a őnite resource budget

being allocated for arc deletion operations. The basic interdiction models deal with a sin-

gle commodity source-sink ŕow on a directed capacitated network. Wood [86] also considers

extensions to undirected graphs and multicommodity ŕows. Recently Smith and Lim [74]

speciőcally tackle multicommodity interdiction models.

Myung and Kim [57] tackle the problem of deleting a limited number of edges from an

undirected graph in order to minimize the weighted number of connections guaranteed in the

residual graph.

Applications of the CNDP are not limited to what has been mentioned above, and there

are many other applications in several other areas including the analysis of complex networks

3

[15, 34], security/vulnerability issues in networks [29, 58, 72, 73, 82], homeland security [16,

39, 44], energy [68], etc.

For problems based on the deletion of edges, a variety of variants have been deőned and

studied in the literature, such as the graph partitioning problem [17, 35, 62], the minimum k-

cut problem [38, 41], the multicut problem [24, 37, 40], the multiway cut problem [18, 19, 26],

the multi-multiway cut problem [12], etc.

A class of the CNDP that take into account the actual pairwise distances between nodes

is so-called Distance-based Critical Node Detection Problem (D-CNDP) as introduced in [82].

The authors in [82] identify őve different important classes of D-CNDP in which the objectives

are to:

(i) Minimize the number of node pairs connected by a path of length at most k;

(ii) Minimize the Harary index;

(iii) Minimize the sum of power functions of distances;

(iv) Maximize the generalized Wiener index;

(v) Maximize the distance between two given nodes.

They propose the recursive formulation which is generic enough to handle all of the D-CNDP

classes mentioned above. In [43], the authors propose a complementary mixed integer pro-

gramming formulation and a Benders approach for the distance-based connectivity objective

(iv) above. In [4] and [67], the authors propose new integer programming formulations as

well as a heuristic approach for the őrst distance-based connectivity objective (i). Complexity

analyses of the D-CNDP connectivity objectives (i), (ii) and (iv) above are presented in [7] for

graphs with special structures, such as trees, paths and seriesśparallel graphs. The authors

then proposed dynamic programming algorithms for polynomially and pseudo-polynomially

solvable cases.

Connectivity Measures

The choice of the connectivity measure is of course a central element in a critical node or edge

detection problem. Indeed, several different connectivity measures have been proposed in the

literature. These measures can be categorized into two classes depending on the context of

the problem that is being solved. The measures from the őrst class are mainly associated

with network ŕow problems, in particular shortest path problems, maximum ŕow problems,

or minimum cost ŕow problems. The logic behind these measures is that a network gets

disconnected when it starts losing its ability to send ŕow between a predeőned set of node

pairs, or simply when traversing the network becomes too expensive [23, 85]. For these cases,

the critical elements are the ones whose deletion results in the maximum increase of the

4 CHAPTER 1. INTRODUCTION

shortest paths or, consequently, the maximum decrease of the ŕow capacity between the

predeőned node pairs. These kinds of measures are commonly used in the context of network

interdiction [20, 45, 55, 74], and are generally designed to tackle arc interdiction problems

(detecting critical arcs).

On the other hand, the measures of the second class are mostly associated with topological

characteristics of the network. Among this class, the most common measures are: the total

number of pairwise connections (i.e., the total number of node pairs that are connected in the

network by at least one path1) [8, 27], the total weighted pairwise connectivity (i.e., a weighted

sum of the pairwise connections) [8, 27], the size of the largest connected2 component (i.e., the

number of nodes that belong to the largest maximal connected subgraph of a graph G) [59, 70],

the total number of connected components [3, 70], average shortest path value [25], and the

diameter [3]. Figure 1.1 provides an example of the different optimal solutions that are found

depending on the measure that is chosen. For this example we assume that the goal is to

identify the most critical node among the network. Note that if the connectivity measure is

set to be the length of the shortest path between nodes 1 and 5, the critical node is node 3.

On the other hand, if the measure is the size of the largest component, the critical node is

node 4. And őnally, if the measure is the total number of components, the critical node is

node 6.

1

2

3

4

5

6

7

8

Figure 1.1: A graph to illustrate optimal solutions for different connectivity measures.

In this dissertation we consider the pairwise connectivity between nodes, formalized in [8].

The pairwise connectivity of a graph G = (V,E) is deőned as the number of pairs of nodes

belonging to the same connected component.

This can be naturally generalized to the total cost of the pairs of nodes that belong to the

same component, if connection costs are assigned for each pair of nodes.

1A path in a graph G = (V,E) is a sequence of nodes {v1, v2, . . . , vk} such that each pair (vi, vi+1) is an

edge in E.
2A graph G is said to be connected if there is a path between any two distinct nodes. Otherwise, graph G

is disconnected.

5

Computational Complexity

From the complexity point of view, the decision version3 of the CNDP has been proven to

be NP-complete on general graphs [8, 10, 29, 31, 54, 59, 71, 73] and often also remain NP-

complete even on some special classes of graphs [2, 13, 27, 51, 70, 71, 73]. The recognition

version of the CNDP with unit connection costs and node weights is proven to be NP-complete

on general graphs by Arulselvan et al. [8] through a polynomial reduction from the Maximum

Independent Set4 problem, known to be NP-complete [36]. Polynomial algorithms are instead

available only for some particular cases, which are usually limited to graphs with bounded

treewidth, in particular trees and series-parallel graphs [2, 7, 13, 27, 51, 70]. Di Summa et

al. [27] proved that the CNDP is also NP-complete on trees for the total weighted pairwise

connectivity measures using a reduction from the multicut in trees problem [37]. They also

showed that when the pairwise connection costs are set to be one (i.e., when the connectivity

measure is replaced with the sum of the total number of pairwise connections), the problem

can be solved in polynomial time using a dynamic programming approach. Moreover, Shen

and Smith [25] proved that the CNDP is polynomially solvable in trees and seriesśparallel

graphs for the cases when the deletion costs of the nodes are set to be one and the objective

is either minimizing the size of the largest component or maximizing the number of residual

components. They also propose a dynamic programming scheme for solving the CNDP in

these cases. Most variants of D-CNDP are NP-hard [82]. However, some special cases of

D-CNDP admit polynomial-time algorithms [7].

Solution Methodologies

Despite the difficulty of the problem, many approaches have been explored in the litera-

ture to solve it, using: dynamic programming [2, 13, 27, 51, 70] and integer linear pro-

gramming [8, 10, 28, 30, 59, 71, 73], to provide exact solutions. To provide approximated

solutions with performance guarantee, a variety of methods have been considered, including

heuristic algorithms [1, 5, 6, 8, 9, 58, 64, 65, 66, 78], polynomial-time approximation algo-

rithms [11, 13], particularly rounding-based approximation approaches [32, 73, 79, 80, 81],

stochastic search algorithms [10, 77], őxed-parameter tractable algorithms [13, 54], polyno-

mial pseudo-approximation algorithms [29]. Recently, solving frameworks considering different

connectivity metrics together have been developed. This is the case for [83], where the devel-

3Decision problems are the problems for which the answer is either “YES” or “NO”. We say that a decision

problem is NP-complete if: (i) it is in NP, i.e., it has a polynomial-time verification algorithm, and (ii) all

problems in NP are reducible to it in polynomial time. A decision problem X is polynomially reducible to a

decision problem Y if there exists a polynomial-time reduction A such that, for any instance I ∈ X we have

A(I) ∈ Y . If only the second condition holds, then X is said to be NP-hard.
4In a graph G = (V,E), an independent set is a set of vertices S ⊆ V such that there is no edge between

any two of them.

6 CHAPTER 1. INTRODUCTION

oped unifying integer programming framework takes into account four connectivity metrics.

Similarly, authors in [5] presented an efficient evolutionary framework for solving different

variants of the CNDP. The framework is potentially adaptable to deal with different variants

of the CNDP considering different connectivity metrics. We refer the interested reader to the

survey [52] for a detailed overview.

1.1 The problems that we study

According to the pairwise connectivity measure mentioned above, the Critical Node Detection

Problem (CNDP) is formally stated as follows:

Problem 1 (CNDP). Given an undirected graph G = (V,E), a weight wv ≥ 0 for every

v ∈ V , a connection cost cuv ≥ 0 for all u, v ∈ V , and a weight limit W ≥ 0, őnd S ⊆ V such

that the total weight of the nodes in S is at most W and the total cost of the pairs of nodes

that are connected in G− S is minimized.

Here G − S denotes the graph obtained after removing from G the nodes in S, i.e., the

subgraph of G induced by V \ S. Furthermore, in the above problem as well in all variants

considered below, the connection costs will be always implicitly assumed to be symmetric (i.e.,

cuv = cvu for every u, v ∈ V) and to satisfy cvv = 0 for every v ∈ V .

For this and the other problems that we study, we are particularly interested in the case

in which G is a tree5. Already under this assumption, CNDP is NP-hard, even if wv = 1 for

every v ∈ V and cuv ∈ {0, 1} for every u, v ∈ V [27]. However, still assuming that G is a

tree, the problem admits a polynomial-time algorithm if the cuv’s are all equal to 1 (with no

restriction on the wv’s) [27].

In this work we further investigate the complexity of CNDP on a tree, and consider some

natural variants in which edges or both nodes and edges can be removed from the graph.

Indeed, most of the literature seems to focus on problems where only nodes or edges can

be deleted. (See, e.g., [83] for a discussion about this aspect.) Problems where both nodes

and edges can be removed subject to a joint weight limit have been also considered in [83],

where a general integer programming framework is presented for several types of connectivity

measures. A different version of this problem has been studied in [42].

In order to simplify the description of the problems that we analyze, it is worthwhile to

introduce some simple notation. Given an undirected graph G = (V,E) and a subset S ⊆ V ∪E

of nodes and/or edges of G, G− S will denote the graph obtained after removing from G the

elements in S. More formally, G − S = (V ′, E′) with V ′ = V \ S and E′ = {uv ∈ E \ S :

u, v ∈ V ′}. If connection costs cuv are given for all u, v ∈ V , we use the shorthand c(G − S)

to denote the total cost of the pairs of nodes that are connected in G− S. When weights wv

5A tree T (V,E) is a graph with no cycle, where any two nodes are connected by exactly one path. If a node

is designated as root, the tree is called a rooted tree.

1.1. THE PROBLEMS THAT WE STUDY 7

and/or we are given for all nodes v ∈ V and/or all edges e ∈ E, w(S) will denote the total

weight of the elements in S. (Note that there is no confusion in denoting both node and edge

weights with a similar symbol, i.e., wv and we, as the different nature of the subscript Ða

node or an edgeÐ removes any ambiguity. In other words, w can be viewed as a function of

the form w : V ∪ E → R+.)

The above notation allows us to restate CNDP slightly more compactly:

Problem 2 (CNDP, restated). Given an undirected graph G = (V,E), a weight wv ≥ 0 for

every v ∈ V , a connection cost cuv ≥ 0 for all u, v ∈ V , and a weight limit W ≥ 0, őnd S ⊆ V

such that w(S) ≤ W and c(G− S) is minimized.

As already mentioned, we are interested in some variants of CNDP (mainly on trees) in

which edges or both nodes and edges can be removed. The variants that we analyze are the

following:

• the Critical Edge Detection Problem (CEDP), which is formulated as CNDP, except

that edges have to be removed instead of nodes;

• the Critical Node/Edge Detection Problem with a single weight limit (CNEDP-1),

where a cumulative weight limit for the removal of nodes and edges is given;

• the Critical Node/Edge Detection Problem with two weight limits (CNEDP-2), where

two separate weight limits are assigned for nodes and edges.

These problems are formalized below:

Problem 3 (CEDP). Given an undirected graph G = (V,E), a weight we ≥ 0 for every

e ∈ E, a connection cost cuv ≥ 0 for all u, v ∈ V , and a weight limit W ≥ 0, őnd S ⊆ E such

that w(S) ≤ W and c(G− S) is minimized.

Problem 4 (CNEDP-1). Given an undirected graph G = (V,E), a weight wv ≥ 0 for every

v ∈ V , a weight we ≥ 0 for every e ∈ E, a connection cost cuv ≥ 0 for all u, v ∈ V , and a

weight limit W ≥ 0, őnd S ⊆ V ∪ E such that w(S) ≤ W and c(G− S) is minimized.

Problem 5 (CNEDP-2). Given an undirected graph G = (V,E), a weight wv ≥ 0 for every

v ∈ V , a weight we ≥ 0 for every e ∈ E, a connection cost cuv ≥ 0 for all u, v ∈ V , and weight

limits WV ,WE ≥ 0, őnd S ⊆ V ∪E such that w(S∩V) ≤ WV , w(S∩E) ≤ WE, and c(G−S)

is minimized.

We remark that CNDP and CEDP are special cases of each of CNEDP-1 and CNEDP-2.

Indeed, an instance of CNDP (respectively, CEDP) can be reduced to an instance of CNEDP-

1 by giving weight W + 1 to all edges (respectively, nodes) in order to forbid their removal.

Furthermore, an instance of CNDP (respectively, CEDP) can be reduced to an instance of

CNEDP-2 by setting WV = W and WE = 0 (respectively, WE = W and WV = 0).

8 CHAPTER 1. INTRODUCTION

1.2 Outline of the thesis and our contributions

The outline of this thesis is organized as follows.

In Chapter 2, we look at the problem of identifying important nodes in a path graph

whose removal optimizes the connectedness of the given path. We analyze four variants of the

critical node detection problem on paths and present a closed-form solution for the objective

function’s optimality.

In Chapter 3, we address the problem of detecting critical edges of a graph whose deletion

optimally deteriorates the connectivity of the given graph. We present dynamic programming

algorithms for the case with unit costs and unit edge weights as well as the case with unit

costs and general edge weights and show that both algorithms can be executed in polynomial

time. Then we move to the problem of detecting critical nodes and edges simultaneously by

considering the case when a joint weight limit on the removal of nodes and edges is given and

also given two separate weight limits for nodes and edges. We will see that CNEDP-1 can

be solved in polynomial time when the underlying graph is a tree and the connection costs

are all unitary, while for CNEDP-2 we have a polynomial-time algorithm only if we further

assume that the node and edge weights are all equal to 1 (Proposition 3.5.2). On the contrary,

we show that if the connection costs are unitary but the node and edge weights are general

nonnegative numbers, CNEDP-2 is NP-hard to approximate within any factor, even when G

is a path (Proposition 3.5.1).

In Chapter 4, we present a different approach to solve the CEDP on a tree. The idea is

to subdivide the graph by inserting a new node in each edge and to remove only the newly

created nodes instead of edges and the same complexity (see Chapter 3) is obtained.

Chapter 5 describes the NP-hardness results for the CEDP, CNEDP-1, and CNEDP-2

under the assumptions that the node/edge weights are unitary and the connection costs are

0/1 (Observation 12). We also present polynomial time algorithms for the different cases that

we analyze, in which the connection costs are 0/1 and have the special structure: there exists

I ⊆ V such that cuv = 1 if u, v ∈ I and u ̸= v, and cuv = 0 otherwise. We call this special

structure as square 0/1 connection costs.

In Chapter 6, we study our problems when the number of leaves of the tree is a constant.

We őrst show that if the tree has exactly two leaves (i.e., a path) with arbitrary 0/1 connection

costs and general nonnegative node weights, the CNDP can be solved in polynomial time in this

situation. We then show more generally that CNDP, CEDP, and CNEDP-1 on a tree with

arbitrary 0/1 connection costs and general nonnegative node/edge weights can be solved in

polynomial time under this assumption (Proposition 14). The same result holds for CNEDP-

2, but only if the node and edge weights are assumed to be unitary (Proposition 15). Indeed,

we recall that without this further restriction CNEDP-2 is NP-hard already on a path (even

with unit connection costs), i.e., on a tree with exactly two leaves (Proposition 3.5.1).

In Chapter 7, we propose new mathematical formulations based on the linear integer

1.2. OUTLINE OF THE THESIS AND OUR CONTRIBUTIONS 9

programming (IP) model for őnding exact solutions of the CNDP introduced by [8], which

we deőne restricted CNDP. After that we derive IP models for the CEDP, CNEDP-1, and

CNEDP-2 from the proposed restricted CNDP which provides optimal solutions.

We then focus on an extension of the critical node/edge detection problem in Chapter 8

where the distances between node pairs affect the objective function. We analyze some nat-

ural versions of Distance-based Critical Node/Edge Detection Problem and present dynamic

programming algorithms whose complexities are polynomial. For the distance-based critical

edge detection problem, we additionally propose an integer programming formulation.

Chapter 9 concludes this thesis with őnal observations. It also provides some open issues

that remain to be covered.

Note that the polynomial-time algorithms that we obtain in this thesis take inspiration

from the dynamic programming strategies proposed in [27] for CNDP on a tree with unit

connection costs and in [7] for some distance-based versions of CNDP on a tree.

Chapter 2

Critical Node Detection Problem over

a path

In this chapter we study the Critical Node Detection Problem (CNDP) on a path which can

be seen as a very special case of a tree. Given a path graph P = (V,E) with |V | = n nodes

and an integer K, the CNDP on a path seeks to őnd a set S ⊆ V of at most K ≤ n nodes,

the deletion of which minimizes pairwise connectivity in the remaining path graph P (V \ S).

We will tackle the so-called Distance-based Critical Node Detection Problem (D-CNDP) over

paths as described in [7]. The NP-completeness of D-CNDP over paths for some speciőc

distance functions has been already established [7]. We look at some particular versions of

CNDP on paths that fall into the D-CNDP on paths and provide closed-form solution for

optimality of the objective function. We note that these versions of D-CNDP on general trees

will be studied in chapter 8. The variants that we analyze in this chapter are the following:

1. Minimizing the number of node-pairs connected by a path with upper bound of length

at most L.

2. Minimizing the number of node-pairs connected by a path with lower bound of length

at least L.

3. Minimizing the number of node-pairs connected by a path of length precisely L.

4. Minimizing the number of node-pairs connected by a path of length between L1 and L2

where L1 and L2 are the lower and upper bound respectively.

It can be easily seen that the CNDP with L = 1 on a graph G = (V,E), which aims

to minimize the number of edges that survive after having removed at most K nodes, is

NP-complete through a reduction from Vertex cover. Indeed, deciding whether there is a

vertex cover of size at most K in a graph is equivalent to verifying whether the optimal value

of the CNDP with L = 1 is zero.

11

12 CHAPTER 2. CRITICAL NODE DETECTION PROBLEM OVER A PATH

The term balanced solution is an important concept that we will utilize in the following

statements. We call the solution balanced if the difference between the length of the shortest

and longest components is either 0 or 1.

Before deriving the exact solution of the objective function for the four variants introduced

above, we őrst present the following result without any lower or upper bound on the length

of the connecting path.

Proposition 6. For the CNDP on a path without any lower or upper bound, the optimal

solutions are the balanced solutions.

Proof. Let P = (V,E) be a path graph with |V | = n nodes and let α be the average number

of nodes of the sub-paths obtain after removing K nodes, where α = |V |−K
K+1

.

Assume that we are given an optimal solution after removing K nodes. Suppose by

contradiction that in the given optimal solution, not all the sub-paths have length ⌊α⌋ or

⌈α⌉. Since the solution is unbalanced, there are at least two sub-paths in this solution in

which one of the component has length at most ⌊α⌋− 1 and another component has length at

least ⌈α⌉+1. Let l1 and l2 be the number of nodes of the shortest and the longest components

respectively, i.e., l1 ≤ ⌊α⌋ − 1 and l2 ≥ ⌈α⌉ + 1 (see Figure 2.1). Now we construct a new

solution by adding one node in the shortest component, i.e., l1+1 and by subtracting one node

in the longest component, i.e., l2 − 1 and the length of the other components are unchanged

(see Figure 2.2). We want to show that this new solution is better than the given solution.

l1 l2

Figure 2.1: Example of a solution after removing K = 2 nodes.

l1 + 1 l2 − 1

Figure 2.2: Modiőcation of the solution of Figure 2.1.

So the claim is

(

l1 + 1

2

)

+

(

l2 − 1

2

)

<

(

l1
2

)

+

(

l2
2

)

, where l2 − l1 ≥ 2

⇐⇒ (l1 + 1)l1 + (l2 − 1)(l2 − 2) < l1(l1 − 1) + l2(l2 − 1)

⇐⇒ l1(l1 + 1− l1 + 1) < (l2 − 1)(l2 − l2 + 2)

13

⇐⇒ 2l1 < 2(l2 − 1)

⇐⇒ l2 − l1 > 1

which is true by assumption because we are assuming l2 − l1 ≥ 2, and we will continue this

perturbation until we have K + 1 components of size ⌊α⌋ and ⌈α⌉, and this shows that every

optimal solution is balanced. Observe that all balanced solutions have the same cost and hence

they are equivalent. Since all balanced solutions are equivalent, this proves that all balanced

solutions are optimal.

We now state the result when the graph is a path and the problem is to remove K nodes

in order to minimize the number of pairs that are connected by a path of length at most L,

for some given natural number L.

Proposition 7. For the CNDP on a path with upper bound L, any solution that removes

K nodes and creates K + 1 components with cardinality at least L is optimal. If no such a

solution exists, then any solution that removes K nodes and creates balanced components is

optimal.

Proof. First we prove the second part of the statement which means there is no way to make

all the components with cardinality at least L and in this case we want to prove that balanced

solutions are optimal.

Assume by contradiction that we are given an optimal solution which is not balanced.

Since we are assuming that there is no way to make all the components with cardinality at

least L, there is at least one sub-path with cardinality at most L − 1. Let A be the shortest

component and B be the longest component of the solution. With a slight abuse of notation

we will denote by A and B also the number of nodes in the component. Then A ≤ L− 1 and

B − A ≥ 2 because the solution is not balanced. Now we do the perturbation by adding one

node in the shortest component and by subtracting one node in the longest component and

by keeping the cardinality of all other components unchanged. Now if B > L and we subtract

a node from B, then we lose L connections, while if B ≤ L and we subtract a node from B,

then we lose (B − 1) connections because we have to count only the paths of length ≤ L.

Since A ≤ L − 1, if we add an extra node to A, then we have A new connections. Thus we

have the following two cases when we do the perturbation.

Case 1: If B > L, then the improvement is < 0.

Case 2: If B ≤ L, then the improvement is A − B + 1 which becomes ≤ −1 because we are

assuming that B −A ≥ 2.

So with the property A ≤ L − 1, we have always a negative improvement (case 1 and

2), i.e., we reduce the objective function and this proves that any unbalanced solution is not

14 CHAPTER 2. CRITICAL NODE DETECTION PROBLEM OVER A PATH

optimal. Since all balanced solutions are equivalent, this proves that all balanced solutions

are optimal.

Now we prove the őrst part of the statement which means that it is possible to make all

the sub-paths with cardinality at least L. In this case still it is possible that in the solution

the shortest component is smaller than L − 1 and we know by the above argument that this

solution is not optimal.

In the following we prove that all the solutions that creates K+1 sub-paths with cardinality

at least L are equivalent.

When we remove K nodes from the path, we create K + 1 components. Suppose ti is the

number of edges of every sub-path. Now if we take a path with ti ≥ L − 1 edges, then the

contribution is given by L(ti−L+1)+
∑L−1

K=1
K, because in a component of (t+1) nodes, we

have (t+1−L) nodes which gives a contribution of length L and the remaining L nodes gives

the contribution of (L−1), (L−2), . . . , 1, respectively, which is given by
∑L−1

K=1
K. In the last

component, the number of edges is given by tK+1 = n − 1 −
∑K

i=1
ti − 2K, because we have

n− 1 edges initially, then we have to discard all the edges of the sub-paths which is given by
∑K

i=1
ti and when we are removing K nodes, we are deleting 2K edges, since we are assuming

that we are creating K + 1 components that means we are not removing two adjacent nodes.

So the contribution of the (K+1)th component is given by L(n−1−
∑K

i=1
ti−2K)+

∑L−1

K=1
K.

Hence the total contribution is

K
∑

i=1

L(ti − L+ 1) +

L−1
∑

K=1

K + L(n− 1−
K
∑

i=1

ti − 2K) +

L−1
∑

K=1

K = 2

L−1
∑

K=1

K + L(n− L− 2K)

which is independent of ti’s, that means it does not matter what is the length of the sub-paths

as long as their cardinality is at least L.

Now we show that all the solutions that create all components with cardinality at least L

are optimal. Deőne S∗ as the set of solutions which have the property that all components have

at least L nodes. Since there is at least one solution with all the components with cardinality

at least L, the set S∗ is nonempty. Take a solution in S∗. This solution has the property

that the total number of nodes in the surviving components is at least (L− 1)(K+1) as after

removing K nodes we have (K+1) components and each of cardinality at least (L− 1). Let’s

call again A and B be the shortest component and the longest component respectively in S∗.

Take any solution which is not in S∗, which means that it has at least one component whose

cardinality must be smaller than L−1, so that A ≤ L−2. We claim that the cardinality of the

longest component is at least L, i.e., B ≥ L. If this is not true, then B ≤ L− 1. In this case

the total number of nodes in the surviving components is at most (L− 2) + (L− 1)K, which

is at least one unit smaller than (L− 1)(K + 1) and this is a contradiction because we know

that the total number of nodes can not be changed as we always remove K nodes. So any

solution which is not in S∗ has the property that A ≤ L− 2 and B ≥ L and this means that

the solution is not balanced. Since the solution is not balanced, we apply the perturbation

15

and by the previous arguments (case 1 and case 2) we know that when we do the perturbation

we always improve. After the perturbation either we őnd a solution which is in S∗ and we are

done, or we őnd a solution which has still the property that A ≤ L−2 and B ≥ L and we will

continue this perturbation until the solution is balanced. When we get a balanced solution,

we are in S∗ and this proves that the set S∗ is optimal.

We note that Proposition 6 is a special case of Proposition 7 because Proposition 7 coincides

with Proposition 6 when we put L = n.

The following result holds for the case when the graph is a path and the problem calls for

minimizing the number of node-pairs still connected by a path of length at least L, for some

given natural number L, surviving in a path after having removed at most K nodes..

Proposition 8. For the CNDP on a path with lower bound L, any solution that removes

K nodes and creates K + 1 components with cardinality at most L is optimal. If no such a

solution exists, then any solution that removes K nodes and creates balanced components is

optimal.

Proof. First consider that we can make all the components with cardinality at most L and in

this case all the solutions are equivalent and hence optimal, because the objective value is 0

and in this incident, it does not matter whether the solution is balanced or not as long as all

the components have cardinality at most L.

Now we prove the second part of the statement which means there is no way to make all

the components with cardinality at most L and in this case we want to prove that balanced

solutions are optimal.

Assume by contradiction that we are given an optimal solution which is not balanced.

Since we are assuming that there is no way to make all the components with cardinality at

most L, there is at least one sub-path with cardinality greater than L. Let A be the shortest

component and B be the longest component of the solution. With a slight abuse of notation

we will denote by A and B also the number of nodes in the component. Then B > L and

A ≤ B − 2 because the solution is not balanced. Now we do the perturbation by adding one

node in the shortest component and by subtracting one node in the longest component and

by keeping the cardinality of all other components unchanged. Now if A ≥ L− 1 and we add

an extra node to A, then we have A− L+ 1 new connections while if A < L− 1 and we add

an extra node to A, in this case we create 0 connection, because we have to count only the

paths of length ≥ L. Since B > L and we subtract a node from B, we lose B−L connections.

Thus we have two cases when we do the perturbation.

Case 1: If A ≥ L− 1, then the improvement is A−B + 1 which becomes ≤ −1 because we are

assuming that A ≤ B − 2.

Case 2: If A < L− 1, then the improvement is L−B which becomes ≤ −1 because B > L.

16 CHAPTER 2. CRITICAL NODE DETECTION PROBLEM OVER A PATH

So when we have at least one sub-path with cardinality at least L, we always get a better

solution and this proves that any unbalanced solution is not optimal. Since all balanced

solutions are equivalent, this proves that all balanced solutions are optimal.

When the graph is a path, and we want to minimize the number of node-pairs still con-

nected by a path of precise length L, for some given natural number L, surviving in a path

after having removed at most K nodes, the following result holds.

Proposition 9. For the CNDP on a path of precise length L, any solution that removes K

nodes and creates K + 1 components with cardinality at least L is optimal. Otherwise, any

solution that creates K + 1 components with cardinality at most L is optimal. If no such a

solution exists, then any solution that removes K nodes and creates balanced components is

optimal.

Proof. Assume by contradiction that we are given an optimal solution which is not balanced.

We are assuming that there is no way to make all the components with cardinality at least L

or all the components with cardinality at most L. Then there is at least one sub-path with

cardinality less than L and at least one sub-path with cardinality greater than L. Let A be the

shortest component and B be the longest component of the solution. With a slight abuse of

notation we will denote by A and B also the number of nodes in the component. Then A < L,

B > L and A ≤ B − 2 because the solution is not balanced. Now we do the perturbation

by adding one node in the shortest component and by subtracting one node in the longest

component and by keeping the cardinality of all other components unchanged. Since A < L,

when we add an extra node to A, we create 0 connection, because we have to count only the

paths of length precisely L. Again since B > L, when we subtract a node from B, we lose 1

connection. Thus we have the following case when we do the perturbation.

Case 1: If A < L and B > L, then the improvement is −1.

In the following we prove that all the solutions that creates K+1 sub-paths with cardinality

at least L are equivalent.

When we remove K nodes from the path, we create K + 1 components. Suppose ti is

the number of edges of every sub-path. Now if we take a path with ti ≥ L − 1 edges, then

the contribution is given by (ti − L + 1), because in a component of (t + 1) nodes, we have

(ti + 1− L) nodes which gives a contribution of length exactly L. In the last component, the

number of edges is given by tK+1 = n−1−
∑K

i=1
ti−2K, because we have n−1 edges initially,

then we have to discard all the edges of the sub-paths which is given by
∑K

i=1
ti and when we

are removing K nodes, we are deleting 2K edges, since we are assuming that we are creating

K + 1 components that means we are not removing two adjacent nodes. So the contribution

17

of the (K +1)th component is given by (n− 1−
∑K

i=1
ti − 2K). Hence the total contribution

is
K
∑

i=1

(ti − L+ 1) + (n− 1−
K
∑

i=1

ti − 2K) = n− L− 2K

which is independent of ti’s, that means it does not matter what is the length of the sub-paths

as long as their cardinality is at least L and this proves that all the solutions that creates long

components are all equivalent.

Now we show that all the solutions that create all components with cardinality at least L

are optimal. Deőne S∗ as the set of solutions which have the property that all components have

at least L nodes. Since there is at least one solution with all the components with cardinality

at least L, the set S∗ is nonempty. Take a solution in S∗. This solution has the property

that the total number of nodes in the surviving components is at least (L− 1)(K+1) as after

removing K nodes we have (K+1) components and each of cardinality at least (L− 1). Let’s

call again A and B be the shortest component and the longest component respectively in S∗.

Take any solution which is not in S∗, which means that it has at least one component whose

cardinality must be smaller than L−1, so that A ≤ L−2. We claim that the cardinality of the

longest component is at least L, i.e., B ≥ L. If this is not true, then B ≤ L− 1. In this case

the total number of nodes in the surviving components is at most (L− 2) + (L− 1)K, which

is at least one unit smaller than (L− 1)(K + 1) and this is a contradiction because we know

that the total number of nodes can not be changed as we always remove K nodes. So any

solution which is not in S∗ has the property that A ≤ L− 2 and B ≥ L and this means that

the solution is not balanced. Since the solution is not balanced, we apply the perturbation

and by the previous arguments (case 1) we know that when we do the perturbation we always

improve. After the perturbation either we őnd a solution which is in S∗ and we are done, or

we őnd a solution which has still the property that A ≤ L−2 and B ≥ L and we will continue

this perturbation until the solution is balanced. When we get a balanced solution, we are in

S∗ and this proves that the set S∗ is optimal.

Similarly, if we can make component in such a way that the cardinality of all components is

shorter than L, then all the solutions are equivalent and hence optimal, because the objective

value is 0 and in this incident, it does not matter whether the solution is balanced or not as

long as all the components have cardinality at most L.

Otherwise, if we can not make solution in which all the components have cardinality at

least L or at most L, then obviously we are in case 1, because case 2 is not possible and

in this case we always have a negative improvement, i.e., we reduce the objective function

and this proves that any unbalanced solution is not optimal. Since all balanced solutions are

equivalent, this proves that all balanced solutions are optimal.

In the following we state the result when the graph is a path and the problem is to remove

18 CHAPTER 2. CRITICAL NODE DETECTION PROBLEM OVER A PATH

K nodes in order to minimize the number of pairs that are connected by a path of length at

least L1 and at most L2.

Now we consider the case in which we have a lower bound L1 and an upper bound L2 and

we consider the connections which are between L1 and L2.

Proposition 10. For the CNDP on a path with lower bound L1 and upper bound L2, any

solution that removes K nodes and creates K + 1 components with cardinality at least L2 is

optimal. Otherwise, any solution that creates K + 1 components with cardinality at most L1

is optimal. If no such a solution exists, then any solution that removes K nodes and creates

balanced components is optimal.

Proof. Assume by contradiction that we are given an optimal solution which is not balanced.

We are assuming that there is no way to make all the components with cardinality at least L2

or all the components with cardinality at most L1. Let A be the shortest component and B

be the longest component of the solution. With a slight abuse of notation we will denote by

A and B also the number of nodes in the component. Then A < L2, B > L1 and A ≤ B − 2

because the solution is not balanced. Now we do the perturbation by adding one node in the

shortest component and by subtracting one node in the longest component and by keeping the

cardinality of all other components unchanged. Since we want to count the paths of length

between L1 and L2, if A < L1 − 1 and we add an extra node to A, then we have 0 new

connection while if L1 − 1 ≤ A < L2 and we add an extra node to A, in this case we create

A− L1 + 1 connections. Again if L1 < B < L2 and we subtract a node from B, then we lose

B − L1 connections while if B > L2 and we subtract a node from B, then we lose L2 − L1

connections. Thus we have the following cases when we do the perturbation.

Case 1: If A < L1 − 1 and L1 < B < L2, then the improvement is L1 −B which becomes ≤ −1

because L1 < B.

Case 2: If A < L1 − 1 and B > L2, then the improvement is L1 −L2 which becomes ≤ −1 since

L1 < L2.

Case 3: If L1−1 ≤ A < L2 and L1 < B < L2, then the improvement is A−B+1 which becomes

≤ −1 because we are assuming that A ≤ B − 2.

Case 4: If L1 − 1 ≤ A < L2 and B > L2, then the improvement is A − L2 + 1 which becomes

≤ −1 because A < L2.

If we can make all the components with cardinality at most L1, then all the solutions are

equivalent and hence optimal, because the objective value is 0.

In the following őrst we prove that all the solutions that creates K + 1 sub-paths with

cardinality at least L2 are equivalent.

When we remove K nodes from the path, we create K + 1 components. Suppose ti is

the number of edges of every sub-path. Now if we take a path with ti ≥ L2 − 1 edges, then

19

the contribution is given by (L2 − L1 + 1)(ti − L2 + 1) +
∑L2−L1

K=1
K, because in a component

of (ti + 1) nodes, we have (ti + 1 − L2) nodes which gives a contribution of (L2 − L1 + 1)

and the remaining L2 − 1 nodes gives the contribution of (L2 − L1), (L2 − L1 − 1), . . . , 1,

respectively, which is given by
∑L2−L1

K=1
K. In the last component, the number of edges is

given by tK+1 = n− 1−
∑K

i=1
ti − 2K, because we have n− 1 edges initially, then we have to

discard all the edges of the sub-paths which is given by
∑K

i=1
ti and when we are removing K

nodes, we are deleting 2K edges, since we are assuming that we are creating K+1 components

that means we are not removing two adjacent nodes. So the contribution of the (K + 1)th

component is given by (L2 − L1 + 1)(n − 1 −
∑K

i=1
ti − 2K) +

∑L2−L1

K=1
K. Hence the total

contribution is

K
∑

i=1

(L2 − L1 + 1)(ti − L2 + 1) +

L2−L1
∑

K=1

K + (L2 − L1 + 1)(n− 1−
K
∑

i=1

ti − 2K) +

L2−L1
∑

K=1

K

= 2

L2−L1
∑

K=1

K + (L2 − L1 + 1)(n− L2 − 2K)

which is independent of ti’s, that means it does not matter what is the length of the sub-paths

as long as their cardinality is at least L2 and this proves that all the solutions that creates

long components are all equivalent.

Now we show that all the solutions that create all components with cardinality at least L2

are optimal. Deőne S∗ is the set of solutions which has the property that all components have

at least L2 nodes. Since there is at least one solution with all the components with cardinality

at least L2, the set S∗ is nonempty. Take a solution in S∗. This solution has the property

that the total number of nodes in the surviving components is at least (L2−1)(K+1) as after

removing K nodes we have (K+1) components and each of cardinality at least (L2−1). Let’s

call again A and B be the shortest component and the longest component respectively in S∗.

Take any solution which is not in S∗, which means that it has at least one component whose

cardinality must be smaller than L2− 1, so that A ≤ L2− 2. We claim that the cardinality of

the longest component is at least L2, i.e., B ≥ L2. If this is not true, then B ≤ L2−1. In this

case the total number of nodes in the surviving components is at most (L2 − 2) + (L2 − 1)K,

which is at least one unit smaller than (L2 − 1)(K + 1) and this is a contradiction because

we know that the total number of nodes can not be changed as we always remove K nodes.

So any solution which is not in S∗ has the property that A ≤ L2 − 2 and B ≥ L2 and this

means that the solution is not balanced. Since the solution is not balanced, we apply the

perturbation and by the previous arguments (case 2 and case 4) we know that when we do

the perturbation we always improve. After the perturbation either we őnd a solution which

is in S∗ and we are done, or we őnd a solution which has still the property that A ≤ L2 − 2

and B ≥ L2 and we will continue this perturbation until the solution is balanced. When we

get a balanced solution, we are in S∗ and this proves that the set S∗ is optimal.

20 CHAPTER 2. CRITICAL NODE DETECTION PROBLEM OVER A PATH

Otherwise, if we can not make solution in which all the components have cardinality at

least L2 or at most L1, then we are in one of the four cases and in every case we always

have a negative improvement, i.e., we reduce the objective function and this proves that any

unbalanced solution is not optimal. Since all balanced solutions are equivalent, this proves

that all balanced solutions are optimal.

We would like to mention that Propositions 7, 8, and 9 are all special instances of Propo-

sition 10. By placing L1 = 0 and L2 = L, Proposition 7 can be deduced from Proposition 10.

Similarly, we obtain the problem speciőed in Proposition 9 when we write L1 = L2 = L in

Proposition 10, and Proposition 10 corresponds with Proposition 8 when we put L1 = L and

L2 = n.

Chapter 3

Polynomial time algorithms of CEDP,

CNEDP-1, and CNEDP-2 on a tree

In this chapter, we look at the critical edge detection problem (CEDP), which is the task

of őnding a set of K edges in a graph G whose removal reduces the number of connections

between pairs of nodes in the residual graph. We investigate the CEDP over trees, general-

izing the objective function and constraints to account for generic nonnegative costs of node

connections and weights for edges to be deleted. We also investigate the complexity of the

Critical Node/Edge Detection Problem with a single weight limit (CNEDP-1), where a cu-

mulative weight limit for the removal of nodes and edges is given and the Critical Node/Edge

Detection Problem with two weight limits (CNEDP-2), where two separate weight limits are

assigned for nodes and edges.

In Section 3.1.1 we present a dynamic programming approach for the case with unit costs

and unit edge weights whose complexity is polynomial. In Section 3.1.2 we deal with the

case with unit costs and general edge weights. In Section 3.2 and Section 3.3 we present the

case with unit costs and a weight limit for the removal of nodes and edges respectively. In

Section 3.4 we show that CNEDP-1 can be solved in polynomial time when the connection

costs are all unitary. In Section 3.5 we prove that CNEDP-2 with unit connection costs is

NP-complete even on a path, while CNEDP-2 admits a polynomial-time algorithm if the

node and edge weights are őxed to 1 as well as the connection costs which is presented in

Section 3.5.1.

3.1 Solving CEDP on a tree with unit connection costs

In this section we show how to solve CEDP on a tree in polynomial time when the connection

costs are all unitary. We note that structural parts of our algorithmic framework are similar

to those provided in [27, 51, 70].

21

22CHAPTER 3. POLYNOMIAL TIME ALGORITHMS OF CEDP, CNEDP-1, AND CNEDP-2 ON A TREE

Let G = (V,E) be a tree with |V | = n, and let the input data be denoted as in Problem

3 (see the introduction), where the connection costs cuv are deőned as follows:

cuv =







1 if u, v are in the same component of G(E \ S)

0 otherwise.
(3.1)

Formally, CEDP’s goal is to discover S whose objective function yields the smallest value.

Throughout the thesis in our all dynamic programs, we denote by Ta the subtree of the

given tree T (V,E) rooted at node a ∈ V . If a is not a leaf of T , we assume that an arbitrary

order of its children is speciőed. If a has s children a1, . . . , as, for every i ∈ {1, . . . , s} we

deőne Tai,s as the subtree of T induced by {a} ∪ V (Tai) ∪ · · · ∪ V (Tas), where we denote by

V (H) the set of vertices of H for any given subtree H of T . Figure 3.1 shows an example of

a tree T rooted at node a where subtree Ta2 contains nodes of the set {a2, 3, 4, 5, 6, 7}, while

subtree Ta3,4 contains nodes of the set {a, a3, 8, 9, 10, 11, 12, a4, 13, 14, 15}. In our dynamic

programming approaches, all recursions are based on traversing the tree in postorder (that is,

from the leaves to the root) and from the right part of each tree level to the left part.

a

a4

14

15

13

a3

129

1110

8

a2

73

654

a1

21

Figure 3.1: Ta is an example of a subtree in which node a has four children (i.e. s = 4).

In the next two subsections, we will look at unit weights and general nonnegative weights

for the edges separately, since even though the latter subsumes the former, unitary weights

have a faster running time.

3.1.1 The unit cost, unit weight case on trees

In this part, we show how to solve CEDP on trees when cuv = 1 for all u, v and wv = 1 for

all v ∈ E. In this scenario, the goal is to reduce the number of paths left in a tree T (V,E)

after removing at most K edges.

To derive a dynamic programming algorithm, we will calculate recursively the following

values:

3.1. SOLVING CEDP ON A TREE WITH UNIT CONNECTION COSTS 23

• Fa(m, k) = minimum number of connections that still exists in the subtree Ta when k

edges are removed from Ta and m nodes (including a itself) of Ta are still connected to

the root a.

• Gai(m, k) = minimum number of connections that still exists in the subtree Tai,s =

a+ Tai + · · ·+ Tas when k edges are removed from Tai,s and m nodes of the subtree are

still connected to a.

We remark that for both functions, the number of nodes connected to the root will never

be 0 (i.e. m > 0) because we never remove the root as the root is a node and we can not

remove a node in the edge deletion problem. Furthermore, whenever the conditions in one of

the above deőnitions cannot be satisőed, we set the value of the function to inőnity.

The values of Fa and Gai are calculated in this order:

• we determine Fa for every leaf a;

• for a non-leaf node a, assuming that the Fa′ and Ga′i
have been already found for all

a′ ∈ V (Ta), we calculate Gas , Gas−1
, . . . , Ga1 , and then Fa.

At the end of the recursion, we can return the optimal value of the problem, assuming that

the tree T is rooted at node 1, which is

OPT = min{F1(m,K) : m = 1, . . . , n}.

As usual in dynamic programming, an optimal solution can be reconstructed by backtracking.

We now provide the explicit formulas and then a justiőcation for each of them. For a

non-leaf node a ∈ V , we have

Fa(m, k) = Ga1(m, k), (3.2)

while for every leaf a the formula is

Fa(m, k) =







0 if m = 1, k = 0,

∞ otherwise.
(3.3)

For any non-leaf node a ∈ V and i < s (non-rightmost subtrees) we use the formula

Gai(m, k) =






































min{Fai(p, 0) +Gai+1
(m− p, 0) + p(m− p) : p = 0, . . . ,m} if k = 0,

min{min{Fai(p, q) +Gai+1
(m, k − 1− q) : p = 0, . . . ,

∣

∣V (Tai)
∣

∣ ,

q = 0, . . . , k − 1}, min{Fai(p, q) +Gai+1
(m− p, k − q) + p(m− p) :

p = 0, . . . ,m, q = 0, . . . , k}} if k > 0,

(3.4)

24CHAPTER 3. POLYNOMIAL TIME ALGORITHMS OF CEDP, CNEDP-1, AND CNEDP-2 ON A TREE

The initial conditions on each rightmost subtree Tas are calculated as follows::

Gas(m, k) =



























∞ if m = 1, k = 0,

min{Fas(p, k − 1) : p = 0, . . . , |V (Tas)|} if m = 1, k > 0,

Fas(m− 1, k) + (m− 1) if m > 1, k ≥ 0.

(3.5)

We now give a justiőcation for the above formulas. Equation (3.2) follows because Ta =

Ta1,s for any non-leaf node a ∈ V .

Equation (3.3) handles the case of a one-node tree. Since a ∈ V is a leaf, it is not possible

to remove any edge (k = 0) and only a is connected to itself (m = 1) and the number of paths

surviving in Ta is 0.

Recursion (3.4) can be interpreted as follows:

The case k = 0 means that we are not removing any edge from Tai,s = Tai + Tai+1,s
. Since

we have to keep everything, we are not allowed to remove anything from the subtrees Tai and

Tai+1,s
. If ai is connected to p nodes of Tai , then a is connected to m − p nodes in Tai+1,s

and the paths passing through a are exactly p(m − p). Hence by deőnition of F and G the

minimum number of paths that survive in Tai,s when we are not removing anything will be

Gai(m, 0) = minp{Fai(p, 0) +Gai+1
(m− p, 0) + p(m− p)}.

The case k > 0 means that we have to remove at least one edge. When the value of

Gai(m, k) is achieved from the expression Fai(p, q) +Gai+1
(m, k− 1− q), we remove the edge

e (which connects a to ai). Expression Fai(p, q) gives the minimum number of paths that

survive in Tai when q edges are removed from Tai and p nodes of Tai are still connected to

ai. Since q edges have been removed from Tai , exactly k− 1− q edges must be removed from

Tai+1,s
. The minimum number of paths that survive in Tai+1,s

when k−1−q edges are removed

from Tai+1,s
is given by Gai+1

(m, k−1−q). Thus the expression Fai(p, q)+Gai+1
(m, k−1−q)

gives the minimum number of paths that survive in Tai,s when q edges are removed from Tai

(and the other k− 1− q edges are removed from Tai+1,s
) and p nodes of Tai are still connected

to ai. By taking the minimum over p = 0, . . . , |V (Tai)| and q = 0, . . . , k− 1, we őnd the value

of Gai(m, k).

When the value of Gai(m, k) is achieved from the expression Fai(p, q) +Gai+1
(m− p, k −

q) + p(m − p), we are not removing the edge e. As above, expression Fai(p, q) gives the

minimum number of paths that survive in Tai when q edges are removed from Tai and p

nodes of Tai are still connected to ai. Since q edges have been removed from Tai , exactly

k − q edges must be removed from Tai+1,s
and since p nodes of Tai are still connected to ai

and thus to a, exactly m − p nodes of Tai+1,s
must remain connected to a. The minimum

number of paths that survive in Tai+1,s
when k − q edges are removed from Tai+1,s

and m− p

nodes of Tai+1,s
are still connected to a is given by Gai+1

(m− p, k − q). Thus the expression

Fai(p, q)+Gai+1
(m−p, k−q) gives the minimum number of paths that survive in Tai or Tai+1,s

3.1. SOLVING CEDP ON A TREE WITH UNIT CONNECTION COSTS 25

when q edges are removed from Tai (and the other k − q edges are removed from Tai+1,s
) and

p nodes of Tai are still connected to ai, while m − p nodes of Tai+1,s
are still connected to a.

Now we have to add the paths connecting nodes of Tai to nodes of Tai+1,s
, i.e. p(m− p) paths.

This gives expression Fai(p, q) +Gai+1
(m− p, k − q) + p(m− p) of recursion (3.4). By taking

the minimum over p = 0, . . . ,m and q = 0, . . . , k, we őnd the value of Gai(m, k).

More speciőcally, if k = 0, we have only one choice so that we have to keep the edge e

(which connects a to ai) because we are not removing any edge. While in the case k > 0, we

have two possibilities that both are possible i.e., we can choose if we want to remove the edge

e or we want to keep it.

For a justiőcation of (3.5), recall that Tas,s = a+ Tas . If m = 1 and k > 0, then we have

to remove the edge between a and as and the other k − 1 edges we have to be removed from

the subtree Tas and the number of connections that survive are those in the subtree Tas . On

the other hand if m > 1, then we can not remove the edge a to as and in this time we have

to remove all the k edges inside the subtree Tas . Since m nodes are connected to a including

a itself, in the subtree we will őnd the other m − 1 nodes connected to as. Then we have to

add all the connections of a to the nodes that are connected to as in the subtree.

We obtain the following result.

Proposition 3.1.1. CEDP on a tree with unit connection costs and unit edge weights can be

solved by recursion (3.2)ś(3.5) in O(n3K2) time.

Proof. For each node a ∈ V there are at most n+ 1 = O(n) values for m and K + 1 = O(K)

values for k; this gives O(n2K) values of F and G to compute. The heaviest computation is

that of equation (3.4) that requires at most O(nK) steps. Hence in the worst case a number

of operations bounded by O(n3K2) are required.

3.1.2 The case with unit costs and arbitrary edge weights

Let we ≥ 0 be arbitrary weights assigned to the edges e ∈ E. The CEDP problem in this

case amounts to őnding a subset S of edges with total weight
∑

e∈S we not exceeding a given

budget W such that the number of surviving paths after having removed the edge set S is

minimized.

A dynamic programming algorithm, constructed in the same spirit as the one described

in the preceding section, can be used to solve this case. The recursion uses two parameters,

m and k, which represent the number of nodes connected to the root of a subtree and the

number of paths that survive within that subtree, respectively.

The following functions are deőned using the subtree notation described in the preceding

section.

26CHAPTER 3. POLYNOMIAL TIME ALGORITHMS OF CEDP, CNEDP-1, AND CNEDP-2 ON A TREE

• Fa(m, k) is the minimum total weight of the edges to be removed from the subtree Ta

in order to have node a connected to exactly m nodes (including a itself) and k paths

surviving in Ta.

• Gai(m, k) is the minimum total weight of the edges to be removed from the subtree

Tai,s = a+ Tai + Tai+1
+ · · ·+ Tas in order to have a connected to m nodes of Tai,s and

k paths surviving in Tai,s .

We compute the values for F and G recursively for all a ∈ V , m = 1, . . . , n, k = 0, . . . , n(n−

1)/2, as follows. Assume Fa(m, k) = ∞, Ga(m, k) = ∞ if m < 0 or k < 0.

Fa(m, k) = Ga1(m, k) for all non-leaf nodes a ∈ V , (3.6)

Gai(m, k) =min{we +min{Fai(p, q) +Gai+1
(m, k − q) : p = 0, . . . ,

∣

∣V (Tai)
∣

∣ , q = 0, . . . , k},

min{Fai(p, q) +Gai+1
[m− p, k − q − p(m− p)] : p = 0, . . . ,m, q = 0, . . . , k}},

(3.7)

where e is the edge connecting a to ai. Equation (3.7) is written for all non-leaf nodes ai ∈ V

with i < s (non-rightmost subtrees). For each rightmost subtree Tas we specify the initial

condition

Gas(m, k) =







we +min{Fas(p, k) : p = 0, . . . ,
∣

∣V (Tas)
∣

∣} if m = 1,

Fas(m− 1, k −m+ 1) if m > 1,
(3.8)

where e is the edge connecting a to as, and for every leaf a:

Fa(m, k) =







0 if m = 1, k = 0,

∞ in all other cases.
(3.9)

To explain equations (3.6)ś(3.9), we apply the same reasoning as in the preceding section

for equations (3.2)ś(3.5).

For equation (3.6), note that Ta = Ta1,s for any non-leaf node a ∈ V .

For equation (3.7) note that the edge e (which connects a to ai) is the connecting edge

between the subtrees Tai and Tai+1,s
. There are two cases to compute the value of Gai(m, k)

based on the edge e, either we remove e or we have to keep it. If the value of Gai(m, k) is

achieved from the expression we+min{Fai(p, q)+Gai+1
(m, k−q)}, then besides removing the

optimal edges from Tai and Tai+1,s
we should also remove the edge e and in this case a path

surviving in Tai,s = Tai+Tai+1,s
either completely belongs to Tai or to Tai+1,s. According to the

deőnition of Gai(m, k), m nodes are still connected to a and all nodes are inside the subtree

Tai+1,s, whereas at most
∣

∣V (Tai)
∣

∣ nodes can be connected to ai. If q paths belong to Tai exactly

k−q paths belong to Tai+1,s. Hence by deőnition of F and G the minimum total weight of the

edges removed from Tai,s will be Gai(m, k) = we +minp,q{Fai(p, q) +Gai+1
(m, k − q)} where

we corresponds to the weight of the edge e.

3.1. SOLVING CEDP ON A TREE WITH UNIT CONNECTION COSTS 27

On the other hand, if the edge e is not removed, then a is connected to m nodes of Ta and

a path in Tai,s can be either completely contained in one of Tai , Tai+1,s
, or partially contained

in both subtrees because it passes through the edge e. If ai is connected to p nodes of Tai and

a is connected to m− p nodes in Tai+1,s
, the paths passing through a are exactly p(m− p). If

q paths survive in Tai , k − q − p(m − p) paths survive in Tai+1,s
and, by deőnition of F and

G, Gai(m, k) = minp,q{Fai(p, q) +Gai+1
[m− p, k − q − p(m− p)]}.

The initial condition (3.8) takes into account that, if the edge e (which connects a to as)

is removed (m = 1), the k surviving paths of Tas,s = a + Tas must belong entirely to Tas ,

hence the minimum possible weight for the edges removed from Tas,s will be Gas(m, k) =

we +minp{Fas(p, k)}. On the other hand if the edge e is not removed (m > 1), we must have

m− 1 nodes connected to as in Tas and the number of surviving paths is k − (m− 1). Thus

Gas(m, k) = Fas(m− 1, k −m+ 1) follows.

The equation (3.9) says that since a ∈ V is a leaf, the only possible condition is when

m = 1, k = 0 and all other combinations of m and k are infeasible and are considered to have

an inőnite weight.

The optimal value, assuming the tree is rooted at node 1, is given by

OPT = min{k : F1(m, k) ≤ W,m = 1, . . . , n, k = 0, . . . , n(n− 1)/2}. (3.10)

The optimal solution is recovered by backtracking.

Proposition 3.1.2. CEDP on a tree with unit connection costs and arbitrary edge weights

can be solved by recursion (3.6)ś(3.9) in O(n7) time.

Proof. For each node a ∈ V there are at most n+1 = O(n) values for m and n(n−1)/2+1 =

O(n2) values for k; this gives O(n4) values Fa(·, ·) and Gai(·, ·) to compute. The heaviest

computation lies in equation (3.7), where O(n) values are possible for p and O(n2) for q.

Hence in the worst case a number of operations bounded by O(n) · O(n2) · O(n4) = O(n7) are

required.

The results derived for the CEDP over trees are summarised in the following table.

cuv wv complexity

=1 =1 solvable in O(n3K2)

=1 ≥ 0 solvable in O(n7)

Table 3.1: Complexity results for the CEDP over trees

We will see in Chapter 5 that if the connection costs are not unitary, CEDP on a tree is

NP-hard even with unit weights and general 0/1 connection costs.

28CHAPTER 3. POLYNOMIAL TIME ALGORITHMS OF CEDP, CNEDP-1, AND CNEDP-2 ON A TREE

3.2 Solving CNDP on a tree when given a budget

Di Summa, Grosso, and Locatelli [27] solved the subclass of CNDP over trees in polynomial

time when all connections have unit cost with unit node weights and general node weights.

We now derive a dynamic programming algorithm for the CNDP over trees considering the

fact that we are given a weight limit for removing the nodes and the connection costs are all

unitary.

Let us consider the tree T (V,E) with |V | = n nodes, a weight wv ≥ 0 for every v ∈ V , a

connection cost cuv = 1 for all u, v ∈ V and a weight limit W ≥ 0. The problem in this case

amounts to őnding a subset S of nodes with total weight
∑

v∈S wv not exceeding the budget

W and minimizing the number of paths surviving in the tree T (V,E) after having removed at

most K nodes.

We use the same tree and subtree notation as in Section 3.1, and calculate recursively the

following values:

• Fa(m, k, h) = minimum total weight of the k nodes to be removed from the subtree Ta

in order to have node a connected to exactly m nodes (including a itself) and h paths

surviving in Ta. Condition m = 0 indicates that a is removed from Ta and m > 0 if a is

not removed from Ta.

• Gai(m, k, h) = minimum total weight of the k nodes to be removed from the subtree

Tai,s = a+ Tai + Tai+1
+ · · ·+ Tas in order to have a connected to m nodes of Tai,s and

h paths surviving in Tai,s . As above, m = 0 indicates that a is removed from Tai,s .

We compute the values for F and G recursively for all a ∈ V , m = 0, . . . , n, h = 0, . . . , n(n−

1)/2, as follows. We let the function values be inőnity whenever the conditions cannot be

satisőed. To simplify the recursive formulas below, it will be convenient to accept h < 0

in Fa(m, k, h) and Gai(m, k, h); in this case, we assume again that the function values are

inőnite.

Fa(m, k, h) = Ga1(m, k, h) for all non-leaf nodes a ∈ V , (3.11)

Gai(m, k, h) =































min{Fai(p, q, r) +Gai+1
(0, k − q, h− r) :

p = 0, . . . ,
∣

∣V (Tai)
∣

∣ , q = 0, . . . , k − 1, r = 0, . . . , h} if m = 0,

min{Fai(p, q, r) +Gai+1
[m− p, k − q, h− r − p(m− p)] :

p = 0, . . . ,m− 1, q = 0, . . . , k, r = 0, . . . , h} if m > 0.

(3.12)

Equation (3.12) is written for all non-leaf nodes ai ∈ V with i < s (non-rightmost subtrees).

For each rightmost subtree Tas we specify the initial condition

Gas(m, k, h) =



















∞ if m = 0, k = 0,

wa +min{Fas(p, k − 1, h) : p = 0, . . . ,
∣

∣V (Tas)
∣

∣} if m = 0, k > 0,

Fas(m− 1, k, h−m+ 1) if m > 0,

(3.13)

3.2. SOLVING CNDP ON A TREE WHEN GIVEN A BUDGET 29

and, for every leaf a:

Fa(m, k, h) =



















wa if m = 0, k = 1, h = 0,

0 if m = 1, k = 0, h = 0,

∞ in all other cases.

(3.14)

We now give a justiőcation for the above formulas. Formula (3.11) is immediate because

it follows from the fact that Ta = Ta1,s for every non-leaf node a ∈ V .

In the formula for Gai(m, k, h) (equation (3.12)), the separation is based on whether node

a is removed (m = 0) or not (m > 0). When m = 0, a path surviving in Tai,s = Tai + Tai+1,s

either completely belongs to Tai or to Tai+1,s. Hence if r paths belong to Tai exactly h − r

belong to Tai+1,s. In this case if q nodes have been removed from Tai , exactly k − q nodes

(including a) must be removed from Tai+1,s
. Note that the number of nodes p in the subtree

Tai that are connected to ai is arbitrary, as this value does not affect the number of nodes

connected to a, as a is removed in this case and no node will be connected to a in the subtree

Tai+1,s
. Hence by deőnition of F and G the minimum total weight of the nodes removed from

Tai,s will be Gai(m, k, h) = minp,q,r{Fai(p, q, r) +Gai+1
(0, k− q, h− r)}. For the other case, if

m > 0 (i.e., a is not removed), a path in Tai,s can be either fully contained in one of Tai , Tai+1,s
,

or partially contained in both subtrees because it passes through the node a. If ai is connected

to p nodes of Tai when q nodes have been removed from Tai and a is connected to m−p nodes

in Tai+1,s
exactly when k − q nodes to be removed from Tai+1,s

, the paths passing through a

are exactly p(m−p). If r paths survive in Tai , h−r−p(m−p) paths survive in Tai+1,s
and, by

deőnition of F and G, Gai(m, k, h) = minp,q,r{Fai(p, q, r)+Gai+1
[m−p, k−q, h−r−p(m−p)]}.

Formula (3.13) is based on a similar argument. If m = 0 (i.e., a is removed) and k > 0, all

the h paths survive in Tas and we have to add the weight of node a. On the other hand if node

a is not removed (m > 0), in Tas we must have m− 1 nodes connected to as and h− (m− 1)

surviving paths, since m− 1 paths connect a to m− 1 other nodes in Tas,s = a+ Tas .

Equation (3.14) reŕects the fact that when the subtree consists of just a leaf, the decision

to make is whether to remove the leaf (m = 0, k = 1) or not (m = 1, k = 0), and in both

cases the number of paths surviving in Ta is 0.

The optimal value, assuming the tree is rooted at node 1, is given by

OPT = min{h : F1(m,K, h) ≤ W,m = 0, . . . , n, h = 0, . . . , n(n− 1)/2}. (3.15)

The optimal solution is recovered by backtracking. We can state the following proposition.

Proposition 3.2.1. The proposed algorithm has complexity O(n7K2).

30CHAPTER 3. POLYNOMIAL TIME ALGORITHMS OF CEDP, CNEDP-1, AND CNEDP-2 ON A TREE

Proof. The number of function values Fa(·) and Gai(·) to compute for each value of m, k, h is

bounded by product (n+ 1)(K + 1)[n(n− 1)/2 + 1] values. The heaviest computation lies in

equation (3.12), where O(n) values are possible for p, O(K) for q and O(n2) for r. Considering

all n nodes, the running time is bounded by O(n7K2).

3.3 Solving CEDP on a tree when given a budget

In Section 3.1.1 we have solved the CEDP on trees when cuv = 1 for all u, v and wv = 1 for

all v ∈ E and in Section 3.1.2 we have also solved the CEDP on trees when cuv = 1 for all

u, v and wv ≥ 0 for all v ∈ E. We now propose a dynamic programming technique for the

CEDP over trees, taking into account the weight limit for removing edges and the fact that

all connection costs are unitary.

Let us consider the tree T (V,E) with |V | = n nodes, a weight wv ≥ 0 for every v ∈ E, a

connection cost cuv = 1 for all u, v ∈ V and a weight limit W ≥ 0. The problem in this case

amounts to őnding a subset S of edges with total weight
∑

v∈S wv not exceeding the budget

W and minimizing the number of paths surviving in a tree T (V,E) after having removed at

most K edges.

As in Section 3.1, we utilize the same tree and subtree notation. In order to solve the

problem by dynamic programming, we deőne the following functions.

• Fa(m, k, h) = minimum total weight of the k edges to be removed from the subtree Ta

in order to have node a connected to exactly m nodes (including a itself) and h paths

surviving in Ta. Note that the number of nodes connected to the root will never be 0

because we never remove the root as the root is a node and we can not remove a node

in the edge deletion problem.

• Gai(m, k, h) = minimum total weight of the k edges to be removed from the subtree

Tai,s = a+ Tai + Tai+1
+ · · ·+ Tas in order to have a connected to m nodes of Tai,s and

h paths surviving in Tai,s . As above, m > 0.

We compute the values for F and G recursively for all a ∈ V , m = 1, . . . , n, h = 0, . . . , n(n−

3.3. SOLVING CEDP ON A TREE WHEN GIVEN A BUDGET 31

1)/2, as follows. Assume Fa(m, k, h) = ∞, Ga(m, k, h) = ∞ if m < 0 or h < 0.

Fa(m, k, h) = Ga1(m, k, h) for all non-leaf nodes a ∈ V , (3.16)

Gai(m, k, h) =























































min{Fai(p, 0, r) +Gai+1
[m− p, 0, h− r − p(m− p)] :

p = 0, . . . ,m, r = 0, . . . , h} if k = 0,

min{we +min{Fai(p, q, r) +Gai+1
(m, k − q − 1, h− r) :

p = 0, . . . ,
∣

∣V (Tai)
∣

∣ , q = 0, . . . , k − 1, r = 0, . . . , h},

min{Fai(p, q, r) +Gai+1
[m− p, k − q, h− r − p(m− p)] :

p = 0, . . . ,m, q = 0, . . . , k, r = 0, . . . , h}} if k > 0,

(3.17)

where e is the edge connecting a to ai. Equation (3.17) is written for all non-leaf nodes ai ∈ V

with i < s (non-rightmost subtrees). For each rightmost subtree Tas we specify the initial

condition

Gas(m, k, h) =



















∞ if m = 1, k = 0,

we +min{Fas(p, k − 1, h) : p = 0, . . . ,
∣

∣V (Tas)
∣

∣} if m = 1, k > 0,

Fas(m− 1, k, h−m+ 1) if m > 1, k ≥ 0,

(3.18)

where e is the edge connecting a to as, and for every leaf a:

Fa(m, k, h) =







0 if m = 1, k = 0, h = 0,

∞ in all other cases.
(3.19)

We will now explain why the formulas above are correct. Formula (3.16) is immediate

because it derives from the fact that Ta = Ta1,s for any non-leaf node a ∈ V .

For equation (3.17) note that the edge e (which connects a to ai) is the connecting edge

between the subtrees Tai and Tai+1,s
. The őrst case k = 0 means that we are not allowed to

remove any edge from Tai,s = Tai + Tai+1,s
, hence if ai is connected to p nodes of Tai and a is

connected to m−p nodes in Tai+1,s
, the paths passing through the edge e are exactly p(m−p).

If r paths survive in Tai , h− r− p(m− p) paths survive in Tai+1,s
and, by deőnition of F and

G, Gai(m, 0, h) = minp,r{Fai(p, 0, r) +Gai+1
[m− p, 0, h− r− p(m− p)]}. For the second case

in which k > 0, we take the better of two possibilities, which correspond to the two arguments

of the outer minimum. The őrst possibility occurs only when we remove the connecting edge a

to ai and in this situation we take the sum of the optimal values that we can obtain in each of

the two subtrees Tai and Tai+1,s
. For the second possibility, which is when we are not removing

the edge e, a path is either fully contained in one of Tai , Tai+1,s
, or partially contained in both

subtrees because it passes through the edge e. If ai is connected to p nodes of Tai when q

edges have been removed from Tai and a is connected to m− p nodes in Tai+1,s
exactly when

32CHAPTER 3. POLYNOMIAL TIME ALGORITHMS OF CEDP, CNEDP-1, AND CNEDP-2 ON A TREE

k− q edges have been removed from Tai+1,s
, the paths passing through the edge e are exactly

p(m − p). If r paths survive in Tai , then h − r − p(m − p) paths survive in Tai+1,s
and, by

deőnition of F and G, Gai(m, k, h) = minp,q,r{Fai(p, q, r)+Gai+1
[m−p, k−q, h−r−p(m−p)]}.

The initial condition (3.18) takes into account that, if the edge e is removed (m = 1) and

k > 0, the h surviving paths of Tas,s = a+Tas must belong entirely to Tas , hence the minimum

possible weight for the edges removed from Tas,s will be Gas(m, k, h) = we +minp{Fas(p, k −

1, h)}. On the other hand if the edge e is not removed (m > 1), in Tas we must have m − 1

nodes connected to as and h− (m− 1) surviving paths, since m− 1 paths connect a to m− 1

other nodes in Tas,s ; thus Gas(m, k, h) = Fas(m− 1, k, h−m+ 1) follows.

Equation (3.19) handles the case of a one-node tree. Since a ∈ V is a leaf, it is not possible

to remove any edge (k = 0) and only a is connected to itself (m = 1) and the number of paths

h surviving in Ta is 0.

The optimal value, assuming the tree is rooted at node 1, is given by

OPT = min{h : F1(m,K, h) ≤ W,m = 0, . . . , n, h = 0, . . . , n(n− 1)/2}. (3.20)

The optimal solution is recovered by backtracking. We can make the following proposition.

Proposition 3.3.1. The proposed algorithm has complexity O(n7K2).

Proof. The number of function values Fa(·) and Gai(·) to compute for each value of m, k, h is

bounded by product (n+ 1)(K + 1)[n(n− 1)/2 + 1] values. The heaviest computation lies in

equation (3.17), where O(n) values are possible for p, O(K) for q and O(n2) for r. Considering

all n nodes, the running time is bounded by O(n7K2).

3.4 Solving CNEDP-1 on a tree with unit connection costs

In this section we show CNEDP-1 can be solved in polynomial time when the underlying graph

is a tree and the connection costs are all unitary and node and edge weights are arbitrary. We

would like to mention that the case with unit costs and unit node and edge weights does not

make sense because it is always better to use the budget to remove nodes rather than edges.

Let wv ≥ 0 and we ≥ 0 be arbitrary weights assigned to the nodes v ∈ V and edges e ∈ E

respectively. The problem in this case amounts to őnding subset S ⊆ V ∪E with total weight
∑

v∈V wv +
∑

e∈E we not exceeding a given W such that the number of surviving paths after

having removed nodes and edges is minimized.

This case can be solved by a dynamic programming algorithm formulated in the same

spirit of Section 3.1. The recursion uses two parameters m and k representing, respectively,

3.4. SOLVING CNEDP-1 ON A TREE WITH UNIT CONNECTION COSTS 33

the number of nodes connected to the root of a subtree and the number of paths surviving in

the same subtree.

Keeping the notation for subtrees introduced in Section 3.1, we deőne the following func-

tions.

• Fa(m, k) is the minimum total weight of the nodes and edges to be removed from the

subtree Ta in order to have node a connected to exactly m nodes (including a itself) and

k paths surviving in Ta.

• Gai(m, k) is the minimum total weight of the nodes and edges to be removed from the

subtree Tai,s = a + Tai + Tai+1
+ · · · + Tas in order to have a connected to m nodes of

Tai,s and k paths surviving in Tai,s .

We compute the values for F and G recursively for all a ∈ V , m = 0, . . . , n, k = 0, . . . , n(n−

1)/2, as follows. For both functions, condition m = 0 implies that node a is deleted from the

graph (a ∈ S). Also, in case no feasible solution exists for functions Fa or Gai , we will set

the corresponding entries to ∞. It is also convenient to set the above values to inőnity when

k < 0.

We can state the following recursive relations:

Fa(m, k) = Ga1(m, k) for all non-leaf nodes a ∈ V , (3.21)

Gai(m, k) =























































min{Fai(p, q) +Gai+1
(0, k − q) :

p = 0, . . . ,
∣

∣V (Tai)
∣

∣ , q = 0, . . . , k} if m = 0,

min{we +min{Fai(p, q) +Gai+1
(m, k − q) :

p = 0, . . . ,
∣

∣V (Tai)
∣

∣ , q = 0, . . . , k},

min{Fai(p, q) +Gai+1
[m− p, k − q − p(m− p)] :

p = 0, . . . ,m, q = 0, . . . , k}} if m > 0,

(3.22)

where e is the edge connecting a to ai. Equation (3.22) is written for all non-leaf nodes ai ∈ V

with i < s (non-rightmost subtrees). For each rightmost subtree Tas we specify the initial

condition

Gas(m, k) =



















wa +min{Fas(p, k) : p = 0, . . . ,
∣

∣V (Tas)
∣

∣} if m = 0,

we +min{Fas(p, k) : p = 0, . . . ,
∣

∣V (Tas)
∣

∣} if m = 1,

Fas(m− 1, k −m+ 1) if m > 1,

(3.23)

where e is the edge connecting a to as, and for every leaf a:

Fa(m, k) =



















wa if m = 0, k = 0,

0 if m = 1, k = 0,

∞ in all other cases.

(3.24)

34CHAPTER 3. POLYNOMIAL TIME ALGORITHMS OF CEDP, CNEDP-1, AND CNEDP-2 ON A TREE

We now give a justiőcation for the above formulas.

For equation (3.21), note that Ta = Ta1,s for any non-leaf node a ∈ V .

For equation (3.22), if m = 0 (i.e. a is removed), a path surviving in Tai,s = Tai + Tai+1,s

either belongs entirely to Tai or to Tai+1,s, hence if q paths belong to Tai exactly k − q paths

belong to Tai+1,s and p nodes of Tai can be connected to ai, whereas no node will be connected

to a. Hence by deőnition of F and G the minimum total weight of the nodes and edges

removed from Tai,s will be Gai(m, k) = minp,q{Fai(p, q) +Gai+1
(0, k − q)}.

Now consider the case when a is not removed (m > 0). Note that the edge e (which

connects a to ai) is the connecting edge between the subtrees Tai and Tai+1,s
. There are two

cases to compute the value of Gai(m, k) based on the edge e, either we remove e or we have

to keep it. If the value of Gai(m, k) is achieved from the expression wa,ai + min{Fai(p, q) +

Gai+1
(m, k− q)}, then besides removing the optimal nodes and edges from Tai and Tai+1,s

we

should also remove the edge e and in this case a path surviving in Tai,s = Tai + Tai+1,s
either

completely belongs to Tai or to Tai+1,s. According to the deőnition of Gai(m, k), m nodes

are still connected to a and all nodes are inside the subtree Tai+1,s, whereas at most
∣

∣V (Tai)
∣

∣

nodes can be connected to ai. If q paths belong to Tai exactly k − q paths belong to Tai+1,s.

Hence by deőnition of F and G the minimum total weight of the nodes and edges removed

from Tai,s will be Gai(m, k) = we +minp,q{Fai(p, q) +Gai+1
(m, k− q)} where we corresponds

the weight of the edge e.

On the other hand if the edge e is not removed, then a is connected to m nodes of Ta and

a path in Tai,s can be either completely contained in one of Tai , Tai+1,s
, or partially contained

in both subtrees because it passes through a. If ai is connected to p nodes of Tai and a is

connected to m − p nodes in Tai+1,s
, the paths passing through a are exactly p(m − p). If q

paths survive in Tai , k − q − p(m− p) paths survive in Tai+1,s
and, by deőnition of F and G,

Gai(m, k) = minp,q{Fai(p, q) +Gai+1
[m− p, k − q − p(m− p)]}.

The initial condition (3.23) takes into account that, if node a is removed (m = 0), the k

surviving paths of Tas,s = a + Tas must belong entirely to Tas , hence the minimum possible

weight for the nodes and edges removed from Tas,s will be Gas(0, k) = minp{Fas(p, k)}+ wa.

When m = 1, i.e., the edge e (which connects a to as) is removed, then the k surviving paths

of Tas,s = a+Tas must belong entirely to Tas , and hence the minimum possible weight for the

nodes and edges removed from Tas,s will be Gas(m, k) = we +minp{Fas(p, k)}. On the other

hand if the edge e is not removed (m > 1), in Tas we must have m− 1 nodes connected to as

and k − (m− 1) surviving paths, since m− 1 paths connect a to m− 1 other nodes in Tas,s ;

thus Gas(m, k) = Fas(m− 1, k −m+ 1) follows.

The equation (3.24) trivially handles the case of a one-node tree: remove the single node

a (case m = 0, k = 0), or keep it (m = 1, k = 0) and all other combinations of m and k are

infeasible and are considered to have an inőnite weight.

3.5. COMPLEXITY OF CNEDP-2 35

The optimal value, assuming the tree is rooted at node 1, is given by

OPT = min{k : F1(m, k) ≤ W,m = 0, . . . , n, k = 0, . . . , n(n− 1)/2}. (3.25)

The optimal solution is recovered by backtracking.

Proposition 3.4.1. CNEDP-1 on a tree with unit connection costs and arbitrary node and

edge weights can be solved by recursion (3.21)ś(3.24) in O(n7) time.

Proof. For each node a ∈ V there are at most n+1 = O(n) values for m and n(n−1)/2+1 =

O(n2) values for k; this gives O(n4) values Fa(·, ·) and Gai(·, ·) to compute. The heaviest

computation lies in equation (3.22), where O(n) values are possible for p and O(n2) for q.

Hence in the worst case a number of operations bounded by O(n7) are required.

3.5 Complexity of CNEDP-2

Unlike CNEDP-1, CNEDP-2 with unit connection costs is NP-hard even on a path. We

actually show a stronger result: it is NP-hard to approximate this problem within any factor.

(We recall that given α ≥ 1, an α-approximation algorithm for a minimization problem is

required to return a solution whose objective value is at most α times the optimal value; see,

e.g., [76].)

Proposition 3.5.1. Unless P = NP , CNEDP-2 on a path with unit connection costs cannot

be approximated within any factor.

Proof. We prove the result via a reduction from Partition, which is known to be NP-complete

(see [36]):

Partition: Given n ∈ N and a1, . . . , an ∈ N, determine whether there exists

J ⊆ {1, . . . , n} such that
∑

i∈J ai =
∑

i/∈J ai.

Given an instance of Partition as above, we deőne A =
∑n

i=1
ai. We construct an

instance of CNEDP-2 on a path as follows:

• G = (V,E) is a path with 2n+ 1 vertices, denoted by u1, v1, u2, v2, . . . , un, vn, un+1 (in

the order they appear on the path);

• the node weights are wvi = ai for every i ∈ {1, . . . , n}, and wui
= A/2 + 1 for every

i ∈ {1, . . . , n+ 1};

• the edge weights are wuivi = ai and wviui+1
= 0 for every i ∈ {1, . . . , n};

• the weight limits are WV = WE = A/2.

36CHAPTER 3. POLYNOMIAL TIME ALGORITHMS OF CEDP, CNEDP-1, AND CNEDP-2 ON A TREE

We show that the given instance of Partition has a solution if and only if the optimal value

of the above instance of CNEDP-2 is zero. Since, by deőnition, an approximation algorithm

always recognizes the instances with optimal value equal to zero, this will prove the result.

Assume that the instance of Partition has a solution, i.e., there exists J ⊆ {1, . . . , n}

such that
∑

i∈J ai =
∑

i/∈J ai = A/2. Deőne S ⊆ V ∪ E as follows:

S = {vi : i ∈ J} ∪ {uivi : i /∈ J} ∪ {viui+1 : i ∈ {1, . . . , n}}.

This choice yields a feasible solution to the instance of CNEDP-2, as w(S∩V) = w(S∩E) =

A/2 = WV = WE . Furthermore, as G− S contains only isolated nodes, c(G− S) = 0. Thus

the optimal value of the instance of CNEDP-2 is zero.

For the converse, assume that the instance of CNEDP-2 has a solution with objective value

zero, i.e., there exists S ⊆ V ∪E such that w(S∩V) ≤ A/2, w(S∩E) ≤ A/2, and c(G−S) = 0

(which means that there are only isolated nodes in G − S). Without loss of generality, we

can assume that viui+1 ∈ S for every i ∈ {1, . . . , n}, as these edges have zero weight. In

other words, we can imagine that the original graph only contains the edges u1v1, . . . , unvn.

Furthermore, ui /∈ S for every i, as otherwise the node weight limit would be exceeded. Then

the fact that G− S has only isolated nodes implies that, for every i ∈ {1, . . . , n}, S contains

vi or uivi. As wvi = wuivi = ai for every i, we obtain w(S) ≥ A. Since the weight limits are

WV = WE = A/2, we necessarily have w(S ∩ V) = w(S ∩ E) = A/2. Thus the instance of

Partition has the solution J = S ∩ V .

3.5.1 Solving CNEDP-2 on a tree with unit connection costs

Despite the above negative result, we now show that if the node and edge weights are őxed

to 1 (as well as the connection costs), CNEDP-2 admits a polynomial-time algorithm. The

objective in this case is for minimizing the number of paths surviving in the tree T (V,E) after

having removed at most KV nodes and KE edges.

We use the same tree and subtree notation as in Section 3.1, and calculate recursively the

following functions:

• Fa(m, kV , kE) = minimum number of connections that still exists in the subtree Ta after

kV nodes and kE edges have been removed from Ta and m nodes of Ta remains connected

to the root a. Condition m = 0 indicates that a is removed from Ta.

• Gai(m, kV , kE) minimum number of connections that still exists in the subtree Tai,s =

a+Tai+· · ·+Tas after kV nodes and kE edges have been removed from Tai,s and m nodes

of the subtree are still connected to a. As above, m = 0 indicates that a is removed

from Tai,s .

3.5. COMPLEXITY OF CNEDP-2 37

We let the function values be inőnity whenever the conditions cannot be satisőed. The values

for F and G can be computed by traversing the tree in postorder (from leaves to root), by

means of the following relations:

For every leaf a we have

Fa(m, kV , kE) =







0 if (m = 1, kV = kE = 0) or (m = kE = 0, kV = 1),

∞ otherwise,
(3.26)

while the formula for a non-leaf node a is

Fa(m, kV , kE) = Ga1(m, kV , kE). (3.27)

If a is a non-leaf node, we also have

Gas(m, kV , kE) =


















min{Fas(p, kV − 1, kE) : 0 ≤ p ≤ |V (Tas)|} if m = 0,

min
{

Fas(0, kV , kE),min{Fas(p, kV , kE − 1) : 0 ≤ p ≤ |V (Tas)|}
}

if m = 1,

Fas(m− 1, kV , kE) +m− 1 if m > 1,

(3.28)

while, for i < s,

Gai(m, kV , kE) =






















































min{Fai(p, qV , qE) +Gai+1
(0, kV − qV , kE − qE) :

0 ≤ p ≤ |V (Tai)|, 0 ≤ qV ≤ kV − 1, 0 ≤ qE ≤ kE} if m = 0,

min
{

min{Fai(p, qV , qE) +Gai+1
(m, kV − qV , kE − qE − 1) :

0 ≤ p ≤ |V (Tai)|, 0 ≤ qV ≤ kV , 0 ≤ qE ≤ kE − 1},

min{Fai(p, qV , qE) +Gai+1
(m− p, kV − qV , kE − qE) + p(m− p) :

0 ≤ p ≤ m, 0 ≤ qV ≤ kV , 0 ≤ qE ≤ kE}
}

if m > 0.

(3.29)

The optimal value is calculated as follows if we denote by 1 the root node of the tree

OPT = min{F1(m,KV ,KE) : m = 0, . . . , n}. (3.30)

Formulas (3.26) and (3.27) are immediate.

In (3.28) we assume that if a ∈ S then aas /∈ S: This is without loss of generality, as if

aas ∈ S, we obtain the same objective value by removing the elements in S \ {aas}. The case

m = 0 corresponds to a ∈ S, which leads to the formula on the őrst line. The case m = 1

occurs when as ∈ S (őrst argument of the outer minimum on the second line) or aas ∈ S

(second argument of the outer minimum). Finally, m > 1 is the case in which a, aas /∈ S.

38CHAPTER 3. POLYNOMIAL TIME ALGORITHMS OF CEDP, CNEDP-1, AND CNEDP-2 ON A TREE

Similar to (3.28), in (3.29) we assume that if a ∈ S then aai /∈ S. The őrst case (m = 0)

corresponds to having a ∈ S. In this situation, we take the sum of the optimal values that

we can obtain in each of the two subtrees Tai and Tai+1,s
. For the second case (m > 0), in

which a /∈ S, we take the better of two possibilities, which correspond to the two arguments

of the outer minimum. For the őrst possibility, which is when aai ∈ S, we take again the sum

of the optimal values in each of the two subtrees Tai and Tai+1,s
. For the second possibility

(aai /∈ S), we have to add the connections between the two subtrees.

We obtain the following result.

Proposition 3.5.2. CNEDP-2 on a tree with unit connection costs and unit node/edge

weights can be solved in O(n3K2
V K

2
E) time.

Proof. For each node a ∈ V there are at most n+ 1 = O(n) values for m, KV + 1 = O(KV)

values for kV and KE + 1 = O(KE) values for kE ; this gives O(n2KV KE) values of F and

G to compute. The heaviest computation is that of equation (3.29) that requires at most

O(nKV KE) steps. Hence in the worst case a number of operations bounded by O(n3K2
V K

2
E)

are required.

The results derived for the CNEDP-2 over trees are summarised in the following table.

cuv wv we complexity

=1 =1 =1 O(n3K2
V K

2
E)

=1 ≥ 0 ≥ 0 NP-hard

Table 3.2: Complexity results for the CNEDP-2 over trees

Chapter 4

CEDP via subdivision

In Chapter 3 we have derived the dynamic programming algorithm to solve the CEDP on

a tree by removing the edges directly. In this chapter we propose a different approach to

solve the CEDP over trees by looking at the CNDP by subdividing the graph and the same

complexity (see Section 3.1.1 and 3.1.2) is obtained. In a graph G = (V,E), the subdivision

of an edge e = uv ∈ E(G) means the substitution of the edge e by a vertex w and the new

edges uw and wv (see Figure 4.1). This operation generates a new graph G′:

G′ = (V ∪ {w}, (E \ {uv}) ∪ {uw,wv}).

Figure 4.1: Example of subdivision of an edge uv.

The technique that we follow in this chapter to solve the CEDP over trees is the following:

Let G = (V,E) be an undirected graph with a őnite set V of nodes and a őnite set E ⊆ V ×V

of edges. Deőne a restricted critical node detection problem (RCNDP) in which we are also

given a subset of vertices A ⊆ V and the problem is to disconnect the graph as much as

possible by removing K nodes from set A. Now we create the graph G′ = (V ′, E′) in which all

the edges are subdivided and deőne A to be the set of newly created nodes where V ′ = V ∪A.

Then the problem of removing at most K edges from G is equivalent to a RCNDP on G′, i.e.,

the problem of removing at most K nodes from the set A ⊆ V ′.

In the above example (Figure 4.1), removing the edge uv is the same as removing the

newly created node w in the subdivided graph because when we remove the node w, this

automatically remove the two new edges uw and wv.

39

40 CHAPTER 4. CEDP VIA SUBDIVISION

4.1 The unit cost, unit weight case on trees

An approach for solving CEDP on trees when cuv = 1 for all u, v and wv = 1 for all v ∈ V is

shown in this section.

Let us consider the tree T (V,E) with |V | = n nodes. We have created the tree T ′ = (V ′, E′)

by subdividing every edge of T . Now we consider the RCNDP on T ′ with the allowed set

A = V ′\V , i.e., the set of newly created vertices. In this case the problem calls for minimizing

the number of paths surviving in the tree T ′(V ′, E′) after having removed at most K nodes

from the set A and we want to count the connections between the original vertices, i.e., cuv = 1

for all u, v ∈ V and 0 otherwise.

We use the same tree and subtree notation as in Section 3.1, and calculate recursively the

following values:

• Fa(m, k) = minimum number of connections between pairs of nodes in V that still exists

in the subtree Ta after k nodes from A have been removed from Ta and m original nodes

of Ta remains connected to the root a (including a itself).

• Gai(m, k) = minimum number of connections between pairs of nodes in V that still

exists in the subtree Tai,s = a+ Tai + · · ·+ Tas after k nodes from A have been removed

from Tai,s and m original nodes of the subtree are still connected to a.

We remark that for both functions, the number of the original nodes connected to the root

will never be 0 (i.e. m > 0) because we never remove the root as the root is an original node

and we can not remove an original node in the restricted problem. Furthermore, whenever the

conditions in one of the above deőnitions cannot be satisőed, we set the value of the function

to inőnity.

The values for F and G can be computed by traversing the tree in postorder (from leaves

to root), by means of the following relations:

Fa(m, k) = Ga1(m, k) for any non-leaf node a ∈ V ; (4.1)

Gai(m, k) =






































min{Fai(p, 0) +Gai+1
(m− p, 0) + p(m− p) : p = 0, . . . ,m} if k = 0,

min{min{Fai(p, q) +Gai+1
(m, k − 1− q) : p = 0, . . . ,

∣

∣V (Tai)
∣

∣ , q = 0, . . . , k − 1},

min{Fai(p, q) +Gai+1
(m− p, k − q) + p(m− p) :

p = 0, . . . ,m, q = 0, . . . , k}} if k > 0,

(4.2)

for any non-leaf node a ∈ V and i < s.

4.1. THE UNIT COST, UNIT WEIGHT CASE ON TREES 41

The initial conditions on each leaf a and on each rightmost subtree Tas are the following:

Fa(m, k) =







0 if m = 1, k = 0,

∞ otherwise,
(4.3)

Gas(m, k) =



























∞ if m = 1, k = 0,

min{Fas(p, k − 1) : p = 0, . . . , |V (Tas)|} if m = 1, k > 0,

Fas(m− 1, k) + (m− 1) if m > 1, k ≥ 0,

(4.4)

Equation (4.1) follows because Ta = Ta1,s for any non-leaf node a ∈ V .

Recursion (4.2) can be interpreted as follows:

The case k = 0 means that we are not removing any node from Tai,s = Tai +Tai+1,s
. Since

we have to keep everything, we are not allowed to remove anything from the subtrees Tai and

Tai+1,s
. If ai is connected to p original nodes of Tai , then a is connected to m − p original

nodes in Tai+1,s
and the paths passing through a are exactly p(m − p). Hence by deőnition

of F and G the minimum number of paths that survive in Tai,s when we are not removing

anything will be Gai(m, 0) = min{Fai(p, 0)+Gai+1
(m− p, 0)+ p(m− p)} where p = 0, . . . ,m.

The case k > 0 means that we have to remove at least one node from the allowed set A.

When the value of Gai(m, k) is achieved from the expression Fai(p, q) +Gai+1
(m, k − 1− q),

we remove the node corresponding to the edge e which connects a to ai. Expression Fai(p, q)

gives the minimum number of paths that survive in Tai when q nodes from A are removed

from Tai and p original nodes of Tai are still connected to ai. Since q nodes from A have been

removed from Tai , exactly k−1−q nodes from A must be removed from Tai+1,s
and m original

nodes of Tai+1,s
are still connected to a. The minimum number of paths that survive in Tai+1,s

when k − 1− q nodes from A are removed from Tai+1,s
is given by Gai+1

(m, k − 1− q). Thus

the expression Fai(p, q)+Gai+1
(m, k−1− q) gives the minimum number of paths that survive

in Tai,s when q nodes from A are removed from Tai (and the other k − 1 − q nodes from A

are removed from Tai+1,s
) and p original nodes of Tai are still connected to ai. By taking the

minimum over p = 0, . . . , |V (Tai)| and q = 0, . . . , k − 1, we őnd the value of Gai(m, k).

When the value of Gai(m, k) is achieved from the expression Fai(p, q) +Gai+1
(m− p, k −

q)+p(m−p), we are not removing the node corresponding to the edge e. As above, expression

Fai(p, q) gives the minimum number of paths that survive in Tai when q nodes from A are

removed from Tai and p original nodes of Tai are still connected to ai. Since q nodes from A

have been removed from Tai , exactly k − q nodes from A must be removed from Tai+1,s
and

since p original nodes of Tai are still connected to ai and thus to a, exactly m−p original nodes

of Tai+1,s
must remain connected to a. The minimum number of paths that survive in Tai+1,s

when k− q nodes from A are removed from Tai+1,s
and m− p original nodes of Tai+1,s

are still

connected to a is given by Gai+1
(m−p, k−q). Thus the expression Fai(p, q)+Gai+1

(m−p, k−q)

gives the minimum number of paths that survive in Tai or Tai+1,s
when q nodes from A are

42 CHAPTER 4. CEDP VIA SUBDIVISION

removed from Tai (and the other k− q nodes from A are removed from Tai+1,s
) and p original

nodes of Tai are still connected to ai, while m−p original nodes of Tai+1,s
are still connected to

a. Now we have to add the paths connecting to the original nodes of Tai to the original nodes

of Tai+1,s
, i.e. p(m− p) paths. This gives expression Fai(p, q)+Gai+1

(m− p, k− q)+ p(m− p)

of recursion (4.2). By taking the minimum over p = 0, . . . ,m and q = 0, . . . , k, we őnd the

value of Gai(m, k).

Equation (4.3) handles the case of a one-node tree. Since a ∈ V is a leaf and it is not in

the allowed set A, it is not possible to remove the node (k = 0) and only a is connected to

itself (m = 1) and the number of paths survive in Ta is 0.

For a justiőcation of (4.4), recall that Tas,s = a+ Tas . If m = 1 and k > 0, then we have

to remove the node corresponding to the edge between a and as and the other k − 1 nodes

we have to remove from the subtree Tas from A and the number of connections that survive

are those in Tas between the original vertices. On the other hand if m > 1, then we can not

remove the node corresponding to the edge a to as and in this time we have to remove all

the k nodes from A inside the subtree Tas . Since m original nodes connected to a including a

itself, we will őnd the other m − 1 original nodes connected to as. Then we have to add all

the connections of a to the original nodes that are connected to as in the subtree.

The optimal value for the problem, assuming that the tree T is rooted at node 1, is given

by

OPT = min{F1(m,K) : m = 1, . . . , n}, (4.5)

and the optimal solution is recovered by backtracking.

Proposition 4.1.1. CEDP on a tree with unit connection costs and unit edge weights can be

solved by recursion (4.1)ś(4.4) in O(n3K2) time.

4.2 The case with unit costs and arbitrary edge weights

In this section, we look at the identical problem as in Section 4.1, but with arbitrary edge

weights rather than unit edge weights.

Let us consider the tree T (V,E) with |V | = n nodes. We have created the tree T ′ = (V ′, E′)

in which all the edges are subdivided. Now we consider the restricted CNDP on T ′ with the

allowed set A = V ′ \ V , i.e., the set of newly created vertices. Once the subdivision has been

made, all the vertices keep the same cost as the original vertices and the new vertices inherit

the cost of the edges from which they are subdividing because every vertex subdivides an edge.

Let wv ≥ 0 be arbitrary weights assigned to the newly created nodes v ∈ A. The problem in

this case amounts to őnding a subset S of nodes from the set A with total weight
∑

v∈S wv

not exceeding a given W such that the number of surviving paths after having removed the

4.2. THE CASE WITH UNIT COSTS AND ARBITRARY EDGE WEIGHTS 43

set S is minimized and we want to count the connections between the original vertices, i.e.,

cuv = 1 for all u, v ∈ V and 0 otherwise.

This case can be solved by a dynamic programming algorithm formulated in the same spirit

of the previous section. The recursion uses two parameters m and k representing, respectively,

the number of original nodes in V connected to the root of a subtree and the number of paths

surviving in the same subtree.

Keeping the notation for subtrees introduced in Section 3.1, we deőne the following func-

tions.

• Fa(m, k) is the minimum total weight of the nodes from the set A to be removed from

the subtree Ta in order to have node a connected to exactly m original nodes (including

a itself) and k paths surviving in Ta.

• Gai(m, k) is the minimum total weight of the nodes from the set A to be removed from

the subtree Tai,s = a+Tai +Tai+1
+ · · ·+Tas in order to have a connected to m original

nodes of Tai,s and k paths surviving in Tai,s .

We compute the values for F and G recursively for all a ∈ V , m = 1, . . . , n, k = 0, . . . , n(n−

1)/2, as follows. Assume Fa(m, k) = ∞, Ga(m, k) = ∞ if m < 0 or k < 0.

Fa(m, k) = Ga1(m, k) for all non-leaf nodes a ∈ V , (4.6)

Gai(m, k) =min{wc +min{Fai(p, q) +Gai+1
(m, k − q) : p = 0, . . . ,

∣

∣V (Tai)
∣

∣ , q = 0, . . . , k},

min{Fai(p, q) +Gai+1
[m− p, k − q − p(m− p)] : p = 0, . . . ,m, q = 0, . . . , k}},

(4.7)

where c is the node connecting a to ai. Equation (4.7) is written for all non-leaf nodes ai ∈ V

with i < s (non-rightmost subtrees).

For each rightmost subtree Tas we specify the initial condition

Gas(m, k) =







wc +min{Fas(p, k) : p = 0, . . . ,
∣

∣V (Tas)
∣

∣} if m = 1,

Fas(m− 1, k −m+ 1) if m > 1,
(4.8)

where c is the node connecting a to as, and for every leaf a:

Fa(m, k) =







0 if m = 1, k = 0,

∞ in all other cases.
(4.9)

We use the same logic to explain equations (4.6)ś(4.9) as we did in the previous section

for equations (4.1)ś(4.4).

For equation (4.6), note that Ta = Ta1,s for any non-leaf node a ∈ V .

For equation (4.7) note that the node c in A adjacent to a and ai is the connecting

node between the subtrees Tai and Tai+1,s
. There are two cases to compute the value of

44 CHAPTER 4. CEDP VIA SUBDIVISION

Gai(m, k) based on the node c, either we remove the node c or we keep it. If the value of

Gai(m, k) is achieved from the expression wc +min{Fai(p, q) +Gai+1
(m, k− q)}, then besides

removing the optimal nodes from Tai and Tai+1,s
we should also remove the node c and in

this case a path surviving in Tai,s = Tai + Tai+1,s
either completely belongs to Tai or to

Tai+1,s. According to the deőnition of Gai(m, k), m original nodes are still connected to a

and all nodes are inside the subtree Tai+1,s, whereas at most
∣

∣V (Tai)
∣

∣ original nodes can be

connected to ai. If q paths belong to Tai exactly k − q paths belong to Tai+1,s. Hence by

deőnition of F and G the minimum total weight of the nodes from A removed from Tai,s will

be Gai(m, k) = wc +minp,q{Fai(p, q) +Gai+1
(m, k − q)} where wc corresponds the weight of

the node c which connects a to ai.

On the other hand if the node c is not removed, then a is connected to m original nodes

of Ta and a path in Tai,s can be either completely contained in one of Tai , Tai+1,s
, or partially

contained in both subtrees because it passes through a. If ai is connected to p original nodes

of Tai and a is connected to m − p original nodes in Tai+1,s
, the paths passing through a are

exactly p(m− p). If q paths survive in Tai , k − q − p(m− p) paths survive in Tai+1,s
and, by

deőnition of F and G, Gai(m, k) = minp,q{Fai(p, q) +Gai+1
[m− p, k − q − p(m− p)]}.

The initial condition (4.8) takes into account that, if the node c (which connects a to as)

is removed (m = 1), the k surviving paths of Tas,s = a + Tas must belong entirely to Tas ,

hence the minimum possible weight for the nodes removed from Tas,s will be Gas(m, k) =

wc + minp{Fas(p, k)}. On the other hand if the node c is not removed (m > 1), in Tas we

must have m− 1 original nodes connected to as and k− (m− 1) surviving paths, since m− 1

paths connect a to m−1 other nodes in Tas,s ; thus Gas(m, k) = Fas(m−1, k−m+1) follows.

The equation (4.9) says that since a ∈ V is a leaf and it is not in the set A, the only

possible condition is when m = 1, k = 0 and all other combinations of m and k are infeasible

and are considered to have an inőnite weight.

The optimal value, assuming the tree is rooted at node 1, is given by

OPT = min{k : F1(m, k) ≤ W,m = 1, . . . , n, k = 0, . . . , n(n− 1)/2}. (4.10)

The optimal solution is recovered by backtracking.

Proposition 4.2.1. CEDP on a tree with unit connection costs and arbitrary edge weights

can be solved by recursion (4.6)ś(4.9) in O(n7) time.

One could solve the CNEDP-1 and CNEDP-2 on a tree with subdivision approach.

Chapter 5

CNDP, CEDP, CNEDP-1, and CNEDP-2

with 0/1 connection costs

We will see in this chapter that CEDP, CNEDP-1, and CNEDP-2 are all NP-hard even

under the assumptions that the node/edge weights are unitary and the connection costs are

0/1. We will also see that the polynomial-time algorithms that we presented in Chapter 3

actually apply to a more general case, in which the connection costs are 0/1 and have the

following special structure: there exists I ⊆ V such that

cuv =







1 if u, v ∈ I and u ̸= v,

0 otherwise.
(5.1)

When the connection costs are of this form, we call them square 0/1 connection costs, because

if these cuv’s are represented via a 0/1 matrix, the support of the matrix is, up to permutation

of rows and columns, a square (without one of its diagonals).

We mention that the case of square 0/1 connection costs has also some practical interest.

Indeed, the role of the subset I is easy to understand: The elements in I are the nodes that

we would really like to disconnect from each other, while the other nodes are part of the

graph and it may be important to remove some of them to reduce the connectivity as much

as possible, but they do not count in the evaluation of the objective function.

5.1 Hardness results for 0/1 connection costs

Di Summa, Grosso, and Locatelli [27] proved that CNDP on a tree is NP-hard even if the node

weights are all equal to 1 and the connection costs are 0/1. Their proof is via a reduction from

the decision version of (unweighted) Multicut in trees, which is known to be NP-complete

[37] and is recalled here.

45

46CHAPTER 5. CNDP, CEDP, CNEDP-1, AND CNEDP-2 WITH 0/1 CONNECTION COSTS

Problem 11 (Multicut in trees, decision version). Given a tree G = (V,E), a list of

pairs of nodes (u1, v1), . . . , (uk, vk), and a bound M , decide whether there exists S ⊆ E with

|S| ≤ M such that ui and vi are disconnected in G− S for every i ∈ {1, . . . , k}.

It is immediate to see that Multicut in trees also reduces to each of CEDP, CNEDP-1,

and CNEDP-2 on trees, as we observe below.

Observation 12. CEDP, CNEDP-1, and CNEDP-2 are NP-hard even on a tree with unit

node/edge weights and 0/1 connection costs.

Proof. Given an instance of Multicut in trees with input as in Problem 11, we can reduce

it to an instance of CEDP on the same tree, where (using the notation of Problem 3) we = 1

for all e ∈ E, W = M , cuivi = 1 for every i ∈ {1, . . . , k}, and all other connection costs are

equal to zero. Clearly a subset S ⊆ E is feasible for the given instance of Multicut in trees

if and only if the optimal value of the corresponding instance of CEDP is zero. This shows

that CEDP is NP-hard even on a tree with unit node/edge weights and 0/1 connection costs.

Since, as observed in the introduction, each of CNEDP-1 and CNEDP-2 subsumes CNDP

and CEDP, we deduce the same result for CNEDP-1 and CNEDP-2.

5.2 Solving CEDP and CNEDP-1 on a tree with 0/1 connection

costs

In order to prove that CEDP and CNEDP-1 can be solved in polynomial time when the

underlying graph is a tree with 0/1 connection costs, we begin by demonstrating a reduction

from subdivision, which was previously discussed in Chapter 4, and which can be applied to

any graph.

Lemma 5.2.1. CNEDP-1 on a general graph G with square 0/1 connection costs can be

polynomially reduced to CNDP with square 0/1 connection costs. Furthermore, when G is a

tree the reduced instance is also deőned on a tree.

Proof. Let an instance of CNEDP-1 be given, with input as in Problem 4, where the con-

nection costs are as in (5.1) for some I ⊆ V . Let G′ = (V ′, E′) be the graph obtained by

subdividing every edge of G.

We construct an instance of CNDP on G′ with the following data. For u, v ∈ V ′, the

connection cost is

c′uv =







1 if u, v ∈ I and u ̸= v,

0 otherwise.

Note that these are square 0/1 connection costs. The weights of the elements of V ′ = V ∪ E

are deőned by setting w′
v = wv for v ∈ V and w′

e = we for e ∈ E. The weight limit is the

same as in the given instance of CNEDP-1, i.e., W ′ = W .

5.3. SOLVING CNDP ON A TREE WITH 0/1 CONNECTION COSTS 47

Given any S ⊆ V ∪ E = V ′, it is immediate to verify that c(G − S) = c′(G′ − S). Thus

the optimal solutions of the instance of CNDP with square 0/1 connection costs constructed

above are precisely the optimal solutions of the given instance of CNEDP-1. It is also clear

that G′ is a tree whenever G is a tree.

Remark. It can be easily seen that the CNDP with general 0/1 connection costs on a complete

graph in which we want to minimize the number of edges that survive after having removed

at most K nodes is exactly equal to the CNDP with L = 1 on a general graph G in which

we want to minimize the number of short paths that survive after having removed at most K

nodes. Since the CNDP with L = 1 on a general graph G is NP-complete because of reduction

from Vertex cover as we stated in Chapter 2, hence the CNDP with general 0/1 connection

costs on a complete graph is also NP-complete. Furthermore, these two problems bridge the

gap between the problem with no lower or upper constraint on the length of the connecting

path and general nonnegative connection costs and the problem with unitary connection cost

and L = 1.

5.3 Solving CNDP on a tree with 0/1 connection costs

We now show how to solve CNDP on a tree with square 0/1 connection costs in polynomial

time, by means of a modiőcation of the dynamic programming algorithm described in [27].

Because of the above lemma, this will also give a polynomial algorithm for CNEDP-1 on a

tree with square 0/1 connection costs.

5.3.1 The case with 0/1 costs and unit weights

In this section we provide a polynomial algorithm for solving CNDP on trees where the

connection costs cuv are as in (5.1) for some important set of nodes I ⊆ V and wv = 1 for

all v ∈ V . The nodes v ∈ I are called important. In this scenario, the task requires reducing

the number of connections that remain in the tree T (V,E) after removing at most K nodes.

Recall that in this problem we are interested in the number of connected pairs consisting of

nodes in I.

To derive a dynamic programming algorithm, we introduce the following recursive func-

tions:

• Fa(m, k) = minimum number of connections surviving in Ta after k nodes have been

removed from Ta and m important nodes are still connected to a (including a itself).

Condition m = 0 indicates that no important node is connected with Ta.

• Gai(m, k, t) = minimum number of connections surviving in the subtree Tai,s = a +

Tai + · · · + Tas when k nodes are removed from Tai,s and m important nodes are still

48CHAPTER 5. CNDP, CEDP, CNEDP-1, AND CNEDP-2 WITH 0/1 CONNECTION COSTS

connected to a and t ∈ {0, 1}, i.e., condition t = 0 indicates that a is removed from Tai,s

and t = 1 if a is not removed from Tai,s . As above, m = 0 indicates that no important

node is connected with Tai,s .

We let the function values be inőnity whenever the conditions cannot be satisőed.

We can state the following recursive relations:

For any non-leaf node a ∈ V we have

Fa(m, k) = min{Ga1(m, k, 0), Ga1(m, k, 1)}. (5.2)

For any non-leaf node a ∈ V and i < s (non-rightmost subtrees) we also have

Gai(m, k, t) =






























































min{Fai(p, q) +Gai+1
(0, k − q, 0) : p = 0, . . . ,

∣

∣V (Tai)
∣

∣ , q = 0, . . . , k − 1} if m = 0, t = 0,

min{Fai(0, q) +Gai+1
(0, k − q, 1) : q = 0, . . . , k} if m = 0, t = 1,

min{Fai(p, q) +Gai+1
(m− p, k − q, 1) + p(m− p) :

p = 0, . . . ,m, q = 0, . . . , k} if m > 0, t = 1,

∞ if m > 0, t = 0.

(5.3)

For each rightmost subtree Tas , the initial conditions are the following:

Gas(m, k, t) =


























































∞ if (m = 0, k = 0, t = 0) or (m > 0, t = 0),

min{Fas(p, k − 1) : p = 0, . . . , |V (Tas)|} if m = 0, k > 0, t = 0,

Fas(0, k) if m = 0, t = 1,

Fas(m, k) +m if m > 0, t = 1, a /∈ I,

Fas(m− 1, k) + (m− 1) if m > 0, t = 1, a ∈ I,

(5.4)

and, for every leaf a:

Fa(m, k) =







0 if (m = 0, k = 1, a /∈ I) or (m = 1, k = 0, a ∈ I),

∞ otherwise.
(5.5)

Assuming that the tree T is rooted at node 1, the optimal value for the problem is given

by

OPT = min{F1(m, k) : m = 0, . . . , n, k = 0, . . . ,K}, (5.6)

5.3. SOLVING CNDP ON A TREE WITH 0/1 CONNECTION COSTS 49

and an optimal solution can be reconstructed by backtracking.

Equation (5.2) is an immediate consequence of the observation that Ta = Ta1,s for every

non-leaf node a ∈ V .

When a is a non-leaf node, in the formula for Gai(m, k, t) (equation (5.3)) the case dis-

tinction is based on whether node a is removed (t = 0) or not (t = 1). In the former case,

m is necessarily equal to zero. Expression Fai(p, q) gives the minimum number of paths that

survive in Tai when q nodes are removed from Tai and p important nodes of Tai are still

connected to ai. Since q nodes have been removed from Tai , exactly k − q nodes (including

a) must be removed from Tai+1,s
. The minimum number of paths that survive in Tai+1,s

when

k − q nodes (including a) are removed from Tai+1,s
is given by Gai+1

(0, k − q, 0). Thus the

expression Fai(p, q)+Gai+1
(0, k−q, 0) gives the minimum number of paths that survive in Tai,s

when q nodes are removed from Tai (and the other k−q nodes are removed from Tai+1,s
) and p

important nodes of Tai are still connected to ai. By taking the minimum over p = 0, . . . , |Tai |

and q = 0, . . . , k − 1, we őnd the value of Gai(0, k, 0).

For the other case, i.e., when a is not removed (t = 1), one needs to know whether m = 0

or not. When m = 0, no important node is connected to the root a and also no important

node is connected to the node ai of Tai , because otherwise it would be connected to a. The

expression Fai(0, q) + Gai+1
(0, k − q, 1) gives the minimum number of paths that survive in

Tai,s when q nodes are removed from Tai and the other k − q nodes are removed from Tai+1,s
.

By taking the minimum over q = 0, . . . , k, we őnd the value of Gai(0, k, 1).

When m > 0, expression Fai(p, q) gives the minimum number of paths that survive in

Tai when q nodes are removed from Tai and p important nodes of Tai are still connected to

ai. Since q nodes have been removed from Tai , exactly k − q nodes must be removed from

Tai+1,s
; and since p important nodes of Tai are still connected to ai and thus to a, exactly

m − p important nodes of Tai+1,s
must remain connected to a. The minimum number of

paths that survive in Tai+1,s
when k− q nodes (without node a) are removed from Tai+1,s

and

m − p important nodes of Tai+1,s
are still connected to a is given by Gai+1

(m − p, k − q, 1).

Thus the expression Fai(p, q) + Gai+1
(m − p, k − q, 1) gives the minimum number of paths

that survive in Tai or Tai+1,s
when q nodes are removed from Tai and the other k − q nodes

are removed from Tai+1,s
and p important nodes of Tai are still connected to ai, while m− p

important nodes of Tai+1,s
are still connected to a. Now we have to add the paths connecting

important nodes of Tai to important nodes of Tai+1,s
, i.e. p(m−p) paths. This gives expression

Fai(p, q) +Gai+1
(m− p, k − q, 1) + p(m− p) of recursion (5.3). By taking the minimum over

p = 0, . . . ,m and q = 0, . . . , k, we őnd the value of Gai(m, k, 1).

For a justiőcation of (5.4), recall that Tas,s = a+Tas . There is a őrst distinction based on

whether node a is removed (t = 0) or not (t = 1).The condition m = 0, k > 0, t = 0 means

that we have to remove some nodes including the root a and hence the other k−1 nodes must

be removed from the subtree Tas and so no important node is connected to the root a. For

50CHAPTER 5. CNDP, CEDP, CNEDP-1, AND CNEDP-2 WITH 0/1 CONNECTION COSTS

the other case, i.e., when a is not removed (t = 1), one needs to know whether m = 0 or not.

When m = 0, all of the k nodes are removed in Tas , and no important node in Tas can be

connected to as, as otherwise it would be connected to a. When m > 0 and a /∈ I, the value

of Gas(m, k, t) is obtained by requiring m important nodes in Tas connected to as. Finally, if

m > 0 and a ∈ I, only m− 1 important nodes in Tas will be connected to as. Then we have

to add all the connections of a to the nodes that are connected to as in the subtree.

Formula (5.5) reŕects the fact that when the subtree consists of just a leaf, the decision

to make is whether to remove (k = 1) the leaf or not (k = 0), and in both cases the number

of path surviving in Ta is zero. The value of m can be one only if the leaf belongs to I and is

not removed.

5.3.2 The case with 0/1 costs and arbitrary node weights

This section considers the same problem as Section 5.3.1, but with general node weights

instead of unit node weights.

Let T (V,E) be a tree with |V | = n nodes and let W be the available budget with weights

wv on the set of critical nodes. Given an important set of nodes I ⊆ V with general 0/1

connection costs cuv for all u, v ∈ I, the problem is to remove a subset S ⊆ V of total weight

w(S) ≤ W such that the number of connected pairs of nodes in T [V \S] is as small as possible.

The nodes v ∈ I are called important.

We will calculate recursively the following values:

• Fa(m, k) is the minimum total weight of the nodes to be removed from the subtree Ta

in order to have node a connected to exactly m important nodes (including a itself) and

k paths surviving in Ta.

• Gai(m, k, t) is the minimum total weight of the nodes to be removed from the subtree

Tai,s = a+ Tai + Tai+1
+ · · ·+ Tas in order to have a connected to exactly m important

nodes of Tai,s and k paths surviving in Tai,s and t ∈ {0, 1}, i.e., condition t = 0 indicates

that a is removed from Tai,s and t = 1 if a is not removed from Tai,s .

Furthermore, whenever the conditions in one of the above deőnitions cannot be satisőed, we

set the value of the function to inőnity. To simplify the recursive formulas below, it will be

convenient to accept k < 0 in Fa(m, k) and Gai(m, k, t); in this case, we assume again that

the function values are inőnite.

At the end of the recursion, we can return the optimal value of the problem, assuming

that the tree T is rooted at node 1, which is

min{k : F1(m, k) ≤ W, 0 ≤ m ≤ n, 0 ≤ k ≤ n(n− 1)/2}.

As usual in dynamic programming, an optimal solution can be reconstructed by backtracking.

5.3. SOLVING CNDP ON A TREE WITH 0/1 CONNECTION COSTS 51

We now provide the explicit formulas and then a justiőcation for each of them. For every

leaf a, we have

Fa(m, k) =



















wa if m = 0, k = 0, a ∈ I,

0 if (m = 0, k = 0, a /∈ I) or (m = 1, k = 0, a ∈ I),

∞ otherwise,

(5.7)

while for a non-leaf node a the formula is

Fa(m, k) = min{Ga1(m, k, 0), Ga1(m, k, 1)}. (5.8)

To calculate Gai(m, k, t), where a is a non-leaf node, if i = s we use the formula

Gas(m, k, t) =



























































∞ if m > 0, t = 0,

wa +min{Fas(p, k) : 0 ≤ p ≤ |V (Tas) ∩ I|} if m = 0, t = 0,

Fas(0, k) if m = 0, t = 1,

Fas(m, k) if m > 0, t = 1, a /∈ I,

Fas(m− 1, k −m+ 1) if m > 0, t = 1, a ∈ I,

(5.9)

while for i < s the value of Gai(m, k, t) is calculated recursively as follows:

Gai(m, k, t) =






























































∞ if m > 0, t = 0,

min{Fai(p, q) +Gai+1
(0, k − q, 0) : p = 0, . . . , |V (Tai) ∩ I|, q = 0, . . . , k} if m = 0, t = 0,

min{Fai(0, q) +Gai+1
(0, k − q, 1) : q = 0, . . . , k} if m = 0, t = 1,

min{Fai(p, q) +Gai+1
[m− p, k − q − p(m− p), 1] :

p = 0, . . . ,m, q = 0, . . . , k} if m > 0, t = 1.

(5.10)

We now give a justiőcation for the above formulas. We denote by S a subset of nodes

attaining the minimum value of Fa(m, k) or Gai(m, k, t) (depending on which formula we are

illustrating).

Formula (5.7) reŕects the fact that when the subtree consists of just a leaf, the decision to

make is whether to remove the leaf or not, and in both cases k must be zero. The value of m

can be one only if the leaf belongs to I and is not removed.

52CHAPTER 5. CNDP, CEDP, CNEDP-1, AND CNEDP-2 WITH 0/1 CONNECTION COSTS

Equation (5.8) is an immediate consequence of the observation that Ta = Ta1,s for every

non-leaf node a ∈ V .

When a is a non-leaf node, in the formula for Gas(m, k, t) (equation (5.9)) there is a őrst

distinction based on whether node a is remove (t = 0) or not (t = 1). In the former case, m

is necessarily equal to zero, and we are on the second line of the formula, where the weight

of node a is added to the minimum weight of a subset of nodes S′ that should be removed

from Tas to have k connected pairs consisting of nodes in I; note that p (the number of nodes

in V (Tas − S′) ∩ I that are connected to as) is arbitrary, as this value does not affect the

number of nodes connected to a, as a is removed in this case. For the other case, i.e., when a

is not removed (t = 1), one needs to know whether m = 0 or not. When m = 0, all of the k

connected pairs are contained in Tas , and no node in V (Tas − S) ∩ I can be connected to as,

as otherwise it would be connected to a, as well (third line of the formula). When, m > 0 and

a /∈ I, the value of Gas(m, k, t) is obtained by requiring m nodes in V (Tas − S)∩ I connected

to as (as these nodes will be in turn connected to a) and a total connection cost of k in Tas−S,

as a /∈ I. Finally, if m > 0 and a ∈ I, only m− 1 nodes in V (Tas −S)∩ I will be connected to

as, as a is also counted as connected to itself. Since these m− 1 connections contribute to the

total connection cost k in Tai,s − S, the total connection cost in Tas − S must be k −m+ 1.

Formula (5.10) is based on a similar case distinction, except that one does not need to

know whether a ∈ I or not. We only illustrate in detail the fourth case of the formula, i.e.,

t = 1 (i.e., node a is not removed) and m > 0. The formula is based on the observation that

k must be the total cost of the connections surviving in each of the subtrees Tai and Tai+1,s
,

plus the cost of the connections between the two subtrees. This last term is given by p(m−p),

where p is the number of nodes in V (Tai − S)∩ I connected to ai and, consequently, m− p is

the number of nodes in V (Tai+1,s
− S) ∩ I connected to a. Consequently, if q connected pairs

survive in Tai , k− q− p(m− p) survive in Tai+1,s
. (For a correct interpretation of the formula,

it is important to keep in mind that Tai is rooted at ai, while Tai+1,s
is rooted at a.)

We obtain the following result.

Proposition 13. CNDP, CEDP, and CNEDP-1 can be solved in polynomial time when the

underlying graph is a tree and 0/1 square connection costs are given.

Proof. By the above discussion, the proposed dynamic programming algorithm correctly solves

CNDP when the underlying graph is a tree and 0/1 square connection costs are given. The

polynomiality is immediate to check, as a, i, m, k and t can take only polynomially-many

values, and the computation of each formula can be carried out in polynomial time.

Lemma 5.2.1 implies that CNEDP-1 can also be solved in polynomial time, under the

same assumptions. Finally, the observation that CEDP is a special case of CNEDP-1 (see

the introduction) proves the same result of CEDP.

5.3. SOLVING CNDP ON A TREE WITH 0/1 CONNECTION COSTS 53

One can verify that the result for CNEDP-2 we have obtained in Proposition 3.5.2 extends

to square 0/1 connection costs.

Chapter 6

Fixed number of leaves

In Chapter 2, we have seen that if the graph is a path, all the variants that we have considered

have a closed-form solution. In this chapter, we investigate the case when we have general

0/1 connection costs on a path. We show that CNDP on a path can be solved in polynomial

time, while Di Summa et al. [27] proved that CNDP on a tree is NP-hard even if the node

weights are all equal to 1 and the connection costs are 0/1. Therefore the complexity differs

between paths and trees in the case of nonnegative connection costs and unit node weights.

One characterization of a path is that a path is a tree with two leaves. We then extend the

number of leaves and show that CNDP, CEDP, and CNEDP-1 on a tree with arbitrary 0/1

connection costs and general nonnegative node/edge weights can be solved in polynomial time

when the number of leaves of the tree is a constant.

6.1 The case with 0/1 costs and unit node weights on paths

In this section we illustrate an algorithm for solving CNDP on paths when we are given general

0/1 connection costs cuv for all u, v with unit weights wv for all v ∈ V . For each u, v ∈ V , a

connection is considered important if cuv = 1. In this case the problem calls for minimizing

the number of connections surviving in the path P (V,E) after having removed at most K

nodes.

Let P (V,E) be a path with |V | = n nodes and let the nodes are in order, i.e., 1, 2, . . . , i, i+

1, . . . , n. We are assuming that we have solved the sub-path problem optimally from node i+1

to node n. In order to solve the problem by dynamic programming, we deőne the following

function:

• Fi(k, t) = minimum number of connections surviving in the sub-path that begins at node

i when k nodes are removed from the sub-path that starts at node i and ends at node

n, with the minimum node that is removed at position t where i ≤ t ≤ n+1. Note that

when no node is removed (k = 0) in the sub-path, then we deőne t = n+ 1 to indicate

55

56 CHAPTER 6. FIXED NUMBER OF LEAVES

that there is no minimum node. Furthermore, if it is not possible to satisfy the above

condition, then we deőne Fi(k, t) = ∞.

The values of Fi are calculated by traversing the path in postorder (from node n to node

1), by means of the following relations:

Fi(k, t) =































Fi+1(0, n+ 1) +
∑n

j=i+1
cij if k = 0,

min{Fi+1(k − 1, r) : r = i+ 1, . . . , n+ 1} if k > 0, t = i,

Fi+1(k, t) +
∑t−1

j=i+1
cij if k > 0, t > i.

(6.1)

The initial conditions for the last node are the following:

Fn(k, t) =







0 if (k = 0, t = n+ 1) or (k = 1, t = n),

∞ otherwise.
(6.2)

Recursion (6.1) can be interpreted as follows:

The case k = 0 means that we are not removing anything from the sub-path rooted at

node i, i.e., we do not remove node i and we also don’t remove any other node after node i.

In this case we have to count all the important connections from node i to node n. Hence

the number of paths that survive in the sub-path rooted at node i when we are not removing

anything will be Fi(0, 0) = Fi+1(0, n+ 1) +
∑n

j=i+1
cij .

If k > 0, then we have two options based on the node i has to be removed or not. The

case k > 0, t = i means that the node i has to be removed so that we are disconnecting all

the connections that start at node i and therefore we have k − 1 nodes left to remove in the

sub-path. In this case we have to take Fi+1(k − 1, r) for every possible őrst node r varying

from i + 1, . . . , n + 1. Otherwise, k > 0, t > i means that we are keeping the node i and t is

the position of the minimum node that has to be removed and then we have to count all the

important connections that go from node i to any node before node t.

Since n ∈ V is the last node of the path, equation (6.2) says that either we remove the

node n (k = 1) or we keep it (k = 0) and in both cases the number of important connections

surviving is 0.

Assuming that the path P is rooted at node 1, the optimal value for the problem is given

by

OPT = min{F1(K, t) : t = 1, . . . , n+ 1}. (6.3)

As usual in dynamic programming, an optimal solution can be recovered by backtracking.

Proposition 6.1.1. CNDP on a path with square 0/1 connection costs and unit node weights

can be solved by recursion (6.1)ś(6.2) in O(n3K) time.

6.2. THE CASE WITH 0/1 COSTS AND ARBITRARY NODE WEIGHTS ON PATHS 57

Proof. For each of the n nodes there are at most O(n) values for t and O(K) values for k;

this gives O(n2K) values of F to compute. The heaviest computation is that of equation (6.1)

that requires at most O(n) steps. Hence in the worst case a number of operations bounded

by O(n3K) are required.

6.2 The case with 0/1 costs and arbitrary node weights on paths

This section addresses the same problem as the preceding one, but with general node weights

rather than unit node weights.

Given the path P = (V,E) with general 0/1 connection costs and a budget W with weights

wv on the vertices, the problem is to remove a subset S ⊆ V of total weight w(S) ≤ W such

that the number of connected pairs of nodes in P [V \ S] is as small as possible.

This case can be solved by a dynamic programming algorithm formulated in the same spirit

of the previous section. The recursion uses two parameters k and t representing, respectively,

the number of paths surviving in the sub-path and the position of the őrst node that is

removed.

Keeping the notation introduced in the previous section, we deőne the following function.

• Fi(k, t) is the minimum total weight of the nodes to be removed from the sub-path

rooted at i, and t is the position of the minimum node that is removed where i ≤ t ≤

n+ 1 and k important connections survive in the sub-path. Note that when no node is

removed in the sub-path, then we deőne t = n+1 to indicate that there is no minimum

node. Furthermore, if it is not possible to satisfy the above condition, then we deőne

Fi(k, t) = ∞.

We compute the values of F recursively for all i ∈ V , k = 0, . . . , n(n− 1)/2, i ≤ t ≤ n+1,

as follows.

Fi(k, t) =















wi +min{Fi+1(k, r) : r = i+ 1, . . . , n+ 1} if t = i,

Fi+1(k −
∑t−1

j=i+1
cij , t) if t > i.

(6.4)

The initial conditions for the last node are the following:

Fn(k, t) =



















wn if k = 0, t = n,

0 if k = 0, t = n+ 1,

∞ in all other cases.

(6.5)

Equation (6.4) can be interpreted as follows:

The case t = i means that the minimum node which has to be removed is at position i.

Since we are removing node i, we have to look at the sub-path starting at the node i+1 to get

58 CHAPTER 6. FIXED NUMBER OF LEAVES

k connections. Hence by deőnition of F the minimum total weight of the nodes to be removed

from the sub-path rooted at i when the root is removed will be Fi(k, t) = wi+minr{Fi+1(k, r)}

where wi corresponds to the weight of the node i. On the other hand, if the root i of the

sub-path is not removed, then all the nodes we have to remove is from the sub-path rooted

at node i+ 1 and the position of the őrst node that has to be removed is at position t. Since

we are keeping node i and the őrst node that is removed is at position t, the number of

connections starting from node i to before node t is
∑t−1

j=i+1
cij and the connections surviving

in the sub-path rooted at node i will be (k −
∑t−1

j=i+1
cij). Thus by deőnition of F , Fi(k, t) =

Fi+1(k −
∑t−1

j=i+1
cij , t).

Equation (6.5) says that we get a connectivity of 0 by removing the last node n of the

path as the őrst node. Otherwise, we get also a connectivity of 0 by removing nothing.

The optimal value, assuming the path is rooted at node 1, is given by

OPT = min{k : F1(k, t) ≤ W,k = 0, . . . , n(n− 1)/2, t = 1, . . . , n+ 1}. (6.6)

The optimal solution is recovered by backtracking.

Proposition 6.2.1. CNDP on a path with square 0/1 connection costs and arbitrary node

weights can be solved by recursion (6.4)ś(6.5) in O(n5) time.

Proof. For each node i ∈ V there are at most O(n) values for t and n(n− 1)/2 + 1 = O(n2)

values for k; this gives O(n4) values of F to compute. The heaviest computation lies in

equation (6.4), where O(n) values are possible for r. Hence in the worst case a number of

operations bounded by O(n5) are required.

The results derived for the CNDP on a path are summarised in the following table.

cuv wv complexity

=0/1 =1 solvable in O(n3K)

=0/1 ≥ 0 solvable in O(n5)

Table 6.1: Complexity results for the CNDP on a path.

6.3 The case with 0/1 costs and unit node weights on trees

In this section we show that if the graph is a tree with a őxed number of leaves and the

connection costs take general 0/1 values, each of CNDP, CEDP, and CNEDP-1 can be

solved in polynomial time. Note that, unless P = NP , this result cannot hold for CNEDP-2,

6.3. THE CASE WITH 0/1 COSTS AND UNIT NODE WEIGHTS ON TREES 59

as shown by Proposition 3.5.1. However, we will see that a polynomial-time algorithm can be

found for this problem if, in addition, the node and edge weights are assumed to be unitary.

Let us őrst focus on CNDP on a tree with 0/1 connection costs and unit node weights.

Let T = (V,E) be a tree with n nodes and ℓ leaves. Given u, v ∈ V , we denote by [u, v] the

node set of the unique path joining u and v in T . Given a ∈ V and S ⊆ V , we deőne the

boundary of S with respect to a, and denote it by Ba(S), as follows:

Ba(S) = {v ∈ S : [a, v] ∩ S = {v}}.

Clearly, |Ba(S)| ≤ ℓ.

We will calculate the following values:

• Fa(k,B) = minimum number of connections surviving in Ta when k nodes are removed

from Ta and B is exactly the set of all őrst nodes on every path from the root to the

leaves that is removed.

• Gai(k,B) = minimum number of connections surviving in the subtree Tai,s = a+ Tai +

· · ·+ Tas when k nodes are removed from Tai,s and B is exactly the set of all őrst nodes

on every path from the root to the leaves that is removed.

The above function values are assumed to be inőnite whenever the conditions cannot be

satisőed. This happens, in particular, whenever B is not a set of the type Ba(S) for any

S ⊆ V (Ta) (or S ⊆ V (Tai,s)), for instance (but not only) when B is larger than the number

of leaves of the subtree. (Indeed, we could use the number of leaves of Ta or Tai,s as a bound

for |B|, but this would slightly complicate the description of the algorithm).

If a is a leaf, we have

Fa(k,B) =







0 if (k = 0, B = ∅) or (k = 1, B = {a}),

∞ otherwise,
(6.7)

while if a is a non-leaf node the formula is

Fa(k,B) = Ga1(k,B). (6.8)

For a non-leaf node a we also have

Gas(k,B) =



















min{Fas(k,B
′) : B′ ⊆ V (Tas), |B

′| ≤ ℓ} if B = {a},

Fas(k,B) +
∑

{cav : v ∈ V (Tas), [a, v] ∩B = ∅} if a /∈ B,

∞ otherwise,

(6.9)

60 CHAPTER 6. FIXED NUMBER OF LEAVES

and, for i < s,

Gai(k,B) =






























min{Fai(q,B
′) +Gai+1

(k − q, {a}) : 0 ≤ q ≤ k − 1, B′ ⊆ V (Tai), |B
′| ≤ ℓ} if B = {a},

min{Fai(q,B ∩ V (Tai)) +Gai+1
(k − q,B ∩ V (Tai+1,s

) +
∑

{cuv :

u ∈ V (Tai), v ∈ V (Tai+1,s
), [u, v] ∩B = ∅} : 0 ≤ q ≤ k} if a /∈ B,

∞ otherwise,

(6.10)

If we denote by 1 the root node of the tree, the optimal value is given by

min{F1(K,B) : B ⊆ V, |B| ≤ ℓ}.

The justiőcation of (6.7) and (6.8) is immediate to check.

In formula (6.9), the őrst and third cases express the fact that if a ∈ B and B is a set of

the form Ba(S) for some S ⊆ V (Ta), then necessarily B = S = {a}. In this case, a is removed

from Ta and we are left with the subproblem on Tas . (In this subproblem the boundary set

B′ is arbitrary, as it does not affect the fact that B = {a}.) On the other hand, if a /∈ B

and B = Ba(S) for some S ⊆ V (Ta), then S ⊆ V (Tas) and B = Bas(S). We then obtain the

second case of the formula, where the term
∑

{cav : v ∈ V (Tas), [a, v] ∩ B = ∅} counts the

number of nodes connected to a in Tas − S.

Formula (6.10) is based on a similar argument. We only remark some points. When

B = S = {a}, two subproblems on Tai and Tai+1,s
are created. Since a is removed from

Tai,s , the boundary set of the őrst subproblem is an arbitrary B′ (as this does not affect

the fact that B = {a}), while in the second subproblem the boundary set must be {a}

(as a is the root of Tai+1,s
). When a /∈ B, we use the fact that if B = Ba(S) for some

S ⊆ V (Tai,s), then Ba(S ∩ V (Tai)) = B ∩ V (Tai) and Ba(S ∩ V (Tai+1,s
) = B ∩ V (Tai+1,s

).

The term
∑

{cuv : u ∈ V (Tai), v ∈ V (Tai+1,s
), [u, v] ∩ B = ∅} count the number of surviving

connections between the two subtrees.

6.4 The case with 0/1 costs and arbitrary node weights on trees

In this section we manage to derive a polynomial time algorithm when the number of leaves

ℓ is a constant also for the case with arbitrary weights wv assigned to the nodes v ∈ V . The

problem is to remove a subset S ⊆ V of total weight w(S) ≤ W such that the number of

connected pairs of nodes in T [V \ S] is as small as possible.

Keeping the notation for subtrees introduced in the previous section, we introduce the

following functions.

6.4. THE CASE WITH 0/1 COSTS AND ARBITRARY NODE WEIGHTS ON TREES 61

• Fa(k,B) is the minimum total weight of the nodes to be removed from the subtree Ta

and B is exactly the set of all őrst nodes on every path from the root to the leaves that

is removed and k connections surviving in Ta.

• Gai(k,B) is the minimum total weight of the nodes to be removed from the subtree

Tai,s = a + Tai + Tai+1
+ · · · + Tas and B is exactly the set of all őrst nodes on every

path from the root to the leaves that is removed and k connections surviving in Tai,s .

We set the value Fa(k,B) = ∞ or Gai(k,B) = ∞ when no feasible solution exists. Also, it is

convenient to set the above values to inőnity when k < 0. Using similar recursive arguments

of the previous dynamic program, we state the following recursions:

If a is a leaf, we have

Fa(k,B) =



















wa if k = 0 and B = {a},

0 if k = 0 and B = ∅,

∞ otherwise,

(6.11)

while if a is a non-leaf node the formula is

Fa(k,B) = Ga1(k,B). (6.12)

For a non-leaf node a we also have

Gas(k,B) =



















wa +min{Fas(k,B
′) : B′ ⊆ V (Tas), |B

′| ≤ ℓ} if B = {a},

Fas

(

k −
∑

{cav : v ∈ V (Gas), [a, v] ∩B = ∅}, B
)

if a /∈ B,

∞ otherwise,

(6.13)

and, for i < s,

Gai(k,B) =






























min{Fai(q,B
′) +Gai+1

(k − q, {a}) : 0 ≤ q ≤ k, B′ ⊆ V (Tai), |B
′| ≤ ℓ} if B = {a},

min{Fai(q,B ∩ V (Tai)) +Gai+1
(k − q −

∑

{cuv : u ∈ V (Tai),

v ∈ V (Tai+1,s
), [u, v] ∩B = ∅}, B ∩ V (Tai+1,s

)) : 0 ≤ q ≤ k} if a /∈ B,

∞ otherwise.

(6.14)

If we denote by 1 the root node of the tree, the optimal value is given by

min{k : F1(k,B) ≤ W, 0 ≤ k ≤ n(n− 1)/2, B ⊆ V, |B| ≤ ℓ}.

We obtain the following result.

62 CHAPTER 6. FIXED NUMBER OF LEAVES

Proposition 14. CNDP, CEDP, and CNEDP-1 can be solved in polynomial time when the

underlying graph is a tree with a constant number of leaves and the connection costs are 0/1.

Proof. For CNDP the polynomiality follows from the above algorithm, after observing that

the number of boundary sets B to consider is O(nℓ), which is polynomial when ℓ is constant.

To derive a polynomial-time dynamic programming algorithm for CNEDP-1, one can use

the subdivision approach described in the proof of Lemma 5.2.1. (We omit the details.) The

polynomiality of CEDP then follows because, as already observed, this problem is a special

case of CNEDP-1.

For CNEDP-2, we need to restrict to unit weights.

Proposition 15. CNEDP-2 can be solved in polynomial time when the underlying graph

is a tree with a constant number of leaves, the node and edge weights are unitary, and the

connection costs are 0/1.

Proof. A polynomial-time dynamic programming algorithm can be obtained by combining the

approach described in this section with that developed in Section 3.5. The basic idea is to

deőne Fa(kV , kE , B) as the minimum cardinality of a subset S ⊆ V (Ta) ∪ E(Ta) such that

|S ∩ V | ≤ kV , |S ∩ E| ≤ kE , and Ba(S) = B, and similarly for Gai(kV , kE , B). We omit the

details.

The results derived for the CNDP on a tree with a őxed number of leaves are summarised

in the following table.

cuv wv complexity

=0/1 =1 solvable in O(n3Knℓ)

=0/1 ≥ 0 solvable in O(n5nℓ)

Table 6.2: Complexity results for the CNDP on a tree with a őxed number of leaves.

Chapter 7

IP formulations of CNDP, CEDP,

CNEDP-1, and CNEDP-2

In this chapter we focus on exact integer programming solution methods to solve critical node

and/or edge detection problems on general graphs. The mathematical formulation introduced

in [8] is designed to tackle the CNDP for the case when the total number of pairwise connec-

tions is used as the connectivity measure and when the deletion costs are set equal to one.

The authors in [8] present an integer programming (IP) formulation of CNDP using triangle

inequalities that enforce transitive connectivity relationships between nodes in the graph, i.e.,

if node i is connected to node j and node j is connected to node k, then node i should also

be connected to node k. Note that this formulation can be easily adapted to use the weighted

pairwise connectivity or to include deletion costs different than one. In this chapter, we pro-

vide a modiőed mathematical formulation based on the linear integer programming model for

the CNDP described in [8], which we call restricted CNDP. We also derive IP models from

the proposed restricted CNDP which provides optimal solutions for the CEDP, CNEDP-1,

and CNEDP-2.

7.1 IP formulations for the restricted CNDP

Let G = (V,E) be an undirected graph with a set of |V | = n nodes and a set of edges

E ⊆ V × V . Deőne a restricted critical node detection problem (RCNDP) in which we are

also given the set of allowed vertices A ⊆ V and the problem is to disconnect the graph

as much as possible by removing K nodes in the allowed set A. The RCNDP becomes the

standard CNDP when A = V . This restricted problem has been treated also in Chapter 4.

The optimal solution of the RCNDP can be determined by using an integer programming

(IP) formulation. The IP formulation of the RCNDP is described below.

Let the input data of the problem be a nonnegative connection cost cij for each pair of

distinct nodes i, j ∈ V , a weight wi ≥ 0 for each i ∈ V and a bound W .

63

64 CHAPTER 7. IP FORMULATIONS OF CNDP, CEDP, CNEDP-1, AND CNEDP-2

For any node i ∈ V , the binary variable vi is deőned as

vi =







1, if node i is deleted from the graph

0, otherwise.
(7.1)

Introduce a set of connectivity variables between pairs of nodes i, j ∈ V, i ̸= j:

uij =







1, if i, j ∈ V \A, i ̸= j and i, j are in the same component of G(V \A)

0, otherwise.
(7.2)

Before we continue, note that the set of uij variables should necessarily satisfy the following

condition:

uij = uji, i, j ∈ V, i ̸= j.

The restricted critical node detection problem can be formulated as:

(RCNDP) Minimize
∑

i,j∈V, i<j

cijuij (7.3)

subject to

uij + vi + vj ≥ 1, ∀ij ∈ E, (7.4)

uij + ujk − uki ≤ 1, ∀ i ∈ V, ∀ jk ∈ E, j < k, (7.5)

uik + ukj − uji ≤ 1, ∀ i ∈ V, ∀ jk ∈ E, j < k, (7.6)

∑

i∈A

wivi ≤ W, (7.7)

vi = 0, ∀i /∈ A, (7.8)

uij ∈ {0, 1}, ∀i, j ∈ V, (7.9)

vi ∈ {0, 1}, ∀i ∈ V, (7.10)

where the objective function (7.3) minimizes the weighted sum of pairwise connections. Con-

straint (7.4) means that if nodes i and j are in different components and there is an edge

between them, then one of them should be deleted. As shown in [60], constraints (7.5) and

(7.6) altogether indicate that if i is connected to j and j is connected to k, then i must also

be connected with k. Constraint (7.7) sets the upper bound of the budget. Constraint (7.8)

says that only the allowed vertices can be removed. Finally, (7.9) and (7.10) deőne the proper

domains for the variables used.

7.2. IP FORMULATIONS FOR THE CEDP 65

7.2 IP formulations for the CEDP

Let G = (V,E) be an undirected graph with |V | = n nodes. Now we apply the subdivision

process on G which has been described in Chapter 4 and we have created the graph G′ =

(V ′, E′) in which all the edges are subdivided. Now we consider the restricted CNDP on G′

with the allowed set A = V ′ \V , i.e., the set of newly created vertices and the connection cost

cij takes the value of 1 if i, j ∈ V, i ̸= j and 0 otherwise, i.e., we only count the connections

between the original vertices in G. Then the problem of removing at most K edges from G

becomes the problem of removing at most K nodes from G′ but here we are allowed to remove

K nodes only from the set A of newly created nodes and the IP formulations for the CEDP

is the same as described in equations (7.3)ś(7.10).

7.3 IP formulations for the CNEDP-2

Let G = (V,E) be an undirected graph and let WV and WE be the available budgets for

removing the cost of nodes and edges respectively from the graph G. Construct a graph

G′ = (V ′, E′) with the subdivision as mentioned in Chapter 4 and we consider the restricted

CNDP on G′ with the allowed set A = V ′ \ V , i.e., the set of newly created vertices. We have

now two kinds of nodes and we call them the set of original vertices which are in the set V

and the set of newly created vertices which are in the set A. In the CNEDP-2, we are allowed

to remove nodes from both of them but they are counting in different budgets. Once the

subdivision has been made, the vertices in V keep the same cost as the original vertices and

the new vertices in A inherit the cost of the edges from which they are subdividing because

every vertex subdivides an edge and therefore the edges in G′ has no cost anymore.

The mixed problem for two separate budgets can be deőned as:

(CNEDP-2) Minimize
∑

i,j∈V, i<j

cijuij (7.11)

subject to

uij + vi + vj ≥ 1, ∀ij ∈ E′, (7.12)

uij + ujk − uki ≤ 1, ∀ i ∈ V ′, ∀ jk ∈ E′, j < k, (7.13)

uik + ukj − uji ≤ 1, ∀ i ∈ V ′, ∀ jk ∈ E′, j < k, (7.14)

∑

i∈V

wivi ≤ WV , (7.15)

66 CHAPTER 7. IP FORMULATIONS OF CNDP, CEDP, CNEDP-1, AND CNEDP-2

∑

i∈A

wivi ≤ WE , (7.16)

uij ∈ {0, 1}, ∀i, j ∈ V ′, (7.17)

vi ∈ {0, 1}, ∀i ∈ V ′. (7.18)

Constraint (7.15) says that sum of the weights of the original nodes cannot exceed the budget

WV and Constraint (7.16) says that sum of the weights of the newly created nodes is at most

WE .

7.4 IP formulations for the CNEDP-1

The IP formulations for the CNEDP-1 is almost same as the case of the CNEDP-2. Instead

of equations (7.15) and (7.16), there will be a single constraint
∑

i∈V ′ wivi ≤ W which says

that sum of the weights of the original nodes and the newly created nodes that we remove

altogether cannot exceed the budget W .

Chapter 8

Distance-based Critical Node/Edge

Detection Problem

In this chapter, we study a special case of the Critical Node/Edge Detection Problem, the

so-called Distance-based Critical Node Detection Problem (D-CNDP) and the Distance-based

Critical Edge Detection Problem (D-CEDP) as introduced in [82], where the distances between

node pairs impact on the objective function. In this context we analysis the following different

classes of D-CNDP on trees in which the objectives are to:

1. Minimize the number of node pairs connected by a path of length ≤ L;

2. Maximize the number of node pairs connected by a path of length ≥ L;

3. Maximize the number of node pairs connected by a path of length ≤ L;

4. Minimize the number of node pairs connected by a path of length ≥ L.

In this chapter, for the sake of simplicity, we propose dynamic programming algorithms

for Class 1 and Class 2 mentioned above. We would like to mention that one can obtain

dynamic programming algorithm for Class 3 from Class 1 just putting maximization instead

of minimization and similarly, for Class 4 from Class 2 by changing minimization instead of

maximization. We note that we have developed the aforesaid dynamic programming algo-

rithms at the beginning of my PhD, and then after one year we found that the authors in [7]

proposed dynamic programming algorithms for some special cases of D-CNDP including the

particular variant of Class 1.

We also present a structural property of Class 2 D-CNDP on trees which says that we

recursively remove only leaves in an optimal solution. After that we move to D-CEDP over

trees and present dynamic programming algorithm and integer programming formulation for

the variant of Class 1.

67

68CHAPTER 8. DISTANCE-BASED CRITICAL NODE/EDGE DETECTION PROBLEM

8.1 D-CNDP on trees for Class 1

In this context, the problem is to minimize the amount of node-pairs remaining connected by

a path of length at most L, for some natural integer L, that survive in a tree T (V,E) after at

most K nodes have been removed.

Recall the notation for subtrees. Given the tree T (V,E) with |V | = n, let Ta be the subtree

of T rooted at a ∈ V . If a is not a leaf of T , let Ta1 , . . . , Tas be the subtrees of Ta rooted at

the children nodes a1, . . . , as respectively, where s depends on a. Let also |Ta| be the number

of nodes in Ta. The functions below are deőned in order to solve the problem using dynamic

program.

• Fa(m0,m1, · · · ,mL−1, k) = minimum number of paths of length ≤ L surviving in Ta

when k nodes are removed from Ta and m0,m1, · · · ,mL−1 represents the number of

nodes surviving in Ta having distance 0, 1, 2, · · · , (L− 1) respectively from a. Note that

condition m0 = 0 indicates that a is removed from Ta and m0 = 1 if a is not removed

from Ta.

• Gai(m0,m1, · · · ,mL−1, k) = minimum number of paths of length ≤ L surviving in

the subtree Tai,s = a + Tai + · · · + Tas when k nodes are removed from Tai,s and

m0,m1, · · · ,mL−1 represents the number of nodes surviving in Tai,s having original

distance 0, 1, 2, · · · , (L − 1) respectively from a. As above, m0 = 0 indicates that a is

removed from Tai,s .

We let the function values be inőnity whenever no feasible solution exists. The values for

F and G can be computed by traversing the tree in postorder (from leaves to root), by means

of the following relations:

Fa(m0,m1, · · · ,mL−1, k) = Ga1(m0,m1, · · · ,mL−1, k) for any non-leaf node a ∈ V ; (8.1)

Gai(m0,m1, · · · ,mL−1, k) =






























































min{Fai(m
′
0,m

′
1, · · · ,m

′
L−1

, q) +Gai+1
(0,m′′

1, · · · ,m
′′
L−1

, k − q) :

m′
0 ∈ {0, 1}, m′

j = 0, . . . ,
∣

∣

∣
V (Tai,j)

∣

∣

∣
− 1, m′′

j = mj −m′
j−1,

q = 0, . . . , k − 1} if m0 = 0,

min{Fai(m
′
0,m

′
1, · · · ,m

′
L−1

, q) +Gai+1
(1,m′′

1, · · · ,m
′′
L−1

, k − q)

+
∑L

l=1

∑l−1

j=0
m′

jm
′′
l−1−j : m

′
0 ∈ {0, 1},

m′
j = 0, . . . ,

∣

∣

∣
V (Tai,j)

∣

∣

∣
− 1, m′′

j = mj −m′
j−1, q = 0, . . . , k} if m0 = 1,

(8.2)

for any non-leaf node a ∈ V where i < s and
∣

∣

∣
V (Tai,j)

∣

∣

∣
denotes the number of nodes in Tai at

distance j from ai for every j = 1, . . . , L− 1.

8.1. D-CNDP ON TREES FOR CLASS 1 69

For each rightmost subtree Tas we specify the following initial conditions:

Gas(m0,m1, · · · ,mL−1, k) =


















































∞ if m0 = k = 0,

min{Fas(m
′
0,m

′
1, · · · ,m

′
L−1

, k − 1) : m′
0 ∈ {0, 1},

m′
j = 0, . . . ,

∣

∣

∣
V (Tas,j)

∣

∣

∣
− 1} if m0 = 0, k > 1,

min{Fas(m
′
0,m

′
1, · · · ,m

′
L−1

, k) +m′
0 +m′

1 + · · ·+m′
L−1

:

m′
0 ∈ {0, 1},m′

j = 0, . . . ,
∣

∣

∣
V (Tas,j)

∣

∣

∣
− 1} if m0 = 1,

(8.3)

while, for every leaf a ∈ V we have that:

Fa(m0,m1, · · · ,mL−1, k) =



















0 if (m0 = · · · = mL−1 = 0, k = 1) or

(m0 = 1,m1 = · · · = mL−1 = 0, k = 0),

∞ otherwise.

(8.4)

We now give a justiőcation for the above formulas. Formula (8.1) is immediate because it

follows from the fact that Ta = Ta1,s for every non-leaf node a ∈ V .

In the formula for Gai(.) (equation (8.2)), the separation is based on whether node a is

removed (m0 = 0) or not (m0 = 1) from the tree. The őrst case (m0 = 0) corresponds to

having a ∈ S. In this situation, we take the sum of the optimal values that we can obtain

in each of the two subtrees Tai and Tai+1,s
. For the second case (m0 = 1), in which a /∈ S,

we take again the sum of the optimal values in each of the two subtrees Tai and Tai+1,s
; and

since node a is surviving, a path in Tai,s is passing through a and in this case we have to add

the connections between the two subtrees which are connected by a path of length at most L

(which is given by the third term).

Formula (8.3) is based on a similar argument as Tas,s = a+ Tas .

Equation (8.4) reŕects the fact that when the subtree consists of just a leaf, the decision

to make is whether to remove the leaf (k = 1) or not (k = 0), and in both cases the number

of paths survive in Ta is 0.

Assuming that the tree T is rooted at node 1, the optimal value for the problem is given

by

OPT = min{F1(m0, · · · ,mL−1,K) : m0 ∈ {0, 1}, m1, · · · ,mL−1 ≥ 0,
L−1
∑

j=1

mj ≤ n}, (8.5)

and the optimal solution is recovered by backtracking. We get the following proposition.

70CHAPTER 8. DISTANCE-BASED CRITICAL NODE/EDGE DETECTION PROBLEM

Proposition 8.1.1. D-CNDP on trees for Class 1 with unit costs and unit node weights can

be solved by recursion (8.1)ś(8.4) in O(n3L−2K2) time.

Proof. For each node a ∈ V there are at most O(nL) values for m0,m1, · · · ,mL−1 and O(K)

values for k; this gives O(n2L−1K) values of F and G to compute. The heaviest computation

is that of equation (8.2) that requires at most O(nL−1K) steps. Hence in the worst case a

number of operations bounded by O(n3L−2K2) are required.

8.2 D-CNDP on trees for Class 2

The goal in this circumstance is to maximize the number of node-pairs still connected by a

path of length at least L, for some natural number L, that survive in a tree T (V,E) after

removing at most K nodes.

For convenience we denote by D(T) the diameter of the tree T , by D(Tai,s) the length of

the longest path from a node in Tai to a node in Tai+1,s
, by D(Tas) the length of the longest

path from node a to a node in Tas . Let L′ = D(T) − L where L′ is őxed. In order to solve

the problem by dynamic programming, we deőne the following functions.

• Fa(m0,m1, · · · ,mL′−1, k) = maximum number of paths of length ≥ L′ surviving in Ta

when k nodes are removed from Ta and for every j, mj is the number of nodes whose

distance from the root a is D(Ta)− j (for instance, m0 is the number of nodes farthest

from the root, m1 is the number of nodes on the level before and so on).

• Gai(m0,m1, · · · ,mL′−1, k) = maximum number of paths of length ≥ L′ surviving in the

subtree Tai,s = a+ Tai + · · ·+ Tas when k nodes are removed from Tai,s and for every j,

mj is the number of nodes whose distance from the root a is D(Tai,s)− j.

We let the function values be inőnity whenever the conditions cannot be satisőed. The

values for F and G can be computed by traversing the tree in postorder (from leaves to root),

by means of the following relations:

Fa(m0,m1, · · · ,mL′−1, k) = Ga1(m0,m1, · · · ,mL′−1, k) for any non-leaf node a ∈ V ; (8.6)

8.2. D-CNDP ON TREES FOR CLASS 2 71

Gai(m0, · · · ,mL′−1, k) =


















































0 if D(Tai,s) < D − L′,

max{Fai(m
′
0, · · · ,m

′
L′−1

, q) +Gai+1
(m′′

0, · · · ,m
′′
L′−1

, k − q)

+
∑t

l=0

∑t+l
j=0

m′
jm

′′
t+l−j : q = 0, . . . , k;m′

0, · · · ,m
′
L′−1

≥ 0;

m′′
0, · · · ,m

′′
L′−1

≥ 0;m′
0 + · · ·+m′

L′−1
≤
∣

∣Tai

∣

∣ ;

m′′
0 + · · ·+m′′

L′−1
≤
∣

∣

∣
Tai+1,s

∣

∣

∣
} if D(Tai,s) = D − L′ + t for some t = 0, · · · , L′,

(8.7)

for any non-leaf node a ∈ V and i < s.

The initial conditions on each leaf a and on each rightmost subtree Tas are the following:

Fa(m0, · · · ,mL′−1, k) =



















0 if (m0 = · · · = mL′−1 = 0, k = 1) or

(m0 = 1,m1 = · · · = mL′−1 = 0, k = 0),

−∞ otherwise,

(8.8)

Gas(m0, · · · ,mL′−1, k) =


















































−∞ if m0 = · · · = mL′−1 = k = 0,

0 if D(Tas) < D − L′,

max{Fas(m
′
0, · · · ,m

′
L′−1

, k − 1), Fas(m
′
0, · · · ,m

′
L′−1

, k)

+
∑t−1

j=0
m′

j : m
′
0, · · · ,m

′
L′−1

≥ 0;

m′
0 + · · ·+m′

L′−1
≤|Tas |} if D(Tas) = D − L′ + t for some t = 0, · · · , L′.

(8.9)

Formula (8.8) is immediate, while (8.6) follows from the fact that Ta = Ta1,s for every

non-leaf node a ∈ V .

In equation (8.7), we have to őnd paths of length D − L′, D − L′ + 1, · · · , D that are

surviving in Tai or in Tai+1,s or in Tai,s = Tai +Tai+1,s
. In order to compute the overall number

of nodes connected to a at a minimum distance of D − L′ in Gai(.), we have to consider the

maximum number of paths that survive in Tai when q nodes are removed from Tai plus the

maximum number of paths that survive in Tai+1,s
when k− q nodes are removed from Tai+1,s

.

Also, the third term should be added if Tai,s contains a path of length at least D − L′ that

intersects both Tai and Tai+1,s.

The justiőcation of formula (8.9) is similar to (8.7) and in this case one also need to know

the node as is removed or not. Considering the removal of the node as, we have to take the

better of two possibilities, which correspond to the two arguments of the outer maximum.

72CHAPTER 8. DISTANCE-BASED CRITICAL NODE/EDGE DETECTION PROBLEM

If we denote by 1 the root node of the tree T , the optimal value for the problem is given

by

OPT = max{F1(m0, · · · ,mL′−1,K) : m0,m1, · · · ,mL′−1 ≥ 0,
L′−1
∑

j=0

mj ≤ n}, (8.10)

and the optimal solution is recovered by backtracking. We obtain the following result.

Proposition 8.2.1. D-CNDP on trees for Class 2 with unit costs and unit node weights can

be solved by recursion (8.6)ś(8.9) in O(n3L′+1K2) time.

Proof. The proposed dynamic program, the number of functions Fa(.) and Ga(.) can be

bounded by O(n2L′+1K) to compute for each node a ∈ V . The heaviest computation is

that of equation (8.7) that requires at most O(nL′

K) steps. The overall complexity is thus

O(n3L′+1K2).

We also established the following result:

Theorem 8.2.2. For the problem of maximizing the number of paths of length at least L, there

is an optimal solution which can be obtained by recursively removing a leaf from the residual

graph.

Proof. The problem calls for maximizing the number of paths of length ≥ L surviving in a

tree T = (V,E) after having removed at most K nodes. Let v1, v2, · · · , vk be nodes removed

in some optimal solution. First we show that the graph induced by the nodes v1, v2, · · · , vk is

connected.

After removing v1, the remaining problem is to remove k−1 nodes in T\{v1}. By induction,

v2 is a leaf of T\{v1} and v2, v3, · · · , vk are connected (or there is an equivalent solution with

this property). Let us consider this other solution: v2, v1, v3, · · · , vk. If v2 is a leaf of T , then

we are done. If v2 is not a leaf of T and by induction v2 is a leaf of T\{v1}, then v1 and v2

are neighbors. With this same argument, we can say that v1, v2, · · · , vk are connected.

Denote the set S = {v1, v2, · · · , vk}. If any node in S is a leaf, then we are done. Consider

every node in S is an interior node and let l1 be the closest leaf to S. We show that for every

path P of length ≥ L that disappears when l1, v2, · · · , vk removed, there is a path P ′ of length

≥ L that disappears when v1, v2, · · · , vk are removed and length (P ′) ≥ L.

Let P be the path of length ≥ L that disappears when l1 is removed. Note that P starts

at l1. If P contains some nodes in S, then P ′ = P . So assume P does not contain any node

in S = {v1, v2, · · · , vk}, but it is destroyed when removing l1, v2, · · · , vk.

Let Q be the path from l1 to S (see Figure 8.1). Let l2 be the last node of P belonging to

Q and l3 be the last node of P (possibly l3 = l2). Let m be any leaf of T that can be reached

starting from S without using any edge of Q. Let P ′ be the path from m to l3. Clearly, P ′

disappears if some node in S is removed. We show that P ′ has length ≥ L.

8.2. D-CNDP ON TREES FOR CLASS 2 73

S
l1 l2

l3

m

Q

dP

a b

c

Figure 8.1: Illustration of the proof of Theorem 8.2.2.

Let the distance from l1 to l2 be a, l2 to S be b, S to m be c and l2 to l3 be d (could be

zero). Since m is a leaf and l1 is the closest leaf to S, so

dist(S,m) ≥ dist(S, l1) =⇒ c ≥ a+ b

Now, length of P ′ ≥ c + b + d ≥ a + b + b + d > L because b > 0 and a + d = length of

P ≥ L. Clearly, P1 ̸= P2 =⇒ P ′
1 ̸= P ′

2 because P1 and P2 have different őnal nodes.

According to the preceding theorem, we must always remove a leaf from a tree at each step

in order to maximize the path of length at least L, but we do not know which leaf should be

eliminated. Furthermore, it is not true that at every stage iteration will choose the best leaf

in order to achieve the best result and we call a leaf is the best if it destroys less connection of

length at least L comparing to other leaves. Let us consider the tree depicted in Figure 8.2.

Assume that our goal in this example is to maximize the number of node pairs connected by

a path of length L ≥ 7 that survive after removing at most K = 2 nodes with unit costs and

node weights from the given tree T . We will destroy 4 paths of length L ≥ 7 if we remove

node 1, while we will destroy 3 paths of length L ≥ 7 if we remove node 7. After deleting node

7, the best leaf to delete is node 6, because we would be destroying 2 paths of length L ≥ 7.

So, in total, (3 + 2) = 5 paths of length L ≥ 7 will be destroyed by deleting nodes 7 and 6,

respectively, where the best leaf will be removed at each step. However, removing node 1 and

subsequently node 2 will destroy, in total, (4 + 0) = 4 paths of length L ≥ 7. As a result, we

will delete nodes 1 and 2 instead of nodes 7 and 6, despite the fact that node 1 was not the

ideal leaf to remove at őrst step.

74CHAPTER 8. DISTANCE-BASED CRITICAL NODE/EDGE DETECTION PROBLEM

1 2 3 4 5 6 7

8

9

10

11 12

13

14
15

16

17

18

19
20

21

Figure 8.2: Solution for a D-CNDP of Class 2 when L = 7 and K = 2 with unit costs and

unit node weights.

8.3 D-CEDP on trees for Class 1

The goal is to reduce the number of node-pairs remaining connected by a path of length at

most L, for some natural number L, that survive in a tree T (V,E) after at most K edges have

been eliminated.

In order to solve the problem by dynamic programming, we deőne the following functions.

• Fa(m1,m2, · · · ,mL−1, k) = minimum number of paths of length ≤ L surviving in Ta

when k edges are removed from Ta and m1,m2, · · · ,mL−1 represents the number of

nodes surviving in Ta having distance 1, 2, · · · , (L− 1) respectively from a.

• Gai(m1,m2, · · · ,mL−1, k) = minimum number of paths of length ≤ L surviving in

the subtree Tai,s = a + Tai + · · · + Tas when k edges are removed from Tai,s and

m1,m2, · · · ,mL−1 represents the number of nodes surviving in Tai,s having original

distance 1, 2, · · · , (L− 1) respectively from a.

We let the function values be inőnity whenever the conditions cannot be satisőed. The

values for F and G can be computed by traversing the tree in postorder (from leaves to root),

8.3. D-CEDP ON TREES FOR CLASS 1 75

by means of the following relations:

Fa(m1, · · · ,mL−1, k) = Ga1(m1, · · · ,mL−1, k) for any non-leaf node a ∈ V ; (8.11)

Gai(m1, · · · ,mL−1, k) =






















































































min{Fai(m
′
1, · · · ,m

′
L−1

, 0) +Gai+1
(m′′

1, · · · ,m
′′
L−1

, 0)

+
∑L

l=1

∑l−1

j=0
m′

jm
′′
l−1−j :

m′
j = 0, . . . ,

∣

∣

∣
V (Tai,j)

∣

∣

∣
− 1, m′′

j = mj −m′
j−1} if k = 0,

min{min{Fai(m
′
1, · · · ,m

′
L−1

, q) +Gai+1
(m1, · · · ,mL−1, k − 1− q) :

m′
j = 0, . . . ,

∣

∣

∣
V (Tai,j)

∣

∣

∣
− 1, q = 0, . . . , k − 1},

min{Fai(m
′
1, · · · ,m

′
L−1

, q) +Gai+1
(m′′

1, · · · ,m
′′
L−1

, k − q)

+
∑L

l=1

∑l−1

j=0
m′

jm
′′
l−1−j : m

′
j = 0, . . . ,

∣

∣

∣
V (Tai,j)

∣

∣

∣
− 1,

m′′
j = mj −m′

j−1, q = 0, . . . , k}} if k > 0,

(8.12)

for any non-leaf node a ∈ V where i < s and
∣

∣

∣
V (Tai,j)

∣

∣

∣
denotes the number of nodes in Tai at

distance j from ai for each j = 1, . . . , L− 1.

The initial conditions on each leaf a and on each rightmost subtree Tas are the following:

Fa(m1, · · · ,mL−1, k) =







0 if m1 = · · · = mL−1 = 0, k = 0,

∞ otherwise,
(8.13)

Gas(m1, · · · ,mL−1, k) =


















































min{Fas(m
′
1, · · · ,m

′
L−1

, k) + 1 +m′
1 + · · ·+m′

L−1
:

m′
j = mj+1, j = 0, . . . , L− 1} if k = 0 or mj > 0 for some j ∈ {1, . . . , L− 1},

min{Fas(m
′
1, · · · ,m

′
L−1

, k − 1) :

m′
j = 0, . . . ,

∣

∣

∣
V (Tas,j)

∣

∣

∣
− 1} if k > 0 and mj = 0 for all j ∈ {1, . . . , L− 1},

∞ otherwise.

(8.14)

Equation (8.11) follows because Ta = Ta1,s for any non-leaf node a ∈ V .

Recursion (8.12) can be interpreted as follows:

The case k = 0 means that we are not removing any edge from Tai,s = Tai + Tai+1,s
.

Since we have to keep everything, we are not allowed to remove anything from F and G.

The expression Fai(m
′
1, · · · ,m

′
L−1

, 0) gives the minimum number of paths in Tai of length

76CHAPTER 8. DISTANCE-BASED CRITICAL NODE/EDGE DETECTION PROBLEM

1, . . . , L−1 with the condition that m′
j nodes are connected at distance j from the root ai and

Gai+1
(m′′

1, · · · ,m
′′
L−1

, 0) gives the minimum number of paths in Tai+1,s
of length 1, . . . , L − 1

under the condition that m′′
j nodes are connected at distance j to the root a. Since we are not

removing any edge, we have to add the paths of length 1, . . . , L−1 passing through the edge a to

ai, i.e.,
∑L

l=1

∑l−1

j=0
m′

jm
′′
l−1−j paths. Hence by deőnition of F and G the minimum number of

paths that survive in Tai,s when we are not removing anything will be Gai(m1, · · · ,mL−1, 0) =

min{Fai(m
′
1, · · · ,m

′
L−1

, 0) +Gai+1
(m′′

1, · · · ,m
′′
L−1

, 0) +
∑L

l=1

∑l−1

j=0
m′

jm
′′
l−1−j}.

The case k > 0 means that we have to remove at least one edge. Note that the edge e

(which connects a to ai) is the connecting edge between the functions F and G. There are two

cases to compute the value of Gai(m1, · · · ,mL−1, k) based on the edge e, either we remove e

or we have to keep it. Consider őrst the case when the edge e is removed. In this case when q

edges have been removed from Tai , exactly k−1−q edges must be removed from Tai+1,s
. Thus

the minimum number of paths of length 1, . . . , L−1 at the respective distance to the root that

survive in Tai,s when q edges are removed from Tai (and the other k−1− q edges are removed

from Tai+1,s
) is given by the formula minq{Fai(m

′
1, · · · ,m

′
L−1

, q) + Gai+1
(m′′

1, · · · ,m
′′
L−1

, k −

1− q)}.

Consider now the case when the edge e is not removed. Expression Fai(m
′
1, · · · ,m

′
L−1

, q)

gives the minimum number of paths of length 1, . . . , L− 1 and m′
j nodes are connected to the

root ai at distance j that survive in Tai when q edges are removed from Tai . Since q edges

have been removed from Tai , exactly k−q edges must be removed from Tai+1,s
. The minimum

number of paths of length 1, . . . , L − 1 at distance j from the root a that survive in Tai+1,s

when k − q edges are removed from Tai+1,s
is given by Gai+1

(m′′
1, · · · ,m

′′
L−1

, k − q). Thus the

expression Fai(m
′
1, · · · ,m

′
L−1

, q) +Gai+1
(m′′

1, · · · ,m
′′
L−1

, k− q) gives the minimum number of

paths of length 1, . . . , L− 1 that survive in Tai or Tai+1,s
when q edges are removed from Tai

(and the other k − q edges are removed from Tai+1,s
). Since we are not removing the edge e,

we have to add the paths of length 1, . . . , L − 1 connecting nodes of Tai to nodes of Tai+1,s
,

i.e.,
∑L

l=1

∑l−1

j=0
m′

jm
′′
l−1−j paths. By taking the minimum over q = 0, . . . , k, we őnd the value

of Gai(m1, · · · ,mL−1, k).

Equation (8.13) handles the case of a one-node tree. Since a ∈ V is a leaf, it is not possible

to remove any edge (k = 0) and only a is connected to itself (m1 = · · · = mL−1 = 0) and the

number of paths surviving in Ta is 0.

For a justiőcation of (8.14), recall that Tas,s = a + Tas . Here the distinction is based on

whether we keep the the edge a to as or not. We must keep the edge a to as exactly when

k = 0 or at least one of the parameters mj ’s is positive. While if k > 0 and all mj ’s are zero,

then we are forced to remove the edge a to as.

Assuming that the tree T is rooted at node 1, the optimal value for the problem is given

8.4. IP FORMULATIONS FOR D-CEDP 77

by

OPT = min{F1(m1, · · · ,mL−1, k) :
L−1
∑

j=1

mj < n, k = 0, · · · ,K}, (8.15)

and the optimal solution is recovered by backtracking. We get the following proposition.

Proposition 8.3.1. D-CEDP on trees for Class 1 with unit costs and unit edge weights can

be solved by recursion (8.11)ś(8.14) in O(n3L−2K2) time.

Proof. For each node a ∈ V there are at most O(nL) values for m0,m1, · · · ,mL−1 and O(K)

values for k; this gives O(n2L−1K) values of F and G to compute. The heaviest computation

is that of equation (8.12) that requires at most O(nL−1K) steps. Hence in the worst case a

number of operations bounded by O(n3L−2K2) are required.

We point out that the proposed dynamic program is more of a theoretical contribution to

the class of distance functions, as the algorithm becomes intractable even for modest values

of parameter L in practice.

8.4 IP formulations for D-CEDP

Let G(V,E) be an undirected graph with |V | = n nodes and let K > 0 be an integer which is

the maximum number of edges that can be removed. Now we create the graph G′ = (V ′, E′)

by subdividing every edge of G as described in Chapter 4. Now we consider the restricted

CNDP on G′ with the allowed set A = V ′ \ V , i.e., the set of newly created vertices. Then

the problem of removing at most K edges on G becomes the problem of removing at most

K nodes on G′ but here we are allowed to remove K nodes only from the set A of newly

created nodes. Our objective is to minimize the number of node-pairs still connected by a

path of length ≤ L, for some given natural number L, surviving in a graph G(V,E) after

having removed at most K nodes from A.

The optimal solution of the D-CEDP for minimizing the number of paths of length ≤ L

can be determined by using an integer programming (IP) formulation. The IP formulation is

described below.

Deőne the binary variables ulij and vi as follows:

ulij =







1, if i, j are connected by a path of length ≤ l

0, otherwise,

where i, j ∈ V ′ and l ∈ {1, 2, ..., 2L},

and

vi =







1, if node i is deleted from the graph

0, otherwise.

78CHAPTER 8. DISTANCE-BASED CRITICAL NODE/EDGE DETECTION PROBLEM

Then the problem admits the following integer programming formulations:

(D-CEDP) minimize
∑

i,j∈V ′\V, i<j

u2Lij (8.16)

subject to

u1ij + vi + vj ≥ 1, ∀ij ∈ E′ (8.17)

ulij + u1jk − ul+1

ki ≤ 1, ∀ i ∈ V ′, ∀ jk ∈ E′, j < k, ∀ l ∈ {1, 2, ..., 2L− 1} (8.18)

ulik + u1kj − ul+1

ji ≤ 1, ∀ i ∈ V ′, ∀ jk ∈ E′, j < k, ∀ l ∈ {1, 2, ..., 2L− 1} (8.19)

ulij ≤ ul+1

ij , i < j, ∀i, j ∈ V ′, ∀ l ∈ {1, 2, ..., 2L− 1} (8.20)

∑

i∈A

vi ≤ K (8.21)

vi = 0, ∀i /∈ A, (8.22)

ulij ∈ {0, 1}, ∀i, j ∈ V ′, ∀ l ∈ {1, 2, ..., 2L} (8.23)

vi ∈ {0, 1}, ∀i ∈ V ′. (8.24)

The objective of this model is to őnd a set S of K nodes from the set A of length ≤ L

whose removal cause minimum pairwise connectivity in the induced subgraph G(V \S). Since

we are working on G′, the graph has double length and the objective function (8.16) minimizes

the number of node-pairs still connected by a path of length ≤ 2L surviving in a graph G′

after having removed at most K nodes from A. Constraint (8.17) means that if nodes i and

j are in different components and there is an edge between them, then one of them should

be deleted. As shown in [60], constraints (8.18) and (8.19) altogether indicate that if node i

is connected to node j by a path of length l and node j is connected to node k by an edge,

then node i must also be connected with node k by a path of length l + 1. Constraint (8.20)

implies that if nodes i and j are connected by a path of length l, then they are also connected

by a path of length l+1. Constraint (8.21) guarantees that the number of nodes to be deleted

is at most K. Constraint (8.22) says that only the allowed vertices can be removed. Finally,

(8.23) and (8.24) deőne the proper domains for the variables used.

Chapter 9

Conclusion

This chapter summarizes the contribution of the thesis and discusses avenues for possible

future research.

9.1 Summary of contribution

In this thesis we focused our study on identifying critical nodes and/or edges from a graph,

whose deletion results in the minimum pairwise connectivity among the remaining nodes. We

őrst studied a particular case of the critical node detection problem, namely the Distance-

based Critical Node Detection Problem (D-CNDP) over paths. We considered four versions

of the D-CNDP on paths and provided closed-form solution to solve the problems.

We then investigated the critical edge detection problem over trees. We showed that the

cases with unit connection costs and unit or arbitrary edge weights are solvable in polynomial

time through dynamic programming approaches. We also showed that CNEDP-1 (i.e., a joint

weight limit for the removal of nodes and edges is given) can be solved in polynomial time when

the connection costs are all unitary and the node and edge weights are general nonnegative

numbers, while CNEDP-2 (i.e., two separate weight limits for the removal of nodes and edges

are given) can be solved in polynomial time when the connection costs are őxed to 1 as well as

the node and edge weights. We proved that CNEDP-2 with unit connection costs and general

nonnegative weights is NP-complete even on a path through a reduction from Partition.

The CNDP is known to be NP-hard on general graphs [8]. In [27], it has been shown that

the pairwise connectivity CNDP on a tree is NP-hard even if the node weights are all equal to

1 and the connection costs are 0/1. On the one hand we proved that CEDP, CNEDP-1, and

CNEDP-2 are all NP-hard under the assumptions that the node/edge weights are unitary

and the connection costs are 0/1, and on the other hand we have provided polynomial time

algorithms when the connection costs are square 0/1 connection costs. The problem was then

analyzed when the number of leaves of the tree is a constant. We proposed dynamic program-

ming algorithms for CNDP, CEDP, and CNEDP-1 over trees (including the special case of

79

80 CHAPTER 9. CONCLUSION

a path) with arbitrary 0/1 connection costs and general nonnegative node/edge weights. We

also presented integer programming formulations which provide optimal solutions for CNDP,

CEDP, CNEDP-1, and CNEDP-2.

Finally we proposed dynamic programming algorithms for the Distance-based Critical

Node/Edge Detection Problem over trees. We have found that the D-CNDP based on Class

1 and Class 2 can be solved polynomially when its input parameter L is considered őxed. We

proved that to remove K nodes from a tree for maximizing the number of paths of length

at least L, there is an optimal solution by recursively removing a leaf. We also provided

polynomial time algorithms to solve the D-CEDP on trees of Class 1 when parameter L is

őxed. We presented integer programming formulations for the D-CEDP.

9.2 Directions for future work

We wrap up this dissertation by addressing some unresolved questions.

We have seen that all most all of the variants of the CNDP, CEDP, CNEDP-1, and

CNEDP-2 considered in this thesis can be solved in polynomial time on trees. In the future, it

would be interesting to see extensions of our results to more general graphs rather than trees.

We have seen in Chapter 6 that with a constant number of leaves our problems are poly-

nomial time solvable, but these problems are not őxed-parameter tractable. A problem is said

to be a őxed-parameter tractable (FPT) if it can be solved by algorithms that are exponential

only in the size of a őxed parameter, while polynomial in the size of the input. In this context

one natural question raises: Does FPT algorithm exist for the problems that we considered

or it is impossible to őnd it?

As shown in Chapter 8, since all the versions of the distance-based critical node/edge

problem over trees that we considered are polynomial time solvable when parameter L is

constant, it would be interesting to see what happens if the parameter L is not constant.

Finally, there are no computational experiments in this dissertation. This is also an aspect

that should be explored.

Bibliography

[1] Addis, B., Aringhieri, R., Grosso, A., Hosteins, P.: Hybrid constructive heuristics for the

critical node problem, Annals of Operations Research, 238(1-2), 637ś649 (2016).

[2] Addis, B., Di Summa, M., Grosso, A.: Identifying critical nodes in undirected graphs:

Complexity results and polynomial algorithms for the case of bounded treewidth, Discrete

Applied Mathematics, 161(16), 2349ś2360 (2013).

[3] Albert, R., Jeong, H., A. L. Barabasi, A. L.: Error and attack tolerance of complex

networks, Nature, 406, 378ś382 (2000).

[4] Alozie, G.U., Arulselvan, A., Akartunalı, K., Pasiliao Jr, E.L.: Efficient methods for

the distance-based critical node detection problem in complex networks, Computers &

Operations Research, 131(1):105254 (2021).

[5] Aringhieri, R., Grosso, A., Hosteins, P., Scatamacchia, R.: A general evolutionary frame-

work for different classes of critical node problems, Engineering Applications of Artiőcial

Intelligence, 55, 128ś145 (2016).

[6] Aringhieri, R., Grosso, A., Hosteins, P., Scatamacchia, R.: Local search metaheuristics

for the critical node problem, Networks, 67(3), 209ś221 (2016).

[7] Aringhieri, R., Grosso, A., Hosteins, P., Scatamacchia, R.: Polynomial and pseudo-

polynomial time algorithms for different classes of the distance critical node problem,

Discrete Applied Mathematics, 253, 103ś121 (2019).

[8] Arulselvan A., Commander C.W., Elefteriadou L., Pardalos P.M.: Detecting critical nodes

in sparse graphs, Computers & Operations Research, 36, 2193ś2200 (2009).

[9] Arulselvan, A., Commander, C. W., Pardalos, P. M. and Shylo, O.: Managing network

risk via critical node identiőcation, Gulpinar, N., Rustem, B. (eds.) Risk Management in

Telecommunication Networks, 2010.

[10] Arulselvan, A., Commander, C.W., Shylo, O., Pardalos, P.M.: Cardinality constrained

critical node detection problem, in: Performance Models and Risk Management in Com-

munications Systems, Springer, 79ś91 (2011).

81

82 BIBLIOGRAPHY

[11] Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses and

the sum-of-squares partition problem, in: Proceedings of the Sixteenth Annual ACM-

SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathe-

matics, 43ś52 (2005).

[12] Avidor, A., Langberg, M.: The multi-multiway cut problem, Theoret. Comput. Sci., 377

(1ś3), 35ś42 (2007).

[13] Berger, A., Grigoriev, A., van der Zwaan, R.: Complexity and approximability of the

k-way vertex cut, Networks, 63(2), 170ś178 (2014).

[14] Boginski, V., Commander, C.: Identifying critical nodes in protein-protein interaction

networks, In: S. Butenko, W. Chaovalitwongse, P. Pardalos (eds.) Clustering challenges

in biological networks, 153ś167. World Scientiőc (2009).

[15] Borgatti, S.P.: Identifying sets of key players in a network, Computational and Mathe-

matical Organization Theory, 12, 21ś34 (2006).

[16] Brown, G., Carlyle, M., Salmerón, J., Wood, K.: Defending critical infrastructure, Inter-

faces, 36(6), 530ś544 (2006).

[17] Buluc, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph

partitioning, in: Algorithm Engineering, Springer, 117ś158 (2016).

[18] Chopra, S., Rao, M.R.: On the multiway cut polyhedron, Networks, 21 (1), 51ś89 (1991).

[19] Chopra, S., Owen, J.H.: Extended formulations for the A-cut problem, Math. Program.,

73 (1), 7ś30 (1996).

[20] Church, R.L., Scaparra, M.P., Middleton, R.S.: Identifying critical infrastructure: The

median and covering facility interdiction problems, Ann. Assoc. Am. Geogr. 94(3),

491ś502 (2004).

[21] Cohen, R., Ben Avraham, D., Havlin, S.: Efficient immunization strategies for computer

networks and populations, Physical Review Letters, 91, 247901ś247905 (2003).

[22] Commander, C.W., Pardalos, P.M., Ryabchenko, V., Uryasev, S., Zrazhevsky, G.: The

wireless network jamming problem, Journal of Combinatorial Optimization, 14, 481ś498

(2007).

[23] Corley, H., Sha, D.Y.: Most vital links and nodes in weighted networks, Oper. Res. Lett.,

1(4), 157ś160 (1982).

[24] Costa, M.-C., Letocart, L., Roupin, F.: Minimal multicut and maximal integer multiŕow:

A survey, European J. Oper. Res., 162 (1), 55ś69 (2005).

BIBLIOGRAPHY 83

[25] Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Efficiency of scale-free networks:

Error and attack tolerance, PHYSICA A, 320, 622ś642 (2003).

[26] Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The

complexity of multiterminal cuts, SIAM J. Comput., 23 (4), 864ś894 (1994).

[27] Di Summa, M., Grosso, A., Locatelli, M.: Complexity of the critical node problem over

trees, Computers & Operations Research, 38(12), 1766ś1774 (2011).

[28] Di Summa, M., Grosso, A., Locatelli, M.: Branch and cut algorithms for detecting crit-

ical nodes in undirected graphs, Computational Optimization and Applications, 53(3),

649ś680 (2012).

[29] Dinh, T., Xuan, Y., Thai M.T. Park, E., Znati, T.: On approximation of new optimization

methods for assessing network vulnerability, In: Proceedings of INFOCOM, IEEE (2010).

[30] Dinh, T.N., Thai, M.T.: Precise structural vulnerability assessment via mathematical pro-

gramming, in: Military Communications Conference, MILCOM 2011, IEEE, 1351ś1356

(2011).

[31] Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of

assessing network vulnerability: Hardness and approximation, Networking, IEEE/ACM

Transactions on, 20(2), 609ś619 (2012).

[32] Dinh, T.N., Thai, M.T.: Assessing attack vulnerability in networks with uncertainty, in:

IEEE International Conference on Computer Communications (INFOCOM), IEEE, 2015.

[33] Elefteriadou L.: Highway capacity, in Kutz M. (ed.) Handbook of transportation engineer-

ing, New York, McGraw-Hill, chapter 8 (2004).

[34] Fan, N., Pardalos, P.: Robust optimization of graph partitioning and critical node detec-

tion in analyzing networks, In: W. Wu, O. Daescu (eds.) International Conference on

Combinatorial Optimization and Applications, Lecture Notes in Computer Science, vol.

6508, pp. 170ś183. Springer (2010).

[35] Fjallstrom, P.-O.: Algorithms for Graph Partitioning: A Survey, Linkoping University

Electronic Press Linkoping, Vol. 3, (1998).

[36] Garey, M., Johnson, D.: Computers and intractability, W. H. Freeman and Co., San

Francisco, Calif. (1979), A guide to the theory of NP-completeness, A Series of Books in

the Mathematical Sciences.

[37] Garg N., Vazirani V.V., Yannakakis M.: Primal-dual approximation algorithms for inte-

gral ŕow and multicut in trees, Algorithmica, 18, 3ś30 (1997).

84 BIBLIOGRAPHY

[38] Goldschmidt, O., Hochbaum, D.S.: A polynomial algorithm for the k-cut problem for őxed

k, Math. Oper. Res. 19 (1), 24ś37 (1994).

[39] Grubesic, T.H., Matisziw T.C., Murray, A.T., Snediker D.: Comparative approaches for

assessing network vulnerability, Int. Reg. Sci. Rev., 31(1), 88ś112 (2008).

[40] Guo, J., Niedermeier, R.: Fixed-parameter tractability and data reduction for multicut in

trees, Networks, 46 (3), 124ś135 (2005).

[41] He, X.: An improved algorithm for the planar 3-cut problem, J. Algorithms, 12 (1), 23ś37

(1991).

[42] He, J., Liang, H., Yuan, H.: Controlling infection by blocking nodes and links simultane-

ously, In: N. Chen, E. Elkind, E. Koutsoupias (eds.) International Workshop on Internet

and Network Economics (WINE 2011), Lecture Notes in Computer Science, vol. 7079,

pp. 206ś217. Springer (2011).

[43] Hooshmand, F., Mirarabrazi,F., MirHassani, S.A.: Efficient Benders decomposition for

distance-based critical node detection problem, Omega, 93:102037, (2020).

[44] Houck, D.J., Kim, E., O’Reilly, G.P., Picklesimer, D.D., Uzunalioglu, H.: A network sur-

vivability model for critical national infrastructures, Bell Labs Technical J., 8(4), 153ś172

(2004).

[45] Israeli, E., Wood, R.K.: Shortest-path network interdiction, Networks, 40(2), 97ś111

(2002).

[46] Jenelius, E., Petersen, T., Mattsson, L.G.: Importance and exposure in road network vul-

nerability analysis, Transportation Research Part A: Policy and Practice 40(7), 537ś560

(2006).

[47] Jhoti, H., Leach, A.R.: Structure-based Drug Discovery, Springer, 2007.

[48] Krebs V.: Uncloaking terrorist networks, First Monday, 7 (2002).

[49] Kuhlman, C., Kumar, V., Marathe, M., Ravi, S., Rosenkrantz, D.: Finding critical nodes

for inhibiting diffusion of complex contagions in social networks. In: J. Balc´azar, F.

Bonchi, A. Gionis, M. Sebag (eds.) Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, Lecture Notes in Computer Science, vol. 6322, pp.

111ś127. Springer (2010).

[50] Kuhlman, C., Tuli, G., Swarup, S., Marathe, M., Ravi, S.: Blocking simple and com-

plex contagion by edge removal, In: 13th International Conference on Data Mining, pp.

399ś408. IEEE (2013).

BIBLIOGRAPHY 85

[51] Lalou, M., Tahraoui, M., Kheddouci, H.: Component-cardinality-constrained critical node

problem in graphs, Discrete Applied Mathematics, 210, 150ś163 (2016).

[52] Lalou, M., Tahraoui, M., Kheddouci, H.: The critical node detection problem in networks:

A survey, Computer Science Review, 28, 92ś117 (2018).

[53] Liljefors, T., Krogsgaard-Larsen, P., Madsen, U.: Textbook of Drug Design and Discovery,

CRC Press, 2002.

[54] Marx, D.: Parameterized graph separation problems, Theoret. Comput. Sci., 351 (3),

394ś406 (2006).

[55] Matisziw, T.C., Murray, A.T.: Modeling s-t path availability to support disaster vulnera-

bility assessment of network infrastructure, Comput. Oper. Res., 36, 16ś26 (2009).

[56] Miller, J. C., and Hyman, J. M.: Effective vaccination strategies for realistic social net-

works, Physica A: Statistical Mechanics and its Applications, 386(2):780ś785, (2007).

[57] Myung, Y.-S. and Kim, H.-J.: A cutting plane algorithm for computing k-edge survivability

of a network, European Journal of Operational Research, 156(3), 579ś589 (2004).

[58] Nguyen, D., Shen, Y., Thai, M.: Detecting critical nodes in interdependent power networks

for vulnerability assessment, IEEE Transactions on Smart Grid, 4(1), 151ś159 (2013).

[59] Oosten, M., Rutten, J.H.G.C., Spieksma, F.C.R.: Disconnecting graphs by removing

vertices: a polyhedral approach, Statistica Neerlandica 61(1), 35ś60 (2007).

[60] Pavlikov, K.: Improved Formulations for Minimum Connectivity Interdiction Problems,

Computers & Operations Research 97, 48-57 (2018).

[61] Pawson, T., Nash, P.: Proteinśprotein interactions deőne speciőcity in signal transduc-

tion, Genes Dev. 14(9), 1027ś1047 (2000).

[62] Pothen, A.: Graph partitioning algorithms with applications to scientiőc computing, in:

Parallel Numerical Algorithms, Springer, 323ś368 (1997).

[63] Prieto, C., De Las Rivas, J.: APID: agile protein interaction DataAnalyzer, Nucleic Acids

Res. 34 (suppl. 2), W298śW302 (2006).

[64] Pullan, W.: Heuristic identiőcation of critical nodes in sparse real-world graphs, Journal

of Heuristics, 21(5), 577ś598 (2015).

[65] Purevsuren, D., Cui, G., Qu, M., Win, N.: Hybridization of grasp with exterior path re-

linking for identifying critical nodes in graphs, IAENG International Journal of Computer

Science, 44(2) (2017).

86 BIBLIOGRAPHY

[66] Purevsuren, D., Cui, G., Win, N., Wang, X.: Heuristic algorithm for identifying critical

nodes in graphs, Advances in Computer Science: an International Journal, 5(3), 1ś4

(2016).

[67] Salemi, H., Buchanan, A.: Solving the distance-based critical node problem, Optimization

Online, (2020).

[68] Salmeron, J., Wood, K.R., Baldick, R.: Analysis of electric grid security under terrorist

threat, IEEE Transactions on Power Systems, 19(2), 905ś912 (2004).

[69] Scoglio, C., Schumm, W., Schumm, P., Easton, T., Roy Chowdhury, S., Sydney, A. and

Youssef, M.: Efficient Mitigation Strategies for Epidemics in Rural Regions, PLoS ONE,

5(7): (2010).

[70] Shen, S., Smith, J.: Polynomial-time algorithms for solving a class of critical node prob-

lems on trees and series-parallel graphs, Networks, 60(2), 103ś119 (2012).

[71] Shen, S., Smith, J., Goli, R.: Exact interdiction models and algorithms for disconnecting

networks via node deletions, Discrete Optimization, 9(3), 172ś188 (2012).

[72] Shen, Y., Di, L., Wu, L., Yu, G., Tang, H., Yu, G.: Hidden Markov models for corn

progress percents estimation in multivariate time series, In: International Conference on

Agro-Geoinformatics (Agro-Geoinformatics) (2012).

[73] Shen, Y., Nguyen N.P. Xuan, Y., Thai, M.: On the discovery of critical links and nodes for

assessing network vulnerability, IEEE/ACM Transactions on Networking, 21(3), 963ś973

(2013).

[74] Smith, J. C. and Lim, C.: Algorithms for discrete and continuous multicommodity ŕow

network interdiction problems, IIE Transactions, 39, 15ś26 (2007).

[75] Tomaino, V., Arulselvan, A., Veltri, P., Pardalos, P.: Studying connectivity properties

in human protein-protein interaction network in cancer pathway, In: P. Pardalos, P.

Xanthopoulos, M. Zervakis (eds.) Data Mining for Biomarker Discovery, pp. 187ś197,

Springer (2012).

[76] Vazirani, V.: Approximation Algorithms, Springer Science & Business Media (2013).

[77] Ventresca, M.: Global search algorithms using a combinatorial unranking-based problem

representation for the critical node detection problem, Computers & Operations Research,

39(11), 2763ś2775 (2012).

[78] Ventresca, M., Aleman, D.: A fast greedy algorithm for the critical node detection problem,

in: Combinatorial Optimization and Applications, Springer, 603ś612 (2014).

BIBLIOGRAPHY 87

[79] Ventresca, M., Aleman, D.: A derandomized approximation algorithm for the critical node

detection problem, Comput. Oper. Res., 43, 261ś270 (2014).

[80] Ventresca, M., Aleman, D.: A region growing algorithm for detecting critical nodes, in:

Combinatorial Optimization and Applications, Springer, 593ś602 (2014).

[81] Ventresca, M., Aleman, D.: A randomized algorithm with local search for containment of

pandemic disease spread, Comput. Oper. Res., 48, 11ś19 (2014).

[82] Veremyev, A., Prokopyev, O., Pasiliao, E.: Critical nodes for distance-based connectivity

and related problems in graphs, Networks, 66(3), 170ś195 (2015).

[83] Veremyev, A., Prokopyev, O.A., Pasiliao, E.: An integer programming framework for crit-

ical elements detection in graphs, Journal of Combinatorial Optimization, 28(1), 233ś273

(2014).

[84] Westermarck, J., Ivaska, J., Corthals, G.L.: Identiőcation of protein interactions involved

in cellular signaling, Mol. Cell. Proteomics 12 (7), 1752ś1763 (2013).

[85] Wollmer, R.: Removing arcs from a network, Operations Research, 12, 934ś940 (1964).

[86] Wood, R.K.: Deterministic network interdiction, Mathematical and Computer Modelling,

17, 1ś18 (1993).

[87] Yan, C., Wu, F., Jernigan, R.L., Dobbs, D., Honavar, V.: Characterization of pro-

teinśprotein interfaces, Protein J. 27 (1), 59ś70 (2008).

[88] Zhao, K., Kumar, A., Harrison, T. P. and Yen, J.: Analyzing the resilience of complex sup-

ply network topologies against random and targeted disruptions, IEEE Systems Journal,

5(1), 28ś39 (2011).

[89] Zhou T., Fu Z.-Q., Wang B.-H.: Epidemic dynamics on complex networks, Progress in

Natural Science, 16, 452ś457 (2006).

