
Università di Padova – Dipartimento di Matematica “Tullio Levi-Civita”

Scuole di Dottorato in Matematica Pura e Computazionale

Seminario Dottorato 2024/25

Preface 2

Abstracts (from Seminario Dottorato’s webpage) 3

Notes of the seminars 10

Beatrice Ongarato, Hawkes Processes in Cyber-Risk Analysis: Modelization and Optimal ... . 10
Ishan Jaztar Singh, Bridging Enumerative Geometry and Quantum Integrable Hierarchies . . . 24
Pietro De Checchi, Dynamics of Environment-Embedded Quantum Systems: An Introduction 37
Enrico Sabatini, Representations of Quivers over Rings: Merging Commutative and Non- ... . 53
Erik Chinellato, Deep Unfolding: Bridging Optimization and Neural Network Interpretability . 62
Gaia Marangon, Dynamical Models for Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . 74
Giacomo Passuello, Mixing Times and Cutoffs for Markov Chains . . . . . . . . . . . . . . . . 86
Denis Shishmintsev, Meanfield Turnpike Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 99
Martina Galeazzo, An Integer Linear Programming Model for the Dynamic Airspace ... . . . . 105
Xiang Liu, Resonances and Quasi-Collisions in the Three-Body Problem . . . . . . . . . . . . . 120
Tommaso Bertin, Lavrentiev Phenomenon and SemicontinuousEnvelope for Integral Functionals . 134
Alessandra Nardi, Let’s Play Symplectic Billiards! . . . . . . . . . . . . . . . . . . . . . . . . . 142
Elena Collacciani, Inductive Methods in the Representation Theory of Finite Groups of Lie ... 148
Marco Mastrogiovanni, Parameter Estimation of Integrated Fractional Brownian Motions ... 162
Marco Di Marco, Parallel Parking 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Giacomo Ceccherini Silberstein, Hamilton Jacobi Equations in the Space of Probability ... . 183

1



Seminario Dottorato 2024/25

Preface

This document offers an overview of the activity of Seminario Dottorato 2024/25.
Our “Seminario Dottorato" (Graduate Seminar) has a double purpose. At one hand, the

speakers — usually Ph.D. students or post-docs, but sometimes also senior researchers —
are invited to communicate their researches to a public of mathematically well-educated but
not specialist people, by preserving both understandability and the flavour of a research
report. At the same time, people in the audience enjoy a rare opportunity to get an
accessible but also precise idea of what’s going on in some mathematical research area that
they might not know very well.

Let us take this opportunity to warmly thank once again all the speakers for having
held these interesting seminars and for their nice agreement to write down these notes to
leave a concrete footstep of their participation.

We are also grateful to the collegues who helped us, through their advices and sugges-
tions, in building an interesting and culturally complete program.

Padova, June 20th, 2025
Corrado Marastoni, Tiziano Vargiolu
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Abstracts (from Seminario Dottorato’s webpage)

Thursday 7 November 2024

Hawkes processes in cyber-risk analysis: modelization and optimal security investment
Beatrice Ongarato (Padova, Dip. Mat.)

With the rapid growth of the digital economy in recent years, cyber-risk has emerged as one of the
most relevant and rapidly growing sources of risk. We provide an overview of the main concepts
related to cyber-risk and examine the challenges involved in its quantification and modeling. We
introduce Hawkes processes and explain their applicability in capturing the dynamics of cyber-
attacks. Lastly, we present an ongoing project aimed at determining the optimal cyber-security
investment strategy for an organization facing cyber-attacks. The problem is framed as a stochastic
control problem with jumps and is addressed using Hamilton-Jacobi-Bellman (HJB) techniques.
We introduce the main tools needed to solve this type of problem and show some preliminary
numerical results.

Thursday 21 November 2024

Bridging Enumerative Geometry and Quantum Integrable Hierarchies
Ishan Jaztar Singh (Padova, Dip. Mat.)

Enumerative geometry explores the use of combinatorial and intersection theory techniques to solve
counting problems in algebraic geometry. Integrable hierarchies, in contrast, consist of infinite
sequences of partial differential equations with symmetries that have significance in mathematical
physics. Both fields have seen substantial developments over the past half-century. This talk will
focus on the infamous Witten-Kontsevich theorem, which establishes a deep connection between
topological invariants of the moduli space of curves and the Korteweg-de Vries hierarchy. I will
attempt to offer intuitive motivation and a formal statement of the theorem, and, time permitting,
discuss its generalizations and the role of quantum hierarchies in this context.

Thursday 5 December 2024

Dynamics of Environment-Embedded Quantum Systems: An Introduction
Pietro De Checchi (Padova, Dip. Mat.)

Closed quantum systems are an idealization, their time evolution described by the Schrödinger
Equation, i.e. by the action of unitary operators. The physics of a realistic quantum system, on the
other hand, is bound to be disturbed by the environment in which it is naturally embedded and with
which it inevitably interacts. The dimension of the space needed to fully describe the composite
system increases, as one would have to include all, possibly infinite, environments variables, leading
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to intractable problems. To reduce the system to a smaller subspace of interest and to describe
its correct dynamics, many strategies have been developed. These systems have in general non-
unitary dynamics and are known as Open Quantum Systems. During the talk, we will introduce
some of the main approaches based on various techniques, from dynamical semigroup generators,
stochastic unravellings and bottom-up modelling.

Thursday 19 December 2024

Representations of Quivers over Rings: Merging Commutative and Non-Commutative Re-
sults
Enrico Sabatini (Padova, Dip. Mat.)

In the vast universe of representation theory there are two very separate and different worlds: com-
mutative rings and finite dimensional (non-commutative) algebras. The problem of characterising
certain subcategories, like many other problems, has been solved in both fields. However, the main
techniques used for one context are generally not transferable to the other. Recently, some authors
have focused their interest on a special kind of algebras that partially merge the two fields. Here,
the apparently different results have a surprising generalisation and a unifying proof. In this talk,
I will give an overview of the two fields mentioned above, describe their main features and give an
idea of what allows such characterisations; avoiding all the technicalities. Finally, I’ll show how
the generalisation works with the aid of some interesting examples.

Thursday 9 January 2025

Deep Unfolding: Bridging Optimization and Neural Network Interpretability
Erik Chinellato (Padova, Dip. Mat.)

Deep neural networks (DNNs) have revolutionized numerous fields due to their powerful ability
to learn complex representations. However, their black-box nature and lack of interpretability in
architecture and weight design remain significant challenges. After an introductory segment on
DNNs and backpropagation learning, this seminar introduces the Deep Unfolding method as a
promising alternative, bridging the gap between data-driven learning and model-based optimiza-
tion. By unrolling iterative optimization algorithms into structured neural network architectures,
Deep Unfolding provides a principled approach to network design, enabling interpretability and
theoretical insights into their operation. We will explore how this method leverages domain knowl-
edge, achieves faster convergence, and enhances performance in resource-constrained scenarios.
The session will highlight many wide-ranging practical applications of Deep Unfolding, covering
audio source separation and recognition, image denoising and state estimation.
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Thursday 23 January 2025

Modeling Dark Matter: a Dynamics Study
Gaia Marangon (Padova, Dip. Mat.)

Dark matter is one of the most relevant and fascinating open problems in modern astrophysics.
Since it cannot be directly observed, modeling it requires a balanced mix of physical intuition,
mathematical deduction, and comparison with indirect experimental data. In this talk, I will
briefly introduce the physical context motivating our research, specifically the problem of dark
matter distributions around galaxies. Starting from the Schrödinger-Poisson system, the most
commonly used model for dark matter dynamics, I will outline the main directions our work
has taken. I will focus on two key aspects. First, I will discuss the issue of stationary states,
ranging from numerical properties to comparison with experimental data. Then, I will propose
a relativistic generalization of the model, the Klein-Gordon - Wave system. Its treatment by
Hamiltonian perturbative techniques shows the potential of mathematical physics tools in building
a comprehensive and reliable model.

Thursday 6 February 2025

Mixing times and cutoffs for Markov chains
Giacomo Passuello (Padova, Dip. Mat.)

How long does it take to shuffle a deck of 40 cards? This simple question, together with the seminal
work of Aldous and Diaconis on the cutoff phenomenon, has generated, in the last 40 years, a rich
research area in the field of discrete probability. A cutoff is a dynamical phase transition for a
random process, which appears as the size of the system becomes large. It occurs when the distance
to equilibrium of the process abruptly drops from its maximum value to zero at a critical time
scale. Establishing the occurrence of the cutoff is a delicate matter, which may require a precise
understanding of the spectral and diffusive properties of the underlying system. In this talk, I will
review some basic concepts on Markov chains and their convergence to the stationary equilibrium.
After that, I will introduce the concept of mixing time and discuss bounds on its limiting behaviour.
Finally, I will focus on the cutoff phenomenon and present some results on the mixing time of the
simple random walk on a directed random graph.

Thursday 20 February 2025

Mean Field Turnpike Theorems
Denis Shishmintsev (Padova, Dip. Mat.)

In the study of Mean Field Games (MFG), the Turnpike Property plays a crucial role in under-
standing the asymptotic behavior of large populations of agents. This property suggests that, for
sufficiently long time horizons, the optimal trajectories of agents in a dynamic system converge to
a steady-state or "turnpike" region, where their strategies remain approximately constant. The
presence of the turnpike reflects the system?s tendency to stabilize and suggests that most of the
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time, agents will follow similar paths despite starting from different initial conditions. In this
introductory talk we investigate the turnpike property in the context of Lagrangian and Eulerian
formulations of MFGs, which describe the agents either through their individual trajectories (La-
grangian) or through a distribution function over space (Eulerian). In both frameworks, we explore
how the turnpike emerges and its implications for the long-term dynamics of the system, aiming
at key applications in economics, control theory, and multi-agent systems.

Thursday 6 March 2025

An Integer Linear Programming Model for the Dynamic Airspace Configuration problem
Martina Galeazzo (Padova, Dip. Mat.)

Given central role of aviation as a transportation network and its remarkable economic impact,
the air traffic demand is bound to increase. High traffic density in a given airspace region can
cause safety issues and difficulties in monitoring tasks that can, in turn, result in flight delays. It is
therefore crucial to efficiently organize the airspace structure to avoid under- and overloaded areas
of the airspace. We begin by describing how the airspace is structured, introducing the concept of
sector and configuration and their capacity, and how to quantify the air traffic excess associated to
a configuration. We will then introduce Dynamic Airspace Configuration as a method for optimally
meeting the air traffic demand by adopting different configurations over time, thus determining a
sequence of configurations (configuration plan); we impose that such a sequence also satisfies some
operational restrictions that smooth the configuration dynamics, as to avoid, e.g., too frequent
switching between configurations. After recalling the basic definitions and tools of (Integer) Linear
Programming, we will present an Integer Linear Programming model that provides a configuration
plan that minimizes the traffic excess for a given time frame, and a polyhedral study that explains
its good computational performance. We conclude by showing the numerical results obtained by
testing the model on five days of historical data (summer 2019) over the Madrid Area Control
Center, with a focus on the comparison of different time discretizations and different restrictions
on the configurations’ transitions.

Thursday 20 March 2025

Resonances and quasi-collisions in the Three–Body Problem
Xiang Liu (Padova, Dip. Mat.)

Mean motion resonance, a phenomenon occurring when two celestial bodies have orbital periods
in a commensurable ratio, plays a pivotal role in both stabilizing and destabilizing motions within
our Solar System. For highly eccentric orbits, quasi-collisions become a significant factor. When
such eccentric orbits are trapped in resonance, perturbations can induce chaotic motions, leading
to rapid changes in orbital elements and transitions of different dynamical states. This presen-
tation will begin by introducing the concept of mean motion resonance within the framework of
the restricted three-body problem. Subsequently, we will explore the application of Hamiltonian
perturbation theory for low-eccentricity orbits. Finally, we will demonstrate the limitations of this
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theory when applied to highly eccentric orbits.

Wednesday 2 April 2025

Lavrentiev Phenomenon and semicontinuous envelopment for integral functionals
Tommaso Bertin (Padova, Dip. Mat.)

The first part of the talk is devoted to introduce some basilar elements of the Direct Method of
Calculus of variations. In particular we will see the Tonelli’s Theorem about the strictly relationship
between lower semicontinuity of an integral functional and convexity of the Lagrangian. In the
second part we will explore the so called "Lavrentiev Phenomenon", i.e. the possibility for a
functional to reach an infimum in a dense subset strictly greater than the infimum in the original
set. We will see some classical examples and some recent results to avoid the Phenomenon. In
particular we will focus on non convex and non continuous Lagrangian.

Tuesday 15 April 2025

Let’s play symplectic billiards!
Alessandra Nardi (Padova, Dip. Mat.)

A mathematical billiard is a dynamical system describing the motion of a mass point (the billiard
ball) inside a planar region (the billiard table). The ball moves with constant speed and without
friction, following a rectilinear path. The straightforwardness and versatility of this model have
made mathematical billiards an object of interest in many different contexts. Indeed, depending
on the shape of the billiard table, they show a wide range of dynamical behaviors such as integra-
bility, regularity, and chaoticity. Integrability remains an unanswered property, and the celebrated
Birkhoff conjecture remains open. In 2018, P. Albers and S. Tabachnikov introduced a new in-
teresting class of billiards, called symplectic billiards, as a natural variation of Birkhoff billiards
with the inner area – instead of the length – as generating function. This talk will present the
symplectic billiards dynamics and focus on recent rigidity results. Talk based on joint works with
L. Baracco and O. Bernardi.

Thursday 8 May 2025

Inductive Methods in the Representation Theory of Finite Groups of Lie Type: An Intro-
duction via GL(n,q)
Elena Collacciani (Padova, Dip. Mat.)

Representation theory of groups is the area of mathematics that studies how abstract groups can
act on vector spaces – in other words, how to realize groups as collections of linear transformations.
Among the many families of finite groups, those of Lie type form a particularly important class,
appearing naturally in the classification of finite simple groups. In this talk, after a brief overview
of classical results on the representation theory of finite groups, I will offer a glimpse into the
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techniques used to construct and classify irreducible representations of finite groups of Lie type.
To convey the core ideas while avoiding heavy technicalities, I will focus on the case of the General
Linear group over a finite field. Special emphasis will be placed on the role of inductive methods - a
fundamental paradigm in representation theory – which often reduce complex algebraic problems
to more manageable combinatorial ones. To help develop intuition, I will also present concrete
examples of the main objects involved.

Thursday 22 May 2025

Parameter estimation of integrated fractional Brownian motions with application to ener-
gy markets
Marco Mastrogiovanni (L’Aquila, Dip. Ing. Inf., Comp. Sci. e Mat.)

We investigate the statistical properties of time-averaged fractional Brownian motion (fBm), which
naturally arises in the modeling of time series subjected to averaging transformations. The main
motivation comes from electricity markets, where daily prices are typically obtained by averaging
high-frequency data. While fBm-based models are popular in modeling electricity prices, treating
averaged prices as direct realizations of fBm is theoretically inconsistent. Instead, time-integrated
versions of fBm should be used to accurately reflect the effects of averaging. This seminar begins
with an overview of electricity markets and an introduction to fractional Brownian motion (fBm)
and its main characteristics. We then introduce the integral-mean process of fBm and analyze the
impact of time-averaging on its properties. Using ergodic theory, we construct strongly consistent
estimators for the Hurst parameter adapted to the averaged process and validate them through an
extensive simulation study. Next, we extend our approach to linear combinations of two distinct
timeaveraged fBm processes, again estimating the relevant parameters. Finally, we apply our
methodology to empirical electricity spot price data and discuss potential future developments
in this research area. (This is joint work with Yuliya Mishura, Stefania Ottaviano and Tiziano
Vargiolu.)

Thursday 5 June 2025

Parallel parking 101
Marco Di Marco (Padova, Dip. Mat.)

Did you know that when you parallel-park your car, you’re actually invoking the Chow-Rashevskii
Theorem, a cornerstone of sub-Riemannian geometry? The non-commutativity of the car’s "al-
lowed directions" not only lets you move orthogonally to the road (and thus pull into a parking
space) but also gives rise to striking phenomena in more "theoretical" settings: submanifolds that
are perfectly regular from the intrinsic viewpoint of sub-Riemannian Heisenberg groups yet look
fractal when seen through Euclidean lenses. Such subtleties make it difficult, in the sub-Riemannian
setting, to prove classical results like Stokes’ Theorem and Stepanov’s Theorem, to establish fine
properties of SBV functions, or even to tackle the seemingly simple task of computing the diam-
eter of a ball. After an introduction to sub-Riemannian geometry and Heisenberg groups, I will

Università di Padova – Dipartimento di Matematica 8



Seminario Dottorato 2024/25

outline some of the key ideas behind the proofs of the aforementioned results. (Talk based on
joint works with S. Don, A. Julia, S. Nicolussi Golo, A. Pinamonti, G. Somma, D. Vittone, and
K. Zambanini.)

Thursday 19 June 2025

A controlled excursion into the Hamilton-Jacobi equation: from classics to mean field models
Giacomo Ceccherini Silberstein (Padova, Dip. Mat.)

Optimal control theory is a branch of Calculus of Variations aiming to guide efficiently a system to
achieve a specific goal, minimizing a given "cost" along the way. In this seminar, we’ll embark on
a controlled excursion into the Hamilton-Jacobi equation, a powerful partial differential equation
that encodes optimality conditions for this variational problem. We will start by presenting the
classical Euclidean setting, where the system’s state space is finite-dimensional and familiar. Then,
we’ll extend these fundamental ideas to the more complex mean field setting, where the dynamics
play out on the space of probability measures, allowing us to understand collective behaviors in
large systems.

Università di Padova – Dipartimento di Matematica 9



Seminario Dottorato 2024/25

Hawkes Processes in Cyber-Risk Analysis:
Modelization and Optimal Security Investment

Beatrice Ongarato (∗)

Abstract. With the rapid growth of the digital economy in recent years, cyber-risk has emerged
as one of the most relevant and rapidly growing sources of risk. We provide an overview of the
main concepts related to cyber-risk and examine the challenges involved in its quantification and
modeling. We introduce Hawkes processes and explain their applicability in capturing the dynamics
of cyber-attacks. Lastly, we present an ongoing project aimed at determining the optimal cyber-
security investment strategy for an organization facing cyber-attacks. The problem is framed as
a stochastic control problem with jumps and is addressed using Hamilton-Jacobi-Bellman (HJB)
techniques. We introduce the main tools needed to solve this type of problem and show some
preliminary numerical results.

1 Introduction

Cyber-risk has become a growing concern for businesses and institutions worldwide, with
cyber-attacks and data breaches being ranked first in the top ten list of global risks by the
2023 AON Global Risk Management Survey reports(1). Moreover, according to IBM, the
global average cost of a data breach has raised to almost 5M USD in 2024, more than 10%
higher with respect to the previous year(2). Cyber-attacks are a threat to every industry:
from healthcare to finance, from government to education, and potentially for every private
company. It is urgent and essential that companies adequately protect themselves against
cyber-attacks, which otherwise could cause enormous and irreparable damage. As noted
in [17], [12], [7], addressing cyber-risk involves unique challenges that must be considered
when quantifying and managing this specific type of risk. In particular, we highlight the
following:

• Limited historical data: The emerging nature of this risk and reporting bias -
companies are often hesitant to disclose incidents to protect their reputation - pose

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 7 November 2024.

(1)
Source: https://www.aon.com/en/insights/reports/global-risk-management-survey/top-risks-facing-financial-institutions.

(2)
Source: https://www.ibm.com/reports/data-breach.
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challenges for building a reliable databases.

• Dynamic risk type: Cyber-risk rapidly evolves together with technology, making
difficult to use past data for modelling future attacks.

• Interdependence and accumulation risks: The interconnected nature of digital
infrastructures induce a dependence structure within and across company networks.

• Complex impact determination: It is difficult to quantify the economic conse-
quences of a cyber incident.

This work explores two key aspects of cyber-risk analysis: the modeling of cyber-attacks
and the optimization of an entity’s investment in cyber-risk management. In Section 2, we
provide an introduction to Hawkes processes and explain that they are an appropriate class
of processes for describing cyber-attacks. In Section 3, we formulate an optimal security
investment problem using stochastic control methods, in order to determine the optimal
strategy to protect an entity from cyber-attacks. In Section 4, we conduct numerical
experiments to illustrate the practical relevance of our model, while Section 5 presents our
conclusions.

2 Modelization of cyber-attacks

For the majority of the following definitions, we refer to [11, Sections 2 and 3].

2.1 Counting Processes

Cyber-attacks’ arrival can be modeled using a counting process, which records the occur-
rence of attacks over time.

Definition 1 (Counting process) A counting process is a stochastic process (Nt)t≥0 taking
values in N0 that satisfies N0 = 0, it is almost surely finite and it is a right-continuous step
function with increments of size 1. These processes are characterized by the sequence of
random arrival times {τ1, τ2, . . .}, where each τi marks the occurrence of an arrival.

A counting process (Nt)t≥0 can be characterized also through its intensity (λt)t≥0.

Definition 2 (Intensity) Consider (Nt)t≥0 a counting process and let (Ft)t≥0 denote the
history of the arrivals up to time t. Then N satisfies the following relationship

P(Nt+h −Nt = m|Ft) =


λth+ o(h) m = 1

o(h) m > 1

1− λth+ o(h) m = 0

,

where λ is called intensity of N .

At time t, the quantityNt represents number of attacks arrived and λt the instantaneous
probability of having a new attack at time t.
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Poisson processes are a simple example of counting processes, characterized by a con-
stant intensity λt ≡ λ. However, Poisson processes assume that events occur independently,
which is often an unrealistic assumption in the context of cyber-attacks, where incidents
tend to cluster and trigger subsequent events. To capture this characteristic, we introduce
Hawkes processes in Section 2.2.

2.2 Hawkes Processes

First introduced by Alan G. Hawkes in [9], are counting processes characterized by their
“self-exciting” behavior, meaning that the occurrence of an event increases the likelihood
of occurrence of further events.

Definition 3 (Hawkes process) A counting process N is called a Hawkes process if its
intensity is given by the stochastic process

(1) λt = α+ (λ0 − α)e−ξt + β

∫ t

0
e−ξ(t−s)dNs,

with parameters α ≥ 0, λ0, ξ, β > 0.

The parameter α ≥ 0 can be interpreted as the constant reversion level, λ0 > 0 is the
initial intensity at time t = 0, ξ > 0 is the constant rate of exponential decay and β > 0 is
the constant size of self-excited jumps. The process λ can also be expressed in stochastic
differential equation (SDE) form, which is obtained applying Itô’s Lemma, [10], to Eq. (1):

(2) dλt = −ξ(λt − α)dt+ βdNt, λ0 > 0.

Refer to Figure 1(a) for a representation of the Hawkes process N and its associated
intensity λ. The self-exciting property of Hawkes processes is well-suited to model the
shocks and persistent effects following cyber-attacks, especially considering the tendency
of cyber incidents to cluster. This has been confirmed by Baldwin et al. [1], who analyzed
threats to major Internet services using data from the SANS Institute. Additional valida-
tion comes from Bessy-Roland et al. [3], whose statistical analysis of the Privacy Rights
Clearinghouse database highlights how Hawkes models effectively capture self-excitation
and interactions in data breaches, proving that Poisson models are not suitable for such
events.

2.3 Compound Hawkes processes

To account for the cumulative damage caused by attacks, it is necessary to introduce
compound Hawkes processes, see [15].

Definition 4 (Compound Hawkes process) Let (Nt)t≥0 be a Hawkes process as defined in
Definition 3, we define the compound Hawkes process (Ct)t≥0 at time t as:

Ct =

Nt∑
i=1

ηi,
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where ηi are independent and identically distributed (i.i.d.) random variables.

The random variable ηi represents the loss associated to the i-th attack and Ct the
cumulated losses until time t. Refer to Figure 1(b) for a representation of the compound
Hawkes C compared with the Hawkes process N .

(a) Trajectory of an Hawkes process N (b) Trajectory of an Hawkes process N and
of the associated intensity λ. and of the associated compound Hawkes Ct.

Figure 1

3 Optimal Security Investment: A Stochastic Control Approach

In this section, we introduce an optimal security investment problem. We consider an
entity subject to cyber-attacks and assume it is sufficiently “large” (e.g., a corporation),
leading to a clustered arrival of threats. To reduce its vulnerability, the entity invests in
cyber-security. Our goal is to analyze the optimal investment strategy and quantify the
benefits of such an investment. In Section 3.1, we briefly present the original Gordon-Loeb
model and then introduce our dynamic extension in Section 3.2. In Section 3.3, we discuss
the optimization problem, which determines the optimal cyber-security investment.

3.1 The Gordon-Loeb model

The Gordon-Loeb model, first introduced in 2002 by Gordon and Loeb [8], was one of
the first studies to address the trade-off between investment and benefits in the context
of cyber-security. Gordon and Loeb assume that an information set (e.g., IT system) is
characterized by three parameters:

• p: the probability of a threat occurring.

• `: the loss conditioned on an attack occurring.

• v: the vulnerability defined as the probability that a threat once realized (i.e., an
attack) would be successful.
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The expected loss from an attack if no investment in security is made is vp`. The
entity can invest a certain amount z in security to reduce its vulnerability. This reduction
is represented by a security breach probability function S(z, v): after an investment z, a
threat will penetrate the entity’s IT system with probability S(z, v). After investment, the
expected loss is given by S(z, v)p`. Gordon and Loeb require S to satisfy the following
assumptions:

Assumptions (A).

A1. S(z, 0) = 0 for all z i.e., an invulnerable information set remains invulnerable.

A2. For all v, S(0, v) = v i.e., if there is no investment in security, then the vulnerability
remains unaltered (equal to v).

A3. S is decreasing and convex w.r.t. z, meaning that Sz(z, v) < 0 and Szz(z, v) > 0, for
all v ∈ (0, 1) and all z.

Remark 1 Gordon and Loeb consider two classes of security breach functions for which
satisfy Assumptions (A):

SI(z, v) =
v

(az + 1)b
and SII(z, v) = vaz+1.

for a, b > 0.

To find the optimal investment, Gordon and Loeb consider a cost-benefit approach,
maximizing the following function:

(3) sup
z≥0

(v − S(z, v))p`− z.

The first term represents the reduction in the expected loss as a result of the investment
z in information security (benefit), while the second term subtracts the cost of investing.
The optimal investment is given by z∗ which satisfies the following first order condition:

−Sz(z∗, v)p`− 1 = 0.

Gordon and Loeb show that for the two classes of security breach functions in Remark 1,
the optimal security investment is always less than 1/e times the expected loss,

(4) z∗ <
1

e
vp`.

3.2 Dynamic Extension of the Gordon-Loeb model

The Gordon-Loeb model is interesting due of of its simplicity and its ability to provide a
benchmark for the maximum investment in cyber-security, see Eq. (4). However, given the
complexity of managing cyber risk (see Introduction), we aim to develop a more sophisti-
cated model that allows for dynamic responses to cyber-risk. Specifically, we extend the
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Gordon-Loeb model to a continuous-time and stochastic framework, incorporating the key
features outlined in Section 3.1.

Let (Ω,F ,P) be a probability space and T > 0 a terminal time. We assume that
cyber-attacks arrive according to a Hawkes process (Nt)t∈[0,T ], see Definition 3. We denote
the jump times of N by (τi)i∈N. For t ∈ [0, T ], the potential losses generated by all cyber-
attacks occurring in the time interval [0, t] are given by a compound Hawkes process, see
Definition 4:

Ct =

Nt∑
i=1

ηi,

where (ηi)i≥1 are a family of i.i.d. positive random variables which admit expectation,
given by E[ηi] = η̄ for every i and independent with respect to N . We recall that each
random variable ηi represents the loss associated with the i-th attack.

In the spirit of the Gordon-Loeb model, we assume that not all threats are successful:
if the entity does not make any investment in security, the attacks penetrate the entity’s
IT system (or not) depending on its vulnerability v ∈ (0, 1). The actual losses are given
by:

L0
t =

Nt∑
i=1

ηi ·Bv
i ,

where (Bv
i )i≥1 is a family of i.i.d. Bernoulli random variables such that Bv

i ∼ Be(v), for
every i.

Similarly to the Gordon-Loeb model, the entity can invest in cyber-security to reduce
its vulnerability. We assume that, at each instant in time, the entity can invest a certain
amount zt. The process z = (zt)t∈[0,T ] is the investment rate and the cumulated investment
at time t is given by

∫ T
0 zt dt. We assume that the control z belongs to the set Z, described

in Definition 5.

Definition 5 The filtration is F := (Ft)t∈[0,T ], with Ft = σ(Ns, s ≤ t)∨σ(ητi , τi ≤ t). We
define by Z the set of admissible strategies:

Z := {(zt)t∈[0,T ] such that zt ≥ 0, zt F-predictable and

E

[∫ T

0
ztdt

]
,E

[∫ T

0
z2
t dt

]
<∞}.(5)

Given t ∈ [0, T ], we denote by Zt the class Z restricted to the time interval [t, T ].

It is reasonable to assume that a more recent investment in security should be more
effective than a past one (e.g. due to the obsolescence of technology). To describe this
feature, we introduce a decaying rate ρ > 0 and define the process H as follows:

Ht = H0e
−ρt +

∫ t

0
e−ρ(t−s)zsds.

The stochastic differential equation associated to H follows by applying Itô’s Lemma, [10],
and its given by

(6) dHt = (−ρHt + zt)dt, H0 ≥ 0.
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Analogously to the Gordon-Loeb case, we introduce a probability breach function S(Ht, v),
that satisfies the properties listed in Assumptions (A). Hence, after investing in security,
the actual losses of the entity are given by

Lzt =

Nt∑
i=1

ηi ·B
S(Hτi ,v)
i ,

where (B
S(Hτi ,v)
i )i≥1 is a family of Bernoulli random variables such that P(B

S(Hτi ,v)
i =

1|Hτi = h) = S(h, v).

3.3 The optimization problem

Inspired by the benefit-cost approach presented in Eq. (3), we consider the following prob-
lem:

(7) sup
z∈Z

E

[
L0
T − LzT −

(∫ T

0
δzt +

γ

2
z2
t dt

)
+ U(HT )

]
,

where λ and H follows the dynamics in Eqs. (2), (6), respectively and the set of admissible
controls is Z as defined in Eq. (5). The difference L0

T −LzT represents the benefit obtained
by the entity’s when it invests in cyber-security. Differently from the problem in Eq. (3),
where they assume a linear cost of investment, we consider a quadratic cost δzt + γ

2z
2
t ,

δ > 0, γ > 0. This choice is common in stochastic control literature. We also include a
utility function U(HT ), assuming U to be increasing and concave. The function U takes
into account the efforts made by the entity before time T . In fact, the entity does not end
up existing at time T , thus it needs some security investments for the future.

We can divide all terms in Eq. (7) by δ and compute the expectation of L0, LZ , using
standard stochastic calculus techniques:

E[L0
T ] = E

[∫ T

0
vη̄λtdt

]
, E[LzT ] = E

[∫ T

0
S(Ht, v)η̄λtdt

]
.

We ultimately derive an equivalent problem, with a slight abuse of notation.

(8) sup
z∈Z

E

[∫ T

0

[
(v − S(Ht, v))η̄λt − zt −

γ

2
z2
t

]
dt+ U(HT )

]
.

From now on, we focus on the problem in Eq. (8). First of all, we introduce the following
notation:

• Ht,h,z
s is the process H evaluated at time s > t, starting at time t, with initial value

h and associated to the control z. In particular,

Ht,h,z
s = h+

∫ s

t
(−ρHt,h,z

v + zv)dv.
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• λt,λs is the process H evaluated at time s > t, starting at time t, with initial value λ,

λt,λs = λ− ξ
∫ s

t
(λt,λv − α)dv + β

∫ s

t
dNλ

v .

• J is the revenue function, i.e. the function we aim at maximizing given the initial
state (t, λ, h):

J(t, λ, h; z) = E

[∫ T

t

[
(v − S(Ht,h,z

s , v))η̄λt,λs − zs −
γ

2
z2
s

]
ds+ U(Ht,h,z

T )

]
.

Consequently, we define the value function as

(9) V (t, λ, h) = sup
z∈Zt

J(t, λ, h; z),

where Zt has been defined in Definition 5. As a further assumption, we require that the
function V as defined in Eq. (9) is at least C1, i.e., continuous and differentiable with
continuous derivative in all its arguments.

Theorem 1 V solves the following partial integral differential equation

∂V

∂t
− ξ(λ− α)

∂V

∂λ
− ρh∂V

∂h
+ λ(V (t, λ+ β, h)− V (t, λ, h))

+ (v − S(h, v))η̄λ+

(
∂V
∂h − 1

)+
γ

(
∂V

∂h
− 1− γ

2

(
∂V
∂h − 1

)+
γ

)
= 0,(10)

V (T, λ, h) = U(h).

Moreover, the optimal control is given by

(11) z∗ =

(
∂V
∂h − 1

)+
γ

.

Proof. Using similar techniques to [4, Theorem 2.2.2.], [2, Section 5.2, Eqs. (38a), (38b)], we
can prove that the value function V (t, λ, h) solves the Partial-Integro Differential-Equation
in Eq. (11).

Remark 2 The interpretation of the optimal control in Eq. (11) is the following: it is
worth to invest if the benefit we obtain by doing so is larger than the marginal cost.

4 Numerical Results

Due to the strong non-linearity, the partial differential equation (PIDE) in (10) cannot be
solved analytically and must be approached numerically. We solve it exploiting method of
lines, i.e. we discretize the spatial derivatives (derivatives w.r.t. λ and h), transforming the
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PIDE into a system of ordinary differential equations (ODEs), which can then be solved
using standard solver for ODEs, e.g. scipy.integrate.solve_ivp, (https://docs.scipy.
org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html). We do not
provide a detailed description of the numerical method employed, refer to [16] for further
details. The parameters chosen to perform the numerical analysis are in Tables 1, 2, 3.

S v a b

SI 0.65 1 · 10−5 1

Table 1: Security breach function.

λ α ξ β λ0

2.7 1.5 0.9 2.7

Table 2: Hawkes intensity.

Optimization δ γ η̄(k$) U(h) ρ T

0.01 0.2 2 0.02
√
h 0.03 0.5

Table 3: Optimization problem parameters.

The parameters for the security breach function, Table 1, are analogous to those in
[14], which are themselves slight variations of those in [8] and [13]. We choose the security
breach function S as SI in Remark 1, considering the h entry to be expressed in k$. Under
this assumption, SI becomes:

SI(h, v) =
v

(az · 103 + 1)b
.

For the Hawkes intensity parameters, see Table 2, we choose those in [5]. In [5], the
authors calibrate the Hawkes intensity parameters on real data, taken from the Hack-
mageddon database. We refer to [5, Section 4.1.1] for further details on the database. For
the other parameters, we refer to Table 3.

Value function and optimal control We report in Figure 2 different representations
for the value function and the optimal control. In Subfigures 2(a), 2(c) we plot the functions
for h fixed, varying t and λ. We observe that the value function is increasing in h. Clearly,
a higher cumulative initial investment h leads to a greater benefit, which is represented by a
higher value function. On the other hand, the optimal control decreases in h as more money
the entity has already invested, the less it should invest later. Both the value function and
optimal control are decreasing functions of t. In fact, approaching maturity, the impact
of the entity’s actions becomes less significant in generating substantial benefits, and thus
this causes an overall lower investment. In Subfigures 2(b), 2(d) we plot the functions for
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λ fixed, varying t and h. We highlight that the value function is increasing in λ. The same
holds for the optimal control. A larger λ represents a higher risk that induces a higher
benefit, if the entity invests wisely. In terms of optimal control, a larger risk should lead
to a higher investment to mitigate it.

(a) Value function V (t, λ, h) for λ = 2.7. (b) Value function V (t, λ, h) for h = 0.

(c) Optimal control z∗t (λ, h) for λ = 2.7. (d) Optimal control z∗t (λ, h) for h = 0.

Figure 2: Value function and optimal control computed with standard parameters set, see Tables 1, 2, 3.
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Comparison with Poisson model for arrival of attacks. In this paragraph, we re-
formulate the optimization problem by choosing as the counting process a Poisson process.
We denote by P a Poisson process, i.e., a counting process having constant intensity λP .
The optimization problem we aim at solving is the same of Eq. (8), but considering a con-
stant intensity rather than a dynamic one. Under the Poisson’s hypothesis, the problem
becomes deterministic, as the only randomness lies in the Hawkes’ dynamics. We denote
by V P (t, h) the value function in this setting, which now solves the PDE:

∂V P

∂t
−ρh∂V

P

∂h
+λP (v−S(h, v))η̄+

(
∂V P

∂h − 1
)+

γ

∂V P

∂h
−1− γ

2

(
∂V P

∂h − 1
)+

γ

= 0,

V P (T, h) = U(h).

The corresponding optimal control is given by

zP∗ =

(
∂V P

∂h − 1
)+

γ
.

We consider a Poisson P and a Hawkes process N such that E[PT ] = E[NT ]. Recall
that E[PT ] = TλP if the Poisson process has intensity λP , thus it follows that

λP =
λ0ξ

ξ − β
+

1

T (ξ − β)
(λ0 −

λ0ξ

ξ − β
)(1− e−ξT ) = 3.25,

with the parameters choice in Tables 2, 3. Refer to [6, Theorem 3.6, Eq. (3.16)] for the
last formula.

In Subfigure 3(a), we observe the Hawkes value function V (t, λ, h) evaluated in λP ,
compared with the Poisson value function V P (t, h) and in Subfigure 3(c) we depict the
corresponding optimal controls. In Subfigures 3(b) and 3(d), we compare the value function
and optimal control, varying λ and h at time t = 0. Since V P (0, h) does not depend on λ,
so we assume it to be constant for every λ. We observe that considering Hawkes processes
instead of Poisson’s causes a larger value function and optimal control.

To further enhance this comparison, we also consider the behaviour of the optimal
control along a specific trajectory of λt. In Figure 4, we observe that around the Hawkes’
jump times (grey dotted lines), we tipically observe a jump also along the optimal control.
We note that the optimal control for Hawkes is smaller than the optimal control for the
Poisson process before the first jump. Then, when λt(ω) > λP it becomes larger.
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(a) Value function V (t, λ, h) for λ = 3.25. (b) Value function V (t, λ, h) for h = 0.

(c) Optimal control z∗t (λ, h) for λ = 3.25. (d) Optimal control z∗t (λ, h) for h = 0.

Figure 3: Comparison between Hawkes and Poisson, λP = 3.25.
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(a) Intensity trajectory. (b) Optimal control along the trajectory.

Figure 4: Optimal control along a trajectory.

5 Conclusions

In this paper, we provide a dynamic version of the Gordon-Loeb model, exploiting instru-
ments such as compound counting processes to describe the overall losses experienced by
the entity and Hawkes processes to represent the cyber-attack arrivals. We then formulate
an optimization problem which respect the cost-benefit tradeoff proposed in the original
Gordon-Loeb setting and solve it with dynamic programming techniques. We character-
ize the solution via a partial-integro-differential equation that we solve numerically. We
then perform some numerical tests, to study the main properties of the optimal invest-
ment strategy and to compare our Hawkes setting with a Poisson one. We realize that not
considering a dynamic intensity instead of a constant one might leads to a sub-optimal
investment rate. As a next step we aim at investigation of the value function properties, in
particular the existence of a solution (in a suitable sense) to the PIDE and the verification
theorem. We would also like to explore a scenario in which the entity may also enter into
an insurance contract to cover losses from cyber-attacks. We may then study the optimal
allocation of the entity’s resources in security and insurance. Finally, a possible extension
might regard taking into consideration a singular control problem.
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Bridging Enumerative Geometry
and Quantum Integrable Hierarchies

Ishan Jaztar Singh (∗)

Abstract. Enumerative geometry applies combinatorial and intersection theory techniques to solve
counting problems in algebraic geometry. In contrast, integrable hierarchies are infinite sequences
of partial differential equations with rich symmetries, playing a crucial role in mathematical physics.
This note focuses on the renowned Witten-Kontsevich theorem, which establishes a deep connec-
tion between the topological invariants of the moduli space of curves and the Korteweg–de Vries
hierarchy. We conclude with a discussion of its generalizations and the role of quantum hierarchies
in this context.

1 Introduction

The moduli space Mg of algebraic curves of genus g classifies algebraic curves of genus g
up to isomorphism. Its Deligne-Mumford compactification, Mg, extends this classification
to stable algebraic curves of genus g. To address more general enumerative geometry
questions, one considers the moduli space Mg,n of stable algebraic curves of genus g with
n marked points. This space plays a fundamental role in algebraic geometry, and its
cohomology ring, H•(Mg,n), encodes the necessary information for formulating intersection
theory on Mg,n.

Since the full structure of the cohomology ring is often too intricate to analyze, attention
is typically restricted to the tautological ring RH•(Mg,n). This is the smallest subring of
H•(Mg,n) generated by natural geometric constructions on Mg,n. A key feature of the
tautological ring is the presence of ψ-classes, which can be expressed as first Chern classes
of certain natural line bundles onMg,n. These ψ-classes, along with their associated strata,
generate the tautological ring. However, determining the complete set of relations among
these generators remains an open problem.

In this note, we provide an informal overview of Mg,n, focusing on essential definitions
and key results. For a more comprehensive treatment, we refer to [Zvo14; Sch20]. Addi-
tionally, an accessible and detailed review of the genus-zero theory of the moduli space of
curves can be found in [KV07].

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 21 November 2024.
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2 Stable Curves and Graphs

The algebraic curves classified by Mg,n are connected, nodal, complex-projective curves
of genus g, equipped with n marked points. From an analytic perspective, Mg,n can be
viewed as the space classifying nodal genus g compact Riemann surfaces with n punctured
points on their surface. A Riemann surface with n marked points is denoted as

(C, p1, . . . , pn),

where pi ∈ C and all the marked points are distinct, i.e., pi 6= pj for i 6= j. A curve
(C, p1, . . . , pn) is said to be stable if the set of its automorphisms, Aut(C, p1, . . . , pn), is
finite. To determine whether a genus-g curve with n marked points is stable, we use the
stability condition:

(2.1) 2g − 2 + n > 0.

Thus, curves corresponding to the pairs (g, n) ∈ {(0, 0), (0, 1), (0, 2), (1, 0)} are not stable
and are not classified. Each point ofMg,n represents an isomorphism class [(C, p1, . . . , pn)].

To define integrals, we require a compact space. The Deligne-Mumford compactifica-
tion, Mg,n 7→ Mg,n, introduces blow-ups, resulting in nodal curves. These nodal curves,
which consist of multiple components, appear on the boundary of Mg,n, while Mg,n forms
a dense open subset in its interior. For an intuitive visualization of the points in Mg,n, see
the diagrams in Figure 1.

(i) (ii) (iii)

0

2

1

0 2 1

Figure 1: Equivalent descriptions of an isomorphism class in M4,8

In Figure 1(i), we present a topological perspective of transversal intersections in a
nodal curve. This curve lies on the boundary of M4,8 as a result of the compactification.
In Figure 1(ii), we provide a geometric perspective of a reducible nodal curve, where the
transversal intersections are more clearly visible compared to (i). Additionally, we indi-
cate the genus of each component on the side, indexed as (0, 1, 2) in this case. In both
Figures 1(i) and (ii), the curve is decomposed into three irreducible components, each be-
longing to a moduli space of lower genus with fewer marked points. Consequently, a curve
(C, p1, . . . , pn) is considered stable if each of its irreducible components, C̃, satisfies the
stability condition in Equation (2.1). More explicitly, each component C̃ must satisfy one
of the following conditions:

• C̃ has genus zero and at least three marked points.
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• C̃ has genus one and at least one marked point.

• C̃ has genus at least two.

For a detailed treatment of blow-ups in the genus-zero case, the interested reader may refer
to [KV07], where the moduli space is expressed in terms of complex projective space:

M0,n =

n−3︷ ︸︸ ︷
P× . . .× P .

In the algebraic geometric setting, Mg,n is defined as a smooth Deligne–Mumford stack,
whereas in the differential geometric setting,Mg,n is considered a smooth complex orbifold.
For a basic overview of orbifolds, see [Zvo14], and for more detailed insights, refer to
[ALR07].

By treating Mg,n as an orbifold with a group action given by the automorphism group
of the curves, its cohomology and homology can be defined analogously to those of mani-
folds. However, there are subtleties due to the presence of the group action. Additionally,
the (complex) dimension of Mg,n is well-defined and corresponds to the dimension of its
associated complex orbifold:

dimCMg,n = 3g − 3 + n.

A nontrivial one-dimensional example is the moduli space of elliptic curves, M1,1, which is
constructed as C+/PSL(2,Z), where PSL(2,Z) is the modular group (see [Eyn18, p. 84]).

For practical purposes, points in Mg,n can be interpreted in terms of graphs that are
dual to their corresponding curves. An example of such a graph is shown in Figure 1(iii).
The vertices of the graph encode the geometric genus of the curve, while the legs (or
external edges) attached to each vertex represent the marked points. The edges between
vertices correspond to the gluing or intersection of different components of the curve.

Definition 2.2 A stable graph Γ is a tuple,

Γ =
(
V(Γ),H(Γ),L(Γ), g : V→ Z≥0

∣∣∣ v : H→ V, ι : H→ H, l : L→ N
)

where N = {1, . . . , n} and the tuple satisfies the following:

i. V(Γ) is a finite set of vertices v, while g is a map v 7→ g(v) that provides the geometric
genus of the vertex.

ii. H(Γ) is a finite set of half-edges h, while v is a map h 7→ v(h) that sends half-edges
to the vertex its attached to.

iii. E(Γ) is a finite set of edges e = (h, h′), that contains pairs of half-edges, such that
the involution ι : h 7→ h′ is an involution.

iv. L(Γ) ⊂ H(Γ) is the set of half-edges that are fixed by ι, i.e. for any h ∈ L(Γ),
ι(h) = h. The map l is a bijective map that sends half-edges to the index of the
marked points {1, . . . , n}.
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v. The graph Γ is connected and the data surrounding each vertex v ∈ V(Γ) satisfies
stability condition:

2g(v)− 2 + n(v) > 0

Let n(v) denote the number of half-edges around a vertex v ∈ V(Γ), so that the
number of marked points n(Γ) of the graph is given by,

n(Γ) =
∑

v∈V(Γ)

n(v) = |L(Γ)|

Since self-intersection of a curve is included in Mg,n, we did not restrict loops in out
definition, loops being an edge attached to the same vertex. Hence, the genus g(Γ)
of the graph is given by,

g(Γ) =
∑

v∈V(Γ)

g(v) + 1 + |E(Γ)|−|V(Γ)|

Example 2.3 Consider the diagrams in Figure 1, its stable graph is given by the indexed
figure 2. We then have the following data:

v1 v2 v3

h1

h2
h3

h4 h5 h6
h7

h8

h9

h10
h11 h12 h13 h14

Figure 2: An example of a stable graph in M4,8.

· V(Γ) = {v1, v2, v3}, H(Γ) = {h1, . . . , h14}, E(Γ) = {(h11, h12), (h13, h14)} and L(Γ) =
{h1, . . . , h8}.

· The map g is defined by, g(v1) = 0, g(v2) = 2 and g(v3) = 1. The map v is defined
by, v({h1, h2, h3, h9, h10, h11}) = v1 and likewise for the other vertices. The map l is
defined by l(hi) = i for i = 1, . . . , 8.

· Hence, the number of marked points is n(Γ) = 8 and g(Γ) = 4.

Denote by Gg,n the set of isomorphism classes of stable graphs with n(Γ) = n and
g(Γ) = g. For any Γ ∈ Gg,n, we define a moduli space MΓ that classifies curves C whose
associated stable graphs ΓC are isomorphic to Γ. In fact, MΓ is a closed subspace of Mg,n,
often referred to as a stratum of the moduli space of stable curves. Informally, it is plausible
to observe that Mg,n is a disjoint union of all possible configurations of MΓ:

Mg,n =
∐

Γ∈Gg,n

MΓ.
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Additionally, the dimension of each stratum is given by:

dimCMΓ =
∑

v∈V(Γ)

(3g(v)− 3 + n(v)) = dimCMg,n − |E(Γ)|.

This formula can be easily verified in the genus-zero case (see [KV07, p. 35]).
SubspacesMΓ ofMg,n with |E(Γ)|> 0 are often referred to as boundary cycles ofMg,n,

while those with |E(Γ)|= 1 are called boundary divisors. Moreover, it can be shown that
the boundary of Mg,n is the disjoint union of all its boundary divisors, i.e.,

∂Mg,n = Mg,n\Mg,n =
∐

Γ∈Gg,n,|E(Γ)|=1

MΓ.

For an illustration of these statements, see [Sch20, p. 28].

3 Tautological Classes

A global understanding of the moduli space of stable curves Mg,n requires its topological
data, particularly its homology and cohomology rings. We follow the standard approach
by considering the singular cohomology ring H•(Mg,n,Q) and homology ring H•(Mg,n,Q)
with rational coefficients. The singular cohomology ring maps to the Chow ring A•(Mg,n),
which is central in intersection theory within algebraic geometry. Whenever it is clear, we
omit Q and simply write H•(Mg,n). Only basic intersection theory is needed, as covered
in [Nic11], with more detailed treatments in [HM91; Gat00].

Let X be a d-dimensional smooth connected complex projective variety. Denote by ^
and _ the cup and cap products on H•(X), given by

^ : Hk(X)⊗H l(X)→ Hk+l(X), α⊗ β 7→ α ^ β,

_ : Hk(X)⊗H l(X)→ Hk−l(X), α⊗ β 7→ α _ β,

satisfying the relation α _ (β ^ γ) = (α _ β) ^ γ. From the cap product and the
identification H0(X) ' Q, we obtain the duality Hk(X) ' Hk(X)∗, where Hk(X)∗ is the
dual space of Hk(X).

The degree map is defined as

deg : H2d(X)
∼−→ Q, deg(α) =

∫
X
α.

Since dimR(X) = 2d, Poincaré duality provides the non-degenerate pairing

Hk(X)⊗H2d−k(X)→ Q, α⊗ β 7→ deg(α ^ β).

This implies the isomorphisms

Hk(X) ' H2d−k(X)∗ ' H2d−k(X),

so that the map Hk(X)
∼−→ H2d−k(X) is given by α 7→ [X] _ α, where [X] is the

fundamental class of X (the Poincaré dual of X).
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From a differential topology perspective, given a d-dimensional closed and oriented
manifold X and a k-dimensional submanifold S ⊂ X, we associate S to its Poincaré dual
[S] ∈ H2(d−k)(X) via ∫

S
ι∗α =

∫
X
α ^ [S],

where α ∈ H2k
c (X) is a compactly supported k-form, and ι : S ↪→ X is the inclusion map.

Given a morphism f : X → Y , where dimX = d and dimY = e, the pushforward
f∗ is defined for the homology ring, while the pullback f∗ is defined for the cohomology
ring. Using Poincaré duality, where H l(X) ' H2d−l(X) and H2d−l(Y ) ' H2(e−d)+l(Y ), we
obtain a well-defined pushforward in cohomology:

f∗ : H l(X)→ H2(e−d)+l(Y ).

The pushforward and pullback satisfy the following compatibility relations with respect to
the cup and cap products:

f∗(α ^ β) = f∗α ^ f∗β,

f∗(f
∗β ^ α) = β ^ f∗α.

We now extend these notions to the cohomology ring H•(Mg,n) of the moduli space of
stable curves. The i-th cotangent line bundle Li is defined as

Li|(C,p1,...,pn)= T ∗piC.

The i-th ψ-class is then given by the first Chern class of Li:

ψi = c1(Li) ∈ H2(Mg,n).

A natural morphism called the forgetful map, denoted by π, is defined as

π : Mg,n+1 →Mg,n,

which maps a tuple (C, p1, . . . , pn+1) with (n+ 1) marked points to a tuple (C ′, p′1, . . . , p
′
n)

with n marked points. Two cases arise when removing a marked point: If the resulting
curve remains stable, then C ′ = C and p′i = pi. If the resulting curve is unstable, a
contraction map φ : C → C ′ collapses unstable irreducible components to a marked point
p′i = φ(pi). These conditions ensure that π is well defined.

A nontrivial fact is that the ψ-classes are tautological for every i = 1, . . . , n, as they
can be expressed as

ψi = −π∗([δi] ^ [δi]),

where [δi] is the Poincaré dual of the boundary divisor δi, illustrated in Figure 3.
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0 g

δi =

i

n+ 1

∈ {1, . . . , n}\{i}

Figure 3: The graphical representation of the boundary divisor δi.

The pullback relation for the ψ-classes are given by

π∗ψi = ψi − [δi].

This fundamental relation play a crucial role in computations.

Example 3.1 In genus zero, the i-th ψ-class admits an explicit expression:

ψi = [δi,jk],

where [δi,jk] is the Poincaré dual of the boundary divisor δi,jk. This divisor corresponds
to a stable graph where the i-th marked point lies on one component, while the j-th and
k-th marked points lie on the other, separated by an edge (see [Zvo14, p. 26]).

4 Witten-Kontsevich Theorem

Most of this section summarizes key results from Witten’s groundbreaking article [Wit91],
which connects intersection invariants ofMg,n to differential equations and the Korteweg–de
Vries (KdV) hierarchy. We first define the basic objects and notation.

The Witten-Kontsevich (WK) descendant correlators are given by

〈τi1 . . . τin〉g,n =

∫
Mg,n

ψi11 . . . ψinn ,

where ψk ∈ H2(Mg,n). Let (ti : 0 ≤ i < ∞) be an ordered sequence of variables. The
genus-g Witten-Kontsevich potential Fg is expressed as

Fg =
∑
n,i•≥0

〈τi1 . . . τin〉g,n
ti1 . . . tin

n!
.

The Witten-Kontsevich descendant potential is given by

ZWK =

∞∑
g=0

h̄2gFg.

Witten introduced two fundamental equations, later used to compute intersection in-
variants in genus zero and one. The string equation is

∂F

∂t0
=
t20
2

+
∑
k≥0

tk+1
∂F

∂t1
,
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while the dilaton equation is

∂F

∂t1
=

1

24
+

1

3

∑
k≥0

(2k + 1)tk
∂F

∂tk
.

Setting F = Fg, these equations link differential equations to intersection theory.

Proposition 4.1 [Wit91] The string equation is equivalent to

〈τ0τi1 . . . τin〉g,n+1 =

n∑
j=1

〈τi1 . . . τij−1 . . . τin〉g,n,

which holds in Mg,n for 2g − 2 + n > 0.

Using the string equation, all genus zero ψ-class integrals can be computed by induction.

Corollary 4.2 The genus-zero correlators satisfy

〈τi1 . . . τin〉0,n =
(n− 3)!

i1! . . . in!
.

Proposition 4.3 [Wit91] The dilaton equation is equivalent to

〈τ1τi1 . . . τin〉g,n+1 = (2g − 2 + n)〈τi1 . . . τin〉g,n,

which holds in Mg,n for 2g − 2 + n > 0.

These relations are fundamental in the theory of the moduli space of stable curves and
integrability. However, Witten’s main conjecture is significantly more intricate. Although
it has undergone substantial development, we will not explore it in detail. Kontsevich
[Kon92] provided the first proof, with five different proofs now known.

Define u(t0, t1, . . .) as a smooth function in the variables (ti : 0 ≤ i < ∞), and let
pi(u, u̇, ü, . . .) be polynomials in the derivatives

u̇ =
∂u

∂t0
, ü =

∂2u

∂t20
, . . . .

The Korteweg–de Vries (KdV) hierarchy is given by

∂u

∂ti
=
∂pi+1

∂t0
,

where p1 = u and the higher-order terms satisfy the recursion

ṗi+1 =
1

2i+ 1

(
piu̇+ 2ṗiu+

1

4

...
p i

)
.
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The first equation in this hierarchy, the KdV equation, is

∂u

∂t1
= u

∂u

∂t0
+

1

12

∂3u

∂t30

=
∂

∂t0

(
∂u2

2
+

1

12

∂2u

∂t20

)
.(4.4)

The hierarchy consists of an infinite system of PDEs obtained recursively, such as

∂u

∂t2
=

∂

∂t0

(
u3

6
+

1

24

(
2u
∂2u

∂t20
+

(
∂u

∂t0

)2
)

+
1

240

∂4u

∂t40

)
, . . . .

Define the generating function
ZWK =

∑
g≥0

Fg,

which, unlike FWK , omits the h̄ dependence for simplicity.

Theorem 4.5 [Wit91; Kon92] The function

u =
∂2ZWK

∂t20

satisfies the KdV equation (4.4).

To show that FWK satisfies the full KdV hierarchy, one requires the initial conditions
provided by the string and dilaton equations. This theorem enables recursive computation
of all correlators (see [Zvo14, p. 60] for explicit recursion formulas).

5 Gromov-Witten Invariants and Hierarchies

A fundamental example in enumerative geometry is Kontsevich’s formula for rational plane
curves, which provides a recursive method for answering the question: "How many rational
plane curves of degree d pass through 3d− 1 given points in general position?" This result
arises from Kontsevich and Manin’s development of Gromov-Witten theory [KM94]. In this
section, we review the basic elements of Gromov-Witten classes and informally discuss their
connection to integrable hierarchies. For an algebraic geometric perspective on Gromov-
Witten classes, we follow [CK99]. Readers seeking further details are encouraged to consult
[GP98; KM94].

Let X be a complex non-singular projective variety, and let d ∈ H2(X,Z). A tuple
(C, p1, . . . , pn, f) is called a stable map if it satisfies the following:

• (C, p1, . . . , pn) is a compact and nodal Riemann surface of genus g with n marked
points.

• f : C → X is a morphism such that every irreducible component C̃ of C satisfies one
of the following:
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i. C̃ has genus zero, at least three marked points, and is contracted (i.e., f |C̃ is
constant).

ii. C̃ has genus one, at least three marked points, and is contracted.

iii. C̃ has genus at least two or is not contracted.

A stable map with class d satisfies f∗([C]) = d, where [C] is the Poincaré dual of C. If
d = [C ′] for a curve C ′ ⊂ X and f is injective, then f parametrizes C ′ = f(C). If X is
zero-dimensional (i.e., a point), a stable map reduces to a stable curve. The moduli space
of stable maps MX

g,n,d classifies stable maps up to isomorphism. In particular, if X = pt
and d = 0, we recover Mg,n, and if d = 0 for general X, then every stable map is constant,
yielding MX

g,n,0 'Mg,n ×X.
As with the moduli space of curves, MX

g,n,d can be viewed as a complex orbifold of
dimension:

dimC(M
X
g,n,d) = (1− g)(dimX − 3) + n−

∫
d
ωX .

Since this dimension may not be well-defined, the expected dimension e is defined via the
virtual fundamental class [M

X
g,n,d]

vir ∈ H2e(M
X
g,n,d) ' H0(M

X
g,n,d). If the moduli space

has pure dimension, then dimRM
X
g,n,d = 2e. Throughout this section, we assume rational

cohomology.
Several important morphisms are associated with MX

g,n,d:

• The evaluation map at the i-th marked point:

evi : M
X
g,n,d → X, (C, p1, . . . , pn, f) 7→ f(pi).

• The forgetful morphism that forgets the map f and stabilizes if necessary:

µ : M
X
g,n,d →Mg,n.

• The forgetful morphism that removes a marked point:

π : M
X
g,n+1,d →M

X
g,n,d.

The Gromov-Witten class Ig,n,d is a map

Ig,n,d : (H•(X))⊗n → H•(Mg,n)

γ1 ⊗ . . .⊗ γn 7→ Ig,n,d(γ1, . . . , γn),

which can be identified with Ig,n,d ∈ H•(Mg,n)⊗ (H•(X)∗)⊗n. It is explicitly given by

Ig,n,d(γ1, . . . , γn) = µ∗(ev∗1(γ1) ^ . . . ^ ev∗n(γn)).

Here, the pushforward µ∗ is taken in the cohomology ring using Poincaré duality.
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The corresponding Gromov-Witten primary invariants are defined as

〈Ig,n,d(γ1, . . . , γn)〉 =

∫
Mg,n

Ig,n,d(γ1, . . . , γn).

The i-th ψ-class is defined as before. Moreover the Gromov-Witten descendant invariants
are defined by

〈τi1(γ1) . . . τin(γn)〉Xg,n,d =

∫
Mg,n

Ig,n,d(γ1, . . . , γn)ψi11 . . . ψinn ,

where γk ∈ H•(X) and ik ∈ Z≥0. Computing Gromov-Witten invariants for a given
variety X is a challenging task. Kontsevich’s formula for rational plane curves provides
a recursive method for the case X = CP1, as shown in [CK99, p.196]. One approach to
gaining deeper insight into these invariants is through their generating function, inspired
by the effectiveness of Witten’s conjecture [Wit91]. The idea is to establish a connection
between these generating functions and integrable hierarchies. In the current literature,
the generating function associated with a Gromov-Witten theory is known as the Gromov-
Witten descendant potential, analogous to the Witten-Kontsevich descendant potential.

The connection between Gromov-Witten theory and integrable hierarchies was first
made explicit by Dubrovin and Zhang [DZ98; DZ01], who constructed an integrable hier-
archy associated with the Gromov-Witten descendant potential. Givental’s and Teleman’s
classification of semi-simple Gromov-Witten theories [Tel12; Giv01a; Giv01b; Giv04], com-
bined with Dubrovin-Zhang’s results, established that any semi-simple Gromov-Witten
theory corresponds to an integrable hierarchy, now known as the Dubrovin-Zhang (DZ)
hierarchy. This key result states that an explicit tau function of the DZ hierarchy encodes
the potential of the underlying Gromov-Witten theory [BPS14].

More recently, Buryak [Bur15] constructed a new integrable hierarchy, the Double Ram-
ification (DR) hierarchy, which is also associated with a given Gromov-Witten class. This
hierarchy is built using the geometry of pairing λgDRg(A) with a given Gromov-Witten
class, where DRg(A) ⊂Mg,n is the double ramification cycle and λg is the top Chern class
of the Hodge bundle on Mg,n. A fundamental conjecture, formulated by Buryak, states
that in the semi-simple case, the DR hierarchy is related to the DZ hierarchy via a normal
Miura transformation [Bur15; BDGR18], a statement now known as the strong DR/DZ
equivalence conjecture. Furthermore, these authors [BGR19; BDGR20] proposed a set of
conjectural relations in the tautological ring RH•(Mg,n), which, if true, would imply the
strong DR/DZ equivalence conjecture. Very recently, this set of conjectural relations was
proven to be true [BLS24].

Building on the DR hierarchy, Buryak and Rossi introduced a deformation quantization
of this integrable system, constructing the Quantum Double Ramification (qDR) hierarchy
[BR16a]. In this framework, the hierarchy is developed using the geometry of pairing
Λ(ε)DRg(A) with a given Gromov-Witten class, where Λ(ε) represents the sum of all
Chern classes of the Hodge bundle on Mg,n. Just as with the DR hierarchy, the entire
qDR hierarchy can be reconstructed from its primary Hamiltonian density using the double
ramification recursion relations [BR16b].

This leads to several natural questions:
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• What additional enumerative geometric information does the quantized hierarchy
encode beyond the classical DR hierarchy?

• What is the precise relationship between the qDR and DZ hierarchies?

• Can the Dubrovin-Zhang hierarchy itself be quantized, and if so, is there a potential
connection between qDR and a possible quantum Dubrovin-Zhang (qDZ) hierarchy?

Addressing these questions is central to my doctoral research.
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Dynamics of Environment-Embedded
Quantum Systems: An Introduction

Pietro De Checchi (∗)

Abstract. Closed quantum systems are an idealization, their time evolution described by the
Schrödinger Equation, i.e. by the action of unitary operators. The physics of a realistic quantum
system, on the other hand, is bound to be disturbed by the environment in which it is naturally em-
bedded and with which it inevitably interacts. The dimension of the space needed to fully describe
the composite system increases, as one would have to include all, possibly infinite, environmental
variables, leading to intractable problems. To reduce the system to a smaller subspace of interest
and to describe its correct dynamics, many strategies have been developed. These systems have in
general non-unitary dynamics and are known as Open Quantum Systems. We introduce some of
the main approaches based on various techniques, from dynamical semigroup generators, stochastic
unravelings and bottom-up modelling.

1 Introduction

In this work, I will introduce some of the most common approaches to describe the dynamics
of quantum systems embedded in an environment.

The starting point is a brief recap of the basis of closed quantum systems and their
dynamical evolution, moving from the most known wave-function frame, to the density
matrix approach, which generalizes the former and allows for the description of a broader
set of states. Using this basis, the composition of the system from different subsystems
is introduced. The search for the description of the dynamics of only one subsystem,
considering its interaction with the others, leads to contractive mappings and the theory
of Open Quantum Systems.

In Figure 1, a commutative diagram as a conceptual map of the main routes and
strategies to describe the maps E . The exact one is the unfeasible one, treating the whole
system up to being closed (the universe as a system), which I referred to as a deterministic
equation for probabilistic objects. I will introduce three main feasible approaches: an alge-
braic derivation of the most used Markovian approximation of the dynamics, a bottom-up
approach for a microscopic derivation, which can be thought of as master equations for

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 5 December 2024.
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probabilistic objects, and finally one of the stochastic approaches, probabilistic equations for
probabilistic objects.

Probabilistic intuition and physical interpretation are remarked on throughout the
work.

Figure 1: A conceptual map as a commutative diagram, illustrating the different strategies to describe the
subsystem state ρS(t) evolution in time, the spaces these objects live in.

1.1 Notation and Conventions

Bra-ket notation: ket |v〉 denotes a vector v in a complex vector space, the bra 〈v| =
(|v〉)† denotes the Hermitian conjugate of the ket v
Hilbert Spaces are denoted as HA with the subscript A denoting which system the space
refers to
Operators are notated in italic capital letters A, capital subscripts denoting the space
they act on, and lowercase letters index the elements of the operator in matrix notation.
Unitaries transforms are denoted as the particular operators U
Maps and generators are denoted by calligraphic capital letters, unitary maps as the
particular map U
Indexes: Latin letters are used for the system of interest and Greek letters for the envi-
ronment.
Orthonormality/orthonormal basis in a Hilbert spaces: {|i〉,⊥1} = {|i〉 s.t. 〈i|j〉 =
δij}, while the opposite is written with the simple negation: 6⊥1, and orthogonality is stated
as usual as ⊥.
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2 Basis of (Closed) Quantum Systems

Closed quantum systems are usually introduced during undergraduate courses and can be
described in the wave function (wave-vector) formalism.

(2.1) |ψ〉 =

d∑
j=1

cj |φj〉 , |ψ〉 ∈ Hd = Cd, {|φj〉⊥1Hd}dj=1

where cj are complex coefficients of each vector |φj〉, which together compose an orthonor-
mal basis of the Hilbert space Hd.

The probabilistic nature of quantum mechanics depends on the meaning of the square
norm of the coefficients of the state vectors. The coefficients cj ∈ C are probability
amplitudes:

(2.2) P(meas. |φj〉) = |〈φj |ψ〉|2= |cj |2 ,
d∑
j=1

|cj |2= 1

We can summarize the physical meaning and interpretation of the objects we deal with
in this formalism. The wavefunction ψ describes a probability amplitude, its norm squared
|ψ|2 a probability density, and the probability of measuring the system in dr being |ψ|2dr.

The interpretation is that identical measures on a set of identical replicas of the system
give the probabilistic meaning, the action of the measureMk

(2.3) |ψ〉 7→ Mk√
pk
|ψ〉 ≡ |ψk〉 pk = 〈ψ|M†kMk|ψ〉 ≥ 0,

the state of the system instantaneously collapsing after the measurement, with probability
pk. Every physically measurable quantity is associated with an observable, i.e. a Hermitian
operator with spectral decomposition:

(2.4) A =
∑
a

λa|a〉 〈a|

where {|a〉 〈a|} is the set of projectors, projecting measures on the eigenvectors {|a〉}
subspaces. Expectation values are the mean value of the measure of an observable.

The time evolution of a closed quantum system, i.e. a system that evolves under the
action of unitary operators, is given by the Schrödinger equation (SE):

(2.5)
d

dt
|Ψ(t)〉 = − i

h̄
H|Ψ(t)〉

where H is the Hermitian operator known as the Hamiltonian. In the following, for simplic-
ity, we set h̄ = 1. The solution of this differential equation gives an equivalent postulate,
and it highlights the presence of the unitary operator describing the evolution U(t), called
the propagator

(2.6) |Ψ(t)〉 = U(t)|Ψ(0)〉
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.
When the quantum system is isolated, the Hamiltonian is time-independent, and the

evolution of the statevector is simply given by:

(2.7) |Ψ(t)〉 = e−iHt|Ψ(0)〉

hence U(t) = e−iHt, with initial condition U(0) = 1. For simplicity, we will consider
only time-independent Hamiltonians, for time-dependent Hamiltonians and semiclassical
dissertations on light-matter interactions refer to any undergraduate textbook in physics.

3 From Closed to Open Quantum Systems

3.1 Density matrix formalism

Because of the probabilistic nature of quantum mechanics, as stated above, the observ-
ables of any quantum system can be obtained only by a statistical average of repeated
measurements on copies of the systems, which is the same as measuring an ensemble of
independent systems described by the same statevector. It is convenient then to introduce
the density matrix formalism when dealing with ensembles of quantum systems. More
importantly, the individual systems composing the ensemble can assume different states,
and this is equivalent to saying that the state of a system is not always perfectly known.

Postulate 1 of Quantum Mechanics: State Space

i) To every quantum system is associated a Hilbert space H = Cd equipped with inner
product 〈v|w〉 =

∑d
j=1 v

∗
jwj = cvw ∈ C

ii) def. (density matrix) A state of the system is a positive semidefinite self-adjoint
linear operator acting on H with unitary trace

ρ =
∑
k

pk|ψk〉〈ψk| , |ψk〉 ∈ H , Trρ = 1 , pk ∈ [0, 1] , ρ ∈ L(H)

iii) def. ρ is a pure state if ρ = |ψk〉 〈ψk|, i.e. pk = 1 for some k.

We see that we can write a generic density matrix as the sum of pure states weighted
by the probability of being measured.

Remark 1 The set

p =

{
pk : pk ∈ [0, 1],

d∑
k=1

pk = 1

}
is a probability distribution of a pure states ensemble.

Remark 2 The trace operator (Tr : H → C) acts as an average.
Let A =

∑
a λa|a〉 〈a| ∈ L(H) Hermitian operator, the expectation value of A for the

system ρ is
〈A〉ρ =

∑
a

λapa = Tr[Aρ]
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Definition 1 (Purity) The purity of the state ρ is defined as the quantity

(3.1) P ≡ Tr(ρ2)

A state is called pure if P = 1 and mixed if P < 1.

Remark 3 Note that the density matrix ρ is: (i) a state of the system by definition, (ii)
a projection operator, (iii) a probability density.

Figure 2: Bloch sphere representation for a qubit state. A generic pure state is represented with a blue
arrow, a mixed one with a red arrow.

In this picture, the dynamics of the system are given by the Liouville-Von Neumann
equation, which reads:

(3.2)
d

dt
ρ(t) = −i[H, ρ(t)]

where [A,B] is the commutator AB − BA. Easily derived from the SE solution and the
definition of the density matrix ρ, it has the formal solution:

(3.3) ρ(t) = U(t)ρ(0)U †(t) = Ut[ρ(0)]

where Ut[·] is the dynamical map of the evolution. Again, the evolution of the system is
unitary.

Let’s visualise in a geometric representation a simple example, to understand the fun-
damental difference between the two formalisms. Take a two-level system ρ ∈ L(H = C2),
its density matrix is

(3.4) ρ =

(
a b
b∗ 1− a

)
by Hermiticity and unitary trace conditions. This, by the condition of positivity of the
eigenvalues, can be parametrised and decomposed in a form:

(3.5) ρ =
∑

i=x,y,z

σivi =
1

2

(
1 + vz vx − ivy
vx + ivy 1− vz

)
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where σi are Pauli matrices σx, σy, σz and the vector v = (vx, vy, vz) is called Bloch vector,
with ‖v‖≤ 1. Now, we can visualise in three dimensions the state, Fig. 2. This simple
two-level system is what is usually referred to as a qubit in quantum computing.

The magnitude of the Bloch vector is related to the purity of the system, so vectors
with unitary length describe pure states, otherwise mixed states. Phrased differently, pure
states live on the sphere’s surface, and general mixed states in the volume.

In closed dynamics, we can move only on the surface of a sphere or radius ‖v‖, since
unitary evolutions are nothing more than rotations of the states. What changes in open
systems dynamics?

3.2 Complex systems: composition with an environment

What we have discussed so far are the closed dynamics of a single system. Let now consider
a more complex setting, a total system composed of two parts. The second postulate of
quantum mechanics follows.

Postulate 2 of Quantum Mechanics: Expansion Take two quantum systems and their
Hilbert spaces,

HA , {|a〉⊥1HA}N1 ; HB , {|µ〉⊥1HB}M1
the composite Hilbert space of the super-system is:

(3.6) H = HA ⊗HB = span{|a〉A ⊗ |µ〉B}

We can define pure states ensembles as

(3.7) {|ψk〉 ∈ H , pk}, |ψk〉 =
∑
i,µ

ck;a,µ|a〉A ⊗ |µ〉B

and the associated generic density matrix

(3.8) ρ =
∑
k

pk|ψk〉〈ψk|=
∑
abµν

λabµν |a〉A〈b|⊗|µ〉B〈ν|

where

(3.9) λabµν =
∑
l

plcl;iµc
∗
l;jν

This matrix describes the total system both when it is correlated and not correlated,
with the latter being a special case: only when we can write λijµν = λAijλ

B
µν we can express

the total density matrix as the tensor product of the density matrices of the two subsystems
ρ = ρA ⊗ ρB. In all the other cases the two systems are said to be correlated.

This is a realistic situation. We usually refer to only one part of the total system as
the system, a small part (HS) of what can be a protein, a laboratory, the entire universe
(H), and the remaining sub-system as the bath or environment.
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Figure 3: Schematic representation of an open quantum system.

Let’s cast this to the typical case when studying molecular processes. Normally, the
dimension of the Hilbert space of the system S is quite small, more generally it has a finite
dimension dS , while the bath contains all the solvent degrees of freedom, the molecular
vibrations that are not of interest and so on, as such usually dB →∞.

So what about when we are interested in a small part (S) of the total system (universe)?
We introduce the partial trace, to recover only the information about our system S.

Definition 2 (Partial trace operator) Let H = HS ⊗ HB, and A = NS ⊗MB generic
operator acting on H. The partial trace is the linear operator TrB : H 7→ HS acting

(3.10) TrB(NS ⊗MB) = NSTr(MB) = ÑS ∈ HA

Therefore, take a generic universe described by the density matrix in (3.8), and look
only at the subsystem S by applying the partial trace for the environment subsystem:

(3.11) ρS = TrB(ρSB) =
∑
ω∈HB

〈ω|ρSB|ω〉 =
∑

a,b∈HS
ω

λabω|a〉S〈b|

where {|ω〉⊥1HB} is basis of the environment space. The coefficients λabω and then the
reduced density matrix, and the partial trace operation itself, still depend on the knowledge
of the whole system. This shows the need for a simplified approach, an approximated
model, to be able to describe such systems and their dynamics.

3.3 The need for a simplified approach

With equations (3.2) and (3.3) we can write the universe dynamics, and operating with
the partial trace we can recover the exact dynamics of the subsystem of interest:

(3.12) ρS(t) = TrB{U(t)ρSB(0)U †(t)}

We can expand the partial trace over the bath, supposing to be able to know an
orthonormal basis {|µ〉⊥1HB} for it:

(3.13) ρS(t) =
∑
µ∈HB

〈µ|U(t)ρ(0)U †(t)|µ〉
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Now, an assumption needs to be made. We consider the initial state decoupled, i.e.
factorized into the system and bath components, ρ = ρS ⊗ ρB. Whilst it is not an ap-
proximation by itself, it is a very unrealistic and rare case, so we are narrowing the actual
physical system we are describing or we can consider it as an approximation of a larger set.
For example, it can be justified and accepted for an excitonic system if it can be considered
instantaneously excited at t = 0 (sudden approximation), with no correlation between the
excited system and the environment at the previous times.

Considering an orthonormal basis decomposition of the bath (ρB =
∑

ν λν |ν〉 〈ν|) we
can write:

(3.14) ρS(t) =
∑

µν∈HB

√
λν〈µ|U(t)|ν〉ρS(0)

√
λν〈ν|U †(t)|µ〉

where we can identify the environment-averaged operators driving the dynamics of the
system, the Kraus operators:

(3.15) Kµν(t) =
∑
µν

√
λν〈µ|U(t)|ν〉

and recast the time evolution of the system density matrix in what is called an Operator
Sum Representation (Kraus OSR): [1]

(3.16) ρS(t) =
∑
α

Kα(t)ρS(0)K†α(t)

Hence, with just one assumption on the initial state of the universe system, we have
written a simple form for the evolution of the system. Therefore, the OSR representation
is a map of the evolution of the system, possibly exact.

E : HS → HS(3.17)

ρS(0) 7→ ρS(t) =
∑
α

Kα(t)[ρS(0)]Kα(t)†(3.18)

This formulation holds the following properties:

(a) Trace preservation:

Tr[E(ρ)] =
∑
α

Tr[Kα(t)ρKα(t)†] = Tr[
∑
α

Kα(t)†Kα(t)ρ] = Tr[ρ]

The fact that
∑

αK
†
αKα = I comes from the definition of Kraus operators, and can

be intended later as a trace-preserving constraint.

(b) Linearity:
E(c1ρ1 + c2ρ2) = c1E(ρ1) + c2E(ρ2)

By direct substitution, for any scalars c1, c2.
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3a. Positivity:
〈a|E(A)|a〉 ≥ 0, ∀|a〉 ∈ HS

3b. Complete positivity: any operator written in Kraus OSR satisfies the Let then denote
HR any ancillary Hilbert space, of dimension k = dim(HR), and the identity 1(k)

R for
any k, then

E ⊗ 1(k)
R ≥ 0, ∀k > 0

Theorem 1 (Choi-Kraus theorem) A linear map E : L(H)→ L(H) is completely positive
and trace-preserving (CPTP) if and only if it has a Kraus operator sum representation:

E [·] =
∑
α

Kα(t)[·]Kα(t)†

with the operator Kα(t) ∈ B(H) such that:∑
α

Kα(t)Kα(t)† = 1

The proof of the theorem can be found in [1-3], in a more synthetic way in [4-7]. In
particular, Choi’s theorem gives sufficient conditions for a map to be completely positive, [3]
and Kraus’s theorem adds the condition for trace preservation and formalizes the operator
sum representation. [1]

Then, we have a dynamical map for the evolution of a system from a time t0, when the
system satisfies the factorization condition, up to a generic time t, with the assumption
of knowing the propagator for the universe and an orthonormal decomposition for the
environment. The whole point is that these are quantities that we do not know, and even
if we did, we can not start in an intermediate time t′ < t as we would not be in a factorized
condition anymore. Further assumptions and approximations are then needed to have a
structured and solvable description of the dynamics.

4 Gorini-Kossakowski-Sudarshan-Lindblad Form

Given a known system at time t0 and its evolution to t1, and the same for another time
t2 > t1 one would expect by continuity of time, naïvely, the following composition law in
(4.1). We have to rely on a second assumption, the Markovian nature of the map, so

(4.1) Et2,t0 = Et2,t1Et1,t0

i.e. the map E to be a contractive evolution family (contraction semigroup). That is a
particular case, and to be true, and all the maps to be unital CPT maps, the map E is a
contractive evolution family. This condition is called divisibility condition, and it means
that the system loses memory of its evolution at any previous time. So, it is easy to see
that the system has the Markov property, and therefore evolutions admitting CPT unital
maps are called Markovian evolutions, and the system is referred as a Markovian system.
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The key element of a semigroup of operators is its generator and, by Markovian as-
sumption, it is linear, strongly continuous and admits an infinitesimal generator. We can
then identify the generator of the semigroup by the solution of the first order ODE for the
dynamics of the system:

(4.2) ρ̇t = L[ρt] → ρt = eLtρ0

Starting from the limit expression for the infinitesimal generator and using Kraus-
Choi theorem, the Gorini-Kossakowski-Sudarshan and Lindblad Master Equations, [8, 9]
is obtained, and the theorem follows:

Theorem 2 (Lindblad ’76; Gorini,Kossakowski,Sudarshan ’76) The generator of any quan-
tum operation satisfying the semigroup property must have the form

(4.3)
dρS(t)

dt
= −i[HS , ρS(t)] +

∑
k

γk

[
LkρS(t)L†k −

1

2

{
LkL

†
k, ρS(t)

}]
where γk > 0 are relaxation rates, Lk are Lindblad operators and {· , ·} is the anticommu-
tator.

Then, QME in the form of (4.3) are all and only admitting CTPT properties of the map,
if not invoking non-Markovianity and various projection techniques bringing to complex
and usually not solvable forms.

Figure 4: Example of the effect of dissipation of the dynamics and the contraction (grey enveloping line)
of the space for a two-level quantum system with coupled states. For comparison, the dynamics of the
closed system are in transparent dashed lines.

5 Bottom-up Approach: Redfield QME

There are many more methodologies to approach open quantum systems, even when still
relying on most of the approximations and assumptions applied so far. Another tool
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commonly used to deal with OQS is the Redfield Master Equation:

d

dt
ρS(t) = −i[HS , ρS(t)]−

∑
αβ

[Sα, QαβρS(t)] + [ρS(t)Q†αβ, Sα]

and we immediately see that it is not in Lindblad form: it is not a CP mapping! Then,
why it is so common and important? In contrast to the Lindblad approach, this model
is not simply algebraically derived and the application purely phenomenological. The
derivation of the model is from a microscopically bottom-up approach, allowing for physical
assumption for the system, the environment and their interaction.

We start defining the Hilbert spaces of the reduced system, HS , of the environment
HB, and of the composite super-system H = HB ⊗HB. We define the total Hamiltonian
for the system as

(5.1) H = HS ⊗ 1+ 1⊗HB +HI

where HS , HB ∈ HS ,HB describe the two isolated subsystems and the interaction Hamil-
tonian HI ∈ H is a bilinear coupling defined as

(5.2) HI =
∑
α

Sα ⊗Bα

where Sα ∈ B(HS), Bα ∈ B(HB) are interaction operators acting in the respective Hilbert
spaces.

The associated Liouville-Von Neumann equation of the universe system is then:

(5.3)
d

dt
ρ(t) = [HS ⊗ 1 + 1⊗HB +HI , ρ(t)]

and we transform to the so-called interaction picture, or Dirac picture, hence to a co-moving
frame so that

(5.4) ρ̃(t) = ei(HS+HB)tρ(t)e−i(HS+HB)t

and the interaction Hamiltonian is transformed similarly, becoming a time-dependent
Hamiltonian.

We can now write the Liouville equation d
dt ρ̃(t) = [HI(t), ρ̃(t)], integrate it and inserting

the integrated definition of the density matrix obtained into the initial Liouville equation.
We obtain the following open integrodifferential equation:

(5.5)
d

dt
ρ̃(t) = −i[H̃I(t), ρ̃(0)]−

∫ t

0
[H̃I(t), [H̃I(t

′), ρ̃(t′)]] dt′

To obtain the system evolution, our interest, we have to trace over the bath degrees of
freedom,

(5.6)
d

dt
ρ̃S(t) = −iTrB{[HI(t), ρ̃(0)]} −

∫ t

0
TrB{[HI(t), [HI(τ), ρ̃(τ)]]}dτ
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which is recasting that is still the exact description of the dynamic of the whole system.
Now, we need to add some approximations to find a solution, i.e. to obtain an equation in
closed form.

(a) Factorization of the initial system

ρ(0) = ρS(0)⊗ ρB(0) = ρS(0)⊗ ρeqB

(b) Born Approximation: We consider a perturbative interaction, we expand the total
density matrix at any time t as the series

ρ(t) = ρS(t)⊗ ρeqB +O(λ)

and we neglect the higher-order terms.

We can now substitute the factorized expression for both the density matrix and the
interaction Hamiltonian, recall the action and linearity of the partial trace operator, Defi-
nition 2, and the cyclic property of trace operators, so that

(5.7) TrB [HI(t)ρ̃(t)] = Sα(t)ρ̃S(t)Tr
[
Bα(t)ρ̃eqB

]
the trace on the r.h.s. the expectation value of the simple coupling operator Bα, and
consider it as a mean-field effect, which would simply shift the Hamiltonian, or assume
that it vanishes (meaning that we can consider it to be included in the system Hamiltonian
and therefore be null). Hence the first term of (5.6) vanishes.

In the integral term, we get the trace of the different combinations of the product of
two operators acting at different times on the bath subsystem, which is identified as the
correlation function of the bath:

(5.8) Cαβ(t, τ) = Tr[Bα(t)Bβ(τ)ρeqB ]

Here, we can evaluate different system bath models, either from physical assumptions
or from actual models of the surrounding environment. As simple examples, considering
a δ-correlated environment, very fast correlation times w.r.t. the system evolution, we fall
back to Markovian assumption which will eventually lead to the Lindblad equation. On
the other hand, we can use models: in the Caldeira-Legget model the bath is modelled by
a set of independent quantum oscillators, from which we extract a complex correlation,
or from overdamped Brownian oscillators a Drude-Lorentz spectral density, i.e. Ohmic
spectral density with Lorentzian cutoff, and many others.

We obtain then a non-Markovian QME for the system:

(5.9)
d

dt
ρ̃S(t) = −

∑
αβ

∫ t

0
Cαβ(t, t′)[S̃α(t), S̃β(t′)ρ̃S(t′)] + Cαβ(t′, t)[ρ̃S(t′)S̃β(t′), S̃α(t)] dt′

as it depends on the ρS at all previous times, and the bath too is correlated. Then, two
more approximations are needed to obtain a form in the Markovian framework:
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(c) the first Markov approximation is to assume that ρS(t) varies slower than the decay
of the correlation of the bath, allowing to change

ρS(τ)dτ → ρS(t)dτ

(d) the second Markov approximation to remove the time dependency of the coefficients
in the nested commutator. To do so we follow the same reasoning as above, and
consider that, as ρS decays slowly with respect to the correlation function of the
bath, the kernel decays fast enough to extend the integration upper bound to infinity∫ t

0
→
∫ +∞

0

We finally obtain an equation which is time-local and closed for the system dynamics,
the Redfield QME in the rotated frame:

(5.10)
d

dt
ρ̃S(t) = −

∫ ∞
0

dτ
∑
αβ

{Cαβ(τ)[S̃α(t), S̃β(t− τ)ρ̃S(t)] + h.c.}

where h.c. indicates the hermitian conjugate of the term inside the parenthesis. Moving
back to the Schrödinger picture, expanding the operators S in the HS eigenbasis, the
Redfield QME is obtained

(5.11)
d

dt
ρ(t) = −i[HS , ρ(t)]−

∑
α,β

∑
ω,ω′

Γαβ(ω′)
([
S†rot,α(ω), Srot,β(ω′)ρ(t)

]
+ h.c.

)
.

where the coefficients Γαβ(ω′) are defined

(5.12)
∫ ∞

0
Cαβ(τ)eiω

′τ dτ

Further assumptions can be considered and approximations can be applied, leading to
different recastings of this form. One notable example is the recovery of a Lindblad form
from this microscopic approach applying the secular approximation, commonly known also
as rotating wave approximation, considering fast oscillating terms null. [5, 10]

6 Stochastic Schrödinger Equation

Approaching open quantum systems via stochastic Schrödinger equations is a method to
use effective equations to describe the interaction of the quantum system with its envi-
ronment. These methods are called unravelings of the respective QME, and gained of
importance for many aspects, most notably their application to Quantum Computing im-
plementations and control. In the unraveling scheme, the possibly-mixed density matrix of
the system is obtained as the average of pure state dynamics with stochastic driving. The
clear upside is the scaling of the numerical implementation, O(N) instead of O(N2), the
problem with the scaling with the number of trajectories required easily overcome by the

Università di Padova – Dipartimento di Matematica 49



Seminario Dottorato 2024/25

ability of efficiently parallelize on classical architectures, and since we deal with unitary
evolutions we can implement is on QC architectures, harnessing the need for repeated runs
in-lieu of the parallelization. On the downside, we are limited in the choice of operators
depending on the stochastic process used and therefore limiting also the application for
the QC applications.

The simple and general way to formulate an is starting with a linear homogeneous
stochastic differential equation (SDE) of the following form,

(6.1) dψ̃t = Aψ̃t dt+Bψ̃t dXt

where the operator A should contain the deterministic evolution of the system as if isolated,
and where B is the operator of the stochastic fluctuations. This simple SSE approach does
not ensure, in principle, the preservation of the norm of the state vector ψ(t). Hence,
normalized states must be introduced:

(6.2) ψt =
ψ̃t

‖ψ̃t‖

In this way, the mean density matrix describing a mixed state is unraveled into an
ensemble of pure states. To do so, a change of distribution is required to ensure the
correct mean, and this is given by a Girsanov transformation (Theorem A.45 in [11]) In
terms of the SSE storm of trajectories, this transformation fulfilling this transformation is
given by the a priori normalization of the wavefunction ensuring the martingale property
‖ψ(0)‖2= ‖ψ(t)‖2= 1. This gives the normalization condition

(6.3) E[||ψt||2] = 1 =⇒ d(ψ†tψt) = 0

The form of the operators A and B are then obtained by computing the normalization
above. Then, we can then write the normalized solutions, in terms of the average density
matrix, as

(6.4) ρt = E [|ψt〉 〈ψt|]

notably the stochastic unraveling of the mean density matrix time evolution.
As a prototypical example, let’s see how any QME in Lindblad form can be recovered

from this approach. Set dXt = σ dWt, the non-normalized SSE is:

(6.5) dψ̃t = Aψ̃t dt+ σBψ̃t dWt

where W is a Wiener process, σ > 0 is its intensity. Note that in this setting with a
single noise source, dW is a real scalar, so both B and A are operators with a matrix
representation.

To ensure the martingale property, the differential of the squared wavefunction averaged
over trajectories replicas must be null, E[‖dψt‖2] = 0. The noise components average to
zero due to the properties of dW , and to preserve the martingale property we have to set
the operators in the time component to zero too:

(6.6) A† +A+ σ2B†B = 0
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We are not interested in the trivial solution when B is the null element: that would
recover the Schrödinger equation for the system as if closed.

Remark 4 The operator A must contain the Hamiltonian component (−iH/h̄) to recover
the Schrödinger equation in the limit case of nought noise.

Then, we set

(6.7) A = −iH + C

where H is the Hamiltonian of the system of interest, and the renormalization term C is
an unspecified renormalization operator term, leading to

(6.8) A = −iH − 1

2
σ2B†B

without any constraints on the B operator. Then, the SSE obtained is:

(6.9) dψt = (−iH − 1

2
σ2B†B)ψt dt+ σBψt dWt

which can be numerically implemented. We can compute now the differential of the outer
product of the wavefunction with itself d(ψψ†), making use of Itō’s product rule, obtaining
the Quantum Stochastic Master Equation, not so useful as it is associated with the single
unitary trajectory, and then take the expectation value to obtain the associated Quantum
Master Equation:

(6.10)
d

dt
ρt = −i [H, ρt] + σ2

(
B†ρtB −

1

2

{
B†B, ρt

})
where {·, ·} as usual is the anti-commutator. With time-independent σ and B operators,
this is quite clearly a Lindblad form, with just one dissipation channel considered - that
due to the single “noise bath”. We therefore are able to identify the operator B = L as
the jump operator and γ = σ2 as the relaxation rate. The method is easily generalized
to multiple dissipation channels by the use of i.i.d. multidimensional baths each with its
own intensity. Due to the absence of constraints on the jump operators L, which can also
be non-Hermitian hence inducing asymmetric decaying, and we can recover all QMEs of
Lindblad form.

Considering different stochastic differentials and stochastic processes that are not white,
colored Gaussian and not-Gaussian, different memory effects can be introduced in the
dynamics of the system, leading to QMEs not in Lindblad form QMEs, usually not closed,
but correlated and with memory effects for which we have an unraveling that allows for
numerical computation.
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Figure 5: Stochastic unraveling of a simple Lindblad equation for a two-level system. For the quantity
given by (ψ(t))0(ψ(t))∗0, a swarm of 50 different stochastic trajectories in grey lines in transparency and the
example evolution of single trajectories, red line, are displayed. The mean time evolution of the element
ρ00 (population) of the density matrix is in the blue line.
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Representations of Quivers over Rings:
Merging Commutative and

Non-Commutative Results
Enrico Sabatini (∗)

Abstract. In the vast universe of representation theory there are two very separate and different
worlds: commutative rings and finite dimensional (non-commutative) algebras. The problem of
characterizing certain subcategories, like many other problems, has been solved in both fields.
However, the main techniques used for one context are generally not transferable to the other.
Recently, some authors have focused their interest on a special kind of algebras that partially
merge the two fields. Here, the apparently different results have a surprising generalization and a
unifying proof. We will give an overview of the two fields mentioned above, describe their main
features and give an idea of what allows such characterizations. Finally, we will show how the
generalization works with the aid of some examples.

A Bestiary of Algebraic Structures

Let us recall the definitions of some algebraic structures that will appear in the next:

• Rings: Triples (R,+, ·) given by a set R and two associative operations such that
(R,+) is an abelian group, (R, ·) is a monoid and the multiplication distributes over
the sum.

– When (R, ·) is a commutative monoid, R is called commutative ring;

– When (R, ·) is an abelian group, R is a filed and will be denoted by K.

• R-Modules: Triples (M,+, ·) given by a set M , an associative operation such that
(M,+) is an abelian group and an operation ·R : R×M →M which distributes over
both the sum in R and the sum in M and it is compatible with multiplication in R.

– Example: if R = K is a field, M is a K-vector space.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 19 December 2024.
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• R-Algebras: Quadruples (A,+, ·, ·R) such that (A,+, ·) is a ring and (A,+, ·R) is
an R-module.

– When R = K is a field and dimK(A) < ∞, A is called finite-dimensional K-
algebra.

• Categories: Triples C = (Ob(C),Mor(C), ◦C), given by a class of objects, a class
of morphisms and an associative partial operation on morphisms such that for any
A ∈ Ob(C) there is a morphism idA ∈ Mor(C) which is an identity for ◦C . Examples
are:

– Set - with sets as objects, functions as morphisms and composition as ◦Set;
– T op - with topological spaces as objects and continuous functions morphisms;

– Met - with metric spaces as objects and 1-Lipschitz functions as morphisms.

In the following we will be mostly interested in the categories:

– Mod(R) - with R-modules as objects and R-linear functions as morphisms;

– Pos - with partially ordered sets as objects and monotone functions as mor-
phisms.

• Subcategories: A category S is a subcategory of a category C if Ob(S) ⊆ Ob(C),
Mor(S) ⊆ Mor(C) and g ◦S f = g ◦C f for any two composable morphisms f, g ∈
Mor(S).

– Since every metric induce a topology such that 1-Lipschitz functions are con-
tinuous, there is a chain of subcategoriesMet ⊆ T op ⊆ Set.

1 Introduction

The main interest of representation theory is the study of the category of modules Mod(R)
of a given ring R, and many problems in this area can be approached by studying suit-
able subcategories. Among all the rings there are two distinguished classes of particular
interest, which are very different from each other: finite dimensional hereditary algebras
and commutative noetherian rings. The aim of this paper is to give a rough idea of how
to classify a certain class of subcategories in the two contexts.

In particular, any finite dimensional hereditary algebra (over an algebraically closed
field) can be described as the path algebra KQ of a quiver Q, and in this case some classes
of subcategories are in bijection with a poset S(Q) depending on the quiver (for example,
the Cambrian lattice or the lattice of non-crossing partitions); on the other hand, for a
commutative noetherian ring R, the classifications can be obtained via the prime spectrum
Spec(R) (for example, by considering its power set P(Spec(R))), which is the poset formed
by the prime ideals of the ring ordered by inclusion.

In the last section, we will consider a third class of rings which includes the two previous
classes: the noetherian path algebras RQ; and we will show, through some examples and
without giving the details, how some of the classifications, despite the very different tools
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and techniques used in the two settings, find a unifying description. In particular, in this
new context, the classifications are given by the poset of maps from S(Q) to Spec(R).

The following diagram schematically summarizes what we have explained above. In
fact, a noetherian path algebra RQ is a finite dimensional hereditary algebra if R = K
is a field and, in this case, Spec(R) = {∗} consists of one point; or, it is a commutative
noetherian ring if Q = • has one vertex and no arrows, and in this case the poset S(Q) =
{0, 1} consists of two points (with the obvious order).

RQ

KQ R

S(Q) P(Spec(R))

{{∗} −→ S(Q)} {Spec(R) −→ S(Q)} {Spec(R) −→ {0, 1}}

Q= •R= K

‖‖

2 Finite Dimensional Hereditary Algebras

A quiver Q = (Q0, Q1, s, t) is a directed graph, where Q0 is the set of vertices, Q1 is the
set of arrows and s, t : Q1 → Q0 are two functions assigning to each arrow its source and
its target.

Example 2.1 The running examples for us will be:

A1 =
1• - the quiver with one vertex and no arrows;

A2 =
1• 2•α - the quiver with two vertices and one arrow s. t. s(α) = 1 and t(α) = 2;

L =
1•

α

- the quiver with one vertex and one arrow such that s(α) = t(α) = 1.

2.1 Path Algebras

A path in Q of length n is a sequence of n arrows ω = αn . . . α1 such that t(αi) = s(αi+1)
for any i = 1, . . . , n− 1, by abuse of notation we will write s(ω) = s(α1) and t(ω) = t(αn).
Moreover, for any vertex i ∈ Q0 we assume that there exists a length-zero path εi with
source and target i and we call it the lazy path at i (not to be confused with a loop based
in i, which is a path of length 1). So we define the set of paths of Q to be

Paths(Q) := {αn . . . α1 | n ∈ Z, αi ∈ Q1, t(αi) = s(αi+1)} ∪ {εi | i ∈ Q0}
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Given a field K and a quiver Q, we call path algebra of Q over K the (non-unitary)
K-algebra whose vector space and (non-unitary) ring structures are given respectively by

KQ := spanK〈ω | ω ∈ Paths(Q)〉 with multiplication ω · ω′ :=

{
ωω′ if t(ω′) = s(ω)

0 otherwise

As stressed out by the adjectives in the brackets, this definition does not always give
an algebra as defined in the "Bestiary", but the following holds.

Proposition 2.2 ([ASS06, Lemma II.1.4, Theorem VII.1.7])

(a) The path algebra KQ has a unit element (i.e. an identity for the multiplication) if
and only if the quiver Q has finitely many vertices and in this case 1KQ =

∑
i∈Q0

εi;

(b) The path algebra KQ is finite dimensional if and only if the quiver Q has finitely
many arrows and no oriented cycles (i.e. paths ω with s(ω) = t(ω));

(c) If the condition above are satisfied, KQ is a finite-dimensional hereditary algebra (i.e.
any submodule of a projective module is projective); moreover, if K is algebraically
closed, any finite-dimensional hereditary K-algebra A is isomorphic to a path algebra
KQA.

Example 2.3

KA1 := spanK〈ε1〉 ∼= K is a 1-dimensional K-algebra;

KA2 := spanK〈ε1, ε2, α | αε1 = ε2α = α〉 ∼=
[
K 0
K K

]
is a 3-dimensional K-algebra;

KL := spanK〈ε1, α, α
2, . . .〉 ∼= K[x] is an infinite-dimensional K-algebra.

2.2 Representations of Quivers

Given a field K and a quiver Q, a representation of Q over K is a tuple V = (Vi, Vα)i∈Q0,α∈Q1

where Vi is a K-vector space for any vertex i ∈ Q0 and Vα : Vi → Vj is an K-linear map for
any arrow α : i → j ∈ Q1. A morphism of representations f : V → W is a collection of
K-linear maps (fi : Vi →Wi)i∈Q0 such that for any α ∈ Q1 the following diagram commute

Vs(α) Vt(α)

Ws(α) Wt(α)

fs(α)

Vα

ft(α)

Wα
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Example 2.4

A1 =
1• - representations are K-vector spaces and morphisms K-linear maps between

them;

A2 =
1• 2•α - representations are given by K-linear maps between two vector spaces

and examples of morphisms are:

K K

K 0

1

1

0

0

K K

K K

1

1

1

1

0 K

K K

0

0

1

1

L =
1•

α

- representations are K-vector spaces together with a K-linear endomorphism.

Notice that representations of a quiver Q over a field K and morphisms between them
form a category, we will denote it by RepK(Q).

Theorem 2.5 ([ASS06, Corollary III.1.7]) Given a quiver Q and a field K, there is an
equivalence of categories Mod(KQ) ∼= RepK(Q).

It turns out that the category of modules Mod(KQ) is not only very easy to visual-
ize, since it is equivalent to RepK(Q), but its subcategory of finite dimensional modules
mod(KQ) is also very easy to study and understand, since it can be decomposed into some
building blocks. Indeed, there are some distinguished objects and morphisms which allow
to recover the whole category.

Definition 2.6

(a) A representation V is said to be indecomposable if it is nonzero and has no nontrivial
direct sum decomposition.

(b) A morphism f : V → W is said to be irreducible if it is neither a section nor a
retraction and has no nontrivial factorization.

Proposition 2.7 ([ASS06, Theorem I.4.10, Lemma IV.1.6])

(a) Every finite dimensional representation of a quiver decomposes uniquely as a direct
sum of indecomposable representations;

(b) Every morphism between finite dimensional representations can be built from irre-
ducible morphisms (and isomorphisms) by forming compositions, linear combinations
and matrices.
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Remark 2.8 In very nice situations, such as when the quiver Q is a Dynkin diagram
(see [ASS06, Section VII.2] for a complete list), indecomposable modules and irreducible
morphisms of Mod(KQ) are independent of the field and depend only on Q; for Dynkin
diagrams this is known as Gabriel’s theorem [ASS06, Theorem VII.5.10]). Thus, it is now
conceivable why many classifications of subcategories of Mod(KQ) also depend only on the
quiver.

In particular, some classes of subcategories are in bijection with a lattice obtained from
Q, we will mention later: the power set of Q0, denoted by P(Q), the Cambrian lattice
C(Q) and the lattice of non-crossing partitions Nc(Q).

3 Commutative Noetherian Rings

Example 3.1 The running examples for us will be:

R = K a field;

R = Z the ring of integers;

R = C[[x]] the ring of formal power series over the complex numbers.

3.1 The Prime Spectrum

Given a commutative ring (R,+, ·), we say that p ⊆ R is an ideal if (p,+) is a subgroup of
(R,+) and it is closed under multiplication by elements of R, i.e. R · p ⊆ p. Moreover, an
ideal p is called prime if R \ p is closed under multiplication, i.e. for any s, t ∈ R \ p the
element s · t is again in R \ p. We define the prime spectrum of R as

Spec(R) = {p ⊆ R | p is a prime ideal}

Example 3.2

Spec(K) = {∗} is equal to one point corresponding to the ideal (0);

Spec(Z) =

(2) (3) (p)

(0)

. . . . . .

and Spec(C[[x]]) =

(x)

(0)

.

Remark 3.3 Recall that (Spec(R),⊆) is a poset. A subset V ⊆ Spec(R) is called
specialization closed (or upper subset) if for any p ∈ V and q ∈ Spec(R) such that p ⊆ q
it holds that q ∈ V . Denoting by V(Spec(R)) the set of specialization closed subsets of
Spec(R), notice that

V(Spec(R)) = {Monotone maps Spec(R) −→ {0, 1}}
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3.2 Localization at a Prime

Given a prime ideal p ∈ Spec(R), we define the localization of R at p as

Rp =
{r
s
| r ∈ R, s ∈ R \ p

}/
∼

where
r1

s1
∼ r2

s2
if there is t ∈ R \ p such that t(r1s2 − r2s1) = 0, i.e.

r

s
∼ tr

ts
for any

t ∈ R \ p.
Analogously, for an R-module M , we define the localization of M at p as:

Mp =
{m
s
| m ∈M, s ∈ R \ p

}/
∼

where
m

s
∼ tm

ts
for any t ∈ R \ p.

Example 3.4 Let R = Z, p = (0) and M = Z/nZ = {0, 1, . . . , n− 1} the group of
integers modulo n. Then:

Z(0) = Q - it is the field of rational numbers;

M(0) = 0 - indeed, each of its elements is of the form
m

s
with m ∈M and s ∈ Z \ (0) and

m

s
∼ nm

ns
=
nm

ns
=

0

ns
= 0

This last example show us how localization can annihilate modules, thus it makes sense
to introduce the following definition.

Definition 3.5 Given an R-module M , we call support of M over R the set

SuppR(M) = {p ∈ Spec(R) |Mp 6= 0}

Analogously, for a subcategory C ⊆ Mod(R), we define

SuppR(C) =
⋃

M∈Ob(C)

SuppR(M)

It is now imaginable how many classifications of subcategories of Mod(R) depend on
the prime spectrum Spec(R). In particular, some classes of subcategories are in bijection
with the power set P(Spec(R)) or with the set of specialization closed subsets V(Spec(R)).
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4 Noetherian path algebras - Examples

The definitions of path algebras and representations of quivers, introduced in Section 2,
remain unchanged if we consider them over a commutative noetherian ring R instead of a
field K. Analogously to Theorem 2.5, it is still valid that Mod(RQ) ∼= RepR(Q). Notice
that when the ring R = K is a field, RQ = KQ is a finite dimensional hereditary algebra,
and when the quiver Q = A1 is just a vertex with no arrows, RQ = R is a commutative
noetherian ring.

The following table summarizes the examples of how some classifications, obtained
separately in the two different contexts, have found a merged description in this new
setting. We will not define either the subcategories or the lattices involved, as this is not
relevant to the purpose of this paper. Instead, we refer the interested reader to the cited
papers and the references therein.

Subcategory KQ R RQ Reference

Localizing Nc(Q) P(Spec(R)) Spec(R) Nc(Q)Set
[AS16]

Smashing Nc(Q) V(Spec(R)) Spec(R) Nc(Q)Pos

Serre P(Q) V(Spec(R)) Spec(R) P(Q)Pos
[IK24]

Torsion C(Q) V(Spec(R)) Spec(R) C(Q)Pos

Wide Nc(Q) V(Spec(R)) Spec(R) Nc(Q)Pos [Sab25]

t-structure Filt(Nc(Q)) Filt(V(Spec(R))) Spec(R) Filt(Nc(Q))Pos [Sab25]

Note that we have divided the table into three sections, each representing a different
group of examples. In fact, the first group - which actually involves subcategories of the
derived category - presents two classes of subcategories that are classified by the same
object over KQ and by two different objects over R, while the opposite happens for the
second group.

The first situation occurs because the prime spectrum of a field Spec(K) is a point and
so any function from it to the poset Nc(Q) is automatically monotone; while the second
situation occurs because for the quiver Q = A1 we have that all three lattices coincide

P(A1) = C(A1) = Nc(A1) =

• 1

• 0

Apart from these limit cases, the examples suddenly become more interesting. Indeed,
already for Q = A2 we have that the three lattices are all different:
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P(A2) =

•

• •

•

C(A2) =

•

•

•

•

•

Nc(A2) =

•

• • •

•

and, for example, for the noetherian path algebra C[[x]]A2 there is a poset isomorphism

Wide(C[[x]]A2) ∼=

•

• • •

• • • •

• • •

•

References

[AS16] B. Antieau and G. Stevenson, Derived categories of representations of small categories over
commutative noetherian rings. Pacific Journal of Mathematics, 283 (2016).

[ASS06] I. Assem, D. Simson, and A. Skowroński, “Elements of the Representation Theory of Asso-
ciative Algebras: Techniques of representation theory”. Cambridge University Press, 2006.

[IK24] O. Iyama and Y. Kimura, Classifying subcategories of modules over noetherian algebras. Ad-
vances in Mathematics, 446 (2024).

[Sab25] E. Sabatini, Telescope conjecture for t-structures over noetherian path algebras. ArXiv preprint,
arXiv:2505.20803 (2025).

Università di Padova – Dipartimento di Matematica 61



Seminario Dottorato 2024/25

Deep Unfolding: Bridging Optimization
and Neural Network Interpretability

Erik Chinellato (∗)

Abstract. Deep neural networks (DNNs) have revolutionized numerous fields due to their powerful
ability to learn complex representations. However, their black-box nature and lack of interpretabil-
ity in architecture and weight design remain significant challenges. After an introductory segment
on DNNs and backpropagation learning, this seminar introduces the Deep Unfolding method as a
promising alternative, bridging the gap between data-driven learning and model-based optimiza-
tion. By unrolling iterative optimization algorithms into structured neural network architectures,
Deep Unfolding provides a principled approach to network design, enabling interpretability and
theoretical insights into their operation. We will explore how this method leverages domain knowl-
edge, achieves faster convergence, and enhances performance in resource-constrained scenarios.
The session will highlight many wide-ranging practical applications of Deep Unfolding, covering
audio source separation and recognition, image denoising and state estimation.

1 Introduction

The focal point of this brief presentation is the Deep Unfolding, which we present in the
context of bilevel optimization, where it has been widely and successfully developed for
image restoration [2] and speech enhancement [6] as a way to avoid both hessian inversion
and loss gradient approximation: while a simple gradient descent scheme is unfolded to
solve the inner optimization, a backpropagation procedure is used to solve the outer opti-
mization. The unfolding can be further generalized by the so called untying, first proposed
in [6], a procedure in which some of the constraints on the parameters involved in the
unfolded iterations are lifted, see Sec. 3 and 3.1. The resulting trained, unfolded network
can be naturally interpreted as a parameter-optimized algorithm, effectively overcoming
the lack of interpretability that characterizes most conventional neural networks. More-
over, it is often reported that in comparison with generic DNNs, unfolded networks have
fewer parameters, therefore requiring less training data and computational resources; this
makes them suitable for embedded computing. In Sec. 4-6 we present three paradigmatic
applications of Deep Unfolding in the context of audio source separation, image denoising

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 9 January 2025.
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and state estimation.

2 Deep Neural Networks and interpretability

Deep Neural Networks (DNNs) are an effective tool to learn complex input-output relations.
They are often used as an alternative to designing mathematical models of complex systems
that can interact with the environment and respond to external excitations. Indeed, DNNs
essentially consist in abstract parametric functions mapping an input vector y = x̂(0) ∈ Rn

to an output x̂(K) ∈ Rm that closely approximates the response Sy ∈ Rm of the target
system to the same input. The parameters of these functions are tuned (learned) to
minimize the approximation error ey = x̂(K) − Sy.

Given a collection of matrices A(k) ∈ Mmk×nk(R) for k = 0, . . . ,K − 1 satisfying
mk = nk+1 ∀k = 0, . . . ,K − 2, n0 = n, mK−1 = m and a nonlinear activation function
σ : R −→ R to be applied elementwise to vectors, the simplest DNNs one can construct is
the following K-layer, fully-connected network:

y = x̂(0) x̂(1) · · · x̂(K−1) x̂(K) Sy
σ(A(0) · ) σ(A(1) · ) σ(A(K−2) · ) σ(A(K−1) · )

One such network is then trained by minimizing a chosen loss function F(x) applied to
the output at the last layer x̂(K), e.g. the 2-norm residue F(x) = 1

2‖x − Sy‖
2
2, and the

parameters of the network are updated using simple gradient descent:

A
(k)

ī j̄
⇐ A

(k)

ī j̄
− µ∂F(x̂(K))

∂A
(k)

ī j̄

∀ī, j̄, ∀k = 0, . . . ,K − 1

In order to reduce computations, we use backpropagation, an algorithm that exploits the
chain rule to drastically cut the number of operations required. In particular, assuming to
have already computed ∂F

∂x̂
(k+2)
ik+2

∀ik+2, one obtains:

∂F
∂x̂

(k+1)
ik+1

=
∑
ik+2

∂F
∂x̂

(k+2)
ik+2

∂x̂
(k+2)
ik+2

∂x̂
(k+1)
ik+1

∀ik+1

∂F(x̂(K))

∂A
(k)

ī j̄

=
∑
ik+1

∂F
∂x̂

(k+1)
ik+1

∂x̂
(k+1)
ik+1

∂A
(k)

ī j̄

Traditional DNNs struggle with interpretability : while on the one hand these networks
can be trained to associate any input to its desired output (possibly by adjusting their depth
K and width mk), on the other hand their generic architecture and non-informativeness
of the learned parameters make it impossible to extrapolate information or gain insight
on the target complex system that generated those input-output pairs. For this reason,
DNNs are often called black-box models. The following sections introduce the mathematical
framework used by the Deep Unfolding to generate interpretable deep networks.
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3 Bilevel optimization

Let us consider a parametric optimization problem depending on a family of parameters
θ ∈ ΩΘ and an inner objective function F in

θ : ΩX × ΩY → R:

(1) min F in
θ (x, y)

s.t. x ∈ ΩX

where x is the quantity of interest (or state) to be optimized based on some given obser-
vation y. Denoting x̂(θ; y) its minimizer:

(2) x̂(θ; y) = arg min
x∈ΩX

F in
θ (x, y)

bilevel optimization frameworks, in their most simple form, strive to minimize an outer
objective function F out : ΩX × ΩY → R, taking x̂(θ; y) as an argument, with respect to
the inner parameters θ:

(3) min F out(x̂(θ; y), y)
s.t. θ ∈ ΩΘ

Such problems naturally arise when optimizing partially unknown models, in our notation
associated to F in

θ in (1). The parameters θ can then be recovered using the following two
approaches, leading to the choice of an appropriate outer objective F out in (3):

• Imposition of a priori optimality requirements. By exploiting the unknown parame-
ters θ, we can endow the minimizers x̂(θ; y) with some desirable property chosen a
priori, independent of the observations y. Such properties are usually enforced by a
regularizer R : ΩX → R, and depend on the specific task at hand. Common choices
for R include the relaxed `1 sparsity constraint R( · ) = ‖·‖1 or the second order
finite differences smoothness constraint R( · ) = ‖D · ‖22, to name a few;

• Learned from available data. When training data T = {yi}i=1,...,I is available, as well
as a map P : ΩX × ΩY → R encoding the cost of pairing the quantities of interest
and observations together, we can search for the optimal parameters minimizing the
pairing cost between x̂(θ; yi) and its associated observation yi, for all available yi in
the training dataset. In this setting, a common choice for P is the simple 2−norm
squared P( · , · ) = ‖ · − S( · )‖22, where S : T ⊂ ΩY → ΩX extrapolates some target
quantity from the training observation data.

In complete generality, one can construct F out by letting:

(4) F out(x, y) = P(x, y) + µR(x)

for some penalty parameter µ > 0, and minimize the global loss:

(5) L =

I∑
i=1

F out(x̂(θ; yi), yi)
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3.1 Deep unfolding

We now introduce the deep unfolding concept within the previously presented bilevel opti-
mization framework. We remark that this is not the only framework where one can apply
this technique, for the same idea can be employed to a much broader class of optimization
problems, whenever an iterative update scheme is given. Nevertheless, bilevel optimization
offers a solid foundation upon which the deep unfolding has been widely and successfully
developed, especially since it allows for designing highly interpretable neural architectures.

Assuming to have at our disposal an iterative update map f inθ : ΩX × ΩY → ΩX for
the inner problem, providing an estimate x̂(K) = x̂(K)(θ; y) of the minimizer x̂(θ; y) after
K updates starting from an initial guess x̂(0):

(6) x̂(k) = f inθ (x̂(k−1), y) ∀k = 1, . . . ,K

the deep unfolding technique regards the above iterations as a sequence of layers in a neural
network architecture with parameters θ tied across layers and activation function f inθ , as
shown in Figure 1:

x̂(0) x̂(1) · · · x̂(K−1) x̂(K) F out(x̂(K), y)
f inθ f inθ f inθ f inθ

Figure 1: Unfolded iterations of (6) into a K−layer, tied parameters architecture trainable end-to-end with
the loss function F out.

The resulting scheme can then be trained end-to-end using F out as the loss function.
The main feature differentiating deep unfolded networks from traditional deep net-

works is the use of problem-specific activation functions, rather than general-purpose ones,
such as ReLU, sigmoid, etc. Indeed, by employing f inθ as the activation function, the
resulting architecture will be characterized by a highly interpretable forward-run, closely
mimicking the process required to obtain an optimal solution to the associated bilevel opti-
mization inner problem (1). The unfolded network then expands the modelling capabilities
of the outer problem (3) by relaxing the requirement of knowing the exact optimal solution
x̂(θ; y), replacing it instead with a fixed-iteration estimate x̂(K), and allowing the use of
backpropagation learning for the parameters θ. We remark, however, that in cases where
x̂(θ; y) admits a closed-form representation as a function of θ, one can directly optimize
the parameters without unfolding the iterates of an update map (see Example 1 and [10]).
As a consequence, the unfolding technique is particularly attractive when the explicit form
of x̂(θ; y) is not known.

The modelling flexibility of unfolded deep networks even allows to replace or comple-
ment the inner update map f inθ with other learnable extensions (e.g. RNN-like modules
for inter-layer correlation enforcing [7, 8], effectively trading some interpretability of the
resulting framework in favor of efficiency or robustness. Indeed, this can be exploited to
alleviate the computational burden of high-cost, non-smooth or high-dimensional operators
[11] typical of model-based approaches.
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Moreover, the fixed depth of the network K, when seen as the index at which we
truncate the iterative process (6), offers yet another powerful modelling opportunity to
deep unfolded networks: indeed, the learnable parameters can be leveraged to achieve
convergence after a fixed and predetermined number of updates K. This idea has been
successfully employed to speed-up notoriously slow-converging iterative schemes, as we will
briefly discuss in Section 5.2.

A further extension to deep unfolded architectures can be obtained by untying the
parameters θ into a layer-specific collection {θ(k)}k= 0,...,K−1. The rationale behind the
untying is to allow the resulting network, shown in Figure 2, to embody a more complex
range of inference functions [6]:

x̂(0) x̂(1) · · · x̂(K−1) x̂(K) F out(x̂(K), y)
f in
θ(0)

f in
θ(1)

f in
θ(K−2)

f in
θ(K−1)

Figure 2: Unfolded iterations of (6) into a K−layer, untied parameters architecture trainable end-to-end
with the loss function F out.

4 Nonnegative matrix factorization

Given a nonnegative matrix X ∈MN×M (R+), a factorization rank R and an error measure
D : MN×M (R) × MN×M (R) → R between two matrices, the problem of computing a
Nonnegative Matrix Factorization (NMF) ofX consists in solving the following constrained,
nonlinear optimization problem:

(7)
min D(X,WH)
s.t. W ∈MN×R(R+)

H ∈MR×M (R+)

Essentially, in (7) the observed matrix X is approximately reconstructed, with respect to
the error measure D, as the product of two nonnegative matrices W and H. The former
plays the role of a dictionary whose columns are used to reconstructX given the coefficients
in the latter. There is extensive literature regarding this constrained factorization [4]: here
we will recall only a few fundamental aspects of NMF that will be used in later sections.

Problem (7) is in general a nonlinear, non-convex, constrained optimization problem
over two distinct sets of variables, W and H. For this reason, most iterative algorithms
used to tackle this problem often guarantee convergence results for a very specific class of
error measures D. One such class is the β−divergences, a β−parametric family of error
measures acting componentwise on two input nonnegative matrices:

Dβ( · , · ) =

N∑
n=1

M∑
m=1

dβ( ( · )nm, ( · )nm )

where:

(8) dβ(z, y) =


z
y − log z

y − 1 if β = 0,

z log z
y − z + y if β = 1,

1
β(β−1)(zβ + (β − 1)yβ − βzyβ−1) if β 6= 0, 1.
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As mentioned, (7) has two distinct sets of variables, which can be conveniently exploited
to devise 2-Block Coordinate Descent (2-BCD) schemes. In these methods, each set of
variables is cyclically updated while keeping the other fixed. For β−divergences with
β ∈ [1, 2] this approach is particularly effective since Dβ is convex in its second argument,
aiding the optimization of the non-fixed set of variables. Nevertheless, a common technique
to produce iterative updates within the 2-BCD framework whenever the error measure
is differentiable, is to consider the following euristic, multiplicative update rule of the
nonnegative factors, starting from an initial estimate W (0), H(0):

(9)

W (k+1) = W (k) ◦
[
∇WDβ

(
X,W (k)H(k)

)]
−[

∇WDβ

(
X,W (k)H(k)

)]
+

H(k+1) = H(k) ◦
[
∇HDβ

(
X,W (k+1)H(k)

)]
−[

∇HDβ

(
X,W (k+1)H(k)

)]
+

where ◦, ·· and [ · ]± are the elementwise product, division and positive/negative part.
Despite their euristic nature, for some values of β (including β = 1, the Kullback-Leibler
divergence, and β = 2, the squared Euclidean distance) such multiplicative updates actu-
ally have convergence guarantees [1, 4, 5]: limit points of the sequence {(W (k), H(k))}k≥0

are stationary points for problem (7) where D = Dβ .

4.1 Audio source separation

Perhaps the most common application of NMF within the scientific machine learning realm
is that of time-frequency audio source separation and detection. Given a (discrete-time)
audio mixture {xt} decomposed as the sum of a clean component {st} and noise {nt}:

xt = st + nt

we seek to either recover {st}, or detect its presence within the observed mixture. This
same task can be performed in the time-frequency domain by considering the (discrete)
STFT of the above signals, leading to an analogous additive decomposition depending on
discrete time t and frequency f :

(10) Xf,t = Sf,t +Nf,t

Computing the spectrogram on both sides of (10) and assuming approximate spectrogram
additivity, we obtain a nonnegative matrix relation in the form:

X ≈ SX +NX

which can be tackled by NMF. Indeed, by interpreting the nonnegative decomposition
offered by NMF as a sum of R rank−1 matrices obtained by coupling each column of W
with the corresponding row of H, this family of algorithms actually allow to additively
decompose any observed spectrogram X. The goal then becomes devising a NMF-based
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scheme able to provide the desired additive decomposition into SX and NX . Clearly,
applying directly updates (9) to X would produce completely unstructured nonnegative
factors, unfit to be used for the source separation task. One possible approach, which will
be considered in the following Section 4.2, is to assume given an optimal, task-specific,
structured dictionary Ŵ containing all spectral patterns needed for the source separation
(or detection). The quantity of interest then becomes the coefficient matrix H, whose rows
will encode when such patterns are present in X, thus allowing to actually separate SX and
NX given the knowledge of Ŵ ’s structure. Formally, the process just described considers
the problem:

(11) min Dβ(X, ŴH)
s.t. H ∈MR×M (R+)

which can be solved iteratively with the updates:

(12) H(k+1) = H(k) ◦

[
∇HDβ

(
X, ŴH(k)

)]
−[

∇HDβ

(
X, ŴH(k)

)]
+

4.2 Deep-NMF

In this Section we show how the deep unfolding method can be applied to NMF with the
goal of performing audio source separation. The general outline follows that of [6], where
a first version of the resulting neural architecture was initially conceived.

When it comes to recovering the clean source spectrogram SX from a given mixture
X, updates (12) suffer from two main issues: the potential slow convergence of the iter-
ates H(k), and the ability to reconstruct exclusively what is observed within the mixture
spectrogram X. While the former point is self-explanatory, the latter requires further de-
tailing. As mentioned in the previous Section, spectrogram additivity is, in general, only
approximately satisfied. Indeed, in presence of overlapping frequency content, the phase
component, which we discard when considering the spectrogram, plays a fundamental role
in what can be observed in the audio mixture. In the worst case, if {st} and {nt} share
a portion of their frequency content and have opposite phases, some information about
the clean signal will be lost: as a consequence, we would not be able to completely re-
cover SX from the mixture spectrogram X alone. Both of these concerns can be addresses
by employing the deep unfolding within the bilevel optimization framework presented in
Section 3. As far as the inner optimization problem is concerned, we consider (11) for
β = 1 (the Kullback-Leibler divergence, vastly used for source separation tasks) and re-
gard Ŵ as the parameters which will be later untied. In our previous notation, we get
ΩY =MN×M (R+), ΩX =MR×M (R+), ΩΘ =MN×R(R+) and:

(13) F in
W (H,X) = D1(X,WH)
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The iterative update scheme we employ is (12), which, for the particular choice β = 1,
yields(1):

(14) f inW (H,X) = H ◦
W>

(
X
WH

)
W>1N×M

Lastly, the outer objective to be used during training is given by:

(15) F out(H,X) =
1

2
‖X ◦ F − SX‖22+

µ

2
‖ŴSHS − SX‖22

where F = ŴSHS
ŴH

= ŴSHS
ŴSHS+ŴNHN

is a Wiener filter and ( · )S , ( · )N denote, respectively,
the known, fixed sub-blocks of the argument matrix used to reconstruct the spectrograms
SX , NX . This choice of F out forces the architecture to recover SX using the optimal
dictionary Ŵ , which is used exclusively for reconstruction and not in the intermediate
layers. Moreover, the two terms in (15) play opposite and complementary roles: while the
Wiener filter term incentivizes the last coefficient matrix to describe the noise component
NX of the mixture, the penalty term enforces an accurate reconstruction of the clean
spectrogram SX . The resulting supervised learning paradigm allows the network to recover
SX even when partially disrupted by noise.

Although (14) and (15) completely define our unfolded Deep-NMF architecture, the
standard backpropagation updates described in Section 2 would require a projector onto the
nonnegative orthantMN×R(R+) in order to preserve the nonnegativity of the parameters
W (k). An alternative approach, following NMF theory presented in Section 4, consists
in updating the parameters in a multiplicative fashion akin to the first equation in (9),
replacing Dβ with our current global training objective L:

(16) W (k) ⇐W (k) ◦
[∇W (k)L]−
[∇W (k)L]+

∀k = 0, . . . ,K − 1

This method requires an ad-hoc, split gradient backpropagation algorithm.

5 Iterative Shrinkage-Thresholding Algorithm

Given a noisy observation vector y ∈ Rp corrupted by additive Gaussian noise Ny ∼
N (0, σ21p) and a dictionary matrix D ∈ Mp×m(R), the problem of computing a sparse
representation of y in the given dictionary D consists in solving the following constrained,
nonlinear optimization problem:

(17) min ‖α‖0
s.t. ‖Dα− y‖22≤ pσ2

(1)We remark that, in the context of NMF, the operators [ · ]± should be interpreted algebraically, rather
than analytically. For example, if f(x) = |x|−x2, the usual positive/negative part split would be defined
as f+(x) = max{0, f(x)} and f−(x) = max{0,−f(x)}, while here we use f+(x) = |x| and f−(x) = x2.
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Due to the combinatorial nature of the 0−norm, which counts the nonzero entries of its
argument, it is often relaxed to the 1−norm and the constraint is merged into a single loss
function by introducing an appropriate Lagrange multiplier λ:

(18) min
1

2
‖Dα− y‖22+λ‖α‖1

Proximal gradient descent can then be employed to obtain a recursive optimization scheme
for (18), called Iterative Shrinkage-Thresholding Algorithm (ISTA):

(19) α(k+1) = Sλ
c

(
α(k) − 1

c
D>

(
Dα(k) − y

))
where c is the square spectral norm of D and Sµ is the soft-thresholding operator:

x

y

−µ
µ

Sµ(x)

5.1 Image denoising

Let us now consider the problem of denoising a grayscale image SY ∈MN×M (R) corrupted
by additive Gaussian noise NY ∼ N (0, σ21). What we observe is therefore the image:

Y = SY +NY

A possible approach to recover SY is to divide Y into small square patches y ∈M√p×√p(R) =
Rp, which allow a similar additive decomposition:

y = Sy +Ny

and reconstruct SY by assembling each denoised patch Sy. The denoising of each patch y
can be performed with the ISTA scheme (19), where the recovered patch for the optimal
sparse representation α∗ of (18) is:

Sy ≈ Dα∗

5.2 Deep-ISTA

The main drawback of the denoising procedure described in the previous Section is ISTA’s
slow convergence. Indeed, it is known that the algorithm may require thousands of itera-
tions to converge to the optimal sparse representation α∗, thus applying ISTA to denoise
each patch of Y would be prohibitive. Moreover, the number of iterations required may
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even vary drastically depending on the noisy patch y. We will now detail how the Deep
Unfolding can aid the denoising process: for a more comprehensive analysis of the complete
algorithm, we refer the reader to [9].

The key aspect we can leverage to speed up the convergence is that an unfolded ISTA
network must have a predetermined and fixed number of layers, which corresponds to the
number of iterations we perform on any given patch y. As a consequence, by unfolding
ISTA into a small K−layer network and choose the parameters to be learned, we can gen-
erate an ISTA-like algorithm with guaranteed approximate convergence in a small number
of iterations. By choosing to learn the dictionary matrices, in our previous notation we
can let ΩY = Rp, ΩX = Rm, ΩΘ = Mp×m(R) and consider the bilevel framework having
inner objective:

(20) F in
D (α, y) =

1

2
‖Dα− y‖22+λ‖α‖1

update map:

(21) f inD (α, y) = Sλ
c

(
α− 1

c
D> (Dα− y)

)
and outer objective:

(22) F out(α, y) =
1

2
‖D(K)α− Sy‖22

In particular, (22) enforces the unfolded network to accurately reconstruct the real image
patch Sy with the last sparse representation vector α(K) and learned dictionary D(K).

6 Kalman Filter

Let us now consider the problem of performing state estimation in a p−parametric Discrete
Linear Time-Invariant (DLTI) system in state-space form:

(23)
x(k + 1) = A(k, p)x(k) +B(k, p)u(k) + v(k)

y(k) = Cx(k) + w(k)

where x(k) is the state vector, y(k) are measurements and v(k) ∼ N (0, Q(k)), w(k) ∼
N (0, R(k)) are independent, Gaussian model and measurement errors. Within this frame-
work, the Kalman Filter (KF) offers a way of estimating the state at time k + 1, denoted
x̂(k), given the measurements y(1), . . . , y(k). Namely, the KF is a recursive predictor-
corrector algorithm in which the predictor updates the state estimate based on the de-
terministic components of (23), while the corrector modifies the latter by considering the
stochastic components. The recursive scheme is the following:

(24) x̂(k) = x̂(k | k − 1) +K(k)
G δx̂(k)
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where x̂(k | k − 1) = A(k − 1, p)x̂(k − 1) + B(k − 1, p)u(k − 1) is the predictor, δx̂(k) =

y(k) − Cx̂(k | k − 1) is the innovation part of the corrector and K(k)
G = P (k)C>R(k)−1 is

the Kalman gain matrix, which depends on estimated state covariance:

P (k) =

[(
Q(k − 1) +A(k − 1, p)P (k − 1)A(k − 1, p)>

)−1
+ C>R(k)−1C

]−1

The KF working assumptions are quite restrictive: in fact, it requires a linear governing
model (23), presence of Gaussian additive noise, as well as knowledge of the model and
measurement error covariance matrices Q(k), R. The following section focuses on how to
exploit Deep Unfolding to generalize the KF to less restrictive working assumptions.

6.1 Deep-KF

The Deep Kalman Filter, briefly presented in [3], considers a generalization of (23) to a
possibly nonlinear deterministic state-update map and general model and measurement
noises:

(25)
x(k + 1) = f (x(k), p, u(k)) + v(k)

y(k) = Cx(k) + w(k)

The network is obtained by unfolding the Kalman-like recursive estimated-state relation
(24) associated with (25) and letting the gain matrices K(k)

G and the parameter p be the
learnable weights. The resulting network is the following:

Given some measurements {y(k)}k the purpose of the network is to learn to encode the
stochastic component of the underlying reference model (25) into the gain matrices K(k)

G

and optimize the p parameter. Compared to the KF, the Deep Kalman Filter addresses
all main drawbacks of the original algorithm and poses as a machine learning alterna-
tive characterized by high flexibility and interpretability thanks to the Deep Unfolding
technique.
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Dynamical Models for Dark Matter

Gaia Marangon (∗)

Abstract. Dark matter is one of the most relevant and fascinating open problems in modern
astrophysics. Since it cannot be directly observed, modeling it requires a balanced mix of physical
intuition, mathematical deduction, and comparison with indirect experimental data.

In these notes, I will briefly introduce the physical context motivating our research, specifically
the problem of dark matter distributions around galaxies. Starting from the Schrödinger-Poisson
system, the most commonly used model for dark matter dynamics, I will outline the main directions
our work has taken.

I will focus on two key aspects. First, I will discuss the issue of stationary states, ranging from
numerical properties to comparison with experimental data. Then, I will propose a relativistic
generalization of the model, the Klein-Gordon - Wave system. Its treatment by Hamiltonian per-
turbative techniques shows the potential of mathematical physics tools in building a comprehensive
and reliable model.

1 Dark Matter: a Physical Introduction

In these notes I will outline the problem of defining and analyzing a dynamical model for
dark matter distributions around galaxies. This investigation, which primarily develops
on the mathematical aspects of the problem, is, however, strictly related to the physical
context, which serves both as the onset of the research and as the benchmark to check the
predictive potential of our model. I will therefore start from a brief presentation of the
physical context, introducing the involved experimental data and the physical assumptions
underlying our modeling choices.

1.1 Physical Context: Experimental Rotation Curves

The fundamental scenario we consider is that of spiral galaxies. Spiral galaxies, such as
the Milky Way, roughly consist of a flat disk of stars, possibly endowed with a small
spherical bulge in the center and embedded with a cloud of interstellar gases. This whole
cluster of visible matter rotates around its center. By measuring its rotational velocity at
different radial positions, one obtains the so called rotation curves, which are one of the

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 23 January 2025.
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key experimental measurements in galactic studies. An example of these velocity profiles
is illustrated in Figure 1.

Classical physics provides a straightforward prediction for the observed rotation curves:

V (R) =

√
G 4π

∫ R
0 ρ(s) s2 ds

R
.(1)

According to this formula, the velocity V (R) at any specific radial position R depends
solely on that position and on the total mass M(R) = 4π

∫ R
0 ρ(s) s2 ds enclosed within

that radius, which is expressed as the integral of the matter density ρ(R) on the sphere
of radius R. This relationship implies that knowledge of the galaxy’s mass distribution
ρ(R) enables the prediction of its rotation curve. However, when considering only the
“visible” mass, observable through telescopes, the predicted curves deviate significantly
from experimental data, see again Figure 1. This substantial mismatch provided the first
historical evidence for the existence of dark matter, suggesting the presence of a vast,
invisible (“dark”) mass distribution surrounding the visible galactic structure.

Figure 1: Observed rotation curve (yellow and blue data) compared to physical prediction (dashed line).
Figure from Salucci (2019).

The aim of our research, built on extensive literature works in this field, is therefore to
provide a dynamical description of this large cluster of dark matter, explaining the exper-
imental rotation curves and at the same time being consistent with established physical
principles.

To illustrate how this is performed, I will start by highlighting the basic physical
assumptions that serve as a foundation for the dynamical model we study. In particular,
I will focus on the cluster of dark matter, neglecting in the first place the visible stellar
cluster around which it develops. The assumptions will therefore concern solely the nature
of dark matter particles - which is, at present, still unknown.

Università di Padova – Dipartimento di Matematica 75



Seminario Dottorato 2024/25

1.2 Physical Assumptions

The fundamental physical hypotheses for our dark matter model consider a large cluster of
particles interacting exclusively through gravitational forces. Only reciprocal interactions
between the particles are considered, omitting any external potential.

The description of this system requires two primary fields: a particle density field ψ(x, t)
and a gravitational field φ(x, t). The particle density field is a scalar field depending on
space and time, whose squared modulus represents the matter distribution throughout the
galaxy. The gravitational field, also a scalar field depending on space and time, describes
the mutual gravitational attraction between dark matter particles. Our aim is to define
a dynamics for these two fields, which should exhibit a coupled behavior: the particle
distribution generates the gravitational potential, which in turn influences the movement
of the particles.

Once we set the dynamics, our primary interest lies in the stationary states. Current
dark matter distributions, in fact, are presumed to have evolved from the Big Bang to reach
a stable configuration, making these states most relevant for comparison with experimental
data.

1.3 Schrödinger-Poisson Model and Outline of the Research

The most natural and widely studied approach to modeling this system is the Schrödinger-
Poisson model, which combines Schrödinger dynamics for the matter field ψ(x, t) with
Poisson dynamics for the gravitational field φ(x, t). In non-dimensional units, and assuming
x ∈ R3 for physical reasons, the Schrödinger-Poisson model reads:{

i∂tψ = (−4+ 2φ)ψ

4φ = |ψ|2
(2)

Observe that the matter field serves as a source term in the Poisson equation, while the
gravitational potential appears as a potential term in the Schrödinger equation, thus real-
izing the desired coupling.

Our research explores multiple aspects of this model through several complementary
approaches. We conducted extensive numerical simulations to study the structure of sta-
tionary states, revealing quantitative laws that prove valuable for comparison with exper-
imental data.

We also investigated the model’s physical foundations, particularly its connection to
quantum many-body theory through mean-field derivations, providing more rigorous jus-
tification for previously ad hoc assumptions.

Then, we observed that the Schrödinger-Poisson model does not admit the possibil-
ity of any relativistic behavior for the dark matter particles. While appropriate for cur-
rent dark matter distributions due to their low velocities, this prevents from applying the
Schrödinger-Poisson system to early-universe predictions, since at that time dark matter
is assumed to be characterized by high velocities and therefore to display a clear rela-
tivistic behavior. This deficiency prompted us to develop a relativistic extension of the
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Schrödinger-Poisson model, namely the Klein-Gordon–Wave model. Through careful anal-
ysis using Hamiltonian perturbative techniques, we demonstrated that the Schrödinger-
Poisson model could be recovered as a particular limit of this more general framework.

Finally, we addressed the question of stability, which represents a crucial challenge in
these models. In the early 2000s, numerical simulations suggested that excited stationary
states in the Schrödinger-Poisson model are unstable, but comprehensive analytical con-
siderations on the topic are - to the present - still lacking. We therefore addressed the
stability issue through analytical investigations, focusing both on the Schrödinger-Posson
and on the Klein-Gordon–Wave models, primarily restricting to simplified conditions such
as linear approximations or finite-dimensional restrictions. A more thorough characteriza-
tion of the stability problem for the complete models remains a challenging open problem,
to be addressed in future investigations.

In these notes, I will focus particularly on two aspects: the structure of stationary
states, including their comparison with experimental data, and the relativistic extension
through the Klein-Gordon–Wave model, illustrating its relationship to the Schrödinger-
Poisson framework. These topics exemplify the rich mathematical structure and physical
relevance of our research.

2 Analysis of Stationary States

In analyzing the stationary states of our system, we seek solutions where the gravitational
potential is time-independent while the matter field may have a time-oscillating phase,
according to the standar approach for Schrödinger-like problems:{

Matter field: eiω2tf(x)

Potential: φ(x)
(3)

When we substitute these solutions into the model equations, we obtain a static problem
where the Poisson equation can be solved explicitly, yielding the potential in the form of a
convolution integral. Substituting this result back into the Schrödinger equation leads to
a non-linear eigenvalue problem on the matter field f(x), known as Choquard equation:{

4f(x) + 1
2π

(
f2 ∗ |x|−1

)
f(x) = ω2f(x) with (f2 ∗ |x|−1) ≡

∫
R3

f2(y)
|x−y| d

3y

φ(x) = − 1
4π (f2 ∗ |x|−1)

(4)

In this eigenvalue problem, the function f(x) represents the eigenfunction (still related
to the matter distribution, f2(x)), while ω2 serves as the eigenvalue, with physical meaning
related to the system’s energy. The non-linearity of this problem makes it particularly
challenging to treat.

For the spherically symmetric case, the analytical studies of Lieb (1977) and Lions
(1980) revealed the existence of an infinite discrete family of solutions, {ω2

n, fn(r), φn(r)}∞n=0.
Each solution, termed eigenstate, comprises an eigenvalue ω2

n, an eigenfunction fn(r), and
an associated eigenpotential φn(r), starting with the ground state (n = 0) and extending
to infinitely excited stationary states.
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2.1 Numerical Simulations: the Eigenstate Structure

Due to the absence of analytical expressions for these stationary states, numerical sim-
ulations become essential for understanding their structure. Consider, for example, the
eighth excited stationary state, reported in Figure 2: the eigenfunction f8(r), illustrated in
Figure 2(a), shows an oscillatory behavior with decreasing amplitudes, followed by mono-
tonic decay after the final oscillation. This structure has a clear physical interpretation
in terms of dark matter distribution f2

n(r): it suggests that dark matter organizes itself
in concentric spherical shells separated by voids, with denser shells near the center and
progressively less dense shells moving outward. The density eventually decays to negligible
levels after the (n + 1)-th shell, defining an approximately finite support for the physical
density distribution. This three-dimensional structure is illustrated in Figure 2(b), which
reports the modulus |f8|(r) rather than the matter density f2

8 (r) to facilitate visualization.
To connect with experimental observations, we need to predict rotation curves. Re-

member that the velocity at any radial position depends solely on the mass enclosed within
that radius, as in Eq. (1). Given our mass distribution f2

n(r), we can compute analytically
the associated prediction for the rotation curve - which we term eigenvelocity, vn(r) - by
rewriting Eq. (1) in non-dimensional units:

vn(r) =

√∫ r
0 f

2
n(s) s2 ds

r
.(5)

Figure 2(d) exemplifies the eigenvelocity v8(r) for the eighth excited stationary state. It
exhibits an initial increase at small radii, followed by an oscillatory region, and finally
a decay that coincides with the location of the last significant mass shell. Observe that
the mid-range oscillating region resembles the overall behavior of the experimental data in
Figure 1, suggesting a promising predictive power for the model.

2.2 Scalings with n: the Heuristic Laws

In our work, we simulate Schrödinger-Poisson stationary states up to high excitation
(n ≤ 80), exploring how the eigenfunction and eigenvelocity profiles evolve with increasing
excitation number n. The results are collected in two companion papers, Marangon et
al. (a) and Marangon et al. (b).

Numerical simulations reveal remarkable regularities in various aspects of the solutions,
which are exemplified in Figure 3 for several excitation indices. For instance, the central
peak amplitude in the eigenfunction decreases with excitation index, while the radial extent
of the eigenfunction oscillatory region increases (see Figure 3(a)). Similarly, the mid-range
oscillating region of the eigenvelocity has an average linear trend, with slopes that decrease
with the excitation index (see Figure 3(b)).

These behaviors, which can be investigated for a whole set of properties of the eigen-
states, follow precise quantitative rules, which emerge clearly from our numerical simula-
tions and which are comprehensively described in papers Marangon et al. (a) and Marangon
et al. (b) These heuristic laws prove extremely valuable for predicting properties of eigen-
functions and velocity curves without resorting to extensive simulations, greatly facilitating
comparison with theoretical results from the literature and with experimental data.
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(a) Eigenfunction f8(r). (b) Three dimensional structure.

(c) Eigenpotential φ8(r). (d) Eigenvelocity v8(r).

Figure 2: Eighth eigenstate: (a) eigenfunction f8(r); (b) three-dimensional section of the dark matter
distribution, represented as |f8|(r) rather than |f8|2(r) for visualization purposes; (c) eigenpotential φ8(r);
(d) eigenvelocity v8(r), defined by Eq. (5).

(a) Eigenfunctions fn(r). (b) Eigenvelocities vn(r).

Figure 3: Examples of eigenstates (eigenfunction in (a), eigenvelocity in (b)) for several excitation indices
n = 7, 8, 9, 10. The plots give an intuition on the regularity of the stuctures across different values of n.
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2.3 Comparison with Experimental Data

The practical value of these heuristic laws becomes evident when comparing model pre-
dictions with actual galactic observations. Specific features of the eigenvelocities, such as
the position and velocity of the first and last local maxima, are detected and expressed
as functions of the excitation index n. These features are then constrained to match the
corresponding physical values, extracted from experimental rotation curves. The resulting
relations, based on the heuristic laws, allow us to find optimal values for the free parame-
ters of the model, in a much easier way then simply testing a uniform grid of parameters,
that would be the default strategy without heuristic laws.

Figure 4: Fit of experimental rotation curve for the UGC02953 galaxy (data from Lelli et al. (2016)).
Visible mass contributions (disk, bulge, gas) are shown in gray. Dark matter contribution, obtained by
expressing the eigenvelocity in physical units, is shown in dashed blue. The total predicted curve, in solid
blue, matches the experimental data, in black, remarkably well. The optimal fit of the free parameters is
based on the use of the heuristic laws characterizing the Schrödinger-Poisson eigenstates.

Figure 4 reports a concrete example of such comparison, plotting the experimental
rotation curve for the UGC02953 galaxy (in black, from Lelli et al. (2016)) against the
optimal model prediction (in solid blue). To provide a reliable prediction, we must account
for the presence of visible matter (stellar disk, stellar bulge and gas), whose distribution
contributes as well to generating velocity components:

VDisk(R) =

√
G 4π

∫R
0 ρDisk(s) s2 ds

R

VBulge(R) =

√
G 4π

∫R
0 ρBulge(s) s2 ds

R

VGas(R) =

√
G 4π

∫R
0 ρGas(s) s2 ds

R

.(6)

Such contributions, shown in gray in Figure 4, are obtained from luminosity observations
reported in the literature (see Lelli et al. (2016)). In order to obtain the total predicted
rotation curve V pred

tot (R), they must be combined with the eigenvelocity VDarkMatter(R),
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shown in dashed blue and obtained by expressing vn(r) in physical units. The overall pre-
diction is naturally obtained by summing the mass distributions - or, in terms of velocities:

VTot(R) =
√
V 2
Disk(R) + V 2

Bulge(R) + V 2
Gas(R) + V 2

DarkMatter(R) .(7)

Through this formula, the dark matter contribution emerging from our model combines
with the visible components to produce a total predicted rotation curve that matches
experimental data remarkably well. This fitting process required careful consideration of
multiple factors, including the extraction of stellar velocity profiles from literature data
and the incorporation of external source effects in our model. Despite its complexity,
the process demonstrates the model’s ability to produce predictions that align well with
observational data.

3 Relativistic Extension: The Klein-Gordon–Wave Model

The Schrödinger-Poisson model, while effective, lacks relativistic nature. This limitation
is evident in its non-covariant structure, where time and space play fundamentally differ-
ent roles - time appears as a first derivative while space appears as a second derivative.
To incorporate relativistic effects, we define the Klein-Gordon–Wave model, replacing the
Schrödinger equation with a Klein-Gordon equation for the matter field u(x, t) and the
Poisson equation with a Wave equation for the potential φ(x, t). This modification is
obtained in a natural and physically intuitive way, by assuming a massive relativistic dis-
persion relation for the matter field and a massless relativistic dispersion relation for the
gravitational field, and then by first-quantizing them. The resulting system is naturally
endowed with a covariant structure, with both space and time appearing as second deriva-
tives. {

�u = (λ+ 2φ)u (� := 4− ∂t2)

�φ = u2
(8)

Here, the squared matter field u2(x, t) still represents the density distribution of dark
matter, while φ(x, t) is still the gravitational potential, denoted by the same notation. The
parameter λ, instead, is a specific feature of the Klein-Gordon–Wave model. In the non-
dimensional system (8), this parameter collects the physical information on the amount
of dark matter in the distribution, being related to both particle number and individual
particle mass. Its role will be crucial in determining the model’s behavior, as shown in the
following.

Before delving in thorough considerations on the model’s behavior, let us remark some
notable consequences of adopting the Klein-Gordon–Wave model, which emerge directly
from its analytical form. First, in the Schrödinger-Poisson model, the Poisson equation’s
lack of time derivatives implies an instantaneous adjustment of the potential on the value
of the source:

φ(x, t) = − 1

4π

∫
|ψ|2(y, t)

|x− y|
d3y .
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The wave equation in our new model, instead, ensures that the gravitational potential
adjusts with finite speed, introducing a more realistic delay in gravitational interactions:

φ(x, t) = − 1

4π

∫
u2(y, t− |x− y|)

|x− y|
d3y .

Additionally, while the Schrödinger-Poisson model preserves particle number, ∂t
(∫

R3 |ψ|2d3x
)

=
0, the Klein-Gordon–Wave model breaks this conservation law, ∂t

(∫
R3 u

2 d3x
)
6= 0 , allow-

ing for particle creation and annihilation, another physically desirable feature.

3.1 Klein-Gordon–Wave Regimes

Once established these straightforward observations, it is natural to investigate more thor-
oughly the model’s behavior, and particularly the stationary states, checking the possible
similarities with the Schrödinger-Poisson system.

When we examine stationary states - solutions independent of time, u(x), φ(x) - we
find they satisfy the same non-linear eigenvalue problem as in the Schrödinger-Poisson
case: {

−4u− 1
2π (u2 ∗ |x|−1)u = −λu

φ(x) = − 1
4π (u2 ∗ |x|−1)

(0.1)

with ∗ still denoting the convolution. The eigenvalue, however, is now represented by the
parameter λ. This creates an interesting constraint: stationary states exist only for specific
values of λ, λ . 1 - which means, recalling the physical meaning of λ, they occur only for
specific amounts of matter in the cluster.

This constraint suggests the Klein-Gordon–Wave model could describe the phenomenon
of evaporation: the system may radiate matter, gradually reducing the amount of clustered
particles, and this radiation process may stop when the amount of mass becomes compatible
with the λ-value of an eigenstate. Curiously, this type of phenomenon may effectively
describe the behavior of primordial black holes - astrophysical objects that were suggested
by Carr and Hawking (1974) as dark matter candidates. These objects are believed to
have undergone an evaporation process which has currently stopped, and the current mass
estimates for these objects yield compatible λ ∼ 1 values, suggesting they might effectively
be understood as stationary states of our model.

This analysis suggests that the requirement λ . 1 is necessary to realize stationary
states, and that this first regime can actually explain existing physical situations. One
may wonder if the opposite regime λ � 1, not compatible with stationary states, is also
physically relevant. Indeed, the galactic scale distributions described in the first part of
these notes yield a value λ ∼ 106, which definitely belongs to this second regime and
therefore seems to preclude stationary states. This seems to be a problem, since physical
intuition suggests galactic distributions should be stationary. This apparent limitation can
be overcome through an elegant manipulation: through perturbative techniques, valid in
this regime, we derive an approximate dynamics, whose stationary states can be compared
with experimental data. We therefore solve the issue by modeling physical distributions
through “approximate” stationary states, the approximation meaning that these states
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are stationary for the approximate dynamics rather than for the complete Klein-Gordon–
Wave dynamics. Remarkably, this approximate dynamics turns out to be the Schrödinger-
Poisson model itself, and its stationary states are precisely the ones described in Section 2,
successfully fitting the experimental data.

The overall scenario thus suggests that the Klein-Gordon–Wave model is indeed a good
relativistic model for dark matter dynamics, encompassing two distinct physical regimes
and recovering the affirmed Schrödinger-Poisson model as a limiting case.

As a last step of these notes, I will briefly describe how to derive the approximated
dynamics - the Schrödinger-Poisson model - starting from the more general Klein-Gordon–
Wave model. As anticipated, this process exploits perturbative techniques typical of Hamil-
tonian systems - elegantly showing how mathematical physics can both validate and pro-
vide rigorous justification for effective physical models. A more detailed description can
be found in Marangon et al. (c).

3.2 From Klein-Gordon–Wave to Schrödinger-Poisson

We now restrict to the λ � 1 regime and describe how perturbative techniques can be
applied.

Let us start by observing that the Klein-Gordon–Wave model has an Hamiltonian
structure. Using (u, pu := ∂tu), (φ, pφ := ∂tφ) as conjugated variables and passing to
first-order-in-time equations, the Klein-Gordon–Wave system can be expressed as:

∂tu = δH
δpu

= pu

∂tpu = − δH
δu = −(λ+ 2φ)u+4u

∂tφ = δH
δpφ

= pφ

∂tpφ = − δH
δφ = 4φ− u2

with Hamiltonian:

H(u, φ, pu, pφ) :=

∫ (
p2
u + λu2 + |∇u|2

2
+
p2
φ + |∇φ|2

2
+ u2φ

)
d3x .

The presence of an Hamiltonian structure enables the use of a wide variety of techniques,
characteristic of this class of systems. To be able to exploit them, let us first perform a
convenient change of variables. First, we adjust the time scale, using the same notation
for simplicity:

u→ u ; φ→ φ ; x→ x ; t→ 1√
λ
t .

Then, we pass to the so called Birkhoff or Dirac variables. This change of variables is non
canonical, meaning that it does not preserve the form of the Hamiltonian equations. We
therefore need to recompute the Poisson parenthesis as well:

ψ :=
u+ ipu√

2
; ψ :=

u− ipu√
2

; {ψ(x), ψ(y)} = −iδ(x− y) .
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The Hamiltonian H̃(ψ,ψ, φ, pφ) in the new set of variables has a convenient structure. We
can isolate the parameter ε := λ−1 and observe that it is small, ε � 1 in the λ � 1
regime we’re analyzing. It can therefore act as a perturbative parameter, splitting the
Hamiltonian in an unperturbed term H0 and a correction εH1, smaller in ε:

H̃(ψ,ψ, φ, pφ) :=

∫ (
|ψ|2 +

pφ
2

)
d3x︸ ︷︷ ︸

H0

+
1

λ︸︷︷︸
+ε

∫ (∣∣∇ψ +∇ψ
∣∣2

4
+ φ

(ψ + ψ)2

2
+
|∇φ|2

2

)
d3x︸ ︷︷ ︸

H1

This perturbative structure is convenient for the application of a relevant Hamiltonian
technique, leading to the following Proposition.

Proposition 1 There exists a canonical transformation of the fields, mapping the Hamilto-
nians: H0 + εH1 → H0 + ε〈H1〉0 +R,
where 〈H1〉0 denotes the time average of H1 along the unperturbed flow Φs

0 at pφ = 0, and
the remainder R is of order O(ε2).

The resulting Hamiltonian H0 + ε〈H1〉0 + R is in the so called Normal Form, where
we have further explicated the perturbative structure, isolating a remainder R which is of
smaller order, O(ε2). Neglecting it, we obtain a first order approximated Hamiltonian:

HS : = H0 + ε〈H1〉0 =

∫ (
|ψ|2 +

pφ
2

)
d3x+ ε

∫ (
|∇ψ|2

2
+ φ |ψ|2 +

|∇φ|2

2

)
d3x

By writing the associated Hamiltonian equations, we obtain the desired approximate dy-
namics. With a phase shift ψ → e−itψ and a time rescaling t → t

ε , the Hamiltonian
equations associated to HS read:

i∂tψ = −1
24ψ + φψ

∂tφ = 1
εpφ

∂tpφ = 4φ− |ψ|2
⇒

{
i∂tψ = −1

24ψ + φψ

ε∂
2φ
∂t2

= 4φ− |ψ|2

We recognize here a Schr̈odinger-Wave model. Observe, finally, that the time derivative in
the Wave equation is weighted by the perturbative parameter ε � 1. As a consequence,
it vanishes in the ε → 0 limit, reducing the Wave equation to the Poisson equation.
This concludes the procedure, proving that the popular Schrödinger-Poisson model can be
obtained, in a suited limit, as the first order Normal Form truncation of the more general
Klein-Gordon–Wave model.
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Mixing times and cutoffs for Markov chains

Giacomo Passuello (∗)

Abstract. How long does it take to shuffle a deck of 40 cards? This simple question, together with
the seminal work of Aldous and Diaconis on the cutoff phenomenon, has generated, in the last
40 years, a rich research area in the field of discrete probability. A cutoff is a dynamical phase
transition for a random process, which appears as the size of the system becomes large. It occurs
when the distance to equilibrium of the process abruptly drops from its maximum value to zero
at a critical time scale. Establishing the occurrence of the cutoff is a delicate matter, which may
require a precise understanding of the spectral and diffusive properties of the underlying system.
In this talk, I will review some basic concepts on Markov chains and their convergence to the
stationary equilibrium. After that, I will introduce the concept of mixing time and discuss bounds
on its limiting behaviour. Finally, I will focus on the cutoff phenomenon and present some results
on the mixing time of the simple random walk on a directed random graph.

1 Introduction

Markov chains, and Markov processes in general, constitute one of the most studied family
of random dynamics. They capture a very simple though powerful feature shared by many
random systems: absence of memory. This property is present in a variety of processes
and phenomena in natural, social, and economic science, such as opinion dynamics, the
spread of epidemics, the motion of interacting particles, and fluctuations of stock prices.
The theory of Markov processes is well developed in both discrete and continuous setting.
In what follows, we will focus on the former, which has the same main qualitative features
of the continuous one, benefiting of a more intuitive formalism. Many spin systems lying
at the interface between probability and statistical mechanics, such as the Moter Model,
the Contact Process, and the Ising Model, can be modelled by a Markov chain, and their
scaling limit is able to produce a complex behaviour and the arousal of non-trivial phe-
nomena known as phase transitions.

Because of their intrinsic algorithmic structure, Markov chains provide a great tool
for computer scientists and statisticians, as they can be easily used to simulate physical,
biological, and social systems. In particular, they are often used to design Monte-Carlo

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 6 February 2025.
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methods, which can produce approximate random samples of a target probability distri-
bution. In this regard, the study of the mixing behaviour of random systems, namely
their rate of convergence to the equilibrium, constitutes a deep theoretical tool, providing
effective stopping criteria.

In the last decades, there has been a further step, given by the approach to markovian
dynamics on random graphs. These random environments capture the typical connectivity
features of huge networks such as the World Wide Web, social networks, citation networks,
without the bias given by the partial observation real data. We refer to [14] for an intro-
duction to random graphs.

This note aims to provide a self-contained presentation of some basic notions on Markov
chains, mixing times, random graphs and some results on the convergence to equilibrium
random walks on directed random graph models. We refer to [16, 15] for related readings.

2 Markov Chains

Consider a probability space (Ω,F ,P).

Definition Given a discrete set V , a Markov chain with state space V is a family of
random variables X = (Xt)t∈N with values in V such that the Markov property holds: for
all t ∈ N, and all x0, . . . , xt−1, x, y ∈ V , it holds

P (Xt+1 = y | Xt = x,Xt−1 = xt−1, . . . , X0 = x0) = P(Xt+1 = y | Xt = x).

In words, for a Markov chain, future depends on the past only via the most recent
information.

This definition can be easily generalized to non-discrete times, and to non-discrete state
spaces V , leading to the general concept of Markov process. In that case the state space
has to be endowed with a Borel σ-algebra and the process (Xt)t∈R+ needs to be adapted
to a filtration (Ft)t∈R+ , that is an increasing sequence of sub-σ-algebras of F . Then, the
Markov property above turns to ask that for every t ∈ R+ and A ∈ F ,

P (Xt+1 ∈ A | Ft) = P(Xt+1 ∈ A | Xt).

From now on we will always consider a time-homogeneous Markov chain X that is, for
every x, y ∈ V the transition probabilities P(Xt+1 = y | Xt = x) do not depend of t. In
that case, it is possible to define the transition matrix P of the chain by

P (x, y) := P(X1 = y | X0 = x), x, y ∈ V,

and given an initial distribution µ, supported on V , at any given time t ∈ N, the distribution
of the process at time t is given by powers of P :

Pµ(Xt = y) = µP t(y) :=
∑
x∈V

µ(x)P t(x, y).
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In the continuous time setting, the notation P t(x, y) refers to the Markov semigroup asso-
ciated of the chain, that is a operator such the following composition rule holds: for every
t, s > 0 it holds P t+s(x, y) =

∑
z∈V P

t(x, z)P s(z, y).

A Markov chain X with transition matrix P is

• aperiodic if there is no partition V = C1∪. . .∪Ck, s.t., ∀x ∈ Ck, it holds P (x,Ck+1) =
1,

• irreducible if for every x, y ∈ V , there exist t > 0 such that P t(x, y) > 0, i.e., it is
possible to reach y starting from x, with positive probability.

Example (Simple RandomWalk) Consider a graphG, i.e., a couple (V,E) with E ⊆ V×V .
The Simple RandomWalk (SRW in the following) onG is a Markov chainX with transition
matrix

P (x, y) =

{
1
D+
x

if (x, y) ∈ E
0 otherwise

, x, y ∈ V,

where D+
x := |{y ∈ V : (x, y) ∈ E}| is the (out-)degree of x. Depending on the specific

choice of graph G its properties may vary. For instance, the SRW on Z is periodic: starting
from 0, for even times it will always be in even positions and vice-versa. On the other hand,
the SRW on Z is irreducible, since this happens every time that the underlying graph is
connected.

2.1 Long-run evolution

We are interested in considering and characterizing the convergence towards the equilibrium
for a Markov chain X with transition matrix P . To do so, we first have to identify a notion
of equilibrium and a distance between probability distributions. Intuitively, an equilibrium
has to be linked to a notion of invariance under the action of the transition operator P . For
a probability distribution π, this writes πP = π. A such distribution is called invariant or
stationary. It is possible to show that irreducible Markov chains admit a unique invariant
distribution.

It turns out that invariant distributions provide the only possible target for the long-run
evolution of a Markov Chain. A very basic theorem states that if X is an aperiodic and
irreducible Markov chain with transition matrix P , then, for every probability distribution
µ, supported on V , it holds

1

2

∑
y∈V

∣∣µP t(y)− π(y)
∣∣ −−−−→
t→+∞

0,

where π is the unique stationary distribution. The object on the left takes the name of
total variation distance and in what follows it will be denoted by

dTV(ν1, ν2) :=
1

2

∑
y∈V
|ν1(y)− ν2(y)|,
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for any two probability distributions ν1, ν2 supported on V . This constitutes the most
natural notion of distance between probability measure, corresponding to the L1 distance.
It is possible to consider other kind of metrics by passing to the density ν1/ν2 of ν1 with
respect to ν2 and taking, for instance, suitable Lp distances with p > 1, or the relative
entropy.

Example If n ∈ N is odd, the SRW on the integer torus Z/nZ, is such that

∀x, y ∈ Z/nZ, P t(x, y) −−−−→
t→+∞

1

n
.

However, if n is even, the chain is periodic and the above convergence does not hold.

In general, it can be easily verified that for the SRW on an undirected (and aperiodic)
connected random graph G = (V,E), the stationary distribution π is proportional to the
degrees of the graph, and hence is given, for every y ∈ V , by π(y) = D+

y /2|E|. However,
if the graph is directed, the stationary distribution has no explicit form in terms of the
degrees.

2.2 Monte Carlo simulations

A Markov chain benefiting of a sufficiently fast convergence to the stationary equilibrium,
can be used to compute averages in an approximated way, when explicit computations
become numerically unfeasible. We provide here a motivating example.

Given a graph G = (V,E), a positive energy functional H on V , and a parameter β > 0
(called inverse temperature), consider the Gibbs density

πβ(x) :=
eβH(x)∑
y∈V e

βH(y)
, x ∈ V.

Gibbs densities frequently arise in the context of equilibrium statistical mechanics. In this
setting, V is usually taken to be the set of of ±1-spin configuration on a bounded domain Λ
of Zd of size N ∈ N. If N is sent to +∞, the size of V is 2N and diverges exponentially fast.

Given a bounded function f : V 7→ R, consider now the problem of computing numeri-
cally

Eπβ [f ] :=
∑
x∈V

f(x)πβ(x).

Due to the presence of the normalization constant in the Gibbs density, if N is large, the
computation may be extremely lengthy. A way to overcome the problem is to construct an
irreducible Markov Chain with stationary distribution πβ and simulate it until it is "well
mixed". Roughly, this will give an approximated sample of πβ and an empirical average of
some iterated samples will give an approximation of the average desired average. In the
case of the Gibbs density above, a candidate is the Markov chain X with transition matrix

Università di Padova – Dipartimento di Matematica 89



Seminario Dottorato 2024/25

Pβ defined as,

Pβ(x, y) =

{
1
D+
x

min
{
πβ(y)
πβ(x) , 1

}
if (x, y) ∈ E

0 otherwise
, for x 6= y,

and Pβ(x, x) = 1 −
∑

y 6=x Pβ(x, y). It holds πβPβ = πβ , and hence πβ is invariant under
Pβ . X is defined through an acceptance-rejection scheme, which is commonly referred to as
Metropolis–Hastings algorithm. Of course, to make this approximated average precise, one
needs to characterize the speed of convergence of X to πβ , when the latter is the unique
invariant distribution of X. This motivates the study of Mixing times for Markov chains.

3 Mixing time

We introduce the notation d(t) := maxx∈V dTV(P t(x, ·), π), and, for 0 < ε < 1, we define
the worst-case mixing time by

tmix(ε) :=inf{t ≥ 0 : d(t) ≤ ε}.

Notice that the maximum, can be taken over all initial distributions (not only Dirac
deltas), still giving the same number, by convexity. Moreover, this definition depends on
the choice of the distance. One of the ones cited above, will still provide a meaningful and
interesting object.

In what follows, we will take V to be a set of n ∈ N labelled elements. We will later
send n→ +∞, being interested in estimating the order of tmix(ε) as n grows.

In some cases, a careful analysis of the spectrum of the transition matrix P , can provide
upper and lower bounds on tmix(ε). This is the case for a reversible dynamics. A transition
matrix P is time-reversible w.r.t. π, if

π(x)P (x, y) = π(y)P (y, x), ∀x, y ∈ V.

This is equivalent to say that P is self-adjoint in the Hilbert space L2(π) of π-square-
integrable functions, endowed with the scalar product defined by

〈f, g〉π :=
∑
x∈V

f(x)g(x)π(x), f, g ∈ L2(π).

Then, the matrix
(√

π(y)
π(x)P (x, y)

)
x,y

, which has the same spectrum as P , is symmetric.

Example It is easy to check that the SRW on a undirected connected graph is reversible
w.r.t. to its unique stationary distribution.

If P is irreducible and reversible, by the Perron-Frobenius theorem, it has eigenvalue 1
with multiplicity 1, and the other eigenvalues (they are real) can be written in increasing
order:

1 = λ1 > λ2 ≥ . . . ≥ λn > −1.
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Then, the absolute spectral radius λ? of X and the relaxation time trel of X are defined as

λ? := max{|λ2|, |λn|} and trel :=
1

1− λ?
.

The relaxation time trel provides an upper and a lower bound on tmix.

Theorem If P is reversible and irreducible it holds d(t) ≤ λt?
2
√

minx∈V π(x)
. Moreover,

(trel − 1) log

(
1

2ε

)
≤ tmix(ε) ≤ trel log

(
1

ε ·minx∈V π(x)

)
.

The relaxation time, can be estimated by direct computations, Poincaré inequalities,
Cheeger bounds, Log-Sobolev inequalities and other ways.

Example We provide some example of bounds for the mixing time of the SRW on net-
works.

• SRW on the d-dimensional torus Zd/nZd has mixing time

tmix(ε) ≤ dn2dlog4(d/ε))e,

• Specifically for d = 1 (and n odd!) there exists a decreasing function function Ψ(·)
such that tmix(ε) = Ψ(ε)n2.

• SRW on the Aldous’ dog has relaxation time trel of order n2 log n, and hence the
mixing time tmix(ε) has at least order n2 log n log( 1

2ε)

Figure 1: This is Aldous’ dog.

3.1 Cutoff phenomenon

The cutoff phenomenon, corresponds to an abrupt decay of the TV-distance. It was dis-
covered in the ’80s in the context of random permutations and card shuffling [1], [11] and
since then has become object of many investigations [12] and has given birth to a very
wide research activity.

Sometimes the dependence on ε of tmix(ε) is very weak, as the following example shows.
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Example (Card shuffling) There are many ways to shuffle n cards. A natural one consists
in: splitting the deck in two parts and deciding a (random) procedure to interleave cards
from the two halves to form a new deck. It has been shown in [2] that, repeating the one
of these procedures t times, where

t =
3

2
log2 n+ θ, θ > 0,

the distance to the equilibrium (uniform distribution on the n! permutations of n elements),
is

1− 2√
2π

∫ −2−θ
4
√
3

−∞
e−u

2/2 du+O

(
1

n1/4

)
.

This implies that fixing γ > 0 and repeating the procedure (3
2 − γ) log2 n times, the

distance converges to 1 as n→∞, while repeating the procedure (3
2 + γ) log2 n times, the

distance converges to 0 as n→∞. Then, for every ε > 0, tmix(ε) = 3
2 log2 n(1 + o(1)).

This is an occurrence of the so–called cutoff phenomenon.

Figure 2: Total variation distance for m shuffles of 25, 32, 52, 104, 208 or 312 distinct cards ([2]).

Definition (Cutoff) A sequence of transition matrices exhibits a cutoff if there exists a
time–scale t?n such that, for every ε > 0, limn→+∞ tmix(ε)/t?n = 1. This is equivalent to say
that, for every γ > 0,

lim
n→+∞

d((1− γ)t?n) = 1 & lim
n→+∞

d((1 + γ)t?n) = 0.

This means that the limit shape of total variation profile, namely the plot of the distance
d(·) shows an abrupt decay of the TV-distance at the critical timescale t?n. This provides a
first order description for the mixing time, which can refined in precence of a cutoff window.

Definition (Cutoff with window) A sequence of transition matrices exhibits a cutoff with
window if there exist two timescales t?n and w?

n = o(t?n) such that,

lim
c→−∞

lim
n→+∞

d(t?n + cw?
n) = 1 & lim

c→+∞
lim

n→+∞
d(t?n + cw?

n) = 0.
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Proving the occurrence of a cutoff is a very delicate matter, which requires the knowledge
of the diffusion properties of the chain. A necessary, but not sufficient, condition is that

trel = o(tmix).

Despite an increasing amount of work on the subject, the cutoff phenomenon is still far from
be- ing completely understood, and the research of simple conditions (i.e., easy-to-check
and model independent) guaranteeing the presence of a cutoff is still very active.

4 Random Walks on Random Graphs

In this section, we present the setting of directed graphs and recent results for the mixing
time of the SRW in this environment.

A random graph is a sequence of random variables (Gn)n∈N, defined on a common prob-
ability space (Ω′,F ′,P), where, for each n ∈ N, Gn is a graph with n vertices. Equivalently,
a random graph model constitutes in a sequence of probability distributions P(Gn ∈ ·) on
the set of graphs with n vertices, which satisfy proper consistence conditions. In what
follows, the dependence on n will be hidden into the vertex set V of the graph, and we will
say that an event An happens with high probability if its probability P(An) converges to 1
as n→ +∞.

Example (Erdős-Rényi random graph) The easiest example is the Erdős-Rényi random
graph. It can be obtained by fixing, for every n, a parameter pn ∈ (0, 1), and for each
couple x, y ∈ V , including the edge (x, y) in the graph independently of the others with
probability pn. This results in a simple graph (see Fig. 3). Even though usually edges are
undirected, the same can be done in the oriented setting.

Figure 3: Realizations of Erdős-Rényi random graphs with n = 1000 vertices parameter pn = 1.1
n

and
pn = 2

n
respectively ([14]).

Example (Directed Configuration Model) For each n, fix a deterministic bi-degree se-
quence (d−x , d

+
x )x∈V such that d±x < +∞ and∑

x∈V
d−x =

∑
x∈V

d+
x .
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The directed configuration model is obtain by attaching, to every vertex x ∈ V , d−x half in-
edges (heads) and d+

x half out-edges (tails), matching them according to a uniform random
bijection (see Fig. 4). This results in a directed multigraph (where multiple edges can
match the same ordered couple of vertices), but erasing the multiple connections, we can
obtain a simple directed graph. It can be shown that, with high probability as n→ +∞,
if d±x ≥ 2, the digraph is strongly connected (i.e., the SRW on this graph is irreducible).
Moreover in can be shown that with uniformly (in n) positive probability, the digraph is
simple (i.e., with no multiple edges).

Figure 4: Construction procedure of the directed configuration model.

The next model is a sort of mixture between the previous two examples, and takes the
name of Chung-Lu model.

Example (Chung-Lu digraph) For each n, consider a sequence of weights (w−x , w
+
x )x∈V

with ∑
x∈V

w−x =
∑
x∈V

w+
x � n.

For each couple x, y ∈ V , include the oriented edge (x, y) in the digraph, independently of
the others, with probability

pxy = w+
x w
−
y

log n

n
∧ 1.

This implies that the order of average degree is � w±x log n, for large n. It can be shown
that if minx∈V w

±
x > 1 uniformly (in n), then, with high probability, the digraph is strongly

connected and hence the SRW on it is irreducible and admits a unique stationary distri-
bution.

4.1 Results

We take G to be a Chung-Lu directed random graph and we consider the SRW on it. Let
us point out that there are two different probability measure to be considered:

• P: probability measure encoding the randomness of the graph

• PG: probability measure encoding the randomness of the SRW (for every fixed graphG)

In this setting, tmix(ε) is a random variable depending on G. However, we can still try to
show that a cutoff takes place with high probability, i.e., that there exists timescale t?n such
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that, for each 0 < ε < 1,

∀δ > 0, P

(∣∣∣∣ tmix(ε)

t?
− 1

∣∣∣∣ > δ

)
−−−−→
n→+∞

0.

Cutoffs with high probability have been proved for random walks on several graph
models with bounded degree: the SRW on d-regular RG [17], the non-backtracking RW on
Configuration Model [4], the SRW on directed configuration model [7, 9]. The expression
of the mixing time in these contexts is

t?n =
log n

ν ·H
,

where the two quantities ν and H depend on the specific model. The first, ν, is the speed of
the random walk. For sparse random graphs, represents, roughly, the almost sure limit of
the ratio d(Yt, ρ)/t, where d(·) is the graph distance and Yt is a random walk on a suitable
random ρ-rooted tree, coupled with the original graph. the second one, H, represents a
notion of row entropy for the transition matrix P :

H = − 1

n

∑
x,y∈V

P (x, y) logP (x, y).

In our setting, being the graph directed and locally tree like, we have ν = 1, and we can
define a similar notion of entropy by

H =
∑
x∈V

w−x∑
y∈V w

−
y

E[log(D+
x ∨ 1)],

which is asymptotically log log(n). Let d(x)(t) = dTV(P t(x, ), π). Following the ap-
proach of [7, 8, 9], we have the following theorem, proved in [5].

Theorem ([5]) Let G be a realization of the Chung-Lu digraph, and t?n = logn
log logn . Assume

that there exist λ,C > 1 and 0 < η < 1 such that
√
λ ≤ w+

x ≤ C, ∀x ∈ V,
∑
x∈V

(w−x )
2+η ≤ Cn.

Then for every γ > 0,

min
x∈V

d(x)((1− γ)t?n)
P−−−−→

n→+∞
1, max

x∈V
d(x)((1 + γ)t?n)

P−−−−→
n→+∞

0.

It shows that cutoff takes place with high probability uniformly in the starting point
of the SRW. In particular this holds also for the worst-case distance defined in the previ-
ous sections. Moreover, it is possible to identify the cutoff window, under an additional
condition on the following quantity, which can be interpreted as a variance

σ2 :=
∑
x∈V

w−x∑
y∈V w

−
y

E[log2(D+
x ∨ 1)]−H2,
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We have the following theorem, proved in [5], in the same hypothesis of the previous
one. This theorem states that the distance to equilibrium has a smooth decay, given by
a Gaussian profile, independent of the parameters and visible at the critical time–scale
t? + cw?

n, for c > 0.

Theorem ([5]) Let w := σ
H
√
t? . Assume that there exists ξ > 0 such that σ2 � (log logn)

2+
ξ
ξ+2

(logn)
ξ
ξ+2

.

Then
max
x∈V

∣∣∣d(x)(t?n + cw?
n)− Φ(c)

∣∣∣ P−−−−→
n→+∞

0,

where Φ(c) := 1√
2π

∫ +∞
c e−

u2

2 du.

We conclude by stating our last result, valid for the SRW on a directed graph exhibiting
a community structure. For an integer m > 1, and two reals λ > 1, and α ≡ αn ≤ m−1

m ,
take m communities (Vj)j≤m with the same set [n] of vertex-labels, and let V =

⋃
j≤m Vj .

Consider the directed graph DBM(n,m, p, α) defined as follows:

(a) for each j = 1, . . . ,m let Gj be Erdős-Rényi digraph on Vj with p = λ log(n)
n ;

(b) for each edge (x, y) in some Gj with probability α: (i) erase (x, y), (ii) select u.a.r.
in [m]\{j} a number k, and (iii) draw (x, z), where z ∈ Vk has the same vertex-label
as y.

The following theorem, proved in [6], describes a mixing trichotomy, namely three distinct
mixing behaviours. It shows that, depending on the order of the parameter α, the SRW
exhibits a cutoff at the time t?n = logn

log logn or an abrupt partial relaxation at t?n = logn
log logn ,

followed by an exponential relaxation to the equilibrium on a possibly larger time–scale.
This analysis enriches the results given in [3] and [13] for random walks on undirected
graphs.

Theorem ([6]) Let G be a realization of the random digraph DBM(n,m, p, α), and t?n =
logn

log logn . The following mixing trichotomy takes place.

• Subcritical case (Fig. 5): if α−1 � t?n and α ≤ m−1
m , then, for all β > 0 with

β 6= 1,
max
x∈V
|‖PG

x(Xβt?n ∈ ·)− π‖TV−1{β<1}|
P−−−−→

n→+∞
0 .

• Critical case (Fig. 5): if α−1 ∼ Ct?n for C > 0, then, for all β > 0 with β 6= 1,

max
x∈V

∣∣∣‖PG
x(Xβt?n ∈ ·)− π‖TV−1{β<1} − m−1

m e−
β
C

m
m−11{β>1}

∣∣∣ P−−−−→
n→+∞

0 .

• Supercritical case (Fig. 6): if α−1 � t?n and α−1 � λn log(n), then

– (local equilibrium at t?n) for any β 6= 1,

max
x∈V

∣∣‖PG
x(Xβt?n ∈ ·)− π‖TV−1{β<1} − m−1

m 1{β>1}
∣∣ P−−−−→
n→+∞

0 ,
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– (whole mixing at α−1) for any β > 0,

max
x∈V

∣∣∣‖PG
x(Xβα−1 ∈ ·)− π‖TV−m−1

m e−
βm
m−1

∣∣∣ P−−−−→
n→+∞

0 .

Figure 5: Plot of the (theoretical) limiting mixing profile in the subcritical case (left) and critical case
(right) with C = 2 and m = 2, 3, 4, 5, 6.

Figure 6: Plot of the (theoretical) limiting mixing profile in the supercritical case, with m = 2, 3, 4, 5, 6, in
the two timescales t � t?n (left) and t � α−1 (right).
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Meanfield Turnpike Theorems

Denis Shishmintsev (∗)

1 Context and Motivation

Mean Field Games (MFG) study systems with a large number of agents interacting in-
directly through the overall distribution of states. Instead of modeling each interaction,
MFG theory focuses on the behaviour of a representative agent influenced by a “mean field”.
One key phenomenon in such systems is the turnpike property: when the time horizon is
large, optimal trajectories and controls stay close to a steady state for most of the interval.
The problem itself is well-studied and investigated, see for example, classical papers of
Trélat et. al [4] and [3]. But, these works were developed only for local type of optimal
control problems, i.e., problems which does not involve distributions to the dynamic. The
most difficult to make a step further was in lac of extension of standard local Pontryagin’s
Maximum Principle (PMP) to the non-local case. This question was closed by Averboukh
et. al in [1]. In this work, based on the observed literature, we:

• Generalizes the turnpike property to nonlocal dynamics and cost functions.

• Considers both Eulerian (distributional) and Lagrangian (trajectory-based) for-
mulations.

• Proves exponential turnpike estimates for both formulations.

2 Problem formulation

2.1 Dynamic Lagrangian and Eulerian settings

In this section we will give two different formulations of mean field optimal control prob-
lems. Following the terminology introduced in [2], we describe, first, the so-called La-
grangian formulation. To this end, we consider a standard atomless probability space

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 20 February 2025.
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(Ω,F ,P). Then, the optimal control problem is given by

(PL)


min
u∈UL

∫
Ω

(∫ T

0
L

(
X(t, ω), X(t)]P, u(t, ω)

)
dt+ ϕ

(
X(T, ω), X(T )]P

))
dP(ω)

s.t.

{
Ẋ(t, ω) = v(X(t, ω), X(t)]P, u(t, ω)),

X(0) = X0.

where u ∈ UL and UL :=
{

[0, T ] 3 t 7→ u(t) ∈ L2(Ω, U) : u(t) is measurable
}
, v : Rd ×

P2(Rd)×U → Rd, L : Rd×P2(Rd)×U → R and ϕ : Rd×P2(Rd)→ R. The dependence of
the data on the measure X(t)]P makes the problem nonlocal and models the interaction
among particles and/or the interaction of the mass with the surrounding environment and
it is usually referred to as a mean field interaction [2]. The couple (X,u) will be referred
to as a Lagrangian process.

Next we describe the Eulerian form of our optimal control problem. Here, the system
evolves according to a curve of probability measures, which evolution is driven by a nonlocal
continuity equation. The problem reads as:

(PE)


min
u∈UE

[ ∫ T

0

∫
Rd
L(x, µ(t), u(t, x))dµ(t)(x)dt+

∫
Rd
ϕ(x, µ(T ))dµ(T )(x)

]
,

s.t.

∂tµ(t) + divx
(
v(µ(t), u(t, x))µ(t)

)
= 0,

µ(0) = µ0.

where u ∈ UE and UE :=
{

[0, T ] 3 t 7→ u(t) ∈ L2(Rd, U) : u(t) is measurable
}
, L : Rd ×

P2(Rd)× U → R, ϕ : Rd × P2(Rd)→ R and v : Rd × P2(Rd)× U → Rd. The couple (µ, u)
will be referred to as an Eulerian process.

2.2 Static Problem and Turnpike Setting

As T → ∞, the dynamic problems approximate the corresponding dynamic problems,
under suitable regularity assumptions, could be approximated their static analogous:

(PLS )

 min
(X,u)∈L2(Ω,Rd)×L2(Ω,U)

∫
Ω
L(X,X]P, u)dP(ω)

s.t. v(X,X]P, u) = 0 P-a.e.

(PES )

 min
(µ,u)∈P2(Rd)×L2(Rd,U)

∫
Rd
L(x, µ, u)dµ(x)

s.t. v(µ, u) = 0 µ-a.e.

3 Assumptions

The following assumptions are used throughout the analysis:

(H1) The control set U is a Hilbert space.
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(H2) There exists a constant C∞ such that for all x ∈ Rd, µ ∈ P2(Rd), u ∈ U :

|L(x, µ, u)|≤ C∞
(
1 + ‖x‖2+M2

2 (µ) + ‖u‖2
)

(H3) L is continuously differentiable in x and µ, and

‖∇xL(x, µ, u)‖2≤ Cox(1 + ‖x‖2+M2
2 (µ) + ‖u‖2)

‖∇µL(x, y, µ, u)‖2≤ Coµ(1 + ‖x‖2+‖y‖2+M2
2 (µ) + ‖u‖2)

(H4) The functional L is convex in u.

(H5) The terminal cost φ is continuously differentiable in x, Fréchet differentiable in µ,
and the derivatives satisfy:

‖∇xφ(x, µ)‖2≤ Cφx(1 + ‖x‖2+M2
2 (µ))

‖∇µφ‖2≤ Cφµ(1 + ‖x‖2+‖y‖2+M2
2 (µ))

(H6) The velocity field v(x, µ, u) is affine in u.

(H7) v is continuously differentiable in x and Fréchet differentiable in µ, with bounded
derivatives:

‖Dxv‖L2≤ Cx, ‖Dµv‖L2≤ Cµ

4 Main Results

Lemma 4.1 (Lipschitz continuity of a nonlocal velocity field) Let v : L2(Ω,Rd)×P2(Rd)×
L2(Ω, U)→ Rd satisfy (H7). Then v is Lipschitz with respect to X ∈ L2(Ω,Rd), that is:

‖v(X ′, X ′#P, u(t))− v(X,X#P, u(t))‖≤ L‖X ′ −X‖L2(Ω,Rd)

Proof. By assumption (H7), the map x 7→ v(x, µ, u) is differentiable with bounded deriva-
tives, and similarly for µ 7→ v. Since the mapX 7→ X#P is Lipschitz from L2(Ω)→ P2(Rd),
the overall composition is Lipschitz in X. Estimate is obtained by applying chain rule and
bounding each term by its respective Lipschitz constant.

Lemma 4.2 (Gronwall’s Lemma in nonlocal setting) Let X(t), X ′(t) be solutions of the
ODE:

Ẋ(t) = v(X(t), X(t)#P, u(t)), X(0) = X0, X ′(0) = X0 + δx(0)

Then:
‖X ′(t)−X(t)‖≤ eCt‖δx(0)‖L2(Ω,Rd)
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Proof. Let δX(t) = X ′(t)−X(t). Then:

d

dt
δx(t) = v(X ′(t), X ′(t)#P, u(t))− v(X(t), X(t)#P, u(t))

By Lemma 4.1, the r.h.s. is Lipschitz in δX(t), yielding:

‖δx(t)‖≤ ‖δx(0)‖·eLt

by Gronwall’s inequality.

Theorem 4.3 (Exponential turnpike property in nonlocal Lagrangian formulation) As-
sume (H1)-(H3) and (H5). Let (X∗, u∗) be a solution of the static problem and let Ψ∗ be
a multiplier. Assume:

• Huu is positive definite at (X∗,Ψ∗, u∗),

• Hessian components of the Hamiltonian are bounded,

• The pair (A,HΨu) is exponentially stabilizable,

• The pair (A,C) is exponentially detectable.

Then there exist ε, µ, c > 0 such that for any T > 0, if:

‖X(0)−X∗‖+‖Ψ(T )−Ψ∗‖≤ ε

then:
‖X(t)−X∗‖+‖Ψ(t)−Ψ∗‖+‖u(t)− u∗‖≤ c(e−µt + e−µ(T−t))

Proof. 1. Pontryagin System: Write the necessary optimality conditions as a forward-
backward system using the Hamiltonian H.

2. Linearization: Linearize the Pontryagin system around the steady state (X∗,Ψ∗, u∗)
and express the system as:

d

dt

(
δx
δψ

)
=

(
A B
C∗C −A∗

)(
δx
δψ

)
where B = −HΨuH

−1
uuHuΨ, and C∗C = HXuH

−1
uuHuX −HXX .

3. Riccati Equation: Solve the algebraic Riccati equation associated to this system.
Under the stabilizability and detectability assumptions, there exists a bounded posi-
tive definite operator P such that the feedback law stabilizes the forward component.

4. Decoupling Transformation: Use a transformation based on the Riccati solution
to decouple the system into a stable forward and a stable backward system.
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5. Estimate Deviations: Apply exponential semigroup estimates and a Gronwall-
type lemma to bound the deviations from the steady state, concluding exponential
proximity.

Theorem 4.4 (Exponential turnpike property in Eulerian formulation) Under the same
assumptions as above, and using the equivalence between Eulerian and Lagrangian problems,
for any optimal solution (µ(t), u(t)) with steady state (µ∗, u∗), there exist constants c, µ > 0
such that:

W2(µ(t), µ∗) + ‖u(t)− u∗‖≤ c(e−µt + e−µ(T−t)), ∀t ∈ [0, T ]

Proof. 1. Lift to Lagrangian: Use the transformation from Eulerian to Lagrangian
formulations to convert the Eulerian problem into a Lagrangian one.

2. Apply Theorem 4.3: Apply the exponential turnpike result already proven in the
Lagrangian setting.

3. Pushforward Estimate: Pushing the result back to the Eulerian framework us-
ing the stability of the pushforward operation in Wasserstein space, conclude that
turnpike property holds.

5 Example

Let us consider the model problem of nonlocal linear-quadratic (LQ) regulator in La-
grangian formulation. Precisely, take a standard probability space (Ω,F ,P). We formulate
the problem on Rd and the dynamic of an agent is given by the equation

(1)
d

dt
X(t, ω) = A(ω)X(t, ω) +B(ω)u(t, ω),

X(0, ω) = X0(ω)

and the payoff functional is defined as:

(2)

1

2
E∼P

(∫ T

0

[
XT (t)QxX(t) + uT (t)Ru(t)

]
dt+XT (T )GxX(T )

)

+
1

2

∫ T

0
E∼P

[
(X(t)− E∼PX(t))TQµ(X(t)− E∼PX(t))

]
dt

1

2
E∼P

[
(X(T )− EX(T ))TGµ(X(T )− E∼PX(T ))

]
,
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where u(t, ω) ∈ U = Rm, for all t ∈ [0, T ] and for a.e. ω ∈ Ω. Let, A,Qx, Qµ, Gx, Gµ be
(d×d) bounded matrices, B be a (d×m) bounded matrix and R be a (m×m) symmetric
bounded matrix. Moreover, the matrices Qx, Qµ, Gx, Gµ are symmetric positive semi-
definite, while R is positive definite. Let X(t) be the minimizer for the problem (1)-(2)
and ΨL be the adjoint vector with the transversality condition

Ψ(T, ω) = −(Gx +Gµ)X(T, ω) +Gµ

(∫
Ω
X(T, η)dP(η)

)
.

Then, the corresponding static problem reads as

(3)

min
(X,u)∈L2(Ω,Rd)×L2(Ω,U)

s.t. AX+Bu=0

1

2
E∼P

(
XTQxX+uTRu+XTQµX−

(∫
Ω

X(ω)T dP(ω)

)
Qµ

(∫
Ω

X(ω)dP(ω)

))
.

Using convex nature of the corresponding static problem, we obtain global turnpike pro-
perty result in LQ type problems.
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An Integer Linear Programming Model
for the Dynamic Airspace Configuration problem

Martina Galeazzo (∗)

1 Introduction and Literature review

Aviation is one of the most global industries, because of its power to connect people, cul-
tures, and businesses across continents. In fact, it provides the only rapid worldwide trans-
portation network, making it essential for global business. Aviation generates economic
growth, creates jobs, and is a key factor in international trade and tourism. According to
recent estimates by the Air Transport Action Group (ATAG), the total economic impact
(direct, indirect, induced, and tourism catalytic) of the European aviation industry has
reached USD 823 billion [8]. In order for Air Navigation Service (ANS) providers to mon-
itor traffic safely and efficiently, airspace has to be functionally partitioned into control
units, with respect to traffic density.

(a) European Airspace (b) Italian Airspace and its ACCs

Figure 1

As a first-level airspace partitioning, we consider Area Control Centers (ACCs), which
are autonomous with respect to traffic management; each ACC is divided into the afore-
mentioned control units, called sectors, whose shapes and sizes vary in order to accommo-
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date the air traffic evolution; in Figure 1, as an example, we can see the partition of the
European airspace into sectors and the four ACCs of the Italian airspace.

Since air traffic is human-managed, a congested area has to be assigned to multiple
controllers and, therefore, is split into different sectors, as higher traffic concentrations
require more control resources. The same area, under milder traffic conditions, would be
partitioned into fewer sectors, or constitute a sector itself. To each sector corresponds a
quantity called capacity, that provides a measure of the traffic volume that can be handled
in that sector while maintaining a high level of safety. As sector capacity is limited, it
is essential to efficiently manage airspace in order to maximise the total traffic volume it
can absorb. For the purpose of our study, we consider the airspace model based on the
concept of airspace block: an airspace block is a 3D portion of the airspace, and, in this
perspective, a sector is a 3D connected union of one or more airspace blocks; moreover,
an airspace configuration is a partition of the airspace into disjoint sectors; in Figure 2 we
provide a 2D example of the structure we just described.

(a) ACC airspace (b) airspace blocks

(c) sectors (d) configurations

Figure 2: Example of airspace structure and partitioning.
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In the last decades, a considerable effort has been put into the study and development of
methods to effectively manage airspace; therefore, the literature on this subject is wide and
multifaceted. Although, at this point, the specific terminology is quite established, some
terms appear to be used interchangeably; for this reason, we begin by providing the defini-
tions we refer to from now on. In particular, we focus on the difference between Airspace
Configuration (AC) and Airspace Sectorization (AS), following the definitions provided
in [7]. In this perspective, AC involves rearranging predefined portions of the airspace
(airspace blocks) into sectors to obtain a configuration, whereas AS does not rely on these
established and commonly used airspace elements, allowing a more flexible partition of the
airspace. Our primary focus lies in the dynamic counterpart of AC (Dynamic Airspace
Configuration, or DAC), which, adhering to the principles of AC, generates a sequence of
configurations (configuration plan) to be deployed in a given time-frame.

The literature on DAC is quite rich in terms of proposed approaches and techniques; for
instance, in [11], DAC is tackled as a graph partitioning problem: the authors consider a
graph where nodes represent airspace blocks and arcs connect spatially adjacent blocks,
and solve the problem using a genetic algorithm. In [4], the authors propose a recursive
greedy algorithm that, starting from the current airspace sectors, aims to combine under-
utilized ones, based on a measure of the predicted traffic excess. Reference [1] also relies on
a graph representation, where nodes correspond to airspace blocks, and arcs connect nodes
if the associated blocks are connected by trajectories. The aim is to provide a smooth
configuration plan that avoids abrupt sector changes, and it is achieved by employing two
successive simulated annealing algorithms and running a shortest path algorithm. In [3],
three algorithms are presented to find a configuration plan that minimizes workload cost:
a myopic heuristic, an exact dynamic programming algorithm, and a rollout approximate
dynamic programming algorithm. In [9], an Integer Programming model is introduced
to assign each airspace block to a sector from a predefined list, therefore obtaining a
configuration.

The foundation of this work is the assumption of the availability of a set of commonly
used configurations in a given airspace. This approach has many advantages: the objects
of controllers’ training are usually configurations, therefore we can rely on a high degree of
familiarity; we do not need to check for configuration feasibility, since it has already been
practically proven; and we can easily impose operational constraints on the configurations’
dynamics, such as the need to avoid the frequent configuration changes that can occur when
trying to accommodate traffic peaks. We propose an Integer Programming model for DAC
that, encompassing the aforementioned constraints on the dynamics, provides an optimal
configuration plan based on traffic forecasts. In light of this, it is suitable for application
during the tactical phase of operations to obtain a starting point for the configuration plan
to be deployed the following day.
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2 Problem description

Starting from a given family of airspace configurations, our goal is to compute a sequence
of configurations that meets the (expected) air traffic demand as much as possible; in
other words, we aim to minimize the total excess of air traffic demand in the time horizon
we consider, which is finite and discretized into time periods. Configuration changes are
only allowed at discrete times corresponding to such time periods; we refer to this parti-
tion of the time horizon as decision discretisation (d), since, in each of the time periods
we consider, we decide which configuration to implement (active configuration). We also
work under the assumption that the air traffic demand for each sector over time is known.
As for the dynamics of the configuration plan we aim to construct, we require it to be
“smooth”, meaning that: (i) transitions between configurations that are very different from
one another (e.g. they have few sectors in common) should be avoided, (ii) configurations
must remain active for at least an “operational” time interval, to allow configuration setup
and to ease the monitoring operations (permanence requirement), and (iii) the configu-
ration plan should not oscillate between the same configurations in response to demand
fluctuations (quiescence requirement). In fact, if left unchecked, the configuration plan
may present frequent configuration switching and schedule the same configuration after a
short time, to follow traffic variations; both these occurrences are very impractical from an
operational point of view, so we implement ad hoc constraints to prevent them from hap-
pening. Towards (i), practitioners rely on the concept of “configuration compatibility” and
only allow transitions between compatible configurations; moreover, they use long decision
time intervals, therefore configuration permanence (and quiescence) is guaranteed as well.
Since we aim to work with short decision time intervals, towards (ii) and (iii), we impose
permanence constraints to ensure that an active configuration remains active for at least
tp time periods (permanence interval), and we constrain a minimum time interval (longer
than the permanence one) between consecutive reactivation of a same configuration, that
will be called quiescence interval and will consist of tq consecutive decision time periods.
The notation we will use is as follows:

• T is the set of decision time periods in which the time horizon is discretised, indexed
from 0 to |T | − 1,

• C is the family of available airspace configurations,

• Ect is a parameter that measures the traffic overload, or excess, in configuration c at
decision time period t.

Furthermore, with Ct we denote the set of configurations available in time period t. This
models the fact that, due to operational requirements, a given configuration may be oper-
ated only at specific time intervals.

3 Modeling DAC on a directed graph

It is possible to model the DAC problem on a suitable directed, weighted graph G = (V,A)
where:
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• V = {(c, t) | t ∈ T, c ∈ Ct} ∪ {(α, 0), (ω, |T |+ 1)} is the set of nodes, corresponding
to the configuration-time pairs, plus two dummy nodes acting as source and sink;

• A = AP ∪ AT ∪ Aα ∪ Aω is the set of arcs, which includes permanence arcs (AP ),
connecting nodes associated to the same configuration, transition arcs (AT ), between
nodes corresponding to different configurations, and artificial arcs (Aα and Aω), for
which one of the endpoints is a dummy node; in this graph, arcs represent the feasible
transitions between configurations over time.

In particular, AP and AT are defined as:

AP = {((c, t), (c, t+ 1)) | t ∈ T \ {|T | − 1}, c ∈ Ct ∩ Ct+1}
AT = {((c, t), (d, t+ 1)) | t ∈ T \ {|T | − 1}, c ∈ Ct, d ∈ Ct+1

c }

Permanence arcs represent the possibility of maintaining a configuration active for
consecutive time periods, while transition arcs correspond to transitions between different
configurations. As for Aα and Aω, they are defined as:

Aα = {((α,−1), (c, 0)) | c ∈ C0}
Aω = {((c, |T | − 1), (ω, |T |)) | c ∈ C0}

We also define the weight function w : A→ N as follows:

w((b, t− 1), (c, t)) =

{
Ect if c 6= ω

0 otherwise

i.e., the weight of an arc corresponds to the excess of air traffic demand associated to its
head; let us notice that all arcs entering one node have the same weight.

Remark 1 If we neglect permanence and quiescence constraints, solving the DAC problem
is equivalent to finding the weighted shortest path from (α,−1) to (ω, |T |) on the directed
graph we just described. Therefore, the DAC problem can be solved in polynomial time,
with respect to the size of the graph, using well-known shortest path algorithms (e.g., the
Bellman-Ford algorithm [2], which has a time complexity of O(|V | · |A|)).

On the other hand, the inclusion of permanence and/or quiescence constraints requires
the implementation of ad hoc label-setting algorithms to solve the problem; in [10], such an
algorithm has been efficiently implemented and used in a robust optimization framework.

4 Mathematical Programming

In order to solve an optimization problem, one of the possible frameworks is Mathematical
Programming, which relies on mathematical models to describe the features of the optimal
solution by means of mathematical relations. The constitutive elements of a model are the
following:

• sets, that group the elements of the problem,
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• parameters, the known quantities representing the data of the problem,

• decision variables, whose optimal value has to be determined,

• constraints, mathematical expressions describing the conditions that feasible solu-
tions have to satisfy,

• objective function, that is the function of the decision variables that has to be mini-
mized or maximized.

Whenever the objective function is linear and the constraints are given by a linear
system of equations and inequalities, we speak of Linear Programming ; depending on the
domain of the decision variables, we distinguish three cases:

• Linear Programming (LP), if all the variables can take real values,

• Integer Linear Programming (ILP), if all the variables can only take integer values,

• Mixed Integer Linear Programming (MILP), if some variables are constrained to be
integer and the others can take real values.

The general structure of a MILP model is as follows:

max/min cTx

s.t. Ax ≤ b
x ≥ 0

xi ∈ Z ∀ i ∈ I

where A ∈ Rm×n and b ∈ Rm describe the constraints coefficient, c ∈ Rn is the vector
of the objective function coefficients, and I ⊂ {1, 2, . . . , n} is the index set of the integer
variables.

4.1 Integer Linear Programming model for DAC

We now present an Integer Linear Programming model for the DAC problem under perma-
nence and quiescence constraints, and we begin by introducing the two families of binary
variables used in the formulation:

• xct , for every t ∈ T and c ∈ Ct, taking value 1 if configuration c is active at time
period t, and 0 otherwise,

• sct , for every t ∈ T \{|T |−tp+1, . . . , |T |−1} and c ∈ Ct, taking value 1 if configuration
c is activated at time period t (i.e. c is active at time t, but not at time t− 1), and
0 otherwise.

In the following, whenever variables x and s are not defined, they can be replaced by 0.
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ILP model for DAC

min
∑
t∈T

∑
c∈Ct

Ect · xct + ε
∑
t∈T

∑
c∈Ct

nc · xct

s.t.

(1)
∑
c∈Ct

xct = 1 ∀ t ∈ T

(2) xct −
∑

c′∈Ct+1
c

xc
′
t+1 ≤ 0 ∀ t ∈ T \ {|T | − 1}, ∀ c ∈ Ct

(3)
t+tp−1∑
τ=t

∑
c∈Cτ

scτ ≤ 1 ∀ t ∈ T \ {|T | − tp + 1, . . . , |T | − 1}

(4) xct +
t+tq∑
τ=t+1

scτ ≤ 1 ∀ t ∈ T \ {|T | − 1}, ∀ c ∈ Ct

(5) xct − xct−1 ≤ sct ∀ t ∈ T \ {0}, ∀ c ∈ Ct

(6) xc0 ≤ sc0 ∀ c ∈ C0

(7) xct ∈ {0, 1} ∀ t ∈ T, ∀ c ∈ Ct

(8) sct ∈ {0, 1} ∀ t ∈ T \ {|T | − tp + 1, . . . , |T | − 1}, ∀ c ∈ Ct

The objective function consists of two terms: the first is the total traffic overload during
the time frame, while the second is a penalization term (that will always be smaller than
1, thanks to the proper choice of ε) which ensures that, the traffic overload being the same,
the configuration consisting of the smallest number of sectors is chosen; here nc denotes
the cardinality of configuration c. Constraint (1) imposes that exactly one configuration
is active at each time interval, while constraint (2) takes care of the compatibility between
configurations that are active in consecutive time periods; to this end, we introduce the
set Ct+1

c comprising all configurations that can be implemented at time period t + 1 if
configuration c is active at time t. In order to avoid too frequent switching between
different configurations, as we discussed before, constraints (3) (permanence constraints)
impose that any active configuration remains active for at least tp consecutive time periods.
On the other hand, constraints (4) (quiescence constraint) are concerned with the amount
of time that has to elapse before a configuration that has been deactivated can be activated
again. In this sense, (4) imposes that a configuration c that is deactivated at time t cannot
be reactivated within the consecutive tq time periods. In light of the previous considerations
on variable s, configuration permanence at the end of the time frame is guaranteed; in fact,
the s variables are replaced by 0 in the last tp−1 time periods, hence no configuration can
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be activated. Finally, constraints (5) and (6) link the values of variables xct and sct for every
t ∈ T , ensuring that sct takes value 1 if c is activated in t. In the case of a configuration
c ∈ Ct \ Ct−1, variable xct−1 is not defined; therefore constraint (5) reads xct ≤ sct .

5 Polyhedral Study

In this section, we present an analysis of the structure of the polytope PPQ, corresponding
to the linear relaxation of the set defined by constraints (1)-(8). In particular, our main goal
is to prove that permanence and quiescence constraints are facet-defining for conv

(
PPQI

)
,

i.e. the convex hull of the integer points in PPQ. To achieve this, we begin by computing
the dimension of PPQ; we then identify redundant permanence and quiescence constraints,
and we conclude by presenting the proofs for the facet-defining inequalities.

5.1 Dimension of the polytope P PQ

For the sake of clarity, we will work under the assumption that Ct = C for every t ∈ T
and Ct+1

c = C for every t ∈ T \ {|T | − 1} and every c ∈ C, i.e. all configurations are
always available and all possible transitions are feasible. In our simplified setting, the
dimension n of the space in which variables xct and sct live is |T | · |C|+ (|T | − tp + 1) · |C| =
2|T | · |C| − (tp − 1) |C|. We begin by recalling the following result from literature.

Theorem 1 ([5]) Let P = {x ∈ Rn:Ax ≤ b} be a non-empty polyhedron. Then dim(P ) =
n− rank(A=), where A=x ≤ b= is the system comprising all implicit equalities of Ax ≤ b,
i.e. the inequalities that hold as equalities for every point in P .

In light of Theorem 1, in order to determine the dimension of the polytope PPQ,
we need to identify the implicit equalities in our formulation and compute the rank of
the corresponding coefficients matrix. The following Lemma will exhibit all the implicit
inequalities.

Lemma 1 The following results hold true:

(a) Constraint (3) is an implicit equality for t = 0;

(b) sct = 0 for every t ∈ {1, . . . , tp − 1} and every c ∈ C,

(c) constraint (5) is an implicit equality for t ∈ {1, . . . , tp− 1} ∪ {|T | − tp + 1, . . . , |T | − 1},

(d) constraint (6) is an implicit equality for every c ∈ C.

We now move on to the computation of the rank of matrix A=, whose entries are the
coefficients of the implicit equalities. Each column of A= is associated with either an x
variable or an s variable, thus there are 2|T | · |C| − (tp − 1) |C| columns. As for the rows,
each one corresponding to an implicit equality, by summing up the previous considerations,
we have:

• |T | equalities coming from constraints (1),
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• 1 implicit equality from Lemma 1a,

• (tp − 1) |C| implicit equalities from Lemma 1b,

• 2 (tp − 1) |C| implicit equalities from Lemma 1c

• |C| implicit equalities from Lemma 1d.

Thus, A= has |T |+ (3tp − 2) |C|+ 1 rows, and its entries are either 0 or 1.

Remark 2 By ordering the columns of A= according to ascending values of index t for
the corresponding variables, we obtain the following block matrix:

A= =

B11 0 0
0 B22 0
0 0 B33


The only blocks with entries different from 0 are the ones along the diagonal, B11, B22,
and B33.

Example 1 We now show matrix A= for |T | = 7, |C| = 2 and tp = 3.

Remark 3 B22 has full rank, which is equal to |T | − 2tp.
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This can be easily verified by noticing that the rows in B22 are linearly independent,
given that the sets of columns in which each of them presents a non-zero value are disjoint.
Lemmas 2 and 3, on the other hand, are concerned with the rank of blocks B11 and B33,
respectively, and show that neither of them has full rank.

Lemma 2 rankB11 = 1 + (2tp − 1) |C|.

Lemma 3 rankB33 = 1 + (tp − 1) |C|.

Lemma 4 In light of Remark 3 and Lemmas 2 and 3, rankA= = |T | + (3tp − 2) |C| −
2 (tp − 1). By Theorem 1, we can state:

(9) dim(P ) = 2|T | · |C| − |T |+ (3− 4tp) |C|+ 2 (tp − 1)

We now move on to the identification of redundant permanence and quiescence con-
straints; we recall that a constraint is redundant if removing it from the system does not
change the feasible region.

Lemma 5 For t ∈ {1, . . . , tp − 1} ∪ {|T | − tp, . . . , |T | − 1}, constraint (3) is redundant.

Lemma 6 For t ∈ {0, . . . , tp − 2} ∪ {|T | − tp − tq + 1, . . . , |T | − 1} and for all c ∈ C
constraints (4) are redundant.

5.2 Facet defining inequalities

The aim of this subsection is to show that, whenever they are not redundant, permanence
and quiescence constraints are facet defining for conv

(
PPQI

)
; in the following we will

assume |C| ≥ 2. We begin by recalling the definition of face and facet of a polyhedron and
a well-know characterization of facets.

Definition 1 ([5]) A face of a given polyhedron P is a set of the form:

F : = P ∩ {x ∈ Rn: cx = d}

where cx ≤ d is a valid inequality for P . Inclusion-wise maximal proper faces of P are
called facets.

Theorem 2 ([5]) A face F of a polyhedron P is a facet if and only if F is nonempty and
dim(F ) = dim(P )− 1.

In light of these definitions and of the results presented in the previous subsection, we
can state the following theorems.

Theorem 3 Whenever inequalities (4) are not redundant, they are facet defining for
conv

(
PPQI

)
.

Università di Padova – Dipartimento di Matematica 114



Seminario Dottorato 2024/25

Theorem 4 Whenever inequalities (3) are not redundant, they are facet defining for
conv

(
PPQI

)
.

6 Numerical Study

In this section, we present some numerical results obtained by testing our model on five days
of study, in summer 2019; we consider real data on 166 available airspace configurations,
built using 99 sectors, covering a central-southern region of Madrid ACC and obtained
with the DAC framework presented in [9]. The number of sectors that each configuration
consists of varies from 2 to 10. Moreover, we discretized the day in 288 five-minute intervals,
indexed from 0 to 287, and considered traffic data sampled every five minutes; further
details on time discretisation and the computation of parameter Ect can be found in [6],
here we just highlight the importance of having a fine decision discretization (we choose
to operate with five-minute intervals, while current practice usually relies on 20-minute
intervals), and a data discretization δ (a measure of the frequency with which traffic data
is sampled) that is finer than the decision discretization.

Figure 3: Comparison between the traffic demand and capacity of a sector for July 20th [6]

Figure 3 provides an example of the practical advantages of a finer decision discretiza-
tion: it depicts the traffic demand with a 5 and 20-minute data discretization, and the
capacity of a sector activated in the optimal solution for July 20th, with a 20-minute de-
cision discretization; the shaded orange portion of the graphic marks the time intervals
in which the sector was active. For the most part of these intervals, the traffic demand
of the sector is lower than its capacity; however, in the hour between 4:00 a.m. and 5:00
a.m., when the traffic demand (for both data discretizations) first exceeds the capacity, we
notice a difference (which is magnified in the inset). Indeed, we observe a traffic peak at
4:25 a.m. for δ = 5 that the coarser discretization does not capture until 4:40 a.m. As
a result, at 4:20 a.m., which is a decision time for the 20-minute decision discretization
(displayed with red bars in the inset), the sector remains active with an excess that is zero
for δ = 20, but the green line clearly shows that there are three 5-minute intervals in which
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a traffic excess is registered. This preliminary analysis goes to show that low values of
traffic excess obtained with a coarse data discretization do not necessarily correspond to
non-challenging traffic conditions, underscoring the advantages of more refined approaches
in capturing a more realistic image of the actual traffic conditions.

In the following, we assume that the minimum time that a configuration has to remain
active to obtain a sequence of configurations that is compatible with the operational ne-
cessities of air traffic controllers is 20 minutes; therefore, for d = 5 parameter tp is always
set to a value of at least 4, meaning that a configuration has to remain active for four
consecutive 5-minute intervals. Table 1 provides further insight into the advantages of
fine decision and data discretization, comparing the result obtained with d = δ = 5 and
d = δ = 20. We remark that we are working in the simplified setting with C = Ct for
every t ∈ T and full compatibility between configurations.

d = 5, δ = 5 d = 20, δ = 20
Day o.f. time s avg (max) ovl time AP s avg (max)
20/07 0.0 7.13 4.38 (8) 179.0 1.05 4.75 (6)
21/07 0.0 6.38 4.33 (8) 158.0 1.08 4.71 (6)
22/07 0.0 7.31 4.36 (7) 213.0 1.06 4.83 (6)
25/07 0.0 5.67 4.14 (7) 111.0 1.19 4.77 (6)
04/08 0.0 7.86 4.23 (8) 212.0 1.20 4.79 (6)

Table 1

Columns time report on the computational time, while column o.f. presents the value of
the objective function for d = δ = 5; such column is replaced by column ovl (overload) for
d = δ = 20, where by overload we mean the total traffic excess obtained by considering the
optimal solution for the rougher discretization and computing the corresponding excess
for δ = 5. As we can notice, this leads to overloads that are much higher than the
results obtained with finer discretization and the nominal zero excess given by the objective
function for d = δ = 20 (not reported in the table). This phenomenon is consistent with
what we observed in Figure 3, and is further displayed in Figure 4, that clearly shows
multiple time intervals in which the traffic demand for δ = 5 (red line) exceeds the total
capacity of the active configuration (blue line). As for columns s avg (max), they show
the average and maximum cardinality of the active configurations obtained by our model
(plain column) and associated with the plans that were actually deployed in the days we
consider (column AP); by comparing them we notice that the average value provided by
our model is lower, proving the effectiveness of the cardinality penalization term in the
objective function. As far as the maximum values are concerned, let us remark that the
cardinality of the configurations considered for the actual plans ranged from 2 to 6, while
we also considered configurations with up to ten sectors.
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Figure 4: Comparison between traffic demand and capacity for the optimal solution with d = δ = 20 on
July 20th [6]

At this point, with a view to increasing the degree of realism of our instances, we deem
as feasible only the transitions between similar configurations, i.e., those that have at least
50% of sectors in common and have close cardinalities, and divide the day into time slots
during which different sets of configurations are available. Tables 2 and 3 present results
obtained by setting a permanence interval of 20 minutes and quiescence intervals of 45 and
60 minutes, respectively. Columns marked with permanence show the average, maximum,
and minimum number of consecutive time intervals of activation for the configurations
deployed in the optimal solution, while columns cardinality report the size of the active
configurations.

permanence cardinality
Day o.f. time avg max min avg max min

20/07/2019 4.0 22.28 10.67 56 4 5.85 10 2
21/07/2019 9.0 28.50 10.67 39 4 5.69 10 2
22/07/2019 5.0 39.19 7.78 26 4 5.72 9 2
25/07/2019 0.0 22.69 9.29 55 4 5.78 9 2
04/08/2019 0.0 20.22 9.29 28 4 5.59 9 2

Table 2: Results with tp = 4 and tq = 9, with limitations on the configurations cardinality

permanence cardinality
Day o.f. time avg max min avg max min

20/07/2019 4.0 30.00 13.09 48 4 5.58 10 2
21/07/2019 9.0 34.42 7.78 38 4 5.29 10 2
22/07/2019 5.0 26.95 13.09 44 4 5.51 10 2
25/07/2019 0.0 21.47 9.60 46 4 5.57 9 2
04/08/2019 0.0 18.45 9.93 51 4 5.62 10 2

Table 3: Results with tp = 4 and tq = 12, with limitations on the configurations cardinality
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By comparing the two tables, we notice that increasing the quiescence interval does not
seem to have an impact on the total traffic excess, while it results in a mild increase of the
maximum cardinality of an active configuration. As for the minimum cardinality, it remains
equal to 2 in all cases; such small configurations are active during the night and early
morning, when traffic demand is low, and they tend to remain active for longer periods.
The opposite behavior can be observed during traffic peaks, that typically occur in the
middle of the day; during these periods, larger configurations are deployed to accommodate
the traffic volume, and such configurations are used for shorter periods of time, as we notice
by looking at columns permanence min. The minimum duration of an activation interval
always corresponds to 20 minutes, i.e. the minimum duration we impose by means of the
permanence constraints.

7 Conclusions

After providing a general introduction on the airspace structure and on the different
approaches to airspace management, we presented the Dynamic Airspace Configuration
(DAC) problem and a graph representation encompassing its basic features and further
regularity requirements on the configuration dynamics (permanence and quiescence con-
straints). We then moved on to Mathematical Programming, describing the features of an
optimization problem, and proposed an Integer Linear Programming model for DAC.

We investigated the structure of the feasible region of such a model, computing the
dimension of the convex hull of the integer points it contains and proving that permanence
and quiescence constraints are facet defining for the convex hull.

We tested our model on the historical traffic data of five days in the summer of 2019
and on a set of configurations built using 99 sectors of Madrid ACC. We compared the
performances of different data and decision discretization, highlighting the fact that using
the finest data discretization, even when considering a rougher decision discretization,
results in a configuration sequence that can better absorb the traffic peaks occurring in
the middle of a decision interval.

Moreover, we increased the degree of realism of our instances by reducing the availability
of the configurations during the day and by imposing stricter criteria on configurations
compatibility. This resulted in a moderate increase in the total traffic excess registered
during the day. We also remarked that increasing the duration of the quiescence interval
does not affect the quality of the optimal configuration plan in any noticeable way.
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Resonances and Quasi-Collisions
in the Three-Body Problem

Xiang Liu (∗)

Abstract. Mean motion resonance, a phenomenon occurring when two celestial bodies have orbital
periods in a commensurable ratio, plays a pivotal role in both stabilizing and destabilizing motions
within our Solar System. For highly eccentric orbits, quasi-collisions become a significant factor.
When such eccentric orbits are trapped in resonance, perturbations can induce chaotic motions,
leading to rapid changes in orbital elements and transitions of different dynamical states. This
presentation will begin by introducing the concept of mean motion resonance within the framework
of the restricted three-body problem. Subsequently, we will explore the application of Hamiltonian
perturbation theory for low-eccentricity orbits. Finally, we will demonstrate the limitations of this
theory when applied to highly eccentric orbits.

1 Introduction

1.1 Restricted Three-Body Problem

The restricted three-body problem is composed of the primary body P0 (the Sun), the
secondary body P1 (a planet) and a massless body P , where the primary P0 and the sec-
ondary P1 comprise a two-body system and the motion of P is affected by the gravitational
force of P0 and P1. In our case we only consider the circular restricted three-body problem
(CR3BP), of which both P0 and P1 rotate circularly with respect to the barycenter of P0

and P1.
To study the motion of P we introduce the heliocentric coordinates

r1 = P1 − P0,

r = P − P0.

Then the equations of motion of P in heliocentric coordinates are

d2r

dt2
= −Gm0

r

‖r‖3
+Gm1

(
r1 − r

‖r1 − r‖3
− r1

‖r1‖3

)
,

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 20 March 2025.
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Figure 1: Restricted three-body problem.

where G = 1 is the gravitational constant, m0 = 1,m1 = ε are the masses of P0 and
P1, and r1 := (cos(n1t), sin(n1t)). In the document we also assume that the motion of
the asteroid P is located in the orbital plane of P0 and P1, which means we are studying
the planar circular restricted three-body problem (PCR3BP). In the heliocentric reference
frame, the Hamiltonian of the planar version of the problem is represented by

H(r,p, t) := H0(r,p) + εH1(r, r1)

=
‖p‖2

2
− 1

‖r‖
+ ε

(
− 1

‖r− r1‖
+

r · r1

‖r1‖3

)
where r1 is dependent of the time t, therefore the Hamiltonian is not autonomous. The
Hamilton’s equations are described by the following system of 2n first order differential
equations

ṙ =
∂H
∂p

= p,(1)

ṗ = −∂H
∂r

.(2)

Here the frequency of the circular orbit n1 is called the mean motion of P1

n1 =

√
G(m0 +m1)

r3
1

=
2π

T1
,(3)

where T1 is the period of the circular orbit. By denoting λ1 := n1t, we can also introduce
its conjugate momentum Λ1, which leads to the autonomous Hamiltonian representation
of the problem:

H(r,p) =
‖p‖2

2
− 1

‖r‖
+ n1Λ1 + ε

(
− 1

‖r− r1(λ1)‖
+

r · r1(λ1)

‖r1(λ1)‖3

)
where the perturbation part H1 is dependent of the new angle variable λ1. The mass
ratio ε characterizes the strength of the perturbation, for instance, ε ' 0.001 for Jupiter
problem and ε ' 0.000051 for Neptune problem. According to the value of ε and the
distance between P and P1 we have the following situations:
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Figure 2: Illustration of application of Hamiltonian perturbation theory (see [5] for some analytical de-
scription). Note the red circle around P1 denotes close encounter region.

• If ε = 0 we have H = ‖p‖2
2 − 1

‖r‖ , which represents that P is attracted only by the
Sun. In this case we have the Kepler problem, which is integrable. The motion of P
can be computed by its initial condition.

• If 0 < ε << 1 and the asteroid P is far from the planet P1, we have that the
perturbation H1 is small. In this situation Hamiltonian perturbation theory can be
employed.

• If P is close to P1, H1 is not a perturbation: during the quasi-collision strong mod-
ifications to the Keplerian motion can occur in short time, which could lead to a
very large value of the perturbation. In such case the dynamics is difficult to pre-
dicted, classical perturbation theory fails, and numerical integration methods would
be unstable.

1.2 Mean motion resonances and quasi collisions

As we defined before, n1 = 2π
T1

is the mean motion of the planet P1, which is the orbital
frequency of its motion. Similarly, we could introduce also the orbital frequency T and the
mean motion n = 2π

T of the asteroid P . When the asteroid is in p : q resonance with the
planet if

T1

T
=
p

q
, p, q ∈ N,

where p and q are coprime positive integers. Equivalently, the resonance condition can be
expressed with the mean motions

n

n1
=
p

q
,

which is the so called p : q mean motion resonance.
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For the periodic solutions of the problem, we have the following equations

‖r1(t+ T1)‖ = ‖r1(t)‖, ∀t
‖r(t+ T )‖ = ‖r(t)‖, ∀t.

Therefore if for some t ∈ R, ‖r(t)‖ ' ‖r1(t)‖ we have a quasi-collision, and this quasi-
collision repeats after

∆t = qT1 = pT.(4)

In the Solar system we have orbits satisfying such resonance conditions. For instance, the
Asteroid 2024 YR24, which is in 1 : 4 resonance with the Earth, was deemed to have chance
of Earth impact in the near future.

Figure 3: Predicted motion of the Asteroid 2024 YR24. The yellow dot in the middle is the Sun, the blue
circle is the trajectory of the Earth, and the pink elliptical trajectory is the predicted orbit of the asteroid.
The asteroid and the Earth are predicted to have an close encounter on November 24th, 2032 (see the pink
dot and the blue dot).

Figure 4: Illustration of the orbital elements.
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2 Variables for representation of the Hamiltonian

To suitably represent the Hamiltonian we need to utilize suitable variables (for instance,
action-angle variables). Before introducing them, we first introducing some orbital vari-
ables, which are commonly used by mathematicians and astronomists (see [4]), to describe
the shape of the orbit and the position of the asteroid.

2.1 Orbital elements

In the left picture of Fig. 4 we show the basic elements to describe the shape of the orbit
and the position of the asteroid, which are called orbital elements:

• a: semi-major axis of the elliptic orbit of the asteroid;

• e: eccentricity of the elliptic orbit of the asteroid;

• f : true anomaly, the angle between the current position of asteroid and the pericenter
(or perihelion when the central body is the Sun);

• ω: argument of pericenter (or perihelion), the angle between the pericenter and the
reference x-axis, which indicates how the elliptic orbit of the asteroid is rotated in
the reference frame.

With these variables, according to the Kepler’s first law we have the following

‖r‖ =
a(1− e2)

1 + e cos(f)
,

which can be regarded as polar expression of the length of the radius vector. When f = 0,
we have ‖r‖ = a(1 − e) which means the asteroid is located at the pericenter. When
f = π, ‖r‖ = a(1 + e) which means the asteroid is located at the apocenter. Besides the
true anomaly f , two additional angles are frequently used to describe the motion, of which
one is called the eccentric anomaly E, corresponding to the position of the asteroid in the
auxiliary circle with radius equal to a, see the left picture of Fig. 4. There are several
equations describing their relation

sin f =
cosE − e

1− e cosE
, cos f =

√
1− e2 sinE

1− e cosE
,

tan
f

2
=

√
1 + e

1− e
tan

E

2
.

Note they are one-to-one correspondent.
To define the other angle we first recall the Kepler’s third law:

2π

T
=

1

a3/2
,
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where T is period of the elliptic orbit of the asteroid. The left-hand side is the frequency of
the orbit, also called mean motion of the asteroid, denoted by n. Then we could introduce
the other angle, called the mean anomaly M

M = n(t− t0),

where t is the time and t0 is the time of passage at pericenter. The relationship between
the eccentric anomaly and the mean anomaly is the Kepler equation:

M = E − e sinE.

2.2 Delaunay variables

The aforedefined orbital elements are not action-angle variables we need. However, we
could introduce the well-known Delaunay variables based on the orbital elements:

L =
√
a, l = M,

G =
√
a
√

1− e2, g = ω,

or, equivalently the modified Delaunay variables

Λ =
√
a, λ = l + g = M + ω

Φ = L−G =
√
a(1−

√
1− e2), ϕ = −g = −ω.

In our case we use the modified Delaunay variables, and the integrable part of the
Hamiltonian will be conjugated to

H0 = − 1

2Λ2
+ n1Λ1.

To calculate the perturbation part H1 with Delaunay variables one has to express orbital
elements with Delaunay variables and substitute them into the following expression of H1

H1 = −

(
1√

r2 + 1− 2r cos(ψ)
− r cos(ψ)

)
,

where ψ := (ω + f)− λ1 is the difference between the longitudes of P and P1.
Finally the original Hamiltonian is canonically conjugate to

H(Λ,Φ,Λ1, λ, ϕ, λ1) = − 1

2Λ2
+ n1Λ1 + εH1(Λ,Φ, λ, ϕ, λ1).

Note the unperturbed problem has 2 frequencies (or, 2 mean motions)

n1 =
∂H0

∂Λ1
,

n =
∂H0

∂Λ
=

1

Λ3
=

1

a3/2
.

We recall that p : q resonance is equivalent to
n

n1
=
p

q
.
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3 Hamiltonian Perturbation Theory

In the section we briefly introduce the Hamiltonian perturbation theory, since our purpose
is know the limit of the application of the Hamiltonian perturbation theory (see [4]) for
quasi-collision problems. A quasi-integrable Hamiltonian system is defined by the following
Hamiltonian function

H(I, φ) = H0(I) + εH1(I, φ)

where (I, φ) ∈ Ω × Tn ⊂ Rn × Tn are action angle variables (in previous section we
introduced the action-angle variables for the circular restricted three-body problem) and
ε ∈ R is a small parameter. The Hamilton’s equations are

φ̇ =
∂H
∂I

=
∂H0

∂I
+ ε

∂H1

∂I

İ = −∂H
∂φ

= −ε∂H1

∂φ
.

The Hamiltonian H is obtained by slightly perturbing the integrable Hamiltonian H0,
therefore the flow is correspondingly perturbed. The effect of perturbation on the flow is
studied by Hamiltonian perturbation theory (for instance, KAM theory and Nekhoroshev
theory). The purpose of Hamiltonian perturbation theory is to find a canonical transfor-
mation C : (J, ψ) → (I, φ) to conjugate the Hamiltonian to a more integrable one (this
process is also called averaging)

H̃(J, ψ) := H(C(J, ψ)).

Based on the problem we try to consider, there are two cases: non-resonant and resonant
cases. For non-resonant case, the canonical transformation could give us

H̃(J, ψ) := H̃0(J) + εH̃1(J) + ε2H̃2(J, ψ),

where H̃2, the new perturbation part, is of order O(ε2). If there exists k∗ ∈ Zn such that

k∗ ·
∂H̃0

∂J
= 0,

we say that the frequencies are resonant. For this case, the canonical transformation will
give us a different averaged Hamiltonian

H̃(J, ψ) := H̃0(J) + εH̃1(J, k∗ · ψ) + ε2H̃2(J, ψ),

from which one realize that some linear combination of angle variables cannot be elimi-
nated.

To construct the canonical transformation one need to find a suitable Hamiltonian
(called generating Hamiltonian or function), whose flow is and will be used as the canonical
transformation we are looking for. To see that we first define the Lie Series.
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3.1 Lie Series

The averaging process can be realized by Lie series operator associated to a generating
Hamiltonian χ. Be defining the Lie derivative LχF := {F, χ} and the exponential Lie
operator is defined as

exp (εLχ) =
∑
s≥0

εs

s!
Lsχ = id+ ε{·, χ}+

ε2

2
{{·, χ}, χ}+ ....

Then the Hamiltonian flow of χ(J, ψ) is expressed by

exp (εLχ) J(t) = J(t) + ε{J(t), χ}+
ε2

2
{{J(t), χ}, χ}+ ... = J(t+ ε),

exp (εLχ)ψ(t) = ψ(t) + ε{ψ(t), χ}+
ε2

2
{{ψ(t), χ}, χ}+ ... = ψ(t+ ε),

from which one could realized that the exponential Lie operator applied to the action-angle
variables (J, ψ) are just the expansion of the flow (J(t), ψ(t)) of the generating Hamiltonian
χ at time t = ε with (J, ψ) as the initial condition.

Instead of applying the canonical transformation directly to the variables, one could
just apply the Lie operator to the original Hamiltonian and replace the old variables with
the new variables.

Theorem 1 (Exchange theorem)

H(I, φ)

∣∣∣∣
I=exp(εLχ)J,φ=exp(εLχ)ψ

= exp (εLχ)H
∣∣∣∣
I=J,φ=ψ

.

Therefore the averaging process is simplified, and the averaged Hamiltonian has the
form

H̃ = exp (εLχ)H
= H0 + εH1 + ε{H0, χ}+O(ε2).

If we consider the non-resonant case, we would finally obtain the following expression

H̃(I, φ) = H0(I) + εc0(I) +O(ε2).

Define the frequency map ω0(I) := ∂H0
∂I we have the generating function χ defined by

χ(I, φ) =
∑
k∈Zn

dk(I) exp (ik · φ) ,with

{
d0 = 0,

dk(I) = −i ck(I)
k·ω0(I) ,

where ck are Fourier coefficients of H1

H1(I, φ) =
∑
k∈Zn

ck(I) exp (ik · φ) .
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As we mentioned before, if ∃k∗ ∈ Nn such that k∗ · ω0 ' 0, we have resonant frequen-
cies. In PCR3BP, frequencies are mean motions, correspondingly we have mean motion
resonance. The mean motion resonance would lead to small or zero divisors problem since
the generating Hamiltonian is defined by using k∗ · ∂H0

∂I as denominators. Therefore to find
the suitable generating Hamiltonian, we first define a resonant set

K = {k ∈ Zn : k · ω0 = 0} .

Correspondingly we have the generating Hamiltonian as follows

χ(I, φ) =
∑
k∈Zn

dk(I) exp (ik · φ) ,with

{
dk = 0, if k ∈ K
dk(I) = −i ck(I)

k·ω0(I) ,

and the averaged Hamiltonian is, for k∗ ∈ K,

H̃(I, φ) = H0(I) + ε
∑

n∈Z,k∗∈K
cnk∗(I) exp (i n(k∗ · φ)) +O(ε2).

4 Mean motion resonance dynamics in PCR3BP

Classical Fourier expansion of the perturbing function H1 in (modified) Delaunay variables
is

H1 =
∑

(k,m)∈Z2

ck,m(Λ,Φ) exp [i(kλ+ (k +m)ϕ+mλ1)] .

For p : q resonance, we introduce the following action angle variablesσν
θ

 =

 q q − p −p
−1 0 0
0 0 1

 λ
ϕ
λ1

 ,

SN
Θ

 =

 0 1 0
p− q q 0

p− q + 1 q − 1 1

 Λ
Φ
Λ1

 ,

where σ = qλ + (q − p)ϕ − pλ1 is called the resonant angle (which indeed is the linear
combination of angles variables in previous section, i.e. k∗ · φ). In these variables, the
integrable part is

H0 = − 1

2(qS −N)2
+ n1(−pS + Θ),

and the perturbation part would depend on the summation ν + θ

H1 = H1(S,N, σ, ν + θ).

Classical expansion fails if we have collisions. To represent the collision property we
would introduce the "singular set". First we consider the system of equations:

‖r‖ = ‖r1‖+ d,

ω + f = λ1 + α,
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Figure 5: Illustration of the crossing orbits.

when d = 0 and α = 0 a collision happens, and when the values of |d| and |α| are small we
observe close encounters. The solution expressed in resonant variables is(

σ
ν + θ

)
=

(
q −p
−1 1

)(
M i
∗(S,N, d)

f i∗(S,N, d)− α

)
,

where i = 1 means that tangent orbits occur; i = 2 we have crossing orbits. Since we are
going to study the resonant dynamics in σ − S plane, we define a set parameterized by d
and α:

Sd,α =
{

(S,N, σ) : σ = qM i
∗(S,N, d)− p(f i∗(S,N, d)− α), i = 1, 2

}
.

The set S0,0 is called "singular set". If (S,N, σ) ∈ S0,0 then there exists one value of ν + θ
corresponding to a collision of P with P1.

Figure 6: Illustration of the collision set for N = −1.06. The axes are x =
√

2S cosσ, y =
√

2S sinσ. The
red curve near the right equilibrium is the collision curve. The other red curve is the separatrix of the
equilibrium at σ = π.
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Fig. 6 illustrates the singular set projected into x− y plane for N = −1.06 > Nc. One
could clearly notice that the existence of the singular indeed generates a new stable region
around the equilibrium at σ = 0.

4.1 Resonant Norma Form Hamiltonian and its dynamics

Partially expanding H1 with respect to ν + θ, which is well defined for crossing orbits

H1 = c0(S,N, σ) +
∑
k≥1

ck(S,N, σ) cos(k(ν + θ)) +
∑
k≥1

sk(S,N, σ) sin(k(ν + θ))

with the generating function defined by

χ =
∑
k≥1

(bk sin(k(ν + θ)) + dk cos(k(ν + θ)))

where

bk =
ck

k
(
∂H0
∂N + ∂H0

∂Θ

) , dk = − sk

k
(
∂H0
∂N + ∂H0

∂Θ

)
The resonant normal form Hamiltonian is obtained by ignoring higher order terms

HRes(N,S, σ) = H0(S,N) + εHRes
1 (S,N, σ) = H0(S,N) + εc0(S,N, σ)

Clear for the averaged Hamiltonian HRes, N is a first integral

N =
√
a
[
p− q

√
1− e2

]
,

whose contour curves could be represented in a− e plane.

Figure 7: Contour curves of the first integral N .

For values of a and e satisfying

a(1− e) ≤ 1 ≤ a(1 + e),
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there is a collision region. Correspondingly there exists a critical value Nc, the blue curve
in the contour curves, such if N < Nc no collision shows (but close encounters are possible).
For 1 : 2 resonance, the critical value is Nc ' −1.08524....

From now on we would choose the following coordinates to represent the resonant
dynamics (see [6] for more examples and details)

x =
√

2S cosσ, y =
√

2S sinσ

Figure 8: The phase portrait and Fast Lyapunov Indicators (FLI, see [3]) for N = −1.24 for Jupiter
problem.

In Fig. 8 one can clearly see the resonant dynamics for N = −1.24. To compute the FLI
we first fix the value of N and ν+θ = π and select one point (σ, S) then we could integrate
the regularized equations of motion and obtain the value of FLI. We could also notice
that the FLI representation of separatrices (yewllow curve inside the resonant region) is in
accordance with resonant phase portraits.

Figure 9: The phase portrait and Fast Lyapunov Indicators (FLI) for N = −1.20 for Jupiter problem.
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As N = −1.20 increase a little bit, we notice similar resonant dynamics in the resonant
phase portraits but the outer separatrix becomes chaotic.

As N increases to a value larger than Nc we have singular set in the phase portrait.

Figure 10: The phase portrait and an orbit for N = −0.85 for Jupiter problem.

As N = −0.85 we have resonant dynamics with singular set, which seems generating a
new stable region around σ = 0. Besides, an orbit is also projected into (σ, S) plane, whose
averaged and non-averaged values of N are also depicted in the right figure, from which
one could clearly see that averaging works when the orbit is far away from the singular set
and the dynamics is difficult to predict when the orbit is close to the singular set.

In the following we also show some results for Neptune mass ratio ε = 0.000051....

Figure 11: Resonant phase portrait in (σ, S) plane for N = −1.24 (left) and N = −0.85 (right) for Neptune
problem.

From Fig. 11, one can see that the dynamics of resonant normal form Hamiltonian are
similar with Jupiter cases: for N = −1.24 < Nc we have very regular dynamics and if
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N = −0.85 > Nc there are singular set.

Figure 12: Representation of FLI values in (σ, S) plane and projection of regular and chaotic orbits for
N = −0.85.

In Fig. 12, with FLI we could identify the regular and chaotic regions. Besides, we
could clearly notice that when the initial condition of the orbit is close to the boundary
of the regular region, the close encounters effect would accumulate and the orbit would
gradually become chaotic.
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Lavrentiev Phenomenon and semicontinuous
envelope for integral functionals

Tommaso Bertin (∗)

In these notes we present recent results concerning the non-occurrence of the Lavren-
tiev Phenomenon for integral functionals with Lagrangians that are non-convex and non-
continuous with respect to the last variable. This problem has been studied for decades,
with significant progress made in recent years.

To avoid the Lavrentiev Phenomenon, we examine the integral representation of the
lower semicontinuous envelope, allowing us to apply results from the literature regarding
convex Lagrangians.

Before defining the Lavrentiev Phenomenon, we first introduce some basic concepts
from the Calculus of Variations. The initial definitions concern special continuity and
compactness notions.

Definition 1 A function F : X → R is sequentially continuous if

lim
n
xn = x⇒ lim

n
F (xn) = F (x) .

Definition 2 A topological space X is sequentially compact if every sequence xn has a
convergent subsequence.

The classical notions of continuity and compactness imply the sequential ones. The
reverse is true if X has a countable basis of open sets at every point.

We recall a sequential version of a classical result: the Weierstrass Theorem.

Theorem 3 If X is sequentially compact and F : X → R is sequentially continuous then
F attains maximum and minimum on X.

This fundamental theorem has profound implications in the Calculus of Variations. In
fact, it involves two concepts, continuity and compactness, that, in a certain sense, are in
competition with each other. If the topology of X is rich (meaning there are many open
sets), there are more continuous functions but fewer compact sets. On the other hand, if

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 2 April 2025.
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the topology is poor, there are fewer continuous functions but more compact sets. Our goal
is now to find a suitable topology that preserves a sufficiently large family of continuous
functions while still ensuring an adequate family of compact sets.

We observe that if F is continuous then for every Y ⊂ X such that Y = X

inf
Y
F = inf

X
F, sup

Y
F = sup

X
F .

In the Calculus of Variations, the focus is on the study of minima. Therefore, we do
not require the continuity of F , but rather only its lower semicontinuity.

Definition 4 A function F : X → R is lower sequentially semicontinuous if

lim
n
xn = x⇒ F (x) ≤ lim inf

n
F (xn)

where
lim inf

n
an = sup

n
inf
m≥n

am .

Theorem 5 If X is sequentially compact and F : X → R is lower sequentially semicon-
tinuous then F attains minimum on X.

We note that in this case we can only say that if Y ⊂ X then

inf
Y
F ≥ inf

X
F .

So far, we have considered a generic topological space X. Now, given Ω ⊂ RN , let us
introduce some classical spaces commonly used in the Calculus of Variations.

Definition 6 A function u ∈ LP (Ω), with p ∈ [1,+∞[, if∫
Ω
|u(x)|pdx < +∞ .

A function u ∈ L∞(Ω) if
esssupΩ|u|< +∞ .

These spaces, equipped with the standard topology induced by the norm, have a limita-
tion: they contain few compact sets. For example, the unit ball is not compact. To obtain
more compact sets while preserving a large family of continuous functions, we introduce
the concept of the weak topology.

Definition 7 A sequence un ⇀ u in Lp(Ω) if for every v ∈ Lp′(Ω) with p′ = p
p−1∫

Ω
un(x)v(x)dx→

∫
Ω
u(x)v(x)dx .
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A sequence un ⇀∗ u in L∞(Ω) if for every v ∈ L1(Ω)∫
Ω
un(x)v(x)dx→

∫
Ω
u(x)v(x)dx .

We also need a notion of derivative. In particular, we require the validity of the
integration by parts formula. To address this, we introduce the definition of Sobolev
spaces.

Definition 8 A function u ∈ W 1,p(Ω) if u ∈ Lp(Ω) and for every 1 ≤ α ≤ n there exists
∂αu ∈ Lp(Ω) such that for every ϕ ∈ C∞C (Ω)∫

Ω
∂αu(x)ϕ(x)dx = −

∫
Ω
u(x)∂αϕ(x)dx .

For these spaces, we can also introduce the concept of weak convergence.

Definition 9 A sequence un ⇀ u in W 1,p(Ω) if un ⇀ u in Lp(Ω) and ∂αun ⇀ ∂αu in
Lp(Ω) for every 1 ≤ α ≤ n.
A sequence un ⇀∗ u in W 1,∞(Ω) if un ⇀∗ u in L∞(Ω) and ∂αun ⇀∗ ∂αu in L∞(Ω) for
every 1 ≤ α ≤ n.

Now we are ready to state one of the main theorems in the Calculus of Variations.

Theorem 10 Let Ω ⊂ RN be bounded Lip open, f : Ω× R× RN → R+, C2, convex with
respect to the last variable and with a ∈ L1(Ω) and b > 0 such that

f(x, u, ξ) ≥ b‖ξ‖+a(x) .

Then the functional

F (u) :=

∫
Ω
f(x, u(x),∇u(x))dx

is weakly lower semicontinuous in W 1,1(Ω).

The idea of a connection between the weak lower semicontinuity of F and the convexity
of the Lagrangian with respect to its last variable originates from Tonelli.

This theorem is particularly useful for studying the existence of minimizers. Indeed,
if the functional is also coercive (meaning if its sublevel sets are bounded) then any mini-
mizing sequence, possibly after extracting a subsequence, converges to a limit, which is a
minimizer. However, starting from a regular sequence, we obtain no information about the
regularity of the minimizer. Moreover, it may happen that the value of the minimizer is
strictly less than the lim inf of the functional values along the minimizing sequence. This
situation is known as the Lavrentiev Phenomenon.

Definition 11 Let be Y ⊂ X, Y = X and F : X → R we say the Lavrentiev Phenomenon
occurs if

inf
Y
F > inf

X
F .
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In our case X = W 1,1(Ω) and Y = W 1,∞(Ω).
This phenomenon can occur even with regular Lagrangians; for instance, Manià showed

in [12] that

(0.2) min
id+W 1,1

0 ([0,1])

∫ 1

0
(x− u3(x))2|u′(x)|6 dx

< inf
id+W 1,∞

0 ([0,1])

∫ 1

0
(x− u3(x))2|u′(x)|6 dx .

In [15], Zhikov presented another example involving a Lagrangian that depends only on
the gradient and the spatial variable. Considering

f(x, ξ) = |ξ|p+a(x)|ξ|q a(x) :=


x1x2√
x21+x22

x1x2 > 0

0 x1x2 ≤ 0

where Ω = B1(0) ⊂ R2, 1 ≤ p < 2 < 3 < q; there is a boundary condition ϕ such that

inf
W 1,p
ϕ (Ω)

∫
Ω
f(x,∇u(x))dx < inf

W 1,q
ϕ (Ω)

∫
Ω
f(x,∇u(x))dx .

Up to this point, we have focused on the minimizer. In [8], Buttazzo and Mizel pro-
posed interpreting the Lavrentiev Phenomenon as a problem involving relaxed functionals,
introducing the concept of the Lavrentiev gap.

Definition 12 If F is sequential lower semicontinuous on X we define

FY (u) :=

{
F (u) in Y
+∞ in X \ Y

and
scFY := sup{G l.s.c. on X|G ≤ F on Y } .

We define the Lavrentiev gap as

L(u) = scFY (u)− F (u) .

In our case
F (u) :=

∫
Ω
f(x, u(x),∇u(x))dx

scFY (u) = inf
{

lim inf

∫
Ω
f(x, un(x),∇un(x)dx

∣∣∣un ⇀ u in W 1,1(Ω)
}
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with u ∈W 1,1(Ω) and un ∈W 1,∞(Ω).
Clearly, if L(u) = 0 for every u ∈ W 1,1(Ω), then the Lavrentiev Phenomenon does not
occur.

We now present some results in which L(u) ≡ 0 , and consequently, the Lavrentiev
Phenomenon does not occur.

The first theorem, due to Alberti and Serra Cassano ([1]), concerns the one-dimensional
autonomous case. Note that the approximating sequence may not preserve the boundary
data.

Theorem 13 Assume for every r > 0 there exists c > 0 such that f : RM×RM → R∪{+∞}
is bounded on Br ×Bc.
Then, ∀p ∈ [1,∞[ and ∀u ∈W 1,p(I,RM ) ∃un ∈W 1,∞(I,RM ) such that

‖un − u‖W 1,p→ 0∫
Ω
f(un(x), Dun(x))dx→

∫
Ω
f(u(x), Du(x))dx .

This result was generalized by Mariconda in [14] to the non autonomous case with
arbitrary boundary values, under the following condition:
For every K there are k, β ≥ 0, γ ∈ L1(I), ε∗ > 0 such that ∀x ∈ I

|f(x2, u, ξ)− f(x1, u, ξ)|≤ (kf(x, u, ξ) + β|ξ|p+γ(x))|x2 − x1|

ε∗ > 0 for x1, x2 ∈ [x− ε∗, x+ ε∗] ∩ I, u ∈ BK , ξ ∈ Rn.
In this paper the approximating sequence preserves the boundary datum.

We now turn our attention to the multidimensional scalar case and present a recent
result by Bousquet, published in 2023 ([4]).

Theorem 14 Let Ω ⊂ RN be bounded Lipschitz open, f : R × RN → R be continuous in
both variable and convex w.r.t. the last variable and ϕ ∈W 1,∞(Ω). Then ∀u ∈ ϕ+W 1,1

0 (Ω)

∃un ∈ ϕ+W 1,∞
0 (Ω) such that

un → u in W 1,1(Ω)

lim
n

∫
Ω
f(un(x),∇u(x))dx =

∫
Ω
f(u(x),∇u(x))dx .

If f is not convex with respect to the last variable, we can consider the so-called bipolar
f∗∗. Actually, the bipolar in the sense of the convex analysis is the greatest function convex
and lower semicontinuous with respect to the last variable lower or equal than f . We can
express f∗∗ as

f∗∗(x, u, ξ) = sup{h(ξ) affine |h(ξ) ≤ f(x, u, ξ) ∀ξ ∈ Rn}
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or

f∗∗(x, u, ξ) = inf
{ n+1∑
i=1

αif(x, u, ξi)
∣∣∣ n+1∑
i=1

αiξi = ξ
}

where 0 ≤ αi ≤ 1,
∑n+1

i=1 αi = 1 .
To apply the result by Bousquet, we now study an integral representation formula for

semicontinuous envelopes. Specifically, we seek conditions under which

(0.3) inf
{

lim inf

∫
Ω
f(x, un(x),∇un(x)dx

∣∣∣un ⇀∗ u}
=

∫
Ω
f∗∗(x, u(x),∇u(x))dx .

The first results were obtained by Ekeland and Temam ([10]) and Marcellini and Sbordone
([13]), assuming continuity with respect to (u, ξ).
Further developments were made by Buttazzo, Dal Maso, De Giorgi, and Leaci ([6], [7],
[9], [5]) during the 1980s and 1990s. Many of these works focus on relaxing the continuity
assumption with respect to u.

Our contribution is to avoid the continuity assumption with respect to ξ, under a
suitable set of conditions.

Hypothesis 15 The function f(x, u, ξ) : Ω× R× RN → R satisfies

a) f(x, u, ξ) : Ω× R× RN → R is a borelian function;

b) ∀B ⊂ R× RN bounded ∃a ∈ L1(Ω) such that |f(x, u, ξ)|≤ a(x) ∀(u, ξ) ∈ B,

c) ∀u ∈W 1,∞(Ω), ∀B̃ ⊂ RN bounded and ∀δ > 0 ∃T ⊂ Ω compact such that |Ω\T |< δ
and f(x, u(x), ξ) is continuous w.r.t. x ∈ T uniformly as ξ varies in B̃,

d) for almost every x the function f(x, u, ξ) is continuous w.r.t. u uniformly as ξ varies
in bounded sets.

Assumption b) ensures the integrability of the Lagrangian. Assumption c) is a uniform
version of Lusin’s Theorem, which allows us to avoid requiring continuity with respect to
ξ.

We are now ready to present our main result:

Theorem 16 Let Ω be an open bounded Lipschitz subset of RN and let f : Ω×R×RN → R
satisfy Hypothesis 15. For every u ∈ W 1,∞(Ω) exists a sequence un ∈ u + W 1,∞

0 (Ω) such
that

lim
n→∞

‖un − u‖∞= 0

and
lim
n→∞

∫
Ω
f(x, un(x),∇un(x))dx =

∫
Ω
f∗∗(x, u(x),∇u(x))dx .

Furthermore
sc(FW 1,∞)(u) =

∫
Ω
f∗∗(x, u(x),∇u(x))dx .
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This theorem can be used to investigate the relationship between the occurrence of
the Lavrentiev Phenomenon for integral functionals with non-convex Lagrangians and its
non-occurrence for the corresponding relaxed functionals.

Theorem 17 Let Ω ⊂ RN be bounded Lip open, f : Ω×R×RN → R satisfy Hypothesis 15,
ϕ ∈W 1,∞(Ω) and 1 ≤ p < +∞. If

inf
ϕ+W 1,p

0 (Ω)

∫
Ω
f∗∗(x, u(x),∇u(x))dx = inf

ϕ+W 1,∞
0 (Ω)

∫
Ω
f∗∗(x, u(x),∇u(x))dx

then
inf

ϕ+W 1,p
0 (Ω)

∫
Ω
f(x, u(x),∇u(x))dx = inf

ϕ+W 1,∞
0 (Ω)

∫
Ω
f(x, u(x),∇u(x))dx .

We can now apply this result to Bousquet’s work in the autonomous case, under a
simplified set of assumptions.

Hypothesis 18 The function f : R× RN → R satisfies

(a) f(u, ξ) : R× RN → R is borelian,

(b) f(u, ξ) is continuous w.r.t. u uniformly as ξ varies on each bounded set of RN ,

(c) f(u, ·) is bounded on bounded sets of RN for every u ∈ R.

Under these assumptions, we can state the following theorem concerning the absence of
Lavrentiev gap, and thus non occurrence of the Lavrentiev Phenomenon, betweenW 1,1(Ω)
and W 1,∞(Ω) in the autonomous multidimensional scalar case.

Theorem 19 Let Ω ⊂ RN be bounded Lipschitz open, ϕ ∈ W 1,∞(Ω), f : R × RN → R+

satisfy Hypothesis 18, be uniformly superlinear and f∗∗ be continuous.
Then for every u ∈ ϕ+W 1,1

0 (Ω)

sc(FW 1,∞)(u) =

∫
Ω
f∗∗(u(x),∇u(x))dx

where sc(FW 1,∞) is the lower semicontinuous envelope of

FW 1,∞(u) =

{∫
Ω f(u(x),∇u(x))dx if u ∈ ϕ+W 1,∞

0 (Ω)

+∞ if u ∈ ϕ+W 1,1
0 (Ω) \W 1,∞

0 (Ω)

with respect to the weak topology of W 1,1(Ω).
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Let’s play symplectic billiards!

Alessandra Nardi (∗)

Abstract. In these notes, we will provide an overview of mathematical billiards, with a particular
focus on symplectic billiards. The goal is to present some recent integrability and spectral rigidity
results for this recent class of dynamical systems.

1 Birkhoff billiards

A mathematical billiard consists of a planar domain Ω ⊂ R2 (billiard table) and a point
mass (billiard ball) moving freely inside Ω, without friction and following a rectilinear path.
For our aim, we assume Ω to be strictly convex.
The usual billiards are the so-called Birkhoff billiards in which the law of motion is precisely
the standard reflection law –see Figure 1– that is

angle of incidence = angle of reflection

Figure 1: The Birkhoff billiard map.

The billiard map is

f : ∂Ω× (0, π)→ ∂Ω× (0, π)

(p, ϕ) 7→ (p′, ϕ′).
(1.1)

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
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Given a parametrization γ : S1 := R/2πZ→ ∂Ω, sending t 7→ γ(t), we can write

p = γ(t), r := − cosϕ,

p′ = γ(t′), r′ := − cosϕ′

and rewrite the map (1.1) as

f : S1 × (−1, 1) =: A→ A

(t, r) 7→ (t′, r′).

Such a map admits a generating function:

(1.2) L(t, t′) := ‖γ(t)− γ(t′)‖,

in fact r′dt′ − rdt = dL(t, t′).

Example 1.1 Let ∂Ω be a circle. In such a case, the angle is constant along the motion,
and this implies that the phase space A admits a continuous foliation into continuous
closed invariant curves that are not null-homotopic (see Figure 2). The existence of such
a foliation gives precisely what is called a totally integrable billiard table.

Figure 2: Phase portrait of the Birkhoff billiard map in the circle.

Example 1.2 Let ∂Ω be an ellipse. In such a case, the phase portrait is well-known in
literature (see, e.g., [8]) and is represented in Figure 3. The phase cylinder A admits a
continuous foliation into closed invariant curves. The existence of such a foliation gives
precisely what is called an integrable billiard table. We stress that in this case, we don’t
ask for the non-null-homotopic assumption.

Figure 3: Phase portrait of the Birkhoff billiard map in the ellipse.
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The main open problem in this field is the following conjecture, due to Birkhoff [7].

Conjecture 1.3 (Birkhoff) The only integrable billiard tables are circles and ellipses.

The conjecture remains open; however, there are many interesting results in this direc-
tion, including local and perturbative ones. We will mention two of them: the first is due
to M. Bialy [5], while the second is quite recent and is a joint work of M. Bialy and A.
Mironov [6].

Theorem 1.4 (M. Bialy, 1993) The only totally integrable Birkhoff billiard tables are
circles.

Theorem 1.5 (M. Bialy and A. Mironov, 2022) Let Ω be a centrally symmetric C2 strongly-
convex domain with boundary ∂Ω. Assume that the Birkhoff billiard map of ∂Ω has a (sim-
ple) continuous invariant curve of rotation number 1/4 (winding once around the phase-
space) and consisting only of 4-periodic orbits. Moreover, suppose that the domain between
this invariant curve and the lower boundary of the phase-space cylinder is entirely foliated
by continuous closed invariant curves that are not null-homotopic. Then ∂Ω is an ellipse

2 Symplectic billiards

In 2018, P. Albers and S. Tabachnikov [1] introduced a new class of billiards with the intent
of constructing a billiard dynamics having the area as generating function, instead of the
length (see (1.2)).

Consider Ω ⊂ R2 a strictly convex domain whose boundary is positively oriented counter-
clockwise, and assume the origin O to be in the interior of Ω. Since Ω is strictly convex,
for every x ∈ ∂Ω there exists a unique point x∗ ∈ ∂Ω such that Tx∂Ω = Tx∗∂Ω, that is,
whose tangent line to the boundary of Ω is parallel to that of x. The symplectic billiard
map is defined as

T : P −→ P, (x, y) 7→ (y, z) ⇐⇒ x− z ∈ Ty∂Ω

where P = {(x, y) ∈ ∂Ω × ∂Ω : x < y < x∗}, according to the orientation chosen, see
Figure 4.

y

O

xz

Figure 4: The symplectic billiard map.
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Let ω be the standard area form, ω(x, y) := det(x, y). This turns out to be a generating
function for the symplectic billiard map, in fact

0 =
d

dy

[
ω(x, y) + ω(y, z)

]
⇐⇒ det(x, v) + det(v, z) = 0 v ∈ Ty∂Ω

⇐⇒ det(x− z, v) = 0

⇐⇒ T (x, y) = (y, z).

Note also that ω(x, y) is precisely twice the area of the triangle xOy.
By means of a parametrization γ : S1 → ∂Ω, t 7→ γ(t), we can define the variables{

s1 = −∂ω(t1,t2)
∂t1

s2 = ∂ω(t1,t2)
∂t2

.

Then (t1, s1) turns out to be coordinates on P, and we can look at the symplectic billiard
map on the corresponding annulus, T (t1, s1) = (t2, s2).

Remark 2.1 The symplectic billiard dynamics is invariant up to affine transformations
of the plane. This occurs because the parallelism condition is invariant under affinities.

Example 2.2 Again, the easiest example to consider is circles. The symplectic billiard
map acts as follows:

T (x, y) = (y, z) ⇐⇒ x− z ∈ Ty∂Ω.

By a simple proof of synthetic geometry, this occurs if and only if the angle of incidence is
equal to the angle of reflection, see Figure 5.

y

O

xz

Figure 5: The symplectic billiard map in the circles.

This means that in circles

Birkhoff billiard dynamics = Symplectic billiard dynamics
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and, in particular, that circular symplectic billiard tables are totally integrable. Moreover,
by Remark 2.1, the invariance of the symplectic billiard map up to affinities directly implies
that elliptic symplectic billiard tables are totally integrable.

Such an example leads to a natural question: are ellipses the only totally integrable
billiard tables?
The answer was given by L. Baracco and O. Bernardi in [2].

Theorem 2.3 (L. Baracco, O. Bernardi, 2024) The only totally integrable symplectic bil-
liards are ellipses.

The further question is: what happens if we ask for less restrictive hypotheses, i.e., if
we assume the foliation for a smaller part of the phase space?
In this direction, in a joint work with L. Baracco and O. Bernardi [3], we were able to
obtain the analogue of the Bialy-Mironov result.

Theorem 2.4 (L.B, O.B., A.N., 2024) Let Ω be a centrally symmetric C2 strongly-convex
domain with boundary ∂Ω. Assume that the symplectic billiard map T : P → P of ∂Ω
has a (simple) continuous invariant curve δ ⊂ P of rotation number 1/4 (winding once
around ∂Ω) and consisting only of 4-periodic orbits. If one of the parts between δ and
each boundary of the phase-space P is entirely foliated by continuous invariant closed (not
null-homotopic) curves, then ∂Ω is an ellipse.

These are rigidity results, because asking for the foliations as in the hypotheses of both
previous theorems, fixes the domain to be an ellipse. Another way to look for rigidity is
by means of the area spectrum.

Let {xj}qj=0 be a periodic trajectory for the symplectic billiard map, that is T (xj−1, xj) =
(xj , xj+1) for every j = 1, . . . q − 1, and x0 = xq. Its action is defined as

q−1∑
j=0

ω(xj , xj+1)

and if the orbit winds once around the boundary ∂Ω, it is precisely twice the area of the
polygon of vertices {xj}q−1

j=0. The area spectrum is defined as

A(Ω) = N{action of all closed trajectories of Φ} ∪ N{AΩ},

where AΩ is the area of Ω. It is now clear that, from Remark 2.1, given two strictly convex
domains Ω and Ω′ with the same area, if the corresponding symplectic billiard maps TΩ

and TΩ′ are conjugated by an equi-affine transformation of the plane (that is affine unitary
map of R2), then A(Ω) = A(Ω′).

Then a natural question arises: is it true that if A(Ω) = A(Ω′), then Ω and Ω′ are
necessarily equi-affine?
A partial answer to this question was given in a joint work with L. Baracco and O. Bernardi,
[4], for two different classes of domains.
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Theorem 2.5 (L.B., O.B., A.N., 2024) Let M be the set of strictly convex domains with
sufficiently (finitely) smooth boundary, everywhere positive curvature, axial symmetry, and
sufficiently close to an ellipse. Then any Ω,Ω′ ∈ M with the same area spectrum are
necessarily equi-affine.

Theorem 2.5 (L.B., O.B., A.N., 2024) Let M be the set of strictly convex domains with
sufficiently (finitely) smooth boundary, everywhere positive curvature, central symmetry,
sufficiently close to an ellipse, and even-rationally integrable. Then any Ω,Ω′ ∈ M with
the same area spectrum are necessarily equi-affine.
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Inductive Methods in the Representation
Theory of Finite Groups of Lie Type:

An Introduction via GLn(q)

Elena Collacciani (∗)

Abstract. These notes aim to offer a glimpse into the techniques used to construct and classify
irreducible representations of finite groups of Lie type. To convey the core ideas while avoiding
heavy technicalities, we focus on the case of the General Linear group over a finite field.

The main goal of this note is to give an introduction to some of the main ideas under-
lying the representation theory of finite groups of Lie type.

In order to explore the fundamental ideas avoiding heavy technicalities, we will actually
focus on just one family of finite groups of Lie type, namely the one of finite general linear
groups (see Example 3). We aim to privilege intuition over rigorousness, and therefore
plenty of space will be devoted to concrete examples, while we will often hide the abstract
definition of the objects involved. Nevertheless, the main ideas and techniques developed
here are the same ones underlying the general case. In particular, we place special emphasis
on the role of inductive methods - a fundamental paradigm in representation theory - which
allow to reduce complex algebraic problems to more manageable combinatorial ones.

The interested reader can refer to [6, 2, 1] for rigorous and self-contained expositions
on the subject.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 8 May 2025.
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1 Preliminaries

We give a quick recollection about the basic objects involved in these notes, with no claim
of being exhaustive.

1.1 Groups

Definition 1.1 A group is a set G endowed with a binary operation

− · − : G×G→ G

(g1, g2) 7→ g1 · g2

satisfying the following properties:

• associative: for any g1, g2, g3 ∈ G it holds (g1 · g2) · g3 = g1 · (g2 · g3)

• existence of the neutral element: there exists an element id ∈ G such that id · g =
g = g · id for any g ∈ G

• existence of the inverses: for any g ∈ G there exists an element h ∈ G such that
h · g = e = g · h. We denote such h by g−1.

A group is finite if |G|<∞.
A group is abelian if it satisfies the following additional property:

• for any g1, g2 ∈ G it holds g1 · g2 = g2 · g1.

Example 1 For any n ∈ N, let [1, n] := {i ∈ N|1 ≤ i ≤ n}. Then

Sn = {σ : [1, n]→ [1, n] | σ is bijective}

endowed with the composition of maps is a finite group, called the symmetric group of n
elements. The group S1, S2 is commutative, while Sn is not commutative for any n > 2.

A subgroup H ≤ G of G is a subset of G containing the neutral element and such that
the group operation (− · −) of G restricted to H ×H lands in H.

Given a group G, we say that a subset S generates G if any element of G can be
expressed as a product of elements contained in S and their inverses. We write G = 〈S|R〉,
and say that 〈S|R〉 is a presentation for G, if S is a set of generators for G and R is a
complete set of relations to which the generators in S are subject. Formally, 〈S|R〉 is a
presentation for G if G is isomorphic to the quotient of the free group over S by the normal
subgroup generated by R.

Definition 2 Let H,G be groups. A group homomorphism is a map f : H → G mapping
the neutral element of H to the neutral element of G and respecting the group operations,
i.e. satisfying f(h1 · h2) = f(h1) · f(h2) for any h1, h2 ∈ H.
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1.2 Finite fields

Definition 3 A field is a set F endowed with two binary operations

−+− : F× F→ F

(f1, f2) 7→ f1 + f2

− · − : F× F→ F

(f1, f2) 7→ f1 · f2

satisfying the following properties:

• The set F endowed with the operation + is an abelian group. The identity element
with respect to + is called 0;

• The set F∗ = Fr{0} endowed with the operation · is an abelian group. The identity
element element with respect to · is called 1;

• Distributivity: for any for any f1, f2, f3 ∈ F it holds (f1 + f2) · f3 = f1 · f3 + f2 · f3.

Theorem 1.1 Let p be a prime number, let e ∈ N, let q = pe. There exists a field Fq such
that |Fq|= q, and it is unique up to field isomorphism.

Example 2 If e = 1, i.e. q = p, the field of p elements Fp can be described as

Fp = {0, 1, . . . , p− 1}

with operations given by the usual sum and product on integers reduced modulo p.

1.3 Finite groups of Lie type

For the sake of completeness, we give in this section a formal definition of "finite groups of
Lie type" and present some examples, in order to give a sense of the range of applicability
of the techniques (appropriately generalized) presented here. This definition requires more
background in algebra than the one we are able to present in these notes. The reader not
familiar with it can read Example 3 and skip ahead: the understanding of the remaining
part is independent of this section.

Definition 4 An affine algebraic group G over Fp, the algebraic closure of Fp, is an affine
variety over Fp endowed with a group structure, such that the multiplication map (− · −)
and the inversion map defined by the assignment g 7→ g−1 are morphisms.
The affine algebraic group G is said to be reductive if it has a trivial unipotent radical, i.e.
it does not contain non-trivial closed connected normal subgroups consisting of unipotent
elements.

Definition 5 An affine algebraic group G over Fp has an Fq-rational structure, for some
power q of p, if there exist:
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• an affine variety X ⊆ Fq
n and an isomorphism of affine varieties ι : X → G;

• an algebraic group endomorphism Fq : G→ G such that

Fq ◦ ι(x1, . . . , xn) = ι(xq1, . . . , x
q
n)

for any (x1, . . . xn).

The algebraic group endomorphism Fq is called Frobenius morphism for G.
An endomorphism F : G→ G is said to be a Steinberg map if there exists an m ∈ N such
that Fm is a Frobenius map with respect to some Fq-rational structure.

Definition 6 Let G be an affine algebraic group that is connected. Let F be a Steinberg
map for G. Then

GF := {g ∈ G | g = F (g)}

is called a finite group of Lie type.

Example 3 We give some examples of finite groups of Lie type. Let n ∈ N.

• Finite general linear group: the group

GLn(q) = {A ∈Mn(Fq) | det(A) ∈ F∗q}

of invertible n× n matrices with entries in the finite field Fq.

• Finite special linear group: the group

SLn(q) = {A ∈Mn(Fq) | det(A) = 1}

of n× n matrices with entries in the finite field Fq and determinant 1.

• Finite special orthogonal group: the group

SOn(q) = {A ∈Mn(Fq) | ATA = I, det(A) = 1}

of n× n matrices with entries in the finite field Fq and determinant 1 preserving the
standard inner product on Fnq .

2 Standard representation theory of finite groups

Through all this section, G is a finite group.

Definition 7 A (complex) representation of G is a pair (π, V ) where

• V is a complex vector space

• π : G → GL(V ) is a group homomorphism from G to the group of linear transfor-
mations of G
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Example 4 For any finite group G, there is a one-dimensional representation (1,C), called
trivial, given by

1 : G→ GL1(C) = C∗

g 7→ 1

Example 5 Let G = GL2(2). Then

G =

{(
1 0
0 1

)
,

(
0 1
1 0

)(
1 1
0 1

)
,

(
1 1
1 0

)(
0 1
1 1

)(
1 0
1 1

)}
Set

s :=

(
0 1
1 0

)
t :=

(
1 1
0 1

)
Then it can be easily checked that G = 〈s, t|s2 = 1, t2 = 1, sts = tst〉 A representation of
G = GL2(2) is (Stnd,C3) given by

Stnd : GL2(2)→ GL(C3)

s 7→
(

0 1 0
1 0 0
0 0 1

)
t 7→

(
1 0 0
0 0 1
0 1 0

)
extended to be a group morphism. This is well-defined since

Stnd(s))2 = 1

Stnd(t))2 = 1

Stnd(tst) = Stnd(t)Stnd(s)Stnd(t) =
(

0 0 1
0 1 0
1 0 0

)
= Stnd(s)Stnd(t)Stnd(s) = Stnd(sts).

Definition 8 Let (π, V ), (π′, V ′) be representations of G. A morphism of representations
is a linear map T : V → V ′ such that for any g ∈ G it holds T ◦ π(g) = π′(g) ◦ T . We
denote by HomG(π, π′) the set of all the morphisms from (π, V ) to (π′, V ′). A morphism
of representations T is an isomorphism if it is bijective.

From now on, we will often consider representations up to isomorphism, identifying
isomorphic ones.

Definition 9 Let (π, V ) be a representation of G. Then a representation (π′, V ′) is a
subrepresentation of (π, V ) if

• V ′ is a linear subspace of V such that for any g ∈ G, it holds π(g)V ′ = V ′

• for any g ∈ G, it holds π′(g) = π(g)|GL(V ′)
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Example 6 Assume the same notations as in Example 5. The representation (Stnd,C3)
has a subrepresentation isomorphic to (1,C). Indeed, we realize C as a subspace of C3 =
〈e1, e2, e3〉C as V ′ = 〈e1 + e2 + e3〉C = {(x, x, x)|x ∈ C} ⊂ C3 by

ι : C ↪→ C3

x 7→ (x, x, x)

Then for any x ∈ C

Stnd(s)ι(x) = Stnd(s)(x, x, x) = (x, x, x) = ι(1(s)(x))

Stnd(t)ι(x) = Stnd(t)(x, x, x) = (x, x, x) = ι(1(t)(x))

Theorem 2.1 Let (π, V ) be a representation of G, and let (π1, V1) be subrepresentation
of (π, V ). Then there exists a subrepresentation (π2, V2) of (π, V ) such that V = V1 ⊕ V2,
and it is unique up to isomorphism.

In the notation of Theorem 2.1, we call the representation (π2, V2) the complement of
(π1, V1) in (π, V ), and we write (π, V ) = (π1, V1) ⊕ (π2, V2) or sometimes, omitting the
vector spaces, π = π1 ⊕ π2.

Example 7 Assume notation from Example 5. We saw in Example 6 that (1, 〈e1, e2, e3〉C)
is a subrepresentation of (Stnd,C3). Its complement is given by the subspace V2 = 〈e1 −
e3, e2 − e3〉C. It is G stable, so it defines a subrepresentation:

Stnd(s)(e1 − e3) = e2 − e3 ∈ V2 Stnd(s)(e2 − e3) = e1 − e3 ∈ V2

Stnd(t)(e1 − e3) = e1 − e2 = (e1 − e3)− (e2 − e3) ∈ V2 Stnd(s)(e2 − e3) = e3 − e2 = e2 − e3 ∈ V2

and it holds C3 = 〈e1, e2, e3〉C ⊕ 〈e1 − e3, e2 − e3〉C.
So considering the inclusion of C2 as a subspace of C3 by

ι : C2 → C3

e1 7→ e1 − e3

e2 7→ e2 − e3,

we have that the complement in (Stnd,C3) of the subrepresentation (1,C) is (isomorphic
to) the Steinberg representation , that is the representation (St,C2) defined by

St : G→ GL(C2)

s 7→ ( 0 1
1 0 )

t 7→
(

1 0
−1 −1

)
Definition 10 A representation of G is said to be irreducible if it has no non-trivial proper
subrepresentations. We write

Irr(G) := {irreducible representations of G}�∼
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where ∼ is the equivalence relation given by isomorphism of representations.

Example 8

• Any one dimensional representation is irreducible. In particular, the trivial represen-
tation (1,C) is irreducible.

• Let G = GL2(2). The representation (St,C2) in Example 7 is irreducible. Indeed
a subrepresentation, if existsting, should be one dimensional, and there is no line
stabilized by St(g) for any g ∈ G. Indeed the only line stabilized by St(s) is the line
〈e1 + e2〉C, but it is not stabilized by t, since St(t)(e1 + e2) = e1.

Corollary 2.2 (Maschke Theorem) Let (π, V ) be a representation of G. Then it decom-
poses as direct sum of irreducible subrepresentations, and the decomposition is unique up
to isomorphism of irreducible representations.

We write (π, V ) =
⊕k

i=1(πi, Vi)
mi with (πi, Vi) ∈ Irr(G) and mi ∈ Z≥0 for such a

decomposition. Sometimes we omit the vector spaces and write just π =
⊕k

i=1 π
mi
i ,

Example 9 Let G = GL2(2). Then (Stnd,C2) = (1,C)⊕ (St,C2).

3 Representation theory of GLn(q)

In this section, let p be a prime and q = pe, with e ∈ N, be a power of p.
Moreover let n ∈ N, and let G = GLn(q), the finite general linear group over the field

with q elements (see Example 3.
Our goal is to understand the structure of the representations ofG. By Maschke’s Theorem,
it is enough to understand Irr(G), the irreducible representations of G.
The following remark gives a classification for irreducible representation in the easiest case
possible, namely the case of n = 1.

Remark 1 We know Irr(GL1(Fq)). Indeed GL1(Fq) = F∗q = 〈ζ|ζq−1 = 1〉, a cyclic group
of order q − 1. This is an abelian group, and it is known that irreducible representations
of abelian groups are one-dimensional. For any i ∈ {1 . . . q − 1} we have an irreducible
representation defined by

χi : GL1(Fq)→ GL1(C)

ζ 7→ e
2πi
q−1

and it holds
Irr(GL1(Fq)) = {χi| 1 ≤ i ≤ q − 1}
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3.1 Parabolic induction

The guiding principle is to develop methods allowing us to proceed by induction. More
precisely, the question would be: if we know the irreducible representations of G = GLm(q)
for m < n, are we able to say something about the irreducible representations of GLn(q)?
In this section we introduce a tool, parabolic induction, allowing us to bridge knowledge
from smaller to bigger groups.

Let k ∈ N and n1, n2, . . . , nk be natural numbers such that
∑k

i=1 ni = n. We denote by

Ln1,...nk :=

{
A1

A2

. . .
Ak

 ∈ GLn(q)

∣∣∣∣ Ai ∈ GLni(q), i = 1, . . . , k

}
≤ G(1)

the subgroup of G consisting of block diagonal matrices with k blocks of sizes prescribed
by the integers n1, . . . nk. It holds

Ln1,...nk
∼= GLn1(q)×GLn2(q)× · · · ×GLnk(q)

Proposition 3.1 There is a bijection

Irr(GLn1(q))× · · · × Irr(GLnk(q))→ Irr(GLn1(q)× · · · ×GLnk(q))

((π1, V1), . . . , (πk, Vk)) 7→ (π1 ⊗ · · · ⊗ πk, V1 ⊗ · · · ⊗ Vk)

where for any (g1, . . . , gk) ∈ GLn1(q)× · · · ×GLnk(q) and any (v1, . . . , vk) ∈ V1 ⊗ · · · ⊗ Vk
it holds

π1 ⊗ · · · ⊗ πk(g1, . . . , gk)(v1, . . . , vk) = π1(g1)v1 ⊗ · · · ⊗ πk(gk)vk.

Since Ln1,...nk
∼= GLn1(q)×GLn2(q)×· · ·×GLnk(q), it follows that there is a bijection

Irr(GLn1(q))× · · · × Irr(GLnk(q))→ Irr(Ln1,...nk).

In other words, any irreducible representation of the subgroup Ln1,...nk decomposes as a
tensor product of irreducible representations of GLni(q). Hence, if we know Irr(GLm(q))
for any m < n, we know Irr(L) for any subgroup L = Ln1,...nk of the form (1).

Now we would like to build a representation of G starting from representations of a
subgroup L of the form (1).

Generally speaking, there is a way, called induction, to construct a representation of a
group starting from a representation of a subgroup. The problem in this case is that L is
"too small" to get a representation with a nice structure by induction. The work-around
is to use an intermediate subgroup, consisting of block upper triangular matrices.
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Let k ∈ N and n1, n2, . . . , nk ∈ N be such that
∑k

i=1 ni = n. We denote by

Pn1,...nk :=

{
A11 A1,2 · · · A1,4

A22 · · · A2,4

. . .
...

Ak,k

 ∈ GLn(q)

∣∣∣∣ Ai,j ∈ GLni(q), 1 ≤ i ≤ j ≤ k

}
≤ G

It holds Ln1,...nk ≤ Pn1,...nk . More precisely, denoting

Un1,...nk :=

{
In1 A1,2 · · · A1,4

In2 · · · A2,4

. . .
...
Ink

 ∈ GLn(q)

∣∣∣∣Ai,j ∈ GLni(q), 1 ≤ i ≤ j ≤ k

}
≤ Pn1...nk ,

where Ini denotes the ni × ni identity matrix, it holds

Pn1,...nk = Ln1,...nkUn1,...nk

Definition 11 Let k ∈ N and n1, n2, . . . , nk ∈ N. Let L = Ln1...nk and U = Un1...nk and
P = Pn1...nk . Let (π, V ) be a representations of L. The parabolic induction of (π, V ) is
the representation (RGLπ,R

G
LV ) of G given by:

• RGLV := {f : G→ V | f(lux) = π(l)f(x) for any l ∈ L, u ∈ U, x ∈ G}

• for any g ∈ G, for any f ∈ RGLV

(RGLπ(g)f)(x) = f(xg)

for any x ∈ G.

Example 10 Let k = n, ni = 1 for any i = 1 . . . n. Then

L1n := T =

{
a1

a2

. . .
an

 |ai ∈ Fq, i = 1, . . . , n

}
≤ GLn(q)

}

P1n := B =

{
a11 a12 a13 a14

a22 a23 a24

. . .
...
ann

 |aij ∈ Fq, 1 ≤ i ≤ j ≤ n

}
≤ GLn(q)

}

U1n := U =

{
1 a12 a13 a14

1 a23 a24

. . .
...
1

 |aij ∈ Fq, 1 ≤ i < j ≤ n

}
≤ GLn(q)

}
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We have Irr(T ) ∼= Irr(GL1(q))× · · · × Irr(GL1(q)) = Irr(F∗q)
n. In particular, taking

the trivial representation on each F∗q , we get the irreducible representation (1,C) of T given
by 1(t) = 1 for any t ∈ T . Then

RGT (C) := {f : G→ C|f(tux) = f(x) for any t ∈ T, u ∈ U}

that is the space of functions constant on B = TU left coset, so

RGT (C) = 〈δBx|Bx ∈ B\G〉C

where

δBx(y) =

{
1 y ∈ Bx
0 y /∈ Bx

.

The action of G is given by
RGT 1(g)δBx = δBxg−1

since
RGT 1(g)δBx(By) = δBx(Byg) = δBxg−1(By)

Take now n = 2, so G = GL2(q). Then B\G is isomorphic to the projective space of F2
q ,

with isomorphism given by

B\G→ P1(Fq)

B
(
a b
c d

)
7→ [c, d]

with the isomorphism respecting the action of G given by right multiplication on both
spaces. Therefore in this case we have RGT (C) = 〈δx|x ∈ P(Fq)〉C with action given by
RGT 1(g)δx = δxg−1 .

In particular if q = 2, we have P1(F2) = {[0, 1], [1, 0], [1, 1]} and so

RGT C = 〈δ[0,1], δ[1,0], δ[1,1]〉C.

With notation as in Example 5, GL2(2) = 〈s = ( 0 1
1 0 ), t = ( 1 1

0 1 )〉. For any [a, b] ∈ P1(F2) it
holds

[a, b]s−1 = [b, a] [a, b]t−1 = [a, a+ b].

Hence we can compute the action ofRGT (1(s) andRGT (1(t) on the basis vector delta[0,1], δ[1,0], δ[1,1]

and it yields

R
GL2(2)
T 1 : GL2(2)→ GL(RGT C)

s 7→
(

0 1 0
1 0 0
0 0 1

)
t 7→

(
1 0 0
0 0 1
0 1 0

)
That is RGL2(2)

T 1 = Stnd from Example 5.
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3.2 Decomposition into Harish-Chandra series

From Example 10 we see that even starting with an irreducible representation (π, V ) of
a subgroup L of the form (1), its parabolic induction (RGLπ,R

G
LV ) is not irreducible in

general. But by Maschke’s Theorem (Corollary 2.2) every representation decomposes as a
direct sum of irreducible ones, so we can consider the irreducible constituent appearing in
a representation parabolically induced.

The first natural question one could ask is the following: running over all the subgroups
L of G of the form (1) and all their irreducible representations π ∈ Irr(L), do we obtain
all the irreducible representations of G as irreducible constituents of some parabolically
induced representation RGLπ? The answer is negative, and this gives rise to the following
definition.

Definition 12 An irreducible representation σ of G is said to be cuspidal if it does not
appear as an irreducible constituent of RGLπ for any L = Ln1,...nk < G proper subgroup of
G of the form (1) and any π ∈ Irr(L).

Example 11 Let G = GL2(2). Let (sgn,C) be the representation given by

GL2(2)→ C∗

s 7→ −1

t 7→ −1

This is a cuspidal representation.
Indeed, the only proper subgroup of G of the form (1) matrices is T , the subgroup of

diagonal matrices. Since the only diagonal matrix in G is the identity, we have T = {( 1 0
0 1 )},

and therefore in this case Irr(T ) = {1}. We have seen in Example 10 and Example 9 that
in this case RGT 1 = Stnd = 1⊕St. So sgn is not an irreducible constituent of any (properly)
parabolically induced representation.

We extend the definition of cuspidal representations to any subgroups L = Ln1,...nK
∼=

GLn1(q)× . . .×GLnk(q) of the form (1) by saying that a representation σ = σ1⊗ . . .⊗ σk
is cuspidal for L if each σi is cuspidal for GLni(q) for i = 1 . . . k.

Theorem 3.2 Let π ∈ Irr(G).Then there exists a pair (L, σ) consisting of a subgroup
L = Ln1,...nk ≤ G of the form (1) and a cuspidal representation σ of L such that π is an
irreducible constituent of RGLπ. The pair (L, σ) is unique up to simultaneous permutation
of the ni (i.e. the diagonal blocks of L) and of the σi (i.e. the factors of σ) .

Note that the theorem includes the case of cuspidal representation of G, since it admits
the case L = Ln = G.

So we have
Irr(G) =

⊔
(L,σ)

{π ∈ Irr(G)| π ≤ RGLσ}

where (L, σ) runs over the pairs consisting of a subgroup L = Ln1,...nk of G the form (1)
and a cuspidal representation σ of L, taken up to simultaneous permutation of the blocks
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of L and the factors of σ. The sets of irreducible constituents in the decomposition above
of Irr(G) are called Harish-Chandra series.

Example 12 Let G = GL2(2). By Example 11, we have that the decomposition in
Harish-Chandra series for G is given by

Irr(GL2(2)) = {1, St}
⊔
{sgn},

where the first set corresponds to the pair (T,1), the second set to the pair (G, sgn).

So classify Irr(G) reduces to the following two problems:

• Classify cuspidal representations of GLm(q) for any m ≤ n

• Understand the decomposition in irreducible representations of the parabolic induc-
tion of a cuspidal representation

The first problem is difficult, and has been solved for any finite group of Lie type,
thanks to Deligne-Lusztig theory [5]. In the case of the finite general linear group GLn(q),
a classification of cuspidal representations in terms of irreducible polynomials of degree n
with coefficients in Fq was already known thanks to the work of Green [3]. We will focus
now on the second problem.

3.3 Decomposition of parabolically induced representations

In this section let L = Ln1...nk a subgroup of G of the form (1), and σ be a cuspidal
representation of L.

In the following we have a small digression involving algebras. The reader unfamiliar
with such a structure can skip to Theorem 3.5: this is the main result, and its statement
does not require any additional knowledge to the ones assumed so far.

We denote EndG(RGLσ) = HomG(RGLσ,R
G
Lσ) the representation homomorphisms from

the parabolic induction of σ to itself. Since representation homomorphisms are linear, the
set EndG(RGLσ has naturally a vector space structure over C, and moreover it is an algebra,
with product given by composition.

We can define the representation of an algebra A similarly as representations of groups,
as algebra morphisms φ : A→ End(V ) for some vector space V over C. Analogously to the
group case, a subrepresentation of A is given by a subspaceW ≤ V such that φ(A)W ⊆W ,
and a representation is said to be irreducible if it has no subrepresentation. If A = CG
is the group algebra of a finite group, then the representations of A are the same as the
representations of G. The following theorem is a particular case of a general result, valid in
any semisimple category (i.e. category where an analogous of Maschke’s theorem holds).

Theorem 3.3 There is a bijection

{π ∈ Irr(G)| π ≤ RGLσ} ↔ Irr(EndG(RGLσ))
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Moreover, the algebra EndG(RGLσ) has a really nice structure.

Theorem 3.4 ([4]) Let L = Ln1,n2,...nk and σ ∈ Irr(L) be a cuspidal representation. Write
σ = σ1 ⊗ . . . ⊗ σk ∈ Irr(L). Then there exist r1, . . . rl natural numbers, with

∑l
i= rl = k

such that

n1 = · · · = nr1 , σ1
∼= · · · ∼= σr1 ,

nr1+1 = · · · = nr1+r2 , σr1+1
∼= · · · ∼= σr1+r2 ,

n∑l−1
i=1 ri+1 = · · · = nk σ∑l−1

i=1 ri+1
∼= · · · ∼= σk.

It holds
EndG(RGLσ) ∼= C[Sr1 × . . .× Srl ]

Concatenating Theorems 3.3 and 3.4 gives the following

Theorem 3.5 There is a bijection

{π ∈ Irr(G)| π ≤ RGLσ} ↔ Irr(Sr1 × . . .× Srl)

The set of the right hand side is well understood from a combinatorial point of view.
We have Irr(Sr1 × . . . × Srl) ∼= Irr(Sr1) × . . . × Irr(Srl). It is well known that for any
r ∈ N there exists bijection

Irr(Sr)↔ Par(r)

where Par(r) denotes the set of the partitions of r, that is

Par(r) = {λ = (λ1, . . . λj)|j ∈ N, λi ∈ N,
j∑
i=1

λi = n and λi ≤ λi+1 for 1 ≤ i ≤ j}

Example 13 Let G = GL2(q). Let L = L1,1 = T = F∗2 × F∗2, and 1 = 1⊗ 1 ∈ Irr(T ). In
this case, using the same notation as in Theorem 3.5 we have l = 1 and r1 = 2. Therefore

{π ∈ Irr(G)| π ≤ RGT 1} ↔ Irr(S2)↔ Par(2) = {(2), (1, 1)}

In particular, for the case q = 2 this agrees with our result from Example 10: RGL2(q)
T 1 =

Stnd = 1⊕ St, so it has 2 irreducible components.
More in general, for G = GLn(q) we have

{π ∈ Irr(G)| π ≤ RGT 1} ↔ Irr(Sn)↔ Par(n)
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Example 14 On the other side of the spectrum with respect to the previous example, we
have the case in which all the factors in the cuspidal representation σ of L are distinct. In
this case r1 = · · · = rl = 1, so

{π ∈ Irr(G)| π ≤ RGLσ} ↔ Irr(S1 × . . .× S1) = {1}

and hence RGLσ is irreducible.
For instance, let G = GLn(q) with q > n. Let L = L1n = T = (F∗q)

n and, using
the same notation as in Remark 1, let σ = χ1 ⊗ · · ·χn ∈ Irr(T ). In this case the χi for
1 ≤ i ≤ n are pairwise distinct irreducible representations of F∗q , and so RGT σ is irreducible.
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Parameter Estimation of Integrated
Fractional Brownian Motions

with Application to Energy Markets

Marco Mastrogiovanni (∗)

This seminar is based on joint work with Yuliya Mishura (Taras Shevchenko National
University of Kyiv), Stefania Ottaviano and Tiziano Vargiolu (Department of Mathematics
"Tullio Levi Civita", University of Padova)

1 Introduction

The modeling of electricity prices has gained growing attention due to the unique charac-
teristics of energy markets. Fractional Brownian motion (fBm) has been used extensively
for modeling purposes thanks to its capacity to capture both short-range and long-range
dependencies. However, an important inconsistency arises in many applications: while
fBm is assumed to model observed price paths, these paths are typically averages of high-
frequency data. As such, daily prices—often used in statistical models—do not directly
reflect fBm realizations.

To overcome this, we consider a more suitable process: the integrated fractional Brow-
nian motion (IfBm), representing a time-averaged fBm. This adjustment provides a more
realistic framework for modeling electricity prices and allows the derivation of consistent
estimators for the underlying parameters.

This seminar begins with an introduction to fractional Brownian motion (fBm), its main
characteristics and an overview of electricity markets. We then introduce the integral-mean
process of fBm and analyze the impact of time-averaging on its properties. Using ergodic
theory, we construct strongly consistent estimators for the Hurst parameter adapted to the
averaged process and validate them through an extensive simulation study.

Next, we extend our approach to linear combinations of two distinct time-averaged fBm
processes, again estimating the relevant parameters. Finally, we apply our methodology

(∗)Ph.D. in Mathematics and Modeling, Università degli Studi dell’Aquila, Dip. Ingegneria,
Scienze dell’Informazione e Matematica (DISIM), via Vetoio, I-67100 L’Aquila, Italy. E-mail:

. Seminar held on 22 May 2025.
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to empirical electricity spot price data and discuss potential future developments in this
research area.

2 Fractional Brownian Motion

Fractional Brownian motion BH
t is a centered Gaussian process defined by:

(1) E[BH
t B

H
s ] =

1

2

(
t2H + s2H − |t− s|2H

)
,

with Hurst parameter H ∈ (0, 1). For H = 1/2, we recover standard Brownian motion.
Unlike Brownian motion, fBm is not a Markov process nor a semimartingale for H 6= 1/2,
which has important implications for its mathematical treatment.

fBm possesses the following properties:

• Self-similarity: BH
ct

d
= cHBH

t

• Stationary increments: the distribution of the increments is invariant under time
shifts.

• Hölder continuity: paths are almost surely Hölder continuous of any order α < H

• Long-range dependence: forH > 1/2, increments are positively correlated whereas
for H < 1/2, the increments are negatively correlated.

The Hurst parameter H determines both the smoothness and memory properties of
the process. A process with H > 1/2 is said to be persistent, while H < 1/2 indicates
anti-persistence. The trajectories become smoother as H approaches 1, and rougher as H
approaches 0.

(a) Fractional Brownian motion with H = 0.3 (b) Fractional Brownian motion with H = 0.7

Figure 1: Comparison of fBm paths with different Hurst parameters.

Università di Padova – Dipartimento di Matematica 163



Seminario Dottorato 2024/25

3 Motivation from Electricity Markets

The market in which electricity prices are determined is known as the day-ahead market.
In this market, prices are established through an auction process for blocks of electricity
that will be delivered the following day. Buyers, market participants looking to purchase
electricity, must submit their bids between 8:00 a.m. and 12:00 noon on the day before
delivery. These bids cover hourly blocks, meaning each buyer submits 24 separate offers,
each with a different price and quantity for each hour of the following day. These are all
submitted simultaneously. On the other side, sellers also submit their offers, specifying
how much electricity they are willing to supply and at what price. The market price for
each hour is determined by the intersection of the aggregate demand and supply curves.

Once the market price is established for a given hour, all electricity traded during that
hour is settled at this single market price, regardless of the individual bids and offers.

There are different factors that can influence the spot price, including daily and seasonal
demand fluctuations, the availability of generation capacity, particularly from renewable
energy sources like wind and solar, which are intermittent and weather-dependent, the
cost and limitations of energy storage. Additionally, the prices of fuels used in electricity
generation, such as natural gas, coal, and oil, can vary and significantly affect spot prices.

As a result, spot prices exhibit seasonal patterns, high volatility with their own seasonal
behavior, frequent spikes, and some dependence on past prices.

In the literature, the price is commonly modeled as:

(2) P (t) = f(t) + S(t),

where f(t) is a deterministic seasonal component and S(t) a stochastic component. There
exists a wide range of models in the literature to represent the stochastic component
S(t), including one-factor and two-factor models, as well as approaches based on fractional
Brownian motion (fBm). Our claim is that the fundamental dynamics of the stochastic
component in electricity spot prices can be effectively captured by fBm.

Indeed, several empirical studies have adopted fBm-based models and found them to
align reasonably well with the behavior of daily electricity prices, particularly when spikes
and strong seasonal components are excluded (see, e.g., [7], [3]). However, such approaches
overlook an important structural feature of electricity price formation: prices are typically
not observed continuously but are computed as averages over high-frequency data. In most
electricity markets, the basic traded interval is much finer—typically hourly or 15-minute
intervals in Europe, and even as short as 5 minutes in some Australian markets.

Thus, if one models the underlying high-frequency prices as a realization of an fBm,
the daily prices, being averages of these, do not follow an fBm themselves but rather cor-
respond to integrated (time-averaged) fBm paths. This transformation significantly alters
the statistical properties of the process, particularly the autocorrelation structure, and
invalidates standard estimation techniques designed for fBm. A more consistent approach
requires modeling the observed prices using integrated fBm and adapting inference methods
accordingly.
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Figure 2: Hourly electricity prices, from January 2014 until March 2021.

4 Integrated Fractional Brownian Motion

We define the normalized integrated fractional Brownian motion (IfBm) as:

(3) Xh,H
t =

1

h

∫ t+h

t
BH
s ds,

where BH is a fBm with Hurst parameter H. The variance of Xh,H
t is:

(4) Var[Xh,H
t ] =

1

h2

∫ t+h

t

∫ t+h

t
E[BH

s B
H
r ]dsdr.

The increment process ∆Xh,H
k = Xh,H

(k+1)h −X
h,H
kh is stationary and Gaussian. Though

it inherits some features from fBm, its autocovariance structure differs significantly. The
decay rate of autocovariance depends on H and is slower for H > 1/2, similar to fBm.
However, it exhibits a different covariance structure, and for this reason, it is necessary to
construct alternative estimators.

5 Statistical Estimation via Ergodicity

To estimate the parameters of the integrated fractional Brownian motion (IfBm) model,
we exploit the ergodic properties of the increment process. Assuming stationarity and
Gaussianity, the ergodic theorem allows us to derive strongly consistent estimators for the
model parameters.

We consider a process given by a linear combination of two independent IfBm compo-
nents:

(5) X̃h
k = aXh,H1

k + bXh,H2

k , k ∈ N,
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where a, b ∈ R and Xh,Hi
k is the normalized IfBm associated with the Hurst parameter Hi,

for i = 1, 2.
Our goal is to estimate the parameter vector

θ = (H1, H2, a
2, b2).

To this end, we apply the ergodic theorem to the increments of the process X̃h
k . We

construct four estimators, one for each parameter, using the following family of statistics:

(6) ξ
(j)
N :=

1

N

N−1∑
k=0

(
X̃jh
k+1 − X̃

jh
k

)2
, j = 1, 2, 4, 8.

The choice of four different time scales provides sufficient information to identify the
four parameters through a system of nonlinear equations. The consistency of these esti-
mators is ensured by the ergodic theorem:

(7) θ̂N
a.s.−−→ θ as N →∞.

We construct these strongly consistent estimators of parameters θ = (H1, H2, a
2, b2).

Introduce the following notations

logq+ x =

{
logq x, if x > 0,

0, if x ≤ 0,
log x = loge x,

+
√
x =

{√
x, ifx > 0,

0, ifx ≤ 0.

Also, denote

DN = (ξ4
Nξ

2
N − ξ8

Nξ
1
N )2 − 4(ξ4

Nξ
1
N − (ξ2

N )2)(ξ8
Nξ

2
N − (ξ4

N )2),

xN =
ξ8
Nξ

1
N − ξ4

Nξ
2
N + +

√
DN

2(ξ4
Nξ

1
N − (ξ2

N )2)
, yN =

ξ8
Nξ

1
N − ξ4

Nξ
2
N −

+
√
DN

2(ξ4
Nξ

1
N − (ξ2

N )2)

Theorem 1 Let 0 < H2 < H1 < 1. The random vector θ̂ = (Ĥ1,N , Ĥ2,N , â
2
N , b̂

2
N ), where

(8) Ĥ1,N =
1

2 log 2
log+ (xN ) ,

(9) Ĥ2,N =
1

2 log 2
log+ (yN ) ,

â2
N =

(2Ĥ1,N + 1)(Ĥ1,N + 1)(ξ2
N − yNξ1

N )

2h2Ĥ1,N (xN − yN )(xN − 1)
,

and

b̂2N =
(2Ĥ2,N + 1)(Ĥ2,N + 1)(ξ2

N − xNξ1
N )

2h2Ĥ2,N (yN − xN )(yN − 1)

Università di Padova – Dipartimento di Matematica 166



Seminario Dottorato 2024/25

is a strongly consistent estimator of the parameters θ = (H1, H2, a
2, b2).

In the special case where b = 0, the model reduces to a single IfBm component. In this
simpler setting, we can construct up to five distinct strongly consistent estimators for the
parameters (H, a2) by considering ratios between the statistics ξ(j)

N at different scales.

Corollary 1 Let 0 < H < 1 the statistics θ̂j = (Ĥ
(j)
N , (â

(j)
N )2) with j = 1, 2, 4 where

(10) x̂
(j)
N =

ξ
(2j)
N

ξ
(j)
N

, Ĥ
(j)
N =

1

2
log2+

(
x̂

(j)
N

)
, (â

(j)
N )2 =

ξ
(j)
N

(
Ĥ

(j)
N + 1

)(
2Ĥ

(j)
N + 1

)
2h2Ĥj

N (x̂
(j)
N )log2 j

(
x̂

(j)
N − 1

)
and the statistics θ̃i = (H̃

(i)
N , (ã

(i)
N )2) with i = 1, 2 where

(11) x̃(i)
N =

√√√√ξ
(4i)
N

ξ
(i)
N

, H̃
(i)
N =

1

2
log2+

(
x̂

(i)
N

)
, (ã

(i)
N )2 =

ξ
(i)
N

(
Ĥ

(i)
N + 1

)(
2Ĥ

(i)
N + 1

)
2h2Ĥi

N (x̂
(i)
N )log2 i

(
x̂

(i)
N − 1

)
are strongly consistent estimators for θ = (H, a2).

6 Simulation Results

We simulate 1000 paths of fBm with various values of H ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and
discretizations up to 220 points. Estimators are computed using increments of varying
lags.

The estimators exhibit:

• Small bias for H not near boundaries (i.e., ≈ 0.1 or ≈ 0.9)

• Decreasing variance with larger sample sizes

• Convergence to normal distribution under central limit conditions.

7 Conclusion

We propose a modeling framework based on integrated fractional Brownian motion (IfBm)
to account for the averaging nature of observed electricity price data. Our statistical
methodology leverages ergodic properties of the process to construct consistent estimators
for model parameters. Simulations confirm the validity and reliability of our estimators,
which opens avenues for empirical applications to real electricity market data and more
general integrated stochastic models.
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Parallel parking 101

Marco Di Marco (∗)

Une géométrie ne peut pas être plus vraie qu’une autre; elle peut seulement être plus commode.

Henri Poincaré, La Science et l’Hypothèse

1 Introduction

Do you know that when you parallel park you are actually invoking the Chow-Rashevskii
Theorem [1, 12], a cornestone of sub-Riemannian geometry? Let us be more “mathemati-
cal" and formalize the state and the possible movements of your car.

You can describe the state of your car (see the picture below) by a point (x, y, θ) ∈
R2 × (−Θ,Θ) where Θ < π

2 is the maximum angle you can rotate your wheels and:

I (x, y) is the position of your car on the plane (with respect to a fixed origin),

I θ is the angle of your wheels (with respect to a fixed axis).

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 5 June 2025.
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Now let us formalize the movement of your car.

(i) You can go straight (or backwards) in the “direction" of your wheels; your car will
“move" along the vector field

X = cos θ
∂

∂x
+ sin θ

∂

∂y

(ii) You can rotate your steering wheel (and therefore your wheels); your car will “move"
along the vector field:

Y =
∂

∂θ

When you want to parallel park you will probably do some procedure like the one in the
picture below. The movements drawn below have their velocity contained in span(X,Y )
therefore they are “admissible"; on the other hand moving orthogonally to the road in a
straight line would imply going along a curve whose velocity is not contained in span(X,Y )
and therefore is not “admissible".

The secret to moving perpendicularly to the road, as said before, lies in Chow-Rashevskii
Theorem: if for every point we have that

dim(span(X,Y, [X,Y ]))) = 3

then between every two points there exists a curve whose velocity belongs to span(X,Y ).
In our case this is verified since

X = cos θ ∂
∂x + sin θ ∂

∂y

Y = ∂
∂θ

[X,Y ] = XY − Y X = sin θ ∂
∂x − cos θ ∂

∂y

For a more detailed analyis of “parallel parking" see [11]. The example above can be con-
sidered a toy model of sub-Riemannian geometry: what you can get from it is the following.
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It may be useful to think of a sub-Riemannian manifold as a Riemannian manifold,
but with fewer directions in which you can move, so you have to take some detours.

In other words, in the sub-Riemannian world, you can go wherever you want,
but not however you want.

The aim of this note is to present, in the setting of Heisenberg groups, sub-Riemannian
analogues of certain classical Euclidean results. In Section 2 we introduce Heisenberg
groups and the sub-Riemannian counterparts of some classical notions. In Section 3 we
summarize some of the results contained in [4] and in Section 4 we present a weaker version
of some of the results contained in [3].

2 A few words on Heisenberg groups

Among sub-Riemannian manifolds, probably the most studied are the Heisenberg groups.
Let us recall their definition.

Definition 2.1 Given n ≥ 1, the Heisenberg group is the connected, simply connected,
step 2 nilpotent Lie group associated with the algebra

X1, . . . , Xn, Y1, . . . , Yn, T, [Xj , Yj ] = T.

In exponential coordinates Hn = (R2n+1, ·) = Rnx × Rny × Rt and

Xj =
∂

∂xj
− yj

2

∂

∂t
, Yj =

∂

∂yj
+
xj
2

∂

∂t
, T =

∂

∂t
.

The dilations δλ(x, y, t) = (λx, λy, λ2t) define a one-parameter family of group isomor-
phisms.
Our admissible directions will be the ones given by span(X1, . . . , Xn, Y1, . . . , Yn), which
are the horizontal vector fields; T is the vertical direction.

As said before, one question we aim to answer in this note is the following: what are
the sub-Riemannian counterparts of these notions in Heisenberg groups?

I Distance,

I C1-functions,

I C1-submanifolds (with and without boundary),

I differential forms,

I BV/SBV functions.

The “canonical distance" in sub-Riemannian manifold is the Carnot-Carathéodory distance,
that we recall below.
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Definition 2.2 The Carnot-Carathéodory distance d is defined for p, q ∈ Hn as

d(p, q) := inf

‖h‖L1([0,1],R2n):

the curve γh : [0, 1]→ Hn defined by
γh(0) = p, γ̇h =

∑n
j=1(hjXj + hj+nYj)(γh)

has final point γh(1) = q

 .

For m ≥ 1 we canonically define the measures Hm,Sm.

Remark 2.3 In general sub-Riemannian manifolds open balls defined via the Carnot-
Carathéodory distance may have strange shapes; however under mild regularity assumption
it is possible to show, via a simple calibration argument, that diam(B(p, r)) = 2r for small
radii. See [6].

Definition 2.4 Let Ω ⊆ Hn be an open set and f : Ω→ R. We say that f ∈ C1
H(Ω) if f is

continuous and its horizontal gradient ∇Hf := (X1f, . . . , Ynf), in the sense of distributions,
is represented by a continuous function.

The following definition about intrinsic C1 (or C1
H) submanifold was given in [9].

Definition 2.5 Let 1 ≤ k ≤ 2n + 1 and S ⊆ Hn. We say that S is a C1
H submanifold of

dimension k if

I k ≤ n: S is a C1 submanifold and TS ⊆ span(Xi, Yi)1≤i≤n.

I k ≥ n + 1: locally S = {p : f(p) = 0} for f : Hn → R2n+1−k s.t. f ∈ C1
H and ∇Hf

has maximal rank.

Remark 2.6 If k ≥ n + 1, S can be a fractal (see [10]), but it retains good intrinsic
properties, e.g., its blow up is the vertical k-plane 〈∇Hf1, . . . ,∇Hf2n+1−k〉⊥. One can define
the tangent k-vector tHS as the unit multivector associated with 〈∇Hf1, . . . ,∇Hf2n+1−k〉⊥.

High dimensional C1
H-submanifold can be also described by intrinsic graph. In other

words, the following implicit function theorem (proved in [9]) holds.

Theorem 2.7 Given k ≥ n+ 1, a C1
H k-dimensional submanifold {f = 0} can be written

as a continuous intrinsic graph, i.e., locally there exists a continuous function φ : W → V
acting between complementary subgroups of Hn such that dim(V) = k (therefore V is abelian
and horizontal) and

{f(x) = 0} = {w · φ(w)}

Remark 2.8 For intrinsic graph one can define appropriate notions of intrinsic Lipschitz
and intrinsic differentiability condition which are far more geometric than their Euclidean
counterpart. Rademacher (see [15]) and Stepanov (see [5]) theorems holds (in their “sub-
Riemannian geometric translation").
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Definition 2.9 M. Rumin (see [13, 14]) introduced in the 90s a complex of differential
forms in Hn:

0
d−→ D0

H
d−→ D1

H . . .
d−→ DnH

D−→ Dn+1
H

d−→ . . .
d−→ D2n+1

H
d−→ 0

where

I the forms D0
H, . . . ,DnH are different from the forms Dn+1

H , . . . ,D2n+1
H ,

I d is the exterior derivative but D is a non trivial second order operator.

Rumin complex is highly not trivial so in this note, for the sake of simplicity, we will just
assume, cum grano salis, that

I DkH ⊆ {smooth k-forms in Hn},

I the differential operator D is something like

Dω = d(ω + “vertical stuff(dω)”)

where by vertical stuff we intend something that, when integrated (see Definition 2.10
below) on a submanifold with its tangent space contained in the horizontal distribu-
tion, it vanishes.

Definition 2.10 We can integrate a Rumin k-form ω on an oriented k-dimensional C1
H

submanifold S in the following way

I If k ≤ n we define
∫
S
ω as the classical one.

I If k ≥ n+ 1 and S is also a C1 submanifold, one has (see [15]) that∫
S
ω = C

∫
S
〈ω|tHS 〉dSk+1

for some explicit constant C = C(n, k, d). Hence we define∫
S
ω := C

∫
S
〈ω|tHS 〉dSk+1.

3 Stokes’ Theorem in Heisenberg groups

In this section we present a sketch of the proof of some of the results contained in [4]. First
we present our definition of C1

H-regular submanifold with boundary.

Definition 3.1 Given a C1
H submanifold S, we define its boundary as S \ S.

We say that S ⊆ Hn is a k-dimensional C1
H submanifold with boundary if

(i) S is a k-dimensional C1
H submanifold,

Università di Padova – Dipartimento di Matematica 173



Seminario Dottorato 2024/25

(ii) ∂S is a (k − 1)-dimensional C1
H submanifold,

(iii) for every p ∈ ∂S there exist a neighbourhood U 3 p and a k-dimensional C1
H sub-

manifold S′ such that

U ∩ S ⊆ S′ and S′ ∩ S ∩B(p, r) 6= ∅ for every r > 0.

When S is oriented, an orientation is naturally induced on ∂S.

The main result of this section is the following.

Theorem 3.2 Let S ⊂ Hn be a k-dimensional orientable C1
H submanifold with boundary

and ω ∈ Dk−1
H . Then ∫

S
dcω =

∫
∂S
ω,

where dc = d if k 6= n+ 1 and dc = D if k = n+ 1.

Let us make the following remarks.

Remark 3.3

(i) Theorem 3.2 is just the classical Stokes Theorem if k ≤ n.

(ii) Theorem 3.2 is just the classical Stokes Theorem if k ≥ n + 2 and S is also a C1

submanifold with boundary.

(iii) Theorem 3.2 is almost just the classical Stokes Theorem if k = n+ 1 and S is also a
C1 submanifold with boundary:∫

S
Dω =

∫
S
d(ω + vertical stuff) =

∫
∂S
ω + vertical stuff =

∫
∂S
ω.

Sketch of the proof of Theorem 3.2 when k ≥ n+ 2. The proof works by approximating S
by a sequence (Sj)j∈N of C1 submanifolds with boundary, so that∫

S
dcω = lim

j→+∞

∫
Sj

dcω = lim
j→+∞

∫
∂Sj

ω =

∫
∂S
ω.

This can be done (locally, which is enough) exploiting the following result:

Theorem 3.4 Assume k ≥ n + 2 and consider a k-dimensional C1
H submanifold with

boundary S ⊆ Hn, let h := 2n + 1 − k be the codimension of S. Then, for every p ∈ ∂S
there exist a neighbourhood U 3 p and functions f1, . . . , fh+1 ∈ C1

H(U) such that

(i) ∇Hf1, . . . ,∇Hfh+1 are linearly independent in U ,

(ii) U ∩ S = {q ∈ U : f1(q) = · · · = fh(q) = 0, fh+1(q) > 0},

(iii) U ∩ ∂S = {q ∈ U : f1(q) = · · · = fh(q) = fh+1(q) = 0}.
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Moreover, the functions fh, . . . , fh+1 can be chosen to be of class C∞ on U \ {q ∈ U :
f1(q) = · · · = fh(q) = 0}.

Sketch of the proof of Theorem 3.2 when k = n+ 1. The idea is to produce a sequence of
k-dimensional C1 submanifolds with boundary such that ∂Sj = ∂S (recall that ∂S is an
n-dimensional horizontal C1 submanifold).

• We want to produce a C1 and C1
H submanifold with boundary S̃ such that ∂S̃ = ∂S:

to do this we project ∂S on the horizontal distribution.

• Then we produce S̃ by producing one “half" of a vertical “cylinder".

For the rest of this sketch we will look at a section through a vertical plan, in order to
avoid “graphical" confusion.

Università di Padova – Dipartimento di Matematica 175



Seminario Dottorato 2024/25

• Now we produce smooth approximations (as we did before when k ≥ n+ 2) (in C1
H)

Σj of S, without any concern for their boundaries.

• Finally we produce Sj by interpolating between S̃ (in a neighbourhood of ∂S) and
Σj away from ∂S.
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Below there is a graphic visualization of what happens when j → +∞.

4 SBVH functions in Heisenberg groups

In this section we present a simplified version of some of the results contained in [3]. First
we recall some definitions about functions of bounded variation in Heisenberg groups (BVH

functions).

Definition 4.1 Fix a bounded open set Ω ⊆ Hn. We say that u ∈ L1(Ω) is a function
of bounded H-variation, and we write u ∈ BVH(Ω), if there exists a R2n-valued Radon
measure DHu = (DX1u, . . .DYnu) on Ω with finite total variation such that, for every open
set A ⊂⊂ Ω, for every 1 ≤ i ≤ n and for every ϕ ∈ C1

c (A) one has∫
A
ϕd(DXiu) = −

∫
A
uX∗i ϕdL2n+1,

∫
A
ϕd(DYiu) = −

∫
A
uY ∗i ϕdL2n+1.

where ·∗ denotes the formal adjoint of ·.
For every u ∈ BVH(Ω) we define the norm

‖u‖BVH(Ω) := ‖u‖L1(Ω) + |DHu|(Ω).

The space BVH(Ω) equipped with the above norm is a Banach space.

Definition 4.2 Let S ⊆ Hn. We say that S is countably H-rectifiable if there exists a family
{Sh : h ∈ N} of C1

H-hypersurfaces (aka 2n-dimensional/1-codimensional C1
H-submanifolds)

such that

H2n+1

(
S \

⋃
h∈N

Sh

)
= 0.
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Moreover, if H2n+1(S) < +∞, we say that S is H-rectifiable.
We can define H2n+1-a.e., up to a sign, the horizontal normal νS(p) of a countably H-
rectifiable set S at p ∈ S.

Definition 4.3 Let u ∈ L1
loc(Ω), z ∈ R and p ∈ Ω. We say that z is the approximate limit

of u at p if

lim
r→0

 
B(p,r)

|u− z|dL2n+1 = 0.

If the approximate limit of u at p exists, it is also unique and we denote it by u?(p).
Let p be such that u?(p) exists. We say that u is approximately H-differentiable at p if
there exist a neighbourhood U ⊂ Ω of p and f ∈ C1

H(U) such that f(p) = 0 and

lim
r→0

 
B(p,r)

|u− u?(p)− f |
r

dL2n+1 = 0.

The vector ∇Hf(p) ∈ Rm is uniquely determined and we call it approximate H-gradient of
u at p and we denote it by Dap

H u(p).

Definition 4.4 Fix p ∈ Hn, R > 0 and ν ∈ S2n−1. Let f ∈ C1
H(B(p,R)) be such that

f(p) = 0 and ∇Hf(p)
|∇Hf(p)| = ν. For every r ∈ (0, R) we set

B+
ν (p, r) := B(p, r) ∩ {f > 0},

B−ν (p, r) := B(p, r) ∩ {f < 0}.

Let u ∈ L1
loc(Ω) and p ∈ Ω. We say that u has an approximate H-jump at p if there exist

u+, u− ∈ R with u+ 6= u− and ν ∈ S2n−1 such that

(1) lim
r→0

 
B+
ν (p,r)

|u− u+|dL2n+1 = lim
r→0

 
B−ν (p,r)

|u− u−|dL2n+1 = 0.

The jump set Ju is defined as the set of points where u has an approximate H-jump.

Definition 4.5 For every u ∈ BVH(Ω) we decompose

DHu = Da
Hu+Ds

Hu

where Da
Hu denotes the absolutely continuous part of DHu (with respect to the usual

Lebesgue measure L2n+1) and Ds
Hu denotes the singular part of DHu. We define the jump

part of DHu as
Dj

Hu := Ds
Hu Ju

and the Cantor part of DHu as

Dc
Hu := Ds

Hu (Ω \ Ju).
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We are now ready to give the definition of special functions with bounded variation in
Heisenberg groups (SBVH functions).

Definition 4.6 Let u ∈ BVH(Ω). We say that u is a special function of bounded H-
variation, and we write u ∈ SBVH(Ω), if Dc

Hu = 0.

The following result about the representation of the distributional derivative of an
SBVH function is an immediate consequence of some results from [7].

Theorem 4.7 For every u ∈ SBVH(Ω) the jump set Ju is H-rectifiable and we can write

DHu = Dap
H uL2n+1 + σ(·, νJu)(u+ − u−)νJuS2n+1 Ju

for some function σ : Hn × S2n−1 → (0,+∞).

We are now ready to state the main result of this section which draws inspiration from
its Euclidean counterpart, proved in [2].

Theorem 4.8 Let Ω be a bounded open subset of Hn and let u ∈ SBVH(Ω). Then, there
exists a sequence of functions (uk)k∈N ⊂ SBVH(Ω) and of C1

H-hypersurfaces (Mk)k∈N ⊂ Ω
such that, for every k ∈ N, Juk ⊆Mk ∩ Ju, Juk is compact, and

‖u− uk‖BVH(Ω)
k→+∞−−−−→ 0, uk ∈ C∞(Ω \ Juk).

Sketch of the proof. First we need to “approximate" the jump set Ju.
We start with a countably H-rectifiable set Ju.
Then for every k ∈ N we consider the set

J ku :=

{
x ∈ Ju : |u+(x)− u−(x)|≥ 1

k

}
∩B(0, k).

These sets are H-rectifiable and |DHu|(Ju \ J ku )
k→+∞−−−−→ 0.

Then we can find a C1
H-hypersurface Mk such that |DHu|(Mk \ J ku ) < 1

k .
Finally we can find (by Lusin Theorem) a compact set Ck ⊆Mk ∩ Ju such that

|DHu|((J ku ∩Mk) \ Ck) <
1

k

Ck will be the jump set Juk of the approximating function uk.
Now we construct the approximating functions (uk)k∈N. For ` ∈ N we define the bounded
open sets

A1
k :=

{
x ∈ Ω : dE(x,Ck) >

1

2

}
,

A`k :=

{
x ∈ Ω :

1

`+ 1
< dE(x,Ck) <

1

`− 1

}
if ` > 1.
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where dE denotes the classical Euclidean distance. We have⋃
`∈N

A`k = Ω \ Ck.

Consider a partition of unity on Ω \ Ck associated with (A`k)`∈N,

ξ`k ∈ C∞c (A`k) such that 0 ≤ ξ`k ≤ 1 and
∑
`∈N

ξ`k ≡ 1 on Ω \ Ck.

Fix a mollification kernel, i.e., a spherically symmetric non-negative functionK ∈ C∞c (BE(0, 1))
such that

∫
Rn KdL

2n+1 = 1. For ε > 0 we define Kε(x) := ε−2n−1K(x/ε).
Finally for some ε`k > 0 choosen appropriately we define

uk :=
∑
`∈N

(ξ`ku) ∗Kε`k
on Ω \ Ck,

where ∗ denotes the classical Euclidean convolution. By the choice we made on (A`k)`∈N

the sum is locally finite, hence uk ∈ C∞c (Ω \ Ck). By choosing the ε`k small enough we
clearly have (since L2n+1(Ck) = 0) that

‖u− uk‖L1(Ω)
k→+∞−−−−→ 0.

Moreover, one can prove that uk ∈ SBVH(Ω) and

(2) u−k ≡ u
− on Ck = Juk and u+

k ≡ u
+ on Ck = Juk .

We are left to prove that ‖u− uk‖BVH(Ω)
k→+∞−−−−→ 0. By definition,

‖u− uk‖BVH(Ω) = ‖u− uk‖L1(Ω)︸ ︷︷ ︸
(A)

+|DH(u− uk)|(Ω).

The term (A), as a result of what has been said above, can be made smaller than 1/k as
long as k is sufficiently big. We are left to estimate |DH(u− uk)|(Ω). By the construction
we made for Ck we have

|DH(u− uk)|(Ω) ≤|DH(u− uk)|(Ω \ Ju) + |DH(u− uk)|(Ju \ J ku )︸ ︷︷ ︸
(B)

+ |DH(u− uk)|(J ku \Mk)︸ ︷︷ ︸
(C)

+ |DH(u− uk)|((Ju ∩Mk) \ Ck)︸ ︷︷ ︸
(D)

+|DH(u− uk)|(Ck).

The terms (B), (C) and (D) also can be made smaller than 1/k as long as k is sufficiently
big. Moreover, thanks to Theorem 4.7 and (2), we can infer that

|DH(u− uk)|(Ck) = 0.
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We are left to estimate |DH(u − uk)|(Ω \ Ju). On Ω \ Ju we have that DH(u − uk) is
absolutely continuous with respect to L2n+1 so that

|DH(u− uk)|(Ω \ Ju) =
∥∥Dap

H u−∇Huk
∥∥
L1(Ω)

.

On Ω \ Ju we have

∇Huk =
∑
`∈N

(
(ξ`kDHu) ∗Kε`k

+R`k

)
where R`k is a reminder coming from the non-commutativity of Heisenberg groups. Then
we have

∥∥Dap
H u−∇Huk

∥∥
L1 ≤

∥∥∥∥∥Dap
H u−

∑
`∈N

[(ξ`kDHu) ∗Kε`k
]

∥∥∥∥∥
L1

+

∥∥∥∥∥∑
`∈N

R`k

∥∥∥∥∥
L1︸ ︷︷ ︸

(E)

Mimicking some results from [8], and possibly reducing ε`k, the term (E) can be made
smaller than 1/k as long as k is sufficiently big. We are left with∥∥∥∥∥∑

`∈N

[(ξ`kDHu) ∗Kε`k
]−Dap

H u

∥∥∥∥∥
L1(Ω)

≤

∥∥∥∥∥∑
`∈N

[(ξ`kD
ap
H u) ∗Kε`k

]−
∑
`∈N

ξ`kD
ap
H u

∥∥∥∥∥
L1(Ω)︸ ︷︷ ︸

(F )

+

∥∥∥∥∥∑
`∈N

(ξ`kD
j
Hu) ∗Kε`k

∥∥∥∥∥
L1(Ω)

.

Up to reducing ε`k, we can assume that (F ) ≤ 1/k as long as k is big enough. Finally we
have∥∥∥∥∥∑
`∈N

(ξ`kD
j
Hu) ∗Kε`k

∥∥∥∥∥
L1(Ω)

≤
∑
`∈N

∥∥∥(ξ`kD
j
Hu) ∗Kε`k

∥∥∥
L1(A`k)

≤
∑
`∈N

|Dj
Hu|(A

`
k + ε`k)

≤
∑
`∈N

|Dj
Hu|(A

`−1
k ∪A`k ∪A`+1

k ) ≤
∑
`∈N

3|Dj
Hu|(A

`
k) ≤ 9|Dj

Hu|(Ω \ Ck)

but, thanks to the construction of Ck, the last term can be made smaller than 1/k as long
as k is sufficiently big, concluding the proof.
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Hamilton Jacobi Equations
in the Space of Probability Measures

Giacomo Ceccherini Silberstein (∗)

Abstract. In this short note, I present the main ideas discussed during the PhD seminar. Optimal
control theory is a branch of Calculus of Variations aiming to guide efficiently a system to achieve
a specific goal, minimizing a given "cost" along the way. In this manuscript, we’ll embark on a
controlled excursion into the Hamilton-Jacobi equation, a powerful partial differential equation
that encodes optimality conditions for this variational problem. We will start by presenting the
classical Euclidean setting, where the system’s state space is finite-dimensional and familiar. Then,
we’ll extend these fundamental ideas to the more complex mean field setting, where the dynamics
play out on the space of probability measures, allowing us to understand collective behaviors in
large systems.

1 Control Problems

For the sake of clarity of the exposition all the discussion will be delivered considering
the ambient space Td. Many details and assumptions are omitted> However all precise
references for the assumptions are given.

Let’s start with

Definition 1.1 (Controlled Dynamical system) A controlled dynamical system in Td is the
datum of the triple (Td,A,Dyn), where

• A is the set of admissible control values, namely

(1.1) A =
{
α : [0,∞)→ A : α(·) is Borel measurable

}
,

with A ⊂ Rk the set of parameter values.

• Dyn is an ODE dynamical system parametrized by A

(Dyn)

{
Ẋt = f(Xt, αt)

X0 = x0 ∈ Td

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 19 June 2025.
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In application, Xt represents the state of an agent, that at time zero is in x0, acting on
its own position via the control αt

1.1 Payoffs

In modeling, we want the control parameter to be chosen according to an optimization
criterion. Given L : Td ×A→ R, g : Td → R and T > 0, the cost or objective functional is

(Obj) J(x0, α) :=

∫ T

0
L(Xt, α(t))dt+ g(Xt)

where Xt solves (Dyn) for the control α with initial condition X0 = x0.
The goal is to minimize this payoff, i.e. find α∗ ∈ A s.t.

(1.2) J(x0, α
∗) ≤ J(x0, α).

Such a α∗ is said to be an optimal control for (Obj). Therefore the goal is solve the
following minimization problem

(Value) u(x0) = inf
α∈A

J(x0, α)

In the first part of this note we will show

• How to produce optimal control.

• How to extend this construction to a finite number of agents.

1.2 Dynamic Programming Principle

Some mathematical problems can be solved by deformation. Namely, we inject the original
problem into a family of problems:

P ↪→
{

(Pt)t>0, P0 = P
}
.

The idea is that maybe the infinitesimal problem

d

dt
Pt

can be more easily solved, and by "integration," you can recover the starting problem. To
illustrate the idea of a deformation, let us first consider a classical example from Calculus
I

Example 1.1 (Feynman Integration Technique) Consider the following integral

(I)
∫ ∞

0

sin(x)

x
dx

Università di Padova – Dipartimento di Matematica 184



Seminario Dottorato 2024/25

whose value is not immediately computable with standard Calculus I techniques.

Then, we deform this problem, by considering a family of integrals

(It)
∫ ∞

0
e−tx

sin(x)

x
dx

Note that (It) is a deformation of (I) as t varies, i.e. I0 = I. The flux t→ It satisfies

(1.3)

{
d
dt It = −

∫ x
0 e
−tx sinxdx = − 1

1+t2

I0 = I.

This ODE can be solved by a simple integration and we have It = − arctan(t) + π
2 . In

particular,
I = I0 =

π

2
.

Now, we show how to interpret the dynamic programming principle and the Hamilton
Jacobi equation as consequences of a deformation of our original problem (MF-VF).

In the sixties, R. Bellman [3] introduced the following deformation

(Objt) J(t, x0, α) :=

∫ T

t
L(Xs, αs) ds+ g(x(T ))

where

(Dynt)

{
Ẋs = f(Xs, αs),

Xt = x0

Note that Objt is s.t. Obj0 = Obj.
We will call

(1.4) A[t,T ](x0) :=
{

[t, T ] 3 s 7→ Xs solution of (Dynt):α ∈ A
}

the set of admissible trajectories.
The function

(Valuet) u(t, x) := inf
x(·)∈A[t,T ](x0)

J(t, x0)

is called the value function associated to the objective function (3.15) subjected to the
controlled dynamic (Dynt).
Note that u(0, x) = u(x) and u(T, x) = g(x). We proceed by focusing on the equation
satisfied by ∂tu(t, x) to emulate the procedure in Example 1.1. This can be done thanks
to the Dynamic Programming Principle, introduced by R. Bellman.

(DPP) u(t, x) = inf
α∈A[t,t+h](x)

∫ t+h

t
L(Xs, αs) ds+ u(t+ h,Xt+h), ∀h ∈ (0, T − t).
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Essentially, it expresses the fact that the original variational problem can be broken
down into subproblems in a recursive manner.

The HJ equation is nothing else than an infinitesimal version of this principle. Indeed,
by Taylor expansion:

u(t, x) = inf
α∈A[t,t+h](x)

{∫ t+h

t
L(Xs, αs) ds

+ u(t,Xt) + h∂tu(t,Xt) + 〈∇u(t, x), Ẋt〉
}

Therefore, since Xt = x, dividing by h > 0, we get

0 = inf
α∈A[t,t+h](x)

1

h

∫ t+h

t
L(Xs, αs) ds+ ∂tu(t, x) + 〈∇u(t, x), f(x, u)〉.

We now pass to the limit h→ 0:

0 = inf
α∈A

{
L(x, α) + ∂tu(t, x) + 〈∇u(t, x), f(x, α)〉

}
.

Finally, calling

H(t, x,∇u) := − sup
α∈A

{
− L(x, α) +−〈∇u(t, x), f(x, α)〉

}
.

we get:

(HJ) −∂tu(t, x) +H(t, x,∇u) = 0

coupled with the terminal condition u(T, x) = g(x). It is not difficult to show that we also
derived a procedure to exhibit an optimal control α, that at each time must satisfy the
inclusion

(Opt) α(t, x) ∈ argmaxα∈A
{
L(x, α) + 〈∇u(t, x), f(x, α)〉

}
.

The PDE (HJ) should be seen as the analogue of the ODE d
dt It. Then the idea is to

solve (HJ) by evaluating u(0, x) = u(x), obtaining the value of optimal cost. On the other
hand, the optimal control can be obtained via the workflow described in Figure 1.

In particular, the control is in feedback form: the state of the system determines the
way to act on it.

Unfortunately, this procedure assumes the differentiability of the function u(t, x). It is
not always the case, as can be easily seen by the method of characteristics.
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Figure 1: Workflow to solve optimal control problem via the DPP.

Viscosity Solutions

To address the lack of classical solutions for (HJ), the notion of viscosity solutions was intro-
duced by M.G. Crandall and P.-L. Lions in 1981 for first-order Hamilton–Jacobi equations.
In what follows, we provide an overview of this approach.

First of all we have to relax the notion of differential.

Definition 1.2 Let u ∈ C((0, T ) × Td). We call the superdifferential of u at the point
x ∈ T d the closed, convex subset of R× Rd

(D+)
D+u(x) :=

{
(r, p) ∈ (0, T )× Rd : u(t+ h, x+ v)− u(t, x)− 〈p, v〉+ r(s− t) ≤ o(|v|+|h|)

}
We call the subdifferential of u at the point x ∈ Rn the closed, convex subset of Rn

(D−)
D−u(x) :=

{
(r, p) ∈ (0, T )×Rd : u(t+ h, x+ v)− u(t, x)− 〈p, v〉+ r(s− t) ≥ o(|v|+|h|)

}
,

where o(|v|+|h|) is s.t. limv,h→0
o(|v|+|h|)
|v|+|h| = 0.

In the case u is differentiable at x, we haveD+u(x) = D−u(x) = {Du(x)}. On the other
hand, the intersection D+u(x)∩D−u(x) between the two is not empty iff u is differentiable
at x.

Università di Padova – Dipartimento di Matematica 187



Seminario Dottorato 2024/25

Remark 1.1 In the finite dimensional case, an equivalent, and more intrinsic way of
defining super/sub differential can be considered. We refer to Proposition 3.1.7 [5] for
details. The point p ∈ Rd is in D+u(x)(resp. D−u(x)) iff there exists φ ∈ C1(Td), with
Dφ(x) = p s.t. x is local maximum (resp. minimum) of u− φ. Since this condition is not
sentitive to adding and substracting constants we can equivalently say that φ touches u
from above(resp. below) at the point x. Namely, there exists r > 0 s.t.

u(x) = φ(x) & u ≤ (≥)φ on Br(x).

Definition 1.3 Let u ∈ C([0, T ] × Td). We say that u is a subsolution of (HJ) iff, for
all (t, x) ∈ (0, T )× Td:

(S−) −r +H(x, p) ≤ 0 ∀p ∈ D+u(x)

Let u ∈ C([0, T ] × Td). We say that u is a supersolution of (HJ) iff, for all (t, x) ∈
(0, T )× Td:

(S+) −r +H(x, p) ≥ 0 ∀p ∈ D−u(x)

Let u ∈ C([0, T ] × Td). We say that u is a solution if it is both a supersolution and a
subsolution.

This notion is the good one in the sense of Hadamard: it enjoys the following property
((U) Uniqueness), ((S) Stability), ((E) Existence).

The first two properties can be obtained by this stronger principle

Theorem 1 (Comparison Principle) Let u, v be a subsolution and a supersolution of (HJ),
respectively. Under suitable continuity assumptions on H and g (see [2] Theorem 3.1) we
have

(CP) max
(t,x)∈[0,T ]×Td

u(t, x)− v(t, x) ≤ max
x∈Td

u(T, x)− v(T, x).

In particular, the equation (HJ) has at most a unique solution for a fixed terminal condi-
tion.

Note that the previous result also gives a stability estimate in terms of the terminal
condition at time T .

Sketch of the proof. Denote by M the RHS of (CP). Proceed by contradiction: There
exists λ > 0 s.t.

(1.5) Mλ = max
(t,x)∈[0,T ]×Rn

u(t, x)− v(t, x) + λ(T − t) ≥M

We introduce a penalization that doubles the variable

(1.6) Mε,η = max
(t,x)∈[0,T ]×Rn

u(t, y)− v(s, x) + λ(T − t)− 1

2ε
|y − x|2− 1

2η
|t− s|2.
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As ε, η → 0, the penalizations vanish, and Mε,η →ε,η→0 Mλ. Now, by using the Remark
1.1, we produce elements ( t̄−s̄η − λ, x̄−ȳε ) ∈ D+u(t̄, x̄), and ( t̄−s̄η − λ, x̄−ȳε ) ∈ D−v(s̄, ȳ),
where (t̄, s̄, x̄, ȳ) is a maximum point in (1.6). We can then use the definitions (S−) and
(S+):

(1.7) λ ≤ H(t̄, x̄,
x̄− ȳ
ε

)−H(s̄, x̄,
x̄− ȳ
ε

) ≤︸︷︷︸
Continuity assumptions on H

o(1).

That yields a contradiction.

Remark 1.2 (On the choice of the penalization) The use of a squared penalization is clas-
sical in the theory of viscosity solutions, and the doubling of variables technique originates
from the work of Kružkov. In a forthcoming paper with C. Bertucci,(1) we revisit this
argument in a more abstract framework. Specifically, we consider a Riemannian manifold
as the underlying space and focus on a convex Hamiltonian H. Within this setting, we
introduce a more intrinsic penalization strategy, which enables us to reinterpret the differ-
ence u−v as a kind of Lyapunov function. This perspective provides a natural explanation
for its monotonicity in time.

Concerning the existence, assuming the Hamiltonian comes from a control problem,
the goal is to prove that the value function is the viscosity solution of (HJ). We will not
give here a proof of this classical result that can be found in [2], Theorem 3.17.

1.3 Vanishing Viscosity

There is also another way to recover the viscosity solution of (HJ), that motivates the
attribute viscosity. It relies on a regularization procedure.
Consider the second-order PDE

(HJε)

{
−∂tuε +H(x,∇uε)− ε∆uε = 0

uε(T, x) = g(x)

The second-order term changes the scale of the equation and has a regularizing effect.
Under mild assumption on the Hamiltonian, it can be proved

(a) uε is uniformly bounded

(b) uε uniformly α-Holder.

(c) By Ascoli-Arzelà, the sequence uε is precompact in the uniform topology, and every
accumulation point is a viscosity solution.

(d) By the uniqueness result expressed in Theorem 1, any accumulation points must
coincide, i.e. the sequence converges to a function u, solution of the equation (HJ).

(1)CNRS researcher in Mathematics at the Department of Applied Mathematics, École Polytechnique,
Palaiseau, France
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(e) Theorem 1.5 [2]. The quantitative estimates holds: there exists C > 0 s.t. for all
ε > 0

‖uε − u‖L∞(Td)≤ C
√
ε.

2 N-agents Problems

In application, many interesting problems arise when several agents interact in the opti-
mization problem. Unfortunately, as in classical mechanics, this is not computationally
feasible. We briefly describe the main idea behind the so-called mean field approximation,
introduced to overcome this complexity.

2.1 N-agent value problem

The (Td)N -valued state dynamic evolves according to the controlled dynamics

(N-Dyn)

{
Ẋi
t = f(Xi

t , α
i
t)

X0 = x0 ∈ (Td)N ,

where α = (α1, . . . , αN ) ∈ AN is the population control and x0 = (x1
0, . . . , x

N
0 ) is the

initial condition. We endow the space (Td)N with the distance

(0.4) ‖x0 − x1‖(Td)N=

√√√√ 1

N

N∑
i=1

|xi0 − xi1|2

We denote by

(2.1) AN[t,T ](x0) :=
{

[t, T ] 3 s 7→ Xs solution of (N-dyn) : ff ∈ AN
}

the set of controlled trajectories of the N -agents.
The value function V N : [0, T ]× (Td)N → R is defined by

V N (t0,x0) := inf
α=(α1,...,αN )∈AN

[t0,T ]
(x0)

JN (t0,x0,α),

where

(N-Score) JN (t0,x0,α) :=

∫ T

t0

(
1

N

N∑
i=1

L(Xi
t , α

i
t) + F (mN

xt)

)
dt+G(mN

xT
).

Here

(EmpMea) mx =
1

N

N∑
i=0

δxi

denotes the empirical measure.
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The associated Hamilton Jacobi equation is

(HJBN )

{
−∂tuN (t,x) + 1

N

∑N
i=1H(xi, NDxiu

N ) = 0, (0, T )× (Td)N

u(0,x) = G(mN
x )

The mean field part relies in the particular structure of the interactions that are all
averaged and the common law of evolution given by f . The limit setting is formally
obtained by N →∞, but a difficulty arises in interpreting the meaning of

(2.2) lim
N→∞

(Td)N .

The idea, that will be clarified in the next section, is to consider a space that (1) contains
all the spaces (Td)N , as N ∈ N>0 and (2) reflects still well the geometry if the underlying
space. This space will be the space of probability measures endowed with the Wasserstein
distance.

3 Short Introduction to the Wasserstein space

LetX be compact Hausdorff space, and letM(X) be the set of finite signed Borel measures
over it. By Riesz Markov Theorem, see Theorem IV.14 [10],M(X) can be realized as the
dual space of C(X):

(3.1) ∀l ∈ C(X)∗ ∃!µ ∈M(X) s.t. l(φ) =

∫
X
φdµ ∀φ ∈ C(X), and ‖l‖∗= |µ|(X),

where ‖·‖∗ is the operator norm and |µ|(X) = sup
{∑N

i=1|µ(Ai)|: Ai Borel measurable X =⊔
Ai

}
is the total variation of µ. In this setting, the weak∗ topology can be described as

follows

(3.2) {µn} ⊂ M(X), µn ⇀ µ ∈M(X) ⇐⇒
∫
X
fµn →

∫
X
fµ ∀f ∈ C(X).

Usually, the convergence in this setting is referred to as narrow convergence We denote by

(3.3) P(X) :=
{
µ ∈M(X) |µ ≥ 0,

∫
X
µ = 1

}
,

the narrowly closed convex set of the probability measures overX. Moreover, by Prokhorov
Theorem [11] pag. 4, P(X) is a compact space in the narrow topology.

Given a Borel measurable map T : X → Y and a measure µ ∈ P(X), we define the
pushforward measure T# : P(X)→ P(Y ) as follows

T#µ(A) = µ(T−1(A)) ∀A ⊂ X Borel measurable.

It is easy to check that T#µ does the dine a probability measure over Y . Moreover, we
have the following useful formula∫

X
φ(x)dT#µ =

∫
X
φ(T (x))dµ, ∀φ ∈ C(X).
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We say that T transports µ to ν if T#µ = ν. Note that, given two measures µ, ν might
not exist a T that transport µ to ν, as shown by the following simple observation

µ = δ0 =⇒ T#µ = δT (0).

We will denote by ΓM (µ, ν) the set of Borel measureable maps transporting µ to ν.
We consider the set of couplings or transport plans between µ0 and µ1

(3.4) ΓK(µ0, µ1) :=
{
γ ∈ P(X ×X) |πi#γ = µi

}
,

where πi is the projection of X × X on the i = 0, 1 fractor. This set turns out to be a
non-empty (µ ⊗ ν ∈ ΓK(µ, ν)) compact set for the narrow convergence (see Theorem 1.4
[11].) Moreover,

ΓM (µ, ν) ↪→ ΓK(µ, ν)(3.5)
T 7 −→ (Id× T )#µ..(M ↪→ K)

A plan γ = (Id× T )#µ is said to be induced by the map T .

3.1 Monge Problem

In 1781 in Mémoire sur la théorie de déblais et des remblais G. Monge introduced for the
first time the following(2)

Problem 3.1 Fix µ, ν ∈ P(X). Describe the variational problem

(MP) CM (µ, ν) := inf
T∈ΓM (µ,ν)

∫
X
|T (x)− x|2dµ(x).

The value CM (µ, ν) is the so-called Monge transportation cost. As previously said,
this value can be +∞, since the constraint might not be satisfied.(3) In ’38 Kantorovich
proposed a relaxed version

Problem 3.2 Fix µ, ν ∈ P(X). Describe the variational problem

(KP) CK(µ0, µ1) = inf
γ∈Γ(µ0,µ1)

{∫
Td×Td

|x− y|2dγ(x, y)
}

Essentially, the fundamental idea of Kantorovic is that the element of mass located
at a point x can be transported among several locations. This is forbidden in the Monge
formulation. By standard tools we have

(2)Actually, the original problem was formulated for |x− y| as transport cost.
(3)There are also an other issue: Even if ΓM (µ, ν) 6= ∅, the constraint is not closed under weak conver-

gence.
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Proposition 3.1 The value

(3.6) CK(µ0, µ1) = min
γ∈Γ(µ0,µ1)

{∫
Td×Td

|x− y|2dγ(x, y)
}

is well defined by the direct method of Calculus of Variations and its square rootW2(µ0, µ1) =√
C(µ0, µ1) is a distance (Proposition 5.1 [11].) The non empty set of optimal transport

plans will be denoted by Γ0(µ0, µ1). Moreover, the space P(Td) endowed with this distance
has the following properties

(1) has topology inducing the narrow convergence (Theorem 5.11 [11]),

(2) is complete (Theorem 6.18 [12]),

(3) is geodesic (Theorem 5.27 [11]).

Note that, in general, CK(µ, ν) ≤ CM (µ, ν).

Example 3.1 (Solution of the previous problems for empirical measures) The above for-
mulations are stated for general measures in P(Td). Here, we specialize in the particular
case of empirical measures. It turns out that we are dealing with a Linear Programming
problem. We refer to [9] for more details on this discrete setting. Fix µ =

∑n
i=1 αiδxi and

ν =
∑m

j=1 βjδxi , with
∑n

i=1 αi =
∑m

j=1 bj = 1. Then

(3.7) ΓK(µ, ν)←→ U(α, β) =
{
P ∈ Rnm+ : PIn = α ,PTIm = β

}
,

while
(3.8)

ΓM (µ, ν)←→ UM (α, β) =
{
P ∈ Rnm+ : PIn = α ,PTIm = β,P permutation matrix

}
,

Morever,

(LP) CK(µ, ν) = min
P∈U(α,β)

Tr(CTP ),

where C = (Ci,j) ∈ Rn×m and Ci,j = |xi − xj |2. In the particular case n = m and
αi = βi = 1

n , as in the case of (EmpMea), a nice characterization is available. It is a
consequence of the celebrated Birkhoff- Von Neumann Theorem and every minimizer of
(LP) is a permutation matrix. In this particular case the Kantorovic Problem is equivalent
to the Monge one. Moreover, we have the following

(a) lifting property:

(Lift) W2(δx0 , δx1) = |x0 − x1|;

(b) contraction property:

(3.9)

W 2
2 (mN

x0
,mN

x1
) =︸︷︷︸
σ optimal permutation

1
N

N∑
i=1
|xi0 − x

σ(i)
1 |2

≤ 1
N

N∑
i=1
|xi0 − xi1|2 =︸︷︷︸

(dN )

‖x0 − x1‖2(Td)N
.
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In other words, we have the 1-Lipschitz embedding

iN : (Td)N ↪→ P(Td)

x 7→ mN
x .

We denote by λd the Lebesgue measure over Td.

3.2 When Monge=Kantorovic?

Suppose CM (µ, ν) < +∞, what can be said about the relation with CK(µ, ν)? Obviously,
CK(µ, ν) ≤ CM (µ, ν), by (3.5). In the Example (EmpMea), we have seen a sufficient
condition. Here, we state another important sufficient condition.

Theorem 2 (Brenier) Assume µ << λd. Then

• The problem (3.6) has a unique solution γ. Moreover, γ is induced by a map T and
T = ∇ψ, where ψ : Rn → (−∞,+∞] l.s.c., convex function, differentiable µ-a.e.;

• Conversely, if ψ is convex, l.s.c., differentiable µ a.e, with ∇ψ ∈ L2(µ), then T := ∇ψ
is optimal from µ to ν = T#µ.

• CK(µ, ν) = CM (µ, ν)

3.3 Control Problems

To introduce control problems in the Wasserstein space, we have to understand what is
the analogue in this framework of an ODE. We start with the following

Example 3.2 Let v : (0, T ) × Td → Rd be a time dependent vector field. We suppose
v ∈ L1

tLipx, namely v is uniformly Lipschitz in the spatial variable and uniformly L1

integrable in time. (This is not the sharp condition, see Lemma 8.1.4 [1]. By the Cauchy-
Lipthitz Theorem, the ODE

(3.10)

{
Ẋt = v(t,Xt)

Xs = x

is uniquely solvable. Now, take µ ∈ P(Td) and consider µt := (Xt)#µ. In this case, the
measure µt is the unique weak solution(4) of the following continuity equation

(CE)

{
∂tµt + div(v(t, x)µt) = 0

µ0 = µ

(4) d
dt

∫
φ(x)dµt =

∫
〈∇φ, vt〉dµt for a.e. t ∈ [0, T ] and ∀φ ∈ C1(Td)
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The previous example shows that under some regularity on vector field we have a
correspondence from micro to macro: It is sufficient to understand the behavior in time of
each particle Xt to reconstruct the dynamics of the entire population µt.

Another way to look at the (CE) relies on its connection with the metric structure of
(P(Td),W2).

Definition 3.1 Let (X, d) be a complete metric space and a, b ∈ R. A curve γ ∈
C([a, b];X) is 2-absolutely continuous, and we say γ ∈ AC2([a, b];X), if there exists
g ∈ L2([a, b]) s.t.

(AC2) d(γ(t), γ(s)) ≤
∫ t

s
g(τ)dτ ∀[s, t] ⊂ [a, b].

Theorem 3 ([1], Theorem 1.1.2) For any γ ∈ AC2([a, b])

(3.11) |γ′ |(t) : lim
s→t

d(γ(s), γ(t))

|t− s|

exists L1 -a.e. t ∈ (a, b). Moreover, |γ′ |(·) ∈ L2(a, b) and it is the minimal function satisfy-
ing (AC2).

Remarkably, we have a finer result in the case (X, d) = (P(Td),W2).

Theorem 4 (Absolutely continuous curves and the continuity equation, [1]) Let I be
an open interval in R, let µt : I → P(Td) be an absolutely continuous curve and let
|µ′|∈ L1(I) be its metric derivative, given by (3.11). Then there exists a Borel vector field
v : (x, t) 7→ vt(x) such that

(3.12) vt ∈ L2
µt(T

d), ‖vt‖L2
µt

(Td)≤ |µ′|(t) for L1-a.e. t ∈ I

and the continuity equation

(3.13) ∂tµt +∇ · (vtµt) = 0 in Td × I

holds in the sense of distributions.
Moreover, for L1-a.e. t ∈ I, vt belongs to the closure in L2

µt(T
d) of the subspace

(3.14)
{
∇φ : φ ∈ C∞(Td)

}
.
Conversely, if a narrowly continuous curve µt : I → P(Td) satisfies the continuity equation
for some Borel velocity field vt with L2

µt(T
d) ∈ L1(I), then µt : I → P2(Td) is absolutely

continuous and |µ′|(t) ≤ ‖vt‖L2
µt

(Td) for L1-a.e. t ∈ I.

Problem 3.3 Consider the following path cost

(3.15)


J (µ, (αt)t) =

∫ T
0 L(x, µt, αt)dµt +G(µT )

∂tµt + div(αtµt) = 0

µ0 = µ
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and denote by

(3.16)
A[a,b](µ) =

{
t 7→ (µt, αt) ∈ P(Td)× L2

µt : ∂tµt + div(µtαt) = 0

for (t, µ) ∈ (a, b)× P(Td) weakly &µa = µ
}

the extended set of admissible controlled curves in the interval [a,b].
Compute

(MCP) J (µ) := inf
(µt,αt)∈A[0,T ](µ)

J (µ, (αt)t).

It is also possible in this case to derive

Proposition 3.2 (Mean Field Dynamic Programming Principle) For t ∈ [0, T ), define

(3.17) J (t, µ, (αt)t) := inf
(µt,αt)∈At,T (µ)

∫ T

t
L(x, µs, αs)dµs +G(µT ).

Then, the value function

(MF-VF) U(t, µ) := inf
(µ·,α·)∈A[t,T ](µ)

J (t, µ, (αt)t)

satisfied the DPP property, namely

(MFDPP)
U(t, µ) = inf(µt,αt)∈At,T (µ)

∫ s
t L(x, µτ , ατ )dµτ + U(s, µs),

∀ t, s s.t. 0 ≤ t < s ≤ T.

Example 3.3 (Benamou-Brenier Formulation of W2) A particular case of this class of
control problems is the Benamou-Brenier control representation of W2. Fix T = 1, choose
L(x, µ, α) = |α|2

2 and

(3.18) Gν(µ) =

{
0 if µ = ν

+∞ otherwise .

In this case, we have

(3.19) W 2
2 (µ, ν) = inf

{∫ 1

0

∫
Td
|αt|2dµt | ∂tµt + div(µtαt) = 0;µ0 = µ, µ1 = ν

}

This formula motivates Otto’s interpretation of the Wasserstein space as a Riemannian
manifold [8]. Indeed, setting

(3.20) ‖∂tµt‖2µt := inf
αt

{∫ 1

0

∫
Td
|αt|2dµt | div(µtαt) = −∂tµt ; µ0 = µ, µ1 = ν

}
we derive

(3.21) W 2(µ, ν) = inf
µt

∫ 1

0
‖∂tµt‖2µtdt,

that it is reminiscent of the Riemannian formula for the geodesic distance squared.
See also [7] for futher details about this Riemannian interpretation.
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3.4 Subdifferential Calculus

In [1] a powerful subdifferential calculus has been developed in order to study gradient
flows in the space of probability measures. Following [4] we adapt this notion in order to
better deal with HJ equations.

Given γ, ξ ∈ P(Td × Rd), s.t (π1)#ξ = (π1)#γ = µ, and in this case we say γ, ξ ∈
Pµ(Td × Rd), we denote by

(3.22) Γµ(γ, ξ) =
{
θ ∈ P(Td × Rd × Rd) : (π1, π2)#θ = γ, (π1, π3)#θ = ξ

}
.

In analogy with the Riemannian framework, we introduce the exponential map

expµ : Pµ(Td × Rd)→ P(Td)(3.23)

γ 7 −→ (π2 ◦ (π1, π2 − π1))#γ(3.24)

Definition 3.2 Let U : [0, T ] × P(Td) → R be a continuous function. We call the
superdifferential of U at the point (t, µ) ∈ [0, T ] × P(Td) the closed convex subset of
R× P(Td × Rd) of elements (r, γ) satisfying

(∂+)
U(s, expµ ξ)− U(t, µ)−

∫
Td×Rd 〈z, v〉dθ(x, z, v)− r(s− t)

≤ o(
√∫
|v|2dξ(x, v)) + o(|t− s|),

for all ξ ∈ P(Td × Rd) and θ ∈ Γµ(γ, ξ). We will say (r, γ) ∈ ∂+
t,µU

Let U : [0, T ]× P(Td) → R be a continuous function. We call the subdifferential of U
at the point (t, µ) ∈ [0, T ]×P(Td) the closed convex subset of R×P(Td×Rd) of elements
(r, γ) satisfying

(∂−)
U(s, expµ ξ)− U(t, µ)−

∫
Td×Rd 〈z, v〉dθ(x, z, v)− r(s− t)

≥ o(
√∫
|v|2dξ(x, v)) + o(|t− s|),

for all ξ ∈ P(Td × Rd) and θ ∈ Γµ(γ, ξ). We will say (r, γ) ∈ ∂−t,µU .

As in the finite dimensional case, ∂+U(t, )µ∩∂−U(t, µ) contains at most one element. If
so, we say that U is differentiable and we call ∂t,µU = (∂tU(t, µ), ∂µU(t, µ)) theWasserstein
gradient, the common element in the intersection.

In general, the Wassertein distance squared is not differentiable(5). This result is an
immediate consequence of the following

Proposition 3.3 Fix ν ∈ P(Td). Then µ 7→ W 2(µ,ν)
2 is superdifferentiable. Moreover,

(3.25) ∂+
µW

2
2 (·, ν) ⊃

{
γ ∈ P(Td × Rd) : expν γ = µ

}
.

(5)It is the same for the geodesic distance squared in a positively curved Riemannian manifold, e.g. the
sphere. However, in this smooth case it is locally differentiable. This last property is not true in the
Wasserstein setting
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Note the analogy with the usual Riemannian framework:

(3.26) (M, g) Riemannian manifold =⇒︸︷︷︸
dg geodesic distance

∂pd
2
g(·, q) ⊃ {v ∈ TqM : expq(v) = p}.

Remark 3.1 It is not difficult to see that if U : P(Td) → R is differentiable, it satisfies
the following chain rule property

(0.5)
d

dt
U(µt) =

∫
〈∂µtU, v(t, x)〉dµt,

where µt is a weak solution of (CE).

3.5 Hamilton Jacobi Equations in P(Td) & Viscosity Solutions

Performing a DPP as in the first section of this manuscript, it is possible to show that, at
least formally (see also Remark 3.1), the value function should satisfy

(MF-HJ) −∂tU(t, µ) +

∫
H(x, µ, ∂µU)dµ = 0,

where H(x, µ, p) = supv∈Rd

{
− p(v)− L(x, µ, v)

}
.

We want to give a notion of solution of this equation inspired by the finite dimensional
viscosity theory.
Since ∂U(t, µ) ⊂ R × P(Td × Rd), the author of [4] introduced the following notion of
relaxation for the Hamiltonian(6)

(3.28) H(γ) :=

∫
H(x, p)dγ(x, p),

that of course coincides with the usual one if γ is induced by a map.

Definition 3.3 Let U : [0, T ]× P(Td). We say that U is a subsolution of (MF-HJ) iff,
for all (t, µ) ∈ (0, T )× Rd:

(MF S+) −r +H(γ) ≤ 0 ∀(r, γ) ∈ ∂+
t,µU

Let U : [0, T ] × P(Td). We say that u is a supersolution of (MF-HJ) iff, for all (t, µ) ∈
(0, T )× Rd:

(MF S−) −r +H(γ) ≥ 0 ∀(r, γ) ∈ ∂−t,µU

Let U : [0, T ]×P(Td). We say that U is a solution of (MF-HJ) if it is both a supersolution
and a subsolution.

(6)We understood it is quite natural in optimal transport.
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Under this definition, it can be proved the following

Theorem 5 (Comparison Principle) Let U, V : (0, T ) × P(Td) be a subsolution and a
supersolution of (MF-HJ), respectively. Then

(MF-CP) max
(t,x)∈[0,T ]×P(Td)

U(t, µ)− V (t, µ) ≤ max
µ∈P(Td)

U(T, µ)− V (T, µ).

The argument for the aforementioned result closely parallels the one used in the finite-
dimensional setting. However, in the present context, the only essential ingredient needed
to complete the proof is the superdifferentiability of the distance function, along with the
explicit characterization of the superdifferential of the squared distance, both derived in
Proposition 3.3.

Moreover, we also have the usual characterization of the value function.

Theorem 6 (Existence) Under the continuous assumption in section 4.2 [4] the value
function (MF-VF) is the unique viscosity solution of (MF-HJ).

4 Perspective

We list some results that will appear soon.

• In the main project of my PhD, under the supervision of Prof. D. Tonon, I focused
on the vanishing viscosity limit depicted in Section 1.3 in the infinite dimensional
setting P(Td). The analogue of (HJε) in the Wasserstein framework is

(4.1) −∂tU +

∫
Td
H(x, ∂µU)dµ+ ε

∫
Td

divx∂µUdµ = 0

From the control point of view, this equation expresses optimality of the value in
controlling the Fokker Planck

(4.2) ∂tµt + div(αtµt)− ε∆µt = 0.

Unfortunately, adding this second operator does not produce a regularization effect.
However, we were able to establish the vanishing viscosity limit and exibit a rate of
convergence analogous to the finite dimensional case.

• Extend the theory into the space of positive measures M+(Td). In other words
we allow the measures to have different masses. The metric structure has to be
renovated and a natural choice is the one introduced in [6]. This is a joint work with
C. Bertucci.
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