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Seminario Dottorato 2021/22

Preface

This document offers an overview of the activity of Seminario Dottorato 2021/22.
Our “Seminario Dottorato" (Graduate Seminar) has a double purpose. At one hand, the

speakers — usually Ph.D. students or post-docs, but sometimes also senior researchers —
are invited to communicate their researches to a public of mathematically well-educated but
not specialist people, by preserving both understandability and the flavour of a research
report. At the same time, people in the audience enjoy a rare opportunity to get an
accessible but also precise idea of what’s going on in some mathematical research area that
they might not know very well.

Due to the continuation of the COVID-19 pandemic emergency, all sessions of the
seminar have been held in dual mode, both in presence and online. Once more we have
observed that keeping up this activity has helped the PhD students to stay in contact
among them and with the Department life.

Let us take this opportunity to warmly thank once again all the speakers for having
held these interesting seminars and for their nice agreement to write down these notes to
leave a concrete footstep of their participation.

We are also grateful to the collegues who helped us, through their advices and sugges-
tions, in building an interesting and culturally complete program.

Padova, June 20th, 2022
Corrado Marastoni, Tiziano Vargiolu
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Abstracts (from Seminario Dottorato’s webpage)

Wednesday 6 October 2021

The Modularity Theorem and Fermat’s Last Theorem
Luca MASTELLA (Padova, Dip. Mat.)

Fermat’s Last Theorem (FLT) is one of the most important and challenging problems of the last
centuries in Number Theory. Its complete proof rests on the Modularity Conjecture for semistable
elliptic curves defined over Q, proven to be true only in 1994 by A. Wiles.
The seminar will give an introduction to FLT, focusing on some historical aspects of its proof.
In the second part we will give to the audience the statement of the Modularity theorem and
introduce in an elementary way the arithmetic objects involved in it. We intend moreover to give
a brief account of the implication Modularity =⇒ FLT.

Wednesday 17 November 2021

Embeddings of spaces with multiweighted derivatives and their applications
Zhanar KEULIMZHAYEVA (S. Seifullin Kazakh Agro Technical University)

The analysis of function spaces is particularly relevant in several areas of Mathematics such as
differential and integral equations. Among function spaces, the weighted function spaces turn out
to be suitable for the analysis of boundary value problems with various types of singularities.
This seminar presents a brief overview of with weight functional space of the Kudryavtsev type,
called the space with multiweighted derivatives. In the first part of the talk, we will define space
with multiweighted derivatives and consider the behavior of the function at the boundary of the
investigated space. Following the ideas of L.D. Kudryavtsev, we will define the boundary values
of a function and of its derivatives at the singular point. In addition, we will give necessary and
sufficient conditions for weight functions in order that each function of the space is stabilized
to some unique polynomial at zero, and will provide estimates for the rate of stabilization to a
polynomial. Next, we will introduce functionals that depend on the boundary values at the singular
point and that are equivalent to the norm of the space. In the very last part of the talk, we will
introduce necessary and sufficient conditions for weight functions so that continuous and compact
embeddings between spaces of multiweighted derivatives hold. Moreover, we will show conditions
on the weight functions in order that the inequality of the Nikol’skii-Lizorkin-Kudryatsev type is
valid.
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Wednesday 1 December 2021

Mathematical Finance: a Tale of Stochastic Processes
Guillaume SZULDA (Padova, Dip. Mat.)

Financial markets are highly uncertain environments where the evolution of asset prices exhibits
random fluctuations over time, in particular due to complex and unpredictable market mechanisms.
In this regard, stochastic analysis, which is at the intersection between the theory of probability
and functional analysis, plays a fundamental role in financial modeling.
Being aware of the non-specialist yet mathematically strong nature of the audience, I divide my
talk into two major parts. The first part is mostly introductory, where I first give/recall elementary
but indispensable notions of probability and stochastic calculus, then I illustrate the fundamentals
of mathematical finance. I mention that throughout this part, I put the emphasis on the modeling
aspects, most notably the extensive application of stochastic processes. In the second part, I
present the topic of my doctoral research, i.e. Branching processes and multiple term structure
modeling. I start by defining the multiple term structure framework and providing a construction
of Continuous-state Branching processes with Immigration (CBI), which constitute a sophisticated
class of stochastic processes. I carry on with examples of how CBI processes can be exploited for the
modeling of financial markets where multiple term structures typically coexist. Finally, I propose
some avenues of further developments.

Wednesday 15 December 2021

The critical node/edge detection problem on trees
Syed MD Omar FARUK (Padova, Dip. Mat.)

Critical node or edge detection problems are a family of optimization problems defined on graphs,
where one is required to remove a limited number of nodes and/or edges in order to minimize some
measure of the connectivity of the residual graph. Problems of this type are important from a
practical point of view because of their relevance in a number of practical applications.
We start this seminar by giving the definitions of the critical node/edge detection problem (CNDP/
CEDP) and some connectivity metrics with an example. After that, we present a dynamic pro-
gramming approach for solving the CNDP on trees when the node weights are all equal to one and
all connections between pairs of nodes have unit cost. Then, we will move to consider the CEDP
on trees and similarly deal with the case with unit costs and unit edge weights. Finally, we will
present dynamic programming algorithms for the ?mixed? case, in which nodes and edges can be
simultaneously removed from the graph.
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Wednesday 19 January 2022

Optimizing smooth objectives on convex sets without projections
Damiano ZEFFIRO (Padova, Dip. Mat.)

The well known gradient descent method for smooth unconstrained optimization can be extended
in a straightforward way to problems with convex constraints by using projections. However, in
many cases there are more effective ways to generate feasible descent directions. One of the most
popular alternatives to the projected gradient method is the Frank-Wolfe method, characterized
by a linear minimization subproblem replacing the projection subproblem.
In this seminar, after a brief review of the above mentioned methods, some examples of sets com-
monly used in optimization where linear minimization is cheaper than projection will be discussed.
Then, variants to improve the convergence rate of the Frank-Wolfe method will be presented, to-
gether with a general framework to study such variants. Finally, an algorithm for fast cluster
detection in networks based on a Frank-Wolfe variant will be described.

Wednesday 2 February 2022

Modular curves and Heegner points
Daniele TROLETTI (Padova, Dip. Mat.)

One the the main open conjecture is the one due to Birch and Swinnerton-Dyer about elliptic
curves. There are many attempts to prove it but they were able to prove only some special cases,
like the rank 1 case proven by Kolyvagin using the Heegner points method.
This seminar will give an introduction on the basis required to define the Heegner points, such
as elliptic and modular curves. After that we are going to define Heegner points and show some
results achieved using them.

Wednesday 23 February 2022

Beyond Nash Equilibria in Mean Field Games
Ofelia BONESINI (Padova, Dip. Mat.)

The concept of Nash Equilibrium is the most important (and famous) notion in Game Theory.
Assuming that the audience is not familiar with the topic, we will first warm up with an introduction
to recall all the basic definitions and results. Then, we will focus on two extensions: Correlated
Equilibria and Mean Field Games. Finally, we will gather things together to see how the definition
of a Correlated solution can be formulated and its validity checked in the mean field context. Time
permitting, I will mention some results of my research.
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Wednesday 2 March 2022

Optimal control problems: existence of minimizers, necessary conditions, and gap phe-
nomena
Giovanni FUSCO (Padova, Dip. Mat.)

By optimal control problem we mean the minimization of a functional over arcs that satisfy certain
constraints (dynamics, control, endpoint and state constraints).
After a brief introduction on the subject, we will discuss the notion of closure of trajectories
associated with a controlled differential equation, so that to present an existence theorem for
optimal control problems. Then, we will announce the Pontryagin’s Maximum Principle, that is,
the most known set of necessary conditions that has to be fulfilled by a minimizer. Afterwards, we
will introduce the most common extensions for the optimal control problems which do not admit
minimizers and we will analyze the properness of such extensions. In particular, we will deal with
the issue of gap phenomena between an optimal control problem and an its extension and we will
prove a link between this occurrence and a topological property of the trajectories which is usually
called isolation. Finally, we will establish that isolated trajectories satisfy the Maximum Principle
in abnormal form, i.e. there exists at least a set of multipliers with cost multiplier equal to zero.
We will conclude with some examples that illustrate the outcomes.

Wednesday 13 April 2022

The Graph p-Laplacian Eigenvalue Problem
Piero DEIDDA (Padova, Dip. Mat.)

In the last years graphs have been used to model a large variety of phenomena, such as the
classical transportation networks, the social network interactions, the chemical reactions, ecological
interactions. In the study of the structure of a graph, two classical problems are the shortest path
problem and the optimal partition or cut problem. Interestingly both of these problems can be
related to the p-Laplacian eigenvalue problem and in particular with the two degenerate cases of
p = 1 and p = ∞. The p-Laplacian eigenvalue problem historically arose from the study of the
classical Poincare’ constant and can be addressed as the study of the critical points of the so called
"Rayleigh quotient". It is one of the most classical example of non-linear eigenvalue problem and
has been widely studied both in the continuous and discrete setting. We provide a short summary
of the main results in this field, highlighting the differences from the linear (p = 2) case and the
topological information provided by the limit cases p = 1 and p = ∞. We will show at the end
some original numerical schemes for the computation of the p-eigenpairs.
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Wednesday 11 May 2022

Kolmogorov-Arnold-Moser (KAM) stability and its application in the planetary n-body
problem
Rita MASTROIANNI (Padova, Dip. Mat.)

The study of exoplanetary systems with two or more planets in orbits with non-zero mutual
inclination is an interesting topic of Hamiltonian dynamics, in view of the many applications related
to the astronomical discovery, in the last 20 years, of several such systems. The present report
discusses the mathematical context of the theory of the long term stability for nearly Keplerian
perturbed n-body systems, following the so-called Kolmogorov-Arnold-Moser (KAM) Theorem.
The KAM Theorem is a cornerstone of canonical perturbation theory: it allows to conjugate,
through a convergent sequence of canonical trasformations, particular solutions of the “pertubed”
dynamical system to the invariant dynamics on a torus. We provide a short summary of classical
results of perturbation theory. We also briefly present some recent progress on the construction
of the Kolmogorov normal form for ‘isochronous systems’. Finally, we explain in an introductory
manner, how the above concepts can be implemented in exoplanetary systems with a 3D-orbital
architecture.

Wednesday 25 May 2022

Chaotic dynamical systems and applications to the solar system dynamics
Mattia ROSSI (Padova, Dip. Mat.)

Dynamical systems are an essential tool to model physical phenomena in applied sciences whose
state changes over time according to either differential or discrete difference equations. In this con-
text two concepts are in opposition: “order”, or “integrability”, versus “chaos”. Integrable systems,
for which all the solutions can be explicitly analytically determined, are special and represent only
a crude approximation of the real dynamics. On the other hand, more accurate models are usu-
ally represented by non-integrable differential equations, whose solutions exhibit a highly sensitive
dependence on initial conditions, termed as chaotic.
In this talk we discuss some of the main geometric and topological properties of deterministic
chaos in connection with orbital stability of small objects in our solar system. After a short recap
of the theory of non-linear dynamical systems, we present a modern approach of detecting and
quantifying chaotic behaviors using finite time chaos indicators, a numerical strategy capable to
capture the dynamical structure of the phase space. In the second part of the seminar, we introduce
the restricted N -body problem in Hamiltonian mechanics and implement the above technique to
discriminate between the realms of regular and chaotic motions of asteroids.
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Wednesday 15 June 2022

Introduction to sub-Riemannian geometry
Alessandro SOCIONOVO (Padova, Dip. Mat.)

We discuss the general notions of sub-Riemannian geometry. In particular, we study in parallel a
toy sub-Riemannian model taken from real life and the general sub-Riemannian setting. In the final
part of this talk, we introduce the open problem of the regularity of sub-Riemannian geodesics.
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The Modularity Theorem
and Fermat’s Last Theorem

Luca Mastella (∗)

Abstract. Fermat’s Last Theorem (FLT) is one of the most important and challenging problems
of the last centuries in Number Theory. Its complete proof rest on the Modularity Conjecture for
semistable elliptic curves defined over Q, proven to be true only in 1994 by A. Wiles. The seminar
will give an introduction to FLT, focusing on some historical aspects of its proof. In the second
part we will give to the audience the statement of the Modularity theorem and introduce in an
elementary way the arithmetic objects involved in it. We intend moreover to give a brief account
of the implication Modularity =⇒ FLT.

1 Historical Remarks

It is well known at least since the ancient Greek time, and even before, that for the sides
of a right triangle the equation

(P ) a2 + b2 = c2

holds, where a, b are the length of the legs and c is the length of the hypothenuse, that
is a theorem called after Pythagoras. In number theory we are interested to this kind
of equations, namely of polynomial equations with integral coefficient (called Diophan-
tine equations) and in their integral solutions. The triples (a, b, c) ∈ Z3 that solve the
equation (P ) are called in particular Phytagorean triples and any such a solution corre-
spond to a right triangle with sides of integral length. There are some trivial solutions
of this equation, namely the triples (0, 0, 0), (±1, 0,±1), (0,±1,±1), but with few calcu-
lations one can easily show that there are also a huge amount of nontrivial ones, e.g.
(3, 4, 5), (5, 12, 13), (7, 24, 25), etc. Naturally it comes up the question: how many are
them? Are they a finite number or an infinite one? In the first case can we list them all?
Or, in the latter, can we parametrize them in some way?

First of all observe that whenever (a, b, c) is an integral solution and x ∈ Z, then
(ax, bx, cx) is an integral solution, too. Therefore we have an infinite set of pythagorean

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 6 October 2021.
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triples, but one can show that even the “primitive” ones (meaning that a, b and c have no
common factor) are an infinite set and are of the form(

± (m2 − n2),±2mn,±(m2 + n2)
)
,
(
± 2mn,±(m2 − n2),±(m2 + n2)

)
where m,n ∈ Z, relatively primes and not both odd. This characterization easily follows
from the “prime decomposition” in the ring of Gauss integers Z[i]. (see [4, Ch. 1])

Once we know how all the pythagorean triples are made it is natural to consider equa-
tions of the form

(Fn) xn + yn = zn,

for n > 2. They obviously still have the trivial solutions (0, 0, 0), (±1, 0,±1), (0,±1,±1),
but if one try to find some nontrivial ones he could have really an hard time. In fact it is
now a theorem that there are none.

Fermat’s Last Theorem (FLT) Let n > 2, if (a, b, c) ∈ Z3 is a solution of (Fn), then
abc = 0.

Fermat’s Last Theorem is one of the most important and challenging problems in
Number Theory. Since it has been formulated, many of the most important mathematicians
faced with it and a lot of beautiful mathematics was built in the attempt of proving it.
The statement of the theorem was an intuition of the French judge Pierre Fermat (1608-
1665), that wrote it (∼ 1630) without proof on the margin on a copy of the Arithmetica of
Diophantus, as he was used to do. But, conversely to his other theorems, that were proved
(or sometimes disproved) by the mathematicians of that time, this theorem resisted to any
attempt of proving it, despite the claim of Fermat of having a beautiful proof in his hands.

Special cases were proved thanks to the work of the best mathematicians of the last
centuries (the most relevant is the work of Kummer), but the general case were fully proved
only in 1994 by Andrew Wiles (with the help of a former student of him, Richard Taylor,
with whom he filled a missing point in its proof) with some of the most advanced tools of
modern Number Theory and Arithmetic Geometry.

We resume the main steps of the history of this proof.

• (1885) G. Frey suggest that the existence of a nontrivial integral solution of the FLT
equation might contradict the Modularity conjecture of Taniyama, Shimura and Weil;

• (1985-6) J. P. Serre formulated its Epsilon Conjecture and proved that this together
with the Modularity Conjecture would imply FLT;

• (1986) K. Ribet proved Serre’s Epsilon Conjecture, reducing the proof of FLT to the
Modularity Conjecture for semistable elliptic curves;

• (1993-4) A. Wiles gave a (later found incomplete) proof of the Modularity Conjecture
for semistable elliptic curves;

• (1994-5) A. Wiles and R. Taylor filled the gap into Wiles proof.

This seminar is indeed meant to be an introduction to the Modularity conjecture and
to give an idea of the reason why it implies FLT.

Università di Padova – Dipartimento di Matematica 10
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2 Elliptic curves

Despite the name Number Theory, or Arithmetic, the focus of the modern discipline is
no more the integer numbers in themselves, but it had enriched with a lot of other tools
coming from Algebra, Geometry, Analysis, etc. One of the most important objects studied
in modern Number Theory are Elliptic curves. A good reference for the arithmetic theory
of elliptic curves is [7].

Definition An Elliptic curve E is the plane complex curve whose points are the solution
of the cubic equation

y2 = 4x3 − g2x− g3,

with g2, g3 ∈ C and ∆ = g3
2 − 27g2

3 6= 0.

Such an equation is called the Weierstrass equation of the elliptic curve. In a more
geometric language an Elliptic Curve is a smooth complex algebraic cubic curve (see Fig-
ure 1). The feature that makes elliptic curves more significant for Number Theory than
other algebraic plane curves is that their points give rise to an abelian group.

(a) Three elliptic curves.

(b) Two cubic singular curves.

Figure 1. An example of the real points of some elliptic curves (a) and some cubic curves that are not
elliptic (b). Note that the elliptic curves are smooth, while the others have a singular point. Indeed, there
is a classification theorem of cubic complex plane curves up to linear change of coordinates: either they
are elliptic curves, or they have exactly one singular point that can be a note or a cusp. The two figures
are taken from [7] (Figures 3.1 and 3.2).
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Figure 2. Geometric description of the composition law on the elliptic curve E. On the left we see the
sum of two points P 6= Q: in this case P ⊕ Q is obtained reflecting w.r.t the x-axis the point R, namely
the third point in which the line through P and Q meets E. On the right side we see the sum P ⊕ P : it
is the reflection of the other point in which the tangent line at P meets E. This figure is taken from [7]
(Figure 3.3).

In order to define it we need to compactyfy the curve with a point at infinity (that in
the sense on projective geometry is the point of infinity of the y-axis), that we denote by
∞. The set of complex (projective) points of E is defined to be

E(C) = { (x, y) ∈ C2 : y2 = 4x3 − g2x− g3, s.t. x, y ∈ C } ∪ {∞} .

Proposition The composition law described in geometric terms in Figure 2 makes E(C)
into an abelian group, whose zero is ∞ and that, in coordinates, is defined algebraically
(i.e. by rational functions, in other words by quotients of polynomials).

A complex projective algebraic variety (i.e. the zero locus into the complex n-th pro-
jective space of a set of homogeneus polynomials) whose points form a group (necessarly
abelian) whose composition law is algebraically defined is called an abelian variety over C.
Therefore the previous proposition says that elliptic curves are abelian varieties. It turns
out that all abelian varieties (over C) of dimension 1 are elliptic curves.

We begin to do Number Theory when the equation of an elliptic curve has only rational
coefficients (ore more generally number fields, i.e. finite degree extensions of Q). The next
definition give us a little bit of language on that.

Definition If K is any subfield of C and g2, g3 ∈ K we say that E is defined over K. If
E is defined over K and K ⊆ L ⊆ C is an intermediate field we define

E(L) = { (x, y) ∈ C2 : y2 = 4x3 − g2x− g3, s.t. x, y ∈ L } ∪ {∞} = E(C) ∩ (L2 ∪ {∞})

the set of L-rational point.

In particular one see, by the expression of the sum in terms of coordinates, that E(L)
is a subgroup of E(C), namely if we start with two points with coordinate belonging to L,
then the coordinates of their sum still belong to L.

The next theorem gives the structure of the group of (Q)-rational points of E: it gives
an example of how one get important arithmetic invariants working with elliptic curves.
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Theorem Let E be an elliptic curve defined over Q, then E(Q) is a finitely generated
abelian group, hence isomorphic to E(Q)tors × Zr, where E(Q)tors denotes the Q-rational
torsion points (i.e. points of finite order, namely points P ∈ E(Q) such that nP =∞ for
some n ∈ N>0), and r ∈ N≥0 is called the (algebraic) rank of E.

The rank of an elliptic curve in particular is an important arithmetic invariant and is
the subject of important conjectures, as e.g. the Birch and Swinnerton-Dyer conjecture
(one of the Millennium problems) who relates the algebraic rank of an elliptic curve with
the so called analytic rank, that is the order of vanishing of the L-function attached to it
(it is a complex analytic function that one can attach to the an elliptic curve) at s = 1.
In fact, there is no known finite time algorithm to compute the algebraic rank of a general
elliptic curve.

3 Modular Curves

An alternative way to describe an elliptic curve is to see it as Riemann surface, i.e. as a
“complex differential manifold of dimension 1”. A reference for this material is [1].

Definition A Riemann surface is a topological space X such that locally at any point
x ∈ X there is an homeomorphism ϕ : U → V of an open neighborhood U of x with an open
subset V of C and such that the local charts are compatible, in the sense that the change
of coordinates ψ ◦ϕ−1 : ϕ(U ∩U ′)→ ψ(U ∩U ′) are biholomorphic maps (holomorphic and
bijective). Here ϕ : U → V and ψ : U ′ → V ′ are two local charts such that U ∩ U ′ 6= ∅.
The set of local charts of a Riemann surface is called a complex atlas.

Example The most trivial example of Riemann surface is of course C itself, with the
identity as the unique chart; another easy example is the so called Riemann Sphere, that
is a sphere covered by two local charts: the two stereographic projections, one defined
on the whole sphere without the North pole, the other on the sphere without the South
one. Note that the latter example is a compact Riemann surface, that is topologically the
compactification with one point of the first one.

Figure 3. A lattice in the complex plane. This picture has been taken from [3] (Figure 1.1).

Università di Padova – Dipartimento di Matematica 13
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(a) (b)

Figure 4. A fundamental parallelogram (a): up to the identification of the opposite sides it represent the
quotient space C/Λ. Once identified the opposite sides it becomes a topological torus (b). The picture (a)
has been taken from [3] (Figure 1.2) and (b) from Wikipedia.

Definition-Proposition A lattice in C is a free subgroup of rank 2, i.e. a subset of the
form Zω1⊕Zω2, where ω1, ω2 ∈ C, such that Im(ω2/ω1) > 0 (see Figure 3). The quotient
group

C/Λ = {x+ Λ: x ∈ C }
endowed with the quotient topology can be endowed with a complex atlas. The resulting
Riemann surface is called a complex torus (it is indeed topologically a torus, as Figure 4
explains).

The important result is that, using the Weierstrass ℘ fuction, any complex torus can be
embedded into the complex projective plane in a biholomorphic way as an elliptic curve and
all elliptic curves are obtained in this way, hence as Riemann surface the elliptic curves and
complex tori are the same thing. Therefore classify elliptic curves up to biholomorphism
is the same thing as classify complex tori. Let us do it.

Figure 5. A fundamental domain for SL2(Z). In formulas it is D = { τ ∈ H : |τ |≥ 1, |Im(τ)|≤ 1/2 }. This
picture has been taken from [2] (Figure III.1).

Proposition Two complex tori C/Λ and C/Λ′ are biholomorphic if and only if Λ and Λ′

are homotetic, that is Λ′ = εΛ for some ε ∈ C×.

In particular, writing τ = ω2/ω1 for a lattice Λ = Zω1 ⊕ Zω2, any complex torus is
biholomorphic to a torus Eτ = C/Λτ , where Λτ = Z⊕ Zτ and Im(τ) > 0. Moreover:

Università di Padova – Dipartimento di Matematica 14
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Corollary Eτ is biholomorphic to Eτ ′ if and only if there are a, b, c, d ∈ Z with ad−bc = 1
such that τ ′ = aτ+b

cτ+d .

With a more sophisticate language this means that classify all elliptic curves up to
biholomorphism is equivalent to classify the numbers τ that belong to the complex upper
halfplane

H = { τ ∈ C : Im(τ) > 0 }

up to the (left) action of the group

SL2(Z) =

{
γ =

(
a b
c d

)
∈M2(Z) : det(γ) = 1

}
given by the formula (

a b
c d

)
· τ =

aτ + b

cτ + d
.

We will denote the set of orbits by Y (1) = SL2(Z)\H. One can prove that Y (1) has the
structure of a Riemann surface, that we call an (open) Modular Curve. We can see how it
works topologically: Figure 5 represents a so called fundamental domain, i.e. a connected
subset of the complex plane that (outside the borders) is in bijection with the orbits of the
action. Giving to Y (1) the quotient topology is therefore equivalent to glue the left and
right borders of the fundamental domain.

Other (open) modular curves can be defined as the quotient Γ\H of H by the induced
action of some particular a subgroups Γ of SL2(Z), called congruence subgroups. We are
in particular interested in congruence subgroups of the form

Γ0(N) =

{
γ =

(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
, N ∈ N>0.

The modular curve Y0(N) = Γ0(N)\H can be interpreted as a classifying space, too: it
parametrizes the couples (E,C), where E is an elliptic curve and C is a cyclic subgroup
of E of order N .

Another important features of modular curves is that they can be compactified with a
finite number of points, called cusps, in a canonical way, giving rise to a compact Riemann
surface, that we call a closed Modular Curve. We will denote the compactifications by the
letter X, so e.g. X0(N) is the compactification of Y0(N). The importance of X0(N) is that
it can be embedded (biholomorphically) into the complex projective plane as an algebraic
curve defined over Q (i.e. it has an equation with all rational coefficients). Hence in the
rest we will treat X0(N) as such a curve.

4 Modularity

We can now state the definition of modularity for an elliptic curve. Heuristically an elliptic
curve is modular if it is a quotient of a modular curve.

Definition Let E an elliptic curve defined over Q of conductor NE . We say that E is mo-
dular if there is a surjective morphism π : X0(NE)→ E of algebraic curves defined over Q.
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The integer NE occurring above, the conductor of E, is another arithmetic invariant at-
tached to an elliptic curve, that encodes its reduction type.

Modularity Theorem Any elliptic curve E defined over Q is modular.

The FLT is a consequence of this theorem, that was conjectured by Shimura, Taniyama
and Weil between 1957 and 1967. It was proved for semistable elliptic curves by Wiles and
Taylor in 1993-1995 (and this case is enough for FLT), and it was established in general
only in 2001 in a joint paper by Breuil, Conrad, Diamond, Taylor and Richard.

4.1 Tate Module

To explain how the Modularity theorem for semistable elliptic curves implies FLT we need
to introduce another important arithmetic object attached to an elliptic curve E, the so
called Tate Module. For simplicity let E be defined over Q. In this paragraph we assume
that the reader has some familiarity with l-adic numbers and the notion of Galois group.

Let l a rational prime, r ∈ N>0. Then the set of lr-torsion points

E[lr](C) = {P ∈ E(C) : lrP =∞}

is a finite abelian group isomorphic to Z/lrZ × Z/lrZ, as it can be easily seen from the
complex torus description of E. Therefore the inverse limit

TlE = lim←−
r

E[lr](C) ∼= Zl × Zl

has a natural structure of Zl module.
Since E is defined over Q, then the torsion points have coordinate in Q̄ and hence

the absolute Galois group of Q (i.e. the group of field automorphism of Q̄ fixing Q)
acts on E[lr](C) and therefore on TlE (where σ ∈ Gal(Q̄/Q) acts on a point P ∈ E(Q̄)
coordinatewise).

Defining VlE = TlE ⊗ Ql
∼= Ql × Ql, and letting Gal(Q̄/Q) act on VlE by σ ⊗ 1, we

obtain an l-adic representation of Gal(Q̄/Q).

Definition Let K be a finite extension of Ql, an l-adic Galois representation is a K-vector
space V endowed with a continuous action of Gal(Q̄/Q). Equivalently, by the choice of a
K-basis of V , we may see the representation V as a continuous group homomorphism

ρ : Gal(Q̄/Q) −→ GL(V ) ∼= GLn(K)

where n = dimK V and ρ(σ)x = σ · x, for σ ∈ Gal(Q̄/Q), x ∈ V .

The first example of an l-adic Galois representation is, as we said above, the Tate
module of an elliptic curve. Note that, if we denote by

ρE,l : Gal(Q̄/Q)→ GL2(Ql)

the attached homomorphism, the very definition of Tate module shows that Im(ρE,l) ⊆
GL2(Zl) and therefore we may see it as

ρE,l : Gal(Q̄/Q)→ GL2(Zl)
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and reducing the coefficients of the matrices modulo the maximal ideal of Zl we get the
residue representation

ρ̄E,l : Gal(Q̄/Q)→ GL2(Fl),

that can be tought as an Fp-vector space together with a continuous action of the absolute
Galois group of Q.

In modern Number Theory l-adic Galois representation are extremely important: we
may attach l-adic representations to a lot of arithmetic objects and many arithmetic prop-
erties of them can be read by their attached Galois representations. For instance the
modularity theorem can be expressed using Galois representations.

Proposition An elliptic curve E is modular if and only if there exist a modular newform
f ∈ S2

(
Γ0(NE)

)
of level NE such that for some prime l the attached representation ρf,l is

equivalent to ρE,l.

We don’t introduce modular forms as in this context they are only an auxiliary tool,
the interested reader can find a nice introduction to them in [1]. We remark only that we
may attach a field Kf , finite extension of Ql, to any modular form f as in the proposition
and a Galois representation

ρf,l : Gal(Q̄/Q)→ GL2(Kf )

with image in GL2(Of ), where Of is the ring of integers of Kf . It still make sense therefore
to consider the residual representation

ρ̄f,l : Gal(Q̄/Q)→ GL2(κf ),

where by κf we denote the residue field of Of (that is a finite field, finite extension of Fl).

4.2 Modularity =⇒ FLT

We now describe how this theorem implies FTL. Fist of all note that it is enough to prove
it for n = p an odd prime, as if n = mp and (Fn) has a solution (a, b, c), then (am, bm, cm)
is a solution of (Fp). Suppose by contraddiction that (Fp) has a nontrivial primitive (i.e.
a, b, c have no common factor) solution, then also the equation

(F ′p) ap + bp + cp = 0

has a nontrivial primitive solution. Let (a, b, c) ∈ Z3 be such a solution. Without loss of
generality we may assume that a ≡ −1 mod 4 and b is even. Indeed we know that exactly
one of a, b and c must be even, as if two of them were even the third would be even, too,
but then they would have 2 as common factor. Thus at least two of them must be odd,
and therefore the third one is forced to be even; permuting a, b and c fix the even one to
be b. Now since a is odd, either a ≡ 1 mod 4, or a ≡ −1 but in the latter case we may
replace the triple (a, b, c) with (−a,−b,−c), that is still a nontrivial primitive solution of
(F ′p), and hence we may assume that a ≡ 1 mod 4. We attach to a triple as above a
particular elliptic curve, known as Frey curve,

E(ap,bp,cp) : y2 = x(x− ap)(x+ bp)

Università di Padova – Dipartimento di Matematica 17



Seminario Dottorato 2021/22

that can be proven to be semistable (and therefore modular by Wiles’ Theorem) and to
have discriminant and conductor

∆ = 2−8(abc)2p, N =
∏

l prime, l|abc

l.

By modularity there exist a newform f of level N such that ρE(ap,bp,cp)
is equivalent to ρf,l.

But, since it can be proven that ρ̄E(ap,bp,cp)
has some special properties (it is absolutely

irreducible, unramified outside 2l and flat at l), then ρ̄f,l satisfies the hypotesis of the epsilon
conjecture, proven by Ribet (see [6]); hence the residual representations ρ̄E(ap,bp,cp)

and ρ̄g,l
are equivalent, for a suitable newform g ∈ S2(Γ0(2)). This fact leads to a contraddiction,
finally proving Fermat’s Last Theorem, as the dimension of S2(Γ0(2)) is known to be 0,
thus such a g does not exist.

5 Further readings on FLT

For an hystorical introduction to FLT see the first chapter of [5]. The rest of the book
discuss in detail what was known until that Frey suggested, few years after the publication
of this book, a possible link between Fermat’s Last Theorem and the Shimura-Taniyama-
Weil conjecture on modularity.

For a short and elementary reading that gives the flavor of Kummer’s approach to FLT
in a special case, see the first chapter of [4].

For a brief account of Wiles proof of FLT see [8]. The book that contains this article
is an introduction to the main tools used into the proof, all discussed separately for their
own sake in different articles by authors expert in that particular subject.
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Embeddings of spaces with multiweighted
derivatives and their applications

Zhanar Keulimzhayeva (∗)

Abstract. The analysis of function spaces is particularly relevant in several areas of Mathematics
such as differential and integral equations. Among function spaces, the weighted ones turn out
to be suitable for the analysis of boundary value problems with various types of singularities.
This seminar presents a brief overview of with weight functional space of the Kudryavtsev type,
called the space with multiweighted derivatives. In the first part of the talk, we will define space
with multiweighted derivatives and consider the behavior of the function at the boundary of the
investigated space. Following the ideas of L.D. Kudryavtsev, we will define the boundary values
of a function and of its derivatives at the singular point. In addition, we will give necessary and
sufficient conditions for weight functions in order that each function of the space is stabilized
to some unique polynomial at zero, and will provide estimates for the rate of stabilization to a
polynomial. Next, we will introduce functionals that depend on the boundary values at the singular
point and that are equivalent to the norm of the space. In the very last part of the talk, we will
introduce necessary and sufficient conditions for weight functions so that continuous and compact
embeddings between spaces of multiweighted derivatives hold. Moreover, we will show conditions
on the weight functions in order that the inequality of the Nikolâskii-Lizorkin-Kudryatsev type is
valid.

Introduction

The idea to study function spaces with the purpose to apply them to different problems
concerning differential equations appeared in papers by S. L. Sobolev in the thirties.

The Sobolev space Wm
p (Ω). We define a functional ‖·‖m,p, wherem is a positive integer

and 1 ≤ p ≤ ∞, as follows:

(0.1) ‖u‖m,p =

 ∑
0≤α≤m

‖Dαu‖pp

 1
p

, p ∈ [1,∞),
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(0.2) ‖u‖m,∞ = max
0≤|α|≤m

‖Dαu‖∞, p =∞,

where Dαu is the weak (or distributional) partial derivative.

Wm
p (Ω) ≡ {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ m}, Ω ∈ Rn.

Equipped with the appropriate norm (1) or (2) this is called Sobolev space over Ω.

From this time the theory of Sobolev spaces has been developed to be a very powerful
instrument for solving boundary value problems of differential equations.

In view of various types of questions connected to differential equations a great number
of new function spaces has appeared and this, in turn, has implied the appearance of new
directions in Analysis such as the theory of generalized functions, the embedding theorems
and embedding compactness of function spaces the problem of traces and the variational
methods for studying boundary value problems.

In particular, the developed methods have contributed crucially to the development of
the theory of regular differential equations. Singular differential equations are less studied
than regular differential equations.

These reasons implied that such notions as "weight" and "weighted space" were intro-
duced.

Since weight functions, in fact, can take care of some problems connected to singulari-
ties, they began to be used widely. Moreover, they became an essential and natural part of
the theory of function spaces with their applications in the theory of singular differential
equations.

The first result of embedding theorem type for weighted spaces was obtained in the
paper [1] by V.I. Kondrashev in 1938. A systematic study of weighted spaces was started
at the end of the fifties in the papers by L. D. Kudryavtsev (see e. g. [2]). In these papers,
L. D. Kudryavtsev built his theory on the standard variational method for solving elliptic
boundary value problems.

In work (see [3] L.D. Kudryaveev considered a space Lnp,γ = Lnp,γ(1,+∞) of functions
f : (1,+∞)→ R, which on the interval (1,+∞) have a generalized derivative of n:th order
with the finite semi-norm

‖f‖Lnp,γ = ‖xγf (n)‖p,

where γ ∈ R, 1 ≤ p ≤ ∞ and n is a natural number.
It was shown that if γ < n− 1

p , then for functions from this class we have that neither
the function f nor its derivatives f (k), k = 1, 2, . . . , n − 1, in general, have limit values
when x→ +∞. If γ > n− 1

p , then the (n− 1):th order derivative has always a limit value
when x→ +∞, but the limit values of less order derivatives are, in general, infinite.

Therefore, at infinity we have such a singularity that can not be handled even with a
weight. This leads to that it is necessary to formulate boundary conditions at infinity in a
different manner. Hence, L.D. Kudryavtsev proposed to interpret boundary conditions for
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differential equations as coefficients of a polynomial, to which a solution becomes stable in
the sense explained below. For the case γ > n− 1

p L. D. Kudryavtsev proved the existence
of a unique polynomial Pn−1 = a0 + a1x+ · · ·+ an−1x

n−1 such that

lim
x→∞

[f(x)− Pn−1(x)](k) = 0, k = 0, 1, . . . , n− 1.

This stability condition means that the function f and its derivatives up to (n −
1):th order go to the polynomial Pn−1 and to its corresponding derivatives at infinity.
Consequently, the coefficients of this polynomial can be considered as “boundary values”
at infinity of this function.

In 1991/1992, at a scientific seminar under his supervision, R. Oinarov expanded the
idea of L. D. Kudryavtsev and set the task of studying a multiweighted spaceWn

p,ρ̄, showing
ways to solve boundary value problems at singular finite and infinite points in simple
differential equations. Later this space was called the multiweighted derivatives space.

At the beginning, when the weights were power functions, that is ρi = tαi , i =
1, 2, ..., n, numerous results were obtained by A.O. Bayarystanov, B.L.Baidel’dinov,
A. A. Kalybay, Z. T. Abdykalykova [4]-[6].

For example, B. L. Baidel’dinov [4] showed how to represent a boundary value problem
in the spaceWn

p,ᾱ depending on the singularity of a simple differential equation of symmetric
order n.

Recently, A. A. Kalybay [7] showed that the generalized Cauchy problem is well-posed
for a simple differential equation with a singularity of the n:th order, regardless of the
singularity of the equation at zero. This result was achieved due to the properties of space
Wn
p,ᾱ.
These works show that the space Wn

p,ρ̄ has big potential.
Therefore, the study of this space Wn

p,ρ̄ in general, is an important urgent problem.
For general weights ρ̄ = {ρ1, ρ2, ..., ρn}, we can say that space Wn

p,ρ̄ has not been
studied.

1 The space with multiweighted derivatives

1.1 Definition of a space with multiweighted derivatives

Let I = (0, 1), n - be a natural number, ρi : I → R, i = 1, 2, ..., n, be positive functions
integrable on Iδ = [δ, 1], ∀δ ∈ I, such that

(1.1) ρ−1
i ≡

1

ρi
∈ L1(Iδ), i = 1, ..., n− 1, ρ−1

n ∈ Lp′(Iδ), 1 < p′ <∞.

For a function f : I → R we assume that

D0
ρ̄f(x) ≡ f(x), Dk

ρ̄f(x) = ρk(x)
d

dx
Dk−1
ρ̄ f(x), x ∈ I, k = 1, ..., n.

Suppose that the functions Dk
ρ̄f(x), k = 0, 1, ..., n− 1 are absolutely continuous on the

interval [δ, 1], ∀δ ∈ I; then Dn
ρ̄ f(x) exists for almost every x ∈ I. We call this operation

Dk
ρ̄f the ρ̄- multiweighted derivative of f of order k, k = 1, ..., n.
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Let Wn
p,ρ̄(I) be the set of all functions that have ρ̄- multiweighted derivatives up to

order n, n ≥ 1, inclusive on the interval I. On the set Wn
p,ρ̄(I), consider the functional

(1.2) ‖f‖Wn
p,ρ̄(I) =

∥∥Dn
ρ̄ f
∥∥
p,I

+

n−1∑
i=0

∣∣Di
ρ̄f(1)

∣∣ ,
where ‖·‖p,I is the standard norm of the space Lp(I). This functional is well defined and
provides a norm on Wn

p,ρ̄(I).

Theorem 1.1 Let 1 < p <∞. The space Wn
p,ρ̄(I) is a Banach space.

In the case of ρi ≡ 1, i = 1, 2, ..., n − 1, and ρn ≡ ϕ, it turns into the Kudryavtsev
space Wn

p,ϕ(I) with the norm

‖f‖Wn
p,ϕ(I) =

∥∥ϕf (n)
∥∥
p,I

+
n−1∑
i=0

∣∣f i(1)
∣∣,

which were well studied in [8] and [9] in connection with boundary value problems for
degenerate elliptic equations.

And, in the case of ρi(t) = tαi , i = 1, 2, ..., n, αi ∈ R, the space Wn
p,ᾱ(I) was studied

in details (see, for example, [10], [11], [12]).

1.2 The space W n
p,ρ̄(I) and its properties

For 0 ≤ s ≤ x < 1 and i, j = 0, 1, ..., n − 1, we define the following functions Kj,i+1 and
K̄j,i+1:

Kj,i+1(x, s) = (−1)j−i
ˆ x

s
ρ−1
j (tj)

ˆ tj

s
ρ−1
j−1(tj−1)...

ˆ ti+2

s
ρ−1
i+1(ti+1)dti+1dti+2...dtj

and
K̄j,i+1(x, s) =

ˆ x

s
ρ−1
j (tj)

ˆ x

tj

ρ−1
j−1(tj−1)...

ˆ x

ti+2

ρ−1
i+1(ti+1)dti+1dti+2...dtj

for j > i, Kj,i+1(x, s) ≡ K̄j,i+1(x, s) ≡ 1 for j = i and Kj,i+1(x, s) ≡ K̄j,i+1(x, s) ≡ 0 for
j < i.

Let us note that the system of functions {Ki,1(1, t), t ∈ I}n−1
i=0 is a system of linearly

independent solutions of the homogeneous equation

Dn
ρ̄ f(t) = 0, t ∈ I.

In [13] L. D. Kudryavtsev introduced the concept of stabilization of a function at infinity
belong to Wn

p,ϕ(I) to an algebraic polynomial of the (n − 1)th order. The coefficients of
this polynomial can be considered as “boundary values” at infinity of this function.

Let us consider the polynomials with respect to the system of functions {Ki,1(1, t)}n−1
i=0 ,

Pn(t) ≡ Pn(ρ̄, t) =
n−1∑
i=0

aiKi,1(1, t), t ∈ I, where ai, i = 0, 1, ..., n− 1, are real numbers.
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Definition 1.2 We say that a function f ∈ Wn
p,ρ̄(I) becomes stable at zero to the poly-

nomial Pn(t) ≡ Pn(t, f), if

(1.3) lim
t→0+

Di
ρ̄[f(t)− Pn(t, f)] = 0, i = 0, 1, ..., n− 1.

From (1.3) it follows that if f ∈ Wn
p,ρ̄(I) becomes stable at t = 0 to the polynomial

Pn(t, f), then the coefficients of the polynomial Pn(t, f) can be consequently defined from
the relations

(1.4) ai(f) = lim
t→0+

[Di
ρ̄f(t)−

n−1∑
j=i+1

aj(f)Kj,i+1(1, t)], i = n− 1, n− 2, ..., 0.

The values ai(f), i = 0, 1, ..., n − 1, can be interpreted as “boundary values” of the
function f ∈Wn

p,ρ̄(I) and of its weighted derivatives at zero.

Theorem 1.3 Let 1 < p < ∞. Each function f ∈ Wn
p,ρ̄(I) becomes stable at zero to the

polynomial Pn(t, f) if and only if the following integrals

(1.5)
tˆ

0

K̄p′

n−1,i+1(t, s)ρ−p
′

n (s)ds, i = 0, 1, ..., n− 1, t ∈ I

converge. Moreover, the following identities

(1.6) Di
ρ̄f(t) =

n−1∑
j=i

aj(f)Kj,i+1(1, t) +

tˆ

0

K̄n−1,i+1(t, s)ρ−1
n (s)Dn

ρ̄ f(s)ds

hold for i = 0, 1, ..., n− 1.

1.3 Estimates of the rate of convergence of a function to a polynomial

We now set rn,i(t) =
∥∥ρ−1

n (·)K̄n−1,i+1(t, ·)
∥∥−1

p′,(0,t)
.

Theorem 1.4 Let 1 < p < ∞ and assume that (1.5) holds. Then for any f ∈ Wn
p,ρ̄(I)

there exists a unique polynomial Pn(t) such that

(1.7) (i) sup
0<t<x

∣∣rn,i(t)Di
ρ̄ [f(t)− Pn(t)]

∣∣ ≤ ∥∥Dn
ρ̄ f
∥∥
p,(0,x)

, i = 0, 1, ..., n− 1;

(ii) if for 0 ≤ i ≤ n− 1 there exists a locally integrable function ui(·) ≥ 0 such that

(1.8) sup
0<x<1

ˆ 1

x
upi (t)

(ˆ x

0
ρ−p

′
n (s)K̄p′

n−1,i+1(x, s)ds

)p−1

dt <∞,

then the estimate

(1.9)
∥∥uiDi

ρ̄ [f − Pn(t)]
∥∥
p,I
≤ C

∥∥Dn
ρ̄ f
∥∥
p,I
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holds and in particular, if (1.8) holds for ui = ρ−1
i , then

(1.10)
∥∥∥∥ ddtDi−1

ρ̄ [f − Pn(t)]

∥∥∥∥
p,I

≤ C
∥∥Dn

ρ̄ f
∥∥
p,I
.

1.4 Equivalent norms of the space W n
p,ρ̄(I)

Let N1, N0 be two subsets of N = {0, 1, ..., n−1} such that N1
⋂
N0 = ∅ and N1∪N0 = N .

Let N1 = {i1, i2, ..., ik}, N0 = {j1, j2, ..., jm}.

Theorem 1.5 Let 1 < p <∞ and assume that (1.5) holds.
i) if N1 = ∅ and N0 = N , then the functional

(1.11) ‖f‖1Wn
p,ρ̄(I) =

∥∥Dn
ρ̄ f
∥∥
p,I

+
n−1∑
i=0

|ai(f)|

is equivalent to the norm ‖f‖Wn
p,ρ̄(I) ;

ii) if N1 6= ∅ and N0 6= ∅, then the functional

(1.12) ‖f‖2Wn
p,ρ̄(I) =

∥∥Dn
ρ̄ f
∥∥
p,I

+
k∑

µ=1

|Diµ
ρ̄ f(1)|+

m∑
λ=1

|ajλ(f)|

is equivalent to the norm ‖f‖Wn
p,ρ̄(I) .

2 Embeddings between spaces with multiweighted derivatives and their
applications

2.1 Embeddings between spaces with multiweighted derivatives

Along with the space Wn
p,ρ̄(I) we will consider the space W k

q,ρ̄(τk, I) with the norm

‖f‖Wk
q,ρ̄(τk,I)

=
∥∥∥Dk

ρ̄,τk
f
∥∥∥
q,I

+

k−1∑
i=1

|Di
ρ̄f(1)|,

where 1 ≤ k < n− 1 and Dk
ρ̄,τk

f(x) ≡ τk(x) d
dxD

k−1
ρ̄ f(x), x ∈ I.

We will investigate the embeddings

(2.1) Wn
p,ρ̄(I) ↪→W k

q,ρ̄(τk, I),

that is, the fulfillment of the inequality

(2.2) ‖f‖Wk
q,ρ̄(τk,I)

≤ C ‖f‖Wn
p,ρ̄(I) , ∀f ∈Wn

p,ρ̄(I).

The best constant C, for which (2.2) holds, is called the operator norm of the embedding
E : Wn

p,ρ̄(I) 7→W k
q,ρ̄(τk, I), and is denoted by ‖E‖ i.e., we set C = ‖E‖.
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Now, let us find the conditions under which the continuous compact embedding (2.1)
takes place.

We assume that

B1 = max
k≤j≤n−1

∥∥τk(·)ρ−1
k (·)Kj,k+1(1, ·)

∥∥
q,I
,

B2(z) =

ˆ 1

z
ρ−p

′
n (x)

(ˆ z

0
Kq
n−1,k+1(x, s)τ qk (s)ρ−qk (s)ds

) p′
q

dx

 1
p′

,

B2 = sup
0<z<1

B2(z), B = max{B1, B2, 1}.

Theorem 2.1 Let be 1 < p ≤ q <∞, 1 ≤ k < n− 1. Then the embedding (2.1)

(i) is continuous if and only if B < ∞, and ‖E‖ ≈ B, where ‖E‖- is the norm of the
embedding operator (2.1);

(ii) is compact if and only if B <∞ and

lim
z→0

B2(z) = 0.

2.2 Inequality of the Nikolskii-Lizorkin-Kudryavtsev type in the space W n
p,ρ̄(I)

S. I. Nikolski and P.I. Lizorkin [14] established the inequality

‖f‖p ≤ C

k−1∑
i=0

∣∣∣f (i)(0)
∣∣∣+

m−1∑
j=0

∣∣∣f (j) (T )
∣∣∣+
∥∥∥f (n)

∥∥∥
p, α, β

 ,

for functions f ∈Wn
p,α,β[0, T ], 0 < T <∞, where k +m = n, 1 < p <∞,

‖f‖p,α,β =

(ˆ T

0

∣∣∣tα (T − t)β f (n)(t)
∣∣∣p dt)1

p

,

‖f‖p = ‖f‖p, 0, 0. The constant C > 0 does not depend on the function f and the indicators
α and β satisfy the “weak degeneracy” condition (max{α, β} < 1/p′) that ensures the
existence of finite limiting values.

In the paper [15], L. D. Kudryavtsev established an analogue of this inequality for the
case of an unbounded interval (1,+∞):

(2.3)
∣∣∣f (s)(t)

∣∣∣ ≤
 k∑
ν=1

∣∣∣f (iν)(1)
∣∣∣+

m∑
µ=1

∣∣ajµ∣∣+
∥∥∥f (n)

∥∥∥
p,α

 tn−s−1,
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where 0 ≤ s < n and the indices 0 ≤ i1 < i2 < ... < ik ≤ n − 1 and 0 ≤ j1 < j2 < ... <
jm ≤ n − 1, k + m = n, and the indices 0 ≤ j̄1 < j̄2 < ... < j̄k ≤ n − 1 are additional to
indices j1, j2, ..., jm and satisfy the Polya condition

(2.4) i1 ≤ j̄1, i2 ≤ j̄2, ..., ik ≤ j̄k.

The numbers aj1,aj2 , ..., ajm are found from the condition of the existence of a polynomial

Pn−1(t) =
n−1∑
i=0

ait
i such that lim

t→∞
[f(t)− Pn−1(t)](k) = 0, for all k = 0, 1, ..., n − 1 and

‖f‖p, α =

(∞́
1

tα |f(t)|p dt
)1
p
, α ∈ R.

In the space Wn
p,ρ̄(I), when I = (0, 1) and ρi = tαi , αi ∈ R, i = 1, 2, ..., n, analogues of

the Nikolskii – Lizorkin – Kudryavtsev inequality were proved in [4], [16] and [17].
Let N = {0, 1, ..., n − 1}. Let N1 ⊂ N and N0 ⊂ N be such that N1

⋂
N0 = ∅ and

N1 ∪N0 = N .
If N1 6= ∅ and N0 6= ∅, then we set N1 = {i1, i2, ..., ik}, N0 = {j1, j2, ..., jm} and

k +m = n.
Assume that 0 < t0 ≤ 1. Consider a polynomial by the system {Ki,1(t0, t)}n−1

i=0 : the

function Pn(t0, t) =
n−1∑
i=0

aiKi,1(t0, t) where ai, i = 0, 1, ..., n− 1, are real numbers.

Lemma 2.2 Let 1 < p <∞ and assume that (1.5) holds.
i) if N1 = ∅ and N0 = N , then the functional

(2.5) ‖f‖(1)
Wn
p,ρ̄(I) =

∥∥Dn
ρ̄ f
∥∥
p,I

+
n−1∑
i=0

|ai(t0, f)|,

is equivalent to the norm ‖f‖Wn
p,ρ̄(I) of the space Wn

p,ρ̄(I);
ii) if N1 6= ∅ and N0 6= ∅, then the functional

(2.6) ‖f‖(2)
Wn
p,ρ̄(I) =

∥∥Dn
ρ̄ f
∥∥
p,I

+
k∑

µ=1

|Diµ
ρ̄ f(1)|+

m∑
λ=1

|ajλ(t0, f)|,

is equivalent to the norm ‖f‖Wn
p,ρ̄(I) of the space Wn

p,ρ̄(I).

Now, the main goal is to establish an analog of the Nikolski - Lizorkin - Kudryavt-
sev inequality in the space Wn

p,ρ̄(I) in the general case: N1 = {i1, i2, ..., ik} ⊂ N, N0 =
{j1, j2, ..., jm} ⊂ N and N1 6= ∅, N0 6= ∅.

In the general case we do not assume that N1
⋂
N0 = ∅ and N1 ∪N0 = N . Therefore,

it can be N1
⋂
N0 6= ∅ and N1 ∪N0 6= N .

For this, we first prove for the general case, that (2.6) is equivalent to the norm
‖f‖Wn

p,ρ̄(I) of space Wn
p,ρ̄(I).
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Let 1 > t0 > y0 > 0. Consider the following matrices:

AK(t0, y0) =


1 K1,1 (t0, y0) ... ... Kn−1,1 (t0, y0)
0 1 K2,2 (t0, y0) ... Kn−1,2 (t0, y0)
0 0 0 ... ...
0 0 ... 1 Kn−1,n−2 (t0, y0)
0 0 0 ... 1

 ,

AK(1, y0) =


1 K1,1 (1, y0) ... ... Kn−1,1 (1, y0)
0 1 K2,2 (1, y0) ... Kn−1,2 (1, y0)
0 0 0 ... ...
0 0 ... 1 Kn−1,n−2 (1, y0)
0 0 0 ... 1

 ,

In matrix AK(t0, y0) we choose rows with numbers i = i1, i2, ..., ik, and in matrix
AK(1, y0) we choose row numbers j = j1, j2, ..., jm, where 0 ≤ i1 < i2 < ... < ik ≤ n− 1,
0 ≤ j1 < j2 < ... < jm ≤ n− 1 and k +m = n.

(2.7) D

∣∣∣∣i1 i2 ... ik
j1 j2 ... jm

∣∣∣∣
the determinant of the matrix of order n, the first k rows of which are rows of the matrix
AK(t0, y0) with indices i1, i2, ..., ik, and the next m = n − k rows are rows of the matrix
AK(1, y0) with indices j1, j2, ..., jm.

Theorem 2.3 Let 1 < p <∞ and assume that (1.5) and general case holds. If k+m = n
and

(2.8) D

∣∣∣∣i1 i2 ... ik
j1 j2 ... jm

∣∣∣∣ 6= 0,

then functional ‖f‖(2)
Wn
p,ρ̄(I) =

∥∥Dn
ρ̄ f
∥∥
p,I

+
k∑

µ=1
|Diµ

ρ̄ f(1)|+
m∑
λ=1

|ajλ(t0, f)| is equivalent to the

norm ‖f‖Wn
p,ρ̄(I) of space Wn

p,ρ̄(I).

Remark 2.4 It is known [18] that if Pn(t)- is an algebraic polynomial of degree n−1, then
the condition (2.8) is satisfied if and only if the indices {iµ}kµ=1 and {jν}mν=1 satisfy the
Polya condition (2.4). However, the author does not know similar conditions for system{
K̄j,i+1 (1, y0)

}n−1

i,j=0
.

Now from Theorems 2.1 and 2.3 we obtain inequality of the Nikolskii - Lizorkin -
Kudryavtsev type in the space Wn

p,ρ̄(I)

Theorem 2.5 Let the conditions of Theorem 2.3 be satisfied and B <∞. Let the indices
0 ≤ i1 < i2 < ... < ik ≤ n− 1 and 0 ≤ j1 < j2 < ... < jm ≤ n− 1 satisfy (2.8). Then for
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any f ∈Wn
p,ρ̄(I ) and for all i = 0, 1, ..., n− 1, inequality

∥∥Di
ρ̄,τif

∥∥
p,I
≤ CB

∥∥Dn
ρ̄ f
∥∥
p,I

+

k∑
µ=1

|Diµ
ρ̄ f(1)|+

m∑
ν=1

|ajν (t0 , f )|


holds.
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Mathematical Finance:
a Tale of Stochastic Processes

Guillaume Szulda (∗)

Abstract. Financial markets are highly uncertain environments where the evolution of asset prices
exhibits random fluctuations over time, in particular due to complex and unpredictable market
mechanisms. In this regard, stochastic analysis, which is at the intersection between the theory of
probability and functional analysis, plays a fundamental role in financial modeling.
This short document constitutes a detailed version of the presentation that I gave at the doctoral
seminar of the University of Padua on December 10, 2021. It is divided into two major sections.
The first one is mostly introductory, where I first give/recall elementary but indispensable notions
of probability and stochastic calculus, then I illustrate the fundamentals of mathematical finance,
most notably the extensive application of stochastic processes.
In the second section, I provide an example of a more technical modeling framework, which con-
stitutes a simplified part of my doctoral research (see [Szu21]). This example is devoted to the
modeling of the post-crisis interest rate market, where multiple term structures typically coexist.
More specifically, we make use of a flow of Continuous-state Branching processes with Immigration
(CBI processes), which form a sophisticated class of stochastic processes.

1 Stochastic calculus for financial modeling

A financial market is a place where agents trade in financial assets, which can be stocks,
bonds, currencies, commodities, etc. Broadly speaking, assets prices exhibit two peculiar
stylized facts. First, they are functions of time, which naturally involves notions of func-
tional analysis. Then, they fluctuate randomly over time, which also uses the theory of
probability.

In mathematical finance, the purpose of any financial model consists in setting a math-
ematical formulation, exploiting stochastic analysis that combines functional analysis and
probability, which seeks to fully explain the random fluctuations of asset prices over time.

To proceed, we commonly start by fixing a stochastic basis, which is mathematically
denoted by

(
Ω,F ,F = (Ft)t≥0,P

)
. This corresponds to the combination of a probability

space
(
Ω,F ,P

)
and a filtration F = (Ft)t≥0 (see [JS03] for further details). Let us first

(∗)Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy.
E-mail: . Seminar held on 2 December 2021.
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define the former, which represents, in mathematical terms, the presence of randomness in
the financial market.

Definition 1.1 A probability space is a triplet
(
Ω,F ,P

)
where

• Ω is the set of all possible outcomes;

• F is a σ-algebra on Ω;

• P is a probability measure on F , i.e. a function P : F → [0, 1].

In financial terms, {ω} ⊂ Ω stands for one possible scenario that can occur in the market,
more specifically, one possible evolution of the different asset prices.

As mentioned above, asset prices evolve with respect to time in a financial market. In
view of taking into account the time evolution of the financial market in the modeling, let
us now define the notion of filtration. Without loss of generality, we typically fix a time
horizon T > 0, which then restricts the modeling of the financial market to the segment
[0, T ].

Definition 1.2 A filtration F = (Ft)t≥0 is an increasing family of σ-algebras in the sense
of inclusion, meaning that Fs ⊆ Ft, for all 0 ≤ s ≤ t ≤ T .

As a financial interpretation, F illustrates the fact that information is revealed progressively
by the market as time elapses.

Let us henceforth introduce a fundamental object of stochastic analysis and mathe-
matical finance, which can be deemed as the analogue of the classic function in functional
analysis.

Definition 1.3 A stochastic process X = (Xt)0≤t≤T is a family of random variables
Xt : Ω→ R indexed by 0 ≤ t ≤ T .

For each ω ∈ Ω, t → Xt(ω) is a trajectory (or sample path) of X, and is one possible
evolution of X associated to the scenario ω ∈ Ω. So as to ensure consistency between F
and X, we usually suppose that X is adapted to F, meaning that Xt is Ft-measurable for
all t ≤ T .

A canonical example of a stochastic process is Brownian motion, defined as follows.

Definition 1.4 A stochastic process W = (Wt)t≤T is said to be a Brownian motion or
Wiener process if

(a) W0 = 0;

(b) W is almost surely continuous, i.e. for each ω ∈ Ω, t→Wt(ω) is continuous;

(c) W has independent increments, i.e. for all 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2, Wt2 −Ws2 and
Wt1 −Ws1 are independent;

(d) For all 0 ≤ s ≤ t, Wt −Ws ∼ N (0, t − s), where N (m,σ2) is the Gaussian law of
mean m and variance σ2.
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A peculiar feature of Brownian motion is that for every single ω ∈ Ω, the function t →
Wt(ω) is continuous everywhere, however the latter is not differentiable anywhere, typically
referred to as “a continuous function which consists entirely of corners” (refer to [Bjo09,
Section 4.5]).

Let us at present consider a simplified financial market in which agents can trade in one
single risky asset whose price is represented by the stochastic processes S = (St)t≤T up to
the time horizon T . The very starting point in view of modeling the stochastic behavior of
S = (St)t≤T stems from the very well-known deterministic setting, more particularly the
first-order ordinary differential equation thus formulated:

dSt
dt

= λ(t, St),

which is defined as the limit of the following difference quotient as ∆t→ 0:

St+∆t − St
∆t

= λ(t, St).

The natural intuition here is to add a Gaussian disturbance term of variance ∆t, whose
scale is ruled by a volatility term σ(t, St). In doing so, we write

St+∆t − St = λ(t, St) ∆t+ σ(t, St)
√

∆t Z,

where Z ∼ N (0, 1). We can thus make use of Brownian motion previously defined, as
follows:

St+∆t − St = λ(t, St) ∆t+ σ(t, St)
(
Wt+∆t −Wt

)
.

At this point, we are mathematically tempted, taking inspiration from the deterministic
world, to divide by ∆t and make it tend to zero. Unfortunately, we cannot proceed in this
way owing to the non-differentiability of Brownian motion, meaning that the following
derivative taken in the standard sense:

dWt

dt
= lim

∆t→0

Wt+∆t −Wt

∆t
,

does not exist anywhere. In this regard, the interested reader is re-invited to remember
the quotation from [Bjo09, Section 4.5]: “a continuous function which consists entirely of
corners”.

A possible way out is to directly consider sums and transform them into integrals. To
do so, let us introduce a partition of [0, T ] into subintervals [tk, tk+1] for k = 0, . . . , n − 1
with tk := k∆ and ∆ := T

n . By summing over k, we obtain

ST = S0 +

n−1∑
k=0

λ(tk, Stk)∆ +

n−1∑
k=0

σ(tk, Stk)∆Wtk .

We now make ∆t tend to zero, yielding on one hand

n−1∑
k=0

λ(tk, Stk)∆ −→
∆→0

ˆ T

0
λ(s, Ss) ds
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which is a classic Riemann integral defined for each ω ∈ Ω, i.e. pathwise, and on the other
hand

n−1∑
k=0

σ(tk, Stk)∆Wtk −→
∆→0

ˆ T

0
σ(s, Ss) dWs

which exists in L2 but not pathwise, and refers to the Itô integral (or even stochastic
integral), and was introduced by Kiyoshi Itô (1915–2008) in 1944.

We finally model the asset price S = (St)t≤T by the following stochastic integral equa-
tion:

St = S0 +

ˆ t

0
λ(s, Ss) ds+

ˆ t

0
σ(s, Ss) dWs,

which we typically rewrite as a stochastic differential equation, often referred to as a
diffusion:

dSt = λ(t, St) dt+ σ(t, St) dWt.

Example 1.5 As seminal examples, we present two financial models built upon a diffusion:

• The Bachelier model (1900):

dSt = σ dWt ⇐⇒ St = S0 + σWt;

• First Samuelson (1965), then Black & Scholes (1973) and Merton (1973), gave rise
to the well-known Black–Scholes model (also called geometric Brownian motion):

dSt = St λ dt+ St σ dWt ⇐⇒ St = S0 e

(
λ−σ

2

2

)
t+σWt .

2 Example of a more technical modeling framework

In this section, we investigate an example of a more technical financial model. The latter
is in fact part of my doctoral research (see [Szu21]), nonetheless we have simplified it in
such a way that it only relies on the ingredients defined in the previous section.

From now on, we place ourselves within a very particular financial market, namely the
post-crisis interest rate market. Since the 2007–2009 financial crisis, the interest rate mar-
ket has been characterized by a segmentation into multiple yield curves. Simply speaking,
a yield curve refers to the graph of a specific interest rate with respect to the maturity.

On one hand, we have the Overnight Indexed Swaps (OIS) rates denoted by T 7→
F (T, T, δ). These are determined as geometric average of overnight rates and represent the
most widely adopted proxies nowadays for risk-free rates, where F (T, T, δ) is the OIS spot
rate for the period [T, T + δ] with δ > 0.

On the other hand, we have the interbank offered rates. These are the rates at which
primary financial institutions can borrow money from each other for some period of time
(referred to as tenor). They are denoted by T 7→ Lδ(T, T, δ), for every tenor δ of a generic
set D :=

{
δ1, . . . , δm

}
with 0 < δ1 < . . . < δm for some m ∈ N, where Lδ(T, T, δ) is the

spot interbank offered rate for the period [T, T + δ].
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In the post-crisis environment, interbank and OIS rates, together with interbank rates
of different tenors, demonstrate a very distinct behavior. This phenomenon is especially due
to the stronger presence of numerous risk sources (see for instance [MU08, GKP11, CD13,
GSS17]), and is reflected by the presence of tenor-dependent spreads between different
yield curves.

There exist in the literature different ways to express these spreads by means of math-
ematical terms. A possibility is to define them as follows. For every tenor δ ∈ D, consider
the stochastic process Sδ = (Sδt )t≥0 given by

Sδt :=
1 + δLδ(t, t+ δ)

1 + δF (t, t+ δ)
, for all t ≥ 0.

The processes (Sδ)δ∈D thus given correspond to themultiplicative spreads between (normal-
ized) spot interbank offered rates and (normalized) OIS spot rates. The idea of modeling
multiple yield curve markets via multiplicative spreads is initially due to [Hen14], and has
been pursued by [CFG16, CFG19, EGG20, FGGS20] among others.

Nevertheless, modeling these quantities poses a real challenge insofar that they exhibit
peculiar empirical features that are intrinsically elaborate to capture. A brief inspection of
Figure 1 directly provides their most basic empirical features, which, in particular, we seek
to reproduce in the present simplified modeling framework (we refer the interested reader
to [FSG21] for the complete list of their empirical features):

• The spreads are typically greater than one, which derives from the fact that interbank
rates are riskier than OIS rates;

• They are non-decreasing with respect to the tenor, i.e. Sδ is non-decreasing over D
as a function of δ. This is due to the fact that the longer the length of the loan is,
the higher the risk becomes.

1
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1,015
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1/9/2001 10/6/2003 7/2/2006 3/28/2009 12/23/2011 9/18/2014 6/14/2017 3/10/2020
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Figure 1. Euribor-OIS spreads from 06/2001 to 09/2019 (Source: Bloomberg).
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The approach that we now adopt for modeling multiple yield curves as discussed above
can be performed in three steps as follows. We especially recall that it corresponds to a
simplified version of the more technical modeling framework that can be found in [FSG21],
to which we refer the interested reader for further details.

Step 1 : We start by defining a special type of a stochastic process, which we denote by
X = (Xt)t≥0. The latter is totally characterized by the following diffusion as in Section 1:

dXt = α
(
β −Xt

)
dt+ σ

√
Xt dWt,

which we can also rewrite in its integral form:

Xt = X0 +

ˆ t

0
α
(
β −Xs

)
ds+

ˆ t

0
σ
√
Xs dWs.

The stochastic process X = (Xt)t≥0 is typically referred to as a Cox–Ingersoll–Ross pro-
cess (CIR process), first introduced by [CIR85]. Such a process is commonly employed
in stochastic volatility modeling (see e.g. [Hes93]) or in interest rate modeling (see e.g.
[Fil01]), owing to its peculiar features. Last, but by no means not least, it represents the
simplest form in the literature of Continuous-state Branching processes with Immigration
(CBI processes), which are a very sophisticated class of stochastic processes that we are
going to exploit shortly (we also refer the interested reader to [KW71] and [Li11, Li20] for
full details on CBI processes).

Step 2 : This constitutes the delicate step of the construction of our modeling frame-
work for multiple yield curves, since it resorts to tools that are not usually adopted in
mathematical finance. Let us first assume that the stochastic basis

(
Ω,F ,F = (Ft)t≥0,P

)
,

which we fixed in Section 1, supports a white noise B(dt,du) on R2
+ of intensity dt du, and

which we briefly recall the definition below (refer to [Wal86]).

Definition 2.1 B(dt,du) is said to be a white noise on R2
+ of intensity λ(dt,du) if this

is a Gaussian random measure in the following sense:

• For any A ∈ B
(
R2

+

)
with λ(A) < +∞, B(A) ∼ N

(
0, λ(A)

)
;

• If A1, . . . , An are pairwise disjoint, then B(A1), . . . , B(An) are mutually independent.

Therefore, by exploiting the characterization of the CIR process X = (Xt)t≥0 as a CBI
process, we can thus rewrite its defining diffusion by means of the white noise B as follows:

dXt = α
(
β −Xt

)
dt+

ˆ Xt

0
σ B(dt,du).

or in the stochastic integral form given by

Xt = X0 +

ˆ t

0
α
(
β −Xs

)
ds+

ˆ t

0

ˆ Xs

0
σ B(ds,du).
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This corresponds to the Dawson–Li representation of X = (Xt)t≥0 in the sense of [DL12],
which yields a weakly equivalent CIR process, however not almost surely (pathwise) equiv-
alent. More specifically, the peculiarity of such a representation lies in its comparison
property (see e.g. [Li20, Theorem 8.4]), which is the starting point in the construction of
a financial model for multiple yield curves driven by a flow of CBI processes.

Step 3 : This final step consists in formulating our modeling framework for multiple yield
curves. To this purpose, let X0, β : D → R+ be both non-decreasing and deterministic
functions on D (i.e. the set of tenors). Hence, for every δ ∈ D, define the stochastic process
X(δ) = (Xt(δ))t≥0 by means of the following stochastic integral equation:

Xt(δ) = X0(δ) +

ˆ t

0
α
(
β(δ)−Xs(δ)

)
ds+

ˆ t

0

ˆ Xs(δ)

0
σ B(ds,du).

{
X(δ) : δ ∈ D

}
then represents a simple instance of a flow of CBI processes in the sense of

[DL12]. Consequently, our model configuration for multiple yield curves, which takes the
multiplicative spreads (Sδ)δ∈D as principal modeling quantities, is given by

log Sδt = Xt(δ), for every δ ∈ D.

By definition, we have Xt(δ) ≥ 0 almost surely, for all t ≥ 0 and for every δ ∈ D, we then
automatically obtain that all multiplicative spreads (Sδ)δ∈D are greater than one almost
surely. As far as their non-decreasing behavior with respect to the tenor is now concerned,
we can write the following proposition.

Proposition 2.2 It holds Sδit ≤ S
δi+1

t almost surely, for all t ≥ 0 and every 1 ≤ i ≤ m−1.

Proof. Since both functions X0 and β are non-decreasing on D, [DL12, Theorem 3.2]
immediately implies that for every 1 ≤ i ≤ m− 1, we have P

(
Xt(δi) ≤ Xt(δi+1),∀t ≥ 0

)
=

1. The claim then follows from the model configuration as formulated above.

Figure 2. One sample path of the multiplicative spreads (Sδ)δ∈D for two tenors (3M in blue and 6M in
green). Compare with the empirical features of Figure 1.
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In conclusion, we report in Figure 2 a sample path of the model configuration previously
defined, which has been generated by a more sophisticated financial model including a
short-rate model (in red) as well as jumps (refer to [FSG21] for full details).
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The critical node/edge
detection problem on trees

Syed MD Omar Faruk (∗)

Abstract. Critical node or edge detection problems are a family of optimization problems defined
on graphs, where one is required to remove a limited number of nodes and/or edges in order
to minimize some measure of the connectivity of the residual graph. Problems of this type are
important from a practical point of view because of their relevance in a number of practical
applications. We start this seminar by giving the definitions of the critical node/edge detection
problem (CNDP/CEDP) and some connectivity metrics with an example. After that, we present
a dynamic programming approach for solving the CNDP on trees when the node weights are all
equal to one and all connections between pairs of nodes have unit cost. Then, we will move to
consider the CEDP on trees and similarly deal with the case with unit costs and unit edge weights.
Finally, we will present dynamic programming algorithms for the “mixed” case, in which nodes and
edges can be simultaneously removed from the graph.

1 Introduction

Given an undirected graph G(V,E) with |V | = n nodes, the Critical Node Problem (CNP)
calls for removing from G a subset of nodes S ⊆ V in order to minimize some connectivity
measure in the subgraph G[V − S] induced by V − S, while a constraint on the size or
“weight” of S has to be enforced. In a possible — and fairly general — formulation, a
nonnegative connection cost cij is specified for each pair of distinct nodes i, j ∈ V , a
weight wj ≥ 0 for each j ∈ V and a bound K are given. Two nodes i, j are connected if a
path exists between them. The optimal solution is required to

minimize f(S) =
∑
{cij : i, j are connected in G[V − S]}

subject to
∑
j∈S

wj ≤ K.

The problem has attracted some attention in recent years; especially the case where
cij = 1 for all i 6= j, wj = 1 for all j ∈ V has been tackled in the literature. In such a case

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy.
Current address of the author: Department of Mathematics, Shahjalal University of Science and Technol-
ogy, Sylhet, Bangladesh. E-mail: . Seminar held on 15 December 2021.
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the problem amounts to removing at most K ≤ n nodes, minimizing the number of pairs
connected in the residual graph. Applications of CNP considered in the literature include:
fragmentation of terrorist networks, where a fixed number of persons has to be identified
in such a way that their removal will result in the minimum communication between the
remaining individuals (see [4]); network immunization, where a graph representing contacts
between people is given, only a given maximum number of persons can be vaccinated, and
we aim at minimizing the propagation of the virus (see [1, 5]); transportation networks,
where identifying critical nodes, i.e., nodes whose failure would highly compromise the
efficiency of the transportation, is quite important for a correct allocation of the resources
(see [3]); telecommunication networks, when we want to prevent the spread of a virus or
find some way to reduce as much as possible the communication within the network (see
[2]).

1.1 The problems that we study

According to the pairwise connectivity measure mentioned above, the Critical Node De-
tection Problem (CNDP) is formally stated as follows:

Problem 1 CNDP Given an undirected graph G = (V,E), a weight wj ≥ 0 for every
j ∈ V , a connection cost cij ≥ 0 for all i, j ∈ V , and a weight limit W ≥ 0, find S ⊆ V
such that the total weight of the nodes in S is at most W and the total cost of the pairs of
nodes that are connected in G− S is minimized.

We are interested in some variants of CNDP (mainly on trees) in which nodes or edges
or both nodes and edges can be removed. The variants that we analyze are the following:

• the Critical Edge Detection Problem (CEDP), which is formulated as CNDP, except
that edges have to be removed instead of nodes;

• the Critical Node/Edge Detection Problem with a single weight limit (CNEDP),
where a cumulative weight limit for the removal of nodes and edges is given.

These problems are formalized below:

Problem 2 CEDP Given an undirected graph G = (V,E), a weight we ≥ 0 for every
e ∈ E, a connection cost cij ≥ 0 for all i, j ∈ V , and a weight limit W ≥ 0, find S ⊆ E
such that w(S) ≤W and c(G− S) is minimized.

Problem 3 CNEDP Given an undirected graph G = (V,E), a weight wv ≥ 0 for every
j ∈ V , a weight we ≥ 0 for every e ∈ E, a connection cost cij ≥ 0 for all i, j ∈ V , and a
weight limit W ≥ 0, find S ⊆ V ∪ E such that w(S) ≤W and c(G− S) is minimized.

2 The unit-costs, unit-weights case on trees

In this section we illustrate a polynomial algorithm for solving CNDP on trees when cij = 1
for all i, j and wj = 1 for all j ∈ V . In this case the problem calls for minimizing the
number of paths surviving in a tree T (V,E) after having removed at most K nodes.
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Given the tree T (V,E) with |V | = n, let Ta be the subtree of T rooted at a ∈ V . If a is
not a leaf of T , let Ta1 , . . . , Tas be the subtrees of Ta rooted at the children nodes a1, . . . , as
respectively, where s depends on a (see Figure 1). Let also |Ta| be the number of nodes
in Ta. In order to solve the problem by dynamic programming, we define the following
functions.

Fa(m, k) = minimum number of paths surviving in Ta when k nodes are removed from Ta
and m nodes of Ta are still connected to a. Note that the number of nodes connected
to some given v ∈ V always counts v itself. Condition m = 0 indicates that a is
removed from Ta. Furthermore, if it is not possible to remove k nodes from Ta so
that m nodes of Ta are still connected to a, then we define Fa(m, k) =∞.

Gai(m, k) = minimum number of paths surviving in the subtree Tai,s = a+Tai + · · ·+Tas
when k nodes are removed from Tai,s and m nodes of the subtree are still connected
to a. As above, m = 0 indicates that a is removed from Tai,s and Gai(m, k) = ∞
if it is not possible to remove k nodes from Tai,s so that m nodes of Tai,s are still
connected to a.

Figure 1 Example of a subtree Ta, where node a has four children (i.e. s = 4). The subtrees Ta2 and Ta3,4
are shown.

Figure 2 Application of recursion (2) to the subtree of Figure 1 for m = 0, i = 2 and k = 3.
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Figure 3 Application of recursion (2) to the subtree of Figure 1 for m = 7, i = 2 and k = 2.

The values for F and G can be computed by traversing the tree in postorder (from
leaves to root), by means of the following relations:

Fa(m, k) = Ga1(m, k) for any non-leaf node a ∈ V ;(1)

Gai(m, k) =



min{Fai(p, q) +Gai+1(0, k − q) :

p = 0, . . . , |Tai |, q = 0, . . . , k − 1} if m = 0 (a ∈ S),

min{Fai(p, q) +Gai+1(m− p, k − q) + p(m− p) :

p = 0, . . . ,m− 1, q = 0, . . . , k} if m > 0 (a /∈ S),

(2)

for any non-leaf node a ∈ V and i < s;

the initial conditions on each leaf a and on each rightmost subtree Tas are the following:

Fa(m, k) =

{
0 if (m = 0, k = 1, i.e. a ∈ S) or (m = 1, k = 0, i.e. a /∈ S),
∞ otherwise,

(3)

Gas(m, k) =


∞ if m = k = 0,

min{Fas(p, k − 1) : p = 0, . . . , |Tas |} if m = 0, k > 0 (a ∈ S),

Fas(m− 1, k) + (m− 1) if m > 0 (a /∈ S).

(4)

Equation (1) follows because Ta = Ta1,s for any non-leaf node a ∈ V .

Recursion (2) can be interpreted as follows.

• Consider first the case m = 0 (i.e., node a is removed from the subtree), which
is illustrated in Figure 2 (where i = 2 and k = 3). Expression Fai(p, q) gives the
minimum number of paths that survive in Tai when q nodes are removed from Tai
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and p nodes of Tai are still connected to ai (for instance, in the example in Figure 2,
for p = 3 and q = 1 we have Fa2(3, 1) = 3: this is achieved by removing node b).
Since q nodes have been removed from Tai , exactly k − q nodes (including a) must
be removed from Tai+1,s . The minimum number of paths that survive in Tai+1,s when
k − q nodes (including a) are removed from Tai+1,s is given by Gai+1(0, k − q) (in
the example, Ga3(0, 2) = 4, which is achieved by removing nodes a and c). Thus
the expression Fai(p, q) + Gai+1(0, k − q) gives the minimum number of paths that
survive in Tai,s when q nodes are removed from Tai (and the other k − q nodes are
removed from Tai+1,s) and p nodes of Tai are still connected to ai (this value is 7 in
the example). By taking the minimum over p = 0, . . . , |Tai | and q = 0, . . . , k − 1, we
find the value of Gai(0, k).

• Consider now the case m > 0, which is illustrated in Figure 3 (where m = 7, i = 2
and k = 2). As above, expression Fai(p, q) gives the minimum number of paths
that survive in Tai when q nodes are removed from Tai and p nodes of Tai are still
connected to ai (for instance, in the example in Figure 3, for p = 3 and q = 1 we have
Fa2(3, 1) = 3: this is achieved by removing node b). Since q nodes have been removed
from Tai , exactly k− q nodes must be removed from Tai+1,s ; and since p nodes of Tai
are still connected to ai and thus to a, exactly m − p nodes of Tai+1,s must remain
connected to a. The minimum number of paths that survive in Tai+1,s when k − q
nodes are removed from Tai+1,s and m − p nodes of Tai+1,s are still connected to a
is given by Gai+1(m − p, k − q) (in the example, Ga3(4, 1) = 9, which is achieved
by removing node a3). Thus the expression Fai(p, q) +Gai+1(m− p, k − q) gives the
minimum number of paths that survive in Tai or Tai+1,s when q nodes are removed
from Tai (and the other k− q nodes are removed from Tai+1,s) and p nodes of Tai are
still connected to ai, whilem−p nodes of Tai+1,s are still connected to a. Now we have
to add the paths connecting nodes of Tai to nodes of Tai+1,s , i.e. p(m− p) paths (12
paths in the example). This gives expression Fai(p, q)+Gai+1(m−p, k−q)+p(m−p)
of recursion (2) (whose value is 24 in the example). By taking the minimum over
p = 0, . . . ,m− 1 and q = 0, . . . , k, we find the value of Gai(m, k).

Given a leaf a ∈ V , equation (3) says that

• if a is removed (k = 1), then no node (m = 0) and no path survive in Ta (which
becomes empty);

• if a is not removed (k = 0), then node a survives (m = 1), and the number of paths
is again 0.

For a justification of (4), recall that Tas,s = a+ Tas .

Now, assuming that T is rooted at node 1, the optimal value for the problem is given by

(5) OPT = min{F1(m,K) : m = 0, . . . , n},

and the optimal solution is recovered by backtracking.

Università di Padova – Dipartimento di Matematica 43



Seminario Dottorato 2021/22

3 Solving CEDP on a tree with unit connection costs

In this part, we show how to solve CEDP on trees when cij = 1 for all i, j and wj = 1 for
all j ∈ E. In this scenario, the goal is to reduce the number of paths left in a tree T (V,E)
after removing at most K edges.

To derive a dynamic programming algorithm, we will calculate recursively the following
values:

• Fa(m, k) = minimum number of connections that still exists in the subtree Ta when
k edges are removed from Ta and m nodes of Ta are still connected to the root a.

• Gai(m, k) = minimum number of connections that still exists in the subtree Tai,s =
a+ Tai + · · ·+ Tas when k edges are removed from Tai,s and m nodes of the subtree
are still connected to a.

We remark that for both functions, the number of nodes connected to the root will
never be 0 (i.e. m > 0) because we never remove the root as the root is a node and we can
not remove a node in the edge deletion problem. Furthermore, whenever the conditions in
one of the above definitions cannot be satisfied, we set the value of the function to infinity.

The values of Fa and Gai are calculated in this order:

• we determine Fa for every leaf a;

• for a non-leaf node a, assuming that the Fa′ and Ga′i have been already found for all
a′ ∈ V (Ta), we calculate Gas , Gas−1 , . . . , Ga1 , and then Fa.

At the end of the recursion, we can return the optimal value of the problem, assuming that
the tree T is rooted at node 1, which is

OPT = min{F1(m,K) : m = 0, . . . , n}.

As usual in dynamic programming, an optimal solution can be reconstructed by backtrack-
ing.

We now provide the explicit formulas and then a justification for each of them. For a
non-leaf node a ∈ V , we have

(6) Fa(m, k) = Ga1(m, k),

while for every leaf a the formula is

(7) Fa(m, k) =

{
0 if m = 1, k = 0,

∞ otherwise.

For any non-leaf node a ∈ V and i < s (non-rightmost subtrees) we use the formula
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(8) Gai(m, k) =

min{Fai(p, 0) +Gai+1(m− p, 0) + p(m− p) : p = 0, . . . ,m} if k = 0,

min{min{Fai(p, q) +Gai+1(m, k − 1− q) : p = 0, . . . , |V (Tai)|,
q = 0, . . . , k − 1}, min{Fai(p, q) +Gai+1(m− p, k − q) + p(m− p) :

p = 0, . . . ,m, q = 0, . . . , k}} if k > 0,

The initial conditions on each rightmost subtree Tas are calculated as follows::

(9) Gas(m, k) =


∞ if m = 1, k = 0,

min{Fas(p, k − 1) : p = 0, . . . , |V (Tas)|} if m = 1, k > 0,

Fas(m− 1, k) + (m− 1) if m > 1, k ≥ 0.

We now give a justification for the above formulas. Equation (6) follows because Ta =
Ta1,s for any non-leaf node a ∈ V .

Equation (7) handles the case of a one-node tree. Since a ∈ V is a leaf, it is not possible
to remove any edge (k = 0) and only a is connected to itself (m = 1) and the number of
paths surviving in Ta is 0.

Recursion (8) can be interpreted as follows:
The case k = 0 means that we are not removing any edge from Tai,s = Tai + Tai+1,s .

Since we have to keep everything, we are not allowed to remove anything from the subtrees
Tai and Tai+1,s . If ai is connected to p nodes of Tai , then a is connected to m− p nodes in
Tai+1,s and the paths passing through a are exactly p(m−p). Hence by definition of F and
G the minimum number of paths that survive in Tai,s when we are not removing anything
will be Gai(m, 0) = minp{Fai(p, 0) +Gai+1(m− p, 0) + p(m− p)}.

The case k > 0 means that we have to remove at least one edge. When the value
of Gai(m, k) is achieved from the expression Fai(p, q) + Gai+1(m, k − 1 − q), we remove
the edge e (which connects a to ai). Expression Fai(p, q) gives the minimum number
of paths that survive in Tai when q edges are removed from Tai and p nodes of Tai are
still connected to ai. Since q edges have been removed from Tai , exactly k − 1 − q edges
must be removed from Tai+1,s . The minimum number of paths that survive in Tai+1,s when
k−1−q edges are removed from Tai+1,s is given by Gai+1(m, k−1−q). Thus the expression
Fai(p, q)+Gai+1(m, k−1−q) gives the minimum number of paths that survive in Tai,s when
q edges are removed from Tai (and the other k− 1− q edges are removed from Tai+1,s) and
p nodes of Tai are still connected to ai. By taking the minimum over p = 0, . . . , |V (Tai)|
and q = 0, . . . , k − 1, we find the value of Gai(m, k).

When the value of Gai(m, k) is achieved from the expression Fai(p, q) + Gai+1(m −
p, k − q) + p(m− p), we are not removing the edge e. As above, expression Fai(p, q) gives
the minimum number of paths that survive in Tai when q edges are removed from Tai and
p nodes of Tai are still connected to ai. Since q edges have been removed from Tai , exactly
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k− q edges must be removed from Tai+1,s and since p nodes of Tai are still connected to ai
and thus to a, exactly m− p nodes of Tai+1,s must remain connected to a. The minimum
number of paths that survive in Tai+1,s when k − q edges are removed from Tai+1,s and
m − p nodes of Tai+1,s are still connected to a is given by Gai+1(m − p, k − q). Thus the
expression Fai(p, q) +Gai+1(m− p, k− q) gives the minimum number of paths that survive
in Tai or Tai+1,s when q edges are removed from Tai (and the other k−q edges are removed
from Tai+1,s) and p nodes of Tai are still connected to ai, while m− p nodes of Tai+1,s are
still connected to a. Now we have to add the paths connecting nodes of Tai to nodes of
Tai+1,s , i.e. p(m−p) paths. This gives expression Fai(p, q) +Gai+1(m−p, k− q) +p(m−p)
of recursion (8). By taking the minimum over p = 0, . . . ,m and q = 0, . . . , k, we find the
value of Gai(m, k).

More specifically, if k = 0, we have only one choice so that we have to keep the edge e
(which connects a to ai) because we are not removing any edge. While in the case k > 0,
we have two possibilities that both are possible i.e., we can choose if we want to remove
the edge e or we want to keep it.

For a justification of (9), recall that Tas,s = a+ Tas . If m = 1 and k > 0, then we have
to remove the edge between a and as and the other k − 1 edges we have to be removed
from the subtree Tas and the number of connections that survive are those in the subtree
Tas . On the other hand if m > 1, then we can not remove the edge a to as and in this time
we have to remove all the k edges inside the subtree Tas . Since m nodes are connected
to a including a itself, in the subtree we will find the other m− 1 nodes connected to as.
Then we have to add all the connections of a to the nodes that are connected to as in the
subtree.

4 Solving CNEDP on a tree with unit connection costs

The objective in this case is for minimizing the number of paths surviving in the tree
T (V,E) after having removed at most KV nodes and KE edges.

We use the same tree and subtree notation as in Section 3, and calculate recursively
the following functions:

• Fa(m, kV , kE) = minimum number of connections that still exists in the subtree Ta
after kV nodes and kE edges have been removed from Ta and m nodes of Ta remains
connected to the root a. Condition m = 0 indicates that a is removed from Ta.

• Gai(m, kV , kE) minimum number of connections that still exists in the subtree Tai,s =
a + Tai + · · · + Tas after kV nodes and kE edges have been removed from Tai,s and
m nodes of the subtree are still connected to a. As above, m = 0 indicates that a is
removed from Tai,s .

We let the function values be infinity whenever the conditions cannot be satisfied. The
values for F and G can be computed by traversing the tree in postorder (from leaves to
root), by means of the following relations:
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For every leaf a we have

(10) Fa(m, kV , kE) =

{
0 if (m = 1, kV = kE = 0) or (m = kE = 0, kV = 1),
∞ otherwise,

while the formula for a non-leaf node a is

(11) Fa(m, kV , kE) = Ga1(m, kV , kE).

If a is a non-leaf node, we also have

(12) Gas(m, kV , kE) =
min{Fas(p, kV − 1, kE) : 0 ≤ p ≤ |V (Tas)|} if m = 0,

min
{
Fas(0, kV , kE),min{Fas(p, kV , kE − 1) : 0 ≤ p ≤ |V (Tas)|}

}
if m = 1,

Fas(m− 1, kV , kE) +m− 1 if m > 1,

while, for i < s,

(13) Gai(m, kV , kE) =

min{Fai(p, qV , qE) +Gai+1(0, kV − qV , kE − qE) :

0 ≤ p ≤ |V (Tai)|, 0 ≤ qV ≤ kV − 1, 0 ≤ qE ≤ kE} if m = 0,

min
{

min{Fai(p, qV , qE) +Gai+1(m, kV − qV , kE − qE − 1) :

0 ≤ p ≤ |V (Tai)|, 0 ≤ qV ≤ kV , 0 ≤ qE ≤ kE − 1},
min{Fai(p, qV , qE) +Gai+1(m− p, kV − qV , kE − qE) + p(m− p) :

0 ≤ p ≤ m, 0 ≤ qV ≤ kV , 0 ≤ qE ≤ kE}
}

if m > 0.

The optimal value is calculated as follows if we denote by 1 the root node of the tree

(14) OPT = min{F1(m,KV ,KE) : m = 0, . . . , n}.

Formulas (10) and (11) are immediate.
In (12) we assume that if a ∈ S then aas /∈ S: This is without loss of generality, as if

aas ∈ S, we obtain the same objective value by removing the elements in S \ {aas}. The
case m = 0 corresponds to a ∈ S, which leads to the formula on the first line. The case
m = 1 occurs when as ∈ S (first argument of the outer minimum on the second line) or
aas ∈ S (second argument of the outer minimum). Finally, m > 1 is the case in which
a, aas /∈ S.

Similar to (12), in (13) we assume that if a ∈ S then aai /∈ S. The first case (m = 0)
corresponds to having a ∈ S. In this situation, we take the sum of the optimal values that
we can obtain in each of the two subtrees Tai and Tai+1,s . For the second case (m > 0), in
which a /∈ S, we take the better of two possibilities, which correspond to the two arguments
of the outer minimum. For the first possibility, which is when aai ∈ S, we take again the
sum of the optimal values in each of the two subtrees Tai and Tai+1,s . For the second
possibility (aai /∈ S), we have to add the connections between the two subtrees.
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Optimizing smooth objectives
on convex sets without projections

Damiano Zeffiro (∗)

Abstract. The well known gradient descent method for smooth unconstrained optimization can
be extended in a straightforward way to problems with convex constraints by using projections.
However, in many cases there are more effective ways to generate feasible descent directions. One
of the most popular alternatives to the projected gradient method is the Frank-Wolfe method,
characterized by a linear minimization subproblem replacing the projection subproblem.
In this seminar, after a brief review of the above mentioned methods, some examples of sets com-
monly used in optimization where linear minimization is cheaper than projection will be discussed.
Then, variants to improve the convergence rate of the Frank-Wolfe method will be presented, to-
gether with a general framework to study such variants. Finally, an algorithm for fast cluster
detection in networks based on a Frank-Wolfe variant will be described.

1 Introduction

We discuss in these notes some iterative methods for the solution of the problem

(1.1)
min
x
f(x)

s.t. x ∈ Ω

with Ω a convex and closed subset of Rn , and f : Ω → R a differentiable function with
Lipschitz continuous gradient with constant L, that is

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

for every x, y ∈ Ω.

The classic gradient descent method [10] for unconstrained optimization can be ex-
tended in a straightforward way to problems of the form (1.1) by performing a projection
on Ω at every iteration to mantain feasibility. However, in many cases there are more
effective ways to improve the objective by finding feasible descent directions. Perhaps

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 19 January 2022.
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the most popular strategy is the Frank-Wolfe (FW) method [6], characterized by a linear
minimization subproblem replacing the projection subproblem. In these notes, after some
basic examples and definitions, we present a framework recently introduced in [12] to study
variants of this method.
The notes are structured as follows: after introducing a general algorithmic framework for
smooth constrained optimization in section 2, we review some examples of sets where linear
minimization is cheaper than projecting in section 3. Some classic strategies to improve
the convergence rate of the Frank-Wolfe method are reported in section 5, followed by the
framework of [12] in section 6. The notes then conclude with the main results derived with
the framework in section 7, in particular some improvements on the convergence rates of
Frank Wolfe variants and an application to a cluster detection problem in networks.

2 General scheme

The methods we consider in these note generate a sequence of feasible points {xk} as
described in Algorithm 1, converging to a first order stationary point x∗.

Algorithm 1 First order method for problem (1.1).

1: 1 Choose a point x0 ∈ Ω
2: 2 For k = 0, . . .
3: 3 If xk satisfies some specific condition, then STOP
4: 4 Choose a feasible direction dk
5: 5 Set xk+1 = xk + αkdk, with αk ∈ (0, αmaxk ]
6: suitably chosen stepsize
7: 6 End for

All the algorithms following the scheme above are clearly in the class of first order
methods, that is the methods use only the gradient ∇f and the objective f to choose
the next iterate. The stepsize αk can be for instance chosen by linesearch in the interval
(0, αmaxk ] .
We now discuss two basic instances of the above scheme.

2.1 Gradient descent

In the case where Ω = Rn, the well known gradient descent method [10] follows scheme 1
with dk = −∇f(xk). The method can be extended to a generic convex Ω by projecting,
i.e. setting

(2.1) xk+1 = PΩ(xk − ᾱk∇f(xk))

for PΩ(y) = argminz∈Ω‖y− z‖ the projection operator on Ω. Equivalently, xk+1 minimizes
a linearized and regularized objective:

(2.2) xk+1 ∈ argminz∈Ωf(xk) + 〈∇f(xk), z − xk〉+
ᾱk
2
‖z − xk‖2 .

The projection PΩ is uniquely defined since Ω is convex.
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2.2 The Frank Wolfe method

In the Frank-Wolfe method the descent direction dk is defined by

(2.3) dk = dFW
k := sk − xk with sk ∈ argmins∈Ω〈∇f(xk), s〉 .

Thus the descent direction dk points toward a minimizer sk of the linearized objective:

(2.4) sk = LMOΩ(∇f(xk)) ∈ argminx∈Ωf(xk) + 〈∇f(xk), x− xk〉
where the operator LMOΩ used to compute sk is typically referred to as linear minimization
oracle [9].
One important property of the FW method is that it finds sparse approximate solutions, a
feature that has lead to applications in many large scale optimization problems including
maximum clique, SVM training, minimum enclosing ball, traffic assignment, submodular
optimization, etc. (see, e.g., [7, 3] for surveys on the method and its applications).

3 Projection and linear minimization

To motivate the FW method, we report in this section some examples from [5] of sets
commonly used in optimization where linear minimization is faster than projection.

Table 1. Complexities of linear minimization and projection (see [5, Table 1] for details).

3.1 lp ball

Consider the case where Ω is the lp ball:

Ω = {x ∈ Rn | p

√(∑
|xi|p

)
= ‖x‖p ≤ 1}

For p = 1, 2,+∞, there are fast O(n) algorithms for both projection and linear optimiza-
tion, with linear optimization outperforming projection for p = 1 in large dimensions.
For p ∈ (1, 2) ∪ (2,∞) linear minimization still costs O(n), since we have the closed form
expression

(3.1) LMOΩ(c) = (sign(ci)
|ci|

p∗
p

‖c‖p
∗

p∗
)ni=1

for p∗ = p
p−1 . Instead, projections must be approximated via an iterative method. In [5]

for instance a method with O(n/ε2) complexity is proposed, for ε desired precision on the
solution.
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3.2 Nuclear norm ball

Consider now the case where Ω ⊂ Rn×m is the nuclear norm ball, that is the set of matrices
with sum of singular values at most 1:
(3.2)
Ω = {X ∈ Rn×m |

∑
Σii ≤ 1, where UΣV t is the singular value decomposition of X} .

In this case, we have

(3.3) LMOΩ(X) = uvt

with u, v top left and right singular vector of X, while

(3.4) PΩ(X) = U Σ̂V t

for Σ̂ diagonal matrix with diag(Σ̂) projection on the simplex of diag(Σ). In particular,
computing PΩ requires the full SVD decomposition, while computing LMOΩ only requires
the top left and right singular vector.

4 Convergence rates

We assume in the rest of these notes that the objective f is convex and that the feasible
set Ω is compact, with x∗ global minimizer of f in Ω. Recall that f is said to be strongly
convex if

(4.1) f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2

for every x, y ∈ Rn. We have the following convergence results for the projected gradient
method and the FW method respectively (see, e.g., see [10] and [3]).

Proposition 4.1 If f is convex then for the projected gradient method

(4.2) f(xk)− f(x∗) = O(1/k) .

Furthermore, if f is strongly convex

(4.3) f(xk)− f(x∗) = O

((
1− µ

L

)k)
.

Proposition 4.2 If f is convex and {xk} is generated by the Frank Wolfe method

(4.4) f(xk)− f(x∗) = O(1/k) .

Furthermore, this rate is optimal even for the class of strongly convex objectives.

Thus, the FW method has a slower convergence rate for strongly convex objectives.
The reason why this is the case is a well understood zig zagging behaviour ([9], [3]), taking
place when the method approaches a solution on the boundary (see Figure 1).
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Figure 1. FW method approaching a solution on the boundary.

5 FW variants

The zig zagging behaviour of the classic FW method has motivated the introduction of
variants considering different feasible directions instead of the FW direction. A popular
choice [9, 3] is to consider away steps, that is steps pointing away from a bad vertex vk in
the minimal face F(xk) containing the current iterate xk:

(5.1) dk = dASk = xk − vk .

There are several different strategies to select vk [3]. For instance, in the special case of
the Frank Wolfe method with in face directions (FDFW), we have

(5.2) vk ∈ argmaxv∈F(xk)〈∇f(xk), v〉

and

(5.3) dk =

{
dFWk if 〈−∇f(xk), d

FW
k 〉 ≥ 〈−∇f(xk), d

AS
k 〉

dASk otherwise.

Figure 2. Behavior of the Frank Wolfe method with in face directions.
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We have the following properties [2].

Proposition 5.1 If Ω is a polytope, f is µ−strongly convex and {xk} is generated by the
FDFW, then f(xk) − f(x∗) → 0 with a linear convergence rate dependent only from µ,L
and Ω. Furthermore, if strict complementarity conditions hold at x∗, F(x∗) is identified in
a finite number of iterations, or in other words xk ∈ F(x∗) for k large enough.

While several Frank Wolfe variants solve the issue of zig zagging, they can still exhibit
a slow initial convergence for non convex objectives (see Figure 3). This is due to bad
steps, defined as maximal steps (i.e. for which αk = αmax

k ) that are not FW steps. When a
Frank Wolfe variants does a bad step, it can "waste" a gradient computation and a linear
minimization without improving much the value of the objective.

Figure 3. Iterations vs error for the FDFW applied to a continuous formulation of the max clique problem.

6 Framework for linearly convergent projection free optimization

We describe in this section the framework for linearly convergent FW variants first in-
troduced in the paper [12]. The main motivation of the framework is to give a unifying
analysis for linearly convergent FW variants, and to define a procedure that does not waste
gradient and LMO computations in bad steps. This is achieved by specifying an angle con-
dition ruling out the zig zagging behaviour, and by defining a procedure to recycle gradient
and LMO computations in consecutive bad steps.

6.1 Angle condition

In the unconstrained case, a well known condition [1] to ensure convergence of a first order
method following the general scheme 1 is that the angle between the gradient −∇f(xk)
and the descent direction dk must not exceed a certain threshold. In other words, for every
k and some fixed τ > 0:

(6.1)
〈dk,−∇f(xk)〉
‖dk‖‖∇f(xk)‖

≥ τ .
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In order to extend the condition to the constrained case, we first need to introduce the
tangent cone.

Definition 6.1 For x ∈ Ω, let

TΩ(x) = cl{v ∈ Rn | x+ λv ∈ Ω for some λ > 0}

be the tangent cone to Ω in x.

Figure 4. Tangent cone.

We can now define the angle condition in the constrained case.

Definition 6.2 We say that a method following the scheme 1 satisfies the angle condition
at iteration k and for τ > 0 if

(6.2)
〈dk,−∇f(xk)〉

‖dk‖‖π(xk,−∇f(xk))‖
≥ τ ,

with π(x, ·) projection on TΩ(x). A method satisfies the angle condition for τ > 0 if (6.2)
holds for every k.

As an example, the following proposition states that the FW direction satisfies the
angle condition for any fixed k, with a bound going to 0 if {xk} converges to the boundary
from the interior, as expected given the zig zagging behaviour.

Proposition 6.3 If Ω is a polytope and xk ∈ Ω, and dk = dFWk , then the angle condition
is satisfied with τ = βk/D, for D the diameter of the polytope and

(6.3) βk := min
F∈faces(Ω),

xk /∈F

dist(xk, F ) .

We have the following convergence theorem.

Theorem 6.4 Under the angle condition, if f is strongly convex and x∗ is the solution of
problem (1.1)

(6.4) f(xk)− f(x∗) = O

((
1 + τ2 µ

L

)−γ̄(k)
)
,

for γ̄(k) number of good steps.
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We remark that the above theorem holds also without assuming convexity, under the
gradient inequality

‖π(x,−∇f(x))‖2

2µ
≥ f(x)− f(x∗) .

6.2 Short step chain

The short step chain (SSC) procedure performs several steps keeping the gradient fixed,
until a sufficient progress is achieved (we refer the reader to the paper [11] for details).

The following is the main convergence result proved in the paper for methods satisfying
the conditions of the framework and using the SSC.

Theorem 6.5 If f is strongly convex, a first order method with SSC always finite and
satisying the angle condition converges with

(6.5) f(xk)− f(x∗) = O

((
1 +

µ

L

τ2

(1 + τ)2

)−k)
.

7 Main results

7.1 Improving the rates of convergence of some FW variants

A consequence of Theorem 6.5 is that by applying the SSC we can improve the rates of
existing methods as shown in Table 2 (see also [3] for a description of the related FW
variants).

Algorithm Objective γ(k) Ib hk/h0 upper bound

AFW SC k/2 |S0| − 1
(

1− µ
L

τ2
p

4

) k
2

PFW SC k/(3|A|! + 1) -
(
1− µ

Lτ
2
p

) k
3|A|!+1

FDFW SC k/(∆(Ω) + 1) dim(F(x0))
(

1− µ
L
τ2
v
4

) k
∆(Ω)+1

AFW + SSC NC, KL k -
(

1 + µ
L

τ2
p

(2+τp)2

)−k
PFW + SSC NC, KL k -

(
1 + µ

L

τ2
p

(1+τp)2

)−k
FDFW + SSC NC, KL k -

(
1 + µ

L
τ2
v

(1+τv)2

)−k
Table 2. Ω = conv(A) with |A| < ∞. SC = strongly convex, NC = non convex, KL = KL property.
γ(k): lower bound on the number of good steps after k steps, counting from the first good step. Ib: bound
on the number of bad steps before the first good step. hk/h0 upper bound: worst case rate assuming no
initial bad steps. ∆(Ω) = maximum increase in face dimension after a FW step. S0 = active set for x0.
τp, τp/2 and τv are the angle condition constants for the AFW, PFW and FDFW respectively.
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7.2 s-defective cliques

Let G = (V,E) be a graph with vertices V and edges E. A subset C of V is an s− defective
clique if at most s links are missing between vertices in C:

|
(
C

2

)
∩ E| ≥ |

(
C

2

)
| − s

Then the maximum s−defective clique problem consists in finding an s−defective clique of
maximum cardinality. We applied a first order method with SSC to (a regularized version
of) the following continuous cubic formulation of this problem from [13]:

(7.1) max{xᵀ(AG +A(y))x | (x, y) ∈ ∆|V |−1 ×D′s(G)} ,

with

• Ē =
(
E
2

)
\ E.

• D′s(G) = {y ∈ [0, 1]Ē | eᵀy ≤ s}

• ∆|V |−1 the |V | − 1 dimensional simplex

• AG adjacency matrix of G

• A(y)ij = y{i,j} for {i, j} ∈ Ē, 0 otherwise (the so colled "fake edge matrix").

The method we applied combines the FDFW on the x components, with the FW
method on the y component.

Algorithm 2 FW for s−defective clique (FWdc)
1 Choose z0 := (x0, y0) ∈ P, k := 0
2 If zk is stationary then STOP
3 Compute a descent direction dxk on the x component with the FDFW
4 Compute a descent direction dyk on the y component with FW
5 If 〈∇yhG(xk, yk), d

y
k〉 ≥ 〈∇xhG(xk, yk), d

x
k〉 then:

6 set xk+1 = xk, yk+1 = yk + dyk.
7 Else set xk+1 = xk + αkd

x
k, yk+1 = yk.

8 Set k := k + 1. Go to step 2.

By results proved in [4], the above method always identifies an s−defective clique in
a finite number of iterations, provided that it does not converge to a saddle point (which
is never an issue in numerical tests; see also [8]). Moreover, Algorithm 2 outperforms the
approach proposed in [13], based on the CONOPT solver and a combinatorial procedure
to process solutions (see [4] for numerical results on a simplified variant of Algorithm 2).
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Modular curves and Heegner points

Daniele Troletti (∗)

Abstract. One the the main open conjecture is the one due to Birch and Swinnerton-Dyer about
elliptic curves. There are many attempts to prove it but they were able to prove only some special
cases, like the rank 1 case proven by Kolyvagin using the Heegner points method. This seminar
will give an introduction on the basis required to define the Heegner points, such as elliptic and
modular curves. After that we are going to define Heegner points and show some results achieved
using them.

1 Elliptic curves

One of the main subject of study in modern number theory are the elliptic curves. They
are special curves with many interesting properties. A good reference on this topic is [8].
Since we are interested mainly in elliptic curves over C all the fields will have characteristic
zero.

Definition 1.1 An Elliptic curve E is a plane complex curve whose points are the solution
of the cubic equation

y2 = 4x3 − g2x− g3

where g2, g3 ∈ C and ∆ = g3
2 − 27g2

3 6= 0.

Such an equation is called the Weierstrass equation of the elliptic curve. The quantity
∆ is called the discriminant. We have an important invariant associated to every elliptic
curve which will play an important role later on:

Definition 1.2 The j-invatiant of an elliptic curve is

j(E) =
1728g3

2

g3
2 − 27g2

3

In a more geometric language an elliptic curve is a smooth complex algebraic cubic
curve. This class of curves has a special feature that make them interesting in number
theory: the set of their points has the structure of an abelian group.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 2 February 2022.
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Remark 1.3 Why an elliptic curve has this cubic equation? This derives from the
geometric description: wanting a simple object we take a curve (so dimension 1), smooth
and with algebraic genus 1. The Riemann-Roch theorem implies that any curve with this
characteristics must have an equation like the one of definition 1.1.

In order to define this structure we need to compactify the curve adding a point at
infinity (using projective geometry, it is the point at infinity of the y-axis). We denote this
extra point as ∞. Hence the set of the complex (projective) points of the elliptic curve is

E(C) =
{

(x, y) ∈ C2 | y2 = 4x3 − g2x− g3

}
∪ {∞}

(a) Examples of elliptic curves

(b) Examples of singular cubic curves

Figure 1. An example of the real points of some elliptic curves (a) and some cubic curves that are not
elliptic (b). Note that the elliptic curves are smooth, while the others have a singular point. Indeed, there
is a classification theorem of cubic complex plane curves up to linear change of coordinates: either they
are elliptic curves, or they have exactly one singular point that can be a node or a cusp. The two figures
are taken from [8, Figures 3.1 and 3.2].
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Figure 2. Geometric description of the composition law on the elliptic curve E. On the left we see the
sum of two points P 6= Q: in this case P ⊕ Q is obtained reflecting w.r.t the x-axis the point R, namely
the third point in which the line through P and Q meets E. On the right side we see the sum P ⊕ P : it
is the reflection of the other point in which the tangent line at P meets E. This figure is taken from [8,
Figure 3.3].

Proposition 1.4 The composition law described in geometric terms in Figure 2 makes
E(C) into an abelian group, whose zero is ∞ and that, in coordinates, is defined alge-
braically (i.e. by rational functions, in other words by quotients of polynomials).

A complex projective algebraic variety (i.e. the zero locus into the complex n-th pro-
jective space of a set of homogeneous polynomials) whose points form a group (which
is necessarily abelian) whose composition law is algebraically defined is called an abelian
variety over C. Therefore the previous proposition says that elliptic curves are abelian
varieties. It turns out that all abelian varieties (over C) of dimension 1 are elliptic curves.
We begin to do Number Theory when the equation of an elliptic curve has only rational
coefficients (ore more generally when the coefficient are in a number fields, i.e. finite degree
extensions of Q). The next definition give us a little bit of language on that.

Definition 1.5 If K is any subfield of C and g2, g3 ∈ K, we say that E is defined over K.
In this case for any field extension K ⊆ L ⊆ C we define

E(L) =
{

(x, y) ∈ C2 | y2 = 4x3 − g2x− g3, such that x, y ∈ L
}
∪ {∞} = E(C) ∩ L2

the set of L-rational point of E.

It is easy to see using the expression of the sum in coordinates that E(L) is a subgroup
of E(C). One of the most important theorem about this subject is the one regarding the
structure of the group E(L), which gives a precise description on how this group is made.

Theorem 1,6 (Mordell-Weil) Let E be an elliptic curve defined over a number field K,
then E(K) is a finitely generated abelian group, hence isomorphic to E(K)tors×Zr, where
E(K)tors denotes the K-rational torsion points (i.e. points of finite order, that is a point
P such that nP = ∞ for some n ∈ N, n > 0), and r ∈ N≥0 is called the (algebraic) rank
of E.
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The (algebraic) rank of an elliptic curve is an important arithmetic invariant and is
the subject of important conjectures, e.g. the Birch and Swinnerton-Dyer conjecture who
relates it with the analytic rank which is the order of vanishing of the L-function attached
to E at s = 1. Indeed this happens because this theorem is not effective, i.e. it does
not provide a method for computing the algebraic rank (there are no known finite time
algorithm in general).

As always in math, after introducing a class of object we define the maps among them.
Since these curves have a group structure it is a natural choice to require some compatibility
condition on the functions.

Definition 1.7 Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is a morphism
of algebraic curves ϕ : E1 → E2 such that ϕ(∞) =∞.

We can prove that an isogeny either is the zero map or it is surjective. Since the elliptic
curves are groups then also the set of the maps between them is a group, we denote the
set of isogenies from E1 to E2 as

Hom(E1, E2) = {isoginies E1 → E2}

The sum is of isogenies is defined pointwise. We define the endomorphism ring of E
as the group End(E) = Hom(E,E) endowed with the composition of functions as the
multiplication map.

Example 1.8 Let n ∈ Z, the multiplication-by-n isogeny

[n] : E → E

is defined in the natural way:

[m]P =


P + · · ·+ P m times if m > 0,

∞ if m = 0,

(−P ) + · · ·+ (−P ) m times if m < 0.

In the case of elliptic curves we can find the structure of the endomorphism ring.

Definition 1.9 Let K be a Q-algebra that is finitely generated over Q. An order R of K
is a subring of K that is finitely generated as a Z-module and satisfies R⊗Q = K.

Example 1.10 Let F be a number field, i.e. an extension of Q, then its ring of integers
is an order. Suppose F = Q[i] then R = Z + Zi is an order of Q[i].

Remark 1.11 If the algebra K is an imaginary quadratic field, i.e. a field of the form
Q(
√
d) for some d ∈ Z, d < 0, and OK is its ring of integers then all the orders has the

form R = Z+ cOK, where c is a positive integer. We call c the conductor of the order R.
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Theorem 1.12 Let E be an elliptic curve, then End(E) is either Z or an order in an
imaginary quadratic field.

Many properties of E depends on the endomorphism ring, in particular:

Definition 1.13 Let E be an elliptic curve, R an order in an imaginary quadratic field
K. We say that E has complex multiplication by R if End(E) = R

This property is not extremely rare and elliptic curves with CM are really nice to study
and used in many construction, for example the Heegner points we are going to define later
on. We now give an explicit example of an elliptic curve with CM.

Example 1.14 The curve E defined by the equation

y2 = x3 + x

is an elliptic curve with complex multiplication. We can make a change of coordinates and
transform the equation in the form used in the definition but one of the two coefficient is
not over Q and has a complex expression: g3 = 0 and

g2 = 64

(ˆ 1

0

dt
√

1− t4

)4

We can compute the j-invariant and we get j(E) = 1728. We can consider the morphism

ψ(x, y) = (−x, iy)

winch is an endomorphism since (iy)2 = (−x)3 + (−x). Furthermore ψ4 is the identity
map and it is not a multiplication-by-n map for any n. So we have that End(E) ∼= Z[i]
and E has complex multiplication.

2 Modular curves

In the previous section we have seen elliptic curves under an algebraic viewpoint, but there
is also another approach to them: we can describe them as Riemann surfaces, i.e. complex
differentiable manifold of dimension 1. A good reference about this description of elliptic
curves is [1].

Definition 2.1 A Riemann surface is a topological space X such that locally at any point
x ∈ X there is an homeomorphism ϕ : U → V of an open neighbourhood U of x with an
open subset V of C and such that the “local charts” are compatible, in the sense that the
“change of coordinate maps” ψ ◦ ϕ−1 : ϕ−1(U ∩ U ′)→ ψ(U ∩ U ′) are biholomorphic maps
(holomorphic and bijective). Here ϕ : U → V and ψ : U ′ → V ′ are two local charts such
that U ∩U ′ 6= ∅. The set of local charts of a Riemann surface is called a ?complex atlas?.

Example 2.2 The most trivial example of Riemann surface is of course C itself, with
the identity as the unique chart; another easy example is the so called Riemann Sphere,
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that is a sphere covered by two local charts: the two stereographic projections, one defined
on the whole sphere without the North pole, the other on the sphere without the South
one. Note that the latter example is a compact Riemann surface, that is topologically the
compactification with one point of the first one.

Definition 2.3 A lattice Λ in C is a free subgroup of rank 2, i.e. a subset of C of the
form Λ = Zω1 ⊕ Zω2, where ω1, ω2 ∈ C, such that Im(ω2/ω1) > 0. The quotient group

C/Λ = {x+ Λ | x ∈ C}

endowed with the quotient topology can be given a complex atlas. The resulting Riemann
surface is called a complex torus (it is indeed topologically a torus).

Figure 3. A lattice in the complex plane.

Figure 4. A fundamental parallelogram (a): up to the identification of the opposite sides it represent the
quotient space C/Λ. Once identified the opposite sides it becomes a topological torus (b).

The important result is that, using the Weierstrass ℘ function, any complex torus can be
embedded into the complex projective plane in a biholomorphic way as an elliptic curve
and all elliptic curves are obtained in this way, hence as Riemann surfaces elliptic curves
and complex tori are the same thing.
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Definition 2.4 Let Λ be a lattice, then the Weierstrass ℘-function associated to Λ is
defined as

℘(z,Λ) =
1

z2
+
∑
ω∈Λ
ω 6=0

(
1

(z − ω)2 −
1

ω2

)

The Eisenstein series of weight 2k associated to Λ is the series

G2k(Λ) =
∑
ω∈Λ
ω 6=0

ω−2k

Theorem 2.5 Let Λ be a lattice in C, then:

• The Eisenstein series G2k(Λ) is absolutely convergent for all k > 1.

• The series defining the Weierstrass ℘-function converges absolutely and uniformly
on every compact subset of C \ Λ. The series defines a meromorphic function on C
having a double pole with residue 0 at each lattice point and no other poles.

• For all z ∈ C \ Λ, the Weierstrass ℘-function and its derivative satisfy the relation

℘′(z)2 = 4℘(z)3 − 60G4(Λ)℘(z)− 140G6(Λ)

Thus there exists a map ψ which sends biholomorphically the torus C/Λ to the elliptic
curve E with g2 = 60G4(Λ) and g3 = 140G6(Λ)

ψ : C/Λ→ E(C)

z 7→
[
℘(z), ℘′(z), 1

]
We can construct an inverse to this map and we can prove that it maps biholomorphisms

to isogenies, hence classify elliptic curves up to isogeny is the same thing as classify complex
tori up to biholomorphism. In particular we are interested in classifying elliptic curves
endowed with more structure.

Proposition 2.6 Let Λ and Λ′ be two lattices in C. The two complex tori C/Λ and C/Λ′
are biholomorphic if and only if Λ and Λ′ are homothetic, i.e. Λ′ = εΛ for some ε ∈ C×.

In particular given a lattice Λ = Zω1 ⊕ Zω2, we can consider the complex number
τ = ω2/ω1, which has positive imaginary part, and we have that Λ is biholomorphic to
the lattice Λτ = Z ⊕ Zτ . Thus any complex tours is biholomorphic to one of the form
Eτ = C/Λτ for some τ ∈ C with Im τ > 0. Moreover:

Pro2.7 Two complex tori Eτ and Eτ ′ are biholomorphic if and only if there are four
integers a, b, c, d,∈ Z such that ad− bc = 1 and

τ ′ =
aτ + b

cτ + d
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With a more sophisticate language this means that classify all elliptic curves up to
biholomorphism is equivalent to classify the numbers τ that belong to the complex upper
halfplane

H = {z ∈ C | Im(z) > 0}

up to a left action of the special linear group

SL2(Z) =

{
γ =

(
a b
c d

)
∈M2(Z)

∣∣∣ det(γ) = 1

}
given by the formula (

a b
c d

)
τ =

aτ + b

cτ + d

We will denote the set of orbits by Y (1) = SL2(Z)\H. One can prove that Y (1) has
the structure of a Riemann surface, that we call an open Modular curve. We can see how it
works topologically: Figure 5 represent a so called ?fundamental domain?, i.e. a connected
subset of the complex plane that (outside the borders) is in bijection with the orbits of the
action. Giving to Y (1) the quotient topology is therefore equivalent to glue the left and
right borders of the fundamental domain.

Example 2.8 We can consider the elliptic curve of the Example 1.14, its isogeny class
corresponds to the point i in the fundamental domain of Y (1).

Other (open) modular curves can be defined as the quotient Γ\H of H by the induced
action of some particular subgroups Γ of SL2(Z), called congruence subgroups. We are
interested in congruence subgroup of the form

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 mod N

}
for some positive N ∈ Z. The modular curve Y0(N) = Γ0(N)\H can be interpreted as a
classifying space, too:

Proposition 2.9 The modular curve Y0(N) = Γ0(N)\H parametrizes the couples (E,C),
where E is an elliptic curve and C is a cyclic subgroup of E of order N .

Another important features of modular curves is that they can be compactified with a
finite number of points, called cusps, in a canonical way, giving rise to a compact Riemann
surface, that we call a closed Modular curve. The compactification of a modular curve is
denoted by the letter X, so e.g. X0(N) is the compactification of Y0(N). The importance
of X0(N) is that it can be embedded (biholomorphically) into the complex projective plane
as an algebraic curve defined over Q (i.e. it has an equation with all rational coefficients).
Hence in the rest we will treat X0(N) as such a curve.

Università di Padova – Dipartimento di Matematica 66



Seminario Dottorato 2021/22

3 Modularity

In this brief section we introduce the concept of modularity for elliptic curves, which is the
last ingredient we need in order to define the Heegner points.

Definition 3.1 Let E be an elliptic curve defined over Q, then E is modular if there is a
surjective morphism π : X0(NE)→ E of algebraic curves defined over Q.

Heuristically this means that an elliptic curve is a quotient of a modular curve.

Remark 3.2 The number NE is the conductor of E and it does only depends on E.

1
2
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√
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− 1
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√

3
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1
2

Figure 5. Fundamental domain for SL2(Z)\H.
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Theorem 3.3 (Modularity) Any elliptic curve E over Q is modular.

This important theorem was proved for semistable elliptic curves by Wiles and Taylor
in 1993-1995, and it was established in general only in 2001 in a joint paper by Breuil,
Conrad, Diamond, Taylor and Richard.

The modularity theorem gives the existence of the modular parametrization π, but
getting it explicitly following the idea in the proof of the theorem is extremely hard since
it require passing through multiple Galois representation.

4 Heegner points

Let E be an elliptic curve of conductor N defined over Q and let d 6= 3, 4 be a positive
integer. Let K = Q[

√
−d] be an imaginary quadratic field. We require that d satisfies

the Heegner Hypothesis: every prime dividing N should split completely in K. By the
Modularity Theorem we can fix a modular parametrization ϕ : X0(N)→ E.

For every positive n ∈ Z we have an order Rn of conductor n in K. Using the theory
of orders and complex multiplication we can construct an elliptic curve En with complex
multiplication by End(En) = Rn and a cyclic subgroup Cn of orderN . The couple (En, Cn)
defines a point xn on the modular curve X0(N) via the identification of Proposition 2.9.

Definition 4.1 Heegner points on the elliptic curve E are the images yn = ϕ(xn).

The points yn are not defined in general over Q but over an extension (one for each n)
of the quadratic field K. By the theory of complex multiplication and class field theory we
know that this extension is the so-called ring class field of conductor n which is denoted
by Kn.

Figure 7. A fundamental domain for X0(53).
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Example 4.2 Consider the elliptic curve E : y2 +xy+y = x3−x2. We can find a modular
parametrization X0(53)→ E. Using the technique of [3] we can find the point y5. Let

P (x) = x6 − 12x5 + 1980x4 − 5855x3 + 6930x2 − 3852x+ 864

and let α be one of its roots. We have that the ring class field of conductor 5 is K5 = K[α].
We can compute the affine coordinates of the point y5 which are

y5 =

(
α,−

4

315
α5 +

43

315
α4 −

7897

315
α3 +

2167

35
α2 −

372

7
α+

544

35

)

Of particular interest is the point y1. We can define the point

yK = TrK1/K(y1) =
∑

σ∈Gal(K1/K)

σ(y1)

where TrK1/K the trace map and Gal(K1/K) is the group of the automorphisms of K1

fixing K. If we change the cyclic subgroup C1 we get another point y1 but the point yK
changes only up to a minus sign and a torsion point of E.

Theorem 4.3 (Kolyvagin) If the point yK has infinite order in E(K), then

• The group E(K) has rank 1,

• The group X(E/K) is finite.

The group X(E/K) is an important group associated with an elliptic curve which
measure how bad it behaves when trying to compute the algebraic rank of it. It is still
open the question whether it is finite or not.

Further works of Kolyvagin and others using Heegner points were able to prove a special
case of the Birch and Swinnerton-Dyer conjecture, the one where the algebraic rank of the
elliptic curve is 1.

5 Further readings

The classical reference book about elliptic curves and their arithmetic properties is [8].
For more advanced topic, the complex viewpoint on elliptic curve and the theory of

modular curve you can look at the first chapter of [7] and [1].
For the theory of complex multiplication and a brief review on class field theory you

can look at the second chapter of [7].
If you are interested in the use of Heegner points to prove the rank 1 case of the Birch

and Swinnerton-Dyer conjecture you can look at the original articles of Kolyvagin. A
simpler article, which still requires some advanced knowledge in number theory, explaining
the works of Kolyvagin is [2].
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Beyond Nash Equilibria in Mean Field Games

Ofelia Bonesini (∗)

Abstract. The concept of Nash Equilibrium is the most important (and famous) notion in Game
Theory. Assuming that the audience is not familiar with the topic, we will first warm up with an
introduction to recall all the basic definitions and results. Then, we will focus on two extensions:
Correlated Equilibria and Mean Field Games. Finally, we will gather things together to see how
the definition of a Correlated solution can be formulated and its validity checked in the mean field
context. Time permitting, I will mention some results of my research.

1 Introduction to Game Theory

1.1 Historical backgroung and motivations

The purpose of this section is to provide the basic definitions and results of Game Theory.
It does not aim at being exhaustive and the interested reader is referred to the first chapters
in [2].

1920 1985

1928
Minimax
Theorem

(Neumann)

1944
The theory of Games and

Economic Behaviour (Neu-

mann, Morgenstein)

1951
Differential
Games

(Isaacs)

1965
Credible commitment
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1962
Maximum
Principle

(Pontryagin)

1970
Innovation in
incomplete

information games

1980
Repeated Games

1957
Dynamic

Programming

(Bellmann)
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Equilibrium and

Bargain

(Nash)

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 23 February 2022.

Università di Padova – Dipartimento di Matematica 71



Seminario Dottorato 2021/22

The origins of Game Theory can be dated back to 1928 when Von Neumann proved
the Minimax Theorem. Since then, the theory has experienced a steady growth over
the following 50 years which have been characterized by milestones dates such as 1944
(the publishing of The theory of Games and Economic Behaviour by Von Neumann and
Morgenstein) or 1950 (the theorization of the concept of Equilibrium within John Nash
PhD Thesis). These are also the years in which Dynamic Programming, on one side,
and Maximum Principle, on the other, were proved. In a nutshell, we conclude that this
dense and full of innovations half-a-century has provided the fertile ground for what is
well-portrayed by the following timeline. Indeed, although there is no Nobel Prize for
Mathematics, five Nobel prizes in Economics have been assigned to works dealing with
innovations in Game Theory, in the twenty years between 1994 and 2014.

1980 2020

2014
Tirole

MARKET REGULATIONS

2012
Shapley, Roth

MARKET DESIGN & STABLE ALLO-

CATIONS

2007
Myerson, Hurwicz,

Maskin

MECHANISM DESIGN

2005
Aumann, Schelling

COOPERATION & CONFLICT

1994
Nash, Harsanyi, Seltens

PERFECT EQUILIBRIUM

Nobel Prizes for Games

1994 2014

This fact points out the key feature of game theory that we are going to discuss in the
next section and which has been one of the motivations behind is success: its applicability.

1.2 Applications

For the sake of brevity, here we just list a few fields and some representative examples of
applications, but the utility of game theory has no limit. This is a direct consequence of
the fact that it provides a context-free set of mathematical tools that can be exploited in
any situation in which a decision is made in an interactive context.

• Theoretical economics: buyers vs sellers, auctions...

• Networks: users vs providers, providers vs providers...

• Political science: political parties forming a governing coalition, voting methods
and their properties...
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• Military applications: a missile pursuing a fighter plane...

• Inspection: rules breaker vs inspector...

• Biology: Evolutionarily Stable Strategy (which is a variant of the notion of Nash
equilibrium)...

• Sports, Medicine, Psychology, Environment...

1.3 Basic Notions

"Game Theory is the name given to the methodology of using mathematical tools to model
and analyze situations of interactive decision making." [2].

This is the perfect answer to the question "What is Game Theory?"
It is informal but it is able to convey what the key ingredients are: Mathematical mod-
elization and Interaction. Indeed, it is interactivity that distinguishes the discipline from
standard control theory and optimization by taking into account the case in which more
than one decision maker is pursuing his goals at the same time.

1.3.1 Games in Strategic Form

In order to keep things as simple as possible, we limit ourselves to a static context and to
the following formulation(1).

Definition 1.1 A Game in Strategic Form (or in normal/matrix form) is an ordered triple
G = (N, (Si)i∈N , (ui)i∈N ), where

• N = {1, 2, ..., n} the finite set of players;

• For every player i ∈ N :

– Si the set of strategies of player i;
S = S1 × S2 × · · · × Sn the set of all vectors of strategies;

– ui : S → R a function associating to each s = (si)i∈N the utility, or payoff, ui(s)
of player i.

Now, let’s introduce a notation that is used several times in the following. Given s ∈ S,
we set s−i := (s1, . . . , si−1, si+1, . . . , sn), that is the vector of all strategies but si.

We end this section presenting a well-known example of game to motivate the name
Matrix Form Games. This should be considered as a prototype for the examples that are
presented in the following. Table 1 represents Rock, Paper and Scissors game. We see that
the indexes of the rows in the matrix are the strategies of the first player while the indexes
of the columns represent the strategies of the second. Each entry of the matrix is a two-
dimensional vector where the i-th component, with i ∈ {1, 2}, corresponds to the utility

(1)Static games are often presented in the so-called Extended Form.
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function of the i-th player evaluated at the strategies corresponding to that index. Thus,
when Player 1 wins over Player 2 their utilities are, respectively, (1,−1), whereas, when
Player 2 is the winner, the utility vector reads (−1, 1). Finally, if a tie occurs u = (0, 0).

Player 2

R P S

Player 1
R (0, 0) (−1, 1) (1,−1)

P (1,−1) (0, 0) (−1, 1)

S (−1, 1) (1,−1) (0, 0)

Table 1. Rock, Paper and Scissors game in matrix form.

1.3.2 Nash Equilibria

Definition 1.2 Consider a vector of strategies s ∈ S. If ui(ŝi, s−i) > ui(s), we call the
strategy ŝi a profitable deviation of player i at the strategy vector s ∈ S.

Definition 1.3 A strategy vector s∗ = (s∗1, . . . , s
∗
n) is defined a Nash equilibrium if

ui(s
∗) ≥ ui(si, s∗−i),

for each strategy si ∈ Si and for each player i ∈ N . Thus, a Nash equilibrium is a vector
of strategies such that none of the players has a profitable deviation.

An alternative, but completely equivalent, definition can be given in terms of the best
reply.

Definition 1.4 Denote with s−i a strategy vector of all the players but player i. We say
that player i’s strategy ŝi is a best reply to s−i if

ui(ŝi, s−i) = max
ti∈Si

ui(ti, s−i).

Definition 1.5 A strategy vector s∗ = (s∗1, . . . , s
∗
n) is called a Nash equilibrium if, for

every player i ∈ N , s∗i is a best reply to s∗−i.

Remark 1.6 A Nash Equilibrium can be equivalently characterized as a fixed point of
the best reply map B : S → S, B(s) := (B1(s−1), . . . , Bn(s−n)), with Bi(t−i) best reply
to ti for player i.

We end this part presenting two of the most famous examples of strategic form games
and the corresponding Nash Equilibria.
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The Prisoner’s Dilemma which is presented in Table 2 is endowed with the following
background story. Two criminals are arrested and accused of a robbery but there is no ev-
idence against them. Hence, the two are asked to confess with the promise of a discount of
their penalty. They know that if they both confess they get a small reduction of 1 year (i.e.
strategy (D,D)). If they both stay silent refusing to confess (that is strategy (C,C)), since
there is no evidence against them they are just sentenced 1 year (w.r.t. 5 total). If one stays
mute and the other confesses the one which confesses is set free and the other is condemned
the whole period of 5 years (corresponding to strategy (C,D)). In Table 2 the utility func-
tions represent the penalty discount in years. The only Nash equilibrium in this case is
given when both the criminals decide to confess. This result might look counterintuitive
at a first glance but it is due to the fact that Nash Equilibria are non-cooperative equilibria.

Player II
D C

Player I D (1, 1) (5, 0)

C (0, 5) (4, 4)

Table 2. Prisoner’s Dilemma.

The last example that we have decided to present is the Battle of the Sexes. A couple
wants to go out on a Saturday night. They must decide where to go. The girl prefers
to go to the ballet (B), while the guy prefers going to a bar to see a football match (S).
The payoffs presented in Table 3 can be interpreted as follows. If one goes to one place
while the other goes to the other one the two end up being unhappy because they are not
together. On the other hand, if they go to the ballet the girl is going to have more fun
because she is doing what she wanted but the guy will be enjoying himself too because
they are spending time together. In this game the Nash equilibria are two, corresponding
to the cases in which the guys are going to the same place, namely strategies (B,B) and
(S, S).

Male
B S

Female B (2, 1) (0, 0)

S (0, 0) (1, 2)

Table 3. The battle of sexes.

https://www.youtube.com/watch?v=LJS7Igvk6ZM
This is the url of a 2-minutes clip of the famous scene of the bar in the film "A beautiful

mind". This film is based on the life of John Nash and this scene is supposed to present
a Nash Equilibrium. This is not true and can easily checked watching the video and
comparing it with what we have discussed above.
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1.3.3 Nash Equilibria in Mixed Strategies

What we have presented until now are the so-called Pure Strategies. Now, we would like to
generalize this idea letting a player randomize his strategy. A randomization is understood
in the following sense. We leave the players the possibility (one independently of the others)
to toss a coin and decide which strategy to play according to the outcome of the tossing.

Definition 1.7 Consider a strategic-form game G = (N, (Si)i∈N , (ui)i∈N ) in which the
set of pure strategies Si is nonempty and finite, for every player i ∈ N and denote the set
of pure strategy vectors S := ×i∈NSi. We call mixed extension of G the game

Γ = (N, (Σi)i∈N , (Ui)i∈N ),

in which, for each player i in N :

• Σi = P(Si) is the set of probability measures on Si;
Σ := ×i∈NΣi;

• Ui : Σ → R, is his utility function function associating to each σ = (σ1, . . . , σn) the
payoff

Ui(σ) = Eσ[ui] =
∑

(s1,...,sn)∈S

ui(s)σ1(s1) · ... · σn(sn).

Definition 1.8 Consider a strategic-form game G and its mixed extension Γ. We call
equilibrium in mixed strategies of G every equilibrium of Γ.

The following result is a useful instrument for finding equilibria.

Theorem 1.9 (Indifference Principle) Let σ∗ be an equilibrium in mixed strategies of a
strategic-form game G, and let si and s′i be a couple of pure strategies of player i. Fur-
thermore, assume that σ∗i (si) > 0 and σ∗i (s

′
i) > 0. Then,

Ui(si, σ
∗
−i) = Ui(s

′
i, σ
∗
−i).

Remark 1.10 The set of Nash Equilibria in pure strategies is included in the set of Nash
Equilibria in Mixed Strategies.

In Tables 4 and 5 we present the Nash Equilibria in mixed strategies for the couple of ex-
amples introduced before. In particular, for the Prisoner’s Dilemma the only equilibrium in
mixed strategies is provided by the Nash equilibrium itself, whereas, for the battle of sexes,
there is a new Nash equilibrium in mixed strategies which is

(
1
3δB + 2

3δS
) (

2
3δB + 1

3δS
)
.

Player II
D C

Player I D (1, 1) (5, 0)

C (0, 5) (4, 4)

Table 4. Prisoner’s Dilemma. No mixed Nash equilibrium apart from δD,D.
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Male
B S

Female B (2, 1) (0, 0)

S (0, 0) (1, 2)

Table 5. The battle of sexes. One new mixed Nash equilibrium at
(

1
3
δB + 2

3
δS
) (

2
3
δB + 1

3
δS
)
.

1.3.4 Results

We end the introductory section on Game Theory presenting the two most famous results
on the existence of Nash Equilibria.

Theorem 1.11 (Kuhn) In every finite game with perfect information there exists at least
one Nash equilibrium.

Theorem 1.12 (Nash: 1950, 1951) Let G be a game in strategic form with a finite number
of players and in which every player has a finite number of pure strategies. Then, there is
an equilibrium in mixed strategies.

2 Correlated Equilibria

2.0.1 Aumann’s Idea

Correlated Equilibria were introduced by Robert J. Aumann [3] and his idea can be roughly
sketched as follows. First, we introduce a mediator, who suggests strategies to the players
to play in the game. The suggestions given by the observer are chosen probabilistically,
according to a probability distribution that is common knownledge among the players.
Furthermore, the recommendations are private, that is each player only knows the rec-
ommendation provided to him. Finally, the mechanism is common knowledge among the
players: each player knows that this is the mechanism used in the game, each player knows
that the other players know that this is the mechanism used in the game, each player knows
that the other players know that the other players know that this is the mechanism used
in the game, and so forth.

2.0.2 Formal Construction

Let’s try now to give a mathematical formulation to the idea we have sketched above.
Let G = (N, (Si)i∈N , (ui)i∈N ) be a strategic-form game. For every probability distri-

bution p ∈ P(S), we define the following game Γ∗(p):

• According to p, an outside observer (mediator) probabilistically selects an action
vector s ∈ S.

• The mediator tells each player i ∈ N si , but not s−i. So, to each player i is revealed
(or better recommended) his coordinate in the action vector that was selected.
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• Each player i chooses an action s′i ∈ Si. This is not necessarily the one suggested by
the mediator.

• Each player i has a payoff ui(s′i, . . . , s
′
n).

Definition 2.1 A (pure) strategy of player i in the game Γ∗(p) is a map τi : Si → Si that
associates every recommendation si given by the mediator to an action τi(si) ∈ Si .

Any player i can follow the mediator’s recommendation. For each player i ∈ N , define
a strategy τ∗i by

τ∗i (si) = si, for any si ∈ Si.

Theorem 2.2 A strategy vector τ∗ represents an equilibrium of the game Γ∗(p) if and
only if ∑

s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i), for all si, s′i ∈ Si.

Definition 2.3 We call a probability distribution p ∈ P(S) a correlated equilibrium in the
game G, if the strategy vector τ∗ is a Nash equilibrium of the game Γ∗(p). Equivalently,∑

s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i), for all si, s

′
i ∈ Si,

for every player i ∈ N .

It is straightforward to see that the set of correlated equilibria includes the set of
Nash equilibria in mixed strategies, and consequently, the set of Nash equilibria in pure
strategies.

Theorem 2.4 The probability distribution pσ∗ := σ∗1(·) . . . σ∗n(·) is a correlated equilibrium,
for every Nash equilibrium σ∗.

The following corollary follows from Theorem 2.4 together with Theorem 1.12.

Corollary 2.5 There exists a correlated equilibrium in every finite strategic-form game.

Furthermore, the set of correlated equilibria, as opposed to Nash equilibria in pure and
mixed strategies, enjoys the following nice property.

Theorem 2.6 In any finite game the set of correlated equilibria is convex and compact.

Finally, we end the session discussing correlated equilibria for our ongoing examples.
On one side, for the Prisoner’s Dilemma, the only correlated equilibrium is the Nash
equilibrium in pure strategies. On the other side, for the Battle of the Sexes, the set of
correlated equilibria, {αδ(B,B) + βδ(S,B) + γδ(B,S) + ηδ(S,S): 2α ≥ β, η ≥ 2γ, 2η ≥ β and
α ≥ 2γ}, has infinite cardinality.
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Player II
D C

Player I D (1, 1) (5, 0)

C (0, 5) (4, 4)

Table 6. Prisoner’s Dilemma. The only correlated equilibrium is the Nash equilibrium in pure strategies.

Male
B S

Female B (2, 1) (0, 0)

S (0, 0) (1, 2)

Table 7. The battle of sexes. Correlated Equilibria αδ(B,B) + βδ(S,B) + γδ(B,S) + ηδ(S,S), with 2α ≥ β, η ≥
2γ, 2η ≥ β and α ≥ 2γ.

3 Mean Field Games

3.0.1 Origins

Mean field games were introduced by simultaneously but independently by Huang, Mal-
hamé and Caines [6] and Lasry and Lions [8]. They arise as limit systems, as the number of
players, N , goes to infinity, for certain N -player games. In particular, the starting N -player
games should be symmetric (in the sense that the components have to be statistically in-
distinguishable, or equivalently, the joint laws have to be exchangeable), with mean field
interaction (the influence of each single player on the whole system diminishes as N →∞).
The passage to the limit is completely analogous to the one for McKean-Vlasov limit of
weakly interacting particle systems. The difference is in the fact that the systems here
are controlled and, in particular, the notion of optimality at prelimit level is the one of
(approximate) Nash equilibria.

3.0.2 A One-Period Deterministic Game

A simple but prototypical example of MFG is presented now. It is meant to provide the
idea of the kind of problems treated and of the technique exploited without the technical
details that are usually needed for this kind of problems. In the form presented there it
is taken from the book by Carmona and Delarue [1] but this example first appeared in
Lyons’ lectures.

We aim at getting a well-motivated answer to the following question: “Where do I put
my towel on the beach?” The mathematical setting is the following. Consider i ∈ [[1, N ]], a
population of N individuals, with N large (N → ∞). Let αi ∈ Ai (Ai = (A, d) compact
metric space) be a point chosen by player i ∈ [[1, N ]] and corresponding to the place on the
beach where the i-th player has decided to place his towel. Fix α, β ∈ R+ and α0, a special
point of interest (for example α0 can be the location of the unique bar on the beach). Each
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player wants to minimize the quantity

Ji(α1, . . . , αN ) := γd(αi, α0)− β

N − 1

N∑
j 6=i,j=1

d(αi, αj).

The objective functional is, hence, given by the sum of two components to which we can
give the following interpretation. The first part, which has a positive contribution, is a
penalization term to force the system to be as close as possible to the point of interest.
The second term is introduced since individuals want to avoid crowds and so to be as far
as possible from the other individuals in mean. Notice that each of the functionals Ji can
be rewritten as

Ji(α1, . . . , αN ) = J̃(αi,
1

N − 1

N∑
j 6=i,j=1

δαj ),

for J̃(α,m) := γd(α, α0) − β
´
A d(α, λ)m(dλ). In particular, this game possesses all the

nice properties that we were asking for in the previous section and, consequently, we can
think of approximating its solution by solving a limit problem linked to the functional J̃ .
Roughly speaking, in the limit N →∞ , we proceed mimicking the construction of Nash
equilibria for N - player games. First, we fix a probability distribution µ. Then, we solve
the minimization problem

inf
α∈A

J̃(α, µ).

Finally, as a fixed point argument, we look for a measure µ̂ concentrated on the arguments
of the minimization.

A MFG problem consists in the three-step problem above.

4 Correlated Solutions for MFGs

In the final section we wrap things up together to formulate a suitable definition of corre-
lated solution in the Mean Field context.

4.0.1 Set Up

We consider the following setting for the game. For a fixed T , finite time horizon, let
[[0, T ]] := {0, 1, . . . , T − 1, T} be the discrete time steps. The space of individual states, X ,
and of individual control action, Γ, are finite. The space of idiosyncratic noise, Z = [0, 1],
is equipped with ν = Uniform([0, 1]). The measurable system function that determines
the dynamics of the states is given by Ψ : [[0, T − 1]] × X × P(X ) × Γ × Z → X . Finally,
R := {ϕ : [[0, T − 1]]×X → Γ,measurable} is set of admissible individual strategies.

Remark 4.1 Notice that the strategies only depend on time and players’ own positions,
restricted strategies (also referred to as decentralized Markov strategies).
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4.0.2 The dynamics in the N -player Game

Let mN ∈ P(XN ) be an initial distribution. We call a γN ∈ P(RN ) correlated profile and
a mapping u : R → R strategy modification.
The tuple ((ΩN ,FN ,PN ), (ΦN

j )Nj=1, (X
j,N
0 , . . . , Xj,N

T )Nj=1, (ξ
j,N
1 , . . . , ξj,NT )Nj=1) is a realization

of the triple (mN , γN , u) for player i if:

i) PN ◦ (X1,N
0 , . . . , XN,N

0 )−1 = mN ;

ii) PN ◦ (ΦN
1 , . . . ,Φ

N
N )−1 = γN ;

iii) ξj,Nt , j ∈ [[1, N ]], t ∈ [[1, T ]] are i.i.d. according to ν(·);

iv) (ξj,Nt )j∈[[1,N ]],t∈[[1,T ]], (Xj,N
0 )j∈[[1,N ]] e (ΦN

j )j∈[[1,N ]] are independent;

v) For any t ∈ [[0, T − 1]], PN -a.s.:

Xi,N
t+1 = Ψ

(
t,Xi,N

t , µi,Nt , u ◦ ΦN
i (t,Xi,N

t ), ξi,Nt+1

)
,

Xj,N
t+1 = Ψ

(
t,Xj,N

t , µj,Nt ,ΦN
j (t,Xj,N

t ), ξj,Nt+1

)
, j 6= i.

(1)

where µl,Nt := 1
N−1

∑N
j=1,j 6=l δXj,N

t
, for all l ∈ [[1, N ]], t ∈ [[0, T ]].

4.0.3 The costs in the N -player Game

Player i faces costs associated with (mN , γN , u) that are given by

JNi (mN , γN , u) :=E

[
T−1∑
t=0

f
(
t,Xi,N

t , µi,Nt , u ◦ ΦN
i

(
t,Xi,N

t

))
+ F

(
Xi,N
T , µi,NT

)]
.

where f represents the running costs and F the terminal costs.

Remark 4.2 We can give the following interpretation to the dynamics and costs in the
N -player game. In the definition of costs for player i, he applies modified strategy u ◦ΦN

i

(instead of ΦN
i ), while all the other players apply the strategies recommended by the

mediator, that is ΦN
j . When u = Id player i accepts the mediator’s suggestion .

4.0.4 Correlated Equilibria in N -player game

Definition 4.3 Let ε ≥ 0. We name a distribution γN ∈ P(RN ) an ε-correlated
equilibrium with initial distribution mN ∈ P(XN ) if, for any i ∈ [[1, N ]] and any strategy
modification u : R → R, we have

JNi (mN , γN , Id) ≤ JNi (mN , γN , u) + ε.

In particular, we call γN an correlated equilibrium, simply denoted by CE, if ε = 0.
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Remark 4.4 In this setting, Correlated equilibria are defined with respect to restricted
strategies but analogous definitions can be formulated for full feedback strategies. When
γN is a Dirac distribution ( ΦN

1 , . . . ,Φ
N
N constant), then the definition above reduces to

that of a Nash equilibrium in pure strategies. When γN has product form ( ΦN
1 , . . . ,Φ

N
N

independent), then the definition above corresponds to Nash equilibria in randomized
strategies.

Proposition 4.5 (Proposition 3.1, in [4]) Let the distribution mN be exchangeable. Then,
there exists a symmetric correlated equilibrium with initial distribution mN .

4.0.5 The dynamics in the Mean Field Game

Let m0 ∈ P(X ) be an initial distribution. We call ρ ∈ P(R×P(X )T+1) correlated solution
and a mapping u : R → R strategy modification.
The tuple ((Ω,F ,P),Φ, (Xt)t∈[[0,T ]], (ξt)t∈[[1,T ]]) is a realization of the triple (m0, ρ, u) if:

i) P ◦X−1
0 = m0;

ii) P ◦ (Φ, µ)−1 = ρ;

iii) ξt, t ∈ [[1, T ]] are i.i.d. according to ν;

iv) (ξt)t∈[[1,T ]], X0 e (Φ, µ) are independent;

v) For any t ∈ [[0, T − 1]], P-a.s.:

(2) Xt+1 = Ψ (t,Xt, µt, u ◦ Φ(t,Xt), ξt+1) .

4.0.6 The costs in the Mean Field Game

The representative player’s costs associated with (m0, ρ, u) that are given by

J(m0, ρ, u) := E

[
T−1∑
t=0

f (t,Xt, µt, u ◦ Φ (t,Xt)) + F (XT , µT )

]
.

where, as in the N -plyer game, f represents the running costs and F the terminal costs.

Remark 4.6 The independence properties and the iterative structure guarantee that any
two realizations of (m0, ρ, u) share the same expected value in the definition of J(m0, ρ, u)
and, consequently, the cost functional is well posed.
When u = Id the representative player accepts the mediator’s suggestion .

4.0.7 Correlated Solutions in the Mean Field Game

Definition 4.7 We name a distribution ρ ∈ P(R×P(X )T+1) a correlated solution with
initial distribution m0 ∈ P(X ) if the following two conditions hold:
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• For any strategy modification u : R → R, we have:

J(m0, ρ, Id) ≤ J(m0, ρ, u).

• For any realization ((Ω,F ,P),Φ, (Xt)t∈[[0,T ]], (ξt)t∈[[1,T ]]) of the triple (m0, ρ, Id), it
holds

µt(·) = P(Xt ∈ ·|FµT ).

Remark 4.8

• In the definition above the first condition is called Optimality , while the second is
called Consistency .

• The definition above is again with respect to restricted strategies.

• Consistency condition implies µt(·) = P(Xt ∈ ·|Fµt ).

4.0.8 Assumption

We introduce the following set of assumptions which are needed to guarantee the validity
of the following results.

Assumption 4.9

(A1) Continuity of Ψ : [[0, T − 1]]×X × Γ×Z → X :

1) For every (t, x, γ) ∈ [[0, T − 1]]×X × Γ and for all m, m̃ ∈ P(X ),
ˆ
Z
IΨ(t,x,m,γ,z) 6=Ψ(t,x,m̃,γ,z)ν(dz) ≤ w(dist(m, m̃)),

where w : [0,+∞)→ [0, 1] is a measurable function with lims→0+ w(s) = 0.

2) For any t ∈ [[0, T − 1]], Ψ(t, ·) is τ ⊗ ν-almost everywhere continuous, for every
τ ∈ P(X × P(X )× Γ).

(A2) The functions f and F , running cost and terminal cost, are continuous.

4.1 Justification of the Definition

The definition introduced above is justified in two ways. On one side, it can be justified
by showing convergence of N -player correlated equilibria to the mean field game limit.

Theorem 4.10 (Theorem 6.1 in [4]) Let ((ΩN ,FN ,PN ), (ΦN
j )Nj=1, (Xj,N

0 , . . . , Xj,N
T )Nj=1,

(ξj,N1 , . . . , ξj,NT )Nj=1) be a realization of the triple (mN , γN , Id), for any N ∈ N \ {1}, where
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γN is a symmetric εN -correlated equilibrium in restricted strategies with initial distribution
mN = m⊗N0,N , such that m0,N

N→∞−→ m0. Assume that εN → 0, as N goes to infinity. Set

ρN := PN ◦ (ΦN
1 , µ

1,N )−1,

where µ1,N
t , t ∈ [[0, T ]] is the empirical measure flow.

Then, under the set of assumptions in 4.9, the sequence (ρN )N∈N is relatively compact as
a subset of P(R×P(X )T+1) and any limit point of the sequence is a correlated solution of
the mean field game having initial distribution m0.

On the other side, we can construct approximate correlated equilibria starting from a
solution of the mean field game.

Theorem 4.11 (Theorem 7.1 in [4]) Let m0 ∈ P(X ) and let mN = m⊗N0,N ∈ P(X T+1), with

m0,N
N→∞−→ m0, in P(X ). Assume that ρ ∈ P(R×P(X )T+1) is a correlated solution of the

mean field game with initial distribution m0. For any natural number N ∈ N \ {1}, define
γN ∈ P(RN ) through

γN (C1 × · · · × CN ) =

ˆ
P(X )T+1

N∏
j=1

ρ1(Cj |m)ρ2(dm).

Then, under technical assumptions, there exists (εN )N∈N such that γN is an εN -correlated
equilibrium with initial distribution mN , and limN→∞ εN = 0.
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Optimal control problems:
existence of minimizers, necessary

conditions, and gap phenomena

Giovanni Fusco (∗)

Abstract. By optimal control problem we mean the minimization of a functional over arcs that
satisfy certain constraints (dynamics, control, endpoint and state constraints). After a brief in-
troduction on the subject, we will discuss the notion of closure of trajectories associated with a
controlled differential equation, so that to present an existence theorem for optimal control prob-
lems. Then, we will announce the Pontryagin’s Maximum Principle, that is, the most known set
of necessary conditions that has to be fulfilled by a minimizer. Afterwards, we will introduce the
most common extensions for the optimal control problems which do not admit minimizers and
we will analyze the properness of such extensions. In particular, we will deal with the issue of
gap phenomena between an optimal control problem and an its extension and we will prove a
link between this occurrence and a topological property of the trajectories which is usually called
isolation. Finally, we will establish that isolated trajectories satisfy the Maximum Principle in
abnormal form, i.e. there exists at least a set of multipliers with cost multiplier equal to zero. We
will conclude with some examples that illustrate the outcomes.

Mathematics Subject Classification (2020): 34H, 49N, 49K

Keywords: Optimal control problems, Control systems, Maximum Principle, Gap phenomena,
Normality

1 Introduction

Since their introduction in the mathematical analysis theory, differential equations have
been largely employed in order to model physical phenomena whose rate of change is known
and depends on the current state itself, as for instance

ẏ(t) = f(t, y(t)), y(0) = x0.

Notice that if we know the initial position of the system we are able to solve the above
Cauchy problem, so that to forecast the future evolution. However, even if we can under-
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. Seminar held on 2 March 2022.
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stand a process and its progression in time, we can not affect its behavior in any way: we
are here taking a spectator point of view without the possibility of taking action.

In control theory the perspective is reversed: we now assume the presence of an external
agent (i.e. a controller) who can play an action on the system, altering it. This new
situation is designed by a control system, that is

ẏ(t) = f(t, y(t), α(t)), y(0) = x0, α(t) ∈ A.

In this case, the dynamics of the system relies not only on the current state itself, but also
on the control α(·), which represents the active external influence selected by the controller
in order to adjust the behavior of the system and reach certain preassigned goals: steer
the system from an initial point to a fixed target, maximize a profit, minimize a cost.
We will discuss topics about control systems in Section 2, which is mainly bases on [2].
In particular, we present an existence theorem for control systems and then we establish
sufficient conditions to ensure the closure of the set of trajectories.

A very important area of control theory is concerned with optimal control. In many
applications, among all strategies which accomplish a certain task, one seeks an optimal
one, based on a given performance criterion. Optimal control emerged as a distinct field of
research in the 1950’s, to address optimization problems arising in aerospace engineering.
Now, fifty years on, there are ample applications in new areas ranging from process con-
trol, resource economics, ecology, to robotics and epidemiology. Equally significant is the
stimulus optimal control has given to research in related branches of mathematics such as
convex analysis, nonlinear analysis, functional analysis and dynamical systems.

A classic example of (fixed end-time) optimal control problem is given by
Min

´ T
0 L(t, y(t), α(t))dt

over processes (y, α) satisfying
ẏ(t) = f(t, y(t), α(t)); α(t) ∈ A;

y(0) = x0; y(T ) ∈ T .

Here, among all controls which steer the system from the initial point to some point on
the target set, we may seek the one that minimizes the lagrangian functional. We point
out that if f(t, x, a) ≡ a, A = Rm and T = {xT }, we have a classic calculus of variations
problem: optimal control can be seen as a generalization of calculus of variations. Roughly
speaking, the main difference between a calculus of variations problem and an optimal
control problem is that in the former the derivative is unrestricted, while in latter it is
constrained.

The basic theory of optimal control has been concerned with three main issues: exis-
tence of optimal controls, necessary conditions for the optimality of a control and sufficient
conditions for optimality. The first two points are deeply investigated in Section 3, while on
the contrary the last one, which is mostly related to dynamic programming and Hamilton
Jacobi Belmann equations, is not analyzed in this article.

The basic aim of any set of necessary conditions is to select possible candidates for
the minimum. The major result in this direction is the celebrated Pontryagin’s Maximum
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Principle, which extends to control systems the Euler-Lagrange and the Weierstrass neces-
sary conditions for a strong local minimum in the calculus of variations. Nevertheless, as
we will see, many optimal control problems do not admit minimizers, and the Maximum
Principle becomes useless. In this situations it is a common practice to embed our origi-
nal optimization problem into an auxiliary optimal control problem which has minimizers.
Then, once found a minimizer for the auxiliary problem, thanks to numerical approxima-
tion techniques it is possible to find ε-minimizers for the original problem, i.e. feasible
processes whose cost exceeds the infimum cost of the original problem at most of a quan-
tity ε. Of course, a fundamental requirement for a good extension is that there is no gap
between the infimum of the original problem and that of the auxiliary problem, and the
goal of Section 4 is to provide sufficient conditions in order to avoid gap phenomena. The
most studied auxiliary problems are the extended (see [9, 5, 10]) and the relaxed problem
(see [11, 14, 10]) and are usually studied separately. Basing our exposition on [6, 7, 8], we
will present them in an original unified framework and then we will illustrate our results
with some examples.

1.1 Notations and preliminaries

Given an interval I ⊆ R and a set X ⊆ Rk, we write W 1,1(I,X), C(I,X), M(I,X),
L1(I,X) for the space of absolutely continuous functions, continuous functions, measur-
able functions, and Lebesgue integrable functions defined on I and with values in X,
respectively. For all the classes of functions introduced so far, we will not specify domain
and codomain when the meaning is clear. Given y ∈W 1,1(I,X), its (weak) derivative be-
longs to L1(I,X) and it is denoted by ẏ. We will use ‖ · ‖L∞(I) to denote the ess-sup norm
on I. When the domain is clear, we will sometimes simply write ‖ · ‖L∞ . Furthermore,
we denote by coX, X the convex hull and the closure of X, respectively. In particular
the convex hull of X is defined to be the smallest convex set that contains X and, by the
Caratheodory’s theorem [1,Prop. 0.5.5], it can be represented by

(1.1) coX =

{
k∑
j=0

λjxj : xj ∈ X ∀j, (λ0, . . . , λk) ∈ ∆k

}
,

where ∆k := {(λ0, . . . , λk) ∈ Rk+1 : λi ≥ 0 ∀i,
∑k

i=0 λi = 1} is the symplex in Rk+1.
As customary, I · X denotes the set {r x | r ∈ I, x ∈ X}. Given two nonempty subsets
X1, X2 of Rk, we denote by X1 + X2 the set {x1 + x2 |x1 ∈ X1, x2 ∈ X2}. We set
R≥0 := [0,+∞[. We denote by NBV +([0, S];R) the space of increasing, real valued
functions µ on [0, S] of bounded variation, vanishing at the point 0 and right continuous
on ]0, S[. Each µ ∈ NBV +([0, S];R) defines a Borel measure on [0, S], still denoted by µ, its
total variation function is indicated by ‖µ‖TV or equivalently by µ([0, S]), and its support
by spt{µ}. Let G : Rk → Rl be a continuously differentiable function, we denote by ∇G
the Jacobian matrix of G and when l = 1, with a small abuse of notation, we still denote
by ∇G the usual gradient operator. If G : Rk1 × Rk2 → Rl and x = (x1, x2) ∈ Rk1 × Rk2 ,
we use ∇xiG to denote partial Jacobian matrix (partial gradient operator when l = 1) of
G with respect to xi, for i = 1, 2.
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2 Control systems

A control system is a dynamical system governed by a controlled differential equation of
the form

(CS)


ẏ(t) = f(t, y(t), α(t)) a.e. t ∈ [0, T ]

y(0) = x0

α(t) ∈M([0, T ], A),

where f : R×Rn×Rm → Rn is the dynamics function, A ⊂ Rm is the control set, y(·) is an
absolutely continuous trajectory associated with the measurable control α(·) and x0 ∈ Rn
is the initial position. Notice that α(·) is the action that an agent can play on the system
since it affects the dynamics and, subsequently the evolution of the system: it is for this
reason that the function α(·) is called control. A pair (y, α) that satisfies the constraints
in (CS) is called process. In this section we assume the following hypotheses:

(H1) The control set A ⊂ Rm is compact, the dynamics function f(t, x, a) is continuous in
all variables and continuously differentiable with respect to x. Moreover, there exists
C > 0 such that for all (t, x, a) ∈ R× Rn ×A it holds

|f(t, x, a)| ≤ C, |∇xf(t, x, a)| ≤ C.

Noticing that, given a measurable control α(·), we can define the function (t, x) 7→
g(t, x) := f(t, x, α(t)), we can evoke the existence theorems for ordinary differential equa-
tions (see [2, Sec. 2.1]) and deduce the following existence result.

Theorem 2.1 ([2], Thm. 3.2) Assume (H1). Then, for any T > 0 and any control
ᾱ ∈M([0, T ], A), there exists a unique absolutely continuous solution y(·, ᾱ) to

ẏ(t) = f(t, y(t), ᾱ(t)) a.e. t ∈ [0, T ], y(0) = x0.

Moreover, if (αn) ⊂ M([0, T ], A) converges to ᾱ ∈ M([0, T ], A) in L1(0, T ), then the
sequence of associated trajectories (y(·, αn)) converges to y(·, ᾱ) in C0(0, T ).

Remark 2.2 The regularity assumptions on f in (H1) could be considerably weakened.
In particular, it suffices that (1): the function t 7→ f(t, x, a) is measurable for any (x, a) ∈
Rn × A, (2): the function (x, a) 7→ f(t, x, a) is continuous for every t ∈ R and (3): there
exists ψ ∈ L1(R,R≥0) such that

(i) |f(t, x, a)| ≤ ψ(t) for any (t, x, a) ∈ R× Rn ×A,
(ii) |f(t, x, a)− f(t, x′, a)| ≤ ψ(t)|x− x′| for any (t, x, a), (t, x′, a) ∈ R× Rn ×A.

For more details see [1, 3, 12], even if the results are expressed for the equivalent differential
inclusion formulation. For the differential inclusion formulation see also [2, Sec. 3.1], which
is simpler to read. In addition, in order to prove the only existence and uniqueness we can
further remove (3)(i), and if we remove point (3) existence still holds without uniqueness.
Furthermore we could slightly weaken condition (3) for local existence results.
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Now we introduce the concept of closure of the set of trajectories with an example.

Example 2.3 Consider the following scalar control system

ẏ(t) = α(t), y(0) = 0, α(t) ∈ {−1, 1},

and consider the sequence (αn) of highly oscillatory controls defined by

αn(t) :=

{
1 if sin(nt) ≥ 0

−1 otherwise.

It is easy to see that the sequence (y(·, αn)) of the trajectories associated with (αn) con-
verges uniformly to 0, which is not a trajectory of the considered control system. In
fact, there are no controls whose associated trajectory is 0, because the control should
be constantly equal to 0. The problem here, that might cause confusion with respect to
Theorem 2.1, is that the sequence of control is not convergent in L1 to an admissible
control.

We want to find sufficient conditions for the set of trajectories to be closed, in order to
avoid the situation in Example 2.3.

Definition 2.4 We say that the set of trajectories of control system (CS) is close if for
any given sequence of processes (yn, αn) such that yn → ȳ in C0(0, T ) for some contiuous
arc ȳ, then there exists an admissible control ᾱ ∈M([0, T ], A) such that ȳ(·) = y(·, ᾱ).

To this aim we define the set of velocities F (t, x) as follows

F (t, x) := {f(t, x, a) : a ∈ A} ∀(t, x) ∈ R× Rn.

Theorem 2.5 rm ([2], Thm. 3.5) Assume (H1) and that the set of velocities F (t, x) is
convex for all (t, x) ∈ R× Rn. Then the set of trajectories is closed.

Remark 2.6 For instance, F (t, x) is convex if f(t, x, a) = M(t, x) + N(t, x)a and A is
convex.

The importance of Theorem 2.5 relies on the fact that it is quite common in analysis
to use subsequence extraction techniques and limit procedures, as for instance the Ascoli
Arzelá’s theorem, and as we will see later in Theorem 3.2. Since the main assumption of
the Theorem 2.5 is the convexity of the set of velocities, it is natural to ask which is the
relation a control system with non convex set of velocities and its relaxation, namely, the
control system that we obtain by replacing the original set of velocities with its convex
hull.

Given T > 0, we call relaxed process any (y, (α0, . . . , αn), (λ0, . . . , λn)) that satisfies

(RCS)


ẏ(t) =

∑n
j=0 λj(t)f(t, y(t), αj(t)) a.e. t ∈ [0, T ]

(α0, . . . , αn), (λ0, . . . , λn) ∈M([0, T ], An+1)×M([0, T ],∆n)

y(0) = x0.
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Roughly speaking, control system (RCS) is obtained from (CS) by replacing the dy-
namics function with its convexification. In fact, in view of (1.1) one has

coF (t, x) =

{
n∑
j=0

λjf(t, x, aj) : aj ∈ A, (λ0, . . . , λn) ∈ ∆n

}
.

Remark 2.7 We notice that a process (y, α) for (CS) can be identified with the process(
y, (α, . . . , α),

(
1

n+1 , . . . ,
1

n+1

))
for (RCS), hence there is an embedding between the two

sets of processes.

We now state the well known relaxation theorem.

Theorem 2.8 ([2], Thm. 3.7) Assume (H1). Then the set of trajectories for (CS) is dense
in the set of trajectories for (RCS) in the C0-norm. That is, given ε > 0 and a process
(ȳ, (ᾱ0, . . . , ᾱn), (λ̄0, . . . , λ̄n)) for (RCS) defined on the interval [0, T ], then there exists a
process (yε, αε) for (CS) defined on [0, T ] such that ‖ȳ − yε‖L∞(0,T ) ≤ ε.

Remark 2.9 We point out that, for Theorem 2.5 and Theorem 2.8 it suffices that f(t, x, a)
is measurable in t, measurably Lipschitz in x (i.e. it satisfies condition (3)(ii) in Remark 2.2
and continuous in a, see [12, Ch. 2]OptV, but also [1, 3].

3 Optimal control problems

A general (fixed end-time) optimal control problem is a problem of minimization of a
certain functional over arcs that satisfy some constraints, as the following

(P)



Min Φ(y(T )) +
´ T

0 L(t, y(t), α(t))dt

over (y, α) ∈W 1,1([0, T ],Rn)×M([0, T ],Rm) satisfying
ẏ(t) = f(t, y(t), α(t)) a.e. t ∈ [0, T ]

α(t) ∈ A a.e. t ∈ [0, T ]

(y(0), y(T )) ∈ {x0} × T
h(t, y(t)) ≤ 0 for any t ∈ [0, T ].

We refer to Φ(·) as the cost function, to ẏ = f(t, y, α) as the dynamics constraint, to α ∈ A
as the control constraint, to (y(0), y(T )) ∈ {x0} × T as the endpoint constraint and to
h(t, y) ≤ 0 as the state constraint. A pair (y, α) is called process if it satisfies the dynamics
and the control constraint. We refer to y as trajectory and to α as control. We call a
process (y, α) feasible if y satisfies the endpoint and the state constraint. We say that a
feasible process (ȳ, ᾱ) is a minimizer for (P) if

Φ(ȳ(T ))+

ˆ T

0
L(t, ȳ(t), ᾱ(t))dt ≤ Φ(y(T ))+

ˆ T

0
L(t, y(t), α(t))dt for all (y, α) feasible.
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Remark 3.1 We notice that we can assume without loss of generality that L ≡ 0.
Otherwise we could consider an auxiliary optimal control problem with cost function given
by Φ̃(y(T ), yn+1(T )) = Φ(y(T )) + yn+1(T ), where yn+1 : [0, T ]→ R is a new variable such
that ẏn+1(t) = L(t, y(t), α(t)) and yn+1(0) = 0.

In addition to (H1), we make the following assumptions on the data.

(H2) We assume that T := {x ∈ Rn : η(x) ≤ 0} for some continuously differentiable
function η : Rn → R, L ≡ 0, Φ : Rn → R is continuously differentiable, h : R×Rn →
R is continuous, continuously differentiable with respect to the x variable, and such
that |∇xh(t, x)| ≤ L for some L > 0.

We are now ready for an existence result, of which we give a proof inspired by that
presented in [2, Thm. 5.1].

Theorem 3.2 Assume (H1)-(H2) and that the set of the velocities F (t, x) = {f(t, x, a) : a ∈
A} is convex for all (t, x) ∈ [0, T ]× Rn. Then, if there exists at least one feasible process,
the optimal control problem (P) admits a minimizer (ȳ, ᾱ).

Proof. We take a minimizing sequence (yn, αn), that exists since there is at least a feasible
process. We notice that

|ẏn(t)| ≤ |f(t, yn(t), αn(t))| ≤ C and |yn(t)| ≤ |x0|+
ˆ T

0
|ẏn(t)|dt ≤ |x0|+ CT.

By Ascoli-Arzelá’s theorem we deduce that (yn) has a convergent subsequence in C0(0, T )
(we do not relabel) to some ȳ. By Theorem 2.5 there exists ᾱ such that ȳ(·) = y(·, ᾱ).
Clearly ȳ(0) = x0 since yn(0) ≡ x0 and limn yn(T ) = ȳ(T ) ∈ T since (yn(T )) ⊂ T and
T is closed, because it is the preimage of the closed set ] −∞, 0] through the continuous
function η(·).

For t ∈ [0, T ] one has

h(t, ȳ(t)) ≤ h(t, yn(t)) + (h(t, ȳ(t))− h(t, yn(t))) ≤ L|yn(t)− ȳ(t)|.

Since yn(t) → ȳ(t), letting n → +∞ in the previous relation we obtain h(t, ȳ(t)) ≤ 0.
Moreover, since (yn, αn) is minimizing sequence and yn(T )→ ȳ(T ), then Φ(ȳ(T )) coincides
with the infimum of (P).

We now announce the most common set of necessary conditions for a minimum of
problem (P), usually known as the Pontryagin’s Maximum Principle. Our formulation is
based on the nonsmooth state constrained Maximum Principle [12, Thm. 9.3.1] (see also
[12, Thm. 6.2.3] for the details about the right endpoint under consideration).

Theorem 3.3 Assume (H1)-(H2) and let (ȳ, ᾱ) be a minimizer for (P). Then there exist
γ ∈ R≥0, β ∈ R≥0, p ∈ W 1,1([0, T ],Rn) and µ ∈ NBV ([0, T ],R) that fulfill the following
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conditions:

‖p‖L∞ + ‖µ‖TV + γ + β 6= 0,(3.1)
−ṗ(t) = q(t) · ∇xf(t, ȳ(t), ᾱ(t)) a.e. t ∈ [0, T ],(3.2)

−q(T ) = γ∇Φ(ȳ(T )) + β∇η(ȳ(T )), β = 0 if η(ȳ(T )) < 0(3.3)
q(t) · f(t, ȳ(t), ᾱ(t)) = max

a∈A
{q(t) · f(t, ȳ(t), a)} a.e. t ∈ [0, T ],(3.4)

spt(µ) ⊆ {t ∈ [0, T ] : h(t, ȳ(t)) = 0},(3.5)

where q : [0, T ]→ Rn is defined by

(3.6)

{
q(t) = p(t) +

´
[0,t[∇xh(s, ȳ(s))µ(ds) if t ∈ [0, T [,

q(T ) = p(T ) +
´

[0,T ]∇xh(t, ȳ(t))µ(dt) if t = T .

We refer to (3.1) as nontriviality condition, to (3.2) as adjoint equation, to (3.3) as
transversality condition and to (3.4) as maximality condition. Condition (3.5) locates the
support of the measure µ inside the set of points in which the state constraint evaluated
along the optimal trajectory is active.

Definition 3.4 A feasible process (ȳ, ᾱ) that fulfills conditions (3.1)–(3.5) is said to be an
extremal for (P). We will call it normal if all possible choices of (γ, β, p, µ) as above have
γ > 0 and abnormal when it is not normal.

Remark 3.5 Both Theorem 3.2 and Theorem 3.3 can be adapted to the case in which
hypotheses (H1)-(H2) are replaced by the following assumptions: f(t, x, a) satisfies con-
ditions (1)-(2)-(3) of Remark 2.2. the control set A(·) is a measurable set valued function
with compact values, Φ is locally Lipschitz continuous, h is an upper semicontinuous func-
tion which is locally Lipschitz continuous in x, T is some general closed subset of Rn. For
further details see [12, Ch. 6.9] and [3].

Remark 3.6 The MP remains true for local minimizer. In fact, in view of cut-off argu-
ments, the conditions (3.1)–(3.5) are satisfied even if (ȳ, ᾱ) is an L∞-local minimizer, that
is, Φ(ȳ(T )) ≤ Φ(y(T )) for any feasible process (y, α) for (P) such that ‖ȳ − y‖L∞(0,T ) ≤ δ
for some δ > 0.

Some final words about the different techniques that can be employed in order to prove
the Maximum Principle, which are mainly two:

- Variational approach: take a minimizer for the original problem (P) and, for given
ε > 0, with the help of the Ekeland’s theorem, find a minimizer for a perturbed
problem (Pε) for which the necessary conditions are easy to derive since it has no
right endpoint constraint. Finally, pass to the limit in these conditions for ε → 0
and deduce necessary conditions for (P).
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- Set separation method: notice that a minimizer for (P) defines a boundary point of
the reachable set that comprises images of the terminal values of the state trajecto-
ries under a function having components the cost and equality constraint functions.
Construct a (convex) approximating cone to the reachable set and use the Schauder
fixed point theorem and a relaxation lemma to show that there exists a linear hyper-
plane separating this approximating cone by 0. This latter assertion easily implies
the MP.

References for the first approach are [12, 3], while for the second one see [13]. These
methods are complementary and it has often been the case that progresses based on one
approach were followed by separate proofs based on the other approach, such as for the
necessary conditions for nonsmooth problems proved with variational methods by Clarke
and at the same time independently by Warga with set separation arguments.

4 Extension of optimal control problems and gap phenomena

The Maximum Principle provides a powerful tool for finding extremals that are canditate
minimizers. However, there are many optimal control problems for which a minimizer does
not exist. For instance, consider the following example that we will resume throughout the
section.

Example 4.1 Consider the optimization problem given by

(P)



Min (y2(1))2

over ((y1, y2), α) ∈W 1,1([0, 1],R2)×M([0, 1],R) satisfying
(ẏ1(t), ẏ2(t)) = (α(t), (y1(t))2) a.e. t ∈ [0, 1]

α(t) ∈ A := {−1, 1} a.e. t ∈ [0, 1]

(y1(0), y2(0)) = (0, 0).

Notice that there are no feasible processes ((y1, y2), α) with (y2(1))2 = 0. In fact,

0 = y2(1)− y2(0) =

ˆ 1

0
(y1(t))2dt ⇒ y1 ≡ 0 ⇒ 0 ≡ ẏ1 = α.

A contradiction, since α ∈ {−1, 1}. However, we can exhibit a minimizing sequence.
Consider (αn) defined by

αn(t) :=

{
1 if sin(nt) ≥ 0

−1 otherwise

It is very easy to see that the sequence (y1
n) such that y1

n(0) = 0 and ẏ1
n = αn converges

uniformly to 0 and its absolute value is bounded by 1. Therefore the sequence (y2
n) such

that y2
n(0) = 0 and ẏ2

n = (y1
n)2 satisfies

y2
n(1) =

ˆ 1

0
(y1
n(t))2dt→ 0,
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by the dominated convergence theorem. Hence this optimal control problem admits infi-
mum but not minimum and the Maximum Principle becomes useless.

In control theory, when an optimal control problem (P) does not admit minimizers, it is
a common practice to construct an auxiliary optimal control problem (Pa) by enlarging the
set of admissible solutions. Then, once found a minimizer for (Pa), thanks to numerical
approximation methods it is possible to find an ε-minimizer for (P), that is a feasible
process (yε, αε) for (P) whose cost exceeds the infimum cost for (P) at most of a quantity
ε, that is

Φ(yε(T )) ≤ inf{Φ(y(T )) : (y, α) feasible process for (P)}+ ε.

In order that this procedure works it is necessary that (Pa) admits a minimizer and that
there is no infimum gap, namely, the infimum of (P) coincides with the minimum of (Pa).
Therefore, from now on our goal is to seek for sufficient conditions in order to ensure
that there is no infimum gap between (P) and a suitable auxiliary problem (Pa). We will
illustrate the results with some examples.

In Theorem 3.2 we have seen that two fundamental requirements for the existence of
minimizers of an optimal control problem are the compactness of the control set A and the
convexity of the set of the velocities F (t, x) := {f(t, x, a) : a ∈ A}. Accordingly, the most
considered auxiliary problems are the following:

- The extended problem (Pe), in which we replace the original bounded (but not nec-
essarily close) control set with its closure. It is a type of extension commonly used
in optimal control problems with unbounded dynamics, usually known as impulsive
optimal control problems.

- The relaxed problem (Pr), in which we replace the original dynamics with its convex-
ification (from ẏ = f(t, y, α) to ẏ =

∑n
j=0 λjf(t, y, αj), λ ∈ ∆n). It is equivalent to

a probabilistic extension of the original control problem (see [13]).

These different auxiliary problems have been always studied separately (see [14, 11, 10] for
relaxed problem and [9, 5] for the extended problem). In [6] we managed to define for the
first time an original unified framework that brings them together and that comprises as
special case (relaxed) control polynomial impulsive optimization problems that have a wide
application in Lagrangian mechanics. Further results based on this new unified framework
can be found in [7, 8].

We consider the following optimization problem

(P)



Min Φ(y(T ))

over (y, (ω, α)) ∈W 1,1([0, T ],Rn)×M([0, T ],Rq × Rm) satisfying
ẏ(t) = f(t, y(t), ω(t), α(t)) a.e. t ∈ [0, T ],
(ω(t), α(t)) ∈ V ×A a.e. t ∈ [0, T ],

(y(0), y(T )) = {x0} × T ,
h(t, y(t)) ≤ 0 ∀t ∈ [0, T ].

In addition to (H2), we make the following assumptions on the data
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(H3) The control set A ⊂ Rm is compact, the control set V ⊂ Rq is bounded but not
necessarily closed. The dynamics function f(t, x, w, a) is continuous in all variables,
continuously differentiable with respect to x. Moreover, there exists C > 0 such that
for all (t, x, w, a) ∈ R× Rn × V ×A it holds

|f(t, x, w, a)| ≤ C, |∇xf(t, x, w, a)| ≤ C.

Furthermore, for any (t, x, w, a), (t, x, w′, a) ∈ R× Rn × V ×A it holds

(4.1) |∇xf(t, x, w, a)−∇xf(t, x, w′, a)| ≤ C|w − w′|

Remark 4.2 Hypothesis (H3) emphasizes the different role played by the controls ω
and α, as only the first one is extended. A situation where condition (H3) is verified, is
when the dynamic function has a polynomial dependence on the control variable w, with
bounded and globally Lipschitz continuous coefficients in the state variable. All the results
of this section can be extended to a nonsmooth context as explained in Remark 3.5. In
this case, condition (4.1) turns into an uniform continuity requirement in the variable w
of the partial Clarke’s generalized Jacobian with respect to x. See [6] for more details.

Let W = V . Then we define the extended optimal control problem (Pe) of (P) as

(Pe)



Min Φ(y(T ))

over (y, (ω, α)) ∈W 1,1([0, T ],Rn)×M([0, T ],Rq × Rm) satisfying
ẏ(t) = f(t, y(t), ω(t), α(t)) a.e. t ∈ [0, T ],
(ω(t), α(t)) ∈W ×A a.e. t ∈ [0, T ],
(y(0), y(T )) ∈ {x0} × T ,
h(t, y(t)) ≤ 0 ∀t ∈ [0, T ].

Moreover, the relaxed (extended) optimal control problem (Pr) of (P) is given by

(Pr)



Min Φ(y(T ))

over y ∈W 1,1([0, T ],Rn), ω = (ω0, . . . , ωn) ∈M([0, T ], (Rq)n+1)

α = (α0, . . . , αn) ∈M([0, T ], (Rm)n+1), λ := (λ0, . . . , λn) ∈M([0, T ],Rn+1) satisfying
ẏ(t) =

∑n
j=0 λj(t)f(t, y(t), ωj(t), αj(t)) a.e. t ∈ [0, T ],

(ω, α, λ) ∈Wn+1 ×An+1 ×∆n a.e. t ∈ [0, T ],
(y(0), y(T )) ∈ {x0} × T ,
h(t, y(t)) ≤ 0 ∀t ∈ [0, T ].

Let Γ, Γe, Γr be the set of feasible processes for (P), feasible processes for (Pe) and
feasible processes for (Pr), respectively. Of course, the fact that V ⊆ W and Remark 2.7
imply that

(4.2) Γ ⊆ Γe ⊆ Γr.
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Definition 4.3 Let z̃ := (ỹ, (ω̃0, . . . , ω̃n), (α̃0, . . . , α̃n), (λ̃0, . . . , λ̃n)) ∈ Γa for a ∈ {e, r}
and assume that z̃ is a minimizer for (Pa). We say that at z̃ there is a local infimum gap
if, for some δ > 0 one has

Φ(ỹ(T )) < inf{Φ(y(T )) : y ∈ Γ, ‖y − ỹ‖L∞(0,T ) ≤ δ}.

Definition 4.4 Let z̃ := (ỹ, (ω̃0, . . . , ω̃n), (α̃0, . . . , α̃n), (λ̃0, . . . , λ̃n)) ∈ Γa for a ∈ {e, r}.
We say that z̃ is isolated if for some δ > 0 one has

{y ∈ Γ : ‖y − ỹ‖L∞(0,T ) ≤ δ} = ∅.

The following proposition relates the occurrence of gap phenomena with the topological
property of isolation.

Proposition 4.5 Let z̃ := (ỹ, (ω̃0, . . . , ω̃n), (α̃0, . . . , α̃n), (λ̃0, . . . , λ̃n)) ∈ Γa, a ∈ {e, r}, be
a minimizer for (Pa). Then at z̃ there is a local infimum gap if and only if z̃ is isolated.

Proof. Let z̃ ∈ Γa, a ∈ {e, r}, be a minimizer for (Pa) and suppose that at ỹ there is a local
infimum gap. Assume by contradiction that z̃ is not isolated, then there exists a sequence
(yn) ⊂ Γ such that ‖yn − ỹ‖L∞ → 0. In particular yn(T )→ ỹ(T ). Hence, for some δ > 0,
the continuity of Φ implies

Φ(ỹ(T )) < inf{Φ(y(T )) : y ∈ Γ, ‖y − ỹ‖L∞ ≤ δ} ≤ lim
n

Φ(yn(T )) = Φ(ỹ(T )).

Conversely, let z̃ ∈ Γa, a ∈ {e, r}, be a minimizer for (Pa) and suppose that z̃ is
isolated. Assume by contradiction that at z̃ there is no local infimum gap. Therefore,
there exists a sequence (yn) ⊂ Γ such that

(4.3) ‖yn − ỹ‖L∞ ≤
1

n

and Φ(yn(T ))→ Φ(ỹ(T )). However, (4.3) contradicts the fact that ỹ is isolated.

Now we state the most important results of this paper, recalling that a feasible process
(y, ω, α) for (Pe) can be interpreted as a feasible process (ỹ, (ω̃0, . . . , ω̃n), (α̃0, . . . , α̃n),
(λ̃0, . . . , λ̃n)) for (Pr) where ỹ = y, ω̃j = ω, α̃j = α, λ̃j = 1

n+1 for any j = 0, . . . , n.

Theorem 4.6 Assume (H2)-(H3) and let z̄ := (ȳ, (ω̄0, . . . , ω̄n), (ᾱ0, . . . , ᾱn), (λ̄0, . . . , λ̄n))
be a minimizer for (Pa), for a ∈ {e, r}. If at ȳ there is a local infimum gap, then z̄ is an
abnormal extremal for problem (Pa).

As a corollary we deduce the following sufficient condition to avoid gap phenomena

Theorem 4.7 Assume (H2)-(H3) and let z̄ := (ȳ, (ω̄0, . . . , ω̄n), (ᾱ0, . . . , ᾱn), (λ̄0, . . . , λ̄n))
be a minimizer for (Pa), for a ∈ {e, r}. If z̄ is a normal extremal for problem (Pa), then
at ȳ there is no local infimum gap.
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The proof is divided into several steps in which successive sequences of optimization
problems are introduced that have as admissible controls only strict sense controls, and
costs that measure how much a process violates the constraints. Using the Ekeland’s
variational Principle, minimizers are then built for these problems, which converge to the
initial isolated process. Furthermore, applying a Maximum Principle to these approximate
problems with reference to the above mentioned minimizers, we obtain in the limit a set
of multipliers with γ = 0.

Remark 4.8 We point out what does “abnormal extremal for (Pa)” mean (see the state-
ment of Theorem 4.6 in the case a = r. This should be enough also for the case a = e
in view of (4.2) and the embedding in Remark 2.7. In particular, Theorem 4.6 and the
Maximum Principle applied to the particular optimization problem (Pr) imply that, if
(ȳ, (ω̄0, . . . , ω̄n), (ᾱ0, . . . , ᾱn), (λ̄0, . . . , λ̄n)) is a minimizer for (Pr) and at ȳ there is a local
infimum gap, then there exist β ∈ R≥0, p ∈ W 1,1([0, T ],Rn) and µ ∈ NBV ([0, T ],R) that
fulfill conditions (3.3), (3.5), and the following requirements:

‖p‖L∞ + ‖µ‖TV + β 6= 0,(4.4)

−ṗ(t) =
n∑
j=0

λ̄j(t)q(t) · ∇xf(t, ȳ(t), ω̄j(t), ᾱj(t)) a.e. t ∈ [0, T ],(4.5)

q(t) · f(t, ȳ(t), ω̄j(t), ᾱj(t)) = max
(w,a)∈W×A

{q(t) · f(t, ȳ(t), w, a)} a.e. t ∈ [0, T ], ∀j = 0, . . . , n
(4.6)

where q : [0, T ] → Rn is defined as in (3.6). We could similarly rewrite the statement of
Theorem 4.7.

Remark 4.9 Theorem 4.6 and Theorem 4.7 can be easily extended to nonsmooth free end
time problems with Lipschitz continuous dependence in the time variable, through a time
reparameterization technique (see [6, Sec. 4]). We managed to adapt these result even for
nonsmooth free end time problems with measurable time dependence in t (see [8]): this
kind of problems have financial applications, as we encounter such phenomena in a variety
of threshold problems associated, for instance, with abrupt changes in a tariff or rate of
return on investment at prespecified times.

Remark 4.10 When h(0, x0) = 0, every minimizer turns out to be abnormal, so that
Theorem 4.7 becomes inapplicable to deduce that there is no infimum gap. By adding suit-
able nondegeneracy hypotheses, we managed to convert the normality test of Theorem 4.7
into a nondegenerate normality test (see [6, Sec. 3]): in order to prove that there is no local
infimum gap, it is sufficient to prove that normality holds not for all sets of multipliers, but
only among the nondegenerate ones, i.e. multipliers (γ, β, p, µ) that satisfy the following
strengthened nontriviality condition

‖q‖L∞ + γ + β + µ(]0, T ]) 6= 0,

where q is as in (3.6).
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Remark 4.11 Instead of checking that all possible sets of multipliers have γ > 0, which
is a really hard task in certain problems with several variables, in literature can be found
some easily verifiable conditions on the data that ensure the normality of the extremals.
See for instance [4, 5].

We conclude illustrating Theorem 4.6 and Theorem 4.7 with some examples.

Example 4.12 Consider the optimization problem in Example 4.1, which we have seen
that does not admit minimizer. Since A = {−1, 1} is compact, the extended problem (Pe)
coincides with (P). On the contrary, in view of Remark 2.6, the relaxed problem (Pr) can
be obtained by (P) by replacing A with coA = [−1, 1] in the control constraint. Since
the cost is nonnegative, we deduce that z̄ := ((ȳ1, ȳ2), ᾱ) = ((0, 0), 0) is feasible and also a
minimizer for (Pr). We now show that z̄ is a normal extremal for (Pr), hence the absence of
gap follows from Theorem 4.7, and it is confirmed by the minimizing sequence constructed
in Example 4.1. From Theorem 3.3 we know that z̄ is an extremal for (Pr) for some set of
multipliers (γ, β, p, µ). Since there are no state constraint (i.e. h ≡ −1) and right endpoint
constraint (i.e. η ≡ −1), from (3.5) and (3.3) we immediately deduce that µ = 0 and
β = 0. By (3.2) and (3.3) we deduce{

(−ṗ1,−ṗ2)(t) = (2p2(t)ȳ1(t), 0) = (0, 0) a.e. t ∈ [0, 1]

(−p1,−p2)(T ) = γ(0, 2ȳ2(1)) = (0, 0).

Hence, (p1, p2) ≡ 0 and (3.1) implies γ > 0, so that z̄ is a normal extremal for (Pr).

Now we suggest an optimal control problem which completely exploit the strength of
our unified framework considered along the section and takes into account also state and
endpoint constraints. Thanks to the following example, it can also be understood that
gap phenomena can occur also when the set of trajectories (not necessarily feasible) for
the original optimization problem (P) is dense in the set of trajectories for the suitable
auxiliary problem (Pa) under consideration, due to the presence of constraints. In the
following example you can notice that Theorem 2.8 implies that the set of trajectories (not
necessarily feasible) for (Pe) is dense in the set of trajectories for (Pr). Nevertheless, there
is an infimum gap also between (Pe) and (Pr).

Example 4.13 Consider the following optimization problem

(P)



Min − y1(1)

over y = (y1, y2, y3) ∈W 1,1([0, 1],R3), (ω, α) ∈M([0, 1],R× R) satisfying
(ẏ1(t), ẏ2(t), ẏ3(t)) = (0, y1(t)α(t), (y2(t))2 + ω(t)) a.e. t ∈ [0, 1]

ω(t) ∈ V :=]0, 1], α(t) ∈ A := {−1, 1} a.e. t ∈ [0, 1],

y2(0) = y3(0) = 0, y3(1) ≤ 0,

y1(t)− 1 ≤ 0 ∀t ∈ [0, 1].

Problem (P) do not admit feasible processes. In fact, if (y, ω, α) were a feasible process,
then

(4.7) 0 ≥ y3(1)− y3(0) =

ˆ 1

0
[(y2(t))2 + ω(t)]dt > 0.
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The extended problem (Pe) is obtained from (P) by replacing the control constraint ω(t) ∈
V with ω(t) ∈ V = [0, 1], and (y̌, ω̌, α̌) ≡ ((0, 0, 0), 0, 1) is a minimizer for (Pe) with
−y̌1(1) = 0. In fact, if (y, ω, α) is feasible for (P), reasoning as in (4.7) one deduces ω ≡ 0
and y2 ≡ 0, so that 0 = ẏ2 = αy1. Since ẏ1 = 0, then y1 ≡ y1(0). Hence, 0 = αy1(0) and
α ∈ {−1, 1} imply y1 ≡ 0.

The relaxed problem (Pr) is obtained from (Pe) by replacing the control constraint
α(t) ∈ A with α(t) ∈ coA = [0, 1]. Reasoning as before and taking account of the state
constraint y1(t)−1 ≤ 0 and the fact that now the control function α may assume the value
0, one deduces that (ȳ, ω̄, ᾱ) ≡ ((1, 0, 0), 0, 0) is a minimizer for (Pr) with −ȳ1(1) = −1.
In particular we have shown

inf
y∈Γr
−y1(1) = −1 < inf

y∈Γe
−y1(1) = 0 < inf

y∈Γ
−y1(1) = +∞.

Because of the presence of infimum gap, we can illustrate Theorem 4.6. In fact, (y̌, ω̌, α̌) ≡
((0, 0, 0), 0, 1) and (ȳ, ω̄, ᾱ) ≡ ((1, 0, 0), 0, 0) are abnormal extremals for (Pe) and (Pr),
respectively: a set of (abnormal) multipliers for both of them is given by

(γ, β, p, µ) ≡ (0, 1, (0, 0,−1), 0).
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The Graph p -Laplacian Eigenvalue Problem

Piero Deidda (∗)

Graphs are used to model a large variety of physical phenomena typically involving
interactions between particles/components, such as, for example, the graph rapresentation
of a molecule, the connections between users on social media, the transportation networks
idealized as road maps or air routes. The study of the topology of a graph as well as the
problem of computing topological invariants become important tools to acquire information
about the distributions and the relations between the data represented in the graph. Within
this framework we could think of two different approaches to the problem. The first tries
to approximate topological invariants of the graph by developping specific algorithms and
studying their accuracy and robustness, i.e. their convergence toward the real solution. The
second approach wonders about what we can learn about the topology of the graph starting
from some invariants that we already know how to calculate. Think for example to the
spectrum of the Laplacian operator and to the famous problem Can one hear the shape of a
drum? [20], meaning does the spectrum of the Laplace-Beltrami operator fully characterize
the domain? This conjecture was then proved to be false [16] but in the meantime many
different geometrical properties had been related to properties of the Laplacian spectrum
[25]. In this manuscript we deal with the second approach and a after a short introduction
about the graph setting and the p-Laplacian operator and its spectrum we show some old
and new results about the topological information that can be deduced from the study of
the p-Laplacian eigenvalues and eigenfunctions.

1 The Graph Setting

An undirected graph, G, can be denoted by a triple G := (V,E, ω), where V is the discrete
set of the nodes (or vertices) of the graph, E ⊂ V × V denotes the set of the edges and
is such that if (u, v) ∈ E then also (v, u) ∈ E, and finally ω : E → R is a function on
the edges such that ω(u, v) = ω(v, u) that can be thought to represent the reciprocal of
the edge length. To simplify the notation in the following we will often use the notation
ωuv := ω(u, v). Using these definitions we can introduce a distance between two nodes u

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 13 April 2022.
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and v of the graph defined as the length of the shortest path joining them:

(1) d(u, v) = min
u=u1,...,un=v

n−1∑
i=1

1

ω(ui, ui+1)

Denote by H(V ) and H(E) the Hilbert spaces of the functions on the nodes and on the
edges of the graph, respectively, endowed with the scalar products:

(2) 〈f, g〉H(V ) =
∑
u∈V

f(u)g(u) 〈F,G〉H(E) =
1

2

∑
(u,v)∈E

F (u, v)G(u, v) .

We can also introduce the basic equivalents to differential operators of the continuous
setting. Start with the gradient of a nodal function defined as the function that reproduces
the slope of f on the edges:

(3)
∇ : H(V ) −→ H(E)

f −→ ∇f(u, v) = ωuv(f(v)− f(u)) ,

with u and v being vertices of the edge (u, v) and with the obvious property that∇f(u, v) =
−∇f(v, u). Next we introduce the divergence operator. Not considering a boundary on
graphs is usually understood to be analogous to having homogeneous Neumann boundary
conditions, thus to preserve the classical divergencce theorem in the continuous setting,
i.e.

(4) −〈f, divG 〉H(V ) = 〈∇f,G〉H(E) ,

we may define the divergence as the half of minus the adjoint of the gradient, that in
matrix form reads −div = 1

2∇
T , i.e.

(5)
div : H(E) −→ H(V )

G −→ divG(u) =
1

2

∑
v∼u

ωuv
(
G(u, v)−G(v, u)

)
,

where {v |v ∼ u} are the nodes connected to the node u by an edge, i.e. such that
(u, v) ∈ E. Given the definitions of gradient and divergence we can introduce the graph
Laplacian operator (p = 2) and the more general p-Laplacian operator

(
p ∈ (1,∞)

)
, whose

definitions are similar to the one used in the continuous setting:

(6) ∆pf(u) = −div
(
|∇f |p−2 �∇f

)
(u) =

∑
v∼u

ωuv|∇f(v, u)|p−2∇f(v, u) ,

where |∇f |p−2 has to be understood entrywhise and � denotes the entrywhise product (we
will omit this symbol in the following).
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2 p-Laplacian eigenpairs

Now we can introduce the p-Laplacian eigenvalue problem. Mimicking the continuous
setting, we look for the critical points equation of the Rayleigh quotient:

(7) Rp(f) =
‖∇f‖p
‖f‖p

=

(
1
2

∑
(u,v)∈E |∇f(u, v)|p

) 1
p

(∑
u∈V |f(u)|p

) 1
p

,

whose critical point equation
(
p ∈ (1,∞)

)
, up to rescalings, reads:

(8) ∆pf(u) = Rpp(f)|f(u)|p−2f(u) ∀u ∈ V .

We thus define (f, λ) to be a p-Laplacian eigenapair iff

(9) ∆pf(u) = λ|f(u)|p−2f(u) ∀u ∈ V .

Multiplying the above equation by f(u) and then summing over the vertices shows that if
λ is an eigenvalue corresponding to the eigenfunction f , necessarily λ = Rpp(f).

We highlight in Figure 1, from [11], that differently from the linear case p = 2, where
∆2 is a symmetric positve semidefinite matrix, for a generic p the number of p-Laplacian
eigenpairs can be greater than the dimension of the space, i.e |V |, the eigenpairs are not
in general orthogonal and there is no clear notion of eigenspaces or multiplicity. In [29, 1]
other examples and discussions on the problem.

1

2

4

3

(a) f1 = (1, 1, 1, 1), λ1 = 0

(b) f2 = (1, 0,−1, 0), λ2 = 2

(c) f3 = (0, 1, 0,−1), λ3 = 2 + 2p−1

(d) f4 = (1, 0, 1,−2
1
p−1 ), (1,−2

1
p−1 , 1, 0)

λ4 = 1 +
(
1 + 2

1
p−1
)p−1

(e) f5 = (1,−1, 1,−1), λ5 = 2p

Figure 1. Left: Example graph in which the corresponding p-Laplacian ∆p with ωuv = 1 ∀(u, v) ∈ E,
has more eigenvalues then the dimesion of the space. Right: Set of five eigenvalues and corresponding
eigenfunctions.

Nevertheless, using some classical results from calculus of variations it is possible to
characterize a set of "variational" eigenvalues whose multiplicity is equal to the dimension
of the space, |V |, and that somehow are representants of the whole spectrum. In detail,
we observe that, because of the homogeneity of the Rayleigh quotient Rp, we can restrict
the study of its critical points on the p-sphere, Sp := {f ∈ H(V ) | ‖f‖p = 1}. Defined
Rcp := {f | Rp(f) < c} consider the follwing deformation lemma and its direct consequence
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given in Theorem 2.2 (a particular case of more general and classic results, see e.g. [24, 27,
15, 14].

Lemma 2.1 (Deformation Lemma) Assume c to be a regular value of Rp, then there
exist ε > 0 and a continuous family of deformations, φ ∈ C([0, 1] × Sp, Sp) such that
φ(t, f) = −φ(t,−f) ∀(t, f), φ(1,Rc+εp ) ⊂ Rc−εp , φ(0, f) = f .

Proof. We give a skecth of proof that is quite intuitive. Consider a neighborhood B, of
{f | Rp(f) = c} without critical points, a cutoff function ξ(f) that is zero outside B and
the projection of the gradient of Rp(f) on the tangent space of Sp, denoted, with a small
abuse of notation, by ∂

∂fRp(·). Finally define φ(t, f) as the solution to the gradient flow{
∂
∂tφ(t, f) = −ξ(φ(t, f)) ∂

∂fRp(φ(t, f))

φ(0, f) = f

which is a continuous map from [0, 1]× Sp to Sp.

Theorem 2.2 Assume F to be a family of subsets of Sp such that for any regular value
c ∈ R of Rp, there exist ε > 0 and a continuous deformation of the domain φ[0, 1]×Sp → Sp
s.t. 

φ : (0, ·) = idSp(·)
φ(1,Rc+εp ) ⊂ Rc−εp

φ(t, A) ∈ F , ∀A ∈ F , ∀t ∈ [0, 1]

Then
Λ := inf

A∈F
sup
f∈A
Rp(f) ,

is a critical value of Rp, i.e. the p-th root of an eigenvalue of ∆p.

Proof. The proof is a direct consequence of the deformation lemma 2.1.

Based on the above Theorem we can introduce the variational eigenapairs of the p-
Laplacian. The theorem says that we have to find families, Fk, of subsets stable for
deformations, i.e, if A ∈ Fk and φ is a deformation also φ(A) ∈ Fk. To understand
how this works recall the Fisher-Courant min max characterization of the eigenvalues of a
symmetric matrix (arising from the graph Laplacian) i.e.

λk(∆2) = min
dim(A)≥k

max
f∈A\{0}

〈∆2f, f〉
〈f, f〉

= min
dim(A)≥k

max
f∈A\{0}

R2
2(f) .

A possible strategy (not the unique one) to generalize this min max theorem to the non-
linear case, using Theorem 2.2, is based on the idea of considering a generalized notion of
dimension, the Krasnoselskii genus, that is based/related to the Lyusternik-Schnirelmann
category of a space [27, 15, 14]. First of all observe that, as we are interested in studying
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critical points of Rp, which is an even functional, it would be enough to generalize the
notion of dimension to the symmetric subsets. Thus we introduce

A = {A ⊆ Rn| A closed , A = −A}

Then we observe that in the case of A a linear subspace of dimension k, A \ {0} can
be retracted with continuity on a sphere of dimension k − 1, Sk−1. This notion can be
generalized defining, for any A ∈ A, the Krasnoselskii genus of A:

γ(A) =

{
inf{k ∈ N |∃ψ ∈ C(A,Sk−1) s.t. ψ(x) = −ψ(−x)}
+∞ if @ k as above

We first note that, if γ(A) ≥ k and φ ∈ C(Rn,Rn), γ(φ(A)) ≥ γ(A). Hence, the families
Fk(Sp) = {A ⊆ A ∩ Sp |γ(A) ≥ k} satisfy the hypotheses of Theorem 2.2 Thus we define
the Krasnoselskii variational eigenvalues of ∆p as

(10) λ
1
p

k = inf
A∈Fk

sup
f∈A
Rp(f) .

Morover, since we are working in a finite dimensional space, it is possible to prove that the
above inf sup is actually a min max.

2.1 Cases p = 1,∞

A particular discussion is necessary for the two extreme cases p = 1 and p = ∞, observe
that in these cases the Rayleigh quotients, R1(f) and R∞(f), are still well defined but
not differentiable anymore. This opens the problem of how to define the 1 and the infinity
eigenpairs. The answer to this problem is not unique, and different approaches have been
proposed in the literature. Here, we discuss an approach that has been initially used for
the case p = 1 [6, 17], but that has been recently used also in the continuous setting for
the infinity case [4, 3]. The idea is to define a generalized notion of critical points for
the Rayleigh quotients R1(f) and R∞(f). To this aim, we first observe that given f , a
p-Laplacian eigenfunction, we can assume w.lo.g. ‖f‖p = 1, which is equivalent to saying
that f is a point of the unit sphere Sp (the sphere of unit p-norm). Then observe that
|f |p−2f is the outward normal to Sp in f . As a consequence, from (9), f being a p-Laplacian
eigenfunction, is equivalent to have ∂‖∇f‖p/∂f (= C∆p(f)) equal, up to rescalings, to
the outward normal to the manifold Sp in the point f . Trying to generalize the notion of
critical points there are two difficulties. The first is the non differentiability of the 1 or ∞
norm of the gradient and the second is the fact that the outward normal to the spheres S1

and S∞ is not everywhere well defined. A solution to both of these problems comes from
the notion of subgradients of a convex function [26]. Let Ψ : Rn → R be a convex function,
e.g a norm. Its subgradient at a point f0 is defined as:

(11) ∂Ψ(f0) =
{
ξ | Ψ(g)−Ψ(f0) ≥ 〈ξ, g − f0〉 ∀g ∈ Rn

}
.

This is a generalization of the notion of gradient: if the function Ψ is differentiable at
the point f0, then ∂Ψ(f0) =

(
∂Ψ/∂f

)
(f0). Morover it is possible to characterize the
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composition of the subdifferential of a convex function with a linear transformation (see
Theorem 23.9 [26] for weaker hypotheses):

Theorem 2.3 Let Φ(f) = Ψ(Af), where Ψ is a convex function on Rm, |Ψ(f)| <
+∞ ∀f ∈ Rm and A is a linear transformation from Rn to Rm, then

∂Φ(f) = AT∂(Ψ(Af))

These results allow us to define a generalized notion of ∂‖∇f‖/∂f , meaningful also in
case of 1 and infinity norms, that matches the classical definition for 1 < p <∞. Now we
need to generalize the notion of outward normal to the spheres of p-norm equal to one. As
the outward normal doesn’t change, instead of considering the sphere let us consider the
corresponding closed ball. Then

Dp = {f | ‖f‖p ≤ 1}

is easily proved to be a convex set for any p and we can define the convex external cone in
the generic point, f0 s.t. ‖f0‖p = 1 as

CExt(f0) = {ξ | 〈ξ, f0 − g〉 ≤ 0 ∀ g ∈ Dp} .

Again it is possible to relate this set to the subgradient of f → ‖f‖p since it is possbile to
prove that [26, 7]:

(12) CExt(f0) =
⋃
λ≥0

λ∂‖f0‖ .

It follows that saying that f is an eigenfunction of the p-Laplacian is equivalent to
asking that there exist Λ > 0 such that

(13) ∅ 6= ∂‖∇f‖p ∩ Λ∂‖f‖p ,

and now this definition makes sense also when p = 1 and p =∞.
To complete the discussion about the two nonsmooth cases we need to characterize the

sets ∂‖f‖1 and ∂‖f‖∞. To this end we recall the following result [5], of which we include
the proof because of its simplicity.

Lemma 2.4 Given a function f0 and a norm ‖ · ‖,

∂‖f0‖ = {ξ | ‖g‖ ≥ 〈ξ, g〉 ∀ g, ‖f0‖ = 〈ξ, f0〉}

Proof. Observe that the right-hand side is trivially included in the left one by definition
of subgradient. About the opposite inclusion, by definition and the triangular inequality,
we know that if ξ ∈ ∂‖f0‖

〈ξ, h− f0〉 = 〈ξ, h〉 − 〈ξ, f0〉 ≤ ‖h‖ − ‖f0‖ ≤ ‖h− f0‖ ∀g
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Then, as g := (h− f0) spans the whole Rn, the sup in the above inequality yields

0 ≥ sup
g

(
〈ξ, g〉 − ‖g‖

)
≥ 〈ξ, f0〉 − ‖f0‖,

on the other hand, still from the subgradient definition, we have:

〈ξ, f0〉 − ‖f0‖ ≥
(

sup
g
〈ξ, g〉 − ‖g‖

)
≥ 0 .

Thus if ξ ∈ ∂‖f0‖ it satisfies:

〈ξ, f0〉 − ‖f0‖ = sup
g

(
〈ξ, g〉 − ‖g‖

)
= 0 ,

concluding the proof.

Observe that from this lemma it follows that necessarily, if f is an eigenfunction as in (13),
Λ = Rp(f) i.e. it is the p-th root of the eigenvalue defined in (9). However observe that
when p =∞, R∞∞ is not defined while for p = 1 there is no difference between R1(f) and
its 1-th root, thus for the two extreme cases, we will call, with a small abuse of notation,
Λ in (13) the eigenvalue corresponding to f .

The subgradients of the 1 and ∞ norm can be calculated from Lemma 2.4 and Theo-
rem 2.3 yielding the following formulas:

(14)
∂‖f‖1 =

{
ξV

∣∣∣ ξV (u) = sign
(
f(u)

)}
∂‖∇f‖1 =

{
− div ξE

∣∣∣ ξE(u, v) = sign
(
∇f(u, v)

)}

where sign(x) =

1 if x > 0
[−1, 1] if x = 0
−1 if x < 0

.

(15)

∂‖f‖∞ =

{
ξV

∣∣∣∣∣ ‖ξV ‖1 = 1, ξV (u) = 0 if |f(u)| < ‖f‖∞
ξV (u)f(u) =

∣∣ξV (u)f(u)
∣∣

}

∂‖∇f‖∞ =

{
−div ξE

∣∣∣∣∣ ‖ξE‖1 = 1, ξE(u, v) = 0 if |∇f(u, v)| < ‖∇f‖∞
ξE(u, v)∇f(u, v) =

∣∣ξE(u, v)∇f(u, v)
∣∣

}

We conclude this part recalling that, also in the degenerate cases, the min max in
(10) characterizes eigenvalues as generalized critiacal values (13), allowing to define the
variational eigenvalues also for p = 1 and p =∞ provided subgradients are used (see [6, 7]
for the details).
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3 Nodal Domains and properties of the p-Laplacian eigenpairs

The nodal domains induced by a function f are generally the maximal subdomains induced
by the sign of f . Their study in relation to the eigenpairs of the Laplacian dates back to the
works of Sturm and Courant where they observed respectively for strings and membranes
that the number of nodal domains induced by the eigenfunctions of the Laplacian-Beltrami
operator, somehow, reflects the corresponding frequency (i.e. eigenvalue index).

We here briefly discuss and recall few results about the nodal domains induced by the
p-Laplacian eigenfunctions. We start from the definition:

Definition 3.1 (Nodal domains) Given a graph G and a function f : V → R, a subset of
the vertices, A ⊆ V , is a nodal domain induced by f if the subgraph GA ⊂ G with vertices
in A is a maximal connected subgraph of G where f is nonzero and has constant sign. We
denote by N (f) the number of nodal domains induced by a function f .

Exactly as in the case of the Laplacian, it turns out that also for the graph p-Laplacian
it is possible to relate the number of nodal domains induced by an eigenfunction to the
corresponding frequency, where now the frequency is intended in terms of position of the
eigenvalue with respect to the variational spectrum. In particular, without entering in the
details of the sharpest bounds, in [28, 11], it can be shown that

Theorem 3.2 Suppose that G is a connected graph, 1 < p <∞ and λ1 < λ2 ≤ · · · ≤ λN
are the variational eigenvalues of ∆p.

• If f is an eigenfunction of ∆p with eigenvalue λ such that λ < λk, then

N (f) ≤ k − 1 ;

• if f is an eigenfunction of ∆p with eigenvalue λ such that λ > λk, then

N (f) ≥ k − β − z(f) + 1 ,

where β is the number of independent loops of the graph, i.e. β = |E| − |V |+ 1, and
z(f) is the number of nodes where f is zero.

These results, jointly with the fact that the nodal domains are expected to provide a
sort of equilibrated partition of the graph, led to the idea of using the eigenvalues of the p-
Laplacian to approximate the "costs" of some "optimal" partitions of the graph, providing
geometrical information about the graph itself.

3.1 p = 1 and Cheeger constants

We start this subsection by introducing the family of the Cheeger constants of the graph
that are able to provide information about the number and the goodness of the clusters
of the graph. Let A ⊂ V be a subset of the nodes and consider E(A, Ā) be the set of the
edges having one endpoint in A and the other in Ā := V \A. Consider, then, the quantity

(16) c(A) =
‖ω
(
E(A, Ā)

)
‖1

|A|
=

1
2

∑
(u,v)∈E(A,Ā) ω(u, v)

|A|
,
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and, given an integer k, all the possible families of k nonempty and disjoint subsets of V

(17) Dk(G) = {A1, . . . , Ak ⊂ V | Ai 6= ∅, Ai ∩Aj = ∅ ∀ i, j} .

Define the k-th Cheeger constant (or isoperimetric constant) see [22, 21, 8], as

(18) hk(G) := min
{A1,...Ak}∈Dk(G)

max
i=1,...,k

c(Ai) ,

Observe that having a "small" value of hk means that there exist k-good subset of nodes
that are quite massive and "poorly connected" to each other, that is the idea of a cluster
of nodes. The constant hk(G) can thus be considered as an indicator of how well the
graph can be clusterized in k subgraphs with the corresponding family of subsets being
the approximate clusters.
Now observe that given a subset, A ⊂ V , and considered its characteristic function, χA,
we have that

(19) R1(χA) =

1
2

∑
(u,v)∈E ωuv|χA(u)− χA(v)|∑

v∈V |χA(u)|
= c(A) .

It is then natural to study the Cheeger constants in relation to the eigenvalues of the
1-Laplacian. What is actually possible to prove is the following theorem [2, 6, 9, 17, 28]

Theorem 3.3 Let Λ1
k be the k-th variational eigenvalue of the 1-Laplacian, then

(20) Λ1
2 = h2(G) , Λ1

k ≤ hk(G) ∀k.

Moreover using the p-Laplacian eigenpairs, when p goes to 1, it is possibile to prove the
following theorem that relates the number of nodal domains induced by an eigenfunction
and the Cheeger constants, [9, 28]

Theorem 3.4 Let (fk, λ
(p)
k ) be the k-th variational eigenpair of the p-Laplacian, p > 1,

then
2p−1

τ(G)p−1

hpN (f)

pp
≤ λ(p)

k ,

where τ(G) = maxu∈V
∑

v∼u ω(u, v)

Combining the last two theorems we observe that whenever we have a variational
eigenfunction whose nodal domain count reflects the corresponding frequency, letting p
goes to one, the eigenvalue reproducess exactly an higher order Cheeger constant.

3.2 p =∞

Analogous results relate the ∞-eigenpairs to the maximal distance among k nodes. It is
worth mentioning that some of these results are similar to those obtained in the continuous
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setting by [19, 18, 13] using an approach different from the one that employs the subgra-
dients,.
To describe this case we start by introducing the k-th radius of the graph:

(21) rk = max
v1,...,vk∈V

min
i,j=1,...,k

d(vi, vj)

2

that can also be written as

(22) rk = max{r | ∃ v1, . . . , vk ∈ V s.t. d(vi, vj) ≥ 2r ∀ i, j = 1, . . . , k} .

Observe that 2r2 is obviously the diameter of the graph, while, for k > 2 we are computing
the maximal reciprocal distance among k nodes. In terms of informations about a set of
data represented by the graph, rk measures a sort of higher order distribution width of the
data.
Similarly to what shown before, (19), we can observe that given a node v and a radius r
(not too small) we can build the cone function f : V → R , f(u) := max{r − d(u, v), 0},
then it is trivial to observe that

R∞(f) =
1

r
.

In addition, recalling the ∞-Laplacian eigenvalue problem from equation (15), if (f,Λ) is
an ∞-eigenpair, there exist ξV ∈ ∂‖f‖∞ and ξE ∈ ∂‖∇f‖∞ such that

−div(ξE) = ΛξV .

We know that if ξV (u) 6= 0 then necessarily f(u) = ‖f‖∞ which is equivalent to say that in
any non extremal node v of f div(ξE)(v) = 0. On the other hand, ξE(u, v) 6= 0 necessarily
means ∇f(u, v) = ‖∇f‖∞. From these two observations, starting from an extremal node u
of f (ξV (u) 6= 0) there has to exist a path, whose edges are here indicated by {(vi, vi+1)}n−1

i=1

with v1 = u vn = w, such that |∇f(vi, vi+1)| = ‖∇f‖∞ ∀ i. Morover, the end point of the
path can only be another point w such that |f(w)| = ‖f‖∞, f(w) = −f(u). It is then
easy to arrive at the conclusion that

(23) Λ =
‖∇f‖∞
‖f‖∞

=
2

d(u,w)

Since any ∞-eigenpair is related to a distence and to some sort of cone function, it makes
again sense to relate the infinite variational eigenvalues to the radii of the graph. The
following results, very similar to the one presented for the p = 1 case, hold [10]:

Theorem 3.5 Let Λ
(∞)
k be the k-th ∞-variational eigenvalue, then

Λ
(∞)
2 =

1

R2
, Λ

(∞)
k ≤ 1

Rk
∀k

Morover in the case of eigenpairs obtained as limit for p→∞ of p-Laplacian eigenapairs
we have the following
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Theorem 3.6 Let (f,Λ∞) be an ∞-eigenpair that is a limit of p-Laplacian eigenpairs as
p→∞, then

1

RN (f)
≤ Λ(∞)

Thus we recover the same remarks made at the end of the previous subsection 3.1.

4 Computing the p-Laplacian eigenpairs

We conclude this summary presenting just a hint of a possible numerical approach for the
computation of the p-Laplacian eigenpairs. From (9) we observe that , for p > 2, the
p-Laplacian eigenvalue equation can be written as a constrained linear eigenvalue problem
weighted with respect to two positive measures, one on the edges, µ0 : E → R+, and one
on the nodes, ν0 : V → R+ :

∆µ0f(u) =
(
− div

(
diag(µ0)

)
∇f
)

(u) = λν0uf(u) ∀u ∈ V
µ0uv = |∇f(u, v)|p−2 ∀(u, v) ∈ E
ν0u = |f(u)|p−2 ∀u ∈ V

Then, for any couple of positive measures µ : E → R+ ν : V → R+ it is possible to
consider the eigenpairs (f, λ)(µ, ν) of the generalized eigenvalue problem

∆µf(u) =
(
− div

(
diag(µ)

)
∇f
)

(u) = λνuf(u) .

These are eigenpairs of a linear eigenvalue problem and thus can be enumerated from 1 to
|V |, the cardinality of the node space.
For any k ≤ |V | we introduce the function

(24) Lk(µ, ν) =
1

λk(µ, ν)
+
p− 2

p

∑
(u,v)∈E

(µ
p
p−2
uv )− p− 2

p

∑
v∈V

(ν
p
p−2
v )

Note that these functions are still well defined when p = ∞ by defining p
p−2 = 1.

Morover, as we see in the next theorem, [12], it is possible to relate the saddle points of
these functions with the p-Laplacian eigenpairs. Denoting by M+(V ),M+(E) the space
of the positive measures on V and E, we have the following result:

Theorem 4.1 Let, p > 2 and (ν∗, µ∗) := argmaxν∈M+(V ) argminµ∈M+(E) Lk(µ, ν) be a

smooth saddle point of the function Lk(µ, ν), then
(
λ
p
2
k (µ∗, ν∗), fk(µ

∗, ν∗)
)
is a p-Laplacian

eigenpair.

This result leds to the construction of numerical algorithms based on gradient flows
for these functionals that at each step only require the computation of an eigenpair of a
weighted Laplacian, taking the possibility to use all the advantages of the linearity. We
refer to [12] for more details.
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Kolmogorov-Arnold-Moser (KAM) stability and
its application in the planetary n-body problem

Rita Mastroianni (∗)

Abstract. The study of exoplanetary systems with two or more planets in orbits with non-zero mu-
tual inclination is an interesting topic of Hamiltonian dynamics, in view of the many applications
related to the astronomical discovery, in the last 20 years, of several such systems. The present
report discusses the mathematical context of the theory of the long term stability for nearly Kep-
lerian perturbed n-body systems, following the so-called Kolmogorov-Arnold-Moser (KAM) Theo-
rem. The KAM Theorem is a cornerstone of canonical perturbation theory: it allows to conjugate,
through a convergent sequence of canonical trasformations, particular solutions of the “pertubed”
dynamical system to the invariant dynamics on a torus. We provide a short summary of classical
results of perturbation theory. We also briefly present some recent progress on the construction
of the Kolmogorov normal form for ‘isochronous systems’. Finally, we explain in an introductory
manner, how the above concepts can be implemented in exoplanetary systems with a 3D-orbital
architecture.

1 Introduction

The general problem of dynamics, as defined by Poincaré in Les méthodes nouvelles de la
mécanique céleste ([11]) is described by the following Hamiltonian

(0.1) H(ϕ, I) = h(I) + ε f(ϕ, I)

whith action variables I ∈ G ⊂ Rn (G an open set), angle variables ϕ ∈ Tn and ε a
“small” parameter. The Hamiltonian (1) is called “nearly-integrable”: it is composed by
two terms, h(I) and ε f(ϕ, I) . By the Liouville-Arnold-Jost Theorem 3.2 the first term
h(I) is integrable; thus we can establish that the orbits (i.e. the solutions of Hamilton’s
equations only for the part h(I)) lie on invariant n-dimensional tori, parametrized by the
values of the actions I(0) . However, the complete Hamiltonian H(ϕ, I) is “perturbed” by
the presence of the term ε f(ϕ, I) . At first, one can (wrongly) conjecture that since the
complete Hamiltonian H(ϕ, I) is close to the integrable one h(I), the same happens for its
dynamics. However a wide range of new phenomena appear as a result of the perturbation.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 11 May 2022.
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In the present chapter we will discuss how Hamiltonian perturbation theory allows to find
normalization procedures (i.e. a sequence of canonical change of coordinates) able to lead
to a control of the dynamics of the complete system, as well as a quantification of the
difference between the perturbed and the integrable part.

This work is organized as follows. In section 2 we give some basic definitions regarding
Hamiltonian systems. Sections 3 and 4 we describe, respectively, the integrable and per-
turbative cases, explaining the theorems and the techniques required for the treatment of
such systems. Finally, in section 5 we focus on applications. In particular we will see how
the theory explained in the previous sections can be applied in order to understand and
explain the main phenomena for a three body problem with a high mutual inclination.

2 Definitions and basic notions of Hamiltonian systems

Given the Hamiltonian function H : F → R , with (q,p) ∈ F ⊆ Rn × Rn , Hamilton’s
equations are described by the following system of 2n differential equations of the first
order:

(2)

{
q̇j = ∂H(q,p)/∂pj

ṗj = −∂H(q,p)/∂qj
j = 1, . . . , n ,

where with the dot ˙ we mean the time derivative d/dt . The variables (q,p) are called
positions and momenta respectively. The system (2) describes the motion of a n-degree of
freedom dynamical system (where n is the number of independent coordinates q required to
describe the system.)(2) The solutions of Hamilton’s equations (2) is called flow and it maps
the inizial values (q(0),p(0)) to the solution at time t, i.e. φtH(q(0),p(0)) = (q(t),p(t)).
An orbit is defined as ∪t∈IφtH , where I is the maximal set of definition of the solution.
In general the Hamiltonian can depend also explicitly on the time; nevertheless, through
an ‘extension of the phase space’ it is possible to remove this last dependence. Whenever
∂H/∂t = 0 the Hamiltonian is said autonomous. For an autonomous Hamiltonian the
value E = H(q(t),p(t)) is preserved along any orbit. E is called the energy of the system.
A classical method to visualize the global behaviour of a system is to pass from the con-
tinuous flow φtH to a discrete map Π : Σ→ Σ, with Σ ⊂ R2n a surface of dimension 2n−1;
this is called the Poincaré section method. In particular, taken a surface Σ transversal to
the flow, an orbit is followed until crossing, in a given direction, the surface Σ; i.e. let P0 be
the first point of intersection between the flow and Σ , P1 := Π(P0) be the successive point
of intersection, and so on. An orbit is then represented by the sequence of the successive
intersections P0, P1 = Π(P0), P2 = Π(P1), . . ., as shown in Figure 1.

(2)In general, denoting by M the n-dimensional manifold in which the motion takes place, the phase
space is the cotangent bundle of M , i.e. F = T ∗M being (q,p) ∈ T ∗M . However, we can consider the
simple case in which the phase space F is an open set of R2n .
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Figure 1: The method of Poin-
caré section for an orbit in the
three dimensional space. This
figure is available from [3].

Now we give a series of definitions useful in the sequel.

Definition 2.1 The Poisson bracket between two functions f and g is the bilinear map
{·, ·} : C∞(F)× C∞(F)→ C∞(F) defined by

{f, g} =

n∑
j=1

(
∂ f

∂qj

∂g

∂pj
− ∂ f

∂pj

∂g

∂qj

)
= ∇f · J∇g ,

where J =

(
On In
−In On

)
is the symplectic matrix, with On and In respectively the n × n

zero and unit matrices.

Definition 2.2 The function f(q,p) is called first integral of H if it is constant under the
Hamiltonian flow, i.e.

ḟ =
n∑
j=1

(
∂f

∂qj

∂H
∂pj
− ∂f

∂pj

∂H
∂qj

)
= {f,H} := LHf = 0 .

The operation LHf is called the Lie derivative of the function f along the Hamiltonian
vector field.

Example: an autonomous Hamiltonian is a first integral of its own flow, since LHH = 0.

Definition 2.3 The functions f1 , . . . , fr ∈ C∞(F) are called

• independent, if rank
(

∂(f1, . . . , fr)

∂(q1, . . . , qn, p1, . . . , pn)

)
= r ;

• in involution, if {fi, fj} = 0 ∀ i, j = 1, . . . , r .

Definition 2.4 Consider the change of coordinates (q,p) 7→ (Q,P ) , given by z =

z(y) , with y :=

(
q
p

)
and z :=

(
Q
P

)
. Let M = ∂z/∂y be the Jacobian matrix of
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the tranformation. The transformation is called canonical if the matrix M satisfies the
symplectic property

MJMT = MT JM = J.

If the trasformation z = z(y) is canonical, then the new variables (Q,P ) satisfy
Hamilton’s equations for H(z) = H (y(z)) .
Example: the Hamiltonian flow defines a canonical mapping. Namely, given (q,p) ∈ F
the evolution of the orbit with initial condition (q,p) along the Hamiltonian flow leads,
after a time t, to the mapping (qt,pt) = φtH(q,p) which is canonical.
For the treatment of perturbative systems, there will be crucial the research of canonical
transformation, near to the identity. For this reason we need the following definition:

Definition 2.5 Given χ ∈ C∞(F) we call Lie series operator the exponential operator of
εLχ , i.e.

exp (εLχ) · =
∑
j≥0

εj

j!
Ljχ · .

Remembering that ḟ = {f,H}, and performing a Taylor series expansion, it is easy to
prove that, for any function f ∈ C∞(F) we have f(q(t),p(t)) = exp (tLH) f(q(0),p(0)) ;
this means that the Lie series map the function from its initial value in t = 0 to its value at
time t, along the Hamiltonian flow. Then, taking as function f the canonical coordinates,
we have that

(q(ε),p(ε)) = φεH(q(0),p(0)) =
(

exp (εLH) q, exp (εLH) q
)∣∣
q=q(0)
p=p(0)

.

Thus, the transformation

(q,p) 7−→
(

exp (εLH) q, exp (εLH)p
)

is a canonical transformation near to the identity, i.e.(
exp (εLH) q , exp (εLH)p

)
− (q,p) = O(ε) .

In practice, in Hamiltonian perturbation theory, we use the method of the Lie series to
generate changes of coordinates of this form, i.e., given an appropriate generating function
χ, we will consider exp(εLχ). To this end, the following theorem will be useful:

Theorem 2.6 (Exchange) Given χ, f ∈ C∞(F), then

f(q,p)|q=exp(εLχ)q̂
p=exp(εLχ)p̂

= exp(εLχ)f |q=q̂
p=p̂

.

Theorem 2.6 establishes that, given a function f , the act of replacing the ‘old’ variables
with the ‘new’ ones (obtained through the Lie series canonical transformation) is equivalent
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to acting directely on the function with the Lie series, and renaming, at the end, the ‘old’
variables as the ‘new’ ones.
Finally, in order to characterize the type of motion, we recall the definition of quasi-periodic
function:

Definition 2.7 Let g(θ1, . . . , θn) be a function periodic in the angles θ ∈ Tn, i.e. such
that

g(θ1, . . . , θi + 2π, . . . θn) = g(θ1, . . . , θi, . . . θn) ∀ i = 1, . . . n.

The function f(t) = g(ω1t, . . . , ωnt) is called quasi-periodic in t with respect to the fre-
quency vector ω ∈ Rn when ω is non-resonant, i.e. k · ω 6= 0 ∀k ∈ Zn \ {0} .

3 Integrability

In the present section we briefly present the concept of integrability for Hamiltonian sys-
tems and we characterize the solutions of an integrable Hamiltonian. In order to define
the concept of integrability we need the following theorem:

Theorem 3.1 (Liouville) Let H : F → R be a n-degrees of freedom Hamiltonian with n
first integrals f1, . . . , fn independent and in involution. Then the system is integrable by
quadrature.

From now on by integrability we mean Liouville integrability. In order to characterize
the solutions of an integrable system, the following theorem is essential:

Theorem 3.2 (Liouville-Arnold-Jost) Let H : F → R be a n-degrees of freedom Hamil-
tonian admiting n first integrals independent and in involution fi : F → R i = 1, . . . , n .
Assume there exists a compact and connected component Mc of the level set {(q,p) ∈ F :
fi(q,p) = ci, i = 1, . . . , n }, c = (c1, . . . , cn) ∈ Rn . Then:

• Mc is diffeomorphic to the n-dim torus Tn;

• in a neighbourhood U of Mc there exists a canonical transformation

C : G × Tn → U
(I,ϕ) 7→ (p, q)

with G ⊆ Rn an open set, such that the Hamiltonian takes the form H (C(I,ϕ)) =
h(I) .

The canonical variables (I,ϕ) are called action-angle variables. The equations of mo-
tion in these variables are

(3)


ϕ̇j =

∂h(I)

∂Ij
:= ω0j (I)

İj = −∂h(I)

∂ϕj
= 0

j = 1, . . . , n.
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Thus the orbits lie on n-dimensional tori, parametrized by the actions, with linear motions
on Tn , i.e. t 7→ {(I,ϕ) : I(t) = I0, ϕ(t) = ϕ0 + ω0(I0)t} are the solutions of (3). The
motions are non-periodic, and are instead dense in Tn, if the frequency vector ω0 is non-
resonant, i.e. k ·ω0 6= 0∀k ∈ Zn \ {0} . In this case the motion is called quasi-periodic. In
particular, if n = 2, setting ω0 = (ω1, ω2), the orbit is periodic if and only if ω1/ω2 ∈ Q ;
otherwise, the orbit is dense on T2 . Also, it is useful to observe that, in a Poincaré section
Σ , the linear flow on a torus yields a finite number of points, if the orbit is periodic, or a
closed curve, if the orbit is quasi-periodic.

4 Nearly-integrability

In the previous section we have characterized the solutions of an integrable system. Thus,
taken the general problem of dynamics (1), described by

H(ϕ, I) = h(I) + ε f(ϕ, I)

where I ∈ G ⊂ Rn , ϕ ∈ Tn, we know that for ε = 0 the Hamiltonian is integrable (by the
Liouville-Arnold-Theorem 3.2) and the motions are conjugated to linear flows on Tn . The
question now is: if ε 6= 0, do there exist quasi-periodic solutions lying on invariant tori?
The answer to this question is given by the celebrated Kolmogorov-Arnold-Moser (KAM)
Theorem, which states that, under suitable assumptions and if the size of the perturbation
ε is ‘small enough’, the existence of invariant tori is ensured. Furthermore, these tori are
deformations of those of the integrable case.

Theorem 4.1 (KAM (according to Kolmogorov)) Consider a Hamiltonian function
H : Tn × G → R (where G ⊆ Rn open) of the form H(ϕ, I) = ω0 · I + h(I) + ε f(ϕ, I)
where h(I) = O(||I||2) for I → 0 .
Let us assume the following hypotheses:

1. ω0 is Diophantine, i.e. ∃ two constants γ > 0 and τ ≥ n − 1 s.t. |k · ω0| ≥
γ|k|−τ ∀k ∈ Zn \ {0} ;

2. H is analytic on G × Tn ;

3. h(I) is non-degenerate, i.e. det
(
∂2h(I)/(∂Ii∂Ij)

)
i,j
6= 0 ∀ I ∈ G ;

4. ε is a small parameter, i.e. ∃ ε? > 0 s.t. |ε| ≤ ε? .(3)

Then, there exists a canonical transformation (ϕ, I) = Cε(ϕ̃, Ĩ) leading H in the so called
Kolmogorov normal form, i.e. K(ϕ̃, Ĩ) = H

(
Cε(ϕ̃, Ĩ)

)
, where K(ϕ̃, Ĩ) = ω0·Ĩ+O(||Ĩ||2) .

We can easily verify that if the Hamiltonian is in Kolmogorov normal form K(ϕ̃, Ĩ) =

(3)The definition of this ε is quite complicated and it depends on different parameters. It’s definition is
explicitly given during the proof of the theorem.
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ω0 · Ĩ +O(||Ĩ||2) , a solution for Hamilton’s equations
˙̃ϕ =

∂K
∂Ĩ

= ω0 +O(||Ĩ||)

˙̃I = −∂K
∂ϕ̃

= O(||Ĩ||2)

is given by t→ (Ĩ(t) = 0, ϕ̃(t) = ϕ̃(0) + ω0t).
Despite the fact that this formulation of KAM theorem gives the existence of a single

invariant torus, it can be extended, ensuring the existence, for the perturbed Hamiltonian,
of a set of invariant tori of large measure. In particular, remembering that if τ > n − 1
almost all the n-dimentional vectors ω ∈ Rn belong to the set Dγ = ∪γ>0{ω ∈ Rn : |k·ω| ≥
γ|k|−τ ∀k 6= 0}, i.e., they are diophantine, and that the so-called action-frequency map
Ĩ 7→ ω0(Ĩ) is a local bijection (from the non-degeneracy of h), it is possible to prove the
following:

Corollary 4.2 (KAM (according to Arnold)) Consider a Hamiltonian H : Tn×G −→
R (where G ⊆ Rn open) of the form H(ϕ, I) = h(I) + ε f(ϕ, I). Assume the hypotheses
(2)-(4) of the previous Theorem 4.1. Then there is a set Sε that is made by invariant tori
and s.t. its Lebesque measure µ(Sε) > 0. Moreover, lim

ε→0
µ ((G × Tn) \ Sε) = 0.

This means that a set of large measure in the phase space G × Tn is filled by invariant
tori hosting quasi-periodic motions. In fact, the measure of the set increases as ε decreases.
For further details see [5], [7] (and the references theirein) and [1].
The KAM theorem is an example of convergent normalization procedure; in particular, we
pass from a pertubed Hamiltonian, of which we do not control the dynamics, to a ‘normal
form’ (the Kolmogorov one), of which we can characterize a particular solution. This is
the goal of Hamiltonian perturbation theory and the spirit to do it is described in the next
subsection.

4.1 Normalization procedure

Let us start from a Hamiltonian of the form

H(ϕ, I) = Z0(ϕ, I) + εf(ϕ, I),

where Z0, called the normal-form term, is the term of which we have a control of the
dynamics (for example, it can be integrable Z0(ϕ, I) = Z0(I) (and we know that the
solutions are linear on invariant tori), or it can be in Kolmogorov normal form (and we
know a particular solution that is the torus {(ϕ, I) : I(t) = 0,ϕ(t) = ϕ(0) + ωt)}), and
so on). Now, applying a normalization procedure means to apply a sequence of r canonical
transformations

C̃(r) : (ϕ, I) := (ϕ(0), I(0))
C(1)

→ (ϕ(1), I(1))
C(2)

→ . . . . . .
C(r)

→ (ϕ(r), I(r)),

such that, after r steps we arrive at new coordinates (ϕ(r), I(r)) and at a ‘new’ Hamiltonian
H(r)

H(r)(ϕ(r), I(r)) = H
(
ϕ(ϕ(r), I(r)), I(ϕ(r), I(r))

)
= H

(
C̃(r)−1

(ϕ(r), I(r))
)
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of the form
H(r)(ϕ(r), I(r)) = Z(r)(ϕ(r), I(r))︸ ︷︷ ︸

Normal form term

+R(r)(ϕ(r), I(r))︸ ︷︷ ︸
Remainder

.

As before, Z(r)(ϕ(r), I(r)) is the term of which we control the dynamics, whileR(r)(ϕ(r), I(r))
is the remainder, and tell us how the real dynamics differs from the one of Z(r).
The normalization procedure can be of different types:(4)

• If lim
r→∞ ||R(r)|| = 0 ⇒ we have a convergent normalization procedure (e.g. KAM);

• If lim
r 7→∞ ||R(r)|| 6= 0 and ∃ rott (optimal r) s.t. minimize ||R(r)|| (i.e. ||R(rott)|| is the

min.) ⇒ we have an asymptotic normalization procedure (e.g. Birkhoff normal
form).

By these two types of methods we can establish various results concerning the stability of
the orbits. For example, in the case of KAM theorem, we can take the initial conditions
(for the actions) in a Cantor set and we can establish ‘perpetual’ stability, in the sense
that orbits with initial conditions on the torus remain always on that torus. Instead, in
the case of the Birkhoff normal form (see [2]), the initial values for the initial actions are
taken in an open set and we can state only an asymptotic result of stability, such as:

Theorem 4.3 (Nekhoroshev) Let H(ϕ, I) = h(I) + εf(ϕ, I) analytic on the domain
G × Rn where G ⊂ Rn open and s.t. the imperturbed part h(I) is convex(5), i.e.

| 〈C(I)v,v〉 | ≥ m||v||2 ∀v ∈ Rn, Cjk =
∂2h

∂ϕj∂ϕk
.

Then, for ε sufficiently small, it holds the following: for every orbit with initial value
(I0,ϕ0) ∈ G × Tn , one has

|I(t)− I0| ≤ εb ∀ t s.t. |t| ≤ T (ε) ∼ exp(1/εa) ,

for suitable positive values of a < 1 and b < 1 .

This means that the time scale in which the stability of the actions in guaranteed in
not ‘infinite’, but exponentially long in the inverse of the small parameter ε. However, this
type of result is good and meaningful for the applications.
Now, having in mind which is the spirit of normalization procedures, we will present an
example, seeing, in practise, how it is possible to compute normal forms that lead the
Hamiltonian to the desired form.

(4)The norm used to compute ||R(r)|| is a suitable norm depending on the domain in which we define the
normalization method. For example, in the KAM Theorem, the domains are a complexification of G × Tn
and the used norms are the so called weighted Fourier norms. See, for example, [2].

(5)There is the possibility to substitute the convexity condition with other conditions, as the quasi-
convexity, or the ‘steepness’ condition. For further details see [12].
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4.1.1 Example of normalization procedure: one step of the KAM algorithm

Let us start from the Hamiltonian described in the KAM Theorem 4.1; we can express it
as

H(0)(ϕ, I) = ω0 · I + h(I)︸ ︷︷ ︸
Z0

+
∑
i≥1

εi f
(0)
i (ϕ, I) , h(I) ∈ O(||I||2) for I 7→ 0 .

At the first normalization step, we are interested in acting on the perturbation terms of
size ε, i.e. ε f (0)

1 (ϕ, I) . It is particularly useful to split this term as:

ε f
(0)
1 (ϕ, I) = ε

f (0)
1,0 (ϕ) + f

(0)
1,1 (ϕ, I) +

∑
j≥ 2

f
(0)
1,j (ϕ, I)

 ,

where in f (0)
1,j the subindex 1 is the degree of the correspondent ε, j represents the degree of

I and (0) is the step of the algorithm. This allows to see the dependence of the perturbed
term on the action-angle variables. With this notation, it is easy to understand that, at the
end of the first normalization step, we would like to remain only with the quadratic terms
in the actions of order ε . This means that our goal is to delete f (0)

1,0 (ϕ) and f
(0)
1,1 (ϕ, I) .

The first normalization step is divided in two substeps.
I substep. We find the generating function χ(1)

1 (ϕ) = X(1)(ϕ) + ξ(1) ·ϕ. The part X(1)(ϕ)
is given by the homological equation(6)

(4) {ω0 · I, X(1)(ϕ)}+ f
(0)
1,0 (ϕ) =

〈
f

(0)
1,0 (ϕ)

〉
ϕ

;

this allows to eliminate the term f
(0)
1,0 (ϕ). Instead, the generating function ξ(1)·ϕ is required

to keep fixed the initial frequency ω0; i.e. it allows to arrive at a Kolmogorov normal form
with the same frequency ω0 of the initial problem. It is possible to find ξ(1) · ϕ from the
equation

〈
f

(0)
1,1 (ϕ, I) + L

εχ
(1)
1

h(I)
〉
ϕ

= 0 .(7) At the end of the first substep we determine

‘new intermediate coordinates’ (ϕ̂, Î) s.t. ϕ = exp
(
L
εχ

(1)
1

ϕ̂
)
and I = exp

(
L
εχ

(1)
1

Î
)
; thus,

(6)It is easy to solve this homological equation expanding f (0)
1,0 (ϕ) and X(ϕ) in Fourier series; in fact,

given f
(0)
1,0 (ϕ) =

∑
k∈Zn c

(0)
k eik·ϕ and X(1)(ϕ) =

∑
k∈Zn α

(1)
k eik·ϕ (where α(1)

k are unknown), from the

homological equation (4) we find X(1)(ϕ) =
∑

k∈Zn\{0}
c
(0)
k

ik·ω0
eik·ϕ . Observe also that the diophantine

condition ensures that the denominator cannot be equal to zero.
(7)It is important to observe that, in order to solve this equation, it is necessary to assume the non

degeneracy of h(I) required in the KAM theorem 4.1. It is possible to substitute that hypothesis with
weaker hypothesis, but we have to renounce to take the frequency fixed. For example, in the ‘isochronous’
case, i.e. when h(I) = 0, it is possible to perform a ‘Kolmogorov normal form’ but we have to ‘detune’
the frequencies; this means that the lynear flow on the torus is with frequency ω 6= ω0. For further details
see [9].
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by the Exchange Theorem 2.6, it is possible to compute the ‘intermediate Hamiltonian’ as

Ĥ(1)(ϕ̂, Î) =H(0)(ϕ, I)
∣∣
ϕ=exp(L

εχ
(1)
1

)ϕ̂

I=exp(L
εχ

(1)
1

)Î

= expL
εχ

(1)
1

H(0)
∣∣
ϕ=ϕ̂

I=Î

=ω0 · I + h(I) +
∑
i≥1

εi f̂
(1)
i (ϕ, I) ,

with (as before)

ε f̂
(1)
1 (ϕ, I) = ε

f̂ (1)
1,0 (ϕ)︸ ︷︷ ︸

=0

+ f̂
(1)
1,1 (ϕ, I)︸ ︷︷ ︸
〈·〉ϕ=0

+
∑
j≥ 2

f̂
(1)
1,j (ϕ, I)

 .

II substep. We compute the generating function χ
(1)
2 (ϕ, I) through the following homo-

logical equation
{ω0 · I, χ(1)

2 (ϕ, I)}+ f̂
(1)
1,1 (ϕ, I) = 0 ;

this allows to completely eliminate the terms linear in the action at order ε . Thus, after the
first normalization step, we arrive at a ‘new’ Hamiltonian given by (apart from a constant)

H(1) = expL
εχ

(1)
2

Ĥ(1) = expL
εχ

(1)
2

expL
εχ

(1)
1

H(0)

=ω0 · I + h(I) + ε f
(1)
1︸ ︷︷ ︸

∈O(||I||2)

+
∑
i≥2

εi f
(1)
i (ϕ, I)

concluding that, up to order ε, the Hamiltonian is in Kolmogorov normal form. The
algorithm can procede iteratively, repeating it r times and proving the convergence in the
limit r → +∞ . For more details on these arguments an a more detailed exposition, see [2]
and [1].

5 Applications

In this section we are interested in applications of the theory presented above in celes-
tial mechanics; we want to study the perturbed Hamiltonian that describes a three body
problem of a multi-planetary mutually inclined system. In particular we have to deal
with exoplanetary systems; these systems are very different from our Solar system, having
masses, eccentricities and mutual inclinations bigger than those of our own solar system.

The Hamiltonian of the three-body problem in Poincaré heliocentric canonical variables
takes the form:

H =
p2
2

2m2
− Gm0m2

r2
+

p2
3

2m3
− Gm0m3

r3︸ ︷︷ ︸
Keplerian part

+
(p2 + p3)2

2m0︸ ︷︷ ︸
“Indirect" part

− Gm2m3

|r2 − r3|︸ ︷︷ ︸
“Direct" part

,(5)
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where m0 = mass of the star, mi , pi , ri , i = 2, 3 are the masses, barycentric momenta
and heliocentric position vectors of the planets and G is the gravitational constant.

(a) Orbital elements. (b)
Anomalies. M is related to E through
the Kepler law M = E − e sin(E) .

Figure 2: In order to locate a celestial body in the space we use the ‘orbital parameters’ (on the left): e =

eccentricity of the orbit, a = semimajor axes, ω = argument of periapsis, ν = true anomaly, Ω = longitude
of the ascending node, i = inclination. Moreover we use also the angles (on the right) E = eccentric
anomaly and the ‘virtual angle’ M = mean anomaly. For further details on this topic, see [10].

Starting from (5), it is possible to express the Hamiltonian in the so called orbital
parameters (see Figure 2); then, a secular Hamiltonian is arrived at by averaging the
above Hamiltonian with respect to all short period terms, i.e.

Hsec =< H >λ2,λ3= −Gm0m2

2a2
− Gm0m3

2a3
+Rsec(m0,mj , aj , ej , ij , ωj ,Ωj) ,

where λj = Mj + ωj + Ωj , j = 2, 3 are called the ‘fast’ angles. In fact, in astronomy,
there exist different time scales for the evolutions of the orbital parameters; the angle
λ (related to the revolution of the planet around the star) is ‘fast’ with respect to the
‘secular’ time required from other quantities (such as the eccentricities, inclinations, etc.)
to vary their behaviour. Moreover, it can be proved that the total angular momentum
vector L = r2 × p2 + r3 × p3 is an exact first integral of the Hamiltonian (5), a fact
implying that the dependence of the Hamiltonian on the angles Ω2, Ω3 is only through the
difference Ω2 −Ω3. However, the existence of two independent integrals in involution (i.e.
the components Lz and Lplane of the total angular momentum L) allows to reduce the
number of degrees of freedom by two, a process known as “Jacobi’s reduction of the nodes”
(see [4]). In particular it is possible to pass to the so called Laplace reference frame: it is
an invariant reference frame, orthogonal to the total angular momentum vector L where
we have the invariance Ω3 − Ω2 = π. In this reference frame we can express the secular
Hamiltonian in the following form (see [8]):

Hsec = Hplane(m0,m2,m3, a2, a3, e2, e3, ω2 − ω3)(6)
+ εHspace(m0,m2,m3, a2, a3, e2, e3, ω2, ω3; AMD) ,
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with AMD the ‘angular momentum deficit’, defined as

(7) AMD =

3∑
j=2

mj

√
Gm0aj

(
1−

√
1− e2

j cos(ij)
)
.

It can be also expressed in the canonical Poincaré variables (positions-momenta)

Xj = −
√

2Γj cos(ωj), Yj = −
√

2Γj sin(ωj) ,(8)

with Λj = mj

√
Gm0aj , Γj = Λj

(
1−

√
1− e2

j

)
, j = 2, 3 (modified Delaunay variables).

5.1 Integrability: application to the planar case

If we restrict ourselves to the planar part of the Hamiltonian (6)

Hplane = Hplane(Γ2,Γ3, ω2 − ω3) = Hplane(X2, X3, Y2, Y3)

we are in an integrable case. This is a 2 degrees of freedom Hamiltonian with 2 independent
first integrals in involution, that are Hplane , that represents the energy, and the angular
momentum ||L|| = Lz = Λ2+Λ3−Γ2−Γ3 . Thus, by the Liouville-Arnold-Jost Theorem 3.2,
the dynamics takes places on 2-dimensional tori and, depending on the frequencies, we can
have periodic or quasi-periodic orbits. Moreover, remembering the observation done in
section 3, we know that in a Poincaré section Σ the linear flow on a torus yields in a
finite number of points if the orbit is periodic, or a closed curve otherwise. An example of
Poincaré section for Hplane (with section Y3 = 0 , direction Ẏ3 ≥ 0 and for a fixed level of
energy E) is reported in Figure 3a.

A B B A

C
σ

(A)
0 , E

C
σ

(B)
0 , E

N

S

(a) (b) (c)

Figure 3: Example of two equilibria computed through the tangency method fixed E ∼ 6.6·10−5. Figure 3a:
Poincaré section in the representative plane (e2 cos(ω2), e2 sin(ω2)) (considering only Hint ). Figure 3b:
tangencies between the sphere and the energy surface. Figure 3c: projection of the 3D-surfaces on the
plane σ2 = 0 for different values of the radius σ0.
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Concerning this picture, the two points, called A and B represent periodic orbits.
They are called the anti-aligned and aligned apsidal corotations and they have a particular
phisical meaning; they correpond, respectively, to the orbital configurations with the anti-
alignment and aligment of the pericenters of the two planets. However, the Poincaré section
creates the impression that there is a sort of ‘separation’ between the left part of the picture
(that surround A) and the right one (that surround B). Actually, there are no separatrices
between A and B and the singularities are due only to the choice of variables. In fact the
system’s reduced phase space has the topology of the 3D-sphere and it can be seen used
the following variables:

σ0 =
1

2
(X2

2 + Y 2
2 +X2

3 + Y 2
3 ) , σ1 = X2X3 + Y2Y3 ,

σ2 = Y2X3 − Y3X2 , σ3 =
1

2
(X2

2 + Y 2
2 −X2

3 − Y 2
3 ) ,

where Xj , Yj , j = 2, 3 are the canonical Poincaré variables described in (8). In particular,
we can prove the following:

Lemma 5.1 (Poisson algebra relation) {σi, σj} = −2εijkσk , where εijk is the Levi-
Civita symbol, with i, j, k = 1, 2, 3 and {σi, σj} = 0 if i or j is 0 .

Moreover, they satisfy the condition of sphere:

σ2
1 + σ2

2 + σ2
3 = σ2

0 .

Thus, it is possible to define the following surfaces:

Sσ0 = {(σ1, σ2, σ3) ∈ R3 : σ2
1 + σ2

2 + σ2
3 = σ2

0} ,
Cσ0,E = {(σ1, σ2, σ3) ∈ R3 : Hint(σ0, σ1, σ3) = E}

and study, varying the values of the radius σ0 (at a fixed level of energy E), the inter-
sections between the two surfaces.(8) Thus, the tangency points represent periodic orbits,
while the curves of intersection represent quasi-periodic orbits. This is shown in Figure 3c,
illustrating the projection of the two surfaces Sσ0 and Cσ0,E on the plane σ2 = 0. It is
possible to move, with continuity, from the smallest to the greatest value of the radius,
called respectively σ(A)

0 and σ(B)
0 ; for such values of σ0 the two surfaces are tangent and the

tangency points correspond to the periodic orbits in the Poincaré section (in Figure 3a).
Instead, increasing σ0 from σ

(A)
0 to σ(B)

0 , the two surfaces intersect each other in closed
curves. Finally, the closed curve passing through a singularity (indicated as N , that phys-
ically indicates e3 = 0) corresponds, in the Poincaré section, to the black curve (where N
corresponds to the dotted one).

(8)It is possible to prove that the integrable Hamiltonian (thus, the planar part in our case), does not
depend on σ2 ; being a cylindric simmetry, the study of the intersections is reduced to the projection in
the plane σ2 = 0 .
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5.2 Nearly-Integrability: application to the spatial case

If we now consider the complete Hamiltonian (6)

Hsec = Hplane(m0,m2,m3, a2, a3, e2, e3, ω2 − ω3)

+ εHspace(m0,m2,m3, a2, a3, e2, e3, ω2, ω3; AMD) ,

we have no longer an integrable Hamiltonian. In this case the perturbation is related to
the mutual inclination; the more mutually-inclined is the system, the further we are from
the integrability of the problem (i.e. in this case the planar part).

A A
A

A

B B B

B

C1

C1

C1 C1

C2

C2

C2 C2

Figure 4: Poincaré surfaces of section in the representative plane (e2 cos(ω2), e2 sin(ω2)) with AMD fixed
and for different values of the energy.

This is evident from the analysis of the Poincaré section of the complete Hamiltonian,
shown in Figure 4; these pictures have been done changing the value of e2 and e3 (that
means to change the energy E of the system) while keeping fixed the value of the AMD .
Since the AMD is fixed, altering the values of the planets’ eccentricities implies that the
inclinations also change to keep the AMD constant to its pre-selected value (see eq. (7)).
From the first two pictures we observe a similar behaviour to the planar case (see Figure 3a),
characterized from the two apsidal corotations; we call it nearly-planar regime. As the
energy increases (from left to right), the maximum allowed mutual inclination between
the planets also increases; thus, we recognise a sequence of bifurcations. In particular
a saddle-mode bifurcation generates the orbits C1, C2 which correspond to an orbital
configuration with non-zero mutual inclination. Furthermore, as the mutual inclination
increases, the orbit C2 becomes unstable by the “Kozai mechanism” (see [6]), as shown in
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the last picture. Thus, we can observe that the bigger is the mutual inclination (and then
the size of the perturbation), the more chaotic the motions became. On the other hand,
the computations of some periodic orbits (around the apsidal corotations) are still possible
through some normalization procedure, like the Birkhoff normal form.
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Chaotic dynamical systems and
applications to the Solar System dynamics

Mattia Rossi (∗)

Abstract. Dynamical systems are an essential tool to model physical phenomena in applied sciences
whose state changes over time according to either differential or discrete difference equations. In
this context two concepts are in opposition: “order”, or “integrability”, versus “chaos”. Integrable
systems, for which all the solutions can be explicitly analytically determined, are special and
represent only a crude approximation of the real dynamics. On the other hand, more accurate
models are usually represented by non-integrable differential equations, whose solutions exhibit
a highly sensitive dependence on initial conditions, termed as chaotic. In these notes we discuss
some of the main geometric and topological properties of deterministic chaos in connection with
orbital stability of small objects in our solar system. After a short recap of the theory of non-linear
dynamical systems, we present a modern approach of detecting and quantifying chaotic behaviours
using finite time chaos indicators, a numerical strategy capable to capture the dynamical structure
of the phase space. In the last part, we introduce the restricted N-body problem in Hamiltonian
mechanics and implement the above technique to discriminate between the realms of regular and
chaotic motions of asteroids.

1 Non-linear dynamical systems

1.1 General definitions

We start by recalling some basic definitions of the theory of dynamical systems.

Definition 1 A (smooth) dynamical system is a triple (G,M,Φ) s.t.:

• M is a smooth manifold called phase space;

• G = R (continuous time) or G = Z (discrete time);

• Φ is a free differentiable action of G on M .
(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:

. Seminar held on 25 May 2022.
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Specifically, in the continuous case a dynamical system is represented by an ordinary
differential equation of the form

(1) ẋ = X(x) , x ∈M ,

where X : M → TM is a differentiable vector field; the map Φ : R×M →M is called the
flow of X, such that Φ(t, x0) symbolizes the value at current time t of the solution which
at initial time t = 0 is equal to x0.
On the other hand, it is also possible to consider phenomena evolving in discrete time,
whose associated mathematical law, that is a function, is iteratively repeated. The resulting
dynamical system is thus obtained by the relationship

(2) xn = Ψn(x0) , x0, xn ∈M , n ∈ Z ,

where Ψ : M →M is a diffeomorphism and

Ψn =

{
Ψ ◦ . . . ◦ Ψ n times, n > 0

Ψ−1 ◦ . . . ◦ Ψ−1 |n| times, n < 0
.

Analogously, we can define now Φ : Z×M →M by setting Φ(n, x0) := Ψn(x0).
Finally, we remind that Φ is a differentiable action in the sense that it satisfies the following
properties:

(i) Φ(0, ·) = idM ;

(ii) x 7→ Φ(t, x) is a diffeomorphism ∀t ∈ G;

(iii) Φ(t, Φ(s, ·)) = Φ(t+ s, ·) ∀t, s ∈ G.

For practical purposes, we shall assume from now on that M = D ⊆ Rd and mostly
G = R.

Definition 2 The orbit (or integral curve) of a point x ∈ D is the set Ox = {Φ(t, x) : t ∈
R}. The set of all orbits is called phase portrait.

Remark 1 Given Φ ∈ C∞(R×D), Cauchy theorem about the existence and uniqueness
of the solution in a neighbourhood of t = 0 to ẋ = X(x), x(0) = x0, holds. In addition, as
already understood, we assume to extend this ∀t ∈ R, so that the phase portrait forms a
partition of D.

1.2 Non-integrability and chaotic systems

In general (1) is highly non-linear and the corresponding solutions cannot be provided
easily. Usually it is not possible to find an analytic formula at all.
These observations about the solvability of a system are encompassed by the notion of
non-integrability, i.e. a property of the system itself, consisting in the incapability of de-
termining all the solutions explicitly. To better understand its implications, let us consider
the opposite situation of integrability, whose meaning is twofold: of operative nature and
geometric nature.
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Operative −→ The solutions can be expressed in terms of quadratures, that is simple
arithmetic operations (+,−, ·, :), radicals ( ·

√
·) or integration and inversion of ele-

mentary functions (
´
·, ·−1).

Geometric −→ There exists an embedded Φ-invariant foliation in the phase space (e.g.
invariant tori in integrable Hamiltonian systems).

The second character is intimately related to the existence of conserved quantities along
the flow, that act as constraints for the orbits (Remark 2).

Definition 3 A first integral of ẋ = X(x) is a smooth function f : D → R which is
constant on all the solutions of (1), i.e. f(Φ(t, x)) = f(x) ∀t ∈ R and x ∈ D.

Remark 2 Every time we provide a first integral, the problem is reduced from dimension
d to dimension d − 1. So if ∃ f1, . . . , fd−1 independent first integrals, the level sets have
dimension d− (d− 1) = 1, which are the orbits of the ODE.(9)

Non-integrability is a necessary condition for the central topic in question of chaos.

Definition 4 We call a dynamical system chaotic [1] whenever

(i) it is topologically transitive, namely ∀U, V ⊆ D open, ∃ t ∈ R s.t. Φ(t, U) ∩ V 6= ∅;

(ii) it has a dense set of periodic orbits;

(iii) it is sensitive to initial conditions.

Banks et al. in [1] proved that (iii) is redundant, that is the first two conditions (i) and (ii)
imply the third one. However, it is precisely the picture that we practically bear in mind:
depending on the rate of separation λ > 0 (Lipschitz constant), given initial conditions s.t.
‖x1 − x0‖ < ε, we have

(3) ‖Φ(t, x1)− Φ(t, x0)‖ ≤ eλ|t|‖x1 − x0‖ ,

so in principle the dynamics becomes totally unpredictable for |t| large enough. Then,
we customarily associate overt chaos to the worst case: exponential separation in time of
orbits of close initial data.

2 Phase space analysis

2.1 Poincaré surface of section

An effective technique to explore the phase space of a dynamical system consists in reducing
the study of the flow of the differential equation (1) to the study of the iterations of a
discrete map, called Poincaré section, defined in a subspace of dimension d− 1. Poincaré
sections are used, in particular, to visualize the complicate topology of non-integrable

(9)Ordinary Differential Equation
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systems. Basically, we consider Σd−1 ⊆ D: ∀x ∈ Σ ∃ t(x) such that Φ(t(x), x) ∈ Σ returns
“on the same side” (Fig. 1), viz.

⋃
x Ox is replaced by

⋃
n∈Z Ψ

n(x), Ψ(x) := Φ(t(x), x).

Figure 1. Exemplification of the Poincaré surface of section. Top panel: pictogram showing the transversal
intersection of Φ with Σ. Bottom panels: example of numerical computation for the classic standard
map [6], with Σ given by a coordinate plane, for two different values of the perturbing parameter; in the
picture on the right we appreciate more chaos, represented by unevenly distributed dots, as opposed to
regular motions (recognizable as libration or circulation like).

2.2 Hyperbolic dynamics

Equilibrium points are the simplest solutions of an ODE and are found as critical points
of the vector field X(x). Among all of them, those of hyperbolic origin exhibit the richest
and most interesting local dynamics, characterized by smooth intricate structures stemming
from such equilibria.

Definition 5 An equilibrium point for (1) (that is x = c ∈ D s.t. X(c) = 0) is called
hyperbolic if all the eigenvalues of the Jacobian matrix J(x) = ∂X(x)/∂x have non-zero
real part.

As a standard approach, around equilibrium points one performs the linearization of
the system in order to make the investigation easier and try to deduce relevant properties
of the full dynamics or at least of the approximate one. So we look at

(4) ẏ = J(c)y , y = x− c .

This strategy turns out to be extremely powerful with hyperbolic equilibrium points thanks
to the two following fundamental results.

Theorem 1 (Grobman-Hartman theorem) Let c ∈ D be an hyperbolic equilibrium point.
Then there exists a neighbourhood U of c in D, a neighbourhood V of 0 ∈ Rd and a
homeomorphism h : U → V such that
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• h(c) = 0;

• h(Φ(t, c)) = etJ(c)h(c)

for all x ∈ U0 ⊆ U neighbourhood of c and t ∈ (−ε, ε).

The upshot is that the phase portraits around hyperbolic equilibrium points appear as
deformations of the portraits of their linearized system. Nevertheless, h is only continuous
and out of U there is no information about the global evolution. Luckily, we can benefit
from the so-called stable manifold theorem about the existence and regularity of the sets

W s = {x ∈ D : lim
t→+∞

Φ(t, x) = c}

W u = {x ∈ D : lim
t→−∞

Φ(t, x) = c}
(5)

called respectively stable and unstable manifold.

Theorem 2 (Local stable manifold theorem) Given c hyperbolic equilibrium point, let
Es, Eu be the stable and unstable spaces of the linearization (4) at c. Then ∃ U neighbour-
hood of c s.t.:

(i) W s
loc := W s|U , W u

loc := W u|U are smooth connected submanifolds of D with TcW s
loc =

Es, TcW u
loc = Eu;

(ii) ∃ as, au ∈ (0, 1) and b > 0 s.t. for all t > 0

x ∈W s
loc, ξ ∈ TxW s

loc =⇒ ‖DΦ(t, x)ξ‖ ≤ bats‖ξ‖
x ∈W u

loc, ξ ∈ TxW u
loc =⇒ ‖DΦ(−t, x)ξ‖ ≤ ba−tu ‖ξ‖

.

Remark 3

(i) From the knowledge of W s
loc,W

u
loc we can recover the global W s,W u considering

respectively
⋃
t≤0 Φ(t,W s

loc),
⋃
t≥0 Φ(t,W u

loc).

(ii) The topology of the stable and unstable manifolds becomes even more complex when
they have transverse intersections, especially homoclinic points (Fig. 2, middle panel)
or heteroclinic points (Fig. 2, right panel). As outcome, this underlying web becomes
the main hidden structure we can look at to give a first classification to chaotic orbits.

Figure 2. Dynamics originating at hyperbolic equilibria. Left panel: Illustration of statement (i) of
Theorem 2, where the tangent straight lines stand for Es, Eu. Middle panel: intersection between W s

and Wu spreading from an hyperbolic equilibrium point (homoclinic). Right panel: intersection between
W s and Wu emanating from two different hyperbolic equilibrium points (heteroclinic).
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3 Finite time chaos indicators

3.1 Variational dynamics

We have seen so far where (§2.2) and how (§2.1) to inspect chaotic behaviours in phase
space. It is time now to quantify, by means of unavoidable numerical methods, the amount
of chaos, in other words the growth of exponential separation of two trajectories starting
at close initial points.
For this purpose, instead of working with the system (1), we pass to the variational dy-
namics, that is we focus on the rate of change of tangent vectors along the flow. Let us
introduce the tangent map

TΦ(t, x) : TxD → TΦ(t,x)D , v0 7→ vt =
∂Φ

∂x
(t, x)v0 ,

where vt := v(t) is the time evolution of v0 := v(0) according to the variational equation:

(6) v̇ =
∂X

∂x
(Φ(t, x))v .

From (6) we have again the simple estimate similar to (3)

‖v(t)‖ ≤ a(t)‖v(0)‖ ,

with a(t) ≤ eΛ|t|, Λ > 0 and particularly a(t) ∼ eΛ|t| for chaotic systems. The issue
resides on the fact that, as before, this estimate may be very inaccurate. Nonetheless, the
variational dynamics allows to do better by defining a new quantity, always well-defined,
capable to capture the exact asymptotic growth of the tangent vectors.

Definition 6 Let v(t) be the solution of (6) with initial conditions x0, v0. The character-
istic Lyapunov exponent (CLE) of an initial condition x0 and initial tangent vector v0 is
the limit:

(7) χ(x0, v0) = lim
t→∞

ln ‖v(t)‖
t

.

The anticipated well-definedness of (7) descends from a classic theorem in multiplicative
ergodic theory.

Theorem 3 (Oseledets theorem) Let M be a probability measure on D. χ(x0, v0) is a real
number ∀v0 ∈ Tx0D, v0 6= 0, and for M -almost every x0 ∈ D. Moreover:

(i) the CLE is a constant of motion for (6);

(ii) if c is an equilibrium point and limt→∞Φ(t, x0) = c, then, called L(x) := {χ(x, v0) :
v0 ∈ TxD}, L(x0) = L(c);

(iii) L(x0) for any x0 is discrete, with at most d different elements and for M -almost all
v0 ∈ Tx0D, χ(x0, v0) = maxL(x0).
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Remark 4 Property (iii) of Theorem 3 has important consequences for actual compu-
tations: a random choice of the initial tangent vector provides the largest characteristic
Lyapunov exponent (LCLE), that we shall denote by χL.

3.2 Chaos indicators

About the necessity to find numerical approximations of the flow of (1), we emphasize that

• initial data of real systems are affected by errors, so we need to compute the time
evolution of a set of “compatible” initial conditions;

• there are strong limitations in terms of reliability of the approximate solution when
the dynamics separates exponentially the orbits.

We thereby overcome these inconveniences by making use of suitable chaos markers in-
spired by χL. Clearly, chaotic orbits are detected by χL > 0, hence TL = 1/χL, called
Lyapunov time, represents the time scale needed to observe the exponential separation:
‖v(t)‖ ∼ ‖v(0)‖et/TL . This suggests to construct finite time chaos indicators, so they can
be practically computed.

We outline in the following some of the most popular chaos indicators that can be found
in the literature (for further reading cf. [5, 6]) and their application to simple models from
classical and fluid mechanics (Fig. 3).

Fast Lyapunov Indicator :

(8) FLI(x0, v0; τ) = max
t∈[0,τ ]

ln ‖v(t)‖ .

Given ej(t) time evolution of B = {ej(0)}j=1,...,d orthonormal basis of Rd,

Fast Lyapunov Indicator of the Basis:

FLIB(x,B; τ) = max
t∈[0,τ ]

max
j=1,...,d

‖ej(t)‖ ,

Finite Time Lyapunov Exponent :

FTLE(x; τ) =
1

τ
max
ej(0)∈B

‖DΦ(τ, x)ej(0)‖
‖ej(0)‖

.

As one should expect, these numbers are theoretically consistent, because

• FLI ≈ FLIB ≈ FTLE;

• χ(x0, v0) = lim
τ→+∞

FLI(x0, v0; τ)

τ
.

Typically, due to their substantial equivalence, (8) is computationally preferable for its
simpler formulation and for this reason adopted in the subsequent examples. Finally,

Università di Padova – Dipartimento di Matematica 135



Seminario Dottorato 2021/22

we stress that τ depends on the problem and is determined heuristically: essentially one
computes FLI for various τ and retains that according to which the portrait stabilizes.

Figure 3. Colour plots from [6] of the FLI indicator in the case of the standard map (left panel) and
the non-autonomous double gyre (right panel). Lighter nuances correspond to more chaotic regions, in
agreement with Fig. 1 for the picture on the left. The effectiveness of the FLI map is manifested also
though the capture of more sophisticated details in phase space in the image on the right, like the various
folds of the time-dependent generalization of W s,Wu (often termed as Lagrangian coherent structures).

4 Modelling the dynamics of small bodies in the Solar System

4.1 Solar System in a nutshell

Assuming a certain familiarity of the reader, at least at an elementary level, for the sake
of completeness let us quickly summarize below some of the mean features of the bodies
populating our solar system, especially to fix orders of magnitudes. We specify that in the
following the symbol AU stands for Astronomic Unit and is the average distance of the
Earth from the Sun, roughly equal to 150 million kilometres.
The Solar System is made up of

• four inner rocky planets + two gas giant planets + two ice giant planets, respectively:

– Mercury (0.39 AU), Venus (0.72 AU), Earth (1.00 AU), Mars (1.52 AU),

– Jupiter (5.2 AU), Saturn (9.6 AU),

– Uranus (19.2 AU), Neptune (30.1 AU);

• one asteroid belt (called also main belt) located after the orbit of Mars;

• one external disk-like distribution of small objects called Kuiper belt, extending from
about 30 AU to 50 AU and containing Pluto (≈ 40 AU);

• one outermost spherical reservoir of long-period comets called Oort cloud, ranging
from 2000 to 100000 AU.
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4.2 The Sun-Jupiter restricted three-body problem

Let us build up a simple, but sufficiently accurate, model for the dynamics of minor bodies
moving under the effect of the gravitational pull of more massive ones. In this regard, let
us begin with the easiest integrable system concerning just two interacting particles, say
a planet m1 and an asteroid m2, known as Kepler problem (or 2-body problem), as a basis
for a successive non-integrable refinement. Denoting by G the gravitational constant, the
equation of the relative motion reads

(9) r̈ = −G(m1 +m2)

‖r‖3
r ,

whose solution is a conic section expressed in polar form by r(t) = r(a, e, i, f(t), ω,Ω),

‖r(t)‖ =
p

1 + e cos f(t)
.

In our case, we are interested in elliptic trajectories: the angles i ∈ [0, π[, f, ω,Ω ∈ T give
the orientation of the ellipse in space and are called respectively inclination, true anomaly,
argument of pericenter and argument of the ascending node; p = a(1 − e2), a > 0 is the
semi-major axis and 0 ≤ e < 1 is the eccentricity.

Since our aim is to treat the situation m2 � m1, it is reasonable to assume m2 van-
ishing in (9): the asteroid then moves in the gravitational field generated by the planet
without affecting the motion of this one. Such approximation is precisely the idea behind
the first nearly integrable extension we can introduce, named restricted N-body problem
(RNBP hereafter), in which we study the dynamics of a massless point P under the influ-
ence of N − 2 uncoupled Kepler problems.
Specifically, the case N = 3 with the Sun (P0) and Jupiter (P1) as major bodies (Sun–
Jupiter restricted 3-body problem) is already sufficiently representative in the Solar System,
at least at first glance, since it involves the two most massive objects, and shows a highly
non-trivial dynamics which is still not exhaustively understood. Furthermore, we assume
that P0 − P1 move on circular orbits around their common center of mass. Thence, P
is expected to describe a non-integrable near-Keplerian orbit where now all the orbital
elements depend on time: a = a(t), e = e(t), i = i(t), f = f(t), ω = ω(t),Ω = Ω(t).

X

Y

Z

O

r1

P0

P1

−µr1

(1− µ)r1

R

P

X

Y

P1(t)

P0(t)

P(t)

n1t

Figure 4. Sketch of the Sun–Jupiter circular R3BP.
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The dynamical system at issue comes from the Hamiltonian setting:(10)

(10) H =
‖P‖2

2
− Gm0

‖R+ µr1‖
− Gm1

‖R− (1− µ)r1‖
+ n1J1 ,

where µ =
m1

m0 +m1
≈ 1 · 10−3 is the mass parameter, r1(M1) = ‖r1‖ (cosM1, sinM1) ,

M1 = n1t, (R,M1, P, J1) ∈ T ∗(R3 \ {−µr1, (1− µ)r1} × T) are symplectic variables.
So

(11) ẋ = X(x) , x = (R,M1, P, J1) , X(x) =

(
∂H
∂P

,
∂H
∂J1

,−∂H
∂R

,− ∂H
∂M1

)
.

In a suitable frame Oxyz rotating at frequency n1 around the z-axis, the system possesses a
constant of motion, called Jacobi integral J , and five equilibrium points L1, L2, L3, L4, L5,
called Lagrangian points. In particular, L1, L2, L3 are of (partially) hyperbolic nature: we
can then apply the machinery in §3 to identify regular and chaotic motions in phase space,
together with hyperbolic invariant manifolds (Fig. 5).

Figure 5. FLI for the Sun-Jupiter circular R3BP. Top panels: Wu and Eu stemming from L3 numerically
propagated (left) and corresponding plot using the FLI map (right). Bottom panels: FLI cartographies
for two different exposition times: τ = 50T1 on the left and τ = 1000T1 on the right, where T1 is Jupiter’s
revolution period. The Poincaré surface of section is the plane (a, e) and the two curves represent the loci
of points {‖r1‖ = a(1− e)} (red), {‖r1‖ = a(1 + e)} (magenta).

(10)In case of unfamiliarity with the Hamiltonian context or for a more detailed reading, cf. [7].
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5 Long-term stability of asteroid families

We conclude with a brief argument about long-term stability of families of asteroid looking
at Fig. 5, taking advantage once more of the power of chaos indicators. Besides highlighting
the complexity of the unstable manifold originating at L3 (top panels), the FLI reveals
several other remarkable structures if we compare the illustrations on bottom panels: we
can see how regions of regular orbits (deep blue colour) permeate the whole phase space,
even above the red line of pericenter crossing, in which an asteroid is located whenever its
minimum distance from the Sun is equal to Jupiter’s orbital radius. It is worth noticing
that such curve overestimates the boundary of the lower stability region. Moreover this
boundary has a fractal shape whose form becomes clearer increasing the integration time,
as displayed in the image on the right. Also, slightly chaotic spikes penetrate the regular
regions, that shall be attributed to other dynamical phenomena (like resonances). Lastly,
we can also notice in the plot on the left arch-like structures created by the projection
of invariant manifolds of various equilibria or periodic orbits (the “Arches of Chaos” [9],
whose detailed classification has not been carried out yet).
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Introduction to sub-Riemannian geometry

Alessandro Socionovo (∗)

Abstract. The purpose of this short article is to introduce the reader to the world of sub-
Riemannian geometry, starting from the basics up to one of the main open problems of sub-
Riemannian geometry: the regularity of length minimization curves.
We start from the study of a very simple model problem taken from real life. After having under-
stand the key properties which characterize this toy model, we give the general and basic definitions,
up to the one of the end point map.
The end-point map is the central object of the paper: the difficulty of the afromentioned regularity
problem is due to the singularities of the end-point map, i.e., to the presence of points where its
differential is not surjective. Curves corresponding to such points are called abnormal.
Finally, after a first order analysis of the end-point map, we make an overview about active
reasearch about lengt-minimizing sub-Riemannian curves, citing and briefly explaining some new
regularity results.

1 Introduction

The purpose of this short article is to introduce the reader to the world of sub-Riemannian
geometry, starting from the basics up to one of the main open problems of sub-Riemannian
geometry: the regularity of length minimization curves.

We start from the study of a very simple model problem taken from real life. After
having understand the key properties which characterize this toy model, we give the general
and basic definitions, up to the one of the end point map.

The end-point map is the central object of the paper: the difficulty of the afromentioned
regularity problem is due to the singularities of the end-point map, i.e., to the presence
of points where its differential is not surjective. Curves corresponding to such points are
called abnormal.

Finally, after a first order analysis of the end-point map, we make an overview about ac-
tive reasearch about lengt-minimizing sub-Riemannian curves, citing and briefly explaining
some new regularity results.
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2 Preliminary notions

In this section, we spend a very few words to fix the following notations concerning differ-
ential geometry.

1. M denotes a smooth and connected manifold of dimension n and q ∈ M ia s point
of the manifold.

2. If ϕ : M → M is a smooth map, we denote the differential (or pushforward) of ϕ
at a point q ∈ M as dqϕ = ϕ∗,q : TqM → Tϕ(q)N . The differential of ϕ is the map
dϕ = ϕ∗ : TM → TM with dϕ|TqM = dqϕ. We also denote ϕ∗ : T ∗M → T ∗M the
dual map of the differential, namely

〈ω, ϕ∗v〉 = 〈ϕ∗ω, v〉, ∀ω ∈ T ∗M, v ∈ TM.

Here 〈·, ·〉 denotes the usual action of 1-forms over vectors, and 〈ω, v〉|q = 〈ω(q), v(q)〉.

3. We denote the set of smooth vector fields of M with Vec(M). If X ∈ Vec(M), we
denote with Ps,t = e(t−s)X its flow. When {Xt}t∈R is a nonautonomus vector field,
we denote its flow adopting the notation of chronological calculus

Ps,t = −→exp

ˆ t

s
Xτdτ.

We point out that, even if this is just a notation, it respects in a certain sense the
integral properties. We will use the chronological calculus in Section 5.

4. Let X1, . . . , Xk ∈ Vec(M). With [X1, X2] we denote the Lie bracket of two vector
fields X1, X2. We also use the compact notation

[X1, . . . , Xk] = [X1, [X2, [. . . [Xk−1, Xk] . . . ].

When D ⊂ Vec(M) we define

Dk(q) = [ D, . . . ,D︸ ︷︷ ︸
(h− 1)-times

](q) = {[X1, . . . , Xk](q)|X1, . . . , Xk ∈ D}.

We assume the reader of this paper to be familiar with these arguments. If it is not
the case, we refer the reader to [1]. In particular, one can find all these notions in Chapter
2, except for the chronological calculus, which is developed in Chapter 6.

3 A toy problem

In this section, we study the driving trajectories of a car moving on the road as a model
problem (taken from real life) for sub-Riemannian geometry.

This toy model can be viewed mathematically in R3 = (x1, x2, θ), where the first two
coordinates (x1, x2) determine the position of the car on the road (actually, for us the road
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is the whole plane), and the third coordinate θ define the angle of the car’s wheels, namely
it defines the moving direction of the the car. When θ is fixed, our car moves in the plane
following the direction (cos θ, sin θ), i.e. it solves the following PDE

ẋ(t) = cos θ

ẏ(t) = sin θ

θ̇(t) = 0.

In other words we are moving along the vector field X1 := cos θ ∂
∂x1

+ sin θ ∂
∂x2

. Otherwise,
when the car is stopped, we can steer the wheels, namely we are changing the value of θ,
solving this second equation 

ẋ(t) = 0

ẏ(t) = 0

θ̇(t) = 1.

In this case we are following the vector field X2 := ∂
∂θ . Finally, what it is not allowed for

us, is to move the car orthogonally with respect to the vector (cos θ, sin θ)
ẋ(t) = − sin θ

ẏ(t) = cos θ

θ̇(t) = 0.

In terms of vector fields, the non-allowed direction is X3 := − sin θ ∂
∂x1

+ cos θ ∂
∂x2

.

Remark 3.1 The vector fields X1 and X2 do not commute and, in particular, their
Lie bracket is [X1, X2] = X3. Moreover, the set {X1(p), X2(p), X3(p)} is a basis of R3

for any point p = (x, y, θ). Hence, the distribution Dp = span{X1(p), X2(p)} is bracket
generating.

Clearly, in all this construction, we are supposing that both the velocity of the car and
the velocity of the angle θ is constant and unit. To make our model complete, we have to
make this parameter dynamic, namely we can move in R3 only along curves γ : [0, 1]→ R3

that satisfy the following PDE

γ̇(t) = u1(t)X1(γ(t)) + u2(t)X2(γ(t)).

Here γ = (x, y, θ) is the curve denoting the configuration of the car at the time t, while u1

and u2 are generic functions from [0, 1] to R, called controls.

Remark 3.2 In spite of we restrict the set of admissible curves (i.e., there is a nonallowed
direction for the movement of the car), it is easy to see that we can join anyway any couple
of point of R3.

If we define a metric g for vectors that are linear combinations of X1(p) and X2(p),
we can also measure the length of every admissible curve in this model as the integral of
its derivative norm. This allow us to measure the distance between any couple of points
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as the infimum of the length of admissible curves joining them. This makes our space a
metric space.

We will se that the set R3 with the vector fields X1 and X2, and with any metric g as
described above, is an example of a sub-Riemannian manifold.

4 Sub-Riemannian geometry

In this section we generalize the construction of the previous section. We start with the
general definition of a sub-Riemannian manifold

Definition 4.1 A sub-Riemannian manifold of dimension n and constant-rank m is a
triple (M,D, g) where

i) M is a smooth manifold of dimension n.

ii) D is a smooth distribution of rank m satisfying the Hormander condition, namely
there exists k ∈ N such that

D(k)
q = TqM, ∀ q ∈M.

iii) gq is a scalar product on Dq, smoothly depending on q ∈M . Sometimes, we use the
symbol 〈·, ·〉 instead of g for the sub-Riemannian metric.

We call n the dimension and m the rank of the sub-Riemannian manifold.

Let us analyze the model presented in the previous section. There, R3 plays the role of
the manifold M , and D is the smooth distribution Dq = span{X1(q), X2(q)}. Thus, with
any metric defined on D, (R3, D, 〈·, ·〉) is a sub-Riemannian manifold of dimension 3 and
rank 2. Moreover, here we have the property that X1 and X2 are a moving frame for D,
i.e. they globally generate the distribution D.

Remark 4.2 From now on, we assume that D admits a globally generating family of
vector fields {f1, . . . , fm}, namely

Dq = span{f1(q), . . . , fm(q)}, ∀ q ∈M.

We also assume g to be the metric that makes f1, . . . , fm orthonormal. These assumptions
are not restrictive, as explained in [1, Chapter 3].

If u ∈ Rm we denote with fu the vector field

fu(q) =
m∑
i=1

uifi(q), q ∈M.

Definition 4.3 Let (M,D, g) be a sub-Riemannian manifold. A Lipschitz curve γ :
[0, T ]→M is said to be admissible or horizontal if

γ̇(t) ∈ Dγ(t), for a.e. t ∈ [0, T ].
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Notice that, in definition 4.3 we are asking that

γ̇(t) = fu(t)(γ(t)) =
m∑
i=1

ui(t)fi(γ(t)), for a.e. t ∈ [0, T ],

for some (unique) u = (u1, . . . , um) ∈ L∞(I,Rm). The function u is called the control
associated to γ. The reason why we are asking that u is essentially bounded is explained
in Remark 4.6 below.

Definition 4.4 Let γ : [0, T ]→ M be an admissible curve. We define the length of γ as
the integral of the sub-Riemannian norm of its tangent vector, namely

`(γ) =

ˆ T

0
g(γ̇(t), γ̇(t))1/2dt.

Notice that, when g makes f1, . . . , fm orthonormal, we have

(4.1) `(γ) =

ˆ T

0

√√√√ m∑
i=1

|ui(t)|2dt = ‖u‖L1([0,T ],Rm).

Then, by Remark 4.2, the definition of length of an admissible curve is well posed, since
L∞([0, T ],Rm) ⊂ L1([0, T ],Rm).

Definition 4.5 Let (M,D, g) be a sub-Riemannian manifold and let q0, q1 ∈ M . We
define the sub-Riemannian distance between q0 and q1 as

(4.2) d(q0, q1) = inf{`(γ) | γ : [0, T ]→M admissible , T ∈ R , γ(0) = q0 , γ(T ) = q1}

Remark 4.6 We defined horizontal curves to be Lipschitz. As clearly explained in
[1, Chapter 3], this choice corresponds to essentially boundness of the controls. Since
L∞(I,Rm) ⊂ L2(I,Rm) ⊂ L1(I,Rm), by (4.1) we can define horizontal curves with corre-
sponding controls in L1 or L2, without changing the length definition. In these cases, we
should ask in definition 4.3 curves to be absolutely continuos.

Even if Lip([0, 1],M) ⊂ AC([0, 1],M), the infimum in (4.2) does not change. Thus,
from now on, we can assume controls associated with horizontal curves to be in L1 or L2

if we prefer.

Remark 4.7 We emphasize that when D = TM , we have in fact a Riemannian manifold,
and all the definitions given by now are the same as in the classical Riemannian geometry.

Theorem 4.8 (Chow-Raschevskii) Let M be a sub-Riemannian manifold. Then

i) (M,d) is a metric space;
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ii) The topology induced by (M ; d) is equivalent to the manifold topology.

Remark 4.9 One of the main consequences contained in the proof of the Chow-Raschevskii
theorem is that, thanks to the bracket-generating condition, every couple of points in M
is always joined by an admissible curve. Hence d(q0, q1) < +∞, for every q0, q1 ∈M .

The proof of this theorem is very long and it is given with all the details in [1, Chapter
3]. The key idea is to use the Hormander condition in such a way that, following the flow
of n vector fields choosing among {f1, . . . , fm}, one can always cover a neighborhood of
every point.

We conclude this section introducing the objects we are interested in studying the
regularity of, namely length-minimizing admissible curves. We refer the reader to [1,
Chapter 3] for the proofs of the statements given in this final part of this section.

Definition 4.10 Let γ : [0, T ] → M be an admissible curve. We say that γ is a length-
minimizer (or a length-minimizing curve) if

`(γ) = d(γ(0), γ(T )).

In other words, a length minimizer minimize the length among admissible curves with
same endpoints.

The (local) existence of length-minimizers is guaranteed by the following Theorem.

Theorem 4.11 (Existence of length-minimizers) Let M be a sub-Riemannian manifold
and q0 ∈M . Assume that the closed ball Bq0(r) is compact, for some r > 0. Then for all
q ∈ Bq0(r) there exists a length minimizer joining q0 and q.

Remark 4.12 The compactness assumption in Theorem 4.11 is completely natural and
cannot be removed. In fact, the existence of length-minimizers between two points is not
true in general, as it happens, for example, for two symmetric points with respect to the
origin in M = Rn \ {0}, endowed with the Euclidean metric.

On the other hand, when length-minimizers exist between two fixed, they may not be
unique, as in the case of two antipodal points on the sphere S2.

The existence of length-minimizing curves leads to the following characterization of the
metric completness of sub-Riemannian distance.

Proposition 4.13 Let M be a sub-Riemannian manifold. Then the three following prop-
erties are equivalent

i) (M,d) is complete;

ii) Bq(r) is compact for every q ∈M and r > 0;

iii) There exists ε > 0 such that Bq(r) is compact for every q ∈M .
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Combining Theorem 4.11 and Proposition 4.13 we obtain the total existence of length
minimizers.

Corollary 4.14 Let (M,d) be a complete sub-Riemannian manifold. Then for every
q0, q1 ∈M there exists a length minimizer joining q0 and q1.

5 End-point map: first-order analysis and Pontryagin extremals

In this section we define the end-point map and develop its first-order analysis to get
necessary conditions for the minimality of admissible curves. From now on, (M,D, g) is a
n-dimensional sub-Riemannian manifold. We assume D is globally generated by the vector
fields f1, . . . , fm, and g is the metric making the generating family orthonormal.

Fix q0 ∈M . For u ∈ L2(I,Rm), the corresponding horizontal trajectory γ based at q0

satisfies the Cauchy problem

(5.1) γ̇(t) = fu(t)(γ(t)), γ(0) = q0.

For semplicity (and without loss of generality, see [1, Chapter 8], we assume that γ is
dedfined on the whole interval I. Here and hereafter, I = [0, 1] denotes the closed unit
interval.

Definition 5.1 The end-point map based at q0 is the map

Eq0 : L2(I,Rm)→M, Eq0(u) = γu(1),

where γu : I →M is the unique solution of the Cauchy problem (5.1).

A first property of the end-point map, which is a consequence of the Chow-Raschevskii
theorem, is its openness.

Theorem 5.2 Fix q0 ∈M . Then the end-point map Eq0 is open at every u ∈ L2(I,Rm).

The key result in the derivation of Pontryagin extramal conditions for the minimality
is the smoothness of the end-point map with the computation of its differential.

Theorem 5.3 Let q0 ∈ M . Then, the end-point map Eq0 is smooth. In particulat, its
Fréchet differential DuEq0 : L2(I;Rm)→ Tγu(1)M is given by

(5.2) DuEq0(v) =

ˆ 1

0
(P ut,1)∗fv(t)

∣∣
γu(1)

dt.

Here P ut,1 denotes the nonautonomus flow generated by the vector field fu.

The proof of both theorems 5.2 and 5.3 are given in [1, Chapter 8].

Remark 5.4 The geometrical meaning of (5.2) is that the differential of the end-point
map computed at u acts on an element v by integrating the vector field fv along the whole
curve γ, with the pushforward which is carried out through the flow of u.
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The proof of the Pontryagin conditions relies upon the Lagrange multipliers rule.

Theorem 5.5 (Lagrange multipliers rule) Let H be an Hilbert space and let M be a smooth
n-dimensional manifold. Let U ⊂ H be an open subset of H. Consider two smooth maps
ϕ : U → R and F : U →M . Fix a point q ∈M and assume that u ∈ U is a solution to the
minimization problem

(5.3) min{ϕ(v) |F (v) = q} = minϕ
∣∣
F−1(q)

.

Then there exists a non-null (λ, ν) ∈ T ∗qM × R, i.e. (λ, ν) 6= (0, 0), such that

(5.4) λduF + νduϕ = 0.

Remark 5.6 We explicitly puntualize that formula (5.4) means that for every v ∈ H =
TuU one has

〈λ, duF (v)〉+ νduϕ(v) = 0.

The compact notation in (5.4) will be used also in the sequel, with the same meaning.

The idea of the proof of Theorem 5.5 is the following. If u solves (5.3), then the
extended map

F̄ : U :→M × R, F̄ (v) = (F (v), ϕ(v)),

is not open at u ∈ U . Then, the differential duF̄ = (duF, duϕ) is not surjective, namely its
image is annilhated by a certain 0 6= (λ, ν) ∈ T ∗qM × R, and this is exactly (5.4).

As a consequence of theorem 5.5, up to scalar multiplications, there may happen the
following situations

(N) ν = −1. Then from (5.4) we deduce

(5.5) λduF = duϕ;

(A) ν = 0. Then λ 6= 0, and from (5.4) we deduce

λduF = 0.

The case (N) is called normal, while the case (A) is called abnormal or singular.

Remark 5.7 Classically, Theorem 5.5 is presented when H = Rn = (x1, . . . , xn), M =
Rm = (x1, . . . , xm), u = x̄ = argmin{ϕ(x)|F (x) = 0} ∈ Rn, and one adds the assumption
Jx̄F 6= 0, removing the possibility for x̄ to be abnormal. In this case, equation (5.5) reads

(5.6) ∇x(ϕ− λ · F )(x̄) = 0.

Denoting L(x, λ) = ϕ(x)− λ · F (x) (the Lagrangian of the problem), the bound given by
F reads

(5.7) ∇λ(ϕ− λ · F )(x̄) = 0
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Combining (5.6) and (5.7), one obtains the classical version of the Lagrange multipliers
theorem, namely, a necessary condition for the minimality is the existence of a λ ∈ Rm
such that

∇(ϕ− λ · F )(x̄) = ∇L(x̄, λ) = 0.

The vector λ is called Lagrange multiplier.

We apply the result of Theorem 5.5 to the end-point map based at a certain point
q0 ∈ M . Thus, we consider the case when F = Eq0 and ϕ = J is the sub-Riemannian
energy, namely

(5.8) J : L2(I,Rm)→ R, J(u) =
1

2

ˆ 1

0
|u(t)|2dt = ‖u‖2L2(I,Rm).

Since γ is a length minimizer if and only if the corresponding control u minimize the energy
functional (5.8), one immediately obtains the following result.

Proposition 5.8 Let γ : I →M be a length minimizing curve with correspond control u.
Then there exists (λ, ν) ∈ T ∗qM × R such that (λ, ν) 6= (0, 0), and

(5.9) λduEq0 + νduJ = 0.

Remark 5.9 Since J(v) = 1
2‖v‖

2
L2 , then duJ(v) = (u, v)L2 and, identifying L2 with its

dual, we have duJ = u.

Remark 5.10 Even if the end point map is always open, the extended one Ēq0 = (Eq0 , J)
is not. Actually, if γ (with associated control u) is a length minimizer, then the extended
end point map is not open at u, leading to (5.9).

Theorem 5.11 (Pontryagin maximum principle) Let q0 ∈ M . Let u be the minimal
control corresponding to a curve γ : [0, 1]→M based at q0 which is length-minimizing (or,
equivalently, energy-minimizing) and parametrized with constant speed, namely

γ̇(t) = fu(t)(γ(t)) a.e. on [0, 1], γ(0) = q0 ∈M.

Let q1 = Eq0(u) = γ(1). Then there exists λ1 ∈ T ∗q1M such that, defining λ(t) = (P ut,1)∗λ1,
one of the following condition is satisfied

(N) For every i = 1, . . . ,m we have

(5.10) ui(t) = 〈λ(t), fi(γ(t))〉, for a.e. t ∈ [0, 1],

and this occours if and only if u satisfies (5.9) with (λ, ν) = (λ1,−1), namely

(5.11) λ1duEq0 = u
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(A) For every i = 1, . . . ,m we have

(5.12) 0 = 〈λ(t), fi(γ(t))〉, for a.e. t ∈ [0, 1],

and this occours if and only if u satisfies (5.9) with (λ, ν) = (λ1, 0), namely

λ1duEq0 = 0

Remark 5.12 Since q1 = γ(1), λ1 ∈ T ∗q1M and P us,t is the flow of γ in M , then λ(t) =
(P ut,1)∗λ1 is a lift of γ(t), namely

π(λ(t)) = γ(t), ∀t ∈ [0, 1].

Proof. Let us prove (N). The proof of (A) is analogous.

Assume that u satisfies (5.10) for some λ1, and let us prove that the curve defined by
λ(t) = (P ut,1)∗λ1 satisfies (5.11), which means that for every v ∈ L2(I,Rm) we have

(5.13) 〈λ1, duEq0(v)〉 = (u, v)L2 .

Using (5.2), the left hand side in (5.13) reads

〈λ1, duEq0(v)〉 =

ˆ 1

0
〈λ1,

(
(P ut,1)∗fv(t)

)
(q1)〉dt =

ˆ 1

0
〈λ1, (P

u
t,1)∗

(
fv(t)((P

u
t,1)−1q1)

)
〉dt

=

ˆ 1

0
〈(P ut,1)∗λ1, fv(t)(γ(t))〉dt =

ˆ 1

0
〈λ(t), fv(t)(γ(t))〉dt

=

ˆ 1

0

m∑
i=1

〈λ(t), fi(γ(t))〉vi(t)dt.

Then (5.13) becomes
ˆ 1

0

m∑
i=1

〈λ(t), fi(γ(t))〉vi(t)dt =

ˆ 1

0

m∑
i=1

ui(t)vi(t)dt.

Since v is arbitrary, this implies (5.10).
Conversely, let us assume there exists λ1 ∈ Tq1M such that the curve defined by

λ(t) = (P ut,1)∗λ1 satisfies (5.10). Then, following the above computations in the opposite
direction, one obtains exactly (5.11).

The Pontryagin maximum principle provides a first-order necessary condition for a
curve γ to be length-minimizing, leading to the following definition

Definition 5.13 Let γ : [0, 1]→M be a horizontal curve based at q0 with corresponding
control u. Assume that γ and u satisfy at least one condition between (N) and (A) of
Theorem 5.11. Then we give the following definitions
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i) The curve λ : [0, 1]→ T ∗M is called adjoint curve;

ii) The couple (u(t), λ(t)) is called sub-Riemannian extremal. When the extremal sat-
isfies (N) it is called normal extremal. Otherwise, it is said to be an abnormal or a
singular extremal.

Remark 5.14 A length minimizer is necessarily an extremal (normal, abnormal or both),
as a consequence of the Lagrange multipliers rule. Conversely, there are many examples of
extremals which are not length minizers.

Remark 5.15 It is a well known fact that if γ is normal, then by (5.10) it follows that
γ is smooth, namely C∞. In particular, in classical Riemannian geometry (i.e. D = TM)
the problem of the regularity of geodesics have already been solved, since the abnormal
case could not appear.

Remarks 5.14 and 5.15 emphasize the difficulty of the regularity problem, which we
underline once again to be related with the presence of the abnormal extremals. In the
next section, we analyze this problem, concluding this paper with the statements of some
new regularity results.

6 An overview of the regularity problem

This final section is devoted both to make an hystorical overview of the regularity problem
and to present some new regularity results.

The story of the problem of the regularity of geodesics in sub-Riemannian geometry
starts with the ground-breaking work [14] of R. Montgomery, where it is proved for the first
time that singular curves can be as a matter of fact length-minimizing. Also nice abnormal
extremals, see [13], are locally length minimizing. An algorithm for producing many new
examples of abnormal extremals is proposed in [7]. The length-minimality property of all
these examples is not yet well-understood.

The main recent approachs to the regularity problem are the following

A1) A first approach is based on the analysis of specific singularities such as corners. In
this optics, the recent, spiral-like curves or curves with no straight tangent line. This
approach does not use general open mapping theorems but it rather relies on the ad
hoc construction of shorter competitors, see [3, 8, 9, 12, 15, 16, 17].

A2) On the other hand, necessary conditions for the minimality of singular extremals can
be obtained from the differential study of the end-point map. The theory is well-
known till the second order and was initiated by Goh [6] and developed by Agrachev
and Sachkov in [2].

In the following, we explain better this different kind of approachs.
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6.1 About approach (A1)

The most elementary kind of singularity for a Lipschitz curve is of the corner-type: at a
given point, the curve has a left and a right tangent that are linearly independent. In
[12] and [8] it was proved that length minimizers cannot have singular points of this kind,
namely

Theorem 6.1 (Hakavuori, Le Donne 2016) Let γ : [0, 1]→M be a horizontal curve. If γ
has corner-type singularity, then it cannot be length-minimizing.

A very basic idea of the proof can be given whenM = R3 is a sub-Riemannian manifold
of dimension 3 and rank 2 (as in the example of section 2). Then, a horizontal curve is
γ(t) = (γ1(t), γ2(t), γ3(t)), where the third coordinate of γ is the area of the graph of its
horizontal projection with κ(t) = (γ1(t), γ2(t)).

When γ has a corner, it is not restrictive to suppose that κ is a path walking through
the coordinate axes, with corner singularity at the origin.

One builds a competitor curve γ̄ depending on a fixed poistive parameter ε and on an
integer n, modifying the horizontal projection κ. This modification on κ also modifies the
third coordinate of γ. Since the sub-Riemannian length of γ is the Euclidean length of κ,
such a modification of γ is made into the following two steps

i) First, one cuts the original curve near the singularity, as in the red path of the figure
below. This implies a gain of length for γ̄, but it modifies the end point.

ii) In order to restore the end point, one has to correct the curve in such a way to have
a positive gain of length. This step is realized by the green path in the figure below.

κ(t) =

{
(0,−t), t ∈ [−1, 2, 0),

(t, 0), t ∈ [0, 1/2].

In this case, we have for n large enough a gain of length given by

`(γ)− `(γ̄) = (2−
√

2− 1

n
)ε > 0.

This proves that the curve γ cannot be a length minimizer, because of the presence of
a corner. When M has dimension n and rank m, one needs n − m integer parameters
k1, . . . , kn−m and n − m associated correction paths to restore the end point, solving a
sistem of linear equations.
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These results have been improved in [16], where it is proved the following statement.

Theorem 6.2 (Monti, Pigati, Vittone 2018) Let γ : [0, 1] → M be a horizontal length-
minimizing curve. Then there is at least one horizontal line in the tangent cone of γ.

In other words, at any point, the tangent cone to a length-minimizing curve contains
at least one line (a half line, for extreme points).

The uniqueness of this tangent line for length minimizers is an open problem. Indeed,
there exist other types of singularities related to the non-uniqueness of the tangent. In
particular, there exist spiral-like curves whose tangent cone at the center contains many
and in fact all tangent lines. These curves may appear as Pontryagin extremals in sub-
Riemannian geometry and theorem 6.2 are not enough to prove the nonminimality of
spiral-like extremals.

The problem of the minimality of spiral-like curves have been solved by me and R.
Monti.

Theorem 6.3 (Monti, S. 2021) Let (M,D, g) be an analytic sub-Riemmanian manifold of
rank 2 satisfying the following condition[

[fi1 , . . . , fij ], [fi1 , . . . , fik ]
]

= 0, j, k ≥ 2.

Then any horizontal spiral γ ∈ AC([0, 1];M) is not length-minimizing near its center.

For the notion of horizontal spirals and the details of the proof, which needs very long
and detailed computations, we refer the reader to our paper [17].

We just give an idea of strategy we used for cutting and then correcting the spiral.

The cutted horizontal curve is

kcut
k (t) =


k(t), t ∈ [0, tk+1]

(t, 0), t ∈ (tk+1, tk)

k(t), t ∈ [tk, 1].

It depends on the integer k.

The correction path is defined by

κ(t), t ∈ [0, thη ],

κ(thη) + (sgn(ε)(t− thη), 0), t ∈ [thη, thη + |ε|],

κ(t− |ε|) + (ε, 0), t ∈ [thη + |ε|, th + |ε|],

κ(th) + (2ε + sgn(ε)(th − t), 0), t ∈ [th + |ε|, th + 2|ε|],
κ(t− 2|ε|), t ∈ [th + 2|ε|, 1 + 2|ε|].

It depends on the triple of parameters E =
(ε, η, h), where ε, η > 0 and h ∈ N.
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After some computations and the solution (this is really not trivial) of a linear system,
we are free to send k →∞ without modifying the end point but having a gain of length.

6.2 About approach (A2)

Necessary conditions for the minimality of singular extremals can be obtained from the
differential study of the end-point map. The theory is well-known till the second order and
was initiated by Goh [6] and developed by Agrachev and Sachkov in [2]. Using second order
open mapping theorems (index theory), for a strictly singular length minimizing curve γ
and for any adjoint curve λ they prove the validity of the following Goh conditions:

(6.1) 〈λ(t), [fi, fj ](γ(t))〉 = 0, i, j = 1, . . . ,m,

This generalize the first order conditions (5.12) coming from the Pontryagin maximum
principle. Partial necessary conditions of the third order are obtained in [4].

Recently, F. Boarotto, R. Monti and me have proved a result generalizing (6.1) to any
order n, under a couple of both natural and restrictive assumptions. The statement is the
following.

Theorem 6.4 (Boarotto, Monti, S. 2022) Let (M,D, g) be a sub-Riemannian manifold,
γ = γu ∈ AC(I;M) be a strictly singular length minimizing curve of corank 1, and assume
that

(6.2) Dh
uEq0 = 0, h = 2, . . . , n− 1.

Then any adjoint curve λ ∈ AC(I;T ∗M) satisfies

〈λ(t), [fjn , [. . . [fj2 , fj1 ] . . . ]](γ(t))〉 = 0,

for all t ∈ I and for all j1, . . . , jn = 1, . . . , d.

Here, the differentials Dh
uEq0 appearing in (6.2) are the intrinsic differentials of the end

point map. In particular, when n = 1 the intrinsic differential coincides with the classical
one. For h ≥ 2 it is necessary to restrict the domain Dh

uEq0 to get the correct definition.
The proof of Theorem 6.4 relies on an open mapping argument applied to the extended

end-point map Ēq0 = (Eq0 , J), similarly to what happens for the Pontryagin maximum
principle. Also in this case, we refer the reader to our preprint article [5] for all the details.

Remark 6.5 We emphasize that, the open mapping argument used in the proof of the-
orem 6.4 comes from an open mapping theorem of order n, and applies similarly as in
Remark 5.10. Also this new open mapping theorem is proved by Boarotto, Monti and me
in [5], in a section of indipendent interest.
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