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Seminario Dottorato 2020/21

Preface

This document offers an overview of the schedule of Seminario Dottorato 2020/21.
Our “Seminario Dottorato" (Graduate Seminar) is a double-aimed activity. At one

hand, the speakers (usually Ph.D. students or post-docs, but sometimes also senior re-
searchers) are invited to communicate their researches to a public of mathematically well-
educated but not specialist people, by preserving both understandability and the flavour
of a research report. At the same time, people in the audience enjoy a rare opportunity to
get an accessible but also precise idea of what’s going on in some mathematical research
area that they might not know very well.

As it happened for the last one, also this academic year has been strongly conditioned by
the COVID-19 pandemic emergency, so that all sessions of the seminar – excepted the one
in the Opening Day – have been held online. Anyway we feel that keeping up this activity
has helped the PhD students to stay in contact among them and with the Department life.

Let us take this opportunity to warmly thank once again all the speakers for having
held these interesting seminars and for their nice agreement to write down these notes to
leave a concrete footstep of their participation.

We are also grateful to the collegues who helped us, through their advices and sugges-
tions, in building an interesting and culturally complete program.

Padova, June 20th, 2021
Corrado Marastoni, Tiziano Vargiolu
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Abstracts (from Seminario Dottorato’s webpage)

Wednesday 7 October 2020

Mathematical modeling in primary school: an example of research in Math Education
Simone PASSARELLA (Padova, Dip. Mat.)

Introducing the distributivity property of multiplication over addition is a well-known challenge in
Mathematics Education, especially in primary school. In this seminar, after a brief introduction to
the research field of Mathematics Education, the results of a cycle of design research in which 2nd-
grade students are introduced to the key concept of distributivity of multiplication over addition are
described. The focus will be in showing how the heuristics of didactical phenomenology, guided
reinvention and emergent modelling may guide the design and implementation of a modelling
activity to make distributivity property more accessible for primary school students.

Wednesday 18 November 2020

Homological algebra: deforming abelian groups using torsion pairs
Sergio PAVON (Padova, Dip. Mat.)

Given an abelian category, one can (often) construct its derived category. We illustrate this pro-
cess for the familiar category Ab of abelian groups and group homomorphisms. We also give some
motivation for this construction, as we briefly see that derived categories provides the “correct”
environment for the many (co)homological theories found throughout mathematics. Having un-
derstood what the derived category of an abelian category is, we address the natural question of
“derived equivalences”: when do two abelian categories have the same derived category? This turns
out to be an interesting but very difficult question. We then restrict ourselves to abelian categories
obtained by “deforming” the category Ab of abelian groups: a major role in this construction is
played by torsion pairs, whose definition we will illustrate with some examples. We will conclude
with a nice theorem, which states that deforming Ab with any torsion pair enjoing a certain prop-
erty ("hereditarity”) always yields an abelian category derived equivalent to Ab. (This seminar is
based on a joint work with J. Vitória.)

Wednesday 9 December 2020

Mathematical modeling in Finance
Andrea MAZZORAN (Padova, Dip. Mat.)
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In mathematical finance, tools from probability, and more specifically from stochastic analysis,
are applied to tackle problems arising in financial markets. Therefore, one needs to build suitable
models to describe the phenomena that appear in the market. In the first part of the talk, I am
going to present some basic probability preliminaries and some intuitive concepts in finance. Then,
I will move on to consider the more famous models in financial mathematics, describing their main
properties. To be accessible to a mathematical audience of non-experts, I will extensively use
examples, graphics and intuitive definitions In the very last part of the talk, the more technical
one, I will mention some result of my research, more precisely, I will introduce a joint calibration
problem via stochastic-local volatility model along with an exercise based on real data.

Wednesday 16 December 2020

Weak KAM, Homogenization and Ergodic Control: an introduction
Hicham KOUHKOUH (Padova, Dip. Mat.)

This seminar is intended for non-specialists to whom I would first and succinctly introduce the
general ideas behind the weak KAM theory in dynamical systems, the theory of homogenization
in the analysis of PDEs and the theory of ergodic control. I will then and especially insist on the
link between them, and which manifests itself in a particular PDE known as "ergodic stationary
Hamilton-Jacobi equation". A qualitative study of these problems will also be discussed, and a
link with an optimization problem in the space of measures will be mentioned. I will finally provide
an example of Singular Perturbations in a control problem. For the sake of clarity, I will focus on
the deterministic case, but much of these results are valid in a stochastic framework. A discussion
will conclude the presentation.

Wednesday 3 February 2021

An introduction to the moduli space of smooth curves and its compactification
Angelina ZHENG (Padova, Dip. Mat.)

The moduli space of algebraic curves is a central object in algebraic geometry. The idea behind
this space is that it answers to a classification problem, by allowing us to classify algebraic curves
up to isomorphisms. Nonetheless, the geometry of this space is rather abstract and subtle, and
only few general statements are known. The aim of this talk is to give an elementary introduction
to the moduli space of npointed smooth curves of genus g and its compactification: we will define
the main ingredients and present some basic properties. We will also discuss basic examples in
order to get familiar with these spaces. One way to understand these spaces is by computing some
topological invariants, such as their cohomology groups. In general, their full cohomology ring is
still unknown, but we have a complete description for some values of g, which I will present in the
final part.
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Wednesday 17 February 2021

Limit theorems for Lévy flights on a 1D Lévy random medium
Elena MAGNANINI (Padova, Dip. Mat.)

The purpose of this introductory presentation is to derive limit theorems for a class of random
walks on random point processes, which mathematically describe the motion of a particle on a
random environment. In the physical literature, the continuous-time version of this process is
called Lévy-Lorentz gas. This model embodies the features of many different natural systems that
show the so-called superdiffusive behavior, from particles moving in a turbulent fluid to the motion
of crawling amoeba and the foraging strategies of several animals. We will start by recalling some
classic results and definitions regarding the distributional convergence of stochastic processes, then
we will move to the presentation of our model, starting from the definition of a one-dimensional
random environment. We will finally present the convergence results for the process Y which takes
place on such environment and that under suitable hypotheses displays a super-diffusive behavior.
In particular, we will determine the scale whereby Y converges to a non-null limit and the limit
process to which it converges.

Wednesday 3 March 2021

A differential eigenproblem of electromagnetics
Michele ZACCARON (Padova, Dip. Mat.)

We start with a preliminary overview of Sobolev spaces, very useful in the modern approach to
solve PDEs. We then introduce an eigenvalue problem arising from time-harmonic Maxwell’s
equations, deriving its so-called weak formulation and showing some first properties. The last part
of the seminar will focus on the domain perturbation, inspecting the dependence of the eigenvalues
upon variation of the region in which we set our problem, and presenting a result regarding shape
optimization. The talk is of introductory type and its purpose is to let the audience have a look
at some of the tools and concepts from the spectral theory of differential operators.

Wednesday 17 March 2021

Optimal stopping theory and American options
Francesco ROTONDI (Padova, Dip. Mat.)

The optimal stopping problem is a classical one within stochastic calculus theory. Formally, given

Università di Padova – Dipartimento di Matematica 5



Seminario Dottorato 2020/21

a gain process, the optimal stopping problem is about finding the stopping time that maximizes
the expected gain. In discrete time, this problem is solved using dynamic programming techniques
and setting up a backward recursion. This delivers both the optimal stopping rule and the optimal
value process. This optimal value process coincides with the Snell Envelope of the gain process,
namely, the smallest supermartingale dominating it. Optimal stopping theory closely relates to the
American derivatives valuation problem. American derivatives are financial contracts characterized
by a payoff process that depends on an underlying stochastic process (usually the price of a traded
asset). The holder of an American derivative chooses when to cash in the payoff, trying to do so
optimizing the gain. Therefore, the fair price of this derivate depends on its optimal stopping time.
During my talk, which will be accessible also to non-specialists, I will first describe and then show
how to solve the optimal stopping problem in a discrete time setting. Secondly, I will show how
to apply these techniques for the valuation of American derivatives in the most standard setting.
Finally, I will present a result on how to price these derivatives in a more sophisticated market
model.

Wednesday 31 March 2021

On the simulation of planar homogeneous flows
Francesca TEDESCHI (Padova, Dip. Mat.)

This seminar presents a brief overview on Molecular Dynamics (NEMD) simulations. The basics of
NEMD will be reviewed to make the presentation as accessible as possible. Molecular Dynamics is a
deterministic tecnique, used to produce statistical data about the behavior of non-Newtonian fluids
or other materials at the microscopic scale. Computational efficiency imposes to consider only a
portion of fluid (represented by the simulation box), and to apply periodic boundary conditions, i.e.,
surrounding that box with periodic copies of its particles represented by a lattice deformed under
the action of the imposed homogeneous flow. Requirements of compatibility and reproducibility,
that guarantee the reliability of the simulation for an indefinite time, will be explained, together
with the algorithms to correctly impose the periodic boundary conditions.

Wednesday 21 April 2021

Topics in Numerical Linear Algebra for High-Performance Computing
Monica DESSOLE (Padova, Dip. Mat.)

As computer architectures evolve, numerical algorithms have to cope with high resolution simula-
tions and data integration that are now key to many research fields. Solution methods for real world
problems require a constantly increasingly computational effort, demanding for more and more re-
sources and tailored algorithms. In this talk we will introduce some recent high-performance
algorithmic developments about solving dense linear systems, possibly numerical rank-deficient,
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and we will present some parallel techniques for the solution of large-scale sparse systems of linear
equations.

Wednesday 5 May 2021

An intuitive introduction to p-adic geometry
Yukihide NAKADA (Padova, Dip. Mat.)

The field of p-adic numbers forms a bridge from number theory to analysis, mixing number-
theoretic constructions with analytic ideas. And just as the complex numbers made possible com-
plex analytic geometry, the p-adic numbers opened up a new, strange geometry over a number-
theoretic field. The goal of this talk is to paint a broad picture of p-adic geometry accessible to
mathematicians without any previous knowledge of number theory. We set the foundations with an
intuitive introduction to the field of p-adic numbers and then give a brief introduction to socalled
rigid geometry, the p-adic counterpart to complex analytic geometry.

Wednesday 19 May 2021

An introduction to singular control problems through an electricity market model
Almendra AWERKIN VARGAS (Padova, Dip. Mat.)

We start motivating this seminar with the following question: at which electricity price it is optimal
to increase the current installed power in order to obtain the maximum profit of selling the produced
energy? We will see that the mathematics behind our model is called singular control theory and,
always leaning in our electricity market example, we will briefly introduce the main concepts and
results that define this specific branch of control theory. We conclude the talk answering our
question considering the Italian market case.

Wednesday 9 June 2021

Synchronization and asymptotic dynamics of mechanical systems: an introduction
Sara GALASSO (Padova, Dip. Mat.)

Synchronization is a fascinating and eye-catching phenomenon, which spontaneously emerges from
the collective behaviour of a huge variety of interacting systems. Examples permeate science,
from fireflies to metronomes, from neurons to celestial bodies. In this seminar we shall focus on
mechanical systems, having in mind, in particular, systems of coupled pendula. To construct a
physical-mathematical model able to describe synchronicity patterns in their evolution, classical
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tools from dynamical systems theory are essential. We will therefore recall the basic notions of
invariant manifold and stability, as well as some results that will allow us to investigate, at an
introductory level, the long-time asymptotic behaviour. Along with the theory, we will provide
examples and examine simple models which should help us visualize some fundamental mechanisms
underlying synchronization.
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Mathematical modeling in primary school:
an example of research in Math Education

Simone Passarella (∗)

Abstract. Introducing the distributivity property of multiplication over addition is a well-known
challenge in mathematics education, especially in primary school. In this contribution, after a brief
introduction to the research field of mathematics education, the results of a cycle of design research
in which 2nd-grade students are introduced to the key concept of distributivity of multiplication
over addition are described. The focus will be in showing how the heuristics of didactical pheno-
menology, guided reinvention and emergent modelling may guide the design and implementation of
a modelling activity to make distributivity property more accessible for primary school students.

European Didactics Traditions in Mathematics

Mathematics education, or better in the European context didactics of mathematics, refers
to the discipline dealing with all aspects of teaching and learning mathematics. Several
traditions concerning didactics of mathematics developed in Europe, both in the practice
of learning and teaching at school and in research and development. Despite the variety
of cultural, historical and political backgrounds, all these traditions share some common
features, such as a strong connection with mathematics and mathematicians, the key role
of theory, and the key role of design activities for learning and teaching (Blum, Artigue,
Mariotti, Strasser and Van den Heuvel-Panhuizen, 2019).

Design activities in the didactics of mathematics can involve the design of tasks, lessons,
teaching sequences, textbooks, curricula, assessments, and ICT-based material or programs
for teacher education. It is through designed instructional material and processes, in which
the intended what and how of teaching is operationalised, that learning environments for
students can be created. In this direction, educational design forms a meeting point of
theory and practice through which they influence each other reciprocally. In France, the
design of mathematical tasks, situations and sequences of situations is essential to didactic
research. This is clearly reflected in the methodology of didactical engineering within the

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 7 October 2020.
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theory of didactical situations (Brousseau, 1997) that emerged in the early 1980s. Designs
are grounded in epistemological analyses, and situations are sought that capture the episte-
mological essence of the mathematics to be learned. In the last decade, the anthropological
theory of the didactic (Chevallard and Sensevy, 2014) has developed its own design per-
spective that gives particular importance to identifying issues that question the world and
have strong mathematical potential. In the Netherlands, a strong tradition in design can
be found in the didactics of mathematics. At the end of the 1960s, the reform of math-
ematics education started with designing an alternative for the mechanistic mathematics
education that then prevailed. Initial design activities were practice oriented, and the
theory development that resulted in Realistic Mathematics Education (Freudenthal, 1991)
grew from this practical work and later guided further design activities. Design implemen-
tation, including contexts, didactical models, longitudinal teaching-learning trajectories,
textbook series, examination programs, mathematics events, and digital tools and envi-
ronments, has been realised. In Italy, the role of design has also changed over time. The
period from the mid-1960s to the mid-1980s was characterized by a deep epistemological
concern and a strong pragmatic interest in improving classroom mathematics teaching.
The focus was on the content and its well-crafted presentation in practice, based on con-
ceptual analyses. The period from the mid-1980s to the present can be characterised by
long and complex processes targeting the development of theoretical constructs based on
teaching experiments, with the design of teaching and learning environments as both an
objective and a means of the experimentation. Within the German didactic tradition, two
periods can be distinguished. Before the 1970s and 1980s, design activities were mostly
meant for developing learning and teaching environments for direct use in mathematics in-
struction. These design activities belonged to the long German tradition of Stoffdidaktik,
which focused strongly on mathematical content and course development. In the 1970s, an
empirical turn occurred, resulting in design activities done to study the effect of specified
didactical variables through classroom experiments.

In the following part of this contribution, an example of research in mathematics edu-
cation in which the role of design is central is being presented.

Mathematical Modelling in Primary School

This example is part of a PhD research project that aims at studying how mathematical
modelling can be integrated in the regular school practice in the Italian context. specifi-
cally, it will be reported an example that focuses on the question of how to provide students
with opportunities to be introduced to the concept of distributivity of multiplication over
addition (DP) in a meaningful way. Indeed, students still encounter difficulties in un-
derstanding distributivity (Squire, Davies and Bryant, 2004), with consequently efforts in
algebra and calculations. In this direction, it appears central to investigate how students
can learn distributivity, what learning steps are needed to reinvent this concept and which
learning activities may foster such learning steps. Our idea is that making students face
with realistic and less stereotyped problems that take into consideration the experiential
world of students, should support students’ in making sense of mathematical concepts
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(Chamberlin, Payne and Kettler, 2020), leading to a deeper understanding of the concept
of distributivity. In this direction, mathematical modelling could play a central role in fos-
tering a process of reinvention (Freudenthal, 1991) of the distributivity property offering
students opportunities to attach meaning to this mathematical construct developed while
solving real problems. Indeed, we believe that mathematical modelling could represent a
valid educational strategy to improve students’ understanding of DP, engaging them in
meaningful real-life problem solving situations (Lesh and Lehrer, 2003). Not only a better
understanding, but also a process of reinvention (Freudenthal, 1991) of DP is aimed to be
achieved by students. Modelling could support such reinvention process of DP, making it
more significant for students because rooting it in their personal experience. The aim of
the research reported here is to design, implement, and evaluate a modelling activity in
a reinvention process to introduce 2nd -grade students to the distributivity property in a
meaningful way.

In the next two sections the theoretical perspectives followed in this study are presented.

Realistic Mathematics Education

Realistic Mathematics Education (RME) is a domain specific instruction theory for math-
ematics that offers a pedagogical and didactical philosophy on mathematical learning and
teaching as well as on designing instructional materials for mathematics education. Rich
and realistic situations are given a prominent position in the learning process and represent
a starting point for the development of mathematical concepts and applications (Grave-
meijer and Doorman, 1999). Realistic refers to problem situations that students can image
and that are, at a certain stage, meaningful for them. Therefore, problems can come from
the real world, but also from a fantasy world or from the formal world of mathematics, as
long as the problems are experientially real in students’ mind (Van den Heuvel-Panhuizen
and Drijvers, 2014). However, this realistic connotation is not sufficient to have a valu-
able mathematical problem. The context, indeed, must also be rich (Freudenthal, 1991),
referring to a situation that promotes a structuring process as a means of organizing phe-
nomena, physical and mathematical, and even mathematics as a whole (Treffers, 1987).
The core principles of RME have been synthetized in six educational principles (for a
complete discussion see Van den Heuvel-Panhuizen and Drijvers, 2014): activity principle;
reality principle; level principle; intertwinement principle; interactivity principle; guidance
principle. Based on these principles RME also offers the following design heuristics: guided
reinvention, didactical phenomenology, and emergent models (Gravemeijer, 1994).

Guided reinvention is based on the fact that the teaching of mathematics should be
a human activity as opposed to a ready-made system (Freudenthal, 1973; 1991). When
students progressively mathematize their own mathematical activity (Treffers, 1987) they
can reinvent mathematics under the guidance of the teacher and the instructional design.
This is the meaning of the first heuristic guided reinvention: students should experience
the learning of mathematics as a process similar to the process by which mathematics
was invented (Gravemeijer, 1994). Consequently, the role of the designer is fundamental
in RME, since she/he has to foster this process of guided reinvention. In so doing, the
designer can use different methods, such as using students’ informal solution strategies as
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a source supporting students’ solutions in getting closer to the end goal (Bakker, 2004).
Mathematical concepts and tools serve to organize phenomena, both from daily life and

from mathematics itself (Bakker, 2004). A phenomenology of a mathematical concept is an
analysis of that concept in relation to the phenomena it organizes. Didactical phenomenol-
ogy is the study of concepts in relation to phenomena with a didactical interest. In this
perspective the challenge is to find phenomena that beg to be organized by the concepts
that are to be taught (Freudenthal, 1983). In this research, the design of instructional
materials will follow a didactical phenomenology approach, in which the goal is to find
problem situations that could provide the basis for the development of the mathematical
concept of DP.

Fundamental tools for bridging the gap between the informal, context-related mathe-
matics and the more formal mathematics are models. Indeed, in RME models of a certain
situation can become models for more formal reasoning (Gravemeijer 1994; 1999). The
movement from situational to formal reasoning is described by the following four levels
(Gravemeijer, Cobb, Bowers and Whitenack, 2000): situational level; referential level; gen-
eral level; formal level. This shift is at the basis of the notion of emergent modelling, that
will be treated in detail in the next section.

Mathematical modelling

The promotion of mathematical modelling is accepted as a central goal of mathematics
education worldwide, especially if mathematics education aims to promote responsible cit-
izenship (Kaiser, 2017). Modelling is a creative process of making sense of real-world phe-
nomena through different phases of the modelling process, such as structuring real-world
situations that have to be modeled; mathematising, i.e. translating a real situation into
mathematical terms; working with the resulting model finding solutions to the mathemat-
ical problems; interpreting and validating results in relation to the real starting situation;
monitoring the entire process of modelling.

Different perspectives concerning the way to integrate mathematical modelling into
classroom teaching emerged, emphasizing either the solution of the original problem or
the development of mathematical concepts or ideas. In this study with mathematical
modelling we refer to emergent modelling, in which real-world examples and their relations
to mathematics are central elements of the structure of the teaching and learning process
(Freudenthal, 1991; Treffers, 1987).

Emergent modelling was initially developed by Gravemeijer (1999) with the meaning of
supporting the emergence of formal mathematical ways of knowing. The underlying educa-
tional theory is RME, in which models have always employed to foster a process in which
formal mathematics is re-invented by students themselves. Indeed, in this perspective
modelling activities are used as a vehicle for the development, rather than applications, of
mathematical concepts (Greer, Verschaffel and Mukhopadhyay, 2007). Students, starting
from a real context, begin to model their informal mathematical strategies and arrive to
reinvent mathematical concepts and applications they need, and that can subsequently be
formalized in mathematical terms and generalized to other situations. As a consequence,
emergent modelling can be seen as a long-term dynamic process from a model of stu-
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dents’ situated informal mathematical strategies to a model for more formal mathematical
reasoning (Gravemeijer and Doorman, 1999), that favours understanding, reasoning and
sense-making. This transition from model of to model for involves the constitution of a
new mathematical reality (Streefland, 1985) that can be denoted as formal in relation to
the original starting points of the students.

Design research phases

As stated in the previous section, the aim of this study consists in studying how mathe-
matical modelling could support the introduction of DP at primary school. Consequently,
design research is used as the research method of this study (Doorman, 2019; Bakker,
2018; Gravemeijer, 2004; Cobb et al., 2003; Edelson, 2002), since we needed to create an
instructional environment with which it could be possible to study how and to what extent
the suggested process could be fostered.

(...) design research explicitly exploits the design process as an opportunity to advance the
researchers’ understanding of teaching, learning, and educational systems. Design research
may still incorporate the same types of outcome-based evaluation that characterize tradi-
tional theory testing, however, it recognizes design as an important approach to research in
its own right. (Edelson 2002, p. 107)

Design research is characterized by a cyclical process in which educational materials for
learning environments are designed, implemented, and evaluated for following cycle(s) of
(re)design and testing (Van Dijke, Dirjvers and Bakker, 2020; McKenney and Reeves, 2012;
Gravemeijer, 2003). This example reports on a first cycle of design research, composed
by three main phases (Figure 1): design phase; teaching experiment; retrospective analysis
(Bakker, 2018; Gravemeijer, 2004).

Figure 1. Design research cycle reported on this study.

The study was conducted in a 2nd-grade class (age 7) composed by nineteen students
during two weeks of regular mathematics lessons. At the time of the activity, students
involved in the study were working on multiplication in the set of natural numbers. In
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particular, multiplication as iterated sum (Maffia and Mariotti 2018; Fischbein, Deri, Nello
and Marino 1985) was introduced by the official mathematics teacher. Specifically, before
the modelling activity students involved in the study did know the notion of multiplication
as iterated sum and were able to perform multiplication between one-digit natural numbers
and tenths.

In the next the phases of design research for this study are described in detail, focusing
on: (i) the design of a Hypothetical Learning Trajectory; (ii) the presentation of the main
results from the teaching experiment; (iii) the analysis of the results in relation to our
initial hypothesis.

Design phase

The design phase of this research was explicated by the development of the three compo-
nents of a Hypothetical Learning Trajectory (HLT): learning goal; hypothetical learning
process; learning activities (Simon, 1995).

The learning goal is represented by the reinvention of DP.
The design heuristics of guided reinvention, didactical phenomenology and emergent

modelling helped in designing a hypothetical learning process together with a set of in-
structional activities that fitted this learning route (Gravemeijer, 2004). Starting from the
classroom initial level and following the heuristic of didactical phenomenology, we supposed
that making students face with a problem situation in which the new mathematical concept
of DP was needed, could stimulate them in reinventing that concept. In this direction, our
hypothesis consisted in putting students face with a problem situation in which at a certain
point the necessity of performing multiplications between a number with 2-digits and one
with 1-digit emerged. Indeed, consider for example the multiplication 25× 4, in which the
first term has two digits and the second term has one digit. To perform this multiplication,
25 can be decomposed as 20 + 5, and then multiply 20× 4 and 5× 4. In the first multipli-
cation, 20×4, the two 2-digits number 20 is actually 2×10, and as we said before students
were able to perform multiplications with tenths. The second multiplication, 5 × 4, is
between only 1-digit numbers. In conclusion, 25 × 4 = (20 + 5) × 4 = (20 × 4) + (5 × 4),
that is DP. Which problem situation could provide the development of the hypothesized
reinvention process? The context for such problem situation should not only be realistic
and rich, i.e. significant for students and mathematics, but also it must stimulate students
in developing the DP from their informal solution strategies, in agreement with emergent
modelling. In such a reinvention process, also the constraints given in the text of the prob-
lem should encourage (or not) the emergence of DP. In order to do that, a specific artifact
(Bonotto, 2013) was produced and given to students together with the modelling task.

Since at the time of the activity the school in which the teaching experiment took place
was under building renovation, we decided to choose as modelling task the following Tiling
Problem:
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Figure 2. Modelling task.

Together with the task, to each student was given a booklet which included: the figure of
the classroom divided in six stripes; the figure of each stripe that must be tiled by each
single group; a brochure, that represents an artifact, including the shapes of the tiles that
must be used (triangular, square, rectangular) with their relative costs; the task repeated
in a clearer form.

The modelling activity was implemented in three subsequent phases. In the first phase,
getting started, students were engaged in a series of activities in order to make them familiar
with the problem situation they would have to face. The second phase of the modelling
activity consisted in the model construction. In this phase each group had to solve The
Tiling Problem and create a poster in which report the designed floor tiling and explain
the strategy followed to calculate its total cost. In the final presentation and discussion
phase, each group had to present to the classroom its project, explaining the steps followed
to solve the task.

Teaching experiment: some results

Some results from the second phase of model construction are reported. In the model
construction phase students, working in groups of three, had to create a model to solve the
task explored in the previous lesson.

While solving the task, all the groups developed a similar strategy. The first step con-
sisted in counting the number of all the tiles of the same type and multiply the number
obtained with the relative cost. For example, one group counted 50 square tiles, 26 trian-
gular tiles and 15 rectangular tiles. Then, the number of each type of tile was multiplied by
its relative cost, highlighting the notion of multiplication as iterated sum, already known
by students. In our example, students had to perform 50 × 6, 26 × 4, 15 × 10. While
performing multiplications similar to the latter ones, students encountered the difficulty of
multiplying a number with one digit with a number with two digits. Since several groups
were not able to solve this problem, the teacher decided to reason about it in a whole
class discussion. Some students suggested the strategy reported in the following dialogue
(T=teacher; S1=first student; S2=second student) to calculate 6× 57:
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S1: I write 6× 57 = 57× 6.
Then I divide 57 as 50 and 7?

T: Divide?
S1: Write...?
T: Decompose.
S1: Yes, I decompose 57 as 50 plus 7!

Then I calculate 50× 6.
S2: That is 300!
S1: Then 6× 7
S2: 42
T: Excellent, and with these number? (pointing at 300 and 42)
S1: I put them together!
T: How?
S1: I compose them?
T: What does it mean?
S1: I make the sum!

The final step developed by students to solve The Tiling Problem was to sum the
costs of each shape of tiles. In our example, students, having calculated 50 × 6 = 300,
26 × 4 = 104, 15 × 10 = 150, summed 300 + 104 + 150 = 554, that represented the total
cost in euros of their tiling design.

As hypothesized in the HLT, while constructing their models students encountered the
problem of calculating multiplications between a number with one digit and a number with
two digits, that stimulated some students to reinvent the notion of DP (Figure 3).

Figure 3. Reconstruction of students’ model to solve the modelling task that let them to reinvent DP.
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Retrospective analysis

The final phase of the design research cycle comprised the retrospective analysis, in which
the HLT developed in the design phase was compared with students’ actual learning oc-
curred during the teaching experiment.

In agreement with the process of emergent modelling, the assignment given to students
stimulated them to create and work with the new mathematical concept of DP. In the
specific, the strategy developed by students to solve the task, that consisted in grouping
the tiles with the same shape and then multiply by the associated costs, showed that they
have been able to reinvent the mathematical concept of DP (Figure 3). This is evident
also from the extract of the dialogue in which students explained their strategy to calculate
6× 57. As a consequence, the hypothesis that multiplications between 1-digit and 2-digits
numbers should permit students in reinventing the concept of DP was confirmed. Guided
by the interaction with the teacher and peers, students have been able to reason and explain
this property, that would be at the basis of their following strategies of calculus. In this
way, properties of mathematical operations become meaningful for students, because no
longer mechanical rules but rooted in their experience and directly constructed by students
to solve a concrete problem from a meaningful context.

The reinvention process was possible not only thanks to the designed modelling se-
quence, but also to the use of a suitable artifact, represented by the brochure given to stu-
dents. Indeed, having given students the shapes of the tiles to be used and the constraint
to use all that shapes, guided them to face with the problem of performing multiplications
between numbers with more than one digit, and consequently to the reformulation of DP,
as hypothesised in the design phase.

Some considerations about possible modifications of the designed and implemented
instructional sequence can be inferred, concerning two main facts: the need of students’
self-evaluation and the role of the teacher. Students during the modelling activity worked
always in groups. They could share their opinions, strategies, misunderstandings, but there
was not enough space for individual reflection. Group work is important, but we believe
that also individual moments in which students have time to reflect on the modelling
activity, reconstruct the entire process, clarify doubts and express their ideas is fundamental
in the learning process. Moreover, to achieve the described results, the role of the teacher
was fundamental. The teacher, indeed, encouraged students to use their own methods;
stimulated students to articulate and reflect on their personal beliefs, misconceptions and
informal problem-solving and modelling strategies. However, the role of the teacher in the
design of the learning trajectory was not clearly explicated. Instead, it should be more
emphasized and clarified, since it plays a fundamental position in supporting students shift
from concrete to symbolic representations of DP (Maffia and Mariotti, 2020). Learning
should become a constructed understanding through a continuous interaction between
teacher and students, that can be synthetized, using Freudenthal?s words, in teaching
and learning as guided reinvention, reinforcing in this way mathematical reasoning and
sense-making.
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Conclusions

The present contribution followed two main directions: the first concerning a brief intro-
duction to mathematics education, with particular attention to the different trends devel-
oped in the European contexts (Blum, Artigue, Mariotti, Strasser and Van den Heuvel-
Panhuizen, 2019); the second concerning an example of research in mathematics education,
that focuses on a modelling activity that aimed to make distributivity property accessible
to primary school students (Passarella, 2021).

In the first part a description of the common features shared between the different
European traditions in the didactics of mathematics were reported. Specifically, attention
was given on the central role of design activities for learning and teaching.

In the second part an example of research in mathematics education was presented.
This example followed the methodology of design research, and its aim consisted in design-
ing, implementing, and evaluating a modelling activity in a reinvention process to introduce
2nd-grade students to the distributivity property in a meaningful way.
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Homological algebra: deforming
abelian groups using torsion pairs

Sergio Pavon (∗)

Abstract. We gently introduce the concept of abelian categories, motivated by the example of
the category of abelian groups, and we show that they provide all the ingredients needed for
(co)homological theories. This direction leads us to the definition of the derived category of an
abelian category, which is “the correct place to compute cohomologies”. In the second part, we
address a natural question: given two abelian categories, when do they have the same derived
category (i.e., they are derived equivalent)? In particular we explore the case in which one of the
abelian categories has been obtained from the other via a deformation procedure called “HRS-
tilting”. We give a direct criterion to check for a derived equivalence in some instances of this
procedure, and a more explicit reformulation of it for categories of modules over a ring.

1 Abelian categories and their derived categories

1.1 Categories

Recall that a category is the datum of two main ingredients: a class of objects, and for
every pair of objects, a set of morphisms from one to the other. The set of morphisms
from an object A to an object B of a category C is denoted by HomC(A,B); an element
of this set is also denoted with an arrow f : A → B. The definition of a category also
requires a notion of composition of morphisms to be defined: given morphisms f : A→ B
and g : B → C there must be a morphism g◦f : A→ C, satisfying some natural properties.

A motivating example could be the category Sets of sets, whose objects are sets and
whose morphisms are functions; the composition of morphism is the usual composition of
functions. Other examples, similar in spirit, are the categories Top of topological spaces
with continuous functions, or the category Veck of k-vector spaces with k-linear applica-
tions, for a field k.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 18 November 2020.
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1.2 Abelian groups

We now introduce our main example, the category of abelian groups, denoted Ab. Its
objects are the abelian groups, and its morphisms are the homomorphisms of groups.

Example 1 Some objects of Ab are

(Z,+), (Q,+), (R,+), (C∗, ·), (S1 := {z ∈ C : |z| = 1}, ·), Z/nZ, Q/Z, R/Q.

Some morphisms of Ab are

idA : A→ A, a 7→ a for every group A
πn : Z→ Z/nZ, z 7→ z (mod n)

exp: R→ S1, t 7→ e2πit.

The category Ab enjoys some special properties. For example, notice that for every
two objects A,B of Ab, the set HomAb(A,B) is not only a set, but an abelian group itself.
Indeed, it has an addition operation defined by

∀f, g : A→ B (f + g) : A→ B, (f + g)(a) = f(a) +B g(a)

This makes HomAb(A,B) into an abelian group, with neutral element the zero morphism
from A to B, namely 0: A → B, a 7→ 0B. Moreover, composition of morphism respects
this operation, meaning that it is bilinear.

It is not common for a category to have Hom-groups, instead of just Hom-sets. Such
a category is called preadditive. For a counterexample, notice that Sets is not preadditive,
as there is not a good notion of “sum” of two functions between arbitrary sets. Conversely,
Veck is another preadditive category.

We now give a list of some useful special properties enjoyed by Ab.

(a) as we said, it is preadditive

(b) it has a zero object, which in this case is the zero group

(c) it has the direct sum of any two objects; in this case, the usual direct sum of abelian
groups

(d) all morphisms have a kernel and a cokernel ; in this case,

for f : A→ B, ker f = {a ∈ A : f(a) = 0B} and cokerf = B/ im f

(e) 1st Isomorphism Theorem: Any morphism f : A→ B induces an isomorphism

f̄ : A/ ker f → im f.

(more abstractly, an isomorphism f̄ : coker ker f → ker cokerf).
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1.3 Abelian categories

We then give the following definition.

Definition 2 A category C is called an abelian category if it satisfies the properties (1-5)
above.

Example 3 Since abelian categories are modeled after Ab, clearly Ab is an abelian cate-
gory. Other examples are

(a) The category ab of finitely generated abelian groups with group homomorphisms.

(b) Veck

(c) The category Mod(R) of (right) modules of any ring R, with R-linear maps.

(d) The category Coh(X) of coherent sheaves over a scheme X, with morphisms of
sheaves.

In the second part we will meet some other abelian categories, possibly much different from
these.

As counterexamples, the categories Sets and Top mentioned above are not abelian (not
even preadditive). To produce some subtler counterxamples, a good direction could be to
choose a subcategory of an abelian category (which will then be automatically preadditive)
so that some properties of abelian categories fail to hold (e.g., some kernels don’t exist,
because we didn’t include them).

1.4 Sequences

One of the reasons abelian categories are useful is that they provide all the tools needed
to give the following definitions.

Definition 4 Let A be an abelian category, and let a, b ∈ Z∪{±∞}, with a < b. A family
of objects {Ai ∈ A : a < i < b} together with morphisms {φi : Ai → Ai+1 : a < i < b− 1}
is a sequence in A if φi+1 ◦ φi = 0 for every a < i < b− 2.

A sequence in A is commonly depicted as a chain of arrows,

· · · Ai−1 Ai Ai+1 · · ·φi−2 φi−1 φi φi+1

which may or may not go on indefinitely on either side, and such that the composition of
consecutive arrow vanishes. Clearly in order for this definition to make sense there must
be a notion of “zero morphism”, hence we need a preadditive category.

Notice that to ask φi+1 ◦φi = 0 is the same as requiring that imφi ⊆ kerφi+1. We may
therefore give the following definition.

Definition 5 Let A be an abelian category and A• = {Ai, φi : a < i < b} be a sequence
in A. For a + 1 < i < b − 1, the cohomology in degree i of A• (or its i-th cohomology) is
the quotient H i(A•) := kerφi+1/ imφi.
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The reason for the name “cohomologies” will come in a few paragraphs. Clearly coho-
mologies only make sense in degrees where a morphism ends and another morphism starts,
and that is why we exclude the possible extremal indices in the definition. Notice also that
to define cohomologies we are using some more properties of abelian categories, namely
the existence and properties of kernels and cokernels.

Example 6 Consider the chain of morphisms

A• : 0 Z Q S1 0i exp|Q

where i is the natural inclusion and exp|Q is the restriction of the exponential map intro-
duced before. First of all, it is indeed a sequence, as the three possible composition of
consecutive morphisms all vanish:

• 0 −→ Z −→ Q vanishes because its domain is the zero object;

• Z −→ Q −→ S1 vanishes because ∀z ∈ Z exp(z) = e2πiz = 1, which is the neutral
element of S1;

• Q −→ S1 −→ 0 vanishes because its codomain is the zero object.

We can therefore compute its cohomologies. If we number the degrees from left to right
starting from −1, we have

• H0(A•) = ker i/ im 0 = 0/0 = 0;

• H1(A•) = ker exp/ im i = Z/Z = 0;

• H2(A•) = ker 0/ im exp = S1/ im exp ' (R/Z)/(Q/Z) ' R/Q.

1.5 Exact sequences

Definition 7 Let A be an abelian category and A• a sequence in A. If for some degree
i we have H i(A•) = 0, the sequence is said to be exact in degree i. A sequence which is
exact in every degree is said to be exact.

Exact sequences prove to be a useful notational tool, to express relations between
objects of the category. We give the following examples.

Example 8 Let f : A→ B be a morphism in A. Then the sequence

0 A B
f

is exact if and only if f is a monomorphism (i.e. an injective homomorphism of groups, if we
take A = Ab). Indeed, the only cohomology which is defined is in the middle degree: and
there we have H = ker f/ im 0 = ker f , which is zero if and only if f is a monomorphism.
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Example 9 Dually, let g : B → C be a morphism in A. Then the sequence

B C 0
g

is exact if and only if g is an epimorphism (i.e. a surjective homomorphism of groups, if
A = Ab).

Example 10 Glueing the two examples above, we obtain a powerful notational tool: a
sequence

0 A B C 0
f g

is exact (and therefore called a short exact sequence) if and only f is a monomorphism,
g is an epimorphism and C ' B/ im f . Since we can identify im f with A via the 1st
Isomorphism Theorem, such an exact sequence tells us that B is an extension of C with
A, which just means that C = B/A.

For example, some short exact sequences are

0 Z Q Q/Z 0i

0 Z Z Z/2Z 0·2

1.6 (Co)homological Theories and complexes

We now study another use of the sequences we have described so far, which is pervasive in
modern mathematics.

When studying an object of some complicated type (e.g., a topological space, a smooth
real manifold, an algebraic variety and so on) it can be useful to attach to it some algebraic
data, in order to exploit the tools of (often linear) algebra. This is the idea behind all
the (co)homological theories found in many fields of mathematics. The “algebraic data”
mentioned above take the form of a sequence of objects in some abelian category, as we
defined. Common choices for this abelian category are Veck and Ab.

Example 11 (De Rham Cohomology) Let M be a smooth real manifold. For every
natural number n ≥ 0, one can construct the real vector space Ωn(M) of real n-forms on
M ; for example, Ω0(M) is the space of smooth real-valued functions on M , and so on.
For every n ≥ 0, there is also the exterior derivative morphism, i.e. a R-linear application
d : Ωn(M) → Ωn+1(M), which sends an n-form to its differential. This morphisms have
the property that the composition of two consecutive ones of them is the zero morphism,
which is often written d2 = 0. This allows us to associate to M a sequence in VecR

Ω•(M) : 0 Ω0(M) Ω1(M) Ω2(M) · · ·d d d

The cohomologies H i
dR(M) := H i(Ω•(M)) of this sequence, called the de Rham cohomolo-

gies of M , give some information on the original manifold M . For example, if we number
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the degrees following the exponent of Ω, we have that

H0
dR(M) = H0(Ω•(M)) = ker d = {locally constant functions}

H1
dR(M) = H1(Ω•(M)) = ker d/ im d = {closed 1-forms}/{exact 1-forms}

So the dimension of H0
dR(M) as a real vector space counts the number of connected com-

ponents of M ; while H1
dR(M) measures how far is the fundamental theorem of calculus

from holding on M .

To formalise the example above, we give the following definition.

Definition 12 Let A be an abelian category. A (cochain) complex of objects of A
is just a (unbounded) sequence A•, in the sense above, regarded as a single object. The
morphisms of A which appear in A• are called the differentials of A•. Given two complexes
A•, B•, we define a morphism of complexes between them as a family of morphisms of A,
f = {fi : Ai → Bi : i ∈ Z} such that the following diagram commutes:

A• · · · Ai−1 Ai Ai+1 · · ·

B• · · · Bi−1 Bi Bi+1 · · ·
f

dAi−2 dAi−1

fi−1

dAi

fi

dAi+1

fi+1

dBi−2 dBi−1 dBi dBi+1

We define the category of complexes over A, denoted C(A), as the category with objects
the complexes of objects of A and with morphisms the morphisms of complexes.

Example 13 As we saw, the de Rham cohomology theory associates to every smooth
manifold M a complex Ω•(M) of real vector spaces. In addition, it also associates to
every smooth function ϕ : M → N between smooth manifolds a morphism of complexes
ϕ∗ : Ω•(N)→ Ω•(M), defined as follows: for an n-form ω on N , (ϕ∗)n(ω) = ϕ∗ω is the n-
form onM obtained as the pullback of ω along ϕ. In fact, this assignment defines a functor
from the category of smooth manifolds with smooth functions to the category C(VecR).
In essence, this is what all (co)homological theories are: functors between some category
to a category of complexes. By the way, notice that in the case of de Rham cohomology,
a smooth function M → N maps to a morphism of complexes Ω•(N) → Ω•(M), not the
other way around. This means that the functor is contravariant, and this is the case for
cohomological theories. If instead the functor is covariant, i.e. it doesn’t exchange the
direction of morphisms, then the theory is called homological.

1.7 Quasi-isomorphisms and the derived category of A
From the point of view of (co)homological theories, the important part of a complex are its
cohomologies. Luckily, a morphism of complexes f : A• → B• always induces morphisms
between the cohomologies, H i(f) : H i(A•) → H i(B•), for all i ∈ Z in a natural way.
(Incidentally, this means that H i : C(A) → A is a functor, for all i ∈ Z; make sure also
not to confuse H i(f) with the vertical morphism fi : Ai → Bi). Therefore, morphisms of
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complexes can be used to compare the cohomologies of two complexes. In particular, it
can happen that a particular morphism of complexes witnesses the fact that its domain
and codomain complexes have “the same cohomologies”:

Definition 14 Let A be an abelian category, A•, B• ∈ C(A) complexes and f : A• → B• a
morphism of complexes. If for every i ∈ Z the induced morphismH i(f) : H i(A•)→ H i(B•)
is an isomorphism, then f is called a quasi-isomorphism.

We immediately clear the field from a possible doubt.

Remark 15 Quasi-isomorphisms are not isomorphisms! A counterexample is the follow-
ing, which obviously is not an isomorphism:

Z• · · · 0 Z Z 0 · · ·

0 · · · 0 0 0 0 · · ·
0

idZ

All the cohomologies of the complex Z• are zero, and so are clearly the cohomologies
of the zero complex. The induced maps on the level of the cohomologies are therefore
H i(f) = id0 : 0→ 0, isomorphisms for every i ∈ Z, so f is a quasi-isomorphism.

This phenomenon is a bit disappointing, as it means that two complexes may have “the
same cohomologies” while being essentially different from each other; and this doesn’t play
well with our idea of complexes as mere “containers” for their cohomologies. The solution
to this problem is the following.

Construction 16 The reason why a quasi-isomorphism may not be an isomorphism is
that it may lack an inverse morphism of complexes. This is morally the same reason why
Z is not a field, as some elements lack a multiplicative inverse. The solution in that case
is to add formal elements “1/z”, for z ∈ Z∗, with the property that they are inverses of the
corresponding z. We follow the same path, and for every quasi-isomorphism of complexes
s : A• → B• we introduce a formal new morphism s−1 : B• → A• such that s−1 ◦ s = idA•

and s ◦ s−1 = idB• . “Formal” means that there is no hope that s−1 will have a nice
description as a diagram with vertical arrows, as usual morphisms of complexes do. This
precedure, which is called localisation, can be made precise, with a bit of care (see e.g. [6]).

Definition 17 Let A be an abelian category. Under some assumptions on A (eg. if A has
enough injectives or projectives) there exists a category D(A), called the derived category
of A, with objects the complexes of objects of A and as morphisms the usual morphisms
of complexes, the formal inverses of quasi-isomorphisms and all compositions of these.

The hypothesis of this definition hold for a very general family of abelian categories.
In particular, this is the case for our familiar categories Ab and Veck.

The derived category D(A) is very useful from many points of view. For one, it is a
more natural place than C(A) to work with cohomologies of objects: indeed, here complexes
“with the same cohomologies” are “the same”. Even more, D(A) is not an abelian category
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itself, but it still has some additional structure, namely it is a triangulated category. Inside
it, cohomologies assume an even deeper meaning through the notion of t-structures, which
we will not explore.

The derived category of an abelian category is also interesting for another reason.
Indeed, some properties of an abelian category A can be read off its derived category
D(A), making them derived invariants. As a consequence, if two abelian category have
“the same” derived category (meaning that they are derived equivalent), then they must
share these invariants. These invariants are of great interest both in examples coming
from algebra (e.g. from the representation theory of algebras) and in those coming from
algebraic geometry. Moreover, sometimes these two fields come in contact when an abelian
category of algebraic origin is derived equivalent to one of geometric origin (as it is the
case for Repk( • • ) and coh(P1(k)), for an algebraically closed field k).

2 Torsion pairs and HRS-tilting

In this second section, we are going to present a way to construct a new abelian category by
“deforming” a given one. Later we will apply this procedure starting with Ab, and address
the question of whether the category so obtain is derived equivalent to Ab.

2.1 Torsion pairs in abelian categories

The main tool in this “deformation” procedure are torsion pairs. We start with the first
historical example, as a motivation.

Example 18 In Ab, let A be an abelian group. Recall that an element a ∈ A is a
torsion element if there exists a positive integer n ≥ 1 such that na = a + · · · + a = 0,
and a torsion-free element otherwise. The group A is called torsion if all its elements
are torsion elements; it is called torsion-free if its only torsion element is 0. For example,
Z/nZ is a torsion group for every n ≥ 1; while Z is a torsion-free group. Notice that
not every group is either torsion or torsion-free: an example is the circle S1. If we define
Tcan := {torsion groups} and Fcan := {torsion-free groups}, we can verify the following
two properties:

• HomAb(T, F ) = 0 for every T ∈ Tcan, F ∈ Fcan;

• For every abelian group A there is a short exact sequence

0→ T → A→ F → 0 with T ∈ Tcan, F ∈ Fcan.

The first property is easy to prove: let f : T → F , and t ∈ T . Then there exists n ≥ 1
such that nt = 0: and we have nf(t) = f(nt) = f(0) = 0, so f(t) is a torsion element of
F . By hypothesis, it is 0, so f is the zero morphism.

The proof of the second property is sketched with an example. Let A = S1 ' R/Z,
and set T to be the set of torsion elements of A. It is easy to see that it is a subgroup, and
in this case it is T ' Q/Z (complex numbers with argument a rational fraction of a full
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2π). The quotient A/T , which in this case is (R/Z)/(Q/Z) ' R/Q, is always a torsion-free
group, which plays then the role of F .

This example motivates the following definition.

Definition 19 Let A be an abelian category. A pair of classes (T ,F) of objects of A is
called a torsion pair in A, if

• HomA(T, F ) = 0 for every T ∈ T , F ∈ F ;

• For every object A of A there is a short exact sequence

0→ T → A→ F → 0 with T ∈ T , F ∈ F .

T is called the torsion class, and its objects the torsion objects (with respect to this torsion
pair). Similarly, the class F and its objects are called torsion-free.

A torsion pair is a sort of “orthogonal decomposition” of the category A.

Example 20 Some examples of torsion pairs in Ab:

• (Tcan,Fcan), the canonical torsion pair introduced above;

• (Ab, 0) and (0,Ab), the trivial torsion pairs;

• (D,R), where D := {divisible groups} and R := {reduced groups}. A group D is
called divisible if for every x ∈ D and n ≥ 1 there exists y ∈ D such that x = ny
(and so x can be “divided by n”); for example, Q is divisible. On the other hand, a
group R is reduced if the only element which is divisible by every positive integer is
0: i.e. if

⋂
n≥1 nR = 0. For example, Z is reduced.

Notice that the first and the last of the examples above differ substantially: for the
canonical torsion pair, “torsion” is a property defined by elements, while for (D,R) this
is not the case. This can be made more precise by noticing that while for (Tcan,Fcan)
subgroups of torsion groups are torsion groups, for (D,R) this is not the case, as shown by
the counterexample R 3 Z ≤ Q ∈ D. Therefore, we define:

Definition 21 A torsion pair (T ,F) in an abelian category A is called hereditary if T is
closed under subobjects (i.e., subobjects of torsion objects are torsion).

2.2 HRS-tilting

Notice that the definition of a torsion pair is asymmetrical; namely, if (T ,F) is a torsion
pair in A, usually (F , T ) is not a torsion pair. A procedure exists to “swap” the torsion
and torsion-free classes: but in doing so, the abelian category A gets deformed into a new
abelian category, called its HRS-tilt with respect to the torsion pair.

Theorem 22 [2, Proposition 2.1] Let A be an abelian category admitting a derived category,
and let t = (T ,F) be a torsion pair in A. Then there exists an abelian category Ht with
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• as objects, the complexes of objects of A of the form

A• : · · · → 0→ 0→ A−1 → A0 → 0→ 0→ · · ·

such that H−1(A•) ∈ F and H0(A•) ∈ T ;

• as morphisms between two such objects A•, B•, the morphisms between them as ob-
jects of the derived category D(A).

In fact, this new category Ht is abelian for a non-trivial reason: it is the heart of a
t-structure in D(A), as proven in the referenced proposition. But we will not go further in
this direction.

This construction of Ht fulfills its promise to swap T and F . Indeed, notice that
complexes of the form

F [1] = · · · → 0→ 0→ F → 0→ 0→ 0→ · · · , for F ∈ F
T [0] = · · · → 0→ 0→ 0→ T → 0→ 0→ · · · , for T ∈ T

have the required form, so they are objects of Ht. The same reason mentioned above,
involving t-structures, assures that (F [1], T [0]) is a torsion pair in Ht.

2.3 HRS-tilting and derived equivalences

The natural question arises of whether this abelian category Ht is derived equivalent to
A. This was addressed in a paper by Chen, Han and Zhou [1], were they gave a necessary
and sufficient criterion. Its application, however, in general is not so straightforward, for
some technical reasons. In [4], we specialised it in to ways:

• instead of an arbitrary abelian category, we start with a Grothendieck category, i.e.
a cocomplete abelian category in which filtered colimits are exacts, and which has
a generator. This class of abelian categories includes many of the examples coming
from algebra and geometry, namely all categories of modules over a ring (e.g. Ab)
and all categories of coherent sheaves.

• instead of arbitrary torsion pairs, we focus on hereditary ones.

The result is the following.

Proposition 23 Let G be a Grothendieck category, and t = (T ,F) be a hereditary torsion
pair in G. Then the HRS-tilt Ht is derived equivalent to G if and only if there exists an
exact sequence

F → G→ T → 0

where G denotes a generator of G, T ∈ T and F ∈ F .

This criterion is quite direct, since it only amounts to finding a morphism from a
torsion-free object F to G, such that its cokernel is torsion. However, we were able to also
identify which object F ∈ F and which morphism F → G should appear in the sequence
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above, if it exists. Therefore the criterion boils down to checking whether the cokernel of
this morphism is torsion or not.

Theorem 24 [4, Theorem 5.6] Let G, G, t as before. Then Ht is derived equivalent to G if
and only if the object G/trfG(G) belongs to T , where

• fG is the torsion-free part of G;

• trfG(G) is the trace of fG in G: namely the image of the canonical morphism

π : fG(Hom(fG,G)) → G, (xϕ)ϕ : fG→G 7→
∑

ϕ : fG→G
ϕ(xϕ)

Sketch of proof. The idea of this proof is to show that π has “the smallest possible cokernel”
among all morphisms F → G.

In detail, one sees that the doman of π is torsion-free, and so π is a suitable morphism
to play the role of F → G in the Proposition above. Therefore, if its cokernel G/trfG(G) is
torsion, the Proposition guarantees a derived equivalence. Conversely, one can prove that
whenever a sequence as in the Proposition exists, i.e. a morphism F → G with torsion
cokernel T , then there exists an epimorphism T → G/trfG(G); and so the latter object is
torsion as well.

This result can be translated in more concrete terms when G is the category Mod(R)
of (say, right) modules over a ring R (which is a Grothendieck category). In this case, the
ring R itself is a generator, so we may take G = R. As a consequence, also trfR(R) has a
nice description:

Lemma 25 Let R be a ring, (T ,F) a torsion pair in Mod(R), and let tR be the torsion
part (the torsion ideal) of R. Then trfR(R) = Ann(RtR), where

Ann(RtR) := {r ∈ R : rx = 0 for all x ∈ tR}.

In light of this fact, we conclude with a corollary of the Theorem above.

Proposition 26 [4, Corollary 5.11] Let R be a commutative noetherian ring (for example,
R = Z, in which case Mod(R) = Ab). Then, for every hereditary torsion pair t in Mod(R),
the HRS-tilt Ht is derived equivalent to Mod(R).

Proof. Use the notation of the Lemma above. Since R is commutative, for every r ∈ R
and x ∈ t(R) we have rx = xr, in the definition of Ann(RtR). Moreover, since R is
noetherian, tR is finitely generated, say tR = (x1, . . . , xn). Then we can construct a
morphism R→ (tR)n by r 7→ (x1r, . . . , xnr), and it is clear that the kernel of this morphism
is precisely {r ∈ R : xr = 0 for all x ∈ tR} = Ann(RtR). Therefore, it factors through a
monomorphism R/Ann(RtR) ↪→ (tR)n. Now, the latter is a torsion module and the torsion
pair is hereditary, so we conclude that R/Ann(RtR) is torsion as well.
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To see this Proposition in action, we may choose R = Z, so that Mod(R) = Ab. In this
category, hereditary torsion pairs, when ordered by inclusion of their torsion classes, form a
complete lattice, which is isomorphic to the lattice of certain sets of primes (specialisation
closed sets). This is a partial picture of it:

(Ab, 0)

(Tcan,Fcan)

· · · · · · · · ·

· · · · · · · · ·

(0,Ab)

All of them produce a different abelian category via HRS-tilting; and still, all of these
categories are derived equivalent to Ab.

2.4 Further readings

A standard introduction to category theory, from one of the two founders of the field,
is [3], which is rich in examples from various parts of mathematics. More specifically
on homological algebra, [6] explains in detail the constructions of the first part of this
report and various (co)homological theories. The theory of hereditary torsion pairs, and
in particular over a commutative noetherian ring, is exposed in [5] (among many other
interesting things).
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Mathematical modeling in Finance

Andrea Mazzoran (∗)

1 Introduction

The main topic of these notes consists in studying theoretical pricing models for those
financial assets which are known as financial derivatives. Before we give the formal def-
inition of the concept of a financial derivative we will, however, by means of a concrete
example, introduce the single most important example: the European call option.

1.1 Problem Formulation

Let us thus consider a Swedish company, that we call SWE, which today (denoted by
t = 0) has signed a contract with an American counterpart called UNITED. The contract
stipulates that UNITED will deliver 1000 computer games to SWE exactly six months
from now (denoted by t = T ). Furthermore it is stipulated that SWE will pay 1000 US
dollars per game to UNITED at the time of delivery (i.e. at time t = T ). For the sake of
the argument we assume that the present spot currency rate between the Swedish krona
(SEK) and the US dollar is 8.00 SEK/$. One of the problems with this contract from the
point of view of SWE is that it involves a considerable currency risk. Since SWE does not
know the currency rate prevailing six months from now, this means that it does not know
how many SEK it will have to pay at t = T . If the currency rate at t = T is still 8.00
SEK/$ it will have to pay 8, 000, 000 SEK, but if the rate rises to, say, 8.50 it will face
a cost of 8, 500, 000 SEK. For this reason, SWE has to face the problem of how to guard
itself against this currency risk, and now we are going to list a number of natural possible
strategies.

• The most naive strategy for SWE is perhaps to buy $1, 000, 000 today at the price
of 8, 000, 000 SEK, and then keeping this money (in a Eurodollar account) for six
months. The advantage of this procedure is of course that the currency risk is
completely eliminated, but there are also some drawbacks. First of all the strategy
above has the consequence of tying up a substantial amount of money for a long

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 9 December 2020.
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period of time, but an even more serious objection could be that SWE does not have
access to 8, 000, 000 SEK today.

• A more sophisticated arrangement, which does not require any outlays at all today,
is that SWE goes to the forward market and buys a forward contract for $1, 000, 000
with delivery six months from now. Such a contract may, for example, be negotiated
with a commercial bank, and in the contract two things will be stipulated.

– The bank will, at t = T , deliver $1, 000, 000 to SWE.

– SWE will, at t = T , pay for this delivery at the rate of K SEK/$.

The exchange rate K, which is called the forward price, (or forward exchange rate)
at t = 0, for delivery at t = T , is determined at t = 0. By the definition of a forward
contract, the cost of entering the contract equals zero, and the forward rate K is thus
determined by supply and demand on the forward market. Observe, however, that
even if the price of entering the forward contract (at t = 0) is zero, the contract may
very well fetch a nonzero price during the interval [0, T ]. Let us now assume that the
forward rate today for delivery in six months equals 8.10 SEK/$. If SWE enters the
forward contract this simply means that there are no outlays today, and that in six
months it will get $1, 000, 000 at the predetermined total price of 8, 100, 000 SEK.
Since the forward rate is determined today, SWE has again completely eliminated
the currency risk. However, the forward contract also has some drawbacks, which
are related to the fact that a forward contract is a binding contract. To see this let
us look at two scenarios.

– Suppose that the spot currency rate at t = T turns out to be 8.20. Then SWE
can congratulate itself, because it can now buy dollars at the rate 8.10 despite
the fact that the market rate is 8.20. In terms of the million dollars at stake
SWE has thereby made an indirect profit of 8, 200, 000− 8, 100, 000 = 100, 000
SEK, as one can check from Figure 1.1.

– Suppose on the other hand that the spot exchange rate at t = T turns out to
be 7.90. Because of the forward contract this means that SWE is forced to buy
dollars at the rate of 8.10 despite the fact that the market rate is 7.90, which
implies an indirect loss of 8, 100, 000 − 7, 900, 000 = 200, 000 SEK, as one can
check from Figure 1.2.

8.10 SEK/$ 8.20 SEK/$

Today (t = 0) 6 months (t = T )

Figure 1.1. Indirect profit of 8, 200, 000− 8, 100, 000 = 100, 000 SEK.
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8.10 SEK/$ 7.90 SEK/$

Today (t = 0) 6 months (t = T )

Figure 1.2. Indirect loss of 8, 100, 000− 7, 900, 000 = 200, 000 SEK.

• What SWE would like to have of course is a contract which guards it against a high
spot rate at t = T , while still allowing it to take advantage of a low spot rate at
t = T . Such contracts do in fact exist, and they are called European call options.
We will now go on to give a formal definition of such an option.

Definition 1.1.1 A European call option on the amount of X US dollars, with strike
price (exercise price) K SEK/$ and exercise date T is a contract written at t = 0 with the
following properties.

• The holder of the contract has, exactly at the time t = T , the right to buy X US
dollars at the price K SEK/$.

• The holder of the option has no obligation to buy the dollars.

Concerning the nomenclature, the contract is called an option precisely because it gives
the holder the option (as opposed to the obligation) of buying some underlying asset (in
this case US dollars). A call option gives the holder the right to buy, whereas a put option
gives the holder the right to sell the underlying object at a prespecified price. The prefix
European means that the option can only be exercised at exactly the date of expiration.
There also exist American options, which give the holder the right to exercise the option
at any time before the date of expiration. Options of the type above (and with many
variations) are traded on options markets all over the world, and the underlying objects
can be anything from foreign currencies to stocks, oranges, timber or pig stomachs. For a
given underlying object there are typically a large number of options with different dates
of expiration and different strike prices.

We now see that SWE can insure itself against the currency risk very elegantly by
buying a European call option, expiring six months from now, on a million dollars with a
strike price of, for example, 8.00 SEK/$. If the spot exchange rate at T exceeds the strike
price, say that it is 8.20, then SWE exercises the option and buys at 8.00 SEK/$. Should
the spot exchange rate at T fall below the strike price, it simply abstains from exercising
the option. Note, however, that in contrast to a forward contract, which by definition has
the price zero at the time at which it is entered, an option will always have a nonnegative
price, which is determined on the existing options market. This means that SWE will have
the rather delicate problem of determining exactly which option they wish to buy, since a
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higher strike price (for a call option) will reduce the price of the option. One of the main
problems is to see what can be said from a theoretical point of view about the market price
of an option like the one above. In this context it is worth noting that the European call
has some properties which turn out to be fundamental.

• Since the value of the option (at t = T ) depends on the future level of the spot
exchange rate, the holding of an option is equivalent to a future stochastic claim.

• The option is a derivative asset in the sense that it is defined in terms of some
underlying financial asset.

Since the value of the option is contingent on the evolution of the exchange rate, the option
is often called a contingent claim. We can now formulate the two main problems that
arise in the financial mathematical environment.

Main Problems: Take a fixed derivative as given.

• What is a “fair” price for the contract?

• Suppose that we have sold a derivative, such as a call option. Then we have exposed
ourselves to a certain amount of financial risk at the date of expiration. How do we
protect (“hedge”) ourselves against this risk?

Let us look more closely at the pricing question above. There exist two natural and mu-
tually contradictory answers.

Answer 1: “Using standard principles of operations research, a reasonable price for the
derivative is obtained by computing the expected value of the discounted future stochastic
payoff.”

Answer 2: “Using standard economic reasoning, the price of a contingent claim, like
the price of any other commodity, will be determined by market forces. In particular it will
be determined by the supply and demand curves for the market for derivatives. Supply and
demand will in their turn be influenced by such factors as aggregate risk aversion, liquidity
preferences and so on, so it is impossible to say anything concrete about the theoretical
price of a derivative.”

The reason that there is such a thing as a theory for derivatives lies in the following fact.

Main Result: Both answers above are incorrect! It is possible (given, of course, some
assumptions) to talk about the “correct” price of a derivative, and this price is not com-
puted by the method given in Answer 1 above. We can state the basic philosophy here.
The main ideas are as follows.

Main Ideas

• A financial derivative is defined in terms of some underlying asset which already
exists on the market.
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• The derivative cannot therefore be priced arbitrarily in relation to the underlying
prices if we want to avoid mispricing between the derivative and the underlying
price.

• We thus want to price the derivative in a way that is consistent with the underlying
prices given by the market.

• We are not trying to compute the price of the derivative in some “absolute” sense.
The idea instead is to determine the price of the derivative in terms of the market
prices of the underlying assets.

2 Some tools from Stochastic Analysis

2.1 Stochastic Integrals

In order to study asset pricing on financial markets in continuous time, we need to model
asset prices as continuous time stochastic processes, and the most complete and elegant
theory is obtained if we use diffusion processes and stochastic differential equations as
our building blocks. What, then, is a diffusion? Loosely speaking we say that a stochastic
process X is a diffusion if its local dynamics can be approximated by a stochastic difference
equation of the following type.

(2.1) X(t+ ∆t)−X(t) = µ(t,X(t))∆t+ σ(t,X(t))Z(t)

Here Z(t) is a normally distributed disturbance term which is independent of everything
which has happened up to time t, while µ and σ are given deterministic functions. The
intuitive content of (2.1) is that, over the time interval [t, t+ ∆t], the X-process is driven
by two separate terms:

• a locally deterministic velocity µ(t,X(t));

• a Gaussian disturbance term, which is amplified by the factor σ(t,X(t)).

The function µ is called the (local) drift term of the process, whereas σ is called the
diffusion term. In order to model the Gaussian disturbance terms we need the concept of
a Wiener process.

Definition 2.1.1 A stochastic process W is called a Wiener process if the following
conditions hold:

• W0 = 0 almost surely;

• Wt has independent increments, i.e. ∀k ≥ 2 and 0 ≤ t0 < t1 < · · · < tk < ∞ the
random variables {Wti −Wti−1}1≤i≤k are independent;

• Wt has stationary Gaussian centered increments, i.e. ∀t > s ≥ 0 the random variables
Wt −Ws ∼ N (0, t− s);

• Wt has continuous trajectories, i.e. the map t 7→Wt is almost surely continuous.
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Figure 2.1 Some trajectories of a Wiener process.

We may now use a Wiener process in order to write (2.1) as

(2.2) X(t+ ∆t)−X(t) = µ(t,X(t))∆t+ σ(t,X(t))∆W (t)

where ∆W (t) is defined by

(2.3) ∆W (t) = W (t+ ∆t)−W (t).

Let us now try to make (2.2) a bit more precise. It is then tempting to divide the equation
by ∆t and let ∆t tend to zero. Formally we would obtain

(2.4) Ẋ(t) = µ(t,X(t)) + σ(t,X(t))v(t),
X(0) = a

where we have added an initial condition and where

(2.5) v(t) =
dW

dt

is the formal time derivative of the Wiener process W . If v were an ordinary (and well
defined) process we would now in principle be able to solve (2.4) as a standard ordinary
differential equation (ODE) for each v-trajectory. However, it can be shown that with
probability 1 a Wiener trajectory is nowhere differentiable, see for example Karatzas and
Shreve (2014), so the process v cannot even be defined. Thus this is a dead end.

Another possibility of making Equation (2.2) more precise is to let ∆t tend to zero
without first dividing the equation by ∆t. Formally we will then obtain the expression

(2.6)
{
dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t),
X(0) = a
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and it is now natural to interpret (2.6) as a shorthand version of the following integral
equation

(2.7) X(t) = a+

ˆ t

0
µ(s,X(s))ds+

ˆ t

0
σ(s,X(s))dW (s)

In Equation (2.7) we may interpret the ds-integral as an ordinary Riemann integral. The
natural interpretation of the dW -integral is to view it as a Riemann–Stieltjes integral for
each W -trajectory, but unfortunately this is not possible since one can show that the W -
trajectories are of locally unbounded variation. Thus the stochastic dW -integral cannot
be defined in a naive way. As long as we insist on giving a precise meaning to Equation
(2.2) for each W -trajectory separately, we thus seem to be in a hopeless situation. If,
however, we relax our demand that the dW -integral in Equation (2.7) should be defined
trajectory-wise we can still proceed. It is in fact possible to give a global (L2-) definition
of integrals of the form

(2.8)
ˆ t

0
g(s)dW (s)

for a large class of processes g. This new integral concept, the so called Itô integral, will
then give rise to a very powerful type of stochastic differential calculus, the Itô calculus.
The main steps to define this new integral concept are the following:

• define integrals of the type
´ t

0 g(s)dW (s);

• develop the corresponding differential calculus;

• analyze stochastic differential equations of the type (2.7) using the stochastic calculus
above.

In order to proper define the stochastic integral and to construct it in details, we refer
the reader, for example, to Karatzas and Shreve (2014) and Lamberton and Lapeyre (2007).

2.2 Stochastic Differential Equations

Let M(n, d) denote the class of n×d matrices, and consider as given the following objects:

• a d-dimensional (column-vector) Wiener process W ;

• a (column-vector valued) function µ : R+ × Rn −→ Rn;

• a function σ : R+ × Rn −→M(n, d);

• a real (column) vector x0 ∈ Rn.

We now want to investigate whether there exists a stochastic process X which satisfies the
stochastic differential equation (SDE)

(2.9)
dXt = µ (t,Xt) dt+ σ (t,Xt) dWt

X0 = x0.
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To be more precise we want to find a process X satisfying the integral Equation

(2.10) Xt = x0 +

ˆ t

0
µ (s,Xs) ds+

ˆ t

0
σ (s,Xs) dWs, for all t ≥ 0.

The standard method for proving the existence of a solution to the SDE above is to
construct an iteration scheme of Cauchy–Picard type. The idea is to define a sequence of
processes X0, X1, X2, . . . according to the recursive definition

(2.11)
X0
t ≡ x0

Xn+1
t = x0 +

ˆ t

0
µ (s,Xn

s ) ds+

ˆ t

0
σ (s,Xn

s ) dWs

Having done this, one expects that the sequence {Xn}∞n=1 will converge to some limiting
process X, and that this X is a solution to the SDE. This construction can in fact be
carried out, but here we only give the result, the interested reader may refer to Karatzas
and Shreve (2014) for the proof.

Proposition 2.2.1 Suppose that there exists a constant K such that the following condi-
tions are satisfied for all x, y and t:

(2.12)
‖µ(t, x)− µ(t, y)‖ ≤ K‖x− y‖
‖σ(t, x)− σ(t, y)‖ ≤ K‖x− y‖

‖µ(t, x)‖+ ‖σ(t, x)‖ ≤ K(1 + ‖x‖).

Then there exists a unique solution to the SDE (2.9). The solution has the following
properties:

(a) X is FWt -adapted;

(b) X has continuous trajectories;

(c) X is a Markov process;

(d) there exists a constant C such that

(2.13) E
[
‖Xt‖2

]
≤ CeCt

(
1 + ‖x0‖2

)
.

The fact that the solution X is FWt -adapted means that for each fixed t the process
value Xt is a functional of the Wiener trajectory on the interval [0, t], and in this way
an SDE induces a transformation of the space C[0,∞) into itself, where a Wiener tra-
jectory W (ω) is mapped to the corresponding solution trajectory X(ω). Generically this
transformation, which takes a Wiener trajectory into the corresponding X-trajectory, is
enormously complicated and it is extremely rare that one can “solve” an SDE in some “ex-
plicit” manner. There are, however, a few nontrivial interesting cases where it is possible
to solve an SDE, and the most important example for us is the equation below, describing
the so-called Geometric Brownian motion (GBM).
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2.2.1 Geometric Brownian Motion

Geometric Brownian motion will be one of our fundamental building blocks for the mod-
eling of asset prices, and it also turns up naturally in many other places. Its SDE reads as

(2.14)
dXt = αXtdt+ σXtdWt

X0 = x0.

Thus we see that GBM can be viewed as a linear ODE, with a stochastic coefficient driven
by white noise. See Figure 2.2, for a numerical simulation of GBM with α = 1, σ = 0.2
and X(0) = 1. The smooth line is the graph of the expected value function E[Xt] = 1 · eαt.
For small values of σ, the trajectory will (at least initially) stay fairly close to the expected
value function, whereas a large value of σ will give rise to large random deviations. This
can clearly be seen when we compare the simulated trajectory in Figure 2.2 to the three
simulated trajectories in Figure 2.3 where we have σ = 0.4.

Figure 2.2 Geometric Brownian motion: α = 1, σ = 0.2.

Figure 2.3 Geometric Brownian motion: α = 1, σ = 0.4.
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Inspired by the fact that the solution to the corresponding deterministic linear equation
is an exponential function of time we are led to investigate the process Z, defined by
Zt = lnXt, where we assume that X is a solution and that X is strictly positive (see
below). The Itô formula gives us

(2.15)

dZ =
1

X
dX +

1

2

{
− 1

X2

}
[dX]2

=
1

X
{αXdt+ σXdW}+

1

2

{
− 1

X2

}
σ2X2dt

= {αdt+ σdW} − 1

2
σ2dt.

Thus we have the equation

(2.16)
dZt =

(
α− 1

2
σ2

)
dt+ σdWt

Z0 = lnx0

This equation, however, is extremely simple: since the right-hand side does not contain Z
it can be integrated directly to

(2.17) Zt = lnx0 +

(
α− 1

2
σ2

)
t+ σWt

which means that X is given by

(2.18) Xt = x0 · exp

{(
α− 1

2
σ2

)
t+ σWt

}
Strictly speaking there is a logical flaw in the reasoning above. In order for Z to be well
defined we have to assume that there actually exists a solution X to Equation (2.14) and
we also have to assume that the solution is positive. As for the existence, this is covered by
Proposition 2.2.1, but the positivity seems to present a bigger problem. We may actually
avoid both these problems by regarding the calculations above as purely heuristic. Instead
we define the process X by the formula (2.18). Then it is an easy exercise to show that
X thus defined actually satisfies the SDE (2.14). Thus we really have proved the first part
of the following result, which will be used repeatedly in the sequel. The result about the
expected value follows easily.

Proposition 2.2.2 The solution to the equation

(2.19)
dXt = αXtdt+ σXtdWt

X0 = x0

is given by

(2.20) X(t) = x0 · exp

{(
α− 1

2
σ2

)
t+ σW (t)

}
.

The expected value is given by

(2.21) E [Xt] = x0e
αt.
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3 A general Overview on SLV models

One of the central problem in modern mathematical finance is derivative pricing. A deriva-
tive is a financial contract which value depends on an underlying asset which can be an
equity stock, an interest rate or any different financial asset. The difficult concerning
derivative pricing is to define a fair price. For this purpose a mathematical theory is
needed. The well known Black-Scholes model was first introduced in 1973 and nowadays
it represents an universal accepted framework for derivative pricing. In this introduction
we briefly recall the main results of the standard theory, following Bj?ork (2009).

The original Black-Scholes model assumes the existence of a risk free asset Bt and of
an underlying asset St, following respectively a deterministic and a Geometric Brownian
motion dynamics:

dBt = rBtdt(3.1)
dSt = µStdt+ σStdWt,(3.2)

where the deterministic constant µ, σ and r represent respectively the local mean rate
of return of the asset, the volatility of the asset and the short rate interest. Wt is a
standard Wiener process. The model is widely employed as a useful approximation to
reality, however its assumptions are not all empirically valid, see for example Bj?ork (2009).

Therefore, during the last two decades several models have been introduced with the
aim of developing and generalizing the Black-Scholes framework for equity derivatives
pricing. In particular, two main strands of research have been widely developed and used:
Local Volatility (LV) models and Stochastic Volatility (SV) models.
Local Volatility models were introduced for the first time by Dupire et al. (1994) and
Derman and Kani (1994) and they assume that the diffusion coefficient of the underlying
asset is no longer a constant value but instead a deterministic function of time and of the
underlying asset itself, namely

dSt = (r − d)Stdt+ ηS (St, t)StdWt,

where r and d are the risk-free interest rate and the dividend rate, respectively, and the
function ηS is the so-called local volatility function.
In the Stochastic Volatility models instead, like in the highly celebrated Heston (1993), the
volatility itself is considered to be a stochastic process vt with its own dynamics. Thus,
this is a two-factor model, driven by two correlated Wiener processes Wt and Zt with
correlation ρ, namely

dSt = (r − d)Stdt+ f (vt)StdWt

dvt = a (vt, t) dt+ c (vt, t) dZt

dWtdZt = ρdt,

where r and d are the risk-free interest rate and the dividend rate, respectively, and f, a, c
are functions of vt.

Both of these models present many advantages, but also some drawbacks. The main
advantage of local volatility models is their capability of a theoretically perfect fit of the
market quoted plain vanilla options. If a good calibration of a local volatility model is
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performed, the model can reproduce the market prices. Unfortunately, one of its main
drawbacks is that its implied volatility dynamics is inconsistent with the observed one. On
the other hand, a stochastic volatility model is able to reproduce a consistent dynamics,
but not to fit exactly the market prices.
One of the possible answers to overcome such limitations is to look for a model with a
stochastic volatility dynamics which can well replicate the market prices at the same time.
The key ingredient to reach this is to merge the LV and the SV models characteristics in
a suitable and consistent manner. More precisely, the main idea is to model the diffusion
coefficient of the underlying asset process St as the product between a stochastic component
f(vt) and a deterministic function `(St, t). Thus, this generalized stochastic-local volatility
(SLV) model, that dates back to Lipton (2002), is described by the following dynamics

dSt = (r − d)Stdt+ ` (St, t) f (vt)StdWt

dvt = a (vt, t) dt+ c (vt, t) dZt

dWtdZt = ρdt,

where r and d are the risk-free interest rate and the dividend rate, respectively, f ,a,c are
functions of vt and ρ is the correlation between the Wiener processes Wt and Zt. The
function `S is the so-called leverage function.
The pivotal element of SLV models is the function `S that can be computed via an appli-
cation of the Gyöngy lemma, see for example Gyöngy (1986).
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Weak KAM, Homogenization and
Ergodic Control: an introduction

Hicham Kouhkouh (∗)

Abstract. This seminar is intended for non-specialists to whom I would first and succinctly in-
troduce the general ideas behind the weak KAM theory in dynamical systems, the theory of
homogenization in the analysis of PDEs and the theory of ergodic control. I will then and espe-
cially insist on the link between them, and which manifests itself in a particular PDE known as
"ergodic stationary Hamilton-Jacobi equation". A qualitative study of these problems will also be
discussed, and a link with an optimization problem in the space of measures will be mentioned.
For the sake of clarity, I will focus on the deterministic case, but much of these results are valid in
a stochastic framework.

1 Introduction

The aim of these notes is to summarize the seminar that the author gave as part of the
PhD requirements in the department of mathematics of Padova University. The goal was
to present this field of research to other graduate students who are not necessary familiar
with and provide a qualitative insight of the different material presented.

The partial differential equations techniques related to the material presented in the
sequel rely on viscosity methods. We refer to the book of Bardi & Capuzzo-Dolcetta [4]
and to the user’s guide [6] by Crandall, Ishii & Lions. Moreover, the present manuscript
does not include sufficient references related to these topics. We refer for instance to the
monograph [1] and the references therein. Finally, we refer to Fathi’s book [11] (available
online) for the weak KAM theory.

All the results are well known and are not due to the author. In particular, most of
the material in §2 and §3 is taken from Evans [9], while §4 is taken from Barles [5]. See
also the references therein for further details. And other references are quoted whenever it
is needed. Mistakes or typos, if they exist, are of the responsibility of the author (H.K.).

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 16 December 2020.
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2 On Weak KAM

Let Tn = [0, 1]n be the n-dimensional unit cube in Rn with opposite faces identified.

Definition 2.1 We call a Lagrangian L(v, x) a function L : Rn × Tn → R, where
x = (x1, . . . , xn) ∈ Tn is the position variable and v = (v1, . . . , vn) ∈ Rn is the velocity.

If instead of Tn we are on a general manifold M , the Lagrangian L will be defined on
its tangent bundle TM := {(v, x) |x ∈M and v ∈ TxM}. Indeed, T (Tn) = Rn ×Tn.

We will hereafter make the following assumptions on the Lagrangian function L

(i) (uniform convexity) there exist constants 0 < γ ≤ Γ such that

γ|ξ|2 ≤
n∑

i,j=1

Lvi,vj (v, x)ξiξj ≤ Γ|ξ|2

for all ξ, v, x; and

(ii) (periodicity) the mapping

x 7→ L(v, x) is Tn-periodic

for all x.

Definition 2.2 Given a curve x : [0, T ]→ Rn, we define its action to be

AT [x(·)] :=

ˆ T

0
L(ẋ(t),x(t)) dt

where ˙ = d
dt · is the time derivative.

Definition 2.3 If x : [0, T ]×Rn satisfies

AT [x(·)] ≤ AT [y(·)]

for all curves y(·) satisfying y(0) = x(0) and y(T ) = x(T ), we call x(·) a minimizer of (or
a minimizing curve for) the action AT [·] on the time interval [0, T ].

The next theorem is a well known result in Calculus of Variations.

Theorem 2.4 (Euler-Lagrange equation) Suppose that x0, xT ∈ Rn are given, and define
the admissible class of curves

A := {y ∈ C2([O, T ];Rn |y(0) = x0, y(T ) = xT }.

Suppose x(·) ∈ A and
AT [x(·)] = min

y∈A
AT [y(·)].
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Then the curve x(·) solves the Euler-Lagrange equations

(2.1) − d

dt
(DvL(ẋ,x)) +DxL(ẋ,x) = 0 (0 ≤ t ≤ T ).

Example 2.5 The Lagrangian L = |v|2
2 − W (x) is the difference between the kinetic

energy |v|
2

2 and the potential energyW (x). In this case the Euler-Lagrange equations (2.1)
read

ẍ = −DW (x).

Theorem 2.4 motivates the following definition.

Definition 2.6 We define the minimal action to go in time T from an intial position x0

to a final position xT in Rn by the function

hT (x0, xT ) = AT [x(·)] = min
y∈A

AT [y(·)]

The minimal action plays an important role in the weak KAM theory, but not only.
Indeed it allows us to define the so-called Lax-Oleinik semigroup which is behind many
concepts in analysis, calculus of variations and dynamical systems.

Definition 2.7 Let u ∈ C(Tn) and set

(2.2) T−t u(x) := inf

{
u(x(0)) +

ˆ t

0
L(ẋ(s),x(s))ds

∣∣∣∣x(t) = x

}
.

where the infimum is taken over all admissible curves defiend on [0, t] and satisfying x(t) =
x. We call the family of nonlinear operators {T−t }t≥0 the Lax-Oleinik semigroup.

Remark 2.8 Using the minimal action, the function x 7→ T−t u(x) can be expressed as

T−t u(x) = inf
y∈Tn
{u(y) + ht(y, x)}.

We state in the following some properties of the Lax-Oleinik semigroup when acting
on the space of continuous functions on Tn endowed with the max norm ‖ · ‖.

Proposition 2.9 Recall the family of nonlinear operators {T−t }t≥0 defined above. Then
the following hold

(a) T−t ◦ T−s = T−t+s (semigroup property).

(b) f ≤ g implies T−t f ≤ T−t g.
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(c) T−t (f + c) = T−t f + c.

(d) ‖T−t f − T−t g‖ ≤ ‖f − g‖ (nonexpansiveness).

(e) for all f ∈ C(Tn), lim
t→0

T−t f = f uniformly.

(f) for all f , t 7→ T−t f is uniformly continuous.

We are now ready to state an important result in weak KAM theory due to A. Fathi [10].

Theorem 2.10 (Weak KAM Theorem) There exists a function u ∈ C(Tn) and a unique
constant c ∈ R such that

T−t u− + c t = u− for all t ≥ 0.

The proof relies on the following abstract theorem about nonlinear mappings on a
Banach space X.

Theorem 2.11 (Common fixed points) Suppose {φt}t≥0 is a semigroup of nonexpansive
mappings of X into itself. Assume also for all t > 0 that φt(X) is precompact in X and
for all x ∈ X that t 7→ φt(x) is continuous.
Then there exists a point x∗ such that

φt(x
∗) = x∗ for all times t ≥ 0.

Sketch of proof. (Weak KAM Theorem) For u, û ∈ C(Tn), we write

u ∼ û if u− û ≡ constant,

and define the equivalence class

[u] := {û |u ∼ û}.

Set
X := {[u] |u ∈ C(Tn)}

with the norm
‖[u]‖ := min

a∈R
‖u+ a1‖,

where 1 denotes the constant function identically equal to 1.
We have Tt : X → X, according to property (3) of Proposition 2.9. Hence Theorem 2.11

insures the existence of a common fixed point

T−t [u]∗ = [u]∗ (t ≥ 0).
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Selecting any representative u− ∈ [u]∗, we see that

T−t u− = u− + c(t)

for some c(t). The semigroup property implies c(t + s) = c(t) + c(s), and consequently
c(t) = ct for some constant c.

The weak KAM theorem stated above brings to light two components: a continuous
function u− and a unique constant c. In what follows we will see how to characterize these
two elements, first through a partial differential equation, and then via an optimization
problem on the space of measures.

Characterization of u.

Recalling the definition (2.2) of the Lax-Oleinik semigroup T−t , we have for any function
u(·) and for all x(·) such that x(t) = x

(2.3) T−t u(x) ≤ u(x(0)) +

ˆ t

0
L(ẋ(s),x(s)) ds.

In particular, when plugging the function u− and using the weak KAM theorem, one gets

T−t u−(x) + ct = u−(x) ≤ u−(x(0)) +

ˆ t

0
L(ẋ(s),x(s)) ds+ ct.

Recalling x(t) = x, one has

u−(x(t))− u−(x(0))

t
≤ 1

t

ˆ t

0
L(ẋ(s),x(s)) ds+ c.

Assume now the gradient of u− exists almost everywhere (for example when u− is Lipschitz
continuous) and the admissible curve x is Lipschitz continuous. Then letting t → 0 and
setting ẋ(0) = v ∈ Rn, one finally gets

v ·Du−(x) ≤ L(v, x) + c.

The latter holds for any v ∈ Rn, that is

H(Du−(x), x) ≤ c,

where H is the Hamiltonian and is defined by H(p, x) := max
v∈Rn

{v · p − L(v, x)}, i.e. the

Legendre-Fenchel conjugate of the Lagrangian L. When L is defined on the tangent bundle
TM of a general manifold M , the Hamiltonian is defined on its cotangent bundle T ∗M
and p is referred to as the costate variable, or in mechanics as the momentum.

Finally, the previous computations show us that provided we have an equality in (2.3)
(for example when using a minimizing curve), the function u− solves the partial differential
equation

(2.4) H(Du−(x), x) = c
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almost everywhere in Rn. We usually refer to such equation as an ergodic Hamilton-Jacobi
equation. It appears that the right notion of (weak) solution to such an equation is u−
being a viscosity solution. The proof that this is indeed the case follows [8]. This is
summarized in the following theorem.

Theorem 2.12 The function u− in the weak KAM theorem is a viscosity solution to (2.4).

Characterization of c.

Before we characterize the unique constant c in the weak KAM theorem, we need some
definitions.

Recall the Euler-Lagrange equation (2.1) and consider the corresponding initial-value
problem −

d

dt
(DvL(ẋ,x)) +DxL(ẋ,x) = 0

x(0) = x, ẋ(0) = v.

We define the flow map {φt}t∈R on T (Tn) by the formula

φt(v, x) := (v(t),x(t)),

where v(t) := ẋ(t).

Definition 2.13 A probability measure µ on the tangent bundle T (Tn) is flow invariant
if ˆ

T (Tn)
Φ(φt(v, x))dµ =

ˆ
T (Tn)

Φ(v, x)dµ

for each bounded continuous function Φ.

Flow invariance is somtimes also denoted by φt]µ = µ for all t, where φt]µ is the
push-forward of µ defined by

ˆ
T (Tn)

Φ(φt(v, x))dµ =

ˆ
T (Tn)

Φ(v, x)d(φt]µ), ∀Φ bounded continuous.

We will finally denote by π the projection of T (Tn) onto Tn, that is for all (v, x) ∈ T (Tn)

π(v, x) := x.

In particular, one has (ẋ(t),x(t)) = φt(v, x) and x(t) = π(φt(v, x)).
Let us now rewrite (2.3) using the weak KAM theorem and the above definitions

u−(π(φt(v, x))) ≤ u−(π(v, x)) +

ˆ t

0
L(φs(v, x)) ds+ ct

We can now integrate with respect to a flow invariant measure µ
ˆ
T (Tn)

u−(π(φt(v, x))) dµ ≤
ˆ
T (Tn)

u−(π(v, x)) dµ+

ˆ
T (Tn)

ˆ t

0
L(φs(v, x)) dsdµ+ ct.
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Using Definition 2.13, one gets

0 ≤
ˆ t

0

ˆ
T (Tn)

L(v, x) dµds+ ct

which finally yields after simplifying by t

−c ≤
ˆ
T (Tn)

L(v, x) dµ, for all µ flow invariant.

This motivates the following theorem.

Theorem 2.14 The constant c from the weak KAM theorem is given by

c = − inf

{ˆ
T (Tn)

L(v, x) dµ
∣∣∣∣∀µflow invariant, probability measure

}
.

This is an optimization problem over the set of probability measures satisfying the flow
invariane constraint. Such a problem is known as Mather variational problem. And one
of the goals of weak KAM theory is the study of the support of the measures solving this
problem, also known as Mather sets, in terms of the underlying Hamiltonian dynamics.

To sum up.
The weak KAM theorem as we stated above
puts in light two components: a function u−
and a constant c. We have seen that one can
characterize each of them by means either
of a partial differential equation or by an
optimization problem. We will see in what
follows the link of these two elements with
other theories that although they have been
developed independently, they are still inti-
mately related to the latter.

Homogenization

Ergodic Control

constant cfunction u−(·)

weak KAM

3 On Homogenization

Homogenization is related to "averaging": we want to provide a macroscopic description
to phenomena with microscopic behavior, through a smart averaging procedure. In other
words, we want to extract "averaged" information from disordered/heterogenous media,
or also to describe the behavior of a multiscale phenomenon. Such averaging is obtained
with an aymptotic analysis. Indeed, denoting by ε� 1 the ratio between the microscopic
and macroscopic levels, our phenomenon is then described by x (for the macroscopic level)
and by x

ε (for the microscopic level). Homoegenization is then concerned with the study
of what happens when ε→ 0.
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We will consider in what follows an instance of first order partial differential equations
and see how homogenization translates in this situation. The results in this section are
due to Lions, Papanicolaou & Varadhan [12].

Theorem 3.1 (Homogenization) Suppose g is bounded and uniformly continuous, and uε

is the unique bounded, uniformly continuous viscosity solution of the initial-value problem∂tu
ε +H

(
Duε,

x

ε

)
= 0, (t > 0)

uε = g, (t = 0).

Then uε → u locally uniformly, where u solves the homogenized equation{
∂tu

ε +H(Du) = 0, (t > 0)

u = g, (t = 0).

Before we sketch the proof, we need the following result which concerns H(·) called the
effective Hamiltonian, and the problem (3.1) is called the Cell problem.

Theorem 3.2 (Effective Hamiltonian) For each vector P ∈ Rn, there exists a unique real
number c(P ) for which we can find a viscosity solution of

(3.1)

{
H(P +Dxv, x) = c(P )

v is Tn − periodic.

Remark 3.3 Notice that the problem (3.1) writes as (2.4). It suffices indeed to write for a
fixed P ∈ Rn, ω(x) := P ·x+v(x). Then Dω = P+Dxv and (3.1) becomes H(Dω, x) = c.

Sketch of proof (Effective Hamiltonian). Step 1. (Existence) We approximate the problem
(3.1) by a sequence of other problems

εvε +H(P +Dxv
ε, x) = 0

for which it is easy to show existence of a unique solution vε by the usual viscosity methods.
Now since H is periodic in x, uniqueness implies vε is also periodic.
We assume moreover we have the following uniform estimates

max |Dxv
ε|, |εvε| ≤ C.

Hence we may extract subsequences for which

vεj → v uniformly, εjvεj → −c(P ).

It is then straightforward to confirm that v is a viscosity solution of H(P +Dxv, x) = c(P ).
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Step 2. (uniqueness of c(P )) Suppose also

H(P +Dxv̂, x) = ĉ(P ).

We may assume that ĉ(P ) > c(P ) and that v̂ < v, upon adding a constant to v, if necessary.
Then

δv̂ +H(P +Dxv̂, x) > δv +H(P +Dxv, x)

in viscosity sense, if δ > 0 small. The viscosity solution comparison principle then implies
the contradiction v̂ ≥ v.

Sketch of proof (Homogenization). Let φ be a smooth function and suppose that u−φ has
a strict maximum at the point (x0, t0). Define the perturbed test function

φε(x, t) := φ(x, t) + εv
(x
ε

)
,

where v is a periodic viscosity solution of

H(P +Dv, x) = H(P )

for P = Dφ(x0, t0).
Assume for the rest of the discussion that v is smooth. Then φε is smooth and uε− φε

attains a max at a point (xε, tε) near (x0, t0). Consequently

∂tφ
ε +H

(
Dφε,

xε
ε

)
≤ 0.

And then

∂tφ+H
(
Dφ(xε, tε) +Dv

(xε
ε

)
,
xε
ε

)
≈ ∂tφ+H(Dφ(x0, t0)) ≤ 0.

The reverse inequality similarly holds if u− φ has a strict minimum at the point (x0, t0).
We refer to [7] for the case when v is not smooth.

4 On Ergodic Control

Before we move to ergodic control, let us first recall the minimal action in Definition 2.6

hT (x0, xT ) = min
x(·)∈A

{ˆ T

0
L(ẋ(s),x(s)) ds

∣∣∣∣ x(0) = x0,x(T ) = xT

}
.

This is a calculus of variations problem where we aim at finding a curve s 7→ x(s) which
minimizes during the time interval [0, T ] some running cost L (the Lagrangian) that de-
pends on its velocity ẋ and position x. In particular we are supposing we do have access
to the velocity of each curve, i.e. we can observe (or measure) the velocity. Optimal con-
trol theory deals with the case where we do not have a direct access to the full vector
of velocity, but we have rather the possibility to choose some parameter which intervenes
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in its velocity. This is formulated by a controlled (or parametrized) ordinary differential
equation, and the problem writes for example as

uT (x0, xT ) = min
α(·)

ˆ T

0
L(α(s),x(s)) ds

subject to: ẋ(s) = F (x(s), α(s)), s ∈ (0, T )

x(0) = x0, x(T ) = xT .

where α(·) : [0, T ]→ A is the control and A is a subset of Rn for example.

Remark 4.1 In the particular case of F (α, x) = α, we have uT (x0, xT ) = hT (x0, xT ).

Ergodic control problems deal with the case where we are interested in the behavior
of the function uT (·, ·) as T → +∞, and also aim at characterizing the limit of 1

T uT as
T → +∞ in addition to the corresponding long time behavior of the optimal trajectories.
In the sequel, we will drop the dependency of uT (·) on the final position xT , and consider
it as a function of the initial position x0 and of the time horizon T . We will then write
u(x, T ).

Before we go any further, let us state a result on the characterization of the value
function u(·, ·) as the unique solution to a first order Hamilton-Jacobi equation. We denote
by H(x, p) the Hamiltonian and is defined as

H(x, p) = sup
a∈A
{−F (x, a) · p− L(a, x)}.

We assume in addition that H satisfies the following

(a) H is Zn-periodic in x, i.e. H(x+ z, p) = H(x, p) for all z ∈ Zn, for all x, p ∈ Rn;

(b) H is coercive, i.e. H(x, p)→ +∞ when |p| → +∞, uniformly in x.

Using Dynamic Programming principle, one can prove that the value function uT sat-
isfies in the viscosity sense the Hamilton-Jacobi equation

(4.1) ∂tu(x, t) +H(x,Du) = 0, in Rn × (0,+∞)

complemented with the initial condition u(x, 0) = 0.

Theorem 4.2 Under the standing assumption, there exists a unique solution u to the
Hamilton-Jacobi equation (4.1) that is periodic in x and Lipschitz contiuous in x and t on
Rn × (0,+∞).

Proof. See for instance [5, Theorem 10.1].

The first question one deals with in ergodic control is the limit (whether it exists or
not) of the time average of the value function 1

tu(x, t) as t → +∞. This is the object of
the next theorem.
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Theorem 4.3 Under the standing assumptions, there exists a constant c ∈ R such that

u(x, t)

t
→ c, as t→ +∞ uniformly w.r.t. x ∈ Rn.

Proof. See for instance [5, Theorem 10.2].

In the light of the previous sections, we are tempted by asking whether one can charac-
terize the constant c in the latter theorem. Moreover, a natural question that also arises is
whether u(x, t)− ct defines a certain particular function v(x). In this case, one can assert
that the value function u(x, t) admits an asymptotic behavior of the form u(x, t) ≈ ct+v(x)
as t goes to infinity.

Indeed, if one plugs ct+v(x) in the Hamilton-Jacobi equation (4.1), then (c, v(·)) should
satisfy

(4.2) c+H(x,Dv) = 0.

But this is nothing but a Cell problem (for P = 0) as in (3.1) or again an ergodic Hamilton-
Jacobi equation as in (2.4). Remember that for such equation, both the constant c and
the function v(·) are unknown. We then have the result due to Lions, Papanicolaou &
Varadhan [12] and that we have already mentioned in Theorem 3.2.

Theorem 4.4 Under the standing assumptions, there exists a unique constant c ∈ R such
that the equation (4.2) has a periodic and Lipschitz continuous solutions.

Under further assumptions, one can show that u(x, t)−ct does indeed converge to v(x).
See for instance [5, Theorem 10.5].

Other important questions concern the behavior of the optimal trajectories as the time
horizon goes to infinity. The work of Arisawa [2, 3] answered some of these questions.

5 Conclusion

An important problem in weak KAM is the search and study of subsets invariant by the
flow of the dynamics. It appears that these invariant subsets are related to the support
of the invariant measure that minimizes the action and which is in turn related to the
regularity of the solution to the HJ equation. This connexion is very deep, and establishes
a link between several fields of research.

Other important questions concern the constant c , its uniqueness and its physical
(dynamical) interpretation. In fact, it is somehow the level-0 of the energy of the system.
Note in addition that a direct link with quantum mechanics does exist which leaves open
many other questions. An extension to a stochastic framework is also possible.

Finally, we saw the problem of calculus of variations (no agent) and a control problem
(one agent), but we can do the same for the problem of games (two agents), and mean field
games (infinitely many agents).
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A Appendix: Viscosity solutions

We recall from [4] some basic theory of continuous viscosity solutions of the Hamilton-
Jacobi equation (HJ) of the general form

F (x, u(x), Du(x)) = 0, x ∈ Ω

where Ω is an open domain of Rn and the Hamiltonian F = F (x, r, p) is a continuous rela
valued function on Ω×R×Rn.

Definition A.1 A function u ∈ C(Ω) is a viscosity subsolution of (HJ) if, for any ϕ ∈
C1(Ω)

F (x0, u(x0), Dϕ(x0)) ≤ 0

at any local maximum point x0 ∈ Ω of u−ϕ. Similarly, u ∈ C(Ω) is a viscosity supersolution
of (HJ) if, for any ϕ ∈ C1(Ω),

F (x1, u(x1), Dϕ(x1)) ≥ 0

at any local minimum point x1 ∈ Ω of u− ϕ. Finally, u is a viscosity solution of (HJ) if it
is simultaneously a viscosity sub- and supersolution.

Geometrically, this means that the vailidity of the subsolution (resp. supersolution)
condition for u is tested on smooth functions "touching from above (resp. below)" the
graph of u at x0 (resp. x1).

The following proposition explains the local character of the notion of viscosity
solution and its consistency with the classical pointwise definition.

Proposition A.2

(a) if u ∈ C(Ω) is a viscosity solution of (HJ) in Ω, then u is a viscosity solution of (HJ)
in Ω′, for any open set Ω′ ⊂ Ω;

(b) if u ∈ C(Ω) is a classical solution of (HJ), that is, u is differentiable at any x ∈ Ω
and

F (x, u(x), Du(x)) = 0, ∀ x ∈ Ω

then u is a viscosity solution of (HJ);

(c) if u ∈ C1(Ω) is a viscosity solution of (HJ), then u is a classical solution of (HJ).

Proof. See in [4] proof of Proposition 1.3.

Lemma A.3 Let u ∈ C(Ω). Then,

(a) p ∈ D+u(x) if and only if there exists ϕ ∈ C1(Ω) such that Dϕ(x) = p and u − ϕ
has a local maximum at x;

(b) p ∈ D−u(x) if and only if there exists ϕ ∈ C1(Ω) such that Dϕ(x) = p and u − ϕ
has a local minimum at x.
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Proof. See in [4] proof of Lemma 1.7

As a direct consequence of the previous Lemma, the following new definition of viscosity
solution turns out to be equivalent to the initial one: a function u ∈ C(Ω) is a viscosity
subsolution of (HJ) in Ω if

F (x, u(x), p) ≤ 0, ∀ x ∈ Ω, ∀ p ∈ D+u(x)

a viscosity supersolution of (HJ) in Ω if

F (x, u(x), p) ≥ 0, ∀ x ∈ Ω, ∀ p ∈ D−u(x)

The following proposition is a consistency result that improves Proposition A.2.

Proposition A.4

(a) If u ∈ C(Ω) is a viscosity solution of (HJ), then

F (x, u(x), Du(x)) = 0

at any point x ∈ Ω where u is differentiable;

(b) if u is locally Lipschitz continuous and it is a viscosity solution of (HJ), then

F (x, u(x), Du(x)) = 0, almost everywhere in Ω.

Proof. See in [4] proof of Proposition 1.9.
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An introduction to the moduli space of
smooth curves and its compactification

Angelina Zheng (∗)

Abstract. The moduli space of algebraic curves is a central object in algebraic geometry. The
idea behind this space is that it answers to a classification problem, by allowing us to classify
algebraic curves up to isomorphisms. Nonetheless, the geometry of this space is rather abstract
and subtle, and only few general statements are known. The aim of this talk is to give an elementary
introduction to the moduli space of n-pointed smooth curves of genus g and its compactification:
we will define the main ingredients and present some basic properties. We will also discuss basic
examples in order to get familiar with these spaces. One way to understand these spaces is by
computing some topological invariants, such as their cohomology groups. In general, their full
cohomology ring is still unknown, but we have a complete description for some values of g, which
I will present in the final part.

1 Introduction

We set our ground field to be the field of complex numbers C. The main goal of this semi-
nar is to give a basic introduction to the moduli space of n-pointed smooth curves of genus
g and its compactification. First of all, we will give the definition of a moduli space. The
idea behind these spaces is that they allow us to classify objects up to some equivalence
ralation. We will start with a very basic examples, coming from linear algebra.

Example 1 We would like to classify finite-dimensional vector spaces over a field k up
to ismorphisms. We know that two vector spaces V,W are isomorphic if and only if
dimk V = dimkW. Thus we can write

{finite-dimensional vector spaces over k}/iso ∼= Z≥0

[V ] 7→ dimk V.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 3 February 2021.
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So we can identify all finite-dimensional vector spaces with the set of positive integers.
Note however that Z≥0 is not a vector space. Indeed, we would like our “classifying space” to
have a similar structure of the objects that we are classifying. Consider then the following
example.

Example 2 We would like to classify all lines in Cn+1, up to the equivalence relation
“being parallel”, which is the same as classifying all distinct lines through the origin. Each
line is then determined by a non-zero vector v ∈ Cn+1\{0} and two lines are equal if and
only they are spanned by two vectors v, w ∈ Cn+1 which are linearly dependent, i.e if there
exists λ ∈ C∗ s.t. v = λw. Thus,

{lines inCn+1}/ ∼ ∼= Cn+1\{0}/C∗ =: Pn

Here, both lines and the projective space have the structure of algebraic varieties and
this is what we are actually looking for in a moduli space.
We will indeed consider the category of algebraic varieties over C : V arC. (Note however
that the following can be adapted to any category). First of all we need to define a moduli
problem (in the category of varieties).

Definition 1 A moduli problem is the data of

• A class of objects, hence varieties, A, plus a notion of what it means to have a family
F(B) of objects in A over a variety B;

• for any variety B, an equivalence relation on F(B), and consequently on the objects
in A.

IfM is a variety, such that:

(a) M = A/ ∼;

(b) for any family f : X→ B, the map

φf : B→M
b 7→ [Xb]

is a morphism of varieties;

thenM is a coarse moduli space.
If there also exists a universal family U g−→M such that any family f : X → B makes the
following diagram commutative:

X ∼= B×M U U

B M
f g

φf
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thenM is a fine moduli space.
Since we are only interested in giving an idea of the spaces defined above, we won’t enter
in details and we won’t discuss families but we will only think of moduli spaces as set of
isomorphism classes.
Consequently, we won’t even distinguish coarse and fine moduli spaces, whose difference is
mostly based on the presence of non-trivial automorphisms for the ojects in A, which do
not allow the existence of a universal family.

2 Mg,n

We would like to classify

A = {smooth irreducible projective n-pointed curves of genus g}/ ∼;

Even though we won’t discuss families, just for completeness, here F(B) = {proper flat morphisms f :
C → B; Cb ∈ A}; where the isomorphism can be extended naturally to families.
In the following we recall the definition of the main ingredients.

Definition 2

• A curve C is a variety of dimension 1.

• an n-pointed curve is curve C together with n distinct points p1, . . . , pn ∈ C;

• C is projective if it is the vanishing locus of a finite set of homogeneous polynomials
f1, . . . , fr ∈ C [x0, . . . , xN ] ;

• C is irreducible if it is not the union of two proper closed subsets (in the Zariski
topology);

• C is smooth if rank
(
∂fi
∂xj

(p)
)
≥ N − 1 for any p ∈ C.

Definition 3 Let C be a smooth projective curve. Its geometric genus is defined to be

pg(C) = dimH0(C,Ω1
C),

where Ω1
C is the cotangent line bundle of C.

Its arithmetic genus is defined to be

pa(C) = 1− χ(C,OC),

where OC is the structure sheaf of C.

Note that for smooth projective irreducible curves, pg(C) = pa(C).
All this terminology might sound very complicated, however, there is another approach for
studying algebraic curves, which is via Riemann surfaces. Indeed, since we are working
over the complex number, if we consider C with the complex topology instead, we get a
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compact connected manifold of complex dimension 1, i.e. a compact connected oriented
real surface withoud boundary, called compact Riemann surfaces.
From the classification of closed connected surfaces, each Riemann surface is homeomorphic
to a sphere or a connected sum of g tori, g ≥ 1.

Definition 4 The number g is called the topological genus of the surface.

It turns out that the arithmetic (or geometric) genus of an algebraic curve is equal to
the topological genus of the underlying surface.

Definition 5 An n-pointed curve is a curve C together with n distinct points p1, . . . , pn ∈
C.

From now on we will consider only curves having g, n such that 2g − 2 + n > 0. The
reason behind this assumption will be discussed later in the next section.

Theorem 2.1 (Deligne-Mumford) There exist coarse moduli spacesMg andMg,n, which
are irreducible quasi-projective algebraic varieties of dimension 3g − 3 and 3g − 3 + n,
respectively.

We end this section by discussing some examples.

Example 3 Le g = 0. From the assumption 2g − 2 + n > 0 we require n ≥ 3.

M0,3 : We recall first the following fact

Proposition 2.2 A projective smooth curve of genus 0 must be isomorphic to P1.

As a consequence, any 3-pointed curve of genus 0 is isomorphic to (P1; p1, p2, p3).
Moreover, Aut(P1) = PGL(2) = GL(2)/C∗ and its action on P1is 3-transitive,
meaning that for any three distinct points p1, p2, p3 there is a unique automorphism
sending them to 0, 1,∞. Thus (P1; p1, p2, p3) ∼= (P1, 0, 1,∞) andM0,3 = pt.

M0,4 : From what we saw above, any curve (C; p1, p2, p3, p4) can be uniquely identifed with
(P1; 0, 1,∞; t), for some t 6= 0, 1,∞.
Thus,M0,4 = P1\{0, 1,∞}.

M0,n : We can generalize the result obtained for n = 4 : each curve (C; p1, . . . , pn) can be
uniquely identifed with (P1; 0, 1,∞, t1, . . . , tn−3) with ti 6= 0, 1,∞ and ti 6= tj . Thus
M0,n = {(t1, . . . , tn−3) ∈ (P1\{0, 1,∞})n−3| ti 6= tj}.

Example 4 Let g = 1. From the assumption 2g − 2 + n > 0 we require n ≥ 1.
A smooth curve of genus 1 with a marked point is an elliptic curve, which is isomorphic to
the quotient of C by a rank 2 lattice Λ : z1Z + z2Z with z1, z2 linearly independent. Two
lattices Λ,Λ′ are isomorphic if Λ = cΛ′ for some c ∈ C∗. Hence

M1,1 = {rank 2 lattices}/C∗.
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However we can say more, for instance, if we rescale and rotate the lattice, then Λ = Z+τZ
with τ ∈ h, the upper-half plane. Moreover, choosing another basis of the lattice Λ will
give us another point τ ′ ∈ h such that Λ = Z + τZ ∼= Λ′ = Z + τ ′Z. The group of base
change is

SL(2,Z) = {
(
a b
c d

)
∈ Z2×2| ad− bc = 1}

which acts on h by (
a b
c d

)
τ =

aτ + b

cτ + d
.

Hence,
M1,1 = h/SL(2,Z).

We can also represent this set of point with a fundalmental domain in h by considering
the action of SL(2,Z). The group is generated by two transformations: T : τ 7→ τ + 1, S :
τ 7→ − 1

τ , which are respectively the translation to the right by 1, and the inversion with
respect to the unit circle followed by the reflection with respect to the imaginary axis. This
allows us to identify all points in h that differ from each other by a translation by 1 and
the points inside the unit circle with those outside. To be more precise, we can identify
M1,1 with

F := {τ ∈ h|1
2
≤ Re τ ≤ 1

2
; |τ | ≥ 1},

where two distinct points τ1, τ2 are equivalent only if Re(τ1) = ±1
2 and τ2 = τ1 ± 1 or if τ1

is on the unit circle and τ2 = − 1
τ1
.

Remark 1 The j-invariant j : h → C is invariant under the action of SL(2,Z) and
restricted to the domain defined above gives us a bijection. Thus we may identify M1,1

with C.

Note: Mg,n is not compact!
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3 Mg,n

In this section we want to compactify the coarse moduli space of (n- pointed) smooth
curves of genus g.
The first guess is to consider singular curves, namely nodal curves.

Definition 6 A nodal curve is a complete connected curve such that every singular point is
a node, i.e. a point with a neighborhood which is analytically isomorphic to a neighborhood
of 0 in {(x, y) ∈ C2|xy = 0} ⊂ C2.

Definition 7 An n-pointed nodal curve is a nodal curve C, together with n distinct points
p1, . . . , pn ∈ C.

For any nodal curve C there exists a normalization ν : C̃ → C that behaves as follows.

The normalization separetes all the two branches of each node and if the curve is re-
ducible, then its normalization is the disjoint union of the normalization of each component.
In particular {qi, ri} = ν−1(pi) for each node pi, with qi 6= ri.
Let C̃ be the normalization of a nodal curve C, with irreducible components {C̃1, . . . , C̃r},
The geometric genus of a nodal curve is the genus of its normalization C̃:

pg(C) = pg(C̃) =

r∑
i=1

pg(C̃i),

and its arithmetic genus is

pa(C) = pg(C̃)− r + #{nodes}+ 1.

In the following we will consider the arithmetic genus. The reason behind this choice
is because the arithmetic genus is constant on families of curves while the geometric genus
might change.

However, it turns out that there are too many nodal curves having same genus to obtain
a compact moduli space: in general a sequence of nodal curves would never converge to a
smooth curve. In fact, we need to resctict to stable curves.
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Definition 8 A stable curve is a nodal curve having only finitely many automorphisms.

There is a very explicit criterion for a nodal curve to be stable.

Proposition 3.1 Let (C; p1, . . . , pn) be a nodal curve with n marked points. It is stable if
and only if, for any irreducible component of its normalization C̃i ⊂ C̃ satifies

2g(C̃i)− 2 + #Q ∩ C̃i + #N ∩ C̃i > 0,

where Q is the set of pre-images of the nodes of C and N is the set of marked points.

Remark 2 An n-pointed smooth curve of genus g has finitely many automorphisms if
and only if 2g − 2 + n > 0.

Hence, the reason behind the assumption 2g−2+n > 0 we left unanswered is to ensure
that the smooth curves that we considered were automatically stable, so that ∅ 6=Mg,n ⊂
Mg,n.

Theorem 3.2 (Deligne-Mumford-Knudsen) There exist coarse moduli spaces Mg and
Mg,n of stable curves and n-pointed stable curves of genus g, which are irreducible projec-
tive algebraic varieties dimension 3g − 3 and 3g − 3 + n, respectively.

According to the Stable reduction theorem and the valuative criterion of propernessMg

andMg,n are actually complete and give a compactification forMg andMg,n, respectively.

We will discuss some example also for these new moduli spaces, but before doing so, we
present a nice characterization of nodal curves by some combinatorial objects: weighted
graphs. Let us recall their definition

Definition 9 A graph Γ consists of

• A finite set of vertices V (Γ);

• a finite set of edges E(Γ);

• a finite set of legs L(Γ).

A weighted graph is a graph Γ together with a function w : V (Γ)→ Z≥0.
We say that two weighted graphs (Γ, w) and (Γ′, w′) are isomorphic if there is a bijectition
f : V (Γ)→ V (Γ′) such that w′(f(v)) = w(v) for any vertex v ∈ V (Γ) and f also preserves
edges and legs attached to each vertex.

The genus of a weighted graph (Γ, w) is

g(Γ) =
∑

v∈V (Γ)

w(v) + 1−#V (Γ) + #E(Γ).

A stable graph Γ is a weighted graph for which

2w(v)− 2 + #{incident legs or edges to v} > 0

for any v ∈ V (Γ). So in particular,
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• w(v) = 0 and #{incident legs or edges to v} ≥ 3, or

• w(v) = 1 and #{incident legs or edges to v} ≥ 1, or

• w(v) > 2.

Given a nodal curve C we can define its dual graph ΓC as follows:

• Vertices correspond to the components {C̃1, . . . C̃r};

• edges are given by the points of Q ∩ C̃i;

• legs are given by the points of N ∩ C̃i;

• the weight function assigns to each vertex the genus of the corresponding component.

With this definition, one can check that on dual graphs the notions of genus and stability
coincide exactly with the ones on the associated nodal curve.

Thanks to this representation via graphs we also get a nice description of the boundary
∂Mg,n :=Mg,n\Mg,n :

∂Mg,n =
⋃

Γ:#E(Γ)=1

MΓ,

with Γ a stable graph of genus g and n legs and

MΓ := {(C; p1, . . . , pn)|ΓC ∼= Γ}.

Hence we get two types of graphs:

Finally, we go back to examples 3 and 4 and see the corresponbing compactification.

Example 5 We saw thatM0,3 is a point, hence it is already compact. Indeed the unique
stable curve of genus 0 with three marked points is smooth.

M0,4 = P1\{0, 1,∞} so we expect that its compactification is obtained by adding three
points. To get the compactification, we need to allow t to take values 0, 1,∞.
Let (C; p1, p2, p3, p4) ∼= (P1; 0, 1,∞, t). When t→ 0, we get p1 = p4. However, changing its
local coordinate x → x/t gives us (C; p1, p2, p3, p4) ∼= (P1; 0, 1/t,∞, 1) and thus p2 = p3

for t → 0. Since there is no reason to prefer one local coordinate to the other the right
thing to do is to include both limit curves in the description of the limit:
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The right-hand component corresponds to the initial local coordinate x, while the left-hand
component corresponds to the local coordinate x

t .
Repeating for t → 1, t → ∞, gives us similar descriptions, hence we obtain M0,4 from
M0,4 by adding the following three points.

Example 6 Recall that M1,1 can be identified with the points in the complex line C.
Therefore M1,1

∼= P1. It is obtained by adding one point ∞, which corresponds to the
only curve of genus 1 with a marked point having exactly one node.

4 Rational cohomology of some moduli spaces of curves

In this last section, we would like to present some result on the cohomology of moduli
spaces. We will restrict to unmarked smooth curves of genus g. From what we discussed
from the previous section, the geometry of these spaces is rather mysterious. One way
to study their geometry is to compute some topological invariant, such as their (rational)
cohomology groups, which are defined as the singular cohomology groups with rational
coefficients. Indeed, we will consider only rational coefficients beacuse of the properties
that hold in this case, such as Poincaré duality. The importance of this invariant lies on
its ring structure and on the geometric information that we can deduce from its elements:
given a closed algebraic subset S ⊂ Mg of complex codimension c, we can associate to
S a cohomology class [S] ∈ H2c(Mg;Q). Moreover, if S′ ⊂ Mg is another algebraic set
meeting S transversally, then the class [S ∩ S′] , associated to the intersection between S
and S′, is equal to the cup product [S] ^ [S′], which is the product that defines the ring
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structure.

The full cohomology ring ofMg is known only for g ≤ 4.
Let Q(−k) denote the Hodge structure of Tate of weight 2k.

Theorem 4.1 M2 has the rational cohomology of a point;

Theorem 4.2 (Looijenga [1])

H i(M3;Q) =


Q, i = 0;

Q(−1), i = 2;

Q(−6), i = 6;

0, otherwise.

Theorem 4.3 (Tommasi [3])

H i(M4;Q) =



Q, i = 0;

Q(−1), i = 2;

Q(−2), i = 4;

Q(−3), i = 5;

0, otherwise.

What do we know for g ≤ 5?
Let Tg ⊂Mg be the locus inMg of trigonal curves, i.e. non-hyperelliptic curves admitting
a degree 3 map to P1. . For g ≤ 4, this space is not really interesting because it either
coincides with Hg or its complement. Thus, since it is known that Hg has the cohomology
of a point, g = 5 represents the first case in which the cohomology of Tg cannot be
automatically determined from that of H5 andM5.

Theorem 4.4 (- [4])

H i(T5;Q) =



Q, i = 0;

Q(−1), i = 2;

Q(−3), i = 5;

Q(−11), i = 12;

0, otherwise.

This result not only represents and advance in the computation of the cohomology of
M5, but hopefully also for that of Tg, for any g ≥ 5.
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Limit theorems for Lévy flights
on a 1D Lévy random medium

Elena Magnanini (∗)

Abstract. We study a random walk on a point process given by an ordered array of points
(ωk, k ∈ Z) on the real line. The distances ωk+1 − ωk are i.i.d. random variables in the domain of
attraction of a β-stable law, with β ∈ (0, 1) ∪ (1, 2). The random walk has i.i.d. jumps such that
the transition probabilities between ωk and ω` depend on `−k and are given by the distribution of
a Z-valued random variable in the domain of attraction of an α-stable law, with α ∈ (0, 1)∪ (1, 2).
Since the defining variables, for both the random walk and the point process, are heavy-tailed,
we speak of a Lévy flight on a Lévy random medium. For all combinations of the parameters α
and β, we prove the annealed functional limit theorem for the suitably rescaled process, relative
to the optimal Skorokhod topology in each case. When the limit process is not càdlàg, we prove
convergence of the finite-dimensional distributions. When the limit process is deterministic, we
also prove a limit theorem for the fluctuations, again relative to the optimal Skorokhod topology.

Mathematics Subject Classification (2020): 60G50; 60G55; 60F17; 82C41; 60G51

Keywords: Random walk on point process; Lévy random medium; Lévy flights; Stable distribu-
tions; Anomalous diffusion; Stable processes.

1 Introduction

The expression ‘Lévy random medium’ indicates a stochastic point process, in some space,
where the distances between nearby points have heavy-tailed distributions. Processes of
this kind have been receiving a surge of attention, of late, both in the physical and math-
ematical literature; cf., respectively, [BFK, S, BCV, BDLV, ZDK] and [BCLL, BLP, MS].
They model a variety of situations that are of interest in the sciences. In particular, they
are used as supports for various kinds of random walks, in order to study phenomena
of anomalous transport and anomalous diffusion. An incomplete list of general or recent
references on this topic includes [SZF, KRS, CGLS, ZDK, ACOR, ROAC].

The random medium that we consider in this talk is perhaps the most natural choice
for a Lévy random medium in the real line: a sequence of random points ω = (ωk, k ∈ Z),
where ω0 = 0 and the nearest-neighbor distances ζk = ωk+1 − ωk are i.i.d. variables in

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 17 February 2021.
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the normal domain of attraction of a β-stable variable, with β ∈ (0, 1) ∪ (1, 2). Here β is
the index of the stable distribution, not the skewness parameter, which equals 1 because
ζk > 0.

A random walk Y = (Yn, n ∈ N) takes place on ω according to the following rule.
Independently of ω, there exists a random walk S = (Sn, n ∈ N) on Z with S0 = 0
and i.i.d. increments in the normal domain of attraction of an α-stable variable, with
α ∈ (0, 1)∪ (1, 2). We define Yn := ωSn . This means that the process Y performs the same
jumps as S, but on the marked points ωk instead of Z. For example, if a realization of S
is (0, 3,−1, . . .), the process Y starts at the origin of R, then jumps to the third marked
point to the right of 0, then to the first marked point to the left of 0, and so on. In other
words, S drives the dynamics of Y on the Lévy medium. For this reason we call it the
underlying random walk.

Our process of interest is Y . We may describe it as a Lévy flight on a one-dimensional
Lévy random medium. This phrase is borrowed from the physical literature, where the term
‘Lévy flight’ usually indicates a discrete-time random walk with long-tailed instantaneous
jumps. This is in contrast to a ‘Lévy walk’, which in general designates a persistent,
continuous- or discrete-time, random walk with long-tailed trajectory segments that are
run at constant finite speed [ZDK]. A Lévy walk is often seen as an interpolation of a Lévy
flight. In this seminar we give annealed limit theorems for Y in all cases α, β ∈ (0, 1)∪(1, 2),
identifying in each case both the scale nγ whereby

(1)
(
Ybntc

nγ
, t ∈ [0,+∞)

)
converges to a non-null limit, and the limit process. In all cases we prove the optimal, or
at least morally optimal, functional limit theorem, meaning that we show distributional
convergence of the process with respect to (w.r.t.) the strongest Skorokhod topology that
applies there. When the limit process is not càdlàg (or càglàd) we show convergence of the
finite-dimensional distributions. Finally, in the cases where the limit of (1) is deterministic,
we prove a functional limit theorem for the corresponding fluctuations, again relative to
the optimal topology.

2 Model

2.1 Setup

As mentioned in the introduction, the Lévy flight on random medium that we consider is
a random walk performed over the points of a certain random point process. We proceed
to define all the necessary constructions.

Random medium. Let ζ := (ζi, i ∈ Z) be a sequence of i.i.d. positive random variables.
We assume that the law of ζi belongs to the normal basin of attraction of a β-stable
distribution, with β ∈ (0, 1) ∪ (1, 2). In the case β ∈ (0, 1), this means that, as n→ +∞,

(2)
1

n1/β

n∑
i=1

ζi
d−−→ Z

(β)
1 ,
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where Z(β)
1 is a stable variable of index β and skewness parameter 1 (because ζi > 0). In

the case β ∈ (1, 2) we have instead

(3)
1

n1/β

n∑
i=1

(ζi − ν)
d−−→ Z̃

(β)
1 ,

for a stable variable Z̃(β)
1 of index β. In this case, necessarily, ν is the expectation of ζi

and the skewness parameter is 0.
The random medium associated to (ζi, i ∈ Z) is defined to be:

(4) ω0 = 0, ωk =


∑k

i=1 ζi if k > 0,

0 if k = 0,

−∑−1
i=k ζi if k < 0.

This determines a point process ω := (ωk, k ∈ Z) on R that we call Lévy random medium
to emphasize the fact that the distribution of ζi has a heavy tail. Each point ωk will
be called a target. In other words, the distances between neighboring targets are drawn
according to independent random variables ζi.

Underlying random walk. We consider a Z-valued random walk S := (Sn, n ∈ N),
with S0 = 0 and i.i.d. increments ξi := Si − Si−1 that are independent of ζ (and thus of
ω). In other words, S is given by

(5) S0 = 0, Sn =
n∑
i=1

ξi for n ∈ Z+.

The law of ξi belongs to the normal basin of attraction of an α-stable distribution, with
α ∈ (0, 1) ∪ (1, 2). This means that convergences analogous to those given in (2) and (3)
apply to the ξi, with limit random variables denoted by W (α)

1 and W̃ (α)
1 , respectively. We

will refer to S as the underlying random walk.

Random walk on the random medium. The random walk on the random medium
Y := (Yn, n ∈ N) is defined to be:

(6) Yn := ωSn , n ∈ N.

In other words, Y performs the same jumps as S, but on the points of ω; see Figure 1 for
a hands-on explanation. In the following we will focus on the derivation of the asymptotic
law of Y , under suitable scaling, with respect to the probability measure P governing the
entire system (medium and dynamics). This is sometimes referred to as the annealed or
averaged law of Y .
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−2 −1 0 +1 +2 +3

S0S1 S2 S3S4S5

ω−2 ω−1 ω0 ω+1 ω+2 ω+3
ζ−2 ζ−1 ζ1 ζ2 ζ3

ω−2 ω−1 ω0 ω+1 ω+2 ω+3

Y0Y1 Y2 Y3Y4Y5

Figure 1 Top: A realization of the underlying random walk S on Z. Middle: A realization of the random
medium ω, with inter-distances given by ζi. Bottom: The corresponding process Y jumps between the
targets ω according to the walk S.

Before recalling certain basic facts about the processes ω and S, and stating our main
results on the process Y , let us fix the notation for spaces of càdlàg functions endowed
with certain Skorokhod topologies.

3 Càdlàg functions and Skorokhod topologies

Given I, an interval or a half-line contained in R+ := [0,+∞), we denote byD(I) ≡ D(I;R)
the space of all càdlàg functions f : I−→R, where we recall that these are right-continuous
functions with left limits at all points of their domain. If I is an interval or a half-line
intersecting (−∞, 0), or I = R, we consider a less customary function space: D(I) is the
space of all functions f : I−→R such that s 7→ f(s) is càdlàg for s ≥ 0 and s 7→ f(−s) is
càdlàg for s ≥ 0 (in other words, the restriction of f to I ∩ (−∞, 0] is càglàd). Notice that
this implies that f is continuous at 0. We also use the abbreviations D+ ≡ D(R+) and
D ≡ D(R). Lastly, we denote by D0 and D+

0 the subspaces of nondecreasing functions of
D and D+, respectively.

In this section we introduce two notions of distance/topology that turn out to be
crucial in the following. A complete treatment of these topologies can be found, e.g., in
[W2, Sections 3.3. & 11.5].

Definition 3.1 Let I be a bounded interval (which can be closed, open or half-open).
For f, g ∈ D(I), denote

(7) dJ1,I(f, g) := inf
λ:I→I

max

{
sup
t∈I
|f ◦ λ(t)− g(t)| , sup

t∈I
|λ(t)− t|

}
,

where the infimum is taken over all increasing homeomorphisms λ : I−→I. This defines a
distance on D(I), which we refer to as the J1 or J1(I) distance.
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This metric induces a topology and a notion of limit in D(I) which can be reformulated
as follows: given (fn)n∈N and f in D(I), the sequence fn is said to converge to f in the J1

topology, and we write

(8) fn → f in (D(I), J1),

as n→∞, if there exists a sequence of increasing homeomorphisms λn : I−→I such that

lim
n→∞

sup
t∈I
|fn ◦ λn(t)− f(t)| = 0,(9)

lim
n→∞

sup
t∈I
|λn(t)− t| = 0.(10)

If we think of fn as describing the spatial motion of some particle, the function λ :
I−→I of (7) is sometimes called the time change. Requiring the time change to be a
homeomorphism is occasionally too strong a condition. One has a weaker topology if they
only require that λ be a (possibly discontinuous) bijection:

Definition 3.2 If I is a bounded interval and f, g ∈ D(I), the J2 or J2(I) distance
dJ2,I(f, g) is defined as in the r.h.s. of (7), but with the infimum taken over all bijections
λ : I−→I. The notions of J2-convergence in all cases of I are derived as seen earlier for
J1.

5 Know results

We now recall some elementary functional limit theorems for suitable rescalings of the
processes ω and S, cf. (4) and (5).

By definition, for all k ∈ Z, ωk is a sum of |k| i.i.d. random variables ζi in the normal
domain of attraction of a β-stable distribution. We first deal with the case β ∈ (0, 1). For
every s ∈ R we define

(11) ω̂(n)(s) :=


ωbnsc

n1/β
if s ≥ 0,

ωdnse

n1/β
if s < 0.

Let (Z
(β)
± (s), s ≥ 0) be two i.i.d. càdlàg Lévy β-stable processes such that Z(β)

± (0) = 0

and Z
(β)
± (1) is distributed like Z(β)

1 , as introduced in (2) (these two conditions uniquely
determine the common distribution of the processes). Set

(12) Z(β)(s) :=

{
Z

(β)
+ (s) if s ≥ 0,

−Z(β)
− (−s) if s < 0.

Then (see, e.g., [W2, Section 4.5.3]), as n→∞,

(13) ω̂(n) d−−→ Z(β) in (D, J1).
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When β ∈ (1, 2), the average distance ν := E[ζi] between successive targets is finite
and positive by assumptions. So, at first order, a Strong Law of Large Numbers holds.
More in detail, setting

(14) ω̄(n)(s) :=


ωbnsc

n
if s ≥ 0,

ωdnse

n
if s < 0,

we have

(15) ω̄(n) a.s.−−−→ ν id in (D, J1).

as n → ∞. Here and in the rest of the discussion id denotes the identity function, on
whatever domain it is defined. Furthermore, a functional convergence similar to (13) holds
for the fluctuations around this Law of Large Numbers. More explicitly, for s ∈ R, define

(16) ω̃(n)(s) :=


∑bnsc

i=1 (ζi − ν)

n1/β
if s ≥ 0,

−∑−1
i=dnse(ζi − ν)

n1/β
if s < 0.

Then, as n→∞,

(17) ω̃(n) d−−→ Z̃(β) in (D, J1),

where the process Z̃(β) is defined similarly to Z(β), cf. (12), but with Z̃(β)
± (1) distributed

like Z̃(β)
1 , introduced in (3).

Analogous limit theorems hold for the continuous-time rescaled versions of the underly-
ing random walk S. By definition, Sn is a sum of n i.i.d. random variables ξi in the normal
domain of attraction of an α-stable distribution. We distinguish two regimes, depending
on the values of α and µ := E[ξi] (when applicable).

The first regime corresponds to the cases α ∈ (0, 1), or α ∈ (1, 2) with µ = 0. In these
situations, the drift of the underlying random walk is either undefined or null. In either
case, it does not affect the convergence of the process

(18) Ŝ(n)(t) :=
Sbntc

n1/α
,

which we define for t ≥ 0. In fact, letW (α) denote a Lévy α-stable process withW (α)(0) = 0

and W (α)(1) distributed like W (α)
1 (the latter variable has been defined after (5). Then, as

n→∞,

(19) Ŝ(n) d−−→ W (α) in (D+, J1).

When α ∈ (1, 2) and µ 6= 0, set, for t ≥ 0,

(20) S̄(n)(t) :=
Sbntc

n
.
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By the functional version of the Strong Law of Large Numbers,

(21) S̄(n) a.s.−−−→ µ id in (D+, J1),

as n→∞. As for the fluctuations, defining

(22) S̃(n)(t) :=

∑bntc
i=1 (ξi − µ)

n1/α
,

we get

(23) S̃(n) d−−→ W̃ (α) in (D+, J1).

where W̃ (α) is a Lévy α-stable process with W̃ (α)(0) = 0 and W̃ (α)(1) distributed like W̃ (α)
1

(again defined after (5)).

5 Results

We now present our convergence results [SBBLM] for the Lévy flight Y which, as we shall
see, strongly depend on the values of α and β. All theorems are stated using the notation
established in the previous section.

We first analyze the case β ∈ (0, 1), corresponding to an infinite expected distance
between the targets of the random medium

Theorem 5.1 Let β ∈ (0, 1) and assume that either α ∈ (0, 1) or α ∈ (1, 2) with µ = 0.
For t ∈ R+ define

(24) Ŷ (n)(t) := ω̂(n) ◦ Ŝ(n)(t) =
Ybntc

n1/αβ
,

where ω̂(n) and Ŝ(n) have been introduced, respectively, in (11) and (18). Then the finite-
dimensional distributions of Ŷ (n) converge to those of Z(β) ◦W (α), i.e., for any m ∈ Z+

and t1, . . . , tm ∈ R+,

(25)
(
Ŷ (n)(t1), . . . , Ŷ (n)(tm)

)
d−−→

(
Z(β)(W (α)(t1)), . . . , Z(β)(W (α)(tm))

)
,

as n→∞.

Theorem 5.1 is rather weak, in that it only proves convergence of the finite-dimensional
distributions of the process Ŷ (n) defined in (24). Observe, however, that the limit process
Z(β) ◦ W (α) has trajectories that are not càdlàg with positive probability (see for example
the explanation around (2.9) of [BLP]). Therefore, a functional limit theorem w.r.t. a
Skorokhod topology is not the natural result to expect. On the other hand, when α ∈ (1, 2)
and µ 6= 0, the assertion can be strengthened as follows.

Theorem 5.2 Let β ∈ (0, 1) and α ∈ (1, 2) with µ 6= 0. For t ∈ R+ define

(26) Ŷ (n)(t) := ω̂(n) ◦ S̄(n)(t) =
Ybntc

n1/β
,
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cf. (11) and (20). Then, as n→∞,

(27) Ŷ (n) d−−→ sgn(µ) |µ|1/β Z(β)
+ in (D+, J2).

Remark 5.1 Since Z(β)
+

d
= Z

(β)
− , one could put either process in the r.h.s. of (27), irre-

spectively of the sign of µ.

Remark 5.2 The convergence (27) fails in the topology J1, or even M1 [W2, Section
3.3]. The topology J2 is thus the strongest among the classical Skorochod topologies with
respect to which the convergence holds.

Next we consider the case β ∈ (1, 2), where the inter-distances of the random medium
have finite mean.

Theorem 5.3 Let β ∈ (1, 2) and recall the notation (14), (18) and (20).

(a) Assume α ∈ (0, 1), or α ∈ (1, 2) with µ = 0. For t ∈ R+ set

(28) Ŷ (n)(t) := ω̄(n) ◦ Ŝ(n)(t) =
Ybntc

n1/α
.

Then, as n→∞,

(29) Ŷ (n) d−−→ νW (α) in (D+, J1).

(b) Assume α ∈ (1, 2) and µ 6= 0. Setting

(30) Ȳ (n)(t) := ω̄(n) ◦ S̄(n)(t) =
Ybntc

n

one has

(31) Ȳ (n) d−−→ νµ id in (D+, J1).

As stated in point 2 above, when α ∈ (1, 2) and µ 6= 0, the sequence of processes
Ȳ (n) converges to a multiple of the identity function. The next theorem gives the explicit
asymptotics of the fluctuations of Ȳ (n) around its deterministic limit.

Theorem 5.4 Let α, β ∈ (1, 2) with µ 6= 0, and let Ȳ (n) be the process defined in (30).

(a) If α < β define

Ỹ (n)(t) :=
n(Ȳ (n)(t)− νµt)

n1/α
.(32)

Then, when n→∞,

(33) Ỹ (n) d−−→ νW̃ (α) in (D+, J1),

where W̃ (α) has been defined after (23).
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(b) If α > β define

Ỹ (n)(t) :=
n(Ȳ (n)(t)− νµt)

n1/β
.(34)

Then, when n→∞,

(35) Ỹ (n) d−−→ sgn(µ) |µ|1/β Z̃(β)
+ in (D+, J2),

where Z̃(β)
+ has been defined after (17).

(c) If α = β define

Ỹ (n)(t) :=
n(Ȳ (n)(t)− νµt)

n1/α
.(36)

Let Z̃(α)
+ and W̃ (α) be two independent α-stable processes, as previously defined. As

n→∞,

(37) Ỹ (n) d−−→ sgn(µ) |µ|1/β Z̃(α)
+ + νW̃ (α) in (D+, J2).
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A differential eigenproblem of electromagnetics

Michele Zaccaron (∗)

Abstract. We start with a preliminary overview of Sobolev spaces, very useful in the modern
approach to solve PDEs. We then introduce an eigenvalue problem arising from time-harmonic
Maxwell’s equations, deriving its so-called weak formulation and showing some first properties.
The last part of the seminar will focus on the domain perturbation, inspecting the dependence
of the eigenvalues upon variation of the region in which we set our problem, and presenting a
result regarding shape optimization. The talk is of introductory type and its purpose is to let the
audience have a look at some of the tools and concepts from the spectral theory of differential
operators.

1 Sobolev spaces

1.1 Lebesgue spaces

We start introducing the standard Lebesgue spaces of functions. Let Ω be an open set
of Rn. For p ∈ [1,∞) we define the space Lp(Ω) as the set of all Lebesgue-measurable
functions such that the p-th power of their absolute value is Lebesgue integrable, that is

Lp(Ω) := { f : Ω→ R (or C) measurable :

ˆ
Ω
| f |pdx <∞} ,

endowed with the norm ‖f‖Lp(Ω) = ‖f‖p :=
(´

Ω |f |pdx
)1/p. The space Lp(Ω) is a normed

vector space, complete with respect to the metric obtained from its norm, thus a Banach
space. In the case p = 2 we can define an inner product on L2(Ω), namely

(f, g)2 :=

ˆ
Ω
fg dx, f, g ∈ L2(Ω)

which makes it a Hilbert space. For p = ∞, with L∞(Ω) denotes the space of Lebesgue-
measurable functions that have finite essential supremum, namely

L∞(Ω) := { f : Ω→ R (or C) measurable : | f(x)| <∞ almost everywhere in Ω } .
(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
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The norm

‖f‖∞ := ess supx∈Ω |f(x)| = inf {C ≥ 0 : | f(x)| ≤ C for almost every x ∈ Ω }

makes it a Banach space. We also introduce the space of locally integrable functions, that
is

Lploc(Ω) := { f : Ω→ R (or C) measurable : f ∈ Lp(K) for all K ⊂ Ω compact } .

Notice that Lp(Ω) ⊂ L1
loc(Ω) for all p ∈ [1,∞]. In our setting, two functions equal almost

everywhere (that is, they differ only on a set of Lebesgue measure zero) are equal. In
the following we will sometimes recall the fact that we are working not with functions
themselves, but with their equivalent classes w.r.t. the equivalence relation of being equal
except a set of zero measure, writing “a.e.”, which stands for “almost everywhere”.

1.2 Weak derivation

If we consider a C1 function f : R → R, then integration by parts (Gauss theorem) tells
us that ˆ

R
f(x)ϕ′(x) dx = −

ˆ
R
f ′(x)ϕ(x) dx for all ϕ ∈ C∞c (R).

In order to make sense of the left integral above, we just need to assume that f ∈ L1
loc(R).

At this point we ask if there exist a function g ∈ L1
loc(R) such that

ˆ
R
f(x)ϕ′(x) dx = −

ˆ
R
g(x)ϕ(x) dx for all ϕ ∈ C∞c (R).

If the answer is yes, we then say that f admits a weak derivative (in R) and the weak
derivative of f is g, which we will denote with f ′w.

We will now generalize the concept. Let Ω be an open set of Rn and ϕ a smooth
function on Ω. If α = (α1, . . . , αn) ∈ Nn is a multi-index, then |α| = α1 + . . .+ αn and

Dαϕ =
∂ |α|ϕ

∂xα1
1 · · · ∂xαnn

.

If for f ∈ L1
loc(Ω) there exist a g ∈ L1

loc(Ω) such that
ˆ

Ω
f Dαϕdx = (−1) |α|

ˆ
Ω
g ϕ dx for all ϕ ∈ C∞c (Ω),

then we call g = Dα
wf the weak α-th derivative of f . Here and in the following we will

omit the subscript w and we will just write Dαf when referring to weak derivatives. Some
properties of the weak derivative include:

(i) If the weak derivative of a function exists, it is uniquely determined a.e.

(ii) If f ∈ Ck(Ω) then the classical and the weak derivatives coincide.

(iii) If all first partial weak derivatives are 0 then the function is constant a.e.

Università di Padova – Dipartimento di Matematica 80



Seminario Dottorato 2020/21

(iv) Dα(Dβf) = Dβ(Dαf) = Dα+βf .

One can easily prove the uniqueness almost everywhere using the following important
result.

Theorem 1 (Fundamental Lemma of Calculus of Variations) Let h ∈ L1
loc(Ω). Ifˆ

Ω
hϕdx = 0 for all ϕ ∈ C∞c (Ω)

then h = 0 (a.e.).

For many other properties of weak derivatives and for a complete and detailed intro-
duction to Sobolev spaces we refer to [2].

2 Sobolev spaces

Having introduced the notion of weak derivatives, we can introduce the so-called Sobolev
spaces. For any k ∈ N and 1 ≤ p ≤ ∞ set

W k,p(Ω) := { f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all | α| ≤ k } , W 0,p(Ω) := Lp(Ω).

Endowed with the norm ‖f‖Wk,p(Ω) =
(∑

|α|≤k ‖Dαu‖pp
)1/p

if 1 ≤ p <∞, and ‖u‖Wk,∞(Ω) =

max |α|≤k ‖Dαu‖∞ if p = ∞, it becomes a Banach space. Again, the case p = 2 has addi-
tional structure and properties due to its “duality". Indeed, endowing Hk(Ω) := W k,2(Ω)
with the following inner product

(u, v)Hk(Ω) =
∑
|α|≤k

ˆ
Ω
DαuDαv dx

it becomes a Hilbert space. Observe that the Hilbert norm ‖u‖ := (u, u)
1/2

Hk(Ω)
is equivalent

to the standard one.

Remark 1 Why this notion of weak derivative? It was first introduced when dealing with
PDEs: mathematicians noticed that the most important quantities of the PDE solutions
were embodied in the integrability of the functions.

Motivated by the study of classical differential equations, arising especially from math-
ematical models describing physical phenomena, together with the introduction of the
so-called weak (or variational) formulation, in the past century the approach to differential
equations changed and it was observed that the classical spaces C0, C1, C2 etc. were not
exactly the right spaces in which set and solve PDE problems. The Sobolev spaces are
their modern replacement. Indeed, quantities or properties of the underlying mathemati-
cal model are usually expressed in terms of integral norms, which correspond to “energies"
relevant to the physical phenomena the PDE models.

Note that Sobolev spaces are not the only spaces one can use. There are many type of
function spaces (Orlicz spaces, Hardy spaces, Morrey–Campanato spaces, Hölder spaces,
Besov spaces etc.): one may choose the space that suits in the best way possible the
differential equation and the goals of its study.
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2 Maxwell equations

2.1 Introduction to the eigenproblem

Recall the divergence and the curl (or rotor) of a vector field F = (F1, F2, F3) in R3:

divF = ∂1F1 + ∂2F2 + ∂3F3, curlF =

∂1

∂2

∂3

×
F1

F2

F3

 =

 ∂2F3 − ∂3F2

−∂1F3 + ∂3F1

∂1F2 − ∂2F1


The time-harmonic Maxwell’s equations in a medium filling a region Ω of R3 read:

(1) curlE − iωµM = 0, curlM + iωεE = 0,

where E,M are respectively the electric field and magnetic field, ε and µ are the electric
permeability and the magnetic permeability of the medium, and ω > 0 is the angular
frequency.

If the medium is isotropic and homogeneous, ε and µ are constants, and thus we can
normalize them by setting ε = µ = 1. We can pair this differential coupled system with
the perfect conductor boundary conditions, namely

E × ν = 0, M · ν = 0 on ∂Ω.

Here ν denotes the outer unit normal to the boundary of Ω. We will assume Ω to be
bounded and with Lipschitz boundary, hence ν is defined almost everywhere on ∂Ω. Note
that the solutions E,M are both divergence-free, because they are the curls. We refer to
[12] for more details about time-harmonic Maxwell’s equations.

Operating by curl in each of the equations (1) and setting λ = ω2, one obtains the
following two boundary-value problems:

(2)


curl curlE = λE, in Ω,
divE = 0, in Ω,
E × ν = 0, on ∂Ω,
curlE · ν = 0, on ∂Ω,

and

(3)


curl curlM = λM, in Ω,
divM = 0, in Ω,
M · ν = 0, on ∂Ω,
curlM × ν = 0, on ∂Ω.
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As one would expect, each of the two problems provide the same eigenvalues (cf., [19]).
We will focus on the first one, meaning we will study the existence of a couple (E, λ) with
E : Ω→ R3 a vector field and λ ∈ R such that the following electric problem holds

(4) (E)


curl curlE = λE on Ω,
divE = 0 on Ω,
E × ν = 0 on ∂ Ω.

Note that a solution E to (4) automatically satisfies the boundary condition curlE · ν = 0
on ∂Ω (see [14, Lemma 2.3]), thus we omitted it. Before proceeding any further, we recall
a useful integration formula.

Lemma 1 (Green’s formula) Let Ω be a bounded Lipschitz set in R3. Then
ˆ

Ω
curlF ·Gdx =

ˆ
Ω
F ·Gdx+

ˆ
∂Ω

(ν × F ) ·Gdσ

for any F,G ∈ C1(Ω)3.

Multiplying both sides of the equation curl curlE = λE by a vector field F and inte-
grating over Ω we get ˆ

Ω
curl curlE · F dx = λ

ˆ
Ω
E · F dx.

By Lemma 1 we have thatˆ
Ω

curl curlE · F dx =

ˆ
Ω

curlE · curlF dx+

ˆ
∂Ω

curlE · (F × ν) dσ.

Hence, supposing that also F satisfies the electric boundary condition, i.e. F × ν = 0 on
∂Ω, we arrive at

(5)
ˆ

Ω
curlE · curlF dx = λ

ˆ
Ω
E · F dx.

Setting F = E, we see that necessarily λ ≥ 0.

2.2 The appropriate Hilbert space

Before stating the weak formulation of the electric problem (E) we will introduce the
appropriate underlying Hilbert space.

Definition 1 A vector field u ∈ L2(Ω)3 possesses a weak curl in L2(Ω) if there exist a
vector field w ∈ L2(Ω)3 such that

ˆ
Ω
u · curlψ dx =

ˆ
Ω
w · ψ dx for all vector fields ψ ∈ C∞c (Ω)3.

Similarly, it possesses a weak divergence in L2(Ω) if there exists a scalar function p ∈ L2(Ω)
such that ˆ

Ω
u · ∇ϕdx = −

ˆ
Ω
pϕ dx for all ϕ ∈ C∞c (Ω).
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Define the following Hilbert spaces:

H(curl,Ω) = {u ∈ L2(Ω)3 : u has weak curl in L2(Ω)3 }

equipped with the inner product

(u, v)H(curl,Ω) :=

ˆ
Ω
u · v dx+

ˆ
Ω

curlu · curl v dx,

and
H(div,Ω) = {u ∈ L2(Ω)3 : u has weak divergence in L2(Ω)3 } ,

with inner product

(u, v)H(div,Ω) :=

ˆ
Ω
u · v dx+

ˆ
Ω

div u div v dx.

We consider the intersection H(curl,Ω) ∩H(div,Ω), but observe that we still lack the
electric boundary condition u × ν = 0 on ∂Ω. The condition requires precisely that the
tangential part of u must be null at the boundary. But we first need to clarify what
do we mean when we say that the tangential component of the vector field u is zero on
the boundary: in general u is defined only a.e., and thus computing its values on a set
of Lebesgue measure zero such as ∂Ω does not make sense, or at least it is not clearly
defined yet. In order to make this clear, we introduce the tangential trace operator γτ ,
from C∞(Ω)3 to L2(∂Ω)3, defined as

γτψ = ψ × ν|∂Ω, ψ ∈ C∞(Ω)3.

Then

Theorem 2 [7, Thm. 2.11] The tangential trace mapping γτ can be extended by continuity
to a linear and continuous map, still denoted by γτ , from H(curl,Ω) into H−1/2(∂Ω)3.
Moreover, the following Green’s formula holds: if u ∈ H(curl,Ω) then

(6)
ˆ

Ω
curlu · ϕdx−

ˆ
Ω
u · curlϕdx =

ˆ
∂Ω
γτu · ϕdσ

for all ϕ ∈ H1(Ω)3.

Observe that formula (6) is nothing but the generalization of the Green’s formula intro-
duced in Lemma 1.

We now define
H0(curl,Ω) := Ker γτ ⊂ H(curl,Ω).

In particular, for any u ∈ H0(curl,Ω) we have that
ˆ

Ω
curlu · ϕdx =

ˆ
Ω
u · curlϕdx
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holds for all ϕ ∈ H1(Ω)3. It turns out that H0(curl,Ω) is the closure in H(curl,Ω) of
smooth vector fields compactly supported in Ω, that is

H0(curl,Ω) = C∞c (Ω)3
H(curl,(Ω))

.

The space H0(curl,Ω) incorporates the correct notion of electric boundary condition of
having zero tangential trace.

Setting
XN (Ω) := H0(curl,Ω) ∩H(div,Ω)

we equip it with the inner product
ˆ

Ω
u · v dx+

ˆ
Ω

curlu · curl v dx+

ˆ
Ω

div u div v dx.

Finally, we take the subspace of XN (Ω) corresponding to divergence-free vector fields,
namely

XN (div 0,Ω) = {u ∈ XN (Ω) : div u = 0 } .
The space XN (div 0,Ω) will be the appropriate Hilbert space in which we set the study of
the electric eigenproblem (E) and derive its weak formulation.

2.3 Weak formulation and some properties

To simplify the notation, we denote HE := XN (div 0,Ω). Duplicating the same argument
that led us to (5), we derive the weak form of problem (E):

(7)
ˆ

Ω
curlE · curlF dx = λ

ˆ
Ω
E · F dx for all F ∈ HE

in the unknowns λ ≥ 0 the eigenvalue and E ∈ HE . From now on when we refer to the
problem (E) we will have in mind its weak formulation (7).

For the sake of simplicity, we assume Ω to be a bounded simply connected domain of
R3 of class C2, although these hypothesis can be weakened, considering general bounded
domains of class C1,1.

Proposition 1 The zero eigenspace is

KerE = {E = ∇ρ : ∆ρ = 0, ρis constant on the every c.c. of the boundary ∂Ω } ⊂ HE .

Its dimension is

dim KerE = #(connected components of ∂Ω)− 1.

Sketch of the proof. Suppose E is an eigenfield corresponding to the eigenvalue 0. Then
curlE = 0, as one can see by setting F = E in (7). Hence E = ∇η for some η ∈ H1(Ω) (see
e.g. Thm. 2.9 of [7]). Moreover, the divergence-free condition that E must satisfy implies
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that η is a harmonic function in Ω. Finally, from the boundary condition E×ν = ∇η×ν = 0
we have that ∇η is parallel to the normal vector ν at any boundary point. Thus η is
constant in any connected component of ∂Ω.

The reverse inclusion is simpler, while the dimension formula derives from arguments
regarding the maximum principle for harmonic functions.

Denoting with (HE)
∗ the (topological) dual space of the Hilbert space HE , we introduce

the following continuous operators:

J : L2(Ω)3 → (HE)
∗, J [u](v) :=

ˆ
Ω
u · v dx for all u ∈ L2(Ω)3, v ∈ HE ,

B : HE → (HE)
∗, B[u](v) :=

ˆ
Ω
u · v dx+

ˆ
Ω

curlu · curl v dx for all u, v ∈ HE .

The operator B is coercive on HE (it corresponds to its inner product) and thus it can be
inverted thanks to the Riesz representation theorem. Hence we can construct the following
injective continuous linear operator from HE to itself

L : HE
ι
↪→ L2(Ω)3 J−→ (HE)

′ B−1

−−−→ HE , L : B−1 ◦ J ◦ ι,

where ι denotes the embedding of HE into L2(Ω)3. Since the embedding ι is compact (see
[17]) and B is symmetric in the sense that exchanging u with v we obtain the same result,
it is not difficult to show that L is a self-adjoint compact operator, with trivial kernel.
Moreover

Proposition 2 (cf., Lemma 2.15 of [14]) Let E ∈ HE . Then (λ,E), λ 6= 0, is a (weak)
eigenpair of

(E)


curl curlE = λE on Ω,
divE = 0 on Ω,
E × ν = 0 on ∂Ω.

if and only if
L[E] = (λ+ 1)−1E.

From the Spectral theorem (see Theorem 4 in the Appendix) we deduce that spectrum of
the operator L is discrete, and the eigenvalues of L form an infinite sequence of positive
eigenvalues converging to 0. Therefore, by Proposition 2, the positive eigenvalues of the
electric problem (E) form an increasing, divergent sequence

(8) λ1 ≤ λ2 ≤ · · · ≤ λj ≤ . . . ↑ +∞,

where each eigenvalue is repeated according to its multiplicity (that is, the dimension of
the corresponding eigenspace), which is finite. Finally, each positive eigenvalue can be
represented by means of the following min-max formula:

λj = min
V⊂(kerE)⊥

dimV=j

max
F∈V \{0}

´
Ω |curlF |2´

Ω |F |2
.
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2.4 Extremum problems

There is a certain interest, not only in mathematics but also in more applied fields such as
engineering and physics, in the study of the behaviour of the eigenvalues and eigenfunctions
upon the parameters which enter the equations. For example the shape of the region, that
is the set Ω in which we set the problem.

Motivated by the question “are there optimal shapes for the eigenvalues? ", we are
interested in studying the map:

Ω 7→ λj [Ω].

One may wonder whether this mapping is continuous, differentiable, or even analytic.
Moreover, it is certainly interesting to pose the following constrained problems:

min
Vol[Ω]=const.

λj [Ω] or max
Vol[Ω]=const.

λj [Ω],

min
Per[Ω]=const.

λj [Ω] or max
Per[Ω]=const.

λj [Ω].

We wonder whether there are critical sets Ω for the minimization/maximization problems
above, subject to fixed volume or perimeter constraint, and if such sets can be characterized.
It is worthy to observe that these constraints allow the problem to be well-posed, making
the problem “compact", in some sense. If we didn’t have any constraint, we cannot expect
to have neither maxima nor minima.

To answer these questions we proceed as follows. We fix a bounded domain Ω ⊂ R3 of
class C2, and we introduce the set of admissible perturbations

AΩ = {Φ ∈ C2(Ω;R3) : Φ is injective, detDΦ(x) 6= 0 ∀x ∈ Ω } .

Observe that AΩ is open in the topology of C2(Ω;R3). We then perturb the initial domain
Ω by means of a diffeomorphism Φ ∈ AΩ,

and study the electric problem Φ(E) on the new perturbed domain Φ(Ω), namely

(9) Φ(E)


curl curlE = λE, on Φ(Ω),
divE = 0, on Φ(Ω),
E × ν = 0, on ∂Φ(Ω).

With a similar argument used previously to show (8), one can see that the positive eigen-
values (which depend on Φ) of the electric problem Φ(E) form an increasing, divergent
sequence

λ1[Φ] ≤ λ2[Φ] ≤ · · · ≤ λj [Φ] ≤ . . . ↑ +∞,
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where each eigenvalue is repeated according to its multiplicity.
The quest of finding critical shapes leads us to study the behaviour of the maps

AΩ ⊂ C2(Ω;R3)→ R, Φ 7→ λj [Φ].

If our goal is to find perturbations Φ that are critical for the eigenvalues, we would like to
compute their differentials. But there is a first significant problem: other than continuity,
we cannot expect these maps to depend in a differentiable manner on the perturbations Φ ∈
AΩ. Indeed, apart from the case of a one-parameter family of perturbations {Φε}ε, with
the parameter ε ∈ I ⊂ R varying in an interval of the real line (which is in any case very
interesting, and far from simple), the differentiability fails in general (see the example in
the Appendix). For this reason, we will instead focus on the so-called symmetric functions
of the eigenvalues, and, at the price of restricting the set of admissible perturbations, we
will not only gain differentiability, but also analyticity.

Given a finite set of indices S ⊂ N, we set

(10) ΛS,h[Φ] :=
∑

j1,...,jh∈S
j1<···<jh

λj1 [Φ] · · · λjh [Φ], h = 1, . . . , |S|.

We would like the symmetric functions ΛS,h[Φ] of the eigenvalues to depend in a differen-
tiable manner w.r.t. the perturbations Φ, in order to deal with extremum problems of this
type:

min
Vol[Φ(Ω)]=const.

ΛS,h[Φ], max
Vol[Φ(Ω)]=const.

ΛS,h[Φ],

min
Per[Φ(Ω)]=const.

ΛS,h[Ω], max
Per[Φ(Ω)]=const.

ΛS,h[Ω].

To have that, we need to restrict the admissible perturbations to

AΩ[S] = {Φ ∈ AΩ : λj [Φ] 6= λl[Φ], ∀j ∈ F, l ∈ N \ F } ,

which is nothing but the set of admissible diffeomorphisms that fix a finite set of eigenvalues
and their multiplicities. Then AΩ[S] is an open set C2(Ω;R3), and the functions ΛS,h[Φ]
depend real-analytically on Φ ∈ AΩ[S] (see [14, Thm. 4.5], where the Fréchet differentials
are computed as well).

Set now
V(α) := {Φ ∈ AΩ : Vol(Φ(Ω)) = α }

and
P(α) := {Φ ∈ AΩ : Per(Φ(Ω)) = α } .

Theorem 3 [14, Thm. 5.13] Let Ω be a bounded domain in R3 of class C2. Let Φ ∈ AΩ

be such that Φ(Ω) is a ball. Let λ be an eigenvalue of the electric problem Φ(E), and
let S be the set of j ∈ N such that λj [Φ] = λ. Then Φ is both a critical point for ΛS,h
with volume constraint V[Vol(Φ(Ω))] and a critical point for ΛS,h with perimeter constraint
P[Per(Φ(Ω))], for all h = 1, . . . , |S|.
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The previous theorem affirms that “balls are critical domains for the symmetric func-
tions on the eigenvalues under the constraint of fixed volume/fixed perimeter". Its proof
is based on Thm. 5.10 of [14], which gives a method to check whether a perturbation Φ
is a critical point or not for the symmetric functions of the eigenvalues, in the form of a
necessary and sufficient condition. This, in turn, partially answers the question regarding
a characterization of critical shapes addressed earlier.

3 Appendix

Throughout this read, we used some notations that may not be familiar with the reader,
and this is why here we try to be more precise.

With Ck(Ω) = C(Ω)∩Ck(Ω) we denote the set of functions in Ω continuous up to the
boundary, which are also k-times continuously differentiable in Ω.

With Ck(Ω)3 = Ck(Ω;R3) we denote the set of real vector fields from Ω to R3, which
are k-times continuously differentiable in Ω.

With H1/2(∂Ω) we denote the range of the trace operator

tr : H1(Ω)→ L2(∂Ω).

For more details about the trace operator we refer to chapter 5 of [3].
With H−1/2(∂Ω) we denote the topological dual of H1/2(∂Ω).

The following theorem is a one of the fundamental results of functional analysis and
spectral theory. Among the many versions, we present the one that we need.

Theorem 4 (Spectral theorem) Let L : H → H be a compact self-adjoint linear operator on
a Hilbert space H. Then there is a finite or infinite sequence {µn}mn=1 (i.e. m ∈ N or m =
∞) of real positive eigenvalues with finite multiplicity and a corresponding orthonormal
sequence {en}mn=1 in H such that:

• L en = µnen for all n ∈ { 1, . . . ,m };

• Ker(L) = Span({en}mn=1)⊥;

• if m =∞, then limn→∞ µn = 0.

It is the infinite-dimensional generalization of the classical spectral theorem of linear
algebra, concerning the diagonalization of a symmetric matrix.

3.1 Example

Why do we deal the symmetric functions of the eigenvalues instead of each single eigen-
value? The problem is that, even if there are nice results on the differentiability of the
eigenvalues when the dependance is w.r.t. a one-parametric family of perturbations, when
we pass to two or more parameters, the differentiability is lost, even in finite dimensional
spaces. This will be the setting of the next example.
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Consider the matrix

A(t, r) =

(
t r
r −t

)
depending on two parameters t, r ∈ R. It is a linear operator acting from R2 to itself. Its
eigenvalue are easily computed:

λ1[t, r] =
√
t2 + r2, λ2[t, r] = −

√
t2 + r2.

As one can clearly see, the eigenvalues de-
pend continuously on the parameters, but at
the point (t, r) = (0, 0) they fail to be differ-
entiable.

Taking instead the symmetric functions of the eigenvalues, i.e.

λ1[t, r] + λ2[t, r] = 0, λ1[t, r]λ2[t, r] = −t2 − r2,

we recover the differentiability. The dependence on the parameters t and r is actually
analytical. To see more about this subject the reader can take a look at chapter 2 of [11].
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Optimal stopping theory and American options

Francesco Rotondi (∗)

Abstract. The optimal stopping problem is a classical one within stochastic calculus theory. For-
mally, given a gain process, the optimal stopping problem is about finding the stopping time that
maximizes the expected gain. Optimal stopping theory closely relates to the American derivatives
valuation problem. American derivatives are financial contracts characterized by a payoff process
that depends on an underlying stochastic process (usually the price of a traded asset). The holder
of an American derivative chooses when to cash in the payoff, trying to do so optimizing the ex-
pected gain. Therefore, the fair price of this derivate depends on its optimal stopping time. The
goal of this note is twofold: first, I describe and then show how to solve the optimal stopping
problem in a discrete time setting. Then, I show how to apply these techniques for the valuation
of American derivatives in the Black-Scholes model and in the Vasicek one.

1 Optimal Stopping Theorem

This first section recalls a few simple definitions from stochastic processes theory and
introduces the optimal stopping problem. This problem is then explicitly solved in a
discrete time setting. Finally, the problem is solved also for a class of continuous time
processes by means of a limit result. For a further analysis of the optimal stopping theory
applied to mathematical finance problems see Chapter 16 of Björk (2009).

1.1 The statement of the problem

Let (Ω,F ,F,P) be a filtered probability space where F = {Ft}t≥0 satisfies the usual
conditions. We first recall a standard definition.

Definition 1 A random variable τ ≥ 0 is called a stopping time with respect to F if

{τ ≤ t} ∈ Ft ∀t ≥ 0.

A stopping time is a random variable that represents the instant in time at which a
random event of interest realises. It is called a stopping time because, according to the

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 17 March 2021.
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standard interpretation, as soon as the event of interest realizes, we stop and take some
other actions. According to the definition, the stopping time is non anticipative. This
means that at any t we can actually say whether the event of interest has already occurred
or not.
A stopping time is usually associated to a stopping rule, which is a stochastic process
that tells us when to stop, namely when the event of interest realises. Indeed, the following
proposition holds.

Proposition 2 A random variable τ ≥ 0 is a stopping time w.r.t. to F ⇐⇒ the stochastic
process {Tt}t≥0, defined as

Tt :=

{
1 if t ≤ τ
0 if t > τ

is adapted to the filtration F.

These definitions are quite general as long as we do not define properly the event of
interest that triggers the stop. To do so, we need to introduce another stochastic process:
let {Xt}t≥0 be a real-valued integrable stochastic process. We call process X the reward
process or the payoff process. The interpretation of this process is the following: we
assume that we are playing a game that starts at t = 0. At each point in time t > 0
we can observe the current value of X(t) and decide whether to stop the game. if we do
so, we cash in X(t) euros. If asked to play this game, it makes sense to find an optimal
stopping rule that maximizes the expected reward. This rational approach to the game is
formalized by the following problem.

Definition 3 The optimal stopping problem reads

sup
0≤τ≤T

E [Xτ ]

where τ is a stopping time.

In words, when standing at zero, we want to find a stopping time (or a stopping rule)
that tells us when to stop process X so to maximize our expected reward.
In a few cases, the optimal stopping problem has a trivial solution:

• if X is a submartingale, then the optimal stopping time is τ∗ = T as the expected
value of X is increasing over time;

• on the contrary, if X is a supermartingale, then τ∗ = 0 as the expected value of X is
decreasing over time and we are better off by stopping right at the beginning before
the expected reward decreases;

• if X is a martingale, then τ∗ ∈ [0, T ] is always optimal as the expected value of X is
constant over time.

Besides these few trivial cases, the optimal stopping problem is not easily solvable. How-
ever, when time is discrete, there is a simple algorithm that does the job.
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1.2 Discrete Time

Let t ∈ Π = {0, 1, . . . , T}. In order to describe the solution to the optimal stopping problem
we need to introduce the following definition.

Definition 4 The optimal value process {Vt}t∈Π is defined as

Vt = sup
τ≥t,τ∈Π

E [Xτ | Ft] .

To solve the optimal stopping problem we employ a dynamic programming ap-
proach.
Fix a point in time t ∈ Π. We compare the following three strategies:

[S1] use the optimal stopping time τ∗;

[S2] stop right away at t;

[S3] don’t stop at t and use the optimal stopping time at t+ 1.

The value of the first two strategies at t follows by definition:

[S1] the optimal value process Vt;

[S2] the current reward/payoff value Xt.

As for the third strategy, its value at t+ 1 is equal to Vt+1. However, we have to evaluate
this unknown value that realizes at t+ 1 when standing at t. The value, at time t, of using
the optimal stopping time τ∗ at t+ 1 is

E [Xτ∗ | Ft] = E [E [Xτ∗ | Ft+1] | Ft] = E [Vt+1| Ft] ,

thanks to the law of iterated expectations. Therefore, the value at t of the third strategy
is

[S3] the conditional expected value of the optimal value process at t+ 1, E [Vt+1| Ft].

By definition, strategy [S1] (the optimal one) dominates both [S2] and [S3]:

Vt ≥ Xt(1)
Vt ≥ E [Vt+1| Ft] .(2)

Anyway, at t, it is optimal to:

• either stop, if Vt = Xt ≥ E [Vt+1| Ft];

• or not to stop, if Vt = E [Vt+1| Ft] ≥ Xt.
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Therefore, we learnt how to express the optimal value at t, Vt, as a function of the observable
current value Xt and of a conditional expected value that can be computed at t if Vt+1 is
known. If we known VT , then we can set up a backward recursion.

Proposition 5 The optimal value process {Vt}t∈Π solves the following backward recur-
sion:

VT = XT

Vt = max {Xt,E [Vt+1| Ft]} ∀t ∈ {0, . . . , T − 1}

From this backward recursion, we can retrieve the underlying optimal stopping time.

Proposition 6 At time zero, an optimal stopping time τ∗ is

τ∗ = min{t ≥ 0 : Vt = Xt},

where the process V is computed using the backward recursion in Proposition 5. Analo-
gously, at t, an optimal stopping time τ∗t is

τ∗t = min{s ≥ t : Vs = Xs}.

It turns out that the optimal value process V has an interesting equivalent characteri-
zation. In order to describe it, we need two more definitions.

Definition 7 The process {St}t∈Π dominates the process {Yt}t∈Π if, ∀t ∈ Π,

St ≥ Yt P-almost surely.

Definition 8 Let {Xt}t∈Π be such that E [Xt] < ∞ ∀t ∈ Π. The Snell envelope of X
is the smallest supermartingale that dominates X.

Then, the following Theorem holds.

Theorem 9 In the optimal stopping problem, the optimal value process V is the Snell
envelope of the “payoff” process X.

Proof. From Vt ≥ Xt in (1), we know that V dominates X.
From Vt ≥ E [Vt+1| Ft] in (2), we know that V is a supermartingale.
Assume now that {St}t∈Π is a supermartingale that dominates X. At T , as S dominates
X, ST ≥ XT = VT , so V is smaller. By (backward) induction, assume St+1 ≥ Vt+1.
Since S is a supermartingale, St ≥ E [St+1| Ft] and St ≥ E [Vt+1| Ft]. As S dominates Z,
St ≥ Zt. Therefore,

St ≥ max {Xt,E [Vt+1| Ft]} = Vt

so V is smaller than S ∀t ∈ Π.
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1.3 Continuous time

When time is continuous, the backward recursion of Proposition 5 is no longer applicable.
However, the following convergence result tells us that if we know a discrete stochastic
process Xd that converges in distribution to the continuous time process Xc, then so do
their Snell envelopes.

Theorem 10 If {Xd
t }t∈Π

d→ {Xc
t }t∈[0,T ], then the Snell envelope of Xd converges to the

Snell envelope of Xc.

Proof. See Mulinacci and Pratelli (1998).

In other words, if we face a continuous time optimal stopping problem and we know how to
discretize the continuous time reward process, we can solve the related discretize problem
and then take the limit as the time step of the partition goes to zero.

2 American options: the Black-Scholes model

Consider an arbitrage-free financial market and let {Bt}t≥0, with Bt = ert, be the price
process of the risk-free asset. In this section we assume that the risk-free interest rate is
constant. Let {St}t≥0 be the price process of a traded security.
Fix a maturity T > 0. Let {Xt}t≥0 be a payoff process with Xt = ϕ(St). A European
derivative is a binding financial contract that entitles the holder to receive, at maturity
T , the amount of money XT , that depends on the unknown value of the underlying ST .
As most of the times this amount is non negative, the contract comes at an initial price
when signed. The fair no-arbitrage price of a European derivative on S, with maturity T
and payoff XT = ϕ(ST ) is

πEt = EQ
[
e−r(T−t)XT

∣∣∣Ft]
where Q is a risk-neutral measure(1). For European derivatives the instant of time in which
the holder cashes in the payoff is fixed (and usually equal to T ).
On the contrary, the holder of an American derivative can choose when to stop and
cash in the current payoff Xt. In other words, the holder of an American derivative can
exercise it at any time before maturity. The seller of such a contract must assume that
the buyer (i.e., the holder) of the contract will exercise it when its (discounted) expected
payoff is maximum. Therefore, the fair no-arbitrage price of a American derivative on S,
with maturity T and payoff function Xt = ϕ(St) is

πAt = sup
t≤τ≤T

EQ
[
e−r(τ−t)Xτ

∣∣∣Ft] .
Recalling Definition 8, we can claim that the price process

{
πAt
}
t∈[0,T ]

of an American
derivative is the Snell envelope of the (discounted) payoff process X.

(1)See Chapters 3-4 of Björk (2009) for an introduction to no arbitrage pricing theory.
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Consider now the Black and Scholes (1973) model. Namely, assume that S is a geo-
metric Brownian motion under Q:

dSt
St

= (r − q̄)dt+ σdWQ
t

St = S0e

(
r−q̄−σ

2

2

)
t+σWQ

t

where q̄ is the continuous dividend yield of the security and σ its volatility. Clearly, the
discounted payoff process X = e−rTϕ(S) is a continuous time process. In order to find
the price of an American derivative within this market model, we need to come up with a
discretization of S. The most handful discretization of the geometric Brownian motion is
the binomial model.

2.1 The binomial model

In their celebrated paper, Cox et al. (1979) introduce the binomial model, a discrete
time process that converges in distribution to a geometric Brownian motion. Given the
uniform partition Π = {0, 1, . . . , T}, with time step ∆t = 1, the binomial tree {S̃t}t∈Π is a
lattice discretization of S built as follows:

• S̃0 = S0.

• S̃t =

{
S̃t−1u with probability q
S̃t−1d with probability 1− q for all t = 1, . . . , T .

• u > d, q are chosen in such a way to match the first two moments of lnS:

EQ[ln S̃t] = EQ[lnSt] and V arQ[ln S̃t] = V arQ[lnSt].

As a result, we have

u = eσ
√

∆t, d =
1

u
, q =

e(r−q̄)∆t − d
u− d ,

where ∆t = 1 is the time step of the uniform partition Π.

The resulting discretized process looks indeed like a tree. Figure 1 shows a two step
binomial tree. Notice that, since u = 1

d , the tree is recombining and the possible values
of the tree at a given step increases only linearly in the number of steps. Using the back-
ward algorithm of Proposition 5, we can easily retrieve the value process of an American
derivative along this two-step binomial tree as well as the related optimal stopping rule.
Assume that the payoff process of an American derivative on S with maturity T is Xt =
ϕ(St). At T = 2, πA2 = ϕ(S̃2). At t = 1, if S̃1 = S0u,

πA1 (S0u) = max
{
ϕ(S0u), e−r∆t(qπA2 (S0u

2) + (1− q)πA2 (S0ud))
}
,
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Figure 1 Two-step binomial tree.

while, if if S̃1 = S0d, then

πA1 (S0d) = max
{
ϕ(S0d), e−r∆t(qπA2 (S0ud) + (1− q)πA2 (S0d

2))
}
.

Finally, at inception t = 0,

πA0 (S0) = max
{
ϕ(S0), e−r∆t(qπA1 (S0u) + (1− q)πA1 (S0d))

}
.

Keeping track, node by node, of the nodes in which the immediate payoff, ϕ(St) is higher
than the continuation value, E

[
πAt+1

∣∣Ft] allows us to retrieve the optimal stopping
time/rule, also called the optimal exercise policy. This policy is uniquely associated to
the critical price, S̃∗t : Π→ R+, which is defined as

S̃∗t := max / inf
{
S̃t s.t. ϕ(St) = πAt

}
,

where the max is used for a payoff which is decreasing in S and the min is used for a payoff
which is increasing in S. In words, the optimal stopping rule prescribes to stop as soon as
the value of the underlying touches the critical price.
When taking the limit of the binomial discretization as the time step ∆t goes to zero, we
are able to get the price at inception of the American derivative under investigation and
also the continuous version of the critical price, S̃∗, that tells us the optimal exercise policy
of the derivative.

Consider now an American put option issued at the money, namely, set ϕ(St) = (S0 −
St)

+ := max{0, S0 − St}. The limit of the critical price is shown in Figure 2.
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Figure 2 Critical price of an at-the-money American put option within the Black-Scholes model.

As soon as the value of the underlying falls below the blue boundary(2) the holder of
the derivative is better off by exercising it right away.

3 American options: the Vasicek model

Battauz and Rotondi (2020) extend the well-known results of the previous section to a
stochastic interest rates environment. More precisely, we consider a Vasicek (1977) model
where, under Q, the price process of the locally riskless asset is Bt = e

´ t
0 rvdv; the locally

riskless short-term interest rate {rt}t∈[0,T ] solves

drt = κ (θ − rt) dt+ σrdW
r
t

rt = r0e
−κt + θ(1− e−κt) + σr

ˆ t

0
e−κ(t−s)dW r

s ,

and the price process of the traded security solves

dSt
St

= (rt − q̄)dt+ σSdWS
t

St = S0e

´ t
0 rvdv−

(
σ2S
2

+q̄

)
t+σSW

S
t
.

Moreover, the two Brownian innovations that drive the market/equity and the interest rate
risk in the market are correlated, d〈W r,WS〉 = ρdt. The parameters in the SDE solved
by rt, which is an Ornstein–Uhlenbeck process, have the following interpretation: κ is the
speed of mean reversion, as it is assumed that r, starting at r0 reverts back to, θ, the

(2)The critical price is also referred to as the upper/lower boundary as the American valuation problem
can be also stated through a variational inequality approach, solved by a free boundary.
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long-run mean; σr is the volatility of the interest rate.
This setting allows us to assess the impact of interest rate risk in the valuation of American
derivatives as long as we know how to jointly discretize the two processes (S, r).

3.1 The quadrinomial tree

Inspired by the structure of the binomial tree recalled in the previos section, we derive a
lattice discretization of {(St, rt)}t∈[0,T ] and we call it the quadrinomial tree. Given a
uniform partition Π = {0, 1, . . . , T}, with time step ∆t = 1, the quadrinomial tree is built
as follows

• (S̃0, r̃0) = (S0, r0).

• (S̃t, r̃t) =


(S̃t−1uS , r̃t−1ur) with probability quu

(S̃t−1uS , r̃t−1dr) with probability qud

(S̃t−1dS , r̃t−1ur) with probability qdu

(S̃t−1dS , r̃t−1dr) with probability qdd
for all t = 1, . . . , T .

• uS , dS , ur, dr, quu, qud, qdu, qdd are chosen in such a way to match the first two
moments of lnS and r and their covariance:

EQ[ln S̃t] = EQ[lnSt], V arQ[ln S̃t] = V arQ[lnSt]

EQ[r̃t] = EQ[rt], V arQ[r̃t] = V arQ[rt], EQ[ln S̃tr̃t] = EQ[Strt].

As a result we have:
uS = eσS

√
∆t, dS = 1

uS

ur = σr
√

∆t, dr = −ur

quu =
µY µr∆t+ µY ur + µruS + (1 + ρ)σrσS

4σrσS

qud =
−µY µr∆t+ µY ur − µruS + (1− ρ)σrσS

4σrσS

qdu =
−µY µr∆t− µY ur + µruS + (1− ρ)σrσS

4σrσS

qdd =
µY µr∆t− µY ur − µruS + (1 + ρ)σrσS

4σrσS
.

where µY :=
(
r(t)− q − σ2

S
2

)
and µr := κ(θ−r(t)). Notice that, in the quadrinomial

tree, the transition probabilities are time-dependent and state contingent. This is
due to the trend-stationarity of r: jumps that move away from θ must have smaller
probability than the ones that move closer to θ.
Moreover, the four transition probabilities are not necessarily strictly positive, al-
though they tend to become negative for extremely unlikely values of the parameters.
See the Appendix of Battauz and Rotondi (2020) for all the related details.
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The quadrinomial tree looks like a bivariate binomial tree.

Figure 3 Two-step quadrinomial tree.

Figure 3 shows a two-step quadrinomial tree.

Using the quadrinomial tree, conditional expected values can be computed as in the
standard binomial tree averaging out four possible outcomes (with probabilities that have
to be computed node by node).
Consider an American derivative with payoff ϕ(S). When valuing it option along the
quadrinomial tree keeping track of the optimal stopping time/rule we can derive the anal-
ogous of the critical price introduced in the previous section for the univariate Black-Scholes
model. The univariate critical price becomes now a critical surface, defined as(

S̃∗t , r̃
∗
t

)
:= max /min

{(
S̃t, r̃t

)
s.t. ϕ(St) = πAt

}
.

where the max is used for a payoff which is decreasing in S and the min is used for a payoff
which is increasing in S. In words, the critical surface is the set of all the state variables
couples that trigger the optimal exercise of the American derivative.

Consider now an American put option issued at the money, namely, set ϕ(St) = (S0 −
St)

+ := max{0, S0 − St}. The shape of the critical surface can change significantly with
the sign of r and q̄, the continuous dividend yield of the equity, as both impact S’ drift,
µ := r − q̄.
Assume q̄ = 0. If the underlying pays no dividend the expected drift of S coincides with r.
This splits the domain of r in two complementary regions according to the sign of r, as can
be seen in the right panel of Figure 4 (that displays the free boundary section at t = T

2 ).
In the left region where r and µ are both negative, the investor is willing to wait and
postpone the exercise as much as possible in order to gain from both the negative discount
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rate and the implied expected depreciation of S. In the right region, on the contrary, where
r and µ are both positive, we have the standard tradeoff between a positive discount rate
(that makes the investor willing to exercise the option as soon as possible) and a negative
expected drift of S (that makes the investor willing to wait for a larger payoff).

Figure 4 q̄ = 0 case. Left panel: critical surface of an at-the-money American put option within the
Vasicek model. Right panel: r-section of the surface in the left panel at t = T

2
= 1.

Figure 5 q̄ < 0 case. Left panel: critical surface of an at-the-money American put option within the
Vasicek model. Right panel: r-section of the surface in the left panel at t = T

2
= 1.

This generates the “standard boundary” shown in the left panel of Figure 4.
Assume now q̄ < 0(3). In this case, the drift of S is equal to r plus a positive quantity. As
a result, µ may be positive also when r is mildly negative. This splits the domain of r into
three complementary regions, as shown in the right panel of Figure 5: the one in which
r and µ are both negative, the one in which r is negative but µ is positive and the last

(3)A negative dividend yield is common if the underlying is commodity which entails a cost of carry or
if the underlying is the price of a foreign security, see Battauz et al. (2018).
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one in which r and µ are both positive. In the first region, the option is again optimally
exercised at maturity as in the previous example. In the middle section a non standard
lower critical surface (or boundary) appears. The lower critical surface is defined as(

S̃∗t, r̃∗t

)
:= inf

{(
S̃t, r̃t

)
s.t. (S0 − S̃t)+ = πAt

}
.

and it represents the set of notes below which it is not optimal to exercise the American
put option. Below this lower critical surface, indeed, the expected drift of the underlying is
pushes it up making the option lose value and therefore the holder of the option is tempted
to exercise it. On the other hand, the negative interest rate suggests her to cash in later
on rather than right now. This unusual tradeoff delivers the non standard double surfaces.
In the last region where both r and µ are positive, we find the standard behaviour already
outlined in the previous case.
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On the simulation of planar homogeneous flows

Francesca Tedeschi (∗)

Abstract. In this report we are going to consider Non-Equilibrium Molecular Dynamics (NEMD),
a well-established simulation technique for molecular fluids undergoing simple shear and planar
extensional flows, see [12]. Periodic boundary conditions shall be used and, since the simulation
box deforms with the flow, image particles become arbitrarily close causing a breakdown in the
simulation at a certain time. Kraynik and Reinelt [6] (KR) got a theoretical result in 1992 to
avoid this problem for planar elongational flow that requires you to carefully choose the initial
simulation box and periodically remap the simulation box in a way that conserves image locations.
Our particular interest is to generalize the KR method to the case of planar mixed flows (linear
combination between planar Couette and elongation) in order to guarantee infinite simulation
times and thus, provide a reliable method to simulate also these conditions of motion with NEMD
techniques.

1 Introduction

Molecular Dynamics (MD) techniques simulate the interactions between the molecules of
a fluid and compute the trajectories of particles belonging to certain statistical ensembles.
Through the outputs of these simulations we are able to extract local information (about
atoms positions, bonds and averaged quantities, such as pressure, temperature and en-
ergies) and build the Cauchy stress tensor of the macroscopic variational problem. Our
approach takes into account the fact that the response of a complex material can depend
strongly on the local flow type and is thus necessary to properly sample the space of
kinematic parameters, performing MD simulations in different conditions of motion.

The Figure 1 represents the flow of a fluid in the contraction channel: it is a paradig-
matic example of complex geometry that gives rise to different kinematic conditions in the
various regions: simple shear (planar Couette) motion is displayed far from the contraction,
elongation is developing along the centerline, rotational motion is occupying the corners of
the geometry and mixed motion is spread all around.

We would like to take into account these effects on the dynamic, due to the pres-
ence of holes, barriers, obstacles in the Cauchy stress tensor (at the continuum scale).
Thus our tensor is not given a priori through a constitutive law (as usually) but is re-
constructed, point by point, using the decomposition proposed in [4] and the information

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 31 March 2021.
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(about viscosity and other fluid properties) for the different local flow types, collected in
MD simulations.

In the classical way of thinking, rheological measurements of real fluids are recovered
through viscometric flows, equivalent to simple shear motions. For example in Figure 2
(left) is reported the parallel plate rheometer which is a capstone in rheology for fluid
properties investigation: the material is here confined between the two shearing plates by
capillary forces, without flowing out, and the torque is measured on the rotating disc. Also
the simulation techniques are, in this case, almost old and well developed, [8]. However
planar extension (and mixed motion too) cannot be ignored because plays a crucial role
in complex flows and is much more investigated recently, see [5]. This flow type is really
important in polymer processing and many other industrial processes, such as the extrusion
process. In Figure 2 (right) I represented this application of the 2D extensional motion.
It is widely used in engineering field to create an object which has a fixed cross-sectional
area. For making the object, the raw material is pushed into a die to provide it with the
desired shape. There exist algorithms and experimental tools such as rheometer for the
study of this flow type ([1] and [11]), but they are not so updated and developed and need
to be investigated more. So, many efforts in the last years has been directed towards the
creation of methods usable in presence of motions other than simple shear. Something is
already available, [2]. In this report I will show in details the application of the Krayinik
and Reinelt boundary conditions to the case of intermediate motions, as first theoretical
step in building a MD algorithm to perform simulations in those conditions.

Figure 1 The flow through a contraction channel is an example of complex flow because of the appearance
of different flow types. (Taken from [4])

2 Balance equations of fluid dynamics

From continuum mechanics, we assume the principle of local conservation of mass: the
mass is preserved through the motion, there is neither loss nor accumulation of mass along
the pathway, the mass is following exactly trajectories of geometrical points. Because of
this hypothesis we get the equation of continuity with ρ : Ω×R+ → R, ρ = ρ(x, t) density
of mass function

∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v =

dρ

dt
+ ρ∇ · v = 0.
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Figure 2 Parallel plates rheometer measuring the shear viscosity of a fluid (left) and extrusion process as
example of application of planar extensional flow (right).

If b : Ω × R+ → R3, b = b(x, t) is a force density for unit mass, from the principle
of conservation of linear momentum (analogue of the Newton’s equation for the classical
mechanics) we obtain the equation of motion

ρ
dv
dt

= ρb +∇ · σ

where σ is the Cauchy stress tensor of internal forces, prescribed with a constitutive law

σ = f (ρ,∇ρ, . . . ,v,∇v, . . . ) .

This relation codifies how the fluid internally reacts to external forces imposed with some
velocity gradients ∇v. At this point, the only things we know is that it depends on the
two unknowns of the problems, the density ρ and the velocity v and their derivatives.

In our work we are interested in considering only incompressible fluids subject to ho-
mogeneous flows meaning that the density is a constant function in space and time ρ = ρ.
Moreover if we neglect the influences of external volume forces b = 0, we have the following
PDEs 

∇ · v = 0

ρ
dv

dt
= ∇ · σ

σ = f (v,∇v, . . . )
where the constitutive law no longer depends on the density ρ.

In Table 1 we report some basic examples of constitutive laws and their correspondent
equation of motion. There are many other choices that can be made for the Cauchy stress
tensor.
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Constitutive law Equation of motion

Perfect σ = −pI ρdvdt = −∇p
Newtonian σ = −pI + 2ηD, η(|ε̇|) = const ρdvdt = −∇p+ ν∆v

Power-law σ = −pI + 2η(|ε̇|)D, η(|ε̇|) = k|ε̇|s−2 ρdvdt = −∇p+ k∇ · (|ε̇|s−2D)

Table 1 Three examples of constitutive laws: Perfect, Newtonian and Non-Newtonian (Power-law) fluids.

For the Perfect fluid the stress tensor σ is constant and, in particular, is a multiple
of the identity through p, the Lagrange multiplier due to the incompressibility constraint.
This means that no forces are arising inside the fluid in reaction to a compression from
outside. With this model we are neglecting viscous forces, thus the fluid is moving as a
rigid body, governed by the Euler equation of motion.

The first attempt to consider the influence of viscosity is through Newtonian fluids
represented by a linear relation between the stress σ and the strain rate tensor D =
Sym(∇v), which codifies the type of deformation imposed, with η kinematic viscosity and

|ε̇| = ‖D‖ =

√
tr (D2)

2

the strain rate, measuring the intensity of the deformation. The correspondent equation
of motion is the Navier-Stokes equation where ν is the dynamic viscosity, instead.

The third example is a more refined case of viscid fluid, the Power-law fluid, char-
acterized by a non linear stress-strain relation, because of the non-constant (power-law)
viscosity. k > 0 is a dimensional constant, while s > 1 is a non-dimensional constant. In
particular:

• if s < 2 the viscosity is decreasing with respect to ‖D‖, shear-thinning fluids

• if s > 2 the viscosity is increasing with respect to ‖D‖, shear-thickening fluids.

There are plenty of other models for viscid fluids that takes into account many different
properties, see [7]. However, real fluids are so complex, in a way that they disregard
any classification and any characterization because choosing a method implies to look at
some properties, ignoring many others. There is no, at the moment, a very complete
method to describe real fluids. Is for these reasons that we are trying to build a numerical
representation of the stress tensor σ, instead of prescribing a constitutive law, based on
data produced with MD simulation techniques, that are as realistic as possible.
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3 Velocity gradient tensor

We are going to focus our attention to 2-dimensional flows and to suppose that ∇v 6= 0
which would be the case of a rigid body, not interesting for fluid dynamics.

Historically, Stokes was the first to look at the velocity gradient as the sum of its
symmetric and skew components, respectively D = sym(∇v) and W = skew(∇v), giving
to them the meaning of strain rate tensor and vorticity tensor.

∇v = D + W.

We prefer to represent the two tensors on the basis of the eigenvectors d̂1, d̂2 of D

D = ε̇[d̂1d̂1 − d̂2d̂2] W = ε̇β3[d̂2d̂1 − d̂1d̂2]

because in this way ∇v is clearly represented by two kinematic parameters that are the
strain rate ε̇, already introduced in Section 2, and

β3 =
(∇× v)

2ε̇
· d̂3

that is the flow parameter, quantifying the amount of vorticity along the out-of-flow
direction and measuring the relative importance of the rotational part with respect to the
pure deformation part.

According to the parameter β3 we classify local (homogeneous) flows as Table 2 shows

β3 = 0 planar extension

β3 = 1 simple shear

β3 →∞ rigid rotational motion

0 < β3 < 1 intermediate motions

Table 2 Local (homogeneous) flow classification through the parameter β3.

and Figure 3 displays the vector fields and the correspondent streamlines, for the flow types
ranging from planar extensional (hyperbolic lines), passing through simple shear (straight
lines) to rigid rotational motion (circular lines).

Figure 3 Representation of the vector field in the different flow types. (Figures taken from [4])
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The deformation of a system subject to a constant (in space and time) velocity gradient
A = ∇V is described by the following autonomous linear ODE{

ẋ = Ax

x(0) = x0

where x ∈ R2 is the "material" vector position of a generic point in the system and x0 ∈ R2

is its initial condition. The flux of the ODE is represented by the infinitely differentiable
function

Φ : R+ × R2 → R2

(t,x0) → ΦA(t,x0) = exp (At)x0

where F(t) = exp (At) is the deformation matrix and has the following expression for each
type of flow

• simple shear (∇v) t =

[
0 2ε̇t
0 0

]
→ F(t) =

[
1 2ε̇t
0 1

]

• elongational (∇v) t =

[
ε̇t 0
0 −ε̇t

]
→ F(t) =

[
exp (ε̇t) 0

0 exp (−ε̇t)

]

• intermediate (∇v) t =

[
ε̇t −ε̇β3t
ε̇β3t −ε̇t

]
We refer to Section 5 for the expression of the deformation matrix in the mixed case, which
is quite complex.

Thus, to sum up, we use MD techniques to realize simulations with imposed globally
constant ∇v, associated to a specific flow type, and this gives rise to a global homogeneous
flow. The simulation box is deformed through the deformation matrices presented above
and results about the stress tensor components are collected and associated to each point
in the macroscopic solver that displays such a flow type. Imposing ∇v in our case is
equivalent to impose a specific value for ε̇ and β3, kinematic parameters, and from the
values of σ we will recover the relation f of

σ = f (ε̇, β3) .

4 Non-Equilibrium Molecular Dynamics (NEMD)

Molecular Dynamics (MD) simulations aim to predict the time-dependent trajectories in
a system of N interacting particles, through the integration of the Newton’s equations of
motion.
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It has been introduced by Alder and Wainwright between 1957 and 1959 with the
hard sphere model, but were Rahman and Stillinger that carried out the first molecular
dynamic simulation of a realistic system (liquid water) in 1972. It is used to understand
the molecular behavior of a material because it is able to simulate (even for short times)
on the atomic scale.

The term Non-Equilibrium (NE) refers to the fact that the average velocity of the
system is not zero v 6= 0 and we are providing energy to the system from external sources
to maintain active this condition, thus we are not at the thermodynamic equilibrium.

In MD simulations each particle is a point mass mi with initial positions xi(0) and
velocities vi(0), but can build even more complex systems characterized by single atoms,
group of atoms or macro-/ meso- particle.

Particles interact via empirical force laws, that can act at distance through an inter-
action potential denoted by Unon-bond or through covalent bonds, thus for direct contact
with potential Ubond, so we find the total interaction potential through the sum of the two
contributions

U = Ubond + Unon−bond → Fi(t) = −∇iU(x1(t),x2(t), . . . ,xN(t))

where Fi(t) is the force acting on particle i and xj(t) is the position of the j-th particle.
Moreover, the interactions may occur between a different number of particles: can

be pair-wise (LJ, WCA, Coulombic, . . . ), many-body (EAM, Tersoff, REBO, . . . ) or
molecular (spring, torsions, FENE, . . . ).

As already said, Molecular Dynamics integrate the Newton’s equations of motion, three
for each particle

Ai(t) =
1

mi
· Fi(t) ∀i = 1, . . . ,N

and this means that we have a set of 3N coupled ODEs to be solved. The meaningful
properties are finally retrieved via time-averaging ensemble snapshots.

5 Periodic Boundary conditions (PBCs)

We want to simulate a bulk flow of a fluid with ∼ 1023 atoms, but the simulated system
has at most 107 atoms. So, the question that now arises is: how do we approximate a
system virtually infinite through a finite system? The answer is achieved through Periodic
Boundary Conditions (PBCs).

The computational box represents a portion of fluid (containing a finite number N of
particles) and the software is surrounding it by periodic copies of itself, called images, that
follow exactly the same trajectories of the main particles, see Figure 4.

This is obviously advantageous because it requires fewer computational resources, com-
pared to considering cells composed of completely different particles. For Molecular Dy-
namics issues refer to [3]. PBCs are used because they guarantee the following principles:

• the forces in the main cell are computed using all the particles, also copies that belong
to different boxes
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• each particle interacts only with one copy of another particle

• if N is sufficiently large, the statistics observed is independent of N and of the peri-
odicity.

(Figures taken from https://lammps.sandia.gov/)

Figure 4 Scheme of PBCs conditions.

If we consider a particle and its images we obtain a lattice of points, that should meet
two requirements for the simulation to be reliable and to be carried out for an indefinite
time: compatibility and reproducibility.

Since a particle must not interact with its copies, the minimum separation D of all
lattice points (identical image particles) must exceed the cutoff range rcut of interactions
D � rcut. This is the compatibility condition.

Reproducibility means instead that the lattice ”repeats itself periodically” with the
deformation. The exponential deformation of the system periodically returns to a state
where replacing some of the original particles with their images the initial state boundaries
are recovered. In correspondence to the time period the box should be re-initialized to allow
the simulation to be still carried out. Reproducibility, usually, guarantees compatibility.

In simple shear the squared lattice is reproduced at periods of time τp = 1 but can be
re-initialized at any time, in fact, in the initial squared box there is always exactly a copy
of each particle.

KR found reproducibility for the planar extensional motion, using a squared simulation
box, for a period τp = 0.962424 and tilting the initial box of an angle ϑ = 0.55357435.

Following the pathway indicated by [6] we found the conditions of reproducibility of
a lattice under mixed conditions of motion. We are going to illustrate in details the
algorithm. Supposing ε̇ = 1, the velocity gradient tensor is represented by the matrix

(∇V)B =

[
1 −β3

β3 −1

]
with basis B = {d1,d2}
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whose eigenvectors are v1 =

(
1+
√

1−β2
3

β3
, 1

)
, v2 =

(
1−
√

1−β2
3

β3
, 1

)
, subsequently normalized

v̂1, v̂2.
Since (∇V)B is diagonalizable, if D is the correspondent diagonal matrix, we have

(∇V)B = S(D)S−1.

Now, taking as basis the two orthonormal eigenvectors B′ = {v̂1, v̂
⊥
1 } and let R =

MBB′ be the matrix of change basis, we obtain the velocity gradient matrix in the new
basis (still diagonalizable) with matrix S′ = RS

(∇V)B′ =

[√
1− β2

3 −2β3

0 −
√

1− β2
3

]

(∇V)B′ = R(∇V)BR
T

= RS(D)S−1RT

= S′(D)S′−1.

Therefore the evolution operator (matrix deformation) in the mixed flow is

F(t) = exp ((∇V)B′t) =

exp
(
t
√

1− β2
3

)
−
β3 exp

(
−t
√

1−β2
3

)(
−1+exp

(
2t
√

1−β2
3

))
√

1−β2
3

0 exp
(
−t
√

1− β2
3

)


In our 2D problem, one particle and its images are represented by a mathematical
lattice of N points in R2, where each point has vector position

li(0) = Ni1l1(0) + Ni2l2(0) Nij ∈ Z, ∀i = 1, . . . ,N

that is a linear combination of two vector basis l1(0), l2(0) with integer coefficients Ni1,Ni2

with i = 1, . . . ,N. The vector basis are the dimensions of the simulation box and are
grouped together in the matrix

L(0) =
[
l1(0) l2(0)

]
.

We look for a rectangular box, tilted of an angle ϑ, thus the basis vectors have the following
components

l1(0) =

[
a cosϑ
a sinϑ

]
l2(0) =

[
− sinϑ
cosϑ

]
where a is the aspect ratio and ϑ the tilting angle, called "magic angle" in a popular sense.

A grid of points, undergoing mixed motion, is reproducible if there exist a time ∃ τp ∈
R+ s.t. ∀i = 1, . . . ,N ∃ (Ni1,Ni2) ∈ Z2N for some j

li(τp) = lj(0) = Ni1l1(0) + Ni2l2(0)
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At the same time, the evolution at time τp of the lattice point individuated by li is

li(τp) = exp ((∇V)B′τp) li(0)

= S′ exp (Dτp) l
′
i(0)

by placing l′i(t) = S′−1li(t) and L′(0) = S′−1L(0), therefore a lattice is reproducible if
∃τp ∈ R+ s.t. ∀i = 1, . . . ,N, ∃ (Ni1,Ni2) ∈ Z2N :

exp (Dτp) l
′
i(0) = Ni1l

′
1(0) + Ni2l

′
2(0).

Previous equation must be valid for all lattice points, generated by the basis vectors,
thus it is sufficient to impose the condition on the generators, that means

exp (Dτp) l′i(0) = Ni1l
′
1(0) + Ni2l

′
2(0) i = 1, 2

and making some manipulations we obtain the following eigenvalue problem for each com-
ponent of l′(0)

(N− λzI)(l
′
z(0)) = 0 z = x, y

where l′x(0) = l′(0) · e1 and l′y(0) = l′(0) · e2, N ∈ SL(2;Z), λx = exp(τp
√

1− β2
3) and

λy = 1
λx
.

Through some restrictions on the sum of eigenvalues k = λx + 1
λx

and the coefficients
Nij we have been able to find the conditions on a, ϑ and τp to have reproducibility (and
compatibility) of the lattice points.

To sum up, for 0 < β3 < 1 we obtain

a =
2
√

1− β2
3√

4 + β2
3 −
√

5β3

ϑ =
1

2

(
arccosβ3 − arcsin

(√
1− β2

3√
5

))

τp =
log
(

3+
√

5
2

)
√

1− β2
3

and therefore choosing carefully an initial simulation box, with aspect ratio a tilted with

an angle ϑ, we will obtain reproducibility in mixed conditions of motion at a period of
time τp, thus at that time the simulation box will be re-initialized and the simulation can
proceed for the same period of time and, in a wide perspective, for an indefinite amount
of time.

While for β3 = 0 the method is still valid, β3 = 1 represents a singular limit of the
method. In Figure 5 are reported the results in the case of β3 = 0.6.
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Figure 5 Box deformation at time t 6= τp (left) and at t = τp (right) with β3 = 0.6, a = 2.143563,
ϑ = 0.28070777 and τp = 1.20302956. (Figures done with asymptote https://asymptote.sourceforge.io/)

6 Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

LAMMPS is a classical Molecular Dynamics software, used especially in Material Sciences
and Biophysics to investigate properties of liquids or solids, simulating their motions under
different conditions of flow and geometry, subjecting the fluid to forces of different nature.

It is Open source (under GPL licence) written in highly portable C++ language. It is a
particle simulator at different length and time scales (from electrons, to atomistic, coarse-
grained and continuum scale) and uses spatial decomposition of simulation domain for par-
allelism, doing energy minimization, computing the non-equilibrium dynamics. There exist
many other MD softwares with similar characteristics: AMBER, NAMD, GROMACS,. . .

MD data are useful to provide local measurements of material properties (in contrast
to experimental measurements, usually affected by errors), such as viscosity, normal stress
differences, elasticity that are often coupled with simulators on other different scales: QM,
CFD, . . . to test some macroscale algorithm or to provide a complete multi-scale tool for
fluid dynamics simulations. For more detailed explanation of coupling and multi-scale
methods see [10] and [9].

Figure 6 Representation of the molecular structures of Graphene. (Figures taken from https://lammps.sandia.gov/)
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Figure 7 Molecular structure of polymeric fluids (Figures taken from https://www.h2awsm.org/)
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Topics in Numerical Linear Algebra
for High-Performance Computing

Monica Dessole (∗)

Abstract. As computer architectures evolve, numerical algorithms have to face high resolution
simulations and data integration that are now key to many research fields. Solution methods for
real world problems require a constantly increasingly computational effort, demanding for more and
more resources and tailored algorithms. In this talk we will introduce some recent high-performance
algorithmic developments about solving dense linear systems, possibly numerical rank-deficient,
and we will present some parallel techniques for the solution of large-scale sparse systems of linear
equations.

1 Introduction

Real world problems are large scale and their numerical solution boils down to linear al-
gebra problems, examples range from PDEs simulation to optimization and more. Some
recent applications need (almost) real-time responses from algorithms, motivating the de-
velopment of high-performance general purpose codes. It is important to stress that the
effort for high quality product code is way larger than the effort for prototype code. As
an example, the widely used MATLAB’s backslash requires about 200 000 lines of code.
Efficient numerical linear algebra code is build on top of Basic Linear Algebra Subprograms
(BLAS), which are grouped in three categories:

• BLAS1: vector-vector operations;

• BLAS2: matrix-vector operations;

• BLAS3: matrix-matrix operations,

In the context of high-performance coding, the classical operation count alone may not be
a good indicator of the efficiency of an algorithm. In order to close this cap, it is funda-
mental to design algorithms according to modern computer architectures while ensuring
robustness. It is well known that increasing the BLAS3 fraction of work by grouping to-
gether vector operations results in a better efficiency on modern processing architectures,

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 21 Aprile 2021.
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while, when dealing with parallel architectures, one should devise algorithms which are
scalable, namely that have a good the capacity of handle a growing amount of work, and
which can guarantee a high achieved occupancy, that is the fraction of active computing
units (cores) over the upper limit. The former task will be discusses in Section 2, while we
will focus on the latter in Section 3.

2 Dense linear algebra

We seek for the solution of a linear systems of equation, or at least an approximate solution.
Let A be matrix of size m× n, b a vector of length m. We seek for x such that

Ax = b (or Ax ≈ b).

If the matrix A is invertible, then the solution is x = A−1b, but in finite precision we do
not explicitly compute A−1. Instead, we try to derive an “easier” equivalent system with
the same solution by means of matrix decompositions. In this talk, the QR factorization
is be the common thread, and therefore we here recall some properties. We denote the
singular values of a matrix A by

σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin(A) = σmin(m,n)(A) ≥ 0.

Suppose matrix A has full column rank, implying m ≤ n. Then there exists an orthogonal
matrix Q of order m such that

A = QR = Q

(
R11

O

)
, QTQ = QQT = I,

where R11 is upper triangular n× n with positive diagonal elements. We have

A = Q

(
R11

O

)
= (Q1 Q2)

(
R11

O

)
= Q1R11,

which yields the so-called thin QR factorization, which is unique. Consider the column
partitioning A = (a1, . . . ,an) and Q = (q1, . . . ,qm), then

span(a1, . . . ,ak) = span(q1, . . . ,qk), k ≤ n.

In particular, if R(A) = span(a1, . . . ,an), we have

• R(Q1) = R(A),

• R(Q2) = R(A)⊥.

The QR decomposition is usually computed as a product of Householder reflectors, which
are orthogonal matrices of the form

H = I− 2
vvT

vTv
.
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Given a vector x ∈ Rn, if we set v = x− ‖x‖2e1, then Hx = ‖x‖2e1, where e1 is the first
element of the canonical basis of Rn. Therefore, we can exploit Householder reflectors to
zero out column by column the entries of the matrix A below the diagonal, see Figure 1.

H1

× × ×
× × ×
× × ×
× × ×
× × ×

× × × ×

H1H2

× ×
× ×
× ×
× ×

× × ×
× × × ×

Figure 1 Householder QR.

2.1 Rank-deficient problems

Suppose now that A is a matrix of size m×n, with rank rank(A) = r < min(m,n), and let
b be a vector of length m. We consider the least squares problem, i.e. we aim at finding
x that solves

(1) min
x
‖Ax− b‖2.

When the matrix of the objective function A is not full column rank, the QR decomposition
is not unique, and neither the solution is: if x? solves (1), then

‖A(x? + y)− b‖2 = ‖Ax? − b‖2

for any y ∈ N (A) = {x : Ax = 0} 6= ∅. First, it is necessary to give some additional
constraints to identify the solution. If one looks for the minimum `2-norm solution, then
the gold standard is the SVD decomposition. However, there are alternatives based on
modifies QR decompositions: If we are able to find r = rank(A) linearly independent
columns of A, namely aj1 . . . ,ajr , then

AΠ = (Q1 Q2)

(
R11 R12

O O

)
,

where R11 is upper triangular of order r, and Π is a permutation matrix that moves
aj1 . . . ,ajr to the leftmost positions. Thus, a solution is given by

x? = Π

(
R−1

11 Q1b
0

)
.
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This solution has nonzero entries only in positions j1, . . . , jr, and in general it is not the
minimum `2-norm solution. A solution of this kind is usually referred as basic solution. A
Rank-Revealing QR (RRQR) factorization is

AΠ = QR = Q

(
R11 R12

O R22

)
,

where Q is orthogonal, R11 is upper triangular of order r and

σmin(R11)� ‖R22‖ = O(ε),

where ε is the working precision. For a fixed rank r, the best of such family of factorization
is clearly the solution of the maximization problem

(2) max
Π

σmin(R11).

However, the problem above clearly has a combinatorial nature, and we belive it cannot
be solved in a polynomial time. Therefore, we rather require

(3) σmin(R11) ≥ σr(A)

p(n)
,

where p(n) is a low degree polynomial in n. The state-of-art algorithm to solve this problem
is the so-called QR with column pivoting [7], and it is a greedy strategy for approximate
solving problem (2).

Algorithm 1 QR with column pivoting QRP (A)

1: for s = 1, . . . , n− 1 do
2: j = argmaxi‖ci‖
3: Exchange columns s and s+ j of R(s−1)

4: Compute and apply the Householder reflector to get R(s)

5: end for

c j

a j

Figure 2 Column pivoting strategy.

The procedure is shown in Algorithm 1. At the s-th step, we have already reduced to
triangular form s − 1 columns which form the block R(s−1)

1 by means of the orthogonal
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transformation Q(s) = (Q
(s)
1 Q

(s)
2 ), where the columns of Q(s)

1 span the same subspace as
that spanned by the columns of R(s−1)

1 . We identity the s-th column pivot as the column aj

with the largest norm of cj , where (Q
(s)
1 )Taj = bj + cj , with bj ∈ Rs−1 and cj ∈ Rm−s+1,

as shown in Figure 2. Then we compute and apply the Householder transformation, by
means of BLAS2 operation.

Remark 1 The choice of the pivot in step 2 may have the following geometric interpre-
tation. Consider the block column partitions of the partial factorization ar step s, namely
R(s) = (R

(s)
1 R

(s)
2 ), Q(s) = (Q

(s)
1 Q

(s)
2 ). Then the most linearly independent column aj

can be identified as the column with the largest projection on the orthogonal complement
on the space spanned by the columns already processed, namely R(R

(s)
1 )⊥ = R(Q

(s)
2 ). In

formulae, the column aj solves

max
j≥s

∥∥∥PR(R
(s)
1 )⊥

aj

∥∥∥ = max
j≥s

∥∥∥Q(s)
2 cj

∥∥∥ .
However, the product Q(s)

2 cj is not directly available, then we settle for the solution of
maxj≥s ‖cj‖.

2.2 QR decomposition with Deviation Maximization pivoting

We would like to substitute step 2 of Algorithm 1 with a block pivoting strategy, in order
to exploit BLAS3 operations when applying block Householder vectors. A possible strat-
egy is to pick k columns with pairwise large angles, within those columns which are the
most linearly independent from R(R

(s)
1 ). This is precisely what is done by the Deviation

Maximization (DM) strategy [4]. Let us introduce the notion of cosine matrix.

Definition 1 Let C = (c1 . . . ck) be an m×k matrix with non-zero columns. The cosine
matrix Θ has entries

θij =
cTi cj
‖ci‖‖cj‖

= cos(αij), αij = α(ci, cj), 1 ≤ i, j ≤ k.

Before describing the procedure, let us provide the following result.

Lemma 1 Take C = (c1 . . . ck), such that ‖cj‖ ≥ τ maxi ‖ci‖, 1 ≥ τ > 0, for all
1 ≤ j ≤ k. If the cosine matrix Θ associated to C is a strictly diagonally dominant matrix
with

δ = min
i

(1−
∑
j 6=i
|θij |) > 1− τ2 ≥ 0.

then
σmin(C) ≥

√
δ + τ2 − 1 max

i
‖ci‖,
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The Lemma above essentially says that the linear independence of the column vectors
C = (c1 . . . ck) can be controlled by tuning two thresholds, namely τ and δ. The resulting
procedure, which we call QRDM, is shown in Algorithm 2.

Algorithm 2 QR with DM pivoting QRDM(A)

1: while ns < n do
2: j1 = argmaxi‖ci‖
3: Choose columns j2, . . . , jk within {ci : ‖ci‖ ≥ τ‖cj1‖} with large pairwise angles
4: Exchange columns ns, . . . , ns + (k − 1) and ns + j1, . . . , ns + jk of R(s−1)

5: Compute and apply the block Householder reflector to get R(s)

6: s = s+ 1, ns = ns + k
7: end while

This algorithm allows us to compute the new factor R(s) by means of BLAS3 operations.
Moreover, step 3 requires to compute the cosine matrix Θ = diag(‖ci‖)−1CTCdiag(‖ci‖)−1,
where i belongs set of candidate columns {ci : ‖ci‖ ≥ τ‖cj1‖}, and it can be carried out
by means of BLAS3 operations as well. We then look for a suitable submatrix of Θ that
satisfies Lemma 1, namely

δ = min
i

1−
∑
j 6=i
|θij |

 > 1− τ2 > 0, i, j ∈ {j1, . . . , jk}.

We now try to derive estimates in the form (3) in order to quantify the quality of the
factorizarions obtained with QRP and QRDM algorithms. Let σ̄(s) be the smallest singular
value of the computed R(s)

11 block at step s, that is

σ̄(s) = σmin

(
R

(s)
11

)
.

We have the following result for Algorithm 1.

Theorem 1 The standard pivoting guarantees

σ̄(s+1) ≥ σs+1(A)
σ̄(s)

σ1(A)

1√
2(n− s)(s+ 1)

.

This shows that QRP indeed gives a RRQR decompotisions. However, even if the
leading s columns have been carefully selected, so that σ̄(s) is an accurate approximation
of σs(A), there could be a potentially dramatic loss of accuracy in the estimation of the
successive singular value σs+1(A). In fact, it is well known that QRP algorithm failure
may occur, as well as for other greedy algorithms, but it is very unlikely in practice, and
in fact this algorithm is implemented in state-of-art libraries, such as LAPACK. We have
an analogous result for Algorithm 2.
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Theorem 2 The DM pivoting guarantees

σ̄(s+1) ≥ σns+1(A)
σ̄(s)

σ1(A)

1√
2(n− ns+1)ns+1

√
δ + τ2 − 1

k2ns
.

Therefore, even if efficiency may improve by adopting the QRDM strategy, we cannot
guarantee more accuracy than that provided by the QRP strategy.

2.3 NonNegativite Least Squares problem

Let us now introduce a slightly different family of problems. Let A be a matrix of size
m × n and b a vector of length m. The NonNegativite Least Squares problem (NNLS)
consists in finding x? that solves

min ‖Ax− b‖2 subject to x ≥ 0.

Within the existing algorithms, many require the objective function to be strictly convex,
that is the Hessian matrix ATA should be positive definite. However, if A has not full
column rank then ATA is only positive semidefinite. An active set method due to Lawson
and Hanson is not affected by this issue. Recall first that a constraint is said to be active
at x if

xi = 0,

otherwise it is called passive, namely

xi > 0.

The Lawson-Hanson algorithm is based on the following observation. If the active set
Z = {j : x?j = 0} and its complement P = {j : x?j > 0} are known at a solution x?, then
x? solves the unconstrained least squares problem

x?P = argminx‖APx− b‖2, x?Z = 0,

where AP = {aij}, 1 ≤ i ≤ m, j ∈ P . The procedure, which we briefly call LH, is presented
in Algorithm 3.

Algorithm 3 Lawson-Hanson active set LH(A,b)

1: P = ∅, Z = {1, . . . , n}, x = 0
2: while the optimum has not been reached do
3: Move from Z to P the index j? = argmax(AT (Ax− b))j
4: Update: xP = argmin‖APy − b‖, xZ = 0
5: while min (xP ) ≤ 0 do
6: Move from P to Z the unfeasible indices {j ∈ P : xj ≤ 0}
7: Downdate: xP = argmin‖APx− b‖, xZ = 0
8: end while
9: end while
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A least squares problem needs to be solved each time we reach step 4 and step 7. An
efficient implementation can be obtained by exploiting QR updates/downdates. However,
since one index j? is selected in step 4, we can only exploit rank−1 QR updates in step 4
by means of BLAS2 operations. In order to exploit low rank updates by means of QR
decomposition, we use the Deviation Maximization pivoting in step 3 to identify a subset
J of indices. We call the overall procedure Lawson-Hanson with Deviation Maximization,
or briefly LHDM.

2.4 Application to Tchackaloff-Caratheodory regression

Let us consider the application that mainly motivates the development of LHDM, see
[5]. Let X = {x1, . . . , xM} be a set on a compact K ⊂ Rd, d ≥ 2, and suppose X is
Pdn-determining, that is

p ∈ Pdk, p(X) = 0⇒ p ≡ 0 on K.

The following result is due to Tchakaloff and it is a cornerstone in quadrature theory.

Theorem 3 Let u = {u1, . . . , uM} ≥ 0 be the weights of a measure supported at X.
If M = card(X) > Nk = dim(Pdk), we can find {t1, . . . , tm} points of X and weights
w = {w1, . . . , wm} ≥ 0 such that

M∑
i=1

ui p(xi) =

m∑
j=1

wj p(tj), ∀p ∈ Pdk, m ≤ Nk.

In other words, for any discrete measure supported at X, there exists a subset of X
and proper weights such that we have the same quadrature error on the polynomials up
to a suitable degree. The same theorem can be applied to obtain polynomial regression
at degree n, by taking uniform weights u = (1, . . . , 1)T and k = 2n. This is interesting
in applications because the compression ratio M/m may be large. The proof is based on
Caratheodory theorem and it is not constructive, thus we need to formulate an algebraic
version of Tchakaloff theorem. Fix a polynomial basis span(p1, . . . , pNk) = Pdk of Pdn. Then
Tchakaloff theorem can be stated as the existence of a sparse nonnegative solution w with
at most m ≤ Nk non-zero components to the underdetermined linear system

V T
k w = b, Vk = (pj(xi)) ∈ RM×Nk ,b = V t

ku ∈ RM .

A way to solve this linear system is to use the Non Negative Least Squares (NNLS) for-
mulation: min ‖V T

k w = b‖22, subject to w ≥ 0 Tchakaloff-Carathodory regression has
been implemented in the package dCATCH [6]. We show numerical results of regression
at degree 10 (k = 2 · 10 = 20) on a compact subset of R3 obtained as the union of some
balls with nonempty intersection. Figure 3b shows the domain with 1763 compressed
Tchakaloff points, extracted from 18,915 original point. Figure 3a shows the evolution of
the cardinality of the passive set P among the iterations of three different executions of
Lawson-Hanson, namely the standard LH (blue line), the LHDM (yellow line), and finally
a version of the Lawson-Hanson algorithm with nonempty initialization of the passive set
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by means of unconstrained least squares, which we briefly call LH-init (orange line). The
numerical results are shown in Table 1: cpts is the number of compressed Tchakaloff points
and momerr is the final moment residual; compr = M/mean(cpts) is the mean compres-
sion ratio obtained by the three methods listed; tLH/tLHDM (tLHI/tLHDM ) is the ratio
between the execution time of LH (LH-init) and that of LHDM.

Test compr. LH LH-init LHDM
k M ratio tLH/tLHDM cpts momerr tLHI/tLHDM cpts momerr cpts momerr

20 18915 11 2.7 1755 3.4e-8 3.2 1758 3.2e-8 1755 1.5e-8

Table 1 Results for the multibubble numerical test.

(a) (b)

Figure 3 Multibubble test case, regression degree n = 10.

3 Direct Sparse Linear Algebra

Let A be a sparse matrix of order n, b a vector of length n. We look for a solution x of the
sparse linear system Ax = b. A matrix A is said to be sparse when the number of nonzero
element is way smaller then the total number of entries. Standard matrix decompositions
(LU, QR...) usually yield dense factors. Therefore, we either try to incrementally reach a
solution by means of iterative methods, or we have to carefully design a solver trying to
minimize the fill-in. Define the sparsity pattern as the set of pairs of indices corresponding
to nonzero entries, namely

S(A) = {(i, j) : aij 6= 0}.
A fill-in is a non-zero entry in the factors of a matrix decomposition of A in a position (i, j)
that is not in S(A). Sparse systems do not only come from numerical methods for PDEs,
in fact we are going to focus of a family of sparse matrices with block structure that arise
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from optimal control problems. An Optimal Control Problem consists in finding a control
u(s) that minimises the functional

(4) J(x,u) =

ˆ sb

sa

f(x(s),u(s)) ds

subject to

A(x(s))ẋ(s) + b(x(s),u(s)) = 0, s ∈ (sa, sb)

c(x(sa),x(sb)) = 0 s ∈ (sa, sb)

d(x(s),u(s)) ≤ 0 s ∈ (sa, sb)

Indirect methods (first optimize, then discretize) yield to a large nonlinear system Ψ(Z) =
0, where Z contains the discretized unknowns. Solution methods, e.g. Newton, require the
solution of a sequence of linear systems with matrix

J
(k)
ij =

∂Ψi

∂Zj
(Z(k)).

The Jacobian J (k) has a block structure and it is a so called Bordered Almost Block
Diagonal (BABD)

. . .

S 0 T0

S 1 T1

S N−1 TN−1

Ba Bb

where Si, Ti, Ba, Bb are square blocks of order n. Such a matrix has 2(N + 1)n2 nonzeros
over (N + 1)2n2 entries. Let us describe a parallel algorithm due to Wright [8], the Struc-
tured Orthogonal Factorization (SOF). First divide the BABD system into P slices and
assign each slice to one processor. Each processor will perform the same local factorization
on each slice. Let us consider the first slice and suppose it has five block row equations.
We proceed as follows:

• Find Q0 orthogonal such that [
T0

S1

]
= Q0

[
U0

O

]
,

and apply QT0 to to the whole subsystem, see Figure 4a. We get with the equivalent
system in Figure 4b.
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• With reference to Figure 4b find Q1 orthogonal such that[
W 1

S2

]
= Q1

[
U1

O

]
,

and apply QT1 to the whole subsystem to get a new equivalent system.

• Repeat until all rows have been processed.

QT
0

I

S 0 T0

S 1 T1

S 2 T2

S 3 T3

S 4 T4

(a)

V0
U0 W0

V1 W1

S 2 T2

S 3 T3

S 4 T4

V0
U0 W0

V1
U1 W1

V2
U2 W2

V3
U3 W3

Ŝ 0 T̂0

(b) (c)

Figure 4 Local SOF, multiplication by the first orthogonal factor (a), equivalent system at step 1 (b),
equivalent system at the last step (c).

At the last step, we get the equivalent subsystem shown in Figure 4c. Notice that the such
a system can be solved in two steps:

(a) solve the last block equation, involving only two block unknowns, namely

Ŝ0x0 + T̂0x5 = b̂0;

(b) retrieve the remaining unknowns by solving with back-substitution the following
triangular systems for i = 4, 3, 2, 1, namely

Ui−1xi = b̂i−1 − Vi−1x0 −Wi−1xi+1.
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Thus, by concatenating all local factorizations, we get an overall equivalent system that
can be solved in two steps:

(a) solve the subsystem formed by the last block row of each slice, which has itself a
BABD structure and therefore can be recursively reduced by SOF, until a sufficiently
small system is reached and solved with, e.g., LU decomposition;

(b) retrieve the missing unknowns by back-substitution.

We can represent data dependencies of this algorithm by means of a Directed Acyclic Graph
(DAG), in which each vertex represent a block equation or a block unknown and each edge
represent a dependency. Figure 5 shows the data dependencies DAG of the recursive SOF
on a BABD system with N + 1 = 9 block equations divided into P = 4 slices.

e8e7e6e5e4e3e2e1e0

e8e′7e′5e′3e′1

e8e′′7e′′3

e8e′′′7

x8 e′′′3x0

x8e′′2x4e′′0x0

x8e′6x6e′4x4e′2x2e′0x0

x8x7x6x5x4x3x2x1x0

S
E

Q
U

E
N

TI
A

L

Figure 5 DAG showing data dependencies in SOF.

On the x-axis we have the amount of parallel work at each step, while on the y-axis we
have sequentiality in time. In this case, the DAG takes a double cone shape, from which it
is evident that the middle steps lack of parallelism causing a tremendous waste of resources
on parallel machines. Our goal is therefore to rearrange computations in order to avoid
the bottleneck.
Let us introduce an alternative technique, called recursive doubling. The idea is to fully
decouple odd and even block unknowns at each step by deriving a double number of
smaller linear systems. Suppose that N + 1 is even, and couple each block equation with
the successive one, obtaining a partition into slices consisting of two block equations each,
as shown in Figure 6a. We can then obtain the solution by solving the system (5) of half
the size of the original one, involving only odd block unknowns, and then retrieve the even
block unknowns by back-substitution (6).

Â(e)x(e) = b̂(e), x(e) = (xi), i = 0, 2, 4, . . .(5)

U
(e)
i−1xi = b̂

(e)
i−1 − V

(e)
i−1xi−1 −Wi−1, xi+1, i = 1, 3, 5, . . .(6)
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On the other hand, if we couple each block equation with the previous one, as shown in
Figure 6b, we can then obtain the solution by solving the system (7) of half the size of
the original one, involving only even block unknowns, and then retrieve the even block
unknowns by back-substitution (8).

Â(o)x(o) = b̂(o), x(o) = (xi), i = 1, 3, 5, . . .(7)

U
(o)
i−1xi = b̂

(o)
i−1 − V

(o)
i−1xi−1 −Wi−1, xi+1, i = 0, 2, 4, . . .(8)

Notice that we can compute the reduced systems (5) and (7) in parallel, and apply recur-
sively the same technique until we reach a large number of small and independent linear
systems we can solve directly obtaining all block unknowns at once. This approach do not
even require to compute equations (6) and (8) for back-substitution.

...

S 0 T0

S 1 T1

S N−1 TN−1

Ba Bb

...

S 1 T1

S 2 T2

S 0 T0

Ba Bb

(a) (b)

Figure 6 Recursive doubling, even (a) and odd (b) coupling.

Figure 7 shows the DAG representing data dependencies for the recursive doubling tech-
nique on a BABD system with N + 1 = 8 block equations divided into P = 4 slices.

e7e6e5e4e3e2e1e0

eo
7ee

7eo
6ee

5eo
4ee

3eo
2ee

1

eee
7eeo

7eoe
7eee

7eoo
6eeo

5eoe
4eee

3

x7x6x5x4x3x2x1x0

S
E

Q
U

E
N

TI
A

L

Figure 7 DAG showing data dependencies in Recursive Doubling.

This shows quite clearly that the amount of work is now constant among the algorithmic
steps, thus the work can be equally distributed among the processors. In order to run this
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algorithm with actual parallelism we need at least P = N + 1 processors, however in a real
application it is often the case that N � P , thus we implement an hybrid version which
we call PARAllel Structured Orthogonal Factorization (PARASOF) [3]. The procedure is
organized as follows:

(a) apply SOF to reduce the BABD system to a suitable number P of block equations;

(b) apply recursive doubling;

(c) apply backward substitution of SOF.

Last, we present numerical tests on BABD systems of various sizes with dense randomly
generated blocks. We compare our CUDA [2] implementation of PARASOF with babdcr
[1], a FORTAN90 package for the solution of BABD systems. All tests are performed on
two different machines:

(a) jupyterhub,3.70GHz CPU, Nvidia TITAN V GPU with 5120 CUDA cores;

(b) gpu01, 3.50GHz CPU, Nvidia GeForce GTX1060 GPU with 1280 CUDA cores.

Notice that each CUDA core has not to be intended as a stand-alone processor: in fact,
CUDA cores are designed to execute small computations and they physically operate in
groups of 32 cores called warps. Figure 8 shows the speed-up of PARASOF over babdcr,
that is the ratio between the execution time of babdcr over that of PARASOF, in function
of the number of block equations N + 1 for a fixed block size n = 16 (Figure 8a), and in
function of the block size n for a fixed block-size N ≈ 216 (Figure 8b). In the legend, Nr

denotes the size of the reduced system solved with recursive doubling in PARASOF. The
blue and red lines show results for Nr + 1 = 64 on gpu01 and jupyterhub respectively,
revealing similar speed-ups. However, if we choose a larger reduced size Nr + 1 = 128,
we are able to exploit all the processors of jupyterhub (black line), and we achieve a
maximum speed-up of about 17×.
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(a) Speed-up, fixed block size n = 16. (b) Speed-up, fixed block number N ≈ 216.

Figure 8 tbabdcr/tPARASOF , Nr = size of reduced system solved with recursive doubling.
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4 Conclusions

Efficient and accurate code is fundamental for applications, and we showed some examples
of how algorithms should be carefully designed not only to robustly solve the algebraic prob-
lem, but also to achieve high-performances. We did not stress that the Vandermonde-like
matrices in Tchakaloff-Caratheodory regression suffer from the so-called curse of dimen-
sionality, in fact

Vk ∈ RM×Nk , M � Nk =

(
n+ d

d

)
∼ nd

d!
.

As n and/or d get larger, the problem quickly runs out of memory. Suitable slitting method
should be devised for large scale NNLS. An interesting application of Lawson-Hanson
algorithm with Deviation Maximization that will be investigated concerns the reduction of
the trajectory space in model order reduction methods for large scale parameter dependent
PDE problems by means of Tchakaloff compression.
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An intuitive introduction to p -adic geometry

Yukihide Nakada (∗)

Abstract. The field of p-adic numbers forms a bridge from number theory to analysis, mixing
number-theoretic constructions with analytic ideas. And just as the complex numbers made pos-
sible complex analytic geometry, the p-adic numbers opened up a new, strange geometry over a
number-theoretic field.
In this summary we give a very brief and informal introduction to the p-adic numbers and to p-adic
geometry, also called rigid geometry. A standard reference for the p-adic numbers is [3], but a more
accessible introduction is [2]. For rigid geometry, we reference [1].

1 Introduction to p-adic numbers

1.1 The p-adic norm

Trying to understand p-adic geometry without knowing about p-adic numbers is like trying
to understand PDEs without knowing about the reals, so we start with a brief introduction
to the construction and basic characteristics of our base field.

First recall the traditional construction of the real numbers R that we all see in real
analysis:

(a) We take as given the integers Z with its absolute ‖ · ‖ which, intuitively, measures
the distance of any integer from 0.

(b) We formally construct the rational numbers Q (in your favorite way). The absolute
value on Z extends uniquely to a norm on Q if we add the natural assumption that
it be multiplicative, since∥∥∥a

b
· b
∥∥∥ =

∥∥∥a
b

∥∥∥ · ‖b‖ ⇒ ∥∥∥a
b

∥∥∥ =
‖a‖
‖b‖

(c) We then complete the rational numbers with respect to this norm to get R. Filling
out the rational numbers in this way makes possible topological and analytic notions
like continuity, differentiability, and convergence of power series.
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This is great, but for a number theorist this norm doesn’t capture anything we want
about Z or Q. Number theorists, generally speaking, care divisilibity and prime numbers
and other such properties that aren’t respected by the absolute value. For example,

‖17− 16‖ = 1

but 17 is prime and 16 = 24; they’re as close as integers can get, but as far as divisility is
concerned they have nothing to do with each other! What’s a number theorist to do?

That being said, it’d be disingenuous to say that we can’t use traditional analytic
in number theory. A subfield of number theory which does exactly this is analytic
number theory, which manages to use traditional analytic tools to understand the
large-scale behavior of the integers.
It’s orthogonal to p-adic geometry so we’ll only mention in passing a neat illustrative
result from the theory: if the partition function p(n) denotes the number of ways of
writing an integer as a sum of smaller integers (for example, 4 = 1 + 1 + 1 + 1 =
2 + 1 + 1 = 3 + 1 = 2 + 2 so p(4) = 5), then

p(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
as n→∞.
The textbook [4] is a very accessible introduction to the field, and [5] is a fun
but remarkably rigorous young-adult novel (!) which proves the above asymptoptic
result, among other things.

At the turn of the 20th century some number theorists introduced a norm that better
respected the structures that number theorists were interested in. From here on out, fix a
prime number p.

Definition 1.1 The p-adic valuation vp(n) of an integer n ∈ Z is the number of factors
of p in n:

vp(n) = max{k : pk | n}.

For example, v3(18) = 2 since 18 = 2 · 32 has two factors of 3, v2(18) = 1 since it only
has one factor of 2, and v5(18) = 0.

Definition 1.2 The p-adic norm ‖n‖p for an integer n ∈ Z is defined to be

‖n‖p =

(
1

p

)vp(n)

The base of the exponent is fixed and < 1, so the norm is smaller when the p-adic
valuation is larger. For example, v3(18) = (1/3)2 = 1/9 and v5(18) = 1.
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It’s not too hard to prove that this defines a norm on Z. Furthermore, the additivity of
the valuation implies that this norm is mulplicative on Z, just like the traditional absolute
value. Because of this, we can uniquely extend ‖ · ‖p to a norm

‖ · ‖p : Q→ R∥∥∥a
b

∥∥∥
p

=
‖a‖p
‖b‖p

Alright, we’ve defined another norm on Q besides the standard absolute value. You
may ask, what does this norm look like? It’s notoriously difficult to visualize because it
behaves nothing like any geometric norm we’re familiar with, mostly because it satisfies
what is called the strong triangle inequality

‖a+ b‖p ≤ max{‖a‖p, ‖b‖p}.

This has the consequence that every triangle is isoceles, any point of a sphere can be
taken as its center, and other such nonsense. For now it is best to think of it as a formal
construction.

1.2 The field of p-adic numbers

With another norm in hand, we can replace the absolute value with ‖ · ‖p in our the
construction of R:

(a) We start with our normed ring (Z, ‖ · ‖p).

(b) This extends uniquely to a norm (Q, ‖ · ‖p) on Q.

(c) This norm defines a metric and we complete Q with respect to this metric.

We call the result the field of p-adic numbers.

Definition 1.3 Let p be a prime. Then the field of p-adic numbers Qp is the completion
of Q with respect to the p-adic norm ‖ · ‖p (or, more precisely, its induced metric).

This is already a remarkable construction! It blends an analytic construction, comple-
tion, with a number-theoretic norm. The result is a field over which we can do analysis
but which taps into number-theoretic properties of Z and Q. And just as R and C open
the door to real manifolds and complex geometry, the field Qp is the starting point of a
new geometric theory.

One can also put geometry aside and dive into analysis overQp. We can, for example,
speak of p-adic L-functions, which are p-adic analogues of the Riemann zeta function
and more generally L-functions. They are fascinating objects of study which weave
analytic properties of power series with deep properties of Q. For an introduction
to analysis over Qp, take a look at [2].
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One construction we haven’t yet touched on is the analogue of the movement from R
to C; since we’ll need this later we introduce it now. As we all know, one of the issues with
R is that not every real polynomial has a real root; they are only guaranteed to have roots
in the field extension C. Being the smallest field containing R in which we can find a root
for any polynomial over R, we call C the algebraic closure of R. It is a finite extension of
R since C as an R-vector space has basis {1, i}.

The algebraic closure Qp is similarly defined to be the smallest extension of Qp con-
taining a root for every polynomial over Qp, and will be our analogue of C. (If you thought
Qp was hard enough to imagine, Qp is even worse: unlike C, it is not a finite extension of
Qp! There are simply too many elements that we have to add to Qp.)

This is not entirely accurate: to make matters worse, while Qp inherits a metric from
Qp, it’s no longer complete: completeness is only guaranteed for finite extensions.
To remedy this we complete the already huge field Qp with respect to this norm to
obtain a complete field denoted Cp. A result of Krasner is that Cp, by some miracle,
remains algebraically closed. It is called the field of p-adic complex numbers and is
the field over which much of contemporary p-adic geometry is done.

1.3 Peripheral Remarks

Before we go into p-adic geometry I want to justify the construction. From a skeptical
point of view, we can ask “but why?". It’s a pretty construction, but why this norm
instead of another number-theoretic one? Does it tap into something fundamental about
the integers, or is it an arbitrary man-made construction? I’ll try to respond to these
philosophical questions with some theorems which I think illustrate that the p-adics are
part of the fabric of the metaphysics of Q.

The first of these results is Ostrowski’s Theorem:

Theorem 1.4 (Ostrowski’s Theorem) Every nontrivial absolute value is equivalent to either
the usual absolute value or a p-adic absolute value for some p.

Here two absolute values are said to be equivalent if they induce the same topology.
This result says that the reals R and the p-adics Qp constitute all of the completions of Q.
They’re the only candidates for a field extending Q over which we can do analysis.

Secondly we give a simple example where information over Qp trickles down into knowl-
edge over Q. We call Q a global field, since it containers all of the prime numbers, and
we call the Qp local fields since they’re ‘concentrated’ at a prime. Recall that a quadratic
form is a homogeneous polynomial of degree 2, e.g.

q(x, y) = 3x2 − 5xy + 9y2.

Via the embedding Q ↪→ R, a solution (x, y) ∈ Q2 to a quadratic form with integral
coefficients is automatically a solution (x, y) ∈ R2. Similarly the embeddings Q ↪→ Qp

provide a p-adic solution to a quadratic form for every p once we have a solution over Q.
In other words, a global solution induces a solution over every local field.
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The following result is an example of a so-called local-global principle, which says that
local information can provide global information:

Theorem 1.5 (Hasse’s Principle) A quadratic form q(x, y) over Z has a solution over Q
if and only if it has a solution in R and in Qp for every prime p.

Such a theorem is extremely useful for the study of quadratic forms, since in local
fields we have access to analytic tools which make it significantly easier to find zeroes of
polynomials! Newton’s method, for instance, is a tool for finding zeroes of polynomials over
R which isn’t available over Q. The field of p-adics has an analogue, called Hensel’s Lemma,
which similarly allows for successive approximations of zeroes of polynomials defined over
Qp.

Similar local-global principles don’t hold in general for forms of higher degrees, but
there are local-global principles for other algebraic objects such as algebraic groups.

2 p-adic Geometry

2.1 Introduction

Geometry over Qp has to work around a frustrating truth: unlike the natural topology of
R, the topology of Qp is extremely bad, owing to the strong triangle inequality:

• Every open disk B−(x; r) = {y ∈ Qp : ‖x− y‖p < r} is closed.
• Every closed disk B(x; r) = {y ∈ Qp : ‖x− y‖p ≤ r} is open.
• These imply that the topology on Qp is totally disconnected: every point is its own

connected component.

The last fact ruins the prospect of naively carrying over techniques from real and complex
geometry to p-adic geometry. For instance there are no (nonconstant) lines in Qp since
there are no nonconstant continuous maps [0, 1] → Qp where the former is given the real
topology. Also, local functions don’t glue to global functions: one can cover any open subset
U ⊆ Qp by disjoint open disks B−(xi; ri). Assign to each of them the constant function
fi : B−(xi; ri) → Qp, y 7→ ci for some constant ci. Then these functions tautologically
agree on their intersection, but there is no global function U which restricts to fi on each
B−(xi; ri).

Geometry over Qp, therefore, is going to require a new approach to geometry which
wasn’t required of R or C.

2.2 Sheaves and Geometry

Instead of asking ‘what sorts of shapes and manifolds can we build over this new field?’,
the modern algebro-geometric approach is instead to ask, ‘what kinds of functions do we
want over our spaces?’

A geometric object in the context of a geometric theory is defined more by the functions
on it than the object itself. Real and complex geometry get their identifies not primarily
through their base spaces but by the kinds of functions you’re interested in:
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• Rn + differentiable functions = real analysis

• Rn + continuous functions = real topology

• Cn + holomorphic functions = complex analysis

• Cn + regular maps = complex algebraic geometry

and so on. To full specify a geometric object requires both the topological space and the
functions on it.

The modern mathematical formalism is to specify the context of a topological space X
by pairing it with a structure sheaf OX . The structure sheaf pins a topological space to a
geometric theory. Intuitively, it is an assignment

OX : {Open subsets of X} → Sets

U 7→ {Functions f : U → k}

where k is the base field of X, e.g. R,C,Qp. For example, for a real manifold OX(U) would
be the set of holomorphic functions U → R; for a topological space the set of continuous
functions U → R; and as an algebraic variety the set of rational functions U → R.

All of these examples have the property, easy to check, that if fi ∈ OX(Ui) and fj ∈
OX(Uj) agree on their intersection Ui∩Uj then there is a function fij ∈ OX(Ui∪Uj) which
restricts to fi and fj , and that if two functions f, g ∈ OX(U) agree on a covering U = ∪Ui
then f = g. These are the sheaf conditions.

In other words, a geometric space is really characterized by a topological space X
alongside a structure sheaf OX . In p-adic geometry, we will see that the functions we’re
interested in are convergent power series U → Qp. From this perspective the quest for a
good p-adic geometry consists of finding a good class of topological spaces X and defining
for them structure sheavesOX of convergent power series which satisfy the sheaf conditions.

But like we said before, even constant functions in general don’t glue to global functions
because of the weird topology ofQp, and this is tantamout to saying that the sheaf condition
is impossible to satisfy as it is. This problem and finding the right spaces will constitute
the rest of this summary.

2.3 The Tate Algebra

For notational simplicity, let | · | denote the p-adic norm on Qp. Let

Bn(Qp) = {(x1, . . . , xn) ∈ Qp
n

: |xi| < 1}

denote the unit ball in Qp
n.

Lemma 2.1 A formal power series

f =
∑
ν∈Nn

cνX
ν =

∑
ν∈Nn

cν1...νnX
ν1
1 · · ·Xνn

n ∈ QpJX1, . . . , XnK

converges on Bn(Qp) if and only if lim|ν|→∞ |cν | = 0.
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This simple lemma, which connects convergence to the divisibility of the coefficients,
hints that convergent power series are a good setting to unify the analytic and number-
theoretic threads of Qp.

Definition 2.2 The Qp-algebra Tn = Qp〈X1, . . . , Xn〉 of all formal power series

f =
∑
ν∈Nn

cνX
ν ∈ QpJX1, . . . , XnK, lim

|ν|→∞
|cν | = 0

is called the Tate Algebra of restricted, or strictly convergent power series.

(A Qp-algebra is a fancy term for a vector space where elements can be multiplied
together as well as added).

Functions in the Tate algebra have properties familiar from complex analysis. For
example, there is a natural norm on Tn, and with respect to this norm functions in the Tate
algebra satisfy the maximum modulus principle. There is also a Weierstrass preparation
theorem for Tate algebras.

For the more algebraic readers, it’s interesting to note another example of the link
between the analytic and algebraic character of the Tate algebra: the Weierstrass
preparation theorem is the necessary tool to prove some important algebraic prop-
erties of Tn, such as the existence of Noether Normalization, being Noetherian, Ja-
cobson, and having Krull dimension n. One notices that these are precisely the sorts
of properties of a ring which give its spectrum or maximal spectrum nice geometric
properties.

2.4 Affinoid Algebras and Affinoid Spaces

Let M(Tn) = SpecMax(Tn) denote the set of maximal ideals of Tn. For those unfamiliar
with maximal ideals, it’s enough to know that it’s a basic construction in algebraic geometry
which takes an algebraic object and spits out a more geometric set. This is quite concrete
in the example of the Tate algebra, since one can prove a bijection (of sets)

M(Tn) ∼= Bn(Qp)/ ∼

where ∼ is an equivalence relation (conjugacy by the natural Galois action, for those who
have the background).

This justifies squinting a bit and replacing Bn(Qp) with M(Tn). Then, by our previous
lemma, we can think of Tn as precisely of the power series which convergence on all of
M(Tn). We can thus see a bit of our goal in sight: M(Tn) should be equipped with a
topology so that the structure sheaf OM(Tn) satisfies

OM(Tn)(M(Tn)) = Tn

Those familiar with algebraic geometry and the usual spectrum construction on a ring will
recognize this property.
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Knowing that the maximal spectrum construction links the Tate algebra to a geometric
set we pull a move typical of modern algebraic geometry: we reverse perspectives and
consider the algebra the starting point of our construction and call ‘geometric’ the sets
which arise out of the maximal spectrum construction!

Definition 2.3

(a) A Qp-algebra A is called an affinoid Qp-algebra if there exists an isomorphism A ∼=
Tn/a for some ideal a.

(b) The maximal spectrum M(A) := SpecMax(A) of an affinoid algebra is called an
affinoid space.

These all have a natural topology, and on an affinoid space A we can then construct
a presheaf OA on A which maps an open subset of U ⊆ A to convergent power series on
U ⊆ A, so-called because they don’t satisfy the sheaf axioms. Which brings us to the
problem which has been plaguing us this whole time.

2.5 The Tate Topology

These affinoid spaces are candidate geometric spaces on which to put a topology. Alas
these constructions don’t solve the fundamental issue of finding an appropriate topology.
We can endow affinoid spaces with a topology inherited in the end from Qp, but the same
issues crop up and affinoid spaces with the natural topology don’t have a good enough
topology on which the sheaf conditions can be satisfied.

To get around this we pull a trick which to anyone seeing it for the first time seems like
a magic (or a scam). Alexander Grothendieck noticed that the properties of topological
spaces such as coverings and intersections involved in the formalism of sheaves could be
abstracted into axioms. He then defined what is now called a Grothendieck topology to be
any set (rather, a category) that satisfied these axioms.

In the context of p-adic geometry, John Tate realized that while the canonical topology
on affinoid algebras was too fine for a good geometric theory (there were too many open
sets), if we only consider special open subsets called affinoid subdomains then even though
these don’t constitute a topology they still constitute a Grothendieck topology, now called
the Tate topology.

Tate proved the crucial

Theorem 2.4 (Tate’s Acyclicity Theorem) Let A be an affinoid space. Then the presheaf
OA of affinoid functions is a sheaf on the Tate topology.

Huzzah! This means that every affinoid space equipped with the Tate topology can be
equipped with a structure sheaf OA. We can now justifiably call affinoid spaces geometric
spaces! We are now ready to define the objects of study in p-adic geometry.
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2.6 Rigid Spaces

Affinoid spaces are the analogues of open disks in real and complex geometry. One builds
real and complex manifolds from scratch as topological spaces which admit a covering
by real or complex disks. Similarly, a rigid space is a ‘topological’ space which admits a
covering by affinoid spaces:

Definition 2.5 A rigid analytic space is a spaceX equipped with a Grothendieck topology
and a structure sheaf OX such that X admits a covering by subsets Xi where (Xi,OX |Xi)
is isomorphic to an affinoid space.

Starting from the number-theoretic analogue to the field of complex numbers, this
geometric theory is the counterpart to the theory of complex manifolds.

It gave algebraic geometers a landscape in which they could use analytic techniques to
study the p-adic analogues of traditionally complex constructions such as elliptic curves.
It would take too much extra machinery to describe the payoff of our constructions in any
detail, so we finish by outlining one parallel between complex analysis and rigid geometry.

Example 2.6 In complex analysis there is a so-called GAGA correspondence between
complex algebraic varieties and complex manifolds. Let X be a projective complex al-
gebraic variety, e.g. the zero locus of a homogeneous polynomial p : Cn → C. There is
an ‘analytification functor’ X 7→ Xan which interprets the same variety X as a complex
analytic manifold. A priori there is no reason to believe that the theories of X that these
separate perspectives produce should be related, but Serre proved that there’s an equiva-
lence of categories between so-called coherent sheaves on X and coherent sheaves on Xan.
In plainer language, the sheaf theory of projective complex algebraic varieties is the same
as the sheaf theory of projective complex manifolds, and the equivalence allows an ex-
change of techniques between complex algebraic geometry and complex analytic geometry,
yielding some wonderful results.

One of the results of rigid geometry is that there is an analogous equivalence between
projective algebraic varieties over Qp and projective rigid analytic varieties, in fact proven
along the same ideas. Just as in complex analysis, this opens up a whole range of analytic
tools to be newly incorporated into the study of algebraic varieties over Qp.
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An introduction to singular control problems
through an electricity market model

Almendra Awerkin Vargas (∗)

Abstract. In the electricity market it has been observed that the production of renewable energy
decreases the electricity price. Imagine that we want to sell renewable energy, then it raises the
question: at which electricity price it is optimal to increase the current renewable installed power
in order to obtain the maximum profit of selling the produced energy net the installation costs?
We will see that the mathematics used to model this problem is called a singular control and,
always leaning in our electricity market example, we will briefly introduce the main concepts and
results that define this branch of control theory. We conclude answering our question considering
the Italian market case.

1 Entering in the market

Let us imagine that we want to sell renewable energy, so we have to consider some basic
aspects of the electricity market, the power grid and our investment, in order to conduct
a "good business". Let us point them out:

1. In the Italian market everybody can sell energy, in the sense that all of us can install
solar panels on our roofs and sell the produced energy, introducing it in the power
grid.

2. There is a maximum amount of power that we are able to install, which is a physical
constraint of a power system, related with the maintenance of the stability and the
good quality of the service.

3. The investment in installation of the energy generator device (solar panels, wind
turbines) is irreversible, in the sense that the invested money cannot be returned if
we decide to take off the device.

Also, let us assume
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4. that in the electricity market the increments in renewable energy production reduce
the price of the electricity.

Therefore, considering the above aspects, we ask ourselves: at which price it is optimal
to increase the installed power level in order to obtain the maximum profits of selling that
energy net the installation cost of the generator device?

2 The model

The electricity market evolves randomly therefore we need to set up our problem in a
probability space (Ω,F , (Ft)t≥0,P), where a standard Brownian motion (Wt)t≥0 is defined.

We identify the current level of installed power It at time t as as our control variable.
Due to the irreversibility of our investment, It can not decrease and therefore for every
s < t, we will have Is ≤ It. Also we have to respect the constraint of maximum allowed
installed power, which we will call θ, therefore for every t ≥ 0 we should have It ≤ θ. We
define the set of admissible controls as follows

I = {I : Ω× [0,∞)→ [0,∞) : t→ It is Ft-measurable, cadlag, non decreasing, I0 = y ≤ It ≤ θ} .
It has been observed that the electricity price follows a mean reverting behavior and

assuming that it is affected by renewable energy production we suppose that the dynamic
of the electricity price evolves according to the following SDE

{
dXx

t = κ (ζ −Xx
t − βIt) dt+ σdWt t ∈ (0,∞),

Xx
0 = x

.(1)

with κ, β, σ > 0 and ζ, x ∈ R. The parameter ζ represents the mean value of the process
without increments in the renewable installed power, σ the degree of volatility, κ the rate
at which the variable reverts towards the mean and β the proportion of power influencing
the price.

Now, we write our utility functional describing the total expected profits from selling
electricity in the market, net of the total expected costs of installation

(2) J (x, y, I) = E
[ˆ ∞

0
e−ρtaXx

t Itdt− c
ˆ ∞

0
e−ρtdIt

]
,

where e−ρt is the discounting rate which describes the depreciation of the money, c is the
cost of installing one power unit of technology, a is a convector factor of power into energy
and dIt represent the cumulative installed power made up to time t.

Our objective is to follow an optimal installation strategy in order to maximize our
utilities, that is to say, to find I∗ ∈ I such that

(3) V (x, y) = J (x, y, I∗) = sup
I∈I
J (x, y, I).

where V is known as the value function.
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3 Singular control

Now, we explain how to solve our control problem and why it is call Singular Control
Problem. Imagine that we can write our cumulative installation as an absolutely continuous
control dIt = utdt and forget for a while the constraint θ. Define the respective set of
admissible controls,

U = {u : Ω× [0,∞)→ [0,∞), u progressible measurable }
and we solve our optimal control problem using the the dynamic programming principle,
which states that for every u ∈ U

(4) V (x, y) ≥ E
[ˆ ∆t

0
e−ρt (Xx

t ut − cut) dt+ e−ρ∆tV (Xx
∆t, u∆t)

]
.

Using Ito formula, which generalized the chain rule, allow us to write V (Xx
t , ut) in term

of its derivatives. Substituting it in the above expression we end up with the so call
Hamilton-Jacobi-Bellman equation which is a partial differential equation whose solution
can be identified with the value function V (x, y). For or modified model dIt = utdt, we
have

(5) Lw(x, y)− ρw(x, y) + xy + sup
a≥0
{u(wy(x, y)− c)} = 0

where L is the differential operator Lu(x, y) = κ ((ζ − βy)− x)ux(x, y) + σ2

2 uxx(x, y). For
the supremum in Equation (5) we get

sup
u≥0
{u(wy(x, y)− c)} =


∞ if wy(x, y)− c > 0

0 if wy(x, y)− c = 0

0 if wy(x, y)− c < 0

.(6)

We obtain as byproduct

1. wy(x, y)− c ≤ 0

2. If wy(x, y)− c < 0 then Lw(x, y)− ρw(x, y) + axy = 0.

Nevertheless, we do not have a clear answer of which strategy we have to follow in the
case wy(x, y)− c = 0. Actually, we are this situation because of the linear dependence on
the control of the utility functional. Indeed the way to solve this problem is to consider
our cumulative installation dIt as the variation of a monotone process, which we ask to be
cadlag in order to have some regularity. In this setting such a control becomes singular
with respect to the Lebesgue measure and is called a singular control problem.
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3.1 Characterization of the optimal strategy

Let us come back to our original problem (3). At the initial time t = 0, we can consider
the following strategies:

1. Let evolve the system during a time interval ∆t without increase the installed power
and then our utility functional continues optimal. This is actually the Dynamic
Programming approach, and we will end up with the following inequation

0 ≥ Lw(x, y)− ρw(x, y) + axy , (x, y) ∈ R× [0, θ),

with boundary condition w(x, θ) = R(x, θ), where R(x, θ) is the utility obtained just
considering the initial installation, i.e. without increments in the power level dI ≡ 0.

2. Increment immediately the installation and then continue optimal, which lead us to

0 ≥ wy(x, y)− c.

Since only one of these two options can be true at time zero, we have

(7) max{Lw(x, y)− ρw(x, y) + axy,wy(x, y)− c} = 0,

with boundary condition w(x, θ) = R(x, θ). This expression is called variational inequality.
According to our reasoning the state space should be divided in two regions: a non in-

stallation regionW associated with the first strategy and an installation region I, associated
with the second one.

W = {(x, y) ∈ R× [0, θ) : axy − ρw(x, y) + Lw(x, y) = 0, wy(x, y)− c < 0},(8)
I = {(x, y) ∈ R× [0, θ) : axy − ρw(x, y) + Lw(x, y) ≤ 0, wy(x, y)− c = 0}.(9)

It can be proved that this two region are separated by an injective, non decreasing function
F : [0, θ]→ R called the free boundary, such that

(10) W = {(x, y) ∈ R× [0, θ) : x < F (y)},

(11) I = {(x, y) ∈ R× [0, θ) : x ≥ F (y)}.

If we reach to write an expression for the free boundary, we will be able to describe the
optimal installation strategy and solve our singular control problem. In the following figure
we can see graphically the free boundary, the waiting and the installation region:
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Figure 1 Free Boundary.

The red dotted line corresponds with the value of the free boundary at the constraint
x̂ = F (θ). The optimal strategy can be describe as follows: when the electricity price Xx

t

is lower than F (It), i.e., when we are in the waiting region W (see (10)), no installation
should be done and it is necessary to wait until the price Xx

t crosses F (It) to optimally
increase the installed power level. When the electricity price Xx

t is between F (0) and
F (θ) (region I1 in Figure 1), enough power should be installed to move the pair price-
installation in the up-direction until reaching the free boundary F . In the extreme case
when Xx

t ≥ F (θ) (region I2 in Figure 1) the energy producer should install instantaneously
the maximum allowed power θ.

To obtain an expression for the free boundary we start observing that for (x, y) ∈ W̄∩I,
i.e., when x = F (y), our candidate value function should satisfy

axy − ρw(x, y) + Lw(x, y) = 0 and wy(x, y)− c = 0.

Doing the computations described in [2], at the end of the day, when there is significant
impact price β > 0, we will end up with an ODE for the free boundary which can be
solve numerically [2]. On the other hand, when there is no price impact β = 0, our free
boundary is constant and is obtained solving an algebraic equation [1].

4 N energy producers

As we can imagine, one single producer should not be big enough in order to impact
the electricity price, but if we consider the aggregate production of N producer, with N
big enough we could expect to observe an influence of the renewable production on the
electricity price. Suppose every producer aim to maximize the same utility function that
we saw previously in (2), but in this case the price will be affected by the production of
the N producers, that is
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{
dXx

t = κ(ζ −Xx
t − β

∑N
i=1 I

i
t)dt+ σdWt t > 0 ,

Xx
0 = x.

(12)

We can imagine the perspective of a coordinator, which will seek for maximizing the sum
of the utilities Ji, i = 1, . . . , N of theN producer, so we look for a strategy Ī = (I1, . . . , IN ),
with Ī on the admissible set

Ī = {Ī : [0,∞)× Ω→ [0,∞)N , non decreasing, left continuous, adapted process

with Ii0 = yi, P-a.s.,
∑N

i=1 I
i
t ≤ θ},

such that

(13) VSP = sup
Ī∈I

N∑
i=1

Ji(Ii) = sup
Ī∈I

N∑
i=1

E
[ˆ ∞

0
e−ρtaXx

t I
i
tdt− c

ˆ ∞
0

e−ρtdIit

]
,

This problem is called the social planner problem and it is much more difficult to track
with the approach that we saw previously, but in our particular case due to the linear
dependence in the control variable, we can write

∑N
i=1 I

i
t := νt ∈ I and our problem

is equivalent with the single producer case. Actually, the optimal control for the single
producer case I∗ is a Pareto optimum for the social planner problem, which means that
if we identify by Ī∗ the vector whose components satisfy

∑N
i=1 I

i
t := I∗t , there is not

another vector strategy Î ∈ Ī where at least one component Ii maximize the utility of the
producer i.

5 The Italian case

Finally, we test the previous model in the six main economic Italian zone: North, Central
North, Central South, South, Sicily and Sardinia, considering the aggregate renewable
power production and electricity price by zone. We use real weekly data from 2012 to 2018
of the electricity price and current installed power of photovoltaic and wind sources, to
estimate the parameters of the SDE describing the evolution of the electricity price (1).
As first result we are able to check if the mean reverting dynamic is enough to describe the
evolution of the electricity price and if the renewable production influences the electricity
price. We found that the production of photovoltaic energy impacts the North zone, while
wind is significant for Sardinia. On the other hand, the Central North zone does not present
electricity price impact. In the other zones the residuals of the model were correlated and
therefore there was "something" that our model was not able to describe. Secondly, with
the estimated values we are able to graph the free boundary for every zone in which our
models fits well.
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Figure 2 (a) Simulated free boundary and real data for the North. (b) Detail of free boundary and real
data for the North.

In Figure 2a, the point at zero installation level corresponds to F (0) = 64.9 e/MWh.
The red irregular line corresponds to the realized trajectory t → (X(t), Y (t)), i.e. to the
values of electricity price vs effective photovoltaic installed power in the North: from it
we can see that, at the beginning of the observation period (2012), the installed power
was already around 3600 MW. Instead, the blue smooth line corresponds to the computed
free boundary F (y) = x, which expresses the optimal installation strategy as we already
see. In the detailed Figure 2b we can observe the strategy followed in the North zone: the
installation level from 3500 MW until 4500 MW was approximately optimal, in the sense
that the pair price-installed power was around the free boundary F , with possibly some
missed gain opportunities when, between 4300 and 4500 MW, the price was deep into the
installation region; nevertheless, the rise in renewable installation from 4500 MW to 4800
MW was at the end done with a power price which resulted lower than what should be
the optimal one. At around 4800 MW, there was an optimal no installation procedure
until the price entered again the installation region: again, the consequent installation
strategy was executed with some delay, resulting in a non-optimal strategy. At the end of
the installation (around 5200 MW), we can see that the pair price-installed power moved
again deep into the installation region: we should then expect an increment in installation.

Figure 3 (a) Simulated free boundary and real data for Central North. (b) Detail of free boundary and
real data for Central North.
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In Figure 3a the vertical blue line corresponds to the constant free boundary x̄ =
29.3205 e/MWh, while the red irregular line with the realized values of price-installation
action that was put in place in the Central North zone. In this case, the optimal strategy is
described as follows: for electricity prices less than x̄, no increments on the installation level
should be done. Conversely, when the electricity price is grater or equal to x̄ the producer
should increment the installation level up to the maximum level allowed for photovoltaic
power (here we posed θ = 6500 MW). As we can clearly see on Figure 3a, the electricity
price has always been greater than x̄ in the observation period; however, the increments on
the installation level was not high enough to arrive to the maximum level θ = 6500 MW,
therefore the performed installation was not optimal.

Figure 4 (a) Simulated free boundary and real data for Sardinia. (b) Detail free boundary and real data
for Sardinia.

In Figure 4a the point at zero installation level corresponds to F (0) = 61.5199 e/MWh.
The red irregular line corresponds with the realized values of electricity price vs effective
wind installed power in Sardinia, from which we can see that the installed wind power at
the beginning of the observation period was already around 600 MW. The blue smooth
line corresponds to the simulated free boundary F (y) = x, which expresses the optimal
installation strategy as was already explained for the North case. In the detailed Figure 4b
we can observe the strategy followed in the Sardinia zone: until the level 1600 MW the
power price was very deeply into the installation region, but the installation increments
were not high enough to be optimal. Optimality came between the levels 1600 MW and
2400 MW, where the performed strategy was to effectively maintain the pair price-installed
power around the free boundary F . However, the subsequent increments were not optimal,
in the sense that the installed power was often increased in periods where the electricity
price was too low, and in other situations the power price entered deeply in the installation
region without the installed capacity following that trend, or rather doing it with some
delay.
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Synchronization and asymptotic dynamics
of mechanical systems: an introduction

Sara Galasso (∗)

Abstract. Synchronization is a fascinating and eye-catching phenomenon, which spontaneously
emerges from the collective behaviour of a huge variety of interacting systems. Examples permeate
science, from fireflies to metronomes, from neurons to celestial bodies. In this seminar we shall focus
on mechanical systems, having in mind, in particular, systems of coupled pendula. To construct
a physical-mathematical model able to describe synchronicity patterns in their evolution, classical
tools from dynamical systems theory are essential. We will therefore recall the basic notions of
invariant manifold and stability, as well as some results that will allow us to investigate, at an
introductory level, the long-time asymptotic behaviour. Along with the theory, we will provide
examples and examine simple models which should help us visualize some fundamental mechanisms
underlying synchronization.

1 Introduction

These notes are an attempt to introduce the reader to a slice of the world of synchronization.
In particular, I will try to describe, at an introductory level, and with the support of
a toy model, the emergence of synchronization in the asymptotic dynamics of unforced
mechanical systems. The main aim will be to develop an intuitive understanding of simple
mechanisms for these phenomena by providing the very basics from the theory of dynamical
and mechanical systems.

1.1 Sketch of the model

The main –very simple– model we will rely on is the one sketched in Figure 1 below.
It consists of two identical simple pendula which are supported by a common rigid bar
that can move in one-dimension. The model takes into account dissipative contributions
acting on the support, while it neglects other possible (and physically present but at first
approximation less relevant) sources. As we shall see, for generic initial conditions, the
asymptotic dynamics is characterised by the oscillation of the two pendula in opposition
of phase.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 9 June 2021.
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Even if this model may look oversimplified, it contains the main ingredients needed to
understand quite general mechanisms. Moreover, it is actually an easily-realizable physical
model which can be used to observe synchronization in coupled pendula and as a very
preliminary check for more complicated mathematical predictions.

Figure 1 Model of two coupled pendula.

1.2 Scientific context

Synchronization phenomena are present in very wide and variegated contexts, involving
physics, biology, neuroscience. Accordingly, each research field investigates these systems
through different approaches. Generically, synchronization is referred to the spontaneous
emergence of a collective and organized behaviour in the evolution of a composite system.
Some examples are the flashing of fireflies, the pacemaker cells of the heart, the tidal
locking of planet-moon systems. The interested reader can find an enjoyable introduction
in [7].

It is particularly active the research in the field of mechanical systems. In fact, it
dates back to the 17th-century the first observation of a synchronization phenomenon by
the dutch scientist Christiaan Huygens (1629-1695): he noticed that two pendulum clocks
would oscillate in opposition of phase when hanging on a common wooden bar. The toy
model we will be working with is a simplified version (see also [9]) and it is often used as
starting point for more specific analyses of Huygens’ observation, which is still an open
problem. For a first linear analysis see [4], while an up-to-date study can be found e.g.
in [6]. Here, we will highlight a different aspect, focusing on the role of damping and how
it affects the structure of the phase space of the system. In this perspective, we will be
considering unforced mechanical systems only.

2 Asymptotic behaviour of dynamical systems

In this section we introduce some of the classical notions and tools used in Dynamical Sys-
tems theory to study the long-time asymptotic behaviour of evolutionary processes. Very
good references are [3] and [5].
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We consider evolutionary processes that are deterministic, finite-dimensional, time-
continuous and differentiable, described by an ordinary differential equation of the type

(1) ż = X(z), z ∈M

where ż := dz(t)
dt , t ∈ R, with X smooth and autonomous vector field on a n-dimensional

differentiable manifoldM , the phase space. To fix the ideas, in what follows we will assume
M to be an open set of Rn, endowed with the Euclidean metric.

We assume X to be Lipschitz. The flow of X is a differentiable map Φ : R×M →M ,
(t, z) 7→ Φ(t, z) =: Φt(z) such that Φt(z) is the solution of (1) at time t passing through z.
Moreover, Φ is a differentiable action of the group R on M . For any z ∈ M , the orbit of
X through z is Oz = {Φt(z) : t ∈ R}, namely the image of the solution through z. The
collection of all the orbits defines a partition of the phase space, called phase portrait.

In what follows, we will make use of the notion of Lyapunov function, which is a real
function decreasing along the solutions of X, and is often usefull in studying stability
properties of a dynamical system. More precisely, let LXf denote the Lie derivative of a
function f : M → R along the vector field X, defined as LXf(z) := limt→0

f(Φt(z))−f(z))
t ,

then

Definition 1 (Lyapunov function) Let Ω ⊆ M . A differentiable function W : M → R
such that Ẇ(z) := LXW(z) ≤ 0 ∀z ∈ Ω is called Lyapunov function for X on Ω.

In order to study the long-time asymptotic dynamics we need the following definition:

Definition 2 (ω-limit set) Let z, p ∈ M . p is said ω-limit point of z if there exists a
sequence {tn}n in R such that tn → +∞ and Φtn(z)→ p as n→ +∞. The set ω(z) of all
the ω-limit points of z is called ω-limit set of z.

The ω-limit set contains the information regarding the asymptotic behaviour of a solu-
tion as time goes to infinity. Examples are equilibrium points, periodic orbits, limit cycles,
strange attractors.

It is, however, typically challenging to explicitly solve (1) and to determine the solutions
of the associated Cauchy problem. Moreover, it is often preferable to have a more global
understanding of the dynamics on the phase space, for example by knowing the behaviour
of open sets of initial conditions, possibly without actually integrating the differential
equation. At the end of this section, we will state a theorem, the invariance principle by
LaSalle, which allows to locate the ω-limit sets when a Lyapunov function for the system
is known.

Before giving the statement, we need some further understanding of the phase space
of the system. The first important property a region of the phase space might have is the
invariance under the flow of the vector field X.

Definition 3 (Invariant set) A subset N ⊂ M is invariant (resp. positively invariant)
under the flow of X if Φt(N) ⊆ N ∀t ∈ R (resp. t ≥ 0).
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Particularly important are invariant sets which have the structure of a submanifold.
In which case, it is possible to reduce the study of the dynamics to a lower dimensional
space. Example of invariant manifolds are the orbits, stable/unstable/center manifold of
fixed points, regular level sets of first integrals.

We will say that a closed invariant set N ⊂M is attracting if there exists a neighbor-
hood U of N (the basin of attraction) such that Φt(z)→ N ∀z ∈ U as t→ +∞.

We have then the following characterisation of the ω-limit sets:

Proposition 1 If N ⊂ M is compact and positively invariant, then, ∀z ∈ N , ω(z) is
contained in N , nonempty, closed, connected and invariant under the flow.

Therefore, ω-limit sets have some nice properties. However, they might have a com-
plicated structure (e.g. the strange attractors) and it is often difficult to determine them.
Thus, a good strategy is to look for bigger (attracting) sets in which ω-limit sets are con-
tained. In particular, the invariance property justifies the name of the following important
result by LaSalle [5]:

Theorem 1 (LaSalle Invariance Principle) Let Ω ⊂ M be a compact positively invariant
set and let W be a Lyapunov function for X on Ω. Let I be the largest invariant set in
{Ẇ = 0}, then ω(z) ⊆ I ∩W−1(c) ∀z ∈ Ω and some c ∈ R.

This results gives information about the location of the ω-limit set and about the
extension of its region of attraction, whenever a Lyapunov function for the system is
known. Moreover, it is often possible to define the “trapping region” Ω as a sublevel set of
W.

3 Conservative and dissipative mechanical systems

We want now to focus on mechanical systems (see e.g. [2]). We consider finite-dimensional
conservative mechanical systems with holonomic constraints, described by a second-order
ODE of the form

(2) q̈ = Y (q, q̇), (q, q̇) ∈ TQ

where Q is a n-dimensional differentiable manifold, called configuration manifold, and TQ,
the phase space, is its tangent bundle, Y is a smooth vector field on TQ.

Note: in the Lagrangian formalism this would mean to be working with a Lagrangian
function of the form L(q, q̇) = T (q, q̇) − V (q), where T denotes the kinetic energy and V
the potential energy of the system, and equations (2) are the Lagrange equations for the
Lagrangian L.

3.1 Dissipation

Real mechanical systems are not conservative, since the total mechanical energy decreases
as dissipation acts on the system. By this we mean that part of the kinetic energy of
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the system is irreversibly transferred into thermal energy, due to the interaction of par-
ticles at microscopic scales. The macroscopic manifestation of dissipative mechanisms is
called damping. At first approximation, dissipative contributions are often neglected when
modelling a system. However, damping has a crucial impact on the asymptotic dynamics.

Possible sources of dissipation are the deformation of a material or the friction produced
by the relative sliding of two surfaces [1]. Typically, several damping mechanisms take
place simultaneously, and each might affect the dynamics with different intensity. Here,
we are going to take into account the viscous drag affecting the motion of a body moving
within a fluid. A typical example is the air resistance. The most commonly used model
for this mechanism is the viscous damping, which adds in the equations of motion a term
proportional to the velocity of the system:

(3) q̈ + Γq̇ = Y (q, q̇), (q, q̇) ∈ TQ

where Γ is a positive semi-definite matrix, called damping matrix.

3.2 Example: the pendulum

As an example of viscously damped system we consider here the pendulum.
The simple pendulum consists of a point mass constrained on a smooth circle, parametrized

by the angle θ. The equation of motion can be written in the form

θ̈ + sin θ + γθ̇ = 0, (θ, θ̇) ∈ TQ = S1 × R, γ ≥ 0,

where the term γθ̇ models the viscous damping of the air. In Figure 2, the phase portraits
in absence and in presence of damping are compared. We can notice that the inclusion of
the damping term modifies strongly the orbits of the system, making, in particular, the
origin an attracting point. The convergence toward one equilibrium will be faster as γ
increases.

Figure 2 Phase portraits of the undamped and the damped pendulum.
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3.3 Partial damping

The inclusion of a damping term makes of the energy W of the system a good Lyapunov
function, in the sense that

Ẇ(q, q̇) = −q̇ · Γq̇ ≤ 0 ∀(q, q̇) ∈ TQ
and, in particular, Ẇ(q, q̇) = 0 if q̇ ∈ ker(Γ). As we said, it is often the case that parts
of a system are affected differently by the dissipation, and some contributions can be
neglected with respect to others, at least at first approximation. We are interested in the
situation in which this happens, namely when the damping matrix has a nontrivial kernel:
ker(Γ) 6= {0}. It follows that the set {Ẇ = 0} is nontrivial, and therefore Theorem 1
implies that the ω-limit set of any bounded solution is contained in that set. If there exists
a submanifold S ⊂ Q such that

(a) TS is compact and invariant,

(b) TqS ⊆ ker(Γ) ∀q ∈ S,
then, the submanifold TS is attracting and on it the dynamics is conservative. Hence, the
asymptotic behaviour of the system is well described by the dynamics on TS.

The formalization of these concepts is an ongoing work. However, these techniques
are widely applied to the study of specific problems. The model we are analysing in the
following section is an example, as in [8]. We will use it to highlight precisely the possible
consequences of such a more general structure of the phase space (see Figure 3).

Figure 3 Invariant undamped submanifold and possible asymptotic dynamics.

4 Simple model of synchronized coupled pendula

We are finally ready to investigate the long-time dynamics of the model in Figure 1.
The configuration manifold of the systems is Q = S1×S1×R. Let φ1, φ2 be the angular

coordinates of the two pendula and x the linear displacement of the supporting bar. The
equations of motion can be written in the following form

(4)

µẍ+ γẋ+
∑2

i=1

(
φ̈i cosφi − φ̇2

i sinφi

)
+ αx = 0

φ̈i + ẍ cosφi + sinφi = 0, i = 1, 2
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where µ, α, γ are positive parameters. Note that the term γẋ models a viscous damping
contribution acting on the supporting bar, so that the damping matrix has the form

Γ =

γ 0 0
0 0 0
0 0 0

 .

A numerical integration of the equations of motion (4) shows that (see Figure 4), for
almost every initial condition, the system tends to a configuration in which the supporting
bar is at rest and the two pendula oscillate in opposition of phase. And this is in agreement
with observations.

Figure 4 Time evolution of a solution of (4) for γ > 0.

Hence, the asymptotic behaviour of the system is characterised by the anti-phase syn-
chronization of the two pendula. However, this is really a consequence of the damping
acting on the coupling. Following the reasoning of Section 3.3, namely by computing the
kernel of the damping matrix Γ and applying LaSalle’s principle, it is possible to prove
(see e.g. [8]) the following result.

Proposition 2 The two-dimensional tangent bundle of the submanifold

S = {(x, φ1, φ2) ∈ Q : φ1 = −φ2, x = 0}

is invariant and attracting.

In conclusion, this simple example shows how the emergence of synchronization in the
asymptotic dynamics of unforced mechanical systems is related to the presence of invariant
structures in the phase space on which the dissipation does not act. It is therefore of great
interest to investigate further the inclusion of suitable damping contributions. Moreover,
since, as we have seen, there are typically several sources of dissipation acting on a physical
system, the dynamics evolves with multiple time-scales. In this perspective, of particular
interest is the study of systems which present families of positively invariant submanifolds
characterised by different decay rates.

4.1 On the modelling of coupled pendula

The problem of constructing models of coupled pendula is an active field of research, es-
pecially –but not only– in the perspective of explaining the synchronization of Huygens’
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clocks and sever other phenomena that emerge in systems of pendulum clocks or similar.
The model investigated here is a preliminary step, and leaves space to several generaliza-
tions. For example, it is possible to study the case of a generic number of pendula, finding
a similar result as the one in Proposition 2. Moreover, the flexibility of the support can be
included in the model by increasing the number of degrees of freedom for the coupling.
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