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Seminario Dottorato 2019/20

Preface

This document offers a large overview of the eight months’ schedule of Seminario Dottorato
2019/20. Our “Seminario Dottorato” (Graduate Seminar) is a double-aimed activity. At
one hand, the speakers (usually Ph.D. students or post-docs, but sometimes also senior
researchers) are invited to think how to communicate their researches to a public of mathe-
matically well-educated but not specialist people, by preserving both understandability
and the flavour of a research report. At the same time, people in the audience enjoy a
rare opportunity to get an accessible but also precise idea of what’s going on in some
mathematical research area that they might not know very well.

Of course, this academic year was very peculiar, and possibly unique in this aspect:
while in the first half activities were happening as usual, from February on we had to
deal with COVID-19 and its consequences with respect to activities in presence, as this
seminar traditionally was held. After a period of reassessing, we opted to continue this
seminar online, as already done in many other series of seminars around the world. For
this, it has been crucial to have had three brave PhD students who accepted to hold their
seminars online: their contribution has been crucial for this series, and in a broader sense
it helped a lot the other fellow PhD students to make them feel that activities, and life in
general, were somehow continuing despite SARS-COV-2.

Let us take this opportunity to warmly thank once again all the speakers, in particular
the last three for their extra effort, for having held these interesting seminars and for their
nice agreement to write down these notes to leave a concrete footstep of their participation.

We are also grateful to the collegues who helped us, through their advices and sugges-
tions, in building an interesting and culturally complete program.

Padova, June 20th, 2020

Corrado Marastoni, Tiziano Vargiolu
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Abstracts (from Seminario Dottorato’s webpage)

Wednesday 2 October 2019

An overview on non-unique factorization

Federico CAMPANINI (Padova, Dip. Mat.)

In this seminar we present some basic facts about non-unique factorizations we hope will be interest-

ing also for the non-algebraic audience. We start with the Fundamental Theorem of Arithmetic and

we recall some elementary notions and examples on unique and non-unique factorization monoids.

Then we move to the classical Krull-Schmidt Theorem for modules, which states that any module

of finite length decomposes as a direct sum of indecomposable modules in an essentially unique

way. We briefly discuss about some classes of modules in which direct-sum decompositions are not

unique. Finally, we present some properties on factorizations in the monoid of polynomials with

non-zero integral coefficients.

Wednesday 20 November 2019

Potential Theory and Boundary Element Method for the Laplace equation. An introduction.

Andrei-Florin ALBISORU (Babes-Bolyai University, Cluj-Napoca, Romania)

We aim to give an overview of Potential theory for Laplace’s equation. We introduce the funda-

mental solution of this equation. Next, we define the layer potentials and we state their properties.

Using the layer potentials we will construct a solution of the interior Dirichlet problem for the

Laplacian. We also describe a numerical method of solving Laplace’s equation, namely the Bound-

ary Element Method. Finally, we present some numerical results.

Wednesday 11 December 2019

A smooth introduction to the semi-classical problem in Quantum Mechanics

Enrico PICARI (Padova, Dip. Mat.)

It is very well-known today that Quantum Mechanics plays a crucial role in describing and un-

derstanding nature, at least (but not only) at the smallest scales, i.e. the ones of atoms and

subatomic particles. The problem of connecting physical and mathematical features of Classical

and Quantum Mechanics dates back to the early days of the theory and although reduction of one

to the other is understood heuristically in terms of a limit process in which the Planck constant
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goes to zero, the mathematical ground of such procedure, known as Semi-classical Analysis, is still

an active field of research which includes techniques of apparently distant topics like Harmonic

Analysis and Deformations of Poisson Algebras. The aim of this seminar is to introduce the main

features of elementary Quantum Mechanics, with a brief historical note, and to give an insight into

the state-of-the-art of the semi-classical limit problem.

Wednesday 18 December 2019

An introduction to sheets of conjugacy classes in reductive groups

Filippo AMBROSIO (Padova, Dip. Mat.)

Linear algebraic groups arose as a generalization of Lie groups, introduced in the late 1800s to

study continuous symmetries of differential equations. The development of the modern theory of

algebraic groups with the use of algebraic geometry is mostly due to Borel: in the 1950s, his work led

to the definition of Chevalley groups, an important family of finite simple groups. This suggests

that algebraic groups can be approached from different perspectives (Group Theory, Algebraic

Geometry, Combinatorics) and have applications in several directions (Invariant Theory, Physics).

In the first part of the talk we will introduce basic notions and examples of linear algebraic groups.

The last part of the seminar aims at describing some of the geometric structure of these groups.

Wednesday 15 January 2020

Stable hypersurfaces in the complex projective space

Alberto RIGHINI (Padova, Dip. Mat.)

The classification of complete oriented stable hypersurfaces in the complex projective space could

be an important step for the classification of isoperimetric sets. Indeed, the boundary of an

isoperimetric set, if smooth, is a hypersurface with constant mean curvature which is stable for

variations fixing the volume. In this talk we give an introductory overview of the problem and

present some new results, in particular we will characterize the geodesic spheres as the unique

stable connected and complete hypersurfaces subject to a certain bound on the curvatures.

Wednesday 5 February 2020

A random journey among stochastic processes

Samuele STIVANELLO (Padova, Dip. Mat.)

This seminar will cover a broad selection of topics, ranging from the basic definition of a probability
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space, passing through some famous results like the Law of Large Numbers and the Central Limit

Theorem, and ending with the notion of convergence of stochastic processes. In order to fulfill

this intent, and in the spirit to be accessible to a mathematical audience of non experts, in this

introductory talk to the field of stochastic processes I will make extensive use of examples and

intuitive definitions. In the very last part of the talk I will mention some results of my research,

regarding the convergence of a random walk in random environment.

Wednesday 12 February 2020

Some features of finite simple groups

Daniele GARZONI (Padova, Dip. Mat.)

Finite simple groups are the building blocks of finite groups. For this reason, since the early days of

group theory lots of efforts were devoted to understanding this class of groups. These culminated

in the 1980’s in an enormous theorem — known as Classification Theorem — which exhibits a

very precise list of these groups. In this seminar we will state the theorem, and briefly describe

the objects involved. We will then focus on some features of finite simple groups. For instance, we

will see that it is amazingly easy to generate these groups by few elements. Along the way, we will

try to explain the impact of the Classification in the field of group theory.

Wednesday 6 May 2020

Permutation group theory

Mariapia MOSCATIELLO (Padova, Dip. Mat.)

The study of permutation groups is an old subject with a rich history, stretching all the way

back to the origins of group theory in the early 19th century. Of course, the modern notion of a

permutation group is extremely flexible, and they arise naturally throughout mathematics, with

important applications across the sciences. In this seminar, we will focus on finite permutation

groups, which continue to be a very active area of current research. After introducing some very

basic concepts, we will see, with some examples, how the Classification of Finite Simple Groups

has revolutionized the study of finite permutation groups. Some of the topics we will discuss

have interesting connections to other areas of mathematics, such as combinatorics, representation

theory, graph theory. We will highlight these applications.
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Wednesday 20 May 2020

Computational problems in mathematical physical modelling with DLTI systems

Marta GATTO (Padova, Dip. Mat.)

Mathematical physical models are often used for the description of physical phenomena and are

essential in industrial applications for various aims, such as control and estimation of unmeasurable

variables and physical parameters. In this talk, some numerical methods at the basis of experi-

mental modelling, i.e. modelling through experimental data, will be described for different kind of

model classes, in particular for DLTI (Dynamic Linear Time Invariant) systems. The reasons for

their importance will be explained and the computational problems of parameter estimation and

data denoising subject to the DLTI model constraint will be introduced with examples.

Wednesday 10 June 2020

Efficient representation of supply and demand curves on day-ahead electricity markets

Mariia SOLOVIOVA (Padova, Dip. Mat.)

Accurate modeling and forecasting electricity demand and prices are very important issues for

decision making in deregulated electricity markets. In this seminar I will explain some basic facts

about price formation process in day-ahead electricity market, then I will speak mainly about the

problem of approximation of supply and demand curves, with a special attention to Italian case.

Finally, I will show how supply and demand curves evolve as stochastic processes in functional

spaces.
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An overview on non-unique factorization

Federico Campanini (∗)

Preface

These notes would be a gentle approach to (some aspects of) the theory of non-unique
factorizations. In the first section, we introduce the very basics of this theory in the
framework of commutative cancellative monoids, starting from the Fundamental Theorem
of Arithmetics and going ahead through some of the key notions and facts about unique
and non-unique factorizations. In Section 2 we focus our attention on the multiplicative
monoid N0[x]∗ of polynomials with non-negative integral coefficients. This is a very easy
example that hides some interesting and unexpected phenomena. Finally, in Section 3 we
move to Module Theory, trying to say something about non-unique factorizations in this
context. We recall the classical Krull-Schmidt theorem for modules and we describe some
situations in which “weak versions” of this theorem can be stated.

1 Basics on non-unique factorizations

Definition 1.1 A monoid is a set M endowed with a binary operation · : M ×M →M
such that:

(a) x · (y · z) = (x · y) · z for every x, y, z ∈M (associative);

(b) there exists an identity element 1 ∈M such that x · 1 = x for every x ∈M ;

(c) x · y = y · x for every x, y ∈M (commutative);

(d) x · y = x · z ⇒ y = z for every x, y, z ∈M (cancellative).

Notice that we always assume that our monoids are commutative and cancellative by
definition. This means that sometimes we are forced to remove the zero element in our
multiplicative monoids. For instance, if we want to deal with the multiplicative monoid

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 2 October 2019.
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of the integers, we will consider the monoid (Z∗, ·), where Z∗ := {±1,±2, . . . } (0 is not
included). For the natural numbers, we adopt the notations N := {1, 2, 3, . . . } and N0 :=
N ∪ {0}. For our monoids, we may also use the additive notation. In this case we have:

Definition 1.2 A monoid is a set M endowed with a binary operation + : M ×M →M
such that:

(a) x+ (y + z) = (x+ y) + z for every x, y, z ∈M (associative);

(b) there exists a zero element 0 ∈M such that x+ 0 = x for every x ∈M .

(c) x+ y = y + x for every x, y ∈M (commutative);

(d) x+ y = x+ z ⇒ y = z for every x, y, z ∈M (cancellative).

We will continue to give definitions and general results in multiplicative notations, even
if sometimes we shall use the additive notation, which is more natural in some contexts.
The main and easiest example about unique factorization monoids is described by the
Fundamental Theorem of Arithmetic:

Theorem 1.3 Every natural number ≥ 2 can be written as a product of prime elements,
and this representation is unique up to the order of the factors.

For example, in (N, ·) we can write 6 = 2 · 3 = 3 · 2 and there are no other ways to
factor 6 as a product of prime elements. But if we move to the integers, we have a slight
different situation. In fact, in (Z∗, ·) we have 6 = 2 · 3 = 3 · 2 = (−2) · (−3) = (−3) · (−2).
Here we have two possible factorizations up to the order. This lack of uniqueness is caused
by the invertible elements (and it is actually not a big deal). Recall that given a monoid
(M, ·), an element u ∈ M is invertible if there exists v ∈ M such that uv = 1, and two
elements x, y ∈ M are associated (we write x ∼ y) if there exists an invertible element
u ∈ M such that x = uy. In (Z∗, ·) we have two invertible elements, namely ±1, then
2 ∼ −2 and 3 ∼ −3. Therefore we can say that 6 can be written as a product of prime
elements in a unique way up to the order of the factors and up to associated elements,
and of course it holds for every integer. Now look at the following example.

Example 1.4 Consider Z[
√
−5]∗ := {a + b

√
−5 | a, b ∈ Z} \ {0} as a multiplicative

monoid. In (Z[
√
−5]∗, ·) we can write

6 = 2 · 3 = (−2) · (−3) = (1 +
√
−5) · (1−

√
−5) = (−1−

√
−5) · (−1 +

√
−5)

and the other four factorizations in reverse order. The only invertible elements of Z[
√
−5]∗

are ±1 and 2 is not associated neither to 1 +
√
−5 nor 1 −

√
−5 (and similarly for 3).

Therefore we have two (essentially) different factorizations up to the order and associated
elements.

The previous example raises other questions. Is it correct to consider prime elements
when dealing with factorizations? For instance, are 2 or 1 +

√
−5 prime elements in

Z[
√
−5]∗? And what is the “right” definition of prime elements? Here the answers.

Università di Padova – Dipartimento di Matematica 8
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Definition 1.5 Let (M, ·) be a monoid.

(a) A non-invertible element x ∈M is irreducible (or an atom, or indecomposable)
if, whenever x = yz for some y, z ∈M , then y or z is invertible.
We denote by A(M) the set of all atoms of M .

(b) An non-invertible element x ∈M is prime if for every y, z ∈M , x | yz implies x | y
or x | z.

Definition 1.6 A monoid (M, ·) is a unique factorization monoid (UF for short) if:

• M is atomic, that is, every non-invertible element can be written as a product of
finitely many atoms;

• for every non-invertible element x ∈M , if

x = a1 · · · an = b1 · · · bm, ai, bj ∈ A(M)

are two factorizations into irreducible elements, then m = n and there exists a
permutation σ of {1, 2, . . . , n} such that ai ∼ bσ(i).

Unique factorization monoids are also called factorial monoids.

In a UF monoid an element is irreducible if and only if it is a prime element, but in
general only the implication “prime ⇒ irreducible” hold. In Example 1.4, the elements
2, 3, 1±

√
−5 ∈ Z[

√
−5]∗ are all irredubile but not prime.

Example 1.7 Examples of unique factorization monoids are:

(a) (N, ·) natural numbers;

(b) (Z∗, ·) integers;

(c) (Z[X]∗, ·) polynomials with integral coefficients;

(d) (K[X1, . . . , Xn]∗, ·) polynomials over a field;

(e) (K[[X1, . . . , Xn]]∗, ·) formal power series over a field;

(f) (Z[i]∗, ·) Gaussian integers.

A monoid may fail to be factorial in several ways. For instance, the monoid (Z[
√
−5]∗, ·)

we have seen in Example 1.4 has the property that if x = a1 · · · an = b1 · · · bm are two
factorizations of an element x ∈ Z[

√
−5]∗ into atoms, then n = m (monoids with this

property are called half-factorial). In the last part of this section, we briefly present some
tools that allow us to “measure” how much a monoid may fail to be factorial. What we
are going to present is definitely not comprehensive and we refer the readers to [8, Chapter

Università di Padova – Dipartimento di Matematica 9
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1] for more details about these topics.

Let (M, ·) be a commutative cancellative multiplicative monoid and U(M) be the group
of its units (= invertible elements). If U(M) = {1}, we will say that M is reduced.
Notice that a monoid M is atomic if and only if it is generated by the set A(M)∪U(M).
Assume that M is reduced and atomic. For every x ∈M \ U(M), the set of lengths of
x in M is defined as the set

L(x) := {n ∈ N | there are a1, . . . , an ∈ A(M) with x = a1 · · · an}.

A monoid M is called a bounded factorization monoid (BF for short) if L(x) is
finite for every x ∈M \U(M). If |L(x)| = 1 for every x ∈M \U(M), the monoid is called
half-factorial.

Example 1.8 Consider the ring Z[x1, x2, . . . ] of polynomials over Z with countably many
indeterminates and let I be the ideal generated by the elements

x1 − x2x3, x1 − x4x5x6, x1 − x7x8x9x10, x1 − x11x12x13x14x15, . . .

Take the quotient ring R := Z[x1, x2, . . . ]/I. In the monoid (R∗, ·) we have that all the
elements x2 + I, x3 + I, x4 + I, . . . are irreducible and

x1 +I = (x2 +I)(x3 +I) = (x4 +I)(x5 +I)(x6 +I) = (x7 +I)(x8 +I)(x9 +I)(x10 +I) = . . .

are all factorizations of the element x1 + I into atoms. It follows that L(x1 + I) = N≥2

and therefore (R∗, ·) is not a bounded factorization monoid.

The elasticity of x is given by the ratio

ρ(x) := supL(x)/minL(x).

Notice that if M is not a BF-monoid, there exist elements whose elasticity is infinite. The
elasticity of M is defined as

ρ(M) := sup{ρ(x) | x ∈M} ∈ Q≥1 ∪ {∞}.

A monoid M is said to have full-infinite elasticity if for every rational number q ∈ Q≥1

there exists an element x ∈M such that ρ(x) = q.
Another important tool for investigating the structure of sets of lengths of a monoid

M is the set of distances of M (or the ∆-set of M). It is the subset ∆(M) of N
consisting of all d ∈ N for which there exist x ∈ M \ U(M) and ` ∈ L(x) such that
L(x) ∩ [`, ` + d] = {`, ` + d}. In other words, if L(x) = {n1, n2, . . . , } is the (possibly
infinite) set of lengths of x, where ni < ni+1 for 1 ≤ i < |L(x)|, then the ∆-set of x is
defined by ∆(x) := {ni+1 − ni : 1 ≤ i < |L(x)|}. The ∆-set of a monoid M (or the set
of distances of M) is ∆(M) :=

⋃
x∈M\U(M) ∆(x) ⊆ N. It is immediately seen that a

monoid M is half-factorial if and only if ∆(M) = ∅.

Università di Padova – Dipartimento di Matematica 10
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2 Factorizations of polynomials with non-negative integer coefficients

Let N0 be the set of all non-negative integers 0, 1, 2, . . . , let N0[x] be the set of all polyno-
mials in the indeterminate x with coefficients in N0, and N0[x]∗ := N0[x] \ {0} be the set
of all non-zero elements of N0[x].

Of course, N0[x]∗ is a commutative, cancellative and reduced monoid, whose unique
invertible element is the identity 1. It is a submonoid of the monoid Z[x]∗ of polynomials
of integral coefficients, which is a UF monoid. So, it is natural to ask if also N0[x]∗ is a UF
monoid itself. First of all, notice that there exist polynomials f(x), g(x) ∈ N0[x]∗ such that
g(x) divides f(x) in Z[x] but not in N0[x]∗. This implies that we can consider two different
notions of divisibility in N0[x]∗. Given f, g ∈ N0[x]∗, we write f |Ng if there exists h ∈ N0[x]∗

with g = fh, and we write f |Zg if there exists h ∈ Z[x] with g = fh. Both |N and |Z are
partial orders on N0[x]∗ with least element 1 and with no maximal elements. Clearly, f |Ng
implies f |Zg, but not conversely, as the factorization x3+1 = (x+1)(x2−x+1) shows. Now,
looking at the factorization of the cyclotomic polynomial f(x) := x5 + x4 + x3 + x2 +x +1
in Z[x], we have:

x5 + x4 + x3 + x2 +x +1 = (x+ 1)(x2 − x+ 1)(x2 + x+ 1),

where, of course, (x2 + x+ 1) /∈ N0[x]∗. This factorization leads to two different factoriza-
tions of f(x) in N0[x]∗, namely

x5 + x4 + x3 + x2 +x +1 = (x3 + 1)(x2 + x+ 1) = (x+ 1)(x4 + x2 + 1).

This shows that N0[x]∗ is not a UF monoid. In particular, not all the irreducible elements
of N0[x]∗ are prime elements (for example, it is immediate that x+ 1 is an atom of N0[x]∗

which is not prime). The following result shows that actually we have “very few” prime
elements in N0[x]∗.

Proposition 2.1 [5, Proposition 2.4] The only prime elements of N0[x]∗ are the prime
numbers and the polynomial x.

This fact implies that every irreducible polynomial in N0[x]∗, except for the prime
numbers and the polynomial x, divides some element in N0[x]∗ which has a non-unique
factorization. In particular, it means that examples of non-unique factorizations in N0[x]∗

appear very frequentely. So, we can ask if N0[x]∗ is a half-factorial monoid, and in case is
not, try to understand how far it is from being half-factorial, using the notions of elasticity
and ∆-set.

Notice that the multiplicative monoid N0[x]∗ is a BF-monoid, since Z[x]∗ is, but it is
possible to find several examples demonstrating the non-half-factoriality of N0[x]∗ (see [11]
and [1]). Moreover, the following example shows that N0[x]∗ is surprisingly very far from
being half-factorial.

Example 2.2 In the proof of [6, Theorem 2.3], the authors consider polynomials of the
form gn,k(x) = (x + n)n(x2 − x + 1)(x + k) ∈ N0[x]∗, where n, k ∈ N, and they observe
that there are only two factorizations of gn,k(x) into atoms of N0[x]∗, given by

gn,k(x) = [(x+ n)n(x2 − x− 1)] · [x+ 1]k

Università di Padova – Dipartimento di Matematica 11
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and
gn,k(x) = [x+ n]n · [(x2 − x+ 1)(x+ 1)] · [x+ 1]k−1,

which have lengths 1 + k and n + k respectively. Thus L(gn,k) = {1 + k, n + k} and the

elasticity of gn,k is ρ(gn,k) = (n + k)/(1 + k). From the arbitrarity of n and k it follows
that given any rational number q ≥ 1, there exists some f(x) := gnq ,kq(x) ∈ N0[x]∗ such
that the elasticity ρ(f) of f(x) is equal to q and hence ρ(N0[x]∗) = ∞ (therefore N0[x]∗

has full infinite elasticity). Moreover, ∆(N0[x]∗) = N, because ∆(gn,k) = {n+ 1}.

3 Direct-sum decompositions of modules

In this section we want to talk about (non-)unique factorizations in Module Theory. Here
“factorization of a module” means “direct-sum decomposition”, that is, given a module
M over some ring R, we are interested in studying if M admits a decomposition M =
N1 ⊕ N2 ⊕ · · · as a direct sum of its indecomposable submodules. Since we are dealing
with direct sums, the additive notation is more natural in this context.

Let us start by considering the following situation, coming from linear algebra. Let k
be a field and consider the set

M(k) := {0, k, k ⊕ k, k ⊕ k ⊕ k, . . . }

which can be viewed as the set of all finite dimensional k-vector spaces up to isomorph-
ism. Then (M(k),⊕) is a UF monoid with a unique atom k. It is worth noting that if we
consider the set of all vector spaces over k (not only the finite-dimensional ones) we do
not get an atomic monoid, because, for instance, k(N) can not be written as a finite direct
sum of atoms.

That of fields is a particular situation. If we want to deal with arbitrary (unitary) rings
we have to be careful, because there exist rings R such that R ∼= R ⊕ R, as the following
example shows.

Example 3.1 Let V be an infinite-dimensional vector space over a field k and consider
its endomorphism ring R := End(V ). Since V ∼= V ⊕ V we have

R = End(V ) ∼= End(V ⊕ V ) ∼= End(V )⊕ End(V ) = R⊕R.

In this case, the set of all free (right) R-modules up to isomorphism is

M(R) := {0, R,R⊕R, . . . } = {0, R}.

The monoid (M(R),⊕) consists of just two elements, the identity 0 and the idempotent
element R. In particular, there are no atoms, hence (M(R),⊕) is not atomic.

Definition 3.2 A ring R is called IBN (invariant basis number) if for every pair of
positive integers n,m ∈ N, Rn ∼= Rm implies n = m.

Università di Padova – Dipartimento di Matematica 12
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As we have seen, there are rings that are not IBN. Anyway, any commutative ring
is necessarily an IBN ring. Other classes of IBN rings are (left/right) Noetherian rings
and semilocal rings. Free modules over an IBN ring satisfy the analogue of the dimen-
sion theorem for vector spaces: any two bases for a free module over an IBN ring have the
same cardinality. Therefore, the rank of a free module Rn over an IBN ring is well-defined.

The most important theorem about unique factorization ( = direct-sum decomposition)
in Module Theory is given by the Krull-Schmidt Theorem. It states that any module of
finite composition length decomposes as a direct sum of indecomposable modules in an
essentially unique way up to isomorphism.

Theorem 3.3 (Classical Krull-Schmidt Theorem for modules) Let R be a ring and M be
a module of finite length. Then there exists a decomposition

M = M1 ⊕ · · · ⊕Mr

into indecomposable submodules. Moreover, if M = N1⊕· · ·⊕Nt is another decomposition
of M into indecomposable submodules, then r = t and there exists a permutation σ of
{1, 2, . . . , r} such that Mi

∼= Nσ(i) for every i = 1, 2, . . . , r.

Notice that any module with a local endomorphism ring is necessarily indecomposable
and by Fitting’s Lemma, the converse holds as well for modules of finite composition
length. Theorem 3.3 was extended by G. Azumaya to the case of possibly infinite direct
sums of modules with a local endomorphism ring.

Theorem 3.4 (Krull-Schmidt-Remak-Azumaya Theorem) Let R be a ring and let M be
a module that is a direct sum of modules with local endomorphism rings. Then M is a
direct sum of indecomposable modules in an essentially unique way in the following sense.
If

M =
⊕
i∈I

Mi
∼=
⊕
j∈J

Nj

where all the submodules Mi, i ∈ I and Nj, j ∈ J are indecomposable, then there exists a
bijection σ : I → J such that Mi

∼= Nσ(i) for all i ∈ I.

Now, fix a ring R and denote by L the class of all right R-modules with a local endo-
morphism ring. Then, we can consider the set M(L) of all finite direct-sums of modules
in L up to isomorpshism. We have that (M(L),⊕) is a UF monoid, whose atoms are the
modules in L.

Nowadays the name “Krull-Schmidt” is given to any theorem concerning uniqueness of
direct-sum decompositions into indecomposable direct summands. This is a very classical
topic that has a crucial relevance in the study of algebraic structures. Of course, there are
cases in which direct-sum decompositions are not essentially unique. It is worth mentioning
that Krull already knew that the Krull-Schmidt Theorem does not hold for arbitrary
Noetherian modules, which means that the ascending chain condition does not suffices
to have uniqueness of direct-sum decompositions. In light of this fact, a question that
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naturally arises is if the Krull-Schmidt Theorem holds for the class of Artinian modules.
This problem was originally posed by Krull himself in 1932 but the answer was found
only sixty years later, in 1995, when Facchini, Herbera, Levy and Vámos showed that the
Krull-Schmidt Theorem fails for Artinian modules. They prove that for any integer n ≥ 2
there exists an artinian module M over a suitable ring R such that M can be written as
a direct sum of k indecomposable modules for k = 2, . . . , n.

In the last three decades, new interesting examples in which direct-sum decomposi-
tions are not unique made their appearance. Even though the lack of uniqueness, these
situations display some kind of regularity: direct-sum decompositions can be classified via
two invariants and a weak version of the Krull-Schmidt Theorem can be proved. Here, we
briefly outline the case of uniserial modules, but such behaviour can be found in several
classes of modules, including biuniform modules, cyclically presented modules over local
rings, couniformly presented modules, kernels of morphisms between indecomposable in-
jective modules.

A right R-module U is uniserial if the lattice of its submodules is linearly ordered
under inclusion, that is, for every V,W ≤ U , either V ⊆W or W ⊆ V . The endomorphism
ring End(U) of a non-zero uniserial module U has at most two maximal right ideals:
the two-sided completely prime ideals IU := { f ∈ End(U) | f is not injective } and
K := { f ∈ End(UR) | f is not surjective }, or only one of them [7].

In order to discuss direct-sum decompositions of uniserial modules, we need to intro-
duce the notions of monogeny class and epigeny class. These notions will turn out to be
the “invariants” needed to classify direct-sum decompositions of uniserial modules (see
Theorem 3.6 below).

Definition 3.5 [7] Two right R-modules M and N are said to have the same monogeny
class, denoted by [M ]m = [N ]m, if there exist two right R-module monomorphisms f :
M → N and g : N → M . Similarly, M and N are said to have the same epigeny class,
denoted by [M ]e = [N ]e, if there exist two right R-module epimorphisms f : M → N and
g : N →M .

For uniserial modules, we have the following weak form of the Krull-Schmidt Theorem.

Theorem 3.6 [7, Theorem 1.9] Let U1, . . . , Ur, V1, . . . , Vt be uniserial modules over an
arbitrary ring R. Then

U1 ⊕ · · · ⊕ Ur ∼= V1 ⊕ · · · ⊕ Vt
if and only if r = t and there are two permutations σ, τ of {1, 2, . . . , r} such that [Ui]m =
[Vσ(i)]m and [Ui]e = [Vτ(i)]e for every i = 1, 2, . . . , r.

Therefore, if we consider the set M(U) of all finite direct-sums of uniserial modules up
to isomorphism, we have that (M(U),⊕) is a half-factorial monoid, whose atoms are the
non-zero uniserial modules.

As we have said before, this behaviour can be found in several classes of modules. But
there are cases in which direct-sum decompositions are described by a higher number of
invariants. Examples of these situations were studied in [2, 3, 4, 5]. It is worth noting
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that the invariants needed to describe direct-sum decompositions are closely related to the
maximal ideals of the endomorphism rings of the modules.

We conclude with another example about non-unique factorizations (with respect to
direct product) in the category of finite partially ordered sets. It is based on the non-
unique factorization of the cyclotomic polynomial x5 + x4 + x3 + x2 +x +1 in N0[x]∗ we
have seen before.

Example 3.7 This example is due to Hashimoto and Nakayama [9, 10]. They showed that
the Krull-Schmidt Theorem does not hold for finite partially ordered sets. The category
of partially ordered sets has coproducts (disjoint unions ∪̇) and products (direct products
with the component-wise order ×). Let L = {0, 1} be the partially ordered set with two
elements 0 < 1. For every n ≥ 0, the direct product Ln is a connected partially ordered set
with 2n elements. Looking at the two factorizations (x3+1)(x2+x+1) = (x+1)(x4+x2+1)
of x5 + x4 + x3 + x2 + x + 1 into irreducible polynomials in N0[x] (atoms of the commu-
tative monoid N0[x]∗), we get two essentially different direct-product decompositions of
the partially ordered set 1∪̇L∪̇L2∪̇L3∪̇L4∪̇L5 into indecomposable partially ordered sets,
given by

(L3∪̇1)× (L2∪̇L∪̇1) ∼= (L∪̇1)× (L4∪̇L2∪̇1).

It is worth noting that this technique can be applied in studying the Krull-Schmidt prop-
erty in any distributive category.
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Potential Theory and Boundary

Element Method for the Laplace

equation. An introduction.

Andrei-Florin Albisoru (∗)

Abstract. We aim to give an overview of Potential theory for Laplace’s equation. We introduce
the fundamental solution of this equation. Next, we define the layer potentials and we state their
properties. Using the layer potentials we will construct a solution of the interior Dirichlet problem
for the Laplacian. We also describe a numerical method of solving Laplace’s equation, namely the
Boundary Element Method. Finally, we present some numerical results.

1 Introduction

Potential theory and the layer potential method have been used heavily in the study
of elliptic boundary value problems (see, e.g., [4], [8]). This method is very useful for
researchers in order to establish existence results. In the latter, we indicate some works
in which the layer potential method plays a very important role, not only in the case of
Laplace’s equation, but in a more advanced setting such as the Stokes equations or the
Brinkman equations. For additional information regarding Laplace’s equation, see, e.g.,
[2, Chapter 2], [12, Chapter 3].

Going beyond the Laplace equation, we mention some particular works in which the
layer potential method plays a very important role. Mitrea and Wright [9] have treated the
main boundary value problems for the Stokes system in arbitrary Lipschitz domains in Rn,
for n ≥ 2, using boundary integral methods. Kohr, Lanza de Cristoforis and Wendland [7]
have used the methods of layer potential theory in order to establish existence results for
boundary value problems for the the semilinear Brinkman system in Lipschitz domains in
Rn. Kohr, Lanza de Cristoforis, Mikhailov and Wendland [6] have used a layer potential
method in order to prove the existence properties of linear and nonlinear transmission
problems in Lipschitz domains in R3.

As Partridge, Brebbia and Wrobel described in [11], the Boundary Element Method is

(∗)Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca, Romania.
E-mail: . Seminar held on 20 November 2019.
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“an efficient alternative to the prevailing finite difference and finite element methods” and
its attractiveness is its ”unique ability to provide a complete problem solution in terms of
boundary values only”.

Although this method could be applied only to linear partial differential equations,
the Dual Reciprocity Method has been developed to take into account non-homogeneous
terms and keep the ”boundary-only” characteristic of the method (see e.g., [11, Chapters
2, 3, 4]).

We mention in the latter some very useful works for someone who wishes to study this
numerical method. The book of Katsikadelis [5] provides an extensive look on the Bound-
ary Element Method (as well as the DRM and another method called the Analog Equation
Method) and diverse examples ranging from torsion of noncircular bars to fluid flow prob-
lems. Nishad, Chandra and Raja Sekhar [10] have used the Boundary Element Method
to solve the Stokes equation in order to study the streamline profiles in a microchannel.
Bozkaya [3] has provided an extensive overview of the Boundary Element Method and its
application to diverse problems such as the MHD flow in rectangular ducts and in infinite
regions, as well as the lid-driven cavity flow and natural convection cavity flow.

The structure of this work is as follows. In Section 2, we describe the interior Dirich-
let problem for the Laplace operator. We introduce the notion of fundamental solution
(see Definition 2.1). We introduce the Newtonian potential (see Definition 2.2) and we
give a very important property (see Theorem 2.2). We define the single-layer and the
double-layer potentials (see Definition 2.3) and state their properties (see Theorem 2.3
and Theorem 2.4). By exploiting auxiliary lemmas (see Lemma 2.5 - Lemma 2.8), one
may show that indeed, as desired, the existence of a solution for the Dirichlet problem for
the Laplacian holds (see Theorem 2.9). In Section 3, we solve numerically two boundary
value problems using the Boundary Element Method. First, we state the problems (see (4)
and (5)). Next, we give the main steps of the Boundary Element Method (see Steps 1-4).
Finally, we apply those steps in order to obtain our desired numerical results. We conclude
our study with two appendices that concern Fredholm operators and adjoint operators.
In addition to their definition, we include several examples and properties are provided.

2 Potential Theory for Laplace’s equation

Unless otherwise specified, we assume that Ω is a bounded open subset of Rn with n ≥ 2.
We now consider the Poisson equation:

(1) ∆u = f in Ω,

where f plays the role of a given datum, u that of an unknown. Note that, in the particular
case f ≡ 0, we obtain the Laplace equation

(2) ∆u = 0 in Ω.

Let f ∈ C(Ω) and η ∈ C(∂Ω) be given functions. We concern ourselves with the
following boundary value problems for the Poisson equation:
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(a) Dirichlet problem: Find u ∈ C2(Ω) ∩ C(Ω) such that{
∆u = f in Ω,

u = η on ∂Ω.

(b) Neumann problem: Assume also that Ω is also of class C1. Find u ∈ C2(Ω)∩C1(Ω)
such that ∆u = f in Ω,

∂u

∂n
= η on ∂Ω.

We emphasize that we have introduced above the basic problems for the Poisson equa-
tion. Later on we will exploit the volume potential to convert such problems into problems
for the Laplace equation.

For convenience, we also state the analogous boundary value problems for the Laplace
equation:

(a) Dirichlet problem: Find u ∈ C2(Ω) ∩ C(Ω) such that{
∆u = 0 in Ω,

u = η on ∂Ω.

(b) Neumann problem: Assume also that Ω is also of class C1. Find u ∈ C2(Ω)∩C1(Ω)
such that ∆u = 0 in Ω,

∂u

∂n
= η on ∂Ω.

2.1 Fundamental Solution

We first look for radial solutions of the Laplace operator in Rn \ {0}, i.e., functions of the
form

u(x) = v(r),

where r = |x| and v is a function from (0,∞) to R.
Using the above ansatz one can obtain the fundamental solution of the Laplace equation

(up to an additive constant; see also [12, Definition 3.1]).

Definition 2.1 The fundamental solution of the Laplace’s equation is the function G :
Rn \ {0} → R,

G(x) =


− 1

(n− 2)ωn|x|n−2
, for n ≥ 3,

1

2π
log |x|, for n = 2,

where ωn = 2πn−2Γ(n2 ) and Γ denotes Euler’s Gamma function.

We have the following theorem (see, e.g., [12, Proposition 3.1]).

Theorem 2.1 ∆G(x) = 0 for all x ∈ Rn \ {0}.
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2.2 Newtonian Potential

We introduce the Newtonian(volume) potential by the following definition.

Definition 2.2 The Newtonian potential of density f is defined by

(N f)(x) :=

ˆ
Ω

G(x− y)f(y)dy,

whenever such integral converges.

We have the following useful result (see, e.g., [12, Theorem 3.23]).

Theorem 2.2 Let Ω ⊂ Rn be a bounded open set of class C2. If f ∈ C1(Ω), then
N f ∈ C2(Ω) and

∆N f = f in Ω.

The following remark allows us to convert a Poisson equation to a Laplace equation.

Remark 1 If u solves the equation

∆u = f in Ω,

where f ∈ C1(Ω) ∩ C(Ω), then v := u−N f solves

∆v = 0 in Ω.

Hence, theoretically, we are justified to study only the Laplace equation.

2.3 Layer Potentials

In this section we define the single layer and double layer potential and give their proper-
ties.

Let Ω ⊂ Rn be a bounded and open set of class C2. Let g, h ∈ C(∂Ω).

Definition 2.3 Introduce the:

• Single-layer potential of density g, by the following relation:

(V g)(x) :=

ˆ
∂Ω

G(x− y)g(y)dσy.

• Double-layer potential of density h, by the following relation:

(Wh)(x) := −
ˆ
∂Ω

∂G

∂ny
(x− y)h(y)dσy.
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We give the properties of the double layer potential (see, e.g, [12, Theorem 3.30]).

Theorem 2.3

(i) ∆Wh = 0 in Rn \ ∂Ω and Wh|∂Ω is continuous.

(ii) For all x ∈ ∂Ω, we have

Wh(z)→Wh(x) +
1

2
h(x) as z→ x, z ∈ Ω,

Wh(z)→Wh(x)− 1

2
h(x) as z→ x, z ∈ Rn \ Ω.

We also have the properties of the single layer potential (see, e.g, [12, Theorem 3.31]).

Theorem 2.4

(i) ∆V g = 0 in Rn \ ∂Ω and V g|∂Ω is continuous.

(ii) For all x ∈ ∂Ω, we have

∂V g

∂n

−
(x) =

ˆ
∂Ω

∂G

∂nx
(x− y)g(y)dσy +

1

2
g(x),

∂V g

∂n

+

(x) =

ˆ
∂Ω

∂G

∂nx
(x− y)g(y)dσy −

1

2
g(x).

2.4 Method of Integral Equations

Remark 2 Layer potentials and the Newtonian potential can be used to prove the
existence of solutions to boundary value problems for the Laplace (Poisson) equation.

We consider the Laplace equation.

(i) We seek the solution of the Dirichlet problem for the Laplacian in the form:

u(x) = (Wh)(x).

(ii) As for the solution of the Neumann problem for the Laplacian:

u(x) = (V g)(x).

Taking into account the properties of the layer potentials, the interior Dirichlet and
Neumann problems are equivalent to the following linear integral equations, respectively
(see, e.g., [12, Subsection 3.14.6]):

1

2
h(x)−

ˆ
∂Ω

∂G

∂ny
(x− y)h(y)dσy = η(x), x ∈ ∂Ω,

− 1

2
g(x) +

ˆ
∂Ω

∂G

∂nx
(x− y)h(y)dσy = η(x), x ∈ ∂Ω,
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where G is the fundamental solution.

We can rewrite, say the first integral equation (corresponding to the Dirichlet problem),
in the following manner:

(3)

(
1

2
I + K

)
h = η.

In order to show that the equation (3) has a (unique) solution, one can show that
the following results hold (see, e.g., [2, Lemma 2.8.1, Lemma 2.8.2, Lemma 2.8.3, Lemma
2.8.4]). Another way to tackle the existence problem is illustrated in Appendices of this
study.

Lemma 2.5 The operator K is continuous on C(∂Ω).

Lemma 2.6 The operator K is completely continuous from L2(∂Ω) to itself.

Lemma 2.7 If η ∈ C(∂Ω) and h ∈ L2(∂Ω) is a solution of (3), then h ∈ C(∂Ω).

Lemma 2.8 Equation (3) has a unique solution h ∈ C(∂Ω).

The above lemmas allow us to state the existence result for the interior Dirichlet
problem for the Laplacian (see, e.g., [2, Theorem 2.8.1]).

Theorem 2.9 Assume that Ω is a bounded domain of class C2 and η ∈ C(∂Ω). Then,
the Dirichlet problem for the Laplacian has a solution u ∈ C2(Ω) ∩ C(Ω).

We mention that in order to show the uniqueness of the solution, one would employ
other the maximum principle or the Green formulas (see, e.g., [12, Theorem 3.6]).

3 The Boundary Element Method for Laplace’s equation

In this section, we concern ourselves with the numerical study of two boundary value
problems which will be described further on. We also present the necessary steps that one
must follow in order to implement the Boundary Element Method and for convenience,
we indicate how certain coefficients can be computed numerically. We use the approach
described in [11, Chapter 2] (see also [5]).

Consider Ω ⊂ R2. Our goal is to solve numerically the following two boundary value
problems:

(4)

{
∆u = 0 in Ω,

u = xy on ∂Ω,

and

(5)

{
∆u = −1 in Ω,

u = 0 on ∂Ω,
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where Ω = [0, 1]× [0, 1].
Using the fundamental solution of the Laplace equation (see Definition 2.1) and the

second Green formula, one may show that (see, e.g., [5, (3.31)]):

(6) η(p)u(p) = −
ˆ
∂Ω

[
G(p− p′)

∂u

∂n
(p′)− u(p′)

∂G

∂n
(p− p′)

]
dσ, p′ ∈ Ω,

where η(p) = 1 if p ∈ Ω and η(p) = 1/2 if p ∈ ∂Ω.

We need to discretize the boundary integral equation (6). We show how this can be
done using the steps described below.

Step 1. We divide ∂Ω into a series of N small boundary elements Γj , j = 1, N .
In our case, we have the following:

• Γj - straight-line segment,

• pj−1 = (xj−1, yj−1) and pj = (xj , yj) - endpoints of Γj ,

• p̃j = (x̃j , ỹj) - midpoint of Γj ,

• ∂Ω is approximated by ∪Nj=1Γj .

Step 2. Assume that u and ∂u
∂n are constant over each element Γj , j = 1, N and equal

to their values in p̃j , j = 1, N . We use the following notations

u(p) = u(p̃j) =: uj for p ∈ Γj .

∂u

∂n
(p) =

∂u

∂n
(p̃j) =: qj for p ∈ Γj .

Remark 3 To increase the accuracy of the numerical solution, one may consider different
boundary elements (i.e., linear or quadratic).

Step 3. Using the constant element assumption, we discretize our BIE as follows:

(7)
1

2
ui +

N∑
j=1

uj

ˆ
Γj

∂G

∂nj
(p̃i − y)dΓj =

N∑
j=1

qj

ˆ
Γj

G(p̃i − y)dΓj .

In the latter, denote:

H ij =

ˆ
Γj

∂G

∂nj
(p̃i − y)dΓj , Gij =

ˆ
Γj

G(p̃i − y)dΓj ,

and obtain:

(8)
1

2
ui +

N∑
j=1

H ijuj =

N∑
j=1

Gijqj ,
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for every i = 1, N .
We now introduce

Hij = H ij +
1

2
δij ,

that allows us to rewrite the equation (8) in the following manner

N∑
j=1

Hijuj =
N∑
j=1

Gijqj .

Step 4. Solve the resulting system of N linear algebraic equations, after applying the
boundary conditions. The system is

(9) Hu = Gq.

After the vectors u and q are determined, the values of u can be computed at any
internal point i, by the formula

(10) ui =

N∑
j=1

Gijqj −
N∑
j=1

H ijuj ,

but the coefficients Gij , H ij must be computed again for each different internal point.

It can be shown that (using Gaussian quadrature)

Gij =


lj
2π

[
log( 2

lj
) + 1

]
, if i = j

∼ lj
4π

∑4
k=1 log( 1

r(ξk)) · wk, if i 6= j,

and

H ij =

{
0, if i = j

∼ − lj
4π

∑4
k=1

1
r2(ξk)

[r(ξk)xnx + r(ξk)yny] · wk, if i 6= j,

where
r =

√
(x(ξk)− xi)2 + (y(ξk)− yi)2,

x(ξk) =
xj+1 − xj

2
ξk +

xj+1 + xj
2

,

y(ξk) =
yj+1 − yj

2
ξk +

yj+1 + yj
2

.

We now return to (4) and (5).
Recall that we wish to solve numerically the following boundary value problem{

∆u = 0 in Ω,

u = xy on ∂Ω.

More precisely, our aim is to see how the number of boundary elements N influences
the value of u(0.5, 0.5).

Consequently, the program has been written in Python, and the system has been solved
with the use of the Python routine np.linalg.solve. and we have obtained the following
results:
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N u(0.5, 0.5)

8 0.2500179812626709

16 0.25000420387321753

20 0.25000266385349235

40 0.2500006588893487

Regarding the problem (5), recall that we would like to solve numerically:{
∆u = −1 in Ω,

u = 0 on ∂Ω.

More precisely, our goal is as follows. We want to see the distribution of u on the line
y = 0.5.

To attain our goal, we can choose one of the following approaches:

• Transform the Dirichlet problem for the Poisson equation into a Dirichlet problem
for the Laplacian.

• Apply an advanced version of BEM, that is the Dual Reciprocity BEM.

We have chosen the Dual Reciprocity BEM and we have also solved the problem using
the Finite Difference Method and a comparison (which indicates a good agreement) of
both methods is given in Figure 1.

Figure 1. Distribution of u at y = 0.5.
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Appendices

We describe in the latter the notions of Fredholm operator and adjoint operator and we
state some of their properties.

Our motivations is as follows. We return to (3) having in mind the following question :

If
(

1
2I + K

)
is an isomorphism, then h =

(
1
2I + K

)−1
η and we have constructed a solution

of our problem, in the form:

u = W

((
1

2
I + K

)−1

η

)
.

In order to study the properties of
(

1
2I + K

)
, we view this operator through the lenses

of Fredholm operator theory, which will be described in the latter and the objective would
be to show that this operator is Fredholm of index zero. For additional information we
refer the reader to the work of Adams [1] and Wloka et al [13].

A Fredholm Operators

In this section, we give the definition of what means for an operator to be Fredholm. We
also define the notion of a compact operator. Useful properties about Fredholm operators
are illustrated, also. All notions are accompanied by examples.

Let X, Y be Banach spaces.

Definition A.1 Let A ∈ LC(X,Y ). Then A is a Fredholm operator if the following hold

(i) dim Ker(A) = n0 < +∞,

(ii) dim(Y/Im(A)) = n1 < +∞.

We introduce also the index of A which is given as

ind(A) := n0 − n1 < +∞.

Example A.2 Let H be a Hilbert space with an orthonormal basis (ek)k∈N. The operator
S : H→ H, given by

S(ek) = ek+1, k ≥ 0,

is Fredholm with ind(S) = −1.

Definition A.3 Let X,Y be normed spaces and let A ∈ L(X,Y ). A is compact if it
maps bounded sets from X into relatively compact sets in Y .

Università di Padova – Dipartimento di Matematica 26



Seminario Dottorato 2019/20

Example A.4 The operator Tn : `2 → `2 given by

Tn((xk)k∈N) := (x1, x2, ..., xn, 0, 0, ...)

is compact.

Example A.5 The operator T : L2([0, 1])→ L2([0, 1]), defined by

T [f ](x) :=

ˆ 1

0
K(x, y)f(y)dy,

where K ∈ C([0, 1]2), is a compact operator.

Lemma A.1 Let X,Y be Banach spaces. Let A be a Fredholm operator. If K ∈ L(X,Y )
such that K is compact, then A+K : X → Y is a Fredholm operator, and

ind(A+K) = ind(A).

Example A.6 Define the compact operator T : `2 → `2 by

T ((xn)n∈N) = (tnxn)n∈N,

where (tn)n∈N → 0.
One can show that, indeed,

ind(I + T ) = ind(I),

where I : `2 → `2 is the identity operator.

Corollary A.1.1 Let X,Y be Banach spaces and A : X → Y be a Fredholm operator of
index 0. Then A is an isomorphism if one of the following (equivalent) condition holds:

(i) A is one-to-one.

(ii) A is onto.

B Adjoint Operators

In this section, we give a short overview of adjoint operators. Such operators are very
useful in the situation in which the properties of the operator under study cannot be
easily ascertained. To this end, one defines the adjoint operator and studies its properties.
We end this section with a lemma that links a Fredholm operator with its adjoint.

Definition B.1 Let X be a Banach space. The anti-dual of X is defined by

X∗ := {F : X → C : F is antilinear and continuous}.
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Definition B.2 Let B ∈ LC(X,Y ). Then, the adjoint of B, B∗ : Y ∗ → X∗ is defined by

〈Bx, y∗〉 = 〈x,B∗y∗〉,

for all x ∈ X, y∗ ∈ Y ∗.

Example B.3 Let K : L2([0, 1])→ L2([0, 1]), given by

(Kf)(x) :=

ˆ 1

0
k(x, y)f(y)dy,

where k : [0, 1]2 → C. Then, the adjoint is given by

(K∗f)(x) =

ˆ 1

0
k(x, y)f(y)dy.

Indeed, we have in L2([0, 1]) the following relations:

〈f,K∗g〉 =

ˆ 1

0
f(y)(K∗g)(y)dy =

ˆ 1

0

ˆ 1

0
k(x, y)f(y)dyg(x)dx

= 〈Kf, g〉.

Lemma B.4 If B ∈ LC(X,Y ) is a Fredholm operator, then B∗ ∈ LC(Y ∗, X∗) is also a
Fredholm operator and

ind(B∗) = −ind(B).
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A smooth introduction to the semi-

classical problem in Quantum Mechanics

Enrico Picari (∗)

Abstract. It is very well-known today that Quantum Mechanics plays a crucial role in describing
and understanding nature, at least (but not only) at the smallest scales, i.e. the ones of atoms and
subatomic particles. The problem of connecting physical and mathematical features of Classical
and Quantum Mechanics dates back to the early days of the theory and although reduction of one
to the other is understood heuristically in terms of a limit process in which the Planck constant
goes to zero, the mathematical ground of such procedure, known as Semi-classical Analysis, is still
an active field of research which includes techniques of apparently distant topics like Harmonic
Analysis and Deformations of Poisson Algebras. The aim of this note is to introduce the main
features of elementary Quantum Mechanics, with a brief historical note, and to give an insight into
the state-of-the-art of the semi-classical limit problem.

1 A brief review of Classical mechanics

It is very well known that Hamiltonian mechanics is one possible way to describe the
motion of classical particles, equivalent to Newton’s laws but rather more abstract. For
a single particle moving inside some region M ∈ R3, the time evolution of its position x
and momentum p obeys the following differential equation

ẋj =
∂H

∂pj

ṗj = −∂H
∂qj

j = 1, 2, 3

for a prescribed Hamiltonian function H depending on x and p, which represents particle’s
energy. Generally speaking, if M is sufficiently regular manifold, the pair (x, p) is an
element of the cotangent bundle T ∗M =: Γ, called phase space in this context, and thus
H : Γ → R.(1) This formalism can be extended as well to systems of many interacting

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 11 December 2019.

(1)H can depend on t also, but for simplicity we won’t consider this case here.
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particles: the state of the system is a point in Γ and it evolves along the integral curves of

(1)


ẋj =

∂H

∂pj

ṗj = −∂H
∂qj

j = 1, . . . , n

where n is the dimension of M . Some instances of H for n particles moving without
contraints in R3 are, for example

(i) free particles: their energy is purely kinetic and H =
∑3n

j=1

p2j
2mj

, where mj is the

mass of the j-th particle;

(ii) particles moving in a gravitational field in near-Earth approximation: H =
∑3n

j=1

p2j
2mj

+

mjgzj , where zi is the coordinate along the direction of gravity acceleration g;

(iii) charged particles interacting via Coulomb potential: H =
∑3n

j=1

p2j
2mj
−∑j<k

qjqk
|xj−xk| ,

where qj is the j-th particle’s charge;

and so on. We introduce now some concepts that will be extremely useful to understand
basic features of semi-classical analysis. It is an elementary fact in ordinary differential
equations theory that the solutions of systems of the form (1) define a flow on phase
space, that is a map Φt : Γ→ Γ which maps the initial data (x, p) of the Cauchy problem
associated with Eq. (1) to the solution at time t

Φt(x, p) = (x(t), p(t))

which has some nice group properties

(i) Φ0 = IdΓ;

(ii) Φ(t+s) = Φt ◦ Φs;

(iii) Φ−t = (Φt)−1;

and will be central in the following discussion.(2)

A concept of capital importance in the study of physical systems is the one of observable,
that is some quantity which can me measured in an experiment, such as particles’ posi-
tions, their angular momentum, energy and so on and are usually modeled as smooth
functions f ∈ C∞(Γ), or some other functional space depending on the application one
has in mind. Since we’re often interested in measuring how observables evolve along the
Hamiltonian flow, it is desirable to write down some evolutionary equation for them and

(2)In general property (iii) holds only if the vector field at right-hand side of (1) is complete, but this fact
is not so important in these notes.
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this can be made by defining Poisson brackets between smooth functions, that is a binary
operation {·, ·} : C∞(Γ)× C∞(Γ)→ C∞(Γ)

{f, g} =
∑
j

(
∂f

∂xj

∂g

∂pj
− ∂f

∂pj

∂g

∂xj

)

so that the variation of f along the solutions of Eq. (1) can be written as

d

dt
f ◦ Φt = {f ◦ Φt, H}.

It is worth noting that Hamilton’s equations themselves can be written in this form
by taking f = xi and f = pi. Poisson brackets satisfy the following properties

(i) bilinearity;

(ii) skew-symmetry: {f, g} = −{g, f};

(iii) Jacobi identity{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0;

(iv) Leibniz rule: {fg, h} = f{g, h}+ {f, h}g,

giving C∞(Γ) the structure of a Poisson algebra, that is a Lie algebra with a deriva-
tion. To end these quick reviews of Hamiltonian mechanics we establish the so-called
canonical commutation relation, that is we compute Poisson bracket between coordinates
and momenta

(2)
{qj , qk} = {pj , pk} = 0

{qj , pk} = δjk

which, despite their simplicity, play a central role in quantum-classical correspondence.

2 The crisis of classical physics

Hamilton’s equations are a powerful tool to describe how nature works: for a given system,
a physicist can make a guess about the correct Hamiltonian he should choose and then
he could try to integrate them, analytically or numerically, or at least to understand the
qualitative behaviour of the solutions using techniques of the theory of dynamical systems.
However at the turn of the 19th and 20th centuries it became clear that the Hamiltonian
picture gives wrong predictions for certain systems, that is the ones at very short length
scales such as molecula and atoms. For example, at the time the most popular model
for the Hydrogen atom was the planetary model : an electron of negative charge moves
in closed orbits around a proton of positive charge, like planets do around the Sun in
the Solar System. While this model was confirmed by Rutherford’s experiments around
1911, every attempt to use classical electromagnetism and Hamiltonian mechanics fails to
predict the stable behavior of electron’s motion. Indeed, according to Larmor formula a
charged particle which moves along trajectory of non-zero curvature (like a closed curve),

Università di Padova – Dipartimento di Matematica 32



Seminario Dottorato 2019/20

should loose energy due to interaction with the electromagnetic field of some other charge
in proportion to the squared norm of its acceleration

dE

dt
∝ −||a(t)||2 (Larmor formula).

This loss forces the electron to fall towards the nucleus and the atom should collapse,
while we know that matter is indeed stable!

Moreover, it was observed in experiments in spectroscopy that energy exchanges be-
tween atoms and radiation are not continuous, as suggested by classical theory, but they
are quantized, namely they come as integer multiples of some energy packet

E0 = ~ω,

where ω is the frequency of an electromagnetic wave interacting with the atom and ~ is
a proportionality constant found by interpolation with experimental data. That was a
completely new phenomenon at the time and it was completely inexplicable by the sole
use of any classical theory. The constant ~ seemed to pop up every time physicists tried to
fit experimental results regarding atomic particles and was soon regarded as a fundamental
constant of nature. Nowadays we call it Planck constant, its magnitude is

~ ≈ 1.054× 10−34 Joule · seconds

and has a prominent role in every known quantum theory.

3 De Broglie hypothesis and Schrödinger equation

During 1924, quantization of energy was interpreted as a wave condition by the french
physicist L. De Broglie: he supposed that to each electron in the atom there exists an
associated wave whose wavelength λ and frequency ω are related to particle’s momentum
and energy by

p =
~
λ
, E = ~ω, (De Broglie relations).

The enigmatic character of such statement was quite well highlighted by De Broglie himself
in his Nobel Prize speech:

”Determination of the stable motion of electrons in the atom introduces integers, and up to this point the
only phenomena involving integers in physics were those of interference and of normal modes of

vibration. This fact suggested to me the idea that electrons too could not be considered simply as particles,
but that frequency (wave properties) must be assigned to them also.”

However, De Broglie’s hypothetis was exploited by austrian physicist E. Schrödinger
in a series of paper in 1926. Following the same reasoning which leads from wave theory
of light to optical geometry and proceeding by analogy using Hamilton-Jacobi theory (see
e.g. [4]), he argued that if a particle of mass m interacts with some potential V depending
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on position, then its associated wave function ψ should evolve in time according to the
equation

(3) i~
∂

∂t
ψ(t, x) = − ~2

2m
∆ψ(t, x) + V (x)ψ(t, x).

The first example of usage of Schrödinger equation is the time-independent case. As in
ordinary wave theory, a solution ψ of Eq. (3) is said to be stationary if its time dependence
can be factored out

ψ(t, x) = e−itωφ(x).

By identifying particle’s energy with its frequency E = ~ω, it’s easy to see that then φ
satisfies

− ~2

2m
∆φ(x) + V (x)φ(x) = Eφ(x)

which has the form of an eigenvalue equation for the operator H = − ~2
2m∆ + V , called

Hamiltonian operator. One can consider, for example, the Hydrogen atom case: φ repre-
sents electron’s wave function, while V is the Coulomb interaction between the electron
and the proton

(4) − ~2

2m
∆φ(x)− e2

|x|φ(x) = Eφ(x).

Eq. (4) admits indeed solutions under suitable boundary conditions on φ, namely fast
decreasing for |x| → ∞, for negative values of E given by

(5) En = −me
4

2n2~
.

The corresponding functions φn then represent electron’s state and are given in terms of
Laguerre polynomials and spherical harmonics (see e.g. [7]). Formula (5) called Rydberg’s
formula, is in perfect accordance with experimental data on the energy levels of Hydrogen
atom.

4 Hilbert space approach and canonical operators

Let us consider an initial value problem for the Schrödinger equation for a function ψ : R×
R3 → C {

i~∂tψ(t, x) = (Hψ)(t, x)

ψ(0, x) = ψ0(x),

where the Hamiltonian operator H is defined on a suitable space of functions. One imme-
diate consequence of the equation form is that if the initial value ψ0 is square integrable,
that is ψ0 ∈ L2(R3), then the solution ψt := ψ(t, ·) is again in L2(R3) for all times. In
particular, for a normalized initial condition, one has

(6) ||ψt||L2 = ||ψ0||L2 = 1.
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This particular feature allowed early workers on quantum theory to interpret the wave
function of a particle statistically : ψ represents the probability amplitude for particles
position, that is the probability of finding a particle in a certain region B ⊂ R3 at time t
is ˆ

B
|ψt(x)|2dx.

It follows from elementary probability theory that the mean value of a certain coordinate,
say the j-th one, can be computed by

ˆ
R3

xj |ψt(x)|2.

Then by defining the j-th position operator in L2(R3)

(Xjϕ)(x) := xjϕ(x),

we see that it encodes entirely the mean value by means of inner product in L2

ˆ
R3

xj |ψt(x)|2 =

ˆ
R3

ψt(x)xjψt(x) = 〈ψt, Xjψt〉.

By analogy with the classical case one can define a derivation operator

(Pjϕ)(x) = −i~ ∂ϕ
∂xj

(x)

on a certain domain in L2(R3) (3), so that the Hamiltonian operator can be written as

H =
1

2m

3∑
j=1

P 2
j + V (x).

So we have three operators resembling classical observables such as position, momentum
and energy which are self-adjoint operators on L2 once a correct domain is given (see the
footnote below):

〈φ,Xjχ〉 = 〈X∗j φ, χ〉 = 〈Xjφ, χ〉,
〈φ, Pjχ〉 = 〈P ∗j φ, χ〉 = 〈Pjφ, χ〉,
〈φ,Hχ〉 = 〈H∗φ, χ〉 = 〈Hφ,χ〉, (requires V real),

but what happens if one would like to consider more general quantum observables?

(3)usually the minimal domain for derivations is the space of compactly supported smooth functions C∞0 ,
but for many purposes it is preferable to take the Schwartz space S.
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5 Axioms of Quantum Mechanics and time evolution

The first attempt to arrange some minimal hypotheses on the mathematical structure of a
Quantum Theory was made in 1930 by P.A.M. Dirac. His axioms are now well known and
were refined during successive decades in order to include the role of relativity (see [1] or
[8] for the algebraic aspects), but they are sufficient for our discussion on the semi-classical
problem:

A1. A state ψ of a quantum system is a unit vector of some Hilbert space h, up to scalar
multiples.

A2. A quantum observable is represented by some self-adjoint (possibly unbounded)
operator A on h.

A3. The possible outcomes of an experiment measuring the observable A are contained
in the spectrum of A.

A4. The expectation value of the observable A for a system in a state ψ is given by the
inner product 〈ψ,Aψ〉.

Even in this abstract setting, time evolution of a quantum system is still carried by a
Schrödinger equation, which should now be regarded as an abstract differential equation
on h. An equivalent way of defining quantum evolution is the following: consider the
equation

(7) i~∂tψt = Hψt,

for ψt in the domain of H, and define a t-dependent operator Ut which sends the initial
condition ψ0 to the solution of (7) at time t: Utψ0 = ψt. Then Ut has the following
properties:

• U0 = I

• group property  Ut+s = UtUs and U−t = U−1
t ;

• unitarity  U∗t Ut = UtU
∗
t = I;

• satisfies (in the strong sense) the operator differential equation

i~∂tUt = HUt =⇒ Ut = e−itH/~.

Time evolution on states can be as well transferred to observables. Indeed, given a self-
adjoint operator A on h, define the time dependent operator

A(t) = U∗t AUt.

Then by formal derivation with respect to t, A(t) satisfies the Heisenberg equation of
motion

i~∂tA(t) = −HU∗t AUt + U∗t AUtH = [A(t), H],
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where the commutator [C,D] = CD − DC between operators is introduced. The moti-
vation is simple: since one is interested in the possible values attained by the observable
A during and experiment on a system whose state is ψt, then, by Dirac’s axioms, its
expectation value along ψt is given by

〈ψt, Aψt〉 = 〈Utψ0, AUtψ0〉 = 〈ψ0, U
∗
t AUtψ0〉 = 〈ψ0, A(t)ψ0〉.

In other words, the values attained by A can be determined both by evolution of states
and evolution of its associated operator.

6 Correspondence principle and quantization

From the form of commutator, it’s easy to see that [·, ·] is a bilinear and skew-symmetric
application on operators and it satisfies Jacobi identity and Leibniz property. Recalling
the Hamiltonian formulation of classical mechanics, we have the following scenario:

Classical mechanics

• States: points in phase space Γ

• Observables: sufficiently regular func-
tions on Γ

• Flows: Φt : Γ→ Γ

• Poisson algebra of observables: {f, g}
• Canonical commutations: {xj , pk} =
δjk

• Evolution of observables: ḟ = {f,H}

Quantum mechanics

• States: elements in h

• Observables: self-adjoint operators on
h

• Flows: Ut : h→ h

• Poisson algebra of observables: [A,B]

• Canonical commutations: [Xj , Pk] =
i~δjk

• Evolution of observables: i~Ȧ(t) =
[A(t), H]

Both theories work well in their natural environment: Classical Mechanics is an ex-
cellent description of systems at ordinary length scales, while Quantum Mechanics is the
only available theory at atomic length scales and becomes over-complicated at ordinary
ones. So one would like to have a criterion for which one theory reduces to the other.
This is often understood at heuristic level as a limit process: Quantum Mechanics should
reduce, in some sense, to Classical Mechanics if Planck’s constant is small compared to
classical actions, in other terms the reduction should take place if we perform the formal
limit ~→ 0+. The task of semi-classical analysis is precisely to make rigorous a statement
of this kind.

The first problem one has to address is the following: considering the one-dimensional
case for simplicity, the quantization of the canonical variables (x, p) is well understood by
setting

(8) x→ X, p→ P = −i~ d
dx
,

Università di Padova – Dipartimento di Matematica 37



Seminario Dottorato 2019/20

that is, given a classical Hamiltonian H = H(x, p) its quantum version is obtained by
taking the same functional form a performing the substitution in Eq. (8). This, however
cause some ordering ambiguities, since if H(x, p) contains a term like xp, then one should
choose between the two non-equivalent quantizations XP and PX, which moreover are
not self-adjoint and thus cannot represent some observable. However, the symmetrized
product (XP +PX)/2 has no ordering ambiguities and is self-adjoint. Generalizing a bit,
there is indeed a classic result in analysis regarding quantization of functions.

Proposition 1 For any function a : R2n → C with suitable growing property at infinity(4),
there exist an operator-valued map Q : a → Q(a), whose action on Schwartz functions is
given by

(9) (Q(a)u)(x) =
1

(2~π)2

ˆ
R2n

a

(
x+ y

2
, p

)
e
i
~ (x−y)·pu(y)dydξ

with the properties

(i) a→ Q(a) is linear;

(ii) Q(a) is self-adjoint if a is real;

(iii) Q(a) = Id;

(iv) for monomials of the form xnpm, Q(xnpm) is the sum of all possible permutations
of n times the X operator and m times P .

The operator Q(a) is called Weyl quantization of a and if a certain operator A is the
quantization of some function a, a is called Weyl symbol of A.

The integral in Eq. (9) can be defined in general defined for smooth functions which
have at most polynomial growth at infinity together with their derivatives, that is for all
multi-indices γ ∈ Nn

(10) |∂γx,pa(x, p)| ≤ Cγ〈(x, p)〉m, 〈(x, p)〉 := (1 + |x|2 + |p|2)1/2

for some constant Cγ and some real number m. This space of functions is denoted as
S(m), its elements are referred to as classical symbols of order m and has the structure of
a Fréchet space with seminorms

sup
(x,p)∈R2n

sup
|γ|≥k
〈(x, p)〉−m|∂γx,pa(x, p)| =: |am,k|.

One of the most important features of definition in Eq. (9) is the composition property.

Proposition 2 Let a ∈ S(m1) and b ∈ S(m2) two classical symbols. Then there exist a
classical symbol c ∈ S(m1 +m2) such that Q(c) = Q(a)◦Q(b). Moreover c has the explicit
representation

(11) c(x, p; ~) =
1

(π~)2n

ˆ
R4n

e−
2i
~ (y·θ−z·η)a(x+ y, p+ η)b(x+ z, p+ θ)dydzdηdθ.

(4)see the discussion below.
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It is worth to notice that the correspondence (a, b)→ c is bilinear and c has an explicit
dependence on ~ but more importantly it has an asymptotic expansion in terms of ~

c(x, p; ~) =
N∑
k=0

(i~/2)k

k!
(∂x∂η − ∂y∂p)ka(x, p)b(y, η)

∣∣∣y=x
η=p

+ ~N+1RN (x, p),

where the remainder term RN is in S(m1 + m2). Recalling the definition of Poisson
brackets, the first terms in the expansion can be expressed as(5)

c(x, p; ~) = a(x, p)b(x, p) +
i~
2
{a, b}+OS(m1+m2)(~2),

so c can be regarded as a non-commutative deformation of the usual product of function
and is denoted as a?b. As a corollary we have that the symbol of the commutator of Q(a)
and Q(b) can be written as an asymptotic series which turns out to be a deformation of
Poisson brackets, usually called Moyal brackets of a and b:

{a, b}? = i~{a, b}+OS(m1+m2)(~2).

7 Egorov theorem

From the preceding discussion, we see that it is useful to consider a somewhat larger class
of symbols Ssc(m), that is the ones which admit some asymptotic expansion of the form

c ∼
∑
k

~kck,

where all the ck’s and all the possible remainders are S(m) for some m ∈ R. Symbols
with this property are called semi-classical symbols of order m. With this in mind, we are
ready to state a form of the Egorov theorem, that is a result in semi-classical analysis which
connects the Heisenberg evolution of quantum observables emerging from the quantization
of some symbols and the classical hamiltonian flow of their symbols (for the original
statement and proof, see [3]).

Proposition 3 Let H be a semiclassical observable with sub-quadratic growth at infinity

|∂γx,pHj(x, p)| < Cγ,j , with |γ|+ j ≥ 2,

and let a ∈ S(m) for some m ∈ R.
Then there exist a ~0 > 0 such that for all ~ ∈ [0, ~0) we have

(i) Q(H) is self-adjoint S(Rn)→ L2(Rn) so that Ut is unitary for all t ∈ R;

(ii) A(t) = U∗t Q(a)Ut is the quantization of a symbol at ∈ Ssc(m), A(t) = Q(at);

(5)the ”O notation” refers to the semi-norms | · |m,k introduced before.
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(iii) there exist a T (~) > 0 such that, uniformly in [−T (~), T (~)], at has an asymptotic
expansion

at ∼
∑
k

~kak(t), ak(t) ∈ S(m).

(iv) All the ak(t)’s can be explicitly computed. In particular the principal and sub-
principal symbols are given by

a0(t;x, p) = a(Φt(x, p))

a1(t;x, p) =

ˆ t

0
{a ◦ Φs, H1} ◦ Φ(t−s)(x, p)ds,

where Φt is the Hamiltonian flow of the principal symbol H0 of H.

(v) T (~) is of order −log(~).

Although the statement of the theorem is quite involved, it gives a precise meaning
to the Correspondence Principle. Indeed, according to this result quantum and classical
evolution stay close in terms of symbols

at(x, ξ) = a(Φt(x, ξ)) +OS(m)(~), |t| ≤ T (~),

at least for a certain time in an observation window given approximatively as ∼ [0,− log ~).
The technical assumptions on the semi-classical hamiltonian H seem to be quite restrictive,
since many hamiltonian functions of interest (like the one in FPU model [5], the DNLS
hamiltonian [6] and so on) grow at least as a polynomial of degree strictly greater than 2.
However, in some cases the presence of first integrals for the flow of H (see [2]) allows to
reduce the dynamics from R2n to some compact manifold M and in this case symbols can
be taken to be some reduction on M if cut-offs outside the manifold are introduced (see
[9]). On the other hand, Proposition 3 deals only with uniform estimates on symbols in
(x, p), so one can ask himself if the result of Egorov theorem can be enlarged to include
some weaker type of convergence, e.g. introducing some probability density in (x, p) and
studying the closedness in measure of quantum and classical evolution. This is precisely
the content of my research with prof. A. Ponno and L. Zanelli, but it is another story.
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An introduction to sheets of

conjugacy classes in reductive groups

Filippo Ambrosio (∗)

Abstract. Linear algebraic groups arose as a generalization of Lie groups, introduced in the late
1800s to study continuous symmetries of differential equations. The development of the modern
theory of algebraic groups with the use of algebraic geometry is mostly due to Borel: in the 1950s,
his work led to the definition of Chevalley groups, an important family of finite simple groups.
This suggests that algebraic groups can be approached from different perspectives (Group Theory,
Algebraic Geometry, Combinatorics) and have applications in several directions (Invariant Theory,
Physics). In the first part of the talk we will introduce basic notions and examples of linear
algebraic groups. The last part of the seminar aims at describing some of the geometric structure
of these groups.

1 Essential facts from Algebraic Geometry

In this preliminary section we recollect some facts to be found for example in [Spr98,
Chapters 1,5].

Let C[X1, . . . , Xn] be the ring of polynomials with complex coefficients in n indeter-
minates. Denote by An(C) the n-dimensional complex affine space.

Definition 1.1 Let S ⊂ C[X1, . . . , Xn]. The vanishing locus of S is V (S) := {x ∈ An(C) |
f(x) = 0 for all f ∈ S}.

It is easy to show that if S ⊂ C[X1, . . . , Xn], then V (S) = V (〈S〉) where 〈S〉 =
{∑m

j=1 sjfj | m ∈ N, sj ∈ S, fj ∈ C[X1, . . . , Xn]} denotes the ideal in C[X1, . . . , Xn]
generated by S.

Definition 1.2 X ⊂ An(C) is an affine algebraic set if it is the vanishing locus of some
ideal I / C[X1, . . . , Xn]. If IX / C[X1, . . . , Xn] is such that V (IX) = X, we call IX the
defining ideal of X.

Remark that ∅ = V ({1}) and An(C) = V ({0}). The class of affine algebraic sets is

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 18 December 2019.
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closed by taking arbitrary intersections: if {Xj}j∈J is a family of affine algebraic sets with
defining ideals {Ij}j∈J , then

⋂
j∈J Xj = V (

∑
j∈J Ij), where

∑
j∈J Ij := {∑m

k=1 fk | m ∈
N, fk ∈ Ij for some j ∈ J} / C[X1, . . . , Xn]. The class of affine algebraic sets is closed by
taking finite unions: if X,Y are affine algebraic sets with defining ideals IX and IY , then
X ∩ Y = V (IXIY ), where IXIY := {fg | f ∈ IX , g ∈ IY } / C[X1, . . . , Xn]. Hence, affine
algebraic sets fulfill the axioms of the closed subsets of a topology on the space An(C).

Definition 1.3 The Zariski topology on An(C) is the topology in which the closed subsets
are affine varieties.

Example 1.4

(i) Any point P ∈ A1(C) on the affine complex line is completely determined by its
coordinate xP . It is an affine algebraic set, as {P} = V (X − xP ). Similarly, any
finite collection of points on the affine complex line is an algebraic set.

(ii) The following are algebraic sets in the complex affine plane A2(C) with coordinates
X1, X2.

(a) V (X2
2 −X3

1 −X2
1 ) (b) V ((X2

2 −X2
1 − 1)(X1 + 2)) (c) V (X1X2)

Figure 1. Examples of affine algebraic sets in the plane.

Definition 1.5 If X ⊂ Am(C), Y ⊂ An(C) are affine algebraic sets, an (algebraic)
morphism φ : X → Y is the restriction of a map

φ̃ : Am(C)→ An(C)

(x1, . . . , xm) 7→
(
φ1(x1,...,xm)

...
φn(x1,...,xm)

)

with φi ∈ C[X1, . . . , Xm] for all i = 1, . . . , n.

Example 1.6 We give two easy examples of algebraic morphisms.

(i) The maps α, µ : An(C)→ A1(C) defined by α(x1, . . . , xn) =
∑n

i=1 xi and µ(x1, . . . , xn) =∏n
i=1 xi are morphisms.

(ii) The projection on the i-th component πi : An(C)→ A1(C) defined by (x1, . . . , xn) 7→
xi is a morphism, for i ∈ {1, . . . , n}.
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Definition 1.7 Let Z be a topological space. A subset Z ′ ⊂ Z is said to be irreducible
if for all closed subset C1, C2 ⊂ Z satisfying Z ′ = C1 ∪ C2, then C1 = Z ′ or C2 = Z ′.

Notice that irreducibility implies connectedness, since a disconnection of a set is the
possibility of expressing such set as the (disjoint) union of two closed subsets.

Example 1.8 The affine space An(C) is irreducible. In Example 1.4 we can see an irre-
ducible curve (the node in Figure 1a), a disconnected (hence reducible) curve (Figure 1b)
and a connected but reducible curve (the union of the axes in Figure 1c).

Proposition 1.9 Let φ : X → Y be a continuous map between two topological spaces.

(i) If Z ⊂ X is irreducible, then so is φ(Z).

(ii) If ∅ 6= A is open in the irreducible set Z, then A = Z and A is irreducible (hence
connected).

Example 1.10 The set A1(C) \ {0} is open, since it is the complementary of a point. By
Proposition 1.9 it is irreducible (hence connected) and dense in A1(C) with respect to the
Zariski topology.

Definition 1.11 The dimension of an affine algebraic set X is the largest n ≥ 0 such
that there exists a chain ∅ ( X0 ( X1 ( · · · ( Xn ⊂ X of irreducible closed subsets
Xj ⊂ X.

Example 1.12 The affine space An(C) has dimension n; points have dimension zero
while all algebraic sets in Example 1.4 are 1-dimensional.

Proposition 1.13 Every affine algebraic set X can be written uniquely as a finite union
of maximal irreducible closed subsets X = X1 ∪ · · · ∪Xr with Xi 6⊂ Xj for all i 6= j, called
irreducible components of X.

Example 1.14 Consider the reducible curve in Figure 1c. It consists of two irreducible
components:

Figure 2. V (X1X2) = V (X2) ∪V (X1).

For our purposes, we will call variety a set which admits a covering by finitely many
affine open subsets (in the Zariski topology). For a rigorous definition, see [Spr98, §1.6].
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Definition 1.15 A morphism of varieties φ : X → Y is said to be dominant if φ(X) = Y .

Proposition 1.16 Let φ : X → Y be a dominant morphism of irreducible varieties. Then
there exists a non-empty open subset U ⊆ Y such that dimφ−1(y) = dimX − dimY for
all y ∈ U .

Remark 1.17 The product of two varieties is endowed with the structure of a variety.
We alert the reader that the Zariski topology on the product is not given by the product
of the Zariski topologies on the varieties, see [Spr98, §1.5].

2 Linear algebraic groups

Definition 2.1 A linear algebraic group is an affine algebraic set G with a group structure
such that:

µ : G×G→ G (x, y) 7→ xy and ι : G→ G x 7→ x−1

are algebraic morphisms.

Let n ∈ N\{0} and denote with (Xij)i,j the n2 indeterminates parametrized by ordered
pairs (i, j) with 1 ≤ i, j,≤ n. With these coordinates, we can identify the vector space
Mn(C) of n× n square matrices with complex coefficients with An2

(C).

Definition 2.2 The general linear group of order n over C is GLn(C), consisting of all
invertible n× n square matrices with complex coefficients.

We briefly explain the reason why GLn(C) is a linear algebraic group. As an affine
algebraic set, we have:

GLn(C) = {x = ((xij)i,j , t) ∈ An
2+1(C) | det((xij)i,j)t− 1 = 0}.

If A,B ∈ GLn(C), then each entry of the product AB can be expressed as a polynomial
functions in the entries of A and B. Similarly, the entries of A−1 can be expressed by
means of Laplace’s rule as polynomial functions in the entries of A and of (detA)−1.

The group G = GLn(C) is connected and irreducible. Observe that N = {A ∈Mn(C) |
detA = 0} is a closed subset of Mn(C) (called nilpotent cone). Hence G = Mn(C) \ N
is a non-empty open subset of the irreducible set Mn(C) ' An2

(C), so it is dense and
irreducible by Proposition 1.9.

Actually, the general linear group is a “prototype object”, in the following sense:

Theorem 2.3 G is a linear algebraic group if and only if it is isomorphic to a (Zariski)
closed subgroup of GLn(C) for some n ∈ N.

Proof. If G is a closed subset of GLn(C) then it is an affine algebraic set and its group
structure is inherited by the one of GLn(C), hence it is a linear algebraic group. The other
implication is not trivial, see [Spr98, Theorem 2.3.7].

Università di Padova – Dipartimento di Matematica 45



Seminario Dottorato 2019/20

Example 2.4

(i) The multiplicative group GL1(C) of invertible complex numbers C∗.

(ii) Consider the additive group G = (C,+). This is a linear algebraic group as the
maps:

µ : G×G→ G ι : G→ G

(x1, x2) 7→ x1 + x2 x 7→ −x

are clearly morphisms of algebraic sets.

This suggests that G can be realized also as a group of matrices. This is done as
follows:

G→ GL2(C) z 7→
(

1 z
0 1

)
.

(iii) Consider the algebraic group homomorphism det : GLn(C)� C∗. Then det−1(1) =
SLn(C) ≤ GLn(C) is the special linear group of order n. By Proposition 1.16, SLn(C)
has dimension n2 − 1 and it is connected (see [HH03, Proposition 1.10]).

Proposition 2.5 Let G be a linear algebraic group. Then its connected components
coincide with its irreducible component. The connected component containing the unity is
a closed normal subgroup of G called the identity component of G and denoted with G◦.

Proof. See [Spr98, Proposition 2.2.1].

Example 2.6 We give examples of disconnected algebraic groups.

(i) The orthogonal group of order n over C is G = On(C) = {A ∈ GLn(C) | ATA = 1}.
It has two connected (i.e. irreducible) components, G◦ = SOn(C) = {A ∈ G |
detA = 1} and (−1)G◦.

(ii) Any finite group G is a linear algebraic group. Let n = |G| be the order of G.
Fix a base of Cn of vectors (eh)h∈G. For all g ∈ G, define the linear map σg via
σg(eh) = egh for all h ∈ G. Then we have the group morphism: G → GLn(C)
defined by g 7→ σg. If n ≥ 1, then G is totally disconnected with respect to the
Zariski topology.

2.1 Jordan decomposition

This part is devoted to one of the founding instruments to study linear algebraic groups.

Definition 2.7 Let G ≤ GLn(C) and A ∈ G.
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(i) A is semisimple if it is diagonalizable, i.e. if there exists a basis {v1, . . . , vn} of Cn
and λi ∈ C× such that Avi = λivi for all i = 1, . . . , n;

(ii) A is unipotent if A− 1 is nilpotent, i.e. if there exists k ∈ N such that (A− 1)k = 0.

Proposition 2.8 A ∈ G admits a unique decomposition such that A = AsAu = AuAs
with As ∈ G semisimple and Au ∈ G unipotent.

Proof. See [Spr98, Corollary 2.4.5].

Remark 2.9 1 is the only element which is both semisimple and unipotent.

Example 2.10 In G = GL2(C) consider A =

(
α 1
0 α

)
. Then A = AsAu, with As =(

α 0
0 α

)
and Au =

(
1 α−1

0 1

)
. Hence A is unipotent if and only if α = 1, otherwise it is

nor semisimple nor unipotent.

3 Sheets

3.1 Generalities on group actions

Definition 3.1 Let G be a linear algebraic group and X be an affine algebraic set. We
say that G acts (morphically) on X if there is a morphism of affine algebraic sets:

φ : G×X → X (g, x) 7→ g · x

satisfying:

(i) g1 · (g2 · x) = (g1g2) · x for all g1, g2 ∈ G, x ∈ X;

(ii) 1 · x = x for all x ∈ X.

We introduce some terminologies regarding group actions.

Definition 3.2 Let G be a group acting on set X, let x ∈ X. The stabilizer of x in G is
Gx = {g ∈ G | g · x = x}. The G-orbit of x is G · x = {g · x | g ∈ G} ⊂ X.

It is well-known that if a group G acts on a set X then X is partitioned into its G-orbits.
From now on we deal with a linear algebraic group G acting on an affine algebraic set X.

Definition 3.3 For all x ∈ X we define the orbit map:

φx : G→ X g 7→ g · x.
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Remark 3.4 In this case Gx = φ−1
x (x) is a closed (hence linear algebraic) subgroup of

G and φx(G) = G · x is a variety. Moreover, if G is connected (i.e. irreducible), the orbit
G · x is an irreducible subset of X by Proposition 1.9.

Example 3.5 Let G be a linear algebraic group. The conjugacy action of G on itself
is: (g, x) → g · x = gxg−1 for all g, x ∈ G. When G = GLn(C) and A ∈ G, then
GA = CG(A) = {P ∈ G | PA = AP} is called the centralizer of A in G. The G-orbit of a
matrix A ∈ G is {PAP−1 | P ∈ G} i.e. all matrices in G which are similar to A.

Definition 3.6 Let G act on X and n ∈ N. The n-th level set of X is X(n) = {x ∈ X |
dimG · x = n} = {x ∈ X | dimGx = dimG − n}. A sheet of X for the action of G is an
irreducible component of X(n) for some n ∈ N.

3.1.1 Conjugacy classes of unipotent elements in GLn(C)

Definition 3.7 Let n ∈ N \ {0}. A partition [d1, d2, . . . , dr] of n is a sequence of non-
decreasing integers d1 ≥ d2 ≥ . . . dr > 0 such that n =

∑r
j=1 dj .

Partitions of n are usually denoted with Young diagrams: to the partition [d1, d2, . . . , dr]
of n we associate a diagram where the j-th row consists of dj squares.

Example 3.8 The partitions of 4 are:

[4] = , [3, 1] = , [2, 2] = , [2, 1, 1] = , [1, 1, 1, 1] = .

Proposition 3.9 The unipotent conjugacy classes of GLn(C) are in one-to-one corre-
spondence with the partitions of n.

Proof. This follows from the fact that A ∈ GLn(C) is unipotent if and only if its only
eigenvalue is 1 and elementary Jordan Theory.

3.2 Sheets of GLn(C) for the conjugacy action

We are interesting in the following problem: consider X = G = GLn(C) and describe
sheets of G for the conjugation action of G on itself, i.e. irreducible components of all sets
G(n) = {A ∈ G | dimCG(A) = dimG− n} for n ∈ N.

Why are we interested in studying sheets rather than conjugacy classes?

(i) Sheets are more treatable, as they finitely many. This is due to the fact that the
level sets are finitely many (G(n) = ∅ for all n ≥ dimG) and irreducible components
of a variety are finitely many (Proposition 1.13).

(ii) Sheets are varieties, so they can be studied from a geometric point of view.

Università di Padova – Dipartimento di Matematica 48



Seminario Dottorato 2019/20

(iii) Sheets are strongly related to Representation Theory.

We have not introduced enough instruments to give a complete parametrization of
sheets in G. We will limit ourselves to give some heuristics on the structure of sheets and
then state a theorem describing the behaviour of sheets of G.

We would like to use this method to compute sheets: start from a semisimple conjugacy
class in G, see if this is a “deformation” of a unipotent class and compute all others classes
which can be obtained as its deformations.

3.2.1 An example: GL4(C)

We make an example in n = 4 to explain the above idea. The empty entries in the matrix
conventionally substitute entries which are equal to zero.

Let A =

(
α1

α2
α3

α4

)
∈ G with αi 6= αj for i 6= j. Then the centralizer is: CG(A) ={(

a
b
c
d

)
| a, b, c, d ∈ C∗

}
and dimCG(A) = 4. In particular, dimG · A = dimG −

dimCG(A) = 16− 4 = 12, hence A ∈ G(12)

Now let α1 = α2, then we obtain A′ =

(
α1

α1
α3

α4

)
with αi 6= αj for i 6= j.

The centralizer is CG(A′) =

{(
a1 a2
a3 a4

c
d

)
| c, d ∈ C∗, ( a1 a2a3 a4 ) ∈ GL2(C)

}
, with dimension

dimCG(A′) = 6, which exceeds 4, but if we allow a unipotent part on the upper-left block,

we getA′′ =

(
α1 1

α1
α3

α4

)
. One simply computes CG(A′′) =

{(
a b
a
c
d

)
| a, c, d ∈ C∗, b ∈ C

}
,

which satisfies dimCG(A′′) = 4. Actually, one can prove that A′′ and A are contained in
the same sheet.

The next natural question is: are A′′ and A obtainable as “deformations” of the same
unipotent element? The answer is positive, as one can check in the following Table: taking
α1 = 1 in the last row, we get the unipotent class corresponding to the partition [4].

degeneration deformation centralizer

αi 6= αj for i 6= j

(
α1

α2
α3

α4

) {(
a1

a2
a3

a4

)
| ai ∈ C

}
∩G

α4 6= α1 = α2 6= α3 6= α4

(
α1 1

α1
α3

α4

) {(
a1 a2

a1
a3

a4

)
| ai ∈ C

}
∩G

α1 = α2 = α3

(
α1 1

α1 1
α1

α4

) {(
a1 a2 a3

a1 a2
a1

a4

)
| ai ∈ C

}
∩G

α1 = α2 6= α3 = α4

(
α1 1

α1
α3 1

α3

) {(
a1 a2

a1
a3 a4

a3

)
| ai ∈ C

}
∩G

α1 = α2 = α3 = α4

( α1 1
α1 1

α1 1
α1

) {(
a1 a2 a3 a4

a1 a2 a3
a1 a2

a1

)
| ai ∈ C

}
∩G

Table 1. Deformations of the unipotent class of GL4(C) corresponding to the partition [4].
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One can check that in Table 1 we have listed all conjugacy classes in G(12), we deduce

that G(12) has a unique irreducible component, called regular sheet (6) (it consists of all
conjugacy classes of maximal dimension).

One can carry out the computations for any semisimple class in G: we collect the
relevant information in the following Table.

semisimple el. unipotent el. partition dimCG(A) G(n)(
α1

α2
α3

α4

) (
1 1

1 1
1 1

1

)
[4] 4 G(12)(

α1
α1

α3
α4

) (
1 1

1 1
1

1

)
[3, 1] 6 G(10)(

α1
α1

α3
α3

) (
1 1

1
1 1

1

)
[2, 2] 8 G(8)(

α1
α1

α1
α4

) (
1 1

1
1

1

)
[2, 1, 1] 10 G(6)(

α1
α1

α1
α1

) (
1

1
1

1

)
[1, 1, 1, 1] 16 G(0)

Table 2. Sheets of GL4(C).

In general, the following result holds.

Theorem 3.10 (Classification of sheets in GLn(C)) Let S be a sheet of G = GLn(C).
Then:

(i) S contains a unique unipotent conjugacy class, in particular sheets of G are parametrized
by partitions of n;

(ii) S is a smooth variety;

(iii) G is the disjoint union of its sheets.

3.2.2 Historical remarks and generalizations

The problem of determining sheets of GLn(C) is rather old: main results were collected
and formalized by Dixmier, Kostant, Kraft, Lusztig, starting from the 1960s.

The situation in GLn(C) is particularly well-behaved, but what is still true for a
connected reductive(7) algebraic group G?

The approach in the general case needs quite more work. When working with algebraic
groups, a standard technique is to study first an analogue problem in a “linearized context”
and then try to adapt the obtained results back to the group. The tangent space to the

(6)This fact generalizes to the action of any algebraic group G on an irreducible variety X: the union of
orbits of maximal dimension is a sheet and is denoted Xreg.

(7)Reducing to this class of algebraic groups is standard for people working in the field. An algebraic
group is reductive if its unipotent radical (the maximal connected normal subgroup consisting of unipotent
elements) is trivial.
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group G at the identity 1 is a Lie algebra g = T1G. There exists a natural action of G on
g, called adjoint action. Sheets of g for the adjoint action of G were completely understood
in [BK79, Bor82].

We notice different behaviours for G connected reductive:

1. There are sheets which do not contain unipotent classes, hence they lose their special
role in the parametrization, i.e. these sheets cannot be seen as “deformations” of a
particular conjugacy class.

2. In many simple algebraic groups (e.g. SOn(C), Sp2n(C), . . . ) sheets may intersect
and may present singularities.

It would be of little use to state the Theorem classifying sheets in any connected
reductive group, as it requires the knowledge of more definitions and constructions: we
address the interested reader to [CE12].
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Stable hypersurfaces in the

complex projective space

Alberto Righini (∗)

Abstract. The classification of complete oriented stable hypersurfaces in the complex projective
space could be an important step for the classification of isoperimetric sets. Indeed, the boundary
of an isoperimetric set, if smooth, is a hypersurface with constant mean curvature which is stable
for variations fixing the volume. In this talk we give an introductory overview of the problem and
present some new results, in particular we will characterize the geodesic spheres as the unique
stable connected and complete hypersurfaces subject to a certain bound on the curvatures.

Introduction

The origin of the isoperimetric problem goes back to the legend of Dido and the foundation
of Carthage. According to the legend, when Dido landed on the north coast of Africa, she
managed to buy a small piece of land, as much as she could enclose with an oxhide. Then
she cut the hide to obtain a long string and she faced the problem of enclosing the largest
area with the given perimeter (the length of the string), which is exactly what we call the
isoperimetric problem. The guessed solution is the circle of circumference L (if L is the
given perimeter).

A first formal solution to this problem, although a partial one, is due to Steiner in 1841.
He gave five proofs of the isoperimetric theorem, namely that the circle is actually the set
with a given perimeter L, which encloses the greatest area, but all his proofs assumed the
existence of a solution.

The question in the Euclidean space was solved in 1958 by Ennio De Giorgi, who
proved the isoperimetric property of the hypersphere in a space of arbitrary dimension,
among the class of sets of finite perimeter.

A classical approach to the problem is by means of the calculus of variations: the idea
is to take a curve and wiggle it a little bit, while keeping fixed its length. If the curve
is the one with maximal area then we are at an optimum, so an infinitesimal wiggle will
cause zero change in the area. In order to find the optimal figure, therefore, we calculate
the change in area caused by an infinitesimal wiggle and set this equal to zero.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 15 January 2020.
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Now, if we consider a hypersurface M in the Euclidean space of any dimension (say
n+1) and we denote by A(t) the area of all compactly supported variations Mt that leave
constant the volume enclosed by M , then we are considering a variational isoperimetric
problem and it is well known that being a critical point to this problem is equivalent
to having constant mean curvature. But when it comes to the second variation of the
area, the two problems are no longer equivalent. Here comes into play the definition of
stability and the works by Barbosa and Do Carmo (1984) and Barbosa, Do Carmo and
Eschenburg (1988), where they studied stability in the Euclidean space (giving a complete
classification of stable hypersurfaces) and they approached the study in the more general
setting of Riemannian Manifold.

The Isoperimetric Problem

In the plane, we can formulate the isoperimetric problem in the following ways.

1. Consider all isoperimetric bounded domains in R2 (i.e. all open connected sets with
fixed given perimeter). Find the domain with the greatest area.

2. Consider all bounded domains with a fixed given area. Find the domain with minimal
perimeter.

3. Express the isoperimetric problem as proving the following analytic inequality:

(1) L2 ≥ 4πA,

where A is the area of the domain and L is its perimeter.

The answer to this problem will be the disk. Inequality (1) is referred as isoperimetric
inequality and one can prove that it holds for every bounded domain of R2, with equality
if and only if the domain is a disk.

The isoperimetric inequality in the plane can be proved in many ways. In [9] Hurwitz
made use of Fourier Series, in [16] Topping did it using complex variables and, in [7],
Howards, Hutchings and Morgan proved a weaker version with a symmetry-and-convexity
argument. All these proofs are presented in Chavel [5].

If we consider the problem in Rn for any n ≥ 2, the isoperimetric inequality becomes

(2)
A(∂Ω)

V (Ω)1−1/n
≥ A(Sn−1)

V (Bn)1−1/n
,

where Ω is any bounded domain in Rn, V is the n-measure and A the (n− 1)-measure in
Rn, Bn and Sn−1 are the unit disk and the unit sphere respectively.

As in the case of the plane, one wants to prove that inequality (2) holds for every Ω,
with equality if and only if Ω = Bn.

Remark 1.1 (Spaces with constant sectional curvature) If we want to extend the inves-
tigation to model spaces with consant sectional curvature, say κ, things change. Still we
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have an isoperimetric inequality, meaning that all domains with the same volume have the
area of their boudnaries minimized by disks. For n = 2 the isoperimetric inequality is

(3) L2 ≥ 4πA− κA2,

with equality if and only if the domain in question is a disk.

Stability

A useful way to approach the isoperimetric problem can be by taking variations of the
boundary of a domain (in the appropriate class of domains) and trying to get some nec-
essary condition for it to be isoperimetric, by imposing the minimality.

Now we will consider the Euclidean space Rn+1. Let M be an orientable, n-dimensional
differentiable manifold and let x : M → Rn+1 be an immersion. Let D ⊂M be a relatively
compact domain with smooth boundary. We will denote by AD(x) the n-area of D.

Let xt : D̄ → Rn+1, t ∈ (−ε, ε), x0 = x be a variation of D and let AD(t) := AD(xt),
VD(t) := VD(xt). We are interested in volume-preserving, normal variations, namely
variations for which VD(t) = VD(0) for all t ∈ (−ε, ε) and for which the variation vector
is proportional to the outward normal N along x. We also want variations that fix the
boundary, namely such that xt(p) = x0(p) for all p ∈ ∂D and t ∈ (−ε, ε).

The first important result is obtained by studying the first variation of the area A′
and it’s the following.

Proposition 1.2 Let x : M → Rn+1. The following statements are equivalent:

1. x has constant mean curvature H0.

2. For each relatively compact domain D ⊂M with smooth boundary, and each volume-
preserving variation xt : D̄ → Rn+1 that fixes the boundary, A′D(0) = 0.

The mean curvature of a domain is defined as the trace of the second fundamental form
of the domain.

This result can be found in [3] and it characterizes the extremals for the variational
isoperimetric problem as the domains with constant mean curvature.

If we want to extend the study up to the second order, it is useful to give the following
definition of stability.

Definition 1.3 Let x : M → Rn+1 have constant mean curvcature and let D ⊂ M be a
relatively compact domain with smooth boundary. We say that D is stable if A′′D(0) ≥ 0
for every volume-preserving variation that fixes the ∂D. If every such D is stable, we say
that the immersion is stable.

If we consider the variational isoperimetric problemd described in 2. of Proposition 1.2,
clearly the boundary of an isoperimetric set E is a critical point of such problem, hence
it’s a hypersurface with constant mean curvature.
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Morover, it is a minimum for the area A(t) for all compactly supported volume-
preserving variations xt.Thus, by the definition of stability, ∂E must be stable under
such variations.

This points out the importance that a complete characterization of stable, constant
mean curvature hypersurfaces would have for the study of the isoperimetric problem in
a suitable class of domains. For the Euclidean space, this characterization is done by
Barbosa and Do Carmo in [3]. The result is the following.

Theorem 1.4 (Barbosa, do Carmo) Let M be a compact, orientable, n-dimensional
manifold and let x : M → Rn+1 be an immersion with constant mean curvature. Then x
is stable if and only if x(M) ⊂ Rn+1 is a round sphere Sn ⊂ Rn+1.

A consequence of this theorem is that in Rn+1, even if we request our manifold M to
be immersed, from the stability hypothesis follows that the immersion x : M → Rn+1 is
actually an embedding (it cannot self-intersect). This is interesting in view of the fact
that there are many examples of compact nonspherical hypersurfaces with constant mean
curvature in Rn+1. A famous example due to Wente [17] for n = 2, but others can be
found in the works of Abresch [1] also for n = 2, and Hsiang, Teng and Yu [8] for n > 2.
In view of this last result, all these hypersurfaces are not stable and, in fact, they cannot
be the boundary of isoperimetric sets.

These results can be extended to the more general case of Riemannian Manifolds with
constant sectional curvature c. In [4], Barbosa, do Carmo and Eschenburg proved the
following.

Theorem 1.5 (Barbosa, Do Carmo, Eschenburg) Assume that M is a compact manifold
of dimension n without boundary and that x : M → M̄n+1(c) is an immersion with
constant mean curvature, with M̄n+1(c) a Riemannian manifold with constant sectional
curvature c. Then x is stable if and only if x(M) ⊂ M̄n+1(c) is a geodesic sphere.

For a general Riemannian manifold with no assuption on its sectional curvarure, the
situation is different. Not all the (geodesic) spheres are stable and not all stable hyper-
surfaces are spheres. For example, in [4] Barbosa, Do Carmo and Eschenburg prove the
following result about stability of tubes and spheres in projective spaces.

Let M̄ = P r−1K be the projective space over the field K, with metric of diameter π
2

and curvature between 1 and 4, where K ∈ {R,C,H}.
For q < r let Uρ(P

q−1K) be the tubular neighborhood of radius ρ around the totally
geodesic subspace P q−1K of P r−1K, and put Tρ(q) = ∂Uρ(P

q−1K). Note that Tρ(q) is
congruent to Tπ

2
−ρ(p) if p = r − q and that Tρ(1) is the geodesic sphere of radius ρ. Set

d = dimRK and assume that r is even if K = R (for orientability reasons).

Theorem 1.6 (Barbosa, Do Carmo, Eschenburg) For 2 ≤ q ≤ r − 2, Tρ(q) is stable in
P q−1K if and only if

pd− 1

qd+ 1
≤ tan2 ρ ≤ pd+ 1

qd− 1
.

For q = 1 (q = r − 1), the lower (upper) bound is not present: a sphere of radius ρ is
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stable if and only if tan2 ρ ≤ (r−1)d+1
d−1 .

Regarding the isoperimetric problem, we have seen, with Theorem 1.4 and Theorem
1.5, that in the Euclidean case and for a Riemannian manifold with constant sectional
curvaure, isoperimetric variational problems are equivalent to stability of a hypersurface.

Remark 1.7 In general, if we are not in the Euclidean case and we are not taking
specific geometric assumptions, stability is only a necessary condition for a surface to be
the boundary of an isoperimetric set.

This fact can be seen, for example, by considering the classical Schwarz minimal P -
surface of genus three in the cubic three-torus, which is a stable constant mean curvature
hypersurface, but the domain enclosed by it is not a solution of the isoperimetric problem
(see [13] for details).

Another remarkable result is due to Ritoré and Ros. In [11] they give a complete
solution of the stability problem in the 3-dimensional projective space. Their result reads
as follows.

Theorem 1.8 (Ritoré, Ros) Let x : M → RP 3 be a complete orientable CMC surface
immersed into the real projective space. If the immersion is stable, then either

(i) M is a compact surface with genus(M) = 0 and x is an embedded geodesic sphere or
a twofold covering of a totally geodesic projective plane, or

(ii) M is a compact surface of genus 1 and x is an embedded flat tube of radius r about
a geodesic, with π/6 ≤ r ≤ π/3.

Stable Hypersurfaces in the Complex Projective Space

Now we look at the Complex Projective Space CPn and we characterize the geodesic sphere
with radius tan2 r = 2n + 1 as the unique stable connected and complete hypersurface
subject to a bound either on the characteristic curvature or on the restriction of the
second fundamental form to the complex tangent space.

The n-dimensional complex projective space is the quotient of the unit sphere S2n+1 =
{z ∈ Cn+1 : |z| = 1} by the Hopf-action of S1, (eiϑ, z) 7→ eiϑz. We denote by [z] the
equivalence class of z ∈ S2n+1. The tangent space of CPn at the point [z] is

T[z]CP
n = {w ∈ Cn+1 : z · w̄ = 0},

where z · w̄ = z1w̄1 + . . . + zn+1w̄n+1 is the standard Hermitian product of Cn+1. The
complex structure on T[z]CP

n is given by Jw = iw, the standard multiplication by i of
w ∈ T[z]CP

n ⊂ Cn+1.
The metric 〈ζ, w〉FS = Re(ζ · w̄), with ζ, w ∈ T[z]CP

n, is the Fubini-Study metric
of CPn, that makes the complex projective space a Riemannian manifold. The induced
distance function d : CPn ×CPn → [0, π/2] is d([z], [w]) = arccos |z · w̄|.
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The characteristic curvature κ of a hypersurface Σ ⊂ CPn is the curvature in direction
JN , where N is the normal to Σ and J is the complex structure of CPn, i.e., κ =
h(JN, JN) where h is the second fundamental form of Σ.

For any fixed [w] ∈ CPn and 0 < r < π/2, the geodesic sphere centered at [w] with
radius r is

Σr =
{

[z] ∈ CPn : |z · w̄| = cos r
}
.

The curvatures of Σr are well-known, see e.g. [6, Example 1 page 493]. Letting t = tan r,
they are

λ = cot r =
1

t
, with multiplicity 2(n− 1),

κ = 2 cot(2r) =
1

t
− t, the characteristic curvature.

(4)

These two curvatures are constant and distinct for each value of t > 0. In [15], Takagi
proved that this property characterizes the sphere.

We now discuss tubes around CP k. For k = 1, . . . , n−1, the natural inclusion S2k+1 =
{z ∈ S2n+1 : zk+2 = . . . = zn+1 = 0} ⊂ S2n+1 induces the inclusion CP k ⊂ CPn. For
0 < r < π/2, we define the tube

T kr = {[z] ∈ CPn : dist([z],CP k) = r}
= {[z] = [(z′, z′′)] ∈ CPn : |z| = 1, z′ ∈ Ck+1, |z′| = cos r}.

The curvatures of T kr are computed in [6]. Letting t = tan r, they are

λ1 = cot
(
r − π

2

)
= −t, with multiplicity 2k,

λ2 = cot r =
1

t
, with multiplicity 2` = 2(n− 1− k),

κ = 2 cot(2r) =
1

t
− t, the characteristic curvature.

(5)

These three curvatures are constant and distinct for each value of t > 0. In particular, T kr
has constant mean curvature. For r + s = π/2 and k + ` = n − 1 the hypersurfaces T kr
and T `s are congruent.

Theorem 1.6 gives us some stability intervals for the radius of a geodesic sphere and a
geodesic tube around CP k ⊂ CPn.

With the next result we move forward to a characterization of stable hypersurfaces
in CPn, by studing the converse problem: what geometric properties can be deduced by
a stability assumption? It turns out that, if we add a constraint on the characterisctic
curvature, we get that a stable hypersurface must be a geodesic sphere, precisely with the
radius that bounds the stability interval of Theorem 1.6.

For fixed H ∈ R and n ∈ N, let p(·;H,n) be the quadratic polynomial of the real
variable t ∈ R

(6) p(t;H,n) = (2n+ 1)t2 − 2Ht−H2 − 4(n2 − 1).
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The result is the following.

Theorem 1.9 (Battaglia, Monti, R.) Let Σ ⊂ CPn, n ≥ 2, be a complete connected
stable hypersurface with constant H = tr(h). If the characteristic curvature κ of Σ satisfies
p(κ;H,n) ≥ 0 then Σ is a geodesic sphere of radius r > 0 with tan2 r = 2n+ 1.

The details of every step of the proof can be found in [2]. Here we will give just an outline.

The main step is to prove the following inequality, wchich is implied by stability. Let
∇> be the Levi-Civita connection of CPn and consider the covariant derivative ∇>JNN ∈
TΣ of the normal N to Σ. We denote by hN ∈ CTΣ the projection of ∇>JNN onto CTΣ,
where CTΣ is the complex tangent space to Σ. By |h|2 we denote the squared norm of h.

Theorem 1.10 Let Σ ⊂ CPn, n ≥ 2, be a complete stable hypersurface with constant
H = tr(h). Then we have

(7)

ˆ
Σ

{
|h|2 +

(H + κ)2 + |hN |2
2(n2 − 1)

− H2

n− 1
− 2n

}
dµ ≤ 0,

where µ is the Riemannian hypersurface measure.

The method for obtaining formula (7) starts from an idea contained in the proof of
Theorem 1.4. The first step is the isometric embedding of CPn into Hn+1, the space
of (n + 1) × (n + 1) Hermitian matrices, see [12] and [14]. Once the hypersurface Σ is
embedded in Hn+1, we can consider the position matrix A ∈ Σ and compute its tangential
Laplacian ∆A.

For any fixed V ∈ Hn+1, the function uV = 〈∆A, V 〉 has zero mean and we can
compute the trace of the quadratic form QΣ on Hn+1 defined by QΣ(V ) = A′′(uV ). If Σ
is stable, this trace is nonnegative and this fact is precisely inequality (7).

The trace of the quadratic form QΣ is

(8) tr(QΣ) = 4

ˆ
Σ

{
2(n+ 1)H2 + 2(n2 − 1)

(
2n− |h|2

)
− (H + κ)2 − |hN |2

}
dµ.

By testing this formula on geodesic spheres, with a simple computation we obtain

Lemma 1.11 For the sphere Σr ⊂ CPn we have tr(QΣr) ≥ 0 if and only if tan2 r ≤ 2n+1.
The trace is zero if and only if tan2 r = 2n+ 1.

Proof of Theorem 1.9. We denote by ĥ the restriction of the second fundamental form h
of Σ to the complex tangent space CTΣ and by Ĥ the trace of ĥ. At any point of Σ, we
have the identities

H = Ĥ + κ and |h|2 = |ĥ|2 + 2|hN |2 + κ2,

and the inequalities

(9) |h|2 ≥ |ĥ|2 + κ2 and |ĥ|2 ≥ Ĥ2

2(n− 1)
=

(H − κ)2

2(n− 1)
.
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Inserting these inequalities and |hN | ≥ 0 into (8) we obtain

tr(QΣ) ≤ 4

ˆ
Σ

{
2(n+ 1)H2 + 2(n2 − 1)

(
2n− κ2 − (H − κ)2

2(n− 1)

)
− (H + κ)2

}
dµ

= −4n

ˆ
Σ
p(κ;H,n) dµ,

(10)

where p(·;H,n) is the polynomial in (6). By our assumption p(κ;H,n) ≥ 0 on Σ, we
deduce that tr(QΣ) ≤ 0. On the other hand, the stability of Σ implies that tr(QΣ) ≥ 0.
We deduce that tr(QΣ) = 0 and that we have equality in (10). In turn, the equality in
(10) implies that p(κ;H,n) = 0, that

(11) |h|2 = |ĥ|2 + κ2 and |ĥ|2 =
Ĥ2

2(n− 1)
,

and also that hN = 0 on Σ.
The equation hN = 0 means that JN is an eigenvector of h. By Maeda’s theorem

[10], this implies that the characteristic curvature κ is constant. This also simply follows
from the fact that κ is one of the roots of p(κ;H,n) = 0. Here we use the fact that Σ is
connected.

The identity in the right-hand side of (11) implies that Σ is umbilical in CTΣ, i.e.,
each unit vector in CTΣ is an eigenvector of h with eigenvalue λ = Ĥ/2(n−1). Moreover,
λ is constant on Σ, because Ĥ = H − κ is constant.

The two constants κ and λ are different, because in CPn there are no totally umbilical
hypersurfaces. By Takagi’s theorem (see [15]) Σ is a geodesic sphere: up to a suitable
choice of the center of the sphere, we have Σ = Σr for some r ∈ (0, π/2). By Lemma 1.11
the equation tr(QΣr) = 0 implies that tan2 r = 2n+ 1.
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A random journey among stochastic processes

Samuele Stivanello (∗)

Abstract. This seminar will cover a broad selection of topics, ranging from the basic definition
of a probability space, passing through some famous results like the Law of Large Numbers and
the Central Limit Theorem, and ending with the notion of convergence of stochastic processes. In
order to fulfill this intent, and in the spirit to be accessible to a mathematical audience of non
experts, in this introductory talk to the field of stochastic processes I will make extensive use of
examples and intuitive definitions. In the very last part of the talk I will mention some results of
my research, regarding the convergence of a random walk in random environment.

1 Introduction and Basic Definitions

In this short seminar we will give a basic introduction of random variables. Once given
the definition and some basic examples, we want to focus on convergence of sequence
of random variables. We will deeply analyze the notion of weak convergence, recalling
some famous theorems and specifying the differences with the usual convergence in metric
spaces. Then we will move on to the definition of stochastic processes, seen as random
variables taking values on a functional space. Again, weak convergence will be our center
of interest. Finally we will move to a particular case of processes whose limit has a super
diffusive behavior. We will try to say some words on the origin of this anomalous rescaling,
and provide the sketch of the proof of the latest results.

Figure 1. Example of Random Variables
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To start with, we give some examples of random variables we encounter in everyday’s
life. Rolling a dice, tossing a coin, shuffle a deck of cards: randomness is everywhere and a
random variable can be seen as a quantity that depends on some randomness. Suppose you
are throwing a dart on a professional board. The score you will made is a random variable.
If you train yourself, you probably score higher points. In this context probability is seen
as a score measure, and it depends on the player.

Figure 2. Example: Different Random Variables on the same space

Let’s try to give precise definitions of the quantities that we want to deal with.

Definition 1 A Random Variable is a measurable function from a probability space
(Ω,F ,P) to a metric space (E, E):

(1) X : (Ω,F ,P) −→ (E, E)

Hence randomness can be seen as the probability measure on the underlying probability
space. The underlying probability space is something abstract, and we want to see how
to measure the actual distribution of the random variable.
The distribution of X is the probability measure PX = P ◦X−1 on (E, E), i.e. for every
A ∈ E we have:

(2) PX(A) = P
(
X−1(A)

)
= P ({ω ∈ Ω : X(ω) ∈ A})

Let try to gain some more confidence through an easy example. Suppose we are tossing 3
identical coins. The underlying probability space (Ω,F ,P) can be identified with the space(
{H,T}3 , P({H,T}3) , P(A) = |A|

|Ω|

)
, where P is the normalized counting measure, or the

uniform discrete measure, on the space of possible outcomes (H =Heads, T =Tails). The
random variable X represents the number of Tails after 3 Coin Tosses. Hence the space
(E, E) in which X takes values is ( {0, 1, 2, 3} , P({0, 1, 2, 3}) ). Suppose that we want to
compute the probability of the following event:

A = ”after the tossing of 3 coins, we have at least 2 Tails”

The event A can be identified with the subset {2, 3}. Following (2) we have that

PX(A) = P ({ω ∈ Ω : X(ω) ∈ A})(3)

= P ({{T, T,H}, {T,H, T}, {H,T, T}, {T, T, T}}) =
4

23
=

1

2
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2 Convergence of Random Variables

Suppose thatX, (Xn)n∈N are random variables defined on the probability space (Ω,F ,P) =
( [0, 1] , B([0, 1]) , λ) and taking values on the metric space (E, E) = ( R , B(R) ). Here λ
is the usual Lebesgue measure. The random variable are defined as follows:

(4) Xn(ω) := ω + ωn ∀n ∈ N and X(ω) ≡ ω

We ask whether it is true or not that lim
n→∞

Xn = X. How should we interprete the limit?

Suppose that we require pointwise convergence. It means that for every ω ∈ Ω the
difference |Xn(ω)−X(ω)| should be small for n large enough. But pointwise convergence
fails at ω = 1. In facts

(5) lim
n→∞

Xn(1) = 2 6= 1 = X(1)

A first solution is passing to almost sure convergence. It means that we require pointwise
convergence to hold almost everywhere, i.e. pointwise convergence can fail in a set of zero
probability. Here we give some other definitions of convergence that are commonly used
in probability theory.

Definition 2 We say that Xn
a.s.−−→ X almost surely if

(6) lim
n→∞

Xn(ω) = X(ω) ∀ ω ∈ A ⊆ Ω, with P(A) = 1

Definition 3 We say that Xn
P−→ X in Probability if, for every ε >= 0,

(7) lim
n→∞

P (ω : |Xn(ω)−X(ω) | > ε) = 0

Definition 4 We say that Xn
Lp−→ X in Lp if |Xn|, |X| are in Lp and

(8) lim
n→∞

ˆ
Ω
| Xn(ω)−X(ω) |p P(ω)dω = 0

While all the previous definitions differ from types of convergence seen in elementary
Calculus courses, they are nevertheless squarely in the analysis tradition, and they can be
thought of as variants of standard pointwise convergence. These types of convergence are
natural and useful in probability. However, there is another notion of convergence which
is profoundly different from the four we have already seen, known as weak convergence.
As its name implies, it is a weak type of convergence. The weaker the requirements for
convergence, the easier it is for a sequence of random variables to have a limit. What is
unusual about weak convergence, however, is that the actual values of the random variables
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themselves are not important. It is simply the probabilities that they will assume those
values that matter. That is, it is the probability distributions of the random variables
that will be converging, and not the values of the random variables themselves.

Let’s start by defining weak convergence of probability measures.

Definition 5 Let µn, µ be probability measures on Rd. We say µn
w−→ µ weakly if

(9) lim
n→∞

ˆ
g(x)dµn(x) =

ˆ
g(x)dµ(x)

for every continuous, bounded function g : Rd → R.

Note that convergence of integrals as stated in (9) is actually a definition. If facts, if
two different probability measures P,Q are such that

´
gdP =

´
gdQ for every continuous

bounded function g, then P ≡ Q.
Now, let (Xn)n∈N, X be random variables taking values on a metric space (E, E). Suppose
for example the space to be

(
Rd,B(Rd)

)
with the usual Euclidean distance.

Definition 6 We say Xn
D−→ X in distribution if PXn

w−→ PX weakly, i.e.

(10) lim
n→∞

E[g(Xn)] = E[g(X)]

for every continuous, bounded function g : Rd → R.

Note that, if = Rd and the measure PX is absolutely continuous with respect to the
Lebesgue measure, then

(11) E[g(X)] =

ˆ
g(x)dPX(x) =

ˆ
g(x)f(x)dx

and the same hold for Xn. Hence the fact that fn → f pointwise as n→∞ is a sufficient

condition to have convergence in distribution Xn
D−→ X.

Remark 1 If the space E is discrete, then E[g(X)] =
∑

g(xk)p(xk). Hence, a sufficient

condition for Xn
D−→ X is that, for every xk ∈ E, we have that gn(xk)→ g(xk) as n→∞.

Suppose now we have a sequence of random variables (ξn)n∈N, all independent and
with the same distribution (i.i.d.) such that

(12) E[ξk] = µ Var[ξk] = σ2

Then we have the following limit, that takes the name of Law of Large Numbers (LLN)

Theorem 2.1 (Law of Large Numbers)

(13)
ξ1 + ξ2 + · · ·+ ξn

n

a.s.−−−→
n→∞

µ
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It states that the limit of the empirical mean of n random variables with the same
distribution is the theoretical mean. Note that the theorem holds for any distribution.
Now we would like to say something more. From the LLN we have that the difference
between the sum of n independent identical distributed random variable and n-times their
mean converges to 0 almost surely. We want to analyze the fluctuations of this difference,
as n→∞. The following theorem says that the fluctuation behave like a standard normal,
with amplitude proportional to

√
n.

Theorem 2.2 (Central Limit Theorem)

(14)

n∑
k=1

ξk − nµ

√
nσ2

D−−−→
n→∞

N (0, 1)

3 Stochastic Processes

Our journey moves on to stochastic processes. Let’s go straight to the definition.

Definition 7 (Stochastic Process) A Stochastic Process is a family of random variables
{Xt}t∈J all defined in the same probability space (Ω,F ,P) with values in the same mea-
surable space (E, E).

The former definition is really simple but far from intuitive. The complexity of a stochastic
process is shown in Figure 3.

Let’s try to formalize.

Definition 8 For any given k ∈ N, t1, ..., tk ∈ J , the distributions of the vector
(Xt1 , ..., Xtk) take the name of finite-dimensional distributions of the process X.

(15) X = {Xt}t∈J where Xt = (Xt(ω))ω∈Ω

Hence a stochastic process X = {Xt}t∈J with values in (E, E) can be seen as a unique
random variable X : (Ω,F ,P) →

(
EJ , EJ

)
with values in the product space

(
EJ , EJ

)
,

known as the space of the trajectories, i.e.

(16) X = {Xt(ω)}t∈J,ω∈Ω where X(ω) = (Xt(ω))t∈J

Definition 9 The law of the process µX is the distribution induced by X on
(
EJ , EJ

)
.
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(a) A single realization of the process (b) The Stochastic Process
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(c) A trajectory of the process (d) Distribution of the process at a fixed time

Figure 3. Stochastic Process: a visual example. If we fix ω as in Figure 3a, we can see a single realization

of the process. The process itself is the random variable that take values in the space of realizations. Figure

3b shows three different realizations at the same time. A trajectory (Figure 3c) is a single realization of the

process. If we fix the time index, the process at a fixed time behaves like a random variable (Figure 3d).

4 Convergence of processes: Random Walk and Brownian Motion

A Random Walk is the basic example of stochastic process. Suppose we have a sequence
(ξk)k∈N of random variables defined on the same probability space. A Random Walk
S = {Sn(ω)}n∈N,ω∈Ω is defined as follows

(17) Sn(ω) :=

n∑
k=1

ξk(ω)

If the (ξk)k∈N are i.i.d. such that P(ξk = 1) = P(ξk = −1) = 1/2 we obtain a simple
symmetric random walk (SSRW). Suppose now we define the following SSRW based on
the last seven digits of a phone numbers. If the k-th digit is even, then ξk = 1, whereas if
the k-th digit is odd, then ξk = −1.
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(a) Single realization for ω1 = 4822165
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(b) Two different realizations
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(c) The PhDs phone numbers

Figure 4. Figure 4a represents the trajectory of the random walk up to time t = 7. This can be seen as

a realization of S at ω1 = 4822165. For ω2 ∈ Ω, Figure 4b depicts a different trajectory: S(ω2). Finally,

Figure 4c depicts together the n trajetories obtained from the phone numbers of the n PhD students of

my office.

The red squares in Figure 4c represents the empirical distribution of the Random Walk
defined above a the fixed time t = 7. Note that this empirical distribution is close to
the theoretical distribution (black crosses). The empirical distribution can be seen as a
random sample of the theoretical one.

Now we want to talk about convergence of the random walk as a stochastic process. In
order to make the game easier, we define a new random walk in the following way:
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S0 = 0,

Sn(ω) :=
n∑
k=1

ξk(ω) with ξk ∼ N (0, 1)(18)

Now the increments ξk are gaussian, with zero mean and variance equal to 1. In what
follows it’s not necessary that the increments have this normal distribution, but this make
the computations easier. We want to define the following sequence of processes, for n ∈ N:

(19) W
(n)
t (ω) :=

1√
n
Sbntc(ω) +

1√
n

(nt− bntc)ξbntc+1(ω) t ≥ 0

The first term is basically the random walk S rescaled by n and
√
n on the x-y axes respec-

tively; whereas the second term accounts for interpolation in order to make trajectories
continuous, but it goes to 0 as n→∞, hence we can neglect it for our purposes. We have
that

E[W
(n)
t ] = 0

Var[W (n)
t ] =

bntc
n

+
(nt− bntc)2

n
−−−→
n→∞

t(20)

It is actually possible to show that W
(n)
t

D−→ N (0, t). We want to define the Brownian
Motion as the natural limit process for the sequence (W (n))n∈N.

Definition 10 The Brownian Motion W is a real values stochastic process that satisfies

• W (0) = 0 almost surely.

• W has independent increments. It means that for every k ∈ N and every 0 = t0 ≤
t1 ≤ ... ≤ tk <∞, we have {Wti −Wti−1}1≤t≤k for i = 1, .., k.

• W has stationary gaussian increments, meaning that for every 0 ≤ s < t < ∞ we
have (Wt −Ws) ∼ N (0, t− s).

• W has continuous trajectories t 7→Wt(ω)

We would like to say that W (n) D−→W . Is that true? The answer is more complicated

than it seems. We showed that, for any fixed t ∈ [0,∞) W
(n)
t

D−→ Wt. Hence we have
convergence of the finite-dimensional distributions, but this is not enough to say that the
entire process converge in distribution.

We have W (n) D−→W as a process if and only if µW
(n) w−→ µW , i.e. the law induced

by the process on the space of trajectories converges weakly. We want again to underline
that convergence of the finite-dimensional distribution is not enough to guarantee this
weak convergence. We need to require something more. We need the sequence of laws
(µW

(n)
)n∈N to be relatively compact.

Università di Padova – Dipartimento di Matematica 68



Seminario Dottorato 2019/20

Definition 11 A family Π of probability measures on a metric space is relatively compact
if every sequence of elements of Π contains a weakly convergent subsequence.

Proposition 4.1 Let (Pn)n∈N, P be probability measures on the space of continuous func-
tions C. Assume that the finite-dimensional distributions of (Pn)n∈N converge weakly to
those of P . Assume moreover that the sequence (Pn)n∈N is relatively compact. Then
Pn

w−→ P .

Proof. This is not a complete proof, just a sketch with some ideas. Starting from the
definition of relative compactness, we have that every subsequence (P ′n)n∈N has a further
subsequence (P ′′n )n∈N converging weakly to some limit Q. Since P ′′n

w−→ Q, then also the
finite-dimensional distributions of P ′′n converge weakly to those of Q; and since the finite-
dimensional distributions of Pn converge weakly to those of P , then the finite-dimensional
distributions of Q must coincide to those of P . Moreover, every probability measure
on C is completely determined by its finite-dimensional distributions, hence we conclude
that we must have P ≡ Q. We showed that any subsequence (P ′n)n∈N contains a further
subsequence (P ′′n )n∈N that is weakly convergent to P . This is enough to ensure weak
convergence Pn

w−→ P .

This idea is a powerful technique to prove weak convergence in C and other functional
spaces. As first we have to prove that the finite-dimensional distributions converge weakly
to some limit and we have to identify the limit. Next we have to prove that the sequence
is relatively compact. Going back to our random walk, we can actually prove that the

sequence (µW
(n)

)n∈N is relatively compact. Hence we have that W (n) D−→W .
To conclude this section we want to show that relatively compactness is fundamental.

Suppose that P gives unit mass to the function x ≡ 0 and, for every n ∈ N, the probability
measure Pn gives unit mass to the function xn defined as follows

(21) xn(t) =


nt t ∈ [0, 1/n]
2− nt t ∈ [1/n, 2/n]
0 t ∈ [2/n,∞)

We can have weak convergence Pn
w−→ P if and only if we have uniform convergence of xn

to x, i.e. if we have convergence in the topology of C. But supt∈[0,∞) |xn(t) − x(t)| = 1
for all n ∈ N. Hence weak convergence of (Pn)n∈N is not possible. However, we have
convergence of the finite-dimensional distributions.

5 Anomalous Limits

In the previous section we started from a Random Walk, describing the dynamics of the
discrete step. If suitably rescaled, we showed that it converges to the Brownian Motion. Is
some way we can think of the Random Walk as the infinitesimal dynamic that is responsible
for the macroscopic behavior. Note that the Brownian Motion is diffusive, meaning that
portion of the system ”explored” by a random particle moving according to a Brownian
Motion grows linearly in time, or better, that we have E[|W (t)|2] ∼ t. There are many
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cases in which processes Y have ”anomaluos” rescaling, meaning that E[|Y (t)|2] ∼ t2δ with
δ 6= 1/2. Superdiffusive processes (δ > 1/2) arise naturally, mainly connected to motion
in disorder media, like a tracer in a turbolent flow, a light particle in an optical lattice
or molecular diffusion in porous media. We are interested in the study of microscopic
dynamics that give birth to superdiffusive behavior.

A first possibility to explore is represented by the Levy Flight. The typical trajectory
consists of long ballistic flights and short disorder motion. The notion of stable random
variable will be essential. Given α ∈ (0, 2), an α-stable random variable ζ satisfies the
following relations

P (|ζ| > x) ≈ x−α for |x| � 1(22)

ζ1 + ζ2 + · · · ζn
n1/α

∼−−→ ζ(23)

Property (22) indicates that an α-stable random variable has heavy tails. The anomalous
rescaling is reflected in condition (23). We skip in this lecture notes the proper definition
and properties of α-stable random variables. The two equations above should only be
intended as a motivations.

The Levy Flight is a Random Walk with jump-steps given by a sequence of i.i.d.
α-stable random variables, with α ∈ (0, 2). We have

(24) Sn =

n∑
k=1

ζk with ζk ∼ α-stable

This way of modeling contains the first idea to include non-standard rescaling, but
does not include the idea of moving in a medium, meaning that each jump lends with
probability 1 into a new point.

We define the Random Environment ω = {ωk}k∈Z as a Point Process on R in the
following way:

ω0 = 0

ωk − ωk−1 = ζk ζk ∼ β-stable(25)

We are fixing some scattered targets on the real line, assuming the distance between them
to be drawn from an β-stable distribution, as represented in the next Figure.
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Then we consider a Random Walk S whose increments are i.i.d. random variables
taking values in Z.

S0 = 0

Sn =
n∑
j=1

ξj(26)

Finally we define the Levy Lorentz Gas as a random walk on the random environment

(27) Yn := ωSn ≡ ω ◦ S(n)

The Levy Lorentz gas Y is a Random Walk on the Random Environment ω. It jumps
accordingly to the Underlying Random Walk S.

6 Results

Suppose that β ∈ (1, 2). Hence the distance between targets in the random environment
has finite mean µ = E[ζ], but infinite variance. This case has been studied in several
articles, for example [5], [6],, where they proved the following result.

Theorem 6.1 The process Ȳ (n)(t) :=
Ybntc

n1/2
converges weakly to µW (t).

Proof. We give a sketch of the proof. This only serves to motivate that
√
n is the right

rescaling. First note that, by the LLN, the environment ω scales linearly with n,

(28)
ωn
n

=

∑n
j=1 ζj

n

a.s.−−−→
n→∞

µ

Using this results, we decompose Yn and find the suitable rescaling in the following way

(29)
Yn

n1/2
=
ω ◦ Sn
Sn︸ ︷︷ ︸
a.s.−−−→
LLN

µ

· Sn

n1/2︸︷︷︸
D−−−→

CLT
W (1)

D−−→ µ ·W (1)

where we used the convergence of a finite variance random walk to the Brownian Motion.
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Note that we obtained a diffusive behavior, that was not our goal.
Suppose now to take β ∈ (0, 1) , as done in [7]. It means that also the mean distance

between targets is infinite. In this case we have that

ω̄(n) =
(ωbnxc
n1/β

)
x∈R

=

(∑bnxc
j=1 ζj

n1/β

)
x∈R

w−−−−−−−−→
β-stability

Z(30)

S̄(n) =

(
Sbntc
n1/2

)
t∈R+

=

(∑bntc
i=1 ξi

n1/2

)
t∈R+

w−−→W(31)

Following the same procedure of the previous theorem, we would like to say that the

process Ȳ (n)(t) :=
Ybntc
n1/2β converges weakly to Z ◦W , where Z is the process defined as

follows

(32) Z(s) :=

{
Z

(β)
+ (s) if s ≥ 0,

−Z(β)
− (−s) if s < 0.

with (Z
(β)
± (x))x≥0 be two i.i.d. càdlàg β-stable processes with independent and stationary

increments such that Z
(β)
± (0) = 0 and Z

(β)
± (1) is distributed as a β-stable random variable.

Theorem 6.2 The finite-dimensional distributions of

(
Ybntc

n1/2β

)
t≥0

converge to the corre-

sponding distributions of (Z ◦W (t))t≥0.

Here the rescaling is superdiffusive, but the theorem above only shows convergence of
the finite-dimensional distributions, and can not be extended to the entire process.

To resume we analyzed 3 different cases:

• Lévy Flights: It converge to a process with superdiffusive behavior, but the en-
vironment changes at every step. Actually there is no environment, the jumps are
independent, and this is not the situation we encounter in many physical situations
we want to model.

• Lévy Lorentz Gas with α ∈ (1, 2): We are able to show convergence of the process,
but the limit has a classical diffusive behavior.

• Lévy Lorentz Gas with α ∈ (0, 1) The limit process is superdiffusive, however we
can only show convergence of the finite-dimensional distributions.

Our goal is to obtain a sequence of processes in a random (fixed) environment, that
converge weakly to a superdiffusive limit. The solution we propose is a double source of
randomness, coming both from an α-stable random walk (as the Levy walk) and from a
β-stable random environment (as in the Levy Lorentz gas).
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We define the random environment and the underlying random walk with the following
parameters:

• ωn =

n∑
i=1

ζi (ζi)i∈Z ∼ β-stable : β ∈ (1, 2), E[ζ] = µ

• Sn =

n∑
j=1

ξj (ξj)j∈N ∼ α-stable :


α ∈ (0, 1)

α ∈ (1, 2), E[ξ] = 0

We provide in [8] a solution to the problem, as stated in this final theorem

Theorem 6.3 (Stivanello, Bet, Bianchi, Lenci, Magnanini) The the properly rescaled
Random Walk in Random Environment

(33) Ȳ (n) :=

(
Ybntc

n1/α

)
t≥0

converges weakly to µW (α), a superdiffusive α-stable process.
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Some features of finite simple groups

Daniele Garzoni (∗)

Abstract. Finite simple groups are the building blocks of finite groups. For this reason, since the
early days of group theory lots of efforts were devoted to understanding this class of groups. These
culminated in the 1980’s in an enormous theorem — known as Classification Theorem — which
exhibits a very precise list of these groups. In this seminar we will state the theorem, and briefly
describe the objects involved. We will then focus on some features of finite simple groups. For
instance, we will see that it is amazingly easy to generate these groups by few elements. Along the
way, we will try to explain the impact of the Classification in the field of group theory.

1 Introduction

The interest in finite simple groups arose very early in the life of group theory. This
culminated in the 1980’s in a theorem which provides a precise (infinite) list of these groups:
this theorem goes under the name of Classification of Finite Simple Groups (CFSG for
short). The proof of this theorem is probably one of the most complicated in the history
of mathematics. In this note we will state the theorem, and give a brief description and
present some feature of the objects involved.

The study of finite simple groups is a vast topic, and we are not in position here to
give a satisfactory account; hence the author has made some choices. One of the main
choices is that the historical overview is reduced to a mininum. What is more, the proof
of the CFSG is essentially not discussed. There are two main reasons for this. The first is
that, as we already mentioned, the proof is rather complicated, and it seems impossible to
introduce the main ideas in a reasonable amount of space. The second, more important,
reason, is that the author lacks any serious understanding of the proof: he would not be
able to discuss the main ideas even if the reader was prepared to digest a long manuscript.
Well, the author would probably be able to write something — nobody can ask questions
when someone is hidden behind the pen. However, it does not seem very respectful to act
in this way. Fortunately, there are some places in the literature where one can find very
interesting discussions on the history, the proof and the consequences of the CFSG: two
are certainly [Sol01] and [Sol18].

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 12 February 2020.
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The bibliography is far from exhaustive: only the references which have been explic-
itly mentioned along the note are reported. With one exception: [EG19] is a very tiny
contribution that the author, in joint work with Sean Eberhard, gave on some problems
of the flavour as those discussed in Section 5.

The style of exposition is friendly: there are few definitions, and few concepts are
treated in detail. The author has tried to avoid technical details whenever possible; he
hopes that the reader will not find this approach sloppy, rather than friendly!

2 Definition, motivation and a bit of history

Assume we are given a finite group G, and assume we want to understand its structure.
As always, one tries to decompose the object into simpler pieces; then one tries to under-
stand the different pieces, and finally tries to gather together the information. For many
purposes, in a finite group G the simple pieces are indeed called simple groups. Let us
give the definition.

A subgroup H of a group G is called normal if it is closed under conjugation, that is,
g−1Hg = H for every g ∈ G. Whenever H is a normal subgroup of G, one can construct
a group, usually denoted G/H, whose elements are the right cosets of H in G. Groups
constructed in this way are called quotient groups. Note that G itself and the trivial
subgroup {1} are always normal subgroups of G.

Definition 2.1 A group G 6= {1} is called simple if it admits only two normal subgroups,
namely {1} and G.

Let us immediately restrict to the case in which G is finite. In this case, G can be
broken down into simple pieces in essentially one way. All we need to remember is this
sentence; for completeness, however, we report an exact statement.

Theorem 2.2 (Jordan–Hölder Theorem) Let G be a finite group. There exists a chain
of subgroups

1 = H0 < H1 < · · · < Ht = G

such that for every i = 0, . . . , t− 1,

(a) Hi is normal in Hi+1, and

(b) Hi+1/Hi is simple.

Moreover, if
1 = H ′0 < H ′1 < · · · < H ′` = G

is any other chain satisfying properties (a) and (b), then t = ` and there exists a permu-
tation ρ of the set {0, 1, . . . , t− 1} such that for every i = 0, . . . , t− 1, we have

Hρ(i)+1/Hρ(i)
∼= H ′i+1/H

′
i.
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We have now learnt that finite simple groups (FSG for short) are the building blocks of
finite groups. For this reason, it is very often the case that questions about general finite
groups can be reduced to FSG. In other words, a certain question has a positive answer
for all finite groups, provided it has a positive answer for FSG.(8)

Therefore, people got interested in FSG since the early days of group theory. The
German mathematician Otto Hölder, in 1892, writes “It would be of the greatest interest
if it were possible to give an overview of the entire collection of finite simple groups.” We
begin with the easy case.

2.1 The abelian finite simple groups

It is very easy to classify the abelian (i.e., commutative) finite simple groups. Indeed, they
are just the cyclic groups of prime order. This is easy to prove and was known to Hölder
and his contemporaries. Therefore, Hölder quote is really about nonabelian FSG.

2.2 From now on: nonabelian finite simple groups

From now on we focus on nonabelian finite simple groups, since we have not much else to
say about the abelian ones. In 1872 the Norwegian mathematician Ludwig Sylow proved
a theorem, usually divided in three parts, which had a dramatic impact on the process of
understanding the structure of finite groups. We will not report the exact statement. It is
a theorem which imposes some arithmetical conditions on the number of certain subgroups
of a finite group. Amazingly, these conditions put severe restrictions on the structure of
finite groups, and in particular on the presence of normal subgroups. Indeed, using only
Sylow theorems, at the beginning of the 20th century some people managed to make some
progress towards the understanding of finite simple groups. For example, the following
was proved thanks to the joint efforts of Hölder, Cole, Miller and Ling.

Theorem 2.3 (1900) The finite simple groups of order at most 2001 are classified. In
particular, there are only seven nonabelian among them.

Other results of this flavour were proved. People started to get a feeling that finite
simple groups might be very rare objects, suitable for some sort of classification.

There were several crucial developments towards the understanding of FSG (and of
finite groups in general). A very important one happened around 1900 as well, namely,
the introduction of character theory in the study of finite groups. This was originally
done by the German mathematician Georg Frebenius, in response to a famous letter sent
to him by his compatriot Richard Dedekind. The setup is as follows. We are given a
finite group G, and we look at complex (finite dimensional) representations of G: these
are morphisms ρ : G → GLn(C) for some positive integer n. To each representation ρ,
we associate a mapping χρ : G → C, which is called character, and which sends g ∈ G
to the trace of the linear map ρ(g). The game is to try to recover information about the
structure of G by looking at the characters χρ, where ρ varies among all representations.

(8)Actually, one often reduces questions to almost simple groups, namely, groups G such that S 6 G 6
Aut(S) for some simple group S. It is not necessary to go into these technicalities here, however.
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(In fact, one usually only looks at irreducible representations, that here we do not define.)
Somewhat surprisingly, this strategy works very well, and it is still nowadays object of
active research.

Later, other developments occurred. Between the 1950’s and the 1970’s, very sophis-
ticated methods were introduced with the purpose of penetrating the structure of finite
groups. And here is where we stop our historical overview. The reasons why we do this
were explained already in the introduction, so we do not insist here.

3 The Classification of Finite Simple Groups

Around 1980, it seemed that one could state the following result.

Theorem 3.1 (Classification of Finite Simple Groups) Let G be a finite simple group.
Then, G is either

(a) a cyclic group of prime order;

(b) an alternating group of degree at least 5;

(c) a finite simple group of Lie type;

(d) one of 26 sporadic finite simple groups.

It is our purpose to give a brief description of all the groups mentioned in the statement.
Before doing that, however, let us spend few words about the proof. This was immensely
deep and complicated: 15000 journal pages, spread across 500 separate papers, by more
than 100 mathematicians. Note that immediately before Theorem 3.1, we used the words
“it seemed that one could state...”. Indeed, around 1989 the American mathematician
Michael Aschbacher noticed that there was a substantial gap in the proof. We will come
back on this, with some more comments on the proof (and on some ongoing revision
projects of the proof), in Section 6. It is now time to explain what the objects in Theorem
3.1 are.

4 The groups in Theorem 3.1

We already discussed item (1) in Subsection 2.1, hence we move to item (2).

4.1 Alternating groups

We begin by recalling the definition. Let Ω be a finite set, and let Sym(Ω) denote the
set of all bijective maps Ω → Ω; then Sym(Ω) is a group under composition, called the
symmetric group on the set Ω. The elements of Sym(Ω) are usually called permutations.
It turns out that each permutation π can be written as a product of a certain number, say
r, of transpositions, i.e., mappings which exchange two points and fix all the other points.
This decomposition of π is not unique; however, it turns out that, given π, the parity of
r is uniquely determined. Then, the set of all permutations that can be written as the
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product of an even number of transpositions is a normal subgroup of index 2 of Sym(Ω),
called the alternating group on the set Ω, and usually denoted by Alt(n). Note that, if
Ω and Ω′ are two sets of the same size, say n, then Sym(Ω) and Sym(Ω′) are naturally
isomorphic. Then, it is common to fix one Ω, and just denote by Sn and An the symmetric
group and the alternating group on Ω, respectively.

Theorem 4.1 Assume n > 5. Then, An is simple nonabelian.

The cases n 6 4 are genuine exceptions, as it is not hard to show. Historically, there
is not much we have to say. Symmetric and alternating groups are probably the most
natural families of finite groups, and were known since the very beginning of group theory.

The reader who is unfamiliar with these definitions can safely forget about An, and
just think of Sn (which is more natural to define). Indeed, for most purposes — certainly
for those which concern us in this note — An and Sn can be thought of as essentially the
same thing: everything which is true for one group applies with easy changes to the other.

4.2 Groups of Lie type: classical groups

We begin here with an example, which should be thought of as the “key” example of finite
simple group of Lie type.

Let q be a prime power, let Fq be a finite field with q elements (recall all such fields
are isomorphic over the base field), and let n be a positive integer. We consider the
set GLn(q) of all invertible n × n matrices over Fq. This set is a group under usual
matrix multiplication, called the general linear group (of degree n, over the field with q
elements). We can easily detect two normal subgroups inside GLn(q). The first consists
of all matrices having determinant 1. This subgroup is usually denoted by SLn(q), and
called the special linear group. The second, that we denote by Zn(q), consists of all scalar
matrices, i.e., matrices of the form diag(λ, . . . , λ) for some nonzero λ ∈ Fq. It turns out
that, if we remove these two basic obstructions, we get a simple group. Specifically, define
PSLn(q) := SLn(q)/(SLn(q) ∩ Zn(q)), and we have

Theorem 4.2 PSLn(q) is simple nonabelian provided n > 2 and (n, q) 6= (2, 2), (2, 3).

The group PSLn(q) is called projective special linear group. This terminology comes
from the fact that PSLn(q) acts faithfully on the projective space Pn−1(Fq), i.e., the set
of all 1-dimensional subspaces of Fn

q . Again, the exceptions in the theorem are genuine.
Indeed, if n = 1 then PSLn(q) is the trivial group, and moreover PSL2(2) ∼= S3 and
PSL2(3) ∼= A4.

Other finite simple groups can be constructed in a similar fashion, starting from sub-
groups of GLn(q) preserving suitable nondegenerate forms over Fq. In this way one gets
symplectic groups, unitary groups, and orthogonal groups. The simple versions are usually
denote by PSp2n(q) in the symplectic case (these occur only in even degree), PSUn(q) in
the unitary case, PΩ2n+1(q), PΩ+

2n(q) and PΩ−2n(q) in the orthogonal case. Over finite
fields, simple orthogonal groups are the trickiest to define. For instance, we see that in
even degree we have two type of groups (“plus” type, and “minus” type).
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These groups — linear, symplectic, unitary, orthogonal — are called the finite simple
classical groups. The reader who is unfamiliar with these can safely keep in mind only the
example PSLn(q). For most purposes — although not quite for all! — what is true for
PSLn(q) is true also for the other families, with changes which can be more or less painful
depending on the situation.

4.3 Groups of Lie type: exceptional groups

Groups of Lie type are not finished here, however. Indeed, there are also the finite simple
exceptional groups of Lie type. It would be possible to define some of them in a reasonably
quick way. However the mere definition might sound a bit artificial, so we prefer to avoid
doing this.

4.4 Groups of Lie type: history and connections

Finite classical groups have been known for quite a long time. Indeed, the American
mathematician Leonard Dickson proved the simplicity of these groups in 1901. Around
the same time, Wilhelm Killing end Élie Cartan classified the complex simple Lie groups.
Roughly, the strategy was to associate to each simple Lie group a certain linear strucure,
called Lie algebra, and to provide a classification of the possible Lie algebras occurring
in terms of certain combinatorial invariants. The classification of Lie algebras can then
be pulled back to offer a classification of Lie groups. In the end, one gets two types of
groups: the simple classical Lie groups, and the simple exceptional Lie groups. It was very
clear to Dickson that his study of finite simple classical groups had to be connected to the
Killing–Cartan classification. In particular, it should have been possible to analyze the
finite classical groups using the same combinatorial techniques used by Killing and Cartan.
What is more, Dickson could grasp the fact that finite analogues of the exceptional Lie
groups could exist.

Dickson’s intuition was correct. However, it took quite a long time to make everything
precise. In particular, it was only in the 1960’s that Robert Steinberg [Ste68] (following
fundamental work of other people, notably Claude Chevalley and Jacques Tits) provided
a uniform construction of finite simple groups of Lie type — both classical and exceptional
— using similar ideas to those of Killing and Cartan. In particular, one starts with a linear
algebraic group G over an algebraically closed field of positive characteristic. For these
groups, the classification of Killing and Cartan applies. Then one constructs the finite
groups of Lie type as groups of fixed points of suitable morphisms σ : G→ G, nowadays
called Steinberg morphisms. It is amazing that one can provide such an elegant, uniform,
description of groups that at first glance might look very different. It should be pointed
out that in the finite case many complications occur — indeed, as already observed, it
took several more decades to understand things properly. One of the essential reasons is
that, in the finite case, one has twisted versions of groups of Lie type, which do not exist
when one works over an algebraically closed field (for instance, PΩ−2n(q) is a twisted simple
group of Lie type).

We come now to the last family of finite simple groups.
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4.5 Sporadic groups

This is with no doubt the most mysterious family of finite simple groups. It consists of 26
groups. One may argue why 26, and not 25. But this is a sort of philosophical question
that the author is not able to address. In fact, similarly one could ask why there are
exactly 5 simple complex exceptional Lie groups.

The history of these groups is strange. The first that we have to mention are the five
Mathieu groups. These five groups were discovered by the French mathematician Émile
Mathieu between 1860 and 1870. In order to see the other sporadic groups, we have to
jump a century ahead in time. Three of them, the Conway groups, were discovered around
1970 by John Conway as group of automorphism of certain lattices [Con69]. The other 18
sporadic groups emerged during the proof of the CFSG. Roughly, when trying to prove a
certain classification theorem (i.e., a theorem stating that a group with certain properties
must belong to a certain, possibly infinite, list) it was noted that some exceptions occurred
provided a group with specific properties existed. It was then proved, by construction,
that indeed such exception occurred. (This description of the genesis of sporadic groups
is true only to some extent, and not exactly satisfying.)

The author knows very little about sporadic groups; the next subsection somehow
reiterates this point.

4.6 Sporadic is difficult

Let us consider the sporadic group with largest order. This is called the Monster, and
usually denoted by M . It has order

808017424794512875886459904961710757005754368000000000 ≈ 8× 1053

This is just a finite number, and perhaps we should not be scared of it. This group can
be embedded in GLN (C) with N = 196883, and this N is minimal: we cannot view M as
a subgroup of GLn(C) with n < N . If we prefer to work with matrices over a finite field,
we can embed M inside GLN (2). Again, N is minimal.

On the opposite side, let us consider the projective special linear group PSL2(q). For
several reasons, the family {PSL2(q)}q is the easiest family of FSG one can consider.
However the order of PSL2(q) is

q(q − 1)(q + 1)

(2, q − 1)

Up to a constant this number is roughly q3 and, as q grow, gets much larger than |M |:
the Monster looks very tiny compared to PSL2(q) for large q. Therefore, the order is not
necessarily a good way to measure the complexity of a structure.

Indeed, what makes PSL2(q) easy to understand is that we can just write down 2× 2
matrices and work with them. We can see many things just by elementary linear alge-
bra. On the other hand, it is more difficult to work with N × N matrices. However
this is not completely satisfactory. Indeed, we can play a similar game with the family

Università di Padova – Dipartimento di Matematica 80



Seminario Dottorato 2019/20

{PSLn(2)}n: for large n, we will need to work with tremendously big matrices. Nonethe-
less it is fair to say that we understand much better PSLn(2) than M . The explanation
is that {PSLn(2)}n comes as a family, while M is just an individual entity. And it is
much easier to understand things that somehow we can group, or order, together. This
is the biggest difference between the sporadic groups and the other finite simple groups.
Sporadics looks as strange exceptions, compared to the other families, which admit a sat-
isfying and unified explanation. We feel it necessary, here, to quote John Thompson —
one of the main characters of the proof of the CFSG — who wrote in 1982:

“(...) the classification of finite simple groups is an exercise in taxonomy. This is
obvious to the expert and to the uninitiated alike. To be sure, the exercise is of colossal
length, but length is a concomitant of taxonomy. Those of us who have been engaged in
this work are the intellectual confreres of Linnaeus. Not surprisingly, I wonder if a future
Darwin will conceptualize and unify our hard won theorems. The great sticking point,
though there are several, concerns the sporadic groups. I find it aesthetically repugnant to
accept that these groups are mere anomalies... Possibly... The Origin of Groups remains
to be written, along lines foreign to those of Linnean outlook.”

Indeed, still nowadays many of the misteries regarding the true structure of sporadic
groups remain to be solved.(9)

It is now time to change topic. So far we have tried to define and introduce the finite
simple groups. Let us move to describe some of their properties.

5 Generation properties of finite simple groups

Finite simple groups enjoy amazing properties. We have chosen to discuss some properties
concerning generation. Recall that, given a group G and a subset X of G, we say that X
generates G if every element of G can be written as a product of elements in X ∪ X−1

(where X−1 denotes the set of inverses of elements of X). Equivalently, the smallest
subgroup of G containing X is G itself. We write in this case G = 〈X〉. The starting
point is the following theorem, proved by Steinberg [Ste62] for groups of Lie type, and by
Aschbacher–Guralnick [AG84] for sporadic groups (the case of alternating groups being
folklore).

Theorem 5.1 Let G be a finite simple group. Then, G is generated by a subset of size 2.

We say alternatively that G is 2-generated. Note that a group generated by one element
is, by definition, cyclic, hence abelian; therefore one cannot hope to improve the statement
above.

For the proof of the theorem, one inspects the list of groups appearing in the CFSG,
and proves the statement for each of them. It is worth remarking that, without the

(9)The reader may want to watch on YouTube a short interview to John Conway, an extraordinary
mathematician who worked on groups and on many other areas. To be honest, the interview is not exactly
entertaining, and one can probably find better material in which Conway is involved; however the topic
suits very well our discussion here. The name of the video is “The Monster Group – John Conway”.
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Classification, so far nobody has been able to prove the following statement: There exists
an absolute constant C such that every FSG is generated by a subset of size C. At first
glance this might seem strange, but it happens very often in the study of finite simple
groups: with the CFSG, one is able to prove spectacular results that one would hardly
imagine to be true without it.

5.1 A probabilistic approach

If G is a finite group, denote by PG(t) the probability that t randomly chosen elements of
G generate G. Here, and in the following, every probabilistic statement is with respect to
the uniform distribution; therefore

PG(t) =
|{(x1, . . . , xt) ∈ Gt : 〈x1, . . . , xt〉 = G}|

|Gt|

In general, since we are dealing with finite sets, this is particularly interesting if we consider
families, or sequences, of groups. In this case we can discuss uniform lower or upper bounds
to PG(t), limits, etc.

Of course, in this report we have a favourite family of groups to consider: the family
of all FSG. Indeed we have the following beautiful result, proved by Dixon [Dix69] for
alternating groups, by Kantor–Lubotzky [KL90] for classical groups, and by Liebeck–
Shalev [LS95] for exceptional groups.

Theorem 5.2 Let G be a finite simple group. Then, PG(2)→ 1 as |G| → ∞.

The statement must be understood as follows: for every ε > 0, there exists N such
that if G is a finite simple group and |G| > N , then PG(2) > 1− ε.

In words, if we pick two random elements from a finite simple group G, then these
elements are very likely to generate G provided G is large. Note that, being finitely many,
the sporadic finite simple groups are not involved in such a statement. It is a good moment
for the reader to recall that, without the Classification, we are not even able to show that
a finite simple group is generated by boundedly many elements. We are now going to say
something about the proof of Theorem 5.2.

5.2 Maximal subgroups

There is an intimate connection between PG(t) and the maximal subgroups of G. Recall
that, given a groupG, a proper subgroupH ofG is called maximal if there are no subgroups
between H and G. More precisely, whenever H 6 K 6 G, it must be either H = K or
K = G. A finite group with at least 2 elements contains maximal subgroups, and what
is more, every proper subgroup is contained in a maximal one.(10) Therefore, we deduce
that, if a subset X of G does not generate G, then X is contained in a maximal subgroup

(10)This is not always the case: there are infinite groups which contain no maximal subgroups. In other
words, every proper subgroup is properly contained in another proper subgroup.
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of G. Hence, if we denote by M(G) the set of maximal subgroups of G, we have

(1) 1−PG(t) =
| ∪M∈M(G) M

t|
|Gt|

Therefore we see that giving a lower bound to PG(t) is equivalent to giving an upper
bound to the right-hand side of (1). A first idea could be to give a trivial union bound,
namely

(2)
| ∪M∈M(G) M

t|
|Gt| 6

∑
M∈M(G)

|M |t
|G|t .

For a general finite group, this estimate is not accurate. Indeed, it does not take
into account intersections between maximal subgroups, which instead might be relevant.
However, amazingly, for finite simple groups the estimate turns out to be effective. Indeed,
in order to prove Theorem 5.2, the authors proved that the right-hand side of (2) for t = 2
goes to zero as |G| → ∞. Note that this amounts to proving that maximal subgroups of
finite simple groups are “few” and “small” in some sense.

5.3 The probabilistic method

Theorem 5.2 implies that, if G is a sufficiently large finite simple group, then G is generated
by two elements. The reader might be not particularly enthusiastic about this corollary:
we already said in Theorem 5.1 that this holds for all FSG. However, the method of proof is
interesting, in the following sense. Theorem 5.1 s proved by a constructive argument: pick
a finite simple group G, and find explicitly two elements which generate G. On the other
hand, Theorem 5.2 is proved by estimating the number and the size of maximal subgroups
of G. Therefore we are not directly addressing a problem of generation. Nonetheless, as
a corollary, we get the groups are generated by two elements. This is an instance of the
so called “probabilistic method”, pioneered by the Hungarian mathematician Paul Erdős,
which can be publicized as follows: “If you want to show that something exists, show it
has positive probability.”

It is often the case that showing that a set has positive probability — by counting
arguments, or by other means — is easier than showing directly that the set is nonempty.
In questions regarding generation of FSG, this is a very common approach. Indeed, there
are some problems for which only a probabilistic proof is known: we know that the groups
are generated by elements with certain properties, but we are not actually able to construct
these elements.

5.4 Asymptotic statements in finite simple groups

We spend few words about general asymptotic questions in finite simple groups — not
necessarily regarding generation. With “asymptotic”, we mean that we are interested in
G simple with |G| → ∞. We immediately note that, in these questions, sporadic simple
groups can be ignored, since they are finitely many.
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It would be a breakthrough to give a direct proof of the fact that there exist only
finitely many sporadic finite simple groups.(11) Indeed, for many applications only large
finite simple groups are important; and these applications would not rely anymore on
the CFSG. As an example, related to our previous discussion, it would imply that finite
simple groups are generated by an absolute number of elements. Unfortunately, currently
it seems absolutely hopeless to succeed in proving “directly” that there are finitely many
sporadics.

In any case, in asymptotic statements we can ignore the sporadics, and therefore we
have to deal with the remaining groups. These can be divided into three families:

(a) Alternating groups An with n→∞.

(b) Groups of Lie type of bounded rank (e.g. PSLn(q) with n fixed and q →∞.)(12)

(c) Groups of Lie type of large rank (e.g. PSLn(q) with n→∞.)

We can guess that the methods involved in (1) are usually different from the methods
in (2) and (3). This is not particularly surprising, as the relevant groups have different
nature. However, it is often the case that the methods in (2) are different from the methods
in (3). For instance, the family PSL2(q) with q →∞ (small matrices over large fields) can
be quite different from the family PSLn(2) with n→∞ (big matrices over small fields).

In the last decades, asymptotic questions about finite simple groups have become very
popular, and are object of vibrant research. It is a realm where the finer details disappear,
and the rough lines become the main focus.(13)

6 Revision projects

As we mentioned already, the proof of the CFSG was extremely long and difficult. More-
over, in 1989 Michael Aschbacher found a gap in the proof. In 1992, at a conference, he
announced a new proof of the relevant parts. In the end, the task turned out to be rather
complex, and the final proof of the so called “quasithin case” was published in 2004, in
joint work with Stephen Smith ([AS04b] and [AS04a]; in total, more than 1000 pages!).

In addition to this, since the original announcement of the CFSG in the 80’s, it was
clear to the community of group theorists that a revision of the proof was necessary. In
particular, it was necessary to try to collect the proof in a unique place (for instance in a
series of books), at the same time trying to improve and shorten the exposition. Needless
to say, this was en enormous task to undertake.

It began in 1994 with a book called “The Classification of Finite Simple Groups”
[GLS94] by Daniel Gorenstein, Richard Lyons and Ronald Solomon. This was the first

(11)The reader may decide autonomously which meaning to give to the word “direct”. At least, it should
be less than 15000 pages!
(12)The rank can be defined for every group of Lie type.
(13)This quote is taken from [Sha01]. This short survey is very much recommended!
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book in a series, in which the authors planned to carry out the project described above.(14)

The series is not finished yet. The eighth volume [GLS18] has been published in 2018.
There should be twelve volumes in total, for a total of 5000 pages or so (to which one should
sum [AS04b] and [AS04a]). There is a hope that the last volume will be pubslished within
2023. Fortunately, other mathematicians are contributing in this fundamental work.

It is fair to say that without the CFSG most of the fundamental results in the field of
group theory would not have been proved (or imagined), let alone the numerous applica-
tions to other parts of mathematics. Therefore, the community of group theorists should
be (and indeed, as far as I can tell, is) very grateful to the people who are taking part
to this revision project. These people are spending their mathematical lives to pursue a
difficult and fundamental goal, which most group theorists just ignore: it is much easier
to apply the CFSG, than to read, understand and improve its proof.
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Permutation group theory

Mariapia Moscatiello (∗)

Abstract. The modern notion of a permutation group arises naturally throughout mathematics,
with important applications across the sciences. In this note we will focus on finite permutation
groups. After introducing some basic concepts, we will see, with some examples, how the Classifi-
cation of Finite Simple Groups has revolutionized the study of finite permutation groups. We will
then highlight some connections to other areas of mathematics.

The study of permutation groups is an old subject with a rich history, stretching
all the way back to the origins of group theory in the early 19th century. The modern
notion of a permutation group is extremely flexible, and they arise naturally throughout
mathematics, with important applications across the sciences. For instance, given any
mathematical object or structure Σ (e.g. vector space, group, graph, topological space,
etc.) based on a set of points Ω (e.g. vectors, group elements, vertices, points, etc.) then
the set Aut(Σ) of automorphisms (or symmetries) of Σ (i.e. the bijective maps f : Ω→ Ω
such that f and f−1 preserve the structure of Σ) is a permutation group on Ω. That is,
Aut(Σ) is a group of bijections from Ω to itself.

In this short note, we will focus on finite permutation groups, which continue to be
a very active area of current research. In particular, we will states very recent results
obtained in this contex. After introducing some very basic concepts and key tools, we will
see, how the Classification of Finite Simple Groups (CFSG) has revolutionized the study
of finite permutation groups. Finally, we will introduce the concept of base size, which
has interesting connections to other areas of mathematics, such as computational group
theory, representation theory, graph theory.

1 Notation, terminology and basic facts

Throughout this section, it is possible to refer to [4] as the main reference. From now on, Ω
is a finite set. Let Sym(Ω) be the set of bijections Ω→ Ω (also called permutations of Ω).
The operation of the usual composition of functions endow Sym(Ω) with the structure of
a group, this is called the Symmetric Group on Ω. If Ω1 and Ω2 are equipotent sets, then
Sym(Ω1) and Sym(Ω2) are isomorphic groups. When Ω = {1, . . . , n}, we denote denote

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 6 May 2020.
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Sym(Ω) by Sym(n), and we call this the symmetric group of degree n. The cardinality
of Sym(n) is n!. To familiaze the reader with usual notations we consider as an example
a couple of non trivial partitions in Sym(3) : the partition that maps 1 → 2 → 3 → 1
is denoted by (1, 2.3), and the partition that maps 1 → 2 → 1 is is denoted by (1, 2).
Composition works as follows:

(1) (1, 2)(1, 2, 3) = (1, 3), and (1, 2, 3)(1, 2) = (2, 3).

In general, an element of the form (i, j) ∈ Sym(n) is called transposition, and an element
of the form (i1, . . . , ik) ∈ Sym(n) is called k-cycle. Hence (1, 2, 3) is a 3-cycle. Note that
disjoint cycles always commute, and from (1) we deduce that Sym(n) is not abelian, for
every n ≥ 3.

Fact 1 Every permutation can be written (up to reordering) in a unique way as a product
of disjoint cycles.

Further, every permutation can be written (not in a unique way) as product of trans-
positions. A permutation is called even (and it has + sign) if it can be written as the
product of an even number of transpositions, and odd (and it has − sign) otherwise. In
particular, all transposition are odd, and all the 3-cycles are even. Note that, a k-cycle is
even if and only if k is odd, and a product of disjoint cycles is an even permutation if and
only if the number of cycles of even length is even. Hence the product of even permutations
is an even permutation. Let us denote by C2 the set {−1, 1} with the operation given by
multiplication. Then C2 is an abelian group, it is a cyclic group (a group generated by
one element, in this case the generator is −1) of order 2. The following map

sgn : σ ∈ Sym(n) 7→ sign(σ) ∈ C2

is a surjective group homomorphism, and the kernel of sgn is the normal subgorup of
Sym(n) consisting of the even permutations. This subgroup is called the alternating
group of degree n, and we denote this by Alt(n). By the first isomomorphism theorem,
Sym(n)/Alt(n) ∼= Sym(n)σ = C2, hence Alt(n) has order n!/2.
A permutation group on Ω is a subgroup of Sym(Ω); that is, a permutation group G on Ω
is a set of permutations of Ω which is closed under composition, contains the identity per-
mutation, and contains the inverse of each of its elements. The degree of the permutation
group is the order of Ω. There is an intimately related concept, that of a group action.

Let G be a group (in the abstract sense of group theory, a set with a binary operation).
Then an action of G on Ω is a (group) homomorphism ϕ from G to Sym(Ω), we say that
Ω is a G-set. For x ∈ G, α ∈ Ω we write αx to denote the element α(xϕ) ∈ Ω. The image
of ϕ, denoted by GΩ is a subgroup Sym(Ω). That is, GΩ is a permutation group on Ω.
The action is faithful if Ker(ϕ) is trivial; in this case G ∼= GΩ, hence G is a permutation
group on Ω. Conversely, if G is a permutation group on Ω, taking ϕ to be the natural
inclusion of G in Sym(Ω), then we have an action of G on Ω.
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For x ∈ G, α ∈ Ω we define

αG := {αx | x ∈ G} the orbit of α in G;

Gα := {g ∈ G | αg = α} the stabilizer of α in G.

It is an easy exercise to show that Gα is a subgroup of G, and that Gαx = Gxα := x−1Gαx.
Let G be a finite group, let g ∈ G, and let λg : x ∈ G 7→ xg ∈ G. Note that λg is a

bijection, and that
Λ : g ∈ G 7→ λg ∈ Sym(G)

is a (group) homomorphism, that is G acts on itself. Note that Λ is a faithful action, hence
G is a prmutation group on G. So, every finite group is a permuation group (Cayley’s
theorem).

Example 2 Let D12 be the group of the symmetries of a regular hexagon. The elements
of D12 are the rotations of an angle of degree 60◦i, with 1 ≤ i ≤ 6 and the reflections
around the six axes of the regular hexagon. In particular, D12 consists in 12 elements. By
Cayley’s theorem D12 is a permutation group of degree 12, but it is possible to do better.
Indeed, we will show that D12 is a permutation group of degree 6. To do this, let consider
the regular hexagon with edges labeled as follows:

2

3

4

5

6

1

Let ρ be the rotation of an angle of degree 60◦, and let σ be the reflexion around the axis
passing through the points 1 and 4. With these two elements we are able to recostruct all
the group: let 1 ≤ i ≤ 6, then ρi is the rotation of an angle of degree 60◦i, and σρi is a
reflexion around one of the axis of the regular exagon. These elements are two generators
of the group, and we used to write D12 = 〈ρ, σ〉. Using the labelling of the edges as above,
we can identify the rotation ρ with the 6-cycle (123456), and the reflexion σ with the
product of two transpositions (26)(35). Precisely,

Λ : D12 → Sym(6)

ρ 7→ (123456)

σ 7→ (26)(35)

is an injective group homomorphism. Hence D12 is a permutation group of degree 6, as
required.

The previous example, even if quite easy, is crucial because it reveals which are the advan-
tages to work with generators and permutation groups. Indeed, working with generators
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give the possibility to work (hopefully) with few elements of the group, and working with
permutation groups allows working with permutations that are concrete objects.

Definition 3 Let G be a permutation group on Ω. The group G is transitive if for every
i, j ∈ Ω, there exists g ∈ G such that ig = j.

Hence if G is transitive there is only one orbit, namely Ω.

Example 4 Evidently Sym(n), and Alt(n) are transitive groups on {1, . . . , n}, and it is
easy to show that D12 is transitive on {1, . . . , 6}.

Let G be an abstract group, and let H be a subgroup of G. Let H \G := {Hg | g ∈ G}
be the set of right coset of H in G. Then

Λ : G −→ Sym(H \G)

x 7−→ [λx : Hg → Hgx]

is a transitive action.

These kinds of maps are the link between the permutation group and abstract group
structures. Let us explain this better. Let G be a transitive permutation group on Ω. By
the Orbit-Stabiliser theorem, there is a bijection between αG and the set of right cosets
Gα \G := {Gα g | g ∈ G} of Gα in G.

TwoG-sets Ω and Γ are isomorphic, denoted Ω ∼= Γ, if there exists a bijection ϕ : Ω→ Γ
such that (αx)ϕ = (αϕ)x for all α ∈ Ω and x ∈ G. For example, αG ∼= G \Gα (in terms of
the natural action of G on the set of cosets G\Gα described above ). In particular, if G is
transitive then Ω ∼= G\Gα. Further, for every x ∈ G, we have that Ω ∼= G\Gαx = G\G x

α .
Hence, any transitive action of a group G is isomorphic to an action of G on the right
cosets of a point stabilizer in G.

The connection is transparent: the transitive actions a group G correspond to the
conjugacy classes of subgroups of G.

Let G be a permutation group on a set Ω, with orbits ∆i = αGi , for some αi ∈ Ω, i ∈ I.
Then G acts transitively on ∆i, and the permutation group G∆i , induced by the action of
G on ∆i, is called transitive constituent of G. In some sense, G is built from its transitive
constituents. Indeed, G is a subdirect product of the G∆i ’s (that is, G is a subgroup
of the direct product of the G∆i ’s and the corresponding projection maps G → G∆i are
surjective). The transitive constituents, in turn, may be built from smaller permutation
groups. Here we need the notion of primitivity. Primitivity is a natural “irreducibility”
condition that leads us to the basic building blocks of all permutation groups: the primitive
groups. We introduce this notion in the following section.

2 Primitivity, Primitive componets, and System of Imprimitivity

In this section, it is possible to refer to [5] as the main reference.

Definition 5 Let G be a transitive permutation group on Ω. A non-empty subset B of
Ω is a block of imprimitivity if, for every g ∈ G, either B ∩ Bg = ∅ or B = Bg. Each
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translate Bg is also a block, and we say that {Bg | g ∈ G} is a block system or a system
of imprimitivity (this is a partition of Ω).

Let ω ∈ Ω. The singleton {ω} ⊆ Ω, and the whole Ω are blocks of imprimitivity; these
are called trivial blocks, and any other block is nontrivial.

Example 6 Let G = D12 = 〈ρ, σ〉, and let B = {1, 4} ⊆ {1, . . . , 6}. Note that B∩Bρ = ∅,
and Bσ = B, hence B is a nontrivial block of imprimitity.

Definition 7 Let G be a transitive permutation group on Ω. The group G is imprimitive
if there exists a nontrivial block of imprimitivity. Accordingly, G is primitive if it admits
only the trivial blocks.

It follows immediatly from Example 6 that D12 is an imprimitive group on {1, . . . , 6}.

Proposition 8 Let n ≥ 3. The symmetric group and the alternating group are primitive
groups in their natural action on {1, . . . , n}.

Proof. Let B ⊆ {1, . . . , n} be a block, and let assumte that B containing at least 2 points i
and j. Let k ∈ {1, . . . , n}\{i, j} (we are allowed to do so because n ≥ 3). Let consider the
3-cycle g = (i, j, k) ∈ Alt(n) ≤ Sym(n). Since B is a block and j ∈ Bg ∩B, then Bg = B,
and consequently k ∈ B. By the arbitrariness of k, it follows that B = {1, . . . , n}. We
have shown that, in their natural action on {1, . . . , n}, Alt(n), and Sym(n) admit only the
trivial blocks, that is Alt(n), and Sym(n) are primitive.

The notion of primitivity, as the notion of transitivity, in permutation group theory
has a correspondence with abstract group theory. The relation arises from the following
easy result.

Proposition 9 Let G be a transitive group on Ω. Then, G is primitive if, and only if,
Gα is a maximal subgroup for some α ∈ Ω.

Therefore the primitive actions correspond to conjugacy classes of maximal subgroups.
We are going to define wreath products that are an important source of examples. Let
H ≤ Sym(Γ) and K ≤ Sym(n) be permutation groups where |Γ|, n ≥ 2. Let Hn be the
direct product of n copies of H. The group K acts on Hn by permuting the coordinates.
More specifically π ∈ K acts on Hn by

(x1, . . . , xn)π = (x
1π−1 , . . . , xnπ−1 ).

The wreath product between H and K, denoted by H o K, is the semidirect product
Hn oK, where the group operation is defined as follows:

(a1, . . . , an)k · (b1, . . . , bn)k′ = (a1, . . . , an)(b1, . . . , bn)k
−1
kk′ = (a1b1k , ..., anbnk)kk′.

The direct product Hn is called the base group of H oK, and K is the top group. There
is a faithful action of H oK on Ω = Γ× {1, . . . , n} defined by

(γ, i)(h1,...,hn)k = (γhi , ik).
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We call this the standard action of G. Note that G is transitive if and only if H and K
are both transitive. Also note that the partition {Γ × {i} | 1 ≤ i ≤ n} is a system of
imprimitivity for H oK on Ω = Γ× {1, . . . , n}.

There is also a natural faithful action of G on the Cartesian product Ω = Γn defined by

(γ1, . . . , γn)(h1,...,hn)k−1
= ((γ1k)h1k , . . . , (γnk)hnk ).

This is called the product action of G. Note that this is simply a combination of the
coordinatewise action of Hn on Ω, together with the natural permuting action of K on
coordinates.

Let G ≤ Sym(Ω) be an imprimitive permutation group. Let Σ = {Bg | g ∈ G}
be a system of imprimitivity. Note that G acts transitively on Σ, that is, the induced
permutation group GΣ ≤ Sym(Σ) is transitive. The system of imprimitivity Σ is maximal
if GΣ is primitive.

Example 10 Let G = D12. The set Σ := {{1, 4}, {2, 5}, {3, 6}} is a system of imprim-
itivity (see Example 6). Since DΣ

12
∼= Sym(3), by Proposition 8, we deduce that Σ is a

maximal block system.
It is easy to show that Σ′ := {{1, 3, 5}, {2, 4, 6}} is another maximal system of imprimi-
tivity for G.

Let G ≤ Sym(Ω) be an imprimitive permutation group, and let Σ1 = {Bg | g ∈ G} be
a maximal system of imprimitivity. Let H = (GB)B be the permutation group induced
on B by the setwise stabiliser GB of B in G, and let K1 = GΣ1 . Note that H ≤ Sym(B)
is transitive and that K1 ≤ Sym(Σ1) is primitive. There exists a bijection between Ω and
B × Σ1 that embeds G into H oK1 (see [5, Theorem 2.6A]). If H is imprimitive we can
repeat the process, taking a maximal block system Σ2 = {Bx

1 | x ∈ H} with respect to
the action of H on B. Then H is isomorphic to a subgroup of L oK2 , where L = (HB1)B1

is transitive and K2 = HΣ2 ≤ Sym(Σ2) is primitive, so we can embed G in (L oK2) oK1.
Being Ω finite, this process terminates, at which point G is isomorphic to a subgroup of
an iterated wreath product

((. . . (Kt oKt−1) o . . . ) oK2) oK1 ≤ Sym(((. . . (Σt × Σt−1)× . . . )× Σ2)× Σ1)

of primitive groups Ki ≤ Sym(Σi) called primitive components of G ( these depend form
the different systems of imprimitivity considered each step, hence these are not uniquely
determined by G).

From Example 10, it is clear that there might exist different systems of imprimitivity.
So arise naturally to the following question.

Question 11 Is the number of maximal blocks of imprimitivity through a point for a
transitive group G of degree n bounded above polynomially in terms of degree n?

This question was firstly asked by Cameron [3] (see [3] also for the motivation for
this question.) The inspection of the problem shows how strong is the relation between
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permutation group theory and abstract group theory. To see this we fix some notation.
Given a finite group G and a subgroup H of G, we denote by max(H,G), the number of
maximal subgroups of G containing H. From what we have seen so far we can deduce that,
if G ≤ Sym(Ω) and ω ∈ Ω, then there exists a one-to-one correspondence between the
maximal systems of imprimitivity of G through the point ω and the maximal subgroups
of G containing the point stabilizer Gω. Hence Question 11 asks for a polynomial upper
bound for max(Gω, G) as a function of the degree n = |G : Gω|. In [10], using this
correspondece, we gave a positive solution to Question 11, showing the following result.

Theorem 12 (A. Lucchini, M. Moscatiello, P. Spiga, 2019) There exists a constant a
such that, for every finite group G and for every subgroup H of G, we have max(H,G) ≤
a|G : H|3/2. In particular, a transitive permutation group of degree n has at most an3/2

maximal systems of imprimitivity.

3 The O’Nan-Scott theorem

In this section, we state one of the most important results in permutation group theory:
the O’Nan-Scott Theorem. This theorem is a very powerful tool for studying finite prim-
itive permutation groups, describing their structure and theri action. The theorem was
stated independently by O’Nan and Scott in the preliminary proceedings of the Santa
Cruz Conference on Finite Groups in 1979. Only Scott’s version made it into the final
Proceedings. Later, Aschbacher pointed out the existence of another class of groups er-
roneously excluded in the original version of the O’Nan-Scott Theorem. In [9], Liebeck,
Praeger and Saxl give a self-contained proof.

To state the theorem, we introduce some classes of groups easy to describe; while, to
avoid technicality, we only give a rough description or an example for remaining classes.

(I) Almost simple group. Recall that finite group T is simple if only the trivial
subgroups (that is, the identity subgroup {1} and whole group T ) are normal in T . A
permutation group G ≤ Sym(Ω) is almost simple if there exists a nonabelian simple group
T such that T ≤ G ≤ Aut(T ) (where Aut(T ) is the group of the automorphisms of T ).

(II) Affine-type. Let p be a prime and let V be a d-dimensional vector space over the
field with p elements (which we will view as an additive group). Let

AGL(V ) = {ϕ(A,v) : u ∈ V 7→ uA+ v ∈ V | A ∈ GL(V ), v ∈ V }

be the group of affine transformations of V . Note that AGL(V ) ≤ Sym(V ), hence it
is a permutation group on V . A permutation group G ≤ Sym(V ) is of affine-type if
V ≤ G ≤ AGL(V ). Observe that the action of G is explicitly dermined by the action
of AGL(V ) on V . Here, G is primitive if and only if the stabiliser of the trivial vector
G0 = GL(V ) acts irreducible on V (that is there are no nontrivial subspaces of V on which
G0 acts).

(III) Diagonal-type. Here we introduce only a special case with a nice description. Let
T be a nonabelian simple group, and let G = T 2 be the direct product of two copies
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of T . Let consider the action of G on Ω the set of the cosets of the diagonal subgroup
H := {(t, t) | t ∈ T}. Then G ≤ Sym(Ω) provided an of example permutation group
diagonal-type.

(IV) Product-type & (V) Twisted wreath products. Just to give an idea about
these classes, we can say that the permutation groups G ≤ Sym(Ω) of these types preserve
a Cartesian structure on Ω (that is, an identification of Ω with Γn, the cartesian product
of n ∈ N \ {0, 1} copies of a set Γ).

Theorem 13 (O’Nan & Scott, 1979) Let G be a nontrivial finite primitive permutation
group on Ω. Then G is permutation isomorphic to a group that is either an almost simple,
an affine-type, a diagonal-type, a product-type, or a twisted wreath product.

Note that for the classes (II),(III), (IV), (V) the action is specified precisely; but
nothing is said about the action in the almost simple case. Maybe this explains why the
class (I) is where most of the mystery resides.

In many situations, this theorem can be used to reduce a general problem to a much
more specific problem concerning almost simple groups. At that point, one can appeal
to the Classification of the finite simple group (CFSG) and the vast literature on simple
groups and their subgroups, conjugacy classes, and representations. Therefore, being
an essential tool to study the building blocks of the permutation group, the CFSG has
revolutionized the study of finite permutation groups.

4 Base size

Let G ≤ Sym(Ω) be a permutation group of degree n. A subset B of Ω is a base for G if
the pointwise stabilizer of B in G

G(B) := {g ∈ G | ωg = ω , ∀ω ∈ Ω}

is trivial. Clearly Ω is a base; so every permutation group has a base. The base size for
G, denoted by b(G,Ω), or just b(G) when the meaning is clear, is the minimal size of a
base for G. It follows some examples.

Example 14

• Let G = Sym(n) acts naturally on Ω = {1, . . . , n}. We claim that b(Sym(n)) = n−1.

Let g ∈ G. Since g is a permutation, if g stabilizes n − 1 points i1, . . . , in−1 in Ω,
then g stabilizes Ω \ {i1, . . . , in−1}. That is, G(i1,...,in−1) = 1. Hence b(G) ≤ n − 1.
Let Γ ⊆ Ω, with |Γ| ≤ n− 2. Hence there exist i, j ∈ Ω \ Γ, with i 6= j, consequently
(i, j) ∈ G(Γ) 6= {1}. That is, b(G) ≥ n− 1. Definitely b(G) = n− 1.

• Let G = Alt(n) acts naturally on Ω = {1, . . . , n}. Arguing similarly to the previous
case it is possible to show that b(Alt(n)) = n− 2.

Let G ≤ Sym(Ω) be a permutation group, and ω ∈ Ω. The orbit ωG is regular if |ωG| = |G|.
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By the Orbit-Stabilizer theorem we have |G : Gω| = |ωG|. Hence, ωG is regular if and only
if Gω = {1}. That is,

G has a regular orbit if and only if b(G) = 1.(2)

Example 15

(1) Let G = D2n be the group of the symmetries of a regulan n-gon. As we saw for the
particular case n = 6, G acts faithfully on {1, . . . , n} the set of the vertices of the
regulan n-gon. We claim that b(G) = 2. Let i ∈ {1, . . . , n}, and let B = {i, i + 1}.
A reflexion with axis a diagonal passing through the point i and its diagonally
opposit moves the point i + 1 (since i and i + 1 are not diagonally opposit), and a
nontrivial rotation has no fixed points. Hence G(i,i+1) = {1}. Being |D2n| = 2n, and
G ≤ Sym(n), there are no regular orbits, and so b(D2n) = 2.

(2) Let V be a d-dimesional vector space, and let G = GL(V ). Note that G acts in a
natuar way on V . We claim that b(G) = d.

First we are going to show that for any A subset of V with size d−1, then G(A) 6= {1}.
Let u1, . . . , ud−1 ∈ V , and let g ∈ G({u1,...,ud−1}). Observe that since uig = ui, then
ug = u for every u ∈ 〈ui〉 (where 〈ui〉 is the subspaces of V generated by ui). Thus,
we can assume, without loss of generality, that u1, . . . , ud−1 are indepentent vectors.
Let w ∈ V \ 〈u1, . . . , ud−1〉. Then {u1, . . . , ud−1, w}, and {u1, . . . , ud−1, w + u1} are
bases of the vector space V . Consequently the bijective map f that fixes the vectors
u1, . . . , ud−1 and that swaps the vectors w and w + u1 is a nonidentity element of
G({u1,...,ud−1}). That is, we proved that b(G) ≥ d. Let {v1, . . . , vd} a basis of the
vector space V. It is not difficult to prove that G({v1,...,vd}) = {1}. Hence b(G) ≤ d,
and the claim follows.

(3) Let G = Sym(n) acts on Ω the set of the 2-elements subsets of {1, . . . , n}. We claim
that b(G,Ω) ≤ 2

3n+ 1.

Let n = 3s+ t, with 0 ≤ t ≤ 2. Let

B =

{
{{1, 2}, {2, 3}, . . . , {3s− 1, 3s}}, if 0 ≤ t ≤ 1

{{1, 2}, {2, 3}, . . . , {3s− 1, 3s}, {3s, 3s+ 1}}, if t = 2.

It is easy to deduce that GB = {1}, and so the claim follows.

From the following result (proved in [6]), we deduce that the base described in (3) of
Example 15 gives a good estimation for the base size for the action of G = Sym(n) on the
2-elements subsets of {1, . . . , n}, provided that n ≥ 4.

Theorem 16 (Z. Halasi, 2012) Let G = Sym(n), and let Ω be the set of k-elements
subsets of {1, . . . , n}. If n ≥ k2, then b(G,Ω) ≤ d2n−2

k+1 e

Definition 17 Let G ≤ Sym(n) be a permutation group of degree n. The group G is
large base if there exist some ` and r ≥ 1 such that (Alt(`))r ≤ G ≤ Sym(`) o Sym(r),
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where the action of Sym(`) is on k-sets elements of {1, . . . , `}, and the wreath product
acts with product action.

We can say that the large base groups arise as “blows-up” of almost simple groups
with socle Alt(`) acting on k-sets elements of {1, . . . , `}. Note that, taking r = 1 and
` = n, the groups considered in Theorem 16 are examples of large base.

The concept of base arise naturally in others contexts of mathematics. For example,
in the graph-theoretic literature, if Γ is a graph with automorphism group G = Aut(Γ),
then b(G) is called the fixing number (also determining number or rigidity index) of Γ and
this is a well-studied graph invariant (see [1] and the references therein).

Further, some classical problems in the representation theory of groups can also be
stated in terms of bases. For instance, if H is a group and V is a faithful H-module, then H
has a regular orbit on V if and only if the corresponding affine group G = V H ≤ AGL(V )
admits a base of size 2. Indeed, from the simple observation written in (2), and from the
fact that b(G) = b(H) + 1, we deduce that G has a regular orbit if and only if b(G) = 2.

In a different direction, bases have been used extensively in the computational study of
finite permutation groups. We briefly described this. Let G ≤ Sym(Ω) be a permutation
group, let B be a base, and let x, y ∈ G. Note that αx = αy, for every α ∈ B, if and only
if xy−1 ∈ G(B) = 1. That is, the elements of G are completely determined by their action

on B. Consequently |G| ≤ |Ω||B|, and in particular,

|G| ≤ |Ω|b(G).(3)

In computational group theory, it is used to store the elements of G as |Ω|-tuples. Now,
it follows from Example 10 that the element of G can be store as b(G)-tuples. Clearly, it
is more convenient to store these elements as b(G)-tuples, rather than |Ω|-tuples; whence
the problem of calculating base sizes has important practical application (see [14, Chapter
4] for further details).

Moreover, Example 10 reveals that it is possible to find an upper bound on the order
of a permutation group by bounding the minimal base size. The problem of bounding
the order of a finite primitive permutation group attracted a lot of attention in the 19th
century. One of the earliest results in this direction is a theorem of Bochert [2] from 1889,
which states that if G is a primitive permutation group of degree n not containing the
alternating group Alt(n), then b(G) ≤ n/2.

Using the Classification of Finite Simple Groups (CFSG) Liebeck proved the following
remarkable result.

Theorem 18 (Liebeck [8]) Let G be a primitive permutation group of degree n. If G is
not large base, then b(G) ≤ 9 log n.

The previous theorem provided a strong example of how much it is useful the tools of
CFSG in the study of permutation groups.

More recently, Liebeck, Halasi and Maroti showed in [7] that for almost all non-large
base primitive groups, b(G) ≤ 2dlog ne+ 26; Roney-Dougal and Siccha then noted in [12]
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that this bound applies to all primitive groups that are not large base. A conclusive result
(to apper in [11]) in this direction is the following.

Theorem 19 (M. Moscatiello, C.M. Roney-Dougal, 2020+) Let G be a primitive per-
mutation group of degree n. If G is not large base then b(G) ≤ max{7, dlog ne + 1}.
Furthermore, there are infinitely many such groups G for which b(G) > log n+ 1.

Notice that if G is the largest Mathieu group M24 in its 5-transitive action of degree
24 then b(G) = 7 > dlog ne + 1. If G = Sp2m(2), acting on the cosets of the maximal
subgroup O−2m(2), then b(G) = dlog ne + 1 > log n + 1. Hence, Theorem 18 is the best
possible in this context.
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Computational problems in mathematical

physical modelling with DLTI systems

Marta Gatto (∗)

Abstract. Mathematical physical models are often used for the description of physical phenomena
and are essential in industrial applications for various aims, such as control and estimation of
unmeasurable variables and physical parameters. In this talk, some numerical methods at the
basis of experimental modelling, i.e. modelling through experimental data, will be described for
different kind of model classes, in particular for DLTI (Dynamic Linear Time Invariant) systems.
The reasons for their importance will be explained and the computational problems of parameter
estimation and data denoising subject to the DLTI model constraint will be introduced with
examples.

1 Introduction

Mathematical physical models are often used for the description of physical phenomena
and are essential in industrial applications for various aims, such as control and estimation
of unmeasurable variables and physical parameters.

1.1 Some examples of industrial applications

The uses of models in industrial applications are very different and are referred to with var-
ious expressions: predictive and adaptive control, model-based design and shape optimiza-
tion, indirect measures and virtual sensors, fault detection and predictive maintenance,
virtual testing, parameter estimation, digital twins and prototypes and lot of others. We
describe for example some of these cases:

(a) Shape Optimization and Model-Based Design, are terms referred to the case in which
an analytical and numerical study on the shape of a certain object is done through
the optimization of mathematical equations to obtain a certain aim before building
an object or a machine;

(b) Indirect measures and Virtual Sensors are terms that indicate the calculation of a
certain quantity through physical equations, when it is not possible to measure it

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 20 May 2020.
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with true sensors, for example when the place has a too high temperature or the
sensor is expensive;

(c) The monitoring of the good functioning of a machine can be checked through models
and this is referred to as Fault Detection and Predictive Maintenance;

(d) In general the simulation of a model that describes a machine is called Virtual
Testing, and it may be useful when the tests on the machine are expensive, dangerous,
or when the machine is not available (suppose for example that workers are forced
to smart-working at home for a certain time).

1.2 Some basics of Experimental Physical Modelling

As various the applications in which models are used, as various are the mathematical
models that can be chosen. The activity of getting a model from data is called with
different terms, depending on the approach and the techniques used. Some examples
are System Identification, Signal Estimation or enhancement [2, 1], and Experimental
Modelling, and indicate the techniques used to extract the useful information of the system
from the available measurement corrupted with noise. The structure of these procedures
has some basic common concepts that can be pointed out. The process starts with the
collection of some data of the system under study, that comes with a measurement error.
Sometimes it is also possible to choose how to take the data of the system (and this step
is called Experiment Design). Then, some physical information about the system and
relations among the measured (and also unmeasured) quantities can be collected. Among
these information only the ones useful to the aim of the problem must be considered.

The procedure can in general be divided in three parts:

(a) in each case we can define a criterion function to be minimized, that represents our
aim. For example deterministic (square error, absolute error, ...) or probabilistic
(maximum likelihood error, ...).

(b) secondly, a model structure must be chosen to describe the system: the range goes
from simpler to more complex. We can divide them in the following characteriza-
tions: linear or nonlinear, static or dynamic, with lumped or distributed parameters
(Differential Equations or Partial Differential Equations), dynamic with continuous
or discrete time. Another distinction is the one between White Box models (i.e.
governed by physical equations, in which parameters have physical meaning) and
Black Box ones (or data-driven, in which parameters do not have physical meaning).

(c) finally we have to choose the numerical algorithm to solve the minimization of the
criterion function (for example batch or recursive methods).

The choice of the model structure can be done following the main properties of a good
model:

• generality: is the model still able to describe the system for little modifications of
the setting? For example the Hook’s law that describe a spring is valid for springs
with different stiffness factors;
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• predictability: is the model able to describe the phenomena also in situations that
were not used in the creation of the model?

• simplicity: this is a really important point and can be summarized with the Oc-
cam’s Razor principle, and described by the quotation: ”Everything should be made
as simple as possible, but not simpler”, Albert Einstein. This means that in the
description of the model, only useful information must be taken into consideration,
while non-useful details of the phenomena must be neglected.

The last one is a very important principle in modelling, and is the reason why simple
model equations are the most widespread and we will focus on them. We will show two
examples, Least Squares for Linear Systems and the Nonlinear case, following the three-
step structure described above. Consequently, we will introduce the State-Space form and
the Discrete Linear Time Invariant systems (DLTI).

2 Least-Squares and Nonlinear Least-Squares, static and dynamic

2.1 Least-Squares

The easiest, and hoped-for, model is the linear one, of the form

Ax = y

where x is the unknown variable, A is the matrix built from data and the right hand side
y is a measured quantity. When the matrix A is full-rank, the solution is easily given by
x = A−1b, since the inverse can be computed. However, in general the system is built from
lots of noisy data that generate a matrix A with more rows than columns, and y does not
belong to Im(A). Hence, what we look for is the vector x that gives the minimum norm
of the error, i.e. such that Ax is the projection of b on the subspace generated by the
columns of A. In this way we obtain the least-squares formulation (criterion function)

min
x
‖Ax− b‖22.

We may want to solve this problem on a batch of data (offline mode), or in a recursive
way (online), i.e. updating the system and solving it whenever a new data is available.
These two problems lead to different numerical methods or algorithms.

Moreover, the numerical problem gets more complicated when the matrix A is nearly
singular: these problems are called ill-posed and regularization techniques must be con-
sidered. For example, the Tikhonov regularization consists in solving the problem

min
x
‖Ax− b‖22 + λ‖Lx‖22

for a certain value of the weight λ and for a certain matrix L, that is usually the
identity or the discretization of a derivative operator, usually of order 2.
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2.2 Examples of Least-Squares

Although the linear model is very simple, it is sufficient to describe lots of different situa-
tions.

Example of a static model: One of the basic ex-
amples is the polynomial regression or fitting, in which
the aim is to describe the quantity y as a polynomial in
the variables u. In Figure 1 an example of a second or-
der polynomial fitting is shown. Given measurements
at samples of time t0, . . . , tN , we can build the linear
system 

1 u(t0) u(t0)2

1 u(t1) u(t1)2

...
...

...
1 u(tN ) u(tN )2


x0

x1

x2

 =


y(t0)
y(t1)

...
y(tN )

 . Figure 1. Polynomial fitting

This problem can be written as a linear least squares problem, in which the unknown x
are the weights of each term of the polynomial.

Example with a dynamic model: Given the mechanical equation of the motor

JM
dω

dt
(t) +BMω(t) = TM (t)− TL(t),

suppose to know the measurements of TM , TL, ω,
dω
dt and to need the estimate of the pa-

rameters JM and BM . We can write the problem as a linear system as follows, and solve
it as a least-squares problem

dω
dt (t0) ω(t0)
dω
dt (t1) ω(t1)

...
...

dω
dt (tN ) ω(tN )


[
JM
BM

]
=


TM (t0)− TL(t0)
TM (t1)− TL(t1)

...
TM (tN )− TL(tN )

 .

2.3 Nonlinear Least-Squares

When a linear model is not sufficient to describe the system at hand, we must consider a
nonlinear model of the kind

y = f(u, x)

where y and u are vectors of measured quantities of which we know the physical relation
described by the nonlinear function f and we want to estimate a set of parameters x.
The criterion to find the solution is the generalization of the linear case, called nonlinear
least squares. It consists in minimizing the norm of the error between the measured vector
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ymeas and the vector y estimated through the model. For this reason it is also called the
prediction error method (PEM), and consists in the following problem

min
x
‖f(u, x)− ymeas‖22 = min

x
‖y − ymeas‖22 = min

x

N∑
i=0

(yi − ymeasi )2.

s.t. y = f(u, x) s.t. yi = f(u, xi) ∀i

The optimization methods that can be used to solve this problem are various, for
example Gauss-Newton and Levenberg-Marquardt methods. Note that the resolution of
a nonlinear optimization is iterative and computationally more difficult than the solution
of the linear case. Moreover the problem of local minima may require the use of global
optimization algorithms.

2.4 Examples of Nonlinear Least-Squares

We give two examples of static and dynamic models, as in the linear case.

Example of a static model: In the static case we can consider a simple example of
Nonlinear exponential fitting, of which an example is shown in Figure 2.

Given two quantities y and u, we want to describe the
variable y with the exponential function

y = f(u) = x1e
x2u

estimating the value of the parameter vector x =
[x1, x2]. Given measurements umeasi , ymeasi at samples
of time t0, . . . , tN , we can build the nonlinear least
squares problem

min
x=[x1,x2]

N∑
i=0

(y(ti)− ymeasi )2

s.t. y(ti) = x1e
x2umeasi for ti = t0, . . . , tN .

Figure 2. Exponential fitting

Example of a dynamic model: The Lorentz model is nonlinear with respect to the
parameters p, r (Prandtl and Rayleigh numbers). Calling y = [y(0)T y(1)T . . . ] with y(k) =
[y1(k), y2(k), y3(k)], we solve

minimize
p,r

‖y − ymeas‖22

s.t.


dy1
dt (t) = −py1(t) + py2(t),
dy2
dt (t) = (r − y3(t))y1(t)− y2(t),
dy3
dt (t) = y1(t)y2(t)− by3(t).
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This system of equations has a peculiarity, in fact for high values of the Rayleigh number,
the system is near to chaotic, i.e. for little perturbations of the initial condition, there
are big variations in the dynamic. Numerical methods that take into account this aspect
must be used for the estimation of the initial condition in this case.

3 State-Space modelling

Until now, we considered models in which there were two sets of variables, an independent
variable vector u and a dependent vector y. These kinds of models are called Input-Output.

A State-Space model is characterized by the presence of three main variables, not only
the input vector u and the output y, but also the state vector x. Usually, the state is also
called internal or hidden variable, because some of its components may be not measurable.
More precisely, the state of a system at time t is the minimum set of variables that, with
the input, is sufficient to uniquely specify the dynamic system behaviour for all t over the
interval t ∈ [t,∞).

The continuous case has the following structures for the nonlinear and linear cases:
Continuous Nonlinear/Linear Time State-Space Models

Nonlinear:

{
ẋ(t) = Ac(t)x(t) +Bc(t)u(t)

y(t) = Cc(t)x(t) +Dc(t)u(t)
Linear:

{
ẋ(t) = a(t, x(t)) + b(t, u(t))

y(t) = c(t, x(t)) + d(t, u(t))

with x ∈ Rnx , y ∈ Rny , u ∈ Rnu , Ac ∈ Rnx×nx , Bc ∈ Rnx×nu , Cc ∈ Rny×nx and Dc ∈
Rny×nu .

Some systems may arise directly in a discrete form, or the continuous ones can be
discretized to obtain the following discrete equations:
Discrete Linear State-Space Model

(1)

{
x(k + 1) = A(k)x(k) +B(k)u(k)

y(k) = C(k)x(k) +D(k)u(k)

and the simpler case, that we are interested in:
Discrete Linear Time-Invariant State-Space (DLTI) Models

(2)

{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k).

3.1 Properties of DLTI Models

The importance and extensive use of DLTI models is due to the following aspects:

• DLTI models are a common structure for lots of physical phenomena, i.e. very
different systems (from mechanical to electrical, thermal, . . . ) can be described with
the same mathematical structure of equations, with different meaning of the states
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and variables. This concept is called system analogy. The consequence is that, from
the mathematical point of view, the theory and the dynamics of these systems can
be studied independently on the application.

• The other characterization is that system theory is well developed, a lot of properties
can be characterized and, in the deterministic case, the solution is known explicitly.

• In the linear case, linear algebra problems can be solved online, with small compu-
tational effort.

3.1.1 Properties: Controllability and Observability

Controllability, Reachability and Observability are properties of a system important in
Control Theory. When the model is used to control a certain system it is important to
know how the input can influence the dynamic. We recall here the definitions [6].

Definition 1 (Controllability) The DLTI system (2) is controllable if, given any initial
state x(ka), there exists an input signal u(k) for ka ≤ k ≤ kb such that x(kb) = 0 for some
kb.

Definition 2 (Reachability) The DLTI system (2) is reachable if for any two states xa
and xb there exists an input signal u(k) for ka ≤ k ≤ kb that will transfer the system from
the state x(ka) = xa to x(kb) = xb.

In few words, controllability means that the system, through a certain input, can
always be brought to the origin, and reachability that the state can always be moved from
one point to another. Observability is the possibility to deduce univocally the state from
the output measurement:

Definition 3 (Observability) The DLTI system (2) is observable if any initial state x(ka)
is uniquely determined by the corresponding zero-input response y(k) for ka ≤ k ≤ kb
with kb finite.

It is easy to check these properties on DLTI systems, since two theorems hold:

• reachability is equivalent to the matrix Cn =
[
B AB . . . An−1B

]
to be full rank,

• observability is equivalent to the matrix On =


C
CA

...
CAn−1

 to be full rank.

3.1.2 Explicit formula of the Solutions

The solution equations for the State-Space problems, given the initial conditions on the
state, have analytic expressions
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• in the continuous deterministic LTI case is:

(3)

{
xt = Φt,t0xt0 +

´ t
t0

Φt,αBcuαdα

yt = CcΦt,t0xt0 +
´ t
t0
CcΦt,αBcuαdα+Dcut

with Φt,t0 = eAc(t−t0).

• in the discrete deterministic linear case is:

(4)

{
x(t) = Φ(t, 0)x(0) +

∑t−1
k=0 Φ(t, k)B(k)u(k)

y(t) = C(t)Φ(t, 0)x(0) +
∑t−1

k=0C(t)Φ(t, k)B(k)u(k) +D(t)u(t)

with Φ(t, k) = A(t−1)A(t−2)A(t−3) · · ·A(k) for t > k, for a general discrete linear
time variant state-space; while Φ(t, k) = At−k for t > k for a DLTI state-space.

4 Computational Problems of DLTI systems with noise

All the measures we obtain from real systems are corrupted with noise. The term “model-
based” processing was used in literature [1, 2] to represent the introduction of the descrip-
tion of noise inside the description of the system.

We introduce some basic probability concepts to add some noise terms in the state
space models considered until now.

4.1 Probability Preliminaries

Consider a probability space (Ω,S, P ), i.e. the triplet with Ω the sample space, S a σ-
algebra on it, is the set of events, and P a probability measure, i.e. a measure with
P (Ω) = 1. Then a random variable with values in Rn is a measurable mapping X : Ω →
Rn, X(ω) = x for ω ∈ Ω. This generates a probability measure PX(B) = P (X−1(B))
with B ∈ B borel sets of R. Moreover, the cumulative probability distribution function is
defined by

FX(xi) = Pr(X(ωi) ≤ xi)
called probability distribution of X or probability mass function.

Definition 4 (Cumulative distribution function) The cumulative distribution function
(CDF) FX(α) of a random variable X yields the probability of the event {X ≤ α}, which
is denoted by

FX(α) = P [X ≤ α], for −∞ < α <∞.

Definition 5 (Probability density function) The probability density function (PDF)
fX(α) of a random variable X, if it exists, is equal to the derivative of the cumulative
distribution function FX(α), which is denoted by

fX(α) =
dFX(α)

dα
.
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We recall the following definitions:

Expected value (mean): mX = E[X] =

ˆ ∞
−∞

αfX(α)dα,

Cross-Correlation: CXY = E[X Y ],

Covariance: RXY = E[(X −mX)(Y −mY )].

We will need the following particular case of random signal:

Definition 6 (A Gaussian (or normal) random variable) is defined by its probability
density function:

fx(t)(α) =
1√

2πRxx

exp

{
−1

2

(α−mx)2

Rxx

}
i.e. x ∼ N (mx, Rxx)

with mx ∈ R and Rxx ∈ R+. White noise is a Gaussian process with zero mean.

Vectorial case The definitions of mean and covariance for the case of two random
variables can be extended to the vector case. Let X be a vector with entries Xi for
i = 1, 2, . . . , n that jointly have a Gaussian distribution with mean equal to:

mX =

E[X1]
...

E[Xn]

 and covariance matrix CX equal to CX =


CX1,X1 . . . CX1,Xn

CX2,X1 CX2,Xn
...

. . .
...

CXn,X1 . . . CXn,Xn


then the joint probability density function is given by

fX(α) = fX1,X2,...,Xn(α1, α2, . . . , αn) =
1

(2π)n/2 det(CX)1/2
exp{1

2
(α−mX)TC−1

X (α−mX)}

where α is a vector with entries αi, i = 1, 2, . . . , n.

Time dependence A Random Signal or stochastic process can be seen as a sequence of
ordered in time random variables, in fact if we add the dependence on time (continuous
or discrete) we obtain the function X : I × Ω → R with (k, ω) 7→ X(k, ω). Fixed each
distinct value of time we obtain again a random variable X(k) : Ω → R. Each entry of
the discrete-time vector random signal x(k, ω) for a fixed k, is a random variable.

We recall some useful definitions we will use from now on: given x, y two random
signals, we define

Università di Padova – Dipartimento di Matematica 106



Seminario Dottorato 2019/20

Expected value (mean): mx(t) = E[x(t)] =

ˆ ∞
−∞

αfX(α)dα,

Auto-Correlation: ψxx(t, k) = E[x(t)x(k)],

Cross-Correlation: Cxy(t, k) = E[x(t)y(k)],

Variance: Rxx(t, k) = E[(x(t)−mx(t))(x(k)−mx(k))],

Covariance: Rxy(t, k) = E[(x(t)−mx(t))(y(k)−my(k))].

4.2 DLTI models with process and measure noise

We can now introduce noise in the DLTI model already described. The most common
formulation is the one in which some error in the model and in the output measure y is
added, while the input measure u is supposed exact, with no noise.

Definition 7 (DLTI State-Space Models with process and measure noise)

(5)

{
x(k + 1) = Ax(k) +Bu(k) + v(k)

y(k) = Cx(k) +Du(k) + w(k)
with

{
v(k) ∼ N (0, Rvv)

w(k) ∼ N (0, Rww)

where v(k) is the process or model noise and w(k) it the measurement noise, both gaussian
white.

4.2.1 Computational Problems with DLTI models

We can consider different computational problems, depending on what are the known and
unknown variables of the system:

• estimation of the unmeasurable variable x, solved through the Kalman Filter,

• estimation of physical parameters (i.e. estimation of the model) and unmeasurable
variable x, for which two approaches can be considered, the Nonlinear least-squares
method and Subspace Methods,

• estimation of Input/Output data, i.e. denoising or filtering of Input/Output data,
that brings to the modified Kalman Filter.

4.3 State Estimation: the Kalman Filter

The problem we want to solve is to recover a state estimate of (5) using both the informa-
tion of the model and the measurements. Since models are inaccurate and sensors have
errors, we must take into consideration the noise values. The Kalman Filter gives us the
right way (in a sense we will define) to weight both the information, i.e. gives us the
weights for the combination of the two information. It is a very famous algorithm since
its successful use in the navigation systems for the Apollo mission. From its discover, the
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applications for which it has been used cover different fields like signal processing, voice
recognition, video stabilization, and automotive, control, global positioning, computer vi-
sion and lots more. Moreover, various generalizations of this method have been studied
and are still open problems.

The term filtering is referred to the fact that it is an online algorithm, i.e. it works one
discrete instant at a time, in contrast to the offline procedures, which are called smoothing.
More precisely, at each time instant we have the knowledge of an estimate of the state at
the actual moment k, calculated with the model, and the measurements up to the previous
time instant.

Figure 3. Kalman Filter iteration of predictor-corrector form

In Figure 3 the prediction-correction procedure is shown.

Let us define the Kalman Problem more precisely.

Problem 1 (Kalman Filter Problem) We are given the signal-generation model

(6)

{
x(k + 1) = A(k)x(k) +B(k)u(k) + w(k)

y(k) = C(k)x(k) +D(k)u(k) + v(k)

with the process noise w(k) and measurement noise v(k) assumed to be zero mean white-
noise sequences with joint covariance matrix

E

[[
v(k)
w(k)

] [
v(j)T w(j)T

]T]
=

[
Rvv(k) Rwv(k)T

Rwv(k) Rww(k)

]
∆(k − j) ≥ 0

with Rvv(k) > 0 and where ∆(k) is the unit pulse. At time instant k − 1, we have an
estimate of x(k), which is denoted by x̂(k|k − 1) with properties

E[x(k)] = E[x̂(k|k − 1)],

E[(x(k)− x̂(k|k − 1))(x(k)− x̂(k|k − 1))T ] = P (k|k − 1) ≥ 0.

This estimate is uncorrelated with the noise w(k) and v(k). The problem is to determine
a linear estimate of x(k) and x(k+ 1) based on the given data u(k), y(k), and x̂(k|k− 1),
such that both estimates are minimum variance unbiased estimates; that is, estimates with
the properties

(7) E[x̂(k|k)] = E[x(k)], E[x̂(k + 1|k)] = E[x(k + 1)],
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and the expressions below are minimal:

(8) E[(x̂(k)−x̂(k|k))(x(k)−x̂(k|k))T ], E[(x(k+1)−x̂(k+1|k))(x(k+1)−x̂(k+1|k))T ].

Note that, with the condition of the mean, for the unbiased estimate, asking for the
minimum variance of the error is equivalent to asking the minimum cross-correlation of the
error, and the minimum variance of the solution. The conditions on means and variances
of the errors give the right Kalman weights for the combination of the measurements.

There are lots of formulations and derivation of this result, we will present here the
“conventional Kalman filter”.

Predictor-Corrector form:

{
x̂(k|k − 1) = A(k − 1)x̂(k − 1|k − 1) +B(k − 1)u(k − 1)

P̃ (k|k − 1) = A(k − 1)P̃P (k − 1|k − 1)A′(k − 1) +Rww(k − 1)
predictor{

e(k) = y(k)− ŷ(k|k − 1) = y(k)− C(k)x̂(k|k − 1)

Ree(k) = C(k)P̃ (k|k − 1)C ′(k) +Rvv(k)

K(k) = P̃ (k|k − 1)C ′(k)R−1
ee (k){

x̂(k|k) = x̂(k|k − 1) + K(k)e(k)

P̃ (k|k) = [I −K(k)C(k)]P̃ (k|k − 1)
corrector

x̂(0|0), P̃ (0|0)

where K(k) is called Kalman gain or weight, that gives us exactly that correct combination
of the two information we started with. The equations of the algorithm descend directly
from the conditions on means and covariances (7), (8).

4.4 State and Parameters Estimation

The problem of identifying state-space models on the basis of measured data can be solved
with two approaches. The first one is using Prediction Error Methods (PEM), in which
we obtain a constrained optimization problem

given umeas and ymeas

minimize
A,B,C,D

||y − ymeas||22

subject to

{
x(k + 1) = Ax(k) +B umeas(k)

y(k) = C x(k) +Dumeas(k)

where

• the variables are the unknown parameters of the model,

• the objective function is the difference between the measured data and the predic-
tions obtained from the model, i.e. the Prediction Error,
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• the constraints are the model equations.

Another kind of methods are the Subspace Methods [6]: first they estimate the states of
the system using a projection of certain subspaces generated from the data, then determine
the state-space model by a linear least squares method. They are a class of methods that
look for the estimated state on particular subspaces generated by the data, from which
comes the name. They are preferable with respect to the first method since they are faster,
no iterative methods are needed and they exploit linear algebra structure. Their result
however is suboptimal, hence they are used as an initial point for the PEM method.

4.5 Input/Output Denoising

The last problem we consider is the estimation of noisy Input/Output measurements
through the knowledge of the model and the covariance matrices.

Proposition 2 (Problem of I/O estimation: DLTI Noisy I/O problem) Given the DLTI
system with noisy input/output data{

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
with

{
ud(k) = u(k) + eu(k)

yd(k) = y(k) + ey(k)

the DLTI Noisy I/O problem is the following

min
û,ŷ,x̂

∥∥∥∥∥
[
Vũ

Vỹ

]−1/2 [
û− ud
ŷ − yd

]∥∥∥∥∥
2

2

s.t. x̂(k + 1) = Ax̂(k) +Bû(k)

ŷ(k) = Cx̂(k) +Dû(k)
for k = 1, . . . , tf − 1.

(9)

The optimal smoothed state estimate x̂(·, tf ) is the solution of (9).

Even if this problem starts with a different model structure, it can be simply reduced
to a Kalman Filter problem, as shown in [5], in the following way:

Modified Kalman Filter problem:{
x(t+ 1) = Ax(t) +Bud(t) + w(t)

yd(t) = Cx(t) +Dud(t) + v(t)
with

{
w := −Beu
v := −Deu + ey.

(10)

4.5.1 Denoising of Input/Output data without the knowledge of covariances

In the problem above, the covariance values of Input and Output signals are supposed
known. In few words, this information gives us the precision and confidence of our mea-
surements. However if the knowledge of covariance values is not available, the Kalman
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filter does not give an optimal solution. In this case the following approach can be con-
sidered [3]: rewrite the problem as a linear system Gz̃ = d, with z̃ = [ẽu, ẽy, ēu, ēy] and
minimize the following least squares problem with four additive terms

min
z̃

(
‖Gz̃ − d‖22 + ‖Λmineu ẽu‖22 + ‖Λminey ẽy‖22+

‖Λcurveu Lnu(ue − êu)‖22 + ‖Λcurvey Lny(ye − êy)‖22
)
.

The minimization problem comes from the need to satisfy the following points: the Input
and Output must be related through the model (least squares problem), the error should
have small magnitude, and the signals should have small curvature, i.e. they should not
vary too much (Tikhonov regularization terms). The choice of the weights Λ∗ can be
based on statistical properties of the Gaussian noise, i.e. all frequencies have the same
probability (Normalized Cumulative Periodogram must be near to a line).

Figure 4. The true (blue), noisy (dotted black) and denoised (red) signals of input (left), output (center)

and product of input and output (right) are shown.

The importance of this problem in applications is that the errors on Input/Output
may be intensified by the application of a function that computes a derivative quantity
(e.g. product of input/output, such as the mechanical/electrical power). In Figure 4 an
example with the true, noisy and denoised signals of input, output and product of input
and output is shown.

4.6 Unbiased Least-Squares modelling

Finally, we summarize a computational problem, described in [4], for linear models in
which the importance of the physical meaning of the parameters is central. We suppose
that a physical system is described by the real linear model

f = Ax̄ = [AaAu]

[
x̄a
x̄u

]
= Aax̄a +Aux̄u

with A ∈ Rn×n full rank, Aa ∈ Rn×na full column rank approximated known model
Aaxa = f , xa parameters to be estimated, Au unknown un-modelled component, with Au
non-orthogonal to Aa. The non-orthogonal residual implies that the least squares solution
is not the real physical one

x̂‖ = argmin
x′∈Rn

‖Aax′ − f‖2 6= x̄a.
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This is a case in which, even if the model describes in a good way the system, the estimated
parameter vector xa does not have the true physical meaning.

A solution can be found supposing a-priori conditions on the norm of the modelled
part and ratio between the modelled and unmodelled parts:{
Nf = ‖Aaxa‖
If = ‖Aaxa‖

‖Auxu‖
⇐⇒

{
xa ∈ A†a(∂Bn(0, Nf ))

xa ∈ A†a(∂Bn(f‖, Tf ))
with Tf :=

√(
Nf

If

)2

− ‖f⊥‖2.

These two conditions constraint the solution to lie on two hyper-ellipsoids which are
the boundaries of two n-dimensional balls in Rn.

If the linear system is built from a physical system, we can build more linear systems
considering different time instants, or different input signal values. Intersecting the so-
lutions sets of each test an considering a sufficient number of tests a unique solution is
determined.
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Modeling of Supply and Demand Curves

for Day-Ahead Electricity Market

Mariia Soloviova (∗)

Abstract. Accurate modeling and forecasting electricity demand and prices are very important
issues for decision making in deregulated electricity markets. In this seminar I will explain some
basic facts about price formation process in day-ahead electricity market, then I will speak mainly
about the problem of approximation of supply and demand curves, with a special attention to
Italian case. Finally, I will show how supply and demand curves evolve as stochastic processes in
functional spaces.

1 Introduction

Accurate modeling and forecasting electricity demand and prices are very important issues
for decision making in deregulated electricity markets. Different techniques were developed
to describe and forecast the dynamics of electricity load. Short term forecast proved to be
very challenging task due to these specific features. Figures 1 and 2 demonstrate changing
of electricity equilibrium price and quantity during one week. Functional data analysis is
extensively used in other fields of science, but it has been little explored in the electricity
market setting.

In the beginning of the 2000s the amount of papers focused on electricity price fore-
casting started to increase dramatically. A great variety of methods and models occurred
during last twenty years. Weron [12] (2014) made an overview of the existing literature on
electricity price forecasting and divided electricity price models into five different groups:
multi-agent, fundamental, reduced-form, statistical and computational intelligence mod-
els. A review of probabilistic forecasting was done in [7] (2018) by Weron and Nowotarski.
Most models have in common that they focus on the price itself or related time series.
In such a way these models does not take into account the underlying mechanic which
determines the price process – the intersection between the part of the electricity supply
and demand.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy. E-mail:
. Seminar held on 10 June 2020.
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Figure 1. Electricity equilibrium prices during

a week

Figure 2. Electricity equilibrium quantities

during a week

We consider the Italian electricity market (IPEX). IPEX consists of different markets,
including a day-ahead market. The day-ahead market is managed by Gestore del Mercato
Elettrico where prices and demand are determined the day before the delivery. Supply
and demand curves on day-ahead electricity markets are the results of thousands of bid
and ask entries in the day-ahead auction, this for all the 24 hours. In principle, it would
be possible to represent, and forecast, these curves by taking into account each production
and each consumption unit as a separate time series, and then joining these together to
construct the final curves, and thus the resulting price. However, the huge number of
these units makes this naive strategy infeasible, unless one has extremely high computing
capacity with complex machine learning algorithms available.

In this paper, we are going to present one more parsimonious approach. Our idea is to
represent each curve using non-parametric mesh-free interpolation techniques, so that we
can obtain an approximation of the original curve with far less parameters than the original
one. The original curve, in fact, in principle depends on about hundreds of parameters
and is obtained as follow.

The producers submit offers where they specify the quantities and the minimum price
at which they are willing to sell. The demanders submit bids where they specify the
quantities and the maximum price at which they are willing to buy. They are then
aggregated by an independent system operator (ISO) in order to construct the supply and
demand curves. Once the offers and bids are received by the ISO, supply and demand
curves are established by summing up individual supply and demand schedules. In the
case of demand, the first step is to replace ”zero prices“ bids by the market maximum price
(for Italian electricity market, the market maximum price is 3000 Euro) without changing
the corresponding quantities. After this replacement, the bids are sorted from the highest
to the lowest with respect to prices. The corresponding value of the quantities is obtained
by cumulating each single demand bid. For supply curve, in contrast, the offers are sorted
from the lowest to the highest with respect to prices and the corresponding value of the
quantities is obtained by cumulating each single supply offer. The market equilibrium
is the point where both curves intersect each other and the price balances supply and
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demand schedules (see Figure 3). This point determines the market clearing price and the
quantity. Accepted offers and bids are those that fall to the left of the intersection of the
two curves and all of them are exchanged at the resulted price.

Figure 3. The market equilibrium point

Figure 4. Approximation of supply curve

with polynomials

Some of the recent approaches try to to analyse the real offered volumes for selling and
purchasing electricity. This commonly leads to a problem of a large amount of data and,
therefore, high complexity.

Then Ziel and Steinert in 2016 [13] proposed a model for the German European Power
Exchange (EPEX) market, which considers all the supply and demand information of the
system and discusses the effects of the changes in supply and demand. Their idea was
to fill the gap between research done in time-series analysis, where the structure of the
market is usually left out, and the research done in structural analysis, where empirical
data is utilized very rarely and even less thoroughly. They provided deep insight on the
bidding behavior of market participants. They also showed that incorporating the sale and
purchase data yields promising results for forecasting the likelihood of extreme price events.

As far as we know, non-parametric mesh-free interpolation techniques were never con-
sidered for the problem of modeling the daily supply and demand curves.

We are going to use a relatively new modeling technique based on functional data
analysis for demand and price prediction. The first task for this purpose is to make an
appropriate algorithm to present the information about electricity prices and demands, in
particular to approximate a monotone piecewise constant function.

We want to make an appropriate algorithm to present this information, in particular,
to approximate a monotone piecewise constant function. Accuracy of the approximation
and running time are very important for us. As we already said, the basic novelty of
our problem is that we are going to present the information about electricity prices and
demands using functional data analysis approach. The main idea behind functional data
analysis is, instead of considering a collection of data points, to consider the data as a single
structured object. This allows to use additional information contained in the functional
structure of the data. Once the data are converted to functional form, it can be evaluated
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at all values over some interval.
The most promising technique to do so is the use of (integrals of) Radial Basis Func-

tions, which are been used in several other applications (image reconstruction, medical
imaging, geology, etc.) and allow a very flexible adaptation of the interpolating curves
to real data. The use of radial basis functions have attracted increasing attention in re-
cent years as an elegant scheme for high-dimensional scattered data approximation, an
accepted method for machine learning, one of the foundations of meshfree methods and
so on (see [8], for example). We will present different techniques for this interpolation,
with their advantages and drawbacks, and with an application to the Italian day-ahead
market.

We consider the Italian electricity market (IPEX). IPEX consists of different markets,
including a day-ahead market. The day-ahead market is managed by Gestore del Mercato
Elettrico (GME) where prices and demand are determined the day before the delivery by
means of hourly concurrent auctions. In this paper, we consider supply and demand curves
as stochastic processes with values in a functional space. Recall that, in the price formation
process, the producers submit offers, where they specify the quantities of electricity and
the minimum price at which they are willing to sell. However, the market operator allows
a minimum increase, or tick, of 1 kWh for quantities and 0.01 euro/MWh for prices.
Then, the dimension of our model is 60 000 000. In order to deal with the huge amount
of bid data, one needs dimension reduction techniques and high-dimensional statistical
methods. Using the tools of functional data analysis, it is possible to approximate the
original supply and demand curves with far less parameters than the original ones. Then
we continue research considering supply and demand curves as stochastic processes with
values in functional space.

Linear processes on functional spaces were born about fifteen years ago. The linear
processes on function spaces generalize the classical scalar or vector linear processes to
random elements which are curves or functions and more generally valued in an infinite-
dimensional separable Hilbert space H. Random curves designed to improve the quality
of prediction. This approach offers a wide spectrum of models suited to the statistical
inference and also leads to challenging theoretical and applied problems.

2 Meshless approximation of supply and demand curves

Let us briefly notice some features of supply and demand curves that are relevant for our
modeling:

1. By construction, the curves are monotone.

2. The values attained by the supply curve are roughly clustered around layers, cor-
responding to different production technologies. In Italy they are non-dispatchable
renewables, gas, coal, hydro, oil.

3. The fact that renewables are the first ones make the supply curve intrinsically ”mesh-
less”.

4. Demand is much more inelastic than supply.
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So, we are dealing with a scattered data interpolation problem. We have a large amount of
points (each point represents price and amount of electricity) that we want to approximate.
We can formalize this problem as follows.

Given a set of N distinct data points XN = {xi : i = 1, 2, . . . , N} arbitrarily dis-
tributed on a domain Ω ⊂ R and a set of data values (or function values) YN = {yi : i =
1, 2, . . . , N} ⊂ R, the data interpolation problem consists in finding a function sf : Ω→ R
such that

(2.1) sf (xi) = yi, i = 1, . . . , N.

Notice that for all methods, the interpolant sf is expressed as a linear combination of
some basis functions Bi , i.e.

sf (t) =

d∑
k=1

ckBk(t).

The basis functions in polynomial interpolation does not depend on the data points. An-
other approach is to use a basis which depends on the data points.

One simple way to solve problem (2.1) is to choose a fixed function φ : R→ R and to
form the interpolant as

sf (x) =
N∑
i=1

αiφ(‖x− xi‖),

where the coefficients αi are determined by the interpolation conditions sf (xi) = yi. There-
fore, the scattered data interpolation problem leads to the solution of a linear system

Aα = y, where Ai,j = φ(|xi − xj |).
The solution of the system requires that the matrix A is non-singular. It is enough to
know in advance that the matrix is positive definite (see [11] for more details). Let us
recall the definition of strictly positive definite function.

Definition 2.1 A real-valued function Φ : R −→ R is called positive semi-definite if ,
for all m ∈ N and for any set of pairwise distinct points x1, x2, . . . , xm, the m×m matrix

A = (Φ(xi − xj))mi,j=1

is positive semi-definite, i.e. for every column vector z of m real numbers the scalar
zTAz > 0. The function Φ : R −→ R is called (strictly) positive definite if the matrix A
is positive definite, i.e. for every non-zero column vector z of m real numbers the scalar
zTAz > 0.

The most important property of positive semi-definite matrices is that their eigenvalues
are positive and so is its determinant.

A radial function is a real-valued positive semi-definite function whose value depends
only on the distance from the center c. One useful characterization for positive semi-
definite univariate function was given by Schoenberg in 1938 in the terms of completely
monotone functions: a continuous function φ : [0,∞)→ R is positive semi-definite if and
only if φ ∈ C∞(0,∞) and (−1)kφ(k)(r) > 0 for all r > 0, for k = 0, 1, . . ..

Some standard radial basis functions are
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• φ(r) = e−(εr)2 (Gaussian),

• φ(r) = e−εr(εr + 1) (Matérn),

• φ(r) = (1− εr)4
+(4εr + 1) (Wendland),

where ε > 0 denote a shape parameter, r = ‖x‖2.
The idea of meshless approximation with radial basis functions is to find an approxi-

mant of f in the following form:

sf (x) :=
N∑
i=1

αiφ(‖x− xi‖)

where:

• the coefficients αi and the centers xi are to be chosen so that the interpolant is as
near as possible as the original function f ;

• φ : R→ R is a radial basis function (RBF).

Notice that the radial basis function φ > 0, with αi > 0, so

M∑
i=1

αiφ(‖x− xi‖) > 0.

As we need to approximate piecewise constant monotone function from [0,M ] to R+, we
decided to use the integrals of RBF. Namely, we want to find an approximant of the form

sf (t) =

ˆ t

0

M∑
i=1

αiφ(λi‖x− xi‖) dx =

M∑
i=1

αi

ˆ t

0
φ(λi‖x− xi‖) dx

where λi is a shape parameter for every center xi.
Evidently, any supply curve and any demand curve can be approximated by a com-

bination of error functions, which is the integral of a normalized Gaussian function. The
standard error function is defined as:

erf(x) =
1√
π

ˆ x

−x
e−t

2
dt =

2√
π

ˆ x

0
e−t

2
dt.

Since we want to approximate monotone curves we came up with the idea to use the
integral of radial basis function. In order to find unknown coefficients αi, λi, xi we need to
solve global minimization problem:

min
p
‖sf (xi, p)− yi‖22,

where p = (αi, λi, xi)i=1,...,N and

sf (t, p) :=

M∑
i=1

αi

ˆ t

0
φ(λi‖x− xi‖) dx

and φ(t) = (erf(t) + 1)/2 is the primitive of a Gaussian kernel.
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2.1 Data set

In our work we are using the data about supply bids from the Italian electricity market from
the GME website www.mercatoelettrico.org. We consider time period from 01.01.2017 to
31.12.2017. These data are in aggregated form, i.e. bids coming from different agents but
with the same price are aggregated in the price layer. Even in this form, we are dealing
with the massive amount of data. For instance, there were observed 2 800 687 offer and
558 926 bid layers during this period.

Date Hour Volume (MW) Price (Euro)

01-01-2017 1 13392.7 0

01-01-2017 1 25 0.1

01-01-2017 1 113.8 1

01-01-2017 1 11 3.5

01-01-2017 1 270.3 5

01-01-2017 1 0.5 6

.................. ...... ...................... ....................

31-12-2017 24 370 554.2

31-12-2017 24 352 554.3

31-12-2017 24 365 554.5

31-12-2017 24 97 700

31-12-2017 24 60000 3000

Table 1. Data

So, it means, that on average there are 324 offer and 65 bid layers for each hour of the
year, which corresponds to one supply curve and one demand curve respectively.

2.2 Numerical experiments

Since the maximum market clearing price for the period under review (i.e. from 01.01.2017
to 31.12.2017) is 350 e, in all the experiments we restricted ourselves to a maximum price
of 400 e. For the realization of our algorithm we are using the function lsqcurvefit from
MATLAB Optimization Toolbox.

First, we download the data from a text file and choose the number of basis function
M . After that, we need to divide our problem into M sub-problems. Then each part of
the supply curve must be approximated by one error function.

Our first attempt (Method 1) was just to divide y-axis uniformly into M equal intervals
(see Figure 5). However this approach is ineffective, as a huge jump concentrates on itself,
keeping uselessly many components.

To resolve this problem we created a simple algorithm - Method 2 - that finds the
points p1, . . . , pM on the y-axis such that our supply curve takes the value exactly pi on
some non-trivial interval (see Figure 6).
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Figure 5. Method 1 Figure 6. Method 2

Then M times we resolve the same optimization problem for the values of the supply
curve between pi and pi+1 using function lsqcurvefit (see Figure 7). On each part we
need to find only 3 coefficients ai, bi, ci of the function

(2.2) G(x) =
k∑
i=1

ai(erf(ci · (x− bi)) + 1).

Here, for convenience of representation we are using {erf(ci · (x − bi)) + 1} instead of
{erf(ci · (x− bi))}, as our data values are never negative.

Figure 7. Local interpolation by one error function with lsqcurvefit function

The lsqcurvefit function solves nonlinear data-fitting problems in least-squares sense.
Suppose that we have data points XN = {xi : i = 1, 2, . . . , N} and data values YN = {yi :
i = 1, 2, . . . , N} ⊂ R and we want to find a function f such that f(xi) ≈ yi, i = 1, . . . , N.
We can consider the family of functions {f(x, p) : p ∈ Rk}, depending of some parameter
p ∈ Rk. Let p0 ∈ Rk be an “initial guess” such that f(xi, p) is reasonably close to yi. The
function lsqcurvefit starts at p0 and finds coefficients p from some neighborhood of p0

to best fit the data set YN :
min
p
‖f(xi, p)− yi‖22.
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Notice that this function works well only if the number of parameters (p1, . . . , pk) is
not very big. That is why we are forced to divide our problem into many local problems.

For optimizing the numerical procedure we solved some parts of the optimization
problem by ourselves: in fact, when the interval [pi, pi+1] contains only one jump, then

ai := f(pi+1)− f(pi)

for any kernel function φ with unit integral.
A summary of the results is shown in Table 2. For all experiments we proceed with the

data for period from 01.01.2017 to 31.12.2017. We used different number of basis function
to approximate supply and demand curves, and then compared the equilibrium price,
which was received as intersection of approximants (Pappr), with the correct equilibrium
price (P ). We did this for each hour of each day, and then computed the average value of
|P − Pappr| (Error) for all 8 664 hours of the year and the maximum value of |P − Pappr|
(Max error).

This empirical results show that the accuracy of our approximation is good enough, if
we use 5 basis function for the demand curve and 15 basis function for the supply curve.
Then the increase in the number of functions leads to more time consumption, but the
increase of the accuracy is less significant.

Number of functions Results

For demand For supply Error Max error Running time

5 5 3.9 e 28.6 e 69 min.
5 10 2.2 e 14.9 e 82 min.
5 15 1.5 e 11.1 e 103 min.
5 20 1.3 e 9.1 e 110 min.
5 25 1.2 e 9.3 e 135 min.
5 30 1.2 e 9.4 e 159 min.
5 35 1.2 e 9.8 e 177 min.
5 40 1.2 e 9.6 e 190 min.
5 45 1.2 e 9.6 e 199 min.
5 50 1.2 e 9.6 e 207 min.

10 5 3.9 e 39.5 e 100 min.
10 10 2.1 e 14.9 e 128 min.
10 15 1.4 e 8.9 e 146 min.
10 20 1.2 e 9.1 e 162 min.
10 25 1.1 e 9.5 e 183 min.
10 30 1.1 e 9.3 e 199 min.
10 35 1.0 e 9.4 e 223 min.
10 40 0.98 e 9.8 e 241 min.
10 45 0.98 e 9.6 e 255 min.
10 50 0.98 e 9.6 e 273 min.

Table 2. Results of numerical experiment
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3 Supply and demand curves as stochastic processes

Let us give a simple example where infinite-dimensional modeling is a useful tool for
applications. If one observes temperature in continuous time during N days, and wants
to predict its evolution during the (N + 1) day, then (Xn), n ∈ N is a sequence of random
variables with values in a suitable function space, say C ([0, 24]).

Another example of modeling in large dimensions is the following: consider an eco-
nomic variable associated with individuals. At instant n, the variable associated with the
individual i is Xn,i. In order to study global evolution of that variable for a large number
of individuals, and during a long time, it is convenient to set

Xn = (Xn,i, i > 1), n ∈ Z,

which defines a process X = (Xn, n ∈ Z) with values in some sequence space F .
Ziel and Steinert in [13] analyzed the hourly day-ahead electricity price auction data of

Germany and Austria provided by the EPEX Spot from 01.10.2012 to 19.04.2015, using a
subtle data processing technique as well as dimension reduction and lasso-based estimation
methods. Their model consists of three parts: 1. Construction of price classes in order to
overcome the massive amount of data. 2. Forecasting for each price class by using time
series model. 3. Reconstruction of supply and demand curves and computation of market
clearing price. We reformulated the model of Ziel and Steinert in terms of linear trans-
formation of multivariate stochastic processes. They use a time series model for the bid

volume processes X
(c)
S,t and X

(c)
D,t for each price classes c. The original bid volume processes

are VS,t(p) and VD,t(p) for each possible price p ∈ P = {−500,−499.9, . . . , 2999.9, 3000}.
Denote p1 = −500, p2 = −499.9, . . . , pN = 3000, where N = 35001. So, we can say that
the stochastic processes

VS,t = (VS,t(p1), VS,t(p2), . . . , VS,t(pN )),

VD,t = (VD,t(p1), VD,t(p2), . . . , VD,t(pN )),

are processes with values in RN , which represents the information about the whole supply
and demand curves. More precisely, the sale and purchase curves are characterized by

St(p) =
∑
i:pi6p

VS,t(pi), and Dt(p) =
∑
i:pi>p

VD,t(pi).

In order to reduce the dimensionality of the problem, Ziel and Steinert defined price
classes for supply and demand curves as CS = (c1, c2, . . . , cM ) and CD = (c̃1, c̃2, . . . , c̃M ),
where −500 = c1 < c2, . . . < cM = 3000 and 3000 = c̃1 > c̃2 > . . . > c̃M = −500. In such
a way, M is a new dimension for the studied processes and it is much less than N .

Let us explain the dimensionality reduction, i.e the process of finding the points
c1, c2, . . . , cM on the example of supply curve in more detail. In order to create the price
classes Ziel and Steinert considered for any p ∈ P the mean bid volume

VS(p) =
1

T

T∑
t=1

VS,t(p)
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as a measure of importance for the price p ∈ P , where T is the number of observations
across all hours in the database. Let PS = ∪Tt=1PS,t be the sets of all bid prices for the
supply side. Then the mean supply curve S is characterized by

S(p) =
∑
x∈PS
x6p

VS(x) for p ∈ PS,t.

This equation define the curves explicitly only on the price grid PS , but the complete
mean supply curve can be obtained, for example, by a linear interpolation of the charac-
terized points. The function S on the price grid P is monotone, so there exist the inverse

function S
−1

. After that the authors defined the upper and lower values of the price
classes by

CS = {S−1
(nV∗) : n ∈ N}

where V∗ is an amount of volume, which will give the average amount of volume that
should be represented by every price class (in [13], for example, V∗ = 1000). For any price
class upper bound c ∈ CS the price class is given by

PS(c) = {p ∈ P : p 6 min{s ∈ CS : s > c} and p > max{s ∈ CS : s < c}}
= {p ∈ P : p 6 c and p > max{s ∈ CS : s < c}}

= [max{s ∈ CS : s < c}, c) ∩ P.

Then the associated volumes at time t to the price classes for c ∈ CS is given by

X
(c)
S,t =

∑
p∈PS(c)

VS,t(p).

Now, turning back to modeling the supply and demand curves, we can state that

XS,t = TS(VS,t) and XD,t = TD(VD,t)

where TS , TD : RN → RM are linear continuous operators such that

TS(x1, x2, . . . , xn) =

 k1∑
i=1

xi,

k2∑
i=k1+1

xi, . . . ,

N∑
i=kM−1+1

xi

 and

TD(x1, x2, . . . , xn) =

m1∑
i=1

xi,

m2∑
i=k1+1

xi, . . . ,
N∑

i=mM−1+1

xi

 .

So, the processes XS,t and XD,t are linear transformations of the processes VS,t and VD,t.
Linear transformations of stochastic processes are used in many ways in economic

analyses. In the paper [4] it is proved that an N -dimensional linear transformation of a
process possessing an MA(q) representation gives a process that also has a finite order
MA representation with order not greater than q. The more general fact that a linear
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transformation of a vector ARMA process is again an ARMA process is also proved. These
results are of importance because many temporal as well as contemporaneous aggregation
procedures can be represented as linear transformations.

Proposition 3.1 [4, Lemma 1] Let Xt be an N -dimensional MA(q) process, and T =
[tij ]i,j 6= 0 be a real M×N matrix. Then Yt = T (Xt) is an MA(q∗) process, where q∗ 6 q.

However, there are transformations of a finite order AR(p) process that do not admit
a finite order AR representation, but just a mixed ARMA representation.

Let us show that there is no version of this theorem for AR processes.

Example 3.2 Consider the case N = 2,M = 1 and define the AR(1) process Xt as

Xt =

(
x(1)

t

x(2)

t

)
=

(
ax(1)

t−1 + w(1)

t

bx(2)

t−1 + w(2)

t

)
Let T = [1 1] : R2 → R. Then Yt = T (Xt) = ax(1)

t−1 + bx(2)

t−1 +w(1)

t +w(2)

t . Evidently, unless
a = b, Yt is not autoregressive.

For modeling the electricity price Ziel and Steinert follow to a simple regression ap-
proach described in [5]. So, in this case, the initial processes XS,t and XD,t, and the
transformed processes VS,t and VD,t are vector-valued autoregressive process. We studied
the following problem: suppose that Vt is an RN -valued process and Vt ∈ AR(p), i.e.

Vt = A1Vt−1 +A2Vt−2 + . . .+ApVt−p +Wt,

where Ai are (N × N) coefficient matrices Wt is an (N × 1) unobservable zero-mean
white noise vector process. Let T : RN → RM be a linear continuous operator, and
Yt = T (Vt). We have explored the question under which condition Yt ∈ AR(p) and what
is the connection between Ai, Bi, Wt and Zt, if

Yt = B1Vt−1 +B2Vt−2 + . . .+BpV (t− p) + Zt.

In particular, we investigated for which transformations T the process T (Xt) has an AR(p)
representation. We obtained the following result.

Theorem 3.3 Let Xt be an N -dimensional AR(p) process with the representation

Xt = A1Xt−1 +A2Xt−2 + . . .+ApXt−p +Wt,

and T : RN → RM , M < N be linear transformation. Then Yt = T (Xt) is an M -
dimensional AR(p) if and only if there exist (M ×M) matrices Bi such that

(3.1) BiT = TAi for all i = 1, . . . , p.

Moreover, the process (Yt) has the representation:

Yt = B1Yt−1 +B2Yt−2 + . . .+BpYt−p + Zt,
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Remark 3.4 If rankT = M (i.e. rows of T are linearly independent), the pseudoinverse
of T can be expressed as follows

T+ = T T (TT T )−1.

Then from (3.1) we obtain

TAiT
+ = BiTT

+ = BiTT
T (TT T )−1 = Bi

So, Bi = TAiT
+ and

Yt = TA1T
+Yt−1 + TA2T

+Yt−2 + . . .+ TApT
+Yt−p + TWt.

We also formulated some conditions for the model of Ziel and Steinert in order to have
Theorem 3.3 to hold true. For any matrix T let RTi denote the row i of matrix T and let
CTj denote the column j of matrix T . The following simple lemma is valid.

Lemma 3.5 Let A be an (N ×N) matrix and T be an (M ×N) matrix (M < N) with
columns

CTks−1
= CTks−1+1 = CTks−1+2 = . . . = CTks = es, 1 6 s 6M

where 0 = k0 < k1 < k2 < . . . < kM = N and {e1, e2, . . . , eM} is the standard basis of
RM .

Then the following two conditions are equivalent :

1. There is B ∈ R(M×M) such that TA = BT ;

2. For any 1 6 i, l 6M there exist number Dil such that

kl∑
s=kl−1+1

asj = Dil for all ki−1 < j 6 ki.

In particular condition (2) is satisfied if the first k1 columns of A are the same, the second
k2 − k1 are the same, and so on, until the last kM − kM−1 columns.

Proof. Suppose that A = ΨT . From the formula

aij = 〈RΨ
i , C

T
j 〉

we obtain that CAl = CAd for any ks−1 6 l, d 6 ks.
Conversely, suppose now that

A =

CAk1 . . . CAk1︸ ︷︷ ︸
k1

CAk2 . . . C
A
k2︸ ︷︷ ︸

k2−k1

. . . CAkM . . . CAkM︸ ︷︷ ︸
kM−kM−1

 .

Then A = ΨT holds true for Ψ =
(
CAk1 C

A
k2
. . . CAkM

)
.
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In the model of Ziel and Steinert we start from the stochastic processes with values in
RN , which represents the information about the whole supply curve:

VS,t = (VS,t(p1), VS,t(p2), . . . , VS,t(pN )),

and then we define the modified process with values in RM

XS,t = (XS,t(c1), XS,t(c2), . . . , XS,t(cM )),

such that

XS,t = TS(VS,t).

The next result follows directly from an application of Lemma 3.5 and Theorem 3.3.

Proposition 3.6 Suppose that Xt is AR(p) process with the representation

Xt = A1Xt−1 +A2Xt−2 + . . .+ApXt−p +Wt,

T : RN → RM is the linear continuous operators such that

T (x1, x2, . . . , xn) =

 k1∑
i=1

xi,

k2∑
i=k1+1

xi, . . . ,

kM∑
i=kM−1+1

xi

 ,

for some 0 = k0 < k1 < k2 < . . . < kM = N .
Then Yt = T (Xt) is AR(p) process if and only if In particular, if in all the matrices

Ai, the first k1 columns are the same, the second k2 − k1 are the same, and so on, until
the last N − kM−1 columns. Then Yt = T (Xt) is AR(p) with the representation

Xt = B1Xt−1 +B2Xt−2 + . . .+BpXt−p + (TWt),

with Bi = TΨi are M ×M matrices, where Ψ =
(
CAik1 C

Ai
k2

. . . CAikM

)
∈ RN×M .

As we already mentioned, stochastic processes with values in infinite-dimensional space
often allows to represent the initial data with relatively small number of parameters and
improve the quality of prediction. So, we also obtained the version of Proposition 3.6
for the infinite-dimensional AR processes. For this matter, we recall the definition of
autoregressive Hilbertian process [2].

Let H be a real separable Hilbert space with its norm ‖ · ‖ and its scalar product 〈·, ·〉,
L denote the space of continuous linear operators from H to H. We consider the space
L2
H := L2

H(Ω,A, P ) of random variables X, with values in H, and such that E‖X‖2 <∞.
If E‖X‖2 < ∞, then the mathematical expectation EX exists as an element of H . The
mean EX is the unique element of H such that 〈EX,h〉 = E〈X,h〉 for all h ∈ H. The
scalar product for X,Y ∈ L2

H is defined as follow:

〈X,Y 〉L2
H

= E〈X,Y 〉.
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For any X,Y ∈ L2
H the cross-covariance operator of X and Y , which is an infinite-

dimensional analogous to the covariance matrix, is defined as

CX,Y (h) = E[〈X − EX,h〉(Y − EY )] : H → H.

The covariance operator CX,X of X is denoted by CX .
One important case arises when one assumes that X = (Xn, n ∈ Z) is a stationary

zero-mean autoregressive H-valued process of order 1 (ARH(1)), which has the following
characterization:

(3.2) Xn = εn + ρ(Xn−1),

with ρ ∈ L and εn, n ∈ Z a strong H-valued white noise, (i.e. Eεn = 0, Cεn = Cε0 6= 0
for any n ∈ Z; Cεn,εm = 0 for any n 6= m; (εn) and, in addition, εn are independent and
identically distributed).

Proposition 3.7 Consider a zero-mean ARH(1) process X = (Xn, n ∈ Z), satisfying,
for all n ∈ Z, the equation

Xn = ρ(Xn−1) + εn,

where ρ denotes the autocorrelation operator of the process X, which belongs to the class
L.

Let T : H → H is the linear continuous operators and Yt = T (Xt) is AR(p). Then
Y = (Yn, n ∈ Z) is an ARH(1) if and only if there exist ϑ ∈ L such that

(3.3) Tρ = ϑT.

Proof. The following sequence of equality shows that condition (3.3) is necessary and
sufficient:

Yt = T (Xt) = TρXt−1 + Tεt

= ϑTXt−1 + Tεt

= ϑYt−1 + ξt,

where ξt = Tεt is a zero-mean strong white noise ϑ ∈ L.

4 Conclusions

We presented a parsimonious way to represent supply and demand curves, using a mesh-
free method based on Radial Basis Functions. Using the tools of functional data analysis,
we are able to approximate the original curves with far less parameters than the original
ones. Namely, in order to approximate piece-wise constant monotone functions, we are
using the combination of the integral of a normalized Gaussian function.
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We also consider supply and demand curves as stochastic processes with values in a
functional space. In order to deal with the huge amount of bid data, we studied linear
transformation of multivariate stochastic process. It is known fact that a linear transfor-
mation of a vector ARMA process is again an ARMA process. However, in general, there
are transformations of a finite order AR(p) process that do not admit a finite order AR
representation, but just a mixed ARMA representation. We obtained some partial results
regarding the conditions that guarantee that linear transformation of a vector AR process
is again an AR process.
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